

Lecture Notes in Artificial Intelligence 6645
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

James P. Delgrande Wolfgang Faber (Eds.)

Logic Programming
and Nonmonotonic
Reasoning

11th International Conference, LPNMR 2011
Vancouver, Canada, May 16-19, 2011
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

James P. Delgrande
Simon Fraser University, School of Computing Science
Burnaby, B.C., V5A 1S6, Canada
E-mail: jim@cs.sfu.ca

Wolfgang Faber
University of Calabria, Department of Mathematics
87036 Rende (CS), Italy
E-mail: wf@wfaber.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-20894-2 e-ISBN 978-3-642-20895-9
DOI 10.1007/978-3-642-20895-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011926310

CR Subject Classification (1998): I.2.3, I.2.4, F.1.1, F.4.1, D.1.6, G.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 11th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR-11) held during
May 16–19, 2011 in Vancouver, British Columbia, Canada.

LPNMR is a forum for exchanging ideas on declarative logic programming,
nonmonotonic reasoning and knowledge representation. The aim of the con-
ference is to facilitate interaction between researchers interested in the design
and implementation of logic-based programming languages and database sys-
tems, and researchers who work in the areas of knowledge representation and
nonmonotonic reasoning. LPNMR strives to encompass theoretical and experi-
mental studies that have led or will lead to the construction of practical systems
for declarative programming and knowledge representation.

The conference program included invited talks by Chitta Baral, David Pearce,
and David Poole, as well as 16 long papers (13 technical papers, 1 application
description, and 2 system descriptions) and 26 short papers (16 technical papers,
3 application descriptions, and 7 system descriptions), which were selected by
the Program Committee after a thorough reviewing process. The conference also
hosted three workshops and the award ceremony of the Third ASP Competition,
held and organized prior to the conference by Francesco Calimeri, Giovambat-
tista Ianni, and Francesco Ricca at the University of Calabria, Italy.

We would like to thank the members of the Program Committee and the ad-
ditional reviewers for their efforts to produce fair and thorough evaluations of the
submitted papers, the local Organizing Committee, especially Aaron Hunter and
Jiahui Xu, and of course the authors of the scientific papers. Furthermore we are
grateful to the sponsors for their generous support: Artificial Intelligence Jour-
nal, Pacific Institute of the Mathematical Sciences (PIMS), Assocation of Logic
Programming (ALP), Simon Fraser University, and the University of Calabria.
Last, but not least, we thank the people of EasyChair for providing resources
and a marvelous conference management system.

March 2011 James Delgrande
Wolfgang Faber

Organization

Program Chairs

James Delgrande Simon Fraser University, Canada
Wolfgang Faber University of Calabria, Italy

Local Organization Chair

Aaron Hunter Simon Fraser University, Canada

Program Committee

Jose Julio Alferes Universidade Nova de Lisboa, Portugal
Marcello Balduccini Kodak Research Laboratories, USA
Chitta Baral Arizona State University, USA
Leopoldo Bertossi Carleton University, Canada
Richard Booth University of Luxembourg
Gerhard Brewka Leipzig University, Germany
Pedro Cabalar University of A Coruña, Spain
Stefania Costantini Università di L’Aquila, Italy
Marina De Vos University of Bath, UK
Marc Denecker Katholieke Universiteit Leuven, Belgium
Yannis Dimopoulos University of Cyprus
Juergen Dix Clausthal University of Technology, Germany
Agostino Dovier Università di Udine, Italy
Thomas Eiter Vienna University of Technology, Austria
Esra Erdem Sabanci University, Turkey
Michael Fink Vienna University of Technology, Austria
Andrea Formisano Università di Perugia, Italy
Martin Gebser University of Potsdam, Germany
Michael Gelfond Texas Tech University, USA
Giovambattista Ianni University of Calabria, Italy
Tomi Janhunen Aalto University, Finland
Antonis Kakas University of Cyprus
Joohyung Lee Arizona State University, USA
Nicola Leone University of Calabria, Italy
Vladimir Lifschitz University of Texas, USA
Fangzhen Lin Hong Kong University of Science and Technology,

P.R. China

VIII Organization

Jorge Lobo IBM T. J. Watson Research Center, USA
Robert Mercer The University of Western Ontario, Canada
Alessandra Mileo University of Milano-Bicocca, Italy
Ilkka Niemelä Aalto University, Finland
Mauricio Osorio Fundación Universidad de las Américas, Mexico
Ramon Otero University of A Coruña
David Pearce Universidad Rey Juan Carlos, Spain
Axel Polleres National University of Ireland
Enrico Pontelli New Mexico State University, USA
Chiaki Sakama Wakayama University, Japan
John Schlipf University of Cincinnati, USA
Tran Cao Son New Mexico State University, USA
Terrance Swift Universidade Nova de Lisboa, Portugal
Evgenia Ternovska Simon Fraser University, Canada
Hans Tompits Vienna University of Technology, Austria
Francesca Toni Imperial College London, UK
Mirek Truszczynski University of Kentucky, USA
Agustin Valverde Ramos Universidad de Malaga, Spain
Kewen Wang Griffith University, Australia
Stefan Woltran Vienna University of Technology, Austria
Jia-Huai You University of Alberta, Canada
Yan Zhang University of Western Sydney, Australia

Additional Reviewers

Michael Bartholomew
Sandeep Chintabathina
Alessandro Dal Palù
Minh Dao Tran
Broes De Cat
Stef De Pooter
Wolfgang Dvorak
Jorge Fandino
Luis Fraga
Sarah Gaggl
Gregory Gelfond
Ricardo Gonçalves
Katsumi Inoue
Jianmin Ji
Matthias Knorr
Guohua Liu
Marco Manna
Marco Maratea

Yunsong Meng
Juan Antonio Navarro Perez
Johannes Oetsch
Emilia Oikarinen
Simona Perri
Jörg Pührer
Francesco Ricca
Torsten Schaub
Peter Schüller
Marco Sirianni
Shahab Tasharrofi
Hanne Vlaeminck
Antonius Weinzierl
Siert Wieringa
Maonian Wu
Claudia Zepeda-Cortés
Yi Zhou

Table of Contents

Invited Talks

Logic, Probability and Computation: Foundations and Issues of
Statistical Relational AI . 1

David Poole

Foundations and Extensions of Answer Set Programming: The Logical
Approach . 10

David Pearce

Lessons from Efforts to Automatically Translate English to Knowledge
Representation Languages . 12

Chitta Baral

Technical Papers

Long Technical Papers

Modularity of P-Log Programs . 13
Carlos Viegas Damásio and João Moura

Symmetry Breaking for Distributed Multi-Context Systems 26
Christian Drescher, Thomas Eiter, Michael Fink,
Thomas Krennwallner, and Toby Walsh

Splitting an Argumentation Framework . 40
Ringo Baumann

Reactive Answer Set Programming . 54
Martin Gebser, Torsten Grote, Roland Kaminski, and
Torsten Schaub

Communicating ASP and the Polynomial Hierarchy 67
Kim Bauters, Steven Schockaert, Dirk Vermeir, and
Martine De Cock

Loop Formulas for Splitable Temporal Logic Programs 80
Felicidad Aguado, Pedro Cabalar, Gilberto Pérez, and
Concepción Vidal

Pushing Efficient Evaluation of HEX Programs by Modular
Decomposition . 93

Thomas Eiter, Michael Fink, Giovambattista Ianni,
Thomas Krennwallner, and Peter Schüller

X Table of Contents

Approximations for Explanations of Inconsistency in Partially Known
Multi-Context Systems . 107

Thomas Eiter, Michael Fink, and Peter Schüller

Relational Information Exchange and Aggregation in Multi-Context
Systems . 120

Michael Fink, Lucantonio Ghionna, and Antonius Weinzierl

Stepping through an Answer-Set Program . 134
Johannes Oetsch, Jörg Pührer, and Hans Tompits

Dynamic Magic Sets for Programs with Monotone Recursive
Aggregates . 148

Mario Alviano, Gianluigi Greco, and Nicola Leone

Strong Equivalence of Logic Programs with Abstract Constraint
Atoms . 161

Guohua Liu, Randy Goebel, Tomi Janhunen, Ilkka Niemelä, and
Jia-Huai You

Back and Forth between Rules and SE-Models . 174
Martin Slota and João Leite

Short Technical Papers

What Are the Necessity Rules in Defeasible Reasoning? 187
Ho-Pun Lam and Guido Governatori

Partial Preferences and Ambiguity Resolution in Contextual Defeasible
Logic . 193

Antonis Bikakis and Grigoris Antoniou

On Influence and Contractions in Defeasible Logic Programming 199
Diego R. Garćıa, Sebastián Gottifredi, Patrick Krümpelmann,
Matthias Thimm, Gabriele Kern-Isberner, Marcelo A. Falappa, and
Alejandro J. Garćıa

Termination of Grounding Is Not Preserved by Strongly Equivalent
Transformations . 205

Yuliya Lierler and Vladimir Lifschitz

Aggregates in Answer Set Optimization . 211
Emad Saad and Gerhard Brewka

Optimizing the Distributed Evaluation of Stratified Programs via
Structural Analysis . 217

Rosamaria Barilaro, Francesco Ricca, and Giorgio Terracina

Table of Contents XI

Contingency-Based Equilibrium Logic . 223
Luis Fariñas del Cerro and Andreas Herzig

Weight Constraints with Preferences in ASP . 229
Stefania Costantini and Andrea Formisano

Parametrized Equilibrium Logic . 236
Ricardo Gonçalves and José Júlio Alferes

Random vs. Structure-Based Testing of Answer-Set Programs:
An Experimental Comparison . 242

Tomi Janhunen, Ilkka Niemelä, Johannes Oetsch, Jörg Pührer, and
Hans Tompits

Integrating Rules and Ontologies in the First-Order Stable Model
Semantics (Preliminary Report) . 248

Joohyung Lee and Ravi Palla

Gentzen-Type Refutation Systems for Three-Valued Logics with an
Application to Disproving Strong Equivalence . 254

Johannes Oetsch and Hans Tompits

New Semantics for Epistemic Specifications . 260
Michael Gelfond

cmMUS: A Tool for Circumscription-Based MUS Membership
Testing . 266

Mikoláš Janota and Joao Marques-Silva

Transaction Logic with External Actions . 272
Ana Sofia Gomes and José Júlio Alferes

An Application of Clasp in the Study of Logics . 278
Mauricio Osorio, José Luis Carballido, and Claudia Zepeda

Application Descriptions

Long Application Description

Industrial-Size Scheduling with ASP+CP . 284
Marcello Balduccini

Short Application Descriptions

Secommunity: A Framework for Distributed Access Control 297
Steve Barker and Valerio Genovese

XII Table of Contents

Itemset Mining as a Challenge Application for Answer Set
Enumeration . 304

Matti Järvisalo

Causal Reasoning for Planning and Coordination of Multiple
Housekeeping Robots . 311

Erdi Aker, Ahmetcan Erdogan, Esra Erdem, and Volkan Patoglu

System Descriptions

Long System Descriptions

ASPIDE: Integrated Development Environment for Answer Set
Programming . 317

Onofrio Febbraro, Kristian Reale, and Francesco Ricca

ASP-Prolog for Negotiation among Dishonest Agents 331
Ngoc-Hieu Nguyen, Tran Cao Son, Enrico Pontelli, and
Chiaki Sakama

Short System Descriptions

Advances in gringo Series 3 . 345
Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub

A Portfolio Solver for Answer Set Programming: Preliminary Report . . . 352
Martin Gebser, Roland Kaminski, Benjamin Kaufmann,
Torsten Schaub, Marius Thomas Schneider, and Stefan Ziller

plasp: A Prototype for PDDL-Based Planning in ASP 358
Martin Gebser, Roland Kaminski, Murat Knecht, and
Torsten Schaub

Cluster-Based ASP Solving with claspar . 364
Martin Gebser, Roland Kaminski, Benjamin Kaufmann,
Torsten Schaub, and Bettina Schnor

STeLP – A Tool for Temporal Answer Set Programming 370
Pedro Cabalar and Mart́ın Diéguez

Compiling Answer Set Programs into Event-Driven Action Rules 376
Neng-Fa Zhou, Yi-Dong Shen, and Jia-Huai You

VIDEAS: A Development Tool for Answer-Set Programs Based on
Model-Driven Engineering Technology . 382

Johannes Oetsch, Jörg Pührer, Martina Seidl, Hans Tompits, and
Patrick Zwickl

Table of Contents XIII

ASP Competition

The Third Answer Set Programming Competition: Preliminary Report
of the System Competition Track . 388

Francesco Calimeri, Giovambattista Ianni, Francesco Ricca,
Mario Alviano, Annamaria Bria, Gelsomina Catalano,
Susanna Cozza, Wolfgang Faber, Onofrio Febbraro,
Nicola Leone, Marco Manna, Alessandra Martello, Claudio Panetta,
Simona Perri, Kristian Reale, Maria Carmela Santoro,
Marco Sirianni, Giorgio Terracina, and Pierfrancesco Veltri

Author Index . 405

Logic, Probability and Computation:

Foundations and Issues of Statistical
Relational AI

David Poole

Department of Computer Science,
University of British Columbia,

Vancouver, BC, V6T 1Z4, Canada
poole@cs.ubc.ca

http://cs.ubc.ca/~poole/

Abstract. Over the last 25 years there has been considerable body of
research into combinations of predicate logic and probability forming
what has become known as (perhaps misleadingly) statistical relational
artificial intelligence (StaR-AI). I overview the foundations of the area,
give some research problems, proposed solutions, outstanding issues, and
clear up some misconceptions that have arisen. I discuss representations,
semantics, inference and learning, and provide some references to the
literature. This is intended to be an overview of foundations, not a survey
of research results.

Keywords: statistical relational learning, relational probabilistic mod-
els, inductive logic programming, independent choice logic, parametrized
random variables.

1 Introduction

Over the last 25 years there has been a considerable body of research into com-
bining logic and probability, evolving into what has come to be called statistical
relational AI. Rather than giving a survey, I will motivate the issues from the
bottom-up, trying to justify some choices that have been made. Laying bare the
foundations will hopefully inspire others to join us in exploring the frontiers and
unexplored areas.

One of the barriers to understanding this area is that it builds from multi-
ple traditions, which often use the same vocabulary to mean different things.
Common terms such as “variable”, “domain”, “relation”, and “parameter” have
come to have accepted meanings in mathematics, computing, logic and prob-
ability, but their meanings in each of these areas is different enough to cause
confusion.

Both predicate logic (e.g., the first-order predicate calculus) and Bayesian
probability calculus can be seen as extending the propositional calculus, one by
adding relations, individuals and quantified variables, the other by allowing for

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 1–9, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://cs.ubc.ca/~poole/

2 D. Poole

measures over possible worlds and conditional queries. Relational probabilistic
models1, which form the basis of statistical relational AI can be seen as combina-
tions of probability and predicate calculus to allow for individuals and relations
as well as probabilities.

To understand the needs for such a combination, consider learning from the
two datasets in Figure 1 (from [25]). Dataset (a) is the sort used in traditional
supervised and unsupervised learning. Standard textbook supervised learning al-
gorithms can learn a decision tree, a neural network, or a support vector machine
to predict UserAction. A belief network learning algorithm can be used to learn
a representation of the distribution over the features. Dataset (b), from which

Example Author Thread Length WhereRead UserAction

e1 known new long home skips
e2 unknown new short work reads
e3 unknown follow up long work skips
e4 known follow up long home skips
.

(a)

Individual Property Value

joe likes resort 14
joe dislikes resort 35
.
resort 14 type resort
resort 14 near beach 18
beach 18 type beach
beach 18 covered in ws
ws type sand
ws color white
.

(b)

Fig. 1. Two datasets

we may want to predict what Joe likes, is different. Many of the values in the
table are meaningless names that can’t be used directly in supervised learning.
Instead, it is the relationship among the individuals in the world that provides
the generalizations from which to learn. Learning from such datasets has been
studied under the umbrella of inductive logic programming (ILP) [12,10] mainly
because logic programs provide a good representation for the generalizations
required to make predictions. ILP is one of the foundations of StaR-AI, as it
provides a toolbox of techniques for structure learning.

One confusion about the area stems from the term “relational”; after all most
of the datasets are, or can be, stored in relational databases. The techniques of
1 Here we use this term in the broad sense, meaning any models that combine relations

and probabilities.

Logic, Probability and Computation 3

relational probabilistic models are applicable to cases where the values in the
database are names of individuals and it is the properties of the individuals and
the relationship between the individuals that are modelled. It is sometimes also
called multi-relational learning, as it is the interrelations that are important. This
is a misnomer because, as can be seen in Figure 1 (b), it not multiple relations
that cause problems (and provide opportunities to exploit structure), as a single
triple relation can store any relational database (in a so-called triple-store).

The term statistical relational AI, comes from not only having probabilities
and relations, but that the models are derived from data and prior knowledge.

2 Motivation

Artificial intelligence (AI) is the study of computational agents that act intel-
ligently [25]. The basic argument for probability as a foundation of AI is that
agents that act under uncertainty are gambling, and probability is the calculus
of gambling in that agents who don’t use probability will lose to those that do
use it [33]. While there are a number of interpretations of probability, the most
suitable is a Bayesian or subjective view of probability: our agents do not en-
counter generic events, but have to make decisions in particular circumstances,
and only have access to their beliefs.

In probability theory, possible worlds are described in terms of so-called ran-
dom variables (although they are neither random or variable). A random variable
has a value in every world. We can either define random variables in terms of
worlds or define worlds in terms of random variables. A random variable having a
particular value is a proposition. Probability is defined in terms of a non-negative
measure over sets of possible worlds that follow some very intuitive axioms.

In Bayesian probability, we make explicit assumptions and the conclusions are
logical consequences of the specified knowledge and assumptions. One particular
explicit assumption is the assumption of conditional independence. A Bayesian
network [14] is an acyclic directed graphical model of probabilistic dependence
that encapsulates the independence: a variable is conditionally independent of
other variables (those that are not its descendants in the graph) given its parents
in the graph. This has turned out to be a very useful assumption in practice.
Undirected graphical models encapsulate the assumption that a variable is in-
dependent of other variables given its neighbours.

These motivations for probability (and similar motivations for utility) do not
depend on non-relational representations.

3 Representation

Statistical relational models are typically defined in terms of parametrized ran-
dom variables [20] which are often drawn in terms of plates [3]. A parametrized
random variable corresponds to a predicate or a function symbol in logic. It can
include logical variables (which form the parameters). In the following examples,

4 D. Poole

we will write logical variables (which denote individuals) in upper case, and
constants, function and predicate symbols in lower case. We assume that the
logical variables are typed, where the domain of the type, the set of individuals
of the type, is called the population.

Parametrized random variables are best described in terms of an example.
Consider the case of diagnosing students’ performance in adding multi-digit
numbers of the form

x1 x0

+ y1 y0
z2 z1 z0

A student is given the values for the x’s and the y’s and provides values for the z’s.
Whether a student gets the correct answer for zi depends on xi, yi, the value

carried in and whether she knows addition. Whether a student gets the correct
carry depends on the previous x, y and carry, and whether she knowns how to
carry. This dependency can be seen in Figure 2. Here x(D,P) is a parametrized

x(D,P)

y(D,P) z(D,P,S,T)

c(D,P,S,T)

knows_carry(S,T) knows_add(S,T)

D,P

S,T

Fig. 2. Belief network with plates for multidigit addition

random variable. There is a random variable for each digit D and each prob-
lem P . A ground instance, such as x(d3, problem57), is a random variable that
may represent the third digit of problem 57. Similarly, there is a z-variable for
each digit D, problem P , student S, and time T . The plate notation can be
read as duplicating the random variable for each tuple of individual the plate is
parametrized by.

The basic principle used by all methods is that of parameter sharing: the in-
stances of the parametrized random created by substituting constants for logical
variables share the same probabilistic parameters. The various languages differ
in how to specify the conditional probabilities of the variables variable given its
parents, or the other parameters of the probabilistic model.

The first such languages (e.g., [8]), described the conditional probabilities
directly in term of tables, and require a combination function (such as noisy-
and or noisy-or) when there is a random variable parametrized by a logical
variable that is a parent of a random variable that is not parametrized by the
logical variable. Tables with combination functions turn out to be not a very

Logic, Probability and Computation 5

flexible representation as they cannot represent the subtleties involved in how
one random variable can depend on others.

In the above example, c(D,P, S, T) depends, in part, on c(D − 1, P, S, T),
that is, on the carry from the previous digit (and there is some other case for the
first digit). A more complex example is to determine the probability that two
authors are collaborators, which depends on whether they have written papers
in common, or even whether they have written papers apart from each other.

To represent such examples, it is useful to be able to specify how the logical
variables interact, as is done in logic programs. The independent choice logic
(ICL) [18,22] (originally called probabilistic Horn abduction [15,17]) allows for
arbitrary (acyclic) logic programs (including negation as failure) to be used to
represent the dependency. The conditional probability tables are represented
as independent probabilistic inputs to the logic program. A logic program that
represents the above example is in Chapter 14 of [25]. This idea also forms
the foundation for Prism [29,30], which has concentrated on learning, and for
Problog [4], a project to build an efficient and flexible language.

There is also work on undirected models, exemplified by Markov logic net-
works [26], which have a similar notion of parametrized random variables, but
the probabilities are represented as weights of first-order clauses. Such models
have the advantage that they can represent cyclic dependencies, but there is
no local interpretation of the parameters, as probabilistic inference relies on a
global normalization.

4 Inference

Inference in these models refers to computing the posterior distribution of some
variables given some evidence.

A standard way to carry out inference in such models is to try to generate and
ground as few of the parametrized random variables as possible. In the ICL, the
relevant ground instances can be carried out using abduction [16]. More recently,
there has been work on lifted probabilistic inference [20,5,31,11], where the idea is
to carry out probabilistic reasoning at the lifted level, without grounding out the
parametrized random variables. Instead, we count how many of the probabilities
we need, and when we need to multiply a number of identical probabilities,
we can take the probability to the power of the number of individuals. Lifted
inference turns out to be a very difficult problem, as the possible interactions
between parametrized random variables can be very complicated.

5 Learning

The work on learning in relational probabilistic models has followed two, quite
different, paths.

From a Bayesian point of view, learning is just a case of inference: we condition
on all of the observations (all of the data), and determine the posterior distri-
bution over some hypotheses or any query of interest. Starting from the work

6 D. Poole

of Buntine [3], there has been considerable work in this area [9]. This work uses
parametrized random variables (or the equivalent plates) and the probabilistic
parameters are real-values random variables (perhaps parametrized). Dealing
with real-valued variables requires sophisticated reasoning techniques often in
terms of MCMC and stochastic processes. Although these methods use rela-
tional probabilistic models for learning, the representations learned are typically
not relational probabilistic models.

There is a separate body of work about learning relational probabilistic mod-
els [29,7]. These typically use non-Bayesian techniques, to find the most likely
models given the data (whereas the Bayesian technique is to average over all
models). What is important about learning is that we want to learn general the-
ories that can be learned before the agent know the individuals, and so before
the agent knows the random variables.

It is still an open challenge to bring these two threads together, mainly because
of the difficulty of inference in these complex models.

6 Actions

There is also a large body of work on representing actions. The initial work
in this area was on representations, in terms of the event calculus [18] or the
situation calculus [19,1]2. This is challenging because to plan, an agent needs to
be concerned about what information will be available for future decision. These
models combined perception, action and utility to form first-order variants of
fully-observable and partially-observable Markov decision processes.

Later work has concentrated on how to do planning with such representations
either for the fully observable case [2,27] or the partially observable case [35,28].
The promise of being able to carry out lifted inference much more efficiently
is slowly being realized. There is also work on relational reinforcement learning
[32,34], where an agent learns what to do before knowing what individuals will
be encountered, and so before it knows what random variables exist.

7 Identity and Existence Uncertainty

The previously outlined work assumes that an agent knows which individuals
exist and can identify them. The problem of knowing whether two descriptions
refer to the same individual is known as identity uncertainty [13]. This arises
in citation matching when we need to distinguish whether two references re-
fer to the same paper and in record linkage, where the aim is to determine if
two hospital records refer to the same person (e.g., whether the current patient
who is requesting drugs been at the hospital before). To solve this, we have the

2 These two papers are interesting because they make the opposite design decisions
on almost all of the design choices. For example, whether an agent knowns what
situation it is in, and whether a situation implies what is true: we can’t have both
for a non-omniscient agent.

Logic, Probability and Computation 7

hypotheses of which terms refer to which individuals, which becomes combina-
torially difficult.

The problem of knowing whether some individual exists is known as existence
uncertainty [21]. This is challenging because when existence is false, there is no
individual to refer to, and when existence is true, there may be many individuals
that fit a description. We may have to know which individual a description is
referring to. In general, determining the probability of an observation requires
knowing the protocol for how observations were made. For example, if an agent
considers a house and declares that there is a green room, the probability of this
observation depends on what protocol they were using: did they go looking for a
green room, did they report the colour of the first room found, did they report
the type of the first green thing found, or did they report on the colour of the
first thing they perceived?

8 Ontologies and Semantic Science

Data that are reliable and people care about, particularly in the sciences, are
being reported using the vocabulary defined in formal ontologies [6]. The next
stage in this line of research is to represent scientific hypotheses that also refer
to formal ontologies and are able to make probabilistic predictions that can
be judged against data [23]. This work combines all of the issues of relational
probabilistic modelling as well as the problems of describing the world at multiple
level of abstraction and detail, and handling multiple heterogenous data sets. It
also requires new ways to think about ontologies [24], and new ways to think
about the relationships beween data, hypotheses and decisions.

9 Conclusions

Real agents need to deal with their uncertainty and reason about individuals and
relations. They need to learn how the world works before they have encountered
all the individuals they need to reason about. If we accept these premises, then
we need to get serious about relational probabilistic models. There is a growing
community under the umbrella of statistical relational learning that is tackling
the problems of decision making with models that refer to individuals and re-
lations. While there have been considerable advances in the last two decades,
there are more than enough problems to go around!

References

1. Bacchus, F., Halpern, J.Y., Levesque, H.J.: Reasoning about noisy sensors and
effectors in the situation calculus. Artificial Intelligence 111(1-2), 171–208 (1999),
http://www.lpaig.uwaterloo.ca/~fbacchus/on-line.html

2. Boutilier, C., Reiter, R., Price, B.: Symbolic dynamic programming for first-order
MDPs. In: Proc. 17th International Joint Conf. Artificial Intelligence, IJCAI 2001
(2001)

http://www.lpaig.uwaterloo.ca/~fbacchus/on-line.html

8 D. Poole

3. Buntine, W.L.: Operations for learning with graphical models. Journal of Artificial
Intelligence Research 2, 159–225 (1994)

4. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and
its application in link discovery. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI 2007), pp. 2462–2467 (2007)

5. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In:
Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT
Press, Cambridge (2007),
http://www.cs.uiuc.edu/~eyal/papers/BrazRothAmir_SRL07.pdf

6. Fox, P., McGuinness, D., Middleton, D., Cinquini, L., Darnell, J., Garcia, J., West,
P., Benedict, J., Solomon, S.: Semantically-enabled large-scale science data repos-
itories. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 792–805.
Springer, Heidelberg (2006),
http://www.ksl.stanford.edu/KSL_Abstracts/KSL-06-19.html

7. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining, pp. 307–337.
Springer, Heidelberg (2001)

8. Horsch, M., Poole, D.: A dynamic approach to probabilistic inference using
Bayesian networks. In: Proc. Sixth Conference on Uncertainty in AI, Boston,
pp. 155–161 (July 1990)

9. Jordan, M.I.: Bayesian nonparametric learning: Expressive priors for intelligent
systems. In: Dechter, R., Geffner, H., Halpern, J.Y. (eds.) Heuristics, Probability
and Causality: A Tribute to Judea Pearl, pp. 167–186. College Publications (2010)

10. Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, NY (1994)

11. Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted
probabilistic inference with counting formulas. In: Proceedings of the Twenty Third
Conference on Artificial Intelligence, AAAI (2008),
http://people.csail.mit.edu/lpk/papers/mzkhk-aaai08.pdf

12. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19(20), 629–679 (1994)

13. Pasula, H., Marthi, B., Milch, B., Russell, S., Shpitser, I.: Identity uncertainty and
citation matching. In: NIPS, vol. 15 (2003)

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo (1988)

15. Poole, D.: Representing diagnostic knowledge for probabilistic Horn abduction.
In: Proc. 12th International Joint Conf. on Artificial Intelligence (IJCAI 1991),
Sydney, pp. 1129–1135 (1991)

16. Poole, D.: Logic programming, abduction and probability: A top-down anytime
algorithm for computing prior and posterior probabilities. New Generation Com-
puting 11(3-4), 377–400 (1993)

17. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence 64(1), 81–129 (1993)

18. Poole, D.: The independent choice logic for modelling multiple agents under
uncertainty. Artificial Intelligence 94, 7–56 (1997), http://cs.ubc.ca/~poole/

abstracts/icl.html; special issue on economic principles of multi-agent systems

19. Poole, D.: Decision theory, the situation calculus and conditional plans. Electronic
Transactions on Artificial Intelligence 2(1-2) (1998), http://www.etaij.org

http://www.cs.uiuc.edu/~eyal/papers/BrazRothAmir_SRL07.pdf
http://www.ksl.stanford.edu/KSL_Abstracts/KSL-06-19.html
http://people.csail.mit.edu/lpk/papers/mzkhk-aaai08.pdf
http://cs.ubc.ca/~poole/abstracts/icl.html
http://cs.ubc.ca/~poole/abstracts/icl.html
http://www.etaij.org

Logic, Probability and Computation 9

20. Poole, D.: First-order probabilistic inference. In: Proc. Eighteenth International
Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico,
pp. 985–991 (2003)

21. Poole, D.: Logical generative models for probabilistic reasoning about existence,
roles and identity. In: 22nd AAAI Conference on AI (AAAI 2007) (July 2007),
http://cs.ubc.ca/~poole/papers/AAAI07-Poole.pdf

22. Poole, D.: The independent choice logic and beyond. In: De Raedt, L., Frasconi, P.,
Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic Programming.
LNCS (LNAI), vol. 4911, pp. 222–243. Springer, Heidelberg (2008),
http://cs.ubc.ca/~poole/papers/ICL-Beyond.pdf

23. Poole, D., Smyth, C., Sharma, R.: Semantic science: Ontologies, data and prob-
abilistic theories. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B.,
Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007.
LNCS (LNAI), vol. 5327, pp. 26–40. Springer, Heidelberg (2008),
http://cs.ubc.ca/~poole/papers/SemSciChapter2008.pdf

24. Poole, D., Smyth, C., Sharma, R.: Ontology design for scientific theories that make
probabilistic predictions. IEEE Intelligent Systems 24(1), 27–36 (2009),
http://www2.computer.org/portal/web/computingnow/2009/0209/x1poo

25. Poole, D.L., Mackworth, A.K.: Artificial Intelligence: foundations of computational
agents. Cambridge University Press, New York (2010), http://artint.info

26. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62,
107–136 (2006)

27. Sanner, S., Boutilier, C.: Approximate linear programming for first-order MDPs. In:
Proceedings of the Twenty-first Conference on Uncertainty in Artificial Intelligence
(UAI 2005), Edinburgh, pp. 509–517 (2005)

28. Sanner, S., Kersting, K.: Symbolic dynamic programming for first-order POMDPs.
In: Proc. AAAI 2010 (2010)

29. Sato, T., Kameya, Y.: PRISM: A symbolic-statistical modeling language. In:
Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI 1997), pp. 1330–1335 (1997)

30. Sato, T., Kameya, Y.: New advances in logic-based probabilistic modeling by
PRISM. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Prob-
abilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 118–155.
Springer, Heidelberg (2008),
http://www.springerlink.com/content/1235t75977x62038/

31. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, pp. 1094–1099 (2008)

32. Tadepalli, P., Givan, R., Driessens, K.: Relational reinforcement learning: An
overview. In: Proc. ICML Workshop on Relational Reinforcement Learning (2004)

33. Talbott, W.: Bayesian epistemology. In: Zalta, E.N. (ed.) The Stanford Encyclope-
dia of Philosophy (Fall 2008), http://plato.stanford.edu/archives/fall2008/
entries/epistemology-bayesian/

34. van Otterlo, M.: The Logic of Adaptive Behavior - Knowledge Representation and
Algorithms for Adaptive Sequential Decision Making under Uncertainty in First-
Order and Relational Domains. IOS Press, Amsterdam (2009), http://people.

cs.kuleuven.be/~martijn.vanotterlo/phdbook_vanOtterlo_v2010a.pdf

35. Wang, C., Khardon, R.: Relational partially observable MDPs. In: Proc. AAAI
2010 (2010)

http://cs.ubc.ca/~poole/papers/AAAI07-Poole.pdf
http://cs.ubc.ca/~poole/papers/ICL-Beyond.pdf
http://cs.ubc.ca/~poole/papers/SemSciChapter2008.pdf
http://www2.computer.org/portal/web/computingnow/2009/0209/x1poo
http://artint.info
http://www.springerlink.com/content/1235t75977x62038/
http://plato.stanford.edu/archives/fall2008/entries/epistemology-bayesian/
http://plato.stanford.edu/archives/fall2008/entries/epistemology-bayesian/
http://people.cs.kuleuven.be/~martijn.vanotterlo/phdbook_vanOtterlo_v2010a.pdf
http://people.cs.kuleuven.be/~martijn.vanotterlo/phdbook_vanOtterlo_v2010a.pdf

Foundations and Extensions of Answer Set

Programming: The Logical Approach

David Pearce

Departamento de Inteligencia Artificial
Universidad Politécnica de Madrid

Overview

Answer Set Programming, or ASP, is now becoming well-established as a declar-
ative approach to problem-solving in AI and in an increasing number of practical,
application domains. While a significant part of ASP research is devoted to pro-
ducing and applying faster and more user-friendly solvers, there is also a growing
interest in studying extensions of the basic language of ASP. Additions to the
language that are currently being developed include function symbols, temporal
and causal operators, as well as devices to deal with aggregates, preferences,
ontologies, resources, and many others.

In this enterprise of building and implementing language extensions it is hard
to detect any overarching, unifying or dominant methodology. Perhaps it is good,
as a famous Austrian philosopher once proposed, that “anything goes”1. On the
other hand perhaps there are some methods, guidelines or heuristics that we can
put to good use in a systematic way when we are analysing and developing ASP
languages. In this talk I will describe and argue for one kind of methodology in
particular. I call it the logical approach to the foundations and extensions of ASP.
It is definitely not an approach that would have been endorsed by that famous
Austrian philosopher. He took the view that logic is a constraining mechanism, a
straitjacket that inhibits the free flow of new ideas, thus being detrimental to the
advancement of science. However, I will argue instead that logic is a liberating
device that when properly used can be a source of inspiration, information and
unification.

There is a conventional or received view of answer set programs. According
to this, very roughly, a program consists of a set of rules comprising a head and
a body, each composed of (sets of) atoms or literals. To these, various syntactic
devices may be added to express additional properties or narrow down permitted
interpretations of the program. The semantics, or the allowed interpretations of
the program, are specified operationally by means of a fixpoint construction or
equation whose solutions are the intended answer sets. We can contrast this with
the logical view of answer set programs. According to this an answer set program
is a logical theory composed of sentences in some propositional, predicate or
other language that may, eg, contain modal, temporal or epistemic operators.
Whatever the syntactic restrictions, the language is fully recursive and the basic
1 See eg. P. Feyerabend, Against Method, VLB, 1975.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 10–11, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Foundations and Extensions of Answer Set Programming 11

semantics is given by standard, inductive truth conditions. The intended models
of the program are a special set of minimal models whose definition depends on
the particular language or ‘logic’ at hand.

Most of the time these two views of ASP lead to the same result or output in
the sense that they agree in producing the same or equivalent answer sets for a
given program or theory. Sometimes we can even translate one view into the oth-
er. But they are not fully equivalent and do not yield equivalent methodologies.

In the talk I will elaborate further on the logical view and examine several
kinds of language extensions of ASP from this perspective. A decisive advantage
of the logical approach is that it can build upon results, techniques and heuris-
tics that are useful both for analysing and computing as well as for designing
new features and languages. These techniques include proof theory and logical
inference, replacement theorems and logical equivalence, the analysis of normal
forms such as prenex and Skolem forms, metatheorems such as Interpolation, as
well as model theory and complexity theory in general.

Another feature of the logical approach is that it may help to give us ‘smooth’
interfaces between different types of calculi, as when we extend a propositional
language with modal operators or when we combine two different logics. I will
also discuss examples where the logical approach may provide natural and con-
vincing criteria for choosing between competing, alternative formalisations of a
given concept or language extension.

Lessons from Efforts to Automatically Translate English
to Knowledge Representation Languages

Chitta Baral

Faculty of Computer Science and Engineering
Arizona State University
Tempe, AZ 85287-8809
chitta@asu.edu

Abstract. Our long term goal is to develop systems that can “understand” nat-
ural language text. By “understand” we mean that the system can take natural
language text as input and answer questions with respect to that text. A key
component in building such systems is to be able to translate natural language
text into appropriate knowledge representation (KR) languages. Our approach to
achieve that is inspired by Montagues path breaking thesis (1970) of viewing En-
glish as a formal language and by the research in natural language semantics.
Our approach is based on PCCG (Probabilistic Combinatorial Categorial Gram-
mars), λ-calculus and statistical learning of parameters. In an initial work, we
start with an initial vocabulary consisting of λ-calculus representations of a small
set of words and a training corpus of sentences and their representation in a KR
language. We develop a learning based system that learns the λ-calculus rep-
resentation of words from this corpus and generalizes it to words of the same
category. The key and novel aspect in this learning is the development of In-
verse Lambda algorithms which when given λ-expressions β and γ can come up
with an α such that application of α to β (or β to α) will give us γ. We aug-
ment this with learning of weights associated with multiple meanings of words.
Our current system produces improved results on standard corpora on natural
language interfaces for robot command and control and database queries. In a
follow-up work we are able to use patterns to make guesses regarding the ini-
tial vocabulary. This together with learning of parameters allow us to develop a
fully automated (without any initial vocabulary) way to translate English to des-
ignated KR languages. In an on-going work we use Answer Set Programming as
the target KR language and focus on (a) solving combinatorial puzzles that are
described in English and (b) answering questions with respect to a chapter in a
ninth grade biology book. The systems that we are building are good examples
of integration of results from multiple sub-fields of AI and computer science,
viz.: machine learning, knowledge representation, natural language processing,
λ-calculus (functional programming) and ontologies. In this presentation we will
describe our approach and our system and elaborate on some of the lessons that
we have learned from this effort.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, p. 12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Modularity of P-Log Programs

Carlos Viegas Damásio and João Moura

CENTRIA, Departamento de Informática
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. We propose an approach for modularizing P-log programs
and corresponding compositional semantics based on conditional prob-
ability measures. We do so by resorting to Oikarinen and Janhunen’s
definition of a logic program module and extending it to P-log by intro-
ducing the notions of input random attributes and output literals. For
answering to P-log queries our method does not imply calculating all the
stable models (possible worlds) of a given program, and previous calcu-
lations can be reused. Our proposal also handles probabilistic evidence
by conditioning (observations).

Keywords: P-log, Answer Set Programming, Modularization, Proba-
bilistic Reasoning.

1 Introduction and Motivation

The P-log language [3] has emerged as one of the most flexible frameworks for
combining probabilistic reasoning with logical reasoning, in particular, by distin-
guishing acting (doing) from observations and allowing non-trivial conditioning
forms [3,4]. The P-log languages is a non-monotonic probabilistic logic language
supported by two major formalisms, namely Answer Set Programming [7,11,12]
for declarative knowledge representation and Causal Bayesian Networks [15] as
its probabilistic foundation. In particular, ordinary Bayesian Networks can be
encoded in P-log. The relationships of P-log to other alternative uncertainty
knowledge representation languages like [10,16,17] have been studied in [3]. Un-
fortunately, the existing current implementations of P-log [1,8] have exponential
best case complexity, since they enumerate all possible models, even though it
is known that for singly connected Bayesian Networks (polytrees) reasoning can
be performed in polynomial time [14].

The contribution of this paper is the definition of modules for the P-log lan-
guage, and corresponding compositional semantics as well as its probabilistic
interpretation. The semantics relies on a translation to logic program modules
of Oikarinen and Janhunen [13]. With this appropriate notion of P-log modules
is possible to obtain possible worlds incrementally, and this can be optimized
for answering to probabilistic queries in polynomial time for specific cases, using
techniques inspired in the variable elimination algorithm [20].

The rest of the paper is organized as follows. Section 2 briefly summarizes P-
log syntax and semantics, as well as the essential modularity results for answer

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 13–25, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

14 C. Viegas Damásio and J. Moura

set programming. Next, Section 3 is the core of the paper defining modules for
P-log language and its translation into ASP modules. The subsequent section
presents the module theorem and a discussion of the application of the result to
Bayesian Networks. We conclude with final remarks and foreseen work.

2 Preliminaries

In this section, we review the syntax and semantics of P-log language [3], and il-
lustrate it with an example encoding a Bayesian Network. Subsequently, the ma-
jor results regarding composition of answer set semantics are presented [13]. The
reader is assumed to have familiarity with (Causal) Bayesian Networks [15] and
good knowledge of answer set programming. A good introduction to Bayesian
Networks can be found in [19], and to answer set programming in [2,12].

2.1 P-Log Programs

P-log is a declarative language [3], based on a logic formalism for probabilistic
reasoning and action, that uses answer set programming (ASP) as its logical
foundation and Causal Bayesian Networks (CBNs) as its probabilistic founda-
tion. P-log is a complex language to present in a short amount of space, and
the reader is referred to [3] for full details. We will try to make the presenta-
tion self-contained for this paper, abbreviating or even neglecting the irrelevant
parts, and follows closely [3].

P-log syntax. A probabilistic logic program (P-log program) Π consists of
(i) a sorted signature, (ii) a declaration part, (iii) a regular part, (iv) a set
of random selection rules, (v) a probabilistic information part, and (vi) a set of
observations and actions. Notice that the first four parts correspond to the actual
stable models’ generation, and the last two define the probabilistic information.

The declaration part defines a sort c by explicitly listing its members with a
statement c = {x1, . . . , xn}, or by defining a unary predicate c in a program with
a single answer set. An attribute a with n parameters is declared by a statement
a : c1 × . . . × cn → c0 where each ci is a sort (0 ≤ i ≤ m); in the case of an
attributes with no parameter the syntax a : c0 may be used. By range(a) we
denote the set of elements of sort c0. The sorts can be understood as domain
declarations for predicates and attributes used in the program, for appropriate
typing of argument variables.

The regular part of a P-log program is just a set of Answer Set Programming
rules (without disjunction) constructed from the usual literals in answer set
programming plus attribute literals of the form a(t) = t0 (including strongly
negated literals), where t is a vector of n terms and t0 is a term, respecting the
corresponding sorts in the attribute declaration. Given a sorted signature Σ we
denote by Lit(Σ) the set of literals in Σ (i.e. Σ-literals) excluding all unary
atoms ci/1 used for specifying sorts.

Random selection rules define random attributes and possible values for them
through statements of the form [r] random

(
a(t) : {X : p(X)}

)
← B, expressing

Modularity of P-Log Programs 15

that if B holds then the value of a(t) is selected at random from the set {X :
p(X)} ∩ range(a) by experiment r, unless this value is fixed by a deliberate ac-
tion, with r being a term uniquely identifying the rule. The concrete probability
distribution for random attributes is conveyed by the probabilistic information
part containing pr-atoms (probability atoms), of the form prr(a(t) = y|cB) = v
stating that if the value of a(t) is fixed by experiment r andB holds, then the prob-
ability that r causes a(t) = y is v, with v ∈ [0, 1]. The conditionB is a conjunction
of literals or the default negation (not) of literals.

Finally, observations and actions are statements of the form obs(l) and
do(a(t) = y), respectively, where l is an arbitrary literal of the signature.

Example 1 (Wet Grass). Suppose that there are two events which could cause
grass to be wet: either the sprinkler is on, or it is raining. Furthermore, sup-
pose that the rain has a direct effect on the use of the sprinkler (namely that
when it rains, the sprinkler is usually not turned on). Furthermore, cloudy sky
affects whether the sprinklers are on and obviously if it is raining or not. Finally,
notice that, the grass being wet affects it being slippery. Then the situation
can be modeled with a Bayesian network (shown in the diagram). All random
variables are boolean and have no parameters; also notice how the conditional
probability tables (CPTs) are encoded with pr-atoms as well as causal dependen-
cies among random attributes. The P-log semantics will take care of completing
the CPTs assuming a uniform distribution for the remaining attribute values

boolean = {t, f}.
cloudy : boolean.
rain : boolean.
sprinkler : boolean.
wet : boolean.
slippery : boolean.

dangerous← slippery = t.

Cloudy

SprinklerRain

Wet

Slippery

[rc] random(cloudy, {X : boolean(X)}). [rr] random(rain, {X : boolean(X)}).
[rsk] random(sprinkler, {X : boolean(X)}). [rw] random(wet, {X : boolean(X)}).
[rsl] random(slippery, {X : boolean(X)}).

prrr(rain = t |c cloudy = f) = 0.2. prrr(rain = t |c cloudy = t) = 0.8.
prrsk(sprinkler = t |c cloudy = f) = 0.5. prrsk(sprinkler = t |c cloudy = t) = 0.1.
prrsl(slippery = t |c wet = f) = 0.1. prrsl(slippery = t |c wet = t) = 0.9.
prrw(wet = t |c sprinkler = f, rain = f) = 0.0.
prrw(wet = t |c sprinkler = f, rain = t) = 0.9.
prrw(wet = t |c sprinkler = t, rain = f) = 0.9.
prrw(wet = t |c sprinkler = t, rain = t) = 0.99. obs(sprinkler = t).

Fig. 1. Bayesian Network encoded in P-log

16 C. Viegas Damásio and J. Moura

(e.g. cloudy = false will have probability 0.5). Rules can be used to extract
additional knowledge from the random variables (e.g. the dangerous rule). In
particular we will be able to query the program to determine the probability
P(dangerous|sprinkler = t).

P-log semantics. The semantics of a P-log program Π is given by a collection
of the possible sets of beliefs of a rational agent associated with Π , together
with their probabilities. We refer to these sets of beliefs as possible worlds of Π .
Note that due to the restriction on the signature of P-log programs the authors
enforce (all sorts are finite), possible worlds of Π are always finite. The semantics
is defined in two stages. First we will define a mapping of the logical part of Π
into its Answer Set Programming counterpart, τ(Π). The answer sets of τ(Π)
will play the role of possible worlds of Π . The probabilistic part of Π is used
to define a measure over the possible worlds, and from these the probabilities of
formulas can be determined. The set of all possible worlds of Π will be denoted
by Ω(Π).

The Answer Set Program τ(Π) is defined in the following way, where capital
letters are variables being grounded with values from the appropriate sort; to
reduce overhead we omit the sort predicates for variables in the program rules.
It is also assumed that any attribute literal a(t) = y is replaced consistently by
the predicate a(t, y) in the translated program τ(Π), constructed as follows:

τ1: For every sort c = {x1, . . . , xn} of Π , τ(Π) contains c(x1), . . . , c(xn). For
any remaining sorts defined by an ASP program T in Π , then T ⊆ τ(Π).

τ2: Regular part:

(a) For each rule r in the regular part of Π , τ(Π) contains the rule obtained
by replacing each occurrence of an atom a(t) = y in r by a(t, y).

(b) For each attribute term a(t), τ(Π) contains ¬a(t, Y1) :−a(t, Y2), Y1 �= Y2

guaranteeing that in each answer set a(t) has at most one value.

τ3: Random selections:

(a) For an attribute a(t), we have the rule: intervene(a(t)):−do(a(t, Y)).
Intuitively, the value of a(t) is fixed by a deliberate action, i.e. a(t) will
not be considered random in possible worlds satisfying intervene(a(t)).

(b) Random selection [r] random
(
a(t) : {X : p(X)}

)
← B is translated

into rule 1{ a(t, Z) : poss(r, a(t), Z) }1 :−B, not intervene(a(t)) and
poss(r, a(t), Z):−c0(Z), p(Z), B,not intervene(a(t)) with range(a) = c0.

τ4: Each pr-atom prr(a(t) = y|cB) = v is translated into the following rule
pa(r, a(t, y), v):−poss(r, a(t), y), B of τ(Π) with pa/3 a reserved predicate.

τ5: τ(Π) contains actions and observations of Π .
τ6: For each Σ-literal l , τ(Π) contains the constraint :−obs(l), not l.
τ7: For each atom a(t) = y, τ(Π) contains the rule a(t, y):−do(a(t, y)).

In the previous construction, the two last rules guarantee respectively that no
possible world of the program fails to satisfy observation l, and that the atoms

Modularity of P-Log Programs 17

made true by the action are indeed true. The introduction of the reserved pred-
icates poss/3 and pa/3 is a novel contribution to the transformation, and sim-
plifies the presentation of the remaining details of the semantics.

P-log semantics assigns a probability measure for each world W , i.e. answer
set, of τ(Π) from the causal probability computed deterministically from in-
stances of predicates poss/3 and pa/3 true in the world. Briefly, if an atom
pa(r, a(t, y), v) belongs to W then the causal probability P(W,a(t) = y) is v, i.e.
the assigned probability in the model. The possible values for a(t) are collected
by poss(r, a(t, yk)) instances true in W , and P-log semantics assigns a (default)
causal probability for non-assigned values, by distributing uniformly the non-
assigned probability among these non-assigned values. The details to make this
formally precise are rather long [3] but for our purpose it is enough to understand
that for each world W the causal probability

∑
y∈range(a) P(W,a(t) = y) = 1.0,

for each attribute term with at least a possible value. These probability calcula-
tions can be encoded in ASP rules with aggregates (#sum and #count), making
use of only pa/3 and poss/3 predicates.

Example 2. Consider the P-log program of Example 1. This program has 16
possible worlds (notice that sprinkler = t is observed). One possible world is
W1 containing:

cloudy(f) rain(f) wet(t) sprinkler(t) slippery(t) obs(sprinkler(t))
¬cloudy(t) ¬rain(t) ¬wet(f) ¬sprinkler(f) ¬slippery(f) dangerous

Furthermore the following probability assignment atoms are true in that model:

poss(rc, cloudy, t) poss(rc, cloudy, f)
poss(rr, rain, t) poss(rr, rain, f) pa(rr, rain(t), 0.2)
poss(rsk, sprinkler, t) poss(rsk, sprinkler, f) pa(rsk, sprinkler(t), 0.5)
poss(rsl, slippery, t) poss(rsl, slippery, f) pa(rsl, slippery(t), 0.9)
poss(rw,wet, t) poss(rw,wet, f) pa(rw,wet(t), 0.9)

which determines the following causal probabilities in the model

P(W1, cloudy = t) = 1.0−0.0
2 = 0.5 P(W1, cloudy = f) = 1.0−0.0

2 = 0.5
P(W1, rain = t) = 0.2 P(W1, rain = f) = 1.0−0.2

1 = 0.8
P(W1, sprinkler = t) = 0.5 P(W1, sprinkler = f) = 1.0−0.5

1 = 0.5
P(W1, wet = t) = 0.9 P(W1, wet = f) = 1.0−0.9

1 = 0.1
P(W1, slippery = t) = 0.9 P(W1, slippery = f) = 1.0−0.9

1 = 0.1

The authors define next the measure μΠ induced by a P-log program Π :

Definition 1 (Measure). Let W be a possible world of a P-log program Π. The
unnormalized probability of W induced by Π is μ̂Π(W) =

∏
a(t,y)∈W P(W,a(t) =

y) where the product is taken over atoms for which P(W,a(t) = y) is defined.
If Π is a P-log program having at least one possible world with nonzero un-

normalized probability, then the measure, μΠ(W), of a possible world W induced
by Π is the normalized probability of W divided by the sum of the unnormalized

18 C. Viegas Damásio and J. Moura

probabilities of all possible worlds of Π, i.e., μΠ(W) = μ̂Π (W)∑
Wi∈Ω μ̂Π(Wi)

. When the

program Π is clear from the context we may simply write μ̂ and μ instead of μ̂Π

and μΠ respectively.

Example 3. For world W1 of Example 2 we obtain that:

μ̂(W1) = P(W1, cloudy = f)×P(W1, rain = f)×P(W1, wet = t)×
P(W1, sprinkler = t)×P(W1, slippery = t) =

= 0.5× 0.8× 0.9× 0.5× 0.1 = 0.018

Since the sum of the unconditional probability measure of all the sixteen worlds
of the P-log program is 0.3 then we obtain that μ(W1) = 0.06.

The truth and falsity of propositional formulas with respect to possible worlds
are defined in the standard way. A formula A, true in W, is denoted by W 	 A.

Definition 2 (Probability). Suppose Π is a P-log program having at least one
possible world with nonzero unnormalized probability. The probability, PΠ(A), of
a formula A is the sum of the measures of the possible worlds of Π on which A
is true, i.e. PΠ(A) =

∑
W�A μΠ(W).

Conditional probability in P-log is defined in the usual way by PΠ(A|B) =
PΠ(A ∧ B)/PΠ(B) whenever PΠ(B) �= 0, where the set B stands for the con-
junction of its elements. Moreover, under certain consistency conditions on P-log
programs Π , formulas A, and a set of literals B such that PΠ(B) �= 0, it is the
case that PΠ(A|B) = PΠ∪obs(B)(A). See the original work [3] where the exact
consistency conditions are stated, which are assumed to hold subsequently.

2.2 Modularity in Answer Set Programming

The modular aspects of Answer Set Programming have been clarified in recent
years [13,5] describing how and when can two program parts (modules) be com-
posed together. In this paper, we will make use of Oikarinen and Janhunen’s
logic program modules defined in analogy to [6]:

Definition 3 (Module [13]). A logic program module P is 〈R, I,O,H〉:

1. R is a finite set of rules;
2. I, O, and H are pairwise disjoint sets of input, output, and hidden atoms;
3. At(R) ⊆ At(P) defined by At(P) = I ∪O ∪H; and
4. head(R) ∩ I = ∅.

The atoms in Atv(P) = I ∪ O are considered to be visible and hence accessible
to other modules composed with P either to produce input for P or to make
use of the output of P. The hidden atoms in Ath(P) = H = At(P)\Atv(P) are
used to formalize some auxiliary concepts of P which may not be sensible for
other modules but may save space substantially. The condition head(R)∩ I = ∅
ensures that a module may not interfere with its own input by defining input

Modularity of P-Log Programs 19

atoms of I in terms of its rules. Thus, input atoms are only allowed to appear
as conditions in rule bodies. The answer set semantics is generalized to cover
modules by introducing a generalization of the Gelfond-Lifschitz’s fixpoint defi-
nition. In addition to negative default literals (i.e. not l), also literals involving
input atoms are used in the stability condition.

Definition 4. An interpretation M ⊆ At(P) is an answer set of an ASP pro-
gram module P = 〈R, I,O,H〉, if and only if M = LM

(
RM

I ∪ {a.|a ∈M ∩ I}
)
1

The set of answer sets of module P is denoted by AS(P).

Given two modules P1 = 〈R1, I1, O1, H1〉 and P2 = 〈R2, I2, O2, H2〉, their com-
position P1 ⊕ P2 is defined when their output signatures are disjoint, that is,
O1 ∩ O2 = ∅, and they respect each others hidden atoms, i.e. H1 ∩ At(P2) = ∅
and H2 ∩ At(P1) = ∅. Then their composition is P1 ⊕ P2 = 〈R1 ∪ R2, (I1 ∪
I2)\(O1 ∪ O2), O1 ∪ O2, H1 ∪H2〉. However, the conditions given for ⊕ are not
enough to guarantee compositionality in the case of stable models:

Definition 5. Given modules P1,P2 ∈ M , their join is P1 � P2 = P1 ⊕ P2

provided that (i) P1⊕P2 is defined and (ii) P1 and P2 are mutually independent2.

Theorem 1 (The module theorem). If P1,P2 are modules such that P1 �P2

is defined, then AS(P1 � P2) = AS(P1) �� AS(P2), where AS(P1) �� AS(P2) =
{M1 ∪M2 |M1 ∈ AS(P1),M2 ∈ AS(P2), and M1 ∩Atv(P2) = M2 ∩Atv(P1)}.

The module theorem also straightforwardly generalizes for a collection of mod-
ules because the module union operator � is commutative, associative, and idem-
potent [13].

3 P-Log Modules

In this section, we define the notion of P-log modules and its semantics via a
translation into logic program modules. Its probabilistic interpretation is pro-
vided by a conditional probability measure. In what follows, we assume that
different modules may have different sorted signatures Σ.

Definition 6. A P-log module P over Σ is a structure 〈Π,Rin,Rout〉 such that:

1. Π is a P-log program (possibly with observations and actions);
2. Rin is a set of ground attribute literals a(t) = y, of random attributes de-

clared in Π such that y ∈ range(a);
3. Rout is a set of ground Σ-literals, excluding attribute literals a(t) = y ∈ Rin;
4. Π does not contain rules for any attribute a(t) occurring in attribute literals

of Rin, i.e. no random selection rule for a(t), no regular rule with head
a(t) = y nor a pr-atom for a(t) = y.

1 Note that RM
I is a reduct allowing weighted and choice rules, and LM is an operator

returning the least model of the positive program argument.
2 There are no positive cyclic dependencies among rules in different modules.

20 C. Viegas Damásio and J. Moura

The notion of P-log module is quite intuitive. First, the P-log program specifies
the possible models and corresponding probabilistic information as before, and
may include regular rules. However, the P-log module is parametric on a set
of attribute terms Rin, which can be understood as the module’s parent ran-
dom variables. Rout specifies the random attributes which are visible as well
as other derived logical conclusions. The last condition ensures that there is no
interference between input and output random attributes.

The semantics of a P-log module is defined again in two stages. The possible
worlds of a P-log module are obtained from the Answer Sets of a corresponding
logic programming module. For simplifying definitions we assume that the iso-
morphism of attribute literals a(t) = y with a(t, y) instances is implicitly applied
when moving from the P-log side to ASP side, and vice-versa.

Definition 7. Consider a P-log module P = 〈Π,Rin,Rout〉 over signature Σ,
and let P(P) = 〈RP, IP, OP, HP〉 be the corresponding ASP module such that:

1. RP is τ(Π) ∪ {:−a(t, y1), a(t, y2) | a(t) = y1 and a(t) = y2 in Rin s.t. y1 �=
y2} ∪ {:− not hasvalP(a(t))} ∪ {hasvalP(a(t)):−a(t, y) | a(t) = y ∈ Rin},
where predicates defining sorts have been renamed apart;

2. The set of input atoms IP of P(P) is Rin.
3. The set of output atoms OP of P(P) is Rout union all instances of pa/3 and
poss/3 predicates of random attributes in Rout;

4. The set of hidden atoms HP of P(P) is formed by hasvalP/1 instances for
attribute literals in Rin, the Σ-literals not included in the output or input
atoms of P(P), with all sort predicates renamed apart.

The possible models of P are Ω(P) = {M ∩ (Rin ∪Rout) | M ∈ AS(P(P)) }.
The name hasvalP is local to P and not occurring elsewhere.

The necessity of having sort predicates renamed apart is essential to avoid name
clashes between different modules using the same sort attributes. Equivalently,
the program can be instantiated, and all sort predicates removed. The extra
integrity constraints in RP discard models where a random attribute has not
exactly one assigned value. The set of input atoms in P is formed by the random
attribute literals in Rin. The set of output atoms includes all the instances of
pa/3 and poss/3 in order to be possible to determine the causal probabilities in
each model. By convention, all the remaining literals are hidden. A significant
difference to the ordinary ASP modules is that the set of possible models are
projected with respect to the visible literals, discarding hidden information in the
models. The semantics of a P-log module is defined by probabilistic conditional
measures:

Definition 8. Consider a P-log module P = 〈Π,Rin,Rout〉 over signature Σ.
Let E be any subset of Rin∪Rout, and W be a possible world of P-log module P.
If E ⊆ W then the conditional unnormalized probability of W given E induced
by P is

μ̂P(W |E) =
∑

Mi∈AS(P(P)) s.t. Mi∩(Rin∪Rout)=W

∏
a(t,y)∈Mi

P(Mi, a(t) = y)

Modularity of P-Log Programs 21

where the product is taken over atoms for which P(Mi, a(t) = y) is defined in
Mi. Otherwise, E �⊆W and we set μ̂P(W |E) = 0.0.

If there is at least one possible world with nonzero unnormalized conditional
probability, for a particular E, then the conditional probability measure μP(.|E)
is determined, and μP(W |E) for a possible world W given E induced by P is

μP(W |E) =
μ̂P(W |E)∑

Wi∈Ω(P) μ̂P(Wi|E)
=

μ̂P(W |E)∑
Wi∈Ω(P)∧E⊆Wi

μ̂P(Wi|E)

When the P-log module P is clear from the context we may simply write μ̂(W |E)
and μ(W |E) instead of μ̂P(W |E) and μP(W |E) respectively.

The important remark regarding the above definition is that a possible world
W of the P-log module can correspond to several models (the answer sets Mi)
of the underlying answer set program, since hidden atoms have been projected
out. This way, we need to sum the associated unconditional measures of the ASP
models which originate (or contribute to) W . The attentive reader should have
noticed that for any world W the unconditional probability measure μ̂P(W |E),
for any E ⊆ W ∩ (Rin ∪ Rout) is identical to μ̂P(W |W ∩ (Rin ∪ Rout)), and
zero elsewhere. So, in practice each world just requires one real value to obtain
all the conditional probability measures.

Example 4. Construct P-log module Sprinkler from Example1 whose input
atoms are {cloudy = t, cloudy = f} and output atoms are {sprinkler =
t, sprinkler = f}. The P-log program of Sprinkler (with the observation
removed) is

boolean = {t, f}. cloudy : boolean. sprinkler : boolean.
[rs] random(sprinkler, {X : boolean(X)}).
prrs(sprinkler = t |c cloudy = f) = 0.5.
prrs(sprinkler = t |c cloudy = t) = 0.1.

For which, the corresponding ASP program in module P(Sprinkler) is:

hasval(cloudy) :− cloudy(t). hasval(cloudy) :− cloudy(f).
:− not hasval(cloudy). :− cloudy(t), cloudy(f).

−sprinkler(Y 1):− sprinkler(Y 2), Y 1! = Y 2, boolean(Y 1), boolean(Y 2).

1{sprinkler(Z) : poss(rsk, sprinkler, Z)}1:− not intervene(sprinkler).
poss(rsk, sprinkler, Z):− boolean(Z), not intervene(sprinkler).
intervene(sprinkler):− do(sprinkler(Y)), boolean(Y).

pa(rsk, sprinkler(t), 0.1):−poss(rsk, sprinkler, t), cloudy(t).
pa(rsk, sprinkler(t), 0.5):−poss(rsk, sprinkler, t), cloudy(f).

:−obs(sprinkler(t)), not sprinkler(t). :−obs(sprinkler(f)), not sprinkler(f).

22 C. Viegas Damásio and J. Moura

ModuleP(Sprinkler)has fouranswersetsall containingbothposs(rsk, sprinkler, t)
and poss(rsk, sprinkler, f), and additionally:

M1 = {sprinkler(t), cloudy(t), pa(rsk, sprinkler(t), 0.1)}
M2 = {sprinkler(f), cloudy(t), pa(rsk, sprinkler(t), 0.1)}
M3 = {sprinkler(t), cloudy(f), pa(rsk, sprinkler(t), 0.5)}
M4 = {sprinkler(f), cloudy(f), pa(rsk, sprinkler(t), 0.5)}

The first two correspond to possible worlds W1 = {sprinkler(t), cloudy(t)} and
W2 = {sprinkler(f), cloudy(t)} where cloudy = t. So, μ̂(W1|{cloudy(t)}) = 0.1
and μ̂(W2|{cloudy(t)}) = 0.9 and μ̂(W3|{cloudy(t)}) = μ̂(W4|{cloudy(t)}) =
0.0. Since the sum of the unconditional probability measures for all world totals
1.0, then the normalized measure coincides with the unnormalized one for the
particular evidence {cloudy = t}.

Definition 9 (Conditional Probability). Suppose P is a P-log module and
E ⊆ Rin∪Rout for which μΠ(.|E) is determined. The probability, PP(A|E), of a
formula A over literals in Rout, is the sum of the conditional probability measures
of the possible worlds of P on which A is true, i.e. PP(A|E) =

∑
W�A μP(W |E).

The following theorem shows that P-log modules generalize appropriately the
notion of conditional probability of P-log programs.

Theorem 2. Let Π be P-log program Π. Consider the P-log module P =
〈Π, {}, Lit(Σ)〉 then for any set B ⊆ Lit(Σ) such that PΠ(B) �= 0 then
PΠ(A|B) = PP(A|B).

A P-log module corresponds to the notion of factor introduced by [20] in their
variable elimination algorithm. The difference is that P-log modules are defined
declaratively by a logic program with associated probabilistic semantics, instead
of just matrix of values for each possible combination of parameter variables.

4 P-Log Module Theorem

This section provides a way of composing P-log modules and presents the cor-
responding module theorem. The composition of a P-log module mimics syn-
tactically the composition of an answer set programming module, with similar
pre-conditions:

Definition 10 (P-log module composition). Consider P-log modules P1 =
〈Π1, Rin1, Rout1〉 over signature Σ1, and P2 = 〈Π2, Rin2, Rout2〉 over signature
Σ2, such that:

1. Rout1 ∩Rout2 = ∅
2. (Lit(Σ1)\(Rin1∪Rout1))∩Lit(Σ2)=Lit(Σ1)∩(Lit(Σ2)\(Rin2∪Rout2))=∅
3. The sorts of Σ1 and Σ2 coincide and are defined equivalently in Π1 and Π2.

Modularity of P-Log Programs 23

The composition of P1 with P2 is the P-log module P1⊕P2 = 〈Π1∪Π2, (Rin1∪
Rin2) \ (Rout1 ∪Rout2), (Rout1 ∪Rout2)〉 over signature Σ1 ∪Σ2.

The join P1 � P2 = P1 ⊕ P2 is defined in this case whenever additionally
there are no dependencies (positive or negative) among modules.

The first condition forbids the composition of modules having a common output
literal, while the second one forbids common hidden atoms (except possibly the
sort predicate instances). We avoid joining modules having both negative and
positive dependencies.

The compositionality result for P-log modules is more intricate since besides
the compositional construction of possible worlds, it is also necessary to ensure
compositionality for the underlying conditional probability measures induced by
the joined module:

Theorem 3 (P-log Module Theorem). Consider two P-log modules P1 and
P2 such that their join P1�P2 is defined. Then Ω(P1�P2) = Ω(P1) �� Ω(P2)
with Ω(P1) �� Ω(P2) = {W1 ∪ W2 | W1 ∈ Ω(P1),W2 ∈ Ω(P1), and W1 ∩
(Rin2 ∪Rout2) = W2 ∩ (Rin1 ∪Rout1)}.

Let E = E1∪E2 where E1 = E∩(Rin1∪Rout1) and E2 = E∩(Rin2∪Rout2).
Then, μ̂P1	P2(W |E) = μ̂P1(W1|E1)×μ̂P2(W2|E2) with W = W1∪W2 such that
W ∈ Ω(P1 �P2), W1 ∈ Ω(P1) and W2 ∈ Ω(P2).

Notice that the P-log module theorem is defined only in terms of the unnormal-
ized conditional probability measures. The normalized ones can be obtained as
in the previous case dividing by the sum of unconditional measure of all worlds
given the evidence. Again, we just have to consider one value for each world (i.e.
when evidence is maximal).

The application to Bayesian Networks is now straightforward. First, each ran-
dom variable in a Bayesian Network is captured by a P-log module having the
corresponding attribute literals of the random variable as output literals, and
input literals are all attribute literals obtainable from parent variables. The con-
ditional probability tables are represented by pr-atoms, as illustrated before in
Example 1. P-log module composition inherits associativity and commutativity
from ASP modules, and thus P-log modules can be joined in arbitrary ways since
there are no common output atoms, and there are no cyclic dependencies.

The important remark is that a P-log module is an extension of the notion
of factor used in the variable elimination algorithm [20]. We only need a way to
eliminate variables from a P-log module in order to simulate the behaviour of
the variable elimination algorithm, but this is almost trivial:

Definition 11 (Eliminate operation). Consider a P-log module P =
〈Π,Rin,Rout〉 over signature Σ, and a subset of attribute literals S ⊆ Rout.
Then, P-log module Elim(P, S) = 〈Π,Rin,Rout \ S〉 eliminates (hides) from
P the attribute literals in S.

By hiding all attribute literals of a given random variable, we remove the random
attribute from the possible worlds (as expected), summing away corresponding

24 C. Viegas Damásio and J. Moura

original possible worlds. By applying the composition of P-log modules and
eliminate operations by the order they are performed by the variable elimination
algorithm, the exact behaviour of the variable elimination algorithm is attained.
Thus, for the case of polytrees represented in P-log, we can do reasoning with
P-log in polynomial time.

5 Conclusions and Future Work

We present the first approach in the literature to modularize P-log programs
and to make their composition incrementally by combining compatible possi-
ble worlds and multiplying corresponding unnormalized conditional probability
measures. A P-log module corresponds to a factor of the variable elimination
algorithm [20,18], clarifying and improving the relationship of P-log with tradi-
tional Bayesian Network approaches. By eliminating variables in P-log modules
we may reduce the space and time necessary to make inference in P-log, in con-
trast with previous algorithms [1,8] which require always enumeration of the
full possible worlds (which are exponential on the number of random variables)
and repeat calculations. As expected, it turns out that the general case of exact
inference is intractable, so we must consider methods for approximate inference.

As future work, we intend to fully describe the inference algorithm obtained
from the compositional semantics of P-log modules and relate it formally with
the variable elimination algorithm. Furthermore we expect that the notion of
P-log module may also help to devise approximate inference methods, e.g. by
extending sampling algorithms, enlarging the applicability of P-log which is cur-
rently somehow restricted. Finally, we hope to generalize the P-log language to
consider other forms of uncertainty representation like belief functions, possibil-
ity measures or even plausibility measures [9].

References

1. Anh, H.T., Kencana Ramli, C.D.P., Damásio, C.V.: An implementation of extended
P-log using XASP. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 739–743. Springer, Heidelberg (2008)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

3. Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets.
TPLP 9(1), 57–144 (2009)

4. Baral, C., Hunsaker, M.: Using the probabilistic logic programming language P-log
for causal and counterfactual reasoning and non-naive conditioning. In: Proceedings
of the 20th International Joint Conference on Artifical Intelligence, pp. 243–249.
Morgan Kaufmann Publishers Inc., San Francisco (2007)

5. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular Nonmonotonic Logic
Programming Revisited. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS,
vol. 5649, pp. 145–159. Springer, Heidelberg (2009)

6. Gaifman, H., Shapiro, E.: Fully abstract compositional semantics for logic pro-
grams. In: POPL 1989: Proc. of the 16th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 134–142. ACM, New York (1989)

Modularity of P-Log Programs 25

7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K.A. (eds.) Proceedings of the Fifth International Confer-
ence and Symposium (ICLP/SLP), pp. 1070–1080. MIT Press, Cambridge (1988)

8. Gelfond, M., Rushton, N., Zhu, W.: Combining logical and probabilistic reasoning.
In: Proc. of AAAI 2006 Spring Symposium: Formalizing AND Compiling Back-
ground Knowledge AND Its Applications to Knowledge Representation AND Ques-
tion Answering, pp. 50–55. AAAI Press, Menlo Park (2006)

9. Halpern, J.Y.: Reasoning about Uncertainty. The MIT Press, Cambridge (2005)
10. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model

checker. In: Kemper, P. (ed.) Proc. Tools Session of Aachen 2001 Interna-
tional Multiconference on Measurement, Modelling and Evaluation of Computer-
Communication Systems, pp. 7–12 (September 2001)

11. Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M.,
Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg
(2008)

12. Lifschitz, V.: What is answer set programming? In: Proceedings of the AAAI Con-
ference on Artificial Intelligence, pp. 1594–1597. MIT Press, Cambridge (2008)

13. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model se-
mantics for smodels programs. Theory Pract. Log. Program. 8(5-6) (2008)

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

15. Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge Univ. Press,
Cambridge (2000)

16. Pfeffer, A., Koller, D.: Semantics and inference for recursive probability mod-
els. In: Proceedings of the Seventeenth National Conference on Artificial Intelli-
gence and Twelfth Conference on Innovative Applications of Artificial Intelligence,
pp. 538–544. AAAI Press, Menlo Park (2000)

17. Poole, D.: The independent choice logic for modelling multiple agents under un-
certainty. Artif. Intell. 94, 7–56 (1997)

18. Poole, D., Zhang, N.L.: Exploiting contextual independence in probabilistic infer-
ence. J. Artif. Int. Res. 18, 263–313 (2003)

19. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-
tice Hall, Englewood Cliffs (2010)

20. Zhang, N., Poole, D.: A simple approach to Bayesian network computations.
In: Proceedings of the Tenth Canadian Conference on Artificial Intelligence,
pp. 171–178 (1994)

Symmetry Breaking for
Distributed Multi-Context Systems�

Christian Drescher1, Thomas Eiter2, Michael Fink2,
Thomas Krennwallner2, and Toby Walsh1

1 NICTA and University of New South Wales
Locked Bag 6016, Sydney NSW 1466, Australia

{christian.drescher,toby.walsh}@nicta.com.au
2 Institut für Informationssysteme, Technische Universität Wien

Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,fink,tkren}@kr.tuwien.ac.at

Abstract. Heterogeneous nonmonotonic multi-context systems (MCS) permit
different logics to be used in different contexts, and link them via bridge rules. We
investigate the role of symmetry detection and symmetry breaking in such sys-
tems to eliminate symmetric parts of the search space and, thereby, simplify the
evaluation process. We propose a distributed algorithm that takes a local stance,
i.e., computes independently the partial symmetries of a context and, in order to
construct potential symmetries of the whole, combines them with those partial
symmetries returned by neighbouring contexts. We prove the correctness of our
methods. We instantiate such symmetry detection and symmetry breaking in a
multi-context system with contexts that use answer set programs, and demon-
strate computational benefit on some recently proposed benchmarks.

1 Introduction

Due to the increasing application of distributed systems, there has been recent interest
in formalisms that accommodate several, distributed knowledge bases. Based on work
by McCarthy [14] and Giunchiglia [11], a powerful approach is multi-context systems
(MCS; [12]). Intuitively, an MCS consists of several heterogeneous theories (the con-
texts), which may use different logical languages and different inference systems, that
are interlinked with a special type of rules that allow to add knowledge into a context de-
pending on knowledge in other contexts. MCSs have applications in various areas such
as argumentation, data integration, and multi-agent systems. In the latter, each context
models the beliefs of an agent while the bridge rules model an agent’s perception of
the environment. Among various proposals for MCS, the general MCS framework of
Brewka and Eiter [5] is of special interest, as it generalises previous approaches in
contextual reasoning and allows for heterogeneous and nonmonotonic MCSs. Such a

� This research has been supported by the Austrian Science Fund project P20841 and by the
Vienna Science and Technology Fund project ICT 08-020. NICTA is funded by the Depart-
ment of Broadband, Communications and the Digital Economy, and the Australian Research
Council.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 26–39, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Symmetry Breaking for Distributed Multi-Context Systems 27

system can have different, possibly nonmonotonic logics in the different contexts, e.g.,
answer set programs (ASP; [4]), and bridge rules can use default negation to deal with
incomplete information.

Although there has been dramatic improvements [3] in the performance of dis-
tributed algorithms for evaluating Brewka and Eiter’ style nonmonotonic MCSs such
as DMCS [7], many applications exhibit symmetries. For example, suppose context
C1 is an advanced database system which repairs inconsistencies (e.g., from key vio-
lations in database tables), and another context C2 is accessing the repaired tables via
bridge rules. A large (exponential) number of repairs may exist, each yielding a local
model (i.e., belief set) of C1; many of those models are symmetric, thus C2’s bridge
rules may fire for many symmetric repairs. This can frustrate an evaluation algorithm
as it fruitlessly explores symmetric subspaces. Furthermore, communicating symmetric
solutions from one context to another can impede further search. If symmetries can be
identified, we can avoid redundant computation by pruning parts of the search space
through symmetry breaking. However, symmetry breaking in MCSs has not been ex-
plored in any depth.

In order to deal with symmetry in MCSs, we must accomplish two tasks: (1) identi-
fying symmetries and (2) breaking the identified symmetries. We make several funda-
mental and foundational contributions to the study of symmetry in MCS.

– First, we define the notion of symmetry for MCSs. This is subsequently specialized
to local symmetries and partial symmetries that capture symmetry on parts of an
MCS. Partial symmetries can be extended to a symmetry of the whole system under
suitable conditions which are formalized in a corresponding notion of join.

– Second, we design a distributed algorithm to identify symmetries based on such
partial symmetries. The method runs as background processes in the contexts and
communicate with each other for exchanging partial symmetries. This algorithm
computes symmetries of a general MCS based on the partial symmetries for each
individual context. We demonstrate such symmetry detection for ASP contexts us-
ing automorphisms of a suitable coloured graph.

– Third, we break symmetries by extending the symmetry breaking methods of
Crawford et al. [6] to distributed MCS. We construct symmetry-breaking con-
straints (SBCs) for a MCS that take into account beliefs imported from other con-
texts into account. These constraints ensure that an evaluation engine never visits
two points in the search space that are symmetric. For contexts other than propo-
sitional logic, distributed SBCs have to be expressed appropriately. Again we il-
lustrate this in the case of ASP contexts and develop a logic-program encoding for
distributed symmetry breaking constraints.

– Finally, we experimentally evaluate our approach on MCSs with ASP contexts. In
problems with large number of symmetries, we demonstrate the effectiveness of
only breaking a subset of the symmetries. Results on MCS benchmarks that re-
semble context dependencies of realistic scenarios [3] show that symmetry break-
ing yields significant improvements in runtime and compression of the solution
space.

28 C. Drescher et al.

2 Logical Background

We recall some basic notions of heterogeneous nonmonotonic multi-context systems.
Following [5], a logic over an alphabet A is a triple L = (KB,BS,ACC), where KB is
a set of well-formed knowledge bases over A, BS is a set of possible belief sets (sets
over A), and ACC : KB → 2BS is a function describing the semantics of the logic by
assigning each kb ∈ KB a set of acceptable sets of beliefs. This covers many monotonic
and nonmonotonic logics like propositional logic under the closed world assumption
and default logic. We concentrate on logic programs under answer set semantics, i.e.,
ASP logic L. A (disjunctive) logic program over an alphabetA is a finite set of rules

a1; . . . ; a� ← b1, . . . , bj,∼bj+1, . . . ,∼bm (1)

where ai, bk ∈ A for 1 ≤ i ≤ �, and 1 ≤ k ≤ m. A literal is an atom a or its
default negation ∼a. For a rule r, let head(r) = {a1, . . . , a�} be the head of r and
body(r) = {b1, . . . , bj,∼bj+1, . . . ,∼bm} the body of r. For an ASP logic L, the set
of knowledge bases KB is given through the set of logic programs, the possible belief
sets BS = 2A contains all subsets of atoms, and ACC(P) is the set of answer sets of a
logic program P . For a detailed introduction to ASP, we refer to [4].

We now recall multi-context systems according to Brewka and Eiter [5]. A multi-
context system M = (C1, . . . , Cn) consists of a collection of contexts Ci =
(Li, kbi, bri), where Li = (KBi,BSi,ACCi) is a logic over alphabets Ai, kbi ∈ KBi

is a knowledge base, and bri is a set of Li bridge rules r of the form

a← (c1 : b1), . . . , (cj : bj),∼(cj+1 : bj+1), . . . ,∼(cm : bm) , (2)

where 1 ≤ ck ≤ n, bk is an atom in Ack
, 1 ≤ k ≤ m, and kb ∪ {a} ∈ KBi for

each kb ∈ KBi. We call a context atom (ck : bk) or its default negation ∼(ck : bk) a
context literal. Analogous to standard notions of ASP, let the atom head(r) = a be the
head of r and body(r) = {(c1 : b1), . . . , (cj : bj),∼(cj+1 : bj+1), . . . ,∼(cm : bm)}
the body of r. For a set S of context literals, define S+ = {(c : b) | (c : b) ∈ S},
S− = {(c : b) | ∼(c : b) ∈ S}, and for a set S of context atoms, let S|c = {b |
(c : b) ∈ S}. The set of atoms occurring in a set bri of bridge rules is denoted by
at(bri). W.l.o.g., we will assume that the alphabetsAi are pairwise disjoint and denote
their union byA =

⋃n
i=1Ai.

Intuitively, context literals in bridge rules refer to information of other contexts.
Bridge rules can thus modify the knowledge base, depending on what is believed or dis-
believed in other contexts. The semantics of an MCS is given by its equilibria, which is
a collection of acceptable belief sets, one from each context, that respect all bridge rules.
More formally, for an MCS M = (C1, . . . , Cn) define a belief state S = (S1, . . . , Sn)
of M such that each Si ∈ BSi. A bridge rule r of the form (2) is applicable in S
iff body(r)+|ck

⊆ Sck
and body(r)−|ck

∩ Sck
= ∅ for all 1 ≤ k ≤ m. A be-

lief state S = (S1, . . . , Sn) of an MCS M = (C1, . . . , Cn) is an equilibrium iff
Si ∈ ACCi(kbi ∪ {head(r) | r ∈ bri, r is applicable in S}) for all 1 ≤ i ≤ n.

In practice, however, we are more interested in equilibria of a subsystem with root
context Ck, e.g., when querying to a context. Naturally, such partial equilibria have to
contain coherent information from Ck and all contexts in the import closure of Ck, and

Symmetry Breaking for Distributed Multi-Context Systems 29

therefore, are parts of potential equilibria of the whole system. We define the import
neighbourhood of a context Ck as the set In(k) = {c | (c : b) ∈ body(r), r ∈ brk} and
the import closure IC (k) as the smallest set of contexts S such that (1) Ck ∈ S and
(2) Ci ∈ S implies {Cj | j ∈ In(i)} ⊆ S. Let ε /∈ A be a new symbol representing
the value ‘unknown’. A partial belief state of M is a sequence S = (S1, . . . , Sn), such
that Si ∈ BSi ∪ {ε} for all 1 ≤ i ≤ n. A partial belief state S = (S1, . . . , Sn) of
MCS M = (C1, . . . , Cn) w.r.t. Ck is a partial equilibrium iff whenever Ci ∈ IC (k),
Si ∈ ACCi(kbi ∪ {head(r) | r ∈ bri, r is applicable in S}), otherwise Si = ε, for all
1 ≤ i ≤ n.

Example 1. As a running example, consider the MCS M = (C1, C2, C3) with ASP
logics over alphabetsA1 = {a, b, c},A2 = {d, e, f, g}, and A3 = {h}. Suppose

kb1 =
{
c← a, b,∼c

}
, kb2 =

{
f ← d, e,∼g
g← d, e,∼f

}
, kb3 = ∅,

br1 =
{
a←∼(2 : d)
b←∼(2 : e)

}
, br2 =

{
d←∼(1 : a)
e←∼(1 : b)

}
, br3 =

{
h← (1 : a)

}
.

Then, ({b}, {d}, ε), ({a}, {e}, ε), (∅, {d, e, f}, ε), and (∅, {d, e, g}, ε) are partial equi-
libria w.r.t. C1, and ({b}, {d}, ∅), ({a}, {e}, {h}), (∅, {d, e, f}, ∅), and (∅, {d, e, g}, ∅)
are equilibria. Observe thatM remains invariant under a swap of atoms f and g, which
is what we will call a symmetry of M . Furthermore, the subsystem given by IC (1) =
{C1, C2} remains invariant under a swap of atoms f and g, and/or a simultaneous
swap of atoms a, b and d, e, which is what we will call a partial symmetry of M
w.r.t. {C1, C2}.

3 Algebraic Background

Intuitively, a symmetry of a discrete object is a transformation of its components that
leaves the object unchanged. Symmetries are studied in terms of groups. Recall that a
group is an abstract algebraic structure (G, ∗), where G is a set closed under a binary
associative operation ∗ such that there is a unit element and every element has a unique
inverse. Often, we abuse notation and refer to the group G, rather than to the struc-
ture (G, ∗), and we denote the size of G as |G|. A compact representation of a group
is given through generators. A set of group elements such that any other group element
can be expressed in terms of their product is called a generating set or set of generators,
and its elements are called generators. A generator is redundant, if it can be expressed
in terms of other generators. A generating set is irredundant, if no strict subset of it
is generating. Such a set provides an extremely compact representation of a group. In
fact, representing a finite group by an irredundant generating set ensures exponential
compression, as it contains at most log2|G| elements [1].

A mapping f : G → H between two groups (G, ∗) and (H, ◦) is a homomorphism
iff for a, b ∈ G we have that f(a ∗ b) = f(a) ◦ f(b); if it has also an inverse that
is a homomorphism, f is an isomorphism, which is an automorphism if G = H . The
groupsG andH are called isomorphic, if there exists some isomorphism between them.
Any group isomorphism maps (irredundant) generating sets to (irredundant) generating

30 C. Drescher et al.

sets [1]. The domainG of f is denoted as dom(f). In our context, the group of permu-
tations is most important. Recall that a permutation of a set S is a bijection π : S → S.
It is well-known that the set of all permutations of S form a group under composition,
denoted as Π(S).

The image of a ∈ S under a permutation π is denoted as aπ, and for vectors s =
(a1, a2, . . . , ak) ∈ Sk define sπ = (aπ

1 , a
π
2 , . . . , a

π
k). For formulas φ(a1, a2, . . . , ak) of

some logic over alphabetA s. t. S ⊆ A define φπ(a1, a2, . . . , ak) = φ(aπ
1 , a

π
2 , . . . , a

π
k),

e.g., for a rule r of form (1), let rπ be aπ
1 ; . . . ; aπ

� ← bπ1 , . . . , b
π
j ,∼bπj+1, . . . ,∼bπm. For a

bridge rule rof form (2) define rπ = aπ ← (c1 : bπ1), . . . , (cj : bπj),∼(cj+1 : bπj+1), . . . ,
∼(cm : bπm). Finally, for a set X (of elements or subsets from S, formulas, bridge rules,
etc.), defineXπ = {xπ | x ∈ X}.

We will make use of the cycle notation where a permutation is a product of disjoint
cycles. A cycle (a1 a2 a3 · · · an) means that the permutation maps a1 to a2, a2 to a3,
and so on, finally an back to a1. An element that does not appear in any cycle is un-
derstood as being mapped to itself. The orbit of a ∈ S under a permutation π ∈ Π(S)
are the set of elements of S to which a can be mapped by (repeatedly) applying π. Note
that orbits define an equivalence relation on elements (sets, vectors, etc.) of S.

In graph theory, the symmetries are studied in terms of graph automorphisms. We
consider directed graphsG = (V,E), where V is a set of vertices and E ⊆ V × V is a
set of directed edges. Intuitively, an automorphism of G is a permutation of its vertices
that maps edges to edges, and non-edges to non-edges, preserving edge orientation.
More formally, an automorphism or a symmetry of G is a permutation π ∈ Π(V)
such that (u, v)π ∈ E iff (u, v) ∈ E. An extension considers vertex colourings that
are partitionings ρ(V) = {V1, V2, . . . , Vk} of the nodes V into disjoint nonempty sets
(“colours”) Vi. Symmetries must map each vertex to a vertex with the same colour.
Formally, given a colouring of the vertices ρ(V) = {V1, V2, . . . , Vk}, an automorphism
or a symmetry of a coloured graph G is a symmetry π of G s.t. ρ(V)π = ρ(V). The
graph automorphism problem (GAP) is to find all symmetries of a given graph, for
instance, in terms of generators. GAP is not known to be solvable in polynomial time,
and its decisional variant is known to be within the complexity classes P and NP,
but there is strong evidence that this problem is not NP-complete (cf. [2]). Thus it is
potentially easier than, for instance, deciding answer set existence.

4 Symmetry in Multi-Context Systems

We will now define our notion of a symmetry of a multi-context system. In this section
we consider MCS M = (C1, . . . , Cn) with logics Li over alphabetAi, for 1 ≤ i ≤ n.

Definition 1. A symmetry of M is a permutation π ∈ Π(A) such that (1) Aπ
i = Ai,

(2) kbπi = kbi, and (3) brπ
i = bri, for 1 ≤ i ≤ n.

In this definition, items (2) and (3) capture the intention that symmetries are permuta-
tions of beliefs which yield identical knowledge bases and bridge rules, respectively.
Item (1) imposes that symmetries do not alter the indiviuale context languages; there is
no technical need for this, i.e., dropping (1) would yield a more general definition of

Symmetry Breaking for Distributed Multi-Context Systems 31

symmetry for which our subsequent results would still hold; however the respective ad-
ditional symmetries are irrelevant from a practical point of view and thus disregarded.
For the same reason, we disregard permutations of the order of contexts.

Sometimes, a symmetry affects only atoms of a single context, i.e., behaves like the
identity for the atoms of all other contexts. A symmetry π of M is local for context Ck

iff aπ = a for all a ∈ dom(π) \ Ak.

Example 2 (cont’d). Reconsider the MCS M = (C1, C2, C3) from Example 1. Sym-
metries of M are given through the identity and (f g), both are local for C2.

Similar to belief states, we define the notion of partial symmetries, which are parts of
potential symmetries of the system.

Definition 2. A permutation π of the elements in S ⊆ A is a partial symmetry of M
w.r.t. the set of contexts C = {Ci1 , . . . , Cim} iff (1)Aik

∪ at(brik
) ⊆ S (2)Aπ

ik
= Aik

,
(3) kbπik

= kbik
, and (4) brπ

ik
= brik

, for all 1 ≤ k ≤ m.

For combining partial symmetries π and σ, we define their join π �� σ as the permuta-
tion θ, where

aθ =

{
aπ if a ∈ dom(π),
aσ if a ∈ dom(σ).

whenever aπ = aσ for all a ∈ dom(π)∩ dom(σ); otherwise, the join is undefined. The
join of two sets of partial symmetries of M is naturally defined as Π �� Σ = {π �� σ |
π ∈ Π, σ ∈ Σ}. Note that, π �� σ is void, i.e., undefined, if π and σ behave different
for some a ∈ dom(π) ∩ dom(σ). Otherwise, the join is a partial symmetry of M .

Theorem 1. Let M = (C1, . . . , Cn) be an MCS with logics Li over alphabet Ai.
(1) Every partial symmetry of M w.r.t. {C1, . . . , Cn} is a symmetry of M . (2) For
every partial symmetries π and σ of M w.r.t. C(π) = {Ci1 , . . . , Cim} and C(σ) =
{Cj1 , . . . , Cj�

}, respectively, such that θ = π �� σ is defined, θ is a partial symmetry
of M w.r.t. C(π) ∪ C(σ).

Proof. (1) Let θ be a partial symmetry of M w.r.t. {C1, . . . , Cn}. By Definition 2 we
have dom(θ) ⊆

⋃n
i=1Ai = A (an upper bound for the domain of partial symmetries),

and Ai ⊆ dom(π) (lower bound for domain of partial symmetries) for 1 ≤ i ≤ n.
Hence, θ is a permutation of exactly the elements inA. Given this, and since Aθ

i = Ai,
kbθi = kbi and brθ

i = bri holds for 1 ≤ i ≤ n, i.e., all contexts in M , we have
that θ is a symmetry of M . (2) We check that all conditions of a partial symmetry
hold for θ. By definition of the join, dom(θ) = dom(π) ∪ dom(σ) ⊇

⋃m
k=1(Aik

∪
at(brik

))∪
⋃�

k=1(Ajk
∪at(brjk

)). Furthermore,Aθ
ik

= Aπ
ik

= Aik
, kbθik

= kbπik
= kbik

and brθ
ik

= brπ
ik

= brik
for all 1 ≤ k ≤ m, and similarly, Aθ

jk
= Aσ

jk
= Ajk

,
kbθjk

= kbσjk
= kbjk

and brθ
jk

= brσ
jk

= brjk
for all 1 ≤ k ≤ �. Hence, θ is a partial

symmetry of M w.r.t. C(π) ∪ C(σ). ��

Observe that every partial symmetry ofM w.r.t. a set of contextsC is a partial symmetry
of M w.r.t. a non-empty subset of C; a partial symmetry can always be written as the
join of two partial symmetries.

32 C. Drescher et al.

Example 3 (cont’d). Reconsider M from Example 1. The partial symmetries Π of M
w.r.t. {C1} are given through the identity id and (a b) (d e). The partial symmetries Σ
of M w.r.t. {C2} are given through id, (a b) (d e) (f g), and (f g). The partial sym-
metries of M w.r.t. {C1, C2} are Π �� Σ = Σ, and the partial symmetries Θ of M
w.r.t. {C3} are just id alone. The symmetries of M are Π �� Θ = {id, (f g)}.

5 Distributed Symmetry Detection

In the following, we provide a distributed algorithm for detecting symmetries of an
MCS M = (C1, . . . , Cn). We follow Dao-Tran et al. [7] by taking a local stance,
i.e., we consider a context Ck and those parts of the system that are in the import
closure of Ck to compute (potential) symmetries of the system. To this end, we design
an algorithm whose instances run independently at each context node and communicate
with other instances for exchanging sets of partial symmetries. This provides a method
for distributed symmetry building.

The idea is as follows: starting from a context Ck, we visit the import closure of Ck

by expanding the import neighbourhood at each context, maintaining the set of visited
contexts in a set H , the history, until a leaf context is reached, or a cycle is detected by
noticing the presence of a neighbour context in H . A leaf context Ci simply computes
all partial symmetries of M w.r.t. {Ci}. Then, it returns the results to its parent (the in-
voking context), for instance, in form of permutation cycles. The results of intermediate
contexts Ci are partial symmetries of M w.r.t. {Ci}, which can be joined, i.e., consis-
tently combined, with partial symmetries from their neighbours, and resulting in partial
symmetries of M w.r.t. IC (i). In particular, the starting context Ck returns its partial
symmetries joined with the results from its neighbours, as a final result. We assume that
each context Ck has a background process that waits for incoming requests with his-
tory H , upon which it starts the computation outlined in our algorithm shown in Fig. 1.
We write Ci.DSD(H) to specify that we send H to the process at context Ci and wait
for its return message. This process also serves the purpose of keeping the cache c(k)
persistent. We use the primitive LSD(Ck) which computes all partial symmetries ofM
w.r.t. {Ck} overAk ∪ at(brk).

Algorithm: DSD(H) at context Ck

Input: Visited contexts H .
Data: Cache c(k).
Output: The set of accumulated partial symmetries Π .

if c(k) is not initialised then c(k)← LSD(Ck);
H ← H ∪ {k};
Π ← c(k);
foreach i ∈ In(k) \H do Π ← Π �� Ci.DSD(H);
return Π ;

Fig. 1. The distributed symmetry detection algorithm

Symmetry Breaking for Distributed Multi-Context Systems 33

Our algorithm proceeds in the following way:

1. Check the cache for partial symmetries of M w.r.t. {Ck};
2. if imports from neighbour contexts are needed, then request partial symmetries

from all neighbours and join them (previously visited contexts excluded). This can
be performed in parallel. Also, partial symmetries can be joined in the order neigh-
bouring contexts do answer; and

3. return partial symmetries of M w.r.t. IC (k).

Correctness of our approach hold by the following result.

Theorem 2. Let M = (C1, . . . , Cn) be an MCS and Ck be a context in M . Then, π ∈
Ck.DSD(∅) iff π is a partial symmetry of M w.r.t. IC (k).

Proof (sketch). (⇒) We prove soundness, i.e., if π ∈ Ck.DSD(∅) then π is a partial
symmetry of M w.r.t. IC (k). We proceed by structural induction on the topology of an
MCS, and start with acyclic MCSM . Base case: Ck is a leaf with brk = ∅ and In(k) =
∅. By assumption, LSD(Ck) computes all partial symmetries of M w.r.t. {Ck}, i.e.,
c(k) ← LSD(Ck) in the algorithm in Fig. 1. Induction step: for non-leaf Ck, suppose
In(k) = {i1, . . . , im} andΠk = LSD(Ck),Πij = Cij .DSD(H∪{k}) for 1 ≤ j ≤ m.
By Theorem 1,Π = Πk ��Πi1 �� · · · ��Πim , as computed byΠ ← Π �� Ci.DSD(H)
in the loop of the algorithm in Fig. 1, consists of partial symmetries of M w.r.t. IC (k).

The proof for cyclicM is similar. In a run we eventually end up inCi such that i ∈ H
again. In that case, calling Ci.DSD(H) is discarded, which breaks the cycle. However,
partial symmetries excluding Ci are propagated through the system to the calling Ci

which combines the intermediate results with partial symmetries of M w.r.t. {Ci}.
(⇐) We give now a proof sketch for completeness. Let π be a partial symmetry of M
w.r.t. IC (k). We show π ∈ Ck.DSD(∅). The proof idea is as follows: we proceed as in
the soundness part by structural induction on the topology ofM , and in the base case for
a leaf context Ck, by assumption, we get that LSD(Ck) returns all partial symmetries
of M w.r.t. {Ck}, i.e., all partial symmetries of M w.r.t. IC (k). For the induction step,
we verify straightforward that π being a partial symmetry of M w.r.t. IC (k) implies π
being a partial symmetry of M w.r.t. IC (i) for all i ∈ In(k). ��

6 Symmetry Detection via Graph Automorphism

The primitive LSD(Ci) for detecting partial symmetries of an MCSM = (C1, . . . , Cn)
w.r.t. {Ci} using logic Li has to be defined for every logic Li anew. As an exam-
ple, our approach for detecting partial symmetries of M w.r.t. an ASP context Ci is
through reduction to, and solution of, an associated graph automorphism problem. The
graph GAP(Ci) is constructed as follows:

1. Every atom that occurs in kbi ∪ bri (every context atom (c : b) in bri, respectively)
is represented by two vertices of colour i (c, respectively) and n+1 that correspond
to the positive and negative literals.

2. Every rule (every bridge rule, respectively) is represented by a body vertex of
colour n + 2 (n + 3, respectively), a set of directed edges that connect the ver-
tices of the literals (context literals, respectively) that appear in the rule’s body to

34 C. Drescher et al.

∼f

f

g

∼g ∼d d ∼a a

∼e e ∼b b

Fig. 2. GAP reduction of context C2 from Example 1

its body vertex, and a set of directed edges that connect the body vertex to the
vertices of the atoms that appear in the head of the rule.

3. To properly respect negation, that is, an atom a maps to b if and only if ∼a maps
to ∼b for any atoms a and b, vertices of opposite (context) literals are mated by a
directed edge from the positive (context) literal to the negative (context) literal.

Example 4 (cont’d). Reconsider MCSM from Example 1. Fig. 2 illustrates GAP(C2),
where different shapes and tones represent different colours.

Symmetries of GAP(Ci) correspond precisely to the partial symmetries of M
w.r.t. {Ci}.

Theorem 3. Let M = (C1, . . . , Cn) be an MCS with ASP context Ci. The partial
symmetries of M w.r.t. {Ci} correspond one-to-one to the symmetries of GAP(Ci).

Proof. The proof for logic programs is shown in [8]. Therefore we only provide ar-
guments regarding bridge rules and context atoms. (⇒) A partial symmetry of M
w.r.t. {Ci} will map context atoms to context atoms of the same context. Since they
have the same colour, the symmetry is preserved for corresponding vertices and con-
sistency edges. The same applies to body vertices and edges representing bridge rules,
since the body vertices have incoming edges from context literal vertices with their re-
spective colour only, and vertices of the same colour are mapped one to another. Thus,
a consistent mapping of atoms in Ck, when carried over to the graph, must preserve
symmetry. (⇐) We now show that every symmetry in the graph corresponds to a par-
tial symmetries of M w.r.t. {Ci}. Recall that we use one colour for positive context
literals from each context, one for negative context literals from each context, and one
for bodies. Hence, a graph symmetry must map (1) positive context literal vertices to
other such from the same context, negative literal vertices to negative literal vertices
from the same context, and body vertices to body vertices, and (2) the body edges of a
vertex to body edges of its mate. This is consistent with partial symmetries of M w.r.t.
{Ci} mapping context atoms to context atoms, and bodies to bodies, i.e., bridge rules
to bridge rules. ��

Corollary 1. Let M = (C1, . . . , Cn) be an MCS with ASP context Ci. The partial
symmetry group ofM w.r.t. {Ci} and the symmetry group of GAP(Ci) are isomorphic.
Furthermore, sets of partial symmetry generators of M w.r.t. {Ci} correspond one-to-
one to sets of symmetry generators of GAP(Ci).

Symmetry Breaking for Distributed Multi-Context Systems 35

To detect local symmetries only, we further modify our approach by assigning a unique
colour to each context atom and each atom that is referenced in other contexts, i.e.,
context atoms cannot be mapped.

With reference to related work (cf. [1,8]), we stretch that the detection of symmetries
through reduction to graph automorphism is computationally quite feasible, i.e., the
overhead cost in situations that do not have symmetries is negligible.

7 Distributed Symmetry-Breaking Constraints

Recall that a (partial) symmetry of an MCS defines equivalence classes on its (partial)
equilibria through orbits. Symmetry breaking amounts to selecting some representatives
from every equivalence class and formulating conditions, composed into a (distributed)
symmetry-breaking constraint (SBC), that is only satisfied on those representatives. A
full SBC selects exactly one representative from each orbit, otherwise we call an SBC
partial. The most common approach is to order all elements from the solution space
lexicographically, and to select the lexicographically smallest element, the lex-leader,
from each orbit as its representative (see, for instance, [1,6]). A lex-leader symmetry-
breaking constraint (LL-SBC) is an SBC that is satisfied only on the lex-leaders of
orbits. Given an MCS M = (C1, . . . , Cn) with logics Li over alphabet Ai, we will
assume a total ordering<A on the atoms a1, a2, . . . , am in A and consider the induced
lexicographic ordering on the (partial) belief states. Following [6], we obtain an LL-
SBC by encoding a (distributed) permutation constraint (PC) for every permutation π,
where

PC(π) =
∧

1≤i≤m

[∧
1≤j≤i−1(aj = aπ

j)
]
→ (ai ≤ aπ

i).

By chaining, which uses atoms cπ,i, 1<i≤m+1 (which informally express that for
some i ≤ j ≤ m the implication fails if it did not for some j < i), we achieve a
representation that is linear in the number of atoms [1]:

PC(π) = (a1 ≤ aπ
1) ∧ ¬cπ,2,

¬cπ,i ↔ ((ai−1 ≥ aπ
i−1) → (ai ≤ aπ

i) ∧ cπ,i+1) 1 < i ≤ m,
¬cπ,m+1 ↔ �.

In order to distribute the PC formula in M , given the total ordering <A, we define
(the truth of) atoms cπ,i in the contexts Ck such that ai−1 ∈ Ak. Observe that, for
each subformula, the atoms ai, aπ

i and cπ,i+1 might be defined in a different context j,
and their truth value has to be imported via bridge rules. We thus introduce auxiliary
atoms a′i, a

′π
i , and c′π,i+1 in Ck that resemble the truth of ai, aπ

i , and cπ,i+1, respec-
tively. Then we distribute PC(π) to each context Ck for each 1 ≤ k ≤ n as follows:

PC(π) = (a1 ≤ aπ
1) ∧ ¬cπ,2 if a1 ∈ Ak,

¬cπ,i ↔ ((ai−1 ≥ aπ
i−1)→ (ai ≤ aπ

i) ∧ ¬cπ,i+1) if ai−1, ai ∈ Ak,

¬cπ,i ↔ ((ai−1 ≥ aπ
i−1)→ (a′i ≤ a

′π
i) ∧ ¬c′π,i+1) if ai−1 ∈ Ak, ai ∈ Aj , j �= k,

¬cπ,m+1 ↔ � if am ∈ Ak,

a′i ← (j : ai) if ai−1 ∈ Ak, ai ∈ Aj , j �= k,

a
′π
i ← (j : aπ

i) if ai−1 ∈ Ak, ai ∈ Aj , j �= k,
c′π,i+1 ← (j : cπ,i+1) if ai−1 ∈ Ak, ai ∈ Aj , j �= k.

36 C. Drescher et al.

The distributed PC can be adjusted to other logics as well. Exploiting detected sym-
metries has been studied, e.g., in the context of SAT [1,6], planning [9], and constraint
programming [15]. For an ASP context Ck, we can express the distributed PC as fol-
lows:

← a1,∼aπ
1

}
if a1 ∈ Ak;← cπ,2

cπ,i ← ai−1, ai,∼aπ
i

⎫⎪⎪⎬
⎪⎪⎭

if ai ∈ Ak ,
ai−1 ∈ Ak;

cπ,i ←∼aπ
i−1, ai,∼aπ

i

cπ,i ← ai−1, cπ,i+1

cπ,i ←∼aπ
i−1, cπ,i+1

cπ,i ← ai−1, a
′
i,∼a′i

π ⎫⎪⎪⎬
⎪⎪⎭

if ai ∈ Aj ,
ai−1 ∈ Ak,
j �= k;

cπ,i ←∼aπ
i−1, a

′
i,∼a′i

π

cπ,i ← ai−1, c
′
π,i+1

cπ,i ←∼aπ
i−1, c

′
π,i+1

a′i ← (j : ai)
⎫⎬
⎭

if ai ∈ Aj ,
ai−1 ∈ Ak,
j �= k;

a
′π
i ← (j : aπ

i)
c′π,i+1 ← (j : cπ,i+1)

Here, cπ,i is defined from¬cπ,i ↔ (α→ β∧¬cπ,i+1) via cπ,i ↔ (α∧¬β∨α∧cπ,i+1)
exploiting Clark completion and splitting α = ai−1 ≤ aπ

i−1 into the (overlapping) cases
where ai−1 is true and aπ

i−1 is false. We collect the newly introduced formulas in kbk,π

and bridge rules in brk,π for each 1 ≤ k ≤ n. The following correctness result can be
shown, generalizing a similar result for ASP programs in [8].

Theorem 4. Let π be a (partial) symmetry of an MCS M = (C1, . . . , Cn) with ASP
contextsCi. A (partial) equilibrium ofM satisfies PC(π) iff it is a (partial) equilibrium
of M(π) = (C1(π), . . . , Cn(π)), where Ck(π) extends Ck by kbk(π) = kbk ∪ kbk,π

and brk(π) = brk ∪ brk,π.

This result generalizes to MCS having contexts Ci with (possibly heterogeneous) log-
ics Li that permit to encode PC via additional formulas in the knowledge base kbi.

Example 5 (cont’d). Reconsider M from Example 1. Given the ordering a <A b <A
d <A e, the permutation constraint to break the partial symmetry π = (a b) (d e) is:

← a,∼b
← cπ,2

cπ,2 ← b, d′,∼e′
⎫⎪⎪⎬
⎪⎪⎭ kb1,π,

cπ,2 ←∼a, d′,∼e′
cπ,2 ← b, c′π,3

cπ,2 ←∼a, c′π,3

d′ ← (2 : d)
⎫⎬
⎭ br1,π, ande′ ← (2 : e)

c′π,3 ← (2 : cπ,3)

kb2,π = br2,π = ∅. One can check that ({b}, {e}, ε), (∅, {d, e, f}, ε), and (∅, {d, e, g}, ε)
are partial equilibria of M(π) w.r.t C1, and ({a}, {d}, ε) is not (cf. Example 1) since
({a}, {d}, ε) <A ({b}, {e}, ε).

The LL-SBC that breaks every (partial) symmetry in an MCS, denoted LL-SBC(Π),
can now be constructed by conjoining all of its permutation constraints [6]. We can add
LL-SBC(Π) to M , say M(Π) = (C1(Π), . . . , Cn(Π)), where Ck(Π) extends Ck

by kbk(Π) = kbk ∪
⋃

π∈Π kbk(π) and brk(Π) = brk ∪
⋃

π∈Π brk(π).
Breaking all symmetries may not speed up search because there are often exponen-

tially many of them. A better trade-off may be provided by breaking enough symme-
tries [6]. We explore partial SBCs, i.e., we do not require that SBCs are satisfied by
lex-leading assignments only (but we still require that all lex-leaders satisfy SBCs). Ir-
redundant generators are good candidates because they cannot be expressed in terms of
each other, and implicitly represent all symmetries. Hence, breaking all symmetry in
a generating set can eliminate all problem symmetries.

Symmetry Breaking for Distributed Multi-Context Systems 37

8 Experiments

We present some results on breaking local symmetries in terms of irredundant gener-
ators for distributed nonmonotonic MCS with ASP logics. Experiments consider the
DMCS system [7] and its optimized version DMCSOPT [3]. Both systems are using the
ASP solver CLASP [10] as their core reasoning engine. However, in contrast to DMCS,
DMCSOPT exploits the topology of an MCS, that is the graph where contexts are nodes
and import relations define edges, using decomposition techniques and minimises com-
munication between contexts by projecting partial belief states to relevant atoms. We
compare the average response time and the number of solutions under symmetry break-
ing, denoted as DMCSπ and DMCSOPTπ , respectively, on benchmarks versus direct ap-
plication of the respective systems. All tests were run on a 2×1.80 GHz PC under Linux,
where each run was limited to 180 seconds. Our benchmarks stem from [3] and include
random MCSs with various fixed topologies that should resemble the context dependen-
cies of realistic scenarios. Experiments consider MCS instances with ordinary (D) and
zig-zag (Z) diamond stack, house stack (H), and ring (R). A diamond stack combines
multiple diamonds in a row, where ordinary diamonds (in contrast to zig-zag diamonds)
have no connection between the 2 middle contexts. A house consists of 5 nodes with 6
edges such that the ridge context has directed edges to the 2 middle contexts, which
form with the 2 base contexts a cycle with 4 edges. House stacks are subsequently built
using the basement nodes as ridges for the next houses.

Table 1 shows some experimental results on calculating equilibria w.r.t. a randomly
selected starting context of MSC with n contexts, where n varies between 9 and 151.
Each context has an alphabet of 10 atoms, exports at most 5 atoms to other contexts,
and has a maximum of 5 bridge rules with at most 2 bridge literals. First, we confirm
the results of Bairakdar et al. [3], i.e., DMCSOPT can handle larger sizes of MCSs more
efficiently than DMCS. Second, evaluating the MCS instances with symmetry breaking

Table 1. Completed runs (10 random instances each): avg. running time (secs) vs. timeouts

DMCS DMCSπ DMCSOPT DMCSOPTπ

n time #t.out time #t.out time #t.out time #t.out

D 10 1.90 0.46 0.54 0.35
13 62.12 4 32.21 2 1.38 0.98
25 — 10 — 10 16.12 11.72
31 — 10 — 10 84.02 1 58.95

H 9 7.54 1.89 0.33 0.20
13 88.85 6 63.98 2 0.60 0.35
41 — 10 — 10 1.38 0.95

101 — 10 — 10 5.48 3.58
R 10 0.36 0.26 0.15 0.12

13 22.41 1 5.11 0.19 0.16
Z 10 6.80 3.24 0.62 0.37

13 57.58 3 42.93 3 1.03 0.68
70 — 10 — 10 18.87 9.98

151 — 10 — 10 51.10 30.15

38 C. Drescher et al.

 0

 25

 50

 75

D 10 D 13 H 9 H 13 R 10 R 13 Z 10 Z 13

co
m

pr
es

si
on

 (
%

)
DMCSπ

DMCSOPTπ

Fig. 3. Avg. compression of the solution space using local symmetry breaking w. irred. generators

compared to the direct application of either DMCS or DMCSOPT yields improvements in
response time throughout all tested topologies. In fact, symmetry breaking always leads
to better runtimes, and in some cases, returns solutions to problems which are otherwise
intractable within the given time.

Fig. 3 presents the average compression of the solution space achieved by symme-
try breaking. While the results for DMCSπ range between 45% and 80%, the impact of
symmetry breaking within DMCSOPT on the number of solutions varies between 5%
and 65%. We explain the latter with the restriction of DMCSOPT to relevant atoms de-
fined by the calling context.

9 Conclusion

We have presented a method for distributed symmetry detection and breaking for MCS.
In particular, we have designed a distributed algorithm such that each context computes
its own (partial) symmetries and communicates them with another for exchanging par-
tial symmetries in order to compute symmetries of the system as a whole. Distributed
symmetry-breaking constraints prevent an evaluation engine from ever visiting two
points in the search space that are equivalent under the symmetry they represent. We
have instantiated symmetry detection and symmetry breaking for MCS with ASP con-
texts, i.e., we have reduced partial symmetry of an ASP context to the automorphism of
a coloured graph and encode symmetry breaking constraints as a distributed logic pro-
gram. Experiments on recent MCS benchmarks and show promising results. Future work
concerns a join operator for partial symmetries that preserves irredundant generators.

References

1. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Shatter: efficient symmetry-breaking for Boolean
satisfiability. In: DAC 2003, pp. 836–839. ACM, New York (2003)

2. Babai, L.: Automorphism groups, isomorphism, reconstruction. In: Graham, R.L., Grötschel,
M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 2, pp. 1447–1540. Elsevier, Amster-
dam (1995)

Symmetry Breaking for Distributed Multi-Context Systems 39

3. Bairakdar, S., Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Decomposition of dis-
tributed nonmonotonic multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) JELIA
2010. LNCS, vol. 6341, pp. 24–37. Springer, Heidelberg (2010)

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

5. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
AAAI 2007, pp. 385–390. AAAI Press, Menlo Park (2007)

6. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for search
problems. In: KR 1996, pp. 148–159. Morgan Kaufmann, San Francisco (1996)

7. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic multi-context
systems. In: KR 2010, pp. 60–70. AAAI Press, Menlo Park (2010)

8. Drescher, C., Tifrea, O., Walsh, T.: Symmetry-breaking answer set solving (2011) (to appear)
9. Fox, M., Long, D.: The detection and exploitation of symmetry in planning problems. In:

IJCAI 1999, pp. 956–961. Morgan Kaufmann, San Francisco (1999)
10. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set

solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483,
pp. 260–265. Springer, Heidelberg (2007)

11. Giunchiglia, F.: Contextual reasoning. Epistemologia, special issue on I Linguaggi e le Mac-
chine 345, 345–364 (1992)

12. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do without
modal logics. Artif. Intell. 65(1), 29–70 (1994)

13. Katsirelos, G., Narodytska, N., Walsh, T.: Breaking generator symmetry. In: SymCon 2009
(2009)

14. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30, 1030–1035 (1987)
15. Puget, J.-F.: Automatic detection of variable and value symmetries. In: van Beek, P. (ed.) CP

2005. LNCS, vol. 3709, pp. 475–489. Springer, Heidelberg (2005)

Splitting an Argumentation Framework

Ringo Baumann

Universität Leipzig, Johannisgasse 26, 04103 Leipzig, Germany
baumann@informatik.uni-leipzig.de

Abstract. Splitting results in non-mononotonic formalisms have a long
tradition. On the one hand, these results can be used to improve existing
computational procedures, and on the other hand they yield deeper the-
oretical insights into how a non-monotonic approach works. In the 90‘s
Lifschitz and Turner [1,2] proved splitting results for logic programs and
default theory. In this paper we establish similar results for Dung style
argumentation frameworks (AFs) under the most important semantics,
namely stable, preferred, complete and grounded semantics. Furthermore
we show how to use these results in dynamical argumentation.

1 Introduction

Argumentation frameworks (AFs) as introduced in the seminal paper of Dung [3]
are static. Since argumentation is a dynamic process, it is natural to investigate
the dynamic behavior of AFs. In recent years the first publications appeared
that deal with the problem of dynamical argumentation. One main direction in
this field of research is to study the problem of how extensions of an AF may
change if new (old) arguments and/or attack relations are added (deleted) (see,
e.g. [4] and the references therein). A further question in this context is how to
construct the extensions of an expanded AF by using the (already computed)
acceptable sets of arguments of the initial AF. A solution to this problem is
obviously of high interest from a computational point of view, especially in case
of a huge number of arguments and attacks between them.

In 1994 Lifschitz and Turner [1] published splitting results for logic programs.
They have shown that, under certain conditions, a logic program P can be
split into two parts P1 and P2 such that the computation of an answer set
can be considerably simplified: one computes an answer set E1 of P1, uses E1

to modify P2, computes an answer set E2 of the modification of P2 and then
simply combines E1 and E2. We conveyed this idea to Dung‘s argumentation
frameworks. It turns out that for stable semantics the result is similar to logic
programs. However, for preferred, complete and grounded semantics, a more
sophisticated modification is needed which takes into account that arguments
may be neither accepted nor refuted in extensions.

Our definition of a splitting is closely connected with a special class of ex-
pansions, so-called weak expansions. This interrelation allows us to transfer our
splitting results into the field of dynamical argumentation.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 40–53, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Splitting an Argumentation Framework 41

The paper is organized as follows: Section 2 reviews the necessary definitions
at work in argumentation frameworks. The third section introduces new concepts
like: Splitting, Expansion, Reduct, Undefined Set and Modification. Section 4,
the main part of this paper, contains the splitting results for stable, preferred,
complete and grounded semantics. Furthermore we compare the splitting the-
orem with a former monotonicity result. In section 5 we turn to dynamical
argumentation. We concentrated on two issues: How to reuse already computed
extensions and new terms of equivalence between two AFs. Finally, in section 6
we discuss related results and present our conclusions. Note that we will omit
some proofs due to limited space. The full version of this paper is available at
www.informatik.uni-leipzig.de/∼baumann/.

2 Preliminaries

We start with a brief review of the relevant definitions in argumentation theory.

Definition 1. An argumentation framework A is a pair (A,R), where A is a
non-empty finite set whose elements are called arguments and R ⊆ A × A a
binary relation, called the attack relation.

If (a, b) ∈ R holds we say that a attacks b, or b is attacked by a. In the following
we consider a fixed countable set U of arguments, called the universe. Quantified
formulae refer to this universe and all denoted sets are finite subsets of U or
U × U respectively. We introduce the union for two AFs F = (AF , RF) and
G = (AG, RG) as expected, namely F ∪ G = (AF ∪AG, RF ∪RG). Furthermore
we will use the following abbreviations.

Definition 2. Let A = (A,R) be an AF, B and B′ subsets of A and a ∈ A.
Then

1. (B,B′) ∈̄ R⇔def ∃b∃b′ : b ∈ B ∧ b′ ∈ B′ ∧ (b, b′) ∈ R,
2. a is defended by B in A ⇔def ∀a′ : a′ ∈ A ∧ (a′, a) ∈ R→ (B, {a′}) ∈̄ R,
3. B is conflict-free in A ⇔def (B,B) �̄∈ R,
4. cf(A) = {C |C ⊆ A,C conflict-free in A}.

Semantics of argumentation frameworks specify certain conditions for selecting
subsets of a given AF A. The selected subsets are called extensions. The set
of all extensions of A under semantics S is denoted by ES(A). We consider the
classical (stable, preferred, complete, grounded [3]) and the ideal semantics [5].

Definition 3. Let A = (A,R) be an AF and E ⊆ A. E is a

1. stable extension (E ∈ Est(A)) iff
E ∈ cf(A) and for every a ∈ A\E, (E, {a}) ∈̄ R holds,

2. admissible extension1 (E ∈ Ead(A)) iff
E ∈ cf(A) and each a ∈ E is defended by E in A,

1 Note that it is more common to speak about admissible sets instead of the admissible
semantics. For reasons of unified notation we used the uncommon version.

42 R. Baumann

3. preferred extension (i.e. E ∈ Epr(A)) iff
E ∈ Ead(A) and for each E′ ∈ Ead(A), E �⊂ E′ holds,

4. complete extension (E ∈ Eco(A)) iff
E ∈ Ead(A) and for each a ∈ A defended by E in A, a ∈ E holds,

5. grounded extension (E ∈ Egr(A)) iff
E ∈ Eco(A) and for each E′ ∈ Eco(A), E′ �⊂ E holds,

6. ideal extension of A (E ∈ Eid(A)) iff
E ∈ Ead(A), E ⊆

⋂
P∈Epr(A) P and for each A ∈ Ead(A) w.t.p. A ⊆⋂

P∈Epr(A) P holds E �⊂ A.

3 Formal Foundation

In this section we will develop the technical tools which are needed to prove the
splitting results.

3.1 Splitting and Expansion

Definition 4. Let A1 = (A1, R1) and A2 = (A2, R2) be AFs such that A1 ∩
A2 = ∅. Let R3 ⊆ A1 × A2. We call the tuple (A1,A2, R3) a splitting of the
argumentation framework A = (A1 ∪A2, R1 ∪R2 ∪R3).

For short, a splitting of a given AF A is a partition in two disjoint AFs A1

and A2 such that the remaining attacks between A1 and A2 are restricted to
a single direction. In [6] we studied the dynamical behavior of extensions of
an AF. Therefore we introduced a special class of expansions of AFs, so-called
normal expansions. Weak and strong expansions are two different subclasses of
these expansions. After a short review of the definitions we will show that these
kinds of expansions and the introduced splitting definition are in a sense two
sides of the same coin. This observation allows us to convey splitting results into
dynamical argumentation and vice versa.

Definition 5. An AF A∗ is an expansion of AF A = (A,R) iff A∗ can be
represented as (A ∪ A∗, R ∪ R∗) for some nonempty A∗ disjoint from A and
some (possibly empty) R∗ disjoint from R . Such an expansion is called to be

1. normal (A ≺N A∗) iff ∀ab ((a, b) ∈ R∗ → a ∈ A∗ ∨ b ∈ A∗),
2. strong (A ≺N

S A∗) iff A ≺N A∗ and ∀ab ((a, b) ∈ R∗ → ¬(a ∈ A ∧ b ∈ A∗)),
3. weak (A ≺N

W A∗) iff A ≺N A∗ and ∀ab ((a, b) ∈ R∗ → ¬(a ∈ A∗ ∧ b ∈ A)).

a∗1

a∗2
a∗3

a∗m

a1

a2

a3

an

Splitting an Argumentation Framework 43

The figure above illustrates a weak expansion2. The dashed arrows represent the
additional attack relation R∗. The following proposition establishes the connec-
tion between splittings and weak expansions. Note that this property is pretty
obvious. Being aware of this fact, we still present it in the form of a proposition.

Proposition 1. If (A1,A2, R3) is a splitting of A, then A is a weak expansion
of A1. Vice versa, if A = (A,R) is a weak expansion of A1 = (A1, R1), then
(A1,A2, R3) with A2 = (A\A1, R∩ (A\A1×A\A1)) and R3 = R∩ (A1×A\A1)
is a splitting of A.

3.2 Reduct, Undefined Set and Modification

Now we turn to the central definitions of our paper. The main goal is to establish
a connection between the extensions of an AF A and a given splitting of it.
Consider therefore the following example.

Example 1. Let (A1,A2, {(a1, a5)}) be a splitting of the AF A below, where
A1 = ({a1, a2, a3, a4}, {(a1, a2), (a1, a3), (a3, a2)}) and
A2 = ({a5, a6, a7}, {(a5, a6), (a6, a7), (a7, a6)}).

a7 a6 a5 a4 a3 a2 a1

There are two stable extensions of A, namely E1 = {a1, a4, a6} and E2 =
{a1, a4, a7}. Furthermore we observe that E′ = {a1, a4} and E′′ = {a5, a7} are
the unique stable extensions of A1 and A2, respectively. Note that we cannot
reconstruct the extensions E1 and E2 out of the extensions E′ and E′′. This is
not very surprising because we do not take into account the attack (a1, a5). If
we delete the argument a5 in A2 which is attacked by E′ and then compute the
stable extensions in the reduced AF A2,red = ({a6, a7}, {(a6, a7), (a7, a6)}) we
get the “missing” singletons {a6} and {a7}. That means E1 and E2 are unions
of the extensions of A1 and a reduced version of A2.

We will see that this observation holds in general for the stable semantics. The
following definition of a reduct captures the intuitive idea.

Definition 6. Let A = (A,R) be an AF, A′ a set disjoint from A, S ⊆ A′ and
L ⊆ A′ ×A. The (S,L)-reduct of A, denoted AS,L is the AF

AS,L = (AS,L, RS,L)

where
AS,L = {a ∈ A | (S, {a}) �̄∈ L)}

2 The term is inspired by the fact that added arguments never attack previous argu-
ments (weak arguments).

44 R. Baumann

and
RS,L = {(a, b) ∈ R | a, b ∈ AS,L}.

The intuitionally described reduced version of the AF A2 in example 1 can be
formalized exactly in the following way:A2,red = ({a6, a7}, {(a6, a7), (a7, a6)}) =
AE′,{(a1,a5)}

2 . Unfortunately it turns out that the reduct used above does not
obtain the desired properties for other semantics we are interested in. Here is a
counterexample:

Example 2. Consider the AF A = ({a1, a2, a3, a4}, {(a2, a2), (a2, a3), (a3, a4)}).
A has a splitting (A1,A2, {(a2, a3)}) with A1 = ({a1, a2}, {(a2, a2)}) and A2 =
({a3, a4}, {(a3, a4)}).

a4 a3 a2 a1

E1 = {a1} is the unique preferred, complete and grounded extension of A. The
same holds for the AF A1, i.e. E′ = {a1}. Consider now the (E′, {(a2, a3)})-
reduct of A2, that is AE′,{(a2,a3)}

2 = A2. The reduct establishes the unique
extension E′′ = {a3} for all considered semantics. Yet the union of E′ and E′′

differs from E1.

The problem stems from the fact that the distinction between those arguments
which are not in the extension because they are refuted (attacked by an accepted
argument) and those not in the extension without being refuted is not taken
care of. The former have no influence on A2. However, the latter - which we
will call undefined in contrast to the refuted ones - indeed have an influence on
A2, as illustrated in the example: the fact that a2 is undefined in E′ leads to
the undefinedness of both a3 and a4, and this is not captured by the reduct.
To overcome this problem, we introduce a simple modification. We can enforce
undefinedness of a3 (and thus of a4) in A2 by introducing a self-attack for a3.
More generally, whenever there is an undefined argument a in the extension of
the first AF which attacks an argument b in the second AF, we modify the latter
so that b is both origin and goal of the attack.

Definition 7. Let A = (A,R) be an AF, E an extension of A. The set of
arguments undefined with respect to E is

UE = {a ∈ A | a �∈ E, (E, {a}) �̄∈ R}.

Definition 8. Let A = (A,R) be an AF, A′ a set disjoint from A, S ⊆ A′ and
L ⊆ A′ ×A. The (S,L)-modification of A, denoted modS,L(A), is the AF

modS,L(A) = (A,R ∪ {(b, b) | ∃a : a ∈ S, (a, b) ∈ L}).

Given a splitting (A1,A2, R3) of A, an extension E of A1 which leaves the set
of arguments UE undefined, we will use modUE ,R3(A

E,R3
2) to compute what

is missing from E. In case of example 2 we compute the extensions of the

Splitting an Argumentation Framework 45

({a2}, {a2, a3})-modification of the (E′, {(a2, a3)})-reduct of A2, i.e.

mod{a2},{a2,a3}

(
AE′,{(a2,a3}

2

)
= ({a3, a4}, {(a3, a3), (a3, a4)}),

which establishes the empty set as the unique extension under all considered
semantics. Hence the union of E′ and ∅ equals the extension of the initial frame-
work A. Note that, although links are added, under all standard measures of
the size of a graph (e.g. number of links plus number of vertices) we have
|A1|+ |modUE ,R3(A

E,R3
2)| ≤ |A|.

4 Splitting Results

Now we are going to present our formal results. Our splitting results show how
to get extensions of the whole AF A with the help of a splitting. Furthermore
we prove that our method is complete, i.e. all extensions are constructed this
way. At first we will prove some simple properties of the introduced definitions.

Proposition 2. Given an AF A = (A,R) which possesses a splitting
(A1,A2, R3) s.t. A1 = (A1, R1) and A2 = (A2, R2), the following hold:

1. E1 ∈ Est(A1) ⇒ modUE1 ,R3(A
E1,R3
2) = AE1,R3

2 ,
(neutrality of the modification w.r.t. the stable reduct)

2. E ∈ cf(A)⇒ E ∩A1 ∈ cf(A1) ∧ E ∩A2 ∈ cf(AE∩A1,R3
2),

(preserving conflict-freeness[intersection])

3. E1 ∈ cf(A1) ∧ E2 ∈ cf(modUE1 ,R3(A
E1,R3
2)) ⇒ E1 ∪E2 ∈ cf(A).

(preserving conflict-freeness[union])

4.1 Monotonicity Result

In [6] we have proven the following monotonicity result. This theorem will be
used to simplify parts of the proof of the splitting theorem. Furthermore we will
see that the splitting theorem is a generalization of it.

Theorem 1. Given an AF A = (A,R) and a semantics S satisfying direction-
ality3, then for all weak expansions A∗ of A the following holds:

1. |ES(A)| ≤ |ES(A∗)|,
2. ∀E ∈ ES(A) ∃E∗ ∈ ES(A∗) : E ⊆ E∗ and
3. ∀E∗ ∈ ES(A∗) ∃Ei ∈ ES(A) ∃A∗

i ⊆ A∗ : E∗ = Ei ∪A∗
i

Adding new arguments and their associated interactions may change the out-
come of an AF in a nonmonotonic way. Accepted arguments may become unac-
cepted and vice versa. The theorem above specifies sufficient conditions (weak
expansions + directionality principle) for monotonic behaviour w.r.t. justifica-
tion state of an argument and cardinality of extensions. Remember that the

3 Intuitively, the directionality principle prescribes that the acceptability of an argu-
ment a is determined only by its attackers (compare [7]).

46 R. Baumann

admissible, complete, grounded, ideal and preferred semantics satisfy the direc-
tionality principle (compare [8]).

4.2 Splitting Theorem

Given a splitting of an AF A, the general idea is to compute an extension E1

of A1, reduce and modify A2 depending on what extension we got, and then
compute an extension E2 of the modification of the reduct of A2. The resulting
union of E1 and E2 is an extension of A. The second part of theorem proves the
completeness of this method, i.e. all extensions are constructed this way.

Theorem 2. (σ ∈ {st, ad, pr, co, gr}) Let A = (A,R) be an AF which possesses
a splitting (A1,A2, R3) with A1 = (A1, R1) and A2 = (A2, R2).

1. If E1 is an extension of A1 and E2 is an extension of the (UE1 , R3)-
modification of AE1,R3

2 , then E = E1 ∪E2 is an extension of A.(
E1 ∈ Eσ(A1) ∧E2 ∈ Eσ(modUE1 ,R3(AE1,R3

2)) ⇒ E1 ∪ E2 ∈ Eσ(A)
)

2. If E is an extension of A, then E1 = E ∩ A1 is an extension of A1 and
E2 = E ∩A2 is an extension of the (UE1 , R3)-modification of AE1,R3

2 .(
E ∈ Eσ(A) ⇒ E ∩A1 ∈ Eσ(A1) ∧ E ∩A2 ∈ Eσ(modUE∩A1 ,R3(A

E∩A1,R3
2))

)
Proof. (stable)(1.) by prop. 2.3 we got the conflict-freeness of E1 ∪ E2 in A;
we now show that E1 ∪ E2 attacks all outer arguments, i.e. for every
a ∈ (A1 ∪ A2)\(E1 ∪ E2) holds: (E1 ∪ E2, {a}) ∈̄ R1 ∪ R2 ∪ R3; let a be an
element of A1\(E1 ∪ E2), thus a is attacked by E1 because E1 ∈ Est(A1) holds;
let a be an element of A2\(E1 ∪ E2); we have to consider two cases because A2

is the disjoint union of
{
a ∈ A2

∣∣(E1, {a}) �̄∈ R3

}
∪ {a ∈ A2 |(E1, {a}) ∈̄ R3 }; if

a is an element of the second set we have nothing to show; let a be an element
the first set, namely

{
a ∈ A2

∣∣(E1, {a}) �̄∈ R3

}
= AE1,R3

2 ; thus a is attacked by
E2 because E2 ∈ Est(modUE1 ,R3(A

E1,R3
2)) and modUE1 ,R3(A

E1,R3
2) = AE1,R3

2

(prop. 2.1) holds;
(2.) at first we will show that E ∩ A1 = E1 is a stable extension of A1, i.e.
E1 ∈ Est(A1); conflict-freeness w.r.t. A1 follows from prop. 2.2; we only have
to show that for every a ∈ A1\E1 holds: (E1, {a}) ∈̄ R1; assume not, i.e.
∃a ∈ A1\(E ∩ A1) : (E ∩ A1, {a}) �̄∈ R1; consequently (E, {a}) �̄∈ R1 ∪ R2 ∪R3

and this contradicts E ∈ Est(A);
with prop. 2.1 and 2.2 we get E ∩ A2 = E2 ∈ cf(modUE1 ,R3(A

E1,R3
2)); we now

show that E ∩ A2 attacks all outer arguments, i.e. for every a ∈ AE1,R3
2 \E2

holds: (E2, {a}) ∈̄ RE1,R3
2 ; assuming the contrary, i.e. ∃a ∈ AE1,R3

2 \E2:
(E2, {a}) �̄∈ RE1,R3

2 leads directly to (E, {a}) �̄∈ R1 ∪ R2 ∪ R3 which con-
tradicts the fact that E is a stable extension of A; (E, {a}) �̄∈ R3 because
a ∈

{
a∗ ∈ A2

∣∣ (E1, {a∗}) �̄∈ R3

}
holds; furthermore (E, {a}) �̄∈ R2 because

Splitting an Argumentation Framework 47

RE1,R3
2 ⊆ R2 holds and the remaining attacks in R2 do not contain attacks from

AE1,R3
2 to AE1,R3

2 ; the R1 - case is obvious because a ∈ A2 holds
(admissible) (1.) admissible sets are conflict-free per definition, hence conflict-
freeness of E1 ∪ E2 in A is given by prop. 2.3;
we have to show that each element of E1∪E2 is defended by E1∪E2 in A, i.e. for
each a ∈ E1∪E2 holds: if (b, a) ∈ R1∪R2∪R3, then (E1∪E2, {b}) ∈̄ R1∪R2∪R3;
let a be an element of E1; if a is attacked by an element b, then b ∈ A1 and
(b, a) ∈ R1 holds, hence the admissibility of E1 in A1 guarentees the defence of a
by E1∪E2 in A; let a be an element of E2; we have to consider two cases, namely
b ∈ A1 and b ∈ A2; assuming b ∈ A1 yields (b, a) ∈ R3; we have already shown
the conflict-freeness of E1 ∪ E2, hence b has to be an element of A1\E1; again
two cases arise, either b ∈ UE1 or b /∈ UE1 ; the first case is not possible because
elements which are attacked by undefined arguments w.r.t. E1 get additional
self-attacks in the modification, hence these elements can not be in the conflict-
free extension E2; the second case, namely b /∈ UE1 (and b /∈ E1) can be true but
if a is attacked by b, than (E1, {b}) ∈̄ R1 holds per definition of the undefined
arguments w.r.t. E1; consider now b ∈ A2 and (b, a) ∈ R2; we have to distinguish
two cases, namely b ∈ AE1,R3

2 or b /∈ AE1,R3
2 ; the counterattack of b by E1∪E2 in

the first case is assured because E2 defends its elements in modUE1 ,R3(A
E1,R3
2),

hence E2 defends its elements in AE1,R3
2 (the deleted self-attacks do not change

the defense-state of elements in E2); that means there is only one case left,
namely (b, a) ∈ R2 and b /∈ AE1,R3

2 , i.e. b ∈ {a ∈ A2 |(E1, {a}) ∈̄ R3 }; hence b is
counterattacked by E1 which completes the proof that a is defended by E1 ∪E2

in A;
(2.) using that admissible semantics satisfying directionality we conclude imme-
diately E∩A1 = E1 is an admissible extension of A1, i.e. E1 ∈ Ead(A1) (compare
theorem 1.3);
now we want to show that E∩A2 = E2 ∈ Ead(modUE1 ,R3(A

E1,R3
2)) holds; at first

we note that E2 is indeed a subset of AE1,R3
2 (compare prop. 2.2); we now show

the conflict-freeness of E2 w.r.t. modUE1 ,R3(A
E1,R3
2), i.e. (E2, E2) �̄∈ RE1,R3

2 ∪
{(b, b) | a ∈ UE1 , (a, b) ∈ R3}; again prop. 2.2 justifies (E2, E2) �̄∈ RE1,R3

2 ;
(E2, E2) �̄∈ {(b, b) | a ∈ UE1 , (a, b) ∈ R3} holds because if there is a b in E2

which get a self-attack by the modification, than b has to be attacked by an un-
defined element a ∈ UE1 ; but this means that E does not defend its elements in
A because a is per definition unattacked by E1; at last we want to show that E2

defends all its elements in modUE1 ,R3(AE1,R3
2); assume a ∈ E2 ∧ b ∈ AE1,R3

2 =
{b ∈ A2 | (E1, {b}) �̄∈ R3} ∧ (b, a) ∈ RE1,R3

2 ∪ {(b, b) | a ∈ UE1 , (a, b) ∈ R3};
we observe that a �= b holds, because i) E is conflict-free and RE1,R3

2 ⊆ R2

holds and ii) the additional self-attacks of the modification do not involve el-
ements of E2 because assuming this contradicts again the fact that E defends
all its elements in A; thus (b, a) ∈ RE1,R3

2 ⊆ R2 holds, consequently there is a
c ∈ E : (c, b) ∈ R1 ∪ R2 ∪ R3; it holds that c /∈ E ∩ A1 because of b ∈ AE1,R3

2 ,
hence c ∈ E∩A2∧(c, b) ∈ R2 holds; this implies (c, b) ∈ RE1,R3

2 which completes
the proof

48 R. Baumann

(preferred) (1.) we have to show that E1 ∪E2 ∈ Epr(A), i.e. E1 ∪E2 is admis-
sible (already shown since each preferred extension is admissible) and maximal
w.r.t. the set inclusion; assume not, hence there is a E∗ ∈ Ead(A) : E1∪E2 ⊂ E∗;
thus at least one of the following two cases is true: E1 ⊂ E∗∩A1 or E2 ⊂ E∗∩A2;
assuming the first one contradicts the maximality of E1 because E∗ ∩ A1 is an
admissible extension of A1; we observe that E∗ ∩ A1 = E1 holds; consider now
E2 ⊂ E∗ ∩A2; using the second part of the splitting theorem for admissible sets
yields E∗ ∩ A2 ∈ Ead(modUE1 ,R3(A

E1,R3
2)) which contradicts the maximality of

E2; hence, we have proven that E1 ∪ E2 ∈ Epr(A) holds;
(2.) let E be an preferred extension of A; using that the preferred semantics sat-
isfies directionality we conclude E∩A1 ∈ Epr(A1) (theorem 1.3); admissibility of
E ∩A2 w.r.t. modUE∩A1 ,R3(AE∩A1,R3

2) is obvious since every preferred extension
is admissible (theorem 2.2 [admissible case]); assume now the existence of an
E∗

2 ∈ Ead(modUE∩A1 ,R3(A
E∩A1,R3
2)) : E ∩A2 ⊂ E∗

2 ; thus (E ∩A1)∪E∗
2 is admis-

sible w.r.t. A (theorem 2.1 [admissible case]) which contradicts the maximality
of E and we are done
(complete) (1.) we have to show that E1 ∪ E2 ∈ Eco(A), i.e. E1 ∪ E2 is ad-
missible (already shown since every complete extension is admissible) and for
each a ∈ A1 ∪ A2 which is defended by E1 ∪ E2 in A holds: a ∈ E1 ∪ E2;
assume not, hence ∃a ∈ (A1 ∪ A2)\(E1 ∪ E2) : a is defended by E1 ∪ E2 in
A; assuming that a ∈ A1\(E1 ∪ E2) holds contradicts E1 ∈ Eco(A1); so let
a ∈ A2\(E1 ∪ E2) be true; at first we observe that a ∈ AE1,R3

2 holds because of
the conflict-freeness of E1 w.r.t. A1; we have to consider two attack-scenarios:
a) a is attacked by arguments in A2\AE1,R3

2 (and obviously defended by E1

in A); the reduct-relation do not contain such attacks, hence every “attack” is
counterattacked by E2 in modUE1 ,R3(A

E1,R3
2); b) a is attacked by arguments in

AE1,R3
2 \E2; hence it must be defended by elements of E2 in AE1,R3

2 , thus de-
fended by E2 in modUE1 ,R3(A

E1,R3
2) because the corresponding attack-relation

do not delete such counterattacks; altogether we have shown that a ∈ E2 holds,
hence E1 ∪ E2 ∈ Eco(A) is proven;
(2.) assume E ∈ Eco(A); using that the complete semantics satisfies directional-
ity we conclude E ∩ A1 ∈ Eco(A1) (theorem 1.3); admissibility of E ∩ A2 w.r.t.
modUE∩A1 ,R3(A

E∩A1,R3
2)) holds since complete extensions are admissible (theo-

rem 2.2 [admissible case]); supposing ∃a ∈ AE∩A1,R3
2 \E ∩ A2: a is defended by

E ∩ A2 in modUE∩A1 ,R3(A
E∩A1,R3
2) contradicts the completeness of E in A be-

cause possible attackers of a are elements of AE∩A1,R3
2 which are counterattacked

by E ∩ A2; these counterattacks are not added by the modification, hence a is
defended by E ∩A2 in AE∩A1,R3

2 ; furthermore a is defended by E in A (further
attackers are counterattacked by E ∩A1) and again we conclude E /∈ Eco(A)
(grounded) (1.) we have to show that E1 ∪E2 ∈ Egr(A), i.e. E1 ∪E2 is a com-
plete extension of A (already shown since each grounded extensions is complete)
and furthermore it is minimal w.r.t. the set inclusion; assume not, hence there
is a set E∗ ∈ Eco(A): E∗ ⊂ E1 ∪ E2; we will show that the following two cases
are impossible: i) E∗ ∩ A1 ⊂ E1 or ii) E∗ ∩ A2 ⊂ E2; the first case contradict

Splitting an Argumentation Framework 49

directly the minimality of E1 w.r.t. A1; we observe that E∗ ∩ A1 = E1 holds,
hence E∗ ∩A2 is a complete extension of modUE1 ,R3(A

E1,R3
2) which contradicts

the minimality of E2;
(2.) let E be a grounded extension of A; using that the grounded semantics sat-
isfies the directionality principle we deduce directly E ∩A1 ∈ Egr(A1) (theorem
1.3); assume now the existence of E∗

2 ∈ Eco(modUE∩A1 ,R3(A
E∩A1,R3
2)) : E∗

2 ⊂
E ∩A2, thus E∗

2 ∪ (E ∩A1) is a complete extension of A and of course a proper
subset of E (which contradicts the minimality of E) �

The splitting theorem obviously strengthens the outcome of the monotonicity
result for the admissible, preferred, grounded and complete semantics which all
satisfy the directionality principle. We do not only know that an old belief set
is contained in a new one and furthermore every new belief set is the union of
an old one and a (possibly empty) set of new arguments but rather that every
new belief set is the union of an old one and an extension of the corresponding
modified reduct and vice versa. The cardinality inequality of the monotonicity
result (theorem 1.1) can be strengthened in the following way.

Corollary 1. Let (A1,A2, R3) be a splitting of the argumentation framework
A∗ = (A1 ∪A2, R1 ∪R2 ∪R3) and σ ∈ {ad, pr, co, gr}. The following inequality
holds:

|Eσ(A)| ≤
∑

Ei∈Eσ(A)

∣∣∣Eσ

(
modUEi

,R3(A
Ei,R3
2)

)∣∣∣ = |Eσ(A∗)| .

5 Dynamical Argumentation

5.1 Computing Extensions

Since argumentation is a dynamic process, it is natural to investigate dynamic
behavior in this context. Obviously the set of extensions of an AF may change
if new arguments and their corresponding interactions are added. Computing
the justification state of an argument from scratch each time new information is
added is very inefficient. Note that in general, new arguments occur as a response,
i.e., an attack, to a former argument. In this situation the former extensions are
not reusable because in [6] we have shown a possibility result concerning the
problem of enforcing of extensions which proves that every conflict-free subset
of former arguments may belong to a new extension.

The splitting results allow us to reuse already computed extensions in case
of weak expansions. Being aware of the remark above, we emphasize that weak
expansions are not only a theoretical situation in argumentation theory. The ini-
tial arguments may be arguments which advance higher values4 than the further
arguments. The following dynamical argumentation scenario exemplifies how to
use our splitting results.

4 Compare the idea of “attack-succeed” in Value Based Argumentation Frame-
works [8].

50 R. Baumann

Example 3. Given an AF A = ({a1, ..., an}, R) and its set of extensions Eσ(A) =
{E1, ..., Em} (σ ∈ {pr, co, gr}). Consider now additional new arguments a∗1 and
a∗2, where a∗1 is attacked by the old arguments a1 and a2. Furthermore a∗2 is
defeated by a∗1.

a∗1a∗2 a1

a2

a3

an

What are the extensions of the expanded AF A∗ = (A ∪ {a∗1, a∗2}, R ∪ {(a1, a
∗
1),

(a2, a
∗
1), (a

∗
1, a

∗
2)})? Since A∗ is a weak expansion of A we may apply the split-

ting theorem. Given an extension Ei we construct the (UEi , {(a1, a
∗
1)(a2, a

∗
1)})-

modification of ({a∗1, a∗2}, {(a∗1, a∗2)})Ei,{(a1,a∗
1)(a2,a∗

1)}. The following three cases
arise: (1) a1 or a2 is an element of Ei, (2) a1 and a2 are not in Ei and not in
UEi , and (3) a1 and a2 are not in Ei and at least one of them is in UEi .

The AFs below are the resulting modifications in these three cases. In the
first case the argument a∗1 disappears because a∗1 is attacked by an element of
the extension Ei (reduct-definition). In the second and third case the arguments
a∗1 and a∗2 survive because they are not attacked by Ei. Furthermore in the last
case we have to add a selfloop for a∗1 since a1 or a2 are undefined (= not attacked)
w.r.t. Ei.

a∗2 a∗2 a∗1 a∗2 a∗1

The resulting preferred, complete and grounded extensions of the modifica-
tions are easily determinable, namely {a∗2} in the first case, {a∗1} in the second
and the empty set in the last case. Now we can construct extensions of the
expanded AF A∗ by using the already computed extensions of A, namely (1)
Ei ∪ {a∗2} ∈ Eσ(A∗), (2) Ei ∪ {a∗1} ∈ Eσ(A∗), and (3) Ei ∈ Eσ(A∗). Due to the
completeness of the splitting method we constructed all extensions of A∗.

We want to remark that the splitting results also provide a new possibility to
compute extensions in a static AF. This work is still in progress and is not part
of this paper.

5.2 Terms of Equivalence

Oikarinen and Woltran [9] extended the notion of equivalence between two AFs
(which holds, if they possess the same extensions) to strong equivalence. Strong
equivalence between to AFs F and G is fullfilled if for all AFs H holds that
F conjoined with H and G conjoined with H are equivalent. Furthermore they
establish criteria to decide strong equivalence. These characterizations are based
on syntactical equality of so-called kernels.

Splitting an Argumentation Framework 51

The following definition weakens the strong equivalence notion w.r.t. weak
expanions. We will present a characterization for stable semantics5.

Definition 9. Two AFs F and G are weak expansion equivalent to each other
w.r.t. a semantics σ, in symbols F ≡σ

≺N
W
G, iff for each AF H s.t.

• F = F ∪H or F ≺N
W F ∪H and

• G = G ∪ H or G ≺N
W G ∪H,

Eσ(F ∪H) = Eσ(G ∪ H) holds.

Proposition 3. For any AFs F = (AF , RF) and G = (AG, RG): F ≡st
≺N

W
G iff

• AF = AG and Est(F) = Est(G) or
• Est(F) = Est(G) = ∅.

It obviously holds that strong equivalence between two AFs F and G implies
their weak expansion equivalence. The following example demonstrates that the
converse does not hold.

Example 4. Given F = ({a1, a2, a3}, {(a1, a2), (a1, a3)}),
G = ({a1, a2, a3}, {(a1, a2), (a1, a3), (a2, a3)}) and H = ({a1, a2}, {(a2, a1)}).

a3 a2 a1a3 a2 a1

Obviously we have F ≡st
≺N

W
G since AF = AG and Est(F) = Est(G) = {a1} holds.

On the other hand we have Est(F ∪ H) = {{a1}, {a2, a3}} and Est(G ∪ H) =
{{a1}, {a2}}. Hence they are not strong equivalent.

6 Related Work and Conclusions

In this paper, we provided splitting results for Dung-style AFs under the most
important semantics, namely stable, preferred, complete and grounded seman-
tics. In a nutshell, the results show that each extension E of a splitted argumen-
tation framework A = (A1,A2, R3) is equal to the union of an extension E1 of
A1 and an extension E2 of a modification (w.r.t. E1 and R3) of A2.

In [10] Baroni et al. introduced a general recursive schema for argumentation
semantics. Furthermore they have shown that all admissibility-based semantics
are covered by this definition. The great benefit of this approach is that the
extensions of an AF A can be incrementally constructed by the extensions along
its strongly connected components.

A directed graph is strongly connected if there is a path from each vertex
to every other vertex. The SCCs of a graph are its maximal strongly connected
5 The remaining semantics are left for future work.

52 R. Baumann

subgraphs. Contracting every SCC to a single vertex leads to an acyclic graph.
Hence every SCC-decomposition can be easily transformed into a splitting6.
Conversely, a given splitting (A1,A2, R3) simplifies the computation of SCCs
because every SSC is either in A1 or A2. In this sense our results are certainly
related to the SCC-approach. However, there are some important differences at
various levels:

1. there is a subtle, yet relevant difference on the technical level: whereas the
approach of Baroni et al. is based on a generalized theory of abstract argu-
mentation (see subsection 5.1 in [10]), we stick to Dung’s original approach
and use an adequate modification in addition to the reduct to establish our
results;

2. we provide theoretical insights about the relationship of the extensions of an
arbitrary splitted AF; the parts into which an AF is split may be, but do
not necessarily have to be SCCs;

3. whereas a major motivation in [10] was the identification of new semantics
satisfying SCC-recursiveness, our primary intent is to carry over our results
to dynamical argumentation like new terms of equivalence.

In section 4 we illustrated how to carry over our splitting results to dynamical
argumentation. A number of papers appeared in this field of research. However,
the possibility of reusing extensions has not received that much attention yet.
A mentionable work in this context is [4]. Cayrol et al. proposed a typology of
revisions (one new argument, one new interaction). Furthermore they proved
sufficient conditions for being a certain revision type.

In future work we would like to study in detail the mentioned terms of equiva-
lence between two AFs A and B, i.e. what are sufficient and necessary conditions
for their weak (strong, normal) expansion equivalence w.r.t. a semantics σ.

References

1. Lifschitz, V., Turner, H.: Splitting a Logic Program. In: Principles of Knowledge
Representation, pp. 23–37. MIT Press, Cambridge (1994)

2. Turner, H.: Splitting a default theory. In: Proc. AAAI 1996, pp. 645–651 (1996)
3. Dung, P.M.: On the acceptability of arguments and its fundamental role in

nonmonotonic reasoning, logic programming and n−person games. Artificial In-
telligence 77, 321–357 (1995)

4. Cayrol, C., Dupin de Saint-Cyr, F., Lagasquie-Schiex, M.-C.: Revision of an argu-
mentation system. In: Proc. KR 2008, pp. 124–134 (2008)

5. Dung, P.M., Mancarella, P., Toni, F.: A dialectic procedure for sceptical,
assumption-based argumentation. In: Proc. COMMA 2006, pp. 145–156. IOS Press,
Liverpool (2006)

6. Baumann, R., Brewka, G.: Expanding Argumentation Frameworks: Enforcing and
Monotonicity Results. In: Proc. COMMA 2010, pp. 75–86. IOS Press, Amsterdam
(2010)

6 Take the union of the initial nodes of the decomposition (= A1) and the union of
the remaining subgraph (= A2).

Splitting an Argumentation Framework 53

7. Bench-Capon, T.: Value Based Argumentation Frameworks. In: Benferhat, S.,
Giunchiglia, E. (eds.) Proc. NMR 2002, Toulouse, France, pp. 443–445 (2002)

8. Baroni, P., Giacomin, M.: Evaluation and comparison criteria for extension-based
argumentation semantics. In: Proc. COMMA 2006, pp. 157–168. IOS Press, Ams-
terdam (2006)

9. Oikarinen, E., Woltran, S.: Characterizing Strong Equivalence for Argumentation
Frameworks. In: Proc. KR 2010, pp. 123–133. AAAI Press, Menlo Park (2010)

10. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for
argumentation semantics. Artificial Intelligence 168(1-2), 162–210 (2005)

Reactive Answer Set Programming

Martin Gebser, Torsten Grote, Roland Kaminski, and Torsten Schaub�

Institut für Informatik, Universität Potsdam

Abstract. We introduce the first approach to Reactive Answer Set Programming,
aiming at reasoning about real-time dynamic systems running online in changing
environments. We start by laying the theoretical foundations by appeal to module
theory. With this, we elaborate upon the composition of the various offline and
online programs in order to pave the way for stream-driven grounding and solv-
ing. Finally, we describe the implementation of a reactive ASP solver, oclingo.

1 Introduction

Answer Set Programming (ASP; [1]) has become a popular declarative problem solv-
ing paradigm, facing a growing number of increasingly complex applications. So far,
however, ASP systems are designed for offline usage, lacking any online capacities.
We address this shortcoming and propose a reactive approach to ASP that allows us to
implement real-time dynamic systems running online in changing environments. This
new technology paves the way for applying ASP in many new challenging areas, deal-
ing with agents, (ro)bots, policies, sensors, etc. The common ground of these areas is
reasoning about dynamic systems incorporating online data streams.

For capturing dynamic systems, we take advantage of incremental logic pro-
grams [2], consisting of a triple (B,P,Q) of logic programs, among which P and Q
contain a (single) parameter t ranging over the natural numbers. In view of this,
we sometimes denote P and Q by P [t] and Q[t]. The base program B is meant
to describe static knowledge, independent of parameter t. The role of P is to cap-
ture knowledge accumulating with increasing t, whereas Q is specific for each value
of t. Roughly speaking, we are interested in finding an answer set of the program
B ∪

⋃
1≤j≤i P [t/j] ∪Q[t/i] for some (minimum) integer i ≥ 1.

As a motivating example, consider a very simple elevator controller accepting re-
quests to go to a certain floor whenever it is not already at this floor. At each step, the
elevator moves either up or down by one floor. If it reaches a floor for which a request ex-
ists, it serves the request automatically until its goal to serve all requests is fulfilled. This
functionality is specified by the incremental logic program (B,P [t], Q[t]) in Fig. 11.
The answer set of the program B ∪P [t/1]∪Q[t/1] is B ∪ {atF loor(2, 1), goal(1)}2.
The elevator moves one floor and sees its goal fulfilled because there were no requests.

Observe that atoms of the form request(F, t), representing incoming requests, are
not defined by P [t]; that is, they do not occur in the head of any rule in P [t]. In fact,

� Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.
1 We use shorthands ‘1{. . . }1’, ‘..’, ’;’, and ‘:’ following the syntax of gringo (cf. [3]).
2 For simplicity, we identify facts with atoms.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 54–66, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Reactive Answer Set Programming 55

B =

{
floor(1..3) ←

atF loor(1, 0)←
}

P [t] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 {atF loor(F−1;F+1, t)} 1← atF loor(F, t−1), floor(F)
← atF loor(F, t),not floor(F)

requested(F, t)← request(F, t), floor(F),not atF loor(F, t)
requested(F, t)← requested(F, t−1), floor(F),not atF loor(F, t)

goal(t)← not requested(F, t) : floor(F)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Q[t] =
{← not goal(t)

}
.

Fig. 1. Incremental logic program for elevator control

requests are coming from outside the system, and their occurrences cannot be foreseen
within an incremental program. Assume we get the request

E[1] = {request(3, 1)←} (1)

telling our controller that a request to serve floor 3 occurred at time 1. While adding
E[1] to the above program yields no answer set, we get one from programB∪P [t/1]∪
P [t/2]∪Q[t/2]∪E[1], in which the elevator takes two steps to move to the third floor2:

B ∪E[1] ∪ {requested(3, 1), atF loor(2, 1), atF loor(3, 2), goal(2)} . (2)

In fact, reasoning is driven by successively arriving events. No matter when a request
arrives, its logical time step is aligned with the ones used in the incremental program.
In this way, an event like (1) complements the domain description in Fig. 1 and initiates
the subsequent search for an answer set as in (2). The next answer set computation is
started by the following event, that is, upon the next request. As a particular feature
of this methodology, observe that some rules in an encoding like P [t] in Fig. 1 stay
inactive until they get triggered by an event as in (1) adding request(3, 1) as a fact.

Grounding and solving in view of possible yet unknown future events constitutes a
major technical challenge. For guaranteeing redundancy-freeness, the continuous inte-
gration of new program parts has to be accomplished without reprocessing previously
treated programs. Also, simplifications related to events must be suspended until they
become decided. Once this is settled, our approach leaves room for various application
scenarios. While the above example is inspired by Cognitive Robotics [5], our approach
may just as well serve as a platform for Autonomous Agent Architectures [6], Policy
reasoning [7], or Sensor Fusion in Ambient Artificial Intelligence [8]. All in all, our ap-
proach thus serves as a domain-independent framework providing a sort of middle-ware
for specific application areas rather than proposing a domain-specific solution.

2 Background

This section provides a brief introduction of answer sets of logic programs with choice
rules and integrity constraints (see [1,9] for details). A rule is an expression of the form

h← a1, . . . , am,not am+1, . . . ,not an (3)

56 M. Gebser et al.

where ai, for 1 ≤ m ≤ n, is an atom of the form p(t1, . . . , tk), and t1, . . . , tk are terms,
viz., constants, variables, or functions. For a rule r as in (3), the head h of r is either an
atom, a cardinality constraint of the form l {h1, . . . , hk} u in which l, u are integers and
h1, . . . , hk are atoms, or the special symbol⊥. If h is a cardinality constraint, we call r
a choice rule, and an integrity constraint if h = ⊥. We denote the atoms occurring
in h by head(r), i.e., head(r) = {h} if h is an atom, head(r) = {h1, . . . , hk} if
h = l {h1, . . . , hk} u, and head(r) = ∅ if h = ⊥. In the following, we sometimes write
hr to refer to the head h of r, and we skip ⊥ when writing an integrity constraint. The
atoms occurring positively and negatively, respectively, in the body of r are denoted by
body(r)+ = {a1, . . . , am} and body(r)− = {am+1, . . . , an}.

A logic program R is a set of rules of the form (3). By atom(R), we denote the set
of all atoms occurring in R, and head(R) =

⋃
r∈R head(r) is the collection of head

atoms in R. The set of all ground terms constructible from the constants and function
symbols that occur in R (if there is no constant, just add an arbitrary one) forms the
Herbrand universe of R. The ground instance of R, denoted by grd(R), is the set of
all ground rules constructible from rules r ∈ R by substituting every variable in r with
some element of the Herbrand universe of R3. A set X of ground atoms satisfies a
ground rule r of the form (3) if {a1, . . . , am} ⊆ X and {am+1, . . . , an} ∩ X = ∅
imply that h ∈ X or h = l {h1, . . . , hk} u and l ≤ |{h1, . . . , hk} ∩ X | ≤ u. We call
X a model of R if X satisfies every rule r ∈ grd(R). The reduct of R relative to X is
RX = {a← body(r)+ | r ∈ grd(R), a ∈ head(r) ∩X, body(r)− ∩X = ∅}; X is an
answer set ofR if X is a model ofR such that no proper subset ofX is a model ofRX .

3 Reactive Answer Set Programming

In this section, we augment the concept of an incremental logic program with asyn-
chronous information, refining the statically available knowledge. To this end, we char-
acterize the constituents of the combined logic program including schematic as well as
online parts, below called online progression.

An online progression represents a stream of events and inquiries. While entire event
streams are made available for reasoning, inquiries act as punctual queries.

Definition 1. We define an online progression (Ei[ei], Fi[fi])i≥1 as a sequence of pairs
of logic programs Ei, Fi with associated positive integers ei, fi.

An online progression is asynchronous in distinguishing stream positions like i from
(logical) time stamps. Hence, each event Ei and inquiry Fi includes a particular time
stamp ei or fi, respectively, indicated by writing Ei[ei] and Fi[fi]. Such time stamps
are essential for synchronization with parameters in the underlying (incremental) logic
programs. Note that different events and/or inquiries may refer to the same time stamp.

Definition 2. Let (Ei[ei], Fi[fi])1≤i≤j be a finite online progression and
(B,P [t], Q[t]) be an incremental logic program. We define

3 We also assume that built-ins of grounders like lparse and gringo (cf. [4,3]), such as arithmetic
functions, are evaluated upon instantiation.

Reactive Answer Set Programming 57

1. the k-expanded logic program of (Ei[ei], Fi[fi])1≤i≤j wrt (B,P [t], Q[t]) as

Rj,k = B ∪
⋃

1≤i≤k P [t/i] ∪Q[t/k] ∪
⋃

1≤i≤j Ei[ei] ∪ Fj [fj] (4)

for each k such that 1 ≤ e1, . . . , ej, fj ≤ k, and
2. a reactive answer set of (Ei[ei], Fi[fi])1≤i≤j wrt (B,P [t], Q[t]) as an answer set of

a k-expanded logic program Rj,k of (Ei[ei], Fi[fi])1≤i≤j for a (minimum) k ≥ 1.

The incremental program constitutes the offline counterpart of an online progression; it
is meant to provide a general (schematic) description of an underlying dynamic system.
The parameter k represents a valid horizon accommodating all occurring events and
inquiries. Thus, it is bound from below by the time stamps occurring in the online
progression. The goal is then to find a (minimum) horizon k such that Rj,k has an
answer set, often in view of satisfying the global query Q[t/k]. In addition, inquiries,
specific to each j, can be used for guiding answer set search. Unlike this, the whole
stream (Ei[ei])1≤i≤j of events is taken into account. Observe that the number j of
events is independent of the horizon k. Finally, it is important to note that the above
definition of an expanded program is static because its parameters are fixed. The next
section is dedicated to the online evolution of reactive logic programs, characterizing
the transitions fromRj,k toRj+1,k andRj,k toRj,k+1 in terms of constituent programs.

4 Reactive Modularity

For providing a clear interface between the various programs and guaranteeing their
compositionality, we build upon the concept of a module [10], P, being a triple (P, I,O)
consisting of a (ground) program P and sets I,O of ground atoms such that I ∩O = ∅,
atom(P) ⊆ I ∪ O, and head(P) ⊆ O. The elements of I and O are called input and
output atoms, also denoted by I(P) and O(P), respectively; similarly, we refer to P by
P (P). The join of two modules P and Q, denoted by P �Q, is defined as the module

(P (P) ∪ P (Q) , (I(P) \O(Q)) ∪ (I(Q) \O(P)) , O(P) ∪O(Q)) ,

provided that O(P) ∩ O(Q) = ∅ and there is no strongly connected component in the
positive dependency graph of P (P) ∪ P (Q), i.e., (atom(P (P) ∪ P (Q)), {(a, b) | r ∈
P (P) ∪ P (Q), a ∈ head(r), b ∈ body(r)+}), that shares atoms with both O(P) and
O(Q). A setX of atoms is an answer set of a module P = (P, I,O) ifX is a (standard)
answer set ofP∪{a← | a ∈ I∩X}; we denote the set of all answer sets of P by AS (P).
For two modules P and Q, the composition of their answer sets is AS(P) �� AS (Q) =
{XP∪XQ | XP ∈ AS(P), XQ ∈ AS (Q), XP∩(I(Q)∪O(Q)) = XQ∩(I(P)∪O(P))}.
The module theorem [10] shows that the semantics of P and Q is compositional if their
join is defined, i.e., if P �Q is well-defined, then AS(P �Q) = AS(P) �� AS (Q).

For turning programs into modules, we follow [2] and associate in Definition 3 a
(non-ground) program P and a set I of (ground) input atoms with a module, denoted
by P(I), imposing certain restrictions on the ground program induced by P . To this
end, for a ground program P and a set X of ground atoms, define P |X as

{hr ← body(r)+ ∪L | r ∈ P, body(r)+ ⊆ X,L = {not c | c ∈ body(r)− ∩X}} .

58 M. Gebser et al.

Note that P |X projects the bodies of rules in P to the atoms of X . If a body con-
tains an atom outside X , either the corresponding rule or literal is removed, depending
on whether the atom occurs positively or negatively. This allows us to associate (non-
ground) programs with (ground) modules, as proposed in [2].

Definition 3. Let P be a logic program and I be a set of ground atoms. We define P(I)
as the module (grd(P)|Y , I, head(grd(P)|X)), where X = I ∪ head(grd(P)) and
Y = I ∪ head(grd(P)|X).

The full ground instantiation grd(P) of P is projected onto inputs and atoms defined in
grd(P). The head atoms of this projection, viz., head(grd(P)|I∪head(grd(P))), serve as
output atoms and are used to simplify grd(P), sparing only input and output atoms.

Unlike offline incremental ASP [2], its online counterpart deals with external knowl-
edge acquired asynchronously. When constructing a ground module, we can thus no
longer expect all of its atoms to be defined by the (ground) rules inspected so far. Rather,
atoms may be defined by an online progression later on. To accommodate this, potential
additions need to be reflected and exempted from program simplifications, as usually
applied wrt (yet) undefined atoms. To this end, we assume in the following each (non-
ground) program P to come along with some set of explicit ground input atoms (cf.
the #external declaration described in Section 5), referred to by IP . Such atoms
provide “hooks” for online progressions to later incorporate new knowledge into an ex-
isting program part. Note that we could simply let IP = ∅ for all program slices P to
resemble offline incremental ASP.

We make use of the join to formalize the compositionality of instantiated modules
induced by the respective programs in Definition 2.

Definition 4. We define an online progression (Ei[ei], Fi[fi])i≥1 as modular wrt an
incremental logic program (B,P [t], Q[t]), if the modules

P0 = B(IB) Pn = Pn−1 � P[t/n](O(Pn−1) ∪ IP [t/n])
E0 = (∅, ∅, ∅) En = En−1 � En[en](O(Pen) ∪O(En−1) ∪ IEn[en])

Rj,k = Pk � Ej �Q[t/k](O(Pk) ∪ IQ[t/k]) � Fj [fj](O(Pfj) ∪O(Ej) ∪ IFj [fj])

are well-defined for all j, k ≥ 1 such that e1, . . . , ej , fj ≤ k.

In detail, this definition inspects the joins Pn and En of instantiated cumulative modules
obtained from P [t/n] and En[en], respectively, for all n ≥ 0. The former takes the
instantiation of the static program B as its base case, where the input IB related to B
is considered by the instantiation. A module Pn−1 obtained in this way is then joined
with the instantiation of P [t/n] relative to the atoms defined by preceding cumulative
program slices, viz., O(Pn−1), and the specific inputs IP [t/n], thus obtaining the next
combined module Pn. Observe that this join is independent of an online progression,
yet the inputs collected over successive join operations provide an interface for online
progressions to refine the available knowledge.

The join of the instantiations of online progressions’ cumulative parts En[en] starts
from the empty module E0, given that the first event is provided for n = 1. Then, En−1

is joined with the instantiation of En[en] relative to the defined atoms requested via en,
viz.,O(Pen), the atoms defined by preceding cumulative parts of the online progression,

Reactive Answer Set Programming 59

i.e., O(En−1), and finally the particular inputs IEn[en]. As before, the latter provide
means to refine the information gathered in the combined module En.

A full module Rj,k incorporates all information accumulated in Pk and Ej as well
as the volatile (query) partsQ[t/k] and Fj [fj] of the incremental logic program and the
online progression, respectively. Their instantiations consider all atoms defined by cu-
mulative incremental program slices up to k or fj , i.e., O(Pk) or O(Pfj), respectively,
the specific inputs IQ[t/k] and IFj [fj], and in the case of Fj [fj] also the atoms O(Ej)
defined by events of the online progression. Note that O(Ej) is not used as input for in-
stantiating Q[t/k], which reflects its role of belonging to an incremental logic program
that is independent of and also invariant under particular online progressions. However,
the explicit inputs IQ[t/k] (and IFj [fj]) still admit passing information between (volatile
parts of) the incremental logic program and an online progression.

The condition characterizing modularity of incremental programs and online pro-
gressions is that Rj,k must be well-defined for all j, k ≥ 1, viz., each instantiation must
yield a module and each join must be defined, where the requirement e1, . . . , ej , fj ≤ k
makes sure that the slices of an incremental program requested in an online progression
contribute to Rj,k. However, note that k is not bound to be max{e1, . . . , ej, fj}; rather,
it can be increased beyond that as needed (for obtaining an answer set).

As an example, let us instantiate the incremental logic program in Fig. 1. While its
static and query part, B and Q[t], respectively, do not make use of particular inputs
(IB = IQ[t] = ∅), the incremental part P [t] relies on atoms of the form request(F, t),
which are not defined by P [t]. Unlike offline incremental ASP, where undefined atoms
do not belong to the instantiation of a program slice, they must now be preserved to react
to asynchronous requests. Accordingly, we let IP [t] = {request(1, t), request(2, t),
request(3, t)}; here, the first argument of an input atom is a floor and the second is the
incremental parameter. Given the described inputs, the following ground modules are
derived from the incremental program in Fig. 1 and contribute to R1,2:

P0 = B(∅) = (B, ∅, head(B))
where B =

{
floor(1)← floor(2)← floor(3)← atF loor(1, 0)←

}
P1 = P0 � P[t/1](O(P0) ∪ IP [t/1]) =

(
P (P0) ∪ P1, IP [t/1], O(P0) ∪ head(P1)

)

where P1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 {atF loor(0, 1), atF loor(2, 1)} 1← atF loor(1, 0), f loor(1)
← atF loor(0, 1)
← atF loor(2, 1),not floor(2)

requested(1, 1)← request(1, 1), f loor(1)
requested(2, 1)← request(2, 1), f loor(2),not atF loor(2, 1)
requested(3, 1)← request(3, 1), f loor(3)

goal(1)← not requested(1, 1),
not requested(2, 1),
not requested(3, 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Note that the program in P1, viz. P1 = grd(P [t/1])|head(grd(P [t/1])∪B)∪IP [t/1]
, is

obtained by simplifying grd(P [t/1]) relative to the output of the preceding module,
thereby, sparing the inputs IP [t/1] from simplifications (cf. Definition 3 and 4). For in-
stance, input atoms of the form request(F, 1) are not eliminated from P1, while ground

60 M. Gebser et al.

rules including undefined non-input atoms of the form requested(F, 0) in their posi-
tive bodies do not contribute to P1. The same considerations apply to program P2 of P2

below. That is, P2 = grd(P [t/2])|head(grd(P [t/2])∪P1∪B)∪IP [t/2]
is obtained by simpli-

fying grd(P [t/2]) relative to the preceding outputs, while sparing the inputs IP [t/2]:

P2 = P1 � P[t/2](O(P1) ∪ IP [t/2])
=
(
P (P1) ∪ P2, I(P1) ∪ IP [t/2], O(P1) ∪ head(P2)

)
where

P2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 {atF loor(1, 2), atF loor(3, 2)} 1← atF loor(2, 1), f loor(2)
← atF loor(1, 2),not floor(1)
← atF loor(3, 2),not floor(3)

requested(1, 2)← request(1, 2), f loor(1),not atF loor(1, 2)
requested(2, 2)← request(2, 2), f loor(2)
requested(3, 2)← request(3, 2), f loor(3),not atF loor(3, 2)
requested(1, 2)← requested(1, 1), f loor(1),not atF loor(1, 2)
requested(2, 2)← requested(2, 1), f loor(2)
requested(3, 2)← requested(3, 1), f loor(3),not atF loor(3, 2)

goal(2)← not requested(1, 2),
not requested(2, 2),
not requested(3, 2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Q[t/2](O(P2)) = ({← not goal(2)}, O(P2), ∅)

To complete R1,2, we further join P2 and Q[t/2](O(P2)) with the module E1 =
({request(3, 1) ←}, ∅, {request(3, 1)}) stemming from the online progression
({request(3, 1) ←}, ∅), capturing the request E[1] in (1). In view of its five input
atoms, request(1, 1), request(2, 1), request(1, 2), request(2, 2), and request(3, 2),
the full module R1,2 has four answer sets, obtained by augmenting the answer set shown
in (2) with an arbitrary subset of {request(2, 1), request(3, 2)}. (That is, fictitious re-
quests along the way of the elevator do not preclude it from serving floor 3, as required
in view of request(3, 1) ←.) However, note that the answer set in (2) is the only one
that does not assume any of the residual input atoms of R1,2 to hold.

Regarding the formal properties of (modular) incremental logic programs and online
progressions, we have that the module theorem [10] applies to instantiated modules
contributing to Rj,k.

Proposition 1 (Compositionality). Let (B,P [t], Q[t]) be an incremental logic pro-
gram, (Ei[ei], Fi[fi])i≥1 be an online progression, j, k ≥ 1 be such that
e1, . . . , ej , fj ≤ k, and Rj,k as well as Pn,En, for n ≥ 0, be as in Definition 4.

If (Ei[ei], Fi[fi])i≥1 is modular wrt (B,P [t], Q[t]), then we have that

AS(Rj,k) = AS (P0) �� AS(P[t/1](O(P0) ∪ IP [t/1])) �� · · · ��
AS (P[t/k](O(Pk−1) ∪ IP [t/k])) ��

AS (E0) �� AS(E1[e1](O(Pe1) ∪O(E0) ∪ IE1[e1])) �� · · · ��
AS (Ej [ej](O(Pej) ∪O(Ej−1) ∪ IEj [ej])) ��

AS (Q[t/k](O(Pk) ∪ IQ[t/k])) ��

AS (Fj [fj](O(Pfj) ∪O(Ej) ∪ IFj [fj])) .

Reactive Answer Set Programming 61

Note that compositionality holds wrt instantiated modules obtained by passing infor-
mation (output atoms) from one module to another as specified in Definition 4.

Another question of interest concerns conditions under which the answer sets of a
module Rj,k match the ones of a k-expanded logic programRj,k, being the union of in-
cremental logic program slices and programs of an online progression (cf. Definition 2).
The major difference between both constructions is that modules contributing to Rj,k

are instantiated successively wrt an evolving Herbrand universe, while the (non-ground)
programs of Rj,k share a Herbrand universe. To this end, we next provide a sufficient
condition under which incremental and single-pass grounding yield similar answer sets.
The idea is to require that, in the successive construction of Rj,k, atoms that can already
be used before they become defined must be declared to be inputs.

We say that an incremental logic program (B,P [t], Q[t]) and an online progression
(Ei[ei], Fi[fi])i≥1 are mutually revisable if the following conditions hold for all n ≥ 1:

1. atom(grd(B)) ∩ head(grd(
⋃

i≥1(P [t/i] ∪Q[t/i] ∪ Ei[ei] ∪ Fi[fi]))) ⊆ IB ,
2. atom(grd(P [t/n])) ∩ head(grd(

⋃
i>n P [t/i] ∪

⋃
i≥nQ[t/i] ∪

⋃
i≥1(Ei[ei] ∪

Fi[fi]))) ⊆ IP [t/n],
3. atom(grd(Q[t/n])) ∩ head(grd(

⋃
i≥1(Ei[ei] ∪ Fi[fi]))) ⊆ IQ[t/n],

4. atom(grd(En[en])) ∩ head(grd(
⋃

i>en
P [t/i] ∪

⋃
i≥en

Q[t/i] ∪
⋃

i>nEi[ei] ∪⋃
i≥n Fi[fi])) ⊆ IEn[en], and

5. atom(grd(Fn[fn])) ∩ head(grd(
⋃

i>fn
P [t/i] ∪

⋃
i≥fn

Q[t/i])) ⊆ IFn[fn].

Observe that atoms belonging to the ground instance of the static programB or a cumu-
lative program slice P [t/n] must be consumed as inputs, i.e., belong to IB or IP [t/n],
respectively, if they can be defined by subsequent cumulative or query programs, or
by the online progression. The latter condition must likewise hold for a query program
Q[t/n], which can however ignore atoms defined by program slices IP [t/i], for i > n,
because a different query program Q[t/i] will then be used instead. For the programs
En[en] and Fn[fn] of the online progression, we similarly require in 4. and 5. that all
atoms in their ground instances that can be defined by the incremental program in a step
i > en or i > fn (also i = en or i = fn for Q[t/i]), respectively, must be contained in
IEn[en] or IFn[fn]. The inputs of an eventEn[en] also need to include atoms that can be
defined later by the online progression, i.e., in Ei[ei] or Fi[fi] for i > n (also i = n for
Fi[fi]). In summary, if all requirements of mutual revisability are met, the instantiated
modules in Rj,k are via their inputs susceptible to atoms defined subsequently, as in the
case of instantiating the full collection Rj,k of (non-ground) programs in a single pass.

The following result formalizes the correspondence between the answer sets of Rj,k

and the ones of Rj,k not including input atoms, provided that mutual revisability applies.

Proposition 2 (Instantiation). Let (B,P [t], Q[t]) be an incremental logic program,
(Ei[ei], Fi[fi])i≥1 be a modular online progression wrt (B,P [t], Q[t]), j, k ≥ 1
be such that e1, . . . , ej , fj ≤ k, Rj,k be the k-expanded logic program of
(Ei[ei], Fi[fi])1≤i≤j wrt (B,P [t], Q[t]), and Rj,k be as in Definition 4.

If (B,P [t], Q[t]) and (Ei[ei], Fi[fi])i≥1 are mutually revisable, then we have that
X is an answer set of Rj,k iff X is an answer set of Rj,k such that X ⊆ O(Rj,k).

Note that, by letting IP [t] = {request(1, t), request(2, t), request(3, t)}, Proposition 2
applies to the incremental logic program in Fig. 1 along with the online progression

62 M. Gebser et al.

({request(3, 1) ←}, ∅), capturing the request E[1] in (1). In fact, atoms defined by
P [t/n] do not occur inB or P [t/i] for any 1 ≤ i < n, so that IP [t] is sufficient to reflect
facts representing asynchronously arriving requests in instantiated modules. Hence, the
answer set in (2) is obtained both for R1,2 and R1,2. In fact, it is the only answer set
of R1,2 not including any of its residual input atoms, viz., request(1, 1), request(2, 1),
request(1, 2), request(2, 2), and request(3, 2).

To see that incremental instantiation and single pass grounding yield, in general,
different semantics, note that, if IP [t] = ∅, the instantiated modules obtained from
P [t] in Fig. 1 do not include any rule containing an atom of the form request(F, t) in
the positive body. Then, the answer sets of R1,2 would not yield a schedule to satisfy
a request given in an online progression, but merely provide possible moves of the
elevator. Unlike this, a request like in (1) would still be served in an answer set of R1,2.

5 The Reactive ASP Solver oclingo

We implemented a prototypical reactive ASP solver called oclingo, which is available
at [11] and extends iclingo [2] with online functionalities. To this end, oclingo acts as
a server listening on a port, configurable via its --port option upon start-up. Un-
like iclingo, which terminates after computing an answer set of the incremental logic
program it is run on, oclingo waits for client requests. To issue such requests, we im-
plemented a separate controller program that sends online progressions to oclingo and
displays answer sets received in return.

For illustrating the usage of oclingo, consider Table 1 displaying the source code
representation (elevator.lp) of the incremental logic program in Fig. 1. Its three
parts are distinguished via the declarations ‘#base.’, ‘#cumulative t.’, and
‘#volatile t.’, respectively, where t serves as the parameter. Of particular interest
is the declaration preceded by ‘#external’, delineating the input to the cumulative
part provided by future online progressions (cf. IP [t/n] in Definition 4). In fact, the

Table 1. elevator.lp

#base.
floor(1..3).
atFloor(1,0).

#cumulative t.
#external request(F,t) : floor(F).
1 { atFloor(F-1;F+1,t) } 1 :- atFloor(F,t-1), floor(F).
:- atFloor(F,t), not floor(F).
requested(F,t) :- request(F,t), floor(F), not atFloor(F,t).
requested(F,t) :- requested(F,t-1), floor(F), not atFloor(F,t).
goal(t) :- not requested(F,t) : floor(F).

#volatile t.
:- not goal(t).

Reactive Answer Set Programming 63

declaration instructs oclingo to not apply any simplifications in view of yet undefined
instances of request(F,t), where F is a floor.

After launching oclingo on file elevator.lp, it proceeds according to Algo-
rithm 1, which is basically an extension of iclingo’s isolve algorithm [2]. The base
part is grounded in Line 4 and added to the solver in Line 5. Then, the main loop starts
by waiting for external knowledge (Line 8), passed to oclingo by a client. For instance,
the external knowledge representing the online progression in (1) is provided as follows:

#step 1. request(3,1). #endstep.

Here ‘#step 1.’ specifies the time stampm1 = 1, andE1 is ‘request(3,1).’, as
signaled via ‘#endstep.’ A program for F1 could be provided by specifying rules af-
ter a ‘#volatile.’ declaration, but this functionality is not yet supported by oclingo.
If it were, note that m1 is supposed to be the maximum of e1 and f1 (cf. Definition 1).

Algorithm 1. osolve

Input : An incremental logic program (B, P [t], Q[t]).
Internal : A grounder GROUNDER and a solver SOLVER.

1 i← 0
2 iold ← 0
3 j ← 0

4 P0 ← GROUNDER.ground(B)
5 SOLVER.add(P0)

6 loop
7 j ← j + 1
8 (Ej , Fj , mj)← getExternalKnowledge()

9 while i < mj do
10 i← i + 1
11 Pi ← GROUNDER.ground(P [t/i])
12 SOLVER.add(Pi)

13 Oj ← GROUNDER.ground(Ej ∪ Fj(βj))
14 SOLVER.add(Oj ∪ {← βj−1})
15 repeat
16 if iold < i then
17 Qi ← GROUNDER.ground(Q[t/i](αi))
18 SOLVER.add(Qi ∪ {← αiold})
19 iold ← i

20 χ← SOLVER.solve({αi, βj})
21 if χ = ∅ then
22 i← i + 1
23 Pi ← GROUNDER.ground(P [t/i])
24 SOLVER.add(Pi)

25 until χ =� ∅
26 send({X \ {αi, βj} | X ∈ χ})

64 M. Gebser et al.

After receiving the external knowledge, since i = 0 < m1 = 1 in Line 9, osolve
proceeds by incrementing i and processing a first slice of the incremental program’s
cumulative part. This includes grounding P [t/1] and adding the ground program to the
solver. Similarly, in Line 13 and 14, E1 (and F1(β1) = ∅) are grounded and added to
the solver. The notationFj(βj) indicates that a fresh atom βj is inserted into the body of
each rule in Fj , so that the inquiry can in step j + 1 be discarded in Line 14 via adding
the integrity constraint ← βj to the solver (cf. [12,2]). Note that oclingo currently
supports ground external input only, so that the “grounding” in Line 13 merely maps
textual input to an internal representation.

The repeat loop starting in Line 15 is concerned with unrolling the incremental pro-
gram in view of satisfyingQ[t]. In our example,Q[t/1](α1) is grounded and then added
to the solver (Line 17 and 18), where a fresh atom αi is used to mark volatile rules to
enable their discarding via adding an integrity constraint ← αiold

later on. (Note that
the step number mj passed as external knowledge may cause jumps of i in query pro-
grams Q[t/i], which are not possible with P [t] in view of the loop starting in Line 9,
and iold is used to address a volatile part becoming obsolete.) The solving accomplished
in Line 20 checks for an answer set in the presence of Q1, stipulating the absence of
pending requests for the elevator at time step 1. Note that α1 and β1 are passed as as-
sumptions (cf. [12,2]) to the solver, telling it that queries inQ1 and F1 must be fulfilled.
On the other hand, oclingo makes sure that yet undefined input atoms, i.e., elevator re-
quests that did not arrive, are not subject to “guessing.” In this case, request(1,1)
and request(2,1)must not belong to an answer set, as no such external knowledge
has been provided.

Given the pending request for floor 3, no answer set is obtained in Line 20, i.e.,
χ = ∅. Thus, the next cumulative program slice, P [t/2], is grounded and added to the
solver (Line 23 and 24). Then, the repeat loop is re-entered, where the queryQ[t/2](α2)
is added and Q[t/1](α1) discarded (Line 17 and 18). Afterwards, the answer set in (2)
is found in Line 20. As mentioned above, it contains request(3,1) as the only ex-
ternally provided atom: although Q[t/2](α2) would stay satisfied if request(2,1)
and/or request(3,2) were assumed to be true, oclingo eliminates these options by
disallowing undefined input atoms to hold. Finally, the obtained answer set (without α2

and β1) is sent back to the client for further processing (Line 26) before oclingo waits
for new external knowledge in Line 8. In practice, this process terminates when the
client sends ‘#stop.’ (rather than ‘#step mj. ... #endstep.’) to oclingo.

As already described, the current version of oclingo does not yet support non-ground
or volatile external input. Furthermore, it includes no modularity checks for succes-
sively obtained ground program slices (cf. Definition 3). As a consequence, it is the
responsibility of the user to make sure that all programs are modularly composable (cf.
Definition 4) in order to guarantee that the answer sets computed wrt the jth online
program and the incremental program up to step k match the ones of the combined
module Rj,k that do not assume residual inputs to hold. (The successive grounding per-
formed by oclingo yields answer sets of Rj,k rather than of Rj,k (cf. Definition 2); see
Proposition 2 for sufficient conditions guaranteeing their correspondence.) Note that
modularity between incremental and online programs is easiest achieved at the pred-
icate level, primarily, by not using atoms over input predicates in the heads of rules

Reactive Answer Set Programming 65

in the incremental program; e.g., elevator.lp follows this methodology. Of course,
one also ought to take the modularity of the incremental program, when it is unrolled,
into account (cf. [2]).

Note that, in view of the incremental approach, the step counter i is never decreased
within osolve. Hence, it does not admit a “step back in time” wrt successive online
programs and can, in general, not guarantee the k in answer sets of Rj,k to be minimal.
(The minimal k′, k such that Rj−1,k′ and Rj,k admit answer sets may be such that k <
k′.) To support minimality, one could add optimization statements (like #minimize
and #maximize) to incremental programs, which is a subject to future work.

The application-oriented features of oclingo also include declarations
‘#forget t.’ in external knowledge to signal that yet undefined input atoms,
declared at a step smaller or equal to t are no longer exempted from simplifications,
so that they can be falsified irretrievably by the solver in order to compact its internal
representation of accumulated incremental program slices (cf. [12,2]). Furthermore,
oclingo supports an asynchronous reception of input, i.e., the call in Line 8 of Algo-
rithm 1 is processed also if solving in Line 20, relative to a previous online program,
is still ongoing. If new input arrives before solving is finished, the running solving
process is aborted, and the solver is relaunched wrt the new external knowledge.

6 Further Case Studies

The purpose of our reactive framework is to provide a middle-ware for various appli-
cation areas. For the sake of utility and versatility, we have conducted a set of assorted
case studies, all of which are available at [11].

First of all, we have experimented with a more complex elevator control than given
above, involving opening and closing doors as well as more elaborated control knowl-
edge. The strategy is to never change directions, as long as there is an active request in
a current direction. Also, this use case adds an external input indicating the respective
position of the elevator. A second case study is an extension of the well-known blocks-
world example [13]. Our extension allows for new, falling blocks thwarting previously
computed states and/or plans. This scenario aims at studying dynamic adaptions to new
(unexpected) situations. Our third use case deals with position tracking by means of sen-
sor networks. In contrast to the above planning tasks, this scenario looks for histories
and is thus directed backward in time. It is inspired by [14], where a person moves in
a home environment (given as a 2D grid) involving doors, rooms, obstacles, walls, etc.
Interestingly, missing sensor information may lead to alternative histories. Moreover,
these histories may change with the arrival of further sensor readings.

Our last two scenarios deal with simple games. The first one considers the well-
known Wumpus world [15]. An agent moves on a grid and tries to find gold in the dark,
while avoiding pits and the Wumpus. The moving Wumpus is externally controlled,
and the agent has to react to the bad Wumpus’ smell. The latter is obtained through
events within an online progression. This is a typical agent-oriented scenario in which
an agent has to react in view of its changing environment. The second game-based
use case implements a simplistic TicTacToe player. This scenario is interesting from
a technical point of view because it allows for having two ASP players compete with

66 M. Gebser et al.

each other. Interestingly, each move has to be communicated to both players in order to
keep the game history coherent.

7 Discussion

We introduced the first genuinely reactive approach to ASP. For this purpose, we de-
veloped a module theory guaranteeing an incremental composition of programs, while
avoiding redundancy in grounding and solving. Unlike offline incremental ASP [2],
reactive ASP includes dedicated support of the input/output interface from (ground)
module theory [10]; in practice, inputs can be declared conveniently at the predicate
level. Our approach has a general, domain-independent nature and may thus serve as a
middle-ware opening up numerous new reactive applications areas to ASP. To this end,
we have implemented the reactive ASP solver oclingo and conducted a variety of case
studies demonstrating the utility and versatility of our approach. The implementation
along with all case studies are freely available at [11].

Acknowledgments. This work was partly funded by DFG grant SCHA 550/8-2.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

2. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

3. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s
guide to gringo, clasp, clingo, and iclingo,
http://potassco.sourceforge.net

4. Syrjänen, T.: Lparse 1.0 user’s manual,
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

5. Reiter, R.: Knowledge in Action. The MIT Press, Cambridge (2001)
6. Balduccini, M., Gelfond, M.: The autonomous agent architecture. Newsletter ALP 23 (2010)
7. Son, T., Lobo, J.: Reasoning about policies using logic programs. In: ASP 2001. AAAI/The

MIT Press (2001)
8. Mileo, A., Merico, D., Bisiani, R.: Non-monotonic reasoning supporting wireless sensor

networks for intelligent monitoring: The SINDI system. In: Erdem, E., Lin, F., Schaub, T.
(eds.) LPNMR 2009. LNCS, vol. 5753, pp. 585–590. Springer, Heidelberg (2009)

9. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

10. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: ECAI 2006,
pp. 412–416. IOS Press, Amsterdam (2006)

11. http://www.cs.uni-potsdam.de/wv/oclingo
12. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes

in TCS 89(4) (2003)
13. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kauf-

mann, San Francisco (2004)
14. Mileo, A., Schaub, T., Merico, D., Bisiani, R.: Knowledge-based multi-criteria optimization

to support indoor positioning. In: RCRA 2010, CEUR-WS.org (2010)
15. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson, London (2010)

http://potassco.sourceforge.net
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://www.cs.uni-potsdam.de/wv/oclingo

Communicating ASP

and the Polynomial Hierarchy

Kim Bauters1,�, Steven Schockaert1,��, Dirk Vermeir2, and Martine De Cock1

1 Department of Applied Mathematics and Computer Science
Universiteit Gent, Krijgslaan 281, 9000 Gent, Belgium

{kim.bauters,steven.schockaert,martine.decock}@ugent.be
2 Department of Computer Science

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
dvermeir@vub.ac.be

Abstract. Communicating answer set programming is a framework to
represent and reason about the combined knowledge of multiple agents
using the idea of stable models. The semantics and expressiveness of this
framework crucially depends on the nature of the communication mech-
anism that is adopted. The communication mechanism we introduce in
this paper allows us to focus on a sequence of programs, where each pro-
gram in the sequence may successively eliminate some of the remaining
models. The underlying intuition is that of leaders and followers: each
agent’s decisions are limited by what its leaders have previously decided.
We show that extending answer set programs in this way allows us to
capture the entire polynomial hierarchy.

1 Introduction

Communicating answer set programming is an extension of answer set program-
ming (ASP) in which a number of logic programs, with their own knowledge and
reasoning capabilities, can communicate and cooperate with each other to solve
the problem at hand. A number of different flavors of Communicating ASP have
already been proposed in the literature (e.g. [1,8,21]). Communicating ASP is
also closely related to the research on multi-context systems, where a group of
agents can cooperate to find the solution of a global problem [4,20]. We start off
with an introductory example.

Example 1. An employee (‘E’) needs a new printer (‘P ’). She has a few choices
(loud or silent, stylish or dull), preferring silent and stylish. Her boss (‘B’) does
not want an expensive printer, i.e. one that is both silent and stylish. We can

� Funded by a joint Research Foundation-Flanders (FWO) project.
�� Postdoctoral fellow of the Research Foundation-Flanders (FWO).

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 67–79, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

68 K. Bauters et al.

consider the communicating program P = {E,B} with:

P :stylish← not P :dull P :dull← not P :stylish (1)
P :silent← not P : loud P : loud← not P :silent (2)

E :undesired← P :dull E :undesired← P : loud (3)
B :expensive← P :stylish, P :silent. (4)

Intuitively, the rule ‘B :expensive ← P :stylish, P :silent’ expresses that the
agent B believes that the printer is ‘expensive’ when according to agent P it is
‘stylish’ and ‘silent’. The rules in (1) and (2) encode the four possible printers,
the rules in (3) and (4) encode the inclinations of the employee and boss, respec-
tively. The answer sets of this program, i.e. those with global minimality, are [1]

M1 = {P :sty, P :silent, B :exp} M2 = {P :sty, P : loud,E :und}
M3 = {P :dull, P : loud,E :und} M4 = {P :dull, P :silent, E :und}

where for compactness we write P :sty, E :und and B :exp instead of P :stylish,
E :undesired and B :expensive, respectively. The answer sets with minimality
for the agent B are M2,M3 and M4, i.e. the answer sets that do not contain
B :expensive. The only answer set with minimality for agent E isM1, i.e. the one
that does not contain E :undesired. Hence when we determine local minimality
for communicating ASP, the order in which we determine the local minimality
is important and induces a preference over the agents, i.e. it makes some agents
more important than others. In this example, if the boss comes first, the employee
no longer has the choice to pick M1. This leaves her with the choice of either a
dull or a loud printer, among which she has no preferences.

Answer set semantics is based on the idea of stable minimal models. When
dealing with agents that can communicate, it becomes unclear how we should
interpret the notion of minimality as will become clear later on. One option is
to assume global minimality, i.e. we minimize over the conclusions of all the
agents in the network. Another option is to assume minimality on the level of a
single agent. Since it is not always possible to find a model that is minimal for
all individual agents, the order in which we minimize over the agents matters,
as the preceding example illustrates.

In this paper we introduce the notion of multi-focused answer sets of com-
municating ASP programs, which allow us to successively focus (i.e. minimize)
on different agents. We study the resulting expressiveness and hence complete
the picture sketched in [1] on the effect that adding communication has on the
expressiveness of ASP. In [1], it was shown that the ability to communicate al-
lows for simple programs (programs without negation-as-failure, which alone are
only capable of expressing problems in P) to simulate normal programs (which do
have negation-as-failure and are capable of expressing problems in NP). Further-
more, [1] introduced a new communication mechanism where one can “focus” on
a single agent, allowing to express problems in ΣP

2 . In this paper, we go a step
further by introducing multi-focused answer sets. Multi-focused answer sets al-
low us to focus successively on a number of agents instead of focusing on just one

Communicating ASP and the Polynomial Hierarchy 69

agent, and is therefore a generalization of the idea of focusing. As it turns out,
using multi-focused answer set programs it is possible to express any problem in
PSPACE. This means in particular that communicating ASP could be used to
solve problems that are above the second level of the polynomial hierarchy, such
as some forms of abductive reasoning [10] as well as PSPACE-complete problems
such as STRIPS planning [6].

The remainder of this paper is organized as follows. In Section 2 we give the nec-
essary background on answer set programming. In Section 3, we recall the syntax
and semantics of communicating ASP. In Section 4 we introduce a generalization
of focused answer sets [1], capable of expressing any ΣP

n problem. We finish with
Section 5 and Section 6 where we discuss related work and present our conclusion.

2 Background on Answer Set Programming

We first recall the basic concepts and results from ASP that are used in this
paper. To define ASP programs, we start from a countable set of atoms and we
define a literal l as an atom a or its classical negation ¬a. If L is a set of literals,
we use ¬L to denote the set {¬l | l ∈ L} where, by definition, ¬¬a = a. A set of
literals L is consistent if L ∩ ¬L = ∅. An extended literal is either a literal or a
literal preceded by not which we call the negation-as-failure operator. Intuitively
we say that not l is true when we have no proof to support l. For a set of literals
L, we use not(L) to denote the set {not l | l ∈ L}.

A normal rule is an expression of the form l ← (α ∪ not(β)) with ‘l’ a literal
called the head of the rule and (α ∪ not(β)) (interpreted as a conjunction) the
body of the rule with α and β sets of literals. When the body is empty, the
rule is called a fact. When the head is empty, the rule is called a constraint. In
this paper, we do not consider constraints as they can readily be simulated1. A
normal program P is a finite set of normal rules. The Herbrand base BP of P
is the set of atoms appearing in program P . A (partial) interpretation I of P is
any consistent set of literals L ⊆ (BP ∪ ¬BP). I is total iff I ∪ ¬I = BP ∪ ¬BP .
A simple rule is a normal rule without negation-as-failure in the body. A simple
program P is a finite set of simple rules.

Answer sets are defined using the immediate consequence operator TP for a
simple program P w.r.t. an interpretation I as

TP (I) = I ∪ {l | ((l ← α) ∈ P) ∧ (α ⊆ I)} . (5)

We use P � to denote the fixpoint which is obtained by repeatedly applying TP

starting from the empty interpretation, i.e. the least fixpoint of TP w.r.t. set
inclusion. The interpretation P � is the minimal model of P and is called the
answer set of the simple program P .

The reduct P I of a normal program P w.r.t. the interpretation I is defined as
P I = {l← α | (l ← α ∪ not(β)) ∈ P, β ∩ I = ∅} . It is easy to see that the reduct
P I is a simple program. We say that I is an answer set of the normal program
P iff

(
P I
)� = I, i.e. if I is the answer set of the reduct P I .

1 The constraint (← body) is simulated by (fail ← not fail, body) with fail a fresh atom.

70 K. Bauters et al.

3 Communicating Programs

Communication between ASP programs is based on a new kind of literal ‘Q : l’
as in [1,3,16,20], where the underlying intuition is that of a function call or, in
terms of agents, asking questions to other agents. If the literal l is not in the
answer set of program Q then Q : l is false; otherwise Q : l is true. We present the
semantics from [1] which are closely related to the minimal semantics in [3] and
the semantics in [5].

Let P be a finite set of program names. A P-situated literal is an expression
of the form Q : l with Q ∈ P and l a literal. A P-situated literal Q : l is called
Q-local. For a set of P-situated literals X and Q ∈ P , we use X↓Q to denote
{l | Q : l ∈ X}, i.e. the projection of X on Q. An extended P-situated literal is
either a P-situated literal or a P-situated literal preceded by not. For a set of
P-situated literals X , we use not(X) to denote the set {not Q : l | Q : l ∈ X}.

A P-situated normal rule is an expression of the form Q : l ← (α ∪ not(β))
where Q : l is called the head of the rule, and α ∪ not(β) is called the body
of the rule with α and β sets of P-situated literals. A P-situated normal rule
Q : l ← (α ∪ not (β)) is called Q-local. A P-component normal program Q is a
finite set of Q-local P-situated normal rules. Henceforth we shall use P both to
denote the set of program names and to denote the set of actual P-component
normal programs. A communicating normal program P is then a finite set of
P-component normal programs. A P-situated simple rule is an expression of the
form Q : l ← α, i.e. a P-situated normal rule without negation-as-failure in the
body. A P-component simple program Q is a finite set of Q-local P-situated
simple rules. A communicating simple program P is a finite set of P-component
simple programs.

In the remainder of this paper we drop the P-prefix whenever the set P is
clear from the context. Whenever the name of the component normal program Q
is clear, we write l instead of Q : l for Q-local situated literals. Note that a com-
municating normal (resp. simple) program with only one component program
thus trivially corresponds to a normal (resp. simple) program.

Similar as for a classical program, we can define the Herbrand base of a com-
ponent program Q as the set of atoms occurring in Q-local situated literals in Q,
which we denote as BQ. We then define BP =

{
Q :a | Q ∈ P and a ∈

⋃
R∈P BR

}
as the Herbrand base of the communicating program P .

Example 2. Consider the communicating simple program P = {Q,R} with the
following situated rules:

Q :a← R :a Q :b← R :a← Q :a.

Q :a, Q :b and R :a are situated literals. The situated simple rules Q :a ← R :a
and Q :b ← are Q-local since we have Q :a and Q :b in the heads of these rules.
The situated simple rule R :a ← Q :a is R-local. Hence Q = {a← R :a, b←}
and R = {a← Q :a}. Furthermore, we have that BQ = {a, b}, BR = {a} and
BP = {Q :a,Q :b, R :a,R :b}.

Communicating ASP and the Polynomial Hierarchy 71

We say that a (partial) interpretation I of a communicating program P is any
consistent subset I ⊆ (BP ∪¬BP). Given an interpretation I of a communicating
normal program P , the reduct QI for Q ∈ P is the component simple program
obtained by deleting

– each rule with an extended situated literal ‘not R : l’ such that R : l ∈ I;
– each remaining extended situated literal of the form ‘not R : l’;
– each rule with a situated literal ‘R : l’ that is not Q-local such that R : l /∈ I;
– each remaining situated literal R : l that is not Q-local.

The underlying intuition of the reduct is clear. Analogous to the definition of
the reduct for normal programs [15], the reduct of a communicating normal
program defines a way to reduce a program relative to some guess I. The reduct
of a communicating normal program is a communicating simple program that
only contains component simple programs Q with Q-local situated literals. That
is, each component simple program Q corresponds to a classical simple program.

Definition 1. We say that an interpretation I of a communicating normal pro-
gram P is an answer set of P if and only if ∀Q ∈ P · (Q :I↓Q) =

(
QI
)�.

In other words: an interpretation I is an answer set of a communicating normal
program P if and only if for every component normal program Q we have that
the projection of I on Q is an answer set of the component normal program Q
under the classical definition.

Example 3. Let us once again consider the communicating simple program P =
{Q,R} from Example 2. Given the interpretation I = {Q :a,Q :b, R :a} we find
that QI = {a←, b←} and RI = {a←}. We can easily treat QI and RI sepa-
rately since they now correspond to classical programs. It then readily follows
that Q :I↓Q =

(
QI
)� and R :I↓R =

(
RI
)�, hence the interpretation I is an an-

swer set of P . In total the communicating simple program P has two answer
sets, namely {Q :b} and {Q :a,Q :b, R :a}.

Proposition 1. [1] Let P be a communicating simple program. Determining
whether a given situated literal Q : l occurs in any answer set of P (i.e. brave
reasoning) is in NP. Determining whether a literal is true in all the answer sets
of P (i.e. cautious reasoning) is in coNP. Furthermore, the same complexity
results hold when P is a communicating normal program.

4 Multi-focused Answer Sets

We extend the semantics of communicating programs in such a way that it
becomes possible to focus on a sequence of component programs. As such, we
can indicate that we are only interested in those answer sets that are successively
minimal with respect to each respective component program. The underlying
intuition is that of leaders and followers, where the decisions that an agent can
make are limited by what its leaders have previously decided.

72 K. Bauters et al.

Definition 2. Let P be a communicating program and {Q1, . . . , Qn} ⊆ P a set
of component programs. A (Q1, . . . , Qn)-focused answer set of P is defined as:

M is a (Q1, . . . , Qn−1)-focused answer set of P and
for each (Q1, . . . , Qn−1)-focused answer set M ′ of P
we do not have that M ′

↓Qn ⊂M↓Qn

where a ()-focused answer set of P is any answer set of P.

In other words, we say that M is a (Q1, . . . , Qn)-focused answer set of P if and
only if M is minimal among all (Q1, . . . , Qn−1)-focused answer sets w.r.t. the
projection on Qn.

Example 4. Consider the communicating program P4 = {Q,R, S} with the rules

Q :a← R :b← S :c S :a←
Q :b← not S :d R :a← S :c S :c← not S :d, not R :c
Q :c← R :c R :a← S :d S :c← not S :c, not R :c

R :c← not R :a

The communicating program P4 has three answer sets, namely

M1 = Q :{a, b, c} ∪R :{c} ∪ S :{a}
M2 = Q :{a, b} ∪R :{a, b} ∪ S :{a, c}
M3 = Q :{a} ∪R :{a} ∪ S :{a, d}.

The only (R,S)-focused answer set of P4 is M1. Indeed, since {a} = (M3)↓R ⊂
(M2)↓R = {a, b} we find that M2 is not a (R)-focused answer set. Furthermore
{a} = (M1)↓S ⊂ (M3)↓S = {a, d}, hence M3 is not an (R,S)-focused answer set.

We now show how the validity of quantified boolean formulas (QBF) can be
checked using multi-focused answer sets of communicating ASP programs.

Definition 3. Let φ = ∃X1∀X2...ΘXn·p(X1, X2, · · ·Xn) be a QBF where Θ = ∀
if n is even and Θ = ∃ otherwise, and p(X1, X2, · · ·Xn) is a formula of the form
θ1 ∨ . . . ∨ θm in disjunctive normal form over X1 ∪ . . .∪Xn with Xi, 1 ≤ i ≤ n,
sets of variables and where each θt is a conjunction of propositional literals. We
define Q0 as follows:

Q0 = {x← not ¬x,¬x← not x | x ∈ X1 ∪ . . . ∪Xn} (6)
∪ {sat← Q0 :θt | θt, 1 ≤ t ≤ m} (7)
∪ {¬sat← not sat} . (8)

For 1 ≤ j ≤ n− 1 we define Qj as follows:

Qj = {x← Q0 :x,¬x← Q0 :¬x | x ∈ (X1 ∪ . . . ∪Xn−j)} (9)

∪
{
{¬sat← Q0 :¬sat} if (n− j) is even
{sat← Q0 :sat} if (n− j) is odd.

(10)

Communicating ASP and the Polynomial Hierarchy 73

The communicating normal program corresponding with φ is P = {Q0, ..., Qn−1}.
For a QBF of the form φ = ∀X1∃X2...ΘXn · p(X1, X2, · · ·Xn) where Θ = ∃

if n is even and Θ = ∀ otherwise and p(X1, X2, · · ·Xn) once again a formula in
disjunctive normal form, the simulation only changes slightly. Indeed, only the
conditions in (10) are swapped.

Example 5. Given the QBF φ = ∃x∀y∃z ·(x∧y)∨(¬x∧y∧z)∨(¬x∧¬y∧¬z), the
communicating program P corresponding with the QBF φ is defined as follows:

Q0 :x← not ¬x Q0 :y ← not ¬y Q0 :z ← not ¬z
Q0 :¬x← not x Q0 :¬y ← not y Q0 :¬z ← not z

Q0 :sat← x, y Q0 :sat← ¬x, y, z Q0 :sat← ¬x,¬y,¬z
Q0 :¬sat← not sat

Q1 :x← Q0 :x Q1 :y ← Q0 :y
Q1 :¬x← Q0 :¬x Q1 :¬y ← Q0 :¬y Q1 :¬sat← Q0 :¬sat

Q2 :x← Q0 :x Q2 :¬x← Q0 :¬x Q2 :sat← Q0 :sat

The communicating program in Example 5 can be used to determine whether the
QBF φ is satisfiable. First, note that the rules in (6) generate all possible truth
assignments of the variables, i.e. all possible propositional interpretations. The
rules in (7) ensure that ‘sat’ is true exactly for those interpretations that satisfy
the formula p(X1, X2, . . . , Xn), i.e. we check, for this particular assignment of
the variables, whether p(X1, . . . , Xn) is satisfied.

Intuitively, the component programs {Q1, . . . , Qn−1} successively bind fewer
and fewer variables. In particular, focusing on Q1, . . . , Qn−1 allows us to con-
sider the binding of the variables in Xn−1, . . . , X1, respectively. Depending on
the rules from (10), focusing on Qi allows us to verify that either some or all of
the assignments of the variables in Xn−j make the formula p(X1, . . . , Xn) sat-
isfied, given the bindings that have already been determined by the preceding
components. We now prove that the QBF φ is satisfiable iff Q0 :sat is true in
some (Q1, . . . , Qn−1)-focused answer set.

Proposition 2. Let φ and P be as in Definition 3. We have that a QBF φ of the
form φ = ∃X1∀X2...ΘXn · p(X1, X2, · · ·Xn) is satisfiable if and only if Q0 :sat
is true in some (Q1, . . . , Qn−1)-focused answer set of P. Furthermore, we have
that a QBF φ of the form φ = ∀X1∃X2...ΘXn · p(X1, X2, · · ·Xn) is satisfiable if
and only if Q0 :sat is true in all (Q1, . . . , Qn−1)-focused answer sets of P.

Proof. We give a proof by induction. Assume we have a QBF φ1 of the form ∃X1 ·
p(X1) with P1 = {Q0} the communicating normal program corresponding with
φ1 according to Definition 3. If the formula p1(X1) of the QBF φ1 is satisfiable
then we know that there is a ()-focused answer set M of P1 such that Q0 :sat ∈
M . Otherwise, we know that Q0 :sat /∈M for all ()-answer sets M of P1. Hence
the induction hypothesis is valid for n = 1.

74 K. Bauters et al.

Assume the result holds for any QBF φn−1 of the form ∃X1∀X2 . . .ΘXn−1 ·
pn(X1, X2, . . . , Xn−1). We show in the induction step that it holds for any QBF
φn of the form ∃X1∀X2 . . .ΘXn ·pn−1(X1, X2, . . . , Xn). Let P = {Q0, . . . , Qn−1}
and P ′ =

{
Q′

0, . . . , Q
′
n−2

}
be the communicating normal programs that cor-

respond with φn and φn−1, respectively. Note that the component programs
Q2, . . . , Qn−1 are defined in exactly the same way as the component programs
Q′

1, . . . , Q
′
n−2, the only difference being the name of the component programs.

What is of importance in the case of φn is therefore only the additional rules inQ0

and the new component programQ1. The additional rules in Q0 merely generate
the corresponding interpretations, where we now need to consider the possible
interpretations of the variables from Xn as well. The rules in the new compo-
nent program Q1 ensure that Q1 :x ∈M whenever Q0 :x ∈M and Q1 :¬x ∈M
whenever Q0 :¬x ∈M for every M an answer set of P and x ∈ (X1∪ . . .∪Xn−1).
Depending on n being even or odd, we get two distinct cases:

– if n is even, then we have (sat ← Q0 :sat) ∈ Q1 and we know that the
QBF φn has the form ∃X1∀X2 . . . ∀Xn · pn(X1, X2, . . . , Xn). Let us consider
what happens when we determine the (Q1)-focused answer sets of P . Due
to the construction of Q1, we know that M ′

↓Q1 ⊂ M↓Q1 can only hold
for two answer sets M ′ and M of P if M ′ and M correspond to identical
interpretations of the variables in X1 ∪ . . . ∪Xn−1. Furthermore, M ′

↓Q1 ⊂
M↓Q1 is only possible if Q1 :sat ∈M while Q1 :sat /∈M ′.

Now note that given an interpretation of the variables in X1∪ . . .∪Xn−1,
there is exactly one answer set for each choice of Xn. When we have M ′

with Q1 :sat /∈M ′ this implies that there is an interpretation such that, for
some choice of Xn, this particular assignment of values of the QBF does
not satisfy the QBF. Similarly, if we have M with Q1 :sat ∈ M then the
QBF is satisfied for that particular choice of Xn. Determining (Q1)-focused
answer sets of P will eliminate M since M ′

↓Q1 ⊂M↓Q1 . In other words, for
identical interpretations of the variables in X1 ∪ . . . ∪Xn−1, the answer set
M ′ encodes a counterexample that shows that for these interpretations it
does not hold that the QBF is satisfied for all choices of Xn. Focusing thus
eliminates those answer sets that claim that the QBF is satisfiable for the
variables in X1 ∪ . . .∪Xn−1. When we cannot find such M ′

↓Q1 ⊂M↓Q1 this
is either because none of the interpretations satisfy the QBF or all of the
interpretations satisfy the QBF. In both cases, there is no need to eliminate
any answer sets. We thus effectively mimic the requirement that the QBF
φn should hold for ∀Xn.

– if n is odd, then (¬sat ← Q0 :¬sat) ∈ Q1 and we know that the QBF φn

has the form ∃X1∀X2 . . .∃Xn · pn(X1, X2, . . . , Xn). As before, we know that
M ′

↓Q1 ⊂M↓Q1 can only hold for two answer sets M ′ and M of P if M ′ and
M correspond to identical interpretations of the variables in X1∪ . . .∪Xn−1.
However, this time M ′

↓Q1 ⊂ M↓Q1 is only possible if Q1 :¬sat ∈ M while
Q1 :¬sat /∈M ′.

If we have M with Q1 :¬sat ∈ M then the QBF is not satisfied for
that particular choice of Xn, whereas when M ′ with Q1 :¬sat /∈ M ′ this

Communicating ASP and the Polynomial Hierarchy 75

implies that there is an interpretation such that, for some choice of Xn, this
particular assignment of the variables does satisfy the QBF. Determining
(Q1)-focused answer sets of P will eliminate M since M ′

↓Q1 ⊂ M↓Q1 . For
identical interpretations of the variables in X1 ∪ . . . ∪ Xn−1, the answer
set M ′ encodes a counterexample that shows that for these interpretations
there is some choice of Xn such that the QBF is satisfied. Focusing thus
eliminates those answer sets that claim that the QBF is not satisfiable for
the variables in X1 ∪ . . .∪Xn−1. When we cannot find such M ′

↓Q1 ⊂M↓Q1

this is either because none of the interpretations satisfy the QBF or all of the
interpretations satisfy the QBF. In both cases, there is no need to eliminate
any answer sets. We effectively mimic the requirement that the QBF φn

should hold for ∃Xn.

For a QBF of the form ∀X1∃X2 . . .ΘXn · p(X1, X2, . . . , Xn), with Θ = ∃ if n is
even and Θ = ∀ otherwise, the proof is analogous. In the base case, we know that
a QBF φ1 of the form ∀X1 · p(X1) is satisfiable only when for every ()-focused
answer set M of P1 = {Q0} we find that Q0 :sat ∈M . Otherwise, we know that
there exists some ()-focused answers sets M of P1 such that Q0 :sat /∈M . Hence
the induction hypothesis is valid for n = 1. The induction step is then entirely
analogous to what we have proven before, with the only difference being that the
cases for n being even or odd are swapped. Finally, since the first quantifier is
∀, we need to verify that Q0 :sat is true in every (Q1, . . . , Qn−1)-focused answer
set of P . ��

Before we discuss the computational complexity, we recall some of the notions
of complexity theory. We have ΣP

0 = P and ΣP
1 = NP where the complexity class

ΣP
n = NPΣP

n−1 is the class of problems that can be solved in polynomial time on a
non-deterministic machine with an ΣP

n−1 oracle, i.e. assuming a procedure that
can solve ΣP

n−1 problems in constant time [19]. Deciding the validity of a QBF
φ = ∃X1∀X2...ΘXn · p(X1, X2, · · ·Xn) is the canonical ΣP

n-complete problem.
Furthermore ΠP

n = co(ΣP
n). Deciding the validity of a QBF φ = ∀X1∃X2...ΘXn ·

p(X1, X2, · · ·Xn) with Θ = ∀ if n is odd and Θ = ∃ otherwise, is the canonical
ΠP

n -complete problem.

Corollary 1. Let P be a communicating program, Qi ∈ P. The problem of
deciding whether Qi : l ∈ M (brave reasoning) with M a (Q1, . . . , Qn)-focused
answer set of P is ΣP

n+1-hard.

Corollary 2. Let P be a communicating program, Qi ∈ P. The problem of
deciding whether all (Q1, . . . , Qn)-focused answer sets contain Qi : l (cautious
reasoning) is ΠP

n+1-hard.

In addition to these hardness results, we can also establish the corresponding
membership results.

Proposition 3. Let P be a communicating program, Qi ∈ P. Deciding whether
Qi : l ∈M with M a (Q1, . . . , Qn)-focused answer set of P is in ΣP

n+1.

76 K. Bauters et al.

Proof. (sketch) This proof is by induction on n. When n = 1 we guess a (Q1)-
focused answer set M of P in polynomial time and verify that this is indeed a
(Q1)-focused answer set in coNP as in classical ASP, i.e. finding a (Q1)-focused
answer set is in ΣP

2 . Given an algorithm to compute the (Q1, . . . , Qn−1)-focused
answer sets of P inΣP

n , we can guess a (Q1, . . . , Qn)-focused answer set and verify
there is no (Q1, . . . , Qn)-focused answer set M ′ of P such that M ′

↓Qn ⊂ M↓Qn

using a ΣP
n oracle, i.e. the algorithm is in ΣP

n+1. ��

Now that we have both hardness and membership results, we readily obtain the
following corollary.

Corollary 3. Let P be a communicating normal program, Qi ∈ P. The problem
of deciding whether Qi : l ∈ M with M a (Q1, . . . , Qn)-focused answer set of P
is ΣP

n+1-complete.

The next corollary provides a result for communicating simple programs instead
of communicating normal programs.

Corollary 4. Let P be a communicating simple program, Qi ∈ P. The problem
of deciding whether Qi : l ∈ M with M a (Q1, . . . , Qn)-focused answer set of P
is ΣP

n+1-complete.

5 Related Work

A lot of research has been done, for various reasons, on the subject of combin-
ing logic programming with the multi-agent paradigm. One reason for such a
combination is that logics can be used to describe the (rational) behavior of the
agents [9]. Another reason is that it can be used to combine different flavors of
logic programming languages [11,18]. Such an extension of logic programming
can be used to externally solve tasks for which ASP is not suited, while remain-
ing in a declarative framework [13]. It can also be used as a form of cooperation,
where multiple agents or contexts collaborate to solve a difficult problem [8,21].
The approach in this paper falls in the last category and is concerned with
how the collaboration of different ASP programs affect the expressiveness of the
overall system.

Important work has been done in the domain of multi-context systems (MCS)
and multi-agent ASP to enable collaboration between the different contexts/ASP
programs. We briefly discuss some of the more prominent work in these areas.

The work of [20] discusses an extension of MCSs [16] that allows MCSs to
reason about absent information. Each context only has access to a subset of
the available information. In order to share this information, an information
flow is defined by the system between the different contexts. This idea was later
adopted in the ASP community and in our work in particular.

The current paper has the same syntax as [20] but rather different semantics.
The semantics in [20] are closely related to the well-founded semantics [14],
whereas ours are closer to the spirit of stable models [15]. Another point where

Communicating ASP and the Polynomial Hierarchy 77

our semantics differ is that the motivation for accepting a literal as being true
can be circular if that explanation relies on other component programs. In [5]
this circularity is identified as a requirement for the representation of social
reasoning.

The work in [4] further extends the work in [20], introducing a multi-context
variant of default logic. This extension guarantees that a number of conclusions
from default logic come “for free”. The paper is the first to offer a syntactical
description of the communication rather than a semantic one, making it easier
to implement an actual algorithm. Some of interesting applications of contextual
frameworks are shown, e.g. information fusion, game theory and social choice.

Along similar lines [3] combines the non-monotonicity from [20] with the het-
erogeneous approach from [16] into a single framework for heterogenous non-
monotonic multi-context reasoning. The work in [3] introduces several notions
of equilibria, including minimal and grounded equilibria. In our approach, local
reasoning is captured by grounded equilibria (no circularity allowed) while com-
municating with other component programs is captured by the weaker concept
of minimal equilibria. The work in [3] also offers various membership results on
checking the existence of an equilibrium. Most notably, [3] is – to the best of
our knowledge – the first to explicitly remark that multi-context systems can be
non-monotonic even if all the logics in the component programs are monotonic.

We now direct our attention to work done within the ASP community. The
ideas presented in this paper are related to HEX programs [12] in which ASP is
extended by higher-order predicates and external atoms. Through these external
atoms, knowledge can be exchanged with external sources while remaining within
the declarative paradigm. Applicability-wise, HEX is proposed as a tool for non-
monotonic semantic web reasoning under the answer set semantics. Because of
this setting, HEX is not primarily targeted at increasing the expressiveness, but
foremost at extending the applicability and ease of use of ASP.

Two other important works in the area of multi-agent ASP are [8] and [21].
In both [8] and [21] a multi-agent system is developed in which multiple agents
communicate with each other. The communication channel is uni-directional,
allowing information to be pushed to the next agent. Both approaches use ASP
and have agents that are quite expressive in their own right. Indeed, in [8] each
agent is an Ordered Choice Logic Program [2] and in [21] each agent uses the
extended answer set semantics.

In [8] the agents can communicate with whomever they want and circular
communication is allowed (agent A tells B whom tells A . . .), which is similar
to our approach. However, in [8] only positive information can be shared and
the authors do not look at the actual expressiveness of the framework. In [21]
Hierarchical Decision Making is introduced where each agent uses the extended
answer set semantics. The network is a linear “hierarchical” network and the
framework employs the idea of a failure feedback mechanism. Intuitively, this
mechanism allows the previous agent in a network to revise his conclusion when
it leads to an unresolvable inconsistency for the next agent in the network. It
is this mechanism that gives rise to a higher expressiveness, namely ΣP

n for

78 K. Bauters et al.

a hierarchical network of n agents. Our work is different in that we start from
normal and simple ASP programs for the agents. Our communication mechanism
is also quite simple and does not rely on any kind of feedback. Regardless, we
obtain a comparable expressiveness.

We briefly mention [7], in which recursive modular non-monotonic logic pro-
grams (MLP) under the ASP semantics are considered. The main difference
between MLP and our simple communication is that our communication is
parameter-less, i.e. the truth of a situated literal is not dependent on parameters
passed by the situated literal to the target component program. Our approach
is clearly different and we cannot readily mimic the behavior of the network as
presented in [7]. Our complexity results therefore do not directly apply to MLPs.

Finally, we like to point out the resemblance between multi-focused answer
sets and the work on multi-level linear programming [17]. In multi-level linear
programming, different agents control different variables that are outside of the
control of the other agents, yet are linked by means of linear inequalities (con-
straints). The agents have to fix the values of the variables they can control in a
predefined order, such that their own linear objective function is optimized. Sim-
ilarly, in communicating ASP, literals belong to different component programs
(agents), and their values are linked through constraints, which in this case take
the form of rules. Again the agents act in a predefined order, but now they try
to minimize the set of literals they have to accept as being true, rather than a
linear objective function.

6 Conclusion

We have introduced multi-focused answer sets for communicating programs. The
underlying intuition is that of leaders and followers, where the choices available
to the followers are limited by what the leaders have previously decided. On a
technical level, the problem translates to establishing local minimality for some
of the component programs in the communicating program. Since in general it
is not possible to ensure local minimality for all component programs, an order
must be defined among component programs on which to focus. The result is
an increase in expressiveness, where the problem of deciding whether Qi : l ∈M
with M a (Q1, . . . , Qn)-focused answer set of P is ΣP

n+1-complete. In our work
we thus find that the choice of the communication mechanism is paramount
w.r.t. the expressiveness of the overall system, irrespective of the expressiveness
of the individual agents.

References

1. Bauters, K., Janssen, J., Schockaert, S., Vermeir, D., De Cock, M.: Communicating
answer set programs. In: Tech. Comm. of ICLP 2010, vol. 7, pp. 34–43 (2010)

2. Brain, M., De Vos, M.: Implementing OCLP as a front-end for answer set solvers:
From theory to practice. In: Proc. of ASP 2005 (2003)

3. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: Proc. of AAAI 2007, pp. 385–390 (2007)

Communicating ASP and the Polynomial Hierarchy 79

4. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: Proc. of.
IJCAI 2007, pp. 268–273 (2007)

5. Buccafurri, F., Caminiti, G., Laurendi, R.: A logic language with stable model
semantics for social reasoning. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP
2008. LNCS, vol. 5366, pp. 718–723. Springer, Heidelberg (2008)

6. Bylander, T.: The computational complexity of propositional STRIPS planning.
Artificial Intelligence 69, 165–204 (1994)

7. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic
programming revisited. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS,
vol. 5649, pp. 145–159. Springer, Heidelberg (2009)

8. De Vos, M., Crick, T., Padget, J., Brain, M., Cliffe, O., Needham, J.: LAIMA:
A multi-agent platform using ordered choice logic programming. In: Baldoni, M.,
Endriss, U., Zhang, S.-W., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904,
pp. 72–88. Springer, Heidelberg (2006)

9. Dell’Acqua, P., Sadri, F., Toni, F.: Communicating agents. In: Proc. of MASL 1999
(1999)

10. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. Journal of the
ACM 42, 3–42 (1995)

11. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artifial In-
telligence 172(12-13), 1495–1539 (2008)

12. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: Proc. of
IJCAI 2005, pp. 90–96 (2005)

13. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: dlvhex: A tool for semantic-web
reasoning under the answer-set semantics. In: Proc. of ALPSWS 2006, pp. 33–39
(2006)

14. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic
programs. Journal of the ACM 38(3), 620–650 (1991)

15. Gelfond, M., Lifzchitz, V.: The stable model semantics for logic programming. In:
Proc. of ICLP 1988, pp. 1081–1086 (1988)

16. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do
without modal logics. Artifial Intelligence 65(1), 29–70 (1994)

17. Jeroslow, R.: The polynomial hierarchy and a simple model for competitive anal-
ysis. Mathematical Programming 32, 146–164 (1985)

18. Luo, J., Shi, Z., Wang, M., Huang, H.: Multi-agent cooperation: A description logic
view. In: Lukose, D., Shi, Z. (eds.) PRIMA 2005. LNCS, vol. 4078, pp. 365–379.
Springer, Heidelberg (2009)

19. Papadimitriou, C.: Computational complexity. Addison-Wesley, Reading (1994)
20. Roelofsen, F., Serafini, L.: Minimal and absent information in contexts. In: Proc.

of IJCAI 2005, pp. 558–563 (2005)
21. Van Nieuwenborgh, D., De Vos, M., Heymans, S., Hadavandi, E.: Hierarchical

decision making in multi-agent systems using answer set programming. In: Inoue,
K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS (LNAI), vol. 4371, pp. 20–40.
Springer, Heidelberg (2007)

Loop Formulas for Splitable

Temporal Logic Programs�

Felicidad Aguado, Pedro Cabalar, Gilberto Pérez, and Concepción Vidal

Department of Computer Science,
University of Corunna (Spain)

{aguado,cabalar,gperez,eicovima}@udc.es

Abstract. In this paper, we study a method for computing temporal
equilibrium models, a generalisation of stable models for logic programs
with temporal operators, as in Linear Temporal Logic (LTL). To this
aim, we focus on a syntactic subclass of these temporal logic programs
called splitable and whose main property is satisfying a kind of “fu-
ture projected” dependence present in most dynamic scenarios in An-
swer Set Programming (ASP). Informally speaking, this property can be
expressed as “past does not depend on the future.” We show that for this
syntactic class, temporal equilibrium models can be captured by an LTL
formula, that results from the combination of two well-known techniques
in ASP: splitting and loop formulas. As a result, an LTL model checker
can be used to obtain the temporal equilibrium models of the program.

1 Introduction

Although transition systems frequently appear in scenarios and applications of
Non-Monotonic Reasoning (NMR), most NMR formalisms are not particularly
thought for temporal reasoning. Instead, NMR approaches are typically “static,”
in the sense that time instants are treated as one more argument for predicates
representing actions and fluents. This has been usual, for instance, when repre-
senting temporal scenarios in Answer Set Programming (ASP) [1,2], a successful
NMR paradigm based on the stable model semantics [3] for logic programs. In
this case, it is frequent that program rules depend on a parameter T , the previ-
ous situation, and the value T+1 representing its successor state. For instance, if
t represents the action of toggling a switch that can take two positions, d (down)
and u (up), the corresponding effect axioms would be encoded as:

u(T+1)← t(T), d(T) (1)
d(T+1)← t(T), u(T) (2)

Similarly, the inertia law would typically look like the pair of rules:

u(T+1)← u(T),not d(T+1) (3)
d(T+1)← d(T),not u(T+1) (4)

� This research was partially supported by Spanish MEC project TIN2009-14562-C05-
04 and Xunta de Galicia project INCITE08-PXIB105159PR.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 80–92, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Loop Formulas for Splitable Temporal Logic Programs 81

Since ASP tools are constrained to finite domains, a finite bound n for the
number of transitions is usually fixed, so that the above rules are grounded for
T = 0, . . . , n − 1. To solve a planning problem, for instance, we would iterate
multiple calls to some ASP solver and go increasing the value of n = 1, 2, 3, . . .
in each call, until a (minimal length) plan is found.

Of course, this strategy falls short for many temporal reasoning problems,
like proving the non-existence of a plan, or checking whether two NMR system
representations are strongly equivalent, that is, whether they always have the
same behaviour, even after adding some common piece of knowledge, and for
any narrative length we consider.

To overcome these limitations, [4] introduced an extension of ASP to deal
with modal temporal operators. Such an extension was the result of mixing two
logical formalisms: (1) Equilibrium Logic [5,6] that widens the concept of stable
models to the general syntax of arbitrary theories (propositional and even first
order); and (2) the well-known Linear Temporal Logic [7] (LTL) dealing with
operators like � (read as “always”), ♦ (“eventually”), © (“next”), U (“until”)
and R (“release”). The result of this combination received the name of Temporal
Equilibrium Logic (TEL). As happens with Equilibrium Logic, TEL is defined
in terms of a monotonic formalism, in this case called Temporal Here-and-There
(THT), plus an ordering relation among models, so that only the minimal ones
are selected (inducing a non-monotonic consequence relation). These minimal
models receive the name of Temporal Equilibrium Models and can be seen as
the analogous of stable models for the temporal case. As an example, the rules
(1)-(4) can be respectively encoded in TEL as:

�(d ∧ t→©u) (5)
�(u ∧ t→©d) (6)

�(u ∧ ¬©d→©u) (7)
�(d ∧ ¬©u→©d) (8)

In [8] it was shown how to use equivalence in the logic of THT as a suffi-
cient condition for strong equivalence of two arbitrary TEL theories. The THT-
equivalence test was performed by translating THT into LTL and using a model
checker afterwards. This technique was applied on several examples to com-
pare different alternative ASP representations of the same temporal scenario.
Paradoxically, although this allowed an automated test to know whether two
representations had the same behaviour, computing such a behaviour, that is,
automatically obtaining the temporal equilibrium models of a given theory was
still an open topic.

When compared to the ASP case, part of the difficulties for computing tem-
poral equilibrium models came from the fact that the general syntax of TEL
allows complete arbitrary nesting of connectives (that is, it coincides with gen-
eral LTL), whereas ASP syntax is constrained to disjunctive logic programs,
that is, rules with a body (the antecedent) with a conjunction of literals, and a
head (the consequent) with a disjunction of atoms. In a recent work [9], it was
shown that TEL could be reduced to a normal form closer to logic programs

82 F. Aguado et al.

where, roughly speaking, in place of an atom p we can also use ©p, and any rule
can be embraced by �. This normal form received the name of Temporal Logic
Programs (TLPs) – for instance, (5)-(8) are TLP rules.

In this work we show how to compute the temporal equilibrium models for
a subclass of TLPs called splitable. This subclass has a property we can call
future projected dependence and that informally speaking can be described as
“past does not depend on the future.” Formally, this means that we cannot have
rules where a head atom without © depends on a body atom with ©. In our
example, (5)-(8) are also splitable TLP rules whereas, for instance, the following
TLP rules are not in splitable form:

�(¬©p→ p) (9)
�(©p→ p) (10)

since the truth of p “now” depends on p in the next situation©p. This syntactic
feature of splitable TLPs allows us to apply the so-called splitting technique [10]
(hence the name of splitable) to our temporal programs. Informally speaking,
splitting is applicable when we can divide an ASP program Π into a bottom Π0

and a top Π1 part, where Π0 never depends on predicates defined in Π1. If so,
the stable models of Π can be computed by first obtaining the stable models of
Π0, and then using them to simplify Π1 and compute the rest of information in
a constructive way.

In the case of splitable TLPs, however, we cannot apply splitting by rely-
ing of multiple calls to an ASP solver since, rather than a single split between
bottom and top part, we would actually have an infinite sequence of program
“slices” Π0, Π1, Π2, . . . where each Πi depends on the previous ones. To solve
this problem, we adopt a second ASP technique called Loop Formulas [11,12],
a set of formulas LF (Π) for some program Π so that the stable models of the
latter coincide with the classical models of Π ∪LF (Π). In our case, LF (Π) will
contain formulas preceded by a � operator, so that they affect to all program
slices. As a result, the temporal equilibrium models of Π will correspond to the
LTL models of Π ∪LF (Π), which can be computed using an LTL model checker
as a back-end.

The rest of the paper is organised as follows. In the next section, we recall
the syntax and semantics of TEL. Section 3 describes the syntax of splitable
TLPs and their relation to stable models. Next, in Section 5, we explain how to
construct the set of loop formulas LF (Π) for any splitable TLP Π , proving also
that the LTL models of Π ∪ LF (Π) are the temporal equilibrium models of Π .
Finally, Section 6 concludes the paper.

2 Preliminaries

Given a set of atoms At, a formula F is defined as in LTL following the grammar:

F ::= p | ⊥ | F1 ∧ F2 | F1 ∨ F2 | F1 → F2 | ©F | �F | ♦F

Loop Formulas for Splitable Temporal Logic Programs 83

where p ∈ At. A theory is a finite set of formulas. We use the following derived
operators1 and notation:

¬F def= F → ⊥
� def= ¬⊥

F ↔ G
def= (F → G) ∧ (G→ F)

©0F
def= F

©iF
def= ©(©i−1F) (with i > 1)

Γ∨ def=
∨

F∈Γ F

for any formulas F,G and set of formulas Γ .
The semantics of the logic of Temporal Here-and-There (THT) is defined in

terms of sequences of pairs of propositional interpretations. A (temporal) inter-
pretation M is an infinite sequence of pairs mi = 〈Hi, Ti〉 with i = 0, 1, 2, . . .
where Hi ⊆ Ti are sets of atoms standing for here and there respectively. For
simplicity, given a temporal interpretation, we write H (resp. T) to denote the
sequence of pair components H0, H1, . . . (resp. T0, T1, . . .). Using this notation,
we will sometimes abbreviate the interpretation as M = 〈H,T〉. An interpreta-
tion M = 〈H,T〉 is said to be total when H = T.

Given an interpretation M and an integer number k > 0, by (M, k) we denote
a new interpretation that results from “shifting” M in k positions, that is, the se-
quence of pairs 〈Hk, Tk〉, 〈Hk+1, Tk+1〉, 〈Hk+2, Tk+2〉, . . . Note that (M, 0) = M.

Definition 1 (satisfaction). An interpretation M = 〈H,T〉 satisfies a formula
ϕ, written M |= ϕ, when:

1. M |= p if p ∈ H0, for any atom p.
2. M |= ϕ ∧ ψ if M |= ϕ and M |= ψ.
3. M |= ϕ ∨ ψ if M |= ϕ or M |= ψ.
4. 〈H,T〉 |= ϕ→ ψ if 〈x,T〉 �|= ϕ or 〈x,T〉 |= ψ for all x ∈ {H,T}.
5. M |= ©ϕ if (M, 1) |= ϕ.
6. M |= �ϕ if ∀j ≥ 0, (M, j) |= ϕ
7. M |= ♦ϕ if ∃j ≥ 0, (M, j) |= ϕ

A formula ϕ is valid if M |= ϕ for any M. An interpretation M is a model of a
theory Γ , written M |= Γ , if M |= α, for all formula α ∈ Γ .

We will make use of the following THT-valid equivalences:

¬(F ∧G) ↔ ¬F ∨ ¬G (11)
¬(F ∨G) ↔ ¬F ∧ ¬G (12)
©(F ⊕G) ↔©F ⊕©G (13)
©⊗ F ↔ ⊗© F (14)

for any binary connective ⊕ and any unary connective ⊗. This means that De
Morgan laws (11),(12) are valid, and that we can always shift the © operator
to all the operands of any connective.

1 As shown in [9], the LTL binary operators U (“until”) and R (“release”) can be
removed by introducing auxiliary atoms.

84 F. Aguado et al.

The logic of THT is an orthogonal combination of the logic of Here-and-There
(HT) [13] and the (standard) linear temporal logic (LTL) [7]. On the one hand,
HT is obtained by disregarding temporal operators, so that only the pair of sets
of atoms 〈H0, T0〉 is actually relevant and we use conditions 1-3 in Definition 1
for satisfaction of propositional theories. On the other hand, if we restrict the
semantics to total interpretations, 〈T,T〉 |= ϕ corresponds to satisfaction of
formulas T |= ϕ in LTL. This last correspondence allows rephrasing item 4 of
Definition 1 as:

4’. 〈H,T〉 |= ϕ → ψ if both (1) 〈H,T〉 |= ϕ implies 〈H,T〉 |= ψ; and (2)
T |= ϕ→ ψ in LTL.

Similarly 〈H,T〉 |= ϕ ↔ ψ if both (1) 〈H,T〉 |= ϕ iff 〈H,T〉 |= ψ; and (2)
T |= ϕ↔ ψ in LTL. The following proposition can also be easily checked.

Proposition 1. For any Γ and any M = 〈H,T〉, if M |= Γ then T |= Γ . �

We proceed now to define an ordering relation among THT models of a temporal
theory, so that only the minimal ones will be selected. Given two interpretations
M = 〈H,T〉 and M′ = 〈H′,T′〉 we say that M′ is lower or equal than M,
written M′ ≤ M, when T′ = T and for all i ≥ 0, H ′

i ⊆ Hi. As usual, M′ < M
stands for M′ ≤M but M′ �= M.

Definition 2 (Temporal Equilibrium Model). An interpretation M is a
temporal equilibrium model of a theory Γ if M is a total model of Γ and there
is no other M′ < M, M′ |= Γ . �

Note that any temporal equilibrium model is total, that is, it has the form 〈T,T〉
and so can be actually seen as an interpretation T in the standard LTL. Temporal
Equilibrium Logic (TEL) is the logic induced by temporal equilibrium models.

When we restrict the syntax to ASP programs and HT interpretations 〈H0, T0〉
we talk about (non-temporal) equilibrium models, which coincide with stable
models in their most general definition [14].

3 Temporal Logic Programs

As we said in the introduction, in [9] it was shown that, by introducing auxiliary
atoms, any temporal theory could be reduced to a normal form we proceed to
describe. Given a signature At, we define a temporal literal as any expression in
the set {p,¬p,©p,¬©p | p ∈ At}.

Definition 3 (Temporal rule). A temporal rule is either:

1. an initial rule of the form

B1 ∧ · · · ∧Bn → C1 ∨ · · · ∨Cm (15)

where all the Bi and Cj are temporal literals, n ≥ 0 and m ≥ 0.

Loop Formulas for Splitable Temporal Logic Programs 85

2. a dynamic rule of the form �r, where r is an initial rule.
3. a fulfillment rule like �(�p→ q) or like �(p→ ♦q) with p, q atoms. �

In the three cases, we respectively call rule body and rule head to the antecedent
and consequent of the (unique) rule implication. In initial (resp. dynamic) rules,
we may have an empty head m = 0 corresponding to ⊥ – if so, we talk about an
initial (resp. dynamic) constraint. A temporal logic program2 (TLP for short) is
a finite set of temporal rules. A TLP without temporal operators, that is, a set
of initial rules without ©, is said to be an ASP program3.

As an example of TLP take the program Π1 consisting of:

¬a ∧©b→©a (16)
�(a→ b) (17)

�(¬b→©a) (18)

where (16) is an initial rule and (17),(18) are dynamic rules.
Looking at the semantics of � it seems clear that we can understand a dynamic

rule �r as an infinite sequence of expressions like ©ir, one for each i ≥ 0. Using
(13),(14) we can shift ©i inside all connectives in r so that ©ir is equivalent
to an initial rule resulting from prefixing any atom in r with ©i. To put an
example, if r = (18) then ©2r would correspond to (¬©2b→©3a).

Definition 4 (i-expansion of a rule). Given i ≥ 0, the i-expansion of a
dynamic rule �r, written (�r)i, is a set of rules defined as:

(�r)i def=

⎧⎨
⎩
∅ if i = 0 and r contains some ‘©’
{©jr | 0 ≤ j ≤ i− 1} if i > 0 and r contains some ‘©’
{©jr | 0 ≤ j ≤ i} otherwise

If r is an initial rule, its i-expansion is defined as:

ri def=
{
∅ if i = 0 and r contains some ‘©’
r otherwise �

In this way, the superindex i refers to the longest sequence of ©’s used in the
rule. For instance, (18)3 would be:

{ (¬b→©a), (¬©b→©2a), (¬©2b→©3a) }

We extend this notation to programs, so that given a TLP Π its i-expansion Πi

results from replacing each initial or dynamic rule r in Π by ri. An interesting
observation is that we can understand eachΠi as a (non-temporal) ASP program
for signature Ati def= {“©j p” | p ∈ At, 0 ≤ j ≤ i} where we understand each
“©j p” as a different propositional atom. This same notation can be applied
2 In fact, as shown in [9], this normal form can be even more restrictive: initial rules

can be replaced by atoms, and we can avoid the use of literals of the form ¬©p.
3 In ASP literature, this is called a a disjunctive program with negation in the head.

86 F. Aguado et al.

to interpretations. If T is an LTL interpretation (an infinite sequence of sets of
atoms) for signature At its i-expansion would be the corresponding propositional
interpretation for signature Ati defined as Ti def= {©jp | 0 ≤ j ≤ i, p ∈ Tj} and
if M = 〈H,T〉 is a THT interpretation then its i-expansion is defined as the HT
interpretation Mi def= 〈Hi,Ti〉. In all these cases, we also define the ω-expansion
(or simply, expansion) as the infinite union of all i-expansions for all i ≥ 0. Thus,
for instance (�r)ω def=

⋃
i≥0(�r)i and similarly for Πω, Atω , Tω and Mω. It is

interesting to note that, for any classical interpretation T′ for signature Atω ,
we can always build a corresponding LTL interpretation T in signature At such
that Tω = T′. The following theorem establishes the correspondence between a
temporal program and its expansion.

Theorem 1. Let Π be a TLP without fulfillment rules. Then 〈T,T〉 is a tem-
poral equilibrium model of Π under signature At iff Tω is a stable model of Πω

under signature Atω. �

The above theorem allows us reading a TLP with initial and dynamic rules as an
ASP program with infinite “copies” of the same rule schemata. In many cases,
this allows us to foresee the temporal equilibrium models of a TLP. For instance,
if we look at our example TLP Π1, it is easy to see that we should get T0 = ∅
as the only rule affecting the situation i = 0 is (17)0 = (a → b). For situation
i = 1 we would have rules (©a → ©b) ∈ (17)1 and (¬b → ©a) ∈ (18)1 so
that, given T0 we obtain ©a ∧©b, that is, T1 = {a, b}. For i = 2, the involved
rules are (©2a → ©2b) ∈ (17)2 and (¬©b → ©2a) ∈ (18)2 so that, given T1

we obtain T2 = ∅. In a similar way, for i = 3 we have rules (©3a → ©3b) and
(¬©2b → ©3a) leading to T3 = {a, b} and then this behaviour is repeated. To
sum up, we get a unique temporal equilibrium model 〈T,T〉 for Π1 where T can
be captured by the regular expression (∅ {a, b})+.

In some cases, however, we may face new situations that are not common in
standard ASP. For instance, consider the TLP Π2 consisting of the two rules
(9), (10). This program has no temporal equilibrium models. To see why, note
that Π2 is equivalent to �(¬© p∨©p→ p) that, in its turn, is LTL-equivalent
to �p. Thus, the only LTL-model T of Π2 has the form Ti = {p} for any i ≥ 0.
However, it is easy to see that the interpretation 〈H,T〉 with Hi = ∅ for all i ≥ 0
is also a THT model, whereas H < T. Note that, by Theorem 1, this means that
the ASP program Πω

2 has no stable models, although it is an acyclic program
and (finite) acyclic programs always have a stable model. The intuitive reason
for this is that atoms ©ip infinitely depend on the future, and there is no way to
build a founded reasoning starting from facts or the absence of them at a given
end point4.

4 In fact, this example was extracted from a first-order counterpart, the pair of rules
¬p(s(X)) → p(X) and p(s(X)) → p(X), that were used in [15] to show that an
acyclic program without a well-founded dependence ordering relation may have no
stable models.

Loop Formulas for Splitable Temporal Logic Programs 87

4 Splitting a Temporal Logic Program

Fortunately, most ASP programs dealing with transition systems represent rules
so that past does not depend on the future. This is what we called future projected
dependence and can be captured by the following subclass of TLPs.

Definition 5 (Splitable TLP). A TLP Π for signature At is said to be
splitable if Π consists of rules of any of the forms:

B ∧N → H (19)
B ∧©B′ ∧N ∧©N ′ →©H ′ (20)

�(B ∧©B′ ∧N ∧©N ′ →©H ′) (21)

where B and B′ are conjunctions of atoms, N and N ′ are conjunctions of neg-
ative literals like ¬p with p ∈ At, and H and H ′ are disjunctions of atoms. �

The set of rules of form (19) in Π will be denoted ini0(Π) and correspond to
initial rules for situation 0. The rules of form (20) in Π will be represented
as ini1(Π) and are initial rules for the transition between situations 0 and 1.
Finally, the set of rules of form (21) is written dyn(Π) and contains dynamic
rules. Both in (20) and (21), we understand that operator © is actually shifted
until it only affects to atoms – this is always possible due to equivalences (13),
(14). We will also use the formulas B,B′, N,N ′, H and H ′ as sets, denoting the
atoms that occur in each respective formula.

Notice that a rule of the form �(B ∧ N → H) (i.e., without © operator) is
not splitable but can be transformed into the equivalent pair of rules B∧N → H
and �(©B ∧©N →©H) which are both splitable. For instance, (17) becomes
the pair of rules:

a→ b (22)
�(©a→©b) (23)

As an example, Π2=(9)-(10) is not splitable, whereas Π1=(16),(18),(22),(23) is
splitable being ini0(Π1)=(22), ini1(Π1)=(16) and dyn(Π1)=(22),(18). In par-
ticular, in (16) we have the non-empty sets B′ = {b}, N = {a} and H ′ = {a},
whereas for (18) the sets are N = {b}, H ′ = {a}. It can be easily seen that the
rules (5)-(8) are also in splitable form.

As we explained in the introduction, the most interesting feature of splitable
TLPs is that we can apply the so-called splitting technique [10] to obtain their
temporal equilibrium models in an incremental way. Let us briefly recall this
technique for the case of ASP programs. Following [10] we define:

Definition 6 (Splitting set). Let Π be an ASP program consisting of (non-
temporal) rules like (19). Then a set of atoms U is a splitting set for Π if, for
any rule like (19) in Π: if H ∩ U �= ∅ then (B ∪N ∪H) ⊆ U . The set of rules
satisfying (B ∪N ∪H) ⊆ U are denoted as bU (Π) and called the bottom of Π
with respect to U . �

88 F. Aguado et al.

Consider the program:

a→ c (24)
b→ d (25)
¬b→ a (26)
¬a→ b (27)

The set U = {a, b} is a splitting set for Π being bU (Π) = {(26), (27)}. The idea
of splitting is that we can compute first each stable model X of bU (Π) and then
use the truth values in X for simplifying the program Π \ bU (Π) from which
the rest of truth values for atoms not in U can be obtained. Formally, given
X ⊆ U ⊆ At and an ASP program Π , for each rule r like (19) in Π such that
B∩U ⊆ X and N ∩U is disjoint from X , take the rule r• : B• ∧N• → H where
B• = (B \U) and N• = (N \U). The program consisting of all rules r• obtained
in this way is denoted as eU (Π,X). Note that this program is equivalent to
replacing in all rules in Π each atom p ∈ U by ⊥ if p �∈ X and by � if p ∈ X .

In the previous example, the stable models of bU (Π) are {a} and {b}. For
the first stable model X = {a}, we get eU (Π \ bU (Π), {a}) = {� → c} so that
X∪{c} = {a, c} should be a stable model for the complete programΠ . Similarly,
for X = {b} we get eU (Π \ bU (Π), {b}) = {� → d} and a “completed” stable
model X ∪ {d} = {b, d}. The following result guarantees the correctness of this
method in the general case.

Theorem 2 (from [10]). Let U be a splitting set for a set of rules Π like (19).
A set of atoms X is an stable model of Π if, and only if both

(i) X ∩ U is a stable model of bU (Π);
(ii) and X \ U is a stable model of eU (Π \ bU (Π), X ∩ U). �

In [10] this result was generalised for an infinite sequence of splitting sets, show-
ing an example of a logic program with variables and a function symbol, so that
the ground program was infinite. We adapt next this splitting sequence result
for the case of splitable TLPs in TEL.

From Definition 4 we can easily conclude that, when Π is a splitable TLP, its
programs expansions have the form Π0 = ini0(Π) and Πi = ini0(Π)∪ini1(Π)∪
dyn(Π)i for i > 0.

Proposition 2. Given a splitable TLP Π for signature At and any i ≥ 0:

(i) Ati is a splitting set for Πω;
(ii) and bAti(Πω) = Πi. �

Given any rule like r like (20) of (21) and a set of atoms X , we define its
simplification simp(r,X) as:

simp(r,X) def=
{
©B′ ∧©N ′ →©H ′ if B ⊆ X and N ∩X = ∅
� otherwise

Loop Formulas for Splitable Temporal Logic Programs 89

Given some LTL interpretation T, let us define now the sequence of programs:

Π [T, i] def= eAti

(
Πω \Πi , Ti

)
that is, Π [T, i] is the “simplification” of Πω by replacing atoms in Ati by their
truth value with respect to Ti. Then, we have:

Proposition 3

Π [T, 0] = (dyn(Π)ω \ dyn(Π)1) ∪ {simp(r, T0) | r ∈ ini1(Π) ∪ dyn(Π)}
Π [T, i] = (dyn(Π)ω \ dyn(Π)i+1) ∪ {©isimp(r, Ti) | r ∈ dyn(Π)}

for any i ≥ 1. �

As we can see, programs Π [T, i] maintain most part of dyn(Π)ω and only differ
in simplified rules. Let us call these sets of simplified rules:

slice(Π,T, 0) def= Π0 = ini0(Π)

slice(Π,T, 1) def= {simp(r, T0) | r ∈ ini1(Π) ∪ dyn(Π)}

slice(Π,T, i+ 1) def= {©isimp(r, Ti) | r ∈ dyn(Π)} for i ≥ 1

Theorem 3 (Splitting Sequence Theorem). Let 〈T,T〉 be a model of a
splitable TLP Π. 〈T,T〉 is a temporal equilibrium model of Π iff

(i) T0 = T0 is a stable model of slice(Π,T, 0) = Π0 = ini0(Π) and
(ii) (T1 \At0) is a stable model of slice(Π,T, 1) and
(iii) (Ti \Ati−1) is a stable model of slice(Π,T, i) for i ≥ 2. �

As an example, let us take again program Π1 = (16), (22), (23), (18). The
program Π0

1 = ini0(Π1) = (22) has the stable model T0 = ∅ = T0. Then
we take slice(Π,T, 1) = {simp(r, T0) | r ∈ ini1(Π) ∪ dyn(Π)} that corre-
sponds to {(©b → ©a), (©a → ©b), (� → ©a)} whose stable model is
{©a,©b} = (T1 \ At0) so that T1 = {a, b}. In the next step, slice(Π,T, 2) =
{©simp(r, T1) | r ∈ dyn(Π)} = {(©2a → ©2b), (�)} whose stable model is
∅ = (T2 \ At1) so that T2 = ∅. Then, we would go on with slice(Π,T, 3) =
{©2simp(r, T2) | r ∈ dyn(Π)} = {(©3a → ©3b), (� → ©3a)} leading to
{©3a,©3b} that is T3 = {a, b} and so on.

5 Loop Formulas

Theorem 3 allows us building the temporal equilibrium models by considering
an infinite sequence of finite ASP programs slice(Π,T, i). If we consider each
program Π ′ = slice(Π,T, i + 1) for signature Ati+1 \ Ati then, since it is a
standard disjunctive ASP program, we can use the main result in [12] to compute
its stable models by obtaining the classical models of a theoryΠ ′∪LF (Π ′) where
LF stands for loop formulas. To make the paper self-contained, we recall next
some definitions and results from [12].

90 F. Aguado et al.

Given an ASP program Π we define its (positive) dependency graph G(Π)
where its vertices are At (the atoms in Π) and its edges are E ⊆ At × At so
that (p, p) ∈ E for any atom5 p, and (p, q) ∈ E if there is an ASP rule in Π
like (19) with p ∈ H and q ∈ B. A nonempty set L of atoms is called a loop of
a program Π if, for every pair p, q of atoms in L, there exists a path from p to
q in G(Π) such that all vertices in the path belong to L. In other words, L is
a loop of iff the subgraph of G(Π) induced by L is strongly connected. Notice
that reflexivity of G(Π) implies that for any atom p, the singleton {p} is also a
loop.

Definition 7 (external support). Given an ASP program Π for signature
At, the external support formula of a set of atoms Y ⊆ At with respect to Π,
written ESΠ(Y) is defined by:

∨
r∈R(Y)

(
B ∧N ∧

∧
p∈H\Y

¬p
)

where R(Y) = {r ∈ Π like (19) | H ∩ Y �= ∅ and B ∩ Y = ∅}. �

Theorem 4 (from [12]). Given a program Π for signature At, and a (classical)
model X ⊆ At of Π then X is a stable model of Π iff for every loop Y of Π, X
satisfies

∨
p∈Y p→ ESΠ(Y) �

This result can be directly applied to each finite ASP program slice(Π,T, i). As
we have slice programs for i = 0, 1, . . . , this means we would obtain an infinite
sequence of classical theories (each program plus its loop formulas). Fortunately,
these theories are not arbitrary. For situations 0, 1, we may obtain loops induced
by dependencies that are due to initial rules, but for i ≥ 2 loops follow a repetitive
pattern, so they can be easily captured using � and © operators. Thus, we just
need to consider loops for situations 0, 1, 2 bearing in mind that any loop at level
i = 2 will occur repeatedly from then on. Given a splitable TLP Π its associated
dependency graph G(Π) is generated from the expanded (ASP) program Π2, so
that its nodes are atoms in the signature At2 and its loops are obtained from this
finite program. For instance, given our example program Π1, its graph G(Π1),
shown in Figure 1, is obtained from the expanded program Π2

1 and, as we can
see, contains the loops {©a,©b} plus {A} for any A ∈ At2.
Theorem 5. Let Π be a splitable TLP and T an LTL model of Π. Then 〈T,T〉
is a temporal equilibrium model of Π iff T is an LTL model of the union of
formulas LF (Y) defined as:

Y ∨ → ESini0(Π)(Y) for any loop Y ⊆ At0 = At
Y ∨ → ESini1(Π)∪dyn(Π)1(Y) for any loop Y ⊆ (At1 \At0)

�
(
Y ∨ → ESdyn(Π)2\dyn(Π)1(Y)

)
for any loop Y ⊆ (At2 \At1) �

5 The original formulation in [12] did not consider reflexive edges, dealing instead with
the idea of paths of length 0.

Loop Formulas for Splitable Temporal Logic Programs 91

a ©a

��

©2a

b

��

©b

��

©2b

��

Fig. 1. Graph G(Π1) (reflexive arcs are not displayed) corresponding to Π2
1

Proof. For a proof sketch, notice that each loop is always inside some slice(Π,T, i);
otherwise, some past situation would necessarily depend on the future. In this way,
all atoms in Ati−1 are external to the loop. This means, for instance, that Y is a
loop of ini1(Π) ∪ dyn(Π)1 iff Y is a loop of slice(Π,T, 1). Also, note that if we
have some rule as (20) in ini1(Π) or as (21) in dyn(Π) and 〈T,T〉 |= Π , then the
assertion T0 |= B ∧©B′ ∧ N ∧©N ′ ∧ ¬ (©H ′ \ Y)∨ is equivalent to requiring
both (T 1 \ At0) |= ©B′ ∧ ©N ′ ∧ ¬ (©H ′ \ Y)∨ and ©B′ ∧ ©N ′ → ©H ′ ∈
slice(Π,T, 1). As a consequence 〈T,T〉 |= Y ∨ → ESini1(Π)∪dyn(Π)1(Y) iff (T1 \
At0) |= Y ∨ → ESslice(Π,T,1)(Y) for any loop Y ⊆ (At1 \At0). Since the first two
slices are affected by initial rules, they are specified in a separate case, whereas
from slice 2 on we get a repetitive pattern using �. �

In our running example Π1 we have At0 = {a, b} and ini0(Π) = (22) with
two loops {a}, {b} where LF ({a}) = (a → ⊥) and LF ({b}) = (b → a). For
(At1 \At0) = {©a,©b} we take the program ini1(Π1)∪dyn(Π)1), that is, rules
(16), (23), (18) ignoring �. We get three loops leading to the corresponding loop
formulas (©a → (¬a ∧©b) ∨ ¬b), (©b → ©a) and (©a ∨©b → ¬b). Finally,
for At2 \At1 we have two loop formulas �(©2b→©2a) and �(©2a→ ¬© b).
It is not difficult to see that Π1 ∪ LF (Π1) is equivalent to the LTL theory:
¬a ∧ ¬b ∧�(©a↔ ¬b) ∧�(©b↔ ¬b).

6 Conclusions

We have presented a class of temporal logic programs (that is ASP programs with
temporal operators) for which their temporal equilibrium models (the analogous
to stable models) can be computed by translation to LTL. To this aim, we
have combined two well-known techniques in the ASP literature called splitting
and loop formulas. This syntactic class has as restriction so that rule heads
never refer to a temporally previous situation than those referred in the body.
Still, it is expressive enough to cover most ASP examples dealing with dynamic
scenarios.

We have implemented a system, called STeLP that uses this technique to
translate a program and calls an LTL model checker to obtain its temporal
equilibrium models, in the form of a Büchi automaton. This tool allows some
practical features like dealing with variables or specifying fluents and actions.
More examples and information can be obtained in [16].

92 F. Aguado et al.

References

1. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273
(1999)

2. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming
paradigm, pp. 169–181. Springer, Heidelberg (1999)

3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K.A. (eds.) Logic Programming: Proc. of the Fifth Inter-
national Conference and Symposium, vol. 2, pp. 1070–1080. MIT Press, Cambridge
(1988)

4. Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: A first approach. In:
Moreno Dı́az, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007.
LNCS, vol. 4739, pp. 241–248. Springer, Heidelberg (2007)

5. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS (LNAI),
vol. 1216. Springer, Heidelberg (1997)

6. Pearce, D.: Equilibrium logic. Annals of Mathematics and Artificial Intelli-
gence 47(1-2), 3–41 (2006)

7. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, Heidelberg (1991)

8. Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Strongly equivalent temporal logic
programs. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS
(LNAI), vol. 5293, pp. 8–20. Springer, Heidelberg (2008)

9. Cabalar, P.: A normal form for linear temporal equilibrium logic. In: Janhunen, T.,
Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 64–76. Springer, Heidelberg
(2010)

10. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th
International Conference on Logic programming (ICLP 1994), pp. 23–37 (1994)

11. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT
solvers. In: Artificial Intelligence, pp. 112–117 (2002)

12. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Annals
of Mathematics and Artificial Intelligence 47, 79–101 (2006)

13. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte
der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische
Klasse, pp. 42–56 (1930)

14. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005)

15. Fages, F.: Consistency of Clark’s completion and existence of stable models. Meth-
ods of Logic in Computer Science 1, 51–60 (1994)

16. Cabalar, P., Diéguez, M.: STeLP – a tool for temporal answer set program-
ming. In: Delgrande, J., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645,
pp. 359–364. Springer, Heidelberg (2011)

Pushing Efficient Evaluation of HEX Programs by
Modular Decomposition�

Thomas Eiter1, Michael Fink1, Giovambattista Ianni2,
Thomas Krennwallner1, and Peter Schüller1

1 Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter,fink,tkren,ps}@kr.tuwien.ac.at
2 Dipartimento di Matematica, Cubo 30B,

Università della Calabria 87036 Rende (CS), Italy
ianni@mat.unical.it

Abstract. The evaluation of logic programs with access to external knowledge
sources requires to interleave external computation and model building. Decid-
ing where and how to stop with one task and proceed with the next is a diffi-
cult problem, and existing approaches have severe scalability limitations in many
real-world application scenarios. We introduce a new approach for organizing
the evaluation of logic programs with external knowledge sources and describe
a configurable framework for dividing the non-ground program into overlapping
possiblysmaller parts called evaluation units. These units will then be processed
by interleaving external evaluations and model building according to an evalua-
tion and a model graph, and by combining intermediate results. Experiments with
our prototype implementation show a significant improvement of this technique
compared to existing approaches. Interestingly, even for ordinary logic programs
(with no external access), our decomposition approach speeds up existing state of
the art ASP solvers in some cases, showing its potential for wider usage.

1 Introduction

Motivated by a need for knowledge bases to access external sources, extensions of
declarative KR formalisms have been conceived that provide this capability, which is
often realized via an API like interface. In particular, HEX programs [6] extend non-
monotonic logic programs under the stable model semantics, with the possibility to
bidirectionally access external sources of knowledge and/or computation. E.g., a rule

pointsTo(X,Y)← &hasHyperlink [X](Y), url(X)

might be used for obtaining pairs of URLs (X,Y), where X actually links Y on the
Web, and &hasHyperlink is an external predicate construct. Besides constant val-
ues, as above, also relational knowledge (predicate extensions) can flow from external
sources to the logic program at hand and vice versa, and recursion involving external
predicates is allowed under suitable safety conditions. This facilitates a variety of ap-
plications which require logic programs to interact with external environments, such as

� This research has been supported by the Austrian Science Fund (FWF) project P20841 and the
Vienna Science and Technology Fund (WWTF) project ICT08-020.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 93–106, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

94 T. Eiter et al.

querying RDF sources using SPARQL [17], bioinformatics [11], combining rules and
ontologies [5], e-government [21], planning [14], and multi-contextual reasoning [2],
to mention a few.

Despite the lack of function symbols, an unrestricted use of external atoms leads
to undecidability, as new constants may be introduced, yielding a potentially infinite
Herbrand universe. However, even under suitable restrictions like domain-expansion
safety [7], the efficient evaluation of HEX-programs is challenging, due to aspects like
nonmonotonic atoms and recursive access (e.g., in transitive closure computations).

Advanced in this regard was [7], which fostered an evaluation approach using a tra-
ditional LP system. Roughly, the values of ground external atoms are guessed, model
candidates are computed as answer sets of a rewritten program, and then those discarded
which violate the guess. A generalized notion of Splitting Set [13] was introduced in [7]
for non-ground HEX-programs, which were then split into subprograms with and with-
out external access, where the former are as large and the latter as small as possible.
They are evaluated with various specific techniques, depending on their structure [7,20].
However, for real-world applications this approach has severe scalability limitations, as
the number of ground external atoms may be large, and their combination causes a huge
number of model candidates and memory outage without any answer set output.

To remedy this problem, we reconsider model computation and make several contri-
butions, which are summarized as follows.

• We present an evaluation framework for HEX-programs, which allows for flexible
program evaluation. It comprises an evaluation graph, which captures a modular de-
composition and partial evaluation order, and a model graph, which comprises for each
node, sets of input models (which need to be combined) and output models to be passed
on. This structure allows us to realize customized divide-and-conquer evaluation strate-
gies, using a further generalization of the Splitting Theorem. As the method works on
nonground programs, value introduction by external calculations and applying opti-
mization techniques based on domain splitting [4] are feasible.
• The nodes in the evaluation graph are evaluation units (program sub-modules), which
noticeably — and different from other decomposition approaches — may overlap and
be non-maximal resp. minimal. In particular, constraint sharing can prune irrelevant
partial models and candidates earlier than in previous approaches.
• A prototype of the evaluation framework has been implemented, which is generic
and can be instantiated with different ASP solvers (in our case, with dlv and clasp). It
features also model streaming, i.e., computation one by one. In combination with early
model pruning, this can considerably reduce memory consumption and avoid termina-
tion without solution output in a larger number of settings.
• In contrast to the previous approach, the new one allows for generating parallelizable
evaluation plans. Applying it to ordinary programs (without external functions) allows
us to do parallel solving with a solver software that does not have parallel computing
capabilities itself (“parallelize from outside”).

In order to assess the new approach, we conducted a series of experiments which clearly
demonstrate its usefulness. The new implementation outperforms the current dlvhex
system significantly, using (sometimes exponentially) less memory and running much
faster. Interestingly, also on some ordinary test programs it compared well to state of

Pushing Efficient Evaluation of HEX Programs by Modular Decomposition 95

the art ASP solvers: apart from some overhead on fast solved instances, our decom-
position approach showed a speed up on top of dlv and clasp. The results indicate a
potential for widening the optimization techniques of ordinary logic programs, and
possibly also other formalisms like multi-context systems. Due to space limitation,
only selected experiments are shown and proofs omitted. The full experimental out-
come with benchmark instances is available at http://www.kr.tuwien.ac.at/
research/systems/dlvhex/experiments.html.

2 Preliminaries

HEX programs [7] are built on mutually disjoint sets C, X , and G of constant, variable,
and external predicate names, respectively. By default, the elements of X (resp., C)
start with a letter in upper (resp., lower) case; elements of G are prefixed with ‘ & ’.
Constant names serve both as individual and predicate names. Noticeably, C may be
infinite. Terms are elements of C∪X . A (higher-order) atom is of form Y0(Y1, . . . , Yn),
where Y0, . . . , Yn are terms; n ≥ 0 is its arity. The atom is ordinary, if Y0 ∈ C. In this
paper, we assume that all atoms are ordinary, i.e., of the form p(Y1, . . . , Yn). An external
atom is of the form &g[X](Y), where X=X1, . . . , Xn and Y =Y1, . . . , Ym are lists
of terms (called input and output list, resp.), and &g is an external predicate name.

HEX-programs (or simply programs) are finite sets of rules r of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn, not βn+1, . . . , not βm, (1)

where m, k ≥ 0, all αi are atoms, all βj are atoms or external atoms, and “not” is
negation as failure (or default negation). If k = 0, r is a constraint, otherwise a non-
constraint. If r is variable-free, k = 1, and m = 0, it is a fact.

We callH(r)= {α1, . . . , αk} the head of r andB(r)=B+(r)∪B−(r) the body of
r, whereB+(r)= {β1, . . . , βn} andB−(r) = {βn+1, . . . , βm} are the (sets of) positive
and negative body atoms, respectively. We write a ∼ b when two atoms a and b unify.

Semantics. Answer sets of ordinary programs [10] are extended to HEX-programs P ,
using the FLP reduct [8]. The Herbrand base HBP of P , is the set of all ground in-
stances of atoms and external atoms occurring in P , obtained by a variable substitution
over C. The grounding of a rule r, grnd(r), and of P , grnd(P) =

⋃
r∈P grnd(r), is

analogous.
An interpretation relative to P is any subset I ⊆ HBP containing only atoms. Sat-

isfaction is defined as follows: I is a model of (i) an atom a ∈ HBP respectively (ii)
a ground external atom a = &g[x](y), denoted I |= a, iff (i) a∈ I respectively (ii)
f&g(I,x,y)= 1, where f&g : 2HBP × Cn+m → {0, 1} is a (fixed) function associated
with &g , called oracle function; intuitively, f&g tells whether y is in the output com-
puted by the external source &g on input x.

For a ground rule r, (i) I |=H(r) iff I |= a for some a ∈ H(r), (ii) I |=B(r) iff
I |= a for every a∈B+(r) and I �|= a for all a∈B−(r), and (iii) I |= r iff I |=H(r) or
I �|=B(r). Then, I is a model of P , denoted I |=P , iff I |= r for all r∈ grnd(P).

The FLP-reduct [8] of P w.r.t. an interpretation I , denoted fP I , is the set of all r ∈
grnd(P) such that I |= B(r). Finally, I ⊆HBP is an answer set of P , iff I is a subset-
minimal model of fP I . By AS(P) we denote the set of all answer sets of P .

http://www.kr.tuwien.ac.at/research/systems/dlvhex/experiments.html
http://www.kr.tuwien.ac.at/research/systems/dlvhex/experiments.html

96 T. Eiter et al.

A ground external atom a is called monotonic, iff I |= a implies I ′ |= a for all
interpretations I, I ′ such that I ⊆ I ′. A non-ground external atom is monotonic, if all its
ground instances are. For practical concerns, we assume that each input argumentXi of
an external atom a= &g[X](Y), has a type label predicate or constant, which is unique
for &g . We then assume that ∀I, I ′,x,y.f&g(I,x,y)= f&g(I ′,x,y) holds for all I and
I ′ which coincide on all the extensions of predicates xi such thatXi is of type predicate;
hence, f&g depends only on the input of a given by predicate extensions and individuals.

3 Formal Framework

The former HEX evaluation algorithm [7] is based on a dependency graph between
non-ground atoms; depending on the above, piecewise evaluation is carried out on ap-
propriate selections of sets of rules (the ‘bottoms’ of a program). In contrast with that,
we base evaluation on dependency between, possibly overlapping, subsets of rules of
the program at hand. We call such groups of rules evaluation units (in short: units);
with respect to the former approach, units are not necessarily maximal. Instead, when
forming units we require that their partial models (i.e., atoms in heads of their rules) do
not interfere with those of other units. This allows for independence, efficient storage,
and easy composition of partial models of distinct units.

Creating an evaluation graph (a graph of units) for a given HEX program is done by an
evaluation heuristics. Note that several possible evaluation graphs exist with highly vary-
ing evaluation performance. Here, we concentrate on the evaluation framework, leaving
the design of optimal heuristics subject to future work. In Section 5 we informally de-
scribe the old heuristics H1 and a simple new heuristics H2 used in the experiments.

For illustrating our contribution, we make use of the following running example.

Example 1. Consider the HEX programP with facts choose(a, c, d) and choose(b, e, f):

r1: plan(a) ∨ plan(b)←
r2: need(p,C)← &cost [plan](C)
r3: use(X) ∨ use(Y)← plan(P), choose(P,X,Y)
r4: need(u,C)← &cost [use](C)
c5: ← need(,money)

External atom &cost has one predicate type input: for any interpretation I and some
constant (predicate) q, f&cost(I, q, C) = 1 iff C = money and I ∩ {q(a), q(f)} �= ∅,
or C = time and I ∩ {q(b), q(c), q(d), q(e)} �= ∅; otherwise 0.

The programP informally expresses to guess a plan and a sub-plan use; resource us-
age is evaluated using &cost , solutions that require money are forbidden by a constraint,
choosing a or f in r1 or r3 requires money , other choices require time . The answer set
of P is {plan(b), use(e), need(p, time), need(u, time)} (omitting facts). ��

We next introduce a new notion of dependencies in HEX programs.

Dependency Information. To account for dependencies between heads and bodies of
rules is a common approach for devising an operational semantics of ordinary logic
programs, as done e.g. by stratification and its refinements like local [18] or modular

Pushing Efficient Evaluation of HEX Programs by Modular Decomposition 97

stratification [19], or by splitting sets [13]. New types of dependencies were consid-
ered in [7], as in HEX programs, head-body dependencies are not the only possible
source of predicate interaction. In contrast to the traditional notion of dependency that
in essence hinges on propositional programs, we consider relationships between non-
ground atoms. We lift the definition of atom dependency in [7] to dependencies among
rules.

Definition 1 (Rule dependencies). Let P be a program with rules r, s ∈ P . We denote
by r→ps (resp. r→ns) that r depends positively (resp. negatively) on s whenever:

(i) a ∈ B+(r), b ∈ H(s), and a ∼ b, then r→ps;
(ii) a ∈ B−(r), b ∈ H(s), and a ∼ b, then r→ns;

(iii) a ∈ H(r), b ∈ H(s), and a ∼ b, then both r→ps and s→pr;
(iv) a ∈ B(r) is an external atom of form &g[X](Y) where X = X1, . . . , Xn, the

inputXi = p is of type predicate, and b ∈ H(s) is an atom of form p(Z), then
– r→ps if &g is monotonic and a ∈ B+(r), and
– r→ns otherwise.

Example 2 (ctd.). According to Definition 1, due to (i) we have dependencies r3→pr1,
c5→pr2, and c5→pr3; and due to (iv) we have dependencies r2→pr1 and r4→pr3. ��

We generically say that r depends on s (r→s), if either r→ps or r→ns.

Evaluation Graph. Using the above notion of rule dependencies, we define the struc-
ture of an evaluation graph consisting of evaluation units depending on one another.

We handle constraints separately from non-constraints. Constraints cannot infer ad-
ditional atoms, hence they can be shared between evaluation units in many cases, while
sharing non-constraints could violate the modularity of partial models. In the former
evaluation algorithm, a constraint could only kill answer sets once all its dependen-
cies were fulfilled. The new algorithm increases evaluation efficiency by duplicating
nonground constraints, allowing them to kill models earlier.

In the following, an evaluation unit is any nonempty subset of the rules of a program.
An evaluation unit graph is a directed graph where each vertex is a unit. Let G =
(U,E) be an evaluation unit graph of program P , v ∈ U , and r ∈ v. We say that the
dependencies of r are covered by G at unit v iff for all rules s of P , if r→s holds
for s ∈ w, w ∈ U , and w �= v, then there is an edge from v to w in G.

Definition 2 (Evaluation graph). An evaluation graph E = (V,E) of a program P
is an acyclic evaluation unit graph such that (a)

⋃
V = P , (b) for each r ∈ P and

each v ∈ V with r ∈ v, negative dependencies of r are covered by E at v, and (c) for
each r ∈ P its positive dependencies are covered by E at every (resp., some) unit v ∈ V
with r ∈ v if r is a non-constraint (resp., constraint).

Note that by acyclicity of E , mutually dependent rules must be in the same unit. Further-
more, a unit can have in its rule heads only atoms which do not match atoms derivable
by other units, due to dependencies between rules deriving unifiable heads.

Let E = (V,E) be an evaluation graph. We write v < w iff there exists a path
from v to w in E , and v ≤ w iff either v < w or v = w. For a unit v ∈ V , let
v< =

⋃
w∈V,v<w w be the set of rules in ‘preceding’ units on which v depends, and let

98 T. Eiter et al.

r1: plan(a) ∨ plan(b).
r3: use(X) ∨ use(Y)←

plan(P), choose(P,X,Y).
derives: plan(A), use(B)

r2: need(p,C)← &cost [plan](C)
r4: need(u,C)← &cost [use](C)
derives: need(A,B)

c5: ← need(,money)
derives nothing

u1

u2

u3

“mk
t:i,j,...

= X” denotes
mk = X
type(mk) = t
mk depends on mi, mj , . . .

(a) Evaluation graph E1

m1
O:−
= {plan(a), use(c)}

m2
O:−
= {plan(a), use(d)}

m3
O:−
= {plan(b), use(e)}

m4
O:−
= {plan(b), use(f)}

m5
I:1
= m1 m6

I:2
= m2

m7
I:3
= m3 m8

I:4
= m4

m9
O:5
= {need(p,money),need(u,time)}

m10
O:6
= {need(p,money),need(u,time)}

m11
O:7
= {need(p,time),need(u,time)}

m12
O:8
= {need(p,time),need(u,money)}

m13
I:9
= m9 m14

I:10
= m10

m15
I:11
= m11 m16

I:12
= m12

m17
O:15
= ∅

u1

u2

u3

(b) Model graphM1

r1: plan(a) ∨ plan(b).
derives: plan(P)

r2: need(p,C)←
&cost [plan](C).

c5:← need(,money).
derives: need(p,C)

r3: use(X) ∨ use(Y)
← plan(P),
choose(P,X,Y).

derives: use(C)

r4: need(u,C)←&cost [use](C).
c5: ← need(,money).
derives: need(u,C)

u1

u2 u3

u4

(c) Evaluation graph E2

m1
O:−
= {plan(a)}

m2
O:−
= {plan(b)}

m3
I:1
= m1

m4
I:2
= m2

m5
O:4
={need(p,time)}

m6
I:1
= m1

m7
I:2
= m2

m8
O:6
= {use(c)}

m9
O:6
= {use(d)}

m10
O:7
= {use(e)}

m11
O:7
= {use(f)}

m12
I:5,10
= {need(p,time),use(e)}

m13
I:5,11
= {need(p,time),use(f)}

m14
O:12
= {need(u,time)}

u1

u2

u3

u4

(d) Model graphM2

Fig. 1. Old vs New strategy: evaluation and model graphs

v≤ = v< ∪ {v}. Furthermore, for each unit v ∈ V , we define predsE(v) = {w ∈ V |
(v, w) ∈ E}.

Example 3 (ctd.). We focus on two specific evaluation graphs of program P . Graph E1
in Fig. 1a corresponds to the former HEX evaluation method. Intuitively, u1 guesses
inputs for u2, which then evaluates rules with external atoms; finally u3 checks con-
straints.

Another (possibly more efficient) evaluation graph is E2 in Fig. 1c: guesses of r1
and r3 are split into separate units u1 and u3, reducing redundancy of external atom
evaluation. The constraint c5 is shared between u2 and u4, and it prunes models in u2,
again reducing redundancy. Note that units with multiple inputs and constraint duplica-
tion do not exist in the former HEX algorithm. ��

Pushing Efficient Evaluation of HEX Programs by Modular Decomposition 99

Algorithm 1. BUILDMODELGRAPH (E = (V,E): evaluation graph)

Output:M = (M, F, unit , type): model graph
M := ∅, F := ∅, U := V
while U �= ∅ do

choose u ∈ U s.t. predsE(u) ∩ U = ∅
let predsE(u) = {u1, . . . , uk} and M ′ := ∅
for m1 ∈ omodsM (u1), . . . , mk ∈ omodsM (uk) do

(a) if m := m1 �� · · · �� mk is defined then
(b) M ′ := EVALUATEUNIT(u, m)

set unit(m) := u and type(m) := I

set unit(m′) := u and type(m′) := O for all m′ ∈M ′

F := F ∪ {(m′, m) | m′ ∈M ′} ∪ {(m, mi) | 1 ≤ i ≤ k}
M := M ∪M ′ ∪ {m}

U := U \ {u}
return (M, F, unit , type)

Model Graph. We now define the model graph, which interrelates models at evalu-
ation units. It is the foundation of our model building algorithm. In the following, a
model m is a set of ground atoms. Each model belongs to a specific unit unit(m),
and has a type type(m) which is either input (I) or output (O). Given a set of mod-
els M and a unit u, we denote by imodsM (u)= {m∈M | unit(m)= u, type(m)= I}
and omodsM (u)= {m∈M | unit(m)= u, type(m)= O} the sets of input and out-
put models of u, resp. Intuitively, when computing answer sets of a program P under
an evaluation graph E , each unit u might have a number of input models: each input
model determines a particular set of input assertions for unit u, and is built in turn by
merging a number of output models mi, one per each unit ui ∈ predsE(u). Given an
input model m for u, the evaluation of u might ‘produce’ a number of output models
depending on m.

Definition 3 (Model graph). Given an evaluation graph E=(U,E) for a pro-
gram P , a model graph M=(M,F, unit , type) is a labelled directed acyclic
graph, where each vertex m∈M is a model, F ⊆M×M , and unit : M→U and
type : M→{I,O} are vertex labelling functions. F consists of the following edges
for each model m: (a) (m,m′) with m∈omodsM (u), m′∈imodsM (u) for some
u∈U s.t. predsE(u)�=∅; and (b) (m,m1), . . . , (m,mk) if m∈imodsM (u), u∈U , and
{u1, . . . , uk}=predsE(u), such that mi=f(m,ui)∈omodsM (ui), 1≤i≤k is some
(unique) output model of ui.

Note that the empty graph is a model graph, and that evaluation units may have no
models in the model graph. This is by intent, as our model building algorithm progresses
from an empty model graph to one with models at each unit (iff the program has an
answer set). Given a model m, we denote by m+ the expanded model of m, which is
the union of m and all output models on whichm transitively depends. Note, that given
m at unit u, m+ is a union of one output model from each unit in u≤.

Example 4 (ctd.). InM2, some expanded models arem+
5 = {need(p,time), plan(b)},

m+
11 = {use(f), plan(b)}, and m+

13 = {need(p,time), use(f), plan(b)}. ��

100 T. Eiter et al.

4 Evaluation

Roughly speaking, answer sets of a program can be built by first obtaining an evalua-
tion graph, and then computing a model graph accordingly. We next demonstrate model
building on our example, informally discussing the main operations BUILDMODEL-
GRAPH, model join ‘ �� ’, and EVALUATEUNIT, which are later defined formally. To
simplify our algorithm, we assume empty dummy input models at units without prede-
cessors.

Example 5 (ctd.). Fig. 1b and 1d show model graphs M1 and M2 resulting from the
evaluation of E1 and E2, resp. On E1, unit u1 is evaluated first, yielding output mod-
els m1, . . . ,m4 containing guesses over plan and use. These models are also input
models for u2; for each of them we first evaluate the external atoms &cost [plan](C)
and &cost [use](C) and then evaluate {r2, r4} using an external solver; we then ob-
tain output models m9, . . . ,m12 which are also input models for u3 = {c5}. Evalu-
ation of u3 yields a model m17 for input model m15, and m+

17 = {need(p, time),
need(u, time), plan(b), use(e)} is the only answer set of P . For evaluation graph E2,
we start with u1, which yields output models m1 and m2. Then we process u2 and u3

in arbitrary order (or even in parallel). One external atom will be evaluated for each
input model of u2. Then, we evaluate {r2, c5}, which yields output modelm5 for input
m4, and no model for m3. For each input model of u3 two models are generated by
r3. Input models for u4 are built by joining output models from u2 and u3 (cf. Ex. 7).
Finally, u4 evaluates one external atom per input model and then gets the models m14

for input m12 and no model for input m13 for {r4, c5}. We again get a single answer
set m+

14 of P . ��

Model Joining. Input models of a unit u are built by combining one output model
mi for each unit ui on which u depends. Only combinations with common ancestry
in the model graph are allowed. To formalize this condition, we introduce the fol-
lowing notion. Unit w is a common ancestor unit (cau) of v in an evaluation graph
E =(V,E) iff v, w∈V , v �=w, and there exist distinct paths p1, p2 from v to w in E s.t.
p1 and p2 overlap only in vertices v and w. We denote by caus(v) the set of all caus of
unit v.

Example 6. In an evaluation graph sketched by dependencies a→b→c→d→e, a→c,
and a→d, we have that caus(a) = {c, d} and no other unit besides a has caus. ��

We next formally define the join operator ‘ �� ’ on models.

Algorithm 2. EVALUATEUNIT(u: evaluation unit,m: input model at u)
Output: output models at u
// determine external atoms that get input only from m
Ain := {&g [x](y) | r ∈ u and x ∩ (⋃r′∈u H(r′)

)
= ∅}

maux := {d&g(x,y) | &g [x](y) ∈ Ain and f&g(m,x,y) = 1} // get replacement facts
u′ := u with external atoms Ain replaced by their corresponding auxiliaries
choose ES ∈ {PLAIN, WELLF, GNC} according to the structure of u′

return ES(u′, m ∪maux) // return set of models for u′ w.r.t. m and maux using ES

Pushing Efficient Evaluation of HEX Programs by Modular Decomposition 101

Definition 4. LetM = (M,F) be a model graph for an evaluation graph E = (V,E)
of a program P , and let u ∈ V be a unit. Let u1, . . . , uk be all the units ui on which u
depends, and letmi ∈ omodsM (ui), 1 ≤ i ≤ k. Then the joinm = m1 �� · · · �� mk =⋃

1≤i≤k mi is defined iff for each u′ ∈ caus(u) there exists exactly one model m′ ∈
omodsM (u′) reachable (inM) from some model mi, 1 ≤ i ≤ k.

Example 7 (ctd.). Building input models for u4 in Figure 1d requires a join operation:
from all pairs of output models at u2 and u3, only those with a common ancestor at
u1 yield a valid input model: u4 has two input models m5 �� m10 and m5 �� m11; they
havem2 as a common ancestor at u1. For other combinations, the join is undefined. ��

Evaluation Algorithm. Alg. 1 builds our model graph: U contains units for which
models still have to be calculated; in each iteration step (a) determines all input mod-
els m for unit u, step (b) calculates output models originating in m.

EVALUATEUNIT (Alg. 2) evaluates unit u; it creates output models for given input
model m. Given a possibly non-ground external atom &g [x](y), we denote by the or-
dinary atom d&g(x,y) its corresponding replacement atom. These replacement atoms
are instrumental for evaluating rules containing external atoms; we apply the approach
of “HEX component evaluation” introduced in [20]: intuitively, we evaluate external
atom functions wrt. a given input model m, augment m with replacement facts for in-
puts where f&g evaluates to 1, replace external atoms by corresponding replacement
atoms in all rule bodies, and then evaluate the resulting program R wrt. augmented
input model m′. Depending on the structure of R, we can choose between different
evaluation strategies as described in [20]; PLAIN: if R contains no external atoms, we
create output modelsAS(R∪m′) by an external solver; WELLF: if external atoms inR
are monotonic, and none is contained in a negative dependency cycle, we use a fixpoint
algorithm; and GNC: in all other cases, we use a guess-and-check algorithm.

Soundness and Completeness. Because of constraint duplication, the evaluation graph
does not partition the input program, and the customary notion of splitting set does
not apply to evaluation units. We define a generalized bottom of a program, that is a
way to split a program into two parts with a nonempty intersection containing certain
constraints. We prove that generalized bottoms behave similar as bottoms gbA created
by global splitting sets and EVAL [7], to which we only refer here.

Definition 5. Given a HEX program P , a generalized bottom P ′ ⊆ P is a subset of P
such that there exists a global splitting set A and the set C = P ′ \ gbA(P) is a set of
constraints with B−(C) ⊆ A.

Definition 6 (as in [7]). For an interpretation I and a program Q, the global residual,
gres(Q, I), is the program obtained from Q as follows: (i) add all the atoms in I as
facts, and (ii) for each “resolved” external atom a = &g[X](Y) occurring in some
rule of Q, replace a with a fresh ordinary atom d&g(c) for each tuple c output by
EVAL(&g, Q, I).

Theorem 1. Let P be a domain-expansion safe HEX program over atoms U , and let
P ′ be a generalized bottom of P with global splitting set A and constraints C. Then
M \D ∈ AS(P) iffM ∈ AS(gres(P ′′, I)) with I ∈ AS(P ′) and P ′′ = (P \P ′)∪C′,

102 T. Eiter et al.

where D is the set of additional atoms in gres(P ′′) with predicate name of form d&g ,
and C′ = {c ∈ C | B+(c) ∩ (U \ A) �= ∅} is the set of constraints in P ′ with body
atoms unifying with atoms in A as well as with atoms in U \A.

Intuitively, this is a relaxation of the previous nonground HEX splitting theorem regard-
ing constraints: those matching atoms derived in the splitting set as well as in the resid-
ual program may be added to P ′ iff they are not removed from the residual program.
The benefit of sharing such constraints is a reduced set of models AS(P ′).

The following lemma applies the above splitting theorem to the evaluation graph and
the model graph, and is instrumental for showing correctness of the algorithm.

Lemma 1. Given an evaluation graph E = (VE , EE) of a HEX program P , and an
evaluation unit u ∈ VE , it holds that (i) the subprogram u< is a generalized bottom of
the subprogram u≤; furthermore if for each predecessor u′ ∈ predsE(u) we have that
models {m′+ |m′ ∈ omodsM (u′)} are the models of u′≤, it holds that (ii) step (a) of
BUILDMODELGRAPH creates the models of bottom u< as imodsM (u), and (iii) step
(b) builds models omodsM (u) of u s.t. {m+ |m∈ omodsM (u)} are the models of u≤.

Using this lemma, we can inductively prove that each iteration of BUILDMODEL-
GRAPH chooses a unit u without models, creates input models and then output models
at u, such that all expanded models at unit u are answer sets of subprogram u≤. In this
manner, the model graph is extended until no longer possible. We have the following
result.

Theorem 2. Given an evaluation graph E = (V,E) of a HEX program P , BUILD-
MODELGRAPH returns the model graph M = (M,F) such that {m1 �� · · · �� mn |
mi ∈ omodsM (ui), ui ∈V } = AS(P).

5 Implementation and Experiments

The presented framework has been implemented to become the next version of
the dlvhex solver: dlvhex 2.0 (http://www.kr.tuwien.ac.at/research/
systems/dlvhex/). The current implementation supports dlv (http://www.
dlvsystem.com/) and (for a non-disjunctive fragment of HEX) clasp+gringo
(http://potassco.sourceforge.net/) as back-end ASP solvers.

In addition to the framework described above, an online model calculation algorithm
has been implemented that can easily be extended to add query support. So far, the
evaluation strategy PLAIN has been implemented; implementing other strategies just
requires adapting legacy code to new C++ data structures. Two evaluation heuristics
are implemented: the former dlvhex evaluation heuristics H1 and a new heuristics H2
(cf. Ex. 3). H1 was ported for comparing dlvhex 1.x to 2.x; it splits a given program
into strongly connected components and external components (which are as small as
possible). The new H2 places rules into units as follows: (i) combine rules r1, r2 when-
ever r1→s and r2→s and there is no rule t s.t. exactly one of r1, r2 depends on t;
(ii) combine rules r1, r2 whenever s→r1 and s→r2 and there is no rule t s.t. t depends
on exactly one of r1, r2; but (iii) never combine rules r, s if r contains external atoms
and r→s. Intuitively, H2 builds an evaluation graph that puts all rules with external

http://www.kr.tuwien.ac.at/research/systems/dlvhex/
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
http://www.dlvsystem.com/
http://www.dlvsystem.com/
http://potassco.sourceforge.net/

Pushing Efficient Evaluation of HEX Programs by Modular Decomposition 103

atoms and their successors into one unit, while separating rules creating input for dis-
tinct external atoms. This avoids redundant computation and joining unrelated models.

Experimental Setup and Benchmarks. A series of 6 concurrent tests were run on
a Linux machine with two quad-core Intel Xeon 3GHz CPUs and 32GB RAM. The
system resources were limited to a maximum of 3GB memory usage and 600 secs
execution time for each run. The computation task for all experiments was to compute
all answer sets of two kinds of benchmark instances:

• MCS. The first kind of benchmark instances, motivating this research, are HEX pro-
grams capturing multi-context systems (MCS)—a formalism for interlinking distributed
knowledge sources with possibly nonmonotonic “bridge rules” (see [2]). Each instance
consists of 5–10 guessed atoms of input and output interpretations for each of 7–9
knowledge sources, which are realized by external atoms in constraints. Most guesses
are eliminated by these constraints, the remaining guesses are linked by HEX rules rep-
resenting bridge rules of the modeled system. These benchmarks come in 14 different
flavors (bridge rule topologies and sizes), each with 10 randomized single instances. In-
stances have an average of 400 models, with values ranging from 4 to ∼20,000 models.
• REVIEWER SELECTION (REVSEL). The second class of benchmark instances encode
the selection of reviewers for conference papers—taking conflicts into account, some
of which are encoded by external atoms. For these instances, we vary the number T
of conference tracks and the number P of papers per track. The number of reviewers
available for each track equals P and there is one reviewer assigned to all tracks (estab-
lishing a dependency between conference track assignments). Each paper must have 2
reviews and no reviewer gets more than 2 papers assigned. We generated conflicts such
that we limit the number of overall models, as well as the number of candidate models
per conference track, before checking conflicts modeled via external atoms.

We consider two special classes of reviewer selection. In REVSEL 1, we first com-
pared the old and the new evaluation approach for a very specific program structure, as
well as the old and new implementation with the ported (old) evaluation heuristics H1.
For that we used P = 20 papers per conference track and varied the number of tracks
T . External atoms and conflicts were configured such that all conference tracks have
two solutions before evaluating constraints with external atoms, and one overall model
after program evaluation. The REVSEL 2 experiment involved no external atoms: we
used T = 5 conference tracks and varied the number of papers per track. Conflicts are
generated such that there are 1-2 solutions per conference track, with a shared reviewer
such that each programQ has 9 answer sets in total.

Results. It turned out that on the considered problems, the new evaluation approach out-
performs the old one significantly, using less memory (sometimes exponentially less).
For the MCS benchmark instances, the old approach had 34 timeouts and 83 memory
outages; thus only 16% of all instances triggered some output. The average time and
memory usage for successful termination was 86 seconds and 623MB, resp. Both values
have a high standard deviation. In contrast, the new approach successfully calculated all
models for all instances with an average solve time of 3 seconds and an average mem-
ory usage of 32MB, both with a small standard deviation. This big improvement makes
usage of HEX programs in this problem domain feasible for the first time. Note that this

104 T. Eiter et al.

 1

 10

 100

 700

1 10 20 30 40

E
va

lu
at

io
n

tim
e

/ s
ec

s
(lo

gs
ca

le
)

Number of conference tracks T

 dlvhex1 (with H1)
 dlvhex2 with H1
 dlvhex2 with H2

Fig. 2. REVSEL 1 (P = 20), out-of-memory for T ≥ 12

problem domain was originally not generated for benchmarking HEX programs, so it is
not specifically geared towards showing beneficial effect of our new approach.

Results for REVSEL 1 are shown in Fig. 2: an exponential increase of runtime is
visible in the old approach, compared to linear time growth of the new one. Memory
usage behaves similarly. In general, increasing T causes timeouts, yet bigger T ’s ex-
haust memory. Under H1, dlvhex 2 acts better, which may be explained with technical
improvements. As a surprising result of REVSEL 2, our divide-and-conquer approach
performs better than solving Q directly with native solvers. This has been observed for
both dlv and clasp as a backend. Our prototype incurs a small overhead for decomposing
the program: small instances with running time < 2 sec are slower than native solvers,
while big instances using H2 were solved faster and with significantly less memory
usage.

6 Discussion and Conclusion

We illustrated a new general technique for evaluating nonmonotonic logic programs
with external sources of computation. Our work is clearly related to work on program
modularity under stable model semantics, including, e.g., the seminal paper [13] on
splitting sets, and [15,12], which lifted them to modular programs with choice rules
and disjunctive rules and allow for “symmetric splitting.” An important difference is
that our decomposition approach works for nonground programs and explicitly consid-
ers the possibility that modules overlap. It is tailored to efficient evaluation of arbitrary
programs, rather than to facilitate module-style logic programming with declarative
specifications. In this regard, it is in line with previous work on HEX program evalua-
tion [7] and decomposition techniques for efficient grounding of ordinary programs [3].

The work presented here can be furthered in different directions. As for the prototype
reasoner, a rather straightforward extension is to support brave and cautious reasoning
on top of HEX programs, while incorporating constructs like aggregates or preference
constraints requires more care and efforts. Regarding program evaluation, our general

Pushing Efficient Evaluation of HEX Programs by Modular Decomposition 105

evaluation framework provides a basis for further optimizations that, as indicated by
our experiments, are also of interest for ordinary logic programs. Indeed, the generic
notions of evaluation unit, evaluation plan and model graph allow to specialize and
improve our framework in different respects: first, evaluation units (which may contain
duplicated constraints), can be chosen according to a proper estimate of the number
of answer sets (the fewer, the better); second, evaluation plans can be chosen by ad-
hoc optimization modules, which may give preference to time, space, or parallelization
requirements, or to a combination of the three. Furthermore, our framework is ready to
a form of coarse-grained distributed computation at the level of evaluation units (in the
style of [16]): evaluation graphs naturally encode parallel evaluation plans. Independent
units can in fact be evaluated in parallel, while our ‘model streaming’ architecture lends
itself to pipelined evaluation of subsequent modules. Improving reasoning performance
by decomposition has been investigated in [1], however, only wrt. monotonic logics.

As a last remark on possible optimizations, we observe that the data flow (constituted
by intermediate answer sets) between evaluation units can be optimized using proper
notions of model projection, such as in [9]. Model projections would tailor input data
of evaluation units to necessary parts of intermediate answer sets; however, given that
different units might need different parts of the same intermediate input answer set, a
space-saving efficient projection technique is not straightforward.

References

1. Amir, E., McIlraith, S.: Partition-based logical reasoning for first-order and propositional
theories. Artif. Intell. 162(1-2), 49–88 (2005)

2. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
AAAI 2007, pp. 385–390. AAAI Press, Menlo Park (2007)

3. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: Theory and
implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366,
pp. 407–424. Springer, Heidelberg (2008)

4. Eiter, T., Fink, M., Krennwallner, T.: Decomposition of Declarative Knowledge Bases with
External Functions. In: IJCAI 2009, pp. 752–758. AAAI Press, Menlo Park (2009)

5. Eiter, T., Ianni, G., Krennwallner, T., Schindlauer, R.: Exploiting conjunctive queries in de-
scription logic programs. Ann. Math. Artif. Intell. 53(1-4), 115–152 (2008)

6. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order
reasoning and external evaluations in answer-set programming. In: IJCAI 2005, pp. 90–96
(2005)

7. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declarative rules
with external evaluations for semantic-web reasoning. In: Sure, Y., Domingue, J. (eds.)
ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006)

8. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in answer
set programming. Artif. Intell. 175(1), 278–298 (2011)

9. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean search
problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547,
pp. 71–86. Springer, Heidelberg (2009)

10. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
Next Generat. Comput. 9(3-4), 365–386 (1991)

106 T. Eiter et al.

11. Hoehndorf, R., Loebe, F., Kelso, J., Herre, H.: Representing default knowledge in biomed-
ical ontologies: Application to the integration of anatomy and phenotype ontologies. BMC
Bioinf. 8(1), 377 (2007), doi:10.1186/1471-2105-8-377

12. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity Aspects of Disjunctive
Stable Models. J. Artif. Intell. Res. 35, 813–857 (2009), doi:10.1613/jair.2810

13. Lifschitz, V., Turner, H.: Splitting a Logic Program. In: ICLP 1994, pp. 23–38. MIT Press,
Cambridge (1994)

14. Van Nieuwenborgh, D., Eiter, T., Hadavandi, E.: Conditional planning with external func-
tions. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483,
pp. 214–227. Springer, Heidelberg (2007)

15. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model semantics for
smodels programs. Theory Pract. Log. Prog. 8(5-6), 717–761 (2008)

16. Perri, S., Ricca, F., Sirianni, M.: A parallel ASP instantiator based on DLV. In: DAMP 2010,
pp. 73–82. Springer, Heidelberg (2010)

17. Polleres, A.: From SPARQL to rules (and back). In: WWW 2007, pp. 787–796. ACM, New
York (2007)

18. Przymusinski, T.C.: On the Declarative Semantics of Deductive Databases and Logic Pro-
grams. In: Foundations of Deductive Databases and Logic Programming, pp. 193–216 (1988)

19. Ross, K.: Modular Stratification and Magic Sets for Datalog Programs with Negation. J.
ACM 41(6), 1216–1267 (1994)

20. Schindlauer, R.: Answer-set programming for the Semantic Web. Ph.D. thesis, Vienna Uni-
versity of Technology (2006)

21. Zirtiloǧlu, H., Yolum, P.: Ranking semantic information for e-government: complaints man-
agement. In: OBI 2008, vol. (5), pp. 1–7. ACM, New York (2008),
doi:10.1145/1452567.1452572

Approximations for Explanations of Inconsistency
in Partially Known Multi-Context Systems�

Thomas Eiter, Michael Fink, and Peter Schüller

Institute of Information Systems
Vienna University of Technology

Favoritenstrasse 11, A-1040 Vienna, Austria
{eiter,fink,schueller}@kr.tuwien.ac.at

Abstract. Multi-context systems are a formalism to interlink decentralized and
heterogeneous knowledge based systems (contexts), which interact via possibly
nonmonotonic bridge rules. Inconsistency is a major problem, as it renders such
systems useless. In applications involving confidentiality or trust, it is likely that
complete knowledge about all system parts is unavailable. To address inconsis-
tency in such scenarios, we extend existing notions for characterizing inconsis-
tency in multi-context systems: we propose a representation of partial knowledge,
and introduce a formalism for approximating reasons of inconsistency. We also dis-
cuss query selection strategies for improving approximations in situations where
a limited number of queries can be posed to a partially known context.

1 Introduction

In recent years, there has been an increasing interest in interlinking knowledge bases,
in order to enhance the capabilities of systems. Based on McCarthy’s idea of contex-
tual reasoning [11], the Trento School around Giunchiglia and Serafini has developed
multi-context systems in many works, in which the components (called contexts) can
be interlinked via so called bridge rules for information exchange, cf. [9,5]. General-
izing this work, Brewka and Eiter [4] presented nonmonotonic multi-context systems
(MCSs) as a generic framework for interlinking possibly heterogeneous and nonmono-
tonic knowledge bases.

Typically, an MCS is not built from scratch, but assembled from components which
were not specifically designed to be part of a more complex system. Unintended interac-
tions between contexts thus may easily arise and cause inconsistency, which renders an
MCS useless. Making bridge rules defeasible [2] avoids inconsistency and cures faults
in silent service. However, underlying reasons for inconsistency may remain unnoticed
and cause unpleasant side-effects that are difficult to track.

Therefore, to help the user analyze, understand and eventually repair inconsisten-
cies, suitable notions of consistency-based diagnosis and entailment-based explanation
for inconsistency were introduced in [8]. Intuitively, diagnoses represent possible sys-
tem repairs, while explanations characterize sources of inconsistency. An omniscient
view of the system was assumed, where the user has full information about all contexts

� Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-020.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 107–119, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

108 T. Eiter, M. Fink, and P. Schüller

including their knowledge bases and semantics. However, in many real world scenarios
full information is not available [3], and some contexts are black boxes with internal
knowledge bases or semantics that are not disclosed due to intellectual property or pri-
vacy issues (e.g., banks will not disclose their full databases to credit card companies).
Partial behavior of such contexts may be known, however querying might be limited,
e.g., by contracts or costs. In such scenarios, inconsistencies can only be explained
given the knowledge of the system one has, and since this is partial, the explanations
obtained just approximate the actual situation, i.e., those explanations one would obtain
if one would have full insight.

In other words, this calls for explaining inconsistency in an MCS with partial knowl-
edge about contexts, which raises the following technical challenges:

– how to represent partial knowledge about the system, and
– how to obtain reasonable approximations forexplanations of inconsistency in the

actual system (under full knowledge), ideally in an efficient way.

The first issue depends on the nature of this knowledge, and a range of possibilities ex-
ists. The second issue requires an assessment methodto determine such approximations.
We tackle both issues and make the following contributions.

• We develop a representation of partially known contexts, which is based on context
abstraction with Boolean functions. Partially defined Boolean functions [15,7] are used
to capture partially known behavior of a context.
• We exploit these representations to define over- and underapproximations of diag-
noses and explanations for inconsistency according to [8], in the presence of partially
known contexts. The approximations target either the whole set of diagnoses, or one
diagnosis at a time; analogously for explanations.
• For scenarios where partially known contexts can be asked a limited number of
queries, we consider query selection strategies.
• Finally, we discuss computational complexity of recognizing approximate explana-
tions. In contrast to semantic approximations for efficient evaluation [12], our approx-
imations handle incompleteness, which usually increases complexity. Fortunately, our
approach does not incur higher computational cost than the case of full information.

Our results extend methods for inconsistency handling in MCSs to more realistic set-
tings, e.g., in health-care where privacy issues need to be respected, without increasing
computational cost. In practical applications our approximations reduce the set of sys-
tem parts relevant for restoring consistency, and allow for better focussing of repair
efforts.

2 Preliminaries

A heterogeneous nonmonotonic MCS [4] consists of contexts, each composed of a
knowledge base with an underlying logic, and a set of bridge rules

A logic L = (KBL,BSL,ACCL) is an abstraction, which allows to capture many
monotonic and nonmonotonic logics, e.g., classical logic, description logics, default
logics, etc. It consists of the following components:

Approximations for Explanations of Inconsistency in Partially Known MCSs 109

– KBL is the set of well-formed knowledge bases of L. We assume each element of
KBL is a set of “formulas”.

– BSL is the set of possible belief sets, where a belief set is a set of “beliefs”.
– ACCL : KBL → 2BSL is a function describing the semantics of the logic by

assigning to each knowledge base a set of acceptable belief sets.

Each context has its own logic, which allows to model heterogeneous systems.
A bridge rule models information flow between contexts: it can add information to a

context, depending on the belief sets accepted at other contexts. Let L = (L1, . . . , Ln)
be a tuple of logics. An Lk-bridge rule r over L is of the form

(k : s)← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (1)

where 1 ≤ ci ≤ n, pi is an element of some belief set of Lci , and k refers to the context
receiving formula s. We denote by hd (r) the formula s in the head of r.

Definition 1. A multi-context system M = (C1, . . . , Cn) is a collection of contexts
Ci = (Li, kbi, bri), 1 ≤ i ≤ n, whereLi = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi

a knowledge base, and bri is a set of Li-bridge rules over (L1, . . . , Ln). By IN i =
{hd (r) | r ∈ bri} we denote the set of possible inputs of context Ci added by bridge
rules, and by brM =

⋃n
i=1 br i the set of all bridge rules of M .

In addition, for each H ⊆ IN i we must have kbi ∪H ∈ KBLi .
The following running example involves policies and trust information which are

often non-public and distributed [3], and thus demonstrates the necessity of reasoning
under incomplete information. For more examples of MCSs see [4,8].

Example 1. Consider an MCS M consisting of a permission database C1 = Cperm

and a credit card clearing context C2 = Ccc, and the following bridge rules:

r1 : (perm : person(Person)) ← �.
r2 : (cc : card(CreditCard)) ← (perm : person(Person)),

not (perm : grant(Person)),
(perm : ccard(Person ,CreditCard)).

r3 : (perm : ccValid(CreditCard)) ← (cc : valid(CreditCard)).

Here r1 defines a set of persons which is relevant for permission evaluation in Cperm;
r2 specifies that, if some person is not granted access, credit cards of that person have
to be checked; and r3 translates validation results to Cperm.

The MCS formalism is defined on ground bridge rules, which are in the follow-
ing denoted by ri,<constants>, e.g., r2,moe,cnr2 denotes r2 with Person &→ moe
and CreditCard &→ cnr2 . Unless stated otherwise, we assume that bridge rules are
grounded with Person ∈ {nina,moe} and CreditCard ∈ {cnr1 , cnr2}.

We next describe the context internals: Cperm is a datalog program with the fol-
lowing logic: KBperm contains all syntactically correct datalog programs, BSperm

contains all possible answer sets, and ACCperm returns for each datalog program the
corresponding answer sets. The knowledge base kbperm is as follows:

110 T. Eiter, M. Fink, and P. Schüller

group(nina, vip). ccard(nina, cnr1). ccard(moe, cnr2).
igrant(Person) ← person(Person), group(Person , vip).
grant(Person) ← igrant(Person).
grant(Person) ← ccValid(CreditCard), ccard(Person ,CreditCard).

ContextCcc is a credit card clearing facility, which typically is neither fully disclosed to
the operator, nor can it be queried without significant cost. Hence, one obviously has to
deal with partial knowledge: Ccc accepts valid(X) iff card X is valid and validation is
requested by card(X). Without full insight or a history of past requests, weonly know
the behavior of Ccc when no bridge rules are applicable: ACCcc(kbcc ∪ ∅) = {∅}. �

Equilibrium semantics selects certain belief states of an MCSM = (C1, . . . , Cn) as ac-
ceptable. A belief state is a sequence S = (S1, . . . , Sn), s.t. Si ∈BSi. A bridge rule (1)
is applicable in S iff for 1≤ i≤ j: pi ∈ Sci and for j < l ≤m: pl /∈ Scl

. Let app(R,S)
denote the set of bridge rules in R that are applicable in belief state S.

Intuitively, an equilibrium is a belief state S, where each context Ci takes into ac-
count the heads of all bridge rules that are applicable in S, and accepts Si.

Definition 2. A belief state S = (S1, . . . , Sn) ofM is an equilibrium iff, for 1 ≤ i ≤ n,
the following condition holds: Si ∈ ACCi(kbi ∪ {hd (r) | r ∈ app(bri, S)}). By
EQ(M) we denote the set of equilibria of M .

Example 2 (ctd). Assume that M1 is the MCS M with just person(nina) present at
Cperm. As nina is in the vip group there is no need to verify a credit card, andM1 has
the following equilibrium (we omit facts, that are present in kbperm): ({person(nina),
igrant(nina), grant(nina)}, ∅). �

Inconsistency in an MCS is the lack of an equilibrium. No information can be obtained
from an inconsistent MCS, i.e., reasoning tasks on equilibria become trivial. Therefore
we analyze inconsistency in order to explain and eventually repair it.

Explanation of Inconsistency. We use the notions of consistency-based diagnosis and
entailment-based inconsistency explanation in MCSs [8], which aim at describing in-
consistency by sets of involved bridge rules.

Given an MCSM and a setR of bridge rules, byM [R] we denote the MCS obtained
from M by replacing its set of bridge rules brM with R (in particular, M [brM] = M
andM [∅] isM with no bridge rules). ByM |= ⊥ we denote thatM is inconsistent, i.e.,
EQ(M) = ∅, and by M �|= ⊥ the opposite. For any set of bridge rules A, heads(A) =
{α← | α←β ∈ A} are the rules in A in unconditional form. For pairs A = (A1, A2)
and B = (B1, B2) of sets, the pointwise subset relation A ⊆ B holds iff A1 ⊆ B1 and
A2 ⊆ B2. We denote by S|A the projection of all sets X in set S to set A, formally
S|A = {X ∩A | X ∈ S}.

Definition 3. Given an MCS M , a diagnosis of M is a pair (D1, D2), D1, D2 ⊆ brM ,
s.t. M [brM \D1 ∪ heads(D2)] �|= ⊥.D±(M) is the set of all such diagnoses.D±

m(M)
is the set of all pointwise subset-minimal diagnoses of an MCS M .

A diagnosis points out bridge rules which need to be modified to restore consistency;
each rule can either be deactivated, or added unconditionally. Diagnoses represent

Approximations for Explanations of Inconsistency in Partially Known MCSs 111

concrete system repairs by these two basic actions, but thus also characterize more
sophisticated ways of repair [8]. Moreover, weassume that context knowledge bases
are consistent if no bridge rule heads are added (i.e., ∀Ci : ACCi(kbi) �= ∅) so restor-
ing consistency is always possible (by removing all bridge rules). For more background
and discussion of this notion, we refer to [8]; for inconsistency explanations cf. also
Definition 9. We next give an example of an inconsistent MCS and its diagnoses.

Example 3 (ctd). LetM2 be the MCSM with just person(moe) present at Cperm, and
assume the following full knowledge about Ccc: all credit cards are valid.
M2 is inconsistent: moe is not in the vip group, card verification is required by

r2,moe,cnr2 , and Ccc accepts valid (cnr2). This allows Cperm to derive grant(moe),
which blocks applicability of r2,moe,cnr2 . Therefore,M2 contains an unstable cycle and
is inconsistent. Two⊆-minimal diagnoses ofM2 are then as follows: ({r2,moe,cnr2}, ∅)
(do not validate cnr2), and (∅, {r2,moe,cnr2}) (always validate cnr2)1. This points
out r2 as a likely culprit of inconsistency. Indeed, r2 should intuitively contain
igrant(Person) in its body instead of grant(Person). �

In this work we develop an approach which is able to point out a problem in r2, without
requiring complete knowledge.

3 Information Hiding

In this section, we introduce an abstraction of contexts which allows us to calculate di-
agnoses and explanations. We generalize this abstraction to represent partial knowledge,
i.e., contexts Ci where either kbi, or ACCi is only partially known.

Context Abstraction. We abstract from a context’s knowledge base kbi and logic Li

by a Boolean function over the context’s inputs IN i (see Definition 1) and over the
context’s output beliefs OUT i, which are those beliefs p in BSi that occur in some
bridge rule body in brM as “(i:p)” or as “not (i:p)” (see also [8]).

Recall that a Boolean function (BF) is a map f : Bk → B where k ∈ N and B =
{0, 1}. Such a BF can also be characterized either by its true points T (f) = {�X |
f(�X)= 1}, or by its false points F (f) = {�X | f(�X)= 0}.

Given a set X ⊆U = {u1, . . . , uk}, we denote by �XU the characteristic vector of X
wrt. some universe U (i.e. �XU = (b1, . . . , bk), where bi = 1 if ui ∈X , 0 otherwise). If
understood, we omit U . Using this notation, we characterize sets of bridge rule heads
I ⊆ IN i and sets of output beliefs O ⊆ OUT i by vectors �IIN i

and �OOUT i
, respec-

tively. For example, given O = {a, c}, and OUT i = {a, b, c}, we have �O = (1, 0, 1).

Example 4 (ctd). We use the following (ordered) sets for inputs and output beliefs:
IN cc = {card(cnr1), card(cnr2)}, and OUTcc = {valid(cnr1), valid(cnr2)}. �

Definition 4. The unique BF fCi : B|IN i|+|OUT i| → B corresponds to the semantics
of context Ci in an MCS M as follows:

∀I ⊆ IN i, O ⊆ OUT i : fCi(�I, �O) = 1 iff O ∈ ACCi(kbi ∪ I)
∣∣
OUT i

.

1 Other ⊆-minimal diagnoses of M2 are ({r1,moe}, ∅), ({r3,cnr2}, ∅), and (∅, {r3,cnr2}).

112 T. Eiter, M. Fink, and P. Schüller

Example 5 (ctd). With full knowledge (see Example 3), Ccc has as corresponding BF
the function fCcc(X,Y,X, Y) = 1 for all X,Y ∈ B, 0 otherwise. �

If a context accepts a belief set O′ for a given input I , we obtain the true point (�I, �O) of
f with O = O′ ∩OUT i. Similarly, each non-accepted belief set yields a false point of
f . Due to projection, different accepted belief sets can characterize the same true point.

Consistency Checking. Context abstraction provides sufficient information to calcu-
late output-projected equilibria of the given MCS. Hence, it also allows for checking
consistency and calculating diagnoses and explanations.

Given a belief state S = (S1, . . . , Sn) in MCS M , the output-projected belief state
S′ = (S′

1, . . . , S
′
n), S′

i = Si ∩ OUT i, 1 ≤ i ≤ n, is the projection of S to the
output beliefs ofM . In the following, we implicitly use the prime “ ′ ” to denote output-
projection.

Definition 5 (see also [8]). An output-projected belief state S′ = (S′
1, . . . , S

′
n) of an

MCS M is an output-projected equilibrium iff, for 1 ≤ i ≤ n, it holds that S′
i ∈

ACCi(kbi ∪ {hd (r) | r ∈ app(bri, S′)})
∣∣
OUT i

.

By EQ′(M) we denote the set of output-projected equilibria of M .

Since app(br i, S)= app(br i, S
′), a simple consequence is:

Lemma 1 ([8]). For each equilibrium S of an MCS M , S′ is an output-projected equi-
librium; conversely, for each output-projected equilibrium S′ of M there exists at least
one equilibrium T of M such that T ′ = S′.

This means, that output-projected equilibria provide precise characterizations of equi-
libria on beliefs which are relevant for bridge rule applicability, i.e., on output beliefs,
but are indifferent on all other beliefs. The representation of a context by a BF provides
an input/output oracle, projected to output beliefs. Therefore, the BF is sufficient for
consistency checking as well.

Thus, towards a representation of an MCS with partial knowledge of certain contexts,
we next provide a notation for an MCSM where the knowledge of a contextCi is given
by BF f , rather than kbi.

Definition 6. Given MCS M = (C1, . . . , Cn), BF f and index 1 ≤ i ≤ n. We denote
by M [i/f] the MCS M where context Ci is replaced by a context C(f) which contains
the set br i of bridge rules, a logic with a signature that contains INi ∪OUTi, and
kbC(f) and ACCC(f), such that fC(f) = fCi .

For instance,C(f) could be based on classical logic or logic programming, with kbC(f)

over IN ∪OUT as atoms encoding f by clauses (rules) that realize the correspon-
dence.

We now show that a BF representation of a context is sufficient for calculating
output-projected equilibria. We denote by M [i1, . . . , ik/f1, . . . , fk] the substitution of
pairwise distinct contexts Ci1 , . . . , Cik

by C(f1), . . . , C(fk), respectively.

Theorem 1. Let M = (C1, . . . , Cn) be an MCS, and let fi1 , . . . , fik
be BFs that cor-

respond to Ci1 , . . . , Cik
. Then, EQ′(M) = EQ′(M [i1, . . . , ik/fi1 , . . . , fik

]).

Approximations for Explanations of Inconsistency in Partially Known MCSs 113

Partially Known Contexts. As the BF representation concerns only output beliefs, it
already hides part of the context, while we are still able to analyze inconsistency. Now
we generalize the BF representation to partially defined Boolean functions (pdBFs) (cf.
[15,7]), to represent contexts where we have only partial knowledge about their output-
projected behavior.

In applications, existence of such partial knowledge is realistic: for some bridge rule
firings one may know an accepted belief set of a context, but not whether other accepted
belief sets exist. Similarly one may know that a context is inconsistent for some input
combination, but not whether it accepts some belief set for other input combinations.

Formally, a pdBF pf is a function from Bk to B ∪ {�}, where � stands for undefined
(cf. [15]). It is equivalently characterized by two sets [7]: its true points T (pf) = {�X |
pf (�X) = 1} and its false points F (pf) = {�X | pf (�X) = 0}. We denote by U(pf) =
{�X | pf (�X) = �} the unknown points of pf . A BF f is an extension of a pdBF pf ,
formally pf ≤ f , iff T (pf)⊆T (f) and F (pf)⊆F (f).

We connect partial knowledge of context semantics and pdBFs as follows.

Definition 7. A pdBF pf : Bk → B ∪ {�} is compatible with a context Ci in an MCS
M iff pf ≤ fCi (where fCi is as in Definition 4).

Therefore, if a pdBF is compatible with a context, one extension of this pdBF is exactly
fCi , which corresponds to the context’s exact semantics.

Example 6 (ctd). Partial knowledge as given in Example 1 can be expressed by the
pdBF pf cc with T (pf cc) = {(0, 0, 0, 0)} and F (pf cc) = {(0, 0, A,B) | A,B ∈
B, (A,B) �= (0, 0)}. (See Example 4 for the variable ordering.) �
In the following, a partially known MCS (M, i, pf) consists of an MCS M , where
context Ci is partially known, given by pdBF pf which is compatible with Ci.

4 Approximations

In this section, we develop a method for calculating under- and overapproximations
of diagnoses and explanations, using the pdBF representation for a partially known
context Ci. For simplicity, we only consider the case that a single context in the system
is partially known (the generalization is straightforward).

Diagnoses. Each diagnosis is defined in terms of consistency, which is witnessed by
an output-projected equilibrium. Such an equilibrium requires a certain set of output
beliefs O to be accepted by the context Ci, in the presence of certain bridge rule heads
I . This means that fCi has true point (�I, �O). For existence of an equilibrium where Ci

gets I as input and acceptsO, no more information is required from fCi than this single
true point. We thus can approximate the set of diagnoses of M as follows:

• Completing pf with false points, we obtain the extension pf with T (pf) = T (pf).
The set of diagnoses witnessed by T (pf) contains a subset of the diagnoses which
actually occur in M , therefore we obtain an underapproximation.
• Completing pf with true points, we obtain the extensionpf as the extension of pf with
the largest set of true points. The set of diagnoses witnessed by pf contains a superset of
the diagnoses which actually occur in M , providing an overapproximation. Formally,

114 T. Eiter, M. Fink, and P. Schüller

Theorem 2. Given a partially known MCS (M, i, pf), the following holds:

D±(M [i/pf]) ⊆ D±(M) ⊆ D±(M [i/pf]).

Example 7 (ctd). The extensions pf cc and pf
cc

are as follows:

T (pf cc) = B4 \ F (pf cc), F (pf cc) = F (pf cc),
T (pf

cc
) = T (pf cc), and F (pf

cc
) = B4 \ T (pf cc).

The underapproximation D±(M2[cc/pf cc
]) yields several diagnoses, for instance,

Dα = ({r1,moe}, ∅), Dβ = ({r2,moe,cnr2}, ∅), and Dγ = (∅, {r3,cnr2}).
The overapproximationD±(M2[cc/pf cc]) contains the empty diagnosis, i.e., Dδ =

(∅, ∅), because M2[cc/pf cc] is consistent; the latter has the following two equilibria:
({person(moe)}, ∅) and ({person(moe)}, {valid(cnr1)}). �

Subset-minimality. If we approximate ⊆-minimal diagnoses, the situation is differ-
ent. Obtaining additional diagnoses may cause an approximated diagnosis to be subset-
minimal which is no diagnosis under full knowledge. However, at least one minimal
diagnosis under full knowledge is a superset of the former.Vice versa, missing certain
diagnoses can yield an approximated subset-minimal diagnoses which is a superset of
(at least one) minimal diagnosis. However, if a diagnoses is subset-minimal under both,
over- and underapproximation, then it is also a minimal diagnosis under full knowledge.

Theorem 3. Given a partially known MCS (M, i, pf), the following hold:

∀D ∈ D±
m(M [i/pf]) ∃D′ ∈ D±

m(M) : D′ ⊆ D (2)

∀D ∈ D±
m(M) ∃D′ ∈ D±

m(M [i/pf]) : D′ ⊆ D (3)

D±
m(M [i/pf])∩D±

m(M [i/pf])⊆D±
m(M) (4)

Example 8 (ctd). Note that the diagnoses in Example 7 are in fact the ⊆-minimal diag-
noses of the under- and overapproximation, and they are actual ⊆-minimal diagnoses.
Under complete knowledge (Example 3), additional ⊆-diagnoses exist which are not
obtained by underapproximation. Overapproximation, on the other hand, yields consis-
tency and therefore an empty⊆-minimal diagnosisDδ. In Section 5 we develop a strategy
for improving this approximation if limited querying of the context is possible. �

We can use the overapproximation to reason about the necessity of bridge rules in
actual diagnoses: a necessary bridge rule is present in all diagnoses2.

Definition 8. For a set of diagnoses D, the set of necessary bridge rules is nec(D) =
{r | ∀(D1, D2) ∈ D : r ∈ D1 ∪D2}.

Proposition 1. Given a partially known MCS (M, i, pf), the set of necessary bridge
rules for the overapproximation is necessary in the actual set of diagnoses. This is true
for both arbitrary and ⊆-minimal diagnoses:

nec(D±(M [i/pf])) ⊆ nec(D±(M)), and nec(D±
m(M [i/pf])) ⊆ nec(D±

m(M)).
2 Note that we do not consider the dual notion of relevance, as it is trivial in our definition of

diagnosis: all bridge rules are relevant in any D±(M).

Approximations for Explanations of Inconsistency in Partially Known MCSs 115

While simple, this property is useful in practice: in a repair of an MCS according to a
diagnosis, necessary bridge rules need to be fixed in any case.

Inconsistency explanations. So far we have only described approximations for diag-
noses. We now extend our notions to inconsistency explanations (in short ‘explana-
tions’), which are dual characterizations to diagnoses [8]. Intuitively, they point out
bridge rules such that in the presence of bridge rulesE1 and the absence of bridge rules
E2 the MCS necessarily is inconsistent. Thus explanations allow to separate indepen-
dent sources of inconsistency, while diagnoses characterize repairs. We first recall their
definition.

Definition 9. Given an MCS M , an inconsistency explanation of M is a pair (E1, E2)
s.t. for all (R1, R2) where E1 ⊆ R1 ⊆ brM andR2 ⊆ brM \E2, it holds thatM [R1 ∪
heads(R2)] |= ⊥. ByE±(M) we denote the set of all inconsistency explanations ofM ,
and by E±

m(M) the set of all pointwise subset-minimal ones.

Example 9. With complete knowledge as in Example 3, there is one ⊆-minimal expla-
nation: ({r1,moe , r2,moe,cnr2 , r3,cnr2}, {r2,moe,cnr2 , r3,cnr2}). �

Explanations are defined in terms of non-existing equilibria, therefore we can use wit-
nessing equilibria as counterexamples. From the definitions we get:

Proposition 2. For a given MCS M and a pair (D1, D2) ⊆ brM × brM of sets of
bridge rules, the following statements are equivalent:

(i) (D1, D2) is a diagnosis, i.e., (D1, D2) ∈ D±(M),
(ii) M [brM \D1 ∪ heads(D2)] has an equilibrium, and

(iii) (R1, R2) = (brM \ D1, D2) is a counterexample for all explanation candidates
(E1, E2) ⊆ (brM \D1, brM \D2).

Furthermore, such pairs (D1, D2) characterize all counterexamples that can exist for
explanation candidates.

As a consequence, it is possible to characterize explanations in terms of diagnoses.

Lemma 2. Given an MCS M , a pair (E1, E2) with E1, E2 ⊆ brM is an inconsis-
tency explanation of M iff there exists no diagnosis (D1, D2) ∈ D±(M) such that
(D1, D2) ⊆ (brM \ E1, brM \ E2).

In fact we can sharpen the above by replacing D± with D±
m.

Using this characterization, we can infer the following: a subset of the actual set of
diagnoses characterizes a superset of the actual set of explanations. This is true since a
subset of diagnoses will rule out a subset of explanations, allowing more candidates to
become explanations. Conversely, a superset of diagnoses characterizes a subset of the
explanations. Applying Theorem 2, we obtain:

Theorem 4. Given a partially known MCS (M, i, pf), the following hold:

E±(M [i/pf]) ⊆ E±(M) ⊆ E±(M [i/pf])

∀E ∈ E±
m(M [i/pf]) ∃E′ ∈ E±

m(M) : E′ ⊆ E

∀E ∈ E±
m(M) ∃E′ ∈ E±

m(M [i/pf]) : E′ ⊆ E

116 T. Eiter, M. Fink, and P. Schüller

Therefore, the extensions pf and pf allow to underapproximate and overapproximate
diagnoses as well as inconsistency explanations.

Example 10 (ctd). From pf
cc

as in Example 7 we obtain one ⊆-minimal explanation:
Eμ = ({r1,moe , r2,moe,cnr2}, {r3,cnr2}). This explanation is a subset of the actual
minimal explanation in Example 9. �

5 Limited Querying

Up to now we used existing partial knowledge to approximate diagnoses, assuming
that more information is simply not available. However, in practical scenarios like our
running example, one can imagine that a (small) limited number of queries to a partially
known context can be issued. Therefore we next aim at identifying queries to contexts,
such that incorporating their answers into the pdBF will yield the best guarantee of
improvement in approximation accuracy.

Given a partially known MCS (M, i, pf), let D±
Δ(M, i, pf) = D±(M [i/pf]) \

D±(M [i/pf]) (in short: D±
Δ(pf) or D±

Δ) be the set of potential diagnoses, which are
possible from the overapproximation but unconfirmed by the underapproximation. A
large set of potential diagnoses provides less information than a smaller set. Hence, we
aim at identifying unknown points of pf which remove from D±

Δ as many potential
diagnoses as possible. To this end we introduce the concept of a witness as an unknown
point and a potential diagnosis that is supported by this point if it is a true point.

Definition 10. Given a partially known MCS (M, i, pf), a witness is a pair (�X, D) s.t.
�X ∈ U(pf) andD ∈ D±(M [i/f�X])∩D±

Δ, where f�X is the BF with the single true point
T (f�X) = {�X}. We denote by W(M,i,pf) the set of all witnesses wrt. (M, i, pf). If clear
from the context, we omit subscript (M, i, pf).

Based on W we define the set wnd(�X) = {D | (�X, D) ∈ W} of potential diagnoses
witnessed by unknown point �X, and the set ewnd(�X) = {D ∈ wnd(�X) | ��X

′ �= �X :
(�X′
, D) ∈W} of potential diagnoses exclusively witnessed by �X. These sets are used to

investigate how much the set of potential diagnoses is reduced when adding information
about the value of an unknown point �X to pf .

Lemma 3. Given a partially known MCS (M, i, pf), and �X ∈ U(pf), let pf �X:0 (pf �X:1)
the pdBF that results from pf by making �X a false (true) point. Then D±

Δ(pf �X:1) =
D±

Δ(pf) \ wnd(�X), and D±
Δ(pf �X:0) = D±

Δ(pf) \ ewnd(�X).

Note that ewnd(�X) ⊆ wnd(�X) ⊆ D±
Δ. If �X is a true point, |wnd(�X)| many potential di-

agnoses become part of the underapproximation; otherwise |ewnd(�X)| many
potential diagnoses are no longer part of the overapproximation. Knowing the value
of �X therefore guarantees a reduction of D±

Δ by |ewnd(�X)| diagnoses.

Proposition 3. Given a partially known MCS (M, i, pf), for all �X ∈ U(pf) such that
the cardinality of ewnd(�X) is maximal, the following holds:

max
u∈B

∣∣D±
Δ (pf �X:u)

∣∣ ≤ min
�Y∈U(pf)

max
v∈B

∣∣D±
Δ (pf �Y:v)

∣∣ . (5)

Approximations for Explanations of Inconsistency in Partially Known MCSs 117

Proposition 3 suggests to query unknown points �X where |ewnd(�X)| is maximum. If
there are more false points than true points (e.g., for contexts that accept only one belief
set for each input), using ewnd instead of wnd is even more suggestive. If the primary
interest are necessary bridge rules (cf. previous section), we can base query selection on
the number of bridge rules which become necessary if a certain unknown point is a false
point. Let nwnd(�X) = nec(D± \ ewnd(�X)) \ nec(D±), where D± = D±(M [i/pf]),
then |nwnd(�X)| many bridge rules become necessary if �X is identified as a false point.

Another possible criterion for selecting queries can be based on the likelihood of er-
rors, similar to the idea of leading diagnoses [10]. Although a different notion of diagno-
sis is used there, the basic idea is applicable to our setting: if multiple problematic bridge
rules are less likely than single ones, or if we have confidence values for bridge rules
(e.g., some were designed by an expert, others by a less experienced administrator),
then we can focus confirming or discarding diagnoses that have a high probability. If
we have equal confidence in all bridge rules, this amounts to using cardinality-minimal
potential diagnoses for determining witnesses and guiding the selection of queries.

Example 11 (ctd). In our example, the set of potential diagnoses is large, but the
cardinality-minimal diagnosis is the empty diagnosis, which has the following property:
bridge rule input at Ccc is {card(cnr2)}, and Ccc either accepts ∅ or {valid(cnr1)}
(the unrelated credit card). Therefore, points (0, 1, 0, 0) and (0, 1, 1, 0) are the only wit-
nesses for Dδ, and querying these two unknown points is sufficient for verifying or
falsifying Dδ. (Note that pf cc has 12 unknown points, the four known points (one true
and three false points) are (0, 0, X, Y) s.t. X,Y ∈ B.) After updating pf with these
points (false points, if all credit cards are valid), the overapproximation yields the ⊆-
minimal diagnoses; this result is optimal. �

Instead of membership queries which check whether O ∈ ACC(kb ∪ I) for given
(�I, �O), one could use stronger queries that provide the value of ACC(kb ∪ I) for a
given�I. On the one hand this allows for a better query selection, roughly speaking be-
cause combinations of unknown points witness more diagnoses exclusively than they
do individually. On the other hand, considering such combinations increases compu-
tational cost. Another extension of limited querying is the usage of meta-information,
e.g., monotonicity, or consistency properties, of a partially known context.

6 Discussion

Approximation Quality. In the previous section, we related unknown points to poten-
tial diagnoses. This correspondence allows to obtain an estimate for the quality of an
approximation, simply by calculating the ratio between known and potential true (resp.,
false) points: a high value of |T (pf)|

|T (pf)|+|U(pf)| indicates a high underapproximation qual-
ity, while a low value indicates an underapproximation distant from the actual system.
This is analogous for overapproximation, exchanging T (pf) with F (pf). These esti-
mates can be calculated efficiently and prior to calculating an approximation; a decision
between under- and overapproximation could be based on this heuristic. Concerning

118 T. Eiter, M. Fink, and P. Schüller

quality note also that even if nothing is known about the behavior of some context C,
the overapproximation accurately characterizes inconsistencies that do not involve C.

Complexity and Computation. Since our approximation methods deal with incom-
plete knowledge, it is important how their computational complexity compares to the
full knowledge case. For the latter setting, the following results were established in [8],
depending on the complexity of output checking for contexts Ci, which is deciding for
Ci, I ⊆ INi andO ⊆ OUTi whetherO ∈ ACC(kbi∪I)|OUTi . With output checking
in P (resp., NP, ΣP

k), recognizing correct diagnoses is in NP (resp., NP, ΣP
k) while

recognizing minimal diagnoses and minimal explanations is in DP (resp., DP, DP
k);

completeness holds in all cases.
Let us first consider the case where some contexts Ci are given by their correspond-

ing BF fi (such that fi(�I, �O) can be evaluated efficiently). As we know that context Ci

accepts only input/output combinations which are true points of f , we simply guess all
possible output beliefs Oi of all contexts and evaluate bridge rules to obtain Ii; if for
some Ci as above, fi(�Ii, �Oi)=0 we reject, otherwise we continue checking context ac-
ceptance for other contexts. Overall, this leads to the same complexity as if all contexts
were total. Thus, detecting explanations of inconsistency for an MCS M , where some
contexts are given as BFs, has the same complexity as if M were given regularly.

Approximations are done on an MCS where a pdBF pf is given instead of a BF f , in
a representation such that the value of pf (�I, �O) can be computed efficiently. This implies
that the extensions pf and pf can be computed efficiently as well. Hence, approxima-
tions of diagnoses and explanations have the same complexity as the exact concepts.
Dealing with incomplete information usually increases complexity, as customary for
many nonmonotonic reasoning methods. Our approach, however, exhibits no such in-
crease in complexity, even though it provides faithful under- and overapproximations.

Learning. To learn a BF seems suggestive for our setting of incomplete information.
However, explaining inconsistency requires correct information, therefore pac-learning
methods [15] are not applicable. On the other hand, exact methods [1] require properties
of the contexts which are beneficial to learning and might not be present3. Furthermore,
contexts may only allow membership queries, which are insufficient for efficient learn-
ing of many concept domains [1]. Furthermore, partially known contexts may not allow
many, even less a polynomial number of queries (which is the target for learnability).
Most likely it will thus not be possible to learn the complete function. Hence learning
cannot replace our approach, but it can be useful as a preprocessing step to increase the
amount of partial information.

7 Related Work and Conclusion

To the best of our knowledge, explaining inconsistency in multi-context systems with
partial specification has not been addressed before. Weakly related to our work is [14],
who aimed at approximating abductive diagnoses of a single knowledge base.
They replaced classical entailment with approximate entailment of [12], motivated by

3 Note that, even if a context’s logic is monotonic (resp., positive) this does not imply that the
BF corresponding to the context is monotonic (resp., positive).

Approximations for Explanations of Inconsistency in Partially Known MCSs 119

computational efficiency. However, there is no lack of information about the knowledge
base or semantics as in our case.

Our over- and underapproximations of D± and E± are reminiscent of lower and
upper bounds of classical theories (viewed as sets of models [13]), known as cores and
envelopes. The latter also were used for (fast) sound, resp. complete, reasoning from
classical theories.

The limited querying approach is related to optimal probing strategies [6]. However,
we do not require probing to localize faults in the system, but to obtain information
about the behavior of system parts, which have a much more fine grained inner structure
and more intricate dependencies than the systems in [6]. (Those system parts have as
possible states ‘up’, and ‘down’, while in MCSs each partially known context possibly
accepts certain belief sets for certain inputs.)

Ongoing further work includes an implementation of the approach given in this pa-
per, and the usage of metainformation about context properties to improve approxima-
tion accuracy. The incorporation of probabilistic information into the pdBF representa-
tion is another interesting topic for future research.

References

1. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)
2. Bikakis, A., Antoniou, G.: Distributed defeasible contextual reasoning in ambient computing.

In: Aarts, E., Crowley, J.L., de Ruyter, B., Gerhäuser, H., Pflaum, A., Schmidt, J., Wichert,
R. (eds.) AML 2008. LNCS, vol. 5355, pp. 308–325. Springer, Heidelberg (2008)

3. Bonatti, P.A., Olmedilla, D.: Rule-based policy representation and reasoning for the semantic
web. In: Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.-L.,
Tolksdorf, R. (eds.) Reasoning Web. LNCS, vol. 4636, pp. 240–268. Springer, Heidelberg
(2007)

4. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
AAAI, pp. 385–390 (2007)

5. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: IJCAI, pp. 268–273
(2007)

6. Brodie, M., Rish, I., Ma, S., Odintsova, N.: Active probing strategies for problem diagnosis
in distributed systems. In: IJCAI, pp. 1337–1338 (2003)

7. Crama, Y., Hammer, P.L., Ibaraki, T.: Cause-effect relationships and partially defined boolean
functions. Annals of Operations Research 16, 299–326 (1988)

8. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency in non-
monotonic multi-context systems. In: KR, pp. 329–339 (2010)

9. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: How we can do without
modal logics. Artificial Intelligence 65(1), 29–70 (1994)

10. de Kleer, J.: Focusing on probable diagnoses. In: AAAI, pp. 842–848 (1991)
11. McCarthy, J.: Notes on formalizing context. In: IJCAI, pp. 555–562 (1993)
12. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artificial Intelligence 74(2),

249–310 (1995)
13. Selman, B., Kautz, H.: Knowledge Compilation and Theory Approximation. J. ACM 43(2),

193–224 (1996)
14. ten Teije, A., van Harmelen, F.: Computing approximate diagnoses by using approximate

entailment. In: KR, pp. 256–265 (1996)
15. Valiant, L.G.: A theory of the learnable. Commun. ACM 27, 1134–1142 (1984)

Relational Information Exchange and Aggregation in
Multi-Context Systems�

Michael Fink, Lucantonio Ghionna, and Antonius Weinzierl

Institute of Information Systems
Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
{fink,weinzierl}@kr.tuwien.ac.at, l.ghionna@mat.unical.it

Abstract. Multi-Context Systems (MCSs) are a powerful framework for
representing the information exchange between heterogeneous (possibly non-
monotonic) knowledge-bases. Significant recent advancements include imple-
mentations for realizing MCSs, e.g., by a distributed evaluation algorithm and
corresponding optimizations. However, certain enhanced modeling concepts like
aggregates and the use of variables in bridge rules, which allow for more succinct
representations and ease system design, have been disregarded so far.

We fill this gap introducing open bridge rules with variables and aggregate ex-
pressions, extending the semantics of MCSs correspondingly. The semantic treat-
ment of aggregates allows for alternative definitions when so-called grounded
equilibria of an MCS are considered. We discuss options in relation to well-
known aggregate semantics in answer-set programming. Moreover, we develop
an implementation by elaborating on the DMCS algorithm, and report initial ex-
perimental results.

1 Introduction

The Multi-Context System (MCS) formalism is a flexible and powerful tool to realize
the information exchange between heterogeneous knowledge bases. An MCS captures
the information available in a number of contexts, each consisting of a knowledge base,
represented in a given ‘logic’, e.g., classical logic, description logics or logic programs
under answer set semantics, and a set of so-called bridge rules modeling the information
exchange between contexts.

Initial developments of the formalism [11] have been complemented with relevant
language extensions, e.g., to incorporate nonmonotonic reasoning [4] or preferences [1],
and recently algorithms and implementations have been devised to compute (partial)
equilibria, i.e. the semantics of MCSs, in a distributed setting [2]. Through these re-
search efforts the formal framework has become amenable for practical application.

However, most KR formalisms that have successfully been applied in real world
scenarios build on a predicate logic setting, rather than on a propositional language,
since the former allows for a more succinct representation. This eases the modeling
task for the knowledge engineer and often is essential to make the representation task
practically feasible. MCSs are flexible enough to incorporate such formalisms, but for

� Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-020.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 120–133, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Relational Information Exchange and Aggregation in MCSs 121

modeling the information exchange one must specify the intended knowledge exchange
by ‘ground’ bridge rules, because bridge rules currently do not allow for variables.

Moreover, an important aspect in relevant scenarios is the possibility to aggre-
gate data, for instance in case of accounting to sum up sales. For standard database
query languages, dedicated language constructs exist for aggregation and more re-
cently, aggregates have become a hot topic in Answer Set Programming (ASP), e.g.,
cf. [7,14,8,13,12]. However, MCSs for such scenarios may include contexts that merely
represent relational data, like RDF stores, where the logic just provides a simple means
for querying that is not capable to express aggregation. Allowing for aggregate con-
structs in bridge rules of an MCS, enables aggregation even if the logic of a context
lacks this expressivity. Additionally, it goes beyond aggregation within a particular
context formalism since it enables a form of aggregation, where data is collected from
different contexts.

Example 1. Consider a company selling various products. The logistics departmentC1

has to refit a shop C2, if more than 25 products of a certain model category have been
sold. Sales management C3 is responsible for product categorization and placement.
The quantity to be delivered for a product depends on the free storage capacity at the
shop for that product, and on whether it is on sale, as decided by sales management.
We would like to represent the respective information exchange in an MCS with bridge
rules like:

(1: refit)← SUM {Y,X : (2: sold(X,Y)), (3: cat(X,mc))} ≥ 25. (1)

(1: deliv(X,Y)) ← (2: cap(X,Y)), not(3: off sale(X)). (2)

Aggregating information from different knowledge sources is an important task in var-
ious application domains, e.g., in bioinformatics or linguistics, where for instance the
number of occurrences of specific words in a text corpus is combined with grammati-
cal relations between them. To cope with these in current MCSs one might introduce
additional contexts with suitable logics for the aggregation. However, such an approach
incurs a significant overhead in representing the information exchange.

The research issues addressed in this work thus are: first to enable a more succinct
representation of the information exchange in MCSs, and second to extend their model-
ing capabilities wrt. information aggregation. This is achieved by introducing so-called
open bridge rules that may contain variables and aggregate expressions. Our contribu-
tions are summarized as follows:

– We formalize above intuitions, defining syntax and semantics—in terms of
equilibria—of so-called relational MCSs with aggregates, lifting the framework
in [3] and extending bridge rules with aggregate atoms based on basic notions in [7].
We show that this lifting causes an exponential increase of complexity.

– We study semantic alternatives, in particular grounded equilibria that avoid self-
justification of beliefs via bridge rules incorporating foundedness criteria. By the
introduction of aggregates, due to their potential nonmontonicity, different semantic
options exist. We provide several definitions and correspondence results in analogy
to well-known answer set semantics in presence of aggregates [7,14,8].

– Extending a recently developed algorithm and its implementation [2] in order to
handle relational MCSs and aggregates, we develop an implementation, called

122 M. Fink, L. Ghionna, and A. Weinzierl

DMCSAgg, for the distributed computation of (partial) equilibria. Respective initial
experimental results are reported and discussed briefly.

Overcoming current shortcomings of MCSs concerning the treatment of relational in-
formation and aggregation in theory and implementation, our work pushes the MCS
framework further towards practical applicability.

2 Preliminaries

Multi-Context Systems as defined in [3] build on an abstract notion of a logic L as a
triple (KBL,BSL,ACC L), where KBL is the set of well-formed knowledge bases of
L, BSL is the set of possible belief sets, and ACC L : KBL → 2BSL is a function
describing the semantics of L by assigning each knowledge-base a set of acceptable
sets of beliefs.

A Multi-Context System M = (C1, . . . , Cn) is a collection of contexts Ci =
(Li, kbi, bri) where Li is a logic, kbi ∈ KBLi a knowledge base and bri a set of
bridge rules of the form:

(k: s)← (c1: p1), . . . , (cj : pj), not(cj+1: pj+1), . . . , not(cm: pm), (3)

such that 1 ≤ k ≤ n and kb ∪ s is an element of KBLk
, as well as 1 ≤ c� ≤ n

and p� is element of some belief set of BS c�
, for all 1 ≤ � ≤ m. For a bridge rule r,

by hd(r) we denote the belief s in the head of r, while body(r), pos(r), and neg(r)
denote the sets {(c�1 : p�1), not(c�2 : p�2)}, {(c�1 : p�1)}, and {(c�2 : p�2)}, respectively,
where 1 ≤ �1 ≤ j and j < �2 ≤ m.

A belief state S = (S1, . . . , Sn) is a belief set for every context, i.e., Si ∈ BS i. A
bridge rule r of form (3) is applicable wrt. S, denoted by S |= body(r), iff p� ∈ Sc�

for
1 ≤ � ≤ j and p� /∈ Sc�

for j ≤ � ≤ m. We denote the heads of all applicable bridge
rules of context Ci wrt. belief state S by appi(S) = {hd(r) | r ∈ bri ∧ S |= body(r)}.

The semantics of an MCS is defined in terms of equilibria where an equilibrium
(S1, . . . , Sn) is a belief state such that Si ∈ ACC i(kbi ∪ appi(S)).

Aggregates in Answer-Set Programming provide a suitable basis for the introduction
of aggregate atoms in bridge rules. In particular we introduce aggregates for MCSs
adopting the syntax and elementary semantic notions of [7]. We assume familiarity
with non-ground ASP syntax and semantics and just briefly recall relevant concepts.

A standard literal is either an atom a or a default negated atom not a. A set term is
either a symbolic set of the form {Vars:Conj }, where Vars is a list of variables and
Conj is a conjunction of standard literals, or a ground set, i.e., set of pairs 〈t:Conj〉,
where t is a list of constants and Conj is a conjunction of ground atoms. If f is an
aggregate function symbol and S is a set term, then f(S) is called an aggregate function,
mapping a multiset of constants to an integer. An aggregate atom is an expression of
the form f(S)≺T , where f(S) is an aggregate function, ≺∈ {=, <,≤, >,≥}, and T
is a variable or a constant called guard. A (normal)1 logic program with aggregates, a
program for short, is a set of rules a← b1, . . . , bk, not bk+1, . . . , not bm. where a is an

1 Anticipating the following adaption to MCSs, we disregard disjunction in rule heads.

Relational Information Exchange and Aggregation in MCSs 123

atom and bj is either an atom or an aggregate atom, for all 1 ≤ j ≤ m. A rule is safe iff
(a) every variable in a standard atom of r (i.e., a global variable of r) also appears in a
positive, i.e., not default negated, standard literal in the body of r, (b) all other variables
(local variables) of a symbolic set also appear in a positive literal in Conj , and (c) each
guard is either a constant or a global variable of r. A program is safe iff all its rules are
safe, and for the definition of semantics we restrict to safe programs.

A ground instance of a rule r of P is obtained in a two-step process using the Her-
brand universe UP of P : first a substitution is applied to the set of global variables
of r, after that every symbolic set S is replaced by its instantiation, which is defined
as the ground set consisting of all pairs obtained by applying a substitution to the lo-
cal variables of S. The grounding of a program P is the set of all ground instances
of rules in P . An interpretation is a set I ⊆ BP , where BP denotes the standard
Herbrand base of a program P , i.e., the set of standard atoms constructible from (stan-
dard) predicates and constants of P . For (a conjunction of) standard literals F , I |= F
is defined as usual. Let S be a ground set, the valuation of S wrt. I is the multiset
I(S) = [t1 | 〈t1, . . . , tn:Conj 〉 ∈ S ∧ I |= Conj]. The valuation I(f(S)) of a ground
aggregate function f(S) is the result of applying f on I(S), and void if I(S) is not in
the domain of f . Then I |= a for a ground aggregate atom a = f(S) ≺ k iff I(f(S))
is not void and I(f(S))≺ k holds. Models of ground rules and programs are defined
as usual. Given this setting, different semantics can be given to ground programs. A
discussion follows in Section 4 and we refer to [8,7,14] for further details.

3 MCSs with Relational Beliefs and Aggregates

Our goal is to extend the modeling capabilities of the MCS framework in two ways.
First, we aim at a more succinct representation of the information exchange via bridge
rules in cases where we have additional information on the structure of the accessed
beliefs. Second, we introduce a means to aggregate information from different contexts.

3.1 Relational Multi-Context Systems

In order to treat certain beliefs, respectively elements of a knowledge base, as relational,
we first slightly generalize the notion of a logic, allowing to explictly declare certain
beliefs and elements of a knowledge base to be relational.

A relational logic L is a quadruple (KBL,BSL,ACCL, ΣL), where KBL, BSL,
and ACCL are as before, and ΣL is a signature consisting of sets PKB

L and PBS
L of

predicate names p with an associated arity ar(p) ≥ 0, and a universe UL, i.e., a set of
object constants, such that (PKB

L ∪ PBS
L) ∩ UL = ∅. Let Bχ

L = {p(c1, . . . , ck) | p ∈
Pχ

L ∧ ar(p) = k ∧ ∀1 ≤ i ≤ k : ci ∈ UL}, for χ ∈ {KB ,BS}. An element of Bχ
L is

termed relational and ground, and it has to be a an element of some knowledge base in
KBL if χ=KB , otherwise, if χ=BS , it is required to be an element of some belief set in
BSL. A knowledge base element not in BKB

L , respectively a belief not inBBS
L is called

ordinary. Note that every logic L = (KBL,BSL,ACC L) in the original sense, can be
regarded as a relational logic with an empty signature, i.e., where PKB

L =PBS
L =UL=∅.

124 M. Fink, L. Ghionna, and A. Weinzierl

Example 2. For instance, consider non-ground normal logic programs (NLPs) under
ASP semantics over a signature L of pairwise disjoint sets of predicate symbols Pred ,
variable symbols Var , and constants Cons . Then, KB is the set of non-ground NLPs
over L, BS is the power set of the set of ground atoms over L, ACC (kb) is the set of
kb’s answer sets, PKB=PBS=Pred , and U=Cons .

Next we introduce variables in bridge rules. Given a set of relational logics {L1, . . . ,
Ln}, let V denote a countable set of variable names, s.t. V ∩

⋃n
i=1(P

KB
Li
∪PBS

Li
∪ULi) =

∅. A (possibly non-ground) relational element of Li is of the form p(t1, . . . , tk), where
p ∈ PKB

Li
∪PBS

Li
, ar(p) = k, and tj is a term from V ∪ULi , for 1 ≤ j ≤ k. A relational

bridge rule is of the form (3) such that s is ordinary or a relational knowledge base
element of Lk, and p1, . . . , pm are either ordinary or relational beliefs of L�, 1 ≤ � ≤
m. A relational MCS consists of contexts with relational logics and bridge rules.

Definition 1 (Relational MCS). A relational MCS M = (C1, . . . , Cn) is a collection
of contexts Ci = (Li, kbi, bri, Di), where Li is a relational logic, kbi is a knowledge
base, bri is a set of relational bridge rules, and Di is a collection of import domains
Di,�, 1 ≤ � ≤ n, such that Di,� ⊆ U�.

By means of import domains, one can explicitly restrict the relational information of
context Cj accessed by an open relational bridge rule of context Ci. In the following
we restrict to finite import domains, and unless stated otherwise, we assume that import
domainsDi,� are implicitly given by corresponding active domainsDA

� , as follows. The
active domain DA

i of a context Ci is the set of object constants appearing in kbi or in
hd(r) for some r ∈ bri such that hd(r) is relational.

Example 3 (Ex. 1 ctd.). Let M1 = (C1, C2, C3) be an MCS for the company of Ex. 1,
where L1 and L3 are ASP logics as in Ex. 2, and the shop C2 uses a relational database
with a suitable logic L2. For simplicity, consider just two products p1 and p2, and sim-
plified kb’s: kb1 = {}, kb2 = {cap(p1, 11), cap(p2, 15)}, and kb3 = {off sale(p2)}.
Import domains contain p1, p2, and a domain of integers, say 1, . . . , 25. Let us further
restrict to a single bridge rule r1, rule (2), in br1. Then, M1 is a relational MCS, and
deliv(X,Y), cap(X,Y), and off sale(X) are relational elements of r1.

The semantics of a relational MCS is defined in terms of grounding. A ground instance
of a relational bridge rule r ∈ bri is obtained by an admissible substitution of the
variables in r to object constants in

⋃m
�=1Di,�. A substitution of a variable X with

constant c is admissible iff c is in the intersection of the domains of all occurrences of
X in r, where Di,i is the domain for an occurrence in hd(r) and Di,� is the domain for
an occurrence in some (c�: p�(t)) of pos(r)∪neg(r). The grounding of a relational MCS
M , denoted as grd(M) consists of the collection of contexts obtained by replacing bri
with the set grd(bri) of all ground instances of every r ∈ bri. The notions of belief
state and applicability of a bridge rule wrt. a belief state apply straight forwardly to a
relational MCS M and to grd(M), respectively. In slight abuse of notation, let us reuse
appi(S) to denote the set {hd(r) | r ∈ grd(bri) ∧ S |= r}, for a belief state S.

Definition 2 (Equilibrium of a Relational MCS). Given a relational MCSM , a belief
state S = (S1, . . . , Sn) of M is an equilibrium iff Si ∈ ACC i(kbi ∪ appi(S)).

Relational Information Exchange and Aggregation in MCSs 125

Unless stated otherwise we consider relational MCSs, simply referred to as MCSs.

Example 4 (Ex. 3 ctd.). The grounding of bridge rule r1 in the grounding ofM1 is given
by the rules (1: deliv(χ, κ)) ← (2: cap(χ, κ)), not(3: off sale(χ)), where χ ∈ {p1, p2}
and κ ∈ {1, . . . , 25}. The only equilibrium of M1 is S = ({deliv(p1, 11)}, S2, S3),
where S2 and S3 contain the relations in kb2 and kb3, respectively.

3.2 Aggregates

To incorporate a means for information aggregation into the MCS framework, we in-
troduce aggregate atoms in bridge rules, following the approach of [7] (see Sec. 2).

Let M = (C1, . . . , Cn) be an MCS, and let V be a corresponding set of variable
names. A bridge atom is of the form (ci: pi), where 1 ≤ i ≤ n and pi is an ordinary or
relational belief. A bridge literal is a bridge atom or a bridge atom preceded by not. A
symbolic set is of the form {Vars:Conj }, where Vars is a list of variables from V and
Conj is a conjunction of bridge literals; a ground set is a set of pairs 〈t:Conj〉, where
t is a list of constants from

⋃n
i=1 Ui and Conj is a conjunction of positive bridge lit-

erals over ordinary and ground relational beliefs. On the basis of these slightly adapted
definitions of symbolic and ground sets, we consider set terms, aggregate functions and
aggregate atoms as in Section 2.

Definition 3 (Bridge Rule with Aggregates). Let M = (C1, . . . , Cn) be an MCS. A
(relational) bridge rule with aggregates is of the form

(k: s)← a1, . . . aj−1, not aj, . . . , not am, (4)

where 1 ≤ k ≤ n, s is an ordinary or relational knowledge base element of Lk, and ai

is either a bridge atom, or an aggregate atom.

For a bridge rule with aggregates r of the form (4), let body(r) = {a1, . . . aj−1,
not aj , . . . , not am}, pos(r) = {a1, . . . aj−1} and neg(r) = {aj, . . . am}. Variables
that appear in hd(r) or in a relational belief in pos(r) ∪ neg(r) are called global vari-
ables, variables of r that are not global are local variables. A bridge rule with aggregates
r is safe iff (i) all local variables of a symbolic set in r also appear in a belief literal in
Conj , and (ii) each guard is either a constant or a global variable of r.

An MCS with aggregates is an MCS where the set of bridge rules bri of a contextCi

is a set of safe bridge rules with aggregates. In the following we consider safe bridge
rules with aggregates and simply refer to them as bridge rules.

Example 5 (Ex. 4 ctd.). Consider the extension M2 of the MCS M1, where br1 =
{r1, r2} and r2 is the bridge rule (1). The resulting MCS M2 is a relational MCS with
aggregates. Note that r2 is safe since the guard is a constant and due to (2 : sold(X,Y)).

To give the semantics of an MCS with aggregates, the notions of grounding and appli-
cability of ground bridge rules are extended, taking aggregate atoms into account.

The instantiation of a symbolic set is the ground set consisting of all pairs obtained
by applying a substitution to the local variables of S, which is an admissible substitution
(as defined for a relational MCS above) for the local variables in Conj . A partial ground

126 M. Fink, L. Ghionna, and A. Weinzierl

instance of a bridge rule r of an MCS M with aggregates is obtained by an admissible
substitution of the global variables of r. A ground instance of r is obtained from a
partial ground instance r′ replacing every symbolic set S in r′ by its instantiation. The
grounding of an MCSM with aggregates grd(M) consists of the collection of contexts
where bri is replaced with grd(bri),i.e., the set of all ground instances for every r ∈ bri.

Given a belief state S = (S1, . . . , Sn), we say that S satisfies a bridge atom a =
(ci: pi), in symbols S |= a, iff pi ∈ Si. A negative bridge literal not a is satisfied if
pi �∈ Si, thus S |= not a iff S �|= a. For a conjunction of bridge literals F , S |= F
is defined as usual. Let A be a ground set, the valuation of A wrt. S is the multiset
S(A) = [t1 | 〈t1, . . . , tn:Conj 〉 ∈ A∧S |= Conj]. The valuation S(f(A)) of a ground
aggregate function f(A) is the result of applying f on S(A), and void if S(A) is not
in the domain of f . Furthermore, S |= a for a ground aggregate atom a = f(A) ≺ k
iff S(f(A)) is not void and S(f(A))≺ k holds; for a default negated ground aggregate
atom not a, again S |= not a iff S �|= a.

Definition 4 (Applicable Bridge Rule). Given an MCS M with aggregates and a be-
lief state S = (S1, . . . , Sn), a ground instance r ∈ grd(bri) is applicable wrt. S, i.e.,
S |= body(r), iff S |= a for all a in body(r).

The set of applicable heads of context i, denoted appi(S), is given by appi(S) =
{hd(r) | r ∈ grd(bri) ∧ S |= body(r)}. A belief state S = (S1, . . . , Sn) is an equilib-
rium of an MCS with aggregates iff Si ∈ ACC i(kbi ∪ appi(S)), for 1 ≤ i ≤ n.

Example 6 (Ex. 5 ctd.). Assume the shop has sold 18 and 7 quantities of p1 and p2,
respectively, and let M ′

2 be the MCS obtained from M2, where kb′1 = kb1, kb′2 =
kb2 ∪ {sold (18, p1) , sold (7, p2)}, and kb′3 = kb3 ∪ {cat (p1,mc) , cat (p2,mc)}. Let
φ(κ, χ) = 〈κ, χ : (2: sold(χ, κ)), (3: cat(χ,mc))〉, then the instantiation of r2 is:

(1: refit)← SUM {φ(1, p1), φ(1, p2), . . . , φ(25, p1), φ(25, p2)} ≥ 25.

The only equilibrium S′ of M ′
2 is S′ = ({refit, deliv (p1, 11)} , S′

2, S
′
3).

3.3 Complexity

As in ASP, variables in bridge rules allow for an exponentially more succinct represen-
tation of MCSs which is reflected in the complexity of respective reasoning tasks. The
further addition of aggregates, however, does not increase (worst-case) complexity.

We assume familiarity with well-known complexity classes, restrict to finite MCSs
(knowledge bases and bridge rules are finite), and consider logics that have exponential-
size kernels, i.e., acceptable belief sets S of kb are uniquely determined by a ground
subset K ⊆ S of size exponential in the size of kb (cf. also [3] for poly-size kernels).

The context complexity of a context C over logic L is in C, for a complexity class C,
iff given kb, a ground belief b, and a set of ground beliefsK , both, deciding whetherK
is the kernel of some S ∈ ACC (kb), and deciding whether b ∈ S, is in C.

Theorem 1. Given a finite relational MCS M = (C1, . . . , Cn) (with aggregates),
where the context complexity is in ΔP

k , k ≥ 1, for every context Ci, deciding whether

M has an equilibrium and brave reasoning is in NEXPΣP
k−1 , while cautious reasoning

is in co-NEXPΣP
k−1 .

Relational Information Exchange and Aggregation in MCSs 127

Intuitively, one can non-deterministically guess the kernels K = (K1, . . . ,Kn) of an
equilibrium S = (S1, . . . , Sn) together with applicable bridge rule heads (the guess
may be exponential in the size of the input) and then verify in time polynomial in the
size of the guess, whether S is an equilibrium, resp. whether b ∈ Si, using the oracle.

Note that the above assumptions apply to various standard KR formalisms which
allow for a succinct representation of relational knowledge (e.g., Datalog, Description
Logics, etc.) and completeness is obtained in many cases for particular context logics.

4 Grounded Equlibria

In this section we introduce alternative semantics for MCSs with aggregates inspired
by grounded equilibria as introduced in [3]. The motivation for considering grounded
equilibria is rooted in the observation that equilibria allow for self justification of beliefs
via bridge rules, which is also reflected in the observation that in general equilibria are
not subset minimal (component-wise).

Grounded equilibria are defined in terms of a reduct for MCSs comprised of so-called
reducible contexts. The notions of a monotonic logic, reducible logic, reducible context,
reducible MCS, and definite MCS carry over from standard MCSs [3] to relational MCSs
(with aggregates) straightforwardly.

The set of grounded equilibria, denoted by GE(M), of a definite MCSM is the set of
component-wise subset minimal equilibria of grd(M). Note that GE(M) is a singleton,
i.e., the grounded equilibrium of a definite MCS M is unique, if all aggregate atoms in
bridge rules of grd(M) are montone. The latter is the case for a ground aggregate atom
a iff S |= a implies S′ |= a, for all belief states S and S′ such that Si ⊆ S′

i for
1 ≤ i ≤ n.

Since equilibria for MCSs do not resort to foundedness or minimality criteria, their
extension to MCSs with aggregates is non-ambiguous: it basically hinges on a ‘clas-
sical’ interpretation of ground aggregate atoms wrt. a belief state, independent of a
previous ‘pre-interpretation’. Due to the potential nonmonotonicity of aggregate atoms
however, the situation is different for grounded semantics. This is analogous to the sit-
uation in ASP: there is consensus on how to define the (classical) models of ground
rules with aggregates, but no mutual consent and different proposals for defining their
answer sets.

Three well-known approaches, namely FLP semantics [7], SPT-PDB semantics [14],
and Ferraris semantics [8], are briefly restated below for the ASP setting introduced in
Section 2. They are either defined, or can equivalently be characterized, in terms of a
reduct, which inspires the definition of a corresponding grounded semantics for MCSs
with aggregates. For each definition, we provide a correspondence result witnessing
correctness: the semantics is preserved when instead of a program P , a single context
MCS MP is considered, where rules of P are self referential bridge rules of MP .

More formally, we associate a program P with the MCS MP = (CP), where LP

is such that KBP = BSP given by the power set of the Herbrand Base of P and
ACCCP (kb) = {kb}, kbP = ∅, brP consists of a bridge rule for each r ∈ P which is
obtained by replacing standard atoms a by bridge atoms (CP : a), and DP = (DP,P)
with DP,P denoting the Herbrand Universe of P . Observe that LP is monotonic.

We illustrate differences of the semantics on the following example.

128 M. Fink, L. Ghionna, and A. Weinzierl

Example 7 (Lee and Meng [12]). Consider the programP (left) and its associated MCS
MP = (C) with C = (LP , ∅, brP , DP) and brP (right):

p(2)← not SUM {X : p(X)} < 2. (C: p(2))← not SUM{X : (C: p(X))} < 2.
p(−1)← SUM {X : p(X)} ≥ 0. (C: p(−1))← SUM{X : (C: p(X))} ≥ 0.

p(1)← p(−1). (C: p(1))← (C: p(−1)).

4.1 FLP Semantics

The FLP-reduct P I of a ground program P wrt. an interpretation I is the set of rules
r ∈ P such that their body is satisfied wrt. I . An interpretation I is an answer set of
P iff it is a ⊆-minimal model of P I . As usual, semantics for a non-ground program is
given by the answer sets of its grounding (also for the subsequent semantics).

Given a ground reducible MCS M = (C1, . . . , Cn) with aggregates, and a belief
state S, we subsequently introduce reducts brχ(S) for sets of bridge rules br. The cor-
responding χ-reduct of M wrt. S is defined as Mχ(S) = (Cχ(S)

1 , . . . , C
χ(S)
n), where

C
χ(S)
i = (Li, redLi(kbi, Si), br

χ(S)
i , Di), for 1 ≤ i ≤ n. The FLP-reduct of a set of

ground bridge rules br wrt. S is the set brFLP(S) = {r ∈ br | S |= body(r)}.

Definition 5 (FLP equilibrium). Let M be a reducible MCS with aggregates and S a
belief state. S is an FLP equilibrium of M iff S ∈ GE (grd(M)FLP(S)).

For P in Example 7 the only answer set according to FLP semantics is S =
{p(−1), p(1)}. Correspondingly, (S) is the only FLP equilibrium of MP .

4.2 SPT-PDB Semantics

Following [14], semantics is defined using the well-known Gelfond-Lifschitz
reduct [10] wrt. an interpretation I , denoted PGL(I) here, and applying a monotonic
immediate-consequence operator based on conditional satisfaction. Conditional satis-
faction of a ground atom a wrt. a pair of interpretations (I, J), denoted by (I, J) |= a,
is as follows: if a is a standard atom, then (I, J) |= a iff a ∈ I; if a is an aggregate
atom then (I, J) |= a iff I ′ |= a, for all interpretations I ′ such that I ⊆ I ′ ⊆ J . This
is extended to conjunctions as usual. The operator τP is defined for positive ground
programs P , i.e., consisting of rules a ← b1, . . . , bk, and a fixed interpretation J by
τP,J(I) = {a | r ∈ P ∧ (I, J) |= (b1 ∧ . . . ∧ bk)}. An interpretation I is an answer set
of P under SPT-PDB semantics iff I is the least fixed-point of τP GL(I),I .

Given a ground reducible MCS M = (C1, . . . , Cn) with aggregates, and a belief
state S, the GL-reduct of a set of ground bridge rules br wrt. S is the set brGL(S) =
{hd(r) ← pos(r) | r ∈ br∧S �|= a for all a ∈ neg(r)}. Conditional satisfaction carries
over to pairs of belief states under component-wise subset inclusion in the obvious
way. For a set of ground definite bridge rules br and a pair of belief states (S, T),
let chd(br, S, T) = {hd(r) | r ∈ br ∧ (S, T) |= body(r)}. The operator τM,S is
defined for a ground definite MCS M and belief state S by τM,S(T) = T ′, where
T ′ = (T ′

1, . . . , T
′
n) such that T ′

i = ACC i{kbi ∪ chd(bri, T, S)}, for 1 ≤ i ≤ n.

Relational Information Exchange and Aggregation in MCSs 129

Definition 6 (SPT-PDB equilibrium). Let M be a reducible MCS with aggregates
and S a belief state. S is an SPT-PDB equilibrium of M iff S is the least fixed-point of
τMGL(S),S .

Example 8. Program P has no answer sets under SPT-PDB semantics and MP has no
SPT-PDB equilibrium. Consider, e.g., the FLP equilibrium (S) = ({p(−1), p(1)}).
The reduct grd(MP)GL(S) is given by the ground instances of bridge rules r1 =
(CP : p(−1)) ← SUM {X : (CP : p(X))} ≥ 0 and r2 = (CP : p(1)) ← (CP : p(−1)).
For τgrd(MP)GL(S),S(∅), the ground instance of r1 is not applicable, because conditional
satisfaction does not hold. Also the body of r2 is not satisfied. Therefore the least-fixed
point of τgrd(MP)GL(S),S is ∅, hence S is not an equilibrium.

4.3 Ferraris Semantics

Ferraris semantics [8] has originally been defined for propositional theories under an-
swer set semantics. For our setting, it is characterized by a reduct, where not only rules
are reduced, but also the conjunctions Conj of ground sets. Given an interpretation
I and a ground aggregate atom a = f(S) ≺ k the Ferraris reduct of a wrt. I , de-
noted aFer(I) is f(S′) ≺ k, where S′ is obtained from S dropping negative standard
literals not b from Conj if I |= b, for every 〈t:Conj〉 in S. For a positive standard
literal a, aFer(I) is a; for a ground rule r = a ← b1, . . . , bk, not bk+1, . . . , not bm,
rFer(I) = a ← b

Fer(I)
1 , . . . , b

Fer(I)
k . The Ferraris reduct PFer(I) of a ground program

P wrt. an interpretation I is the set of rules rFer(I) such that r ∈ P and the body of r
is satisfied wrt. I . I is an answer set of P iff it is a ⊆-minimal model of PFer(I).

Given a ground reducible MCS M = (C1, . . . , Cn) with aggregates, and a belief
state S, the Ferraris reduct of a set of ground bridge rules br wrt. S is the set brFer(S) =
{rFer(S) | r ∈ br ∧ S |= body(r)}, where rFer (S) is the obvious extension of the
Ferraris reduct to bridge rules.

Definition 7 (Ferraris equilibrium). Let M be a reducible MCS with aggregates and
S a belief state. Then, S is a Ferraris equilibrium of M iff S ∈ GE(grd(M)Fer(S)).

Example 9. P has two answer sets under Ferraris semantics: S1 = {p(−1), p(1)} and
S2 = {p(−1), p(1), p(2)}, intuitively because they yield different reducts. Again both,
(S1) and (S2), are Ferraris equilibria of MP .

Proposition 1. Let P be a program and MP be its associated MCS, then S is an an-
swer set of P iff (S) is an equilibrium of MP holds for FLP, SPT-PDB, and Ferraris
semantics.

5 Implementation and Initial Experiments

In this section we present the DMCSAgg system which computes (partial) equilibria of
an MCS with aggregates in a distributed way, and briefly discuss initial experiments.

130 M. Fink, L. Ghionna, and A. Weinzierl

Algorithm 1. AggEval(T , Ik) at Ck=(Lk, kbk, brk, Dk)

Input: T : set of accumulated partial belief states, Ik: set of unresolved neighbours
Data: v(c, k): relevant interface according to query plan wrt. predecessor c
Output: set of accumulated partial belief states
if Ik �= ∅ then

(a) foreach r ∈ brk do
brk := brk \ {r} ∪ {rewrite(r, Aux)} // rewrite brk

T := guess(v(c, k) ∪ Aux) �� T
(b) foreach T ∈ T do S := S ∪ lsolve(T) // get local beliefs w.r.t. T
(c) S := {S′ ∈ S | paggi(r) ∈ S′ iff S′ |= aggi(r)} // check compliance

else
(b) foreach T ∈ T do S := S ∪ lsolve(T) // get local beliefs w.r.t. T

return S

Distributed Evaluation Algorithm. DMCSAgg extends of the DMCSOpt algorithm for
standard MCSs. We focus on the necessary modifications and describe the underlying
ideas informally; for more formal details we refer to [2].

DMCSAgg operates on partially ground, relational MCSs with aggregates, i.e., each
set of bridge rules is partially ground (cf. Section 3.2). The basic idea of the overall
algorithm is that starting from a particular context, a given query plan is traversed until
a leaf context is reached. A leaf context computes its local belief sets and communi-
cates back a partial belief state consisting of the projection to a relevant portion of the
alphabet, the relevant interface (obtained from corresponding labels of the query plan).
When all neighbours of a context have communicated back, then the context can build
its own local belief states based on the partial belief states of its neighbours. The partial
belief states obtained at the starting context are returned as a result.

Since bridge rules are partially ground, query plan generation works as for
DMCSOpt. A first modification concerns subroutine lsolve(S), responsible for com-
puting local belief states at a context Ck given a partial belief state S. It is modified
to first evaluate every aggregate atom in brk wrt. S. Then, intuitively, each aggregate
atom is replaced in brk according to its evaluation, and the subsequent local belief state
computation proceeds as before on the modified (now ground) set of bridge rules.

In our running example from the logistics domain, when leaves C2 and C3 have
returned S′

2 and S′
3 (cf. Example 6), then the partially ground bridge rule r2 of C1 is

replaced by the ground bridge rule (1: refit) ← �, since the aggregate evaluates to
true. Finally, the expected equilibrium ({refit, deliv (p1, 11)} , S′

2, S
′
3) is returned to the

user. We leave a more detailed illustration of the algorithm, also on other application
scenarios (in particular cyclic ones, cf. below), for an extended version of the paper.

The second modification of the DMCSOpt algorithm concerns guessing in case of
cycles and is described in Algorithm 1 above: If a cycle is detected at context Ck (Ik �=
∅), then (a) it has to be broken by guessing on the relevant interface (c(v, k)). To keep
guesses small in the presence of aggregates, a local rewriting is employed, such that just
the valuation of an aggregate atom is guessed (rather than guessing on the grounding of
all atoms in its symbolic set). To this aim, every rule r ∈ brk is rewritten, replacing each
aggregate aggi(r) with a new 0-ary predicate paggi(r). Then we guess on c(v, k) ∪ Aux,
where Aux denotes the set of newly introduced atoms. Next (c), acceptable belief sets

Relational Information Exchange and Aggregation in MCSs 131

Table 1. DMCSAgg evaluation time in seconds

Top. /(m, r, a) d=30 d=100 Top. /(m,r, a) d=15 d=30 Top. /(m,r, a) d=15 d=30

D/(16, 10, 1) 8.32 51.62 D/(16, 10, 2) 414.62 – D/(4, 10, 3) – –
Z/(16, 10, 1) 19.45 18.19 Z/(4, 10, 2) 486.94 – Z/(16, 10, 3) – –
B/(16, 10, 1) 6.17 10.49 B/(16, 10, 2) 404.26 – B/(4, 8, 3) 411.00 –

of Ck are computed given the beliefs of its neighbours. If a guess was made on some
paggi(r), then a test (d) checks every resulting belief state S for compliance with the
guess, i.e., whether paggi(r) ∈ S iff S |= aggi(r), before the computed belief states are
returned.
Ck.DMCSAgg(k) denotes a call to DMCSAgg, and correctness and completeness

hold:

Theorem 2. Let M = (C1, . . . , Cn) be a (partially) ground, relational MCS with ag-
gregates, Ck a context of M , Πk a suitable query plan, and let V be a set of ground
beliefs of neighbours of Ck . Then, (i) for each S′ ∈ Ck.DMCSAgg(k) exists a partial
equilibrium S of M wrt. Ck such that S′ = S|V , and (ii) for each partial equilibrium
S of M wrt. Ck exists an S′ ∈ Ck.DMCSAgg(k) such that S′ = S|V .

Initial Experiments. A prototype implementation of DMCSAgg2 has been developed,
which computes partial equilibria of MCSs with ASP as context logics. Like DMCSOpt
it applies a loop formula transformation to ASP context programs resulting in SAT
instances which are solved using clasp (2010-09-24) [9]. For context grounding gringo
(2010-04-10) is used, so contexts can be given in the Lparse[15] language; a simple
front-end (partially) grounds bridge rules.

Originally, DMCSOpt calls the SAT solver just once per context, guessing for all
atoms in bridge rules. In the presence of variables, this causes memory overload due
to large guesses even for small domain sizes. We thus applied a naive pushing strategy,
i.e., we call the SAT solver once for every partial belief state of the neighbours and push
the partial belief state into the SAT formula.

For preliminary experimentation, we adapted a randomized generator that has been
used to evaluate DMCSOpt on specific MCS topologies: diamonds, binary trees, zig
zag, and ring (where only the last is cyclic, cf. [2] for details). We fixed the following
parameters: 10 contexts, with 10 predicates, and at most 4 exported predicates per con-
text; and varied domain sizes d (15, 20, 30, and 100), bridge rules r (8 or 10), arity of
relational bridge rule elements a (1 − 3), and the number of local models m (4 or 16).
Table 5 lists evaluation time (seconds) for computing the partial belief state of a “root”
context on an Intel Core i5 1.73GHz, 6GB RAM with a timeout of 600.

For acyclic topologies and unary predicates, the system scales to larger alphabets
than the propositional DMCSOpt system, which can be explained by naive pushing and
suggests further optimizations in this direction. However when increasing predicate ar-
ities, and for cyclic topologies, limits are reached quickly (for the ring, domain sizes

2 The system is available in the DMCS repository at
www.kr.tuwien.ac.at/research/systems/dmcs

www.kr.tuwien.ac.at/research/systems/dmcs

132 M. Fink, L. Ghionna, and A. Weinzierl

only up to 10 could be handled, which is in line with results on comparable DMCSOpt
instances however). Although this is for complexity reasons in general, a naive gener-
ation of loop formulas and grounding of bridge rules currently impedes to cope, e.g.,
with state of the art ASP solvers. Corresponding improvements and specifically more
sophisticated cycle breaking techniques are vital (choosing a context with smallest im-
port domain; reducing the relevant interface, i.e. guess size, by taking topology into
account).

6 Conclusion

We enhanced the modeling power of MCSs by open bridge rules with variables and ag-
gregates, lifting the framework to relational MCSs with aggregates. In addition to defin-
ing syntax and semantics in terms of equilibria and different grounded equilibria, for
an implementation we extended the DMCSOpt algorithm to handle the relational set-
ting and aggregates. Initial experiments with the system demonstrate reasonable scaling
compared to DMCSOpt but also clearly indicate needs for further optimization.

Besides implementation improvements, topics for future research include the appli-
cation in real world settings. We envisage its employment in a system for personalized
semantic routing in an urban environment. A further interesting application domain are
applications where social choices, i.e., group decisions such as voting, play a role. In
this respect, our work is remotely related to Social ASP [5], considered as a particular
MCS with ASP logics. As for theory, we consider the development of methods for open
reasoning that avoid (complete) grounding an interesting and important long-term goal.

References

1. Antoniou, G., Bikakis, A., Papatheodorou, C.: Reasoning with imperfect context and prefer-
ence information in multi-context systems. In: Catania, B., Ivanović, M., Thalheim, B. (eds.)
ADBIS 2010. LNCS, vol. 6295, pp. 1–12. Springer, Heidelberg (2010)

2. Bairakdar, S.E.D., Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Decomposition of
distributed nonmonotonic multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) JELIA
2010. LNCS, vol. 6341, pp. 24–37. Springer, Heidelberg (2010)

3. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
AAAI, pp. 385–390. AAAI Press, Menlo Park (2007)

4. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: IJCAI, pp. 268–273
(2007)

5. Buccafurri, F., Caminiti, G.: Logic programming with social features. TPLP 8(5-6), 643–690
(2008)

6. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic multi-context
systems. In: KR, pp. 60–70. AAAI Press, Menlo Park (2010)

7. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Seman-
tics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 200–212. Springer, Heidelberg (2004)

8. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Ter-
racina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg
(2005)

Relational Information Exchange and Aggregation in MCSs 133

9. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
IJCAI, pp. 386–392 (2007)

10. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP,
pp. 1070–1080 (1988)

11. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do without
modal logics. Artif. Intell. 65(1), 29–70 (1994)

12. Lee, J., Meng, Y.: On reductive semantics of aggregates in answer set programming. In:
Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 182–195. Springer,
Heidelberg (2009)

13. Shen, Y.D., You, J.H., Yuan, L.Y.: Characterizations of stable model semantics for logic
programs with arbitrary constraint atoms. TPLP 9(4), 529–564 (2009)

14. Son, T.C., Pontelli, E., Tu, P.H.: Answer sets for logic programs with arbitrary abstract con-
straint atoms. J. Artif. Intell. Res. (JAIR) 29, 353–389 (2007)

15. Syrjänen, T.: Lparse 1.0 user’s manual (2002)

Stepping through an Answer-Set Program�

Johannes Oetsch, Jörg Pührer, and Hans Tompits

Technische Universität Wien, Institut für Informationssysteme 184/3,
Favoritenstraße 9-11, A-1040 Vienna, Austria

{oetsch,puehrer,tompits}@kr.tuwien.ac.at

Abstract. We introduce a framework for interactive stepping through an answer-
set program as a means for debugging. In procedural languages, stepping is a
widespread and effective debugging strategy. The idea is to gain insight into the
behaviour of a program by executing statement by statement, following the pro-
gram’s control flow. Stepping has not been considered for answer-set programs
so far, presumably because of their lack of a control flow. The framework we
provide allows for stepwise constructing interpretations following the user’s in-
tuition on which rule instances to become active. That is, we do not impose any
ordering on the rules but give the programmer the freedom to guide the stepping
process. Due to simple syntactic restrictions, each step results in a state that guar-
antees stability of the intermediate interpretation. We present how stepping can
be started from breakpoints as in conventional programming and discuss how the
approach can be used for debugging using a running example.

Keywords: answer-set programming, program analysis, debugging.

1 Introduction

Answer-set programming (ASP) is a well-established paradigm for declarative problem
solving [1], yet it is rarely used by engineers outside academia so far. Arguably, one
particular obstacle preventing software engineers from using ASP is the lack of support
tools for developing answer-set programs.

In this paper, we introduce a framework that allows for stepping through answer-set
programs. Step-by-step execution of a program is folklore in procedural programming
languages, where developers can debug and investigate the behaviour of their programs
in an incremental way. As answer-set programs have a genuine declarative semantics
lacking any control flow, it is not obvious how stepping can be realised. Our approach
makes use of a simple computation model that is based on states, which are ground
rules that a user considers as active in a program. With each state, we associate the in-
terpretation that is induced by the respective rules. This interpretation is guaranteed to
be an answer set of the set of rules considered in the state. During the course of step-
ping, the interpretations of the subsequent states evolve towards an answer set of the
overall program. Our stepping approach is interactive and incremental, letting the pro-
grammer choose which rules are added at each step. In our framework, states may serve

� This work was partially supported by the Austrian Science Fund (FWF) under project P21698
and by the European Commission under project IST-2009-231875 (OntoRule).

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 134–147, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Stepping through an Answer-Set Program 135

as breakpoints from which stepping can be started. We discuss how the programmer
can generate breakpoints that allow him or her to jump directly to interesting situations.
We also show how ground rules that are subsequently considered active can be quickly
obtained from the non-ground source code using filtering techniques.

The main area of application of stepping is debugging. A general problem in debug-
ging is to restrict the amount of debugging information that is presented to the user in a
sensible way. In the stepping method, this is realised by focussing on one step at a time,
which is in contrast to other debugging methods for ASP [2,3,4,5], where the program to
be debugged is analysed as a whole. Moreover, due to the interactivity of the approach,
the programmer can easily guide the search for bugs following his or her intuitions about
which part of the program is likely to be the source of error. Besides debugging, stepping
through a program can improve the understanding of the program at hand and can help
to improve the understanding of the answer-set semantics for beginners.

The paper is outlined as follows. Section 2 gives the formal background on ASP. The
framework for stepping is presented in Section 3. In Section 4, we explain how break-
points can be generated and how ground rules can be conveniently selected as active
ones. Moreover, we describe interesting settings where stepping can be beneficially ap-
plied using a running example. After discussing related work in Section 5, we conclude
the paper in Section 6.

2 Preliminaries

We deal with logic programs which are finite sets of rules of form

l0 ← l1, . . . , lm, not lm+1, . . . ,not ln, (1)

where n ≥ m ≥ 0, “not” denotes default negation, and all li are literals over a function-
free first-order language L. A literal is an atom possibly preceded by the strong nega-
tion symbol ¬. For a literal l, we define l̄ = ¬a if l = a and l̄ = a if l = ¬a.
In the sequel, we assume that L will be implicitly given. The literal l0 may be ab-
sent in (1), in which case the rule is a constraint. Furthermore , for r of form (1),
B(r) = {l1, . . . , lm, not lm+1, . . . , not ln} is the body of r, B+(r) = {l1, . . . , lm} is
the positive body of r, and B−(r) = {lm+1, . . . , ln} is the negative body of r. The head
of r is H(r) = {l0} if l0 is present and H(r) = ∅ otherwise. If B(r) = ∅ and H(r) �= ∅,
then r is a fact. For facts, we usually omit the symbol “←”. Furthermore, we identify
sets of literals with sets of facts.

A literal, rule, or program is ground if it contains no variables. Let C be a set of
constants. A substitution over C is a function ϑ assigning each variable in some expres-
sion an element of C. We denote by eϑ the result of applying ϑ to an expression e. The
grounding of a programΠ , gr(Π), is defined as usual.

An interpretation I (over some language L) is a finite set of ground literals (over
L) such that {a,¬a} �⊆ I , for any atom a. The satisfaction relation I |= α, where
α is a ground atom, a literal, a rule, a set of possibly default negated literals, or a
program α, is defined in the usual manner. A rule r such that I |= B(r) is called active
under I . We denote the set of all active rules of a ground program Π with respect
to an interpretation I as ActI(Π) = {r ∈ Π | I |= B(r)}. Following Faber, Leone,

136 J. Oetsch, J. Pührer, and H. Tompits

and Pfeifer [6], we define an answer set of a program Π as an interpretation I that
is a minimal model of ActI(gr(Π)). For the programs we consider, this definition is
equivalent to the traditional one by Gelfond and Lifschitz [7]. The collection of all
answer sets of a programΠ is denoted by AS(Π).

3 Stepping Framework

In this section, we introduce the basic computation model that underlies our stepping
approach. We are aiming for a scenario in which the programmer has strong control
over the direction of the construction of an answer set. The general idea is to first take
a part of a program and an answer set of this part. Then, step by step, rules are added
by the user such that, at every step, the literal derived by the new rule is added to
the interpretation which remains to be an answer set of the evolving program part.
Hereby, the user only adds rules he or she thinks are active in the final answer set. The
interpretation grows monotonically until it is eventually guaranteed to be an answer set
of the overall program, otherwise the programmer is informed why and at which step
something went wrong. This way, one can in principle without any backtracking direct
the computation towards an expected or an unintended actual answer set. In debugging,
having the programmer in the role of an oracle is a common scenario [8]. It is reasonable
to assume that a programmer has good intuitions on where to guide the search if there
is a mismatch between the intended and the actual behaviour of a program.

In our framework, the individual steps of a computation—which we regard as states
of the program—are represented by a set of ground rules which the user considers as
active. While these rules represent the state on the source-code level, close to what the
programmer has written, we also want to represent a state on the output level in the
form of an interpretation that constitutes a partial result of the program. Therefore, we
associate a set of ground rules with the interpretation induced by the rules.

Definition 1. Let S be a set of ground rules. Then, the interpretation induced by S is
given by Int [S] =

⋃
r∈S H(r).

States have to satisfy two properties, ensuring that the interpretation induced by the
state is an answer set of the state and that every rule in the state is active with respect to
the interpretation. Intuitively, we want every step in the construction of an answer set
to result in a stable condition, where we only have rules that are relevant to this condi-
tion. The metaphor for that is building up a house of cards, where every card—being
the counterpart of a rule—supports the integrity of the evolving house—corresponding
to the interpretation—and stability of the house must be ensured after each building
activity.

Definition 2. A set S of ground rules is self-supporting if Int [S] |= B(r), for all r ∈ S,
and stable if Int [S] ∈ AS(S). A state of a program Π is a set S ⊆ gr(Π) of ground
rules which is self-supporting and stable.

Every state can be used as a potential starting point for stepping that allows a program-
mer to jump directly to an interesting situation, e.g., for debugging purposes.

We next define a successor relation between states and sets of ground rules. The
intuition is that a successor of a state S corresponds to a potential state after one step in
a computation.

Stepping through an Answer-Set Program 137

Definition 3. For a state S of a program Π and a set S′ ⊆ gr(Π) of ground rules,
S′ is a successor of S in Π , symbolically S ≺Π S′, if S′ = S ∪ {r}, for some rule
r ∈ gr(Π) \ S with (i) Int [S] |= B(r), (ii) H(r) �= ∅, and (iii) H(r) ∩ (B−(r) ∪⋃

r′∈S B−(r′) ∪
⋃

l∈Int [S] l̄) = ∅,
Intuitively, rule r is a rule instance of the program Π that is not yet considered in the
current state S but whose preconditions are already satisfied by the state’s interpretation,
as expressed by Condition (i). Conditions (ii) and (iii) ensure that r is not a constraint
and that the literal derived by r is neither inconsistent with Int [S] nor contradicting that
all rules in the S′ are active. Note that, in general, Int [S] ⊆ Int [S′] while S ⊂ S′. The
successor relation suffices to “step” from one state to another, i.e., S′ is always a state.

Proposition 1. Let S be a state of a programΠ , and S′ ⊆ gr(Π) a set of ground rules
such that S ≺Π S′. Then, S′ is also a state of Π .

In the following, we define computations based on the notion of a state.

Definition 4. A computation for a program Π is a finite sequence C = S0, . . . , Sn of
states such that, for all 0 ≤ i < n, Si ≺Π Si+1.

Given a computation C = S0, . . . , Sn for a program Π , in analogy to stepping in
procedural programs, we identify the state S0 at which computation C starts as the
breakpoint of C. Furthermore, Int [Sn] is called the result, res(C), of C.

We next define when a computation has failed, gets stuck, or is complete. Intuitively,
failure means that the computation reached a point where no answer set of the program
can be reached. A computation is stuck when the last state activated rules deriving lit-
erals that are inconsistent with previously chosen active rules. It is considered complete
when there are no more unconsidered active rules.

Definition 5. A computation C = S0, . . . , Sn for Π
– has failed at Step i if there is no answer set I of Π such that Si ⊆ ActI(gr(Π));
– is stuck if there is no successor of Sn in Π but there is a rule r ∈ gr(Π) \ Sn that

is active under Int [Sn];
– is complete if, for each rule r ∈ gr(Π) that is active under Int [Sn], we have
r ∈ Sn.

The following result guarantees the soundness of our stepping framework.

Theorem 1. Let Π be a program and C = S0, . . . , Sn a complete computation for Π .
Then, res(C) is an answer set of Π .

The computation model is also complete in the sense that stepping, starting from an
arbitrary state S0 of Π as breakpoint, can reach every answer set I ⊇ Int [S0] of Π ,
where S0 ⊆ ActI(gr(Π)).

Theorem 2. Let I ∈ AS (Π) be an answer set of program Π and S0 a state of Π
such that Int [S0] ⊆ I and S0 ⊆ ActI(gr(Π)). Then, there is a complete computation
C = S0, . . . , Sn with Sn = ActI(gr(Π)) and res(C) = I .

Example 1. Consider the program

Π = {obj (c), obj (d), ← ch(c), ch(X) ← not ¬ch(X), obj (X),
¬ch(X) ← not ch(X), obj (X)}.

138 J. Oetsch, J. Pührer, and H. Tompits

The answer sets of Π are I1 = {obj (c), obj (d),¬ch(c), ch(d)} and I2 = {obj (c),
obj (d),¬ch(c),¬ch(d)}. Consider the computation C = S0, S1, S2, where S0 =
{obj (c), obj (d)}, S1 = S0∪{¬ch(c)← not ch(c), obj (c)}, andS2 = S1∪{ch(d) ←
not ¬ch(d), obj (d)}. Computation C is complete and res(C) = I1. Consider now the
computation C′ = S′

0, S
′
1, S

′
2, where S′

0 = {obj (c), obj (d)}, S′
1 = S′

0 ∪ {ch(c) ←
not ¬ch(c), obj (c)}, and S′

2 = S′
1 ∪ {ch(d) ← not ¬ch(d), obj (d)}. C′ has failed

at Step 1 as there is no answer set I of Π such that ActI(gr(Π)) contains ch(c) ←
not ¬ch(c), obj (c). Moreover, C′ is stuck as there is no state succeeding S′

2 but ←
ch(c) is active under Int [S′

2].

Observe that once a computation C has failed at some step all computations that contain
C as subsequence are guaranteed to get stuck. Hence, when failure is detected at the
current step, the user knows that the last active rule chosen is crucial for the targeted
interpretation not to be an answer set. Failure of a computation does not mean that it is
useless for debugging. In fact, when a programΠ does not have any answer set, building
up a computation for Π will guide the user to rules responsible for the inconsistency.

The next corollary is a consequence of the fact that the empty set is a state of every
program.

Corollary 1. Let Π be a program and I an answer set of Π . Then, there is a complete
computation C = S0, . . . , Sn such that S0 = ∅, Sn = ActI(gr(Π)), and res(C) = I .

The programmer will typically want to start with another breakpoint than the empty
set. As we argue in Section 4, obtaining a breakpoint that is “near” to an interesting
situation is desirable and, using the programmer’s intuition, in most cases not difficult
to achieve.

4 Interactive Stepping

In this section, we outline how the framework introduced in the previous section can
be used in practice. We will use the maze-generation problem, a benchmark problem
from the second ASP competition [9], as a running example. The task is to generate a
two-dimensional grid where each cell is either a wall or empty. There are two dedicated
empty cells located at the border, being the maze’s entrance and its exit, respectively.
The maze grid has to satisfy the following conditions: (i) except for the entrance and the
exit, border cells are walls; (ii) there must be a path from the entrance to every empty
cell (including the exit); (iii) if two walls are diagonally adjacent, one of their common
neighbours is a wall; (iv) there must not be any 2 × 2 block of empty cells or walls;
and (v) no wall can be completely surrounded by empty cells. The input of this problem
are facts that specify the size and the positions of the entrance and the exit of the maze
as well as facts that specify for an arbitrary subset of the cells whether they are walls
or empty. The output corresponds to completions of the input that represent valid maze
structures. As example input, we consider the following set of facts

F = {row(1), row(2), row(3), row(4), row(5), col(1), col(2), col(3), col(4), col(5),
entrance(1, 2), exit(5, 4), wall(3, 3), empty(3, 4)}

Stepping through an Answer-Set Program 139

Fig. 1. A maze-generation input with a corresponding solution

that is visualised in Fig. 1 together with a completion to a legal maze. White cells
correspond to empty cells, black cells to walls, and grey areas are yet unassigned cells.
The entrance is marked by a triangle and the exit by a circle. The program developed in
the sequel follows the encoding submitted by the Potassco team1. Note that the language
used in the example is slightly richer than defined in Section 2. We allow for integer
arithmetics and assume a sufficient integer range to be available as constants.

In our approach, we always have two options how to proceed: (i) (re-)initialise step-
ping and start a computation with a new state as breakpoint, or (ii) extend the current
computation by adding a further active rule.

In the remainder of the section, we first describe the technical aspects of how to
obtain a breakpoint and how ground rule instances can be chosen. Then, we discuss how
stepping can be applied in several situations, including typical debugging scenarios.

4.1 Obtaining a Breakpoint

Having a suitable breakpoint at hand will often allow for finding a bug in just a few
steps. As mentioned above, the empty set is a trivial state for every program. Besides
that, the set of all facts in a program is also ensured to be a state, except for the practi-
cally irrelevant case that a literal and its strong negation are asserted.

Example 2. As a first step for developing the maze-generation encoding, we want to
identify border cells. Our initial program is Π0 = F ∪ΠBdr, where ΠBdr is given by

maxcol(X)← col (X), not col(X + 1),
maxrow(Y)← row (Y), not row(Y + 1),
border(1, Y)← col (1), row(Y),

border (X,Y)← row (Y),maxcol(X),
border(X, 1)← col (X), row(1),
border (X,Y)← col (X),maxrow(Y).

The first two rules extract the numbers of columns and rows of the maze from the input
facts of predicates col/1 and row/1. The next four rules derive border/2 atoms for the
grid.

1 See also http://dtai.cs.kuleuven.be/events/ASP-competition/Teams/
Potassco.shtml

http://dtai.cs.kuleuven.be/events/ASP-competition/Teams/Potassco.shtml
http://dtai.cs.kuleuven.be/events/ASP-competition/Teams/Potassco.shtml

140 J. Oetsch, J. Pührer, and H. Tompits

Now, taking the set F of facts as a breakpoint of a computation for Π0, we can start
stepping by choosing, e.g., the ground rule

r = maxcol(5)← col(5), not col (6),

that is active under F , as next rule to add. We obtain the computation C = F, F ∪ {r}.

In many cases, it will be useful to have states other than the empty set or the facts as
starting points, as starting stepping from them can be time consuming. For illustration,
to reach an answer set I of a program, the minimum length of a computation starting
from the empty set is |I|. We next show how states that may serve as breakpoints can
be generated. A state can be obtained by computing an answer setX of a trusted part of
a program (or its grounding) and then selecting rule instances that are active under X .

Proposition 2. Let Π be a program and Π ′ ⊆ Π ∪ gr(Π) such that I ∈ AS(Π ′).
Then, ActI(gr(Π ′)) is a state of Π .

Hence, it suffices to find an appropriate Π ′ in order to get breakpoints. One option for
doing so is to let the user manually specify Π ′ as a subset of Π (including facts).

Example 3. We want to step through the rules that derive the border/2 atoms. As
we pointed out above, the respective definitions rely on information about the size of
the maze. Hence, we will use a breakpoint where the rules deriving maxcol/1 and
maxrow/1 were already applied. Following Proposition 2, we calculate an answer set
of programΠ ′

0 ⊆ Π0 that is given byΠ ′
0 = F ∪{maxcol(X)← col (X), not col(X+

1),maxrow(Y)← row(Y), not row (Y+1)}. The unique answer set ofΠ ′
0 is I0 = F∪

{maxcol(5),maxrow (5)}. The desired breakpointS0 is given by S0 = ActI0(gr(Π ′
0)),

which consists of the facts in F and the rules maxcol(5) ← col(5), not col(6) and
maxrow(5)← row (5), not row(6).

Note that if the subprogramΠ ′ for breakpoint generation has more than one answer set,
the selection of the set I ∈ AS (Π ′) is based on the programmer’s intuition, similar to
selecting the next rule in stepping.

A different application of Proposition 2 is jumping from one state to another by
considering further non-ground rules. This makes sense, e.g., in a debugging situa-
tion where the user initially started with a breakpoint S that is considered as an early
state in a computation. After few steps and reaching state S′, the user realises that
the computation from S to S′ seems to be as intended and wants to proceed at a
point where more literals have already been derived, i.e., after applying a selection
Π ′′ of non-ground rules from Π on top of the interpretation Int [S′] associated with
S′. Then, Π ′ is given by Π ′ = S′ ∪ Π ′′. Note that, for an arbitrary answer set I of
AS(Π ′), it is not ensured that there is a computation of Π starting from S′ and end-
ing with the fresh state ActI(gr(Π ′)). The reason is that there might be rules in S′

that are not active under I . If the programmer wants to assure that there is a compu-
tation of Π starting from S′ and ending with ActI(gr(Π ′)), Π ′ can be joined with
the set ConS′ = {← not l | l ∈ B+(r), r ∈ S′} ∪ {← l | l ∈ B−(r), r ∈ S′} of
constraints.

Jumping from one state to another is also needed if the user wants to skip several
steps and considers one or more non-ground rules instead.

Stepping through an Answer-Set Program 141

Example 4. Assume the programΠ0 has been extended to Π1 by adding the rule

rbw = wall (X,Y)← border (X,Y), not entrance(X,Y), not exit(X,Y)

that ensures that every border cell is a wall, except for the entrance and the exit. As
Π0 ⊆ Π1, the state S0 of Π0 is also a state of Π1. Hence, assume we started step-
ping Π1 from S0 and successively added the rules border (1, 1) ← col(1), row (1)
and border(1, 2) ← col (1), row(2). Let S1 be the resulting state, i.e., the union of
these rules and S0. The cells (1, 1) and (1, 2) have been identified as border cells. Ac-
cording to the problem specification, cell (1, 1) should be a wall, and (1, 2) should be
empty as it contains the entrance. To test whether our current program realises that,
we want to apply the non-ground rule rbw on top of S1. Therefore, we use Propo-
sition 2 by first computing the answer set I1 of Π ′

1 = S1 ∩ {rbw} that is given
by I1 = I0 ∪ {border(1, 1), border(1, 2),wall (1, 1)} as expected. The new state is
S2 = ActI1(gr(Π ′

1)).

4.2 Stepping

To obtain a successor of a given state S of program Π , by Definition 3 we need a rule
r ∈ gr(Π) \ S with (i) Int [S] |= B(r), (ii) H(r) �= ∅, and (iii) H(r) ∩ (B−(r) ∪⋃

r′∈S B−(r′) ∪
⋃

l∈Int [S] l̄) = ∅. One can proceed in the following fashion: First, a
non-ground rule r ∈ Π with H(r) �= ∅ is selected for instantiation. Then, the user
assigns constants to the variables occurring in r. Both steps can be assisted by filtering
techniques. A stepping system can provide the user with information which non-ground
rules in Π have instances that are active under Int [S] but not contained in S. This can
be done using ASP itself using meta-programming and tagging transformations [5,2].

Example 5. The next version,Π2, of the maze-generation encoding is obtained by join-
ing Π1 with the following set Πguess of rules:

wall (X,Y)← not empty(X,Y), col (X), row(Y),
empty(X,Y)← not wall (X,Y), col(X), row(Y),

← entrance(X,Y),wall (X,Y),
← exit(X,Y),wall (X,Y).

ProgramΠguess guesses whether a cell is a wall or empty while assuring that no wall is
guessed on an entrance or exit cell. We start the stepping session from breakpoint S3 =
ActI3(gr(Π1)), where AS(Π1) = {I3}. Note that the answer set I3 of Π1, which is
also the interpretation induced by S3, encodes a situation where the cells from the input
as well as the border cells have already been assigned to be a wall or empty (cf. Fig. 2).
There are only two non-ground rules in Π2 that have active ground instances under I3
that are not yet contained in S3: wall(X,Y) ← not empty(X,Y), col(X), row(Y),
and empty(X,Y) ← not wall (X,Y), col(X), row (Y). An advanced source editor
may directly highlight the two rules.

A user can also get assistance for a variable assignment. By assigning the variables in
r one after the other, the domains of the remaining ones can always be accordingly re-
stricted such that there is still a compatible ground instance of r that is active under

142 J. Oetsch, J. Pührer, and H. Tompits

Fig. 2. Visualisation of I3, I4, and I5 from Examples 5, 6, and 9

Int [S]. Consider a partial substitution ϑ assigning constants in Π to some variables in
r. When fixing the assignment of a further variableX occurring in B(r), where ϑ(X) is
yet undefined, we may choose only a constant c such that there is a substitution ϑ′ with

– ϑ′(X ′) = ϑ(X ′), where ϑ(X ′) is defined,
– ϑ′(X) = c,
– lϑ′ ∈ Int [S], for all l ∈ B+(r), and
– lϑ′ �∈ Int [S], for all l ∈ B−(r).

Respective computations can be done by a simple ASP meta-program that guesses ϑ′

given r, ϑ, and Int [S], and checks the conditions above plus rϑ′ /∈ S.
ASP solvers typically require safety, i.e., all variables occurring in r must also occur

in B+(r). Thus, the constants to be considered are restricted to those that appear in
literals in Int [S] to which literals B+(r) can be substituted to. If safety is not given
however, all constants in Π have to be considered for the respective substitutions.

Once a substitution ϑ for all variables in r is found, we check whether the newly
obtained ground instance r′ = rϑ satisfies the final condition of Definition 3, i.e.,
checking whether the head of r′ is consistent with all rules in the potential successor
state of S being active. If this is not the case, the user’s intention that for the considered
stepping choices rule r′ can be active was wrong.

Example 6. We resume the stepping session of Example 5 at state S3 and choose rule
rw = wall (X,Y) ← not empty(X,Y), col (X), row(Y) for instantiation. There are
24 instances of rw that are active under I3. Each such instance corresponds to rwϑ,
where ϑ(X), ϑ(Y) ∈ {1, . . . , 5} and not both ϑ(X) = 3 and ϑ(Y) = 4. Assume
we want to determine the assignment ϑ(Y) for variable Y first. We choose ϑ(Y) = 4
and determine the value of X next. Filtering now leaves only 1, 2, 4, and 5 as options.
We define ϑ(X) = 4 and use the obtained ground instance r′wϑ = wall (4, 4) ←
not empty(4, 4), col(4), row (4) to step to state S4 = S3 ∪ r′w. The interpretation I4 =
Int [S4] is visualised in Fig. 2.

4.3 Application Scenarios

Stepping to an answer set. Stepping until an answer set of a program is reached can
be helpful in many situations. Besides the general benefit of getting insights into the
interplay of rules of a program, stepping can be used to search for a particular answer
set when a program has many of them.

Stepping through an Answer-Set Program 143

Example 7. ProgramΠ2 has 128 answer sets and does not yet incorporate all constraints
from the problem specification. All answer sets that correspond to valid maze-generation
solutions for the given problem instance are among them. Starting stepping from break-
pointS3, corresponding to the visualisation of I3 in Fig. 2, we only need nine steps to get
to a state Ssol where Int [Ssol] encodes the solution depicted in Fig. 1. In fact, we just
need to add instances of the rule empty(X,Y) ← not wall (X,Y), col(X), row (Y)
from Πguess for each unassigned cell (X,Y).

Whenever a state S is reached and I = Int [S] is a desired answer set (projected to
interesting literals) of a yet unfinished program, we can make use of the obtained in-
terpretation I for further developing the program. For example, later versions of the
program can be tested for being consistent with the intended solution I . If they are not,
I can be used as input in a debugging approach, e.g., like the one from earlier work [5]
that gives reasons why I is not an answer set of a program.

If the guessing part of a program is extensive, i.e., involving a large number of lit-
erals, the guessing rules have to be considered already when obtaining the breakpoint
using Proposition 2. If the user has special requirements regarding the guess, for in-
stance that certain cells are not walls, they can be added as constraints when computing
the new breakpoint. It is advisable, however, to use small problem instances for testing
during program development. Using 5×5 mazes as in our example will be sufficient for
realising a reliable encoding and makes stepping easier as computations will be shorter.

Absence of answer sets. A common situation when writing an answer-set program is
that the program’s current version is unexpectedly incoherent, i.e., it does not yield any
answer sets. A usual debugging strategy is to individually remove the constraints of the
program to identify which one yields the incoherence. It may be the case that absence of
answer sets is not caused by constraints (e.g., contradictory literals, odd loops through
negation), but unfortunately, as we will see in the next example, even when the bug is
due to constraints, removing constraints is not always sufficient to locate the error.

Example 8. As next features of the maze-generation program, we (incorrectly) imple-
ment rules that should express that there has to be a path from the entrance to every
empty cell and that 2× 2 blocks of empty cells are forbidden. We obtain a new version,
Π3, by joining Π2 with the rules

adjacent(X,Y,X, Y + 1)← col(X), row(Y), row (Y + 1),
adjacent(X,Y,X, Y − 1)← col(X), row(Y), row (Y − 1),
adjacent(X,Y,X + 1, Y) ← col(X), row(Y), col(X + 1),
adjacent(X,Y,X − 1, Y) ← col(X), row(Y), col(X − 1),

reach(X,Y) ← entrance(X,Y), not wall (X,Y),
reach(X2 ,Y2) ← adjacent(X1, Y1,X2 ,Y2), reach(X1, Y1),

not wall(X2 ,Y2),

formalising when an empty cell is reached from the entrance, and the constraints

c1 =← empty(X,Y), not reach(X,Y),
c2 =← empty(X,Y), empty(X+1, Y), empty(X,X+1), empty(X+1, Y +1)

to ensure that every empty cell is reached and that no 2× 2 blocks of empty cells exist.

144 J. Oetsch, J. Pührer, and H. Tompits

Assume that we did not spot the bug contained in c2—in the third body literal the
term Y +1 was mistaken forX+1. This could be the result of a typical copy-paste error.
It turns out that Π3 has no answer set. As we already trust the previous version Π2 and
expect the inconsistency to be caused by one of the constraints, the most obvious strat-
egy is to remove one of c1 or c2. It turns out that both Π3 \ {c1} as well as Π3 \ {c2}
do have answer sets, 84 answer sets in the former case and ten in the latter case. In-
specting ten answer sets manually is tedious but still manageable. Thus, one could go
through them and check whether some of them encode proper maze-generation solu-
tions. After doing so, c2 would be identified as suspicious. An alternative approach—
also feasible if there were more than ten answer sets to expect—is to use the approach
of Example 7 and start a computation for Π3 towards an intended solution, e.g., the
one from Fig. 1, at breakpoint S3. As soon as we reach a state Sc2 where the cells
(1, 2), (2, 1) and (2, 3) are considered to be empty, there is an instance of constraint
c2 which becomes active with respect to the interpretation induced by Sc2 . As noted in
Section 4.2, automatic checks after each step could be used to reveal and highlight non-
ground rules with active instances. In the case of active constraint instances, it would
even be sensible to explicitly warn the programmer. Using the filtering techniques for
variable substitutions, the user can be guided to a concrete active instance of c2, viz.
to c′2 = ← empty(1, 2), empty(2, 2), empty(1, 2), empty(2, 3). It is obvious that the
cells (1, 2),(2, 2),(1, 2), and (2, 3) do not form a valid 2× 2 block and hence the wrong
term in c2 can be easily detected. A correct programΠ4 is obtained fromΠ3 by chang-
ing c2. As shown in Example 7, depending on the order in which the rules are added,
c′2 becomes active in at most nine steps when reaching state Ssol.

Understanding someone else’s code. Reading and understanding a program written
by another developer can be difficult. Stepping through such a program can be quite
helpful.

Example 9. Assume we were provided with the code

c3 = ← wall(X,Y),wall (X + 1, Y),wall (X,Y + 1),wall (X + 1, Y + 1),
c4 = ← wall(X,Y),wall (X + 1, Y + 1), not wall (X + 1, Y), not wall (X,Y + 1),
c5 = ← wall(X + 1, Y),wall (X,Y + 1), not wall (X,Y), not wall (X + 1, Y + 1),
c6 = ← wall(X,Y), empty(X + 1, Y), empty(X − 1, Y),

empty(X,Y + 1), empty(X,Y − 1),

implementing the yet uncovered parts of the specification by someone else. Constraint
c3 is similar to the corrected constraint c2 but forbidding 2×2 blocks of walls instead of
empty cells. Constraints c4 and c5 ensure that one common neighbour of two diagonally
adjacent walls must be a wall. Consequently, the purpose of the remaining constraint c6
must be to disallow walls to be completely surrounded by empty cells. We are puzzled,
however, that the rule already forbids the case that only upper, lower, left, and right
neighbours are empty. So, we are wondering how the case that a wall has a single
adjacent wall that is the bottom right neighbour is addressed.

To shed light on this issue, we reuse S4 as a breakpoint for stepping, where Int [S4] =
I4 is illustrated in Fig. 2. We successively add instances of rule empty(X,Y) ←
not wall(X,Y), col(X), row(Y) for fixing the six unassigned cells around the wall

Stepping through an Answer-Set Program 145

at (3, 3) to be empty. Let us assume that S5 is the state that results (I5 = Int [S5] is
also depicted in Fig. 2). As the wall in the centre has as its only neighbouring wall the
cell (4, 4), we see the requirement that the wall may not be surrounded by empty cells
is not violated. Checking for active rules at state S5 reveals that constraint c6 has active
instances as expected. However, we notice that also constraint c4 has an active instance
under I5. We now understand why the encoding is correct as the developer of constraints
c3 to c6 has exploited the interplay of the requirements already that walls without wall
neighbours are forbidden and that two diagonally adjacent walls must have one joint
neighbour wall. Whenever a wall has only diagonally adjacent walls as neighbours, it
is not harmful that constraint c6 is violated: then, necessarily also the requirement of a
common neighbour of the diagonally adjacent walls is violated.

5 Related Work

Previous work on visualising answer-set computations is realised by the noMoRe-
system [10]. This system is graph-based and utilises rule dependency graphs (RDGs)
which are directed labelled graphs where the nodes are the rules of a given program.
Answer sets can be computed by stepwise colouring the nodes of the RDG of a ground
program either green or red, reflecting whether a rule is considered active or not. An
answer set is formed by the heads of the rules which are coloured green. A handicap for
practical stepping is the separation of visualisation from the actual source code due to
the graph-based representation and the limitation to ground programs.

Work on debugging in ASP includes justifications for ASP [11]. A justification is
a labelled directed graph that explains the truth value of a literal with respect to an
answer-set in terms of dependency on the truth values of fellow literals. Interesting
with respect to our technique is the notion of an online justification that explains truth
values with respect to partial answer sets emerging during the solving process. As our
approach is compatible with the model of computation for online justifications, they
can be used in a combined debugging approach. While interactively stepping through
a computation allows for following individual intuitions concerning rule applications,
justifications or related concepts could keep track of the chosen support for individual
literals of interest. A potential shortcoming concerning the intuition of justifications is
the absence of program rules, constituting the actual source code artifacts, in the graphs.

Other work on declarative debugging centred on the question why a given interpre-
tation is not an answer set of a program [5]. The answers are given in terms of rule
instances that are unsatisfied or loops that are unfounded. As noted in Section 4.2, the
meta-programming techniques used in that work allow for identifying active rules in the
stepping approach. Also, the interpretation needed as input in that debugging approach
could be partially constructed by means of stepping. Note that unfounded loops cannot
occur in the stepping process as states are required to be stable.

Another related approach is to trace the concrete execution of a solver. A respective
system developed for DLV [12] is intended for debugging the solver itself rather than the
answer-set programs. A disadvantage of solver-based tracing for debugging and program
analysis is that some solver algorithms do not work on the rule level, are quite involved,
and hard to grasp for an ordinary programmer. Interpreted as a strategy for computing
answer sets, our stepping model is similar in spirit to a non-deterministic algorithm due

146 J. Oetsch, J. Pührer, and H. Tompits

to Iwayama and Satoh [13]. Moreover, Gebser et al. [14] introduced an incremental se-
mantics for logic programs based on ι-answer sets. These are relaxations of answer sets
that are not necessarily models of the overall program and can be constructed by step-
by-step applying active rules similar as in our approach. Their semantics guarantees to
reach a ι-answer set, while under standard semantics, computations may fail.

6 Conclusion

We presented a framework for stepping through an answer-set program that is useful
for debugging and program analysis. It allows the programmer to follow his or her
intuitions regarding which rules to apply next and is based on an intuitive and simple
computation model where rules are subsequently added to a state. Every state implicitly
defines an interpretation that is stable with respect to that state. We also discussed how
to obtain states that may serve as breakpoints from which stepping is started. Keeping a
handful of these breakpoints during program development, the programmer can quickly
initiate stepping sessions from situations he or she is already familiar with. A prototyp-
ical stepping system will be part of SeaLion, an integrated development environment
for ASP we are currently developing. In future work, we plan to extend the approach to
programs with function symbols, aggregates (possibly in rule heads), and disjunctions.

References

1. Gelfond, M., Leone, N.: Logic programming and knowledge representation - the A-Prolog
perspective. Artificial Intelligence 138(1-2), 3–38 (2002)

2. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP
programs by means of ASP. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 31–43. Springer, Heidelberg (2007)

3. Syrjänen, T.: Debugging inconsistent answer set programs. In: Proc. NMR 2006, pp. 77–83
(2006)

4. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debug-
ging answer-set programs. In: Proc. AAAI 2008, pp. 448–453. AAAI Press, Menlo Park
(2008)

5. Oetsch, J., Pührer, J., Tompits, H.: Catching the Ouroboros: Towards debugging non-ground
answer-set programs. Theory and Practice of Logic Programming 10(4-6), 513–529 (2010)

6. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Seman-
tics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 200–212. Springer, Heidelberg (2004)

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4), 365–386 (1991)

8. Shapiro, E.Y.: Algorithmic Program Debugging. PhD thesis, Yale University, New Haven,
CT, USA (May 1982)

9. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set
programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

10. Bösel, A., Linke, T., Schaub, T.: Profiling answer set programming: The visualization com-
ponent of the noMoRe system. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI),
vol. 3229, pp. 702–705. Springer, Heidelberg (2004)

Stepping through an Answer-Set Program 147

11. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under answer set
semantics. Theory and Practice of Logic Programming 9(1), 1–56 (2009)

12. Calimeri, F., Leone, N., Ricca, F., Veltri, P.: A visual tracer for DLV. In: Proc. SEA 2009
(2009)

13. Iwayama, N., Satoh, K.: Computing abduction by using TMS with top-down expectation.
Journal of Logic Programming 44(1-3), 179–206 (2000)

14. Gebser, M., Gharib, M., Mercer, R.E., Schaub, T.: Monotonic answer set programming. Jour-
nal of Logic and Computation 19(4), 539–564 (2009)

Dynamic Magic Sets for Programs with Monotone
Recursive Aggregates

Mario Alviano, Gianluigi Greco, and Nicola Leone

Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
{alviano,ggreco,leone}@mat.unical.it

Abstract. Disjunctive Logic Programming (DLP) is an extension of Datalog
that allows for disjunction in rule head and nonmonotonic negation in bodies. All
of the queries in the second level of the polynomial hierarchy can be expressed
in this language. However, DLP does not allow for representing properties which
involve sets of data in a natural way. Extending the language by introducing ag-
gregate functions has been proposed in the literature to overcome this lack, then
leading to the language DLPA,¬. In particular, DLPA,¬ allows for using recur-
sive aggregates, which naturally arise in many practical application scenarios. An
aggregate is recursive if its aggregate set depends on the evaluation of the aggre-
gate itself. The evaluation of programs with aggregates is hard, especially when
aggregates are recursive, optimization techniques are highly needed to make these
programs usable in real-world applications.

In this paper, we focus on the optimization of queries over programs with re-
cursive aggregates. In particular, we design an extension of the Dynamic Magic
Set (DMS) technique to programs with stratified negation and monotone recursive
aggregates, and we demonstrate the correctness of the proposed technique. For as-
sessing the effectiveness of the new technique, we consider a standard benchmark
for recursive aggregates, referred to as Company Controls, along with a couple
of benchmarks involving aggregates over the WordNet database. Experimental
results confirm the effectiveness of our technique.

Keywords: Disjunctive Logic Programming, recursive aggregates, Magic Sets.

1 Introduction

Disjunctive Logic Programming (DLP) is a language that has been proposed for model-
ing incomplete data [1]. Together with a light version of negation, in this paper stratified
negation, this language can in fact express any query of the complexity class ΣP

2 [2],
under the stable model semantics. For this reason, it is not surprising that DLP has
found several practical applications, including team-building [3], semantic-based infor-
mation extraction [4] and e-tourism [5], also encouraged by the availability of some
efficient inference engines, such as DLV [6], GnT [7], Cmodels [8], or ClaspD [9]. As
a matter of fact, these systems are continuously enhanced to support novel optimization
strategies, enabling them to be effective over increasingly larger application domains.

Despite its expressive power, DLP does not allow for representing in a natural way
properties that involve sets of elements, such as properties based on counting the num-
ber of elements satisfying user-defined criteria. In fact, extending the language by in-
troducing aggregate functions has been an active area of research in the last few years

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 148–160, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Dynamic Magic Sets for Programs with Monotone Recursive Aggregates 149

(see, e.g., [10,11,12,13,14]). In this paper, we consider DLPAm,¬s , which is an exten-
sion of DLP allowing the use of stratified negation combined with aggregate functions.
These functions must be monotone, even though possibly recursive, i.e., the sets on
which they are applied can even depend on the result of their evaluation1. Recursive ag-
gregates naturally arise in many practical application scenarios; for instance, recursive
aggregates can be used for consistent query answering over heterogeneous data sources
[15].

Designing and implementing inference engines for DLPAm,¬s is clearly more chal-
lenging compared to the case of plain disjunctive logic programs. Indeed, in order to be
efficient, inference engines must exploit optimization strategies specifically conceived
to deal with aggregate functions. However, this issue has been just marginally faced in
earlier literature. In this paper, we fill the gap and propose an optimization method for
DLPAm,¬s which is inspired by deductive database optimization techniques, in partic-
ular the Magic Set method [16,17,18].

The Magic Set method is a strategy for simulating the top-down evaluation of a
query by modifying the original program by means of additional rules, which narrows
the computation to what is relevant for answering the query. Basically, the method prop-
agates the constants in the query to all head rules that unify with the query. Atoms in
these rules are taken as subqueries and the procedure is iterated, like SLD–resolution
[19]. In particular, if the (sub)query has some arguments bound to constant values, this
information is “passed” to the atoms in the body. Moreover, bodies are processed in
a certain sequence, and processing a body atom may bind some of its arguments for
subsequently considered body atoms, thus “generating” and “passing” bindings. The
specific propagation strategy adopted to select the order according to which body atoms
have to be processed is called sideways information passing strategy (SIPS).

The Magic Set method has been originally defined for non-disjunctive programs (see
[16]). Subsequently, it has been extended to the DLP language by [20,21], and recently
to non-disjunctive programs with unstratified negation [22]. However, up to now, there
was no proposal to extend the method to DLPAm,¬s programs. This is precisely the
goal of this paper, the contributions of which are as follows:

� We show how classical sideways information passing strategies can be modified
as to take care of aggregate functions. Based on our novel SIPS, we design an
extension of the Magic Set algorithm for DLPAm,¬s programs.

� We prove that the evaluation method is sound and complete. Thus, no answer can
be missed, while computation is narrowed to the part of the instantiation that is
really relevant to answer the query.

� To assess the efficiency of the proposed technique, we carry out some experiments.
The results give a clear evidence of the benefit of the proposed optimization method.

Organization. The remainder of the paper is organized as follows. Section 2 presents an
overview of the language DLPAm,¬s . The Magic Set method for this language is then
illustrated in Section 3. The correctness of the approach is formally proven in Section 4.

1 Note that the results in this paper hold also in presence of arbitrary (possibly nonmonotone)
non-recursive aggregates, which can be rewritten by using auxiliary rules, monotone aggre-
gates and stratified negation.

150 M. Alviano, G. Greco, and N. Leone

Experimental results are discussed in Section 5, and a few final remarks are reported in
Section 6. Due to space limitations, details on algorithms and full proofs are reported
in Appendix (http://archives.alviano.com/LPNMR2011/).

2 The DLPAm ,¬s Language

In this section we present the basis of DLPA,¬— an extension of Disjunctive Logic
Programming (DLP) by set–oriented functions, also called aggregate functions. In this
section we also introduce the DLPAm,¬s fragment, which is the language considered
in this paper. For further background on DLP, we refer to [23].

Syntax. We assume sets of variables, constants, predicates and aggregate function
symbols to be given. A term is either a variable or a constant. A standard atom is an
expression p(t1, . . . , tk),2 where p is a predicate of arity k ≥ 0 and t1, . . . , tk are
terms. An aggregate function is of the form f(S), where f is an aggregate function
symbol and S is a set term; a set term is a pair {t̄ : α}, where t̄ is a list of terms
(variables or constants) and α is a standard atom. An aggregate atom is a structure
of the form f(S) ≺ T , where f(S) is an aggregate function, ≺ ∈ {<, ≤, >,≥} is
a comparison operator and T is a term (variable or constant). A literal is either (i)
a standard atom (a positive literal), (ii) a standard atom preceded by the negation as
failure symbol not (a negative literal) or (iii) an aggregate atom (an aggregate literal).

A program is a set of rules r of the form α1 v · · · v αm :− �1, . . . , �n , where
α1, . . . , αm are standard atoms, �1, . . . , �n are literals, m ≥ 1 and n ≥ 0. The dis-
junction α1 v · · · v αn is referred to as the head of r and the conjunction �1, . . . , �n is
the body of r. We useH(r) for denoting the set of head atoms,B+(r) andB−(r) for the
set of atoms appearing in positive and negative body literals, respectively, and BA(r)
for the set of aggregate body literals. The set of standard atoms appearing in a rule r,
including standard atoms occurring in aggregate literals, is denoted by ATOMS(r).A
variable appearing solely in sets terms of r is local; otherwise, it is global. A structure
(atom, literal, rule or program) without global variables is ground. A ground rule r such
that |H(r)| = 1 is a fact. A predicate p is an extensional database predicate (EDB pred-
icate) if all rules r such that p appears in H(r) are facts. A predicate p is an intentional
database predicate (IDB predicate) if p is not an EDB predicate.

Semantics. A rule r is safe if the following conditions hold: (i) all global variables of
r also appear in B+(r); (ii) each local variable of r appearing in a set term {t̄ : α} also
appears in α. A program is safe if all of its rules are safe. In this paper, we will consider
only safe programs. The universe of a DLPA,¬ programP , denoted by UP , is the set of
constants appearing in P3. The base of P , denoted by BP , is the set of standard atoms
constructible from predicates of P with constants in UP . A substitution is a mapping
from a set of variables to UP . Given a substitution ϑ and a DLPA,¬ object obj (literal,
rule, etc.), we denote by obj ϑ the object obtained by replacing each variable X in obj

2 We use the notation t̄ for a sequence of terms. Thus, an atom with predicate p is usually
referred to as p(t̄) in this paper.

3 If P has no constants, an arbitrary constant is added to UP .

http://archives.alviano.com/LPNMR2011/

Dynamic Magic Sets for Programs with Monotone Recursive Aggregates 151

by ϑ(X). If objϑ is ground, objϑ is an instance of obj. The set of instances of all rules
in a program P is denoted by Ground(P).

A partial interpretation for a DLPA,¬ program P is a pair 〈T, U〉 such that T ⊆
U ⊆ BP . Intuitively, atoms in T are true, atoms in U \ T are undefined and atoms in
BP \ U are false. If T = U , 〈T, U〉 is a total interpretation, and will be referred to as
T . Negative literals are interpreted as follows: (i) not α is true whenever α is false; (ii)
not α is undefined whenever α is undefined; (iii) not α is false whenever α is true.

An interpretation also provides a meaning to set terms, aggregate functions and ag-
gregate literals, namely a multiset, a value, and a truth value, respectively. We first con-
sider a total interpretation I . The evaluation I(S) of a set term S = 〈t̄ : α〉 w.r.t. I is
the multiset I(S) defined as follows: Let SI = {〈t̄ϑ〉 | ϑ is a substitution and αϑ ∈ I},
then I(S) is the multiset obtained as the projection of the tuples of SI on their first con-
stant, that is, I(S) = [t1 | 〈t1, . . . , tn〉 ∈ SI]. The evaluation I(f(S)) of an aggregate
function f(S) w.r.t. I is the result of the application of f on I(S). If the multiset I(S)
is not in the domain of f , I(f(S)) = ⊥ (where ⊥ is a fixed symbol not occurring in
P). A ground aggregate atom f(S) ≺ k is true w.r.t. I if both (i) I(f(S)) �= ⊥ and (ii)
I(f(S)) ≺ k hold; otherwise, f(S) ≺ k is false. We now consider a partial interpre-
tation 〈T, U〉 and define an extension of 〈T, U〉 as an interpretation 〈T ′, U ′〉 such that
T ⊆ T ′ and U ′ ⊆ U 4. If a ground aggregate literal � is true (resp. false) w.r.t. each total
interpretation I extending 〈T, U〉, then � is true (resp. false) w.r.t. 〈T, U〉; otherwise, �
is undefined.

Given a total interpretation I , a ground rule r is satisfied w.r.t. I if at least one head
atom is true w.r.t. I whenever all body literals are true w.r.t. I . A total interpretationM
is a model of a DLPA,¬ program P if all the rules inGround(P) are satisfied w.r.t.M .
The semantics of a DLPA,¬ programP is given by the set of its stable models, denoted
by SM(P). Stable models are defined in terms of a reduct [24]: Given a DLPA,¬ pro-
gram P and a total interpretation I , let Ground(P)I denote the transformed program
obtained from Ground(P) by deleting all rules in which a body literal is false w.r.t.
I . A total interpretation M is a stable model of P if M is a subset–minimal model of
Ground(P)M .

The DLPA,¬ language also supports queries, which can be associated with brave
or cautious reasoning. For a DLPA,¬ program P , a ground atom α is a brave (resp.
cautious) consequence of P if α belongs to some (resp. all) stable model of P . Queries
are expressed by atoms, that is, a queryQ is of the form p(t̄)?5. The set of substitutions
ϑ for the variables of p(t̄) such that p(t̄)ϑ is a brave (resp. cautious) consequence of P
is denoted by Ansb(Q,P) (resp. Ansc(Q,P))6. Two DLPA,¬ programs P and P ′ are
brave (resp. cautious) equivalent w.r.t. a queryQ, denoted by P≡b

QP ′ (resp. P≡c
QP ′),

if Ansb(Q,P ∪F) = Ansb(Q,P ′ ∪F) (resp. Ansc(Q,P ∪ F) = Ansc(Q,P ′ ∪ F))
is guaranteed for each set of facts F defined over the EDB predicates of P and P ′.

4 This definition of extension of an interpretation preserves “knowledge monotonicity”: All lit-
erals which are true (resp. false) w.r.t. 〈T, U〉 are true (resp. false) w.r.t. 〈T ′, U ′〉.

5 For simplicity, question marks of queries will be usually omitted when referring to them in
the text. We assume that each constant appearing inQ also appears in P . Note also that more
complex queries are expressible by using additional rules.

6 For ground queries, these sets are either empty or just contain ε (the empty substitution).

152 M. Alviano, G. Greco, and N. Leone

Restrictions and Bottom–up Instantiation. The DLPAm,¬s fragment is defined by
means of two restrictions discussed in this section. The first restriction applies to aggre-
gates. Let ≤ be a partial order for (partial) interpretations such that 〈T, U〉 ≤ 〈T ′, U ′〉
if and only if T ⊆ T ′ and U ⊆ U ′. A ground aggregate literal � is monotone if, for all
pairs 〈T, U〉, 〈T ′, U ′〉 such that 〈T, U〉 ≤ 〈T ′, U ′〉, we have that: (i) � true w.r.t. 〈T, U〉
implies � true w.r.t. 〈T ′, U ′〉, and (ii) � false w.r.t. 〈T ′, U ′〉 implies � false w.r.t. 〈T, U〉.
The second restriction applies to negation. A predicate p appearing in the head of a
rule r depends on each predicate q such that an atom q(s̄) occurs in the body of r; if
q(s̄) belongs to B−(r), p depends on q negatively. A program is stratified if recursive
dependencies do not involve negative dependencies. Let DLPAm,¬s denote the set of
stratified DLPA,¬ programs in which all aggregates are monotone.

Semantics of DLPAm,¬s programs and queries can be computed by implementing a
two-phase strategy. The first phase, program instantiation, associates an input program
P with a ground program which is equivalent to Ground(P), but significantly smaller.
Most of the techniques used in this phase stem from bottom–up methods developed for
classic and deductive databases; see for example [25] for details. A fact which is used
in these techniques is that the truth of an atom p(t̄) has to be supported by some rule
having p(t̄) in the head and such that all body literals are true. A simple algorithm may
start by storing all facts of a DLPAm,¬s program P in a set R, also computing the set
H of all atoms occurring in the head of some rule in R. After that, each rule r ∈ P
may be instantiated w.r.t. all substitutions ϑ such that no literal in B+(r)ϑ ∪ BA(r)ϑ
is false w.r.t. 〈∅,H〉. All new instances are added to R and the process is repeated until
no new rules are produced. The resulting ground program constitutes the input of the
second phase, referred to as stable model search, which computes stable models (for
programs) or substitution answers (for queries); details can be found in [26,27].

3 Magic Sets for DLPAm ,¬s Programs

Dynamic Magic Sets (DMS) are an extension of the original Magic Set technique pro-
posed to optimize disjunctive Datalog programs with stratified negation [28]. The goal
of this section is to extend DMS in order to deal with arbitrary DLPAm,¬s programs.

The DMS algorithm is reported in Fig. 1. DMS starts with a query Q over a
DLPAm,¬s program P and outputs a rewritten program DMS(Q,P). The method uses
two sets, S and D, to store adorned predicates to be propagated and already processed,
respectively. Magic rules are stored in the set Rmgc

Q,P , modified rules in Rmod
Q,P . Initially,

all sets S, D, Rmgc
Q,P and Rmod

Q,P are empty (line 1). The algorithm starts by processing
the query (line 2), also putting the adorned version of the query predicate into S. The
main loop of the algorithm is then repeated until S is empty (lines 3–10). In particular,
an adorned predicate pα is moved from S toD (line 4) and each rule r having and atom
p(t̄) in head is considered (lines 5–9). The adorned version ra of the rule r is computed
(line 6), from which magic rules are generated (line 7) and a modified rule r′ is ob-
tained (line 8). Finally, the algorithm terminates returning the program obtained by the
union of Rmgc

Q,P , Rmod
Q,P and EDB(P) (line 11). A brief description of the four auxiliary

functions in Fig. 1 is given below. We will use the following running example.

Dynamic Magic Sets for Programs with Monotone Recursive Aggregates 153

Algorithm DMS(Q,P)
Input: A query Q and a DLPAm,¬s program P
Output: A rewritten program
var
S, D : set of adorned predicates; Rmgc

Q,P , Rmod
Q,P : set of rules; ra: adorned rule;

begin
1. S := ∅; D := ∅; Rmgc

Q,P := ∅; Rmod
Q,P := ∅;

2. ProcessQuery(Q, S, Rmgc
Q,P);

3. while S �= ∅ do
4. take an element pα from S; remove pα from S; add pα to D;
5. for each rule r in P and for each atom p(t̄) in H(r) do
6. ra := Adorn(r, α, S, D);
7. Rmgc

Q,P := Rmgc
Q,P ∪ Generate(r, α, ra);

8. Rmod
Q,P := Rmod

Q,P ∪ {Modify(r, ra)};
9. end for

10. end while
11. return Rmgc

Q,P ∪ Rmod
Q,P ∪ EDB(P);

end.

Fig. 1. Dynamic Magic Sets algorithm for DLPAm,¬s programs

Example 1 (Company Controls). Given a set of companies, each of which can own a
percentage of shares of the other, a company x exerts control on a company y if x con-
trols, directly or indirectly, more than 50% of shares of y. A simple scenario is depicted
in Fig. 2 and represented by the following EDB: F1 = {comp(a), comp(b), comp(c),
owns(a, b, 60), owns(a, c, 40), owns(b, c, 20)}. In this case, a controls b and, thanks to
the 20% of c possessed by b, also c. This problem is known as Company Controls and
requires to calculate the sum of controlled shares, which in turn depend on the evalu-
ation of this sum. A DLPAm,¬s program P1 encoding Company Controls is shown in
Fig. 2. Controlled shares are determined by r1 (directly controlled shares) and r2 (in-
directly controlled shares) 7. Controls between companies are determined by r3. Given
P1, a query Q1 = ctrls(a, c) can be used for checking whether company a exerts
control on company c. �

Function 1: ProcessQuery. For a query Q = p(t̄), the function ProcessQuery
builds an adornment string α for the predicate p. The element in position i of α is b
if the i–th argument of p(t̄) is a constant, otherwise the element in position i of α
is f . After that, the adorned predicate pα is added to S in order to be subsequently
processed for binding propagation. Moreover, the function builds and add to Rmgc

Q,P a
query seed mgc(pα(t̄)). The function mgc(·) associates an adorned atom pα(t̄) with its
magic version mgc p(t̄′), where mgc p is a predicate symbol not occurring in P and t̄′

is the list of constants corresponding to bound arguments in pα(t̄).

7 Note that r1 contains a built–in atom Z = X, that is, we assume that facts of the form ξ = ξ
(where ξ is a constant) are contained in all EDB.

154 M. Alviano, G. Greco, and N. Leone

a

b c

60% 40%

20%

r1 : cs(X, Z, Y, S) :− owns(X, Y, S), Z = X.

r2 : cs(X, Z, Y, S) :− owns(Z, Y, S), ctrls(X, Z).

r3 : ctrls(X, Y) :− comp(X), comp(Y),

#sum{S, Z : cs(X, Z, Y, S)} > 50.

Fig. 2. Company Controls: an instance (left) and a DLPAm,¬s encoding (right)

Example 2. For the queryQ1 from Example 1, ProcessQuery builds the adorned pred-
icate ctrlsbb and the query seed rQ1 : mgc ctrlsbb(a, c). �

Function 2: Adorn. For each adorned predicate pα produced by DMS, the function
Adorn propagates the binding information of pα into all rules defining p. In this step,
we have to take into account the peculiarities of DLPAm,¬s programs, in order to define
a suitable notion of SIPS to propagate binding information in presence of aggregate
operators. Our strategy is defined next.

Definition 1 (SIPS). A SIPS for a DLPAm,¬s rule r w.r.t. a binding α for an atom
p(t̄) ∈ H(r) is a pair (≺pα(t̄)

r , f
pα(t̄)
r), where:

– ≺pα(t̄)
r is a strict partial order over the atoms in ATOMS(r); ≺pα(t̄)

r is such that

p(t̄) ≺pα(t̄)
r q(s̄) holds for all atoms q(s̄) ∈ ATOMS(r) different from p(t̄), and

qi(s̄i) ≺pα(t̄)
r qj(s̄j) implies that atom qi(s̄i) belongs to B+(r) ∪ {p(t̄)};

– f
pα(t̄)
r is a function assigning to each atom q(s̄) ∈ ATOMS(r) a subset of the

variables in s̄ — intuitively, those made bound after processing q(s̄); f p
α(t̄)

r is

such that f p
α(t̄)

r (p(t̄)) contains all and only the variables of p(t̄) corresponding to
bound arguments in pα. �

The propagation is performed according to the above strategy. In particular, for a bind-
ing α associated with an atom p(t̄) in the head of a rule r, the SIPS (≺pα(t̄)

r , f
pα(t̄)
r)

determines which variables are bound in the evaluation of each atom of r: A variable X
of an atom q(s̄) in ATOMS(r) is bound if and only if either (i) X ∈ f p

α(t̄)
r (p(t̄)) or (ii)

there exists b(v̄) ∈ B+(r) such that b(v̄) ≺pα(t̄)
r q(s̄) and X ∈ f p

α(t̄)
r (b(v̄)).

Example 3. Adorn is invoked for the rule r3 and the adorned atom ctrlsbb(X, Y). Let
us assume that the adopted SIPS is as follows:

– ctrls(X, Y) ≺ctrlsbb(X,Y)
r3 comp(X); ctrls(X, Y) ≺ctrlsbb(X,Y)

r3 comp(Y);
– ctrls(X, Y) ≺ctrlsbb(X,Y)

r3 cs(X, Z, Y, S);
– f

ctrlsbb(X,Y)
r3 (ctrls(X, Y)) = {X, Y}; f

ctrlsbb(X,Y)
r3 (comp(X)) = {X};

– f
ctrlsbb(X,Y)
r3 (comp(Y)) = {Y}; f

ctrlsbb(X,Y)
r3 (cs(X, Z, Y, S)) = {X, Y}.

According to the above SIPS, the following adorned rule is generated:

ra
3 : ctrlsbb(X, Y) :− comp(X), comp(Y), #sum{S, Z : csbfbf (X, Z, Y, S)} > 50.

Dynamic Magic Sets for Programs with Monotone Recursive Aggregates 155

Note that only IDB predicates are adorned in the rule above. A new adorned predicate,
csbfbf , has been produced, which will be propagated in a subsequent invocation of
Adorn, for instance according to the following SIPS for r1 and r2:

– cs(X, Z, Y, S) ≺csbfbf (X,Z,Y,S)
r1 owns(X, Y, S) ≺csbfbf (X,Z,Y,S)

r1 Z = X;

– f
csbfbf (X,Z,Y,S)
r1 (cs(X, Z, Y, S)) = f

csbfbf (X,Z,Y,S)
r1 (owns(X, Y, S)) = {X, Y};

– f
csbfbf (X,Z,Y,S)
r1 (Z = X) = {X, Z};

– cs(X, Z, Y, S) ≺csbfbf (X,Z,Y,S)
r2 owns(Z, Y, S) ≺csbfbf (X,Z,Y,S)

r2 ctrls(X, Z);
– f

csbfbf (X,Z,Y,S)
r2 (cs(X, Z, Y, S)) = {X, Y};

– f
csbfbf (X,Z,Y,S)
r2 (owns(Z, Y, S)) = f

csbfbf (X,Z,Y,S)
r2 (ctrls(Z, Y)) = {Z, Y}.

Hence, the following adorned rules will be produced:

ra
1 : csbfbf (X, Z, Y, S) :− owns(X, Y, S), Z = X.

ra
2 : csbfbf (X, Z, Y, S) :− owns(Z, Y, S), ctrlsbb(X, Z). �

Function 3: Generate. When Generate is invoked for an adorned rule ra, which has
been obtained by adorning a rule r w.r.t. an adorned head atom pα(t̄), a magic rule r∗

is produced for each pαi
i (t̄i) ∈ ATOMS(ra) different from pα(t̄) and such that pi is

an IDB predicate: The head atom of r∗ is mgc(qβi

i (s̄i)), and the body of r∗ consists of

mgc(pα(t̄)) and all atoms qβj

j (s̄j) in B+(r) such that qj(s̄j) ≺α
r qi(s̄i) holds.

Example 4. When Generate is invoked for ra
3 and ctrlsbb(X, Y), the following magic

rule is produced:

r∗3 : mgc csbfbf (X, Y) :− mgc ctrlsbb(X, Y).

When Generate is invoked for ra
1 and csbfbf (X, Z, Y, S), no magic rules are generated

because only EDB predicates appear in the body of ra
1 . Finally, when Generate is in-

voked for ra
2 and csbfbf (X, Z, Y, S), the following magic rule is produced:

r∗2 : mgc ctrlsbb(X, Z) :− mgc csbfbf (X, Y), owns(Z, Y, S). �

Function 4: Modify. Given an adorned rule ra, obtained from a rule r, Modify builds
and returns a modified rule r′. The modified rule r′ is obtained from r by adding to
its body a magic atom mgc(pα(t̄)) for each adorned atom pα(t̄) occurring in H(ra).
These magic atoms limit the range of the head variables during program instantiation.

Example 5. The modified rules in DMS(Q1,P1) are:

r′1 : cs(X, Z, Y, S) :− mgc csbfbf (X, Y), owns(X, Y, S), Z = X.

r′2 : cs(X, Z, Y, S) :− mgc csbfbf (X, Y), owns(Z, Y, S), ctrls(X, Z).
r′3 : ctrls(X, Y) :− mgc ctrlsbb(X, Y), comp(X), comp(Y),

#sum{S, Z : cs(X, Z, Y, S)} > 50.

To sum up, the complete program DMS(Q1,P1) comprises the modified rules above,
the query seed rQ1 , and the magic rules r∗3 , r

∗
2 . Note that Q1 is a brave and cautious

consequence of P1 and of DMS(Q1,P1). �

156 M. Alviano, G. Greco, and N. Leone

4 Query Equivalence Theorem

In this section, we show the correctness of DMS for DLPAm,¬s programs. The proof
uses a suitable extension of the notion of unfounded set for DLPAm,¬s programs. We
will use the notion of unfounded set introduced in [27], opportunely adapted to our
notation, and a theorem which is implicit in that paper.

Definition 2 (Unfounded Set). Let 〈T, U〉 be a partial interpretation for a DLPAm,¬s

program P and X ⊆ BP be a set of atoms. Then, X is an unfounded set for P w.r.t.
〈T, U〉 if and only if, for each ground rule r ∈ Ground(P) with X ∩ H(r) �= ∅, at
least one of the following conditions holds: (i) B−(r) ∩ T �= ∅; (ii) B+(r) �⊆ U ;
(iii) B+(r) ∩ X �= ∅; (iv) some (monotone) aggregate literal in BA(r) is false w.r.t.
〈T \X,U \X〉; (v) H(r) ∩ (T \X) �= ∅.

Theorem 1. Let 〈T, U〉 be a partial interpretation for a DLPAm,¬s program P . Then,
for any stable model M of P such that T ⊆ M ⊆ U , and for each unfounded set X of
P w.r.t. 〈T, U〉, M ∩X = ∅ holds.

Proof. From Proposition 7 of [27], M is unfounded–free, that is, M is disjoint from
every unfounded set for P w.r.t.M . SinceX is an unfounded set for P w.r.t.M because
of Proposition 1 of [27], M ∩X = ∅ follows. �

We will provide a link between unfounded sets and magic atoms by means of the fol-
lowing set of “killed” atoms.

Definition 3 (Killed Atoms). Let Q be a query over a DLPAm,¬s program P , M ′ a
model of DMS(Q,P), and N ′ ⊆ M ′ a model of Ground(DMS(Q,P))M ′

. The set
killedM ′

Q,P (N ′) of the killed atoms for DMS(Q,P) w.r.t. M ′ and N ′ is defined as
{p(t̄) ∈ BP \ N ′ | either p is an EDB predicate or there is a binding α such that
mgc(pα(t̄)) ∈M ′}.

Intuitively, killed atoms are either false ground instances of some EDB predicate or
false atoms which are relevant w.r.t.Q (they have associated magic atoms in the model
N ′). In terms of a hypothetical top–down evaluation of Q, this means that killed atoms
would be considered as subqueries but discovered to be false.

Theorem 2. Let Q be a query over a DLPAm,¬s program P . Let M ′ be a model for
DMS(Q,P), N ′ ⊆ M ′ a model of Ground(DMS(Q,P))M ′

. Then, killedM ′

Q,P(N ′)
is an unfounded set for P w.r.t. 〈M ′ ∩ BP ,BP〉.

Proof (Sketch). Let X = killedM ′

Q,P(N ′). Let r′ ∈ DMS(Q,P) be a rule associated

with a rule r ∈ P such that H(r)ϑ∩ killedM ′

Q,P(N ′) �= ∅ (ϑ a substitution). Since M ′

is a model of DMS(Q,P),M ′ satisfies r′ϑ, i.e., at least one of the following conditions
holds: (1) B−(r′)ϑ ∩M ′ �= ∅; (2) B+(r′)ϑ �⊆ M ′; (3) an aggregate A ∈ BA(r′)ϑ is
false w.r.t. M ′; (4) H(r′)ϑ ∩M ′ �= ∅. If (1) or (2) hold, we can show that either (i)
or (iii) in Definition 2 hold. If (3) holds, by assuming B+(r′)ϑ ⊆ M ′ (i.e., (2) does
not hold), we can observe that all (ground) standard atoms in the aggregate set of A are
either in M ′ or in X . Thus, A is false w.r.t. (M ′ ∩BP) \X and, in particular,A is false

Dynamic Magic Sets for Programs with Monotone Recursive Aggregates 157

w.r.t. 〈(M ′ ∩BP) \X,BP \X〉, i.e., condition (iv) of Definition 2 holds. Finally, if (4)
holds, by assuming that all previous cases do not hold, we can show that either (iii) or
(v) hold. �

We are then ready to prove the soundness of stable model correspondence for DMS for
DLPAm,¬s programs.

Theorem 3 (Soundness). Let Q be a query over a DLPAm,¬s program P . Then, for
each stable model M ′ of DMS(Q,P) and for each substitution ϑ, there is a stable
model M of P such thatQϑ ∈M if and only if Qϑ ∈M ′.

Proof (Sketch). By using Theorem 2, we can show that each stable model M of P ∪
(M ′∩BP), the program obtained by adding to P a fact for each atom inM ′∩BP , is in
turn a stable model of P containingM ′ ∩BP . Thus, we have thatQϑ ∈M ′ =⇒ Qϑ ∈
M holds. Moreover, we can show (∗) Qϑ �∈ M ′ =⇒ Qϑ �∈ M . To this aim, we note
that killedM ′

Q,P (M ′) contains all instances of Q which are false w.r.t. M ′ (the magic
seed is associated with each instance of Q in BP) and is an unfounded set for P w.r.t.
〈M ′ ∩ BP ,BP〉 by Theorem 2. Therefore, (∗) follows from Theorem 1. �

For proving the completeness of stable model correspondence for DMS, we construct
an interpretation for DMS(Q,P) based on one forP . The new interpretation is referred
to as “magic variant” and is defined below.

Definition 4 (Magic Variant). Consider a queryQ over a DLPAm,¬s program P . Let
I be an interpretation for P . We define an interpretation var∞Q,P(I) for DMS(Q,P),
called the magic variant of I w.r.t. Q and P , as the fixpoint of the following sequence:

var0
Q,P(I) = EDB(P)

vari+1
Q,P(I) = vari

Q,P (I) ∪
{p(t̄) ∈ I | ∃α such that mgc(pα(t̄)) ∈ vari

Q,P(I)} ∪
{mgc(pα(t̄)) | ∃ r∗ ∈ Ground(DMS(Q,P)) such that

mgc(pα(t̄)) ∈ H(r∗) and B+(r∗) ⊆ vari
Q,P (I)}, ∀i ≥ 0.

Theorem 4 (Completeness). Let Q be a query over a DLPAm,¬s program P . Then,
for each stable model M of P and for each substitution ϑ, there is a stable model
M ′ = var∞Q,P(M) of DMS(Q,P) such thatQϑ ∈M if and only if Qϑ ∈M ′.

Proof (Sketch). By using Theorem 1 and the restriction to monotone aggregates, we
can show thatM ′ is a stable model of DMS(Q,P) such that M ⊇M ′ ∩ BP . Thus, we
have that Qϑ ∈ M ′ =⇒ Qϑ ∈ M holds. Moreover, we can show (∗) Qϑ �∈ M ′ =⇒
Qϑ �∈M . To this aim, we note that killedM ′

Q,P(M ′) contains all instances of Q which
are false w.r.t. M ′ (the magic seed is associated with each instance of Q in BP) and is
an unfounded set forP w.r.t. 〈M ′∩BP ,BP〉 by Theorem 2. Therefore, from Theorem 1
we conclude (∗). �

Finally, we can prove the correctness of query answering for DMS for DLPAm,¬s .

Theorem 5 (Query Equivalence Theorem). LetQ be a query over a DLPAm,¬s pro-
gram P . Then, P ≡b

Q DMS(Q,P) and P ≡c
Q DMS(Q,P) hold.

158 M. Alviano, G. Greco, and N. Leone

Proof. Since P is coherent (i.e., P admits at least one stable model) and the DMS
algorithm does not depend on EDB facts, the theorem is a consequence of Theorem 3
and Theorem 4. �

5 Experimental Results

Benchmark Problems and Data. For assessing the efficacy of the approach, we de-
signed three benchmark settings. First, we considered Company Controls. In our bench-
mark, in an instance with n companies there are δ1 = n/3 direct controls and δi =
δi−1/2 controls at distance i, for each i ≥ 2. Moreover, n1.5 facts for owns were ran-
domly introduced. For each instance size, we generated three instances, and for each in-
stance we considered three different queries: ctrls(a, b) (bound–bound), ctrls(a, Y)
(bound–free) and ctrls(X, b) (free–bound). Companies a and b have maximal control
distance. The tested encoding is reported in Fig. 2.

We also considered two benchmarks using data from the WordNet ontology. In the
benchmarks, we considered queries asking whether a given word is a hyponym (resp.
a hypernym) of k+ words, for some constant k. We recall that w is a hyponym of w′

if the semantic field of w is included within that of w′; in this case, w′ is a hypernym
of w′. More specifically, for evaluating the scalability of DMS, the original dataset
was multiplied by introducing arbitrary prefixes to ids and words. On these enlarged
datasets, we considered three queries, each of which with a different value for k. The
tested encoding, taken in part from the OpenRuleBench project, is reported below (for
hypernym queries, W and W1 in the aggregate literal of the last rule are inverted):

tc(X, Y) :− hyp(X, Y). tc(X, Y) :− tc(X, Z), hyp(Z, Y).
hypernym(W1, W2) :− s(ID1, , , S1, ,), tc(ID1, ID2), s(ID2, , W2, , ,).
hypernymk+(W) :− s(, , W, , ,), #count{W1 : hypernym(W1, W)} ≥ k .

Results and Discussion. The experiment were performed on a 3GHz Intel R©

Xeon R© processor system with 4GB RAM under the Debian 4.0 operating system with
a GNU/Linux 2.6.23 kernel. The tested DLV system was compiled with GCC 4.1.3. For

Table 1. Company Controls: Average execution time (seconds)

Number of bb Queries bf Queries fb Queries
Companies No Magic DMS No Magic DMS No Magic DMS

10 000 4.09 0.23 4.09 0.36 4.08 0.24
20 000 9.19 0.50 9.18 0.78 9.24 0.53
30 000 14.12 0.78 14.05 1.19 14.01 0.82
40 000 19.35 1.04 19.21 1.61 19.17 1.09
50 000 24.40 1.34 24.43 2.09 24.42 1.41
60 000 29.68 1.61 29.58 2.53 29.51 1.70
70 000 35.33 1.90 35.65 2.96 35.38 1.98
80 000 40.64 2.17 40.82 3.38 40.99 2.28
90 000 46.49 2.46 46.49 3.86 46.42 2.61

100 000 52.07 2.93 52.01 4.52 51.74 3.09

Dynamic Magic Sets for Programs with Monotone Recursive Aggregates 159

89.9%
90%

90.1%
90.2%
90.3%
90.4%
90.5%
90.6%
90.7%
90.8%
90.9%

 200 400 600 800 1000 1200 1400 1600 1800 2000G
ai

n
(a

ve
ra

ge
 a

nd
 s

ta
nd

ar
d

de
vi

at
io

n)

Instance size (thousands of facts)

Hyponyms

89.4%

89.6%

89.8%

90%

90.2%

90.4%

90.6%

90.8%

 200 400 600 800 1000 1200 1400 1600 1800 2000G
ai

n
(a

ve
ra

ge
 a

nd
 s

ta
nd

ar
d

de
vi

at
io

n)

Instance size (thousands of facts)

Hypernyms

Fig. 3. Benchmarks on WordNet: Average gain and standard deviation

every instance, we allowed a maximum running time of 600 seconds (10 minutes) and
a maximum memory usage of 3GB. Experimental results for Company Controls are
summarized in Table 1. For each instance size, we computed the average execution time
of DLV with and without DMS (we performed rewritings manually). The advantages
of the Magic Set method clearly emerge. Concerning the benchmarks on WordNet, we
report in Fig. 3 the average gain provided by DMS8. It can be observed that, in all
considered queries, DMS provide a sensible performance gain (90% or more) to DLV.

6 Conclusion

Aggregate functions in logic programming languages appeared already in the 80s, when
their need emerged in deductive databases like LDL. Their importance from a knowl-
edge representation perspective is now widely recognized, since they can be simulated
only by means of inefficient and unnatural encodings of the problems. However, very
few efforts have been spent to develop effective optimization strategies for logical pro-
grams enriched with aggregate operators. In this paper, we have presented a technique
for the optimization of (partially) bound queries that extends the Magic Set method to
the DLPAm,¬s language. An avenue of further research is to integrate the algorithms
presented here with current approaches to optimize DLP programs with unstratified
negations [22]. Moreover, it would be interesting to assess whether Magic Sets can be
extended even to programs where aggregate literals are not necessarily monotone.

References

1. Lobo, J., Minker, J., Rajasekar, A.: Foundations of Disjunctive Logic Programming. The
MIT Press, Cambridge (1992)

2. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22(3), 364–418 (1997)
3. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building

with Answer Set Programming in the Gioia-Tauro Seaport. TPLP (2011) (to appear)
4. Manna, M., Ruffolo, M., Oro, E., Alviano, M., Leone, N.: The HiLeX System for Semantic

Information Extraction. TLDKS(2011) (to appear)
5. Ricca, F., Alviano, M., Dimasi, A., Grasso, G., Ielpa, S.M., Iiritano, S., Manna, M., Leone,

N.: A Logic–Based System for e-Tourism. FI 105, 35–55 (2010)

8 Numerical details are reported in Appendix.

160 M. Alviano, G. Greco, and N. Leone

6. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)

7. Janhunen, T., Niemelä, I., Simons, P., You, J.H.: Partiality and Disjunctions in Stable Model
Semantics. In: KR 2000, April 12-15, pp. 411–419 (2000)

8. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: Baral, C., Greco,
G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 447–451.
Springer, Heidelberg (2005)

9. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-Driven Disjunctive Answer Set Solving. In: KR 2008, pp. 422–432. AAAI Press,
Menlo Park (2008)

10. Kemp, D.B., Stuckey, P.J.: Semantics of Logic Programs with Aggregates. In: ISLP 1991,
pp. 387–401. MIT Press, Cambridge (1991)

11. Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate Well-Founded and Stable Semantics for
Logic Programs with Aggregates. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp.
212–226. Springer, Heidelberg (2001)

12. Dix, J., Osorio, M.: On Well-Behaved Semantics Suitable for Aggregation. In: ILPS 1997,
Port Jefferson, N.Y (1997)

13. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. AI 138, 181–234 (2002)

14. Pelov, N., Truszczyński, M.: Semantics of disjunctive programs with monotone aggregates -
an operator-based approach. In: NMR 2004, pp. 327–334 (2004)

15. Manna, M., Ricca, F., Terracina, G.: Consistent Query Answering via ASP from Different
Perspectives: Theory and Practice. TPLP (2011) (to appear)

16. Ullman, J.D.: Principles of Database and Knowledge Base Systems, vol. 2. CS Press,
Rockvillie (1989)

17. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange Ways to
Implement Logic Programs. In: PODS 1986, pp. 1–16 (1986)

18. Beeri, C., Ramakrishnan, R.: On the power of magic. JLP 10(1-4), 255–259 (1991)
19. Kowalski, R.A.: Predicate Logic as Programming Language. In: IFIP Congress, pp. 569–574

(1974)
20. Greco, S.: Binding Propagation Techniques for the Optimization of Bound Disjunctive

Queries. IEEE TKDE 15(2), 368–385 (2003)
21. Cumbo, C., Faber, W., Greco, G.: Improving Query Optimization for Disjunctive Datalog.

In: APPIA-GULP-PRODE, pp. 252–262 (2003)
22. Faber, W., Greco, G., Leone, N.: Magic Sets and their Application to Data Integration.

JCSS 73(4), 584–609 (2007)
23. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.

NGC 9, 365–385 (1991)
24. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Seman-

tics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 200–212. Springer, Heidelberg (2004)

25. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)
26. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation of

aggregate functions in the dlv system. TPLP 8(5-6), 545–580 (2008)
27. Alviano, M., Faber, W., Leone, N.: Using unfounded sets for computing answer sets of pro-

grams with recursive aggregates. In: CILC 2007 (2007)
28. Alviano, M.: Dynamic Magic Sets for Disjunctive Datalog Programs. In: ICLP 2010. LIPIcs,

vol. 7, pp. 226–235 (2010)

Strong Equivalence of Logic Programs with

Abstract Constraint Atoms

Guohua Liu1, Randy Goebel2, Tomi Janhunen1,
Ilkka Niemelä1, and Jia-Huai You2

1 Aalto University, Department of Information and Computer Science
{Guohua.Liu,Tomi.Janhunen,Ilkka.Niemela}@aalto.fi

2 University of Alberta, Department of Computing Science
{goebel,you}@cs.ualberta.ca

Abstract. Logic programs with abstract constraint atoms provide a
unifying framework for studying logic programs with various kinds of
constraints. Establishing strong equivalence between logic programs is a
key property for program maintenance and optimization, and for guaran-
teeing the same behavior for a revised original program in any context. In
this paper, we study strong equivalence of logic programs with abstract
constraint atoms. We first give a general characterization of strong equiv-
alence based on a new definition of program reduct for logic programs
with abstract constraints. Then we consider a particular kind of program
revision—constraint replacements addressing the question: under what
conditions can a constraint in a program be replaced by other constraints,
so that the resulting program is strongly equivalent to the original one.

1 Introduction

Logic programming interpreted with answer set semantics or answer set program-
ming (ASP), is a declarative programming paradigm for knowledge representa-
tion, designed for characterizing and solving computationally hard problems [1,2].
In ASP, a problem is represented by a logic program and the answer sets of the pro-
gram correspond to the solutions to the problem. Answer set programming with
abstract constraint atoms (c-atoms) [3,4,5] provides a unifying framework for the
study of logic programs with various constraints, such as weight constraints [6],
aggregates [7,8], and global constraints [9].

Strong equivalence within this kind of semantics [10] is one of the key con-
cepts of logic programming. A program (a set of rules) P is strongly equivalent
to a program Q if, for any other program R, the programs P ∪ R and Q ∪ R
have the same answer sets. In order to see whether a set of rules in a program
can always be replaced by another set of rules, regardless of other program
components, one needs to check whether the two sets of rules are strongly equiv-
alent. Strongly equivalent programs are guaranteed to have the same behavior
in any context. Uniform equivalence [11] is a special case of strong equivalence.
Uniformly equivalent programs have the same behavior in any context of facts.
Lifschitz et. al. [10] developed a characterization of strong equivalence using the

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 161–173, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

162 G. Liu et al.

logic of here-and-there. Lin [12] presented a transformation by which the strong
equivalence of logic programs is converted to classical entailment. Turner [13]
provided a model-theoretical characterization of the strong equivalence, where
two programs are strongly equivalent if and only if they have the same set of
SE-models. Liu and Truszczyński [11] extended this approach to logic programs
with monotone constraints.

In this paper, we study the characterization of strong equivalence for logic
programs with arbitrary abstract constraint atoms, under the semantics based
on conditional satisfaction [5]. We extend the concept of program reduct to logic
programs with abstract constraint atoms. Using the notion of program reduct,
we define SE-models and UE-models in the standard way employed in [11,13]
and characterize strong and uniform equivalence by SE-models and UE-models,
respectively. Then, we study strong equivalence of a particular class of program
revisions, viz. constraint replacements, that amount to replacing a constraint in
a program by another constraint or a combination of constraints. Constraint re-
placements can be used as program transformations to decompose a complicated
constraint into simpler parts when doing program development or optimization.
We note that constraint replacements are also a standard technique to imple-
ment complicated constraints in current ASP systems: typically the inference
engine of the system supports a limited set of basic constraints and more in-
volved constraints are compiled to basic ones during grounding [6,14]. Here, we
are interested in replacements that can be applied in any context, i.e., where
the original program and the modified program are strongly equivalent. Strong
equivalence is particularly valuable because it allows replacements to be done
in either the whole or a part of the program range, while (weak) equivalence
only consider the former. We provide fundamental results on replacement op-
erations by presenting criteria under which a constraint can be replaced with
a conjunction, a disjunction, or a combination of constraints while preserving
strong equivalence. An observation is that replacements with disjunctions are
more involved and require an extra condition compared to those with conjunc-
tions.

This paper is organized as follows. The next section reviews the basic defini-
tions of programs with general abstract constraints under the semantics based
on conditional satisfaction [5]. In Section 3, we characterize strong equivalence
by the SE-models of constraint programs and show that the characterization
generalizes to uniform equivalence. Section 4 applies strong equivalence in the
study of constraint replacements. In Section 5, we address the interconnections
of our results on constraint replacement to existing transformations. Related
work is described in Section 6. Finally, we conclude the paper in Section 7.

2 Preliminaries

We review the answer set semantics for logic programs with arbitrary constraint
atoms, as defined in [5]. The semantics should also be contributed to [15], where
it is defined as a fix-point construction using 3-valued logic. We assume a propo-
sitional language with a countable set of propositional atoms.

Strong Equivalence of Logic Programs with Abstract Constraint Atoms 163

An abstract constraint atom (c-atom) is a construct of the form (D,C) where
D is the domain of the c-atom and C the admissible solution set of the c-atom.
The domain D is a finite set of atoms and the admissible solution set C is a
set of subsets of D, i.e., C ⊆ 2D. Given a c-atom A = (D,C), we use Ad and
Ac to refer to sets D and C, respectively. Certain special c-atoms have been
distinguished. A c-atom of the form ({a}, {{a}}) simply denotes a propositional
atom a. A c-atom A is monotone if for every X ⊆ Y ⊆ Ad, X ∈ Ac implies that
Y ∈ Ac, antimonotone if for every X ⊆ Y ⊆ Ad, Y ∈ Ac implies that X ∈ Ac,
and convex if for every X ⊆ Y ⊆ Z ⊆ Ad, X ∈ Ac and Z ∈ Ac implies Y ∈ Ac.

A logic program with c-atoms, also called a constraint program (or program
for short), is a finite set of rules of the form

A← A1, . . . , An. (1)

where A and Ai’s are c-atoms.
For a program P , we denote by At(P) the set of atoms appearing in P . In

general, negative atoms of the form not A may appear in a rule. Following [5],
a negative c-atom not A in a program is interpreted as, and substituted by,
its complement c-atom A, where Ad = Ad and Ac = 2Ad \ Ac. Due to this
assumption, we consider the programs where no c-atoms appear negatively.

For a rule r of the form (1), we define hd(r) = A and bd(r) = {A1, ..., An},
which are called the head and the body of r, respectively. A rule r is said to be
basic if hd(r) is a propositional atom1. A program P is basic if every rule in it
is basic and normal if every c-atom in it is a propositional atom.

A set of atoms M satisfies a c-atom A, written M |= A, if M ∩ Ad ∈ Ac.
Otherwise M does not satisfy A, written M �|= A. Satisfaction naturally extends
to conjunctions and disjunctions of c-atoms.

Answer sets for constraint programs are defined in two steps. First, answer
sets for basic programs are defined, based on the notion conditional satisfaction.
Then the answer sets for general programs are defined.

Definition 1. Let S and M be sets of atoms such that S ⊆ M . The set S
conditionally satisfies a c-atom A, w.r.t. M , denoted by S |=M A, if S |= A and
for every I ⊆ Ad such that S ∩Ad ⊆ I and I ⊆M ∩Ad, we have that I ∈ Ac.

Example 1. Let A be the c-atom ({a, b}, {∅, {a}, {a, b}}) and S1 = ∅, S2 = {a},
and M = {a, b}. Then, S1 �|=M A and S2 |=M A. ��

Conditional satisfaction extends naturally to conjunctions and disjunctions of
c-atoms. Whenever it is clear by the context, we may use a set of c-atoms to
denote a conjunction or a disjunction of c-atoms.

An operator TP is defined as follows: for any sets S, M , and a basic program
P , TP (S,M) = {a | ∃r ∈ P, hd(r) = a, and S |=M bd(r)}. The operator TP

is monotonic w.r.t its first argument (given that the second argument is fixed).
Answer sets of a basic program P are defined as the (least) fixpoint of TP .
1 The head can also be ⊥, which denotes the c-atom (D, ∅). Such a rule serves as a

constraint [5]. Rules of this kind are irrelevant for the purposes of this paper.

164 G. Liu et al.

Definition 2. Let P be a basic program and M a set of atoms. The set M is an
answer set of P iff M is a model of P and M = T∞

P (∅,M), where T 0
P (∅,M) = ∅

and T i+1
P (∅,M) = TP (T i

P (∅,M),M), for all i ≥ 0.

The answer sets of a (general) program are defined on the basis of the answer sets
of a basic program—the instance of the general program. Let P be a constraint
program, r a rule in P of the form (1), and M a set of atoms. The instance of
r, with respect to M , is

inst(r,M) =
{
{a← bd(r) | a ∈M ∩ hd(r)d}, if M |= hd(r);
∅, otherwise.

The instance of P with respect to M , denoted inst(P,M), is the program

inst(P,M) = ∪r∈P inst(r,M)

Definition 3. Let P be a program and M a set of atoms. The set M is an
answer set of P iff M is an answer set of inst(P,M).

3 Characterization of Strong and Uniform Equivalence

We first define the reduct of c-atoms and general constraint programs. Then,
using the reduct, we define SE-models and characterize the strong equivalence
of programs. Finally, we show how these results extend to uniform equivalence.

3.1 Program Reduct

The program reduct plays a very central role in the definition of answer sets for
normal programs [1]. However, it is non-trivial to generalize the reduct (e.g. [16]).
In what follows, we propose a new way of reducing c-atoms themselves, establish
a close connection between conditional satisfaction of c-atoms and satisfaction
of reduced c-atoms, and then extend these ideas to cover rules and programs.

Definition 4. Let A be a c-atom and M a set of atoms. The reduct of A,
w.r.t. M , denoted AM , is the c-atom (AM

d , AM
c), where AM

d = Ad and the set of
admissible solutions AM

c = {S | S ∈ Ac, S ⊆M, and S |=M A}.
Proposition 1. Let A be a c-atom and S and M be sets of atoms such that
S ⊆M . Then S |=M A iff S |= AM .

Example 2. Let A = ({a, b, c}, {{a}, {a, b}, {a, c}, {a, b, c}}) be a c-atom. Then,
given an interpretation M = {a, b}, we have AM = ({a, b, c}, {{a}, {a, b}}). ��
Definition 5. Let P be a basic program and M a set of atoms. The reduct of
P , w.r.t. M , denoted PM , is the program obtained by:

1. removing from P any rules whose bodies are not satisfied by M ;
2. replacing each c-atom with the reduct of the c-atom w.r.t. M , in the bodies

of the remaining rules.

Definition 6. Let P be a program and M a set of atoms. The reduct of P , w.r.t
M , denoted PM , is the reduct of the instance of P w.r.t. M , i.e., inst(P,M)M .

Strong Equivalence of Logic Programs with Abstract Constraint Atoms 165

3.2 Strong Equivalence

Strong equivalence can be defined in the standard way using the notion of an-
swer sets from Definition 3, independently of the class of programs. Similarly,
given Definition 6, the notion of SE-models can be adopted—paving the way for
Theorem 1 which characterizes strong equivalence in terms of SE-models.

Definition 7. Programs P and Q are strongly equivalent, denoted P ≡s Q, iff,
for any program R, the programs P ∪R and Q ∪R have the same answer sets.

Definition 8. Let P be a program. A pair of sets (X,Y) is a strong equivalence
model (SE-model) of P if the following conditions hold: (1) X ⊆ Y ; (2) Y |= P ;
and (3) X |= PY . The set of SE-models of P is denoted by SE(P).

Theorem 1. Let P and Q be two programs. Then, P ≡s Q iff SE(P) = SE(Q).

Proof Sketch. We use AS(P) to denote the set of answer sets of a program P .
(=⇒) Let (X,Y) be an SE-model of P . We show that (X,Y) is also an SE-

model of Q, by contradiction. Assume that Y �|= Q. Consider the program R =
{a | a ∈ Y }. We can show that Y ∈ AS(P ∪R) and Y �∈ AS(Q∪R), contradicting
P ≡s Q. Assume X �|= QY . Consider the program R = {a | a ∈ X}∪{b← c | b ∈
Y and c ∈ S \X} where S = {a | there is r ∈ QY such that hd(r) = a and X |=
bd(r)}. We can show that Y �∈ AS(P ∪ R) and Y ∈ AS(Q ∪ R), contradicting
P ≡s Q. So, (X,Y) ∈ SE(Q). It follows by symmetry that any SE-model of Q
is also an SE-model of P . Therefore SE(P) = SE(Q).

(⇐=) It is easy to show the following statement: for any programs P and
Q, SE(P ∪Q) = SE(P) ∩ SE(Q), and if SE(P) = SE(Q), then AS(P) = AS(Q).
So, given SE(P) = SE(Q), we have for all programs R, SE(P ∪R) = SE(Q∪R)
and AS(P ∪R) = AS(Q ∪R). Therefore P ≡s Q. ��

3.3 Uniform Equivalence

The concept of uniform equivalence is closely related to strong equivalence
(cf. Definition 7). The essential difference is that in uniform equivalence, the
context program R is restricted to be a set of facts. To formalize this, we use a
special rule rD = (D, {D})← for any set of atoms D [11]. Adding the rule rD to
a program is then equivalent to adding each atom a ∈ D as a fact ({a}, {{a}})←.

Definition 9. Programs P and Q are uniformly equivalent, denoted P ≡u Q,
iff, for any set of atoms D, P ∪ {rD} and Q ∪ {rD} have the same answer sets.

The uniform equivalence of finite programs can be characterized similarly as that
in [11] using uniform equivalence models which are a special class of SE-models.
We consider finite programs only as the uniform equivalence of infinite programs
cannot be captured by any class of SE-models in general [17].

Definition 10. Let P be a program. A pair (X,Y) is a uniform equivalence
model (UE-model) of P if the following conditions hold: (1) (X,Y) is an SE-
model of P ; (2) for every SE-model (X ′, Y) of P such that X ⊆ X ′, either
X ′ = X or X ′ = Y . The set of UE-models of P is denoted by UE(P).

166 G. Liu et al.

Theorem 2. For any finite programs P and Q, P ≡u Q iff UE(P) = UE(Q).

4 Constraint Replacements

In this section we consider a particular kind of program revision—constraint
replacement. The idea is that a constraint represented by a c-atom in a logic
program is replaced by either (i) a conjunction of constraints, (ii) a disjunction
of constraints, or (iii) a combination of them. It is then natural to use strong
equivalence as correctness criterion and we establish explicit conditions on which
strong equivalence is preserved. As regards notation, we define the Cartesian
product of two sets of interpretations S1 and S2, denoted S1 × S2, as the set of
interpretations {T1 ∪ T2 | T1 ∈ S1 and T2 ∈ S2}. Using this notion, we are able
to define a basic operation for constructing sets of admissible solutions.

Definition 11. The extension of the set Ac of admissible solutions of a c-atom
A over a set D of atoms, denoted by ext(Ac, D), is ext(Ac, D) = Ac × 2(D\Ad).

Proposition 2. For a c-atom A, a set D of atoms, and an interpretation M ,
the extended projection M ∩ (Ad ∪D) ∈ ext(Ac, D) iff M |= A.

Given a rule r of the form (1) and Ak ∈ bd(r) with 1 ≤ k ≤ n, we write
r[Ak/B1, . . . , Bm] for the result of substituting c-atoms B1, . . . , Bm for Ak, i.e.,

A← A1, . . . , Ak−1, B1, . . . , Bm, Ak+1, . . . , An. (2)

4.1 Conjunctive Encoding

In a conjunctive encoding, the idea is to represent a c-atom A as a conjunction of
c-atoms A1, . . . , Am where each Ai may have a subdomain of Ad as its domain.

Definition 12. A conjunction of c-atoms A1, . . . , Am is a conjunctive encoding
of a c-atom A, denoted A = C(A1, . . . , Am), iff the c-atoms satisfy

1. Ad =
⋃m

i=1(Ai)d; and
2. Ac =

⋂m
i=1 ext((Ai)c, Ad).

The conditions of Definition 12 guarantee important properties for conjunctive
encodings as detailed below: The (conditional) satisfaction of c-atoms is pre-
served and the same can be observed for the reducts of c-atoms.

Proposition 3. If A = C(A1, . . . , Am), then for any M,N such that M ⊆ N :

1. M |= A iff M |= Ai for each 1 ≤ i ≤ m;
2. M |=N A iff M |=N Ai for each 1 ≤ i ≤ m; and
3. M |= AN iff M |= (Ai)N for each 1 ≤ i ≤ m.

The properties listed above guarantee that replacing a c-atom in a program by
its conjunctive encoding A1, . . . , Am also preserves SE-models. This observation
leads us to the following results, at both the rule and program levels.

Strong Equivalence of Logic Programs with Abstract Constraint Atoms 167

Theorem 3. Let r be a rule of the form (1) and Ak a c-atom in the body bd(r).
If Ak = C(B1, . . . , Bm), then {r} ≡s {r[Ak/B1, . . . , Bm]}.

In the above, the rule r[Ak/B1, . . . , Bm] coincides with (2) and we call this
particular rule the conjunctive rewrite of r with respect to Ak = C(B1, . . . , Bm).
Since ≡s is a congruence relation, i.e., P ≡s Q implies P ∪R ≡s Q ∪R, we can
apply Theorem 3 in any context. In particular, we call a program P ′ a one-step
conjunctive rewrite of P iff P ′ is obtained as (P \ {r})∪{r[Ak/B1, . . . , Bm]} for
Ak ∈ bd(r) and Ak = C(B1, . . . , Bm). This idea easily generalizes for n steps.

Corollary 1. For an n-step conjunctive rewrite P ′ of a program P , P ≡s P
′.

It is also worth pointing out special cases of conjunctive encodings. If each do-
main (Ai)d coincides with Ad, then ext((Ai)c, Ad) = (Ai)c and the second condi-
tion of Definition 12 implies Ac =

⋂m
i=1(Ai)c. On the other hand, if the domains

of each Ai and Aj with i �= j are mutually disjoint, then the second condition
reduces to a Cartesian product Ac = (A1)c × . . .× (Am)c. In other intermediate
cases, we obtain a natural join Ac = (A1)c �� . . . �� (Am)c condition, which was
introduced by Janhunen et al. [18] to relate the set of answer sets associated
with an entire logic program with those of its component programs.

4.2 Disjunctive Encoding

The idea of a disjunctive encoding is to represent a c-atom A as a disjunction
of c-atoms A1, . . . , Am. However, in contrast with Definition 12, an additional
condition becomes necessary in order to preserve conditional satisfaction of c-
atoms and their reducts.

Definition 13. A disjunction of c-atoms A1, . . . , Am is a disjunctive encoding
of a c-atom A, denoted A = D(A1, . . . , Am), iff the c-atoms satisfy

1. Ad =
⋃m

i=1(Ai)d;
2. Ac =

⋃m
i=1 ext((Ai)c, Ad); and

3. for any subset M of Ad, AM
c =

⋃m
i=1(Ai)M

c .

Proposition 4. If A = D(A1, . . . , Am), then for any M,N such that M ⊆ N :

1. M |= A iff M |= Ai for some 1 ≤ i ≤ m;
2. M |=N A iff M |=N Ai for some 1 ≤ i ≤ m; and
3. M |= AN iff M |= (Ai)N for some 1 ≤ i ≤ m.

Because of the general properties of disjunction, we need to be careful about
disjunctive encodings when replacing c-atoms in rules. Rewriting a rule r of the
form (1) with respect to a disjunctive encoding Ak = D(B1, . . . , Bm) results in
m rules r[Ak/B1], . . . , r[Ak/Bm] obtained by substituting Ak by each Bi in turn.
Proposition 4 guarantees the preservation of strong equivalence.

Theorem 4. Let r be a rule of the form (1) and Ak a c-atom in the body bd(r).
If Ak = D(B1, . . . , Bm), then {r} ≡s {r[Ak/B1], . . . , r[Ak/Bm]}.

168 G. Liu et al.

Hence, in one-step disjunctive rewriting based on Theorem 4, a program P with
r ∈ P would be rewritten as P ′ = (P \ {r}) ∪ {r[Ak/B1], . . . , r[Ak/Bm]}. This
also preserves strong equivalence by Theorem 4. In general, we obtain:

Corollary 2. For an n-step disjunctive rewrite P ′ of a program P , P ≡s P
′.

The condition 3 of Definition 13 reveals that, in contrast with conjunctive en-
codings, conditional satisfaction is not automatically preserved in the disjunctive
case. The next example illustrates that the first two conditions that preserve the
satisfaction of a c-atom are insufficient to preserve strong equivalence.

Example 3. Let P be the following program with an aggregate denoted by A:

p(2)← A. p(1)← . p(−3)← p(2).

The intuitive reading of A is SUM({X | p(X)}) �= −1 and following [5], it corre-
sponds to a c-atom with Ad = {p(1), p(3), p(−3)} andAc = 2Ad\{{p(2), p(−3)}}.
It may seem natural to replace A by the disjunction of A1 = SUM({X | p(X)}) >
−1 and A2 = SUM({X | p(X)}) < −1 and, therefore, to rewrite P as P ′:

p(2)← A1. p(2)← A2. p(1)← . p(−3)← p(2).

However, the programs P and P ′ are not strongly equivalent. To check this,
consider M = {p(1), p(2), p(−3)} which is an answer set of P but not that of
P ′. This aspect is captured by the third condition of Definition 13 because AM

c

differs from (A1)M
c ∪ (A2)M

c for the interpretation M = {p(1), p(2), p(−3)}. ��

There is also one interesting special case of disjunctive encodings conforming to
Definition 13. If the domain of each c-atom Ai coincides with Ad, i.e., (Ai)d = Ad

for each 1 ≤ i ≤ m, then ext((Ai)c, Ad) = (Ai)c for each 1 ≤ i ≤ m as well.
Thus, the sets of admissible solutions are simply related by Ac =

⋃m
i=1(Ai)c.

4.3 Shannon Encodings

Any Boolean function f(a1, . . . , an) can be expanded with respect to its argu-
ment ai using Shannon’s partial evaluation principle:

f(a1, . . . , an) = (ai ∧ f(a1, . . . , ai−1,�, ai+1, . . . , an))∨
(¬ai ∧ f(a1, . . . , ai−1,⊥, ai+1, . . . , an)). (3)

The objective of this section is to present Shannon expansion for monotone
c-atoms. The reason for this restriction is that Shannon’s principle cannot be
applied to arbitrary c-atoms in a natural way (see Example 5 for details). In the
case of monotone c-atoms, however, the following can be established.

Proposition 5. If A is a monotone c-atom and a ∈ Ad, then it holds that
A = D(C(a,A+(a)), A−(a)) where a stands for the c-atom ({a}, {{a}}), and

1. A+(a) = (Ad \ {a}, {T \ {a} | T ∈ Ac and a ∈ T }) and
2. A−(a) = (Ad \ {a}, {T | T ∈ Ac and a �∈ T }).

Strong Equivalence of Logic Programs with Abstract Constraint Atoms 169

Given this relationship we may call S(A, a) = D(C(a,A+(a)), A−(a)) as the
Shannon encoding of A with respect to an atom a ∈ Ad. Intuitively, the Shan-
non encoding S(A, a) builds on a case analysis. The part C(a,A+(a)) captures
admissible solutions of A where a is true. The part A−(a) covers cases where a
is false (by default) and hence ({a}, {∅}) is not incorporated. We call A+(a) and
A−(a) the respective positive and negative encodings of A given a ∈ Ad.

Example 4. Consider a monotone c-atom A = ({a, b}, {{a}, {a, b}}) for which
S(A, a) = D(C(a,A+(a)), A−(a)) where the respective positive and negative
encodings of A are A+(a) = ({b}, {∅, {b}}) and A−(a) = ({b}, {}). It is worth
noting that the latter c-atom is never satisfied and if it is used to rewrite any
rule body, the resulting rule can be directly omitted due to inapplicability. ��
Given a monotone c-atom A, any atom a ∈ Ad can be used to do the Shannon
encoding. When the identity of a is not important, we simply use S(A, ·) to
denote the appropriate construction, the properties of which are as follows.

Proposition 6. If A is a monotone c-atom, then so are A+(·) and A−(·).
Proposition 7. If A is a monotone c-atom and a ∈ Ad, then for any M,N
such that M ⊆ N :

1. M |= A iff M |= a ∧A+(a) or M |= A−(a);
2. M |=N A iff M |=N a ∧A+(a) or M |=N A−(a); and
3. M |= AN iff M |= a ∧A+(a)N or M |= A−(a)N .

We stress that the Shannon encoding S(A, a) is not even satisfaction preserving
if applied to other than monotone c-atoms. This is illustrated below.

Example 5. Consider the antimonotone c-atom A = ({a}, {∅}). We have that
A+(a) = (∅, ∅), A−(a) = (∅, {∅}), and S(A, a) = D(C(a,A+(a)), A−(a)) ≡
(∅, {∅}). Let M = {a}. It is easy to see that M |= S(A, a). But, on the other
hand, we have M �|= A. ��
However, for monotone c-atoms, strong equivalence is additionally preserved
under Shannon encodings. Since S(A, a) is a combination of disjunctive and
conjunctive encodings, our preceding results on rewriting rules and programs
apply. Given a rule r of the form (1), a monotone c-atom Ak in the body
bd(r), and an atom a ∈ (Ak)d, the Shannon rewrite of r consists of two rules
r[Ak/({a}, {{a}}), A+(a)] and r[Ak/A

−(a)]. Such replacements are highly ben-
eficial if either A+(a) or A−(a) becomes trivial in one sense (cf. Example 4). If
not, then repeated Shannon rewritings can lead to an exponential expansion.

Theorem 5. Let r be a rule of the form (1), Ak a monotone c-atom in the body
bd(r), and a ∈ (Ak)d an atom. Then {r} ≡s {r[Ak/a,A

+(a)], r[Ak/A
−(a)]}

where A+(a) and A−(a) are the respective positive and negative encodings of A.

Corollary 3. For an n-step Shannon rewrite P ′ of a program P , P ≡s P
′.

It is also possible to rewrite a program P by mixing conjunctive, disjunctive, and
Shannon rewriting (Shannon rewriting can be only done for monotone c-atoms).
Corollaries 1, 2, and 3 guarantee, on their behalf, that the resulting program will
be strongly equivalent with the original one.

170 G. Liu et al.

5 Interconnections to Some Existing Encodings

In this section, we work out the interconnections of some existing translations
of c-atoms in the literature to conjunctive and disjunctive encodings. In this
way, we can establish that these transformations preserve strong equivalence by
appealing to the results of Section 4.

Liu and Truszczyński [11] propose a way of representing any convex c-atom A
as a conjunction of two c-atoms A+ and A− that are the upward and downward
closures of A, respectively. These closures are defined by

1. A+
d = A−

d = Ad,
2. A+

c = {T ⊆ Ad | S ⊆ T for some S ∈ Ac}, and
3. A−

c = {T ⊆ Ad | T ⊆ S for some S ∈ Ac}.

It is obvious that A+ is monotone and A− is antimonotone. In addition to this,
the two conditions from Definition 12 can be verified so that A = C(A+, A−)
holds in general. This justifies the statement of Proposition 8 given below. Thus
it follows by Theorem 3 and Corollary 1 that when a convex c-atom A appearing
in a program is replaced by its upward and downward closures A+ and A−, the
resulting program is strongly equivalent to the original one.

Proposition 8. The encoding of convex c-atoms in terms of their upward and
downward closures [11] is a conjunctive encoding.

As regards arbitrary c-atoms, a number of representations have been proposed
such as sampler sets [16], the translation of aggregates into propositional for-
mulas [19,20], abstract representations [21], and local power sets [22]. Given
a c-atom A, these approaches are essentially based on a disjunctive encoding
A = D(A1, . . . , Am) where each Ai is defined by

1. (Ai)d = Ad and
2. (Ai)c = {T ⊆ Ad | Li ⊆ T ⊆ Gi}

where Li and Gi are least and greatest admissible solutions from Ac such that
(i) Li ⊆ Gi, (ii) each T between Li and Gi also belongs to Ac and (iii) the
range induced by Li and Gi is maximal in this sense. Intuitively, the sets Li and
Ad \Gi consist of atoms that have to be true and false, respectively, in order to
satisfy Ai as well as A. It is obvious that each Ai is convex. For this reason we
call an encoding of this kind as the convex encoding of A. Proposition 9 below
is a consequence of verifying that A and A1, . . . , Am meet the requirements of
Definition 13. So, referring to Theorem 4, given a rule r with an arbitrary c-atom
in its body and a convex encoding A = D(A, . . . , Am) for A, the replacement of
r by r[A/A1], . . . , r[A/Am] leads to a strongly equivalent program.

Proposition 9. The convex encoding based on the representations of c-atoms
in [16,19,20,21,22] is a disjunctive encoding.

Strong Equivalence of Logic Programs with Abstract Constraint Atoms 171

6 Related Work

The characterizations of strong equivalence in [10,12,11,13] provide the basis
to determine the strong equivalence of normal programs under the answer set
semantics [1]. For constraint programs under the answer set semantics, strong
equivalence can be determined by translating the constraint programs to nor-
mal programs, then applying the previous characterizations. Given a constraint
program, note that the resulting normal program may be exponential in the size
of the original program [20,8,23]. The characterization of strong equivalence de-
veloped in this paper makes it possible to determine whether strong equivalence
holds without such a potentially exponential translation.

Example 6. Let P be a program consisting of the rule: b ← A, where A is
the aggregate COUNT({X | p(X)}) ≤ k and p(X) is defined over the domain
D = {p(1), ..., p(n)}.

Let N be a set of atoms such that |N ∩ D| ≤ k and b ∈ N . Let M be
any subset of N with b �∈ M . It can be determined, without enumerating the
admissible solutions of A, that M �|= PN , since M |=N A and b �∈ M . So,
(M,N) does not satisfy the third condition in the definition of SE-models. Then
(M,N) �∈ SE(P). So, for any program Q that has (M,N) as its SE-model, we
can conclude that P �≡s Q.

On the other hand, to determine the strong equivalence of P and Q using the
characterizations of strong equivalence for normal programs, one has to translate
P to a normal program whose size is possibly exponential in the size of P (a
straightforward translation consists of O

(
n
k

)
rules). ��

The concept of program reduct (Definition 5) developed in this paper leads to
a simple definition of answer sets for (disjunctive) constraint programs, where
a rule head could be a disjunction of c-atoms. Given a (disjunctive) constraint
program P and a set of atoms M , M is an answer set of P if and only if M
is a minimal model of the program reduct PM . It can be verified that the pro-
gram reduct and the answer sets coincide with the generalized Gelfond-Lifschitz
transformation and answer sets defined in [21]. Note, however, the simplicity of
our definition.

Program revisions under strong and uniform equivalence have been studied
in [24] for disjunctive logic programs. In that research, the concept of revision is
motivated to remove redundant rules in a program. In contrast, we study a wider
class of programs with constraint atoms and the question how such constraint
atoms can be replaced by others, independently of the embedding program.

7 Conclusion and Directions of Future Work

We propose the concept of reduct for logic programs with arbitrary abstract
constraint atoms (c-atoms), based on which we give a characterization of strong
equivalence and uniform equivalence of logic programs with c-atoms. This ex-
tends previous work on logic programs with monotone c-atoms [11]. We study

172 G. Liu et al.

strong equivalence of a particular class of program revisions: constraint replace-
ments. We provide criteria under which a c-atom can be replaced by a conjunc-
tion of c-atoms, a disjunction c-atoms, or a combination of them while preserving
strong equivalence. These results provide the basis to check if a constraint can
be replaced with other constraints in any program context.

For the future work, it would be interesting to extend our results to programs
with concrete constraints such as aggregate programs [7,25]. Another promising
direction is that to investigate the strong equivalence of logic programs embed-
ded within other reasoning mechanisms, such as constraint programming (CP)
[26,27,28], description logics [29], and SAT modulo theories [30]. These embed-
dings make it possible to exploit the strengths of other reasoning mechanisms in
ASP for solving complex real world problems. In the embedding approach, it is
a common practice to replace a part of a program with components of other rea-
soning mechanisms to model and solve different kinds of problems. The study
of strong equivalence in this context may provide insights and approaches to
program optimization, system implementation, and efficient answer set compu-
tation.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proc. ICLP, pp. 1070–1080 (1988)

2. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Math. and Artificial Intelligence 25(3-4), 241–273 (1999)

3. Marek, V., Niemelä, I., Truszczyński, M.: Logic programs with monotone abstract
constraint atoms. TPLP 8(2), 167–199 (2008)

4. Marek, V.W., Remmel, J.B.: Set constraints in logic programming. In: Lifschitz, V.,
Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 167–179. Springer,
Heidelberg (2003)

5. Son, T.C., Pontelli, E., Tu, P.H.: Answer sets for logic programs with arbitrary
abstract constraint atoms. JAIR 29, 353–389 (2007)

6. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artificial Intelligence 138(1-2), 181–234 (2002)

7. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp.
200–212. Springer, Heidelberg (2004)

8. Son, T.C., Pontelli, E.: A constructive semantic characterization of aggregates in
answer set programming. TPLP 7, 355–375 (2006)

9. van Hoeve, W.J., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh,
T. (eds.) Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

10. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2(4), 526–541 (2001)

11. Liu, L., Truszczyński, M.: Properties and applications of programs with monotone
and convex constraints. JAIR 7, 299–334 (2006)

12. Lin, F.: Reducing strong equivalence of logic programs to entailment in classical
propositional logic. In: Proc. KR 2002, pp. 170–176 (2002)

13. Turner, H.: Strong equivalence made easy: nested expressions and weight con-
straints. Theory and Practice of Logic Programming 3, 609–622 (2003)

Strong Equivalence of Logic Programs with Abstract Constraint Atoms 173

14. Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the input
language of ASP grounder gringo. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR
2009. LNCS, vol. 5753, pp. 502–508. Springer, Heidelberg (2009)

15. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of
logic programs with aggregates. TPLP 7(3), 301–353 (2007)

16. Janhunen, T.: Sampler programs: The stable model semantics of abstract con-
straint programs revisited. In: Proc. ICLP, pp. 94–103 (2010)

17. Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of
equivalences in answer set programming. ACM Transactions on Computational
Logic 8(3) (2007)

18. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J. Artif. Intell. Res. (JAIR) 35, 813–857 (2009)

19. Pelov, N.: Semantics of Logic Programs with Aggregates. PhD thesis, Ketholieke
Universiteit Leuven (2004)

20. Pelov, N., Denecker, M., Bruynooghe, M.: Translation of aggregate programs to
normal logic programs. In: Proc. ASP 2003, pp. 29–42 (2003)

21. Shen, Y., You, J., Yuan, L.: Characterizations of stable model semantics for logic
programs with arbitrary constraint atoms. TPLP 9(4), 529–564 (2009)

22. You, J., Liu, G.: Loop formulas for logic programs with arbitrary constraint atoms.
In: Proc. AAAI 2008, pp. 584–589 (2008)

23. You, J., Yuan, L.Y., Liu, G., Shen, Y.: Logic programs with abstract constraints:
Representation, disjunction and complexities. In: Baral, C., Brewka, G., Schlipf, J.
(eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 228–240. Springer, Heidelberg
(2007)

24. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under
uniform and strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004.
LNCS (LNAI), vol. 2923, pp. 87–99. Springer, Heidelberg (2003)

25. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005)

26. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an integration of answer set and
constraint solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668,
pp. 52–66. Springer, Heidelberg (2005)

27. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill,
P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer,
Heidelberg (2009)

28. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming and
constraint logic programming. Annals of Math. and AI 53(1-4), 251–287 (2008)

29. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artificial.
Intelligence. 172(12-13), 1495–1539 (2008)

30. Niemelä, I.: Integrating answer set programming and satisfiability modulo theories.
In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, p. 3.
Springer, Heidelberg (2009)

Back and Forth between Rules and SE-Models�

Martin Slota and João Leite

CENTRIA & Departamento de Informática
Universidade Nova de Lisboa

Quinta da Torre
2829-516 Caparica, Portugal

Abstract. Rules in logic programming encode information about mutual inter-
dependencies between literals that is not captured by any of the commonly used
semantics. This information becomes essential as soon as a program needs to be
modified or further manipulated.

We argue that, in these cases, a program should not be viewed solely as the
set of its models. Instead, it should be viewed and manipulated as the set of sets
of models of each rule inside it. With this in mind, we investigate and highlight
relations between the SE-model semantics and individual rules. We identify a
set of representatives of rule equivalence classes induced by SE-models, and so
pinpoint the exact expressivity of this semantics with respect to a single rule. We
also characterise the class of sets of SE-interpretations representable by a single
rule. Finally, we discuss the introduction of two notions of equivalence, both
stronger than strong equivalence [1] and weaker than strong update equivalence
[2], which seem more suitable whenever the dependency information found in
rules is of interest.

1 Motivation

In this paper we take a closer look at the relationship between the SE-model seman-
tics and individual rules of a logic program. We identify a set of representatives of
rule equivalence classes, which we dub canonical rules, characterise the class of sets
of SE-interpretations that are representable by a single rule, and show how the corre-
sponding canonical rules can be reconstructed from them. We believe that these results
pave the way to view and manipulate a logic program as the set of sets of SE-mod-
els of each rule inside it. This is important in situations when the set of SE-models
of the whole program fails to capture essential information encoded in individual rules
inside it, such as when the program needs to be modified or further manipulated. With
this in mind, we briefly discuss two new notions of equivalence, stronger than strong
equivalence [1] and weaker than strong update equivalence [2].

In many extensions of Answer-Set Programming, individual rules of a program are
treated as first-class citizens – apart from their prime role of encoding the answer sets
assigned to the program, they carry essential information about mutual interdependen-
cies between literals that cannot be captured by answer sets. Examples that enjoy these

� An extended version of this paper with all the proofs is available at http://arxiv.org/
abs/1102.5385

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 174–186, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://arxiv.org/abs/1102.5385
http://arxiv.org/abs/1102.5385

Back and Forth between Rules and SE-Models 175

characteristics include the numerous approaches that deal with dynamics of logic pro-
grams, where inconsistencies between older and newer knowledge need to be resolved
by “sacrificing” parts of an older program (such as in [3,4,5,6,7,8,9,10,11]). These ap-
proaches look at subsets of logic programs in search of plausible conflict resolutions.
Some of them go even further and consider particular literals in heads and bodies of
rules in order to identify conflicts and find ways to solve them. This often leads to def-
initions of new notions which are too syntax-dependent. At the same time, however,
semantic properties of the very same notions need to be analysed, and their syntactic
basis then frequently turns into a serious impediment.

Arguably, a more syntax-independent method for this kind of operations would be
desirable. Not only would it be theoretically more appealing, but it would also allow
for a better understanding of its properties with respect to the underlying semantics.
Moreover, such a more semantic approach could facilitate the establishment of bridges
with the area of Belief Change (see [12] for an introduction), and benefit from the many
years of research where semantic change operations on monotonic logics have been
studied, desirable properties for such operations have been identified, and constructive
definitions of operators satisfying these properties have been introduced.

However, as has repeatedly been argued in the literature [4,13], fully semantic meth-
ods do not seem to be appropriate for the task at hand. Though their definition and anal-
ysis is technically possible and leads to very elegant and seemingly desirable properties,
there are a number of simple examples for which these methods fail to provide results
that would be in line with basic intuitions [4]. Also, as shown in [13], these individual
problems follow a certain pattern: intuitively, any purely semantic approach to logic
program updates satisfying a few very straightforward and desirable properties cannot
comply with the property of support [14,15], which lies at the very heart of seman-
tics for Logic Programs. This can be demonstrated on simple programs P = { p., q. }
and Q = { p., q ← p. } which are strongly equivalent, thus indistinguishable from the
semantic perspective, but while P does not contain any dependencies, Q introduces a
dependence of atom q upon atom p. This has far-reaching consequences, at least with
respect to important notions from the logic programming point of view, such as that
of support, which are themselves defined in syntactic rather than semantic terms. For
example, if we change our beliefs about p, and come to believe that it is false, we may
expect different beliefs regarding q, depending on whether we start form P , in which
case q would still be true, or Q, in which case q would no longer be true because it is
no longer supported.

We believe that rules indeed contain information that, to the best of our knowledge,
cannot be captured by any of the existing semantics for Logic Programs. In many situ-
ations, this information is essential for making further decisions down the line. There-
fore, any operation on logic programs that is expected to respect syntax-based properties
like support cannot operate solely on the semantic level, but rather has to look inside
the program and acknowledge rules as the atomic pieces of knowledge. At the same
time, however, rules need not be manipulated in their original form. The abstraction
provided by Logic Programming semantics such as SE-models can be used to discard
unimportant differences between the syntactic forms of rules and focus on their seman-
tic content. Thus, while a program cannot be viewed as the set of its models for reasons

176 M. Slota and J. Leite

described above, it can still be viewed as a set of sets of models of rules in it. Such a shift
of focus should make the approach easier to manage theoretically, while not neglecting
the importance of literal dependencies expressed in individual rules. It could also be-
come a bridge between existing approaches to rule evolution and properties as well as
operator constructions known from Belief Change, not only highlighting the differences
between them, but also clarifying why such differences arise in the first place.

However, before a deeper investigation of such an approach can begin, we do need
to know more about the relation of SE-models and individual rules. This is the aim of
this paper, where we:

– identify a set of representatives of rule equivalence classes induced by the
SE-model semantics, which we dub canonical rules;

– show how to reconstruct canonical rules from their sets of SE-models;
– based on the above, characterise the sets of SE-interpretations that are repre-

sentable by a single rule;
– reveal connections between the set of SE-models of a rule and convex sublattices

of the set of classical interpretations;
– introduce two new notions of equivalence – stronger than strong equivalence [1]

and weaker than strong update equivalence [2] – and argue that they are more
suitable when rules are to be treated as first-class citizens.

We believe that these results provide important insights into the workings of SE-mod-
els with respect to individual rules and will serve as a toolset for manipulating logic
programs at the semantic level.

The rest of this document is structured as follows: We introduce syntax and semantics
of logic programs in Sect. 2 while in Sect. 3 we define the set of representatives for
rule equivalence classes and introduce transformations pinpointing the expressivity of
SE-model semantics with respect to individual rules. We also give two characterisations
of the sets of SE-interpretations that are representable by a single rule. In Sect. 4 we
discuss the relevance of our results and propose the two new notions of equivalence.

2 Preliminaries

We assume to be given a nonempty, finite set of propositional atoms L from which we
construct both propositional formulae and rules.

Propositional formulae are formed in the usual way from propositional atoms in L,
the logical constants� an⊥, and the connectives ¬,∧,∨,⊂,⊃,≡. An interpretation is
any subset of L, naturally inducing a truth assignment to all propositional formulae. If
a formula φ is true under interpretation I , we also say that I is a model of φ. The set of
all interpretations is denoted by I.

Similarly as for propositional formulae, the basic syntactic building blocks of rules
are propositional atoms from L. A negative literal is an atom preceded by ∼, denoting
default negation. A literal is either an atom or a negative literal. As a convention, double
default negation is absorbed, so that∼∼p denotes the atom p. Given a set of literals X ,
we introduce the following notation:

X+ = { p ∈ L | p ∈ X } X− = { p ∈ L | ∼p ∈ X } ∼X = { ∼p | p ∈ X ∩ L }

Back and Forth between Rules and SE-Models 177

Given natural numbers k, l,m, n and atoms p1, . . . , pk, q1, . . . , ql, r1, . . . , rm,
s1, . . . , sn, we say the pair of sets of literals

〈{ p1, . . . , pk,∼q1, . . . ,∼ql } , { r1, . . . , rm,∼s1, . . . ,∼sn }〉 (1)

is a rule. The first component of a rule (1) is denoted by H(r) and the second by B(r).
We say H(r) is the head of r, H(r)+ is the positive head of r, H(r)− is the negative
head of r, B(r) is the body of r, B(r)+ is the positive body of r and B(r)− is the
negative body of r. Usually, for convenience, instead of a rule r of the form (1) we
write the expression

p1; . . . ; pk;∼q1; . . . ;∼ql ← r1, . . . , rm,∼s1, . . . ,∼sn. (2)

or, alternatively, H(r)+;∼H(r)− ← B(r)+,∼B(r)−. A rule is called positive if its
head and body contain only atoms. A program is any set of rules.

We also introduce the following non-standard notion which we will need throughout
the rest of the paper:

Definition 1 (Canonical Tautology). Let pε be an arbitrary but fixed atom. The canon-
ical tautology, denoted by ε, is the rule pε ← pε.

In the following, we define two semantics for rules. One is that of classical models,
where a rule is simply treated as a classical implication. The other is based on the logic
of Here-and-There [16,17], more accurately on a reformulation of the here-and-there
semantics, called SE-model semantics, defined for rules [18]. This second semantics is
strictly more expressive than both classical models and the stable model semantics [19].

We introduce the classical model of a rule by translating the rule into a proposi-
tional formula: Given a rule r of the form (2), we define the propositional formula r as∨
{ p1, . . . , pk,¬q1, . . . ,¬ql } ⊂

∧
{ r1, . . . , rm,¬s1, . . . ,¬sn }. Note that

∨
∅ ≡ ⊥

and
∧
∅ ≡ �. A classical model, or C-model, of a rule r is any model of the formula r.

Given a rule r and an interpretation J , we define the reduct of r relative to J , denoted
by rJ , as follows: If some atom fromH(r)− is false under J or some atom fromB(r)−

is true under J , then rJ is ε; otherwise rJ isH(r)+ ← B(r)+. Intuitively, the reduct rJ

is the positive part of a rule r that “remains” after all its negative literals are interpreted
under interpretation J . The two conditions in the definition check whether the rule is
satisfied based on the negative atoms in its head and body, interpreted under J . If this is
the case, the reduct is by definition the canonical tautology. If none of these conditions
is satisfied, the positive parts of r are kept in the reduct, discarding the negative ones.

An SE-interpretation is a pair of interpretations 〈I, J〉 such that I is a subset of J .
The set of all SE-interpretations is denoted by ISE. We say that an SE-interpretation
〈I, J〉 is an SE-model of a rule r if J is a C-model of r and I is a C-model of rJ .
The set of all SE-models of a rule r is denoted by modSE (r). The SE-models of a
program P are the SE-models of all rules in P . A set of SE-interpretations S is called
rule-representable if there exists a rule r such that S = modSE (r).

We say that a rule r is SE-tautological if modSE (r) = ISE. Note that the canonical
tautology ε (c.f. Definition 1) is SE-tautological. We say that two rules r, r′ are strongly
equivalent, or SE-equivalent, if they have the same set of SE-models.

178 M. Slota and J. Leite

3 Rule Equivalence Classes and Their Canonical Rules

Our goal is to find useful insights into the inner workings of the SE-model semantics
with respect to single rules. In order to do so, we first introduce a set of representatives
of rule equivalence classes induced by SE-models and show how the representative of a
class can be constructed given one of its members. Then we show how to reconstruct a
representative from the set of its SE-models. Finally, we pinpoint the conditions under
which a set of SE-interpretations is rule-representable.

3.1 Canonical Rules

We start by bringing out simple but powerful transformations that simplify a given rule
while preserving its SE-models. Most of these results have already been formulated in
various ways [20,2,21]. The following result summarises the conditions under which a
rule is SE-tautological:

Lemma 2 (Consequence of Theorem 4.4 in [2]; part i) of Lemma 2 in [21]). Let H
andB be sets of literals and p be an atom. Then a rule is SE-tautological if it takes any
of the following forms:

p;H ← p,B. H ;∼p← B,∼p. H ← B, p,∼p.

Thus, repeating an atom in different “components” of the rule frequently causes the rule
to be SE-tautological. In particular, this happens if the same atom occurs in the positive
head and positive body, or in the negative head and negative body, or in the positive and
negative bodies of a rule. How about the cases when the head contains a negation of a
literal from the body? The following Lemma clarifies this situation:

Lemma 3 (Consequence of (3) and (4) in Lemma 1 in [21]). Let H and B be sets of
literals and L be a literal. Then rules of the following forms are SE-equivalent:

H ;∼L← L,B. H ← L,B. (3)

So if a literal is present in the body of a rule, its negation can be removed from the head.
Until now we have seen that a rule r that has a common atom in at least two of the

setsH(r)+∪H(r)−,B(r)+ andB(r)− is either SE-tautological, or SE-equivalent to a
rule where the atom is omitted from the rule’s head. So such a rule is always SE-equiv-
alent either to the canonical tautology ε, or to a rule without such repetitions. Perhaps
surprisingly, repetitions in positive and negative head cannot be simplified away. For
example, over the alphabet Lp = { p }, the rule “p;∼p← .” has two SE-models, 〈∅, ∅〉
and 〈{ p } , { p }〉, so it is not SE-tautological, nor is it SE-equivalent to any of the facts
“p.” and “∼p.”. Actually, it is not very difficult to see that it is not SE-equivalent to
any other rule, even over larger alphabets. So the fact that an atom is in both H(r)+

and H(r)− cannot all by itself imply that some kind of SE-models preserving rule
simplification is possible.

The final Lemma reveals a special case in which we can eliminate the whole negative
head of a rule and move it to its positive body. This occurs whenever the positive head
is empty.

Back and Forth between Rules and SE-Models 179

Lemma 4 (Related to Corollary 4.10 in [20] and Corollary 1 in [21]). Let H− be
a set of negative literals, B be a set of literals and p be an atom. Then rules of the
following forms are SE-equivalent:

∼p;H− ← B. H− ← p,B.

Armed with the above results, we can introduce the notion of a canonical rule. Each
such rule represents a different equivalence class on the set of all rules induced by the
SE-model semantics. In other words, every rule is SE-equivalent to exactly one canon-
ical rule. After the definition, we provide constructive transformations which show that
this is indeed the case. Note that the definition can be derived directly from the Lemmas
above:

Definition 5 (Canonical Rule). We say a rule r is canonical if either it is ε, or the
following conditions are satisfied:

1. The sets H(r)+ ∪H(r)−, B(r)+ and B(r)− are pairwise disjoint.
2. If H(r)+ is empty, then H(r)− is also empty.

This definition is closely related with the notion of a fundamental rule introduced in
Definition 1 of [21]. There are two differences between canonical and fundamental
rules: (1) a fundamental rule must satisfy condition 1. above, but need not satisfy con-
dition 2.; (2) no SE-tautological rule is fundamental. As a consequence, fundamental
rules do not cover all rule-representable sets of SE-interpretations, and two distinct fun-
damental rules may still be SE-equivalent. From the point of view of rule equivalence
classes induced by SE-model semantics, there is one class that contains no fundamen-
tal rule, and some classes contain more than one fundamental rule. In the following we
show that canonical rules overcome both of these limitations of fundamental rules. In
other words, every rule is SE-equivalent to exactly one canonical rule. To this end, we
define constructive transformations that directly show the mutual relations between rule
syntax and semantics.

The following transformation provides a direct way of constructing a canonical rule
that is SE-equivalent to a given rule r.

Definition 6 (Transformation into a Canonical Rule). Given a rule r, by can(r) we
denote a canonical rule constructed as follows: If any of the sets H(r)+ ∩ B(r)+,
H(r)− ∩B(r)− and B(r)+ ∩B(r)− is nonempty, then can(r) is ε. Otherwise, can(r)
is of the form H+;∼H− ← B+,∼B−. where

– H+ = H(r)+ \B(r)−.
– If H+ is empty, then H− = ∅ and B+ = B(r)+ ∪H(r)−.
– If H+ is nonempty, then H− = H(r)− \B(r)+ and B+ = B(r)+.
– B− = B(r)−.

Correctness of the transformation follows directly from Lemmas 2 to 4.

Theorem 7. Every rule r is SE-equivalent to the canonical rule can(r).

What remains to be proven is that no two different canonical rules are SE-equivalent.
In the next Subsection we show how every canonical rule can be reconstructed from the
set of its SE-models. As a consequence, no two different canonical rules can have the
same set of SE-models.

180 M. Slota and J. Leite

3.2 Reconstructing Rules

In order to reconstruct a rule r from the set S of its SE-models, we need to understand
how exactly each literal in the rule influences its models. The following Lemma pro-
vides a useful characterisation of the set of countermodels of a rule in terms of syntax:

Lemma 8 (Different formulation of Theorem 4 in [21]). Let r be a rule. An SE-in-
terpretation 〈I, J〉 is not an SE-model of r if and only if the following conditions are
satisfied:

1. H(r)− ∪B(r)+ ⊆ J and J ⊆ L \B(r)−.
2. Either J ⊆ L \H(r)+ or both B(r)+ ⊆ I and I ⊆ L \H(r)+.

The first condition together with the first disjunct of the second condition hold if and
only if J is not a C-model of r. The second disjunct then captures the case when I is
not a C-model of rJ .

If we take a closer look at these conditions, we find that the presence of a negative
body atom in J guarantees that the first condition is falsified, so 〈I, J〉 is a model of
r, regardless of the content of I . Somewhat similar is the situation with positive head
atoms – whenever such an atom is present in I , it is also present in J , so the second
condition is falsified and 〈I, J〉 is a model of r. Thus, if S is the set of SE-models of a
rule r, then every atom p ∈ B(r)− satisfies

p ∈ J implies 〈I, J〉 ∈ S (CB−)

and every atom p ∈ H(r)+ satisfies

p ∈ I implies 〈I, J〉 ∈ S . (CH+)

If we restrict ourselves to canonical rules different from ε, we find that these conditions
are not only necessary, but, when combined properly, also sufficient to decide what
atoms belong to the negative body and positive head of the rule.

For the rest of this Subsection, we assume that r is a canonical rule different from
ε and S is the set of SE-models of r. Keeping in mind that every atom that satisfies
condition (CB−) also satisfies condition (CH+) (because I is a subset of J), and that
B(r)− is by definition disjoint from H(r)+, we arrive at the following results:

Lemma 9. An atom p belongs toB(r)− if and only if for all 〈I, J〉 ∈ ISE, the condition
(CB−) is satisfied. An atom p belongs to H(r)+ if and only if it does not belong to
B(r)− and for all 〈I, J〉 ∈ ISE, the condition (CH+) is satisfied.

As can be seen from Lemma 8, the role of positive body and negative head atoms is
dual to that of negative body and positive head atoms. Intuitively, their absence in J ,
and sometimes also in I , implies that 〈I, J〉 is an SE-model of r. It follows from the
first condition of Lemma 8 that if p belongs to H(r)− ∪ B(r)+, then the following
condition is satisfied:

p /∈ J implies 〈I, J〉 ∈ S . (CH−)

Back and Forth between Rules and SE-Models 181

Furthermore, the second condition in Lemma 8 implies that every p ∈ B(r)+ satisfies
the following condition:

p /∈ I and J ∩H(r)+ �= ∅ implies 〈I, J〉 ∈ S . (CB+)

These observations lead to the following results:

Lemma 10. An atom p belongs to B(r)+ if and only if for all 〈I, J〉 ∈ ISE, the condi-
tions (CH−) and (CB+) are satisfied. An atom p belongs to H(r)− if and only if it does
not belong to B(r)+ and for all 〈I, J〉 ∈ ISE, the condition (CH−) is satisfied.

Together, the two Lemmas above are sufficient to reconstruct a canonical rule from its
set of SE-models. The following definition sums up these results by introducing the
notion of a rule induced by a set of SE-interpretations:

Definition 11 (Rule Induced by a Set of SE-Interpretations)
Let S be a set of SE-interpretations.

An atom p is called an S-negative-body atom if every SE-interpretation 〈I, J〉 with
p ∈ J belongs to S. An atom p is called an S-positive-head atom if it is not an S-nega-
tive-body atom and every SE-interpretation 〈I, J〉 with p ∈ I belongs to S.

An atom p is called an S-positive-body atom if every SE-interpretation 〈I, J〉 with
p /∈ J belongs to S, and every SE-interpretation 〈I, J〉 with p /∈ I and J containing
some S-positive-head atom also belongs to S. An atom p is called an S-negative-head
atom if it is not an S-positive-body atom and every SE-interpretation 〈I, J〉 with p /∈ J
belongs to S.

The sets of all S-negative-body, S-positive-head, S-positive-body and S-nega-
tive-head atoms are denoted byB(S)−, H(S)+, B(S)+ andH(S)−, respectively. The
rule induced by S, denoted by rule(S), is defined as follows: If S = ISE, then rule(S)
is ε; otherwise, rule(S) is of the form

H(S)+;∼H(S)− ← B(S)+,∼B(S)−.

The main property of induced rules is that every canonical rule is induced by its own set
of SE-models and can thus be “reconstructed” from its set of SE-models. This follows
directly from Definition 11 and Lemmas 9 and 10.

Theorem 12. For every canonical rule r, rule(modSE (r)) = r.

This result, together with Theorem 7, has a number of consequences. First, for any rule
r, the canonical rule can(r) is induced by the set of SE-models of r.

Corollary 13. For every rule r, rule(modSE (r)) = can(r).

Furthermore, Theorem 12 directly implies that for two different canonical rules r1, r2
we have rule(modSE (r1)) = r1 and rule(modSE (r2)) = r2, so modSE (r1) and
modSE (r2) must differ.

Corollary 14. No two different canonical rules are SE-equivalent.

Finally, the previous Corollary together with Theorem 7 imply that for every rule there
not only exists an SE-equivalent canonical rule, but this rule is also unique.

Corollary 15. Every rule is SE-equivalent to exactly one canonical rule.

182 M. Slota and J. Leite

3.3 Sets of SE-Interpretations Representable by a Rule

Naturally, not all sets of SE-interpretations correspond to a single rule, otherwise any
program could be reduced to a single rule. The conditions under which a set of SE-in-
terpretations is rule-representable are worth examining.

A set of SE-models S of a program is always well-defined, i.e. whenever S contains
〈I, J〉, it also contains 〈J, J〉. Moreover, for every well-defined set of SE-interpreta-
tions S there exists a program P such that S = modSE (P) [10].

We offer two approaches to find a similar condition for the class of rule-representable
sets of SE-interpretations. The first is based on induced rules defined in the previous
Subsection, while the second is formulated using lattice theory and is a consequence of
Lemma 8.

The first characterisation follows from two properties of the rule(·) transformation.
First, it can be applied to any set of SE-interpretations, even those that are not rule-
representable. Second, if rule(S) = r, then it holds that modSE (r) is a subset of S.

Lemma 16. The set of all SE-models of a canonical rule r is the least among all sets
of SE-interpretations S such that rule(S) = r.

Thus, to verify that S is rule-representable, it suffices to check that all interpretations
from S are models of rule(S).

The second characterisation follows from Lemma 8 which tells us that if S is rule-
representable, then its complement consists of SE-interpretations 〈I, J〉 following a
certain pattern. Their second component J always contains a fixed set of atoms and is
itself contained in another fixed set of atoms. Their first component I satisfies a similar
property, but only if a certain further condition is satisfied by J . More formally, for the
sets

I⊥ = B(r)+, I� = L \H(r)+, J⊥ = H(r)− ∪B(r)+, J� = L \B(r)−,

it holds that all SE-interpretations from the complement of S are of the form 〈I, J〉
where J⊥ ⊆ J ⊆ J� and either J ⊆ I� or I⊥ ⊆ I ⊆ I�. It turns out that this
also holds vice versa: if the complement of S satisfies the above property, then S is
rule-representable. Furthermore, to accentuate the particular structure that arises, we
can substitute the condition J⊥ ⊆ J ⊆ J� with saying that J belongs to a convex
sublattice of I1. A similar substitution can be performed for I , yielding:

Theorem 17. Let S be a set of SE-interpretations. Then the following conditions are
equivalent:

1. The set of SE-interpretations S is rule-representable.
2. All SE-interpretations from S are SE-models of rule(S).
3. There exist convex sublattices L1, L2 of 〈I,⊆〉 such that the complement of S rel-

ative to ISE is equal to{
〈I, J〉 ∈ ISE

∣∣ I ∈ L1 ∧ J ∈ L2

}
∪
{
〈I, J〉 ∈ ISE

∣∣ J ∈ L1 ∩ L2

}
.

1 A sublattice L of L′ is convex if c ∈ L whenever a, b ∈ L and a ≤ c ≤ b holds in L′. For
more details see e.g. [22].

Back and Forth between Rules and SE-Models 183

4 Discussion

The presented results mainly serve to facilitate the transition back and forth between
a rule and the set of its SE-models. They also make it possible to identify when a
given set of SE-models is representable by a single rule. We believe that in situations
where information on literal dependencies, expressed in individual rules, is essential
for defining operations on logic programs, the advantages of dealing with rules on the
level of semantics instead of on the level of syntax are significant. The semantic view
takes care of stripping away unnecessary details and since the introduced notions and
operators are defined in terms of semantic objects, it should be much easier to introduce
and prove their semantic properties.

These results can be used for example in the context of program updates to define an
update semantics based on the rule rejection principle [4] and operating on sets of sets
of SE-models. Such a semantics can serve as a bridge between syntax-based approaches
to rule updates, and the principles and semantic distance measures known from the area
of Belief Change. The next steps towards such a semantics involve a definition of the
notion of support for a literal by a set of SE-models (of a rule). Such a notion can then
foster a better understanding of desirable properties for semantic rule update operators.

On a different note, viewing a logic program as the set of sets of SE-models of rules
inside it leads naturally to the introduction of the following new notion of program
equivalence:

Definition 18 (Strong Rule Equivalence). Programs P1,P2 are SR-equivalent, de-
noted by P1 ≡SR P2, if

{modSE (r) | r ∈ P1 ∪ { ε } } = {modSE (r) | r ∈ P2 ∪ { ε } } .

Thus, two programs are SR-equivalent if they contain the same rules, modulo the
SE-model semantics. We add ε to each of the two programs in the definition so that
presence or absence of tautological rules in a program does not influence program
equivalence. SR-equivalence is stronger than strong equivalence, in the following
sense:

Definition 19 (Strength of Program Equivalence). Let ≡1,≡2 be equivalence rela-
tions on the set of all programs. We say that ≡1 is at least as strong as ≡2, denoted by
≡1(≡2, if P1 ≡1 P2 implies P1 ≡2 P2 for all programs P1,P2. We say that ≡1 is
stronger than ≡2, denoted by ≡1)≡2, if ≡1(≡2 but not≡2(≡1.

Thus, using the notation of the above definition, we can write ≡SR)≡S, where ≡S

denotes the relation of strong equivalence. An example of programs that are strongly
equivalent, but not SR-equivalent is P = { p., q. } and Q = { p., q ← p. }, which in
many cases need to be distinguished from one another. We believe that this notion of
program equivalence is much more suitable for cases when the dependency information
contained in a program is of importance.

In certain cases, however, SR-equivalence may be too strong. For instance, it may be
desirable to treat programs such as P1 = { p← q. } and P2 = { p← q., p← q, r. } in
the same way because the extra rule in P2 is just a weakened version of the rule in P1.

184 M. Slota and J. Leite

For instance, the notion of update equivalence introduced in [23], which is based on a
particular approach to logic program updates, considers programs P1 and P2 as equiv-
alent because the extra rule in P2 cannot influence the result of any subsequent updates.
Since these programs are not SR-equivalent, we also introduce the following notion of
program equivalence, which in terms of strength falls between strong equivalence and
SR-equivalence.

Definition 20 (Strong Minimal Rule Equivalence). Programs P1,P2 are SMR--
equivalent, denoted by P1 ≡SMR P2, if

min {modSE (r) | r ∈ P1 ∪ { ε } } = min {modSE (r) | r ∈ P2 ∪ { ε } } ,

where minS denotes the set of subset-minimal elements of S.

In order for programs to be SMR-equivalent, they need not contain exactly the same
rules (modulo strong equivalence), it suffices if rules with subset-minimal sets of
SE-models are the same (again, modulo strong equivalence). Certain programs, such
as P1 and P2 above, are not SR-equivalent but they are still SMR-equivalent.

Related to this is the very strong notion of equivalence which was introduced in [2]:

Definition 21 (Strong Update Equivalence, c.f. Definition 4.1 in [2]). Two programs
P1, P1 are SU-equivalent, denoted by P1 ≡SU P2, if for any programs Q, R it holds
that the program ((P1\Q)∪R) has the same answer sets as the program ((P2\Q)∪R).

Two programs are strongly update equivalent only under very strict conditions – it
is shown in [2] that two programs are SU-equivalent if and only if their symmet-
ric difference contains only SE-tautological rules. This means that programs such as
Q1 = {∼p. }, Q2 = {← p. } and Q3 = {∼p← p. } are considered to be mutually
non-equivalent, even though the rules they contain are mutually SE-equivalent. This
may be seen as too sensitive to rule syntax.

The following result formally establishes the relations between the discussed notions
of program equivalence:

Theorem 22. SU-equivalence is stronger than SR-equivalence, which itself is
stronger than SMR-equivalence, which in turn is stronger than strong equivalence.
That is,

≡SU)≡SR)≡SMR)≡S .

The other notion of program equivalence introduced in [2], strong update equivalence
on common rules, or SUC-equivalence, is incomparable in terms of strength to our new
notions of equivalence. On the one hand, SR- and SMR-equivalent programs such as
{∼p. } and {∼p.,← p. } are not SUC-equivalent. On the other hand, programs such
as { p., q ← p. } and { q., p← q. } are neither SR- nor SMR-equivalent, but they are
SUC-equivalent. We believe that both of these examples are more appropriately treated
by the new notions of equivalence.

The introduction of canonical rules, which form a set of representatives of rule
equivalence classes induced by SE-models, also reveals the exact expressivity of
SE-model semantics with respect to a single rule. From their definition we can see that

Back and Forth between Rules and SE-Models 185

SE-models are capable of distinguishing between any pair of rules, except for (1) a pair
of rules that only differ in the number of repetitions of literals in their heads and bodies;
(2) an integrity constraint and a rule whose head only contains negative literals. We
believe that in the former case, there is little reason to distinguish between such rules
and so the transition from rules to their SE-models has the positive effect of stripping
away of unnecessary details. However, the latter case has more serious consequences.
Although rules such as

∼p← q. and ← p, q.

are usually considered to carry the same meaning, some existing work suggests that they
should be treated differently – while the former rule gives a reason for atom p to become
false whenever q is true, the latter rule simply states that the two atoms cannot be true at
the same time, without specifying a way to resolve this situation if it were to arise [4,8].
If we view a rule through the set of its SE-models, we cannot distinguish these two
kinds of rules anymore. Whenever this is important, either strong update equivalence is
used, which is perhaps too sensitive to the syntax of rules, or a new characterisation of
Answer-Set Programming needs to be discovered, namely one that is not based on the
logic of Here-and-There [16,17].

Acknowledgement

We would like to thank Han The Anh, Matthias Knorr and the anonymous reviewers
for their comments that helped to improve the paper. Martin Slota is supported by FCT
scholarship SFRH / BD / 38214 / 2007.

References

1. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-
tions on Computational Logic 2(4), 526–541 (2001)

2. Inoue, K., Sakama, C.: Equivalence of logic programs under updates. In: Alferes, J.J., Leite,
J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 174–186. Springer, Heidelberg (2004)

3. Damásio, C.V., Pereira, L.M., Schroeder, M.: REVISE: Logic programming and diagnosis.
In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 354–363.
Springer, Heidelberg (1997)

4. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic up-
dates of non-monotonic knowledge bases. The Journal of Logic Programming 45(1-3), 43–70
(2000)

5. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences based on
causal rejection. Theory and Practice of Logic Programming 2(6), 721–777 (2002)

6. Sakama, C., Inoue, K.: An abductive framework for computing knowledge base updates.
Theory and Practice of Logic Programming 3(6), 671–713 (2003)

7. Zhang, Y.: Logic program-based updates. ACM Transactions on Computational Logic 7(3),
421–472 (2006)

8. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for semantics
of dynamic logic programming. Studia Logica 79(1), 7–32 (2005)

186 M. Slota and J. Leite

9. Delgrande, J.P., Schaub, T., Tompits, H.: A preference-based framework for updating logic
programs. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, pp. 71–83. Springer, Heidelberg (2007)

10. Delgrande, J.P., Schaub, T., Tompits, H., Woltran, S.: Belief revision of logic programs under
answer set semantics. In: Brewka, G., Lang, J. (eds.) Proceedings of the 11th International
Conference on Principles of Knowledge Representation and Reasoning, Sydney, Australia,
September 16-19, pp. 411–421. AAAI Press, Menlo Park (2008)

11. Delgrande, J.P.: A Program-Level Approach to Revising Logic Programs under the Answer
Set Semantics. In: Theory and Practice of Logic Programming, 26th Int’l. Conference on
Logic Programming Special Issue, vol. 10(4-6), pp. 565–580 (2010)

12. Gärdenfors, P.: Belief Revision: An Introduction. In: Belief Revision, pp. 1–28. Cambridge
University Press, Cambridge (1992)

13. Slota, M., Leite, J.: On semantic update operators for answer-set programs. In: Coelho, H.,
Studer, R., Wooldridge, M. (eds.) Proceedings of the 19th European Conference on Arti-
ficial Intelligence, Lisbon, Portugal, August 16-20. Frontiers in Artificial Intelligence and
Applications, vol. 215, pp. 957–962. IOS Press, Amsterdam (2010)

14. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In: Founda-
tions of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufmann, San
Francisco (1988)

15. Dix, J.: A classification theory of semantics of normal logic programs: II. Weak properties.
Fundamenta Informaticae 22(3), 257–288 (1995)

16. Łukasiewicz, J.: Die Logik und das Grundlagenproblem. In: Les Entretiens de Zürich sue les
Fondements et la méthode des sciences mathématiques 1938, Zürich, pp. 82–100 (1941)

17. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J.,
Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70.
Springer, Heidelberg (1997)

18. Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theory
and Practice of Logic Programming 3(4-5), 609–622 (2003)

19. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski,
R.A., Bowen, K.A. (eds.) Proceedings of the 5th International Conference and Symposium
on Logic Programming, August 15-19, pp. 1070–1080. MIT Press, Washington (1988)

20. Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Programming 35(1),
39–78 (1998)

21. Cabalar, P., Pearce, D., Valverde, A.: Minimal logic programs. In: Dahl, V., Niemelä, I. (eds.)
ICLP 2007. LNCS, vol. 4670, pp. 104–118. Springer, Heidelberg (2007)

22. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press,
Cambridge (1990)

23. Alexandre Leite, J.: Evolving Knowledge Bases. Frontiers of Artificial Intelligence and Ap-
plications, vol. 81, xviii + 307 p. IOS Press, Amsterdam (2003); Hardcover

What Are the Necessity Rules in Defeasible Reasoning?

Ho-Pun Lam1,2 and Guido Governatori2

1 School of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, Australia

2 NICTA�, Queensland Research Laboratory, Brisbane, Australia

Abstract. This paper investigates a new approach for computing the inference
of defeasible logic. The algorithm proposed can substantially reduced the theory
size increase due to transformations while preserving the representation proper-
ties in different variants of DL. Experiments also show that our algorithm outper-
form traditional approach by several order of amplitudes.

1 Introduction

Defeasible reasoning [1] is a simple rule-based skeptical approach. This approach of-
fers two main advantages over other mainstream nonmonotonic reasoning formalisms:
(i) low computation complexity (linear time w.r.t. the size of a theory) [2] and (ii) its
build-in preference handling facilities allowing one to derive plausible conclusions from
incomplete and contradictory information in a natural and declarative way.

The strategy to compute the extension of a defeasible is to apply a series of pre-
processing transformations that transform a defeasible theory into an equivalent theory
without superiority relations and defeaters and then applies the reasoning algorithm [2]
to the transformed theory. For instance, consider the example below:

Example 1. Let us consider the defeasible theory:

r1 : ⇒ a r′1 : a⇒ c r1 > r2

r2 : ⇒¬a r′2 : ⇒¬c

The transformation of the above theory is:

r1.a :⇒¬in f +(r1) r′1.a : a⇒¬in f +(r′1)
r1.c : ¬in f +(r1)⇒ a r′1.c : ¬in f +(r′1)⇒ c
r2.a :⇒¬in f +(r2) r′2.a :⇒¬in f +(r′2)
r2.c : ¬in f +(r2)⇒¬a r′2.c : ¬in f +(r′2)⇒¬c

and
s+

1 : ¬in f +(r2)⇒ in f +(r1)
s−1 : ¬in f +(r2)⇒ in f−(r1)

It is clear that these transformations were designed to provide incremental transforma-
tions to the theory, and systematically introduces new literals and rules to emulate the
features removed [3]. However, as pointed out in [4], such transformations are profli-
gate in their introduction of propositions and generation of rules, which would result in
an increase in theory size by at most a factor of 12.

� NICTA is funded by the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 187–192, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

188 H.-P. Lam and G. Governatori

In addition, such transformations cannot preserve the representation properties of DL
in different variants1. For instance, consider the theory as shown in Example 1. Under
ambiguity propagation variant the conclusions derived should be +∂¬a, −∂a, +∂¬c,
−∂c. However, in the transformed theory, as the superiority relation is removed, the
support of a in r1.c cannot be blocked, which subsequently propagated and supported
the conclusions of r′1.a and r′1.c. Hence the conclusions derived in the transformed the-
ory becomes +∂¬a,−∂a,−∂¬c,−∂c, instead of the one desired.

Due to the deficiencies above and the inability of current reasoning algorithm to
handle superiority relation directly, the focus of this paper is on finding the necessity
rules in deriving the conclusions associated with superiority relations. Thus the aim
is on finding conditions under which rules redundant under superiority relations and
can be removed from the theory. We believe that our approach, in general, can also be
applied to other rule-based nonmonotonic formalisms containing preference operator(s)
that describes the relative strength of rules, such as preference logic.

2 Basics of Defeasible Logic

In this section we provide a short outline of DL and the construction of variants captur-
ing different intuitions of non-monotonic reasoning based on modular and parametrized
definition of the proof theory of the logic. For the full details, please refer to [3,6,7].

A defeasible theory D is a triple (F,R,>) where F and R are finite set of facts
and rules respectively, and > is an acyclic superiority relation on R. Facts are logi-
cal statements describing indisputable facts, represented by (atomic) propositions (i.e.
literals). A rule r describes the relations between a set of literals (the antecedent A(r),
which can be empty) and a literal (the consequence C(r)). DL supports three kinds of
rules: strict rules (r : A(r) → C(r)), defeasible rules (r : A(r)⇒ C(r)) and defeaters
(r : A(r) � C(r)). Strict rules are rules in classical sense, the conclusion follows every
time the antecedents hold; a defeasible rule is allowed to assert its conclusion in case
there is no contrary evidence to it. Defeaters cannot support conclusions but can pro-
vide contrary evidence to them. The superiority relation describes the relative strength
of rules, and is used to obtain a conclusion where there are applicable conflicting rules.

DL is able to distinguish positive conclusions from negative conclusions, that is lit-
erals that can be proved and literals that are refuted. In addition, it is able to determine
the strength of a conclusion, i.e., whether something is concluded using only strict rules
and facts or whether we have a defeasible conclusion, a conclusion can be retracted if
more evidence is provided. According, for a literal p we have the following four types of
conclusions, called tagged literals: +Δ p (p is definitely provable),−Δ p (p is definitely
refuted), +∂ p (p is defeasible provable), and −∂ p (p is defeasible refuted).

At the heart of DL we have its proof theory that tells us how to derive tagged literals.
A proof is a sequence of tagged literals obeying proof conditions corresponding to
inference rules. The inference rules establish when we can add a literal at the end of
a sequence of tagged literals based on conditions on the elements of a theory and the

1 Several variants (such as ambiguity propagation (AP), well-founded semantics (WF)) of DL
have been proposed to capture the intuitions of different non-monotonic reasoning formalism.
Readers interested please refer to [5] for details.

What Are the Necessity Rules in Defeasible Reasoning? 189

previous tagged literals in the sequence. The structure of the proof conditions has an
argumentation flavour. For example, to prove +∂ p:

Phase 1: There is an applicable rule for p and
Phase 2: For every rule for ¬p (the complement of p) either

Sub-Phase 1: the rule is discarded, or
Sub-Phase 2: the rule is defeated by a (stronger) rule for p

The notion of a rule being applicable means that all the antecedents of the rule are prov-
able (with the appropriate strength); a rule is discarded if at least one of the antecedents
is refuted (with the appropriate strength), and finally a rule is defeated, if there is a
(stronger) rule for the complement of the conclusion that is applicable (again with the
appropriate strength).

The above structure enables us to define several variants of DL [5] –such as ambi-
guity blocking and ambiguity propagation– by giving different parameters (i.e., this is
what we mean ‘with the appropriate strength’ in the previous paragraph).

3 Inferiorly Defeated Rules

As mentioned before, the superiority relation in DL is used to define the preference, or
relative strength, of rules, i.e., it provides information about which rules can overrule
which other rules. And in some variants, such as ambiguity propagation, the superiority
relation also provides information on whether the consequences of rules are supported
or not. Based on these, we introduce the notion of superiority chain.

Definition 1. A superiority chain is a superiority relation hierarchy such that, apart
form the first and last element of the chain, there exists a superiority relation between
rules rk and rk+1:

r1 > r2 > · · ·> rn

where n is the length of the chain, and C(rk) = ¬C(rk+1), ∀1≤ k < n.

Notice that the superiority relation is not transitive, i.e., unless otherwise specified, there
exists no superiority relation between a rule r and another rule in the chain. Consider
the theory in example 2 below: r1 and r4 are in the same superiority chain but r1 is not
superior to r4, the consequence of r1 cannot be used to overrule the consequence of r4.

Lemma 1. Let D = (/0,R,>)2 be a defeasible theory (in regular form) over a language
LD. Then a rule r ∈ Rsd [q] is inferiorly defeated if ∃s ∈ Rsd [¬q] : A(s) = /0 and s> r.

The key observation of this lemma is that irrespective to whethter an inferiorly defeated
rule r is derivable or not, its conclusion is going to be overruled by a superior rule s.
Consider again the theory in Example 1. Since r1 and r2 are both derivable and r2 is su-
perior than r1, r1 is inferiorly defeated and its conclusion is overridden by r2. So, under
this situation, r1 is redundant and cannot be used to derive any positive conclusion. Re-
moving it from the theory and falsifying its conclusion does not affect the conclusions
derived. And the same applies even when A(r1) �= /0.

2 A defeasible theory D = (F,R,>) can be transformed to an equivalent theory D′ = (/0,R′,>′)
(without fact) using the algorithm proposed in [3].

190 H.-P. Lam and G. Governatori

However, the example above is just oversimplified. Consider the example below:
Example 2. Let us consider the defeasible theory (D):

r1 :⇒ a r2 :⇒¬a r3 :⇒ a r4 :⇒¬a and r1 > r2 > r3 > r4

All rules above are derivable but r2, r3 and r4 are inferiorly defeated and r1 is the only
rule that can be used to derive positive conclusion. So, the conclusions inferred should
be +∂a,−∂¬a. However, if we remove an inferiorly defeated rule arbitrarily, say r3,
then the theory will becomes (D′):

r1 :⇒ a r2 :⇒¬a r4 :⇒¬a r1 > r2

Then, only r2 is inferiorly defeated and the conclusions derived will become
−∂a,−∂¬a, implying that D �≡ D′. Hence a rule is inferiorly defeated is not an ade-
quate condition all by itself to enable it to be removed from the theory without chang-
ing the conclusions. If we take into account a line of superiority chain then additional
conditions are needed.

4 Statement of Results

To recap, our main focus lies in characterizing a set inferiorly defeated rules that cannot
be used to derive positive conclusions and can be removed from the theory without
changing its conclusions.

Definition 2. Let D =(/0,R,>) be a defeasible theory (in regular form) over a language
LD. Then, Rin f d is the set of inferiorly defeated rules in D with number of weaker
rules equal to zero. That is, ∀r ∈ Rin f d [q], � ∃s ∈ R[¬q] s.t. r > s (i.e., r is the weakest
rules along the line of superiority chain).

Theorem 1. Let D = (/0,R,>) be a defeasible theory (in regular form), and r ∈ Rin f d .
Let D′ = (/0,R\ {r},>′) be the reduct of D, denoted by reduct(D), where >′ is defined
by the following condition:

∀s ∈ R, A(s) = /0, s> r (>′⇔> \{s> r})
Then D≡ D′. In addition,−∂q can be derived if R[q] = /0 after the removal of r.

This theorem looks simple but plays a fundamental role in differentiating the set of
necessity rules that are required in the inference process from the set of rules that are
redundant and can be removed from the theory. From the theorem, we can conclude that
if an inferiorly defeated rule is the weakest rule of a superiority chain, then removing
it from the theory will not cause any undesired effects to the inference process. For
instance, consider the theory again in Example 2 and apply the theorem recursively,
then, r4, r3 and r2 will be removed subsequently leaving r1 as the only rule in the
superiority chain, which thus give us the results: +∂a and ∂¬a, as desired.

Therefore, by incorporating the theorem into the inference process, the transforma-
tion of eliminating the superiority relation is no longer necessary, which thus reduced
the transformation time as well as the number of propositions introduced and rules gen-
erated. In addition, upon satisfying the conditions stated above, an inferiorly defeated
rule can be removed from the theory immediately even without knowing any informa-
tion about the provability of its body, which can further enhance the performance of
the reasoning engine. Furthermore, the result is general and it applies to the ambiguity
blocking (AB), ambiguity propagating (AP) and well-founded (WF) variants of DL.

What Are the Necessity Rules in Defeasible Reasoning? 191

4.1 Implementation and Some Experimental Results

The above theorem has been incorporated into the inference algorithm proposed in [2]
(for AB) and [8] (for AP and WF) and is implemented in the latest version of SPIN-
dle [9]. The implementation is tested using the UAV navigation theory described in [10]
(consists of about a hundred rules and 40 superiority relations) and the superioirty re-
lation test theories generated by a tool that comes with Deimos [11]. The test has been
measured on a Pentium 4 PC (3GHz) with Window XP and 2GB main memory. Table 1
and Figure 1 below show the performance result and their memory usage.

As shown, our approach outperforms the traditional approach under the same model
complexity. Even with theory 1000 rules and 500 superiority relation, our approach
can complete the whole inference process in less than half a second (289ms), while it
takes 9 for the approach based on a transformation to remove the superiority relation. In
terms of memory usage, our approach only increases linearly with the original theory
size while the traditional approach a significantly larger memory size.

Table 1. Reasoning time used in UAV navigation theory

Algorithm
Superiority relation Conclusions Total Reasoning Memory

removal (ms) generation (ms) Time (ms) Usage (MB)
Traditional 47 156 203 1.52
New - 93 93 1.36

(a) Reasoning time (sec) (b) Memory usage (MB)

Fig. 1. Superiority relations test theories - Reasoning time and Memory usage (with different
theories size)

5 Related Works and Conclusions

A number of defeasible logic reasoners and systems have been proposed in recent years
to cover different variants of defeasible reasoning and other intuitions of nonmonotonic
reasoning. Most of the implementations rely on either transformations, or translation
to other logic formalism (such as extended logic programming) [12,13] and carry out
the inference process using the underlying reasoning engine. However, as mentioned
before, the representation properties of DL cannot be preserved after transformation.
Also, most of the system are query based and do not compute diectly the extension

192 H.-P. Lam and G. Governatori

of a theory, which may leads to some counterintuitive result [14]. The meta-program
approach is at the foundation of the approaches based on transformation in other for-
malism. DR-Prolog [12], which directly implement the meta-programs of [5], provides
a Semantic Web enabled implementation of DL.

In this paper, we have presented a theorem that allow us to reason on a defeasible
theory without removing the superiority relation. The essence of this method lies in the
ability in identifying inferiorly defeated rules that are redundant and can be removed
from the theory, which help in preserving the representation properties of defeasible
logic across different variants and simplified the work in subsequent processes. Our
result shows that the performance gains are significant. As a future work, we will work
on studying the relation of conclusions between different variants, with special interest
in ambiguity propagation and well-founded semantics.

References

1. Nute, D.: Defeasible logic. In: Gabbay, D., Hogger, C. (eds.) Handbook of Logic for Artificial
Intelligence and Logic Programming, vol. III, pp. 353–395. Oxford University Press, Oxford
(1994)

2. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory and Practice of
Logic Programming 1(6), 691–711 (2001)

3. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Transactions on Computational Logic 2(2), 255–286 (2001)

4. Bryant, D., Krause, P.: A review of current defeasible reasoning implementations. Knowl.
Eng. Rev. 23(3), 227–260 (2008)

5. Antoniou, G., Billington, D., Governatori, G., Maher, M.J., Rock, A.: A family of defeasible
reasoning logics and its implementation. In: Proc. ECAI 2000, pp. 459–463 (2000)

6. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: A flexible framework for defea-
sible logics. In: AAAI 2000, pp. 401–405. AAAI/MIT Press (2000)

7. Billington, D., Antoniou, G., Governatori, G., Maher, M.J.: An inclusion theorem for defea-
sible logic. ACM Transactions in Computational Logic 12(1) (2010)

8. Lam, H.-P., Governatori, G.: On the problem of computing ambiguity propagation and well-
founded semantics in defeasible logic. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.)
RuleML 2010. LNCS, vol. 6403, pp. 119–127. Springer, Heidelberg (2010)

9. Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall, J., Paschke,
A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer, Heidelberg (2009)

10. Lam, H.P., Thakur, S., Governatori, G., Sattar, A.: A model to coordinate uavs in urban
environment using defeasible logic. In: Hu, Y.J., Yeh, C.L., Laun, W., Governatori, G., Hall,
J., Paschke, A. (eds.) Proc. RuleML 2009 Challenge. CEUR Workshop Proceedings, vol. 549
(2009)

11. Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient defeasible reasoning
systems. International Journal on Artificial Intelligence Tools 10(4), 483–501 (2001)

12. Antoniou, G., Bikakis, A.: DR-Prolog: A system for defeasible reasoning with rules and
ontologies on the semantic web. IEEE Trans. Knowl. Data Eng. 19(2), 233–245 (2007)

13. Madalińska-Bugaj, E., Lukaszewicz, W.: Formalizing defeasible logic in cake. Fundam.
Inf. 57(2-4), 193–213 (2003)

14. Antoniou, G.: A discussion of some intuitions of defeasible reasoning. In: Vouros, G.A.,
Panayiotopoulos, T. (eds.) SETN 2004. LNCS (LNAI), vol. 3025, pp. 311–320. Springer,
Heidelberg (2004)

Partial Preferences and Ambiguity Resolution in
Contextual Defeasible Logic�

Antonis Bikakis1 and Grigoris Antoniou2

1 University of Luxembourg
2 Institute of Computer Science, FO.R.T.H., Greece

Abstract. Domains, such as Ambient Intelligence and Social Networks, are
characterized by some common features including distribution of the available
knowledge, entities with different backgrounds, viewpoints and operational en-
vironments, and imperfect knowledge. Multi-Context Systems (MCS) has been
proposed as a natural representation model for such environments, while recent
studies have proposed adding non-monotonic features to MCS to address the is-
sues of incomplete, uncertain and ambiguous information. In previous works, we
introduced a non-monotonic extension to MCS and an argument-based reasoning
model that handle imperfect context information based on defeasible argumenta-
tion. Here we propose alternative variants that integrate features such as partial
preferences, ambiguity propagating and team defeat, and study the relations be-
tween the different variants in terms of conclusions being drawn in each case.

1 Introduction

Multi-Context Systems (MCS, [1,2]) are logical formalizations of distributed context
theories connected through a set of mapping rules, which enable information flow be-
tween different contexts. A context can be thought of as a logical theory - a set of axioms
and inference rules - that models local knowledge. In order to address various imper-
fections in context, e.g. incompleteness, uncertainty, ambiguity, recent studies have pro-
posed adding non-monotonic features to MCS. Two representative examples are: (a) the
non-monotonic rule-based MCS framework [3], which supports default negation in the
mapping rules; and (b) the multi-context variant of Default Logic, ConDL [4], which
models bridge relations as default rules, in order to handle cases of mutually incon-
sistent contexts. Both approaches, though, do not provide ways to model the quality
of imported knowledge, nor preference between different information sources, leaving
potential conflicts that may arise during the interaction of contexts unresolved.

In previous works we proposed Contextual Defeasible Logic (CDL), a nonmono-
tonic extension to MCS, which integrates preferences and preference-based reasoning.
CDL uses both strict and defeasible rules to model local knowledge, defeasible map-
ping rules, and a per context preference order on the set of contexts to resolve conflicts
caused by the interaction of mutually inconsistent contexts. The representation model
of CDL, an argumentation semantics and associated algorithms for distributed query

� This work was carried out during the tenure of an ERCIM ”Alain Bensoussan” Fellowship
Programme.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 193–198, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

194 A. Bikakis and G. Antoniou

evaluation were presented in [5], while its formal properties and relation with Defea-
sible Logic were analyzed in [6]. Finally, an extension of CDL with partial preference
orders, was proposed in [7]. The main consequence of partial ordering is that conflicts
among competing arguments cannot always be resolved. To address such cases, here we
propose four different variants of CDL, each of which implements a different seman-
tics for ambiguity resolution. The first two variants implement an ambiguity blocking
behavior, according to which arguments that are rejected due to unresolved conflicts
cannot support attacks against other arguments. The ambiguity propagating behavior,
adopted by the other two variants, enables mutually attacking arguments to support at-
tacks and block other arguments. The latter behavior results in fewer arguments being
justified, or in other words, fewer conclusions being drawn. Both semantics have also
been defined and implemented for Defeasible Logics [8] and defeasible argumentation
[9]. Two of the variants also support team defeat. This feature is common in many
prioritized nonmonotonic logics. Here, it enables arguments to form teams in order to
defend themselves against attacks and support their common conclusions. In this way,
it resolves some of the conflicts caused by the lack of sufficient preference information.

The rest of the paper is structured as follows. Section 2 describes the MCS-based
representation model. Section 3 presents the four different variants of CDL and studies
their properties. Finally, Section 4 provides a summary of the results and proposes some
possible directions for future research.

2 Representation Model

In CDL, a defeasible MCS C is defined as a collection of context theoriesCi. A context
Ci is defined as a tuple (Vi, Ri, Ti), where Vi is the vocabulary used by Ci (a set of
positive and negative literals), Ri is a set of rules, and Ti is a preference ordering on C.
Ri consists of a set of local rules and a set of mapping rules. The body of a local rule

is a conjunction of local literals (literals that are contained in Vi), while its head contains
a local literal. Local rules are classified into: (a) strict rules, rl

i : a1
i , a

2
i , ...a

n−1
i → an

i ,
which express sound local knowledge and are interpreted in the classical sense: when-
ever the literals in the body of the rule are strict consequences of the local theory, then
so is the conclusion of the rule; and (b) defeasible rules, rd

i : b1i , b
2
i , ...b

n−1
i ⇒ bni ,

used to express local uncertainty, in the sense that a defeasible rule cannot be applied to
support its conclusion if there is adequate contrary evidence. Mapping rules are used to
associate concepts used by different contexts. The body of each such rule is a conjunc-
tion of local and foreign literals, while its head contains a single local literal. To deal
with ambiguities caused by the interaction of mutually inconsistent contexts, mapping
rules are also modeled as defeasible rules: rm

i : a1
i , a

2
j , ...a

n−1
k ⇒ an

i .
Finally, each context Ci defines a partial preference ordering Ti on C to express

its confidence in the knowledge it imports from other contexts. Ti is modeled as a
directed acyclic graph, in which vertices represent system contexts and arcs represent
preference relations between the contexts that label the connected vertices. A context
Cj is preferred by Ci to context Ck, denoted as Cj >

i Ck, if there is a path from vertex
labeled by Ck to vertex labeled by Cj in Ti.

Partial Preferences and Ambiguity Resolution in Contextual Defeasible Logic 195

3 Argumentation Semantics

In this section, we describe four different variants of CDL using argumentation se-
mantics. The first two variants, described in sections 3.1-3.2, implement the ambiguity
blocking behavior, while those described in 3.3-3.4 implement the ambiguity propagat-
ing one. The variants described in 3.2 and 3.4 implement the notion of team defeat.

3.1 Ambiguity Blocking Semantics

The CDL variant proposed in [7] is actually the one that implements the ambiguity
blocking behavior. Here, we present again its main definitions.

An argument A for a literal pi in context Ci is defined as a tuple (Ci, PTpi , pi),
where PTpi is the proof tree for pi constructed using rules from Ri. There are two
types of arguments: (a) local arguments, which use local rules only; and (b) mapping
arguments, which use at least one mapping rule. Local arguments are classified into
strict local arguments, which use strict rules only, and defeasible local arguments, which
contain at least one defeasible rule. We denote as ArgsCi the set of all arguments of
Ci, and as ArgsC the set of all arguments in C = {Ci}: ArgsC =

⋃
iArgsCi .

An argument A attacks a defeasible local or mapping argument B at pi, if pi is a
conclusion of B, ∼ pi is a conclusion of A, and for the subarguments of A, A′ with
conclusion∼ pi, and ofB,B′ with conclusion pi, it holds that: (a) B’ is not a strict local
argument; and either (b1) A’ is a local argument of Ci or (b2) B’ is a mapping argument
of Ci and ∃bl ∈ B, s. t. ∀ak ∈ A there is no path from Ck to Cl in Ti (Cl �>i Ck).

An argumentation line AL for a literal pi is a sequence of arguments in ArgsC ,
constructed in steps as follows: In the first step one argument for pi is added in AL.
In each next step, for each distinct literal qj labeling a leaf node of the the arguments
added in the previous step, one argumentB with conclusion qj is added, provided that
there is no argumentD �= B for qj already in AL. The argument added in the first step
is called the head argument of AL, and pi is called the conclusion ofAL. If the number
of steps required to build AL is finite, then AL is a finite argumentation line.

An argumentA is supported by a set of argumentsS if: (a) every proper subargument
ofA is in S; and (b) there is a finite argumentation lineAL with headA, such that every
argument in AL − {A} is in S. An argument A is undercut by a set of arguments S if
for every argumentation line AL with head A, there is an argument B, such that B is
supported by S, andB defeats a proper subargument ofA or an argument in AL−{A}.

An argument A is acceptable w.r.t a set of arguments S if: (a) A is a strict local
argument; or (b) A is supported by S and every argument attacking A is undercut by
S. Based on the concept of acceptable arguments, we define justified arguments and
justified literals. Let C be a MCS. JC

i is defined as follows: for i = 0, JC
i = ∅; for

i > 0: JC
i = {A ∈ ArgsC | A is acceptable w.r.t. JC

i−1}.
The set of justified arguments in a MCS C is JArgsC =

⋃∞
i=1 J

C
i . A literal pi

is justified in C if it is the conclusion of an argument in JArgsC . That a literal pi is
justified, it actually means that it is a logical consequence of C.

An argumentA is rejected by a set of arguments T whenA is undercut by T ; orA is
attacked by an argument supported by T . The set of rejected arguments in C (denoted
as RArgsC) is the set of arguments that are rejected by JArgsC . A literal pi is rejected

196 A. Bikakis and G. Antoniou

inC if there is no argument inArgsC−RArgsC with conclusion pi. That pi is rejected
means that we are able to prove that it cannot be drawn as a logical conclusion.

3.2 Ambiguity Blocking with Team Defeat

Implementing team defeat requires introducing some new notions in the framework.
The notion of defeat describes the case that an argument is clearly preferred to its
counter-arguments. Formally, an argument A defeats an argument B at q if A attacks
B at q, and A is not attacked by B at ¬q. The notions of attack and defeat can also be
used for sets of arguments. A group of argument S attacks (defeats) an argumentB at q
if there is at least one argument A in S, such that A attacks (defeats) B at ¬q. A set of
arguments T teams defeats a set of arguments S at q if for every argumentB ∈ S with
conclusion q, there is an argumentA ∈ T , such that A defeatsB at q. The definition of
undercut should also be revised to take into account team defeat. A set of arguments S
is undercut by a set of arguments T if there is an argument A ∈ S such that for every
argumentation lineAL with headA there is an argumentB such that: (a)B is supported
by T ; (b)B attacks a proper subargument ofA or an argument inAL−{A} at q; and (c)
S does not team defeatB at∼ q. Finally, we introduce the notion of supported set. The
supported set of a set of arguments S, denoted as Supported(S), is the maximal set
of arguments that are supported by S. Under ambiguity blocking semantics with team
defeat, an argument A is acceptable w.r.t a set of arguments S if: (a) A is a strict local
argument; or (b) A is supported by S and every set of arguments attacking A (at q) is
either undercut by S or team defeated by Supported(S) (at ∼ q). A set of arguments
S is rejected by a set of arguments T when: (a) S is undercut by T ; or (b) there is an
argumentA ∈ S, such that A is attacked by Supported(T) at one of its conclusions q,
and S does not team defeat Supported(T) at ∼ q. An argument A is rejected by T if
for every set of arguments S, such that A ∈ S, S is rejected by T .

3.3 Ambiguity Propagating without Team Defeat

To implement ambiguity propagating semantics we use the notion of proper undercut
and new acceptability and refutability semantics. An argument A is properly undercut
by a set of arguments S if for every argumentation line AL with head A: there is an
argument B ∈ S, such that B attacks a proper subargument of A or an argument in
AL − {A}. An argument A is acceptable w.r.t a set of arguments S if: (a) A is a strict
local argument; or (b) A is supported by S and every argument attacking A is properly
undercut by S. An argument A is rejected by a set of arguments T when: (a) A is
attacked by an argumentB, such that B is not properly undercut by T ; or (b) for every
argumentation line AL with headA, there exists an argumentB, such that B attacks an
argument in AL − {A}, and B is not properly undercut by T .

3.4 Ambiguity Propagating with Team Defeat

This last variant of CDL combines the ambiguity propagating semantics with the no-
tion of team defeat. Under this semantics, an argument A is acceptable w.r.t a set of
arguments S if: (a) A is a strict local argument; or (b) A is supported by S and every

Partial Preferences and Ambiguity Resolution in Contextual Defeasible Logic 197

argument attacking A (at q) is either properly undercut by S or team defeated (at ∼ q)
by Supported(S). An argument A is rejected by a set of arguments T when: (a) A is
attacked by an argument B that is neither properly undercut by T nor team defeated
by Supported(T); or (b) for every argumentation line AL with head A, there exists an
argument B, such that B attacks an argument in AL − {A}, and B is neither properly
undercut by T nor team defeated by Supported(T).

3.5 Properties

Theorems 1 to 3 hold for all variants of CDL. Theorem 1 refers to the monotonicity in
JC

i , while Theorems 2 and 3 refer to system consistency1.

Theorem 1. For any defeasible MCS C, the sequence JC
i is monotonically increasing.

Theorem 2. For any defeasible MCS C, it holds that: (a) No argument in ArgsC is
both justified and rejected; (b) No literal in C is both justified and rejected.

Theorem 3. For any defeasible MCS C, if JArgsC contains two arguments with com-
plementary conclusions, then both are strict local arguments in ArgsC .

Theorem 4 describes the relations that hold between the four different variants with
respect to the results that they produce. Jvar(C) and Rvar(C) denote, respectively, the
sets of justified and rejected literals in a MCS C under the semantics of the variant
described by index var, which may take one of the following values: (a) ab,ntd for the
ambiguity blocking variant without team defeat; (b) ab,td for the ambiguity blocking
variant with team defeat; (c) ap,ntd for the ambiguity propagating variant without team
defeat; (d) ap,td for the ambiguity propagating variant with team defeat.

Theorem 4. For any defeasible MCS C, the following relations hold:

1. Jap,ntd(C) ⊆ Jap,td(C) ⊆ Jab,td(C)
2. Jap,ntd(C) ⊆ Jab,ntd(C)
3. Rap,ntd(C) ⊇ Rap,td(C) ⊇ Rab,td(C)
4. Rap,ntd(C) ⊇ Rab,ntd(C)

Theorem 5 describes a relation between partial preference ordering and total preference
ordering MCS. The intuition behind this is that under ambiguity propagating seman-
tics, the more preference information is available, the more conflicts between counter-
arguments can be resolved, and the more arguments and literals can be justified (and
less rejected). Assuming a MCS C = {Ci}, where each context Ci = {Vi, Ri, T

p
i }

uses a partial preference ordering T p
i , we call CT = {CT

i }, CT
i = {Vi, Ri, T

t
i } a

preference extension of C, if for every T t
i it holds that T t

i is a linear extension of T p
i .

Theorem 5. For any Defeasible MCS C and any preference extension of C, CT , under
the ambiguity propagating semantics it holds that :

1. Jap(C) ⊆ Jap(CT)
2. Rap(C) ⊇ Rap(CT)
1 The proofs for all theorems that appear in this section are available at
http://www.csd.uoc.gr/˜bikakis/partialCDL.pdf

http://www.csd.uoc.gr/~bikakis/partialCDL.pdf

198 A. Bikakis and G. Antoniou

4 Discussion

Contextual Defeasible Logic is a nonmonotonic extension to MCS integrating prefer-
ence information to resolve potential ambiguities caused by the interaction of contexts.
In this paper, we propose four different variants of CDL, which adopt different seman-
tics for handling ambiguity, implementing different levels of skepticism. Ambiguity
propagating is more skeptical than ambiguity blocking, while removing team defeat re-
sults in even more skeptical behavior. On the other hand, under ambiguity propagating
semantics, the system is monotonic with respect to the available preference information
in terms of number of conclusion being drawn. Therefore, choosing the proper variant
depends to a large extent on the cost of an incorrect conclusion.

Prominent recent works in the field of distributed argumentation include: the argu-
mentation context systems of [10], which, being abstract, do not specify how arguments
are constructed or how the preference relation is built; and the distributed argumenta-
tion framework of [11], which is built on top of Defeasible Logic Programming, and
does not integrate the notions of ambiguity propagating and team defeat.

CDL has already been deployed in Ambient Intelligence and Mobile Social Net-
works scenarios using logic programming algorithms and lightweight Prolog machines
for mobile devices. To this direction, we plan to adjust the algorithms to support the new
variants, but also develop more efficient algorithms, which will better suit the restricted
computational capabilities of mobile devices. From a theoretical perspective, our plans
include extending CDL with overlapping vocabularies and richer preference models.

References

1. Giunchiglia, F., Serafini, L.: Multilanguage Hierarchical Logics or: How we can do Without
Modal Logics. Artificial Intelligence 65(1), 29–70 (1994)

2. Ghidini, C., Giunchiglia, F.: Local Models Semantics, or contextual reasoning = locality +
compatibility. Artificial Intelligence 127(2), 221–259 (2001)

3. Roelofsen, F., Serafini, L.: Minimal and Absent Information in Contexts. In: IJCAI, pp. 558–
563 (2005)

4. Brewka, G., Roelofsen, F., Serafini, L.: Contextual Default Reasoning. In: IJCAI, pp. 268–
273 (2007)

5. Bikakis, A., Antoniou, G.: Contextual Argumentation in Ambient Intelligence. In: Erdem, E.,
Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 30–43. Springer, Heidelberg
(2009)

6. Bikakis, A., Antoniou, G.: Defeasible Contextual Reasoning with Arguments in Ambient
Intelligence. IEEE TKDE 22(11), 1492–1506 (2010)

7. Antoniou, G., Bikakis, A., Papatheodorou, C.: Reasoning with Imperfect Context and Pref-
erence Information in Multi-Context Systems. In: Catania, B., Ivanović, M., Thalheim, B.
(eds.) ADBIS 2010. LNCS, vol. 6295, pp. 1–12. Springer, Heidelberg (2010)

8. Antoniou, G., Billington, D., Governatori, G., Maher, M.J., Rock, A.: A Family of Defeasible
Reasoning Logics and its Implementation. In: ECAI, pp. 459–463 (2000)

9. Governatori, G., Maher, M.J., Antoniou, G., Billington, D.: Argumentation Semantics for
Defeasible Logic. Journal of Logic and Computation 14(5), 675–702 (2004)

10. Brewka, G., Eiter, T.: Argumentation Context Systems: A Framework for Abstract Group
Argumentation. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753,
pp. 44–57. Springer, Heidelberg (2009)

11. Thimm, M., Kern-Isberner, G.: A Distributed Argumentation Framework using Defeasible
Logic Programming. In: COMMA, pp. 381–392. IOS Press, Amsterdam (2008)

On Influence and Contractions in Defeasible

Logic Programming

Diego R. Garćıa1, Sebastián Gottifredi1, Patrick Krümpelmann2,
Matthias Thimm2, Gabriele Kern-Isberner2, Marcelo A. Falappa1,

and Alejandro J. Garćıa1

1 Universidad Nacional del Sur, Bah́ıa Blanca, Argentina
2 Technische Universität Dortmund, Germany

Abstract. In this paper, we investigate the problem of contraction in
Defeasible Logic Programming (DeLP), a logic-based approach for defea-
sible argumentation. We develop different notions of contraction based on
both, the different forms of entailment implicitly existent in argumenta-
tion-based formalisms and the influence literals exhibit in the reasoning
process. We give translations of widely accepted rationality postulates
for belief contraction to our framework. Moreover we discuss on the ap-
plicability of contraction for defeasible argumentation and the role of
influence in this matter.

1 Introduction

While most of the past work in argumentation has been done on the study of rep-
resentation and inferential properties of different frameworks, the problem of be-
lief change—one of the most important problems in knowledge representation—
has not been investigated in depth so far, see [3] for a survey. Revision and the
dynamics of beliefs in general have been studied for classical logics since the sem-
inal paper [1]. There are also some proposals for dealing with belief change in
non-classical logics, e. g. for defeasible logic in [2]. Here we consider the problem
of contraction in the framework of Defeasible Logic Programming (DeLP) [4].

In DeLP, using a dialectical procedure involving arguments and counterar-
guments, literals can be established to be warranted, meaning that there are
considerable grounds to believe the literal being true. The straightforward ap-
proach to define the success of contracting a defeasible logic program P by a
literal l is to demand that l is not warranted anymore. This is similar to the
approaches taken for classical theories [1] where success is defined in terms of
non-entailment. In DeLP, however, there are three basic notions of “entailment”:
derivation (there are rules in P that allow to derive l), argument (there is an
argument for l), and warrant (there is an undefeated argument for l). These
notions lead to different alternatives of defining the success of a contraction.
In addition to these notions of entailment, we also investigate the notion of in-
fluence in order to gain more insights into the problem of contraction. Due to
the dialectical nature of the reasoning process employed in DeLP a literal can

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 199–204, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

200 D.R. Garćıa et al.

exhibit influence on the warrant status of other literals independently of its own
warrant status. Contracting a program P by a literal l using the notion of war-
rant to define success still allows the dialectical procedure to use arguments for
l in changing the warrant status of another literal.

This paper is organized as follows. In Section 2 we give a brief overview on the
basic notions of Defeasible Logic Programming and continue with a thorough
investigation of the notion of influence in Section 3. We apply the developed
notions thereafter for investigating rationality postulates for contraction in our
framework in Section 4. Finally, in Section 5 we present the conclusions of the
work.

2 Defeasible Logic Programming

A single atom h or a negated atom ∼h is called a literal or fact. Rules are divided
into strict rules h ← B and defeasible rules h —< B with a literal h and a set
of literals B. A literal h is derivable from a set of facts and rules X , denoted
by X |∼ h, iff it is derivable in the classical rule-based sense, treating strict and
defeasible rules equally. A set X is contradictory, denoted X |∼ ⊥, iff both X |∼ h
and X |∼ ∼h holds for some h. A literal h is consistently derivable by X , denoted
by X |∼c h, iff X |∼ h and X �|∼ ⊥. A defeasible logic program (de.l.p.) P is a
tuple P = (Π,Δ) with a non-contradictory set of strict rules and facts Π and a
set of defeasible rules Δ. We write P|∼ h as a shortcut for Π ∪Δ|∼ h.

Definition 1 (Argument, Subargument). Let h be a literal and let P =
(Π,Δ) be a de.l.p. Then 〈A, h〉 with A ⊆ Δ is an argument for h iff Π ∪A|∼c h
and A is minimal wrt. set inclusion. A 〈B, q〉 is a subargument of 〈A, h〉 iff
B ⊆ A.

〈A1, h1〉 is a counterargument to 〈A2, h2〉 at literal h, iff there is a subargument
〈A, h〉 of 〈A2, h2〉 such that Π ∪ {h, h1} is contradictory.

In order to deal with counterarguments, a formal comparison criterion among
arguments is used. Our results are independent of its choice, but as en example
we use the generalized specificity relation) [4]. Then, 〈A1, h1〉 is a defeater of
〈A2, h2〉, iff there is a subargument 〈A, h〉 of 〈A2, h2〉 such that 〈A1, h1〉 is a
counterargument of 〈A2, h2〉 at literal h and either 〈A1, h1〉) 〈A, h〉 (proper
defeat) or 〈A1, h1〉 �) 〈A, h〉 and 〈A, h〉 �) 〈A1, h1〉 (blocking defeat).

Definition 2 (Acceptable Argumentation Line). Let Λ = [〈A1, h1〉, . . . ,
〈Am, hm〉] be a finite sequence of arguments. Λ is called an acceptable argu-
mentation line, iff 1.) every 〈Ai, hi〉 with i > 1 is a defeater of 〈Ai−1, hi−1〉
and if 〈Ai, hi〉 is a blocking defeater of 〈Ai−1, hi−1〉 and 〈Ai+1, hi+1〉 exists,
then 〈Ai+1, hi+1〉 is a proper defeater of 〈Ai, hi〉, 2.) Π ∪A1 ∪A3 ∪ . . . is non-
contradictory, 3.) Π ∪ A2 ∪ A4 ∪ . . . is non-contradictory, and 4.) no 〈Ak, hk〉
is a subargument of some 〈Ai, hi〉 with i < k.

In DeLP a literal h is warranted, if there is an argument 〈A, h〉 which is non-
defeated in the end. To decide whether 〈A, h〉 is defeated or not, every acceptable
argumentation line starting with 〈A, h〉 has to be considered.

On Influence and Contractions in Defeasible Logic Programming 201

Definition 3 (Dialectical Tree). Let P = (Π,Δ) be a de.l.p. and let 〈A0, h0〉
be an argument. A dialectical tree for 〈A0, h0〉, denoted T 〈A0, h0〉, is defined as
follows: The root of T 〈A0, h0〉 is 〈A0, h0〉. Let 〈An, hn〉 be a node in T 〈A0, h0〉
and let [〈A0, h0〉, . . . , 〈An, hn〉] be a sequence of nodes. Let 〈B1, q1〉, . . . , 〈Bk, hk〉
be the defeaters of 〈An, hn〉. For every defeater 〈Bi, qi〉 with 1 ≤ i ≤ k such that
[〈A0, h0〉, . . . , 〈An, hn〉, 〈Bi, qi〉] is an acceptable argumentation line, the node
〈An, hn〉 has a child 〈Bi, qi〉. If there is no such 〈Bi, qi〉, 〈An, hn〉 is a leaf.

In order to decide whether the argument at the root of a given dialectical tree
is defeated or not, it is necessary to perform a bottom-up-analysis of the tree.
Every leaf of the tree is marked “undefeated” and every inner node is marked
“defeated”, if it has at least one child node marked “undefeated”. Otherwise
it is marked “undefeated”. Let T ∗〈A0, h0〉 denote the marked dialectical tree of
T 〈A0, h0〉. We call a literal h warranted in a DeLP P, denoted by P|∼wh, iff there
is an argument 〈A, h〉 for h in P such that the root of the marked dialectical
tree T ∗〈A, h〉 is marked “undefeated”. Then 〈A, h〉 is a warrant for h.

We will need some further notation in the following. Let P = (Π,Δ) and
P ′ = (Π ′, Δ′) be some programs and let r be a rule (either defeasible or strict). P
is a subset of P ′, denoted by P ⊆ P ′, iff Π ⊆ Π ′ and Δ ⊆ Δ′. It is r ∈ P if either
r ∈ Π or r ∈ Δ. We also define P∪r =def (Π,Δ∪{r}) and P∪A =def (Π,Δ∪A)
for an argument A.

3 Influence in Defeasible Logic Programs

It may be the case that an argument A for l is defeated in its own dialectical
tree and not defeated in another tree [6]. Thus, these undefeated arguments for
l may exhibit some influence one the marking status of arguments for another
literal. Hence, by employing a contraction operation that bases its success only
on the warrant status of the literal under consideration, it should be kept in
mind that this literal might still have influence on the reasoning behavior in the
contracted program. We therefore continue by investigating different notions of
influence in more depth. Our first approach bases on an observation made when
considering the removal of arguments for the literal l that has to be contracted.

Definition 4 (Trimmed Dialectical Tree). Let T be some dialectical tree
and l a literal. The l-trimmed dialectical tree T \t l is the same as T but every
subtree T ′ of T with root 〈A1, h〉 and A2 ⊆ A1 such that 〈A2, l〉 is an argument
for l is removed from T .

Note, that a trimmed dialectical tree is not a dialectical tree (as it is not com-
plete) but that the marking procedure is still applicable in the same way.

Proposition 1. Let l be a literal and T a dialectical tree. If T \t l is not empty
and the marking of the root of T ∗ differs from the marking of the root of (T \t l)∗

then there is an argument 〈A, k〉 with A′ ⊆ A such that 〈A′, l〉 is an argument l
and 〈A, k〉 is undefeated in T ∗.

202 D.R. Garćıa et al.

Proposition 1 establishes that only an argument for l that is undefeated in T ∗

can possibly exhibit some influence. This leads to our first and most general
definition of influence.

Definition 5 (Argument Influence IA). A literal l has argument influence
in P, denoted by l �A P, if, and only if there is an argument 〈A1, h〉 with
A2 ⊆ A1 such that 〈A2, l〉 is an argument for l and 〈A1, h〉 is a node in a
dialectical tree T ∗ and 〈A1, h〉 is marked “undefeated” in T ∗.

However, it is not the case that every argument that contains a subargument
for l and is undefeated in some dialectical tree necessarily exhibits reasonable
influence. This leads to our next notion of influence that only takes arguments
into account which, on removal, will change the marking of the root.

Definition 6 (Tree Influence IT). A literal l has tree influence in P, denoted
by l �T P, if and only if there is a dialectical tree T ∗ such that either 1.) the
root’s marking of T ∗ differs from the root’s marking of (T \t l)∗ or 2.) the root
of T ∗ is marked “undefeated” and (T \t l)∗ is empty.

In order to establish whether a literal l exhibits tree influence every dialectical
tree is considered separately. But recall, that for a literal h being warranted only
the existence of a single undefeated argument is necessary. These considerations
result in our final notion of warrant influence.

Definition 7 (Warrant Influence Iw). A literal l has warrant influence in
P, denoted by l �w P, if and only if there is a literal h such that either 1.) h
is warranted in P and for every dialectical tree T ∗ rooted in an argument for h
it holds that the root of (T \t l)∗ is “defeated” or (T \t l)∗ is empty, or 2.) h
is not warranted in P and there is a dialectical tree T ∗ with the root being an
argument for h and it holds that the root of (T \t l)∗ is “undefeated”.

We conclude this section by providing a formal result that follows the iterative
development of the notions of influences we gave above.

Proposition 2. Given a de.l.p. P it holds that if l �w P then l �T P, and if
l �T P then l �A P.

4 Rationality Postulates for Contraction in DeLP

The classic contraction operation K − φ for propositional logic is an operation
that satisfies two fundamental properties, namely φ �∈ Cn(K−φ) andK−φ ⊆ K.
Hereby, the strong consequence operator of propositional logic and the resulting
set of consequences Cn(K) is the measure for the success of the contraction
operation and therefore the scope of the considered effects of the operation.
Given that we are dealing with a logic very different from propositional logic
that is based on a dialectical evaluation of arguments we also have to consider
a different scope on the effects for an appropriate contraction operation in this
setting. For a de.l.p. P its logical scope is a set of literals that are relevant in a
contraction scenario, i. e. that can be derived from P in some way, or that has
some influence on P .

On Influence and Contractions in Defeasible Logic Programming 203

Definition 8 (Logical Scope). For P we define a class of logical scopes S∗(P)
via Sd(P) = {l | P |∼ l}, Sw(P) = {l | P |∼wl}, SIA(P) = {l | l �A P},
SIT (P) = {l | l �T P}, and SIw(P) = {l | l �w P}.

Proposition 3. For any d.e.lp. P it holds that Sw(P) ⊆ SIw(P) ⊆ SIT (P) ⊆
SIA(P) ⊆ Sd(P).

Based on the notion of scopes we propose specifications of contraction operators
with different scopes by sets of postulates that resemble the rationality postulates
for contraction in classic belief change theory.

Definition 9. For a de.l.p. P and a literal l, let P−l = (Π ′, Δ′) be the result of
contracting P by l. We define the following set of postulates for different scopes
∗ with ∗ ∈ {d, w, IT , IA, Iw}.
(Success∗) l �∈ S∗(P − l)
(Inclusion) P − l ⊆ P
(Vacuity∗) If l �∈ S∗(P), then P − l = P
(Core-retainment∗) If k ∈ P (either a fact or a rule) and k �∈ P−l, then there

is a de.l.p. P ′ such that P ′ ⊆ P and such that l �∈ S∗(P ′) but l ∈ S∗(P ′∪{k})

These postulates represent the adaptation of applicable postulates from belief
base contraction [5] to de.l.p. program contraction. The first postulate defines
when the contraction is considered successful, which in our case is dependent on
the scope of the contraction. The second postulate states that we are actually
contracting the belief base. The third postulate requires that if the literal to be
contracted is out of the scope of the operator then nothing should be changed,
while the fourth postulate states that only relevant facts or rules should be erased
and hence demands for minimality of change.

Definition 10. P − l is called a ∗-contraction if and only if it satisfies (Success∗),
(Inclusion), (Vacuity∗) and (Core-retainment∗) with ∗ ∈ {d, w, IT , IA, Iw}.

In the following we are investigating constructive approaches based on kernel
sets for defining ∗-contraction operations (with ∗ ∈ {d, w, IT , IA, Iw}).

Definition 11. Let P = (Π,Δ) be a de.l.p. and let α be a literal. An α-kernel H
of P is a set H = Π ′ ∪Δ′ with Π ′ ⊆ Π and Δ′ ⊆ Δ such that 1.) (Π ′, Δ′)|∼ α,
2.) (Π ′, Δ′) �|∼ ⊥, and H is minimal wrt. set inclusion. The set of all α-kernels
of P is called the kernel set and is denoted by P |∼ α.

Note that the notion of an α-kernel is not equivalent to the notion of an argument
as an argument consists only of a set of defeasible rules while an α-kernel consists
of all rules needed to derive α, in particular strict rules and facts.

As in [5] we define contractions in terms of incision functions. A function σ
is called an incision function if (1) σ(P |∼ α) ⊆

⋃
P |∼ α and (2) ∅ ⊂ H ∈ P |∼ α

implies H∩σ(P |∼ α) �= ∅. This general definition for an incision function removes
at least one element in every kernel set thus inhibiting every derivation of α. Such
an incision function is adequate for realizing a d-contraction but it is too strict for
our more general notions of contraction. We therefore drop the second condition
above for incision functions used in this work.

204 D.R. Garćıa et al.

Definition 12. Let P be a de.l.p., let α be a literal, and let P |∼ α be the kernel
set of P with respect to α. A function σ is a dialectical incision function iff
σ(P |∼ α) ⊆

⋃
P |∼ α.

Using dialectical incision functions we can define a contraction operation in DeLP
as follows.

Definition 13. Let σ be a dialectical incision function for P = (Π,Δ). The
dialectical kernel contraction −σ for P is defined as P−σα = (Π \σ(P |∼ α), Δ \
σ(P |∼ α)). Conversely, a contraction operator ÷ for P is called a dialectical
kernel contraction if and only if there is some dialectical incision function σ for
P such that P ÷ α = P−σα for all literals α.

Due to lack of space we give only the definition for IT -incision function, the
other incision functions are defined analogously.

Definition 14. Let (Π,Δ) be a de.l.p., α a literal, and σ be a dialectical incision
function with σ((Π,Δ) |∼ α) = S. Then σ is an IT -incision function if 1.) α ��T

(Π \ S,Δ \ S) and 2.) there is no S′ ⊂ S, such that S′ satisfies 1.).

Proposition 4. Let (Π,Δ) be a de.l.p., α a literal, and let ∗ ∈ {d, IA, IT , Iw, w}.
If σ is a dialectical ∗-incision function then −σ is a ∗-contraction.

5 Conclusions

In this work we started the investigation of contraction operations in defeasible
logic programs. We identified different approaches to contraction depending on
the notion of success of the operation. Besides the notions based on entailment
and warrant we elaborated on more fine grained differences based on notions
of influence. This lead to the definition of rationality postulates for each type
of contraction. Furthermore, we showed that each contraction operation is con-
structible using kernel sets in the style of classic belief contraction.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic 50(2),
510–530 (1985)

2. Billington, D., Antoniou, G., Governatori, G., Maher, M.J.: Revising nonmonotonic
theories: The case of defeasible logic. In: Burgard, W., Christaller, T., Cremers, A.B.
(eds.) KI 1999. LNCS (LNAI), vol. 1701, pp. 101–112. Springer, Heidelberg (1999)

3. Falappa, M.A., Kern-Isberner, G., Simari, G.R.: Belief revision and argumentation
theory. In: Argumentation in Artificial Intelligence, pp. 341–360. Springer, Heidel-
berg (2009)

4. Garcia, A., Simari, G.R.: Defeasible logic programming: An argumentative ap-
proach. Theory and Practice of Logic Programming 4(1-2), 95–138 (2004)

5. Hansson, S.O.: Kernel contraction. J. of Symbolic Logic 59, 845–859 (1994)
6. Thimm, M., Kern-Isberner, G.: On the relationship of defeasible argumentation and

answer set programming. In: COMMA 2008, pp. 393–404 (2008)

Termination of Grounding Is Not Preserved

by Strongly Equivalent Transformations

Yuliya Lierler1 and Vladimir Lifschitz2

1 University of Kentucky
yuliya@cs.uky.edu

2 University of Texas at Austin
vl@cs.utexas.edu

Abstract. The operation of a typical answer set solver begins with
grounding—replacing the given program with a program without vari-
ables that has the same answer sets. When the given program contains
function symbols, the process of grounding may not terminate. In this note
we give an example of a pair of consistent, strongly equivalent programs
such that one of them can be grounded by lparse, dlv, and gringo, and
the other cannot.

1 Introduction

The operation of a typical answer set solver, such as smodels1, dlv2, or
clingo3, begins with “intelligent instantiation,” or grounding—replacing the
given program with a program without variables that has the same answer sets.
When the given program contains function symbols, the process of grounding
may not terminate. The grounder employed in the last (2010-10-14) release of
dlv terminates when the input program is finitely ground in the sense of [1].
According to Theorem 5 from that paper, the class of finitely ground programs
is undecidable. Before attempting to ground a program, dlv verifies a decidable
condition that guarantees the termination of grounding. (Conditions of this kind
are known, for instance, from [1, Section 5] and [2].) A command-line option can
be used to override this “finite domain check”; ensuring termination becomes
then the responsibility of the user.

In the course of a public discussion at a recent meeting4, Michael Gelfond
observed that the behavior of the current version of dlv may not be fully
declarative, because of the possibility of nontermination, in the same sense
in which the behavior of standard Prolog systems is not fully declarative: an
“inessential” modification of a Prolog program may affect not only its runtime
but even its termination, even the possibility of getting an output in principle.
1 http://www.tcs.hut.fi/Software/smodels/
2 http://www.dlvsystem.com/
3 http://potassco/sourceforge.net/
4 NonMon@30: Thirty Years of Nonmonotonic Reasoning, Lexington, KY, October

22–25, 2010.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 205–210, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.tcs.hut.fi/Software/smodels/
http://www.dlvsystem.com/
http://potassco/sourceforge.net/

206 Y. Lierler and V. Lifschitz

It is well known that termination of Prolog can be affected by very minor changes,
such as changing the order of subgoals in the body of a rule, changing the order
of rules, or inserting trivial rules of the form A ← A. In the case of dlv, such
modifications cannot affect termination. But isn’t it possible that a slightly more
complex transformation that has no effect on the meaning of the program would
make the dlv grounder unusable?

Our goal in this note is to investigate to what degree this suspicion is justified.
To make Gelfond’s question precise, we need to explain what we mean by a
transformation that has no effect on the meaning of the program. One possibility
is consider transformations that are strongly equivalent in the sense of [3,4].
Recall that logic programs Π1 and Π2 are said to be strongly equivalent to each
other if, for every logic program Π , programs Π ∪Π1 and Π ∪Π2 have the same
answer sets. For instance, changing the order of subgoals in the body of a rule
produces a strongly equivalent program. The same can be said about changing
the order of rules and about inserting a rule of the formA← A. Further examples
of strongly equivalent transformations are provided by removing rules that are
“subsumed” by other rules of the program. For instance, a program of the form

A← B
A← B,C

is strongly equivalent to its first rule A← B.
In this note, we give an example of a pair of consistent, strongly equivalent

programs Π1 and Π2 such that Π1 is finitely ground, and Π2 is not. Thus one
of these two “essentially identical” programs can be grounded by dlv, and the
other cannot. The behavior of lparse (the grounder of smodels) and gringo
2.0.3 (the grounder of the latest version of clingo) is similar: they terminate
on Π1, but not on Π2.

2 The Example

Program Π1 consists of 4 rules:

p(a)
q(X)← p(X)
← p(f(X)), q(X)
r(f(X)) ← q(X), not p(f(X)).

According to the answer set semantics [5], Π1 is shorthand for the set of ground
instances of its rules:

p(a)
q(f i(a)) ← p(f i(a))
← p(f i+1(a)), q(f i(a))
r(f i+1(a)) ← q(f i(a)), not p(f i+1(a))

(i = 0, 1, . . .). It is easy to see that

{p(a), q(a), r(f(a))} (1)

Termination of Grounding Is Not Preserved 207

is an answer set of Π1. Indeed, the reduct of Π1 relative to this set is

p(a)
q(f i(a))← p(f i(a))
← p(f i+1(a)), q(f i(a))
r(f i+1(a)) ← q(f i(a))

(i = 0, 1, . . .), and (1) is a minimal set of ground atoms satisfying these rules.
As a matter of fact, each of the three grounders discussed in this note turns Π1

into the set of facts (1) and tells us in this way that (1) is the only answer set
of Π1.

Program Π2 is obtained from Π1 by adding the rule

p(f(X))← q(X), not r(f(X)). (2)

We will show that programs Π1 and Π2 are strongly equivalent to each other.
In fact, this claim will remain true even if we drop the first two rules from each
of the programs:

Proposition 1. The program

← p(f(X)), q(X)
r(f(X)) ← q(X), not p(f(X)) (3)

is strongly equivalent to

← p(f(X)), q(X)
r(f(X)) ← q(X), not p(f(X))
p(f(X))← q(X), not r(f(X)).

(4)

In other words, if we take any program containing rules (3) and add to it the
last of rules (4) then the answer sets of the program will remain the same.

Second, we will show that Π1 is finitely ground, and Π2 is not. In fact, Π1

belongs to the class of finite domain programs—the decidable set of finitely
ground programs introduced in [1].

Proposition 2. Π1 is a finite domain program.

Proposition 3. Program Π2 is not finitely ground.

3 Proofs

3.1 Proof of Proposition 1

In view of the main theorem of [4], it is sufficient to prove the following fact:

Lemma. The formula

q(x) ∧ ¬r(f(x)) → p(f(x)) (5)

can be derived from the formulas

208 Y. Lierler and V. Lifschitz

¬(p(f(x)) ∧ q(x)),
q(x) ∧ ¬p(f(x)) → r(f(x)) (6)

in propositional intuitionistic logic.

Proof of the Lemma. The formula

¬(q(x) ∧ ¬r(f(x))) (7)

can be derived from (6) in classical propositional logic. By Glivenko’s theorem5,
it follows that it can be derived from (6) intuitionistically as well. It remains to
observe that (5) is an intuitionistic consequence of (7).

3.2 Proof of Proposition 2

In this section, and in the proof of Proposition 3 below as well, we assume that
the reader is familiar with the terminology and notation introduced in [1].

To show that Π1 is a finite domain program we need to check that the
arguments p[1], q[1], r[1] of the predicates of Π1 are finite-domain arguments [1,
Definition 10]. Consider the argument p[1]. The only rule of Π1 with p in the
head is p(a). This rule satisfies Condition 1 from Definition 10. Consider the
argument q[1]. The only rule with q in the head is

q(X)← p(X).

This rule satisfies Condition 2. Consider the argument r[1]. The only rule with r
in the head is

r(f(X)) ← q(X), not p(f(X)).

This rule satisfies Condition 3.

3.3 Proof of Proposition 3

To prove that program Π2 is not finitely ground we need to find a component
ordering ν for Π2 such that the intelligent instantiation of Π2 for ν is infinite [1,
Definition 9]. The only component ordering for Π2 is

〈C{p,q}, C{r}〉,

as can be seen from the dependency graph G(Π2) and the component
graph GC(Π2) of this program [1, Definitions 1–4]; these graphs are shown in
Figure 1. According to [1, Definition 8], the intelligent instantiation of Π2 for
this component ordering is the set S2 of ground rules defined by the formulas

S1 = Φ∞
Π2(C{p,q}),S0

(∅),
S2 = S1 ∪ Φ∞

Π2(C{r}),S1
(∅).

5 This theorem [6], [7, Theorem 3.1] asserts that if a formula beginning with negation
can be derived from a set Γ of formulas in classical propositional logic then it can
be derived from Γ in intuitionistic propositional logic as well.

Termination of Grounding Is Not Preserved 209

p q

r

C{p,q}

+

−

C{r}

G(Π2) GC(Π2)

Fig. 1. The dependency graph and the component graph of program Π2

The module Π2(C{p,q}) is the program

p(a)
q(X)← p(X)
p(f(X))← q(X), not r(f(X)),

and the k-th iteration of the operator ΦΠ2(C{p,q}),S0 on the empty set, for k ≥ 1,
consists of the rules

p(a),

q(f j(a))← p(f j(a)) (0 ≤ j ≤ k
2 − 1),

p(f j+1(a)) ← q(f j(a)), not r(f j+1(a)) (0 ≤ j ≤ k−3
2).

It is clear that the union S1 of these iterations is infinite, and so is S2.

4 Conclusion

Our goal was to find two nontrivial programs that have essentially the same
meaning (which we chose to understand as “consistent programs that are
strongly equivalent to each other”) such that one of them can be grounded,
and the other cannot. The pair Π1, Π2 is the simplest example that we could
come up with, and the claim that these programs have essentially the same
meaning is far from obvious (recall the proof of the lemma in Section 3.1). So
the view that the possibility of nontermination makes the behavior of answer set
solvers nondeclarative may not be justified, after all.

The fact that the termination of grounding is not preserved by strongly
equivalent transformations shows, on the other hand, that such a transformation
may serve as a useful preprocessing step before an attempt to ground a program.

Acknowledgements

Thanks to Michael Gelfond and Wolfgang Faber for useful discussions. Yuliya
Lierler was supported by a 2010 Computing Innovation Fellowship. Vladimir
Lifschitz was partially supported by the National Science Foundation under
Grant IIS-0712113.

210 Y. Lierler and V. Lifschitz

References

1. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: Theory
and implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

2. Lierler, Y., Lifschitz, V.: One more decidable class of finitely ground programs. In:
Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 489–493. Springer,
Heidelberg (2009)

3. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2, 526–541 (2001)

4. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR
2007. LNCS (LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007)

5. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

6. Glivenko, V.: Sur quelques points de la logique de M. Brouwer. Académie Royale
de Belgique. Bulletins de la Classe des Sciences, se’rie 5 15, 183–188 (1929)

7. Mints, G.: A Short Introduction to Intuitionistic Logic. Kluwer, Dordrecht (2000)

Aggregates in Answer Set Optimization

Emad Saad1 and Gerhard Brewka2

1 Gulf University for Science and Technology, Mishref, Kuwait
saad.e@gust.edu.kw

2 University of Leipzig, Augustusplatz 10-11, D-04109 Leipzig
brewka@informatik.uni-leipzig.de

Abstract. Answer set optimization (ASO) is a flexible framework for
qualitative optimization in answer set programming (ASP). The ap-
proach uses a generating program to construct the space of problem
solutions, and a preference program to assess the quality of solutions. In
this short paper we generalize the approach by introducing aggregates in
preference programs. This allows the user to express preferences which
are based on minimization or maximization of some numerical criteria.
We introduce the new language of preference programs, define its seman-
tics and give an example illustrating its use.

1 Introduction

Preferences were introduced in answer set programming in various forms. In [8],
preferences are defined among the rules of the logic program, whereas preferences
among literals are investigated in [7]. Logic programs with ordered disjunction
(LPOD) [2] represent context-dependent preferences using a specific connective
in the heads of rules. The ASO approch [1] separates answer set generation from
evaluation, using so-called preference programs for the latter.

On the other hand, the lack of aggregate preferences, e.g., minimum and
maximum, in ASO and LPOD makes them less suitable for intuitive and easy
encoding of some real-world applications like, for example, finding Nash equilib-
ria in strategic games and general optimization problems. Consider the prisoner
dilemma strategic game encoding in ASO or LPOD as presented in [5]. The
dilemma is described as follows:

Two criminals are held in separate cells for committing a crime. They are not
allowed to communicate. If both criminals keep quiet, do not fink on each other,
then each will be convicted in part for a crime and spend one year in prison.
However, if both fink, then each one will spend three years in prison. But, if one
finks and the other keeps quiet, the one who finks will be freed and the other will
spend four years in prison.

The payoff function for the first criminal, u1, assigns 3 to (fink, quiet), which
means that the first criminal gets a payoff of 3 if (s)he finks and the second
criminal keeps quiet. Similarly, u1(quiet, quiet) = 2, u1(fink, fink) = 1, and
u1(quiet, fink) = 0. In the same way, the payoff function for the second criminal,
u2, is defined as u2(fink, quiet) = 0, which means that the second criminal gets

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 211–216, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

212 E. Saad and G. Brewka

a payoff of 0 if the first criminal finks and the (s)he keeps quiet. Similarly,
u2(quiet, quiet) = 2, u2(fink, fink) = 1, and u2(quiet, fink) = 3.

This prisoner dilemma strategic game has a single Nash equilibrium, namely
(fink, fink).The game canbe representedby anASO programP = 〈Pgen, Ppref 〉,
where Pgen is a disjunctive logic program and contains the rules:

fink1 ∨ quiet1 ←
fink2 ∨ quiet2 ←

and Ppref consists of the preference rules:

fink1 > quiet1 ← quiet2
fink1 > quiet1 ← fink2

fink2 > quiet2 ← quiet1
fink2 > quiet2 ← fink1

where finki or quieti, for i ∈ {1, 2}, denotes player i chooses to fink or to
be quiet, respectively. According to the semantics of ASO, the above program
has the four answer sets {fink1, f ink2}, {fink1, quiet2}, {quiet1, f ink2}, and
{quiet1, quiet2}. According to Ppref {fink1, f ink2} is the most preferred an-
swer set, which coincides with the Nash equilibrium of the game.

To find the answer sets that coincide with the Nash equilibria of the game,
a natural ASO program encoding of the game should be able to encode the
payoff functions of the players along with preference relations that maximize
the players payoffs. The current syntax and semantics of ASO do not define
preference relations or rank answer sets based on minimization or maximization
of some desired criterion specified by the user. In addition, in order to provide a
correct ASO encoding and solution to the game, the user has to examine all the
players’ payoff functions to find out each player’s best actions in response to the
other players’ actions. This can be infeasible for large games with large number
of actions and players. This makes ASO approach to finding Nash equilibria is
not fully automated, as the user participates in the solution of the problem.

The same also applies when we try to encode general optimization problems in
ASO, where the most preferred solutions are the ones that maximize or minimize
some utility function specified by the user. We call preference relations that are
used to maximize or minimize some desired criterion aggregate preferences. For
these reasons, we extend ASO programs with aggregate preferences.

2 ASOG Programs: Syntax

An ASOG (answer set optimization with aggregate preferences) program is a
pair of programs P = 〈Pgen, Ppref 〉. As in the ASO approach, Pgen is an arbi-
trary logic program generating answer sets. Ppref , called aggregate preference
program, is a set of rules that represent the user preferences. The preferences
are used to rank the generated answer sets. We first introduce the syntax of
aggregate preference programs.

Aggregates in Answer Set Optimization 213

Our treatment of aggregates follows [3]. Let L be a first-order language with
finitely many predicate symbols, function symbols, constants, and infinitely
many variables. A standard literal is either a standard atom a in BL or the
negation of a (¬a), where BL is the Herbrand base of L and ¬ is the classical
negation. The Herbrand universe of L is denoted by UL. Non-monotonic negation
or the negation as failure is denoted by not. Let Lit be the set of all standard
literals in L, where Lit = {a|a ∈ BL} ∪ {¬a|a ∈ BL}.

A pair of the form {V : C}, where V is a list of variables and C is a conjunction
of standard literals from Lit, is called a symbolic set. A ground set is a set of pairs
{〈Const : C〉} where Const is a list of constants and C is a ground conjunction of
standard literals. A ground set or a symbolic set is called a set term. We say f(S)
is an aggregate function if S is a set term and f is one of the aggregate function
symbols in {min,max, count, sum, times}. If f(S) is an aggregate function, T
a constant or variable term and ◦ ∈ {=, �=, <,>,≤,≥}, then we say f(S) ◦ T is
an aggregate atom with guard T . An optimization aggregate is an expression of
the form max(f(S)) or min(f(S)), where S is a set term and f is an aggregate
function symbol.

A variable appearing solely in a set term is called a local variable, otherwise
it is a global variable. Let A be a set of standard literals, aggregate atoms, and
optimization aggregates. A boolean combination overA is a boolean formula over
standard literals, aggregates atoms, optimization aggregates in A constructed
by conjunction, disjunction, classical negation (¬), and non-monotonic negation
(not), where classical negation is combined only with standard atoms (to form
standard literals) and non-monotonic negation is combined only with standard
literals and aggregate atoms.

Definition 1. A preference program, Ppref , over a set of standard literals, ag-
gregate atoms, and optimization aggregates, A, is a finite set of preference rules
of the form

C1 > C2 > . . . > Ck ← l1, . . . , lm, not lm+1, . . . , not lm+n (1)

where l1, . . . , ln+m are standard literals or aggregate atoms and C1, C2, . . . , Ck

are boolean combinations over A.

Intuitively, any answer set that satisfies body = l1, . . . , lm, not lm+1, . . . , not lm+n

and C1 is preferred over answer sets that satisfy body, some Ci (2 ≤ i ≤ k), but
not C1, and any answer set that satisfies body and C2 is preferred over answer
sets that satisfy body, some Ci (3 ≤ i ≤ k), but neither C1 nor C2, etc.

Definition 2. An ASOG program, is a pair of programs 〈Pgen, Ppref 〉, where
Pgen is a logic program with answer set semantics, called the generating program,
and Ppref is a preference program.

3 ASOG Programs: Semantics

A global substitution for a preference rule, r, is a substitution of the set of global
variables in r to constants from UL. A local substitution of a symbolic set S is

214 E. Saad and G. Brewka

a substitution of the set of local variables appearing in S to constants from UL.
Let S = {V : C} be a symbolic set with no global variables. The instantiation
of S, denoted by inst(S), is a set of ground pairs inst(S) = {〈θ (V) : θ (C)〉 | θ
is a local substitution for S }. A ground instance of a preference rule r is given
as follows. Given a global substitution γ, first γ(r), the instantiation of r by
γ, is found, then inst(S) replaces every symbolic set S in γ(r). The ground
instantiation of a preference program, Ppref , denoted by Ground(Ppref), is the
set of all possible ground instances of every rule, r, in Ppref . The semantics of the
aggregate functions min,max, count, sum, and times are defined by appropriate
mappings, where the types of the functions are as follows: min,max : (2N−∅)→
I; count : (2UL − ∅) → I, sum : 2N → I, and times : 2N+

→ I, where I,N,N+ is
the set of all integers, natural numbers, and non-negative numbers, respectively,
and for a set X , 2X is the set of all multisets over elements in X. The application
of sum and times on the empty multiset returns 0 and 1, respectively. However,
the application of max, min, and count on the empty multiset is undefined. Let
⊥ be a symbol that does not occur in an ASOG program P .

Definition 3. Let P be a generating program, l a standard ground literal, f(S)◦
T a ground aggregate atom, I a set of ground standard literals. Let AS

I be the
multiset {{t1|〈t1, t2, . . . , tn : Conj〉 ∈ S∧ Conj holds in I}}. Let f(AS

I) = ⊥ if AS
I

is not in the domain of f . The satisfaction of a boolean combination, C, by a set
of ground standard literals I under P , denoted by I |=P C, is defined inductively
as follows:

– I |=P l iff l ∈ I.
– I |=P not l iff l /∈ I.
– I |=P f(S) ◦ T iff f(AS

I) ◦ T and f(AS
I) �= ⊥.

– I |=P not f(S) ◦ T iff f(AS
I) � ◦ T and f(AS

I) �= ⊥.
– I |=P max(f(S)) iff f(AS

I) �= ⊥ and for any answer set I ′ of P , f(AS
I′) �= ⊥

implies f(AS
I′) ≤ f(AS

I).
– I |=P min(f(S)) iff f(AS

I) �= ⊥ and for any answer set I ′ of P , f(AS
I′) �= ⊥

implies f(AS
I) ≤ f(AS

I′).
– I |=P C1 ∧ C2 iff I |=P C1 and S |=P C2.
– I |=P C1 ∨ C2 iff I |=P C1 or I |=P C2.

Note that P is only required for max(f(S)) and min(f(S)), where all answer
sets of P need to be examined. When P is irrelevant or clear from context we
will often leave out the upper index and simply write |=.

The application of any aggregate function except count, f , on a singleton {a},
returns a, i.e., f({a}) = a. Therefore, we use max(S) and min(S) as abbrevi-
ations for the optimization aggregates max(f(S)) and min(f(S)) respectively,
where S is a singleton and f is arbitrary aggregate function except count.

The following definition specifies the satisfaction of the preference rules.

Definition 4. Let r be a preference rule of the form (1) and I be a set of ground
standard literals. We define the following types of satisfaction of r under I:

Aggregates in Answer Set Optimization 215

– I |=i r iff I satisfies the body of r as well as Ci, and i = min{l | I |= Cl}.
– I |=irr r iff either I does not satisfy the body of r or I satisfies the body of
r but none of the Ci in the head of r1.

Definition 5. Let r be a preference rule of the form (1) and I1, I2 sets of ground
standard literals. Then, I1 is at least as preferred as I2 w.r.t. r, denoted by
I1 ≥r I2, iff one of the following holds:

– I1 |=i r, I2 |=j r and i ≤ j.
– I2 |=irr r.

We say I1 is strictly preferred to I2, denoted I1 >r I2, iff I1 ≥r I2 but not
I2 ≥r I1. I1 and I2 are equally preferred w.r.t. r, denoted I2 =r I1, iff I1 ≥r I2
and I2 ≥r I1.

Definition 5 specifies the ordering of answer sets according to a single prefer-
ence rule2. The following definitions determine the ordering of answer sets with
respect to preference programs.

Definition 6 (Pareto preference). Let P = 〈Pgen, Ppref 〉 be an ASOG pro-
gram and let S1, S2 be two answer sets of Pgen. Then, S1 is (Pareto) preferred
over S2 w.r.t. Ppref , denoted by S1 >Ppref

S2, iff there is at least one pref-
erence rule r ∈ Ppref such that S1 >r S2 and for every other rule r′ ∈ Ppref ,
S1 ≥r′ S2. We say, S1 and S2 are equally (Pareto) preferred w.r.t. Ppref , denoted
by S1 =Ppref

S2, iff for all r ∈ Ppref , S1 =r S2.

Definition 7 (Cardinality preference). Let P = 〈Pgen, Ppref 〉 be an ASOG
program. The relation (c on the answer sets of Pgen is the smallest transitive
relation containing (S1, S2) whenever

|{r ∈ Ppref |S1 ≥r S2}| > |{r ∈ Ppref |S2 ≥r S1}|.
S1 is called maximally cardinality preferred iff for each answer set S2 of Pgen we
have: S2 (c S1 implies S1 (c S2

3.

Example. We now present an ASOG encoding of the prisoner dilemma strategic
game presented in the introduction. It is convenient to use cardinality constraints
in Pgen:

action1(quiet1) action1(fink1)
action2(quiet2) action2(fink2)

1{choose(A1) : action1(A1)}1 1{choose(A2) : action2(A2)}1
u(quiet1, quiet2, 2, 2) ← choose(quiet1), choose(quiet2)
u(quiet1, f ink2, 0, 3) ← choose(quiet1), choose(fink2)
u(fink1, quiet2, 3, 0) ← choose(fink1), choose(quiet2)
u(fink1, f ink2, 1, 1) ← choose(fink1), choose(fink2)

1 For some applications it may be useful to distinguish these two alternatives. This is
left to future work.

2 Note that. motivated by the examples we want to handle, the treatment of irrelevance
here differs from that in [1].

3 The numerical condition alone does not guarantee transitivity, therefore this some-
what more involved definition is needed.

216 E. Saad and G. Brewka

The preference program, Ppref , of P consists of the rules:

r1(A2) : max{U1 : u(A1, A2, U1, U2)} ← action2(A2)
r2(A1) : max{U2 : u(A1, A2, U1, U2)} ← action1(A1)

These rules have 4 relevant instances, namely r1(quiet2), r1(fink2), r2(quiet1)
and r2(fink1). Pgen has four answer sets which are:

I1 = { choose(quiet1), choose(quiet2), u(quiet1, quiet2, 2, 2) }
I2 = { choose(quiet1), choose(fink2), u(quiet1, f ink2, 0, 3) }
I3 = { choose(fink1), choose(quiet2), u(fink1, quiet2, 3, 0) }
I4 = { choose(fink1), choose(fink2), u(fink1, f ink2, 1, 1) }

It can be easily verified that

I1 |=irr r1(quiet2), I1 |=irr r1(fink2), I1 |=irr r2(quiet1), I1 |=irr r2(fink1).
I2 |=irr r1(quiet2), I2 |=irr r1(fink2), I2 |=1 r2(quiet1), I2 |=irr r2(fink1).
I3 |=1 r1(quiet2), I3 |=irr r1(fink2), I3 |=irr r2(quiet1), I3 |=irr r2(fink1).
I4 |=irr r1(quiet2), I4 |=1 r1(fink2), I4 |=irr r2(quiet1), I4 |=1 r2(fink1).

Thus, I1 is the least preferred answer set and I2, I3 are both preferred over I1.
However, I4 is the maximally cardinality preferred answer set and encodes the
only Nash equilibrium of the game. Note that contrary to the representation
of equilibria in [5], Ppref works for arbitrary 2-person games, not just for the
prisoner dilemma, which is much more in the spirit of ASP. Moreover, a gener-
alization to n-person games with n > 2 is straightforward.

References

1. Brewka, G., Niemelä, I., Truszczynski, M.: Answer set optimization. In: Proc. IJCAI,
pp. 867–872 (2003)

2. Brewka, G.: Logic programming with ordered disjunction. In: Proc. AAAI, pp. 100-
105 (2002)

3. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence 175(1), 278–298 (2010)

4. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs:
Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS
(LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)

5. Foo, N., Meyer, T., Brewka, G.: LPOD answer sets and nash equilibria. In: Maher,
M.J. (ed.) ASIAN 2004. LNCS, vol. 3321, pp. 343–351. Springer, Heidelberg (2004)

6. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of
logic programs with aggregates. TPLP 7, 355–375 (2007)

7. Sakama, C., Inoue, K.: Prioritized logic programming and its application to
common-sense reasoning. Artificial Intelligence 123(1-2), 185–222 (2000)

8. Schaub, T., Wang, K.: A comparative study of logic programming with preference.
In: Proc. IJCAI, pp. 597-602 (2001)

Optimizing the Distributed Evaluation of Stratified
Programs via Structural Analysis�

Rosamaria Barilaro, Francesco Ricca, and Giorgio Terracina

Department of Mathematics, University of Calabria, Italy
{barilaro,ricca,terracina}@mat.unical.it

Abstract. The attention received by query optimization is constantly growing,
but efficiently reasoning over natively distributed data is still an open issue. Three
main problems must be faced in this context: (i) rules to be processed may contain
many atoms and may involve complex joins among them; (ii) the original distri-
bution of input data is a fact and must be considered in the optimization process;
(iii) the integration of the reasoning engine with DBMSs must be tight enough
to allow efficient interactions but general enough to avoid limitations in kind
and location of databases. This paper provides an optimization strategy based
on structural analysis facing these issues.

1 Introduction

The basic problem of querying distributed deductive databases has been studied in
the literature [12]; also distributing the evaluation of Answer Set Programs received
some attention [2]. The proposed techniques for program evaluation mostly focus on
shipping the data for distributing the evaluation of rules (e.g., according to the copy-
and-constraint [12] technique), and heuristically balancing the load on available ma-
chines [5]; however, these approaches usually do not consider as founding hypothesis
that data is natively distributed. Moreover, an important role for efficiently evaluating a
rule is also played by its structure; in particular, the interactions among join variables
might (or might not) affect evaluation costs [11]. This follows from known results re-
garding conjunctive query evaluation, by considering that the evaluation of a rule body
is similar to the evaluation of a conjunctive query. Structural methods [4,9] allow the
transformation of a conjunctive query into a (tree-like) set of sub queries, allowing
efficient evaluations, e.g., by the well-known Yannakakis algorithm [13]. Despite the
attention received by structural query optimization in the field of databases, the spe-
cialization of such techniques for querying natively distributed data, has not been con-
sidered much. Moreover, to the best of our knowledge, their application for distributed
evaluation of logic programs has not been investigated.

In this paper we focus on a scenario, where data natively resides on different au-
tonomous sources and it is necessary to deal with reasoning tasks via logic program-
ming. Three main problems must be faced in this context: (i) rules to be processed may

� This work has been partially supported by the Calabrian Region under PIA (Pacchetti Integrati
di Agevolazione industria, artigianato e servizi) project DLVSYSTEM approved in BURC n.
20 parte III del 15/05/2009 - DR n. 7373 del 06/05/2009.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 217–222, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

218 R. Barilaro, F. Ricca, and G. Terracina

contain many atoms and may involve complex joins among them; (ii) the original dis-
tribution of input data is a fact and this must be considered in the optimization process;
(iii) the integration of the reasoning engine with DBMSs must be tight enough to al-
low efficient interactions but general enough to avoid limitations in kind and location of
databases. This paper aims to be a first step toward this direction. Specifically, issue (i) is
addressed by an optimization strategy based on structural analysis, and in particular on
a hypertree decomposition method [9] that we extend in order to take into account both
the distribution of the sources and possible negation in rule bodies. The proposed tech-
nique includes strategies for deciding whether to ship rules or data among distributed
sites; this addresses issue (ii). Finally, we adopt DLVDB [10] as core reasoning engine,
which allows to transparently evaluate logic programs directly on commercial DBMSs;
this answers issue (iii).

In this paper we concentrate on the evaluation of normal stratified logic programs
[1,8] and we assume the reader familiar with logic programming.

In order to asses the effectiveness of the proposed approach, we carried out a prelimi-
nary experimental activity, on both real world and synthetic benchmarks, for comparing
the performance of our approach with commercial solutions. Obtained results, reported
in the paper, are encouraging and confirm our intuitions.

We next present our optimization approach for programs composed of one single
rule first, and then we generalize to generic programs.

2 Single Rule Optimized Evaluation

A single logic rule r can be seen as a conjunctive query (possibly with negation), whose
result must be stored in the head predicate h.

The optimized evaluation of r starts from the computation of its structural decom-
position, based on an extension of the algorithm cost-k-decomp, introduced in [9];
then the output of the algorithm is a hypertree which is interpreted as a distributed query
plan. In more detail, cost-k-decomp has been extended as follows.

In order to take into account data distribution within the computation of the decom-
position, each node p of the hypertree HD = 〈N,E〉 is labelled with the database
where the partial data associated with it are supposed to reside. Formally, let Site(p)
denote the site associated with the node p in HD and let net(Site(p), Site(p′)) be the
unitary data transfer cost from Site(p) to Site(p′) (clearly, net(Site(p), Site(p)) =
0). Let λ(p) be the set of atoms referred by p, and χ(p) the variables covered by p.
Site(p) is chosen among the databases where the relations in λ(p) reside by com-
puting: hm = arg minhi∈λ(p) {Σhj∈λ(p)|rel(hj)| × net(Site(hj), Site(hi))}. Then,
Site(p) = Site(hm).

In order to handle the presence of negated atoms in r, the construction of valid hyper-
trees has been modified in such a way that each node containing a negated atom is a leaf
node and it does not contain other atoms. This is needed to isolate negated atoms in or-
der to specifically handle them in the overall computation. However, observe that since
r is safe these constraints are not actual limitations for computing valid hypertrees.

In order to take into account both data transfer costs and the impact of negated predi-
cates on the overall computational costs, the cost function adopted incost-k-decomp

Optimizing the Distributed Evaluation of Stratified Programs via Structural Analysis 219

Procedure SolveRule(Hypertree Node p)
begin
if p is a leaf and λ(p) contains only one relation h then

if p has a father p′then project h on χ(p′)
Store the result in a relation hp in Site(p) and Tag the node p as solved

else if p is a leaf and λ(p) contains relations b1, · · · , bk then
Set the working database of DLVDB as Site(p)

Transfer each bi not in Site(p) with the USE clause of DLVDB

Call DLVDB to evaluate the rule hp :− b1, · · · , bk on Site(p)
if p has a father p′ then project hp on χ(p′)
Store hp in Site(p) and Tag the node p as solved

else
for each p′

i ∈ {p′
1 · · · , p′

m} being an unsolved child of p
Launch a process executing SolveRule(p′

i);
Synchronize processes (barrier)
Set the working database of DLVDB as Site(p)
Let b1, · · · bk be the relations in p

Transfer each bi and p′
i not in Site(p) with the USE clause of DLVDB

Call DLVDB to evaluate the rule hp :− b1, · · · , bk, hp′
1
· · · , hp′

l
, not hp′

l+1
, · · · , not hp′

m

where p′
1, · · · , p′

l are child nodes of p corresponding to positive atoms in r
and p′

l+1, · · · , p′
m are child nodes of p corresponding to negated atoms in r

if p has a father p′ then project hp on χ(p′)
Store hp in Site(p) and Tag the node p as solved

end else;
end Procedure;

Fig. 1. Procedure SolveRule for evaluating a rule optimized by hypertree decomposition

is changed to: ωS
H(HD) = Σp∈N (est(E(p)) +minhi∈λ(p){Σhj∈λ(p)|rel(hj)|×

net(Site(hj), Site(hi))} +Σ(p,p′)∈E(est∗(p, p′) + est(E(p′)) × net(Site(p′),
Site(p))))
where

est∗(p, p′) =
{
est(E(p))− est(E(p) �� E(p′)) if p′ is negated in r
est(E(p) �� E(p′)) otherwise

Here, if λ(p) contains only one relation h and p is a leaf in HD, est(E(p)) is exactly
the number of tuples in h; otherwise, it estimates the cardinality of the expression as-
sociated with p, namely E(p) =��h∈λ(p) Πχ(p)rel(h). Let R and S be two relations,
est(R �� S) is computed as:

est(R �� S) =
est(R)× est(S)

ΠA∈attr(R)∩attr(S)max{V (A,R), V (A,S)}

where V (A,R) is the selectivity of attribute A in R. For joins with more relations one
can repeatedly apply this formula to pair of relations according to a given evaluation
order. A more detailed discussion on this estimation can be found in [11].

We are now able to describe how the evaluation of a rule r is carried out in our
approach: (i) Create the hypergraph Hr for r. (ii) Call cost-k-decomp extended
as described above on Hr, and using ωS

H(HD). (iii) Tag each node of the obtained
hypertree HDr as unsolved. (iv) Call the Procedure SolveRule shown in Figure 1 to
compose from HDr a distributed plan for r and execute it.

Intuitively, once the hypertree decomposition is obtained, SolveRule evaluates joins
bottom-up, from the leaves to the root, suitably transferring data if the sites of a child
node and its father are different. Independent sub-trees are executed in parallel pro-
cesses. In this way, the evaluation can benefit from parallelization.

220 R. Barilaro, F. Ricca, and G. Terracina

It is worth pointing out that the benefits of parallelization possibly exploited in
SolveRule are currently not considered in the overall cost functionωS

H(HD); in fact, the
choices that can maximize parallelization are orthogonal to those aiming at minimizing
join and data transfer costs. As a consequence, in a first attempt, we decided to privilege
the optimization of join costs, while taking benefit of possible parallelization. Observe
that this choice allows our approach to be safely exploited also when all relations reside
on the same database.

3 Evaluation of the Program

Three main kinds of optimization characterize our approach, namely (i) rule unfolding
optimization, (ii) inter-components optimization, (iii) intra-component optimization.

In many situations, when evaluating a program, one is interested in the results of only
a subset of the predicates in the program. As far as stratified programs are concerned,
the specification of a filter basically corresponds to specifying a relevant subportion
of the program. Query oriented optimizations can be exploited in this case. Since the
rule optimization strategy presented in the previous section is particularly suited for
rules having long bodies, in presence of filters (or queries) in the program we adopt a
standard unfolding optimization [8] step that has the effect of making rule bodies as long
as possible and, possibly, reduce their number. Program unfolding proceeds as usual
[8], it starts from the predicates specified in the filter and, following the dependencies,
properly substitutes the occurrence of atoms in the body by their definitions.

The Inter-Components optimization [3], consists of dividing the input (possibly un-
folded) program P into subprograms, according to the dependencies among the pred-
icates occurring in it, and by identifying which of them can be evaluated in parallel.
Indeed, if two components A and B, do not depend on each other, then the evaluation
of the corresponding program modules can be performed simultaneously, because the
evaluation of A does not require the data produced by B and vice versa.

The Intra-Component optimization [3], allows for concurrently evaluating rules in-
volved by the same component. Observe that rules in P may be recursive. A rule r
occurring in a module of a component C (i.e., defining some predicate in C) is said to
be recursive if there is a predicate p ∈ C occurring in the positive body of r; other-
wise, r is said to be an exit rule. Recursive rules are evaluated following a semi-naı̈ve
schema [11]. Specifically, for the evaluation of a module M , first all exit rules are pro-
cessed in parallel, afterward, recursive rules are processed several times by applying a
semi-naı̈ve evaluation technique in which, at each iteration n, the instantiation of all
the recursive rules is performed concurrently (synchronization occurs at the end of each
iteration). Both exit and recursive rules are evaluated with the optimization schema de-
scribed in Section 2.

4 Experiments

In this section we present preliminary results of the experiments we carried out by
exploiting a prototypical implementation of our approach. In the following, after de-
scribing compared methods and benchmark settings, we address tests on both a real
world scenario and synthetic benchmarks from OpenRuleBench [7].

Optimizing the Distributed Evaluation of Stratified Programs via Structural Analysis 221

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Infomix Infomix_10 Infomix_50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Program P1

D+S
S

D+O
O

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Infomix Infomix_10 Infomix_50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Program P2

Timeout (2h)

D+S
S

D+O
O

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Infomix Infomix_10 Infomix_50

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Program P3

Timeout (2h)

D+S
S

D+O
O

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

test_10 test_50 test_250

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Openrulebench - Join1

Timeout (2h)

D+S
S

D+O
O

Fig. 2. Tests results

Compared Methods and Benchmark Settings. We compared our approach with two well
known DBMSs allowing to manipulate and query distributed data, namely Oracle and
SQLServer. Since we are interested in comparing the behaviour of our approach with
commercial DBMSs, we evaluated the programs with our approach and the correspond-
ing (set of) SQL queries with the DBMSs. SQLServer allows to query distributed data
via linked servers, whereas Oracle provides database links. In our approach DLVDB

has been coupled with both SQLServer and Oracle. The hardwares used for the exper-
iments are rack mount HP ProLiant DL120 G6 equipped with Intel Xeon X3430, 2.4
GHz, with 4 Gb Ram, running Windows 2003 Server Operating System. We set a time
limit of 120 minutes after which the execution of a system has been stopped. For each
benchmark we have averaged the results of three consecutive runs after the first (which
was not considered in order to factor out internal DBMSs optimizations like caching).
In the graphs (see Figure 2), we report the execution times required by DLVDB cou-
pled with SQLServer (D+S), SQLServer (S), DLVDB coupled with Oracle (D+O), and
Oracle (O).

Tests on a real world scenario. We exploited the real-world data integration framework
developed in the INFOMIX project (IST-2001-33570) [6], which integrates data from
a real university context. In particular, considered data sources were made available by
the University of Rome “La Sapienza”. We call this data set Infomix in the following.
Moreover, we considered two further data sets, namely Infomix-x-10 and Infomix-x-
50 storing 10 and 50 copies of the original database, respectively. It holds that Infomix
⊂ Infomix-x-10⊂ Infomix-x-50. We then distributed the Infomix data sets over 5 sites
and we compared the execution times of our prototype with the behavior of the two
DBMSs on three programs. Note that, the rules composing the above three programs

222 R. Barilaro, F. Ricca, and G. Terracina

were unfolded w.r.t. output predicates and the corresponding rules rewritten as SQL
queries to be tested on both Oracle and SQLServer.

The results of our experiments are presented in Figure 2. From the analysis of this
figure it is possible to observe that our approach allows to obtain significant scalability
improvements. In fact, while for the smallest data set times vary from few seconds (P1)
to hundreds of seconds (P2 and P3), DBMSs exceed the timeout in both P2 and P3
already for Infomix-x-10. Moreover, when DBMSs do not exceed the timeout, D+S
allows to obtain a gain up to 99% w.r.t. S and D+O up to 80% w.r.t. O.

Tests from OpenRuleBench. In [7] a benchmark for testing rule based systems has been
presented. In this paper, we consider the program and the instances called join1 in
[7], distributing the sources in three sites. Results are shown in Figure 2; in this case,
the scalability of D+S is impressive w.r.t. the other systems, whereas it has been quite
surprising the behaviour of D+O. We further investigated on this and found that: (i) the
time required for data transfers between database links in Oracle is double w.r.t. that
required by linked servers in SQLServer; (ii) while D+O required almost 2 hours for
test 50, O did not finish this test in 5 hours; (iii) we also tried to run both D+O and O on
a single machine but we had to stop them after 3 hours. Thus, we had to conclude that
this test was particularly tough for Oracle, independently of our optimization.

References

1. Apt, K.R., Blair, H.A., Walker, A.: Towards a Theory of Declarative Knowledge. In: Minker
[8], pp. 89–148

2. Balduccini, M., Pontelli, E., Elkhatib, O., Le, H.: Issues in parallel execution of non-
monotonic reasoning systems. Parallel Computing 31(6), 608–647 (2005)

3. Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism for the Instantiation of ASP
Programs. Journal of Algorithms in Cognition, Informatics and Logics 63(1-3), 34–54 (2008)

4. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited, pp. 56–70 (1998)
5. Dewan, H.M., Stolfo, S.J., Hernández, M., Hwang, J.-J.: Predictive dynamic load balancing

of parallel and distributed rule and query processing. In: Proc. of ACM SIGMOD 1994, pp.
277–288. ACM, New York (1994)

6. Leone, N., et al.: The INFOMIX system for advanced integration of incomplete and incon-
sistent data. In: Proc. of SIGMOD 2005, pp. 915–917. ACM, New York (2005)

7. Liang, S., Fodor, P., Wan, H., Kifer, M.: Openrulebench: an analysis of the performance of
rule engines. In: Proc. of WWW 2009, pp. 601–610 (2009)

8. Minker, J. (ed.): Foundations of Deductive Databases and Logic Programming. Washington
DC (1988)

9. Scarcello, F., Greco, G., Leone, N.: Weighted hypertree decompositions and optimal query
plans. JCSS 73(3), 475–506 (2007)

10. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries in
database and logic programming systems. TPLP 8(2), 129–165 (2008)

11. Ullman, J.D.: Principles of Database and Knowledge Base Systems. Computer Science Press,
Rockvillie (1989)

12. Wolfson, O., Ozeri, A.: A new paradigm for parallel and distributed rule-processing. In:
SIGMOD Conference 1990, New York, USA, pp. 133–142 (1990)

13. Yannakakis, M.: Algorithms for acyclic database schemes. In: Proc. of VLDB 1981, Cannes,
France, pp. 82–94 (1981)

Contingency-Based Equilibrium Logic

Luis Fariñas del Cerro and Andreas Herzig

IRIT-CNRS, Université de Toulouse
{farinas,herzig}@irit.fr

Abstract. We investigate an alternative language for equilibrium logic that is
based on the concept of positive and negative contingency. Beyond these two con-
cepts our language has the modal operators of necessity and impossibility and the
Boolean operators of conjunction and disjunction. Neither negation nor implica-
tion are available. Our language is just as expressive as the standard language of
equilibrium logic (that is based on conjunction and intuitionistic implication).

1 Introduction

Traditionally, modal logics are presented as extensions of classical propositional logic
by modal operators of necessity L and possibility M (often written � and �). These op-
erators are interpreted in Kripke models: triples M = 〈W,R,V〉 where W is a nonempty
set of possible worlds, R : W −→ 2W associates to every w ∈ W the set of worlds
R(w) ⊆ W that are accessible from w, and V : W −→ 2P associates to every w ∈ W the
subset of the set of propositional variables P that is true at w. The truth conditions are:

M,w � Lϕ iff M, v � ϕ for every v ∈ R(w)
M,w � Mϕ iff M, v � ϕ for some v ∈ R(w)

Let LL,M be the language built from L, M, and the Boolean operators ¬, ∨ and ∧.
Other languages to talk about Kripke models exist. One may e.g. formulate things in
terms of strict implication ϕ > ψ, which has the same interpretation as L(ϕ → ψ)
[6]. In this paper we study yet another set of primitives that is based on the notion of
contingency. Contingency is the opposite of what might be called ‘being settled’, i.e.
being either necessary or impossible. Contingency of ϕ can be expressed in LL,M by
the formula ¬Lϕ ∧ ¬L¬ϕ. One may distinguish contingent truth ϕ ∧ ¬Lϕ ∧ ¬L¬ϕ from
contingent falsehood ¬ϕ ∧ ¬Lϕ ∧ ¬L¬ϕ. If the modal logic is at least KT (relation R
is reflexive, characterised by the axiom Lϕ → ϕ) then contingent truth of ϕ reduces to
ϕ∧ ¬Lϕ, and contingent falsehood of ϕ reduces to ¬ϕ ∧¬L¬ϕ. We adopt the latter two
as our official definitions of contingency: C+ϕ denotes contingent truth of ϕ, and C−ϕ
denotes contingent falsity of ϕ. We take these two operators as primitive, together with
necessity L+ϕ and impossibility L−ϕ. In terms of LL,M, L+ϕ is Lϕ, L−ϕ is L¬ϕ, C+ϕ is
ϕ ∧ ¬Lϕ, and C−ϕ is ¬ϕ ∧ ¬L¬ϕ. In our language the negation operator is superfluous
because ¬ϕ is going to have the same interpretation as L−ϕ ∨ C−ϕ.

In this paper we focus on the fragment of formulas whose modal depth is at most
one. The paper is organized as follows. We first give syntax and semantics and study
some properties. We then show that in models with at most two points, every formula
is equivalent to a formula of depth at most one. We finally establish the link with the
intermediate logic of here and there as studied in answer set programming.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 223–228, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

224 L. Fariñas del Cerro and A. Herzig

2 The Logic of Contingency

Our language Lpos is without negation, and has four primitive operators of contingent
truth C+, contingent falsehood C−, necessity L+ and impossibility L−. Its BNF is:

ϕ� p | ϕ ∧ ϕ | ϕ ∨ ϕ | C+ϕ | C−ϕ | L+ϕ | L−ϕ
where p ranges over the set of propositional variables P. L+ and C+ are the positive
operators and L− and C− are the negative operators. L1

pos is the set of formulas of Lpos

of modal depth at most 1.
The modal depth of a formula ϕ is the maximum number of nested modal operators

in ϕ. The set of propositional variables occurring in ϕ is written Pϕ.
Given a Kripke model M = 〈W,R,V〉, the truth conditions are as follows:

M,w � L+ϕ iff M, v � ϕ for every v ∈ R(w)
M,w � L−ϕ iff M, v � ϕ for every v ∈ R(w)
M,w � C+ϕ iff M,w � ϕ and M,w � L+ϕ
M,w � C−ϕ iff M,w � ϕ and M,w � L−ϕ

Validity and satisfiability are defined as usual.
The modal operators C+ and C− are neither normal boxes nor normal diamonds in

Chellas’s sense [1]. However, the following distribution properties hold.

Proposition 1. The following equivalences are valid in the class of all models.

L+(ϕ ∧ ψ) ↔ L+ϕ ∧ L+ψ
L−(ϕ ∨ ψ) ↔ L−ψ ∧ L−ψ
C+(ϕ ∧ ψ) ↔ ϕ ∧ ψ ∧ (C+ϕ ∨ C+ψ)
C−(ϕ ∨ ψ) ↔ ¬ϕ ∧ ¬ψ ∧ (C−ϕ ∨ C−ψ)

There are no similar equivalences for the other combinations of contingency operators
and Boolean connectors.

Our results in this paper are mainly for models where the accessibility relation is
reflexive, i.e. where w ∈ R(w) for every world w. If M is reflexive then M,w � ϕ iff
M,w � L−ϕ ∨ C−ϕ for every w in M. We can therefore define ¬ϕ to be an abbreviation
of L−ϕ∨C−ϕ. The operators⊥,→, and↔ can then also be defined as abbreviations:⊥ is
L+p∧L−p, for some p ∈ P; ϕ→ ψ is L−ϕ∨C−ϕ∨ψ; and ϕ→ ψ is (ϕ→ ψ)∧ (ψ→ ϕ).
In reflexive models we can also define Mϕ as an abbreviation of L+ϕ ∨ C+ϕ ∨ C−ϕ.
Moreover, our four modal operators are exclusive and exhaustive.

Proposition 2. The formula L+ϕ ∨ L−ϕ ∨ C+ϕ ∨ C−ϕ and the formulas

¬(L+ϕ ∧ L−ϕ) ¬(L+ϕ ∧ C−ϕ) ¬(L−ϕ ∧ C−ϕ)
¬(L+ϕ ∧ C+ϕ) ¬(L−ϕ ∧ C+ϕ) ¬(C+ϕ ∧ C−ϕ)

are valid in the class of reflexive Kripke models.

Finally, note that the equivalence ϕ ↔ L+ϕ ∨ C+ϕ is valid in the class of reflexive
models. It follows that everyLpos formula can be rewritten to a formula such that every
propositional variable is in the scope of at least one modal operator.

Contingency-Based Equilibrium Logic 225

3 Models with at Most Two Points

In the rest of the paper we consider reflexive models with at most two points. For that
class we are going to establish a strong normal form.

Proposition 3. The equivalences

L+L+ϕ ↔ L+ϕ C+L+ϕ ↔ ⊥
L+L−ϕ ↔ L−ϕ C+L−ϕ ↔ ⊥
L+C+ϕ ↔ ⊥ C+C+ϕ ↔ C+ϕ
L+C−ϕ ↔ ⊥ C+C−ϕ ↔ C−ϕ
L−L+ϕ ↔ L−ϕ ∨ C+ϕ C−L+ϕ ↔ C−ϕ
L−L−ϕ ↔ L+ϕ ∨ C−ϕ C−L−ϕ ↔ C+ϕ
L−C+ϕ ↔ L+ϕ ∨ L−ϕ ∨ C−ϕ C−C+ϕ ↔ ⊥
L−C−ϕ ↔ L+ϕ ∨ L−ϕ ∨ C+ϕ C−C−ϕ ↔ ⊥

are valid in the class of Kripke models having at most two points.

Proposition 3 allows to reduce every modality to a Boolean combination of modali-
ties of length at most one (starting from outermost operators). Beyond the reduction
of modalities, reflexive models with at most two points also allow for the distribution
of modal operators over conjunctions and disjunctions. Proposition 1 allows us to dis-
tribute the positive operators L+ and C+ over conjunctions and the negative operators
L− and C− over disjunctions. The next proposition deals with the remaining cases.

Proposition 4. The equivalences

L+(ϕ ∨ ψ) ↔ L+ϕ ∨ L+ψ ∨ (C+ϕ ∧ C−ψ) ∨ (C−ϕ ∧ C+ψ)
L−(ϕ ∧ ψ) ↔ L−ϕ ∨ L−ψ ∨ (C+ϕ ∧ C−ψ) ∨ (C−ϕ ∧ C+ψ)
C+(ϕ ∨ ψ) ↔ (C+ϕ ∧ C+ψ) ∨ (C+ϕ ∧ L−ψ) ∨ (L−ϕ ∧ C+ψ)
C−(ϕ ∧ ψ) ↔ (C−ϕ ∧ C−ψ) ∨ (C−ϕ ∧ L+ψ) ∨ (L+ϕ ∧ C−ψ)

are valid in the class of Kripke models having at most two points.

Distributing the modal operators over conjunctions and disjunctions results in a formula
made up of modal atoms —modalities followed by a propositional variable— that are
combined by conjunctions and disjunctions. These modal atoms can then be reduced by
Proposition 3. If we moreover use that ϕ↔ L+ϕ ∨ C+ϕ is valid in the class of reflexive
models then we obtain a very simple normal form.

Definition 1. A formula is in strong normal form if and only if it is built according to
the following BNF:

ϕ� L+p | L−p | C+p | C−p | ϕ ∧ ϕ | ϕ ∨ ϕ
where p ranges over the set of propositional variables P.

Theorem 1. In the class of reflexive Kripke models with at most two points, every Lpos

formula is equivalent to a formula in strong normal form.

226 L. Fariñas del Cerro and A. Herzig

We now focus on models that are not only reflexive but also antisymmetric. For that
class of models we give a validity-preserving translation from Lpos to propositional
logic. We define two functions tH and tT by mutual recursion.

tH(p) = pH , for p ∈ P tT (p) = pT , for p ∈ P
tH(ϕ ∧ ψ) = tH(ϕ) ∧ tH(ψ) tT (ϕ ∧ ψ) = tT (ϕ) ∧ tT (ψ)
tH(ϕ ∨ ψ) = tH(ϕ) ∨ tH(ψ) tT (ϕ ∨ ψ) = tT (ϕ) ∨ tT (ψ)

tH(L+ϕ) = tH(ϕ) ∧ tT (ϕ) tT (L+ϕ) = tT (ϕ)
tH(L−ϕ) = ¬tH(ϕ) ∧ ¬tT (ϕ) tT (L−ϕ) = ¬tT (ϕ)
tH(C+ϕ) = tH(ϕ) ∧ ¬tT (ϕ) tT (C+ϕ) = ⊥
tH(C−ϕ) = ¬tH(ϕ) ∧ tT (ϕ) tT (C−ϕ) = ⊥

Theorem 2. Let ϕ be a Lpos formula. ϕ is valid in the class of reflexive and antisym-
metric models with at most two points if and only if tH(ϕ) is propositionally valid (in a
vocabulary made up of the set of pH, tH such that p is in the vocabulary of Lpos).

If ϕ is in strong normal form then the translation is linear. The problem of checking
validity of such formulas in reflexive and antisymmetric models is therefore in coNP.

4 Contingency and the Logic of Here-and-There

In the rest of the paper we consider models with at most two points where the accessi-
bility relation is reflexive and persistent, aka hereditary. Just as in intuitionistic logic,
we say that R is persistent if 〈u, v〉 ∈ R implies V(u) ⊆ V(v). Such models were stud-
ied since Gödel in order to give semantics to an implication⇒ with strength between
intuitionistic and material implication [5]. More recently these models were baptized
here-and-there models: triples M = 〈W,R,V〉 with W = {H, T }, V(H) ⊆ V(T), and
R = {〈H,H〉, 〈H, T 〉, 〈T, T 〉}1. Particular such models —equilibrium models— were in-
vestigated as a basis for answer set programming by Pearce, Cabalar, Lifschitz, Ferraris
and others as a semantical framework for answer set programming [7]2.

In persistent models C+p is unsatisfiable for every propositional variable p ∈ P. In
the normal form of Theorem 1 we may therefore replace every subformula C+p by
L+p∧L−p (which is unsatisfiable in reflexive models), resulting in a formula built from
modal atoms of depth one where C+ does not occur. This observation leads also to a
polynomial transformation allowing to check in reflexive and antisymmetric two-points
models whether a given Lpos formula is valid in here-and-there models.

Theorem 3. ALpos formula ϕ is valid in the class of here-and-there models if and only

if
(∧

p : p∈Pϕ ¬C+p
)
→ ϕ is valid in reflexive and antisymmetric two-points models.

In the rest of the section we relate our language Lpos to the customary language of
equilibrium logic. Let us call L⇒pos the language resulting from the addition of a binary

1 The other reflexive and persistent models with at most two points are bisimilar to here-and-
there models: (1) (pointed) two points models with a symmetric relation are bisimilar to one
point models due to persistence; (2) (pointed) models where the two points are not related are
bisimilar to one point models; (3) one point models are bisimilar to here-and-there models.

2 http://www.equilibriumlogic.net

http://www.equilibriumlogic.net

Contingency-Based Equilibrium Logic 227

modal connector ⇒ to our language Lpos. The language of equilibrium logic is the
fragmentL⇒ of L⇒pos without our four unary modal connectors.

The truth condition for the intermediate implication⇒ can be written as:

M,w � ϕ⇒ ψ iff ∀v ∈ R(w), M, v � ϕ or M, v � ψ

Given that C+p is unsatisfiable for every p ∈ P, Theorem 1 shows that the above
language made up of Boolean combinations of modal atoms of the form L+p, L−p, C−p
is an alternative to the traditional Horn clause language.

Theorem 4. The L⇒pos formula

ϕ⇒ ψ ↔ L−ϕ ∨ L+ψ ∨ (C−ϕ ∧ C−ψ) ∨ (C+ϕ ∧ C+ψ)

is valid in here-and-there models.

Proof. By the truth condition of⇒, the formula ϕ⇒ ψ is equivalent to L+(¬ϕ ∨ ψ). By
Proposition 4 the latter is equivalent to

L+¬ϕ ∨ L+ψ ∨ (C−¬ϕ ∧ C+ψ) ∨ (C+¬ϕ ∧ C−ψ),
which is equivalent to the right-hand side. �

Together, theorems 4 and 3 say that instead of reasoning with an intermediate impli-
cation ⇒ one might as well use our fairly simple modal logic of contingency having
reflexive and antisymmetric two-points models. These models are not necessarily per-
sistent. Once one has moved to that logic, one can put formulas in strong normal form
(Theorem 1), apply Theorem 2, and work in classical propositional logic.

5 Contingency and Equilibrium Logic

When we talked about satisfiability in here-and-there models we took it for granted that
this meant truth in some possible world w of some model M, and likewise for validity.
The definitions of satisfiability and validity are more sophisticated in equilibrium logic.

Definition 2. A here-and-there model M = 〈{H, T },R,V〉 is an equilibrium model of ϕ
if and only if

– M,H � ϕ,
– V(H) = V(T), and
– there is no here-and-there model M′ = 〈{H, T },R,V ′〉 such that V ′(T) = V(T),

V ′(H) ⊂ V(H), and M′,H � ϕ.

An equilibrium model of ϕ is therefore isomorphic to a model of classical propositional
logic, and moreover its here-valuation is minimal. This can be captured in our language.

Theorem 5. The formula ϕ of L⇒pos has an equilibrium model iff there is P ⊆ Pϕ s.th.
(
L+(
∧

P) ∧ L−(
∨

(Pϕ \ P))
)
→ ϕ(

C−(
∧

P) ∧ L−(
∨

(Pϕ \ P))
)
→ ¬ϕ

are both valid in reflexive and antisymmetric two-points models.

The premise of the first formula describes a here-and-there model bisimilar to the clas-
sical model P. The premise of the second formula describes all here-and-there models
whose there-world matches the classical model and whose here-world is ‘less true’.

228 L. Fariñas del Cerro and A. Herzig

6 Conclusion

We have presented a modal logic of positive and negative contingency and have studied
its properties in different classes of models. We have in particular investigated models
with at most two points. We have established a link with equilibrium logics as studied in
answer set programming. Our negation-free language in terms of contingency provides
an alternative to the usual implication-based language. Our logic can also be seen as a
combination of intuitionistic and classical implication, in the spirit of [8,3,2,4].

One of the perspectives is to study the first-order version of our logic. We can extend
our translation from Lpos into propositional logic, to a translation from the first-order
extension of Lpos into predicate logic as follows:

tH(∀xϕ) = ∀xtH(ϕ) tT (∀xϕ) = ∀xtT (ϕ)

This works for the first-order version of equilibrium logic with uniform domains. By
means of such a translation the link with answer sets for programs with variables can
be studied3.

References

1. Chellas, B.: Modal logic: An introduction. Cambridge University Press, Cambridge (1980)
2. Došen, K.: Models for stronger normal intuitionistic modal logics. Studia Logica 44, 39–70

(1985)
3. Fariñas del Cerro, L., Raggio, A.: Some results in intuitionistic modal logic. Logique et Anal-

yse 26(102), 219–224 (1983)
4. Fariñas del Cerro, L., Herzig, A.: Combining classical and intuitionistic logic, or: intuition-

istic implication as a conditional. In: Baader, F., Schulz, K.U. (eds.) Frontiers in Combining
Systems. Applied Logic Series, vol. 3, pp. 93–102. Kluwer Academic Publishers, Dordrecht
(1996)

5. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsber. Preuss. Akad.
Wiss. 42-71, 158–169 (1930)

6. Hughes, G.E., Cresswell, M.J.: An introduction to modal logic. Methuen&Co. Ltd., London
(1968)

7. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J.,
Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70.
Springer, Heidelberg (1996)

8. Vakarelov, D.: Notes on constructive logic with strong negation. Studia Logica 36, 110–125
(1977)

3 Thanks are due to David Pearce and the three reviewers of LPNMR-11.

Weight Constraints with Preferences in ASP�

Stefania Costantini1 and Andrea Formisano2

1 Università di L’Aquila, Italy
stefania.costantini@univaq.it

2 Università di Perugia, Italy
formis@dmi.unipg.it

Abstract. Weight and cardinality constraints constitute a very useful program-
ming construct widely adopted in Answer Set Programming (ASP). In recent
work we have proposed RASP, an extension to plain ASP where complex forms
of preferences can be flexibly expressed. In this paper, we illustrate an application
of these preferences within weight/cardinality constraints. We emphasize, mainly
by simple examples, the usefulness of the proposed extension. We also show how
the semantics for ASP with weight constraints can be suitably extended so as to
encompass RASP-like preferences, without affecting complexity.

1 Introduction

In contrast to expert knowledge, which is usually explicit, most commonsense knowl-
edge is implicit and one of the issues in knowledge representation is making this knowl-
edge explicit. The capability of expressing and using preferences in a formal system
constitutes a significant step in this direction. It simulates a skill that every person takes
for granted, being preference deeply related to a subject’s personal view of the world,
and driving the actions that one takes in it. From the point of view of knowledge rep-
resentation, many problems are more naturally represented by flexible rather than by
hard descriptions. Practically, many problems would not even be solvable if one would
stick firmly on all requirements. Not surprisingly, several formalisms and approaches
to deal with preferences and uncertainty have been proposed in Artificial Intelligence
(such as CP-nets and preference logics, for instance) and in the specific context of com-
putational logic [4]. Notably, many of these approaches to preference reasoning have
been developed in the context of ASP [5]. ASP has the peculiarity that an ASP program
may have none, one or several answer sets. These answer sets can be interpreted in
various possible ways. If the program formalizes a search problem, e.g., a colorability
problem, then the answer sets represents the possible solutions to the problem, namely,
the possible colorings for a given graph. In knowledge representation, an ASP program
may represent a formal definition of the known features of a situation/world of interest.
In this case, the answer sets represent the possible consistent states of this world, that
can be several whenever the formalization involves some kind of uncertainty. Also, an
ASP program can be seen as the formalization of the knowledge and beliefs of a rational

� This research is partially supported by PRIN-08 and GNCS-11. Material from this manuscript
composes a poster presentation at Commonsense-2011 [2].

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 229–235, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

230 S. Costantini and A. Formisano

agent about a situation, and the answer sets represent the possible belief states of such
an agent, that can be several if either uncertainty or alternative choices are involved in
the description [1]. Such an agent can exploit an ASP module for several purposes, such
as answering questions, building plans, explaining observations, making choices, etc.

In recent work [3] we have proposed RASP, an extension to ASP where complex
forms of preferences can be flexibly expressed. In that work we have considered plain
ASP. In this paper, we introduce preferences into ASP extended with weight con-
straints [6]. A weight constraint allows one to include in the answer sets of given
program an arbitrary (bounded, but variable) number of the literals indicated in the
constraint itself, according to weights. Weight constraints have proved to be a very use-
ful programming tool in many applications such as planning and configuration, and they
are nowadays adopted by most ASP inference engines.

In this paper, we propose to enrich weight constraints by means of RASP-like pref-
erences. For lack of space we explicitly consider the particular case of cardinality con-
straints, which are however very widely used, considering that the extension to general
weight constraints is easily feasible. The advantage of introducing RASP-like prefer-
ences rather than considering one of the competing approaches is their locality. In fact,
in RASP one may express preferences which are local to a single rule or even to a single
literal. Contrasting preferences can be freely expressed in different contexts, as in our
view preferences may vary with changing circumstances. Instead, most of the various
forms of preferences that have been introduced in ASP [4, 7] are based on establish-
ing priorities/preferences among rules or preferences among atoms which are anyway
globally valid in given program. A weight constraint represents a local context where
RASP-like preferences find a natural application.

2 RASP-Like Preferences in Cardinality Constraints

Let us recall some basic notion about weight/cardinality constraints and the extension
RASP. The reader is referred to [6, 3] for much detailed treatments. A Weight Constraint
is of the form:

l ≤ {a1 = wa1 , . . . , an = wan , not an+1 = wan+1 , . . . , not an+m = wan+m} ≤ u

where the ais are atoms. Each literal in a constraint has an associated numerical weight.
The numbers l and u are the lower and upper bounds of the constraint. A weight con-
straint is satisfied by a set of atoms S if the sum of weights of those literals occurring
in the constraint that are satisfied by S is in [l, u]. A Cardinality Constraints is a weight
constraints such that all weights are equal to one. A shorthand form is provided:

l {a1, . . . , an, not an+1, . . . , not an+m}u

A rule has the form C0 ← C1, . . . , Cn. , where the Cis are weight/cardinality con-
straints and a program is a set of such rules.

Deciding whether a ground program has an answer set is NP-complete, and comput-
ing an answer set is FNP-complete [6].

To compactly specify sets of literals in a constraint, one can exploit variables and
conditional literals. Let us illustrate this notation by means of an example. Assume that

Weight Constraints with Preferences in ASP 231

you wish to state that a meal is composed of at least two and at most three courses. This
may be expressed by the following cardinality constraint.

2{in menu(X, C) : course(C)}3← meal(X).

Hence, provided this knowledge base:

meal(lunch). coeliac. course(cake). course(pasta)← not coeliac.
meal(dinner). course(fruit). course(meat).

the ground version of the program becomes as follows (simplified because of the truth
of meal(lunch) and meal(dinner)):

2{in menu(lunch, meat), in menu(lunch, cake), in menu(lunch, fruit)}3.

2{in menu(dinner, meat), in menu(dinner, cake), in menu(dinner, fruit)}3.

RASP is an extension to the ASP framework that allows for the specification of var-
ious kinds of non-trivial preferences. In full RASP, quantities for ingredients and prod-
ucts are allowed to be specified, and resources might be consumed/produced. However,
in this paper we neglect the aspects of RASP related to resources in order to concentrate
on preferences. Next definition adapts to our case the main constructs of RASP [3].

Definition 1. Let s1, . . . , sk be k > 0 either distinct constants or distinct atoms, and
let L1, . . . , Ln be literals. Then,

• a preference-list (p-list) is of the form: s1> · · ·>sk

• a conditional p-list (cp-list) is of the form: (s1> · · ·>sk pref when L1, . . . , Ln)
Each of the si has degree of preference i in the p-list/cp-list.
Let q1, . . . , qk be k > 0 atoms and let pred be a binary program predicate. Then,

• a p-set is of the form: {q1, . . . , qk | pred}.
Intuitively, a p-list expresses a linear preference among the sis. A cp-list specifies that
such a preference should be applied only when all L1, . . . , Ln are satisfied. Otherwise,
if any of the Li does not hold, no preference is expressed. P-sets are a generalization
of p-lists that allows one to use any binary relation (not necessarily a partial order) in
expressing (collections of alternative) p-lists. The program predicate pred is supposed
to be defined elsewhere in the program where the p-set occurs.

It might be useful to enhance the modeling power of cardinality constraints by ex-
ploiting RASP-like preferences. In the rule below, we reconsider menus and courses
and state, by means of a p-list, that pasta is preferred over meat.

2{in menu(X, C) :course(C) | in menu(X, pasta)>in menu(X, meat)}3←meal(X).

where constants occurring in the p-list are among the possible values of variableC, i.e.,
are elements of the domain of course . Notice that we do not need to express preferences
over all possible values of C (namely, we stated we prefer to include pasta rather than
meat, while we are indifferent about the third course). Preference is “soft” in the sense
that pasta will be chosen if available, otherwise meat will be selected, again if available,
otherwise some other course will be selected anyway. Here we extend our example by
employing a cp-list to state that in summer fruit is preferred over cake:

2{in menu(X, C) : course(C) | in menu(X, fruit) > in menu(X, cake)
pref when summer}3← meal(X).

232 S. Costantini and A. Formisano

Finally, we may employ p-sets to state that we prefer the less caloric courses:

2{in menu(X, C) : course(C) | less caloric[X]}3 ← meal(X).

Notice that less caloric is, according to Def. 1, a binary predicate. The notation
less caloric[X] means that the comparison is on pairs of distinct instances of variable
X . This specification is necessary as different domain predicates defined over different
variables may occur in constraints: this requires to indicate the variable to be considered
for defining a p-set. Moreover, as Def. 2, to be seen, specifies, multiple preference are
allowed in a constraint. Here, the p-set actually occurring (implicitly) in the constraint
is {pasta,meat, fruit, cake : less caloric}.

This kind of cardinality constraints is called p-constraint. P-constraints may occur
in the head of program rules. In general, for expressing preferences one may employ
any variable occurring in the rule where the constraint appears. Note that p-lists can be
defined both on constants and atoms. For instance, the next rule states that Italian food
is preferred to Chinese one:

2{in menu(X, C) : course(C) : italian(C) > chinese(C)}3← meal(X).

The general form of non-ground p-constraints is the following

Definition 2. A p-constraint is of the form:

l{a1, . . . , an, . . . , not an+1, . . . , not an+m : D | Cp}u
where the ais are atoms, D is a set of atoms (concerning domain predicates), and Cp

is a list of preference specifications possibly including (c)p-lists and binary predicates
defining p-sets. Each two specifications in Cp are defined on distinct variables.

The purpose of the set of atoms D consists in defining the domains of the variables
occurring in the ais, as happens for the standard definition of weight constraints [6].
Then, a program rule has the form: C0 ← C1, . . . , Cn, where C0 is a p-constraint and
the Cis are weight/cardinality constraints. A program is a set of rules.

Notice that preferences may occur only in the heads of rules, i.e., preferences might
influence what should be derived from a rule.

In future work, we intend to overcome the limitation of preference specifications
in Cp to be disjoint, in order to admit interacting preferences and priorities among
preferences. A first step, would be to allow (c)p-lists to be defined over p-sets. For
instance, referring to the above example of preferring less caloric courses, an extension
would be to allow one to prefer less caloric courses in the first place, the best in quality
in the second place, and the less expensive in the third place. I.e., we would allow
expressions such as less caloric[X] > better quality [X] > less expensive[X].

3 Semantics

In this section, we introduce an extension to the semantics of weight constraints as
specified in [6], so as to accommodate p-constraints. We implicitly consider the ground
version of given programΠ . By adapting to weight constraints the approach developed
for RASP in [3], we introduce a function aimed at encoding the possible orderings on
domain elements, according to the preferences expressed through p-constraints. The key
point of the semantic modification that we propose is exactly to exploit such a function

Weight Constraints with Preferences in ASP 233

to reorder the atoms occurring in the p-constraints of Π . Then a (candidate) answer set
is accepted only if it models the most preferred atoms.

Some preliminary notions are due. Given a collection S of non-empty sets, a choice
function c(·) for S is a function having S as domain and such that c(s) ∈ s for each
s in S. In other words, c(·) chooses exactly one element from each set in S. Given a
binary predicate symbol p and a set of ground atoms I , consider all the atoms of the
form p(a, b) in I . Let I| p denote the transitive closure of the set {p(a, b) | p(a, b) ∈ I}.
Namely, I| p is the smallest set such that for all a, b, c it holds that

(
p(a, b) ∈ I ∨

(p(a, c) ∈ I| p ∧ p(c, b) ∈ I| p)
)
→ p(a, b) ∈ I| p.

A given answer set might satisfy one or more of the atoms occurring in a p-list
(resp., cp-list, p-set). Each atom q occurring in such a p-list has a degree of prefer-
ence i associated with. We introduce a function ch to represent each pair 〈q, i〉 occur-
ring in a p-list (resp., cp-list, p-set) of a p-constraint. In particular, for p-lists we put
ch(q1> · · ·>qk, I) =

{
{〈q1, 1〉, . . . , 〈qk, k〉}

}
.

For a cp-list q1> · · ·>qk pref when L1, . . . , Ln we put:

ch(r, I)=

{
ch(q1> · · ·>qk, ∅) if I satisfies L1, . . . , Ln{{〈q1, i1〉, . . . , 〈qk, ik〉} | {i1, . . . , ik}={1, . . . , k}} otherwise

The case of a p-set ps = {q1, . . . , qk | p} is slightly more complicated because p
represents a collection of alternative p-lists, each one potentially exploitable in a given
answer set I . Let us denote such a collection of p-lists as follows:

PLists(ps, I) =
{

qi1> · · ·>qin | 〈1, . . . , n〉 is a maximal prefix of 〈1, . . . , k〉
such that ∀ j, h (j < h→ p(qih , qij) /∈ I| p)

}
Then, we define ch(ps, I) =

⋃
pl∈PLists(ps,I) ch(pl, I). The definition of ch is then

extended to rules by putting: ch(γ, I) = {ch(�, I) | � in the head of γ}.
Finally, we associate to each rule γ, the set R(γ, I) of sets. Each X ∈ R(γ, I)

is a collection of sets, each one having the form {〈q1, 1〉, . . . , 〈qk, k〉}, where qi is an
atom and i is a degree of preference. Given such an X , we say that each q such that
〈q, 1〉 ∈ x for some x ∈ X is a most preferred element for X . Note that, each of the
sets {〈q1, 1〉, . . . , 〈qk, k〉} belonging to X encodes an ordering (i.e., a preference) on
the atoms of one of the pγ p-lists (resp., cp-lists, p-sets) occurring in γ. (Hence, for a
fixed rule γ, each of the sets X inR(γ, I) has cardinality equals to pγ .)

R(γ, I) =
{{c(s) | s in ch(γ, I)} | for c choice function for ch(γ, I).

}
where c ranges on all possible choice functions for ch(γ).

A candidate answer set S is actually an answer set if it chooses from each ground p-
constraintC in the head of a rule γ, the most preferred elements (whatever their number
is) according to some X ∈ R(γ, S). More formally, for a programΠ , we have:

Definition 3. A set of atoms S is an answer set for Π if it holds that:

• S is an answer set of Π according to Definitions 2.7 and 2.8 in [6].
• For every p-constraint C, head of a rule γ ∈ Π , S includes all the most preferred

elements of C, w.r.t. at least one of the X ∈ R(γ, S).

234 S. Costantini and A. Formisano

Notice that we do not have to consider interaction among different rules: our preferences
are in fact local to the p-constraint where they occur. Different p-constraints can be
defined over different, even contrasting, preferences.

It is easy to get convinced that function ch can be computed in polynomial time.
Therefore obtain the following results, that guarantee that the further modeling power
that we offer implies no computational expense.

Theorem 1. Let Π be a ground p-program. Then,

• deciding whether Π has answer sets is NP-complete;
• deciding whether a set X of atoms is an answer set of Π is NP-complete.

If one would now like to choose the “best preferred” answer sets, a preference criterion
should be provided to compare answer sets. Such a criterion should impose an order
on the collection of answer sets by reflecting the preference degrees in the (c)p-lists.
In a sense, any criterion should aggregate/combine all “local” partial orders to obtain
a global one. General techniques for combining preferences have been proposed, cri-
teria have been also studied w.r.t. the specific framework of Logic Programming. The
complexity of finding the best preferred answer sets varies according to the selected
criterion (see [2, 3] and the references therein).

4 Concluding Remarks

In this paper we have presented an approach to express preferences in ASP cardinality
constraints. Future work includes: the introduction of preferences among sets of op-
tions; the extension of preference treatment to the general form of weight constraints.
The main point however is the full integration of weight constraints and other forms
of aggregates with RASP, i.e., the introduction of resource usage in p-constraints and
in their future evolutions. In fact, as mentioned, weight constraints have proved useful
in many applications, among which configuration. RASP is very promising in this di-
rection, as one may specify not only the qualitative aspects of processes, but also the
quantitative aspects that are in many cases of some or great importance. Preferences are
often related to resources, as an agent may prefer to consume (or, more generally, to
“invest”) some resources rather than others, and may also have preferences about what
one should try to obtain with the available resources. Consumption or production of
some resource may have a relevance, that can be expressed by the weights in weight
constraint. This kind of extended formalism can find suitable applications in the realm
in bio-informatics, where reactions involve quantities, weights and byproducts, and may
happen according to complex preferences.

References

[1] Capotorti, A., Formisano, A.: Comparative uncertainty: theory and automation. Mathemati-
cal Structures in Computer Science 18(1) (2008)

[2] Costantini, S., Formisano, A.: Augmenting weight constraints with complex preferences. In:
Proc. of Commonsense 2011. AAAI Press, Menlo Park (2011)

Weight Constraints with Preferences in ASP 235

[3] Costantini, S., Formisano, A., Petturiti, D.: Extending and implementing RASP. Fundamenta
Informaticae 105(1-2) (2011)

[4] Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification and survey of preference
handling approaches in nonmonotonic reasoning. Computational Intelligence 20(12) (2004)

[5] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. of
the ICLP/SLP 1988. MIT Press, Cambridge (1988)

[6] Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002)

[7] Van Nieuwenborgh, D., Vermeir, D.: Preferred answer sets for ordered logic programs. The-
ory and Practice of Logic Programming 6(1-2) (2006)

Parametrized Equilibrium Logic

Ricardo Gonçalves and José Júlio Alferes�

CENTRIA, Universidade Nova de Lisboa, Portugal

Abstract. Equilibrium logic provides a logical foundation for the sta-
ble model semantics of logic programs. Recently, parametrized logic pro-
gramming was introduced with the aim of presenting the syntax and
natural semantics for parametrized logic programs, which are very ex-
pressive logic programs, in the sense that complex formulas are allowed
to appear in the body and head of rules. Stable model semantics was
defined for such parametrized logic programs. The aim of this paper is
to introduce a parametrized version of equilibrium logic that extends
parametrized logic programs to general theories, and to show how these
can be used to characterize and to study strong equivalence of temporal
logic programs.

1 Introduction

Equilibrium logic [7], and its monotonic base – the logic of Here-and-There
(HT) [6] – provide a logical foundation for the stable models semantics of logic
programs [4], in which several important properties of logic programs under the
stable model semantics can be studied. In particular, it can be used to check
strong equivalence of programs (i.e. that two programs will remain equivalent
independently of whatever else we add to both of them), by checking logical
equivalence in Here-and-There.

Equilibrium logic also allows for the extension of the stable model semantics
to a language allowing arbitrary sets of formulas [3]. In this extension of stable
models to general theories, the (disjunctive) logic programming rule symbol “←”
(resp. “,”, “;”) is equated with implication “⇒” (resp. “∧”, “∨”) in equilibrium
logic. Moreover, logic programming’s default negation is equated with the nega-
tion ¬ of equilibrium logic. Of course, by doing so the classical connectives of
conjunction, disjunction, implication and negation are lost in such general theo-
ries. This fact was recently noticed in [11,12] where equilibrium logic is extended
for sets of formulas, called general default logic, that besides the equilibrium
logic connectives also allows for having classical propositional connectives, e.g.
allowing to differentiate logic programming disjunction A;B, which indicates
that either A is known to be true or B is known to be true, from the classical
disjunction A ∨ B which does not necessarily requires one of the propositions
to be known (see [11,12] for details). This generalisation is proven in [11] to be

� The first author was supported by FCT under the postdoctoral grant
SFRH/BPD/47245/2008.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 236–241, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Parametrized Equilibrium Logic 237

more general than Reiter’s default logic [10], and able to express rule constraints,
generalised closed world assumption and conditional defaults.

Recently, parametrized logic programming was introduced [5], having in com-
mon with [11,12] the motivation of providing a meaning to theories combining
both logic programming connectives with other logic connectives, and allowing
complex formulas using these connectives to appear in the head and body of a
rule. Although [5] is less general than [11,12] in the sense that it does not allow
complex rule formulas to be built, it is more general in the sense that allows to
deal with formulas other than classical propositional logic (CPL) formulas.

The aim of this paper is to introduce a parametrized version of equilibrium
logic (Section 2) which generalizes both the approaches in [5] and [11,12], by
allowing complex rule formulas along with the use of formulas other than those
of CPL. As an example of the usefulness of this extra generality, we experiment
(Section 3) with linear temporal logic (LTL) [9]. We compare the obtained logic
with a temporal extension of Here-and-There logic, THT , introduced in [1].

2 Parametrized Equilibrium Logic

In this section we present a parametrized version of equilibrium logic and of its
monotonic base, the logic of Here-and-There (HT) [6], generalising parametrized
logic programming [5].

A (monotonic) logic is a pair L = 〈L,	L〉 where L is a set of formulas and 	L is
a Tarskian consequence relation over L, i.e., satisfying, for every T ∪Φ∪{ϕ} ⊆ L,
Reflexivity: if ϕ ∈ T then T 	L ϕ; Cut: if T 	L ϕ for all ϕ ∈ Φ, and Φ 	L ψ
then T 	L ψ; Weakening: if T 	L ϕ and T ⊆ Φ then Φ 	L ϕ.

Let Th(L) be the set of theories of L, i.e. the set of subsets of L closed under
the relation 	L. It is well-known that, for every (monotonic) logic L, the tuple
〈Th(L),⊆〉 is a complete lattice with smallest element the set Theo = {ϕ ∈
L :	L ϕ} of theorems of L and greatest element the set L of all formulas of L.

In what follows we fix a (monotonic) logic L = 〈L,	L〉 and call it the pa-
rameter logic. The formulas of L are dubbed (parametrized) atoms and a
(parametrized) literal is either a parametrized atom ϕ or its negation not ϕ,
where as usual not denotes negation as failure. We dub default literal those of
the form not ϕ. A normal L-parametrized logic program is a set of rules of the
form ϕ ← ψ1, . . . , ψn, not ϕ1, . . . , not ϕm where ϕ, ψ1, . . . , ψn, ϕ1, . . . , ϕm ∈ L.
A definite L-parametrized logic program is a set of rules without negations as
failure, i.e. of the form ϕ← ψ1, . . . , ψn where ϕ, ψ1, . . . , ψn ∈ L.

Let P1 and P2 be two normal L-parametrized logic programs. We say that P1

and P2 are strongly equivalent if for every normal L-parametrized logic program
P , the programs P1 ∪ P and P2 ∪ P have the same stable models.

Given a parameter logic L = 〈L,	〉, we dub HTL the L-parametrized logic of
Here-and-There. The language of HTL is build constructively from the formulas
of L using the connectives ⊥, ∧, ∨ and →. Negation ¬ is introduced as an
abbreviation ¬δ := (δ → ⊥). The formulas of L act as atoms of HTL.

The semantics ofHTL is a generalization of the intuitionistic Kripke semantics
of HT . A frame for HTL is a tuple 〈W,≤〉 where W is a set of exactly two

238 R. Gonçalves and J.J. Alferes

worlds, say h (here) and t (there) with h ≤ t. An HTL interpretation is a frame
together with an assignment i that associates to each world a theory of L, such
that i(h) ⊆ i(t). Note the key idea of substituting, in the original definition
of HT interpretations, sets of atoms by theories of the parameter logic. An
interpretation is said to be total if i(h) = i(t). It is convenient to see a HTL
interpretation as an ordered pair 〈T h, T t〉 such that T h = i(h) and T t = i(t)
where i is the interpretation’s assignment. We define the satisfaction relation
between an HTL interpretation 〈T h, T t〉 at a particular world w and a HTL
formula δ recursively, as follows:

i) for ϕ ∈ L we have that 〈T h, T t〉, w � ϕ if Tw 	L ϕ;
ii) 〈T h, T t〉, w �� ⊥;
iii) 〈T h, T t〉, w � (δ ∨ γ) if 〈T h, T t〉, w � δ or 〈T h, T t〉, w � γ;
iv) 〈T h, T t〉, w � (δ ∧ γ) if 〈T h, T t〉, w � δ and 〈T h, T t〉, w � γ;
v) 〈T h, T t〉, w � (δ → γ) if ∀w′≥w we have 〈T h, T t〉, w′ �� δ or 〈T h, T t〉, w′ � γ.

We say that an interpretation I is a model of an HTL formula δ if I, w � δ for
every w ∈ {h, t}. A formula δ is said to be a consequence of a set of formulas Φ,
denoted by Φ 	HTL δ, if for every interpretation I and every world w we have
that I, w � δ whenever I, w � δ′ for every δ′ ∈ Φ.

Definition 1. An equilibrium model of a set Φ of HTL formulas is a total HTL
interpretation 〈T, T 〉 such that
1. 〈T, T 〉 is a model of Φ;
2. for every L theory T ′ ⊂ T we have that 〈T ′, T 〉 is not a model of Φ.

With this notion of model, equilibrium entailment is defined as follows.

Definition 2. The equilibrium entailment, �E, over HTL formulas is defined
for every set Φ ∪ {δ} of HTL formulas as follows:
– if Φ is non-empty and has equilibrium models then Φ �E δ if every equilibrium

model of Φ is an HTL model of δ;
– if Φ is empty or does not have equilibrium models then Φ �E δ if Φ 	HTL δ.

Clearly, the traditional HT logic is a particular case of our parametrized ap-
proach by taking as parameter logic L = 〈L,	L〉 where L is the set At of atoms
of HT and 	L is the only reasonable consequence definable over L, i.e., for every
X ∪ {p} ⊆ At we have X 	L p iff p ∈ X .

In what follows, we identify a rule ϕ← ψ1, . . . , ψn, not ϕ1, . . . , not ϕm of an L-
parametrized program with theHTL-formula (ψ1∧. . .∧ψn∧¬ϕ1∧. . .∧¬ϕm)→ ϕ,
and a program P with the set of HTL-formulas that correspond to its rules. The
following proposition states that parametrized equilibrium logic coincides with
[5] in the specific case of logic programs.

Proposition 1. For any L-parametrized program P , an HTL interpretation
〈T, T 〉 is an equilibrium model of P iff T is stable model of P .

The following theorem states that HTL can be used to prove strong equivalence
of parametrized logic programs.

Parametrized Equilibrium Logic 239

Theorem 1. Let P1 and P2 be two L-parametrized logic programs. Then P1 and
P2 are strongly equivalent iff P1 and P2 are equivalent in HTL.

Note that, by construction, it is immediate that the semantics of general default
logic given in [12] is a particular case of ours by taking CPL as parameter logic,
HTCPL. As a consequence, the strong connection proved in [12] between their
semantics and the stable models like semantics of [11], also holds for HTCPL.
Concretely, they proved that if T is an CPL theory and Φ a set of GDL formulas
then, 〈T, T 〉 is an equilibrium model of Φ iff T is an extension (generalization of
a stable model) of Φ.

3 Temporal Here-and-There Logic

Our parametrized logic is also interesting for parameters other than CPL. In
particular, in this section we experiment with linear temporal logic LTL [9] and
compare the obtained logic, HTLTL, with the Temporal Here-and-There logic
(THT) of [1].

The language of THT is built from the set P of propositional symbols us-
ing interchangeably HT connectives (⊥,→,∨,∧) and LTL temporal operators
(©,U ,R). Negation is defined as ¬ϕ ∼= ϕ → ⊥ whereas � ∼= ¬⊥. Other usual
temporal operators can be defined using U and R : �ϕ ∼= ⊥Rϕ and ♦ϕ ∼= �Uϕ.

Recall that an LTL interpretation is a sequence m = (mi)i∈N where mi ⊆ P
for each i ∈ N. A THT interpretation is a pair M = 〈mh,mt〉 where mh,mt are
LTL interpretations such that mh

i ⊆ mt
i for every i ∈ N.

A THT interpretation has two dimensions. In the HT dimension we have the
two worlds, h (here) and t (there) with h ≤ t, and in the LTL dimension we
have the time instants i ∈ N. The satisfaction of a THT formula δ by a THT
interpretation M = 〈mh,mt〉 is defined at a world w ∈ {h, t} and at a time
instant i ∈ N, by structural induction:

– M,w, i �� ⊥;
– M,w, i � p if p ∈ mw

i , for p ∈ P ;
– M,w, i � ϕUψ if ∃j≥i s.t. M,w, j � ψ and ∀i≤k<j we have M,w, k � ϕ;
– M,w, i � ϕRψ if ∀j≥i either M,w, j � ψ or ∃i≤k<j s.t. M,w, k � ϕ;
– M,w, i � (ϕ ∨ ψ) if M,w, i � ϕ or M,w, i � ψ;
– M,w, i � (ϕ ∧ ψ) if M,w, i � ϕ and M,w, i � ψ;
– M,w, i � (ϕ→ ψ) if ∀w′≥w we have M,w′, i �� ϕ or M,w′, i � ψ.

A THT interpretation M is a model of a THT formula ϕ, denoted by M � ϕ,
if M,h, 0 � ϕ. This definition uses the so-called anchored version of LTL. Given
a set Φ of THT formulas we denote by Mod(Φ) the set of THT interpretations
that are models of every formula of Φ. A THT formula δ is valid if every THT
interpretation is a model of δ. The consequence relation 	THT can be defined
as Φ 	THT δ if for every interpretation M and world w ∈ {h, t} we have that
M,w � δ whenever M,w � δ′ for every δ′ ∈ Φ.

240 R. Gonçalves and J.J. Alferes

Recall that the language of THT is built using interchangeably HT connec-
tives and LTL temporal operators. In HTLTL (HT parametrized with LTL, as
defined in Section 2) this interaction between the HT level and the parameter
logic level is not allowed. For example, �(p → q) is not an HTLTL formula.
Although the language of THT is richer than that of HTLTL, a result in [2]
shows that every formula of THT as a normal form which is almost a formula
of HTLTL. In more detail, every THT formula is THT equivalent to a formula
of the following form:

– an atom p ∈ P ;
– �(B1 ∧ . . . ∧ Bn → (C1 ∨ . . . ∨ Cm)) where for each Bi and each Cj is a

temporal literal, that is, of the form p, ©p or ¬p with p ∈ P ;
– �(�p→ q) or �(p→ ♦q) for some p, q ∈ P .

By a normal temporal logic program we mean a set of rules of the form �(ϕ←
ϕ1, . . . , ϕn, not ψ1, . . . , not ψm) where ϕ,ϕ1, . . . , ϕn, ψ1, . . . , ψm are LTL− for-
mulas. By LTL− we denote the LTL fragment of THT , i.e., LTL restricted to
the temporal operators (©,�,♦,U ,W ,R) (therefore, excluding classical nega-
tion and implication). We identify a rule �(ϕ← ϕ1, . . . , ϕn, not ψ1, . . . , not ψm)
with the THT formula �((ϕ1 ∧ . . .∧ϕn ∧¬ψ1 ∧ . . .∧¬ψm)→ ϕ). Note that this
is not an HTLTL formula. Let us now show how can we solve this mismatch.

Consider, for every LTL formula ϕ and every i ∈ N, the LTL formula
ϕi := ©iϕ, that is, ϕ preceded by i occurrences of ©. Let r = �(ϕ ←
ϕ1, . . . , ϕn, not ψ1, . . . , not ψm) be a normal temporal logic program rule and
consider the set r∗ = {ϕi ← ϕi

1, . . . , ϕ
i
n, not ψ

i
1, . . . , not ψ

i
m : i ∈ N} of LTL-

parametrized rules obtained from r. Given a normal temporal logic program P
we consider the LTL-parametrized normal logic program P ∗ =

⋃
r∈P r

∗.
The following theorem relates logical equivalence in THT and in HTLTL.

Theorem 2. Let P1 and P2 be normal temporal logic programs. Then, P1 and
P2 are logically equivalent in THT iff P ∗

1 and P ∗
2 are logically equivalent in

HTLTL.

Note that, contrarily to THT , logical equivalence in HTLTL is a necessary and
sufficient condition for strong equivalence of temporal logic programs. Note also
that HTLTL contains classical negation (usually called explicit negation) and
classical implication. This is clearly a plus in many reasoning scenarios.

4 Conclusions

We have defined a parametrized version of equilibrium logic and of its monotone
base, the logic of Here-and-There, by allowing complex formulas of a parameter
logic as atoms. We proved that both equilibrium logic and HT are particular
cases of our approach and, moreover, we generalized the relation between equi-
librium logic and the stable model semantics for logic programs. In particular we
proved that logical equivalence in parametrized HT captures strong equivalence
of parametrized logic programs. By taking classical logic as parameter logic, we

Parametrized Equilibrium Logic 241

proved that general default logic is a particular case of our approach. We ended
with an example where linear temporal logic was taken as parameter logic, thus
allowing to characterize strong equivalence of temporal logic programs.

The work raises several interesting paths for future work. One that is already
ongoing is to define a parametrized version of partial equilibrium logic and gen-
eralise its relation to partial stable model semantics of logic programs. It would
be interesting to find an axiomatization of parametrized HT . In order to ac-
cess its merits in full, other interesting examples of parameter logic should be
studied. A very interesting example is the case of first-order logic. We intend to
compare the resulting parametrized equilibrium logic with the first-order version
of equilibrium logic [8].

References

1. Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Strongly equivalent temporal logic
programs. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS
(LNAI), vol. 5293, pp. 8–20. Springer, Heidelberg (2008)

2. Cabalar, P.: A normal form for linear temporal equilibrium logic. In: Janhunen, T.,
Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 64–76. Springer, Heidelberg
(2010)

3. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005)

4. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070–1080 (1988)

5. Gonçalves, R., Alferes, J.: Parametrized logic programming. In: Janhunen, T.,
Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 182–194. Springer, Heidel-
berg (2010)

6. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Trans. Comput. Log. 2(4), 526–541 (2001)

7. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1-2), 3–41 (2006)
8. Pearce, D., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic

reasoning. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 147–160. Springer, Heidelberg (2004)

9. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, R.I., pp. 46–57. IEEE Comput. Sci.,
Long Beach (1977)

10. Reiter, R.: A logic for default reasoning. Artificial Intelligence (13) (1980)
11. Zhou, Y., Lin, F., Zhang, Y.: General default logic. Ann. Math. Artif. Intell. 57(2),

125–160 (2009)
12. Zhou, Y., Zhang, Y.: Rule calculus: Semantics, axioms and applications. In:

Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293,
pp. 416–428. Springer, Heidelberg (2008)

Random vs. Structure-Based Testing of Answer-Set
Programs: An Experimental Comparison�

Tomi Janhunen1, Ilkka Niemelä1, Johannes Oetsch2, Jörg Pührer2, and Hans Tompits2

1 Aalto University, Department of Information and Computer Science,
P.O. Box 15400, FI-00076 Aalto, Finland

{Tomi.Janhunen,Ilkka.Niemela}@aalto.fi
2 Technische Universität Wien, Institut für Informationssysteme 184/3,

Favoritenstraße 9-11, A-1040 Vienna, Austria
{oetsch,puehrer,tompits}@kr.tuwien.ac.at

Abstract. Answer-set programming (ASP) is an established paradigm for declar-
ative problem solving, yet comparably little work on testing of answer-set
programs has been done so far. In a recent paper, foundations for structure-based
testing of answer-set programs building on a number of coverage notions have
been proposed. In this paper, we develop a framework for testing answer-set pro-
grams based on this work and study how good the structure-based approach to
test input generation is compared to random test input generation. The results indi-
cate that random testing is quite ineffective for some benchmarks, while structure-
based techniques catch faults with a high rate more consistently also in these cases.

Keywords: answer-set programming, structure-based testing, random testing.

1 Introduction

Answer-set programming (ASP) is an established approach to declarative problem solv-
ing with increasingly efficient solver technology enabling applications in a large range
of areas. However, comparably little effort has been spent on software development
methods and, in particular, on developing testing techniques for answer-set programs.

In previous work [1], we introduced a structure-based testing approach for answer-
set programs. In this approach, testing is based on test cases that are chosen with respect
to the internal structure of a given answer-set program. More specifically, we introduced
different notions of coverage that measure to what extent a collection of test inputs
covers certain important structural components of a program. Another typical method
used in conventional software development is random testing. Although random testing
is able to discover some errors quite quickly, it often needs to be complemented with
other techniques to increase test coverage. The effectiveness of such more systematic
testing methods is usually evaluated by comparison to random testing [2].

In this paper, we continue our work on testing and develop methods for structure-
based test input generation based on our previous work [1] and for random test input
generation. The basic research question we address is how the structure-based approach

� This work was partially supported by the Austrian Science Fund (FWF) under project P21698
and the Academy of Finland under project 122399.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 242–247, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Random vs. Structure-Based Testing of Answer-Set Programs 243

to test input generation compares to random test input generation. To this end, we eval-
uate structure-based and random testing using benchmark problems from the second
ASP competition [3]. The evaluation is based on mutation analysis [4], i.e., program
instances are rendered incorrect by injecting faults according to a mutation model. Then,
the two approaches are compared on the basis how well they can catch such faults.

2 Background

We deal with a class of logic programs that corresponds to the ground fragment of the
Gringo input language [5,6], which extends normal programs by aggregate atoms.
The semantics of this class is defined in terms of answer sets (also known as stable
models) [7]. We denote the collection of all answer sets of a program P by AS(P).
Given a programP and an interpretation I , the set of supporting rules of P with respect
to I , SuppR(P, I), consists of all rules r ∈ P whose body is true in I . Moreover, for an
ordinary atom a, DefP (a) is the set of defining rules of a in P , i.e., the set of all rules
in P where a occurs positively in the rule head (possibly within an aggregate atom).

We next review some definitions related to testing logic programs [1]. With each
program P , we associate two finite sets of ordinary atoms, IP and OP , which are the
respective input and output signatures of P . A test input, or simply input, of P is a finite
set of atoms from IP . Given some input I of P , the output of P with respect to I , P [I],
is defined as P [I] = {S ∩OP | S ∈ AS(P ∪ I)}. Moreover, a specification s for P is
a mapping from the set of test inputs of P into sets of subsets of OP . P is considered
to be correct with respect to its specification s if P [I] = s(I) for each test input I of
P . Moreover, we define (i) a test case for P as a pair 〈I,O〉, where I is an input of P
and O = s(I), (ii) a test suite for P as a set of test cases for P , and (iii) the exhaustive
test suite for P as the collection of all test cases for P . We say that P passes a test case
T = 〈I,O〉 if P [I] = O, and P fails for T otherwise; and P passes a test suite S if P
passes all test cases in S, and P fails for S otherwise.

Given a program P and an input I of P , a proper rule r ∈ P (i.e., a rule which is not
a constraint) is positively covered (resp., negatively covered) by I if r ∈ SuppR(P,X)
(resp., r �∈ SuppR(P,X)) for someX ∈ AS(P ∪ I). A non-empty definition DefP (a)
of an ordinary atom a appearing in P is positively covered (resp., negatively covered)
by I if there is some X ∈ AS(P ∪ I) such that a ∈ X (resp., a �∈ X). On the other
hand, a constraint c ∈ P is covered by I if the body of c is true in some answer set
X ∈ AS((P \ {c})∪ I), i.e., c is temporarily removed from P for this notion. For any
of these coverage notions, we say that a test suite S yields total coverage on a program
P if each rule (definition, constraint) in P which is covered (positively and negatively)
by an input of the exhaustive test suite for P is covered by an input from S.

3 Experimental Setup

Our experimental setup involves six steps: (1) selecting some benchmark programs;
(2) grounding them to obtain reference programs; (3) injecting faults into the reference
programs to generate mutants; (4) generating random test suites for mutants; (5) gener-
ating structure-based test suites for mutants; and (6) comparing the resulting test suites.
We describe these steps in more detail in what follows.

244 T. Janhunen et al.

(1) Selection of Benchmark Instances. We consider programs from the benchmark
collection of the second ASP competition [3] for our experiments. In particular, we se-
lected the problems Maze Generation, Solitaire, Graph Partitioning, and Reachability
to represent typical program structures in ASP. The Maze Generation problem is about
generating a maze on a two-dimensional grid. The problem encoding is prototypical for
the guess-and-check paradigm in ASP and involves inductive definitions to express the
reachability conditions. A distinguishing feature of this problem is that solutions are par-
tially fixed in the input and completed in the output. Solitaire is a simple planning game
that is played on a grid with 33 cells. The structure of the encoding is slightly simpler
than for Maze Generation since no positive recursion is involved. Graph Partitioning is
a graph-theoretical problem about partitioning the nodes of a weighted graph subject
to certain conditions. It is representative for hard problems on linked data structures
that involve integer calculations. Finally, the objective of the Reachability problem is to
exhibit a path between two dedicated nodes in a directed graph. Reachability is a repre-
sentative for problems solvable in polynomial time. The central aspect is to efficiently
compute the transitive closure of the edge relation of the input graph.

(2) Grounding. Since our testing approach is defined for propositional programs, we
need to ground the programs from Step (1). Uniform ASP encodings usually involve
a natural parameter that allows one to scale the size of ground instances. For Maze
Generation, we used a bound on the size of the grid of 7×7 to obtain a finite grounding.
Since Solitaire is a planning problem, we parameterized it by setting the upper bound
on the lengths of plans to 4. For Graph Partitioning, since it takes graphs as input,
one natural scaling parameter is a bound on the number of nodes which we fixed to 7.
Furthermore, we fixed a bound of 3 on the maximal number of partitions and a bound
of 20 on maximal weights assigned to edges. For Reachability, we fixed an upper bound
of 6 on the number of nodes as the scaling parameter. We refer to the ground program
obtained in this step as reference program since it later serves as a test oracle, i.e., as a
method to determine the correct output given some input.

(3) Fault Injection. Based on grounded encodings from the ASP competition, we
follow an approach that is inspired by mutation analysis [4]. In this step, we apply
certain mutation operations on a program to obtain versions, so called mutants, where
small faults have been injected. Intuitively, mutation operations mimic typical mistakes
made by a programmer like omission of certain elements or misspelling of names. In
particular, we generate different classes of mutants, one class for each mutation oper-
ation. To this end, we consider (i) deleting a single body literal, (ii) deleting a single
rule of a program, (iii) swapping the polarity of literals, (iv) increasing or decreasing
the bound of an aggregate by one, and (v) replacing an atom by another atom appearing
in the program. For each grounded benchmark encoding, we generated different classes
of mutants, in particular, one class of mutants for each mutation operation. The bound
modification was not applied to the Maze Generation and Reachability instances which
do not involve aggregate atoms nor bounds. Each mutant was generated by applying a
mutation operation precisely once. Each class consists of 100 mutants which are pub-
licly available1. We used dedicated equivalence tests [8] to eliminate equivalent mutants
that cannot be distinguished from the reference program by any test input.

1 http://www.kr.tuwien.ac.at/research/projects/mmdasp/mutant.tgz

http://www.kr.tuwien.ac.at/research/projects/mmdasp/mutant.tgz

Random vs. Structure-Based Testing of Answer-Set Programs 245

(4) Random Test Suite. In software testing, a rigorous theoretical analysis of the
fault detection capabilities of systematic testing methods is practically infeasible. What
usually is done is that systematic methods are compared to the random-testing stan-
dard [2]. Random testing means that test inputs are randomly selected from the input
space—usually a uniform distribution is used. For each benchmark problem in our ex-
periments, we formalized the preconditions as a simple program mainly consisting of
integrity constraints. Any model of such a program constitutes an admissible input, i.e.,
one which is consistent with the preconditions of the encoding. Hence, the task of gen-
erating admissible random inputs can be reduced to computing uniformly-distributed
answer sets of logic programs.

Our approach to random testing is to incrementally and in a highly randomized way
build an answer set of the program that formalizes the preconditions of a benchmark
problem. The algorithm takes a program P with input signature IP and generates a
random test input I for P such that P [I] �= ∅ incrementally starting from the empty set.
For each atom from IP , one after the other, we decide by tossing a coin whether or not it
should be contained in the final input. Furthermore, we always check if such a decision
allows to proceed in a way that the final input is consistent with the program. This
check is realized using ASP and a method which does not guarantee strictly uniform
distribution of inputs as a reasonable compromise. For each mutant of each benchmark
class, we generated 1000 random inputs.

(5) Structure-Based Test Suite. We next review our approach to generate test inputs
that yield total coverage. First, we sketch how we can use ASP itself to generate cover-
ing inputs. Let P be a program with input signature IP . We define the input generator
for P , denoted IG(P), as the program {a′ ← not a′′; a′′ ← not a′; a ← a′ | a ∈ IP }
where all primed and double primed atoms do not occur anywhere else. A program P
is labeled for rule coverage as the program LR(P) = {H(r) ← r′; r′ ← B(r) | r ∈ P}
where r′ is a globally new label for each r ∈ P . To cover individual rules either posi-
tively or negatively, we use programsP+

r = LR(P)∪{← not r′} and P−
r = LR(P)∪

{← r′}, respectively. Then, the inputs for P that cover r positively and negatively are in
a one-to-one correspondence with the respective sets {X∩IP | X ∈ AS(IG(P)∪P+

r)}
and {X ∩ IP | X ∈ AS(IG(P) ∪ P−

r)} of inputs. Similar reductions can be devised
for the other coverage notions. The preconditions of each benchmark program P form
a set C of constraints which can be incorporated to the preceding reductions in this way
restricting the reductions to admissible test inputs of P . Given a mutated program P ,
we generate test suites that yield total rule coverage for P using the reduction P+

r . We
first generate a test suite S that obtains total positive rule coverage for P . To this end,
we pick a rule r ∈ P not yet positively covered and check whether there is an input
and a corresponding answer set X that positively covers r. If such an input exists, r is
marked as positively covered, if not, r is marked as positively failed, meaning that no
inputs exist that cover r positively. Then, some simple bookkeeping takes place: any
rule that is positively, resp., negatively, covered by the answer set X is marked accord-
ingly. The procedure iterates until all rules are marked as positively covered or failed.
A similar procedure is then applied to extend S to obtain total negative rule coverage.
The method for the other notions of coverage is analogous. Note that for a program
P , there is a test suite that obtains total rule, definition, or constraint coverage whose

246 T. Janhunen et al.

Table 1. Catching rates for the Maze Generation and Reachability benchmark

Maze Generation
size of test suite AR LD RD PS Total

Random Testing 1000 0.03 0.18 0.00 0.16 0.09
Definition Coverage 36 0.67 0.63 0.74 0.78 0.71

Rule Coverage 85 0.78 0.66 0.78 0.75 0.74
Constraint Coverage 176 0.81 0.74 0.81 0.90 0.82

Definition & Constraint Coverage 212 0.86 0.87 0.85 0.93 0.88
Rule & Constraint Coverage 261 0.89 0.88 0.86 0.94 0.89

Reachability

size of test suite AR LD RD PS Total
Random Testing 1000 0.61 0.56 0.59 0.69 0.61

Definition Coverage 37 0.09 0.17 0.00 0.01 0.07
Rule Coverage 592 0.47 0.67 0.07 0.63 0.46

Constraint Coverage 36 0.15 0.02 0.10 0.07 0.09
Definition & Constraint Coverage 73 0.21 0.19 0.10 0.08 0.15

Rule & Constraint Coverage 628 0.56 0.69 0.17 0.64 0.52

size is bounded by the number of rules in P . Though our method does not guarantee
minimality of a test suite, it always produces one within this bound.

(6) Comparison. Finally, the different classes of test inputs are evaluated with re-
spect to their potential to catch mutants, i.e., to reveal the injected faults. To determine
whether a mutant passes a test case, we use the reference program as a test oracle. Given
a class M of mutants and a test suite S, the catching rate of S on M is the ratio of mu-
tants in M that fail for S and the total number of mutants in M .

4 Results and Discussion

Our test results in terms of catching rates for the Maze Generation and Reachability
benchmarks are summarized in Table 1. The mutation operations studied were atom re-
placement (AR), literal deletion (LD), rule deletion (RD), and literal polarity swapping
(PS). Besides definition, rule, and constraint coverage, we considered the combinations
of definition and rule coverage with constraint coverage. The column “size of test suite”
in the tables refers to the size of the generated test suites for each mutant class. For the
coverage-based suites, the numbers are averages over all test suites in a class.

For Maze Generation, random testing only obtains very low catching rates, while
systematic testing yields total rates of up to 0.9 using a significantly smaller test suite.
One explanation for the poor performance of random testing is that the probability that
a random test input is consistent with a mutant is very low. Inputs that yield no or few
outputs for a mutant seem to have a low potential for fault detection. The situation
is different for the Reachability benchmark: random testing performs slightly better
than systematic testing. This is mainly explained by the higher number of test inputs
used for random testing. The conclusion is that the considered structural information
seems to provide no additional advantage compared to randomly picking inputs for

Random vs. Structure-Based Testing of Answer-Set Programs 247

this benchmark. As regards structural testing, the best detection rate is obtained by
combining rule and constraint coverage. However, this comes at a cost of larger test
suites compared to the other coverage notions. We conducted similar experiments using
the Graph Partitioning and Solitaire benchmarks. Interestingly, it turned out that testing
seems to be trivial in these cases. Since both random and structural testing achieved a
constant catching rate of 1.00 for all mutant classes, we omit the respective tables. In
fact, almost any test input catches all mutants for these programs. This nicely illustrates
how the non-determinism involved in answer-set semantics affects testing. While in
conventional testing only a single execution results from a particular test input, the
situation in ASP is different. Given a test input, the output of a uniform encoding can
consist of a vast number of answer sets, each of which potentially revealing a fault.
For example, typical random inputs for Solitaire yield tens of thousands of answer sets
which gives quite a lot information for testing. In other words, the probability that some
effects of a fault show up in at least one answer set seems to be quite high.

For some encodings, systematic testing gives a clear advantage over random testing
while for other programs, it could not be established that one approach is better than
the other. These findings are in principle consistent with experiences in conventional
software testing. The results indicate that random testing is quite effective in catching
errors provided that sufficiently many admissible test inputs are considered. There is
no clear-cut rule when to use random or systematic testing. The advantage of random
testing is that inputs can be easily generated, directly based on a specification, and that
the fault detection rates can be surprisingly good. The advantage of structure-based
testing is that resulting test suites tend to be smaller which is especially important if
testing is expensive. For some problems, structure-based testing is able to detect faults
at a high rate but random testing is very ineffective even with much larger test suites.

References

1. Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J., Tompits, H.: On testing answer-set programs.
In: Proc. ECAI 2010, pp. 951–956. IOS Press, Amsterdam (2010)

2. Hamlet, R.: Random testing. In: Encyclopedia of Software Engineering, pp. 970–978. Wiley,
Chichester (1994)

3. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The second answer
set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

4. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection help for the practicing
programmer. IEEE Computer 11(4), 34–41 (1978)

5. Gebser, M., Schaub, T., Thiele, S.: Gringo: A new grounder for answer set programming. In:
Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 266–271.
Springer, Heidelberg (2007)

6. Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the input language of ASP
grounder gringo. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp.
502–508. Springer, Heidelberg (2009)

7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. 5th
Logic Programming Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)

8. Janhunen, T., Oikarinen, E.: LPEQ and DLPEQ – translators for automated equivalence testing
of logic programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923,
pp. 336–340. Springer, Heidelberg (2003)

Integrating Rules and Ontologies in the

First-Order Stable Model Semantics
(Preliminary Report)

Joohyung Lee and Ravi Palla

School of Computing, Informatics and Decision Systems Engineering
Arizona State University
Tempe, AZ, 85287, USA

{joolee,Ravi.Palla}@asu.edu

Abstract. We present an approach to integrating rules and ontologies
on the basis of the first-order stable model semantics defined by Ferraris,
Lee and Lifschitz. We show that a few existing integration proposals can
be uniformly related to the first-order stable model semantics.

1 Introduction

Integrating nonmonotonic rules and ontologies has received much attention, espe-
cially in the context of the Semantic Web. A hybrid knowledge base (hybrid KB)
is a pair (T ,P) where T is a first-order logic (FOL) knowledge base (typically
in a description logic (DL)) and P is a logic program. The existing integration
approaches can be classified into three categories [1]. In the loose integration ap-
proach (e.g., [1]), T is viewed as an external source of information with its own
semantics that can be accessed by entailment-based query interfaces from P . In
the tight integration with semantic separation approach (e.g.,[2; 3; 4]), the seman-
tics of logic programs are adapted to allow predicates of T in the rules, thereby
leading to a more tight coupling. On the other hand, a model of the hybrid KB is
constructed by the union of a model of T and a model of P . In the tight integra-
tion under a unifying logic approach (e.g.,[5; 6]), T and P are treated uniformly
as they are embedded into a unifying nonmonotonic logic.

Typically, existing integration approaches assume that the underlying sig-
nature does not contain function constants of positive arity. We represent the
signature by 〈C,P 〉 where C is a set of object constants and P is a set of pred-
icate constants. Formally, a hybrid KB (T ,P) of the signature 〈C,PT ∪ PP〉
where PT and PP are disjoint sets of predicate constants, consists of a first-
order logic knowledge base T of signature 〈C,PT 〉 and a logic program P of
signature 〈C,PT ∪ PP〉.

In this paper, we investigate whether the first-order stable model semantics
(FOSM) [7], which naturally extends both first-order logic and logic programs,
can serve as a unifying logic for the integration of rules and ontologies. As the
first step, we show how some of the well-known integration proposals from each
category, namely, nonmonotonic dl-programs [1] (loose integration), DL + log

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 248–253, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Integrating Rules and Ontologies in the First-Order Stable Model Semantics 249

[3] (tight integration with semantic separation), and quantified equilibrium logic
based integration [5] (tight integration under a unifying logic), can be related to
the first-order stable model semantics.

2 FOSM Based Hybrid KB

We refer the reader to [7] for the definition of the first-order stable model se-
mantics, which applies to any first-order sentence. There the stable models of a
first-order sentence F relative to a list p of predicates are defined as the models of
the second-order sentence SM[F ;p] (in the sense of classical logic). Syntactically,
SM[F ;p] is the formula

F ∧ ¬∃u((u < p) ∧ F ∗(u)), (1)

where u is a list of predicate variables corresponding to p, and F ∗ is defined
recursively (See [7] for the details). In general, p is any list of predicate constants
called intensional predicates—the predicates that we “intend to characterize”
by F . Logic programs are identified as a special class of first-order theories by
turning them into their FOL-representations. In [7], it is shown that the answer
sets of a logic program P are precisely the Herbrand interpretations that satisfy
SM[F ;p], where F is the FOL-representation of P and p is the list of all predicate
constants occurring in P . In another special case when p is empty, SM[F ;p] is
equivalent to F . Consequently, both logic programs and first-order logic formulas
can be viewed as special cases of SM[F ;p] depending on the choice of intensional
predicates p. As we show below, the distinction between intensional and non-
intensional predicates is useful in characterizing hybrid KBs.

Throughout this paper, we assume that a hybrid KB contains finitely many
rules in P1. We identify a hybrid KB (T ,P) of signature 〈C,PT ∪ PP〉 with the
second-order sentence SM[FO(T) ∧ FO(P);PP] of the same signature, where
FO(T) (FO(P), respectively) is the first-order logic (FOL) representation of T
(P , respectively).

Example 1. [5, Example 1] Consider a hybrid KB consisting of a first-order logic
theory T

∀x(PERSON (x) → (AGENT (x) ∧ (∃yHAS-MOTHER(x, y))))
∀x((∃yHAS-MOTHER(x, y)) → ANIMAL(x))

(every PERSON is an AGENT and has some (unknown) mother, and everyone
who has a mother is an ANIMAL) and a nonmonotonic logic program P

PERSON (x) ← AGENT (x),not machine(x)
AGENT (DaveB)

1 This is for simplicity of applying SM. Alternatively we may extend SM to (possibly
infinite) sets of formulas.

250 J. Lee and R. Palla

(AGENT s are by default PERSON s, unless known to be machines, and DaveB is
an AGENT). Here PT is {PERSON ,AGENT ,HAS-MOTHER,ANIMAL}, and
PP is {machine}. Formula SM[FO(T) ∧ FO(P); machine] entails PERSON
(DaveB). Furthermore, it entails each of ∃yHAS-MOTHER(DaveB, y) and
ANIMAL(DaveB).

In fact, this treatment of a hybrid KB is essentially equivalent to the quantified
equilibrium logic (QEL) based approach, as stated in Theorem 15 from [5]. The
equivalence is also immediate from Lemma 9 from [7], which shows the equiva-
lence between the first-order stable model semantics and QEL. de Bruijn et al.
[5] show that a few other integration approaches, such as r-hybrid, r+-hybrid,
and g-hybrid KBs, can be embedded into QEL-based hybrid KBs. Consequently,
they can also be represented by the first-order stable model semantics.

In the following we relate DL+ log [3] and nonmonotonic dl-programs [1] to
the first-order stable model semantics.

3 Relating to DL + log by Rosati

We refer the reader to [3] for the nonmonotonic semantics of DL+ log. A DL+
log knowledge base is (T ,P) where T is a DL knowledge base of signature
〈C,PT 〉 and P is a (disjunctive) Datalog program of signature 〈C,PT ∪ PP〉.
DL + log imposes the standard name assumption: every interpretation is over
the same fixed, countably infinite domain Δ, and in addition the set C of object
constants is such that it is in the same one-to-one correspondence with Δ in
every interpretation. As a result, for simplicity, we identify Δ with C.

In DL+ log, the predicates from PT are not allowed to occur in the negative
body of a rule in P . In order to ensure decidable reasoning, DL+log imposes two
conditions: Datalog safety and weak safety. The rules of P are called Datalog
safe if every variable occurring in a rule also occurs in the positive body of the
rule, and they are called weakly safe if every variable occurring in the head of a
rule also occurs in a Datalog atom in the positive body of the rule.

The nonmonotonic semantics of DL + log is based on the stable model se-
mantics for disjunctive logic programs. The following proposition shows how
the nonmonotonic semantics of DL + log can be reformulated in terms of the
first-order stable model semantics.

Proposition 1. For any DL + log knowledge base (T ,P), under the standard
name assumption, the nonmonotonic models of (T ,P) according to [3] are pre-
cisely the interpretations of 〈C,PT ∪PP〉 that satisfy SM[FO(T)∧FO(P); PP].

Since the reformulation does not refer to grounding, arguably, it provides a
simpler account of DL+ log in comparison with the original semantics in [3].

In view of the relationship between the two formalisms in Proposition 1, we
observe that the condition of weak safety imposed in DL+ log coincides with the
condition of semi-safety from [8] that applies to FO(T) ∧ FO(P) when we take

Integrating Rules and Ontologies in the First-Order Stable Model Semantics 251

PP as intensional predicates2. Using the results on semi-safety presented in [8],
below we show that the requirement of Datalog safety can be dropped without
affecting the decidability of reasoning in DL+ log.

Proposition 2. Let K = (T ,P) be a DL + log knowledge base such that P is
weakly safe but is not necessarily Datalog safe. Let P ′ be the program obtained
from P by removing in every rule, all the negative Datalog literals that contain
a variable that occurs only in the negative body. Then K is equivalent (under the
nonmonotonic semantics) to the DL+ log knowledge base (T ,P ′).

Since the complexity of the transformation required to obtain P ′ is polynomial
in the size of P , Proposition 2 tells us that the decidability results (Theorems 11
and 12 from [3]) and the complexity results (Theorem 13 from [3]) with respect
to the nonmonotonic semantics of DL+log can be straightforwardly carried over
to DL+ log knowledge bases (T ,P) where P is weakly safe but not necessarily
Datalog safe.

4 Relating to Nonmonotonic dl-Programs by Eiter et al.

A nonmonotonic dl-program [1] is a pair (T ,P), where T is a DL knowledge base
of signature 〈C,PT 〉 and P is a generalized normal logic program of signature
〈C,PP 〉 such that PT ∩ PP = ∅. A generalized normal logic program is a set of
nondisjunctive rules that can contain queries to T in the form of “dl-atoms.” A
dl-atom is of the form

DL[S1op1p1, . . . , Smopmpm; Q](t) (m ≥ 0) (2)

where Si ∈ PT , pi ∈ PP , and opi ∈ {⊕,+,,}; Q(t) is a dl-query [1].
The semantics of dl-programs is defined by extending the answer set semantics

to generalized programs. For this, the definition of satisfaction is extended to
ground dl-atoms. An Herbrand interpretation I satisfies a ground atom A relative
to T if I satisfies A. An Herbrand interpretation I satisfies a ground dl-atom
(2) relative to T if T ∪

⋃m
i=1Ai(I) entails Q(t), where Ai(I) is

– {Si(e) | pi(e) ∈ I} if opi is ⊕,
– {¬Si(e) | pi(e) ∈ I} if opi is +,
– {¬Si(e) | pi(e) �∈ I} if opi is ,,

The satisfaction relation is extended to allow propositional connectives in the
usual way.

Eiter et al. [1] define two semantics of dl-programs, which are based on differ-
ent definitions of a reduct. In defining weak answer sets, the reduct is obtained
from the given program by eliminating all dl-atoms (similar to the way that the

2 The definition of semi-safety (called “argument-restricted” in that paper) is more
general. That definition applies to any prenex formula even allowing function con-
stants of positive arity.

252 J. Lee and R. Palla

negative literals in the body are eliminated in forming the reduct). In defining
strong answer sets, the reduct is obtained from the given program by eliminat-
ing all nonmonotonic dl-atoms, but leaving monotonic dl-atoms. Below we show
that each semantics can be characterized by our approach by extending F ∗ to
handle dl-atoms in different ways.

For this, we define dl-formulas of signature 〈C,PT ∪ PP 〉 as an extension of
first-order formulas by treating dl-atoms as a base case in addition to standard
atomic formulas formed from 〈C,PP 〉3. Note that any generalized normal logic
program can be viewed as a dl-formula: FO(P) can be extended to a generalized
normal logic program P in a straightforward way. Let F be a ground dl-formula4.
We define Fw∗ the same as F ∗ except for a new clause for a dl-atom:

DL[S1op1p1, . . . , Smopmpm;Q](c)w∗(u) = DL[S1op1p1, . . . , Smopmpm;Q](c).

SMw[F] is defined the same as formula (1) except that Fw∗ is used in place of F ∗.
The following proposition shows how weak answer sets can be characterized by
this extension. The notion FO(P) is straightforwardly extended to a generalized
normal logic program by treating dl-atoms like standard atoms.

Proposition 3. For any dl-program (T ,P) such that P is ground, the weak
answer sets of (T ,P) are precisely the Herbrand interpretations of signature
〈C,PP 〉 that satisfy SMw[FO(P); PP] relative to T .

In order to capture strong answer sets, we define F s∗ the same as F ∗ except for
a new clause for a dl-atom:

DL[S1op1p1, . . . , Smopmpm;Q](c)s∗(u) = DL[S1op1u1, . . . , Smopmum;Q](c)

(u1, . . . , um are the elements of u that correspond to p1, . . . , pm) if this dl-atom
is monotonic; otherwise

DL[S1op1p1, . . . , Smopmpm;Q](c)s∗(u) = DL[S1op1p1, . . . , Smopmpm;Q](c).

SMs[F] is defined the same as formula (1) except that F s∗ is used in place
of F ∗. The following proposition shows how strong answer sets can be charac-
terized by this extension.

Proposition 4. For any dl-program (T ,P) such that P is ground, the strong
answer sets of (T ,P) are precisely the Herbrand interpretations of signature
〈C,PP 〉 that satisfy SMs[FO(P); PP] relative to T .

The QEL based approach was extended to cover dl-programs in [10]. In that pa-
per, the authors capture the weak (strong, respectively) semantics of dl-programs
by defining weak (strong, respectively) QHT models of dl-atoms. The two vari-
ants of F ∗ above are syntactic counterparts of these definitions of QHT models.
3 The extension is similar to the extension of first-order formulas to allow aggregate

expressions as given in [9].
4 We require F to be ground because strong answer set semantics distinguishes if a

ground dl-atom is monotonic or nonmonotonic.

Integrating Rules and Ontologies in the First-Order Stable Model Semantics 253

5 Conclusion

Since the first-order stable model semantics is a generalization of the traditional
stable model semantics [11] to first-order formulas, it enables a rather simple
and straightforward integration of logic programs and first-order logic KB. Re-
cent work on the first-order stable model semantics helps us in studying the
semantic properties and computational aspects of the hybrid KBs. For example,
as discussed, the concept of semi-safety in the first-order stable model seman-
tics coincides with the concept of weak safety in DL + log and the results on
semi-safety can be used to show that weak safety is a sufficient condition for en-
suring the decidability of reasoning with DL+ log. Also, as discussed in [5], the
notion of strong equivalence can be applied to provide the notion of equivalence
between hybrid KBs.

Acknowledgements. We are grateful to David Pearce for pointers to earlier
work and anonymous referees for their useful comments. The authors were par-
tially supported by the National Science Foundation under Grants IIS-0916116
and by the IARPA SCIL program.

References

1. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
answer set programming with description logics for the semantic web. Artificial
Intelligence 172(12-13), 1495–1539 (2008)

2. Rosati, R.: On the decidability and complexity of integrating ontologies and rules.
J. Web Sem. 3(1), 61–73 (2005)

3. Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog.
In: Proceedings of International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR), pp. 68–78 (2006)

4. Heymans, S., de Bruijn, J., Predoiu, L., Feier, C., Nieuwenborgh, D.V.: Guarded
hybrid knowledge bases. TPLP 8(3), 411–429 (2008)

5. de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: A semantical framework for
hybrid knowledge bases. Knowl. Inf. Syst. 25(1), 81–104 (2010)

6. Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5) (2010)
7. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial

Intelligence 175, 236–263 (2011)
8. Bartholomew, M., Lee, J.: A decidable class of groundable formulas in the general

theory of stable models. In: Proceedings of International Conference on Principles
of Knowledge Representation and Reasoning (KR), pp. 477–485 (2010)

9. Lee, J., Meng, Y.: On reductive semantics of aggregates in answer set programming.
In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 182–
195. Springer, Heidelberg (2009)

10. Fink, M., Pearce, D.: A logical semantics for description logic programs. In: Jan-
hunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 156–168. Springer,
Heidelberg (2010)

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming
Conference and Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)

Gentzen-Type Refutation Systems for
Three-Valued Logics with an Application

to Disproving Strong Equivalence�

Johannes Oetsch and Hans Tompits

Technische Universität Wien, Institut für Informationssysteme 184/3,
Favoritenstraße 9-11, A-1040 Vienna, Austria
{oetsch,tompits}@kr.tuwien.ac.at

Abstract. While the purpose of conventional proof calculi is to axiomatise the
set of valid sentences of a logic, refutation systems axiomatise the invalid sen-
tences. Such systems are relevant not only for proof-theoretic reasons but also for
realising deductive systems for nonmonotonic logics. We introduce Gentzen-type
refutation systems for two basic three-valued logics and we discuss an applica-
tion of one of these calculi for disproving strong equivalence between answer-set
programs.

1 Introduction

In contrast to conventional proof calculi that axiomatise the valid sentences of a logic,
refutation systems, also known as complementary calculi or rejection systems, are con-
cerned with axiomatising the invalid sentences. Axiomatic rejection was introduced in
modern logic by Jan Łukasiewicz in his well-known treatise on analysing Aristotle’s
syllogistic [1]. Subsequently, refutation systems have been studied for different log-
ics [2,3,4,5,6,7,8] (for an overview, cf., e.g., the papers by Wybraniec-Skardowska [9]
and by Caferra and Peltier [10]). Such systems are relevant not only for proof-theoretic
reasons but also for realising deductive systems for nonmonotonic logics [11]. More-
over, axiomatic refutation provide the means for proof-theoretic investigations
concerned with proof complexity, i.e., with the size of proof representations [12].

In this paper, we introduce analytic Gentzen-type refutation systems for two partic-
ular three-valued logics, L and P , following Avron [13]. The notable feature of these
logics is that they are truth-functionally complete, i.e., any truth-functional three-valued
logic can be embedded into these logics. In particular, Gödel’s three-valued logic [14]
is expressible in L, and since equivalence in this logic amounts to strong equivalence
between logic programs under the answer-set semantics, in view of the well-known re-
sult by Lifschitz, Pearce, and Valverde [15], we can apply our refutation system for L
to disprove strong equivalence between programs in a purely deductive manner, which
will be briefly discussed in this paper as well. Finally, there is a Prolog implementation
of our calculi available, which can be downloaded at

www.kr.tuwien.ac.at/research/projects/mmdasp
� This work was partially supported by the Austrian Science Fund (FWF) under grant P21698.

The authors would like to thank Valentin Goranko, Robert Sochacki, and Urszula Wybraniec-
Skardowska for valuable support during the preparation of this paper.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 254–259, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.kr.tuwien.ac.at/research/projects/mmdasp

Gentzen-Type Refutation Systems for Three-Valued Logics 255

2 Preliminaries

Unlike classical two-valued logic, three-valued logics admit a further truth value be-
sides true and false. Let t and f be the classical truth values, representing true and false
propositions, respectively, and i the third one. Semantically, there are only two major
classes of three-valued logics: those where i is designated, i.e., associated with truth,
and those where i is not designated. In this paper, we are concerned with two logics,
L and P [13]. Logic L can be considered as a prototypical logic where i is not des-
ignated, whilst P is a prototypical logic where i is designated. Both logics are fully
expressive, meaning that they allow to embed any truth-functional three-valued logic
from the literature in it.

Both L and P are formulated over a countably infinite universe U of atoms including
the truth constants T, F, and I. Based on the connectives ¬, ∨, ∧, and ⊃, the set of
well-formed formulae is defined as usual. A set of literals is consistent if it does not
contain both an atom and its negation. In P , t and i are designated, while in L, the only
designated truth value is t.

By an interpretation, we understand a mapping from U into {t, f , i}. For any inter-
pretation I , I(T) = t, I(F) = f , and I(I) = i. As usual, a valuation is a mapping from
formulae into the set of truth values. We assume the ordering f < i < t on the truth
values in what follows. The valuation vI

L(·) of a formula in L given an interpretation
I is is inductively defined as follows: (i) vI

L(ψ) = I(ψ), if ψ is an atomic formula;
(ii) vI

L(¬ψ) = t if vI
L(ψ) = f , vI

L(¬ψ) = f if vI
L(ψ) = t, and vI

L(¬ψ) = i otherwise;
(iii) vI

L(ψ ∧ ϕ) = min(vI
L(ψ), vI

L(ϕ)); (iv) vI
L(ψ ∨ ϕ) = max(vI

L(ψ), vI
L(ϕ)); and

(v) vI
L(ψ ⊃ ϕ) = vI

L(ϕ) if vI
L(ψ) = t, and vI

L(ψ ⊃ ϕ) = t otherwise. The valuation
vI
P(·) of a formula in P given an interpretation I is defined like vI

L(·) except for the
condition of the implication: vI

P(ψ ⊃ ϕ) = vI
P (ϕ) if vI

P(ψ) = t or vI
P(ψ) = i, and

vI
P(ψ ⊃ ϕ) = t otherwise.

A formula ψ is true under an interpretation I in L if vI
L(ψ) = t. Likewise, ψ is true

for I in P if vI
P (ψ) = t or vI

P(ψ) = i. If ψ is true under I in L (resp., P), I is a model
of ψ in L (resp., P). For a set Γ of formulae, I is a model of Γ in L (resp., P) if I is a
model in L (resp., P) for each formula in Γ. A formula is valid in L (resp., P) if it is
true for each interpretation in L (resp., P).

3 The Refutation Calculi SRCL and SRCP

Bryll and Maduch [16] axiomatised the invalid sentences of Łukasiewicz’s many-valued
logics including the three-valued case by means of a Hilbert-type calculus. Since their
calculus is not analytic, its usefulness for proof search in practice is rather limited. In
this paper, we aim at analytic Gentzen-style refutation calculi for three-valued logics.
The first sequential refutation systems for classical propositional logic was introduced
by Tiomkin [4]; equivalent systems were independently discussed by Goranko [6] and
Bonatti [5]. We pursue this work towards similar refutation systems for the logicsL and
P , which we will call SRCL and SRCP, respectively.

By an anti-sequent, we understand a pair of form Γ - Δ, where Γ and Δ are finite
sets of formulae1. Given a set Γ of formulas and a formula ψ, following custom, we

1 The symbol “�”, the dual of Frege’s assertion sign “�”, is due to Ivo Thomas.

256 J. Oetsch and H. Tompits

Γ � Δ, ψ
(⊃ l)1

Γ, ψ ⊃ ϕ � Δ

Γ, ϕ � Δ
(⊃ l)2

Γ, ψ ⊃ ϕ � Δ

Γ, ψ � Δ, ϕ
(⊃ r)

Γ � Δ, ψ ⊃ ϕ

Γ, ψ, ϕ � Δ
(∧ l)

Γ, ψ ∧ ϕ � Δ

Γ � Δ, ψ
(∧ r)1

Γ � Δ, ψ ∧ ϕ

Γ � Δ, ϕ
(∧ r)2

Γ � Δ, ψ ∧ ϕ

Γ, ψ � Δ
(∨ l)1

Γ, ψ ∨ ϕ � Δ

Γ, ϕ � Δ
(∨ l)2

Γ, ψ ∨ ϕ � Δ

Γ � Δ, ψ, ϕ
(∨ r)

Γ � Δ, ψ ∨ ϕ

Fig. 1. Standard rules of SRCL and SRCP

Γ, ψ � Δ
(¬¬ l)

Γ,¬¬ψ � Δ

Γ � Δ, ψ
(¬¬ r)

Γ � Δ,¬¬ψ

Γ,¬ψ � Δ
(¬∧ l)1

Γ,¬(ψ ∧ ϕ) � Δ

Γ,¬ϕ � Δ
(¬∧ l)2

Γ,¬(ψ ∧ ϕ) � Δ

Γ � Δ,¬ψ,¬ϕ
(¬∧ r)

Γ � Δ,¬(ψ ∧ ϕ)

Γ,¬ψ,¬ϕ � Δ
(¬∨ l)

Γ,¬(ψ ∨ ϕ) � Δ

Γ � Δ,¬ψ
(¬∨ r)1

Γ � Δ,¬(ψ ∨ ϕ)

Γ � Δ,¬ϕ
(¬∨ r)2

Γ � Δ,¬(ψ ∨ ϕ)

Γ, ψ,¬ϕ � Δ
(¬⊃ l)

Γ,¬(ψ ⊃ ϕ) � Δ

Γ � Δ, ψ
(¬⊃ r)1

Γ � Δ,¬(ψ ⊃ ϕ)

Γ � Δ,¬ϕ
(¬⊃ r)2

Γ � Δ,¬(ψ ⊃ ϕ)

Fig. 2. Non-Standard rules of SRCL and SRCP

write “Γ, ψ” as a shorthand for Γ ∪ {ψ}. An interpretation I refutes Γ - Δ in L (resp.,
P) iff I is a model of Γ in L (resp., P) and all formulae in Δ are false under I in L
(resp.,P). Moreover, an anti-sequent is refutable in L (resp.,P) iff it is refuted by some
interpretation in L (resp., P).

The postulates of the calculi SRCL and SRCP are as follows: Let Γ and Δ be
two disjoint sets of literals such that ¬T,F �∈ Γ and T,¬F �∈ Δ. Then, Γ - Δ is
an axiom of SRCL iff {I,¬I} ∩ Γ = ∅ and Γ is consistent, and Γ - Δ is an axiom
of SRCP iff {I,¬I} ∩ Δ = ∅ and Δ is consistent. The inference rules of SRCL
and SRCP comprise the standard rules depicted in Fig. 1 and the non-standard rules
depicted in Fig. 2. The standard rules introduce one occurrence of ∧, ∨, or ⊃ at a
time. Note that they coincide with the respective introduction rules in the refutation
systems for classical logic [4,6,5]. The non-standard rules introduce two occurrences of
a connective at the same time, in particular this concerns negation in combination with
all other connectives. Note that the logical rules of SRCL and SRCP coincide, so the
difference between the two calculi lies only in their axioms.

Gentzen-Type Refutation Systems for Three-Valued Logics 257

Theorem 1 (Soundness and Completeness). For any anti-sequent Γ - Δ, (i) Γ - Δ
is provable in SRCL iff Γ - Δ is refutable in L, and (ii) Γ - Δ is provable in SRCP
iff Γ - Δ is refutable in P .

Note that our calculi are, in a sense, refutational counterparts of the Gentzen-type calculi
of Avron [17] for axiomatising the valid sentences of L and P . In fact, for each unary
rule in Avron’s systems, our system contains a respective rule were “	” is replaced by
“-”, whilst for each binary rule of form

Γ′ 	 Δ′ Γ′′ 	 Δ′′

Γ 	 Δ

of Avron, our systems contain two rules

Γ′ - Δ′

Γ - Δ
and

Γ′′ - Δ′

Γ - Δ
.

Hence, as already remarked by Bonatti [5], exhaustive search in the standard system
becomes non-determinism in the refutation system—a property that often allows for
quite concise proofs and thus helps to reduce the size of proof representations.

Contrary to standard sequential systems, our systems do not contain binary rules.
Hence, proofs in our systems are not trees but sequences, and consequently each proof
has a single axiom. In fact, a proof of a formula ψ does not represent a single counter
model for ψ, rather it represents an entire class of counter models for ψ, in view of the
following property underlying the soundness of our calculi: each interpretation I that
refutes the axiom Γ - Δ in a proof of - ψ in SRCL (resp., in SRCP), also refutes
- ψ in SRCL (resp., in SRCP).

4 An Application for Disproving Strong Equivalence

We outline an application scenario that is concerned with logic programs under the
answer-set semantics [18]. In a nutshell, a (disjunctive) logic program is a set of rules
of form a1∨· · ·∨al ← al+1, . . . , am, not am+1, . . . not an, where all ai are atoms over
some universe U and “not” denotes default negation. The answer-sets of a program are
sets of atoms defined using a fixed-point construction based on the reduct of a program
relative to an interpretation [18].

Two logic programs are equivalent if they have the same answer sets. In contrast
to classical logic, equivalence between programs fails to yield a replacement property.
The notion of strong equivalence circumvents this problem: two programs P and Q
are strongly equivalent iff, for each program R, P ∪ R and Q ∪ R are equivalent. For
instance, consider P = {a ← not b, b ← not a} and Q = {a ∨ b}. P and Q are
equivalent but not strongly equivalent.

The central observation connecting strong equivalence with three-valued logics is the
well-known result [15] that strong equivalence between two programsP andQ holds iff
P and Q, interpreted as theories, are equivalent in Gödel’s three-valued logic [14]. The
connectives of three-valued Gödel logic are ∧, ∨, ∼, and→G, which can be defined in
L as ∼ψ = ¬(¬ψ ⊃ ψ) and ψ →G ϕ = ((¬ϕ ⊃ ¬ψ) ⊃ ψ) ⊃ ϕ. In view of this, we
can extend SRCL by derived rules for ∼and→G, which are given in Fig. 3.

258 J. Oetsch and H. Tompits

Γ,¬ψ � Δ
(∼ l)

Γ,∼ψ � Δ

Γ � Δ,¬ψ
(∼ r)

Γ � Δ,∼ψ

Γ � Δ, ψ,¬ϕ
(→G l)1

Γ, ψ →G ϕ � Δ

Γ, ϕ � Δ
(→G l)2

Γ, ψ →G ϕ � Δ

Γ,¬ψ � Δ
(→G l)3

Γ, ψ →G ϕ � Δ

Γ, ψ � Δ, ϕ
(→G r)1

Γ � Δ, ψ →G ϕ

Γ,¬ϕ � Δ,¬ψ
(→G r)2

Γ � Δ, ψ →G ϕ

Γ � Δ,¬ψ
(¬∼ l)

Γ,¬∼ψ � Δ

Γ,¬ψ � Δ
(¬∼ r)

Γ � Δ,¬∼ψ

Γ,¬ϕ � Δ,¬ψ
(¬→G l)

Γ,¬(ψ →G ϕ) � Δ

Γ � Δ,¬ϕ
(¬→G r)1

Γ � Δ,¬(ψ →G ϕ)

Γ,¬ψ � Δ
(¬→G r)2

Γ � Δ,¬(ψ →G ϕ)

Fig. 3. Derived rules for three-valued Gödel logic

To verify that P and Q are not strongly equivalent, it suffices to give a proof of one
of P - Q or Q - P in SRCL2. While Q - P is not provable, there is a proof of
P - Q:

- a, b,¬a,¬b
(∼ r), (∼ r)- a, b,∼a,∼b
(→G l)1, (→G l)1∼a→G b,∼b→G a - a, b

(∨ r)∼a→G b,∼b→G a - a ∨ b
(∧ l)

(∼a→G b) ∧ (∼b→G a) - a ∨ b

Hence, P andQ are indeed not strongly equivalent. In fact, as detailed below, a concrete
program R such that P ∪ R and Q ∪ R have different answer sets, i.e., a witness that
P and Q are not strongly equivalent, can be immediately constructed from the axiom
- a, b,¬a,¬b of the above proof:R = {a← b, b← a}. Indeed, P ∪R has no answer
set while Q ∪R yields {a, b} as its unique answer set.

The general method to obtain a witness theory (asR above) from an axiom in SRCL
is as follows: Given an axiom Γ - Δ, construct some interpretation I that refutes Γ - Δ.
For the above example, an interpretation that assigns both a and b to i would refute the
axiom already. Note that I then refutes P - Q as well. Based on I , a witness program
R can always be constructed by using the next proposition which immediately follows
from the proof of the main theorem by Lifschitz, Pearce, and Valverde [15]:

Proposition 1. Let P and Q be two programs such that an I is a model of P but not
of Q in three-valued Gödel logic, and let J be the classical interpretation defined by
setting J(a) = f iff I(a) = f , and define R′ = {a | I(a) = t or I(a) = i} and

2 We interpret programs as a theories, i.e., as the conjunctions of rules, where rules are inter-
preted as implications.

Gentzen-Type Refutation Systems for Three-Valued Logics 259

R′′ = {a | I(a) = t} ∪ {a →G b | I(a) = I(b) = i}. Then, P ∪ R and Q ∪ R are
not strongly equivalent, where R = R′ if J is not a classical model of Q, and R = R′′

otherwise.

Note that a proof that two programs are not strongly equivalent represents, in general,
not only a single witness program but an entire class of programs which distinguishes
our axiomatic approach from approaches based on finding counter models.

References

1. Łukasiewicz, J.: Aristotle’s syllogistic from the standpoint of modern formal logic, 2nd edn.
Clarendon Press, Oxford (1957)

2. Kreisel, G., Putnam, H.: Eine Unableitbarkeitsbeweismethode für den Intuitionistischen Aus-
sagenkalkül. Archiv für Mathematische Logik und Grundlagenforschung 3, 74–78 (1957)

3. Wójcicki, R.: Dual counterparts of consequence operations. Bulletin of the Section of
Logic 2, 54–57 (1973)

4. Tiomkin, M.: Proving unprovability. In: 3rd Annual Symposium on Logics in Computer Sci-
ence, pp. 22–27. IEEE, Los Alamitos (1988)

5. Bonatti, P.A.: A Gentzen system for non-theorems. Technical Report CD-TR 93/52, Christian
Doppler Labor für Expertensysteme, Technische Universität Wien (1993)

6. Goranko, V.: Refutation systems in modal logic. Studia Logica 53, 299–324 (1994)
7. Skura, T.: Refutations and proofs in S4. In: Proof Theory of Modal Logic, pp. 45–51. Kluwer,

Dordrecht (1996)
8. Skura, T.: A refutation theory. Logica Universalis 3, 293–302 (2009)
9. Wybraniec-Skardowska, U.: On the notion and function of the rejection of propositions. Acta

Universitatis Wratislaviensis Logika 23, 179–202 (2005)
10. Caferra, R., Peltier, N.: Accepting/rejecting propositions from accepted/rejected propositions:

A unifying overview. International Journal of Intelligent Systems 23, 999–1020 (2008)
11. Bonatti, P.A., Olivetti, N.: Sequent calculi for propositional nonmonotonic logics. ACM

Transactions on Computational Logic 3, 226–278 (2002)
12. Egly, U., Tompits, H.: Proof-complexity results for nonmonotonic reasoning. ACM Transac-

tions on Computational Logic 2, 340–387 (2001)
13. Avron, A.: Natural 3-valued logics - Characterization and proof theory. Journal of Symbolic

Logic 56 (1), 276–294 (1991)
14. Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anzeiger Akademie der Wissenschaften

Wien, mathematisch-naturwissenschaftliche Klasse 32, 65–66 (1932)
15. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-

tions on Computational Logic 2, 526–541 (2001)
16. Bryll, G., Maduch, M.: Aksjomaty odrzucone dla wielowartościowych logik Łukasiewicza.

In: Zeszyty Naukowe Wyższej Szkły Pedagogigicznej w Opolu, Matematyka VI, Logika i
algebra, pp. 3–17 (1968)

17. Avron, A.: Classical Gentzen-type methods in propositional many-valued logics. In: 31st
IEEE International Symposium on Multiple-Valued Logic, pp. 287–298. IEEE, Los Alamitos
(2001)

18. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385 (1991)

New Semantics for Epistemic Specifications

Michael Gelfond

Texas Tech University
michael.gelfond@ttu.edu

Abstract. This note presents a new version of the language of epistemic
specifications. The semantics of the new language is arguably closer to the
intuitive meaning of epistemic operators. It eliminates some unintended
interpretations which exist under the old definition. The author hopes
that the new language will be better suited for the design of intelligent
agents capable of introspective reasoning with incomplete information.

1 Introduction

The language of epistemic specifications [1,4] is an extension of the language of
disjunctive logic programs [3] by modal operators K and M, where KF stands
for F is known to be true and MF stands for F may be believed to be true.
The stated purpose of this work was to allow for the correct representation of
incomplete information in the presence of multiple belief sets. To illustrate the
need for the extension the authors considered the following simple example.

Example 1. [Scholarship Eligibility]
Consider a collection of rules

1. eligible(X)← highGPA(X)
2. eligible(X)← minority(X), fairGPA(X)
3. ¬eligible(X)← ¬fairGPA(X),¬highGPA(X)
4. interview(X)← not eligible(X),

not ¬eligible(X)

used by a certain college for awarding scholarships to its students. The first three
rules are self explanatory (we assume that variable X ranges over a given set of
students) while the fourth rule can be viewed as a formalization of the statement:

(*) The students whose eligibility is not determined by the college rules should
be interviewed by the scholarship committee.

We assume that this program is to be used in conjunction with a database DB
consisting of literals specifying values of the predicates minority, highGPA, and
fairGPA. Consider, for instance, DB consisting of the following two facts about
one of the students:

5. fairGPA(ann)
6. ¬highGPA(ann)

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 260–265, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

New Semantics for Epistemic Specifications 261

(Notice that DB contains no information about the minority status of Ann.) It
is easy to see that rules (1)–(6) allow us to conclude neither eligible(ann) nor
¬eligible(ann), therefore eligibility of Ann for the scholarship is undetermined
and, by rule (4), she must be interviewed. Formally this argument is reflected
by the fact that program T1 consisting of rules (1)–(6) has exactly one answer
set:

{fairGPA(ann),¬highGPA(ann), interview(ann)}.

The situation changes significantly if disjunctive information about students is
allowed to be represented in the database. Suppose, for instance, that we need to
augment rules (1)–(3) by the following information:

(**) Mike’s GPA is fair or high.

The corresponding program T2 consists of rules (1)–(3) augmented by the dis-
junction

7. fairGPA(mike) or highGPA(mike)

T2 has two answer sets:

A1 = {highGPA(mike), eligible(mike)}

and
A2 = {fairGPA(mike)},

and therefore the reasoner associated with T2 does not have enough informa-
tion to establish Mike’s eligibility for the scholarship (i.e. his answer to query
? eligible(mike) will be unknown). If we now expand this theory by (*) we ex-
pect the new theory T3 to be able to answer yes to a query interview(mike). It
is easy to see however that if (*) is represented by (4) this goal is not achieved.
The resulting theory T3 consisting of (1)–(4) and (7) has two answer sets

A3 = {highGPA(mike), eligible(mike)}

A4 = {fairGPA(mike), interview(mike)}
and therefore the answer to query interview(mike) is unknown. The reason of
course is that (4) is too weak to represent (*). The informal argument we are
trying to capture goes something like this: theory T3 answers neither yes nor no to
the query eligible(mike). Therefore, the answer to this question is undetermined,
and, by (*), Mike should be interviewed. To formalize this argument our system
should have a more powerful introspective ability than the one captured by the
notion of answer sets from [1].

To remedy this problem [1,4] introduced the language of epistemic specifications.
Literals of this language were divided into

– objective – expressions of the form p(t̄), ¬p(t̄), and
– subjective – expressions of the form Kl, ¬Kl, Ml, ¬Ml where l is an objective

literal.

262 M. Gelfond

Epistemic specifications were defined as collections of rules of the form:

l1 or . . . or lk ← gk+1, . . . , gm,not lm+1, . . . ,not ln (1)

where the l’s are objective literals and the g’s are subjective or objective literals1.
The semantics of an epistemic specification T has been given via the notion of
a world view of T - a collection of simple theories about the world which can
be built by a rational reasoner on the instructions from T . For a program T not
containing operators K and M the world view of T coincided with the collection
of all the answer sets of T . The precise definition went as follows:

Let T be a ground epistemic specifications and S be a collection of sets of ground
objective literals in the language of T ; S entails K l (S |= K l) if for everyW ∈ S,
l ∈ W . Otherwise S |= ¬K l). Similarly for M.
A disjunctive logic program T S was obtained from T by:

1. removing from T all rules containing subjective literals not entailed by S.
2. removing from rules in T all other occurrences of subjective literals.

T S was referred to as the reduct of T with respect to S. A set S was called a
world view of T if S were the collection of all answer sets of T S. Elements of S
were called belief sets of T . Epistemic specifications with variables were viewed
as shorthands for the collection of their ground instances.

The following example shows that the language of epistemic specifications pro-
vided the way to deal with the problem outlined in example 1.

Example 2. [Example 1 revisited]
The statement (*) above could be naturally expressed in the language of epis-
temic specifications by the rule:

interview(X)← not Keligible(X),
not K¬eligible(X)

which corresponds closely to the intuitive meaning of (*). The epistemic speci-
fication T consisting of this rule together with the rules (1) – (3) and (7) from
Example 1 has the world view A = {A1, A2} where

A1 = {highGPA(mike), eligible(mike), interview(mike)}

A2 = {fairGPA(mike), interview(mike)}

Therefore T answers unknown to the query eligible(mike) and yes to the query
interview(mike) which is the intended behavior of the system.

Unfortunately, as was first noticed by Teodor Przimusinski, world views of epis-
temic specifications do not always correspond to those intended by the authors.
Consider for instance the following example:
1 The actual language defined in these papers is substantially more general but its

simple version we present here is sufficient for our purpose.

New Semantics for Epistemic Specifications 263

Example 3. [Unsupported Beliefs]
Consider epistemic specification T1 consisting of the rule

p← Kp

It is easy to check that it has two world views: A1 = {∅} and A2 = {{p}}.
Clearly the second one is unintended. A rational agent will not have a belief p
which is supported only by Kp.

Even though some attempts to remedy the situation were made in [2] we have
never been able to obtain a fully satisfactory solution to the problem of unin-
tended world views. This paper is another attempt to the solution. The work is
of course preliminary but the author thought that it may be worth publishing
since there seems to be some renewed interest in epistemic specifications (see,
for instance, [6],[7].

2 The New Definition of Epistemic Specifications

The new definition of epistemic specifications suggests changes in both, syntax
and semantics of the language. Objective literals are defined as before; the sub-
jective literals have the form K l where l is an objective literal possibly preceded
by the default negation no. Expression K not p, which was not allowed in the
old version becomes a subjective literal of the new language. According to the
new definition epistemic specification is a collection of rules of the form:

l1 or . . . or lk ← gk+1, . . . , gm,not lm+1, . . . ,not ln (2)

where the l’s are objective literals and the g’s are subjective or objective literals.
The new syntax allows modal operator M to be expressed in terms of K.

M l =def ¬K not l

As before, programs with variables are viewed as shorthands for their ground
instantiations. The second, more substantial, change is in the definition of the
notion of the reduct.

Definition 1. [New Reduct]
Let T be an epistemic specification and S be a collection of sets of ground
literals in the language of T . By T S we will denote the disjunctive logic program
obtained from T by:

1. removing all rules containing subjective literals g such that S �|= g,
2. removing all other occurrences of subjective literals of the form ¬K l,
3. replacing remaining occurrences of literals of the form K l by l.

The definition of world view of T remains unchanged: a set S is called a world
view of T if S is the collection of all answer sets of T S.

The new definition deals correctly with the eligibility examples. According to
the new definition specification T from Example 2 has exactly the world views it

264 M. Gelfond

had under the old definition. This is not surprising, since the rules of T contain
no positive occurrences of K and hence the old reduct coincides with the new
one.

Let us now see how the new definition deals with unintended world views.

Example 4. [Example 3 revisited]
Consider

T1 = {p← Kp}

from Example 3. It is easy to see that, under the new semantics, A1 = {∅}
remains a world view of T1. However, A2 = {{p}} is not a world view of T1

according to the new definition; TA2
1 = {p← p}. Clearly its answer set, ∅, is not

equal to {p}. The new definition of reduct helps to eliminate the unsupported
beliefs.

The next example shows how the new language can be used for an alternative
formalization of the closed world assumption (CWA) [5]. The assumption, which
says that p(X) should be assumed to be false if there is no evidence to the
contrary, is normally expressed by an ASP rule

¬p(X)← not p(X) (3)

An interesting alternative representation of CWA may be given by epistemic rule

¬p(X)← ¬Mp(X) (4)

To better understand this formalization let us consider

Example 5. [Closed World Assumption]
Let T consist of the rules

1. p(a) or p(b).
2. p(c).
3. q(d).
4. ¬p(X)← ¬Mp(X)

According to the new definition the specification has one world view,

A = {{q(d), p(a), p(c),¬p(d)}, {q(d), p(b), p(c),¬p(d)}}.

To see that it is enough to recall that the rule

¬p(X)← ¬Mp(X)

is a shorthand for
¬p(X)← K not p(X)

and hence the corresponding reduct is

New Semantics for Epistemic Specifications 265

1. p(a) or p(b).
2. p(c).
3. q(d).
4. ¬p(d) ← not p(d)

If, however, we replace the last rule by the rule 3 the world view will change.
Now it would be

B = {{q(d), p(a),¬p(b), p(c),¬p(d)}, {q(d), p(b),¬p(a), p(c),¬p(d)}}.

Hence the first program will answer unknown to a query ¬p(a) or ¬p(b) while
the second will answer yes. To have the semantics of M in which program T
above will have exactly one world view, A, was part of the original goal of
[1,4]. Unfortunately, however, the goal was not achieved. According to the old
definition specification T above has three world views: the world view A above
and

A1 = {{q(d), p(c), p(a), ¬p(b), ¬p(d)}},

A2 = {{q(d), p(c), p(b), ¬p(a), ¬p(d)}},

The new definition of reduct allows us to get rid of the two unintended world
views.

Obviously the work presented in this note is preliminary. The first next step is
to see if the known results establishing properties of epistemic specifications and
the corresponding reasoning algorithms can be adopted to the new language.
There are many possible applications. Most immediate ones are to investigate
the use of the language for conformant planning and, when suitably expanded,
for probabilistic reasoning.

References

1. Gelfond, M.: Epistemic approach to formalization of commonsense reasoning. Tech-
nical Report TR-91-2, University of Texas at El Paso (1991)

2. Gelfond, M.: Logic programming and reasoning with incomplete information. Annals
of Mathematics and Artificial Intelligence 12 (1994)

3. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4), 365–386 (1991)

4. Gelfond, M., Przymusinska, H.: Reasoning in open domains. In: In Logic Program-
ming and Non-Monotonic Reasoning, pp. 397–413. MIT Press, Cambridge (1993)

5. Reiter, R.: On Closed World Data Bases. In: Logic and Data Bases, pp. 119–140.
Plenum Press, New York (1978)

6. Truszczynski, M.: Revisiting epistemic specifications. In: Logic Programming,
Knowledge Representation, and Nonmonotonic Reasoning: Essays in Honor of
Michael Gelfond (2010)

7. Zhang, Y.: Updating epistemic logic programs. J. Logic Computation 19(2), 405–423
(2009)

cmMUS: A Tool for Circumscription-Based MUS
Membership Testing

Mikoláš Janota2 and Joao Marques-Silva1,2

1 University College Dublin, Ireland
2 INESC-ID, Lisbon, Portugal

Abstract. This article presents cmMUS—a tool for deciding whether a clause
belongs to some minimal unsatisfiable subset (MUS) of a given formula. While
MUS-membership has a number of practical applications, related with under-
standing the causes of unsatisfiability, it is computationally challenging—it is
ΣP

2 -complete. The presented tool cmMUS solves the problem by translating it
to propositional circumscription, a well-known problem from the area of non-
monotonic reasoning. The tool constantly outperforms other approaches to the
problem, which is demonstrated on a variety of benchmarks.

1 Introduction

Unsatisfiable formulas, representing refutation-proofs or inconsistencies, appear in
various areas of automated reasoning. This article presents a tool that helps us to un-
derstand why a certain formula is unsatisfiable. To understand why a formula in the
conjunctive normal form (CNF), is unsatisfiable, it is sufficient to consider only some
of its subsets of clauses. More precisely, a set of clauses is called a minimally unsat-
isfiable subset (MUS) if it is unsatisfiable and any of its subsets is satisfiable. cmMUS
determines whether a given clause belongs to some MUS. This is referred to as the
MUS-MEMBERSHIP problem.

The MUS-MEMBERSHIP problem is important when one wants to restore consis-
tency of a formula: removing a clause that is not part of any MUS, will certainly not
restore consistency. Restoring consistency is an active area of research in the area of
product configuration [16,17]. For example, when configuring a product, some sets of
features result in an inconsistent configuration. Approaches for resolving conflicting fea-
tures often involves user intervention, e.g. to decide which features to remove. Clearly,
it is preferable to allow the user to deselect features relevant for the inconsistency.

2 Background

Throughout this paper, φ and ψ denote Boolean formulas. A Boolean formula φ in
Conjunctive Normal Form (CNF) is a conjunction of disjunctions of literals. Each dis-
junction of literals is called a clause, and it is preferably represented by ω. Where ap-
propriate, a CNF formula is interpreted as a set of clauses. A truth assignment μX is a
mapping from a set of variablesX to {0, 1}, μX : X → {0, 1}.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 266–271, 2011.
© Springer-Verlag Berlin Heidelberg 2011

cmMUS: A Tool for Circumscription-Based MUS Membership Testing 267

A QBF formula is a Boolean formula where variables can be universally or ex-
istentially quantified. We write QBFk,∃ to denote the class of formulas of the form
∃X1∀Y1 . . . ∃Xk∀Yk. φ. An important result from the complexity theory is that the va-
lidity of a formula in QBFk,∃ is ΣP

k -complete [15].
A Disjunctive Logic Program (DLP) is a set of rules of the form a1 ∨ · · · ∨ an ←

b1, . . . , bm,∼c1, . . . ,∼ck, where aj’s, bi’s, cl’s are propositional atoms. The part a1 ∨
· · · ∨ an is called the head and is viewed as a disjunction. The part right of← is called
the body and is viewed as a conjunction. The symbol ∼ is the default negation (the
failure to prove). The empty head is denoted as ⊥. If a program comprises only rules
with k = 0, the program is called positive. The stable model semantics is assumed for
disjunctive logic programs [4,5].

Circumscription was introduced by McCarthy as a form of nonmonotonic reason-
ing [14]. While the original definition of circumscription is for first-order logic, for the
purpose of this article we consider its propositional version. For a set of variables R, a
model M of the formula φ is an R-minimal model if it is minimal with respect to the
point-wise ordering on the variables R. The circumscription inference problem is the
problem of deciding whether a formulaψ holds in allR-minimal models of a formula φ.
If a formula ψ holds in all R-minimal models of a formula φ we write φ |=circ

R ψ.
We say that a set of clauses ψ ⊆ φ is a Maximally Satisfiable Subformula (MSS) iff

ψ is satisfiable and any set ψ′ s.t. ψ � ψ′ is unsatisfiable. Dually, we say that a set of
clauses ψ ⊆ φ is a Minimally Unsatisfiable Subformula (MUS) iff ψ is unsatisfiable and
any set ψ′ � ψ is satisfiable. The definition of MUSes yields the following problems.

Name: MUS-MEMBERSHIP

Given: A CNF formula φ and a clause ω.

Question: Is there an MUS ψ of φ such that ω ∈ ψ?

Name: MUS-OVERLAP

Given: CNF formulas φ and γ.

Question: Is there an MUS ψ of φ such that γ ∩ ψ �= ∅?

Observe that MUS-MEMBERSHIP is a special case of MUS-OVERLAP when γ con-
sists of a single clause, and, that MUS-OVERLAP can be expressed as a disjunction of
k instances of MUS-MEMBERSHIP, where k is the number of clauses in the formula γ.
However, cmMUS solves directly the more general problem MUS-OVERLAP.

It has been shown that both MUS-MEMBERSHIP and entailment in propositional cir-
cumscription are in the second level of the polynomial hierarchy: MUS-MEMBERSHIP

(and therefore MUS-OVERLAP) is ΣP
2 -complete [12]; entailment in propositional cir-

cumscription is ΠP
2 -complete [2].

3 cmMUS Description

cmMUS1 solves MUS-OVERLAP by translating it to propositional circumscription en-
tailment. It accepts a formula in the DIMACS format and a list of indices representing

1 Available at http://sat.inesc-id.pt/~mikolas/sw/cmmus

http://sat.inesc-id.pt/~mikolas/sw/cmmus

268 M. Janota and J. Marques-Silva

the clauses tested for overlap. To decide MUS-OVERLAP for a formula φ and a set of
clauses γ the tool performs the following steps.

1. It introduces the relaxed form of the formula φ∗ = {ω ∨ rω | ω ∈ φ}, where rω are
fresh variables.

2. It generates the circumscription entailment problem φ∗ |=circ
R

∧
ω∈γ ¬rω .

3. It solves the entailment by a dedicated algorithm based on counterexample guided
abstraction refinement [9].

4. If the answer to the entailment problem is “valid”, then there is no overlap between
MUSes of φ and the clauses γ. If the answer to the entailment problem is “invalid”,
then there is an overlap. Further, if rω has the value 1 in a counterexample to the
entailment, the clause ω overlaps with some MUS of φ.

Apart from the “yes”/“no” answer to the given MUS-OVERLAP problem, in the case
of an overlap (“yes”), the tool outputs a formula φ′ ⊆ φ such that φ′ is unsatisfiable
and any of its MUSes overlaps with γ. Details of the translation are explained in the
pertaining technical report [10].

4 Experimental Results

The following tools were considered for the experimental evaluation in addition to
cmMUS.

look4MUS is a tool dedicated to MUS-MEMBERSHIP based on MUS enumeration,
guided by heuristics based on a measure of inconsistency [7].

Quantified Boolean Formula (QBF). The problem was expressed as a QBF [10] and
inputted to the QBF solver QuBE 7.12. The solver was chosen because it solved the
most instances in the 2QBF track of QBF Evaluation 20103. The solver was invoked
with all its preprocessing techniques (using the -all switch) [6].

MSS enum. A clause appears in some MUS if there exists an MSS that does not
contain it [11,10]. The tool CAMUS [13] was used to enumerate MSSes of the given
formula. The enumeration stops if it encounters an MSS that does not contain at least
one of the clauses in γ.

Disjunctive Logic Programming. The translation to disjunctive logic programming
(DLP) was performed in a sequence of steps.

1. Translate the relaxed version φ∗ into a positive disjunctive logic program by putting
positive atoms in the head and negative in the body.

2. Apply the tool circ2dlp [8] to produce a disjunctive logic program whose stable
models correspond to the R-minimal models of the given formula.

3. To find out whether the set of clauses ω1, ω2, ..., ωn overlaps with any MUS of φ∗,
add to this program the rule ⊥ ← ∼rω1 ,∼rω2 , ...,∼rωn which disables the stable
models where none of the clauses in question are relaxed. The resulting program
has at least one model iff there exists an MSS such that at least one of the clauses
in question is relaxed, an approach suggested in [3].

4. Run the DLP solver claspD [1] to decide whether it has at least one model are not.

2 Available at www.star.dist.unige.it/~qube/
3 http://www.qbflib.org/

www.star.dist.unige.it/~qube/
http://www.qbflib.org/

cmMUS: A Tool for Circumscription-Based MUS Membership Testing 269

Table 1. Number of solved instances by the different approaches

cmMUS look4MUS MSS enum. QBF DLP

Nemesis (bf) (223) 223 223 31 8 0
Daimler-Chrysler (84) 46 13 49 0 0
dining philosophers (22) 18 17 4 0 0
dimacs (87) 87 82 51 48 0
ezfact (41) 21 11 11 0 0
crafted (24) 24 14 13 12 5

total (481) 419 360 159 68 5

A variety of unsatisfiable formulas was selected from the benchmarks used for SAT
competitions4 and from well-known applications of SAT (namely ATPG and product
configuration). The selected formulas are relatively easy for modern SAT solvers be-
cause MUS-MEMBERSHIP is significantly harder than satisfiability. Even so, instances
with tens of thousands of clauses were used (e.g. dining philosophers).

For each of these formulas the MUS-OVERLAP was computed using the various ap-
proaches. The 1st, 3rd, 5th, and 7th clauses in the formula’s representation were chosen
as the set γ for which the overlap was to be determined—this testing methodology was
also used in [7].

All experimental results were obtained on an Intel Xeon 5160 3GHz with 4GB of
memory. The experiments were obtained with a time limit of 1,000 seconds. The re-
sults of the measurements are presented by Table 1 and Figure 1. Table 1 presents the
number of solved instances by each of the approaches for each set of benchmarks.
Figure 1 presents the computation times with cactus plots—the horizontal axis rep-
resents the number of instances that were solved within the time represented by the
vertical axis.

Out of the presented approaches, the cmMUS is the most robust one: it has solved
the most instances (419) and except for one class of benchmarks it exhibits the short-
est overall running times. The set of benchmarks where cmMUS came second are the
Daimler-Chrysler. In these benchmarks the simple MSS enumeration solved 3 more
instances.

The dedicated algorithm look4MUS came second in terms of number of the solved
instances (360) and it solved a number of benchmarks in a short time (Nemesis-bf),
although slower than cmMUS. However, it turned out not to be robust (e.g. a small
number of instances were solved in suite Daimler-Chrysler and ezfact).

The QBF and DLP approaches turned out to be the least successful ones. In the case
of DLP this is most likely attributed to the relatively small number of variables on which
the circumscription is being minimized (the set P). This weakness has already been
highlighted by the authors of circ2dlp [8]. However, to our knowledge, the solver
claspD does not use such extensive preprocessing techniques as Qube 7.1. Hence,
this could be investigated in the future.

4 http://www.satcompetition.org/

http://www.satcompetition.org/

270 M. Janota and J. Marques-Silva

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90

C
P

U
 ti

m
e

instances

dimacs

cmMUS
look4MUS

MSS enum.
QBF

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250

C
P

U
 ti

m
e

instances

Nemesis (bf)

cmMUS
look4MUS

MSS enum.
QBF

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14 16 18

C
P

U
 ti

m
e

instances

dining philosophers

cmMUS
look4MUS

MSS enum.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35 40 45 50

C
P

U
 ti

m
e

instances

Daimler Chrysler

cmMUS
look4MUS

MSS enum.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25

C
P

U
 ti

m
e

instances

ez fact

cmMUS
look4MUS

MSS enum.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25

C
P

U
 ti

m
e

instances

crafted

cmMUS
look4MUS

MSS enum.
QBF
DLP

Fig. 1. Cactus plots for the measurements (number of instances x solved in less than y seconds)

5 Summary

This article presents cmMUS—a tool for deciding the MUS-MEMBERSHIP problem,
i.e. it decides whether a given clause belongs to some minimally unsatisfiable set. The
tool translates the problem into entailment in propositional circumscription, on which
it invokes a dedicated algorithm based on abstraction counterexample refinement [9].
A variety of benchmarks shows that the tool outperforms existing approaches to the
problem.

Acknowledgement. This work is partially supported by SFI PI grant BEACON (09/
IN.1/I2618), by FCT through grant ATTEST (CMU-PT/ELE/0009/2009), and by
INESC-ID multiannual funding from the PIDDAC program funds.

cmMUS: A Tool for Circumscription-Based MUS Membership Testing 271

References

1. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-driven disjunctive answer set solving. In: Brewka, G., Lang, J. (eds.) KR, pp. 422–
432. AAAI Press, Menlo Park (2008)

2. Eiter, T., Gottlob, G.: Propositional circumscription and extended closed-world reasoning are
πP

2 -complete. Theor. Comput. Sci. 114(2), 231–245 (1993)
3. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Proposi-

tional case. Annals of Mathematics and Artificial Intelligence 15, 289–323 (1995)
4. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.

New Generation Computing 9(3), 365–385 (1991)
5. Gelfond, M.: Answer Sets. In: Handbook of Knowledge Representation. Elsevier, Amster-

dam (2008)
6. Giunchiglia, E., Marin, P., Narizzano, M.: An effective preprocessor for QBF pre-reasoning.

In: 2nd International Workshop on Quantification in Constraint Programming, QiCP (2008)
7. Grégoire, É., Mazure, B., Piette, C.: Does this set of clauses overlap with at least one MUS?

In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 100–115. Springer, Heidelberg
(2009)

8. Janhunen, T., Oikarinen, E.: Capturing parallel circumscription with disjunctive logic pro-
grams. In: European Conf. on Logics in Artif. Intell., pp. 134–146 (2004)

9. Janota, M., Grigore, R., Marques-Silva, J.: Counterexample guided abstraction refinement
algorithm for propositional circumscription. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010.
LNCS, vol. 6341, pp. 195–207. Springer, Heidelberg (2010)

10. Janota, M., Marques-Silva, J.: Models and algorithms for MUS membership testing. Tech.
Rep. TR-07/2011, INESC-ID (January 2011)

11. Kullmann, O.: An application of matroid theory to the SAT problem. In: IEEE Conference
on Computational Complexity, pp. 116–124 (2000)

12. Kullmann, O.: Constraint satisfaction problems in clausal form: Autarkies and minimal
unsatisfiability. In: Electronic Colloquium on Computational Complexity (ECCC), vol.
14(055) (2007)

13. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of
constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

14. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artif. Intell. 13(1-2),
27–39 (1980)

15. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squar-
ing requires exponential space. In: IEEE Conference Record of 13th Annual Symposium on
Switching and Automata Theory (October 1972)

16. O’Callaghan, B., O’Sullivan, B., Freuder, E.C.: Generating corrective explanations for inter-
active constraint satisfaction. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 445–459.
Springer, Heidelberg (2005)

17. Papadopoulos, A., O’Sullivan, B.: Relaxations for compiled over-constrained problems. In:
Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 433–447. Springer, Heidelberg (2008)

Transaction Logic with External Actions

Ana Sofia Gomes and José Júlio Alferes

Departamento de Informática
Faculdade Ciências e Tecnologias

Universidade Nova de Lisboa
2829-516 Caparica, Portugal

Abstract. We propose External Transaction Logic (or ET R), an extension of
Transaction Logic able to represent updates in internal and external domains
whilst ensuring a relaxed transaction model. With this aim, ET R deals with
two main components: an internal knowledge base where updates follow the
strict ACID model, given by the semantics of Transaction Logic; and an exter-
nal knowledge base of which one has limited or no control and can only execute
external actions. When executing actions in the external domain, if a failure oc-
curs, it is no longer possible to simply rollback to the initial state before executing
the transaction. For dealing with this, similarly to what is done in databases, we
define compensating operations for each external action to be performed to ensure
a relaxed model of atomicity and consistency. By executing these compensations
in backward order, we obtain a state considered to be equivalent to the initial one.

1 Introduction

Transaction Logic (T R) is an extension of predicate logic proposed in [1] which ex-
hibits a clean and declarative semantics, along with a sound and complete proof theory,
to reason about state changes in arbitrary logical theories (as databases, logic programs
or other knowledge bases). Unlike many other logic systems, T R imposes that the
knowledge base evolves only into consistent states respecting ACID properties1. T R is
parameterized by a pair of oracles that encapsulate elementary knowledge base opera-
tions of querying and updating, respectively, allowing T R to reason about elementary
updates but without committing to a particular theory. Thus T R provides a logical foun-
dation for knowledge base transactions accommodating a wide variety of semantics.

Example 1 (Financial Transactions). As illustration of T R, consider a knowledge base
of a bank [1] where the balance of an account is given by relation balance(Acnt,Amt).
To modify it we have a pair of elementary update operations: balance(Acnt,Amt).ins
and balance(Acnt,Amt).del (denoting the insertion, resp. deletion, of a tuple of the
relation). With these elementary updates, one may define several transactions, e.g. for
making deposits in an account, make transfers from one account to another, etc. In T R
one may define such transactions by the rules below where, e.g the first one means
that one possible way to succeed the transfer of Amt from Acnt to Acnt′ is by first
withdrawingAmt from Acnt, followed by (denoted by ⊗) depositing Amt in Acnt′.

1 As usual in databases, ACID stands for Atomicity, Consistency, Isolation and Durability.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 272–277, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Transaction Logic with External Actions 273

transfer(Amt,Acnt, Acnt′)← withdraw(Amt,Acnt)⊗ deposit(Amt,Acnt′)
withdraw(Amt,Acnt)← balance(Acnt, B)⊗ changeBalance(Acnt,B, B − Amt)
deposit(Amt,Acnt)← balance(Acnt,B)⊗ changeBalance(Acnt,B, B + Amt)
changeBalance(Acnt,B, B′)← balance(Acnt, B).del⊗ balance(Acnt, B′).ins

State change and evolution in T R is caused by executing ACID transactions, i.e. logical
formulas posed into the system in a Prolog-like style as e.g. ?− transfer(10, a1, a2).
Since every formula is assumed as a transaction, by posing transfer(10, a1, a2) we
know that either transfer(10, a1, a2) can be executed respecting all ACID properties
evolving the knowledge base from an initial stateD0 into a stateDn (passing through an
arbitrary number of states n); or transfer(10, a1, a2) cannot be executed under these
conditions and so the knowledge base does not evolve and remains in the state D0.

Unfortunately, T R is not suitable to model situations where besides executing ACID
actions, some steps of the transaction require interaction with an external domain. That
is, systems where the internal state of the knowledge base evolves ensuring the ACID
properties, but this evolution depends on the execution of some actions in an external
knowledge base, of which one has a limited control and interaction. This is, e.g., the
case of web-based systems with an internal knowledge base that follows the strict ACID
model, and that interact with other systems that they do not control, for instance, via
web-services. As illustration, consider a system for a web shop that accepts orders from
clients. Whenever a client submits an order, the system must take care of payments and
updates of the inventory of the product to be sell. Obviously, it is crucial that each order
is internally treated as a transaction. However, payments are validated and executed
externally by the system of a bank, with which it communicates, but is external to the
web shop, and over which it has a limited control.

Ensuring the standard ACID model in an external world is no longer possible. Partic-
ularly, the external actions executed in these domains cannot be rollbacked, as one has
no control of the external system where they were performed. Moreover, since these
actions require interaction with an external entity, this kind of transaction can last for
relatively long periods of time, delaying the termination of shorter and more common
transactions. To address this problem, [4] proposes the notion of long-lived transaction
or sagas. The idea is to define compensating operations for each operation to be per-
formed externally. If the transaction fails and these compensations are performed in
backward order, then they lead the database into a state that is considered equivalent to
the initial one, thus ensuring a weaker form of atomicity.

In this paper we propose External Transaction Logic (ET R) that augments T R the-
ory with the ability to reason about an external domain, and with a notion of compen-
sations. The external reasoning is performed by an external oracle, parametric to the
language, which describes the behavior of the external knowledge base. ET R allows
for two different kinds of formulas: standard transaction formulas that follow the strict
ACID model; and external action formulas, of the form ext(a, a−1), that follow a re-
laxed ACID model, and in case of failure of a executes the compensation a−1 leading
the external knowledge base into an equivalent consistent state, but possibly different
from the original one. As illustration, consider the following example:

Example 2. Consider the web shop mentioned above, where clients submits orders.
In the end of each order, a final confirmation is asked to the client that may or not

274 A.S. Gomes and J.J. Alferes

confirm the transaction. If the client accepts it, the order ends successfully. Otherwise,
the transaction fails and the situation before its start must be reinstated. For this we
need to rollback the update of the stock, and to compensate for the executed payment
by asking the bank to refund the charged money. In ET R this can be modeled by:

buy(Prdt,Card,Amt)← ext(chargeCard(Card,Amt), refundCard(Card,Amt))
⊗ updateStock(Prdt)
⊗ ext(confirmTransaction(Product, Card, Amt), ())

updateStock(Prdt) ← N > 0⊗ product(Prdt,N).del ⊗ product(Prdt,N − 1).ins

External actions can succeed or fail depending on the state of the external world. For
instance, charging a given amount in a credit card depends on many things, e.g. if the
credit limit is exceeded, or if the card has expired. To reason about the outcomes of
these external actions ET R assumes the existence of an external oracle that comes as a
parameter of the theory.

2 Syntax and Oracles

The theory of T R is parameterized by a pair of oraclesOd andOt, respectively denoted
the data and the transition oracle. These oracles encapsulate the elementary knowledge
base operations, allowing the separation of elementary operations from the logic of
combining them. This separation allows T R to not commit to any particular theory of
updates. Consequently, the language itself is not fixed and T R is able to accommodate
a wide variety of knowledge base semantics, from classical to non-monotonic to vari-
ous other non-standard logics [1]. ET R follows the same principles. In addition to the
data oracle and the transition oracle, ET R requires an additional oracle to evaluate el-
ementary external operations, the external oracle. Assuming this external oracle allows
ET R to abstract the theory and semantics of the external domain, encapsulating the
elementary operations that can be performed externally. These oracles are not fixed and
almost any triple of oracles can be plugged into ET R theory.

To build complex logical formulas, T R uses the classical connectives∧,∨,¬,→. In
addition, T R also adds a new connective⊗, denoted serial conjunction operator. Infor-
mally, the formula φ⊗ ψ represents an action composed of an execution of φ followed
by an execution of ψ. Logical formulas in ET R are called transaction formulas, and a
set of transaction formulas is called a transaction base. Furthermore, ET R extends T R
with a special kind of formula ext(a, a−1) known as external. In this formula a and
a−1 are atoms, where a denotes the action to be performed and a−1 its corresponding
compensation. An ET R program is then defined as follows.

Definition 1 (ET R theories and programs). Given a language L, a set of (internal)
state identifiers D and a set of external state identifiers E , an ET R theory is a tuple
(T,Od,Ot,Oe) where T is a transaction base, and Od (resp. Ot; Oe) is a mapping
from elements in D (resp. pairs of elements in D; elements in E) into transaction for-
mulas in the language of L. An ET R program consists of three parts: an ET R theory,
an initial internal state identifier Di, and an initial external state identifier Ei.

Transaction Logic with External Actions 275

3 Model Theory

The model theory for ET R is a generalization of T R’s semantics, where the main nov-
elty in ET R is the notion of compensation. A compensation occurs when the executed
transaction φ contains external actions and fails. Since, in such a case, it is not possi-
ble to simply rollback to the initial state before executing φ, a series of compensating
actions are executed to restore the consistency of the external knowledge base.

Central to ET R’s model theory is the notion of paths, i.e. sequence of states. Logical
formulas are evaluated on two sets of paths, of internal and of external states. Intuitively,
external formulas of the form ext(a, a−1) are evaluated w.r.t. external paths by the
external oracle, whereas the remaining logical formulas are evaluated in internal paths
by the data and the transition oracle.

Definition 2 (Interpretations). An interpretation is a mapping M that given a path
of internal states, a path of external states and a sequence of actions, returns a set of
transaction formulas (or �)2. This mapping is subject to the following restriction:

1. ϕ ∈M(〈D〉, 〈E〉, ∅), for every ϕ such that Od(D) |= ϕ
2. ϕ ∈M(〈D1, D2〉, 〈E〉, ∅) if Ot(D1, D2) |= ϕ
3. A ∈M(〈D〉, 〈E1, . . . , Ep〉, 〈A〉) if Oe(E1, . . . , Ep) |= A p > 1

The definition of satisfaction of more complex formulas, over general paths, requires the
prior definition of operations on paths. These take into account how serial conjunction
is satisfied, and how to construct the correct compensation.

Definition 3 (Paths and Splits). A path of length k, or a k-path, is any finite sequence
of states (where the Ss are all either internal or external states), π = 〈S1, . . . , Sk〉,
where k ≥ 1. A split of π is any pair of subpaths, π1 and π2, such that π1 = 〈S1, . . . , Si〉
and π2 = 〈Si, . . . , Sk〉 for some i (1 ≤ i ≤ k). In this case, we write π = π1 ◦ π2.

Definition 4 (External action split). A sequence α of length j is any finite sequence
of external actions (possibly empty), α = 〈A1, . . . , Aj〉, where j ≥ 0. A split of α
is any pair of subsequences, α1 and α2, such that α1 = 〈A1, . . . , Ai〉 and α2 =
〈Ai+1, . . . , Aj〉 for some i (0 ≤ i ≤ k). In this case, we write α = α1 ◦ α2.

Note that there is a significant difference between Definition 3 and Definition 4. In fact,
splits for sequences of external actions can be empty, and particularly, it is also possible
to define splits of empty sequences as ∅ = ∅ ◦ ∅; whereas, a split of a path requires a
sequence with at least length 1.

Definition 5 (Rollback split). A rollback split of π is any pair of finite subpaths, π1

and π2, such that π1 = 〈D1, . . . , Di, D1〉 and π2 = 〈D1, Di+1, . . . , Dk〉.

Definition 6 (Inversion). An external action inversion of a sequence α where α =
(ext(a1, a

−1
1), . . . , ext(an, a

−1
n)), denotedα−1, is the corresponding sequence of com-

pensating external actions performed in the inverse way as (a−1
n , . . . , a−1

1).

2 Similar to T R , for not having to consider partial mappings, besides formulas, interpretation
can also return the special symbol �.The interested reader is referred to [2] for details.

276 A.S. Gomes and J.J. Alferes

Definition 7 (Satisfaction). Let M be an interpretation, π be an internal path, ε be
an external path and α be a sequence of external actions. If M(π, ε, α) = � then
M,π, ε, α |= φ for every transaction formula φ; otherwise:

1. Base Case: M,π, ε, α |= p if p ∈M(π, ε, α) for any atomic formula p
2. Negation: M,π, ε, α |= ¬φ if it is not the case that M,φ, ε, α |= φ
3. “Classical” Conjuction:M,π, ε, α |= φ∧ψ ifM,π, ε, α |= φ andM,π, ε, α |= ψ.
4. Serial Conjuction:M,π, ε, α |= φ⊗ψ ifM,π1, ε1, α1 |= φ andM,π2, ε2, α2 |= ψ

for some split π1◦π2 of path π, some split ε1◦ε2 of path ε, and some external action
split α1 ◦ α2 of external actions α.

5. Compensating Case:M,π, ε, α |= φ ifM,π1, ε1, α1α
−1
1 � φ andM,π2, ε2, α2 |=

φ for some rollback split π1, π2 of π, some split ε1 ◦ ε2 of path ε, and some external
action split α1, α2 of α.

6. For no other M,π, ε, α, φ, M,π, ε, α |= φ.

Satisfaction of disjunctions and implications are defined as usual, where φ ∨ ψ means
¬(¬φ ∧ ¬ψ), and φ← ψ means φ ∨ ¬ψ.

The main novelty in this definition, when compared to T R, is the inclusion of the
compensation case. Intuitively, M,π, ε, α, α−1 � φ means that, in the failed attempt
to execute φ, a sequence α of external actions were performed. Since it is impossible to
rollback to the point before the execution of these actions, consistency is ensured by per-
forming a sequence of compensating external actions in backward order. Note that from
the external oracle point of view there is no difference between a non-compensating ex-
ternal action and a compensating external action since both can fail or succeed, and
in the latter case, evolving the external knowledge base. The path π represents the se-
quence of states consistent with the execution of α, but where π = 〈D1, . . . , Dk, D1〉,
i.e. we explicitly rollback to the initial state, but keeping the trace of the failed evolution.
We define a consistency preserving path π, ε, α, α−1 for a formula φ as follows.

Definition 8 (Consistency Preserving Path). Let M be an interpretation, π be an in-
ternal path, ε an external path, and α be a non-empty sequence of external actions.
The path π′ is obtained from π = 〈D1, . . . , Dn〉 by removing the state Dn from the se-
quence; α−1 is a non-empty sequence of external actions obtained from α by inversion;
ε1 and ε2 are some split of ε. We say thatM,π, ε, α, α−1 � φ iff ∃b1⊗. . .⊗bi⊗. . .⊗bn
such that:
M,π′, ε1, α |= φ← (b1 ⊗ . . .⊗ bi ⊗ . . .⊗ bn)
M,π′, ε1, α |= b1 ⊗ . . .⊗ bi
M,π′, ε1, α |= ¬ bi+1

M,π′, ε2, α
−1 |=

⊗
α−1

where
⊗

represents the operation of combining a sequence of actions using ⊗.

Note that there is no circularity in these definitions, as consistency preservation only
appeals to satisfaction of formulae on strictly smaller internal paths. Also note that
consistency preservation only applies to cases where α is not empty.

Definition 9 (Models). An interpretation M is a model of a transaction formula φ
if M,π, ε, α |= φ for every internal path π, every external path ε, and every action
sequence α. In this case, we write M |= φ. An interpretation is a model of a set of
formulas if it is a model of every formula in the set.

Transaction Logic with External Actions 277

4 Conclusions

This work represents a first step towards a unifying logical framework able to combine
a strict ACID transactions with long-running/relaxed model of transactions for hybrid
evolving systems. That is, systems that have both an internal and an external updatable
component and require properties on the outcomes of the updates. Examples of these
systems range from an intelligent agent that has an internal knowledge base where he
executes reasoning, but is integrated in an evolving external world where he can execute
actions; to web-based systems with an internal knowledge base that follows the strict
ACID model, but also need to interact with other systems, for instance to request a
web-service. Closely related to this latter domain, is that of reactive (semantic) web
languages. The Semantic Web initiative of W3C has recently proposed RIF-PRD [3] as
a recommendation of a reactive (prodution-rule-like) rule language. This languages is
intended to exchange rules that execute actions in hybrid web systems reactively, but
still without concerns on guaranteeing transaction properties on the outcome of these
actions. Given ET R declarative semantics and its natural model theory, we believe that
it can be suitable to provide transaction properties for web-reactive systems. However,
in order to make ET R suitable for these systems it is important to provide executional
procedures to enable one to execute ET R transactions. This represents the next obvious
step and is in line with what has been done in T R.

Another important line of research is to further study the flexibility provided by
having the oracles as a parameter of the theory. Particularly, how to take advantage of
having as an external oracle logics that reason about state change or the related phe-
nomena of time and action as as action languages [5], the situation calculus [8], event
calculus [7], process logic [6] and many others. All these formalisms are orthogonal to
ET R, in the sense that they can just be “plugged” in the theory.

References

1. Bonner, A.J., Kifer, M.: Transaction logic programming (or a logic of declarative and proce-
dural knowledge). Technical Report CSRI-323, Computer Systems Research Institute, Uni-
versity of Toronto (1995)

2. Bonner, A.J., Kifer, M.: Results on reasoning about updates in transaction logic. In: Kifer, M.,
Voronkov, A., Freitag, B., Decker, H. (eds.) Dagstuhl Seminar 1997, DYNAMICS 1997, and
ILPS-WS 1997. LNCS, vol. 1472, pp. 166–196. Springer, Heidelberg (1998)

3. de Sainte Marie, C., Hallmark, G., Paschke, A.: RIF Production Rule Dialect (June 2010),
W3C Recommendation, http://www.w3.org/TR/rif-prd/

4. Garcia-Molina, H., Salem, K.: Sagas. SIGMOD Rec. 16, 249–259 (1987)
5. Gelfond, M., Lifschitz, V.: Action languages. Electr. Trans. Artif. Intell. 2, 193–210 (1998)
6. Harel, D., Kozen, D., Parikh, R.: Process logic: Expressiveness, decidability, completeness.

In: FOCS, pp. 129–142 (1980)
7. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Generation Comp. 4(1),

67–95 (1986)
8. McCarthy, J.: Situations, actions, and causal laws. Technical report, Stanford University

(1963); Reprinted in MIT Press, Cambridge, pp. 410-417 (1968)

http://www.w3.org/TR/rif-prd/

An Application of Clasp in the Study of Logics

Mauricio Osorio2, José Luis Carballido1, and Claudia Zepeda1

1 Benemérita Universidad Atónoma de Puebla
2 Universidad de las Américas - Puebla

{osoriomauri,jlcarballido7,czepedac}@gmail.com

Abstract. We show how to use the Answer Set Programming (ASP)
tool called clasp to prove that there exists a unique three-valued para-
consistent logic that satisfies the substitution property and is sound with
respect to da Costa Cω logic.

Keywords: clasp, multi-valued logics, substitution property.

1 Introduction

In this paper, we describe and illustrate how to use answer set programming
(ASP) to prove that there exists a unique three-valued paraconsistent logic,
up to isomorphism, which extends the well known logic Cw and in which the
substitution property is valid. This logic corresponds to G′

3, which has been
studied in [9,5,10].

It is very useful to have software systems that help us to analyze logics. One
of these systems is the ASP tool called clasp [6], which computes the answer
sets of logic programs. ASP is a declarative knowledge representation and logic
programming language based on the stable model semantics introduced in [7].

We take advantage of clasp since it allows us to define redundant constraints
to define easily the primitive connectives as mathematical functions such as the
∨, ¬, ∧, and →. For instance, in clasp we write 1{and(X, Y, Z) : v(Z)}1 ←
v(X), v(Y) instead of writing
and(X, Y, Z)← v(X), v(Z), v(Y), not nothera(X, Y, Z).

nothera(X, Y,Z)← and(X, Y, Z1), Z! = Z1, v(X), v(Y), v(Z), v(Z1).

as we wrote in a preliminary work in [12]. We also use the called conditions in
clasp to define easily and briefly some constraints in our encoding. For instance,
in clasp we write ← not f(X) : not sel(X) : v(X) that helped us to express the
property of paraconsistency.

In the past we already used ASP as a support system to find out properties
of formal logics such as proving the independence of a set of axioms, proving
that two logics are not equivalent, and to propose multivalued logics sound with
respect to an axiomatic logic, see for instance [12].

It is worth to mention that the research in Paraconsistent logics is useful.
Following Béziau [1], a logic is paraconsistent if it has a negation ¬, which
is paraconsistent in the sense that a,¬a � b, and at the same time has enough
strong properties to be called a negation. da Costa et al. [4] mention applications

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 278–283, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

An Application of Clasp in the Study of Logics 279

of these logics in three different fields: Mathematics, Artificial Intelligence and
Philosophy . An application that has not been fully recognized is the use of
paraconsistent logics in non-monotonic reasoning. In this sense [5,10] illustrate
such novel applications. Thus, the research on paraconsistent logics is far from
being over.

Our paper is structured as follows. In section 2, we summarize some basic
concepts and definitions necessary to understand this paper. In section 3, we
show the clasp-encodings. Finally, in section 4, we present some conclusions.

2 Background

There are two ways to define a logic: by giving a set of axioms and specifying
a set of inference rules; and by the use of truth values and interpretations. In
this section we summarize each of them and we present some basic concepts and
definitions useful to understand this paper.

2.1 Hilbert Style

In Hilbert style proof systems, also known as axiomatic systems, a logic is speci-
fied by giving a set of axioms and a set of inference rules, see [8]. In these systems,
it is common to use the notation 	X F for provability of a logic formula F in
the logic X . In that case we say that F is a theorem of X .

We say that a logic X is paraconsistent if the formula (A ∧ ¬A) → B is not
a theorem1.

A very important property satisfied by many logics is the substitution prop-
erty which we present now.

Definition 1. A logic X satisfies the substitution property if: 	X α↔ β2 then
	X Ψ [α/p]↔ Ψ [β/p] for any formulas α, β, and Ψ and any atom p that appear
in Ψ where Ψ [α/p] denotes the resulting formula that is left after every occurrence
of p is substituted by the formula α.

As examples of axiomatic systems, we present two logics: the positive logic [9],
and the Cω logic which is a paraconsistent logic defined by da Costa [3]. In
Table 1 we present a list of axioms, the first eight of them define positive logic.
Cω logic is defined by the axioms of positive logic plus axioms Cω1 and Cω2.

2.2 Multi-valued Logics

An alternative way to define a logic is by the use of truth values and interpreta-
tions. Multi-valued logics generalize the idea of using truth tables to determine
1 For any logic X that contains Pos1 and Pos2 among its axioms and Modus Ponens

as its unique inference rule, the formula (A ∧ ¬A) → B is a theorem if and only if
A,¬A �X B.

2 Here we use the notation �X to indicate that the formula that follows it is a theorem
or a tautology depending on how the logic is defined.

280 M. Osorio, J.L. Carballido, and C. Zepeda

Table 1. Axiomatization of Cω

Pos1: A→ (B→A) Cω1: A ∨ ¬A
Pos2: (A→ (B→ C))→ ((A→B)→ (A→ C)) Cω2: ¬¬A→A
Pos3: A ∧ B→A
Pos4: A ∧ B→B
Pos5: A→ (B → (A ∧B))
Pos6: A→ (A ∨B)
Pos7: B→ (A ∨B)
Pos8: (A→ C)→ ((B→ C)→ (A ∨B→ C))

the validity of formulas in classical logic. The core of a multi-valued logic is its
domain of values D, where some of such values are special and identified as desig-
nated or select values. Logic connectives (e.g. ∧, ∨, →, ¬) are then introduced
as operators over D according to the particular definition of the logic, see [8].

An interpretation is a function I : L → D that maps atoms to elements in the
domain. The application of I is then extended to arbitrary formulas by mapping
first the atoms to values in D, and then evaluating the resulting expression in
terms of the connectives of the logic (which are defined over D). It is understood
in general that, if I is an interpretation defined on the arbitrary formulas of a
given program P , then I(P) is defined as the function I applied to the conjunc-
tion of all the formulas in P . A formula F is said to be a tautology, denoted
by |= F if, for every possible interpretation, the formula F evaluates to a desig-
nated value. The simplest example of a multi-valued logic is classical logic where:
D = {0, 1}, 1 is the unique designated value, and the connectives are defined
through the usual basic truth tables.

Note that in a multi-valued logic, so that it can truly be a logic, the implication
connective has to satisfy the following property: for every value x ∈ D, if there
is a designated value y ∈ D such that y→x is designated, then x must also be a
designated value. This restriction enforces the validity of Modus Ponens in the
logic.

As an example of a multi-valued logic, we define G′
3, a logic that is relevant

in this work.
The G′

3 logic is a 3-valued logic with truth values in the domain D = {0, 1, 2}
where 2 is the designated value. The evaluation functions of the logic connectives
is then defined as follows: x∧ y = min(x, y); x∨ y = max(x, y); ¬ x = 2 if x ≤ 1;
and ¬ x = 0 if x = 2. And x→ y = 2 if x ≤ y, x→ y = y if x > y.

3 Main Contribution

An interesting theoretical question that arises in the study of logics is whether a
given logic satisfies the substitution property [11]. It is well known that there are
several paraconsistent logics for which that theorem is not valid [2]. The encoding
presented here helps us to prove that the only three-valued paraconsistent logic
that extends Cw and satisfies the substitution property is G′

3.

An Application of Clasp in the Study of Logics 281

Next we prove that any extension of Cω that satisfies the weak substitution
property satisfies also the substitution property.

Definition 2. A logic X satisfies the weak substitution property if: 	X α ↔ β
then 	X ¬α↔ ¬β.

Theorem 1. Any logic stronger than Cω satisfies the weak substitution property
iff satisfies the substitution property.

Proof. One of the implications is immediate, the other one is done by induc-
tion on the size of formula Ψ . It only requires basic arguments valid in positive
logic, except when the formula Ψ starts with a negation, in which case the weak
substitution hypothesis is used.

The next theorem is the main part of the proof of the result stated at the
beginning of this section, its proof is based on a clasp-encoding which includes
the formula that defines the weak substitution property.

ASP has been used to develop different approaches in the areas of planning,
logical agents and artificial intelligence. However, as far as the authors know, it
has not been used as a tool to study logics. Here we use ASP to represent axioms
and the inference rule Moduls Ponens in clasp in order to find three-valued logics
that are paraconsistent and for which the axioms of Cω are tautologies and the
weak substitution property is valid.

Theorem 2. G′
3 is the only three-valued paraconsistent logic, up to isomor-

phism, which extends Cω and in which the weak substitution property is valid.

Proof. Based on a set of values, and a subset of values corresponding to the
property of being select, the clasp-encoding constructs the adequate truth tables
for the connectives of a multi-valued logic that make all instances of the axioms
of the given logic select. These truth tables are built in such a way that Modus
Ponens preserves the property of being select. The encoding also includes the
adequate conditions that each connective of the logic should satisfy, such as
the arity, and the uniqueness; the definition of Modus Ponens; and all of the
axioms of the logic. It is worth mentioning that all of the axioms are encoded
as constraints. When each axiom is encoded as a constraint, the elimination of
those assignment values of the logic connectives for which the axioms are not
select, is guaranteed.

Now, we present the clasp-encoding, Π , that verifies our theorem. Due to
lack of space, we only present the encoding of one of the axioms of Cω, the en-
coding of the other axioms is similar. The encoding uses the values 0, 1, and 2
to create the truth tables for the connectives of the logic. The select value is 2.
Thus, for any assignment of the values 0, 1 and 2 to the statements letters of a
formula F , the tables determine a corresponding value for F . If F always takes
the value 2, F will be called select. Furthermore, Π is a propositional program.
As usual in ASP, we take for granted that programs with predicate symbols are

282 M. Osorio, J.L. Carballido, and C. Zepeda

only an abbreviation of the ground program. The encoding Π corresponds to
the program Pval ∪ Pprim ∪ Pdef ∪ PAx ∪ Ppar ∪ Pws that we present below. We
want to remark that Pdef includes all of the defined connectives of the Cω logic,
PAx includes the axioms of Cω logic.

Pval :

⎧⎪⎨
⎪⎩

%Truth values:0, 1, 2
v(0; 1; 2).
%Select value:0
sel(2).

Pprim :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

%Primitive connectives
%implies, not, or, and, ...
1{impl(X, Y, Z) : v(Z)}1← v(X), v(Y).
1{neg(X, Z) : v(Z)}1← v(X).
. . .

Pdef :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

%Defined connectives
% if and only if, ¬G3 , . . .
equ(X, Y, Z)← impl(X,Y, L), impl(Y,X, R), and(L, R, Z).
. . .
%Modus Ponens
← impl(X, Y, Z), sel(X), sel(Z), not sel(Y), v(X), v(Y), v(Z).

PAx :

⎧⎪⎨
⎪⎩

%Axioms
%A1 : A→ (B → A)
← impl(B,A, Z), impl(A, Z, R), v(R), not sel(R).
. . .

Ppar :

⎧⎪⎨
⎪⎩

%Paraconsitency: (A ∧ ¬A)→ B is not a theorem.
eval(R)← neg(A,A1), and(A,A1, L), impl(L, B, R), v(R).

← not eval(X) : not sel(X) : v(X).

Pws :

{
%Weak substitution if �X α↔ β, then �X ¬α↔ ¬β
← equ(X, Y, Z), neg(X, X1), neg(Y, Y 1), equ(X1, Y 1, Z1),

v(Z), (Z1), sel(Z), not sel(Z1).

We can see that the weak substitution property is encoded as a constraint in
Pws. This means that in case of obtaining answer sets they must satisfy the weak
substitution property. When we execute the clasp-encoding Π , we obtain two
answer sets. Each of them corresponds to an adequate set of truth tables for the
connectives of a paraconsistent three-valued logic that is sound with respect to
the Cw logic and satisfies the weak substitution property. Moreover, these two
sets of truth tables define isomorphic three-valued logics. Hence without loss of
generality we obtain only one paraconsistent three-valued logic. In fact, it turns
out that this three-valued logic is the G′

3 logic already introduced.
The proof shows that there is only one logic in the case we choose only one

select value. We still need to look at the case where we consider two select
values, but in this case there are no answer sets as the encoding shows. Hence,
our proof is finished.

The following theorem is an immediate consequence of the last two theorems.

Theorem 3. G′
3 is the only three-valued paraconsistent logic, up to isomor-

phism, which extends Cw and in which the substitution property is valid.

An Application of Clasp in the Study of Logics 283

4 Conclusions

ASP have been used to develop different approaches in the areas of planning,
logical agents and artificial intelligence. However, as far as the authors know, it
has not been used as a tool to study logics. We provide a clasp-encoding that
can be used to obtain paraconsistent multi-valued logics and to verify the weak
substitution property in a given logic.

References

1. Béziau, J.Y.: The paraconsistent logic Z. A possible solution to jaskowski’s problem.
Logic and Logical Philosophy 15, 99–111 (2006)

2. Carnielli, W.A., Marcos, J.: Limits for paraconsistent calculi. Notre Dame Journal
of Formal Logic 40(3), 375–390 (1999)

3. da Costa, N.C.A.: On the theory of inconsistent formal systems. PhD thesis, Cu-
ritiva: Editora UFPR, Brazil (1963) (in Portuguese)

4. da Costa, N.C.A., Béziau, J.-Y., Bueno, O.A.S.: Aspects of paraconsistent logic.
Logic Journal of the IGPL 3(4), 597–614 (1995)

5. Galindo, M.J.O., Ramı́rez, J.R.A., Carballido, J.L.: Logical weak completions of
paraconsistent logics. J. Log. Comput. 18(6), 913–940 (2008)

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
A user’s guide to gringo, clasp, clingo, and iclingo,
http://potassco.sourceforge.net

7. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming.
In: Kowalski, R., Bowen, K. (eds.) 5th Conference on Logic Programming, pp.
1070–1080. MIT Press, Cambridge (1988)

8. Mendelson, E.: Introduction to Mathematical Logic, 3rd edn. Wadsworth, Belmont
(1987)

9. Osorio, M., Carballido, J.L.: Brief study of G’3 logic. Journal of Applied Non-
Classical Logic 18(4), 475–499 (2008)

10. Osorio, M., Navarro, J.A., Arrazola, J., Borja, V.: Logics with common weak com-
pletions. Journal of Logic and Computation 16(6), 867–890 (2006)

11. van Dalen, D.: Logic and Structure, 2nd edn. Springer, Berlin (1980)
12. Zepeda, C., Carballido, J.L., Maŕın, A., Osorio, M.: Answer set programming for

studying logics. In: Special Session MICAI 2009, Puebla, México, pp. 153–158.
IEEE Computer Society, Los Alamitos (2009), ISBN: 13 978-0-7695-3933-1

http://potassco.sourceforge.net

Industrial-Size Scheduling with ASP+CP

Marcello Balduccini

Kodak Research Laboratories
Eastman Kodak Company

Rochester, NY 14650-2102 USA
marcello.balduccini@gmail.com

Abstract. Answer Set Programming (ASP) combines a powerful, the-
oretically principled knowledge representation formalism and powerful
solvers. To improve efficiency of computation on certain classes of prob-
lems, researchers have recently developed hybrid languages and solvers,
combining ASP with language constructs and solving techniques from
Constraint Programming (CP). The resulting ASP+CP solvers exhibit
remarkable performance on “toy” problems. To the best of our knowl-
edge, however, no hybrid ASP+CP language and solver have been used in
practical, industrial-size applications. In this paper, we report on the first
such successful application, consisting of the use of the hybrid ASP+CP
system ezcsp to solve sophisticated industrial-size scheduling problems.

1 Introduction

Answer Set Programming (ASP) [9,11] combines a powerful, theoretically princi-
pled knowledge representation formalism and efficient computational tools called
solvers. In the ASP programming paradigm, a problem is solved by writing an
ASP program that defines the problem and its solutions so that the program’s
models (or, more precisely, answer sets) encode the desired solutions. State-of-
the-art ASP solvers usually allow to compute the program’s models quickly. The
paradigm makes it thus possible not only to use the language to study sophisti-
cated problems in knowledge representation and reasoning, but also to quickly
write prototypes, and even evolve them into full-fledged applications.

The growth in the number of practical applications of ASP in recent years has
highlighted, and allowed researchers to study and overcome, the limitations of the
then-available solvers. Especially remarkable improvements have been brought
about by the cross-fertilization with other model-based paradigms. This in fact
resulted in the integration in ASP solvers of efficient computation techniques
from those paradigms. In clasp [7], for example, substantial performance im-
provements have been achieved by exploiting clause learning and backjumping.
Some researchers have also advocated the use of specialized solving techniques
for different parts of the program. In fact, most ASP solvers operate on propo-
sitional programs – and are sensitive to the size of such programs – which may
make computations inefficient when the domains of some predicates’ arguments
are large. This is particularly the case of programs with predicates whose argu-
ments range over subsets of N , Q, or R. On the other hand, this is a common

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 284–296, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Industrial-Size Scheduling with ASP+CP 285

situation in Constraint Programming (CP), and efficient techniques are avail-
able. For this reason, [3] proposed an approach in which ASP is extended with
the ability to encode CP-style constraints, and the corresponding solver uses
specialized techniques borrowed from CP solvers in handling such rules.

The research on integrating CP techniques in ASP has resulted in the develop-
ment of various approaches, differing in the way CP constraints are represented
in the hybrid language and in the way computations are carried out.

In [12] and [8], the language has been extended along the lines of [3], and
specific ASP and CP solvers have been modified and integrated. In the former,
syntax and semantics of ASP have been extended in order to allow representing,
and reasoning about, quantities from N , Q, and R. Separate solvers have been
implemented for the different domains. In the latter, the focus has at least up
to now been restricted to N . The corresponding solver involves a remarkable
integration of CP-solving techniques with clause learning and backjumping.

In [1], on the other hand, CP-style constraints have been encoded directly
in ASP, without the need for extensions to the language. The corresponding
representation technique allows dealing with quantities from N , Q, and R, while
the ezcsp solver allows selecting the most suitable ASP and CP solvers without
the need for modifications. The current implementation of the solver supports
N (more precisely, finite domains), Q, and R.

Although the above hybrid ASP+CP systems have shown remarkable per-
formance on “toy” problems, to the best of our knowledge none of them has
yet been confronted with practical, industrial-size applications. In this paper,
we report on one such successful application, consisting in the use of ezcsp to
solve sophisticated industrial-size scheduling problems. We hope that, through-
out the paper, the reader will be able to appreciate how elegant, powerful, and
elaboration tolerant the ezcsp formalization is.

The application domain of interest in this paper is that of industrial print-
ing. In a typical scenario for this domain, orders for the printing of books or
magazines are more or less continuously received by the print shop. Each order
involves the execution of multiple jobs. First, the pages are printed on (possibly
different) press sheets. The press sheets are often large enough to accommodate
several (10 to 100) pages, and thus a suitable layout of the pages on the sheets
must be found. Next, the press sheets are cut in smaller parts called signatures.
The signatures are then folded into booklets whose page size equals the intended
page size of the order. Finally the booklets are bound together to form the book
or magazine to be produced. The decision process is made more complex by
the fact that multiple models of devices may be capable of performing a job.
Furthermore, many decisions have ramifications and inter-dependencies. For ex-
ample, selecting a large press sheet would prevent the use of a small press. The
underlying decision-making process is often called production planning (the term
“planning” here is only loosely related to the meaning of planning the execution
of actions over time typical in the ASP community, but is retained because it is
relatively well established in the field of the application). Another set of decisions
deals with scheduling. Here one needs to determine when the various jobs will

286 M. Balduccini

be executed using the devices available in the print shop. Multiple devices of the
same model may be available, thus even competing jobs may be run in parallel.
Conversely, some of the devices can be offline – or go suddenly offline while pro-
duction is in progress – and the scheduler must work around that. Typically, one
wants to find a schedule that minimizes the tardiness of the orders while giving
priority to the more important orders. Since orders are received on a continuous
basis, one needs to be able to update the schedule in an incremental fashion, in
a way that causes minimal disruption to the production, and can satisfy rush
orders, which need to be executed quickly and take precedence over the others.
Similarly, the scheduler needs to react to sudden changes in the print shop, such
as a device going offline during production.

In this paper we describe the use of ASP+CP for the scheduling component
of the system. It should be noted that the “toy” problems on which ASP+CP
hybrids have been tested so far also include scheduling domains (see e.g. the 2nd
ASP Competition [6]). However, as we hope will become evident later on, the
constraints imposed on our system by practical use make the problem and the
solution substantially more sophisticated, and the encoding and development
significantly more challenging.

We begin by providing background on ezcsp. Next, we provide a general
mathematical definition of the problem for our application domain. Later, we
encode a subclass of problems of interest in ezcsp and show how schedules can
be found by computing the extended answer sets of the corresponding encodings.

2 Background

In this section we provide basic background on ezcsp. The interested reader can
find more details in [1]. Atoms and literals are formed as usual in ASP. A rule
is a statement of the form h ← l1, . . . , lm, not lm+1, . . . ,not ln, where h and
li’s are literals and not is the so-called default negation. The intuitive meaning
of the rule is that a reasoner who believes {l1, . . . , lm} and has no reason to
believe {lm+1, . . . , ln}, has to believe h. A program is a set of rules. A rule
containing variables is viewed as short-hand for the set of rules, called ground
instances, obtained by replacing the variables by all possible ground terms. The
ground instance of a program is the collection of the ground instances of its rules.
Because of space considerations, we simply define an answer set of a program
Π as one of the sets of brave conclusions entailed by Π under the answer set
semantics. The precise definition can be found in [9]. Throughout this paper,
readers who are not familiar with the definition can rely on the intuitive reading
of ASP rules given above.

The definition of constraint satisfaction problem that follows is adapted from
[13]. A Constraint Satisfaction Problem (CSP) is a triple 〈X,D,C〉, where X =
{x1, . . . , xn} is a set of variables, D = {D1, . . . , Dn} is a set of domains, such
that Di is the domain of variable xi (i.e. the set of possible values that the
variable can be assigned), and C is a set of constraints. Each constraint c ∈
C is a pair c = 〈σ, ρ〉 where σ is a list of variables and ρ is a subset of the

Industrial-Size Scheduling with ASP+CP 287

Cartesian product of the domains of such variables. An assignment is a pair
〈xi, a〉, where a ∈ Di, whose intuitive meaning is that variable xi is assigned
value a. A compound assignment is a set of assignments to distinct variables
from X . A complete assignment is a compound assignment to all of the variables
in X . A constraint 〈σ, ρ〉 specifies the acceptable assignments for the variables
from σ. We say that such assignments satisfy the constraint. A solution to a
CSP 〈X,D,C〉 is a complete assignment that satisfies every constraint from C.
Constraints can be represented either extensionally, by specifying the pair 〈σ, ρ〉,
or intensionally, by specifying an expression involving variables, such as x < y. In
this paper we focus on constraints represented intensionally. A global constraint
is a constraint that captures a relation between a non-fixed number of variables
[10], such as sum(x, y, z) < w and all different(x1, . . . , xk). One should notice
that the mapping of an intensional constraint specification into a pair 〈σ, ρ〉
depends on the constraint domain. For this reason, in this paper we assume that
every CSP includes the specification of the intended constraint domain.

In ezcsp, programs are written in such a way that their answer sets encode the
desired CSPs. The solutions to the CSPs are then computed using a CP solver.
CSPs are encoded in EZCSP using the following three types of statements: (1)
a constraint domain declaration, i.e. a statement of the form cspdomain(D),
where D is a constraint domain such as fd, q, or r; informally, the statement
says that the CSP is over the specified constraint domain (finite domains, Q,
R), thereby fixing an interpretation for the intensionally specified constraints;
(2) a constraint variable declaration, i.e. a statement of the form cspvar(x, l, u),
where x is a ground term denoting a variable of the CSP (CSP variable or con-
straint variable for short), and l and u are numbers from the constraint domain;
the statement says that the domain of x is [l, u];(3) a constraint statement, i.e.
a statement of the form required(γ), where γ is an expression that intension-
ally represents a constraint on (some of) the variables specified by the cspvar
statements; intuitively the statement says that the constraint intensionally rep-
resented by γ is required to be satisfied by any solution to the CSP. For the
purpose of specifying global constraints, we allow γ to contain expressions of the
form [δ/k]. If δ is a function symbol, the expression intuitively denotes the se-
quence of all variables formed from function symbol δ and with arity k, ordered
lexicographically. If δ is a relation symbol, the expression intuitively denotes the
sequence 〈e1, e2, . . . , en〉 where ei is the last element of the ith k-tuple satisfying
relation δ, according to the lexicographic ordering of such tuples.

Example 1. We are given 3 variables, v1, v2, v3, ranging over [1, 5] and
we need to find values for them so that v2 − v3 > 1 and their sum is
greater than or equal to 4. A possible encoding of the problem is A1 =
{cspdomain(fd), cspvar(v(1), 1, 5), cspvar(v(2), 1, 5), cspvar(v(3), 1, 5),
required(v(2)− v(3) > 1), required(sum([v/1]) ≥ 4)} .
Let A be a set of atoms, including atoms formed from relations cspdomain,
cspvar, and required. We say that A is a well-formed CSP definition if: (1) A
contains exactly one constraint domain declaration; (2) the same CSP variable
does not occur in two or more constraint variable declarations of A; and (3)

288 M. Balduccini

every CSP variable that occurs in a constraint statement from A also occurs in
a constraint variable declaration from A.

Let A be a well-formed CSP definition. The CSP defined by A is the triple
〈X,D,C〉 such that: (1) X = {x1, x2, . . . , xk} is the set of all CSP variables
from the constraint variable declarations in A; (2) D = {D1, D2, . . . , Dk} is the
set of domains of the variables from X , where the domain Di of variable xi is
given by arguments l and u of the constraint variable declaration of xi in A, and
consists of the segment between l and u in the constraint domain specified by
the constraint domain declaration from A; (3) C is a set containing a constraint
γ′ for each constraint statement required(γ) of A, where γ′ is obtained by: (a)
replacing the expressions of the form [f/k], where f is a function symbol, by the
list of variables from X formed by f and of arity k, ordered lexicographically; (b)
replacing the expressions of the form [r/k], where r is a relation symbol, by the
sequence 〈e1, . . . , en〉, where, for each i, r(t1, t2, . . . , tk−1, ei) is the ith element
of the sequence, ordered lexicographically, of atoms from A formed by relation
r; (c) interpreting the resulting intensionally specified constraint with respect to
the constraint domain specified by the constraint domain declaration from A. A
pair 〈A,α〉 is an extended answer set of program Π iff A is an answer set of Π
and α is a solution to the CSP defined by A.

Example 2. Set A1 from Example 1 defines the CSP:

〈{v1, v2, v3},
{
{1, 2, 3, 4, 5}, {1, 2, 3, 4, 5},

{1, 2, 3, 4, 5}
}
,

{
v2 − v3 > 1,

sum(v(1), v(2), v(3)) ≥ 4

}
〉.

3 Problem Definition

One distinguishing feature of ASP and derived languages is that they allow one
to encode a problem at a level of abstraction that is close to that of the prob-
lem’s mathematical (or otherwise precisely formulated, see e.g. [2]) specification.
Consequently, it is possible for the programmer (1) to inspect specification and
encoding and convince himself of the correctness of the encoding, and (2) to ac-
curately prove the correctness of the encoding with respect to the formalization
with more ease than using other approaches. The ability to do this is quite im-
portant in industrial applications, where one assumes responsibility towards the
customers for the behavior of the application. Therefore, in this paper we precede
the description of the encoding with a precisely formulated problem definition.
Let us begin by introducing some terminology.

By device class (or simply device) we mean a type or model of artifact capable
of performing some phase of production, e.g. a press model XYZ or a folder model
MNO. By device-set of a print shop we mean the set of devices available in the
shop. By device instance (or simply instance) we mean a particular exemplar
of a device class. For example, a shop may have multiple XYZ presses, each of
which is a device instance. We denote the fact that instance i is an instance of
device class d by the expression i ∈ d.

Industrial-Size Scheduling with ASP+CP 289

A job j is a pair 〈len, devices〉 where len is the length of the job, and devices ⊆
device-set is a set of devices that are capable of performing the job. Given a job
j, the two components are denoted by len(j) and devices(j). Intuitively, the
execution of a job can be split among a subset of the instances of the elements
of devices(j). A job-set J is a pair 〈Γ, PREC〉, where Γ is a set of jobs, and
PREC is a directed acyclic graph over the elements of Γ , intuitively describing
a collection of precedences between jobs. An arc 〈j1, j2〉 in PREC means that
the execution of job j1 must precede that of job j2 (that is, the execution of j1
must be completed before j2 can be started). The components of J are denoted,
respectively, by ΓJ and PRECJ .

The usage-span of an instance i is a pair 〈start-timei, durationi〉, intuitively
stating that instance i will be in use (for a given purpose) from start-timei and
for the specified duration. By US we denote the set of all possible usage-spans.
Given a usage-span u, start(u) denotes its first component and dur(u) denotes
its second. In the remainder of the discussion, given a partial function f , we use
the notation f(·) = ⊥ (resp., f(·) �= ⊥) to indicate that f is undefined (resp.,
defined) for a given tuple.

Definition 1 (Work Assignment). A work assignment for a job-set J is a
pair 〈I, U〉, where: (1) I is a function that associates to every job j ∈ ΓJ a set
of device instances (we use Ij as an alternative notation for I(j)), (2) U is a
collection of (partial) functions usagej : Ij → US for every j ∈ ΓJ , and the
following requirements are satisfied:

1. (Ij is valid) For every i ∈ Ij , ∃d ∈ devices(j) s.t. i ∈ d.
2. (usagej is valid) ∀usagej ∈ U ,

∑
i∈Ij ,usagej(i) �=⊥ dur(usagej(i)) = len(j).

3. (overlap) For any two jobs j �= j′ from ΓJ and every i ∈ Ij ∩ Ij′ such that
usagej(i) �= ⊥ and usagej′(i) �= ⊥:

start(usagej(i)) + dur(usagej(i)) ≤ start(usagej′(i)), or
start(usagej′(i)) + dur(usagej′(i)) ≤ start(usagej(i)).

4. (order) For every 〈j, j′〉 ∈ PRECJ , j′ starts only after j has been completed.
.

A single-instance work assignment for job-set J is a work assignment 〈I, U〉 such
that ∀j ∈ ΓJ , |Ij | = 1. A single-instance work assignment intuitively prescribes
the use of exactly one device instance for each job. In the rest of the discussion,
we will focus mainly on a special type of job-set: a simplified job-set is a job-set J
such that, for every job j from ΓJ , |devices(j)| = 1. Notice that work assignments
for a simplified job-set are not necessarily single-instance. If multiple instances of
some device are available, it is still possible to split the work for a job between the
instances, or assign it to a particular instance depending on the situation. Next,
we define various types of scheduling problems of interest and their solutions.

A deadline-based decision (scheduling) problem is a pair 〈J, d〉 where J is a set
of jobs and d is a (partial) deadline function d : J → N , intuitively specifying
deadlines for the jobs, satisfying the condition:

∀j, j′ ∈ ΓJ [〈j, j′〉 ∈ PRECJ → d(j) = ⊥]. (1)

290 M. Balduccini

A solution to a deadline-based decision problem 〈J, d〉 is a work assignment
〈I, U〉 such that, for every j ∈ ΓJ : ∀i ∈ Ij [d(j) �= ⊥ → start(usagej(i)) +
dur(usagej(i)) ≤ d(j)].

A cost-based decision problem is a tuple 〈J, c, k〉 where J is a job-set, c is
a cost function that associates a cost (represented by a natural number) to
every possible work assignment of J , and k is a natural number, intuitively
corresponding to the target cost. A solution to a cost-based decision problem
〈J, c, k〉 is a work assignment W such that

c(W) ≤ k. (2)

An optimization problem is a pair 〈J, c〉 where J is a job-set and c is a cost
function that associates a cost to every possible work assignment of J . A solution
to an optimization problem P = 〈J, c〉 is a work assignment W such that, for
every other work assignment W ′, c(W) ≤ c(W ′).

Since a solution to an optimization problem 〈J, c〉 can be found by solving the
sequence of cost-based decision problems 〈J, c, 0〉, 〈J, c, 1〉, . . ., in the rest of this
paper we focus on solving decision problems. Details on how the optimization
problem is solved by our system will be discussed in a longer paper.

In our system, scheduling can be based on total tardiness, i.e. on the sum of
the amount of time by which the jobs are past their deadline. Next, we show
how this type of scheduling is an instance of a cost-based decision problem.

Example 3. Total tardiness
We are given a job-set J , the target total tardiness k, and a deadline function d
(as defined earlier). We construct a cost function c so that the value of c(W) is
the total tardiness of work assignment W . The construction is as follows. First
we define auxiliary function c′(j,W) which computes the tardiness of job j ∈ ΓJ

based on W :

c′(j,W) =
{

0 if d(j) = ⊥ or usagej(i) = ⊥
max(0, start(usagej(i)) + dur(usagej(i))− d(j)) otherwise.

Now we construct the cost function as: c(W) =
∑

j∈ΓJ
c′(j,W). The work as-

signments with total tardiness less than or equal to some value k are thus the
solutions of the cost-based decision problem 〈J, c, k〉. .

At this stage of the project,we focus on simplified job-sets and single-instance
solutions. Furthermore, all instances of a given device are considered to be iden-
tical (one could deal with differences due e.g. to aging of some instances by
defining different devices).

Under these conditions, a few simplifications can be made. Because we are
focusing on single-instance solutions, given a work assignment 〈I, U〉, it is easy
to see that Ij is a singleton for every j. Moreover, since we are also focusing
on simplified job-sets, for every j, usagej is defined for a single device instance
of a single device d ∈ devices(j). It is not difficult to see that, for the usage-
span 〈start-time, duration〉 of every job j, duration = len(j). Thus, the only

Industrial-Size Scheduling with ASP+CP 291

information that needs to be specified for work assignments is the start time of
each job j and the device instance used for the job.

A solution to a scheduling problem can now be more compactly described
as follows. A device schedule for d is a pair 〈L, S〉, where L = 〈j1, . . . , jk〉 is a
sequence of jobs, and S = 〈s1, . . . , sk〉 is a sequence of integers. Intuitively, L is
the list of jobs that are to be run on device d, and S is a list of start times such
that each sm is the start time of job jm. A global schedule for a set of devices D
is a function σ that associates each device from D with a device schedule.

4 Encoding and Solving Scheduling Problems

In this section, we describe how scheduling problems for our application domain
are encoded and solved using ezcsp. Although our formalization is largely in-
dependent of the particular constraint domain chosen, for simplicity we fix the
constraint domain to be that of finite domains, and assume that any set of rules
considered also contains the corresponding specification cspdomain(fd).

A device d with n instances is encoded by the set of rules
ε(d) = {device(d). instances(d, n).}. A job j is encoded by ε(j) =
{job(j). job len(j, l). job device(j, d).}, where l = len(j) and d ∈ device(j)
(device(j) is a singleton under the conditions stated earlier).

The components of a job-set J = 〈Γ, PREC〉 are encoded as follows:

ε(Γ) =
⋃

j∈ΓJ

ε(j) ; ε(PRECJ) = {precedes(j, j′). | 〈j, j′〉 ∈ PRECJ}.

The encoding of job-set J is ε(J) = ε(ΓJ) ∪ ε(PRECJ).
Given a scheduling problem P , the overall goal is to specify its encoding ε(P).

In this section we focus on solving cost-based decision problems 〈J, c, k〉 with c
based on total tardiness, and defined as in Example 3. Our goal then is to provide
the encoding ε(〈J, c, k〉).

We represent the start time of the execution of job j on some instance of
device d by constraint variable st(d, j). The definition of the set of such constraint
variables is given by εvars, consisting of the rule:

cspvar(st(D, J), 0,MT)← job(J), job device(J,D), max time(MT).

together with the definition of relation max time, which determines the upper
bound of the range of the constraint variables. The next constraint ensures that
the start times satisfy the precedences in PRECJ :

εprec =

{
required(st(D2, J2) ≥ st(D1, J1) + Len1)←

job(J1), job(J2), job device(J1, D1), job device(J2, D2),
precedes(J1, J2), job len(J1, Len1).

The deadlines of all jobs j ∈ ΓJ are encoded by a set εdl of facts of the form
deadline(j, n). One can ensure that requirement (1) is satisfied by specifying a
constraint ← precedes(J1, J2), deadline(J1, D). Function c′ from Example 3

292 M. Balduccini

is encoded by introducing an auxiliary constraint variable td(j) for every job
j, where td(j) represents the value of c′(j,W) for the current work assignment.
The encoding of c′, ε(c′), consists of εvar ∪ εprec ∪ εdl together with:

cspvar(td(J), 0, MT)← job(J), max time(MT).

required(td(J) == max(0, st(D, J) + Len−Deadline))←
job(J), job device(J, D), deadline(J,Deadline), job len(J, Len).

Notice that the constraint is only enforced if a deadline has been specified for
job j. An interesting way to explicitly set the value of td(j) to 0 for all other
jobs consists in using:

enforced(td(J))← job(J), required(td(J) == X), X �= 0.

required(td(J) == 0)← job(J), not enforced(td(J)).

Function c from Example 3 is encoded by introducing an auxiliary constraint
variable tot tard. The encoding, ε(c), consists of ε(c′) together with:

cspvar(tot tard, 0, MT)← max time(MT).

required(sum([td/1], ==, tot tard)).

where the constraint intuitively computes the sum of all constraint variables
td(·). The final step in encoding the decision problem 〈J, c, k〉 is to provide a
representation, ε(k), of constraint (2), which is accomplished by the rule:

required(tot tard ≤ K)← max total tardiness(K).

together with the definition of relation max total tardiness, specifying the
maximum total tardiness allowed. It is interesting to note the flexibility of this
representation: if relation max total tardiness is not defined, then the above
constraint is not enforced – in line with the informal reading of the rule – and
thus one can use the encoding to find a schedule irregardless of its total tardiness.

The encoding of a cost-based decision problem 〈J, c, k〉, where c computes
total tardiness, is then: ε(〈J, c, k〉) = ε(J) ∪ ε(c) ∪ ε(k).

Now that we have a complete encoding of the problem, we discuss how schedul-
ing problems are solved. Given ε(〈J, c, k〉), to solve the scheduling problem we
need to assign values to the constraint variables while enforcing the following
requirements:

[Overlap] if two jobs j and j′, being executed on the same device, overlap
(that is, one starts before the other is completed), then they must
be executed on two separate instances of the device;

[Resources] at any time, no more instances of a device can be used than are
available.

This can be accomplished compactly and efficiently using global constraint
cumulative [4]. The cumulative constraint takes as arguments: (1) a list of con-
straint variables encoding start times; (2) a list specifying the execution length

Industrial-Size Scheduling with ASP+CP 293

of each job whose starts time is to be assigned; (3) a list specifying the amount
of resources required for each job whose start time is to be assigned; (4) the
maximum number of resources available at any time on the device. In order to
use cumulative, we represent the number of available device instances as an
amount of resources, and use a separate cumulative constraint for the schedule
of each device. The list of start times for the jobs that are to be processed by
device d can be specified, in ezcsp, by a term [st(d)/2], intuitively denoting the
list of terms (1) formed by function symbol st, (2) of arity 2, and (3) with d as
first argument. We also introduce auxiliary relations len by dev and res by dev,
which specify, respectively, the length and number of resources for the execution
on device d of job j. The auxiliary relations are used to specify the remaining
two lists for the cumulative constraint, using ezcsp terms [len by dev(D)/3]
and [res by dev(D)/3]. The complete scheduling module, Πsolv, is:

required(cumulative([st(D)/2], [len by dev(D)/3], [res by dev(D)/3], N))←
instances(D, N).

len by dev(D, J, N)← job(J), job device(J,D), job len(J, N).

res by dev(D, J, 1)← job(J), job device(J,D).

Notice that, since we identify the resources with the instances of a device, the
amount of resources required by any job j at any time is 1.

Schedules for a cost-based decision problem 〈J, c, k〉, where c computes total
tardiness, can be then found by computing the extended answer sets of the
program ε(〈J, c, k〉) ∪Πsolv. Using the definitions from Section 3, one can prove
the following:

Proposition 1. Let 〈J, c, k〉 be a cost-based decision problem, where c computes
total tardiness. The global schedules of 〈J, c, k〉 are in one-to-one correspondence
with the extended answer sets of the program ε(〈J, c, k〉) ∪Πsolv.

5 Incremental and Penalty-Based Scheduling

In this section, we describe the solution to more sophisticated scheduling prob-
lems. To give more space to the encoding, we omit the precise problem defini-
tions, which can be obtained by extending the definitions from Section 3.

It is important to stress that these extensions to the scheduler are entirely
incremental, with no modifications needed to the encoding from Section 4. This
remarkable and useful property is the direct result of the elaboration tolerance
typical of ASP encodings.

The first extension of the scheduler consists in considering a more sophisti-
cated cost-based decision problem, 〈J, c∗, k∗〉. In everyday use, some orders take
precedence over others, depending on the service level agreement the shop has
with its customers. Each service level intuitively yields a different penalty if the
corresponding jobs are delivered late. The total penalty of a schedule is thus
obtained as the weighted sum of the tardiness of the jobs, where the weights
are based on each job’s service level. The encoding, ε(c∗), of c∗ consists of ε(c)
together with (relation weight defines the assignments of weights to jobs):

294 M. Balduccini

cspvar(penalty(J),0, MP)← job(J), max penalty(MP).

required(penalty(J) == td(J,O) ∗Weight)← job(J), weight(J,Weight).

cspvar(tot penalty, 0, MP)← max penalty(MP).

required(sum([penalty/2],==, tot penalty)).

The encoding of ε(k∗) extends ε(k) by the rule:

required(tot penalty ≤ P)← max total penalty(P).

which encodes constraint (2) for penalties. Notice that, thanks to the elaboration
tolerance of the encoding developed in Section 4, it is safe for ε(k∗) to include
ε(k), since now relation max total tardiness is left undefined.

Another typical occurrence in everyday use is that the schedule must be
updated incrementally, either because new orders were received, or because of
equipment failures. During updates, intuitively one needs to avoid re-scheduling
jobs that are already being executed. We introduce a new decision problem
〈J∗, c∗, k∗〉, where c∗, k∗ are as above, and J∗ extends J to include information
about the current schedule; ε(J∗) includes ε(J) and is discussed next.

To start, we encode the current schedule by relations curr start(j, t) and
curr device(j, d). The current (wall-clock) time t is encoded by relation
curr time(t). The following rules informally state that, if according to the
current schedule production of a job has already started, then its start time and
device must remain the same. Conversely, all other jobs must have a start time
that is no less than the current time1.

already started(J) ← curr start(J, T), curr time(CT), CT > T.

must not schedule(J) ← already started(J), not ab(must not schedule(J)).

required(st(D, J) ≥ CT) ← job device(J, D), curr time(CT), not must not schedule(J).

required(st(D, J) == T) ← curr device(J, D), curr start(J, T), must not schedule(J).

It is worth noting that the use of a default to define must not schedule allows
extending the scheduler in a simple and elegant way by defining exceptions.

Whereas the above rules allow scheduling new jobs without disrupting cur-
rent production, the next set deals with equipment going offline, even during
production. Notice that by “equipment” we mean a particular instance of a
device. To properly react to this situation, the system first needs to have an ex-
plicit representation of which device instance is assigned to perform which job.
This can be accomplished by introducing a new variable on instance(j). The
value of the variable is a number that represents the device instance assigned
to the job (among the instances of the device prescribed by job device(j, d)).
The corresponding variable declaration and constraints are encoded by:

1 One may not want to schedule jobs to start exactly at the current time, as there
would not be time to move the supplies and set up the job. Extending the rules to
accomplish that is straightforward.

Industrial-Size Scheduling with ASP+CP 295

cspvar(on instance(J), 1, N)← job device(J, D), instances(D, N).

required((on instance(J1) �= on instance(J2)) ∨
(st(D,J2) ≥ st(D, J1) + Len1) ∨ (st(D,J1) ≥ st(D, J2) + Len2))←

job device(J1, D), job device(J2, D), J1 �= J2,
len(J1, Len1), len(J2, Len2), instances(D, N), N > 1.

required(on instance(J) �= I)←
job device(J, D), offline instance(D, I), not must not schedule(J).

The second rule intuitively says that, if d has more than one instance and is
scheduled to run two (or more) jobs, then either a job ends before the other starts,
or the jobs must be assigned to two different instances. The rule is an example
of use of reified constraints, as defined for example in [5]. The last rule says
that no job can be assigned to an offline instance. For incremental scheduling,
we also extend the encoding of the current schedule by introducing a relation
curr on instance(j, i), which records the instance-job previously determined.

The reader might wonder about the overlap between cumulative, used earlier,
and the above constraints. In fact, cumulative already performs a limited form
of reasoning about instance-job assignments when it determines if sufficient re-
sources are available to perform the jobs. Although it is possible to replace
cumulative by a set of specific constraints for the assignment of start times, we
believe that using cumulative makes the encoding more compact and readable.

The encoding ε(J∗) is completed by rules that detect situations in which a
device went offline while executing a job. Relation offline instance(d, i) states
that instance i of device d is currently offline.

already finished(J) ← curr start(J, T), len(J, Len), curr time(CT), CT ≥ T + Len.

ab(must not schedule(J)) ←
already started(J), not already finished(J), curr device(J, D),
curr on instance(J, I), offline instance(D, I).

The last rule defines an exception to the default introduced earlier. Informally,
the rule says that if instance i is offline, any job assigned to it that is currently
in production constitutes an exception to the default. It is not difficult to see
that such exceptional jobs are subjected to regular rescheduling. The presence
of atoms formed by relation ab in the extended answer set is also used by the
system to warn the user that a reschedule was forced by a device malfunction.

In conclusion, the solutions to problem 〈J∗, c∗, k∗〉 can be found by computing
the extended answer sets of ε(〈J∗, c∗, k∗〉).

6 Conclusions

In this paper we have described what to the best of our knowledge is the first
industrial-size application of an ASP+CP hybrid language. The application is
currently being considered for use in commercial products. Performance evalu-
ation of our system is under way. A simplified version of the domain has been
accepted as a benchmark for the Third ASP Competition at LPNMR-11. Pre-
liminary analysis on customer data showed that performance is comparable to

296 M. Balduccini

that of similar implementations written using CP alone, with schedules for
customer-provided instances typically found in less than one minute, and of-
ten in a few seconds. In comparison with direct CP encodings, we found that
the compactness, elegance, and elaboration tolerance of the EZCSP encoding
are superior. In a CLP implementation that we have developed for comparison,
the number of rules in the encoding was close to one order of magnitude larger
than the number of rules in the EZCSP implementation. Moreover, writing those
rules often required one to consider issues with procedural flavor, such as how
and where certain information should be collected.

References

1. Balduccini, M.: Representing Constraint Satisfaction Problems in Answer Set Pro-
gramming. In: ICLP 2009 Workshop on Answer Set Programming and Other Com-
puting Paradigms (ASPOCP 2009) (July 2009)

2. Balduccini, M., Girotto, S.: Formalization of Psychological Knowledge in Answer
Set Programming and its Application. Journal of Theory and Practice of Logic
Programming (TPLP) 10(4-6), 725–740 (2010)

3. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an Integration of Answer Set
and Constraint Solving. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS,
vol. 3668, pp. 52–66. Springer, Heidelberg (2005)

4. Beldiceanu, N., Contejean, E.: Introducing Global Constraints in CHIP. Mathl.
Comput. Modelling 20(12), 97–123 (1994)

5. Carlson, B., Carlsson, M., Ottosson, G.: An Open-Ended Finite Domain Constraint
Solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292. Springer,
Heidelberg (1997)

6. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second
answer set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.)
LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: Veloso, M.M. (ed.) Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI 2007), pp. 386–392. MIT Press, Cam-
bridge (2007)

8. Gebser, M., Ostrowski, M., Schaub, T.: Constraint Answer Set Solving. In: Hill,
P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer,
Heidelberg (2009)

9. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

10. Katriel, I., van Hoeve, W.J.: Global Constraints. In: Handbook of Constraint Pro-
gramming, ch. 6. Foundations of Artificial Intelligence, pp. 169–208. Elsevier, Am-
sterdam (2006)

11. Marek, V.W., Truszczynski, M.: Stable models and an alternative logic program-
ming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp.
375–398. Springer, Berlin (1999)

12. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating Answer Set Programming and
Constraint Logic Programming. Annals of Mathematics and Artificial Intelligence
(2008)

13. Smith, B.M.: Modelling. In: Handbook of Constraint Programming, ch. 11. Foun-
dations of Artificial Intelligence, pp. 377–406. Elsevier, Amsterdam (2006)

Secommunity: A Framework for Distributed Access
Control

Steve Barker1 and Valerio Genovese2,3

1 King’s College London
2 University of Luxembourg

3 University of Torino

Abstract. We describe an approach for distributed access control policies that
is based on a nonmonotonic semantics and the use of logic programming for
policy specification and the evaluation of access requests. Our approach allows
assertions of relevance to access control to be made by individual agents or on
a community-based level and different strengths of testimonial warrant may be
distinguished by using various logical operators. We describe a form of ASP that
allows for remote access request evaluation and we discuss a DLV-based imple-
mentation of our approach.

1 Introduction

We address an aspect of a basic form of “the” access control problem, of specifying and
deciding who (which principals) have what type of access privileges on what resources.

In this paper, our focus is on a nonmonotonic approach to access control in dis-
tributed computing contexts. In this case, the specification of policies and answers to
requests, by principals to access a resource, often involve representing and computing
with incomplete forms of information. For example, a principal identified by the key
Kα may request read access to Kβ’s “special offers” file but without Kβ necessar-
ily knowing enough itself about Kα to determine, with confidence, what response to
provide to Kα’s request. Nonmonotonic reasoning is important in this context. In our
example scenario, an atomic consequence like authorized(Kα, read, special offers)
may need to be retracted if additional information becomes known aboutKα. Similarly,
a “standard” certificate, used in distributed access control, has the semantics [6]: “This
certificate is good until the expiration date. Unless, of course, you hear that it has been
revoked.” The “unless” part highlights an inherent nonmonotonicity. The expiration
of a certificate’s validity period may also be viewed as being “temporally nonmono-
tonic” [4].

The novelty of our contribution is to be understood in terms of our description, in
logic programming terms, of a community view of socially constructed testimonial war-
rant and the adoption of a coherence-based semantics, i.e., a community of asserters
reach a coherent view on the assertions made by a community.

We adopt a conceptual model that includes has four main types of entities: resources,
acceptors, oracles and contributors. Assertions are contributed by community members
to oracles that are then used by acceptors, of an oracle’s assertions, to evaluate requests
to access resources that are controlled by the acceptors. Oracles are repositories that

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 297–303, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

298 S. Barker and V. Genovese

store community assertions; oracles are used by a community as long as they serve the
community in terms of making assertions that are valuable in deciding access requests.
The principals that request access to resources that are protected by acceptors may be
viewed as a fifth key sort of agent in our our framework. The approach that we describe
in this paper also extends our previous work on meta-models for access control [1],
which is based on exploiting the notion of a category (see below) for developing a
unified view of access control. The main focus in this work is to describe a novel ASP-
based implementation of our approach that makes use of externally defined predicates.

The rest of this paper is organized thus. In Section 2, we describe the foundational
details on which our approach is based. In Section 3, we consider implementation
details. In Section 4, conclusions are drawn and further work is suggested.

2 Access Control Policies in ASP

In this section, we briefly introduce the key syntactic and semantic concepts that we use.
The main sorts of constants in the (non-empty) universe of discourse that we assume
are: A countable set C of categories, where c0, c1, . . . are (strings) used to denote
arbitrary category identifiers; A countable set P of principals, where p0, p1, . . . are
used to identify users, organizations, processes, . . . ; A countable set Σ ⊆ P of sources
of testimonial warrant, where s0, s1, . . . are (strings) used to denote arbitrary sources; A
countable setA of named atomic actions, where a0, a1, . . . are (strings) used to denote
arbitrary action identifiers; A countable set R of resource identifiers, where r0, r1, . . .
denote arbitrary resources; r(t1, . . . , tn) is an arbitrary n-place relation that represents
an “information resource” where ti (1 ≤ i ≤ n) is a term (a term is a function, a
constant or a variable).

Informally, a category is any of several fundamental and distinct classes or groups
to which entities may be assigned (cf. [1]). The categories of interest, for what we
propose, are application-specific and determined by usage (individual, community or
universal) rather than by necessary and sufficient conditions. A community will define
categories in terms of a chosen vocabulary. Named categories like trusted, highly
trusted, untrusted, . . . may be community accepted terms or each community
member can define its own categories, which may then be referred to within the com-
munity. In all cases, the community decides the language it uses (cf. “vocabulary
agreements” [5]). Our adoption of a community-based vocabulary is consistent with
our view of community-based assertion-making.

The language in terms of which we specify access control policies is centered on four
theory-specific predicates, pca, pcas, arca and par, which have following meanings:
pca(p, c) iff the principal p ∈ P is assigned to the category c ∈ C; pcas(p, c, s) iff
the member s ∈ Σ asserts that the principal p ∈ P is assigned to the category c ∈ C;
arca(a, r, c) iff the privilege of performing action a ∈ A on resource r ∈ R is assigned
to the category c ∈ C; par(p, a, r) iff the principal p ∈ P is authorized to perform the
action a ∈ A on resource r ∈ R. The extension of par is defined in terms of arca and
pca by the following rule: ∀p∀a∀r∀c((arca(a, r, c) ∧ pca(p, c))→ par(p, a, r)) which
reads as: “If a principal p is assigned to a category c to which the privilege to perform
action a on resource r has been assigned, then p is authorized to perform the a action
on r”.

Secommunity: A Framework for Distributed Access Control 299

In addition to pca, pcas, arca and par, we add “counting operators” ranging over
the pca predicate and with a semantics that may be informally understood as follows:
�(pca(p, c)) is “true” iff every source of testimonial warrant in a communityΣ “says”
(or supports) that principal p is assigned to category c (i.e., pca(p, c)); ♦(pca(p, c)) is
“true” iff some source of testimonial warrant in Σ “says” pca(p, c); M(pca(p, c)) is
“true” iff the majority of sources of testimonial warrant in Σ “say” pca(p, c).

In addition, we introduce into our language a particular operator @ for external
queries over remote knowledge bases such that ϕ @ ω intuitively reads as: “At remote
source ω, ϕ is true”, where ϕ can be either a literal or an aggregate function.

For the specification of the access control policies that we will introduce, we use
standard ASP syntax with aggregate functions (in the sense of [2]). An aggregate func-
tion has the form f(S) where S is a set, and f is a function name from the set of
function names {#count,#sum,#max,#min,#times}.

Definition 1 (Access Control Policy). An access control policy is a set of ASP rules
of the form h ← b1, . . . , bn where, h is a literal L or a counting operator applied to
an instance of ©pca(,) with © ∈ {�,�,M} and; bi := (not)L | ©pca(,) |
L @ ω | Lg ≺1 f(S) ≺2 Rg | Lg ≺1 f(S) @ ω ≺2 Rg;

We recall that Lg ≺1 f(S) ≺2 Rg is an aggregate atom where f(S) is an aggregate
function,≺1,≺2∈ {=, <,≤, >,≥}; andLg andRg (called left guard, and right guard,
respectively) are terms.

As is conventional, variables in rules appear in the upper case; constants are in the
lower case. We also restrict attention to policies that are defined as a finite set of safe
(locally) stratified clauses. This means that our access control policies have a unique
answer set.

We use aggregates in our approach and comparison operators on the numbers of
sources of testimonial warrant to allow acceptors to specify flexibly the required degrees
of testimonial support for access. We adopt features of the DLV language [3] for our
purposes.

3 Implementation

In this section we present secommunity, an implementation of our framework in the
DLV system. We first show how to represent, using DLV syntax, the operators presented
throughout the paper. We then give a brief description of our system and we discuss
some performance measures for it. In what follows, DLV code fragments are presented
using monospace font. Henceforth, we view acceptors, oracles and contributors as DLV
knowledge bases (KBs).

The implementation of our modal operators makes use of counting functions, to wit:

box(pca(P, C)):- pcas(, P, C)),#count{X : pcas(X, P, C), source(X)}= R,
#count{Y : source(Y)} = R.

diamond(pca(P, C)):- pcas(X, P, C), source(X).
majority(pca(P, C)):- pcas(, P, C),#count{X : pcas(X, P, C), source(X)}= R1,

#count{Y : source(Y)} = R2, R3 = R2/2, R1 > R3.

300 S. Barker and V. Genovese

pca(p, c):-#at(“192.16.8.0.1”, pca(p, c))

C++ Client

Remote Knowledge Base

Server

Local Knowledge Base

1

pca(p,c)?

dlv KB ∪ {:- pca(p,c)}

result

true/false

2

3

4

56

Fig. 1. Evaluation of #at

Notice that the definition of modal operators is based on pcas relationships issued by
contributor sources of testimonial warrant.

3.1 Querying External Sources

To represent the distributed aspect of our approach, we defined in DLV-Complex1 two
external predicates (also called built-ins):

– #at(IP, G) which reads as: “At the remote DLV source indexed by IP, G holds.”
– #f at(IP, {P : Conj}, PX), which has several readings depending on the aggregate

function f:
• If f = count, then PX is unified with the value V, the sum of the elements in
{P : Conj} at the remote DLV source indexed by IP, i.e., #count{P : Conj}=V.

• If f = sum, then PX is unified with the value V representing the sum of numbers
in the set {P : Conj} at the remote DLV source indexed by IP, i.e.,
#sum{P : Conj} = V.

• If f = times, then PX is unified with the value V representing the product of
numbers in the set {P : Conj} at the remote DLV source indexed by IP, i.e.,
#times{P : Conj} = V.

• If f = min (resp. f = max), then PX is unified with the value V representing
the minimum (resp. maximum) element in the set {P : Conj}, i.e,
#max{P : Conj} = V.

For each external predicate (e.g., #at, #count at) we associated a C++ program that
queries the remote knowledge base indexed by IP . In Figure 1, we illustrate the execu-
tion cycle of the evaluation of #at(“192.16.8.0.1”, pca(p, c)) which can be resumed
as follows:

– (1) When DLV has to evaluate whether #at(“192.16.8.0.1”, pca(p, c)) holds or
not it performs a call to an external C++ function called client.

– (2) The server associated with the remote source is then contacted by the client,
which asks whether pca(p, c) is in the answer set of the remote KB.

1 https://www.mat.unical.it/dlv-complex

Secommunity: A Framework for Distributed Access Control 301

pca(p, c):-#count at(“IP”, “S : pcas(S, p, c1)”, PX), PX > n

C++ Client

Remote Knowledge Base

Server

Local Knowledge Base

1

#count{S: pcas(S,p,c1)} > n

dlv KB ∪ {result(X) :- #count{S: pcas(S,p,c1)}=X}

result(m)

PX=m

2

3

4

56

Fig. 2. Evaluation of #count

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

re
sp

on
se

 ti
m

e
(m

s)

remote queries (#n)

Standard deviation (30 rep.)

Fig. 3. Scalability of External Predicates

– (3) The server receives the request and checks locally whether the KB extended
with constraint :- pca(p, c) is contradictory , which means that pca(p, c) is in the
answer set of KB.

– (4,5,6) The corresponding result is then forwarded back to the client which assigns
true to #at(“192.16.8.0.1”, pca(p, c)) iff pca(p, c) holds at remote KB.

In Figure 2 we illustrate the execution cycle of the evaluation of

#count at(“IP”, “S : pcas(S, p, c1)”, PX), PX> n

The steps are similar to those in Figure 1 with the exception that when DLV has to
evaluate whether #count at(“IP”, “S : pcas(S, p, c1)”, PX), PX > n holds or not it
has to query the remote KB (located at IP) to know the number of elements in the set
{S : pcas(S, p, c1)} and then it must check whether this number is greater than n.

A working implementation (for Linux and Windows platforms) of secommunity
with source code, documentation and examples is available at

http://www.di.unito.it/∼genovese/tools/secommunity/secommunity.
html

302 S. Barker and V. Genovese

3.2 Tests and Results

In order to assess the overhead caused by the evaluation of external predicates, we
studied the relationship between execution time and the number of external predicates
necessary to evaluate a given rule. In particular, we consider the evaluation of rules of
type

(Tn) pca(p, c) :- #at(IP, pca(p, c))1, . . . ,#at(IP, pca(p, c))n

In Figure 3 we report the main results of our experiments2. We plot the average and
standard deviation of the time (in milliseconds) needed to evaluate 30 runs of rules T(i·5)
with 1 ≤ i ≤ 20. We note that the time to compute in DLV-Complex Tn grows linearly
in n, while the standard deviation is due to network latency in the server’s responses.

The performance measures offer some evidence to suggest that our approach is scal-
able for realistic applications.

4 Conclusions and Further Work

We have argued for a community-based approach for testimonial warrant in deciding
access requests. We briefly described a policy specification language that include oper-
ators for describing unanimity of view in a community (via �), the existence of some
contributor asserting φ (�φ) and a majority operator M (which can be variously inter-
preted). We described how the framework that we defined can be represented in logic
programming terms and we described an ASP-based implementation of our approach.
We also presented some performance measures for an implementation of our approach
that offer evidence of its scalability. We also note that although our focus has been on
describing an approach for distributed access control, our proposal may be used in a
variety of different application scenarios.

In this paper, we have been concerned with describing the implementation details
for the secommunity framework that we have briefly outlined. In future work, we in-
tend to develop the access control material that has not been our focus in this paper.
On that, we propose to consider community membership issues (e.g., how to address
the effects of changes to the community) and a richer delegation framework. Another
matter for further work is to consider community disagreements. Oracles may intro-
spectively reflect on the knowledge they possess with a view to resolving “conflicts”
or “disagreements” within a community of contributors. Thus far, we have only con-
sidered a “democratic” form of community in which every contributor’s assertions
have the same weight. Accommodating variable measures of authority in terms of the
assertions that contributors make to the community view is another issue that requires
further investigation. The implications of accommodating these extensions in a logic
programming context and in nonmonotonic policy specifications will also be matters
for future work.

2 We conduct our tests on the WAN of University of Torino, the client is a Mac Book Pro with
a Intel Core 2 Duo, 4 GB of RAM running Mac OS X 10.6.5. As a server we used a Linux
workstation with AMD Athlon, 2 GB of RAM running Ubuntu 10.4.

Secommunity: A Framework for Distributed Access Control 303

Acknowledgements. Valerio Genovese is supported by the National Research Fund,
Luxembourg. The authors thank the reviewers for their comments, which proved to be
helpful for improving the clarity of the paper.

References

1. Barker, S.: The next 700 access control models or a unifying meta-model? In: Proceedings of
14th ACM Symposium on Access Control Models and Technologies, SACMAT, pp. 187–196
(2009)

2. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate functions in disjunctive
logic programming: Semantics, complexity, and implementation in DLV. In: Proceedings of
the 18th International Joint Conference on Artificial Intelligence, IJCAI, pp. 847–852 (2003)

3. Leone, N., Faber, W.: The DLV project: A tour from theory and research to applications and
market. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 53–68.
Springer, Heidelberg (2008)

4. Li, N., Feigenbaum, J.: Nonmonotonicity, user interfaces, and risk assessment in certificate
revocation. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 157–168. Springer, Hei-
delberg (2002)

5. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-management frame-
work. In: Proceedings of 23rd IEEE Symposium on Security and Privacy, pp. 114–130 (2002)

6. Rivest, R.L.: Can we eliminate certificate revocation lists? In: Hirschfeld, R. (ed.) FC 1998.
LNCS, vol. 1465, pp. 178–183. Springer, Heidelberg (1998)

Itemset Mining as a Challenge Application for
Answer Set Enumeration�

Matti Järvisalo

Department of Computer Science, University of Helsinki, Finland

Abstract. We present an initial exploration into the possibilities of applying cur-
rent state-of-the-art answer set programming (ASP) tools—esp. conflict-driven
answer set enumeration—for mining itemsets in 0-1 data. We evaluate a sim-
ple ASP-based approach experimentally and compare it to a recently proposed
framework exploiting constraint programming (CP) solvers for itemset mining.

1 Introduction

Answer set programming (ASP) has become a viable approach to solving various hard
combinatorial problems. This success is based on the combination of an expressive
modeling language allowing high-level declarations and optimized black-box solver
technology following the success story of Boolean satisfiability (SAT) solving.

A somewhat specific feature of typical answer set solvers is support for enumerating
all solutions (answer sets) of answer set programs. In this work we study an exciting
novel application domain for answer set enumeration, namely, the data mining task
of finding all frequent itemset from 0-1 data [1]. We show that itemset mining prob-
lems allow for simple and natural encodings as ASP with the help of the rich modeling
language. Notably, typical itemset mining algorithm are somewhat problem specific,
varying on the constraints imposed on itemsets. Surprisingly, constraint satisfaction
techniques have only very recently been applied to itemset mining tasks [2,3]. In addi-
tion to the availability of black-box constraint solvers such as answer set enumerators,
the additional benefit of constraint solvers is that the modeling languages enable solv-
ing novel itemset mining tasks by combining different itemset constraints in a natural
way without having to devise new solving algorithms for specific mining tasks.

In this short paper, focusing on the standard [1] and maximal [4] frequent itemset
mining problems, we evaluate the effectiveness of answer set enumeration as an item-
set mining tool using a recent conflict-driven answer set enumeration algorithm [5],
and compare this ASP approach to a recent approach based on generic constraint pro-
gramming (CP) [2,3]. The results show that, even with simple encodings, ASP can be
a realistic approach to itemset mining, and, on the other hand, that itemset mining is a
well-motivated benchmark domain for answer set enumeration (adding to the currently
relative few realistic applications of answer set enumeration).

� Research financially supported by Academy of Finland under grant 132812.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 304–310, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Itemset Mining as a Challenge Application 305

2 Itemset Mining

Assume a set I = {1, ..., m} of items and a set T = {1, ..., n} of transactions. Intu-
itively, a transaction t ∈ T consists of a subset of items from I. An itemset database
D ∈ {0, 1}n×m is a binary matrix of size n × m that represents a set of transac-
tions. Each row Dt of D represents a transaction t that consists of the set of items
{i ∈ I | Dti = 1}, where Dti denotes the value on the ith column and tth row of D.

The subsets of I are called itemsets. In itemset mining we are interested in finding
itemsets that satisfy pre-defined constraints relative to an itemset database D. Let ϕ :
2I → 2T be a function that maps an itemset I ⊆ I to the set T ⊆ T of transaction in
which all its items occur, that is, ϕ(I) = {t ∈ T | ∀i ∈ I : Dti = 1}. The dual of ϕ is
the function ψ : 2T → 2I that maps a set of transactions T ⊆ T to the set of all items
from I included in all transactions in T , that is, ψ(T) = {i ∈ I | ∀t ∈ T : Dti = 1}.

Standard Frequent Itemsets. Assume a transaction database D over the sets T of trans-
actions and I of items, and additionally a frequency threshold θ ∈ {0, . . . , |T |}. Then
the (traditional) frequent itemset problem [1] consists of finding the solution pairs
(I, T), where I ⊆ I and T ⊆ T , such that

T = ϕ(I) (1)

|T | ≥ θ. (2)

The first constraint requires that T must include all transactions in D that include all
items in I . The second constraint requires that I is a frequent itemset, that is, the num-
ber of transactions in D in which all items in I occur must be at least θ. Notice that
the second (minimum frequency) constraint is an anti-monotonic one: any subset of a
frequent itemset is also a frequent itemset relative to a given threshold θ.

Various refinements of the traditional frequent itemset problem have been proposed.
In addition to the traditional version, in this paper we consider the problem of find-
ing maximal frequent itemsets [4], that is, frequent itemsets that are superset-maximal
among the frequent itemsets of a given transaction database.

Maximal Frequent Itemsets. In addition to the constraints (1) and (2), the maximality
constraint imposed in the maximal frequent itemset problem is

|ϕ(I ′)| < θ ∀I ′ ⊃ I, (3)

that is, all supersets of a maximal frequent itemset are infrequent. Maximal frequent
itemsets are a condensed representation for the set of frequent itemsets, constituting a
border in the subset lattice of I between frequent and infrequent itemsets.

3 Itemsets as Answer Sets

We now consider two simple encodings of the standard and maximal frequent itemset
problems as answer set programs. Due to the page limit we do not review details of
the answer set semantics or the language used for expressing answer set programs. For
more details on the input language, we refer the reader to the user’s guide [6] of the
Potassco bundle that includes the answer set enumerator we apply in the experiments.

306 M. Järvisalo

1. item(I) :- db(,I).

2. transaction(T) :- db(T,).

3. { in itemset(I) } :- item(I).

4. in support(T) :- { conflict at(T,I) : item(I) } 0, transaction(T).

5. conflict at(T,I) :- not db(T,I), in itemset(I), transaction(T).

6. :- { in support(T) } N-1, threshold(N).

Fig. 1. The ASP(1) encoding of standard frequent itemset mining

1. item(I) :- db(,I).

2. transaction(T) :- db(T,).

3. { in itemset(I) } :- item(I), N { in support(T) : db(T,I) }, threshold(N).

4. in support(T) :- { conflict at(T,I) : item(I) } 0, transaction(T).

5. conflict at(T,I) :- not db(T,I), in itemset(I), transaction(T).

Fig. 2. The ASP(2) encoding of standard frequent itemset mining

We will intuitively explain the considered encoding referred to as ASP(1) (see Fig. 1)
and ASP(2) (see Fig. 2). For both of the encodings, each answer set corresponds to a
unique solution (I, T) of the itemset mining problem. Notice that there is an answer
set for any dataset D and any threshold value θ, since by definition the empty set ∅ is
always a frequent itemset. Although the encodings are quite similar, experiments show
that the behavior of a state-of-the-art answer set enumerator varies notably depending
of which encoding is used.

For presenting the transaction database D, we use the predicate db/2 and intro-
duce the fact db(t,i) if and only if Dti = 1. The threshold θ is encoded using
the predicate threshold/1 by introducing the fact threshold(θ). The predicate
in itemset/1 is true for an item i if and only if i is included in a frequent itemset I ,
encoding the most important part of a solution (I, T). The predicate in support/1
is true for a transaction t if and only if t ∈ T . Here the intuition is that, according to
Eq. 1, each t ∈ T has to support each i ∈ I in the sense that t must include i (that is,
Dti = 1). Additionally, we use the auxiliary predicates item/1 (true for each item in
D), transaction/1 (true for each transaction in D), and in conflict/2. The
predicate in conflict/2(t, i) is true for (t, i) if and only if transaction t does not
support item i, that is, we have the conflict Dti = 0 and i ∈ I , violating Eq. 1.

Standard Frequent Itemset Mining. First consider the case of standard frequent itemset
mining. Lines 1-2 in ASP(1) and ASP(2) are the same, simply stating that if Dti = 1
for some t, then i is an item (line 1), and similarly for transactions (line 2). The fact that
a transaction t supports an itemset is also encoded in the same fashion in ASP(1) and
ASP(2) on lines 4-5. Transaction t is in the support only if there is no conflict between
t and the items in the itemset, that is, the number of true conflict at(t, i)’s is zero
(line 4, using a cardinality constraint). The conflict at/2 predicate is then defined
on line 5: there is a conflict if Dti = 0 where i is in the frequent itemset.

The ASP(1) and ASP(2) encodings differ in how inclusion of items in the frequent
itemset is represented. In ASP(1), on line 3 we “guess” for each item whether it is in
the frequent itemset ({ in itemset(i) } is the so called choice atom that is true

Itemset Mining as a Challenge Application 307

regardless of whether in itemset(i) is true). Given any choice of included items,
the integrity constraint of line 6 requires that the number of transactions supporting
the chosen itemset cannot be less than the frequency threshold, in accordance with the
minimum frequency constraint (Eq. 2).

In ASP(2), we apply a more “direct” way of encoding inclusion of items in frequent
itemsets (line 3): there is the choice of including an item if the particular item has
enough supporting transactions (that is, at least as many as required by the threshold θ).

Maximal Frequent Itemset Mining. Based on the encodings for standard frequent
itemset mining, including the additional maximality criterion for frequent itemsets re-
quires only a small modification to both ASP(1) and ASP(2). Namely, for ASP(1) we
add the rule in itemset(I) :- item(I), N { in support(T) : db(T,I) }, threshold(N).

enforcing that any item that has sufficient support for inclusion in the frequent itemset
has to be included. In contrast, for ASP(2) we replace the rule on line 3 with this same
rule, in essence removing the choice from the original rule.

4 Experiments

Here we report on preliminary experiments addressing the efficiency of a state-of-the-
art answer set enumerator on the ASP(1) and ASP(2) encodings of real-world datasets.
As the answer set enumerator, we use the conflict-driven solver Clingo [5] (version
3.0.3, based on the Clasp ASP solver version 1.3.5)1 with default settings. We also
compare the performance of Clingo on ASP(1) and ASP(2) to that of FIM CP2 ver-
sion 2.1 (using Gecode http://www.gecode.org/ version 3.2.2), which is a recently
proposed tool for itemset mining based on constraint programming [2,3]. The experi-
ments were conducted under Ubuntu Linux on a 3.16-GHz Intel CORE 2 Duo E8500
CPU using a single core and 4-GB RAM. As benchmarks we used the preprocessed
UCI datasets available at http://dtai.cs.kuleuven.be/CP4IM/datasets/, as
used in evaluating FIM CP [2,3]. Key properties of representative datasets, as sup-
plied at this website, are shown in Table 1. We ran each solver for threshold θ values
0.95, 0.90, . . . , 0.10, 0.08, . . . , 0.02, 0.01 times |I| for each dataset D until we observed
the first timeout for a particular solver.

Table 1. Properties of the representative datasets

Dataset D transactions items density (%) itemsets at θ = 0.1 · |I| grounding time (s)
standard maximal ASP(1) ASP(2)

anneal 812 93 45 > 147 000 000 15 977 < 0.3 < 0.3
australian-credit 653 125 41 > 165 000 000 2 580 684 < 0.3 < 0.3
lymph 148 68 40 9 967 402 5191 < 0.1 < 0.1
mushroom 8124 119 18 155 734 453 < 3.4 < 2.5
splice-1 3190 267 21 1606 988 < 3.8 < 2.8

1
http://potassco.sourceforge.net/. The options -n 0 -q were used for computing all
solutions and suppressing printing of solutions.

2
http://dtai.cs.kuleuven.be/CP4IM/. The option -output none was used for suppress-
ing printing of solutions.

http://www.gecode.org/
http://dtai.cs.kuleuven.be/CP4IM/datasets/
http://potassco.sourceforge.net/
http://dtai.cs.kuleuven.be/CP4IM/

308 M. Järvisalo

 0.1

 1

 10

 100

 1000

 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
im

e
(s

)

Threshold (%)

anneal standard

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

anneal maximal

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

australian-credit standard

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

australian-credit maximal

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

lymph standard

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

lymph maximal

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

mushroom standard

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

mushroom maximal

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

splice-1 standard

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

 0.1

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(s

)

Threshold (%)

splice-1 maximal

ASP(1)
ASP(1) choice

ASP(2)
FIMCP

Fig. 3. Comparison of the CP and ASP approaches to standard and maximal frequent itemset
mining on representative datasets

Itemset Mining as a Challenge Application 309

Results for a representative set of benchmarks are shown in Fig. 3, with observed
upper bounds on the times used for grounding shown in Table 1. Grounding time is
included in the plots. For the standard frequent itemset problem (left column), we ob-
serve that the ASP(2) encoding is almost always better than ASP(1). For the most dense
dataset anneal (recall Table 1 – here density is defined as the percentage of 1’s in D) we
observe that ASP(2) is the most effective one, being multiple times more effective than
the FIM CP approach. Also for the other two relatively dense datasets, ASP(2) is either
slightly better than (on lymph) or approaches the performance (on australian-credit)
of FIM CP. This is an intriguing observation, since dense datasets can be considered
harder to mine because of the large number of candidate itemsets. For the remaining
two datasets, we observe that the performance of ASP(2) approaches that of FIM CP,
even being more effective at low threshold values on splice-1.

For the maximal itemset problem (right column) we observe that FIM CP is the
most efficient one, with the exception that for the splice-1 dataset, the ASP(2) encoding
dominates at the more difficult threshold values ≤ 0.20 · |I|.

We also conducted a preliminary experiment on the effect of decomposing the
cardinality and choice constructs in ASP(1) and ASP(2) using the build-in decomposi-
tions of Clingo. This is motivated by evidence of varied applications of constraint sat-
isfaction tools in which decomposing complex constraints into lower level entities has
resulted in improved performance. In this case, decomposing cardinalities seemed to
generally degrade performance. However, decomposing only the choice constructs (us-
ing --trans-ext=choice in Clingo) in the standard frequent itemset encodings
gave interesting results; see “ASP(1) choice” in Fig. 3. Namely, the performance of
ASP(1) on anneal became even better than that of FIM CP, but degraded further on
splice-1. For ASP(2) we observed no notable differences.

Finally, we noticed that Smodels (with and without lookahead) is very ineffective
on these problems compared to Clasp, and hence we excluded the Smodels data from
the plots for clarity. However, in-depth experiments with other solution enumerating
solvers (including, e.g., DLV) remains as future work, in addition to experimenting with
different search heuristics and other search space traversal options offered by Clasp.

5 Conclusions

We propose itemset mining as a novel application and benchmark domain for answer set
enumeration. The behavior of two simple ASP encodings varies depending on whether
maximality of itemsets is required; the behavior of the “better” encoding can exceed
that of a recent CP-based approach. We also observed that even small changes in the
encoding—including decompositions—can reflect in notable performance differences
when enumerating all solutions. This motivates further work on more effective encod-
ings and on the interplay between answer set enumeration search techniques and mod-
elling, with the possibility of optimizing solver heuristics towards data mining tasks.
Additional current work includes finding dataset properties that imply good perfor-
mance of the ASP approach, and encodings of other data mining tasks as ASP.

310 M. Järvisalo

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of asso-
ciation rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI
Press, Menlo Park (1996)

2. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In:
Proc. KDD, pp. 204–212. ACM, New York (2008)

3. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for data mining and machine
learning. In: Proc. AAAI. AAAI Press, Menlo Park (2010)

4. Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu, T.: MAFIA: A maximal frequent
itemset algorithm. IEEE Trans. Knowl. Data Eng. 17(11), 1490–1504 (2005)

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set enumeration.
In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 136–
148. Springer, Heidelberg (2007)

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide
to gringo, clasp, clingo, and iclingo (2008),
http://potassco.sourceforge.net/

http://potassco.sourceforge.net/

Causal Reasoning for Planning and Coordination of
Multiple Housekeeping Robots

Erdi Aker1, Ahmetcan Erdogan2, Esra Erdem1, and Volkan Patoglu2

1 Computer Science and Engineering, Faculty of Engineering and Natural Sciences
Sabancı University, İstanbul, Turkey

2 Mechatronics Engineering, Faculty of Engineering and Natural Sciences
Sabancı University, İstanbul, Turkey

Abstract. We consider a housekeeping domain with multiple cleaning robots
and represent it in the action language C+. With such a formalization of the do-
main, a plan can be computed using the causal reasoner CCALC for each robot
to tidy some part of the house. However, to find a plan that characterizes a feasi-
ble trajectory that does not collide with obstacles, we need to consider geometric
reasoning as well. For that, we embed motion planning in the domain description
using external predicates. For safe execution of feasible plans, we introduce a
planning and monitoring algorithm so that the robots can recover from plan exe-
cution failures due to heavy objects that cannot be lifted alone. The coordination
of robots to help each other is considered for such a recovery. We illustrate the
applicability of this algorithm with a simulation of a housekeeping domain.

1 Introduction

Consider a house consisting of three rooms: a bedroom, a living room and a kitchen as
shown in Fig. 1. There are three cleaning robots in the house. The furniture is stationary
and their locations are known to the robots a priori. Other objects are movable. There
are three types of movable objects: books (green pentagon shaped objects), pillows
(red triangular objects) and dishes (blue circular objects). Some objects are heavy and
cannot be moved by one robot only; but the robots do not know which movable objects
are heavy. The goal is for the cleaning robots to tidy the house collaboratively in a given
number of steps. This domain is challenging from various aspects:

– It requires representation of some commonsense knowledge. For instance, in a
tidy house, books are in the bookcase, dirty dishes are in the dishwasher, pil-
lows are in the closet. In that sense, books are expected to be in the living room,
dishes in the kitchen and pillows in the bedroom. Representing such common-
sense knowledge and integrating it with the action domain description (and the
reasoner) is challenging.

– A robot is allowed to be at the same location with a movable object only if the object
is being manipulated (attached, detached or carried); otherwise, robot-robot, robot-
stationary object and robot-moveable object collisions are not permitted. Due to
these constraints, representing preconditions of (discrete) actions that require (con-
tinuous) geometric reasoning for a collision-free execution is challenging.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 311–316, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

312 E. Aker et al.

Robots

Dishes

Pillows

Books

* Exchange
Areas

BE
D

RO
O

M

*

*

*

KITCHEN LIVING ROOM

Bookcase

Closet

Dishwasher

Fig. 1. Simulation environment for housekeeping domain

For instance, moving to some part of a room may not be possible for a robot be-
cause, although the goal position is clear, it is blocked by a table and a chair and the
passage between the table and the chair is too narrow for the robot to pass through.

– Solving the whole housekeeping problem may not be possible because the formal-
ization gets too large for the reasoner. In that case, we can partition the house-
keeping problem into smaller parts (e.g., each robot can tidy a room of the house).
However, then the robots must communicate with each other to tidy the house col-
laboratively. For instance, if a robot cannot move a heavy object to its goal position,
the robot may ask another robot for help. If the robot that cleans kitchen finds a
book on the floor, then the robot should transfer it to the robot that cleans the living
room, by putting the book in the exchange area between kitchen and living room.
Coordination of the robots in such cases, subject to the condition that the house be
tidied in a given number of steps, is challenging.

We handle these challenges by representing the housekeeping domain in the action de-
scription language C+ [3] as a set of “causal laws” (Section 2) and using the causal rea-
soner CCALC [7] for planning (Section 3), like in [2], in the style of cognitive robotics
[5]. For the first two challenges, we make use of external predicates. We represent com-
monsense knowledge as a logic program, and use the predicates defined in the logic
program as external predicates in causal laws. Similarly, we can implement collision
checks as a function in the programming language C++, and use these functions as ex-
ternal predicates in causal laws. For the third challenge, we introduce a planning and
monitoring algorithm that solves the housekeeping problem by dividing it into smaller
problems and then combining their solutions, that coordinates multiple cleaning robots
for a common goal (Section 4).

Causal Reasoning for Planning and Coordination 313

2 Representation of Housekeeping Domain

We view the house as a grid. The robots and the endpoints of objects are located
at grid-points. We consider the fluents at(TH,X,Y) (“thing TH is at (X,Y)”) and
connected(R,EP) (“robot R is connected to endpoint EP”). We also consider the
actions goto(R,X,Y) (“robot R goes to (X,Y)”), detach(R) (“robot R detaches
from the object it is connected to”), and attach(R) (“robot R attaches to an object”).

Using these fluents and actions, the housekeeping domain is represented in C+ as
described in [1]. Let us describe briefly two aspects of this representation: embedding
geometric reasoning in causal reasoning, and integrating commonsense knowledge in
the action domain description.

Embedding geometric reasoning. CCALC allows us to include “external predicates”
in causal laws. These predicates/functions are not part of the signature of the domain
description (i.e., they are not declared as fluents or actions). They are implemented
as functions in some programming language of the user’s choice, such as C++. Ex-
ternal predicates take as input not only some parameters from the action domain de-
scription (e.g., the locations of robots) but also detailed information that is not a part
of the action domain description (e.g., geometric models). They are used to exter-
nally check some conditions under which the causal laws apply, or externally compute
some value of a variable/fluent/action. For instance, suppose that the external predicate
path(R,X,Y,X1,Y1), implemented in C++ based on Rapidly exploring Random
Trees (RRTs) [4], holds if there is a collision-free path between (X,Y) and (X1,Y1)
for the robot R. Then we can express that the robot R cannot go from (X1,Y1) to
(X,Y) where path(R,X,Y,X1,Y1) does not hold, by a causal law presented to
CCALC:

nonexecutable goto(R,X,Y) if at(R,X1,Y1)
where -path(R,X1,Y1,X,Y).

Integrating commonsense knowledge. To clean a house, the robots should have an
understanding of the following: tidying a house means that the objects are at their
desired locations. For that, first we declare a “statically determined fluent” describ-
ing that the endpoint of an object is at its expected position in the house, namely
at desired location(EP), and define it as follows:

caused at_desired_location(EP) if at(EP,X,Y)
where in_place(EP,X,Y).

default -at_desired_location(EP).

The second causal law above expresses that normally the movable objects in an untidy
house are not at their desired locations. The first causal law formalizes that the endpoint
EP of an object is at its desired location if it is at some “appropriate” position (X,Y)
in the right room. Here in place/3 is defined externally.

After defining at desired location/1, we can define tidy by a “macro”:

:- macros tidy -> [/\EP | at_desired_location(EP)].

314 E. Aker et al.

Finally, the robots need to know that books are expected to be in the bookcase, dirty
dishes in the dishwasher, and pillows in the closet. Moreover, a bookcase is expected
to be in the living-room, dishwasher in the kitchen, and the closet in the bedroom. We
describe such background knowledge externally as a Prolog program. For instance, the
external predicate in place/3 is defined as follows:

in_place(EP,X,Y) :- belongs(EP,Obj), type_of(Obj,Type),
el(Type,Room), area(Room,Xmin,Xmax,Ymin,Ymax),
X>=Xmin, X=<Xmax, Y>=Ymin, Y=<Ymax.

Here belongs(EP,OBJ), type of(OBJ,Type) describes the type Type of an
object Obj that the endpoint EP belongs to, and el(Type,Room) describes the ex-
pected room of an object of type Type. The rest of the body of the rule above checks
that the endpoint’s location (X,Y) is a desired part of the room Room.

3 Reasoning about Housekeeping Domain

Given the action domain description and the background and commonsense knowledge
above, we can solve various reasoning tasks, such as planning, using CCALC. However,
the overall planning problem for three cleaning robots may be too large (considering the
size of the house, number of the objects, etc.). In such cases, we can divide the problem
into three smaller planning problems, assigning each robot to tidy a room of the house
in a given number of steps.

Consider the housekeeping domain described above: Robot 1 is expected to tidy the
living room, Robot 2 the bedroom, and Robot 3 the kitchen. Suppose that the locations
of the movable objects are known to the robots a priori. Robot 1 knows that there are two
books, comics1 and novel1, on the living room floor. Robot 2, on the other hand,
knows that there are two pillows, redpillow1 and bluepillow1, and a plate,
plate1, on the bedroom floor. The robots also know where to collect the objects.
For instance, Robot 2 knows that, in the bedroom, the closet occupies the rectangular
area whose corners are at (5,0), (5,3), (7,0), (7,3). Robot 2 also knows that
the objects that do not belong to bedroom, such as plate1 of type dish, should be
deposited to the exchange area between bedroom and kitchen, that occupies the points
(3,7)–(5,7). Planning problems for each robot are shown in Table 1. For instance,
in the living room, initially Robot 1 is at (3,2), whereas the books comics11 and
novel11 are located at (1,2) and (6,3). The goal is to tidy the room and make

Table 1. Planning problems for each robot

Robot 1 in Living Room Robot 2 in Bedroom Robot 3 in Kitchen
Initial at(r1,3,2) at(r2,5,6) at(r3,1,5)
State at(novel1,6,3) at(bluepillow1,3,6) at(spoon1,3,6)

at(comics1,1,2) at(redpillow1,2,5) at(pan1,3,1)
at(plate1,6,3)

Goal tidy, free tidy, free tidy, free

Causal Reasoning for Planning and Coordination 315

sure that the robot is free (i.e., not attached to any objects). Here free is a macro, like
tidy. Given these planning problems, CCALC computes a plan for each robot.

4 Monitoring the Cleaning Robots

Once a plan is computed for each robot by CCALC, each robot starts executing it.
However, a plan execution may fail: while most of the moveable objects are carried
with only one robot, some of these objects are heavy and their manipulation requires
two robots; the robots do not know in advance which objects are heavy, but discover a
heavy object only when they attempt to move it.

When a plan fails because a robot attempts to manipulate a heavy object, the robot
asks for assistance from other robots so that the heavy object can be carried to its des-
tination. However, in order not to disturb the other robots while they are occupied with
their own responsibilities, the call for help is delayed as much as possible. With the
observation that the manipulation of the heavy object takes 4 steps (get to the heavy
object, attach to it, carry it, detach from it), this is accomplished by asking CCALC to
find a new plan that manipulates the heavy object within the last i = 4, 5, 6, ... steps of
the plan only. If there is such a plan, one of the robots who are willing to help gets pre-
pared (e.g., detaches from the object it is carrying, if there is any) and goes to the room
of the robot who requests help. (Currently, task allocation is done randomly.) If no such
plan is computed, then the robot does not delay asking for help; it calls for immediate

Table 2. Execution of the plans computed by CCALC for each robot. The rows that are not labeled
by a time step are not part of these plans, but are implemented at the low-level.

Step Robot 1 in Living Room Robot 2 in Bedroom Robot 3 in Kitchen
1 goto(r1,6,3) goto(r2,6,3) goto(r3,3,1)

2 attach(r1,novel1) attach(r2,plate1) attach(pan1) - FAILURE
(Heavy object)

...
Get ready to help r3

7 help r3 goto(r2,5,2) goto(r3,3,1)

goto(r1,4,1)

8 help r3 detach(r2) attach(r3,pan1)

attach(r1,pan2)

9 help r3 goto (r2,2,5) goto(r3,0,1)

goto(r1,1,1)

10 help r3 attach(r2,redpillow1) detach(r3)

detach(r1)

Get ready to continue plan
11 goto(r1,13,2) goto(r2,7,1) -
12 detach(r1) detach(r2) -
...

316 E. Aker et al.

help and waits for assistance to arrive. For that, the robot asks CCALC to compute a
new plan that involves moving the heavy object to its goal position. After that, trajec-
tories are computed for the robot itself and the helper robot; and these trajectories are
followed concurrently.

Table 2 shows some parts of the execution of plans by Robots 1–3. Robot 1 executes
Plan 1 and goes to kitchen at time step 7 to help Robot 3 to move a heavy object to its
goal position. Robot 3 on the other hand starts executing a plan, but at time step 2, finds
out that the pan pan1 he wants to move is too heavy. Then Robot 3 goes to a safe state
and asks for help to carry the heavy object to its goal position.

5 Conclusion

We formalized a housekeeping domain with multiple cleaning robots, in the action de-
scription language C+, and solved some housekeeping problem instances using the
reasoner CCALC as part of a planning and monitoring framework. While representing
the domain, we made use of some utilities of CCALC: external predicates are used to
embed geometric reasoning in causal laws. To represent commonsense knowledge and
background knowledge, we made use of external predicates/functions and macros in
causal laws. The extension of our approach to handle collaborations of heterogenous
robots (as in [6]) is part of our ongoing work.

Acknowledgments

This work has been partially supported by Sabanci University IRP Grant.

References

1. Aker, E., Erdogan, A., Erdem, E., Patoglu, V.: Housekeeping with multiple autonomous
robots: Representation, reasoning and execution. In: Proc. of Commonsense (2011)

2. Caldiran, O., Haspalamutgil, K., Ok, A., Palaz, C., Erdem, E., Patoglu, V.: Bridging the gap
between high-level reasoning and low-level control. In: Erdem, E., Lin, F., Schaub, T. (eds.)
LPNMR 2009. LNCS, vol. 5753, pp. 342–354. Springer, Heidelberg (2009)

3. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
Artificial Intelligence 153, 49–104 (2004)

4. Lavalle, S.M.: Rapidly-exploring random trees: A new tool for path planning. Tech. Rep.
(1998)

5. Levesque, H., Lakemeyer, G.: Cognitive robotics. In: Handbook of Knowledge Representa-
tion. Elsevier, Amsterdam (2007)

6. Lundh, R., Karlsson, L., Saffiotti, A.: Autonomous functional configuration of a network robot
system. Robotics and Autonomous Systems 56(10), 819–830 (2008)

7. McCain, N., Turner, H.: Causal theories of action and change. In: Proc. of AAAI/IAAI, pp.
460–465 (1997)

ASPIDE: Integrated Development Environment for
Answer Set Programming

Onofrio Febbraro1, Kristian Reale2, and Francesco Ricca2

1 DLVSystem s.r.l. - P.zza Vermicelli, Polo Tecnologico, 87036 Rende, Italy
febbraro@dlvsystem.com

2 Dipartimento di Matematica, Università della Calabria, 87030 Rende, Italy
{reale,ricca}@mat.unical.it

Abstract. Answer Set Programming (ASP) is a truly-declarative programming
paradigm proposed in the area of non-monotonic reasoning and logic program-
ming. In the last few years, several tools for ASP-program development have
been proposed, including (more or less advanced) editors and debuggers. How-
ever, ASP still lacks an Integrated Development Environment (IDE) supporting
the entire life-cycle of ASP development, from (assisted) programs editing to ap-
plication deployment. In this paper we present ASPIDE, a comprehensive IDE
for ASP, integrating a cutting-edge editing tool (featuring dynamic syntax high-
lighting, on-line syntax correction, autocompletion, code-templates, quick-fixes,
refactoring, etc.) with a collection of user-friendly graphical tools for program
composition, debugging, profiling, database access, solver execution configura-
tion and output-handling.

1 Introduction

Answer Set Programming (ASP) [1] is a declarative programming paradigm which has
been proposed in the area of non-monotonic reasoning and logic programming. The
idea of ASP is to represent a given computational problem by a logic program whose
answer sets correspond to solutions, and then use a solver to find such a solution [2]. The
language of ASP is very expressive [3]. Furthermore, the availability of some efficient
ASP systems [4,5,6,7,8,9,10,11,12,13,14,15] made ASP a powerful tool for developing
advanced applications. ASP applications belong to several fields, from Artificial Intel-
ligence [14,16,17,18,19,20,21] to Information Integration [22], and Knowledge Man-
agement [23,24,25]. These applications of ASP have confirmed, on the one hand, the
viability of the exploitation in real application settings and, very recently, stimulated
some interest also in industry [26]. On the other hand, they have evidenced the lack
of effective development environments capable of supporting the programmers in man-
aging large and complex projects [27]. It is nowadays recognized [27] that this may
discourage the usage of the ASP programming paradigm, even if it could provide the
needed reasoning capabilities at a lower (implementation) price than traditional imper-
ative languages. Note also that, the most diffused programming languages always come
with the support of SDKs featuring a rich set of tools that significantly simplify both
programming and maintenance tasks.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 317–330, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

318 O. Febbraro, K. Reale, and F. Ricca

In order to facilitate the design of ASP applications, some tools for ASP-program
development were proposed in the last few years (consider, for instance, the aim of SEA
workshop series [28,29]), including editors [30,31] and debuggers [32,33,34,35,36].
However, ASP still lacks an Integrated Development Environment (IDE) supporting the
entire life-cycle of ASP development, from (assisted) programs editing to application
deployment.

This paper provides a contribution in this setting. In fact, it presents ASPIDE, a com-
prehensive IDE for ASP, which integrates a cutting-edge editing tool (featuring dynamic
syntax highlighting, on-line syntax correction, autocompletion, code-templates, quick-
fixes, refactoring, etc.) with a collection of user-friendly graphical tools for program
composition, debugging, profiling, DBMS access, solver execution configuration and
output-handling. Currently, the system is able to load and store ASP programs in the
syntax of the ASP system DLV [4], and supports the ASPCore language profile em-
ployed in the ASP System Competition 2011[37]. Data base management is compliant
with DLVDB [38] language directives.

A comprehensive feature-wise comparison with existing environments for develop-
ing logic programs is also reported in this paper, which shows that ASPIDE represents
a step forward in the present state of the art of tools for ASP programs development.

2 Main Features of ASPIDE

The main functionalities provided by ASPIDE are first summarized below, and then
described in more detail. In particular, ASPIDE provides the following features:

– Workspace management. The system allows to organize ASP programs in projects
à la Eclipse, which are collected in a special directory (called workspace).

– Advanced text editor. The editing of ASP files is simplified by an advanced text
editor, which provides several functionalities: from simple text coloring to auto
completion of predicates and variables names.

– Outline navigation. ASPIDE creates an outline view which graphically represents
program elements.

– Dependency graph. The system provides a graphical representation of the depen-
dency graph of a program.

– Dynamic code checking and errors highlighting. Syntax errors and relevant condi-
tions (like safety) are checked while typing programs: portions of code containing
errors or warnings are immediately highlighted.

– Quick fix. The system suggests quick fixes to reported errors or warnings, and ap-
plies them (on request) by automatically changing the affected part of code.

– Dynamic code templates. Writing of repeated programming patterns (like transitive
closure or disjunctive rules for guessing the search space) is assisted by advanced
auto-completion generating rules or part of them.

– Test suite. The user can define test suites on the line with the principle of unit testing
diffused in the development of software with iterative languages.

– Debugger and Profiler. Semantic errors detection as well as code optimization can
be done by exploiting graphic tools.

ASPIDE: Integrated Development Environment for Answer Set Programming 319

– Configuration of the execution. This feature allows to configure input programs and
execution options.

– Presentation of results. The output of the program (either answer sets, or query
results) are visualized in a tabular representation or in a text-based console.

– Visual Editor. The users can draw logic programs by exploiting a full graphical en-
vironment that offers a QBE-like tool for building logic rules. The user can switch,
every time he needs, from the text editor to the visual one (and vice-versa) thanks
to a reverse-rengineering mechanism from text to graphical format.

– Interaction with databases. Interaction with external databases is made easy by a
fully graphical import/export tool that automatically generates mappings by follow-
ing the DLVDB Typ files specifications [38]. Text editing of Typ mappings is also
assisted by syntax coloring and auto-completion.

In the following, we describe in more detail the above mentioned functionalities.

Workspace organization. The system allows for organizing ASP programs in projects
à la Eclipse. This facilitates the development of complex applications by organizing
modules (or projects) in a space where either different parts of an encoding or sev-
eral equivalent encodings solving the same problem are stored. In particular, ASPIDE
allows to manage: (i) DLV files containing ASP programs in both DLV syntax [4]
and ASPCore [37]; (ii) TYP files specifying a mapping between program predicates
and database tables in DLVDB syntax; (iii) TEST files containing a set of directives
conceived for defining unit tests for the created logic programs.

Advanced text editor. The presence of an editor that provides a set of advanced fea-
tures is indispensable for a good development environment. In particular, besides the
core functionality that basic text editors offer (like, code line numbering, find/replace,
undo/redo, copy/paste, etc.), ASPIDE offers others advanced functionalities:

– Text coloring. ASPIDE exploits different colors for outlining key words (like “ :− ”)
predicate names, variables, strings, comments etc. Predicates involved in database
mappings are also specifically marked.

– Automatic completion. The system is able to complete (on request) predicate names,
as well as variable names. Predicate names are both learned while writing, and ex-
tracted from the files belonging to the same project; variables are suggested by
taking into account the rule we are currently writing. This helps while developing
either an alternative encoding for the same problem (input/intermediate predicate
names are ready to be suggested after the first file is completed) or when the same
solution is divided in several files. When several possible alternatives for comple-
tion are available the system shows a pop-up dialog.

– Refactoring. The refactoring tool allows to modify in a guided way, among others,
predicate names and variables. For instance, variable renaming in a rule is done by
considering bindings of variables, so that common side effects of find/replace are
avoided by ensuring that variables/predicates/strings occurring in other expressions
remain unchanged.

320 O. Febbraro, K. Reale, and F. Ricca

Outline navigation. ASPIDE creates a graphic outline of both programs and Typ files,
which graphically represents language statements. Regarding the programs, the outline
is a tree representation of each rule where in the first level of the tree there are the head
atoms, while the second level corresponds to the bodies. Each item in the outline can
be used to quickly access the corresponding line of code (a very useful feature when
dealing with long files), and also provides a graphical support for building rules in the
graphical editor (see [39]).

Dependency graph. The system provides a graphical representation of the (non-ground)
dependency graph associated to the project. Several variants of the dependency graph
are supported depending on whether both positive and negative dependencies are con-
sidered. The graph of strongly connected components (playing an important role in the
instantiation of the program) can be displayed also.

Dynamic code checking and errors highlighting. Programs are parsed while writing,
and both errors or possible warnings are immediately outlined without the need of sav-
ing files. In particular, syntax errors as well as mismatching predicate arities and safety
conditions are checked. Note that, the checker considers the entire project, and warns
the user by indicating e.g., that atoms with the same predicate name have different ar-
ity in several files. This condition is usually revealed only when programs divided in
multiple files are run together.

Quick fix. The system suggests quick fixes to reported errors or warnings, and applies
them (on request) by automatically changing the affected part of code. This can be acti-
vated by clicking on the line of code which contains an error/warning and choosing from
a popup window the desired fix among several suggestions, e.g., safety problems can
be fixed by correcting variable names or by projecting out “unsafe” variables through
an auxiliary rule (which will be automatically added).

Code template. ASPIDE provides support for automated writing of parts of rules
(guessing patterns, aggregates, etc.), as well as automated writing of entire subpro-
grams (e.g., transitive closure rules) by exploding code templates. Note that, templates
can be also user defined by writing DLT [40] files.

Test suite. A very important phase in the development of software is testing. In ASPIDE
we have defined a syntax for writing and running tests in the style of JUnit. One can
write assertions regarding the number of answer sets or the presence/absence of an atom
in the results of a test.

Debugger and Profiler. We have embedded in ASPIDE the debugging tool spock [32].
To this end we have worked on the adaptation of spock for dealing with the syntax of the
DLV system. Moreover, we developed a graphical user interface that wraps the above
mentioned tool. Regarding the profiler, we have fully embedded the graphical interface
presented in [41].

Configuration of the execution. ASPIDE provides a form for configuring and manag-
ing solver execution. A run configuration allows to set the solver/system executable,
setup invocation options and input files. Moreover, ASPIDE supports a graphical tool

ASPIDE: Integrated Development Environment for Answer Set Programming 321

for composition of workflow executions (e.g., combining several solver/system calls),
which are transparently compiled in perl scripts.

Presentation of the results. The ASP solvers output results in textual form. For mak-
ing comfortable the browsing of results, ASPIDE visualizes answer sets by combining
tabular representation of predicates with a comfortable tree-like representation for han-
dling multiple answer sets. The result of the execution can be also saved in text files for
subsequent analysis.

Visual editor. ASPIDE offers also the possibility to draw programs using a fully graph-
ical environment by embedding and extending the Visual Editor tool which offers a
QBE-like approach; it allows, for example, to create graphical bindings of variables
using “joins” between predicates. For a detailed explanation on how the Visual Editor
works, see [39]. An important feature offered by ASPIDE is reverse engineering that
allows to switch between textual and visual representation of programs.

Interaction with databases. Interaction with external databases is useful in several ap-
plications (e.g., [22,26,19]). ASPIDE allows to access external databases by exploiting
a graphical tool connecting to DBMSs via JDBC. Imported sources are emphasized
also in the program editor by exploiting a specific color. Database oriented applica-
tions can be run by setting DLVDB as solver in a run configuration. A data integration
scenario [22] can be implemented by exploiting this feature.

3 Interface Overview and Implementation

The system interface of ASPIDE is depicted in Figure 1, where the main components
are outlined in different numbered zones. In the upper part of the interface (zone 1) a
toolbar allows the user to call the most common operations of the system (from left
to right: save files, undo/redo, copy & paste, find & replace, switch between visual to
text editor, run the solver/profiler/debugger). In the center of the interface there is the
main editing area (zone 4), organized in a multi-tabbed panel possibly collecting several
open files. The left part of the interface is dedicated to the explorer panel (zone 2), and
to the error console (zone 3). The explorer panel lists projects and files included in
the workspace, while the error console organizes errors and warnings according to the
project and files where they are localized. On the right, there are the outline panel (zone
5) and the sources panel (zone 6). The first shows an outline of the currently edited file,
while the latter reports a list of the database sources which might be mapped to some
predicate of the current project. The one shown in Figure 1 is the standard appearance of
the system, which can be however modified, since panels can be moved as the user likes.
A comprehensive description of ASPIDE is available in the online manual published in
the system web site http://www.mat.unical.it/ricca/aspide.

ASPIDE is written in Java by following the Model View Controller (MVC) pattern. A
core module manages, by means of suitable data structures, projects, files content, sys-
tem status (e.g., error lists, active connections to DBMSs etc.), and external component
management (e.g., interaction with solver/debugger/profiler). Any update to the infor-
mation managed by ASPIDE is obtained by invoking methods of the core, while, view

http://www.mat.unical.it/ricca/aspide

322 O. Febbraro, K. Reale, and F. Ricca

Fig. 1. The ASPIDE graphical user interface

modules (graphically implemented by interface panels) are notified by proper events
in case of changes in the system status. ASPIDE exploits: (i) the JGraph (http://
www.jgraph.com/) library in the visual editor, in the dependency graph and in the
workflow modules; (ii) the DLV Wrapper [42] for interacting with DLV; and, (iii)
JDBC libraries for database connectivity. Debugging and profiling are implemented by
wrapping the tool spock [32], and the DLV profiler [41], respectively. Visual editing is
handled by including an extended version of the VisualASP tool [39].

4 Usage Example

In the following we report an usage example by describing how to exploit ASPIDE
for encoding the maximum clique problem. The maximum clique is a classical NP-
complete problem in graph theory requiring to find a clique (a complete subgraph) with
the largest number of vertices in an undirected graph. Suppose that the graph G is spec-
ified by using facts over predicates node (unary) and edge (binary), then the following
program solves the problem:

% Guess the clique
r1: inClique(X1) v outClique(X1) :- node(X1).
% Order edges in order to reduce checks
r2: uedge(X1,X2) :- edge(X1,X2), X1 < X2.
r3: uedge(X2,X1) :- edge(X1,X2), X2 < X1.
% Ensure property.
r4: :- inClique(X1), outClique(X2), not uedge(X1,X2), X1 < X2.

r5: :˜ outClique(X2).

The disjunctive rule (r1) guesses a subset S of the nodes to be in the clique, while
the rest of the program checks whether S constitutes a clique, and the weak constraint
maximizes the size of S. Here, an auxiliary predicate uedge exploits an ordering for
reducing the time spent in checking.

Suppose that we have already created a new file named clique.dl, which is open in the
text editing area. To write the disjunctive rule r1, we exploit the code template guess.

http://www.jgraph.com/
http://www.jgraph.com/

ASPIDE: Integrated Development Environment for Answer Set Programming 323

Fig. 2. Using ASPIDE

324 O. Febbraro, K. Reale, and F. Ricca

We type the key word guess and press CTRL-Space: the text editor opens a popup
window where we indicate clique; ASPIDE auto-composes the head of the disjunctive
rule (a preview is displayed on the bottom of the popup, see Fig. 2(a)). After that, we
write the predicate node in the body. Rules r2, r3, r4 and r5 are easily written by
exploiting the auto-completion (see Fig. 2(b)): atoms are composed by typing only the
initial part of the predicate names, and variables are automatically added.

Now, Suppose that a safety error is revealed in rule r4 (see Fig. 2(c)) since we write
variable Y instead of X2 in the negated literal uedge; then, the text editor promptly
signals the error with a rule highlighting. By double-clicking on the wrong rule, the
system will open a popup window reporting the error message and a list of possible
quick fixes. With a simple click on the third proposal, variable Y is renamed in X2, and
the problem is easily detected and fixed. Now, we can execute the program by setting
a run configuration. To open the run configuration window (Fig. 2(d)), we select Show
Run Configuration from the menu Execute. Using that window we choose the program
file clique.dl and select DLV as solver. Finally we click on the Run button and a user-
friendly window shows the results (see Fig. 2(e)).

Note that, ASPIDE supports many different ways of creating and modifying logic
programs and files. For instance, the same encoding can be graphically composed by
exploiting the visual editor (see Fig. 2(f)). For respecting the space constraints, we
reported only one of the possible combinations of commands and shortcuts that can
be exploited for writing the encoding of the considered problem. The reader can try
ASPIDE by downloading it from the system website http://www.mat.unical.
it/ricca/aspide.

5 Related Work

Different tools for developing ASP programs have been proposed up to now, including
editors and debuggers [32,33,34]. Moreover, people from the logic programming com-
munity, and especially Prolog programmers are already exploiting tools for assisted pro-
gram development. Some support to the development of logic programs is also present
in environments conceived for logic-based ontology languages, which, besides graphi-
cal ontology development, also allow for writing logic programs (e.g., to reason on top
of the knowledge base). To the best of our knowledge the systems which are closer to
our are the following:

– OntoDLV [44], an ASP-based system for ontology management and reasoning on
top of ontologies.

– OntoStudio (http://www.ontoprise.de), a commercial modeling environ-
ment for the creation and maintenance of ontologies; it also allows for writing logic
programs according with to F-Logic molecules syntax.

– DES (http://www.fdi.ucm.es/profesor/fernan/des/): a deductive
database system that supports both Datalog and SQL; it supports querying, debug-
ging and testing of Datalog programs, and supports several DBMSs.

– DLV!sual (http://thp.io/2009/dlvisual): a GUI frontend for DLV,
which allows for developing programs as well as graphically-browsing the answer
sets;

http://www.mat.unical.it/ricca/aspide
http://www.mat.unical.it/ricca/aspide
http://www.ontoprise.de
http://www.fdi.ucm.es/profesor/fernan/des/
http://thp.io/2009/dlvisual

ASPIDE: Integrated Development Environment for Answer Set Programming 325

– Visual DLV [30]: a graphical integrated environment for developing DLV programs;
it helps the programmers during the development phases, supports the interaction
with external DBMS and features a naı̈ve debugging tool;

– Digg (http://www.ezul.net/2010/09/gui-for-dlv.html): a simple
Java application conceived for learning ASP and experimenting with DLV;

– APE [31]: an Eclipse plug-in that allows users for writing ASP programs in the
lparse/gringo language;

– J-Prolog(http://www.trix.homepage.t-online.de/JPrologEditor):
an IDE for the Prolog language, written in Java.

– ProDT (http://prodevtools.sourceforge.net): an Eclipse plugin for
developing Prolog projects.

– PDT (http://roots.iai.uni-bonn.de/research/pdt): an Eclipse
plugin for developing Prolog projects.

– ProClipse [45]): an Eclipse plugin for developing Prolog projects;
– Amzi! Prolog (http://www.amzi.com/products/prolog_products.
htm: an Eclipse plugin for developing Prolog projects.

People interested in programming, in general, wish to have, in those systems, a set of
editing features (which are already available for a long time in development tools for
imperative languages) like syntax coloring, syntax highlighting, code completion, er-
ror management, quick fix, etc. Debugging, profiling and testing tools, as well as the
capability of organizing programs in projects are fundamental for assisting the develop-
ment of complex applications. Moreover, the declarative nature of logic programming
languages makes them good candidates for developing tools which allow for writing
programs in a fully graphical way. In Table 1 we compare ASPIDE and the above listed
tools by separately considering general desirable features. A check symbol indicates
that a system provides (in a more or less sophisticated way) a feature. We first note
that ASPIDE is the most complete proposal, followed by the commercial product On-
toStudio; and, if we restrict our attention to competing systems tailored for ASP, APE
follows ASPIDE.

Note that, execution results are reported by most systems only in a textual form (only
ASPIDE, OntoDLV and OntoStudio offer a graphical view of them in intuitive tables),
the outline of the program is often missing, and the execution of systems/solvers is not
handled in an effective way. Moreover, only ASPIDE, OntoStudio and APE show the

dependency graphs in a graphical way, and the detection of errors during the editing
phase, as well as (some form of) debugging and testing are offered by a few systems.
Interaction with databases, often required by applications, is supported by only 5 sys-
tems out of 13 (data integration only by two).

Conversely, text editing is supported by all systems, and in order to provide a more
precise picture regarding this central feature we have deepened the analysis by consid-
ering, also, more advanced editing functionalities and support for project management
(see Table 1). Also in this case, ASPIDE is the system offering more features. Surpris-
ingly, OntoStudio lacks advanced text editing features, which are conversely provided
by the more mature environments for Prolog. It is worth noting that, systems based
on the Eclipse platform, which eases the development of text editors, provide quite a
number of editing and project management features (see, e.g., APE). In general, many

http://www.ezul.net/2010/09/gui-for-dlv.html
http://www.trix.homepage.t-online.de/JPrologEditor
http://prodevtools.sourceforge.net
http://roots.iai.uni-bonn.de/research/pdt
http://www.amzi.com/products/prolog_products.htm
http://www.amzi.com/products/prolog_products.htm

326 O. Febbraro, K. Reale, and F. Ricca

Table 1. Logic programming tools comparison

existing tools provide syntax coloring, but few systems for ASP support code comple-
tion and quick fix of errors. It is quite strange that very basic features like undo/redo and
find/replace are not supported by all systems. A particular mention merits the Source-
to-Source transformation feature, which allows for translating one language to another.
Actually, only OntoStudio and DES support this feature to translate, respectively, from
an ontology language to an other one (e.g., F-Logic and RDF) and from Datalog to
SQL. Although every considered system supports a textual editor, only ASPIDE, On-
toDLV and OntoStudio offer a complete graphical editing environment for writing pro-
grams. Thus, in Table 2 we report only the systems allowing for graphic composition

ASPIDE: Integrated Development Environment for Answer Set Programming 327

Table 2. Visual editing tools: features and language constructs

of programs. In this case we consider also supported language constructs. Focusing on
ASP-based systems ASPIDE easily beats OntoDLV, which supports only queries. On-
toStudio, which supports a different logic language, clearly misses many ASP-specific
constructs, but provides a rich environment that supports ontology constructs.

6 Conclusion

This paper presents ASPIDE, a comprehensive IDE for ASP, combining several tools
for supporting the entire life-cycle of logic programs development. A key feature of
ASPIDE is its rich set of assisted program composition features, like dynamic syntax
highlighting, on-line syntax correction, autocompletion, code-templates, quick-fixes,
refactoring, visual editing, program browsing etc. Moreover, ASPIDE integrates sev-
eral graphic tools tailored for ASP, including: fully-graphical program composition,
debugging, profiling, project management, DBMS access, execution configuration, and
user-friendly output-handling. Comparing several softwares for developing logic pro-
grams, ASPIDE is one of the most complete solutions available in the present state of
the art.

As far as future work is concerned, we plan to extend ASPIDE by improving / intro-
ducing additional dynamic editing instruments, and graphic tools. In particular, we plan
to enrich the interface with source-to-source transformation (e.g., for supporting seam-
less conversions from multiple ASP dialects); and, to develop/extend the input/output
interfaces for handling multiple ASP solvers. Moreover, we are improving the test-
ing tool by including more advanced approaches such as [43]. We are currently using
ASPIDE in a logic programming course of the University of Calabria to assess the ap-
plicability of the system for teaching ASP.

Acknowledgments. This work has been partially supported by the Calabrian Region
under PIA (Pacchetti Integrati di Agevolazione industria, artigianato e servizi) project
DLVSYSTEM approved in BURC n. 20 parte III del 15/05/2009 - DR n. 7373 del
06/05/2009.

328 O. Febbraro, K. Reale, and F. Ricca

References

1. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
NGC 9, 365–385 (1991)

2. Lifschitz, V.: Answer Set Planning. In: ICLP 1999, pp. 23–37 (1999)
3. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22(3), 364–418 (1997)
4. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)
5. Simons, P.: Smodels Homepage (since 1996), http://www.tcs.hut.fi/Software/

smodels/
6. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-

tics. AI 138, 181–234 (2002)
7. Zhao, Y.: ASSAT homepage (since 2002), http://assat.cs.ust.hk/
8. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. In:

AAAI 2002, Edmonton, Alberta, Canada. AAAI Press / MIT Press (2002)
9. Babovich, Y., Maratea, M.: Cmodels-2: Sat-based answer sets solver enhanced to non-tight

programs (2003), http://www.cs.utexas.edu/users/tag/cmodels.html
10. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:

IJCAI 2007, pp. 386–392 (2007)
11. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Dis-

junctions in Stable Model Semantics. ACM TOCL 7(1), 1–37 (2006)
12. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: Baral, C., Greco,

G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 447–451.
Springer, Heidelberg (2005)

13. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-Driven Disjunctive Answer Set Solving. In: Proceedings of the Eleventh Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR 2008),
Sydney, Australia, pp. 422–432. AAAI Press, Menlo Park (2008)

14. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first
answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

15. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The Second An-
swer Set Programming Competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009.
LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

16. Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The USA-Advisor: A Case Study in
Answer Set Planning. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS
(LNAI), vol. 2173, pp. 439–442. Springer, Heidelberg (2001)

17. Baral, C., Gelfond, M.: Reasoning Agents in Dynamic Domains. In: Logic-Based Artificial
Intelligence, pp. 257–279. Kluwer, Dordrecht (2000)

18. Baral, C., Uyan, C.: Declarative Specification and Solution of Combinatorial Auctions Using
Logic Programming. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS
(LNAI), vol. 2173, pp. 186–199. Springer, Heidelberg (2001)

19. Friedrich, G., Ivanchenko, V.: Diagnosis from first principles for workflow exe-
cutions. Tech. Rep., http://proserver3-iwas.uni-klu.ac.at/download_
area/Technical-Reports/technical_report_2008_02.pdf

20. Franconi, E., Palma, A.L., Leone, N., Perri, S.: Census Data Repair: A Challenging Appli-
cation of Disjunctive Logic Programming. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR
2001. LNCS (LNAI), vol. 2250, pp. 561–578. Springer, Heidelberg (2001)

21. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog Decision
Support System for the Space Shuttle. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS,
vol. 1990, pp. 169–183. Springer, Heidelberg (2001)

http://www.tcs.hut.fi/Software/smodels/
http://www.tcs.hut.fi/Software/smodels/
http://assat.cs.ust.hk/
http://www.cs.utexas.edu/users/tag/cmodels.html
http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf
http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf

ASPIDE: Integrated Development Environment for Answer Set Programming 329

22. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
SIGMOD 2005, Baltimore, Maryland, USA, pp. 915–917. ACM Press, New York (2005)

23. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. In: CUP
(2003)

24. Bardadym, V.A.: Computer-Aided School and University Timetabling: The New Wave. In:
Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 22–45. Springer, Heidelberg
(1996)

25. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV Applications for Knowledge Man-
agement. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 591–
597. Springer, Heidelberg (2009)

26. Grasso, G., Leone, N., Manna, M., Ricca, F.: Gelfond Festschrift. LNCS, vol. 6565. Springer,
Heidelberg (2010)

27. Dovier, A., Erdem, E.: Report on application session @lpnmr09 (2009), http://www.
cs.nmsu.edu/ALP/2010/03/report-on-application-session-lpnmr09/

28. De Vos, M., Schaub, T. (eds.): SEA 2007: Software Engineering for Answer Set Program-
ming, vol. 281. CEUR (2007), http://CEUR-WS.org/Vol-281/

29. De Vos, M., Schaub, T. (eds.): SEA 2009: Software Engineering for Answer Set Program-
ming, vol. 546. CEUR (2009), http://CEUR-WS.org/Vol-546/

30. Perri, S., Ricca, F., Terracina, G., Cianni, D., Veltri, P.: An integrated graphic tool for devel-
oping and testing DLV programs. In: Proceedings of the Workshop on Software Engineering
for Answer Set Programming (SEA 2007), pp. 86–100 (2007)

31. Sureshkumar, A., Vos, M.D., Brain, M., Fitch, J.: APE: An AnsProlog* Environment. In:
Proceedings of the Workshop on Software Engineering for Answer Set Programming (SEA
2007), pp. 101–115 (2007)

32. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: That is Illogical
Captain! The Debugging Support Tool spock for Answer-Set Programs: System Description.
In: Proceedings of the Workshop on Software Engineering for Answer Set Programming
(SEA 2007), pp. 71–85 (2007)

33. Brain, M., De Vos, M.: Debugging Logic Programs under the Answer Set Semantics. In: Pro-
ceedings ASP 2005 - Answer Set Programming: Advances in Theory and Implementation,
Bath, UK (2005)

34. El-Khatib, O., Pontelli, E., Son, T.C.: Justification and debugging of answer set programs in
ASP. In: Proceedings of the Sixth International Workshop on Automated Debugging. ACM,
New York (2005)

35. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: On debugging non-ground
answer-set programs. In: Proc. of the ICLP 2010 (2010)

36. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging asp pro-
grams by means of asp. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 31–43. Springer, Heidelberg (2007)

37. Calimeri, F., Ianni, G., Ricca, F.: The third answer set programming system competition
(since 2011), https://www.mat.unical.it/aspcomp2011/

38. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries in
database and logic programming systems. TPLP 8, 129–165 (2008)

39. Febbraro, O., Reale, K., Ricca, F.: A Visual Interface for Drawing ASP Programs. In: Proc.
of CILC 2010, Rende, CS, Italy (2010)

40. Calimeri, F., Ianni, G.: Template programs for Disjunctive Logic Programming: An opera-
tional semantics. AI Communications 19(3), 193–206 (2006)

41. Calimeri, F., Leone, N., Ricca, F., Veltri, P.: A Visual Tracer for DLV. In: Proc. of SEA 2009,
Potsdam, Germany (2009)

http://www.cs.nmsu.edu/ALP/2010/03/report-on-application-session-lpnmr09/
http://www.cs.nmsu.edu/ALP/2010/03/report-on-application-session-lpnmr09/
http://CEUR-WS.org/Vol-281/
http://CEUR-WS.org/Vol-546/
https://www.mat.unical.it/aspcomp2011/

330 O. Febbraro, K. Reale, and F. Ricca

42. Ricca, F.: The DLV Java Wrapper. In: ASP 2003, Messina, Italy, pp. 305–316 (2003),
http://CEUR-WS.org/Vol-78/

43. Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J., Tompits, H.: On testing answer-set programs.
In: Proceeding of the 2010 conference on ECAI 2010: 19th European Conference on Artifi-
cial Intelligence, pp. 951–956. IOS Press, Amsterdam (2010)

44. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: OntoDLV: an
ASP-based system for enterprise ontologies. Journal of Logic and Computation (2009)

45. Bendisposto, J., Endrijautzki, I., Leuschel, M., Schneider, D.: A Semantics-Aware Editing
Environment for Prolog in Eclipse. In: Proc. of WLPE 2008 (2008)

http://CEUR-WS.org/Vol-78/

ASP-Prolog for Negotiation among Dishonest Agents

Ngoc-Hieu Nguyen1, Tran Cao Son1, Enrico Pontelli1, and Chiaki Sakama2

1 New Mexico State University
{nhieu,tson,epontell}@cs.nmsu.edu

2 Wakayama University
sakama@sys.wakayama-u.ac.jp

Abstract. This paper describes a platform to develop negotiating agents, whose
knowledge and rules of behavior are represented as Abductive Logic Programs.
The platform implements a flexible negotiation framework. Negotiating agents
can operate with multiple goals and incomplete knowledge, and dynamically
modify their goals depending on the progress of the negotiation exchanges. Dif-
ferently from other frameworks, agents can operate dishonestly, by generating
false statements or statements that are not substantiated by the agents’ knowledge.
The proposed platform has been implemented using the ASP-Prolog platform.

1 Introduction

Real-world interactions among agents often require the ability to perform negoti-
ation—i.e., perform sequences of offers/counter-offers to reach a consensus about
possible exchanges of knowledge and/or goods. The issue of modeling negotiation
in multi-agent systems is an important area of research that has received significant
attention, e.g., [1,5,6,9,11,14]. Nevertheless, of the many frameworks and theories
proposed to model negotiation among agents, relatively few are capable of handling
incomplete information (e.g., [3,13]) and even fewer have considered the case of
agents that are lying or misleading other agents during the negotiation process [15].

We have recently [12] developed a theoretical framework that enables modeling
negotiation among two agents, where each agent can introduce deception in the gen-
eration of offers/counter-offers, and he has incomplete knowledge about the other
agent and preferences on the choice of possible counter-offers. The proposal builds
on the use of Abductive Logic Programming (ALP) with preferences [10] to encode
the knowledge bases of the agents and their strategies for negotiation (including
strategies to introduce deception). It enables to model interactions such as the one
in the following example.

Example 1. A buyer agent and a seller agent negotiate the purchase/sale of a cam-
era. The buyer starts the negotiation by indicating the desire to purchase a camera
produced by maker C, at the lowest price and of good quality. The seller responds
that the model A is produced by C and has good quality, and it is sold at dis-
counted price to students—in this case, the seller may mislead the buyer, by stat-
ing knowledge about the quality of product A that he/she may not have. The buyer
could honestly respond that he is not a student. The seller may attempt to draw the

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 331–344, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

332 N.-H. Nguyen et al.

attention on product B, a camera produced by maker D, of good quality, sold at
discounted priced if paid in cash—in this case, the seller is lying, as he/she knows
that B is a poor quality product. The buyer is aware of the poor quality, and refuses
to accept the offer to purchase B at the discounted price. One more time, the seller
focuses on B by offering a further discount if the buyer joins the seller’s mailing
list. At that point, the buyer accepts the offer (but he/she really has no intention to
subscribe to the mailing list, thus he/she lies about it). �

In this paper, we describe a platform that implements a variant of ALP necessary to
support the negotiation process, and its use in modeling agents that can negotiate in
presence of incomplete knowledge, deception, and preferences. The framework is re-
alized using a combination of answer set programming and Prolog, as provided by the
ASP-Prolog system [8].

2 Background

2.1 Abductive Logic Programming (ALP), Preferences, and Disinformation

We use an extension of abductive logic programs defined in [10]. An abductive pro-
gram is a pair (P r, P a) where P r and P a are disjunctive logic programs. The rules
in P a are referred to as abducibles. A set of literals S is a belief set of (P r, P a)
if S is an answer set of P r ∪ E for some E ⊆ P a. (P r, P a) is consistent if it
has a belief set; otherwise, it is inconsistent. For a program (P r, P a) and a set of
rules X , P ∪r X (resp. P ∪a X) denotes the abductive program (P r ∪X, P a) (resp.
(P r, P a ∪ X)). Given a set of literals S, we denote S¬ = {¬� | � ∈ S } (¬¬a
represents the atom a).

For the discussion in the following sections, we associate a name nr to each rule
r and freely use the name to represent the rule1. When multiple sets of abducible
rules can be used to generate belief sets of a program, a preference relation among
abducibles, in the form of prefer (n1, n2), can be introduced, allowing us to de-
fine a preference relation among belief sets. It is assumed that prefer is a transitive
and asymmetric relation among abducibles of a program. The relation prefer is also
extended to define a preference relation among sets of abducible rules as follows:
for Q1, Q2 ⊆ P a, Q1 is preferred to Q2 if either (i) Q1 ⊆ Q2 or (ii) there exist
n1 ∈ Q1 \Q2 and n2 ∈ Q2 \Q1 such that prefer (n1, n2) holds and there exists no
n3 ∈ Q2 \Q1 such that prefer(n3, n1) holds. In turn, this allows the comparison of
belief sets of a program P = (P r, P a); if S1 (resp. S2) is a belief set of P obtained
from P r ∪Q1 (resp. P r ∪Q2), then S1 is preferred to S2 if Q1 is preferred to Q2.
A belief set S of P is a most preferred belief set if there is no belief set S′ of P
that is preferred to S.

Example 2. Let us consider a seller agent s whose sale knowledge is encoded by an
abductive program with preferences Ps = (P r

s , P a
s) as follows:

1 We omit the rule names when not needed in the discussion.

ASP-Prolog for Negotiation among Dishonest Agents 333

• P r
s consists of the rules:

senior customer ← age ≥ 65 productA ←
student customer ← student productB ←

¬qualityB ← productB prefer (n1, ni) ← (for i ∈ {2, 3, 4, 5})
makerC ← productA prefer (ni, n5) ← (for i ∈ {2, 3, 4})
makerD ← productB ← high pr, low pr
bargain ← productB ← high pr, lowest pr

sale ← productA,price1 ← low pr, lowest pr
sale ← productB,price2 ← not sale

where price1 ∈ { high pr, low pr } and price2 ∈ { low pr, lowest pr, high pr}.
P r

s defines various types of customers and some features of the products. It also states
the sales conditions and the preferences among the abducible rules of the seller. The
constraints on the prices indicate that the seller sells a product for only one price.
• P a

s = Hs ∪ Rs where Hs = { age ≥ 65, student, cash, mail list } and Rs

consists of the following rules

n1 : high pr ←
n2 : low pr ← senior customer n4 : low pr ← bargain, cash
n3 : low pr ← student customer n5 : lowest pr ← mail list, cash

Intuitively, each belief set of s represents one possible way to sell a product. It is easy
to see that any belief set of Ps must contain at least one of the literal high pr, low pr,
or lowest pr; the most preferred belief set of Ps contains high pr. �

Dishonest agents are those who use intentionally false or inaccurate information. For
an abductive program P = (P r, P a), a pair of disjoint sets of literals (L, B) is called
disinformation w.r.t. P if

• L represents lies [7], literals that are known to be false—i.e., ∀l ∈ L, ¬l belongs to
every belief set of P .

• B represents bullshit (BS) [4], literals that are unknown—i.e., ∀l ∈ B, neither l nor
¬l belongs to any belief set of P .

Given a disinformation (L, B) w.r.t. a program P = (P r, P a), we define

I = { r | r ∈ P r and head(r) ∩ L¬ = ∅},
Φ = { prefer(ni, nj) | ni ∈ I and nj ∈ P a} ∪

{ prefer(nb, nl) | nb ∈ B and nl ∈ L} ∪
{ prefer(nj , nt) | nj ∈ P a ∪ I and nt ∈ (L ∪ B)}.

Φ represents that (i) any rule from P r is preferred to hypotheses in P a, (ii) bullshit is
preferred to lies, and (iii) honest information is preferred to dishonest one. The abduc-
tive program δ(P, L, B) = (P r \ I ∪Φ, P a ∪ I ∪L∪B) is called the Abductive Logic
program with Disinformation (ALD-program) (L, B) w.r.t. P .

334 N.-H. Nguyen et al.

Example 3. Assume that s from Example 2 can claim that both products A and B are
of good quality, if needed to make a sale—i.e., s would lie about qualityB and BS about
qualityA. This is described by the disinformation: (Ls, Bs)=({qualityB}, {qualityA}).

The ALD-program (Ls, Bs) w.r.t. Ps is δ(Ps, Ls, Bs) = (δP r
s , δP a

s) where δP a
s

is equal to P a
s ∪ Ls ∪ Bs plus the rule n6 defined as ¬qualityB ← productB , and

δP r
s = P r

s \ {¬qualityB ← productB} plus the preferences

• prefer(n6, ni) for i = 1, . . . , 5 and prefer (n6, nh) where nh ∈ Hs (each fact in
Hs is considered as a rule with the same name);

• prefer(nh, nt) and prefer (nj , nt) for j = 1, . . . , 6, nh ∈ Hs and nt ∈ (Ls∪Bs);
• prefer(nb, nl) for nb ∈ B and nl ∈ L. �

Because δ(P, L, B) is an abductive program, belief sets of δ(P, L, B) and the prefer-
ences among them are defined as before. For a set of belief sets Σ of δ(P, L, B), we
say that M ∈ Σ is a most preferred belief set of Σ if there exists no M ′ ∈ Σ such that
M ′ is preferred to M .

2.2 Negotiation Knowledge Base (n-KB)

A negotiation knowledge base (n-KB) is a tuple 〈P, L, B, H, N≺〉 where P is an ab-
ductive program encoding the agent’s beliefs and rules of conduct; (L, B) is a disin-
formation with respect to P , representing possibly false information that the agent may
use in order to obtain a deal; H is a set of assumptions about the other party; N≺ is a
set of literals whose members represent goals (issues) that he would like to negotiate,
along with a strict partial order ≺ among them.

Example 4. Continuing with the previous example, assume that the n-KB of the agent
s be Ks = 〈Ps, Ls, Bs, Hs, N

≺
s 〉 where Ps, Hs, and (Ls, Bs) are given in Examples 2

and 3, respectively, and N≺
s is the set of possible prices that the seller is willing to

negotiate about: N≺
s = { high pr, low pr, lowest pr } with lowest pr ≺ low pr ≺

high pr. This indicates that the seller prefers high pr over low pr and lowest pr. �

Example 5. An n-KB Kb = 〈Pb, Lb, Bb, Hb, N
≺
b 〉 with Pb = (P r

b , P a
b) for the buyer b:

• P r
b consists of

purchase ← productX , qualityX, price3 prefer (n1, n2) ←
← not purchase prefer (n2, n3) ←

¬student ← prefer (n1, n3) ←
← low pr, lowest pr cash ←

where X ∈ {A, B} and price3 ∈ { low pr, lowest pr }.
• Hb = { qualityA, qualityB, makerC , makerD, productA, productB}.
• N≺

b ={ low pr, lowest pr } with ≺= { low pr ≺ lowest pr }.
• P a

b = Hb ∪ Rb where Rb consists of

n1 : lowest pr ← makerC n2 : lowest pr ← makerD n3 : low pr ← makerC

ASP-Prolog for Negotiation among Dishonest Agents 335

The set Hb represents properties of products that the buyer needs to check and N≺
b

specifies that the buyer prefers to pay the lowest price. Suppose that the buyer does not
want to be on the seller’s mailing list but could pretend to join it if it works to his/her
advantage. S/he decides to use the disinformation (Lb, Bb) = (∅, {mail list}}) w.r.t.
Pb. Thus, he/she will use the ALD-program δ(Pb, Lb, Bb) in his/her negotiation. �

2.3 Negotiations Using n-KBs

In this section, we review the definitions of negotiation among dishonest agents using n-
KBs [12]. We consider negotiations involving two agents a and b, whose n-KBs are Ka

and Kb. We assume that Ka and Kb share the same language and the set of assumptions
in Ka is disjoint from the set of assumptions in Kb. A negotiation contains several
rounds, where the two agents alternate in generating proposals to the other agent.

Intuitively, for an agent a, a proposal is a tuple 〈G, S, R〉 stating that the goal of a is
to negotiate to achieve G. The proposal is supported by a belief set M . By making the
proposal, a indicates assumptions that she has made about the receiver of the proposal
(the set S), as well as information about her/himself (R) that the receiver of the proposal
will have to respect. Formally, a proposal for G ⊆ N w.r.t. K = 〈P, L, B, H, N≺〉 is
a tuple γ = 〈G, S, R〉 where δ(P, L, B) ∪r Goal(G)2 has a belief set M such that
S = M ∩ H , and R ⊆ M \ H . We refer to G, S, R, and M as the goal, assumptions,
conditions, and support of 〈G, S, R〉, respectively. The proposal is honest if M ∩ (L ∪
B) = ∅; it is deceptive if M ∩ L = ∅; and it is unreliable if M ∩ B = ∅.

Let γ = 〈G, S, R〉 be a proposal from an agent b to an agent a, the latter described
by the n-KB Ka = 〈P, L, B, H, N≺〉. Let δQ = δ(P, L, B) ∪r Goal(G).

• γ is acceptable w.r.t. K if δQ has a belief set M such that S ⊆ M and M ∩ H ⊆
R ∩ H . We say that γ is acceptable without disinformation if M ∩ (L ∪ B) = ∅,
with disinformation, otherwise.

• γ is rejectable if δQ is inconsistent.
• γ is negotiable, otherwise.

Example 6. For Ks and Kb from Examples 4 and 5:
〈{high pr}, {productA}, ∅〉 is acceptable without disinformation w.r.t. Ks, as δ(Ps ∪r

Goal({high pr}), Ls, Bs) has a disinformation-free belief set {high pr, productA} ⊆M .
〈{high pr}, {productA, qualityA}, ∅〉 is acceptable with disinformation w.r.t. Ks as
δ(Ps ∪r Goal({high pr}), Ls, Bs) has a belief set M containing high pr, productA,
and each belief set with this property contains qualityA.
〈{low pr}, {productB, makerD, qualityB}, ∅〉 is a negotiable proposal w.r.t. Ks since
δ(Ps ∪r Goal({low pr}), Ls, Bs) has a belief set containing its assumptions but re-
quires at least one of the sets {student}, {age ≥ 65}, or {cash}.
〈{high pr}, ∅, {productA, makerC , qualityA}〉 is a rejectable proposal w.r.t. Kb be-
cause δ(Pb ∪r Goal({high pr}), Lb, Bb) has no belief set containing high pr. �

The receiver of a proposal generates a response. Let Ka be the n-KB of agent a and γb =
〈G, S, R〉 be a proposal by b w.r.t. its n-KB Kb. A response to γb by a is: (i) A proposal

2 Goal(G) = {← not � | � ∈ G}.

336 N.-H. Nguyen et al.

γa = 〈G′, S′, R′〉 w.r.t. Ka; or (ii) 〈�, ∅, ∅〉, denoting acceptance of the proposal if γb

is acceptable w.r.t. Ka; or (iii) 〈⊥, ∅, ∅〉, denoting rejection of the proposal. Intuitively,
a negotiation is a series of responses between two agents, who, in alternation, take into
consideration the other agent’s response and put forward a new response; this can be
either accept, reject, or a new proposal that may involve explanations of why the latest
proposal (of the other agent) was not acceptable.

Formally, a negotiation between a and b, starting with a, is a possible infinite se-
quence of proposals ω1, . . . , ωi, . . . where ωi = 〈Gi, Si, Fi〉, ω2k+1 is a proposal w.r.t.
Ka (k ≥ 0), ω2k is a proposal w.r.t. Kb (k ≥ 1), and ωi+1 is a response to ωi for every
i ≥ 1. A negotiation ends at i if ωi = 〈�, ∅, ∅〉 or ωi = 〈⊥, ∅, ∅〉. When Gi = Gi+2,
we say that a goal change has occurred for the agent who proposes ωi.

Example 7. Consider the seller s and the buyer b agents (Examples 4 and 5).

b1 : 〈{low pr}, {productA, qualityA, makerC}, ∅〉
s1 : 〈{low pr}, {student}, {productA, qualityA, makerC}〉
b2 : 〈{low pr}, {productA, qualityA, makerC}, {¬student}〉
s2 : 〈{low pr}, {cash}, {productB, makerD, qualityB}〉
b3 : 〈{lowest pr}, {productB, makerD, qualityB}, {cash}〉
s3 : 〈{lowest pr}, {cash, mail list}, {productB, makerD, qualityB}〉
b4 : 〈�, ∅, ∅〉.

The seller bullshits in s1 and lies in s2. The buyer lies in b4. A goal change has occurred
at b3 (for the buyer) and s3 (for the seller). �

By definition, a negotiation can be infinite. Nevertheless, if agents do not repeat their
responses then a negotiation is finite. Given two agents, a negotiation tree encodes all
possible negotiations among them. In order to achieve their goals, agents employ ne-
gotiation strategies to construct their responses, given their n-KBs and a proposal. De-
tailed discussions on these notions are given in [12]. We present here one strategy. Let
γb = 〈G, S, R〉 be a proposal by b w.r.t. Kb. A conscious response to γb by a is

(i) A proposal γa = 〈G′, S′, R′〉 w.r.t. Ka with a support M such that G � G′,
R ∩ H ⊆ S′, and S¬ ∩ M ⊆ R′ where M is the support of γa, if γb is not
rejectable w.r.t. Ka; or

(ii) A proposal γa = 〈G′, S′, R′〉 w.r.t. Ka with a support M such that G � G′ and
S¬ ∩ M ⊆ R′ where M is a support of γa if γb is rejectable w.r.t. Ka; or

(iii) 〈�, ∅, ∅〉, denoting acceptance of the proposal, if γb is acceptable w.r.t. Ka; or
(iv) 〈⊥, ∅, ∅〉, denoting rejection of the proposal.

If the proposal 〈G, S, R〉 is acceptable, the agent can accept it (case (iii)) or negotiate
for better options (case (i)). If the proposal is negotiable, he can attempt to get a better
option (case (i)). If the proposal is rejectable, the agent can negotiate for something
that is not as good as the current goal (case (ii)). In any case, the agent can stop with
a rejection (case (iv)). An agent generates a new proposal whose goal depends on the
goal of the original one, whose assumptions cover the conditions in the original proposal
(R ∩ H ⊆ S′), and whose conditions identify all incorrect assumptions in the original

ASP-Prolog for Negotiation among Dishonest Agents 337

one (S¬ ∩ M ⊆ R′). An agent who decides to consider preferable proposals, requires
that the support for the new proposal is preferred to any support for accepting γb.

Example 8. The proposal γ1 = 〈{low pr}, {cash}, {productA, qualityA, makerC}〉
(“[s]: I can sell you the productA, made by makerC , and has good quality for low pr if
you pay in cash”) is acceptable w.r.t. Kb. The buyer can also respond with 〈{lowest pr},
{productA, qualityA, makerC}, {cash}〉 (“[b]: Can I get the lowest pr?”).
The proposal γ2 = 〈{low pr}, {productA, makerC}, ∅〉 (“[b]: Can I have productA
from makerC for low pr?”) is not acceptable but negotiable w.r.t. Ks, since low pr
requires additional assumptions (e.g., student or age ≥ 65). The seller responds
〈{low pr}, {student}, {productA, makerC}〉 (“[s]: Yes, if you are a student.”).

The proposal γ3 = 〈{high pr}, ∅, {productA, qualityA, makerC}〉 (“[s]: I can sell
productA, made by makerC , has good quality, at high pr”) is rejectable w.r.t. Kb, as
no rule in Kb derives high pr. The buyer can reject this proposal or weaken the goal:
〈{low pr}, {productA, qualityA, makerC}, ∅〉 (“[b]: Can I get it for low pr?”). �

We define an agent a with the n-KB K = 〈P, L, B, H, N≺〉 to be an adaptive agent if it
imports the information received during the negotiation into his/her n-KB and keeps this
information for the next round of negotiation. Furthermore, an adaptive agent prefers to
accept a proposal if a better outcome cannot be achieved. Formally, a is adaptive if for
every negotiation ω1, . . . , whenever a responds to a proposal ωi = 〈G, S, R〉,

• a responds with 〈G′, S′, R′〉, which is a conscious response to 〈G, S, R〉, and if
〈G, S, R〉 is acceptable w.r.t. K then G′ is preferred to G or 〈G′, S′, R′〉 = 〈�, ∅, ∅〉.

• a changes his n-KB to K ′ = 〈P∪r(R∩H), L, B, H, N≺〉 after his proposal response.
Negotiations among adaptive agents are guaranteed to terminate.

3 ASP-Prolog

The ASP-Prolog system [8] represents an extension of a modular Prolog system which
enables the integration of Prolog-style reasoning with Answer Set Programming (ASP).
The first implementation of ASP-Prolog dates back to 2004 [2], and we have recently
embarked in a redesign and re-implementation of the system using more modern Prolog
and ASP technology, as discussed in [8].

An ASP-Prolog program is composed of a hierarchy of modules, where each module
can be declared to contain either Prolog code or ASP code. Each module provides an
interface which enables to export predicate declarations and import declarations from
other modules. In the current implementation, the root of the module hierarchy is ex-
pected to be a Prolog module, that can be interacted with using the traditional Prolog-
style query-answering mechanism.

Each module is provided with the ability to access the intended models of other mod-
ules; in particular, the intended models of each module (i.e., the least Herbrand model of
a Prolog module and the answer sets of an ASP module) are themselves automatically
realized as individual modules, that can be queried. The interactions among modules
can be realized using the following built-in constructs:

338 N.-H. Nguyen et al.

• m : model(X) succeeds if X is the name of a module representing one of the
intended models of the module m—i.e., a module representing the least Herbrand
model (resp. an answer set) of a Prolog (resp. ASP) module m.

• m : p succeeds if the atom p is entailed in all the intended models of the module
m; in particular, if m represents an answer set of another module, then this test will
simply verify whether p is entailed by that particular answer set.

• The content of modules can be retrieved (using the predicate m : clause(R)) and
modified by other modules. The predicates assert and retract can be applied
to add or remove clauses from a module.

Let us assume we have one Prolog module p1 and two ASP modules q1 and q2:

p1 q1 q2

:- asp module. :- asp module.
:- use module(q1). :- use module(q1).
:- use module(q2).
p :- q1:r. r :- not s. a :- not s.
s :- q2:a. h. s :- not a.
t :- q2:model(X), X:a. q :- q1:h.
v :- q1:assert(s), q1:r

The queries p1:p, p1:t, and q1:q are successful, while p1:s fails. On the other hand,
the execution of p1:v would fail, adding the fact s to the module q1.

4 A Platform for Negotiation Systems

In this section, we describe an ASP-Prolog based platform for the development of nego-
tiation agents which employ ALD in their negotiation. The organization of the platform
is illustrated in Figure 1. At the lowest level, we develop an ASP-Prolog layer that
provides an implementation of abductive logic programming. This is used, in turn, to
enable the representation of n-KBs and to handle the basic handling of negotiation pro-
posals. At the top level, we have Prolog programs that can interact and coordinate the
execution of agents performing negotiation. The layers of this architecture are discussed
in the following subsections.

4.1 ALP Modules

ASP-Prolog

Abductive Logic
Programming

n-KBs Proposal
Evaluation

Agent

Negotiation Driver

Fig. 1. Negotiation Architecture

Since the semantics of ALP and ALP with preferences
is defined by answer sets of extended logic programs,
it is natural to view ALPs as another type of modules
that can be accessed and used in the same way as other
modules in ASP-Prolog. To achieve this goal, we ex-
tend ASP-Prolog with the following predicates:
• use alp(+Name, +P r, +P a, +[Options]):
this predicate has the same effect as the predicate
use module(P) for a Prolog or an ASP-module.

ASP-Prolog for Negotiation among Dishonest Agents 339

It compiles the program (P r, P a) with the corresponding options specified in the list
Options into a new ASP module, Name. The compilation process is illustrated in
Algorithm 1. Similarly to the case of ASP modules, the ALP belief sets of (P r, P a) are
created as (sub)modules of the module produced by the algorithm. Accessing a belief
set of the program or its content is done in the same way as for ASP modules. Some
shorthands are also provided, e.g., use alp(+P r, +P a) where the module name is
specified as P r.

• most preferred(+Name, ?M): this predicate allows users to query or check for a
most preferred belief set of the ALP program referred to by Name.

• more preferred(+Name, ?M1, ?M2): this predicate allows users to compare two
belief sets w.r.t. the prefer relation.

Algorithm 1. ALP Compile
Require: An abductive logic program P = (P r, P a); a name Name
Ensure: An ASP module Name.

Compile P a program into a regular answer set program P a
1 ;

◦ introduce the atom ok(n) in the body of rule n;
◦ generate choice rules of the form 0{ok(n)}1. for each rule n in P a.

Generate an ASP module containing the rules P ′ = P r ∪ P a
1 .

Example 9. Consider the ALP P = (P r, P a) with preference:

P r = { prefer(n1, n2), s ←, ← not p, not q },
P a = {n1 : p ← not r, n2 : q ← not r }.

It is easy to see that P has three belief sets A1 = {p, s, prefer(n1, n2)}, A2 =
{q, s, prefer(n1, n2)}, and A3 = {p, q, s, prefer(n1, n2)} which are belief sets of
P r ∪ {n1}, P r ∪ {n2}, P r ∪ {n1, n2}, respectively3. Suppose that P r and P a are
stored in the files pr.lp and pa.lp respectively. The command ?- use alp(p,
pr, pa) compiles P = (P r, P a) into the module p. It also creates three submod-
ules p1, p2, and p3 which correspond to A1, A2, and A3, respectively. The next table
displays some queries to p and the corresponding answers.

Query Answer

?- p:model(X). X = p1; X = p2; X = p3
?- findall(E,(current predicate(p:P/A), L = [s,prefer(n1,n2)]

functor(E,P,A),p:E),L).
?- p:model(X), X:p. X = p1; X = p3
?- most preferred(p, X). X = p1

The first query asks for belief sets of p. The second query asks for all atoms that are
true in p, i.e., those belonging to all belief sets of P . The third query identifies models
in which p (the atom) is true. The last query asks for a most preferred belief set of p. �

3 Rule labels refer to the rules in P a.

340 N.-H. Nguyen et al.

4.2 Negotiation Agent

The n-KB layer of Fig. 1 allows the high-level description of the n-KB of a negotia-
tion agent and its mapping to the corresponding ALP module. A negotiation agent is
described by a n-KB K = 〈P, L, B, H, N≺〉, where P = (P r, P a), (L, B) is a dis-
information w.r.t. P , H is set of assumptions, and N≺ is set of negotiated conditions.
For convenience, we introduce a simple specification language for agents as shown in
Table 1 (left). The complete description of a n-KB is provided in a file, with different
sections corresponding to the different components of the n-KB.

An agent is compiled into ALP (and, in turn, into ASP as discussed in the previ-
ous section) by the command load agent(+Agent, +File, +[Options]),
where Agent is the name of the agent, File is file encoding the agent specification, and
the list of options [Options] for use with the program P = (P r, P a). The command
will compile the n-KB into a module, named Agent, whose submodules correspond to
belief sets of the ALD-program δ(P, L, B). This allows the users to access belief sets,
compute most preferred belief sets, as well as compare belief sets of δ(P, L, B). The
overall structure of the compiler is sketched in Algorithm 2.

Example 10. Consider the n-KB Ks in Ex. 4. Suppose that the n-KB is stored
in seller.lp. Its description is shown on the right in Table 1. The query ?-
load agent(s,seller) will compile the n-KB into an ALP module named
s, denoting the agent s. The module has submodules corresponding to the belief
sets of δ(Ps, Ls, Bs) (Ex. 3) whose content can be accessed using the ASP-Prolog
module interface discussed earlier. �

Table 1. Agent Specification

Syntax Example: Seller agent

declare pr: declare pr:
The program P r The program P r

s (Example 2)
declare pa: declare pa:

The program P a The program P a
s (Example 2)

declare lying: declare lying:
Literals in L qualityB .

declare bs: declare bs:
Literals in B qualityA.

declare hypotheses: declare hypotheses:
Literals in H age ≥ 65. student.

cash. mail list
declare goal: declare goal:

Literals in N and high pr.
the preference order ≺ low pr. lowest pr.

prefer(low pr, lowest pr).
prefer(high pr, low pr).
prefer(high pr, lowest pr).

ASP-Prolog for Negotiation among Dishonest Agents 341

Algorithm 2. n-KB Compilation
Require: An Agent name
Require: A n-KB K = 〈P, L, B, H,N≺〉 where P = (P r, P a)
Ensure: An ALP module representing δ(P, L, B).

Compute I = { r | r ∈ P r and head(r) ∩ L¬ �= ∅}
P a

1 = P a ∪ I ∪ L ∪ B
Assign labels to the rules in P a

1

Compute
Φ = { prefer(ni, nj) | ni ∈ I and nj ∈ P a ∪H} ∪

{ prefer(nj , nt) | nj ∈ P a ∪H ∪ I and nt ∈ (L ∪ B)}
P r

1 = P r \ I ∪ Φ
Compile the program P1 = (P r

1 , P a
1) using the use alp predicate.

4.3 Computing and Evaluating Proposals

The proposal evaluation layer (Fig. 1) provides a collection of predicates to generate
general proposals and to evaluate proposals for acceptability, rejectability, and negotia-
bility. Let us discuss the key predicates; all examples refer to s and b as the seller and
buyer whose n-KBs are specified in Examples 4 and 5. We assume that the n-KBs are
already compiled into modules s and b, respectively, using the load agent command.

• proposal(+Agent,[?G,?S,?R]): this predicate succeeds if 〈G, S, R〉 is a
proposal for the agent Agent. Note that this predicate can be used to generate as
well as test a proposal. For example, the query ?- proposal(s,[G,S,R])
generates an arbitrary proposal that the seller agent s can create, given her n-KB
(Ex. 10); one possible answer is G = [low pr], S = [], R = [productA].

• proposal(+Agent,?M,[?G,?S,?R]): 〈G, S, R〉 is a proposal for the agent
Agent with supporting belief set M . For example, assume that the module s has a
submodule s1 containing low pr, student, and productB ; the query

?- proposal(s,s1,[G,S,R]).
asks for a possible proposal supported by the belief set described by module s1;
it returns the answer G = [low pr], S = [student], R = [productB]. A
most preferred proposal for s can be obtained by the query:

?- most preferred(s, M), proposal(s,M,[G,S,R]).
• acceptable(+Agent,[+G,+S,+R]): 〈G, S, R〉 is an acceptable proposal for

the agent Agent. For example, the query
?- acceptable(s, [[high pr],[productA], []]).

asks if 〈high pr, {productA}, ∅〉 is acceptable for agent s; this query succeeds.
• negotiable(+Agent,[+G,+S,+R]): 〈G, S, R〉 is a negotiable proposal for

the agent Agent. The query
?- negotiable(s, [[high pr],[productA, qualityA], []]).

checks whether the proposal 〈high pr, {productA, qualityA}, ∅〉 is negotiable for
the agent s, and it succeeds.

• rejectable(+Agent,[+G,+S,+R]): 〈G, S, R〉 is a rejectable proposal for
the agent Agent. The query
?- rejectable(b, [[high pr],[productA, qualityA, makerC], []]).

342 N.-H. Nguyen et al.

checks if 〈high pr, {productA, qualityA, makerC}, ∅〉 is rejectable for agent b; it
succeeds, since this proposal is neither acceptable nor negotiable for b.

4.4 Agents: Responses, Strategies, and Negotiations

The design of a negotiation agent requires, in addition to its knowledge, the ability of
applying strategies for the generation of proposals (e.g., act as an adaptive agent) and for
the selection of responses (e.g., develop conscious responses). To this end, our negotia-
tion architecture provides predicates for computing conscious responses and updates of
agents. We next describe these predicates. Other strategies can be realized (as relatively
simple Prolog modules) and their development is part of the future work.

• response(+Agent,[?G2,?S2,?R2],[+G1,+S1,+R1]): 〈G2, S2, R2〉 is
a conscious response (by Agent) to the proposal 〈G1, S1, R1〉. Note that the pred-
icate can be used to check responses (for consciousness) or to generate conscious
responses. For example, the answer to the query
?- response(b,[G,S,R],[[low pr],[cash],[productA, qualityA, makerC]])

which asks for a conscious response by b to the proposal
〈 low pr, {cash}, {productA, qualityA, makerC} 〉 is

G=[low pr], S=[productA, qualityA, makerC], R = [cash]
• update kb(+Agent, +Type, +Flag,+Value): where Type is one of {pr,
pa, lying, bs, hypotheses, goal} and Flag is either true or false. Type
specifies the part of the agent’s KB, that needs to be updated. Flag is true (false)
indicating whether the content specified in V alue has to be added or removed
(V alue could be either a constant or a list of constants). This predicate updates
the declare type part of the agent. For instance, the query

?- update kb(s, pr, true, student)
updates the program P r of the seller n-KB with the fact student, i.e., adding the
fact student to the program P r. Intuitively, this query should be executed after the
seller learns that the buyer is a student. On the other hand, the query

?- update kb(s, hypotheses, false, student)
updates the set of hypothesis Hs of the seller by removing student from Hs, e.g.,
after she learns that the buyer is indeed a student.

4.5 A Program for Automated Negotiation

The top-level of the proposed framework is a coordinator agent; the role of the coordi-
nator is to control the exchanges between the negotiating agents, enforcing the proper
ordering in the exchanges and acting as a communication channel among the negotiat-
ing agents. The coordinator agent is a relatively simple Prolog module. The entry point
of the coordinating agent is the predicate main, which receives in input the names of
the two negotiating agents and the files containing their n-KBs:

main(Name1, Agent1, Name2, Agent2, [G,S,R]) :-
load_agent(Name1, Agent1), load_agent(Name2, Agent2),
negotiation(Name1, Name2, [G,S,R]).

ASP-Prolog for Negotiation among Dishonest Agents 343

The negotiation starts with an agent identifying a most preferred proposal and propos-
ing it to the other agent. The proposal identified by [G, S, R] is the final outcome of a
negotiation. The actual negotiation process is an iterative process (implemented by the
predicate round), which alternates generation of responses between the two agents.
In each round, the receiving agent computes a counter proposal and updates her n-KB.
The coordinator agent updates the history of the negotiation to ensure that agents do not
repeat their answers. Multiple traces can be obtained by asking for different answers.

1: negotiation(A, B, [G1,S1,R1]):-
2: most_preferred(A,M), proposal(A,M,[G,S,R]), print_prop(A,G,S,R),
3: round(A,B,[G,S,R],[(A,[],[G,S,R])], [G1,S1,R1]).
4: round(A, B, [G,S,R],History,[G,S,R]):- print_prop(A,G,S,R),
5: response(B,[G1,S1,R1],[G,S,R]),
6: check_repeated((B,[G,S,R],[G1,S1,R1]),History),
7: ([G1,S1,R1]==[true,[],[]] -> write(’Accepted’) ;
8: ([G1,S1,R1]==[false,[],[]]-> write(’Rejected’) ;
9: append([(B,[G,S,R],[G1,S1,R1])],History,History1),
10: agent(B, Hyp, _, _, _), intersection(Hyp, R, SH1),
11: negated(Hyp, HypN), intersection(HypN, R, SH2),
12: union(SH1, SH2, SH), update_KB(B, pr, true, SH),
13: round(B, A, [G1,S1,R1],History1,[G1,S1,R1]))).

where agent(·) provides the components of the agent and negated(S, S′) is true
for S′ = S¬. The subgoals in lines 7–12 are used to update the agent (see definition of
adaptive agent), while line 6 avoids repetitions of proposals.

Example 11. The following is an example of some negotiations when running the query
?- main(s, seller, b, buyer, [G,S,R]).

Agent s: proposal {[high_pr],[],[]}
G=[high_pr], S=[], R=[]
Rejected yes ? ;
Agent b: proposal {[low_pr],[qualityB,makerC,productB],[]}
Agent s: proposal {[low_pr],[cash],[-(qualityB)]}
Agent b: proposal {[low_pr],[qualityA,makerC,productA],[]}
Agent s: proposal {[low_pr],[cash],[]}
Agent b: proposal {[low_pr],[qualityA,makerC,productA],[cash]}
Accepted yes ?

The seller starts with 〈{high pr}, ∅, ∅〉, which the buyer rejects. The buyer proposes
〈{low pr}, {qualityB, makerC , productB}, ∅〉. This does not work for the seller, as
he does not want to lie about qualityB. The buyer proposes the alternative 〈{low pr},
{qualityA, makerC , productA}, ∅〉 for which the seller wants cash. The buyer agrees
and the seller agrees to sell the product, with BS about the quality of product A. �

5 Conclusion

In this paper, we introduced the design of a logic programming platform to implement
negotiating agents. The model of negotiation supported by the proposed platform en-
ables the representation of agents with incomplete knowledge and capable of choosing

344 N.-H. Nguyen et al.

dishonest answers in building their offers and counter-offers. The architecture has been
entirely developed using the ASP-Prolog system, taking advantage of the ability of
combining Prolog and ASP modules. We believe this architecture is quite unique in the
level of flexibility provided and in its ability to support easy extensions to capture, e.g.,
different agent strategies and behaviors.

We are currently extending the architecture to provide several built-in agent strategies
(e.g., to represent agents with different levels of dishonesty), allow actual concurrency
in the agents’ interactions (e.g., through a Linda-style blackboard), and implementing
real-world scenarios.

References

1. Chen, W., Zhang, M., Foo, N.: Repeated negotiation of logic programs. In: Proc. 7th Work-
shop on Nonmonotonic Reasoning, Action and Change (2006)

2. Elkhatib, O., Pontelli, E., Son, T.C.: ASP− PROLOG: A System for Reasoning about An-
swer Set Programs in Prolog. In: Jayaraman, B. (ed.) PADL 2004. LNCS, vol. 3057, pp.
148–162. Springer, Heidelberg (2004)

3. Fatima, S.S., Wooldridge, M., Jennings, N.R.: Bargaining with incomplete information. Ann.
Math. Artif. Intell. 44(3), 207–232 (2005)

4. Frankfurt, H.G.: On Bullshit. Princeton Univ. Press, Princeton (2005)
5. Kakas, A.C., et al.: Agent planning, negotiation and control of operation. In: ECAI (2004)
6. Kraus, S.: Negotiation and cooperation in multi-agent environments. AIJ 94(1-2) (1997)
7. Mahon, J.E.: Two definitions of lying. J. Applied Philosophy 22(2), 211–230 (2008)
8. Pontelli, E., Son, T.C., Nguyen, N.-H.: Combining answer set programming and prolog: The

ASP–PROLOG system. In: Tran, S. (ed.) Gelfond Festschrift. LNCS (LNAI), vol. 6565, pp.
452–472. Springer, Heidelberg (2011)

9. Sadri, F., Toni, F., Torroni, P.: An abductive logic programming architecture for negotiating
agents. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI),
vol. 2424, pp. 419–431. Springer, Heidelberg (2002)

10. Sakama, C., Inoue, K.: Prioritized Logic Programming and its Application to Commonsense
Reasoning. Artificial Intelligence 123(1-2), 185–222 (2000)

11. Sakama, C., Inoue, K.: Negotiation by abduction and relaxation. In: AAMAS, pp. 1018–
1025. ACM Press, New York (2007)

12. Sakama, C., Son, T.C., Pontelli, E.: A logical formulation for negotiation among dishonest
agents (2010), www.cs.nmsu.edu/˜tson/papers/neg2010.pdf

13. Son, T.C., Sakama, C.: Negotiation using logic programming with consistency restoring
rules. In: IJCAI, pp. 930–935 (2009)

14. Wooldridge, M., Parsons, S.: Languages for negotiation. In: ECAI (2000)
15. Zlotkin, G., Rosenschein, J.S.: Incomplete information and deception in multi-agent negoti-

ation. In: IJCAI, pp. 225–231 (1991)

www.cs.nmsu.edu/~tson/papers/neg2010.pdf

Advances in gringo Series 3

Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub�

Institut für Informatik, Universität Potsdam

Abstract. We describe the major new features emerging from a significant re-
design of the grounder gringo, building upon a grounding algorithm based on
semi-naive database evaluation. Unlike previous versions, rules only need to be
safe rather than domain-restricted.

1 Introduction

A distinguishing feature of Answer Set Programming (ASP; [1]) is its highly declar-
ative modeling language along with its domain-independent grounding systems, like
lparse [2], dlv [3], and gringo [4]. This paper is dedicated to the features of the new
major release of gringo, starting with version 3. Most notably, this series only stipu-
lates rules to be safe (cf. [5]) rather than λ-restricted [6], as in previous versions of
gringo. Hence, programs are no longer subject to any restriction guaranteeing a finite
grounding. Rather, this responsibility is left with the user in order to provide her with
the greatest flexibility. This general setting is supported by a grounding algorithm based
on semi-naive database evaluation (cf. [5]), closely related to that of dlv. In what fol-
lows, we elaborate upon the new features emerging from this significant redesign. For a
thorough introduction of gringo’s language, please consult the manual available at [7].

2 Advances in gringo Series 3

The most significant change from gringo 2 to 3 is that the basic grounding procedure
of gringo 3 no longer instantiates the rules of a logic program strictly along a prede-
fined order. This enables more convenient predicate definitions in terms of (positive)
recursion. E.g., consider a λ-restricted “connected graph design” program:

node(1..5).
{ edge(1,X) } :- node(X).
{ edge(X,Y) } :- reached(X), node(Y).
reached(Y) :- edge(X,Y), node(X;Y).

:- node(X), not reached(X).

In gringo 3, reached/1 can be defined more conveniently as follows:

reached(Y) :- edge(X,Y).

� Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 345–351, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

346 M. Gebser et al.

In fact, additional domain information via node/1, needed in rule-wise grounding
to “break” the cyclic definition of edge/2 and reached/1, is not anymore required
in view of semi-naive evaluation.

Since gringo features built-in arithmetics and uninterpreted functions, it deals with
potentially infinite Herbrand universes, and the safeness condition does not guarantee
termination. For instance, gringo 3 does not terminate on the following program:

succ(X,X+1) :- succ(X-1,X). succ(X,X+1) :- zero(X). zero(0).

In fact, the program has an infinite answer set, and it is not λ-restricted in view of the
first (recursive) rule. Although it may appear disturbing that the termination of gringo 3
is not always guaranteed, we deliberately chose to not reintroduce any syntactic finite-
ness check, and rather leave it to the user to include appropriate stop conditions limiting
the “relevant” ground instances of rules. E.g., one may replace the first rule by:

succ(X,X+1) :- succ(X-1,X), X < 42.

Since gringo 3 evaluates built-ins while instantiating a rule, it stops grounding at
succ(41,42), so that only finitely many relevant ground rules are produced.

The design decision to not enforce (syntactic) conditions guaranteeing termination
gives users the freedom to write “clever” encodings, where syntactic checks are bound
to fail. To see this, consider the following encoding of a universal Turing Machine:

tm(S, L,A, R) :- init(S), tape(L,A,R).
tm(SN,L,AL,r(AN,R)) :- tm(S,l(L,AL),A,R), d(S,A,AN,SN,l).
tm(SN,n,0, r(AN,R)) :- tm(S,n,A,R), d(S,A,AN,SN,l).
tm(SN,l(L,AN),AR,R) :- tm(S,L,A,r(AR,R)), d(S,A,AN,SN,r).
tm(SN,l(L,AN),0, n) :- tm(S,L,A,n), d(S,A,AN,SN,r).

The idea is to represent configurations of the universal Turing Machine by instances
of tm(State,LTape,Symbol,RTape), where State is a state of the machine
that is run, Symbol is the tape contents at the current read/write-head position, and
LTape and RTape are (usually) functions representing the tape contents to the left
and right, respectively, of the current position. Starting from an initial state and tape,
successor configurations are calculated relative to a transition table given by instances
of d(State,Symbol,NSymbol,NState,Direction). For instance, if the di-
rection is l for “left,” the contents of NSymbol is appended to the tape contents to the
right, and the next symbol to the left is taken as the contents at the new position, while
also removing it from the left-hand side’s tape contents. Hereby, we use n to indicate
infinitely many blanks 0 to the left or right of the current position, and dedicated rules
take care of “generating” a blank on demand when a tape position is visited first. A
machine to run, e.g., a 3-state Busy Beaver machine, can then be given by facts like:

d(a,0,1,b,r). d(b,0,1,a,l). d(c,0,1,b,l). init(a).
d(a,1,1,c,l). d(b,1,1,b,r). d(c,1,1,h,r). tape(n,0,n).

If we run gringo 3 on the universal Turing Machine encoding along with the facts
specifying the 3-state Busy Beaver machine, it generates all traversed configurations,
where the final one is as follows:

tm(h,l(l(l(l(n,1),1),1),1),1,r(1,n))

Advances in gringo Series 3 347

The fact that gringo 3 terminates tells us that the 3-state Busy Beaver machine halts
after writing six times the symbol 1 to the tape. However, given that gringo 3 can be
used to simulate any machine and the halting problem, in general, is undecidable, it is
also undecidable whether semi-naive evaluation yields a finite grounding, i.e., whether
gringo 3 eventually terminates.

The language of gringo 2 [4] already included a number of aggregates, most of
which are still supported by gringo 3: #count, #sum, #min, #max, #avg, #even,
and #odd1. The support also includes backward compatibility to the traditional nota-
tion of cardinality and weight constraints [2], l {...}u and l[...]u, respectively,
rather than l#count{...}u and l#sum[...]u. As with gringo 2, the condition
connective ‘:’ allows for qualifying local variables within an aggregate (or variable-
sized conjunctions/disjunctions). Hence, gringo 2 and 3 both accept the next program:

d(1;2;3). { p(X) : d(X) }.
all :- S = #sum[d(X) : d(X) = X], S #sum[p(X) : d(X) = X].

Note that all local variables (named X) within aggregates are bound via a domain
predicate [2], d/1, on the right-hand side of ‘:’. While such binding via domain pred-
icates (or built-ins) had been mandatory with gringo 2, it can often be omitted with
gringo 3. E.g., the last rule above can also be written shorter as follows:

all :- S = #sum[d(X) = X], S #sum[p(X) = X].

After investigating the rules with atoms of the predicates d/1 and p/1 in the head
and collecting their ground instances, gringo 3 notices that no further rule can derive any
instances, so that both domains are limited to 1, 2, and 3. Hence, explicit domain infor-
mation is not needed to identify all eligible values for the local variablesX in the remain-
ing rule. In fact, since d/1 is a domain predicate, gringo 3 (deterministically) calculates
S=6, which is then taken as the lower bound in 6#sum[p(1),p(2),p(3)]. How-
ever, note that a similar omission of ‘:d(X)’ is not admissible in the head of the sec-
ond rule above, since it would violate the safeness requirement. Finally, gringo 3 does
currently not support implicit domains of local variables if an aggregate is involved in
(positive) recursion; e.g., the following modified rule is safe, but not yet supported:

p(S) :- S = #sum[d(X) = X], S #sum[p(X) = X].

Implicit domains in recursive aggregates are subject to future work (cf. Section 3).
Optimization statements, which can be specified via the directives#minimize and

#maximize, are syntactically very similar to aggregates, and gringo 3 fully supports
implicit domains for local variables in them. (Since optimization statements are not
part of logic program rules, they cannot be “applied” to derive any atom.) With lparse
and gringo 2, it is possible to provide multiple optimization statements with implicit
priorities depending on their order in the input: by convention [2], the last statement
is more significant than the second last one, which in turn is more significant then the
one before, etc. This convention is also adopted by gringo 3, which must be taken into
account when writing a sequence of optimization statements like the following one:

#minimize[p(X) = X].
#maximize[p(X) = X].

1 The #times aggregate is currently not supported by gringo 3; while it requires an involved
compilation to “Smodels Internal Format” [2], we are not aware of any application using it.

348 M. Gebser et al.

According to the order, the #maximize objective takes precedence over
#minimize. Since such implicit prioritization necessitates a lot of care to be used
properly and also undermines the idea of declarative programming, gringo 3 sup-
ports explicit priorities via precedence levels, provided via the connective ‘@’. This
can be used to override default prioritization, e.g., as follows:

#minimize[p(X) = X @ X].
#maximize[p(X) = X @ -X].

If we assume the domain of p/1 to contain the values 1, 2, and 3, the corresponding
ground optimization statements include the following weighted literals (sorted by their
precedence levels):

#minimize[p(3) = 3 @ 3, p(2) = 2 @ 2, p(1) = 1 @ 1].
#maximize[p(1) = 1 @ -1, p(2) = 2 @ -2, p(3) = 3 @ -3].

These optimization statements involve six precedence levels, and a greater level is
more significant than a smaller one. Accordingly, our main objective is p(3) to be
false, followed by p(2), and then p(1). Furthermore, the three negative levels (which
are superseded by the positive ones that are greater) express that we would also like
p(1) to be true, then p(2), and finally p(3). Observe that the optimization priorities
are fully determined by precedence levels (and weights), so that there are no implicit
priorities based on ordering anymore. We note that prioritization of optimization ob-
jectives via precedence levels and weights is also supported by dlv, which offers weak
constraints [3]. In fact, extending gringo by weak constraints is subject to future work.

For selectively displaying atoms, lparse and gringo 2 support #hide and #show
statements to, at the predicate level, decide which atoms in an answer set ought to be
presented or suppressed, respectively. Albeit such output restriction mainly serves user
convenience, there are also profound application scenarios, such as the enumeration of
projected answer sets [8] offered by clasp (option --project). In fact, the following
methodology had been used to, at the predicate level, project Hamiltonian cycles in a
clumpy graph down to edges in an underlying “master graph”:

% Derive "mc" from "hc"
mc(C1,C2) :- hc(C1,V1,C2,V2), C1 != C2.
% Output PROJECTION to "mc"
#hide.
#show mc(C1,C2).

To support output projection not only at the predicate but also at the atom level,
gringo 3 allows for conditions, connective ‘:’ followed by domain predicates and/or
built-ins, within #hide and #show statements. Given this, defining a predicate mc/2
can be omitted and output projection be accomplished more conveniently as follows:

% Output PROJECTION
#hide.
#show hc(C1,V1,C2,V2) : C1 != C2.

As with precedence levels for optimization, the possibility to distinguish outputs
qualified via #hide and #show at the atom level, rather than at the level of predicates,
contributes to declarativeness, as it abolishes the need to define auxiliary predicates
within a logic program only for the sake of projecting the displayed output to them.

Advances in gringo Series 3 349

A number of built-in (arithmetic) comparison predicates, viz., ‘==’, ‘!=’, ‘<=’,
‘>=’, ‘<’, ‘>’, and (variable) assignments, via ‘=’, were already included in the input
language of gringo 2. In gringo 3, respective comparison predicates are generalized to
term comparisons, that is, they do not anymore raise an error like “comparing different
types,” as encountered with (some versions of) gringo 2 when writing, e.g., 2<f(a)
or alike. Furthermore, while the left-hand side of ‘=’ must be a variable, the general-
ized assignment operator ‘:=’ offered by gringo 3 admits composite terms (including
variables) on its left-hand side. Hence, it is possible to simultaneously assign multiple
variables in a rule like the following one:

p(X,Y,Z) :- (X,f(Y,a,Z)) := (a,f(b,a,c)).

As with ‘=’, we still require a right-hand side of ‘:=’ to be instantiable before ‘:=’
is evaluated. E.g., a rule like the following one is currently not supported by gringo:

p(X) :- (X,a) := (a,X).

Sometimes, the built-ins offered by a grounder may be too spartan to accomplish so-
phisticated calculations, and encoding them may likewise be involved and possibly too
space-consuming. To nonetheless allow users to accomplish application-specific calcu-
lations during grounding, gringo 3 comes along with an embedded scripting language,
viz., lua [9]. For instance, the greatest common divisor of numbers given by instances
of a predicate p/1 can be calculated via lua and then be “saved” in the third argument
of a predicate q/3, as done in the following program:

#begin_lua
function gcd(a,b)

if a == 0 then return b else return gcd(b % a,a) end
end

#end_lua.

q(X,Y,@gcd(X,Y)) :- p(X;Y), X < Y. p(2*3*5;2*3*7;2*5*7).

When passing this program to gringo 3, it for one calculates the numbers being
arguments of predicate p/1, 30, 42, and 70, while the implementation of the gcd
function in lua is used to derive the following facts over predicate q/3:

q(30,42,6). q(30,70,10). q(42,70,14).

Beyond sophisticated arithmetics, lua also allows for environment interaction. E.g.,
it provides interfaces to read off values from a database. In the following example, we
use sqlite3, embedded into the precompiled gringo 3 binaries available at [7]:

#begin_lua
local env = luasql.sqlite3()
local conn = env:connect("db.sqlite3")
function query()

local cur = conn:execute("SELECT * FROM test")
local res = {}
while true do

local row = {}
row = cur:fetch(row,"n")
if row == nil then break end

350 M. Gebser et al.

res[#res + 1] = Val.new(Val.FUNC,row)
end
cur:close()
return res

end
#end_lua.

p(X,Y) :- (X,Y) := @query().

Here, a lua function query is used to read data from a table called test. Although
we do here not delve into the details of lua, there is one line that deserves attention:

res[#res + 1] = Val.new(Val.FUNC,row)

If test contains the tuples 〈1,a〉, 〈2,b〉, and 〈3,c〉, they are successively inserted
into the array res. The collected tuples are then taken to construct the following facts:

p("1","a"). p("2","b"). p("3","c").

We note that the generation of terms via lua is similar to “value invention” [10],
allowing for custom built-in predicates evaluated during grounding.

3 Discussion

The redesign of gringo is an important step in consolidating the distinct grounding
approaches originated by lparse and dlv. A common ASP language unifying the con-
structs of both approaches is already envisaged as a joint effort of the teams at Calabria
and Potsdam. Although dlv and gringo now share many commonalities, like safety,
semi-naive database evaluation, function symbols, and Turing completeness, they still
differ in aspects like finiteness criteria, indexing, connectivity, incrementality, recursive
aggregates, backtracking and -jumping. Hence, it is interesting future work to further
investigate the different designs and consolidate them wherever possible.

Acknowledgments. This work was partly funded by DFG grant SCHA 550/8-2.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

2. Syrjänen, T.: Lparse 1.0 user’s manual,
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

3. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM TOCL 7(3), 499–562 (2006)

4. Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the input language
of ASP grounder gringo. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 502–508. Springer, Heidelberg (2009)

5. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1995)

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

Advances in gringo Series 3 351

6. Gebser, M., Schaub, T., Thiele, S.: Gringo: A new grounder for answer set programming.
In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp.
266–271. Springer, Heidelberg (2007)

7. http://potassco.sourceforge.net
8. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected Boolean search

problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp.
71–86. Springer, Heidelberg (2009)

9. Ierusalimschy, R.: Programming in Lua (2006), http://www.lua.org
10. Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value invention in logic

programming. AMAI 50(3-4), 333–361 (2007)

http://potassco.sourceforge.net
http://www.lua.org

A Portfolio Solver for Answer Set Programming:
Preliminary Report

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Torsten Schaub�,
Marius Thomas Schneider, and Stefan Ziller

Institut für Informatik, Universität Potsdam

Abstract. We propose a portfolio-based solving approach to Answer Set
Programming (ASP). Our approach is homogeneous in considering several con-
figurations of the ASP solver clasp. The selection among the configurations is
realized via Support Vector Regression. The resulting portfolio-based solver clasp-
folio regularly outperforms clasp’s default configuration as well as manual tuning.

1 Introduction

Answer Set Programming (ASP; [1]) has become a prime paradigm for declarative
problem solving due to its combination of an easy yet expressive modeling language
with high-performance Boolean constraint solving technology. In fact, modern ASP
solvers like clasp [2] match the performance of state-of-art satisfiability (SAT) checkers,
as demonstrated during the last SAT competition in 2009. Unfortunately, there is a price
to pay: despite its theoretical power [3], modern Boolean constraint solving is highly
sensitive to parameter configuration. In fact, we are unaware of any true application on
which clasp is run in its default settings. Rather, in applications, “black magic” is used
to find suitable search parameters. Although this is well-known and also exploited in the
SAT community, it is hardly acceptable in an ASP setting for the sake of declarativity.
The most prominent approach addressing this problem in SAT is satzilla [4], aiming at
selecting the most appropriate solver for a problem at hand.

Inspired by satzilla, we address the lack of declarativity in ASP solving by exploring
a portfolio-based approach. To this end, we concentrate on the solver clasp and map a
collection of instance features onto an element of a portfolio of distinct clasp configu-
rations. This mapping is realized by appeal to Support Vector Regression [5]. In what
follows, we describe the approach and architecture of the resulting claspfolio system.
We further provide an empirical analysis contrasting claspfolio’s performance with that
of clasp’s default setting as well as the manually tuned settings used during the 2009
ASP competition. In addition, we compare the approach of claspfolio with paramils [6],
a tool for parameter optimization based on local search.

2 Architecture

Given a logic program, the goal of claspfolio is to automatically select a suitable config-
uration of the ASP solver clasp. In view of the huge configuration space, the attention is

� Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 352–357, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Portfolio Solver for Answer Set Programming: Preliminary Report 353

Fig. 1. Architecture of claspfolio

limited to some (manually) selected configurations belonging to a portfolio. Each con-
figuration consists of certain clasp options, e.g., “--heuristic=VSIDS --local-restarts.”
To approximate the behavior of such a configuration, claspfolio applies a model-based
approach predicting solving performance from particular features of the input.

As shown in Figure 1, ASP solving with claspfolio consists of four parts. First, the
ASP grounder gringo [7] instantiates a logic program. Then, a light-weight version of
clasp, called claspre, is used to extract features and possibly even solve a (too simple)
instance. If the instance was not solved by claspre, the extracted features are mapped
to a score for each configuration in the portfolio. Finally, clasp is run for solving, using
the configuration with the highest score. Note that claspre and clasp use distinct copies
of the input (see Figure 1) because preprocessing done by claspre may interfere with
clasp options of configurations in the portfolio.

The features determined by claspre can be distinguished into data- and search-
oriented ones. The former include 50 properties, such as number of constraints, num-
ber or variables, etc. Beyond that, claspre performs a limited amount of search to also
collect information about solving characteristics. In this way, additional 90 search-
related features are extracted, such as average backjump length, length of learned
clauses, etc.

Given the features of an instance, claspfolio scores each configuration in the portfo-
lio. To this end, it makes use of models generated by means of machine learning during
a training phase. In the case of claspfolio, we applied Support Vector Regression, as
implemented by the libSVM package [8]. Upon training, the score sk(i) of the k-th
configuration on the i-th training instance is simply the runtime tk(i) in relation to the
minimum runtime of all configurations in the portfolio: sk(i) = minj (tj(i))

tk(i) .
A model, i.e., a function mapping instance features to scores, is then generated from

the feature-score pairs available for the training set. In production mode, only the fea-
tures (collected by claspre), but not the configurations’ scores, are available. Hence, the
models are queried to predict the scores of all configurations in the portfolio, among
which the one with the highest predicted score is selected for setting up clasp.

The portfolio used by claspfolio (version 0.8.0) contains 12 clasp configurations,
included because of their complementary performances on the training set. The options
of these configurations mainly configure the preprocessing, the decision heuristic, and
the restart policy of clasp in different ways. This provides us with a collection of solving
strategies that have turned out to be useful on a range of existing benchmarks. In fact,
the hope is that some configuration is (a) well-suited for a user’s application and (b)
automatically selected by claspfolio in view of similarities to the training set.

354 M. Gebser et al.

3 Experiments

We conducted experiments on benchmark classes of the 2009 ASP competition [9]1.
All experiments were run on an Intel Xeon E5520 machine, equipped with 2.26 GHz
processors and 48 GB RAM, under Linux. The considered systems are clasp (1.3.4)
and claspfolio (0.8.0; based on clasp 1.3.4). Runtimes in seconds, per class and in total,
are shown in Table 1. The first two columns give benchmark classes along with their
numbers of instances (#). The subsequent columns denote particular variants of the
considered systems: clasp default (clasp), clasp manually tuned2 (claspm), claspfolio
running a random configuration (claspfolior), claspfolio running the best configuration3

(claspfoliob), claspfolio default (claspfolio) as available at [7], and claspfolio obtained
by cross validation (claspfoliov). The runtime per benchmark instance was limited to
1, 200 seconds, and timeouts are taken as 1, 200 seconds within accumulated results.
The third last and the last column (×) in Table 1 provide the speedup of claspfolio and
claspfoliov, respectively, over clasp, i.e., the runtime of clasp divided by the one of
claspfolio or claspfoliov, per benchmark class (and in total in the last row).

The role of claspfoliov is to evaluate claspfolio on unseen instances. We do so by
using 10-fold cross validation where the set of all available instances is randomly di-
vided into a training set and a test set, consisting of 90 and 10 percent of the inspected
instances, respectively. The regression models generated on the training set are then
evaluated on the (unseen) test set. By repeating this procedure ten times, every instance
is once solved based on models not trained on the instance.

Comparing clasp with claspm in Table 1, manual tuning turns out to be mostly
successful, and it decreases total runtime roughly by a factor of 3. On two classes,
Labyrinth and WireRouting, manual tuning was however counterproductive. This can
be explained by the 2009 ASP competition mode, revealing only a few of the available
instances per benchmark class during a setup phase, so that the manually tuned param-
eters may fail on unseen instances. In fact, claspfolio, trained on a collection of 3096
instances from the Asparagus benchmark repository4 and the 2009 ASP competition,
turns out to be even more successful in total than claspm. In particular, it performs
better on Labyrinth and WireRouting, where claspm failed to improve over clasp. Of
course, there are also benchmark classes on which manual tuning beats claspfolio (most
apparently, WeightDomSet), but the fact that claspfolio exhibits a total speedup of 3.3
over clasp clearly shows the potential of automatic parameter selection. Notably, the
total runtime of claspfolio exceeds the best possible one, claspfoliob, only by a factor
of 1.45, while the expected runtime of a random configuration, claspfolior, is in total
more than a factor of 4 greater than the one of claspfolio.

1 Some too easy/unbalanced classes or instances, respectively, of the competition are omitted.
On the other hand, we also ran additional instances for some classes. All instances used in our
experiments are available at http://www.cs.uni-potsdam.de/claspfolio

2 The respective parameter settings per benchmark class are reported at
http://dtai.cs.kuleuven.be/events/ASP-competition/Teams/
Potassco.shtml

3 Note that results of claspfolior and claspfoliob are calculated a posteriori per benchmark in-
stance, using the average or smallest, respectively, runtime of all clasp variants in the portfolio.

4 Available at http://asparagus.cs.uni-potsdam.de

http://www.cs.uni-potsdam.de/claspfolio
http://dtai.cs.kuleuven.be/events/ASP-competition/Teams/
http://asparagus.cs.uni-potsdam.de

A Portfolio Solver for Answer Set Programming: Preliminary Report 355

Table 1. Runtimes in seconds and speedups on benchmark classes of the 2009 ASP competition

Benchmark Class # clasp claspm claspfolior claspfoliob claspfolio × claspfoliov ×
15Puzzle 37 510 281 438 111 208 2.4 254 2.0
BlockedNQueens 65 412 374 765 139 264 1.5 410 1.0
ConnectDomSet 21 1, 428 54 1, 236 30 53 26.9 649 2.2
GraphColouring 23 17, 404 5, 844 15, 304 5, 746 5, 867 2.9 5, 867 2.9
GraphPartitioning 13 135 66 791 57 69 1.9 97 1.4
Hanoi 29 458 130 499 35 175 2.6 233 2.0
Labyrinth 29 1, 249 1, 728 3.949 112 785 1.5 2, 537 0.5
MazeGeneration 28 3, 652 569 4, 086 558 581 6.2 567 6.4
SchurNumbers 29 726 726 1, 193 41 399 1.8 957 0.7
Sokoban 29 18 19 34 12 57 0.3 54 0.3
Solitaire 22 2, 494 631 3, 569 73 317 7.8 1, 610 1.5
WeightDomSet 29 3, 572 248 10, 091 5 1, 147 3.1 5, 441 0.6
WireRouting 23 1, 223 2, 103 1, 409 43 144 8.4 289 4.2

Total 377 33, 281 12, 773 43, 364 6, 962 10, 066 3.3 18, 965 1.8

Table 2. Comparison with paramils on benchmark classes of the 2009 ASP competition

Benchmark Class # paramilsc paramilsa claspfolio claspfoliov clasp claspm

15Puzzle 37 104 322 208 254 510 281
BlockedNQueens 65 212 352 264 410 412 374
ConnectDomSet 21 28 686 53 649 1, 428 54
GraphColouring 23 7, 596 10, 865 5, 867 5, 867 17, 404 5, 844
GraphPartitioning 13 39 86 69 97 135 66
Hanoi 29 35 147 175 233 458 130
Labyrinth 29 462 3, 080 785 2, 537 1, 249 1, 728
MazeGeneration 28 700 2, 610 581 567 3, 652 569
SchurNumbers 29 278 871 399 957 726 726
Sokoban 29 11 18 57 54 18 19
Solitaire 22 2, 374 4, 357 317 1, 610 2, 494 631
WeightDomSet 29 8 2, 649 1, 147 5, 441 3, 572 248
WireRouting 23 87 535 144 289 1, 223 2, 103

Total 377 11, 934 26, 578 10, 066 18, 965 33, 281 12, 773

Comparing claspfolio, trained on all available instances, with claspfoliov, where
training and test sets are disjoint, we see that applying claspfolio(v) to unseen instances
yields lower prediction quality. If the training set represents the dependencies between
features and runtime rather loosely, the regression models hardly generalize to unseen
instances, which obstructs a good parameter selection. But even in this case, claspfoliov

is almost twice as fast as clasp, which shows that the trained models are still helpful.
In Table 2, we compare claspfolio with paramils, an automatic configuration tool

based on iterated local search (FocusedILS) through the configuration space. Given
that paramils uses a model-free approach, it can only generalize between homoge-
neous problem classes regarding the best configuration. In contrast, claspfolio is utterly

356 M. Gebser et al.

applicable to heterogeneous classes in view of its regression models. To reflect this dis-
crepancy, the column paramilsc shows the runtimes of the best configurations of clasp
determined by paramils independently for each problem class, while the best configu-
ration found over all problem classes is displayed in column paramilsa. In both cases,
we ran four (randomized) copies of paramils for 24 hours with a timeout of 600 sec-
onds per run on an instance, as suggested in [6], and then selected the best configuration
found. Also note that, in view of only 377 instances evaluated overall, we did not split
instances into a training and a test set, i.e., paramils was used to automatically analyze
clasp configurations rather than predicting their performances.

As it could be expected, the configurations found by paramilsc are much faster than
the global one of paramilsa. On some problem classes, e.g., WeightDomSet, paramilsc

found configurations that rendered the classes almost trivial to solve. On such classes,
the configurations of paramilsc also yield much better performances than the ones of
claspfolio and claspm. However, on problem classes including very hard instances, like
GraphColouring and Solitaire, the configurations determined by paramils were less suc-
cessful. This can be explained by long runs on instances, so that fewer configurations
could be explored by local search within the allotted 24 hours.

Comparing claspfolio and paramilsc, claspfolio performs better in total, yet worse
on ten of the thirteen classes. One reason is that claspfolio is based on a small set of
configurations, whereas paramils considers a much larger configuration space (about
1012 configurations). In addition, paramilsc determined a suitable configuration indi-
vidually for each class, while claspfolio applies the same configurations and models to
all problem classes. In fact, we note that claspfoliov performs better than paramilsa.
From this, we conclude that the problem classes are heterogeneous, so that it is unlikely
to find a single configuration well-suited for all classes. Thus, claspfolio appears to be
a reasonable approach for configuring clasp for sets of heterogeneous instances.

4 Discussion

In this preliminary report, we described a simple yet effective way to counterbalance the
sensitivity of ASP solvers to parameter configuration. As a result, ASP solving regains a
substantial degree of declarativity insofar as users may concentrate on problem posing
rather than parameter tuning. The resulting portfolio-based solver claspfolio largely
improves on the default configuration of the underlying ASP solver clasp. Moreover,
our approach outperforms a manual one conducted by experts.

Although our approach is inspired by satzilla, claspfolio differs in several ways.
Apart from the different areas of application, SAT vs. ASP, satzilla’s learning and se-
lection engine relies on Ridge Regression, while ours uses Support Vector Regression.
Interestingly, satzilla incorporates a SAT/UNSAT likelihood prediction further boosting
its performance. Our first experiments in this direction did not have a similar effect, and
it remains future work to investigate the reasons for this.

Our experiments emphasize that search for an optimal configuration, e.g., via
paramils using local search, on one (homogeneous) problem class is more effective
than claspfolio. But the search time of paramils for each problem class makes clasp-
folio more efficient on a set of (heterogeneous) problem classes. In fact, predicting a

A Portfolio Solver for Answer Set Programming: Preliminary Report 357

good configuration with claspfolio is almost instantaneous, once the regression mod-
els are trained. A recent approach to learn domain-specific decision heuristics [10]
requires modifying a solver in order to learn and apply the heuristics.

It is interesting future work to investigate automatic portfolio generation. New con-
figurations, to add to a portfolio, could be found with paramils. First attempts are
done with hydra [11]. Further related work includes [12,13,14,15,16], whose discus-
sion is however beyond the scope of this paper. Another goal of future work includes
the investigation and selection of the extracted features to predict more precisely the
runtime. Usually, feature selection decreases the prediction error of machine learning
algorithms. In view of this, the potential of claspfolio is not yet fully harnessed in its
current version.

Acknowledgments. This work was partly funded by DFG grant SCHA 550/8-2. We are
grateful to Holger H. Hoos and Frank Hutter for fruitful discussions on the subject of
this paper.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

2. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
IJCAI 2007, pp. 386–392. AAAI Press, Menlo Park (2007)

3. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers with restarts.
In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 654–668. Springer, Heidelberg (2009)

4. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selection
for SAT. JAIR 32, 565–606 (2008)

5. Basak, D., Pal, S., Patranabis, D.: Support vector regression. NIP 11(10), 203–224 (2007)
6. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic algorithm con-

figuration framework. JAIR 36, 267–306 (2009)
7. http://potassco.sourceforge.net
8. http://www.csie.ntu.edu.tw/˜cjlin/libsvm
9. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set

programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

10. Balduccini, M.: Learning domain-specific heuristics for answer set solvers. In: ICLP 2010
Tech. Comm., pp. 14–23 (2010)

11. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms for
portfolio-based selection. In: AAAI 2010, pp. 210–216. AAAI Press, Menlo Park (2010)

12. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. AMAI 47(3-4), 295–
328 (2006)

13. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: AAAI 2007, pp. 255–260. AAAI
Press, Menlo Park (2007)

14. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based rea-
soning in an algorithm portfolio for constraint solving. In: AICS 2008 (2008)

15. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified Boolean formu-
las. Constraints 14(1), 80–116 (2009)

16. Arbelaez, A., Hamadi, Y., Sebag, M.: Continuous search in constraint programming. In: IC-
TAI 2010, pp. 53–60. IEEE Press, Los Alamitos (2010)

http://potassco.sourceforge.net
http://www.csie.ntu.edu.tw/~cjlin/libsvm

plasp: A Prototype for PDDL-Based Planning in ASP

Martin Gebser, Roland Kaminski, Murat Knecht, and Torsten Schaub�

Institut für Informatik, Universität Potsdam

Abstract. We present a prototypical system, plasp, implementing Planning by
compilation to Answer Set Programming (ASP). Our approach is inspired by
Planning as Satisfiability, yet it aims at keeping the actual compilation simple
in favor of modeling planning techniques by meta-programming in ASP. This
has several advantages. First, ASP modelings are easily modifiable and can be
studied in a transparent setting. Second, we can take advantage of available ASP
grounders to obtain propositional representations. Third, we can harness ASP
solvers providing incremental solving mechanisms. Finally, the ASP community
gains access to a wide range of planning problems, and the planning community
benefits from the knowledge representation and reasoning capacities of ASP.

1 Introduction

Boolean Satisfiability (SAT; [1]) checking provides a major implementation technique
for Automated Planning [2]. In fact, a lot of efforts have been made to develop compi-
lations mapping planning problems to propositional formulas. However, the underlying
techniques are usually hard-wired within the compilers, so that further combinations
and experiments with different features are hard to implement.

We address this situation and propose a more elaboration-tolerant platform to Plan-
ning by using Answer Set Programming (ASP; [3]) rather than SAT as target formalism.
The idea is to keep the actual compilation small and model as many techniques as pos-
sible in ASP. This approach has several advantages. First, planning techniques modeled
in ASP are easily modifiable and can be studied in a transparent setting. Second, we can
utilize available ASP grounders to obtain propositional representations. Third, we can
harness ASP solvers providing incremental solving mechanisms. Finally, the ASP com-
munity gains access to a wide range of planning problems, and the planning community
benefits from the knowledge representation and reasoning capacities of ASP.

Our prototypical system, plasp, follows the approach of SATPlan [4,5] in translating
a planning problem from the Planning Domain Definition Language (PDDL; [6]) into
Boolean constraints. Unlike SATPlan, however, we aim at keeping the actual compila-
tion simple in favor of modeling planning techniques by meta-programming in ASP. Al-
though the compilations and meta-programs made available by plasp do not yet match
the sophisticated approaches of dedicated planning systems, they allow for applying
ASP systems to available planning problems. In particular, we make use of the incre-
mental ASP system iClingo [7], supporting the step-wise unrolling of problem horizons.
Our case studies demonstrate the impact of alternative compilations and ASP modelings
on the performance of iClingo.

� Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 358–363, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

plasp: A Prototype for PDDL-Based Planning in ASP 359

2 Architecture

As illustrated in Figure 1, plasp translates a PDDL problem instance to ASP and runs it
through a solver producing answer sets. The latter represent solutions to the initial plan-
ning problem. To this end, a plan is extracted from an answer set and output in PDDL
syntax. plasp thus consists of two modules, viz., the ASP and Solution compilers. The
ASP compiler is illustrated in Figure 2. First, a parser reads the PDDL description as
input and builds an internal representation, also known as Abstract Syntax Tree (AST).
Then, the Analyzer gathers information on the particular problem instance; e.g., it de-
termines predicates representing fluents. Afterwards, the Preprocessor modifies the in-
stance and enhances it for the translation process. Finally, the ASP backend produces an
ASP program using the data gathered before. The Solution compiler constructs a plan
from an answer set output by the solver. This is usually just a syntactic matter, but it be-
comes more involved in the case of parallel planning where an order among the actions
must be re-established. Afterwards, the plan is verified and output in PDDL syntax.

plasp

PDDL
instance

ASP
compiler

ASP
program Solver Answer

sets
Solution
compiler

PDDL
solution

Fig. 1. Architecture of the plasp system

ASP compiler

PDDL
instance P

ar
se

r

AST

Analyzer

Preprocessor

ASP backend ASP
program

Fig. 2. Architecture of the ASP compiler

3 Compilations and Meta-Programs

In order to give an idea of the resulting ASP programs, let us sketch the most basic plan-
ning encoding relying on meta-programming. To this end, a PDDL domain description
is mapped onto a set of facts built from predicates init , goal , action , demands , adds ,
and deletes along with their obvious meanings. Such facts are then combined with the
meta-program in Figure 3. Note that this meta-program is treated incrementally by the
ASP system iClingo, as indicated in lines (1), (3), and (10). While the facts resulting
from the initial PDDL description along with the ground rules of (2) are processed just
once, the rules in (4)–(9) are successively grounded for increasing values of t and ac-
cumulated in iClingo’s solving component. Finally, goal conditions are expressed by

360 M. Gebser et al.

(1) #base.
(2) holds(F, 0) ← init(F).

(3) #cumulative t .
(4) 1 {apply(A, t) : action(A)} 1.
(5) ← apply(A, t),demands(A,F, true),not holds(F, t−1).
(6) ← apply(A, t),demands(A,F, false), holds(F, t−1).
(7) holds(F, t) ← apply(A, t), adds(A,F).
(8) del(F, t) ← apply(A, t), deletes(A,F).
(9) holds(F, t) ← holds(F, t−1),not del(F, t).

(10) #volatile t .
(11) ← goal(F, true),not holds(F, t).
(12) ← goal(F, false), holds(F, t).

Fig. 3. Basic ASP encoding of STRIPS planning

(4′) 1 {apply(A, t) : action(A)}.
(4′a) ← apply(A1, t), apply(A2, t), A1 �= A2, demands(A1, F, true), deletes(A2, F).
(4′b) ← apply(A1, t), apply(A2, t), A1 �= A2, demands(A1, F, false), adds(A2, F).
(4′c) ← apply(A1, t), apply(A2, t), A1 �= A2, adds(A1, F),deletes(A2, F).

Fig. 4. Adaptation of the basic ASP encoding to parallel STRIPS planning

volatile rules, contributing ground rules of (11) and (12) only for the current step t.
See [7] for further details on incremental ASP solving. From a representational per-
spective, it is interesting to observe that ASP allows for omitting a frame axiom (like
the one in line (9)) for negative information, making use of the fact that instances of
holds are false by default, that is, unless they are explicitly derived to be true. Other-
wise, the specification follows closely the semantics of STRIPS [2].

Beyond the meta-program in Figure 3, plasp offers planning with concurrent actions.
The corresponding modification of the rule in (4) is shown in Figure 4. While (4′)
drops the uniqueness condition on applied actions, the additional integrity constraints
stipulate that concurrent actions must not undo their preconditions, nor have conflicting
effects. The resulting meta-program complies with the ∀-step semantics in [8]. Fur-
thermore, plasp offers operator splitting as well as forward expansion. The goal of op-
erator splitting [9] is to reduce the number of propositions in the representation of a
planning problem by decomposing action predicates; e.g., an action a(X, Y, Z) can be
represented in terms of a1(X), a2(Y), a3(Z). Forward expansion (without mutex anal-
ysis [10]) instantiates schematic actions by need, viz., if their preconditions have been
determined as feasible at a time step, instead of referring to statically given instances of
the action predicate. This can be useful if initially many instances of a schematic ac-
tion are inapplicable, yet it requires a domain-specific compilation; meta-programming
is difficult to apply because action instances are not represented as facts. Finally, plasp
supports combinations of forward expansion with either concurrent actions or operator
splitting. Regardless of whether forward expansion is used, concurrent actions and
operator splitting can currently not be combined; generally, both techniques are in
opposition, although possible solutions have recently been proposed [11].

plasp: A Prototype for PDDL-Based Planning in ASP 361

4 Experiments

We conducted experiments comparing the different compilation techniques furnished
by plasp1 (1.0): the meta-program in Figure 3 (column “basic” in Table 1), its adaptation
to concurrent actions in Figure 4 (“concur”), operator splitting (“split”), forward expan-
sion (“expand”), and two combinations thereof (“concur+expand” and “split+expand”).
To compute answer sets of compilations, representing shortest plans, plasp uses (a mod-
ified version of) the incremental ASP system iClingo1 (2.0.5). Although we mainly
study the effect of different compilations on the performance of iClingo, for compar-
ison, we also include SATPlan2 (2006) and SGPlan3 (5.2.2). While SGPlan [12] does
not guarantee shortest plan lengths, the approach of SATPlan, based on compilation
and the use of a SAT solver as search backend, leads to shortest plans. In fact, its com-
pilation is closely related to the “concur+expand” setting of plasp, where SATPlan in
addition applies mutex analysis. The benchmarks, formulated in the STRIPS subset4 of
PDDL, stem from the Second International Planning Competition4, except for the three
Satellite instances taken from the fourth competition5. All experiments were run on a
Linux PC equipped with 2 GHz CPU and 2 GB RAM, imposing 900 seconds as time
and 1.5 GB as memory limit.

Runtime results in seconds are shown in Table 1; an entry “—” indicates a timeout,
and “mem” stands for memory exhaustion. On all benchmarks but Schedule, we ob-
serve that SGPlan has an edge on the other, less specialized (yet guaranteeing shortest
plans) systems. The fact that SATPlan is usually faster than plasp can be explained by
the fact that compilations of plasp are instantiated by a general-purpose ASP grounder,
while SATPlan utilizes a planning-specific frontend [10]. Moreover, mutex analysis as
in SATPlan is currently not included in (encodings of) plasp. However, we observe
that different compilation techniques of plasp pay off on particular benchmarks. On
the Blocks and small Elevator instances, the simplest meta-program (“basic”) is supe-
rior because concurrency and expansion are barely applicable to them and may even
deteriorate performance. On Elevator-5-0, splitting (“split”) helps to reduce the size of
the problem representation. Furthermore, we observe that allowing for concurrent ac-
tions without explicit mutexes (“concur” and “concur+expand”) dramatically decreases
search efficiency on the Elevator domain. However, concurrent actions in combina-
tion with forward expansion (“concur+expand”) are valuable on FreeCell and Logis-
tics instances, given that they involve non-interfering actions. Splitting (“split” and
“split+expand”) appears to be useful on Satellite instances, where Satellite-2 again
yields the phenomenon of concurrent actions deteriorating search. Finally, forward ex-
pansion (“expand”) enables plasp to successfully deal with the Schedule domain, where
even SATPlan and SGPlan exceed the memory limit. We conjecture that (too) exhaus-
tive preprocessing, e.g., mutex analysis, could be responsible for this.

1 http://potassco.sourceforge.net
2 http://www.cs.rochester.edu/˜kautz/satplan
3 http://manip.crhc.uiuc.edu/programs/SGPlan
4 http://www.cs.toronto.edu/aips2000
5 http://www.tzi.de/˜edelkamp/ipc-4

http://potassco.sourceforge.net
http://www.cs.rochester.edu/~kautz/satplan
http://manip.crhc.uiuc.edu/programs/SGPlan
http://www.cs.toronto.edu/aips2000
http://www.tzi.de/~edelkamp/ipc-4

362 M. Gebser et al.

Table 1. Experiments comparing different compilations

Benchmark basic concur split expand concur+expand split+expand SATPlan SGPlan
Blocks-4-0 0.16 0.21 0.43 0.21 0.22 0.20 0.34 0.10
Blocks-6-0 0.30 0.63 0.93 0.44 0.56 1.40 0.27 0.04
Blocks-8-0 1.58 6.53 12.78 98.60 317.53 47.57 1.24 0.09
Elevator-3-0 0.27 0.56 0.92 0.30 0.46 0.89 0.10 0.02
Elevator-4-0 11.72 264.11 20.30 14.69 324.18 28.88 0.30 0.02
Elevator-5-0 — — 320.58 — — 467.98 0.61 0.04
FreeCell-2-1 93.42 mem 64.28 60.52 51.33 56.94 2.44 0.12
FreeCell-3-1 — mem — — 175.03 — 10.44 0.14
Logistics-4-0 7.85 0.38 79.15 8.81 0.39 70.56 0.34 0.05
Logistics-7-0 — 0.99 — — 0.61 — 0.31 0.04
Logistics-9-0 — 0.89 — — 0.57 — 0.27 0.04
Satellite-1 0.23 0.87 0.23 0.29 0.74 0.26 0.10 0.03
Satellite-2 4.56 638.08 2.19 5.43 448.60 2.69 0.41 0.03
Satellite-3 8.76 3.52 4.00 7.54 3.29 3.70 0.21 0.04
Schedule-2-0 mem mem mem 1.03 3.37 mem mem mem
Schedule-3-0 mem mem mem 1.63 12.89 mem mem mem

In summary, we conclude that the different compilation techniques of plasp can be
advantageous. The automatic, domain-specific choice of an appropriate compilation,
required in view of varying characteristics [12], is an intrinsic subject to future work.

5 Discussion

We have presented a prototypical approach to Automated Planning by means of com-
pilation to ASP. In order to close the gap to established planning systems, more back-
ground knowledge (e.g., mutexes) would need to be included. If such knowledge can
be encoded in meta-programs, it fosters elaboration tolerance and flexibility of plan-
ning implementations. In fact, the recent version transition of iClingo from 2 to 3 gives
inherent support of forward expansion, generating the possibly applicable instances of
actions (and fluents) on-the-fly during grounding. Importantly, regardless of additional
features that might boost performance (cf. [13]), the compilation capacities of plasp are
already useful as they make various planning problems, formulated in PDDL, accessible
as benchmarks for ASP systems. The range could be further extended by generalizing
the compilations supported by plasp beyond the STRIPS subset of PDDL.

Given the proximity of Planning and General Game Playing (GGP; [14]), the latter
can also (partially) be implemented by compilation to ASP. An approach to solve single-
player games in ASP is provided in [15], and [16] presents ASP-based methods to prove
properties of games, which can then be exploited for playing. Automatically proving
properties of interest to steer the selection of solving techniques may also be useful
for Planning. Another line of future work could be Conformant Planning [17], whose
elevated complexity could be addressed by compilation to disjunctive ASP. In fact, the
dlvK system [18] supports Conformant Planning wrt action language K.

Acknowledgments. This work was partly funded by DFG grant SCHA 550/8-2.

plasp: A Prototype for PDDL-Based Planning in ASP 363

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS Press, Am-
sterdam (2009)

2. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kauf-
mann, San Francisco (2004)

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

4. Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of the Tenth European Con-
ference on Artificial Intelligence (ECAI 1992), pp. 359–363. Wiley, Chichester (1992)

5. Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochas-
tic search. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI 1996), pp. 1194–1201. AAAI/MIT Press (1996)

6. McDermott, D.: PDDL — the planning domain definition language. Technical Report CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control (1998)

7. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

8. Rintanen, J., Heljanko, K., Niemelä, I.: Parallel encodings of classical planning as satisfia-
bility. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 307–319.
Springer, Heidelberg (2004)

9. Kautz, H., McAllester, D., Selman, B.: Encoding plans in propositional logic. In: Proceed-
ings of the Fifth International Conference on Principles of Knowledge Representation and
Reasoning (KR 1996), pp. 374–384. Morgan Kaufmann, San Francisco (1996)

10. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelli-
gence 90(1-2), 279–298 (1997)

11. Robinson, N., Gretton, C., Pham, D., Sattar, A.: SAT-based parallel planning using a split
representation of actions. In: Proceedings of the Nineteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2009), pp. 281–288. AAAI Press, Menlo Park
(2009)

12. Hsu, C., Wah, B., Huang, R., Chen, Y.: Constraint partitioning for solving planning problems
with trajectory constraints and goal preferences. In: Proceedings of the Twentieth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 1924–1929. AAAI/MIT
Press (2007)

13. Sideris, A., Dimopoulos, Y.: Constraint propagation in propositional planning. In: Proceed-
ings of the Twentieth International Conference on Automated Planning and Scheduling
(ICAPS 2010), pp. 153–160. AAAI Press, Menlo Park (2010)

14. Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI competi-
tion. AI Magazine 26(2), 62–72 (2005)

15. Thielscher, M.: Answer set programming for single-player games in general game playing.
In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 327–341. Springer,
Heidelberg (2009)

16. Thielscher, M., Voigt, S.: A temporal proof system for general game playing. In: Proceedings
of the Twenty-fourth National Conference on Artificial Intelligence (AAAI 2010), pp. 1000–
1005. AAAI Press, Menlo Park (2010)

17. Smith, D., Weld, D.: Conformant Graphplan. In: Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence (AAAI 1998), pp. 889–896. AAAI/MIT Press (1998)

18. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to
knowledge-state planning. Artificial Intelligence 144(1-2), 157–211 (2003)

Cluster-Based ASP Solving with claspar

Martin Gebser, Roland Kaminski, Benjamin Kaufmann,
Torsten Schaub�, and Bettina Schnor

Institut für Informatik, Universität Potsdam

Abstract. We report on three recent advances in the distributed ASP solver clas-
par. First, we describe its flexible architecture supporting various search strate-
gies, including competitive search using a portfolio of solver configurations.
Second, we describe claspar’s distributed learning capacities that allow for
sharing learned nogoods among solver instances. Finally, we discuss claspar’s
approach to distributed optimization.

1 Introduction

In view of the rapidly growing availability of clustered, multi-processor, and/or multi-
core computing devices, we developed in [1] the distributed ASP solver claspar, al-
lowing for the parallelization of the search for answer sets by appeal to the ASP solver
clasp [2]. claspar relies on the Message Passing Interface (MPI; [3]), realizing commu-
nication and data exchange between computing units via message passing. Interestingly,
MPI abstracts from the actual hardware and lets us execute our system on clusters as
well as multi-processor and/or multi-core machines.

This paper reports on the progress made since the first system description of clas-
par [1] covering the features of version 0.1.0: it mainly dealt with the communication
in its simple initial master-worker architecture along with a first empirical evaluation of
claspar’s performance. This early version of claspar used the well-known guiding path
technique [4] for splitting the search space into disjoint parts. Apart from finding a sin-
gle answer set, claspar (0.1.0) also allowed for enumerating answer sets by combining
the scheme in [5] with the aforementioned guiding path technique.

2 Advances in claspar

We focus in what follows on the major novelties of the current claspar version 0.9.0
wrt to the one in [1]. We presuppose some basic knowledge in conflict-driven ASP
solving and an acquaintance with concepts like nogoods, decision levels, restarts, etc.
The interested reader is referred to [2] for details.

2.1 Search

The simple master-worker architecture of claspar (0.1.0) has been extended in order
to provide more flexible communication topologies for enhancing claspar’s scalabil-
ity as well as different search strategies. To begin with, a hierarchical master-worker

� Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 364–369, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Cluster-Based ASP Solving with claspar 365

structure can be defined (with option --topology=<arg>) that consists of a single
superior master along with further inferior masters, each controlling a group of work-
ers. That is, giving argument master-worker enforces a flat hierarchy by making
one master control all workers, while ‘hierarchical,<n>’ creates �(p − 2)/n�
inferior masters, each controlling n−1 workers, where p is the overall number of
processes.

claspar provides two major search strategies. The first one aims at partitioning the
search space by appeal to the guiding path technique. The second one aims at a compet-
itive search for answer sets. To this end, the aforementioned (flat) topology can be fur-
ther refined by providing argument ‘competition,<n>’ for associating each worker
with n−1 competitors dealing with the same search space.

Competitive search is supported by the so-called --portfolio-mode, making
competitors run with different settings. To this end, the option --portfolio-file
allows for specifying a portfolio of different clasp configurations, either a predefined
one via preset or a handcrafted one read from a given file. These configurations are
then attributed to the aforementioned competitors, either randomly or in a round-
robin fashion, depending on the argument passed to --portfolio-mode. No-
tably, this portfolio mode can be combined with the guiding path method, restricted to
the communication between the master and workers.

Otherwise, claspar supports all search options of clasp, thus making each competitor
highly configurable.

2.2 Nogood Exchange

Given that each clasp instance relies on conflict-driven nogood learning [2], in a dis-
tributed setting, it becomes interesting to exchange learned nogoods among different
solver instances. This feature adds another degree of freedom to ASP solving and must
be handled with care because each instance may learn exponentially many nogoods, so
that their distribution may lead to overwhelmingly many nogoods significantly hamper-
ing the overall performance.

The exchange of nogoods in claspar is configured through two options, viz.
--nogood-sharing and --nogood-distribution. While the former allows
for filtering nogoods for exchange, the latter specifies the topology of the exchange.

The export of a nogood is either subject to its number of literals (length) or the
number of distinct decision levels associated with its literals (lbd; cf. [6]). In both
cases, smaller values are regarded as advantageous since they are prone to prune larger
parts of the search space. Moreover, their exchange can be restricted to packages rather
than individual nogoods in order to reduce communication. Finally, claspar allows us
to restrict the integration to not yet satisfied nogoods. The default configuration of clas-
par’s nogood exchange is ‘lbd,3,300,True’, sharing each time 300 nogoods at
once, each with at most three different decision levels, no matter whether they are
satisfied.

The second option specifies the topology of nogood exchange; it distinguishes four
different settings:

none disables nogood exchange;

366 M. Gebser et al.

local enables nogood exchange between a worker and its competitors, or workers
sharing an inferior master (provided that the corresponding search topology is set).
Otherwise, this option is equivalent to exchange among all solver instances;

cube organizes all solver instances in a hypercube and allows for nogood exchange
between connected instances. This topology is particularly suited for large numbers
of workers because each node in a hypercube has at most logarithmically many
neighbors;

all engages nogood exchange among all solver instances.

2.3 Optimization

Apart from the basic reasoning modes of finding and enumerating answer sets, claspar
now also supports optimization. To this end, it allows for exchanging upper bounds
of objective functions, similar to the exchange of nogoods. In more detail, this works
as follows. Whenever a clasp instance finds an answer set, it sends it along with its
objective value(s) to a printer process. In turn, the printer process writes the answer set
to the console and broadcasts the current upper bound to all clasp instances, which then
integrate a corresponding constraint. If a local upper bound is larger, the solver instance
engages a restart and updates its bound; otherwise, the running search is continued.

3 Experiments

Our experiments were run on a cluster of 28 nodes, each equipped with two quad-
core Intel Xeon E5520 processors and 48GB main memory. In view of this, we ran 8
processes per node, where nodes are connected via InfiniBand (20Gb/s). We evaluated
claspar version 0.9.0, having two distinguished processes, viz. a master and a printer.
The benchmark set consists of 68 ASP (ca. 90% unsatisfiable) and 78 SAT (ca. 60%
unsatisfiable) problems, mostly taken from the last two respective competitions and
running at least 100s with clasp on a standard PC. Each entry in the below tables reflects
the sum of runtimes (wall clock) per problem category (and numbers of timed-out runs
in parentheses), where timeouts are taken at and counted as 4000s in Section 3.1 and 3.2
or 600s in Section 3.3, respectively. Detailed results are available at [7].

3.1 Search

For evaluating the different search strategies of claspar, we considered three differ-
ent configurations. Their common base consists of workers amounting to clasp version
1.3.6 plus the two aforementioned special-purpose processes. Numbers of workers and
nodes are given in the heading of Table 1, where ‘w+2 (n)’ indicates that we ran w solv-
ing processes and two controlling processes over n nodes. The configurations include:

Guiding path applies the guiding path strategy to all available workers running with
clasp’s default settings. Hence, w disjoint search spaces are addressed in parallel.

Uniform portfolio combines guiding path with competitive search in having groups of
up to 8 workers under the same guiding path. Accordingly, n disjoint search spaces
are addressed in parallel. The competing solvers run clasp’s default settings with
different random seeds in order to increase their variation (already inherent due to
race conditions).

Cluster-Based ASP Solving with claspar 367

Table 1. Comparison of different search strategies

1+2 (1) 6+2 (1) 30+2 (4) 62+2 (8) 126+2 (16)

Guiding path ASP 174,661 (24) 154,504 (22) 103,283 (14) 85,578 (11) 71,799 (8)
SAT 89,428 (8) 42,491 (5) 38,293 (6) 30,515 (4) 28,916 (5)
all 264,090 (32) 196,995 (27) 141,577 (20) 116,094 (15) 100,715 (13)

Uniform ASP 174,661 (24) 149,157 (17) 133,147 (18) 113,309 (16) 96,466 (13)
portfolio SAT 89,428 (8) 57,694 (3) 40,555 (2) 31,734 (2) 26,020 (2)

all 264,090 (32) 206,851 (20) 173,702 (20) 145,043 (18) 122,486 (15)
Non-uniform ASP 174,661 (24) 141,890 (16) 98,160 (11) 92,331 (11) 71,709 (8)
portfolio SAT 89,428 (8) 52,739 (3) 37,772 (3) 30,739 (1) 22,528 (1)

all 264,090 (32) 194,629 (19) 135,932 (14) 123,071 (12) 94,237 (9)

Non-uniform portfolio is identical to the previous configuration except that it uses a
handcrafted portfolio for competitive search. The portfolio consists of the following
clasp settings, chosen to cover diverse search strategies and heuristics:

– default
– default + --berk-max=512 --berk-huang=yes
– default + --save-progress=1
– default + --restarts=128 --local-restart=1
– default + --restarts=128 --save-progress=1
– default + --restarts=256
– default + --restarts=256 --save-progress=1
– default + --heuristic=VSIDS

Looking at Table 1, we observe a different comportment on benchmarks stemming from
SAT and ASP. While non-uniform portfolio solving seems to have a clear edge on SAT
problems, it behaves equally well as the guiding path strategy on ASP benchmarks.
This may be due to the fact that ASP problems tend to have higher combinatorics than
SAT problems, so that they are better suited for being split into several subproblems.
Although we generally observe performance improvements with increasing number of
workers, the speed-ups are not (near to) linear. Linear speed-ups were still obtained with
the guiding path strategy applied to particular problems, such as pigeon-hole instances
included in the ASP category. A detailed investigation of further benchmarks sometimes
yields super-linear speed-ups, even on unsatisfiable problems, as well as slow-downs.
In fact, the latter hint at a lack of learned nogood exchange, which is considered next.

3.2 Nogood Exchange

For simplicity, we investigate nogood exchange on top of the most successful strat-
egy of the previous section, viz. non-uniform portfolio search. Of the four options
from Section 2.2, we dropped nogood exchange among all solver instances because
our preliminary experiments showed that this option is not competitive for larger num-
bers of workers. The results for the none option are identical to those in Table 1.
Option local restricts nogood exchange to workers addressing the same search space,

368 M. Gebser et al.

Table 2. Comparison of different nogood exchange strategies

1+2 (1) 6+2 (1) 30+2 (4) 62+2 (8)

none ASP 174,661 (24) 141,890 (16) 98,160 (11) 92,331 (11)
SAT 89,428 (8) 52,739 (3) 37,772 (3) 30,739 (1)
all 264,090 (32) 194,629 (19) 135,932 (14) 123,071 (12)

local ASP 174,661 (24) 93,166 (11) 75,678 (13) 58,747 (7)
SAT 89,428 (8) 29,067 (0) 28,324 (3) 14,373 (1)
all 264,090 (32) 122,234 (11) 104,002 (16) 73,120 (8)

cube ASP 174,661 (24) 92,108 (10) 82,388 (13) 64,028 (9)
SAT 89,428 (8) 27,245 (0) 33,602 (4) 24,099 (2)
all 264,090 (32) 119,354 (10) 115,991 (17) 88,128 (11)

whereas cube allows for more global exchange by connecting workers beyond group-
ings. In Table 2, we observe that nogood exchange clearly improves over none, espe-
cially for the column headed by ‘6+2 (1)’, refraining from search space splitting. This
is particularly interesting for desktop machines offering only limited multi-processing
capacities. Almost no further improvements are observed by quadrupling the number
of nodes, with workers under four distinct guiding paths. In order to achieve further
speed-ups due to search space splitting, we had to increase the number of workers sig-
nificantly, as shown in the last column. Here, the local exchange has an edge on the
more global cube-oriented exchange. This suggests that sharing among solvers treat-
ing the same subproblem promotes the relevance of the exchanged nogoods.

3.3 Optimization

To evaluate the optimization capacities of claspar, we consider a collection of 53 hard
problems from the last ASP competition [8], each involving exactly one optimization
criterion. Given that most of the runs timed out after 600s, we rank each configuration
by the score [(shortest runtime/runtime)∗(lowest upper bound/upper bound)] per
problem (zero if no answer set found at all). Note that greater scores are better than
smaller ones, and the sums of scores (and numbers of timed-out runs in parentheses)
are provided in Table 3.

For the considered benchmark collection, the pure guiding path strategy performed
best overall and exhibited the smallest number of timeouts with 62 workers. In fact,
the benchmarks include one problem class (15PuzzleOpt) such that, for many of its in-
stances, solutions could in time be proven to be optimal only with the guiding path
strategy. Note that the guiding path configurations rely on clasp’s default settings,
including a rather slow restart policy. On the other hand, the non-uniform portfolio
approach involves rapid restart policies that are not very helpful here because the in-
vestigated optimization problems are highly combinatorial. Interestingly, the uniform
portfolio strategy nonetheless failed to achieve significant improvements.

Finally, we ran the pure guiding path strategy with cube-oriented nogood ex-
change. Unfortunately, the exchange led to performance degradation, which could be
related to the fact that the decision variants of the majority of the considered optimiza-
tion problems are rather under-constrained. Hence, the nogoods learned by individual

Cluster-Based ASP Solving with claspar 369

Table 3. Comparison of different optimization strategies

1+2 (1) 6+2 (1) 30+2 (4) 62+2 (8)

Guiding path 28.68 (39) 36.90 (37) 39.65 (37) 46.42 (32)
Uniform portfolio 28.68 (39) 31.80 (39) 36.71 (37) 39.21 (37)
Non-uniform portfolio 28.68 (39) 32.79 (39) 40.29 (37) 39.91 (37)

Guiding path + cube 28.68 (39) 36.04 (37) 37.95 (37) 43.81 (34)

solver instances tend to rule out suboptimal solutions, yet without including much com-
municable information.

4 Discussion

Although distributed parallel ASP solving has the prospect of gaining significant speed-
ups, it also adds further degrees of freedom that must be handled with care. For one,
the physical cluster architecture ought to be taken into account for choosing a search
topology. Furthermore, nogood exchange is often valuable, but it may also incur the
communication of “gibberish” retarding search. In particular, this applies to combi-
natorial optimization problems, where the parallel computing power could be utilized
most effectively by pure search space splitting without exchange. However, the fine-
tuning of claspar (0.9.0) is still at an early stage, and further investigations are needed
to make better use of the increased flexibility.

Acknowledgments. This work was partly funded by DFG grant SCHA 550/8-2.

References

1. Ellguth, E., Gebser, M., Gusowski, M., Kaminski, R., Kaufmann, B., Schaub, T., Schnei-
denbach, L., Schnor, B.: A simple distributed conflict-driven answer set solver. In: [9], pp.
490–495

2. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
IJCAI 2007, pp. 386–392. AAAI Press/The MIT Press (2007)

3. Gropp, W., Lusk, E., Thakur, R.: Using MPI-2: Advanced Features of the Message-Passing
Interface. The MIT Press, Cambridge (1999)

4. Zhang, H., Bonacina, M., Hsiang, J.: PSATO: a distributed propositional prover and its appli-
cation to quasigroup problems. Journal of Symbolic Computation 21(4), 543–560 (1996)

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set enumeration.
In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 136–
148. Springer, Heidelberg (2007)

6. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: IJCAI
2009, pp. 399–404. AAAI Press/The MIT Press (2009)

7. http://www.cs.uni-potsdam.de/claspar
8. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set

programming competition. In: [9], pp. 637–654
9. Erdem, E., Lin, F., Schaub, T. (eds.): LPNMR 2009. LNCS, vol. 5753. Springer, Heidelberg

(2009)

http://www.cs.uni-potsdam.de/claspar

STeLP – A Tool for Temporal Answer Set

Programming�

Pedro Cabalar and Mart́ın Diéguez

Department of Computer Science,
University of Corunna (Spain)

{cabalar,martin.dieguez}@udc.es

Abstract. In this paper we present STeLP, a solver for Answer Set Pro-
gramming with temporal operators. Taking as an input a particular kind
of logic program with modal operators (called Splitable Temporal Logic
Program), STeLP obtains its set of temporal equilibrium models (a gen-
eralisation of stable models for this extended syntax). The obtained set
of models is represented in terms of a deterministic Büchi automaton
capturing the complete program behaviour. In small examples, this au-
tomaton can be graphically displayed in a direct and readable way. The
input language provides a set of constructs which allow a simple defi-
nition of temporal logic programs, including a special syntax for action
domains that can be exploited to simplify the graphical output. STeLP
combines the use of a standard ASP solver with a linear temporal logic
model checker in order to find all models of the input theory.

1 Introduction

The use of Answer Set Programming (ASP) tools to represent temporal scenar-
ios for Non-Monotonic Reasoning (NMR) has some important limitations. ASP
solvers are commonly focused on finite domains and so, representation of time
usually involves a finite bound. Typically, variables ranging over transitions or
time instants are grounded for a sequence of numbers 0, 1, . . . , n where n is a
finite length we must fix beforehand. As a result, for instance, we cannot check
the non-existence of a plan for a given planning problem, or that some transition
system satisfies a given property for any of its possible executions, or that two
representations of the same dynamic scenario are strongly equivalent (that is,
they always have the same behaviour for any considered narrative length) to
mention three relevant examples.

To overcome these limitations, [1] introduced an extension of ASP called Tem-
poral Equilibrium Logic. This formalism combines Equilibrium Logic [2] (a logical
characterisation of ASP) with Linear Temporal Logic (LTL) [3] and provides a
definition of the temporal equilibrium models (analogous to stable models) for
any arbitrary temporal theory.

� This research was partially supported by Spanish MEC project TIN2009-14562-C05-
04 and Xunta de Galicia project INCITE08-PXIB105159PR.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 370–375, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

STeLP – A Tool for Temporal Answer Set Programming 371

In this paper we introduce STeLP1, a system for computing the temporal equi-
librium models of a particular class of temporal theories called Splitable Temporal
Logic Programs (STLP). This class suffices to cover most frequent examples in
ASP for dynamic domains. More importantly, the temporal equilibrium models
of an STLP have been shown to be computable in terms of a regular LTL theory
(see the companion paper [4]). This feature is exploited by STeLP to call an LTL
model checker as a backend.

2 Splitable Temporal Logic Programs

Temporal Equilibrium Logic (TEL) shares the syntax of propositional LTL, that
is, propositional formulas plus the unary temporal operators2 � (read as “al-
ways”), ♦ (“eventually”) and © (“next”). TEL is defined in two steps: first,
we define the monotonic logic of Temporal Here-and-There (THT); and second,
we select TEL models as some kind of minimal THT-models obtaining non-
monotonicity. For further details, see [5].

Definition 1 (STLP). An initial rule is an expression of one of the forms:

A1 ∧ · · · ∧ An ∧ ¬An+1 ∧ · · · ∧ ¬Am → Am+1 ∨ · · · ∨ As (1)
B1 ∧ · · · ∧ Bn ∧ ¬Bn+1 ∧ · · · ∧ ¬Bm → ©Am+1 ∨ · · · ∨ ©As (2)

where Ai are atoms and each Bj can be an atom p or the formula ©p. A dynamic
rule has the form �r where r is an initial rule. A Splitable Temporal Logic
Program (STLP) Π is a set of (initial and dynamic) rules. �
The body (resp. head) of a rule is the antecedent (resp. consequent) of its impli-
cation connective. As usual, a rule with empty body (that is, �) is called a fact,
whereas a rule with empty head (that is, ⊥) is called a called a constraint. An
initial fact � → α is just written as α. The following theory Π1 is an STLP:

¬a ∧©b → ©a �(a → b) �(¬b → ©a)

In [4] it is shown how the temporal equilibrium models of an STLP Π corre-
spond to the LTL models of Π∪LF (Π) where LF (Π) are loop formulas adapted
from the result in [6]. For further details and a precise definition, see [4].

3 The Input Language

The input programs of STeLP adopt the standard ASP notation for conjunction,
negation and implication, so that, an initial rule like (1) is represented as:

Am+1 v . . . v As :- A1, . . . ,An, not An+1, . . . , not Am

Operator ‘©’ is represented as ‘o’ whereas a dynamic rule like �(α → β) is
written as β ::- α. Using this notation, program Π1 becomes:
1 A STeLP web version is available at http://kr.irlab.org/stelp
2 As shown in [5], the LTL binary operators U (“until”) and R (“release”) can be

removed by introducing auxiliary atoms.

http://kr.irlab.org/stelp

372 P. Cabalar and M. Diéguez

o a :- not a, o b. b ::- a. o a ::- not b.

Constraints in STeLP are more general than in STLP: their body can include
any arbitrary combination of propositional connectives with o, always (standing
for �) and until (standing for U). The empty head ⊥ is not represented. For
instance, �(©a ∧ ¬b → ⊥) and (�¬g) → ⊥ are constraints written as:

::- o a, not b. :- always not g.

In STeLP we can also use rules where atoms have variable arguments like
p(X1,. . . ,Xn) and, as happens with most ASP solvers, these are understood
as abbreviations of all their ground instances. A kind of safety condition is
defined for variables occurring in a rule. We will previously distinguish a family
of predicates, called static, that satisfy the property �(p(X) ↔ ©p(X)) for
any tuple of elements X . These predicates are declared using a list of pairs
name/arity preceded by the keyword static. All built-in relational operators =,
!=, <, >, <=, >= are implicitly defined as static, having their usual meaning. An
initial or dynamic rule is safe when:

1. Any variable X occurring in a rule B → H or �(B → H) occurs in some
positive literal in B for some static predicate p.

2. Initial rules of the form B → H where at least one static predicate occurs
in the head H only contain static predicates (these are called static rules).

Since static predicates must occur in any rule, STeLP allows defining global
variable names with a fixed domain, in a similar way to the lparse3 directive
#domain. For instance, the declaration domain switch(X). means that any rule
referring to variable X is implicitly extended by including an atom switch(X)
in its body. All predicates used in a domain declaration must be static – as a
result, they will be implicitly declared as static, if not done elsewhere.

As an example, consider the classical puzzle where we have a wolf w, a sheep
s and a cabbage c at one bank of a river. We have to cross the river carrying
at most one object at a time. The wolf eats the sheep, and the sheep eats the
cabbage, if no people around. Action m(X) means that we move some item w,s,c
from one bank to the other. We assume that the boat is always switching its
bank from one state to the other, so when no action is executed, this means we
moved the boat without carrying anything. We will use a unique fluent at(Y,B)
meaning that Y is at bank B being Y an item or the boat b. The complete encoding
is shown in Figure 1.

A feature that causes a difficult reading of the obtained automaton for a given
STLP is that all the information is represented by formulas that occur as tran-
sition labels, whereas states are just given a meaningless name. As opposed to
this, in an actions scenario, one would expect that states displayed the fluents
information and transitions only contained the actions execution. To make the
automaton closer to this more natural representation, we can distinguish pred-
icates representing actions and fluents. For instance, in the previous example,
3 http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

STeLP – A Tool for Temporal Answer Set Programming 373

% Domain predicates

domain item(X), object(Y).

static opp/2. fluent at/2. action m/1.

opp(l,r). opp(r,l). item(w). item(s). item(c).

object(Z) :- item(Z). object(b).

o at(X,A) ::- at(X,B), m(X), opp(A,B). % Effect axiom for moving

o at(b,A) ::- at(b,B), opp(A,B). % The boat is always moving

::- m(X), at(b,A), at(X,B), opp(A,B). % Action executability

::- at(Y,A), at(Y,B), opp(A,B). % Unique value constraint

o at(Y,A) ::- at(Y,A), not o at(Y,B),opp(A,B).% Inertia

::- at(w,A), at(s,A), at(b,B), opp(A,B). % Wolf eats sheep

::- at(s,A), at(c,A), at(b,B), opp(A,B). % Sheep eats cabbage

a(X) ::- not m(X). % Choice rules for action

m(X) ::- not a(X). % execution

::- m(X), item(Z), m(Z), X != Z. % Non-concurrent actions

at(Y,l). % Initial state

g ::- at(w,r), at(s,r), at(c,r). % Goal predicate

:- always not g. % Goal must be satisfied

Fig. 1. Wolf-sheep-cabbage puzzle in STeLP

we would further declare: action m/1. fluent at/2. STeLP uses this informa-
tion so that when all the outgoing transitions from a given state share the same
information for fluents, this is information is shown altogether inside the state,
and removed from the arc labels. Besides, any symbol that is not an action or
a fluent is not displayed (they are considered as auxiliary). As a result of these
simplifications, we may obtain several transitions with the same label: if so, they
are collapsed into a single one.

4 Implementation

STeLP is a Prolog application that interacts with the standard ASP solver DLV4

and the LTL model checker SPOT5. As shown in Figure 2, it is structured in
several modules we describe next.

In a first step, STeLP parses the input program, detecting static and domain
predicates, checking safety of all rules, and separating the static rules. It also
appends static predicates to rule bodies for all variables with global domain. The
set of static rules is fed to DLV to generate some model (among possible) that will
provide the extension for all static predicates. The number of static models that
STeLP will consider is given as a command line argument. Each static model will
generate a different ground program and a different automaton. Once a static
model is fixed, STeLP grounds the non-static rules input program. Each ground
instance is evaluated and, if the body of the ground rule becomes false, the rule
is deleted. Otherwise all static predicates of the rule are deleted from its body.
4 http://www.dbai.tuwien.ac.at/proj/dlv/
5 http://spot.lip6.fr/

http://www.dbai.tuwien.ac.at/proj/dlv/
http://spot.lip6.fr/

374 P. Cabalar and M. Diéguez

Fig. 2. Structure of STeLP system

The next step computes the loop formulas for the ground STLP we have
obtained by constructing a dependency graph and obtaining its strongly con-
nected components (the loops) using Tarjan’s algorithm [7]. The STLP plus its
loop formulas are then used as input for the LTL solver SPOT, which returns a
deterministic Büchi automaton. Finally, STeLP parses and, if actions and fluents
are defined, simplifies the automaton as described before. The tool Graphviz6

is used for generating a graphical representation. For instance, our wolf-sheep-
cabbage example throws the diagram in Figure 3. As an example of non-existence
of plan, if we further include the rule ::- at(w,r), at(c,r), at(b,l) mean-
ing that we cannot leave the wolf and the cabbage alone in the right bank, then
the problem becomes unsolvable (we get a Büchi automaton with no accepting
path).

STeLP is a first prototype without efficiency optimisations – exhaustive bench-
marking is left for future work. Still, to have an informal idea of its current
performance, the example above was solved in 0.208 seconds7. The automaton
for the whole behaviour of the classical scenario involving 3 missionaries and 3
cannibals is solved in 160.358 seconds. STeLP is able to show that this same sce-
nario has no solution for 4 individuals in each group, but the answer is obtained
in more than 1 hour.

6 http://www.graphviz.org/
7 Using an Intel Xeon 2.4 GHz, 16 GB RAM and 12 MB of cache size, with software

tools SPOT 0.7.1, DLV oct-11-2007 and SWI Prolog 5.8.0.

http://www.graphviz.org/

STeLP – A Tool for Temporal Answer Set Programming 375

at(b,l),at(c,l)
at(s,l),at(w,l)

init

at(b,r),at(c,l)
at(s,r),at(w,l)

at(b,l),at(c,l)
at(s,r),at(w,l)

at(b,r),at(c,r)
at(s,r),at(w,l)

at(b,l),at(c,r)
at(s,l),at(w,l)

at(b,r),at(c,r)
at(s,l),at(w,r)

at(b,l),at(c,r)
at(s,l),at(w,r)

at(b,r),at(c,r)
at(s,r),at(w,r)

goal

at(b,l),at(c,l)
at(s,l),at(w,r)

at(b,r),at(c,l)
at(s,r),at(w,r)

m(s)

∅

m(c) m(s) m(w)

∅

m(s)

m(c)

m(s)

m(w)

Fig. 3. Automaton for the wolf-sheep-cabbage example

References

1. Cabalar, P., Vega, G.P.: Temporal equilibrium logic: a first approach. In: Moreno
Dı́az, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS,
vol. 4739, pp. 241–248. Springer, Heidelberg (2007)

2. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix,
J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216.
Springer, Heidelberg (1997)

3. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, Heidelberg (1991)

4. Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Loop formulas for splitable temporal
logic programs. In: Delgrande, J., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI),
vol. 6645, pp. 78–90. Springer, Heidelberg (2011),
http://www.dc.fi.udc.es/~cabalar/lfstlp.pdf

5. Cabalar, P.: A normal form for linear temporal equilibrium logic. In: Janhunen, T.,
Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 64–76. Springer, Heidelberg
(2010)

6. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Annals
of Mathematics and Artificial Intelligence 47, 79–101 (2006)

7. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

http://www.dc.fi.udc.es/~cabalar/lfstlp.pdf

Compiling Answer Set Programs into

Event-Driven Action Rules

Neng-Fa Zhou1, Yi-Dong Shen2, and Jia-Huai You3

1 CUNY Brooklyn College & Graduate Center
2 Institute of Software, Chinese Academy of Sciences

3 Department of Computing Science, University of Alberta

Abstract. This paper presents a compilation scheme, called ASP2AR,

for translating ASP into event-driven action rules. For an ASP program,

the generated program maintains a partial answer set as a pair of sets

of tuples (called IN and OUT) and propagates updates to these sets

using action rules. To facilitate propagation, we encode each set as a

finite-domain variable and treat additions of tuples into a set as events

handled by action rules. Like GASP and ASPeRiX, ASP2AR requires no

prior grounding of programs. The preliminary experimental results show

that ASP2AR is an order of magnitude faster than GASP and is much

faster than Clasp on benchmarks that require heavy grounding.

1 Introduction

Most ASP systems such as SModels, ASSAT, CModels, ASPPS, DLV, and Clasp
rely on a grounder to transform a given program into a propositional one before
computing consistent models called answer sets. This two-phase computation has
been considered problematic because the grounding process may take an expo-
nential time (in the size of the non-ground program) and the resulting grounded
program may be too large to be stored and processed effectively. The NPDatalog
system [2] does not ground programs as these systems, but it translates a source
program into a constraint program in OPL which performs complete grounding
using iterators.

Recently, a bottom-up iterative approach has been proposed for ASP in which
grounding takes place in the computation process [4]. The main idea of this ap-
proach is to iteratively apply rule propagation and nondeterministic rule selec-
tion until an answer set is found. Two systems, namely, GASP [5] and ASPeRiX
[3], have been developed based on this approach. Both systems are interpreters.
While these systems outperform the cutting-edge ASP systems such as Clasp
on some benchmarks for which grounding is very expensive, they are not as
competitive in general.

This paper describes a compiler, called ASP2AR, for translating ASP into
event-driven action rules (AR) [6]. For an ASP program, predicates are di-
vided into stratified and unstratified parts. The stratified part is evaluated using

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 376–381, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Compiling Answer Set Programs into Event-Driven Action Rules 377

tabling and those in the unstratified part are translated into AR to maintain
the current interpretation. Like in GASP and ASPeRiX, two disjoint tuple sets,
called IN and OUT , are used to represent the current interpretation. To facili-
tate propagation, we represent the IN and OUT sets for each predicate as two
finite-domain variables. In this way, additions of tuples into IN and OUT sets
can be treated as events and handled by action rules. When a fixpoint is reached
after propagation, a tuple of a negative literal that is neither in IN or OUT is
selected and assumed to be true or false. This step is called labeling. Labeling a
tuple triggers further propagation. This step is repeated until no further tuple
can be selected.

Our approach differs from the bottom-up iterative approach used in GASP
and ASPeRiX in that it labels negative literals, not rule instances. The answer
set semantics requires that every tuple in an answer set must be justified. When
a tuple is labeled false, we can safely add it into OUT . When a tuple is labeled
true, however, we cannot just add it into IN because it may not be producible
by any rule instance. For this reason, we use action rules to ensure that the tuple
is supported by at least one rule instance.

Our system is compiler-based. It does not have the interpretation overhead
as seen in GASP and ASPeRiX. Compared with propositional programs gener-
ated by a grounder, programs generated by our compiler are very small. The
preliminary experimental results show that ASP2AR is an order of magnitude
faster than GASP and is much faster than Clasp on benchmarks that require
heavy grounding; and on the benchmarks that can be grounded easily, however,
ASP2AR is still not as competitive as Clasp.

2 The Procedure for Computing Answer Sets

Given a program, we assume that all the predicates that are not dependent on
unstratified negation have been completely evaluated using tabling. Figure 1
presents the procedure for computing answer sets when the program contains
unstratified negation. Three sets named IN , OUT , and PIN are used to main-
tain the current partial answer set: IN contains tuples that are known to be
true, OUT contains tuples that are known to be false, and PIN contains tuples
that have been assumed to be true. The pair 〈IN, OUT 〉 is said to be inconsis-
tent if there exists a tuple that is contained in both IN and OUT , and complete
if for any tuple it is included in either IN or OUT . A tuple of a positive literal
is said to be true if it is included in IN , a tuple of a negative literal is said to
be true if it is included in OUT , and a tuple is said to be unknown if it is in-
cluded in neither IN nor OUT . In the beginning, OUT and PIN are empty and
IN contains all the tuples obtained from the evaluation of the stratified part.
The procedure repeatedly applies propagation and labeling until an answer set
is found or a failure is reported.

378 N.-F. Zhou, Y.-D. Shen, and J.-H. You

compute(){
initialize IN , OUT , and PIN ;
propagate();
while (〈IN, OUT 〉 is consistent but not complete) {

choose an unknown tuple t of a negative literal;
labeling: OUT = OUT∪{t} ⊕ PIN = PIN∪{t};
propagate();

};
if (〈IN, OUT 〉 is consistent and every tuple in PIN is also in IN)

output IN as an answer set;
}
propagate(){

do {
for (each rule H:-B in the program) {
right-to-left:

For each instance of B that is true, add H into IN ;
left-to-right:

For each instance of H in OUT , ensure no instance of B is true;
}

} while (IN or OUT is updated);
seek-support:

For each tuple in PIN but not IN , ensure it is producible; }

Fig. 1. The procedure for computing answer sets

2.1 Right-to-Left Propagation

For each rule “H :−B”, the right-to-left propagation adds H into IN for each
instance of B that is true. Since all rules are range restricted, H is guaranteed to
be ground for each ground instance of B. Let B = “B1, . . . , Bn”. The conjunction
of literals is true if all the literals Bi(i=1,...,n) are true. Recall that a ground
instance of a positive literals is true if it is included in IN , and a ground instance
of a negative literals is true if it is included in OUT . The right-to-left propagation
essentially conducts joins of the known relations of the literals B1, . . ., Bn.

2.2 Left-to-Right Propagation

For each rule “H :−B”, once a ground instance of H is added into OUT , the left-
to-right propagation ensures that no instance of B is true. Let B =”B1, . . . , Bn”.
If instances of any n − 1 literals are found to be true, then the instance of the
remaining one literal must be false. If the remaining literal is positive, then all
of its ground instances are added into OUT and further propagation will ensure
that they will never be produced. If the remaining literal is negative, then all of
its ground instances are added into PIN , and further propagation will ensure
that for each such an instance there exists at least one rule instance that can
produce it. Note that a tuple added into PIN is still unknown until it is added
into IN afterwards.

2.3 Seek-Support

For each tuple in PIN but not in IN , the seek-support propagation ensures that
it has at least one support, i.e., a rule instance, that can produce it. An instance

Compiling Answer Set Programs into Event-Driven Action Rules 379

of a positive literal is supported if (1) it is in IN ; (2) it is in PIN and has a
support; or (3) it is not in PIN and it is unknown. An instance of a negative
literal is supported if (1) it is in OUT ; or (2) it is unknown. A rule instance
“H :−B1, . . . , Bn” is a support of H if every Bi (i=1,...,n) is supported.

2.4 Labeling

In labeling, an unknown tuple t of a negative literal is chosen and the labeling
step nondeterministically adds t into OUT or PIN . When a tuple is labeled false,
it is safely added into OUT . After this, propagation will ensure that the tuple
can never be produced (left-to-right). When a tuple is labeled true, however, it
is added into PIN , not IN . After this, propagation will ensure that there exists
at least one rule instance that can produce it (seek-support).

3 Translation from ASP into AR

The AR (Action Rules) language, which was initially designed for programming
constraint propagators [6], is used as the target language for compiling ASP.
An action rule takes the following form: “H, G, {E}=>B” where H (called the
head) is an atomic formula that represents a pattern for agents, G (called the
guard) is a conjunction of conditions on the agents, E (called event patterns) is
a non-empty disjunction of patterns for events that can activate the agents, and
B (called action) is a sequence of arbitrary subgoals. In general, a predicate can
be defined with multiple action rules.

Consider the following example:

p(X),{dom_any(X,E)} => writeln(E).
go :- X in 1..4, p(X), X #\= 1, X #\= 3.

The event dom any(X,E) is posted whenever an element E is excluded from the
domain of X. The query go outputs two lines, 1 in the first line and 3 in the
second line.

The stratified part of a given program is completely evaluated using tabling.
After this, each remaining predicate must have a known finite domain. We en-
code each tuple of a predicate as an unique integer and use an integer domain
variable to represent each of the IN and OUT sets for the predicate. Initially,
the domain contains all the encoded integers for the tuples to denote the empty
set. Each time a tuple is added into a set, the encoded integer of the tuple is
excluded from the domain. Dummies are added into the domains so that no
domain variable will be instantiated. This representation is compact since each
element in a domain is encoded as a bit. Furthermore, exclusions of domain el-
ements are treated as dom any events that can be handled using action rules.
For the sake of simplicity of presentation, we assume the existence of the event
tuple added(S, p(A1, ..., An)), which is posted whenever a tuple p(A1, ..., An) is
added into the set S.

380 N.-F. Zhou, Y.-D. Shen, and J.-H. You

Consider the ASP rule “p(X,Z) :-q(X,Y),r(Y,Z).” To do right-to-left propa-
gation, we create an agent named agent q to watch additions of tuples into INq.
Once a tuple q(X,Y) has been added into INq, we conduct join of q(X,Y) with
each of the tuples that have been already added into INr. Also, we create another
agent named agent q r to watch future additions of tuples into INr. The following
defines agent q and agent q r. The predicate add tuple(INp,p(X1,...,Xn))
adds the tuple p(X1,...,Xn) into the set INp.

agent_q(INp,INq,INr),{tuple_added(INq,q(X,Y))} =>

foreach(r(Y,Z) in INr, add_tuple(INp,p(X,Z))),

agent_q_r(INp,X,Y,INr).

agent_q_r(INp,X,Y,INr),{tuple_added(INr,r(Y,Z))} =>

add_tuple(INp,p(X,Z)).

Negative literals are treated in the same way as positive literals except that OUT

sets are used instead of IN sets.
The compiled program is improved by indexing agents. For example, for the

conjunction “q(X,Y),r(Y,Z)”, after a tuple q(X,Y) has been observed, an agent
is created to watch only upcoming tuples of r/2 whose first argument is the same
as Y. By indexing agents, redundant join operations are avoided.

The left-to-right propagation rule is encoded similarly. Consider again the
above ASP rule. To ensure that p(X,Z) is false, an agent is created to watch
q(X,Y). For each such a tuple, r(Y,Z) is added into OUTr. Another agent is
created to watch r(Y,Z). For each such a tuple, q(X,Y) is added into OUTq.

The seek-support rule is encoded in the following way. To ensure that p(X,Z)
is producible, an agent is created to watch additions of tuples into OUTq and
OUTr. Each time a tuple is added into OUTq or OUTr, the agent ensures that there
exists a tuple q(X,Y) that is true or unknown (i.e., not in OUTq) and a tuple
r(Y,Z) that is true or unknown.

Aggregates are easily handled. For example, the cardinality constraint 1{. . .}1
is handled as follows: once a tuple of the relation is added into IN , all unknown
tuples are added into OUT ; and once all tuples but one are added into OUT ,
then this remaining tuple is added into IN .

4 Performance Evaluation

B-Prolog version 7.5 has been enhanced with a library of predicates for compil-
ing ASP. Table 1 compares hand-compiled ASP2AR with Clasp (version 1.3.5)
[1] and GASP [5] on CPU times for four benchmarks. ASP2AR is an order
of magnitude faster than GASP. The first two programs, p2 and squares, are
known to require expensive grounding [5]. For them, ASP2AR considerably out-
performs Clasp. The other two programs, queens and color, do not require ex-
pensive grounding, and ASP2AR is still not comparable with Clasp. Note that

Compiling Answer Set Programs into Event-Driven Action Rules 381

Table 1. CPU time (seconds, Windows-XP, 1.4 GHz CPU, 1G RAM)

Benchmark ASP2AR Clasp GASP

p2 0.27 12.29 14.90
square 0.02 32.17 0.65

queens(50) 0.98 0.156 n/a
color 3.76 0.09 >3600

the labeling strategy used has a great impact on the performance. In ASP2AR, a
relation with the fewest unknown tuples is labeled first. This strategy is similar
to the first-fail principle used in CLP(FD). No direct comparison was conducted
with ASPeRiX since ASPeRiX does not support aggregates which are used in
three of the benchmarks.

5 Conclusion

This paper has presented ASP2AR, a scheme for compiling ASP into action rules.
The preliminary results show that ASP2AR is competitive for programs that
require heavy grounding, and the grounding-before-solving approach is compet-
itive for programs that require light grounding. One future project is to develop
a solver that amalgamates these two approaches. Since AR is used as a common
intermediate language for both CLP(FD) and ASP, it will be easy to closely
integrate these two languages. Another future project is to introduce CLP(FD)
features such as global constraints into ASP.

Acknowledgements

Neng-Fa Zhou is supported by NSF (No.1018006), Yi-Dong Shen is supported by NSFC

(No. 60970045), and Jia-Huai You is supported by NSERC (No. 90718009).

References

1. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:

A User’s Guide to gringo, clasp, clingo and iclingo. Technical report, University of

Potsdam (2008)
2. Greco, S., Molinaro, C., Trubitsyna, I., Zumpano, E.: NP Datalog: A logic language

for expressing search and optimization problems. TPLP 10(2), 125–166 (2010)
3. Lefèvre, C., Nicolas, P.: A first order forward chaining approach for answer set

computing. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753,

pp. 196–208. Springer, Heidelberg (2009)
4. Liu, L., Pontelli, E., Son, T.C., Truszczyński, M.: Logic programs with abstract

constraint atoms: The role of computations. In: Dahl, V., Niemelä, I. (eds.) ICLP

2007. LNCS, vol. 4670, pp. 286–301. Springer, Heidelberg (2007)
5. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: Answer set programming with

constraints using lazy grounding. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009.

LNCS, vol. 5649, pp. 115–129. Springer, Heidelberg (2009)
6. Zhou, N.-F.: Programming finite-domain constraint propagators in action rules.

TPLP 6(5), 483–508 (2006)

VIDEAS: A Development Tool for Answer-Set Programs
Based on Model-Driven Engineering Technology�

Johannes Oetsch1, Jörg Pührer1, Martina Seidl2,3,
Hans Tompits1, and Patrick Zwickl4

1 Technische Universität Wien, Institut für Informationssysteme 184/3,
Favoritenstraße 9–11, A-1040 Vienna, Austria

{oetsch,puehrer,tompits}@kr.tuwien.ac.at
2 Johannes Kepler Universität Linz, Institut für Formale Modelle und Verifikation,

Altenbergerstraße 69, A-4040 Linz, Austria
Martina.Seidl@jku.at

3 Technische Universität Wien, Institut für Softwaretechnik, 188/3
Favoritenstraße 9–11, A-1040 Vienna, Austria

4 FTW Forschungszentrum Telekommunikation Wien GmbH
Donau-City-Straße 1, A-1220 Vienna, Austria

zwickl@ftw.at

Abstract. In the object-oriented world, much effort is spent into the develop-
ment of dedicated tools to ease programming and to prevent programming errors.
Recently, the techniques of model-driven engineering (MDE) have been proven
especially valuable to manage the complexity of modern software systems dur-
ing the software development process. In the world of answer-set programming
(ASP), the situation is different. Much effort is invested into the development of
efficient solvers, but the pragmatics of programming itself has not received much
attention and more tool support to ease the actual programming phase would be
desirable. To address this issue, we introduce the tool VIDEAS which graphically
supports the partial specification of answer-set programs, applying technologies
provided by MDE.

Keywords: answer-set programming, model-driven engineering, ER diagrams.

1 Introduction

During the last decades, logic programming experienced a new impetus by the growth
of answer-set programming (ASP) as one of the key technologies for declarative prob-
lem solving in the academic AI community. However, ASP could not attract the same
interest as other programming languages outside academia so far. This lack of interest in
ASP may be explained by the absence of a sufficiently supported software engineering
methodology that could significantly ease the process of designing and developing ASP
programs. Thus, more tool support is a declared aim of the ASP community. In particular,
no modelling environment has been introduced in the context of developing answer-set

� This research has been partially supported by the the Austrian Science Fund (FWF) under
grant P21698 and the Vienna Science and Technology Fund (WWTF) under grant ICT10-018.

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 382–387, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

VIDEAS: A Development Tool for Answer-Set Programs 383

programs that offers valuable abstraction and visualisation support during the develop-
ment process. This absence of modelling tools may be explained by the fact that—in con-
trast to procedural programs—answer-set programs themselves are already defined at a
high level of abstraction and may be regarded as executable specifications themselves.
However, practice has shown that the development of answer-set programs is not always
straightforward and that programs are, as all human-made artifacts, prone to errors. In
fact, debugging in ASP is currently a quite active research field [1,2,3,4,5,6,7,8,9].

Consider for example the facts airplan(boeing) and airplane(airbus).
This small program excerpt already contains a mistake. A predicate name is misspelled,
which might result in some unexpected program behaviour. Furthermore, most current
ASP solvers do not support type checking. A notable exception is the DLV+ system [10]
that supports typing and concepts from object-oriented programming. If values of pred-
icate arguments are expected to come from a specific domain only, specific constraints
have to be included in the program. This requires additional programming effort and
could even be a further source for programming errors.

To support answer-set programmers, we developed the tool VIDEAS, standing for
“VIsual DEsign support for Answer-Set programming”, which graphically supports the
partial specification of answer-set programs. Due to the close relationship between
answer-set programs and deductive databases, the widely used entity relationship di-
agram (ER diagram) [11] is used as a starting point for the visualisation of answer-set
programs. The constraints on the problem domain from an ER diagram are automati-
cally translated to ASP itself. Having such constraints as part of a problem encoding can
be compared to using assertions in C programs. To support the development of a fact
base, VIDEAS automatically generates a program providing an input mask for correctly
specifying the facts. To realise VIDEAS, we used well-established technologies from
the active field of model-driven engineering (MDE) which provides tools for building
the necessary graphical modelling editors as well as the code generator.

2 Answer-Set Programming with VIDEAS

We assume basic familiarity with ASP in what follows and refer to the literature for
more details [12].

In object-oriented programming as well as in data engineering, it is common to
model the necessary data structures by means of graphical models like UML class dia-
grams (CD) or the entity relationship diagram (ER diagram) [11]. In model-driven en-
gineering (MDE) [13], such models serve as primary development artifacts from which
code can be generated. Within the development process, models are more than mere
documentation items as in traditional software engineering. Besides the fact that graph-
ical visualisation is in general easier understandable for the human software engineer
and programmer, models may be automatically transformed into executable code. Con-
sequently, inconsistencies between the models and the code are impossible.

The VIDEAS system, whose basic functionality is described in what follows, is in-
spired by MDE principles and intended for graphically specifying the data model of an
answer-set program by means of ER diagrams. From an ER diagram, certain constraints
can be automatically derived to guide the development process and to support debug-
ging tasks. Similar approaches have been introduced in previous work [16,17] where it

384 J. Oetsch et al.

Modeling
Editor

Code
Generator

Data
Model

VIDEAS

Editor GeneratorModel

Data Engineer

Fact Builder

ASP C d
Secretary

Rules Facts Constraints

ASP Code

ASP Solver

Programer

Answer Sets

input

generate

Fig. 1. The development process

is proposed to derive logic programs from extended ER diagrams (EER diagrams). In
contrast to the VIDEAS approach, which aims at supporting the development of answer-
set programs, the intention in these works was to provide a prototypical environment to
experiment on various design approaches in order to reason about the instantiations of
the EER diagrams. VisualASP [14] offers an environment for the graphical specification
of answer-set programs by providing an editor for directly visualizing the ASP concepts.
VIDEAS, in contrast, takes advantage of the abstraction power of the EER diagram and
adopts the query by a diagram approach (cf. the survey article by Catarci et al. [15]) for
program specification. The full potential of VIDEAS is exploited if it is integrated in a
graphical development environment like the one due to Sureshkumar et al. [18].

An overview of the development process using VIDEAS is given in Fig. 1. In the
VIDEAS framework, three tasks are necessary to build answer-set programs: (i) mod-
elling, (ii) building a fact base, and (iii) implementing the program. The different tasks
may be accomplished from people with different background. Specific knowledge on
ASP is only required in the third step.

Modelling. In the first step, an ER diagram is specified using a graphical modelling ed-
itor that is part of the VIDEAS system (a screenshot of the editor is depicted in Fig. 2).
The diagram describes entities and relations between entities of the problem domain
under consideration. From the ER diagram, type and primary key constraints are de-
rived which may be included in the final program for testing or debugging purposes. In
particular, for every predicate P and each of its non-key attributes A, two rules are in-
troduced that prohibit that two literals with predicate symbol P and different values for
A sharing the same primary key are derived. Moreover, for each foreign key attribute,
two rules are introduced ensuring that the key value references to an entity of the correct
type. Fig. 3 presents a selection of the constraints covering the ER diagram in Fig. 2.

Building a fact base. After the modelling phase, the FactBuilder component allows to
safely enter data by means of facts. The FactBuilder tool ensures that the entered data
is consistent with the ER model. The resulting fact base may serve as an assertional

VIDEAS: A Development Tool for Answer-Set Programs 385

Fig. 2. Screenshot of the ER editor

% PRIMARY KEY CONSTRAINT
nokPkAirportCapacity(ID) :- Airport(ID,CAPACITY1),

Airport(ID,CAPACITY2),
CAPACITY1 != CAPACITY2.

:- nokPkAirportCapacity(ID), Airport(ID,CAPACITY1).

% TYPE CONSTRAINTS
okAirplaneAirplaneTypeName(NAME) :- Airplane(_,NAME,_),

AirplaneType(NAME,_).
:- not okAirplaneAirplaneTypeName(NAME), Airplane(_,NAME,_).
okAirplaneAirportID(ID) :- Airplane(_,_,ID), Airport(ID,_).
:- not okAirplaneAirportID(ID), Airplane(_,_,ID).

Fig. 3. Excerpt of constraints generated from an ER diagram

:add airplane
regNr: 1
airplaneType.name: Boeing737
airport.ID: ap1

% RESULTING FACT
airplane(1,Boeing737,ap1).

Fig. 4. An example for the FactBuilder component

386 J. Oetsch et al.

knowledge base for the answer-set program. It is also possible to enter the data at a
later point in time or to define multiple knowledge bases which increases the versatility
of problem representations. Figure 4 gives an example exploiting the FactBuilder tool.

Implementation. Finally, the program under development has to be completed. That is,
all properties of problem solutions beyond the constraints imposed by the ER diagram
have to be formalised in ASP. VIDEAS does not impose any restriction on answer-
set programmers concerning the implementation step but rather provides assistance for
some parts of the development process by offering modelling and visualisation tech-
niques as well as the automated generation of constraint systems.

3 Implementation

We next sketch how we developed a first prototype of VIDEAS based on standard
model-engineering technologies. VIDEAS has been implemented on top of the Eclipse
platform1. In particular, technologies provided by the Eclipse Modeling Framework
(EMF)2 and the Graphical Modeling Framework (GMF)3 projects have been used. The
meta-model representing the ER diagram modelling language has been created using
the Ecore modelling language which is specified within the EMF project. Based on this
Ecore model, a graphical editor has been created using GMF.

The code generator, which is implemented in Java, processes the models from the
graphical editor. Again, this model is formulated in Ecore. The code generation itself
can be grouped into three subsequent activities: First, the model is analysed. This allows
to compute and to store the used literals based on the defined relationships, the chosen
cardinalities, and the specified attributes. Second, type and primary key constraints are
generated (cf. Fig. 3 for an example). Third, input forms are prompted which enable
a developer to fill in values that are used for generating the facts of the program—
the FactBuilder of VIDEAS (cf. Fig. 4). The FactBuilder component also implements
features like the automated look-up of values from a known domain. Finally, the facts
and constraints may be written to a file.

4 Conclusion and Future Work

The idea behind VIDEAS is to introduce successful techniques from model-driven engi-
neering (MDE) to the ASP domain with the aim of supporting an answer-set program-
mer during a development phase. The distinguishing feature of MDE is that models are
first-class citizens in the engineering process rather than mere documentation artifacts.
In particular, programmers are encouraged to use ER diagrams to describe the data
model of a problem domain before implementing a program. The benefit of an explicit
model is that input masks for the consistent definition of a fact base for an answer-set
program can be generated automatically. Furthermore, constraints represented by the

1 https://www.eclipse.org
2 http://www.eclipse.org/modeling/emf/
3 http://www.eclipse.org/modeling/gmf/

https://www.eclipse.org
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/gmf/

VIDEAS: A Development Tool for Answer-Set Programs 387

ER model can be ported automatically into the language of ASP. Hence, consistency of
any answer set with the data model of the ER diagram can always be guaranteed.

For future work, we intend to consider further concepts like inheritance relationship
and other modelling languages like subsets of the UML class diagram as well. The UML
class diagram may be particularly beneficial for ASP because the language-inherent
extension mechanism of UML profiles may be used to adapt the UML class diagram
to our specific purposes. We also plan to extend the VIDEAS framework to visualise
potential inconsistencies between answer sets of a program and the data model directly
at the level of the underlying ER diagram.

References

1. Brain, M., De Vos, M.: Debugging logic programs under the answer-set semantics. In:
Proc. ASP 2005. CEUR Workshop Proc., pp. 141–152 (2005), CEUR-WS.org

2. Syrjänen, T.: Debugging inconsistent answer set programs. In: Proc. NMR 2006, pp. 77–83
(2006)

3. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP
programs by means of ASP. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 31–43. Springer, Heidelberg (2007)

4. Mikitiuk, A., Moseley, E., Truszczynski, M.: Towards debugging of answer-set programs in
the language PSpb. In: Proc. ICAI 2007, pp. 635–640. CSREA Press (2007)

5. Caballero, R., Garcı́a-Ruiz, Y., Sáenz-Pérez, F.: A theoretical framework for the declarative
debugging of datalog programs. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2008. LNCS,
vol. 4925, pp. 143–159. Springer, Heidelberg (2008)

6. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debugging
answer-set programs. In: Proc. AAAI 2008, pp. 448–453. AAAI Press, Menlo Park (2008)

7. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under answer set
semantics. Theory and Practice of Logic Programming 9(1), 1–56 (2009)

8. Wittocx, J., Vlaeminck, H., Denecker, M.: Debugging for model expansion. In: Hill, P.M.,
Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 296–311. Springer, Heidelberg (2009)

9. Oetsch, J., Pührer, J., Tompits, H.: Catching the Ouroboros: On debugging non-ground
answer-set programs. Theory and Practice of Logic Programming 10(4-6), 513–529 (2010)

10. Ricca, F., Leone, N.: Disjunctive logic programming with types and objects: The DLV+

system. Journal of Applied Logic 5(3), 545–573 (2007)
11. Chen, P.: The entity-relationship model—Toward a unified view of data. ACM Transactions

on Database Systems 1(1), 9–36 (1976)
12. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-

bridge University Press, Cambridge (2003)
13. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2), 25–31 (2006)
14. Febbraro, O., Reale, K., Ricca, F.: A Visual Interface for Drawing ASP Programs. In: Proc.

CILC 2010 (2010)
15. Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual query systems for databases: A

survey. J. Visual Languages and Computing 8(2), 215–260 (1997)
16. Kehrer, N., Neumann, G.: An EER Prototyping Environment and its Implementation in a

Datalog Language. In: Pernul, G., Tjoa, A.M. (eds.) ER 1992. LNCS, vol. 645, pp. 243–261.
Springer, Heidelberg (1992)

17. Amalfi, M., Provetti, A.: From extended entity-relationship schemata to illustrative instances.
In: Proc. LID 2008 (2008)

18. Sureshkumar, A., de Vos, M., Brain, M., Fitch, J.: APE: An AnsProlog Environment. In:
Proc. SEA 2007, pp. 101–115 (2007)

CEUR-WS.org

The Third Answer Set Programming Competition:
Preliminary Report of the System Competition Track

Francesco Calimeri, Giovambattista Ianni, Francesco Ricca, Mario Alviano,
Annamaria Bria, Gelsomina Catalano, Susanna Cozza, Wolfgang Faber,
Onofrio Febbraro, Nicola Leone, Marco Manna, Alessandra Martello,

Claudio Panetta, Simona Perri, Kristian Reale, Maria Carmela Santoro,
Marco Sirianni, Giorgio Terracina, and Pierfrancesco Veltri

Dipartimento di Matematica, Università della Calabria, Italy
aspcomp11@mat.unical.it

Abstract. Answer Set Programming is a well-established paradigm of declar-
ative programming in close relationship with other declarative formalisms such
as SAT Modulo Theories, Constraint Handling Rules, FO(.), PDDL and many
others. Since its first informal editions, ASP systems are compared in the nowa-
days customary ASP Competition. The Third ASP Competition, as the sequel
to the ASP Competitions Series held at the University of Potsdam in Germany
(2006-2007) and at the University of Leuven in Belgium in 2009, took place
at the University of Calabria (Italy) in the first half of 2011. Participants com-
peted on a selected collection of declarative specifications of benchmark prob-
lems, taken from a variety of domains as well as real world applications, and
instances thereof. The Competition ran on two tracks: the Model & Solve Com-
petition, held on an open problem encoding, on an open language basis, and open
to any kind of system based on a declarative specification paradigm; and the Sys-
tem Competition, held on the basis of fixed, public problem encodings, written in
a standard ASP language. This paper briefly discuss the format and rationale of
the System competition track, and preliminarily reports its results.

1 Introduction

Answer Set Programming1 is a declarative approach to programming proposed in
the area of nonmonotonic reasoning and logic programming [8,22,23,33,34,46,48].
The main advantage of ASP is its high declarative nature combined with a rela-
tively high expressive power [16,42]; after some pioneering work [9,52], there are
nowadays a number of stable and solid systems that support ASP and its variants
[6,15,30,38,39,41,42,43,45,47,49,51]. Since the first informal editions (Dagstuhl
2002 and 2005), ASP systems are compared in the nowadays customary ASP
Competitions [19,31], which reached now its third official edition.

The Third ASP Competition featured two tracks: the Model & Solve Competition,
held on an open problem encoding, open language basis, and open to any system based
on a declarative specification paradigm, and the System Competition, held on the basis

1 For introductory material on ASP, the reader might refer to [8,24,33,46,48].

J. Delgrande and W. Faber (Eds.): LPNMR 2011, LNAI 6645, pp. 388–403, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Third Answer Set Programming Competition 389

S
TI

i

E
P

W
i

or

“INCONSISTENT”
P

P

Fig. 1. Setting of the System Competition per each participant system ST

of fixed problem encodings, written in a standard ASP language. At the time of this
writing, the System Competition Track is over, while the Model & Solve one is going
to start. In this paper, we focus on the former, preliminarily reporting its results and dis-
cussing the peculiarities of its format. A more detailed report, including the results of the
Models & Solve track, and outcomes of non-participant systems, is under preparation.

The format of the System Competition Track (System Competition from now on)
was conceived with the aim of (i) fostering the introduction of a standard language for
ASP, and the birth of a new working group for the definition of an official standard, and
(ii) let the competitors compare each other in fixed, predefined conditions.

Intuitively, the System Competition is run as follows (see Figure 1): a selection
of problems is chosen in the open Call for Problems stage: for each problem P a
corresponding, fixed, declarative specification EP of P , and a number of instances
IP1 , . . . , IPn , are given. Each participant system ST , for T a participating team, is
fed with all the couples 〈EP , IPi〉, and challenged to produce a witness solution to
〈EP , IPi〉 (denoted by WP

i) or to report that no witness exist, within a predefined
amount of allowed time. A score is awarded to each ST per each problem, based on
the number of solved instances for that problem, and the time spent for solving these,
as detailed in Section 6.

Importantly, problem encodings were fixed for all participants: specialized solutions
on a per-problem basis were not allowed, and problems were specified in the ASP-Core
language. This setting has been introduced in order to give a fair, objective measure
of what one can expect when switching from a system to another, while keeping all
other conditions fixed, such as the problem encoding and the default solver settings and
heuristics.

The language ASP-Core collects basic ASP features common in almost every cur-
rent system. A small portion of the problems have been encoded in a second language
format called ASP-RfC, this latter proposed in order to encourage the standardization of
other popular basic features, which still unfortunately differ (in syntax and semantics)
between current systems.

ASP-Core is a conservative extension to the non-ground case of the Core language
adopted in the First ASP Competition; it complies with the core language draft speci-
fied at LPNMR 2004 [2], and basically refers to the language specified in the seminal
paper [34]. Most of its constructs are nowadays common for current ASP parsers. The
ASP-Core language includes: ground queries, disjunctive rules with negation as failure,
strong negation and arithmetic builtins; terms are constants and variables only.

The remainder of the paper is structured as follows. Section 2 discusses the Competi-
tion format and regulations. Section 3 briefly overviews the standard language adopted.
In Section 6 we illustrate the scoring framework, also discussing the reasons that led to
our choices. Section 4 presents the participant to the System Competition, and Section 5

390 F. Calimeri et al.

the benchmark problems they competed on. Finally, in Section 8 we present and briefly
discuss the actual results of the Competition.

2 System Competition Format

The regulations of the System Competition were conceived taking into account a num-
ber of aspects.

As a first observation, note that many families of formalisms, which can be consid-
ered to a large extent neighbors of the ASP community, have reached a significant level
of language standardization. These range from the Constraint Handling Rules (CHR)
family [1], the Satisfiability Modulo Theories SMT-LIB format [4], the Planning Do-
main Definition Language (PDDL) [35], to the TPTP format used in the Automated
Theorem Proving System Competition (CASC) [3]. Such experiences witness that the
common ground of a standard language, possibly undergoing continuous refinement
and extension, has usually boosted the availability of resources, the deployment of
the technology at hand into practical applications, and the effectiveness of systems.
Nonetheless, ASP was still missing a standard, high-level input language.

The ASP community is nowadays mature enough for starting the development of a
common standard input format. An ASP system can be roughly seen as composed of a
front-end input language processor and a model generator: the first module, usually (but
not necessarily) named “grounder”, produces a propositional program obtained from an
higher-level (non-ground) specification of the problem at hand. Incidentally, currently-
developed ASP grounders have recently reached a good degree of maturity, and, above
all, they have reached a fairly large degree of overlap in their input formats. This paves
the way for taking the very first serious step towards the proposal of a common input
language for ASP solvers. It thus makes sense to play the System Competition on the
grounds of a common draft input format, in order to promote the adoption of a newly
devised standard, and foster the birth of a new standardization working group. In or-
der to met the above goals, the Competition input format has been conceived as large
enough to embed all of the basic constructs included in the language originally speci-
fied in [34] (and lifted to its non-ground version), yet conservative enough to allow all
the participants to adhere to the standard draft with little or no effort.

A second, but not less important aspect regards the performance of a given ASP
system. Indeed, when fine-tuning on P is performed, either by improving the problem
encoding or by ad-hoc tuning internal optimizations techniques, performances might
greatly vary. Although it is important to encourage developers to fine-tune their sys-
tems, and then compete on this basis, on the other hand it is similarly important to put
in evidence how a solver performs with a default behavior of choice: indeed, the user of
an ASP system has generally little or no knowledge of the system internals, and might
not be aware of which program rewritings and system optimization methods pay off
in terms of performance for a given problem. The System Competition format aims at
putting in evidence the performance of a system when used as an ”off-the-shelf black
box” on a supposedly unknown range of problem specifications. In this respect, rank-
ings on the System Competition should give a fairly objective measure of what one can
expect when switching from a system to another, while keeping all other conditions

The Third Answer Set Programming Competition 391

fixed (problem encoding and default solver settings). The format of the System Compe-
tition, thus, aims at measuring the performance of a given solver when used on a generic
problem encoding, rather than the performance of a system fine-tuned for the specific
problems selected for the current Competition.

Given the above considerations, the System Competition has been held on the basis
of the principles/rules detailed next.

1. The System Competition was open to systems able to parse input written in the
fixed format ASP-Core.

2. Given the selection of problems available for the Competition, the organizers have
chosen, for each benchmark, a fixed representation encoded in ASP-Core, together
with a set of benchmark instances. Participants have been made aware, fairly in ad-
vance, of fixed encodings, while they were provided only a small set of correspond-
ing training instances: official ones have been kept secret until the actual Compe-
tition start. Each participant system was then launched with its default settings on
all official problem instances. Scores were awarded according to the Competition
scoring system (see Section 6).

3. Syntactic special-purpose solving techniques, specialized on a “per problem” basis,
were forbidden. Besides such techniques, the committee classified the switch of
internal solver options depending on: (i) command-line filenames; (ii) predicate
and variable names; (iii) “signature” techniques aimed at recognizing a particular
benchmark problem, such as counting the number of rules, constraints, predicates
and atoms in a given encoding.

In order to discourage the adoption of such techniques, the organizing commit-
tee kept the right to introduce syntactic means for scrambling program encodings,
such as, e.g., file, predicate and variable random renaming. Furthermore, the com-
mittee kept the right, whenever necessary, to replace official program encodings
with equivalent, syntactically changed versions.

It is worth noting that, viceversa, the semantic recognition of the program struc-
ture was allowed, and even encouraged. Among allowed semantic recognition tech-
niques, the Competition regulation explicitly included: (i) recognition of the class
the problem encoding belongs to (e.g., stratified, positive, etc.) and possible con-
sequent switch-on of on-purpose evaluation techniques; (ii) recognition of general
rule and program structures (e.g., common un-stratified even and odd-cycles, com-
mon join patterns within a rule body, etc.), provided that these techniques were
general and not peculiar of a given problem selected for the Competition.

4. None of the members of the organizing committee submitted a system for the com-
petition, in order to properly play the role of neutral referee and guarantee an ob-
jective benchmark selection and rule definition process.

5. The committee did not disclose any submitted material until the end of the Compe-
tition; nonetheless, willingly participants were allowed to share their own work at
any moment. In order to guarantee transparency and reproducibility of the Competi-
tion results, all participants were asked to agree that any kind of submitted material
(system binaries, scripts, problems encodings, etc.) was to be made public after the
Competition.

392 F. Calimeri et al.

3 Competition Language Overview

The System Competition has been held over the ASP-Core language format. The
language format has been introduced according to the following goals:

1. To include no less than the constructs appearing in the original A-Prolog language
as formulated in [34], and be compliant with the LPNMR 2004 language draft [2].

2. To include, as an extension, a reduced number of features which are seen both as
highly desirable and have now maturity for entering a standard language for ASP.

3. To appropriately choose the abovementioned extensions, in such a way that the cost
of alignment of the input format would be fair enough to allow existing and future
ASP solvers to comply with.

4. To have a language with non-ambiguous semantics over which widespread consen-
sus has been reached.

According to goal 1, ASP-Core included a language with disjunctive heads and strong
and negation-as-failure (NAF) negation, and did not require domain predicates; accord-
ing to goals 2 and 3, ASP-Core included the notion of query and a few syntactic exten-
sions. The semantic of choice for ASP-Core is the traditional answer set semantics as
defined in [34], and extended to the non-ground case.

Reasonable restrictions were applied for ensuring that integers and arithmetic built-
in predicates were finitely handled. Concerning disjunction, its unrestricted usage was
circumscribed only to a restricted portion of the selected benchmarks. Whenever ap-
plicable (in the case of head-cycle-free [10] programs), converters to equivalent, non-
disjunctive programs were made available to competitors.

The organizing committee released also a second format specification, called ASP-
RfC. This latter came in the form of a ”Request for Comments” to the ASP community,
and extended ASP-Core with non-ground queries, function symbols and a limited num-
ber of pre-defined aggregate functions. A couple of problems specified in ASP-RfC
were selected for being demonstratively run for the System Competition by participants
willing to implement the language.

The detailed ASP-Core and ASP-RfC language specification can be found at [12].

4 Participants

The System Track of the Competition featured eleven systems submitted by four teams.
All systems rely on a grounding module, and can be grouped into two main classes: “na-
tive” systems, which exploit techniques purposely conceived/adapted for dealing with
logic programs under stable models semantics, and “translation-based” systems, which,
at some stage of the evaluation process, produce a specification in a different formal-
ism (e.g. SAT); such specification is then fed to an external solver. The first category
includes smodels, clasp and variants thereof; the second category includes Cmodels,
SUP, IDP, lp2sat (based on SAT solvers) and lp2diff (based on SMT solvers). More
details on teams and submitted systems follow.

The Third Answer Set Programming Competition 393

Potassco. All people from this team are affiliated with the University of Potsdam,
Germany. The Potassco team submitted four solvers to the System track: clasp [28],
claspD [20], claspfolio [54], and clasp-mt [25]. The firstly mentioned system, clasp,
features techniques from the area of Boolean constraint solving, and its primary al-
gorithm relies on conflict-driven nogood learning. In order to deal with non-variable-
free programs, it relies on the grounder Gringo [32]. claspD is an extension of clasp
which is able to solve disjunctive logic programs, while claspfolio exploits machine-
learning techniques in order to choose the best suited configuration of clasp to process
the given input program. Finally, a non-competing participant is clasp-mt, which is a
multithreaded version of clasp.

Cmodels. The team works at University of Kentucky, USA. It submitted two solvers:
Cmodels [43] and SUP [44]. Cmodels can handle either disjunctive logic programs or
logic programs containing choice rules; it exploits a SAT solver as a search engine for
enumerating models, and also verifying model minimality whenever needed. As for
SUP, it can be seen as a combination of the computational ideas behind Cmodels and
smodels. Both solvers rely on the grounder Gringo.

IDP. The team counts researchers from the KRR group at K.U. Leuven, Netherlands,
and participated with the system IDP [53]. IDP is a finite model generator for extended
first-order logic theories. It implements one form of inference for FO(·), namely finite
model expansion, and is based on a grounder module and a solver that searches for
models of the propositional theory generated by the grounder. To cope with the System
Competition format, Gringo has been used for grounding the input program.

smodels. The team works at Helsinki University of Technology, Finland. Competing
systems from the group were 5: lp2diffz3, 3 versions of lp2sat (2gminisat, 2lminisat
and 2minisat), and smodels. Input programs are instantiated by Gringo, then lp2diff [40]
translates ASP programs into SMT specifications, so that any SMT solver supporting
the QF IDL dialect (difference logic over integers) of the SMT library can cope with
the task of finding answer sets of ASP programs. lp2sat [37], on the other hand, does
the same job for SAT solvers. lp2diffz3 couples lp2diff with the SMT solver Z3 [18],
whereas lp2sat-based solvers are coupled with minisat [21] through a series of distinct
rewriting stages. Finally, smodels [51], one of the first robust ASP systems that have
been made available to the community, has been included in the competition for com-
parison purposes given its historical importance.

5 Benchmark Suite

The benchmark suite used in the Competition has been obtained during the Call for
problems stage. We selected 35 problems, out of which 20 were suitable for a proper
ASP-Core problem specification. Problems can be roughly classified into the two cate-
gories of Search and Query, respectively.

Search problems require to find, if it exists, a “witness” solving the problem instance
at hand, or to notify the non-existence of a witness. We herein adopt witness as a neutral

394 F. Calimeri et al.

term for denoting a solution for the problem instance at hand: in the setting of the
System Competition, the notion of witness is nearly equivalent to the notion of answer
set (or a subset thereof).

A query problem consists in finding all the facts (having a given signature) which
hold in all the ”witnesses” of the instance for the problem at hand. In the setting of the
System Competition, a query problem coincides with performing cautious reasoning
over a given logic program. Problems were further classified according to their compu-
tational complexity2 in three categories:

Polynomial problems. We classified in this category problems which are solvable in
polynomial time in the size of the input data (data complexity). Such problems are usu-
ally characterized by the huge size of instance data. Although ASP systems do not aim
at competing with more tailored technologies (database etc.) for solving this category
of problems, several practical real-world applications fall in this category. Also, it is
expected that an ASP solver can deal satisfactorily with basic skills such as answer-
ing queries over stratified recursive programs at a reasonable degree of efficiency. It is
thus important to assess participants over this category. Note that, usually, polynomial
problems are entirely solved by grounding modules of participant systems, with little or
no effort for subsequent modules: grounders thus constitute the main technology which
undergoes testing while dealing with polynomial problems. The chosen polynomial
problems were: REACHABILITY, GRAMMAR-BASED INFORMATION EXTRACTION,
HYDRAULIC LEAKING, HYDRAULIC PLANNING, STABLE MARRIAGE, and PART-
NER UNITS POLYNOMIAL.

It is worth mentioning that, on the one hand, four problems out of six were specified
in a fragment of ASP-Core having polynomial data complexity (a stratified logic pro-
gram), easily solvable at grounding stage. On the other hand, both STABLE MARRIAGE

and PARTNER UNITS POLYNOMIAL problems are known to be solvable in polynomial
time [36,26], but have a natural declarative encoding which makes usage of disjunction.
This latter encoding was used for the System Competition: thus, in these two problems,
we tested the “combined” ability of grounder and solver modules. The aim was mea-
suring if and to what extent a participant system was able to automatically converge to
a polynomial evaluation strategy when fed with such a natural encoding. As a further
remark, note that REACHABILITY was expressed in terms of a query problem, in which
it was asked whether two given nodes were reachable in a given graph: this is a typical
setting in which one can test systems on their search space tailoring techniques (such as
magic sets) [5,7,14].

NP problems. We classified in this category NP-complete problems (or more precisely,
their corresponding FNP versions) and any problem in NP not known to be polynomi-
ally solvable: these problems constitute the “core” category, in which to test the attitude
of a system in efficiently dealing with problems formulated with the “Guess and Check”
methodology; The chosen NP problems were: a number of puzzle-based planning prob-
lems (SOKOBANDECISION, KNIGHTTOUR, LABYRINTH, HANOITOWER, SOLITAIRE

and two pure puzzle problems (MAZEGENERATION and NUMBERLINK); a classic

2 The reader can refer to [50] for the definition of basic computational classes herein mentioned.

The Third Answer Set Programming Competition 395

graph problem (GRAPHCOLOURING), a scheduling problem (DISJUNCTIVESCHEDUL-
ING) and a packing problem (PACKINGPROBLEM); eventually, two problems were re-
lated to applicative/academic settings: WEIGHT-ASSIGNMENTTREE [27] was related
to the problem of finding the best join ordering in a conjunctive query, while MULTI-
CONTEXTSYSTEMQUERYING was a query problem originating from reasoning tasks
in Multi-Context Systems [17]. Noteworthy, this latter problem had an ASP-Core en-
coding producing several logic sub-modules, each of which having independent an-
swer sets. The ability to efficiently handle both cross-products of answer sets and early
constraint firing were thus herein assessed.

Beyond NP. We classified in this category any problem not known to be in NP/FNP.
These are in general very hard problems, which, in the setting of the System Com-
petition consisted of ΣP

2 -complete problems. ΣP
2 problems have encodings mak-

ing unrestricted usage of disjunction: since a significant fraction of current systems
cannot properly handle this class of problems, only STRATEGICCOMPANIES and

Table 1. 3rd ASP Competition - System Track: Benchmark List

ID Problem Name Contributor(s) 2nd ASP
Competition

Type Class

2 Reachability Giorgio Terracina Yes* Query P

3 Strategic Companies Mario Alviano, Marco Maratea and
Francesco Ricca

Yes* Search Beyond NP

6 Grammar-Based Infor-
mation Extraction

Marco Manna Yes Search P

10 Sokoban Decision Wolfgang Faber Yes Search NP

12 Knight Tour Neng-Fa Zhou, Francesco Calimeri and
Maria Carmela Santoro

Yes Search NP

13 Disjunctive Scheduling Neng-Fa Zhou, Francesco Calimeri and
Maria Carmela Santoro

Yes Search NP

14 Packing Problem Neng-Fa Zhou No Search NP

17 Labyrinth Martin Gebser Yes Search NP

18 Minimal Diagnosis Martin Gebser No Search Beyond NP

19 Multi Context System
Querying

Peter Schueller No Query NP

20 Numberlink Naoyuki Tamura and Neng-Fa Zhou Yes Search NP

22 Hanoi Tower Miroslaw Truszczynski, Shaden Smith
and Alex Westlund

Yes* Search NP

25 Graph Colouring Yuliya Lierler and Marcello Balduccini Yes Search NP

26 Solitaire Yuliya Lierler and Marcello Balduccini Yes Search NP

28 Weight-Assignment Tree Yuliya Lierler No Search NP

30 Hydraulic Leaking Francesco Calimeri and Maria Carmela
Santoro

Yes* Search P

31 Hydraulic Planning Francesco Calimeri and Maria Carmela
Santoro

Yes* Search P

32 Stable Marriage Francesco Ricca, Mario Alviano and
Marco Manna

No Search P

33 Maze Generation Martin Brain and Mario Alviano Yes* Search NP

34 Partner Units - Polyno-
mial

Anna Ryabokon, Andreas Falkner and
Gerhard Friedrich

No Search P

396 F. Calimeri et al.

MINIMALDIAGNOSIS were selected in this category. The former is a traditional
ΣP

2 problem coming from [11], while the latter originates from an application in
molecular biology [29].

The list of all problems included into the System Competition benchmark suite is
reported in Table 1. The presence of a star (*) in the third column means that the cor-
responding problem might slightly differ w.r.t. the version included into the benchmark
suite of the Second ASP Competition. Detailed descriptions, and more, can be found
on the Competition website [13].

6 Scoring System

For the definition of the scoring framework, we adopted as a starting point the one ex-
ploited in the first and second ASP Competitions. Such framework was mainly based on
a weighted sum of the number of instances solved within the given time-bound; how-
ever, we decided to extend it by rewarding additional scores to systems well performing
in terms of evaluation time.

Overview. We report below the factors that have been taken into account, together with
the corresponding impact of these in the scoring system.

1. Benchmarks with many instances were intended to be prevented from dominating
the overall score of a category. Thus, for a given problem P, we selected a fixed
number N of instances (N = 10);

2. Non-sound solvers, and encodings, were strongly discouraged. Thus, if system S
outputted an incorrect answer for some instance of a problem P, this invalidated all
the score achieved by S for problem P;

3. Besides time performance, a system managing to solve a given problem instance
sets a clear gap over all systems not able to. Thus, per each instance I of problem P,
a flat reward has been given to a system S that correctly solved I within the allotted
time;

4. Human beings are generally more receptive to the log of the changes of a value
rather than to the changes themselves, especially when considering evaluation times;
this is why a difference between two values is better perceived when it consists of
order of magnitudes, and systems are generally perceived as clearly faster when the
solving time stays orders of magnitude below the maximum allowed time. Also,
systems with time performance in the same order of magnitude are perceived as
comparatively similar, in terms of development effort and quality. Keeping this in
mind, and analogously to what is usually done in SAT competitions3, a logarith-
mically weighted bonus has been awarded to faster systems depending on the time
needed for solving each instance.

Scoring Framework. A system S could get 100 points per each given benchmark prob-
lem P ; then, the final score of S consists of the sum over the scores coming from all
benchmarks (note that same computations have been carried out for both search and

3 See, for instance, http://www.satcompetition.org/2009/spec2009.html

http://www.satcompetition.org/2009/spec2009.html

The Third Answer Set Programming Competition 397

query problems). The overall score of a system S on a problem P counting N instances
is denoted by S(P). We note first that

S(P) = 0

if S returned an answer which is incorrect for at least one instance of P . Otherwise, the
score has been computed by the sum

S(P) = Ssolve(P) + Stime(P).

where Ssolve is defined as

Ssolve(P) = α
NS

N

for NS being the number of instances solved by P within the time limit. Actual running
time has been taken into account by defining Stime as:

Stime(P) =
100 − α

N

N∑
i=1

(
1 −

(
log(ti + 1)

log(tout + 1)

))

where tout is the maximum allowed time and ti the time spent by S while solving
instance i. Both Ssolve(P) and Stime(P) have been rounded to the nearest integer. In
the System Competition tout has been set to 600 seconds, α = 50, and 10 instances
were selected per each problem domain (N = 10).

7 Software and Hardware Settings

The Competition took place on a battery of four servers, featuring a 4 core Intel Xeon
CPU X3430 running at 2.4 Ghz, with 4GB of physical RAM and PAE enabled. The
operating system of choice was Linux Debian Lenny (32bit), equipped with the C/C++
compiler GCC 4.3 and common scripting/development tools. Competitors have been
allowed to install their own compilers/libraries in local home directories, and to prepare
system binaries for the specific Competition hardware settings. All the systems where
benchmarked with just one out of four processors enabled.

Each process spawned by a participant system had access to the usual Linux process
memory space (slightly less than 3GiB user space + 1GiB kernel space). The total
memory allocated by all the processes was however constrained to a total of 3 GiB (1
GiB = 230 bytes). The memory footprint of participant systems has been controlled by
using the Benchmark Tool Run4. This tool is not able to detect short memory spikes
(within 100 milliseconds) or, in some corner cases, memory overflow is detected with
short delay: however, we pragmatically assumed the tool as the official reference.

4 http://fmv.jku.at/run/

http://fmv.jku.at/run/

398 F. Calimeri et al.

8 Results and Discussion

We briefly report in this Section the results of the competition for official participants.
The overall ranking of the System Competition is reported in Table 2. Participant sys-
tems are ordered by total score, this latter awarded according to Section 6. Per each sys-
tem we list three rows which report, respectively, totals, instance score (points awarded
according to the Ssolve function and proportional to the number of instances solved
within time-out) and time score (points awarded according to the Stime function and
logarithmically proportional to solving time). Columns report cumulative results for
the three categories (P, NP, and Beyond-NP), and the grandtotal. Scores awarded per
each benchmark problem are reported in the subsequent columns. Figure 2 reports the
behavior of systems in terms of number of solved instances and solving time, per each
of the three categories (2-(b), 2-(c) and 2-(d)) and on the overall (Figure 2-(a)). Timed
out instances are not drawn.

Table 2. Final results

Cumulative P NP Bnd-NP

Sy
st

em

To
ta

l

P N
P

B
ey

on
d

N
P

R
ea

ch
ab

il
it

y

G
ra

m
m

ar
-B

as
ed

IE

H
yd

ra
ul

ic
L

ea
ki

ng

H
yd

ra
ul

ic
Pl

an
ni

ng

St
ab

le
M

ar
ri

ag
e

Pa
rt

ne
rU

ni
ts

Po
ly

no
m

ia
l

So
ko

ba
nD

ec
is

io
n

K
ni

gh
tT

ou
r

D
is

ju
nc

tiv
eS

ch
ed

ul
in

g

Pa
ck

in
gP

ro
bl

em

L
ab

yr
in

th

M
C

S
Q

ue
ry

in
g

N
um

be
rl

in
k

H
an

oi
To

w
er

G
ra

ph
C

ol
ou

ri
ng

So
li

ta
ir

e

W
ei

gh
t-

A
ss

ig
nm

en
tT

re
e

M
az

eG
en

er
at

io
n

St
ra

te
gi

cC
om

pa
ni

es

M
in

im
al

D
ia

gn
os

is

claspd Total 861 206 552 103 36 72 10 75 0 13 68 68 30 0 65 75 69 31 19 11 20 96 12 91
Instance 560 145 355 60 25 50 10 50 0 10 45 40 25 0 45 50 40 25 10 10 15 50 10 50

Time 301 61 197 43 11 22 0 25 0 3 23 28 5 0 20 25 29 6 9 1 5 46 2 41

claspfolio Total 818 209 609 0 35 72 10 74 5 13 66 65 37 0 63 75 64 47 55 21 21 95 0 0
Instance 535 150 385 0 25 50 10 50 5 10 45 35 25 0 40 50 35 35 40 15 15 50 0 0

Time 283 59 224 0 10 22 0 24 0 3 21 30 12 0 23 25 29 12 15 6 6 45 0 0

clasp Total 810 213 597 0 36 72 10 75 6 14 78 63 38 0 78 75 65 39 23 21 21 96 0 0
Instance 520 150 370 0 25 50 10 50 5 10 50 35 25 0 50 50 35 30 15 15 15 50 0 0

Time 290 63 227 0 11 22 0 25 1 4 28 28 13 0 28 25 30 9 8 6 6 46 0 0

idp Total 781 184 597 0 29 71 10 74 0 0 64 74 38 0 52 75 70 65 18 38 8 95 0 0
Instance 500 130 370 0 20 50 10 50 0 0 45 45 25 0 30 50 40 45 10 25 5 50 0 0

Time 281 54 227 0 9 21 0 24 0 0 19 29 13 0 22 25 30 20 8 13 3 45 0 0

cmodels Total 766 184 510 72 29 71 10 74 0 0 67 56 21 0 62 75 30 51 29 18 6 95 0 72
Instance 510 130 335 45 20 50 10 50 0 0 45 30 20 0 45 50 20 35 20 15 5 50 0 45

Time 256 54 175 27 9 21 0 24 0 0 22 26 1 0 17 25 10 16 9 3 1 45 0 27

lp2diffz3 Total 572 178 394 0 35 66 10 67 0 0 42 55 0 0 0 70 45 47 27 25 0 83 0 0
Instance 405 135 270 0 25 50 10 50 0 0 30 35 0 0 0 50 30 35 20 20 0 50 0 0

Time 167 43 124 0 10 16 0 17 0 0 12 20 0 0 0 20 15 12 7 5 0 33 0 0

sup Total 541 195 346 0 29 71 10 74 0 11 52 40 37 0 58 72 0 31 16 15 25 0 0 0
Instance 380 140 240 0 20 50 10 50 0 10 35 25 25 0 40 50 0 25 10 10 20 0 0 0

Time 161 55 106 0 9 21 0 24 0 1 17 15 12 0 18 22 0 6 6 5 5 0 0 0

lp2sat2gmsat Total 495 185 310 0 30 66 10 68 0 11 36 10 32 0 46 71 22 47 17 29 - 0 0 0
Instance 365 140 225 0 20 50 10 50 0 10 30 5 25 0 35 50 15 35 10 20 - 0 0 0

Time 130 45 85 0 10 16 0 18 0 1 6 5 7 0 11 21 7 12 7 9 - 0 0 0

lp2sat2msat Total 481 179 302 0 30 66 10 68 0 5 39 0 32 0 52 71 15 47 17 29 - 0 0 0
Instance 355 135 220 0 20 50 10 50 0 5 30 0 25 0 40 50 10 35 10 20 - 0 0 0

Time 126 44 82 0 10 16 0 18 0 0 9 0 7 0 12 21 5 12 7 9 - 0 0 0

lp2sat2lmsat Total 472 171 301 0 28 66 10 67 0 0 35 0 32 0 53 71 17 47 17 29 - 0 0 0
Instance 350 130 220 0 20 50 10 50 0 0 30 0 25 0 40 50 10 35 10 20 - 0 0 0

Time 122 41 81 0 8 16 0 17 0 0 5 0 7 0 13 21 7 12 7 9 - 0 0 0

smodels Total 449 180 269 0 28 70 10 72 0 0 0 55 36 0 9 53 27 0 0 0 0 89 0 0
Instance 295 130 165 0 20 50 10 50 0 0 0 30 25 0 5 35 20 0 0 0 0 50 0 0

Time 154 50 104 0 8 20 0 22 0 0 0 25 11 0 4 18 7 0 0 0 0 39 0 0

The Third Answer Set Programming Competition 399

Table 3. Final results by categories

P NP Beyond NP

System Total
Score

Inst.
Score

Time
Score

System Total
Score

Inst.
Score

Time
Score

System Total
Score

Inst.
Score

Time
Score

clasp 213 150 63 claspfolio 609 385 224 claspd 103 60 43

claspfolio 209 150 59 clasp 597 370 227 cmodels 72 45 27

claspd 206 145 61 idp 597 370 227 claspfolio 0 0 0

sup 195 140 55 claspd 552 355 197 clasp 0 0 0

lp2sat2gminisat 185 140 45 cmodels 510 335 175 idp 0 0 0

cmodels 184 130 54 lp2diffz3 394 270 124 lp2diffz3 0 0 0

idp 184 130 54 sup 346 240 106 sup 0 0 0

smodels 180 130 50 lp2sat2gminisat 310 225 85 lp2sat2gminisat 0 0 0

lp2sat2minisat 179 135 44 lp2sat2minisat 302 220 82 lp2sat2minisat 0 0 0

lp2diffz3 178 135 43 lp2sat2lminisat 301 220 81 lp2sat2lminisat 0 0 0

lp2sat2lminisat 171 130 41 smodels 269 165 104 smodels 0 0 0

8.1 Overall Results

Table 2 shows claspD as the overall winner, with 861 points. 560 points were awarded
for the instance score, corresponding to a total of 112 instances solved out of 200.
claspfolio and clasp follow with a respective grandtotal of 818 and 810. It is worth
noting that claspD is the only system, together with Cmodels, capable of dealing with
the two Beyond-NP problems included in the benchmark suite, this giving to the system
a clear advantage in terms of score.

8.2 Polynomial Problems

As explained in Section 5, this category mainly tests grounding pre-processing modules.
All the participant systems employed Gringo 3.0.3 as grounding module: we however
noticed some performance differences, both due to the different command line options
fed to Gringo by participants, and by the presence of two benchmark with unstratified
program encodings. The winner of the category is clasp, with 213 points, as shown
in Table 3. Interestingly, Figure 2-(b) shows a sharp difference between a group of
easy and hard instances: notably, these latter enforced a bigger memory footprint when
evaluated. Also worth mentioning that the main cause of failure in this category has
been out of memory, rather than time-out. Instances were indeed relatively large on the
average.

8.3 NP Problems

The results of this category show how claspfolio (609 points) slightly outperformed
clasp and idp (597 points), these latter having a slightly better time score (227 versus
224 of claspfolio).

400 F. Calimeri et al.

 0

 100

 200

 300

 400

 500

 600

 0 30 60 90

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

lp2sat2lminisat
claspfolio

lp2sat2gminisat
cmodels

clasp
smodels

lp2sat2minisat
idp

claspd
sup

lp2diffz3

(a) Overall

 0

 100

 200

 300

 400

 500

 600

 0 30

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

lp2sat2lminisat
claspfolio

lp2sat2gminisat
cmodels

clasp
smodels

lp2sat2minisat
idp

claspd
sup

lp2diffz3

(b) P

 0

 100

 200

 300

 400

 500

 600

 0 30 60

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

lp2sat2lminisat
claspfolio

lp2sat2gminisat
cmodels

clasp
smodels

lp2sat2minisat
idp

claspd
sup

lp2diffz3

(c) NP

 0

 100

 200

 300

 400

 500

 600

 0

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

claspd
cmodels

(d) Beyond NP

Fig. 2. Number of Solved Instances/Time graphs

8.4 Beyond-NP Problems

Only the two systems claspD and Cmodels were able to deal with the two problems in
this category, for claspD able to solve and gain points on both problems and Cmodels
behaving well on MINIMAL DIAGNOSIS only.

Acknowledgments

All of us feels honored of the appointment of Università della Calabria as host institu-
tion, by Marc Denecker, Mirek Truszczyn̈ski and Torsten Schaub.

Francesco Calimeri, Giovambattista Ianni and Francesco Ricca want to thank all the
members of the Computer Science Group at the Dipartimento di Matematica of Univer-
sità della Calabria for their invaluable collaboration, which made this event possible.
A special thanks goes to all the members of the ASP and CLP communities which
authored problem domains, and to participating teams, whose continuous feedback sig-
nificantly helped in improving competition rules and benchmark specifications.

Francesco Calimeri, Giovambattista Ianni and Francesco Ricca want also to acknowl-
edge Nicola Leone, as the Director of the Dipartimento di Matematica of Università
della Calabria, which provided us with all the means, in form of human and technical
resources, and animated earlier discussions we carried out together. A special thanks

The Third Answer Set Programming Competition 401

goes to Jim Delgrande and Wolfgang Faber for their support as LPNMR-11 conference
chairs and proceedings editor.

References

1. Contstraint Handling Rules, http://dtai.cs.kuleuven.be/CHR/
2. Core language for asp solver competitions. Minutes of the steering committee meet-

ing at LPNMR (2004), https://www.mat.unical.it/aspcomp2011/files/
Corelang2004.pdf

3. The CADE ATP System Competition, http://www.cs.miami.edu/˜tptp/CASC/
4. The Satisfiability Modulo Theories Library, http://www.smtlib.org/
5. Alviano, M., Faber, W., Greco, G., Leone, N.: Magic sets for disjunctive datalog programs.

Tech. Report 09/2009, Dipartimento di Matematica, Università della Calabria, Italy (2009),
http://www.wfaber.com/research/papers/TRMAT092009.pdf

6. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ Approach to An-
swer Set Solving. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 95–109. Springer, Heidelberg (2005)

7. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange Ways to
Implement Logic Programs. In: PODS 1986, Cambridge, Massachusetts, pp. 1–15 (1986)

8. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. In: CUP
(2003)

9. Bell, C., Nerode, A., Ng, R.T., Subrahmanian, V.S.: Mixed Integer Programming Methods
for Computing Nonmonotonic Deductive Databases. JACM 41, 1178–1215 (1994)

10. Ben-Eliyahu-Zohary, R., Palopoli, L.: Reasoning with Minimal Models: Efficient Algorithms
and Applications. AI 96, 421–449 (1997)

11. Cadoli, M., Eiter, T., Gottlob, G.: Default Logic as a Query Language. IEEE TKDE 9(3),
448–463 (1997)

12. Calimeri, F., Ianni, G., Ricca, F.: Third ASP Competition, File and language
formats (2011), http://www.mat.unical.it/aspcomp2011/files/
LanguageSpecifications.pdf

13. Calimeri, F., Ianni, G., Ricca, F., The Università della Calabria Organizing Committee:
The Third Answer Set Programming Competition homepage (2011), http://www.mat.
unical.it/aspcomp2011/

14. Cumbo, C., Faber, W., Greco, G.: Improving Query Optimization for Disjunctive Datalog.
In: Proceedings of the Joint Conference on Declarative Programming APPIA-GULP-PRODE
2003, pp. 252–262 (2003)

15. Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: GASP: Answer set programming with lazy
grounding. FI 96(3), 297–322 (2009)

16. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys 33(3), 374–425 (2001)

17. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed Nonmonotonic Multi-
Context Systems. In: 12th International Conference on the Principles of Knowledge Rep-
resentation and Reasoning (KR 2010), Toronto, Canada, May 9-13, pp. 60–70. AAAI Press,
Menlo Park (2010)

18. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

19. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set
programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

http://dtai.cs.kuleuven.be/CHR/
https://www.mat.unical.it/aspcomp2011/files/Corelang2004.pdf
https://www.mat.unical.it/aspcomp2011/files/Corelang2004.pdf
http://www.cs.miami.edu/~tptp/CASC/
http://www.smtlib.org/
http://www.wfaber.com/research/papers/TRMAT092009.pdf
http://www.mat.unical.it/aspcomp2011/files/LanguageSpecifications.pdf
http://www.mat.unical.it/aspcomp2011/files/LanguageSpecifications.pdf
http://www.mat.unical.it/aspcomp2011/
http://www.mat.unical.it/aspcomp2011/

402 F. Calimeri et al.

20. Drescher, C., Gebser, M., Schaub, T.: Conflict-Driven Disjunctive Answer Set Solving. In:
Proceedings of the Eleventh International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR 2008), pp. 422–432. AAAI Press, Sydney (2008)

21. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

22. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the DLV
System. In: Logic-Based Artificial Intelligence, pp. 79–103 (2000)

23. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22(3), 364–418 (1997)
24. Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Programming: A Primer. In: Reasoning

Web. Semantic Technologies for Information Systems, 5th International Summer School -
Tutorial Lectures, Brixen-Bressanone, Italy, August 2009, pp. 40–110 (2009)

25. Ellguth, E., Gebser, M., Gusowski, M., Kaufmann, B., Kaminski, R., Liske, S., Schaub, T.,
Schneidenbach, L., Schnor, B.: A simple distributed conflict-driven answer set solver. In:
Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 490–495. Springer,
Heidelberg (2009)

26. Falkner, A., Haselböck, A., Schenner, G.: Modeling Technical Product Configuration Prob-
lems. In: Proceedings of ECAI 2010 Workshop on Configuration, Lisbon, Portugal, pp. 40–
46 (2010)

27. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database System Implementation. Prentice-
Hall, Englewood Cliffs (2000)

28. Gebser, M., Kaufmann, B., Schaub, T.: The conflict-driven answer set solver clasp: Progress
report. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 509–514.
Springer, Heidelberg (2009)

29. Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting Inconsistencies in Large Biological
Networks with Answer Set Programming. TPLP 11(2), 1–38 (2011)

30. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 386–
392 (2007)

31. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first
answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

32. Gebser, M., Schaub, T., Thiele, S.: grinGo: A new grounder for answer set programming.
In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp.
266–271. Springer, Heidelberg (2007)

33. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the A-Prolog
perspective. AI 138(1-2), 3–38 (2002)

34. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
NGC 9, 365–385 (1991)

35. Gerevini, A., Long, D.: Plan constraints and preferences in PDDL3 - the language of the
fifth international planning competition. Technical report (2005), http://cs-www.cs.
yale.edu/homes/dvm/papers/pddl-ipc5.pdf

36. Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms. MIT
Press, Cambridge (1989)

37. Janhunen, T.: Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics 16(1-2), 35–86 (2006)

38. Janhunen, T., Niemelä, I.: GNT — A solver for disjunctive logic programs. In: Lifschitz, V.,
Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 331–335. Springer, Heidel-
berg (2003)

39. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.-H.: Unfolding Partiality and Dis-
junctions in Stable Model Semantics. ACM TOCL 7(1), 1–37 (2006)

http://cs-www.cs.yale.edu/homes/dvm/papers/pddl-ipc5.pdf
http://cs-www.cs.yale.edu/homes/dvm/papers/pddl-ipc5.pdf

The Third Answer Set Programming Competition 403

40. Janhunen, T., Niemelä, I., Sevalnev, M.: Computing Stable Models via Reductions to Dif-
ference Logic. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp.
142–154. Springer, Heidelberg (2009), doi:10.1007/978-3-642-04238-6 14

41. Lefèvre, C., Nicolas, P.: The first version of a new ASP solver: aSPeRiX. In: Erdem, E.,
Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 522–527. Springer, Heidelberg
(2009)

42. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)

43. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: Baral, C., Greco,
G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 447–451.
Springer, Heidelberg (2005)

44. Lierler, Y.: Abstract Answer Set Solvers. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP
2008. LNCS, vol. 5366, pp. 377–391. Springer, Heidelberg (2008)

45. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-tight
Programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp.
346–350. Springer, Heidelberg (2003)

46. Lifschitz, V.: Answer Set Planning. In: ICLP 1999, Las Cruces, New, Mexico, USA, pp.
23–37 (1999)

47. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers.
AI 157(1-2), 115–137 (2004)

48. Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Programming
Paradigm. In: The Logic Programming Paradigm – A 25-Year Perspective, pp. 375–398
(1999)

49. Niemelä, I., Simons, P., Syrjänen, T.: Smodels: A System for Answer Set Programming. In:
Proceedings of the 8th International Workshop on Non-Monotonic Reasoning, NMR 2000
(2000), http://xxx.lanl.gov/abs/cs/0003033v1

50. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
51. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-

tics. AI 138, 181–234 (2002)
52. Subrahmanian, V.S., Nau, D., Vago, C.: WFS + Branch and Bound = Stable Models. IEEE

TKDE 7(3), 362–377 (1995)
53. Wittocx, J., Mariën, M., Denecker, M.: The IDP system: a model expansion system for an ex-

tension of classical logic. In: Logic and Search, Computation of Structures from Declarative
Descriptions, LaSh 2008, Leuven, Belgium, pp. 153–165 (2008)

54. Ziller, S., Gebser, M., Kaufmann, B., Schaub, T.: An Introduction to claspfolio. Insti-
tute of Computer Science, University of Potsdam, Germany (2010), http://www.cs.
uni-potsdam.de/claspfolio/manual.pdf

http://xxx.lanl.gov/abs/cs/0003033v1
http://www.cs.uni-potsdam.de/claspfolio/manual.pdf
http://www.cs.uni-potsdam.de/claspfolio/manual.pdf

Author Index

Aguado, Felicidad 80
Aker, Erdi 311
Alferes, José Júlio 236, 272
Alviano, Mario 148, 388
Antoniou, Grigoris 193

Balduccini, Marcello 284
Baral, Chitta 12
Barilaro, Rosamaria 217
Barker, Steve 297
Baumann, Ringo 40
Bauters, Kim 67
Bikakis, Antonis 193
Brewka, Gerhard 211
Bria, Annamaria 388

Cabalar, Pedro 80, 370
Calimeri, Francesco 388
Carballido, José Luis 278
Catalano, Gelsomina 388
Costantini, Stefania 229
Cozza, Susanna 388

De Cock, Martine 67
Diéguez, Mart́ın 370
Drescher, Christian 26

Eiter, Thomas 26, 93, 107
Erdem, Esra 311
Erdogan, Ahmetcan 311

Faber, Wolfgang 388
Falappa, Marcelo A. 199
Fariñas del Cerro, Luis 223
Febbraro, Onofrio 317, 388
Fink, Michael 26, 93, 107, 120
Formisano, Andrea 229

Garćıa, Alejandro J. 199
Garćıa, Diego R. 199
Gebser, Martin 54, 345, 352, 358, 364
Gelfond, Michael 260
Genovese, Valerio 297
Ghionna, Lucantonio 120
Goebel, Randy 161

Gomes, Ana Sofia 272
Gonçalves, Ricardo 236
Gottifredi, Sebastián 199
Governatori, Guido 187
Greco, Gianluigi 148
Grote, Torsten 54

Herzig, Andreas 223

Ianni, Giovambattista 93, 388

Janhunen, Tomi 161, 242
Janota, Mikoláš 266
Järvisalo, Matti 304

Kaminski, Roland 54, 345, 352, 358, 364
Kaufmann, Benjamin 352, 364
Kern-Isberner, Gabriele 199
Knecht, Murat 358
König, Arne 345
Krennwallner, Thomas 26, 93
Krümpelmann, Patrick 199

Lam, Ho-Pun 187
Lee, Joohyung 248
Leite, João 174
Leone, Nicola 148, 388
Lierler, Yuliya 205
Lifschitz, Vladimir 205
Liu, Guohua 161

Manna, Marco 388
Marques-Silva, Joao 266
Martello, Alessandra 388
Moura, João 13

Nguyen, Ngoc-Hieu 331
Niemelä, Ilkka 161, 242

Oetsch, Johannes 134, 242, 254, 382
Osorio, Mauricio 278

Palla, Ravi 248
Panetta, Claudio 388
Patoglu, Volkan 311

406 Author Index

Pearce, David 10
Pérez, Gilberto 80
Perri, Simona 388
Pontelli, Enrico 331
Poole, David 1
Pührer, Jörg 134, 242, 382

Reale, Kristian 317, 388
Ricca, Francesco 217, 317, 388

Saad, Emad 211
Sakama, Chiaki 331
Santoro, Maria Carmela 388
Schaub, Torsten 54, 345, 352, 358, 364
Schneider, Marius Thomas 352
Schnor, Bettina 364
Schockaert, Steven 67
Schüller, Peter 93, 107
Seidl, Martina 382
Shen, Yi-Dong 376
Sirianni, Marco 388

Slota, Martin 174
Son, Tran Cao 331

Terracina, Giorgio 217, 388
Thimm, Matthias 199
Tompits, Hans 134, 242, 254, 382

Veltri, Pierfrancesco 388
Vermeir, Dirk 67
Vidal, Concepción 80
Viegas Damásio, Carlos 13

Walsh, Toby 26
Weinzierl, Antonius 120

You, Jia-Huai 161, 376

Zepeda, Claudia 278
Zhou, Neng-Fa 376
Ziller, Stefan 352
Zwickl, Patrick 382

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Logic, Probability and Computation: Foundations and Issues of Statistical Relational AI
	Introduction
	Motivation
	Representation
	Inference
	Learning
	Actions
	Identity and Existence Uncertainty
	Ontologies and Semantic Science
	Conclusions

	Foundations and Extensions of Answer Set Programming: The Logical Approach
	Lessons from Efforts to Automatically Translate English to Knowledge Representation Languages

	Technical Papers
	Long Technical Papers
	Modularity of P-Log Programs
	Introduction and Motivation
	Preliminaries
	P-Log Programs
	Modularity in Answer Set Programming

	P-Log Modules
	P-Log Module Theorem
	Conclusions and Future Work

	Symmetry Breaking for Distributed Multi-Context Systems
	Introduction
	Logical Background
	Algebraic Background
	Symmetry in Multi-Context Systems
	Distributed Symmetry Detection
	Symmetry Detection via Graph Automorphism
	Distributed Symmetry-Breaking Constraints
	Experiments
	Conclusion

	Splitting an Argumentation Framework
	Introduction
	Preliminaries
	Formal Foundation
	Splitting and Expansion
	Reduct, Undefined Set and Modification

	Splitting Results
	Monotonicity Result
	Splitting Theorem

	Dynamical Argumentation
	Computing Extensions
	Terms of Equivalence

	Related Work and Conclusions

	Reactive Answer Set Programming
	Introduction
	Background
	Reactive Answer Set Programming
	Reactive Modularity
	The Reactive ASP Solver oclingo
	Further Case Studies
	Discussion

	Communicating ASP and the Polynomial Hierarchy
	Introduction
	Background on Answer Set Programming
	Communicating Programs
	Multi-focused Answer Sets
	Related Work
	Conclusion

	Loop Formulas for Splitable Temporal Logic Programs
	Introduction
	Preliminaries
	Temporal Logic Programs
	Splitting a Temporal Logic Program
	Loop Formulas
	Conclusions

	Pushing Efficient Evaluation of HEX Programs by Modular Decomposition
	Introduction
	Preliminaries
	Formal Framework
	Evaluation
	Implementation and Experiments
	Discussion and Conclusion

	ApproximationsforExplanationsofInconsistencyinPartiallyKnownMulti-ContextSystems
	Introduction
	Preliminaries
	Information Hiding
	Approximations
	Limited Querying
	Discussion
	Related Work and Conclusion

	Relational Information Exchange and Aggregation in Multi-Context Systems
	Introduction
	Preliminaries
	MCSs with Relational Beliefs and Aggregates
	Relational Multi-Context Systems
	Aggregates
	Complexity

	Grounded Equlibria
	FLP Semantics
	SPT-PDB Semantics
	Ferraris Semantics

	Implementation and Initial Experiments
	Conclusion

	Stepping through an Answer-Set Program
	Introduction
	Preliminaries
	Stepping Framework
	Interactive Stepping
	Obtaining a Breakpoint
	Stepping
	Application Scenarios

	Related Work
	Conclusion

	Dynamic Magic Sets for Programs with Monotone Recursive Aggregates
	Introduction
	The DLPAm,s Language
	Magic Sets for DLPAm,s Programs
	Query Equivalence Theorem
	Experimental Results
	Conclusion

	Strong Equivalence of Logic Programs with Abstract Constraint Atoms
	Introduction
	Preliminaries
	Characterization of Strong and Uniform Equivalence
	Program Reduct
	Strong Equivalence
	Uniform Equivalence

	Constraint Replacements
	Conjunctive Encoding
	Disjunctive Encoding
	Shannon Encodings

	Interconnections to Some Existing Encodings
	Related Work
	Conclusion and Directions of Future Work

	Back and Forth between Rules and SE@汥瑀瑯步渠-Models
	Motivation
	Preliminaries
	Rule Equivalence Classes and Their Canonical Rules
	Canonical Rules
	Reconstructing Rules
	Sets of SE@汥瑀瑯步渠--Interpretations Representable by a Rule

	Discussion

	Short Technical Papers
	What are the Necessity Rules in Defeasible Reasoning?
	Introduction
	Basics of Defeasible Logic
	Inferiorly Defeated Rules
	Statement of Results
	Implementation and Some Experimental Results

	Related Works and Conclusions

	Partial Preferences and Ambiguity Resolution in Contextual Defeasible Logic
	Introduction
	Representation Model
	Argumentation Semantics
	Ambiguity Blocking Semantics
	Ambiguity Blocking with Team Defeat
	Ambiguity Propagating without Team Defeat
	Ambiguity Propagating with Team Defeat
	Properties

	Discussion

	On Influence and Contractions in Defeasible Logic Programming
	Introduction
	Defeasible Logic Programming
	Influence in Defeasible Logic Programs
	Rationality Postulates for Contraction in DeLP
	Conclusions

	Termination of Grounding Is Not Preserved by Strongly Equivalent Transformations
	Introduction
	The Example
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	Conclusion

	Aggregates in Answer Set Optimization
	Introduction
	ASOG Programs: Syntax
	ASOG Programs: Semantics

	Optimizing the Distributed Evaluation of Stratified Programs via Structural Analysis
	Introduction
	Single Rule Optimized Evaluation
	Evaluation of the Program
	Experiments

	Contingency-Based Equilibrium Logic
	Introduction
	The Logic of Contingency
	Models with at Most Two Points
	Contingency and the Logic of Here-and-There
	Contingency and Equilibrium Logic
	Conclusion

	Weight Constraints with Preferences in ASP
	Introduction
	RASP-Like Preferences in Cardinality Constraints
	Semantics
	Concluding Remarks

	Parametrized Equilibrium Logic
	Introduction
	Parametrized Equilibrium Logic
	Temporal Here-and-There Logic
	Conclusions

	Random vs. Structure-Based Testing of Answer-Set Programs: An Experimental Comparison
	Introduction
	Background
	Experimental Setup
	Results and Discussion

	Integrating Rules and Ontologies in the First-Order Stable Model Semantics (Preliminary Report)
	Introduction
	FOSM Based Hybrid KB
	Relating to DL+log by Rosati
	Relating to Nonmonotonic dl-Programs by Eiter et al.
	Conclusion

	Gentzen-Type Refutation Systems for Three-Valued Logics with an Application to Disproving Strong Equivalence
	Introduction
	Preliminaries
	The Refutation Calculi SRCL and SRCP
	An Application for Disproving Strong Equivalence

	New Semantics for Epistemic Specifications
	Introduction
	The New Definition of Epistemic Specifications

	cmMUS: A Tool for Circumscription-Based MUS Membership Testing
	Introduction
	Background
	cmMUS Description
	Experimental Results
	Summary

	Transaction Logic with External Actions
	Introduction
	Syntax and Oracles
	Model Theory
	Conclusions

	An Application of Clasp in the Study of Logics
	Introduction
	Background
	Hilbert Style
	Multi-valued Logics

	Main Contribution
	Conclusions

	Application Descriptions
	Long Application Description
	Industrial-Size Scheduling with ASP+CP
	Introduction
	Background
	Problem Definition
	Encoding and Solving Scheduling Problems
	Incremental and Penalty-Based Scheduling
	Conclusions

	Short Application Descriptions
	Secommunity: A Framework for Distributed Access Control
	Introduction
	Access Control Policies in ASP
	Implementation
	Querying External Sources
	Tests and Results

	Conclusions and Further Work

	Itemset Mining as a Challenge Application for Answer Set Enumeration
	Introduction
	Itemset Mining
	Itemsets as Answer Sets
	Experiments
	Conclusions

	Causal Reasoning for Planning and Coordination of Multiple Housekeeping Robots
	Introduction
	Representation of Housekeeping Domain
	Reasoning about Housekeeping Domain
	Monitoring the Cleaning Robots
	Conclusion

	System Descriptions
	Long System Descriptions
	ASPIDE: Integrated Development Environment for Answer Set Programming
	Introduction
	Main Features of ASPIDE
	Interface Overview and Implementation
	Usage Example
	Related Work
	Conclusion

	 ASP-Prolog for Negotiation among Dishonest Agents
	Introduction
	Background
	Abductive Logic Programming (ALP), Preferences, and Disinformation
	Negotiation Knowledge Base (n-KB)
	Negotiations Using n-KBs

	ASP-Prolog
	A Platform for Negotiation Systems
	ALP Modules
	Negotiation Agent
	Computing and Evaluating Proposals
	Agents: Responses, Strategies, and Negotiations
	A Program for Automated Negotiation

	Conclusion

	Short System Descriptions
	Advances in gringo Series 3
	Introduction
	Advances in gringo Series 3
	Discussion

	A Portfolio Solver for Answer Set Programming: Preliminary Report
	Introduction
	Architecture
	Experiments
	Discussion

	plasp: A Prototype for PDDL-Based Planning in ASP
	Introduction
	Architecture
	Compilations and Meta-Programs
	Experiments
	Discussion

	Cluster-Based ASP Solving with claspar
	Introduction
	Advances in claspar
	Search
	Nogood Exchange
	Optimization

	Experiments
	Search
	Nogood Exchange
	Optimization

	Discussion

	STeLP – A Tool for Temporal Answer Set Programming
	Introduction
	Splitable Temporal Logic Programs
	The Input Language
	Implementation

	Compiling Answer Set Programs into Event-Driven Action Rules
	Introduction
	The Procedure for Computing Answer Sets
	Right-to-Left Propagation
	Left-to-Right Propagation
	Seek-Support
	Labeling

	Translation from ASP into AR
	Performance Evaluation
	Conclusion

	VIDEAS: A Development Tool for Answer-Set Programs Based on Model-Driven Engineering Technology
	Introduction
	Answer-Set Programming with VIDEAS
	Implementation
	Conclusion and Future Work

	ASP Competition
	The Third Answer Set Programming Competition: Preliminary Report of the System Competition Track
	Introduction
	System Competition Format
	Competition Language Overview
	Participants
	Benchmark Suite
	Scoring System
	Software and Hardware Settings
	Results and Discussion
	Overall Results
	Polynomial Problems
	NP Problems
	Beyond-NP Problems

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

