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Abstract This chapter introduces discrete sliding mode controllers, including 
a typical discrete sliding mode controller and a kind of discrete sliding mode 
controller based on disturbance observer. 
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4.1 Discrete Sliding Mode Controller Design and Analysis 

4.1.1 System Description 

Consider the following uncertain system  

 ( 1) ( ) ( ) ( ) ( )� � � � � �k k u k kx A A x B f  (4.1) 

where x is system state, 2 2��RA and 2 2�� �RA  are matrix, 2 1��RB  is a vector, 
�u R  is control input, 2 1f ��R  is a vector, T[0  ] ,� bB  0.b �  
The uncertain term �A  and the perturbation term ( )f k  satisfy the classical 

matching conditions, i.e. 

 � �A BA� ,  �f Bf�  (4.2) 
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Then, the system (4.1) can be described as 

 ( 1) ( ) [ ( ) ( )]� � � �k k k kx Ax B u d  (4.3) 

where ( ) ( ) ( ).� �� �d k k kAx f  

4.1.2 Controller Design and Analysis 

The controller is designed as 

 T 1 T T
d( ) ( ) ( ( 1) ( ) ( ) sgn( ( )))u k k k qs k s k��� � � � �C B C x C Ax  (4.4) 

where � , q , c  are positive constant values, c must be Hurwitz, T[   1] ,� cC  
0 1,q� �  | | ,d D�  T .D ��C B  

Stability analysis is given as follows: If the ideal position signal is d ( )x k  then 
the tracking error is d( ) ( ) ( ),e k x k x k� �  then 
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(4.5)

 

Since T T| ( ) | ,d k D �� �C B C B  then T ( )d k� �� � �C B , T T ( )D d k� � �C B C B  
T ,DC B  and then we have T ( ) 0,d k� � �C B  T ( ) 0,d k�� � �C B  T D �C B  
T ( ) 0d k �C B  and T T ( ) 0.D d k� � �C B C B  
Four conditions are analyzed as follows: 
(1) When T( ) ,s k D ��C B  we have 
Consider ( ) 0,s k �  0 1,q� �  T ( ) 0,d k�� � �C B  T T ( ) 0,D d k� �C B C B  then 

T( 1) ( ) ( 1) ( ) ( ) 0s k s k q s k d k�� � � � � � �C B  

T T T

T T T

( 1) ( ) ( 1) ( ) ( ) ( 1)( ) ( )
( ) ( ) 0

s k s k q s k d k q D d k
q D D d k

� � �

�

� � � � � � � � � �
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Then, 
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2 2( 1) ( )s k s k� �  

(2) When T0 ( ) ,s k D �� � �C B  we have 

T T T

T T

( 1) ( ) ( ) ( ) ( )
( )

s k qs k d k q D d k
q D D

� � �

� �

� � � � � � � �

� � � �

C B C B C B
C B C B

 

T T T( 1) ( ) ( ) ( )s k qs k d k d k D� � �� � � � � � � � � �C B C B C B  

Then, 

T| ( 1) |s k D �� � �C B  

(3) When T ( ) 0,D s k�� � � �C B  we have 

T T

T T T

( 1) ( ) ( ) ( ) ( )
( )

s k qs k d k s k d k
D d k D
� �

� � �

� � � � � � �
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C B C B
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T T T( 1) ( ) ( ) ( )s k qs k d k d k D� � �� � � � � � � �C B C B C B  

Then, 

T| ( 1) |s k D �� � �C B  

(4) When T( ) 0,s k D �� � �C B  we have 

T( 1) ( ) ( 1) ( ) ( ) 0�� � � � � � �s k s k q s k d kC B  

T T

T T T T

( 1) ( ) ( 1) ( ) ( ) ( ) ( )
( ) ( ) 0

s k s k q s k d k s k d k
D d k D d k

� �

� �

� � � � � � � � �

� � � � � � � �

C B C B
C B C B C B C B

 

Then, 
2 2( 1) ( )s k s k� �  

From the above analysis we conclude as follows: 

 When T| ( ) | ,��s k DC B  2 2( 1) ( )s k s k� �  (4.6) 

 When T| ( ) | ,s k D �� �C B  T| ( 1) |s k D �� � �C B  (4.7) 

From Eqs. (4.6) and (4.7), since T ,D� � C B  ( )s k  converge to T .D ��C B  
Therefore, to increase convergence performance, a disturbance observer is required 
to be designed. 
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4.1.3 Simulation Example 

Consider the plant 

2

133( )
25

G s
s s
�
�

 

The sampling time is chosen as 0.001 s. Considering disturbance, the discrete 
system can be written as 

( 1) ( ) ( ( ) ( ))k k u k d k� � � �x Ax B  

where 
1 0.001

,
0 0.9753
! "
� % &
# $

A  
0.0001

,
0.1314
! "
� % &
# $

B  and ( )d k  is disturbance. 

Using the control law Eq. (4.4), and assuming the disturbance as ( )d k � 
1.5sin ,t  choosing the ideal position signal as d ( ) sin ,x k t�  and designing T �C  
[15 1],  0.80,q � 1.5.D �  The initial state is [0.15 0].  The term d ( 1)x k �  can 
be received by extrapolation method. The simulation results are shown in 
Fig. 4.1 � Fig. 4.3. 

 
Figure 4.1 Sine signal tracking 

 
Figure 4.2 Control input 
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Figure 4.3 Phase trajectory 

Simulation programs: chap4_1.m 
%VSS controller based on decoupled disturbance compensator 
clear all; 
close all; 
 
ts=0.001; 
a=25; 
b=133; 
sys=tf(b,[1,a,0]); 
dsys=c2d(sys,ts,'z'); 
[num,den]=tfdata(dsys,'v'); 
 
A=[0,1;0,-a]; 
B=[0;b]; 
C=[1,0]; 
D=0; 
%Change transfer function to discrete position equation 
[A1,B1,C1,D1]=c2dm(A,B,C,D,ts,'z'); 
A=A1; 
b=B1; 
c=15; 
Ce=[c,1]; 
q=0.80;              %0<q<1 
 
d_up=1.5; 
eq=Ce*b*d_up+0.10;  %eq>abs(Ce*b*m/g);0<eq/fai<q<1 
 
x_1=[0.15;0]; 
s_1=0; 
u_1=0; 
d_1=0;ed_1=0; 
r_1=0;r_2=0;dr_1=0; 
 
for k=1:1:10000 
time(k)=k*ts; 
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d(k)=1.5*sin(k*ts); 
 
x=A*x_1+b*(u_1+d(k)); 
 
r(k)=sin(k*ts); 
%Using Waitui method    
   dr(k)=(r(k)-r_1)/ts; 
   dr_1=(r_1-r_2)/ts; 
   r1(k)=2*r(k)-r_1; 
   dr1(k)=2*dr(k)-dr_1; 
 
   xd=[r(k);dr(k)]; 
   xd1=[r1(k);dr1(k)]; 
 
 e(k)=x(1)-r(k); 
 de(k)=x(2)-dr(k); 
 s(k)=c*e(k)+de(k); 
 
    u(k)=inv(Ce*b)*(Ce*xd1-Ce*A*x+q*s(k)-eq*sign(s(k))); 
 
    r_2=r_1;r_1=r(k); 
    dr_1=dr(k);    
    
 x_1=x; 
 s_1=s(k); 
 
 x1(k)=x(1); 
 x2(k)=x(2); 
 u_1=u(k); 
end 
figure(1); 
plot(time,r,'k',time,x1,'r:','linewidth',2); 
xlabel('time(s)');ylabel('Position tracking'); 
legend('Ideal position signal','tracking signal'); 
figure(2); 
plot(time,u,'k','linewidth',2); 
xlabel('time(s)');ylabel('u'); 
figure(3); 
plot(e,de,'k',e,-Ce(1)*e,'r','linewidth',2); 
xlabel('e');ylabel('de'); 

4.2 Discrete Sliding Mode Control Based on Disturbance  
Observer 

4.2.1 System Description 

Consider the uncertain discrete system as follow: 

 ( 1) ( ) ( ( ) ( ))k k u k d k� � � �x Ax B  (4.8) 
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where x is system state, 2 2��A R  is a matrix, 2 1��B R  is a vector, 2 1u ��R  is 
control input, T[0 ] , 0,b b d� � �B R  is the disturbance. 

Let the desired input command be d ( ),kx  and the tracking error be ( )k �e  
d( ) ( ).k k�x x  The sliding variable is designed as 

 ( ) ( )s k k� Ce  (4.9) 

where [ 1],c�C  0.c �  

4.2.2 Discrete Sliding Mode Control Based on Disturbance Observer 

In this section, we introduce a typical sliding mode controller base on disturbance 
observer, which was proposed by Eun et al[1]. 

For Eq. (4.8), the sliding mode controller consists of the sliding mode control 
element and the disturbance compensation. The controller proposed by Eun et al. as[1] 
 s c( ) ( ) ( )u k u k u k� �  (4.10) 

where 
T 1 T T

s d( ) ( ) ( ( 1) ( ) ( ) sgn( ( )))u k k k qs k s k��� � � � �C B C x C Ax  

c
ˆ( ) ( )u k d k� �  

The disturbance observer was proposed by Eun et al. as: 

 T 1ˆ ˆ( ) ( 1) ( ) ( ( ) ( 1) sgn( ( 1)))d k d k g s k qs k s k��� � � � � � �C B  (4.11) 

where ˆ( ) ( ) ( )d k d k d k� �� , � , q , and g are positive constants. 
From Eqs. (4.8) and (4.10), we have 

 

T T T
d

T T
d

T T T
d

T T T
d

T

( 1) ( 1) ( 1) ( 1)

( ( ) ( ) ( )) ( 1)

( ) ( ( 1) ( ) ( )
ˆsgn( ( ))) ( ) ( ) ( 1)

( ) sgn( ( )) ( )

s k k k k

k u k d k k

k k k qs k

s k d k d k k

qs k s k d k

�

�

� � � � � � �

� � � � �

� � � � �

� � � � �

� � �

C e C x C x
C Ax B B C x
C Ax C x C Ax

C B C B C x

C B �

 (4.12) 

From Eqs. (4.11) and (4.12), we can get 

T 1

T 1 T

ˆ( 1) ( 1) ( 1)
ˆ( 1) ( ) ( ) ( ( 1) ( ) sgn( ( )))

( 1) ( ) ( ) ( ) ( ) ( )

( 1) ( ) (1 ) ( )

d k d k d k

d k d k g s k qs k s k

d k d k d k g d k

d k d k g d k
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� � � � �

� � � � � � �

� � � � �

� � � � �
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� �
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(4.13)
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4.2.3 Convergent Analysis of Disturbance Observer 

Theorem 1 proposed by Eun et al. as follows. 
Theorem 1[1]: For the disturbance observer Eq. (4.11) there exists a positive 

constant m, if | ( 1) ( ) |d k d k m� � �  then 0k  exists, and when 0k k�  then ( )d k ��  
/m g  is satisfied where 0 1.g� �  

Proof: 

( )d k�  can be decomposed as 

 1 2( ) ( ) ( )d k d k d k� �� � �  

Let 1(0) 0,d ��  we can get 2 (0) (0),d d�� �  and because 

1 2( 1) ( 1) ( 1)d k d k d k� � � � �� � �  

We let 

 1 1( 1) (1 ) ( ) ( 1) ( )d k g d k d k d k� � � � � �� �  (4.14) 

From Eq. (4.13), we have 

 2 2( 1) (1 ) ( )d k g d k� � �� �  (4.15) 

Inductive method is used to prove the theorem. Firstly, we prove 1( ) /d k m g�� . 
(1) When 0,k �  we get: 1(0) 0 / .d m g� ��  
(2) Suppose 1| ( ) | / ,d k m g��  and from Eq. (4.14)and 0 1,g� �  we can get 

when 1,k �  

1 1| ( 1) | (1 ) | ( ) | | ( 1) ( ) | (1 ) m md k g d k d k d k g m
g g

� � � � � � � � �� �  

is satisfied. From the above two equations, we have 

1| ( ) | / ,d k m g��   0k  

From Eq. (4.15) and 0 1 1,g� � �  we get 

2 2 2 2( 1) (1 ) ( ) (1 ) | ( ) | | ( ) |d k g d k g d k d k� � � � �� � � �  

Therefore, 2 ( )d k�  is decreasing. And if there exists 0 ,k .  when 0 ,k k .�  then 2 ( )d k�  
is arbitrary small. 

From the analysis above, we find that there exists 0 ,k  when 0 ,k k�  such that 

1 2 1 2| ( ) | | ( ) ( ) | ( ) | ( ) | md k d k d k d k d k
g

� � � �� � � � �  
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4.2.4 Stability Analysis 

Theorem 2 proposed by Eun et al. as follows. 
Theorem 2[1]: For controller Eq. (4.10), the system is stable if the following 

conditions are satisfied:  
(1) 0 1,q� �  0 1;g� �  
(2) There exists a positive constant m, | ( 1) ( ) | ;d k d k m� � �  

(3) T0 .m
g
�� �C B  

Proof: Let T( ) ( ),v k d k� C B �  we have 

T| ( ) | ,mv k
g
�� �C B  i.e. ( ) ,v k� �� � �  T T( )m mv k

g g
� � �C B C B  

Equation (4.12)can be written as 

( 1) ( ) sgn( ( )) ( )s k qs k s k v k�� � � �  

The following four cases are discussed: 

(1) When T( ) 0,ms k
g
�� �C B  we have 

( 1) ( ) ( 1) ( ) ( ) 0s k s k q s k v k�� � � � � � �  

T

T T

( 1) ( ) ( 1) ( ) ( ) ( 1) ( )

( ) 0

ms k s k q s k v k q v k
g

m mq v k
g g

� � �

�

	 

� � � � � � � � � �� �

 �
	 


� � � � �� �
 �

C B

C B C B
 

Therefore, 

2 2( 1) ( )s k s k� �  

(2) When T( ) 0,ms k
g
�� � �C B  we have 

( 1) ( ) ( 1) ( ) ( ) 0s k s k q s k v k�� � � � � � �  

T T

( 1) ( ) ( 1) ( ) ( ) ( ) ( )

( ) ( ) 0

s k s k q s k v k s k v k
m mv k v k
g g

� �

� �

� � � � � � � � �

� � � � � � � �C B C B  
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Therefore, 

2 2( 1) ( )s k s k� �  

(3) When T0 ( ) ,ms k
g
�� � �C B  we have 

T

T T

( 1) ( ) ( ) ( )ms k qs k v k q v k
g

m mq
g g

� � �

� �

	 

� � � � � � � �� �

 �
	 


� � � �� �
 �

C B

C B C B
 

T( 1) ( ) ( ) ( ) ms k qs k v k v k
g

� � �� � � � � � � � � �C B  

Therefore, 

T| ( 1) | ms k
g
�� � �C B  

(4) When T ( ) 0,m s k
g
�� � � �C B  we have 

T T

( 1) ( ) ( ) ( ) ( )

( )

s k qs k v k s k v k
m mv k
g g

� �

� � �

� � � � � � �

� � � � � � � �C B C B  

T( 1) ( ) ( ) ( ) ms k qs k v k v k
g

� � �� � � � � � � �C B  

Therefore, 

T| ( 1) | ms k
g
�� � �C B  

From the above analysis the following conclusions can be obtained.  

 When T| ( ) | ,ms k
g
��C B   2 2( 1) ( )s k s k� �  (4.16) 

 When T| ( ) | ,ms k
g
�� �C B   T| ( 1) | ms k

g
�� � �C B  (4.17) 

The disturbance ( )d t  is supposed to be continuous. If the sampling time is 
sufficiently small, then | ( 1) ( ) |d k d k m� � �  can be guaranteed and m is 
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sufficiently small. If m and g are selected such that 1,m
g
�  and because 

T ,m
g
��C B �  is selected sufficiently small and make T 1.m

g
��C B �  Therefore, 

the convergence of ( 1)s k �  can be realized. 

4.2.5 Simulation Example 

Consider the plant as follows: 

2

133( )
25

G s
s s
�
�

 

The sampling time is 0.001 s. The discretization equation of the plant is after 
factoring disturbance is 

( 1) ( ) ( ( ) ( ))k k u k d k� � � �x Ax B  

where 
1 0.001

,
0 0.9753
! "
� % &
# $

A  
0.0001

,
0.1314
! "
� % &
# $

B ( )d k  is disturbance, and ( )d k � 

1.5sin(2 ).t�  
Let the desired command be d ( ) sin ,x k t�  and use the control law (4.10). 

Therefore, according to linear extrapolation method, we get d ( 1)x k � � 

d d2 ( ) ( 1).x k x k� �  The controller parameters are T [15 1],�C 0.80,q � g � 

0.95,  0.01,m �  T 0.001.m
g

� � �C B  The initial state vector is [0.5 0].  The 

simulation results are shown in Fig. 4.4� Fig. 4.7. 

 
Figure 4.4 Sine tracking 
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Figure 4.5 Observation of disturbance 

 
Figure 4.6 Control input 

 
Figure 4.7 Phase trajectory 

Simulation program: 

chap4_2.m 
%SMC controller based on decoupled disturbance compensator 
clear all; 
close all; 
 
ts=0.001; 
a=25;b=133; 
sys=tf(b,[1,a,0]); 
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dsys=c2d(sys,ts,'z'); 
[num,den]=tfdata(dsys,'v'); 
 
A0=[0,1;0,-a]; 

B0=[0;b]; 
C0=[1,0]; 
D0=0; 

%Change transfer function to discrete position xiteuation 
[A1,B1,C1,D1]=c2dm(A0,B0,C0,D0,ts,'z'); 
A=A1; 

B=B1; 
c=15; 
C=[c,1]; 

q=0.80;              %0<q<1 
g=0.95; 
 

m=0.010;             %m>abs(d(k+1)-d(k)) 
 
xite=C*B*m/g+0.0010;  %xite>abs(C*B*m/g);0<xite/fai<q<1 

 
x_1=[0.5;0]; 
s_1=0; 

u_1=0; 
d_1=0;ed_1=0; 
xd_1=0;xd_2=0;dxd_1=0; 

 
for k=1:1:10000 
time(k)=k*ts; 

 
d(k)=1.5*sin(2*pi*k*ts); 
d_1=d(k); 

 
x=A*x_1+B*(u_1+d(k)); 
 

xd(k)=sin(k*ts); 
 
   dxd(k)=(xd(k)-xd_1)/ts; 

   dxd_1=(xd_1-xd_2)/ts; 
   xd1(k)=2*xd(k)-xd_1; %Using Waitui method    
   dxd1(k)=2*dxd(k)-dxd_1; 

   Xd=[xd(k);dxd(k)]; 
   Xd1=[xd1(k);dxd1(k)]; 
 

 e(k)=x(1)-Xd(1); 
 de(k)=x(2)-Xd(2); 
 s(k)=C*(x-Xd); 

 
   ed(k)=ed_1+inv(C*B)*g*(s(k)-q*s_1+xite*sign(s_1)); 
 

   u(k)=-ed(k)+inv(C*B)*(C*Xd1-C*A*x+q*s(k)-xite*sign(s(k))); 
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   xd_2=xd_1;xd_1=xd(k); 
   dxd_1=dxd(k);    
    
    ed_1=ed(k); 
 x_1=x; 
 s_1=s(k); 
 
 x1(k)=x(1); 
 x2(k)=x(2); 
 u_1=u(k); 
end 
figure(1); 
plot(time,xd,'k',time,x1,'r:','linewidth',2); 
xlabel('time(s)');ylabel('Position tracking'); 
legend('Ideal position signal','tracking signal'); 
figure(2); 
plot(time,d,'k',time,ed,'r:','linewidth',2); 
xlabel('time(s)');ylabel('d,ed'); 
legend('Practical d','Estimation d'); 
figure(3); 
plot(time,u,'r','linewidth',2); 
xlabel('time(s)');ylabel('Control input'); 
figure(4); 
plot(e,de,'b',e,-C(1)*e,'r'); 
xlabel('e');ylabel('de'); 
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