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Chapter 3  
Surrogate-Based Methods* 

Slawomir Koziel, David Echeverría Ciaurri, and Leifur Leifsson 

Abstract. Objective functions that appear in engineering practice may come from 
measurements of physical systems and, more often, from computer simulations. In 
many cases, optimization of such objectives in a straightforward way, i.e., by ap-
plying optimization routines directly to these functions, is impractical. One reason 
is that simulation-based objective functions are often analytically intractable (dis-
continuous, non-differentiable, and inherently noisy). Also, sensitivity information 
is usually unavailable, or too expensive to compute. Another, and in many cases 
even more important, reason is the high computational cost of measure-
ment/simulations. Simulation times of several hours, days or even weeks per ob-
jective function evaluation are not uncommon in contemporary engineering, de-
spite the increase of available computing power. Feasible handling of these 
unmanageable functions can be accomplished using surrogate models: the optimi-
zation of the original objective is replaced by iterative re-optimization and updat-
ing of the analytically tractable and computationally cheap surrogate. This chapter 
briefly describes the basics of surrogate-based optimization, various ways of creat-
ing surrogate models, as well as several examples of surrogate-based optimization 
techniques.  
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3.1   Introduction 

Contemporary engineering is more and more dependent on computer-aided design 
(CAD). In most engineering fields, numerical simulations are used extensively, 
not only for design verification but also directly in the design process. As a matter 
of fact, because of increasing system complexity, ready-to-use theoretical (e.g., 
analytical) models are not available in many cases. Thus, simulation-driven design 
and design optimization becomes the only option to meet the specifications  
prescribed, improve the system reliability, or reduce the fabrication cost. 

The simulation-driven design can be formulated as a nonlinear minimization 
problem of the following form 

* arg min ( )f=
x

x x , (3.1) 

where f(x) denotes the objective function to be minimized evaluated at the point 
x ∈ Rn (x is the design variable vector). In many engineering problems f is of the 
form f(x) = U(Rf(x)), where Rf ∈ Rm denotes the response vector of the system of in-
terest (in particular, one may have m > n or even m >> n [1]), whereas U is a given 
scalar merit function. In particular, U can be defined through a norm that measures 
the distance between Rf(x) and a target vector y. An optimal design vector is denoted 
by x*. In many cases, Rf is obtained through computationally expensive computer 
simulations. We will refer to it as a high-fidelity or fine model. To simplify notation, 
f itself will also be referred to as the high-fidelity (fine) model. 

Unfortunately, a direct attempt to solve (3.1) by embedding the simulator di-
rectly in the optimization loop may be impractical. The underlying simulations can 
be very time-consuming (in some instances, the simulation time can be as long as 
several hours, days or even weeks per single design), and the presence of massive 
computing resources is not always translated in computational speedup. This latter 
fact is due to a growing demand for simulation accuracy, both by including mul-
tiphysics and second-order effects, and by using finer discretization of the structure 
under consideration. As conventional optimization algorithms (e.g., gradient-based 
schemes with numerical derivatives) require tens, hundreds or even thousands of 
objective function calls per run (that depends on the number of design variables), 
the computational cost of the whole optimization process may not be acceptable. 

Another problem is that objective functions coming from computer simulations 
are often analytically intractable (i.e., discontinuous, non-differentiable, and in-
herently noisy). Moreover, sensitivity information is frequently unavailable, or too 
expensive to compute. While in some cases it is possible to obtain derivative in-
formation inexpensively through adjoint sensitivities [2], numerical noise is an 
important issue that can complicate simulation-driven design. We should also 
mention that adjoint-based sensitivities require detailed knowledge of and access 
to the simulator source code, and this is something that cannot be assumed to be 
generally available. 

Surrogate-based optimization (SBO) [1,3,4] has been suggested as an effective 
approach for the design with time-consuming computer models. The basic concept  
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of SBO is that the direct optimization of the computationally expensive model is 
replaced by an iterative process that involves the creation, optimization and updat-
ing of a fast and analytically tractable surrogate model. The surrogate should be a 
reasonably accurate representation of the high-fidelity model, at least locally. The 
design obtained through optimizing the surrogate model is verified by evaluating 
the high-fidelity model. The high-fidelity model data obtained in this verification 
process is then used to update the surrogate. SBO proceeds in this predictor-
corrector fashion iteratively until some termination criterion is met. Because most 
of the operations are performed on the surrogate model, SBO reduces the compu-
tational cost of the optimization process when compared to optimizing the high-
fidelity model directly, without resorting to any surrogate. 

In this chapter, we review the basics of surrogate-based optimization. We brief-
ly present various ways of generating surrogate models, and we emphasize on the 
distinction between models based on function approximations of sampled high-
fidelity model data and models constructed from physically-based low-fidelity 
models. A few selected surrogate-based optimization algorithms including space 
mapping [1,5,6], approximation model management [7], manifold mapping [8], 
and the surrogate-management framework [9], are also discussed. We conclude 
the chapter with some final remarks. 

3.2   Surrogate-Based Optimization 

As mentioned in the introduction, there are several reasons why the straightfor-
ward optimization of the high-fidelity model may not work or can be impractical. 
These reasons include high computational cost of each model evaluation, numeri-
cal noise and discontinuities in the cost function. Surrogate-based optimization 
[3,5] aims at alleviating such problems by using an auxiliary model, the surrogate, 
that is preferably fast, amenable to optimization, and yet reasonably accurate. One 
popular approach for constructing surrogate models is through approximations of 
high-fidelity model data obtained by sampling the design space using appropriate 
design of experiments methodologies [3]. Some of these strategies for allocating 
samples [10], generating approximations [3,4,10], as well as validating the surro-
gates are discussed in Section 3.3.  

The surrogate model optimization yields an approximation of the minimizer as-
sociated to the high-fidelity model. This approximation has to be verified by eva-
luating the high-fidelity model at the predicted high-fidelity model minimizer. 
Depending on the result of this verification, the optimization process may be ter-
minated. Otherwise, the surrogate model is updated using the new available high-
fidelity model data, and then re-optimized to obtain a new, and hopefully better, 
approximation of the high-fidelity model minimizer.  

 
The surrogate-based optimization process can be summarized as follows  

(Fig. 3.1): 

1. Generate the initial surrogate model. 
2. Obtain an approximate solution to (3.1) by optimizing the surrogate. 
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3. Evaluate the high-fidelity model at the approximate solution computed in 
Step 2. 

4. Update the surrogate model using the new high-fidelity model data. 
5. Stop if the termination condition is satisfied; otherwise go to Step 2. 

The SBO framework can be formulated as an iterative procedure [3,5]:  

( 1) ( )arg min ( )i is+ =
x

x x . (3.2) 

This scheme generates a sequence of points (designs) x(i) that (hopefully) converge 
to a solution (or a good approximation) of the original design problem (3.1). Each 
x(i+1) is the optimal design of the surrogate model s(i), which is assumed to be a 
computationally cheap and sufficiently reliable representation of the fine model f, 
particularly in the neighborhood of the current design x(i). Under these assump-
tions, the algorithm (3.2) aims at a sequence of designs to quickly approach x*. 
Typically, and for verification purposes, the high-fidelity model is evaluated only 
once per iteration (at every new design x(i+1)). The data obtained from the valida-
tion is used to update the surrogate model. Because the surrogate model is compu-
tationally cheap, the optimization cost associated with (3.2) can—in many cases—
be viewed as negligible, so that the total optimization cost is determined by the 
evaluation of the high-fidelity model. Normally, the number of iterations often 
needed within a surrogate-based optimization algorithm is substantially smaller 
than for any method that optimizes the high-fidelity model directly (e.g., gradient-
based schemes with numerical derivatives) [5].  

If the surrogate model satisfies zero- and first-order consistency conditions with 
the high-fidelity model (i.e., s(i)(x(i)) = f (x(i)) and ∇s(i)(x(i)) = ∇f(x(i)) [7]; it should 
be noticed that the verification of the latter requires high-fidelity model  sensitivity 
data), and the surrogate-based algorithm is enhanced by, for example, a trust re-
gion method [11] (see Section 3.4.1), then the sequence of intermediate solutions 
is provably convergent to a local optimizer of the fine model [12] (some standard 
assumptions concerning the smoothness of the functions involved are also neces-
sary) [13]. Convergence can also be guaranteed if the SBO algorithm is embedded 
within the framework given in [5,14] (space mapping), [13] (manifold mapping) 
or [9] (surrogate management framework). A more detailed description of several 
surrogate-based optimization techniques is given in Section 3.4. 

Space mapping [1,5,6] is an example of a surrogate-based methodology that 
does not normally rely on using sensitivity data or trust region convergence safe-
guards; however, it requires the surrogate model to be constructed from a physi-
cally-based coarse model [1]. This usually gives remarkably good performance in 
the sense of the algorithm being able to locate a satisfactory design quickly. Un-
fortunately space mapping suffers from convergence problems [14] and it is sensi-
tive to the quality of the coarse model and the specific analytical formulation of 
the surrogate [15,16]. 
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Fig. 3.1 Flowchart of the surrogate-based optimization process. An approximate high-fidelity 
model minimizer is obtained iteratively by optimizing the surrogate model. The high-fidelity 
model is evaluated at each new design for verification purposes. If the termination condition is 
not satisfied, the surrogate model is updated and the search continues. In most cases the high-
fidelity model is evaluated only once per iteration. The number of iterations needed in SBO is 
often substantially smaller than for conventional (direct) optimization techniques. 

3.3   Surrogate Models 

The surrogate model is a key component of any SBO algorithm. It has to be com-
putationally cheap, preferably smooth, and, at the same time, reasonably accurate, 
so that it can be used to predict the location of high-fidelity model minimizers. We 
can clearly distinguish between physical and functional surrogate models. 

Physical (or physically-based) surrogates are constructed from an underlying 
low-fidelity (coarse) model. The low-fidelity model is a representation of the sys-
tem of interest with relaxed accuracy [1]. Coarse models are computationally 
cheaper than high-fidelity models and, in many cases, have better analytical prop-
erties. The low-fidelity model can be obtained, for example, from the same simu-
lator as the one used for the high-fidelity model but using a coarse discretization 
[17]. Alternatively, the low-fidelity model can be based on simplified physics 
(e.g., by exploiting simplified equations [1], or by neglecting certain second-order 
effects) [18], or on a significantly different physical description (e.g., lumped pa-
rameter versus partial differential equation based models [1]). In some cases, low-
fidelity models can be formulated using analytical or semi-empirical formulas 
[19]. The coarse model can be corrected if additional data from the high-fidelity 
model is available (for example, during the course of the optimization). 

In general, physical surrogate models are: 

• based on particular knowledge about the physical system of interest, 
• dedicated (reuse across different designs is uncommon), 
• more expensive to evaluate and more accurate (in a global sense) than 

functional surrogates. 
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It should be noticed that the evaluation of a physical surrogate may involve, for 
example, the numerical solution of partial differential equations or even actual 
measurements of the physical system. 

The main advantage of physically-based surrogates is that the amount of high-
fidelity model data necessary for obtaining a given level of accuracy is generally  
substantially smaller than for functional surrogates (physical surrogates inherently 
embed knowledge about the system of interest) [1]. Hence, surrogate-based opti-
mization algorithms that exploit physically-based surrogate models are usually 
more efficient than those using functional surrogates (in terms of the number of 
high-fidelity model evaluations required to find a satisfactory design) [5]. 

Functional (or approximation) surrogate models [20,4]: 

• can be constructed without previous knowledge of the physical system of 
interest, 

• are generic, and therefore applicable to a wide class of problems, 
• are based on (usually simple) algebraic models, 
• are often very cheap to evaluate but require considerable amount of data to 

ensure reasonable general accuracy. 

An initial functional surrogate can be generated using high-fidelity model data ob-
tained through sampling of the design space. Figure 3.2 shows the model construc-
tion flowchart for a functional surrogate. Design of experiments involves the use 
of strategies for allocating samples within the design space. The particular choice 
depends on the number of samples one can afford (in some occasions only a few 
points may be allowed), but also on the specific modeling technique that will be 
used to create the surrogate. Though in some cases the surrogate can be found us-
ing explicit formulas (e.g., polynomial approximation) [3], in most situations it is 
computed by means of a separate minimization problem (e.g., when using kriging 
[21] or neural networks [22]). The accuracy of the model should be tested in order 
to estimate its prediction/generalization capability. The main difficulty in obtain-
ing a good functional surrogate lies in keeping a balance between accuracy at the 
known and at the unknown data (training and testing set, respectively). The surro-
gate could be subsequently updated using new high-fidelity model data that is ac-
cumulated during the run of the surrogate-based optimization algorithm. 

In this section we first describe the fundamental steps for generating functional 
surrogates. Various sampling techniques are presented in Section 3.3.1. The surro-
gate creation and the model validations steps are tackled in Section 3.3.2 and Sec-
tion 3.3.3, respectively. If the quality of the surrogate is not sufficient, more data 
points can be added, and/or the model parameters can be updated to improve accu-
racy. Several correction methods, both for functional and physical surrogates, are 
described in Section 3.3.4. 
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Fig. 3.2 Surrogate model construction flowchart. If the quality of the model is not satisfac-
tory, the procedure can be iterated (more data points will be required). 

3.3.1   Design of Experiments 

Design of experiments (DOE) [23,24,25] is a strategy for allocating samples 
(points) in the design space that aims at maximizing the amount of information 
acquired. The high-fidelity model is evaluated at these points to create the training 
data set that is subsequently used to construct the functional surrogate model. 
When sampling, there is a clear trade-off between the number of points used and 
the amount of information that can be extracted from these points. The samples 
are typically spread apart as much as possible in order to capture global trends in 
the design space. 

Factorial designs [23] are classical DOE techniques that, when applied to dis-
crete design variables, explore a large region of the search space. The sampling of 
all possible combinations is called full factorial design. Fractional factorial de-
signs can be used when model evaluation is expensive and the number of design 
variables is large (in full factorial design the number of samples increases expo-
nentially with the number of design variables). Continuous variables, once discre-
tized, can be easily analyzed through factorial design. Full factorial two-level and 
three-level design (also known as 2k and 3k design) allows us to estimate main ef-
fects and interactions between design variables, and quadratic effects and interac-
tions, respectively. Figures 3.3(a) and 3.3(b) show examples of full two-level and 
fractional two-level design, respectively, for three design variables (i.e., n = 3). 
Alternative factorial designs can be found in practice: central composite design 
(see Figure 3.3(c)), star design (frequently used in combination with space map-
ping [26]; see Figure 3.3(d)), or Box-Behnken design (see Figure 3.3(e)). 
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      (a)                        (b)                          (c)                           (d)                          (e) 

Fig. 3.3 Factorial designs for three design variables (n = 3): (a) full factorial design, (b) 
fractional factorial design, (c) central composite design, (d) star design, and (e) Box-
Behnken design. 

If no prior knowledge about the objective function is available (typical while 
constructing the initial surrogate), some recent DOE approaches tend to allocate 
the samples uniformly within the design space [3]. A variety of space filling de-
signs are available. The simplest ones do not ensure sufficient uniformity (e.g., 
pseudo-random sampling [23]) or are not practical (e.g., stratified random sam-
pling, where the number of samples needed is on the order of 2n). One of the most 
popular DOE for (relatively) uniform sample distributions is Latin hypercube 
sampling (LHS) [27]. In order to allocate p samples with LHS, the range for each 
parameter is divided into p bins, which for n design variables, yields a total num-
ber of pn bins in the design space. The samples are randomly selected in the design 
space so that (i) each sample is randomly placed inside a bin, and (ii) for all one-
dimensional projections of the p samples and bins, there is exactly one sample in 
each bin. Figure 3.4 shows a LHS realization of 15 samples for two design vari-
ables (n = 2). It should be noted that the standard LHS may lead to non-uniform 
distributions (for example, samples allocated along the design space diagonal sat-
isfy conditions (i) and (ii)). Numerous improvements of standard LHS, e.g., [28]-
[31], provide more uniform sampling distributions. 

Other DOE methodologies commonly used include orthogonal array sampling 
[3], quasi-Monte Carlo sampling [23], or Hammersley sampling [23]. Sample dis-
tribution can be improved through the incorporation of optimization techniques 
that minimize a specific non-uniformity measure, e.g., 2

1 1

p p

iji j i
d −

= = +∑ ∑  [29], where 

dij is the Euclidean distance between samples i and j.  

 

 

Fig. 3.4 Latin hypercube sampling realization of 15 samples in a two-dimensional design 
space.  
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3.3.2   Surrogate Modeling Techniques 

Having selected the design of experiments technique and sampled the data, the 
next step is to choose an approximation model and a fitting methodology. In this 
section, we describe in some detail the most popular surrogate modeling tech-
niques, and we briefly mention alternatives.  

3.3.2.1   Polynomial Regression 

Polynomial regression [3] assumes the following relation between the function of 
interest f and K polynomial basis functions vj using p samples f(x(i)), i = 1, … , p:  

( ) ( )

1

( ) ( )
K

i i
j j

j

f vβ
=

=∑x x  .                                           (3.3) 

These equations can be represented in matrix form 

f = X β ,                                                          (3.4) 

where f = [f(x(1))  f(x(2))  …  f(x(p))]T , X is a p×K matrix containing the basis func-
tions evaluated at the sample points, and β = [β1  β2   …  βΚ]T. The number of 
sample points p should be consistent with the number of basis functions consid-
ered K (typically p ≥ K). If the sample points and basis function are taken arbitrar-
ily, some columns of X can be linearly dependent. If p ≥ K and rank(X) = K, a so-
lution of (3.4) in the least-squares sense can be computed through X +, the 
pseudoinverse (or generalized inverse) of X [32]: 

β = X + = (X T X) -1 X T f.                                              (3.5) 

The simplest examples of regression models are the first- and second-order order 
polynomial models  

1 2 0
1

( ) ([ ... ] )
n

T
n j j

j

s s x x x xβ β
=

= = +∑x  ,                                (3.6) 

1 2 0
1 1

( ) ([ ... ] )
n n n

T
n j j ij i j

j i j i

s s x x x x x xβ β β
= = ≤

= = + +∑ ∑∑x .                    (3.7) 

Polynomial interpolation/regression appears naturally and is crucial in developing 
robust and efficient derivative-free optimization algorithms. For more details, 
please refer to [33]. 

3.3.2.2   Radial Basis Functions 
Radial basis function interpolation/approximation [4,34] exploits linear combina-
tions of K radially symmetric functions φ 

( )

1

( ) (|| ||)
K

j
j

j

s λ φ
=

= −∑x x c ,                                             (3.8) 
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where λ = [λ1 λ2 … λK]T is the vector of model parameters, and c(j), j = 1, … , K, 
are the (known) basis function centers.   

As in polynomial regression the model parameters λ can be computed by 

1( )T T+ −= =λ Φ Φ Φ Φ f ,                                               (3.9) 

where again f = [f(x(1))  f(x(2))  …  f(x(p))]T, and the p×K matrix Φ  is defined as  

(1) (1) (1) (2) (1) ( )

(2) (1) (2) (2) (2) ( )

( ) (1) ( ) (2) ( ) ( )

(|| ||) (|| ||) (|| ||)

(|| ||) (|| ||) (|| ||)

(|| ||) (|| ||) (|| ||)

K

K

p p p K

φ φ φ
φ φ φ

φ φ φ

⎡ ⎤− − −
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

x c x c x c

x c x c x c
Φ

x c x c x c

.              (3.10) 

If we select p = K (i.e., the number of basis functions is equal to the number of 
samples), and if the centers of the basis functions coincide with the data points 
(and these are all different), Φ is a regular square matrix (and thus, λ = Φ–1 f). 

Typical choices for the basis functions are φ(r) = r, φ(r) = r3, or φ(r) = r2lnr 
(thin plate spline). More flexibility can be obtained by using parametric basis 
functions such as φ(r) = exp(−r2/2σ2) (Gaussian), φ(r) = (r2 + σ2)1/2 (multi-
quadric), or φ(r) = (r2 + σ2)−1/2 (inverse multi-quadric).  

3.3.2.3   Kriging 

Kriging is a popular technique to interpolate deterministic noise-free data 
[35,10,21,36]. Kriging is a Gaussian process [37] based modeling method, which 
is compact and cheap to evaluate. Kriging has been proven to be useful in a wide 
variety of fields (see, e.g., [4,38] for applications in optimization). 

In its basic formulation, kriging [35,10] assumes that the function of interest f is 
of the form 

( ) ( ) ( )Tf Z= +x g x β x ,                                                  (3.11) 

where g(x) = [g1(x)  g2(x)  …  gK(x)]T are known (e.g., constant) functions, 
β = [β1 β2 … βK]T are the unknown model parameters, and Z(x) is a realization of 
a normally distributed Gaussian random process with zero mean and variance σ2.  

The regression part g(x)Tβ approximates globally the function f, and Z(x) takes 
into account localized variations. The covariance matrix of Z(x) is given as  

( ) ( ) 2 ( ) ( )[ ( ) ( )] ([ ( , )])i j i jCov Z Z Rσ=x x R x x ,                              (3.12) 

where R is a p×p correlation matrix with Rij = R(x(i),x(j)). Here, R(x(i), x(j)) is the 
correlation function between sampled data points x(i) and x(j). The most popular 
choice is the Gaussian correlation function  

2

1
( , ) exp | |

n

k k kk
R x yθ

=
⎡ ⎤= − −⎣ ⎦∑x y  ,                                 (3.13) 

where θk are unknown correlation parameters, and xk and yk are the kth component 
of the vectors x and y, respectively. 



Surrogate-Based Methods 43
 

The kriging predictor [10,35] is defined as 

1( ) ( ) ( ) ( )T Ts −= + −x g x β r x R f Gβ ,                                  (3.14) 

where r(x) = [R(x, x(1)) … R(x, x(p))]T,  f = [f(x(1))  f(x(2))  …  f(x(p))]T, and G is a 
p×K matrix with Gij = gj(x

(i)).  
The vector of model parameters β can be computed as 

1 1 1( )T T− − −=β G R G G R f .                                           (3.15)  

An estimate of the variance σ2 is given by 

2 11
ˆ ( ) ( )T

p
σ −= − −f Gβ R f Gβ .                                        (3.16) 

Model fitting is accomplished by maximum likelihood for θk [35]. In particular, the 
n-dimensional unconstrained nonlinear maximization problem with cost function  

2ˆ( ln( ) ln | |) / 2p σ− + R ,                                               (3.17) 

where the variance σ2 and |R| are both functions of θk, is solved for positive values 
of θk as optimization variables. 

It should be noted that, once the kriging-based surrogate has been obtained, the 
random process Z(x) gives valuable information regarding the approximation error 
that can be used for improving the surrogate [4,35].  

3.3.2.4   Neural Networks 

The basic structure in a neural network [39,40] is the neuron (or single-unit per-
ceptron). A neuron performs an affine transformation followed by a nonlinear op-
eration (see Fig. 3.5(a)). If the inputs to a neuron are denoted as x1, …, xn, the neu-
ron output y is computed as 

1

1 exp( / )
y

Tη
=

+ −
 ,                                                (3.18) 

where η = w1x1 + … + wnxn + γ , with w1, …, wn being regression coefficients. 
Here, γ is the bias value of a neuron, and T is a user-defined (slope) parameter. 
Neurons can be combined in multiple ways [39]. The most common neural net-
work architecture is the multi-layer feed-forward network (see Fig. 3.5(b)). 

The construction of a functional surrogate based on a neural network requires 
two main steps: (i) architecture selection, and (ii) network training. The network 
training can be stated as a nonlinear least-squares regression problem for a number 
of training points. Since the optimization cost function is nonlinear in all the opti-
mization variables (neurons coefficients), the solution cannot be written using a 
closed-form expression, as it was the case before in (3.5) or in (3.9). A very popular 
technique for solving this regression problem is the error back-propagation algo-
rithm [10,39]. If the network architecture is sufficiently complex, a neural network  
 



44 S. Koziel, D. Echeverría Ciaurri, and L. Leifsson
 

can approximate a general set of functions [10]. However, in complicated cases 
(e.g., nonsmooth functions with a large number of variables) the underlying re-
gression problem may be significantly involved. 
 

        

      (a)                                  (b) 

Fig. 3.5. Neural networks: (a) neuron basic structure; (b) two-layer feed-forward neural net-
work architecture. 

3.3.2.5   Other Techniques 

The techniques described in this section refer to some other approaches that are 
gaining popularity recently. One of the most prominent approaches, which has been 
observed as a very general approximation tool, is support vector regression (SVR) 
[41,42]. SVR resorts to quadratic programming for a robust solving of the underly-
ing optimization in the approximation procedure [43]. SVR is a variant of the sup-
port vector machines (SVMs) methodology developed by Vapnik [44], which was 
originally applied to classification problems. SVR/SVM exploits the structural risk 
minimization (SRM) principle, which has been shown (see, e.g., [41]) to be supe-
rior to the traditional empirical risk minimization (ERM) principle employed by 
several modeling technologies (e.g., neural networks). ERM is based on minimiz-
ing an error function for the set of training points. When the model structure is 
complex (e.g., higher order polynomials), ERM-based surrogates often result in 
overfitting. SRM incorporates the model complexity in the regression, and there-
fore yields surrogates that may be more accurate outside of the training set. 

Moving least squares (MLS) [45] is a technique particularly popular in aero-
space engineering. MLS is formulated as weighted least squares (WLS) [46]. In 
MLS, the error contribution from each training point x(i) is multiplied by a weight 
ωi that depends on the distance between x and x(i). A common choice for the 
weights is 

    ( ) ( ) 2(|| ||) exp( || || )i i
iω − = − −x x x x  .                                  (3.19) 

MLS is essentially an adapting surrogate, and this additional flexibility can be 
translated in more appealing designs (especially in computer graphics applications). 
However, MLS is computationally more expensive than WLS, since computing the 
approximation for each point x requires solving a new optimization problem. 
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Gaussian process regression (GPR) [47] is a surrogate modeling technique that, as 
kriging, addresses the approximation problem from a stochastic point view. From this 
perspective, and since Gaussian processes are mathematically tractable, it is relatively 
easy to compute error estimations for GPR-based surrogates in the form of uncer-
tainty distributions. Under appropriate conditions, Gaussian processes can be shown 
to be equivalent to large neural networks [47]. Nevertheless, Gaussian process 
modeling typically requires much less regression parameters than neural networks. 

3.3.3   Model Validation 

Some of the methodologies described above determine a surrogate model together 
with some estimation of the attendant approximation error (e.g., kriging or Gaus-
sian process regression). Alternatively, there are procedures that can be used in a 
stand-alone manner to validate the prediction capability of a given model beyond 
the set of training points. A simple way for validating a model is the split-sample 
method [3]. In this algorithm, the set of available data samples is divided into two 
subsets. The first subset is called the training subset and contains the points consid-
ered for the construction of the surrogate. The second subset is the testing subset 
and serves purely as a model validation objective. In general, the error estimated by 
a split-sample method depends strongly on how the set of data samples is parti-
tioned. We also note that in this approach the samples available do not appear to be 
put to good use, since the surrogate is based on only a subset of them. 

Cross-validation [3,48] is an extremely popular methodology for verifying the 
prediction capabilities of a model generated from a set of samples. In cross-
validation the data set is divided into L subsets, and each of these subsets is se-
quentially used as testing set for a surrogate constructed on the other L–1 subsets. 
If the number of subsets L is equal to the sample size p, the approach is called 
leave-one-out cross-validation [3]. The prediction error can be estimated with all 
the L error measures obtained in this process (for example, as an average value). 
Cross-validation provides an error estimation that is less biased than with the split-
sample method [3]. The disadvantage of this method is that the surrogate has to be 
constructed more than once. However, having multiple approximations may im-
prove the robustness of the whole surrogate generation and validation approach, 
since all the data available is used with both training and testing purposes. 

3.3.4   Surrogate Correction 

In the first stages on any surrogate-based optimization procedure, it is desirable to 
use a surrogate that is valid globally in the search space [4] in order to avoid being 
trapped in local solutions with unacceptable cost function values. Once the search 
starts becoming local, the global accuracy of the initial surrogate may not be bene-
ficial for making progress in the optimization1. For this reason, surrogate correc-
tion is crucial within any SBO methodology. 
                                                           
1 As mentioned in Section 3.2, when solving the original optimization problem in (3.1)  

using a surrogate-based optimization framework, zero- and first-order local consistency 
conditions are essential for obtaining convergence to a first-order stationary point. 
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In this section we will describe two strategies for improving surrogates locally. 
The corrections described in Section 3.3.4.1 are based on mapping objective func-
tion values. In some occasions, the cost function can be expressed as a function of 
a model response. Section 3.3.4.2 presents the space-mapping concept that gives 
rise to a whole surrogate-based optimization paradigm (see Section 3.4.2). 

3.3.4.1   Objective Function Correction 

Most of the objective function corrections used in practice can be identified in one 
of these three groups: compositional, additive or multiplicative corrections. We will 
briefly illustrate each of these categories for correcting the surrogate s(i)(x), and dis-
cuss if zero- and first-order consistency conditions with f(x) [7] can be satisfied. 

The following compositional correction [20] 

( 1) ( )( ) ( ( ))i is g s+ =x x                                                  (3.20) 

represents a simple scaling of the objective function. Since the mapping g is a real-
valued function of a real variable, a compositional correction will not in general 
yield first-order consistency conditions. By selecting a mapping g that satisfies  

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )
'( ( ))

( ) ( )

i i i T
i i

i i i i T

f s
g s

s s

∇ ∇=
∇ ∇

x x
x

x x
,                                 (3.21) 

the discrepancy between ∇f(x(i)) and ∇s(i+1)(x(i)) (expressed in Euclidean norm) is 
minimized. It should be noticed that the correction in (3.21), as many transforma-
tions that ensure first-order consistency, requires a high-fidelity gradient, which 
may be expensive to compute. However, numerical estimates of ∇f(x(i)) may yield 
in practice acceptable results. 

The compositional correction can be also introduced in the parameter space [1] 

( 1) ( )( ) ( ( ))i is s+ =x p x .                                                (3.22) 

If f(x(i)) is not in the range of s(i)(x), then the condition s(i)(p(x(i))) = f(x(i)) is not 
achievable. We can overcome that issue by combining both compositional correc-
tions. In that case, the following selection for g and p 

( ) ( ) ( )( ) ( ) ( )i i ig t t s f= − +x x ,                                            (3.23) 

( ) ( )( ) ( )i i= + −pp x x J x x ,                                              (3.24) 

where Jp is a n×n matrix for which Jp
T ∇s(i)=∇f(x(i)), guarantees consistency. 

Additive and multiplicative corrections allow obtaining first-order consistency 
conditions. For the additive case we can generally express the correction as  

( 1) ( )( ) ( ) ( )i is sλ+ = +x x x .                                                (3.25) 

The associated consistency conditions require that λ(x) satisfies 

( ) ( ) ( ) ( )( ) ( ) ( )i i i if sλ = −x x x ,                                             (3.26) 

and  



Surrogate-Based Methods 47
 

( ) ( ) ( ) ( )( ) ( ) ( )i i i if sλ∇ = ∇ − ∇x x x .                                       (3.27) 

Those requirements can be obtained by the following linear additive correction: 

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ( ) ( ))( ) ( )i i i i i i i i is f s f s s+ = − + ∇ − ∇ − +x x x x x x x x .        (3.28) 

Multiplicative corrections (also known as the β-correlation method [20]) can be 
represented generically by 

( 1) ( )( ) ( ) ( )i is sα+ =x x x .                                              (3.29) 

Assuming that s(i)(x(i)) ≠ 0, zero- and first-order consistency can be achieved if 

( )
( )

( ) ( )

( )
( )

( )

i
i

i i

f

s
α = x

x
x

,                                          (3.30) 

and  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) [ ( ) ( ) / ( ) ( )] / ( )i i i i i i i i if f s s sα∇ = ∇ − ∇x x x x x x .              (3.31) 

The requirement s(i)(x(i)) ≠ 0 is not strong in practice since very often the range of 
f(x) (and thus, of the surrogate s(i)(x)) is known beforehand, and hence, a bias can 
be introduced both for f(x) and s(i)(x) to avoid cost function values equal to zero. 
In these circumstances the following multiplicative correction  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( 1) ( ) ( )

( ) ( ) ( ) ( ) 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ( ))
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s s

s s
+ ⎡ ⎤∇ − ∇= + −⎢ ⎥

⎣ ⎦

x x x x x
x x x x

x x
,   (3.32) 

is consistent with conditions (3.30) and (3.31).  

3.3.4.2   Space Mapping Concept 

Space mapping (SM) [1,5,6] is a well-known methodology for correcting a given 
(either functional or physical) surrogate. SM algorithms aim at objective functions 
f(x) that can be written as a functional U of a so-called system response Rf(x)∈Rm 

( ) ( ( ))ff U=x R x .                                               (3.33) 

The fine model response Rf(x) is assumed to be accurate but computationally ex-
pensive. The coarse model response Rc(x)∈Rm is much cheaper to evaluate than 
the fine model response at the expense of being an approximation of it. SM estab-
lishes a correction between model responses rather than between objective func-
tions. The corrected model response will be denoted as Rs(x; pSM) ∈ Rm, and pSM 
represents a set of parameters that describes the type of correction performed. 

We can find in the literature four different groups of coarse model response 
corrections [1,5]: 
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1. Input space mapping [1]. The response correction is based on an affine 
transformation on the low-fidelity model parameter space. Example: 
Rs(x; pSM) = Rs(x; B,c) = Rc(B x + c).  

2. Output space mapping [5]. The response correction is based on an affine 
transformation on the low-fidelity model response. Example: 
Rs(x; pSM) = Rs(x; A,d) = A Rc(x)+d. Manifold-mapping (see Section 3.4.3) 
is a particular case of output space mapping. 

3. Implicit space mapping [49]. In some cases, there are additional parameters 
xp ∈Rnp in the coarse model response Rc(x; xp) that can be tuned for better 
aligning of the fine and coarse model responses. Example: 
Rs(x; pSM) = Rs(x; xp) = Rc(x; xp). These additional parameters are known in 
SM lexicon as pre-assigned parameters, and are in general different from 
the optimization variables x. 

4. Custom corrections that exploit the structure of the given design prob-
lem [1]. In many occasions the model responses are obtained through the 
sweeping of some parameter t:  

1 2( ) ( ; ) [ ( ; ) ( ; ) ... ( ; )]T
f f f f f mt R t R t R t= =R x R x x x x ,             (3.34) 

1 2( ) ( ; ) [ ( ; ) ( ; ) ... ( ; )]T
c c c c c mt R t R t R t= =R x R x x x x .              (3.35) 

 Examples of this situation appear when the parameter t represents time or 
frequency. The response correction considered in this case2 could be based 
on an affine transformation on the sweeping parameter space:  

0 1 0 1( ; ) ( ; , ) ( ; )s SM s cr r r rt= = +R x p R x R x .                         (3.36) 

In Fig. 3.6 we illustrate by means of block diagrams the four SM-based correction 
strategies introduced above, together with a combination of three of them. 

The surrogate response is usually optimized with respect to the SM parame-
ters pSM in order to reduce the model discrepancy for all or part of the data avail-
able Rf(x

(1)), Rf(x
(2)), … , Rf (x

(p)): 

( ) ( ) ( )

1
arg min || ( ) ( ; ) ||

SM

p k k k
SM f s SMk

ω
=

= −∑
p

p R x R x p ,                           (3.37) 

where 0 ≤ ω(k) ≤ 1 are weights for each of the samples. The corrected surrogate 
Rs(x; pSM) can be used as an approximation to the fine response Rf(x) in the vicin-
ity of the sampled data. The minimization in (3.37) is known in SM literature as 
parameter extraction [1]. The solving of this optimization process is not exempt 
from difficulties, since in many cases the problem is ill-conditioned. We can find 
in [1] a number of techniques for addressing parameter extraction in a robust 
manner. 
 

                                                           
2 This type of space mapping is known as frequency space mapping [4], and it was origi-

nally proposed in microwave engineering applications (in these applications t usually  
refers to frequency). 
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Fig. 3.6 Basic space-mapping surrogate correction types: (a) input SM, (b) output SM, (c) 
implicit SM, (d) frequency SM, and (e) composite using input, output and frequency SM.  

3.4   Surrogate-Based Optimization Techniques 

In this section, we will introduce several optimization strategies that exploit surro-
gate models. More specifically, we will describe approximation model manage-
ment optimization [7], space mapping [5], manifold mapping [8], and the  
surrogate management framework [9]. The first three approaches follow the sur-
rogate-based optimization framework presented in Section 3.2. We will conclude 
the section with a brief discussion on addressing the tradeoff between exploration 
and/or exploitation in the optimization process. 
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3.4.1   Approximation Model Management Optimization 

Approximation model management optimization (AMMO) [7] relies on trust-
region gradient-based optimization combined with the multiplicative linear surro-
gate correction (3.32) introduced in Section 3.3.4.1. 

The basic AMMO algorithm can be summarized as follows: 

1. Set initial guess x(0), s(0)(x), and i = 0, and select the initial trust-region ra-
dius δ > 0. 

2. If i > 0, then s(i)(x) = α(x) s(i-1)(x). 
3. Solve h* = argmin s(i)(x(i) + h) subject to ||h||∞ ≤ δ . 
4. Calculate ρ = (f(x(i)) – f(x(i) + h*))/(s(x(i)) – s(i)(x(i) + h*)). 
5. If f(x(i)) >  f(x(i) + h*), then set x(i+1) = x(i) + h*; otherwise x(i+1) = x(i). 
6. Update the search radius δ based on the value of ρ. 
7. Set i = i + 1, and if the termination condition is not satisfied, go to Step 2. 

Additional constraints can also be incorporated in the optimization through Step 3. 
AMMO can also be extended to cases where the constraints are expensive to 
evaluate and can be approximated by surrogates [50].  The search radius δ is up-
dated using the standard trust-region rules [11,51]. We reiterate that the surrogate 
correction considered yields zero- and first-order consistency with f(x). Since this 
surrogate-based approach is safeguarded by means of a trust-region method, the 
whole scheme can be proven to be globally convergent to a first-order stationary 
point of the original optimization problem (3.1).  

3.4.2   Space Mapping 

The space mapping (SM) paradigm [1,5] was originally developed in microwave 
engineering optimal design applications, and gave rise to an entire family of sur-
rogate-based optimization approaches. Nowadays, its popularity is spreading 
across several engineering disciplines [52,53,1]. The initial space-mapping opti-
mization methodologies were based on input SM [1], i.e., a linear correction of the 
coarse model design space. This kind of correction is well suited for many engi-
neering problems, particularly in electrical engineering, where the model discrep-
ancy is mostly due to second-order effects (e.g., presence of parasitic compo-
nents). In these applications the model response ranges are often similar in shape, 
but slightly distorted and/or shifted with respect to a sweeping parameter 
(e.g., signal frequency). 

Space mapping can be incorporated in the SBO framework by just identifying 
the sequence of surrogates with 

(0) ( ) ( ( ))cs U R=x x ,                                              (3.38) 

and 

( ) ( )( ) ( ( ; ))i i
s SMs U R=x x p ,                                              (3.39) 
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for i > 0. The parameters pSM
(i) are obtained by parameter extraction as in (3.37). 

The accuracy of the corrected surrogate will clearly depend on the quality of the 
coarse model response [16]. In microwave design applications it has been many 
times observed that the number of points p needed for obtaining a satisfactory SM-
based corrected surrogate is on the order of the number of optimization variables n 
[1]. Though output SM can be used to obtain both zero- and first-order consistency 
conditions with f(x), many other SM-based optimization algorithms that have been 
applied in practice do not satisfy those conditions, and in some occasions conver-
gence problems have been identified [14]. Additionally, the choice of an adequate 
SM correction approach is not always obvious [14]. However, in multiple occa-
sions and in several different disciplines [52,53,1], space mapping has been re-
ported as a very efficient means for obtaining satisfactory optimal designs. 

Convergence properties of space-mapping optimization algorithms can be 
improved when these are safeguarded by a trust region [54]. Similarly to AMMO, 
the SM surrogate model optimization is restricted to a neighborhood of x(i) (this 
time by using the Euclidean norm) as follows 

( 1) ( ) ( ) ( )
2arg min ( ) subject to || ||i i i is δ+ = − ≤

x
x x x x ,                      (3.40) 

where δ(i) denotes the trust-region radius at iteration i. The trust region is updated 
at every iteration by means of precise criteria [11]. A number of enhancements for 
space mapping have been suggested recently in the literature (e.g., zero-order and 
aproximate/exact first order consistency conditions with f(x) [54], or adaptively 
constrained parameter extraction [55]). 

The quality of a surrogate within space mapping can be assessed by means of 
the techniques described in [14,16]. These methods are based on evaluating the 
high-fidelity model at several points (and thus, they require some extra 
computational effort). With that information, some conditions required for 
convergence are approximated numerically, and as a result, low-fidelity models 
can be compared based on these approximate conditions. The quality assessment 
algorithms presented in [14,16] can also be embedded into SM optimization 
algorithms in order to throw some light on the delicate issue of selecting the most 
adequate SM surrogate correction.  

It should be emphasized that space mapping is not a general-purpose 
optimization approach. The existence of the computationally cheap and 
sufficiently accurate low-fidelity model is an important prerequisite for this 
technique. If such a coarse model does exist, satisfactory designs are often 
obtained by space mapping after a relatively small number of evaluations of the 
high-fidelity model. This number is usually on the order of the number of 
optimization variables n [14], and very frequently represents a dramatic reduction 
in the computational cost required for solving the same optimization problem with 
other methods that do not rely on surrogates. In the absence of the above-
mentioned low-fidelity model, space-mapping optimization algorithms may not 
perform efficiently.  
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3.4.3   Manifold Mapping 

Manifold mapping (MM) [8,56] is a particular case of output space mapping, that 
is supported by convergence theory [13,56], and does not require the parameter 
extraction step shown in (3.37). Manifold mapping can be integrated in the SBO 
framework by just considering s(i)(x) = U(Rs

(i)(x)) with the response correction for 
i ≥ 0 defined as  

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )i i i i
s f c c= + −R x R x S R x R x ,                             (3.41) 

where S(i), for i ≥ 1, is the following m×m matrix  
( ) †i = Δ ΔS F C ,                                                   (3.42) 

with 

( ) ( 1) ( ) (max{ ,0})[ ( ) ( ) ... ( ) ( )]i i i i n
f f f f

− −Δ = − −F R x R x R x R x ,                 (3.43) 

( ) ( 1) ( ) (max{ ,0})[ ( ) ( ) ... ( ) ( )]i i i i n
c c c c

− −Δ = − −C R x R x R x R x .                   (3.44) 

The matrix S(0) is typically taken as the identity matrix Im. Here, † denotes the 
pseudoinverse operator defined for ΔC as 

† † T
Δ Δ ΔΔ = C C CC V Σ U ,                                                 (3.45) 

where UΔC, ∑ΔC, and VΔC are the factors in the singular value decomposition of 
ΔC. The matrix ∑ΔC

†  is the result of inverting the nonzero entries in ∑ΔC, leaving 
the zeroes invariant [8]. Some mild general assumptions on the model responses 
are made in theory [56] so that every pseudoinverse introduced is well defined.  

The response correction Rs
(i)(x) is an approximation of  

* * * *( ) ( ) ( ( ) ( ))s f c c= + −R x R x S R x R x ,                                 (3.46) 

with S * being the m×m matrix defined as 

* * † *( ) ( )cJ J= fS x x ,                                                (3.47) 

where Jf (x
*) and Jc(x

*) stand for the fine and coarse model response Jacobian, re-
spectively, evaluated at x*. Obviously, neither x* nor S * is known beforehand. 
Therefore, one needs to use an iterative approximation, such as the one in (3.41)-
(3.45), in the actual manifold-mapping algorithm. 

The manifold-mapping model alignment is illustrated in Fig. 3.7 for the least-
squares optimization problem 

2
2( ( )) || ( ) ||U = −f fR x R x y ,                                          (3.48) 

with y ∈ Rm being the design specifications given. In that figure the point xc
* de-

notes the minimizer corresponding to the coarse model cost function U(Rc(x)). We 
note that, in absence of constraints, the optimality associated to (3.48) is translated 
into the orthogonality between the tangent plane for Rf (x) at x* and the vector 
Rf(x

*) - y. 
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If the low-fidelity model has a negligible computational cost when compared to 
the high-fidelity one, the MM surrogate can be explored globally. The MM algo-
rithm is in this case endowed with some robustness with respect to being trapped 
in unsatisfactory local minima.  

For least-squares optimization problems as in (3.48), manifold mapping is sup-
ported by mathematically sound convergence theory [13]. We can identify four 
factors relevant for the convergence of the scheme above to the fine model opti-
mizer x*: 

1. The model responses being smooth. 
2. The surrogate optimization in (3.2) being well-posed. 
3. The discrepancy of the optimal model response Rf(x

*) with respect to the 
design specifications being sufficiently small. 

4. The low-fidelity model response being a sufficiently good approximation 
of the high-fidelity model response.   

In most practical situations the requirements associated to the first three factors are 
satisfied, and since the low-fidelity models often considered are based on expert 
knowledge accumulated over the years, the similarity between the model re-
sponses can be frequently good enough for having convergence. 

Manifold-mapping algorithms can be expected to converge for a merit function 
U sufficiently smooth. Since the correction in (3.41) does not involve U, if the 
model responses are smooth enough, and even when U is not differentiable, mani-
fold mapping may still yield satisfactory solutions. The experimental evidence 
given in [57] for designs based on minimax objective functions indicates that the 
MM approach can be used successfully in more general situations than those for 
which theoretical results have been obtained. 

The basic manifold-mapping algorithm can be modified in a number of ways. 
Convergence appears to improve if derivative information is introduced in the al-
gorithm [13]. The incorporation of a Levenberg-Marquardt strategy in manifold 
mapping [58] can be seen as a convergence safeguard analogous to a trust-region 
method [11]. Manifold mapping can also be extended to designs where the con-
straints are determined by time-consuming functions, and for which surrogates are 
available as well [59]. 

3.4.4   Surrogate Management Framework 

The surrogate management framework (SMF) [9] is mainly based on pattern 
search. Pattern search [60] is a general set of derivative-free optimizers that can be 
proven to be globally convergent to first-order stationary points. A pattern search 
optimization algorithm is based on exploring the search space by means of a struc-
tured set of points (pattern or stencil) that is modified along iterations. The pattern 
search scheme considered in [9] has two main steps per iteration: search and poll. 
Each iteration starts with a pattern of size Δ centered at x(i). The search step is op-
tional and is always performed before the poll step. In the search stage a (small) 
number of points are selected from the search space (typically by means of a sur-
rogate), and the cost function f(x) is evaluated at these points. If the cost function  
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Fig. 3.7 Illustration of the manifold-mapping model alignment for a least-squares optimiza-
tion problem. The point xc

* denotes the minimizer corresponding to the coarse model re-
sponse, and the point y is the vector of design specifications. Thin solid and dashed straight 
lines denote the tangent planes for the fine and coarse model response at their optimal de-
signs, respectively. By the linear correction S *, the point Rc(x

*) is mapped to Rf(x
*), and 

the tangent plane for Rc(x) at Rc(x
*) to the tangent plane for Rf(x) at Rf(x

*) [13]. 

 
for some of them improves on f(x(i)) the search step is declared successful, the cur-
rent pattern is centered at this new point, and a new search step is started. Other-
wise a poll step is taken. Polling requires computing f(x) for points in the pattern. 
If one of these points is found to improve on f(x(i)), the poll step is declared suc-
cessful, the pattern is translated to this new point, and a new search step is per-
formed. Otherwise the whole pattern search iteration is considered unsuccessful 
and the termination condition is checked. This stopping criterion is typically based 
on the pattern size Δ [9,61]. If, after the unsuccessful pattern search iteration an-
other iteration is needed, the pattern size Δ is decreased, and a new search step is 
taken with the pattern centered again at x(i). Surrogates are incorporated in the 
SMF through the search step. For example, kriging (with Latin hypercube sam-
pling) is considered in the SMF application studied in [61].  

In order to guarantee convergence to a stationary point, the set of vectors 
formed by each pattern point and the pattern center should be a generating (or 
positive spanning) set [60,61]. A generating set for Rn consists of a set of vectors 
whose non-negative linear combinations span Rn. Generating sets are crucial in 
proving convergence (for smooth objective functions) due to the following prop-
erty: if a generating set is centered at x(i) and ∇f(x(i)) ≠ 0, then at least one of the 
vectors in the generating set defines a descent direction [60]. Therefore, if f(x) is 
smooth and ∇f(x(i)) ≠ 0, we can expect that for a pattern size Δ small enough, some 
of the points in the associated stencil will improve on f(x(i)). 

Though pattern search optimization algorithms typically require many more 
function evaluations than gradient-based techniques, the computations in both the 
search and poll steps can be performed in a distributed fashion. On top of that, the 
use of surrogates, as is the case for the SMF, generally accelerates noticeably the 
entire optimization process. 



Surrogate-Based Methods 55
 

3.4.5   Exploitation versus Exploration  

The surrogate-based optimization framework starts from an initial surrogate model 
which is updated using the high-fidelity model data that is accumulated in the op-
timization process. In particular, the high-fidelity model has to be evaluated for 
verification at any new design x(i) provided by the surrogate model. The new 
points at which we evaluate the high-fidelity model are sometimes referred to as 
infill points [4]. We reiterate that this data can be used to enhance the surrogate. 
The selection of the infill points is also known as adaptive sampling [4]. 

Infill points in approximation model management optimization, space mapping 
and manifold mapping are in practice selected through local optimization of the 
surrogate (global optimization for problems with a medium/large number of vari-
ables and even relatively inexpensive surrogates can be a time-consuming proce-
dure). The new infill points in the surrogate management framework are taken 
based only on high-fidelity cost function improvement. As we have seen in this 
section, the four surrogate-based optimization approaches discussed are supported 
by local optimality theoretical results. In other words, these methodologies intrin-
sically aim at the exploitation of certain region of the design space (the neighbor-
hood of a first-order stationary point). If the surrogate is valid globally, the first it-
erations of these four optimization approaches can be used to avoid being trapped 
in unsatisfactory local solutions (i.e., global exploration steps). 

The exploration of the design space implies in most cases a global search. If the 
underlying objective function is non-convex, exploration usually boils down to 
performing a global sampling of the search space, for example, by selecting those 
points that maximize some estimation of the error associated to the surrogate con-
sidered [4]. It should be stressed that global exploration is often impractical, espe-
cially for computationally expensive cost functions with a medium/large number 
of optimization variables (more than a few tens). Additionally, pure exploration 
may not be a good approach for updating the surrogate in an optimization context, 
since a great amount of computing resources can be spent in modeling parts of the 
search space that are not interesting from an optimal design point of view. 

Therefore, it appears that in optimization there should be a balance between ex-
ploitation and exploration. As suggested in [4], this tradeoff could be formulated 
in the context of surrogate-based optimization, for example, by means of a bi-
objective optimization problem (with global measure of the error associated to the 
surrogate as second objective function), by maximizing the probability of im-
provement upon the best observed objective function value, or through the maxi-
mization of the expected cost function improvement. As mentioned above, these 
hybrid approaches will find difficulties in performing an effective global search in 
designs with a medium/large number of optimization variables. 

3.5   Final Remarks 

In this chapter, an overview of surrogate modeling, with an emphasis on optimiza-
tion, has been presented. Surrogate-based optimization plays an important role in 
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contemporary engineering design, and the importance of this role will most likely 
increase in the near future. One of the reasons for this increase is the fact that 
computer simulations have become a major design tool in most engineering areas. 
In order for these simulations to be sufficiently accurate, more and more phenom-
ena have to be captured. This level of sophistication renders simulations computa-
tionally expensive, particularly when they deal with the time-varying three-
dimensional structures considered in many engineering fields. Hence, evaluation 
times of several days, or even weeks, are nowadays not uncommon. The direct use 
of CPU-intensive numerical models in some off-the-shelf automated optimization 
procedures (e.g., gradient-based techniques with approximate derivatives) is very 
often prohibitive. Surrogate-based optimization can be a very useful approach in 
this context, since, apart from reducing significantly the number of high-fidelity 
expensive simulations in the whole design process, it also helps in addressing im-
portant high-fidelity cost function issues (e.g., presence of discontinuities and/or 
multiple local optima).  
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