

Lecture Notes in Artificial Intelligence 6642
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

FoLLI Publications on Logic, Language and Information

Editors-in-Chief

Luigia Carlucci Aiello, University of Rome "La Sapienza", Italy

Michael Moortgat, University of Utrecht, The Netherlands

Maarten de Rijke, University of Amsterdam, The Netherlands

Editorial Board

Carlos Areces, INRIA Lorraine, France

Nicholas Asher, University of Texas at Austin, TX, USA

Johan van Benthem, University of Amsterdam, The Netherlands

Raffaella Bernardi, Free University of Bozen-Bolzano, Italy

Antal van den Bosch, Tilburg University, The Netherlands

Paul Buitelaar, DFKI, Saarbrücken, Germany

Diego Calvanese, Free University of Bozen-Bolzano, Italy

Ann Copestake, University of Cambridge, United Kingdom

Robert Dale, Macquarie University, Sydney, Australia

Luis Fariñas, IRIT, Toulouse, France

Claire Gardent, INRIA Lorraine, France

Rajeev Goré, Australian National University, Canberra, Australia

Reiner Hähnle, Chalmers University of Technology, Göteborg, Sweden

Wilfrid Hodges, Queen Mary, University of London, United Kingdom

Carsten Lutz, Dresden University of Technology, Germany

Christopher Manning, Stanford University, CA, USA

Valeria de Paiva, Palo Alto Research Center, CA, USA

Martha Palmer, University of Pennsylvania, PA, USA

Alberto Policriti, University of Udine, Italy

James Rogers, Earlham College, Richmond, IN, USA

Francesca Rossi, University of Padua, Italy

Yde Venema, University of Amsterdam, The Netherlands

Bonnie Webber, University of Edinburgh, Scotland, United Kingdom

Ian H. Witten, University of Waikato, New Zealand

Lev D. Beklemishev Ruy de Queiroz (Eds.)

Logic, Language,
Information
and Computation

18th International Workshop, WoLLIC 2011
Philadelphia, PA, USA, May 18-20, 2011
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Lev D. Beklemishev
Steklov Mathematical Institute
Gubkina 8, 119991 Moscow, Russia
E-mail: bekl@mi.ras.ru

Ruy de Queiroz
Universidade Federal de Pernambuco, Centro de Informática
Avenida Prof. Luis Freire s/n, Cidade Universitária
50740-540 Recife, PE, Brazil
E-mail: ruy@cin.ufpe.br

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-20919-2 e-ISBN 978-3-642-20920-8
DOI 10.1007/978-3-642-20920-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011926457

CR Subject Classification (1998): F.4.1, F.3, F.4, I.2.3, G.2, I.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at WoLLIC 2011: 18th Workshop on
Logic, Language, Information and Computation, held during May 18–20, 2011,
at the University of Pennsylvania, Philadelphia, USA.

WoLLIC is a series of workshops which started in 1994 with the aim of fos-
tering interdisciplinary research in pure and applied logic. The idea was to have
a forum which is large enough in the number of possible interactions between
logic and the sciences related to information and computation, and yet is small
enough to allow for concrete and useful interaction among participants.

WoLLIC 2011 included invited lectures by Rajeev Alur (Philadelphia), Ros-
alie Iemhoff (Utrecht), John Mitchell (Stanford), Vladimir Voevodsky (Prince-
ton), Yoad Winter (Utrecht), and Michael Zakharyaschev (London).

There were 35 submissions, of which the committee decided to accept 21
papers. In addition, WoLLIC 2011 had a special session dedicated to the 65th
birthday of Max Kanovich. This session was organized by Andre Scedrov.

The work of the Program Committee was greatly facilitated by the use of the
EasyChair conference management system created by Andrei Voronkov.

We should also like to thank the members of the Program Committee as well
as the external reviewers for keeping the scientific standards high. The work of
the Organizing Committee, represented by Andre Scedrov (Local Chair) and
Monica Pallanti (senior departmental administrator, Department of Mathemat-
ics, University of Pennsylvania), is greatly appreciated.

Scientific sponsorship of WoLLIC over the years has consistently come from
the Interest Group in Pure and Applied Logics (IGPL), the The Association for
Logic, Language and Information (FoLLI), the Association for Symbolic Logic
(ASL), the European Association for Theoretical Computer Science (EATCS),
the European Association for Computer Science Logic (EACSL), the Sociedade
Brasileira de Computação (SBC), and the Sociedade Brasileira de Lógica (SBL).

We acknowledge substantial help from Evgeny Dashkov in producing this
volume.

March 2011 Lev Beklemishev
Ruy De Queiroz

Organization

Program Committee

Sergei Artemov CUNY Graduate Center, New York, USA
Jeremy Avigad Carnegie Mellon University, Pittsburgh, USA
Arnold Beckmann Swansea University, UK
Lev Beklemishev (Chair) Steklov Institute of Mathematics, Moscow,

Russia
Alessandro Berarducci University of Pisa, Italy
Sam Buss University of California, San Diego, USA
Ruy De Queiroz Universidade Federal de Pernambuco, Brazil
Achim Jung University of Birmingham, UK
Benedikt Löwe University of Amsterdam and University of

Hamburg, The Netherlands and Germany
Johann Makowski Technion, Haifa, Israel
Michael Moortgat Utrecht University, The Netherlands
Prakash Panangaden McGill University, Montreal, Canada
Rohit Parikh CUNY Graduate Center and Brooklyn College,

New York, USA
Alexander Shen LIF CNRS, Marseille and IITP RAS, Moscow,

France and Russia
Bas Spitters Radboud University Nijmegen, The Netherlands
Vincent Van Oostrom Utrecht University, The Netherlands
Helmut Veith Vienna University of Technology, Austria
Yde Venema University of Amsterdam, The Netherlands
Scott Weinstein University of Pennsylvania, USA
Frank Wolter University of Liverpool, UK

Steering Committee

Samson Abramsky
Johan van Benthem
Anuj Dawar
Joe Halpern
Wilfrid Hodges

Daniel Leivant
Angus Macintyre
Grigori Mints
Hiroakira Ono
Ruy de Queiroz

Organizing Committee

Vivek Nigam
Anjolina G. de Oliveira

Ruy de Queiroz (Co-chair)
Andre Scedrov (Co-chair)

VIII Organization

External Reviewers

A
Arai, Toshiyasu
Areces, Carlos
B
Bezhanishvili, Nick
Bradfield, Julian
Bronnikov, George
C
Corradini, Andrea
D
Dechesne, Francien
Dekkers, Wil
Dezani, Mariangiola
F
Fiorino, Guido
Fischer, Eldar
Franco, Giuditta
G
Gabbay, Murdoch
Ganzow, Tobias
Geurts, Bart
Guillon, Pierre
H
Hindley, Roger
Hodkinson, Ian
J
Johanson, Lars
K
Kanza, Yaron
Katz, Shmuel
Krivelevich, Michael
Kupke, Clemens
Kurz, Alexander
Kuznets, Roman

L
Lengye, Floria
Lim, Dongsik
M
Manzonetto, Giulio
McCready, Eric
Mera, Sergio
Milnikel, Bob
Moller, Faron
O
Odintsov, Sergei
P
Philip, Bill
Piro, Robert
R
Rosicky, Jiri
S
Salibra, Antonino
Schneider, Thomas
Schröder, Bernhard
Simon, Sunil
Sorbi, Andrea
Steedman, Mark
Sutner, Klaus
T
Troquard, Nicolas
Tzevelekos, Nikos
V
Van Eijck, Jan
Verbrugge, Rineke
W
Witzel, Andreas
Z
Zolin, Evgeny
Zvesper, Jonathan

Table of Contents

Section 1: Invited Talks

Streaming String Transducers . 1
Rajeev Alur

Unification in Logic . 2
Rosalie Iemhoff

A Symbolic Logic with Exact Bounds for Cryptographic Protocols 3
John C. Mitchell

Univalent Foundations of Mathematics . 4
Vladimir Voevodsky

Relational Concepts and the Logic of Reciprocity . 5
Yoad Winter

Logic in the Time of WWW: An OWL View . 6
Michael Zakharyaschev

Section 2: Contributed Papers

A Complexity Question in Justification Logic . 8
Antonis Achilleos

Basic Model Theory for Memory Logics . 20
Carlos Areces, Facundo Carreiro, Santiago Figueira, and Sergio Mera

Partial Realization in Dynamic Justification Logic . 35
Samuel Bucheli, Roman Kuznets, and Thomas Studer

Hoare Logic for Higher Order Store Using Simple Semantics 52
Nathaniel Charlton

Nominal Lawvere Theories . 67
Ranald Clouston

Turing Machines on Cayley Graphs . 84
Aubrey da Cunha

Information Flow on Directed Acyclic Graphs . 95
Michael Donders, Sara Miner More, and Pavel Naumov

X Table of Contents

The Boyce-Codd-Heath Normal Form for SQL . 110
Flavio Ferrarotti, Sven Hartmann, Henning Köhler,
Sebastian Link, and Millist Vincent

Hybrid Logics and NP Graph Properties . 123
Francicleber Martins Ferreira, Cibele Matos Freire,
Mario R.F. Benevides, Luis Menasché Schechter, and
Ana Teresa Martins

On the Expressive Power of IF-logic with Classical Negation 135
Santiago Figueira, Daniel Goŕın, and Rafael Grimson

Concurrent Logic Games on Partial Orders . 146
Julian Gutierrez

Dynamic Epistemic Algebra with Post-conditions to Reason about
Robot Navigation . 161

Alexander Horn

Untestable Properties in the Kahr-Moore-Wang Class 176
Charles Jordan and Thomas Zeugmann

Characterizing Definability of Second-Order Generalized Quantifiers 187
Juha Kontinen and Jakub Szymanik

Countable Version of Omega-Rule . 201
Grigori Mints

Decomposing the Lattice of Meaningless Sets in the Infinitary Lambda
Calculus . 210

Paula Severi and Fer-Jan de Vries

Strong Normalization and Confluence for Reflexive Combinatory
Logic . 228

Daniyar S. Shamkanov

On Polymorphic Types of Untyped Terms . 239
Rick Statman

Querying the Fragments of English . 257
Camilo Thorne

Strong Paraconsistency by Separating Composition and Decomposition
in Classical Logic . 272

Peter Verdée

How Much Expressive Power Is Needed for Natural Language Temporal
Indexicality? . 293

Igor Yanovich

Author Index . 311

Streaming String Transducers

Rajeev Alur

Department of Computer and Information Science,
University of Pennsylvania

alur@cis.upenn.edu

Streaming string transducers define (partial) functions from input strings to out-
put strings. A streaming string transducer makes a single pass through the input
string and uses a finite set of variables that range over strings from the output
alphabet. At every step, the transducer processes an input symbol, and updates
all the variables in parallel using assignments whose right-hand-sides are con-
catenations of output symbols and variables with the restriction that a variable
can be used at most once in a right-hand-side expression. The expressiveness
of streaming string transducers coincides with the class of “regular” transduc-
tions that can be equivalently defined using two-way deterministic finite-state
transducers and using monadic second-order logic. The problems of checking
functional equivalence of two streaming transducers, and of checking whether
a streaming transducer satisfies pre/post verification conditions specified by fi-
nite automata, are solvable in Pspace. These decision procedures also generalize
to the model of streaming transducers over data strings—strings over symbols
tagged with data values over a potentially infinite data domain that supports
only the operations of equality and ordering. We identify a class of imperative
and a class of functional programs, manipulating lists of data items, which can
be effectively translated to such streaming data-string transducers. Our results
lead to algorithms for assertion checking and for checking functional equivalence
of two programs, written possibly in different programming styles, for commonly
used routines such as insert, delete, and reverse.

This talk is based on results reported in [2] and [1].

References

1. Alur, R., Černý, P.: Expressiveness of streaming string transducers. In: Proc. 30th
FSTTCS, pp. 1–12 (2010)

2. Alur, R., Černý, P.: Streaming transducers for algorithmic verification of single-pass
list-processing programs. In: Proc. 38th POPL, pp. 599–610 (2011)

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Unification in Logic

Rosalie Iemhoff

Department of Philosophy,
Utrecht University

Rosalie.Iemhoff@phil.uu.nl

There are many problems in mathematics that can be cast in terms of unification,
meaning that a solution of the problem is a substitution that identifies two terms,
either literally, or against a background theory of equivalence. In the context of
logics, a unifier is a substitution under which a formula becomes derivable in the
logic.

In classical propositional logic, all unifiable formulas have a most general uni-
fier, which is a unifier that generates all other unifiers of a formula. Nonclassical
logics in general do not have this useful property, but many modal and interme-
diate propositional logics satisfy a slightly weaker property. In these logics, for
every formula there is a finite set of unifiers such that any other unifier of the
formula is generated by one of them.

The study of unification in nonclassical logics mainly uses semantical tech-
niques. Even though there exist algorithms to find unifiers, proofs of correctness
again use semantics. In this talk a purely syntactic treatment of unification is
presented, and it is shown that most known results can be obtained, and in some
cases extended, by this approach.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, p. 2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Symbolic Logic with Exact Bounds for

Cryptographic Protocols

John C. Mitchell

Department of Computer Science,
Stanford University

mitchell@cs.stanford.edu

This invited talk will describe a formal logic for reasoning about security proper-
ties of network protocols with proof rules indicating exact security bounds that
could be used to choose key lengths or other concrete security parameters. The
soundness proof for this logic, a variant of previous versions of Protocol Compo-
sition Logic (PCL), shows that derivable properties are guaranteed in a standard
cryptographic model of protocol execution and resource-bounded attack. We will
discuss the general system and present example axioms for digital signatures and
random nonces, with concrete security properties based on concrete security of
signature schemes and pseudorandom number generators (PRG). The quanti-
tative formal logic supports first-order reasoning and reasoning about protocol
invariants, taking exact security bounds into account. Proofs constructed in this
logic also provide conventional asymptotic security guarantees because of the
way that exact bounds accumulate in proofs. As an illustrative example produc-
ing exact bounds, we use the formal logic to prove an authentication property
with exact bounds of a signature-based challenge-response protocol.

This talk presents joint work with Anupam Datta (Carnegie Mellon Univer-
sity), Joseph Y. Halpern (Cornell University), and Arnab Roy (IBM Thomas J.
Watson Research Center).

Acknowledgements. This work was partially supported by the National Sci-
ence Foundation, the Air Force Office of Scientific Research, and the Office of
Naval Research.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, p. 3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Univalent Foundations of Mathematics

Vladimir Voevodsky

School of Mathematics,
Institute for Advanced Study

vladimir@math.ias.edu

Over the last two years deep and unexpected connections have been discovered
between constructive type theories and classical homotopy theory. These con-
nections open a way to construct new foundations of mathematics alternative to
the ZFC. These foundations promise to resolve several seemingly unconnected
problems—provide a support for categorical and higher categorical arguments
directly on the level of the language, make formalizations of usual mathematics
much more concise and much better adapted to the use with existing proof assis-
tants such as Coq and finally to provide a uniform way to approach constructive
and “classical” mathematics. I will try to describe the basic construction of a
model of constructive type theories which underlies these innovations and pro-
vide some demonstration on how this model is used to develop mathematics in
Coq.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, p. 4, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Relational Concepts and the Logic of Reciprocity

Yoad Winter

Department of Modern Languages and
Utrecht Institute of Linguistics OTS,

Utrecht University
y.winter@uu.nl

Research in logical semantics of natural language has extensively studied the
functions denoted by expressions like each other, one another or mutually. The
common analysis takes such reciprocal expressions to denote 〈1, 2〉 general-
ized quantifiers over a given domain E, i.e. relations between subsets of E and
binary relations over E. One of the reoccurring problems has been that recip-
rocal expressions seem to denote different quantifiers in different sentences. For
instance, the reciprocal expression each other means the different quantifiers Q1

and Q2 ⊆ ℘(E)× ℘(E2) in sentences (1) and (2), respectively.

(1) The girls know each other.
Q1 = {〈A,R〉 : |A| ≥ 2 ∧ ∀x, y ∈ A [x 	= y → R(x, y)] }

(2) The girls are standing on each other.
Q2 = {〈A,R〉 : |A| ≥ 2 ∧ ∀x ∈ A∃y ∈ A [x 	= y ∧ (R(x, y) ∨R(y, x))] }

Following previous work on reciprocals [1,2,3,4] I will suggest that the quantifier
that a reciprocal expression denotes takes as parameter certain logical/cognitive
semantic properties of relational concepts – intensions of two place predicates.
In simple cases this parametrization only involves familiar properties like asym-
metry or acyclicity, cf. the relation stand on in (2). However, in more complex
cases, also preferences of use and other contextual parameters should be formally
described as affecting the logical semantics of reciprocity. The precise formaliza-
tion of such parameters and their affects on the selection of reciprocal quantifiers
will be analyzed, based on recent joint work, logical as well as experimental, with
Nir Kerem, Eva Poortman, Sivan Sabato and Naama Friedmann.

References

1. Dalrymple, M., Kanazawa, M., Kim, Y., Mchombo, S., Peters, S.: Reciprocal ex-
pressions and the concept of reciprocity. Linguistics and Philosophy 21, 159–210
(1998)

2. Kerem, N., Friedmann, N., Winter, Y.: Typicality effects and the logic of reciprocity.
In: Proceedings of SALT19 (Semantics and Linguistic Theory) (to appear)

3. Sabato, S., Winter, Y.: From semantic restrictions to reciprocal meanings. In:
Proceedings of FG-MOL (2005)

4. Winter, Y.: Plural predication and the Strongest Meaning Hypothesis. Journal of
Semantics 18, 333–365 (2001)

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, p. 5, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Logic in the Time of WWW: An OWL View

Michael Zakharyaschev

Department of Computer Science and Information Systems,
Birkbeck College London, U.K.

michael@dcs.bbk.ac.uk

This paper analyses the classical automated reasoning problem—given a theory
T , a set A of ground atoms and a formula ϕ, decide whether (T ,A) |= ϕ—in the
context of the OWL2 Web Ontology Language and ontology-based data access
(OBDA). In a typical OBDA scenario, T is an OWL 2 ‘ontology’ providing a
user-oriented view of raw data A, and ϕ(x) is a query with answer variables
x. Unlike classical automated reasoning, an important requirement for OBDA
is that it should scale to large amounts of data and preferably be as efficient
as standard relational database management systems. There are various ways
of formalising this requirement, which give rise to different fragments of first-
order logic suitable for OBDA. For example, according to the query-rewriting
approach of [1], given T , A and ϕ(x), one has to compute a new query ϕ′(x),
independently of A, such that, for any tuple a, (T ,A) |= ϕ(a) iff A |= ϕ′(a).
As a result, this approach can only be applicable to the languages for which
query-answering belongs to the class AC0 for data complexity (that is, if only
A is regarded as input, whereas both T and ϕ are regarded as fixed). In the
combined approach to OBDA [4,2], given T , A and ϕ(x), one has to compute
new (i) A′ ⊇ A in polynomial time in T and A, and (ii) ϕ′(x) in polynomial
tome in T and ϕ such that, for any tuple a, (T ,A) |= ϕ(a) iff A′ |= ϕ′(a).
The combined approach can be used for languages with polynomial query-
answering.

One focus of this paper is on the fragments of first-order logic complying with
such conditions imposed on OBDA. Another focus is on the following problem:
given theories T1, T2 and a signature Σ, decide whether, for all A and ϕ(x) for-
mulated in the language of Σ, we have (T1,A) |= ϕ(a) iff (T2,A) |= ϕ(a) (that
is: T1 and T2 give the same answers to any Σ-query over the same Σ-data). In
the OWL 2 setting, an efficient solution to this problem would facilitate vari-
ous stages of ontology developing and maintenance such as ontology versioning,
refining, reusing, or module extraction [3].

References

1. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family. J.
of Automated Reasoning 39, 385–429 (2007)

2. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined
approach to query answering in DL-Lite. In: KR (2010)

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 6–7, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Logic in the Time of WWW: An OWL View 7

3. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison
and module extraction, with an application to DL-Lite. AI 174, 1093–1141 (2010)

4. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic EL using a relational database system. In: IJCAI, pp. 2070–2075 (2009)

A Complexity Question in Justification Logic

Antonis Achilleos

The Graduate Center, CUNY
aachilleos@gc.cuny.edu

Abstract. Bounds for the computational complexity of major justifica-
tion logics were found in papers by Buss, N. Krupski, Kuznets, and Mil-
nikel: logics J, J4, JT, LP and JD, were established to be Σp

2 -complete.
A corresponding lower bound is also known for JD4, the system that
includes the consistency axiom and positive introspection. However, no
upper bound has been established so far for this logic. Here, the missing
upper bound for the complexity of JD4 is established through an alter-
nating algorithm. It is shown that using Fitting models of only two worlds
is adequate to describe JD4; this helps to produce an effective tableau
procedure and essentially is what distinguishes the new algorithm from
existing ones.

Keywords: Justification Logic, Computational Complexity, Satisfia-
bility.

1 Introduction

The classical analysis of knowledge includes the notion of justification, e.g., the
famous tripartate view of knowledge as justified, true belief, usually attributed
to Plato. Hintikka’s modal logic approach represents knowledge as true belief.
Justification logic extends epistemic logic by supplying the missing third com-
ponent of Plato’s characterization.

The Logic of Proofs LP was the first justification logic to be introduced, by Arte-
mov, in [1,2] (see also [3]). Later, variations appeared in [5] corresponding to well-
known normal modal logics. Several types of semantics are known for justification
logics, but two are of interest in this paper: M-models, introduced by Mkrtychev
([12,17]) and F-models, introduced by Fitting ([4,8,9,14,18]). F-models resemble
Kripke models for normal modal logics equipped with an additional mechanism,
the admissible evidence function, usually denoted A. For a term t and formula
φ, A(t, φ) will be the set of worlds in the model where t is appropriate evidence
for φ. t : φ is true in a world iff φ is true in every accessible world and the world
in question is in A(t, φ). M-models are essentially F-models of only one world. In
this setting A(t, φ) will be either true or false.

Upper and lower bounds are known for the computational complexity of justifi-
cation logics J, J4, JT, LP and JD, and determine the derivability problem for these
to beΣp

2 - complete ([6,10,12,13,15,16]). In [15], Kuznets presents a new algorithm
for checking JD-satisfiability. This algorithm is in many perspectives similar to the

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 8–19, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Complexity Question in Justification Logic 9

ones for other justification logics mentioned here: J, J4, JT, LP. A tableau method
is used to try and non-deterministically construct a model that satisfies the for-
mula in question, then the algorithm checks whether the produced conditions for
the admissible evidence function are legitimate, thus making the product of the
tableau procedure, indeed, a model. This last check is known to be in NP ([10,13])
and is, in fact, NP-complete ([7]). Therefore, the resulting overall algorithm is a
polynomial time alternating algorithm with one alternation, starting from a uni-
versal state and eventually reaching an existential state1, which establishes that
the problem is in Πp

2 and therefore the logic is in Σp
2 .

The difference among the cases that have been dealt with previously lies in
the consistent evidence property of logics JD and JD4 (the “D”); in an M-model
of these logics, we can never have A(t,⊥). In other words, if t1 : φ1, . . . , tn : φn

are satisfied in a model, the set {φ1, . . . , φn} must be consistent. To incorpo-
rate this condition, the algorithm continues and tries to verify whether this set,
{φ1, . . . , φn}, is satisfiable in another model with another tableau construction.
This is done by utilizing additional numerical prefixes on the prefixed formulas.
A sequence of models is thus produced.

Although this construction, like all previous ones, is based on the compact
character of M-models for justification logics, what it produces resembles some-
thing very similar to an F-model. In general, when discussing complexity issues
for justification logics, working with F-models appears inconvenient and unnec-
essary: many possible worlds could succeed a current world. Furthermore, the
admissible evidence function is defined on this multitude of worlds, which does
not help to discuss complexity issues, especially when one is trying to confine the
problem inside the Polynomial Hierarchy. On the other hand, M-models consist
of only one world. The admissible evidence function is by far less complicated
and the conditions it should satisfy can be checked by an NP-algorithm, except
in the case of JD and JD4. For these logics, the additional condition that for
any justification term t, A(t,⊥) = false cannot be verified as easily due to the
negative nature of this condition. It would be nice to be able to sacrifice some,
but not much, of the compact description of M-models for more convenient con-
ditions on A and indeed, it seems that in the case of JD, this is exactly what can
be done to provide a solution. Now, this idea will be taken a small step forward
to provide a similar Σ2 algorithm for JD4-satisfiability. Additionally, the posi-
tive introspection axiom of JD4 will help provide an even simpler class of models
than in the case of JD, making the study of its complexity easier. Specifically,
it is discovered that using Fitting-like models of only two worlds is adequate to
describe JD4.

2 The Logic JD4

JD4 was first introduced in [5] as a variation of LP, the Logic of Proofs. It is the
explicit counterpart of D4, both in intuition, as there is some similarity between
their axioms, and in a more precise way (see [5]).

1 Or, this can be viewed as a coNP algorithm using an oracle from NP.

10 A. Achilleos

The language will include justification constants ci, i ∈ N, justification vari-
ables: xi, i ∈ N and justification terms, usually denoted t, s, These are
defined as follows.

Definition 1 (Justification Terms)

– Constants (ci, i ∈ N) and variables (xi, i ∈ N) are terms;
– If t1, t2 are terms, so are

(t1 · t2), (t1 + t2), (!t1).

“·” is usually called application, “+” is called sum, and “!” proof checker. The
set of justification terms will be called Tm.

Also, propositional variables will be used in the language: pi, i ∈ N. The set
of propositional variables will be called SLet. The formulas of the language are

Definition 2 (Justification Formulas). The formulas of the language are
defined recursively:
If p is a propositional variable, t is a term and φ, ψ are formulas, then so are

p, ⊥, (φ → ψ), (t :φ)

¬φ can be seen as short for φ→ ⊥, and the rest of the connectives can be defined
from these in the usual way. Also as usual, parentheses will be omitted using
standard conventions, and naturally, !s :s :φ will be read as (!s : (s :φ)). Fm will
denote the set of justification formulas.

The axioms of JD4∅ are the following.

A1 Finitely many schemes of classical propositional logic;
A2 s : (φ → ψ) → (t :φ → (s · t) :ψ) - Application Axiom;
A3

s :φ → (s + t) :φ
s :φ → (t + s) :φ - Monotonicity Axiom;

A5 t :φ →!t :t :φ - Positive introspection;
A6 t :⊥ → ⊥ - Consistency Axiom

and Modus Ponens.
MP Modus Ponens Rule :

φ → ψ φ

ψ
.

Definition 3. A constant specification for a justification logic JL is any set

CS ⊆ {c :A | c is a constant, A an axiom of JL}.

A c.s. is axiomatically appropriate if each axiom is justified by at least one
constant, schematic if every constant justifies a certain number of axiom schemes
(0 or more), and schematically injective if it is schematic and every constant
justifies at most one scheme.

A Complexity Question in Justification Logic 11

Definition 4. Given a constant specification CS for JD4, the logic JD4CS is
JD4∅, with the additional rule

c :A
R4CS

where c :A ∈ CS.

A definition of the (Fitting) semantics for JD4CS follows.

Definition 5 ([4,8,9,14,18]). An F-model M for JD4CS is a quadruple
(W,R, V,A), where W 	= ∅ is the set of worlds (or states) of the model, R
is a transitive and serial (for any a ∈ W there is some b ∈ W such that aRb)
binary relation on W , V assigns a subset of W to each propositional variable,
p, and A, the admissible evidence function, assigns a subset of W to each pair
of a justification term and a formula. Additionally, A must satisfy the following
conditions:

Application closure: for any formulas φ, ψ and justification terms t, s,

A(s, φ → ψ) ∩A(t, φ) ⊆ A(s · t, ψ).

Sum closure: for any formula φ and justification terms t, s,

A(t, φ) ∪A(s, φ) ⊆ A(t + s, φ).

Simplified CS-closure: for any axiom A, constant c, such that c :A ∈ CS,

A(c, A) = W.

Positive introspection closure: for any formula φ and justification term t,

A(t, φ) ⊆ A(!t, t :φ).

Monotonicity: for any formula φ, justification term t and a, b ∈ W , if aRb
and a ∈ A(t, φ), then b ∈ A(t, φ).

Truth in the model is defined in the following way, given a state a:

– M,a 	|= ⊥.
– If p is a propositional variable, then M, a |= p iff a ∈ V (p)
– If φ, ψ are formulas, then M, a |= φ → ψ if and only if M,a |= ψ, or
M, a 	|= φ.

– If φ is a formula and t a term, then M, a |= t :φ if and only if a ∈ A(t, φ)
and for all b ∈ W , if aRb, then M, b |= φ.

Proposition 1 ([14]). JD4CS is sound and complete w.r.t. its F-models, for
an axiomatically appropriate constant specification. Additionally, it is complete
w.r.t. its F-models that satisfy the following property.

Strong Evidence Property: M, a |= t :φ if and only if a ∈ A(t, φ).

12 A. Achilleos

It is also useful to present Mkrtychev (M-) models for JD4. M-models are F-
models with just one world. However, since if we insisted on seriality, we would
introduce factivity (t : φ → φ would be valid), this condition is replaced by
another, the consistent evidence condition (in the definition below).

Definition 6 ([12,17]). An M-model for JD4CS , where CS is a constant spec-
ification for JD4 is a pair

M = (V,A),

where propositional valuation

V : SLet −→ {true, false}

assigns a truth value to each propositional variable and

A : Tm× Fm −→ {true, false}

is an admissible evidence function. A(t, φ) will be used as an abbreviation for
A(t, φ) = true and ¬A(t, φ) as an abbreviation for A(t, φ) = false.
The admissible evidence function must satisfy certain closure conditions:

Application Closure: If A(s, φ → ψ) and A(t, φ) then A(s · t, ψ).
Sum Closure: If A(s, φ) then A(s + t, φ).

If A(t, φ) then A(s + t, φ).
Simplified CS Closure: If c :A ∈ CS, then A(c, A).
Positive Introspection Closure: If A(t, φ) then A(!t, t :φ)
Consistent Evidence Condition: A(t,⊥) = false,

for any formulas φ, ψ, any terms s, t and any c :A ∈ CS.
The truth relation M |= H is defined as follows:

– M |= p iff V (p) = true
– M 	|= ⊥
– M |= φ→ ψ iff M 	|= φ or M |= ψ
– M |= t :φ iff A(t, φ)

for any formulas φ, ψ, any term t and any propositional variable p.

Proposition 2 ([12]). JD4CS is sound and complete with respect to its
M-models.

Note 1. The Simplified CS-closure condition is called simplified, because it re-
places another, less simple, condition called simply CS-closure. CS-closure is
necessary when dealing with justification logics without positive introspection,
whose models do not have the Positive Introspection Closure condition. Since
Simplified CS-closure is indeed simpler than CS-closure and under the presence
of Positive Introspection Closure can produce it, we prefer this simplified version.

The following definition will prove useful later on.

Definition 7. Given an F-model M, a world w of the model and a formula t :φ,
we say that t : φ is factive at world w of M, if and only if M, w |= t : φ → φ.
Similarly, we can define when t :φ is factive in an M-model. A set Φ of formulas
of the form t :φ will be factive exactly when all elements of Φ are factive.

A Complexity Question in Justification Logic 13

3 ∗-Calculus and Minimal Evidence Functions

In this section, the ∗-calculus is defined. The ∗-calculus provides an independent
axiomatization of the reflected fragments of justification logics and is an invalu-
able tool in the study of the complexity of these logics. The concepts, notation
and results in this section come from [11,13,17].

Definition 8 (Star-expressions). If t is a term and φ is a formula, then
∗(t, φ) is a star-expression (∗-expression).

Definition 9. For any justification logic L and constant specification CS, the
reflected fragment of LCS is

rLCS = {t :φ | LCS � t :φ}.

Definition 10 (∗-calculus)

∗CS Axioms: ∗(c, A), where c :A ∈ CS.
∗A2

∗(s, φ→ ψ) ∗(t, φ)
∗(s · t, ψ)

∗A3

∗(t, φ)
∗(s + t, φ)

∗(s, φ)
∗(s + t, φ)

∗A4

∗(t, φ)
∗(!t, t :φ)

The calculus: The ∗!CS-calculus is a calculus on starred expressions and in-
cludes ∗CS, ∗A2, ∗A3 and ∗A4.

Theorem 1 ([10,13]). For any constant specification CS,

rJD4CS � t :φ ⇐⇒ rJD4CS � t :φ ⇐⇒ �∗!CS ∗(t, φ).

Possible evidence functions are presented next, together with a way to produce
a minimal evidence function for an M-model.

Definition 11. An M-type possible evidence function is any function

B : Tm× Fm −→ {true, false}.

A possible evidence function is essentially an admissible evidence function with
no conditions imposed on it.

14 A. Achilleos

Definition 12. We say that an M-type possible evidence function B2 is based
on an M-type possible evidence function B1 and write

B1 ⊆ B2,

if for all terms t and formulas φ,

B1(t, φ) =⇒ B2(t, φ).

Definition 13. Let EF be a class of M-type possible evidence functions. A pos-
sible evidence function B ∈ EF is called the minimal evidence function in EF if
for all B′ ∈ EF ,

B ⊆ B′.

Definition 14. Given a possible evidence function B, let B∗ = {∗(t, φ)|B(t, φ) =
true}.

Theorem 2 ([17,13]). For any constant specification CS for JD4 and any pos-
sible evidence function B, if the class of M-type admissible evidence functions
for JD4CS based on B is nonempty, then it has a unique minimal element A,
which is the following:

A(t, φ) ⇐⇒ B∗ �∗!CS ∗(t, φ).

Note 2. In the following, an F-type admissible evidence function when consider-
ing a single world of the model may be treated as an M-type admissible evidence
function, when the appropriate conditions are met. Despite changes in notation,
under certain circumstances this is entirely acceptable and in fact this change
in perspective will be very useful and frequent. Finally, it is useful, given an
F-type admissible evidence function A and a world u, to define Au to be the set
{(t, φ)|u ∈ A(t, φ)}.

Finally, since we are discussing complexity issues, it is natural that the following
theorem is relevant. In fact, it will prove to be extremely useful later on.

Theorem 3 ([10,13]). Let CS be a schematic constant specification decidable
in polynomial time. Then, there exists a non-deterministic algorithm that runs in
polynomial time and determines, given a finite set S of ∗-expressions, a formula
φ and a term t, whether

S �∗!CS ∗(t, φ).

4 A Class of Models

In the following, the constant specification CS will be assumed to be axiomat-
ically appropriate and, when discussing complexity issues, efficiently decidable.
The algorithm that will be presented and its correctness will be based on the
following proposition.

A Complexity Question in Justification Logic 15

Proposition 3. A formula φ is JD4CS-satisfiable if and only if it is satisfiable
by an F-model M = (W,R, V,A) for JD4CS that additionally has the following
properties:

– W has exactly two elements, a, b.
– R = {(a, b), (b, b)}.

Proof. Let φ be a formula that is JD4CS-satisfiable and let M∗ = (W,R, V,A)
be a model and a ∈ W a world of the model that satisfies φ. Assume that M∗

satisfies the Strong Evidence Property.
We know that R is serial and transitive and that A satisfies the monotonicity

property. From this, we know that there is an infinite sequence of elements of
W , α = (ai)i∈N, such that a0 = a, i < j ⇒ aiRaj & Aai ⊆ Aaj .

For any t : F , there is at most one j ∈ N, M∗, aj 	|= t : F → F . Otherwise,
there are i < j s.t. M∗, ai, aj 	|= t :F → F . Since M∗, ai 	|= t :F → F , we have
M∗, ai |= t :F . From this, it follows that M∗, aj |= F , so M∗, aj |= t :F → F -
a contradiction.

Therefore, for any finite set of term-prefixed formulas, there is an i, after
which for all terms c of sequence α that set is factive at c. More specifically, let
Φ be the set of term-prefixed subformulas of φ and let b be a term of sequence
α, where Φ is factive.

Define M to be the model ({a, b}, {(a, b), (b, b)}, V ′,A′), such that V ′,A′ agree
with V,A on a, b. That is, for any w ∈ {a, b}, t term, ψ formula, p propositional
variable, w ∈ V (p) if and only if w ∈ V ′(p), and w ∈ A(t, ψ) if and only
if w ∈ A′(t, ψ). It is easy to see that the new model satisfies the conditions
required of F-models for JD4CS

2.
By induction on the structure of χ, we can show that for any χ, subformula

of φ, M∗, b |= χ iff M, b |= χ (and the propositional cases are trivial, so). If
χ = t :ω, then M∗, b |= χ iff M∗, b |= t :ω iff M∗, b |= ω and b ∈ A(t, ω) (Strong
Evidence) iff M, b |= ω and b ∈ A′(t, ω) iff M, b |= χ.

To prove that M, a |= φ, we will first prove that

M∗, a |= ψ ⇔M, a |= ψ,

for any ψ subformula of φ, by induction on the structure of ψ. If ψ is a propo-
sitional variable, and for the propositional cases, again, this is obvious and the
only interesting case is when ψ = t :χ. In this case, M∗, a |= t :χ iff a ∈ A(t, χ)
and M∗, b |= χ iff a ∈ A′(t, χ) and M, b |= χ iff M, a |= t :χ. ��

Observation 1. Note that we can now replace the admissible evidence function
with another, sayAm, such that w ∈ Am(t, ψ) iffM, w |= t :ψ. This new function
will satisfy the necessary conditions to be an admissible evidence function and
the new model will satisfy the same formulas as the old one in the same worlds.
Therefore, we can claim the following corollary.
2 Of course, we assume here that a �= b, but this is a legitimate assumption. If we need

to make this explicit, we could simply have W = {(a, 0), (b, 1)} and the accessibility
relation, V ′, A′ behave in the same way.

16 A. Achilleos

Corollary 1. A formula is JD4CS-satisfiable if and only if it is satisfiable by
an F-model M = (W,R, V,A) for JD4CS that additionally has the following
properties:

– W has exactly two elements, a, b;
– R = {(a, b), (b, b)};
– a ∈ A(t, F) if and only if M, a |= t : F for all t : F . (Strong Evidence

Condition)

5 The Algorithm and Its Analysis

Neither the algorithm that determines JD4CS-satisfiability nor its analysis is par-
ticularly novel (c.f. [12,13,15]). It is in fact based on the ones already used to
establish the same upper bound for the satisfiability for J, J4, JT, LP, except
for certain differences that stem from the fact that we are discussing a different
logic and thus the algorithm is based on a different class of models. It is based
on a tableau construction.

Prefixed expressions will be used and there will be two types of prefixes and
two types of expressions. The first will be the usual T or F prefix and the
other will be the prefix that will intuitively denote the world we are referring
to; these are a and b. So, the prefixed formulas will be of the form w P e, where
w ∈ {a, b}, P ∈ {T, F} and e is either a formula of the language or a ∗-expression.
w will be called the world prefix and P the truth prefix.

As was mentioned previously, the algorithm will be based on a tableau con-
struction. The propositional tableau rules will be the ones usually used and they
are not mentioned here. The non-propositional cases are covered by the following
rules.

a T s :ψ
a T ∗ (s, ψ)
b T s :ψ

,
b T s :ψ

b T ∗ (s, ψ)
b T ψ

,

a F s :ψ
a F ∗ (s, ψ) | b F ψ

,
b F s :ψ

b F ∗ (s, ψ) | b F ψ

The algorithm runs in two phases.
If φ is the formula which must be checked for JD4CS-satisfiability, then dur-

ing the first phase, the algorithm will construct a tableau branch, starting
from just T φ using the tableau rules to produce more prefixed formulas in
a non-deterministic way; the vertical bars appearing at the rules denote a non-
deterministic choice. After all possible tableau derivations have been applied,
there are two possibilities for the constructed branch. It can either be proposi-
tionally closed, that is, it could contain w T e and w F e, or it can be complete,
that is, the branch is not propositionally closed and no application of a tableau

A Complexity Question in Justification Logic 17

rule gives a new prefixed formula. If it is propositionally closed, the input is
rejected, otherwise, the second phase of the algorithm begins. Let Xa be the set
of star expressions prefixed with a T and Xb the set of star expressions prefixed
with b T in the branch. Confirm that no expression of the form ∗(t, φ) that ap-
pears negatively in the branch for world prefix w can be derived from Xw. If
this is indeed the case, the algorithm accepts, otherwise, it rejects.

The proof of the correctness of the algorithm follows.

Proof. Supposing formula φ is satisfiable by M = ({a, b}, {(a, b), (b, b)}, V,A)
such as the ones described above and starting the procedure with a T φ, it is
easy to see that there is a way to perform the tableau rules while producing
a-prefixed expressions satisfied at world a and b-prefixed expressions satisfied
at world b. Now, if Xw derives ∗(t, ψ), then the minimal evidence function that
includes Xw should also include (t, ψ) (by Theorem 2), and therefore so should
A in the corresponding world. Therefore, no such negative expression will be
derivable by Xw. In conclusion, the algorithm accepts.

On the other hand, suppose the algorithm accepts. Suppose a complete branch
of the tableau that is produced in an accepting branch of the computation tree.
A model will be constructed to satisfy φ. This will be M = ({a, b}, {(a, b), (b, b)},
V,A). V (p) will include a iff a T p appears in the tableau and similarly for b.
A on a will be the minimal evidence function based on the possible evidence
function which maps (t, ψ) to true iff a T ∗ (t, ψ) appears in the tableau and
again, similarly for b.3 By the tableau rules, Xa ⊆ Xb, because whenever a
formula a T ∗ (s, ψ), is produced, so is b T ∗ (s, ψ) and therefore monotonicity
is satisfied. If A so defined includes any negative ∗-expression in any of the two
worlds, the second step of the algorithm would have rejected the input and the
computation branch would not be accepting (again, by Theorem 2).

The model satisfies at a all a-prefixed expressions and at world b all b-prefixed
expressions. This can be proven by induction on the structure of the expressions.
By the above argument, this is automatically true for starred expressions. Also,
by definition of V , this is true for propositional variables. Propositional cases
are easy, so it remains to show this for formulas of the form t :ψ.

First, for b-prefixed formulas. If b T t :ψ is in the branch, there must also be
b T ∗ (t, ψ) and b T ψ. By I.H., these are already satisfied, so b ∈ A(t, ψ) and
M, b |= ψ. Therefore, M, b |= t :ψ. If b F t :ψ is in the branch, then the branch
must also include either b F ψ or b F ∗ (t, ψ). In either case, the conclusion is
M, b 	|= t :ψ.

3 Technically, we do not know at this point whether there actually exists any admissible
evidence function based on that possible evidence function - call it B. The problem
is that perhaps B∗ �CS ∗(t,⊥) and therefore A on a should be defined as the possible
evidence function mapping (t, ψ) to true iff B∗ �CS ∗(t, ψ). However, as it turns out,
M is a JD4 model and from this proof if B(t, ψ) = true, then a T ∗ (t, ψ) appears
in the tableau and consequently M, a |= t :ψ. So, A′(t, ψ) = true iff M, a |= t :ψ is
an admissible evidence function based on B. This means that, in retrospective, A
on a as defined above is an admissible evidence function, thus justifying treating it
as such.

18 A. Achilleos

Finally, the case of a-prefixed formulas. If a T t :ψ is in the branch, there must
also be a T ∗ (t, ψ) and b T ψ (and b T t :ψ too, but it is not relevant here).
By I.H., these are already satisfied, so a ∈ A(t, ψ) and M, b |= ψ. Therefore,
M, a |= t : ψ. If a F t : ψ is in the branch, then the branch must also include
either b F ψ or a F ∗ (t, ψ). In either case, the conclusion is M, b 	|= t :ψ.

This completes the correctness proof of the algorithm. ��

The first phase of the algorithm runs in nondeterministic polynomial time, while
the second checks a condition known to be in coNP (Theorem 3). Therefore, the
algorithm establishes that JD4-satisfiability is in Σp

2 . The following corollary
follows immediately.

Corollary 2. JD4CS is in Πp
2 for any axiomatically appropriate, schematic, and

efficiently decidable CS.

The following has been recently proven in [6].

Theorem 4 ([6]). JD4CS is Πp
2 -hard, for any axiomatically appropriate, and

schematically injective CS.

Finally, combining these two results, we can claim the following.

Corollary 3. JD4CS isΠp
2 -complete, for any axiomatically appropriate, schemat-

ically injective, and efficiently decidable CS.

Acknowledgements. The author would like to thank Sergei Artemov for his
encouragement and essential suggestions and Karen Kletter for her invaluable
help in editing.

References

1. Artemov, S.: Operational modal logic. Technical Report MSI 95–29, Cornell
University (1995)

2. Artemov, S.: Explicit provability and constructive semantics. Bulletin of Symbolic
Logic 7(1), 1–36 (2001)

3. Artemov, S.: Kolmogorov and Gödel’s approach to intuitionistic logic: current de-
velopments. Russian Mathematical Surveys 59(2), 203–229 (2004)

4. Artemov, S.: The logic of justification. The Review of Symbolic Logic 1(4), 477–513
(2008)

5. Brezhnev, V.N.: On explicit counterparts of modal logics. Technical Report CFIS
2000–05, Cornell University (2000)

6. Buss, S.R., Kuznets, R.: Lower complexity bounds in justification logic (2009)
(manuscript)

7. Buss, S.R., Kuznets, R.: The NP-completeness of reflected fragments of justification
logics. In: Artëmov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 122–136.
Springer, Heidelberg (2008)

8. Fitting, M.: A semantics for the Logic of Proofs. Technical Report TR–2003012,
CUNY Ph.D. Program in Computer Science (2003)

A Complexity Question in Justification Logic 19

9. Fitting, M.: The logic of proofs, semantically. Annals of Pure and Applied
Logic 132(1), 1–25 (2005)

10. Krupski, N.V.: On the complexity of the reflected logic of proofs. Theoretical Com-
puter Science 357(1-3), 136–142 (2006)

11. Krupski, V.N.: Referential logic of proofs. Theoretical Computer Science 357(1-3),
143–166 (2006)

12. Kuznets, R.: On the complexity of explicit modal logics. In: Proceedings of the
14th Annual Conference of the EACSL on Computer Science Logic, pp. 371–383.
Springer, Heidelberg (2000)

13. Kuznets, R.: Complexity Issues in Justification Logic. PhD thesis, CUNY Graduate
Center (2008)

14. Kuznets, R.: Self-referentiality of justified knowledge. In: Hirsch, E.A., Razborov,
A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 228–239.
Springer, Heidelberg (2008)

15. Kuznets, R.: Complexity through tableaux in justification logic. In: 2008 European
Summer Meeting of the ASL, Logic Colloquium (2008); Bulletin of Symbolic Logic
15(1), 121 (2009)

16. Milnikel, R.S.: Derivability in certain subsystems of the logic of proofs is Πp
2 -

complete. Annals of Pure and Applied Logic 145(3), 223–239 (2007)
17. Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.)

LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997)
18. Pacuit, E.: A note on some explicit modal logics. In: Proceedings of the 5th Pan-

hellenic Logic Symposium (2005)

Basic Model Theory for Memory Logics

Carlos Areces1, Facundo Carreiro2,�, Santiago Figueira2,3,��,
and Sergio Mera2,�

1 INRIA Nancy Grand Est, Nancy, France
areces@loria.fr

2 Dto. Computación, FCEN, Universidad de Buenos Aires, Argentina
3 CONICET, Argentina

{fcarreiro,santiago,smera}@dc.uba.ar

Abstract. Memory logics is a family of modal logics whose semantics
is specified in terms of relational models enriched with additional data
structure to represent a memory. The logical language includes a col-
lection of operations to access and modify the data structure. In this
paper we study basic model properties of memory logics, and prove re-
sults concerning characterization, definability and interpolation. While
the first two properties hold for all memory logics introduced in this
article, interpolation fails in most cases.

1 Introduction

In the last decades, modal logics have become a wide collection of formal systems
with some general aspects in common: they are usually interpreted over relational
structures, they are generally computationally well behaved, and they take a lo-
cal perspective when evaluating a formula. Nowadays, the practical influence of
modal logics is undeniable as they are used in many applications like linguis-
tics, artificial intelligence, knowledge representation, specification and software
verification, etc. (see [6] for details).

In a number of recent papers [4,3,2,1] we have investigated a family of logics
called memory logics, extending the classical modal logic.1 Intuitively, memory
logics enrich the standard relational models used by most modal logics with
a data structure. The logical language is then extended with a collection of
operations to access and modify this data structure. In this article we fix the
data structure to be a set, but other structures are analyzed in [1].

Assume as given a signature S = 〈prop,rel〉 that defines the sets of proposi-
tional and relational symbols, respectively. Let N be a standard relational model
over S, i.e., N = 〈F , V 〉, where F = 〈W, (Rr)r∈rel〉 is a suitable frame (i.e. W
is a nonempty set whose elements we will call states, and Rr ⊆ W 2 for each

� F. Carreiro and S. Mera were partially supported by CONICET Argentina.
�� S. Figueira was partially supported by CONICET Argentina (grant PIP 370).
1 Due to lack of space we will assume in this article that the reader is familiar with

modal logics, see [6,5] for complete details.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 20–34, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Basic Model Theory for Memory Logics 21

r ∈ rel, which we call accessibility relations) and V : prop → 2W is the valu-
ation function. We obtain a model for memory logics, extending this structure
with a set S ⊆ W representing the current ‘memory’ of the model. For M an
arbitrary model, we will denote its domain by |M|, and we will usually represent
a model 〈〈W,R〉, V, S〉 simply as 〈W,R, V, S〉.

A set is a very simple data structure (e.g., compare it with a list, a tree, etc),
but even in this setting, we can define a set of operators that interacts with the
memory in different ways. One can think of different types of simple updates
that can be performed on the memory of a model: to store or delete an element,
to clean the memory, etc. If M = 〈F , V, S〉 is a model for memory logics as
defined above, we define

M[∗] = 〈F , V, ∅〉; M[w] = 〈F , V, S ∪ {w}〉; M[−w] = 〈F , V, S \ {w}〉.

Let M[w1, . . . , wn] be a shorthand for ((M[w1]) . . .)[wn]. Besides the standard
Boolean and diamond operators of the basic modal logic, we define

M, w |= ©rϕ iff M[w], w |= ϕ M, w |= ©fϕ iff M[−w], w |= ϕ
M, w |= ©eϕ iff M[∗], w |= ϕ M, w |= ©k iff w ∈ S

The ‘remember’ operator ©r (a unary modality) marks the current state as being
‘already visited’, by storing it in S. In contrast, the ‘forget’ operator ©f removes
the current state from the memory, while the ‘erase’ operator ©e wipes out the
memory. These are the operators we use to update the memory. On the other
hand, the zero-ary operator ©k (for ‘known’) queries S to check if the current
state is in the memory.2

Besides these basic operators, we can also impose constraints on the interplay
between memory storage and the standard modalities. There are some contexts
when we do not need ©r and 〈r〉 as two separate operators: we are only interested
in the trail of memorized points we used to evaluate a formula (for details on
possible applications see [13]). In these cases the 〈〈r〉〉 operator will be handy:

M, w |= 〈〈r〉〉ϕ iff ∃w′ ∈ W,wRrw
′ and M[w], w′ |= ϕ

That is, 〈〈r〉〉ϕ is equivalent to ©r 〈r〉ϕ. We will denote the dual of this operator
as [[r]], with the usual interpretation. As it was showed in [1], this operator is
very useful to regain decidability for some fragments of memory logic.

A particularly interesting class of models to investigate is the class C∅ where
the memory is empty, i.e., C∅ = {M | M = 〈F , V, ∅〉}. It is natural to consider
starting to evaluate a formula in a model of C∅, as it is over C∅ that the oper-
ators ©k and ©r have the most natural interpretation. As it is shown in [1], the
restriction to this class has important effects on expressivity and decidability. It
is worth noting that a formula is initially evaluated in a model of C∅, but during
the evaluation the model can change to one with nonempty memory. This dy-
namic behavior is a distinctive feature of memory logics over the classical modal
logic: the value of S changes as the evaluation of the formula proceeds. This is
2 Notice that all these operators are self dual.

22 C. Areces et al.

not different to what happens with an assignment during the evaluation of a
first order formula.

It is well known that a classical modal model M = 〈F , V 〉 can be seen as
a first order model over an appropriate signature, and that there is a standard
translation STx transforming every modal formula ϕ into a first order formula
STx(ϕ) with x as its only free variable such that M, w |= ϕ iff M, gx

w |= STx(ϕ),
where gx

w is an arbitrary assignment that maps x to w (on the left, M should be
considered as a first order model, and |= as the standard first order satisfiability
relation). Similarly, any memory model can be seen as a first order model, and
we can define a translation which transforms memory formulas into equivalent
first order formulas (for more details see [1]). We will use this result for some
results in this article.

In [4,1] some computational aspects of memory logics were studied, together
with results for separating different memory logics in terms of expressive power.
In [2,1] the focus was put in proof theoretical results. In this article we analyze
some important theorems of the basic model theory for memory logics. The main
tool for all our results on characterization, definability and interpolation is the
notion of bisimulation. In Section 2 we present suitable notions of bisimulation
for different memory logics. In Section 3 we state a van Benthem like characteri-
zation theorem for memory logics and we study when a class of memory models
is definable by a set of memory formulas, or by a single formula. In Section 4,
we analyze the validity of the Craig interpolation theorem for many members of
the family of memory logics. Finally, in Section 5 we discuss further work and
draw some conclusions.

Notation. As we will be discussing many different logics, we introduce here some
notational conventions. We call ML the basic modal logic, and add a superscript
m to indicate the addition of a memory-set and the basic memory operators ©r
and ©k . Additional operators included in the language are listed explicitly. Since
we can choose to use 〈r〉 or 〈〈r〉〉, we will also include the diamond explicitly in this
list. For example, MLm(〈r〉,©e) is the modal logic with the standard diamond
operator extended with ©r , ©k and ©e . When we restrict initial evaluation of a
formula to models in C∅ we add ∅ as a subscript. For example, MLm

∅ (〈〈r〉〉) is the
modal logic with 〈〈r〉〉 instead of 〈r〉, the operators ©r and ©k , and whose models
have an initially empty memory. For the rest of the article, L will stand for any
memory logic MLm(. . .). For the sake of simplicity we restrict ourselves to the
unimodal case. The generalization to the multimodal scenario is straightforward.

2 Bisimulations and Saturated Models

The concept of bisimulation has been extensively studied for many modal log-
ics [6,5]. In the context of memory logics, bisimulations link pairs (A,w) (where
A ∪ {w} is a subset of the domain) between models, as we need to keep track
not only of the current state but also of the current memory. Let M and N be
two memory models. Then a bisimulation between M and N is a binary relation
such that (A,w) ∼ (B, v) implies A ∪ {w} ⊆ |M| and B ∪ {v} ⊆ |N |.

Basic Model Theory for Memory Logics 23

Bisimulations for the different memory logics can be defined modularly. Given
a memory logic L, its bisimulation notion will be defined imposing restrictions
to ∼ depending on the operators present in L. In Figure 1 we summarize the
restrictions associated with each operator for models M and N with accessibility
relations R and R′ respectively.

always (nontriv) ∼ is not empty.

always (agree) If (A,w) ∼ (B, v), then w and v make the same propositional
variables true.

©k (kagree) If (A,w) ∼ (B, v), then w ∈ A if and only if v ∈ B.

©r (remember) If (A,w) ∼ (B, v), then (A ∪ {w}, w) ∼ (B ∪ {v}, v).
©f (forget) If (A,w) ∼ (B, v), then (A \ {w}, w) ∼ (B \ {v}, v).
©e (erase) If (A,w) ∼ (B, v), then (∅, w) ∼ (∅, v).
〈r〉 (forth) If (A,w) ∼ (B, v) and wRw′, then there exists n′ ∈ |N | such

that vR′v′ and (A,w′) ∼ (B, v′).

(back) If (A,w) ∼ (B, v) and vR′v′, then there exists w′ ∈ |M| such
that wRw′ and (A,w′) ∼ (B, v′).

〈〈r〉〉 (mforth) If (A,w) ∼ (B, v) and wRw′, then there exists v′ ∈ |N | such
that vR′v′ and (A ∪ {w}, w′) ∼ (B ∪ {v}, v′).

(mback) If (A,w) ∼ (B, v) and vR′v′, then there exists w′ ∈ |M| such
that wRw′ and (A ∪ {w}, w′) ∼ (B ∪ {v}, v′).

Fig. 1. Operator restrictions for a modular memory bisimulation definition

With these definitions, we have presented bisimulation notions for all memory
logics introduced in Section 1.

If M is a model and w ∈ |M|, we call the pair 〈M, w〉 a pointed model.
Given two pointed models 〈M, w〉 and 〈N , v〉, where M = 〈W,R, V, S〉 and
N = 〈W ′, R′, V ′, S′〉, we write M, w ↔ N , v if there is a bisimulation linking
(S,w) and (S′, v). The exact type of bisimulation involved will usually be clear
from context; we will write ↔L when we need to specify that the bisimulation
corresponds to the logic L. We write M, w ≡L N , v when both models satisfy
the same L-formulas, i.e., for all ϕ ∈ L, M, w |= ϕ iff N , v |= ϕ. We will again
drop the L subindex when no confusion arises.

The basic property expected from bisimulation is that they should preserve
the satisfiability of formulas. The following theorem states that this is the case
for the bisimulations we introduced (see [13] for details).

Theorem 1. If M, w ↔L N , v then M, w ≡L N , v.

With all preliminaries concerning bisimulation already introduced, we now pro-
ceed to the notion of ω-saturated models and Hennessy-Milner classes, which
will lead to our first result: the class of ω-saturated models is a Hennessy-Milner
class for all memory logics we introduced, with respect to the appropriate no-
tion of bisimulation. This property will be fundamental for the results concerning
characterization and definability established in the next section.

24 C. Areces et al.

The notion of ω-saturation [8,9] is defined for first order models, but it also
applies to memory models using the correspondence between memory and first
order models discussed in Section 1. These models will prove to be a very useful
tool. We have already seen that if two states are bisimilar, then they are modally
equivalent. The converse, in general, does not hold. We say that a class C of
models has the Hennessy-Milner property with respect to L-bisimulations (or,
simply, that the class is Hennessy-Milner for L) if any two L-equivalent models
in C are L-bisimilar. As we will prove in Theorem 4, ω-saturated models are
Hennessy-Milner for all memory logics L.

But ω-saturated models have other important properties, like the ‘intra-model
compactness property’ enunciated below (the proof is a straightforward modifi-
cation of the result in [5, Theorem 2.65] for the basic modal logic).

Proposition 2. Let M = 〈W,R, V, S〉 be ω-saturated, Σ be a set of L-formulas
and w ∈W . If every finite subset Δ ⊆ Σ satisfies M, vΔ |= Δ for some R-
successor vΔ of w then there exists v, an R-successor of w, such that M, v |= Σ.

It is also the case that ω-saturation is preserved under the operation of memo-
rizing a finite set of elements. The proof can be found in [13].

Proposition 3. Let M be ω-saturated. For any finite A ⊆ |M|, M[A] is ω-
saturated.

Not all models are ω-saturated but a classic theorem of first order logic [8,9]
states that every model M has an ω-saturated extension M+ with the same
first order theory and, a fortiori, the same L theory for any memory logic L.
This extension is created by taking an ultrapower of the model with a special
kind of ultrafilter.3

We now prove that, for every memory logic L, the class of ω-saturated models
has the Hennessy-Milner property with respect to L-bisimulations.

Theorem 4. Let L be a memory logic, the class of ω-saturated models has the
Hennessy-Milner property with respect to L-bisimulations.

Proof (Sketch). As we want to consider all the possible logics from the family
of memory logics, we prove that, for any two ω-saturated models 〈M, w〉 and
〈N , v〉 such that M, w ≡L N , v there is an L-bisimulation between them. We
do this by considering every possible operator and show that we can construct
a bisimulation that satisfies the constraints associated for that operator.

See the Appendix for full details. ��
The proof of the theorem above is fairly straightforward, but the result itself is
surprising in its generality and can be taken as evidence of a harmonious match
between the notion of bisimulation we introduced and the general model theory
of memory logics.4

3 In what follows we will assume that the reader is familiar with the definition of
ultraproducts, ultrapowers and ultrafilters (consult [11] if necessary).

4 Notice that a direct corollary of Theorem 4 is that the class of image-finite models
(i.e., models where each state has at most a finite number of successors) for any
memory logic has the Hennessy-Milner property with respect to L-bisimulations.

Basic Model Theory for Memory Logics 25

3 Characterization and Definability

While investigating the properties of a new modal logic, a fairly standard ap-
proach is to try to characterize it as a fragment of a better known logic. A
classical example of this kind of results is van Benthem’s characterization of
the basic modal logic as the bisimulation invariant fragment of first order logic.
These type of characterizations allows for the transfer of results and for a better
understanding of the logic. In the following theorem we state an analogous result
for memory logics. Due to space limitations we only give a sketch of the proof
along with citations that should suffice to complete it.

We say that a first order formula α(x) is invariant for L-bimulations if for
all models M,N and w ∈ |M|, v ∈ |N | such that M, w ↔L N , v we have
M, gx

w |= α(x) iff N , gx
v |= α(x).

Theorem 5 (Characterization). A first order formula α(x) (with free vari-
able x, and in the proper signature) is equivalent to the translation of an L-
formula iff α(x) is invariant for L-bisimulations.

Proof (Sketch). The left to right direction is a consequence of Theorem 1. As
observed in [7] the main ingredient for the right to left direction is that the
class of ω-saturated models have the Hennessy-Milner property. This fact was
proved true for the family of memory logics in Theorem 4. The rest of the proof
is a routine rephrase of the one found in [5, Theorem 2.68] for the basic modal
logic. ��

Notice that the result above holds for all the memory logics we introduced.
We now proceed to investigate definability. The study of definability of classes

of models – i.e., given an arbitrary logic L which are the classes of models that
can be captured as those satisfying a formula (or a set of formulas) of L – is well
developed. Results of this kind are well known, for example, in first order logics.
Traditionally, a class of models that is definable by means of a set of first order
formulas is called elementary and those that can be defined by means of a single
formula are called basic elementary classes.

Definability results for different modal logics have also been established [6,5].
Once more, the results for basic modal logic lifts to memory logics if we consider
the appropriate notion of bisimulation.

Theorem 6 (Definability by a set). A class of pointed models C is definable
by a set of L-formulas iff C is closed under L-bisimulations and under ultraprod-
ucts; and the complement of C is closed under ultrapowers.

Proof. From left to right. Suppose that C is defined by the set Γ of L-formulas
and there is a model 〈M, w〉 ∈ C such that M, w ↔ N , v for some model N , v.
As 〈M, w〉 ∈ C it must occur that M, w |= Γ . By bisimulation preservation we
have N , v |= Γ therefore 〈N , v〉 ∈ C. Hence, C is closed under L-bisimulations.

If C is definable by a set Γ of L-formulas it is also defined by the first order
translation of Γ . Therefore C is elementary which implies that it is closed under
ultraproducts and its complement is closed under ultrapowers [8,9].

26 C. Areces et al.

From right to left. Suppose C is closed under L-bisimulations and ultraprod-
ucts, while its complement is closed under ultrapowers. Let Γ be the set of
L-formulas true in every model of C. Trivially C |= Γ . We still have to show that
if M, w |= Γ then 〈M, w〉 ∈ C. Define the following set

Thw(x) = {STx(ϕ) : ϕ is an L-formula and M, w |= ϕ}.

We state that Thw(x) is satisfiable in C. For suppose not. By compactness, there
is a finite subset Σ0 ⊆ Thw(x) such that Σ0 = {σ1, . . . , σn} is not satisfiable in
C.5 This means that the formula ψ = ¬

∧
i σi is valid in C and therefore ψ ∈ Γ .

This is a contradiction because it is obvious that M, w 	|= ψ and by hypothesis
M, w |= Γ . Hence, there is a model 〈N , v〉 ∈ K such that N , v |= Thw(x). It is
easy to see that these models satisfy N , v ≡L M, w.

To finish, suppose that 〈M, w〉 	∈ C, we take ω-saturated extensions 〈N ∗, v∗〉
∈ C and 〈M∗, w∗〉 	∈ C. As ω-saturated models have the Hennessy-Milner prop-
erty (by Theorem 4) this implies that N ∗, v∗ ↔L M∗, w∗. As C is closed un-
der bisimulations then 〈M, w〉 ∈ C, a contradiction. Therefore 〈M, w〉 must
be in C. ��

Theorem 7 (Definability by a single formula). A class of pointed models
C is definable by a single L-formula iff C is closed under L-bisimulations and
both C and its complement are closed under ultraproducts.

Proof. From left to right. Suppose C is definable by a single L-formula ϕ. Observe
that the complement of C is defined by ¬ϕ. Using Theorem 6 on C with Γ = {ϕ}
and on its complement with Γ = {¬ϕ} we conclude what we wanted to prove.

From right to left. Suppose that C is closed under L-bisimulations and both
C and its complement are closed under ultraproducts. As the bisimulation re-
lation is symmetric it is easy to see that C is closed under bisimulations iff its
complement is. Using this fact and Theorem 6 twice we have sets of formulas Γ1

defining C and Γ2 defining its complement.
It is obvious that the union of these sets cannot be consistent. Therefore, by

compactness, there exist {α1, . . . , αn} ⊆ Γ1 and {β1, . . . , βm} ⊆ Γ2 such that∧
i αi → ¬

∧
j βj is valid. We claim that it is exactly ϕ =

∧
i αi that defines C.

If 〈M, w〉 ∈ C, it satisfies Γ1 and in particular ϕ. Suppose that M, w |= ϕ.
Hence M, w |= ¬

∧
j βj and therefore M, w 	|= Γ2; i.e., 〈M, w〉 ∈ C. ��

As further research it would be interesting to investigate if Theorems 6 and 7
can be restated using closure under ultrafilter unions, as defined in [15].

4 Interpolation

The notion of bisimulation also plays a crucial role for proving and disproving in-
terpolation properties. Given a formula ϕ, let props(ϕ) be the set of propositional
symbols occurring in ϕ. A modal logic has interpolation over propositional sym-
bols on a class C, if for all formulas ϕ, ψ such that C |= ϕ → ψ, there is a modal
5 The compactness theorem preserves ultraproducts-closed classes (see [7]).

Basic Model Theory for Memory Logics 27

formula δ (usually called the interpolant) such that C |= ϕ→ δ, C |= δ → ψ, and
props(δ) ⊆ props(ϕ)∩props(ψ). Note that there is no restriction on the modalities
occurring in δ.

We will show that most of the memory logics we are studying lack interpola-
tion (with the exception ofMLm(〈〈r〉〉) and MLm(〈〈r〉〉,©f)). We will use a classic
technique to prove this, whose general schema is the following. First, we define ϕ
and ψ such that ϕ→ ψ is a valid formula. Then, we find two models 〈M, w〉 and
〈M′, w′〉, such that w and w′ are bisimilar in the common language of ϕ and ψ,
but M, w |= ϕ while M′, w′ |= ¬ψ. This is enough to claim that interpolation
fails. For suppose that interpolation holds. Then there is an interpolant δ in the
common language of ϕ and ψ such that ϕ → δ and δ → ψ are valid. Therefore
δ holds at 〈M, w〉. Because w and w′ are bisimilar in the common language, δ
also holds at 〈M′, w′〉. This implies that ψ holds at 〈M′, w′〉 too, but this is a
contradiction, since we assumed that ¬ψ holds there.

In the context of memory logics, there is a choice to make concerning the
inclusion of ©k in the common language. We will use the term interpolation
over propositional symbols and ©k when we decide to include it in the common
language. We will just say “the common language” when no confusion between
the two notions can arise. Observe that � can always occur in the interpolant,
since otherwise the definition of interpolation can be easily trivialized. Finally,
unless we explicitly say otherwise, we prove interpolation (or the lack thereof)
for the class of all models.

We first show that interpolation over propositional symbols fails forMLm(〈r〉)
and its extension with the ©e operator. This is also true for some fragments that
use 〈〈r〉〉 instead of 〈r〉, both over the class of all models and over C∅.

Theorem 8. The logics MLm(〈r〉), MLm(〈r〉,©e), MLm
∅ (〈r〉), MLm

∅ (〈〈r〉〉) and
MLm

∅ (〈r〉,©e) lack interpolation over propositional symbols.

Proof (Sketch). Full details are given in the Appendix. The key ingredient of
the proofs for each logic is the ability to find two models which are bisimilar in
the common language. These results are strongly based on bisimilar models used
in [1] to investigate relative expressive power of different memory logics. ��

We leave the analysis for ©f open, since we could not find an equivalent pair of
models for this case. See [13] for more details.

Now we show that MLm(〈〈r〉〉) has interpolation over propositional symbols
and ©k with respect to a quite general class of models. The technique we use
here is similar to the one presented in [14]. To develop the proof we will need
some tools from model theory. We introduce some definitions and preliminary
results and refer the reader to [8,9,14,12] for details.

Throughout the rest of this section, ↔ refers to MLm(〈〈r〉〉)-bisimulation. We
will use ↔ML when we want to refer to ML-bisimulations.

Definition 9. 1. A total ML frame bisimulation between frames 〈W,R〉 and
〈W ′, R′〉 is a total binary relation on W×W ′ satisfying conditions (nontriv),
(forth) and (back) from Figure 1.

28 C. Areces et al.

2. An ML-bisimulation product of a set of frames {Fi | i ∈ I} is a subframe B
of the cartesian product ΠiFi such that for each i ∈ I, the natural projection
function fi : B → Fi is a surjective bounded morphism.

Bisimulation producs, together with the following theorem (see [12] for the
proof), allow us to construct a new frame using a total ML frame bisimula-
tion between two given frames. This will be helpful later to construct a model
that will act as a witness for the interpolant.

Theorem 10. Let H be a subframe of the product F × G. Then H is an ML-
bisimulation product of F and G iff the domain of H is a total ML frame bisim-
ulation between F and G.

The last ingredient we need is to define total bisimulation in the context of
memory logics. Intuitively, it is a bisimulation in which every possible relevant
pairs are related.

Definition 11 (Total MLm(〈〈r〉〉)-bisimulation). Let M = 〈W,R, V, S〉 and
N = 〈W ′, R′, V ′, S′〉 be two models of MLm(〈〈r〉〉). We say that M, w and N , v
are totally bisimilar (M, w↔T N , v) when there is bisimulation ∼ between M, w
and N , v and

1. for every A = {a1, . . . , ak} ⊆ W with aiRai+1, and every a ∈ W there is a
B = {b1, . . . , bk} ⊆W ′ with biR

′bi+1 and b ∈W ′ such that (A, a) ∼ (B, b)
2. for every B = {b1, . . . , bk} ⊆W ′, and every b ∈ W ′ there is A = {a1, . . . , ak}

⊆W with aiRai+1 and a ∈ M such that (A, a) ∼ (B, b).

Theorem 12. Let C be any elementary frame class closed under generated sub-
frames and bisimulation products. Then MLm(〈〈r〉〉) and MLm(〈〈r〉〉,©f) have
interpolation over propositions and ©k relative to the class of all models with
frame in C.

Proof (Sketch). Full details are provided in the Appendix. Suppose there are two
MLm(〈〈r〉〉)-formulas ϕ and ψ such that ϕ → ψ is valid, but it does not have
an interpolant in the common language. In general, the bisimulations we discuss
here between a pair of models are always established with respect to the common
language of ϕ and ψ. We first show that there are two models M and N such
that M, w |= ϕ and N , v |= ¬ψ. We next take ω-saturated models M+ and N+

of M and N respectively and show M+, w ↔T N+, v. According to the tree
model property for MLm(〈〈r〉〉) (see [1]), we take equivalent tree MLm(〈〈r〉〉)-
models M+

T and N+
T such that M+, w ↔T M+

T , w and N+, v ↔T N+
T , v. We

conclude M+
T , w ↔T N+

T , v.
Then we switch to the basic modal logic ML. Let M+

TML and N+
TML be the

corresponding ML-models of M+
T and N+

T respectively (shifting the signature
to 〈prop ∪ {known},rel〉). Being MLm(〈〈r〉〉) an extension of ML, we have
M+

TML
↔T

ML N+
TML . Using Theorem 10, one can show that there is a bisimula-

tion product H ∈ C of the frames of M′ and N ′, and a valuation V such that
(H, V), 〈w, v〉 |= (ϕ ∧ ¬ψ)[©k /known].

Basic Model Theory for Memory Logics 29

Since by its definition, H is a tree, we can return to MLm(〈〈r〉〉) and conclude
that ϕ ∧ ¬ψ is satisfiable in some MLm(〈〈r〉〉)-model based on a frame in C,
contradicting our hypothesis. Graphically, the general schema is the following
(the double headed arrows represent total bisimulations):

M

N

M+

N+

M+
T

N+
T

≡

≡

M+
TML

N+
TML

(H, V)ML

ML

ML

Following this schema the result can be proved for MLm(〈〈r〉〉). Then, inter-
polation for MLm(〈〈r〉〉,©f) is straightforward using the equivalence preserving
translations defined in [1] between MLm(〈〈r〉〉,©f) and MLm(〈〈r〉〉). ��

5 Conclusions and Further Work

In this article we investigated some model theoretical properties of several mem-
ory logics. Fist we analyzed memory logics in terms of first-order characterization
and definability. These properties hold for all the logics we introduced, thanks to
a general Hennessy-Milner property for ω-saturated models. Then we studied in-
terpolation and showed that the property fails for many memory logics both over
the class of all models and over C∅. On the other hand, we stablished interpola-
tion over propositional symbols and known for MLm(〈〈r〉〉) and MLm(〈〈r〉〉,©f)
over many different classes of models. Bisimulations were a key tool to tackle
these problems. The results presented here help complete a picture of the prop-
erties of memory logics and contributes to understanding what they are, how
they behave, and which is their relation with other well-known logics.

There are some pending problems that are worth investigating. The expres-
sive power of some memory logics is still not well understood (in particular,
when the language includes the ©f operator, see [1]). This directly leads to the
still unanswered questions concerning interpolation. Also, the Beth definability
property is usually studied together with interpolation, and for many logics, a
proof of the former can be obtained once a proof of the later is at hand. Both
properties are closely connected, and the logics having one but not the other are
relatively few (see [10] for examples). Alas! the case for memory logics is not that
simple. Even though some weak results concerning Beth definability for memory
logics have been established (see [13]), a general conclusion is still missing.

References

1. Areces, C., Figueira, D., Figueira, S., Mera, S.: The expressive power of memory
logics. Review of Symbolic Logic 4(1) (2010)

2. Areces, C., Figueira, D., Goŕın, D., Mera, S.: Tableaux and model checking for
memory logics. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607,
pp. 47–61. Springer, Heidelberg (2009)

30 C. Areces et al.

3. Areces, C., Figueira, S., Mera, S.: Completeness results for memory logics. In:
Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 16–30. Springer,
Heidelberg (2008)

4. Areces, C., Figueira, D., Figueira, S., Mera, S.: Expressive power and decidability
for memory logics. In: Hodges, W., de Queiroz, R. (eds.) WoLLIC 2008. LNCS
(LNAI), vol. 5110, pp. 56–68. Springer, Heidelberg (2008)

5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

6. Blackburn, P., Wolter, F., van Benthem, J. (eds.): Handbook of Modal Logics.
Elsevier, Amsterdam (2006)

7. Carreiro, F.: Characterization and definability in modal first-order fragments. Mas-
ter’s thesis, Universidad de Buenos Aires, arXiv:1011.4718 (2010)

8. Chang, C., Keisler, H.: Model Theory, Studies in Logic and the Foundations of
Mathematics, 3rd edn., vol. 73. North-Holland Publishing Co., Amsterdam (1990)

9. Doets, K.: Basic model theory. University of Chicago Press, Chicago (1996)
10. Hoogland, E.: Definability and interpolation: Model-theoretic investigations. Ph.D.

thesis, ILLC. Universiteit van Amsterdam (2001)
11. Keisler, H.J.: The ultraproduct construction. In: Proceedings of the Ultramath

Conference, Pisa, Italy (2008)
12. Marx, M., Venema, Y.: Multi-dimensional modal logic. Kluwer, Dordrecht (1997)
13. Mera, S.: Modal Memory Logics. Ph.D. thesis, Universidad de Buenos Aires &

Université Henri Poincare, Buenos Aires, Argentina (2009)
14. ten Cate, B.: Model theory for extended modal languages. Ph.D. thesis, University

of Amsterdam, ILLC Publications, Ph. D. Dissertation series, Amsterdam (2005)
15. Venema, Y.: Ultrafilter unions: an exercise in modal definability. In: First Workshop

on Logic and Language, pp. 303–310. Universidad de Sevilla (2000)

Appendix

Theorem 4. Let L be a memory logic, the class of ω-saturated models has the
Hennessy-Milner property with respect to L-bisimulations.

Proof. Given two ω-saturated modelsM = 〈W,R, V, S〉 andN = 〈W ′, R′, V ′, S′〉
we propose the binary relation ∼ defined as

(A,w) ∼ (B, v) iff M′, w ≡L N ′, v

as a candidate for a bisimulation where M′ = 〈W,R, V,A〉, N ′ = 〈W ′, R′, V ′, B〉
and A ∪ {w} ⊆ W , B ∪ {v} ⊆ W ′. Suppose that (A,w) ∼ (B, v). ∼ satisfies
(nontriv) and (agree) by definition.

(kagree): If ©k is an operator of L, then w ∈ A iff M′, w |= ©k iff N ′, v |= ©k iff
v ∈ B. This proves that (kagree) is satisfied.

(remember): Suppose that ©r is an operator of L. Then (A,w) ∼ (B, v) implies
that for every ϕ, M′, w |= ϕ iff N ′, v |= ϕ. In particular, M′, w |= ©rψ iff
N ′, v |= ©rψ which by satisfaction definition holds precisely when M′[w], w |= ψ
iff N ′[v], v |= ψ and hence (A∪{w}, w) ∼ (B∪{v}, v). This proves that (remem-
ber) is satisfied. The conditions (forget) and (erase) are stablished similarly in
logics with the ©f and ©e operators.

Basic Model Theory for Memory Logics 31

(forth) and (back): These properties are proved as for basic modal logic (see [5,
Proposition 2.54]).

(mforth) and (mback): Since (A,w) ∼ (B, v), we have already seen in the ©r case
that M′[w], w |= ψ iff N ′[v], v |= ψ.6 This implies that M′[w], w ≡L N ′[v], v. Us-
ing Lemma 3 we also know that 〈M′[w], w〉 and 〈N ′[v], v〉 are both ω-saturated.

Suppose that w′ is a successor of w. Let Σ be the set of all the formulas true at
M′[w], w′. For every finite subset Δ ⊆ Σ we have M′[w], w′ |=

∧
Δ and there-

fore M′[w], w |= 〈〈r〉〉
∧
Δ. By L-equivalence we have N ′[v], v |= 〈〈r〉〉

∧
Δ which

means that for every Δ we have a v-successor which satisfies it. By Lemma 2 we
can conclude that there exists v′ a v-successor so that N ′[v], v′ |= Σ.

As M′[w], w′ and N ′[v], v′ make the same formulas true, then they are L-
equivalent and by definition they will be related by the bisimulation. This proves
that (mforth) is satisfied because (A ∪ {w}, w′) ∼ (B ∪ {v}, v′). The proof for
(mback) is similar but switching the models. ��

Theorem 8. The logics MLm(〈r〉), MLm(〈r〉,©e), MLm
∅ (〈r〉), MLm

∅ (〈〈r〉〉) and
MLm

∅ (〈r〉,©e) lack interpolation over propositional symbols.

Proof. We show each case separately.

MLm
∅ (〈r〉): Let ϕ = q∧©r [r](¬©k → ϕ′). If M, w |= ϕ then q is true at w and any

successor of w different from w satisfies ϕ′. Now, let ϕ′ = ¬q ∧ ¬©r 〈r〉(©k ∧ ¬q).
With this definition of ϕ′, if M, w |= ϕ then for all v such that wRv and v 	= w
we have ¬vRv.

Let ψ = p ∧ 〈r〉(¬p ∧ ©r 〈r〉©k). If M, w |= ψ then there is v 	= w such that
wRv and vRv. It is clear that ϕ ∧ ψ is a contradiction, so ϕ→ ¬ψ is valid.

Let M1 = 〈N, R1, ∅, ∅〉 and M2 = 〈N, R2, ∅, ∅〉, where R1 = {(n,m) | n 	=
m} ∪ {(0, 0)} and R2 = R1 ∪ {(1, 1)}. Graphically,

0

1 2 3 4 · · ·

0

2 3 4 5 · · ·

1

M1 M2

where the accessibility relation is the transitive closure of the arrows shown
but without reflexive loops excepts those explicitly marked. In [1] it was shown
that 〈M1, 0〉 and 〈M2, 0〉 are bisimilar over MLm

∅ (〈r〉). Now, define the models
M′

1 and M′
2 as M1 and M2 respectively but with a nonempty valuation in

the following way: M′
1 = 〈N, R1, V1, ∅〉 and M′

2 = 〈N, R2, V2, ∅〉, where R1 =
{(n,m) | n 	= m} ∪ {(0, 0)}, R2 = R1 ∪ {(1, 1)}, V1(q) = {0} and V2(p) = {0}.
One can verify that 〈M′

1, 0〉 and 〈M′
2, 0〉 are bisimilar over the common language

and that M′
1, 0 |= ϕ and M′

2, 0 |= ψ.

6 We can use ©r here because we required that every memory logic should have it.

32 C. Areces et al.

Suppose there is an interpolant χ over the common language of ϕ and ψ for
the valid formula ϕ → ¬ψ. On the one hand, since ϕ is true at 〈M′

1, 0〉 then χ
also is. On the other, since ψ is true at 〈M′

2, 0〉 then ¬χ also is. Then we have
that M′

1, 0 |= χ and M′
2, 0 |= ¬χ, which is a contradiction because 〈M′

1, 0〉 and
〈M′

2, 0〉 are bisimilar over the common language.

MLm(〈r〉): Let ϕ and ψ be as in the case for MLm
∅ (〈r〉). Let θ = ¬©k ∧ [r]¬©k ∧

[r][r]¬©k . Define ϕ′ = ϕ ∧ θ and ψ′ = ψ ∧ θ and repeat the proof above.

MLm
∅ (〈〈r〉〉): Observe that in the proof for MLm

∅ (〈r〉), instead of ψ, one could use
ψ′ = p∧©r 〈r〉(¬p∧©r 〈r〉(©k ∧¬p)). Now, in both ϕ and ψ′, all occurrences of 〈r〉
are of the form ©r 〈r〉, and all occurrences of [r] are of the form ©r [r]. Therefore
they can be translated to 〈〈r〉〉 and [[r]] preserving equivalence. Since MLm

∅ (〈〈r〉〉)
is less expressive than MLm

∅ (〈r〉), both models of the proof for MLm
∅ (〈r〉) are

MLm
∅ (〈〈r〉〉)-bisimilar and therefore the argument is valid.

MLm
∅ (〈r〉,©e): Let θ(q) = ©r 〈r〉(q ∧©k ∧ ¬〈r〉(¬q ∧©k)). Suppose M is a model

with S = {w} where M, w |= q and M, v |= ¬q. It is not difficult to see that
M, v |= θ(q) iff vRw and ¬wRv. Now, let ϕ = q ∧ ©r 〈r〉〈r〉(¬q ∧ θ(q)) and
ψ = p ∧ ©r [r][r](¬©k → (¬p ∧ ¬θ(p))) (here θ(p) is the result of replacing all
occurrences of q by p in the formula θ(q)). If ϕ is true at a point w then there
are points u and v 	= w such that wRuRv and vRw and ¬wRv. If ψ is true at
a point w then for all points u and v 	= w such that wRuRv it is not the case
that and vRw and ¬wRv. Hence |= ϕ → ¬ψ.

Let M = 〈{s} ∪ N0 ∪ N1 ∪ . . . , R, ∅, ∅〉, where each Ni is a different copy of
N, and R = {(n,m) | n ∈ Ni,m ∈ Nj , i ≤ j} ∪ {(n, s), (s, n) | for all n 	= s}.
Graphically,

N0 N1 N2 N3
. . .

s

In [1] it was showed that 〈M, w0〉 and 〈M, w1〉 are MLm
∅ (〈r〉,©e)-bisimilar,

where w0 ∈ N0 and w1 ∈ N1. Let M′ be as M but with a nonempty valuation:
V (p) = {w0}, V (q) = {w1}, and V (r) = ∅ for all r ∈ prop different from p and
q. It is straightforward to verify that M′, w0 |= ψ and M′, w1 |= ϕ, but 〈M′, w0〉
and 〈M′, w1〉 are MLm

∅ (〈r〉,©e)-bisimilar in the common language.

MLm(〈r〉,©e): Let ϕ and ψ be as in the proof for MLm
∅ (〈r〉,©e). It is easy to see

that ©eϕ → ¬©eψ is a valid formula in the class of MLm(〈r〉,©e)-models. The
rest of the argument is similar. ��

Theorem 12. Let C be any elementary frame class closed under generated sub-
frames and bisimulation products. Then MLm(〈〈r〉〉) and MLm(〈〈r〉〉,©f) have
interpolation over propositions and known relative to the class of all models with
frame in C.

Proof. We only give the proof of the main theorem. The proofs for the auxiliary
lemmas can be found in [13]. Let ϕ and ψ such that C |= ϕ → ψ and let L be the

Basic Model Theory for Memory Logics 33

common language of ϕ and ψ. Suppose for the sake of contradiction that there
is no interpolant of ϕ and ψ in the language L. We first state two easy lemmas:

Lemma 13. There is a model M based on a frame in C, with a state w, such
that M, w |= {χ | C |= ϕ→ χ and χ ∈ L} ∪ {¬ψ}.

Since C is closed under generated subframes we may assume that M is generated
by w.

Lemma 14. There is a model N based on a frame in C, with a state v, such
that N , v |= {χ | M, w |= χ and χ ∈ L} ∪ {ϕ}.

Again we may assume that N is generated by v. Let M+ and N+ be ω-saturated
elementary extensions of M and N respectively. Let us suppose that the first
order models M+ and N+ have domains M and N and binary relations R1 and
R2 for the modal operator 〈r〉, respectively.

We define the relation ∼ between ℘(M)×M and ℘(N)×N in the following
way: for all finite A ⊆M and finite B ⊆ N ,

(A, a) ∼ (B, b) iff for all formulas χ in L, M+[A], a |= χ iff N+[B], b |= χ.

By construction (∅, w) ∼ (∅, v). We prove that ∼ is a bisimulation. Call STx the
translation from MLm(〈r〉) formulas to first order logic formulas defined in [1].

Lemma 15. ∼ is an MLm(〈〈r〉〉)-bisimulation between M+ and N+ with re-
spect to L.

Proof. By the definition of ∼, it is clear that the condition (agree) is satisfied,
restricted to L. Let us see (mzig). Suppose (A, a) ∼ (B, b) and aR1a

′. Let

Γ = {STx(χ) | M+[A ∪ {a}], a′ |= χ and χ ∈ L}.

Let cb be a new constant denoting the element b of N+. We next show that
Γ ∪ {R(cb, x)} is realized in N+[B ∪ {b}], where R is the first order binary rela-
tion symbol for 〈〈r〉〉. Since, by Lemma 3, the expansion of N+[B ∪{b}] with the
constant cb is 1-saturated, it suffices to show that every finite subset of Γ is real-
ized in N+[B ∪{b}] by an R2-successor of b. Let STx(χ1), . . . ,STx(χn) ∈ Γ . We
haveM+[A], a |= 〈〈r〉〉(χ1∧· · ·∧χn), and thereforeN+[B], b |= 〈〈r〉〉(χ1∧· · ·∧χn),
which implies that there is an R2-successor of b which satisfies χ1∧· · ·∧χn. I.e.,
in N+[B ∪ {b}] there is an R2-successor which realizes {STx(χ1), . . . ,STx(χn)}.
Hence, there is b′, bR2b

′ such that N+[B∪{b}], gx
b′ |= Γ . Therefore for every χ of

L, if M+[A∪{a}], a′ |= χ then N+[B∪{b}], b′ |= χ. To see the other implication,
suppose by contradiction that N+[B ∪ {b}], b′ |= χ but M+[A ∪ {a}], a′ 	|= χ
(the case M+[A ∪ {a}], a′ |= χ but N+[B ∪ {b}], b′ 	|= χ is similar). This would
imply that M+[A ∪ {a}], a′ |= ¬χ and hence N+[B ∪ {b}], b′ |= ¬χ which leads
to a contradiction. The (mzag) condition is similar.

In order to check (remember), suppose that M+[A], a |= χ iff N+[B], b |= χ
for all χ of L. Now, let χ be any formula of L. By hypothesis, M+[A], a |= ©rχ
iff N+[B], b |= ©rχ. Applying the definition of ©r , we obtain M+[A∪{a}], a |= χ
iff N+[B ∪ {b}], b |= χ. ��

34 C. Areces et al.

The following lemma helps prove that ∼ is total.

Lemma 16. For every a ∈ M there is b ∈ N such that (∅, a) ∼ (∅, b); also for
every b ∈ N there is a ∈M such that (∅, a) ∼ (∅, b)
Corollary 17. The MLm(〈〈r〉〉)-bisimulation ∼ is total.

Applying the tree model property for MLm(〈〈r〉〉) (see [1]), let M+
T and N+

T be
tree MLm(〈〈r〉〉)-models such that M+, w ↔T M+

T , w and N+, v ↔T N+
T , v. By

Corollary 17, M+, w ↔T N+, v, and by transitivity of total bisimulations, we
conclude M+

T , w ↔T N+
T , v.

Now, let M+
TML and N+

TML be the ML equivalent models for M+
T and N+

T .
Since MLm(〈〈r〉〉)-bisimulation implies ML-bisimulation, M+

TML
↔T

ML N+
TML .

Let F and G be the underlying frames of M+
TML and N+

TML respectively. Using
Theorem 10, we know there is a bisimulation product H ∈ C of F and G of
which the domain is ∼. By the definition of bisimulation products, the natural
projections f : H → F and g : H → G are surjective bounded morphisms. For
any proposition letter p ∈ props(ϕ), let V (p) = {u | MTML , f(u) |= p}, and
for any proposition letter p ∈ props(ψ), let V (p) = {u | N+

TML , g(u) |= p}. The
properties of ∼ guarantee that this V is well-defined for p ∈ props(ϕ)∩props(ψ).
By a standard argument, the graph of f is a bisimulation between (H, V) and
M+

TML with respect to props(ϕ), and the graph of g is a bisimulation between
(H, V) and N+

TML with respect to props(ψ).
Now we have the appropriate model in which the contradiction is made ex-

plicit, but we have to be able to raise this result to MLm(〈〈r〉〉). Notice that
the model (H, V) is a tree, since it is the bisimulation product of two trees, and
also that the signature of (H, V) is 〈prop ∪ {known},rel〉. Therefore, we can
define the MLm(〈〈r〉〉)-model (H, V ′, S) over 〈prop,rel〉 where V ′ = V for all
p ∈ prop and w ∈ V (known) iff w ∈ S. It is easy to see that the equivalent
ML-model for (H, V ′, S) is (H, V). So now we need some claim that guarantees
us that we can build two relations ∼f and ∼g from the graphs of f and g respec-
tively, such that ∼f is an MLm(〈〈r〉〉)-bisimulation between (H, V ′, S) and M+

T

and ∼g is an MLm(〈〈r〉〉)-bisimulation between (H, V ′, S) and N+
T . We will not

give the proof of this claim here (refer to [13] for more details). Assuming that
we can actually build those relations, it follows that (H, V ′, S), 〈w, v〉 |= ϕ∧¬ψ.
This contradicts our initial assumption that C |= ϕ→ ψ.

For the MLm(〈〈r〉〉,©f) case. Let Tr be the equivalence preserving translation
defined in [1] that takes MLm(〈〈r〉〉,©f)-formulas to MLm(〈〈r〉〉)-formulas. Ob-
serve that Tr preserves propositional symbols and known, that is, given ϕ ∈
MLm(〈〈r〉〉,©f), ©k occurs in ϕ iff ©k occurs in Tr(ϕ) and props(ϕ) = props(Tr(ϕ)).

Let ϕ and ψ be two MLm(〈〈r〉〉,©f)-formulas such that ϕ → ψ is valid. Using
Tr, we know that Tr(ϕ) → Tr(ψ) is a valid MLm(〈〈r〉〉)-formula. By Theorem 12,
we know that there is an interpolant χ for Tr(ϕ) and Tr(ψ) in the common
language. Since Tr preserves equivalence, χ is also an interpolant for ϕ and ψ.
Furthermore, given that Tr preserves propositional symbols and known, χ is in
the common language of ϕ and ψ. ��

Partial Realization in

Dynamic Justification Logic

Samuel Bucheli�, Roman Kuznets��, and Thomas Studer

Institut für Informatik und angewandte Mathematik, Universität Bern,
Bern, Switzerland

{bucheli,kuznets,tstuder}@iam.unibe.ch

Abstract. Justification logic is an epistemic framework that provides a
way to express explicit justifications for the agent’s belief. In this paper,
we present OPAL, a dynamic justification logic that includes term oper-
ators to reflect public announcements on the level of justifications. We
create dynamic epistemic semantics for OPAL. We also elaborate on the
relationship of dynamic justification logics to Gerbrandy–Groeneveld’s
PAL by providing a partial realization theorem.

1 Introduction

Public announcement logic [14,13] describes how public announcements affect
an agent’s belief (knowledge). It is a subarea of dynamic epistemic logic [18],
which studies the relationship between belief (knowledge) and communication
in general. The effect of a public announcement of statement A is represented
by a formula [A]B that means B holds after the public announcement of A. It
is generally assumed that announcements do not affect the material reality of
the world, but that the agent trusts the announced facts, partly because their
verification may not be an option unless the agent is omniscient. In this paper,
we consider beliefs rather than knowledge, hence we concentrate on Gerbrandy–
Groeneveld’s logic PAL.

The idea of justification logic [2] is to formalize reasons for the agent’s belief.
Instead of �A used in the modal language to state that the agent believes A, in
justification logic, a specific reason for belief is given—t :A says that the agent be-
lieves A for reason t. This ability to express explicit reasons for the agent’s belief
provides a novel approach to several problems of multi-agent systems and formal
epistemology. Justifications can be employed, for instance, to tackle the logical
omniscience problem [4], to analyze several classical epistemic puzzles [2,3], and
to study common knowledge [1,8].

It is natural to ask how public announcements factor into the reasoning of the
agent. Public announcement logic describes how the beliefs change, but not why.
The aim of this paper is to suggest ways of formalizing the answer to this why.
The postulate of Gerbrandy–Groeneveld’s PAL that deals with belief change is

�(A→ [A]B) ↔ [A]�B . (1)
� Supported by Swiss National Science Foundation grant 200021–117699.

�� Supported by Swiss National Science Foundation grant PZ00P2 131706.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 35–51, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

36 S. Bucheli, R. Kuznets, and T. Studer

To understand its meaning, it is better to read the equivalence as two separate
implications. From left to right, the postulate says that an agent who believes
that B must be the case whenever a true fact A is announced will in fact believe B
after an actual announcement of A. For instance, elite-level frequent flyers can
usually check in for their flight at the business counter by presenting their elite
membership card, which can also be attached to their luggage to make public
their elite status. This rule should be known to airline employees. The left-to-
right implication then means that, when Ann presents her elite membership card
to Bob at the business counter, he would know he should check her in. If we are
to convert this implication from a statement about beliefs to a statement about
reasoning, the result should be something like

t : (A → [A]B) → [A]s :B ,

where t represents the airline’s regulations regarding business-counter check-in
procedures and s is the reason why Bob starts checking Ann in. There are three
possibilities how s can be related to t: (A) s = t, where the regulations themselves
tell Bob to check Ann in; (B) s = ⇑ t, where ⇑ represents the inference Bob has to
make from the regulations after the elite card is shown; and (C) s = ⇑A t, where
the inference process explicitly mentions both regulations t and the demonstra-
tion of Ann’s elite card A. In principle, any of the three options can be used to
model the situation.

In our joint work with Bryan Renne and Joshua Sack [7], we developed the
logic JPAL based on option (A). In this paper, we will present a new logic OPAL
based on option (B). We should, therefore, start by explaining why the simplicity
of JPAL may not always be sufficient. Imagine that Ann has been upgraded to
business class (say, as a reward for postponing her original flight, which was
overbooked). So, according to the same regulations, she can check in with Bob
based on her ticket alone without announcing her elite status: i.e., t :B. But Ann
may choose to announce her elite status anyways: i.e., [A]t :B. In JPAL, where
s = t, after the elite status is announced, t encodes two different reasons for Bob
to check Ann in. By contrast, in OPAL, these two reasons will be represented
by two different terms, t and ⇑ t, of which the latter depends on Ann’s elite
status while the former is due to the ticket alone. In this situation, Bob would
want to distinguish between the two reasons because of the difference in baggage
allowances: an elite frequent flyer is often allowed to check more luggage for free
than an owner of a business class ticket that has been upgraded from economy.

In addition, in this and similar cases, the JPAL approach implies that the
meaning of the regulations changes after public announcements: if Ann has an
economy ticket, the regulations do not allow her a business-counter check-in until
she shows her elite card, and then they do. This is a little counterintuitive since
the regulations are a legal document whose meaning should not be changed by
each public announcement. The use of reason ⇑ t enables us to separate the per-
manent status of the regulations from their momentary applications influenced
by public announcements.

It may seem that adding the exact content of the public announcement to
the term ⇑A t, as in option (C), provides even more information than the fact of

Partial Realization in Dynamic Justification Logic 37

a public announcement in ⇑ t. However, mixing formulas and terms makes the
syntax unnecessarily complicated. Worse than that, it makes schematic reason-
ing, i.e., reasoning invariant with respect to substitutions, impossible. Indeed,
the update axiom (1) is actually an axiom scheme that does not depend on the
announcement. Therefore, the operation that represents the update on the term
level perhaps should not depend on the announcement either. We will, therefore,
not consider option (C) in this paper.

One might even consider a fourth option where the reason s is the announce-
ment A itself: i.e., s = ⇑A. But the only statement that the announcement of A
can plausibly support by itself is A, in which case it should always support it.
This would be incompatible with PAL since not all formulas there are successful.

Let us now look at the other implication—from right to left—and see how
options (A) and (B) manifest themselves there. The implication states that an
agent who will believe B after an announcement of A must believe that, if A is
true and announced, B holds after the announcement. For instance, if Charlie,
while standing in a long line at the economy check-in counter, sees Ann showing
her elite card and being served by Bob at the business counter, [A]�B, then
Charlie has empirical evidence e that Ann is served at the business counter,
[A]e :B. It would be natural for Charlie to believe that having an elite status
and showing it gets one to the business counter, �(A → [A]B). But it seems
even clearer in this case that Charlie’s empirical observation e cannot explain
the causality of the implication A → [A]B. If before Ann showed up, Charlie had
read the sign that invited elite members to the business counter, then Charlie’s
memory of this sign, refreshed by Ann’s actions, could serve as such an expla-
nation. Thus, instead of using e, as in JPAL, in this example it also seems better
to use ⇓ e, where ⇓ is yet another new operation of our logic OPAL.

Apart from the already mentioned [7], not much work has been done so far
to combine justification logic and dynamic epistemic logic. A notable exception
is Renne’s research about introducing new evidence [15] and eliminating unre-
liable evidence [16] in the framework of justification logic. He also studied the
effect certain announcements have on the expressivity of justification logic [17].
However, the modal logic counterparts of those systems do not correspond to
any traditional public announcement logic. Both JPAL from [7] and OPAL intro-
duced here are intended as justification logics with public announcement opera-
tors whose belief dynamics closely corresponds to the modal belief dynamics of
Gerbrandy–Groeneveld’s PAL [13].

In this paper, we introduce a justification logic OPAL, operational public an-
nouncement logic, that extends the language of JPAL with unary operations ⇑
and ⇓ to express the occurrence of public announcements and the corresponding
change in the justifications of the agent’s belief. We present OPAL axiomatically
in Sect. 2 and provide it with dynamic epistemic semantics in Sect. 3. After
recalling the logic PAL in Sect. 4, in Sect. 5 we prove the soundness and com-
pleteness of the newly introduced OPAL with respect to the presented semantics
and compare this proof with that in PAL.

38 S. Bucheli, R. Kuznets, and T. Studer

While both JPAL and OPAL are intended as exact justification counterparts
of PAL, this has to be formally established via the so-called realization theorem.
An idea for proving the realization theorem for PAL was sketched in [7], naturally
for the logic JPAL discussed there. This idea was dependent on certain properties
of JPAL that were conjectured to hold. In Sect. 6 of this paper, we implement this
idea and discuss its application to both JPAL and OPAL. The implementation
has turned out to be far from being straightforward. In particular, for JPAL, we
have established only a partial realization theorem, one that provides a method
of substituting terms for �’s in any theorem of PAL that contains no �’s within
announcements. In contrast to most known constructive proofs of realization
theorems, our method, sketched in [7] and implemented here, is not based on
a cut-free sequent calculus for PAL. Instead, we first use a modal reduction
of PAL to a simpler logic K4, then use the standard realization method for the
latter, and finally reverse the performed reduction on the justification side. This
reversal process employs the replacement techniques developed by Fitting [11].
The closest analog of this method can be found in [10], where Fitting realizes S5
by reducing it to K45. However, there the reversal of the reduction is trivial.
Extending this method to OPAL presented unexpected challenges, which we also
discuss at the end of Sect. 6.

Most of the proofs are relegated to the appendix for space considerations.

2 Justification Logic

The language of OPAL extends the language typically used in justification logic
by adding public announcement formulas [A]B and two unary operations on
terms, ⇑ and ⇓, to express the update dynamics of evidence.

Definition 1 (OPAL Language). We fix countable sets Cons of constants,
Vars of variables, and Prop of atomic propositions. The language of OPAL
consists of the terms t ∈ Tm and the formulas A ∈ FmlJ formed by the grammar

t ::= x | c | (t · t) | (t + t) | !t | ⇑ t | ⇓ t x ∈ Vars, c ∈ Cons

A ::= p | ¬A | (A → A) | t :A | [A]A p ∈ Prop

Notation 2 (σ-Sequences). σ and τ (with and without subscripts) will denote
finite sequences of formulas. ε denotes the empty sequence. Given such a sequence
σ = (A1, . . . , An) and a formula B, the formula [σ]B is defined as follows:

[σ]B := [A1] . . . [An]B if n > 0 and [σ]B := B if n = 0.

Further, sequences σ,B := (A1, . . . , An, B) and B, σ := (B,A1, . . . , An). For
another sequence τ = (C1, . . . , Cm), we define τ, σ := (C1, . . . , Cm, A1, . . . , An).

Definition 3 (OPAL Deductive System). The axioms of OPAL consist of all
FmlJ-instances of the following schemes:

1. [σ]A, where A is a classical propositional tautology
2. [σ](t : (A→ B) → (s :A→ t · s :B)) (application)

Partial Realization in Dynamic Justification Logic 39

3. [σ](t :A→ t + s :A), [σ](s :A→ t + s :A) (sum)
4. [σ](t :A→ !t : t :A) (introspection)
5. [σ]p↔ p (independence)
6. [σ](B → C) ↔ ([σ]B → [σ]C) (normality)
7. [σ]¬B ↔ ¬[σ]B (functionality)
8. [σ]t : (A → [A]B) → [σ][A]⇑ t :B (update ⇑)
9. [σ][A]t :B → [σ]⇓ t : (A→ [A]B) (update ⇓)

10. [σ][A][B]C ↔ [σ][A ∧ [A]B]C (iteration)

The deductive system OPAL is a Hilbert system that consists of the above axioms
of OPAL and the following rules of modus ponens (MP) and axiom necessita-
tion (AN):

A A → B
B

(MP) ,
c1, . . . , cn ∈ Cons C is an OPAL-axiom

[σ1]c1 : · · · : [σn]cn :C
(AN) ,

where σi’s are (possibly empty) finite sequences of formulas.

The following example gives some intuition as to how updates are represented
by the operations on evidence.

Example 4. For any p ∈ Prop and any c1, c2 ∈ Cons, we have � [p]⇑(c1 · c2) : p.

Proof. We use PR to denote the use of propositional reasoning.

1. c1 :
(
([p]p↔ p) → (p→ [p]p)

)
AN for the tautology ([p]p↔ p) → (p → [p]p)

2. c2 : ([p]p↔ p) AN for the independence axiom [p]p↔ p
3. (c1 · c2) : (p → [p]p) from 1 and 2 by application and PR
4. [p]⇑(c1 · c2) : p from 3 by update ⇑ and PR ��

Note that p need not, in general, be true. The presence of ⇑ in the term ⇑(c1 ·c2)
clearly signifies that this evidence for p is contingent on a prior public announce-
ment. However, the exact content of such a public announcement, p in our case,
is not recorded in the term. This design decision enables us to avoid the over-
complexification of the language and is similar to the introspection operation in
the traditional justification logics: !t is evidence for t :A whenever t is evidence
for A; however, the formula A is not recorded in the term !t either.

Remark 5. The announcement-free fragment of OPAL (the first four axioms
with σ = ε, rule MP, and rule AN, restricted to cn :C) is the well-known justi-
fication logic J4 (see [5]).

We will consider not only OPAL but also JPAL (see [7] for details), which does
not include the two term operations ⇑ and ⇓.

Definition 6 (JPAL Deductive System). The axioms of JPAL are the axioms
of OPAL where the two update axiom schemes are replaced by the single scheme

[σ]t : (A→ [A]B) ↔ [σ][A]t :B . (2)

The deductive system JPAL is a Hilbert system that consists of the axioms
of JPAL and the rules (MP) and (AN), where the formula C in (AN) now
stands for an axiom of JPAL.

40 S. Bucheli, R. Kuznets, and T. Studer

The following lemma states a standard property of justification logics that holds
for OPAL and JPAL; it can be proved by an easy induction on the length of
derivation.

Lemma 7 (Lifting). If s1 :B1, . . . , sm :Bm, C1, . . . , Cn � A, then there is a
term t(s1, . . . , sm, y1, . . . , yn) such that

s1 :B1, . . . , sm :Bm, y1 :C1, . . . , yn :Cn � t(s1, . . . , sm, y1, . . . , yn) :A

for fresh variables y1, . . . , yn.

Corollary 8 (Constructive Necessitation). For any formula A, if � A,
then there is a ground term t such that � t :A.

3 Semantics

We adapt the Kripke-style semantics for Justification Logic due to Fitting [9]. A
similar semantics for JPAL was presented in [7]. Our semantics uses Kripke mod-
els augmented by an evidence function that relates each world–term pair (w, t)
to a set of formulas E(w, t) that the term t can justify at the world w.

Definition 9 (K4-Frame). A K4-frame is a pair (W,R) that consists of a set
W 	= ∅ of (possible) worlds and of a transitive accessibility relation R ⊆W×W .

Definition 10 (Evidence Function). An evidence function on a K4-frame
(W,R) is a function E : W × Tm → P (FmlJ) that satisfies the following closure
conditions:

1. Monotonicity: if R(w, v), then E(w, t) ⊆ E(v, t) for any t ∈ Tm.
2. Axioms: if c :A is derivable by the AN-rule, then A ∈ E(w, c) for any w ∈W .
3. Application: if (A → B) ∈ E(w, t) and A ∈ E(w, s), then B ∈ E(w, t · s).
4. Sum: E(w, s) ∪ E(w, t) ⊆ E(w, s + t) for any s, t ∈ Tm and any w ∈W .
5. Introspection: if A ∈ E(w, t), then t :A ∈ E(w, !t).

In a model of OPAL, there is an evidence function Eσ for each finite sequence σ
of formulas. The idea is that the evidence function Eσ models the “evidential
situation” that arises after the formulas in σ have been publicly announced.

Definition 11 (OPAL Model). A model is a structureM = (W,R, E , ν), where
(W,R) is a K4-frame, ν : Prop → P(W) is a valuation, and function E maps
finite sequences σ of formulas to evidence functions Eσ on (W,R) and satisfies

A→ [A]B ∈ Eσ(w, t) implies B ∈ Eσ,A(w,⇑ t) , (3)

B ∈ Eσ,A(w, t) implies A → [A]B ∈ Eσ(w,⇓ t) , (4)

Eσ,A,B(w, t) = Eσ,A∧[A]B(w, t) . (5)

Partial Realization in Dynamic Justification Logic 41

Conditions (3), (4), and (5) correspond to the update axiom ⇑, the update
axiom ⇓, and the iteration axiom respectively.

Definition 12 (Truth in OPAL Models). A ternary relation M, w � A for
formula A being satisfied at a world w ∈ W in a model M = (W,R, E , ν) is
defined by induction on the structure of A:

– M, w � p if and only if w ∈ ν(p).
– Boolean connectives behave classically.
– M, w � t :A if and only if 1) A ∈ Eε(w, t) and 2) M, v � A for all v ∈ W

with R(w, v).
– M, w � [A]B if and only if MA, w � B, where MA = (WA, RA, EA, νA)

is defined as follows: WA := W ; RA := {(s, t) | R(s, t) and M, t � A};
(EA)σ := EA,σ; and νA := ν. Note that MA is indeed a model: RA is transi-
tive, (EA)σ is an evidence function on (WA, RA) for each σ, and EA satisfies
conditions (3)–(5) from Def. 11.

We write M � A to mean that M, w � A for all w ∈ W . We say that formula A
is valid, written � A, to mean that M � A for all models M. For a sequence
τ = (A1, . . . , An) of formulas we use Mτ = (Wτ , Rτ , Eτ , ντ) to denote the model
(· · · ((MA1)A2) · · ·)An . Note that (Eτ)σ = Eτ,σ; in particular, (Eτ)ε = Eτ .

Our notion of model is non-empty as the following example shows.

Example 13. We define the structure M = (W,R, E , ν) as follows: W := {w};
R := {(w,w)}; Eσ(w, t) := FmlJ for all σ and all t ∈ Tm; and ν(p) := {w} for
all p ∈ Prop. It is easy to see that M is a model.

To illustrate how the semantics works, we prove a semantic version of the result
from Example 4.

Example 14. For any p ∈ Prop and any c1, c2 ∈ Cons, we have � [p]⇑(c1 · c2) : p.

Proof. Let M = (W,R, E , ν) be an arbitrary model and let w ∈W . By Def. 10.2,
we have ([p]p ↔ p) → (p → [p]p) ∈ Eε(w, c1) and ([p]p ↔ p) ∈ Eε(w, c2). Thus,
(p → [p]p) ∈ Eε(w, c1 · c2) by Def. 10.3. So, by condition (3) from Def. 11, we
have p ∈ Ep(w,⇑(c1 ·c2)). Since Rp(w, v) implies M, v � p, i.e., v ∈ ν(p) = νp(p),
we have Mp, w � ⇑(c1 · c2) : p by Def. 12 and, hence, M, w � [p]⇑(c1 · c2) : p. ��

4 Modal Public Announcement Logic

In this section, we recall some of the basic definitions and facts concerning the
Gerbrandy–Groeneveld modal logic of public announcements [12,13,18].

Definition 15 (PAL Language). The language of PAL consists of the formu-
las A ∈ Fml�,[·] formed by the grammar

A ::= p | ¬A | (A → A) | �A | [A]A p ∈ Prop

The language Fml� of modal formulas without announcements is obtained from
the same grammar without the [A]A constructor.

42 S. Bucheli, R. Kuznets, and T. Studer

The Gerbrandy–Groeneveld theory PAL of Public Announcement Logic uses the
language Fml�,[·] to reason about belief change and public announcements.

Definition 16 (PAL Deductive System). The axioms of PAL consist of all
Fml�,[·]-instances of the following schemes:

1. Axiom schemes for the modal logic K4
2. [A]p↔ p (independence)
3. [A](B → C) ↔ ([A]B → [A]C) (normality)
4. [A]¬B ↔ ¬[A]B (functionality)
5. [A]�B ↔ �(A→ [A]B) (update)
6. [A][B]C ↔ [A ∧ [A]B]C (iteration)

The deductive system PAL is a Hilbert system that consists of the above axioms
of PAL and the following rules of modus ponens (MP) and necessitation (N):

A A→ B
B

(MP) ,
A

�A
(N) .

We write PAL � A to state that A ∈ Fml�,[·] is a theorem of PAL.

We sometimes use some of the same names for both axioms of OPAL and axioms
of PAL because it will always be clear from the context which of the two is
meant. As before, the axioms of independence, normality, functionality, update,
and iteration are called the announcement axioms.

PAL, like many traditional modal public announcement logics, features the so-
called reduction property: Fml�,[·]-formulas with announcements can be reduced
to provably equivalent Fml�-formulas without announcements [12,13,18]. That
means one can express what the situation is after an announcement by saying
what the situation was before the announcement. The following lemma formally
describes this reduction procedure (for a proof, see, for instance, [18]). This
method was first introduced by Plaza in [14].

Definition 17 (Reduction). The reduction function red : Fml�,[·] → Fml� is
defined as follows:

1. red(p) = p
2. red commutes with the connectives ¬, →, and �.
3. red([A]p) = p.
4. red([A]¬B) = red(¬[A]B).
5. red([A](B → C)) = red([A]B → [A]C).
6. red([A]�B) = red(�(A→ [A]B)).
7. red([A][B]C) = red([A ∧ [A]B]C).

Lemma 18 (Provable Equivalence of Reductions). For all A ∈ Fml�,[·],
we have PAL � A ↔ red(A).

Remark 19. The above lemma facilitates a completeness proof for PAL by re-
ducing it to completeness of K4. Suppose that A ∈ Fml�,[·] is valid. Then
red(A) is also valid by the soundness of PAL and Lemma 18. Since red(A) is
a formula of Fml�, we get by the completeness of K4 that K4 � red(A) and,
hence, that PAL � red(A) because PAL extends K4. Applying Lemma 18 again,
we conclude that PAL � A.

Partial Realization in Dynamic Justification Logic 43

5 Soundness and Completeness for OPAL

In this section, we establish soundness and completeness of OPAL. First, sound-
ness is shown in the usual way by induction on the length of the derivation.

Lemma 20 (Soundness). For all formulas A, we have that � A implies � A.

The traditional modal logic reduction approach (see Remark 19) to establishing
completeness is not possible in the presence of justifications since the replacement
property does not hold in Justification Logic (see [11, Sect. 6] for a detailed
discussion of the replacement property in Justification Logic). That means, in
particular, that � A ↔ B does not imply � t :A ↔ t :B, which would be an
essential step in the proof of an OPAL-analog of Lemma 18. Thus, it is not
possible to transfer the completeness of J4 (see [9]) to OPAL. We will, instead,
provide a canonical model construction to prove the completeness of OPAL.

Definition 21 (Maximal Consistent Sets). A set Φ of FmlJ-formulas is
called consistent if Φ � A for some formula A. A set Φ is called maximal con-
sistent if it is consistent but has no consistent proper extensions.

It can be easily shown that maximal consistent sets contain all axioms of OPAL
and are closed under modus ponens and axiom necessitation.

Definition 22 (Canonical Model). The canonical model M = (W,R, E , ν)
is defined as follows:

1. W := {w ⊆ FmlJ | w is a maximal consistent set},
2. R(w, v) if and only if for all finite sequences σ and all t ∈ Tm, we have

[σ]t :A ∈ w implies [σ]A ∈ v,
3. Eσ(w, t) := {A ∈ FmlJ : [σ]t :A ∈ w},
4. ν(p) := {w ∈W : p ∈ w}.

Lemma 23 (Truth Lemma). Let M be the canonical model. For all formu-
las D and all worlds w in M, we have D ∈ w if and only if M, w � D.

As usual, the Truth Lemma implies completeness, which, as a corollary, yields
announcement necessitation.

Theorem 24 (Completeness). OPAL is sound and complete: that is, for all
formulas A ∈ FmlJ, we have � A if and only if � A.

Corollary 25 (Announcement Necessitation). Announcement necessitation
is admissible: that is, for all formulas A,B ∈ FmlJ, we have � A implies � [B]A.

6 Forgetful Projection and Realization

This section deals with the relationship between PAL and dynamic justification
logics. It is easy to show that the forgetful projection A◦ of an OPAL theorem A
is a theorem of PAL. This means that for any theorem A of OPAL, if we replace
each term in A with �, then the resulting formula A◦ is a theorem of PAL. A
similar result holds for JPAL [7].

44 S. Bucheli, R. Kuznets, and T. Studer

Definition 26 (Forgetful Projection). The mapping ◦ : FmlJ → Fml�,[·] is
defined as follows:

p◦ = p for all p ∈ Prop, ◦ commutes with connectives ¬ and → ,
(t :A)◦ = �A◦ ([A]B)◦ = [A◦]B◦ .

Theorem 27 (Forgetful Projection of OPAL). For all formulas A ∈ FmlJ,
we have OPAL � A =⇒ PAL � A◦.

A much more difficult question is whether a dynamic justification logic, such
as JPAL or OPAL, can realize PAL: that is, whether for any theorem A of PAL, it
is possible to replace each � in A with some term such that the resulting formula
is a dynamic justification validity.

In the remainder of this paper we present the first realization technique for
dynamic justification logics and establish a partial realization result for JPAL:
JPAL can realize formulas A that do not contain � operators within announce-
ments. Our main idea is to reduce realization of PAL to realization of K4. In our
proof, we rely on notions and techniques introduced by Fitting [11].

Definition 28 (Substitution). A substitution is a mapping from variables to
terms. If A is a formula and σ is a substitution, we write Aσ to denote the result
of simultaneously replacing each variable x in A with the term xσ.

Lemma 29 (Substitution Lemma). For every formula A of FmlJ and every
substitution σ, we have � A implies � Aσ.

In most justification logics, in addition to this substitution of proof terms for
proof variables, the substitution of formulas for propositions is also possible
(see [2]). However, the latter type of substitution typically fails in logics with
public announcements, as it does in both JPAL and OPAL.

Definition 30 (Annotations). An annotated formula is a modal formula in
which each modal operator is annotated by a natural number. An annotated
formula is properly annotated if �2k’s occur in it only in negative positions,
�2k+1’s occur only in positive positions, and no �i occurs twice. Positions within
an announcement [A] are considered neither positive nor negative: i.e., the parity
of indices within announcements in properly annotated formulas is not regulated.
If A′ is the result of replacing all indexed modal operators �i with � in a (prop-
erly) annotated formula A, then A is called a (properly) annotated version of A′.

Definition 31 (Realization Function). A realization function r is a mapping
from natural numbers to terms such that r(2i) = xi, where x1, x2, . . . is a fixed
enumeration of all variables. For a realization function r and an annotated for-
mula A, r(A) denotes the result of replacing each indexed modal operator �i in A
with the term r(i). For instance, r(�iB) = r(i) : r(B). A realization function r
is called non-self-referential on variables over A if, for each subformula �2iB
of A, the variable r(2i) = xi does not occur in r(B).

Partial Realization in Dynamic Justification Logic 45

The following realization result for the logic K4 is due to Brezhnev [5]; the
additional result about non-self-referentiality can be read off from the proof
presented in [6].

Theorem 32 (Realization for K4). If A is a theorem of K4, then for any
properly annotated version B of A, there is a realization function r such that
r(B) is provable in J4. Additionally, r is non-self-referential on variables over B.

In order to formulate the replacement theorem for JPAL, a technical result nec-
essary for demonstrating the partial realization theorem for JPAL, we use the
following convention: whenever D(q) and A are formulas in the same language,
D(A) is the result of replacing all occurrences of the proposition q in D(q) with A.

For the rest of this section, we consider only formulas A that do not contain
modal operators within announcements: i.e., if [B]C is a subformula of A, then
B does not contain modal operators.

We will use a theorem that was first formulated by Fitting [11] for LP. A
closer look at its proof shows that it also holds in our context. Moreover, while
Fitting’s formulation only mentions replacement at a positive position, adapting
the formulation and the proof to replacement at a negative position is quite easy.
The following is an instance of the extended formulation:

Theorem 33 (Replacement for JPAL). Assume the following:

1. D(q) is a properly annotated formula in which the proposition q occurs once
and outside of announcements. A and D(q) share no annotations, and B and
D(q) share no annotations. If q occurs positively in D(q), then A and B are
properly annotated formulas; if q occurs negatively, then ¬A and ¬B are.

2. r1 is a realization function that is non-self-referential on variables over D(A)
and D(B).

3. If q occurs positively in D(q), then JPAL � r1(A) → r1(B). If q occurs
negatively, then JPAL � r1(B) → r1(A).

Then there is some realization/substitution pair 〈r, σ〉 such that

JPAL � r1(D(A))σ → r(D(B))

and r is non-self-referential on variables over D(B).

We now have all ingredients ready to establish our realization theorem. The
following diagram shows how we obtain it. We start with a formula A ∈ Fml�,[·].
Using reduction, K4 realization from Theorem 32, and the replacement theorem,
we construct a formula r(A) ∈ FmlJ that realizes A.

A r(A)

red(A) rK4(red(A))

Reduction

K4 realization

Replacement to ‘invert’ red

Forgetful projection

46 S. Bucheli, R. Kuznets, and T. Studer

Theorem 34 (Realization for PAL). If A is a theorem of PAL such that
A does not contain � operators within announcements, then for any properly
annotated version B of A, there is a realization function r such that r(B) is
provable in JPAL.

Remark 35. It is not clear how to generalize our proof to all theorems of PAL.
The problem is that the reduction of [�A](C → D) produces two copies of � of
opposite polarities. Those two occurrences of � may then be realized by different
terms, and we lack methods of merging terms of opposite polarities in order to
‘invert’ the reduction.

Remark 36. Unfortunately, adapting this proof to OPAL presents certain chal-
lenges. The problem is that in order to ‘invert’ the reduction from PAL to K4,
we need to apply replacement also in negative positions. This is only possible
because in the update axiom (2) of JPAL, we have the same justification term on
both sides of the equivalence. If, like in OPAL, we work with update operations ⇑
and ⇓ on terms, then we end up with different terms in the update axioms, which
prevents the use of Fitting’s replacement at negative positions.

7 Conclusion

This paper presents OPAL, a dynamic justification logic that includes term op-
erators that reflect public announcements. One of OPAL’s update axioms is

[σ]t : (A→ [A]B) → [σ][A]⇑ t :B ,

which we used in Example 4 to derive � [p]⇑(c1 · c2) : p. The presence of ⇑ in the
term ⇑(c1 · c2) clearly points out that this evidence for p is contingent on a prior
public announcement.

For the semantics, we employ a combination of epistemic models from justi-
fication logic and simple model transformations from dynamic epistemic logics
where the agent considers worlds that are inconsistent with the announcement
as impossible. We show that OPAL is sound and complete with respect to this
semantics.

We develop a realization method for dynamic justification logics and establish
a partial realization theorem stating that JPAL realizes all the theorems of PAL
that do not contain modalities within announcements. Finally, we discuss why
our realization result does not easily transfer to OPAL. It should be noted that
our realization method does not rely on cut elimination in PAL, the logic being
realized. Its constructiveness, however, depends on cut elimination in K4, to
which PAL is reducible.

Acknowledgments. We would like to thank Bryan Renne and Joshua Sack
for introducing us to justified dynamic epistemic logic and for many valuable
discussions. We thank the anonymous referees for their comments that helped
improve the paper. We also thank Galina Savukova for editing this text.

Partial Realization in Dynamic Justification Logic 47

References

1. Artemov, S.N.: Justified common knowledge. Theoretical Computer Science
357(1-3), 4–22 (2006)

2. Artemov, S.N.: The logic of justification. The Review of Symbolic Logic 1(4),
477–513 (2008)

3. Artemov, S.N.: Tracking evidence. In: Blass, A., Dershowitz, N., Reisig, W. (eds.)
Fields of Logic and Computation. LNCS, vol. 6300, pp. 61–74. Springer, Heidelberg
(2010)

4. Artemov, S.N., Kuznets, R.: Logical omniscience as a computational complexity
problem. In: Heifetz, A. (ed.) Proc. of TARK 2009, pp. 14–23. ACM, New York
(2009)

5. Brezhnev, V.N.: On explicit counterparts of modal logics. Technical Report CFIS
2000–05. Cornell University (2000)

6. Brünnler, K., Goetschi, R., Kuznets, R.: A syntactic realization theorem for justi-
fication logics. In: Beklemishev, L., Goranko, V., Shehtman, V. (eds.) Advances in
Modal Logic, vol. 8, pp. 39–58. College Publications (2010)

7. Bucheli, S., Kuznets, R., Renne, B., Sack, J., Studer, T.: Justified belief change. In:
Arrazola, X., Ponte, M. (eds.) Proc. of the Second ILCLI International Workshop
on Logic and Philosophy of Knowledge, Communication and Action, pp. 135–155.
University of the Basque Country Press (2010)

8. Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. To ap-
pear in the Journal of Applied Non-Classical Logics (2011)

9. Fitting, M.: The logic of proofs, semantically. Annals of Pure and Applied
Logic 132(1), 1–25 (2005)

10. Fitting, M.: The realization theorem for S5, a simple, constructive proof. In: Gupta,
A., van Benthem, J. (eds.) Proc. of the Second Indian Conference on Logic and Its
Relationship with Other Disciplines (2009) (forthcoming)

11. Fitting, M.: Realizations and LP. Annals of Pure and Applied Logic 161(3), 368–
387 (2009)

12. Gerbrandy, J.: Bisimulations on Planet Kripke. PhD thesis. Institute for Logic,
Language, and Computation, University of Amsterdam (1999)

13. Gerbrandy, J., Groeneveld, W.: Reasoning about information change. Journal of
Logic, Language and Information 6(2), 147–169 (1997)

14. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007);
Reprinted from Emrich, M.L., et al. (eds.) Proc. of ISMIS 1989, pp. 201–216.
Oak Ridge National Laboratory, ORNL/DSRD-24 (1989)

15. Renne, B.: Dynamic Epistemic Logic with Justification. PhD thesis. CUNY Grad-
uate Center (2008)

16. Renne, B.: Evidence elimination in multi-agent justification logic. In: Heifetz, A.
(ed.) Proc. of TARK 2009, pp. 227–236. ACM, New York (2009)

17. Renne, B.: Public communication in justification logic. Journal of Logic and Com-
putation, Advance Access (July 2010)

18. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. In:
Synthese Library, vol. 337. Springer, Heidelberg (2007)

Appendix

Proof of Lemma 20. As usual, the proof is by induction on the length of the
derivation of A in OPAL. We only show the most interesting cases for the axioms
that relate announcements and justifications.

48 S. Bucheli, R. Kuznets, and T. Studer

1. Independence. M, w � [σ]p iff Mσ, w � p iff w ∈ νσ(p) iff w ∈ ν(p) iff
M, w � p.

2. Update ⇑. M, w � [σ]t : (A → [A]B) is equivalent to the conjunction of

A→ [A]B ∈ Eσ(w, t) and (6)

Mσ, v � A→ [A]B for all v with Rσ(w, v) . (7)

By the condition (3) on E from Def. 11, we obtain that (6) implies

B ∈ Eσ,A(w,⇑ t) . (8)

Moreover, (7) is equivalent to

Mσ, v � A implies Mσ,A, v � B for all v with Rσ(w, v) , (9)

which, in turn, is equivalent to

Mσ,A, v � B for all v with Rσ,A(w, v) . (10)

The conjunction of this and (8) is equivalent to Mσ,A, w � ⇑ t :B, or, equiv-
alently, M, w � [σ][A]⇑ t :B.

3. Update ⇓. M, w � [σ][A]t :B is equivalent to the conjunction of (10) and
B ∈ Eσ,A(w, t) By the condition (4) on E from Def. 11, the latter implies

A→ [A]B ∈ Eσ(w,⇓ t) . (11)

Moreover, as noted in the previous case, (10) is equivalent to (7). The con-
junction of (7) and (11) is equivalent to Mσ, w � ⇓ t : (A → [A]B), or,
equivalently, M, w � [σ]⇓ t : (A → [A]B).

4. Iteration. First we show that

Rσ,A,B = Rσ,A∧[A]B . (12)

Rσ,A,B(u, v) is equivalent to Rσ(u, v) and Mσ, v � A and Mσ,A, v � B.
This is equivalent to Rσ(u, v) and Mσ, v � A ∧ [A]B, which, in turn, is
equivalent to Rσ,A∧[A]B(u, v), and thus (12) is established.
The case for iteration is now as follows: M, w � [σ][A][B]C if and only if
Mσ,A,B, w � C. By condition (5) on E from Def. 11 and by (12), this is
equivalent to Mσ,A∧[A]B, w � C, which, in turn, is equivalent to the state-
ment M, w � [σ][A ∧ [A]B]C. ��

To establish completeness, we need to know that the canonical model is a model.

Lemma 37 (Correctness of the Canonical Model). The canonical model
is a model.

Proof. First, we observe that the set W is non-empty: the set of all formulas
that are true at world w of the model from Example 13 is maximally consistent.
We next show that Eσ is an evidence function on (W,R) for each σ.

Partial Realization in Dynamic Justification Logic 49

– Monotonicity. Assume A ∈ Eσ(w, t) and R(w, v). We have [σ]t :A ∈ w. By
introspection and normality, we get [σ]!t : t :A ∈ w. By R(w, v), we find
[σ]t :A ∈ v. Thus, A ∈ Eσ(v, t).

– Axioms. For any c :A derivable by AN, [σ]c :A is also derivable for any σ.
Hence, [σ]c :A ∈ w and A ∈ Eσ(w, c).

– Application. Assume A → B ∈ Eσ(w, t) and A ∈ Eσ(w, s). We then have
[σ]t : (A → B) ∈ w and [σ]s :A ∈ w. By application and normality, we get
[σ]t · s :B ∈ w. Thus, B ∈ Eσ(w, t · s).

– Sum and Introspection are shown as in the previous case, using the axioms
of sum and introspection respectively.

Next we show condition (3) on E from Def. 11. We have A → [A]B ∈ Eσ(w, t)
if and only if [σ]t : (A → [A]B) ∈ w. By the update ⇑ axiom, the latter implies
[σ][A]⇑ t :B ∈ w, which is equivalent to B ∈ Eσ,A(w,⇑ t).

Conditions (4) and (5) are shown similarly using the update ⇓ axiom and the
iteration axiom respectively.

Finally, we show that R is transitive. Let R(w, v) and R(v, u). Whenever
[σ]t :A ∈ w, by introspection and normality, [σ]!t : t :A ∈ w. Then [σ]t :A ∈ v
since R(w, v). And finally, [σ]A ∈ u since R(v, u). Thus, R(w, u). ��

We will need a rank function on formulas to prove the Truth Lemma.

Definition 38 (Rank). The rank rk(A) of a formula A is defined as follows:

rk(p) := 1 for each p ∈ Prop,
rk(¬A) := rk(A) + 1 , rk(A→ B) := max(rk(A), rk(B)) + 1 ,
rk(t :A) := rk(A) + 1 , rk([A]B) := (2 + rk(A)) · rk(B) .

We immediately get the following lemma:

Lemma 39 (Reductions Reduce Rank). For all formulas A,B,C and all
terms t, we have the following:

1. rk(A) > rk(B) if B is a proper subformula of A
2. rk([A]¬B) > rk(¬[A]B) 3. rk([A](B → C)) > rk([A]B → [A]C)
4. rk([A]t :B) > rk(⇓ t : (A → [A]B)) 5. rk([A][B]C) > rk([A ∧ [A]B]C)

Proof of Lemma 23. Proof by induction on rk(D) and a case distinction on
the structure of D. Let us only show the cases where D is of the form [A]B. The
other cases are standard and follow easily from the maximal consistency of w
and the definition of the canonical model.

1. D = [A]p. Suppose [A]p ∈ w. By the independence axiom, this is equivalent
to p ∈ w for a formula of a lower rank than [A]p. By the induction hypothesis,
this is equivalent to M, w � p, which is equivalent to M, w � [A]p by the
soundness of the independence axiom.

2. D = [A]¬B. Suppose [A]¬B ∈ w. By the functionality axiom, this is equiv-
alent to ¬[A]B ∈ w for a formula of a lower rank than [A]¬B. By the induc-
tion hypothesis, this is equivalent to M, w � ¬[A]B, which is equivalent to
M, w � [A]¬B by the soundness of the functionality axiom.

50 S. Bucheli, R. Kuznets, and T. Studer

3. D = [A](B → C) is shown similarly using the normality axiom.
4. D = [A]t :B. Suppose [A]t :B ∈ w. By the update ⇓ axiom, we then have

⇓ t : (A → [A]B) ∈ w for a formula of a lower rank than [A]t :B. By the in-
duction hypothesis, this is equivalent to M, w � ⇓ t : (A → [A]B), which im-
plies, in particular, that M, v � A → [A]B whenever R(w, v). Equivalently,
M, v � [A]B whenever R(w, v) and M, v � A. Equivalently, MA, v � B
whenever RA(w, v). In addition, by the definition of E , we have B ∈ EA(w, t).
To summarize, we have MA, w � t :B. In other words, M, w � [A]t :B.
Suppose [A]t :B /∈ w. By the definition of E , we have B /∈ EA(w, t). Hence,
MA, w � t :B. In other words, M, w � [A]t :B.

5. D = [A][B]C. Suppose [A][B]C ∈ w. By the iteration axiom, this is equiva-
lent to [A ∧ [A]B]C ∈ w for a formula of a lower rank than [A][B]C. By the
induction hypothesis, this is equivalent to M, w � [A ∧ [A]B]C, which, by
the soundness of the iteration axiom, is equivalent to M, w � [A][B]C. ��

Proof of Theorem 24. Soundness was already shown in Lemma 20. For com-
pleteness, consider the canonical model M = (W,R, E , ν) and assume that � A.
Then {¬A} is consistent and, hence, contained in some maximal consistent
set w ∈ W . By Lemma 23, it follows thatM, w � ¬A and, hence, thatM, w � A.
Since M is a model (Lemma 37), we have shown that � A implies � A. Com-
pleteness follows by contraposition. ��

Proof of Corollary 25. Assume � A. By soundness, � A. Therefore, M � A
for all models M. In particular, MB, w � A for all models of the form MB and
worlds w in them. Thus, we obtain M, w � [B]A for all M, w. By completeness,
we conclude � [B]A. ��

Proof of Theorem 27. The proof is by induction on the length of the derivation
of A in OPAL. For the base case, simply observe that the forgetful projection of
each axiom of OPAL is derivable in PAL. The rest is straightforward. ��

Proof sketch of Theorem 33. This theorem follows from the JPAL version
of [11, Theorem 4.3]. For space considerations we only show the additional case
in the algorithm that constructs 〈rϕ, σϕ〉 and omit the correctness proof.

Announcement case: ϕ(P) is [θ]η(P), where θ is �n-free and 〈rη, ση〉 has been
constructed. Since subformulas of θ are neither positive nor negative, P does not
occur in θ. Set σϕ = ση and define rϕ as follows:

rϕ(n) =

{
rη(n) if �n occurs in η(B)
r1(n) otherwise.

Proof of Theorem 34. Let A be a formula of Fml�,[·] that does not contain
� operators within announcements such that PAL � A. By Lemma 18, we find
PAL � red(A) with no modalities occurring within announcements throughout
the reduction process (see Def. 17). By the soundness of PAL, red(A) is a valid
formula of Fml�, and by completeness of K4, we obtain K4 � red(A).

Partial Realization in Dynamic Justification Logic 51

Let B be a properly annotated version of red(A). By Theorem 32, there exists
a realization function rK4 with J4 � rK4(B) such that rK4 is non-self-referential on
variables over B. Since J4 is a subsystem of JPAL, we also have JPAL � rK4(B).

Now we iteratively ‘invert’ the reduction steps performed by red. Let us show
case 6 in Definition 17. Let E(q) be a formula with one occurrence of q such
that E([C]�D) has been reduced to the formula E(�(C → [C]D)), of which
we let E′(�i(C → [C]D′)) be a properly annotated version. Note that C does
not contain any modalities and, hence, does not require any annotations. By
induction hypothesis, there is a realization function r1 such that

JPAL � r1(E′(�i(C → [C]D′))) , (13)

which is non-self-referential on that formula. By the JPAL update axiom (2),
we have JPAL � r1(�i(C → [C]D′) ↔ r1([C]�iD

′). Whether q occurs posi-
tively or negatively in E′(q), applying the replacement theorem yields a realiza-
tion/substitution pair 〈r, σ〉 such that

JPAL � r1(E′(�i(C → [C]D′)))σ → r(E′([C]�iD
′)) ,

with r being non-self-referential on variables over E′([C]�iD
′). By the sub-

stitution lemma, (13) implies JPAL � r1(E′(�i(C → [C]D′)))σ, from which
JPAL � r(E′([C]�iD

′)) follows by modus ponens.
After having ‘inverted’ all reduction steps, we end up with a properly anno-

tated version F of A and a realization function r such that � r(F). ��

Hoare Logic for Higher Order Store

Using Simple Semantics

Nathaniel Charlton

School of Informatics, University of Sussex
n.a.charlton@sussex.ac.uk

Abstract. We revisit the problem of providing a Hoare logic for higher
order store programs, considered by Reus and Streicher (ICALP, 2005).
In a higher order store program, the procedures/commands of the pro-
gram are not fixed, but can be manipulated at runtime by the program it-
self; such programs provide a foundation to study language features such
as reflection, dynamic loading and runtime code generation. By adapting
the semantics of a proof system for a language with conventional (fixed)
mutually recursive procedures, studied by von Oheimb (FSTTCS, 1999),
we construct the same logic as Reus and Streicher, but using a much
simpler model and avoiding unnecessary restrictions on the use of the
proof rules. Furthermore our setup handles nondeterministic programs
“for free”. We also explain and demonstrate with an example that, con-
trary to what has been stated in the literature, such a proof system does
support proofs which are (in a specific sense) modular.

Keywords: higher order store, Hoare logic, modular proof.

1 Introduction

Higher order store is when a program’s commands or procedures are not fixed,
but are instead part of the mutable state which the program itself manipulates at
runtime. Thus programming languages with higher order store allow programs
to be self-modifying and self-configuring. Such languages can be used (as in
e.g. [7]) to model phenomena such as runtime code generation and dynamic
management of code, which is found in OS kernels, plugin systems and dynamic
(“hot”) software update systems.

Reus and Streicher [17] consider the problem of providing a Hoare logic for
higher order store programs. They consider “arguably the simplest language
that uses higher-order store” so that they can focus solely on how to account
for higher order store. This language contains programs such as the following:

x := ‘run x’ ;
run x

(1) x := ‘n := 100 ; x := ‘n := n− 1’’ ;
run x ; run x

(2)

Program (1) constructs a non-terminating recursion: the command run x is writ-
ten into variable x, and then invoked using the run x command. This leads to the
code stored in x invoking itself endlessly. Program (1) should satisfy the Hoare

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 52–66, 2011.
� Springer-Verlag Berlin Heidelberg 2011

Hoare Logic for Higher Order Store Using Simple Semantics 53

triple {true} − {false}. The fact that new recursions can be set up on-the-fly in
this way was observed by Landin [9] and is sometimes called recursion through
the store or tying the knot. In program (2) we store a self-modifying command
in x: when first run, this command sets n to 100 and then replaces itself with
the command n := n− 1. Program (2) should satisfy {true} − {n = 99}.

How should one give semantics to such a language? Reus and Streicher take the
view that the commands stored in variables should be represented semantically
as store transformers, that is, as (partial) functions Store⇀Store. But since stores
map variables to values, and values include commands, this makes the notions of
command and store mutually recursive. Thus, [17] uses domain theory to solve
the following system of recursive equations:

Store = Var → Val Val = BVal + Cmd Cmd = Store⇀Store

where BVal is some basic values such as integers. The rest of the development of
loc. cit., which gives an assertion language and Hoare proof rules, then requires
a rather intricate domain-theoretic argument. Specifically, results by Pitts [14]
concerning the existence of invariant relations on recursively defined domains are
needed. Even then, the domain theory leaks out into the logic: several of the rules
are restricted in that they can only be used with assertions that are “downwards
closed” (a semantic property which may not be intuitive to potential users of
the logic, unless they are domain-theorists).

However, when one looks closely at the new proof rules in [17], one sees that
they are not so new after all; rather, they are very similar to the rules used
by von Oheimb [12] and later others (e.g. Nipkow [11] and Parkinson [13]) for
reasoning about mutually recursive procedures in conventional procedural lan-
guages (where procedures cannot be updated at runtime). But, noticing this,
we are left with an apparent disparity: von Oheimb’s proof rules are justified
using rather basic mathematics, namely proof by induction on the number of
procedure calls made by an execution sequence. If the rules of [17] are so similar,
why should the underlying semantics be much more complicated?

In Sections 2, 3 and 4 we resolve this question by showing that using induction
on execution length we can reconstruct Reus and Streicher’s logic. Not only does
this give a simpler model of the logic, but we also eliminate restrictions which
[17] places on the use of the proof rules. The key to making this work is to use a
simpler, flat model of program states, where all values (including commands) are
encoded as integers. In Section 5 we see that our setup handles nondeterministic
programs “for free”. Section 6 explains that, contrary to what has been stated
in the literature, the logic studied here supports proofs which are modular (in a
specific sense which we explain). An example of such a proof is provided. Section
7 discusses related and future work, and concludes.

The significance of our results is that they show that, for certain kinds of
reasoning about higher order store, it is not necessary to use “sophisticated”
domain-theoretic techniques, and in fact one fares better without them.

54 N. Charlton

expressions e ::= 0 | 1 | − 1 | . . . | e1 + e2 | e1 = e2 | . . . | v | ‘C’

commands C ::= nop | x := e | C1;C2 | if e then C1 else C2 | run x

assertions P,Q ::= P1 ∧ P2 | ¬P | ∀v.P | e1 ≤ e2

contexts Γ ::= ε | {P} e {Q} ,Γ
specifications S ::= {P} e {Q} | Γ � {P} e {Q}

Fig. 1. Syntax of expressions, commands, assertions, contexts and specifications

(x := e, s) −→ (nop, λv. if v = x then �e�exs else s(v))

(C1, s) −→ (C′
1, s

′)

(C1;C2, s) −→ (C′
1;C2, s

′)

(nop;C, s) −→ (C, s)

�e�exs = 1

(if e then C1 else C2, s) −→ (C1, s)

�e�exs �= 1

(if e then C1 else C2, s) −→ (C2, s)

C = G−1(s(x))

(run x, s) −→ (C, s)

Fig. 2. Small-step operational semantics of programs

2 Programs, Assertions and Specifications

We begin by giving the syntax and semantics of a programming language for
higher order store programs, and accompanying assertion and specification lan-
guages. The syntax is essentially as in [17] except where indicated, but crucially
the semantics takes a different approach.

Let Store � Var → Z be the set of program stores and let Env � AuxVar → Z

be the set of environments for auxiliary variables (throughout we use � to make
definitions, to avoid confusion with the assignment symbol := which occurs in
programs). We fix a bijection G mapping (syntactic) commands to integers;
we will use this to encode commands. Thus all values, including commands,
are encoded as integers. We call this a flat model because, unlike in [17], no
complicated order structure on Store is required.

2.1 Expressions, Programs and Assertions

The syntax of expressions e, commands C and assertions P is given in Fig. 1.
Variables v can be of two kinds: ordinary variables x, y, . . . ∈ Var, and auxiliary
variables p, q, . . . ∈ AuxVar which may not appear in programs. The quote ex-
pression ‘C’ turns the command C into a value so it can be stored in a variable,
and run later. ‘C’ has no free variables. Using the available assertion language
one can express true, ∨, ∃, = and so on in the usual way. Because we use a flat
store model and encode commands as integers, we will not need the type check
τ?e from [17], and the typed comparison ≤τ becomes ≤ on integers.

Hoare Logic for Higher Order Store Using Simple Semantics 55

Semantics of expressions: We write �e�exs,ρ for the value of expression e
in store s and environment ρ. Where e contains no ordinary (resp. auxiliary)
variables we omit s (resp. ρ). Expression evaluation is standard apart from the
case of ‘C’, where we simply use the encoding G , defining �‘C’�ex � G (C).

Semantics of programs: Fig. 2 gives a small-step operational semantics1.
A configuration is a pair (C, s) of a command and a store, and is terminal if C is
nop. One execution step is written (C, s) −→ (C′, s′) and if there is an execution
sequence of zero or more steps from (C, s) to (C′, s′) we write (C, s) ∗−→ (C′, s′).
Note the semantics of the run x command : we just read an integer value from
x, turn it back into a (syntactic) command with G −1, and run it.

Semantics of assertions: The semantics �P �asρ ⊆ Store of assertion P in
environment ρ is completely standard so we omit it. Entailment P ⇒ Q means
that for all ρ, �P �asρ ⊆ �Q�asρ .

2.2 Contexts and Specifications

Next we introduce contexts Γ and specifications S, also shown in Fig. 1. A context
is a collection of Hoare triples. A specification is either a Hoare triple {P}e{Q},
or a triple in context Γ � {P} e {Q}. Intuitively the latter means that {P} e {Q}
holds in contexts where Γ holds. (In triple {P} e {Q} the expression e must not
contain free ordinary variables.) Before we can give semantics to contexts and
specifications, we state our (partial correctness) interpretation of Hoare triples.

Definition 1. Semantics of Hoare triples. We write ρ �n {P} e {Q} to
mean, putting C � G −1(�e�exρ), that for all stores s ∈ �P �asρ , if (C, s) ∗−→ (nop, s′)
in n steps or fewer then s′ ∈ �Q�asρ . We write ρ � {P} e {Q} to mean that
ρ �n {P} e {Q} for all n ∈ N.

The semantics �S�sp ⊆ Env of specification S (and the semantics �Γ�co ⊆ Env×N

of context Γ) is then as in Fig. 3. For example, {A} e {B} � {P} e′ {Q} means
that in a context where command e satisfies triple {A} {B} for executions of
up to length n − 1, the command e′ satisfies triple {P} {Q} for executions
of up to length n. This semantics (which is not a conventional implication)
will fit naturally with proof by induction on execution length. Note also that if
(ρ, n) ∈ �Γ�co and 0 ≤ m < n then (ρ,m) ∈ �Γ�co.

We write S1, . . . , Sk � S to mean that (the conjunction of) specifications
S1, . . . , Sk entails the specification S, that is, if �S1�

sp = . . . = �Sk�sp = Env
then �S�sp = Env. (When k = 0 we write just � S meaning �S�sp = Env.)

3 Proof Rules

In this section we state the proof rules for the logic we work with. The logic
features the standard Hoare logic rules for assignment, sequential composition,
1 We could also carry out our development using denotational semantics, as long as

we kept a flat store model. The flat store model is the important thing, and we are
not trying to say that operational semantics is “better” than denotational semantics.

56 N. Charlton

�ε�co � Env × N �{P} e {Q} ,Γ�co � {(ρ, n) | ρ �n {P} e {Q}} ∩ �Γ�co

�{P} e {Q}�sp � {ρ ∈ Env | ρ � {P} e {Q}}

�Γ � {P} e {Q}�sp �
{
ρ ∈ Env

∣∣∣∣∀n ∈ N, if n = 0 or (n > 0 and (ρ, n− 1) ∈ �Γ�co)
then ρ �n {P} e {Q}

}

Fig. 3. Semantics of contexts Γ and specifications S

A

{P [e/x]} ‘x := e’ {P}

S
Γ � {P} ‘C1’ {R} Γ � {R} ‘C2’ {Q}

Γ � {P} ‘C1;C2’ {Q}

I
Γ � {P ∧ e = 1} ‘C1’ {Q} Γ � {P ∧ e �= 1} ‘C2’ {Q}

Γ � {P} ‘if e then C1 else C2’ {Q}

W
Γ �
{
P ′} e {Q′}

Γ � {P} e {Q}
P ⇒ P ′, Q′ ⇒ Q

ε

{P} ‘nop’ {P}

C
Γ � {P} e {Q}
T,Γ � {P} e {Q}

Fig. 4. Standard Hoare logic rules, supported by the logic we study

consequence etc. given in Fig. 4. These are presented as in [17] except that we
are explicit about the presence of a context Γ. The interesting rules are those
for running stored commands, given in Fig. 5. We can make these rules simpler
than those of [17] in two respects, due to our flat store model. Firstly the side
conditions about downwards closure of assertions have been eliminated. Secondly
we can simply use equality on commands, rather than a partial order ≤com.

Rule (R) is used when we know the stored command C which will be invoked,
and have already derived a triple for it. Rule (H) is for making use of contexts:
in a context where {P ∧ x = p} p {Q} holds for executions up to length n − 1,
{P ∧ x = p} ‘run x’ {Q} will hold for executions up to length n. Finally rule
(μ) is used for reasoning about mutual recursion (through the store): intuitively
the premise says that if all commands Cj involved satisfy their specifications
{Pj} {Qj} for executions up to length n−1, then each command Ci also satisfies
its specification for executions up to length n. Unsurprisingly when we later prove
soundness of (μ) we will use induction on n.

We will see these rules in action in Section 6. As stated earlier, however, we
emphasise that these rules can be seen as adaptations of von Oheimb’s rules for
(conventional i.e. fixed) recursive procedures to a programming language with
higher order store. Specifically, (R) and (μ) taken together strongly resemble the
Call rule of [12], while (H) strongly resembles the asm rule. (For the reader’s
convenience, the Call and asm rules are reproduced in the Appendix, Sec. A.2.)

Hoare Logic for Higher Order Store Using Simple Semantics 57

R
Γ � {P ∧ x = ‘C’} ‘C’ {Q}

Γ � {P ∧ x = ‘C’} ‘run x’ {Q}

H

{P ∧ x = p}p {Q} � {P ∧ x = p} ‘run x’ {Q}

μ∧
1≤i≤N

Γ, {P1}p1 {Q1} , . . . , {PN} pN {QN} � {Pi} ‘Ci’ {Qi}∧
1≤i≤N

Γ �
{
Pi[C/	p]

}
‘Ci’
{
Qi[C/	p]

} p1, . . . , pN not free in Γ

C is ‘C1’, . . . , ‘CN ’

p is p1, . . . , pN

Fig. 5. Hoare logic rules for the run statement which runs stored commands

4 Soundness of the Logic

Having stated the proof rules, we must of course show that they are sound.
Soundness proofs for the standard rules (Fig. 4) are straightforward and omitted
(except, as an example, the (S) rule is proved in the Appendix, Thm. 3). This
leaves the rules for stored commands. We prove soundness of (H) and (μ); as
the proofs for (R) and (H) are very similar, we defer the proof of (R) to the
Appendix (Thm. 4). As the reader will see, no complicated theory is needed.

Theorem 1. Rule (H) is sound.

Proof. Let ρ ∈ Env, n ∈ N be such that n = 0 or (n > 0 and (ρ, n − 1) ∈
�{P ∧ x = p} p {Q}�co). We must prove ρ �n {P ∧ x = p} ‘run x’ {Q}. If n = 0
then this is trivially true, so letn > 0.Then from(ρ, n−1) ∈ �{P ∧ x = p} p {Q}�co
we get (A.) ρ �n−1 {P ∧ x = p} p {Q}.

Let s ∈ �P ∧ x=p�asρ and s′ be such that (run x, s) ∗−→ (nop, s′) in n steps or
fewer; we are required to show s′ ∈ �Q�asρ . Due to the structure of the transition
relation −→, we must have (C, s) ∗−→ (nop, s′) in n−1 steps or fewer, where C =
G −1(s(x)). From this, s(x) = ρ(p) and (A.) we have s′ ∈ �Q�asρ as required. ��
Theorem 2. Rule (μ) is sound.

Proof. Let Φ(n) be the statement that for all ρ ∈ Env and all i ∈ {1, . . . , N},

n = 0 or (n > 0 and (ρ, n− 1) ∈ �Γ�co) implies ρ �n {Pi[�C/�p]}‘Ci’{Qi[�C/�p]}

It will suffice to prove Φ(n) for all n ∈ N, which we shall do by induction.
Base case: Let ρ ∈ Env and let i ∈ {1, . . . , N}. Let ρ̂ be equal to ρ except at

p1, . . . ,pN , which are mapped respectively to �‘C1’�ex, . . . , �‘CN ’�ex. From the
premise of (μ), unpacking the definitions and instantiating n with 0 and ρ with
ρ̂, we obtain ρ̂ �0 {Pi} ‘Ci’ {Qi}. Using familar properties of substitution, this
implies the thing we needed to prove, which is: ρ �0 {Pi[�C/�p]}‘Ci’{Qi[�C/�p]} .

Inductive case: Let n > 0 and let Φ(n − 1) hold. Let ρ ∈ Env be such that
(ρ, n− 1) ∈ �Γ�co and let i ∈ {1, . . . , N}. Define ρ̂ as in the base case. We must
prove ρ �n {Pi[�C/�p]}‘Ci’{Qi[�C/�p]} which is equivalent to

ρ̂ �n {Pi}‘Ci’{Qi} (3)

58 N. Charlton

using familiar properties of substitution. Note that (ρ̂, n − 1) ∈ �Γ�co because
(ρ, n− 1) ∈ �Γ�co and p1, . . . , pN are not free in Γ. We next show

n− 1 = 0 or (n− 1 > 0 and (ρ̂, n− 2) ∈ �Γ�co) (4)

Suppose n − 1 > 0 i.e. n > 1. We know that (ρ̂, n − 1) ∈ �Γ�co and therefore
(ρ̂, n − 2) ∈ �Γ�co. So (4) holds. It now follows from (4) and the induction
hypothesis Φ(n− 1), instantiating ρ with ρ̂, that

for all j ∈ {1, . . . , N}, ρ̂ �n−1 {Pj [�C/�p]}‘Cj ’{Qj[�C/�p]}

which in turn, using familiar properties of substitution, gives us

for all j ∈ {1, . . . , N}, ρ̂ �n−1 {Pj}pj{Qj} (5)

From the premise of (μ), unpacking the definitions and instantiating n with n
and ρ with ρ̂, we find that (3) follows from (5) and (ρ̂, n− 1) ∈ �Γ�co. ��

5 Nondeterministic Programs

Our setup handles nondeterminism for free, because nowhere in our proofs did
we rely on determinism of the transition relation −→. For example, if we add a
statement choose C1 C2 which makes transitions (choose C1 C2, s) −→ (C1, s)
and (choose C1 C2, s) −→ (C2, s), it is easy to prove the appropriate Hoare rule:

Γ � {P} ‘C1’ {Q} Γ � {P} ‘C2’ {Q}
Γ � {P} ‘choose C1 C2’ {Q}

This is in contrast to the approach of [17] where nondeterminism causes prob-
lems. This is not an insignificant point: in [16], which extends the ideas of [17] to
programs using pointers, a good deal of difficulty is caused by the nondetermin-
ism of dynamic memory allocation. The explanation given is that in the presence
of nondeterminism, “programs no longer denote ω-continuous functions”.

6 Modular Proofs

We now turn to the issue of modular proofs. In [17] the authors state that their
logic “is not modular as all code must be known in advance and must be carried
around in assertions”; they further state that it is “highly unlikely” that a modular
logic exists at all, ascribing this to the lack of a “Bekic lemma” for their semantics.
This belief is reiterated in later work, e.g. in [20]:

However, the formulation . . . has a shortcoming: code is treated like any
other data in that assertions can only mention concrete commands. For
modular reasoning, it is clearly desirable to abstract from particular code
and instead (partially) specify its behaviour. For example, when verifying
mutually recursive procedures on the heap, one would like to consider each
procedure in isolation, relying on properties but not the implementations
of the others. The recursion rule ... does not achieve this. (6)

Hoare Logic for Higher Order Store Using Simple Semantics 59

(From here on the word “modular” is meant in the sense described in this quote.)
However, it is well known that proof rules such as von Oheimb’s support

modular proofs; this is the basis of program verifiers (e.g. [10,4]) which check
programs one procedure at a time. Therefore, noting their similarity to von
Oheimb’s rules, it stands to reason that the rules of Reus and Streicher which
we work with should already support modular proofs. We now demonstrate using
a simple program that this is indeed the case.

Consider the following program C0:

f := ‘C1’ ; g := ‘C2’ ; run f

where the commands C1 and C2 stored in f and g respectively are defined as
follows:

C1 �
if (x× x) + (y × y) = (z × z)
then nop else run g

C2 �
(if x = n then n := n + 1;x := 0
else if y = n then x := x + 1; y := 0
else if z = n then y := y + 1; z := 0
else z := z + 1) ;
run f

This program searches for a Pythagorean triple, that is, numbers x, y, z satisfying
the predicate R(x, y, z) � x2 + y2 = z2, stopping when one is found. Note that
we establish a mutual recursion through the store between the C1 code (stored in
f) and the C2 code (stored in g). The C1 code tests whether the current values
of variables x, y, z form a Pythagorean triple and terminates if so; otherwise C1

runs the code in g to continue the search. The C2 code updates x, y and z to
the next triple to try, before invoking the code in f to perform the next test.

We would like to prove that this program works as intended, i.e. satifies

{true}C0 {R(x, y, z)} (7)

But we would also like our proof to be modular, as described in (6), so that we
do not have to completely redo our proof if we later change either C1 (e.g. so
that we search for values x, y, z with a different property) or C2 (e.g. so that we
exploit symmetry and only try triples where x ≤ y). We shall now see how this
can be accomplished. Let T (e) be the triple{

f = p ∧ g = q
}

e
{
R(x, y, z)

}
Then, we split our proof into three independent pieces.

For C1: Prove S1 � � T (p), T (q) � T (‘C1’)

For C2: Prove S2 � � T (p), T (q) � T (‘C2’)

For C0: Prove S0 � S1, S2 � {true}C0 {R(x, y, z)}

60 N. Charlton

Together, these three pieces trivially imply (7). We emphasise that in S1 above
the concrete code for C2 does not appear, only a specification of its behaviour
(on the left of �), as described in (6). Similarly in S2 the concrete code for C1

does not appear, only a specification of its behaviour on the left of �.
Proofs of S0 and S2 now follow (the proof of S1 is deferred to the Appendix,

Sec. A.1); these proofs demonstrate the use of the (R), (H), and (μ) rules. Note
that only the proof for S1 depends on the definition of predicate R.

Proof (for S0 piece). In full, the proof obligation S0 is

S1, S2 � {true} f := ‘C1’ ; g := ‘C2’ ; run f {R(x, y, z)}

Standard Hoare logic reasoning for assignments and sequential composition re-
duces this obligation to

S1, S2 � {f = ‘C1’ ∧ g = ‘C2’} ‘run f ’ {R(x, y, z)}

By transitivity of � it is enough to show

S1, S2 � {f = ‘C1’ ∧ g = ‘C2’} ‘C1’ {R(x, y, z)} (8)

and
{f = ‘C1’ ∧ g = ‘C2’} ‘C1’ {R(x, y, z)}

� {f = ‘C1’ ∧ g = ‘C2’} ‘run f ’ {R(x, y, z)} (9)

(9) is easily seen to be an instance of rule (R). To deduce (8) we start with the
following instance of (μ) ∧

i=1,2

T (p), T (q) � T (‘Ci’)∧
i=1,2

{f = ‘C1’ ∧ g = ‘C2’} ‘Ci’ {R(x, y, z)}

If we use only the i = 1 part of the conclusion, we get

T (p), T (q) � T (‘C1’) T (p), T (q) � T (‘C2’)
{f = ‘C1’ ∧ g = ‘C2’} ‘C1’ {R(x, y, z)}

which is just (8) written in a different form. ��

Proof (for S2 piece). By the (C) rule, S2 will follow from T (p) � T (‘C2’). By
the (S) rule this will follow from

T (p) �
{
f = p ∧ g = q

} ‘if x = n then n := n + 1;x := 0
else if y = n then x := x + 1; y := 0
else if z = n then y := y + 1; z := 0
else z := z + 1’

{
f = p ∧ g = q

}
and

T (p) � {f = p ∧ g = q} ‘run f ’ {R(x, y, z)}
The former is trivial; the latter is an instance of the (H) rule. ��

Hoare Logic for Higher Order Store Using Simple Semantics 61

Suppose we now replace our implementation C2 with another implementation
Ĉ2, which tries the triples (x, y, z) in a different order. We can reuse our existing
proofs of S1 and S0; showing � T (p), T (q) � T (‘Ĉ2’) is the only new work2,3.
This proof is modular in the same way that proofs about programs with (fixed)
recursive procedures can be made modular. If one uses the rules of [12] to show
correctness of a program with mutually recursive procedures, and then changes
the body of one procedure, then the verification conditions for all other proce-
dures stay the same, and their existing proofs can be reused.

A remark on generalising the (μ) rule

With the (μ) rule we can deal with recursion, even in cases where stored com-
mands participating in a mutual recursion are updated during the recursion.
However, as presented here (μ) only allows one to consider finitely many com-
mands C1, . . . , CN . If one extends the programming language, e.g. with features
for runtime code generation, this may no longer be adequate: at runtime a pro-
gram may have a countably infinite choice of commands it can generate.

We have also developed a generalised version of (μ) which covers these cases.
The main idea is that in the generalised rule the variables p1, . . . ,pN refer not
to single commands, but to possibly infinite sets of commands. Assertions x ∈ p
are used instead of x = p, and in the premise, each triple in the context now
describes the behaviour of a whole set of commands.

7 Related Work, Future Work and Conclusions

Conclusions

We revisited the Hoare logic given in [17] for a higher order store program-
ming language. We observed that the logic’s proof rules strongly resemble those
used by von Oheimb [12] for reasoning about programs with conventional (fixed)
recursive procedures. This initially appeared puzzling, because whereas von Ohe-
imb’s rules are justified using a very simple semantic model, the proofs in [17]
depend on the (significantly more complicated) domain-theoretic apparatus de-
veloped by Pitts.

We resolved this apparent disparity by giving a simple model of the same logic,
using a flat store and induction on execution length to prove the recursion rule
(μ). This also allowed us to drop restrictions on the use of the proof rules, and
handle nondeterministic programs with no extra work. Finally we demonstrated
2 Here we see why the lack of a “Bekic lemma” mentioned in [17] is not a problem.

When we change the implementation of C2 to Ĉ2, from the denotational viewpoint
the application of the (μ) rule inside the proof of S0 just “recomputes” the joint
fixed point of C1 and Ĉ2.

3 Strictly, one might wish to explcitly put a universal quantification over R in proof
obligations S2 and S0. This would be easy to add, but for our present purposes we
simply note that the proofs of S2 and S0 do not rely on any properties of R, and
thus will remain valid proofs whatever the choice of R.

62 N. Charlton

that, contrary to what has been said in [17,20], the logic does support modular
proofs.

These results show that, for certain kinds of reasoning about higher order
store, it is not necessary to use “sophisticated” domain-theoretic techniques,
and in fact one fares better without them.

Related and Future Work

[16,6] study the application of the ideas of [17] to a programming language with
a heap, adding separation logic connectives [18] to the assertion language. Then,
to overcome the perceived lack of modularity of these logics, [20,21] add nested
Hoare triples. However, these nested triples lead to even greater theoretical com-
plications: [20,21] use Kripke models based on recursively defined ultrametric
spaces.

Hence, in the light of what we now know — that the logic of [17] can be given
a very simple semantics, and already supports modular proofs — it will be inter-
esting to revisit [20,21] and see whether there is anything which can be accom-
plished using logics with nested triples, which cannot be supported using a more
conventional logic of the kind considered in this paper. The anti-frame rule [15,21]
may be one such thing, but we cannot yet be sure. On the other hand, the kind
of flat model used here can support syntactic operations such as testing syntactic
equality of commands, and string-based runtime code generation (described for
instance in [1,19] respectively), which it appears the models of [20,21] cannot.

We mention two other approaches to semantically justifying a logic with
nested Hoare triples. In [8], total rather than partial correctness is used, and
to reason about recursion the user of the logic must essentially perform an in-
duction argument “on foot” in their proofs ([8] was the first paper to give a
theory of nested triples, there named evaluation formulae). In [5] the step index-
ing technique [2,3] is used, where (unlike here) the interpretation of assertions is
also indexed by the length of the execution sequence. Step indexing approaches
are very similar in spirit to those based on ultrametric spaces.

Acknowledgements. We thank the anonymous referees for their helpful com-
ments. This research has been supported by EPSRC grant (EP/G003173/1)
“From Reasoning Principles for Function Pointers To Logics for Self-Configuring
Programs”.

References

1. Appel, A.W.: Intensional equality ;=) for continuations. SIGPLAN Not. 31, 55–57
(1996)

2. Appel, A.W., McAllester, D.A.: An indexed model of recursive types for foun-
dational proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683
(2001)

3. Benton, N., Hur, C.K.: Step-indexing: The good, the bad and the ugly. In: Mod-
elling, Controlling and Reasoning About State. No. 10351 in Dagstuhl Seminar
Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2010)

Hoare Logic for Higher Order Store Using Simple Semantics 63

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

5. Birkedal, L., Reus, B., Schwinghammer, J., Støvring, K., Thamsborg, J., Yang, H.:
Step-indexed Kripke models over recursive worlds. In: POPL, pp. 119–132 (2011)

6. Birkedal, L., Reus, B., Schwinghammer, J., Yang, H.: A simple model of sepa-
ration logic for higher-order store. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II.
LNCS, vol. 5126, pp. 348–360. Springer, Heidelberg (2008)

7. Charlton, N., Horsfall, B., Reus, B.: Formal reasoning about runtime code update.
In: Proceedings of HotSWUp (Hot Topics in Software Upgrades) (to appear, 2011)

8. Honda, K., Yoshida, N., Berger, M.: An observationally complete program logic
for imperative higher-order functions. In: LICS, pp. 270–279 (2005)

9. Landin, P.J.: The mechanical evaluation of expressions. Computer Journal 6(4),
308–320 (1964)

10. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: PLDI 2001
(Programming Language Design and Implementation), pp. 221–231. ACM Press,
New York (2001)

11. Nipkow, T.: Hoare logics for recursive procedures and unbounded nondeterminism.
In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 103–119.
Springer, Heidelberg (2002)

12. von Oheimb, D.: Hoare logic for mutual recursion and local variables. In: Pandu
Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp.
168–180. Springer, Heidelberg (1999)

13. Parkinson, M.J.: Local reasoning for Java. Ph.D. thesis, University of Cambridge,
Computer Laboratory (November 2005)

14. Pitts, A.M.: Relational properties of domains. Inf. Comput. 127(2), 66–90 (1996)
15. Pottier, F.: Hiding local state in direct style: a higher-order anti-frame rule. In:

LICS, Pittsburgh, Pennsylvania, pp. 331–340 (June 2008)
16. Reus, B., Schwinghammer, J.: Separation logic for higher-order store. In: Ésik, Z.

(ed.) CSL 2006. LNCS, vol. 4207, pp. 575–590. Springer, Heidelberg (2006)
17. Reus, B., Streicher, T.: About Hoare logics for higher-order store. In: Caires, L.,

Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 1337–1348. Springer, Heidelberg (2005)

18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55–74 (2002)

19. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior
of JavaScript programs. In: PLDI, pp. 1–12 (2010)

20. Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested hoare triples and
frame rules for higher-order store. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS,
vol. 5771, pp. 440–454. Springer, Heidelberg (2009)

21. Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F., Reus, B.: A semantic foun-
dation for hidden state. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp.
2–17. Springer, Heidelberg (2010)

64 N. Charlton

A Appendix

Theorem 3. Rule (S) is sound.

S
Γ � {P} ‘C1’ {R} Γ � {R} ‘C2’ {Q}

Γ � {P} ‘C1;C2’ {Q}

Proof. For the sake of clarity, a sound proof rule

S1 . . . Sk

S

means that S1, . . . , Sk � S.
Suppose that the premises of (S) hold. We must then show that the conclusion

� Γ � {P} ‘C1;C2’ {Q}

holds. So let ρ ∈ Env and n ∈ N be such that either n = 0 or (n > 0 and
(ρ, n− 1) ∈ �Γ�co). We must show

ρ �n {P} ‘C1;C2’ {Q} (10)

If n = 0 we are done, because C1;C2 cannot reach a terminal configuration in
0 steps. So assume n > 0 and (ρ, n− 1) ∈ �Γ�co. From this and the premises of
(S) we deduce that

ρ �n {P} ‘C1’ {R} (11)

and
ρ �n {R} ‘C2’ {Q} (12)

To prove (10), let
(C1;C2, s

1) −→ · · · −→ (nop, sK)

be an execution sequence such that 1 < K ≤ n+ 1 (so the execution consists of
at most n steps) and s1 ∈ �P �asρ . This execution sequence must have the form

(C1;C2, s
1) −→ · · · −→ (nop;C2, s

J) −→ (C2, s
J+1) −→ · · · −→ (nop, sK)

where 1 ≤ J < K and sJ = sJ+1, and there must exist another execution
sequence, of J − 1 steps, of the form

(C1, s
1) −→ · · · −→ (nop, sJ)

By (11) we see that sJ = sJ+1 ∈ �R�asρ . Then applying (12) to the execution
sequence

(C2, s
J+1) −→ · · · −→ (nop, sK)

we obtain sK ∈ �Q�asρ as required. ��

Theorem 4. Rule (R) is sound.

Hoare Logic for Higher Order Store Using Simple Semantics 65

Proof. Suppose that the premise

Γ � {P ∧ x = ‘C’} ‘C’ {Q} (13)

holds. We must prove the conclusion

Γ � {P ∧ x = ‘C’} ‘run x’ {Q}

So let ρ ∈ Env, n ∈ N be such that n = 0 or (n > 0 and (ρ, n− 1) ∈ �Γ �co). We
must prove ρ �n {P ∧ x = ‘C’} ‘run x’ {Q}. If n = 0 then this is trivially true
(since run x cannot reach a terminal configuration in 0 steps), so let n > 0. The
premise (13) gives us

(ρ, n− 1) ∈ �Γ �co implies ρ �n {P ∧ x = ‘C’} ‘C’ {Q}

But we already know (ρ, n− 1) ∈ �Γ �co so we deduce

ρ �n {P ∧ x = ‘C’} ‘C’ {Q} (14)

Let s ∈ �P ∧ x = ‘C’�asρ and s′ be such that (run x, s) ∗−→ (nop, s′) in n steps or
fewer; we are required to show s′ ∈ �Q�asρ . Due to the structure of the transition
relation −→, it must be the case that (C, s) ∗−→ (nop, s′) in n − 1 steps or fewer.
From this and (14) we have s′ ∈ �Q�asρ as required. ��

A.1 Proof for S1

Proof (for S1 piece). By the (C) rule it will suffice to show T (q) � T (‘C1’) i.e.

T (q) �
{
f = p ∧ g = q

} ‘if (x× x) + (y × y) = (z × z)
then nop
else run g’

{
R(x, y, z)

}
Using the (I) rule it will be enough to show

T (q) �

⎧⎨⎩
f = p

∧ g = q
∧ ((x× x) + (y × y) = (z × z)) = 1

⎫⎬⎭ ‘nop’
{
R(x, y, z)

}
(15)

and

T (q) �

⎧⎨⎩
f = p

∧ g = q
∧ ((x × x) + (y × y) = (z × z)) 	= 1

⎫⎬⎭ ‘run g’
{
R(x, y, z)

}
(16)

(15) is easily proved using the definition of R(x, y, z) as x2 + y2 = z2 and the
equivalence (e1=e2) = 1 ⇔ e1 = e2. We deduce (16) by the (W) rule from the
following instance of (H):

T (q) � {f = p ∧ g = q} ‘run g’ {R(x, y, z)} ��

66 N. Charlton

A.2 Two of von Oheimb’s Proof Rules

For the reader’s convenience we reproduce here the two relevant rules from [12]:

Call
Γ ∪ {{Pi} Call i {Qi} | i ∈ ps} �� {{Pi} body i {Qi} | i ∈ ps} p ∈ ps

Γ � {Pp} Call p {Qp}

asm
t ∈ Γ

Γ � t

where Γ � t abbreviates Γ �� {t}.
The idea of the Call rule is that to verify a family ps of mutually recursive

procedures, one first gives a behavioural specification {Pi} {Qi} to each pro-
cedure i ∈ ps . One must then prove that the body of each procedure i ∈ ps
actually meets this specification, but when doing so, one is allowed to assume
that calls to procedures in ps appearing in the body behave as specified. When
doing such proofs, the asm rule allows one to make use of these assumptions.

Nominal Lawvere Theories

Ranald Clouston�

Logic and Computation Group, Research School of Computer Science,
The Australian National University, Canberra, ACT 0200, Australia

ranald.clouston@anu.edu.au

Abstract. Lawvere theories provide a category theoretic view of equa-
tional logic, identifying equational theories with small categories equipped
with finite products. This formulation allows equational theories to be
investigated as first class mathematical entities. However, many formal
systems, particularly in computer science, are described by equations
modulated by side conditions asserting the “freshness of names”; these
may be expressed as theories of Nominal Equational Logic (NEL). This
paper develops a correspondence between NEL-theories and certain cat-
egories that we call nominal Lawvere theories.

Keywords: Lawvere theory, equational logic, nominal sets, Fraenkel-
Mostowski set theory, fresh names.

1 Introduction

Many formal systems, particularly in computer science, may be expressed via
equations modulated by side conditions asserting certain names are fresh for
(not in the free names of) certain meta-variables:

First-order logic: Φ ⊃ (∀a. Ψ) = ∀a. (Φ ⊃ Ψ) if a is fresh for Φ;
λ-calculus: λa. f a =η f if a is fresh for f ;
π-calculus: (νa x) | y = νa (x | y) if a is fresh for y.

We may express such modulated equations, and hence reason formally about
the systems described by them, with Nominal Equational Logic (NEL) [5]. NEL-
theories can also express the notions of binding and α-equivalence such systems
exhibit [4]. NEL generalises standard equational logic by employing the nominal
sets [17], and slightly more general Fraenkel-Mostowski sets (FM-sets) [9], mod-
els, where the manipulation of names is modelled by the action of permutations.

Lawvere’s view of equational logic [15] identifies equational theories with cer-
tain categories ; specifically, small categories with finite products, which are hence
called Lawvere theories. This category theoretic formulation allows equational
theories, as well as their models, to be treated as first class mathematical en-
tities. This has a number of advantages for computer scientists: presentational
� The author gratefully acknowledges the supervision of Andrew Pitts and Rajeev

Goré, the comments of Richard Garner and the reviewers, and the support of the
Woolf Fisher Trust.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 67–83, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

68 R. Clouston

details are abstracted away, theories may be considered in categories other than
that of sets, and category theoretic tools, such as sums and monoidal tensor
products, may be applied to theories in ways that are more natural than dealing
directly with their presentations [11].

The chief development in Lawvere’s result is the construction of a classifying
category for each equational theory.

equational
theories

classifying category

��

small categories with
finite products

��

(1)

In the many-sorted case [6] this category’s objects are tuples of sorts (s1, . . . sn),
which correspond to sorting environments, arrows are tuples of terms modulo
provable equivalence, and composition is term substitution.

The elegance and usefulness of this perspective has led to a number of papers
identifying generalisations of equational logic with the category theoretic struc-
ture beyond finite products needed to express them, e.g. [2,20,18]. This paper
follows in this tradition by developing Lawvere-style correspondences for NEL.

In expressing theories of NEL as categories, let alone proving a correspon-
dence, we encounter two major hurdles. The first is that variables within terms
may have name permutations ‘suspended’ over them. These suspensions are
necessary to establish many basic properties, such as αβ-equivalence in the λ-
calculus (Ex. 3.3). Suspensions will be captured by a novel structure of arrows
in our category, which we call the internal Perm-action (Def. 4.1).

The second hurdle is that while the objects of Lawvere’s classifying categories
are sorting environments, NEL has the richer notion of freshness environments,
where variables are both assigned sorts and may have atoms asserted to be
fresh for them. These will be captured by another novel structure called fresh
subobjects (Def. 4.5).

These concepts, along with equivariant finite products (Def. 4.3), define what
we will call FM-categories, and, where they are small, nominal Lawvere theories.
An analogue of the correspondence (1) then follows (Sec. 6). The paradigmatic
examples of FM-categories will be the category of FM-sets and the classifying
category of a NEL-theory. The advantage of this generalised category theoretic
view can be most clearly seen in this paper’s Completeness Thm. 6.3, whose
proof is more conceptually clear and less syntactic than that offered in [5].

The results of this paper are, with some minor differences in presentation,
offered in full technical detail in Chap. 7 of the author’s thesis [3].

2 Nominal Sets and FM-Sets

Fix a countably infinite set A of atoms, which we will use as names. The set
Perm of (finite) permutations consists of all bijections π : A → A whose domain
supp(π) = {a | π(a) 	= a} is finite. Perm is generated by transpositions (a b) that
map a to b, b to a and leave all other atoms unchanged. We will make particular
use of permutations known as generalised transpositions [5, Lem. 10.2]. Let

Nominal Lawvere Theories 69

A(n) � {(a1, . . . , an) ∈ An | ai 	= aj for 1 ≤ i < j ≤ n} (2)

and take �a = (a1, . . . , an),�a′ = (a′1, . . . , a
′
n) ∈ A(n) with disjoint underlying sets.

Then
(�a �a′) � (a1 a′1) · · · (an a′n)

Perm may be considered as a one-object category whose arrows are the finite
permutations, identity is the trivial permutation ι, and composition is (π′ ◦
π)(a) = π′π(a) = π′(π(a)). A Perm-set is then a functor from Perm to the
category of sets; that is, a set X equipped with a function, or Perm-action,
(π, x) #→ π · x from Perm×X to X such that ι · x = x and π′ · (π · x) = π′π · x.

We say that a set a ⊆ A supports x ∈ X if for all π ∈ Perm, supp(π) ∩ a = ∅
implies that π · x = x.

Definition 2.1. A nominal set is a Perm-set X with the finite support property:
for each x ∈ X there exists some finite a ⊆ A supporting x.

If an element x is finitely supported then there is a unique least such support
set [9, Prop. 3.4], which we write supp(x) and call the support of x. This may
be read as the set of free names of a term. If a ∩ supp(x) = ∅ for some a ⊆ A

we say that a is fresh for x and write a # x, capturing the not free in relation.

Example 2.2. (i) Any set becomes a nominal set under the trivial Perm-action
π · x = x, with finite support property supp(x) = ∅;

(ii) A is a nominal set with Perm-action π · a = π(a) and supp(a) = {a};
(iii) A(n) (2), and the set of finite sets of atoms Pfin(A), are nominal sets given

the element-wise Perm-actions;
(iv) If X is a nominal set then the finitely supported powerset [9, Ex. 3.5]

Pfs(X) � {S ⊆ X | S is finitely supported in P(X)}

is a nominal set given the element-wise Perm-action.

We can define a Perm-action on functions f between Perm-sets by

(π · f)(x) = π · (f(π−1 · x)) . (3)

If f has empty support, so that π · (f(x)) = f(π ·x), it is called equivariant. The
nominal sets and equivariant functions between them form the category Nom .

Nominal sets are closed under their Perm-actions, but we can define a more
general notion of sets that themselves have finite support. Consider the Fraenkel-
Mostowki hierarchy:

FM0 � ∅
FMα+1 � A + Pfs(FMα)
FMλ �

⋃
α<λ FMα (λ a limit ordinal)

as α ranges over the ordinals. Each stage defines a nominal set, so the members
of the hierarchy are finitely supported (but not necessarily closed) under the
evident Perm-action.

70 R. Clouston

Definition 2.3. The members of the Fraenkel-Mostowki hierarchy are divided
by disjoint union into atoms and sets. Call these sets the FM-sets.

Most of the usual set theoretic constructions (with the notable exception of
choice) can be performed with FM-sets. In particular, FM-functions may be
defined, which are finitely supported under the Perm-action (3). The FM-sets and
FM-functions form the category FM-Set, while small subcategories FMλ-Set
may be defined by taking the hierarchy only up to some limit ordinal λ.

3 Nominal Equational Logic

This section summarises Nominal Equational Logic (NEL), mildly generalis-
ing [5] so that the collection of sorts forms a nominal set rather a set. This
generalisation will be discussed in Rem. 6.6.

Definition 3.1. A NEL-signature Σ is specified by

(i) a nominal set SortΣ, whose elements are called the sorts of Σ;
(ii) a nominal set OpΣ, whose elements are called the operation symbols of Σ;
(iii) an equivariant map from each operation symbol op ∈ OpΣ to a type, which

we write op : (s1, . . . , sn) → s. Where n = 0 we write op : s.

Fix a countably infinite set Var of variables. Then the terms over Σ are

t ::= π x | op t · · · t

for all π ∈ Perm, x ∈ Var and op ∈ OpΣ . We call π x a suspension and write ι x
simply as x. We call op t1 · · · tn a constructed term.

The sorting environments SEΣ are partial functions Γ : Var ⇀ SortΣ with
finite domain. We define the set Σs(Γ) of terms of sort s in Γ by

(i) if π ∈ Perm and x ∈ dom(Γ) then π x ∈ Σπ·Γ (x)(Γ);
(ii) given op : (s1, . . . , sn) → s and ti ∈ Σsi(Γ) for 1 ≤ i ≤ n, op t1 · · · tn ∈ Σs(Γ).

The object-level Perm-action on terms, (π, t ∈ Σs(Γ)) #→ π ∗ t ∈ Σπ·s(Γ), is

π ∗ (π′ x) � ππ′ x ;
π ∗ (op t1 · · · tn) � (π · op)(π ∗ t1) · · · (π ∗ tn) .

(4)

This Perm-action is not in general finitely supported, but is used in the definition
of substitution: given Γ, Γ ′ ∈ SEΣ , a substitution σ : Γ → Γ ′ is a map from
each x ∈ dom(Γ) to σ(x) ∈ ΣΓ (x)(Γ ′). Given a term t ∈ Σs(Γ), the term
t{σ} ∈ Σs(Γ ′) is defined by

(π x){σ} � π ∗ σ(x) ;
(op t1 · · · tn){σ} � op t1{σ} · · · tn{σ} .

(5)

The freshness environments FEΣ are partial functions ∇ with finite domain on
Var, mapping each x ∈ dom(∇) to a pair (a, s) where a ∈ Pfin(A), s ∈ SortΣ
and a # s. If ∇(xi) = (ai, si) we write ∇ as

(a1 ≈� x1 : s1, . . . , an ≈� xn : sn) . (6)

Nominal Lawvere Theories 71

The intended meaning is that ai is fresh for xi, which has sort si. Each ∇ ∈ FEΣ

gives rise to a sorting environment ∇: ∈ SEΣ by taking the second projection.
We will abbreviate {a} ≈� x : s as a ≈� x : s and ∅ ≈� x : s as x : s. Given a finite
set of atoms a # ∇ we can define a new freshness environment by

∇≈�a � (a1 ∪ a ≈� x1 : s1, . . . , an ∪ a ≈� xn : sn) . (7)

A NEL-judgement has the form

∇ � t ≈ t′ : s (8)

where ∇ ∈ FEΣ , s ∈ SortΣ and t, t′ ∈ Σs(∇:). A NEL-theory T is a collection of
such judgements.

Fig. 1 present the proof rules of NEL, and uses the following new pieces of
notation:

– In the rule (subst), if ∇ is (6) then ∇′ � σ ≈ σ′ stands for the hypotheses
∇′ � σ(xi) ≈ σ′(xi) : si for 1 ≤ i ≤ n. The notation ∇′ � σ : ∇ checks the
freshness assumptions of ∇, by ∇′ � ai ≈� σ(xi) : si (see Rem. 3.2).

– ∇ ≤ ∇′ if ∇(x) = (s, a) implies ∇′(x) = (s, a′) for a ⊆ a′.
– The disagreement set of permutations is ds(π, π′) � {a ∈ A | π(a) 	= π′(a)}.

If (8) follows from the axioms of T via these proof rules we write ∇ �T t ≈ t′ : s.

Remark 3.2. In [5] we also used freshness assertions on the right hand side of
the turnstile �. In fact such judgements do not add expressiveness [3, Sec. 5.5]:

∇ �T a ≈� t : s ⇔ ∇≈�supp(
a′) �T t ≈ (�a �a′) ∗ t : s (9)

where a has ordering �a ∈ A(n) and �a′ ∈ A(n) is fresh, so supp(�a′) # (∇, a, t).
Such freshness judgements will be used only as syntactic sugar in this paper, as
equations have a more direct interpretation, as equalities between arrows.

(refl)
∇ � t ≈ t : s

∇ ∈ FEΣ , t ∈ Σs(∇:) (symm)
∇ � t ≈ t′ : s

∇ � t′ ≈ t : s

(trans)
∇ � t ≈ t′ : s ∇ � t′ ≈ t′′ : s

∇ � t ≈ t′′ : s

(subst)
∇′ � σ ≈ σ′ ∇′ � σ : ∇ ∇ � t ≈ t′ : s

∇′ � t{σ} ≈ t′{σ′} : s
σ, σ′ : ∇: → (∇′):

(weak)
∇ � t ≈ t′ : s

∇′ � t ≈ t′ : s
∇ ≤ ∇′ ∈ FEΣ (atm-elim)

∇≈�a � t ≈ t′ : s

∇ � t ≈ t′ : s
a # (∇, t, t′)

(perm)
∇≈�ds(π,π′) � π ∗ t ≈ π′ ∗ t : π · s

∇ ∈ FEΣ , t ∈ Σs(∇), ds(π, π′) # (∇, t)

Fig. 1. Proof rules of Nominal Equational Logic

72 R. Clouston

Example 3.3. A NEL-signature for the untyped λ-calculus can be defined by
letting our sorts be the singleton {tm} and operation symbols be

{vara | a ∈ A} ∪ {lama | a ∈ A} ∪ {app}

with the evident Perm-action (see Ex. 2.2(ii)). The typing function is

vara : tm, lama : (tm) → tm, app : (tm, tm) → tm .

The binding structure of lama is captured, following [4], by the axiom

(α) (b ≈� x : tm) � lama x ≈ lamb (a b)x : tm

which by (9) may be sugared as (x : tm) � a ≈� lama x : tm. The NEL-theory for
αβη-equivalence, adapting [10, Ex. 2.15], is then (α) plus

(β1) (a ≈� x : tm, y : tm) � app (lama x) y ≈ x : tm
(β2) (y : tm) � app (lama vara) y ≈ y : tm
(β3) (x : tm, b ≈� y : tm) � app (lama (lamb x)) y ≈ lamb (app (lama x) y) : tm
(β4) (x1 : tm, x2 : tm, y : tm) � app (lama (app x1 x2)) y ≈

app (app (lama x1) y) (app (lama x2) y) : tm
(β5) (b ≈� x : tm) � app (lama x) var b ≈ (a b)x : tm
(η) (a ≈� x : tm) � x ≈ lama (app x vara) : tm

Example 3.4. For the π-calculus [16] let our sorts be {tm} and our operation
symbols include

{resa | a ∈ A} ∪ {ina,b | (a, b) ∈ A× A} ∪ {par}

representing restriction, input and parallel composition (and in addition to sym-
bols for output and so forth). The evident Perm-actions make these into a nom-
inal set. The typing function is

resa : (tm) → tm, ina,b : (tm) → tm, par : (tm, tm) → tm .

The axioms for binding are then

(α1) (b ≈� x : tm) � resa x ≈ resb (a b)x : tm
(α2) (c ≈� x : tm) � ina,b x ≈ ina,c (b c)x : tm
(α3) (c ≈� x : tm) � ina,a x ≈ ina,c (a c)x : tm

The other axioms for structural congruence are simple to write down, such as

(−) (x : tm, a ≈� y : tm) � resa (par x y) ≈ par (resa x) y

4 Nominal Lawvere Theories

Definition 4.1. A category C has an internal Perm-action if for each π ∈ Perm
and C-object C there is a C-arrow πC with domain C such that

Nominal Lawvere Theories 73

(i) ιC is the identity idC ;
(ii) (π′π)C = π′

π·C ◦ πC , where π · C is defined to be the codomain of πC .

(i) and (ii) specify that the action respects the category structure of Perm. In
fact, it is equivalent to a cofunctor1 Perm → C, in the sense of [1, Sec. 4.2].

Now given π ∈ Perm and C-arrow f : C → D, we define the C-arrow π · f :
π · C → π ·D to be

π · C
(π−1)π·C

�� C
f

�� D
πD �� π ·D . (10)

The maps C #→ π · C and f #→ π · f define an endofunctor π · () : C → C. In
fact, we have a Perm-category: a functor from Perm to the category of categories
picking out a category C and defining Perm-actions on its objects ob C and arrows
ar C. Each πC is then a component of the natural isomorphism π : idC →̇π · ().

Definition 4.2. An internal Perm-action is finitely supported if all arrows (and
hence objects) are finitely supported under the maps defined above.

If C has a finitely supported internal Perm-action and is small, then it is an
internal category in Nom in the sense of [12, Cha. B2]; its objects and arrows
form nominal sets, and the domain, codomain, identity and composition maps
are equivariant. Just as standard Lawvere theories have finite products, we will
want our category to have finite products in Nom :

Definition 4.3. C has equivariant finite products if it has all finite products so
that the terminal object 1 has empty support and the maps from tuples of objects
(C1, . . . , Cn) to their projection arrows pri : C1 × · · ·Cn → Ci are equivariant.

Example 4.4. Given π ∈ Perm and FM -set X we define π · X by the usual
element-wise Perm-action, and the internal Perm-action πX : X → π ·X by

πX(x) � π · x .

Defining π ·f by (10) clearly agrees with (3) and so is finitely supported. FM-Set
has finite products defined as usual and it is easy to confirm they are equivariant.

Now given a ∈ Pfin(A) fresh for X , we will define their fresh subobject in
FM-Set as the inclusion FM-function iaX : X≈�a ↪→ X , where

X≈�a � {x ∈ X | a # x} . (11)

We now turn to the arrow-theoretic analogue of (11). The definition below
is the most involved of this paper, so first we will provide some motivation.
If Pfin(A) is the one object category whose arrows are finite sets of atoms,
identity is ∅ and composition is union, then conditions (i) and (ii) require that
fresh subobjects respect that category’s structure. Pfin(A) is internal to Nom
(though it has no internal Perm-action), so (iii) requires that Perm-actions are
preserved. (iv) requires that finite products be preserved, while (v)-(vii) are
conditions specific to freshness that will be motivated for FM-Set by Ex. 4.6.
1 The term cofunctor is also sometimes used to abbreviate contravariant functor.

74 R. Clouston

Definition 4.5. A category C with internal Perm-action and finite products has
fresh subobjects if for each finite set of atoms a and C-object C such that a # C
there is a C-arrow iaC with codomain C so that the following conditions hold:

(i) i∅C is the identity idC;
(ii) ia∪ a′

C = iaC ◦ ia′
C≈�a , where C≈�a is defined to be the domain of iaC.

(iii) π · iaC = iπ·aπ·C.
(iv) iaC1×···×Cn

= iaC1
× · · · × iaCn

.
(v) (Fresh permutations): Given π ∈ Perm, if supp(π) # C then πC≈�supp(π) is

the identity idC≈�supp(π) ;
(vi) (Fresh epis): If we have a finite set of atoms a and parallel C-arrows f :

C →
→ D such that f ◦ iaC = g ◦ iaC and a # (f, g), then f = g;

(vii) (Fresh arrows): Suppose we have sets of atoms a, a′ which may be ordered
�a,�a′ ∈ A(n), and a C-arrow f : D → C. If a # C, a′ # (a, f) and (�a �a′)C ◦
f ◦ ia′

D = f ◦ ia′
D , then we have a unique f̂ : D → C≈�a such that iaC ◦ f̂ = f :

D≈�a′ ia′
D �� D

f

���
��

��
��

�

f̂

��

C≈�a

ia
C

�� C (
a
a′)C��

(12)

Example 4.6. Conditions (v)-(vii) above applied to (11) in FM-Set ask that

– If we have x ∈ X and supp(π) # (x,X) then π · x = x;
– If a # (f, g), and f(x) = g(x) whenever a # x, then f = g;
– Say a # C and a′ # (a, f). If (�a �a′) · f(x) = f(x) whenever a′ # x, then

a # f(x) for all x.

These are all readily verifiable properties of FM-sets and functions. In particular,
(vii) encodes the freshness property (9) for arrows of our category. FM-Set and
the small FMλ-Set therefore fulfil the conditions of the following definition.

Definition 4.7. An FM-category is a category with a finitely supported inter-
nal Perm-action, equivariant finite products and fresh subobjects. A small FM-
category will be called a nominal Lawvere theory.

From now on we will abbreviate the internal Perm-action πC to π and fresh
subobjects iaC to ia where this is clear. The following definition and lemma
demonstrate the utility of the Fresh Arrows condition above.

Definition 4.8. Suppose that a # (f : C → D) in C. Let �a ∈ A(n) be an
ordering of a and �a′ ∈ A(n) be a fresh tuple of the same size. (�a �a′) defines a
natural transformation idC →̇ (�a �a′) · (), so

C≈� a∪ supp(
a′) i≈� a ∪ supp(�a′)
��

(
a
a′)
��

C
f

�� D

(
a
a′)

��

C≈� a∪ supp(
a′)
i≈� a ∪ supp(�a′)

�� C
f

�� D

Nominal Lawvere Theories 75

commutes. But (�a �a′)C≈� a ∪ supp(�a′) is the identity by Def. 4.5(v), so (�a �a′) ◦ f ◦
i≈� a∪ supp(
a′) = f ◦ i≈� a∪ supp(
a′). Therefore by Def. 4.5(vii), the Fresh Arrows
condition, we induce a unique arrow which we will call f≈�a:

C≈�a∪ supp(
a′) isupp(�a
′)
�� C≈�a ia

��

f≈�a

��

C

f

��

D≈�a

ia

�� D (
a
a′)
��

Lemma 4.9. All fresh subobjects iaC : C≈�a → C are mono.

Proof. Say ia ◦ f = ia ◦ g for f, g : D→
→C≈�a, and take �a as an ordering of a

and �a′ as a fresh tuple of the same size. (�a �a′)C ◦ iaC ◦ f ◦ isupp(
a′)
D = (�a �a′)C ◦

i
a∪ supp(
a′)
C ◦ f≈�supp(
a′) by Def. 4.8. By the naturality of (�a �a′) and Def 4.5(v)

this equals iaC ◦ f ◦ isupp(
a′)
D . Therefore by Def. 4.5(vii) we have a unique arrow:

D≈�supp(
a′) isupp(�a′)
�� D

f
��

g
��

��

C≈�a

ia

��

C≈�a

ia

�� C (
a
a′)
��

But ia ◦ f = ia ◦ g, so by uniqueness f = g.

Definition 4.10. Given FM-categories C, C′, an FM-functor C → C′ is a func-
tor that strictly preserves

(i) the internal Perm-action: F (πC) = πFC ;
(ii) finite products: F (pri) = pri : FC1 × · · · × FCn → FCi;
(iii) fresh subobjects: F (iaC) = iaFC.

FM(C, C′) is the category of FM-functors C → C′ and natural transformations.

5 Algebra in FM-Categories

Definition 5.1. Given a NEL-signature Σ and FM-category C, a Σ-structure
M in C is defined by

(i) An equivariant function M�−� : SortΣ → ob C;
(ii) An equivariant function M�−� : OpΣ → ar C where

M�op� : M�s1�× · · · ×M�sn� →M�s� (13)

if op has type (s1, . . . , sn) → s.

Where the structure in question is clear we will write M�s� as �s� and so forth.

76 R. Clouston

Definition 5.2. Given a freshness environment ∇ as (6) and a Σ-structure in
an FM-category C we define the C-object

�∇� � �s1�
≈�a1 × · · · × �sn�≈�an .

Given a term t ∈ Σs(∇:) the value arrow �∇ � t : s� is a C-arrow �∇� → �s�:

�∇ � π xi : si� � π�si� ◦ i
ai

�si�
◦ pri ;

�∇ � op t1 · · · tn : s� � �op� ◦ 〈�∇ � t1 : s1�, . . . , �∇ � tn : sn�〉 .

Definition 5.3. A structure M in an FM-category C satisfies the judgement
∇ � t ≈ t′ : s if M�∇ � t : s� = M�∇ � t′ : s�. If M satisfies all axioms of a
theory T then it is a T-algebra in C.

Theorem 5.4 (Soundness). If M is a T-algebra in C and ∇ �T t ≈ t′ : s then
M satisfies that judgement.

Proof. We need to show closure under the proof rules of Fig. 1; see App. A.1.

Definition 5.5. A T-homomorphism M → M ′ in C is an equivariant function
h from SortΣ to C-arrows, with h(s) = hs : M�s� →M ′�s�, such that

hs ◦M�op� = M ′�op� ◦ (hs1 × · · · × hsn) (14)

for all op. The T-algebras in C and T-homomorphisms form the category CT.

6 Category-Theory Correspondence

Given a NEL-theory T, this section defines a nominal Lawvere theory called the
classifying category, Cl(T). This construction gives rise to a simple completeness
proof, along with the key correspondences of this paper.

Lemma 6.1. Fix an ordering v1, v2, . . . on the set of variables Var and let T be
a theory over a signature Σ. Then the following constructions define a nominal
Lawvere theory, which we will call the classifying category and write Cl(T).

Objects: ob Cl(T) is the set of freshness environments whose domain is an
initial sublist of Var, {v1, . . . , vn}, so the typical object is

∇ = (a1 ≈� v1 : s1, . . . , an ≈� vn : sn) (15)

Arrows: Taking ∇ as (15), Cl(T)-arrows f : ∇′ → ∇ are defined by

∇′ � (a1 ≈� [t1] : s1, . . . , an ≈� [tn] : sn) (16)

where, for 1 ≤ i ≤ n,
(i) ti ∈ Σsi((∇′):);
(ii) ∇′ �T ai ≈� ti : si (see (9));
(iii) [ti] is the equivalence class of terms u such that ∇′ �T ti ≈ u : si.

Nominal Lawvere Theories 77

Identity: The identity on ∇ (15) is

id∇ � ∇ � (a1 ≈� [v1] : s1, . . . , an ≈� [vn] : sn) .

Composition: Given f (16), g = ∇ � (a′1 ≈� [t′1] : s′1, . . . , a
′
m ≈� [t′m] : s′m),

g ◦ f � ∇′ � (a′1 ≈� [t′1{σ}] : s′1, . . . , a
′
m ≈� [t′m{σ}] : s′m)

where σ is the substitution (5) σ(vi) = ti for 1 ≤ i ≤ n.
Finitely supported internal Perm-action: Given ∇ (15),

π∇ � ∇ � (π · a1 ≈� [π v1] : π · s1, . . . , π · an ≈� [π vn] : π · sn) .

Equivariant finite products: The terminal object of Cl(T) is the empty fresh-
ness environment. Given ∇ (15) and ∇′ = (a′1 ≈� v1 : s′1, . . . , a

′
m ≈� vm : sm),

their binary product ∇×∇′ is

(a1 ≈� v1 : s1, . . . , an ≈� vn : sn, a
′
1 ≈� vn+1 : s′1, . . . , a

′
m ≈� vn+m : s′m)

with projections

pr1 � ∇×∇′ � (a1 ≈� [v1] : s1, . . . , an ≈� [vn] : sn) ;
pr2 � ∇×∇′ � (a′1 ≈� [vn+1] : s′1, . . . , a

′
m ≈� [vn+m] : s′m) .

Fresh subobjects: Define ∇≈�a by applying (7) to (15). Then

ia∇ � ∇≈�a � (a1 ≈� [v1] : s1, . . . , an ≈� [vn] : sn) .

Proof. App. A.2.

Definition 6.2. Define the generic algebra G by

G�s� � (v1 : s)
G�op� � (v1 : s1, . . . , vn : sn) � (∅ ≈� [op v1 · · · vn] : s)

for op : (s1, . . . , sn) → s. It is easy to prove that G is a T-algebra in Cl(T).

Theorem 6.3 (Completeness). Given a NEL-theory T, if ∇ � t ≈ t′ : s is
satisfied by all T-algebras in all nominal Lawvere theories then ∇ �T t ≈ t′ : s.

Proof. If ∇ � t ≈ t′ : s is satisfied by the generic algebra G in Cl(T) then
∇ �T t ≈ t′ : s by the definition of Cl(T)-arrows.

Theorem 6.4. Given any NEL-theory T and nominal Lawvere theory C, there
is an isomorphism

FM(Cl(T), C) ∼= CT

between the category of FM-functors Cl(T) → C (Def. 4.10) and the category of
T-algebras in C (Def. 5.5).

Proof. App. A.2.

78 R. Clouston

Definition 6.5. Given a nominal Lawvere theory C, define the signature Sg(C)
by setting SortSg(C) = ob C and

OpSg(C) � {f : (C1, . . . , Cn) → C | f : C1 × · · · × Cn → C ∈ ar C}

with Perm-actions defined via the internal Perm-action on C. We use smallness
here as our sorts and operation symbols must form nominal sets. Note that one
arrow can give rise to multiple operation symbols; for example, f : C1×C2 → C
induces operation symbols (C1 × C2) → C and (C1, C2) → C.

Let M(C) be the Sg(C)-structure in C which we define by M(C)�C� = C and
M(C)�f� = f , then let Th(C) be the Sg(C)-theory whose axioms are all the
judgements that are satisfied by M(C), so M(C) is trivially an algebra of CTh(C).

Remark 6.6. It is clear that nominal Lawvere theories require a Perm-action on
their objects; without this we could not adequately represent freshness environ-
ments in the classifying category. The translation from nominal Lawvere theories
back to NEL-theories, if it is not to lose information, then requires that our sorts
may form any nominal set. Note that this is only a mild generalisation of pre-
vious presentations of NEL [5], as by Ex. 2.2(i) any set may be considered a
nominal set under the trivial Perm-action.

Theorem 6.7. For any small FM-category C there is an equivalence

C & Cl(Th(C)) .

Proof. App. A.2.

Proving the converse of this theorem, that T & Th(Cl(T)), requires a notion of
morphism between theories. The most natural definition of such a translation
T → T′ is an FM-functor Cl(T) → Cl(T′), so the converse of Thm. 6.7 is actually
a corollary, and we have a correspondence between NEL-theories and nominal
Lawvere theories.

7 Related and Further Work

– This work opens the way for consideration of NEL-theories in FM-categories
other than FM-Set, such as the FM-cppos of [21].

– The most similar system to NEL is the independently produced Nominal
Algebra (NA) [10], which also addresses languages with binding, and equa-
tions modulo freshness, via the nominal sets model. A number of different
design choices were made in these logics’ constructions: NA employs sets,
rather than nominal sets, of sorts and operation symbols; NA uses ‘nominal
signatures’ with explicit binding sorts; and freshness in NA is sound, but
not complete, for freshness in the underlying nominal sets interpretation.
Nonetheless it is not too difficult to translate from one logic to the other, as
is done to some extent in [10, Sec. 5] and [4, Sec. 7].

Nominal Lawvere Theories 79

The motivation for many of the design choices made for NEL was to
cleave as close as possible to the standard account of equational logic, so that
established equational logic techniques may be transferred to the nominal
setting. This paper is one of the fruits of this philosophy. While nominal
Lawvere theories obviously apply to NA-theories if we translate them to
NEL-theories as our first step, a more interesting open question is whether
a compelling Lawvere theoretic account can be developed directly for some
of the design choices of NA, most notably explicit binding sorts.

– The results of this paper are unlikely to be a straightforward application of
existing work on generalised Lawvere theories [19,14], concerned as it is with
expressing the particular syntax of NEL. Nonetheless, connecting nominal
Lawvere theories with the more general picture would be valuable.

– The most well known alternative to Lawvere theories for the category theo-
retic expression of equational logic are algebras for a monad. This was inves-
tigated for NEL in [3, Chap. 6], and more extensively in [13]. Unlike Lawvere
theories, the monadic view offers no explicit category theoretic description
of a logic’s theories.

– Fiore-Hur equational systems are a newer category theoretic approach to
equational logic, and have an established application to NEL [8, Sec. 7.3].
There is as yet no general relationship established between this approach
and Lawvere theories, but such results have been produced in the special
case of second-order equational logic [7].

References

1. Aguiar, M.: Internal categories and quantum groups. Ph.D. thesis, Cornell Univer-
sity (1997)

2. Cartmell, J.: Generalised algebraic theories and contextual categories. Ann. Pure
Appl. Logic 32, 209–243 (1986)

3. Clouston, R.: Equational Logic for Names and Binders. Ph.D. thesis, University of
Cambridge (2009), http://cecs.anu.edu.au/~rclouston/Clouston_Thesis.pdf

4. Clouston, R.: Binding in nominal equational logic. ENTCS 265, 259–276 (2010)
5. Clouston, R., Pitts, A.M.: Nominal equational logic. ENTCS 172, 223–257 (2007)
6. Crole, R.L.: Categories for Types. Cambridge University Press, Cambridge (1993)
7. Fiore, M., Mahmoud, O.: Second-order algebraic theories. In: Hliněný, P., Kučera,

A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 368–380. Springer, Heidelberg (2010)
8. Fiore, M., Hur, C.K.: On the construction of free algebras for equational systems.

TCS 410(18), 1704–1729 (2009)
9. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-

ing. FAC 13, 341–363 (2002)
10. Gabbay, M.J., Mathijssen, A.: Nominal (universal) algebra: equational logic with

names and binding. J. Logic Comput. 19(6), 1455–1508 (2009)
11. Hyland, M., Power, J.: The category theoretic understanding of universal algebra:

Lawvere theories and monads. ENTCS 172, 437–458 (2007)
12. Johnstone, P.L.: Sketches of an Elephant: A Topos Theory Compendium, vol. 1.

Oxford University Press, Oxford (2002)
13. Kurz, A., Petrişan, D.: On universal algebra over nominal sets. MSCS 20(2), 285–

318 (2010)

http://cecs.anu.edu.au/~rclouston/Clouston_Thesis.pdf

80 R. Clouston

14. Lack, S., Rosický, J.: Notions of Lawvere theory. Appl. Categ. Structures (2009)
(to appear)

15. Lawvere, F.W.: Functorial Semantics of Algebraic Theories. Ph.D. thesis, Columbia
University (1963)

16. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. I. Inform. and
Comput. 100, 1–40 (1992)

17. Pitts, A.M.: Nominal logic: A first order theory of names and binding. In:
Kobayashi, N., Babu, C. S. (eds.) TACS 2001. LNCS, vol. 2215, pp. 219–242.
Springer, Heidelberg (2001)

18. Plotkin, G.D.: Some varieties of equational logic. In: Futatsugi, K., Jouannaud,
J.-P., Bevilacqua, V. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060,
pp. 150–156. Springer, Heidelberg (2006)

19. Power, J.: Enriched Lawvere theories. TAC 6(7), 83–93 (1999)

20. Schröder, L.: Classifying categories for partial equational logic. ENTCS 69, 305–322
(2003)

21. Shinwell, M.R., Pitts, A.M.: On a monadic semantics for freshness. TCS 342, 28–55
(2005)

A Technical Appendices

A.1 Algebra in FM-Categories

Lemma A.1. (i) �∇ � π ∗ t : π · s� = π�s� ◦ �∇ � t : s�;
(ii) Given ∇ ≤ ∇′ there exists an arrow weak : �∇′� → �∇� such that for any

t ∈ Σs(∇:), �∇′ � t : s� = �∇ � t : s� ◦ weak;
(iii) �∇≈�a � t : s� = �∇ � t : s� ◦ ia�∇�;

(iv) If ∇ is as (6) then �∇ � t : s� = �x1 : s1, . . . , xn : sn � t : s� ◦ (ia1
�s1� × · · · ×

ian

�sn�);
(v) Given Γ ∈ SEΣ with domain {x1, . . . , xn}, a substitution σ : Γ → ∇: and

a term t ∈ Σs(Γ),

�∇ � t{σ} : s� = �Γ � t : s� ◦ 〈. . . , �∇ � σ(xi) : Γ (xi)�, . . .〉

where Γ is defined to be a freshness environment in FEΣ by Γ (x) = (Γ (x), ∅).

Proof. (i) follows by induction on the structure of t, using the naturality of π in
the constructed term chase.

(ii): take ∇ as (6) and say ∇′(xi) = (ai ∪ a′i, si) for 1 ≤ i ≤ n. Then set

weak � 〈ia′
1 ◦ pr1, . . . , ia

′
n ◦ prn〉 .

The result follows by another induction on t, and (iii) is an immediate corollary.
(iv) is another induction on t and (v) likewise, using (i) in the suspension case.

Definition A.2. Suppose ∇ � a ≈� t : s is satisfied, so by (9) and Def. 5.3,
�∇≈�supp(
a′) � t : s� = �∇≈�supp(
a′) � (�a �a′) ∗ t : s�. Then by Lem. A.1(i) and (iii),

Nominal Lawvere Theories 81

�∇ � t : s� ◦ isupp(
a′) = (�a �a′) ◦ �∇ � t : s� ◦ isupp(
a′). By Def. 4.5(vii) a unique
arrow is induced which we will call �∇ � a ≈� t : s�:

�∇�≈�supp(
a′) isupp(�a
′)

�� �∇�

�∇�t:s�

���
��

��
��

�

�∇�a≈� t:s�

��

�s�≈�a

ia

�� �s� (
a
a′)
��

Lemma A.3. Take ∇ as (6).

(i) Given a term t ∈ Σs(∇:) and substitution σ : ∇: → (∇′):, if the arrows
�∇′ � ai ≈� σ(xi) : si� are defined for 1 ≤ i ≤ n then �∇′ � t{σ} : s� equals

�∇ � t : s� ◦ 〈�∇′ � a1 ≈� σ(x1) : s1�, . . . , �∇′ � an ≈� σ(xn) : sn�〉 ;

(ii) id�∇� = 〈�∇ � a1 ≈� x1 : s1�, . . . , �∇ � an ≈� xn : sn�〉;
(iii) ia�∇� = 〈�∇≈�a � a1 ≈� x1 : s1�, . . . , �∇≈�a � an ≈� xn : sn�〉;
(iv) π�∇� = 〈�∇ � π · a1 ≈� π x1 : π · s1�, . . . , �∇ � π · an ≈� π xn : π · sn�〉;
(v) Take ∇1,∇2 with disjoint domain. Then prj(�∇1�, �∇2�) = 〈�∇1 ∪ ∇2 �

a1 ≈� x1 : s1�, . . . , �∇1 ∪∇2 � an ≈� xn : sn�〉 if ∇j is (6) for i = 1 or 2.

Proof. (i) follows by Lem. A.1(iv) and (v). For (ii)-(v) we first need to confirm
that the arrows in question exist, following Def A.2. For (ii), we see that

iai ◦ pri ◦ isupp(
a′
i) = (�ai �a

′
i) ◦ iai ◦ pri ◦ isupp(
a′

i)

by the naturality of (�ai �a
′
i) and Def. 4.5(v). (iii)-(v) follow similarly. The equali-

ties (ii), (iii) and (v) then follow by applying iai ◦pri to each side, as iai is mono
and projections jointly mono. (iv) follows by applying iπ·ai ◦ pri to each side.

Proof (Thm. 5.4). Closure under (refl), (symm) and (trans) is trivial, and
(weak) follows from Lem A.1(ii).

(subst): Given ∇ as (6) the arrows �∇′ � a1 ≈� σ(x1) : s1� (Def. A.2) are
defined for 1 ≤ i ≤ n, so by Lem. A.3(i)

�∇′ � t{σ} : s� = �∇ � t : s� ◦ 〈�∇′ � a1 ≈� σ(x1) : s1�, . . .〉

and similarly for t′{σ′}. We have �∇ � t : s� = �∇ � t′ : s�, while iai ◦ �∇′ � ai ≈�
σ(xi) : si� = �∇′ � σ(xi) : si� = �∇′ � σ′(xi) : si� = iai ◦ �∇′ � ai ≈� σ′(xi) : si�.
But iai is mono by Lem. 4.9, so we are done.

(atm-elim): �∇ � t : s� ◦ ia = �∇ � t′ : s� ◦ ia by Lem. A.1(iii), so �∇ � t : s� =
�∇ � t′ : s� by Def. 4.5(vi).

(perm): By Lemma A.1(i) and (iii) we need to prove that π ◦ �∇ � t : s� ◦
ids(π,π′) = π′ ◦ �∇ � t : s� ◦ ids(π,π′). Now π−1 ◦ π′ ◦ �∇ � t : s� ◦ ids(π,π′) = �∇ �
t : s� ◦ ids(π,π′) ◦ π−1π′

�∇�≈�ds(π,π′) by naturality, but ds(π, π′) = supp(π−1π′), so

we can apply Def. 4.5(v) to make this equal �∇ � t : s� ◦ ids(π,π′). Applying the
identity to the front gives us π−1 ◦ π ◦ �∇ � t : s� ◦ ids(π,π′). π−1 is iso, and
therefore mono, so we are done.

82 R. Clouston

A.2 Category-Theory Correspondence

Proof (Lem. 6.1). The various properties of FM-categories are easily verifiable
corollaries of the proof rules, along with standard properties of NEL-terms from
[5, Sec. 4 and 5]. For example, take f as (16) and apply (10):

π · f = π · ∇′ � [π · a1 ≈� [π · t1] : π · s1, . . . , π · an ≈� [π · tn] : π · sn] .

π · t is the meta-level Perm-action of [5, Sec. 5] (not to be confused with the
object-level Perm-action (4)) under which terms are indeed finitely supported.

Likewise, if we take f as (16) in (12) then

f̂ = ∇′ � [a1 ∪ a ≈� [t1] : s1, . . . , an ∪ a ≈� [tn] : sn] .

Lemma A.4. Given FM-categories C, C′ and an algebra M ∈ ob CT, we can
define a functor, called the modelling functor, M(−) : FM(C, C′) → CT by

– M(F)�s� = F (M�s�) and M(F)�op� = F (M�op�);
– M(φ)s = φM�s�.

Proof. FM-functors preserve the internal Perm-action, so s #→ M(F)�s� and
op #→M(F)�op� are equivariant and M(F) is a Σ-structure. Given t ∈ Σs(∇:),

M(F)�∇ � t : s� = F (M�∇ � t : s�) (17)

by induction on the structure of t, so if M ∈ ob CT then M(F) ∈ ob C′T. s #→
M(φ)s is evidently equivariant, and (14) holds because natural transformations
between finite product preserving functors commute with those products.

Lemma A.5. Given ∇ as (15), a T-homomorphism h : M → M ′, and a term
t ∈ Σs(∇:),

hs ◦M�∇ � t : s� = M ′�∇ � t : s� ◦ (h≈�a1
s1 × · · · × h≈�an

sn
)

Proof. An easy induction on the structure of t.

Proof (Thm. 6.4). We will show that the modelling functor (Lem. A.4) for the
generic algebra (Def. 6.2) is an isomorphism G(−) : FM(Cl(T), C) → CT. Let
G−1(−) : CT → FM(Cl(T), C) be

G−1(M)(∇) = M�∇�
G−1(M)(f) = 〈M�∇′ � a1 ≈� t1 : s1�, . . . ,M�∇′ � an ≈� tn : sn�〉

G−1(h)∇ = h
≈�a1
s1 × · · · × h

≈�an
sn

(18)

where ∇ is (15), f : ∇′ → ∇ is (16) and h
≈�ai
si is defined by Def. 4.8. For any

T-algebra M in C, G−1(M) is an FM-functor Cl(T) → C by Lem. A.3.
Given a T-homomorphism h : M →M ′, we can show that iai ◦ pri ◦G−1(M ′)

(f) ◦ G−1(h)∇′ = iai ◦ pri ◦ G−1(h)∇ ◦ G−1(M)(f) by Lem. A.5 and Defs. 4.8
and A.2. But iai ◦ pri are jointly mono, so G−1(h) is a natural transformation
G−1(M) →̇G−1(M ′).

Nominal Lawvere Theories 83

That G(G−1(−)) is the identity on CT follows easily; the converse holds as
follows. Given an FM-functor F : Cl(T) → C and Cl(T)-object ∇ we have
G−1(G(F))(∇) = G(F)�∇� = F (G�∇�) = F∇ because F preserves finite prod-
ucts and G�∇� = ∇. iai ◦ pri ◦ G−1(G(F))(f) = F (G�∇′ � ti : si�) by (17),
which equals F (∇ � ([ti] : si)) = iai ◦pri ◦ f . But iai ◦pri are jointly mono so we
have equality on objects. Finally, given a natural transformation φ : F →̇F ′ we
must show that G−1(G(φ))∇ = φ∇. This follows by applying iai ◦ pri as above.

Proof (Thm. 6.7). The equivalence functor is G−1(M(C)) : Cl(Th(C)) → C,
defined by Def. 6.5 and (18).

Full: Take the C-arrow f : G−1(M(C))(∇′) → G−1(M(C))(∇). Then (v1 :
G−1(M(C))(∇′)) � ([f v1] : G−1(M(C))(∇)) is a Cl(Th(C))-arrow. Applying
G−1(M(C)) to this arrow gives us M(C)�f� = f .

Faithful: Say we have Cl(Th(C))-arrows f = ∇′ � (a1 ≈� [t1] : C1, . . .)
and f ′ = ∇′ � (a1 ≈� [t′1] : C1, . . .) so that G−1(M(C))(f) = G−1(M(C))(f ′).
Applying the jointly mono iai ◦ pri to each side gives us M(C)�∇′ � ti : Ci� =
M(C)�∇′ � t′i : Ci�, so ∇′ �Th(C) ti ≈ t′i : Ci by definition and f = f ′.

Surjective: For any C-object C, G−1(M(C))(v1 : C) = C.

Turing Machines on Cayley Graphs

Aubrey da Cunha

University of Michigan, Ann Arbor, MI 48109, USA

Abstract. We present a generalization of standard Turing machines
based on allowing unusual tapes. We present a set of reasonable con-
straints on tape geometry and conclude that the proper degree of gener-
ality is Cayley graphs. Surprisingly, this generalization does not lead to
yet another equivalent formulation of the notion of computable function.
Rather, it gives an alternative definition of the recursively enumerable
Turing degrees that does not rely on oracles.

1 Introduction

When Alan Turing originally defined his a-machines, which would later be called
Turing machines, he envisioned a machine whose memory was laid out along a
one-dimensional tape, inspired by the ticker tapes of the day. This seemed some-
what arbitrary and perhaps unduly restrictive, and so, very quickly, machines
with multiple and multi-dimensional tapes were proposed. The focus at the time
was defining the term “computable”, and as adding tapes and dimensions de-
fined the same class of functions as Turing’s original, simpler model, studying
alternate tape geometries fell out of favor for some time.

The complexity theory community then reignited interest in alternative tape
geometries by considering not the class of functions computable by Turing ma-
chines, but time and space complexity of functions on different tape geome-
tries. This led to a number of results about relative efficiency of machines with
one/many tapes and one/two/high-dimensional tapes. For example, the lan-
guage of palindromes can be computed in O(n) time on a two-tape machine,
but requires Ω(n2) time on a one-tape machine with one read/write head. Or,
an m-dimensional Turing machine running in time T (n) can be simulated by a
k-dimensional Turing machine (k < m) in time T (n)1+

1
m− 1

k +ε for all ε > 0 [4].
Many of the proofs and algorithms used in the study of multidimensional Tur-

ing machines make their way into or are inspired by the world of mesh-connected
systems. Mesh-connected systems are arrays of identical, relatively dumb pro-
cessors (typically with memory logarithmic in the input size) that communicate
with their neighbors to perform a computation. Time use on a Turing machine
with a d-dimensional tape is intimately tied to the power consumption of a d-
dimensional mesh of processors with finite memory, so there is some natural
crossover. Mesh-connected systems constitute an area of very active research
now, but since it remains very closely tied to the physical implementation, re-
search is generally restricted to two- and three-dimensional grids.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 84–94, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Turing Machines on Cayley Graphs 85

In this paper, we go beyond the world of rectangular grids and consider tapes
at their most general. The purpose of this is two-fold. First, to give the com-
plexity theorists a general framework in which to work, subsuming all current
tape-based Turing models. Second, to provide some evidence that alternative
tape geometries are interesting from a recursion-theoretic perspective. Along the
way, we will encounter some questions about well-orderings in finitely branching
trees that are interesting in their own right.

Any Turing tape can be modeled as a digraph with nodes corresponding to
tape cells and edges corresponding to allowable transitions. Hence, we start by
introducing a number of graph-theoretic conditions that ought to be satisfied by
a reasonable tape. It turns out that the criteria we present are necessary and
sufficient conditions for the graph to be the Cayley graph of a finitely generated,
infinite group.

We then turn to the question of whether allowing arbitrary Cayley graphs
as tapes is just another equivalent machine model for the class of computable
functions. Interestingly, this will depend on the structure of the group from
which the Cayley graph is generated. For groups with solvable word problem, this
does indeed lead to machines that compute the class of computable functions,
however for groups with unsolvable word problems, these machines are strictly
more powerful than standard Turing machines. In fact, they can be as powerful
as any oracle machine and we end up with an alternative definition of the Turing
degrees that is machine based and doesn’t rely on oracles.

Throughout the rest of this paper, all Turing machines will have a single tape
and a single head. This is the easiest case to treat and the generalization to
multiple tapes and multiple heads is entirely analogous to the standard Turing
picture. We will also restrict ourselves to a deterministic setting for the same
reasons.

2 General Tape Geometries

Any tape essentially consists of a collection of cells, each of which can hold a
single symbol, together with a mechanism for moving from one cell to another.
So underlying any tape is an edge-colored digraph. Edges in this graph represent
allowable transitions between states and the edge coloring encodes the conditions
on the stored symbol and control state under which that particular transition
occurs. In order to be a reasonable Turing tape, this digraph should satisfy a
few restrictions.

1. Uniqueness of outgoing colors - From any vertex, there should be exactly one
outgoing edge of each color. Since the mechanism by which the tape head
moves is encoded in the edge color, outgoing edges should have different
colors. Also, since the transition function is independent of the tape cell, the
collection of colors going out from each vertex should be the same.

2. Homogeneity - Every vertex should “look like” every other vertex. Techni-
cally, this means that the subgroup of the automorphism group of the graph
that preserves edge colors should be vertex transitive. This is an extension

86 A. da Cunha

of the assumption that all tape cells are indistinguishable, in this case by
the local geometry.

3. Infinity - The tape should have an infinite number of cells. Otherwise, it’s
just a finite automaton.

4. Connectedness - As the head moves during the course of a computation, it
remains on a single connected component. Inaccessible cells are useless, so
we can require that every tape cell be accessible from the starting point. In
particular, this means that the graph is connected.

5. Finitely many colors - The transition function of the TM should be finite,
so there should only be finitely many outgoing colors. Having more colors
doesn’t change the computational power, since only finitely many of them
could be referenced by the transition function anyway.

6. Backtracking - The Turing machine should be able to return to the cell it just
came from. This assumption is less essential, since in view of homogeneity,
any algorithm that called for returning to the previous tape cell could be
replaced by a fixed sequence of steps. However, many algorithms call for
the head to return to the previous cell and forcing the head to do so by a
circuitous route seems unduly harsh. Note that in view of homogeneity, the
color of an edge determines the color of the reverse edge.

Restrictions 1 and 2 imply that our tape is a Cayley graph, restrictions 3, 4, and 5
make it the Cayley graph of a finitely generated infinite group, and restriction 6
forces the generating set to be closed under inverses. In addition, any Cayley
graph of a finitely generated infinite group with a generating set that is closed
under inverses satisfies 1–6. This suggests that Cayley graphs are, in some sense,
the “right” degree of generality and leads to the following definition:

Definition 1. Let G be an infinite group and S ⊂ G be a finite generating set
for G that is closed under inverses. Then the Cayley graph of G generated by S
is called the tape graph, (G,S).

Using this general type of tape, we can then ask questions about the structure
of Turing Machines with tapes given by assorted groups and generating sets.

3 Turing Machines on Cayley Graphs

Definition 2. Let G = 〈g1, . . . , gn〉 be a finitely generated group with the set
{g1, . . . , gn} closed under inverses. Then a Turing Machine over G with gener-
ating set 〈g1, . . . , gn〉 is a 7-tuple, (Q,Γ, b,Σ, δ, q0, F) where

– Q is the finite set of states
– Γ is the finite set of tape symbols
– b ∈ Γ is a designated blank symbol
– Σ ⊂ Γ\{b} is the set of input symbols
– δ : Q× Γ → Q× Γ × {g1, . . . , gn} is the transition function
– q0 ∈ Q is the initial state
– F ⊂ Q is the set of terminal states (typically one to accept and one to reject)

Turing Machines on Cayley Graphs 87

This definition varies from the standard definition only in the interpretation of
the transition function. Whereas a standard TM has a two-way infinite one-
dimensional tape and the transition function includes instructions for moving
left or right, a TM over G has as a tape the Cayley graph of G and the
transition function has instructions for moving along edges labeled by a par-
ticular generator. For example, a Turing Machine over ZZ with generating set
{−1,+1} is a standard one-dimensional TM and a TM over ZZ2 with generating
set {(0,−1), (−1, 0), (0, 1), (1, 0)} is a standard two-dimensional TM.

We cannot yet describe the behavior of such a machine as a computation,
since computation is generally done on strings and we have as yet no way to
encode strings into machine states. For standard one-dimensional machines, this
is done in a straightforward manner, but for more exotic tape geometries, there
isn’t one obviously correct way to provide the machine with input. This can be
done in a canonical way, but it requires some machinery.

3.1 A Well-Ordering in Trees

We shall turn aside from the main topic for a moment to discuss a general
statement about trees. There are many ways to define an order on the vertices
of a tree, but we are going to be interested in the lexicographic order. In general,
lexicographic orderings on trees have few nice properties, but we show that
finitely branching trees have a subtree where the lexicographic order is in fact a
well-order.

First, some definitions. Let T be a finitely branching tree. Denote by [T] the
set of all infinite paths through T (our paths begin at the root and follow the
child relation) and by (the partial ordering on vertices induced by the tree.
Our convention will be that v (w means that v is closer to the root than w.

In order for the lexicographic ordering on T to even make sense, we must
have a linear order on the set of children of each node. Denote the order on the
children of v ∈ T by ≤v. Then the lexicographic order, ≤ is defined as follows:

– If v (w, then v ≤ w.
– If neither v (w nor w (v, let u be the greatest lower bound of v and w

according to (and let u′ (v and u′′ (w be children of u. Then v ≤ w if
and only if u′ ≤u u′′.

This order can, in fact, be extended to an order on T ∪ [T]. Identifying elements
of [T] with subsets of T and elements of T with one-element subsets of T , we
can define

x < y ⇐⇒ (∃w ∈ y)(∀v ∈ x)v < w (1)

Defined in this way, < is a strict linear order, but we can’t really hope for any
more structure than that. But, as promised, with a bit of pruning, we can find
a subtree with much more structure.

Theorem 1. Let T be a finitely branching tree and let < be the lexicographic
ordering on the nodes of and paths through T as given above. Define

T ′ = {v ∈ T |∀w ∈ [T], v < w} (2)

88 A. da Cunha

Then < restricted to T ′ is order isomorphic to an initial segment of ω. In addi-
tion, if T is infinite, T ′ is infinite as well.

Proof. This is a consequence of the following direct result of König’s Lemma.

Lemma 1. Every element of T ′ has only finitely many <-predecessors.

Proof. Suppose v ∈ T ′ had infinitely many <-predecessors. Then we could form
the tree,

S = {w ∈ T ′|w < v} (3)

This is, in fact, a tree since T ′ is a tree and x � y implies x < y. Since v has
infinitely many <-predecessors, S is infinite.

By König’s Lemma, there must be a path through S, call it P . But S is a
subtree of T so P ∈ [T]. By definition of <, P < v, but v ∈ T ′ so v < P . This is
a contradiction, so v must have only finitely many predecessors. ��

Any linear order in which every element has only finitely many predecessors
clearly cannot have an infinite descending chain, so must be a well-order. As
ω + 1 has an element with infinitely many predecessors, the order type must be
an initial segment of ω.

For the second part of Theorem 1, we need an additional lemma.

Lemma 2. If [T] is non-empty, then [T] has a minimal element in the < or-
dering.

Proof. We can inductively construct the minimal element of [T]. For any v ∈ T ,
define s(v) to be the minimal (according to ≤v) child of v that is a member
of some element of [T] if such a vertex exists. Note that if there is a path
through v, s(v) is defined and there is a path through s(v). If v0 is the root, then
P = {s(n)(v0)}n∈IN is the desired minimal element.

Since [T] is non-empty, there is a path through the root and so, by induction
s(n)(v0) is defined for all n. Therefore P is indeed a path.

To see that P is minimal, let P 	= P ′ ∈ [T]. Let v = s(m)(v0) be the largest
element (according to () of P ∩P ′ and let w ∈ P ′ be a child of v. By maximality
of v, w 	= s(v) and by construction, s(v) ≤v w. Therefore, s(v) <v w. By
the lexicographic ordering, w is greater than all descendants of s(v) and also
greater than all ancestors of s(v) (since ancestors of s(v) are also ancestors of
w). Therefore, w > u for all u ∈ P and P ′ > P . ��

Now, let T be infinite. Then, by König’s Lemma again, [T] is non-empty. Let P
be the minimal path in [T] according to Lemma 2. Then P ⊂ T ′ since for any
v ∈ P and P ′ ∈ [T], v < P ≤ P ′. P is infinite, so T ′ is infinite as well. ��

3.2 Tree of Super-Reduced Words

Recall that we are attempting to develop a canonical way of providing a Turing
Machine with a potentially exotic tape with a string as input. Given a tree,

Turing Machines on Cayley Graphs 89

the results of the previous section will provide us with a subtree in which the
lexicographic ordering is a well-ordering, so in this section we will identify a
useful tree within the Cayley graph of a finitely generated group.

We will routinely use the natural correspondence between sequences of gen-
erators and group elements given by forming the product of the generators and
evaluating in the group. Henceforth, sequences and group elements will be used
interchangeably. Of course, multiple sequences will correspond to the same group
element, but the sequence should always be clear from context.

Definition 3. Let G be a group. A super-reduced word is a finite sequence of
elements of G such that no subword, taken as a product in G is equal to the
identity. More precisely, it is a sequence, g1, . . . , gn such that for all 1 ≤ i < j ≤
n,
∏j

k=i gk 	= e in G.

In the context of tape graphs, super-reduced words with symbols from the gen-
erating set correspond exactly to non-intersecting finite paths through the tape
graph. Note that all prefixes of a super-reduced word are themselves super-
reduced.

Form the tree, T , of super-reduced words with symbols from S. Since every
group element has at least one super-reduced word corresponding to it and G is
infinite, T is a spanning tree for the Cayley graph of G, hence, infinite. Therefore,
we can construct an infinite T ′ as in Section 3.1 where the lexicographic ordering
is a well-ordering. We are interested not in T ′, but on a subtree, which we will
call R. To define R we will want another definition.

Definition 4. We say that two sequences of generators, v and w, are equivalent
in G, or v ≡G w if they correspond to the same group element. In other words,
v ≡G w if v = (s1, . . . , sn), w = (r1, . . . , rm) and

n∏
i=1

si =
m∏

i=1

ri (in G) (4)

Now we can define R as follows,

R = {v ∈ T ′|(∀w ∈ T ′) v ≡G w =⇒ v ≤ w} (5)

That is, R is the set of vertices in T ′ that are lexicographically minimal among
sequences that represent the same group element.

It’s not obvious at first glance, but R is a tree. Suppose to the contrary that
uv = w ∈ R but u /∈ R. Then there is some u′ < u in R corresponding to the
same group element. Since we began with the tree of super-reduced words, u and
u′ are incomparable in the tree order. Therefore, u and u′ must differ at some
first location. So, u′v ≡G w but uv and u′v differ for the first time at the same
location and since u′ < u, u′v < uv = w. This is a contradiction since w was
supposed to be minimal among words corresponding to the same group element,
so R is indeed a tree.

90 A. da Cunha

Also non-obvious is the fact that R is infinite. By the proof of Theorem 1,
T ′ contains a path. As was noted earlier, since we began with the tree of super-
reduced words, elements that are comparable in the tree order cannot correspond
to the same group element. Therefore, the path in T ′ corresponds to an infinite
collection of group elements. R represents the same group elements since we
only pruned redundant representations, so R also represents an infinite number
of group elements and is therefore infinite.

Now, for any tape graph, we have a tree that is well-ordered lexicographically,
represents infinitely many group elements and represents each individual element
at most once. This is how we will provide input. Simply begin with the nth vertex
in the well-order containing the nth symbol of the input.

3.3 Power of Turing Machines on Cayley Graphs

One of the first questions to be asked about any new model of computation is
whether the class of functions computable by the new model is different from
the class of computable functions. For Turing machines on Cayley graphs, this
depends rather sensitively on properties of the group producing the tape graph.
For example,

Lemma 3. Let (G,S) be a tape graph. There is a Turing machine over (G,S)
that can solve the word problem for G.

Proof. This process is most easily described with the input on a separate one-
dimensional read-only tape. In light of the results of the next section, this is
equivalent. Also, we will solve the word problem in the form of determining
whether a product of generators is equal to the identity element.

Given a sequence of generators, the head on the tape graph will first mark
the origin with a special symbol and then follow the edges given by the sequence
on the input tape. If, upon reaching the end of the input, the head on the tape
graph is reading the special symbol, accept. Otherwise, reject.

Clearly, this machine only accepts if the head on the tape graph returns to its
starting point, which is equivalent to the product of the generators in the input
being equivalent.

It has long been known [1,6] that there exist groups with undecidable word
problems, so this leads us to believe that Turing machines on a given group
with unsolvable word problem are strictly more powerful than standard Turing
machines. However, this requires that Turing machines over said group also be
able to compute all computable functions. Fortunately, this is the case.

Theorem 2. Let

M = (QM , ΓM , bM , ΣM , δM , q0M , FM) (6)

be a standard one-dimensional one-way infinite one-tape Turing Machine and
let (G,S) be a tape graph. Then there is a Turing Machine over (G,S) that can
simulate M .

Turing Machines on Cayley Graphs 91

Here, a standard machine is a one-dimensional machine with a one-way infinite
tape. For a technical definition, see Lecture 28 in [5].

The simulation itself is very straight-forward. The only difficulty stems from
the question of how to arrange the tape contents of the simulated machine on the
Cayley graph. If we could compute an infinite non-self-intersecting path through
the Cayley graph, we could use this as a standard one-dimensional tape and do
the simulation there. However, such a path need not exist.

Fortunately, we can do the simulation anyway, in this case, by a variant of
the “always turn left” algorithm for solving mazes. By putting an ordering on
the generators of our tape graph, “always turn left” becomes “always follow the
lexicographically minimal edge”. Thus, we can do the simulation on the tree
constructed in Section 3.2 with the nth vertex in the well-ordering storing the
contents of the nth tape cell.

3.4 Proof of Theorem 2

Let (G,S) be the tape graph given in the statement of the theorem. Denote
the elements of S by g1, . . . , gn. It will be convenient to define a set S′ = S ∪
{g0, gn+1} with the ordering g0 < g1 < · · · < gn < gn+1. We will consider both
g0 and gn+1 equal to e in the group for the purposes of moving from node to
node. Define a Turing Machine, N , over (G,S) as follows (here, � refers to a
disjoint union):

– QN = QM � (QM × S′) � (QM × S′) � (QM × S) � (QM × S)
– ΓN = ΓM × S′ × P(S)× P(S)
– bN = (bM , g0, ∅, ∅)
– ΣN = ΣM × S′ × P(S)× P(S)
– q0N = q0M

– FN = FM × S′ × P(S)× P(S)

Each state in the tape alphabet will have an intended meaning. Remember that
we are going to do the computation on a tree, so we have to encode in each node
not just the symbol of the simulated machine, but also auxiliary information
about the structure of the tree. In particular, if (γ, σ,A,B) ∈ ΓN , γ is the symbol
of the simulated machine stored at the node, σ is the generator to follow to reach
the ancestor of this node in the tree, A is the set of generators corresponding
to edges pointing away from the root in the tree, and B is the set of generators
defining non-edges of the tree. Remember that we are going to be constructing
this tree on the fly and so we don’t have complete information about which
generators correspond to edges of the tree at every step. Thus, elements of S\(A∪
B) are the edges whose membership in the tree has not yet been determined.

We will also give each state a name and an intended interpretation,

– Cq for q ∈ QM : We are simulating the computation of M and the current
state of M is q.

– Rqx for q ∈ QM and x ∈ S′: The simulated tape head is moving to the right
and M is currently in state q. The argument x encodes the edge we followed
to reach our current location.

92 A. da Cunha

– Lqx for q ∈ QM and x ∈ S′: The simulated tape head is moving to the left
and M is currently in state q. The argument x encodes the edge we followed
to reach our current location.

– Eqx for q ∈ QM and x ∈ S: The simulated tape head is moving to the right
and M is in state q, but we have run out of tape and are attempting to
extend the tree along edge x.

– Bqx for q ∈ QM and x ∈ S: M is currently in state q and we just failed to
extend the tree along edge x, so we are backtracking.

Note that the starting state of N is named Cq0M .
It will also be convenient to talk about the component functions of the tran-

sition function of M ,
δ1 : QM × ΓM → QM

δ2 : QM × ΓM → ΓM

δ3 : QM × ΓM → {L,R}

We can now write down the action of the transition function. If the current
symbol being read is (γ, σ,A,B), then the value of the transition function on
each type of state is given in Table 1. Entries in the table are triples in the order,
new state, symbol written, direction the tape head moves.

Table 1. Transition Table for N

� ∈ ΓN δN (�, (γ, σ,A,B))

Cq

{
(Rδ1(q, γ)g0, (δ2(q, γ), σ, A,B), g0) if δ3(q, γ) = R

(Lδ1(q, γ)σ, (δ2(q, γ), σ, A,B), σ) if δ3(q, γ) = L

Lqx

{
(Cq, (γ, σ, A,B), g0) if ∀y ∈ A, y ≥ x

(Lqgn+1, (γ, σ,A,B),maxy∈A,y<x y) otherwise

Rqx

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Cq, (γ, σ, A,B),miny∈A,y>x y) if ∃y ∈ A, y > x

(Eqy, (γ, σ, A ∪ {y}, B), y) where y = minz∈S\B,z>x z

if ∃z ∈ S\B, z > x

(Rqσ, (γ, σ, A,B), σ) otherwise

Eqx

{(
Cq, (γ, x−1, ∅, {x−1}), g0

)
if A = B = ∅(

Bqy, (γ, σ,A,B), x−1
)

otherwise

Bqx (Rqx, (γ, σ,A\{x}, B ∪ {x}), g0)

Most of these transitions are pretty opaque, so some explanation is warranted.
If we are in a C-state, then we perform one step of the computation and

then transition into either an R-state or an L-state depending on whether the
computation tries to move left or right. A leftward step in the simulated machine
always begins with a step toward the root for the simulating machine, so we take
that step immediately. Rightward steps are more complicated, so we leave the
tape head where it is on a rightward step.

Taking a step to the left, we want to find the lexicographic immediate pre-
decessor of our current vertex. We begin by taking one step toward the root,

Turing Machines on Cayley Graphs 93

which we did when we transitioned out of the C-state. Then, either there is a
branch all of whose elements are less than where we started, or not. If not, then
we are at the immediate predecessor of our origin, and we continue computing.
Otherwise, follow the greatest such branch and always move to the greatest child
until we reach a dead-end. This dead-end is the immediate predecessor we were
looking for, so we can continue the computation.

Taking a step to the right is significantly more complicated, as we are most
likely going to have to extend the tree as we go. If we have already built some
tree above us (A is non-empty), then we simply use that part of the tree, moving
along the minimal edge in the tree and continuing the computation. This is the
reason for using the “false” generator g0 when we transition out of the C-state.
Otherwise, try to extend the tree along the least edge that we have not already
ruled out. We add that edge to A and switch to an E-state.

If A and B are both empty, then this is a new vertex that we have not visited
before, so continue with the computation. Otherwise, we are at a vertex that
has already been added elsewhere in the tree. So, we back up and transition to
a B-state. In the B-state, we rule out the edge we just took by removing it from
A and adding it to B and switch to an R-state to try extending the tree again.

If we can’t extend the tree at all (B = {g1, . . . , gn}), then take a step toward
the root and try again, eschewing anything less than or equal to the edge we
backtracked along. Since there is an infinite tree for us to use, we will eventually
be able to extend the tree and continue the computation.

3.5 An Alternative Characterization of the r.e. Turing Degrees

We have demonstrated that Turing Machines on arbitrary Cayley graphs are
strictly more powerful than standard Turing Machines, so the next question to
ask is, “how much more powerful?” The short answer is “as powerful as we
want”. In [2,3] Boone showed that for any r.e. Turing degree, there is a finitely
presented group whose word problem is in that degree. Using such a group,
we can produce a machine (more precisely a class of machines) that computes
exactly the functions in or below the given degree. More precisely,

Theorem 3. Let T be an r.e. Turing degree. There is a group, G, such that the
class of functions computable by a Turing Machine over G is exactly the class
of functions in or below T (with respect to Turing reducibility).

Proof. By Boone, let G be a group whose word problem is in T and let f be
a function in or below T . Since f ≤T T , f is Turing reducible to the word
problem for G. Turing machines over G can perform this reduction since they
can compute all recursive functions and they can solve the word problem for G
by Lemma 3. Therefore, they can compute f .

To show that a Turing Machine over G cannot compute a class larger than
T , observe that a Turing Machine with an oracle for the word problem for G
can easily simulate a Turing Machine over G. It simply maintains a list of nodes
written as a sequence of generators for the address together with whichever tape
symbol is written there. When the simulated tape head moves, the machine

94 A. da Cunha

simply appends the generator to the current address and consults the oracle to
determine which node this corresponds to, adding a new entry if the new node
isn’t in the list. ��

3.6 Further Remarks

As was previously mentioned, generalizing to multiple tapes and multiple heads
in this context is done in the same way as in the context of standard Turing
machines. Many of the simulation results carry over directly as well. For example,
a one-tape machine with multiple heads can be simulated by a one-tape machine
with one head. The locations of all the heads can simply be marked on the tape
with special symbols and for each step of the simulated machine, the simulating
machine can search through the entire tape for all the head symbols and then
update the tape accordingly. Similarly, a machine with multiple, identical tapes
can be simulated by a machine with a single tape of the same type. Simply
enlarge the tape alphabet to tuples of tape symbols together with special symbols
for the head on each tape and follow the procedure for multiple heads.

The only major difference is in a machine with multiple, different tapes. In this
case, the class of functions computable by the machine is the class of functions in
or below the join of the r.e. degrees of the word problems of the tapes. Just as in
Section 3.5, this machine is mutually simulatable with a standard Turing machine
with oracles for the word problem of each tape. In fact, this case subsumes the
multiple-head, single-tape and multiple-head, multiple-tape cases.

Acknowledgements. The author would like to thank Andreas Blass for com-
ments on early versions and the anonymous referees who provided both useful
comments and historical background.

References

1. Boone, W.W.: The word problem. Proc. Nat. Acad. Sci. U.S.A. 44, 1061–1065 (1958)
2. Boone, W.W.: Word problems and recursively enumerable degrees of unsolvability.

A first paper on Thue systems. Ann. of Math. 83(2), 520–571 (1966)
3. Boone, W.W.: Word problems and recursively enumerable degrees of unsolvability.

A sequel on finitely presented groups. Ann. of Math. 84(2), 49–84 (1966)
4. Grigorév, D.J.: Time complexity of multidimensional Turing machines. Zap. Nauchn.

Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 88, 47–55 (1979); Studies in
constructive mathematics and mathematical logic, VIII

5. Kozen, D.: Automata and Computability. Springer, New York (1997)
6. Novikov, P.S.: On algorithmic unsolvability of the problem of identity. Dokl. Akad.

Nauk. SSSR 85, 709–719 (1952)

Information Flow on Directed Acyclic Graphs

Michael Donders, Sara Miner More, and Pavel Naumov

Department of Mathematics and Computer Science,
McDaniel College, Westminster, Maryland 21157, USA

{msd002,smore,pnaumov}@mcdaniel.edu

Abstract. The paper considers a multi-argument independence relation
between messages sent over the edges of a directed acyclic graph. This
relation is a generalization of a relation known in information flow as
nondeducibility. A logical system that describes the properties of this
relation for an arbitrary fixed directed acyclic graph is introduced and
proven to be complete and decidable.

1 Introduction

p

rq

s

a

bc

d

ef

g

Fig. 1. Graph G0

In this paper we study information flow on directed acyclic
graphs. We view directed graphs as communication networks
in which vertices are parties and directed edges are communi-
cation channels. An example of such a graph, G0, is depicted
in Figure 1. We use loop edges to represent values that are
computed by the party, but not sent to anyone else. The con-
ditions that parties must observe while communicating over
the network will be called action relations. The set of action
relations for all vertices will be called a protocol. Here is a
sample protocol P0 over graph G0: vertex p picks a random
boolean value a ∈ {0, 1} and finds two boolean values c and
b such that a ≡ b + c (mod 2). It sends value c to vertex q
and value b to vertex r. Vertex q finds boolean values d and
f such that c ≡ d + f (mod 2) and sends them to vertices
r and s, respectively. Vertex r computes the value e ≡ d+ b
(mod 2) and sends it to vertex s. Vertex s computes value
g ≡ f + e (mod 2).

An assignment of values to all channels that satisfies all
action relations will be called a run of the protocol. Note

that for the protocol described above, values c and b are independent in the
sense that any possible value of c may occur on the same run with any possible
value of b. We denote this by [c, b]. This relation between two values was originally
introduced by Sutherland [1] and later became known in the study of informa-
tion flow as nondeducibility. Halpern and O’Neill [2] proposed a closely-related
notion called f -secrecy. More and Naumov [3] generalized nondeducibility to a
relation between an arbitrary set of values and called it independence. For exam-
ple, values c, b, and d for the above protocol are independent in the sense that any

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 95–109, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

96 M. Donders, S. Miner More, and P. Naumov

combination of their possible values may occur on the same run. We denote this
relation by [c, b, d]. At the same time, it is easy to see that under the above
protocol:

g ≡ f + e ≡ f + (d + b) ≡ (f + d) + b ≡ c + b ≡ a (mod 2). (1)

Thus, not every combination of values of a and g can occur together on a run.
In our notation: ¬[a, g].

The properties mentioned above are specific to the given protocol. If the
protocol changes, some of the true properties can become false and vice versa.
In this paper, however, we focus on the properties that are true for a given
graph no matter which protocol is used. An example of such property for the
above graph is [c, b, f, e] → [a, g]. It says that for any protocol under G0 if
values c, b, f and e are independent over this protocol, then values a and g are
also independent under the same protocol. We will formally prove this claim in
Proposition 3.

The main result of this paper is a sound and complete logical system that
describes all propositional properties of the multi-argument relation [a1, . . . , an]
on directed graphs which are acyclic, with the possible exception of loop edges.
Previously, More and Naumov obtained similar results for undirected graphs [3]
and hypergraphs [4]. Compared to the case of undirected graphs, the logical
system described here adds an additional Directed Truncation inference rule.

Our logical system describes information flow properties of a graph, not a
specific protocol over this graph. However, this system can be used to reason
about the properties of a specific protocol by treating some properties of the
protocol as axioms, then using our system to derive additional properties of the
protocol.

2 Protocol: A Formal Definition

Throughout this work, by a graph we mean a finite directed graph with cycles of
length no more than one or, less formally, “directed acyclic graphs with loops”.
Such graphs define a partial order on vertices that will be assumed to be the
order in which the protocol is executed. The protocol will specify how the values
on outgoing edges are related to the values one the incoming edges of each vertex.
With this in mind, we will count loops at any vertex v among its outgoing edges
Out(v), but not among its incoming edges In(v).

Definition 1. A protocol over a graph G = 〈V,E〉 is a pair 〈M,Δ〉 such that

1. M(e) is an arbitrary set of values (“messages”) for each edge e ∈ E,
2. Δ = {Δv}v∈V is a family of action relations between values of incoming and

outgoing edges of the vertex v:

Δv ⊆

⎛⎝ ∏
e∈In(v)

M(e)

⎞⎠×

⎛⎝ ∏
e∈Out(v)

M(e)

⎞⎠ .

Information Flow on Directed Acyclic Graphs 97

3. (continuity condition) For any possible tuple of values on the incoming
edges of a vertex v, there is at least one tuple of values possible on its outgoing
edges:

∀x ∈
∏

e∈In(v)

M(e) ∃y ∈
∏

e∈Out(v)

M(e)

(
(x, y) ∈ Δv

)
.

The continuity condition above distinguishes protocols over directed graphs from
protocols over undirected graphs [3].

Definition 2. A run of a protocol P = 〈M,Δ〉 over graph G = 〈V,E〉 is any
function r on E such that

1. r(e) ∈M(e) for each e ∈ E,
2. 〈〈r(e)〉e∈In(v), 〈r(e)〉e∈Out(v)〉 ∈ Δv for each v ∈ V .

The set of runs of a protocol P is denoted by R(P).

Definition 3. A protocol P = 〈M,Δ〉 over graph G = 〈E, V 〉 is called finite if
the set M(e) is finite for each edge e ∈ E.

We conclude with the definition of a multi-argument version of Sutherland’s
binary nondeducibility predicate called independence. It is identical to the one
used by More and Naumov [3,4].

Definition 4. A set of edges A is called independent under protocol P if for any
family of runs {ra}a∈A ⊆ R(P) there is a run r ∈ R(P) such that r(a) = ra(a)
for each a ∈ A.

In the above definition, we refer to the value ra(a), rather than an arbitrary
element of M(a), because there may be some values in M(a) that are not actually
used on any given run. In the next section, we will formally define the formulas
of our logic system. The atomic formula expressing the independence of a set A
will be denoted by [A].

3 Semantics

Informally, by Φ(G) we denote the set of all propositional properties of indepen-
dence over a fixed graph G = 〈V,E〉. Formally, Φ(G) is a minimal set defined
recursively as follows: (i) for any finite set of edges A ⊆ E, formula [A] belongs
to set Φ(G), (ii) the false constant ⊥ belongs to Φ(G), and (iii) for any formulas
φ and ψ in Φ(G), the implication φ → ψ also belongs to Φ(G). Conjunction,
disjunction, and negation will be assumed to be defined through connectives →
and ⊥.

Next, we define the relation P � φ between a protocol P over graph G and a
formula φ ∈ Φ(G). Informally, P � φ means that formula φ is true under P .

98 M. Donders, S. Miner More, and P. Naumov

Definition 5. For any protocol P over a graph G, and any formula φ ∈ Φ(G),
we define the relation P � φ recursively as follows: (i) P � ⊥, (ii) P � [A] if the
set of edges A is independent under protocol P, (iii) P � φ1 → φ2 if P � φ1 or
P � φ2.

We will illustrate this definition with the two propositions below. By G0 we mean
the graph depicted earlier in Figure 1.

Proposition 1. There is a protocol P over G0 such that P � [b, f, g] → [a, g].

Proof. Consider the protocol P under which the party (represented by vertex)
p picks a boolean value a and sends it via edge c to party q . In other words,
a = c is the action relation at vertex p. At the same time, the constant value
0 is sent via edge b, which means that M(b) = {0}. Party q resends value c
through edge d and sends the constant 0 through edge f . Party r then resends
value d through edge e and, finally, s resends value e through channel g. Under
this protocol, M(b) = M(f) = {0}. Thus, any possible values of edges b, f , and
g may occur on the same run. In other words, P � [b, f, g]. At the same time,
a = c = d = e = g, and M(a) = M(g) = {0, 1}. Thus, not every combination of
values of a and g can occur on the same run. Therefore, P � [a, g]. ��

Note that in the proof of the previous proposition direction of edge d is impor-
tant. One might expect that the result is not true if the direction of the edge d
is reversed. This, however, is not true:

Proposition 2. There is a protocol P over G0 such that P � [c, e, g] → [a, g].

Proof. Consider the protocol P0 over G0 described in the introduction. It was
shown earlier through equality (1), that P0 � [a, g]. Thus, we only need to prove
that P0 � [c, e, g]. Let c0, e0, g0 be any boolean values. We will show that these
values can co-exist on the same run. Indeed, let f0 = e0+g0 (mod 2), d0 = c0+f0

(mod 2), b0 = d0 + e0 (mod 2), and a0 = c0 + b0 (mod 2). It is easy to see that
values a0, b0, c0, d0, e0, f0, and g0 form a valid run of P0. ��

In this paper, we study the set of formulas that are true under any protocol
P as long as the graph G remains fixed. The set of all such formulas will be
captured by our logical system for information flow over directed acyclic graphs.
This system is described in Section 5.

4 Graph Notation

Before the introduction of our formal system, we need to define some graph-
related notation that will be used in this system.

A cut of a graph is a disjoint partitioning of its vertices into two sets. A
crossing edge of a cut is an edge whose ends belong to different sets of the
partition. For any set of vertices X of a graph G, we use E(X) to denote the set
of all edges of G whose ends both belong to X .

Information Flow on Directed Acyclic Graphs 99

Definition 6. Let G be an arbitrary graph and (X,Y) be an arbitrary cut of G.
We define the “truncation” graph GX of graph G as follows:

1. The vertices of graph GX are the vertices of set X.
2. The edges of GX are all of the edges from E(X) plus the crossing edges of

the cut (X,Y) modified in the following way: if, in graph G, a crossing edge
c connects vertex v ∈ X with a vertex in Y , then, in graph GX , edge c loops
from v back into v.

p

s

a

bc

ef

g

Fig. 2. Graph G′
0

Each edge e in a truncated graph GX corresponds to a
unique edge in the original graph G. Although the two cor-
responding edges might connect different vertices in their
respective graphs, we will refer to both of them as edge e.
For example, graph G′

0 in Figure 2 is obtained from graph
G0 in Figure 1 by truncating along the cut ({p, s}, {q, r}).
In the above notation, this truncated graph can be denoted
by (G0){p,s}.

Definition 7. A cut (X,Y) is called “directed” if there are
no crossing edges of this cut that lead from Y to X.

Definition 8. A gateway between sets of edges A and B in
a graph G is a set of edges W such that every undirected
path from A to B contains at least one edge from W .

Note that sets A, B, and W are not necessarily disjoint.
Thus, for example, for any set of edges A, set A is a gateway
between A and itself. Also, note that the empty set is a gateway between any
two components of the graph that are not connected one to another.

5 Formal System: Axioms and Rules

We are now ready to describe our logical system for information flow over di-
rected acyclic graphs. We will write G � φ to state that formula φ ∈ Φ(G)
is provable in this logic. Everywhere below, X,Y denotes the union of sets X
and Y . In addition to all propositional tautologies and the Modus Ponens infer-
ence rule, the deductive system for this logic consists of the Small Set axiom,
the Gateway axiom, and the Truncation and the Directed Truncation inference
rules:
Small Set Axiom. Any set that contains less than two edges is independent:
G � [A], where A ⊆ E and |A| < 2.
Gateway Axiom.G � [A,W] → ([B] → [A,B]), where W is a gateway between
sets of edges A and B such that A ∩W = ∅.
Truncation Rule. Let C be the set of all crossing edges of a cut (X,Y) and φ
be a formula in Φ(GX). If GX � φ, then G � [C] → φ.
Directed Truncation Rule. Let (X,Y) be a directed cut and φ ∈ Φ(GX). If
GX � φ, then G � φ.

100 M. Donders, S. Miner More, and P. Naumov

The soundness of this system will be demonstrated in Section 6 and its com-
pleteness in Section 7. Below, we present a general result to which we will refer
during the proof of completeness.

Theorem 1 (monotonicity). G � [A] → [B], for any graph G and any subsets
B ⊆ A of edges of G.

Proof. Consider sets B and ∅. Since there are no paths connecting these sets,
any set of edges is a gateway between these sets. In particular (A \ B) is such
a gateway. Taking into account that sets B and (A \ B) are disjoint, by the
Gateway axiom, G � [B, (A \ B)] → ([∅] → [B]). By the Small Set axiom,
G � [∅]. Thus, G � [B, (A \ B)] → [B]. By the assumption B ⊆ A, we conclude
that G � [A] → [B]. ��

Next we give two examples of derivations in our logical system. In these exam-
ples, by G0 we mean the graph depicted earlier in Figure 1.

p

rq

a

bc

d

ef

Fig. 3. Graph G′′
0

Proposition 3. G0 � [c, b, f, e] → [a, g].

Proof. We will start with graph G′
0 depicted in Fig-

ure 2. Recall that this graph is obtained from G0

by truncation with crossing edges c, b, f and e. Note
that, in graph G′

0, the empty set is a gateway be-
tween sets {a} and {g}. Thus, by the Gateway ax-
iom, G′

0 � [a] → ([g] → [a, g]). By the Small Set
axiom, G′

0 � [a] and G′
0 � [g]. Hence, G′

0 � [a, g]. By
the Truncation rule, G0 � [c, b, f, e] → [a, g]. ��

Proposition 4. G0 � [c, b, d] → [c, e].

Proof. Consider graph G′′
0 depicted in Figure 3. It is

obtained from graph G by a truncation with crossing
edges e and f . Note that in graph G′′

0 set {b, d} is a gateway between sets {c} and
{e}. Thus, by the Gateway axiom, G′′

0 � [c, b, d] → ([e] → [c, e]). By the Small
Set axiom, G′′

0 � [e]. Hence, G′′
0 � [c, b, d] → [c, e]. By the Directed Truncation

rule, G0 � [c, b, d] → [c, e]. ��

6 Soundness

The proof of soundness is non-trivial. For each axiom and inference rule, we
provide its justification as a separate theorem.

Theorem 2 (Small Set). For any graph G = 〈V,E〉, if P is an arbitrary
protocol over G and subset A ⊆ E has at most one element, then P � [A].

Proof. Case 1: A = ∅. Due to the continuity condition in Definition 1 and
because graph G is acyclic, there is at least one run r ∈ R(P). Thus, P � [∅].
Case 2: A = {a1}. Consider any run r1 ∈ R(P). Pick r to be r1. This guarantees
that r(a1) = r1(a1). ��

Information Flow on Directed Acyclic Graphs 101

Theorem 3 (Gateway). For any graph G = 〈V,E〉, and any gateway W be-
tween sets of edges A and B in graph G, if P � [A,W], P � [B], and A∩W = ∅,
then P � [A,B].

Proof. Assume P � [A,W], P � [B], and A∩W = ∅. Let A = {a1, . . . , an} and
B = {b1, . . . , bk}. Consider any r1, . . . , rn+k. We will show that there is a run
r ∈ R(P) such that r(ai) = ri(ai) for each i ≤ n and r(bi) = rn+i(bi) for each
i ≤ k. By the assumption P � [B], there is a run rB ∈ R(P) such that

rB(bi) = rn+i(bi) for i ≤ k. (2)

By assumptions P � [A,W] and A ∩W = ∅, there must be a run rA such that

rA(e) =
{
ri(e) if e = ai for i ≤ n,
rB(e) if e ∈ W . (3)

Next, consider graph G′ obtained from G by removing all edges in W . By the
definition of gateway, no single connected component of graph G′ can contain
both an edge from A and an edge from (B \ W). Let us group all connected
components of G′ into two subgraphs G′

A and G′
B such that G′

A contains no
edges from (B \W) and G′

B contains no edges from A. Components that contain
edges neither from A nor from (B \W) can be arbitrarily assigned to either G′

A

or G′
B.

By equation (3), runs rA and rB on G agree on each edge of gateway W . We
will now construct a combined run r by “sewing together” portions of rA and
rB with the “stitches” placed along gateway W . Formally,

r(e) =

⎧⎨⎩
rA(e) if e ∈ G′

A,
rA(e) = rB(e) if e ∈W,
rB(e) if e ∈ G′

B.
(4)

Let us first prove that r is a valid run of the protocol P . For this, we need
to prove that it satisfies action relation Δv at every vertex v. Without loss of
generality, assume that v ∈ G′

A. Hence, on all edges incident with v, run r agrees
with run rA. Thus, run r satisfies Δv simply because rA does.

Next, we will show that r(ai) = ri(ai) for each i ≤ n. Indeed, by equations (3)
and (4), r(ai) = rA(ai) = ri(ai). Finally, we need to show that r(bi) = rn+i(bi)
for each i ≤ k. This, however, follows easily from equations (2) and (4). ��

Theorem 4 (Truncation). Assume that C is the set of all crossing edges of
cut (X,Y) in graph G and φ is a formula in Φ(GX). If P ′ � φ for each protocol
P ′ over GX , then P � [C] → φ for each protocol P over graph G.

Proof. Suppose that there is a protocol P over G such that P � [C], but P � φ.
We will construct a protocol P ′ over GX such that P ′ � φ.

Let P = 〈M,Δ〉. Note that, for any edge e, not all values from M(e) are
necessarily used in the runs of this protocol. Some values might be excluded by
the action relations of P . To construct protocol P ′ = 〈M ′, Δ′〉 over truncation

102 M. Donders, S. Miner More, and P. Naumov

GX , for any edge e of GX we first define M ′(e) as the set of values that are
actually used by at least one run of protocol P . Thus, M ′(e) = {r(e) | r ∈ R(P)}.
The action relation Δ′

v at any vertex v of GX is the same as under protocol P .

Lemma 1. For any run r′ ∈ R(P ′) there is a run r ∈ R(P) such that r(e) =
r′(e) for each edge e in truncation GX .

Proof. Consider any run r′ ∈ R(P ′). By the definition of M ′, for any crossing
edge c ∈ C, there is a run rc ∈ R(P) such that r′(c) = rc(c). Since P � [C],
there is a run rY ∈ R(P) such that rY (c) = rc(c) = r′(c) for each c ∈ C.

We will now construct a combined run r ∈ R(P) by “sewing together” rY and
r′ with the “stitches” placed in set C. Recall that we use the notation E(X) to
denote edges whose ends are both in set X . Formally, let

r(e) =

⎧⎨⎩
r′(e) if e ∈ E(X),
r′(e) = rY (e) if e ∈ C,
rY (e) if e ∈ E(Y).

We just need to show that r satisfies Δv at every vertex v of graph G. Indeed,
if v ∈ Y , then run r is equal to rY on all edges incident with v. Thus, it satisfies
the action relation at v because run rY does. Alternatively, if v ∈ X , then run
r is equal to run r′ on all edges incident with v. Since r′ satisfies action relation
Δ′

v and, by definition, Δ′
v ≡ Δv for all v ∈ X , we can conclude that r again

satisfies condition Δv. ��

Lemma 2. For any set of edges Q in graph GX , P � [Q] if and only if P ′ � [Q].

Proof. Assume first that P � [Q] and consider any runs {r′q}q∈Q ⊆ R(P ′). We
will construct a run r′ ∈ R(P ′) such that r′(q) = r′q(q) for every q ∈ Q. Indeed,
by Lemma 1, there are runs {rq}q∈Q ⊆ R(P) that match runs {r′q}q∈Q on all
edges in GX . By the assumption that P � [Q], there must be a run r ∈ R(P)
such that r(q) = rq(q) for all q ∈ Q. Hence, r(q) = rq(q) = r′q(q) for all q ∈ Q.
Let r′ be the restriction of run r to the edges in GX . Since the action relations
of protocols P and P ′ are the same at all vertices in X , we can conclude that
r′ ∈ R(P ′). Finally, we notice that r′(q) = r(q) = r′q(q) for any q ∈ Q.

Next, assume that P ′ � [Q] and consider any runs {rq}q∈Q ⊆ R(P). We will
show that there is a run r ∈ R(P) such that r(q) = rq(q) for all q ∈ Q. Indeed,
let {r′q}q∈Q be the restrictions of runs {rq}q∈Q to the edges in GX . Since the
action relations of these two protocols are the same at the vertices in X , we can
conclude that {r′q}q∈Q ⊆ R(P ′). By the assumption that P ′ � [Q], there is a run
r′ ∈ R(P ′) such that r′(q) = r′q(q) = rq(q) for all q ∈ Q. By Lemma 1, there is a
run r ∈ R(P) that matches r′ everywhere in GX . Therefore, r(q) = r′(q) = rq(q)
for all q ∈ Q. ��

Lemma 3. For any formula ψ ∈ Φ(GX), P � ψ if and only if P ′ � ψ.

Proof. We use induction on the complexity of ψ. The base case follows from
Lemma 2, and the induction step is trivial. ��

Information Flow on Directed Acyclic Graphs 103

The statement of Theorem 4 immediately follows from Lemma 3. ��

Theorem 5 (Directed Truncation). Assume that (X,Y) is a directed cut of
a graph G and φ is a formula in Φ(GX). If P ′ � φ for every protocol P ′ over
truncation GX , then P � φ for every protocol P over graph G.

The proof of this theorem is a straightforward modification of the proof of The-
orem 4. Specifically, in the proof of Lemma 1, instead of “sewing together” runs
r′ and rY , we use the continuity condition from Definition 1 to extend run
r′ ∈ R(P ′) into a run r ∈ R(P) that agrees with r′ on all vertices in GX .

7 Completeness

Theorem 6 (completeness). For any directed graph G, if P � φ for all finite
protocols P over G, then G � φ.

The theorem will be proven by contrapositive. At the core of this proof is the
construction of a finite protocol. This protocol will be formed as a composition
of several simpler protocols, where each of the simpler protocols is defined re-
cursively. The base case of this recursive definition is the parity protocol defined
below. It is a generalization of the protocol described in the introduction.

7.1 Parity Protocol

In the following discussion, we use the overloaded notation Inc(x) to denote the
set of objects incident with an object x in a graph, where x may be either an
edge or a vertex. That is, if x is an edge, then Inc(x) represents the set of (at
most two) vertices which are the ends of edge x. On the other hand, if x is a
vertex, then Inc(x) represents the set of edges which have vertex x as an end.

Let G = 〈V,E〉 be a graph and A be a subset of E. We define the “parity
protocol” PA over G as follows. The set of values of any edge e in graph G is the
set of boolean functions on the ends of e (each loop edge is assumed to have a
single end). Thus, a run r of the protocol will be a function that maps an edge
into a function from the ends of this edge into boolean values: r(e)(v) ∈ {0, 1},
where e is an edge and v is an end of e. It will be more convenient, however, to
think about a run as a two-argument function r(e, v) ∈ {0, 1}.

Not all assignments of boolean values to the ends of an edge e will be permitted
in the parity protocol. Namely, if e /∈ A, then the sum of all values assigned to
the ends of e must be even. This is formally captured by the following condition:∑

v∈Inc(e)

r(e, v) ≡ 0 (mod 2). (5)

This means that if an edge e /∈ A has two ends, then the values assigned to
its two ends must be equal. If edge e /∈ A is a loop edge and, thus, has only one
end, then the value assigned to this end must be 0. However, if e ∈ A, then no

104 M. Donders, S. Miner More, and P. Naumov

restriction on the assignment of boolean values to the ends of e will be imposed.
This defines the set of values M(e) for each edge e under PA.

The second restriction on the runs will require that the sum of all values
assigned to ends incident with any vertex v is also even:∑

e∈Inc(v)

r(e, v) ≡ 0 (mod 2). (6)

0

11

1

11

0

1

0 0

1

1

Fig. 4. A run

The latter restriction specifies the action relation Δv for
each vertex v. We will graphically represent a run by placing
boolean values at each end of each edge of the graph. For ex-
ample, Figure 4 depicts a possible run of the parity protocol
PA with A = {c, b, g} over the graph G0 from Figure 1.

The finite protocol PA is now completely defined, but we
still need to prove that it satisfies the continuity condition
from Definition 1. This is true, however, only under an ad-
ditional assumption:

Lemma 4. If set A is such that it contains a loop edge for
each sink of graph G, then PA satisfies the continuity con-
dition.

Proof. As long as a vertex has at least one outgoing edge
whose boolean value is not fixed, this value an be adjusted
to satisfy condition (6). The only edges that have fixed values
are loop edges that do not belong to set A. ��

Recall that we use the notation Inc(x) to denote the set of
objects incident with either an edge x or a vertex x.

Lemma 5.
∑

e∈A

∑
v∈Inc(e) r(e, v) ≡ 0 (mod 2), for any run r of the parity

protocol PA.

Proof. Let G = 〈V,E〉. Using equations (6) and (5),∑
e∈A

∑
v∈Inc(e)

r(e, v) ≡
∑
e∈E

∑
v∈Inc(e)

r(e, v)−
∑

e∈E\A

∑
v∈Inc(e)

r(e, v) ≡

≡
∑
v∈V

∑
e∈Inc(v)

r(e, v) −
∑
e/∈A

0 ≡
∑
v∈V

0− 0 ≡ 0 (mod 2).

Everywhere below, by a path we will mean a sequence of edges that form a
simple (undirected) path.

Definition 9. For any path π = e0, e1, . . . , en in a graph G and any run r of
the parity protocol PA, we define run rπ as

rπ(e, v) =
{

1− r(e, v) if v ∈ Inc(ei) ∩ Inc(ei+1) for some i < n,
r(e, v) otherwise.

Information Flow on Directed Acyclic Graphs 105

Informally, rπ is obtained from r by “flipping” the boolean values on path π at
π’s “internal” vertices. If a path is cyclic, then all vertices along this path are
considered to be internal.

Lemma 6. For any r ∈ PA and any path π, if π is a cycle or starts and ends
with edges that belong to set A, then rπ ∈ R(PA).

Proof. Run rπ satisfies condition (5) because rπ is different from r at both ends
of any non-terminal edge of path π. The same run rπ satisfies condition (6) at
every vertex v of the graph, because path π includes either zero or two ends of
edges incident at vertex v. ��

Lemma 7. If |A| > 1 and graph G is connected, then for any e ∈ A and any
g ∈ {0, 1} there is a run r ∈ R(PA) such that

∑
v∈Inc(e) r(e, v) ≡ g (mod 2).

Proof. Let r̂(e, v) be a run of the protocol PA which is equal to 0 for each end
v of each edge e. If g = 0, then r̂ is the required run r. Assume now that g = 1.
Since |A| > 1 and graph G is connected, there is a path π that connects edge e
with an edge a ∈ A such that a 	= e. Notice that r̂π is the desired run r, since∑

v∈Inc(e) r̂π(e, v) =
∑

v∈Inc(e) r̂(e, v) + 1 ≡ g (mod 2). ��

Lemma 8. If |A| > 1 and graph G is connected, then PA � [A].

Proof. Let A = {a1, . . . , ak}. Pick any boolean values g1, . . . , gk such that g1 +
· · · + gk ≡ 1 (mod 2). By Lemma 7, there are runs r1, . . . , rk ∈ R(PA) such
that
∑

v∈ai
ri(ai, v) ≡ gi (mod 2) for any i ≤ k. If PA � [A], then there is a run

r ∈ R(PA) such that r(ai, v) = ri(ai, v) for each v ∈ ai and each i ≤ k. Therefore,∑
v∈a1

r(a1, v)+ · · ·+
∑

v∈ak
r(ak, v) =

∑
v∈a1

r1(a1, v)+ · · ·+
∑

v∈ak
rk(ak, v) ≡

g1 + · · ·+ gk ≡ 1 (mod 2). This contradicts Lemma 5. ��

Lemma 9. If A and B are sets of edges of a graph G = 〈V,E〉, such that each
connected component of the graph 〈V,E \B〉 contains at least one edge from A,
then PA � [B].

Proofs of Lemma 9 and Lemma 10 from the next section are given in an extended
version of this paper available on the third author’s web page.1

7.2 Recursive Construction

In this section we will generalize the parity protocol through a recursive con-
struction. First, however, we will establish a technical result that we will need
for this construction.

Lemma 10 (protocol extension). For any cut (X,Y) of graph G = 〈V,E〉
and any finite protocol P ′ on truncation GX , there is a finite protocol P on G
such that for any set Q ⊆ E, P � [Q] if and only if P ′ � [Q ∩ E(GX)].

1 http://www2.mcdaniel.edu/pnaumov

106 M. Donders, S. Miner More, and P. Naumov

Lemma 11. For any sets A,B1, . . . , Bn of edges of G, if G �
∧

1≤i≤n[Bi] → [A],
then there is a finite protocol P over G such that P � [Bi] for all 1 ≤ i ≤ n and
P � [A].

Proof. We use induction on the number of vertices of graph G.

Case 1. If |A| ≤ 1, then, by the Small Set axiom, G � [A]. Hence, G �∧
1≤i≤n[Bi] → [A], which is a contradiction.

Case 2. Suppose that the edges of graph G can be partitioned into two non-
trivial disconnected sets X and Y . That is, no edge in X is adjacent with a
edge in Y . Thus, the empty set is a gateway between A ∩X and A ∩ Y . By the
Gateway axiom, G � [A ∩ X] → ([A ∩ Y] → [A]). Hence, taking into account
the assumption G �

∧
1≤i≤n[Bi] → [A], either G �

∧
1≤i≤n[Bi] → [A ∩ X] or

G �
∧

1≤i≤n[Bi] → [A∩Y]. Without loss of generality, we will assume the former.
By Theorem 1, G �

∧
1≤i≤n[Bi∩X] → [A∩X]. Consider the sets PX and PY of

all vertices in components X and Y respectively. Note that (PX , PY) is a cut of
G that has no crossing edges. Let GX be the result of the truncation of G along
this cut. By the Directed Truncation rule, GX �

∧
1≤i≤n[Bi ∩X] → [A∩X]. By

the Induction Hypothesis, there is a protocol P ′ on GX such that P ′ � [A ∩X]
and P ′ � [Bi ∩ X], for any i ≤ n. Therefore, by Lemma 10, there is a protocol
P on G such that P � [A] and P � [Bi] for any i ≤ n.

Case 3. Suppose that graph G has a non-trivial directed cut (X,Y) such that
E(Y) ∩ A = ∅. Thus, by Theorem 1, G �

∧
1≤i≤n[Bi ∩ E(X)] → [A]. By the

Directed Truncation rule, GX �
∧

1≤i≤n[Bi ∩ E(X)] → [A]. By the Induction
Hypothesis, there is a protocol P ′ over GX such that P ′ � [Bi ∩ E(X)] for all
1 ≤ i ≤ n and P ′ � [A]. Therefore, by Lemma 10, there is a protocol P on G
such that P � [A] and P � [Bi] for any i ≤ n.

Case 4. Suppose there is i0 ≤ n such that if all edges in Bi0 are removed from
graph G, then at least one connected component of the resulting network G′

does not contain an element of A. We will denote this connected component by
Q. Let W ⊆ Bi0 be the set of edges in G that connect a vertex from Q with a
vertex not in Q. Any path connecting a edge in E(Q) with a edge not in E(Q)
will have to contain a edge from W . In other words, W is a gateway between
E(Q) and the complement of E(Q) in G. Hence, W is also a gateway between
A∩E(Q) and A \E(Q). Therefore, by the Gateway axiom, taking into account
that (A ∩ E(Q)) ∩W ⊆ E(Q) ∩W = ∅,

G � [A ∩ E(Q),W] → ([A \ E(Q)] → [A]). (7)

Recall now that by the assumption of this case, component Q of graph G′ does
not contain any elements of A. Hence, A ∩ E(Q) ⊆ Bi0 . At the same time,
W ⊆ Bi0 . Thus, from statement (7) and Theorem 1,

G � [Bi0] → ([A \ E(Q))] → [A]). (8)

By the assumption of the lemma,

G �
∧

1≤i≤n

[Bi] → [A]. (9)

Information Flow on Directed Acyclic Graphs 107

From statements (8) and (9), G �
∧

1≤i≤n[Bi] → [A \ E(Q))]. By the laws of
propositional logic, G � [Bi0] → (

∧
1≤i≤n[Bi] → [A \ E(Q)]). Note that if Q

is the complement of set Q, then (Q,Q) is a cut of graph G and W is the set
of all crossing edges of this cut. Since W ⊆ Bi0 , by Theorem 1, G � [W] →
(
∧

1≤i≤n[Bi] → [A \ E(Q)]). Again by Theorem 1, G � [W] → (
∧

1≤i≤n[Bi \
E(Q)] → [A \ E(Q)]). Let GQ be the truncation of graph G along the cut
(Q,Q). By the Truncation rule, GQ �

∧
1≤i≤n[Bi \ E(Q)] → [A \ E(Q)].

By the Induction Hypothesis, there is a protocol P ′ on GQ such that P ′ �

[A \ E(Q)] and P ′ � [Bi \ E(Q)] for any i ≤ n. Therefore, by Lemma 10, there
is a protocol P on G such that P � [A] and P � [Bi] for any i ≤ n.

Case 5. Assume now that (i) |A| > 1, (ii) graph G is connected, (iii) graph G
has no non-trivial directed cuts (X,Y) such that E(Y) ∩ A = ∅, and (iv) for
any i ≤ n, if graph G′ is obtained from G by the removal of all edges in Bi then
each connected component of G′ contains at least one element of A. Note that
condition (iii) implies that A contains at least one loop edge at every sink vertex
in graph G. Consider the parity protocol PA over G. By Lemma 8, PA � [A]. By
Lemma 9, PA � [Bi] for any i ≤ n. ��

7.3 Protocol Composition

In this section, we define a composition of several protocols and finish the proof
of the completeness theorem.

Definition 10. For any protocols P1 = (M1, Δ1), . . . ,Pn = (Mn, Δn) over a
graph G, we define the Cartesian composition P1 × P2 × · · · × Pn to be a pair
(M,Δ) such that

1. M(e) = M1(e)× · · · ×Mn(e),
2. Δp(〈e1

1, . . . , e
n
1 〉, . . . , 〈e1

k, . . . , e
n
k〉) =

∧
1≤i≤n Δi

p(e
i
1, . . . , e

i
k).

For each composition P = P1 × P2 × · · · × Pn, let {r(e)}i denote the ith com-
ponent of the value of secret e over run r.

Lemma 12. For any n > 0 and any finite protocols P1, . . . ,Pn over a graph G,
P = P1 × P2 × · · · × Pn is a finite protocol over G.

Proof. The validity of the continuity condition for P follows from the continuity
conditions for protocols P1, . . . ,Pn. ��

Lemma 13. For any n > 0, for any protocol P = P1×P2×· · ·×Pn over a graph
G = 〈V,E〉, and for any set of edges Q, P � [Q] if and only if ∀i (P i � [Q]).

Proof. Let Q = {q1, . . . , q�}.
(⇒) : Assume P � [Q] and pick any i0 ∈ {1, . . . , n}. We will show that P i0 � [Q].
Pick any runs r′1, . . . , r′� ∈ R(P i0). For each i ∈ {1, . . . , i0−1, i0+1, . . . , n}, select
an arbitrary run ri ∈ R(P i). Such runs exist because graph G is acyclic and all

108 M. Donders, S. Miner More, and P. Naumov

protocols satisfy the continuity condition. We then define a series of composed
runs rj for j ∈ {1, . . . , !} by

rj(e) = 〈r1(e), . . . , ri0−1(e), r′j(e), r
i0+1(e), . . . , rn(e)〉,

for each edge e ∈ E. Since the component parts of each rj belong in their
respective sets R(P i), the composed runs are themselves members of R(P). By
our assumption, P � [Q], thus there is r ∈ R(P) such that r(qi) = ri(qi) for
any i0 ∈ {1, . . . , !}. Finally, we consider the run r∗, where r∗(e) = {r(e)}i0

for each e ∈ E. That is, we let the value of r∗ on e be the itho component of
r(e). By the definition of composition, r∗ ∈ R(P i0), and it matches the original
r′1, . . . , r

′
� ∈ R(P i0) on edges q1, . . . , q�, respectively. Hence, we have shown that

P i0 � [Q].
(⇐) : Assume ∀i (P i � [Q]). We will show that P � [Q]. Pick any runs
r1, . . . , r� ∈ R(P). For each i ∈ {1, . . . , n}, each j ∈ {1, . . . , !}, and each edge e,
let ri

j(e) = {rj(e)}i. That is, for each e, define a run ri
j whose value on edge e

equals the ith component of rj(e). Note that by the definition of composition,
for each i and each j, ri

j is a run in R(P i). Next, for each i ∈ {1, . . . , n}, we use
the fact that P i � [Q] to construct a run ri ∈ R(P i) such that ri(qj) = ri

j(qj).
Finally, we compose these n runs r1, . . . , rn to get run r ∈ R(P). We note that
the value of each edge qj on r matches the the value of qj in run rj ∈ R(P),
demonstrating that P � [Q]. ��

We are now ready to prove the completeness theorem, which was stated earlier
as Theorem 6:

Theorem 6. For any graph G = 〈V,E〉, if P � φ for all finite protocols P over
G, then G � φ.

Proof. We give a proof by contradiction. Let X be a maximal consistent set of
formulas from Φ(G) that contains ¬φ. Let {A1, . . . , An} = {A ⊆ E | [A] /∈ X}
and {B1, . . . , Bk} = {B ⊆ E | [B] ∈ X}. Thus, due to the maximality of set
X , we have G �

∧
1≤j≤k[Bj] → [Ai], for every i ∈ {1, . . . , n}. We will construct

a protocol P such that P � [Ai] for any i ∈ {1, . . . , n} and P � [Bj] for any
j ∈ {1, . . . , k}.

First consider the case where n = 0. Pick any symbol ε and define P to be
〈M,Δ〉 such that M(e) = {ε} for any e ∈ E and action relation Δp to be the
constant True at any vertex p. By Definition 4, P � [C] for any C ⊆ E.

We will assume now that n > 0. By Theorem 11, there are finite protocols
P1, . . . ,Pn such that P i � [Ai] and P i � [Bj] for all j ∈ {1, . . . , k}. Consider
the composition P of protocols P1, . . . ,Pn. By Theorem 13, P � [Ai] for any
i ∈ {1, . . . , n} and P � [Bj] for any j ∈ {1, . . . , j}.

Since X is a maximal consistent set, by induction on the structural complexity
of any formula ψ ∈ Φ(G), one can show now that ψ ∈ X if and only if P � ψ.
Thus, P � ¬φ. Therefore, P � φ, which is a contradiction. ��

Corollary 1. The set {(G,φ) | G � φ} is decidable.

Information Flow on Directed Acyclic Graphs 109

Proof. The complement of this set is recursively enumerable due to the com-
pleteness of the system with respect to finite protocols. ��

8 Conclusion

In this paper, we captured the properties of information flow that can be de-
scribed in terms of the independence relation [A]. This is not the only relation
that can be used to describe properties of information flow on a graph. Another
natural relation is the functional dependency relation A�B between two sets of
edges. This relation is true if the values of edges in set A functionally determine
the values of all edges in set B. A complete axiomatization of this relation when
graph G is not fixed was given by Armstrong [5]. This logical system has be-
come known in the database literature as Armstrong’s axioms [6, p. 81]. Beeri,
Fagin, and Howard [7] suggested a variation of Armstrong’s axioms that describe
properties of multi-valued dependency.

A complete axiomatization of relation A�B for a fixed undirected graph was
given by More and Naumov [8]. It consists of Armstrong’s axioms and a version
of the Gateway axiom discussed in this paper, but contains no inference rules
other than Modus Ponens. It appears, however, that this result can not be easily
generalized to directed acyclic graphs. Thus, an axiomatization of relation A�B
for directed acyclic graphs remains an open problem.

References

1. Sutherland, D.: A model of information. In: Proceedings of Ninth National Computer
Security Conference, pp. 175–183 (1986)

2. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12(1), 1–47 (2008)

3. Miner More, S., Naumov, P.: On interdependence of secrets in collaboration net-
works. In: Proceedings of 12th Conference on Theoretical Aspects of Rationality
and Knowledge, pp. 208–217. Stanford University, Stanford (2009)

4. Miner More, S., Naumov, P.: Hypergraphs of multiparty secrets. In: Dix, J., Leite,
J., Governatori, G., Jamroga, W. (eds.) CLIMA XI. LNCS (LNAI), vol. 6245, pp.
15–32. Springer, Heidelberg (2010)

5. Armstrong, W.W.: Dependency structures of data base relationships. In: Informa-
tion Processing 1974, Proc. IFIP Congress, Stockholm, pp. 580–583. North-Holland,
Amsterdam (1974)

6. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book,
2nd edn. Prentice-Hall, Englewood Cliffs (2009)

7. Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for functional and
multivalued dependencies in database relations. In: SIGMOD 1977: Proceedings of
the 1977 ACM SIGMOD International Conference on Management of Data, pp.
47–61. ACM, New York (1977)

8. Miner More, S., Naumov, P.: Functional dependence of secrets in a collaboration
network. CoRR arXiv:1011.0399v1 [cs.LO] (2010)

The Boyce-Codd-Heath Normal Form for SQL

Flavio Ferrarotti1, Sven Hartmann2, Henning Köhler3,
Sebastian Link1, and Millist Vincent4

1 School of Information Management, Victoria University of Wellington, New Zealand
2 Institut für Informatik, Technische Universität Clausthal, Germany

3 School of Information Technology & Electrical Engineering,
University of Queensland, Australia

4 School of Computer and Information Science, University of South Australia,
Australia

Abstract. In the relational model of data the Boyce-Codd-Heath nor-
mal form, commonly just known as Boyce-Codd normal form, guarantees
the elimination of data redundancy in terms of functional dependencies.
For efficient means of data processing the industry standard SQL per-
mits partial data and duplicate rows of data to occur in database sys-
tems. Consequently, the combined class of uniqueness constraints and
functional dependencies is more expressive than the class of functional
dependencies itself. Hence, the Boyce-Codd-Heath normal form is not
suitable for SQL databases. We characterize the associated implication
problem of the combined class in the presence of NOT NULL constraints
axiomatically, algorithmically and logically. Based on these results we are
able to establish a suitable normal form for SQL.

1 Introduction

In the relational model of data [7] a relation schema R denotes a finite set of
attributes A that have a countably infinite domain dom(A). A relation over R
is a finite set of tuples, i.e. elements of the cartesian product over the domains.
In addition, constraints restrict relations to those considered meaningful for the
application. A functional dependency (FD) over R is an expression X → Y with
X,Y ⊆ R. It restricts relations to those where every pair of tuples with the same
values on all the attributes in X also has the same values on all the attributes
in Y . FDs are essential for database design and data processing: if there is an
FD X → Y over R with Y 	⊆ X , then either all the attributes of R − XY
are also functionally dependent on X or there are relations with redundant data
value occurrences. Redundancy can lead to inefficiencies with updates. A relation
schema R is in Boyce-Codd-Heath normal form (BCHNF) [8,14,19] with respect
to a given set Σ of FDs if for every FD X → Y in Σ, Y ⊆ X or the FD
X → R is implied by Σ. Our terminology pays tribute to Heath’s contribution
to the definition of what is commonly known as Boyce-Codd normal form in the
literature. The definition was presented by Heath in a workshop organized by
Codd in 1971 [14], and Heath himself acknowledges Codd’s contribution to his
work.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 110–122, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Boyce-Codd-Heath Normal Form for SQL 111

Example 1. Consider the relation schema Schedule with attributes Location,
Time, and Speaker, and FD set Σ consisting of Location, Time → Speaker, and
Speaker, Time → Location. Then Schedule is in BCHNF with respect to Σ.
The following relation r on the left is an Armstrong relation for Σ. That is, r
satisfies all the FDs in Σ and violates all the FDs not implied by Σ.

relation r
Location Time Speaker

Green Room 10am Hilbert
Blue Room 10am Gauss
Red Room 11am Gauss
Red Room 01pm Grothendieck
Red Room 02pm Grothendieck

table t
Location Time Speaker

Green Room 10am ni
Blue Room 10am Gauss
Red Room 11am Gauss
Red Room 01pm Grothendieck
Red Room 02pm Grothendieck
Red Room 02pm Grothendieck

No data value occurrence in r is redundant : if we conceal any single value, then
the remaining values and the FDs do not determine the concealed value. ��

Commercial database systems deviate from the relational model of data. In the
data definition and query standard SQL [9] database instances are tables where
the column headers of the table correspond to attributes. The rows of the table
correspond to tuples, but a table can contain different rows that have the same
value in every column. Hence, an SQL table is a bag of rows. This feature lowers
the cost of data processing as duplicate elimination is considered expensive. Fur-
thermore, a so-called null value, marked ni, can occur in any column of any row
in an SQL table. The null value indicates either non-existing, or existing but
unknown, information. This feature of SQL makes it easy to enter new infor-
mation into the database, since information is not always complete in practice.
Null value occurrences can be forbidden for entire columns by declaring the cor-
responding column header NOT NULL. With these new features in mind we now
revisit Example 1.

Example 2. Consider the SQL table Schedule from Example 1 with the same
set Σ of constraints and where the column headers Time and Location are NOT
NULL. The SQL table t from Example 1 on the right is an Armstrong table for
Σ and the NOT NULL constraints. The BCHNF condition does not guarantee the
absence of redundant data value occurrences over SQL tables. For example, the
value of Grothendieck in the last row of table t is redundant: it is determined by
the remaining values in the table t and the FD Location, Time → Speaker. ��
Another important class of constraints over tables are uniqueness constraints
(UCs). The UC unique(X) restricts tables to those that do not have two distinct
rows that are non-null and equal on every attribute in X . In the relational model
UCs are not studied separately because any set of tuples over R satisfies the UC
unique(X) if and only if it satisfies the FD X → R. However, this equivalence
no longer holds over SQL tables, as illustrated in Example 2. Indeed, if X =
{Location,Time}, then table t satisfies X → Schedule, but not unique(X). This
means that, in the context of SQL tables, the combined class of UCs and FDs

112 F. Ferrarotti et al.

should be studied, preferably in the context of NOT NULL constraints. Moreover,
Example 2 motivates our pursuit of a normal form condition for SQL table
definitions that eliminates redundant data value occurrences.

Contributions and Organization. We summarize previous work in Section
2 and give preliminary definitions in Section 3. In Section 4 we establish a finite
axiomatization for the combined class of UCs and FDs in the presence of NOT
NULL constraints. In Section 5 we show that the implication problem of this
class is equivalent to that of goal and definite clauses in Cadoli and Schaerf’s
para-consistent family of S-3 logics. In Section 6 we propose a new syntactic
normal form condition for SQL table definitions. Finally, in Section 7 we justify
our condition semantically by showing that it is necessary and sufficient for
the absence of redundant data value occurrences in any SQL tables. We also
show that our condition can be checked in time quadratic in the input, and is
independent of the representation of the constraints. We conclude in Section 8.

2 Related Work

Data dependencies and normalization are essential to the design of the target
database, the maintenance of the database during its lifetime, and all major data
processing tasks, cf. [1].

In the relational model, a UC unique(X) over relation schema R is satisfied
by a relation if and only if the relation satisfies the FD X → R. Hence, in this
context it suffices to study the class of FDs alone. Armstrong [4] established the
first axiomatization for FDs. The implication problem of FDs can be decided in
time linear in the input [10]. Boyce and Codd [8] and Heath [14] introduced what
is now known as the Boyce-Codd-Heath normal form for relation schemata. Vin-
cent showed that BCHNF is a sufficient and necessary condition to eliminate all
possible redundant data value occurrences as well as data processing difficulties
in terms of FDs [22]. Arenas and Libkin also justified the BCHNF condition in
terms of information-theoretic measures [3].

One of the most important extensions of Codd’s basic relational model [7]
is incomplete information [15]. This is mainly due to the high demand for the
correct handling of such information in real-world applications. While there are
several possible interpretations of a null value, most of the previous work on data
dependencies is based on Zaniolo’s no information interpretation [24]. Atzeni and
Morfuni established an axiomatization of FDs in the presence of NOT NULL con-
straints under the no information interpretation [5]. They did not consider bags,
which commonly appear in SQL, nor normalization. Köhler and Link investi-
gated UCs and FDs over bags, but did not consider null values [17]. Their re-
sults are subsumed by the current contributions as the special case where every
column header is declared NOT NULL. Finally, Hartmann and Link established
the equivalence of the implication problem for the combined class of FDs and
multivalued dependencies in the presence of NOT NULL constraints to that of a
propositional fragment of Cadoli and Schaerf’s family of S-3 logics [13]. However,
they only looked at relations, where UCs are already subsumed by FDs, and did
not consider bags. The paper [13] did also not consider any normal forms. The

The Boyce-Codd-Heath Normal Form for SQL 113

equivalences from [13] cover those by Sagiv et al. [20] established for the special
case where S covers all variables.

3 SQL Table Definitions

We summarize the basic notions. Let A = {H1, H2, . . .} be a (countably) infi-
nite set of distinct symbols, called (column) headers. An SQL table definition
is a finite non-empty subset T of A. Each header H of a table definition T is
associated with a countably infinite domain dom(H) which represents the pos-
sible values that can occur in the column H denotes. To encompass incomplete
information every column may have a null value, denoted by ni ∈ dom(H). The
intention of ni is to mean “no information”. This interpretation can therefore
model non-existing as well as existing but unknown information [5,24].

For header sets X and Y we may write XY for X ∪Y . If X = {H1, . . . , Hm},
then we may write H1 · · ·Hm for X . In particular, we may write simply H
to represent the singleton {H}. A row over T (T -row or simply row, if T is
understood) is a function r : T →

⋃
H∈T

dom(H) with r(H) ∈ dom(H) for all

H ∈ R. The null value occurrence r(H) = ni associated with a header H in a
row r means that no information is available about the header H for the row r.
For X ⊆ T let r[H] denote the restriction of the row r over T to X . An SQL
table t over T is a finite multi-set of rows over R. In particular, a table t over
T may contain two rows r1 and r2 such that r1 	= r2 and r1(H) = r2(H) for all
H ∈ T . For a row r over T and a set X ⊆ T , r is said to be X-total if for all
H ∈ X , r(H) 	= ni. Similar, a table t over T is said to be X-total, if every row
r of t is X-total. A table t over T is said to be a total table if it is T -total.

Following the SQL standard a uniqueness constraint (UC) over an SQL table
definition T is an expression unique(X) where X ⊆ T . An SQL table t over T
is said to satisfy the uniqueness constraint unique(X) over T (|=t unique(X)) if
and only if for all distinct rows r1, r2 ∈ t the following holds: if r1 and r2 are
X-total, then there is some H ∈ X such that r1(H) 	= r2(H).

Functional dependencies are important for the relational [7] and other data
models [2,11,12,23]. Following Lien [18], a functional dependency (FD) over T
is a statement X → Y where X,Y ⊆ T . The FD X → Y over T is satisfied
by a table t over T (|=t X → Y) if and only if for all r1, r2 ∈ t the following
holds: if r1 and r2 are X-total and r1[X] = r2[X], then r1[Y] = r2[Y]. We call
X → Y trivial whenever Y ⊆ X , and non-trivial otherwise. For total tables the
FD definition reduces to the standard definition of a functional dependency [1],
and so is a sound generalization. It is also consistent with the no-information
interpretation [5,18].

Following Atzeni and Morfuni [5], a null-free sub-definition (NFS) over the
table definition T is an expression Ts where Ts ⊆ T . The NFS Ts over T is
satisfied by a table t over T (|=t Ts) if and only if t is Ts-total. SQL allows the
specification of column headers as NOT NULL. Hence, the set of headers declared
NOT NULL forms the single NFS over the underlying SQL table definition.

114 F. Ferrarotti et al.

For a set Σ of constraints over some table definition T , we say that a table t
over T satisfies Σ (|=t Σ) if t satisfies every σ ∈ Σ. If for some σ ∈ Σ the table
t does not satisfy σ we say that t violates σ (and violates Σ) and write 	|=t σ
(|=t Σ). We are interested in the combined class C of uniqueness constraints and
FDs in the presence of an NFS.

Constraints interact with one another. Let T be an SQL table definition, let
Ts ⊆ T denote an NFS over T , and let Σ∪{ϕ} be a set of uniqueness constraints
and FDs over T . We say that Σ implies ϕ in the presence of Ts (Σ |=Ts ϕ) if every
table t over T that satisfies Σ and Ts also satisfies ϕ. If Σ does not imply ϕ in the
presence of Ts we may also write Σ 	|=Ts ϕ. For Σ we let Σ∗

Ts
= {ϕ | Σ |=Ts ϕ}

be the semantic closure of Σ, i.e., the set of all uniqueness constraints and FDs
implied by Σ in the presence of Ts. In order to determine the logical consequences
we use a syntactic approach by applying inference rules, e.g. those in Table 1.
These inference rules have the form

premise
conclusion

condition,

and inference rules without any premises are called axioms. An inference rule is
called sound, if whenever the set of constraints in the premise of the rule and the
NFS are satisfied by some table over T and the constraints and NFS satisfy the
conditions of the rule, then the table also satisfies the constraint in the conclusion
of the rule. We let Σ �R ϕ denote the inference of ϕ from Σ by R. That is, there
is some sequence γ = [σ1, . . . , σn] of constraints such that σn = ϕ and every σi is
an element of Σ or results from an application of an inference rule in R to some
elements in {σ1, . . . , σi−1}. For a finite set Σ, let Σ+

R = {ϕ | Σ �R ϕ} be its
syntactic closure under inferences by R. A set R of inference rules is said to be
sound (complete) for the implication of uniqueness constraints and FDs in the
presence of an NFS if for every table definition T , for every NFS Ts over T and
for every set Σ of uniqueness constraints and FDs over T we have Σ+

R ⊆ Σ∗
Ts

(Σ∗
Ts

⊆ Σ+
R). The (finite) set R is said to be a (finite) axiomatization for the

implication of uniqueness constraints and FDs in the presence of an NFS if R is
both sound and complete.

Example 3. The SQL table in Example 2 satisfies the FD Location, Time →
Speaker, but violates the UC unique(Location, Time). The table

Location Time Speaker
Red Room ni Gauss
Red Room ni Grothendieck

satisfies the NFS {Location, Speaker}, the UC unique(Location, Time) and the
FDs Location → Time and Time → Speaker. The table violates the NFS {Time},
the UC unique(Location) and the FD Location → Speaker. ��

4 Axiomatic and Algorithmic Characterization

Let S denote the set of inference rules in Table 1. The soundness of the rules
in S is not difficult to show. For the completeness of S we use the result that

The Boyce-Codd-Heath Normal Form for SQL 115

Table 1. Axiomatization of UCs and FDs in the presence of an NFS

unique(X)

X → Y XY → X

X → Y Z

X → Y
(demotion) (reflexivity) (decomposition)

X → Y unique(Y)

unique(X)
Y ⊆ XTs

X → Y Y → Z

X → Z
Y ⊆ XTs

X → Y X → Z

X → Y Z
(null pullback) (null transitivity) (union)

the set M consisting of the reflexivity axiom, the union, decomposition and
null transitivity rule is sound and complete for FDs in the presence of an NFS
[5]. In fact, the completeness of S follows from that of M and the following
lemma. For a set Σ = ΣUC ∪ ΣFD of UCs and FDs over table definition T let
ΣFD

UC = {X → T | unique(X) ∈ ΣUC} be the set of FDs associated with ΣUC

and let Σ[FD] := ΣFD
UC ∪ΣFD be the set of FDs associated with Σ.

Lemma 1. Let T be an SQL table definition, Ts an NFS, and Σ a set of UCs
and FDs over T . Then the following hold:

1. Σ |=Ts X → Y if and only if Σ[FD] |=Ts X → Y ,
2. Σ |=Ts unique(X) if and only if Σ[FD] |=Ts X → T and there is some

unique(Z) ∈ Σ such that Z ⊆ XTs. ��

Theorem 1. The set S is a finite axiomatization for the implication of UCs
and FDs in the presence of an NFS.

Proof (Sketch). We sketch the completeness of S by showing that for an ar-
bitrary table definition T , an arbitrary NFS Ts and an arbitrary set ΣUC ∪
ΣFD ∪ {ϕ} of uniqueness constraints and functional dependencies over T the
following holds: if ΣUC ∪ ΣFD |=Ts ϕ, then ΣUC ∪ ΣFD �S ϕ. We consider
two cases. In case (1) ϕ denotes the FD X → Y . Then we know by Lemma
1 that Σ[FD] |=Ts ϕ holds. From the completeness of M for the implica-
tion of functional dependencies in the presence of an NFS we conclude that
Σ[FD] �M ϕ. Since M ⊆ S holds we know that Σ[FD] �S ϕ holds, too. The
demotion rule shows for all σ ∈ ΣFD

UC that ΣUC �S σ holds. Consequently, we
have ΣUC ∪ ΣFD �S ϕ. This concludes case (1). In case (2) ϕ denotes the UC
unique(X). From ΣUC ∪ ΣFD |=Ts unique(X) we conclude by Lemma 1 that
there is some unique(Z) ∈ ΣUC such that Z ⊆ XTs holds. We also conclude
from ΣUC ∪ΣFD |=Ts unique(X) that ΣUC ∪ΣFD |=Ts X → Z holds by sound-
ness of the demotion rule. From case (1) it follows that ΣUC ∪ ΣFD �S X → Z
holds. A final application of the null pullback rule shows that ΣUC ∪ΣFD �S ϕ
holds. ��

Lemma 1 establishes an algorithmic characterization of the associated implica-
tion problem. In fact, it suffices to compute the header set closure X∗

Σ[FD],Ts
:=

{H ∈ T | Σ[FD] |=Ts X → H} of X with respect to Σ[FD] and Ts [5]. The size

116 F. Ferrarotti et al.

|ϕ| of ϕ is the total number of attributes occurring in ϕ, and the size ||Σ|| of Σ
is the sum of |σ| over all elements σ ∈ Σ.

Theorem 2. The problem whether a UC or FD ϕ is implied by a set Σ of UCs
and FDs can be decided in O(||Σ ∪ {ϕ}||) time. ��

5 Equivalence to Goal and Definite Clauses in S-3 Logics

Here we refine the correspondence between the implication of FDs in the presence
of NFSs and the implication of Horn clauses in Cadoli and Schaerf’s family of
S-3 logics, established for tables that are sets of rows [13].
S-3 semantics. Schaerf and Cadoli [21] introduced S-3 logics as “a seman-

tically well-founded logical framework for sound approximate reasoning, which
is justifiable from the intuitive point of view, and to provide fast algorithms for
dealing with it even when using expressive languages”.

For a finite set L of propositional variables let L� denote the set of all literals
over L, i.e., L� = L ∪ {¬H ′ | H ′ ∈ L} ⊆ L∗ where L∗ denotes the propositional
language over L. Let S ⊆ L. An S-3 interpretation of L is a total function
ω̂ : L� → {F,T} that maps every variable H ′ ∈ S and its negation ¬H ′ into
opposite values (ω̂(H ′) = T if and only if ω̂(¬H ′) = F), and that does not
map both a variable H ′ ∈ L−S and its negation ¬H ′ into F (we must not have
ω̂(H ′) = F = ω̂(¬H ′) for any H ′ ∈ L−S). An S-3 interpretation ω̂ : L� → {F,T}
of L can be lifted to a total function Ω̂ : L∗ → {F,T} by means of simple rules
[21]. Since we are only interested in Horn clauses here we require the following two
rules for assigning truth values to a Horn clause: (1) Ω̂(ϕ′) = ω̂(ϕ′), if ϕ′ ∈ L�,
and (2) Ω̂(ϕ′ ∨ ψ′) = T, if Ω̂(ϕ′) = T or Ω̂(ψ′) = T. An S-3 interpretation ω̂
is a model of a set Σ′ of L-formulae, if Ω̂(σ′) = T holds for every σ′ ∈ Σ′. We
say that Σ′ S-3 implies an L-formula ϕ′, denoted by Σ′ |=3

S ϕ′, if every S-3
interpretation that is a model of Σ′ is also a model of ϕ′.

Mappings between constraints and formulae. In the first step, we define
the fragment of L-formulae that corresponds to UCs and FDs in the presence of
an NFS Ts over a table definition T . Let φ : T → L denote a bijection between
T and the set L = {H ′ | H ∈ T } of propositional variables that corresponds
to T . For an NFS Ts over T let S = φ(Ts) be the set of propositional variables
in L that corresponds to Ts. Hence, the variables in S are the images of those
column headers of T declared NOT NULL. We now extend φ to a mapping Φ
from the set of UCs and FDs over T . For a UC unique(H1, . . . , Hn) over T ,
let Φ(unique(H1, . . . , Hn)) denote the goal clause ¬H ′

1 ∨ · · · ∨ ¬H ′
n. For an FD

H1, . . . , Hn → H over T , let Φ(H1, . . . , Hn → H) denote the definite clause
¬H ′

1∨· · ·∨¬H ′
n∨H ′. For the sake of presentation, but without loss of generality,

we assume that FDs have only a single column header on their right-hand side.
As usual, disjunctions over zero disjuncts are interpreted as F. In what follows,
we may simply denote Φ(ϕ) = ϕ′ and Φ(Σ) = {σ′ | σ ∈ Σ} = Σ′.

The equivalence. Our aim is to show that for every SQL table definition T ,
for every set Σ∪{ϕ} of UCs and FDs and for every NFS Ts over T , there is some
Ts-total table t that satisfies Σ and violates ϕ if and only if there is an S-3 model

The Boyce-Codd-Heath Normal Form for SQL 117

ω̂t of Σ′ that is not an S-3 model of ϕ′. For an arbitrary table t it is not obvious
how to define the S-3 interpretation ω̂t. However, for deciding the implication
problem Σ |=Ts ϕ it suffices to examine two-row tables, instead of arbitrary
tables. For two-row tables {r1, r2} we define the special-3-interpretation of L by

– ω̂{r1,r2}(H
′) = T and ω̂{r1,r2}(¬H ′) = F, if ni 	= r1(H) = r2(H) 	= ni,

– ω̂{r1,r2}(H
′) = T and ω̂{r1,r2}(¬H ′) = T, if r1(H) = ni = r2(H),

– ω̂′
{r1,r2}(H

′) = F and ω̂′
{r1,r2}(¬H

′) = T, if r1(H) 	= r2(H)

for all H ′ ∈ L. If {r1, r2} is Ts-total, then ω̂{r1,r2} is an S-3 interpretation.

Theorem 3. Let Σ∪{ϕ} be a set of UCs and FDs over the SQL table definition
T , and let Ts denote an NFS over T . Let L denote the set of propositional
variables that corresponds to T , S the set of variables that corresponds to Ts,
and Σ′ ∪ {ϕ′} the set of goal and definite clauses over L that corresponds to
Σ ∪ {ϕ}. Then Σ |=Ts ϕ if and only if Σ′ |=3

S ϕ′. ��

An example of the equivalence. Consider the table definition Schedule
with Schedules = {Location} and Σ = {Speaker → Location,Location →
Time}. Suppose we wonder if the FD ϕ1 = Speaker → Time is implied by Σ in
the presence of Schedules. According to Theorem 3 the problem Σ |=Schedules

ϕ1 is equivalent to Σ′ |=3
S ϕ′

1 where S = {Location′}. Suppose an S-3 interpre-
tation ω̂ is not a model of ϕ′

1. Then ω̂(¬Speaker′) = F = ω̂(Time′). For ω̂ to be
an S-3 model of Σ′ we must thus have ω̂(Location′) = T = ω̂(¬Location′),
but Location′ ∈ S. We conclude that Σ′ |=3

S ϕ′
1 and by Theorem 3 also

Σ |=Schedules
ϕ1. Let now be ϕ2 = unique(Speaker). Then Σ 	|=Ts ϕ1 as the

following SQL table t demonstrates:

Speaker Location Time
Grothendieck Red Room ni
Grothendieck Red Room ni

.

Indeed, the special S-3 interpretation ω̂t where for all L ∈ L�, ω̂t(L) = F iff
L ∈ {¬Speaker′,¬Location′} is a model of Σ′ but not a model of ϕ′

2.

6 The Boyce-Codd-Heath Normal Form for SQL

Boyce and Codd [8] and Heath [14] introduced a normal form condition on re-
lation schemata that characterizes the absence of certain processing difficulties
with any relation over the schema [22]. For SQL table definitions, no normal
forms have been proposed to the best of our knowledge. We now propose an ex-
tension of the classical Boyce-Codd-Heath normal form to SQL table definitions.

Definition 1. Let T denote an SQL table definition, Ts a null-free subdefinition,
and Σ a set of UCs and FDs over T . Then T is said to be in Boyce-Codd-Heath
normal form with respect to Σ and Ts if and only if for all non-trivial functional
dependencies X → Y ∈ Σ+

S we have unique(X) ∈ Σ+
S. ��

118 F. Ferrarotti et al.

Schema Schedule of Example 2 is not in BCHNF with respect to Σ and Ts.
However, if we replace the two FDs in Σ by the two UCs unique(Location,Time)
and unique(Speaker,Time), then Schedule is indeed in BCHNF with respect to
Σ and Ts. It is very important to note here that the UCs are much stronger than
the FDs. If the FD X → H is meaningful over T , then the table definition with
projected column header set T ′ = XH still carries the FD X → H , but the UC
unique(X) may not be meaningful over T ′. That is, decomposition and synthesis
approaches [6,16,19] deserve new attention in the context of SQL. In general,
duplicates should only be tolerated when they are meaningful, or updates are
less expensive than duplicate elimination.

7 Semantic Justification

We will now justify our syntactic definition of BCHNF semantically by showing
that the condition is sufficient and necessary for the absence of redundant data
value occurrences in any future tables. Following Vincent [22] we will make the
notion of data redundancy explicit. Let T be an SQL table definition, H a column
header of T , and r a row over T . A replacement of r(H) is a row r′ over T that
satisfies the following conditions: i) for all H ′ ∈ T−{H} we have r′(H ′) = r(H ′),
and ii) r′(H) 	= r(H). Intuitively, a data value occurrence in some Σ-satisfying
table is redundant if the occurrence cannot be replaced by any other data value
without violating some constraint in Σ.

Definition 2. Let T be an SQL table definition, H ∈ T a column header, Ts an
NFS and Σ a set of UCs and FDs over T , t a table over T that satisfies Σ and
Ts, and r a row in t. We say that the data value occurrence r(H) is redundant
if and only if every replacement r′ of r(H) results in a table t′ := (t−{r})∪{r′}
that violates Σ. We say that T is in Redundancy-Free Normal Form (RFNF)
with respect to Σ and Ts if and only if there is no table t over T such that i) t
satisfies Σ and Ts, and ii) t contains a row r such that for some column header
H of T the data value occurrence r(H) is redundant. ��

We show that the syntactic BCHNF condition of Definition 1 captures the se-
mantic RFNF condition of Definition 2.

Theorem 4. Let T be an SQL table definition, Ts an NFS and Σ a set of UCs
and FDs over T . Then T is in RFNF with respect to Σ and Ts if and only if T
is in BCHNF with respect to Σ and Ts.

Proof. Let T not be in RFNF with respect to Σ and Ts. Then there is some
Ts-total table t over T that satisfies Σ, some row r ∈ t and some header H ∈ T
such that r(H) is redundant. We need to show that there is some non-trivial FD
X → Y ∈ Σ+

S such that unique(X) /∈ Σ+
S. Let t[H] := {r̄(H)|r̄ ∈ t}. Define a

replacement r′ of r(H) such that r′(H) ∈ dom(H)− (t[H]∪{ni}). Furthermore,
let t′ := (t − {r}) ∪ {r′}. Since r(H) is redundant it follows that t′ violates Σ.
Since |=t Σ and t′ agrees with t except on r′(H) /∈ t[H] ∪ {ni} it follows that

The Boyce-Codd-Heath Normal Form for SQL 119

t′ cannot violate any UC in Σ. Let t′ violate the FD X → Y ∈ Σ. From the
definition of r′ and the properties of t and t′ it follows that H ∈ Y −X . Hence,
X → Y is non-trivial. Since t′ violates X → Y ∈ Σ there is some r′′ ∈ t′ − {r′}
such that r′′[X] = r′[X], and r′′, r′ are X-total. Moreover, r′′ ∈ t, r′′[X] = r[X]
and r′′, r are X-total since H /∈ X . Therefore, t satisfies Σ but t violates the
UC unique(X). Hence, unique(X) /∈ Σ∗

Ts
and by the soundness of S we conclude

unqiue(X) /∈ Σ+
S. It follows that T is not in BCHNF with respect to Σ and Ts.

Vice versa, let T not be in BCHNF with respect to Σ and Ts. Then there is
some non-trivial FD X → Y ∈ Σ+

S such that unique(X) /∈ Σ+
S. We need to show

that there is some table t over T that satisfies Σ and Ts, some row r ∈ t and
some header H ∈ T such that r(H) is redundant. Let t := {r, r′} consist of two
rows r and r′ over T such that for all H ′ ∈ T , i) ni 	= r(H ′) = r′(H ′) 	= ni holds
if and only if H ′ ∈ X(X+

Σ,Ts
∩ Ts), ii) r(H ′) = ni = r′(H ′) if and only if H ′ ∈

X+
Σ,Ts

−XTs, and iii) ni 	= r(H ′) 	= r′(H ′) 	= ni if and only if H ′ ∈ T −X+
Σ,Ts

.
Here,

X+
Σ,Ts

:= {H ′ ∈ T |X → H ′ ∈ Σ+
S}.

It follows immediately that t is Ts-total. We show that t satisfies Σ.
Let U → V ∈ Σ and let r[U] = r′[U] such that r, r′ are U -total. It follows

that U ⊆ X(X+
Σ,Ts

∩ Ts). From X → X+
Σ,Ts

∈ Σ+
S and U ⊆ X+

Σ,Ts
follows

X → U ∈ Σ+
S by the decomposition rule. From X → U ∈ Σ+

S, U → V ∈ Σ
and U ⊆ XTs we conclude X → V ∈ Σ+

S by means of the null transitivity
rule. Consequently, V ⊆ X+

Σ,Ts
and therefore r[V] = r′[V]. We conclude that t

satisfies U → V .
Let unique(U) ∈ Σ, and assume that r[U] = r′[U] holds for the distinct U -

total rows r and r′. We conclude that U ⊆ X(X+
Σ,Ts

∩ Ts) holds. From X →
X+

Σ ∈ Σ+
S we infer X → U ∈ Σ+

S by means of the decomposition rule. From
unique(U) ∈ Σ, X → U ∈ Σ+

S and U ⊆ XTs we infer that unique(X) ∈ Σ+
S by

an application of the null pullback rule. This, however, is a contradiction since
unique(X) /∈ Σ+

S. Consequently, t satisfies unique(U). Hence, t satisfies Σ.
Now let H ∈ Y − X . Since Y ⊆ X+

Σ,Ts
it follows that r(H) is redundant.

Therefore, T is not in RFNF with respect to Σ and Ts. ��

Definition 1 refers to the syntactic closure Σ+
S of Σ and Ts under S, which can

be exponential in the size of Σ. Therefore, the question remains if the problem
whether an SQL table definition is in BCHNF with respect to Σ and Ts can be
decided efficiently.

Theorem 5. Let T be an SQL table definition, Ts an NFS and Σ a set of UCs
and FDs over T . Then the following conditions are equivalent:

1. T is in BCHNF with respect to Σ and Ts,
2. for all non-trivial FDs X → Y ∈ Σ we have: unique(X) ∈ Σ+

S,
3. for all non-trivial FDs X → Y ∈ Σ we have: X → T ∈ Σ+

S and there is
some unique(Z) ∈ Σ such that Z ⊆ XTs.

120 F. Ferrarotti et al.

Proof. We show first the equivalence between 1. and 2. Condition 1. implies con-
dition 2. since Σ ⊆ Σ+

S. We show next that condition 2. implies condition 1. As-
sume that T is not in BCHNF with respect to Σ and Ts. That is, there is some
non-trivial FD X → Y ∈ Σ+

S such that unique(X) /∈ Σ+
S. We need to show that

there is some non-trivial FD X ′ → Y ′ ∈ Σ such that unique(X ′) /∈ Σ+
S. Let

Σ = Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σk = Σ+
S

be a proper chain where for all j = 1, . . . , k the setΣj results fromΣj−1 by a single
application of an inference rule in S. We show that if there is some non-trivial FD
X → Y ∈ Σj such that unique(X) /∈ Σ+

S, then there is some non-trivial FD X ′ →
Y ′ ∈ Σj−1 such that unique(X ′) /∈ Σ+

S. For j > 0 let X → Y ∈ Σj−Σj−1 be non-
trivial such that unique(X) /∈ Σ+

S. ThenX → Y has been inferred either by means
of the decomposition, union or null transitivity rule. In case of the decomposition
rule we have X → Y Z ∈ Σj−1 with unique(X) /∈ Σ+

S. In case of the union rule we
have X → U ∈ Σj−1 and X → W ∈ Σj−1 with Y = UW and unique(X) /∈ Σ+

S.
In case of the null transitivity rule we know that there are X → Z and Z → Y
in Σj−1 with Z ⊆ XTs. If X → Z is non-trivial, then we are done. If X → Z is
trivial, then Z → Y is non-trivial since otherwise X → Y would be trivial, too. If
unique(Z) ∈ Σ+

S, then an application of the null pullback rule to unique(Z) ∈ Σ+
S,

X → Z ∈ Σ+
S and Z ⊆ XTs shows that unique(X) ∈ Σ+

S holds as well. This is a
contradiction, i.e., unique(Z) /∈ Σ+

S. We have just shown that there is some non-
trivial FD X ′ → Y ′ ∈ Σ such that unique(X ′) /∈ Σ+

S.
The equivalence between conditions 2. and 3 follows immediately from

Lemma 1. ��

The following result follows directly from Theorem 5 and Theorem 2.

Theorem 6. The problem whether an SQL table definition T is in Boyce-Codd-
Heath Normal Form with respect to an NFS Ts and a set Σ of UCs and FDs
over T can be decided in O(||Σ|| × |Σ|) time. ��

If we define a primary key for an SQL table definition, i.e., there is some X ⊆ T
such that X ⊆ Ts and unique(X) ∈ Σ, then the BCHNF condition for SQL
table definitions reduces to the BCHNF condition for relation schemata: T is in
BCHNF with respect to Σ and Ts if and only if for all non-trivial FDs X →
Y ∈ Σ we have X → T ∈ Σ+

S. However, the presence of primary keys does not
mean that the decomposition or synthesis approach [6,16,19] can eliminate any
data redundancy.

Example 4. Consider the SQL table definition T = {Address,City,ZIP} with
Ts = {Address,ZIP} and

Σ = {unique(Address,City), unique(Address, ZIP),ZIP → City}.

Hence, we have a primary key {Address, ZIP}. A synthesis into the following
table definitions:

The Boyce-Codd-Heath Normal Form for SQL 121

– {City, ZIP} with ZIP → City and NFS {ZIP},
– {Address,City} with unique(Address,City) and NFS {Address}, and
– {Address, ZIP} with unique(Address, ZIP) and NFS {Address, ZIP}

is dependency-preserving, but neither lossless nor is the first resulting table def-
inition in BCHNF. The tables

Address City ZIP
03 Hudson St ni 10001
70 King St ni 10001

City ZIP
ni 10001
ni 10001

Address ZIP
03 Hudson St 10001
70 King St 10001

Address City
03 Hudson St ni
70 King St ni

show the synthesis on the semantic level. For this example, it appears to be
sensible to replace the FD ZIP → City on {City, ZIP} by the UC unique(ZIP).
The resulting synthesis would then be lossless, all schemata would be in BCHNF
and the second table from the left would only contain one row. ��

The example illustrates that the approaches of synthesis and decomposition to
database normalization require new attention when we consider the features of
SQL that allow duplicate and partial information. The presence of duplicates re-
quires uniqueness constraints in addition to functional dependencies, but unique-
ness constraints are not preserved when performing joins. Hence, it is not clear
what dependency-preservation means. The presence of null values requires join
attributes to be NOT NULL when lossless decompositions are to be achieved. Fur-
thermore, projection becomes more difficult to define when duplicates are to be
eliminated only sometimes.

8 Conclusion

The class of uniqueness constraints is not subsumed by the class of functional
dependencies over SQL tables, in contrast to relations. For this purpose, we have
characterized the implication problem for the combined class of UCs and FDs in
the presence of NOT NULL constraints axiomatically, algorithmically and logically.
We have further proposed a syntactic Boyce-Codd-Heath normal form condition
for SQL table definitions, and justified this condition semantically. That is, the
condition characterizes the absence of redundant data value occurrences in all
possible SQL tables. On one hand, the semantics of SQL really calls for a com-
prehensive support to specify and maintain FDs to guarantee consistency and
locate data redundancy. On the other hand, the SQL features motivate a thor-
ough study of the decomposition and synthesis approaches towards achieving
normalization.

Acknowledgement

This research is supported by the Marsden fund council from Government fund-
ing, administered by the Royal Society of New Zealand. The second author is
supported by a research grant of the Alfried Krupp von Bohlen and Halbach
foundation, administered by the German Scholars organization.

122 F. Ferrarotti et al.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Arenas, M., Libkin, L.: A normal form for XML documents. ACM Trans. Database
Syst. 29(1), 195–232 (2004)

3. Arenas, M., Libkin, L.: An information-theoretic approach to normal forms for
relational and XML data. J. ACM 52(2), 246–283 (2005)

4. Armstrong, W.W.: Dependency structures of database relationships. Information
Processing 74, 580–583 (1974)

5. Atzeni, P., Morfuni, N.: Functional dependencies and constraints on null values in
database relations. Information and Control 70(1), 1–31 (1986)

6. Biskup, J., Dayal, U., Bernstein, P.: Synthesizing independent database schemas.
In: SIGMOD Conference, pp. 143–151 (1979)

7. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

8. Codd, E.F.: Recent investigations in relational data base systems. In: IFIP
Congress, pp. 1017–1021 (1974)

9. Date, C., Darwen, H.: A guide to the SQL standard. Addison-Wesley Professional,
Reading (1997)

10. Diederich, J., Milton, J.: New methods and fast algorithms for database normal-
ization. ACM Trans. Database Syst. 13(3), 339–365 (1988)

11. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2) (2009)

12. Hartmann, S., Link, S.: Numerical constraints on XML data. Inf. Comput. 208(5),
521–544 (2010)

13. Hartmann, S., Link, S.: When data dependencies over SQL tables meet the Logics
of Paradox and S-3. In: PODS Conference (2010)

14. Heath, I.J.: Unacceptable file operations in a relational data base. In: SIGFIDET
Workshop, pp. 19–33 (1971)

15. Imielinski, T., Lipski Jr., W.: Incomplete information in relational databases. J.
ACM 31(4), 761–791 (1984)

16. Köhler, H.: Finding faithful Boyce-Codd normal form decompositions. In: Cheng,
S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 102–113. Springer,
Heidelberg (2006)

17. Köhler, H., Link, S.: Armstrong axioms and Boyce-Codd-Heath normal form under
bag semantics. Inf. Process. Lett. 110(16), 717–724 (2010)

18. Lien, E.: On the equivalence of database models. J. ACM 29(2), 333–362 (1982)
19. Makowsky, J.A., Ravve, E.V.: Dependency preserving refinements and the funda-

mental problem of database design. Data Knowl. Eng. 24(3), 277–312 (1998)
20. Sagiv, Y., Delobel, C., Parker Jr., D.S., Fagin, R.: An equivalence between rela-

tional database dependencies and a fragment of propositional logic. J. ACM 28(3),
435–453 (1981)

21. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artif. Intell. 74,
249–310 (1995)

22. Vincent, M.: Semantic foundation of 4NF in relational database design. Acta
Inf. 36, 1–41 (1999)

23. Vincent, M., Liu, J., Liu, C.: Strong FDs and their application to normal forms in
XML. ACM Trans. Database Syst. 29(3), 445–462 (2004)

24. Zaniolo, C.: Database relations with null values. J. Comput. Syst. Sci. 28(1), 142–
166 (1984)

Hybrid Logics and NP Graph Properties

Francicleber Martins Ferreira1,�, Cibele Matos Freire1,
Mario R.F. Benevides2,��, L. Menasché Schechter3,

and Ana Teresa Martins1,� � �

1 Federal University of Ceará, Computer Science Department
2 Federal University of Rio de Janeiro, COPPE/Systems

3 Federal University of Rio de Janeiro, Department of Computer Science

Abstract. We show that for each property of graphs G in NP there is a
sequence φ1, φ2, . . . of formulas of the full hybrid logic which are satisfied
exactly by the frames in G. Moreover, the size of φn is bounded by a
polynomial. We also show that the same holds for each graph property
in the polynomial hierarchy.

1 Introduction

The use of graphs as a mathematical abstraction of objects and structures makes
it one of the most used concepts in computer science. Several typical problems
in computer science have their inputs modeled by graphs, and such problems
commonly involve evaluating some graph property. To mention a well-known
example, deciding whether a map can be colored with a certain number of colors
is related to a similar problem on planar graphs [10,14]. The applications of
graphs in computer science are not restricted to modelling the input of problems.
Graphs can be used in the theoretical framework in which some branches of
computer science are formalized. This is the case, for example, in distributed
systems, in which the model of computation is built on top of a graph [3,12].
Again, properties of graphs can be exploited in order to obtain results about
such models of computation.

We can use logic to express properties of structures like graphs. From the
semantical standpoint, a logic can be regarded as a pair L = (L, |=), where
L, the language of L, is a set of elements called formulas, and |= is a binary
satisfaction relation between some set of objects or structures and formulas.
Such set of structures can be a set of relational structures, for example, the class
of graphs. A sentence φ of L can be used to express some property of structures,
hence one could check whether a structure A has some property by evaluating
whether A |= φ holds or not. The problem of checking whether a given model
satisfies a given formula is called model checking.

� This research was partially supported by CAPES(DS,PROCAD 2010).
�� This research was partially supported by FAPERJ, CNPq and CAPES.

� � � This research was partially supported by CNPq(PQ, Universal 2010, Casadinho
2008) and CAPES(PROCAD 2009).

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 123–134, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

124 F.M. Ferreira et al.

In the last few decades, modal logics have attracted the attention of computer
scientists working with logic and computation [5]. Among the reasons is the fact
that modal logics often have interesting computer theoretical properties, like
decidability [15,9]. This is due to a lack of expressive power in comparison with
other logics such as first-order logics and its extensions. Many modal logics
present also good logical properties, like interpolation, definability, and so on.
Research in modal logic includes augmenting the expressive power of the logic
using resources as fixed-point operators [6] or hybrid languages [2,1] and keep
the nice properties of the logic. Modal logics are particularly suitable to deal
with graphs because standard semantics of modal logics is based on structures
called frames, which are essentially graphs.

In [4], hybrid logics are used to express graph properties, like being connected,
hamiltonian or eulerian. Several hybrid logics and fragments were studied to de-
fine graph properties through the concept of validity in a frame (see Definition 5
below). Some graph properties, like being hamiltonian, require a high expressive
power and cannot be expressed by a single sentence in traditional hybrid logics.
There are, however, sentences φn which can express such properties for frames
of size n.

We are interested in expressing graph properties in NP (that is, to decide
whether a graph belongs to the property is NP) using hybrid logics. The Hy-
brid Modal logics that we studied have low expressive power in comparison,
for example, to second-order logic, hence we do not aim to associate to each
graph property a single formula. Instead, we present, to each graph property,
a sequence of hybrid sentences φ1, φ2, . . . , such that a graph of size n has the
desired property iff φn is valid in the graph, regarded as a frame. In Section 2,
we define the hybrid logic which we will study In Section 3, we show that, for
any graph property, there is a sequence of sentences φ1, φ2, . . . of the fragment
of hybrid logic with nominals and the @ operator such that a graph of size n has
the property iff φn is valid in the corresponding frame. However, the size of φn

obtained is exponential on n. In Section 4, we show that, for graph properties
in NP, and more generally in the polynomial hierarchy, there is such a sequence,
but the size of the sentences is bounded by a polynomial on n. In Section 5, we
show how to obtain the results of the previous section for the fragment of hybrid
logic without the global modality E and without nominals, provided that graphs
are connected.

2 Hybrid Logic

In this section, we present the hybrid logic and its fragments which we will use.
Hybrid modal logics extend classical modal logics by adding nominals and state
variables to the language. Nominals and state variables behave like propositional
atoms which are true in exactly one world. Other extensions include the operators
↓ (binder) and @. The ↓ allows one to assign the current state to a state variable.
This can be used to keep a record of the visited states. The @ operator allows
one to evaluate a formula in the state assigned to a certain nominal or state
variable.

Hybrid Logics and NP Graph Properties 125

Definition 1. The language of the hybrid graph logic with the ↓ binder is a
hybrid language consisting of a set PROP of countably many proposition symbols
p1, p2, . . ., a set NOM of countably many nominals i1, i2, . . ., a set S of countably
many state-variables x1, x2, . . ., such that PROP , NOM and S are pairwise
disjoint, the boolean connectives ¬ and ∧ and the modal operators @i, for each
nominal i, @x, for each state-variable x, �, �−1 and ↓. The language LFHL of
the (Full) Hybrid Logic can be defined by the following BNF rule:

α := p | t | ¬α | α ∧ α | �α | �−1α | Eα | @tα | ↓ x.α | �,

where t is either a nominal or a state variable. For each C ⊆ {@, ↓,�−1, E}, we
define HL(C) to be the corresponding fragment. In particular, we define FHL =
HL(@, ↓,�−1, E). We also use HL(C)\NOM and HL(C)\PROP to refer to the
fragments of HL(C) without nominals and propositional symbols respectively.

The standard boolean abbreviations →, ↔, ∨ and ⊥ can be used with the
standard meaning as well as the abbreviations of the dual modal operators:
�φ := ¬�¬φ, �−1φ := ¬�−1¬φ and Aφ := ¬E¬φ.

Formulas of hybrid modal logics are evaluated in hybrid Kripke structures (or
hybrid models). These structures are built from frames.

Definition 2. A frame is a graph F = (W,R), where W is a non-empty set
(finite or not) of vertices and R is a binary relation over W , i.e., R ⊆W ×W .

Definition 3. A (hybrid) model for the hybrid logic is a pair M = (F ,V),
where F is a frame and V : PROP ∪ NOM #→ P(W) is a valuation function
mapping proposition symbols into subsets of W , and mapping nominals into
singleton subsets of W , i.e, if i is a nominal then V(i) = {v} for some v ∈W .

In order to deal with the state-variables, we need to introduce the notion of
assignments.

Definition 4. An assignment is a function g that maps state-variables to ver-
tices of the model, g : S #→ W . We use the notation g′ = g[v1/x1, . . . , vn/xn] to
denote an assignment such that g′(x) = g(x) if x /∈ {x1, . . . , xn} and g′(xi) = vi,
otherwise.

The semantical notion of satisfaction is defined as follows:

Definition 5. Let M = (F ,V) be a model. The notion of satisfaction of a
formula ϕ in a model M at a vertex v with assignment g, notation M, g, v � ϕ,
can be inductively defined as follows:
M, g, v � p iff v ∈ V(p);
M, g, v � � always;
M, g, v � ¬ϕ iff M, g, v 	� ϕ;
M, g, v � ϕ1 ∧ ϕ2 iff M, g, v � ϕ1 and M, g, v � ϕ2;
M, g, v � �ϕ iff there is a w ∈ W such that vRw and M, g, w � ϕ;
M, g, v � �−1ϕ iff there is a w ∈W such that wRv and M, g, w � ϕ;

126 F.M. Ferreira et al.

M, g, v � i iff v ∈ V(i);
M, g, v � @iϕ iff M, g, di � ϕ, where di ∈ V(i);
M, g, v � x iff g(x) = v;
M, g, v � @xφ iff M, g, d � φ, where d = g(x);
M, g, v �↓ x.φ iff M, g[v/x], v � φ.

For each nominal i, the formula @iϕ means that if V(i) = {v} then ϕ is satisfied
at v. If M, g, v � ϕ for every vertex v, we say that ϕ is globally satisfied in
the model M with assignment g (M, g � ϕ) and if ϕ is globally satisfied in all
models M and assignments of a frame F , we say that ϕ is valid in F (F � ϕ).

3 Properties of Graphs in HL

In [4], it was shown that there is a formula φn of FHL such that a graph of size
n is Hamiltonian iff it globally satisfies φn. The main question which underlies
this investigation is whether there is a sequence of formulas (φn)n∈N for each
graph property G in NP such that a graph G of size n is in G iff G, as a frame,
globally satisfies φn. Actually, we can show that such sequence exists for each
graph property.

Let G = (V,E) be a graph of cardinality n. Let us consider that the set V of
vertices coincides with the set {1, . . . , n} of nominals. Consider the formula:

ψG =
∧

(i,j)∈E

@i�j ∧
∧

(i,j) �∈E

@i¬�j.

Let G be any property of graphs. We define the formulas

ψn
G =

∨
G∈G,|G|=n

ψG , θn =
∧

i,j∈{1,...,n},i�=j

@i¬j and φn
G = θn → ψn

G .

Lemma 1. Let G be a graph of cardinality n and G a property of graphs. Then
G ∈ G iff G � φn

G .

Since there are 2n2
graphs with vertices in {1, . . . , n}, we have that the size of

φn
G is O(2n2

) for any graph property G. Obviously, there is no hope for that
sequence of formulas to be always computable. We can show, however, that, for
problems in the polynomial hierarchy, such sequence is recursive and, moreover,
there is a polynomial bound in the size of formulas.

4 Translation

In this section, we show that for each graph property G in the polynomial hier-
archy there is a sequence (φn)n∈N of formulas such that a graph G of size n is in
G iff G � φn and such that φn is bounded from above by a polynomial on n. We
will use the well-known characterization of problems in the polynomial hierarchy
and classes of finite models definable in second-order logic (SO) from descriptive

Hybrid Logics and NP Graph Properties 127

complexity theory [11]. To this end, we define a translation from formulas in SO
to formulas in FHL which are equivalent with respect to frames of size n, for
some n ∈ N . Such translation will give us formulas whose size is bounded by
a polynomial on n. Moreover, the formulas obtained by the translation do not
use propositional symbols, nominals or free state variables, which means that,
for these formulas, the complexity of model-checking and frame-checking coin-
cides. We use the well known definitions and concepts related to first-order logic
(FO) and second-order logic which can be founded in most textbooks (see, for
instance, [7]).

Definition 6 (Translation from FO to HL). Let φ be a first-order formula in
the vocabulary S = {E,R1, . . . , Rm} where E is binary, n a natural number and
f a function from the set of first-order variables into {1, . . . , n}. Let t, z1, . . . , zn

be state variables and for each R ∈ {R1, . . . , Rm} of arity h, let yR
j1,...,jh

be a
state variable, with ji ∈ {1, . . . , n}, 1 ≤ i ≤ h. We define the function trf

n :
LS

FO → LFHL as:

• trf
n(x1 ≡ x2) = @zf(x1)zf(x2);

• trf
n(E(x1, x2)) = @zf(x1)�zf(x2);

• trf
n(R(x1, . . . , xk)) = @ty

R
f(x1),...,f(xk), for each R ∈ {R1, . . . , Rm};

• trf
n(γ ∧ θ) = trf

n(γ) ∧ trf
n(θ);

• trf
n(¬γ) = ¬trf

n(γ);
• trf

n(∃xγ) =
∨n

i=1 tr
f x

i
n (γ);

• trf
n(∀xγ) =

∧n
i=1 tr

f x
i

n (γ).

In the translation above, t represents a state v such that, if zR
j1,...,jh

is assigned
to v and zj1 , . . . , zjh

are assigned to v1, . . . , vh, then (v1, . . . , vh) belongs to the
interpretation of R. The function f x

i maps x to i and y to f(y) for y 	= x. The
translation above only works for frames with more than one state, but, since
there are only two frames of size 1, we can state for each graph property which
frames of size 1 belong to the property.

Note that if φ is a sentence, then trf
n(φ) = trf ′

n (φ). Hence we write trn(φ)
instead of trf

n(φ) for a sentence φ.

Example 1. We give an example of application of the translation above. Let
⊕(φ, ψ, θ) be the ternary exclusive “or”. Consider the following first-order
sentence:

φ := ∀x
(
⊕ (R(x), G(x), B(x))

)
∧ ∀x∀y

(
(E(x, y) ∧ x 	= y) →

¬((R(x) ∧R(y)) ∨ (G(x) ∧G(y)) ∨ (B(x) ∧B(y)))
)
.

The sentence above says that each element belongs to one of the sets R, G and
B, each adjacent pair does not belong to the same set, and no element belongs
to more than one set. This sentence is true iff the sets R, G and B forms a
3-coloring of a graph with edges in E. Below we translate φ into a formula of
hybrid logic using the translation given above and setting n = 3:

128 F.M. Ferreira et al.

tr3(φ) :=
3∧

i=1

(
⊕ (@ty

R
i ,@ty

G
i ,@ty

B
i)
)
∧

3∧
i=1

[
3∧

j=1

(
(@zi�zj ∧ ¬@zizj) →

¬((@ty
R
i ∧@ty

R
j) ∨ (@ty

G
i ∧@ty

G
j) ∨ (@ty

B
i ∧@ty

B
j))
)]

.

Lemma 2. trn(φ) has polynomial size in n for a fixed φ, that is, trn(φ) ∈ O(nk)
for some 0 ≤ k.

Proof. By induction on φ one can see that trn(φ) is O(nk), where k is the
quantifier rank of φ, that is, the maximum number of nested quantifiers.

Lemma 3. Let G = (V,EG) be a graph of cardinality n, R1, . . . ,Rm relations
on V with arities r1, . . . , rm, g an assignment of state variables, β an assignment
of first-order variables, S = {E,R1, . . . , Rm} a vocabulary and f a function from
the set of first-order variables to {1, . . . , n} such that:

(i) g assigns to each variable zi a different element in V ;
(ii) g(yR

i1,...,ik
) = g(t) iff (g(zi1), . . . , g(zik

)) ∈ R for each R ∈ {R1, . . . , Rm};
(iii) β(x) = g(zf(x)) for each first-order variable x.

If φ is a first-order formula in the vocabulary S, then (G,R1, . . . ,Rm, β) |=
φ iff for all w ∈ V , (G, g, w) � trf

n(φ).

Definition 7 (Translation from SO to FHL). Let φ = Q1X1 . . .QlXlψ be
a SO formula where Qi ∈ {∃, ∀} and ψ is a first-order sentence. We define

T n(φ) = ♠1 ↓ yX1

1
. . . .♠1 ↓ yX1

n♠l ↓ yXl

1
. . . .♠l ↓ yXl

n trn(ψ),

where ♠i = E if Qi = ∃ and A otherwise.

Example 2. Consider the sentence φ of Example 1. Let ψ be the following second-
order sentence:

ψ := ∃R∃G∃B(φ).

The sentence ψ above states that there are three sets R, G and B which forms
a 3-coloring of elements in the domain of a structure. Hence, φ is satisfied in a
graph with edges in E iff such graph is 3-colorable. Deciding whether a graph
is 3-colorable is a NP-complete problem [13]. We apply the translation T n for
n = 3 below. Let

Q̂ := E ↓ yR
1 .E ↓ yR

2 .E ↓ yR
3 .E ↓ yG

1 .E ↓ yG
2 .E ↓ yG

3 .E ↓ yB
1 .E ↓ yB

2 .E ↓ yB
3 ..

We have T 3(ψ) := Q̂tr3(φ). That is,

T 3(φ) := Q̂

(
3∧

i=1

(
⊕ (@ty

R
i ,@ty

G
i ,@ty

B
i)
)
∧

3∧
i=1

[
3∧

j=1

(
(@zi�zj ∧ ¬@zizj) →

¬((@ty
R
i ∧@ty

R
j) ∨ (@ty

G
i ∧@ty

G
j) ∨ (@ty

B
i ∧@ty

B
j))
)])

.

Hybrid Logics and NP Graph Properties 129

Lemma 4. Let G = (V,EG) be a graph of cardinality n, R1, . . . ,Rm relations
on V with arities r1, . . . , rm, g an assignment of state variables, β an assignment
of first-order variables, S = {E,R1, . . . , Rm} a vocabulary and f a function from
the set of first-order variables to {1, . . . , n} such that:

(i) g assigns to each variable zi a different element in V ;
(ii) g(yR

i1,...,ik
) = g(t) iff (g(zi1), . . . , g(zik

)) ∈ R for each R ∈ {R1, . . . , Rm};
(iii) β(x) = g(zf(x)) for each first-order variable x.
If φ = Q1X1 . . . QlXlψ is a second-order formula in the symbol set S, then

(G,R1, . . . ,Rm, β) |= φ iff for all w ∈ V , (G, g, w) � T n(φ).

We have the following:

Theorem 1. Let φ be a second-order sentence and G a graph of cardinality n.
Then G |= φ iff

G �↓ t.E ↓ z1. . . . E ↓ zn.

⎛⎝ ∧
1≤i<j≤n

@zi¬zj ∧ T n(φ)

⎞⎠ .

A well known result of descriptive complexity is the correspondence between
the polynomial hierarchy and the alternation hierarchy of second-order logic
(with respect to finite models) [11,8].

There are several ways to define this hierarchy, for example using alternating
Turing machines [11]. In this paper we assume the definition presented in [13],
which uses Turing machines with oracles to define PH.

A Turing machine with an oracle is a machine that has the special ability
of guessing some specific questions. When a Turing machine has an oracle for a
decision problem B, during its execution it can ask for the oracle if some instance
of problem B is positive or negative. This is done in constant time, regardless
the size of the instance. We use the notation MB to define a Turing machine M
with an oracle for a problem B. In a similar way, we define CB, where C and B
are complexity classes, as the class of problems solved by a Turing machine in C
with an oracle in B.

Definition 8. Consider the following sequence of complexity classes. First, Δp
0

= Σp
0 = Πp

0 = PTIME and, for all i ≥ 0,
1. Δp

i+1 = PΣp
i

2. Σp
i+1 = NPΣp

i

3. Πp
i+1 = coNPΣp

i .
We define the Polynomial Time Hierarchy as the class PH =

⋃
i≥0

Σp
i .

In particular we have:

Theorem 2 ([11]). Let G be a graph property in the polynomial hierarchy. Then
there is a second-order sentence φ in the language of graphs such that G ∈ G iff
G |= φ.

The following is the main theorem of this section:

130 F.M. Ferreira et al.

Theorem 3. Let G be a graph property in the polynomial hierarchy. Then there
is a set of sentences Φ = {φ1, φ2, . . .} of FHL, such that:

(1) G ∈ G iff G � Φ iff G � φ|G|, and
(2) |φn| is O(nk) for some constant k depending only on G.

Corollary 1. If φ ∈ ∃SO, the existencial fragment of SO, then T n is in HL(@,
↓, E)\{↓ � ↓, PROP}, that is, the fragment of HL(@, ↓, E) without propositional
symbols and the pattern ↓ � ↓ (which means an ↓ into the scope of a � which in
your turn is into the scope of an ↓).

5 Connected Frames with Loops

Let FHL\{E,NOM} be the fragment of full hybrid logic without the modality
E and without nominals. Its is not difficult to show that:

Lemma 5. Frame validity and model (global) satisfaction for sentences from
FHL\{E,NOM} are invariant under disjoint union.

Thus an analogous to Theorem 3 does not hold for FHL\{E,NOM}.

Corollary 2. There are graph properties in PTIME for which there is no set
Φ = {φ1, φ2, . . .} from sentences in FHL\{E,NOM} which satisfies conditions
(1) and (2) from Theorem 3 above.

Proof. Connectivity is one such a property.

However, Theorem 3 still hold if we restrict ourselves to connected, frames with
loops. Consider the following translation from SO to FHL\{E,NOM}:

Definition 9. Let φ = Q1X1 . . . QlXlψ be a second-order formula where Qi ∈
{∃, ∀} and ψ is a first-order sentence. We define

T̂ n(φ) = ♠1 ↓ yX1

1
. . . .♠1 ↓ yX1

n♠l ↓ yXl

1
. . . .♠l ↓ yXl

n trn(ψ),

where ♠i = (��−1)n if Qi = ∃ and (��−1)n otherwise.

Lemma 6. Let G = (V,EG) be a connected graph with loops on each vertex,
R1, . . . ,Rm relations on V with arities r1, . . . , rm, g an assignment of state
variables, β an assignment of first-order variables, S = {E,R1, . . . , Rm} a vo-
cabulary and f a function from the set of first-order variables to {1, . . . , n} such
that:

(i) g assigns to each variable zi a different element in V ;
(ii) g(yR

i1,...,ik
) = g(t) iff (g(zi1), . . . , g(zik

)) ∈ R for each R ∈ {R1, . . . , Rm};
(iii) β(x) = g(zf(x)) for each first-order variable x.

If φ = Q1X1 . . . QlXlψ is a second-order formula in the symbol set S, then

(G,R1, . . . ,Rm, β) |= φ iff for all w ∈ V , (G, g, w) � T̂ n(φ).

Proof. Analogous to the proof of Lemma 4

Hybrid Logics and NP Graph Properties 131

Theorem 4. Let φ be a second-order sentence and G a connected graph of car-
dinality n with loops. Then G |= φ iff

G �↓ t.(��−1)n ↓ z1. . . . (��−1)n ↓ zn.

⎛⎝ ∧
1≤i<j≤n

@zi¬zj ∧ T̂ n(φ)

⎞⎠ .

Proof. Analogous to the proof of Theorem 1

Theorem 5. Let G be a property of connected graphs with loops in the poly-
nomial hierarchy. There is a set of sentences Φ = {φ1, φ2, . . .} of the fragment
FHL\{E,NOM}, such that:

(1)for all connected graphs G with loops, G ∈ G iff G � Φ iff G � φ|G|, and
(2) |φn| is O(nk) for some constant k depending only on G.

References

1. Areces, C., Blackburn, P., Marx, M.: Hybrid logics: Characterization, interpolation
and complexity. Journal of Symbolic Logic 66(3), 977–1010 (2001)

2. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter,
F. (eds.) Handbook of Modal Logic, vol. 3, pp. 821–868. Elsevier Science Ltd.,
Amsterdam (2007)

3. Barbosa, V.: An introduction to distributed algorithms. The MIT Press, Cambridge
(1996)

4. Benevides, M., Schechter, L.: Using modal logics to express and check global graph
properties. Logic Journal of IGPL 17(5), 559 (2009)

5. Blackburn, P., De Rijke, M., Venema, Y.: Modal logic. Cambridge Univ. Pr.,
Cambridge (2002)

6. Bradfield, J., Stirling, C.: Modal mu-calculi. Handbook of Modal Logic 3, 721–756
(2007)

7. Ebbinghaus, H., Flum, J., Thomas, W.: Mathematical logic. Springer, Heidelberg
(1994)

8. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Karp, R. (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7,
pp. 43–73. AMS, Providence (1974)

9. Grädel, E.: Why are modal logics so robustly decidable? In: Paun, G., Rozenberg,
G., Salomaa, A. (eds.) Current Trends in Theoretical Computer Science. Entering
the 21st Century, pp. 393–408. World Scientific, Singapore (2001)

10. Haken, W., Appel, K., Koch, J.: Every planar map is four colorable. Contemporary
Mathematics, vol. 98. American Mathematical Society, Providence (1989)

11. Immerman, N.: Descriptive complexity. Springer, Heidelberg (1999)
12. Lynch, N.: Distributed algorithms. Morgan Kaufmann, San Francisco (1996)
13. Papadimitriou, C.: Computational complexity. John Wiley and Sons Ltd., Chich-

ester (2003)
14. Robertson, N., Sanders, D., Seymour, P., Thomas, R.: The four-colour theorem.

Journal of Combinatorial Theory, Series B 70(1), 2–44 (1997)
15. Vardi, M.: Why is modal logic so robustly decidable. In: Immerman, N., Kolaitis,

P.G. (eds.) Descriptive Complexity and Finite Models. Discrete Mathematics and
Theoretical Computer Science, vol. 31, pp. 149–184. American Mathematical So-
ciety, Providence (1996)

132 F.M. Ferreira et al.

A Proofs of Main Theorems

Proof (Proof of Lemma 3). We proceed by induction on φ.

— φ is an atomic formula: In this case φ = x ≡ y, φ = E(x, y) or φ =
Ri(x1, . . . , xn). If φ = x ≡ y, then (G,R1, . . . ,Rm, β) |= φ iff β(x) =
β(y) iff, by (iii), g(zf(x)) = g(zf(y)) iff (G, g, w) � @zf(x)zf(y) = trf

n(φ).
If φ = E(x, y), then (G,R1, . . . ,Rm, β) |= φ iff (β(x), β(y)) ∈ EG iff, by
(iii), (g(zf(x)), g(zf(y)) ∈ EG iff (G, g, w) � @zf(x1)�zf(x2) = trf

n(φ). If
φ = Ri(x1, . . . , xh), then (G,R1, . . . ,Rm, β) |= φ iff (β(x1), . . . , β(xn)) ∈ Ri

iff, by (iii), (g(zf(x1)), . . . , g(zf(xn))) ∈ Ri iff, by (ii), g(yR
f(x1),...,f(xk)) = g(t)

iff (G, g, w) � @ty
R
f(x1),...,f(xk) = trf

n(φ).
— φ = γ ∧ θ or φ = ¬γ: These cases follow directly from the definition of trf

n

and the inductive hypothesis.
— φ = ∃xγ: In this case, (G,R1, . . . ,Rm, β) |= φ iff there is a v ∈ V such

that (G,R1, . . . ,Rm, β x
v) |= γ. By (i), there is a j be such that v = zj .

Hence we have β x
v (y) = g(zf x

j (y)) for each first-order variable y. By inductive

hypothesis we have, (G,R1, . . . ,Rm, β x
v) |= γ iff (G, g, w) � tr

f x
j

n (γ) iff
(G, g, w) �

∨n
i=1 tr

f x
i

n (γ) = trf
n(φ).

— φ = ∀xγ: It follows that (G,R1, . . . ,Rm, β) |= φ iff, for each v ∈ V ,
(G,R1, . . . ,Rm, β x

v) |= γ. By (i), for each v ∈ V there is a j such that v = zj .
Hence we have β x

v (y) = g(zf x
j (y)) for each first-order variable y. By inductive

hypothesis we have, for each v ∈ V , (G,R1, . . . ,Rm, β x
v) |= γ iff, for each

j ∈ {1, . . . , n}, (G, g, w) � tr
f x

j
n (γ) iff (G, g, w) �

∧n
i=1 tr

f x
i

n (γ) = trf
n(φ).

Proof (Proof of Lemma 4). Let v ∈ V such that v 	= g(t). For each X1 on V ,
let vX1

i1,...,ih
= g(t) if (g(zi1), . . . , g(zih

)) and v otherwise. Then, for each X1 on
V there is an assignment gX1 defined as

gX1 = g
yX1
1,...,1 . . . y

X1
i1,...,ih

. . . yX1
n,...,n

vX1
1,...,1 . . . v

X1
i1,...,ih

. . . vX1
n,...,n

.

On the contrary, given an assignment g′ we can find X1 such that g′ = gX1 .
The assignment gX1 can be described as:

gX1(s) =

⎧⎨⎩
g(t) , if s = yX1

i1,...,ih
and (i1, . . . , ih) ∈ X1;

v , for some v 	= g(t), if s = yX1
i1,...,ih

and (i1, . . . , ih) 	∈ X1;
g(s) , otherwise;

It follows that gX1 and X1 satisfies (i) and (iii) and

(ii’) gX1(yR
i1,...,ik

) = gX1(t) iff (gX1(zi1), . . . , gX1(zik
)) ∈ R,

for each R ∈ {R1, . . . , Rm, X1}.
Now, we proceed by induction on the size l of the prefix Q1X1 . . . QlXl. If

l = 0, then φ is first-order and the result follows immediately from Lemma 3.

Hybrid Logics and NP Graph Properties 133

Suppose that l > 0. If φ = ∃X1 . . . QlXlψ, then (G,R1, . . . ,Rm, β) |= φ iff there
is X1 ⊆ V r1 such that

(G,R1, . . . ,Rm,X1, β) |= Q2X2 . . . QlXlψ

iff, by the inductive hypothesis, there is gX1 such that

(G, gX1 , w) � T n(Q2X2 . . .QlXlψ)

iff

(G, g
yX1
1,...,1 . . . y

X1
i1,...,ih

. . . yX1
n,...,n

vX1
1,...,1 . . . v

X1
i1,...,ih

. . . vX1
n,...,n

, w) � T n(Q2X2 . . . QlXlψ)

iff
(G, g, w) � E ↓ yX1

1
. . . . E ↓ yX1

n .T n(Q2X2 . . . QlXlψ) = T n(φ).

If φ = ∀X1 . . .QlXlψ, then

(G,R1, . . . ,Rm, β) |= φ

iff, for all X1 ⊆ V r1 ,

(G,R1, . . . ,Rm,X1, β) |= Q2X2 . . . QlXlψ

iff, by the inductive hypothesis, for all gX1 ,

(G, gX1 , w) � T n(Q2X2 . . .QlXlψ)

iff, for all vX1
1,...,1 . . . v

X1
i1,...,ih

. . . vX1
n,...,n,

(G, g
yX1
1,...,1 . . . y

X1
i1,...,ih

. . . yX1
n,...,n

vX1
1,...,1 . . . v

X1
i1,...,ih

. . . vX1
n,...,n

, w) � T n(Q2X2 . . . QlXlψ)

iff (G, g, w) � A ↓ yX1

1
. . . . A ↓ yX1

n .T n(Q2X2 . . . QlXlψ) = T n(φ).

Proof (Proof of Theorem 1).

(G, g, w) �↓ t.E ↓ z1. . . . E ↓ zn.

⎡⎣⎛⎝ ∧
1≤i<j≤n

@zi¬zj

⎞⎠ ∧ T n(ψ)

⎤⎦
iff

(G, g
t

w
,w) � E ↓ z1. . . . E ↓ zn.

⎡⎣⎛⎝ ∧
1≤i<j≤n

@zi¬zj

⎞⎠ ∧ T n(φ)

⎤⎦
iff there are v1, . . . , vn ∈ V such that

(G, g
tz1 . . . zn

wv1 . . . vn
, w) �

⎡⎣⎛⎝ ∧
1≤i<j≤n

@zi¬zj

⎞⎠ ∧ T n(φ)

⎤⎦

134 F.M. Ferreira et al.

iff there are v1 	= . . . 	= vn ∈ V such that

(G, g
tz1 . . . zn

wv1 . . . vn
, w) � T n(φ)

iff, by Lemma 4, G � φ.

Proof (Proof of Theorem 3). Let ψ be a second-order formula expressing G. Let

θn = A ↓ z1. . . . A ↓ zn.

⎡⎣ ∧
1≤i<j≤n

@zi¬zj → A ↓ z.

⎛⎝ ∨
1≤i≤n

@ziz

⎞⎠⎤⎦ .
The sentence θn says that there are at most n vertices in the frame. We define

φn as:

φn = θn → ↓ t.E ↓ z1. . . . E ↓ zn.

⎡⎣⎛⎝ ∧
1≤i<j≤n

@zi¬zj

⎞⎠ ∧ T n(ψ)

⎤⎦ .
Let G ∈ G. Let g be any assignment of state variables and w be any point

in G. If G 	� θn, then G � φn. It follows that G � φn for each n 	= |G|. Hence,
G � Φ iff G � φ|G|. Let |G| = n. Then (G, g, w) � φn iff

(G, g, w) �↓ t.E ↓ z1. . . . E ↓ zn.

⎡⎣⎛⎝ ∧
1≤i<j≤n

@zi¬zj

⎞⎠ ∧ T n(ψ)

⎤⎦
iff, by Theorem 1, G ∈ G.

Proof (Proof of Theorem 5). Let ψ be a second-order formula expressing G. Let
Q be the prefix (��−1)n ↓ z1. . . . (��−1)n ↓ zn. and let

θn = Q

⎡⎣ ∧
1≤i<j≤n

@zi¬zj → (��−1)n ↓ z.

⎛⎝ ∨
1≤i≤n

@ziz

⎞⎠⎤⎦ , and

ψn =↓ t.(��−1)n ↓ z1. . . . (��−1)n ↓ zn.

⎡⎣⎛⎝ ∧
1≤i<j≤n

@zi¬zj

⎞⎠ ∧ T n(ψ)

⎤⎦ .
Let φn = θn → ψn. The remaining of the proof is similar to the proof of

Theorem 2.

On the Expressive Power of IF-Logic with

Classical Negation

Santiago Figueira1,3,�, Daniel Goŕın1, and Rafael Grimson2,3

1 Dto. Computación, FCEN, Universidad de Buenos Aires, Argentina
2 Dto. Matemática, FCEN, Universidad de Buenos Aires, Argentina

3 CONICET, Argentina

Abstract. It is well-known that Independence Friendly (IF) logic is
equivalent to existential second-order logic (Σ1

1) and, therefore, is not
closed under classical negation. The boolean closure of IF sentences,
called Extended IF-logic, on the other hand, corresponds to a proper
fragment of Δ1

2. In this paper we consider IF-logic extended with Hodges’
flattening operator, which allows classical negation to occur also under
the scope of IF quantifiers. We show that, nevertheless, the expressive
power of this logic does not go beyond Δ1

2. As part of the proof, we give a
prenex normal form result and introduce a non-trivial syntactic fragment
of full second-order logic that we show to be contained in Δ1

2.

1 Introduction

Independence Friendly logic [4] (IF, for short) is an extension of first-order logic
(FO) where each disjunction and each existential quantifier may be decorated
with denotations of universally-quantified variables, as in:

∀x∀y∃z|∀y∃w|∀y[y = z ∨|∀x,∀y w = y] (1)

The standard interpretation of IF is through a variation of the classical game-
theoretical semantics for FO: Elöıse’s strategy function for a position of the form
∃x|∀y,∀zψ or ψ ∨|∀y,∀z χ, under valuation v, cannot depend on neither v(y) nor
v(z). Thus, we say that a sentence ϕ is true in model A (notation, A |=+ ϕ)
if Elöıse has a winning strategy on the associated game; and that it is false
(notation, A |=− ϕ) whenever Abélard has a winning strategy.

Now, the fact that Elöıse’s strategy may not take into account all the available
information turns the game into one of “imperfect information”. In fact, it is a
non-determined game, i.e, for certain instances of the game, no winning strategy
exists. As an example of non-determinacy, consider this formula:

χ1 := ∀x∃y|∀xx 	= y (2)

It is not hard to see that if A is a model with at least two elements, then A 	|=+ χ1

and A 	|=− χ1. That is, χ1 is neither true nor false in A.
� S. Figueira was partially supported by CONICET Argentina (grant PIP 370).

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 135–145, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

136 S. Figueira, D. Goŕın, and R. Grimson

In game-theoretical semantics, negation is interpreted as a switch of roles, i.e.,
Abélard plays on Elöıse’s former positions and vice versa. We use ∼ to denote
this form of negation and we refer to it as game negation. For any IF-formula
ψ and any model A, A |=+ ψ iff A |=− ∼ψ. (i.e., Elöıse has a winning strategy
for ψ on A iff Abélard has one for ∼ψ on A). However, observe that ψ ∨ ∼ψ
is not in general a valid IF-formula (e.g., take ψ to be χ1 in (2)). This means
that game negation in IF is not equivalent to classical negation, which will be
denoted with ¬ and is characterized by:

A |=+ ¬ψ iff A 	|=+ ψ (3)

Since the expressive power of IF corresponds to that of existential second-
order logic (Σ1

1) [4,5] and Σ1
1 is not closed by (classical) negation, it is clear that

classical negation cannot be defined in IF.
Classical negation plays an important role in Hintikka’s original programme.

In [4], he claims that “virtually all off classical mathematics can in principle be
done in extended IF first-order logic” (in a way that is ultimately “reducible”
to plain IF logic). What he calls “(truth-functionally) extended IF logic” is the
closure of the set of IF-sentences with operators ¬, ∧ and ∨. Clearly, extended
IF logic corresponds in expressive power to the boolean closure of Σ1

1 , which is
known to be a proper fragment of Δ1

2 [2,10].
In this paper we will consider the extension of IF logic where classical nega-

tion can be combined with IF-operators without restrictions (in contrast to Ex-
tended IF, where formulas with ¬ are obtained from boolean combination of
IF sentences). One might suspect the resulting logic to be extremely expressive:
freely combining classical negation with second order existential quantifiers leads
to full second-order logic (SO). This suspicion is true for the logic with Henkin
quantifiers when the set of available quantifiers is closed by a dualization oper-
ator [9]. Indeed, this logic has the same expressive power as SO. We will show
that, in our context, this is not the case: IF with unrestricted classical negation
is not more expressive than Δ1

2.
We take as a basis Hodges’ treatment of classical negation [6]. He defines

an extension of IF, called slash logic (SL), in which independence restrictions
can occur in any connective (and not only ∃ and ∨) and provide a composi-
tional semantics for it. To support classical negation, the flattening operator ↓
is introduced. Intuitively, this operator satisfies:

A |=− ↓ϕ iff A 	|=+ ϕ (4)

It is easy to see that classical negation can be expressed combining ∼ and ↓:
A |=+ ¬ϕ iff A |=+ ∼↓ϕ iff A |=− ↓ϕ iff A 	|=+ ϕ (5)

Let SL(↓) denote the extension of SL with the flattening operator. We will use
the game-theoretical semantics introduced in [3] (equivalent to Hodges’ compo-
sitional semantics), which we present in §2. From this we derive a prenex normal
form result in §3 from which a Skolem form for SL(↓)-formulas is obtained in §4.
By analyzing the syntactic fragment of SO in which the Skolem form falls, we
ultimately arrive to the Δ1

2 upper-bound.

On the Expressive Power of IF-Logic with Classical Negation 137

2 Syntax and Semantics of SL(↓)

We assume a fixed first-order relational language L, as well as a collection X of
first-order variables, which we will denote x, y, z, perhaps with subindices. For-
mulas of SL(↓), in negation normal form, correspond to the following grammar:

ϕ ::= l(x1, . . . , xk) | ∃xi|ρϕ | ∀xi|ρϕ | ↓ϕ | ↑ϕ | ϕ∨|ρ ϕ | ϕ∧|ρ ϕ (6)

where ρ denotes a (possibly empty) finite set of variables and l(x1, . . . , xk) is
any first-order literal (i.e., an atom or a negated atom). We will typically use
∃xi, ∀xi, ∨ and ∧ instead of ∃xi|∅, ∀xi|∅, ∨|∅ and ∧|∅. Since we are working
in negation normal form, (game) negation ∼ will be a mapping on functions
satisfying ∼∀xi|ρϕ = ∃xi|ρ∼ϕ; ∼↓ϕ = ↑∼ϕ, etc. Finally, ¬ϕ will be short for
∼↓ϕ. Fv(ϕ) denotes the set of free variables of ϕ (see [3] for a formal definition).
A sentence is a formula with no free variables.

Remark 1. For the sake of simplicity we will impose a further restriction on
formulas: there can be no nested bindings of the same variable (e.g., ∃x∃xϕ) nor
a variable that occurs both free and bound in a formula (e.g., x ∨ ∃xϕ). This is
called the regular fragment of SL(↓) and it has simpler formal semantics. The
results in this paper apply to the whole language under the proviso that history-
preserving valuations are used instead of standard ones (cf. [3] for details).

We interpret a SL(↓)-formulas using first-order models A with domain |A|. We
use sets of finite valuations to account for free variables; the domains of these
valuations must be large enough to interpret them all (but they can be larger).

Definition 1. Given ϕ and A, we say that, V , a set of finite valuations over
A, is suitable for ϕ iff there is a finite set D ⊇ Fv(ϕ) such that V ⊆ |A|D.

We define now the game G(A, ϕ, V), where A is a model and V is a set of finite
valuations over A suitable for ϕ. Furthermore, let D̃ ⊇ Fv(ϕ) be such that
V ⊆ |A|D̃. As is customary, this game is played between two opponents: Elöıse
and Abélard (sometimes called Verifier and Falsifier). There is also a third agent,
called Nature, which acts either as a generator of random choices or as a referee.

The board. Game G(A, ϕ, V) is played over the syntactic tree of ϕ. There is,
additionally, a placeholder for a set D and a valuation v : D → |A|. Initially,
D is set to D̃ and v is empty. In the syntactic tree of ϕ, all the ∃, ∨ and ↓-
nodes of the tree belong to Elöıse; while the ∀, ∧ and ↑-nodes belong to Abélard.
Moreover, ∃, ∀, ∨ and ∧-nodes will be (repeatedly) decorated with functions
during the game; the first two admit any function f : |A|D → |A|; the last two,
only functions f : |A|D → {L,R}. Initially, nodes have no decoration.

The turns. At any point of the game, the remaining number of turns is bounded
by the maximum number of nested occurrences of ↓-nodes and ↑-nodes in the
game-board.

138 S. Figueira, D. Goŕın, and R. Grimson

– The opening turn. The first turn is different from the rest. It is composed of
two clearly distinguished phases. In the first phase, both players decorate all
their nodes with suitable functions. The order in which they tag their nodes
is not important as long as they do not get to see their opponent’s choices in
advance. For simplicity, we will assume they both play simultaneously. In the
second phase, Nature picks a valuation from V and puts it in the placeholder
v and finally evaluates the outcome of the turn, as described below.

– The subsequent turns. In all but the first turn, the formula tree is of the
form ↓ψ or ↑ψ (see next). In these turns, both players get to redecorate their
nodes, one after the other; Elöıse goes first when the formula tree is of the
form ↓ψ and Abélard does so on ↑ψ. Finally, Nature replaces the tree with
ψ and proceeds to evaluate.

The recursive evaluation procedure used by Nature is the following:

R1 If the tree is of the form ψ1 ∨|y1,...,yk
ψ2 or ψ1 ∧|y1,...,yk

ψ2, then its root
must have been with a function f : |A|D → {L,R}. Nature picks elements
a1 . . . ak from |A| and evaluates f(v[y1 #→ a1, . . . , yk #→ ak]) —by construc-
tion {y1, . . . yk} ⊆ D. That is, the values the player was not supposed to
consider are randomly replaced prior to evaluating the function provided.
The tree is then updated with ψ1, if the result is L, and with ψ2, otherwise.
D and v remain unchanged and evaluation proceeds.

R2 If the tree is of the form ∃x|y1,...,yk
ψ or ∀x|y1,...,yk

ψ, then it must have been
decorated with a function f : |A|D → |A|. Again, Nature picks a1 . . . ak,
evaluates b := f(v[y1 #→ a1, . . . , yk #→ ak]) and records this choice by replac-
ing the placeholder with D := D ∪ {x} and v := v ∪ {x #→ b}. Finally, the
tree is updated with ψ and evaluation proceeds.

R3 If the tree is of the form ↓ψ or ↑ψ, the evaluation –and, thus, the turn–
ends.

R4 Finally, if the root of the tree is a literal l(x1, . . . , xk), the game ends. Elöıse
is declared the winner if A |= l(x1, . . . , xk)[v]; otherwise, Abélard wins.

Nodes may get redecorated during the game but only by its owner, that is fixed.
Hence it is equivalent to assume that players decorate only those nodes that are
not under nested ↓ or ↑. This way, each node gets decorated only once.

Winning strategies. We will not go into a formal description of what a strategy
for G(A, ϕ, V) is. We simply take it to be a form of oracle that tells the player
how to proceed in each turn. As usual, a strategy is said to be winning for a
player if it guarantees that the he or she will win every match of the game,
regardless the strategy of the opponent and the choices made by Nature.
We are now ready to give our game-semantic notion of truth and falsity.

Definition 2. Let V be a set of finite valuations suitable for ϕ. We define:

– A |=+ ϕ[V] iff Elöıse has a winning strategy for the game G(A, ϕ, V);
– A |=− ϕ[V] iff Abélard has a winning strategy for the game G(A, ϕ, V).

On the Expressive Power of IF-Logic with Classical Negation 139

When V = {v} we may alternatively write A |=+ ϕ[v] and A |=− ϕ[v]. Also,
for a sentence ϕ we may write A |=+ ϕ and A |=− ϕ meaning A |=+ ϕ[∅] and
A |=− ϕ[∅], respectively, where ∅ is the empty valuation (i.e. dom ∅ = ∅).
Unlike classical logics, from A |=+ ϕ[∅] we cannot infer A |=+ ϕ[v] for every
suitable v. This is due to signaling: the value of a variable a player is supposed
not to know is available through the value of another one (cf. [7,8]).

Definition 3. We write ϕ1 ≡ ϕ2 whenever, for every A and every set V suitable
for ϕ1 and ϕ2, A |=+ ϕ1[V] iff A |=+ ϕ2[V] and A |=− ϕ1[V] iff A |=− ϕ2[V].

When interested in winning strategies for, say, Elöıse in G(A, ϕ, {v}), it makes
no difference whether in the opening turn both players play simultaneously or if
Elöıse goes first. This is not true, though, in G(A, ϕ, V) for a non-singleton V .

Proposition 1. Given v, a finite valuation over A suitable for ϕ, we have that
A |=+ ϕ[v] iff A |=+ ↓ϕ[v], and that A |=− ϕ[v] iff A |=− ↑ϕ[v].

Remark 2. Whenever one is interested in whether A |=+ ϕ[V] holds or not,
it is clearly equivalent (and sometimes convenient, too) to consider a simplified
version of G(A, ↓ϕ, V) in which Elöıse plays functions and Abélard plays elements
(until the game reaches a ↑, where the situation gets reversed). This resembles
the perfect-information game for IF given by Väänänen in [11].

Operator ↓ turns a formula that may lead to a non-determined game, into one
that always leads to a determined one. This suggests the following notion.

Definition 4. We say that ϕ is determined whenever, for every model A, and
every set V suitable for ϕ, A 	|=+ ϕ[V] iff A |=− ϕ[V].

Intuitively, determined formulas are those that have a well-defined truth-value
on every structure. Plain first-order formulas (i.e., those with no independence
restrictions) are determined, but one can give more general conditions.

Proposition 2. The following hold:

1. Every literal is a determined formula.
2. ↓ψ and ↑ψ are determined formulas.
3. If ϕ and ψ are determined formulas, so are ϕ∧|∅ ψ, ϕ∨|∅ ψ, ∃x|∅ϕ an ∀x|∅ϕ.

3 Normal Forms for SL(↓)

Normal forms in the context of SL were initially investigated in [1]. Later,
Janssen [7] observed some anomalies which cast doubt on the correctness of
these results. However, it was shown in [3] that only the formal apparatus em-
ployed in [1] was defective, and not the results per se.

In this section we revisit the prenex normal form results of [1] and extend
them to account for ↓ and ↑. For this, bound variables will be tacitly renamed
when necessary1 and the following formula manipulation tools will be employed.
1 While this assumption was considered problematic in the context of [1], it is safe

here since we are using regular formulas. Moreover, this can also be assumed for
arbitrary formulas under an adequate formalization (cf. Remark 1).

140 S. Figueira, D. Goŕın, and R. Grimson

Definition 5. Let x1 . . . xn be variables not occurring in ϕ; we denote with
ϕ|x1...xn

the formula obtained by adding x1 . . . xn as restrictions to every quan-
tifier, every conjunction and every disjunction in ϕ. Also, we write ϕc for the
formula obtained by replacing all independence restrictions in ϕ by ∅.
Notice that ϕc is essentially a FO formula. As is observed in [1], independence
restrictions on boolean connectives can be removed by introducing additional
quantifications. It is not hard to extend this result to SL(↓) (in what follows, we
shall use, for emphasis, ∨|∅ instead of ∨, ∧|∅ instead of ∧, etc.).

Theorem 1. For every formula ϕ, there exists a ϕ′ such that ϕ ≡ ϕ′ and every
disjunction (resp. conjunction) in ϕ′ is of the form ψ1 ∨|∅ ψ2 (resp. ψ1 ∧|∅ ψ2).

Proof. When restricted to models with at least two elements, a simple inductive
argument gives us the desired formula. The important step is that, given a
formula ψ := ψ1 ∨|x1...xk

ψ2 and given y1, y2 fresh in ψ, we can define

ψ∗ := ∃y1|x1...xk
∃y2|y1,x1...xn

[(y1 = y2 ∧ ψ1|y1,y2
) ∨ (y1 	= y2 ∧ ψ2|y1,y2

)] (7)

On models with at least two elements, we have ψ ≡ ψ∗. By successively applying
this truth-preserving transformation in a top-down manner, one can obtain, for
any given ϕ, a formula ϕ∗ that is equivalent on models with at least two elements.

Now, observe that on models with exactly one element, restrictions are mean-
ingless. Therefore, for any given ϕ we can define the equivalent formula:

ϕ′ := (∀x∀y[x = y] ∧ ϕc) ∨ (∃x∃y[x 	= y] ∧ ϕ∗) (8)

Formula (7) in the above proof was taken from [1], with the proviso that
independences on y1 and y2 are added to ψ1 and ψ2 in order to avoid unwanted
signaling [7,8,3]. This was most probably an involuntary omission in [1].

The prenex normal form result for SL in [1] uses a lemma that we will need.

Lemma 1 ([1]). If x does not occur in ψ, then the following equivalences hold:

1. ∃x|ρ[ϕ]∨|∅ ψ ≡ ∃x|ρ[ϕ∨|∅ ψ|x].
2. ∃x|ρ[ϕ]∧|∅ ψ ≡ ∃x|ρ[ϕ∧|∅ ψ|x].

3. ∀x|ρ[ϕ]∨|∅ ψ ≡ ∀x|ρ[ϕ∨|∅ ψ|x].
4. ∀x|ρ[ϕ]∧|∅ ψ ≡ ∀x|ρ[ϕ∧|∅ ψ|x].

For SL(↓), we need to show how to extract ↓ and ↑ from arbitrary formulas.

Lemma 2. The following hold:

1. If ψ is determined, then ↓ψ ≡ ↑ψ ≡ ψ.
2. ↓(ϕ∧|∅ ψ) ≡ ↓ϕ∧|∅ ↓ψ and ↑(ϕ∧|∅ ψ) ≡ ↑ϕ∧|∅ ↑ψ.
3. ↓(ϕ∨|∅ ψ) ≡ ↓ϕ∨|∅ ↓ψ and ↑(ϕ∨|∅ ψ) ≡ ↑ϕ∨|∅ ↑ψ.

Proof. We shall only discuss ↓(ϕ∧|∅ ψ) ≡ ↓ϕ∧|∅ ↓ψ; the remaining equivalences
are similar. Suppose, then, thatA |=+ ↓(ϕ∧|∅ ψ)[V]; this means that Elöıse has a
way of decorating both ϕ and ψ that guarantees she wins both games. Therefore,
we have A |=+ ↓ϕ[V] and A |=+ ↓ψ[V] which implies A |=+ (↓ϕ∧|∅ ↓ψ)[V]. The
right to left direction is analogous, and one establishes that A |=+ ↓(ϕ∧|∅ ψ)[V]
iff A |=+ (↓ϕ∧↓ψ)[V]. Since ↓(ϕ∧|∅ ψ) and (↓ϕ∧|∅ ↓ψ) are determined formulas
(Proposition 2), this implies A |=− ↓(ϕ∧|∅ ψ)[V] iff A |=− (↓ϕ ∧ ↓ψ)[V].

On the Expressive Power of IF-Logic with Classical Negation 141

Definition 6. A SL(↓)-formula is said to be in prenex normal form if it is of
the form Q∗

0-1Q
∗
1-2 . . . Q

∗
n−1-n−1Q

∗
nϕ with n ≥ 0, where each Q∗

i is a (perhaps
empty) chain of quantifiers, -i ∈ {↓, ↑} and ϕ contains only literals, ∧|∅ and ∨|∅.

Theorem 2. For every ϕ, there exists a ϕ∗ in prenex normal form with ϕ ≡ ϕ∗.

Proof. By Theorem 1 we can obtain a ϕ′ such that ϕ′ ≡ ϕ and no boolean
connective in it contains independences. We proceed now by induction on ϕ′. If
ϕ′ is a literal, ϕ∗ = ϕ′. If ϕ′ = ∃x|y1...yk

ψ, we have ϕ∗ = ∃x|y1...yk
ψ∗ and the

cases for ϕ′ = ∀x|y1...yk
ψ, ϕ′ = ↓ψ and ϕ′ = ↑ψ are analogous. We analyze now

the case for ϕ′ = ψ ∨ χ; the one for ϕ′ = ψ ∧ χ is symmetrical.
We need to show that there exists a ϕ∗ ≡ (ψ∗ ∨ χ∗), in prenex normal form.

We do it by induction on the sum of the lengths of the prefixes of ψ∗ and χ∗. The
base case is trivial; for the inductive case we show that one can always “extract”
the outermost operator of either ψ∗ or χ∗.

The first thing to note is that if ψ∗ = Qx|y1...yk
ψ′ (Q ∈ {∀, ∃}), then using

Lemma 1 (renaming variables, if necessary) we have ϕ∗ := Qx|y1...yk
(ψ′ ∨ χ∗)∗

and the same applies to the case χ∗ = Qx|y1...yk
χ′. So suppose now that neither

ψ∗ nor χ∗ has a quantifier as outermost operator. In that case, they start with
one of ↓ or ↑, or they contain only ∧|∅, ∨|∅ and literals. In either case, they are
both determined and at least one of them starts with ↓ or ↑ (or we would be in
the base case). If we assume that ψ∗ = ↓ψ′, using Proposition 2 repeatedly, we
have (↓ψ′ ∨ χ∗) ≡ (↓ψ′ ∨ ↓χ∗) ≡ ↓(ψ′ ∨ ↓χ∗) ≡ ↓(ψ′ ∨ χ∗), and we can apply the
inductive hypothesis. The remaining cases are analogous.

4 Skolem Forms, Dependencies and Δ1
2-Expressivity

We finally turn our attention to the expressive power of SL(↓). We shall see that
every SL(↓)-formula is equivalent to both Σ1

2 and Π1
2 -formulas, and therefore,

is included in Δ1
2. We reserve letters f , g and h (probably with subindices) to

denote second-order functional variables; arities will be left implicit. We identify
first-order variables with 0-ary second-order variables; letters x, y and z (with
subindices) are to be interpreted always as 0-ary functions (f , g, etc. could be
0-ary too, unless stated). We also assume that functional symbols occur always
fully-saturated (e.g., f = g is not a valid formula, but ∀x[f(x) = g(x)] is).

4.1 Skolem Form of SL(↓) Sentences

Based on the game-theoretical semantics of §2 we show that every sentence of
SL(↓) can be turned into an equivalent SO formula. We will motivate this sort
of Skolem form with a short example. For this, let ϕ be quantifier-free, with
variables among {x1, x2, x3, y1, y2, y3} and consider:

χ2 := ↓∀y1∀y2∃x1|y2↑∃x2|y2∃x3∀y3|x3
[ϕ] (9)

142 S. Figueira, D. Goŕın, and R. Grimson

Assume that A |=+ χ2, i.e., that Elöıse has a winning strategy for G(A, χ2, {∅}).
Using the simplification of Remark 2 this is the case if and only if A |= χ′

2, where

χ′
2 := ∃f∀y1∀y2∀z1∀g∃x2∃x3∃z2[ϕσ1] (10)

and σ1 = {x1 #→ f(y1, z1), y3 #→ g(y1, y2, f(y1, z1), x2, z2)} is a substitution of
variables by terms2. Notice that z1 and z2 represent the random choices made
by Nature during the evaluation phases; e.g., f(y1, z1) expresses that Nature
replaced the value of y2 by a randomly picked z1 when evaluating x1. Since z1

and z2 do not occur in ϕ and y1 and y2 occur universally quantified, just as g,
we have that χ′

2 is equivalent to χ′′
2 , where

χ′′
2 := ∃f∀y1∀y2∀g∃x2∃x3[ϕσ2] (11)

and σ2 = {x1 #→ f(y1), y3 #→ g(x2, f(y1))}. Of course, one could simplify further
and replace g(x2, f(y2)) by g(x2), but this will be discussed in more detail in §4.2.

In order to formalize this transformation, we will use some conventions. First,
λ denotes an empty sequence (of quantifiers, of variables, etc.). When describing
SL(↓) prefixes we shall use patterns such as ↓∀y1|τ1

∃x1|ρ1 . . . ∀yk|τk
∃xk |ρk

-Q; it
must be understood that not necessarily all the xi and yi are present in the
prefix, and that either -Q = λ or else - ∈ {↓, ↑} and Q is a (possibly empty)
SL(↓)-prefix.

Definition 7. Given Qψ in prenex normal form (ψ quantifier-free), T (Qψ) is
the SO-formula π(↓Q)[ψσ], where σ = τλ

λ ({}, ↓Q), π(λ) = λ, τα
β (σ, λ) = σ and

π(↓∀y1|τ1
∃x1|ρ1 . . . ∀yk|τk

∃xk|ρk
-Q) = ∃f1 . . . ∃fk∀y1 . . . ∀ykπ(-Q)

π(↑∃x1|ρ1∀y1|τ1
. . . ∃xk|ρk

∀yk|τk
-Q) = ∀g1 . . . ∀gk∃x1 . . . ∃xkπ(-Q)

τα
β (σ, ↓∀y1|τ1

∃x1|ρ1 . . . ∀yk|τk
∃xk|ρk

-Q) = τα′
β′ (σ ∪ {xi #→ fxi(α

′ \ ρi)σ}, -Q)

τα
β (σ, ↑∃x1|ρ1∀y1|τ1

. . . ∃xk|ρk
∀yk|τk

-Q) = τα′
β′ (σ ∪ {yi #→ gyi(β

′ \ τi)σ}, -Q)

Here, we assumed α′ := α, y1 . . . yk and β′ := β, x1 . . . xk.

The reader should verify that, modulo variable names, T (χ2) = χ′′
2 . In partic-

ular, substitution application in fxi(α′ \ ρi)σ and gyi(β′ \ ρi)σ account for the
introduction of nested terms like g(x2, f(y1)) in (11).

Lemma 3. For every sentence ϕ in prenex normal form and every model A,
A |=+ ϕ iff A |= T (ϕ).

Proof. First, observe that A |=+ ϕ iff A |=+ ↓ϕ (Proposition 1). One then can
show that, for every ψ in prenex normal form (perhaps with free variables) and
every suitable v, A |=+ ↓ψ[v] iff A |= T (↓ψ)[v] by induction on the number of
turns in G(A, ↓ψ, {v}) (i.e., in the number of ↓ and ↑ occurring in ↓ψ).

It follows directly from Definition 7 that T (ϕ) is a SO formula in prenex normal
form (i.e., all quantifiers, either first or second-order, are at the beginning).
2 As is customary, we use postfix notation for substitution application.

On the Expressive Power of IF-Logic with Classical Negation 143

4.2 First-Order Dependencies and the Δ1
2-Class

If ϕ, in prenex normal form, has d occurrences of ↓ or ↑, then T (ϕ) is a formula in
Σ1

2d+1. But we will see that by repeatedly applying a truth-preserving quantifier-
moving transformation, one can turn any such T (ϕ) into an equivalent formula
in Σ1

2 . Since SL(↓) is closed by negation, this gives us the desired Δ1
2-bound. We

begin with a motivational a example. Let ϕ be quantifier-free and consider:

χ3 := ↓∀y1∃x1↑∃x2∀y2|x1
↓∀y3∃x3|y1,y2↑∃x4∀y4|x1...x3

ϕ (12)

χ′
3 := T (χ3) = ∃f1∀y1∀g1∃x2∃f2∀y3∀g2∃x4[ϕσ3] (13)

where σ3 = {x1 #→ f1(y1), y2 #→ g1(x2), x3 #→ f2(y3), y4 #→ g2(x4)}. The key
intuition to show that χ′

3 is a Σ1
2 -formula is that the choice for f2 does not

actually depend on the chosen value for g1 but only on that of g1(x2), which is
the only occurrence of g1 in ϕσ3. Thus, χ′

3 is equivalent to:

χ4 := ∃f1∃f̃2∀y1∀g1∀y3∃x2∀g2∃x4[ϕσ4] (14)

where σ4{x1 #→ f1(y1), y2 #→ g1(x2), x3 #→ f̃2(y1, g1(x2), y3), y4 #→ g2(x4)}. Fi-
nally, one can “exchange” g2 and x2 in an analogous way, to obtain a Σ1

2 -formula.
We identify next the fragment of SO where this “weak-dependency” between

functions occurs and show that, in it, the procedure sketched above can always
be performed. In what follows we assume, without loss of generality, that if a
variable occurs free in a SO-formula, it does not also appear bound.

Definition 8. We say that a functional symbol f is strongly free in a SO-
formula ϕ whenever f is free in ϕ and, if f(. . . g(. . .) . . .) occurs in ϕ, g is
strongly free in ϕ too.

As an example, g is strongly free in ∃x[f(x) = g(y, g(z, y))], while f is not (for
x is not, either). Every free first-order variable is also strongly free.

Lemma 4. Let ϕ be a SO-formula and let g1 . . . gk be strongly free in ϕ. More-
over, let v1 and v2 be interpretations of functional variables in A such that (i)
v1(f) = v2(f) for every f 	∈ {g1, . . . , gk}, and (ii) for every gi(t1, . . . , tm) occur-
ring in ϕ, v1(gi(t1, . . . , tm)) = v2(gi(t1, . . . , tm)). Then, A |= ϕ[v1] iff A |= ϕ[v2].

Proof. Follows by a straightforward induction on ϕ. In the base case, (i) and
(ii) guarantee the equivalence; for the case ϕ = ∃fψ, removing the existential
preserves the hypothesis of the lemma (needed for the inductive hypothesis).

It is well-known that ∀x1 . . . xn∃fϕ is equivalent to ∃f̃∀x1 . . . xnϕ̃, where ϕ̃ is
obtained by replacing every occurrence of a term of the form f(t1, . . . , tk) in ϕ
by f̃(t1, . . . , tk, x1, . . . , xn). The following result is a generalization of this idea,
with strongly free second-order variables used instead of first-order ones.

Theorem 3. Let g1 . . . gn be strongly free in ϕ and let h, free in ϕ, be such that
for no i, gi(. . . h(. . .) . . .) occurs in ϕ. Then, for every f1 . . . fm free in ϕ, there
exists ϕ̃ such that g1 . . . gn are strongly free in ϕ̃; f1 . . . fm are free in ϕ̃ and
∀g1 . . .∀gn∃h∃f1 . . . ∃fkϕ ≡ ∃h̃∀g1 . . . ∀gn∃f1 . . .∃fkϕ̃.

144 S. Figueira, D. Goŕın, and R. Grimson

Proof. One can obtain ϕ̃ by replacing every occurrence of h(t1, . . . , tk) in ϕ by
h̃(t1, . . . , tk, s1, . . . , sl), where s1 . . . sl are the terms of the form gi(. . .) occurring
in ϕ. Since gi(. . . h(. . .) . . .) does not occur in ϕ, no occurrence of h is left in ϕ̃.

In a way, what Theorem 3 says is that a strongly free second-order variable
corresponds, in terms of information, to a finite number of first-order terms.
This motivates the following definition.

Definition 9. We say that a SO-formula in prenex normal form has first-order
dependencies if in every subformula of the form ∀g1 . . . ∀gn∃f1 . . . ∃fmϕ (with
ϕ 	= ∃hψ) or ∃g1 . . .∃gn∀f1 . . . ∀fmϕ (ϕ 	= ∀hψ), g1 . . . gn are strongly free in ϕ.

Theorem 4. The class of SO-formulas with first-order dependencies is in Δ1
2.

Proof. We shall only see that if ϕ has first-order dependencies then ϕ is in
Σ1

2 . This suffices since ϕ ≡ ¬¬ϕ and ¬ϕ has first-order dependencies (and is
therefore in Σ1

2). To see that any such ϕ can be turned to Σ1
2 -form, we will show

how quantifiers can be reordered, one at a time, in a top-down manner.
Suppose, then, that ϕ is not in Σ1

2 -form; and let us consider the leftmost quan-
tifier that is misplaced. There are two cases we need to consider. First, suppose
ϕ = ∃h1 . . . ∃hl∀g1 . . . ∀gn∃x1 . . . ∃xk∃h∃f1 . . . ∃fmψ (k, l,m ≥ 0, n ≥ 1) for an h
of non-zero arity. We can assume without loss of generality that gi(. . . h(. . .) . . .)
does not occur in ψ, e.g., if gi(h(xj)) occurs in ψ, then ϕ is equivalent to
∃h1 . . . ∃hl∀g1 . . . ∀gn∃x1 . . . ∃xk∃h∃z∃f1 . . . ∃fm[z = h(xj) ∧ χ] where χ is like
ψ with h(xj) replaced by z. By Theorem 3 we can relocate the misplaced ∃h and
obtain the equivalent formula ∃h1 . . . ∃hl∃h̃∀g1 . . . ∀gn∃x1 . . . ∃xk∃f1 . . . ∃fmψ̃.

The second case is when every variable in the first block of misplaced quanti-
fiers is first-order. Here we cannot always circumvent the condition “gi(. . . xj . . .)
does not occur in ψ” so we must handle it in a different way. Therefore, suppose
ϕ = ∃h1 . . . ∃hl∀g1 . . . ∀gn∃x1 . . .∃xk∀f1 . . . ∀fmψ, (l ≥ 0, k,m, n ≥ 1) where ψ
does not start with ∀. Using Theorem 3 (x1 . . . xk are strongly free in ψ), we ob-
tain the equivalent ∃h1 . . .∃hl∀g1 . . .∀gn∀f̃1 . . . ∀f̃m∃x . . .∃xkψ̃. It is important
to notice that ∀g1 . . . ∀gn∀f̃1 . . . ∀f̃m∃x . . . ∃xkψ̃ has first-order dependencies.

Corollary 1. T (ϕ) has first-order dependencies, for every SL(↓)-formula ϕ in
prenex normal form. Therefore, SL(↓) is not more expressive than Δ1

2.

5 Conclusions

We have given an upper bound for the expressive power of SL(↓) and, therefore,
for IF with full-fledged classical negation. This logic contains Extended-IF, which
is known to correspond to a proper fragment of Δ1

2; hence, our Δ1
2-upper bound

for SL(↓) is quite tight. This result is mounted on three additional results: i) a
game-theoretical semantics for SL(↓), ii) a prenex normal form result for SL(↓)
and, iii) a characterization of a new (to the best of our knowledge) syntactic
fragment of SO (formulas with first-order dependencies) which we have shown
to be contained in Δ1

2. The last two are given in this article (for the first one,
cf. [3]); the prenex normal form uses ideas from [1]. The question of which of the
containments are strict remains open.

On the Expressive Power of IF-Logic with Classical Negation 145

References

1. Caicedo, X., Krynicki, M.: Quantifiers for reasoning with imperfect information
and Σ1

1-logic. Contemporary Mathematics 235, 17–31 (1999)
2. Enderton, H.: Finite partially ordered quantifiers. Zeitschrift für Mathematische

Logik und Grundlagen der Mathematik 16, 393–397 (1970)
3. Figueira, S., Goŕın, D., Grimson, R.: On the formal semantics of IF-like logics.

Journal of Computer and System Sciences 76(5), 333–346 (2009)
4. Hintikka, J.: The Principles of Mathematics Revisited. Cambridge University Press,

Cambridge (1996)
5. Hintikka, J., Sandu, G.: Game-theoretical semantics. In: van Benthem, J.,

ter Meulen, A. (eds.) Handbook of Logic and Language. The MIT press, Cambridge
(1997)

6. Hodges, W.: Compositional semantics for a language of imperfect information.
Logic Journal of the IGPL 5(4) (1997)

7. Janssen, T.M.V.: Independent choices and the interpretation of IF logic. Journal
of Logic, Language and Information 11(3), 367–387 (2002)

8. Janssen, T.M.V., Dechesne, F.: Signalling in IF games: a tricky business. In: The
Age of Alternative Logics, pp. 221–241. Springer, Heidelberg (2006)

9. Ko�lodziejczyk, L.A.: The expressive power of Henkin quantifiers with dualization.
Master’s thesis, Institute of Philosophy, Warsaw University, Poland (2002)

10. Mostowski, M.: Arithmetic with the Henkin quantifier and its generalizations. In:
Gaillard, F., Richard, D. (eds.) Séminaire du Laboratoire Logique, Algorithmique
et Informatique Clermontoise, vol. 2, pp. 1–25 (1991)

11. Väänänen, J.A.: On the semantics of informational independence. Logic Journal
of the IGPL 10(3), 339–352 (2002)

Concurrent Logic Games on Partial Orders

Julian Gutierrez

LFCS, School of Informatics, University of Edinburgh

Abstract. Most games for analysing concurrent systems are played on
interleaving models, such as graphs or infinite trees. However, several
concurrent systems have partial order models rather than interleaving
ones. As a consequence, a potentially algorithmically undesirable trans-
lation from a partial order setting to an interleaving one is required
before analysing them with traditional techniques. In order to address
this problem, this paper studies a game played directly on partial orders
and describes some of its algorithmic applications. The game provides
a unified approach to system and property verification which applies to
different decision problems and models of concurrency. Since this frame-
work uses partial orders to give a uniform representation of concurrent
systems, logical specifications, and problem descriptions, it is particu-
larly suitable for reasoning about concurrent systems with partial order
semantics, such as Petri nets or event structures. Two applications can
be cast within this unified approach: bisimulation and model-checking.

1 Introduction

Games form a successful approach to giving semantics to logics and programming
languages (semantic games) and to program verification (verification games).
Good surveys of some of the most important game-based decision procedures
and tools for property and systems verification can be found in [8,16,17], and in
the references therein. These ‘logic games’ [5] usually are sequential and played
on graphs or infinite trees. They offer an elegant approach to studying different
properties of sequential processes and of concurrent systems with interleaving
semantics, e.g., by using Kripke models or (labelled) transition graphs.

However, when dealing with concurrent systems with partial order seman-
tics [15], such as Petri nets or event structures (which are semantically richer
and more complex), the game-based techniques previously mentioned cannot be
directly applied because the explicit notion of independence or concurrency in
the partial order models is not considered. As a result, one has to construct the
graph structures associated with those partial order models—a translation that
one would like to avoid since, in many cases, it is algorithmically undesirable.

The reasons to wish to stay in a purely partial order setting are well-known
by the concurrency theory community. For instance, partial order models of
concurrency can be exponentially smaller than their interleaving counterparts;
moreover they are amenable to partial order reductions [10] and are the natural
input of the unfolding methods [7] for software and hardware verification—which
work very well in practice whenever the systems have high degrees of parallelism.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 146–160, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Concurrent Logic Games on Partial Orders 147

Then, it is desirable, for several algorithmic reasons, to have a game which
can be played directly on the partial order representations of concurrent systems.
The main problem is that games played directly on ‘noninterleaving structures’
(which include Petri nets and event structures) are not known to be determined
in the general case since they may well turn out to be of imperfect information,
mainly, due to the information about locality and independence in such models.

In this paper we study a class of games played on noninterleaving structures
(posets in our case) which is sound and complete, and therefore determined,
without using stochastic strategies as traditional approaches to concurrent games
[3,4]. Our framework builds upon two ideas: firstly, the use of posets to give
a uniform representation of concurrent systems with partial order semantics,
logical specifications, and problem descriptions; and secondly, the restriction to
games with a semantic condition that reduces reasoning on different models and
decision problems to the analysis of simpler local correctness conditions.

The solution is realised by a new ‘concurrent logic game’ (CLG) which is
shown to be determined—even though it is, locally, of imperfect information. The
two players of the game are allowed to make asynchronous and independent local
moves in the board where the game is played. Moreover, the elements of the game
are all formalised in order-theoretic terms; as a result, this new model builds a
bridge between some concepts in order theory and the more operational world
of games. To the best of our knowledge, such an order-theoretic characterisation
has not been previously investigated for verification games.

Then our main contribution is the formalization of a concurrent logic game
model that generalises the results in [16] to a partial order setting, that is, the
games by Stirling for bisimulation and model-checking on interleaving structures
(and hence also related tableau-based techniques). The CLG model is inspired by
a concurrent semantic game model (for a fragment of Linear Logic [9]) studied by
Abramsky and Melliès [2]. However, the mathematics of the original game have
been drastically reformulated in the quest towards the answer to algorithmic
questions, and only a few technical features were kept.

Acknowledgements. I thank J. Bradfield, L. Ong, I. Stark, C. Stirling, and
G. Winskel for discussions and feedback on this and related manuscripts as well
as the reviewers for their comments. An extended version, which includes proofs
and examples that due to space could not be included here, is Chapter 5 of [12].

2 The Concurrent Game Model

We consider (infinite) logic games played by two players, Eve (∃) and Adam
(∀), whose interaction can be used to represent the flow of information when
analysing concurrent and distributed systems. The main idea is that by enriching
a logic game with the explicit information about local and independent behaviour
that comes with any partial order model, the traditional, sequential setting for
logic games (usually played on interleaving structures) can be turned into a
concurrent one on a partial order. This section studies a ‘concurrent logic game’
(CLG) played on a poset structure; a simple example is given in the appendix.

148 J. Gutierrez

Preliminaries and Notations on Partial Orders. A ⊥A-bounded poset
A = (A,≤A) is a partially ordered set with a bottom element ⊥A such that for
all a ∈ A we have that ⊥A ≤A a. For any a ∈ A, a successor of a is an element
a′ such that a <A a′ and for all b if a ≤A b and b ≤A a′ then either a = b or
b = a′. Write a → a′ iff a′ is a successor of a and call a a terminal element iff
a 	→. Given a, a (principal) ideal ↓a is the downward-closed set {b ∈ A | b ≤A a};
dually, a (principal) filter ↑a of A is the upward-closed {b ∈ A | a ≤A b}. Also,
for any set A ⊆ A, write ↓A for the set

⋃
a∈A{b | b ∈ ↓a}, and likewise, ↑A for⋃

a∈A{b | b ∈ ↑a}; call ↓A a lower subset and ↑A an upper subset. We write
↓a for the induced poset (↓a,≤A), and similarly for ↑a, ↓A, and ↑A. Clearly
the posets ↓a and ↑a are ⊥-bounded if A is ⊥-bounded, since ⊥↓a = ⊥A in the
former case and ⊥↑a = a in the latter. Finally, a function f : A → A is a closure
operator iff it is extensive, monotonic, and idempotent, i.e., if satisfies that for
all a, a′ ∈ A: a ≤A f(a); a ≤A a′ implies f(a) ≤A f(a′); and f(a) = f(f(a)).

Game Boards. A board in a CLG model is a ⊥-bounded poset D = (D,≤D)
which is well-founded. A lower (resp. an upper) sub-board B of D is a poset
(B,≤D) such that B is a lower (resp. an upper) subset of D. Then, a lower sub-
board is a finite or infinite ⊥-bounded poset, whereas an upper sub-board is
a union of possibly infinitely large ⊥-bounded posets. In particular, since D is
well-founded, then all lower sub-boards are also well-founded. Moreover, a global
position in D is an anti-chain D ⊆ D; the initial global position of D is {⊥}.
Finally, given a global position D in D, call any d ∈ D a local position.

Notation 1. Given any d ∈ D, write d← for the set of local positions {e | e→ d}
and d→ for the set {d′ | d → d′}. The sets d← and d→ are, respectively, the
‘preset’ and ‘postset’ of local positions of d. Also, let SP(d) be the predicate that
holds iff | d← | > 1, and call d a ‘synchronization point’ in such a case.

Now, let ∇ : D → Υ be a partial function that assigns players in Υ = {∃, ∀} to
local positions. More precisely, ∇ is a total function on the set B ⊆ D of elements
that are not synchronization points—i.e., B = {d ∈ D | ¬SP(d)}; call the pair
(D,∇) a polarised board. In the following we only consider polarised boards
with the following property (called ‘dsync’), which ensures that the behaviour at
synchronization points is deterministic: SP(d) ⇒ |d→| = 1 and ∀e ∈ d←.|e→| = 1.

This property, i.e., dsync, induces a correctness condition when playing the
game. It ensures: firstly, that there are no choices to make in synchronization
points (as they are not assigned by ∇ to any player); and secondly, that as a
synchronization point does not share its preset with any other local position, then
local behaviour in the game, which is formally defined later, is truly independent.

Strategies. In a CLG a strategy can be local or global. A local strategy
λ : D → D is a closure operator partially defined on a board D = (D,≤D).
Being partially defined on D means that the properties of closure operators are
restricted to those elements where the closure operator is defined. In particular,
the relation a ≤D a′ ⇒ λ(a) ≤D λ(a′) holds iff λ is defined in a and a′. Let
dfn(λ, d) be the predicate that holds iff λ(d) is defined or evaluates to false
otherwise. The predicate dfn can be defined from a board, for any local strategy,
by means of three rules that realise local strategies λ∀ for Adam and λ∃ for Eve.

Concurrent Logic Games on Partial Orders 149

Definition 1 (Local Strategies). Given a board D = (D,≤D), a ‘local strat-
egy’ λ∀ for Adam (resp. λ∃ for Eve) is a closure operator defined only in those
elements of D given by the following rules:

1. The local strategy λ∀ (resp. λ∃) is defined in the bottom element ⊥D.
2. If λ∀ (resp. λ∃) is defined in d ∈ D, and either ∇(d) = ∃ (resp. ∇(d) = ∀)

or SP(d) or d	→ or d→ e∧SP(e) holds, then for all d′ ∈ d→ we have that λ∀
(resp. λ∃) is defined in d′ as well.

3. If λ∀ (resp. λ∃) is defined in d ∈ D, and both ∇(d) = ∀ (resp. ∇(d) = ∃) and
|d→| ≥ 1 hold, then there exists a d′ ∈ d→ in which λ∀ (resp. λ∃) is defined.

Let dfn(λ∀, d) be the predicate that holds iff λ∀(d) is defined, and likewise for λ∃.
Moreover, the closed elements, i.e., the fixpoints, of λ∀ and λ∃ are as follows:

λ∀(d) = d iff ∇(d) = ∃, or SP(d), or d	→, or d → e ∧ SP(e)
λ∃(d) = d iff ∇(d) = ∀, or SP(d), or d	→, or d → e ∧ SP(e)

provided that the predicates dfn(λ∀, d) and dfn(λ∃, d) hold. Moreover, let λ1
∀

and λ1
∃ be the ‘identity local strategies’ of Adam and Eve, respectively, which are

defined everywhere in D; thus, formally: λ1
∀(d) = λ1

∃(d) = d, for all d ∈ D.

Let ΛD be the set of local strategies on D, which can be split in two subsets, i.e.,
ΛD = Λ∃

D . Λ∀
D, for Eve and Adam. Informally, Definition 1 says that a local

strategy must be able (item 2) to reply to all ‘counter-strategies’ defined in the
same local position, and (item 3) to choose a next local position whenever used.
Moreover, item 3 of Definition 1 implies that in order for Eve and Adam to play
concurrently, they have to follow a set of local strategies rather than only one.

Definition 1 also characterises the fixpoints of local strategies. Note that a
fixpoint of a local strategy is a position in the board where a player cannot make
a choice, either because it is the other player’s turn (e.g., ∇(d) = ∃ for λ∀(d)),
or a synchronization must be performed (SP(d) or d→ e ∧ SP(e)), or a terminal
element is reached (d	→), and hence, there are no next local positions to play.

Remark 1. The intuitions as to why a closure operator captures the behaviour
in a CLG follow [2]. As boards are acyclic ordered structures, there is no reason
to move to a previous position and hence strategies should be extensive. They
should also be monotonic in order to preserve the causality of moves in the game
and idempotent to avoid unnecessary alternations between sequential steps.

When playing, Eve and Adam will use a set of local strategies Λ∃
�
⊆ Λ∃

D and
Λ∀

�
⊆ Λ∀

D, whose elements (i.e., local strategies) are indexed by the elements i
and j of two sets K∃ = {1, ..., |Λ∃

D|} and K∀ = {1, ..., |Λ∀
D|}; by definition, the

identity local strategies are indexed with i = 1 and j = 1. Moreover, at the
beginning of the game Eve and Adam choose (independently and at the same
time) two sets of indices K∃ ⊆ K∃ and K∀ ⊆ K∀, and consequently the two sets
of local strategies Λ∃

�
⊆ Λ∃

D and Λ∀
�
⊆ Λ∀

D they will use to play. This means that
both i ∈ K∃ iff λi

∃ ∈ Λ∃
�

and j ∈ K∀ iff λj
∀ ∈ Λ∀

�
; by definition, λ1

∃ and λ1
∀ are

always included in Λ∃
�

and Λ∀
�
. Based on this selection of local strategies one can

define the sets of global strategies, reachable positions, and moves in the game.

150 J. Gutierrez

Global strategies are interpreted in a poset of anti-chains since, by definition,
a global position is an anti-chain of D. We will define A = (A,≤A) to be such a
suitable poset (a space of anti-chains), and call it the ‘arena of global positions’
of D. Then, the concept of arena is formalized in the following way:

Definition 2 (Arena of Global Positions). Given a board D = (D,≤D),
the poset A = (A,≤A) is its ‘arena of global positions’, where A is the set of
anti-chains of D and E ≤A D iff ↓E ⊆ ↓D, for all anti-chains of D.

The reader acquainted with partial order models of concurrency, in particular
with event structures, may have noticed that the poset of anti-chains defined here
is similar to the domain of representative elements of a prime event structure
[15]—and therefore also to the set of states or markings in a safe Petri net.

Definition 3 (Global Strategies). Let D = (D,≤D) be a board. Given two
subsets of indices K∀ of K∀ and K∃ of K∃, and hence, two sets of local strategies
Λ∀

�
and Λ∃

�
for Adam and Eve, let the closure operators ∂∀ : A → A and ∂∃ :

A → A on the poset A = (A,≤A), where A is the arena of global positions
associated with D, be the ‘global strategies’ for Adam and Eve defined as follows:

∂∀(D) def= max
⋃

d∈D,j∈K∀{λ
j
∀(d) | dfn(λj

∀, d)}
∂∃(D) def= max

⋃
d∈D,i∈K∃{λ

i
∃(d) | dfn(λi

∃, d)}

where D ⊆ D is a global position of D (and therefore an element of A) and max
is the ‘maximal elements’ set operation, which is defined as usual.

The reasons why ∂∀ and ∂∃ are closure operators are as follows: extensiveness is
given by the identity local strategies λ1

∀ and λ1
∃ and monotonicity and idempo-

tency are inherited from that of local strategies and ensured by max. Note that
max is needed for two reasons: because (1) a global position must be an anti-chain
of local ones and (2) only representative elements of A should be considered.

Now, the dynamics of a game is given by the interaction between the players
(together with an external environment / which is enforced to be deterministic
by dsync—the property on boards and synchronization points given before).

Definition 4 (Rounds and Composition of Strategies). Let a ‘(∃ ◦ ∀)-
round’ be a global step of the game such that if D ⊆ D is the current global
position of the game, ∂∃ is the strategy of Eve, and ∂∀ is the strategy of Adam,
then the game proceeds first to an intermediate global position D∃◦∀ such that:

D∃◦∀ = (∂∃ ◦ ∂∀)(D)
= max

⋃
d∈D,i∈K∃,j∈K∀{(λ

i
∃ ◦ λ

j
∀)(d) | dfn(λj

∀, d) ∧ dfn(λi
∃, λ

j
∀(d))}

and then to the next global position D′ = (D∃◦∀ \ e←SP)
⋃
e→SP , given by /, where:

e←SP =
⋃

e∈D→
∃◦∀

{u ∈ e← | SP(e) ∧ e← ⊆ D∃◦∀}
e→SP =

⋃
e∈D→

∃◦∀
{v ∈ e→ | SP(e) ∧ e← ⊆ D∃◦∀}

and call the transition from the global position D to D′ a ‘�-round’ of the game.

Concurrent Logic Games on Partial Orders 151

This definition follows the intuition that in a logic game Eve must respond to
any possible move of Adam; moreover, she has to do so in every local position.

Plays. The interaction between the strategies of Eve and Adam define a
(possibly infinite) sequence of global positions {⊥}, D1, ..., Dk, ..., and hence, a
sequence of posets given by the union of the order ideals determined by each Dk.
A play is any finite or infinite union of the elements of such posets. Formally, a
play � = (H,≤D) on a board D = (D,≤D) is a (possibly infinite) poset such that
H is a downward-closed subset of D. An example can be found in the appendix.

We say that a play can be finite or infinite, and closed or open; more precisely,
a play is: finite iff all chains of � are finite; infinite iff � has at least one infinite
chain; closed iff at least one of the terminal elements of D is in H; open iff none
of the terminal elements of D is in H. This classification of plays is used in a
further section to define in a concrete way what the winning sets of a game
are. Since for any play {⊥}, D1, ..., Dk, ... the lower subset defined by a global
position Dk always includes the lower subsets of all other global positions Dj

such that j < k, then in a partial order setting any global position D determines
a play �D = (H,≤D) on a board D = (D,≤D) as follows (and let Γ be the set
of plays of a game): H =

⋃
{e ∈ ↓d | d ∈ D} =

⋃
d∈D{e ∈ D | e ≤D d}.

Winning Sets and Strategies. The winning conditions are the rules that
determine when a player has won a play and define the ‘winning sets’ for each
player. Let W : Γ → Υ be a partial function that assigns a winner ∃, ∀ ∈ Υ to a
play � ∈ Γ , and call it the winning conditions of a game. The winning sets are
determined by those plays that contain a terminal element or represent infinite
behaviour. On the other hand, winning strategies (which are global strategies)
are defined as usual, i.e., as for games on graphs. Then, we have:

Definition 5. � = (Υ,D, ΛD,∇,W , Γ) is a ‘Concurrent Logic Game’ (CLG),
where Υ = {∃, ∀} is the set of players, the ⊥-bounded poset D = (D,≤D) is a
board, ΛD = Λ∃

D . Λ∀
D are two disjoint sets of local strategies, ∇ : D → Υ is

a partial function that assigns players to local positions, and W : Γ → Υ is a
function defined by the winning conditions of � over its set of plays Γ .

A CLG is played as follows: Eve and Adam start by choosing, independently,
a set of local strategies. The selection of local strategies is done indirectly by
choosing the sets of indices K∀ ⊆ K∀ and K∃ ⊆ K∃. The only restriction (which
we call ‘∀/∃-progress’) when choosing the local strategies is that the resulting
global strategy ∂, for either player, must preserve joins in the following way:

∀d ∈ (↑D ∩ ↓∂∀(D)), if BP(d) ∧∇(d) = ∀ then
∀a, b ∈ d→. sync(a, b) implies a, b ∈ ↓∂∀(D).

and likewise for Eve, changing ∂∀ for ∂∃ and the polarity given by ∇. The pred-
icates BP and sync characterise, respectively, the ‘branching points’ of a poset
and pairs of elements that belong to chains that synchronize; their definitions
are: BP(d) iff | d→ | > 1 and sync(a, b) iff ↑a ∩ ↑b 	= U , for U ∈ {∅, ↑a, ↑b}. This
restriction—which avoids the undesired generation of trivial open plays where
nobody wins—is necessary because a synchronization point can be played iff all
elements of its preset have been played. Thus, this is a correctness condition.

152 J. Gutierrez

3 Closure Properties

At least three closure properties are interesting: under dual games, under lower
sub-boards, and its order dual, under upper sub-boards. But, before presenting
the closures, let us give a simple, though rather useful, technical lemma, which
helps ensure that in some sub-boards a number of functionals are preserved.

Lemma 1 (Unique Poset Prefixes). Let D be a global position of a board D.
There is a unique poset representing all plays containing D up to such position.

Lemma 1 facilitates reasoning on CLG on posets as it implies that regardless of
which strategies the players are using, if a global position D appears in different
plays, then the ‘poset prefixes’ of all such plays, up to D, are isomorphic. Let
us now study some of the closure properties the CLG model enjoys. Given a
CLG � played on a board D, let � ⇓B be the CLG defined from � where B is
a sub-board of D and the other components in � are restricted to B.

Lemma 2 (Closure Under Filters). Let � be a CLG and D a global position
of the board D of �. The structure � ⇓B = (Υ,⊥ ⊕B, ΛB,∇ ⇓B,W ⇓B, Γ ⇓B)
is also a CLG where B is the upper sub-board of D defined by D.

Where ⊕ is the ‘linear sum’ operator on posets. The order dual of this closure
property is a closure under countable unions of (principal) ideals.

Lemma 3 (Closure Under Ideals). Let � be a CLG and D a global position
of the board D of �. The structure � ⇓B = (Υ,B, ΛB,∇ ⇓B,W ⇓B, Γ ⇓B) is
also a CLG where B is the lower sub-board of D defined by D.

Remark 2. Lemmas 2 and 3 show that the filters of D define the ‘subgames’ of �;
also, that the ideals in D can define a subset of the set of plays of Γ . Moreover,
notice that games on infinite trees can be reduced to the particular case when D
is always a singleton set and where two chains in the board never synchronise.

Since CLG will be used for verification, another useful feature is that of having a
game closed under dual games, this is, a game used to check the dual of a given
property over the same board—i.e., for the same system(s). Formally:

Definition 6 (Dual Games). Let � = (Υ,D, ΛD,∇,W , Γ) be a CLG. The dual
game �op of � is (Υ,D, ΛD,∇op,Wop, Γ), such that for all d ∈ D and � ∈ Γ :

– if ∇(d) = ∃ (resp. ∀) then ∇op(d) = ∀ (resp. ∃), and
– if W(�) = ∃ (resp. ∀) then Wop(�) = ∀ (resp. ∃).

Moreover, let J be a class of CLG where for all � ∈ J there is a dual game
�op ∈ J. Then, we say that J is closed under dual games.

Lemma 4 (Closure Under Dual Games). Let J be a class of CLG closed
under dual games. If Eve (resp. Adam) has a winning strategy in � ∈ J, then
Adam (resp. Eve) has a winning strategy in the dual game �op ∈ J.

Concurrent Logic Games on Partial Orders 153

Lemma 4 does not imply that CLG are determined as the existence of winning
strategies has not yet been ensured; let alone the guarantee that finite and open
plays in which D → D′ and D = D′ hold are not possible, as this implies that
the game is undetermined. Call ‘stable’ a play where D → D′ and D = D′ hold.

Another condition that is necessary, though not sufficient, for a game to be
determined is that all plays that are not finite and open have a winner. This is
ensured by requiring W to be complete. We say that W is complete iff it is a
total function on the subset of plays in Γ that are not finite and open.

Lemma 5 (Unique Winner). Let J be a class of CLG closed under dual games
for which plays that are stable, finite and open do not occur. If the W in � ∈ J
is complete, then every play in � and �op has a unique winner.

Remark 3. If a class of games is closed under dual games and has a complete set
of winning rules, then a proof of determinacy, which does not rely on Martin’s
theorem [14], can be given if the game is sound (where Adam is a correct falsifier).
More importantly, games with these features must also be complete (where Eve is
a correct verifier), and therefore determined. In this way one can reduce reasoning
on games by building completeness and determinacy proofs almost for free!

Let us finish with a counter-example (Figure 1 in the appendix) that shows that
CLG are undetermined. This motivates the definition of a semantic condition
that, when satisfied, allows for the construction of a determined CLG.

Proposition 1. CLG are undetermined in the general case.

4 Metatheorems for Systems and Property Verification

As a CLG model can be seen as a logic game representation of a verification
problem (cf. [5]), then let �P be the CLG associated with a decision problem
V(P), for a given problem P, and J the class of CLG representing such a decision
problem. We say that V(P) holds iff such a decision problem has a positive
answer, and fails to hold otherwise; then V(P) is used as a logical predicate.

As usual, �P is correct iff Eve (resp. Adam) has a winning strategy in �P

whenever V(P) holds (resp. fails to hold). Let a ‘local configuration’ of �P ∈ J
be a local position and a ‘global configuration’ an anti-chain of local positions.
Moreover, a ‘true/false configuration’ is a configuration from which Eve/Adam
can win. A global configuration is logically interpreted in a conjunctive way;
then, it is true iff it only has true local configurations, and false otherwise.

In order to show the correctness of the family of games J, in this abstract
setting, we need to make sure that the CLG �P associated with a particular
verification problem V(P) has some semantic properties, which are given next.

Definition 7 (Parity/co-Parity Condition). Let (A,≤A) be a poset indexed
by a finite subset of N, −→a be a sequence of elements of A whose order respects ≤A

and downward-closure, and fω
min : Aω → N be a function that characterizes the

minimum index that appears infinitely often in −→a . Then, ({b ∈ A | b ∈ −→a },≤A)
is a poset definable by a ‘Parity/co-Parity condition’ iff fω

min(
−→a) is even/odd.

154 J. Gutierrez

Property 1 (ω-Symmetry: bi-complete ω-regularity). A family J of CLG
has Property 1 and is said to be ω-symmetric (bi-complete and ω-regular), iff:

1. J is closed under dual games;
2. for all �P ∈ J we have that �P has a complete set of winning conditions;
3. the winning set given by those plays such that W(�) = ∃, i.e., those where

Eve wins, is definable by Büchi/Rabin/Parity conditions.1

An immediate consequence of the previous property is the following:

Lemma 6. If a CLG �P is ω-symmetric, then it also satisfies that the winning
set given by those plays such that W(�) = ∀, i.e., those where Adam wins, is
definable by co-Büchi/Streett/co-Parity conditions.

Note that parts 1 and 3 of Property 1 are given by the particular problem to be
solved. It is well known that several game characterisations of many verification
problems have these two properties. On the other hand, part 2 is a design issue.
From a more algorithmic viewpoint, Property 1 and Lemma 6 imply that:

Lemma 7. The winning sets of Adam are least fixpoint definable; and dually,
the winning sets of Eve are greatest fixpoint definable.

Recall that Büchi and Rabin conditions can be reduced to a Parity one. More-
over, a Parity condition characterises the winning sets (and plays) in the fixpoint
modal logic Lμ [6] as follows: infinite plays where the smallest index that ap-
pears infinitely often is even/odd satisfy greatest/least fixpoints and belong to
the winning sets of Eve/Adam. As in our setting plays are posets, the order is
the one given by the board. The following semantic condition must hold too:

Property 2 (Local Correctness). Let D be the board of a CLG �P. If d ∈ D
is a false configuration, then either ∇(d) = ∃ and all next configurations are
false as well or ∇(d) = ∀. Dually, if d ∈ D is a true configuration, then either
∇(d) = ∀ and all next configurations are true as well or ∇(d) = ∃.

The game interpretation of Property 2 reveals the mathematical property that
makes a CLG logically correct. Property 2 implies that not only the local po-
sitions that belong to a player must be either true or false local configurations,
but also those that belong to /, i.e., the joins of D. Then, truth and falsity must
be transferred to those local positions as well, so that the statements “Eve must
preserve falsity” and “Adam must preserve truth” hold. Formally, one needs to
ensure that the following restriction (which we call ‘�-progress’) holds:⊔

D 	= ∅ ⇒
⊔

d∈D ∂∀({d}) 	= ∅ and
⊔
D 	= ∅ ⇒

⊔
d∈D ∂∃({d}) 	= ∅

where
⊔

is the ‘join operator’ on posets; call ‘live’ a play that is not stable,
finite and open, as well as games whose strategies only generate live plays. �-
progress guarantees that only live plays and games—where truth and falsity
are preserved—are generated. Moreover, it allow us to show the soundness and
completeness of this kind of CLG. A simple technical lemma is still needed: a
direct application of Lemma 5 using �-progress and Property 1 gives Lemma 8:
1 Büchi and Rabin conditions are defined as expected [12] as well as their duals.

Concurrent Logic Games on Partial Orders 155

Lemma 8. Every play of a live, ω-symmetric �P has a unique winner.

Theorem 1 (Soundness). If V(P) fails to hold, Adam can always win �P.

And, due to the properties of the game, we get completeness almost for free.
Moreover, determinacy with pure winning strategies—a property not obvious
for concurrent games—follows from the soundness and completeness results.

Theorem 2 (Completeness). If V(P) holds, Eve can always win �P.

Corollary 1 (Determinacy). Eve has a winning strategy in �P iff Adam does
not have it, and vice versa.

5 Algorithmic Applications and Further Work

Solving a CLG �P using the approach we presented here requires the construction
of a winning game �P ⇓B (and with it a winning strategy) for either player,
according to Theorems 1 and 2. This is in general an undecidable problem since
the board D can be infinitely large. However, in many practical cases D can be
given a finite representation where all information needed to solve the verification
problem is contained. Let us finish this section with the following result:

Theorem 3 (Decidability). The winner of any CLG �P can be decided in
finite time if the board D in �P has finite size.

Although Theorem 3 is not a surprising result, what is interesting is that sev-
eral partial order models can be given a finite poset representation which, in a
number of cases, can be smaller than their interleaving counterparts. Therefore,
the decidability result may have important practical applications whenever the
posets can be kept small. This opens up the possibility of defining new concurrent
decision procedures for different verification problems.

Remark 4. The size of a board D in a CLG model can be smaller than the un-
folding U of the interleaving structure representing the same problem. The exact
difference, which can be exponential, depends on the degree of independence
or concurrency in D, i.e., on the number of elements of those chains that are
independent and therefore must be interleaved in order to get U from D. Only
experiments can tell if the CLG model can have an important practical impact.

Applications to Bisimulation and Model-Checking. The game frame-
work described in this manuscript can be applied to solve, in a uniform way, the
bisimulation and modal μ-calculus [6] model-checking problems. In particular,
the induced decision procedures generalize those defined by Stirling in [16]. A
detailed description of the two reductions can be found in [12] (Chapter 5).

Future Work. The work presented here can be extended in various ways. In
particular, related to the author’s previous work, we intend to study the expres-
sivity and applicability of the CLG model with respect to logics and equivalences
for so-called ‘true concurrency’, where interleaving approaches, either concurrent
or sequential, are not semantically powerful enough. Results on this direction
would allow us to give a concurrent alternative to the higher-order logic games
for bisimulation and (local) model-checking previously presented in [11,13].

156 J. Gutierrez

References

1. Abramsky, S.: Event domains, stable functions and proof-nets. Electronic Notes in
Theoretical Computer Science 172, 33–67 (2007)

2. Abramsky, S., Melliès, P.A.: Concurrent games and full completeness. In: LICS,
pp. 431–442. IEEE Computer Society, Los Alamitos (1999)

3. Alfaro, L.D., Henzinger, T.A.: Concurrent omega-regular games. In: LICS, pp.
141–154. IEEE Computer Society, Los Alamitos (2000)

4. Alfaro, L.D., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. The-
oretical Computer Science 386(3), 188–217 (2007)

5. Benthem, J.V.: Logic games, from tools to models of interaction. In: Logic at the
Crossroads, pp. 283–317. Allied Publishers (2007)

6. Bradfield, J.C., Stirling, C.: Modal mu-calculi. In: Handbook of Modal Logic, pp.
721–756. Elsevier, Amsterdam (2007)

7. Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Check-
ing. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg
(2008)

8. Ghica, D.R.: Applications of game semantics: From program analysis to hardware
synthesis. In: LICS, pp. 17–26. IEEE Computer Society, Los Alamitos (2009)

9. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
10. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems -

An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer, Heidel-
berg (1996)

11. Gutierrez, J.: Logics and bisimulation games for concurrency, causality and conflict.
In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 48–62. Springer,
Heidelberg (2009)

12. Gutierrez, J.: On Bisimulation and Model-Checking for Concurrent Systems with
Partial Order Semantics. Ph.D. thesis, University of Edinburgh (2011)

13. Gutierrez, J., Bradfield, J.C.: Model-checking games for fixpoint logics with par-
tial order models. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 354–368. Springer, Heidelberg (2009)

14. Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)
15. Nielsen, M., Winskel, G.: Models for concurrency. In: Handbook of Logic in Com-

puter Science, pp. 1–148. Oxford University Press, Oxford (1995)
16. Stirling, C.: Bisimulation, modal logic and model checking games. Logic Journal

of the IGPL 7(1), 103–124 (1999)
17. Walukiewicz, I.: A landscape with games in the background. In: LICS, pp. 356–366.

IEEE Computer Society, Los Alamitos (2004)

Appendix

All proofs and some examples can be found in Chapter 5 of the author’s PhD thesis
[12].2 Here we present only some selected ones which closely relate with the main tech-
nical results in the paper. We also include the proof of the closure under dual games
since this lemma is the key property that makes the proof of completeness of the game

2 This research was supported by an Overseas Research Studentship (ORS) award,
a School of Informatics PhD scholarship of the University of Edinburgh, and the
EPSRC Research Grant EP/G012962/1 ‘Solving Parity Games and Mu-Calculi’.

Concurrent Logic Games on Partial Orders 157

model rather short, even though we are working on a partial order setting. A simple
example that illustrates how a CLG is played between Eve and Adam is also given in
the proof of the following proposition.

Proposition 1. CLG are undetermined in the general case.

Proof. Neither player can have a winning strategy in the game presented in Figure 1
since Eve and Adam can enforce plays for which W is not defined (a stable, finite and
open play). Notice that ∀/∃-progress is not violated. ��

Notice that the play presented in Figure 1 is the best that both players can do, since
any other strategy they choose to play will lose against the strategy their opponent is
currently playing in the example.

d∀9 d∃10

d7 d8

d∀3

����������
d∀4

����������
d∃5

����������
d∃6

����������

d∀1

����
d∃2

����

d∀0

�-rounds: {d∀0} → {d∀3 , d∃6} → {d∀3 , d∃6} → ...

Fig. 1. Local positions are labelled with their polarities and the dotted lines are the
player’s moves. Here W(↓D) = ∃ iff d∃10 ∈ D and W(↓D) = ∀ otherwise, for all global
positions D containing a terminal element. The play is stable, finite and open.

Lemma 4 (Closure Under Dual Games). Let J be a class of CLG closed under
dual games. If Eve (resp. Adam) has a winning strategy in � ∈ J, then Adam (resp.
Eve) has a winning strategy in the dual game �op ∈ J.

Proof. Suppose that Eve has a winning strategy ∂W in �. Since for all global positions
in the game � one has that the next global position is initially defined by ∂W ◦ ∂∀,
then whenever Adam has to make a move in �op he can use the winning strategy ∂W

of Eve because for all d ∈ D, if ∇(d) = ∃ then we have that ∇(d)op = ∀. However,
notice that in each local position of the game board Adam must always “play first”
both in � and in �op because the global evolution of the game, which is determined by
the rounds being played, is always defined by pairs of local strategies λi

∃ and λj
∀ such

that λi
∃ ◦λj

∀(d), for any local position d, regardless of whether we are playing � or �op.
So, there are actually two cases: firstly, consider those d ∈ D, for any global position

D, such that ∇(d) = ∃. In this case ∇op(d) = ∀ and then in �op Adam can simply play
Eve’s strategy in � at position d. The second case is that of those d ∈ D such that
∇(d) = ∀. In this case, ∇op(d) = ∃ and hence Adam can play d itself, and let Eve decide
on the new local position d′, for which, by hypothesis, Eve has a winning strategy in �

and the two previous cases apply again, though in a new round of the game; moreover,
the behaviour at synchronization points, which are played deterministically by the
environment �, remains as in �. In this way, Adam can enforce in �op all plays that
Eve can enforce in �.

158 J. Gutierrez

Finally, since for all such plays in Γ it was, by hypothesis, Eve who was the winner,
then Adam is the winner in all plays in �op as now for all � ∈ Γ , one has that
Wop(�) = ∀. The case when Adam has a winning strategy in � is dual. ��

Theorem 1 (Soundness). If V(P) fails to hold, Adam can always win �P.

Proof. We show that Adam can win all plays of �P if V(P) fails to hold by providing
a winning strategy for him. The proof has two parts: first, we provide a board where
Adam can always win and show how to construct a game on that board, in particular,
the local strategies in the game—and hence, a strategy for Adam; then, we show that
in such a game Adam can always win by checking that his strategy is indeed a pure
winning strategy.

Let �P ⇓B be a CLG on a poset B = (B,≤D), which is a subset of D = (D,≤D), the
initial board of the game. Let the set B be a downward-closed subset of D with respect to
≤D; the bottom element⊥B = ⊥D (where every play of the game starts) is, by hypothesis,
a false configuration.

The construction of the board is as follows: B contains only the winning choices
for Adam (i.e., those that preserve falsity) as defined by the local correctness semantic
property 2. After those elements of the poset have been selected, adjoin to them all
possible responses or moves available to Eve that appear in D. Do this, starting from
⊥, either infinitely often for infinite chains or until a terminal element is reached in
finite chains. This construction clearly ensures that B is a downward-closed set with
respect to ≤D. As in the proofs of Lemmas 2 and 3 (see [12] for further details), the
polarity function ∇ for B is as in D.

Using the constructions given in the proof of Lemma 2, one can define all other
elements of �P ⇓B . In particular, the local strategies for Eve and Adam will be ‘stable’
closure operators;3 based on Definition 1 such stable closure operators are completely
defined once one has determined what the ‘output’ functions will be (the local positions
d′ in item 3) since the fixpoints are completely determined already in Definition 1. Then,
each local strategy λj

∀ for Adam and λi
∃ for Eve—where j ∈ K∀ ⊆ K∀ and i ∈ K∃ ⊆ K∃,

respectively—is defined as follows:4

λi
∃(d) = d ∨ f i

∃(d)
λj
∀(d) = d ∨ gj

∀(d)

where:

λi
∃(d) = d , if fix∃(λi

∃, d)
λi
∃(d) = f i

∃(d) , otherwise

λj
∀(d) = d , if fix∀(λj

∀, d)
λj
∀(d) = gj

∀(d) , otherwise

where each ‘output’ function gj
∀ necessarily preserves falsity and each output function

f i
∃ must preserve truth (because B was constructed taking into account Property 2).

Moreover fix∃ and fix∀ are predicates that characterise the fixpoints of the local
strategies for Eve and Adam in the following way:

fix∃(λ∃, d)
def
= dfn(λ∃, d) and (∇(d) = ∀, or SP(d), or d �→, or d→ e ∧ SP(e))

fix∀(λ∀, d)
def
= dfn(λ∀, d) and (∇(d) = ∃, or SP(d), or d �→, or d→ e ∧ SP(e))

3 Good references for stable maps on posets are [1,2] as well as some references therein.
4 Recall that i, j > 1 as λ1

∀ and λ1
∃ are the identity local strategies of Adam and Eve.

Concurrent Logic Games on Partial Orders 159

where d ∈ D, λ∀ ∈ Λ∀
D , and λ∃ ∈ Λ∃

D in a game board D = (D,≤D).
However, since in B all choices available to Eve were preserved, then the set of local

strategies for Eve (i.e., Λ∃
B) can be safely chosen to be simply the same set of local

strategies in D (i.e., Λ∃
D); therefore, Λ∃

B = Λ∃
D (because, formally, they play in D,

even though Adam can prevent the positions in D \ B to be reached) and Λ∀
B ⊆ Λ∀

D ;
moreover, the definition of global strategies immediately follows from this specification
of local strategies as given by Definition 3 – of course, subject the restriction that any
such global strategy must preserve the existence of joins in B (progress restrictions).
Finally, the sets of plays and winning conditions are defined from B and the new sets
of strategies as done in the proof of Lemma 2.

For the second part of this proof, let us show that the game �P ⇓B is winning
for Adam, i.e., that he has a winning strategy. Then, let us analyse the outcome of
plays to certify that he indeed wins all plays in such a game. First consider finite
plays, which must be closed because all valid strategies must preserve the existence
of joins. All such plays have a global position Df which contains at least one local
position that is a terminal element of B. Due to Property 1 (part 2), all those plays are
effectively recognised as winning for one of the players, in this case for Adam: since ⊥
is a false configuration, Eve must preserve falsity, and Adam is only playing strategies
that also preserve falsity, then Df contains at least one local position df which also
is a false configuration, and therefore Df is a false configuration as well since it is
interpreted conjunctively. As a consequence all finite plays are winning for Adam. The
same argument also applies for infinite, closed plays. The final case is that of open,
infinite plays.

The correctness of this case is shown by a transfinite induction on a well-founded
poset of sub-boards of B; this technique generalizes the analysis of approximants of
fixpoints on interleaving structures (i.e., on total orders) to a partial ordered setting.
So, let (O,≤O) be the following partial order on sub-boards (i.e., posets):

O = { � ⇓↑D | D is a global position of B}
� ⇓↑D ≤O � ⇓↑D′ iff ↑D′ ⊆ ↑D

The relation ≤O is clearly well-founded because all finite and infinite chains in the poset
(O,≤O) have ⊥O = � ⇓↑⊥B = � ⇓B as their bottom element. Since any particular
play in the game corresponds to a chain of (O,≤O), then let us also define a valuation
�· � : O → {true,false} and a total order on the sub-boards (i.e., posets), and therefore
subgames, associated with B. Let � be any open, infinite play (an infinite chain of
(O,≤O)) and let α,� ∈ Ord be two ordinals, where � is a limit ordinal. Then:

��0� = �⊥O� (the base case)
��α+1� = �→O (�α)� (the induction step)
���� = �

⋃
α<�(�α)� (because � is a limit ordinal)

where →O is the accessibility relation of ≤O restricted to the elements of the chain �.
Then, for Adam, we have the following:

�⊥O� = false (by hypothesis, ⊥O is a false configuration)
�→O (�α)� = ��α� (due to Property 2, →O preserves falsity)
�
⋃

α<�(�α)� =
∨

α<� ��α� (because due to Lemma 7,
Adam’s winning sets are least fixpoint definable)

Due to the principle of (transfinite) fixpoint induction, the result holds for all ordi-
nals, and therefore for all global positions of any open, infinite play. Note that we can

160 J. Gutierrez

actually repeat this analysis for all ordinals β < α (and thus for all global positions),
due to Property 1 (part 3), since winning configurations, and hence winning sets, are
fixpoint definable. But, since ordinals are well-founded such a process of checking sub-
games and open, infinite plays always terminates regardless of which α one chooses.
Hence, there can be neither a D nor a game �P ⇓⊥B⊕↑D where Eve wins.

As she cannot win any finite or infinite play in �P ⇓B , and due to Lemma 8 all
plays have a unique winner, Adam’s strategy is indeed a winning strategy in �P; more
precisely, it clearly is a pure winning strategy. Then, one can ensure that If V(P) fails
to hold then Adam can win all plays of �P. ��

A similar proof can be given to show the completeness of the game. Nevertheless, due
to the properties of the game (notably, the closure under dual games), we can get the
proof of completeness almost for free!

Theorem 2 (Completeness). If V(P) holds, Eve can always win �P.

Proof. Due to Property 1 (part 1) there exists a dual CLG �op
P for the dual verification

problem V(Pop) of V(P) such that V(Pop) does not hold. And, due to Theorem 1
Adam has a winning strategy in the game �

op
P for the dual problem Pop. Therefore,

due to Lemma 4 and Lemma 8, Eve can use the local strategies of Adam in �op
P to

be the unique winner of all plays � ∈ Γ of �P, and hence the existence of a winning
strategy for Eve in �P follows. ��

Theorem 3 (Decidability). The winner of any CLG �P can be decided in finite time
if the board D in �P has finite size.

Proof. Since D, by hypothesis, has finite size, then there are finitely many sub-boards
B, and consequently, finitely many subgames �P ⇓B that must be checked before con-
structing a winning one for either player. Moreover, constructing a particular game
�P ⇓B either for Eve or Adam as described in the proofs of Theorems 1 and 2 can be
effectively done also because D is finite, as follows.

Firstly, since B is finite there are finitely many different strategies for Eve and
Adam. Moreover, since those strategies are closure operators in a finite structure, then
their sets of closed elements eventually stabilize. As a consequence, there are only
finitely many possible different plays (and game configurations), whose winner can
always be checked—because the game is determined and its set of winning conditions
is complete. Therefore, a winning strategy can be chosen from the set of strategies
of the game by exhaustively searching such a set, simply by comparing it against all
possible strategies of the other player. As we assume that Properties 1 and 2 hold, they
need not be verified. ��

Dynamic Epistemic Algebra with

Post-conditions to Reason about Robot
Navigation

Alexander Horn

Oxford University Computing Laboratory, Oxford, UK
alex.horn@gmail.com

Abstract. Dynamic epistemic algebra establishes Galois connections
and quantales as a basis for reasoning about knowledge in multi-agent
systems. To date, these algebraic-axiomatic methods have been restricted
to a positive fragment of dynamic epistemic logic with communication
events only. This paper proposes Boolean algebraic extensions which
overcome these limitations by generalizing dynamic epistemic algebra
to scenarios where events can change facts in form of post-conditions.
As an application of the new algebraic treatment of post-conditions, we
devise and solve a topological map-based robot navigation example for
which current axiomatics are insufficient.

1 Introduction

Networks such as the Internet enable autonomous agents to communicate with
each other. Such group communication can be understood as information flow.
The formal logical analysis of information flow in multi-agent systems is possible
with dynamic epistemic logic. Dynamic epistemic logic is sound and complete
with respect to relational semantics [4]. These relational semantics trace back to
Kripke semantics [14] which shape modal logic (e.g. [5]). Similar to modal logic,
traditional dynamic epistemic logic requires fixed valuations where facts never
change [24]. To account for factual changes, recent research extended dynamic
epistemic logic with post-conditions [25], [11], [21], [23]. The resulting logical
expressiveness has found application in the study of market simulations, such
as the trade on commodities [22], and the reasoning about information across
covert channels [26]. However, relational semantical proofs can be tedious to
formalize as agents interact frequently.

In contrast, algebraic semantics of dynamic epistemic logic abstract parts of
the traditional relational structures by characterizing the dynamic nature of
knowledge in terms of Galois connections and quantales [20], [3]. These math-
ematical structures tend to make proofs about information flow in multi-agent
systems more perspicuous. However, only multi-agent systems in which facts
never change are supported [18], [8]. In response, subsequent changes to the
algebra aimed at increased flexibility with a converse dynamic modality [17].
However, this converse modality excludes event composition and it formalizes
only learning of agents without initial knowledge [13].

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 161–175, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

162 A. Horn

To overcome these limitations, this paper proposes a novel algebraic abstrac-
tion inspired by the relational semantical extensions of dynamic epistemic logic
with post-conditions (e.g. [25], [21], [23]). The novelty is a dynamic epistemic
algebra with Boolean algebraic structures and post-conditions for events in a
quantale. The former applies to the negation of beliefs (i.e. disbeliefs). The latter
enables reasoning about knowledge when events can change facts. As an applica-
tion of factual changes, I encode the movements of a robot as events with post-
conditions. This encoding aligns with topological maps studied in the robotics
literature (e.g. [15]). Moreover, it broadens the application of dynamic epistemic
logic by yielding a sensor-based robot navigation strategy which demonstrates
the formalization and analysis of scenarios in which agents explore their sur-
rounding including explorations from a known initial location.

2 Robot Navigation with Topological Maps

In order to explain the problem, we start with a directed graph G = (V,E).
Graph G is called a topological map if each vertex corresponds to a distinct
location in an environment, such as an office, and edges denote movements
between locations. Since topological maps are abstractions of the real world, lo-
cations could be understood as “distinctive places” which correspond to reference
points in the environment [15].

Suppose there is an autonomous robot who knows the topological map of
its surrounding. The objective of the robot is to determine its exact location.
This objective could require the robot to move about in order to discover more
information. During this exploration, the assumption is that the robot can detect
all available movements at its current location. When the robot performs one of
these movements, we assume that it always reaches the next location according
to the topological map.

As an example of robot navigation, consider the topological map in Figure 1
devised by Phillips [18]. Let the robot’s initial location be p2. Since locations
p1 and p2 are identical in terms of available movements (a and b), the robot
considers the possibility of being in either location. Similarly, if it were to start
at location p3, it would not know if it would be in p3 or p4. However, as soon as it
moves from its unknown initial location p2 via movement a, it gains knowledge
of its position! That is, the robot learns that it has arrived at location p3. It
rules out the possibility of having reached location p4 because an a movement

p1
b ��

a

��

p4

p2
a

��

b

��								
p3

Fig. 1. Topological map in which the movement from location p2 to p3 reduces the
uncertainty of the agent about its position [18], [8]

Dynamic Epistemic Algebra with Post-conditions 163

does not lead to it. Moreover, even though an a movement leads to location p2,
the robot eliminates this possibility as well because it can detect neither a nor
b movements once it arrives at location p3.

Noteworthy, these conclusions cannot be drawn with the original dynamic
epistemic algebra [18]. Therefore, our goal is to algebraically formalize and pre-
cisely analyze how movements change the robot’s uncertainty about locations.

Unlike previous algebraic approaches [18], [8], [7], [17], this paper aims at
robot navigation with a more general solution where a robot has a sensor. This
sensor-based solution can be described by the following algorithm [13]:

1. The sensor informs the robot of possible movement options (if any).
2. After choosing one of these movements, the robot relocates accordingly.
3. In the meantime, the robot uses its knowledge of the topological map to

determine the set of possible destinations.
4. Once the robot arrives at one of these destinations, the sensor probes the

environment and broadcasts the set of available movements.
5. By listening to this broadcast, the robot combines the information from the

two previous steps to update its uncertainty about its current location.

In fact, this solution appeals to other problems in which agents need to ob-
serve changes in their surrounding to learn information. To emphasize this point,
we simply represent the fourth step as an honest public announcement by the
sensor [13]. In an epistemic setting, the challenge is the relocation of the robot
because it causes factual changes.

Even though recent axiomatic extensions of dynamic epistemic logic [23] apply
to robot navigation scenarios [13], such Hilbert-style deductions are not neces-
sarily constructive in the sense that they explain the intuition behind machine
learning ([13] gives a more thorough comparison between the logical and alge-
braic approaches). In Figure 1, for example, the proof that the robot learns its
destination when moving from location p2 to p3 could consist of tautologies such
as � [(p3 ∨ p4)!]�αp3 ↔ (p3 ∨ p4) → �α(p4 → p3). Intuitively, after the honest
public announcement by the sensor, the agent believes that it is in location p3 if
and only if it is neither in p3 nor in p4, or it believes that its presence at location
p4 implies that it is at location p3. To avoid such indirection, the next section
develops a dynamic epistemic algebra with post-conditions which conceptualizes
learning as the change of an agent’s uncertainty about locations.

3 Dynamic Epistemic Algebra with Post-conditions

The requirement is to analyze both information flow and factual changes in
multi-agent systems. The former has been studied in terms of Galois connections
and quantales [2], [20], [3]. The latter is the main contribution of this section.
Both features require some level of familiarity with lattice theory (e.g. [9]).

To capture factual changes in an agent’s surrounding, we start by defining a
countable set of facts as a basis for real world information. Note that the separate
treatment of logical propositions deviates from earlier intuitionistic algebraic
approaches [20], [3].

164 A. Horn

Definition 1. Define the tuple P = 〈P ;∨,∧,¬,⊥,�〉 to be a Boolean algebra
where P is the set of atoms which we call facts.

Facts are atomic sentences which are either true or false. By definition (1), the
Boolean algebra of facts satisfies classical propositional logic properties such as
De Morgan’s laws. For example, ¬(p ∧ q) = ¬p ∨ ¬q for all p, q ∈ P .

Definition 2. A unital quantale 〈E,
∨
, •, 1〉 is a sup-lattice E, equipped with

a monoid operation − • − : E → E and the identity element 1 such that⎛⎝∨
j

ej

⎞⎠ • e =
∨
j

(ej • e) (jql) e •
(∨

i

ei

)
=
∨
i

(e • ei) (jqr)

In other words, rule (jql) together with rule (jqr) define the monoid to pre-
serve arbitrary joins in both arguments. Intuitively, elements in the quantale
are interpreted as events ordered by determinism where e ∨ f corresponds to
the non-deterministic choice of events [3]. Multiplication in the quantale can
be interpreted as sequential event composition [3]. For example, e • f denotes
the sequence of events where e happens before event f . Thus, multiplication
in the quantale is defined to be noncommutative. Furthermore, quantales are
resource-sensitive [20]. For example, e 	≤ e • e and e • e 	≤ e means that the repe-
tition of the same event can be fundamentally different from its single occurrence
as the repetitive group interrogation in the Muddy Children Puzzle illustrates
(e.g. [10]). Since the quantale is unital, e • 1 = 1 • e = e for all e ∈ E, where
the identity element is the unit event which does nothing. Notice that the unit
event is unrelated to the least or greatest element in the lattice. Apart from the
unit event, all other events in the quantale have some sort of effect. This notion
of ‘change’ leads to the definition of a module [20], [3]:

Definition 3. Let E be a quantale. A module over E is a sup-lattice M with
a function −0− : M × E →M such that, for all m ∈ M and e, f ∈ E,

m0
(∨

i

ei

)
=
∨
i

(m0 ei) (je)

⎛⎝∨
j

mj

⎞⎠0 e =
∨
j

(mj 0 e) (jm)

(m0 e)0 f = m0 (e • f) (co) m0 1 = m (unit)

Elements in the module embody ‘possible worlds’ [10], [2]. For this reason, these
elements are called states. The dynamic nature of multi-agent systems is cap-
tured by the module operation −0− which reflects changes of beliefs [3]. Since
rule (je) and (jm) define this operation to be join-preserving in both arguments,
it is monotonic (e.g. [9]) if either argument is fixed. The remaining equalities
axiomatize event composition and the unit event [20], [3], [13].

Noteworthy, the pair of quantales and a module without modal operators has
been previously studied with denotational models of concurrent processes [1]. Its
connection with dynamic epistemic logic has been realized in [20] with a focus on

Dynamic Epistemic Algebra with Post-conditions 165

intuitionistic logic where traditional Boolean laws cannot be generally applied.
We start to address this limitation by refining the definition of a module to a
complete Boolean lattice. Recall that a complete Boolean lattice is the same as
a complemented distributive lattice where every subset has a supremum.

Definition 4. A Boolean module is a module whose lattice is a complete
Boolean lattice. In general, it is an infinite lattice [13, pp. 62f.].

Similar to the relational semantics [25], [11], [21], [23], events in the quantale
have pre-conditions and post-conditions [13, pp. 51–65]. The former is intrinsic
to the update operation: if the pre-condition of an event e is unsatisfied in a
state m, then m0 e = ⊥. The latter, however, requires the association of facts
with elements in the Boolean module [13] because factual and epistemic changes
evolve independently. This leads to the definition of the assignment operator:

Definition 5. Let P be a Boolean algebra of facts. Let M be a Boolean module.
Define the assignment to be a Boolean homomorphism −∗ : P →M .

Since the new assignment operator maps logical propositions to states, it shares
much in common with valuations such as in modal logic, for example. The dif-
ference is that the algebraic association of states with facts is accomplished by
the partial order relation on the complete Boolean lattice of the module. Similar
to valuations, for more complex expressions such as (p ∧ ¬q)∗, we can conclude
that it is equal to p∗ ∧ ¬q∗ because the assignment operator is defined to be a
Boolean homomorphism. This Boolean homomorphism builds the basis for the
algebraic specification of post-conditions which we define next.

Definition 6. Let P be a Boolean algebra of facts. Let E be a quantale and M
be a Boolean module over E. Let p ∈ P, m ∈ M and e ∈ E. We say state m
satisfies proposition p if m ≤ p∗. We call proposition p the post-condition of
event e in state m if m0 e satisfies p.

Intuitively, m ≤ p∗ means that in state m proposition p is true. We refer to such
an inequality as satisfaction relation. By definition (5), satisfaction relations
such as m ≤ (p ∧ ¬q)∗ and m ≤ p∗ ∧ ¬q∗ are equivalent. As special cases of
satisfaction relations, post-condition specifications are inequalities of the form
m 0 e ≤ p∗. Intuitively, such inequalities assert that proposition p is true after
the update of a state m with an event e. Noteworthy, these updates can capture
factual changes. Of course, it could also be the case that state m does not
even satisfy the pre-condition of event e in which case the inequality m 0 e =
⊥ ≤ p∗ is vacuously true. Such vacuous conditions are in accordance with the
meta-logical treatment of pre-conditions in the relational approach where the
outcome of an event is undefined if its pre-condition has not been satisfied [24].
Thus, post-condition specifications tend to be much more concise in both models
without non-trivial cases. The introduction of post-conditions, however, warrants
the formal differentiation between epistemic events and the new class of non-
epistemic events.

166 A. Horn

Definition 7. Let P be a Boolean algebra of facts. Let E be a quantale and M
be a Boolean module over E. Let e ∈ E. Then, e is called an epistemic event
if p∗ 0 e ≤ p∗ for all p ∈ P. Otherwise, we call the event non-epistemic.

In other words, if there exists p ∈ P such that p∗0e 	≤ p∗, then e is called a non-
epistemic event. Informally, non-epistemic events can change the propositional
assignment of the state being updated, whereas epistemic events preserve all
propositional assignments. The latter corresponds to ‘atomic permanence’ in
proof systems for dynamic epistemic logic without factual changes [4]. In fact,
the definition of an epistemic event is also similar to the definition of stable
facts in the intuitionistic approach [20], [3]. However, our approach achieves a
clearer separation between stable facts and epistemic propositions by virtue of
the additional assignment operator introduced as part of definition (5).

Definition 8. A Boolean system is a quadruple consisting of a Boolean alge-
bra with set of facts P together with a quantale E, a Boolean module M over E
and an assignment. We write 〈P,M,E,0,∗ 〉 for a Boolean system.

Finally, we augment the Boolean system with the lax sup-endomorphisms defined
for static intuitionistic approaches to dynamic epistemic logic [2], [20], [3].

Definition 9. Let A be a finite set of agents and α ∈ A. Let uE
α : E → E

and uM
α : M →M be sup-endomorphisms. Define the pair

(
uE

α , u
M
α

)
to be a lax

sup-endomorphism of a Boolean system 〈P,M,E,0,∗ 〉 such that, for all
m ∈M and e, f ∈ E,

uM
α (m0 e) ≤ uM

α (m)0 uE
α (e) (uui)

uE
α (e • f) ≤ uE(e) • uE

α (f) (uci)

1 ≤ uE
α (1) (usi)

Semantically, the function uM
α encodes the uncertainty of agent α about states [3].

Similarly, uE
α is an agent’s α uncertainty about events [3]. Examples for both

sup-endomorphisms and their interpretations appear in [20], [3], [13].
Clearly, uncertainties could change as agents interact with their environment.

The epistemic effects of such interactions are modeled by the uncertainty up-
date inequality (uci) which captures the notion of learning [20], [3], [13]. Sec-
ondly, (uci) relates the uncertainty about an event composition to the individual
sequential events [20], [3]. Lastly, (usi) asserts that when no event occurs an
agent must consider the possibility that, in fact, nothing has happened [20].

Notice that the assignment operator integrates the Boolean algebra P with
these sup-endomorphisms. However, we treat expressions such as uM

α (p∗) as
proof-theoretic constants which cannot be simplified for propositions p ∈ P .
More accurately, the general assumption is that the exact value of uM

α (p∗) is
unknown. The rationale is similar to the argument that we would not generally
compute uM

α (�) because it requires an explicit construction of the entire Boolean
module. However, it turns out that we can gain much ground without knowing
the exact value of uM

α (p∗). For simplicity, we could assume that agents have total

Dynamic Epistemic Algebra with Post-conditions 167

uncertainty about states which satisfy the proposition p. Of course, the claim is
not that uM

α (p∗) = �. A simple counterexample is uM
α (⊥∗) = uM

α (⊥) = ⊥ by
definition (5) and remark (1).

Remark 1. Recall that ⊥ =
∨
∅. By join-preservation of − 0 −, we conclude

m0⊥ = ⊥ 0 e = ⊥ for all m ∈ M and e ∈ E. Similarly, uM
α (⊥) = ⊥.

Most notably, since uM
α preserves arbitrary joins, we conclude that it has a Galois

connection uM
α (−) 1 �α− (e.g. [9]). In fact, the right adjoint �α− encodes the

belief modality for agent α [20], [3]. Let m ∈ M be a state, e ∈ E be an event
and p ∈ P be a proposition. By definition of Galois connection, uM

α (m) ≤ p∗ if
and only if m ≤ �αp

∗. In other words, if the uncertainty of the agent about state
m includes only states which satisfy proposition p, then �αp

∗ can be read as
“agent α believes proposition p is true”. Likewise, since −0e preserves arbitrary
joins, it has an adjoint denoted by [e]−. Recall that if the inequality m0 e ≤ p∗

is satisfied, then the post-condition of event e in state m is proposition p by
definition (6). By adjunction − 0 e 1 [e]−, this inequality holds if and only if
m ≤ [e]p∗. Intuitively, the expression [e]p∗ means that “after event e, proposition
p holds”. Of course, unless the pre-condition is actually satisfied, the inequality
m ≤ [e]p∗ is vacuously true because m0 e = ⊥ ≤ p∗.

4 Robot Movements as Post-conditions

This section exemplifies the algebraic treatment of post-conditions. For this pur-
pose, we devise a robot navigation example based on the topological map shown
in Figure 2. Notice that the robot can uniquely identify location p1 because no
other location has c movements. Similarly, location p3 is unique. Therefore, the
robot knows its destination when it moves from either of these known initial loca-
tions to any other. Recall that such valid conclusions cannot be generally drawn
from algebraic semantics which require the converse dynamic modality [13]. In
contrast, the extended dynamic epistemic algebra can be used to prove these
and other scenarios [13].

Before we can illustrate this point, we must agree on a precise problem specifi-
cation. For this purpose, we use the extended dynamic epistemic algebra defined
in the previous section. Let P be a Boolean algebra where each fact in the set P
represents a location of the robot according to the topological map. For example,

p4

b

��

p3
a��

p1
a

��

c

��								
p2

b

��

Fig. 2. Robot navigation example which demonstrates the algebraic treatment of post-
conditions by proving that the robot knows its destination when it moves from a known
initial location such as p1 or p3

168 A. Horn

the fact p1 ∈ P means that the robot is in location p1. Since the robot can never
be at two locations at the same time, we define pi ∧ pj = ⊥ for all pi, pj ∈ P
such that pi 	= pj . Let M be a Boolean module such that for all facts pi ∈ P
there exists an atom mi ∈ M where mi ≤ p∗i . By definition (6), mi ≤ p∗i means
that state mi satisfies the fact that the robot is at location pi. Since mi 	= ⊥,
p∗i 	= ⊥ for all facts pi ∈ P . Let movements between locations be events in the
quantale E. Since one of the assumptions is that the robot has absolute cer-
tainty about its movements, uE

α (e) := e for all e ∈ E. Define post-conditions by
p∗i 0 e ≤ p∗j , for all pi, pj ∈ P and e ∈ E, such that pj is the fact for the location
which can be reached from location pi with movement e. If such a movement
is impossible, then p∗i 0 e = ⊥. Prior to any such movement, the uncertainty
about initial locations is solely determined by available movements. Formally,
we define mi ∈ M to be an initial state if mi is an atom and mi 	= mj 0 e
for all mj ∈ M and e ∈ E such that e 	= 1. The set of all such initial states is
denoted by I(M). Finally, define the uncertainty about an initial state mi by
uM

α (mi) :=
∨
{mj ∈ I(M) | events(mi) = events(mj)} where events(mi) is the

set of available movements at location pi.
To develop an intuition for these definitions, reconsider the topological map

in Figure 2. Since the robot can move from location p1 to p2 via movement a, the
inequality p∗1 0 a ≤ p∗2 is true. Furthermore, uE

α (a) = a because the assumption
is that the robot has absolute certainty about its movements. Finally, note that
the robot has no uncertainty about the initial location p1 because movement c
is unique to it. Therefore, uM

α (m1) = m1 where m1 ∈ I(M) and m1 ≤ p∗1.
Next, we use these definitions to prove that the robot has no uncertainty

about its destination when moving from a known initial location such as p1.
Formally, m1 ≤ [a]�αp

∗
2 where m1 ∈ I(M) and m1 ≤ p∗1. The left side of the

inequality corresponds to the robot’s known initial location p1. On the right
side, the dynamic modality describes the robot’s movement from location p1

to p2. After this movement, �αp
∗
2 means that the agent believes that it is in

location p2. Before establishing this dynamic knowledge property, we prove that
the robot, in fact, reaches location p2 after starting from p1.

Property 1. Let m1 ∈ M and p1, p2 ∈ P . Assume m1 ≤ p∗1 and p∗1 0 a ≤ p∗2.
Then, m1 0 a ≤ p∗2.

Proof. By assumption, m1 ≤ p∗1 and p∗1 0 a ≤ p∗2. Since − 0 a is monotonic,
m1 0 a ≤ p∗1 0 a. By transitivity, m1 0 a ≤ p∗2.

Property (1) is a post-condition specification according to definition (6). It is
independent from the robot’s knowledge of the topological map. Since the next
proposition, however, proves that the robot knows its destination, it also requires
the additional assumption about the agent’s uncertainty about its initial location
p1, i.e. uM

α (m1) = m1 where m1 ∈ I(M) and m1 ≤ p∗1.

Proposition 1. Assume that agent α knows the topological map in Figure 2.
Let m1 ∈ I(M) where m1 ≤ p∗1 and p1, p2 ∈ P . Then, m1 ≤ [a]�αp

∗
2.

Dynamic Epistemic Algebra with Post-conditions 169

Proof. By the adjunction −0a 1 [a]−, the claim is equivalent to m10a ≤ �αp
∗
2.

By the adjunction uM
α 1 �α, this inequality is equivalent to uM

α (m1 0 a) ≤ p∗2.
By (uui), it suffices to show uM

α (m1) 0 uE
α (a) ≤ p∗2. By the topological map

definition, m1 0 a ≤ p∗2. By property (1), the conclusion follows.

The dynamic epistemic algebra with post-conditions also supports more sophis-
ticated situations when the agent does not know its initial location [13]. Further-
more, the algebra integrates with communication events such as honest public
announcements [13]. The combination of these features are sufficiently expres-
sive, for example, for the sensor-based robot navigation strategy (p. 163) and
the topological map in Figure 1 [13]:

Proposition 2. Assume agent α knows the topological map in Figure 1 (p. 162).
Let m2 ∈ I(M) such that m2 ≤ p∗2. Then, m2 ≤ [a][(p∗3 ∨ p∗4)!]�αp

∗
3 where

(p∗3 ∨ p∗4)! denotes the honest public announcement by the sensor.

Proof. The proof appears in Appendix A.

5 Disbelief

Since previous algebraic semantics were built for intuitionistic logic [20], it has
been difficult to express the negation of beliefs such as ¬�αφ because it required
another Galois connection [20] without direct proof-theoretic applications [13].
In this section, we identify another Boolean algebraic characterization of the
negation of agent’s beliefs. Before we do this, the next definition suggests a
more natural reading of an agent’s negated beliefs.

Definition 10. Let M be a Boolean module. Let φ ∈ M . Define disbelief of an
agent α about φ by ¬�αφ.

The next proposition contributes to the algebraic reasoning about disbeliefs.

Proposition 3. Let M be a Boolean module. Let m,φ ∈ M be states. Then,
m ≤ ¬�αφ if and only if, for all x ∈M , uM

α (x) ≤ φ implies m ∧ x = ⊥.

Proof. The proof appears in Appendix B.

Proposition (3) relates disbeliefs to the greatest lower bound (infimum) of ele-
ments in the Boolean module. The next theorem proves a satisfying condition
of disbelief for the special case in which one of these elements is an atom.

Theorem 1. Let M be a Boolean module. Let m,φ ∈ M . If m is an atom and
uM

α (m) 	≤ φ, then m ≤ ¬�αφ.

Proof. The proof appears in Appendix B.

The next example demonstrates a proof about disbelief as a consequence of
theorem (1).

170 A. Horn

Example 1. Consider a robot who knows the topological map in Figure 2 (p. 167).
Let m2,m4 ∈ I(M) be initial states and p2, p4 ∈ P be facts. Assume m2 ≤ p∗2
and m4 ≤ p∗4. To show that the robot cannot clearly identify its initial location
p2, we must prove m2 ≤ ¬�αp

∗
2. By definition of I(M), both m2 and m4 are

atoms. By theorem (1), it suffices to show that uM
α (m2) 	≤ p∗2. Since locations

p2 and p4 have both only a movements, the agent considers the possibility of
being in either initial location. Formally, uM

α (m2) = m2 ∨m4. Since m4 	≤ p∗2,
we conclude that uM

α (m2) 	≤ p∗2. Therefore, m2 ≤ ¬�αp
∗
2.

6 Conclusions

The main contribution of this paper is an algebraic framework for the formaliza-
tion and analysis of agents which can observe and reason about changes in their
environment. This achievement has been possible with the extension of dynamic
epistemic algebra with post-conditions. For this purpose, the extended dynamic
epistemic algebra integrates Galois connections, quantales and modules [20], [3]
with an additional Boolean algebraic assignment operator. The significance of
the assignment operator is threefold. Firstly, it achieves a clearer separation be-
tween stable facts and epistemic propositions. Secondly, it enables the algebraic
abstraction of factual changes in form of events with post-conditions. Lastly,
it unifies the algebraic treatment of both factual and epistemic changes under
previously developed lax sup-endomorphisms. This unification eliminates the
need for converse dynamic modalities (e.g. [18], [8], [7], [17]). Unfortunately, this
elimination also reduces the expressiveness about temporal properties. In turn,
however, the simplicity of dynamic epistemic algebra has been restored even for
events which change facts. The algebraic specification of these events was shown
to serve as a proof-theoretic basis for the encoding of robot movements.

7 Further Research

Future research could aim at the extension with fuzzy Galois connections [6].
Another research direction is the integration with Kleene algebra to simplify the
algebraic characterization of common knowledge in resemblance to [16]. The re-
sulting algebraic semantics could be a candidate for automated theorem provers
(e.g. [12]). Such an implementation strategy could be compared and contrasted
to epistemic model checking.

Acknowledgements. I am grateful to M. Sadrzadeh whose research questions
sparked this paper. Her generous feedback improved the paper’s presentation.

References

1. Abramsky, S., Vickers, S.: Quantales, observational logic and process semantics.
Mathematical Structures in Computer Science 3(02), 161–227 (1993)

2. Baltag, A., Coecke, B., Sadrzadeh, M.: Algebra and sequent calculus for epistemic
actions. In: Proceedings of the 2nd International Workshop on Logic and Com-
munication in Multi-Agent Systems. Electronic Notes in Theoretical Computer
Science, vol. 126, pp. 27–52 (2005)

Dynamic Epistemic Algebra with Post-conditions 171

3. Baltag, A., Coecke, B., Sadrzadeh, M.: Epistemic actions as resources. Journal of
Logic and Computation 17, 555–585 (2007)

4. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. In: Proceedings of TARK 1998, pp. 43–56. Mor-
gan Kaufmann, San Francisco (1998)

5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, Cambridge (2001)

6. Bělohlávek, R.: Fuzzy galois connections. Math. Log. Q. 45, 497–504 (1999)
7. Philips, C., Precup, D., Panangaden, P., Sadrzadeh, M.: Reasoning about factual

games using information updates. In: Proc. of 9th Conference on Logic and the
Foundations of Game and Decision Theory (to appear)

8. Philips, C., Precup, D., Panangaden, P., Sadrzadeh, M.: An algebraic approach to
dynamic epistemic logic. In: Proc. of 23rd International Workshop on Description
Logics (2010)

9. Davey, B.A., Priestley, H.A.: Introduction to lattices and order, 2nd edn.
Cambridge University Press, Cambridge (2002)

10. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (1995)

11. Herzig, A., De Lima, T.: Epistemic actions and ontic actions: A unified logical
framework. In: Sichman, J.S., Coelho, H., Rezende, S.O. (eds.) IBERAMIA 2006
and SBIA 2006. LNCS (LNAI), vol. 4140, pp. 409–418. Springer, Heidelberg (2006)

12. Höfner, P., Struth, G.: Automated reasoning in kleene algebra. In: Pfenning, F.
(ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer, Heidelberg
(2007)

13. Horn, A.: Reasoning about learning in robot navigation via algebraic dynamic
epistemic logic. Master’s thesis. University of Oxford (2010)

14. Kripke, S.A.: A semantical analysis of modal logic I: Normal modal propositional
calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9,
67–96 (1963)

15. Kuipers, B., Byun, Y.-T.: A robot exploration and mapping strategy based on a
semantic hierarchy of spatial representations. Journal of Robotics and Autonomous
Systems 8, 47–63 (1991)

16. Möller, B.: Knowledge and games in modal semirings. In: Berghammer, R., Möller,
B., Struth, G. (eds.) RelMiCS/AKA 2008. LNCS, vol. 4988, pp. 320–336. Springer,
Heidelberg (2008)

17. Panangaden, P., Sadrzadeh, M.: Learning in a changing world: an algebraic modal
logical approach. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS,
vol. 6486, pp. 128–141. Springer, Heidelberg (2011)

18. Phillips, C.: An algebraic approach to dynamic epistemic logic. Master’s thesis.
McGill University (2009)

19. Rasiowa, H., Sikorski, R.: The mathematics of metamathematics. Państwowe
Wydawn. Naukowe (1968)

20. Sadrzadeh, M.: Actions and Resources in Epistemic Logic. PhD thesis. Université
du Québec à Montréal (2006)

21. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Inf.
Comput. 204(11), 1620–1662 (2006)

22. van Ditmarsch, H.: The logic of pit. Synthese 149(2) (2006)
23. van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change. In:

Bonanno, G., van der Hoek, W., Wooldridge, M. (eds.) Logic and the Foundations
of Game and Decision Theory, pp. 87–117. Amsterdam University Press, Amsterdam
(2008)

172 A. Horn

24. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer,
Heidelberg (2007)

25. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic epistemic logic with
assignment. In: Proc. of AAMAS 2005, pp. 141–148. ACM, New York (2005)

26. van Ditmarsch, H., van Eijck, J., Wu, W.: One hundred prisoners and a lightbulb
— logic and computation. In: Lin, F., Sattler, U. (eds.). AAAI Press, Menlo Park
(2010)

Appendix A: Robot Navigation

This appendix proves proposition (2) (p. 169) which exemplifies how a robot
learns its position as it moves from an unknown initial location. To help illustrate
the relevance of the definitions in the precise analysis of epistemic and factual
changes, the solution to the example is structured around property assertions.

Property 2. Let m1,m2 ∈ I(M) such that m1 ≤ p∗1 and m2 ≤ p∗2. Assume
p∗1 0 a ≤ p∗2 and p∗2 0 a ≤ p∗3. Then, m1 0 a ≤ p∗2 and m2 0 a ≤ p∗3

Proof. By assumption, monotonicity of −0 a and transitivity.

Property (2) is a post-condition specification according to definition (6). The
first inequality specifies the post-condition of event a in state m1 to be the fact
that the robot reaches location p2. Similarly, the post-condition of m20 a is the
fact for location p3.

The next two properties aim at the formalization of the sensor’s honest public
announcement which is essential for the robot to learn its position.

Property 3. Let P be a Boolean algebra of facts P . Let pi, pj ∈ P be distinct
facts (i.e. i 	= j) such that pi ∧ pj = ⊥. If p∗i 	= ⊥, then p∗i 	≤ p∗j .

Proof. Assume pi ∧ pj = ⊥ and p∗i 	= ⊥. Assume p∗i ≤ p∗j . Then, p∗i ∧ p∗j = p∗i .
Since −∗ is a Boolean homomorphism, p∗i ∧ p∗j = (pi ∧ pj)∗ = ⊥∗ = ⊥ = p∗i
contradicting the assumption. Hence, p∗i 	≤ p∗j .

Property 4. Let P be a Boolean algebra of facts P . Let p2, p3, p4 ∈ P be distinct
facts. Then, p∗2 0 (p∗3 ∨ p∗4)! ≤ ⊥ where (p∗3 ∨ p∗4)! denotes the honest public
announcement of the proposition p3 ∨ p4.

Proof. By property (3), p∗2 	≤ p∗3 and p∗2 	≤ p∗4. Therefore, p∗2 	≤ p∗3 ∨ p∗4. Hence, p∗2
does not satisfy the pre-condition of the honest public announcement.

The next property eliminates the possibility of the robot reaching location p3 or
p4 from the initial location p1 via movement a due to the truthful information
sharing by the sensor.

Property 5. Let m1 ∈ I(M) with m1 ≤ p∗1. Then, m1 0 a0 (p∗3 ∨ p∗4)! = ⊥.

Dynamic Epistemic Algebra with Post-conditions 173

Proof.

m1 0 a ≤ p∗2 {property (2)}
m1 0 a0 (p∗3 ∨ p∗4)! ≤ p∗2 0 (p∗3 ∨ p∗4)! {monotonicity of −0−}

p∗2 0 (p∗3 ∨ p∗4)! ≤ ⊥ {property (4)}
m1 0 a0 (p∗3 ∨ p∗4)! ≤ ⊥ {transitivity}

Property 6. Let m2 ∈ I(M) with m2 ≤ p∗2. Then, m2 0 a0 (p∗3 ∨ p∗4)! ≤ p∗3.

Proof. Similar to property (5) except that m2 0 a satisfies the pre-condition of
the honest public announcement (p∗3 ∨ p∗4)! because m2 0 a ≤ p∗3.

Finally, we prove the claim that the robot learns its destination after moving
from location p2 to p3 via movement a and then listening to the honest public
announcement by the sensor. Since this proof requires the assumption that the
robot knows the topological map in Figure 1 (p. 162), we can gain additional
clarity by stating the robot’s uncertainty about its initial location p2.

Property 7. Assume that agent α knows the topological map in Figure 1 (p. 162).
Let m1,m2 ∈ I(M) such that m1 ≤ p∗1 and m2 ≤ p∗2. Then, uM

α (m2) = m1∨m2.

Proof. Since there are the same available movements at location p1 and p2,
events(m1) = events(m2). By definition of the uncertainty about initial states,
we conclude that uM

α (m2) = m1 ∨m2.

Proposition 4. Assume agent α knows the topological map in Figure 1 (p. 162).
Let m2 ∈ I(M) such that m2 ≤ p∗2. Then, m2 ≤ [a][(p∗3 ∨ p∗4)!]�αp

∗
3.

Proof.

m2 ≤ [a][(p∗3 ∨ p∗4)!]�αp
∗
3 {claim}

m2 0 a ≤ [(p∗3 ∨ p∗4)!]�αp
∗
3 {gal}

(m2 0 a)0 (p∗3 ∨ p∗4)! ≤ �αp
∗
3 {gal}

uM
α ((m2 0 a)0 (p∗3 ∨ p∗4)!) ≤ p∗3 {gal}

uM
α (m2 0 a)0 uE

α ((p∗3 ∨ p∗4)!) ≤ p∗3 {uui}(
uM

α (m2)0 uE
α (a)
)
0 uE

α ((p∗3 ∨ p∗4)!) ≤ p∗3 {uui}
((m1 ∨m2)0 a)0 (p∗3 ∨ p∗4)! ≤ p∗3 {property (7)}

(m1 0 a ∨m2 0 a)0 (p∗3 ∨ p∗4)! ≤ p∗3 {jm}
m1 0 a0 (p∗3 ∨ p∗4)! ∨m2 0 a0 (p∗3 ∨ p∗4)! ≤ p∗3 {jm}

m2 0 a0 (p∗3 ∨ p∗4)! ≤ p∗3 {property (5)}
p∗3 ≤ p∗3 {property (6)}

The second, third and fourth proof lines appeal to the Galois connections for
the a movement, the honest public announcement by the sensor and the belief
modality respectively. The uncertainty update inequality is applied twice to re-
duce a more complex expression to a simpler one by separating the operands of

174 A. Horn

the module operation. The resulting expression is in terms of the uncertainty
about events, uE

α (a) and uE
α ((p∗3 ∨ p∗4)!), in addition to the uncertainty about

the initial state. By definition of movements and honest public announcements,
the uncertainty of both events is the identity function. By property (7) and
property (2), the robot’s uncertainty uM

α (m2) about its initial location p2 lets it
conclude that the subsequent a movement must lead either to location p2 or p3.
After the honest public announcement by the sensor, the robot can eliminate the
possibility of being in location p2 by property (5). By property (6), it remains
only the possibility of being in location p3 proving the claim.

Appendix B: Disbelief

For the proof of proposition (3) (p. 169), we use the next lemma which appears
in meta-mathematical discussions about Boolean entailment1 [19]:

Lemma 1. Let M be a Boolean module. Let x, y ∈M . Then,

x ∧ y = ⊥ iff x ≤ ¬y

The next lemma states the well-known result that every sup-homomorphism,
which preserves arbitrary joins, has a right adjoint (e.g. [9]):

Lemma 2. Let P and Q be ordered sets and f : P → Q be a function that
preserves arbitrary joins. Then, there exists a function g : Q → P such that
f 1 g. In fact, g(y) =

∨
{x ∈ P | f(x) ≤ y}.

The last lemma concerns the join of a set of elements in a complete lattice.

Lemma 3. Let P be a complete lattice. Let p ∈ P and Q ⊆ P . Then,∨
Q ≤ p iff x ≤ p for all x ∈ Q

Proof. The proof is trivial by definition of least upper bound of the set Q.

The combination of these lemmas together with full distributivity of the Boolean
module proves the algebraic characterization of an agent’s disbeliefs.

Proposition 5. Let M be a Boolean module. Let m,φ ∈ M be states. Then,
m ≤ ¬�αφ if and only if, for all x ∈M , uM

α (x) ≤ φ implies m ∧ x = ⊥.

Proof.

m ≤ ¬�αφ iff m ∧�αφ = ⊥ {lemma (1)}
iff m ∧

∨{
x ∈ M | uM

α (x) ≤ φ
}

= ⊥ {lemma (2)}
iff
∨{

m ∧ x ∈ M | uM
α (x) ≤ φ

}
= ⊥ {distributivity}

iff (∀x ∈ M)uM
α (x) ≤ φ implies m ∧ x = ⊥ {lemma (3)}

What remains to show is theorem (1) as a special case of proposition (3).
1 ¬x ∨ y = � if and only if x ≤ y for all elements x, y in a Boolean algebra.

Dynamic Epistemic Algebra with Post-conditions 175

Theorem 2. Let M be a Boolean module. Let m,φ ∈ M . If m is an atom and
uM

α (m) 	≤ φ, then m ≤ ¬�αφ.

Proof. Assume m is an atom and uM
α (m) 	≤ φ. Let x ∈ M . By proposition (3),

the consequent is equivalent to the implication if uM
α (x) ≤ φ, then m ∧ x = ⊥.

Assume uM
α (x) ≤ φ. Since m is an atom, the infimum of m and x is the least

element provided that m 	≤ x. For the purpose of reaching a contradiction, assume
that m ≤ x. Since uM

α (−) preserves arbitrary joins, it is monotonic. Therefore,
uM

α (m) ≤ uM
α (x). By assumption that uM

α (m) 	≤ φ, we conclude that uM
α (x) 	≤ φ.

However, we assumed that uM
α (x) ≤ φ. We reached a contradiction. Therefore,

m 	≤ x proving the claim.

Untestable Properties in the Kahr-Moore-Wang

Class

Charles Jordan� and Thomas Zeugmann��

Division of Computer Science,
Hokkaido University, N-14, W-9, Sapporo 060-0814, Japan

{skip,thomas}@ist.hokudai.ac.jp

Abstract. Property testing is a kind of randomized approximation in
which one takes a small, random sample of a structure and wishes to
determine whether the structure satisfies some property or is far from
satisfying the property. We focus on the testability of classes of first-order
expressible properties, and in particular, on the classification of prefix-
vocabulary classes for testability. The main result is the untestability of
[∀∃∀, (0, 1)]=. This is a well-known class and minimal for untestability.
We discuss what is currently known about the classification for testability
and briefly compare it to other classifications.

Keywords: property testing, logic, randomized algorithms.

1 Introduction

In property testing, we take a random sample of some large structure and wish
to distinguish between the case that it has some desired property and the case
that it is far from having the property. We focus on the testability of first-order
expressible properties, and in particular on the classification of prefix-vocabulary
classes of first-order logic for testability.

Rubinfeld and Sudan [21] and Blum et al. [4] introduced the notion of property
testing in the context of formal verification. The basic idea was soon extended
by Goldreich et al. [11], who represented graphs as binary functions and focused
on testing graph properties. We omit a detailed history of testing, see the recent
introduction to testing graph properties by Goldreich [10], two recent surveys
by Ron [19, 20], and older surveys by Fischer [7] and Ron [18].

We are particularly interested in the testability of properties expressible in
subclasses of first-order logic, and review relevant work in Subsection 1.1.

Here, we show that there exist untestable graph properties expressible with
quantifier prefix ∀∃∀ when equality is allowed (see Section 3 for a formal state-
ment). Taking into account the related work described in Subsection 1.1 and
using the notation of Definition 7, the current classification for testability is the
following.
� Supported by a Grant-in-Aid for JSPS Fellows under Grant No. 2100195209.

�� Supported by MEXT Grant-in-Aid for Scientific Research on Priority Areas under
Grant No. 21013001.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 176–186, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Untestable Properties in the Kahr-Moore-Wang Class 177

– Testable classes
1. Monadic first-order logic: [all, (ω)]=.
2. Ackermann’s class with equality: [∃∗∀∃∗, all]=.
3. Ramsey’s class: [∃∗∀∗, all]=.

– Untestable classes
1. [∀3∃, (0, 1)]=.
2. [∀∃∀, (0, 1)]=.

We are especially interested in determining the testability of variants of the
Gödel class (i.e., classes whose prefix contains at least ∀2∃) as this would suf-
fice to complete the classification for the special case of predicate logic with
equality. The above classification is consistent with several other well-known
classifications, such as that for the finite model property (see, e.g., Chapter 6 of
Börger et al. [5], for docility (or finite satisfiability, see Kolaitis and Vardi [16])
and for associated 0-1 laws for fragments of existential second-order logic (see
Kolaitis and Vardi [16]). It would be interesting to know if the classification for
testability coincides with one of these classifications.

The rest of the paper is organized as follows. First, we review related work
in Subsection 1.1. Definitions and notation are in Section 2. The main result is
presented in Section 3.

1.1 Related Work

Alon et al. [3] proved that the regular languages are testable, implying that
monadic first-order is testable given the well-known results of Büchi [6] or Mc-
Naughton and Papert [17]. Alon et al. [2] were the first to directly consider the
classification problem for testability, restricted to properties of undirected, loop-
free graphs. They proved the testability of all such properties expressible by
prenex sentences with quantifier prefix ∃∗∀∗, and also showed that there exists
an untestable property expressible with quantifier prefix ∀∗∃∗ (examining the
proof shows that ∀12∃5 suffices).

Both of these are (restrictions of) well-known classes. Jordan and Zeugmann
extended [13] the positive result to the full Ramsey’s class ([∃∗∀∗, all]=), proved
[12] the testability of Ackermann’s class with equality ([∃∗∀∃∗, all]=), and sharp-
ened [14] the negative result to prefixes ∀3∃, ∀2∃∀, ∀∃∀∃ and ∀∃∀2 (on directed
graphs with equality). This paper sharpens these last three prefixes and proves
that [∀∃∀, (0, 1)]= is a minimal prefix class for untestability. This particular class
is the restriction of the Kahr-Moore-Wang [15] class (plus equality) to directed
graphs.

It is easy to show that [∀∃∀, (0, 1)] (even without equality) has infinity ax-
ioms1. Vedø [22] showed that a 0-1 law does not hold for second-order existential
logic when the first-order part is in this class (again, even without equality).

The current paper sharpens some (prefixes ∀2∃∀, ∀∃∀∃, ∀∃∀2) of the results of
Jordan and Zeugmann [14] and so we briefly outline the improvement that allows
us to minimize the prefix considered. The untestable property considered in [14]
1 An infinity axiom is a sentence that has only infinite models.

178 C. Jordan and T. Zeugmann

is closely related to the untestable property of Alon et al. [2], but modified to
minimize the number of quantifiers used. These properties are essentially first-
order expressible versions of checking an explicitly given isomorphism between
two graphs2. In fact, restricting the properties to checking an explicitly given
isomorphism between undirected, bipartite graphs (see Figure 1(a)) maintains
hardness for testing. However, graph isomorphism seems to require one to discuss
at least four vertices simultaneously (because one wishes to state that an edge
is present iff its image is present and the edges are disjoint in general).

(a) A graph with Pb (b) A graph with Pe (c) A graph with Pf

Fig. 1. Properties Pb, Pe and Pf

Sharing one of the partitions (see Figure 1(b)) would seem to remove the
need for four quantifiers. The resulting property is perhaps closer to a variant
of function isomorphism, e.g., for functions f, g : [n] → {0, 1}n where the bit i of
f(j) is 1 if there is an edge from j in the leftmost partition to i in the middle
partition and likewise for g(j) and the right partition. This property is not first-
order expressible, but there is a somewhat tedious first-order encoding that is
similar (see Figure 1(c) and the formula in Section 3).

The connection with function isomorphism allows us to leverage recent work
on the testability of (Boolean) function isomorphism and use recent ideas and
techniques from Alon and Blais [1] to prove Lemma 1.

2 Preliminaries

The goal in property testing is always to distinguish structures that have some
property from those that are far from having the property. Here, we focus on
first-order expressible properties of directed graphs and so we begin with the
necessary definitions.

Definition 1. A graph is an ordered pair G = (V,E), where V is a finite set
and E ⊆ V × V a binary relation defined on V .

We generally identify V with the first n naturals [n] := {1, . . . , n} and call
#(G) := |V | = n the size of a graph G. Let Gn be the set of graphs of size n and
2 Graph isomorphism is generally hard for testing, see, e.g., Fischer and Matsliah [8].

Untestable Properties in the Kahr-Moore-Wang Class 179

G := ∪n≥0Gn be the set of all (finite) graphs. Note that our graphs are directed
and may contain loops.

A property P ⊆ G of graphs is any set of graphs. We are particularly interested
in first-order expressible properties. Our logic is a basic first-order predicate logic
with equality. There are no function or constant symbols. We focus on first-
order properties of graphs, and so the only predicate symbol (besides the special
symbol =) is the binary edge symbol E.

A sentence ϕ defines a property in the natural way,

Pϕ := {G | G ∈ G, G |= ϕ} .

We require a distance between graphs and properties, which we define in the
following way. We denote the symmetric difference of sets by 2 and let EA and
EB be the edge predicates of A and B, respectively.

Definition 2. Let A = (V,EA) and B = (V,EB) be two graphs defined such
that |V | = n. The distance between A and B is

dist(A,B) := |EA 2EB |/n2 .

The distance generalizes to properties in the obvious way, dist(A,P) :=
minB∈P dist(A,B). Definition 2 results in a typical model of testing based on
the dense graph model introduced by Goldreich et al. [11]. We now proceed to
the remaining testing definitions.

Definition 3. An ε-tester for property P is a randomized algorithm that makes
queries for the existence of edges in a graph A. The tester must accept with
probability at least 2/3 if A has P and must reject with probability at least 2/3
if dist(A,P) ≥ ε.

Definition 4. Property P is called testable if there is some function c(ε) and
for every ε > 0, an ε-tester for P such that the tester makes at most c(ε) queries.

Note that the query complexity is bounded by a function that does not depend
on the size of the graphs. We allow different ε-testers for each ε > 0 and so this
is a non-uniform model. However, we are focused on proving untestability and
our results hold even in the non-uniform case.

Next, we will define indistinguishability, a relation on properties introduced
by Alon et al. [2] that preserves testability. However, testers can focus on loops
and distinguish between structures that have an asymptotically small difference
(because the number of loops is asymptotically dominated by the number of
non-loops). We therefore begin with an alternative definition of distance (using
this in place of Definition 2 makes testing (strictly) more difficult, but our result
holds even when we use Definition 2). In the following, ⊕ denotes exclusive-or.

Definition 5. Let n ∈ N and let U be any universe such that |U | = n. Further-
more, let A = (U,EA) and B = (U,EB) be any two graphs with universe U . For
notational convenience, let

d1(A,B) :=
|{x | x ∈ U and EA(x, x) ⊕ EB(x, x)}|

n
, and

180 C. Jordan and T. Zeugmann

d2(A,B) :=
|{(x1, x2) | x1, x2 ∈ U, x1 	= x2, and EA(x1, x2)⊕ EB(x1, x2)}|

n(n− 1)
.

The mr-distance between A and B is

mrdist(A,B) := max {d1(A,B), d2(A,B)} .

Definition 6. Two properties P and Q of graphs are indistinguishable if they
are closed under isomorphisms and for every ε > 0 there exists an Nε such that
for any graph A with universe of size n ≥ Nε, if A has P then mrdist(A,Q) ≤ ε
and if A has Q then mrdist(A,P) ≤ ε.

An important property of indistinguishability is that it preserves testability. The
proof of the following is analogous to that given in Alon et al. [2].

Theorem 1. If P and Q are indistinguishable, then P is testable if and only if
Q is testable.

In fact, as the proof constructs an ε-tester for P by iterating an ε/2-tester for Q
three times, one can also relate the query complexities of P and Q. Many proofs
of hardness for testability rely on Yao’s Principle [23], an interpretation of von
Neumann’s minimax theorem for randomized computation. For completeness,
we state the version that we use.

Principle 1 (Yao’s Principle). If there is an ε ∈ (0, 1) and a distribution over
Gn such that all deterministic testers with complexity c have an error-rate greater
than 1/3 for property P , then property P is not testable with complexity c.

The definition of “testable” is of course our usual one involving random testers.
In general, one seeks to show that for sufficiently large n and some increasing
function c := c(n), there is a distribution of inputs such that all deterministic
testers with complexity c have error-rates greater than 1/3.

Finally, we briefly define the notation we use to specify prefix-vocabulary
classes. See Börger et al. [5] for details and related material.

Definition 7. Let Π be a string over the four-character alphabet {∃, ∀, ∃∗, ∀∗}.
Then [Π, (0, 1)]= is the set of sentences in prenex normal form which satisfy the
following conditions.

1. The quantifier prefix is contained in the regular language given by Π (for
technical reasons, one usually treats ∃ and ∀ as matching the relevant quan-
tifier and also the empty string).

2. There are zero (0) monadic predicate symbols.
3. In addition to the equality predicate (=), there is at most one (1) binary

predicate symbol.
4. There are no other predicate symbols.

That is, [Π, (0, 1)]= is the set of prenex sentences in the logic defined above whose
quantifier prefixes match Π . If the second component of the specification is all,
then conditions two and three are removed (any number of predicate symbols
with any arities are acceptable).

Untestable Properties in the Kahr-Moore-Wang Class 181

3 An Untestable Property

Our goal in this section is Theorem 2.

Theorem 2. The prefix class [∀∃∀, (0, 1)]= is not testable.

We begin by outlining the proof. First, we define Pf , a property expressible in
the class [∀∃∀, (0, 1)]= which, as described in Subsection 1.1, is in some sense a
somewhat tedious but first-order expressible variant of checking (explicit) iso-
morphism of undirected bipartite graphs in tripartite graphs. We then define a
variant P2, in which the isomorphism is not explicitly given and we must test
whether there exists some suitable isomorphism. Although this increases the
complexity of deciding the problem from checking an isomorphism to finding
one, it does not change hardness for testing. We show that P2 and Pf are in-
distinguishable and so P2 is testable iff Pf is testable. Finally, we prove directly
that P2 is untestable, even with o(

√
n) queries, using an argument based on a

recent proof by Alon and Blais [1].

Proof (Theorem 2). We begin by defining Pf . Formally, it is the set of graphs sat-
isfying the following conjunction of four clauses (see Figure 1(c) for an
example).

∀x∃y∀z : { ((¬E(x, x) ∧ ¬E(z, z) ∧ x 	= z) → E(x, z))
∧ (E(x, x) → (E(x, y) ∧ ¬E(y, y) ∧ [(¬E(z, z) ∧E(x, z)) → y = z]))
∧ (¬E(x, x) → (E(y, x) ∧ E(y, y) ∧ [(E(z, z) ∧ E(z, x)) → y = z]))
∧ ((E(x, x) ∧ E(z, z)) → [¬E(y, y) ∧ E(x, y) ∧ (E(x, z) ↔ E(y, z))]) }

A graph satisfies this formula if the following conditions are all satisfied.

1. The nodes without loops form a complete subgraph.
2. For every node x with a loop, there is exactly one y without a loop such that

there is an edge from x to y.
3. For every node y without a loop, there is exactly one x with a loop such that

there is an edge from x to y.
4. For all nodes x, z with loops, and y the unique node without a loop such

that E(x, y), it holds that E(x, z) iff E(y, z).

Property P2 below is similar to Pf , except that the isomorphism is not ex-
plicitly given.

Definition 8. A graph G = (V,E) has P2 if it satisfies the following conditions.

1. There is a partition3 V1, V2 ⊆ V such that |V1| = |V2|, there are loops
(E(x, x)) on all x ∈ V1 and no loops (¬E(x, x)) for all x ∈ V2.

2. The nodes without loops form a complete subgraph.
3. There are no edges from a node with a loop to a node without a loop.
3 V1, V2 partition V if V1 ∩ V2 = ∅ and V1 ∪ V2 = V .

182 C. Jordan and T. Zeugmann

4. There exists a bijection b : V1 → V2 such that if x, z have loops, then E(x, z)
iff E(b(x), z).

It is not difficult to show that properties Pf and P2 are indistinguishable.

Claim 1. Properties Pf and P2 are indistinguishable.

Proof (Claim 1). Let ε > 0 be arbitrary and let Nε = ε−1. Assume that G has
property P2 and that #(G) > Nε. We will show that mrdist(G,Pf) < ε.

Graph G has P2 and so there is a bijection satisfying Condition 4 of Defini-
tion 8. We therefore add the edges E(i, b(i)) making the isomorphism (from V1

to V2) explicit. The resulting graph Gf has Pf .
We have made exactly n/2 modifications, all to non-loops, and n − 1 ≥ Nε,

so mrdist(G,Pf) ≤ mrdist(G,Gf) = 1/2(n− 1) < ε.
The converse is analogous; given a G that has Pf , simply remove the n/2

edges from loops to non-loops after using them to construct a suitable
bijection b. ��Claim 1

Properties Pf and P2 are indistinguishable and so (by Theorem 1), it suffices to
show that P2 is is untestable. Lemma 1 below is stronger than necessary, and
actually implies a Ω(

√
n) lower bound for testing Pf per the discussion following

Theorem 1. ��Theorem 2

Lemma 1. Fix 0 < ε < 1/2. Any ε-tester for P2 must perform Ω(
√
n) queries.

Proof (Lemma 1). The proof is via Yao’s Principle (cf. Principle 1), and so we
define two distributions, Dno and Dyes and show that all deterministic testers
have an error-rate greater than 1/3 for property P2 when the input is chosen
randomly from Dno with probability 1/2 and from Dyes with probability 1/2.

In the following, we consider a distribution over graphs of sufficiently large
size 2n, and an arbitrary fixed partition of the vertices into V1 and V2 such that
|V1| = |V2| = n (for example, let the vertices be the integers V := [2n], V1 := [n]
and V2 := V \V1).

We begin with Dno, defined as the following distribution.

1. Place a loop on each vertex in V1 and place no loops in V2.
2. Place each possible edge (except loops) in V1 × V1 and V2 × V1 uniformly

and independently with probability 1/2.

That is, Dno is the uniform distribution of graphs (with this particular partition)
satisfying the first three conditions of P2.

Next, we define Dyes as the following.

1. Choose uniformly a random bijection π : V1 → V2.
2. Place a loop on each vertex in V1 and place no loops in V2.
3. For each possible edge (i, j 	= i) ∈ V1 × V1, uniformly and independently

place both (i, j) and (π(i), j) with probability 1/2 (otherwise place neither).

It is easy to see that Dyes generates only positive instances. Next, we show
that Dno generates negative instances with high probability.

Untestable Properties in the Kahr-Moore-Wang Class 183

Lemma 2. Fix 0 < ε < 1/2 and let n be sufficiently large. Then,

Pr
G∼Dno

[dist(G,P2) ≤ ε] = o(1) .

Proof (Lemma 2). Dno is the uniform distribution over graphs of size 2n with a
particular partition satisfying the first three conditions of P2. Let Gε be the set
of graphs G′ of size 2n satisfying these conditions and such that dist(G′, P2) ≤ ε
(regardless of partition).

Counting the number of such graphs shows

|Gε| ≤
(

2n
n

)
2n(n−1)n!

�ε2n2�∑
i=0

(
2n2

i

)
≤
(

2n
n

)
2n(n−1)n!2H(ε)2n2

,

where H(ε) := −ε log ε − (1 − ε) log(1 − ε) is the binary entropy function (cf.
Lemma 16.19 in Flum and Grohe [9] for the bound on the summation).

Distribution Dno produces each of 2n(n−1)2n2
graphs with equal probability,

and so

Pr
G∼Dno

[dist(G,P2) ≤ ε] ≤ |Gε|
2n(n−1)+n2 ≤

(
2n
n

)
n!2H(ε)2n2

/2n2

≈ 4nn!2H(ε)2n2

√
πn2n2 = o(1) .

The approximation is asymptotically tight, which suffices. ��Lemma 2

We have shown that Dyes generates only positive instances and that (with high
probability) Dno generates instances that are ε-far from P2. Next, we show that
(again, with high probability) the two distributions look the same to testers
making only o(

√
n) queries.

The proof is similar to a proof by Alon and Blais [1]. We begin by defining
two random processes, Pno and Pyes, which answer queries from testers and
generate instances according to Dno and Dyes, respectively.

Process Pno is defined in the following way.

1. Choose uniformly a random bijection π : V1 → V2.
2. Intercept all queries from the tester and respond as follows.

(a) To queries E(i, i) with i ∈ V1: respond 1.
(b) To queries E(i, i) with i ∈ V2: respond 0.
(c) To queries E(i, j) with i ∈ V1 and j ∈ V2: respond 0.
(d) To queries E(i, j) with i 	= j ∈ V1: quit if we have queried E(π(i), j),

otherwise respond 1 or 0 randomly with probability 1/2 in each case.
(e) To queries E(i, j) with i ∈ V2 and j ∈ V1: quit if we have queried

E(π−1(i), j), otherwise respond 1 or 0 randomly with probability 1/2 in
each case.

3. When the process has quit or the tester has finished its queries, complete
the generated instance in the following way. First, fix the edges that were
queried according to our answer. Next, place loops on each vertex in V1, no
loops in V2 and no edges from V1 to V2. Place each remaining possible edge,
place it (uniformly, independently) with probability 1/2, ignoring π.

184 C. Jordan and T. Zeugmann

We define Pyes in the same way, except for the final step. When Pyes quits or
the tester finishes, it fixes the edges that were queried according to its answers,
and also fixes the corresponding edges (when relevant) according to π. More
precisely, for each fixed E(i, j) with i 	= j ∈ V1, we also fix E(π(i), j) and for
fixed E(i, j) with i ∈ V2, j ∈ V1, we also fix E(π−1(i), j), in both cases the same
as our response to E(i, j) (not randomly). The remaining edges are placed as
in Pno.

Note that Pno generates instances according to Dno and Pyes generates in-
stances according to Dyes. In addition, Pyes and Pno behave identically until
they quit or answer all queries. In particular, if a tester does not cause the
process to quit, the distribution of responses of its queries is identical for the
two processes. We show that, with high probability, a tester that makes o(

√
n)

queries does not cause either process to quit.

Lemma 3. Let T be a deterministic tester which makes o(
√
n) queries, and let

T interact with Pyes or Pno. In both cases,

Pr [T causes the process to quit] = o(1) .

Proof (Lemma 3). The condition causing the process to quit is identical in Pyes
and Pno. The probability that any pair of queries E(i, j) and E(i′, j′) cause the
process to quit is at most

Pr [i′ = π(i) or i = π(i′)] ≤ (n− 1)!
n!

= 1/n .

The tester makes at most o(
√
n) queries and so

Pr [T causes the process to quit] ≤ o(
√
n)2O(1/n) = o(1) .

��Lemma 3

Any deterministic tester T which makes o(
√
n) queries can only distinguish be-

tween Dyes and Dno with probability o(1), but it must accept Dyes with prob-
ability 2/3, and reject Dno with probability 2/3− o(1). It is impossible for T to
satisfy both conditions, and the lemma follows from Principle 1. ��Lemma 1

4 Conclusion

Property testing is a kind of randomized approximation, where we take a small,
random sample of a structure and seek to determine whether the structure has a
desired property or is far from having the property. We focused on the classifica-
tion problem for testability, wherein we seek to determine exactly which prefix
vocabulary classes are testable and which are not. The main result of this paper
is the untestability of [∀∃∀, (0, 1)]=, a sharpening of the results of [14]. This class
is a minimal class for untestability.

As mentioned in Subsection 1.1, the current classification for testability closely
resembles several other classifications (e.g., those for the finite model property,

Untestable Properties in the Kahr-Moore-Wang Class 185

docility and associated second-order 0-1 laws) and it would be interesting to
determine whether it coincides with one of these. In particular, determining the
testability of variants of the Gödel class would complete the classification for the
special case of predicate logic with equality.

References

[1] Alon, N., Blais, E.: Testing Boolean function isomorphism. In: Serna, M., Shaltiel,
R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 394–405.
Springer, Heidelberg (2010)

[2] Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs.
Combinatorica 20(4), 451–476 (2000)

[3] Alon, N., Krivelevich, M., Newman, I., Szegedy, M.: Regular languages are testable
with a constant number of queries. SIAM J. Comput. 30(6), 1842–1862 (2001)

[4] Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. J. of Comput. Syst. Sci. 47(3), 549–595 (1993)

[5] Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer,
Heidelberg (1997)

[6] Büchi, J.R.: Weak second-order arithmetic and finite-automata. Z. Math. Logik
Grundlagen Math. 6, 66–92 (1960)

[7] Fischer, E.: The art of uninformed decisions. Bulletin of the European Association
for Theoretical Computer Science 75, 97–126 (2001)

[8] Fischer, E., Matsliah, A.: Testing graph isomorphism. SIAM J. Comput. 38(1),
207–225 (2008)

[9] Flum, J., Grohe, M.: Parametrized Complexity Theory. Springer, Heidelberg
(2006)

[10] Goldreich, O.: Introduction to testing graph properties. Technical Report TR10-
082, Electronic Colloquium on Computational Complexity (ECCC) (May 2010)

[11] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to
learning and approximation. J. ACM 45(4), 653–750 (1998)

[12] Jordan, C., Zeugmann, T.: Relational properties expressible with one universal
quantifier are testable. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS,
vol. 5792, pp. 141–155. Springer, Heidelberg (2009)

[13] Jordan, C., Zeugmann, T.: A note on the testability of Ramsey’s class. In: Kra-
tochv́ıl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp.
296–307. Springer, Heidelberg (2010)

[14] Jordan, C., Zeugmann, T.: Untestable properties expressible with four first-order
quantifiers. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA 2010.
LNCS, vol. 6031, pp. 333–343. Springer, Heidelberg (2010)

[15] Kahr, A.S., Moore, E.F., Wang, H.: Entscheidungsproblem reduced to the ∀∃∀
case. Proc. Nat. Acad. Sci. U.S.A. 48, 365–377 (1962)

[16] Kolaitis, P.G., Vardi, M.Y.: 0-1 laws for fragments of existential second-order
logic: A survey. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893,
pp. 84–98. Springer, Heidelberg (2000)

[17] McNaughton, R., Papert, S.: Counter-Free Automata. M.I.T. Press, Cambridge
(1971)

[18] Ron, D.: Property testing. In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolim,
J. (eds.) Handbook of Randomized Computing, vol. II, pp. 597–649. Kluwer Aca-
demic Publishers, Dordrecht (2001)

186 C. Jordan and T. Zeugmann

[19] Ron, D.: Property testing: A learning theory perspective. Found. Trends Mach.
Learn. 1(3), 307–402 (2008)

[20] Ron, D.: Algorithmic and analysis techniques in property testing. Found. Trends
Theor. Comput. Sci. 5(2), 73–205 (2009)

[21] Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-
tions to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

[22] Vedø, A.: Asymptotic probabilities for second-order existential Kahr-Moore-Wang
sentences. J. Symbolic Logic 62(1), 304–319 (1997)

[23] Yao, A.C.C.: Probabilistic computations: Toward a unified measure of complexity.
In: 18th Annual Symposium on Foundations of Computer Science, pp. 222–227.
IEEE Computer Society, Los Alamitos (1977)

Characterizing Definability of Second-Order
Generalized Quantifiers�

Juha Kontinen1 and Jakub Szymanik2

1 Department of Mathematics and Statistics, University of Helsinki
juha.kontinen@helsinki.fi

2 Institute of Artificial Intelligence, University of Groningen
jakub.szymanik@gmail.com

Abstract. We study definability of second-order generalized quantifiers.
We show that the question whether a second-order generalized quanti-
fier Q1 is definable in terms of another quantifier Q2, the base logic
being monadic second-order logic, reduces to the question if a quantifier
Q�

1 is definable in FO(Q�
2, <,+,×) for certain first-order quantifiers Q�

1

and Q�
2. We use our characterization to show new definability and non-

definability results for second-order generalized quantifiers. In particular,
we show that the monadic second-order majority quantifier Most1 is not
definable in second-order logic.

1 Introduction

The notion of generalized quantifier goes back to Mostowski [1] and Lindström
[2]. Generalized quantifiers were first mainly studied in the framework of model
theory. The study of generalized quantifiers extended to the context of finite
model theory via applications to descriptive complexity theory. We refer to [3]
and [4] for surveys of first-order generalized quantifiers in finite model theory.
Generalized quantifiers have been also extensively studied in the formal seman-
tics of natural language (see [5] for a survey).

The study of second-order generalized quantifiers is a relatively new and un-
explored area in finite model theory. On the other hand, second-order logic (SO)
and its many fragments have been studied extensively starting from Fagin’s char-
acterization of NP in terms of existential second-order logic [6]. Second-order
generalized quantifiers were first studied in the context of finite structures by
Burtschick and Vollmer [7]. Shortly after, Andersson [8] studied the expressive
power of families of second-order generalized quantifiers determined by the syn-
tactic types of quantifiers. In [9,10,11] Kontinen studied definability questions
of second-order generalized quantifiers. In the case of first-order quantifiers, de-
finability of a quantifier Q in a logic L means that the class of structures, used
to interpret Q, is axiomatizable in L. In the second-order case, the analogous

� The first author was supported by grant 127661 of the Academy of Finland. The
second author was supported by NWO Vici grant 277-80-001.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 187–200, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

188 J. Kontinen and J. Szymanik

concept of definability was formulated in [9,10]. In this article, we give a computa-
tionally motivated characterization for the notion of definability of second-order
generalized quantifiers.

Burtschick and Vollmer [7] noticed that second-order generalized quantifiers
can be used to logically characterize complexity classes defined in terms of so-
called Leaf Languages. The leaf languages approach in computational complexity
theory, introduced by Bovet, Crescenzi, and Silvestri [12], is a unifying approach
to define complexity classes. The central idea behind this approach is to general-
ize the conditions under which, e.g., a Turing machine or an automaton accepts
its input. Many complexity classes can be defined in this context in terms of
suitable leaf languages. On the other hand, a complexity class defined in terms
of a leaf language B can be under certain conditions characterized logically in
terms of a logic of the form:

QB FO,

where QB is a second-order generalized quantifier corresponding to the language
B. In the context of leaf languages, polynomial time non-deterministic Turing
machines can be sometimes replaced by non-deterministic finite automata (so-
called finite leaf automata) without a significant increase in complexity [13]. Ga-
lota and Vollmer [14] showed that complexity classes defined in terms of finite leaf
automata can be logically characterized in terms of monadic second-order gener-
alized quantifiers. This result nicely extends the well known [15,16,17] character-
ization of regular languages in terms of monadic second-order logic (MSO).

The definability theory of second-order generalized quantifiers has some simi-
larities and differences compared to that of first-order generalized quantifiers. For
example, it was observed in [9] that the binary second-order existential quantifier
cannot be defined in terms of any monadic second-order generalized quantifiers.
This result is in contrast with fact (a corollary of a result of Andersson [8])
that all classes of finite first-order structures are already definable in terms of
monadic second-order generalized quantifiers. In this paper we prove a general re-
sult characterizing the question when a quantifier Q is definable in MSO(Q′,+),
where + denotes the built-in addition relation. We assume the built-in addition
in order to unleash the expressive power embodied by MSO. Recall that, while
MSO corresponds to regular languages over strings, MSO(+) corresponds to the
linear fragment of the polynomial hierarchy (LINH) on strings [18]. It is possible
to formulate our characterization also in the case where the base logic is full
second-order logic instead of MSO(+).

Our characterization is based on a logical formalization of an idea of Torán
[19]. Torán studied oracle separations in the counting hierarchy and noticed that
there is essentially no difference between an oracle Turing machine writing an
oracle query on its query tape and a logarithmic time Turing machine writing an
address on its random access tape. He used this analogy to show that an oracle
separation result for classes in the polynomial counting hierarchy implies a real
separation for the corresponding classes in the logarithmic counting hierarchy
LINCH (equivalently in DLOGTIME-uniform TC0). We show that a second-
order generalized quantifierQ1 is definable in the logic MSO(Q2,+) iff for certain

Characterizing Definability of Second-Order Generalized Quantifiers 189

first-order encodingsQ�
i ofQi, Q�

1 is definable in FO(Q�
2,+,×). It is worth noting

that the latter condition implies that Q�
1 is AC0 (Turing) reducible to Q�

2. We
use our characterization to show new definability and non-definability results for
second-order generalized quantifiers. In particular, we show that the monadic
second-order majority quantifier Most1 is not definable in second-order logic.
This aswers the question left open in [20] (see also [21]), where second-order
generalized quantifiers were used to model collective quantification in natural
language. For the sake of brevity, we do not discuss the role and use of quantifiers
in formal semantics in this paper.

2 Preliminaries

In this article all structures are assumed to be finite. The universe of a structure
A is denoted by A. Without loss of generality, we may assume that A is always
of the form {0, . . . ,m} for some m ∈ N. For a logic L, the set of τ -formulas of L
is denoted by L[τ]. If φ is a τ -sentence, then the class of τ -models of φ is denoted
by Mod(φ). A class K of τ -models is said to be axiomatizable in a logic L, if
K = Mod(φ) for some sentence φ ∈ L[τ]. For logics L and L′, we write L ≤ L′,
if for every τ and every sentence φ ∈ L[τ] there is a sentence ψ ∈ L′[τ] such that
Mod(φ) = Mod(ψ). The set of natural numbers is denoted by N and N∗ denotes
the set N \ {0}.

Sometimes we assume that our structures (and logics) are equipped with auxil-
iary built-in relations. In addition to the built-in ordering <, which is interpreted
naturally, we also use the ternary relations + and ×. The relations + and × are
defined as

+(i, j, k) ⇔ i + j = k,

×(i, j, k) ⇔ i× j = k.

The relation BIT is a further important relation which is defined by: BIT(a, j)
holds iff the bit of order 2j is 1 in the binary representation bin(a) of a. The
presence of built-in relations is signalled, e.g., by the notation FO(<). It is well
known that FO(<,+,×) ≡ FO(<,BIT) (see [22]). Note that < is easily definable
in FO(+) and hence, in the precence of +, we sometimes do not mention <
explicitely.

We assume that the reader is familiar with the basics of computational com-
plexity theory. Below, we recall certain results from descriptive complexity the-
ory. It is instructive to note that many of the logics considered in this article
correspond to interesting complexity classes. We mention first the logic FO(<
,+,×) which corresponds exactly to the so-called logarithmic hierarchy (LH).
This class is the logarithmic analogue of the polynomial hierarchy (PH), cor-
responding to SO [23], defined in terms of alternating Turing machines (ATM)
running in polynomial time with O(1) alternations. In between LH and PH
we have the linear hierarchy (LINH) corresponding to the logic MSO(+) over
strings [18].

In this article also majority quantifiers are dicussed and studied. It is well-
known that majority quantifiers can be used to logically characterize counting

190 J. Kontinen and J. Szymanik

computations. The following counting hierarchies are relevant for this article: the
logarithmic counting hierarchy (LCH), the linear counting hierarchy (LINCH),
and the (polynomial) counting hierarchy (CH) all of which can be defined, with
analogous resource bounds as LH, LINH, and PH, in terms of so-called Threshold
Turing machines [24]. On the logical side, majority quantifiers (defined in Section
2.1) can be used to provide logical counterparts for these classes: FO(M,+,×) ≡
LCH [25], FO(Most1, <) ≡ LINCH (over strings) [26], and FO(Mostk)k∈N∗ ≡
CH [27]. Furthermore, in circuit complexity, it is known that LH corresponds
exactly to DLOGTIME-uniform AC0 and LCH to DLOGTIME-uniform TC0

[25]. Also, DLOGTIME-uniform AC0[p] (AC0 with unbounded fan-in MODp

gates) corresponds on the logical side to FO(Dk,+,×) [25].

2.1 Generalized Quantifiers

In this section we briefly recall some basics of generalized quantifiers.
Let τ = {P1, . . . , Pr} be a relational vocabulary, where Pi is li-ary for 1 ≤ i ≤

r, and Q a class of τ -structures closed under isomorphisms. The class Q gives rise
to a generalized quantifier which we also denote by Q. The tuple s = (l1, . . . , lr)
is the type of the quantifier Q.

Definition 1. The extension FO(Q) of first-order logic by a quantifier Q is
defined as follows:

1. The formula formation rules of FO are extended by the rule: if for 1 ≤ i ≤ r,
φi(xi) is a formula and xi is an li-tuple of pairwise distinct variables then
Qx1, . . . , xr (φ1(x1), . . . , φr(xr)) is a formula.

2. The satisfaction relation of FO is extended by the rule:

A |= Qx1, . . . , xr (φ1(x1), . . . , φr(xr)) iff (A, φA
1 , . . . , φ

A
r) ∈ Q,

where φA
i = {a ∈ Ali | A |= φi(a)}.

We say that a quantifier Q is definable in a logic L if the class Q is axiomatizable
in L. Note that Q is trivially definable in FO(Q). If L has the substitution
property and is closed under FO-operations, then definability of Q in L implies
that FO(Q) ≤ L. So, among such logics, FO(Q) is the minimal logic in which Q
is definable.

Example 1. The following quantifiers will be discussed in the following sections.
Suppose S ⊆ N and k ∈ N.

∃ = {(A,P) | P ⊆ A and P 	= ∅}
M = {(A,P) | P ⊆ A and |P | > |A|/2}
QS = {(A,P) | P ⊆ A and |P | ∈ S}

If S is of the form {kn | n ∈ N} for some k ∈ N, we denote QS by Dk.
We will also refer to the vectorizations of the quantifiers Dk and M later. The

nth vectorization of Dk is the following quantifier

Characterizing Definability of Second-Order Generalized Quantifiers 191

Dn
k = {(A,P) | P ⊆ An and |P | = 0 mod k},

and the nth vectorization of M is

Mn = {(A,P) | P ⊆ An and |P | > |An|/2}.

Let us then turn to second-order generalized quantifiers. Let t = (s1, . . . , sw),
where si = (li1, . . . , l

i
ri

) is a tuple of positive integers for 1 ≤ i ≤ w. A second-
order structure of type t is a structure of the form (A,P1, . . . , Pw), where Pi ⊆
P(Ali1)× · · · × P(Aliri).

Definition 2. A second-order generalized quantifier Q of type t is a class of
structures of type t such that Q is closed under isomorphisms.

A quantifier Q is monadic if lij = 1 for all 1 ≤ j ≤ ri and 1 ≤ i ≤ w. Let us look
at some examples of second-order generalized quantifiers.

Example 2. Suppose S ⊆ N and k ∈ N.

∃2
k = {(A,P) | P ⊆ P(Ak) and P 	= ∅}

Even = {(A,P) | P ⊆ P(A) and |P | is even}
Even′ = {(A,P) | P ⊆ P(A) and ∀X ∈ P (|X | is even)}
Mostk = {(A,P) | P ⊆ P(Ak) and |P | > 2|A|k−1}

QS = {(A,P) | P ⊆ P(A) and |P | ∈ S}

Analogously to the first-order case, if S is of the form {kn | n ∈ N} for some
k ∈ N, we denote QS by Dk .

The first example is the familiar k-ary second-order existential quantifier. The
quantifier Even says that a formula holds for an even number of subsets of
the universe. On the other hand, the quantifier Even′ says that all the subsets
satisfying a formula have an even cardinality. The quantifier Mostk is the k-ary
second-order version of M expressing that a formula holds for more than half of
the k-ary relations.

Definition 3. The extension FO(Q) of FO by a quantifier Q is defined as
follows:

1. The formula formation rules of FO are extended by the rule: if for 1 ≤ i ≤ w,
φi(X i) is a formula and Xi = (X1,i, . . . , Xri,i) is a tuple of pairwise distinct
predicate variables such that the arity of Xj,i is lij for 1 ≤ j ≤ ri, then

QX1, . . . , Xw (φ1(X1), . . . , φw(Xw))

is a formula.
2. Satisfaction relation of FO is extended by the rule:

A |= QX1, . . . , Xw (φ1, . . . , φw) iff (A, φA
1 , . . . , φ

A
w) ∈ Q,

where φA
i = {R ∈ P(Ali1)× · · · × P(Aliri) | A |= φi(R)}.

192 J. Kontinen and J. Szymanik

2.2 Definability

Recall that a first-order generalized quantifier Q is definable in a logic L if the
class Q is axiomatizable in L. This condition can be reformulated as follows
assuming L has the substitution property:

Proposition 1. A first-order quantifier Q is definable in a logic L if and only
if L ≡ L(Q).

How do we formalize definability for second-order quantifiers? Intuitively, e.g.,
the monadic second-order existential quantifier ∃2

1 is definable in a logic L if
there is a uniform way to express

∃2
1Xψ(X)

for any formula ψ(X) in the logic L. Over a model A, ψ(X) defines a collection
of subsets

{C ⊆ A | A |= ψ(C)},
so the problem is to find a way to express the non-emptyness of this collection in a
way which does not depend on the particular formula ψ(X). This was formalized
in [10] using second-order relations.

Definition 4. Let L be a logic, t = (s1, . . . , sw) a second-order type, and let
G1, . . . ,Gw be first-order quantifier symbols of types s1, . . . , sw.

1. The logic L(G1, . . . ,Gw) is obtained by extending the syntax of L in terms of
the quantifiers G1, . . . ,Gw.

2. The models of L(G1, . . . ,Gw) are of the form A = (A, G1, . . . , Gw), where A
is a first-order model and

Gi ⊆ P(Ali1)× · · · × P(Aliri).

3. The quantifiers Gi are interpreted using the relations Gi:

A |= Gix̄1, . . . , x̄ri(φ1(x̄1), . . . , φri(x̄ri))

iff (φA
1 , . . . , φ

A
ri

) ∈ Gi.

Note that if φ ∈ L(G1, . . . ,Gw) is a sentence of vocabulary τ = ∅. Then

Mod(φ) = {(A,G1, . . . , Gw) | (A,G1, . . . , Gw) |= φ}

corresponds to a second-order generalized quantifier of type t. This observation
can be used to formalize definability of second-order generalized quantifiers.
Below, we assume that L is closed under substitution.

Definition 5. Let Q be a quantifier of type t. The quantifier Q is definable in
a logic L if there is φ ∈ L(G1, . . . ,Gw) of vocabulary σ = ∅ such that for any
t-structure (A,G1, . . . , Gw),

(A,G1, . . . , Gw) |= φ ⇔ (A,G1, . . . , Gw) ∈ Q.

Characterizing Definability of Second-Order Generalized Quantifiers 193

The following was shown in [10]:

Theorem 2. If Q is definable in L then L ≡ L(Q).

The converse of Theorem 2 does not hold:

Theorem 3 ([10]). There is a quantifier Q of type ((1)) which is not definable
in FO and satisfies FO ≡ FO(Q).

Definability questions of second-order quantifiers has been studied in [10,11,27].
We recall the following results.

Theorem 4 ([11]). Let t be type and Bt the collection of all second-order quan-
tifiers of types less than t. Then there is a quantifier Q of type t such that Q is
not definable in SO(Bt).

Theorem 4 is proved with respect to a natural ordering of the types of second-
order generalized quantifiers. Theorem 4 is existential in nature and does not
give us a concrete non-definable quantifier. It was observed in [9] that it is not so
difficult to find concrete quantifiers which cannot be defined using any monadic
quantifiers. Denote by Q the collection of all monadic second-order generalized
quantifiers.

Theorem 5 ([9]). The quantifier ∃2
2 is not definable in FO(Q).

It is worth noting that the logic FO(Q) is capable of defining all classes of first-
order structures (cf. Theorem 6.2 in [8]). Finally, we recall the following result
about second-order majority quantifiers:

Theorem 6 ([27]). The quantifier ∃2
k is definable in FO(Mostk).

It interesting to note that definability of Most1 in the logic SO would imply
that PH ≡ CH in computational complexity. This observation was discussed in
[20]. In this paper we show that the quantifier Most1 is not definable in SO,
but, analogously to Theorem 3, this non-definability result does not imply that
PH 	 CH.

3 Characterizing Definability

The computational analogue of a first-order generalized quantifier is the notion
of an oracle (see [22]). Let Q be a quantifier of vocabulary τ and L a logic. The
idea is that in L(Q) we can query "without a cost" if a definable τ -structure A
is a member of the class Q. Recall that a second-order generalized quantifier Q
of type ((1)) is definable, e.g., in SO if there is a sentence φ ∈ SO(G) such that
for all second-order structures (A,G):

(A,G) |= φ ⇔ (A,G) ∈ Q . (1)

It is not immediately clear how to view this notion in computational terms. The
set G corresponds to a local first-order quantifier and, if we treat G as an oracle,

194 J. Kontinen and J. Szymanik

then in (1) we are infact trying to define a property oracles. One way to proceed
is to formalize definability of a quantifier Q in terms of oracle Turing machines
that treat (a suitable initial segment) the oracle as part of the input. However, in
this article we do not follow that idea as there is a more familiar route to take. An
important observation here is that the set G can be of exponential size compared
to the domain A. This observation can be used to show that SO-definability of
Q reduces to logarithmic time definability.

Our proof is based on a logical version of an idea of Torán [19] showing that
there is essentially no difference between an oracle Turing machine writing an
oracle query on its query tape, and a logarithmic time Turing machine writing
an address on its random access tape. In other words, an oracle in the setting
of polynomial time machines can be viewed as an input to a logarithmic time
machine. We use a logical version of this idea: we show that SO and the relation
G in (1) can be replaced by FO and a unary relation P by passing from A to a
domain of cardinality 2|A|.

In this section we mainly restrict attention to monadic second-order gener-
alized quantifiers. We interpret definability of quantifiers in logics with built-in
relations in the natural way. For example, a second-order quantifier Q of type
((1)) is definable in MSO(+) if there is φ ∈ MSO(G,+) such that for all struc-
tures (A,+, G): (A,+, G) |= φ ⇔ (A,G) ∈ Q. In particular, Theorem 2 can be
proved analogously in this setting.

Next we define a first-order encoding of a second-order structure of type t, for
a monadic t. We use the fact that there is a one-to-one correspondence between
integers m ∈ B = {0, . . . , 2n − 1} and subsets of A = {0, . . . , n − 1} seen as
length-n binary numbers. Therefore, relations of A can be encoded in terms of
tuples of elements of B and, further, sets of relations of A by relations of B.

Definition 6. Let t = (s1, . . . , sw) be a type where si = (1, . . . , 1) is of length ri

for 1 ≤ i ≤ w. Let A = (A,G1, . . . , Gw) be a t-structure where A = {0, . . . , n−1}
and Gi ⊆ P(A)× · · · ×P(A). Denote by Â = (B,P1, . . . , Pw) the following first-
order structure of vocabulary τ = {P1, . . . , Pw}, where Pi is a ri-ary predicate,
and

1. B = {0, . . . , 2n − 1},
2. Pi = {(j1, . . . , jri) ∈ Bri | (J1, . . . , Jri) ∈ Gi}, where, for 1 ≤ k ≤ ri, bin(jk)

is given by s0 · · · sn−1, and sl = 1 ⇔ l ∈ Jk.

For a quantifier Q of type t, we denote by Q� the first-order quantifier of vocab-
ulary τ defined by

Q� := {Â : A ∈ Q}.

Note that the quantifier Q� has only structures in cardinalities of the form 2n

and that |Gi| = |Pi| for 1 ≤ i ≤ w. We are now ready for the main result of this
article (see the Appendix for the proof).

Theorem 7. Let Q1 and Q2 be monadic quantifiers. Then Q1 is definable in
MSO(Q2,+) if and only if Q�

1 is definable in FO(Q�
2,+,×).

Characterizing Definability of Second-Order Generalized Quantifiers 195

Let us then discuss some corollaries of Theorem 7. We need the following defi-
nition.

Definition 7. Let t = (s1, . . . , sw) and τ be as in Definition 6. Let Q be a
quantifier of type t. The quantifier Q is numerical if there is a relation T ⊆ Nw

such that for all t-structures (A,P1, . . . , Pw)

(A,P1, . . . , Pw) ∈ Q ⇔ (|P1|, . . . , |Pw|) ∈ T.

We denote Q by QT and by QT the first-order numerical quantifier (defined
analogously) of vocabulary τ .

It is easy to see that, for a numerical QT , the quantifier Q�
T (see Definition

6) is just the restriction of the corresponding first-order quantifier QT to the
cardinalities 2n:

Q�
T = {(A,P1, . . . , Pw) ∈ QT : |A| = 2n for some n ∈ N}.

This observation allows us to show the following (see the Appendix for the proof):

Theorem 8. Let QT be a numerical quantifier and k ∈ N. Then

1. QT is definable in MSO(+) iff QT is definable in FO(+,×).
2. QT is definable in MSO(Dk ,+) iff QT is definable in FO(Dk,+,×).
3. QT is definable in MSO(Most1,+) iff QT is definable in FO(M,+,×).

The following lemma can be now used.

Lemma 1. Let S ⊆ N, p a prime, and q > 1 relatively prime to p. Then

1. QS is definable in FO(+,×) iff S either finite or cofinite.
2. Dq is not definable in FO(Dp,+,×).

Proof. The first claim follows from non-definability of the language PARITY in
FO(+,×) [28,29] (see Theorem 4.3 in [30]). The second claim goes back to [31].

By combining Theorem 8 and Lemma 1 we can show the following.

Corollary 1. Let S ⊆ N, p a prime, and q > 1 relatively prime to p. Then

1. QS is definable in MSO(+) iff S is either finite or cofinite.
2. Dq is not definable in MSO(Dp ,+).

It is possible to replace MSO(+) by SO in Theorem 7. The idea is that, if Q1 is
definable in SO(Q2), then in the defining formula, for some k, only relations of
arity at most k are quantified. We do not present this generalization in detail in
this article but only consider the special case of the quantifier Most1.

Theorem 9. The quantifier Most1 is not definable in SO.

196 J. Kontinen and J. Szymanik

Proof. It suffices to show that Most1 is not definable in FO(∃2
k) for any k. Note

also that (Most1)� is the restriction of M to the cardinalities 2n.
An analogous translation as in Theorem 7 can be used to show that definability

of Most1 in SO implies that, for some k, the quantifier M is definable in FO(+,×)
over cardinalities 2nk

. Over these cardinalities, we could then express PARITY
in the logic FO(+,×). This contradicts the result of [28,29].

In order to translate the quantifier ∃2
k to the logic FO(+,×), we redefine the

structure Â (see Definition 6) to have a domain of the form {0, . . . , 2nk−1}. Now
we can use the fact that there is a one-to-one correspondence between integers
m ∈ {0, . . . , 2nk − 1} and k-ary relations R of {0, . . . , n− 1}. In other words, by
using the lexicographic ordering on k-tuples, a relation R can be encoded by a
binary string of length nk corresponding to the binary representation of a unique
integer m < 2nk

. It is straightforward to adjust the translation in the proof of
Theorem 7 to this setting.

4 Conclusion

We have shown that definability of second-order generalized quantifiers can be
reduced to definability of first-order generalized quantifiers. We have indicated a
couple of corollaries to our characterization but surely there is more to be done
here. Also, as discussed in connection to Theorem 9, it is possible to replace
MSO in terms of SO and to prove a result analogous to Theorem 7 in this case.
In particular, Theorem 9 solves the open problem proposed in [20], where we
studied the collective meanings of natural language quantifiers. It suggests, as
we argued in [20], that the type-shifting strategy [32] to define the meanings
of natural language quantification might be too restricted in its computational
power. It is likely that second-order logic is not enough to capture natural lan-
guage semantics. Another interpretation would be that everyday language does
not realize hard collective quantifiers (for sure they are marginal at best) due to
their complexity.

References

1. Mostowski, A.: On a generalization of quantifiers. Fund. Math. 44, 12–36 (1957)
2. Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32,

186–195 (1966)
3. Väänänen, J.: Generalized quantifiers, an introduction. In: Väänänen, J. (ed.)

ESSLLI 1997. LNCS, vol. 1754, pp. 1–17. Springer, Heidelberg (2000)
4. Ebbinghaus, H.D., Flum, J.: Finite model theory. In: Perspectives in Mathematical

Logic, 2nd edn. Springer, Heidelberg (1999)
5. Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Clarendon Press,

Oxford (2006)
6. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.

In: Complexity of Computation (Proc. SIAM-AMS Sympos. Appl. Math., New
York, 1973). SIAM–AMS Proc., vol. VII, pp. 43–73. Amer. Math. Soc., Providence
(1974)

Characterizing Definability of Second-Order Generalized Quantifiers 197

7. Burtschick, H.J., Vollmer, H.: Lindström quantifiers and leaf language definability.
Int. J. Found. Comput. Sci. 9(3), 277–294 (1998)

8. Andersson, A.: On second-order generalized quantifiers and finite structures. Ann.
Pure Appl. Logic 115(1-3), 1–32 (2002)

9. Kontinen, J.: Definability of second order generalized quantifiers. PhD thesis,
University of Helsinki (2005)

10. Kontinen, J.: Definability of second order generalized quantifiers. Arch. Math.
Logic 49(3), 379–398 (2010)

11. Kontinen, J.: The hierarchy theorem for second order generalized quantifiers. J.
Symbolic Logic 71(1), 188–202 (2006)

12. Bovet, D.P., Crescenzi, P., Silvestri, R.: A uniform approach to define complexity
classes. Theor. Comput. Sci. 104(2), 263–283 (1992)

13. Peichl, T., Vollmer, H.: Finite automata with generalized acceptance criteria. Dis-
crete Mathematics and Theoretical Computer Science 4, 179–192 (2001)

14. Galota, M., Vollmer, H.: A generalization of the Büchi-Elgot-Trakhtenbrot the-
orem. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp.
355–368. Springer, Heidelberg (2001)

15. Büchi, J.R., Elgot, C.C.: Decision problems of weak second order arithmetics and
finite automata, Part I. Notices of the American Mathematical Society 5, 834 (1958)

16. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Pro-
ceedings Logic, Methodology and Philosophy of Sciences 1960. Stanford University
Press, Stanford (1962)

17. Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates. Doklady
Akademii Nauk SSSR 140, 326–329 (1961) (in Russian)

18. More, M., Olive, F.: Rudimentary languages and second-order logic. Math. Logic
Quart. 43(3), 419–426 (1997)

19. Torán, J.: Structural properties of the counting hierarchies. PhD thesis, Facultat
d’Informatica de Barcelona, Barcelona, Spain (1988)

20. Kontinen, J., Szymanik, J.: A remark on collective quantification. Journal of Logic,
Language and Information 17(2), 131–140 (2008)

21. Szymanik, J.: Quantifiers in TIME and SPACE. Computational Complexity of
Generalized Quantifiers in Natural Language. PhD thesis, Universiteit van Ams-
terdam (2009)

22. Immerman, N.: Descriptive complexity. In: Graduate Texts in Computer Science.
Springer, New York (1999)

23. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22
(1977)

24. Parberry, I., Schnitger, G.: Parallel computation with threshold functions. J.
Comput. System Sci. 36(3), 278–302 (1988)

25. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. J.
Comput. System Sci. 41(3), 274–306 (1990)

26. Kontinen, J., Niemistö, H.: Extensions of MSO and the monadic counting hierarchy.
Information and Computation 209(1), 1–19 (2011)

27. Kontinen, J.: A logical characterization of the counting hierarchy. ACM Trans.
Comput. Log. 10(1) (2009)

28. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hier-
archy. Math. Systems Theory 17(1), 13–27 (1984)

29. Ajtai, M.: Σ1
1 -formulae on finite structures. Ann. Pure Appl. Logic 24(1), 1–48

(1983)

198 J. Kontinen and J. Szymanik

30. Barrington, D.A.M., Immerman, N., Lautemann, C., Schweikardt, N., Thérien, D.:
First-order expressibility of languages with neutral letters or: The Crane Beach
conjecture. J. Comput. System Sci. 70(2), 101–127 (2005)

31. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In: Proc. 19th Annual ACM Symposium on Theory of Computing, pp.
77–82. ACM Press, New York (1987)

32. Winter, Y.: Flexibility principles in Boolean semantics. The MIT Press, London
(2001)

33. Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold
circuits for division and iterated multiplication. J. Comput. System Sci. 65(4),
695–716 (2002); Special issue on complexity (2001) (Chicago, IL)

Appendix

Proof (of Theorem 7)
To simplify notation, we assume that the type of Q1 and Q2 is ((1, 1)) and

((1), (1)), respectively.
Let us first assume that Q1 is definable in the logic MSO(Q2,+). Then there

is a sentence φ ∈ MSO(Q2,G,+) such that for all structures (A,+, G)

(A,+, G) |= φ ⇔ (A,G) ∈ Q1 .

We shall next show that there is a sentence φ∗ ∈ FO(Q�
2 +,×)[{P}], where P is

binary, such that for all structures A = (A,G):

(A,+, G) |= φ ⇔ (B,P,<,+,×) |= φ∗, (2)

where (B,P) = Â (see Definition 6). We define φ∗ via the following translation:

xi = xj � xi = xj

xi + xj = xk � xi + xj = xk

Yi(xj) � BIT(yi, n− (xj + 1))

Gxi, xj(ψ1(xi), ψ2(xj)) � ∃z1∃z2

(
P (z1, z2) ∧

∧
1≤i≤2

∀(w < n)(ψ∗
i (w)

↔ BIT(zi, n− (w + 1)))
)

ψ ∧ θ � ψ∗ ∧ θ∗

¬ψ � ¬ψ∗

∃xiψ � ∃xi(xi < n ∧ ψ∗(xi))
∃Yiψ � ∃yiψ

∗

Q2 Yi, Yj(ψ(Yi), θ(Yj)) � Q�
2 yi, yj(ψ∗(yi), θ∗(yj))

It is now straigthforward to show that for all formulas ψ ∈ MSO(Q2,G,+),
structures (A,G), and assignments s

(A,+, G) |=s ψ ⇔ (B,P,<,+,×) |=s∗ ψ∗,

Characterizing Definability of Second-Order Generalized Quantifiers 199

where the assignment s∗ is defined such that s∗(xi) = s(xi) for all first-order
variables xi, and, if s(Yi) = D ⊆ {0, . . . , n− 1}, then s∗(yi) is the unique d < 2n

whose binary representation is given by s0 · · · sn−1 where sj = 1 ⇐⇒ j ∈ D.
In the formula translation, we use the predicate BIT, which is FO(+,×)-

definable, to recover the set D from the integer d. By the above translation, the
sentence

∃n(|B| = 2n ∧ φ∗)

of the logic FO(Q�
2,+,×) now defines the quantifier Q�

1.
Let us then show the converse implication. Assume that φ ∈ FO(Q�

2,+,×)
defines the quantifier Q�

1. The idea is now to translate φ ∈ FO(Q�
2,+,×) to

φ′ ∈ MSO(Q2,G,+) such that for all A = (A,G):

(A,+, G) |= φ′ ⇔ (B,P,<,+,×) |= φ. (3)

Analogously to the first translation, we encode integers in the domain B =
{0, . . . , 2n − 1} in terms of subsets X ⊆ {0, . . . , n − 1}. We use the following
formulas X = Y , X < Y , X + Y = Z, and X × Y = Z expressing arithmetic
operations on binary numbers. The first three formulas are FO(+)-expressible,
and the fourth is expressible in the logic FO(M,+,×) ≤ MSO(+) [33]. The
translation φ � φ′ is now defined as follows.

P (xi, xj) � Gz1, z2(Xi(z1), Xj(z2))
xi = xj � Xi = Xj

xi < xj � Xi < Xj

xi + xj = xk � Xi + Xj = Xk

xi × xj = xk � Xi ×Xj = Xk

ψ ∧ φ � ψ′ ∧ φ′

¬ψ � ¬ψ′

∃xiψ(xi) � ∃Xiψ
′(Xi)

Q�
2xi, xj(ψ(xi), θ(xj)) � Q2 Xi, Xj(ψ′(Xi), θ′(Xj))

It is straightforward to show that this translation works as intended. In partic-
ular, it follows that the sentence φ′ ∈ MSO(Q2,G,+) now defines the quantifier
Q1.

Proof (of Theorem 8) The proof is based on the fact that each of the logics
FO(<,+,×), FO(Dk,+,×), and FO(M,+,×) is closed under logical reductions.
Suppose that QT is of type t = (s1, . . . , sw) and let τ denote the vocabulary of
the corresponding first-order quantifier QT (see Definition 6).

Let us consider claim 2. By Theorem 7 it suffices to show that the following
are equivalent:

(a) Q�
T is definable in FO(D�

k ,+,×)
(b) QT is definable in FO(Dk,+,×)

200 J. Kontinen and J. Szymanik

Recall that the quantifiers Q�
T and D�

k are the restrictions of the quantifiers QT

and Dk to cardinalities of the form 2n, respectively. Let us first note that (a) is
equivalent with

(c) Q�
T is definable in FO(Dk,+,×).

First of all, since D�
k is easily definable in FO(Dk,+,×) using the FO(+,×)-

expressible predicate x = 2y, it follows that (a) ⇒ (c). Assume then that (c)
holds and let φ ∈ FO(Dk,+,×) define Q�

T . Define a sentence ψ as follows:

ψ := ∃n(|A| = 2n ∧ φ(Dk /D�
k)).

Since the quantifier Q�
T contains structures only in cardinalities of the form 2n

it is easy to see that ψ ∈ FO(D�
k ,+,×) also defines Q�

T .
It now suffices to show that (b) and (c) are equivalent. Note first that (b) ⇒ (c)

can be easily proved using the predicate x = 2y. We will show (c) ⇒ (b). Here
we use the fact that the logic FO(Dk,+,×) is closed under logical reductions.
We will define QT (over all cardinalities) with the help of the quantifier Q�

T . Let
A be a structure. If |A| = 2n for some n ∈ N, then A ∈ QT can be expressed in
terms of the quantifier Q�

T . Note that even if |A| is not a power of two, it holds
that the least m such that |A| ≤ 2m satisfies 2m ≤ |A|2.

We will now sketch how the quantifier QT can be defined in terms of Q�
T .

Assume φ ∈ FO(Dk,+,×) is a sentence defining Q�
T . Let A = (A,P1, . . . , Pw)

be a τ -structure, where A = {0, . . . , n− 1}. We use the following facts:

1. There is a FO(<,+,×)-definable query I that maps A to the structure I(A)
which is isomorphic to

({0, . . . , 2m − 1}, P1, . . . , Pw, <,+,×),

where 2m is the least power of two satisfying n ≤ 2m.
2. There is a sentence ψ ∈ FO(Dk,+,×) such that for all A:

A |= ψ ⇔ I(A) |= φ.

Since QT is numerical, the sentence ψ now defines QT . The query I is easily
definable in FO(<,+,×); the domain of I(A) is defined as {(i, j) ∈ A2 | in+ j <
2m} (see [22] for more on first-order queries). The sentence ψ is constructed
inductively (see e.g., Section 3.2 [22]) using, in particular, the fact that the
second vectorization D2

k of Dk can be expressed in FO(Dk,+,×).
The claims 1 are 3 are proved analogously. For claim 3 we use the facts that

(Most1)� is the restriction of M to the cardinalities 2n and that the second
vectorization M2 of M is definable in FO(M,+,×) (see [25]).

Countable Version of Omega-Rule

Grigori Mints

Stanford University,
Department of Philosophy

http://philosophy.stanford.edu/profile/Grigori+Mints/

Abstract. Omega-rule used by W. Buchholz to give an ordinal-free
proof-theoretic analysis of Π1

1 -comprehension axiom has uncountable set
of premises. We show how to make this set countable preserving the re-
sults and ideas of cut-elimination proof by Buchholz. The price is intro-
duction of non-well founded derivation-like figures and use of continuous
cut-elimination.

Keywords: cut-elimination, Π1
1 -analysis, Omega-rule.

1 Introduction

Ω-rule was introduced by W. Buchholz (cf. [2]) to give a proof-theoretic analysis
of Π1

1 -comprehension axiom. This rule has uncountable set of premises. We show
how to make this set countable preserving the results and ideas of proof by W.
Buchholz. He defines a translation d → d∞ from a familiar formal system of
Π1

1 -analysis (with the axiom of mathematical induction and a rule

Γ,A(F)
Γ, ∃XA(X)

with suitable restrictions) into an infinitary system with the ω-rule for the first-
order quantifier ∀x and Ω-rule (see below) for the second order quantifier ∃X .
Derivations in this infinitary system are defined inductively in a familiar way as
well-founded trees proceeding from axioms by inference rules. Cut-elimination
for the infinitary system is established by transfinite induction on derivations
without use of proof-theoretic ordinals or Girard’s computability predicates. Us-
ing this W. Buchholz developed in [5] an independent approach to Howard’s
ordinal φεΩ+1(0). One can try to use this feature to extend an approach to
proof-theoretic ordinals from [1].

Cut-elimination procedure for the systems with Ω-rule consists of two stages.
First, cuts over formulas properly containing the most complicated quantifiers
∃XA(X) are eliminated in a standard way. This process generates some residual
cuts formalized as Ω̃-rules (see below) which still have uncountable number of
premises. The second stage called collapsing eliminates Ω̃-rules (i.e., remaining
cuts) from the derivations of arithmetical formulas beginning from the uppermost
“cuts”. The whole uncountable tree ending in a Ω̃-rule is reduced to just one

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 201–209, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://philosophy.stanford.edu/profile/Grigori+Mints/

202 G. Mints

of its subtrees. The result is a cut-free derivation of an arithmetical sequent by
familiar rules including ω-rule, hence it is countable.

A countable versionproposed in the present paper replaces uncountable branch-
ing in Ω, Ω̃-rules by the countable branching over all closed arithmetical sequents.
The role of a “derivation” of an underivable sequent Γ is taken by a familiar ob-
ject, a proof-search tree TΓ of Γ . This change makes the trees considered here
countable but non-well-founded. For example a proof-search tree for a formula
φ :≡ ∃x(x = x&x < 0) looks as follows:

0 = 0, φ

0 < 0, 1 = 1, φ

...
0 < 0, 1 < 0, φ

0 < 0, 1 = 1&1 < 0, φ
0 < 0, φ

0 = 0&0 < 0, φ
∃x(x = x&x < 0) (1)

This figure is only “local” correct: each step is made by an inference rule and
the leaf nodes are axioms.

However it turns out that both stages of cut-elimination still go through with-
out fundamental changes if continuous cut-elimination (introduced by the author
in [8]) is applied. This version of the standard cut-elimination transformations
works with non-well-founded proof-figures like (1) from the bottom-up: it begins
with the endsequent. Neccesary properties of such transformations (for exam-
ple that one cut-reduction step preserves local correctness) cannot be proved by
transfinite induction TI from the top (i.e., axioms) down, since TI is not ap-
plicable. They are proved by the bottom-up induction using the way in which
any finite bottom part of the result of a transformation is constructed from suf-
ficiently large chunks of the arguments. Details are developed in [8]. Even more
detailed treatment easily formalizable in primitive recursive arithmetic and us-
ing finite notation for infinite derivations is given in [3]. These notations were
applied in [4] to derive Takeuti’s reductions for finite derivations from infinitary
cut-elimination with Ω-rule. The countable version presented below preserves
geometric view of cut-elimination without breaking it into mosaic of finite re-
ductions.

The price is introduction of non-well founded derivation-like figures and use of
continuous cut-elimination. Probably some of this can be stated in the language
of co-recursion, but we avoid that framework.

In fact we consider here only a subsystem treated in [4]. Unexplained notation
is understood exactly as in [4]. In particular we restrict second order arithmetical
formulas in the same way:
∀XA, ∃XA is a formula only if A contains no second order quantifier and no

second order variable except X . Negation ¬A is defined by classical de Morgan
rules.

Notation
q : Γ ′

dq : Γ

Countable Version of Omega-Rule 203

indicates that some operation transforms given derivation q of Γ ′ into a deriva-
tion dq of Γ . Notation

Γ ′ Γ ′′

Γ
O

indicates that operation O transforms a pair of derivations of Γ and Γ ′ into a
derivation of Γ .

Ω-rule from [4] can be pictured as follows:

q : Δ,A(X)

dq : . . . Γ,Δ,¬∀XA(X) . . .
Γ,¬∀XA(X) Ω (2)

with a separate premise dq for each cut-free derivation q of an arithmerical
sequent Δ,A(X). This set of premises is uncountable since there are uncountably
many derivations of arithmetical sequents. We choose one of these derivations
in a canonical way, which makes the number of premises countable.

In more traditional notation this would be

. . . Γ,Δ,¬∀XA(X) . . .
Γ,¬∀XA(X)

Ω

Precise definition in [4] looks as follows. Let V ar1 be the set of second order
variables. For each formula P := ∀XA(X) and derivation d : Γ (d) of a sequent
Γ (d) let

P [X] := A(X), ΔP
d,X := Γ (d)− {P [X]}

|P | := {(d,X) ∈ BI∞0 × V ar1 : Γ (d) arithmetical &X 	∈ FV (ΔP
d,X)}

Now the rule is:
. . .ΔP

q . . . (q ∈ |P |)
¬P Ω¬P

where Y is an eigenvariable.

2 Proof Search Tree for Arithmetic

Definition 1. A sequent is arithmetical if it does not contain set quantifiers
(but may contain free set variables X,Y, . . .). Following [4] we denote by A the
set of all arithmetical sequents.

A system BI∞0 in [4] is a familiar complete cut-free Tait-style system for first
order arithmetic with ω-rule for numerical quantifier ∀x. The rules for proof
search below are obviously instances of the rules of BI∞0 .

Recall that a proof-search tree TΓ of a sequent Γ according to some set of rules
is a primitive recursive tree with Γ as the endsequent (root) where every poten-
tially possible rule is eventually applied. We need it for the case of arithmetic
where it can be described by the following inference rules.

204 G. Mints

Derived objects are sequents: finite sequences of arithmetical formulas without
free first order variables. The empty sequence is interpreted as a constant ⊥, i.e.
false. We give only rules needed to derive prenex formulas. Let TRUE stand for
the set of true primitive recursive closed formulas.

Inference rules:

R,Γ
Ax

, if R ∈ TRUE or Γ ⊃ {A,¬A}

Γ
R, Γ

F
, if R ∈ FALSE

F [n], Γ, [n + 1]∃xF [x]
[n]∃xF [x], Γ ∃

. . . F [n], Γ . . . all n
∀xF [x], Γ ∀

Let’s describe the proof-search tree TS for the sequent S by these rules. TS is
treated here as a primitive recursive function assigning to any node a belonging
to the tree of finite sequences of natural numbers the symbol 0 (if a 	∈ TS) or a
sequent Sa. In particular for the root ∅ of the tree S∅ = S.

Any non-empty sequent Sa can be conclusion of exactly one rule to be denoted
ρa. We place the l-th premise of the rule ρa it into the node a ∗ l.

The relation of the conclusion Sa of the rule ρa to the l-th premise Sa∗l of that
rule is expressed by a primitive recursive formula Correct(ρa , a, l). For example

Correct(F, a, l) :≡ (l > 0 → (∃R ∈ Sa)(Sa = R,Sa∗l&R ∈ FALSE)

B

Correct(∀, a, l) :≡ l > 0 → (∃F, x, Γ : Sa = ∀xF [x], Γ)Sa∗l = F [l − 1], Γ

The following statement is not used below, but forms essential background.

Lemma 1. TS is well-founded iff S is true in the standard model.

Proof. Standard. ��
From now on TΓ means the proof-search tree of Γ in BI∞0 .
We use below the following result from [7].

Theorem 1. For every cut-free derivation d : Δ of an artimetical sequent Δ in
first order arithmetic there is a (primitive-recursive) order preserving embedding
1of d into TΔ establishing that

|TΔ| ≤ |d| · ω

for the order-types of (infinite) trees d and TΔ.

As a consequence TΔ is a derivation of an arithmetical sequent Δ if anything is,
that is iff Δ is derivable.

Countable Version of Omega-Rule 205

3 System BIc1

The variable q in Ω-rule ranges over arbitrary derivations in BI∞0 .

Definition 2. Rules Ωc, Ω̃c are obtained from rules Ω, Ω̃ by using all arithmeti-
cal sequents to index premises.

. . . , Γ,Δ,¬∀XA(X) . . . Δ ∈ A
Γ,¬∀XA(X)

Ωc
¬∀XA(X)

B

Γ,A(Y) . . . Γ,Δ . . . Δ ∈ A
Γ

Ω̃c
¬∀XA(X)

In more detail, rule Ωc has a premise Γ,Δ,¬∀XA(X) for every (not necessary
derivable) arithmetical sequent Δ, while Ω̃c has a premise Γ,Δ for every such
Δ plus a premise Γ,A(Y). Standard proviso for eigenvariables is assumed.

System BIc1 is obtained from the system BI∞1 from [4] by replacing rules Ω, Ω̃
by Ωc, Ω̃c. The remaining rule of BIc1 are familiar Tait-style rules for ∧,∨, ∃x,
and ω-rule for ∀x.

Recall the following definitionl from [8] or [6].

Definition 3. A local correct figure according to given axioms and rules is a
tree T of finite sequences a of natural numbers ordered by inclusion (so that the
empty sequence is the root) and labeled by sequents Sa in such a way that for
every a ∈ T one of the following conditions is satisfied:

1. Sa is an axiom and a ∗ n 	∈ T for all n,
2. the figure

Sa∗0 Sa∗1 . . .

Sa

is a correct inference according to one of the rules.

Definition 4. A quasi-derivation of a sequent Γ in BIc1 is a locally correct tree
according to rules of BIc1 with the root Γ .

Definition 5. For any quasi-derivation d in BIc1 we denote by d− the result of
deleting all premises corresponding to sequents Δ such that Δ,A(Y) is not deriv-
able in BI∞0 from all Ωc

¬∀XA(X)-inferences and from all Ω̃c
¬∀XA(X)-inferences.

Together with such premise all sequents above it are 1also deleted.
A quasi-derivation d is a derivation if d− is well-founded.

Note that the operation d− is continuous, but not effective.

4 Cut-Elimination Operations for BIc1

Cut-elimination operations RC , E ,S,D0 on derivations in BI∞1 are defined in [4]
by transfinite induction on derivations.

206 G. Mints

RA does one-step reduction of cuts CutA over A: the cut is moved up the
derivation till it meets an axiom (and disappears) or it meets logical rules in-
troducing A in both premises (then the Cut is replaced by “smaller” cuts), or
A ≡ ∀ZB introduced by ∀X-rule and RA meets Ω introducing ¬∀XA(X). Then
Ω̃ is introduced.

BE(d): applying R one time to every Cut in the derivation d.
D0: collapsing of a cut-free derivation possibly containing Ω̃. Operation D0

replaces every Ω̃ by the result of collapsing to a suitable premise (see below).
S or more precisely SF

X for a second order variable X and a formula F(x) is
the result of replacing all occurrences of atomic formulas Xt (where X is free)
by F(t).

However these operations can be defined and proved to satisfy the same recur-
sive equations by primitive recursion (one can say co-recursion) over arbitrary lo-
cal correct proof figures. For R and E this was original definition in [8] developed
and extended in [4], [3]. Strictly speaking, one has to explain what “primitive
recursive” means for uncountably branching proof figures like BI∞1 -derivations.
Finitary notation system developed in detail in [3] is one of possible explana-
tions. In the present paper we go around the problem of uncountability by using
potentially non-well-founded 1but countably branching quasi-derivations.

Below we use the symbols RC , E ,S to denote primitive-recursive operations
on local correct figures satisfying the same equations as in Theorems 1 and 2 from
[4]. The only essential modification is needed in the definition of the operation
D0. Its intended domain consists of cut-free quasi-derivations of arithmetical
sequents. Such quasi-derivation consists of arithmetical sequents, and hence does
not contain Ω-inferences. The Ω̃-rule is collapsed as follows:

Γ,A(Y) . . . dΔ : Γ,Δ . . .

Γ
Ω̃c

¬∀XA(X)
goes
to

Γ
Γ

Rep
, (3)

so that formally there is even no dependence on the derivation of Γ,A(Y). In
fact we retain exactly the premise corresponding to Δ = Γ .

Using notation of [4], Theorem 2 we have B

d = Ω̃Y
¬P (di)i∈{0}∪|P |

and
D0(d) = Rep(D0(dΔ)) with Δ = Γ,A(Y).

Lemma 2. 1. If d : Δ is a cut-free quasi-derivation, then D0(d) is a quasi-
derivation of the same sequent containing none of Cut, Ωc, Ω̃c.

2. If in addition d is a derivation then D0(d) is a derivation in BI∞0 .

Proof. 1. This part is easy. Only Ω̃c-inferences (3) are changed and countably
branching (local correct) tree is replaced by one of its branches, and hence the
result is local correct. 2. This is proved by transfinite induction on the well-
founded part d− of d. The main case when d ends in a Ω̃c-inference is treated
using Lemma 1. By induction hypothesis, D0(d0) is a derivation of Γ,A(Y).

Countable Version of Omega-Rule 207

Again by induction hypothesis, the quasiderivation dΓ is a derivation with
the ensequent Γ, Γ , that is Γ since sequents are sets of formulas. Application of
Rep finishes the proof. ��

Lemma 3. Operations RC , E ,S and D0 transform (quasi)derivations in BIc1
into (quasi)derivations.

Proof. For D0 this is just proved. For remaining operations the same induction
as in [4] (but applied to d−) goes through.

5 Embedding Finite Derivations into BIc1

Finitary system BI−1 in [4] contains ordinary cut-free Brules of second order
arithmetic (for the language restricted as above) plus mathematical induction
and the Cut rule (denoted there by RC). The rules of BI−1 in Buchholz’s notation
are as follows:

Δ
Ax∗

Δ

if Δ = {A} ⊆ TRUE0 or Δ = {C,¬C}

A0 A1

A0&A1

∧
A0&A1

Ak

A0 ∨A1

∨
A0∨A1 (k ∈ {0, 1})

A(y)
∀xA(x)

∧y
∀xA(x)

A(k)
∃xA(x)

∨k
∃xA

A(Y)
∀XA(X)

∧Y
∀XA(X)1

A(F)
∃XA(X)

∨F
∃XA(X)

¬F, F (y/Sy)
¬F (y/0), F (y/t)

Indy,t
F

C ¬C
∅ CutC

We introduce operation ∞ transforming every derivation h of a closed endse-
quent in BI−1 into a derivation h∞ of the same sequent in BIc1. The only difference
from the definition of h∞ in [4] is the treatment of the rule ∨F

P , that is the rule
for ¬∀XA(X). Instead of expanding it over all possible arithmetical derivations
we take for each arithmetical Δ just one quasi-derivation, namely TΔ,A(X) when
P = ¬∀XA(X).

A derivation h is called good in section 3 of [4] if it satisfies standard purity
conditions on eigenvariables needed for cut-elimination.

So the ∨F
P clause of our definition for h∞ looks as follows:

(∨F
P h0)∞ := Ω¬P (RP [F](SF

X(TΔ,¬P [X]), h∞
0))Δ

where Δ ranges over all arithmetical sequents (cf. the figure in the proof of the
next lemma).

Lemma 4. If h is a good derivation of a closed sequent in BI−1 then h∞ is a
derivation of the same sequent in BIc1.

208 G. Mints

Proof. Local correctness of h∞ and well-foundedness of h∞− are easily proved
by induction on (finite) derivation h. The main case: h ends in ¬∀X-inference.

h0 : Γ,¬∀XA(X),¬A(F)
h : Γ,¬∀XA(X)

... X
TΔ,A(X)

... F
SF

X(TΔ,A(X)) : Δ,A(F) h∞
0 : Γ,¬∀XA(X),¬A(F)

h∞ : Γ,¬∀XA(X)
RA(F)

h∞−
0 is well-founded by induction hypothesis. For other premises with derivable

Δ,A(X) the figure TΔ,A(X) is well-founded by Theorem 1, hence SF
X(TΔ,A(X))

is well-founded by Lemma 3. The same holds for the final application of the
operation RA(F). ��

Note. It may seem that the argument above uses something like correctness of
one of our formal systems for arithmetical sequents: if a sequent is derivable, then
it is true. This is not the case. Let’s assume for definiteness that “well-founded”
means “every branch is finite”. As explained in [7],[8], from every infinite branch
in TΓ one constructs an infinite branch in any other local correct figure for Γ by
Δ0

2 definition. Hence if all branches in an arithmetical derivation d : Γ are finite
then all branches in TΓ are finite.

Theorem 2. For any derivation h of an arithmetical closed sequent in BI−1
with cut-degree m the figure D0Emh∞ is an arithmetical cut-free derivation of
the same sequent.

Proof. Operation E decreases cut-degree at least by 1, operation D0 eliminates
remaining Ω̃c-inferences. ��

References

1. Beklemishev, L.: Reflection principles and provability algebras in formal arithmetic.
Usp. Matem. Nauk 60(2), 3–78 (2005); (in Russian. English translation: Russian
Math. Surv. 60(2), 197–268 (2005))

2. Buchholz, W.: The Ωμ+1-rule. In: Buchholz, W., Feferman, S., Pohlers, W., Sieg,
W. (eds.) LNM, vol. 897, pp. 188–233. Springer, Heidelberg (1981)

3. Buchholz, W.: Notation Systems for infinitary Derivations. Arch. Math. Log. 30,
277–296 (1991)

4. Buchholz, W.: Explaining the Gentzen-Takeuti Reduction Steps. Arch. Math.
Log. 40, 255–272 (2001)

5. Buchholz, W.: Relating ordinals to proofs in a perspicious way. In: Lecture Notes in
Logic, vol. 15, pp. 37–59 (2002)

6. Kreisel, G., Mints, G., Simpson, S.: The Use of Abstract Language in Elementary
Metamathematics. In: LNM, vol. 253, pp. 38–131. Springer, Heidelberg (1975)

Countable Version of Omega-Rule 209

7. Mints, G.: The Universality of the Canonical Tree. Soviet Math. Dokl. 14, 527–532
(1976)

8. Mints, G.: Finite Investigations of Transfinite Derivations. In: [9], pp. 17–72;
(Russian original, 1974)

9. Mints, G.: Selected Papers in Proof Theory. Studies in Proof Theory, Monographs
3. Bibliopolis, Napoli (1992)

Decomposing the Lattice of Meaningless Sets

in the Infinitary Lambda Calculus

Paula Severi and Fer-Jan de Vries

Department of Computer Science, University of Leicester, UK

Abstract. The notion of a meaningless set has been defined for infini-
tary lambda calculus axiomatically. Standard examples of such sets are
sets of terms that have no head normal form, the set of terms without
weak head normal form and the set of rootactive terms. In this paper,
we study the way the intervals decompose as union of more elementary
ones. We also analyse the distribution of the sets of meaningless terms
in the lattice by selecting some sets as key vertices and study the cardi-
nality in the intervals between key vertices. As an application, we prove
that the lattice of meaningless sets is neither distributive nor modular.
Interestingly, the example translates into a simple counterexample that
the lattice of lambda theories is not modular.

1 Introduction

Classical, finite lambda calculus [1] considers only finite terms. It can not ex-
press inside the calculus that certain terms have an infinite normal form. For
example, the term MM where M = λx.f(xx) has the infinite normal form
f(f(f(. . .))) which is the limit of the reduction sequence MM →β f(MM) →β

f(f(MM)) →β Infinitary lambda calculus aims to treat finite and infinite
terms in one notational framework with notation for finite and infinite reduc-
tions. It allows us to express that the above reduction sequence has the infinite
term fω as limit. However, the natural extension of finite lambda calculus with
infinite terms and infinite reductions ruins the confluence property [7]. For ex-
ample, the term NN , where N = λx.I(xx) and I = λx.x reduces both to Iω and
Ω = (λx.xx)(λx.xx), which can only reduce to themselves and not be joined by
even infinite reductions.

Needed to restore the confluence property [7,6,8,5] is a designated set of mean-
ingless terms (for short meaningless set), that is, a set satisfying the Axioms of
Meaninglessness [10,5] together with a new rewrite rule that allows any mean-
ingless terms to be rewritten to a fresh symbol ⊥. Those Axioms are general
assumptions needed to prove confluence of the infinitary lambda calculus [10,5].
By changing the meaningless set, we obtain different notions of ⊥-reduction and
different infinite extensions. Each of these extensions is normalising and conflu-
ent, so that the set of its normal forms becomes a model of lambda calculus.

A standard example of a meaningless set is the set HN of terms without
head normal form. The normal forms of the corresponding infinitary extension

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 210–227, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Decomposing the Lattice of Meaningless Sets 211

Λ∞

2

��

HA ∪ IL ∪O = HN
2

��

 2c

		��
��

��

HA ∪ IL = HN −O
2

��

 2c

		��
��

��
HA ∪ O

2

��

SA∪ SIL = WN
2c

��
��

��

2c

��

1

��

HA

2��

��������R∪ SIL

2c

���
���

SA

2c��

R = T N

Fig. 1. Lattice of Meaningless Sets extended with an auxiliary vertex. The
arrow U1

n→ U2 indicates that U1 ⊃ U2. The label n shows the cardinality of the class
of sets of meaningless terms between U1 and U2. NB: of all vertices, the vertex R∪SIL
is not a meaningless set.

of finite lambda calculus are precisely the Böhm trees, but now their definition
is within the syntax of infinite lambda calculus, whereas [1] needed to develop
a special notational machinery. Similarly the choice of the set WN of terms
without weak head normal forms as set of meaningless terms leads to the Lévy-
Longo trees [6,8,5], and the choice for the set R of rootactive terms recaptures
the Berarducci trees [3,6,8,5]. Although in the initial papers [6,8,10,5] on infinite
lambda calculus only those three sample sets were presented as set of meaningless
terms, these sets are not the only sets of meaningless terms. Only in the more
recent papers [14,15,9] some aspects of the rich lattice of the sets of meaningless
terms have been explored.

The set of all sets of meaningless terms forms a complete lattice as depicted
in Figure 1. We say U1 → U2 when U1 ⊃ U2. The bottom element is the set R
and the top element is the set Λ∞ of finite and ⊥-free infinite lambda terms.
The meet operation � is intersection and the join � of two sets of meaningless
terms is the smallest meaningless set that contains the two sets.

The purpose of the current paper is to analyse the distribution of the sets
of meaningless terms in the lattice by selecting some sets as key vertices and
study the cardinality in the intervals between key vertices. The key vertices are
all depicted in Figure 1. All key vertices stand for sets of meaningless terms
except for the vertex R ∪ SIL. We included this set in the figure to provide a
complete picture of the lattice. Because, despite the fact that R∪ SIL itself is
not meaningless, there are infinitely many sets of meaningless terms between R
and R ∪ SIL. The other vertices in Figure 1 represent all sets of meaningless
terms that decompose as the disjoint union of one or more of the basic sets R,
SIL, IL, SA, HA and O [15].

212 P. Severi and F.-J. de Vries

We consider intervals [U1, U2] = {U | U1 ⊆ U ⊆ U2 and U is meaningless}
between two arbitrary sets U1 and U2. In particular, we will distinguish between
key intervals which are intervals between any two key vertices and elementary key
intervals which are key intervals between two consecutive key vertices. We study
the cardinality of the elementary key intervals. The cardinalities are shown as
labels above the arrows of Figure 1. Some intervals have cardinality 2 and contain
only both extremes. Only one of them has cardinality 1 which is [R∪SIL,SA∪
SIL] which contains only the right extreme. All others are uncountable and have
cardinality 2c where c is the cardinality of the continuum.

We show that the elementary key intervals with cardinality 2c cannot be
finitely decomposed. In other words, the uncountable intervals cannot be further
decomposed as union of finite subintervals. We also study how the key intervals
are decomposed as union of elementary key intervals. We prove that all key
intervals which are above the set SA and R∪SIL can be decomposed as union of
elementary key intervals. For example, [SA,HA∪O] = [SA,HA]∪[HA,HA∪O].
Not all the key intervals have this nice property. We show that the interval
[R,SA∪SIL] can not be decomposed as union of elementary key intervals. For
this, we show that there are 2c many sets of meaningless terms which are in
[R,SA ∪ SIL] and are not in either [R,SA], [SA,SA ∪ SIL] or [R,R∪ SIL].
This is depicted in Figure 1 by an arrow from SA ∪ SIL to R labelled by 2c.

We conclude with the observation that the lattice of sets of meaningless sets
is neither modular nor distributive. Interestingly, the example translates into a
simple counterexample that the lattice of lambda theories is not modular.

2 Infinitary Lambda Calculus

We will now briefly recall some notions and facts of infinitary lambda calculus
from our earlier work [6,8,5,13,16]. We assume familiarity with basic notions and
notations from [1]. Let Λ be the set of λ-terms and Λ⊥ be the set of finite λ-terms
with ⊥. The set Λ∞

⊥ of finite and infinite λ-terms is defined by coinduction from
the grammar: M ::= ⊥ | x | (λxM) | (MM) where x is a variable from some
fixed set of variables V . The set Λ∞ is the subset of ⊥-free terms. The set (Λ∞)0

is the subset of closed terms (without free variables) in Λ∞.
We follow the usual conventions on syntax. We will also use the following

abbreviations for terms:

I = λx.x O = λx1.λx2.λx3. . . .
ωM = (((. . .)M)M)M

K = λxy.x Ω = (λx.xx)(λx.xx) Fix = (λxy.y(xxy))(λxy.y(xxy))

The set Λ∞
⊥ contains the three sets of Böhm, Lévy–Longo and Berarducci trees.

These notions are usually pictured visually as trees but up to some change of
representation they are terms belonging to Λ∞

⊥ . So, in the following we will freely
identify trees with terms in Λ∞

⊥ . In [8,10,5], an alternative definition of the set Λ∞
⊥

is given using a metric. The coinductive and metric definitions are equivalent [2].
We define the β-rule on the set Λ∞

⊥ of finite and infinite terms:

(λx.M)N →M [x := N] (β)

Decomposing the Lattice of Meaningless Sets 213

The reduction →β is defined as the smallest binary relations containing β which
is closed under contexts. The βh-reduction is the restriction of the β-reduction
to head redexes. Let U ⊆ Λ∞ where Λ∞ is the set of terms in Λ∞

⊥ that do not
contain ⊥. We define the ⊥U -rule rule on Λ∞

⊥ as follows:

M [⊥ := Ω] ∈ U M 	= ⊥
(⊥U)

M → ⊥
When there is no danger of confusion, we denote ⊥U by ⊥. The reduction →β⊥U

is defined as the smallest binary relation containing β and ⊥U which is closed
under contexts.

Each set U of meaningless terms gives rise to a different infinitary lambda cal-
culus. The infinitary lambda calculus λ∞

U on U is the calculus λ∞
U = (Λ∞

⊥ ,→β⊥U).
In infinitary lambda calculus we consider strongly converging reduction se-

quences. These can be of any countable, transfinite length α: M0 →ρ M1 →
. . .Mω →Mω+1 → . . .Mω+ω →Mω+ω+1 → . . .Mα, where → stands for a β- or
⊥-reduction step. The rough idea is that in such reductions for each limit ordinal
λ, the term Mλ is defined as the Cauchy limit of the preceding reduction. These
limits can then be further reduced. In addition the depth of the contracted re-
dexes goes to infinity at each limit term. We use the following notation: M → N
denotes a one step reduction from M to N ; M →→ N denotes a finite reduction
from M to N ; M →→→ N denotes a strongly converging reduction from M to N .
When λ∞

U is confluent and normalizing, the normal form of a term M in λ∞
U is

denoted by nfU (M). Each confluent and normalising λ∞
U gives rise to a λ-model

and a λ-theory of the finite lambda calculus.

Definition 1. Let U ⊆ Λ∞ and λ∞
U be confluent and normalising.

1. The λ-model MU induced by the infinintary lambda calculus λ∞
U is defined

as follows. The domain of MU is the set nfU (Λ) of normal forms of finite
terms. We interpret a lambda term M ∈ Λ by its normal form nfU (M) and
we define application simply by nfU (M) • nfU (N) = nfU (M •N).

2. The λ-theory induced by the infinitary lambda calculus λ∞
U is denoted by TU

and defined as TU = {M = N |M,N ∈ Λ0 & nfU (M) = nfU (N)}.

It is easy to show that MU is a λ-model and TU is a λ-theory of the finite
lambda calculus [1,11]. The set of λ-theories of the finite lambda calculus form
a complete lattice where the meet � is intersection and the join � of a family of
sets is the smallest theory that containts the family.

We will now define the notion of set of meaningless term. We follow the defi-
nition of [9]. This definition differs slightly from the earlier definition in [8,10,5]
in that the axiom of closure under β-expansion has been added. This addi-
tion has a number of useful consequences. The first is, as observed in [9], that
with the extra axiom the calculus λ∞

U is not only confluent and normalising,
but also ω-compressible. The second is that for any set U ⊆ Λ∞, the infini-
tary lambda calculi λ∞

U and λ∞
Û

induce the same reduction relations →→→β⊥U and

214 P. Severi and F.-J. de Vries

→→→β⊥Û
where Û = {M ∈ Λ∞ | M →→→β N & N ∈ U}. Hence, if λ∞

U is confluent
and normalizing, we have that MU = MÛ and TU = TÛ . This last consequence
is pertinent for the current paper.

Notation 2. Let M U↔ N denote that N is obtained from M by replacing some
(possibly infinitely many) subterms in U by other terms in U .

Definition 3. [10,5] We say that U ⊆ Λ∞ is a set of meaningless terms (also
called a meaningless set) if it is a set satisfying the axioms of meaninglessness:

1. Rootactiveness. R = {M ∈ Λ∞ |M is rootactive} ⊆ U (see Definition 5).
2. Closure under β-reduction. For all M ∈ U , if M →→→β N then N ∈ U .
3. Closure under substitution. For all M ∈ U , Mσ ∈ U .
4. Overlap. For all λx.M ∈ U , (λx.M)N ∈ U .
5. Indiscernibility. For all M,N ∈ Λ∞, M ∈ U if and only if N ∈ U .
6. Closure under β-expansion. For all N ∈ U , if M →→→β N , then M ∈ U .

Note that Ω ∈ U for all set U of meaningless terms because Ω is rootactive.
Note also that even without requiring closure under β-expansion, we have that

meaningless sets contain certain β-expansions: for instance just from rootactive-
ness and indiscernibility it follows that I(IM) ∈ U and KMN ∈ U if M ∈ U .

Theorem 4. [8,10,5] If U is a set of meaningless terms then λ∞
U is confluent

and normalising.

We will now define the sets of meaningless terms that occur in Figure 1. To
define these sets, we will first need to introduce new forms of terms analogous to
the notions of head, weak head and top normal forms and define certain specific
subsets of Λ∞ containing the respective forms [15].

Definition 5. We define that

1. R = {M ∈ Λ∞ | M is rootactive} where M is a rootactive form if for all
M →→→β N there exists a redex (λx.P)Q such that N →→→β (λx.P)Q.

2. SA = {M ∈ Λ∞ | M →→β N and N is a strong active form} where M is a
strong active form if M = RP1 . . . Pk and R is rootactive.

3. HA = {M ∈ Λ∞ | M →→β N and N is a head active form} where M is a
head active form if M = λx1 . . . xn.RP1 . . . Pk and R is rootactive.

4. SIL = {M ∈ Λ∞ | M →→→β N and N is a strong infinite left spine form }
where M is a strong infinite left spine form if M = (. . . P2)P1.

5. IL = {M ∈ Λ∞ | M →→→β N and N is an infinite left spine form} where M
is an infinite left spine form if M = λx1 . . . xn.(. . . P2)P1.

6. HN = {M ∈ Λ∞ | M →→β N and N is a head normal form} where M is a
head normal form (hnf) if M = λx1 . . . xn.yP1 . . . Pk.

7. WN = {M ∈ Λ∞ | M →→β N and N is a weak head normal form} where
M is a weak head normal form (whnf) if M is a hnf or M = λx.N .

Decomposing the Lattice of Meaningless Sets 215

8. T N = {M ∈ Λ∞ | M →→β N and N is a top normal form} where M is a
top normal form (tnf) if it is either a whnf or an application (NP) if there
is no Q such that N →→β λx.Q.

9. O = {M ∈ Λ∞ |M →→→β O}.

Theorem 6. [10,15] The sets R, SA, HA, HA∪O, SA∪SIL, HA∪IL, and
HA ∪ IL ∪ O are sets of meaningless terms.

As already said in the introduction, by HN , WN and T N we denote the com-
plements in Λ∞ of HN , WN and T N respectively. As it happens, a term is
rootactive if and only if it has no top normal form. Hence T N = R.

Definition 7. We define the Berarducci tree of a term M (denoted by BerT(M))
by co-recursion as follows.

1. BerT(M) = ⊥, if M is rootactive.
2. BerT(M) = λx.BerT(N), if M →→β λx.N .
3. BerT(M) = BerT(N)BerT(P) if M →→β NP and there is no Q such that

N →→β Q and Q is an abstraction.

The Berarducci tree BerT(M) of a term M is the normal form of M in λ∞
U where

for U we take R [3,8].

Definition 8. We define the Lévy-Longo tree of a term M (denoted by LLT(M))
by co-recursion as follows.

1. LLT(M) = ⊥, if M has no weak head normal form.
2. LLT(M) = y LLT(M1) . . . LLT(Mm), if M →→β yM1 . . .Mm.
3. LLT(M) = λx.LLT(N), if M →→β λx.N .

The Lévy Longo tree LLT(M) of a term M is the normal form of M in the
calculus λ∞

WN . It is easy to see that WN = SA ∪ SIL [8].

Definition 9. We define the Böhm tree of a term M (denoted by BT(M)) by
co-recursion as follows.

1. BT(M) = ⊥, if M has no head normal form and
2. BT(M) = λx1 . . . λxn.y BT(M1) . . .BT(Mm), if M has a finite β-reduction

to λx1 . . . λxn.yM1 . . .Mm.

The Böhm tree BT(M) of a term M is the normal form of M in the calculus
λ∞
HN . It is easy to see that HN = HA∪ IL ∪ O [1,8].

Notation 10. LetX ⊆ Λ∞
⊥ .Weuse the followingnotation:BerT(X) = {BerT(M)

|M ∈ X}, LLT(X) = {LLT(M) |M ∈ X} and BT(X) = {BT(M) |M ∈ X}.

Remark 11. Not all (combinations of) basic sets give rise to a meaningless set.

216 P. Severi and F.-J. de Vries

1. The sets SIL, IL and O do not satisfy rootactiveness.
2. The sets R ∪ SIL and R ∪ IL do not satisfy indiscernibility: The term

ωI = ((. . .)I)I belongs to both sets SIL and IL. Since ωI = (ωI)I, a set
satisfying indiscernibility should contain ΩI as well. However, ΩI does not
belong to neither SIL nor IL.

3. The set R∪O is not meaningless. Because any set containing O must contain
λx.Ω by indiscernibility since O = λx.O.

Definition 12. 1. The key vertices are the sets that appear in Figure 1, i.e.
R,SA,HA,HA∪O,R∪SIL,SA∪ SIL,HA∪ IL,HA∪O ∪ IL and Λ∞.
The set of key vertices is denoted by K.

2. The set IK of key intervals is the set of intervals whose extremes are only
some of the sets in K, i.e. IK = {[U1, U2] | U1, U2 ∈ K}.

3. An elementary key interval is an interval [U1, U2] in K such that U1 ⊂ U2

and there is no other set U ∈ K between U1 and U2.

The sets in IK are all meaningless except for R∪SIL. Note that [SA,SA∪SIL]
is an elementary key interval, but [R,SA ∪ SIL] is not.

3 The Elementary Key Intervals of Finite Cardinality

We will now prove that the intervals [SA,HA], [HA,HA∪O], [SA∪SIL,HA∪
IL], [HA∪IL,HA∪IL∪O] and [HA∪IL∪O,Λ∞] contain only the extremes
and have cardinality 2 and the interval [R∪ SIL,SA ∪ SIL] has cardinality 1.

Theorem 13. The interval [HN ,Λ∞] has cardinality 2.

Proof. By Lemma 45 the only sets in [HN ,Λ∞] are HN and Λ∞. ��

Theorem 14. The intervals [SA,HA] and [HA,HA ∪O] have cardinality 2.

Proof. We prove that HA is the only meaningless set between SA and HA∪O.
Suppose there exists a set U of meaningless terms such that SA ⊂ U ⊂ HA∪O.
Then there exists M ∈ (HA ∪ O) − SA. Then M should reduce to a term N
either of the form O or λx1 . . . xn.RP1 . . . Pk with n ≥ 1. By Lemma 46(2), in
both cases we have HA ⊆ U . Since, U ⊂ HA∪O, we get U = HA. ��

Theorem 15. The intervals [SA∪SIL,HA∪IL] and [HA∪IL,HA∪IL∪O]
have cardinality 2.

Proof. To prove that HA∪IL is the only meaningless set between SA∪SIL and
HA∪IL∪O, we follow the proof of Theorem 14 using Lemma 46(3) instead. ��

Theorem 16. The interval [R∪ SIL,SA ∪ IL] has cardinality 1.

Proof. It follows from Lemma 47 that the only meaningless set in [R∪SIL,SA∪
IL] is SA ∪ SIL. ��

As a consequence of Lemma 46 and Theorems 14, 15 and 47, we have that:

Decomposing the Lattice of Meaningless Sets 217

Theorem 17. All the key intervals above SA and also above R ∪ SIL can be
decomposed as unions of elementary key intervals.
In particular, we have that:

[SA,Λ∞] = [SA,HA ∪ IL ∪O] ∪ [HA ∪ IL ∪O,Λ∞]
[SA,HA ∪ IL] = [SA,SA∪ SIL] ∪ [HA,HA ∪ IL]

[SA,HA ∪ IL ∪O] = [SA,SA∪ SIL] ∪ [HA,HA ∪ IL] ∪ [HA ∪O,HA ∪ IL ∪O]
[HA,HA ∪ IL ∪O] = [HA,HA ∪ IL] ∪ [HA ∪ O,HA ∪ IL ∪O]

4 The Indecomposable Key Interval [R, SA ∪ SIL]

We will show that the key interval [R,SA∪SIL] cannot be decomposed as union
of elementary key intervals. For this, we will first show that there are 2c many sets
of meaningless terms in [R,SA∪SIL]−([R,SA]∪[SA,SA∪SIL]∪[R,R∪SIL]).
As a consequence, we have that

[R,SA ∪ SIL] 	= [R,SA] ∪ [SA,SA ∪ SIL] ∪ [R,R∪ SIL]

We will also show a stronger property which is that the interval [R,SA∪SIL]
cannot be finitely decomposed, not even by taking intervals with other extremes
apart from the sets of Figure 1.

Definition 18. Let M ∈ Λ∞ and X ⊆ Λ∞.

1. M is a strong infinite left spine form relative to X (X-sil) if M = ((. . .)P2)P1

and Pi ∈ X for all i.
2. SILX = {M ∈ Λ∞ |M →→→β N and N is a X-sil}.

Remark 19. 1. SILX is not a set of meaningless terms since it does not satisfy
rootactiveness. Neither R ∪ SILX is a meaningless set since it does not
satisfy indiscernibility. Let M ∈ X . The term ωM = ((. . .)M)M ∈ SILX

but ΩM does not belong to R∪ SILX .
2. SA∪SILX is not a meaningless set since it does not satisfy indiscernibility.

Consider a term P ∈ Λ∞ − X and M ∈ SILX . The term ΩP ∈ SA but
MP 	∈ SILX .

The above remark motivates the following definition:

Definition 20. Let M ∈ Λ∞ and X ⊆ Λ∞.

1. M is a strong active form relative to X (X-saf) if M = RP1 . . . Pk and R
is rootactive and P1, . . . , Pk ∈ X.

2. SAX = {M ∈ Λ∞ |M →→→β N and N is a X-saf}.
Theorem 21. [9] Let X ⊆ LLT(Λ∞) ∩ (Λ∞)0. Then, SAX ∪ SILX is a set of
meaningless terms.

Corollary 22. There are 2c many sets of meaningless terms between R and
SA∪SIL which are not in either [R,SA], or [SA,SA∪SIL] or [R,R∪SIL].

Corollary 23. The interval [R,SA ∪ SIL] is not finitely decomposable.

Proof. Clearly, the class {SAX ∪SILX | X is singleton} of meaningless sets are
all unrelated to each other. They all appear in ”parallel intervals”. ��

218 P. Severi and F.-J. de Vries

5 The Elementary Key Intervals of Infinite Cardinality

We will now show that the intervals [R,SA], [R,R ∪ SIL], [SA,SA ∪ SIL],
[HA,HA∪ IL], and [HA∪O,HA ∪ IL ∪ O] have cardinality 2c where c is the
cardinality of the continuum. We can deduce that all these intervals are not
finitely decomposable by taking singleton sets as in the proof of Corollary 23.

5.1 The Interval [R, SA]

We will show that there are 2c sets of meaningless terms between R and SA.

Theorem 24. [15] Let X ⊆ BerT(Λ∞) ∩ (Λ∞)0. Then, SAX is a set of mean-
ingless terms.

Corollary 25. The interval [R,SA] has cardinality 2c and is not finitely
decomposable.

5.2 The Interval [R, R ∪ SIL]

To build a set U of meaningless terms between R and SIL, we have to ex-
clude from U those strong infinite left spines that are prefix of themselves. For
instance the assumption ((. . .)I)I ∈ U that would otherwise imply ΩI ∈ U
(see Remark 11). The set R ∪ {((. . .)I)I)K} is a set of meaningless terms but
R∪ {((. . .)I)I} is not.

Definition 26. Let M ∈ Λ∞ and X,Y ⊆ Λ∞.

1. M is a strong infinite left spine form relative to X and Y (X,Y -silf) if
M = NP where N is a strong infinite left spine relative to X and P ∈ Y .

2. SILY
X = {M ∈ Λ∞ |M →→→β N and N is a X,Y -silf}.

Theorem 27. Let X,Y ⊆ LLT(Λ∞)∩ (Λ∞)0 and X ∩ Y = ∅. Then, R∪SILY
X

is a meaningless set.

Corollary 28. The interval [R,R ∪ SIL] has cardinality 2c and is not finitely
decomposable.

5.3 The Interval [SA, SA ∪ SIL]

Let U be a meaningless set. As ΩP1 . . . Pn ∈ SA ⊂ U we obtain from indiscerni-
bility that MP1 . . . Pn ∈ U for any M ∈ U and P1, . . . Pn ∈ Λ∞ This motivates:

Definition 29. Let M ∈ Λ∞ and X ⊆ Λ∞.

1. M is a segmented strong infinite left spine form relative to X (X-ssf) if
there exists a finite set {P1, . . . , Pn} ⊆ Λ∞

⊥ (possible empty) such that M =
NP1 . . . Pn and N is a strong infinite left spine relative to X.

2. SSX = {M ∈ Λ∞ |M →→→β N and N is a X-ssf }.
Theorem 30. [9] Let X ⊆ LLT(Λ∞)∩(Λ∞)0. Then, SA∪SSX is a meaningless
set.

Corollary 31. The interval [SA,SA∪SIL] has cardinality 2c and is not finitely
decomposable.

Decomposing the Lattice of Meaningless Sets 219

5.4 The Intervals [HA, HA ∪ IL] and [HA ∪ O, HA ∪ IL ∪ O]

A set U of meaningless terms containing HA is closed under arbitrary applica-
tions and abstractions, i.e. if M ∈ U and P1, . . . Pn ∈ Λ∞ we should also have
that λx1 . . . xk.MP1 . . . Pn ∈ U because λx1 . . . xk.ΩP1 . . . Pn ∈ HA ⊂ U . This
motivates the definition:

Definition 32. Let M ∈ Λ∞ and X ⊆ Λ∞.

1. M is a segmented infinite left spine form relative to X (X-sf) if there
exists a finite set {P1, . . . , Pn} ⊆ Λ∞

⊥ (possible empty) such that M =
λx1 . . . xk.NP1 . . . Pn and N is a strong infinite left spine relative to X.

2. SX = {M ∈ Λ∞ |M →→→β N and N is a X-sf}.
The first item of the following theorem is as Theorem 47 in [9] but the hypothesis
of the second item has been restricted.

Theorem 33. The following sets are sets of meaningless terms:

1. HA ∪ SX provided X ⊆ LLT(Λ∞) ∩ (Λ∞)0.
2. HA ∪O ∪ SX provided X ⊆ BT(Λ∞) ∩ (Λ∞)0.

Corollary 34. The intervals [HA,HA∪IL] and [HA∪O,HA∪IL∪O] have
cardinality 2c and they are not finitely decomposable.

6 Non-modularity and Non-distributivity

In this section we prove that the lattice of meaningless sets is neither modular
nor distributive by applying the M3-N5 Theorem of [4] and the previous theory.

Definition 35. Let M ∈ Λ∞ and X ⊆ Λ∞.

1. M is a segmented ωKI-term relative to X (X-stf) if there exists a finite set
{P1, . . . , Pn} ⊆ X (possible empty) such that M = ωKIP1 . . . Pn.

2. KIX = {M ∈ Λ∞ |M →→→β N and N is a X-stf}.
Lemma 36. Let X ⊆ LLT(Λ∞) ∩ (Λ∞)0. Then, SAX ∪ KIX is a meaningless
set.

Theorem 37. The lattice of sets of meaningless sets is neither modular nor
distributive.

Proof. The key interval [T N ,SA∪SIL] contains a sublattice isomorphic to N5.

U5 = SA{I,K} ∪ KI{I,K}

�����������������
�������

U4 = SA{I} ∪ KI{I}

��

U3 = SA{K} ∪ SIL{K}

��

U2 = R∪ SIL{I}
{K}

����������

U1 = R

220 P. Severi and F.-J. de Vries

By Theorem 27, U2 = R∪SIL{I}
{K} is the smallest meaningless set closed under

β-expansions containing ωKI. By Theorem 21, U3 = SA{K} ∪ SIL{K} is the
smallest meaningless set closed under β-expansions containing ΩK and ωK.
By Theorem 36, U4 = SA{I} ∪ KI{I} is the smallest meaningless set that is
closed under β-expansions and contains ΩI and ωKI. By Theorem 36, U5 =
SA{I,K} ∪ KI{I,K} is the smallest meaningless set closed under β-expansions
containing ΩI, ΩK and ωKI.

To prove that the above five sets form a sublattice of the lattice of sets of
meaningless terms, we have to prove that the sublattice is closed under the join
and meet operations, i.e. U5 = U3 � U4 and U1 = U2 � U3. The latter is trivial
because the meet � is intersection. For the first equation, it is not difficult to
show that U5 is the smallest set of meaningless terms that contains U3 and U4.

��

Corollary 38. Let U1, U2, U3, U4 and U5 be sets of meaningless terms as used
in the proof of Theorem 37.

1. For all 1 ≤ i ≤ 5, the infinitary lambda calculus λ∞
Ui

is confluent and nor-
malising.

2. For all 1 ≤ i ≤ 5, the theory TUi induced by λ∞
Ui

is consistent.

Part (1) follows from Theorem 4. Part (2) follows from the fact that these five
calculi have at least two different normal forms which are I and K.

In the following lemma, Pn denotes the truncation of P at depth n.

Lemma 39. Let U2 and U3 be the sets of meaningless terms used in the proof of
Theorem 37. For all n, P,Q ∈ BerT(Λ∞

⊥), if nfU2(P) = nfU2(Q) and nfU3(P) =
nfU3(Q) then Pn = Qn.

Proof. We prove it by induction on n. If n = 0 then P 0 = ⊥ = Q0. Suppose now
that n > 0. The proof proceeds by cases.

1. Case P = xP1 . . . Pk. Since P and Q have the same nfU2 ,

nfU2(Q) = nfU2(P) = x nfU2(P1) . . . nfU2(Pk)

The term Q being in β⊥R-normal form can β⊥R-reduce to a head nor-
mal form only if it is a head normal form itself. Hence, we have that Q =
xQ1 . . . Qk. Since P and Q have the same nfU2 and the same nfU3 , so do Pi

and Qi for all 1 ≤ i ≤ k. Suppose n > k. Then,

Pn = xPn−k
1 . . . Pn−1

k

= xQn−k
1 . . . Qn−1

k by induction hypothesis
= Qn

Suppose n ≤ k. Let i = k − n. Then,

Pn = ⊥P 0
i . . . Pn−1

k

= ⊥Q0
i . . .Q

n−1
k by induction hypothesis

= Qn

Decomposing the Lattice of Meaningless Sets 221

2. Case P = ⊥P1 . . . Pk. In this case, we have that Q = ⊥Q1 . . .Qk because U2

does not contain any head active form. Then, we proceed as in the previous
case.

3. Case P = λx.P0. In this case, we have that Q = λx.Q0 because U2 does not
contain any abstraction. P0 and Q0 have the same nfU2 and the same nfU3 .
Then, by induction hypothesis, Pn−1

0 = Qn−1
0 . Hence, Pn = λx.Pn−1

0 =
λx.Qn−1

0 = Qn.
4. Case P = ((. . .)P2)P1 is a strong infinite left spine. We have two cases:

(a) Case P = ((((ωKI)Pk) . . .)P2)P1 for some k ≥ 0. Since P and Q have
the same nfU2 and the same nfU3 ,

nfU2(Q) = nfU2(P) = ⊥ nfU2(Pk) . . . nfU2(P1)
nfU3(Q) = nfU3(P) = ⊥ I nfU3(Pk) . . . nfU3(P1)

This is possible only if Q = (ωKI)Qk . . .Q1. Since P and Q have the
same nfU2 and the same nfU3 , so do Pi and Qi for all 1 ≤ i ≤ k. Suppose
n ≤ k. Then,

Pn = ⊥P 0
n . . . Pn−1

1

= ⊥Q0
n . . . Q

n−1
1 by induction hypothesis

= Qn

Suppose n > k. Then,

Pn = (KI)n−kPn−k
k . . . Pn−1

1

= (KI)n−kQn−k
k . . . Qn−1

1 by induction hypothesis
= Qn

(b) Otherwise, P is not of the form ((((ωKI)Pk) . . .)P2)P1 for any k ≥ 0.
In this case, we have that Q = ((. . .)Q2)Q1 is also a strong infinite left
spine because U2 does not contain P . Since P and Q have the same nfU2

and the same nfU3 , so do Pi and Qi for all 1 ≤ i ≤ k. Then,

Pn = ⊥P 0
n . . . Pn−1

1

= ⊥Q0
n . . . Q

n−1
1 by induction hypothesis

= Qn ��

Theorem 40. Let U2 and U3 be the sets of meaningless terms used in the proof
of Theorem 37. We have that nfR(M) = nfR(N) if and only if nfU2(M) =
nfU2(N) and nfU3(M) = nfU3(N).

Proof. (⇒) Suppose nfR(M) = nfR(N). Then,

nfU2(M) = nfU2(nfR(M)) = nfU2(nfR(N)) = nfU2(N)

by Corollary 38 and because R ⊆ U2. Similarly, nfU3(M) = nfU3(N).
(⇐) Suppose nfU2(M) = nfU2(N) and nfU3(M) = nfU3(N). LetP = nfR(M) =

BerT(M) and Q = nfR(N) = BerT(N) (see Definition 7). By Corollary 38 and
the fact that R ⊆ U2, U3, we have that

222 P. Severi and F.-J. de Vries

nfU2(P) = nfU2(M) = nfU2(N) = nfU2(Q) and
nfU3(P) = nfU3(M) = nfU3(N) = nfU3(Q).

By Lemma 39, Pn = Qn for all n. Hence, P = Q. ��
Corollary 41. TU2 ∩ TU3 = TR.

Theorem 42. Let U3 and U4 be the sets of meaningless terms used in the proof
of Theorem 37. We have that nfR(M) = nfR(N) if and only if nfU3(M) =
nfU3(N) and nfU4(M) = nfU4(N).

The previous theorem is proved similarly to Theorem 41.

Corollary 43. TU3 ∩ TU4 = TR

The next result is also proved in [12] using a different counterexample.

Theorem 44. The lattice of lambda theories is neither modular nor distributive.

Proof. The lattice of λ-theories contains the following sublattice isomorphic to
N5.

T5 = TR + {Ω = Fix(λx.xK), Ω = ΩI, Ω = ΩK}

��
��

��
��

��
��

��
��

�

��

T4 = TR + {Ω = (Fix(λx.xK))I, Ω = ΩI}

��

T3 = TR + {Ω = Fix(λx.xK), Ω = ΩK}

����
��

��
��

��
��

��
�

T2 = TR + {Ω = (Fix(λx.xK))I}

�����������

T1 = TR

Note that the infinite normal form of Fix(λx.xK) is ωK and the infinite
normal form of (Fix(λx.xK))I is ωKI.

We have that {Ti | 1 ≤ i ≤ 5} are all consistent because for all 1 ≤ i ≤ 5,
Ti ⊆ TUi and TUi is consistent by Corollary 38.

To prove that the above five theories form a sublattice of the lattice of λ-
theories, we have to prove that it is closed under the join and meet operations,
i.e. T5 = T3 � T4 = T2 � T3 and T1 = T2 � T3.

We first prove that T5 = T3 �T4. It is clear that T3,T4 ⊆ T5. For any T such
that T3,T4 ⊆ T, it is not difficult to prove that T5 �M = N implies T �M = N
by induction on the derivation. The derivation rules are the ones of Definition
2.1.4 of [1] extended to include the axioms of TR, Ω = Fix(λx.xK), Ω = ΩI
and Ω = ΩK. Hence, T5 ⊆ T and T5 is the smallest theory that contains T3

and T4. The equality T5 = T2 � T4 is proved similarly.
We now prove that T1 = T2 � T3, i.e. T1 = T2 ∩ T3. It is clear that T1 ⊆ T2

and T1 ⊆ T3. Hence, T1 ⊆ T2 ∩T3. On the other hand, we have that T1 ∩T2 ⊆
TU1 ∩TU2 = R by Corollary 41. The proof of the equality T1 = T3�T4 is similar
using Corollary 43. ��

Decomposing the Lattice of Meaningless Sets 223

7 Conclusions

In spite of the fact that the interval [R,Λ∞] of all sets of meaningless terms
cannot be decomposed as union of elementary key intervals (because of [R,SA∪
SIL]), the problem of studying the whole lattice can be reduced to the problem
of studying only three intervals: [R,SA ∪ SIL], [HA,HA ∪ IL] and [HA ∪
O,HA ∪ IL ∪ O]. We plan to investigate further what happens in these three
intervals. There are far more sets of meaningless terms in these three intervals
than the ones shown in this paper. The set {RM1 . . .M2n | R ∈ R,M2i =
I and M2i+1 = K} is a simple example of a meaningless set in [R,SA] which is
not of the form SAX for any X . And we plan to study the relation between the
lattice of meaningless sets and the lattice of lambda theories [11].

Acknowledgements. We would like to thank the reviewers for their detailed
and helpful comments and suggestions that they provided.

References

1. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Revised edn.
North-Holland, Amsterdam (1984)

2. Barr, M.: Terminal coalgebras for endofunctors on sets. Theoretical Computer
Science 114(2), 299–315 (1999)

3. Berarducci, A.: Infinite λ-calculus and non-sensible models. In: Logic and Algebra
(Pontignano, 1994), pp. 339–377. Dekker, New York (1996)

4. Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (1990)

5. Kennaway, J.R., de Vries, F.J.: Infinitary rewriting. In: Terese (ed.) Term Rewriting
Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55, pp. 668–711.
Cambridge University Press, Cambridge (2003)

6. Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.J.: Infinite lambda calculus
and Böhm models. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 257–270.
Springer, Heidelberg (1995)

7. Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.J.: Transfinite reductions in
orthogonal term rewriting systems. Information and Computation 119(1), 18–38
(1995)

8. Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.J.: Infinitary lambda calculus.
Theoretical Computer Science 175(1), 93–125 (1997)

9. Kennaway, R., Severi, P., Sleep, R., de Vries, F.-J.: Infinitary rewriting: From
syntax to semantics. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F.,
de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity.
LNCS, vol. 3838, pp. 148–172. Springer, Heidelberg (2005)

10. Kennaway, J.R., van Oostrom, V., de Vries, F.J.: Meaningless terms in rewriting.
Journal of Functional and Logic Programming 1999(1) (February 1999)

11. Lusin, S., Salibra, A.: The lattice of lambda theories. Journal of Logic and Com-
putation 14(3), 373–394 (2004)

12. Salibra, A.: Nonmodularity results for lambda calculus. Fundamenta Informati-
cae 45, 379–392 (2001)

224 P. Severi and F.-J. de Vries

13. Severi, P., de Vries, F.-J.: An extensional böhm model. In: Tison, S. (ed.) RTA
2002. LNCS, vol. 2378, pp. 159–173. Springer, Heidelberg (2002)

14. Severi, P., de Vries, F.J.: Continuity and discontinuity in lambda calculus. In:
Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 369–385. Springer, Heidelberg
(2005)

15. Severi, P., de Vries, F.-J.: Order structures on böhm-like models. In: Ong, L. (ed.)
CSL 2005. LNCS, vol. 3634, pp. 103–118. Springer, Heidelberg (2005)

16. Severi, P., Vries, F.J.d.: A Lambda Calculus for D∞. Technical report, University
of Leicester (2002)

A Some Basic Lemmas

Lemma 45. Let U ⊆ Λ∞ satisfy closure under substitution and β-reduction. If
xP1 . . . Pn ∈ U then U = Λ∞.

Proof. M = xP1 . . . Pn ∈ U . Let N ∈ Λ∞ be arbitrary and z1 . . . zk variables
which are not in N . By the closure under substitution and reduction axioms,
M [x := λz1 . . . zn.N] →→β N ∈ U . ��

Lemma 46. Let U be a meaningless set.

1. If λx.M ∈ U then M ∈ U .
2. If λx.M ∈ U then HA ⊆ U . In particular, if O ∈ U then HA ⊂ U .
3. If λx.M ∈ U then U is closed under abstractions, i.e. for all P ∈ U , we have

that λx.P ∈ U .

Proof. 1. By the overlap and closure under β-reduction axioms, (λx.M)x →β

M ∈ U .
2. By the overlap axiom, (λx.M)Q ∈ U for all Q ∈ Λ∞. By indiscernibil-

ity we have that RQ ∈ U for R ∈ R and also RQ1 . . .Qk ∈ U for all
Qi ∈ Λ∞. By the previous part and indiscernibility, λx.R ∈ U and hence
λx1 . . . xn.RQ1 . . .Qk ∈ U .

3. If λx.M ∈ U then M ∈ U . By indiscernibility, λx.P ∈ U for any P ∈ U . ��

Lemma 47. 1. If SIL ⊆ U then SA ⊆ U . Hence, the minimal meaningless
set containing SIL is SA ∪ SIL.

2. If IL ⊆ U then HA ⊆ U . Hence, The minimal meaningless set containing
IL is HA ∪ IL.

Proof. 1. Let ωQ = ((. . .)Q)Q). We have that ωQ = ωQQ ∈ U By indiscerni-
bility, RQ ∈ U for any R ∈ R and also RQ1 . . .Qk ∈ U for all Qi ∈ Λ∞.

2. λx1 . . . xn.
ωPQ1 . . . Qk ∈ U . By indiscernibility, λx1 . . . xn.RQ1 . . .Qk ∈ U .

��
As a consequence of the previous lemma, there is no meaningless set between
R ∪ IL and HA ∪ IL (hence, there is no point in including R ∪ IL as a key
vertex).

Decomposing the Lattice of Meaningless Sets 225

B Checking That a Set is Meaningless

In this section we show the proof of Theorem 33 part 1. The rest of the theorems
about meaningless sets are proved similarly. We give a criterion for proving
that a set is meaningless where indiscernibility has to be checked only on terms
whose common structure is a Berarducci tree. Checking this condition on some
restricted set of terms will be enough provided the set U is closed under β-
expansions. This criterion differs from the one in [15] on the fact that the common
structure is now a Berarducci tree and not a skeleton.

Definition 48. Let U ⊆ Λ∞, P,M,N ∈ Λ∞
⊥ .

1. P 4U M if P is obtained from M by replacing some subterms of M which
belong to U by ⊥.

2. We say that P is a common structure for M and N relative to U if P 4U M
and P 4U N .

E.g. ⊥⊥ is a common structure for ΩΩ and Ω(ΩΩ) with respect to SA.

Definition 49. [15] The skeleton of a term M ∈ Λ∞
⊥ is defined by coinduction.

skel(M) = y if M →→β y
skel(M) = ⊥ if M →→β ⊥
skel(M) = λx.skel(N) if M →→β λx.N
skel(M) = skel(N) skel(P) if M →→β NP and there is no Q such that N →→β λx.Q
skel(M) = M if M does not have a top normal form

The skeleton of a term is essentially the Berarducci tree of a term but instead
of replacing rootactive terms by ⊥, we leave rootactive terms untouched.

Lemma 50. Let M ∈ Λ∞
⊥ . Then M →→→β skel(M) and skel(M) is either a head

normal form, ⊥P1 . . . Pk, a head active form, an infinite left spine or O.

Note that BerT(M) = BerT(skel(M)) 4U skel(M) for any set U ⊇ R.

Lemma 51. Let U be closed under substitution. If M 4U N and M →→→β M ′

then N →→→β N ′ and M ′ 4U N ′ for some N ′.

Proof. This is proved by induction on the length of the reduction sequence. ��

If the set U contains abstractions, from M 4U N and N →→βh
N ′, we may not

be able to find M ′ such that M →→βh
M ′ and M ′ 4U N ′. For example, suppose

U contains λx.Ω. Then, ⊥I 4U (λx.Ω)I →→βh
Ω but ⊥I cannot be obtained

from Ω by replacing terms in U by ⊥.

Lemma 52. Let U be closed under substitution and β-reduction. If M 4U N
and N →→βh

N ′, then we have two cases:

1. M →→βh
M ′ and M ′ 4U N ′ for some M ′,

2. M →→βh
λx1 . . . xk.⊥Q1 . . . Qn with n ≥ 1 and U contains some abstraction.

226 P. Severi and F.-J. de Vries

Proof. We prove it for one step of βh-reduction. Suppose

N = λx1 . . . xk.(λx.Q0)Q1 . . .Qn and
N ′ = λx1 . . . xk.Q0[x := Q1]Q2 . . .Qn.

Then we have four cases:

1. M = λx1 . . . xi.⊥. Then M 4U N ′.
2. M = λx1 . . . xk.⊥Q1 . . . Qn. This case is possible only if U contains the

abstraction λx.Q0 ∈ U which has been replaced by ⊥.
3. M = λx1 . . . xk.(λx.Q′

0)Q
′
1 . . . Q

′
n with Q′

i 4U Qi for all 0 ≤ i ≤ n. Then

M ′ = λx1 . . . xk.Q
′
0[x := Q′

1]Q1 . . . Q
′
n 4U N ′

= λx1 . . . xk.Q0[x := Q1]Q1 . . . Qn

This is because U is closed under substitutions and we have that Q′
0[x :=

Q1] 4U Q0[x := Q1].
4. M = ⊥Q′

i . . . Q
′
n for 2 ≤ i ≤ n. In this case (λx.Q′

0)Q
′
1 . . .Q

′
i−1 ∈ U has been

replaced by ⊥. Since U is closed under β-reduction, Q′
0[x := Q′

1] . . .Q
′
i−1 ∈ U

and hence M 4U Q′
0[x := Q′

1] . . . Q
′
n. ��

Lemma 53. Let U be closed under substitution and β-reduction. If M 4U N
and M rootactive then N is rootactive.

Proof. Suppose N is not rootactive. Then N →→βh
N ′ and N ′ is a top normal

form. By Lemma 52, we have two cases

1. either M →→βh
λx1 . . . xk.⊥Q1 . . . Qn. Since M is rootactive, this case is not

possible.
2. or we have that there exists M ′ such that M →→βh

M ′ and M ′ 4U N ′. If N ′

is a head normal form or an abstraction, so is M ′. Then, these cases are not
possible because M is rootactive. Now, suppose that N ′ is an application
of the form N1N2 where N1 does not reduce to an abstraction. Then M ′ =
M1M2 with M1 4U N1 and M2 4U N2. Suppose towards a contradiction
that M1 reduces an abstraction λx.M0. By Lemma 51, N1 reduces to a term
N3 such that λx.M0 4U N3. Then, N3 should be an abstraction as well. ��

Lemma 54. Let U satisfy rootactiveness, be closed under substitution and β-
reduction. Let P be a skeleton, i.e. skel(P) = P . If P 4U M then BerT(P) 4U

M .

Proof. BerT(P) is obtained from P by replacing all the rootactive subterms
of P by ⊥. We prove that (BerT(P))n 4U Mn for all n where Mn denotes
the truncation of M at depth n. Since (BerT(P))n is finite, we can proceed by
induction on the number of symbols of (BerT(P))n. We show only the case when
P = P0 . . . Pk and P0 is rootactive. Then M = M0 . . .Mk and Pi 4U Mi for
0 ≤ i ≤ k. By Lemma 53, Mo is rootactive. Since M0 does not contain ⊥’s,
we have that ⊥ 4U M0. By Induction Hypothesis, (BerT(Pi))n 4U Mn

i for
1 ≤ i ≤ k. Hence, (BerT(P))n 4U Mn. ��

Decomposing the Lattice of Meaningless Sets 227

Definition 55. Let U ⊆ Λ∞. We say that U satisfies the axiom of weak indis-
cernibility if for all P ∈ BerT(Λ∞

⊥) such that P 4U M and P 4U N , we have
that M ∈ U if and only if N ∈ U .

Theorem 56. Suppose U ⊂ Λ∞ satisfies: closure under β-reduction, closure
under β-expansion, closure under substitution, rootactiveness and weak indis-
cernibility. Then U satisfies indiscernibility. If in addition U satisfies overlap,
then U is a meaningless set.

Proof. We prove indiscernibility. Let M
U↔ N . Then there exists P such that

P 4U M and P 4U N . By Lemma 50 and Lemma 51, we have that skel(P) 4U

M ′ and skel(P) 4U N ′ for some M ′, N ′ such that M →→→β M ′ and N →→→β

N ′. By Lemma 54, BerT(skel(P)) 4U M ′ and BerT(skel(P)) 4U N ′. By weak
indiscernibility, M ′ ∈ U if and only if N ′ ∈ U . Since U is closed under β-
reduction and β-expansion, we have that M ∈ U if and only if N ∈ U . ��
The following lemma will be used in the next proof of Theorem 33 part 1.

Lemma 57. Suppose U satisfies the first four axioms of meaningless. Let P ∈
BerT(Λ∞

⊥) and P 4U M . If M →→→β M ′ and M ′ does not contain any subterm
in U then P = M = M ′.

Proof. This is proved by induction on the length of the reduction sequence
M →→→β M ′. We prove the case when the length is 1. Let M = C[(λx.M0)M1]
and M ′ = C[M0[x := M1]]. Since M ′ does not have any subterm in U , we have
that M0[x := M1] 	∈ U . By closure under substitutions, M0 	∈ U . By overlapping
(λx.M0) and (λx.M0)M1 	∈ U . Then P should contain a β-redex of the form
(λx.P0)P1 where P0 4U M0 and P1 4U M1. But this contradicts the fact that
P is in β⊥-normal form. ��
We now prove Theorem 33 part 1.

Proof. We apply Theorem 56. We have to prove weak indiscernibility for U =
HA ∪ SX . Suppose P ∈ BerT(Λ∞

⊥) and P 4HA∪SX M,N .

1. If P is either a head normal form or O, so are M and N . Hence, M,N 	∈
HA ∪ SX .

2. Suppose P = λx1 . . . λxn.⊥P1 . . . Pk is a head bottom form. Then,

M = λx1 . . . xn.MoM1 . . .Mk and N = λx1 . . . xn.N0N1 . . . Nk

where Mo, N0 ∈ HA∪SX and Pi 4HA∪SX Mi, Ni for 0 ≤ i ≤ k. We have two
options for N0. If N0 ∈ HA then N ∈ HA. And if N0 ∈ SX then N ∈ SX .

3. Suppose P = λx1 . . . xn.((. . .)P2)P1 is an infinite left spine. Then,

M = λx1 . . . xn.((. . .)M2)M1 and N = λx1 . . . xn.((. . .)N2)N1

where Pi 4HA∪SX Mi, Ni for all i. If M ∈ SX then there exists l such that
for all m ≥ l, Mm reduces to a Lévy Longo tree without ⊥. Hence LLT(Mm)
does not contain any subterm in HA ∪ SX . By Lemma 57, we have that
LLT(Mm) = Mm = Pm. Since Pm does not contain ⊥’s, we also have that
Mm = Pm = Nm. Then, N ∈ SX .

Strong Normalization and Confluence for

Reflexive Combinatory Logic

Daniyar S. Shamkanov

Department of Math. Logic and the Theory of Algorithms,
Faculty of Mechanics and Mathematics,

Moscow State University, Moscow 119992, Russia

Abstract. Reflexive combinatory logic RCL was introduced by S. Arte-
mov as an extension of typed combinatory logic CL→ capable to inter-
nalize its own derivations of typing judgments. It was designed as a basic
theoretical prototype of functional programming languages extended by
this kind of self-referential capacity. However, its operational aspects re-
mained to be clarified.

We study reductions for reflexive combinatory logic and prove strong
normalization and confluence properties.

1 Introduction

Reflexive combinatory logic RCL [10,11] was introduced by S. Artemov as a
typed combinatory system supplied with some special kind of self-referential
capacities. RCL extends typed combinatory logic CL→ by a new type constuctor
t : F with the intended interpretation ”t has type F” (see section 2). Informally
speaking, if the term t represents a computable functional of type F , then t : F
can be considered as the set of high level descriptions (programming codes) of t.
Thus the expressive power of such new types provides the possibility to operate
simultaneously with objects of different abstraction level: functions, high level
programs, low level codes, etc..

In addition, reflexive combinatory logic RCL continues the line of Curry-
Howard isomorphism and the internalization property of Artemov’s logic of
proofs LP: it is a typed combinatory system capable to represent its own deriva-
tions by its own typed terms. RCL contains implicative intuitionistic logic, so
it represents intuitionistic derivations. It also contains typed combinatory logic
CL→, so RCL represents derivations of CL→. And so on.

Roughly in the same way as Artemov’s logic of proofs LP relates to modal
logic S4 the calculi considered in this paper should be related to modal lambda
calculi. Such systems and their applications have been intensively studied, e.g.,
in [1,2,3,4,5,6,7]. However, the precise relationship between these formalisms and
RCL is a matter of further investigation.

In [11] , N. Krupski established that typability and type restoration for RCL
can be done in polynomial time and that the derivability relation for RCL is
decidable and PSPACE-complete.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 228–238, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Strong Normalization and Confluence for Reflexive Combinatory Logic 229

In [8], some version of reflexive λ-calculus was considered. The corresponding
reflexive lambda terms were strongly normalizable but not confluent.

In this note, we study a system of reductions for RCL and prove strong nor-
malization and confluence properties.

In the first section, we define the system of RCL and give some informal
explanations. Then we consider natural reductions for RCL and define the system
RCL+ proposed by V. Krupski. In final section we prove that expressions of RCL+

are strongly normalazible and confluent.

2 Reflexive Combinatory Logic

Reflexive combinatory logic RCL below is a joint calculus of propositions (types)
and proofs (well-formed terms). We assume a Church style rigid typing, that is
every term carries a fixed type.

Following [11], the definition of RCL has two parts: inductive definitions of
types and derivability. Now we introduce the language of RCL and the notion of
derivability from hypotheses.

2.1 The Language of RCL: Types and Typed Terms

Definition 1. Terms and formulas of RCL are inductively defined as follows:

– Propositional variables {p0, p1, . . .} are formulas;
– If F , G are formulas and u is a term, then F → G, u : F are formulas;
– If F is a formula, then then term variables {xF

0 , x
F
1 , . . .} and term constants

kF , sF , dF , oF , cF are terms;
– If F is a formula and u, v are terms, then (u · v)F , (!u)F are terms.

Terms and formulas are called expressions.

We assume the connective : to bind stronger than →. Thus, u : F → G is an
abbreviation for (u : F) → G.

For an expression e, all expressions that occur inside e including the oc-
currences inside superscripts, inside superscripts in superscripts, etc. are called
subexpressions of e. A subexpression is called a subterm or a subformula when
it is a term or a formula respectively.

Unlike the case of simply typed systems in RCL not all formulas are types.

Definition 2. The following inference system defines the notion of type (well-
formed formula) of RCL:

(i) pi (ii)
F,G

F → G
(iii)

F

xF
i : F

(iv)
u : (F → G), v : F

(uv)G : G
(v)

F,G

kF→(G→F) : (F → (G → F))

230 D.S. Shamkanov

(vi)
F,G,H

s(F→(G→H))→((F→G)→(F→H)) : ((F → (G→ H)) → ((F → G) → (F → H)))

(vii)
u : F

(!u)u:F : (u : F)
(viii)

u : F
du:F→F : (u : F → F)

(ix)
u : (F → G), v : F

ou:(F→G)→(v:F→(uv)G:G) : (u : (F → G) → (v : F → (uv)G : G))

(x)
u : F

cu:F→(!u)u:F :(u:F) : (u : F → (!u)u:F : (u : F))

The first six rules came from CL→; their meaning didn’t change. Rule (vii)
means that any type of the form u : F has a canonical element !u which, infor-
mally speaking, represents the high level description of u or the term u supplied
with additional metadata (for instance, this can be data about types for all
subterms of u). The remaining three rules introduce new combinators. The in-
tended interpretation is the following: the combinator du:F→F maps the high
level description of an object u into u itself, ou:(F→G)→(v:F→uv:G) implements
application on high level descriptions (or terms with metadata) and cu:F→!u:u:F

maps the description into the higher description.

Definition 3. A term u is called typed (well-formed) if there is a type of the
form u : F for some F .

Proposition 1 (N. Krupski [11]). 1. If v is a subterm of some well-formed
formula then v is well-formed. Moreover, the formula G such that v : G is well-
formed is unique and also well-formed.

2. Every subformula of a well-formed formula is well-formed.

2.2 Derivability Relation

The notion of derivability from hypotheses is defined as usual by axiom schemes
and rule modus ponens.

Definition 4. Axioms of RCL are well-formed formulas of the following form:

1. t : F → F ;
2. k(...) : (F → (G→ F));
3. s(...) : ((F → (G → H)) → ((F → G) → (F → H)));
4. d(...) : (u : F → F);
5. o(...) : (u : (F → G) → (v : F → (uv)G : G));
6. c(...) : (u : F → (!u)u:F : (u : F)).

Rule modus ponens : F, F → G � G.

Strong Normalization and Confluence for Reflexive Combinatory Logic 231

All hypotheses must be well-formed. Modus ponens preserves well-formdness
(follows from Proposition 1), so every formula in a valid derivation is well-formed.

RCL contains implicative intuitionistic logic, ordinary combinatory logic CL→,
and is closed under the combinatory application rule:

u : (F → G), v : F

(uv)G : G
.

Furthermore, RCL enjoys the internalization property:

Proposition 2 (S. Artemov [10]). If A1, . . . , An � B then for any set of vari-
ables x1, . . . , xn of respective types, it is possible to construct a term t(x1, . . . , xn)
such that

x1 : A1, . . . , xn : An � t(x1, . . . , xn) : B.

3 Contractions

In this section we discuss natural contraction schemes, which express the in-
tended meaning of corresponding combinators, and define the extended system
RCL+.

Consider contractions of the following form:

kuv #→ u, suvw #→ (uw)(vw), d!u #→ u, c!u #→!!u, o(!u)(!v) #→!(uv)

Although the schemes are very natural, the unrestricted contracting may
transform a well-formed expression into the illegal one. As an example, con-
sider a type !(kxy) : (kxy : p2), which can be reduced to !x : (kxy : p2) but the
latter is not a type according to our definition.

The first idea is to contract all redexes of the given contraction simultaneously.

Definition 5. The application of a contraction a #→ b to an expression e means
simultaneous replacement of all occurrences of a in e by b. The resulting expres-
sion will be denoted by e[a #→ b].

This definition secures well-formedness preservation under the contractions for
expressions without the combinator oF . In particular,

okx:(p1→p2)→(y:p1→kxy:p2)(!kx)(!y)

has two normal forms. It can be reduced to !((kx)y) and then to !x. Another
possibility is an illegal term

okx:(p1→p2)→(y:p1→x:p2)(!kx)(!y);

the reduction was made in the upper index.
To provide the preservation for all expressions, V. Krupski proposed to extend

RCL to RCL+ with the following conditions:
— if oF is a combinator and a #→ b is a contraction, then oF [a�→b] is also a

combinator,

232 D.S. Shamkanov

— if a #→ b and c #→ d are contractions and a is not syntactically equal to c,
then a[c #→ d] #→ b[c #→ d] is also a contraction.

The first condition provides well-formedness preservation for all expressions.
The second one provides confluence.

Theorem 1. The extended system RCL+ has strong normalization and conflu-
ence properties.

Now we present RCL+ and its basic properties more formally. The theorem will
be proved in the next section.

Definition 6. The set of well-formed formulas of RCL+ is defined by rules (i)-
(x) of RCL with additional rule:

(xi)
oF : F

(oF : F)[a #→ b]
, if a #→ b is a contraction of RCL+.

Definition 7. A term u is called well-formed (according to RCL+) if there is a
well-formed formula of RCL+ of the form u : F for some F .

Definition 8. All redexes and contracta below must be well-formed. Contrac-
tions of RCL+ are the following:

kuv #→ u, suvw #→ (uw)(vw), d!u #→ u, c!u #→!!u, o(!u)(!v) #→!(uv),

(R)
a #→ b, c #→ d

a[c #→ d] #→ b[c #→ d]
, if a is not syntactically equal to c.

By Greek letters γ, δ, etc. we denote finite (possibly empty) sequences of con-
tractions. A successive application of a sequence γ = a0 #→ b0, . . . , an #→ bn to
an expression e is eγ = e[a0 #→ b0] . . . [an #→ bn].

Definition 9. Let a #→ b be a contraction of RCL+. The rank rk(a #→ b) is the
number of applications of rule R in the shortest derivation of a #→ b plus one. For
a sequence of contractions γ, let rk(γ) be the sum of ranks of its corresponding
contractions.

It easily follows that each contraction a #→ b of RCL+ has one of the following
forms:

(k) kuv #→ u;
(s) s(uτ)(vτ)(wτ) #→ ((uw)(vw))τ , where rk(a #→ b) > rk(τ);
(d) d!u #→ u;
(o) o!(uτ)!(vτ) #→ (!(uv))τ , where rk(a #→ b) > rk(τ);
(c) c!u #→!!u;

A contraction of corresponding form is called k-, s- ,d-, o-, or c- contraction,
respectively.

Now we give precise definition of the reduction relation and establish basic
closure properties of RCL+. We adopt standard notation for binary relations:
→∗ means reflexive and transitive closure of →, →+ means transitive closure.

Strong Normalization and Confluence for Reflexive Combinatory Logic 233

Definition 10. An expression e one-step reduces to e′ (notation e →RCL+ e′) if
e′ is not syntactically equal to e and has the form e[a #→ b] for some contraction
a #→ b of RCL+. As usual, we say e reduces to e′ (notation e→∗

RCL+
e′) if and only

if e′ is obtained from e by a finite (possibly empty) series of one-step reductions.

Lemma 1. If both formulas u : F and u : G are well-formed, then F and G
coincide.

Proof. It can easily be checked by induction on derivations of well-formed for-
mulas that if vH : J is well-formed, then H coincides with J . The term u has
the form vH for some H . So H , F and G coincide. ��

Lemma 2. If F is well-formed formula and F →RCL+ F ′, then F ′ is also well-
formed.

Proof. It is sufficient to show that if H is well-formed formula and a #→ b is a
contraction of RCL+, then H [a #→ b] is well-formed. The prove is by induction
on derivations of well-formedness of H .

Consider the case of rule (iv):

u : (F → G), v : F

(uv)G : G
.

H has the form (uv)G : G. Suppose a coincides with (uv)G. So a doesn’t occur
in G, and G[a #→ b] ≡ G. So we have H [a #→ b] ≡ b : G. By definition of
contractions, the term b is well-formed and has the same superscript as a, i.e. b
has the form wG. Hence b : G is a well-formed.

If a 	≡ (uv)G. Then H [a #→ b] ≡ (u[a #→ b]v[a #→ b])G[a�→b]. And by the
inductive assumption for u[a #→ b] : (F [a #→ b] → G[a #→ b]) and v[a #→ b] :
F [a #→ b], H [a #→ b] is well-formed.

All other cases are trivial. ��

Lemma 3. Every subexpression of a well-formed formula is well-formed.

Proof. For every contraction a #→ b, the terms a and b are well-formed. Thus we
can modify rule (xi) as follows:

oF : F, b : G
(oF : F)[a #→ b]

, if a #→ b is a contraction of RCL+.

Evidently, the set of well-formed expressions remains the same.
Now we show that every subexpression of a well-formed formula F is well-

formed. The proof is by induction on the derivation of well-formedness of F in
the modified inference system.

Consider the case of modified rule. Suppose e is a subexpression of (oF :
F)[a #→ b]. If there exists a subexpression f of oF : F such that f [a #→ b] ≡ e,
then f is well-formed by inductive assumption for oF : F , and f [a #→ b] is well-
formed by Lemma 2. Otherwise e is a subexpression of b, and e is well-formed
by inductive assumption for b : G.

Cases of other rules are trivial. ��

234 D.S. Shamkanov

Theorem 2. 1. If v is a subterm of some well-formed formula then v is well-
formed. Moreover, the formula G such that v : G is well-formed is unique and
also well-formed.

2. Every subformula of a well-formed formula is well-formed.
3. If e is well-formed and e→RCL+ e′, then e′ is also well-formed.

4 Strong Normalization and Confluence

In this section we prove strong normalization and confluence for RCL+. For this
purpose, we study some supplementary systems of expressions and reductions
first.

4.1 Modal Combinatory Logic

We consider a variant of typed combinatory logic which corresponds to intu-
itionistic modal logic IS4 (cf. [1], [4], [2]). We denote this system by CL→�.

Definition 11. Types and typed terms of CL→� are

Types:

pi,
F,G

F → G
,

F

�F
;

Typed terms:

xF
i ,

uF→G, vF

(uv)G
,

uF

(!u)�F
,

kF→(G→F), s(F→(G→H))→((F→G)→(F→H)),

o�(F→G)→(�F→�G), d�F→F , c�F→��F .

Definition 12. The one-step reduction (→CL→�) is defined by the following con-
traction schemes:

kuv #→CL→� u, suvw #→CL→� (uw)(vw),

d!u #→CL→� u, o(!u)(!v) #→CL→� !(uv), c!u #→CL→� !!u.

More precisely,
1. The terms of the forms kuv, suvw, d!u, o(!u)(!v), c!u are called redexes,

with u, (uw)(vw), u, !(uv), !!u being their contracta, respectively.
2. If term u contains an occurrence of a redex r and we replace that occurrence

by its contractum, and the resulting term is u′, we say u one-step reduces to u′

(notation u →CL→� u′).
3. We say u reduces to u′ (or u computes to u′, notation u →∗

CL→�
u′) if and

only if u′ is obtained from u by a finite (possibly empty) series of contractions.

Strong Normalization and Confluence for Reflexive Combinatory Logic 235

Theorem 3. The system CL→� has strong normalization and confluence prop-
erties.

Proof. First note that the given system of contractions does not have critical
pairs, so it is locally confluent.

Now let us define an interpretation of CL→� into simply typed lambda cal-
culus: for a type F we omit boxes in it and denote the result by F ◦; for typed
terms let

(xF
i)◦ = xF◦

i , ((uv)G)◦ = (u◦v◦)G◦
, ((!u)F)◦ = u◦,

(kF)◦ = (λxy.x)F◦
, (sF)◦ = (λxyz.xz(yz))F◦

,

(dF)◦ = (λx.x)F◦
, (oF)◦ = (λxy.xy)F◦

, (cF)◦ = (λx.x)F◦
.

Obviously, if u →CL→� v, then u◦ →+
λ→ v◦ (here →+

λ→ is the transitive closure
of one-step reduction relation of λ→); so all typed terms of CL→� are strongly
normalizible. According to Newman’s lemma, local confluence and strong nor-
malization imply confluence. ��

4.2 Adequate Expressions and Reductions

Now we study a system of adequate expressions and reductions. For an expression
e, let all subformulas of the form t : F be substituted by �F . The result of the
procedure will be denoted by e•.

Definition 13. An expression of RCL (any expression, not necessary a type or
a typed term) is called adequate if, for any its subexpression e, e• is a type or
typed term of CL→�.

Notice that all well-formed expressions of RCL+ are adequate.
In the definition below, we don’t require well-formedness of redexes or con-

tracta. Thus we write out all superscripts.

Definition 14. The one-step reduction (�) is defined by the following contrac-
tion schemes:

1. ((kF→G→FuF)G→F vG)F ⇒ uF ,
2. (((s(F→(G→H))→((F→G)→(F→H))uF→(G→H))(F→G)→(F→H)vF→G)F→HwF)H ⇒

((uF→(G→H)wF)G→H(vF→GwF)G)H ,

3. (duF :F→F (!uF)uF :F)F ⇒ uF ,

4. (((ouF→G:(F→G)→(vF :F→wG:G)(!uF→G)
uF→G:(F→G)

)(v
F :F→wG:G))(!vF)

vF :F
)w

G:G

⇒ (!(uF→GvF)G)
wG:G

,

5. (cu
F :F→(!uF)uF :F :uF :F (!uF)uF :F)(!u

F)uF :F :uF :F ⇒ (!(!uF)uF :F)(!u
F)uF :F :uF :F .

All contraction schemes have precisely the same form as before except that,
in the upper indexes of the forth scheme, uv is substituted by w. Evidently, if
redexes of schemes are adequate, then contracta are adequate too.

236 D.S. Shamkanov

Theorem 4. The reduction relation � on the set of adequate expressions pos-
sesses strong normalization and confluence properties.

Proof. As in the case of CL→�, the given system of contractions has no critical
pairs. Thus it is locally confluent. Confluence will be stated when we’ll prove
strong normalization.

For an expression e, we denote the maximal number of nested superscript
levels in e by h(e). Note that if e � e1, then h(e1) 	 h(e).

We say that e � e1 is a zero-level reduction if the corresponding redex oc-
curs in e not inside a superscript. If v � v1 is a zero-level reduction, then
v• →CL→� v•1 .

We prove strong normalization for e by induction on h(e). Suppose e is not
strongly normalizible; then there is an infinite series of reductions e � e1 �
e2 � If there are only finitely many zero-level reductions in the series,
then we can find en and a superscript F from en such that infinite number of
reductions occur in F . But h(F) < h(en) 	 h(e); by inductive hypotheses, F is
strongly normalazible. This contradiction means that there are infinite number
of zero-level reductions in the series. Thus we can find a subterm u from e such
that infinitely many zero-level reductions occur in u. Consequently, there is an
infinite series of reductions u• →CL→� But u• is a typed terms of CL→�;
hence it is strongly normalizible.

This contradiction concludes the proof. ��

4.3 Final Considerations

Lemma 4. Suppose (uv)G is a well-typed term of RCL+ and γ is a finite se-
quence of contractions of RCL+; then (uγvγ)Gγ �∗ (uv)Gγ.

Proof. The proof is by induction on rk(γ). If rk(γ) = 0, then γ is empty and
there is nothing to prove. Suppose rk(γ) > 0. Let δ be a seqence of contractions
such that γ = a #→ b, δ.

If (u[a #→ b]v[a #→ b])G[a�→b] ≡ (uv)G[a #→ b], then by the inductive assumption
for δ we have

(uγvγ)Gγ ≡ (u[a #→ b]δv[a #→ b]δ)G[a�→b]δ

�∗ (u[a #→ b]v[a #→ b])G[a�→b]δ ≡ (uv)G[a #→ b]δ ≡ (uv)Gγ.

Assume the converse. Then we get a ≡ (uv)G and (u[a #→ b]δv[a #→ b]δ)G[a�→b]δ ≡
(uδvδ)Gδ. The contraction a #→ b is k-, s-, d-, o- or c- contraction.

Case 1. a #→ b has the form kmn #→ m. Then we have

(uδvδ)Gδ ≡ ((kmδ)(nδ))Gδ ≡
≡ (k(mδ)(nδ))Gδ � mδ ≡ (kmn)G[kmn #→ m]δ ≡ (uv)G[a #→ b]δ.

Strong Normalization and Confluence for Reflexive Combinatory Logic 237

Case 2. a #→ b is (s(lθ)(mθ)(nθ))Fθ #→ ((ln)(mn))θ where θ is a sequence of
contractions such that rk(a #→ b) > rk(θ). By the inductive assumption for θδ
we have

(uδvδ)Gδ ≡ ((s(lθ)(mθ))δ(nθδ))Fθδ ≡
≡ (s(lθδ)(mθδ)(nθδ))Fθδ � (lθδnθδ)(mθδnθδ) �∗ (ln)θδ(mn)θδ �∗

((ln)(mn))θδ ≡ (uv)G[(s(lθ)(mθ)(nθ))Fθ #→ ((ln)(mn))θ]δ ≡ (uv)G[a #→ b]δ.

Case 3. a #→ b has the form d!m #→ m. We have

(uδvδ)Gδ ≡ (dδ(!m)δ)Gδ ≡
≡ (d!(mδ))Gδ � mδ ≡ (d!m)G[d!m #→ m]δ ≡ (uv)G[a #→ b]δ.

Case 4. a #→ b is (o!(mθ)!(nθ))Fθ #→!((mn)θ), where rk(a #→ b) > rk(θ). By
the inductive assumption for θδ we have

(uδvδ)Gδ ≡ ((o!(mθ))δ(!(nθ))δ)Fθδ ≡
≡ (oδ(!(mθ))δ(!(nθ))δ)Fθδ ≡ (o!(mθδ)!(nθδ))Fθδ �

!(mθδnθδ) �∗!((mn)θδ) ≡ (!((mn)θ))δ ≡
≡ (o!(mθ)!(nθ))G[o!(mθ)!(nθ) #→!((mn)θ)]δ ≡ (uv)G[a #→ b]δ.

Case 5. a #→ b has the form c!m #→!!m.

(uδvδ)Gδ ≡ (cδ(!m)δ)Gδ ≡
≡ (c!(mδ))Gδ �!!(mδ) ≡ (!!m)δ ≡ (c!m)G[c!m #→!!m]δ ≡ (uv)G[a #→ b]δ.

All cases are done. ��

Lemma 5. e1 →RCL+ e2 =⇒ e1 �+ e2.

Proof. It is sufficient to prove the following: if a #→ b, then a �+ b. The cases of
k-, d- and c-reductions are obvious.

Let a #→ b be of the form (s(lδ)(mδ)(nδ))Fδ #→ ((ln)(mn))δ. We have

(s(lδ)(mδ)(nδ))Fδ � (lδnδ)(mδnδ).

The applications of the previous lemma for (ln) and δ, for (mn) and δ, and for
(ln)(mn) and δ yield

(lδnδ)(mδnδ) �∗ (ln)δ(mn)δ �∗ ((ln)(mn))δ.

Thus we obtain (s(lδ)(mδ)(nδ))Fδ �+ ((ln)(mn))δ.
Let a #→ b be of the form (o!(mδ)!(nδ))Fδ #→!((mn)δ). By the previous lemma

we have
(o!(mδ)!(nδ))Fδ �!(mδnδ) �∗!((mn)δ). ��

238 D.S. Shamkanov

Lemma 6. All normal forms of RCL+ are also �-normal forms.

Proof. Every �-redex of well-formed expression of RCL+ is also a redex of RCL+.
��

Proof (Proof of Theorem 1). Strong normalization follows from Lemma 5 and
strong normalization for adeqate reductions.

Suppose there is a well-formed expression e of RCL+ which is not confluent.
So it has at least two different normal forms e1 and e2. Moreover, e1 and e2 are
normal forms with respect to adequate reductions. So the adeqate expression e
has at least two �-normal forms. This contradicts Theorem 4. ��

References

1. Bierman, G.M., de Paiva, V.C.V.: On an Intuitionistic Modal Logic. Studia Log-
ica 65(3), 383–416 (2000)

2. Pfenning, F., Wong, H.C.: On a modal lambda-calculus for S4. In: Brookes, S.,
Main, M. (eds.) Proc. of the 11th Conference on Mathematical Foundations of
Programming Semantics. Electronic Notes in Theoretical Computer Science, vol. 1,
pp. 515–534. Elsevier, Amsterdam (1995)

3. Davies, R., Pfenning, F.: A modal analysis of staged computation. In: Steele Jr.,
G. (ed.) Proc. of the 23rd Annual Symposium on Principles of Programming Lan-
guages, pp. 258–270. ACM Press, New York (1996)

4. Martini, S., Masini, A.: A computational interpretation of modal proofs. In: Wans-
ing, H. (ed.) Proof Theory of Modal Logics, pp. 213–241. Kluwer, Dordrecht (1996)

5. Wickline, P., Lee, P., Pfenning, F., Davies, R.: Modal types as staging specifications
for run-time code generation. ACM Computing Surveys 30(3es), article 8 (1998)

6. Goubault-Larrecq, J., Goubault, E.: On the geometry of Intuitionistic S4 proofs.
Homotopy, Homology and its Applications 5(2), 137–209 (2003)

7. Murphy VII, T., Crary, K., Harper, R., Pfenning, F.: A symmetric modal lambda
calculus for distributed computing. In: Ganzinger, H. (ed.) Proc. of LICS 2004, pp.
286–295. IEEE Computer Society Press, Los Alamitos (2004)

8. Alt, J., Artemov, S.: Reflective λ-calculus. In: Kahle, R., Schroeder-Heister, P.,
Stärk, R.F. (eds.) PTCS 2001. LNCS, vol. 2183, pp. 22–37. Springer, Heidelberg
(2001)

9. Artemov, S.: Explicit provability and constructive semantics. Bulletin of Symbolic
Logic 7(1), 1–36 (2001)

10. Artemov, S.: Kolmogorov and Gödel’s approach to intuitionistic logic: current de-
velopments. Russian Mathematical Surveys 59(2), 203–229 (2004)

11. Krupski, N.: Typing in Reflective Combinatory Logic. Annals of Pure and Applied
Logic 141(1-2), 243–256 (2006)

On Polymorphic Types of Untyped Terms

Rick Statman

Carnegie Mellon University,
Department of Mathematical Sciences,

Pittsburgh, PA 15213
statman@cs.cmu.edu

Abstract. Let $ be a finite set of beta normal closed terms and M and
N a pair of beta normal, eta distinct, closed terms. Then there exist
polymorphic types a, b such that every member of $ can be typed as a,
and M and N have eta expansions which can be typed as b ; where, in the
resulting typings, the members of $ can be simultaneously consistently
identified, and the eta expansions of M and N are beta-eta inconsistent
(no model with more than one element of any type). A similar result
holds in the presence of surjective pairing.

Keywords: lambda calculus, lambda calculus with surjective pairing,
polymorphic typings, Böhm’s theorem.

1 Introduction

Alonzo Church believed that only beta normal untyped lambda terms have
meaning and Corrado Böhm showed that no two such eta distinct terms can
be identified in the untyped calculus. In addition, any beta normal term has a
polymorphic type (I learned this from John Reynolds some 25 years ago but I am
not sure of the origin), so the question arises as to the consistency of identifica-
tion after various polymorphic typings. Indeed, Corrado had already asked me,
during a visit to Roma, whether his theorem is true in various typed contexts.
Below we shall prove a very strong result.

We work in the untyped lambda calculus, but we will type certain terms
with polymorphic types (from Girard’s system F0 [5]). We shall also consider
the untyped lambda calculus with surjective pairing. In this case we will type
untyped terms with polymorphic types which we will assume are closed under
pairing. This is somewhat stronger than having products but somewhat weaker
than assuming surjective pairing on the typed side.

Polymorphic types a, b, c, . . . are built up from type variables p, q, r, . . . by →
and
∧

(under the Curry-Howard isomorphism, the universal quantifier). When
typing an untyped term we require that each term variable have a fixed type
and that all subterms are simultaneously compatibly typed (sometimes referred
to as “Church typing”). In addition, when typing an untyped term, the type
operations of abstraction (λp, λq, λr, . . .) corresponding to

∧
, and application

can be inserted before and after symbols in the term. We shall prove the following
theorem which we state first for the case without pairing.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 239–256, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

240 R. Statman

Let $ be a finite set of beta normal closed terms and M and N a pair of beta
normal, eta distinct, closed terms. Then there exist polymorphic types a, b such
that every member of $ can be typed as a, and M and N have eta expansions
which can be typed as b; where, in the resulting typings, the members of $ can
be simultaneously consistently identified, and the eta expansions of M and N
are beta-eta inconsistent (no model with more than one element of any type).

Here, all the members of $ can be identified in a non-trivial beta-eta model
of the polymorphic lambda calculus with no empty types.

2 Untyped Terms

We begin with some preliminaries for the untyped calculus with pairing. The
atoms of the language consist of

– variables; x, y, z, . . .
– and constants; P,L,R
– Terms of the language are defined recursively;
– atoms are terms and
– if X,Y are terms then so are (XY) and λxX

We shall adopt the customary conventions;

– parens are deleted and restored by left association and the use of Church’s
infixed “dot” notation

– parens are added around abstractions, and additional unary operations for
readability.

The axiom and rules of untyped lambda calculus are the following.
The first 5 axioms correspond to the classical theory of untyped lambda calculus
with surjective pairing SP .

(beta) (λxX) Y = [Y/x]X
(eta) X = λx. Xx (x not free in X)
(L/Pa) L(PXY) = X
(R/Pa) R(PXY) = Y
(P/Dp) P (LX)(RX) = X

The next 6 axioms correspond to the extended theory of Stovering (FP) and
Statman (PSP, in the combinator case), which enjoys the Church Rosser property
when formulated by reductions.

(Ap/P) PXY Z = P (XZ)(Y Z)
(L/Ap) LXY = L(XY)
(R/Ap) RXY = R(XY)
(L/Ab) L(λxX) = λx(LX)
(R/Ab) R(λxX) = λx(RX)
(P/Ab) P (λxX)(λxY) = λx(PXY)

There are certain useful derived rules.

On Polymorphic Types of Untyped Terms 241

(1) (P/Dp) and (Ap/P) ⇒ (L/Ap) and (R/Ap)

L(XY) = L(P (LX)(RX)Y) = L(P (LXY)(RXY)) = LXY ;

similarly for R.
(2) (L/Ap) and (R/Ap) and (P/Dp) ⇒ (Ap/P)

L(PXY Z) = L(PXY)Z = XZ and
R(PXY Z) = R(PXY)Z = Y Z

therefore,

PXY Z = P (L(PXY Z))(R(PXY Z)) = P (XZ)(Y Z) .

(3) (eta) and (P/Ap) ⇒ (P/Ab)

P (λxX)(λxY) = λy. P (λxX)(λxY)y =
λy. P ((λxX)y)((λXY)y) = λx PXY .

(4) (eta) and (L/Ap) ⇒ (L/Ab)

L(λxX) = λy.L(λxX)y = λy.L((λxX)y) = λx(LX) ;

similarly for R.
(5) (eta) ⇒ LP = K and RP = K∗

L(PX) = λx. L(PX)x = λx.L(PXx) = λx.X

thus,

LP = λx. LPx = λx.L(Px) = λxy.x

similarly,

R(PX) = λx.R(PX)x = λx. R(PXx) = λx.x

hence,

Rp = λyx.x .

The result of Klop is that the Church-Rosser property fails for the following
classical reductions for SP ;

(beta) (λxX)Y → [Y/x]X
(eta) λx. Xx→ X (x not free in X)
(L/Pa) L(PXY) → X
(R/Pa) R(PXY) → Y
(P/Dp) P (LX)(RX) → X

242 R. Statman

Nevertheless, this theory was proved conservative over beta-eta by de Vrijer.
Stovering and, later, Statman (for the combinator case) introduced new reduc-
tions for the first 5 and additional reductions corresponding to the latter 6 which
enjoy Church-Rosser.

Stovering Reductions for FP with eta

(beta) (λxX) Y → [Y/x]X
(etae) X → λx. Xx (x not free in X)

(L/Pa) L(PXY) → X

(R/Pa) R(PXY) → Y

(P/De) X → P (LX)(RX)
(Ap/P) PXY Z → P (XZ)(Y Z)

Stovering-Statman Reductions for FP -PSP without eta

(beta) (λxX)Y → [Y/x]X
(L/Pa) L(PXY) → X

R/Pa) R(PXY) → Y

(P/De) X → P (LX)(RX)
(Ap/P) PXY Z → P (XZ)(Y Z)
(L/Ab) L(λxX) → λx(LX)
(R/Ab) R(λxX) → λx(RX)
(P/Ab) P (λxX)(λxY) → λx PXY

Statman Reductions for PSP without eta

(Ap/L) LXY → L(XY)
(Ap/R) RXY → R(XY)

Now, Church-Rosser is enough to obtain de Vrijer’s theorem and a co-de Vrijer
theorem that beta-eta is conservative over pairing with FP . Nevertheless, there
are no normal forms in the presence of (etae) and (P/De). Indeed, every term
FP reduces to one without any beta redexes

(λxX)Y
 P (L(λxX)Y)(R(λxX)Y) .

So, another notion is needed. The theory of weak pointwise surjective pairing is
defined by the following axioms.

On Polymorphic Types of Untyped Terms 243

WPSP

(etae) X = λx.Xx (x not free in X)
(L/Pa) L(PXY) = X

(R/Pa) R(PXY) = Y

(P/Dp) P (LX)(RX) = X

(L/Ap) LXY = L(XY)
(R/Ap) RXY = R(XY)
(L/Ab) L(λxX) = λx(LX)
(R/Ab) R(λxX) = λx(RX)
(P/Ab) P (λxX)(λxY) = λxPXY

Definition 1. X is well proportioned if

– X = PXY and X and Y are well proportioned
– X = λx(1) . . . x(r).D(1)(. . . (D(d)(x X(1) . . .X(s))) . . .), where X(j) are

well proportioned and the D(i) are L or R. Here d, r, or s can be 0.

Lemma 1. The lambda abstraction of a well proportioned term = a well pro-
portioned term in WPSP .

Proof. By induction on the definition.

Lemma 2. Prefixing L or R to a well proportioned term = a well proportioned
term in WPSP .

Proof. By induction on the definition.

Lemma 3. Well proportioned terms are closed under classical (P/Dp)
reduction.

Lemma 4. If X contains no (beta), (L/Pa), (R/Pa), (Ap/P), (Ap/L), and
(Ap/R) redexes, then X = a well proportioned term in WPSP .

Proof. By induction on X . If X is an atom then we have L = λy. (Ly), R =
λy. (Ry), and P = P (λyz. z)(λy. y). For the induction step we distinguish
several cases.

Case 1: X begins with lambda. Then apply the induction hypothesis and
Lemma 1.

Case 2: X begins with L. Then since X has no (Ap/L) redexes X is LY and
the induction hypothesis applies to Y . Now use Lemma 2.
Similarly, for R.

244 R. Statman

Case 3: X begins with P . Since X has no (Ap/P) redex we have
Subcase 1: X is PY . Then the induction hypothesis applies to Y and there

is a well proportioned term Z = Y . Now PY = P (λx. Z)(λx. x) and we
can apply Lemma 1 to λx. Z.

Subcase 2: X is PY Z. Apply the induction hypothesis to both Y and Z.

Because P,L,R occur in well proportioned terms only in very predictable ways
we generalize the notion of the Böhm tree of a normal term to the “term tree of
well proportioned term”. The node corresponding to the subterm

λx(1) . . . x(r).D(1)(. . . (D(d)(x X(1) . . .X(s))) . . .)

has label λx(1) . . . x(r) ∗D(1) . . . D(d) ∗ x with s descendants and the node cor-
responding to the subterm PXY has label P and has two descendants.

3 Types

Types of the second-order calculus are defined recursively as follows:

– p, q, r, . . . are type variables;
– if a is a type then so is

∧
p a, for any type variable p;

– if a and b are types then so is (a→ b).

We shall employ Curry’s substitution prefix both for terms and types. [b/p]a
is the result of substituting b for p in a with the usual provision for changing
bound variables to avoid collision.

Typed terms are defined recursively as follows:

– xˆa, yˆb, zˆc, . . . are typed variables of types resp. a, b, c, . . .;
– if X and Y have type a then 〈X,Y 〉 has type a, LX has type a, and RY has

type a so 〈, 〉 is a binary operation and L and R are unary operations which
always occur in function position;

– if X has type b then λxˆaX has type a→ b;
– if X has type a→ b and Y has type a then (XY) has type b;
– if X has type a then λp X has type

∧
p a for any type variable p;

– if X has type
∧
p a and b is a type then x b has type [b/p]a.

Here 〈, 〉 is always used as a binary operation and there is one for each type
a. Along with beta and eta conversion we only assume the analogue of (L/Pa)
and (R/Pa)

L〈X,Y 〉 → X
R〈X,Y 〉 → Y .

The resulting theory, beta-eta-P , enjoys the Church-Rosser property and sat-
isfies strong normalization. This can be proved by Girard’s method. This is the
theory for which we prove the second part of the result. For the first part it is

On Polymorphic Types of Untyped Terms 245

convenient to consider a stronger theory beta-eta-PP . For what follows we often
suppress type abstraction and application when it plays no role in the discussion.

(beta) (λxX)Y → [Y/x]X
(eta) λx. Xx→ X (x not free in X)

(L/Pa) L〈X,Y 〉 → X

(R/Pa) R〈X,Y 〉 → Y

(Ap/P) 〈X,Y 〉Z → 〈(XZ), (Y Z)〉
(L/Ap) LXY → L(XY)
(R/Ap) RXY → R(XY)
(L/Ab) λx(LX) → L(λxX)
(R/Ab) λx(RX) → R(λxX)
(P/Ab) λx 〈X,Y 〉 → 〈(λxX), (λxY)〉

Using this theory also gives a stronger result. Strong normalization and Church-
Rosser can be proved but do not fit in the space available in this volume. It will
be useful here to consider the shape of beta-eta-PP normal forms.

Each normal term has the form of a binary tree of 〈, 〉’s where each leaf consists
of a sequence of applications of L’s and R’s to a lambda term in head normal
form

λx(1) . . . x(r)xX(1) . . . X(t) ,

where each X(i) is of the same sort.
Since we have strong normalization and Church-Rosser, we have standard

reductions to normal forms. However, the notion of head redex must be defined
by depth first search:

– the head redex of λx(1) . . . x(r). (λxX)Y X(1) . . .X(t) is (λxX)Y ;
– the head redex of λx(1) . . . x(r). 〈X,Y 〉 X(1) . . .X(t) is 〈X,Y 〉X(1) if t > 0

and λx(r).〈X,Y 〉 if t = 0 but r > 0;
– the head redex of λx(1) . . . x(r). LX(1) . . .X(t) is L X(1) if X(1) = 〈X,Y 〉,

or otherwise L X(1) X(2) if t > 1, or else λx(r). L X(1) if r > 0, or finally
if all else fails the head redex of X(1) and similarly for R.

The following simple remark will be useful below. If X is a term of type∧
p p containing at most free variables of type p and the constant C of type∧
p p, then it is not possible for there to exist terms X(1) . . .X(t) with the

same free variables and constant as X such that X X(1) . . .X(t) has type p and
X X(1) . . .X(t)
 xp. For, if we suppose that X is normal it must have the
form

D(1)(. . . (D(d) (C Y (1) . . . Y (s))) . . .) or
D(1)(. . . (D(d)(λq. C Y (1) . . . Y (s))) . . .) .

246 R. Statman

4 Typing Untyped Terms

Theorem 1. Let $ be finite set of well proportioned closed terms and M and N
a pair of well proportioned closed terms not WPSP equivalent. Then there exist
polymorphic types a, b such that every member of $ can be typed as a, and M
and N have WPSP equivalents which can be typed as b; where, in the resulting
typings, the members of $ can be simultaneously consistently identified, and the
WPSP equivalents of M and N cannot be consistently identified.

Remark 1. In the absence of pairing, WPSP can be replace by eta equivalence.
If pairing is not present in the untyped lambda calculus, it is not needed in
typing, consistency, and inconsistency.

Proof. The first part of the proof concerns only $ and the “folklore” polymor-
phic typing. For this each variable gets type

∧
p p. Now each subterm is typed

recursively. Let t be the maximum length of a lambda prefix in any member of
$. If the subterm is

λx(1) . . . x(r).D(1)(. . . (D(d)(x X(1) . . .X(s))) . . .)

and X(i) is already typed a =∧
p p→ (. . . (

∧
p p→

∧
p p) . . .)

for t + 1 occurrences of
∧
p p then type c =

a→ (. . . (a→ (
∧

p p→ (. . . (
∧

p p→
∧

p p) . . .)) . . .)

for s occurrences of a and t − r + 1 occurrences of
∧
p p is inserted between x

and X(1) which results in a term of type a. If the subterm is PXY and both X
and Y have type a already then PXY gets type a.

Now we must show that all the typed terms of $ can be identified in a beta-eta-
PP model of the polymorphic calculus with no empty types. We want no empty
types just for a little stronger result, it is not an intrinsic condition. Toward
this end we introduce a new constant C of type

∧
p p. We next construct the

term model on this constant. There is at least one closed term Cc of each type
(closed) type c. We wish to show that in this model it is not the case that
λp λxˆp λyˆp x = λp λxˆp λyˆp y. Suppose to the contrary.

Then by Jacopini’s theorem [6] there are closed terms M(1), . . .M(m) and
terms P (1), Q(1), . . . , P (m), Q(m) in $ such that

xp = beta − eta−PP M(1) p xˆp yˆp C P (1) Q(1)
M(1) p xˆp yˆp C Q(1) P (1) = beta − eta−PP M(2) p xˆp yˆp C P (2) Q(2)

...
...

M(m) p xˆp yˆp C Q(m) P (m) = beta − eta−PP yˆp .

Now since xp is normal,

M(1) p xpypC P (1) Q(1)
 beta − eta−PP xp .

On Polymorphic Types of Untyped Terms 247

W.l.o.g. we may assume that the M(i) are beta-eta-PP normal. By standard-
ization and eta-postponement (or strong normalization),

M(1) pxˆpyˆp C P (1) Q(1)
 xˆp

by head reductions alone. Now M(1) cannot begin with 〈, 〉. Thus M(1) has the
form

D(1) (. . . (D(d) λx(1) . . . x(r).(x X(1) . . .X(s))) . . .)

omitting type abstractions. Thus the head reduction goes to

D(1) (. . . (D(d)((λx(1) . . . x(r).(x X(1) . . .X(s)))pxˆpyˆp C P (1) Q(1)) . . .) .

Since this must be of type p the prefix λx(1) . . . x(r) must actually be

λq λuˆqλvˆqλyˆaλzˆa .

So if x = xˆp and s = 0 then d = 0 and

M(1) pxˆpyˆp C P (1) Q(1)
 xˆp .

The only other possibility is for x = y or z. If we suppose that x = y then the
head reduction goes to

D(1) (. . . (D(s) P (1)X ′(1) . . .X ′(s)) . . .)

with X ′(i) = [P (1)/y,Q(1)/z, x/u, y/v]X(i) and thus s is at least t and each
X ′(i) has type

∧
p p for i less than or equal to t. But this contradicts the

remark at the end of the previous paragraph. Similarly, for x = z. Thus,

M(1) p xˆpyˆp C Q(1) P (1)
 beta− eta−PP xˆp .

Picking m as small as possible leads to a contradiction.
We now turn to the second part of the theorem. Suppose that we are given M

and N with no (beta), (L/Pa), (R/Pa), (Ap/P), (Ap/L), and (Ap/R) redexes.
By Lemma 4 we may assume that they are well proportioned. We begin with
some preparation of M and N .

Select t at least the maximum number of arguments of any variable occurrence
in either M or N and the maximum number of consecutive P ’s along any path
in M or N . We now (etae) and (P/De) reduce (classically expand) M and N by
downward recursion on their term trees so that every occurrence of a variable,
except those at the leaves of the resulting trees, has exactly t + 2 arguments
and every maximal subterm beginning with P is a complete binary tree of depth
t. These classical eta expansions will be referred to below as “ordinary”. After
(P/De) reductions additional (L/Ab) and (R/Ab) reductions may need to be
applied to move new L’s and R’s to the right of λ’s. This process should be
carried out along each branch except those passing through one of the last two
arguments so that if nodes corresponding to the last two arguments are omitted,
the result is a complete t-ary tree of uniform depth h. Consequently, the results

248 R. Statman

have the same unlabelled term tree. Moreover, h should be selected so that all
the leaves result from (etae). It is convenient to continue to refer to the resulting
eta expansions as M and N . These are certainly still well proportioned. Indeed,
if we compare corresponding nodes of the term tree we either have both of the
form PXY or

λx(1) . . . x(r)u v. D(1) (. . . (D(d)(x X(1) . . .X(t)u v)) . . .) in M

and

λy(1) . . . y(s)u v. E(1) (. . . (E(e)(y Y (1) . . . Y (t)u v)) . . .) in N ,

where the D(i) and the E(j) are either L or R, and we have made explicit the
last two variables u, v which resulted from (etae) and occur nowhere in the X(i)
or Y (j). We note that if these nodes differ there are three overlapping cases.

(i) D(1) . . . D(d) = / = E(1) . . . E(e);
(ii) r 	= s;
(iii) x 	= y.

We now assume that there is some node at which they differ.
We now assign types to the subterms of M and N recursively upward from

the leaves of the term trees. At each step certain further eta expansions will be
introduced to ensure that the types of corresponding subterms, both between
M and N and within M and N , with different length lambda prefixes, actually
coincide. These eta expansions will be referred to as “extra-ordinary” expansions
and they come in three sorts. The first sort can occur anywhere. The second sort
consist of a single expansion following all ordinary ones and ones of the first sort,
but these occur only at depths equal to or smaller than the first place at which
the term trees of M and N differ. The third sort consist of t + 2 expansions
following the second sort of expansion but only at the depth equal to the first
place at which the term trees of M and N differ. Additional (L/Ab) and (R/Ab)
reductions may be needed after (etae) to put the untyped term back in well
proportioned form.

The type assignment has several import properties.

(i) Every original, ordinary, and extra-ordinary eta variable has the same type
a =∧

o
∧

p. o → (. . . (o→ (p→ (p→

[
∧

q. (o → (. . . (o→ (p→ (p→ q))) . . .)) → q]))) . . .) .

(ii) The type of any extra-ordinary eta variable depends only on the depth of
its ancestor in the term tree.

(iii) The type of any argument to P or any of the first t arguments to a variable
occurrence depends only on its depth in the tree. Let f be the smallest depth

On Polymorphic Types of Untyped Terms 249

at which M and N differ. We begin the recursion; every original variable
gets type a and this fixes the basis case. For the induction step we consider
corresponding nodes of M and N at some depth k. We distinguish 3 cases
depending on whether k > f, k = f , or k < f . Consider the corresponding
nodes

λx(1) . . . x(r)u v. D(1)(. . . (D(d)(x X(1) . . .X(t)u v)) . . .) in M
λy(1) . . . y(s)u v. E(1)(. . . (E(e)(y Y (1) . . . Y (t)u v)) . . .) in N .

Compute non-negative integers m,n by first finding the maximum of the
number l of lambda’s in any prefix at depth k in either M or N and setting
m = l − r − 2 and n = l − s− 2. W.l.o.g. we may assume s is at least r.

Case 1: k > f We use the first sort of extra-ordinary eta expansions, followed
by additional (L/Ab) and (R/Ab),

λx(1) . . . x(r)u v z(1) . . . z(m)
D(1)(. . . (D(d)(x X(1) . . .X(t)u v z(1) . . . z(m))) . . .) in M

λy(1) . . . y(s)u v z(1) . . . z(n)
E(1)(. . . (E(e)(y Y (1) . . . Y (t)u v z(1) . . . z(n))) . . .) in N

Case 2: k < f We use the first and second sort of extra-ordinary eta expansions,
followed by additional (L/Ab) and (R/Ab),

λx(1) . . . x(r)u v z(1) . . . z(m)λw
D(1) . . . (D(d)(x X(1) . . .X(t)u v z(1) . . . z(m) w)) . . .) in M

λy(1) . . . y(s)u v z(1) . . . z(n)λw
E(1)(. . . (E(e) (y Y (1) . . . Y (t)u v z(1) . . . z(n) w)) . . .) in N

Case 3: k = f We use all three sorts of extra-ordinary eta expansions, followed
by additional (L/Ab) and (R/Ab),

λx(1) . . . x(r)u v z(1) . . . z(m)λwλw(1) . . . w(t + 3)
D(1)(. . . (D(d)(x X(1) . . .X(t)u v z(1) . . . z(m) w w(1) . . . w(t + 3))) . . .)in M

λy(1) . . . y(s)u v z(1) . . . z(n)λwλw(1) . . . w(t + 3)
E(1)(. . . (E(e)(y Y (1) . . . Y (t)u v z(1) . . . z(n) w w(1) . . . w(t + 3))) . . .) in N

We type as follows. In Case 1, we may assume that the subterms X(i) and Y (i)
all have the same type b. Set

c =
∧

q. (b→ (. . . (b→ (a→ (a→ q)) . . .)) → q

Then we type apply x and y to b a. This results in x X(1) . . .X(t)u v and
y Y (1) . . . Y (t)u v having type c. Now we type apply this term to c and each
z(i) to b a, and both

x X(1) . . .X(t)u v z(1) . . . z(i)

250 R. Statman

and
y Y (1) . . . Y (t)u v z(1) . . . z(i)

to c. The end result has type c, and so the corresponding subterms in M and N
have the same type

a→ (. . . (a→ c) . . .)

with l occurrences of a. In Case 3, we proceed as in Case 1 except

x X(1) . . .X(t)u v z(1) . . . z(m)

and
y Y (1) . . . Y (t)u v z(1) . . . z(n)

are both type applied to b, w gets type a′ =∧
o
∧

p(o → (. . . (o → (p→ (p→ o))) . . .))

and is type applied to b a and the end result

x X(1) . . .X(t)u v z(1) . . . z(m)w

and
y Y (1) . . . Y (t)u v z(1) . . . z(n)w

has type b. So, the corresponding subterms in M and N have the same type

a→ (. . . (a→ (a′ → b)) . . .)

with l occurrences of a. Now we consider Case 2. We proceed as in Case 3 except
w gets type a′′ = ∧

o
∧

p(o→ (. . . (o → (p→ (p→ p))) . . .))

and is type applied to b a, and

x X(1) . . .X(t)u v z(1) . . . z(m)

and

y Y (1) . . . Y (t)u v z(1) . . . z(n)

are both type applied to a. So

x X(1) . . .X(t)u v z(1) . . . z(m)w

and

y Y (1) . . . Y (t)u v z(1) . . . z(n)w

are then of type a. Let a′′′ =
∧
p p→ (p→ p). Then we give each w(i) type a′′′

for i < t + 3, we give w(t + 3) type

On Polymorphic Types of Untyped Terms 251

(a′′′ → (. . . (a′′′ → (a′′′ → (a′′′ → a′′′)))))

for t + 3 occurrences of a′′′. If we type apply

x X(1) . . .X(t)u v z(1) . . . z(m)w

and

y Y (1) . . . Y (t)u v z(1) . . . z(n)w

to a′′′a′′′ and then

x X(1) . . .X(t)u v z(1) . . . z(m) w (1) . . . w(t + 2)

and

y Y (1) . . . Y (t)u v z(1) . . . z(n) w w(1) . . . w(t + 2)

to a′′′ this gives

x X(1) . . .X(t)u v z(1) . . . z(m) w w(1) . . . w(t + 3)

and

y Y (1) . . . Y (t)u v z(1) . . . z(n) w w(1) . . . w(t + 3)

type a′′′. Thus, the corresponding subterms in M and N have the same type

a→ (. . . (a→ (a′′ → (a′′′ → (. . . (a′′′ →
((a′′ → (a′′′ → (. . . (a′′′ → a′′′) . . .))) → a′′′)) . . .)))) . . .)

for l occurrences of a and t+2 initial occurrences of a′′′. This completes the type
assignment.
We are particularly interested in two terms of type a:

A = λo λp(λx(1)ˆo . . . x(t)ˆo λuˆp λvˆp
λqλwˆ(o → (. . . (o→ (p → (p→ q))) . . .)) w x(1) . . . x(t) u v

B = λoλp (λx(1)ˆo . . . x(t)ˆo λuˆp λvˆp
λq λwˆ(o→ (. . . (p → (p→ (→ q))) . . .)) w x(1) . . . x(t) v u

We define the notion of a 1-pairing tree by

– λpλxˆp. xˆp is a 1-pairing tree.
– If T (1) and T (2) are 1-pairing trees then λp λxˆp〈T (1)px, T (2)px〉 is a 1-

pairing tree.

Each 1-pairing tree has type
∧
p p→ p.

2-pairing trees are defined by

252 R. Statman

– λp λxˆpλyˆp . xˆp is a 2-pairing tree;
– λp λxˆpλyˆp. yˆp is a 2-pairing tree;
– if T (1) and T (2) are 2-pairing trees then so is 〈T (1), T (2)〉 a 2-pairing tree.

2-pairing tree have type
∧
p p→ (p→ p).

We shall now show that the typed versions of M and N are inconsistent with
beta-eta conversion. That is, they have no model which both identifies them and
has at least one type with more than one element. We shall proceed as in Böhm’s
theorem, [2], node by node down the term tree but the exact procedure depends
on what happens at the uppermost leftmost position # where they differ, which
by previous convention is at depth f . We recall the 3 cases

(i) D(1) . . .D(d) 	= E(1) . . . E(e)
(ii) r 	= s
(iii) x 	= y

Case (i)

W.l.o.g. we may assume that d is not larger than e.
We proceed down the term tree. At a node at depth smaller than f , if the

position # lies within the ith descendent of the node then either the current
node is labelled with P and we can apply L or R (the same on both the M and
N side) to proceed downward or we have

λx(1) . . . x(r)u v z(1) . . . z(m) w
D(1)(. . . (D(d)(x X(1) . . .X(t)u v z(1) . . . z(m) w)) . . .) in M

λy(1) . . . y(s)u v z(1) . . . z(n) w
D(1)(. . . (D(d)(y Y (1) . . . Y (t)u v z(1) . . . z(n) w)) . . .) in N ,

where X(i) and Y (i) have the same type b. Let T be the 1-pairing tree which is
complete binary of depth d. We apply both our terms to

A . . . A(λx(1)ˆb . . . λx(t)ˆb λuˆa λvˆ a. T b x(i))

with l occurrences of A. The result of the Böhm-out on the M side is the result
of substituting A for free variables in X(i) and on the N side the result of
substituting A for free variables in Y (i). At depth f we have

λx(1) . . . x(r)u v z(1) . . . z(m)λwλw(1) . . . w(t + 3)
D(1)(. . . (D(d)

(x X(1) . . .X(t)u v z(1) . . . z(m) w w (1) . . . w(t + 3))) . . .) in M

λy(1) . . . y(s)u v z(1) . . . z(n)λwλw w(1) . . . w(t + 3)
E(1)(. . . (E(e)

(y Y (1) . . . Y (t)u v z(1) . . . z(n) w w(1) . . . w(t + 3))) . . .) in N

and we distinguish two subcases.

On Polymorphic Types of Untyped Terms 253

Subcase (a): There exists some d′ < d + 1 such that

D(d′) 	= E(d′) .

Let T be a 2-pairing tree whose binary term tree has K = λpλxˆp yˆp. xˆp
at the leaf whose binary position corresponds to the sequence D(1) . . . D(d)
and K∗ = λpλxˆp yˆp at the leaf whose binary position corresponds to
E(1) . . . E(e).
We apply both our terms to

A . . .A K . . .K (λx(1)ˆa′′ . . . λx(t)ˆa′′ λuˆa′′′ λvˆa′′′ . T)

for l occurrences of A and t+2 occurrences of K. The result of the Böhm-out
on the M side is K and on the N side is K∗.

Subcase (b): D(1) . . . D(d) is a proper initial segment of E(1) . . . E(e).
We may write E(1) . . . E(e) as D(1) . . .D(d) F (1) . . . F (g) where g = e− d.
We proceed as in Subcase (a) by selecting a 2-pairing tree with 〈K∗,K∗〉 at
the leaf corresponding to E(1) . . . E(e) and with K at a leaf corresponding
to D(1) . . . D(d) G where G is the opposite of F (1). The result of the Böhm-
out on the M side is some term 〈H,K〉 or 〈K,H〉 and on the N side it is
〈K∗,K∗〉. So we can apply either L or R to get K on the M side and K∗

on the N side.

Case (ii)

Case (ii) but not (i), so r < s. We proceed as in Case (i) until depth k is
achieved. There we have

λx(1) . . . x(r)u v z(1) . . . z(m)λwλw(1) . . . w(t + 3)
D(1)(. . . (D(d)

(x X(1) . . .X(t)u v z(1) . . . z(m) w w(1) . . . w(t + 3))) . . .) in M

λy(1) . . . y(s)u v z(1) . . . z(n)λwλw(1) . . . w(t + 3)
D(1)(. . . (D(d)

(y Y (1) . . . Y (t)u v z(1) . . . z(n) w w(1) . . . w(t + 3))) . . .) in N

Let g = s− r. We apply the corresponding terms to

A . . . A B A . . . A(λoλpλx(1)ˆo . . . λx(t)ˆ0 λuˆp λvˆp. v) K . . .

(T (
∧

p p→ (p→ p))K) (T (
∧

p p→ (p→ p))K∗)

(λx(1)ˆ(
∧

p p→ (p → p)) . . . λx(t + 2)ˆ(
∧

p p→ (p → p)). x(t + 2)) ,

where there are 1-1 copies of A, B occurs in the position s + 2, and there are
t = 1 occurrences of K, and T is as in Case (i).

254 R. Statman

In M this beta reduces to

A X ′(1) . . . X ′(t)A A . . .B . . .

and this reduces to

A X ′(1) . . . X ′(t) A A(λoλpλx(1)ˆ0 . . . λx(t)ˆ0 λuˆp λvˆp, K . . .

(T (
∧

p p→ (p→ p))K) (T (
∧

p p→ (p→ p)K∗)

(λx(1)ˆ(
∧

p p→ (p→ p)) . . . λx(t + 2)ˆ(
∧

p p→ (p→ p)). x(t + 2)))

and

A K . . . (T (
∧

p p→ (p→ p))K) (T (
∧

p p→ (p→ p))K∗)

(λx(1)ˆ(
∧

p p→ (p→ p)) . . . λx(t + 2)ˆ(
∧

p p→ (p→ p)). x(t + 2))

and
K∗ .

In N this beta reduces to

A Y ′(1) . . . Y ′(t)A B

and this reduces to

A Y ′(1) . . . Y ′(t) A B(λoλpλx(1)ˆo . . . λx(t)ˆ0λuˆp. v) K . . .

(T (
∧

p p→ (p→ p))K) (T (
∧

p p→ (p→ p))K∗)

(λx(1)ˆ(
∧

p p→ (p→ p)) . . . λx(t + 2)ˆ(
∧

p p→ (p→ p)). x(t + 2))

and

B K . . . (T (
∧

p p→ (p→ p))K) (T (
∧

p p→ (p→ p))K∗)

(λx(1)ˆ(
∧

p p) → (p→ p)) . . . λx(t + 2)ˆ(
∧

p p→ (p→ p)). x(t + 2))

and

(λx(1)ˆ(
∧

p p→ (p→ p)) . . . λx(t + 2)ˆ(
∧

p p→ (p→ p)). x(t + 2))

K . . . (T (
∧

p p→ (p→ p))K) (T
∧

p p→ (p→ p))K∗)

and
K .

On Polymorphic Types of Untyped Terms 255

Case (iii)

Case (iii) but neither (i) nor (ii) apply. In this case we must descend to depth
f in a slightly different way. At # we have

λx(1) . . . x(r)u v z(1) . . . z(m)λwλw(1) . . . w(t + 3)
D(1)(. . . (D(d)

(x X(1) . . .X(t)u v z(1) . . . z(m) w w(1) . . . w(t + 3))) . . .) in M

λy(1) . . . y(r)u v z(1) . . . z(n)λwλw(1) . . . w(t + 3)
D(1)(. . . (D(d)

(y Y (1) . . . Y (t)u v z(1) . . . z(n) w w(1) . . . w(t + 3))) . . .) in N

and x and y are bound by lambdas in labels at dissimilar nodes in the term trees,
or at similar nodes but at a different position in the prefix part of the label, and
one or both of these nodes can be #. In the descent, if the lambda corresponding
to x is encountered we use A as above but for y we use B. Note that this has no
effect above # since both u and v have become A. This procedure should also
be followed for the first r lambdas at #. At this point, we have

λu v z(1) . . . z(m)λwλw(1) . . . w(t + 3)
D(1)(. . . (D(d)

(A X ′(1) . . . X ′(t)u v z(1) . . . z(m) w w(1) . . . w(t + 3))) . . .) in M

λu v z(1) . . . z(n)λwλw(1) . . . w(t + 3)
D(1)(. . . (D(d)

(B Y ′(1) . . . Y ′(t)u v z(1) . . . z(n) w w(1) . . . w(t + 3))) . . .) . . .) in N

and we can proceed as in Case (ii) by applying both to

A B(λoλpλx(1)ˆo . . . x(t)ˆ0λuˆpλvˆp. v) K . . .

(T (
∧

p p→ (p→ p))K) (T (
∧

p p→ (p→ p))K∗)

(λx(1)ˆ(
∧

p p→ (p → p)) . . . λx(t + 2)ˆ(
∧

p p→ (p → p)). x(t + 2)) ,

where T is as in Case (i). This completes Case (iii).
Thus, in every case if M = N then K = K∗. Hence M = N can have no

model with a type having more than 1 element. This completes the proof.

References

1. Barendegt, H.P.: The Lambda Calculus. North-Holland, Amsterdam (1981)
2. Böhm, C.: Alcune proprieta delle forme beta-eta-normali nei lambda-K-calcolo.

P.I.A.C. 696 (1968)

256 R. Statman

3. Church, A.: Calculi of Lambda Conversion. P.U.P (1941)
4. de Vrijer, R.: Extending the lambda calculus with surjective pairing is conservative.

LICS 4, 204–215 (1989)
5. Girard, J.Y.: Interpretation fonctionelle et elimination des coupures dans

l’arithmetique d’ordre supieure. U. Paris VII (1972)
6. Jacopini, G.: A condition for identifying two elements of whatever model of com-

binatory logic. L.N.C.S. 37 (1975)
7. Reynolds, J.: Personal communication (circa 1985)
8. Statman, R.: Surjective pairing revisited. In: van Oostrom, K., van Raamsdonk

(eds.) Liber Amicorum for Roel de Vrijer, University of Amsterdam, Amsterdam
(2009)

9. Stovering, K.: Extending the extensional lambda calculus with surjective pairing
is conservative. LMCS 2, 1–14 (2006)

10. Mitchell, J.: Polymorphic type inference and containment. Information and Com-
putation 76(2-3), 211–249 (1988)

A Appendix

Here we show that the theorem fails for polymorphic types with products instead
of polymorphic types closed under pairing. For this we add the type constructor
& and the following clauses to the definitions of types and terms.

– If a and b are types then so is a & b.
– If X has type a and Y has type b then 〈X,Y 〉 has type a & b.
– If X has type a & B then LX has type a and RX has type b.

Proposition 1. There is no typing of λx. Lx and λx.x for which these terms
have the same type and are inconsistent.

Proof. First we suppose that these terms have been typed with the same type
a. We shall adopt some notation for sequences. We write p∗ for p(l) . . . p(t) with
lh(p∗) = t. We adopt also Mitchell’s containment relation a < b ⇔ a =

∧
p∗ c

and b =
∧
q∗ [d∗/p∗]c where lh(d∗) = lh(p∗). Then there exist d and e s.t.

– a =
∧
p∗ (b→ c);

– b < d & e;
– c =

∧
q∗ d;

– b <
∧
q∗ D.

Consider the leftmost path in b. There cannot be a → along that path since the
shallowest such → must be the same depth in both b and c. Thus, this path
consists of a sequence of

∧
’s and &’s ending in a variable, say r. Now r must be

bound by a
∧

in the prefix of b for otherwise it is at the same depth in both b and
c. Thus, there exists an integer m such that λx. Lˆm x has type b→

∧
p p. Now

consider a normal term X of type b, using only the free variables xˆp and yˆp
and the constant C of type

∧
p p. The leftmost path in X consists of a sequence

of 〈, 〉’s, possibly ending in a single type abstraction, followed by a sequence of
L’s, R’s, and applications. It can only end in C. Thus, we can apply Jacopini’s
theorem as above to show that λx. Lx = λx. x has a model with no empty types.
End of Proof.

Querying the Fragments of English

Camilo Thorne

KRDB Research Centre for Knowledge and Data,
3 Piazza Domenicani, 39100, Bolzano, Italy

cthorne@inf.unibz.it

Abstract. Controlled languages are fragments of natural languages stripped
clean of lexical, structural and semantic ambiguity. They have been proposed as a
means for providing natural language front-ends to access structured knowledge
sources, given that they compositionally and deterministically translate into the
(logic-based) formalisms such back-end systems support. An important issue that
arises in this context is the semantic data complexity of accessing such informa-
tion (i.e., the computational complexity of querying measured w.r.t. the number
of instances declared in the back-end knowledge base or database). In this paper
we study the semantic data complexity of a distinguished family of context-free
controlled fragments, viz., Pratt and Third’s fragments of English. In doing so,
we pinpoint those fragments for which the reasoning problems are tractable (in
PTIME) or intractable (NP-hard or CONP-hard).

Keywords: Controlled language interfaces, computational semantics, semantic
data complexity, resolution proof procedures, knowledge base query answering
and satisfiability.

1 Introduction

Natural language can be considered the ultimate knowledge representation language,
due to its expressiveness and the little prior training required. It is also, arguably, the
language casual users prefer when interacting with structured data management sys-
tems, i.e., when declaring a data constraint, adding a piece of data or querying such in-
formation [11]. These considerations have motivated, from the 1970’s and 80’s [18] to
this day [5,13] a big body of research on natural language interfaces to structured data
management systems, such as knowledge-based systems, ontology-based systems and
relational databases. But any system that aims at understanding natural language has
to deal with the computational costs of semantic processing, viz., with the semantic
complexity of natural language [16].

Traditionally, the main challenge that semantic processing faces is ambiguity, viz.,
the fact that the same natural language surface form may stand for different deep forms
or semantic representations. Ambiguity arises at different levels: at a lexical level (the
same word may have different meanings), a structural level (the same sentence may
admit difference parses) and a semantic level (the same sentence may “underspecify”
several semantic interpretations). Ambiguity induces a very high semantic complex-
ity: in general, the number of readings of an utterance will grow exponentially in its
size [10]. Worse still, since natural language semantics is captured, modulo so-called

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 257–271, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

cthorne@inf.unibz.it

258 C. Thorne

compositional translations τ(·), by higher order logic (HO) and its fragments, notably,
first oder logic (FO), the problem of ambiguity is, in general, undecidable.

To tackle the high semantic complexity of ambiguity it has been proposed to trade
off expressiveness, by considering controlled languages, viz., ambiguity-free fragments
of natural languages which allow for efficient (polynomial) deterministic parsing and
semantic interpretation [7], thus guaranteeing high or absolute precision and recall at
the cost of constraining natural language input.

Ambiguity unfortunately, is not the only factor inducing prohibitive semantic com-
plexity. In general, we are also interested in reasoning over semantic representations.
In knowledge-based systems, for instance, we might want to leverage on intensional in-
formation (domain knowledge and constraints) to refine queries or questions. Such re-
finement can be arguably considered part of an utterance’s semantic processing. Thus,
controlled language coverage (i.e., its verbs, nouns, adjectives, relative clauses, coor-
dinating particles, quantification, etc.) can also impact on semantic complexity. For
instance, function words which map to logical operations such as Boolean conjunction
and negation can give rise to “Boolean-closed” fragments for which reasoning is in-
tractable [17]. Similar results hold for fragments covering some distinguished classes of
(generalized) quantifiers, which are intractable w.r.t. to FO finite model checking [21].

In this paper we study the computational data complexity of answering queries over
controlled English knowledge bases, viz., the computational complexity of this prob-
lem (a FO entailment problem) measured in the number of facts stored in the knowl-
edge base. Data complexity is an important (theoretical) measure of query evaluation
efficiency in knowledge-based systems [2]. We consider for this purpose the so-called
fragments of English, a family of very simple controlled fragments proposed by Pratt
and Third in [17]. We show for which fragments data complexity is tractable, for which
it is intractable and for which query answering is undecidable. As the reader shall
see, bad computational properties arise even in the presence of fragments of very little
expressiveness.

2 The Fragments of English and Semantic Complexity

In this section we present a generic methodology for defining controlled fragments,
proposed by Pratt and Third in [17], the fragments of English. These fragments are
defined using context-free semantically enriched grammars and has the advantage of
generating, alongside the set of grammatical utterances of the fragment, their logical
(HO and FO) meaning representations.

Their semantics follows the Montague semantics paradigm outlined in [14], in which
English utterances S and sets S thereof are mapped into into a HO or FO meaning rep-
resentation τ(S) or set τ(S) of formulas, leveraging on the λ-abstraction, application
and normalization of type-theory. Semantic actions recursively define the compositional
translation τ(·) on a fragment’s sentence constituents.

As with all controlled languages, ambiguity is ruled out: complete utterances admit
one and only one parse tree and one and only one semantic representation. Conse-
quently, each fragment of English expresses a unique FO fragment, whose computa-
tional properties can be easily studied. In addition, the definition of τ(·) over grammar
lexicons gives rise to their partition into:

Querying the Fragments of English 259

– An arbitrarily large content lexicon denoting individuals with proper nouns (Pns
like “Max”), and unary, binary and ternary relations, with, resp., nouns (Ns like
“beer”), transitive verbs (TVs like “drinks”) and ditransitive verbs (DTVs like
“gives”).

– A finite function lexicon denoting logical operations over individuals and relations.
Relative pronouns (Relps like “who”) and coordinators (Crds like “and”) de-
note logical conjunction. Determiners (Dets like “some”) denote quantification.
Negation (Ngs like “not”) denotes logical negation. Anaphoric pronouns express
co-references between logical expressions.

The fragments themselves are defined incrementally, starting from a base fragment,
COP (for “copula”), whose coverage is subsequently expanded to TVs, DTVs, Relps
and (restricted) anaphora, as summarized by Table 1. In what follows we will describe
in detail only COP. The other fragments are defined similarly:

Function Lexicon
Det → every τ(Det) := λP e→t.λQe→t.∀xe(P (x) ⇒ Q(x))
Det → some τ(Det) := λP e→t.λQe→t.∃xe(P (x) ∧Q(x))
Det → no τ(Det) := λP e→t.λQe→t.∀xe(P (x) ⇒ ¬Q(x))
Ng → not τ(Ng) := λP e→t.λxe.¬P (x)

Phrase Structure Rules
S→NP VP τ(S):=τ(NP)(τ(VP))

VP→ is a N τ(VP):=τ(N)
VP→ is Ng a N τ(VP):=τ(Ng)(τ(N))
NP→Pn τ(NP):=τ(Pn)
NP→Det N τ(NP):=τ(Det)(τ(N))

Content Lexicon
N→woman τ(N):=λxe.Woman(x)
N→man τ(N):=λxe.Man(x)
N→person τ(N):=λxe.Person(x)
N→human τ(N):=λxe.Human(x)

Pn→Mary τ(Pn):=λP e→t.P (Mary)

The function lexicon express FO universal and existential quantification, in addition
to a form of negation. The content lexicon may contain an arbitrarily large stock of com-
mon and proper nouns specifying an arbitrarily large FO signature of unary predicates
and individual constants.

To each lexical entry and each grammar rewriting rule a semantic action is associated
and the computation of τ(·) can be done on the fly, i.e., side-by-side with the compu-
tation of the parse tree. See Figure 1. In COP we can express FO sentences of these
forms:

Woman(Mary) Mary is a woman.
¬Man(Mary) Mary is not a man.

∀x(Man(x)⇒Person(x)) Every man is a person.
∀x(Woman(x)⇒¬Man(x)) No woman is a man.

∀x(Person(x)⇒Human(x)) Every person is a human.
∃x(Person(x)∧Woman(x)) Some person is a woman

∃x(Person(x)∧¬Woman(x)) Some person is not a woman.

More in general, by suitably modifying the content lexicon, we can express any FO
sentence of these forms. This defines a proper fragment of FO, which we may denote by
abuse of notation COP as well [17]. Semantic complexity will be, in general, correlated
to the fragment’s function lexicon.

260 C. Thorne

Table 1. The fragments of English

COP copula, common and proper nouns, negation
universal and existential quantifiers

COP+TV COP + transitive verbs (“loves”)
COP+TV+DTV COP + transitive and ditransitive verbs (“gives”)

COP+Rel COP + relative pronouns (“who”, “that”)
COP+Rel+TV COP+Rel + transitive verbs

COP+Rel+TV+DTV COP+Rel + transitive and ditransitive verbs

COP+Rel+TV+RA COP+Rel+TV + restricted anaphora (“he”, “it”, “herself”)

Modulo compositionality and the ensuing logic meaning representations, the frag-
ments of English can be said to be subsumed by several known fragments of FO: the
monadic fragment of FO (COP and COP+Rel), the 2-variable fragment of FO (due to
transitive verbs: COP+TV, COP+Rel+TV and COP+Rel+TV+RA) and the 3-variable
fragment of FO (due to ditransitive verbs: COP+TV+DTV and COP+Rel+TV+DTV).
They are known to be subsumed or to overlap with several knowledge representation
logics such as description logics [4] and have been shown to be decidable for satiafia-
bility [17]. It is perhaps interesting to note that the non-monadic fragments are incom-
parable to other known fragments such as the guarded fragment1.

τ(S) = Woman(Mary):t

τ(NP) = λP e→t.P (Mary):(e→t)→t

τ(Pn) = λP e→t.P (Mary):(e→t)→t

Mary

τ(VP) = λxe.Woman(x):e→t

is a τ(N) = λxe.Woman(x):e→t

woman.

Fig. 1. Parse tree for the COP sentence “Mary is a woman”

In general, controlled fragments designed with practical applications in mind tend to
be very expressive and are not easily amenable to a computational complexity analysis.
The best-known controlled fragment of English, Attempto Controlled English, ACE [7]
(that contains all of the fragments discussed here), is for instance more expressive than
FO itself, thus being undecidable for satisfiability. Pratt and Third’s fragments by con-
trast, by being simple and decidable (in most cases), allow to pinpoint those combi-
nations of English constructs that give rise to tractable and intractable computational
complexity.

3 Querying the Fragments of English

In the remainder of this paper, we will focus on one particular kind of data access and
storage system, an ontology-based system or knowledge base, in which data, stored as

1 A COP+TV sentence like “Every liar knows every trick.”, yields a semantic representation,
∀x(Liar(x) ⇒ ∀y(Trick(y) ⇒ Knows(x, y))), that is not guarded [8].

Querying the Fragments of English 261

instances or as records in a (relational) database is managed and queried through an
intensional middle layer of domain constraints or ontology Σ (a set of FO sentences),
expressed by a set S of controlled English sentences.

A knowledge base is a pair (Σ,Δ), with Σ an ontology and Δ a a set of facts or FO
relational ground atoms. The integer #(Δ) denotes the size of Δ, the number facts it
contains. The usual FO notions of truth and satisfaction apply to ontologies, databases
and knowledge bases, and to their constraints and facts.

A conjunctive query is an existentially quantified conjunction of positive FO rela-
tional atoms

ϕ(x) := ∃yϕ(x,y)

over variables x and y, where the free variables x are known also as the CQ’s distin-
guished variables. A union of conjunctive queries is a finite disjunction

ϕ(x) := ∃y1ϕ1(x,y1) ∨ · · · ∨ ∃ykϕk(x,yk)

of conjunctive queries. A tree-shaped query (TCQ) is a CQ with one distinguished
variable x, called root, defined inductively by

ϕ(x) → A(x) | ∃yR(x, y) | ∃yR(x, y) ∧ ϕ(y) | ϕ(x) ∧ ϕ′(x)

The length |x| of the sequence of distinguished variables is known as the arity of the
U(T)CQ. U(T)CQs are said to be Boolean when they contain no free variables.

Note that U(T)CQs are positive existential FO formulas. U(T)CQs have a practi-
cal motivation: they correspond to the SELECT-PROJECT-JOIN fragment of SQL, the
most frequently used class of queries in relational databases [1].

A substitution σ is a function from variables to terms. It is called a renaming when
it is a function from variables to variables and a grounding when it is a function from
variables to constants. Substitutions can be extended to complex syntactic objects in the
standard way.

A knowledge base (Σ,Δ) is said to entail a U(T)CQ ϕ w.r.t. a substitution σ, in
symbols, Σ ∪ Δ |= ϕσ, if every model of Σ ∪ Δ is a model of ϕσ (i.e., plain FO
entailment).

Two reasoning tasks are of relevance: (i) Consistency: we want to know whether the
data being stored is not in conflict with the constraints and is meaningful. (ii) Query
answering: we want to retrieve information. In both cases, it is customary to understand
the data complexity of the tasks, viz., the computational complexity of their associated
recognition decision problems measured w.r.t. the number of instances or records stored
in the system. This idea was first proposed by Vardi in [23] for relational databases, and
is based on the observation that the main issue in real-world applications is scalability
to massive datasets.

Given a knowledge base (Σ,Δ), the knowledge base satisfiability problem (KBQA)
is the decision problem defined by: Input: the set Δ of facts. Question: does there exist
a model for Σ ∪Δ?

Given a knowledge base (Σ,Δ), a U(T)CQ ϕ of distinguished variables x, a se-
quence of constants c and a substitution σ s.t., σ(x) = c, the knowledge base

262 C. Thorne

query answering problem (KBQA) is the decision problem defined by: Input: the set
Δ of facts. Question: does Σ ∪Δ |= ϕσ hold?

4 Resolution Saturations and Data Complexity

The resolution calculus was first proposed by Robinson in [19] as a sound and complete,
but not necessarily terminating machine-oriented calculus for FO. Later, Joyner in [9]
showed that resolution can be turned into a decision procedure for (un)satisfiability for a
number of distinguished fragments of FO, by proposing several saturation- or forward-
chaining-based refinings of resolution. In [22], we showed how such refinements can
be used to provide upper data complexity bounds for KBSAT for several fragments
of English. In this section, we extend such results to all the (decidable) fragments of
English and generalize the technique to KBQA.

A term t is (i) a variable x or a constant c or (ii) an expression f(t1, . . . , tn) where f
is a function symbol and t1, . . . , tn are terms. In the latter case, we speak about function
terms. A literal L is a FO atom P (t1, . . . , tn). By a clause we understand a disjunction
L1∨· · ·∨Ln∨Nn+1∨· · ·∨Nn+m of positive and negative literals. The empty clause
or falsum is denoted ⊥. By Var(t), Var(L) and Var(C) we denote the sets of variables
of, resp., term t, literal L and clause C. A term, literal, clause or set of clauses is said to
be ground if it contains no variables.

A unifier of two terms t and t′ is a substitution σ s.t. tσ = t′σ. A most general unifier
is a unifier σ s.t. for every other unifier σ′ there exists a renaming σ′′ with σ′ = σσ′′.

The depth of a term is defined recursively by (i) d(x) := d(c) := 0 and
(ii) d(f(t1, . . . , tn)) := max{d(ti) | i ∈ [1, n]} + 1. The depth d(L) of a literal L
or d(Γ) of a set of clauses Γ is the maximal depth of their terms. The relative depth
of a variable x in a term t is defined by (i) d(x, t) = 0 if x 	∈ Var(t), otherwise (ii)
d(x, x) := 1 and d(x, f(t1, . . . , tn)) := max{d(x, ti) | i ∈ [1, n]} + 1. The relative
depth d(x, L) of a variable x in a literal L is its maximal relative depth among L’s
terms.

A clause C is “well behaved” whenever (i) Var(L) ≤ 1 and (ii) either for every
functional term t in C, Var(t) = Var(C), or Var(L) = Var(C), for all literals in C2.

Table 2. Resolution calculi. Calculus R2,5 is a decision procedure for “well-behaved clauses [6].

split mon split,mon
R1,1 R1,2 R1,4 R1,5

≺d R2,1 R2,2 R2,4 R2,5

The saturation-based versions of the (ordered) resolution calculus iteratively (mono-
tonically w.r.t. ⊆) generate the set of all possible clauses derived from Γ , until either
(i) ⊥ is derived or (ii) all possible clauses are generated (fixpoint computation). Such
clauses are obtained using res (resolution), fact (factoring) and split (splitting):

2 Clauses that are “well-behaved” correspond to the clauses from the S+ class studied in [6].

Querying the Fragments of English 263

C ∨ L C ∨ L′
res

(C ∨ C′)σ
C ∨ L ∨ L′

fact
(C ∨ L)σ

C ∨ L ∨ L′

C ∨ L
...

C′σ

C ∨ L′

...

C′σsplit (Var(L)∩Var(L′)=∅)
C′σ

where σ is a most general unifier of L and L’, the acceptable depth ordering (well-
founded and substitution-invariant partial order on clause literals and sets thereof) ≺d

defined by

L ≺d L′ iff (i) d(L)<d(L′), (ii) Var(L)⊆Var(L′), (iii) d(x, L)<d(x, L′),

for all x ∈ Var(L), and the mon (monadization) rule. Orderings give rise to the ordered
versions of res, fact and split. Note that split introduces branching in saturations.

The ≺d ordering prevents clause depth from “well-behaved” clauses from growing
beyond a finite bound d ≥ 0, whereas splitting prevents their length l from growing arbi-
trarily. Now, ordered res, on “well-behaved” clauses may generate non-“well-behaved”
clauses, whose depth may grow arbitrarily. Given a set Γ of clauses derived by ordered
resolution from “well-behaved” clauses, mon substitutes, in each literal L in Γ , all the
variables x ∈ Var(L) that do not occur in L’s functional terms t, with either t or the con-
stants c that occur in Γ . Thus, monadization, which is satisfiability-preserving for such
clauses (but not necessarily in the general case), ensures that “well-behaved” clauses
are closed under the ordered rules, guaranteeing the termination of saturations [9,6].

Formally, consider a derivation function ρ(·) over sets of clauses, defined in terms of
rules stated above. A resolution calculus is a function R(·) s.t. R(Γ) := Γ ∪ ρ(Γ). A
saturation is defined as the limit Γ∞ of the sequence defined by (i) R0(Γ) := Γ and
(ii) Ri+1(Γ) := R(Ri(Γ)), for i > 0. The positive integer i is called the depth of the
saturation. Different calculi arise from the different combinations of rules, orderings
and refinements, as summarized by Table 2.

Resolution is sound and complete w.r.t. (un)satisfiability, in the sense that Γ is un-
satisfiable iff ⊥ ∈ Γ∞, and R2,5 in particular terminates if Γ is a set of “well behaved”
clauses. Moreover, it is immediate to see that, in general, resolving upon ground clauses
can be delayed to the last steps of the saturation:

Proposition 1. Given a terminating saturation for a set Γ of clauses containing ground
atoms, one can delay deriving upon those ground atoms to the last steps of the
saturation.

Saturations exhibit the shape of a tree (of branching factor 2) or of a sequence, de-
pending on whether the calculi make use or not of the splitting rule. See Figure 2. Due
to this observation, resolution decision procedures can be used to provide upper data
complexity bounds.

Lemma 1 (from [22], Lem. 1). Let Γ be a set of clauses containing n constants (and
finitely many function and relation symbols) for which there exist both a term depth

264 C. Thorne

Γ0,1 Γ0

Γ1,1 ∪ Γ1,2 Γ1

Γ2,1 ∪ Γ2,2 ∪ Γ2,3 ∪ Γ2,4 Γ2

. . . ∪ . . . ∪ . . .

Γp(n),1 ∪ ∪ ∪ Γp(n),2p(n) Γp(n)

Fig. 2. Terminating saturations of a set Γ of clauses using (tree-shaped) and not using (linear-
shaped) the splitting rule. In the figure, directed edges denote derivation steps and p(·) denotes a
polynomial on the number n of constants in Γ , that bounds the depth of saturation.

bound d ≥ 0 and a clause length bound k ≥ 0. In the worst case: (i) the number of
clauses derivable by the saturation is (a) exponential in n if we use the splitting rule or
(b) polynomial in n otherwise, and (ii) the depth of the saturation is polynomial in n.

4.1 Tractable Fragments

In this section we show that the data tractable fragments for KBQA are those involving
no relative pronouns and that are not Boolean-closed. Similar results hold for KBSAT,
provided relatives and transitive verbs are not covered simulaneously by the same frag-
ment(s). For the PTIME upper bound below we use saturations to define a reduction to
the well-known (un)satisfiability problem for the HORN fragment (the fragment of FO
clauses in which at most one literal is positive), which is known to be in PTIME in the
ground case (see, e.g., [8]).

Theorem 1. The data complexity of KBSAT is in PTIME for COP+Rel.

Proof. Let Σ be a set of COP+Rel meaning representations and Δ a database, where
Σ is fixed and let Σcl ∪ Δcl be their clausification and Skolemization. Σcl ∪ Δcl can
be computed in O(log #(Δ)) space. This gives way to polynomially many constants
in #(Δ). Now, the clauses in Σcl ∪ Δcl are (i) monadic, and (ii) if in Σcl, Boolean
combinations of unary atoms over the single variable x, and containing no function
symbols. Clearly, the clauses in Σcl ∪ Δcl are “well-behaved” clauses of the kind for
which resolution saturations can be used as a decision procedure. Furthermore, the split
rule is not applicable. Use therefore the calculus R2,4: by Lemma 1, we know that such
a procedure will run in time polynomial in the number constants of Σcl∪Δcl and hence
in time polynomial in #(Δ). �

Theorem 2 (from [22], Th. 1). The data complexity for KBSAT is in LSPACE for COP,
COP+TV and COP+TV+DTV.

Theorem 3 (from [22], Th. 2). The data complexity of KBQA for COP and UCQs is
in LSPACE.

Theorem 4. The data complexity of KBQA for the fragments COP+TV+DTV and
UCQs is in PTIME.

Querying the Fragments of English 265

Proof. By reduction to HORN satisfiability. Let Σ be a set of fixed COP+TV+DTV
meaning representations, Δ a database and ϕ a fixed UCQ of distinguished variables
x. Let c be a tuple (a sequence of |x| domain constants) and σ a substitution mapping
x to c. To know whether c is an answer to ϕ over (Σ,Δ), it is sufficient to check if
Σ ∪Δ |= ϕσ.

Consider now the setsΣcl, Δcl and (¬ϕσ)cl, where by ·cl we denote the (satisfiability-
preserving) Skolemization and clausification of Σ, Δ and ¬ϕσ. Skolemization and
clausification are constant in #(Δ): Δ is already a set of (ground) clauses. We claim
that Σcl, Δcl and (¬ϕσ)cl are sets of HORN clauses. Clearly, Δcl is a set of HORN
ground clauses. On the other hand, the clauses in Σcl are all of the form(s) [17]:

¬P (x)∨±Q(x), ¬P (x)∨±L(x), ¬P (x)∨Q(f(x)), ¬P (x)∨¬Q(y)∨±L(x, y),
±L, ¬P (x)∨¬Q(y)∨¬N(z)± L(x, y, z), ¬P (x)∨¬Q(y)∨N(g(x, y)),

where L(x) stands for a binary or ternary literal with free variables x and possibly
functional terms, which are also HORN. Since ϕ is a UCQ, this means that ϕσ is of
the form ∃y1ψ(c,y1) ∨ · · · ∨ ∃ykψ(c,yk), with each ψi(c,yi) of the form L′

i1(ti1) ∧
· · · ∧ L′

im(tim), where c ∪ yi ⊆ ti1 ∪ · · · ∪ tim and L′
ij , for 1 ≤ j ≤ m, is a

relational symbol of arity ≤ 2. Hence, (¬ϕσ)cl is the set of (two variable) HORN
clauses {¬L′

11(t11) ∨ · · · ∨ ¬L′
1m(t1m)} ∪ · · · ∪ {¬L′

k1(tk1) ∨ · · · ∨ ¬L′
km(tkm)}.

The clauses in Σcl, Δcl and (¬ϕσ)cl are “well-behaved” clauses, viz., clauses where
either all literals are essentially monadic, or covering, or whose functional terms are
covering. Hence, resolution saturations (e.g., calculus R2,5) can be used to decide their
(un)satisfiability. Furthermore, by Proposition 1, we know that we can “separate” facts
from non-ground clauses. Finally, by grounding the saturation (following the Herbrand
theorem, cf. [12], Prop. IV-5), we can reduce answering a question to checking for the
satisfiability of a set of HORN (propositional) clauses, since

Σ ∪Δ |= ϕσ iff Σcl ∪Δcl ∪ (¬ϕσ)cl is unsatisfiable
iff ⊥ ∈ (Σcl ∪Δcl ∪ (¬ϕσ)cl)∞

iff ⊥ ∈ ((Σcl ∪Δcl)∞ ∪ (¬ϕσ)cl)∞

iff GR((Σcl ∪ (¬ϕσ)cl)∞) ∪Δcl is unsatisfiable,

(†)

where GR(·) denotes the operation that grounds the clauses in (Σcl ∪ (¬ϕσ)cl)∞) (of
which there are finitely many) with constants taken from adom(Δ), holds.

By (†) we know that the reduction is sound and complete. We already saw that the
clausification procedure is constant in #(Δ). In addition, by the separation property,
saturating, while exponential in general, can be done independently from the data and
thus does not affect data complexity and is thus constant in #(Δ) We also know that
there are polynomially many groundings in #(Δ). Finally, checking for the satisfiabil-
ity of GR((Σcl ∪ (¬ϕσ)cl)∞)∪Δcl, which are HORN, can be done in time polynomial
in #(Δ). ��

Corollary 1. The data complexity of KBQA for the controlled fragments COP+TV,
and COP+TV+DTV and UCQs is in PTIME.

266 C. Thorne

4.2 Intractable Fragments

In this section we show that the data intractable fragments for KBQA are those cover-
ing relative pronouns and that are Boolean-closed. This is shown by a reduction from
an NP-complete propositional satisfiability problem. For KBSAT, the boundary lies in
COP+Rel+TV that covers both relatives and transitive verbs. Membership in, resp., NP
and CONP is derived using saturations.

Theorem 5 (from [22], Th. 1). The data complexity of KBSAT is NP-complete for
COP+Rel+TV and COP+Rel+TV+DTV.

The satisfiability problem for propositional 2+2 formulas (2+2-SAT) is the decision
problem defined by: Input: a conjunction of clauses of the form formψ := ψ1∧· · ·∧ψk

where each clause ψi := pi1 ∨ pi2 ∨ ¬ni1 ∨ ¬ni2 is a disjunction of two positive and
two negative literals. Question: does there exist a truth assignment δ(·) s.t. δ(ψ) = 1?
This problem was shown to be NP-complete by Schaerf in [20].

Lemma 2. KBQA is CONP-hard in data complexity for COP+Rel and TCQs.

Proof. We define a reduction from 2+2-SAT. Let ψ := ψ1 ∧ · · · ∧ψk be a 2+2-formula
over the literals At(ψ) := {l1, ..., lm}where, for i ∈ [1, k], ψi := pi1∨pi2∨¬ni1∨¬ni2

is a disjunction of two positive and two negative literals.
Let N1 (“has as first negative literal”), N2 (“has as second negative literal”), P1 (“has

as first positive literal”) and P2 (“has as second positive literal”) four binary relation
symbols/transitive verbs. Let A (“literal”), Af (“false literal”) and At (“true literal”) be
three unary relation symbols/nouns. For each clause ψi in ψ, for i ∈ [1, k], introduce
an individual constant/proper name ci and similarly a constant/proper name l for every
l ∈ At(ψ). Encode ψ with the facts

Δψ :=

⎧⎨⎩
A(p11), A(p12), A(n11), A(n12), . . . , A(pk1), A(pk2), A(nk1), A(nk2),
P1(c1, p11), P2(c1, p12), N1(c1, n11), P2(c1, n12), . . . , P1(ck, pk1),

P2(ck, pk2), N1(ck, nk1), N2(ck, nk2)

⎫⎬⎭ ,

consider, resp., the declarative sentences S

“No A is not an At that is not an Af ”, “No At is an Af .” and “No Af is an At.”,

and the TCQ

ϕ := ∃x∃y(P1(x, y) ∧Af (y)) ∧ ∃z(P2(x, z) ∧Af (z))∧
∃w(N1(x,w) ∧At(w)) ∧ ∃v(N2(x, v) ∧At(v))),

and claim that
ψ is satisfiable iff τ(S) ∪Δψ 	|= ϕ (†)

(⇒) Suppose that ψ is satisfiable and let δ(·) be a truth assignment. Then, for all
i ∈ [1, k], δ(ψi) = 1, i.e., δ(pi1) = 1 or δ(pi2) = 1 or δ(ni1) = 0 or δ(ni2) = 0. Given
this, we can construct an interpretation I = (DI , ·I) s.t. I |= τ(S) ∪Δψ but I 	|= ϕ as
follows:

Querying the Fragments of English 267

– DI := {ci, pij , nij | i ∈ [1, k], j = 1, 2}, AI := {l ∈ At(ψ) | A(l) ∈ τ(Fψ)},
– AI

f := {l ∈ AI | δ(l) = 0}, AI
t := {l ∈ AI | δ(l) = 1},

– P I
j := {(ci, pij) | Pj(ci, pij) ∈ Δψ, i ∈ [1, k]}, and

– NI
j := {(ci, nij) | Nj(ci, nij) ∈ Δψ, i ∈ [1, k]},

(⇐) Let I be a model τ(S) ∪Δψ of s.t. I, γ 	|= ϕ for all γ. We want to show that
there exists a truth assignment δ(·) s.t. δ(ψ) = 1. Let δ : At(ψ) → {0, 1} be the truth
assignment s.t.

δ(l) = 1 iff l ∈ AI
t .

Now, by assumption I, γ 	|= ϕ, for all γ. This implies, for all i ∈ [1, k], that either pi1 	∈
AI

f or pi2 	∈ AI
f or ni1 	∈ AI

t or ni2 	∈ AI
t . Now, recall that I |= τ(S), where τ(S) con-

tains the axioms ∀x(A(x)⇒At(x) ∨Af (x)), ∀x(At(x)⇒¬Af (x)) and ∀x(Af (x)⇒
¬At(x)), that “say” that a literal is either true or false, but not both. Hence if pi1 	∈ AI

f ,
then, by definition of δ(·), δ(pi1) = 1 and similarly for the other cases. Therefore,
δ(ψi) = 1, for all i ∈ [1, k], and thus δ(ψ) = 1. ��

Lemma 3 (from [22], Th. 2). If we consider TCQs, the data complexity of KBQA is
in CONP for COP+Rel, COP+Rel+TV and COP+Rel+TV+DTV.

Theorem 6. The data complexity of KBQA and TCQs is CONP-complete for
COP+Rel, COP+Rel+TV and COP+Rel+TV+DTV.

Proof. Follows from Lemma 2 and Lemma 3. ��

5 An Undecidable Fragment

As we have seen, adding relatives to COP makes answering U(T)CQs hard w.r.t. data
complexity. In this section we will see that when we consider also transitive verbs
and restricted anaphoric pronouns (that co-refer with their closest antecedent noun),
KBQA becomes undecidable. We will consider a slightly enriched version of the frag-
ment COP+Rel+TV+DTV+RA, COP+Rel+TV+DTV+RA+, that covers verbs in pas-
sive form (e.g., “is loved by”) and indeterminate pronouns (e.g., “somebody”). This we
prove by a reduction from the unbounded tiling problem.

A tiling grid or grid is a tuple T = (T,V,H), where T := {c0, . . . , ck} is a finite
set of k tiles and V and H are binary relations over T, called, resp., the vertical and
horizontal relations. A tiling is a function t : N × N → T that satisfies the horizontal
and vertical adjacency constraints, i.e., s.t., for all i, j ∈ N, (t(i, j), t(i, j+1)) ∈ H and
(t(i, j), t(i + 1, j)) ∈ V. The unbounded tiling problem (TP) is the decision problem
defined by: Input: a grid T = (T,V,H). Question: does a tiling t exist for T ? It was
shown to be undecidable by Berger in [3].

Theorem 7. KBQA is undecidable for COP+Rel+TV+RA+ and arbitrary CQs.

Proof. By reduction from TP to the complement of KBQA for COP+Rel+TV+RA+ and
arbitrary CQs. Let T = (T,V,H) be a tiling grid, with T := {c0, . . . , ck} being its tiles
and H and V the, resp., horizontal and vertical relations over T. We can encode T with
a set ST of COP+Rel+TV+RA sentences and a set of facts ΔT as follows.

268 C. Thorne

Let the transitive verbs/binary relation symbols H and V encode, resp., the horizon-
tal H and vertical V relations. Let the noun/unary relation Ci encode a tile ci ∈ T, for
i ∈ [0, k]. Let finally H̄ be a “fresh” transitive verb/binary relation. We start by defining
the set ST that encodes the structure of the grid:

Everything Hs something. Everything V s something. (1)

For all i ∈ [0, k]: Anything that is not a Ci is a Ci+1. No Ci is a Ci+1. (2)

For all (c, c′) 	∈ V: Everybody who Hs somebody is a C.
Everybody who is Hd by somebody is a C′.

(3)

For all (c, c′) 	∈ H: Everybody who V s somebody is a C.
Everybody who is V d by somebody is a C′.

(4)

Everybody who H̄s somebody does not H him.
Everybody who does not H somebody H̄ ′s him.

(5)

Next, we define ΔT , that encodes the initial state of the grid:

ΔT :=
{
C0(c0), . . . , Ck(ck), H(c0, c1), . . . , H(ck−1, ck)

}
.

Finally, we consider the CQ

ϕ := ∃x∃y∃z∃w(H(x, y) ∧ V (y, w) ∧ V (x, z) ∧ H̄(z, w)),

and claim that

there exists a tiling t for T iff τ(ST) ∪ΔT 	|= ϕ. (†)

Modulo τ(·), the sentences from (1) express ∀x∃yH(x, y) and ∀x∃yV (x, y), which
“say” that the grid is unbounded. Those from (2), express, resp., ∀x(C0(x)∨· · ·∨Ck(x))
and ∀x¬(C0(x)∧· · ·∧Ck(x)), viz., that tiles are pairwise distinct. Sentences from (3)–
(4), expressing, resp., the FO formulas

∧
{∀x(∃yH(x, y) ⇒ C(x))∧∀x(∃yH(y, x) ⇒

C′(x))) | (c, c′) 	∈ V} and
∧
{∀x(∃yV (x, y) ⇒ C(x)) ∧ ∀x(∃yV (y, x) ⇒ C′(x))) |

(c, c′) 	∈ H}, capture the adjacency constraints, thus ensuring that tiles which are not
vertically (resp., horizontally) adjacent, are instead horizontally (resp., vertically) adja-
cent. For the reduction to proceed, we must, in addition, ensure that the grid is “closed”,
i.e., that models exhibit a grid structure and no tiles fail to satisfy the adjacency con-
traints. This we obtain by combining ϕ with the sentences in (5). Such sentences ex-
press, modulo τ(·), ∀x, y(H̄(x, y) ⇒ ¬H(x, y)) and ∀x, y(H̄(x, y) ⇒ ¬H(x, y)),

ci,j+1 ci+1,j+1 ci,j+1 ci+1,j+1

ci,j ci+1,j ci,j ci+1,j

I |= ϕ I �|= ϕ

V V

H

V V

H

H

Fig. 3. If ϕ is satisfied, the grid stays open, closed otherwise

Querying the Fragments of English 269

Table 3. KBQA and KBSAT for the fragments of English and the positive fragments

KBQA-UCQs KBSAT

COP in LSPACE in LSPACE

COP+TV in PTIME in LSPACE

COP+TV+DTV in PTIME in LSPACE

KBQA-CQs
COP+Rel+TV+RA+ Undecidable

KBQA-TCQs KBSAT

COP+Rel CONP-complete in PTIME

COP+Rel+TV CONP-complete NP-complete
COP+Rel+DTV+TV CONP-complete NP-complete

resp., i.e., an (explicit) definition for H̄ , the formula ξ := ∀x, y(H̄(x, y) ⇔ ¬H(x, y)):
ϕ is false exactly when the formula χ := ∀x, y, z, w(H(x, y) ∧ V (x, z) ∧ V (y, w) ⇒
H(z, w)), that enforces grid closure, is true, in every model of ξ. We now prove (†).

(⇐) Let I = (DI , ·I) be a model of τ(ST)∪ΔT s.t. I 	|= ϕ (and hence s.t., I |= χ).
Define a mapping f : N × N → DI recursively as follows:

– For i ∈ [0, k], f(i, 0) := cIi .
– For i ≥ k, f(i + 1, 0) := some c s.t. (f(i, 0), c) ∈ HI .
– For i ≥ k, j ≥ 0, f(i+ 1, j + 1) := some c s.t. (f(i, j), c) ∈ HI .

Now, f is well-defined since (i) any grid point has always an HI-successor (since
I |= τ((1))), (ii) the grid is always closed (since I 	|= ϕ) and (iii) HI is non-empty
(since I |= ΔT). Furthermore, by observing that I is modulo τ(·) both a a model of
(2)–(5) but not ϕ, one can prove by double induction on (i, j) ∈ N× N that

(f(i, j), f(i, j + 1)) ∈ HI and (f(i, j), f(i + 1, j)) ∈ V I ,

that is, f satisfies the horizontal and vertical constraints. Finally, to define the tiling
t : N× N → T we put, for all (i, j) ∈ N × N,

t(i, j) := c iff f(i, j) ∈ CI .

(⇒) For the converse let t be a tiling for T = (T,V,H). We have to build a model I
s.t. I |= τ(ST) ∪ΔT and I 	|= ϕ. Define I as follows:

– DI := N × N, cIi := (i, 0), for i ∈ [0, n], H̄I := (DI × DI) \HI ,
– CI

i := {(i, 0) ∈ DI | ci is a Ci ∈ FT }, for i ∈ [0, n],
– HI := {((i, j), (i, j + 1)) ∈ DI × DI | ((i, j), (i, j + 1)) ∈ H}, and
– V I := {((i, j), (i + 1, j)) ∈ DI × DI | ((i, j), (i + 1, j)) ∈ V}.

Clearly, I is the model we are looking for. ��

6 Conclusions and Related Work

We have studied the semantic data complexity of Pratt and Third’s fragments of English
in the contexts of structured data access (KBQA) and to a lesser degree, of declaring

270 C. Thorne

or updating information (KBSAT). Table 3 summarizes the data complexity results pre-
sented in this paper.

Regarding data access, we can observe that as soon as function word combinations,
in either the declarations alone or the declarations and queries, expressing full Boolean
conjunction and negation, yielding a so-called “Boolean-closed” fragment (i.e., ex-
pressing Boolean functions), as is the case with COP+Rel are covered by the language,
the task becomes intractable. Such combinations are: either (i) negation in subject NPs
or (ii) relatives and negation in subject NPs and predicate VPs. When, in addition to
these intractable constructs, transitive verbs (expressing binary relations) and anaphoric
pronouns are covered, undecidability ensues. The latter observation is particularly inter-
esting as the fragment COP+Rel+TV+RA is decidable for plain satisfiability (Pratt and
Third in [17] show that this problem is NEXPTIME-complete). See Table 3. It is also
interesting to note that this result strengthens Pratt’s result in [15], Th. 3, stating that
KBQA for the 2-variable fragment of FO and CQs is undecidable (COP+Rel+TV+RA+

is strictly subsumed by the 2-variable fragment).
Also, if membership in NP of (and a fortiori for COP+Rel+TV+RA and the frag-

ments it subsumes) was known (cf. [15], Th. 1), it turns out that the same result can
be shown for restricted 3-variable fragments such as COP+Rel+TV+DTV via reso-
lution saturations. It can also be observed that the boundary between tractability and
intractability in this case lies on whether the fragment is both “Boolean-closed” and
expresses (via transitive verbs) binary relations.

In so doing we have identified maximal and minimal fragments (and English con-
structs) of known (and very expressive) controlled fragments English, tailored specif-
ically for data management tasks, such as ACE [7], for which consistency and query
answering are, resp., tractable and intractable w.r.t. data complexity.

Aknowledgements. I would wish to thank Ian Pratt-Hartmann and Diego Calvanese
for the discussions that originated this paper, and the anonymous reviewers, whose com-
ments resulted in substantial improvements.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1995)

2. Baader, F., Calvanese, D., Nardi, D., Patel-Schneider, P., McGuinness, D.: The Description
Logic Handbook. Cambridge University Press, Cambridge (2003)

3. Berger, R.: The Undecidability of the Domino Problem. Memoirs of the American Mathe-
matical Society. American Mathematical Society, Providence (1966)

4. Bernardi, R., Calvanese, D., Thorne, C.: Expressing DL-Lite ontologies with controlled En-
glish. In: Proceedings of the 20th International Workshop on Description Logics, DL 2007
(2007)

5. Cimiano, P., Haase, P., Heizmann, J., Mantel, M., Studer, R.: Towards portable natural lan-
guage interfaces to knowledge bases - The case of the ORAKEL system. Data and Knowl-
edge Engineering 65(2), 325–354 (2008)

6. Fermüller, C.G., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, pp. 1791–
1849. Elsevier - The MIT Press (2001)

Querying the Fragments of English 271

7. Fuchs, N.E., Kaljurand, K., Schneider, G.: Attempto Controlled English meets the challenges
of knowledge representation, reasoning, interoperability and user interfaces. In: Proceed-
ings of the 19th International Florida Artificial Intelligence Research Society Conference,
FLAIRS 2006 (2005)

8. Gurevitch, Y., Grädel, E., Börger, E.: The Classical Decision Problem. Springer, Heidelberg
(2001)

9. Joyner Jr., W.H.: Resolution strategies as decision procedures. Journal of the ACM 23(3),
398–417 (1976)

10. Jurafsky, D., Martin, J.: Speech and Language Processing, 2nd edn. Prentice Hall, Englewood
Cliffs (2009)

11. Kaufmann, E., Bernstein, A.: How useful are natural language interfaces to the semantic web
for casual end-users? In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon,
L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 281–294. Springer, Heidelberg
(2007)

12. Lalément, R.: Logique, réduction, résolution. Dunod (1997)
13. Minock, M., Olofsson, P., Näslund, A.: Towards building robust natural language interfaces

to databases. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS,
vol. 5039, pp. 187–198. Springer, Heidelberg (2008)

14. Montague, R.: Universal grammar. Theoria 36(3), 373–398 (1970)
15. Pratt-Hartmann, I.: Data complexity of the two-variable fragment with counting quantifiers.

Information and Computation 207(8), 867–888 (2008)
16. Pratt-Hartmann, I.: Computational complexity in natural language. In: Handbook of Compu-

tational Linguistics and Natural Language Processing, pp. 43–73. Wiley-Blackwell (2010)
17. Pratt-Hartmann, I., Third, A.: More fragments of language. Notre Dame Journal of Formal

Logic 47(2), 151–177 (2006)
18. Rich, E.: Natural-language interfaces. Computer 19(9), 39–47 (1984)
19. Robinson, A.: A machine-oriented logic based on the resolution principle. Journal of the

ACM 12(1) (1965)
20. Schaerf, A.: On the complexity of the instance checking problem in concept languages with

existential quantification. Journal of Intelligent Information Systems 2(3), 265–278 (1993)
21. Szymanik, J.: The computational complexity of quantified reciprocals. In: Bosch, P.,

Gabelaia, D., Lang, J. (eds.) TbiLLC 2007. LNCS, vol. 5422, pp. 139–152. Springer, Hei-
delberg (2009)

22. Thorne, C., Calvanese, D.: The data complexity of the syllogistic fragments of English. In:
Proceedings of the 2009 Amsterdam Colloquium, AC 2009 (2010)

23. Vardi, M.: The complexity of relational query languages. In: Proceedings of the Fourteenth
Annual ACM Symposium on Theory of Computing (1982)

Strong Paraconsistency by Separating

Composition and Decomposition in Classical
Logic�

Peter Verdée��

Centre for Logic and Philosophy of Science,
Ghent University, Belgium
Peter.Verdee@UGent.be

Abstract. In this paper I elaborate a proof system that is able to
prove all classical first order logic consequences of consistent premise
sets, without proving trivial consequences of inconsistent premises (as in
A,¬A � B). Essentially this result is obtained by formally distinguish-
ing consequences that are the result of merely decomposing the premises
into their subformulas from consequences that may be the result of also
composing ‘new’, more complex formulas. I require that, whenever ‘new’
formulas are derived, they are to be preceded by a special +-symbol
and these +-preceded formulas are not to be decomposed. By doing
this, the proofs are separated into a decomposition phase followed by
a composition phase. The proofs are recursive, axiomatizable and, as
they do not trivialize inconsistent premise sets, they define a very strong
non-transitive paraconsistent logic, for which I also provide an adequate
semantics.

1 Introduction

Let a rule be a metalinguistic expression of the form “from A1, . . . , An−1 and
An derive B, provided condition”. Instances of A1, . . . An will be called the lo-
cal premises of (an application of) the rule and an instance of B will be called
the conclusion of (an application of) the rule. In usual natural deduction proof
systems for classical logic, one is able to distinguish between what I shall call
compositional and decompositional rules. Compositional rules are rules of which
the conclusion nor its negation occurs as a subformula in the local premises.
Decompositional rules are rules that are not compositional. Examples of typi-
cal compositional rules include Addition (from ‘A’ derive ‘A ∨ B’), Adjunction
(from ‘A’ and ‘B’ derive ‘A∧B’), Existential Generalization (from ‘A(α)’ derive
‘∃βA(β)’, where β is a variable) and Introduction of the Identity (derive α = α).
Typical decompositional rules are Conjunction Elimination (from ‘A∧B’ derive
‘A’), Universal Instantiation (from ‘∀αA(α)’ derive ‘A(β)’), Modus Ponens (from
� I am indebted to the referees for providing useful comments on a former draft and

for pointing my attention to some interesting related literature.
�� Peter Verdée is a post-doctoral fellow of the Fund for Scientific Research – Flanders.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 272–292, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Strong Paraconsistency by Separating Composition and Decomposition 273

‘A ⊃ B’ and ‘A’ derive ‘B’) and Modus Tollens (from ‘A ⊃ B’ and ‘¬B’, derive
‘¬A’).

How can we interpret such a distinction? It is clarifying to look at this dis-
tinction from a information-theoretical point of view. We could consider rules
as means to obtain more information from already derived information. Every
step of a prove governed by rules reveals or discovers more information from the
premises of the proof or from the laws of pure logic (in case of theorems)1. This
process of revealing information goes in two directions. Decompositional rules
reveal the information that is already fully present in the local premises. They
make this information available for further proof steps. Compositional rules on
the other hand somehow construct new information: they construct new (true)
strings by bringing new symbols into the proof (in the case of Addition) or by
combining already available strings and symbols into new more complex strings.
The compositional steps of interesting proofs create new information about the
premises, while the decompositional steps only analyze the premises. Compare
it to a toy house built with Lego blocks. The decompositional steps correspond
to the breaking down of the house into smaller parts, without doing anything
new. The compositional steps correspond to building up the smaller parts into
new creative houses or other constructions.

This distinction has an interesting computational aspect. One needs no goal
directed procedure to apply all possible decompositional rules to a (finite) set of
premises. This can be done in linear time, because the resulting formulas can only
become smaller. Of course this is not the case for the compositional rules. One is,
for example, able to apply the rule ‘from A derive A ∧ A’ infinitely many times
starting from one premise without ever obtaining the same formula. Hence, in or-
der to have any chance at ever finding an interesting result by applying composi-
tional rules, one needs a goal directed procedure, i.e. an algorithm that determines
which rules to apply in order to be able to derive interesting formulas (goals).

My aim in this paper is threefold: first, I shall show that it is possible to de-
vise a proof system for classical first order logic (henceforth called CL) in which
one can properly distinguish the compositional from the decompositional rules.
This might seem evident, but remember that fitch style proofs for example use
conditional proofs. The status of the rule that allows one to derive an implication
from a conditional proof is obviously a compositional rule. However, the condi-
tional proof itself might also use decomposition, while the results of decomposition
steps in conditional proofs definitely are not decompositions of the premises of the
main proof. So, what would their status be? A usual axiom system has another
problem: all steps, apart from Modus Ponens and the introduction of premises,

1 According to the traditional view on information, logical deduction cannot provide
new information. This position however is not anymore considered tenable by various
contemporary scholars (cf. [7] and [11]). A more epistemic perspective on the matter,
taking into account the fact that realistic agents do not have logical omniscience,
calls for a less extreme position. Here I look at information from an intuitive epis-
temic stance. A more formal elaboration of my stance on information in deductive
reasoning contexts is forthcoming.

274 P. Verdée

are compositional (or decompositional, depending on whether one sees axioms as
available information). Obviously this makes the distinction rather useless. The
proof system in this paper makes a clear distinction between compositional and
decompositional steps. This distinction is even present at the object level: com-
positional steps result in formulas preceded by a special +-symbol. The logic C,
which I shall present here will formalize this proof system. The logic has a straight
forward axiomatization and is therefore a usual Tarski logic: compact, monotonic,
reflexive and transitive.

Secondly, I want to show that, using this proof system, one only needs one phase
of decompositional steps followed by one phase of compositional steps in order
to obtain the full consistent fragment of classical logic. This is implemented by
requiring that, whenever ‘new’, composed formulas are derived, they are to be
preceded by a special +-symbol and these +-preceded formulas are not to be de-
composed. The decomposition phase, i.e. the phase in which formulas are only de-
composed and no +-preceded formulas are obtained, could be interpreted as the
analysis of the information present in the premises into the essential parts needed
for the decomposition phase, where one is able to derive new, composed formu-
las. For the propositional level, the first phase more or less comes to analyzing
the premises into a normal form. However, at the predicative level this is more
complex.

Thirdly, and this is the main result, I want to show that one obtains a very nice
paraconsistent logic called CL− by separating composition and decomposition.
This first order logic is paraconsistent, in the sense that inconsistent premise
sets do not lead to a trivial consequence set but the only thing one has to
give up by moving to this special paraconsistent logic is transitivity (sometimes
also called the ‘Cut’-rule, i.e. if Γ � C for all C ∈ Δ and Γ ∪ Δ � B then
Γ � B). The logic is computationally not more complex than CL and has an
elegant proof system. Moveover, and most importantly, everything useful that is
derivable using CL, can also be derived using C. This logic defines a consequence
relation that is only weaker than the CL-consequence relation in the following
two aspects: (i) the trivial consequences of inconsistent premises are lost, but I
suppose nobody will see this as a disadvantage and (ii) the consequence relation
is no longer transitive. This last property might be considered as a disadvantage,
but is solved by the fact that the logic C itself is transitive. Although C defines a
weaker paraconsistent consequence relation than CL− in the usual CL language,
the logics C and CL− have essentially the same proof theory and every reasoning
process explicated by CL− can also be explicated by the logic C.

The results in this paper are strongly inspired by important work by Batens
and Provijn on so called goal directed or prospective proofs (cf. [1], [3], [4] and
[12]). The proofs they present are essentially procedural and goal dependent, i.e.
the correctness of a proof does not only depend on the premises of the proof but
also on the goal of the proof (the formula that is to be derived). The propositional
version of the logic CL− is an unexpected result of their goal directed proof
system. It is my aim to (i) generalize their results on CL− to the first order level
and (ii) to translate their proofs to usual non goal dependent, non procedural

Strong Paraconsistency by Separating Composition and Decomposition 275

proofs. This has the important advantage that one can accumulate and reuse
conclusions from a set of premises, i.e. old results obtained in proofs for some
goal A can be reused in proofs for a different goal B. This way I am able to
reintroduce transitivity. Although I give up goal dependence, I shall show that
my proofs can still very easily be turned into goal directed proofs, by adding
some heuristic restrictions to the rules of the logic.

The logic presented in this paper is also related to Besnard and Hunter’s quasi-
classical logic (cf. [5], [9], and [10]) and Craig’s Linear Reasoning (cf. [6]), which is
inspired by Gentzen’s famous cut-elimination theorem (cf. [8]). Both approaches
separate compositional from decompositional steps in classical logic in a very
similar way (apart from some details, the distinction is identical to the one I
make). Craig, however, did not relate his results to paraconsistency, neither did
he give a semantics for his proof system. Besnard and Hunter’s fascinating QC
logic is quite similar to the logic CL− (apart from the fact that their consequence
relation (in general) does not validate CL-theorems), but lacks some of the
attractive properties of the here presented logic C, viz. (1) they do not present
an axiomatization, (2) they do not introduce a symbol (like the +-symbol) to
express the difference between decomposition and composition at object level,
(3) their proofs do not show the attractive relevant logic interpretation that
I shall explain in section 7, and (4) the semantic construction I shall present
explicitly separates compositional and decomposition steps by means of gluts or
gaps for all formulas, whereas their semantics is only an adequate semantics for
the consequence relation Q (not for individual proof steps).

2 Language and Proof Theory

I start by presenting the formal languages that occur in this paper.
Let L be the language of CL with the logical symbols ¬, ⊃, ∃, and = (but

without function symbols); C is the set of (letters for) individual constants, V
the set of individual variables, S is the set of sentential letters, and Pr the set of
predicates of rank r ≥ 0—predicates of rank 0 will function as sentential letters.
The members of Pr will be P r, Qr, Rr, P r

1 , Let F denote the set of (possibly
open) formulas of L and let W denote the set of closed formulas of L. Let ¬Pr

be the set of the members of Pr to which a ¬-symbol is added as a subscript,
i.e. the set {P r

¬, Qr
¬, Rr

¬, P r
1¬, . . .} and let ¬S be the set of the members of S to

which a ¬-symbol is added as a subscript, i.e. the set {p¬, q¬, r¬, p1¬, . . .}.
But the actual language of the logic C contains an extra +-symbol. Let L+

be exactly like L, apart from the fact that the unary symbol + is added to the
language. This symbol should only occur in front of formulas and should not be
nested. W+ = {+A | A ∈ W} ∪W. F+ is defined analogously.

P denotes the set of all members of W in which no logical symbols (not even
identity) occur and I = {α = β | α, β ∈ C}. P¬ = P ∪ {¬A | A ∈ P} and
P+ = P ∪ {+A | A ∈ P}. I+ and I¬ are defined analogously.

Let us now turn to the description of the proof system. In order to facilitate
this, I introduce the abbreviations ∗ and ‡: where A ∈ W , ∗¬A = A, ∗A = ¬A
if A is not of the form ¬B, ‡ + A =df ∗A, and ‡A =df + ∗ A.

276 P. Verdée

Lines of proofs do not contain just one formula, but a finite set of formulas
between � and �. I use the sloppy notation �A1, . . . , An, Δ1, . . . , Δk, B1, . . . , Bm�,
where {A1, . . . , An} and {B1, . . . , Bn} are possibly empty, to denote the line�{A1, . . . , An, B1, . . . , Bm} ∪ Δ1 ∪ . . . ∪ Δk

�
. The intuitive meaning of such lines

is that at least one of the formulas in the set between � and � on a derived line is
derivable. But note that this interpretation is formally not entirely correct: the
lines are actually a lot stronger than this, and behave like contraposable relevant
conditionals, cf. section 7.

I start by presenting an axiomatic proof system with 9 axiom schemata and
3 rules2.

AS1 �∗A, +A�
AS2 �+ ∗ A, +A�
AS3

�
A, B, +¬(A ∨ B)

�

AS4
�∗B, +(A ∨ B)

�

AS5 �+α = α�
AS6

�∗A(α), +∃xA(x)
�

AS7
�
+A(α), + ∗ A(β), +¬α = β

�

AS8 �+¬α = β, +¬β = γ, α = γ�
AS9 �+¬α = β, β = α�
PREM if A ∈ Γ , derive �A�
TRANS from �A, Δ1� and �‡A, Δ2� derive �Δ1 ∪ Δ2�
UG if β ∈ C does not occur in Δ ∪ Γ ∪ {A(α)}, from

�
Δ, +A(β)

�
derive�

Δ, +¬∃α ∗ A(α)
�

Definition 1. A C-proof from a set of premises Γ is a list of lines of the form
�Δ� where Δ ⊂ W+ is finite and each line is an instance of one of the axiom
schemata AS1-9 or the result of an application of one of the rules TRANS,
PREM or UG.

Definition 2. Where Γ ∪ {A} ⊂ W+, Γ �C A iff there is a C-proof from
premises Γ in which �A� occurs on a line. Where Γ ∪ Δ ⊂ W+, Γ �C �Δ� iff
there is a C-proof from premises Γ in which �Δ� occurs on a line.

This completes the definition of the proof system C. I now introduce a more in-
tuitive rule system called C2 (with many redundant, derivable rules). It inherits
the 3 rules of C, but 15 rules are added.

R1 derive �∗A, +A�
R2 from �A, Δ� derive �+A, Δ�
R3 from �+ ∗ A, + ∗ B, Δ� derive

�
+¬(A ∨ B), Δ

�

R4 from �A ∨ B, Δ� derive �A, B, Δ�
R5 from �+A, Δ� derive

�
+(A ∨ B), Δ

�

R6 from �+B, Δ� derive
�
+(A ∨ B), Δ

�

2 Concerning the rule UG: if all β ∈ C already occur in Γ , one may introduce dummy
constants in C-proofs, but the formulas that are the conclusions of the proof should
not contain these dummy constants.

Strong Paraconsistency by Separating Composition and Decomposition 277

R7 from
�¬(A ∨ B), Δ

�
derive �∗A, Δ�

R8 from
�¬(A ∨ B), Δ

�
derive �∗B, Δ�

R9 derive �+α = α�
R10 �+¬α = β, +¬β = γ, α = γ�
R11 �+¬α = β, β = α�
R12 from

�
+A(α), Δ

�
derive

�
+∃xA(x), Δ

�

R13 from
�¬∃xA(x), Δ

�
derive

�∗A(α), Δ
�

R14 from
�
A(α), Δ

�
and
�∗A(β), Δ

�
derive �+¬α = β, Δ�

R15 from �α = β, Δ� and
�
A(α), Δ

�
derive

�
+A(β), Δ

�

Definition 3. A C2-proof from a set of premises Γ is a list of lines of the form
�Δ� where Δ ⊂ W+ and each line is the result of an application of one of the
rules TRANS, PREM or UG or R1-R15.

Definition 4. Γ �C2 A iff there is a C-proof from premises Γ in which �A�
occurs on a line. Γ �C2 �Δ� iff there is a C-proof from premises Γ in which
�Δ� occurs on a line.

The proof systems C and C2 lead to exactly the same consequence relation.
This is stated in the following theorem, which can easily be proved by showing
that all C-axioms can be derived using C2 rules and vice versa.

Theorem 1. Γ �C �Δ� iff Γ �C2 �Δ�.

C2 has the advantage of yielding more natural proofs and explicitly showing the
difference between composition and decomposition, while C is metatheoretically
more elegant.

In both C and C2 one is able to define the other usual connectives in the
usual way, i.e. A ⊃ B =df ∗A ∨ B, A ∧ B =df ¬(∗A ∨ ∗B), A ≡ B =df (A ⊃
B) ∧ (B ⊃ A), and ∀αA(α) =df ¬∃α ∗ A(α). In the example proofs, I shall use
these defined symbols as abbreviations for their definientia.

Where L is a logic, W ′ is the language of L, and Γ ⊆ W ′, let CnL(Γ) =df
{A ∈ W ′ | Γ �L A}. The following theorem will be proved later (in section 7
as theorem 9), but C is a logic that is derived from CL and the C-proofs are
meant to prove CL-consequences, so this theorem is essential to understand the
function of C-proofs; it says that one can prove every CL-consequence of every
premise set Γ ⊂ W with a C-proof, as far as CnCL(Γ) is not trivial3.

Theorem 2. If there is some C such that Γ �CL C, then Γ �C +A iff Γ �CL A.

Although our proofs are strong enough to prove all useful CL-consequences,
they respect the requirements for the behavior of the +-symbol: (i) every time
a new, more complex formula is derived, it is preceded by a +-symbol (for
example {Pa} �C +∃xPx, �C +a = a, {Pa, Pb} �C +(Pa ∧ Pb) and {Pa ∨
Pb} �C +(Pb ∨ Pa) but {Pa} �C ∃xPx, �C a = a, {Pa, Pb} �C Pa ∧ Pb

3 Remark that this is not a weakness: if CnCL(Γ) is trivial, proving CL-consequences
of Γ is quite useless anyway.

278 P. Verdée

and {Pa ∨ Pb} �C Pb ∨ Pa) and on the other hand (ii) a formula which is
preceded by a +-symbol is never decomposed ({+∀x(Px ∧ Rx)} �C +Pa and
{+(Pa ⊃ Pb), Pa} �C Pb). The only case where the requirements for the +-
symbol are slightly loosened is the case of identity. In order to obtain an elegant
metatheory, I had to allow {a = b, b = c} �C a = c, {a = b} �C b = a and
{a = b} �C a = a, although, strictly speaking, the ideas from section 1 would
have required that these conclusions would only be allowed when preceded by a
+-symbol, as e.g. a = a or b = a or their negations are not subformulas of a = b.
Remark, however, that this is not a severe violation of the principles. Unlike in
the case of e.g. what is sometimes called the stuttering rule (A � A∧A), which is
not valid in C, these identity transitivity and symmetry rules can never result in
infinitely many +-free consequences of finitely many premises. For example the
only +-free C-consequences of {a = b, b = c} are {a = a, a = b, a = c, b = a, b =
b, b = c, c = a, c = b, c = c}. As a consequence, these identity rules might also
be seen as rules that result in a special kind of decomposition steps, rather than
composition steps. Do not confuse this special case with normal identity cases,
e.g. {Pa, a = b} �C Pb and {Pa} �C a = a, as the normal cases are perfectly in
line with the requirements.

Finally, the attention of the reader should be pointed at the paraconsistency
of C, i.e. for every A ∈ W+, there is a B ∈ W+ such that A,¬A �A B. One
can prove this by means of the paraconsistency of the semantics of C defined
in Section 4 plus the soundness of the proof theory of C with respect to its
semantics (cf. Section 5). However, to get a hint of how explosion is avoided,
observe that there is no immediate Ex Falso Quodlibet rule in C. Also, the
alternative way to derive explosion always involves composing a new formula
which is later decomposed (for example by applying Addition and Disjunctive
Syllogisme to an inconsistency: in case we have p and ¬p, simply apply p/p ∨ q
(Addition) and ¬p, p∨ q/q (Disjunctive Syllogism) — p∨ q as a newly composed
formula which is decomposed later). Precisely this is blocked in C whence this
blockage makes explosion impossible and the logic paraconsistent.

3 Examples

C-proof for a = b �C a = a
1 �a = b� PREM
2 �+¬a = b,+¬b = a, a = a� AS8
3 �+¬b = a, a = a� TRANS; 1,2
4 �+¬a = b, b = a� AS9
5 �b = a� TRANS; 1,4
6 �a = a� TRANS; 3,5

C2-proof for ∃x∀yPxy �C ∀y∃xPxy
1 �∃x∀yPxy� PREM
2 �∀yPay,+ ∗ ∀yPay� R1
3 �Pab,+ ∗ ∀yPay� R13; 2
4 �+Pab,+ ∗ ∀yPay� R2; 3
5 �+∃xPxb,+ ∗ ∀yPay� R12; 4

Strong Paraconsistency by Separating Composition and Decomposition 279

6 �+∀y∃xPxy,+ ∗ ∀yPay� UG; 5
7 �+∀y∃xPxy,+ ∗ ∃x∀xPxy� UG; 6
8 �+∀y∃xPxy� TRANS; 1,7

C2-proof for �C +∀x∃y(((Px∧ ¬Rx) ∧ (¬Py ∨ ¬Ry)) ⊃ ¬x = y)
(in the following proof, let X abbreviate +(((Pa ∧ ¬Ra) ∧ (¬Pb ∨ ¬Rb)) ⊃ ¬a = b))
1
�¬(((Pa ∧ ¬Ra) ∧ (¬Pb ∨Rb)) ⊃ ¬a = b),X

�
R1

2
�
(Pa ∧ ¬Ra) ∧ (¬Pb ∨Rb),X� R7; 1

3 �Pa ∧ ¬Ra,X� R7; 2
4 �Pa,X� R7; 3
5 �¬Ra,X� R8; 3
6 �¬Pb ∨Rb,X� R8; 2
7 �¬Pb,Rb,X� R4; 6
8 �¬a = b,Rb,X� R10; 4,7
9 �¬a = b,X� R10; 5,8
10 �a = b,X� R8; 1
11 �+a = b,X� R2; 10
12 �X� TRANS; 9,11
13
�
+∃y(((Pa ∧ ¬Ra) ∧ (¬Py ∨ ¬Ry)) ⊃ ¬a = y)

�
R12; 12

14
�
+∀x∃y(((Px∧ ¬Rx) ∧ (¬Py ∨ ¬Ry)) ⊃ ¬x = y)

�
UG; 11

C2-proof for ∀x(¬Px ∨ (Qx ∧ Rx)), Pa �C +∃y(Qy ∨ Sy)
1
�∀x(¬Px ∨ (Qx ∧Rx))� PREM

2
�¬Pa ∨ (Qa ∧Ra)� R13; 1

3 �Pa� PREM
4 �¬Pa,Qa ∧ Ra� R4; 2
5 �+¬Pa,Qa ∧Ra� R2; 4
6 �Qa ∧Ra� TRANS; 5
7 �Qa� R7; 6
8 �+Qa� R2; 7
9
�
+(Qa ∨ Sa)� R5; 8

10
�
+∃y(Qy ∨ Sy)� R12; 9

4 Semantics

Because this proof system (although it is a proof system for (consistent) CL)
shows, thanks to its +-symbol and its paraconsistency, behavior that is quite
different from CL, it should not come as a surprise that one needs a completely
different semantics for C.

We shall use pseudo-constants to present the semantics as efficiently as possible.
They do not occur in the actual object language (in premises, proofs or conclu-
sions) but only in the semantics. The set O is the set of pseudo-constants. The
language Lo is the language L enriched with these constants. The sets Fo,Wo,Po,
Io,F+

o ,W+
o ,P+

o , I+o , P¬
o , and I¬o are identical to the respective sets without subscript

o, except for the replacement of C by C ∪ O in their definitions.
The semantics I am about to present is perfectly deterministic but has the

unusual property that the assignment assigns (unrelated) truth values to all
formulas (not only the primitive ones). This technical choice is made in order
to ensure that all formulas without a +-symbol show a logical gap (the normal

280 P. Verdée

truth condition for the formula might be true, whilst the formula itself is false)
and all formulas with a +-symbol show a logical glut (the normal truth condition
for the formula might be false, whilst the formula itself is true). In this way we
obtain that our requirements about +-symbols are satisfied.

A C-model M is a triple 〈v, w, D〉, where D (the domain) is some set of
objects, w:W+

o → {0, 1} is an assignment function which assigns a truth value
to every formula, without respecting the structure of the formula, and v is an
assignment function that has the following properties:

(i) v: C ∪ O → D (with D = {v(α) | α ∈ C ∪ O})
(ii) v:S ∪ ¬S → {0, 1}
(iii) v:Pr ∪ ¬Pr → ℘(D(r)) (for every r ≥ 1).
(iv) v: {¬ ·= ·, ·= ·, +¬ ·= ·} → ℘(D(2))

Let Iv(A), where v is an assignment function with the properties mentioned
above and A is an atomic formula, be defined by ‘Iv(πrα1 . . . αr) =df 〈v(α1), . . . ,
v(αr)〉 ∈ v(πr)’, ‘Iv(¬πrα1 . . . αr) =df 〈v(α1), . . . , v(αr)〉 ∈ v(πr

¬)’, ‘Iv(σ) =df

v(σ) = 1’, ‘Iv(¬σ) =df v(σ¬) = 1’, ‘Iv(α = β) = 〈v(α), v(β)〉 ∈ v(· = ·)’,
‘Iv(¬α = β) = 〈v(α), v(β)〉 ∈ v(¬ · = ·)’, and ‘Iv(+¬α = β) = 〈v(α), v(β)〉 ∈
v(+¬ ·= ·)’. Let TM (β), where M is a model 〈v, w, D〉 and β ∈ D, abbreviate
the semantic statement ‘either 〈β, β〉 ∈ v(¬ ·= ·) or there is a r-ary predicate π
and α1, . . . , αr−1 ∈ D, such that 〈α1, . . . , αi, β, αi+1, . . . , αr−1〉 ∈ v(πr)∩v(πr

¬)’.

Definition 5. The function ‡ which maps metalinguistic semantic expressions
to metalinguistic semantic expressions is recursively defined by means of the
following clauses (between quotation marks)—note that I write square brackets
to avoid confusion between function brackets and brackets in semantic expres-
sions: “‡[A or B] =df ‡A and ‡B”, “‡[A and B] =df ‡A or ‡B”, “‡[for all β ∈
C ∪O, A] =df there exists a β ∈ C ∪O such that ‡A”, “‡[there exists a β ∈ C ∪O
such that A] =df for all β ∈ C∪O, ‡A”, “‡[w(A) = 1] =df w(A) = 0 or w(‡A) =
1”, “‡[Iv(A)] =df not Iv(A) or Iv(¬A)” where A ∈ P, “‡[Iv(α = β)] =df not
Iv(α = β) or Iv(+¬α = β)”, “‡[not Iv(A) or Iv(¬A)] =df Iv(A)” where A ∈ P,
“‡[v(α) �= v(β) or TM (v(α))] =df v(α) = v(β)”, “‡[v(α) = v(β)] =df v(α) �=
v(β) or TM (v(α))” and finally “‡[vM (A) = i] =df vM (‡A) = i”, where i ∈ {0, 1}.

The valuation function vM :W+
o → {0, 1}, where M = 〈v, w, D〉 is a C-model, is

defined by the following clauses.

S1 where A ∈ P, vM (A) = 1 iff w(A) = 1 and Iv(A)
S2 where A ∈ P, vM (¬A) = 1 iff w(¬A) = 1 and (not Iv(A) or Iv(¬A))
S3 vM (¬¬A) = 1 iff w(¬¬A) = 1 and vM (A) = 1
S4 vM (¬(A ∨ B)) = 1 iff w(¬(A ∨ B)) = 1 and vM (∗A) = 1 and vM (∗B) = 1
S5 vM (A ∨ B) = 1 iff w(A ∨ B) = 1 and (vM (+ ∗ A) = 0 or vM (B) = 1) and

(vM (+ ∗ B) = 0 or vM (A) = 1)
S6 vM (¬∃αA(α)) = 1 iff w(¬∃αA(α)) = 1 and for all β ∈ C∪O, vM (¬A(β)) =

1

Strong Paraconsistency by Separating Composition and Decomposition 281

S7 vM (∃αA(α)) = 1 iff w(∃αA(α)) = 1 and there exists a β ∈ C ∪ O,
such that vM (A(β)) = 1

S8 vM (¬α = β) = 1 iff w(¬α = β) = 1 and (v(α) �= v(β) or TM (v(α)))
S9 vM (α = β) = 1 iff (Iv(α = β) or w(β = β) = 1) and v(α) = v(β)
S10 vM (+A) = 1 iff ‡[vM (∗A) = 1]

Clauses S2, S8 and S10 deserve a little extra attention. Clause S2 and S8 in-
troduce another type of gluts than the ones introduced to fulfil the requirement
for the +-symbol. This glut is a typical negation glut and ensures the paracon-
sistency of the logic. Remark that the logic needs to be paraconsistent as we
obviously do not want to decompose formulas A and ¬A into an arbitrary for-
mula B. Clause S10 abbreviates all clauses for formulas of the form +A. They
are generated by ‡-transforming the clause for ∗A in line with Definition 5.

Given these criteria for being a C valuation function vM we can obtain the
following properties (for every A ∈ W+

o and every C-model M) by a straight
forward mathematical induction on the complexity of A.

Lemma 1. 1. if vM (A) = 1 then vM (+A) = 1
2. vM (A) = 1 or vM (‡A) = 1

Finally we have all the means to determine when a C-model satisfies a formula
and to define semantic consequence.

Definition 6. Satisfaction.
Where A ∈ W+ and M is a C-model, M |= A iff vM (A) = 1.

Definition 7. Semantic C-consequence.
Where Γ ∪ {A} ⊂ W+, Γ �C A iff M |= A for every model M such that

M |= B for all B ∈ Γ .

5 Soundness, Completeness and Other Important
Properties

We start by some important properties of the logic C. The next interesting
Lemma might be seen as an alternative for the usual deduction theorem. It is
proven in the Appendix of this paper.

Lemma 2. If Δ′ ⊂ Δ and Γ ∪ {‡B|B ∈ Δ′} �C
�
Δ − Δ′�, then there is a

Θ ⊂ {‡B|B ∈ Δ′} such that Γ ∪ Θ �C
�
Δ − Δ′� or Γ �C �Δ�

This lemma has some interesting corollaries.

Corollary 1. If Γ ∪ A �C B then Γ �C B or Γ �C �‡A, B�.

Corollary 2. If Γ ∪ A �C B then Γ �C B or Γ ∪ {‡B} �C ‡A.

Corollary 3. If Γ ∪ {A} �C B and Γ ∪ Δ ∪ {‡A} �C B, then Γ ∪ Δ �C B.

The next lemma immediately entails the soundness theorem for C.

282 P. Verdée

Lemma 3. If Γ �C �Δ� then for all A ∈ Δ, Γ ∪ {‡B | B ∈ Δ − {A}} �C A.

Proving Lemma 3 is just a matter of letting every line of every proof correspond
to its appropriate semantic C-consequence and proving that every C-rule corre-
sponds to a correct fact about semantic C-consequences. This is quite straight
forward except maybe for the fact that one should be aware of the fact that
�A, A� is identical to �A�. The semantic fact that correspond to this is that
Γ ∪ {‡A} �C A iff Γ �C A, which is warranted by Lemma 1.

Theorem 3. Soundness of C.
For every Γ ∪ {A} ⊆ W+, if Γ �C A then Γ �C A

The following completeness theorem is proved in the appendix of this paper.

Theorem 4. Completeness of C.
For every Γ ∪ {A} ⊆ W+, if Γ �C A then Γ �C A

Other important but easily provable properties of C are listed in the following
theorem.

Theorem 5. C is transitive, monotonic and reflexive. C-proofs are recursive
whence CnC is semi-recursive.

Finally, observe that C is paraconsistent, in view of the fact that every premise
set has a C-model; the model that makes all primitive formulas that occur in
the premises or of which the negation occurs in the premises true and all other
primitive formulas false. This model will satisfy the premises and falsify at least
one formula (on the condition that not all primitive formulas or their negations
occur in the premises—this condition is always true for premise sets {A,¬A}).
Theorem 6. C is paraconsistent, i.e. for every A ∈ W, there is a B ∈ W+

such that A,¬A �C B and also +A, +¬A �C B.

6 A Strong Paraconsistent Version of CL

We now return to the relation between C and CL. We start by defining an
extension of consistent CL (this is the logic that allows all the normal CL-
consequences of consistent premises and does not give any consequence for in-
consistent premise sets).

Definition 8. The logic CL−.
CL− uses the language L and where Γ ∪ {A} ∈ W, Γ �CL− A iff Γ �C +A

The propositional fragment of this logic is neatly characterized in [1] as the logic
Q. Proving that the propositional fragment of CL− is indeed equivalent to this
logic Q is quite straight forward but rather tedious.

I list the most important properties of CL− (most of them are easily provable,
except maybe the last one—for this property observe that A,¬A, (A∨B)∨¬(A∨
B) �C B, which is provable by means of a proof of which the essential lines are�
A ∨ B,¬(A ∨ B)

�
,
�
A, B,¬(A ∨ B)

�
, and �A, B,¬A�).

Strong Paraconsistency by Separating Composition and Decomposition 283

Theorem 7. 1. CL− is paraconsistent.
2. CL− is not transitive.
3. CL− is monotonic and reflexive.
4. CL−-proofs are recursive whence �CL− is a semi-recursive relation (if the

set of premises is recursive).
5. CnCL−(Γ ∪ {¬A ∨ A|A ∈ W}) = CnCL(Γ).

The semi-recursiveness of �CL− is quite important and remarkable. As far as my
knowledge goes, there are no other existing paraconsistent logics that allow all
the CL-consequences of consistent premise sets AND have a positive test when-
ever the set of premises is recursive. Most paraconsistent logics are weaker than
consistent CL (they invalidate CL-rules like Disjunctive Syllogism or Addition).
Those that are not weaker than consistent CL are usually non-monotonic (e.g.
inconsistency adaptive logics, see [2], and consistent CL itself), which means
that some consequences are revoked when the premise set is enriched with in-
consistencies. Of course, this requires a full overview over the premises before
one can be certain that some formula is a consequence. Consequently, these log-
ics do not have a positive test (for infinite premise sets) whence they are not
semi-recursive.

In what follows (and in the proofs in the appendix) let ∃A, where A ∈ F ,
denote the existential closure of A and let Γ �L A � B denote that M |= A or
M |= B, for all L-models M such that M |= Γ

We now jump to the adequateness of CL− (and hence also of C) with respect
to CL. Proving soundness is straight forward: if every line �Δ� is transformed
into
∨

Δ′, where Δ′ is Δ without +-symbols, every transformation is evidently
a correct CL-consequence of the premises without +-symbols.

Theorem 8. If Γ �CL− A then Γ �CL A.

Completeness however is less straight forward. We first need two lemma’s. The
first lemma is easily provable in view of Theorem 8 and the fact that A,¬A �CL

B.

Lemma 4. If Γ �C +∃(D ∧ ¬D) for some D ∈ F , then CnCL(Γ) = W.

Lemma 5. If Γ �C +A � +B � +C, then Γ �C +A, Γ �C +B, Γ �C +C or
Γ, + ∗ A, + ∗ B �C C.

Now we finally have all the means to prove the (consistent premises) complete-
ness of C and CL− with respect to CL. Remark that this theorem is exactly
the same as Theorem 2. The proof of this theorem is in the appendix.

Theorem 9. If there is some C such that Γ �CL C, then Γ �CL− A iff
Γ �CL A.

7 A Relevant Logic Interpretation for the Lines of
C-Proofs

The lines of C-proofs are easily interpretable as suggested by the soundness the-
orem: a line �Δ� in a proof from premises Γ is interpreted as the expression “for

284 P. Verdée

all A ∈ Δ, Γ ∪{‡B | B ∈ Δ−{A}} �C A”. This interpretation holds for all lines,
but the rules of the proofs are not complete with respect to this interpretation, i.e.
it is not the case that “if for every A ∈ Δ holds Γ ∪ {‡B | B ∈ Δ − {A}} �C A,
then Γ � �Δ�. A simple counterexample for this is the fact that A ∨ B, C ∨
D �C �A, B, C, D�, while obviously {A ∨ B, C ∨ D, +¬A, +¬B, +¬C} �C D,
{A∨B, C∨D, +¬A, +¬B, +¬D} �C C, {A∨B, C∨D, +¬A, +¬C, +¬D} �C B,
and {A ∨ B, C ∨ D, +¬B, +¬C, +¬D} �C A.

Actually, these lines of C-proof are in fact relevant contraposable implications
in disguise, where a line �A, B, C, D�, for example, would, in a usual relevant
logic like the logic R, be written as ∗A → (∗B → (∗C → D)). The reason why the
simple interpretation explained above is not adequate is precisely this relevant
character of the lines. In particular, the problem is related to the fact that our
proofs do not allow for weakening. This property/rule is usually expressed as
A → (B → A) and is not valid in relevant logics (if A is true anyhow, (the truth
of) B is irrelevant for the truth of A). In the case of C-proofs weakening comes
to deriving �C, D� from �C�, which is evidently impossible. Another relevantly
invalid property is A → (B → (¬A → B)). For our lines this comes to deriving
�A, B� from lines �A� and �B�, which is also not allowed. On the other hand all
relevantly unproblematic consequences are allowed in C-proofs (modus ponens,
transitivity, contraction, contraposition).

The following interpretation for lines of C-proofs is adequate with respect to
C-proofs.

Definition 9. Where Γ, Δ ⊂ W+, Γ �C �Δ� iff 〈Γ, Δ〉 ∈ X, where X is the
smallest set that satisfies the two following criteria

1. 〈Γ, {A}〉 ∈ X if Γ �C A,
2. 〈Γ ∪ {A}, Δ〉 ∈ X if 〈Γ, Δ〉 ∈ X,
3. 〈Γ ∪ Γ ′, Δ〉 if Γ �C A and 〈Γ ′ ∪ {A}, �Δ�〉, and
4. 〈Γ, Δ〉 if, for every Δ′ ⊂ Δ, 〈Γ ∪ {‡B|B ∈ Δ′}, Δ− Δ′〉 ∈ X and, for every

Θ ⊂ {‡B|B ∈ Δ′}, 〈Γ ∪ Θ, Δ − Δ′〉 /∈ X.

Theorem 10. For every Γ ∪ Δ ⊆ W+, Γ �C �Δ� iff Γ �C �Δ�.

Although this interpretation is not deterministic, it is quite interesting as it
seems to be an elegant means to define the semantics of quite a rich relevant
implication without reference to worlds and accessibility relations.

I shall now make the relation between C and relevant conditionals precise.
Let W→ be the set of formulas defined by W ⊂ W→ and A → B ∈ W→ iff
A, B ∈ W→. We need to define a translation function tr before we can proceed
to defining relevant theoremhood based on the lines of C-proofs.

1. where n > 0, B ∈ W and A1, . . . An ∈ W→,
tr(A1 → (A2 → (A3 → . . . (An → B) . . .))) =�‡tr′(A1), ‡tr′(A2), ‡tr′(A3), . . . , ‡tr′(An), +B

�

2. where A ∈ W , tr(A) = +A and tr′(A) = A
3. where A1, A2 ∈ W→ tr′(A1 → A2) = ¬tr′(A1) ∨ tr′(A2)

Strong Paraconsistency by Separating Composition and Decomposition 285

Definition 10. Let the logic �Cr be defined by:

• the set of formulas of Cr is W→,
• where A ∈ W→, �Cr A iff �C tr(A), and
• only theoremhood of Cr is defined, no consequence relation.

It is easy to check that: (in the right column the corresponding translation to
a C-theorem is mentioned)
�Cr B → (A→ B) �C �+ ∗B,+ ∗A,+B�
�Cr A→ (B → B) �C �+ ∗A,+ ∗B,+B�
�Cr A→ (¬B ∨B) �C

�
+ ∗A,+(¬B ∨B)

�

�Cr B → (¬B → A) �C �+ ∗B,+B,+A�
�Cr B → (A→ (¬B → A) �C �+ ∗B,+ ∗A,+B,+A�
�Cr A→ A �C �+ ∗A,+A�
�Cr A→ (A ∨ B) �C

�
+ ∗A,+(A ∨B)

�

�Cr (A ∧ B) → A �C
�
+ ∗ (A ∧B),+A

�

�Cr A→ (B → (A ∧B)) �C
�
+ ∗A,+ ∗B,+(A ∧ B)

�

where A ∈ W is a CL-theorem, �Cr A �C �+A�
�Cr (A→ B) → ((B → C) → (A→ C)) �C

�
+ ∗ (∗A ∨B),+ ∗ (∗B ∨ C),+ ∗A,+C�

�Cr (A→ (B → C)) → (B → (A→ C)) �C
�
+ ∗ (∗A ∨ (∗B ∨ C)),+ ∗B,+ ∗A,+C�

It is still unclear whether Cr is a fully relevant logic, but the above properties
are quite promising. All straight forward irrelevances of CL (paradoxes of mate-
rial implication) are eliminated for the →-implication, while at the same time it
is crystal clear that → is a fairly strong conditional (all axioms of the standard
relevant logic R are valid). Although it seems likely that Cr is a useful relevant
logic, it has an elegant proof theory which has an adequate semantics that does
not refer to worlds or accessibility relations. This is a rather remarkable result.

Remark that this conditional has some unusual properties. For example, Dis-
junctive Syllogism is valid (i.e. �Cr (A∨B) → (¬A → B)), and so are Addition
(i.e. �Cr A → (A ∨ B)), Transitivity (i.e. �Cr (A → B) → ((B → C) → (A →
C))), and Modus Ponens (i.e. �Cr A → ((A → B) → B)). From the validity of
these rules, one would expect that Ex Falso Quodlibet (i.e. A → (¬A → B)) is
also validated in Cr, but this is NOT the case. This is possible due to the fact
that the metatheoretic version of Modus Ponens (from � A and � A → B, derive
� B) is NOT valid in Cr.

8 Procedures for Proof Generation

In the first section, I mentioned that the ideas for the logic C are inspired by the
goal directed proof system defined by Batens and Provijn. The main objective of
those goal directed proofs is to push the heuristics a reasoner uses to construct
a proof for a given formula into the proof itself. The goal directed proofs do not
allow useless (but essentially correct) proof steps. For example, if one wants to
derive q from p and p ⊃ q, deriving p∨ r will (although evidently correct in CL)
never be considered as a wise step in a proof. Goal directed proofs give a formal
criterion to distinguish between potentially useful and useless steps in a proof

286 P. Verdée

with a certain goal. Evidently, these goal directed proofs, in which one avoids
useless steps, can easily be turned into algorithms that construct proofs. Hence,
they also form (partial) decision methods for logical consequence.

My aim was precisely to eliminate the goal dependency from the goal directed
proofs (and thereby making transitive reasoning and a usual semantics and ax-
iomatization for CL− possible). So I had to lose part of the advantage and the
original aim of the goal directed proofs. However, the goal directed element can
easily be added on top of the C1-proofs. Making C1-proofs as elegant and in-
sightful as the original goal directed proofs is just a matter of adding some minor
heuristic information to the proofs; the logical rules do not need to change. Such
an enterprise, however, is not substantial for my present purpose.

References

[1] Batens, D.: It might have been classical logic. Logique et Analyse,
http://logica.ugent.be/centrum/preprints/PCLs.pdf

[2] Batens, D.: Inconsistency-adaptive logics. In: Or�lowska, E. (ed.) Logic at Work.
Essays Dedicated to the Memory of Helena Rasiowa, pp. 445–472. Physica Verlag
(Springer) (1999)

[3] Batens, D.: A formal approach to problem solving. In: Delrieux, C., Legris, J. (eds.)
Computer Modeling of Scientific Reasoning, pp. 15–26. Universidad Nacional del
Sur, Bahia Blanca (2003)

[4] Batens, D., Provijn, D.: Pushing the search paths in the proofs. A study in proof
heuristics. Logique et Analyse 173-175, 113–134 (2001) (appeared 2003)

[5] Besnard, P., Hunter, A.: Quasi-classical logic: Non-trivializable classical reasoning
from incosistent information. In: Froidevaux, C., Kohlas, J. (eds.) ECSQARU
1995. LNCS, vol. 946, pp. 44–51. Springer, Heidelberg (1995)

[6] Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. The
Journal of Symbolic Logic 22(3), 250–268 (1957)

[7] D’Agostino, M., Floridi, L.: The enduring scandal of deduction. Synthese 167(2)
(2009)

[8] Gentzen, G.: Untersuchungen über das logische schließen. ii. Mathematische
Zeitschrift 39, 405–431 (1935) ISSN 0025-5874

[9] Hunter, A.: Reasoning with contradictory information using quasi-classical logic.
Journal of Logic and Computation 10, 677–703 (1999)

[10] Hunter, A.: A semantic tableau version of first-order quasi-classical logic. In:
Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp.
544–555. Springer, Heidelberg (2001)

[11] Jago, M.: Logical information and epistemic space. Synthese 167(2) (2009)
[12] Provijn, D.: Prospectieve dynamiek. Filosofische en technische onderbouwing

van doelgerichte bewijzen en bewijsheuristieken. PhD thesis, Universiteit Gent,
Belgium (2005) (unpublished PhD thesis)

http://logica.ugent.be/centrum/preprints/PCLs.pdf

Strong Paraconsistency by Separating Composition and Decomposition 287

Appendix: Metaproofs

Sketch of the Proof of Lemma 2

Suppose Δ′ ⊂ Δ, Γ ∪ {‡B|B ∈ Δ′} �C
�
Δ − Δ′� and for all Θ ⊂ {‡B|B ∈ Δ′},

Γ ∪ Θ �C
�
Δ − Δ′�. Hence there is a proof in which

�
Δ − Δ′� is derived and

every �‡B�, where B ∈ Δ′, is used as a local premise in the derivation tree of�
Δ − Δ′�. Now it is possible to replace every such �‡B� by �‡B, B� (remember

that this is an axiom). The rest of the proof can remain the same, apart from the
fact that for every line which is in the derivation tree on a branch that contains
a line �‡B�, where B ∈ Δ′, B should be added as an element of that line. The
result will be that the line

�
Δ − Δ′� is transformed into �Δ� whence the proof

for Γ ∪ {‡B|B ∈ Δ′} �C
�
Δ − Δ′� is transformed into a proof for Γ �C �Δ�.

Sketch of the Proof of Theorem 4

Let Lp be exactly as Lo except for the replacement of O by O′, which is an
arbitrary, countably infinite subset of O. Wp, Pp, L+

p , W+
p , and P+

p are defined
analogously. Let Dp =df {�Δ� |Δ ⊂ W+

p }.
Let a C∗-proof from Γ ∈ W+

p ∪ Dp be a list of lines such that every line
is either a line in a C-proof from Γ ∩ W+

p , an element of Γ ∩ Dp or a result
of applying the rules TRANS, or UG to preceding lines of the proof. Where
Γ ∪ {A} ∈ W+

p ∪ Do, define �C∗ by Γ �C∗ A iff there is a C∗-proof for A from
Γ . Obviously, with this definition, for every Γ ∪{A} ⊆ Wp, Γ �C A iff Γ �C∗ A,
but remark that e.g. �Pa� �C∗ +¬∃xPx, whereas evidently Pa �C +¬∃x¬Px
and Pa �C∗ +¬∃x¬Px.

Suppose Γ �C A, where Γ ∪ A ⊆ W+, whence Γ �C∗ A. Let 〈B1, B2, . . .〉 be
an enumeration of all elements of W+

p ∪ {�A, C� | C ∈ W+
p } such that if Bi =

∃βC(β) then Bi+1 = C(α) and if Bi =
�
A, ∃βC(β)

�
then Bi+1 =

�
A, C(α)

�
,

where α ∈ O′ does not occur in {B1, . . . , Bi}. Define:

Δ0 = CnC(Γ){
Δi+1 = CnC∗(Δi ∪ {Bi+1}) if A /∈ CnC∗(Δi ∪ {�Bi+1

�})
Δi+1 = Δi otherwise

Δ = Δ0 ∪ Δ1 ∪ . . .

We show that Δ has the following properties:

1. Γ ⊆ Δ. Immediately.
2. A /∈ Δ. Immediately.
3. Δ is deductively closed. Immediately.
4. Δ is ω-complete i.e. if ∃αA(α) ∈ Δ then A(β) ∈ Δ for at least one β ∈ C∪O.

Suppose ∃αA(α) ∈ Δ, Bi = ∃αA(α) and there is no β ∈ C ∪ O such that
A(β) ∈ Δ. But then also Δi ∪ {Bi+1} �C A, with Bi+1 = A(β) for some
β ∈ O that does not occur in Δi. Hence, in view of Lemma 2, Δi �C A or
Δi �C

�
+ ∗ A(β), A

�
. The former disjunct is impossible in view of property

288 P. Verdée

2 and the latter disjunct entails Δi �C
�
+¬∃αA(α), A

�
(β does not occur

in Δi ∪ {A}), whence Δi � �A� (by Δi �C
�∃αA(α)

�
and TRANS), which

is also impossible in view of property 2.
5. Δ is ω∗-complete i.e. if

�
A, ∃αC(α)

� ∈ Δ then
�
A, C(β)

� ∈ Δ for at least
one β ∈ C ∪ O. Suppose

�
A, ∃αC(α)

� ∈ Δ, Bi =
�∃αC(α)

�
and there is no

β ∈ C ∪ O such that C(β) ∈ Δ. But then also Δi ∪ {Bi+1} �C∗ A, with
Bi+1 =

�
A, C(β)

�
for some β ∈ O that does not occur in Δi. Hence, in view

of Δi �C∗ A, Δi ∪
�
C(β)

� �C∗ A and therefore Δi ∪
�∃αA(α), A

� �C A
(consider a proof that contains a line j saying

�
A, ∃αC(α)

�
. We can add a

line
�
C(β), + ∗ C(β)

�
. Because Δi ∪

�
C(β)

� �C∗ A, we can add a number
of lines resulting in

�
A, + ∗ C(β)

�
and therefore also

�
A, +¬∃αC(α)

�
can

be added, which with line j allows us to conclude �A�.) This would entail
Δ ∪ �∃αA(α), A

� �C∗ A and hence also Δ �C∗ A, which is impossible in
view of property 2.

6. For every C ∈ W+
o holds that if C /∈ Δ, then ‡C ∈ Δ. Suppose C /∈ Δ and

‡C /∈ Δ. Then there are i, j ∈ N such that Δi∪{C} �C A and Δj ∪{‡C} �C

A. But then, by Corollary 3, also Δi ∪Δj �C A, which is impossible in view
of property 2.

Where α ∈ C ∪ O′, let α = {α} ∪ {β | α = β ∈ Δ}. Observe that the set
{α|α ∈ C ∪ O′} is a partition of the set C ∪ O′.

Define M as the triple 〈v, w, D〉, where D = {α | α ∈ C ∪O}, v is defined by:

1. for every α ∈ C ∪ O: v(α) = α,
2. v(σ) = 1 iff σ ∈ Δ,
3. v(σ¬) = 1 iff ¬σ ∈ Δ,
4. for every πr ∈ Pr: v(πr) = {〈v(α1), . . . , v(αr)〉 | πα1 . . . αr ∈ Δ},
5. for every πr ∈ Pr: v(πr

¬) = {〈v(α1), . . . , v(αr)〉 | ¬πα1 . . . αr ∈ Δ},
6. v(¬ ·= ·) = {〈v(α), v(β)〉 | ¬α = β ∈ Δ},
7. v(+¬ ·= ·) = {〈v(α), v(β)〉 | +¬α = β ∈ Δ}, and
8. v(·= ·) = {〈v(α), v(β)〉 | α = β ∈ Δ}

and w : W+
o �→ {0, 1} is defined by

1. for every B ∈ Wo: w(B) = 1 iff B ∈ Δ, and
2. for every B ∈ Wo: w(+B) = 1 iff +B ∈ Δ.

Note that, for all B ∈ P¬
o ∪ {A | α, β ∈ C ∪O; A = α = β or A = +¬α = β or

A = +¬α = β},
Iv(B) iff B ∈ Δ. (1)

For all B ∈ Wo, if vM (B) = 1 then (w(B) = 1 or Iv(B)) and therefore B ∈ Δ.
We obtain,

if B ∈ Wo and vM (B) = 1 then B ∈ Δ. (2)

For all B ∈ Wo, if B ∈ Δ then w(B) = 1 and, when B is of the form ¬α = β,
Iv(B). Consequently, B ∈ Δ. We obtain,

if B ∈ Wo and + B ∈ Δ then vM (+B) = 1 . (3)

Strong Paraconsistency by Separating Composition and Decomposition 289

We shall prove that, for all B ∈ W+
o ,

vM (B) = 1 iff B ∈ Δ. (4)

by means of an induction on the complexity of B (the complexity of B is com-
puted by counting all occurrences of ¬¬, ∨ and ∃). Note that I omit all statements
that immediately follow from (2) or (3).

For the induction basis, we have the following cases.

• B ∈ P. If B ∈ Δ then w(B) = 1 (5) and by (1), Iv(B) (6). (5) and (6)
together entail vM (B) = 1.

• B = ¬C and C ∈ P. If ¬C ∈ Δ then w(¬C) (7) and, by (1), Iv(¬C) (8). (7)
and (8) together entail vM (¬C) = 1.

• B = α = β. If α = β ∈ Δ then v(α) = α = β = v(β) (9). If α = β ∈ Δ then,
by (1), Iv(α = β) (10). (9) and (10) together entail vM (α = β) = 1.

• B = ¬α = β. If ¬α = β ∈ Δ then w(¬α = β) = 1 (11) and, by (1),
Iv(¬α = β) (12). If v(α) = v(β) then, by (12), Iv(¬α = α) whence TM (v(α))
holds. (11) and (v(α) �= v(β) or TM (v(α))) together entail vM (¬α = β) = 1.

• B = +C and C ∈ P. If ‡[vM (¬C) = 1] then w(¬C) = 0 or w(+C) = 1
or Iv(C). If w(¬C) = 0 then ¬C /∈ Δ whence, by property 6, +C ∈ Δ.
If w(+C) = 1 then +C ∈ Δ. If Iv(C) then, by (1), C ∈ Δ whence, by
C �C +C, +C ∈ Δ.

• B = +¬C and C ∈ P. If ‡[vM (C) = 1] then w(C) = 0 or w(+¬C) = 1
or not Iv(C) or Iv(¬C). If w(C) = 0 then C /∈ Δ whence, by property 6,
+¬C ∈ Δ. If w(+¬C) = 1 then +¬C ∈ Δ. If Iv(¬C) then, by (1), ¬C ∈ Δ
and, by ¬C �C +¬C, also +¬C ∈ Δ. Finally, if not Iv(C) then, by (1),
C /∈ Δ whence, by property 6, +¬C ∈ Δ.

• B = +α = β. If ‡[vM (¬α = β) = 1] then w(¬α = β) = 0 or w(+α = β) = 1
or v(α) = v(β). If w(¬α = β) = 0 then ¬α = β /∈ Δ whence, by property 6,
+α = β ∈ Δ. If w(+α = β) = 1 then +α = β ∈ Δ. Finally, if v(α) = v(β)
then also α = β ∈ Δ or α = β. In both cases +α = β ∈ Δ.

• B = +¬α = β. If ‡[vM (α = β) = 1] then not Iv(α = β) or Iv(+¬α = β)
or v(α) �= v(β) or TM (v(α)). If not Iv(α = β) then α = β /∈ Δ whence, by
property 6, +¬α = β ∈ Δ. If Iv(+¬α = β) then, by (1) +α = β ∈ Δ. Either
v(α) �= v(β) or v(α) = v(β). If v(α) �= v(β) then α = β /∈ Δ whence, by
property 6, +¬α = β ∈ Δ. Suppose now v(α) = v(β) and TM (v(α)). Then
either Iv(¬α = α) and therefore Iv(¬α = β) whence, by 1, ¬α = β ∈ Δ and
thus +¬α = β ∈ Δ, or there is an r-ary predicate π and α1, . . . , αr−1 ∈ D,
such that 〈α1, . . . , αi, v(α), αi+1, . . . , αr−1〉 ∈ v(π)∩v(π¬))’. Hence there is a
C(α) ∈ Po such that Iv(C(α)) and Iv(¬C(α)), and therefore, by v(α) = v(β),
also Iv(¬C(β)) and, by (1), {C(α),¬C(β)} ⊂ Δ. This entails +¬α = β ∈ Δ
(AS7).

For the induction step, suppose vM (C) = 1 iff C ∈ Δ, for every C of
complexity lower than c. We prove that vM (B) = 1 iff B ∈ Δ for every B of
complexity c.

Given (2) and (3), we only need to prove that if B ∈ Δ then vM (B) = 1 where
B ∈ Wo and if ‡[vM (‡B) = 1] then B ∈ Δ where B = +C and C ∈ Wo.

290 P. Verdée

• B = D∨E. Immediately in view of D∨E, +∗D �C E and D∨E, +∗E �C D.
• B = ¬(D∨E). Immediately in view of ¬(D∨E) �C ∗D and ¬(D∨E) �C ∗E.
• B = ∃αD(α). Immediately in view of the ω-completeness of Δ.
• B = ¬∃αD(α). Immediately in view of ¬∃αD(α) �C ∗D(β) for all β ∈ C∪O.
• B = +(D ∨ E). Immediately in view of +D �C +(D ∨ E) and +E �C

+(D ∨ E).
• B = +¬(D ∨ E). Immediately in view of +D, +E �C +(D ∧ E).
• B = ¬¬D. Immediately in view of ¬¬D �C D.
• B = +¬¬D. Immediately in view of +D �C +¬¬D.
• B = +∃αD(α). Immediately in view of D(β) �C ∃αD(α) for all β ∈ C ∪ O.
• B = +¬∃αD(α). Suppose ‡[vM (‡B) = 1] and thus w(∃αD(α)) = 0 or

w(+¬∃αD(α)) = 1 or for all β ∈ C ∪ O, vM (+ ∗ D(β)) = 1. The two first
cases are obvious. In the last case, by the induction hypothesis, +∗D(β) ∈ Δ
for all β ∈ C∪O (13). Suppose +¬∃αD(α) /∈ Δ . Hence there is an i such that
Δi ∪ {+¬∃αD(α)} �C A whence, in view of Lemma 2, Δi �C

�
A, ∃αD(α)

�

and therefore
�
A, ∃αD(α)

� ∈ Δ. In view of the ω∗-completeness of Δ there
exists a γ such that

�
A, D(γ)

� ∈ Δ. As a consequence there is a, Δi ∪ {+ ∗
D(γ)} �C A whence + ∗ D(γ) /∈ Δ, which contradicts (13).

By (4) and properties 1 and 2, we obtain Γ �C A.

Sketch of the Proof of Theorem 9

Suppose
Γ �C +A (14)

where Γ ∪ +A ⊆ W+ and

there is some C such that Γ �CL C . (15)

The latter supposition entails

Γ �C +∃(D ∧ ¬D) for every D ∈ Wp , (16)

in view of Lemma 4.
Let L = 〈B1, B2, . . .〉 be an infinite list of all members of Wp (for the definition

of Wp, see the previous proof) such that if Bi = ∃βC(β) then Bi+1 = C(α),
where α ∈ O′ does not ocuur in Δi.

Δ1 = CnC(Γ) (17)

Δi+1 =

⎧⎪⎪⎨⎪⎪⎩
CnC(Δi ∪ {Bi+1}) if Δi ∪ {Bi+1} �C +A and there is

no C ∈ Wp such that
Δi ∪ {Bi+1} �C +∃(C ∧ ¬C)

CnC(Δi ∪ {‡Bi+1}) otherwise

(18)

Δ = Δ1 ∪ Δ2 ∪ . . . (19)

Strong Paraconsistency by Separating Composition and Decomposition 291

We prove by means of mathematical induction that, for every i > 1,

+ A /∈ Δi and there is no D ∈ F such that + ∃(D ∧ ¬D) ∈ Δi . (20)

For the basic case, +A /∈ Δ1 (from supposition (14)) and there is no D ∈ Wp

such that +∃(D ∧ ¬D) ∈ Δ1 (from (16)).
For the induction step we need to prove that if “+A /∈ Δi and there is no

D ∈ Wp such that +∃(D∧¬D) ∈ Δi”, then “+A /∈ Δi+1 and there is no D ∈ Wp

such that +∃(D ∧ ¬D) ∈ Δi+1”. Suppose that the antecedent holds. There are
two cases.

Case 1: (i) Δi ∪ {Bi+1} �C +A and (ii) there is no C ∈ Fp such that Δi ∪
{Bi+1} �C +∃(C∧¬C). In this case Δi+1 = CnC(Δi∪{Bi+1}) whence
+A /∈ Δi+1 (from (i)) and there is no D ∈ Wp such that +∃(D∧¬D) ∈
Δi+1 (from (ii)).

Case 2: Δi ∪ {Bi+1} �C +A or there is a C ∈ F such that Δi ∪ {Bi+1} �C

+∃(C ∧ ¬C). In this case Δi+1 = CnC(Δi ∪ {‡Bi+1}) and there is a
C ∈ F such that

Δi ∪ {Bi+1} �C +A � +∃(C ∧ ¬C) . (21)

Suppose now +A ∈ Δi+1 or there is a D ∈ Wp such that +D ∈ Δi+1

and +¬D ∈ Δi+1. But then there would also be a D ∈ Wp, such that
(by +A �C +(A ∨ ∃(D ∧ ¬D)) and +D, +¬D �C +(A ∨ ∃(D ∧ ¬D)))

Δi ∪ {‡Bi+1} �C +A � +∃(D ∧ ¬D) . (22)

From (21) and (22), Corollary 3 warrants that

Δi �C +A � +∃(D ∧ ¬D) � +∃(C ∧ ¬C) . (23)

This entails (by Lemma 5)

Δi �C +A or Δi �C +∃(D ∧ ¬D) or
Δi �C +∃(C ∧ ¬C) or

Δi ∪ {+¬∃(C ∧ ¬C), +¬∃(D ∧ ¬D)} �C A .
(24)

As �C is complete with respect to its semantics and as +¬∃(E∧¬E) ∈
Δi for every E ∈ F (the reader can check that �C +¬∃(E∧¬E) ∈ Δi),
this is in contradiction with the induction hypothesis. Consequently,
+A /∈ Δi+1 and there is no D ∈ F such that +∃(D ∧ ¬D) ∈ Δi+1.

Now we have
A /∈ Δ, (25)

there is no D ∈ Wp such that + D, +¬D ∈ Δ, (26)

(otherwise there would be an i such that +∃(D ∧ ¬D) ∈ Δi)) and

for every D ∈ Wp, D ∈ Δ or ‡D ∈ Δ. (27)

292 P. Verdée

(26) and (27) together entail

for every D ∈ Wp, if + D ∈ Δ then ‡D ∈ Δ. (28)

Consequently (remember that �C +(D ∨ ¬D)) D ∨ ¬D ∈ Δ, for every D ∈ Δ,
whence, by Theorem 7 item 5 and the fact that Δ is C-deductively closed,

CnCL(Δ ∩Wp) = Δ ∩Wp . (29)

Using (25-29) one can show by means of the usual methods that Δ ∩ Wp is a
CL-model set (i.e. it is maximally non-trivial, CL-deductively closed and ω-
complete). Hence there exists a CL-model such that, for all A ∈ W , M |= A iff
A ∈ Δ. In view of (25), we finally obtain

Γ �CL A .

How Much Expressive Power Is Needed for

Natural Language Temporal Indexicality?�

Igor Yanovich

MIT
yanovich@mit.edu

Abstract. The paper studies how much expressive power beyond the
capabilities of the simple Priorean temporal language Kt is needed to
give proper translation to natural language examples by Kamp and Vlach
which are extensively used in the linguistic and philosophical literature
as forcing the use of quite expressive languages, all the way up to full two-
sorted FOL. It turns out that when examined carefully, the examples in
question only require a quite mild Kamp- and Cresswell-style system with
now and then operators, or, equivalently, hybrid Kt +↓+@. The paper
generalizes the earlier results showing that in the propositional case,
now and then do not increase the power of Kt. For the first-order case,
a notion of FOL path bisimulation for first-order KF O

t with untensed
quantification and equality is defined, and it is demonstrated how to
prove that a particular NL sentence cannot be expressed in KF O

t through
non-preservation under FOL path bisimulation. It is also shown that
KF O

t plus now and then is still strictly less expressive than HL(↓,@),
which is itself much less expressive than the strong systems that were
claimed to be needed for NL translation. Thus the paper provides strict
lower and upper bounds on the expressivity of the translation language
forced by Kamp-Vlach NL sentences, and the upper bound turns out to
be much lower than was widely believed in the linguistics community.

The current consensus in the linguistic community with respect to the debate
about the exact expressive power needed for the temporal system of natural
language (NL) holds that natural language requires the expressivity of logic
with full first-order quantification over times. This is justified by referring to
Cresswell’s argument in [2].

[2]’s original argument for times points to two sources of evidence: first, to what
we can observe about implicit time quantification, and second, to sentences of
the form “There were times when ...” where reference to times is explicit. I do
not consider the second kind of evidence in the current paper: it is clear that
natural language is capable of expressing quite complicated quantificational con-
structions when the objects of quantification may be named; had it been other-
wise, we would hardly be able to do mathematics. Natural language can express

� This paper has benefited greatly from my discussions with Salvador Mascarenhas,
and from the comments of three anonymous WoLLIC reviewers. Remaining errors
are, of course, mine alone.

L. Beklemishev and R. De Queiroz (Eds.): WoLLIC 2011, LNAI 6642, pp. 293–309, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

294 I. Yanovich

complex statements about mathematical objects requiring very strong logics, and
it would be surprising if the noun time would be more restricted than, say, the
noun number in that respect. What is more interesting is what level of expres-
sivity is required by the temporal system implicit in NL. The implicit temporal
arguments cannot be assumed without a serious argument to be exactly the same
“times” which a noun time could denote, so we need to investigate the temporal
system on its own.

Regarding the implicit quantification over times (and worlds), Cresswell’s ar-
gument goes roughly like this: first, NL has to be translated into a logic at least
as strong as his logic storing a sequence of evaluation indices and including oper-
ators allowing to shift the evaluation of a subformula to any formerly introduced
index. (If that sounds confusing, wait a little until we define a Cresswell-style
system Cr shortly below.) The second step is to show that Cresswell’s primary
language L∗ is equivalent to language L+, including operators equivalent to the
more standard by now hybrid ↓ and @. L+, in its turn, is equivalent to a lan-
guage with unrestricted universal quantification over times L. A reader familiar
with hybrid-logical research would become very surprised by the latter claim,
of course, but the claim is explained by the fact that the basic modal language
which Cresswell builds his other languages upon includes a universal modality
not restricted by an accessibility relation (� in his notation, with the usual R-
restricted box being written L.)1 Universal modality combined with ↓ and @
easily allow to express unrestricted universal quantification over times.

Using [1]’s notation for Cresswell’s L+ operators, and A for universal modality,
[2] defines ∀u.α as ↓w.A↓u.@w.α. Unfortunately, this easy exercise was misper-
ceived by the linguistic community as a proof that NL requires full first-order
quantification over times in the translation language.2

To more properly address the question of NL’s expressive power, one should
start with a mild basic language. This is what we will do in this paper, adopting
the simple temporal language Kt as our basic language. Consider the examples
which motivate that study in the first place, by demonstrating that Kt itself is
less expressive than needed:

A child was born which will be ruler of the world. (1)
One day, all persons now alive will be dead. (2)

The problem with (1) is that will in the embedded sentence is in the scope of
the past tense operator in the matrix clause, and yet shifts the interpretation to
a point later than the present, not the past moment at which the child was born.
Any compositional translation — one that preserves the relative scope between
the past tense and the embedded future tense — must use some device to allow

1 For Cresswell, the inclusion of that operator into the basic language is philosophically
grounded.

2 To give just one example of fine linguistic work which shares the mistake, let me
cite [6, p. 44]: “Cresswell 1990 showed systematically that the full power of overt
quantification over times and possible worlds is needed to handle modal and temporal
talk in natural language.”

How Much Expressive Power Is Needed for NL Temporal Indexicality? 295

for that. But at least there is an equivalent sentence of the standard temporal
language: ∃x : P (b(x))∧F (rw(x)).3 In (2), the problem is worse: we either need
some special device allowing us to get back to the present from under a future
tense operator, or... there is no way to express (2) at all!4 Or, at least, so the
conventional wisdom tells us; there is no formal proof that I know of. The success
in dealing with (2) will be our measure of adequacy for translation logics: it is
the “strongest” kind of examples used historically to argue for greater expressive
power for natural language. There may be other types of examples requiring even
greater expressivity, but I leave that for future research.

The plan of the paper is as follows. Section 1 builds the foundation for the main
results, examining simpler propositional systems. We introduce the propositional
Cr, which is essentially Kt enriched by operators now and thenk that shift the
evaluation index of their scope to some index introduced earlier. We provide a
translation from Cr to Kt, not an unexpected result (see, e.g., [5] for a recent,
slightly less general similar translation), and translations between Cr and Kt +
↓+@. The landscape becomes more interesting once we move to the FO variants
of the systems discussed, in Section 2. We introduce the FO systems CrFO and
(implicitly) KFO

t , define the notion of FOL path bisimulation and prove that
KFO

t is invariant under it. Then we demonstrate that some formulas of CrFO

are not preserved under such bisimulation, using for that the CrFO translation
of the NL example (2). With the help from an earlier established connection with
hybrid languages, we show that CrFO = KFO

t + ↓ + @, and then by an easy
argument that KFO

t + ↓ + @ is strictly less expressive than HLFO(↓, @). The
main two results are thus as follows: 1) the most complex Kamp-Vlach examples
such as (2) require the power of CrFO = KFO

t + ↓ + @; 2) those languages are
strictly between KFO

t and HLFO(↓, @) in the expressivity hierarchy.
The use in one paper of both Cr, close to systems familiar to linguists and

philosophers, and hybrid languages, more familiar to modal logicians, may make
it seem more complex than the paper actually is. Nevertheless, I find it important
to make an explicit connection between the two kinds of systems, hoping that it

3 For sentences of this kind, there is never a problem with providing a non-
compositional translation, a point which is sometimes rediscovered. For instance,
[7, pp. 130-132] cites his treatment of (1)-style examples as an advantage of his par-
ticular system for translation of tense, while the triumph follows completely from
translating the two clauses as conjuncts, instead of treating one as being in the
scope of the other’s tense. Of course, such treatment for a sentence like (1) raises
the question of what to do with its counterpart where will is replaced with would.
Verkuyl stipulates that the variables in his translation should get identified with
each other in conjoined clauses if those all have the past operator of his system. But
there exist examples showing that syntactic embedding is after all relevant for the
dependency. E.g., in Mary said that Sue came, and Ann told me that John would
call it cannot be that would is dependent on the moment of Mary’s utterance, it
can only be dependent on the moment of Ann’s speech; [7] cannot account for this
without further tweaking his system, and does not discuss such examples.

4 See (5) for a translation of that example with the now operator, and (6) for a
translation into a language with explicit FO quantification over times.

296 I. Yanovich

would help to narrow the currently rather wide gap between logical and linguistic
research.

1 The Propositional Case: No Additional Expressive
Power

We start by introducing the propositional variant of a Cresswell-style system.5

The intuitive idea behind thenk operators is that they serve as translations for
overt NL adverbs like now in (2).

Definition 1. Wff-s φ of Cr have the following shape (PROP is the set of
propositional variables):

φ := PROP | � | ¬φ | φ ∧ φ | Fφ | Pφ | thenk φ6 for k ∈ ω.
⊥, ∨ and → are defined as usual, and now := then0.

Definition 2. Depth of (temporal) embedding Dep(i)(ξ(φ)), where i is the
position7 of some subformula φ of ξ: 1) if there are no thenk operators on top
of the i-th instance of φ in ξ, Dep(i)(ξ(φ)) := the number of F and P operators
scoping over φ; 2) otherwise, with some thenk being the lowest then operator
with φ in its scope, Dep(i)(ξ(φ)) := k + n where n is the number of F and P
operators scoping over φ, but below that thenk.

When it is clear from context which subformula φ is meant, we write simply
Dep(ξ(φ)).

Definition 3. A sentence of Cr φ is a wff which obeys the following then-rule:
for any occurrence of thenk ψ in φ where i is the position of that occurrence,
k ≤ Dep(i)(ξ).

Note that defining the distinction between formulas and sentences on the basis
of the then-rule is unusual. But despite appearances, our notion of sentences
is quite close to the standard one, as we shall see once the semantics for Cr is

5 It is different from the original system in [2] in two important aspects: first, Cresswell
builds unindexed evaluation sequences, only uses the first member as the evaluation
point, and employs permutation operators on sequences to place the right index into
the first position. Our formulation uses indexed sequences instead of permutation
operators, where the index determines the “current” member of the sequence used for
evaluation. thenk operators shift that index to the k-th member of the sequence. It
is easy to see that it does not make the system substantially different, but the syntax
and semantics of our variant are somewhat streamlined, in my opinion. Second, our
Cr is based upon the standard temporal language Kt, not on a language to which
universal modality is added, as Cresswell’s actual system in [2] is. This is crucial, of
course, for Cresswell’s choice obscures the difference then operators would make if
added to a weaker underlying language.

6 The bracketing convention for thenk is the same as for ¬, F and P . E.g., thenk φ∧ψ
is an abbreviated form of [thenk(φ)] ∧ ψ.

7 To define standard numbering of subformulas, fix some standard ordering on trees,
and view ξ as a tree.

How Much Expressive Power Is Needed for NL Temporal Indexicality? 297

given. For the moment, let’s just note that then2 p and FF then0 FF then5 p
are not sentences, by the then-rule.

A Kripke model for Cr is defined in the same way as for the classical Priorean
temporal language Kt, as 〈W, R, V 〉, where W is a non-empty set of times,
R is the earlier-than accessibility relation, and V , valuation for propositional
variables, a function from set PROP to P(W).

Furthermore, we say that an indexed sequence 〈ρ, i〉 is a denumerable sequence
of times ρ with i ∈ ω pointing to the member serving as the current evaluation
point. We denote by ρ(n), n ∈ ω, the n-th member of ρ. We write (ρ1 ∼n ρ2)
as an abbreviation for ∀m ∈ ω : (m �= n) → (ρ1(m) = ρ2(m)). After these
preliminaries, we can define truth for Cr in models at sequences:

Definition 4. The semantics of Cr.
For a wff φ, truth at an indexed sequence is defined as follows:8

M, 〈ρ, i〉 |= q iff ρ(i) ∈ V (q)
M, 〈ρ, i〉 |= � always
M, 〈ρ, i〉 |= ¬φ iff not M, 〈ρ, i〉 |= φ
M, 〈ρ, i〉 |= φ ∧ ψ iff M, 〈ρ, i〉 |= φ and M, 〈ρ, i〉 |= ψ
M, 〈ρ, i〉 |= Fφ iff there is ρ′ ∼i+1 ρ s.t. ρ(i)Rρ′(i+ 1) and M, 〈ρ′, i+ 1〉 |= φ
M, 〈ρ, i〉 |= Pφ iff there is ρ′ ∼i+1 ρ s.t. ρ′(i+ 1)Rρ(i) and M, 〈ρ′, i+ 1〉 |= φ
M, 〈ρ, i〉 |= thenk φ iff M, 〈ρ, k〉 |= φ

For a sentence φ, M, ρ |= φ iff M, 〈ρ, 0〉 |= φ.
Sentences φ and ψ are equivalent, φ ≡ ψ, iff for any M and ρ their truth

coincides.

It is easy to see that for each subformula ψ of a sentence φ, there exists a single
designated index i such that the truth of φ depends on the truth of ψ at sequences
〈ρ, i〉. The structure of the sentence determines what that i is. For instance, the
truth of Pψ may only depend on the truth of ψ at sequences 〈ρ, 1〉, but never
on, say, 〈ρ, 0〉 or 〈ρ, 2〉.

In a fixed M , the truth of φ with no then operators only depends on ρ(0).
In fact, Cr formulas with no then operators are just Kt formulas, with ρ(0)
serving as the evaluation point:

Proposition 1. For a formula φ of Cr with no then operators,
M, t |=Kt φ iff for any ρ s.t. ρ(0) = t, M, ρ |=Cr φ.

Proof. Obvious induction on formulas, since Kt and Cr clauses for classical
operators are equivalent.

When we evaluate a formula φ of Cr, ρ(0) is used like the evaluation point, and
the other members of the sequence essentially form a variable assignment for
thenk operators. E.g., the truth of then4 p depends entirely on what ρ(4) is.
8 For the F clause, it should be noted that if ∃t : ρ(i)Rt, we can always build a suitable
ρ′ s.t. ρ′ ∼i+1 ρ by setting ρ′(i + 1) to t. So we could equivalently formulate the
clause as “... iff there is t s.t. ρ(i)Rt, and for the unique ρ′ defined by ρ′ ∼i+1 ρ and
ρ′(i+ 1) := t, we have M, 〈ρ′, i+ 1〉 |= φ.” Similarly for P .

298 I. Yanovich

But say we evaluate at ρ some Fψ. To determine its truth, we check if ψ is true
at any ρ′ ∼1 ρ s.t. ρ′(1) is accessible from ρ(0). Those ρ′ can also be divided into
the initial segment of up to ρ′(1), which stores the evaluation indices used up till
now when going down the chain of embedding, and the final segment starting at
ρ′(2) serving as an arbitrary variable assignment. The difference between the two
portions is that the indices of the initial portion is restricted by the operators of
the formula, while the indices in the tail may be arbitrary.

Consider some instance of thenk ψ in φ. Let φ be evaluated at ρ, and thenk ψ,
at ρ′. If ρ′(k) is a state introduced by processing a higher F or P clause, thenk

shifts the interpretation of φ to a previously used index. In essence, thenk be-
haves like a variable over times bound by the quantifier implicit in the F or P
which introduced the relevant member of ρ′. On the other hand, if ρ′(k) is the
same as it was in the initial ρ (which happens if it was never accessed by an
F or P clause), thenk behaves like a free variable, depending on the “variable
assignment” of ρ without ρ(0). Recall now the then-rule of Def. 3: it ensures
exactly that thenk operators always depend on some higher F or P , and never
on the members of the initial ρ except ρ(0). In other words, if the then-rule is
obeyed, all “variables” thenk are bound. Hence why it makes sense to say that
φ is a sentence iff it obeys the then-rule.

It is useful to define the notion of formulas obeying the second half the then-
rule:

Definition 5. A wff φ is proper iff for each subformula of the form thenk ψ
whose index in φ is i, if there is some thenl scoping over thenk ψ, then k ≤
Dep(i)(φ).

E.g., then3 P then4 q is proper, while then3 P then5 q is not. A formula with
only one then will always be proper. The notion is useful because if some formula
is not proper, it cannot be a subformula of any sentence: it would offend the
then-rule embedded into any formula.

Definition 6. For a wff φ, assign to each thenk ψ subformula whose index is i a
number m which is Max(k−Dep(i)(φ), 0). The maximal such m is the maximal
lookup depth mφ of φ.

The maximal lookup depth of φ is the number of F and P operators one must add
on top of formula φ to get a sentence. E.g., for then3 P then4 q it is 3, while for
P then6 q it is 5. For a sentence φ, obviously mφ = 0, from the then-rule.

Definition 7. It is proper to evaluate a wff φ at 〈ρ, i〉 (in any M) iff 1) φ is
proper and 2) the maximal lookup depth mφ ≤ i. 〈ρ, i〉 is then a proper indexed
sequence for φ.

It is easy to check that if 〈ρ, i〉 is proper for φ, then whether M, 〈ρ, i〉 |= φ does
not depend on that particular ρ after the i-th member. Note that if 〈ρ, i〉 is proper
for φ, then 〈ρ, (i+1)〉 is also proper for φ. The smaller i in 〈ρ, i〉, the less formulas
it will be proper for. In particular, sequences 〈ρ, 0〉 are proper only for sentences.
If φ is a sentence, then for any subformula ψ of φ, mψ ≤ Dep(j)(φ), where j is
ψ’s number in φ, or else the then-rule would have been offended.

How Much Expressive Power Is Needed for NL Temporal Indexicality? 299

We can now define the conditions under which two formulas can be substituted
for each other.

Definition 8. Two proper formulas φ and ψ of Cr are strictly equivalent, or
φ ∼ ψ, iff for all M and all proper 〈ρ, i〉, M, 〈ρ, i〉 |= φ iff M, 〈ρ, i〉 |= ψ

Theorem 1. Let ξ[φ→ψ] be the result of substituting all instances of φ in ξ with
ψ-s.

If φ ∼ ψ and for any position i of φ in ξ, Max(mφ, mψ) ≤ Dep(i)(ξ),
then for any sentence ξ, ξ ≡ ξ[φ→ψ].

Proof. Since ξ is a sentence and Max(mφ, mψ) ≤ Dep(i)(ξ) for any position of φ
in ξ and ψ in ξ[φ→ψ], ξ[φ→ψ] is also a sentence. Take some 〈ρ, 0〉 that makes ξ
true. Fix an instance of φ in ξ numbered j. The truth of ξ only depends on the
truth of that instance at sequences with index Dep(j)(ξ). Since ξ is a sentence,
mφ ≤ Dep(j)(ξ), so for any ρ sequences 〈ρ, Dep(j)(ξ)〉 are proper for φ. As
mψ ≤ Dep(j)(ξ), exactly the same sequences 〈ρ, Dep(j)(ξ)〉 are proper for ψ as
well. From φ ∼ ψ, the truth of the j-th subformula of ξ always coincides with
the truth of the j-th subformula of ξ[φ→ψ]). By induction on instances of φ in ξ,
at any ρ which makes ξ true, ξ[φ→ψ]) is also true. The other direction is given
by the same argument after we notice that ξ = (ξ[φ→ψ])[ψ→φ]. ��

We will also need the following fact, which will allow us to get rid of thenk in
the translation:

Proposition 2. Let all instances of (thenk φ) in sentence ξ have the depth of
embedding of exactly k. Then ξ ≡ ξ[(thenk φ)→φ].

Proof. If the depth of thenk φ in ξ is always k, it means that only (thenk φ)’s
truth at 〈ρ, k〉 sequences can influence the truth of ξ. But at those sequences,
the truth of thenk φ coincides with the truth of φ: from Def. 4, M, 〈ρ, k〉 |= φ iff
M, 〈ρ, k〉 |= thenk φ. ��

Theorem 1 and Proposition 2 give us the tools we will use in the translation. We
will use the following two strict equivalencies (and then-less tautologies) to float
any thenk subformula up in sentence φ to the position in the sentence where
thenk can be safely deleted — to a position i s.t. Dep(i)(φ) = k. In the schema
(4) below, O stands for F or P .

¬ thenk φ ∼ thenk ¬φ (3)
O((thenk φ) ∧ ψ) ∼ (thenk φ) ∧ Oψ (4)

(3) is obvious from the definitions. For (4), let’s resolve O to F for concreteness
— the argument for P is parallel. Note that the maximal lookup depth of the left
side is at least k−1, and that of the right side, at least k. We are only interested
in sequences proper for both sides, so we only look at 〈ρ, i〉 with k ≤ i.

The left side is true at a proper 〈ρ, i〉 iff there is some t > ρ(i), and (thenk φ∧
ψ) is true at 〈ρ′, (i + 1)〉 with ρ′ ∼i+1 ρ and ρ′(i + 1) = t. Which, in its turn,

300 I. Yanovich

is true iff there exists such a t > ρ(i) that φ is true at ρ′(k), and ψ is true at t.
From k ≤ i, we get k ≤ (i + 1) and thus ρ′(k) = ρ(k), for ρ and ρ′ differ only on
i + 1. Now let’s check the truth of the right side assuming the left side is true.
The first conjunct (thenk φ) of the right side is true iff φ is true at ρ(k), so if
the left side is true, the first conjunct is true. The second conjunct Fψ is true iff
there is a t > ρ(i) s.t. ψ is true at t — and again, if the left side is true, there is
such a t. So for any 〈ρ, i〉 proper for both sides, if the left side is true, the right
side is also true. By similar reasoning, if the right side is true at a proper 〈ρ, i〉,
the left side is also true.

Note the crucial role that the presence of ψ plays in (4): O(thenk φ) is not
substitutable for thenk φ (consider ρ(i) where �⊥ is true.)

Theorem 2. There exists a truth-preserving translation from sentences of Cr
to sentences of Kt, namely, such function Tr that for any φ of Cr, M, ρ |=Cr φ
iff M, ρ(0) |=Kt Tr(φ).

The proof, including the definition of such a translation, is given in Appendix
B. Thus the propositional Cr is just an alternative notation for the standard
temporal language: it does not add any more expressive power, just puts things
together in a different order.

But before we finish with Cr, we make another connection, which must be
almost obvious for reader familiar with hybrid logics: instead of then operators,
we could have added to the basic temporal language Kt the hybrid ↓ and @, but
without adding nominal atoms. In fact, Cr = Kt + ↓+@ (and both are equal in
expressive power to simple Kt.) Right now, it may seem as a pointless exercise
to show that, but the connection to hybrid systems will prove useful when we
turn to the predicate case, where CrFO �= KFO

t .

Definition 9. The syntax of Kt + ↓ + @.

Atoms of Kt + ↓ + @ come from two sets: PROP for propositional variables p,
q, ..., and NOM for variables over times, or nominal variables, u,v, ...

φ := PROP | � | ¬φ | φ ∧ φ | Fφ | Pφ | ↓u.φ | @u.φ.

Note that NOM symbols cannot be atomic formulas. If they could, we’d have a
full hybrid system HL(↓, @). Formulas of Kt + ↓+ @ are evaluated with respect
to a point and an assignment function from NOM to the set of times. ↓u.φ
stores the current evaluation point in variable u; @u.φ retrieves the point stored
in u and evaluates its argument φ at it. If @u is used without a prior ↓u, the
truth of the whole formula depends on the assignment function. If all @u are in
the scope of ↓u — if they are bound, — then the formula as a whole does not
depend on the assignment function. We call a formula which does not depend
on the assignment function a sentence.

Definition 10. The semantics of Kt + ↓ + @.

We give the clause for F as the example of a standard clause, and clauses for ↓
and @:

How Much Expressive Power Is Needed for NL Temporal Indexicality? 301

M, g, w |= Fφ iff there is w′ s.t. wRw′ and M, g, w′ |= φ
M, g, w |= ↓u.φ iff for g′ s.t. g′ ∼u g, g′(u) := w, M, g′, w |= φ
M, g, w |= @u.φ iff M, g, g(u) |= φ

For a sentence φ, we can write simply M, w |= φ, as the choice of g does not
matter.

It is immediately obvious that Kt+↓+@ is very similar to Cr. In fact, the two can
be translated into each other: for each sentence of one, we can build an equivalent
sentence in the other. The translations, establishing Kt + ↓+ @ = Cr (= Kt),
are given in Appendix A.

2 The Predicate Case: More Expressive Power Is
Needed

Converting Cr and Kt into predicate languages is straightforward, but opens
up a number of design choices. We will work in a system with constant domain
semantics, and untensed quantifiers and equality. The first choice is relatively
innocent, as far as I can see: at least changing constant domains to non-constant
domains with possible sharing of individuals by points does not seem to affect the
proofs. The second choice of untensed quantifiers and equality is crucial, though.
Tensed quantifiers seem to be a bad choice for modelling natural language quan-
tification, see fn. 9. Untensed equality provides shelter from crashes caused by
inexistence of some interesting individual at a point, see a remark on p. 309. For
concreteness, I will give constant domain semantics in the definitions.

Our basic system KFO
t will be the first-order (FO) temporal language with

constant domain semantics and no individual constants. Formulas of KFO
t are

evaluated in a model at a point with respect to an assignment function h which
provides values for individual variables. The system CrFO will be like KFO

t ,
but with the addition of then-operators, just as in the propositional case. For
brevity, I only give the definitions for CrFO explicitly; those for KFO

t are easy
to deduce.

Definition 11. The syntax of CrFO: φ := q(x̄) | x = y | ∀xφ | � | ¬φ | φ ∧
φ | Fφ | Pφ | thenk∈ω φ.

A constant domain model for CrFO is 〈W, D, R, V 〉, where D is the set of indi-
viduals, and V is a function from W × Predn → Pow(Dn), where Predn is the
set of n-place predicate symbols.

Definition 12. The semantics of CrFO.

I only give the clauses which are specific to the FO variant of Cr, and the clauses
for F and then for comparison with propositional Cr. Let h′ ∼x h be a short
notation for ∀y : y �= x → h′(y) = h(y).

302 I. Yanovich

M, h, 〈ρ, i〉 |= q(x1, ..., xn) iff 〈h(x1), ..., h(xn)〉 ∈ V (ρ(i), q)
M, h, 〈ρ, i〉 |= x = y iff h(x) = h(y)
M, h, 〈ρ, i〉 |= ∀xφ iff for all h′ s.t. h′ ∼x h, M, h′, 〈ρ, i〉 |= φ
M, h, 〈ρ, i〉 |= Fφ iff there is ρ′ ∼i+1 ρ s.t. ρ(i)Rρ′(i + 1)

and M, h, 〈ρ′, i + 1〉 |= φ
M, h, 〈ρ, i〉 |= thenk φ iff M, h, 〈ρ, k〉 |= φ

φ ∈ CrFO is a sentence iff the following holds: M, h, 〈ρ, 0〉 |= φ iff for any ρ′ s.t.
ρ(0) = ρ′(0) and for any h′, M, h′, 〈ρ′, 0〉 |= φ. Alternatively, a sentence obeys
the then-rule in Def. 3, and with a fixed 〈ρ, i〉 denotes a constant function from
assignments h to truth values.

For a sentence φ, we can write simply M, ρ |= φ, omitting h.

Adding thenk to the classical propositional temporal language Kt does not
actually increase the expressive power of the resulting language. But a first-
order system with thenk (our CrFO) is more expressive than KFO

t . Recall the
natural language example (2). It can be easily rendered as (5) in CrFO9, or
equivalently as (6) in a two-sorted FO logic with explicit quantification over
times. But a few attempts are usually enough to convince myself there is no
equivalent sentence of KFO

t .

F [∀x : then0(q(x)) → r(x)] (5)
∃t′ > t : [∀x : q(x)(t) → r(x)(t′)] (6)

Before we proceed, it is instructive to point out what makes (5) so complex.
Consider the KFO

t formula ∀x : q(x) → F (r(x)). It checks for each x that is q
at the evaluation point t whether x will ever be r. But it cannot check if there
is any particular moment all such x-s will be r together.

On the formal side, [4] has shown that the now operator is ineliminable in
a first-order system on the class of all frames by demonstrating a construction
which shows there is a special formula in a language with now not equivalent
to any KFO

t formula. But to my knowledge, there is no technique for showing

9 A reviewer asks if (5) correctly captures (2) when the domains are not constant. That
depends on whether quantifiers are tensed or untensed. Consider first a system with
tensed quantifiers — those ranging over all individuals belonging to their evaluation
point. Suppose there is x1 which is q at the initial point t, but does not exist at
the point t′ which witnesses that other x-s which were q at t. Suppose all other x-s
which are q at t are r at t′. Intuitively, (2) is false at t: x1 was q at the initial point,
but is not r together with the others. Yet (5) is true if ∀x is tensed and ranges over
those x-s which exist at t′. This tensed quantifier semantics (wrong for the natural
language (2)) can be rendered like this: ∃t′ > t : [∀x ∈ t′ : q(x)(t) → r(x)(t′)], where
x ∈ t′ means “x exists at point t′”.

But with untensed quantifiers, things are all right. Consider some x1 which is q
at t, but does not exist at t′. It will not be r at t′, then, so the formula will be false.
Now consider some x2 which exists at t′, but not at t. As it does not exist at t, q(x2)
is false there, so whether x2 is r or not at t′ is irrelevant for the truth of the formula.
So (5) amounts to (6), and is all right.

How Much Expressive Power Is Needed for NL Temporal Indexicality? 303

that a particular formula like (5) is inexpressible in KFO
t . Using the advances in

modal logic made since the time of [4], it is easy to develop such a technique by
defining a proper notion of bisimulation for KFO

t and showing for formulas like
5 that they are not preserved under such bisimulation.

Definition 13. Let M be a model, w a point in M , a1, ...an, n ∈ ω, individuals
at point w.

M, w, 〈a1, ...an〉 |= φ iff M, w, h |= φ where h assigns a1 to the lexicographically
first free variable in φ, and so forth.

M, w |= φ iff there exists some 〈a1, ...an〉 s.t. M, w, 〈a1, ...an〉 |= φ

Definition 14. Non-modal and modal theories of a tuple at a point:
ThFOL(M, w, 〈a1, ...an〉) := {φ | φ has no modal operators and M, w,

〈a1, ...an〉 |= φ}
ThKF O

t
(M, w, 〈a1, ...an〉) := {φ | φ ∈ Kt and M, w, 〈a1, ...an〉 |= φ}

Now we can make an obvious, and wrong, first stab at the notion of bisimulation
for KFO

t :

Definition 15. Non-empty relation E is aFOLbisimulation between two struc-
tures M and N iff: 1) FOL harmony: if wEw′, then for any 〈a1, ...an〉 ∈ w, there
is 〈b1, ...bn〉 ∈ w′ s.t. ThFOL(M, w, 〈a1, ...an〉) = ThFOL(N, w′, 〈b1, ...bn〉), and
vice versa; 2) Zig and Zag: if Rwv and wEw′, then ∃v′ s.t. vEv′ and R′w′v′, and
vice versa.10

This is not too bad: all formulas not containing modal operators are preserved
between two bisimilar points, so we cannot distinguish such points from the
inside. Accessibility relations should also be parallel because of Zig and Zag.
Since both conditions hold together, we cannot distinguish between the points
we can arrive to by traveling along accessibility links by the internal theories of
points we pass either.

So the only way something can go wrong is when we check something beyond
simple non-modal theories at connected points. This is exactly what happens
when we have quantifiers binding variables in scope of different modal operators.
Consider these two models:
M : WM = {w1 : q(a),¬q(b); w2 : q(a),¬q(b)} RM = {〈w1, w2〉}
N : WN = {v1 : q(c),¬q(d); v2 : ¬q(c), q(d)} RN = {〈v1, v2〉}

Both M and N have just two points, and two individuals living at each point.
All four points have the same internal FO theory: ∃x, y : q(x) ∧ ¬q(y). Zig
and Zag hold for w1 and v1. So there is a FOL bisimulation E s.t. w1Ev1. Yet
∃x : q(x) ∧ F (q(x)) is true at w1 and false at v1. Obviously the truth of KFO

t

formulas is not preserved under FOL bisimulation as defined in Def. 15.
What went wrong? The formula ∃x : q(x) ∧ F (q(x)) checks the properties of

the same object at two points, but the notion of FOL bisimulation does not see
beyond one point when it comes to the theory of an individual. So we need to
preserve not only the non-modal theories of individuals at bisimilar points, but
also the modal theories of individuals, or, rather, of tuples of individuals.
10 Note that the bisimulation notions given in Definitions 15 and 17 are implicitly rela-

tive to a fixed language, for it determines the theories of individual tuples at points.

304 I. Yanovich

Definition 16. Let L be a modal language with modal operators of arity 1, and
O♦ be the set of L’s diamonds. An accessibility path π := Oπ | Λ, where Λ is
the designated empty path.

For w1, w2 points in L’s model M , a non-empty path π = ♦i1 ...♦in leads
from w1 to w2 (in symbols, w1πw2) iff there exist points vi1 , ..., vvn−1 s.t.
w1Ri1vi1 ...vin−1Rinw2. For any w, wΛw.

To see what is the significance of the new notion, note that if there is a path
π1 := FF between w1 and w2 in M , then the truth of some φ at w2 guarantees
that M, w1 |= FFφ.

From the point of view of KFO
t , two tuples of individuals 〈a1, ...an〉 and

〈b1, ...bn〉 at a point w are indistinguishable if for each v reachable from w, there is
a v′ reachable from w by the same accessibility path s.t. Th(M, v, 〈a1, ..., an〉) =
Th(M, v′, 〈b1, ..., bn〉). Thus we replace FOL harmony with stronger FOL path
harmony in the definition of bisimulation:

Definition 17. Non-empty relation E is a FOL path bisimulation between
two structures M and N iff: 1) FOL path harmony: If wEw′, then for each
〈a1, ...an〉 ∈ w, there is a 〈b1, ...bn〉 ∈ w′ s.t. for any path π and v : if wπv, there
is a v′ s.t. w′πv′ and Th(M, v, 〈a1, ...an〉) = Th(N, v′, 〈b1, ...bn〉); and vice versa;
2) Zig and Zag: if Rwv and wEw′, then ∃v′ s.t. vEv′ and R′w′v′; and vice
versa.

This notion is still modal (that is, relatively weak) in nature: for instance, we
can easily build a reflexive and an irreflexive models FOL-path-bisimilar to each
other. But KFO

t formulas like ∃x : q(x) ∧ F (r(x)) will be preserved because of
the new condition of FOL path harmony.

Theorem 3. If E is a FOL path bisimulation between M and N and wEw′, then
for all φ ∈ KFO

t , M, w |= φ iff N, w′ |= φ. The proof is given in Appendix B.

So far so good: FOL path bisimulation is strong enough to preserve the truth of
KFO

t . But what if it preserves the truth of formulas with then as well? We give
an example showing it is not so.

We first define the model M as follows: W in countably infinite and consists
of w, u, and v0, v1, v2, R is such that wRu, wRv0, wRv1, so wRx holds for
every point other than w, and no other pair of points is in R. The domain of
individuals consists of two countably infinite sets: D := {a0, a1, ...; b0, b1, ...}.
There is only one 1-place predicate symbol q. At every point, all b-s are not q.
At w and u, all a-s are q. At all other points, one of the a-s is ¬q: at v0, it is a0,
at v1, it is a1, and so forth. To finish the construction, we take the restriction of
M to just w and v-s, without the u point, and call that restriction N .

The difference between M and N is that only in M the CrFO formula (5)
is true at w: M contains u, which is the only point F -reachable from w where
all x-s that are q in w are q as well. N does not contain u, and at every other
F -reachable point, one of the a-s is not q, though it was q at the starting point
w, so in N at w, (5) is false.

But 〈M, w〉 and 〈N, w〉 are FOL path bisimilar, which means they are indis-
tinguishable in KFO

t . A possible FOL path bisimulation E may be defined as

How Much Expressive Power Is Needed for NL Temporal Indexicality? 305

wEw, uEv0, v0Ev1, and so forth. Zig and Zag are clearly satisfied. Let’s check
FOL path harmony. Take some ai at w. There are two sorts of points accessible
from w in M , as far as ai is concerned: those there q(ai) (most of the points),
and those where ¬q(ai) (just vi). From the perspective of a single ai, it does
not matter if u is in the model or not: it is just one of the countably infinite
points where q(ai) holds. For any finite tuple of ai, it would be the same. b-s are
even simpler. So FOL path harmony holds, and E is a FOL path bisimulation,
therefore there is no KFO

t formula able to distinguish between w in M and in N .
Yet (5) can. Thus KFO

t 	 CrFO: the latter is strictly more expressive.
After we characterized CrFO from below, we also give an upper bound, and

for that we will use the direct connection to hybrid systems which was seemingly
pointless in the previous section. In fact, essentially the same translations as in
the propositional case show that CrFO = KFO

t + ↓ + @, see Appendix A. And
we can exploit that fact and compare the relative power of KFO

t + ↓ + @ vs.
HLFO(↓, @), the full hybrid system with ↓ and @.

Definition 18. The syntax of HLFO(@, ↓).
φ := q(x1, ..., xn∈ω) | x = y | NOM | � | ¬φ | φ ∧ φ | Fφ | Pφ | ∀xφ |
↓u.φ | @u.φ.

Definition 19. The semantics of HLFO(@, ↓).
As usual, we only give the crucial clauses, and illustrate how a couple of familiar
clauses get modified. g is the assignment function for symbols in NOM (cf. the
definition of Kt + ↓ + @); h, for individual variables x.

M, g, h, w |= u iff g(u) = w
M, g, h, w |= ↓u.φ iff for g′ s.t. g′ ∼u g, g′(u) = w, M, g′, h, w |= φ
M, g, h, w |= @u.φ iff M, g, h, g(u) |= φ
M, g, h, w |= ∀xφ iff for all h′ s.t. h′ ∼x h, M, g, h, w |= φ
M, g, h, w |= Fφ iff there is w′ s.t. wRw′ and M, g, h, w′ |= φ

Obviously, the formulas of KFO
t +↓+@ are also formulas of HLFO(@, ↓) with

the same interpretation, so KFO
t + ↓ + @ ⊆ HLFO(@, ↓).

For an easy way to show that HLFO(@, ↓) is strictly more expressive than
KFO

t + ↓ + @, let’s restrict our attention to “pure” formulas: formulas with
only modal operators, nominals, and nominal binders. The pure formulas of
KFO

t + ↓ + @ are also formulas of Kt + ↓ + @. By the results in Section 1
and Appendix A, all formulas of Kt + ↓ + @ have Kt equivalents. So all pure
formulas of KFO

t + ↓ + @ are expressible in Kt. But clearly not all formulas of
HL(@, ↓) are. For instance, ↓u.F¬u expresses irreflexivity of the current point,
inexpressible in Kt.

It is easy to show that no amount of impure stuff we can add to pure KFO
t +

↓+@ can get us to express properties like irreflexivity. We thus have the following
proper inclusions with respect to expressive power:

KFO
t 	 CrFO = KFO

t + ↓ + @ 	 HLFO(@, ↓) (7)

306 I. Yanovich

3 Conclusion

Language HLFO(@, ↓) is much less powerful than two-sorted FOL with full
quantification over times or Cresswell’s basic modal language: it cannot, for
instance, express universal modality (see [1]). But the kind of examples which
are cited in the linguistic and philosophical literature to motivate the choice of
such very expressive languages, upon closer examination, turn out to require only
the power of CrFO = KFO

t + ↓ + @, strictly less expressive than HLFO(@, ↓).
Returning to the question in the title of this paper, it turns out that though we
do need more power than the classical Priorean system has for NL translation,
we do not seem to need much more. This is close to the conclusion reached by [5],
and it should be studied how the current results are related to Meyer’s, which I
leave for future work.

It must be stressed that the investigation should not stop here. We have only
examined the examples usually used in the discussions of NL’s expressive power.
It may be that some other kinds of examples require more power. In particular, it
may be that nominals should be allowed as atoms (cf. [3]’s concern about nominal
now as in Now will never happen again, which is different from the adverbial
now we discussed in this paper.) Further study is needed, and it will depend
on its results whether it will be practically interesting to further investigate the
formal properties of Cr-style systems.

References

1. Blackburn, P., Seligman, J.: Hybrid languages. Journal of Logic, Language and
Information 4, 251–272 (1995)

2. Cresswell, M.: Entities and Indices. Kluwer, Dordrecht (1990)
3. Goranko, V.: Hierarchies of modal and temporal logics with reference pointers. Jour-

nal of Logic, Language and Information 5(1), 1–24 (1996)
4. Kamp, H.: Formal properties of “now”. Theoria 37, 227–273 (1971)
5. Meyer, U.: ‘now’ and ‘then’ in tense logic. Journal of Philosophical Logic 38(2),

229–247 (2009)
6. Schlenker, P.: A plea for monsters. Linguistics and Philosophy 26, 29–120 (2003)
7. Verkuyl, H.: Binary tense. CSLI lecture notes, vol. 187. CSLI Publications, Stanford

(2008)

A Translations between Cr and Kt + ↓ + @

Proposition 3. Translation from Cr into Kt + ↓ + @:

Build the Kt + ↓+ @ sentence φ′ as follows, applying for each F , P and thenk-
headed subformula the following operation exactly once: for each F (ψ) or P (ψ)
subformula, replace ψ with ↓uDep(i)(φ).ψ, where i is ψ’s position in φ; for thenk ψ,
replace thenk ψ with @uk.ψ.

M, ρ |=Cr φ for any ρ s.t. ρ(0) = t iff M, t |=Kt+↓+@ φ′

How Much Expressive Power Is Needed for NL Temporal Indexicality? 307

Proof. Immediately follows from the observation that at each evaluation level,
the assignment function g is mimicking the initial segment of ρ used by that
time, with g(uj) equal to ρ(j). ��

Proposition 4. Translation from Kt + ↓ + @ to Cr.

In the Kt + ↓+@ sentence φ, for each instance of ↓u operator, do the following:
1) compute ai := Dep(i)(φ) for i the position of ↓ψ;11 2) for each @u bound by
that instance of ↓u, replace it with thenai ; 3) when there are no more bound
@u, delete ↓u.

M, t |=Kt+↓+@ φ iff for any ρ s.t. ρ(0) = t M, ρ |=Cr φ′

Proof. Similarly to the previous proposition, the translation now emulates the
assignment function of Kt + ↓ + @ using the evaluation sequence of Cr, so in
the end each subformula gets evaluated relative to the same tuple of points in φ
and in φ′. ��

The translations are so straightforward because functions g of Kt + ↓ + @ and
sequences ρ of Cr represent the same information in them, only recorded in
different form. In fact, they are insensitive to what gets evaluated at those points,
carrying over to the FO variants:

Proposition 5. Translations defined in Propositions 3 and 4 preserve truth
when applied to CrFO and KFO

t + ↓ + @.

Proof. The same argument sketched for Propositions 3 and 4 above. ��

Proposition 5 makes our life easier when it comes to comparison between CrFO

and HLFO(↓, @), allowing us to easily establish that CrFO = KFO
t + ↓+ @ 	

HLFO(↓, @).

B Proofs of Theorems 2 and 3

Proof of Theorem 2. We define Tr from Cr to Kt such that M, ρ |=Cr φ iff
M, ρ(0) |=Kt Tr(φ):
1. For each subformula thenk ψ at position j s.t. Dep(j)(φ) = k, apply Propo-

sition 2 to substitute thenk ψ with just ψ.12

2. For each subformula thenk ψ at position j with Dep(j)(φ) �= k and not
immediately embedded under another thenl, do the following:
(a) Fix the “Boolean connective neighborhood” ζ of thenk ψ — the scope

of the closest F or P operator having the position j in its scope.
(b) Transform ζ into disjunctive normal form.

11 It is straightforward to define Dep(i)(φ) for Kt + ↓ + @ in the similar manner to
that which we used for Cr, counting the number of dominating F and P operators
between the subformula and either the top level or the closest higher @u operator.

12 I sloppily write φ in the definition, instead of using a temporary formula storing the
intermediate result.

308 I. Yanovich

(c) Apply the modal tautology F (φ∨ψ) ↔ F (φ)∨F (ψ) (or similarly for P)
to get each member of the disjunctive normal form immediately under
the modal operator. We get

∨
i F (ξi) or

∨
i P (ξi) where each ξi is a

conjunction.
(d) Take all F (ξi) or P (ξi) with thenk ψ being in ξi and not under any F

or P in it. For each such ξi, if there is negation on top of thenk, use
(3) to get the negation inside. Then use (4) to get thenk past the F or
P operator (if ξi = thenk ψ, apply the tautology ψ ↔ (ψ ∧ �) to make
(4) applicable.) After all ξi are taken care of, all “descendants” of the
original thenk ψ in position j are at depth Dep(j)(φ) − 1.

3. If there are no then operators, halt. If there are some left, go back to
step 1.

Any particular thenk ψ at initial position j in φ is guaranteed to be eliminated
after some number of iterations. For any ψ, it will be that k ≤ m(thenk ψ) ≤
Dep(j)(φ). If k = Dep(j)(φ), thenk can be eliminated right away by Step 1. If
k < Dep(j)(φ), unless it is in the immediate scope of another then, Step 2 will
move it higher to depth Dep(j)(φ) − 1. So eventually our thenk ψ will either
hit the depth k where it can be eliminated, or will get stuck immediately under
another thenl.13 But the same reasoning applies to that thenl as well: it should
either be eliminated or get stuck at some step. But one then will have to be the
highest one in any φ, so it will never get stuck. Then all other then-s which got
stuck behind it will be able to rise further, and so forth. By induction on then
operators in φ, we can eliminate all of them after a finite number of steps.

As all transformations preserve equivalence, after the translation halts, we
have a then-less sentence Tr(φ) true at the very same ρ in M where φ is true.
Tr(φ) is a Kt formula as well, and by Proposition 1, M, ρ |=Cr φ iff M, ρ(0) |=Kt

Tr(φ). ��
Note that the translation defined in the proof is EXPTIME because of the nor-
malization step 2b. It would be interesting to learn if a more efficient translation
can be defined which avoids normalization.

Proof of Theorem 3. The main work is done by the following lemma:

Lemma 1. If two tuples A := 〈a1, ..., an〉 in M at w and A′ := 〈a′
1, ..., a

′
n〉

in N at w′ are in FOL path harmony, and wEw′, then ThKFO
t

(M, w, A) =
ThKFO

t
(N, w′, A′).

Proof of Lemma 1. Suppose there exist A and A′ falsifying the lemma. Fix some
φ for which M, w, 〈a1, ..., an〉 |= φ, but N, w′, 〈a′

1, ..., a
′
n〉 �|= φ. In this case, we can

always pin down a minimal subformula of φ which contradicts the assumption
that A and A′ are in FOL path harmony.

φ may be viewed as several minimal subformulas ψ combined with the help
of Boolean connectives. At least one of those ψ must also be such that M, w,
〈a1, ..., an〉 |= ψ, but N, w′, 〈a′

1, ..., a
′
n〉 �|= ψ, so we fix one. If ψ is atomic, we

13 In this case, it can only be that k ≤ l. Otherwise thenk ψ would have been eliminated
before getting stuck.

How Much Expressive Power Is Needed for NL Temporal Indexicality? 309

immediately derive a contradiction because of harmony between A and A′ at w
and w′.

If ψ = ♦ξ, since N, w′, 〈a′
1, ..., a

′
n〉 �|= ψ, there must be no v′ s.t. w′Rv′ where

ξ is true for A′. As M, w, 〈a1, ..., an〉 |= ψ, we can find some v for which wRv
and M, v, 〈a1, ..., an〉 |= ξ. But by Zig, ∃v′ : w′Rv′ ∧ vEv′. We now have vEv′,
and M, v, 〈a1, ..., an〉 |= ξ, and N, v′, 〈a′

1, ..., a
′
n〉 �|= ξ. We now examine A, A′, v,

v′ and ξ as we did for A, A′, w, w′, and φ, but ξ has at least one operator less
than φ.

Finally, consider ψ = ∀xξ. Observe that if A and A′ are in FOL path harmony,
for any b there is b′ s.t. 〈a1, ..., an, b〉 and 〈a′

1, ..., a
′
n, b′〉 are also in FOL path

harmony, and vice versa.14 Now by the hypothesis that N, w′, 〈a′
1, ..., a

′
n〉 �|= ∀xξ,

for some c′, N, w′, 〈a′
1, ..., a

′
n, c′〉 �|= ξ. But there must be c′’s counterpart c s.t.

〈a1, ..., an, c〉 and 〈a′
1, ..., a

′
n, c′〉 are in FOL path harmony. Again, we can now

examine two tuples in FOL path harmony 〈a1, ..., an, c〉 and 〈a′
1, ..., a

′
n, c′〉 s.t.

one of them makes ξ true, but not the other, and ξ is again smaller than φ was.
So we return to the initial situation, but having a smaller formula.

As formulas are finite, we will eventually get down to the level of atomic
formulas, and it will become evident that A and A′ cannot be in FOL path
harmony if their KFO

t theories are different. �
The rest is easy. Suppose for an arbitrary φ ∈ KFO

t , M, w |= φ. Fix some
〈a1, ..., an〉 witnessing that. By FOL path harmony, if there is a FOL-path-
bisimulation E between M and N and wEw′, then there is a corresponding
tuple 〈a′

1, ..., a
′
n〉 at w′ in N . By the lemma above, ThKFO

t
(M, w, 〈a1, ..., an〉) =

ThKFO
t

(N, w′, 〈a′
1, ..., a

′
n〉), so from φ ∈ ThKFO

t
(M, w, 〈a1, ..., an〉) we immedi-

ately get that φ is also in ThKF O
t

(N, w′, 〈a′
1, ..., a

′
n〉), and thus N, w′ |= φ. ��

How much does this proof rely on the choices for the FO component of our
language? As long as quantifiers and equality are untensed, as far as I can see,
it does not matter what kind of semantics for the domains at different points
we give. Consider a tuple 〈a1, a2〉 such that only a1 is in the domain of some w.
ThFOL(M, w, 〈a1, a2〉) will still be well-defined; it will contain at least formulas of
the sort φ(x)∧y = y. If equality is untensed, a point-internal theory will contain
formulas including tautological statements like y = y regarding the individuals
from the tuple non-existing at the point, but no non-trivial statements regarding
the corresponding variables. The proof above thus does not imply existence of
the members of tuples at the considered points.

14 Suppose it were not so. Then there exist π and modal-less ζ s.t. πζ is true for
〈a1, ..., an, b〉 at w, but there is no b′ s.t. πζ is true for 〈a′1, ..., a′n, b′〉 at w′. But then
M,w, 〈a1, ..., an〉 |= π∃xζ, but N,w′, 〈a′1, ..., a′n〉 �|= π∃xζ, thus ζ is in some π point-
internal theory of A, but false at all π-reachable points for A′. That contradicts the
assumption A and A′ are in FOL path harmony.

Author Index

Achilleos, Antonis 8
Alur, Rajeev 1
Areces, Carlos 20

Benevides, Mario R.F. 123
Bucheli, Samuel 35

Carreiro, Facundo 20
Charlton, Nathaniel 52
Clouston, Ranald 67

da Cunha, Aubrey 84
de Vries, Fer-Jan 210
Donders, Michael 95

Ferrarotti, Flavio 110
Ferreira, Francicleber Martins 123
Figueira, Santiago 20, 135
Freire, Cibele Matos 123

Goŕın, Daniel 135
Grimson, Rafael 135
Gutierrez, Julian 146

Hartmann, Sven 110
Horn, Alexander 161

Iemhoff, Rosalie 2

Jordan, Charles 176

Köhler, Henning 110
Kontinen, Juha 187
Kuznets, Roman 35

Link, Sebastian 110

Martins, Ana Teresa 123
Mera, Sergio 20
Miner More, Sara 95
Mints, Grigori 201
Mitchell, John C. 3

Naumov, Pavel 95

Schechter, Luis Menasché 123
Severi, Paula 210
Shamkanov, Daniyar S. 228
Statman, Rick 239
Studer, Thomas 35
Szymanik, Jakub 187

Thorne, Camilo 257

Verdée, Peter 272
Vincent, Millist 110
Voevodsky, Vladimir 4

Winter, Yoad 5

Yanovich, Igor 293

Zakharyaschev, Michael 6
Zeugmann, Thomas 176

	Title
	Preface
	Organization
	Table of Contents
	Section 1: Invited Talks
	Streaming String Transducers
	Unification in Logic
	A Symbolic Logic with Exact Bounds for Cryptographic Protocols
	Univalent Foundations of Mathematics
	Relational Concepts and the Logic of Reciprocity
	Logic in the Time of WWW: An OWL View

	Section 2: Contributed Papers
	A Complexity Question in Justification Logic
	Introduction
	The Logic JD4
	*-Calculus and Minimal Evidence Functions
	A Class of Models
	The Algorithm and Its Analysis
	References

	Basic Model Theory for Memory Logics
	Introduction
	Bisimulations and Saturated Models
	Characterization and Definability
	Interpolation
	Conclusions and Further Work
	References

	Partial Realization in Dynamic Justification Logic
	Introduction
	Justification Logic
	Semantics
	Modal Public Announcement Logic
	Soundness and Completeness for OPAL
	Forgetful Projection and Realization
	Conclusion
	References

	Hoare Logic for Higher Order Store Using Simple Semantics
	Introduction
	Programs, Assertions and Specifications
	Expressions, Programs and Assertions
	Contexts and Specifications

	Proof Rules
	Soundness of the Logic
	Nondeterministic Programs
	Modular Proofs
	Related Work, Future Work and Conclusions
	References

	Nominal Lawvere Theories
	Introduction
	Nominal Sets and FM-Sets
	Nominal Equational Logic
	Nominal Lawvere Theories
	Algebra in FM-Categories
	Category-Theory Correspondence
	Related and Further Work
	References

	Turing Machines on Cayley Graphs
	Introduction
	General Tape Geometries
	Turing Machines on Cayley Graphs
	A Well-Ordering in Trees
	Tree of Super-Reduced Words
	Power of Turing Machines on Cayley Graphs
	Proof of Theorem 2
	An Alternative Characterization of the r.e. Turing Degrees
	Further Remarks

	References

	Information Flow on Directed Acyclic Graphs
	Introduction
	Protocol: A Formal Definition
	Semantics
	Graph Notation
	Formal System: Axioms and Rules
	Soundness
	Completeness
	Parity Protocol
	Recursive Construction
	Protocol Composition

	Conclusion
	References

	The Boyce-Codd-Heath Normal Form for SQL
	Introduction
	Related Work
	SQL Table Definitions
	Axiomatic and Algorithmic Characterization
	Equivalence to Goal and Definite Clauses in S-3 Logics
	The Boyce-Codd-Heath Normal Form for SQL
	Semantic Justification
	Conclusion
	References

	Hybrid Logics and NP Graph Properties
	Introduction
	Hybrid Logic
	Properties of Graphs in HL
	Translation
	Connected Frames with Loops
	References

	On the Expressive Power of IF-Logic with Classical Negation
	Introduction
	Syntax and Semantics of SL("3223379)
	Normal Forms for SL("3223379)
	Skolem Forms, Dependencies and 21-Expressivity
	Skolem Form of SL("3223379) Sentences
	First-Order Dependencies and the 12-Class

	Conclusions
	References

	Concurrent Logic Games on Partial Orders
	Introduction
	The Concurrent Game Model
	Closure Properties
	Metatheorems for Systems and Property Verification
	Algorithmic Applications and Further Work
	References

	Dynamic Epistemic Algebra with Post-conditions to Reason about Robot Navigation
	Introduction
	Robot Navigation with Topological Maps
	Dynamic Epistemic Algebra with Post-conditions
	Robot Movements as Post-conditions
	Disbelief
	Conclusions
	Further Research
	References

	Untestable Properties in the Kahr-Moore-Wang Class
	Introduction
	Related Work

	Preliminaries
	An Untestable Property
	Conclusion
	References

	Characterizing Definability of Second-Order Generalized Quantifiers
	Introduction
	Preliminaries
	Generalized Quantifiers
	Definability

	Characterizing Definability
	Conclusion
	References

	Countable Version of Omega-Rule
	Introduction
	Proof Search Tree for Arithmetic
	System BI1c
	Cut-Elimination Operations for BI1c
	Embedding Finite Derivations into BIc1
	References

	Decomposing the Lattice of Meaningless Sets in the Infinitary Lambda Calculus
	Introduction
	Infinitary Lambda Calculus
	The Elementary Key Intervals of Finite Cardinality
	The Indecomposable Key Interval [R, SAS I L]
	The Elementary Key Intervals of Infinite Cardinality
	The Interval [R, SA]
	The Interval [R, RS I L]
	The Interval [SA, SAS I L]
	 The Intervals [H A, H AI L] and [H AO, H AI LO]

	Non-modularity and Non-distributivity
	Conclusions
	References

	Strong Normalization and Confluence for Reflexive Combinatory Logic
	Introduction
	Reflexive Combinatory Logic
	The Language of RCL : Types and Typed Terms
	Derivability Relation

	Contractions
	Strong Normalization and Confluence
	Modal Combinatory Logic
	Adequate Expressions and Reductions
	Final Considerations

	References

	On Polymorphic Types of Untyped Terms
	Introduction
	Untyped Terms
	Types
	Typing Untyped Terms
	References

	Querying the Fragments of English
	Introduction
	The Fragments of English and Semantic Complexity
	Querying the Fragments of English
	Resolution Saturations and Data Complexity
	Tractable Fragments
	Intractable Fragments

	An Undecidable Fragment
	Conclusions and Related Work
	References

	Strong Paraconsistency by Separating Composition and Decomposition in Classical Logic
	Introduction
	Language and Proof Theory
	Examples
	Semantics
	Soundness, Completeness and Other Important Properties
	A Strong Paraconsistent Version of CL
	A Relevant Logic Interpretation for the Lines of C-Proofs
	Procedures for Proof Generation
	References

	How Much Expressive Power Is Needed for Natural Language Temporal Indexicality?
	The Propositional Case: No Additional Expressive Power
	The Predicate Case: More Expressive Power Is Needed
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

