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Preface

It was an honor and a pleasure to organize the 8th IAPR-TC-15 Workshop on
Graph-Based Representations in Pattern Recognition (GbR 2011) in Münster,
Germany. GbR has been held biennially for 14 years: Lyon, France (1997);
Haindorf, Austria (1999); Ischia, Italy (2001); York, UK (2003); Poitiers, France
(2005); Alicante, Spain (2007); and Venice, Italy (2009).

The Technical Committee TC15 Graph-Based Representations (http://www.
greyc.ensicaen.fr/iapr-tc15/) of the International Association for Pattern
Recognition (IAPR) was founded in 1996 to encourage research work at the
intersection between pattern recognition and graph theory. Since then TC15 has
been very active in organizing the biennial GbR workshops, sponsoring related
special sessions at conferences, and promoting special issues in journals.

All the papers presented in these proceedings were reviewed by two, and in
most cases, three reviewers. They cover a wide range of topics related to graphs,
ranging from novel theoretic and algorithmic development to graph-based ap-
plications. It is our goal to encourage the use of graph-theoretic concepts and
algorithms for solving real problems. The challenges derived from the practice
also pose new fundamental graph-theoretic problems to be tackled. It is this
interaction of theory and applications which makes GbR a unique forum for pre-
senting and discussing the most recent progress in graph-based representations
from a pattern recognition perspective at a high-quality level. Our efforts in
reflecting both the theoretic and application aspects in the workshop program
were further substantiated by two invited talks: “Partial Difference Equations
(PdE) on Graphs for Image and Data Processing” (Olivier Lezoray) and “Graph
Algorithmic Techniques for Biomedical Image Segmentation” (Milan Sonka).

The success of GbR 2011 would not have been possible without the support
of many institutions and people. First of all, we would like to thank all authors
of the submitted papers and the invited speakers for their contributions. All
Program Committee members and additional reviewers listed here deserve great
thanks for their timely and competent reviews. We are grateful to our sponsors
for their support as well. Also, the cooperation with Münster City Marketing
was very pleasant and helpful. Many thanks go to the members of the Local
Organizing Committee. Finally, we would like to thank Springer for giving us
the opportunity to continue publishing the GbR proceedings in the LNCS series.

Founded in 793, Münster belongs to the historical cities of Germany. It is most
famous as the site of signing of the Treaty of Westphalia ending the Thirty Years’
War in 1648. Today, it is acknowledged as a city of science and learning (and
the capital city of bicycles, Germany’s Climate Protection Capital, and more).



VI Preface

It was our great pleasure to offer the participants the platform in this multi-
faceted city for a lively scientific exchange and many other relaxed hours. Finally,
to the readers of this proceedings book: Enjoy it!

May 2011 Xiaoyi Jiang
Miquel Ferrer

Andrea Torsello
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A Global Method for Reducing
Multidimensional Size Graphs�

Andrea Cerri1, Patrizio Frosini2, Walter G. Kropatsch1, and Claudia Landi3

1 Vienna University of Technology, Faculty of Informatics,
Pattern Recognition and Image Processing Group, Austria

{acerri,krw}@prip.tuwien.ac.at
2 Università di Bologna,

ARCES and Dipartimento di Matematica, Italy
frosini@dm.unibo.it

3 Università di Modena e Reggio Emilia,
Dipartimento di Scienze e Metodi dell’Ingegneria, Italy

clandi@unimore.it

Abstract. This paper introduces the concept of discrete multidimen-
sional size function, a mathematical tool studying the so-called size
graphs. These graphs constitutes an ingredient of Size Theory, a geomet-
rical/topological approach to shape analysis and comparison. A global
method for reducing size graphs is presented, together with a theorem
stating that size graphs reduced in such a way preserve all the informa-
tion in terms of multidimensional size functions. This approach can lead
to simplify the effective computation of discrete multidimensional size
functions, as shown by examples.

1 Introduction

In the last twenty years, Size Theory has revealed to be a suitable geometri-
cal/topological approach to shape analysis and comparison, which are probably
two of the main issues in the fields of Computer Vision, Computer Graphics and
Pattern Recognition. In this context, the main tool proposed by Size Theory is
the concept of size function, a shape descriptor able to capture the qualitative
aspects of a shape, and describing them quantitatively. More precisely, the basic
idea is to model a shape by means of a topological space M and a continuous
function ϕ : M → R, called measuring function. The role of the measuring func-
tions is to describe those properties that are considered relevant for the shape
comparison or the shape analysis problem at hand. In this setting, the size func-
tion �(M,ϕ) encodes part of the topological changes occurring in the lower level
sets induced on M by ϕ. In this way, the starting problem of comparing shapes
modeled by pairs (topological space, measuring function) can then be recast
into the one of comparing the associated size functions. For details and more
references about Size Theory the reader is referred to [3].

� Partially supported by the Austrian Science Fund (FWF) grant no. P20134-N13.

X. Jiang, M. Ferrer, and A. Torsello (Eds.): GbRPR 2011, LNCS 6658, pp. 1–11, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 A. Cerri et al.

More recently, similar ideas have been re-proposed by Persistent Homology
from the homological point of view [13]. More precisely, the notion of size function
coincide with the one of 0th persistent homology group.

Since their introduction, size functions have been extensively used especially
in the fields of Computer Vision [8,12,23], where the objects under study are im-
ages, and Computer Graphics, comparing, e.g, 3D-models [4]. The success of size
functions in such applicative contexts is due to the fact that they admit a very
simple and compact representation [15], and they are stable with respect to a
suitable distance [10]. Moreover, size functions show resistance to noise and mod-
ularity [14]: In particular, they inherit their invariance properties directly from
the considered measuring functions. For example, in [8] an effective system for
content-based retrieval of figurative images, based on size functions, is presented.
Three different classes of image descriptors are introduced and integrated, for a
total amount of 25 measuring functions. The evaluation of this fully automatic
retrieval system has been performed on a benchmark database of more than
10,000 real trademark images, supplied by the United Kingdom Patent Office.
Comparative results have been performed, showing that the proposed method
actually outperforms other existing whole-image matching techniques.

As the previous considerations suggest, a common scenario in applications
is when two or more properties characterize the objects under study. Moreover,
sometimes it could be desirable to consider properties of shapes that are intrinsi-
cally multidimensional, such as the coordinates of a point into the 3-dimensional
space or the representation of color in the RGB model. These motivations re-
cently drove the attention to extending Size Theory to a multidimensional con-
text [2] (see [6,7] for multidimensional generalizations of Persistent Homology).
Here the term multidimensional (or, equivalently, k-dimensional) refers to the
fact that the measuring functions take values in R

k and has no reference with the
dimensionality of the objects under study. Therefore, such an enlarged setting
leads to model a shape as a pair (M, ϕ), with ϕ : M → R

k, and consequently
to consider the so called multidimensional size functions.

Even in this multidimensional setting Size Theory gave encouraging results
when applied to shape analysis and comparison problems, see, e.g., [2,5]. In those
papers it has been shown that, besides enabling the study of multidimensional
properties of the objects under study, the advantage of working with multidimen-
sional measuring functions is that shapes can be simultaneously investigated by
k different 1-dimensional measuring functions. In other words, k different func-
tions cooperate to produce a single shape descriptor. The higher discriminatory
power of multidimensional size functions in comparison to 1-dimensional ones
has been formally proved in [2].

Motivations and contributions of the paper. Obviously, dealing with
applications involves the development of a discrete counterpart of the theory.
In this perspective, a shape can be discretized by a graph G = (V (G), E(G))
endowed with a function ϕ : V (G) → R

k, being V (G) the set of vertices of
G. This leads to consider pairs of the type (G, ϕ), called size graphs. In this
mathematical setting, discrete k-dimensional size functions count the number of
connected components in G〈ϕ � y 〉 containing at least one vertex of G〈ϕ � x 〉
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where, for t ∈ R
k, G〈ϕ � t 〉 is defined as the subgraph of G obtained by erasing

all vertices of G at which ϕi takes a value strictly greater than ti, for at least
one index i ∈ {1, . . . , k}, and all the edges connecting those vertices to others.

Therefore, in computing discrete k-dimensional size functions, we have to
count the connected components of particular subgraphs of a size graph. It is
reasonable to argue that, the greater the dimension k, the higher the discrimina-
tory power of k-dimensional size functions. On the other hand, the smaller the
graph, the faster the computation. Moreover, in applications we often have to
deal with big graphs, implying high computational costs. According to these con-
siderations, it follows that the problem of reducing a size graph without changing
the associated discrete k-dimensional size function is a desirable target.

In previous works ([11,16]), it has been proved that, in the case k = 1, a size
graph can be reduced by means of a global method (its application requires the
knowledge of all the size graph) and a local method (it requires only a local
knowledge of a size graph), obtaining a very simple structure.

In this paper, we present a first attempt for a reduction procedure for size
graphs in the case k > 1. More precisely, we provide a global reduction method
for size graphs, together with a theorem stating that reduced size graphs preserve
all the information in terms of k-dimensional size functions. Based on an idea
presented in [9], the present contribution differentiates from that one in two main
respects: (i) It focuses on the formal proof of Theorem 1, that has never been
published or presented before; (ii) Experiments have been performed to support
the theoretical results.

Related works. The ideas underlying the concept of size functions are partly
shared by the so-called maximally stable extremal regions (MSERs) [19]. MSERs
are image elements useful in wide-baseline matching. Given a gray-level image I,
the basic intuition is to study the evolution of the thresholded image It, varying
the parameter t. The formal definition of MSERs is then derived by considering
the set of all connected components of all thresholded images It. These image
elements are characterized by a number of nice properties, such as the invariance
to affine transformation of image intensities and stability.

Besides being related to [11] and [16], the present work fits in the current
research and interest in strategies for reducing data structures preserving some
topological/homological information, motivated by Pattern Recognition and data
analysis problems. For example, in [22] the authors propose a method for com-
puting homology groups and their generators of a 2D pixel image, by using a
hierarchical structure called irregular graph pyramid. Their method is based on
two operations, preserving the homology information contained in each region
of an image, but progressively simplifying the starting graph representing the
image, and constituting the base level of the pyramid. The desired homological
information is then computed at the top of the pyramid. This approach finds its
roots in a more general framework first introduced in [18]. Motivated by prob-
lems coming from discrete dynamics, in [17] the authors propose an algorithm for
computing homology of a finitely generated chain complex. Such an algorithm
is based on reducing the size of the complex preserving homology information
in each step of the reduction. Computing the homology of the chain complex
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is then postponed until the complex is acceptably small. The same philosophy
leads the authors of [21] to provide a reduction algorithm for simplifying the
computation of homology information for cubical sets and polytopes.

The remainder of the paper is organized as follows. In Section 2 we introduce
the standard facts and some basic definitions about discrete multidimensional
size functions. Section 3 is devoted to present our main result, together with
some experiments. Some discussions in Section 4 conclude the paper.

2 Basic Definitions

The following relations are introduced in R
k: for every x = (x1, . . . , xk) and

y = (y1, . . . , yk), we shall say x � y (resp. x ≺ y, x � y) if and only if xi ≤ yi

(resp. xi < yi, xi ≥ yi) for every index i = 1, . . . , k. Moreover, we shall write
x � y (resp. x � y) when the relation between x and y expressed by the
operator � (resp. �) is not verified. Finally, we recall that Δ+ is defined as the
open set {(x, y) ∈ R

k × R
k : x ≺ y}.

Definition 1 (Size Graph). Let G = (V (G), E(G)) be a finite, ordered simple
graph with V (G) set of vertices and E(G) set of edges. Assume that a func-
tion ϕ = (ϕ1, . . . , ϕk) : V (G) → R

k is given. The pair (G, ϕ) is called a size
graph.

Definition 2. For every y = (y1, . . . , yk) ∈ R
k, we denote by G〈ϕ � y 〉 the

subgraph of G obtained by erasing all vertices v ∈ V (G) such that ϕ(v) � y, and
all the edges connecting those vertices to others. If va, vb ∈ V (G) belong to the
same connected component of G〈ϕ � y 〉, we shall write va

∼=G〈ϕ�y 〉 vb.

We are now ready to introduce discrete k-dimensional size functions.

Definition 3 (discrete k-dimensional size function). We shall call discrete
k-dimensional size function of the size graph (G, ϕ) the function �(G,ϕ) : Δ+ → N

defined by setting �(G,ϕ)(x, y) equal to the number of connected components in
G〈ϕ � y 〉 containing at least one vertex of G〈ϕ � x 〉.
Example 1. Figure 1 shows an example of size graph, together with the related
discrete 1-dimensional size function. We remark that in the case k = 1 the
symbols ϕ, x, y are replaced by ϕ, x, y respectively. As can be seen, in the 1-
dimensional case the domain Δ+ of �(G,ϕ) is a subset of the real plane. In each
region of Δ+, the value of �(G,ϕ) in that region is displayed.

For example, to compute the value of �(G,ϕ) at the point (a, b), it is suffi-
cient to count how many of the three connected components in the subgraph
G〈ϕ ≤ b〉 contain at least one vertex of G〈ϕ ≤ a〉: It can be easily checked that
�(G,ϕ) (a, b) = 2.

In what follows, we will assume that the set of vertices V (G) of the graph G is
a subset of a Euclidean space.
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Fig. 1. A size graph and the associated discrete size function

3 A Global Method for Reducing (G, ϕ): the L-Reduction

As stressed before, our goal is to reduce a size graph (G, ϕ) without changing
the related discrete k-dimensional size function: This can be done by erasing all
those vertices of G that do not contain, in terms of discrete k-dimensional size
functions, “meaningful information”. Indeed, in order to compute the discrete
k-dimensional size function of (G, ϕ), we are only interested in capturing the
“birth” of new connected components and the “death”, i.e. the merging, of the
existing ones: As will be shown, these events are strongly related to particular
vertices of G, that can be seen, in some sense, as “critical points” of the function
ϕ with respect to the relation �. The proposed reduction method allows us to
detect these particular vertices and to introduce the concept of L-reduction of
(G, ϕ), a new size graph (GL, ϕL) that is obtained by considering only such
vertices instead of the entire set V (G). The importance of the L-reduction is
shown by our main result, stated in Theorem 1, which will be formally proved
at the end of this section and can be rephrased as follows:

Theorem 1 (rephrased). The k-dimensional size functions of (GL, ϕL) and
(G, ϕ) coincide.

From now on, we assume that a size graph (G, ϕ) is given. Moreover, for every
vi ∈ V (G) we define Ai as the set of the “lower adjacent vertices” for vi, i.e.
Ai = {vj : (vi, vj) ∈ E(G), ϕ(vj) � ϕ(vi)} ∪ {vi}.
Definition 4 (Single step descent flow operator). Let L : V (G) → V (G) be
the function defined as follows: For every vi ∈ V (G) let Bi ⊆ Ai be the set whose
elements are the vertices w ∈ Ai for which the Euclidean norm ‖ϕ(w) − ϕ(vi)‖
takes the largest value. Finally, we choose the vertex vh ∈ Bi for which the index
h is minimum. Then, we set L(vi) = vh. We shall call L the single step descent
flow operator.

From the definition of L and the finiteness of V (G), if follows that for every v ∈
V (G) there must exist a minimum index m(v) ≤ |V (G)| such that Lm(v)(v) =
Lm(v)+1(v) (if L(v) = v we will set m(v) = 0).
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v1

v4 = L(v1)

L(v1)

v2

v5 = L(v2)

v3 = L(v3)

ϕ1

ϕ2

Fig. 2. The operators L and L in action: Some examples when ϕ = (ϕ1, ϕ2)

Definition 5 (Descent flow operator). For every v ∈ V (G) we set L(v) =
Lm(v)(v). We shall call the function L : V (G) → V (G) the descent flow operator.

In other words, the descent flow operator takes each vertex vi ∈ V (G) to a sort
of “local minimum” vj = L(vi) of the function ϕ, with respect to the relation �.
This implies that, starting from vj we are not able to reach a vertex w adjacent
to it with ϕ(w) � ϕ(vj), strictly decreasing the value of at least one component
of ϕ. During the descent, indexes are used to univocally decide the path in case
the set Bi contains more than one vertex.

Example 2. Figure 2 shows some possible cases arising from the action of the
operators L and L when ϕ = (ϕ1, ϕ2). As can be seen, the vertex v1 is taken
by the operator L to v4 = L5(v1). Since it is not possible to reach another
vertex from v4 decreasing the values of both ϕ1 and ϕ2, we shall set v4 = L(v1).
Analogously, we have v5 = L(v2). The last considered case is represented by the
vertex v3: it can be seen as a fixed point with respect to the operator L, i.e. it
holds that L(v3) = v3, so we shall set L(v3) = v3.

Definition 6 (Minimum vertex). Each vertex v for which L(v) = v is called
a minimum vertex of (G, ϕ). Call M the set of minimum vertices of (G, ϕ).

We point out that M is the set of all those vertices representing the “birth” of
new connected components in (G, ϕ): By increasing the values of ϕ1, . . . , ϕk, such
an event occurs only when the values labeling a minimum vertex are reached.

The following two definitions characterize the “death-points” of existing con-
nected components of (G, ϕ).

Definition 7 (Ridge pair). Let vj1 , vj2 ∈ V (G) be two distinct minimum
vertices of (G, ϕ). Suppose vi1 , vi2 are two adjacent vertices of G, such that
{L(vi1),L(vi2 )} = {vj1 , vj2}; we shall call {vi1 , vi2} a ridge pair adjacent to the
minimum vertices vj1 and vj2 .

Definition 8 (Main saddle). Let vj1 , vj2 ∈ V (G) be two distinct minimum
vertices of (G, ϕ). Let also {vi1 , vi2} be a ridge pair adjacent to the minimum
vertices vj1 , vj2 such that the following statements hold:
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G′ G′′ G′′′

ϕ1ϕ1 ϕ1

ϕ2 ϕ2ϕ2

vj1vj1
vj2vj2

vj1
vj2

vi1vi1

vi2vi2

vi1

vi2

vi3

vi4

vi3

vi4

(a) (b) (c)

Fig. 3. Some examples of ridge pairs and main saddles

1. there does not exist another ridge pair {vi3 , vi4} adjacent to the minimum
vertices vj1 , vj2 with

(1)
{

max{ϕh(vi3), ϕh(vi4)} ≤ max{ϕh(vi1 ), ϕh(vi2 )}, h = 1, . . . , k;
∃h̄ : max{ϕh̄(vi3 ), ϕh̄(vi4 )} < max{ϕh̄(vi1), ϕh̄(vi2)}, h̄ ∈ {1, . . . , k};

2. if {vi3 , vi4} is another ridge pair adjacent to the minimum vertices vj1 , vj2

with
(2) max{ϕh(vi3), ϕh(vi4)} = max{ϕh(vi1 ), ϕh(vi2 )}, h = 1, . . . , k,

then (i1, i2) precedes (i3, i4) in the lexicographic order. We shall call the set
{vi1 , vi2} the main saddle adjacent to the minimum vertices vj1 , vj2 and S
the set of main saddles of (G, ϕ).

Roughly, the set of ridge pairs of (G, ϕ) can be partially ordered by means of
the relation �. In this sense, the main saddles will be the lowest ridge pairs.

Example 3. Figure 3(a), 3(b), 3(c) shows some examples of ridge pairs and main
saddles, when function ϕ takes values in R

2.
To clarify the role of main saddles, let us study the changing in the number of

connected components of the subgraphs G′〈ϕ � y 〉, G′′〈ϕ � y 〉 and G′′′〈ϕ �
y 〉, with y ∈ R

2, just for y � (max{ϕ1(vj1), ϕ1(vj2)}, max{ϕ2(vj1), ϕ2(vj2 )}):
Indeed, we want to capture the merging of the connected components arising
from the minimum vertices vj1 and vj2 in the three instances. According to this
consideration, by means of the chosen assumption on y we ensure that both vj1

and vj2 belong to the subgraphs G′〈ϕ � y 〉, G′′〈ϕ � y 〉 and G′′′〈ϕ � y 〉.
In Figure 3(a) a main saddle adjacent to the minimum vertices vj1 and vj2

is displayed. In this setting, by varying the values taken by y under the as-
sumption y � (max{ϕ1(vj1 ), ϕ1(vj2 )}, max{ϕ2(vj1 ), ϕ2(vj2 )}), it holds that for
y � (max{ϕ1(vi1 ), ϕ1(vi2 )}, max{ϕ2(vi1 ), ϕ2(vi2 )}) the subgraph G′〈ϕ � y 〉
consists of the two connected components arising from vj1 and vj2 , reducing to
a unique one when y � (max{ϕ1(vi1), ϕ1(vi2)}, max{ϕ2(vi1), ϕ2(vi2 )}).

Figure 3(b) shows an example of two ridge pairs that can be considered “un-
comparable”, due to the fact max{ϕ1(vi1), ϕ1(vi2 )} < max{ϕ1(vi3 ), ϕ1(vi4 )},
while max{ϕ2(vi1 ), ϕ2(vi2)} > max{ϕ2(vi3 ), ϕ2(vi4)}. Thus, both {vi1 , vi2} and
{vi3 , vi4} will be main saddles. In this case, when y varies under the assump-
tion y � (max{ϕ1(vj1 ), ϕ1(vj2)}, max{ϕ2(vj1 ), ϕ2(vj2)}), the number of the con-
nected components in the subgraph G′′〈ϕ � y 〉 decreases (from 2 to 1) when the



8 A. Cerri et al.

relation y � (max{ϕ1(vi1 ), ϕ1(vi2 )}, max{ϕ2(vi1 ), ϕ2(vi2 )}) (or, alternatively,
the relation y � (max{ϕ1(vi3 ), ϕ1(vi4 )}, max{ϕ2(vi3 ), ϕ2(vi4)})) becomes true.

Finally, Figure 3(c) shows two comparable ridge pairs, hence the “lower”
one, that is {vi1 , vi2}, will be a main saddle, while the other will be not. Con-
sider G′′′〈ϕ � y 〉, assuming that y varies according to the restriction y �
(max{ϕ1(vj1), ϕ1(vj2 )}, max{ϕ2(vj1), ϕ2(vj2 )}): It consists of two connected com-
ponents arising from vj1 and vj2 , merging into a unique one as soon as the relation
y � (max{ϕ1(vi1), ϕ1(vi2)}, max{ϕ2(vi1), ϕ2(vi2 )}) becomes true.

As Example 3 suggests, S is the set of all those couples of vertices representing
the “death”, i.e. the merging, of existing connected components in the given size
graph (G, ϕ).

We are now ready to introduce the concept of L-reduced size graph:

Definition 9 (L-reduced size graph). Let GL = (V (GL), E(GL)) be the
graph with V (GL) = M ∪ S and E(GL) defined as follows: (u, v) ∈ E(GL)
(and hence u and v are adjacent) if and only if either u or v is a minimum
vertex and the other is a main saddle adjacent to it (in the sense of Definition
8). Let also ϕL : V (GL) → R

k be a function defined in this way: ϕL(v) = ϕ(v)
if v ∈ M and ϕL(u) = (max{ϕ1(vi1), ϕ1(vi2 )}, . . . , max{ϕk(vi1 ), ϕk(vi2 )}) if
u = {vi1 , vi2} ∈ S. The size graph (GL, ϕL) is called the L-reduction of (G, ϕ).

Remark 1. We stress that each main saddle {v, w} of a size graph (G, ϕ) will
be represented, in the L-reduced size graph, by a unique vertex labeled by the
k-tuple (max{ϕ1(v), ϕ1(w)}, . . . , max{ϕk(v), ϕk(w)}).
Remark 2. The global reduction method we have just defined is strongly related
to the concept of Pareto-Optimality, a well-known topic in Economy, especially
in the field of Multi-Objective Optimization. For a detailed treatment about
Pareto-Optimality, the reader is referred to [20].

The importance of the L-reduction is shown by our main result, stating that
discrete k-dimensional size functions are invariant with respect to this global
reduction method.

Theorem 1. For every (x, y) ∈ Δ+, it holds that �(G,ϕ)(x, y) = �(GL,ϕL)(x, y).

In order to prove Theorem 1, we need the following lemma.

Lemma 1. Let v1, v2 be two minimum vertices of (G, ϕ). Then, for every y ∈
R

k, it holds that v1
∼=G〈ϕ�y〉 v2 if and only if v1

∼=GL〈ϕL�y〉 v2.

Proof. Suppose that v1
∼=G〈ϕ�y〉 v2. Then, by definition there exists a sequence

(v1 = vj1 , vj2 , . . . , vjm−1 , vjm = v2) such that (vjn , vjn+1) ∈ E(G) for every n =
1, . . . , m− 1, and vjn ∈ G〈ϕ � y〉 for every n = 1, . . . , m. Consider the sequence
(L(v1) = v1,L(vj2), . . . ,L(vjm−1 ),L(v2) = v2) of minimum vertices. Substituting
each subsequence of equal consecutive vertices by a unique vertex representing
such a subsequence, we obtain a new sequence (v1 = w1, w2, . . . , ws−1, ws = v2)
(in other words, the sequence (u1, u1, . . . , u1, u2, u2 . . . , u2, . . . , un, un, . . . , un) is
substituted with (u1, u2, . . . , un)). It is easy to prove that, for every index j < s,
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there exists at least one main saddle σj adjacent to wj and wj+1, such that
σj ∈ G〈ϕ � y〉. Then, consider the sequence (w1, σ1, v2, σ2, . . . , ws−1, σs−1, ws):
such a sequence proves that v1

∼=GL〈ϕL�y〉 v2.
Conversely, suppose that v1

∼=GL〈ϕL�y〉 v2. By definition there exists a se-
quence (v1 = w1, σ1, w2, σ2, . . . , ws−1, σs−1, ws = v2) of vertices of GL〈ϕL � y〉
such that every vertex wj is a minimum vertex and every σj is a main saddle adja-
cent to wj and wj+1. Therefore, we can modify such a sequence in order to obtain
the following one: for every index j < s, between wj and σj = {vij , vnj} insert the
sequence (Lm(vij

)−1(vij ), L
m(vij

)−2(vij ), . . . , L2(vij ), L(vij )), while between σj e
wj+1 insert the sequence (L(vnj ), L2(vnj ), . . . , Lm(vnj

)−2(vnj ), Lm(vnj
)−1(vnj ))

(we are assuming wj = L(vij ) and wj+1 = L(vnj )). Finally, by substituting the
vertices vij e vnj (taken in this order) for every main saddle σj , we obtain a new
sequence proving that v1

∼=G〈ϕ�y〉 v2.

Now we are ready to prove Theorem 1.

Proof. Let (x, y) ∈ Δ+. We have to prove that there exists a bijection F :
G〈ϕ � x〉/ ∼=G〈ϕ�y〉→ GL〈ϕL � x〉/ ∼=GL〈ϕL�y〉. For every equivalence class
C ∈ G〈ϕ � x〉/ ∼=G〈ϕ�y〉 we choose a minimum vertex vC ∈ C. Obviously,
vC is also a vertex of GL〈ϕL � x〉. Therefore in GL〈ϕL � x〉/ ∼=GL〈ϕL�y〉
there exists an equivalence class D containing vC . We shall set F (C) = D. From
Lemma 1 it follows that F is injective. The surjectivity of F is trivial, since each
equivalence class in GL〈ϕL � x〉/ ∼=GL〈ϕL�y〉 contains at least one minimum
vertex of G〈ϕ � x〉.
Remark 3. The L-reduction of a size graph (G, ϕ) is not unique: Changing the
ordering of the set V (G) can produce different, non-isomorphic L-reduced size
graphs. On the other hand, Theorem 1 shows that we will always obtain L-
reductions of (G, ϕ) endowed with the same discrete k-dimensional size function.

Therefore, Theorem 1 allows us to evaluate the discrete k-dimensional size func-
tion of a size graph (G, ϕ) directly dealing with one of its L-reductions.

3.1 Experimental Results

Table 1 shows how our global reduction method can facilitate the computa-
tion of �(G,ϕ), simplifying the structure of (G, ϕ) but preserving the same in-
formation in terms of discrete k-dimensional size functions. We considered four
graphs obtained from as many triangle meshes (available at [1]) by taking the
0-dimensional simplexes as vertices and the 1-dimensional simplexes as edges.

For each graph, we considered the 2-dimensional measuring function ϕ =
(ϕ1, ϕ2) taking each vertex v of coordinates (x, y, z) to the pair ϕ(v) = (|x|, |y|).

Table 1, from row 1 to 4, shows respectively the number of vertices |V (G)|
and edges |E(G)| for each considered size graph (G, ϕ) and for the associated
L-reduction (GL, ϕL) (i.e. |V (GL)| and |E(GL)|). In particular, if M and S are
respectively the set of minimum vertices and of main saddles for a size graph
(G, ϕ), it easily follows from Definition 9 that |V (GL)| = |M ∪S| and |E(GL)| =
2|S|. For each considered (G, ϕ), the last row of Table 1 shows respectively the
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Table 1. Some experimental results

tie space shuttle x wing space station

|V (G)| 2014 2376 3099 5749

|E(G)| 5944 6330 9190 15949

|V (GL)| 588 262 571 1935

|E(GL)| 826 328 838 2778

V %− E% 29.2% - 13.9% 11% - 5.2% 18.4% - 9.2% 33.66% - 17.42%

ratios V % = |V (GL)|/|V (G)| and E% = |E(GL)|/|E(G)|, expressing them in
percentage points. In other words, the lower those ratios, the higher the reduction
rate. As can be seen, these experiments gave encouraging results, enabling the
reduction of a size graph up to the 11% of the starting number of vertices and
the 5.2% of the starting number of edges (space shuttle case).

To conclude, we report the most salient part of the algorithm we implemented to
obtain our experimental results, i.e. the computation of the descent flow operator
introduced in Definition 5. All the rest can be easily derived from the theoretical
setting discussed in the previous sections, combined with what follows.The symbol
SSDFO(v) denotes the single step descent flow operator computed at a vertex v.

Algorithm 1. Computation of the descent flow operator L(v) for v ∈ V (G)
L(v)← SSDFO(v)
while L(v) �= v do

v ← L(v);
L(v)← SSDFO(v);

end while
L(v)← L(v)

4 Conclusion

In this paper we presented a global method for reducing size graphs together
with a theorem, stating that discrete multidimensional size functions are invari-
ant with respect to this reduction method. This result can lead us to easily and
fast compute discrete multidimensional size functions for applications, as high-
lighted by some experiments showing the feasibility of the proposed reduction
scheme. This work can be seen as a contribution in finding reduction methods for
data structure encoding multidimensional information of shapes, in a way that
the topological/homological information carried with them is preserved. For the
next future, it could be interesting to study the existence of a local reduction
method for k-dimensional size graphs preserving the information in terms of
multidimensional size functions.
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Abstract. In this paper we propose graph descriptors derived from B-
matrices, which are built on the basis of distances between graph ver-
tices. The B-matrices, being invariant under graph isomorphism, are a
rich source of information about graph structure. We explore this repre-
sentation and propose several new graph characteristics that can be used
for efficient graph comparison. Experiments on clusterization and classifi-
cation with synthetic and real-world data revealed, that new descriptors
allow for distinguishing graphs with non trivial structural differences.
Moreover, they appear to outperform descriptors based on heat kernel
matrix, being at the same time more effective computationally.

1 Introduction

In the last decade we have been observing extensive use of graph structures
in various research fields ranging from physics to sociology. Such an increase of
interest on structured data is epitomized by recent advances in theory of complex
networks that provided deep insight into topology and dynamics of real-world
networks and a common viewpoint for their analysis [1]. New perspectives of
graph-based representations are also emerging in such fields as image vision,
image processing or sensor networks [2].

Describing a system as a set of binary relations or interactions among its ele-
ments is convenient for humans. Such a fine-grained bottom-up approach reduces
complexity and makes the problem easier to comprehend. Graphs allow for inte-
gration of large amounts of data into one high-level structure capturing system
as a whole. This is particularly useful in biomedical or chemical applications
where high-throughput experiments produce high-volume data which cannot be
easily tackled without previous synthesis. Constant growth of computing power
allow for increasing size of structured datasets subject to analysis. Nevertheless,
the development of efficient and robust algorithms is still a challenging task.

Graph comparison is a crucial research method finding its applications in such
tasks involving structured data as confronting models and simulation results with
real-world data, building structured databases, classification and clusterization.
The result of graph comparison is dissimilarity or similarity measure that can be
used in pattern recognition methods. Due to non-vectorial nature of graphs, their
comparison poses some intrinsic problems that cannot be simply neglected dur-
ing the development of new graph matching algorithms. The direct comparison
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of two graphs requires enumeration of all sub-substructures and tackling with
elements order. The exponential cost of such procedure makes construction of
efficient graph metric infeasible. Graph comparison algorithms should also give
results invariant under isomorphism, what becomes cumbersome when typical
graph representations in a form of adjacency matrices or neighborhood lists are
considered.

The practical approach to graph matching uses graph invariants to construct
feature vector and embed graph into metric space. The question how to quanti-
tatively capture relevant structural properties of graphs provoked the develop-
ment of graph measures such as clustering coefficient, efficiency or betweenness
centrality [3]. Today the abundance of scalar graph descriptors makes the se-
lection of relevant features a difficult task that can be tackled e.g. with a help
of information-theoretic tools [4]. Elegant methods of graph features generation
use invariants computed on the basis of graph matrices with a help of permu-
tation invariant functions. Spectral decomposition of graph Laplace matrix was
used to construct high-dimensional pattern vector, effective in clustering graphs
representing images [5]. More recently, Xiao and Hancock proposed robust de-
scriptors based on heat kernel matrix, obtained by exponentiating the Laplacian
eigensystem [6]. The values of these characteristics can be tuned by time param-
eter, that allows for navigation between local and global features. Embedding
vertices of graph into vector space using heat kernel matrix was used to create
generative model for graph matching that allows for finding correnspondences
between vertices and capturing structural differences over sets of graphs [7]. Dif-
ferent approach of collecting several scalar features such as degree distribution
measures or motif profile measures is present in metabolic networks comparison,
where biological relevance of features is desirable [8]. When vertex or edge la-
bels are known a priori the construction of vector representations is easier as
permutation invariant functions are no longer necessary. In this case graph fea-
ture vector can be obtained by enumeration of vertex or edge descriptors. Such
approach was used for clustering organisms based on metabolic networks [9].

In this paper we explore feature vectors derived from graph B-matrices, which
are non-complete graph invariants constructed on the basis of the shortest path
lengths [10]. We show that two types of graph B-matrices constitute rich source
of information about graph structure and can be used to account for graph
comparison. To this end we present feature vectors constructed using aggregated
statistics of B-matrices rows and test them on artificial and real-world data. The
experiments on clusterization and classification of selected datasets are reported
and the results are compared to the ones obtained for graph characteristics
derived from heat kernel. In the end we draw conclusions with some ideas for
further development of this concept.

2 Graph B-Matrices

Typical graph matrix representations such as adjacency matrix or Laplace matrix
depend on vertex ordering, therefore they are not identical for the same graphs
with permuted labels. In [10], Bagrow et al. proposed approach that circumvent
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this inconvenience. The authors introduced B-matrix that serve as a “portrait”
of network and can be used for graph visualization and comparison. Let us define
l-shell of vertex vi as subset of graph vertices at distance l from vi. Degree of
order l is a size of respective l-shell. The nearest neighbors of vertex vi form its
1-shell and the size of this 1-shell is degree of vertex vi. The vertex B-matrix of
a graph with n vertices is defined as follows.

BV
l,k = number of nodes that have k members in their l-shells, (1)

where l ≤ n and k ≤ n. The B-matrix stores information about distribution of
l-shells sizes (degrees of order l) and in fact it is a sequence of histograms. The
number of non-zero rows is given by the graph diameter. The example of vertex
B-matrix of random graph with 100 vertices and 322 edges is depicted in Fig. 1b.
To compute B-matrix we need to enumerate shell members for each vertex of
the graph. Using Breadth-First Search this can be achieved with O(n2) steps for
dense and O(n) steps for sparse graphs. Therefore, construction of B-matrix for
sparse graph has O(n2) time-complexity.

Maximum value of k for which Bl,k �= 0 in each row, reflects network branch-
ing. As shown in [10] vertex B-matrix can be used for visual comparison and
classification of various networks. It is capable of capturing such high-level prop-
erties of networks as assortativity/disassortativity, small-worldliness, regularity
and many more, far beyond the degree distribution. The higher rows of B-matrix
encode more specific information about structure of the graph. This information
can be extracted using row aggregated statistics or by capturing differences be-
tween rows. The B-matrices can be used for pairwise comparison of graphs [10]
however in this work we present different approach of using B-matrix for graph
feature vector generation. In case of graphs of different size B-matrices have to
be scaled accordingly by padding zero-rows or columns.

Despite its robustness in encoding information about graph, vertex B-matrix
is not a complete graph invariant. This means that there exist pairs of non-
isomorphic graphs possessing the same vertex B-matrix representation. The ex-
ample of such a pair is dodecahedral and Desaurges graphs. In [10], the authors
conjectured that more general edge B-matrix together with vertex B-matrix can
identify graph univocally. In order to introduce edge B-matrix we define dis-
tance from a vertex vi to an edge (vj , vk) as the mean of distances d(vi, vj) and
d(vi, vk). The l-edge-shell of vertex vi is a subset of graph edges at distance
l from vi. In this case l can have half-integer values. Equation 2 defines edge
B-matrix of a graph.

BE
i,k = number of nodes that have k edges in their (1

2 i)-edge-shells. (2)

The edge B-matrix of sample random graph is depicted in Fig. 1c. The maximum
size of edge B-matrix is 2n × m, where n denotes number of vertices and m
number of edges in the graph. For dense graphs this becomes computationally
cumbersome, as a number of columns reaches the order of n2. Nevertheless,
owing to narrow row distributions, after removing zero columns, effective size
can be decreased significantly. Even rows of edge B-matrix account for edges



Graph Descriptors from B-Matrix Representation 15

a b c

Fig. 1. a. Connected random graph G1 with 100 vertices, 322 edges and diameter 9,
b. Vertex B-matrix of G1, c. Edge B-matrix of G1 (dark blue: 1, red: 32).

whose endpoints are equidistant from a certain vertex, therefore graphs without
odd cycles (equivalently bipartite graphs) such as trees or square graphs possess
empty rows for i divisible by 2.

3 Pattern Vectors from B-Matrices

As consecutive rows of B-matrices describe distribution of respective l-shells, we
use aggregated statistics to generate per-row characteristics and combine them
into one feature vector. Let � stand for V or E symbol, so that B� denote BV

or BE matrix.

D�
rstd(l) =

σ�(l)
μ�(l)

(3)

D�
rstd(l) is relative deviation of row l, whereby μ�(l) denotes average and σ�(l)

standard deviation of l-shell size (only nonzero entries of B� are taken into
account). High values are achieved for left-skewed broad l-shell size distributions
while low values indicate right-skewed narrow distributions. Therefore D�

rstd(l)
can be used as a measure of l-shell regularity.

The Shannon entropy D�
ent(l) measures unpredictability of l-shell size. Low

values of this descriptor indicate that l-shells of certain size dominate, whereas
higher values are obtained for broad, uniform l-order degree distributions.

p(l, k) =
B�

l,k∑
k B�

l,k

(4)

D�
ent(l) = −

∑
k

p(l, k) log(p(l, k)) (5)

Assessing B-matrices inter-row diversity yields relevant graph features. The
difference of average (l−1)-shell size and average l-shell size reflect average offset
between consecutive distributions.

D�
avgd(l) = μ�(l − 1) − μ�(l) (6)
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Negative values of D�
avgd(l) indicate that l-shells have on average more members

than (l−1)-shells. Large absolute values are obtained for dense graphs while small
ones for sparse graphs. The change from negative to positive value of D�

avgd(l)
reflects “turning point” (see Fig. 1b, row 4), that appears in B-matrices of certain
graph types due to finite size effects (after l passes average path length, l-shells
start to posses less and less members).

B-matrices are graph invariants, therefore their rows or columns can be packed
to form a long pattern vector.

D�
long(lmin, lmax, kmin, kmax) = [B�

l,k]
lmin ≤ l ≤ lmax, kmin ≤ k ≤ kmax

(7)

Such an approach allows for retaining all the information stored in a B-matrix,
what is impossible for descriptors defined earlier. Using parameter lmin, lmax,
kmin and kmax one can extract the B-submatrix that combines selected subset
of low and high-level features. For instance by choosing 1 ≤ l ≤ 2 and 1 ≤ k ≤ n,
where n is number of graph vertices, we extract local information about nearest
and second-nearest-neighbors. In turn, after setting 1 ≤ l ≤ diameter and 1 ≤
k ≤ 3, D�

long stores information about l-shells with small number of elements i.e.
counts vertices that are relatively distinct from “typical” ones either because of
their location in the center of the graph or due to low local branching factor.

4 Experiments

In this section we present experiments on graph clusterization and classification
performed to test descriptors derived from B-matrices. Two datasets were pre-
pared: artifical one created on the basis of four seed graphs using random edit
operations and a set of real-world graphs representing satellite photos obtained
from Google Earth. After extracting corners [11], the images were transformed
to graphs with the use of Delaunay triangulation.

We compare proposed graph descriptors with two measures generated on the
basis of heat kernel [6], that is heat kernel content invariant:

Dhkc(t) =
∑
u∈V

∑
v∈V

n∑
k=1

exp(−λkt)φk(u)φk(v), (8)

and heat kernel content coefficients invariant:

Dhkcc(m) =
n∑

k=1

⎧⎨
⎩
(∑

u∈V

φk(u)

)2
⎫⎬
⎭ (−λk)2

m!
, (9)

where V denotes vertices set, n = |V | and (λk, φk) is k-th eigenpair of graph
normalized Laplace matrix. We also use control feature vector Dcon that contains
seven well-known scalar graph descriptors such as efficiency and average values
and standard deviations of degree, clustering coefficient and betweenness. The
results of graph embeddings are evaluated using clustering validation indices: C
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index, Davies-Bouldin index and Rand index for which we use 5-nearest neighbor
algorithm to establish agreements in cluster assignments [12]. The computation
of graph descriptors was performed using Graph Investigator application [13].

4.1 Artificial Graphs

In order to generate the first dataset we selected four seed graphs of size 100:
bb-seed is 3-regular graph with 150 edges, me-seed is irregular 2D mesh with
200 edges, rm-seed is 2D lattice with 180 edges and rr-seed is random connected
Erdős-Rényi graph with 143 edges. For each seed graph we performed 100 series
of random edit operations that can be described by three parameters (ne, spread,
type). Parameter ne denotes a number of edit operations performed, spread is
a maximal random number added to ne in order to increase group variance and
type describes type of edit operations performed (edge addition, deletions or
both). Clusters bb, me and rr were generated using parameters (40, 20, both)
while rm with (20, 30, deletion). In this manner we obtained groups that cannot
be easily separated by graph density. The sample graphs from the dataset are
depicted in Fig. 2. Except for rr sample, the planar embeddings appear to be
structurally similar. The differences can be captured more accurately with the
use of vertex B-matrices.

bb me rm rr

Fig. 2. Visualization of sample graphs from artificial dataset using planar embeddings
and vertex B-matrices

The descriptors based on B-matrices were computed and mapped onto 2D
and 3D space using two unsupervised dimensionality reduction algorithms PCA
(Principal Component Analysis) and LPMIP (Locality-Preserved Maximum In-
formation Projection) [14]. The latter one controls between-locality and within-
locality simultaneously. The tradeoff between local and global structure of the
data is adjusted using parameter α. In this manner we can mix properties of
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Table 1. Low-dimensional embeddings of descriptors derived from graph B-matrices
evaluated using indices: C index, Davies-Bouldin index and Rand index (the order of
indices preserved in triples presented in the table)

Vector Dim Dim Red Method 2D 3D

1 DE
long(1, 4, 1, 25) 100 PCA 0.07, 1.00, 0.93 0.05, 1.13, 0.96

2 DE
long(1, 4, 1, 25) 100 LPMIP(20, 20, 0.1) 0.04, 0.69, 0.98 0.03, 0.74, 0.99

3 DV
long(1, 4, 1, 20) 80 PCA 0.13, 1.62, 0.89 0.14, 1.85, 0.94

4 DV
long(1, 4, 1, 20) 80 LPMIP(15, 20, 0.1) 0.08, 2.11, 0.93 0.08, 2.13, 0.93

5 DV
ent, 1 ≤ l ≤ 10 10 PCA 0.14, 1.28, 0.79 0.15, 1.45, 0.80

6 DE
avgd, 1 ≤ l ≤ 20 20 LPMIP(20, 20, 0.1) 0.12, 1.67, 0.81 0.15, 1.96, 0.81

7 μE , μV , σE, σV , 16 PCA 0.07, 1.16, 0.97 0.11, 1.50, 0.97
1 ≤ l ≤ 4

8 DV
rstd, 1 ≤ l ≤ 10 10 LPMIP(20, 20, 0.1) 0.09, 1.2, 0.86 0.15, 1.69, 0.87

9 DE
rstd, 1 ≤ l ≤ 20 20 LPMIP(20, 20, 0.1) 0.09, 1.37, 0.81 0.16, 1.92, 0.84

10 vectors from row 2 116 LPMIP(20, 20, 0.1) 0.01, 0.47, 1.0 0.04, 0.54, 1.0
and 7 together

11 Dhkc, 1 ≤ t ≤ 10 10 PCA 0.05, 0.73, 0.89 0.05, 0.73, 0.98

12 Dhkc, 1 ≤ t ≤ 20 20 PCA 0.05, 0.86, 0.86 0.05, 0.86, 0.97

13 Dhkcc, 1 ≤ m ≤ 10 10 PCA 0.07, 1.46, 0.79 0.07, 1.47, 0.78

14 Dhkcc, 1 ≤ m ≤ 20 20 PCA 0.09, 1.16, 0.80 0.09, 1.17, 0.80

15 Dcon 7 PCA 0.11, 2.01, 0.79 0.11, 2.14, 0.86

manifold learning methods such as LLE (Locally Linear Embedding) or LPP
(Locality Preserving Projection) with a general-variance methods as PCA. The
discrimination ability of introduced descriptors is evaluated with the use of clus-
tering validation indices computed in low-dimensional spaces. The most inter-
esting results are reported in Table 1. Low values of C index (range [0; 1]) and
Davies-Bouldin index (range [0;∞]) indicate good clustering, whereby Davies-
Bouldin index prefers clusters of spherical shape. Rand index ranges from 0 to
1, where 1 means perfect clustering. The three parameters of LPMIP algorithm
were adjusted manually to (nearest neighbors = 20, σ = 20, α = 0.1), see Table 1.
This means that we set the weight 0.1 to between locality and 0.9 to within lo-
cality.

The best results (both in 2D and 3D space) were obtained for long feature
vectors derived from edge B-matrix (see Table 1, rows 2 and 10). Fig. 3 shows the
embedding of graphs in 3D space using DE

long(1, 4, 1, 25) + μE , μV , σE , σV for 1 ≤
l ≤ 4 and its associated distance matrix. With the use of edge B-matrices we can
generate robust graph characteristics, that can perform better than ones derived
from a heat kernel. Moreover, the cost of computing such descriptors is lower
(O(n2) vs. O(n3)). The BE stores more discriminative information than BV .
Long vectors perform better than aggregated statistics (e.g. DE

rstd), nevertheless
the latter are still comparable with descriptor Dhkcc, that requires O(n3) steps
(see Table 1, rows 7 and 8).
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Fig. 3. 3D embedding of combined feature vector build from graph B-matrices (see
Table 1, row 10) and its associated distance matrix

4.2 Satellite Photos

In this section we describe experiments on classification of graphs generated from
satellite photos. With the help of Google Earth application we obtained three
groups of photos (size 1412×940) representing fragments of cities. Each group
contains 90 samples from approximately the same area taken from altitudes 980m
to 1.08km. In order to simulate occlusions and clutter, rotations and translations
were performed before exporting a photo. Three examples from this dataset
are depicted in Fig. 4. The photos were transformed to graphs using Harris
corner detector [11] and Delaunay triangulation. To discard graph size as a main
discrimination factor we decided to select 100 most distinct corners. As all photos
contained at least 100 corners, 270 graphs of size 100 were generated.

We used this dataset to investigate the performance of the nearest centroid
classifier for feature vectors based on graph B-matrices. The obtained results
were compared with ones received for graph characteristics derived from heat
kernel matrix [6]. We randomly selected 15 graphs of each class to construct the
test set and use the remaining graphs as the training set (75 training samples, 15
testing samples). The operation was performed 100 times for each type of graph
feature vector. The average and maximum classification accuracy is reported.
Additionally, in order to get a meaningful low-dimensional representation of pat-
terns and increase recognition rate we applied dimensionality reduction methods

Photo

Instances 90 90 90

Label BO MO OK

Fig. 4. Three samples from satelite photo dataset obtained using Google Earth appli-
cation
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Table 2. Comparison of average and maximal recognition rates for graph descriptors
derived from graph B-matrices and heat kernel matrix

Vector Dim Dim Red Target Dim Avg Accuracy Max Accuracy Rand Idx

DE
avgd, 1 ≤ l ≤ 15 30 PCA 10 0.73 0.86 0.60

DE
rstd, 1 ≤ l ≤ 15 PCA 15 0.75 0.89 0.63

LDA 2 0.77 0.91 0.8
MMC 2 0.61 0.73 0.63
MMC 5 0.65 0.80 0.74

DV
long(1, 8, 1, 30) 240 MMC 2 0.76 0.91 0.93

DE
long(1, 20, 1, 100) 2000 MMC 100 0.78 0.89 0.93

Dhkc and 30 PCA 10 0.65 0.80 0.61
Dhkcc, 1 ≤ t ≤ 15 PCA 15 0.66 0.80 0.61

LDA 2 0.64 0.80 0.55
MMC 2 0.67 0.84 0.56

Dcon 7 PCA 5 0.60 0.71 0.57
LDA 2 0.69 0.84 0.63
MMC 2 0.68 0.80 0.54

PCA (Principal Component Analysis), LDA (Linear Discriminant Analysis) and
MMC (Maximum Margin Criterion) [15]. The projection vectors were computed
using training data and then applied to obtain lower-dimensional representations
of vectors from the testing set, like in Fisherfaces or Eigenfaces technique [16].
The results of classification are depicted in Table 2. The target dimensionalities
were selected experimentally to obtain highest accuracies. In case of MMC only
the directions associated with eigenvalues greater than 0.5 were considered.

The results obtained for descriptors derived from B-matrices are considerably
better than classification rates for Dhkc, Dhkcc and Dcon. Even unsupervised,
global-variance-oriented dimensionality reduction with PCA gives better accu-
racy than Dhkc with LDA or MMC. The highest average accuracies were achieved
for DE

long(1, 20, 1, 100) and for aggregated DE
avgd and DE

rstd descriptors. Dimen-
sionality of D�

long descriptors exceeds the number of samples, therefore, in this
case we applied MMC, which does not suffer from small sample size problem
and, additionally, is less vulnerable to overfittig (for high input dimensionality
LDA has poor generalization capability).

5 Conclusions

In this paper we demonstrated that B-matrices which contain information about
l-shell size distributions can be successfully employed to distinguish graphs. Such
a representation is convenient to use owing to its invariance under isomorphism.
Graph characteristics can be extracted from B-matrices using row aggregated
statistics or by selecting submatrix and forming long feature vector. For sparse
graphs B-matrices can be constructed with O(n2) steps what makes this ap-
proach more computationally feasible than the eigendecomposition-based algo-
rithms. In the future we aim to test the presented graph comparison method on
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subsequent real-world datasets, including metabolic networks and vascular net-
works. Furthermore, a deeper analysis of B-matrices structure and correlations
between their rows can lead to more robust descriptors.

Acknowledgments. This work is financed by the Polish Ministry of Science
and Higher Education, Project No. N N519 579338.
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Abstract. The Graph of Words Embedding consists in mapping ev-
ery graph of a given dataset to a feature vector by counting unary and
binary relations between node attributes of the graph. While it shows
good properties in classification problems, it suffers from high dimen-
sionality and sparsity. These two issues are addressed in this article.
Two well-known techniques for dimensionality reduction, kernel princi-
pal component analysis (kPCA) and independent component analysis
(ICA), are applied to the embedded graphs. We discuss their perfor-
mance compared to the classification of the original vectors on three
different public databases of graphs.

1 Introduction

A graph based representation is a powerful tool to represent patterns which
lately has been gaining popularity among the pattern recognition community.
The major advantage over statistical feature vectors arises from the fact that
graphs are able to describe structural relations between parts of the patterns
to be represented. However, on the other hand, the complexity of the related
algorithms makes the treatment and processing of graphs a hard problem; while
there are many pattern analysis algorithms for feature vector based problems
available, in the case of graphs we still lack well established and efficient proce-
dures to process them in the context of learning and pattern classification.

The classical techniques for graph matching [1] do not allow the transition
between graph representations and the domain of statistical pattern recogni-
tion, which is quite wealthy in terms of algorithms. However, there exist recent
approaches that allow such a transition, and much effort is being put on inves-
tigating how to take as much profit as possible of both worlds. One important
case are graph embeddings. Embedding a graph into a vector space permits one
to use every algorithm from machine learning originally developed for feature
vectors. Examples of graph embeddings can be widely found in the literature.
For instance, in [2], the authors approach the problems of graph clustering and
graph visualization by extracting different features from an eigen-decomposition
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of the adjacency matrices of the graphs. In [3], the nodes of the graph are embed-
ded into a metric space and then the edges are interpreted as geodesics between
points on a Riemannian manifold. The problem of matching nodes to nodes is
viewed as the alignment of the resulting point sets. An interesting approach is the
one in [4], where graphs are mapped to feature vectors such that each component
is the edit distance to a graph prototype. Finally, in [5], to solve the problem of
molecules classification, the authors associate a feature vector to every molecule
by counting unary and binary statistics in the molecule; these statistics indicate
how many times every atomic element appears in the molecule, and how often
there is a bond between two specific atoms.

The idea in [5] exhibits interesting properties regarding efficiency and repre-
sentation. However, the original proposal is only for discrete node attributes and
it suffers from dimensionality and sparsity problems. In this work, we general-
ize this idea for continuous attributed graphs and we specifically deal with the
dimensionality problem the embedding exhibits. In the next section, we recall
formally the embedding procedure and clarify why the dimensionality has to
be reduced. Then, in Section 3, we expose the two techniques that have been
used to reduce the number of dimensions. In Section 4, the experimental setup
is explained and the results are shown and discussed. Finally, Section 5, draws
conclusions from this work.

2 Graph of Words Embedding

Although the embedding of graphs into vectors spaces provides a way to be able
to apply statistical pattern analysis techniques to the domain of graphs, the
existing methods still suffer from the main drawback that the classical graph
matching techniques also did, this is, their computational cost. The Graph of
Words Embedding tries to avoid these problems by just visiting nodes and edges
instead of, for instance, travelling along paths in the graphs, computing edit
distances or performing the eigen-decomposition of the adjacency matrix. In
this section we first briefly explain the motivation of this approach and then
formally define the procedure.

2.1 Motivation

In image classification, a well-known image representation technique is the so-
called bag of visual features, or just bag of words. It first selects a set of feature
representatives, called words, from the whole set of training images and then
characterizes each image by a histogram of appearing words extracted from the
set of salient points in the image [6].

The graph of words embedding proceeds in an analogous way. The salient
points in the images correspond to the nodes of the graphs and the visual de-
scriptors are the node attributes. Then, one also selects representatives of the
node attributes (words) and counts how many times each representative appears
in the graph. This leads to a histogram representation for every graph. Then, to
take profit of the edges in the original graphs, one also counts the frequency of
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the relation between every pair of words. The resulting information is combined
with the representative’s histogram in a final vector.

2.2 Embedding Procedure

A graph is defined by the 4-tuple g = (V, E, μ, ν), where V is the set of nodes,
E ⊆ V ×V is the set of edges, μ is the nodes labelling function, assigning a label
to every node, and ν is the edges labelling function, assigning labels to every
edge in the graph. In this work we just consider graphs whose nodes attributes
are real vectors, this is μ : V → R

d and whose edges remain unattributed, this
is, ν(e) = ε for all e ∈ E (where ε is the null label).

Let P be the set of all nodes attributes in a given dataset of graphs G =
{g1, . . . , gM}. From all points in P we derive n representatives, which we shall
call words, in analogy to the bag of words procedure. Let this set of words be
V = {w1, . . . , wn} and be called vocabulary. Let also λ be the node-to-word
assignment function λ(v) = arg minwi∈V d(v, wi), this is, the function that as-
signs a node to its closest word. Then, before assigning a vector to each graph,
we first construct an intermediate graph that will allow us an easier embed-
ding. This intermediate graph, called graph of words g′ = (V ′, E′, μ′, ν′) of
g = (V, E, μ, ν) ∈ G with respect to V , is defined as:

– V ′ = V
– E′ is defined by: (w, w′) ∈ E′ ⇔ there exists (u, v) ∈ E such that

λ(u) = w and λ(v) = w′

– μ′(w) = | {v ∈ V |w = λ(v)} |
– ν′(w, w′) = | {(u, v) ∈ E | λ(u) = w, λ(v) = w′} |.

Once the graph of words is constructed, we easily convert the original graph into
a vector by combining the node and edge information of the graph of words, by
keeping both the information of the appearing words and the relation between
these words. We consider the histogram

φV
a (g) = (μ′(w1), . . . , μ′(wn)). (1)

and a flattened version of the adjacency matrix of the graph of words A = (aij),
with aij = ν′(wi, wj):

φV
b (g) = (a11, . . . , aij , . . . , ann), ∀ i ≤ j (2)

The final graph of words embedding is the concatenation of both pieces of infor-
mation,

ϕV(g) = (φV
a (g), φV

b (g)). (3)

In Figure 1, there is an example of the graph of words procedure for a simple
vocabulary of size equal to 4.
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Fig. 1. Example of the graph of words embedding. The graph on the left is assigned
to the vector on the right by considering the vocabulary V = {R, Y, G, B}. Nodes 1
and 5 are assigned to the R word, 2 and 3 to the B word and 4 to the G word. Note
that none is assigned to the Y word. The histogram of words is considered as well
as the adjacency matrix. The resulting vector is the concatenation of both types of
information.

2.3 Vocabulary Construction

The final configuration of the vectors after the embedding clearly depends on the
set of words that has been chosen. In this paper we decided to use the kMeans al-
gorithm in order to build the vocabulary. The kMeans algorithm iteratively builds
a set of k cluster centers by first initializing the k centers with some points, assign-
ing each point in the set to the closest center, and then recomputing the centers
as the mean of the set of points assigned to the same cluster. The process finishes
when there are no center changes between one iteration and the next one.

The initialization points of the clustering under kMeans are usually taken
randomly. In our case, in order to avoid uncertainty in the results, we chose to
start by selecting uniformly distributed points over the range of nodes attributes.
The way we proceed is by first selecting the median vector of P and then adding
at each iteration the point which is furthest away from the already selected ones.
This is done until a predefined number of words is obtained.

2.4 Dimensionality and Sparsity

An important issue of the graph of words configuration is the quadratic increase
of its dimension with respect to the vocabulary size. In fact, given a vocabulary
V of size n, the dimensionality of ϕV is

n +
n2 − n

2
+ n =

n2 + 3n

2
. (4)

In general, when having small vocabularies, this does not cause any problem.
However, the rapid increase of the dimensionality of the vectors constitutes a
problem due to the fact that graphs do not really have such large amount of
nodes. When nodes are assigned to words, a large vocabulary creates a really
sparse vector that needs to be processed. A small number of nodes makes the
adjacency matrix of the graph of words to be full of zero entries, since only a
few word relations will be present in such graph.
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This situation makes necessary to perform feature selection on the vectors
obtained from the graph of words, in order to reduce the number of dimensions
of the vectors and, therefore, ease the manipulation and the further processing
of these vectors in complex and time consuming machine learning algorithms.
But also, it seems important to reduce their dimensionality because this may
automatically discover the really important words in the vocabulary, or the im-
portant relations between words. It seems reasonable to avoid having a feature
in the vectors which is expressing a relation between two rarely related words.

3 Dimensionality Reduction

After making clear the need of reducing the number of dimensions of the graph
of words vectors, in this section we give a brief description of the two techniques
that have been used to perform such reduction.

3.1 Kernel Principal Component Analysis

Given a set of N feature vectors x1, . . . , xN ∈ R
n, principal component analysis

(PCA) finds a linear transformation of the data yi = Axi ∈ R
m so that linear

correlation among the new features is reduced and these new m ≤ n features
capture most of the variance. Such transformation is obtained by an orthogonal
mapping where each column of the matrix A is an eigenvector of the covariance
matrix of the centered original data. These eigenvectors v1, . . . , vn are called
principal components and are ordered from greater to smaller variance. By tak-
ing m ≤ n principal components, the dimensions are reduced and most of the
variance is being kept.

Kernel principal component analysis (kPCA) is the natural non-linear gen-
eralization of PCA by means of the kernel trick [7]. A kernel function k can
always be thought of as a scalar product in a hidden feature space by means of
an implicit mapping φ from the input space (no matter the nature of it) to a
Hilbert one. Hence, given a kernel function k : X × X → R, there always exists
a mapping φ : X → H such that k(xi, xj) = 〈φ(xi), φ(xj)〉, where X is the space
of the input patterns, H is a Hilbert space implicitly defined and 〈·, ·〉 stands for
the dot product.

Kernel principal component analysis makes use of this fact in order to find
linear behaviors of the data in the hidden space, which in general correspond
to non-linear properties of the input patterns. The projection of φ(x) onto a
(non-linear) principal component up of the input feature space is given by

up · φ(x) =
N∑

j=1

βp
j k(xj , x) (5)

where βp = (βp
1 , . . . , βp

N ) ∈ R
N is the p-th leading eigenvector of the kernel

matrix K = (k(xs, xt))1≤s,t,≤N . The final transformation is given by yi = (u1 ·
φ(xi), . . . , un·φ(xi)). Exactly as in PCA, by keeping m ≤ n principal components
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one captures most of the variance in H. The experiments that have been carried
out in this article use the Gaussian kernel for kPCA

k(xi, xj) = exp(−γ · ||xi − xj ||2), γ > 0. (6)

3.2 Independent Component Analysis

The second technique that has been used in this article is independent component
analysis (ICA). Originally developed in the field of signal processing, ICA is very-
well known and used for pattern recognition problems. Just as PCA, it aims at
finding linearly uncorrelated components. However, ICA adds the requirement
for these components to be statistically independent. This is done by optimizing
the parameters of the linear transformation yi = Axi.

Asking for independence in the set of components leads to the assumption for
the latent variables to have non-Gaussian distributions. Therefore, the process of
estimating the independent components is translated into having as an objective
function a measure of non-Gaussianity. Originally from the information theory
field, the negentropy of a random variable Y is used as a non-Gaussianity measure
and is defined by J(Y) = H(Ygauss)−H(Y), where Ygauss is a Gaussian variable
of the same mean and covariance as Y and H is the entropy of the variable
(H(Y) = − ∫ f(Y) log f(Y) dY, with f(Y) being its density function).

Gaussian variables have maximum entropy among all variables of the same
variance. Thus, independent components will be found in the directions of max-
imum negentropy. In [8], the authors propose FastICA, an efficient algorithm
that finds independent components by maximizing with respect to an approxi-
mated negentropy function, after finding uncorrelated components of unit vari-
ance (whitening of data).

4 Experimental Results

We will evaluate the above described dimensionality reduction techniques on
different graph datasets by classification rates of a kNN classifier on the reduced
vectors. We will compare the results with the results of the classification of the
original vectors before being reduced.

4.1 Databases

We have chosen three different datasets from the IAM Graph Database Reposi-
tory [9], describing both synthetic and real data. The Letter Database represents
distorted letter drawings. Starting from a manually constructed prototype of
every of the 15 Roman alphabet letters that consist only of straight lines, dif-
ferent degrees of distortion have been applied. Each ending point of the lines is
attributed with its (x, y) coordinates. The second graph dataset is the GREC
Database, which represents architectural and electronic drawings under different
levels of noise. In this database, intersections and corners constitute the set of
nodes. These nodes are attributed with their position on the 2-dimensional plane.
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Finally, the Fingerprint Database consists of graphs that are obtained from a
set of fingerprint images by means of particular image processing operations.
Ending point and bifurcations of the skeleton of the processed images constitute
the (x, y) attributed nodes of the graphs.

4.2 Experimental Setup

All three described datasets are divided into a training set, a validation set and
a test set. All the experiments are done by tuning the involved parameters on
the validation set and then testing with the best configuration on the test set.
The considered parameters are:

– The size of the vocabulary in the graph of words construction.
– The specific parameters of the dimensionality reduction methods.
– The classification parameters (number of neighbors in the kNN classifier).

Starting from 3, the number of words in the vocabulary has been increased until
100 (in steps of 3). This way, a large range of different configurations is obtained
in terms of the behavior of the dimensionality reduction techniques. For every
one of these chosen sizes of the vocabulary we perform the embedding and then
reduce the dimensions. This forces us to adopt a criterion by which we keep a
certain number of dimensions.

Independently of the validation set, in kPCA, we use an energy parameter.
Once the vectors are projected into the new set of features, they are arranged
from the most to the least important components (in the leading eigenvectors or-
der). The energy of each component is the ratio between the cumulative amount
of weight from the first component (the leading one) to itself, and the total
amount of weight in the training vectors. Then, by setting a certain amount of
energy, we keep those components that are enough to retain such energy. The
energy parameter has been set to 0.5, 0.75, 0.9, 0.95, 0.97 and 0.99. In Figure 2,
we show how the dimensions using kPCA are drastically reduced compared to
the original ones (recall the original dimensions are a quadratic function of the
vocabulary size, see equation (4)). Using a 99% degree of energy we obviously
keep more information (i.e. more components) than using lower ratios. However,
the number of dimensions of the resulting vectors with the energy parameter set
to 99% is still much less than the dimensionality of the original vectors. For this
reason, we use this degree of energy for testing.

In the case of ICA, the criterion is somewhat similar to the one used in
kPCA. In this case, however, instead of a cumulative energy, we just keep those
components whose importance exceed a certain level. In FastICA, a threshold ξ is
set for the eigenvalues of the covariance matrix in the whitening process. After
some experimentation, we use ξ = 10−7; certainly a low value that generates
some more components than kPCA.

In kPCA, we also have to optimize the γ parameter for the kernel function
(equation (6)). We took a logarithmic scale for this parameter from 10−2 until
102. In Figure 3 we show the effect of this parameter for the three datasets on the
validation set (in terms of accuracy rates), as a function of the number of words
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Fig. 2. Kept dimensions (vertical axis) for every vocabulary size (horizontal axis) for
different amounts of energy. Results on the validation set for a Gaussian kernel of γ = 1
in the kPCA reduction method.
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Fig. 3. Accuracy rate on the validation set (vertical axis) for every vocabulary size
(horizontal axis). Each line represents a different value for the γ parameter in the
Gaussian kernel. The energy rate is set to be 99%. The yellow curve (γ = 10) is always
under the magenta curve (γ = 100).

in the vocabulary. It seems clear that low values such as 10−2 and 10−1 always
give poor results. High values like 10 or 100 perform always the same (there is
no significant difference at these levels). These high values of the parameter are
better than the low ones but still not as good as the value γ = 1, which is the
one obtaining the better results while being the most stable. This is why, from
here on, the parameter of the kernel is set to be equal to 1.

Finally, in the case of the kNN classifier, different numbers of neighbors have
been tried in conjunction with the Euclidean metric.

4.3 Results

The results on the validation set as a function of the number of words in the
vocabulary are shown in Figure 4. We show the results of the classification of
the original vectors using a kNN classifier, as well as both the reduced vectors
by kPCA and ICA.

kPCA performs fairly well in all cases. For the Letter dataset, the tendency
is pretty similar to the original vectors, losing accuracy after about 40 words.
In the GREC case, between both curves (the original vectors and kPCA) there
is never any significant difference, which suggests the kPCA vectors to be used
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Fig. 4. Accuracy rate on the validation set (vertical axis) for every vocabulary size
(horizontal axis). These figures depict the comparison between the classification of the
original vectors (without reduction) with the two dimensionality reduction techniques,
kPCA and ICA.

Table 1. Results on the test set for the original vectors and both the kPCA and
ICA reduced vectors. Accuracy rates (AR) are shown in %. The dimensionality of the
vectors of every system is also shown (Dims).

Letter GREC Fingerprint

AR Dims AR Dims AR Dims

Original vectors 98.8 702 97.5 3402 77.7 189
kPCA 97.6 43 97.1 67 80.6 108
ICA 82.8 251 58.9 218 63.3 184

since the dimensions are much less, reducing, this way, memory needs and com-
putational complexity in further processing or treatment of the vectors. In the
Fingerprint database case, the situation is even better. The kPCA reduced vec-
tors drastically outperform the original features, removing any redundancy or
noise in the original vectors and gaining accuracy.

In the case of ICA, the situation is not the desired one and the results advise
not to go on this direction. For both the Letter and GREC databases, the per-
formance of ICA rapidly decreases, making its situation not comparable to the
other cases. In the case of the Fingerprint graphs, ICA follows a similar behavior
as the original vectors, but it still keeps losing accuracy when compared to them.

As already explained in Section 3.2, ICA tries to find the linear transformation
from the original vectors to the reduced ones by optimizing the parameters of
the transformation in such a way that the new features are uncorrelated and
statistically independent. In the case of the graph of words vectors, this seems
to be a hard task. Components of the original graph of words vectors are strongly
correlated and they hardly depend one on another. The higher the appearance
of a specific word, the more relation between this word and others will exist
in the final vector representation. Such situation makes ICA not to properly
discover important and distinctive components and, therefore, the accuracy is
being negatively affected.
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Finally, the results on the test set are given in Table 1. We take the best
parameters configuration on the validation set and classify the test set under
this setup. As expected, ICA performs poorly with respect to the other systems.
kPCA, however, takes similar results as the original vectors while reducing dras-
tically the dimensionality of the vectors. In one out of the three databases, kPCA
outperforms the original vectors classification.

5 Conclusions

In this article we have addressed the dimensionality and sparsity problem for
the graph of words embedding. Kernel principal component analysis (kPCA)
and independent component analysis (ICA) have been applied to three different
databases of graphs. The experimental results show that kPCA is a proper way
to reduce the dimensionality of the vectors since it is able to remain in the same
classification accuracy levels while drastically reducing the number of features
in the vectors. ICA, on the other hand, does not fit for graph of words em-
bedded vectors since their components are strongly dependent and correlated.
Future work is in the direction of other kernel functions for kPCA to check the
dependency of the kernel for every database.
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Abstract. In this paper we explore and compare two contrasting graph
characterizations. The first of these is Estrada’s heterogeneity index,
which measures the heterogeneity of the node degree across a graph.
Our second measure is the the von Neumann entropy associated with
the Laplacian eigenspectrum of graphs. Here we show how to approxi-
mate the von Neumann entropy by replacing the Shannon entropy by its
quadratic counterpart. This quadratic entropy can be expressed in terms
of a series of permutation invariant traces, which can be computed from
the node degrees in quadratic time. We compare experimentally the ef-
fectiveness of the approximate expression for the entropy with the het-
erogeneity index.

1 Introduction

One of the key problems that arises in the analysis on non-vectorial pattern data
such as strings, trees and graphs is how to succinctly characterize such data for
the purposes of clustering and classification. Unlike pattern vectors, when the
analysis of tree or graph data is attempted then there is frequently no labelling
or ordering of the nodes of the structure to hand.

Broadly speaking, there are three ways by which to overcome this problem. The
first is to extract characteristics from the graph or tree data to-hand, and then to
cluster graphs on the basis of vectors of structural characteristics [12]. The second
method is to use a measure of pairwise distance between structures and resort to
pairwise clustering methods [16]. The third method involves constructing a class
prototype through the union or intersection of different structures[25] [19][20].
These latter two methods can prove very time consuming and even fragile since
they require reliable node correspondences to hand [23][24], and this invariably
requires inexact graph matching over the dataset to hand.

It is for this reason that the use of graph characteristics has proved to be an
attractive one. Although there are a number of simple alternatives that can be
used, such as node or edge frequency, edge density, diameter and perimeter, these
have proved to be ineffective as a means of characterizing variations in intrinsic
structure. Instead, it has proved necessary to resort to more complex representa-
tions. One of the most successful of these has been to use graph-spectral methods
[21][22]. Here the distribution of the eigenvalues and eigenvectors can be used
to construct permutation invariants that do not require node correspondences.
Examples here include Laplacian spectra and characteristic polynomials. This
study has recently been taken one step further by Xiao, Wilson and Hancock
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[12] who have performed an analysis of the heat kernel for graphs, and have
shown that the Riemann zeta function can be used to generate a number of
powerful invariants from the normalized Laplacian spectrum. Another route to
a unary characterization of graph structure is to define measures of intrinsic
complexity. The characterization of graph complexity is a long standing prob-
lem, but recently measures based on the heat kernel have proved effective, and
these include the use of Birkoff polytopes [18] and heat-flow complexity [17].

Unfortunately, both graph-spectral and heat flow complexity methods can
prove computationally burdensome. The reason for this is that the computation
of the graph-spectrum is cubic in the number of nodes. A much simpler alter-
native is the heterogeneity index recently developed by Estrada[1], who defines
the heterogeneity based on simple statistics for the distribution of node degree
over all pairs of linked nodes. This heterogeneity index can be expressed as a
quadratic form of the Laplacian matrix of the graphs, which allows a spectral
representation of graph heterogeneity.

Our aim in this paper is to explore whether more efficient complexity charac-
terizations similar in spirit to the heterogeneity plot can be used to characterize
differences in graph structure. We commence from the von Neumann entropy of
a graph. This is simply the Shannon entropy associated with the spectrum of
the normalized Laplacian matrix. We explore how to simplify and approximate
the calculation of von Neumann entropy. Our first step is to replace the Shan-
non entropy by its quadratic counterpart. An analysis of the quadratic entropy
reveals that it can be computed from a number of permutation invariant matrix
trace expressions. This leads to a simple expression for the approximate entropy
in terms of the node-degree. The expression is quadratic in the number of nodes
in a graph. We compare our approximate entropy measure with Estrada’s het-
erogeneity index. In the experiment part, we investigate whether the proposed
entropy expression and the heterogeneity index are effective on graph cluster-
ing and classification tasks. We also compare how the heterogeneity H plots
characterize three different kinds of graphs.

2 Graph Representation and the von Neumann Entropy

To commence, we denote the graph under study by G = (V, E) where V is the set
of nodes and E ⊆ V × V is the set of edges. Further, we represent the structure
of the graph using a |V | × |V | adjacency matrix whose elements are

A(u, v) =
{

1 if (u, v) ∈ E ,
0 otherwise . (1)

The degree matrix of graph G is a diagonal matrix D whose elements are given
by D(u, u) = du =

∑
v∈V A(u, v). From the degree matrix and the adjacency

matrix we can construct the Laplacian matrix L = D−A, i.e. the degree matrix
minus the adjacency matrix. The elements of the Laplacian matrix are

L(u, v) =

⎧⎨
⎩

dv if u = v ,
−1 if (u, v) ∈ E ,
0 otherwise .

(2)
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The normalized Laplacian matrix is given by L̂ = D−1/2LD−1/2 and has ele-
ments

L̂(u, v) =

⎧⎨
⎩

1 if u = v and dv 
= 0 ,
− 1√

dudv
if (u, v) ∈ E ,

0 otherwise .

(3)

The spectral decomposition of the normalized Laplacian matrix is L̂ = ΦΛΦT

where Λ = diag(λ1, λ2, ..., λ|V |) is a diagonal matrix with the ordered eigenvalues
as elements (0 = λ1 < λ2 < ... < λ|V |) and Φ = (φ1|φ2|...|φ|V |) is a matrix with
the corresponding ordered orthonormal eigenvectors as columns. The normalized
Laplacian matrix is positive semi-definite and so has all eigenvalues non-negative.
The number of zero eigenvalues is the number of connected components in the
graph. For a connected graph, there is only one eigenvalue which is equal to
zero. The normalization factor means that the largest eigenvalue is less than or
equal to 2, with equality only when G is bipartite. Hence all the eigenvalues
of the normalize Laplacian matrix are in the range 0 ≤ λ ≤ 2. The normalized
Laplacian matrix is commonly used as a graph representation and the eigenvector
φ2 associated with the smallest non-zero eigenvalues λ2 referred to as the Fiedler-
vector [9] is often used in graph cuts [10][11].

The von Neumann entropy of the graph associated with the Laplacian eigen-
spectrum is defined as [14]

S = −
|V |∑
v=1

λv

2
ln

λv

2
. (4)

We approximate the entropy −λv

2 ln λv

2 by the quadratic entropy λv

2 (1− λv

2 ), to
obtain

S = −
∑

v

λv

2
ln

λv

2
�
∑

v

λv

2
(1− λv

2
) =

∑
v λv

2
−

∑
v λ2

v

4
. (5)

Using the fact that Tr[L̂n] =
∑

v λn
v , the quadratic entropy can be rewritten as

S =
Tr[L̂]

2
− Tr[L̂2]

4
. (6)

Since the normalized Laplacian matrix L̂ is symmetric and it has unit diagonal
elements, then according to equation (3) for the trace of the normalized Laplacian
matrix, we have

Tr[L̂] = |V | . (7)
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Similarly, for the trace of the square of the normalized Laplacian, we have

Tr[L̂2] =
∑
u∈V

∑
v∈V

L̂uvL̂vu =
∑
u∈V

∑
v∈V

(L̂uv)2

=
∑

u,v∈V
u=v

(L̂uv)2 +
∑

u,v∈V
u�=v

(L̂uv)2

= |V |+
∑

(u,v)∈E

1
dudv

. (8)

Substituting Equation (7) and (8) into Equation (6), the entropy becomes

S =
|V |
2
− |V |

4
−

∑
(u,v)∈E

1
4 dudv

=
|V |
4
−

∑
(u,v)∈E

1
4 dudv

. (9)

As a result, we can approximate the von Neumann entropy using two measures of
graph structure. The first is the number of nodes of the graph, while the second
is the degree of the nodes of the graph. The approximation bypasses calculating
the Laplacian eigenvalues of a graph to estimate its von Neumann entropy.

3 Graph Heterogeneity Index and H Plot

We now turn our attention to network heterogeneity index recently developed by
Estrada[1]. To develop the heterogeneity index, Estrada commences by defining
a local index which measures the irregularity of an edge in the graph (u, v) ∈ E
as

Iuv = [f(du)− f(dv)]2 , (10)

where f(du) is a function of the node degree. Selecting f(du) = d
−1/2
u , the

heterogeneity index proposed is defined to be the sum of the irregularity of all
edges in the graph,

ρ′(G) =
∑

(u,v)∈E

(d−1/2
u − d−1/2

v )2 . (11)

The main advantage of defining the index as the sum of square differences of
a function of node degree is that the index can be expressed in terms of a
quadratic form of the Laplacian matrix of the graph. That is, let |d−1/2〉 =
(d−1/2

1 , d
−1/2
2 , ..., d

−1/2
|V | ) represent a column vector where du is the degree of the

node u, the index can be written as

ρ′(G) =
∑

(u,v)∈E

(d−1/2
u − d−1/2

v )2 =
1
2
〈d−1/2|L|d−1/2〉 . (12)
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The index above can also be stated in terms of the Randić index 1R−1/2[5] of
the graph,

ρ′(G) =
∑

(u,v)∈E

(d−1/2
u − d−1/2

v )2 = |V | − 2
∑

(u,v)∈E

(dudv)−1/2 = |V | − 2 1R−1/2 .

(13)
Li and Shi [2] show that for connected graphs the Randić index is bounded

as follows √
|V | − 1 ≤ 1R−1/2 ≤ |V |

2
, (14)

where the lower bound is attained for star graphs and the upper bound is attained
for regular graphs with |V | nodes. Then the normalized heterogeneity index is
defined as

ρ(G) =
|V | − 2 1R−1/2

|V | − 2
√|V | − 1

=

∑
(u,v)∈E

(d−1/2
u − d−1/2

v )2

|V | − 2
√|V | − 1

=
1

|V | − 2
√|V | − 1

∑
(u,v)∈E

(
1
du

+
1
dv
− 2√

dudv

) . (15)

This is zero for regular graphs and one for star graphs, i.e., 0 ≤ ρ(G) ≤ 1. Then
heterogeneous starlike graphs are expected to have values of ρ(G) close to one. On
the other hand, more regular graphs are expected to have values close to zero.

Finally it is interesting to note that Von Luxburg [8] has shown that 1/du +
1/dv is proportional to the commute time (or resistance distance) between nodes
for graphs of large degree. Recall that commute time is the average of the outward
hitting time and return hitting time, over all paths connecting a pair of nodes. It
hence provides a non-local index of connectivity between pairs of nodes, which
is non-zero even if there is no connecting edge. Apart from commute time term
and constants related to the size of the graph, whereas the entropy depends
on −∑

(u,v)∈E 1/dudv =−∑
(u,v)∈E L̂2

u,v, the heterogeneity index depends on
−∑

(u,v)∈E 2/
√

dudv=2
∑

(u,v)∈E L̂u,v. Hence, the heterogeneity contains mea-
sures of both global path length distribution via commute time, and local edge
structure via the elements of the normalised Laplacian. The entropy on the other
hand is based only on the latter.

Using the Euler theorem [3] the Randić index can be expressed as follows

1R−1/2 =
1
2
[ |V | − 1

0R−1

|V |∑
v=2

λv cos2 θv] , (16)

we can also establish a link between the normalized heterogeneity index and the
spectral representation of graphs

ρ(G) =
0R−1

|V | − 2
√|V | − 1

|V |∑
v=1

x2
v , (17)
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where xv =
√

λv cos θv. λv is the vth eigenvalue of the Laplacian matrix of the
graph and θv is the angle between the orthonormal eigenvector φv associated
with the eigenvalue λv and the vector d−1/2 previously defined. Then the ρ(G)
can be interpreted as the sum of the squares of the projection of

√
λvφv onto

the vector d−1/2. Define yv =
√

λv sin θv, we can represent a graph by plotting
xv vs yv for all values of v, where the heterogeneity is given by the sum of the
squares of the projections of all these points on the abscissa. All the projections
on y axis are positive but those on x axis can have positive and negative values.
These plots are referred to as heterogeneity plots or H plots.

4 Experiments

In this section, we provide some comparative experimental evaluation of the
approximate von-Neumann entropy and the heterogeneity index on both real-
word dataset and synthetic dataset. The real-world dataset used is the COIL
dataset[15] which consists of images of different views of several objects, with 72
views of each object from equally spaced directions over 360◦. We extract corner
features from each image and use the detected feature points as nodes to con-
struct sample graphs by Delaunay triangulation. The synthetic dataset consists
of Erdös-Rényi random graphs[6] generated by connecting pairs of nodes in a
graph with an equal probability p ( 0 ≤ p ≤ 1) and scale-free graphs whose de-
gree distribution follows the power-law distribution, the scale-free graphs here are
generated with the preferential attachment algorithm of Barabási and Albert[7].
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Fig. 1. (top row) The values of the heterogeneity of the Delaunay graphs. (bottom
row) The values of the approximate von-Neumann entropy of the Delaunay graphs.
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Fig. 2. Laplacian eigenvalue distributions(left column) and H plots(right column) of
the ER graph (top row), the Delaunay graph(middle row) and the BA scale-free graph
(bottom row)

We commerce our study by comparing the performance of the heterogeneity
index and the approximate von-Neumann entropy on characterizing Delaunay
graphs from the COIL dataset. To do this, we select 5 objects from the COIL
dataset and plot the values of heterogeneity and the approximate von Neumann
entropy for all Delaunay graphs from the 5 objects in Figure 1. Figure 1(top
row) shows the values of the heterogeneity of the graphs where we use differ-
ent colors to represents different objects. The values of the heterogeneity of the
graphs are very small, indicating the structure of Delaunay graphs are close in
structure to that of a regular graph. This can be explained by the fact that the
node degree of a Delaunay graph has an average value of 5.5 and its variation
is no more than 3. However, the values of the heterogeneity heavily overlap be-
tween graphs from different objects. Thus the heterogeneity index can not be
used to distinguish Delaunay graphs from different objects. On the other hand,
in Figure 1(bottom row), the values of the von-Neumann entropy exhibit good
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Fig. 3. H plot changes as the p value increases

separation for different objects. When we apply a 3-nearest neighbor classifier
to the heterogeneity of the Delaunay graphs, its average classification rate com-
puted using 10-fold cross-validation is 58%, much lower than the classification
rate of the approximate von-Neumann entropy which is 92%.

We now turn our attention to comparing the spectral heterogeneity H plot for
three kinds of graphs, namely, ER graphs, Delaunay graphs and scale-free graphs.
In Figure 2 we illustrate the spectral H plots for an ER graph, a scale-free graph
and a Delaunay graph as well as their Laplacian eigenvalue distributions. The
ER graph here has a node-pair connecting probability p = 0.01, the node number
of the ER graph and the scale-free graph is 1000 and that of the Delaunay graph
is 250.

The left column in Figure 2 shows the Laplacian eigenvalue distributions
of the three graphs. Zhang et al.[4] have observed that for the BA scale-free
networks and ER random-graph networks, the Laplacian eigenvalue curves are
similar to their node-degree curves. Our result is consistent with their observation
by showing that the eigenvalue of the ER graph (top row) has a Poisson-like
distribution, while that of the BA scale-free graph (bottom row) has a power-
law distribution. Besides, we observe that eigenvalue of the Delaunay graph
exhibits a similar distribution to that of the ER graph. The right column in
Figure 2 shows the H plots xv vs yv for the three graphs where we normalize
the values on the x axis between -1 and 1, and those of the y axis between 0
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and 2 to have similar length in both scales. We observe that the H plot for the
ER graph with p = 0.01 has a regular distribution of the points with an almost
squared shape. In the case of the Delaunay graph, the H plot is characterized
by an inverted triangle shape. The H plot for the BA scale-free graph exhibits a
similar shape to that of the Delaunay graph, whereas most of the points in the
plot are distributed around (0,0.2).

From the Figure 2 it is clear that the H plot for ER graph with p=0.01 has
a square shape, we now investigate whether it holds for all ER graphs. To this
end, we increase the value of node-pair connecting probability p from 0.01 to 1
and generate ER graphs with different p values. Figure 3 shows the H plot for
four ER graphs whose p values are respectively 0.01, 0.1, 0.5 and 0.9. It is clear
from Figure 3 that the shape of the H plot for ER graphs has a square shape
when the value of p is very small. As p increases, the distribution of the value of
yv becomes condensed and the shape of the H plot becomes rectangle and finally
closes to a line.

5 Conclusion

In this paper we show how to use the von Neumann entropy computed from the
Laplacian eigenspectrum to characterize graphs. We approximate the Shannon
term in the definition of the von Neumann entropy in a quadratic manner. This
approximation leads to an expression for the von Neumann entropy in terms of
the number of nodes and node degrees. In our experiments, we compare the von
Neumann entropy measure with the heterogeneity index on an object classifi-
cation task and show its effectiveness. Experimental results also reveal that the
spectral heterogeneity H plot for the Delaunay graphs exhibits an inverted tri-
angle shape and that of the ER graph tends to a rectangle shape as we increase
the node-pair connecting probability p.
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6. Erdös, P., Rényi, A.: On Random Graphs. Publicationes Mathematicae 6, 290–297

(1959)
7. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,

509–512 (1999)
8. Maier, M., von Luxburg, U., Hein, M.: Influence of Graph Construction on Graph-

Based Clustering Measures. In: NIPS, pp. 1–9 (2010)



Entropy versus Heterogeneity for Graphs 41

9. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, Provi-
dence (1997)

10. Robles-Kelly, A., Hancock, E.R.: A Riemannian Approach to Graph Embedding.
Pattern Recognition, 1042–1056 (2007)

11. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. In: CVPR, pp. 731–
737 (1997)

12. Xiao, B., Hancock, E.R., Wilson, R.C.: Graph Characteristic from the Heat Kernel
Trace. Pattern Recognition 42, 2589–2606 (2009)

13. McKay, B.D.: Spanning Trees in regular Graphs. European Journal of Combina-
torics 4, 149–160 (1983)

14. Passerini, F., Severini, S.: The von Neumann entropy of networks. arXiv:0812.2597
(2008)

15. Nene, S.A., Nayar, S.K., Murase,H.: Columbiaobjectimagelibrary(coil100). Tech-
nical Report,Department of Computer Science, Columbia University (1996)

16. Torsello, A., Robles-Kelly, A., Hancock, E.R.: Discovering Shape Classes using Tree
Edit-Distance and Pairwise Clustering. IJCV 72(3), 259–285 (2007)

17. Escolano, F., Lozano, M.A., Hancock, E.R., Giorgi, D.: What is the complexity of
a network? The heat flow-thermodynamic depth approach. In: Hancock, E.R., Wil-
son, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS,
vol. 6218, pp. 286–295. Springer, Heidelberg (2010)

18. Escolano, F., Hancock, E.R., Lozano, M.A.: Polytopal graph complexity, matrix
permanents, and embedding. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok,
J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008.
LNCS, vol. 5342, pp. 237–246. Springer, Heidelberg (2008)

19. Torsello, A., Hancock, E.R.: Graph Embedding Using Tree Edit-union. Pattern
Recognition 40(5), 1393–1405 (2007)

20. Suau, P., Escolano, F.: Bayesian Optimization of the Scale Saliency Filter. Image
and Vision Computing 26(9), 1207–1218 (2008)

21. Luo, B., Wilson, R.C., Hancock, E.R.: A Spectral Approach to Learning Structural
Variations in Graphs. Pattern Recognition 39(6), 1188–1198 (2006)

22. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern Vectors from Algebraic Graph The-
ory. IEEE PAMI 27(7), 1112–1124 (2005)

23. Ferrer, M., Valveny, E., Serratosa, F., Bunke, H.: Exact median graph computation
via graph embedding. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T.,
Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS,
vol. 5342, pp. 15–24. Springer, Heidelberg (2008)

24. Ferrer, M., Serratosa, F., Valveny, E.: On the relation between the median and the
maximum common subgraph of a set of graphs. In: Escolano, F., Vento, M. (eds.)
GbRPR. LNCS, vol. 4538, pp. 351–360. Springer, Heidelberg (2007)

25. Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means
of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538,
pp. 383–393. Springer, Heidelberg (2007)



Learning Generative Graph Prototypes Using

Simplified von Neumann Entropy
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Abstract. We present a method for constructing a generative model
for sets of graphs by adopting a minimum description length approach.
The method is posed in terms of learning a generative supergraph model
from which the new samples can be obtained by an appropriate sampling
mechanism. We commence by constructing a probability distribution for
the occurrence of nodes and edges over the supergraph. We encode the
complexity of the supergraph using the von-Neumann entropy. A variant
of EM algorithm is developed to minimize the description length criterion
in which the node correspondences between the sample graphs and the
supergraph are treated as missing data.The maximization step involves
updating both the node correspondence information and the structure
of supergraph using graduated assignment. Empirical evaluations on real
data reveal the practical utility of our proposed algorithm and show that
our generative model gives good graph classification results.

1 Introduction

The main obstacle to learning in the graph domain is solving the problem of
how to capture variability in graph or tree structure. The main reason for the
lack of progress in this area is the difficulty in developing representations that
can capture variations in graph-structure. This variability can be attributed to
a) variations in either node or edge attributes, b) variations in node or edge
composition and c) variations in edge-connectivity. This trichotomy provides
a natural framework for analyzing the state-of-the-art in the literature. Most
of the work on Bayes nets in the graphical models literature can be viewed
as modeling variations in node or edge attributes [1]. Examples also include the
work of Christmas et al.[2] and Bagdanov et al. [3] who both use Gaussian models
to capture variations in edge attributes. The problems of modeling variations in
node and edge composition are more challenging since they focus on modeling
the structure of the graph rather than its attributes.

The problem of learning edge structure is probably the most challenging of
those listed above. Broadly speaking there are two approaches to characterizing
variations in edge structure for graphs. The first of these is graph spectral, while
the second is probabilistic. In the case of graph spectra, many of the ideas devel-
oped in the generative modeling of shape using principal components analysis can
be translated relatively directly to graphs using simple vectorization procedures
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based on the correspondences conveyed by the ordering of Laplacian eigenvec-
tors [4]. Although these methods are simple and effective, they are limited by the
stability of the Laplacian spectrum under perturbations in graph-structure. The
probabilistic approach is potentially more robust, but requires accurate corre-
spondence information to be inferred from the available graph structure. If this
is to hand, then a representation of edge structure can be learned.

In this paper, we focus on the third problem and aim to learn a generative
model that can be used to describe the distribution of structural variations
present in a set of sample graphs, and in particular to characterize the variations
of the edge structure present in the set. We follow Torsello and Hancock [5] and
pose the problem as that of learning a generative supergraph representation
from which we can sample. However, their work is based on trees, and since the
trees are rooted the learning process can be effected by performing tree merging
operations in polynomial time. This greedy strategy does not translate tractably
to graphs where the complexity becomes exponential, and we require different
strategies for learning and sampling. Torsello and Hancock realize both of these
using edit operations, here on the other hand we use a soft-assign method for
optimization.

In prior work Han, Wilson and Hancock propose a method of learning a super-
graph model in [13] which overlooks the complexity of the supergraph model. Here,
we take an information theoretic approach to estimating the supergraph structure
by using a minimum description length criterion. By taking into account the over-
all code-length in the model, MDL allows us to select a supergraph representation
that trades-off goodness-of-fit with the observed sample graphs against the com-
plexity of the model. We show how to gauge the complexity of the supergraph
using von-Neumann entropy[8] (i.e. the entropy associated with the Normalized
Laplacian eigenvalues), and how to efficiently approximate this entropy without
the need to compute the Laplacian spectrum. We use a variant of EM algorithm
to minimize the total code-length criterion, in which the correspondences between
the nodes of the sample graphs and those of the supergraph are treated as missing
data. In the maximization step, we update both the node correspondence infor-
mation and the structure of supergraph using graduated assignment. This novel
technique is applied to a large database of object views, and used to learn class
prototypes that can be used for the purposes of object recognition.

2 Probabilistic Framework

We are concerned with learning a structural model represented in terms of a so-
called supergraph that can capture the variations present in a sample of graphs.
In Torsello and Hancock’s work [5] this structure is found by merging the set of
sample trees, and so each sample tree can be obtained from it by edit operations.
Here, on the other hand, we aim to estimate an adjacency matrix that captures
the frequently occurring edges in the training set. To commence our development
we require the a posteriori probabilities of the sample graphs given the structure
of the supergraph and the node correspondences between each sample graph and
the supergraph. To compute these probabilities we use the method outlined in [6].
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Let the set of sample of graphs be G = {G1, ...Gi, ...GN}, where the graph
indexed i is Gi = (Vi, Ei) with Vi the node-set and Ei the edge-set. Similarly, the
supergraph which we aim to learn from this data is denoted by Γ = (VΓ , EΓ ),
with node-set VΓ and edge-set EΓ . Further, we represent the structure of the
two graphs using a |Vi| × |Vi| adjacency matrix Di for the sample graph Gi and
a |VΓ | × |VΓ | adjacency matrix M for the supergraph model Γ . The elements
of the adjacency matrix for the sample graph and those for the supergraph are
respectively defined to be

Di
ab =

{
1 if (a, b) ∈ Ei

0 otherwise , Mαβ =
{

1 if (α, β) ∈ EΓ

0 otherwise . (1)

We represent the correspondence matches between the nodes of the sample
graph and the nodes of the supergraph using a |Vi| × |VΓ | assignment matrix Si

which has elements

si
aα =

{
1 if a → α
0 otherwise . (2)

where a → α implies that node a ∈ Vi is matched to node α ∈ VΓ .
With these ingredients, according to Luo and Hancock [6] the a posteriori

probability of the graphs Gi given the supergraph Γ and the correspondence
indicators is

P (Gi|Γ, Si) =
∏

a∈Vi

∑
α∈VΓ

Ki
a exp[μ

∑
b∈Vi

∑
β∈VΓ

Di
abMαβsi

bβ ] . (3)

where μ = ln 1−Pe

Pe
and Ki

a = P
|Vi|×|VΓ |
e Bi

a. In the above, Pe is the error rate
for node correspondence and Bi

a is the probability of observing node a in graph
Gi , the value of which depends only on the identity of the node a . |Vi| and |VΓ |
are the number of the nodes in graph Gi and supergraph Γ .

3 Model Coding Using MDL

Underpinning minimum description length is the principle that learning, or find-
ing a hypothesis that explains some observed data and makes predictions about
data yet unseen, can be viewed as finding a shorter code for the observed data
[9,7]. To formalize this idea, we encode and transmit the observed data and the
hypothesis, which in our case are respectively the sample graphs G and the su-
pergraph structure Γ . This leads to a two-part message whose total length is
given by L(G, Γ ) = LL(G|Γ ) + LL(Γ ) .

Encoding sample graphs: We first compute the code-length of the graph
data. For the sample graph-set G = { G1, ...Gi, ...GN } and the supergraph Γ
, the set of assignment matrices is S = {S1, ....Si, ...SN} and these represent
the correspondences between the nodes of the sample graphs and those of the
supergraph. Under the assumption that the graphs in G are independent samples
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from the distribution, using the a posteriori probabilities from Section 2 the
likelihood of the set of sample graphs is

P (G|Γ,S) =
∏

Gi∈G
P (Gi|Γ, Si) =

∏
Gi∈G

∏
a∈Vi

∑
α∈VΓ

Ki
a exp[μ

∑
b∈Vi

∑
β∈VΓ

Di
abMαβsi

bβ ] .

(4)
Instead of using the Shannon-Fano code, which is equivalent to the negative
logarithm of the above likelihood function, we measure the code-length of the
graph data using its average. Our reason is that if we adopt the former measure,
then there is a bias to learning a complete supergraph that is fully connected. The
reason will become clear later-on when we outline the maximization algorithm in
Section 4, and we defer our justification until later. Thus, the graph code-length
is LL(G|Γ ) = − 1

|G|
∑

Gi∈G log P (Gi|Γ, Si) which is the average over the set of
sample graphs G.

Encoding the supergraph model: Next, we must compute a code-length to
measure the complexity of the supergraph. For two-part codes the MDL principle
does not give any guideline as to how to encode the hypotheses. Hence every
code for encoding the supergraph structure is allowed, so long as it does not
change with the sample size N . Here the code-length for describing supergraph
complexity is chosen to be measured using the von-Neumann entropy [8] H =
−∑

k
λk

2 ln λk

2 where λk are the eigenvalues of the normalized Laplacian matrix
of the supergraph L̂ whose elements are

L̂αβ =

⎧⎪⎨
⎪⎩

1 if α = β
− 1√

TαTβ

if (α, β) ∈ EΓ

0 otherwise
. (5)

where Tα =
∑

ξ∈VΓ
Mαξ and Tβ =

∑
ξ∈VΓ

Mβξ. The normalized Laplacian ma-
trix is commonly used as a graph representation and graph cuts, and its eigenval-
ues are in the range 0 ≤ λk ≤ 2 [11]. Divided by 2, the value of λk

2 is constrained
between 0 and 1, and the von-Neumann entropy derived thereby is an intrinsic
property of graphs that reflects the complexity of their structures better than
other measures. We approximate the entropy −λk

2 ln λk

2 by the quadratic entropy
λk

2 (1 − λk

2 ), to obtain

H = −
∑

k

λk

2
ln

λk

2
�
∑

k

λk

2
(1− λk

2
) =

∑
k λk

2
−

∑
k λ2

k

4
. (6)

Using the fact that Tr[L̂n] =
∑

k λn
k , the quadratic entropy can be rewritten as

H = Tr[L̂]
2 − Tr[L̂2]

4 . Since the normalized Laplacian matrix L̂ is symmetric and
it has unit diagonal elements, then according to equation(5) for the trace of the
normalized Laplacian matrix we have Tr[L̂] = |VΓ |. Similarly, for the trace of
the square of the normalized Laplacian, we have

Tr[L̂2] =
∑

α∈VΓ

∑
β∈VΓ

L̂αβL̂βα = |VΓ |+
∑

(α,β)∈EΓ

1
TαTβ

. (7)
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Then the simplified entropy becomes

H =
|VΓ |
2
− |VΓ |

4
−

∑
(α,β)∈EΓ

1
4 TαTβ

=
|VΓ |
4
−

∑
(α,β)∈EΓ

1
4 TαTβ

. (8)

As a result, the approximated complexity of the supergraph depends on two
factors. The first is the order of supergraph, i.e. the number of nodes of the
supergraph. The second is the degree of the nodes of the supergraph.

Finally, by adding together the two contributions to the code-length, the over-
all code-length is

L(G, Γ ) = LL(G|Γ ) + LL(Γ ) = (9)

− 1

|G|
∑

Gi∈G

∑
a∈Vi

log{
∑

α∈VΓ

Ki
a exp[μ

∑
b∈Vi

∑
β∈VΓ

Di
abMabs

i
bβ] }+

|VΓ |
4
−

∑
(α,β)∈EΓ

1

4 TαTβ
.

Unfortunately, due to the mixture structure, the direct estimation of the super-
graph structure M from the above code-length criterion is not tractable in closed-
form. For this reason, we resort to using the expectation maximization algorithm.

4 Expectation-Maximization

Having developed our computational model which poses the problem of learning
the supergraph as that of minimizing the code-length, in this section, we provide
a concrete algorithm to locate the supergraph structure using our code-length
criterion using expectation-maximisation. With the above likelihood function
and the code-length developed in the previous section, Figueiredo and Jain’s
formulation of EM[14] involves maximizing

Λ(n+1)(G|Γ,S(n+1)) =
1

|G|
∑

Gi∈G

∑
a∈Vi

∑
α∈VΓ

Qi,(n)
aα {ln Ki

a + μ
∑
b∈Vi

∑
β∈VΓ

Di
abM

(n)
αβ s

i,(n+1)
bβ }

− |VΓ |
4

+
∑

(α,β)∈EΓ

1

4 T
(n)
α T

(n)
β

. (10)

The expression above can be simplified since the first term under the curly braces
contributes a constant amount. Based on this observation, the critical quantity
in determining the update direction is

Λ̂(n+1) = (11)

1

|G|
∑

Gi∈G

∑
a∈Vi

∑
α∈VΓ

∑
b∈Vi

∑
β∈VΓ

Qi,(n)
aα Di

abM
(n)
αβ s

i,(n+1)
bβ − |VΓ |

4
+

∑
(α,β)∈EΓ

1

4 T
(n)
α T

(n)
β

.

In order to optimize our weighted code-length criterion, we use graduated as-
signment [10] to update both the assignment matrices S and the structure of the
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supergraph, i.e. the supergraph adjacency matrix M . The updating process is re-
alized by computing the derivatives of Λ̂(n+1), and re-formulating the underlying
discrete assignment problem as a continuous one using softmax.

In the maximization step, we have two parallel iterative update equations.
The first update mode involves softening the assignment variables, while the
second aims to modify the edge structure in the supergraph. Supergraph edges
that are unmatchable disappear by virtue of having weak connection weights
and cease to play any significant role in the update process. Experiments show
that the algorithm appears to be numerically stable and appears to converge
uniformly.

To update the assignment matrices, we commence by computing the partial
derivative of the weighted code-length function in Equation (11) with respect to
the elements of the assignment matrices, which gives

∂Λ̂(n+1)

∂s
i,(n+1)
bβ

=
1
|G|

∑
a∈Vi

∑
α∈VΓ

Qi,(n)
aα Di

abM
(n)
αβ . (12)

To ensure that the assignment variables remain constrained to lie within the
rage [0,1], we adopt the soft-max update rule

si,(n+1)
aα ← exp[

1
τ

∂Λ̂(n+1)

∂s
i,(n+1)
aα

]/
∑

α′∈VΓ

exp[
1
τ

∂Λ̂(n+1)

∂s
i,(n+1)
aα′

] . (13)

The value of the temperature τ in the update process has been controlled
using a slow exponential annealing schedule of the form suggested by Gold and
Rangarajan[10]. Initializing τ−1 with a small positive value and allowing it to
gradually increase, the assignment variable s

i,(n+1)
aα corresponding to the maxi-

mum ∂Λ̂(n+1)

∂s
i,(n+1)
aα

approaches 1 while the remainder approach 0.
The partial derivative of the weighted code-length function in Equation (11)

with respect to the elements of the supergraph adjacency matrix is equal to

∂Λ̂(n+1)

∂M
(n)
αβ

=
1
|G|

∑
Gi∈G

∑
a∈Vi

∑
b∈Vi

Qi,(n)
aα Di

abs
i,(n+1)
bβ − 1

(T (n)
α )2

∑
(α,β′)∈EΓ

1

4 T
(n)
β′

. (14)

The soft-assign update equation for the elements of the supergraph adjacency
matrix is

M
(n+1)
αβ ← exp[

1
τ

∂Λ̂(n+1)

∂M
(n)
αβ

] /
∑

(α′,β′)∈EΓ

exp[
1
τ

∂Λ̂(n+1)

∂M
(n)
α′β′

] . (15)

Recall that in Section 3 we discussed the encoding of the sample graphs, and
chose to use the average of Shannon-Fano code. We can now elucidate that the
reason for this choice is that as the number of the sample graphs increases, for
instance in the limit as the size of the graph sample-set G increases, i.e. N →∞,
the sum of permuted adjacency matrices of the sample graphs might dominate
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Fig. 1. (a)Example images in the COIL dataset. (b)Example images in the toys dataset.

the magnitude of the second term in Equation (14). Thus the update algorithm
might induce a complete supergraph that is fully connected. Hence, we choose
to use its average rather than its sum.

In the expectation step of the EM algorithm, we compute the a posteriori
correspondence probabilities for the nodes of the sample graphs to the nodes
of the supergraph. Applying Bayes rule, the a posteriori correspondence prob-
ability for the nodes of the sample graph Gi at iteration n + 1 are given by

Qi,(n+1)
aα =

exp[
∑
b∈Vi

∑
β∈VΓ

Di
abM

(n)
αβ s

i,(n)
bβ ]πi,(n)

α

∑
α′∈VΓ

exp[
∑
b∈Vi

∑
β∈VΓ

Di
abM

(n)
α′βs

i,(n)
bβ ]πi,(n)

α′
. (16)

In the above equation, π
i,(n)
α′ = 〈Qi,(n)

aα′ 〉a, where 〈 〉a means average over a.

5 Experiments

In this section, we report experimental results aimed at demonstrating the utility
of our proposed generative model on real-world data. We use images from two
datasets for experiments. The first dataset is the COIL which consists of images
of 4 objects, with 72 views of each object from equally spaced directions over
360◦. We extract corner features from each image and use the detected feature
points as nodes to construct sample graphs by Delaunay triangulation. The
second dataset is a dataset consisting of views of toys, and contains images of
4 objects with 20 different views of each object. For this second dataset, the
feature keypoints used to construct Delaunay graphs are extracted using the
SIFT detector. Some example images of the objects from these two datasets are
given in Figure 1.

The first part of our experimental investigation aims to validate our super-
graph learning method. We test our proposed algorithm on both of the two
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datasets and in order to better analyze our method, we initialize the supergraph
in our EM algorithm with different structures. For the COIL dataset, we initial-
ize the supergraph structure with the median graph, i.e. the sample graph with
the largest a posteriori probability from the supergraph. On the other hand, to
initialize the structure of the supergraph in the toys dataset, we match pairs of
graphs from a same object using the discrete relaxation algorithm [12]. Then we
concatenate(merge) the common structures over for the sample graphs from a
same object to form an initial supergraph. The initial supergraph constructed in
this way preserves more of the structural variations present in the set of sample
graphs. The median graph, on the other hand, captures more of the common
salient information. We match the sample graphs from the two datasets against
their supergraphs both using graduated assignment[10] and initialize the assign-
ment matrices in our algorithm with the resulting assignment matrices. Using
these settings, we iterate the two steps of the EM algorithm 30 times, and ob-
serve how the complexity of the supergraph, the average log-likelihood of the
sample graphs and the overall code-length vary with iteration number. Figures
2 and 3 respectively shows the results for the COIL and toys datasets illustrated
in Figure 1.

From Figure 2(a) it is clear that the von-Neumann entropy of the super-
graph increases as the iteration number increases. This indicates that the super-
graph structure becomes more complex with an increasing number of iterations.
Figure 2(b) shows that the average of the log-likelihood of the sample graphs
increases during the iterations. Figure 2(c) shows that the overall-code length
decreases and gradually converges as the number of iterations increases. For the
toys dataset, the von-Neumann entropy in Figure 3(a) shows an opposite trend
and decreases as the number of iterations increases. The reason for this is that
the initial supergraph we used for this dataset, i.e. the concatenated supergraph,
accommodates too much structural variation from the sample graphs. The re-
duction of the von-Neumann entropy implies some trivial edges are eliminated
or relocated. As a result the supergraph structure both condenses and simplifies
with increasing iteration number. Although the complexity of the graphs be-
haves differently, the average of the likelihood of the graphs in Figure 3(b) and
the overall-code length in Figure 3(c) exhibit a similar behaviour to those for the
COIL dataset. In other words, our algorithm behaves in a stable manner both
increasing the likelihood of sample graphs and decreasing the overall code-length
on both datasets.

Our second experimental goal is to evaluate the effectiveness of our learned
generative model for classifying out-of-sample graphs. From the COIL dataset,
we aim 1) to distinguish images of cats from pigs on the basis of their graph
representations and 2) distinguish between images of different types of bottle.
For the toys dataset, on the other hand, we aim to distinguish between images
of the four objects. To perform these classification tasks, we learn a supergraph
for each object class from a set of samples and use Equation (3) to compute the
a posteriori probabilities for each graph from a separate (out-of-sample) test-set.
The class-label of the test graph is determined by the class of the supergraph
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Fig. 2. COIL dataset: (a)variation of the complexity of the supergraph, encoded as
von-Neumann entropy, during iterations, (b) variation of average log-likelihood of the
sample graphs during iterations and (c) variation of the overall code-length during
iterations.
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Fig. 3. Toy dataset: (a)variation of the complexity of the supergraph, encoded as von-
Neumann entropy, during iterations, (b) variation of the average log-likelihood of the
sample graphs during iterations and (c) variation of the overall code-length during
iterations.

which gives the maximum a posteriori probability. The classification rate is the
fraction of correctly identified objects computed using 10-fold cross validation.
To perform the 10-fold cross validation for the COIL dataset, we index the
72 graphs from a same object according to their image view direction from
0◦ to 360◦, and in each fold we select 7 or 8 graphs that are equally spaced
over the angular interval as test-set, and the remainder are used as as sample-
set for training. The similar applies for the toys dataset. For comparison, we
have also investigated the results obtained using two alternative constructions
of the supergraph. The first of these is the median graph or concatenated graph
used to initialize our algorithm. The second is the supergraph learned without
taking its complexity into account, which means, this supergraph is learned
by maximizing the likelihood function of the sample graphs given in equation
(4). Table 1 shows the classification results obtained with the three different
supergraph constructions. From the three constructions, it is the supergraphs
learned using the MDL principle that achieve the highest classification rates on
all the three classification tasks.
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Table 1. Comparison of the classification results. The bold values are the average
classification rates from 10-fold cross validation, followed by their standard error.

Classification Rate cat & pig bottle1 & bottle2 four objects (Toys)

learned supergraph(by MDL) 0.824 ± 0.033 0.780 ± 0.023 0.763 ± 0.026

median graph/concatenated graph 0.669 ± 0.052 0.651 ± 0.023 0.575± 0.020

learned supergraph 0.807 ± 0.056 0.699 ± 0.029 0.725 ± 0.022

6 Conclusion

In this paper, we have presented an information theoretic framework for learning
a generative model of the variations in sets of graphs. The problem is posed as
that of learning a supergraph. We provide a variant of EM algorithm to demon-
strate how the node correspondence recover and supergraph structure estimation
can be couched in terms of minimizing a description length criterion. Empirical
results on real-world dataset support our proposed method by a) validating our
learning algorithm and b) showing that our learned supergraph outperforms two
alternative supergraph constructions. Our future work will aim to fit a mixture
of supergraph to data sampled from multiple classes to perform graph clustering.
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Abstract. In a previous work we have uncovered some of the most infor-
mative spectral features (Commute Times, Fiedler eigenvector, Perron-
Frobenius eigenvector and Node Centrality) for graph discrimination.
In this paper we propose a method which exploits information geome-
try (manifolds and geodesics) to characterize graphlets with covariance
matrices involving the latter features. Once we have the vectorized co-
variance matrices in the tangent space each graph is characterized by a
population of vectors in such space. Then we exploit bypass information-
theoretic measures for estimating the dissimilarities between popula-
tions of vectors. We test this measure in a very challenging database
(GatorBait).

1 Introduction

Graph indexing, as well as graph matching, building kernels between graphs and
graph embedding, aims to discriminate graphs even when small perturbation
(editions) arise. However, in the indexing case, such discrimination is typically
addressed by computing a particular set of features (indices) characterizing the
graph and then build a representation which is suitable for the discrimination
task. Once such representation is available a query graph is processed for extract-
ing their indices and then find the closer (more similar) graph in the database.
Therefore, there are three elements to specify: (i) the indices, (ii) the represen-
tation, and (iii) the dissimilarity measure. Indices emerge from taking statistics.
A significant approach is to considering the frequency of certain subgraphs, like
in the gIndex approach [1]. Subgraph frequency implies solving graph-subgraph
problems (wich are NP-hard) and subgraph-subgraph isomorphisms which are
polinomial problems; in this approach is convenient to retain discriminative sub-
graphs which are typically the smallest ones. These discriminative subgraphs are
useful for filtering false positives and to simplfy the number of graph-subgraph
problems to solve, but since relationships between subgraphs is ignored, many
false appear in practice. In the summarization graph approach [2] where the bag
of indexed subgraphs approach is complemented by a complete graph encoding
topological relationships between subgraphs; however, the main drawback is the
high computational cost required to find such relationships. A successful alterna-
tive and less time-consuming alternative is to build indexes which characterizes
the complete graph and all of its subgraphs [3]. However the latter method is

X. Jiang, M. Ferrer, and A. Torsello (Eds.): GbRPR 2011, LNCS 6658, pp. 52–61, 2011.
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constrained to trees (hierarchical structures) where subgraphs are sub-trees and
indexes are built followin nesting approach; firstly the part of the spectrum of
the complete tree is retained, and then the process considers recursively the
spectrum of each of its subtrees. When considering general graphs, the nesting
approach has inspired the concept of node history (a sequence of incrementally
self-contained subgraphs emanating from each node) [4]. The latter approach,
also related to spectral indexes, has been succeeded in quantifying the complex-
ity of graphs because it captures global aspects of graphs. However, when tested
in indexing problems it reported a poor performance [5]. In order to increase
the discrimination performance we have explored two directions. The first one
consists of elucidating what spectral features are the most discriminant among a
reasonable catalog of them [6]. With a catalog of discriminative spectral features
at hand, the second direction motivates this paper; it consists on exploring how
these features can interact with a set of partial coverages instead of interacting
with a set of fulll node histories. Specifying such interaction consists of defining
two elements: a) bound the history a node to define a partial node coverage, and
b) consider the statistical depedency between the spectral features describing
each partial node coverage. Conceptually, a partial coverage is very close to the
concept of graphlet whose spectrum has been recently described [7]: given the
history of a node, we only consider the subgraph corresponding to a given or-
der of expansion (the same order for all nodes); therefore the overlapping of all
subgraphs defines a coverage of it. Regarding the quantification of the statisti-
cal dependency between spectral features we exploit covariances matrices and
their vectorization in the tangent space as suggested in [8] and [9]. In this paper
we compare two bypass information-theoretic dissimilarity measures between
bags of subgraphs: multi-dimensional Henze-Penrose divergence and the total
variance-kdp divergence. Although we use a bag of subgraphs, their topological
dependencies are partially encoded since we use covariance matrices to describe
node coverages and node coverages share more and more nodes as nodes are
topologically closer in the original graph.

2 Subgraph Indexation

2.1 Partial Node Coverages

Let G = (V, E) with |V | = n. Then the history of a node i ∈ V is hi(G) =
{e(i), e2(i)), . . . , ep(i)} where: e(i) ⊆ G is the first-order expansion subgraph
given by i and all j ∼ i, e2(i) = e(e(i)) ⊆ G is the second-order expansion
consisting on z ∼ j : j ∈ Ve(i), z 
∈ Ve(i), and so on until p cannot be increased. If
G is connected ep(i) = G, otherwise ep(i) is the connected component to which
i belongs.(see [4]).

Every hi(G) defines a set of subgraphs hi(G) = {e(i), e2(i)), . . . , ep(i)} where
el(i) ⊆ ek(i) when k > l. If we select k < p we obtain a k−order partial node
coverage given by the subgraph ek(i). If we overlap the k−order partial cover-
ages associated to all i ∈ V we obtain a k−order graph coverage. However, as we
must keep the number of free parameters in pattern recognition algortithms at
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a minimum, herein we compute the optimal order for each node in the graph. To
that end it is desirable to define a set of features and track their variability until
a peak is detected in a sort of structural scale-space. However, this approach
requires to compute the node history at least until a peak is found and it is
quite computational demanding. Consequently, in this paper we will focus on
setting experimentally a constant optimal order k∗ for all graphs. In addition, in
the information-geometry approach followed here (see [8][9]), the features are co-
variance matrices relying on spectral descriptors. More precisely, the features are
vectorized covariances projected on a given tangent space (exponential chart).

2.2 Spectral Descriptors in Tangent Space

Consider Φ(i) = (f1(i), . . . , fd(i))T a vector of spectral descriptors of the partial
node coverage H = ek(i) ⊆ G (commute times, Fiedler vector, Perron-Frobenius
vector and node centrality). Such descriptors have been determined to be very
informative for graph discrimination [6]. For commute times (CT) we consider
both the Laplacian and the normalized Laplacian of H : the elements of the upper
off-diagonal elements of the CT kernel are downsampled to select m = |VH |
elements and they are normalized by m2. Fiedler and Perron-Frobenius vectors
have m elements by definition. Node centrality [11] is more selective than degree
and it is related to the number of closed walks starting and ending at a each
node. This measure is also normalized by m2. For each partial coverage H we can
compute the statistics of d spectral descriptors taking m samples. Such statistics
can be easily encoded in a covariance matrix.

The set of d × d covariance matrices Xi = 1
n−1

∑m
i=1(Φ(i) − μ)(Φ(i) − μ)T ,

being m = |VH |, lie in a Riemannian manifold M (see Fig. 1). For each X ∈M
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there exists a neighborhood which can be mapped to a given neighborhood
in R

d×d. Such mapping is continuous bidirectional and one-to-one. As a Rie-
mann manifold is differentiable, the derivatives at each X always exist, and
such derivatives lie in the so called tangent space TX , which is a vector space
in R

d×d. The tangent space at T X is endowed with an inner product < ., . >X

being < u, v >X= trace(X− 1
2 uX−1vX− 1

2 ). The tangent space is also endowed
with an exponential map expX : TX →M which maps a tangent vector u to a
point U = expX(u) ∈ M. Such mapping is one-to-one, bidirectional and con-
tinuously differentiable and maps u to the point reached by the unique geodesic
(minimum-length curve connecting two points in the manifold) from X to U :
g(X, U). The exponential map is only one-to-one in the neighborhood of X and
this implies that the inverse mapping logX : M→ TX is uniquely defined in a
small neighborhood of X. Therefore, we have the following mappings for going
to the manifold and back (to the tangent space) respectively:

expX(u) = X
1
2 exp(X− 1

2 uX− 1
2 )X

1
2 , logX(U) = X

1
2 log(X− 1

2 UX− 1
2 )X

1
2 ,
(1)

and g2(X , U) =< logX(U), logX(U) >X= trace
(
log2(X− 1

2 UX− 1
2 )
)

, where
we take the matrix exponentiation and logarithm. The tangent space allows us
to vectorize de result of the inverse mapping in order to work in a vector space
with Euclidean distances which are approximations of the geodesics. In [8] the
following orthonormal vectorization operator is proposed (off-diagonal elements
are multiplied by

√
2):

vecX(u) = vecI(u)(X− 1
2 uX− 1

2 ), vecI(u) = (u11

√
2u12 . . . u22

√
2u23 . . . udd)T .

(2)

2.3 Encoding Graphs in Tangent Space

Each graph X has nX = |VX | partial coverages, one for each node. Therefore,
we have n overlapped subgraphs HXi each one characterized by a covariance
matrix Xi based on mHXi

= |VHXi
| samples. Then, ech graph can be encoded

by a population of nX points in a manifold M. For instance, another graph Y
will be encoded by nY covariance matrices Y j in the same manifoldM. In order
to compare both populations we can map then back to a given tangent space.
However we must determine what is the origin of such space. Let us denote by
Zk with k = 1, . . . , N (being N = nX +nY ) each covariance matrix coming from
X or from Y . A fair selection of the tangent space origin is the Karcher mean
defined as μ = arg minZ∈M d2(Zk, Z). The Karcher mean can be obtained after
few iterations of μt+1 = expμt(X̄

t) where X̄
t = 1

N

∑N
k=1 logμt(Zk). Once we

have μ, we have an origin for the tangent space, and then we can project all
matrices Zk in such space (see Fig. 1) through zk = vecμ(logμ(Zk)). Now we
characterize each graph by a population of vectors in the tangent space. The
problem of determining their dissimilarity can be then reduced to compare the
overlap of both populations. To that end, in the following section we introduce
a couple of bypass information-theoretic (IT) measures which have proved to be
effective in our previous work in the context of shape comparison [12].
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Fig. 2. Two examples of Friedman-Rafsky estimation of the Henze and Penrose diver-
gence applied to samples drawn from two Gaussian densities. Left: the two densities
have the same mean and covariance matrix (DHP (f ||g) = 0.5427). Right: the two
densities have different means (DHP (f ||g) = 0.8191).

3 Bypass IT Dissimilarity Measures

3.1 Henze-Penrose Divergence

The Henze and Penrose divergence [13] between two distributions f and g is

DHP (f ||g) =
∫

p2f2(z) + q2g2(z)
pf(z) + qg(z)

dz , (3)

where p ∈ [0, 1] and q = 1−p. This divergence is the limit of the Friedman-Rafsky
run length statistic [14], that in turn is a multi-dimensional generalization based
on MST1s of the Wald-Wolfowitz test. The Wald-Wolfowitz statistic computes
the divergence between two distributions fX and gO inRd, when d = 1, from two
sets of nx and no samples, respectively. First, the n = nx+no samples are ordered
in ascending order and labeled as X and O according to their corresponding
distribution. The test is based on the number of runs R, being a run a sequence
of consecutive and equally labeled samples. The test is calculated as:

W =
R− 2nonx

n − 1(
2nxno(2nxno−n)

n2(n−1)

) 1
2

. (4)

The two distributions are considered similar if R is low and therefore W is
also low. This test is consistent in the case that nx/no is not close to 0 or ∞,
and when nx, no → ∞. The Friedman-Rafsky test generalizes Eq. 4 to d > 1,
due to the fact that the MST relates samples that are close in Rd. Let X = {xi}
and O = {oi} be two sets of samples drawn from fX and gO, respectively. The
steps of the Friedman-Rafsky test are:

1 Minimum-Spanning Tree.
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1. Build the MST over the samples from both X and O.
2. Remove the edges that do not connect a sample from X with a sample from

O.
3. The proportion of non-removed edges converges to 1 minus the Henze Pen-

rose divergence (Eq. 3) between fX and gO.

See an example in Fig. 2.

3.2 Total Variation k-dP Divergence

The main drawback of both the Henze-Penrose and the Leonenko’s-based di-
vergences is the high temporal cost of building the underlying data structures
(e.g. MSTs). This computational burden is due to the calculation of distances.
A new entropy estimator recently developed by Stowell and Plumbley overcomes
this problem [15]. They proposed an entropy estimation algorithm that relies on
data spacing without computing any distance. This method is inspired by the
data partition step in the k-d tree algorithm. Let X be a d-dimensional random
variable, and f(x) its pdf. Let A = {Aj |j = 1, . . . , m} be a partition of X for
which Ai ∩Aj = ∅ if i 
= j and

⋃
j Aj = X . Then, we can approximate f(x) in

each cell as:

fAj =

∫
Aj

f(x)

μ(Aj)
, , (5)

where μ(Aj) is the d-dimensional volume of Aj . If f(x) is unknown and we
are given a set of samples X = {x1, . . . , xn} from it, being xi ∈ Rd, we can
approximate the probability of f(x) in each cell as pj = nj/n, where nj is the
number of samples in cell Aj . Thus,

f̂Aj(x) =
nj

nμ(Aj)
, (6)

being f̂Aj(x) a consistent estimator of f(x) as n → ∞. Then, to obtain the
entropy estimation for A we have

Ĥ =
m∑

j=1

nj

n
log
(

n

nj
μ(Aj)

)
. (7)

The partition is created recursively following the data splitting method of the
k-d tree algorithm. At each level, data is split at the median along one axis.
Then, data splitting is recursively applied to each subspace until an uniformity
stop criterion is satisfied. The aim of this stop criterion is to ensure that there
is an uniform density in each cell in order to best approximate f(x). The chosen
uniformity test is fast and depends on the median. The distribution of the median
of the samples in Aj tends to a normal distribution that can be standardized as:

Zj =
√

nj
2medd(Aj)−mind(Aj)−maxd(Aj)

maxd(Aj)−mind(Aj)
, (8)
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where medd(Aj), mind(Aj) and maxd(Aj) are the median, minimum and max-
imum, respectively, of the samples in cell Aj along dimension d. An improbable
value of Zj, that is, |Zj | > 1.96 (the 95% confidence threshold of a standard nor-
mal distribution) indicates significant deviation from uniformity. Non-uniform
cells should be divided further. An additional heuristic is included in the algo-
rithm in order to let the tree reach a minimum depth level: the uniformity test
is not applied until there are less than

√
n data points in each partition, that is,

until the level

Ln =
⌈

1
2

log2(n)
⌉

(9)

is reached. Then, our k-d partition based divergence (k-dP divergence) [12] fol-
lows the spirit of the total variation distance, but may also be interpreted as a
L1-norm distance. The total variation distance between two probability measures
P and Q on a σ-algebra F 2 is given by:

sup{|P (X)−Q(X)| : X ∈ F} . (10)

In the case of a finite alphabet, the total variation distance is

δ(P, Q) =
1
2

∑
x

|P (x)−Q(x)| . (11)

Let f(x) and g(x) be two distributions, from which we draw a set X of nx

samples and a set O of no samples, respectively. If we apply the partition scheme
of the k-d partition algorithm to the set of samples X

⋃
O, the result is a partition

A of X
⋃

O, being A = {Aj|j = 1, . . . , p}. For f(x) and g(x) the probability of
any cell Aj is respectively given by

f(Aj) =
nx,j

nx
= fj , g(Aj) =

no,j

no
= gj (12)

where nx,j is the number of samples of X in cell Aj and no,j is the number of
samples of O in the cell Aj . Since the same partition A is applied to both sample
sets, and considering the set of cells Aj a finite alphabet, we can compute the
k-dP total variation divergence between f(x) and g(x) as:

DkdP (f ||g) =
1
2

p∑
j=1

|fj − gj| . (13)

The latter divergence satisfies 0 ≤ D(f ||g) ≤ 1. The minimum value D(O||X) =
0 is obtained when all the cells Aj contain the same proportion of samples from
X and O. By the other hand, the maximum value D(O||X) = 1 is obtained
when all the samples in any cell Aj belong to the same distribution. We show
in Fig. 3 two examples of divergence estimation using Eq. 13.

2 A σ-algebra over a set X is a non-empty collection of subsets of X (including X
itself) that is closed under complementation and countable unions of its members.
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Fig. 3. Two examples of divergence estimation applied to samples drawn from two
Gaussian densities. Left: both densities have the same mean and covariance matrix
(D(f ||g) = 0.24). Right: the two densities have different means. Almost all the cells
contain samples obtained from only one distribution (D(f ||g) = 0.92).
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4 Experiments

In order to test both the proposed indexing approach we have chosen a chal-
lening database, the GatorBait 100 3 ichthtyology database. GatorBait has 100
shapes representing fishes from 30 different classes. We have extracted Delau-
nay graphs from their shape quantization (Canny algorithm followed by contour
decimation).Since the classes are associated to fish genus and not to species, we
find high intraclass variability in many cases – see a) in Fig. 4-left where the
corresponding class has 8 species. There are also very similar species from differ-
ent classes (row b)) and few homogeneous clases (row c)). There are 10 classes
with one species (not included in the analysis and performance curves), 11 with
1 − 3 individuals, 5 with 4 − 6 individuals and only 4 classes with more than 6
species. We show the average retrieval-recall results for both bypass IT measures
in Fig. 4-right: Henze-Penrose divergence computed via MSTs outperforms total
variation. In all cases, the order of all partial node coverages is set to k = 5 which
has been obtained experimentally. The number of feature descriptors considered
is d = 5: commute times (from the normalized and un-normalized Laplacian),
Perron-Frobenius, Fiedler vector and node centrality vector.

5 Conclusions

The main contribution of this paper is the characterization of graphs in terms of
bags of features in a tangent space, and the use of this methodology, in combi-
nation with bypass IT dissimilarity measures for graph indexing. Features come
from the inverse projection of covariance matrices in the tangent space defined by
a common Karcher mean. Covariance matrices rely on several spectral subgraph
descriptors which have been qualified as very informative in our previous work.
We have tested the approach in a very hard graph database (GatorBait). One
limitation of the present approach is the automatic selection of the order of the
subgraphs (partial node coverages). We have designed an strategy for definining
saliency in a structural scale space but it is out of the scope of this paper. In
a near future we will contribute with new experiments considering automatic
order selection.
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Abstract. We show that extending the Gaussian distribution to the
domain of graphs corresponds to truncated Gaussian distributions in
Euclidean spaces. Based on this observation, we derive a maximum like-
lihood method for estimating the parameters of the Gaussian on graphs.
In conjunction with a naive Bayes classifier, we applied the proposed
approach to image classification.

1 Introduction

In probability theory and machine learning, the Gaussian distribution is often
used as a first approximation for vector-valued random variables that cluster
around a single mean. In addition, it forms the basic building block for Gaussian
mixture models. Gaussian mixture models in conjunction with the maximum
likelihood method form a popular technique for smooth approximation of arbi-
trarily shaped densities.

In many applications, however, the data we want to learn about are often
represented by attributed graphs, including point patterns, sequences, and trees
as special cases. Examples of such data include scene models in computer vi-
sion, protein structures in bioinformatics, chemical compounds in computational
chemistry, and XML documents in computational linguistics.

Our long-term goal is to investigate under which conditions and to which
extent can Gaussian mixture models in conjunction with the maximum likelihood
method be used for approximation of arbitrary densities on attributed graphs.
Clearly, the first step to approach this problem consists in providing a framework
that allows us to emulate Gaussian distributions on attributed graphs.

Attempts at developing probabilistic models on graphs aim at inferring sta-
tistical variations of structural models from their individual primitives, i.e. from
vertices, edges, and/or their attributes [1,5,7,14,16,17,19,20]. As an alternative,
the proposed approach regards attributed graphs as events of a probability space
that can then be lifted locally to a Euclidean space to infer the statistical vari-
ation of individual primitives.

This contribution presents a framework for adapting the Gaussian distribution
to attributed graphs such that the parameters can be fitted by the maximum like-
lihood method in a feasible way. For this, we represent graphs as points of some
Riemannian orbifold [8]. Since an orbifold looks locally like a Euclidean space
almost everywhere, we can project the Gaussian distribution to the graph space.
Lifting the Gaussian on graphs back to the Euclidean space yields a truncated

X. Jiang, M. Ferrer, and A. Torsello (Eds.): GbRPR 2011, LNCS 6658, pp. 62–71, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Gaussian. For estimating the parameters of a truncated Gaussian distribution,
we maximize the log-likelihood. Since no closed solution of the log-likelihood
exists, we present a gradient-based update scheme. A key problem is that de-
termining the gradients of the log-likelihood involves possibly intractable ap-
proximations of integrals. In experiments, we ignored the integrals and obtained
reasonable results on three benchmark datasets compiled by [13].

2 Graph Orbifolds

In this section, we introduce attributed graphs and represent them as point
of some orbifold. Most of this presentation including proofs of statements and
claims is based on the structure space formalism proposed by [8].

Representation of Graphs. Let E be a d-dimensional Euclidean space. An
attributed graph X = (V, E, α) consists of a set V of vertices, a set E ⊆ V × V
of edges, and an attribute function α : V ×V → E, such that α(i, j) 
= 0 for each
edge and α(i, j) = 0 for each non-edge. Attributes α(i, i) of vertices i may take
any value from E.

For simplifying the mathematical treatment, we assume that all graphs are of
order n, where n is chosen to be sufficiently large. Graphs of order less than n, say
m < n, can be extended to order n by including isolated vertices with attribute
zero. For practical issues, it is important to note that limiting the maximum order
to some arbitrarily large number n and extending smaller graphs to graphs of
order n are purely technical assumptions to simplify mathematics. For pattern
recognition problems, these limitations should have no practical impact, because
neither the bound n needs to be specified explicitly nor an extension of all graphs
to an identical order needs to be performed. When applying the theory, all we
actually require is that the graphs are finite.

A graph X is completely specified by its matrix representation X = (xij)
with elements xij = α(i, j) for all 1 ≤ i, j ≤ n. Let X = E

n×n be the Euclidean
space of all (n× n)-matrices with elements from E and let Πn be the set of all
(n× n)-permutation matrices. For each P ∈ Πn we define a mapping

γP : X → X , X �→ P TXP .

Then G = {γP : P ∈ Πn} is a finite group acting on X . For X ∈ X , the orbit
of X is the set defined by [X] = {γ(X) : γ ∈ G}. The quotient set

XG = XG = {[X] : X ∈ X}
consisting of all orbits is a graph orbifold. Its orbifold chart is the surjective
continuous mapping

π : X → XG , X �→ [X]

that projects each matrix representation X to its orbit [X].
Suppose that X is a matrix representation of some attributed graph X . Then

the orbit [X] consists of all possible matrices that represent X . By identifying
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the attributed graphs X with the orbits [X], we can regard graphs as point of
the graph orbifold XG . The orbifold chart π : X → XG projects matrices X to
the graphs X they represent.

For notational convenience, we identify X with E
N , where N = n2 and con-

sider vector- rather than matrix representations of graphs. We obtain a vector
representation x of graph X by concatenating the columns of a matrix X rep-
resenting X . We write x ∈ X if x ∈ X projects to X ∈ XG via the orbifold chart
π(x) = X .

Intrinsic Metric. The intrinsic metric of a graph orbifold XG is of the form

d(X, X ′) = min {‖x− x′‖ : x ∈ X, x′ ∈ X ′},
where ‖·‖ is the Euclidean distance on X . We call a pair (x, x′) ∈ X ×X ′ with
‖x− x′‖ = d(X, X ′) an optimal alignment of X and X ′. Note that the intrinsic
metric is not a artificial construction for analytical purposes but rather is based
on a generalized concept of maximum common subgraph and therefore appears
in different guises as a common choice of proximity measure for graphs [3,6,18].

Orbifold Functions. Suppose that XG is a graph orbifold with orbifold chart
π : X → XG . An orbifold function is a mapping of the form f : XG → R. The lift
of f is a function f̃ : X → R satisfying f̃ = f ◦ π. The lift f̃ is invariant under
group actions of G, that is f̃(x) = f̃ (γ(x)) for all γ ∈ G.

Fundamental Domains. For x ∈ X , we define the isotropy group of x as the
set o all elements of G that fix x, that is Gx = {γ ∈ G : γx = x}. The isotropy
group of x is trivial if Gx = {id}. Obviously, if the isotropy group of x is trivial,
then the isotropy group of γx is trivial for all γ ∈ G. We say a structure X ∈ XG
has trivial isotropy group if the isotropy group of any of its vector representations
is trivial.

A fundamental domain of G in X is a closed subset D ⊂ X with X =
⋃

γ∈G γD
and int(γ1D)∩ int(γ2D) = ∅ for all γ1, γ2 ∈ G with γ1 
= γ2. Suppose that x ∈ X
is a vector representation with trivial isotropy group. A Dirichlet fundamental
domain of x is a fundamental domain satisfying

Dx = {y ∈ X : ‖x− y‖ ≤ ‖x− γy‖, γ ∈ G} .

Let D be a fundamental domain. We call an injective mapping ψ : XG → D with
π(ψ(X)) = X a lift of XG into D. Note that two different lifts of XG into the
same fundamental domain are equal almost everywhere.

The Disintegration Formular. We assume that (X , ‖·‖) is the Euclidean
space and (X , B, λ) is the Lebesgue-Borel measure space. The action of the
finite group G on X induces the measure space (XG , BG , λG), where

BG =
{B ⊂ XG : π−1(B) ∈ B

}
and λG is the induced quotient measure. Then for any λ-integrable function f
on X the following important disintegration formula holds [4]
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∫
X

f(x)λ(dx) =
∫
XG

f∗(X)λG(dX),

where f∗ is the unique function defined by

f∗(π(x)) =
1
|G|
∑
γ∈G

f(γx).

Thus, we can express the disintegration formular as
∫
XG

f∗(X)λG(dX) =
∫
X

1
|G|
∑
γ∈G

f(γx)λ(dx)

=
1
|G|
∑
γ∈G

∫
X

f(γx)λ(dx) =
∫
X

f(x)λ(dx).

For our purposes it is useful to reduce integration on XG to fundamental domains.
For any fundamental domain D of G in X , we have

∫
XG

f∗(X)λG(dX) =
∫
D

f(x)λD(dx) = |G|
∫
D

f(x)λ(dx),

where λD is the measure defined by some lift ψ : X → D. The integral is well-
defined, because two lifts into D are equal almost everywhere.

3 Quotient Gaussians on Graphs

This section extends Gaussian distributions from vector-valued to graph-valued
random variables.

A Gaussian radial function on the Euclidean space X = R
D is of the form

φ(x|a, c, σ) = a · exp

(
−‖x− c‖2

2σ2

)
,

where the parameter a > 0 controls the height, c ∈ X is the center, and σ > 0
is the width of φ. We obtain a Gaussian distribution with mean c and variance
σ2, if the height a of the radial function φ satisfies a =

(
(2π)D/2 σD

)−1
.

In order to extend Gaussian distributions to quotient spaces XG , we set

φ(X |C, σ) =
1

(2π)D/2 σD
exp

(
−d(X, C)2

2σ2

)
,

where C ∈ XG is the center and σ is the width. We define the quotient Gaussian
distribution on XG by

f(X) =
1

a(C, σ)
· φ(X |C, σ),
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where
a(C, σ) =

∫
XG

φ(X |C, σ)λG(dX).

is the height that scales f to a density on XG . The lift φ̃ of φ is of the form

φ̃(x|C, σ) =
1

(2π)D/2 σD
exp

(
−minc∈C ‖x− c‖2

2σ2

)

= max
c∈C

1
(2π)D/2 σD

exp

(
−‖x− c‖2

2σ2

)
,

giving rise to the lift f̃ = φ̃(x|C, σ)/a(C, σ) of f . This shows that the quotient
Gaussian distribution can be viewed as the pointwise maximum of a set of Gaus-
sian radial functions on X with identical width and height, but distinct centers.

Without loss of generality, we can assume that the center of a quotient Gaus-
sian distribution C has trivial isotropy group in some subspace UG of X . Then all
graphs X ∈ XG with nonzero density lie also in UG . In this case, we indentify XG
with UG . Now suppose that c is an arbitrary vector representation that projects
to C. Truncating the lift f̃ to the fundamental Dirichlet domain Dc of c yields

f̃ t(x) =

{
f̃(x) : x ∈ Dc

0 : x /∈ Dc

.

Let ψ lift XG into Dc. From f(X) = f̃ t(ψ(X)) for all X ∈ XG follows that
we can restrict lifts f̃ of quotient Gaussian distributions to truncated Gaussian
distributions on a fundamental Dirichlet domain. The height a(C, σ) of the trun-
cated Gaussian can be interpreted as the probability of being in the fundamental
Dirichlet domain of c. When restricting to Dc, we can rewrite the lift φ̃(x|C, σ)
and height a(C, σ) by

φ̃(x|c, σ) =
1

(2π)D/2 σD
exp

(
−‖x− c‖2

2σ2

)

a(c, σ) =
∫
Dc

φ̃(x|c, σ)λ(dx),

giving rise to express the truncated Gaussian as f̃ t(x) = φ̃(x|c, σ)/a(c, σ). Note
that we have a(c, σ) ≤ 1, where equality a(c, σ) = 1 means that the truncated
Gaussian is actually a Gaussian distribution on Dc = X . In this case, G is the
trivial group and the quotient space XG coincides with X . In what follows, we
assume that G is non-trivial, that is a(c, σ) < 1.

The center c and the squared width σ2 of a truncated Gaussian f̃ t(x) on
Dc are not the expectation E[x] and variance V[x] of this distribution. The
expectation and variance can be obtained from the center and squared width
plus an adjustment for the truncation on the distribution

E[x] = c + δE(c, σ) (1)

V[x] = σ2 + δV(c, σ) (2)
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Intuitively, we expect that the adjustment δE(c, σ) shifts the expectation E[x]
into the appropriate tail of the distribution. A closed form solution of E[x] and
V[x] are unknown (at least to the authors). However, note that the goal is to
make inferences on the center and width of a quotient Gaussian distribution
rather than inferring its expectation and variance.

4 Maximum-Likelihood

The General Case. Let (XG , BG , λG) be the quotient measure space induced
by the group action of G on the measure space (X , B, λ). We assume that all
measures under consideration are complete. A parametric model for XG with
parameter space ΘG is a family F = {fΘ : Θ ∈ ΘG} of probability density func-
tions on XG with respect to the quotient measure λG .

Suppose that S = {X1, . . . , XN} ⊆ XG is a sample of N independent and iden-
tically distributed structures coming from some unknown distribution fθ∗ ∈ F .
The goal is to estimate the unknown parameter θ∗ using the maximum likelihood
method. The likelihood is defined by

L (θ | S) =
N∏

i=1

fθ (Xi)

The maximum likelihood estimate of θ∗ is defined by the value θ̂ that maximizes
the likelihood L (θ | S). Instead of L (θ | S), it is sometimes more convenient to
maximize the log-likelihood

�(θ) = lnL (θ | S) =
N∑

i=1

ln fθ (Xi) .

Quotient Gaussians. We apply the maximum likelihood to the case, where the
samples are drawn from a quotient Gaussian distribution with unknown center
C∗ and width σ∗. The parametric model is then of the form

F = {fΘ : Θ = (C, σ), C ∈ XG , σ ≥ 0} .

For a given Θ = (C, σ), we first choose an arbitrary vector representation c ∈ C
with trivial isotropy group and replace Θ by θ = (c, σ) and the quotient Gaussian
fΘ by a truncated Gaussian f̃ t

θ(x) defined on the fundamental domain Dc.
Suppose that ψ lifts XG into Dc. Then S̃ = {x1, . . . , xN} ⊆ Dc with xi =

ψ(Xi) is a lift of the sample X . The set S̃ is uniquely defined if S̃ ⊆ int(Dc). We
lift the parametric model of XG to a parametric model of X by defining

F̃ =
{

f̃ t
θ : θ = (c, σ) ∈ X × R+, f̃ t

c,σ ◦ ψ = fπ(c),σ

}
.

The lifted log-likelihood to be maximized is then of the form

�̃(θ) =
N∑

i=1

ln f̃ t
θ (xi) .
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Maximizing the Likelihood. Since the truncated Gaussian f̃ t
θ is differentiable

on Dc with respect to θ, the gradient of the log-likelihood exists and is of the
form

∇θ �̃(θ) =
(∇c �̃(θ)
∇σ �̃(θ)

)
=

⎛
⎜⎜⎜⎜⎝

N

σ2

{
δE(c, σ) + c− 1

N

N∑
i=1

xi

}

N

σ3

{
δV(c, σ) + σ2 − 1

N

N∑
i=1

‖xi − c‖2
}

⎞
⎟⎟⎟⎟⎠

Recall that δE(c, σ) and δV(c, σ) are the adjustments defined in (1) and (2).
Setting the derivatives to zero and solving the equations accordingly yields

c =
1
N

N∑
i=1

xi − δE(c, σ) (3)

σ2 =
1
N

N∑
i=1

‖xi − c‖2−δV(c, σ). (4)

Note that equations (3) and (4) are not closed-form solutions for the center c
and width σ, because the adjustments δE(c, σ) and δV(c, σ) involve integrals
depending on both, c and σ.

Equation (3) shows that the maximum likelihood estimate of the center is an
estimate of the unknown expectation E [x] by the sample mean plus an adjust-
ment from the expectation to the center. Similarly, from equation (4) follows
that the maximum likelihood estimate of the squared variance is an estimate of
the unknown variance V [x] plus an adjustment from the variance to the width.

In principle, the adjustments δE(c, σ) and δV(c, σ) can be approximated using
Monte Carlo integration. In a practical setting, however, this approach turns
out to be computationally too intensive, because it requires numerous NP-hard
distance calculations. For this reason, we sacrifice exactness of the solution for
the sake of computational efficiency and ignore both adjustments δE(c, σ) and
δV(c, σ). Then we obtain

c =
1
N

N∑
i=1

xi (5)

σ2 =
1
N

N∑
i=1

‖xi − c‖2 . (6)

By definition of the Dirichlet fundamental domain Dc, the sample vectors xi are
optimally aligned against the center c. If (xi, c) are optimal alignments, then
the graph C = π(c) is a sample Frechet mean of the sample graphs Xi = π(xi),
that is

C = arg min
Y ∈XG

N∑
i=1

d (Xi, Y )2 .
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An efficient method to approximate a sample Frechet mean is the incremental
arithmetic mean method proposed by [9]

c(1) = x1

c(i) =
i− 1

i
c(i− 1) +

1
i
xi, 1 < i ≤ N,

where (c(i − 1), xi) is an optimal alignment for all i ∈ {2, . . . , N} and x1 is an
arbitrarily chosen vector representation that projects to sample graph X1 ∈ S.
We obtain the maximum likelihood estimate of the center by setting ĉ = c(N)
and projecting to Ĉ = π(ĉ). Finally, we use the maximum likelihood estimate ĉ
to determine the maximum likelihood estimate of the width according to

σ̂2 =
1
N

N∑
i=1

‖xi − ĉ‖2,

where (ĉ, xi) are optimal alignments.

5 Experiments

We conducted first experiments to investigate the performance and behavior of
the proposed approximation of the maximum likelihood method for graphs. For
this purpose, we considered image classification problems.

Data. We selected the letter, grec, and fingerprint data sets from the IAM graph
database repository [13]. Each data set is divided into a training, validation, and
a test set. Table 1 provides a summary of the main characteristics of the data
sets. For further details we refer to [13].

Methods. For each of the three data sets, we assumed that the conditional
probability density functions p(X |yi) of class yi is a quotient Gaussian with
center Ci and width σi for all i ∈ {1, . . . , K}. We considered two cases: (1) the
widths σi may differ class-wise, and (2) the classes have common width σi = σ. In
both cases, we used the maximum likelihood estimates of the parameters of the
quotient Gaussians and then applied a naive Bayes (bayes1, bayes2) classifier.
We compared the proposed maximum likelihood based classifiers against the
following methods: (1) k-nearest neighbor (knn), (2) the similarity kernel in
conjunction with the SVM (sk-svm) proposed by [15], (3) the family of Lipschitz
embeddings in conjunction with SVM (le-svm) also proposed by [15], and (4)
the learning graph quantization methods (lgq, lgq2.1) proposed by [10].

Experimental Setup. For each data set, we used the training and validation
set for parameter estimation of the bayes, rbf, and knn classifier. To obtain the
classification accuracy, we used the corresponding test set. For calculating graph
distances, we applied the extended Bron-Kerbosch algorithm [11] with clique
selection and maximum number of 10 |VZ | recursive calls, where VZ is the vertex
set of the underlying association graph.
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Table 1. Summary of main characteristics of the data sets. The tiny numbers in
parentheses show the size of the training, validation, and test set, respectively.

data set #(classes) avg(nodes) max(nodes) avg(edges) max(edges)

letter (750, 750, 750) 15 4.7 8 3.1 6
grec (286, 286, 528) 22 11.5 24 11.9 29
fingerprint (500, 300, 2000) 4 8.3 26 14.1 48

Table 2. Classification accuracy (in %)

knn sk-svm le-svm lgq lgq2.1 bayes1 bayes2
letter 82.0 79.1 92.5 81.5 85.7 80.4 81.3
grec 96.8 94.9 96.8 86.2 92.6 80.3 89.9
fingerprint 80.0 41.0 82.8 79.9 81.5 78.1 79.2

Results. Table 2 summarizes the results. Results of sk-svm and le-svm were
taken from [15] and of lgq and lgq2.1 from [12]. Since both, sk-svm and le-
svm, refer to a family of related methods rather than a single method, Table 2
presents the best result over all methods of the le-svm family for each data set.
In doing so, the comparison is optimistically biased towards sk-svm and le-svm.
In contrast to [10], the lgq variants use a single prototype for each class.

Despite neglecting the adjustments δE and δV, the results show that the ap-
proximated versions of the maximum likelihood method used by the bayes clas-
sifier work reasonably well. The generalization capability of the bayes classifier
improves on all data sets when using the same width for each class. Compared
to the other classifiers, the Bayes classifier is of limited capability. This finding
is in line with results for vectorial representations [2]. In contrast to the other
classifiers, however, the Bayes classifier is extremely fast to train and use for clas-
sification, scales well with number of training patterns and requires less memory
than, in particular, knn and the svm-based methods.

This results together with the improved results of lgq and lgq2.1 using more
than one prototype per class [10] suggest to extend the proposed approach to
mixture models of quotient Gaussians. Mixture models of quotient Gaussian in
turn theoretically justify more powerful approaches such as robust soft learning
graph quantization [12].

6 Conclusion

The quotient Gaussian on attributed graphs emulates the Gaussian distribution
by clustering around a single mean. Geometrically, the quotient Gaussian on
graphs reduces to a truncated Gaussian on vectors. Via the truncated Gaus-
sian, we can estimate the center and width of the quotient Gaussian using the
maximum likelihood method. The benefit of this approach is that it forms the
mathematical foundation for estimating the parameters of other distributions
on graphs using the maximum likelihood method. This includes, in particular,
mixture models of quotient Gaussians, which form the theoretical basis of robust
soft learning graph quantization as proposed by [12].
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Abstract. Graphs give a universal and flexible framework to describe
the structure and relationship between objects. They are useful in many
different application domains like pattern recognition, computer vision
and image analysis. In the image analysis context, images can be repre-
sented as graphs such that the nodes describe the features and the edges
describe their relations. In this paper we, firstly, review the graph-based
representations commonly used in the literature. Secondly, we discuss,
empirically, the choice of a graph-based representation on three different
image databases and show that the representation has a real impact on
the method performances and experimental results in the literature on
graph performance evaluation for similarity measures should be consid-
ered carefully.

1 Introduction

Graphs are very flexible data structures that offer a great capacity of abstraction.
In pattern recognition, graph-based representation has been widely used this last
decade for several types of images such graphic symbols [6], shape [21], ancient
documents [7], etc. The major advantage of graphs is the explicit representation
of the relational configuration between the different primitives of an object.
Typically, this representation is invariant to several types of changes (rotation,
translation ...). In addition, through the graph-based representation, one can
transform a recognition problem to a graph matching problem. In the literature,
we distinguish several methods of extracting graphs from images. Generally,
nodes correspond to salient features found in the image, and edges describe
relationships that can link these characteristics. Naturally, salient features and
their relations depend on the type of the considered images.

In this paper we review the graph-based representations commonly used in
the literature. The first family contains the graph based on the point of interest
extracted from the image. The second family of graphs is based on the layout of
regions included in an image. In the third family, we introduce the skeleton graph
as a graph-based representation of images. Then, in the last family, we describe
the graph extraction using the spatial information between image primitives.
Finally, using three different databases, we evaluate the performance of these
methods. We show experimentally that the graph-based representation has a real
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impact on the recognition rate. Moreover, following the chosen representation,
one approach can be better or not than others. In this perspective, we can say
that experimental results in the literature on graph performance evaluation for
similarity measures should be considered carefully.

2 Graph-Based Representation

2.1 Graph Based on Points of Interest

The notion of interest points was introduced by Moravec [10]. It allows to locate
the points where the image signal is rich in information. In an image, interest
points are usually corners, junctions or points of high textural variations. They
are widely used in the literature for image matching. Among the algorithms for
detecting interest points, we distinguish the algorithm of Harris [5].

As part of the graph-based representation of images, interest points provide
important information on the location of information-rich areas in the image. In
the literature, several studies have used the interest points to construct graphs.
In [14,22], the authors applied the Delaunay triangulation on these points to
extract the graph representation of an image. Briefly, let PI the set of the
interest point of an image I, the triangulation of PI defines a set of triangles
T ={T1, ..., Tn} such that:

– The vertices of the triangles are the points of PI.
– ∀p ∈ PI, ∀i ∈ [1, n], then p is a vertice of Ti or p /∈ Ti

– T ={T1, ..., Tn} is a partition of the image I.

2.2 Region Adjacency Graph

The region adjacency graph (RAG) was introduced by Rosenfeld [15]. It consists
of modeling the adjacency relations between regions in a segmented image. A
RAG is a planar graph representing the image regions by nodes and adjacency
relations between these regions by edges. Thus, as illustrated in Figure 1 two
nodes of the graph are connected by an edge if their corresponding regions are
adjacent. In the literature, several formal definitions of RAG coexist. The major
difference between these definitions is related to the orientation of the graph.

(a) Original im-
age

(b) Region-based
segmentation

(c) Graph-
based repre-
sentation

Fig. 1. An example of a graph-based representation



74 S. Jouili and S. Tabbone

(a) a shape (b) the skeleton (c) the graph skeleton rep-
resentation

Fig. 2. An example of graph skeleton representation

2.3 Skeleton Graph

In shape recognition, the skeleton of a shape is a thin version of that shape. It
is composed by a set of thinned curves and lines which are equidistant from the
shape’s boundaries1. The thickness of a shape skeleton is one pixel.

This shape representation is used in several works based on graphs. Generally,
the skeleton graph results in the classification of skeleton pixels into three classes;
junction points, branch points and endpoints [4,16,21]. These sets of points are
defined as follows:

– A junction point in a skeleton is an intersection between at least three
branches.

– A branch point is a point belonging to a branch.
– An endpoint is an endpoint of a branch, which is not connected to any other

branches.

Thus, in a skeleton graph G = (V, E), junctions and endpoints form the set
of nodes V , and the branch point sets correspond to the edges (i.e. E) of the
graph. Figure 2(b) illustrates the skeletonization of the shape of figure 2(a), the
characteristic points are marked by green squares. The skeleton graph is shown
in Figure 2(c). In this graph we have assumed that each node is labelled with
a letter describing the point type (T for endpoints and J for junction points).
Indeed, the graph is often enriched by other information such as branch length,
morphological distance, the curvature variance of the branches [16].

Note that this method of skeleton graph extraction is not unique. In the
literature, we can also distinguish the shock graph [20,18], which considers the
skeleton of a shape as a set of shocks. Briefly, a shock graph is an abstraction
that decomposes a shape into a set of hierarchically organized primitive parts.
Thus, a graph of shocks can be a tree or a directed acyclic graph.

2.4 Spatial Relation Graph

With some types of images, spatial relations [2] between different parts of an im-
age are important for better representation and thus better recognition
1 Each point on the skeleton is equidistant from at least two opposite points on the

boundary.
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performance. In this sense, the spatial relation graphs use spatial relationships
for image representation. Specifically, a spatial relation graph, generally, is a
directed graph where the nodes represent the primitive components of the im-
age and edges represent the spatial relationships between these components. In
[17,23], the authors use graphs to represent graphical symbols. They start by
breaking down each symbol in different families of primitives (circles, endpoints
...). Then, they determine the spatial relationships between each family. The
graphs are then constructed by storing in the nodes the primitive characteristics
(using local descriptors) and the spatial relationships in the edges.

The main difference between this kind of graph-based representation and the
previous representations is the fact that in a spatial relation graph the edge must
be labelled. Indeed, the edge labels must indicates the spatial relation between
the adjacent nodes.

3 Discussion

In the previous section, we presented four major families of graph-based rep-
resentation commonly used in the context of the pattern recognition. We note
that in each family, we can found several graph extraction methods that can
differ by the information we put into the graph. We can say that the represen-
tation and the content of a graph depend on the image types and the needs of
the recognition systems. For example, RAG extraction methods used for ancient
document images [7] are not suitable for graphical symbols [6]. Moreover, the
definition of a region in an image depends on the objectives and techniques con-
sidered. In this sense, a region is sometimes defined as a pixel set (contiguous or
non-contiguous pairs) with similar values. A region can also be defined as a set
of features (components) belonging to the same semantic family. Several other
definitions exist, but these various definitions do not limit the use of graphs. In-
deed, the RAG representation can be adapted to all these definitions. This can
be also applied to other families of graphs (points of interest, spatial relations or
skeleton graphs) for which the primitives can have various definitions. Indeed,
we can define several strategies for extracting graphs from each image type, and
this justifies the high capacity of the graph-based representation. This is can
be also enhanced by adding labels to nodes and edges. These labels provide an
additional means to better represent the images. Concretely, the specification
of labels defines suitably the relations between image primitives. For example,
in the spatial relation graphs, the labels of the edges represent explicitly the
topological layout of primitives.

These four families of graph-based representation are not the unique possibili-
ties to represent one image by a graph. In fact, a graph-based representation can
be carried out manually with the help (totally or partially) of a user. Moreover,
one can consider the combination of two or more families of representation. For
example, it is possible to combine the graphs of points of interest with the graphs
of spatial relations, by adding spatial information into the edges.

However, this wide range to represent and define graphs poses a great chal-
lenge which can be summarized into the following question:
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– Does the choice of a graph-based representation depend on the image type?

Intuitively, the answer to the this question is “yes”. To argue our response, let us
consider the following simple hypothesis; A graph should define the best represen-
tation of a considered image i.e, a graph must contain the salient features of an
image. Since these features depend on the image type, hence the graph necessar-
ily depends also on the image type. Therefore, the choice of a graph representation
and the information we put into the graph should be guided by the image type.
This response is partially because many graph-based representation techniques
can be appropriate for a given application context. In this perspective, we consider
in the following an empirical study of performance techniques where the choice of
the best graph extraction method is set from the experimental results.

4 Empirical Impact of the Graph-Based Representation

In the previous section, we have considered, intuitively, that the choice of a
graph-based representation technique depends on the image type. Consequently,
the use of a suitable technique involves good recognition results. Contrarily,
an unsuitable technique for extracting graph involves poorer results. In this
section, we study empirically the impact of the graph extraction technique on the
recognition results. To do this, we consider three image data-sets: the first data-
set contains binary image of shapes, the second one consists of logo images, and
the third is a collection of ancient document images. In the following we examine
the impact of the graph-based representation technique for each database.

4.1 Data

– Shape database: This database is provided by the LEMS Laboratory at
Brown University2. It contains 216 binary shapes divided into 18 classes of
12 shapes (Fig. 3). Each class of the database contains 12 transformations
of each shape, occlusion, rotation and scaling.

Fig. 3. Samples from the Shape database [19]

– Logo database: This database [1] (see Figure 3) consists of binary images of
trademark-logos (see Figure 4). The graph database used in our experiments
consists of 80 graphs, with 10 classes and 8 graphs per class.

Fig. 4. Samples from the Logo database

2 http://www.lems.brown.edu/

http://www.lems.brown.edu/
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Fig. 5. Samples of ancient ornamental letters images

– Ornamental letters database: The ornamental letters database3, also
called lettrines extracted from documents of the fifteenth and sixteenth cen-
tury. They correspond to images widely used in books and very reused over
time as initials in the beginning of chapters or paragraphs (see Figure 5 for
examples). In this paper we used a subset from this database that consists
of 280 images, 4 classes and 70 images per class.

4.2 Experimental Setup

For each database, except Shape, three different graph representations are used.
These representations are:

RAG : This representation consists of representing each image by a region adja-
cency graph. In fact, a graph is extracted from a region-based segmentation
[3] of the considered image. The nodes of the graph represent the regions
and the edges describe their adjacency relationships. This representation is
not used for the Shape database because the adjacency between regions is
not a discriminating feature. Indeed, all images are binary and consist of two
regions.

H+D : Here, graphs are extracted by the Delaunay triangulations on the de-
tecting points of interest using Harris algorithm [5].

Skel : The representation consists of a skeleton graph such that the junctions
and endpoints form the nodes and the branch points correspond to the edges.

The impact of the graph-based representations is studied in a classification con-
text. We make use of the k-nearest neighbours classifier because it can be applied
directly to the graph domain using any graph similarity measure without any fur-
ther adaptations. The number of nearest neighbours for k-nearest neighbour clas-
sifier is set to 3. For all databases, in order to obtain reliable results, we randomly
reshuffle test and training sets. Thirty percent of the samples were randomly as-
signed to the training set and the remaining samples were used as a test set.

To deepen our study we use six graph similarity measures. For the sake of
completeness, we briefly describe these methods in the following:

Jouili [8] : this method combines a node signatures extraction with an optimal
assignment method for approximating the graph edit distance. Concretely,
the authors use the node signatures to consider the graph edit distance as
an instance of an assignment problem which can be solved by the Hungarian
method.

3 Provided by the CESR - University of Tours on the context of the ANR Navidomass
project http://l3iexp.univ-lr.fr/navidomass/

http://l3iexp.univ-lr.fr/navidomass/
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Robles-Kelly [14] : this method uses a spectral method to represent graphs
by strings, and then the similarity of graphs is measured according to the
edit distance of strings in a probabilistic framework.

Lopresti [9] : this method introduces the paradigm of graph probing. This
technique consist on using a probe into graphs to determine some particular
information. The measure of similarity between two graphs is an L1 norm
distance of two corresponding vectors. For the construction of vectors, Lo-
presti present three classes of construction each one led by a question, Class0:
”How many vertices with degree n are present in graph G = (V,E)?”, Class
1: ”How many vertices with in-degree m and out-degree n are present in G?”,
Class2 : ”How many vertices labelled as att are present in G?”. The use of
such class depends on the type of graph.

Therefore, for each graph, a representative vector is computed. Concretely,
for the Class0, let G = (V,E) be an undirected graph, the vector associated
to G is: PR(G)≡(n0,n1,n2, ...) where ni=|{ v in V | deg(v)=i}|. So the
distance between two graphs is L1(PR1,PR2). In the remainder, we keep the
Class0 for the set of experiments.

Papadopoulos [12] : this method introduces the degree sequence of a graph,
i.e. the non-increasing sequence of the degrees of vertices in a graph. This
degree sequence of a graph is used to compute the distance between two
graphs. The distance between two graphs consists of the minimum number
of primitive operations which are required such that the two graphs have the
same degree sequence.

Neuhaus [11] : this technique uses the A∗-Beamsearch algorithm to compute
a sub-optimal solution of the graph edit distance. Indeed, they authors use
a search tree to represent the optimization problem, such that the root node
represents the starting point, inner nodes correspond to partial solutions,
and leaf nodes to complete solutions.

Riesen [13] : this approach considers the approximation of the graph edit dis-
tance as an instance of an assignment problem. The method computes the
edit distance between two graphs based on a bipartite graph matching by
means of the Hungarian algorithm and provides sub-optimal edit distance
results.

Note that, Neuhaus and Riesen methods need the optimum edit cost functions
as parameters. In this paper, the edit costs are computed with the same protocol
proposed in [11,13]. We extract a subset, called validation set, from each data
set. Then we determine the edit costs that are optimal in the validation sets. We
use the same edit cost functions for both algorithms.

Let us recall that the objective of this experiment is to study the impact
of graph-based representation and not the performance of graph similarity mea-
sures. In this perspective, to answer to our previous question on the link between
the graph representation and the image type and indirectly the performance of
each graph similarity measure vs the graph-based representation, it is interesting
that a graph similarity measure is evaluated on different graph-based represen-
tations for each database.
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4.3 Results

In Table 1, we present the classification accuracy rates (k-nn classification) per-
formed on the three images databases for each graph similarity measure. Each
line shows the classification results using a measure of distance and different
graph-based representations for each database. We can note that in all lines
of the table, the results are different from one representation to another. This
shows that the choice of the type of graph representation has an impact on the
performance of the classification. By considering the Shape database, the skele-
ton graph representation provides the best results for almost all graph similarity
measures (four methods among six). Considering the Logo and the Lettrine
databases, it is clear that the region adjacency graph is the best representa-
tion for all the similarity measures. That is, the region topology description (for
the Logo and the Lettrine databases) is more discriminate than the skeleton
representation.

From these results, we see clearly that the impact of the graph representation
techniques can highly affect the classification accuracy. For instance, for the
Lettrine database using of the Papadopoulos [12] measure, the difference in the
accuracy rate between the skeleton graphs and the RAGs is around 21% which
is very important. An other interesting point is on the ranking position of these
similarity methods. For instance we can remark that rank of one method may be
different following the graph-based representation. For example with the Logo

Table 1. Classification accuracy. The edit cost line corresponds to the costs used as
parameters for the Neuhaus and Riesen methods, i.e. Edit costs = (node cost, edge
cost).

Shape Logo Lettrine
H+D Skel RAG H+D Skel RAG H+D Skel

Jouili 56,60% 61.29% 93,40% 76,13% 75,47% 81.04% 68.32% 69.92%

Robles-Kelly 57,89% 67,52% 82,03% 69,33% 71,27% 72.01% 59.54% 63.33%

Lopresti 35,99% 34,72% 91,37% 81,83% 80,93% 79.82% 60.85% 58.78%

Papadopoulos 46,22% 40,16% 94,67% 84,40% 81,87% 80.00% 65.43% 62.29%

Riesen 30,06% 47,73% 85,57% 70,49% 67,93% 41.87% 39.25% 40.54%

Neuhaus 30,53% 46,44% 86,70% 73,93% 69,20% 42.29% 40.09% 41.67%

Edit costs (1.8,0.5) (0.9,0.5) (0.3,0.1) (1.5,0.9) (1.1,0.1) (0.3,0.1) (1.8,0.9) (1,0.5)

Table 2. Recommendations

Shape Logo Lettrine

Jouili [8] skeleton RAG RAG

Robles-Kelly [14] skeleton RAG RAG

Lopresti [9] H+D RAG RAG

Papadopoulos [12] H+D RAG RAG

Riesen [13] skeleton RAG RAG

Neuhaus [11] skeleton RAG RAG
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dataset, the Lopresti[9] method is at the rank 3 for the RAG representation and
rank 2 for the skeleton and interest points representations. In this perspective
one has to consider carefully the comparative experimental results provided in
the literature because following the graph representation the rank between the
compared methods could be partially different. We can also consider that a
similarity measure approach is robust if its rank is not affected by the graph
representation (for example [14] for the shape, [12] for the logo and [8] for the
lettrine).

From these results, we deduce also a set of recommendations (Table 2) which
consist of the best graph representation for each database and each graph simi-
larity measure. For instance, for the Shape database, we recommend to use the
skeleton graph to represent the images with the Jouili [8], Robles-Kelly [14],
Riesen [13] or Neuhaus [11] similarity measures. Moreover, if the Lopresti [9]
or Papadopoulos [12] approaches are used to classify the Shape database, we
recommend the graph representation based on the interest points. For the two
other databases the RAG seems to be the best choice whatever the measure of
similarity.

5 Conclusion

In this paper we have investigated how the graph structure can be used to rep-
resent the images. We have reviewed the graph-based representations commonly
used in the literature. We classified these representations on four families: graph
based on points of interest, region adjacency graph, skeleton graph and spatial
relation graph. From our empirical studies, we have concluded that the choice
of a graph-based representation technique depends on the image type. That is,
the choice of a graph representation technique can highly affect the classification
accuracy and the ranking position of a similarity measure method. Therefore,
we can say that experimental results in the literature on graph performance
evaluation for similarity measures should be considered carefully.

References

1. Doermann, D.S., Rivlin, E., Weiss, I.: Logo Recognition. Technical Report CS-TR-
3145, University of Maryland, College Park, College Park, MD (1993)

2. Egenhofer, M.J., Shariff, A.R.B.M.: Metric details for natural-language spatial re-
lations. ACM Transactions on Information Systems 16(4), 295–321 (1998)

3. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
International Journal of Computer Vision 59(2) (September 2004)

4. Goh, W.-B.: Strategies for shape matching using skeletons. Computer Vision and
Image Understanding 110(3), 326–345 (2008)

5. Harris, C., Stephens, M.: A combined corner and edge detection. In: Proc. 4th
Alvey Vision Conf., pp. 189–192 (1988)

6. Lladòs, J., Mart́ı, E., Villanueva, J.J.: Symbol recognition by error-tolerant sub-
graph matching between region adjacency graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence 23(10), 1137–1143 (2001)



Towards Performance Evaluation of Graph-Based Representation 81

7. Jouili, S., Coustaty, M., Tabbone, S., Ogier, J.-M.: Navidomass: Structural-based
approaches towards handling historical documents. In: ICPR, pp. 946–949 (2010)

8. Jouili, S., Mili, I., Tabbone, S.: Attributed graph matching using local descriptions.
In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009.
LNCS, vol. 5807, pp. 89–99. Springer, Heidelberg (2009)

9. Lopresti, D.P., Wilfong, G.T.: A fast technique for comparing graph representations
with applications to performance evaluation. International Journal on Document
Analysis and Recognition 6(4), 219–229 (2003)

10. Moravec, H.: Towards automatic visual obstacle avoidance. In: Proceedings of the
5th International Joint Conference on Artificial Intelligence, p. 584 (August 1977)

11. Neuhaus, M.: Bridging the gap between Graph edit distance and Kernel Machines.
PhD thesis, University of Bern (2006)

12. Papadopoulos, A.N., Manolopoulos, Y.: Structure-based similarity search with
graph histograms. In: Proceedings of International Workshop on Similarity Search
(DEXA IWOSS 1999), pp. 174–178 (September 1999)

13. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vision Comput. 27(7), 950–959 (2009)

14. Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27(3), 365–378 (2005)

15. Rosenfeld, A.: Adjacency in digital pictures. Information and Control 26(1), 24–33
(1974)

16. Ruberto, C.D.: Recognition of shapes by attributed skeletal graphs. Pattern Recog-
nition 37(1), 21–31 (2004)

17. Santosh, K., Wendling, L., Lamiroy, B.: Using spatial relations for graphical symbol
description. In: International Conference on Pattern Recognition, pp. 2041–2044.
IEEE Computer Society, Los Alamitos (2010)

18. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing
their shock graphs. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 26(5), 550–571 (2004)

19. Sharvit, D., Chan, J., Tek, H., Kimia, B.B.: Symmetry-based indexing of image
databases. Journal of Visual Communication and Image Representation 9, 366–380
(1998)

20. Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and
shape matching. International Journal of Computer Vision 35(1), 13–32 (1999)

21. Torsello, A., Hancock, E.R.: A skeletal measure of 2d shape similarity. Computer
Vision and Image Understanding 95(1), 1–29 (2004)

22. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory.
IEEE Transactions on Pattern Analysis and Machine Intelligence 27(7), 1112–1124
(2005)

23. Xiaogang, X., Sun, Z., Peng, B., Jin, X., Liu, W.: An online composite graphics
recognition approach based on matching of spatial relation graphs. International
Journal on Document Analysis and Recognition 7(1), 44–55 (2004)



Measuring the Distance of Generalized Maps

Camille Combier1,2, Guillaume Damiand1,2, and Christine Solnon1,2
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Abstract. Generalized maps are widely used to model the topology
of nD objects (such as images) by means of incidence and adjacency
relationships between cells (vertices, edges, faces, volumes, ...). In this
paper, we define a first error-tolerant distance measure for comparing
generalized maps, which is an important issue for image processing and
analysis. This distance measure is defined by means of the size of a largest
common submap, in a similar way as a graph distance measure may be
defined by means of the size of a largest common subgraph. We show that
this distance measure is a metric, and we introduce a greedy randomized
algorithm which allows us to efficiently compute an upper bound of it.

1 Introduction

Generalized maps are widely used to model the topology of nD objects subdi-
vided in cells (e.g., vertices, edges, faces, volumes, ...) by means of incidence and
adjacency relationships between these cells. In 2D, they are an extension of pla-
nar graphs, and a generalization for higher dimensions. In particular, generalized
maps are very well suited to model 2D and 3D images, and there exist efficient
algorithms for extracting maps from images [DBF04, Dam08]. In [DDLHJ+09],
we have defined two basic comparison tools, i.e., map isomorphism (which in-
volves deciding if two generalized maps are equivalent) and submap isomorphism
(which involves deciding if a copy of a pattern generalized map may be found
in a target generalized map), and we have proposed efficient polynomial time
algorithms for solving these two problems. However, these decision algorithms
cannot be used to quantify the distance between two generalized maps as soon
as there is no inclusion relation between them.

In this paper, we define a first error-tolerant distance measure for comparing
generalized maps, which is an important issue for image processing and analy-
sis. This distance measure is defined by means of the size of a largest common
submap, in a similar way as a graph distance measure is defined by means of
the size of a largest common subgraph in [BS98]. In Section 2, we briefly recall
definitions related to generalized maps. In Section 3, we define the distance mea-
sure and we show that it is a metric distance. In Section 4, we describe a greedy
randomized algorithm which allows us to efficiently compute an approximation
of this distance measure. In Section 5, we give first experimental results showing
that our algorithm is able to compute good approximations of the distance.
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a b c d e f g h i j k l m n o p

α0 h c b e d g f a p k j m l o n i

α1 b a d c f e h g j i l k n m p o

α2 a b c o n f g h i j k l m e d p

Fig. 1. Example of 2G-map: consecutive darts separated with a little segment are 0-
sewn (e.g., b and c); consecutive darts separated with a dot are 1-sewn (e.g., a and b);
parallel darts are 2-sewn (e.g., d and o); a is 2-free because α2(a) = a.

2 Generalized Maps and (Sub)Map Isomorphism

Let us first recall basic definitions on generalized maps, which are a generalization
of combinatorial maps. We refer the reader to [Lie94] for more details.

Definition 1. (nG-map) Let n ≥ 0. An n-dimensional generalized map (or nG-
map) is defined by a tuple M = (D, α0, . . . , αn) such that (i) D is a finite set of
darts; (ii) ∀i ∈ [0, n], αi is an involution1 on D; and (iii) ∀i, j ∈ [0, n] such that
i + 2 ≤ j, αi ◦ αj is an involution.

We will say that a dart d ∈ D is i-free whenever d = αi(d), and that it is i-sewn
to d′ ∈ D whenever d = αi(d′) and d 
= d′. Fig. 1 displays an example of 2G-map
which describes an object composed of two adjacent faces.

Map isomorphism checks for the equivalence of nG-maps. It has been defined
in [Lie94]. Submap isomorphism checks for the inclusion of two nG-maps. It has
been defined in [DDLHJ+09] for combinatorial maps. Definition 2 extends this
definition to generalized maps (see Fig. 2 for an example).

(a) M (b) M ′

1→ b 2→ a 3→ n
4→ m 5→ l 6→ k
7→ p 8→ o 9→ s
10→ r 11→ q

(c) Subisomorphism function f

Fig. 2. Submap isomorphism example: f is a subisomorphism function from M ′ to M

Definition 2. (nG-map subisomorphism) Let M = (D, α0, . . . , αn) and M ′ =
(D′, α′

0, . . . , α
′
n) be two nG-maps. M is subisomorphic to M ′, denoted M � M ′

if there exist an injective function f : D → D′ such that ∀d ∈ D, and ∀i ∈ [0, n]:

– if d is i-sewn, then f(αi(d)) = α′
i(f(d));

– if d is i-free, then either f(d) is i-free, or f(d) is i-sewn with a dart which
is not matched by f to another dart of D, i.e., ∀dk ∈ D, f(dk) 
= α′

i(f(d)).

1 An involution f on D is a bijective mapping from D to D such that f = f−1.
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3 Definition of a Distance Measure for Generalized Maps

Submap isomorphism may be used to decide of generalized map inclusion, but
it cannot be used to quantify the distance between two nG-maps which are not
related by an inclusion relationships. In this section, we propose to quantify
this distance by means of the largest generalized map included into the two
generalized maps to be compared. This definition may be viewed as an extension
of the graph distance measure based on maximum common subgraphs defined
in [BS98].

Let us first define generalized map sizes and maximum common submaps.

Definition 3. (size of an nG-map) The size of an nG-map M = (D, α0, . . . , αn)
is denoted |M | and is defined by its number of darts, i.e., |M | = |D|.
Definition 4. (maximum common submap) Let M and M ′ be two nG-maps. A
maximum common submap of M and M ′, denoted mcs(M, M ′), is an nG-map
such that mcs(M, M ′) �M , mcs(M, M ′) � M ′; and |mcs(M, M ′)| is maximal.

Note that mcs(M, M ′) is not necessarily unique as there may exist several com-
mon submaps which have a same size. A maximum common submap basically
corresponds to the intersection of two nG-maps, and its size may be used to
quantify their similarity: the larger a maximum common submap, the more sim-
ilar the two nG-maps. To define a distance, we normalize this size with respect
to the size of the largest of the two generalized maps, as proposed in [BS98] for
graphs.

Definition 5. (distance between two nG-maps) Let M1 and M2 be two nG-
maps. The distance between M1 and M2 is defined by:

d(M1, M2) = 0 if |M1| = |M2| = 0;
d(M1, M2) = 1− |mcs(M1,M2)|

max(|M1|,|M2|) otherwise.

Theorem 1. Let n ≥ 1. The distance d is a metric on the setM of all nG-maps
so that the following properties hold:

1. Non-negativity: ∀M1, M2 ∈ M, d(M1, M2) ≥ 0;
2. Isomorphism of indiscernibles:
∀M1, M2 ∈M, d(M1, M2) = 0 iff M1 and M2 are isomorphic;

3. Symmetry: ∀M1, M2 ∈M, d(M1, M2) = d(M2, M1);
4. Triangle inequality: ∀M1, M2, M3 ∈ M, d(M1, M3) ≤ d(M1, M2)+d(M2, M3).

Proof. Properties 1, 2, and 3 are direct consequences of Def. 5.
Let us denote mij = mcs(Mi, Mj), and Sij = max(|Mi|, |Mj|), and let us show
Property 4 by considering separately the two following cases.

(Case 1): d(M1, M2) + d(M2, M3) ≥ 1.
In this case, the triangle inequality trivially holds as d(M1, M3) ≤ 1.

(Case 2): d(M1, M2) + d(M2, M3) < 1.
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In this case, let us first show that there exists at least one dart d of M2 which
belongs both to m12 and m23 or, in other words, that the sum of the number of
darts of m12 and m23 is strictly greater than the number of darts of M2 so that
at least one dart of M2 belongs to the two common submaps, i.e.,

|M2| < |m12|+ |m23| (1)

This inequation can be proven by considering all possible order relations between
nG-map sizes. For example, if |M1| ≥ |M3| ≥ |M2|, then:
(Case 2)⇔ 1− |m12|

|M1| +1− |m23|
|M3| < 1 (by Def. 5, and as S12 = |M1| and S23 = |M3|)

⇔ |M3| < |M3|
|M1| |m12|+ |m23| (by multiplying by |M3|)

⇒ |M3| < |m12|+ |m23| (as |M3|
|M1| < 1)

⇒ |M2| < |m12|+ |m23| (as |M3| ≥ |M2|).
Ineq. (1) can be proven in a very similar way for the five other possible order
relations between nG-map sizes.

Ineq. (1) shows that the sum of the sizes of the two common submaps m12

and m23 is always strictly greater than the size of M2 so that there are at least
|m12| + |m23| − |M2| darts that both belong to m12 and m23. Therefore, the
nG-map mcs(m12, m23) is a common submap of M1, M2, and M3 which has at
least |m12| + |m23| − |M2| darts. This nG-map gives a lower bound on the size
of the maximum common submap of M1 and M3, i.e.,

|m13| ≥ |m12|+ |m23| − |M2| (2)

Let us use this lower bound to show that the triangle inequality holds. When
developing the triangle inequality w.r.t. Def. 5, it becomes:

|m13| ≥ S13

S12
|m12|+ S13

S23
|m23| − S13 (3)

Let us prove (3) by considering all order relations between nG-map sizes:

(Case 2.1): |M1| ≥ |M2| ≥ |M3| so that S13 = |M1|, S12 = |M1|, S23 = |M2|.
Ineq. (3) becomes |m13| ≥ |m12|+ |M1|

|M2| |m23|−|M1|. As |m13| ≥ |m12|+|m23|−
|M2| (Ineq. (2)), we have to show that |m23|− |M2| ≥ |M1|

|M2| |m23|− |M1|, i.e.,
|m23| ≤ |M2| (as |M2| − |M1| < 0). This inequality trivially holds by Def. 4.

(Case 2.2): |M2| ≥ |M1| ≥ |M3| so that S13 = |M1|, S12 = |M2|, S23 = |M2|.
Ineq. (3) becomes |m13| ≥ |M1|

|M2| |m12|+ |M1|
|M2| |m23|−|M1|. As |M1|

|M2| ≤ 1, Ineq. (2)

implies that |m13| ≥ |M1|
|M2| (|m12|+ |m23| − |M2|. Therefore, Ineq. (3) holds.

(Case 2.3): |M1| ≥ |M3| ≥ |M2| so that S13 = |M1|, S12 = |M1|, S23 = |M3|.
Ineq. (3) becomes |m13| ≥ |m12|+ |M1|

|M3| |m23|−|M1|. As |m13| ≥ |m12|+|m23|−
|M2| (Ineq. (2)), we have to show that |m23|− |M2| ≥ |M1|

|M3| |m23|− |M1|, i.e.,

|m23| ≤ |M3| |M2|−|M1|
|M3|−|M1| (as |M3| − |M1| < 0). This inequality trivially holds

by Def. 4 because |M2|−|M1|
|M3|−|M1| ≥ 1.

The 3 others cases can be obtained by inverting M1 and M3. ��
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a→ 1
b→ 2
d→ 4

M M ′ m
M restricted to
matched darts

Fig. 3. Example of matching m : M →M ′ which does not induce a consistent submap.
Constraint αi ◦ αj(d) = αj ◦ αi(d) of Def. 1 is not satisfied in M restricted to {a, b, d}
as α2(α0(a)) = d and α0(α2(a)) = b.

4 Algorithm for Approximating the nG-Map Distance

Computing the distance between two nG-maps basically involves computing
their maximum common submap. We have given in [DDLHJ+09] a polynomial
time algorithm for deciding if there exists a submap isomorphism between two
connected generalized maps (such that there exists a path of i-sewn darts be-
tween every pair of darts). This problem becomes NP-complete as soon as the
pattern nG-map is not connected. As the maximum common submap of two nG-
maps is not necessarily connected, computing a maximum common submap is
at least as hard as deciding of submap isomorphism between two non connected
nG-maps and, therefore, the maximum common submap problem is NP-hard.

In this section, we describe a polynomial-time algorithm which efficiently com-
pute an upper bound of d(M, M ′). The idea is to build a submap which is com-
mon to M and M ′ and which is (hopefully) as large as possible. To compute a
common submap, we actually build a dart matching which induces a submap,
in a rather similar way as we compute a common subgraph by building a vertex
matching which induces a subgraph. More precisely, a dart matching is a func-
tion m : D → D′ ∪ {ε} such that, for each dart d ∈ D, if m(d) = ε then d is not
matched, otherwise d is matched to m(d) ∈ D′. Symmetrically, a dart d′ ∈ D′ is
said to be not matched if ∀dk ∈ D, m(dk) 
= d′, otherwise d′ is said to be matched
with the dart d ∈ D such that m(d) = d′. A matching induces a submap which
is obtained by removing from M all non matched darts. Obviously, a matching
must preserves involutions so that two darts i-sewn must be matched to two
darts which are also i-sewn. A matching must also induce a consistent submap
which satisfies constraint (iii) of Def. 1, as illustrated in Fig. 3. More precisely,
Def. 6 defines consistent matchings.

Definition 6. (consistent dart matching) Let M = (D, α0, . . . , αn) and M ′ =
(D′, α′

0, . . . , α
′
n) be two nG-maps. A matching m : D → D′ ∪ {ε} is consistent if

1. it matches different darts of M to different darts of M ′, i.e.,
∀d1, d2 ∈ D, d1 
= d2 ⇒ m(d1) = ε ∨m(d2) = ε ∨m(d1) 
= m(d2);

2. it preserves all involutions between matched darts i.e.,
∀d ∈ D such that m(d) 
= ε, ∀i ∈ [0, n]:
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– if d is i-free and m(d) is i-sewn then α′
i(m(d)) is not matched;

– if d is i-sewn and m(d) is i-free then αi(d) is not matched;
– if both d and m(d) are i-sewn then m(αi(d)) = α′

i(m(d)) or both αi(d)
and α′

i(m(d)) are not matched.
3. matched darts satisfy constraint (iii) of Def. 1, i.e.,
∀d ∈ D such that m(d) 
= ε, ∀i, j ∈ [0, n] such that i + 2 ≤ j, we have
(αi(d) 
= d∧m(αi(d)) 
= ε∧αj(d) 
= d∧m(αj(d)) 
= ε)⇒ m(αi(αj(d))) 
= ε.

Definition 7. (submap induced by a matching) Let M = (D, α0, . . . , αn) and
M ′ = (D′, α′

0, . . . , α
′
n) be two nG-maps. The submap induced by a consistent

matching m : D → D′ ∪ {ε} is M↓m = (D′′, α′′
0 , . . . , α′′

n) such that

– D′′ = {d ∈ D | m(d) 
= ε};
– ∀d ∈ D′′, ∀i ∈ [0, n], if αi(d) ∈ D′′ then α′′

i (d) = αi(d); otherwise α′′
i (d) = d.

Proposition 1. Let M and M ′ be two nG-maps and m be a consistent matching
from M to M ′. M↓m is an nG-map such that M↓m � M and M↓m �M ′.

Proof. Cond. 3 of Def. 6 ensures that M↓m is a consistent nG-map which satisfies
constraints of Def. 1. M↓m is a submap of M by Def. 7. M↓m is a submap of
M ′ because Cond. 1 of Def. 6 ensures that darts of M are matched to different
darts of M ′ and because Cond. 2 and 3 of Def. 6 ensure that all involutions are
preserved by m. ��
Algorithm 1 describes a polynomial-time algorithm which computes a consistent
matching m in an incremental way. It starts from an empty matching. At each
iteration, it chooses a couple (d, d′) which is candidate to be added to m (line
5) according to a choice procedure described in Section 4.1. When adding this
couple of darts to m, some other new couples must also be added in order to
ensure its consistency. This propagation step is done line 6 and is described in
Section 4.2. If propagation detects an inconsistency, then another couple of darts
must be chosen (repeat loop lines 4-7); otherwise, m is updated with respect to
the results of the propagation step (line 9) and the set of candidate couples is
updated (line 10) as described in Section 4.3. When no more couple of darts can
be consistently added to m, an upper bound of the distance is computed with
respect to m (line 11). Note that the size of M↓m is actually equal to the number
of couples of darts in m.

4.1 Choice of a Couple of Darts (Line 5)

At each iteration, we choose a couple of darts (d, d′) ∈ Cand to be added to
m. This choice is done in a greedy way, by choosing a couple of darts which
maximizes the number of preserved involutions, i.e., a couple (d, d′) such that
|{i ∈ [0, n]|m(αi(d)) = α′

i(d
′))}| is maximal. The goal is to favor the choice of

darts which are sewn to already matched darts: the more sewn, the better.
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Algorithm 1. ApproxD(M, M ′)
Input: two nG-maps M = (D, α0, . . . , αn) and M ′ = (D′, α′

0, . . . , α
′
n)

Output: returns an upper bound of d(M, M ′)
Let m be the set of matched darts; initialize m to ∅1

Cand← D ×D′
2

while Cand �= ∅ do3

repeat4

choose (d, d′) ∈Cand and remove (d, d′) from Cand5

m′ ← propagate(m, d, d′)6

until m′ is consistent or Cand= ∅ ;7

if m′ is consistent then8

m← m′
9

update Cand with respect to m′
10

return 1− |m|
max(|M|,|M′|)11

There usually exist several couples which maximize preserved involutions.
We have defined two different ways of breaking ties, which are experimentally
compared in Section 5. The first way to break ties (denoted Rand) consists in
randomly choosing a couple within the set of candidate couples which maximize
preserved involutions. The second way to break ties (denoted Deg) is defined
with respect to degrees and co-degrees of incident cells. Indeed, each dart d is
incident to n + 1 i-cells (one in each dimension): the 0-cell corresponds to the
vertex incident to d, the 1-cell to the edge, the 2-cell to the face, the 3-cell to the
volume, etc. Each i-cell (with 0 ≤ i < n) has a degree, which is the number of
incident (i+1)-cells (e.g., the degree of a vertex (resp. edge, face) is the number
of incident edges (resp. faces, volumes)). Each i-cell (with 0 < i ≤ n) also has a
co-degree, which is the number of incident (i− 1)-cells (e.g., the co-degree of an
edge (resp. face, volume) is the number of incident vertices (resp. edges, faces)).
Hence, when several couples of candidate darts preserve the same number of
involutions, Deg break ties by choosing the couple of darts which maximizes the
number of i-cells with the same degrees and co-degrees, thus favoring the choice
of darts which have a similar neighborhood. Further ties are randomly broken.

4.2 Propagation of a Couple of Darts to Ensure Consistency
(Line 6)

Adding (d, d′) to m may lead to an inconsistent matching which does not satisfies
Cond. 3 of Def. 6 (such as the one displayed in Fig. 3). Hence, we don’t simply
add (d, d′) to m but compute the whole set m′ of couples of darts that must
be added to m so that the matching is consistent according to Def. 6. This
propagation is done recursively for each new couple of darts added to m′. It
either stops when the matching has been completed to a consistent matching, or
when an inconsistency has been detected (when it is not possible to consistently
add (d, d′) to m). In this latter case, the repeat loop (lines 4-7) must be re-
iterated to choose another couple of darts to be added to m.
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4.3 Update of Cand with Respect to m′ (Line 10)

A consistent matching m must satisfy the 3 conditions of Def. 6. Condition 3 is
ensured by the propagation step. Conditions 1 and 2 are ensured by removing
from the set Cand every couple (dk, d′k) which does not satisfy them. More
precisely, we remove from Cand every couple (dk, d′k) such that dk or d′k are
already matched to another dart in m′ (Cond. 1 of Def. 6), or such that there
exists a couple of matched darts (d, d′) ∈ m′ such that d is i-sewn with dk

whereas d′ is not i-sewn with d′k for some dimension i (Cond. 2 of Def. 6).

5 First Experimental Results

ApproxD (described in Algorithm 1) greedily computes a consistent matching
m for two nG-maps M and M ′. This matching induces a common submap M↓m

which can be used to compute an upper bound of the distance between M and
M ′, corresponding to 1− |m|

max(|M|,|M ′|) (as |m| = |M↓m|).
ApproxD is not deterministic as ties are randomly broken when choosing a

couple of darts (line 5). Therefore, we can run it several times and finally return
the smallest computed upper bound. Let us denote Rand(k) (resp. Deg(k)) the
algorithm which runs ApproxD k times and uses the Rand (resp. Deg) procedure
to break ties when choosing a couple of darts (line 5). Note that for each different
run of ApproxD, we enforce the algorithm to choose a different couple of darts
when choosing the first couple: for Rand(k) we randomly order the |M | · |M ′|
possible couples of darts whereas for Deg(k) we order them by decreasing order
with respect to the number of i-cells with same (co-)degrees (see Section 4.1)2.

We compare Rand(k) and Deg(k) on a synthetic benchmark of randomly
generated couples of 3G-maps. As we cannot compute the exact distance, we
have generated couples of 3G-maps for which we know an upper bound on the
distance by construction: we randomly generate a first 3G-map M with 2000
darts; we then extract a submap of M which has p% of its 2000 darts; we finally
generate a new 3G-map M ′, starting from the submap of M by randomly adding
(and sewing) new darts to it until it has 2000 darts. We have generated different
couples of 3G-maps, with different values of p, denoted (p%). By construction,
we know that the distance for an instance (p%) is lower or equal to 1 − p/100.
However, this is just a bound as the parts of M and M ′ which do not belong to
the p% common part may also have some common patterns.

Table 1 compares Deg(1000) and Rand(1000) on nine (p%) instances, with p
ranging from 10 to 90. For each instance, we report average results on 50 runs.
On these instances, Deg(1000) always computes a smaller upper bound than
Rand(1000). The difference is more particularly sensible for larger values of p.
In particular, the bound computed by Deg(1000) is twice as small as the one
2 We have also performed experiments where ApproxD chooses the next couple of

darts (line 5) completely randomly (i.e., independently from the number of pre-
served involutions), or where ApproxD does not perform the propagation step (line
6). In both cases, the computed matchings are much poorer and induce very bad
approximations of the distance so that we do not report results of these variants.
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Table 1. Comparison of Deg(1000) and Rand(1000) on (p%) instances. Each line first
gives the value of p and the upper bound on d corresponding to p (i.e., 1−p/100). Then,
for each algorithm, it successively gives the best computed upper bound within a limit
of 1000 matching constructions, and the number of matching constructions needed to
reach this upper bound (average and standard deviation on 50 runs).

Deg(1000) Rand(1000)
p Upper bound #constructions Upper bound #constructions

avg (sdv) avg (sdv) avg (sdv) avg (sdv)

10 (d ≤ 0.9) 0.309 (0.0038) 330 (245) 0.324 (0.0031) 498 (276)
20 (d ≤ 0.8) 0.274 (0.0030) 406 (281) 0.311 (0.0150) 467 (303)
30 (d ≤ 0.7) 0.258 (0.0028) 459 (211) 0.293 (0.0204) 435 (279)
40 (d ≤ 0.6) 0.238 (0.0022) 451 (280) 0.275 (0.0204) 570 (271)
50 (d ≤ 0.5) 0.209 (0.0025) 469 (194) 0.252 (0.0324) 502 (289)
60 (d ≤ 0.4) 0.186 (0.0015) 645 (219) 0.229 (0.0388) 545 (261)
70 (d ≤ 0.3) 0.158 (0.0014) 362 (323) 0.212 (0.0545) 471 (277)
80 (d ≤ 0.2) 0.107 (0.0009) 271 (304) 0.155 (0.0493) 418 (282)
90 (d ≤ 0.1) 0.068 (0.0005) 94 (175) 0.127 (0.0749) 581 (251)
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Fig. 4. Evolution of the upper bound w.r.t. the number of matching constructions
(average on 50 runs) for instances (50%), (70%) and (90%): Deg(k) on the left and
Rand(k) on the right

computed by Rand(1000) when p = 90. Bounds computed by Deg(1000) and
Rand(1000) are much smaller than 1− p/100 for small values of p, thus showing
that the parts of M and M ′ which do not belong to the p% common part actu-
ally also share many sub-patterns. Note also that Deg(1000) always computes
upper bounds smaller than 1− p/100, whereas Rand(1000) has not been able to
compute an upper bound smaller or equal to 1− p/100 when p = 90. Standard
deviations of bounds are also smaller for Deg(1000) than for Rand(1000).

Table 1 also gives the number of matching constructions needed to reach
the best upper bound (within a limit of 1000 constructions). It shows us that
Deg usually needs less constructions than Rand (whereas it computes better
approximations). Note also that the number of constructions needed by Deg to
find the best upper bound decreases for large values of p. In particular, the best
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approximation is found in a hundred or so constructions when p = 90%. Fig. 4
displays the evolution of the quality of the bound with respect to the number k of
matching constructions for three different values of p. It shows us that the upper
bound computed by Deg(k) decreases quicker than the upper bound computed
by Rand(k), and that the higher p, the quicker it decreases.

Let us finally point out that matching constructions are rather quickly com-
puted. For instance, on an Intel Xeon E5520 CPU with 16GB RAM, Algorithm 1
runs in less than 1 second (resp. 2s, 11s, 56s) when 3G-maps have 1000 (resp.
2000, 4000, and 8000) darts. Note that CPU times do not really depend on the
size of the common part p.

6 Conclusion

We have introduced a first distance measure for comparing nG-maps. This dis-
tance is based on the size of the largest common submap and we have shown
that it is a metric. We have described a polynomial time algorithm which is able
to compute an approximation of this distance and very first experimental results
have shown us that this algorithm uses relevant heuristics, which allow it to find
better approximations, and that the computed approximations are always better
than bounds obtained by construction. Further work will concern the evaluation
of our distance measure on a real image retrieval application where images are
modeled by 2G-maps. We also plan to extend our work to partial submaps, such
that not all involutions are preserved by the matching, and more generally, to
a nG-map edit distance which evaluates the distance between two generalized
maps by means of the smallest number of edit operations needed to transform
one nG-map into the other, in way similar to graph edit distances [Bun97].
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2 Université de Lyon, 69000, Lyon, France; Université Lyon 1,
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Abstract. Graphs are widely used to model complicated data seman-
tics in many applications (e.g. spacial databases, image databases,. . .).
Querying graph databases is costly since it involves subgraph
isomorphism testing, which is an NP-complete problem [7]. Most of
the existing query processing techniques are based on the framework of
filtering-and-verification to reduce computation costs. However, to the
best f our knowledge, the problem of assembling graphs to provide an
answer to a given query graph (i.e. information need) if it is not present
in one single source, is not investigated. In this paper, we try to highlight
the potential and the motivation that lies behind the graph aggregation
query problem. We propose a first approach to support aggregated search
in graph databases. We discuss the preliminary results from the algorith-
mic point of view.

Keywords: graph databases, query processing, aggregated search.

1 Introduction

Database research has been facing a new challenge raised by the emergence of
massive, complex structural data, in the form of sequences, trees, and graphs [8].
Among all the complex structured data, graph is among the most sophisticated
and general form of structure. Conceptually, any kind of data can be represented
by graphs. Graphs have become increasingly important in modelling complicated
structures and schemaless data in many application domains such as bioinfor-
matics, chemistry, web, social networks, sensor networks and telecommunication,
etc. For instance, graphs may represent molecular structures of chemical com-
pounds in chemistry, the organization of entities for images in computer vision,
the ER diagrams in database design, the UML diagrams in software engineer-
ing, and so on. In addition, Web sites, XML and RDF documents can also be
modelled as graphs. Therefore, it is obvious that graph databases will become
more used in the near future. As a result, the problem of processing query on
graph databases, becomes important.
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In some cases, the success of an application significantly relies on the effi-
ciency of the query processing system. The classical graph query problem can be
described as follows: Given a graph database D = {g1, g2, . . . , gn} and a query
graph q, find all the graphs gi ∈ D such that q is a subgraph of gi. It is inefficient
to perform a sequential scan on the graph database and check whether q is a
subgraph of gi. Sequential scan is very costly because one has to not only access
the whole graph database but also check subgraph isomorphism which is NP-
complete. The problem of graph query processing has been tackled recently and
a lot of methods has been proposed [3,11,13,14,1,7]. The underlying techniques
have focused on quickly retrieving the graphs that are supposed to be the answer
to the given query. Consequently, most of these methods follow the framework
of filtering and verification which is based on feature-based indexing. First, the
filtering step uses a feature-based index to eliminate part of the negative re-
sults and produces a candidate answer set. Then, the verification step verifies
whether the query is indeed a subgraph of each candidate graph. Since the can-
didate answer set is in general much smaller than the entire graph database,
query processing using the indexes is more efficient than the sequential scan ap-
proach. The existing filtering and verification techniques include GraphGrep [3],
gIndex [11], TreePi [13] and Tree+Δ [14]. GraphGrep [3] is a path-based tech-
nique which tries to enumerate all existing paths in a database within a threshold
length and index them. Then, it uses the index to identify every graph that con-
tains all the paths in the query graph. After getting the candidate answer, it
records all the embeddings of the query paths in each candidate. Rather than
doing real subgraph isomorphism testing, it performs join operations on these
embeddings to figure out the possible isomorphism mapping between the query
graph and each graph in the candidate set. The main problem of GraphGrep is
the following; the extraction of paths from graphs results in a large amount of
structural information that is not preserved, and as a consequence it may affect
the performance of the index’s pruning capability. To address this problem, some
recent work uses more complex and selective sub-structures as index features.
Among them, gIndex [11] is proposed as a graph-based indexing approach which
selects only frequent and discriminative subgraphs as index patterns and iden-
tifies the graphs in the database which contain those subgraphs. Then, gIndex
performs naive subgraph isomorphism tests for final verification. It is reported
in [11] that gIndex significantly outperforms GraphGrep in terms of index and
candidate set size. Another example is given by the TreePi algorithm [13] which
tries to index frequent and discriminative subtrees rather than subgraphs, as
trees are easier to manipulate than graphs and can capture most information of
the original database. TreePi also uses a new pruning technique based on the
concept of Center Distance Constraints to further reduce the size of the candi-
date set. The basic idea is that if the query graph appears in a candidate graph,
distances between pairs of features in query graph must be preserved in the can-
didate graph as well. At the end, a new subgraph isomorphism test algorithm
is used to perform final verification by using the location information of the in-
dexing structures. In order to determine whether the query graph q is subgraph
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isomorphic to a candidate graph g, the algorithm tries to reconstruct q, using
a new canonical reconstruction form, by joining one by one subtrees in g that
satisfy center distance constraint. Zhao et al. [14] have proposed Tree+Δ ap-
proach by extending TreePi to achieve better pruning capability by adding a
small number of discriminative graphs to the index structure. Another recent
indexing technique is given by FG-Index [1], for which both frequent subgraphs
and edges are chosen as feature set. FG-Index supports verification-free sub-
graph search. The underlying observation is the following: if the query graph is
contained in some feature in the index, all graphs in the database which contain
that feature must also contain the query graph, and such graphs can be returned
as final results without additional verification. This technique becomes effective
only when many large subgraphs are indexed, thus construction cost and stor-
age overhead of FG-Index are much larger than other feature-based indexing
techniques. More recently, in order to significantly reduce the verification costs,
Shang et al. [7] have proposed a new efficient subgraph isomorphism testing algo-
rithm (QuickSI ) by improving the widely applied Ullman’s algorithm [9]. Then,
to accommodate QuickSI in the filtering phase, they have developed a novel
feature-based index technique (Swift-Index ) which significantly outperforms the
existing techniques such as gIndex and FG-Index.

Although the graph query problem has been tackled in the last decade, no
attention has been paid to the problem of assembling graphs in a sensed way to
provide an answer of the given query graph q if (1) no single candidate graph
turns out to be isomorphic to q after the verification step, or (2) additional
answers to q are needed to be returned. For example, if we use the graph in
Figure 1 as the query q, then among the 3 graphs (D = {g1, g2, g3}) in Figure
2, no one is isomorphic to q. However, as shown in Figure 3. a possible output
to q could be given by the aggregation of fragments of the graphs g2 and g3,
A real example for such a problem could be given by the semantic web RDF
documents. Suppose an RDF query graph for a hotel which tries to retrieve a
hotel description, some pictures, an address, contact information, a map, hotel
reviews and so on. However, all this information is not necessarily in the same
RDF document. A possible issue has to consider different RDF documents (and
then their corresponding graphs) such as the one for yellow pages, the one for
online travel agencies, the one for image database, etc.

In view of this context, our problem seems to have similar intention as the
problem of substructure similarity search (also called approximate graph match-
ing problem) which try to discover all the graphs that approximately contain the
query graph when any match for the latter can be found in the graph database
[12]. However, our work differs from substructure similarity search ones in terms
of giving different exact solutions (instead of relaxed ones) to the query graph
by assembling graphs as answers to the query such that the aggregated graph
contains the query. The challenge in this scenario is to answer the following
questions : (1) how we determine the participating graphs to the aggregation,
and (2) how such an aggregation could be built.
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Fig. 1. A simple query graph

Fig. 2. A simple graph database

Fig. 3. An example of graph aggregation for querying graph database

The problems raised by aggregation in the context of documents are discussed
in [5]. However, the paper does not address formal and algorithmic issues.

Motivated by this problem, we propose an approach intended to support the
graph aggregation in the framework of query evaluation. This approach focuses
on the simple labeled graphs (we refer to them as graphs in the rest of the paper).
However, it can be easily extended to other kinds of graphs (for example directed
labeled graphs in order to consider RDF and XML queries). Our design for data
aggregation is targeted to supplement RDF query processing in such a way that
query approximation (via data aggregation) will be supported. In our work, we
are mainly interested in query aggregation in RDF databases.

2 Preliminaries

This section introduces the terminology used in this paper and formally define
the problem.

Conceptually, any kind of data can be represented by graphs. In labeled
graphs, vertices and edges represent entities and relationships, respectively. The
attributes associated with entities and relationships are called labels.

More formally, a labeled graph g is defined as a 6-tuple (V, E, Lv, Le, Fv, Fe)
where V is the set of vertices; E ⊆ V ×V is the set of edges joining two distinct
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vertices; Lv is the set of vertex labels; Le is the set of edge labels; Fv is a function
V → Lv that assigns labels to vertices and Fe is a function E → Le that assigns
labels to edges. The vertex set and the edge set of a graph g are denoted by
V (g) and E(g), respectively. Labeled graphs are generally classified, according
to the direction of their edges, into two main classes: directed labeled graphs
such as XML and RDF and undirected labeled graph such as social networks and
chemical compounds. For example, the graphs shown in Figure 2 are undirected
labeled graphs.

Definition 1 (Graph database). A graph database D is a collection of data
graphs gi where D = {g1, g2, . . . , gn}.
Definition 2 (Candidate set). A candidate set C is a collection of data graphs
from D that contain all the features appearing in the query graph q after the
filtering phase.

Definition 3 (Non isomorphic set of graphs). A non isomorphic set N of
graphs is a collection of data graphs from C that are not isomorphic to q after
the verification phase. In other words, they are the graphs outside the final result
of filtering and verification framework.

Definition 4 (Graph aggregation query problem). Given a non isomorphic
set N = {g1, g2, . . . , gm} and a query graph q, the problem of graph aggregation
query is to find different subsets S = {g1, g2, . . . , gk} from N (i.e. k ≤ m)
for which the joining of fragments (subgraphs) Pg1 , Pg2 , . . . , Pgk

from graphs
g1, g2, . . . , gk respectively, leads to q, that is q = (Pg1 �� Pg2 �� . . . �� Pgk

). Here,
the semantics of the join operation is the one used in the example given figures
1, 2, and 3 to built a solution to the query of figure 1 by combining fragments
stemming from graphs g2 and g3 of figure 2.

Although in this paper we focus on undirected labeled graphs, it is easy to
extend our proposal to directed labeled graphs. In fact, the direction of an edge
can simply be expressed by the label or by an additional flag. Thus the basic
algorithm needs only small modifications [2].

3 Graph Aggregation for Query Processing Framework

In this section, we discuss the graph aggregated search approach we propose.
As we said in the previous section, our approach builds on a non isomorphic set
N of graphs. This set contains all the graphs left out by the verification phase
of the filtering and verification framework. In order to prepare this subset, we
propose to perform any aforementioned technique [3,11,13,14,7].

Given a query graph q. In order to determine whether q is subgraph isomorphic
to the aggregation of a graph subset S ⊆ N , our approach tries to reconstruct
q from S, using a four stages approach:

1. Initially select one graph g from N and set query graph q1 to q,
2. Find the maximum common subgraph gc between q1 and g,
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Algorithm 1. GraphAggregatedSearch(q, N )
Require: q is a query graph; N is a non isomorphic graph set;
Ensure: R is a set of matched graphs subsets;

1: for each g ∈ N do
2: S := {g};
3: T := N \ {g};
4: gc := maximum common subgraph(q, g);
5: q1 := query generation(q, gc);
6: while (q1 �= ∅ or T �= ∅) do

7: select a graph g
′
from T ;

8: gc := maximum common subgraph(q1, g
′
);

9: q2 := query generation(q1, gc);
10: if (q2 �= q1) then

11: S := S ∪ {g′};
12: end if
13: T := T \ {g′};
14: q1 := q2;
15: end while
16: if (q1 = ∅) then
17: R := R ∪ S ;
18: N := N \ S ;
19: else
20: N := N \ {g};
21: end if
22: end for
23: return R;

3. Generate a new query graph q2 given by the subgraph of q1 that does not
exist in gc (i.e. q2 = q1 \ gc),

4. Repeat steps 2-3, for the not yet considered graphs in N using q1 = q2, until
a mapping is found (i.e. q1 = ∅) or no more graphs could be considered from
N .

If a mapping is found, the subset of graphs that contribute in this mapping will
be added to the result set R and pruned from N . Otherwise, only the initially
considered graph g is withdrawn from N . Finally, in order to find another subset
of graphs which together contain q, we move on to the next graph in N and
backtrack to the step 1. In this scenario, a graph query returns as output different
disjoint subsets of N .

The basic steps underlying the approach are given in Algorithm 1.

3.1 Maximum Common Subgraph Detection

Given a data graph g and a query graph q, the maximum common subgraph
(MCS) problem consists in determining the largest induced subgraph of q iso-
morphic to a subgraph of g.
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The detection of the MCS between g and q can be reduced to the prob-
lem of determining the maximum clique1 in a compatibility graph, which is an
NP-complete problem [6]. The compatibility graph (akaassociation graph and
modular product graph) has the property that an MCS between the graphs g
and q is equivalent to a maximum clique in their compatibility graph. Since
clique-based algorithms seem to provide the most widely used approach to the
MCS problem [6], we adopt it in our case.

In order to determine the compatibility graph G of g and q, the adjacency
properties of these graphs is used. This graph is defined on the vertex set V (g)×
V (q) with two vertices (ui, vi) and (uj , vj) being adjacent whenever (ui, uj) ∈
E(g) and (vi, vj) ∈ E(q), or (ui, uj) /∈ E(g) and (vi, vj) /∈ E(q). In the case of
labeled graphs (as in our case), the definition of the compatibility graph is further
restricted by requiring that the vertex and edge labels correspond according to
some compatibility criteria.

Finally, to detect the maximum common subgraph between g and q, the max-
imum clique in the compatibility graph G has to be found. A recently proposed
MaxCliqueDyn algorithm [4] for comparing large molecular structures and that
is considerably faster than many other maximal clique algorithms will be adopted
for this purpose.

The referenced resources in RDF triples have unique identifiers, IRIs.These
identifiers can point to precise definitions of predicates or refer to specific con-
cepts or objects. This means that the compatibility graph we can build in the
case of RDF databases is not too large and hence the computation of maximum
clique is not costly.

3.2 Query Generation

In this section, we discuss how to generate the new query graph q1 once the
maximum common subgraph gc between a query graph q and a data graph g is
found. The vertex set V (q1) and edge set E(q1) of q1 are defined as:

– V (q1) is given by the vertices of q that are not in gc and the vertices of q
that are in gc but adjacent to vertices that are not in gc. Formally, V (q1) =
V

′
(q1) ∪ V ”(q1) where:
• V

′
(q1) = {vi|vi ∈ V (q) and vi /∈ V (gc)}.

• V ”(q1) = {vi|(vi, vj) ∈ E(q) and vj /∈ V (gc)}.
– Two vertices vi and vj of V (q1) are connected by an edge if and only if the

vertices are also connected in q. Formally, (vi, vj) ∈ E(q1) if (vi, vj) ∈ E(q).

4 Performance Evaluation

In this section, we report first empirical results to evaluate the effectiveness
and efficiency of our technique. Our experiments are conducted on synthetic
1 A clique in a graph G is a subset of vertices in the graph such that each pair of

vertices in the subset is connected by an edge in the graph G. A maximum clique is
the largest such subset present in the graph.
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Table 1. Performance Evaluation on Varying # Distinct Labels

# Distinct labels Response time (s) Aggregated output Simple QP output

5 0.0842 34.35 3.9

10 0.0619 6.85 0.54

15 0.0589 3.2 0.05

datasets. We generate a large number of graphs by using the synthetic graph
data generator GraphGen [1]. The generator also allows us to specify various
parameters such as the average graph density, graph size and the number of
distinct vertex labels.

In these experiments, we focus on the capability and the scalability of our
technique wrt the number of distinct vertex labels, which have a great impact
on overall performance. It can be verified that (1) the less the number of distinct
vertex labels, the harder the aggregated search problem is, since the size of
the compatibility graph increases and then the maximum common subgraph
detection became costly, and (2) the more the number of distinct vertex labels,
the less the number of output solutions from a filtering-and-verification based
approaches is and then the more interesting becomes aggregated search.

We use GraphGen to generate a set of graph datasets with different numbers
of distinct labels, varying from 15 to 5. The average number of edges in the
query graphs and data graphs are 10 and 30, respectively. There are 1000 data
graphs and 100 queries in the considered experiments. The set of non isomorphic
graphs N , which is the input to our graph aggregated search algorithm, is given
by a simple filtering-and-verification based approach that firstly enumerates the
frequent subgraphs for filtering using the graph mining approach gSpan [10] and
performs naive subgraph isomorphism tests for final verification.

Table 1 reports the overall performance of our aggregated technique in terms
of average query response time and average output size on the 100 queries set. For
an interesting assess of the results gained with our aggregated search, we propose
to measure the advantage of our approach to find new output solutions compared
to the classical subgraph isomorphism query approaches. For this purpose, the
average output size of the simplest filtering-and-verification based approach is
recorded and demonstrated in Table 1. We use Simple QP to denote this simple
approach for query processing.

As expected, performance of classical subgraph isomorphism query techniques,
in terms of the number of output solutions, deteriorates with the increasing num-
ber of distinct vertex labels. When the number of distinct labels varies from 5 to
15, the number of query answers provided by Simple QP decreases. In addition,
it is noted that Simple QP fails to return any result for many query graphs when
the number of distinct labels reaches 10. However, the experiments confirm the
ability of our technique to deliver new query answers that can improve the ef-
ficiency and the precision of a query processing system. For example, when the
number of distinct labels is equal to 5, the average number of solutions provided
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by our approach is 8.807 times the numbers of solutions returned by Simple QP.
On the other hand, when the number of distinct labels drops from 15 to 5, the
response time of aggregation slowly increased.

5 Conclusions

We have discussed aggregation in the context of data modeled as graphs. Aggre-
gated search can be combined with query processing/approximation in order to
provide greater flexibility in the querying of complex, irregular and semistruc-
tured data sets.

We introduced an algorithm dedicated to the task of computing fragments of
graphs candidate to answer a user query. To this end, we built on feature-based
indexing and verification to select graphs that will be subject to aggregation.
Initial computational evaluations of this algorithm were provided. We are in-
vestigating the following issues for which we expect to get first feedback very
quickly:

– Since the answers returned by our approach for a user query may vary as
per the examining order of the non-isomorphic graphs, the goodness of the
different answers is expected to be evaluated. In this context, we are working
on the optimization of the examining order of graphs in the database in the
sense to better improving the query processing in terms of runtime and
answers quality.

– We are building a large scale RDF database together with a set of well defined
and characterized queries. This work is led by master students and we expect
to have these data set and queries ready for large scale experiments by the
end of january.

– We are working on the design, prototyping and evaluation of a query inter-
face. In practice, we expect that a visual query interface would be required,
providing users with facilities for query specification. The idea is to provide
the users with facilities to express RDQL queries and generate the corre-
sponding specification in the format proposed in this paper. We plan to
build on partial evaluation techniques used in coupling relational databases
and logic-based programming languages.

Acknowledgment

This work is partially supported by ANR (Agence Nationale de la Recherche)
project ANR-08-CORD-009 and by Rhne-Alpes Region, Cluster ISLE (Informa-
tique, Signal, Logiciel Embarqué).
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Abstract. In the field of structural pattern recognition graphs consti-
tute a very common and powerful way of representing objects. The main
drawback of graph representations is that the computation of various
graph similarity measures is exponential in the number of involved nodes.
Hence, such computations are feasible for rather small graphs only. One
of the most flexible graph similarity measures is graph edit distance.
In this paper we propose a novel approach for the efficient computa-
tion of graph edit distance based on bipartite graph matching by means
of the Volgenant-Jonker assignment algorithm. Our proposed algorithm
provides only suboptimal edit distances, but runs in polynomial time.
The reason for its sub-optimality is that edge information is taken into
account only in a limited fashion during the process of finding the op-
timal node assignment between two graphs. In experiments on diverse
graph representations we demonstrate a high speed up of our proposed
method over a traditional algorithm for graph edit distance computation
and over two other sub-optimal approaches that use the Hungarian and
Munkres algorithm. Also, we show that classification accuracy remains
nearly unaffected by the suboptimal nature of the algorithm.

1 Introduction

Graph matching refers to the process of evaluating the structural similarity of
graphs. Numerous methods for graph matching have been proposed in the lit-
erature [1]. A prominent approach is to consider the spectral decomposition
of graphs (e.g. Singular Value Decomposition and Eigenvalues) rather than the
graphs themselves [2,3]. The basic idea is to represent graphs by the eigendecom-
position of their structural matrices (i.e. adjacency or Laplacian matrix). The
resulting representation exhibits interesting properties for pattern recognition.
However, spectral methods are often sensitive to structural errors and do not al-
low arbitrary labels or attributes on the nodes and edges, although recent work
attempts to overcome those limitations [4]. In other approaches, artificial neural
networks, relaxation labeling techniques, and genetic algorithms have been used
to map the nodes of one graph to the nodes of another graph such that the edge
structure is preserved as accurately as possible [5,6,7]. Such algorithms perform
quite efficiently, but they are limited in that they are often applicable to special
classes of graphs only.
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One of the most flexible methods for error-tolerant graph matching that is
applicable to any kind of graphs is the graph edit distance [8,9]. The idea
of graph edit distance is to define the dissimilarity of graphs by the amount
of distortion that is needed to transform one graph into another. As a matter
of fact, the edit distance of graphs has been used in the context of classification
and clustering tasks in various applications[10,11].

The main drawback of graph edit distance is its computational complexity,
which is exponential in the number of nodes of the involved graphs. Conse-
quently, the application of edit distance is limited to graphs of rather small size.
To render the matching of graphs less computationally demanding, a number of
methods have been proposed. In some approaches, the basic idea is to perform
a local search to solve the graph matching problem, that is, to optimize local
criteria instead of global, or optimal ones [12,13]. In [14], a linear programming
method for computing the edit distance of graphs with unlabeled edges is pro-
posed. The method can be used to derive lower and upper edit distance bounds
in polynomial time.

In this paper, we propose an efficient algorithm to speed up graph edit distance
computation. The method is based on an assignment algorithm used to solve
linear sum assignment problems. A similar approach is described in [15,16]. In
the present paper, however, we use the algorithm of Volgenant and Jonker [17] to
solve the assignment problem, which leads to a faster computation of suboptimal
graph edit distance. In a series of experiments we analyse the impact of the
chosen assignment algorithm on the whole procedure and demonstrate how the
proposed method allows us to speed up the computation of graph edit distance
substantially, while at the same time recognition accuracy is not much affected.

In Section 2, graph edit distance is introduced. In Section 3, the assignment
algorithms used in this paper and their extension for computing graph edit
distance are described. Section 4 gives some experimental results achieved with
the proposed new method. Finally, in Section 5, we draw conclusions from this
work.

2 Graph Edit Distance

The key idea of graph edit distance is to determine the minimal amount of
distortion that is needed to transform one graph into another [8,9]. The con-
sidered distortions are given by insertions, deletions, and substitutions of nodes
and edges. For two graphs – the source graph g1 and the target graph g2 – we
delete some nodes and edges from g1, relabel some of the remaining nodes and
edges (substitutions) and insert some nodes and edges, such that g1 is finally
transformed into g2. A sequence of edit operations that transform g1 into g2 is
called an edit path between g1 and g2. To increase the power of this method, one
can introduce a function that assigns a cost to each edit operation measuring
the strength of the given distortion. The idea of such a cost function is that one
can define whether or not an edit operation represents a strong modification of
the underlying graph. Hence, between two similar graphs, there exists an inex-
pensive edit path, representing low cost operations, while for different graphs
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an edit path with high costs is needed. Consequently, the edit distance of two
graphs is defined by the minimum cost edit path between two graphs. In the
following we will denote a graph by g = (V, E, α, β), where V denotes a finite
set of nodes, E ⊆ V × V a set of directed edges, α : V → LV a node labeling
function assigning an attribute from a set LV of node labels to each node, and
β : E → LE an edge labeling function. The substitution of a node u by a node
v is denoted by u → v, the insertion of u by ε → u, and the deletion of u by
u→ ε. A similar notation is used for edge substitution, insertion and deletion.

The edit distance can be computed by a tree search algorithm, where pos-
sible edit paths are iteratively explored, and the minimum-cost edit path can
finally be retrieved from the search tree [8]. This method allows us to find the
optimal edit path between two graphs. However, its drawback is its exponential
time complexity, which makes the algorithm applicable to small graphs only. In
this paper we propose another way of computing graph edit distance based on
bipartite graph matching.

3 Bipartite Graph Matching by Assignment Algorithms

Standard tree search procedures for graph matching assign all nodes and edges of
a graph to another graph by traversing some kind of search tree and minimizing
the overall edit costs. If n and m denote the number of nodes of two graphs g1

and g2, the number of possible node assignments from g1 to g2 is given by n!
m! .

Hence, the time complexity for this kind of algorithms is O(nm). However, the
process of assigning nodes can be solved as a Linear Sum Assignment Problem
instead, according to Def. 1.

Definition 1 (Linear Sum Assignment Problem (LSAP)). Let us assume
there are two sets U and V given, together with an n×n cost matrix C = (cij)n×n

of real numbers (|U | = |V | = n). The matrix elements cij ≥ 0 correspond to the
cost of assigning the i-th element of U to the j-th element of V . The assignment
problem can be stated as finding a permutation p = p1, . . . , pn of the integers
1, 2, . . . , n that minimizes

∑n
i=1 cipi .

Applied to the problem of graph edit distance computation, the sets U and V are
the nodes of the graphs to be matched (V1 and V2) and the costs cij correspond
to the node edit costs. We can expand the matrix to size (n + m) to enable
deletion or insertion of nodes. We define a cost matrix C = (cij) of dimension
(n + m) × (n + m) such that entry cij corresponds to the cost of assigning the
i− th node of V1 to the j − th node of V2 (i ≤ n, j ≤ m), the deletion of a node
of V1 (i ≤ n, j > m), or the insertion of a node of V2 (i > n, j ≤ m).1 For further
details of setting up the cost matrix, we refer to [15].

1 Note that, except for cij , i ≤ n, j ≤ m, all values except the diagonal of the according
sub squares are set to infinity. This is because every node can only be inserted or
deleted once. Costs on the diagonal of cij , i > n, j > m are set to zero.
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3.1 Assignment Algorithms

There are several algorithms known from the literature to solve the LSAP. In
this paper, we consider three of them: Hungarian [18], Munkres [19] and
VolgenantJonker [17].

– Hungarian. The first polynomial-time method for LSAP was the famous
Hungarian algorithm by Kuhn [18] with time complexity O(n4). Nowadays,
faster versions are available and the best time complexity for the Hungarian
algorithm is O(n3) [20]. This is the algorithm used in the present paper.

– Munkres. A variation of the Hungarian algorithm was presented by
Munkres [19]. He showed that his method requires at most (11n3 + 12n2 +
31n)/6 operations, where, however, some operations are ”scan a line”, thus
leaving an O(n4) time complexity.

– VolgenantJonker. The shortest augmenting path algorithm by R. Jonker
and T. Volgenant [17] has received most attention in the literature nowadays,
due to its efficiency. The algorithm consists, like other shortest path algo-
rithms, of three steps: a preprocessing method, used to find the first partial
solution; a sparsification step to solve an instance with a reduced number of
edges followed by a procedure that iteratively adds edges until an optimal
solution is obtained; and a procedure to determine shortest paths. The pre-
processing is the most important and time-consuming step of this algorithm.
It consists of a column reduction process followed by two augmenting row re-
duction steps to find a first partial solution. The partial solution found is then
improved by augmentation and completed through a smart implementation
of a shortest paths algorithm in the style of Dijkstra[21,22]. Augmentation
is done by constructing the auxiliary network graph and determining a min-
imal cost alternating path from an unassigned row to an unassigned column,
which is then used to augment the solution. Although the time complexity of
this algorithm (O(n3)) is comparable to other LSAP algorithms, it is highly
effective in practice. This is due to the fact that the partial solution found
after preprocessing usually has a large number of assignments and only a few
shortest paths are needed to complete it. Another benefit of this algorithm
is its applicability to both sparse and dense graphs, and its insensitivity to
the cost value range.

3.2 Bipartite Matching

We will refer to the method described in this section as Bipartite Matching.
To compute the graph edit distance of two graphs, the procedure starts by
generating a cost matrix containing the node edit costs as described earlier in
this section. Included within those node edit costs are the edge edit costs of the
adjacent edges for all node combinations. In the second step, the assignment
algorithm computes the minimum cost node assignment.2 Given the minimum
cost node assignment, the implied edit operations of the edges are inferred, and
2 We will refer to these costs as implicitly computed costs.
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(a) Normal-scale (b) Log-scale

Fig. 1. Comparison of the three assignment algorithms on randomly generated float
matrices with size s and values ci,j between zero and one

the accumulated costs of the individual edit operations on both nodes and edges
can be computed. Hence, the exact edit distance of the given assignment can be
computed in linear time.3 Note that there might exist other assignments with the
same minimum node assignment cost, but possibly a smaller exact edit distance,
as the explicit edge structure is only checked after the assignment algorithm has
been applied. Hence, the node assignments and the implied edge assignments
found by the algorithm need not correspond to an optimal solution, leading to
a computed edit cost greater than or equal to the real graph edit distance.

Given this mapping These costs serve us as an approximate graph edit dis-
tance. The approximate edit distance values obtained by this procedure are equal
to, or larger than, the exact distance values, since our suboptimal approach finds
an optimal solution in a subspace of the complete search space.

4 Experimental Results

The purpose of the experiments described in this section is twofold. First, as
Bipartite Matching uses a polynomial assignment algorithm to compute edit
distance, we expect a crucial speed up when compared to exponential edit dis-
tance computation. This speed up is to be measured. Second, as our procedure
comes up with a suboptimal solution only, we analyze the quality of the subopti-
mal edit distances making use of a k-nearest-neighbor classifier. The recognition
rates obtained with this classifier allow us to compare the quality of the distances
obtained from the different procedures.

4.1 Assignment Algorithms on Randomly Generated Float Matrices

Figure 1 shows the computation time of the assignment algorithms Volgenant-
Jonker, Hungarian, and Munkres on randomly generated matrices of floating
point numbers with costs ci,j ∈ ]0, 1[ for i, j ≤ s. The x-axis corresponds to the size

3 We will refer to these costs as explicitly computed costs.
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s of the matrices and the y-axis to the runtime [ms]. Assignments are computed
for s = 10, 50, 100, 200, . . . , 1300. For each size s and each algorithm, five test runs
are made and the average value of the assignment runtime is recorded. In all test
runs, the different assignment algorithms yield the same costs and the same assign-
ments. For an assignment matrix with s = 1300 (which can be seen as mapping
1300 nodes of a graph g1 to a graph g2), VolgenantJonker computes an as-
signment within 0.116, whereas Hungarian needs 170,34 and Munkres 637,39,
respectively. Algorithm VolgenantJonker is by far the fastest algorithm and
Hungarian outperforms Munkres independent of size s.

4.2 Bipartite Matching on the IAM Data Sets

Table 1 characterizes the data sets used in our experiments4. The data consist of
graphs representing line drawings (Letter, Digit, GREC), proteins (AIDS,
Protein, Mutagenicity), and fingerprints. The parameters (costs of node and
edge edit operations and value of k for the k − NN classifier) are the same as
reported in [23].

The recognition rates on the different data sets are based on k −NN classi-
fication with graph edit distances and determined by the algorithm Bipartite
Matching while using one of the given assignment algorithms. As reference
method for an exact tree search method, we use the A* procedure as described in
[8].5 Comparing the results of the four algorithms on the Letter data sets (Tab.
2), all methods achieve the same recognition rate (RR) on the Letter Low data
set. The running time of the exact A* algorithm with 10,966 s is outperformed
by the other procedures by a factor of 64 (Munkres), 69 (Hungarian) and
79 (VolgenantJonker). On the Letter High data set, the recognition rate
increases from 89.87 to 90.13 by using A*. However, the computation time of
the A* algorithm is with 12.3 hours disproportionately higher than the time
of the VolgenantJonkeralgorithm with 146.2 seconds. An interesting fact is
that for the Letter Med data set higher recognition rates are obtained by the
three suboptimal methods than by A*.

As explained in Sect. 3, the suboptimal distances are always larger than or
equal to the true graph edit distances. This property is confirmed in Fig. 2,
where a scatter plot of the suboptimal versus the true distances is shown.

For the following tests, we leave the A* algorithm beside because of its high
computational complexity and concentrate on the other algorithms. Table 3
shows the results for the three other algorithms on the different data sets. In
total, 5,937,500 matchings are computed. Time t1 measures the whole assignment
process, while time t2 measures only the computation of the node mappings.6

4 All data sets are available under www.iam.unibe.ch/fki/databases/iam-graph-
database; see [23].

5 Note that, for complexity reasons, exact distances are computed only for the Letter
data sets.

6 Note that the considered assignment algorithm is also used in the first step described
in Sect. 3.2 in order to find the minimum cost of matching the edges incident to a
node.
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Table 1. Data Sets

Data Set Avg.#Nodes Avg.#Edges Tot.#Matchings
Letter Low 4.7 3.1 562,500
Letter Med 4.7 3.2 562,500
Letter High 4.7 4.5 562,500
Digit 8.9 7.9 1,000,000
GREC 11.5 12.2 375,000
AIDS 15.7 16.2 375,000
Protein 32.6 62.1 500,000
Fingerprint 5.4 4.4 1,000,000
Mutagenicity 30.3 30.8 1,000,000

Table 2. Evaluation of the classification accuracy and accumulated computation times
(seconds) for the four algorithms on the Letter data sets

Data Set A* Munkres Hungarian VolgenantJonker

RR Time RR Time RR Time RR Time
Letter Low 99.60 10,966.290 99.60 169.48 99.60 157.21 99.60 137.89
Letter Med 93.86 80,368.443 94.27 172.03 94.27 156.92 94.27 139.25
Letter High 90.13 44,459.416 89.87 190.28 89.87 178.15 89.87 146.20

Table 3. Recognition rates and running times (seconds) of Bipartite Matching
using the different assignment algorithms, evaluated on the IAM data sets; t2 is the
time used to assign the nodes of two graphs and t1 is the runtime of the whole procedure
(including generation of the cost matrix and assignment of edges). The times shown
are the accumulated runtimes for all matchings on each particular data set.

Data Set Munkres Hungarian Alg. Volgenant-Jonker

RR t2 t1 RR t2 t1 RR t2 t1
Letter Low 99.60 5.12 169.48 99.60 2.60 157.21 99.60 1.34 137.89
Letter Med 94.27 7.67 172.03 94.27 4.18 156.92 94.27 0.79 139.25
Letter High 89.87 8.51 190.28 89.87 4.15 178.15 89.87 1.50 146.20
Digit 96.75 417.22 1512.76 96.75 225.40 1046.85 96.75 24.82 636.70
GREC 97.73 22.44 307.59 97.73 10.88 267.86 97.73 2.11 224.49
AIDS 99.20 438.53 852.88 99.20 194.57 485.07 98.93 10.61 147.39
Protein 68.00 288.86 960.94 68.00 140.32 649.98 67.00 5.81 381.55
Fingerprint 63.20 63.03 200.58 63.25 36.05 150.51 62.95 4.28 94.27
Mutagenicity 68.30 14,223.93 16,345.59 68.30 7,411.11 9,017.22 67.60 59.92 880.70

(a) Letter Low (b) Letter Med (c) Letter High

Fig. 2. Comparison of the edit distances computed by the exact algorithm (x-axis) and
the suboptimal edit distances (y-axis)

In all cases, the three assignment algorithms yield the same (implicitly com-
puted) costs. Figures 3 (a), (b) and (c) show the 100,000 computed suboptimal
implicit edit costs (no explicit matching of edges according to Step 2 in Section



Speeding Up Graph Edit Distance Computation 109

(a) Volgenant-
Jonker (x-axis)
vs. Hungarian (y-
axis)

(b) Volgenant-
Jonker (x-axis)
vs. Munkres (y-axis)

(c) Hungarian (x-
axis) vs. Munkres
(y-axis)

Fig. 3. Comparison of the implicitly determined edit costs of the different algorithms

(a) Volgenant-
Jonker (x-axis)
vs. Hungarian (y-
axis)

(b) Volgenant-
Jonker (x-axis)
vs. Munkres (y-axis)

(c) Hungarian (x-
axis) vs. Munkres
(y-axis)

Fig. 4. Comparison of the explicitly determined edit costs of the different algorithms

3.2 after assignment of nodes) on the Fingerprint data set, comparing the
values of VolgenantJonker to those of Hungarian and Munkres. As all
values lie on the straight x = y, we can conclude that both procedures yield
the same results. In some cases, however, there exist multiple assignments with
the same minimal cost, and the returned explicit assignment cost is no longer
the same (see Fig. 4). This has an effect on the recognition rates, e.g. on the
Fingerprint data set, where the recognition rate varies between 62.95, 63.15,
and 63.20 depending on the assignment algorithm used. Regarding the compu-
tation times, Bipartite Matching performs the fastest with the algorithm of
VolgenantJonker independent of the data set used. Moreover, Hungarian
is faster than Bipartite Matching using Munkres in all cases. For some data
sets, the time differences vary extremely. For example, computation of all node
assignments on the Mutagenicity data set is performed in 14,223 seconds by
Munkres, 7,411 by Hungarian, and 60 by VolgenantJonker.

5 Conclusion and Future Work

Graph edit distance is one of the most flexible and error-tolerant graph similarity
measures, which can be applied to a wide variety of problems. However, the
optimal comparison of two graphs is exponential in the number of nodes involved.
By reducing the matching process to an assignment problem, the complexity of
the procedure can be lowered to polynomial. As edges are considered implicitly
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only, and the total edge costs used to transform a graph into another are applied
after the node assignment has been found, the edit distance computed in this
way is always greater than or equal to the exact graph edit distance, and hence
suboptimal. For applications where it is not required to know the exact distances
between two graphs, this procedure offers a versatile and fast alternative to the
classical approach of graph edit distance computation.

For instance, a nearest-neighbor classifier to work properly does not need ex-
act graph distances. Moreover, small distances, which are generally not much
affected by our procedure, have more influence on the decision than large dis-
tances. In fact, experiments on a wide range of data sets show that by feeding the
suboptimal edit distances into a k-nearest-neighbor classifier, the achieved clas-
sification accuracy computed by our novel procedure remains nearly the same,
whereas the computation time is reduced dramatically. Among the assignment
algorithms used in this paper, VolgenantJonker performed better than Hun-
garian or Munkres for all experiments. At the same time, recognition rates
vary only slightly depending on the assignment algorithm actually used. In fu-
ture work we will study the behavior of the proposed heuristic on other data
sets, especially on non-labeled graphs.
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Abstract. Chemoinformatics is a well established research field con-
cerned with the discovery of molecule’s properties through informational
techniques. Computer science’s research fields mainly concerned by the
chemoinformatics field are machine learning and graph theory. From this
point of view, graph kernels provide a nice framework combining ma-
chine learning techniques with graph theory. Such kernels prove their
efficiency on several chemoinformatics problems. This paper presents
two new graph kernels applied to regression and classification problems
within the chemoinformatics field. The first kernel is based on the no-
tion of edit distance while the second is based on sub trees enumeration.
Several experiments show the complementary of both approaches.

Keywords: edit-distance, graph kernel, chemoinformatics.

1 Introduction

Chemoinformatics aims to predict or analyse molecule’s properties through in-
formational techniques. One of the major principle in this research field is the
similarity principle, which states that two structurally similar molecules should
have similar activities and properties. The structure of a molecule is naturally
encoded by a labeled graph G = (V, E, μ, ν), where the unlabeled graph (V, E)
encodes the structure of the molecule while μ maps each vertex to an atom’s la-
bel and ν characterizes a type of bond between two atoms (single, double, triple
or aromatic).

A first family of methods introduced within the Quantitative Structure-
Activity Relationship (QSAR) field is based on the correlation between molecule’s
descriptors such as the number of atoms and molecule’s properties (e.g. molecule’s
boiling point). Vectors of descriptors may be defined from structural informa-
tion [2], physical properties or biological activities and may be used within any
statistical machine learning algorithm to predict molecule’s properties. Such a
scheme allows to benefit from the large set of tools available within the statis-
tical machine learning framework. However, the definition of a vector from a
molecule, ie. a graph, induces a loss of information. Moreover, for each applica-
tion, the definition of a vectorial description of each molecule remains heuristic.

X. Jiang, M. Ferrer, and A. Torsello (Eds.): GbRPR 2011, LNCS 6658, pp. 112–121, 2011.
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A second family of methods, based on graph theory may be decomposed in
two sub families. The first sub family [8], related to the data mining field, aims
to discover sub graphs with a large difference of frequencies in a set of positive
and negative examples. The second sub family [1], more related to the machine
learning field, builds a structural description of each class of molecule so that
the classification is conducted by mean of a structural matching between each
prototype and a graph representation of an input molecule. Both sub families
are however mainly restricted to the classification field.

Graph kernels can be understood as symmetric graph similarity measures.
Using a semidefinite positive kernel, the value k(G, G′) where G, G′ encode two
input graphs corresponds to a scalar product between two vectors ψ(G) and
ψ(G′) in an Hilbert space (this space is only a Krein space if the kernel is non
definite). Graph kernels provide thus a natural connection between structural
pattern recognition and graph theory on one hand and statistical pattern recog-
nition on the other hand. A large family of kernels is based on the definition of a
bag of patterns for each graph and deduces graph similarity from the similarity
between bags. Kashima [5] defines graph kernels based on the comparison of sets
of walks extracted from each graph. Ramon and Gärtner [9] and Mahé [6] define
kernels using an infinite set of tree patterns instead of walks. These methods
improve the limited expressiveness of linear features such as walks hence pro-
viding a priori a more meaningful similarity measure. Instead of decomposing
graphs into an infinite set of substructures (ie walks or trees), Shervashidze and
Borgwardt[12] compute the kernel from the distribution of a predefined set of
subgraphs, called graphlets. An other approach to the definition of graph kernels
is proposed by Neuhaus and Bunke [7]. This approach aims to define definite
positive kernels from the notion of edit distance. The main challenge of this ap-
proach is that the edit distance does not fulfill all requirements of a metric and
hence does not readily lead to a definite positive kernel.

This paper presents two new kernels: A first kernel, presented in Section 2,
combines graph edit distance and graph Laplacian kernel notions in order to
obtain a definite positive graph kernel. A method to update efficiently this ker-
nel is also proposed. Our second kernel, presented in Section 3, uses a different
approach based on an explicit enumeration of subtrees within an acyclic unla-
beled graph. The efficiency and complementarity of these two kernels is finally
demonstrated in Section 4 through experiments.

2 Kernel from Edit Distance

An edit path between two graphs G and G′ is defined as a sequence of operations
transforming G into G′. Such a sequence may include vertex or edge addition,
removal and relabeling. Given a cost function c(.), associated to each operation,
the cost of an edit path is defined as the sum of its elementary operation’s costs.
The minimal cost among all edit paths transforming G into G′ is defined as the
edit distance between both graphs. A high edit distance indicates a low similarity
between two graphs while a small one indicates a strong similarity.
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According to Bunke and Neuhaus[7], the computational cost of the exact
edit distance grows exponentially with the size of the graphs. Such a property
limits the computation of exact edit distance to small graphs. To overcome this
problem, Bunke and Riesen[11] defined a method to compute a sub optimal edit
distance. This method computes an approximate edit distance in O(nv2) where
n and v are respectively equal to the number of nodes and to the maximal degree
of both graph.

Unfortunately, edit distance doesn’t define a metric and trivial kernels based
on edit distance are not definite positive. Neuhaus and Bunke [7] proposed sev-
eral method to overcome this important drawback, however the proposed kernels
are not explicitly based on the minimization problem addressed by kernel meth-
ods. Such a minimization problem may be stated as follows: Given a kernel k
and a dataset of graphs D = {G1, . . . , Gn}, the Gram matrix K associated to
D is an n × n matrix defined by Ki,j = k(Gi, Gj). Within the kernel frame-
work, a classification or regression problem based on K may be stated as the
minimization of the following formula on the set of real vectors of dimension n:

f∗ = arg minf∈RnCLoss(f, y, K) + f tK−1f (1)

where CLoss(., ., .) denotes a given loss function encoding the distance between
vector f and the vector of known values y.

As denoted by Steinke [14], the term f tK−1f in equation 1 may be considered
as a regularization term which counter balance the fit to data term encoded by
the function CLoss(., .). Therefore, the inverse of K (or its pseudo inverse if K
is not invertible) may be considered as a regularization operator on the set of
vectors of dimension n. Such vectors may be considered as functions mapping
each graph of the database to a real value. Conversely, the inverse (or pseudo
inverse) of any semi definite positive regularization operator may be considered
as a kernel. We thus follow a kernel construction scheme recently introduced [1]
which first builds a semi definite positive regularization operator on the set of
functions mapping each graph {G1, . . . , Gn} to a real value. The inverse, or
pseudo inverse of this operator defines a kernel on the set {G1, . . . , Gn}.

In order to construct this regularization operator, let us define a n × n ad-
jacency matrix W defined by Wij = e−

d(Gi,Gj)
σ , where d(., .) denotes the edit

distance and σ is a tuning variable. The Laplacian of W is defined as l = Δ−W
where Δ is a diagonal matrix defined by: Δi,i =

∑n
j=1 Wi,j . Classical results

from spectral graph theory [3] establish that l is a symmetric semi definite pos-
itive matrix whose minimal eigenvalue is equal to 0. Such a matrix is thus not
invertible. To overcome this problem, Smola [13] defines the regularized Lapla-
cian l̃ of W as l̃ = I + λl where λ is a regularization coefficient. The minimal
eigen value of l̃ is equal to 1 and the matrix l̃ is thus definite positive. Moreover,
given any vector f , we have :

f t l̃f = ‖f‖2 + λ
n∑

i,j=1

Wij(fi − fj)2 (2)
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Intuitively, minimising equation 2, leads to build a vector f with a small norm
which maps graphs with a small edit distance (and thus a strong weight) to
close values. Such a constraint corresponds to the regularization term required
by equation 1 in order to smoothly interpolate the test values y over the set of
graphs {G1, . . . , Gn}. Our un normalized kernel, is thus defined as: Kun = l̃−1.

Note that a regularized normalized Laplacian kernel may alternatively be
considered by introducing the matrix L̃ = Δ− 1

2 l̃Δ− 1
2 . We have in this case, for

any vector f :

f tL̃f =
n∑

i=1

f2
i

Δii
+ λ

n∑
j=1

Wij√
ΔiiΔjj

(fi − fj)2

The matrix L̃ is definite positive and its associated kernel is defined as Knorm =
L̃−1. Note that, our regularized normalized Laplacian kernel is not defined as the
inverse of the regularized normalized Laplacian I+λΔ− 1

2 lΔ− 1
2 . This new formu-

lation is consistent with the regularization constraint which should be added to
equation 1 and provides significant advantages in the context of incoming data
(Section 2.1).

2.1 Incoming Data

Let us first consider a kernel defined from the un normalized Laplacian. Given
our learning set D = {G1, . . . , Gn}, the test of a new graph G within a regression
or classification scheme requires to update the un normalized Laplacian l with
this new graph and to compute the updated kernel defined as the inverse of the
regularized and un normalized Laplacian K = (I + λl)−1. This direct method
has a complexity equal to O((n + 1)3), where n is the size of our data set. Such
a method is thus computationally costly, especially for large datasets. In this
section, we propose a method to reduce the complexity of this operation.

Given the regularized and un normalized Laplacian l̃n = (In + λ(Δn −Wn))
defined on the dataset D, its updated version l̃n+1 defined on D ∪ {G} may be
expressed as follows:

l̃n+1 =
(

l̃n − δn B
Bt 1−∑

i Bi

)

where B = (−λexp(−d(G,Gi)
σ ))i={1,...,n} is deduced from the weights between

the new input graph G and each graph (Gi)i={1,...,n} of our dataset and δn is a
diagonal matrix with (δn)i,i = Bi.

The minimal eigen value of l̃n+1 is equal to 1 (Section 2). This matrix is thus
invertible, and its inverse may be expressed using a block inversion scheme:

Kun = (l̃n+1)−1 =
(

Γ Θ
Λ Φ

)
with

⎧⎪⎪⎨
⎪⎪⎩

Γ = E−1 + ΦE−1BBtE−1

Θ = −E−1BΦ
Λ = −ΦBtE−1

Φ = (1−∑
i Bi −BtE−1B)−1

(3)
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where E = l̃n − δn. Note that Φ corresponds to a scalar.
The computation of our new kernel, using equation 3, relies on the com-

putation of the inverse of the matrix E = l̃n + δn which may be efficiently
approximated using a development to the order K of (I − l̃−1

n δn)−1:

(l̃n − δn)−1 = l̃−1
n (I − l̃−1

n δn)−1 ≈
K∑

k=0

l−k−1
n δk

n (4)

Such a sum converges since ‖l̃−1
n δn‖2 < 1, for λ < 1. Indeed:

‖l̃−1
n δn‖2 ≤ ‖l̃−1

n ‖2‖δn‖2 ≤ ‖δn‖2 ≤ λ max
i=1,n

exp(
−d(G, Gi)

σ
)

The last term of this equation is strictly lower than one for any λ lower than
one. Moreover, basic matrix calculus show that the approximation error is lower
than ε for any K greater than:

log(2ε)

log(maxi=1,n exp(−d(G,Gi)
σ ))

. (5)

Equation 4 allows to approximate the inverse of (l̃n − δn) by a sum of pre
computed matrices l−k−1

n multiplied by diagonal matrices. Using such pre cal-
culus, the inverse of (l̃n− δn) and hence the computation of our new kernel may
be achieved in KN2.

If we now consider the regularized normalized Laplacian (Section 2) L̃ =
Δ− 1

2 l̃Δ− 1
2 , its inverse is defined as: L̃−1 = Δ

1
2 l̃−1Δ

1
2 and we have:

Knorm = Δ
1
2 KunΔ

1
2 (6)

The update of the regularized and normalized Laplacian kernel may thus be
deduced from the one of the regularized un normalized Laplacian kernel.

3 Treelet Kernel

Kernels based on edit distance rely on a direct comparison of each pair of graph.
An alternative strategy consists to represent each graph by a bag of patterns and
to deduce the similarity between two graphs from the similarity of their bags.
This strategy may provide semi definite kernels hereby avoiding the necessity
to regularize the whole gram matrix for each incoming data (Section 2.1). As
mentioned in Section 1, most of kernels of this family are based on linear patterns
(bags of paths, trails or walks). Shervashidze et al. [12] describe a method to
enumerate for any input unlabelled graph, all its connected subgraphs composed
of up to 5 nodes. This efficient method provides up to 2048 patterns composed
of connected subgraphs (called graphlets) of size lower or equal to 5. We propose
here to adapt this method to the enumeration of sub-trees of acyclic unlabeled
graphs up to size 6. The resulting patterns are called treelets (Fig. 1).
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Fig. 1. Acyclic and unlabeled graphlets of maximum size equals to 6. Centers of 3-star
and 4-star are surrounded.

3.1 Computing Embedded Distribution

Following [12], our enumeration of all treelets starts by an enumeration of all
paths with a length lower or equal to 6. A recursive depth first search with a
max depth equals to 6 from each node of the graph is thus performed. Note that
using such an enumeration each path is retrieved from its two extremities and
is thus counted twice. In order to prevent this problem, each path composed of
at least two nodes is counted 1

2 times. With this first step, the distribution of
treelets G0, G1, G2, G3, G5 and G8 is computed (Fig. 1).

To compute the distribution of the remaining treelets, our method is based
on the detection of nodes of degree 3 and 4. These nodes are respectively called
R3−star and R4−star and are the center of the 3-star and 4-star treelets. Note
that a 4-star treelet (G7) contains four 3-star treelets (Fig. 2). This first degree
analysis allows to compute the distribution of treelets G4 and G7. Treelets G6,
G9, G10 and G12 are enumerated from the neighbourhood of 3-star treelets. For
example, treelet G6 requires a 3-star with at least one neighbour of R3−star with
a degree greater or equal to 2. Treelet G11 is the only sub tree derived from
a 4-star. Properties characterizing treelets with a 3 or 4 star are summarized

(a) G7 (b) G4 decompositions of G7

Fig. 2. G7 contains 4 G4
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Table 1. Conditions characterizing treelets derived from 3-star and 4-star. N(v) and
d(v) denote respectively the set of neighbours and the degree of vertex v.

Treelet Source treelet Condition

G6 3-star |{v; v ∈ N(R3−star); d(v) ≥ 2}| ≥ 1

G9 3-star |{v; v ∈ N(R3−star); d(v) ≥ 2}| ≥ 2

G10

∃v0 ∈ N(R3−star); d(v0) ≥ 2 and
3-star |{v; v ∈ N(v0)− {R3−star}; d(v) ≥ 2}| ≥ 1

G11 4-star |{v; v ∈ N(R4−star); d(v) ≥ 2}| ≥ 1

G12 3-star |{v; v ∈ N(R3−star); d(v) ≥ 3}| ≥ 1

Fig. 3. Three permutations of G9 sharing the same core

in Table 1. Note that treelet G12 is symmetric since it contains two centers of
3-star. Such a treelet will thus be counted twice (once from each of its 3-star)
and must be counted for 1

2 .
Note that conditions summarized in Table 1 define necessary conditions for

the existence of a given treelet centered around a 3 or 4 star. However, such
conditions does not guarantee the uniqueness of such a treelet. Fig. 3 shows
such an example: the rightest node of G9 has a degree equals to 4 within the
input graph whereas a degree greater or equal to 2 is required to define treelet
G9. Three different treelet G9 may thus be built from the same five nodes. This
configuration thus induces to count G9 three times from the graph represented
in Fig. 3(a) One may easily check that no isomorphism exists between treelets
depicted in Fig. 1. Moreover, has shown by Read [10], the number of different
alkanes composed of up to 6 carbons is equal to 13. Within our context, an
alkane may be considered as an unlabeled acyclic graph whose vertex degree is
bounded by 4. Therefore, treelet G13 which is the only treelet with a vertex of
degree greater than 4 does not corresponds to a feasible alkane. The remaining 13
treelets in Fig. 1 represents, up to isomorphisms, all the unlabeled acyclic graphs
whose size is lower than 6 and whose vertex degree is bounded by 4. Adding G13

to this set provides all unlabeled acyclic graphs with a size lower than 6.When
all treelets from a graph G have been enumerated, a vector representing treelet
distribution is computed. Each component of this vector, denoted the spectrum
of G, is equal to the frequency of a given treelet in G:

fi(G) = |(Gi ⊂ G)| (7)
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Table 2. Comparison of addition methods

Method Classification Accuracy

KMean [15] 80% (55/68)

KWMean [4] 88% (60/68)

Trivial Similarity Kernel from Edit Distance [7] 90% (61/68)

Normalized Standard Graph Laplacian Kernel (Eq. 6) 90% (61/68)

Normalized Fast Graph Laplacian Kernel (Eq. 6) 90% (61/68)

Random Walk Kernel [16] 82% (56/68)

3.2 Definition of Treelet Kernel

A first idea to define a kernel from treelets consists to perform the inner product
of vectors encoding the spectrum of graphs. Unfortunately, the inner product
doesn’t highlight spectrum similarities. For example, two graphs with nearly
equal spectrum but with a low number of occurrences for each treelet are con-
sidered as less similar than two graphs having a same high number of treelet G0

(ie same size) but a distribution of others treelets highly dissimilar. We thus use
RBF kernels in order to better highlight differences between two spectra:

kTreelet(G, G′) =
N∑

k=0

e−
(fk(G)−fk(G′))2

σ (8)

where σ is a tuning variable used to weight the differences between treelet dis-
tribution and N is the number of enumerated treelets. Our kernel may thus
be considered as a basic RBF kernel between two vectors and is hence definite
positive.

4 Experiments

Our first experiment evaluates the graph Laplacian kernel on a classification
problem. This problem is defined on the monoamine oxidase dataset(MAO)1

which is composed of 68 molecules divided into two classes: 38 molecules inhibits
the monoamine oxidase (antidepressant drugs) and 30 does not. These molecules
are composed of different types of atoms with simple bonds and are thus encoded
as labeled graphs. Classification accuracy is measured for each method using a
leave one out procedure with a two-class SVM. This classification scheme is made
for each of the 68 molecules of the dataset.

Table 2 shows results obtained by graph Laplacian kernel using approximate
graph edit distance [11] with node substitution and edge deletion costs set to 1
and edge substitution cost set to the sum of incident node substitution costs.
Graph Laplacian kernel methods obtain a classification accuracy of 90% which
corresponds to the highest score. Note that the other method obtaining 90% of
1 All databases in this section are available on the TC15 Web page:
http://www.greyc.ensicaen.fr/iapr-tc15/links.html#chemistry

http://www.greyc.ensicaen.fr/iapr-tc15/links.html#chemistry
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Table 3. Boiling point prediction on alkane dataset

Method Average error (C) Standard deviation (C) Correlation

Neural Network [2] 3.11453 3.69993 0.9827

KMean [15] 4.65536 6.20788 0.9918

Random Walk Kernel [16] 10.6084 16.2799 0.9057

Graph Laplacian Kernel 10.7948 16.4484 0.9412

Treelet Kernel 1.40663 1.91695 0.9992

classification accuracy is also based on the edit distance. This last kernel may
however be non definite positive.

We may additionally notice that the use of our fast inversion method (Sec-
tion 2.1) does not modify graph Laplacian kernel’s classification accuracy (Ta-
ble 2, lines 4 and 5). The number of iterations required by this fast inversion
method is determined by equation 5. Our experiments performed on the MAO
database show that a value of ε equal to 10−4 induces a maximum of 9 iterations
hence allowing to update the gram matrix in O(9N2) instead of O(N3) using a
standard matrix inversion method. The low value of N on this dataset (N = 68)
does not induce an important gain on execution time since the average time to
update a Gram matrix using method described in Section 2.1 is 0.273ms on the
MAO database while this time is equal to 0.498ms using a direct inverse matrix
computation. The ratio between both execution times is nevertheless about 1.8
hence showing a significant gain. Our treelet kernel is not tested against this
database since this kernel is devoted to unlabeled graphs.

Our second experiment is based on a database of alkanes [2]. An alkane is an
acyclic molecule solely composed of carbons and hydrogens. A common encoding
consists to implicitly encode hydrogen atoms using the valency of carbon atoms.
Such an encoding scheme allows to represent alkanes as acyclic unlabeled graphs.
The alkane dataset described in [2] is composed of 150 molecules, associated to
their respective boiling points. Using the same protocol than [2], we evaluate
the boiling point of each alkane using several test sets composed of 10% of the
database, the remaining 90% being used as training set.

Table 3 shows results obtained by different methods. Poor results obtained
by graph Laplacian kernel can be explained by the lack of information when
dealing with unlabeled graphs. Indeed, using such graphs, the heuristic used to
approximate graph edit distance [11] maps the set of vertices of both graphs using
uniquely the degree of vertices. Such a method thus consider several mappings as
equivalent if several vertices with a same degree exist in both graphs. In this case,
the sub optimal graph edit distance induces a poor graph discrimination. This
lack of local information within unlabeled graphs also explains the poor results
obtained by Kmean and random walk kernels. Indeed, these kernels are based on
linear structures which are only discriminated by their lengths within unlabeled
graphs. On the other hand, treelet kernel (with σ = 0, 25) outperforms previous
results of [2] based on neural networks combined with chemical descriptors.
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5 Conclusion

In this paper we proposed a graph Laplacian kernel based on a sub optimal graph
edit distance combined with an efficient update of the kernel in order to predict
relevant properties of incoming data. Our experiments show the efficiency of this
kernel on databases composed of complex molecules with several hetero atoms.
However, this kernel performs poorly on unlabeled graphs. We thus propose
a new kernel based on treelet enumeration for unlabeled acyclic graphs. This
kernel outperforms results obtained by state of the art methods on this dataset
but remains restricted to unlabeled graphs. Our future work will be devoted to
overcome this last limitation by extending treelet kernel to labeled graphs.
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Abstract. This contribution extends generalized LVQ, generalized rel-
evance LVQ, and robust soft LVQ to the graph domain. The proposed
approaches are based on the basic learning graph quantization (lgq) al-
gorithm using the orbifold framework. Experiments on three data sets
show that the proposed approaches outperform lgq and lgq2.1.

1 Introduction

Learning vector quantization (LVQ) as introduced by Kohonen [11] is a super-
vised learning algorithm for pattern classification. To classify patterns, LVQ ap-
plies the nearest neighbor rule using a condensed set of prototypes. Prototypes
are learned by combining competitive learning with supervision. LVQ is easy
to implement, runs efficiently, allows to control the complexity of the resulting
classifier, naturally deals with multiclass problems, constructs an informative
rather than a black-box model, and in many cases provides state of the art
performance. Due to well-known shortcomings of LVQ and LVQ2.1 more sophis-
ticated and powerful learning vector quantizers such as generalized LVQ [16],
generalized relevance LVQ [4], and soft robust LVQ [17] have been devised.

LVQ and related methods have been originally devised for feature vectors
equipped with the Euclidean metric. Extensions have been proposed, for exam-
ple, for vectors with arbitrarily differentiable distance functions [5], for variable
length and warped feature sequences [18], for strings [12], and for graphs [8].

For graphs, LVQ and LVQ2.1 have been extended to the corresponding learn-
ing graph quantization algorithms lgq and lgq2.1 and comparable results to
state-of-the-art methods have been reported [8]. These findings give rise to the
question at issue, whether extensions of more powerful learning vector quantizers
to the graph domain yield improved learning graph quantizers.

In this contribution, we extend generalized LVQ, generalized relevance LVQ,
and robust soft LVQ to the domain of attributed graphs. The proposed ap-
proaches are based on the orbifold framework for graphs [6] and on lgq [8].
Experiments on three data sets of the IAM graph database [14] show that the
proposed algorithms outperform lgq and lgq2.1.

2 Graph Orbifolds

This section introduces attributed graphs and represent them as point of some
orbifold [1]. Most of this presentation including proofs of statements and claims
is based on the structure space formalism proposed by [6].

X. Jiang, M. Ferrer, and A. Torsello (Eds.): GbRPR 2011, LNCS 6658, pp. 122–131, 2011.
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Representation of Graphs. Let E be a d-dimensional Euclidean space. An
attributed graph X = (V, E, α) consists of a set V of vertices, a set E ⊆ V × V
of edges, and an attribute function α : V ×V → E, such that α(i, j) 
= 0 for each
edge and α(i, j) = 0 for each non-edge. Attributes α(i, i) of vertices i may take
any value from E.

For simplifying the mathematical treatment, we assume that all graphs are of
order n, where n is chosen to be sufficiently large. Graphs of order less than n, say
m < n, can be extended to order n by including isolated vertices with attribute
zero. For practical issues, it is important to note that limiting the maximum order
to some arbitrarily large number n and extending smaller graphs to graphs of
order n are purely technical assumptions to simplify mathematics. For pattern
recognition problems, these limitations should have no practical impact, because
neither the bound n needs to be specified explicitly nor an extension of all graphs
to an identical order needs to be performed. When applying the theory, all we
actually require is that the graphs are finite.

A graph X is completely specified by its matrix representation X = (xij)
with elements xij = α(i, j) for all 1 ≤ i, j ≤ n. Let X = E

n×n be the Euclidean
space of all (n× n)-matrices with elements from E and let Πn be the set of all
(n× n)-permutation matrices. For each P ∈ Πn we define a mapping

γP : X → X , X �→ P TXP .

Then G = {γP : P ∈ Πn} is a finite group acting on X . For X ∈ X , the orbit
of X is the set defined by [X] = {γ(X) : γ ∈ G}. The quotient set

XG = {[X] : X ∈ X}

consisting of all orbits is a graph orbifold. Its orbifold chart is the surjective
continuous mapping

π : X → XG , X �→ [X]

that projects each matrix representation X to its orbit [X].
Suppose that X is a matrix representation of some attributed graph X . Then

the orbit [X] consists of all possible matrices that represent X . By identifying
the attributed graphs X with the orbits [X], we can regard graphs from GA as
point of the graph orbifold XG . The orbifold chart π : X → XG projects matrices
X to the graphs X they represent.

For notational convenience, we identify X with E
N , where N = n2 and con-

sider vector- rather than matrix representations of graphs. We obtain a vector
representation x of graph X by concatenating the columns of a matrix X rep-
resenting X . We write x ∈ X if x ∈ X projects to X ∈ XG via the orbifold chart
π(x) = X .

Intrinsic Metric. The intrinsic metric of a graph orbifold XG is of the form

d(X, X ′) = min
{
‖x− x′‖2 : x ∈ X, x′ ∈ X ′

}
,
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where ‖·‖ is the Euclidean distance on X . We call a pair (x, x′) ∈ X ×X ′ with
‖x− x′‖2 = d(X, X ′) an optimal alignment of X and X ′. By A(X, Y ) we denote
the set of all optimal alignments of X and Y .

Suppose that x ∈ X is an arbitrary vector representation. Since G is a group,
we have

dx(Y ) = min
{
‖x− y‖2 : y ∈ Y

}
= d(X, Y ).

By symmetry, we have dy(X) = d(Y, X). Hence, the graph distance d(X, Y )
can be determined by fixing an arbitrary vector representation x ∈ X and then
finding a vector representation y∗ from Y that minimizes ‖x− y‖2 over all vector
representations Y ∈ Y and vice versa.

Note that the intrinsic metric is not a artificial construction for analytical
purposes but rather is based on a generalized concept of maximum common
subgraph and therefore appears in different guises as a common choice of prox-
imity measure for graphs [2,3,19].

Orbifold Functions. Suppose that XG is a graph orbifold with orbifold chart
π : X → XG . An orbifold function is a mapping of the form f : XG → R. The lift
of f is a function f̃ : X → R satisfying f̃ = f ◦ π. The lift f̃ is invariant under
group actions of G, that is f̃(x) = f̃ (γ(x)) for all γ ∈ G.

An example of an orbifold function is the parametrized metric dx with x ∈ X .
In what follows, we investigate local analytical properties of dx. The lift d̃x of
the function dx is defined by

d̃x : X → R, y �→ min
{
‖x− y′‖2 : y′ ∈ Y

}
.

Certainly, the lift satisfies d̃x = dx ◦ π and is invariant under group actions of
G, that is d̃x(y) = d̃x (γ(y)) for all γ ∈ G.

By lifting the distance function dx to the Euclidean space X , we are in the
position to transfer analytical concepts such as differentiability and gradients
to functions on graph orbifolds. We say, the function dx is continuous (locally
Lipschitz, differentiable, generalized differentiable) at point Y ∈ XG if its lift d̃x

is continuous (locally Lipschitz, differentiable, generalized differentiable in the
sense of Norkin [13]) at some vector representation y ∈ Y . This definition is
independent of the choice of the vector representation that projects to Y .

As a minimizer of a set of continuously differentiable distance functions, the
function dx is generalized differentiable at any point Y . Though dx is not differ-
entiable, it is locally Lipschitz and therefore differentiable almost everywhere.

Gradients. Suppose that dx is differentiable at Y . Then the lift d̃x is differen-
tiable at any vector representation that projects to Y . The gradient ∇d̃x(y) of
d̃x at y is of the form

∇d̃x(y) = −2(x− y∗)

where (x, y∗) ∈ A(X, Y ) is an optimal alignment. Since dx is differentiable at
Y , the optimal alignment (x, y∗) is unique. From

∇dx(γ(y)) = γ
(
∇d̃x(y)

)
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for all γ ∈ G follows that the gradients of d̃x at y and γ(y) are vector repre-
sentations of the same graph. Hence, at differentiable points Y , the gradient of
dx(Y ) at Y is defined by the projection

∇dx(Y ) = π
(
∇d̃x(y)

)

of the gradient ∇d̃x(y) at vector representation y ∈ Y . Thus, the gradient of dx

at Y is a well-defined graph pointing to the direction of steepest ascent.

Generalized Gradients. Now suppose that dx is generalized differentiable at Y .
Then the lift d̃x is generalized differentiable at any vector representation that
projects to Y . The subdifferential ∂d̃x(y) of d̃x at y is a convex set containing

−2(x− y∗) ∈ ∂d̃x(y)

as generalized gradient, where (x, y∗) ∈ A(X, Y ) is an optimal alignment. From

∂dx(γ(y)) = γ
(
∂d̃x(y)

)

for all γ ∈ G follows that the subderivatives of d̃x at y and γ(y) project to
the same subset of graphs. Hence, at generalized differentiable points Y , the
subderivative of dx(Y ) at Y is defined by the projection

∂dx(Y ) = π
(
∂d̃x(y)

)

of the subderivative ∇d̃x(y) at an arbitrary vector representation y ∈ Y . Thus,
the subderivative of dx at Y is well-defined and coincides with the gradient at
differentiable points, that is ∂dx(Y ) = {∇dx(Y )}.

3 Learning Graph Quantization

Learning graph quantization (lgq) aims at constructing a classifier c : XG → C
that maps graphs from XG to class labels from a finite set C. The classifiers
are parameterized by a set of k prototypes Y1, . . . , Yk ∈ XG with class labels
c1, . . . , ck ∈ C. We predict the class label c(X) of a new graph X ∈ XG by
assigning it to the class label of the closest prototype according to the nearest
neighbor rule. The goal of learning is to find a set of k prototypes that best
predicts the class labels of graphs from XG .

In the following, we first review lgq and lgq2.1 as proposed in [8]. Then we
extend GLVQ, GRLVQ, and RSLVQ to the domain of graph orbifolds.

3.1 LGQ

Suppose that S = {(Xi, yi)} n
i=1 ⊆ XG × C is a training set consisting of n

input graphs Xi ∈ XG together with class labels yi ∈ C. The algorithm first
chooses k prototypes Y = {(Yj , cj)} k

j=1 such that each class is represented by at
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least one prototype. Next, during adaption, the algorithm randomly choses an
example (X, y) ∈ S from the training set and modifies the closest prototype YX

in accordance with the current example. The input graph X attracts its closest
prototype YX if the class labels y of X and cX of YX agree. Otherwise, if the
class labels differ, the input X repels the closest prototype YX . To determine
the closest prototype, lgq applies the nearest neighbor rule

YX = arg min
Y ∈Y

{d(X, Y )} .

To update the closest prototype YX , the algorithm first selects an optimal align-
ment (x, yx) ∈ A(X, Y ). Then it applies the standard LVQ update rule

yx ←
{

yx + η(x− yx) : y = cx

yx − η(x− yx) : y 
= cx
,

where η is a monotonically decreasing learning rate following the guidelines of
stochastic optimization. The updated vector representation projects to the up-
dated graph prototype. This process continues until the procedure satisfies a
termination criterion.

3.2 LGQ2.1

In contrast to lgq, the lgq2.1 procedure updates the two closest prototypes Y 1
X

and Y 2
X in accordance to the current training example (X, y) ∈ S. The algorithm

adapts the prototypes Y 1
X and Y 2

X if the following conditions hold:

1. Exactly one of both prototypes Y 1
X and Y 2

X has the same class label as X
2. The input graph X falls in a window around the decision border defined by

d
(
X, Y 2

X

)
d (X, Y 1

X)
>

1− w

1 + w
,

where w is the relative width of the window.

For each prototype lgq2.1 uses the same update rule as lgq.

3.3 Generalized LGQ

We use the following notations: Suppose that (X, y) is an arbitrary training
example from S. Let Y + be the closest prototype hat belongs to the same class
as the current input X , and likewise let Y − be the closest prototype that belongs
to a different class from X . By c+ and c− we refer to the class labels of Y + and
Y −, respectively. As before, YX denotes the closest prototype of X and cX

denotes the class of YX .
Following [16], generalized learning graph quantization (glgq) aims at mini-

mizing the cost function

E =
n∑

i=1

f(μ(Xi)),
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where f : R → R is a monotonically increasing function and μ(X) is a function,
which is positive if the class labels of X and YX agree and negative otherwise.
We assume that L = f ◦ μ is generalized differentiable. Then we can minimize
E using the incremental generalized gradient method

Y + ← Y + − ηG+ (1)

Y − ← Y − + ηG−, (2)

where G± ∈ ∂L is a generalized gradient of L at Y ±. As for feature vectors [16],
we can show that lgq and lgq2.1 are special cases of glgq.

Motivated by the robust and powerful performance of GLVQ for feature vec-
tors, we choose

f(μ) =
1

1 + exp(−μ)
and

μ(X) =
d+ − d−

d+ + d−
,

where d+ = d(X, Y +) and d− = d(X, Y −). Then for any optimal alignment
(x, y±) ∈ A(X, Y ±) the vector representations

g+ =
f ′(μ(X)) · d−
(d+ + d−)2

(
x− y+

)
(3)

g− = −f ′(μ(X)) · d+

(d+ + d−)2
(
x− y−) (4)

project to generalized gradients G± ∈ ∂L (Y ±) of L at Y ±.

3.4 Generalized Relevance LGQ

Generalized relevance learning graph quantization (grlgq) extends an idea pro-
posed by [4] to graph orbifolds. Following [4], we replace the distance metric
d(X, Y ) by a prototype-dependent scaled version

dΛ(X, Y ) = min
{
‖x− y‖2λ : x ∈ X

}
,

where Λ ∈ XG is an attributed graph, y ∈ Y as well as λ ∈ Λ are arbitrary but
fixed vector representation, and

‖x− y‖2λ =
N∑

i=1

λi (xi − yi) 2

is the scaled version of the squared Euclidean distance. Then updating amounts
in updating the prototypes according to eqns. (1) and (2) accompanied by up-
dating the relevance graph according to the rule

Λ+ ← Λ+ − η1H
+

Λ− ← Λ− − η1H
−,
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where Λ± is the relevance graph of Y ± and H± ∈ ∂L(Λ±) is a generalized
gradient of L at Λ±. Let

a ◦ b = (a1b1, . . . , anbn)

denote the Schur product of vectors a, b ∈ R
n. Suppose that (x, y±) ∈ A(X, Y ±)

is an optimal alignment. Then vector representations of the form

g+ =
f ′(μ(X)) · d−
(d+ + d−)2

· λ ◦ (x− y+
)

(5)

g− = −f ′(μ(X)) · d+

(d+ + d−)2
· λ ◦ (x− y−) (6)

project to generalized gradients G± ∈ ∂L (Y ±) of L at Y ±. Furthermore, any
vector representation

h+ = f ′(μ)
d−

(d+ + d−)2
(
x− y+

)
2

h− = f ′(μ)
d+

(d+ + d−)2
(
x− y−)2,

projects to a generalized gradient H± ∈ ∂L(Λ±). Observe that the update rule
(5) and (6) of grlgq differs from the update rule (3) and (4) of glgq by including
the relevance factors.

3.5 Robust Soft LGQ

Robust soft learning graph quantization (rslgq) is motivated by RSLVQ [17],
which in difference to the other lgq aims at describing the distribution of the
data by a Gaussian mixture model. The approach is to maximize the ratio Lr of
the probability, that an example (X, y) ∈ S is generated by components of the
model corresponding to those prototypes with a class label equal to y, and the
probability, that the whole model generates X .

To extend RSLVQ to graph orbifolds, we assume that (xj , yj) ∈ A(X, Yj)
are optimal alignments of a given input graph X and the prototypes Yj for
j ∈ {1, ..., k}. The update rule for Yj is then of the form

Yj ← Yj +
η

σ2
Gj ,

where

gj =
{

(Py(yj |xj)− P (yj |xj))(xj − yj), : y = cj

−P (yj |xj))(xj − yj), : y 
= cj

projects to a generalized gradient Gj ∈ ∂ log(Lr(Yj)) and

Py(yj |xj) =
exp

(
− (xj − yj)2

2σ2

)

∑
i:ci=y

exp
(
− (xi − yi)2

2σ2

) ,
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and

P (yj |xj) =
exp

(
− (xj − yj)2

2σ2

)

k∑
i=1

exp
(
− (xi − yi)2

2σ2

) .

It is important to note that the probabilistic interpretation of RSLVQ is no
longer valid for its counterpart in graph orbifolds. A first step to remove this
shortcoming is presented in [10].

4 Experiments

We conducted first experiments to compare the performance of the different lgq
algorithms.

4.1 Data

We selected the following data sets from the IAM graph database repository:
letter, grec, and fingerprint. Each data set is divided into a training, validation,
and a test set. Table 1 provides a summary of the main characteristics of the
data sets. For further details we refer to [14].

4.2 Experimental Setup

Setting of lgq algorithms. Given a data set, each lgq algorithm was first ini-
tialized with a single prototype for each class. To initialize the prototypes we
computed a Frechet sample mean of all class members from the training set by us-
ing the incremental sample mean algorithm proposed in [7]. Next, we performed
a parameter selection for the lgq algorithms. For each parameter configuration,
we learned the prototypes using the training set and tested the learned model
on both, the training and validation set. We selected the parameters that gave
the best classification accuracy on the training and validation set. Finally, we
assessed the generalization performance by applying the learned model on the
test set. For all lgq algorithms we tuned the learning rate η. For lgq2.1, grlgq,
and rslgq, we additionally calibrated the window width w, the learning rate ηλ

of the relevance factors, and the width σ of the Gaussian. respectively.
Graph Distance Calculations and Optimal Alignment. For graph distance calcu-
lations and finding optimal alignments, we applied the extended Bron Kerbosch
algorithm [9] with clique selection and 10 |VZ | as the maximum number of re-
cursive calls, where VZ denotes the vertex set of the association graph under
consideration.
Protocol. All lgq algorithms have been applied to the training set of each data
set 3 times. To assess the generalization performance on the test sets, we have
chosen the model that best predicts the class labels on the training and validation
set. We compared the lgq algorithms with the similarity kernel in conjunction
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Table 1. Summary of main characteristics of the data sets. The tiny numbers in
parentheses show the size of the training, validation, and test set, respectively.

data set #(classes) avg(nodes) max(nodes) avg(edges) max(edges)

letter (750, 750, 750) 15 4.7 8 3.1 6
grec (286, 286, 528) 22 11.5 24 11.9 29
fingerprint (500, 300, 2000) 4 8.3 26 14.1 48

with the SVM (sk+svm) and the family of Lipschitz embeddings in conjunction
with SVM (ls+svm) proposed by [15]. As a reference, we used the knn method
based on the intrinsic metric, where the parameter k has been learned using the
training and validation set.

4.3 Results

Table 2 summarizes the results. Since sk+svm and le+svm refer to a family of
related methods rather than a single method, Table 2 presents the best result on
the test set over all methods of the sk+svm and le+svm family for each data set.
In doing so, the comparison is optimistically biased towards sk+svm and le+svm.

The first observation to be made is that the novel extensions, glgq, grlgq, and
rslgq outperform lgq and lgq2.1. These finding are in line with results of LVQ
algorithms for feature vectors. A fair comparison of glgq, grlgq, and rslgq, how-
ever, is difficult since the performance of any of the lgq variants critically depends
on the proper choice of the parameters. An extensive parameter selection is only
manageable for lgq (η), glgq (η) and to a certain extent also for lgq2.1 (η, w).
For grlgq (η, ηλ) and rslgq (η, σ), however, exploring the parameter space is
comparatively too time consuming for two reasons: (i) for a given learning rate,
grlgq and rslgq require more iterations during learning until convergence than
the other three algorithms, and (ii) both, grlgq and rslgq, critically depend on
two rather than one parameter as this is the case for lgq and glgq.

The second observation to be made is that all novel extensions of lgq are
comparable to state-of-the-art solutions. All lgq variants, however, are com-
putationally faster than knn, sk+svm and le+svm. The largest portion of the
computational effort to classify an unseen graph X is attributable to calculating
(or approximating) graph distances between X and a set of prototypes specified
by the respective classifier. While the prototype set for knn consists of the whole
training set, sk+svm and le+svm use about 40% − 60% of the training set as
prototypes. In contrast, the number of prototypes of the lgq algorithms in this
setting corresponds to the number of classes (15 letters, 22 grec, 4 fingerprint).

Table 2. Classification accuracy (in %) of the lgq algorithms

knn sk+svm le+svm lgq lgq2.1 glgq grlgq rslgq

letter 82.0 79.1 92.5 81.5 85.7 88.4 86.5 87.3
grec 96.8 94.9 96.8 86.2 92.6 97.5 97.0 97.4
fingerprint 80.0 41.0 82.8 79.9 81.5 84.8 84.0 84.1
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5 Conclusion

Extensions of GLVQ, GRLVQ, and RSLVQ to the domain of graphs outperform
lgq and lgq2.1, provide state-of-the-art solution even if using a single prototype
for each class, and are superior than knn, sk+svm, and le+svm with respect to
run time during classification. In a practical setting, we recommend to use glgq
because of its simplicity and excellent performance. Future work aims at applying
the lgq algorithms to other data sets and exploring their performance with more
than one prototype per class.
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Abstract. This paper presents a new parallel algorithm to compute multiple 
graph-matching based on the Graduated Assignment. The aim of developing 
this parallel algorithm is to perform multiple graph matching in a current desk-
top computer, but, instead of executing the code in the generic processor, we 
execute a parallel code in the graphic processor unit. Our new algorithm is 
ready to take advantage of incoming desktop computers capabilities. While 
comparing the classical algorithm (executed in the main processor) respect our 
parallel algorithm (executed in the graphic processor unit), experiments show 
an important speed-up of the run time. 

Keywords: Graph Common Labelling, Graduated Assignment, Parallel archi-
tecture, Low-cost computer, CUDA, Multiple Graph Matching. 

1   Introduction 

Classification is a task of pattern recognition that attempts to assign each input value 
to one of a given set of classes. Pattern recognition algorithms generally aim to  
provide a reasonable answer for all possible inputs and to match inputs with classes. 
Pattern recognition is studied in many fields such as psychology, cognitive science, 
computer science and so on. Depending on the application, inputs of the pattern rec-
ognition model or objects to be classified are described by different representations. 
The most usual representation is a set of real values but other common ones are 
strings, trees or graphs. Graph structures have more capacity to capture the knowledge 
of the model but their comparison or matching is also computationally more expen-
sive. Sometimes in graph based pattern recognition applications, given a set of graphs, 
which all represent equivalent or related structures, it is required to find global consis-
tent correspondences among all those graphs. These correspondences are called a 
Common Labelling (CL). Algorithms like [1] and [2] does pair matching and  
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reconstructs a general correspondence, other algorithms like [3] uses Graduated  
Assignment [4] to generate the CL by matching all graph nodes to a virtual node set 
in a polynomial time.  

Nowadays desktop computer architectures have evolved towards supercomputing 
architectures. These architectures generally provide multiple processors and complex 
memory hierarchy. A simple desktop computer may contain tens of small processors 
called cores, some of them present at main processor [5], but most of them are present 
as auxiliary coprocessors like graphical processors [6]. Most algorithms are designed 
to be executed on a single core and general-purpose processor. Consequently, they are 
not designed to take advantage of all available resources on current desktop  
computers. By not taking into account available resources, it appears a gap between 
effective algorithm performance and potential algorithm performance. This gap will 
increase at the same rate that cores count on desktop computers increases.  

This paper presents a new research project that aims to adapt classical graph algo-
rithms to a up-to-date desktop computer. Intensive computation tasks are computed in 
the Graphic Processor, such as the graduated assignment algorithm [3]. In this frame-
work, to compute the common labelling algorithm in desktop computers can make use 
available existing resources. The bases of our work are commented in the section 2 
(original algorithm) and section 3 (computer architecture and parallel programming 
model). The new parallel algorithm is explained in section 4. Section 5 shows the run-
time of the sequential algorithm in comparison to the new parallel algorithm with two 
well known graph databases. Section 6 concludes the paper. 

2   Multiple Graph Matching and Computer Architecture 

In this section, we introduce a common-labelling algorithm and its behaviour. We 
also present a set of equations which are used to transform the algorithm to be exe-
cuted in multi-core computers. 

2.1   Attributed Graphs and Multiple Graph Matching 

Graduated Assignment [3] is one of the algorithms considered to have a good run-time 
performance between most popular common labelling algorithms. This algorithm ap-
proximates a distance and a labelling between many graphs using a polynomial time 
method respect the order of the graphs. The result of the CL algorithm is a set of prob-

ability matrices { Ph
1 , Ph

2 , ... , P h
N

} that represents, for each matrix, the probability of 

matching a node of one of p graph to a virtual node. Since any p matrix Ph
p

 values are 
continuous, a discretisation process of the probability matrix [7] is applied to obtain the 
final labelling between graphs nodes. This process is out of the scope of this paper. 

Given a set of graphs {G1, G2, ...,GN} (that have R vertices) and their respective ad-
jacency matrices {A1, A2, ...,AN}, the general outline of the Graduated Assignment CL 
is shown in algorithm 1 and 2. 
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Algorithm 1. General diagram of the Gradu-
ated Assignment Common Labelling 

 

Algorithm 2. Approx_Q function description 

 

C aibj
pq

 represents the compatibility of labelling edge (a,b) of graph Gp to edge (i,j) 

of graph Gq and their respective ending nodes. In order to optimize C aibj
pq

 computation 
it is defined as:  

                                              (1) 

C ai
pq

is the precomputed distance between vertex a from graph p and vertex i from 
graph q, dist function determines the distance defined by the existence of graph p ab 
edges and graph q ij edges. 

Function Stochastic obtains a double stochastic matrix [3] using the Sinkhorn 
method [8] as follows, 

begin Do until convergence  

                                                                              
(2)

 

                                                                             
(3)

 
end  

Sinkhorn method has been parallelised for many high-performance architectures, 
such as vector machines [9] and connection machines [10].  

3   Computer Architecture and Programming Model 

In this section, we introduce a desktop computer architecture and we relate it to a  
parallel programming model. We also present a set of directives to specify parallel 
algorithms.  
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Fig. 3. CUDA Logical Execution Space 

3.1   Desktop Computer Architecture  

The current desktop computers are composed by 2 processors: A generic multi-core 
processor (composed by few cores) and a Graphics Processing Unit (GPU, composed 
by tens of small cores). Both processors have access to main memory (Figure 1). 

Current GPUs are General Purpose GPUs (GPGPU) dedicated to intensive compu-
tations, mainly addressed to graphic tasks. They are able to execute simple functions 
usually called kernels. GPGPUs are massively multi-threaded architectures. They are 
composed by several multiprocessors (figure 2), each of which has multiple cores and 
a shared memory. Cores are the processing units that compute thread instructions. 
Shared memory has multiple banks, they can serve data simultaneously to multiple 
threads. This shared memory has small size but very low latency. 

3.2   Parallel Programming Model 

Our parallel programming model is CUDA [11]. This programming framework  
allows to mix sequential C code, executed in the generic processor, with kernels, exe-
cuted in the GPGPU. When the sequential code reaches a kernel, it configures a logi-
cal grid of blocks (figure 3) and launches its execution on the GPGPU. A kernel code 
is executed concurrently by all threads of the grid of blocks. Each block is physically 
mapped into a GPGPU multiprocessor. The threads of a block are executed in the 
cores of one multiprocessor and the block memory is mapped into the shared memory 
of the multiprocessor (figure 2 and 3). 
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We define the following four directives to express parallel tasks:  
 

 
 

4   A Parallel Solution for the Graph Matching Problem 

This section shows a parallel solution of the six main functions of the Graduated As-
signment Common Labelling (algorithm 1 and 2): Pf computation, Approx_Q, Expo-
nentiation, Stochastic and Convergence computation. 

4.1   Parallel Pf Computation 

Pf computation is very close to traditional matrix multiplication, but it is simpler be-
cause all accesses are ordered as consecutive row accesses. In the classical algorithm 
it computes the following equation: 

                   (4) 

but, with the aim of implementing a parallel algorithm, loops q and a are reordered: 

                     (5) 

We assume that R elements can be stored into block memory. The new algorithm 
that computes (5) parallelises loops p and a through blocks, thus, there is only one k 

row of Ph
p[a , k ]  for each block. We fetch this k row of Ph

p[a , k ]  into block mem-
ory and by this way, all threads of the same block are using the same data. The paral-
lel algorithm is the following: 

Algorithm 3. Parallel algorithm for Pf Computation 
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4.2   Parallel Computation of Approximate Q Matrix 

Approx_Q function (presented at algorithm 2) can be rewritten as the following: 

     
(6)

 

If we convert v1 into a hyper-matrix, we can split (6) as two expressions: 

                            
(7)

 

                (8) 

Loops q and i in (8) can be reordered to convert Q computation into summations: 

                              (9) 

(9) is discussed in section 4.3. (7) is the most complex task of the whole algorithm. 
We assume that multiple matrices of B x B elements can be stored into block mem-
ory. We apply loop tiling technique [12] in order to expose sub-matrices small enough 
to fit on block memory: 

        
(10)

 

If we apply (1) to (10) we obtain the following expression: 

  
(11)

 

We parallelise p, q, c and k through blocks. In order to avoid parallel reductions, 
we parallelise only d and l through threads. As a result each thread computes a unique 
v 1

pq[a , i ]  element. Loop tiling is also applied to summations, b and j iterations are 
decomposed. The objective is that all operations inside f, v summations share the 

same data (sub-matrices f, v, d, l from P f
pq[b , j ] ,C ai

pq, C bj
pq , Aab

p  and Aij
q

) between all d, 
l threads of the same block. For each e, u iteration, a new set of sub-matrices of data is 
fetched and all threads are synchronized in order to use the same data. As an optimi-

zation, data fetch is performed as soon as possible; for example: C ai
pq

 indexes are 
constant for each thread for all summations, consequently it is fetched before any 
summation and reused for all summations of all threads of the same block. The paral-
lelised algorithm is the following:  
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Algorithm 4. Parallel algorithm for V1 Computation (11, 1, and 7) 

 

4.3   Parallel Computation of Ph Matrix 

We have grouped all Ph computation on the same parallel kernel: Q Computation (9), 
Exponentiation, Stochastic (2 and 3) and Convergence test (see algorithm 1).   

Exponentiation, and Convergence test algorithm expressions are: 

                                        
(12)

 

                              (13) 

Convergence test is split in 2 parts in order to parallel compute local convergences: 

                  
(14)

 

All grouped computations presents an initial loop for p, and two more loops for a 
and i (or w1) indexes. In order to minimize copies from main memory to block mem-
ory we assume that each block of threads will process a single and unique p value. As 

a result, all threads of the same block will keep the same Ph
p

 and no communication 

is required of Ph
p

 temporal values to other blocks. Block threads are parallelised 
through  a and i (or w1) indexes. The new algorithm is: 
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Algorithm 5. Parallel algorithm for Ph Computation (9, 12, 2, 3, 14) 

 

5   Experimental Evaluation 

We have implemented the sequential algorithm [3] and the proposed parallel algo-
rithm. Both algorithms have been tested over a GPGPU parallel architecture and over 
a generic Intel architecture. Table 1 shows the architecture characteristics in which the 
serial algorithm (first row) and the parallel algorithm (second row) are executed. Both 
are executed on the same desktop computer but the serial algorithm is executed on the 
main processor and the parallel algorithm is executed on the GPGPU. 

We have used two databases in which nodes are defined over a two-dimensional 
domain that represents its plane position (x,y). Edges have binary attribute that repre-
sents the existence of a line between two terminal points. The first dataset is a subset 
of high noise level of the Letter dataset created the University of Bern [13]. This data 
set is composed of 15 classes and 150 graphs per class representing the Roman  
 

Table 1. Architectures used in the comparative and their characteristics 

Alg. Computer Proc. / GPGPU GHz Power Cores Threads Bandwith 
Serial [3] ViewSonic VT132 Intel Atom 330 1.6 8W 2 41 5 GB/s 
New Parallel ViewSonic VT132 NVIDIA 9400M 1.1 10W 16 1536 5 GB/s 

 

                                                           
1 There are 4 threads available but algorithm [3] uses only one thread and one core. 
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Fig. 4. Letter run time of Serial and Parallel and speedup respect to the number of graphs for 
each selected class. Vertical axis are in log. scale. 

 

Fig. 5. GREC run time of Serial and Parallel and speedup respect to the number of graphs for 
each selected class. Vertical axis are in log. scale. 

alphabet i.e. A, E, F, .., X, Y, and Z. The second dataset, called GREC dataset, created 
at the Universitat Autònoma de Barcelona [13], is composed of 22 classes and 50 
graphs per class representing symbols from architectural and electronic drawings.  

We have selected 5 classes of each dataset to compare execution speed. For each 
class we have randomly selected a number of graphs for N ∈ [5, 10, 15, 25, 50, 75, 
100, 150] for Letter dataset, and N ∈ [5, 10, 15, 25, 50] for GREC dataset. Letter 
dataset classes selected are {1, 6, 8, 12, 13} each one with a mean number of nodes of 
{5.3, 5.3, 5.3, 5.4, 4.4}. GREC dataset classes selected are {5, 8, 14, 15, 21} each one 
with a mean of {19.4, 8.6, 12.7, 20.7, 17.14}.  

Figure 4 shows the mean run time for each one of the five Letter dataset classes for 
serial and parallel algorithm experiments for a given different number of the graphs. 
Figure 5 shows the mean run time for each one of the five GREC dataset classes for 
serial and parallel algorithm experiments for a given different number of the graphs. 
The obtained distance is not shown since the sequential and parallel algorithm obtains 
exactly the same result. It can be observed a clear improvement on the run time when 
the parallel algorithm is used. 

6   Conclusions and Future Work 

We have presented a parallel algorithm which can take advantage of present computa-
tional resources on current desktop computers. Results show a significant speed-up of 
the run time of multiple graph-matching algorithms.  The aim is to demonstrate that it 
is possible to perform some modifications to the classical algorithm in order to take 
advantage of existing resources and use low-cost computers to perform pattern recog-
nition processes based on graphs. Future efforts will focus on parallelise other  
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graph-matching algorithms, apply new solutions to other architectures (like common 
multi-core and vector operations) and identify a subset of common operations to sim-
plify future algorithm adaptations. 
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Gerard Sanromà1, René Alquézar2, and Francesc Serratosa1

1 Departament d’Enginyeria Informàtica i Matemàtiques,
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Abstract. We present a graph matching method that encompasses both
a model of structural consistency and a model of geometrical deforma-
tions. Our method poses the graph matching problem as one of mixture
modelling which is solved using the EM algorithm. The solution is then
approximated as a succession of assignment problems which are solved,
in a smooth way, using Softassign. Our method allows us to detect out-
liers in both graphs involved in the matching. Unlike the outlier rejectors
such as RANSAC and Graph Transformation Matching, our method is
able to refine an initial the tentative correspondence-set in a more flexible
way than simply removing spurious correspondences. In the experiments,
our method shows a good ratio between effectiveness and computational
time compared with other methods inside and outside the graphs’ field.

Keywords: correspondence problem, expectation-maximization, softas-
sign, affine registration.

1 Introduction

The correspondence problem arises in many computer vision applications.
Tentative correspondences can be computed on the basis of the local image

contents around some interest points [8][14]. However, a refinement process is
often needed in order to remove erroneous correspondences in the tentative-set.

This is the case of RANSAC [6] and Graph Transformation Matching [2],
which remove outlying correspondences by enforcing some kind of global con-
sistency. The main drawback of these methods is that their success strongly
depends on the reliability of the tentative-set. Since they are unable either to
generate new correspondences or to modify the existing ones, a tentative-set
with few successes may lead to sparse estimates. This is illustrated in figure 1.

Attributed Graph Matching techniques are another approach to refine the
tentative correspondences which do not suffer from the aforementioned problem
of the outlier rejectors.

Hancock et al. [13][4][11] present graph matching approaches that jointly solve
the correspondence and alignment problems. The advantages of posing the graph
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c© Springer-Verlag Berlin Heidelberg 2011



Smooth Simultaneous Structural Graph Matching and Point-Set Registration 143

(a) Tentative correspondences computed
by a matching by correlation method. The
red dots are unmatched points. There are
several misplaced correspondences.

(b) Only a few inliers are found by
RANSAC. This may not be suitable in the
cases when more dense correspondence-
sets are needed.

Fig. 1. Matching results for two sample images from the class Resid (from ref. [1]) with
superposed Harris corners [8]. Green lines represent the correspondences found by (a)
a correlation method and (b) RANSAC applied to the correlation results.

matching as a joint correspondence and alignment problem, are twofold. On one
hand, structural information may contribute to disambiguate the recovery of the
alignment. On the other hand, geometrical information may aid to clarify the
recovery of the correspondences in the case of structural corruption.

In [4][18][17], Hancock et al. propose a principled way of detecting outliers
that consists in measuring the net effects of a node deletion in a reconfigured
graph. This is a one-direction model, i.e., data-graph constraints are evaluated
on the model-graph side. This implies that outliers can only be detected in the
data-graph side, a practical limitation in computer vision where outliers can be
found indistinguishably in both sides.

Gold and Rangarajan present Graduated Assignment [7], an optimization
technique aimed at graph matching. They use Softassign [16][15][10] to handle
continuous correspondences and to provide two-way constraints satisfaction.

We propose a method to solve the graph matching problem as one of mixture
modelling [4][12]. Our mixture model evaluates the geometrical arrangement of
the nodes as well as their structural relations. We use the EM algorithm to
approximate the solution, in a principled way, as a succession of assignment
problems which are solved using Softassign. This allows us to gradually move
from continuous to discrete correspondences while being able to detect outliers
in both graphs in a smooth way. We provide computational time results sug-
gesting that our method can be used at specific moments during a real-time
operation (e.g., when the tentative-sets are insufficient). Figure 2 shows that our
approach arrives at a correct dense correspondence-state, while still leaving a
few unmatched outliers in both images.

2 A Mixture Model

Consider two graph representations G = (V, D, X) and H = (W, E, Y ), extracted
from two images (e.g., figure 2).

The node-sets V = {va, ∀a∈I} and W = {wα, ∀α∈J} contain the symbolic
representations of the nodes, where I=1...|V | and J=1...|W | are their index-sets.
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Fig. 2. The green lines are the result of applying our method using, as starting point,
the tentative-set of figure 1(a). Nodes are placed in the locations of the Harris corners.
Blue lines represent the edges generated by means of Delaunay triangulations on the
Harris corners. Our method still detects a few outliers in both graphs.

The vector-sets X = {xa = (xab
a , xor

a ) , ∀a∈I} and Y = {yα = (yab
α , yor

α ) , ∀α∈J},
contain the column vectors of the two-dimensional coordinates (abscissa and or-
dinate) of each node.

The adjacency matrices D and E contain the edge-sets, representing some
kind of structural relation between pairs of nodes (e.g., connectivity or spatial

proximity). Hence, Dab =
{

1 if va and vb are linked by an edge
0 otherwise (the same ap-

plies for Eαβ).
We use continuous correspondence indicators S so, we denote as saα ∈ S, the

probability of node va ∈ V being in correspondence with node wα ∈W .
It is satisfied that ∑

α∈J
saα ≤ 1 , ∀a ∈ I (1)

where, 1−∑
α saα is the probability of node va being an outlier.

Our aim is to recover the correspondence indicators S and the registration
parameters Φ that maximize the incomplete likelihood of the observed graph,
P (G|S, Φ). The standard procedure to build likelihood functions for mixture
distributions consists in factorizing over the observed data (i.e., observed graph
nodes) and summing over the hidden variables (i.e., their corresponding reference
nodes). Hence,

P (G|S, Φ) =
∏
a∈I

∑
α∈J

P (va, wα|S, Φ) (2)

where P (va, wα|S, Φ) is the conditional likelihood of correspondence between
nodes va ∈ V and wα ∈W .

Following a similar development than Luo and Hancock [12] we factorize, using
the Bayes rules, the conditional likelihood in the right hand side of equation (2)
into terms of individual correspondence indicators, in the following way.

P (va, wα|S, Φ) = Kaα

∏
b∈I

∏
β∈J

P (va, wα|sbβ , Φ) (3)

where Kaα = [1/P (va|wα,Φ)]|I|×|J |−1. If we assume that the observed node va is
conditionally dependant on the reference node wα and the registration
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parameters Φ only in the presence of the correspondence matches S, then
P (va|wα, Φ) = P (va). Further assuming equiprobable priors P (va), we can
safely discard these quantities in the maximization of equation (2), since they
do not depend neither on S or Φ.

We propose a measure for the conditional likelihood of equation (3) that uses
the same model for the structural errors as in [12], augmented with a geometric
compatibility measure.

On one hand, given two corresponding pairs of points (va, vb) → (wα, wβ),
we consider that there will be lack of edge-support (i.e., Dab = 0 ∨ Eαβ = 0)
with a constant probability Pe. On the other hand, we consider that it is an
affine-invariant density measurement on the point position errors P (xb, yβ |Φ)
(for brevity Pbβ), that it is appropriate for weighting the conditional likelihood
in the case of correspondence between nodes vb and wβ . In the case of no corre-
spondence we assign a constant probability ρ that controls the outlier process.

Accordingly, our expression for the conditional likelihood is

P (va, wα|sbβ , Φ) =
[
(1− Pe)Pbβ

]DabEαβsbβ
[
PePbβ

](1−DabEαβ)sbβ
[
Peρ
](1−sbβ)

(4)
Substituting equation (4) into equation (3), the final expression for the corre-

spondence likelihood between va and wα, expressed in the exponential form, is

P (va, wα|S, Φ) = exp

⎡
⎣∑

b∈I

∑
β∈J

sbβDabEαβ ln
(

1−Pe

Pe

)
+ sbβ ln

(
Pbβ

ρ

)
+ lnρ

⎤
⎦ (5)

3 Expectation Maximization

The EM algorithm has been previously used by other authors to solve the Graph
Matching problem [4] [12]. We seek the affine registration parameters Φ and the
correspondence indicators S, that maximize the expected log-likelihood of our
mixture distribution. Dempster et al. [5] showed that this could be posed as an
iterative estimation of a weighted sum of log-likelihoods.

Accordingly, we seek the parameters Ŝ, Φ̂ that maximize the following objec-
tive function

Λ
(
Ŝ, Φ̂|S(n), Φ(n)

)
=
∑
a∈I

∑
α∈J

P (wα|va, S(n), Φ(n)) lnP
(
va, wα|Ŝ, Φ̂

)
(6)

where P (wα|va, S(n), Φ(n)) are the posterior probabilities of the missing data
given the most recent available parameters S(n), Φ(n).

The basic idea is to alternate between Expectation and Maximization steps
until convergence is reached. The expectation step involves computing the a
posteriori probabilities of the missing data using the most recent available pa-
rameters. In the maximization phase, the parameters are updated in order to
maximize the expected log-likelihood of the incomplete data.
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3.1 Expectation

In the expectation step, the posteriori probabilities of the missing data (i.e., the
reference graph measurements wα) are computed using the current parameter
estimates S(n), Φ(n).

The posterior probabilities can be expressed in terms of conditional likeli-
hoods, using the Bayes rule, in the following way

P (wα|va, S(n), Φ(n)) =
P (va, wα|S(n), Φ(n))∑
α′ P (va, wα′ |S(n), Φ(n))

≡ R(n)
aα (7)

We substitute the conditional likelihoods of the above equation by the expres-
sion of equation (5).

3.2 Maximum Likelihood Affine Registration Parameters

ML affine registration parameters and correspondence indicators are recovered
in separate steps.

We are interested in the registration parameters Φ(n+1) that lead to the maxi-
mum likelihood of equation (6). We use the expressions in equations (7) and (5)
for the posterior probability and conditional likelihood terms, respectively. Dis-
carding the terms that are constant w.r.t. the registration parameters we obtain
the following expression

Φ(n+1) = argmax
Φ̂

⎧⎨
⎩
∑
a∈I

∑
α∈J

R(n)
aα

∑
b∈I

∑
β∈J

s(n)

bβ ln
(

P̂bβ

ρ

)⎫⎬
⎭ (8)

Rearranging and further removing other terms constant w.r.t. the registration
parameters, we get

Φ(n+1) =arg max
Φ̂

{∑
b∈I

∑
β∈J

s(n)

bβ ln
(

P̂bβ

ρ

) ∑
a∈I

∑
α∈J

R
(n)
aα

}
=arg max

Φ̂

{∑
b∈I

∑
β∈J

s(n)

bβ lnP̂bβ

}

(9)
We assume that the geometrical compatibilities P̂bβ follow a multivariate gaus-

sian distribution of the point errors.
Substituting P̂bβ by its appropriate expression and, removing constant terms,

we arrive to the minimization of the following objective function

F =
∑
b∈I

∑
β∈J

s(n)

bβ

(
x̃b − Φ̂ỹβ

)T

Σ−1
(
x̃b − Φ̂ỹβ

)
(10)

where x̃b and ỹβ are the augmented vectors of homogeneous coordinates, Φ =⎡
⎣φ11 φ12 φ13

φ21 φ22 φ23

0 0 1

⎤
⎦ is the matrix of affine registration parameters and, Σ is diagonal

matrix of variances.
Affine registration parameters are computed by solving the set of linear equa-

tions δF/δφij = 0.
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3.3 Maximum Likelihood Correspondence Indicators

One of the key points in our work, is to approximate the solution of the graph
matching problem by a succession of easier assignment problems. As it is done
in Graduated Assignment [7], we use the Softassign [16][15][10] to solve the
assignment problems in a continuous way.

According to the EM development, we compute the correspondence indicators
S(n+1) that maximize equation (6). Substituting equations (7) and (5) into (6)
and, discarding the constant term lnρ of equation (5), we obtain

S(n+1) = arg max
Ŝ

⎧⎨
⎩
∑
a∈I

∑
α∈J

R(n)
aα

∑
b∈I

∑
β∈J

ŝbβ

[
DabEαβ ln

(
1−Pe

Pe

)
+ ln

(
P

(n)
bβ

ρ

)]⎫⎬
⎭

(11)
Rearranging we obtain the following assignment problem [7]

S(n+1) = arg max
Ŝ

⎧⎨
⎩
∑
b∈I

∑
β∈J

ŝbβQ(n)

bβ

⎫⎬
⎭ (12)

where
Q(n)

bβ =
∑
a∈I

∑
α∈J

R(n)
aα

[
DabEαβ ln

(
1−Pe

Pe

)
+ ln

(
Pbβ

ρ

)]
(13)

is the benefit coefficient for the assignment vb → wβ .
Softassign computes the correspondence indicators in two steps. First, the

correspondence indicators are updated with the exponentials of the benefit co-
efficients

sbβ = exp (μ Qbβ) (14)

where μ is a control parameter. Second, two-way constraints are imposed by
alternatively normalizing across rows and columns the matrix of exponentiated
benefits. This is known as the Sinkhorn normalization and, it is applied either
until convergence of the normalized matrix or, a predefined number of times.

Note that, as the control parameter μ of equation (14) approaches to ∞, the
correspondence indicators sbβ tend to discrete values (sbβ = {0, 1}) after the
Sinkhorn normalization.

3.4 Outlier Rejection

Outliers can dramatically affect the performance of a matching and therefore, it
is important to develop techniques aimed at minimizing their influence [3].

According to our purposes, a node vb ∈ v (or wβ ∈ w) will be considered an
outlier to the extent that there is no node wβ , ∀β∈J (or vb, ∀b∈I) which presents
a matching benefit Q(n)

bβ above a given threshold.
Note that, ρ establishes the threshold at which the geometrical terms (i.e.,

ln (Pbβ/ρ)) contribute positively (i.e., ρ < Pbβ) or negatively (i.e., ρ > Pbβ) to
the benefit measure.
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Our strategy for controlling the outlier process is the following. We set the
outlying threshold to zero and, create an augmented benefit matrix Q̃(n) by
adding to Q(n) an extra row and column of zeros (the slack variables of the
Softassign [7]). Then, we apply the Softassign (exponentiation and Sinkhorn
normalization) to the augmented benefit matrix. Last, the slack variables are
removed leading to the resulting matrix of correspondence parameters S(n+1).

Note that, as the control parameter μ of the Softassing increases, the rows and
columns of S(n+1) associated to the outlier nodes, tend to zero. This fact reduces
the influence of these nodes in the maximization phases of the next iteration
that, in turn, lead to even lower benefits, and so on.

It is now turn to define the value of the outlying threshold ρ. Since ρ is to
be compared with Pbβ , it is convenient to define it in terms of a multivariate
gaussian of a distance threshold. This is,

ρ =
1

2π|Σ|1/2
exp

[
−1

2
dTΣ−1d

]
(15)

where, Σ = diag
(
(σab)2 , (σor)2

)
is a diagonal variance matrix and, d = (dab, dor)

is a column vector with the abscissa and ordinate thresholding distances.
Cancelling the gaussian constant terms in the numerator and denominator of

the geometrical term and, expressing the thresholding distance proportionally
to the standard deviations of the data (i.e., d = (Nσab, Nσor)), the expression
of ρ to be compared with Pbβ becomes

ρ = exp

{
−1

2

[(
Nσab

σab

)2

+
(

Nσor

σor

)2
]}

= exp
(−N2

)
(16)

So, we define ρ as a function of the number N of standard deviations permitted
in the registration errors, in order to consider a plausible correspondence.

4 Experiments and Results

In the first set of experiments, we have evaluated the effectiveness of our method
in front of non-rigid deformations in the positions of the features (i.e., nodes). In
each experiment, a pattern of 15 randomly generated points is matched against
a deformed version of itself. Deformations are introduced by applying gaussian
noise, independently, to each point. Graphs’ edges are generated by Delaunay
triangulations on the point-sets. Figure 3 shows the comparison of our method
(denoted as Smooth) to the graph matching + alignment methods in refs. [4]
(Dual-Step) and [13] (Unified). We have used the values Pe = 0.3 and ρ =
exp

(−1.92
)

for our method. The parameters of the other methods have been
accurately set to have a good performance. All the methods have been initialized
by the correspondences obtained by simple nearest neighbour association.

The mean execution times of the MATLAB implementations of each method
are: Smooth 0.66 sec., Dual-Step 14.08 sec. and, Unified 0.91 sec. The Dual-step
method is run without the outlier detection scheme (otherwise it slows down).
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Fig. 3. Correct correspondence rate vs. noise level (represented as a proportion of the
data variance). Each point is the mean of 25 experiments (5 random patterns by 5
random deformations of each pattern).

The last set of experiments evaluates the matching performance on real images
under zoom and rotation from the database in [1]. Features are extracted with
the Harris operator [8] and edges with Delaunay triangulations. Figure 4 show
the results of applying our method to some images. We have used the values
Pe = 0.3 and ρ = exp

(−1.32
)

for our method. The value of ρ has been set so as
to enable an actual detection of outliers.

We have compared some methods with explicit outlier detection mechanisms.
These are the outlier rejectors RANSAC [6] and Graph Transformation Match-
ing (GTM ) [2] and, the graph matching method Dual-Step [4] (with the out-
lier detection scheme enabled). All the methods have been initialized with the
matching by correlation (Corr) results.

From the resulting correspondences of each method, we have estimated the
corresponding homographies with the DLT algorithm [9]. Since it is available the
ground truth homography between each pair of images, we have measured the
mean projection error (MPE) of the feature-points in the origin images. Table 1
shows the results.

Table 1. Mean Projection Error (MPE, in pixels) and execution times (in seconds)
obtained by each method using a MATLAB implementation. In the case of accurate
correlation results (e.g., Laptop), slight errors may be introduced due to the approx-
imations done by each method in the model assumptions such as the affine one (in
Smooth and Dual-Step) or a purely structural one (in GTM ).

Resid Boat NewYork Laptop Eastpark

Methods MPE time MPE time MPE time MPE time MPE time

Corr 835.4 1.5 24.48 1.5 31.1 0.98 0.28 1.34 463.4 1.62

Smooth 1.5 13.8 0.72 18.2 0.69 3.6 0.29 8.18 1.08 19.7

Dual-Step 1.33 3615 1.68 3794 0.69 1429 0.3 2693 153.46 3027

RANSAC 20.23 0.2 1.6 0.1 17.11 0.12 0.28 0.11 350.13 0.42

GTM 24.15 0.02 0.8 0.1 3.2 0.02 0.34 0.02 359.9 0.04
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(a) Boat

(b) New York

(c) Laptop

(d) Eastpark

Fig. 4. Right column shows the results of our method using the correlation results (left
column) as starting point

5 Conclusions

We have presented a method that uses the EM algorithm to approximate the
graph matching problem as a succession of assignment problems which are then
solved in a smooth way using Softassign. Our method refines an initial tentative
correspondence-set in a more flexible way than the outlier rejectors such as
RANSAC and Graph Transformation Matching that are only able to remove
the spurious correspondences. Furthermore, it is capable of detecting outliers in
both graphs. Results show that our method performs faster and better than other
graph matching methods in the literature in the matching of synthetic graphs.
Results in the matching of real images show that our method performs generally
better than the others, within an admissible time. Methods with comparable
efficiency than ours show computational times of two orders of magnitude higher.



Smooth Simultaneous Structural Graph Matching and Point-Set Registration 151

Acknowledgements. This research is supported by Consolider Ingenio 2010
(CSD2007-00018), by the CICYT (DPI 2010-17112) and by project DPI-2010-
18449.

References

1. Http://www.featurespace.org/
2. Aguilar, W., Frauel, Y., Escolano, F., Martinez-Perez, M.: A robust graph trans-

formation matching for non-rigid registration. Image and Vision Computing 27,
897–910 (2009)

3. Black, M., Rangarajan, A.: On the unification of line processes, outlier rejection,
and robust statistics with applications in early vision. International Journal of
Computer Vision 19(1), 57–91 (1996)

4. Cross, A., Hancock, E.: Graph matching with a dual-step em algorithm. IEEE
Trans. Pattern Analysis and Machine Intelligence 20(11), 1236–1253 (1998)

5. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the em algorithm. Journal Royal Stat. Soc., Series B 39(1), 1–38 (1977)

6. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Comunica-
tions of the ACM 24(6), 381–395 (1981)

7. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching.
IEEE Trans. Pattern Analysis and Machine Intelligence 18(4) (April 1996)

8. Harris, C., Stephens, M.: A combined corner and edge detection. In: Proceedings
of The Fourth Alvey Vision Conference, pp. 147–151 (1988)

9. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-
bridge University Press, Cambridge (2003)

10. Kosowsky, J., Yuille, A.: The invisible hand algorithm - solving the assignment
problem with statistical physics. Neural Networks 7(3), 477–490 (1994)

11. Luo, B., Hancock, E.: Feature matching with procrustes alignment and graph edit-
ing. In: 7th Int. Conf. on Image Proc. and Apps., vol. 465, pp. 72–76 (1999)

12. Luo, B., Hancock, E.: Structural graph matching using the em algorithm and sin-
gular value decomposition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 23(10) (October 2001)

13. Luo, B., Hancock, E.: A unified framework for alignment and correspondence.
Computer Vision and Image Understanding 92(1), 26–55 (2003)

14. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Trans. on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)

15. Rangarajan, A., Gold, S., Mjolsness, E.: A novel optimizing network architecture
with applications. Neural Computation 8(5), 1041–1060 (1996)

16. Sinkhorn, R.: Relationship between arbitrary positive matrices + doubly stochastic
matrices. Annals of Mathematical Statistics 35(2), 876–879 (1964)

17. Wilson, R., Cross, A., Hancock, E.: Structural matching with active triangulations.
Computer Vision and Image Understanding 72(1), 21–38 (1998)

18. Wilson, R., Hancock, E.: Structural matching by discrete relaxation. IEEE Trans.
Pattern Analysis and Machine Intelligence 19(6), 634–648 (1997)



X. Jiang, M. Ferrer, and A. Torsello (Eds.): GbRPR 2011, LNCS 6658, pp. 152–163, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Automatic Learning of Edit Costs Based on Interactive 
and Adaptive Graph Recognition* 
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Abstract. We propose a new method to automatically obtain edit costs for  
error-tolerant graph matching based on interactive and adaptive graph  
recognition. Values of edit costs for deleting and inserting nodes and vertices 
are crucial to obtain good results in the recognition ratio. Nevertheless, these 
parameters are difficult to be estimated 1*and they are usually set by a naïve trial 
and error method. Moreover, we wish to seek these costs such that the system 
obtains the correct labelling between nodes of the input graph and nodes of the 
model graph. We consider the labelling imposed by a specialist is the correct 
one, for this reason, we need to present an interactive and adaptive graph recog-
nition method in which there is a human interaction. Results show that when 
cost values are automatically found, the quality of labelling increases. 

Keywords: Interactive Learning, Adaptive Learning, Graph Edit Distance. 

1   Introduction 

Graphs refer to a collection of nodes and a collection of edges that connect pairs of 
nodes. Attributed Graphs are graphs in which some attributes are added on nodes and 
edges to represent local information or characterisation. Attributed graphs have been 
widely used in several fields to represent objects composed by local parts and relations 
between these parts. More precisely, in Pattern Recognition and Computer Vision, attri-
buted graphs have been used to represent structural objects that have to be identified or 
classified. These graphs can represent 2D or 3D objects, handwritten characters, pro-
teins, fingerprints, and so on. Before using graphs, the pattern recognition process has to 
extract them from these objects. This is not a trivial task included in the Image Under-
standing field since the quality of graphs is crucial for the rest of the process. When 
attributed graphs have been extracted, a process to compare them is needed. This 
process is called graph matching. Usually, it obtains a similarity value and also a label-
ling between nodes and arcs of the involved graphs. This labelling between nodes and 
arcs represents the matching between the local parts that graphs represent. 

When we characterise the role that attributed graphs and attributed graph matching 
do in pattern recognition, we realise that in most of the applications, labelling between 
                                                           
* This research was partially supported by Consolider Ingenio 2010 and by the CICYT project 

DPI 2010-17112. 
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nodes is only partially considered. This is because it is considered in the first stages of 
pattern recognition process, in which it is desired to find a similarity between graphs, 
but when this similarity value is obtained, the knowledge of the labelling is not consi-
dered any more. Nevertheless, we consider that although the graph (that is, the object 
that represents) is properly classified or identified, the result of the comparison has 
not sense if the matching between their local parts is not correct. 

In this paper, we present an interactive and adaptive graph recognition model with 
the aim of increasing the quality of the labelling between the graph to be identified 
and the reference graphs of the database. To that aim, we have extended the graph 
recognition model to consider the labelling between nodes proposed by a human spe-
cialist. This new knowledge is incorporated into the system and used to modify the 
weights that tune the similarity function between graphs. Usually, these weights are 
imposed before executing the learning process in a naïve way. We believe that if the 
quality of the labelling is increased also should do it the quality of the pattern recogni-
tion process. In [1], they considered the problem of partial matchings. 

The rest of the paper is organised as follows, in sections 2 and 3, we first introduce 
concepts related to graph matching and then we define a new space of labellings. In 
sections 3, 4 and 5, we first present the classical pattern recognition and then we de-
pict the new model of interactive and adaptive graph recognition method. In section 7, 
we compare the quality of the labellings obtained by the new models respect the clas-
sical pattern recognition. Section 8 drops some conclusions. 

2   Error-Tolerant Graph Matching Based on Edit Operations 

One of the most widely used methods for error-tolerant graph matching is the graph 
edit distance. The basic idea behind the graph edit distance is to define a dissimilarity 
measure between two graphs by the minimum amount of distortion required to trans-
form one graph into the other [2,3]. To this end, a number of distortion or edit opera-
tions ε, consisting of insertion, deletion and substitution of both nodes and edges must 
be defined. Then, for every pair of graphs (G and G’), there exists a sequence of edit 
operations, or edit path , 1, … ,  (where each  denotes an edit oper-
ation) that transforms one graph into the other. In general, several edit paths may exist 
between two given graphs. This set of edit paths is denoted by , . To quantita-
tively evaluate which is the best edit path, edit cost functions are introduced. The 
basic idea is to assign a penalty cost C to each edit operation according to the amount 
of distortion that it introduces in the transformation. The edit distance between two 
graphs G and G’, denoted by , , , is defined as the minimum cost of edit 
path that transforms one graph into the other given parameters  (cost of node inser-
tion or deletion) and cost of edge insertion or deletion  . Several edit paths may 
obtain the minimum cost. More formally, the edit distance is defined by, 

, , , … , , (1) 

Usually, edit costs  and  are estimated in a naïve way or they are learned by 
trial and error method. The works presented in [4,5,6] are the only ones that aim to 
automatically estimate these costs. Nevertheless, their method minimises an energy  
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Table 1. Edit operations, their costs and the relation with the labelling function 

Edit operation Cost Labelling f 
Node deletion (a) 0, ∞  
Node insertion (a’) 0, ∞ ’  
Node substitution (a,a’)  , ’ 0, ∞ ’ 
Edge deletion (b) 0, ∞  
Edge insertion (b’) 0, ∞ ’  
Edge substitution (b,b’) , ’ 0, ∞ ’ 

 
related to the recognition ratio in a pattern recognition framework without considering 
the goodness of the labellings of the involved graphs. Contrarily, in [7], they forced 
some specific cost. With these costs, they demonstrate the similarity between the edit-
distance problem and the maximum common sub-graph problem. 

In this paper, we aim to study the impact of  and  values to the quality of the 
labellings and present a method to automatically impose them. It seems logical to 
think that if the labelling between graphs is correct, the recognition ratio of the pattern 
recognition system has to be the best. First and second columns of Table 1 show the 
edit operations and edit costs we define throughout this paper. We impose the restric-
tion that insertions and deletions of vertices or arcs have the same cost value. This is 
done to assure the symmetry property of (1). 

Optimal [8] and approximate algorithms [9,10] for the graph edit distance computa-
tion have been presented so far, which are out of the scope of this paper. These algo-
rithms obtain the distance value ,  as well as a labelling  from vertices and 
arcs of the first graph to vertices and arcs of the second graph. Column 3 of Table 1 
shows the labelling related to edit operations. Given any edit path, , , a label-
ling , ’  can be defined univocally. The cost of this labelling is, 

, , ,  , , … ,
 

(2) 

3   Labelling Space Based on  and  Values 

Given an input graph , a reference graph ’ and a labelling  between them, we  
define the range of values of  and  that the labelling  has the minimum cost (2). 
That is, the values of  and  that  is the labelling that obtains the distance (1) 
between graphs G and G’. These values ,  hold condition , : , , , , , , , (3) 

Let , ,  be a region defined by points ,  in which condition  is true, 

, , , |
 

(4) 
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Table 2. Edit operations, their costs and the relation with the labelling function 

Edit operation Cost R2 Cost R3 
Node del. (a) Kn = 0.3 Kn = 0.3 
Node ins. (a’) Kn = 0.3 Kn = 0.3 
Node subs. (a,a’)  distance(a,a’) = 2D Euclidean distance(a,a’) = 2D Euclidean 
Edge del. (b) Ke = 0.3 Ke = 0.5 
Edge ins. (b’) Ke = 0.3 Ke = 0.5 
Edge subs. (b,b’) distance(b,b’) = 0 distance(b,b’) = 0 

 

Fig. 1. Two graphs and two different labellings: R2 and R3 

 

Fig. 2. (a) All possible labellings through-
out the labelling space 

 

Fig. 2. (b) Edit cost of the optimal labelling 
given Kn and Ke 

Note that , , ,  takes different values when different values of  
and  are used (2). For this reason, this cost, although it is the minimum one given a 
point ,  through all labellings ’, is not constant throughout region , , . 
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Figure 1 shows two graphs and two possible labellings between them (called R2 
and R3). Table 2 shows the edit costs we have used. 

Note that erasing an arc in R3 is more costly than in R2. For this reason R2 erases 
3 arcs in the first graph and inserts 1 arc in the second. On the contrary, R3 does not 
erase any arc and only inserts 1 arc in the second graph. To conclude, R2 gives more 
importance to the position of the nodes and R3 gives more importance to the structur-
al deformation. 

Figure 2.a shows the labelling space between these two graphs respect  (vertical 
axis) and  (horizontal axis). There are only 9 different labellings which is a reduced 
number since the maximum number of labellings could arise 6! = 720. Finally, figure 
2.b shows the minimum cost throughout the labelling space. We realise of four prop-
erties: 1. Regions , ,  are convex, 2. When costs  or  increase, it does the cost 
labelling. 3. Increase of labelling cost is linear throughout a region. 4. Regions located 
in bigger positions of  or   are less steeply. 

4   Classical Graph Recognition Paradigm 

Let  be an input graph and  a hypothesis or output of the graph recognition system, 
which the system derives from . Let  be a model used by the graph recognition 
system to derive this output.  is obtained through a previous or batch training 
process from a given sequence of pairs composed by a graph and a class , .  

In some applications (for instance, character recognition), the hypothesis  is com-
posed by only the class or cluster obtained by the system   . Nevertheless, in 
some applications, it is desired to know not only the class, but also the graph of the 
model with the minimum error  and the labelling  between them (for instance, 
scene identification). That is,   , , . 

Figure 3 shows the three main modules of a classical graph recognition system. It 
is composed by a training process, a recognition processes and a model. The model is 
generated through a batch training process with a set of pairs (graph, class) and other 
parameters (such as  and  in (1)) and it represents the knowledge of the recogni-
tion process. 

In classical pattern recognition [11] (and specifically, in graph recognition) the 
output of the system is computed through a function that aims to minimise the number 

 

Fig. 3.  Scheme of a Classical graph recognition system 
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of wrong hypothesis, that is, the number of misclassified objects. The best hypothesis 
is the one that minimises the misclassification of graphs, that is, it is the one which 
maximises the posterior probability of class  given , |  and given model , | . , , | (5) 

The maximum likelihood approach (5) is the most popular method to estimate the 
classification not only in the pattern recognition process but also in the training 
process to train the model . However, in many cases, it is difficult to directly esti-
mate |  ( |  since now) and it is better to apply the Bayes rule in (5),  | |  (6) 

The probability |  is estimated independently for each pair ,  and from 
the available training pairs , . The probability of each class  depends on the 
application and, sometimes, it is defined as constant for all classes. Finally,  has 
been dropped since does not depend on the hypothesis and so, it does not affect the 
maximisation criteria of (6). With these considerations, we have only to define the 
probability of having an input graph conditioned to a class. Several methods have 
been defined, for instance, | , ,  | , ,  (7) 

5   Interactive Graph Recognition Paradigm 

Placing human interaction requires adaptation to the way we look at the graph recog-
nition problem [12]. Few research has been done in this field [13] and none related to 
graphs. One of the main applications has been the semi-automatic transcription of 
handwritten texts [14, 15]. 

The paradigm we presented above obtains the minimum graph that minimises (6) in-
dependently of the obtained labelling . Nevertheless, the user aims to obtain a correct 
labelling  independently of the model parameters imposed in the batch training. More-
over, although the class obtained by the system is considered the correct one by an ex-
pert, the hypothesis has to be considered non-correct if the labelling  between the input 
and output graph is far away from the one considered by an expert. For this reason, the 
feedback provided by the human is a new labelling g between  and  (that may be 
totally or partially equal to ) and then the hypothesis is estimated again. 

Without varying the model , human interaction offers an opportunity to improve 
the quality of the hypothesis  only using labelling . Note that, this labelling  be-
tween the input graph  and the output graph , is the most natural way for a hu-
man to interact with the system since it takes direct advantage of the intelligence and 
general knowledge of the expert. Moreover, it is one of the most complicated tasks to 
be processed in graph recognition. From an application point of view,  has to be 
considered as a first approximation of the labelling that helps the specialist to make a 
final (and possibly better) labelling . 
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Since in our new framework, we have two labellings  and  between graphs  
and ’, it is interesting to have a measure of similarity between both labellings , ,  0,1 . We define this measure as follows, 

, , 1| | | | 0,1 (8) 

Where  and ’ are nodes of graphs  and ’, respectively.  and  are, 1    0                and   1 0  (9) 

Figure 4 shows the new scheme, in which, it appears the human interaction through 
labelling . The batch training generates a model similar to the classical scheme. The 
interactive recognition process generates a first hypothesis  through the model. Then, 
it generates the final hypothesis ’ using the model and also the human interaction g. 
Note that, ’ can be completely different from . Not only the graph and labelling can 
be different but also the class. This is because, with the imposed labelling g, the cost 
(2) can be higher than the distance (1) between G and another graph of another class. 

 

Fig. 4. Scheme of an Interactive graph recognition system 
 

Now, interaction allows adding more conditions to (5) to obtain the new hypothesis, , , | ,  (10) 

Applying Bayes rule, we arrive at the following expression, | , |,  (11) 

In which probabilities  and ,  do not depend on  and they are dropped 
off, | , |  (12) 

Probability |   represents the probability of a class conditioned to a labelling 
 between two graphs. We consider in this point that there is no information about the 

process to extract a graph from an object, commented in the introduction section (for 
instance, image or social net). Therefore, the probability of a class  has to be defined 
independent of having a specific labelling g between two graphs and we assume  |   .  
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The conditioned probability of the input graph , | , is defined depending on 
the data (7), but now, we add another conditional, which is the specialist labelling g, | , , , ,   or  | , , , , (13) 

And the probability of class  is defined to be constant if there is no informa-
tion. In some examples, it depends on the  information extracted from the learning 
process. 

6   Adaptive Graph Learning 

In the previous section the model  has been assumed to be fixed. But now, the hu-
man interaction offers another opportunity to improve the system not only modifying 
the current hypothesis but modifying the model  when new information is available. 
We present a methodology to update parameters  and  of equation (1). These 
parameters are crucial for the quality of the recognition but they are very difficult to 
be estimated since they are data dependent. We propose a model that each time the 
specialist imposes a labelling  between an input graph  and an output graph , 
these parameters are updated.  

The adaptive-graph learning scheme is composed of three modules (figure 5). The 
training and recognition module are similar to the interactive scheme. The adaptive-
learning module updates values of  and  in model . 

This scheme is implemented in an iterative algorithm that each time a new graph is 
introduced into the system to be identified, the following steps are carried out: 

- Given input , the graph recognition module outputs   , ,  
- Specialist analyses  and  and introduces labelling  into the system (  is the 

same than  if  is an ideal prediction) 
- The interactive recognition module outputs ’. ( ,  and  might be different 

to ’, ’  and ’) 
- The adaptive-learning module inputs ’,  and  and modifies values of  and 
 using intersection of regions , ’ , .  

 

Fig. 5. Scheme of an Adaptive graph recognition system 
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7   Practical Evaluation 

To evaluate and compare the quality of output labelling  using the Interactive Learn-
ing scheme (IL) with respect to the Classical Learning (CL) scheme, we propose to 
use the similarity ,  (8) between labelling  and the labelling imposed by the 
specialist . 

The evaluation measure we used is the Area under the Learning Curve (ALC). Our 
Learning curve plots in each point the addition of similarities obtained by processing 
the whole test set normalised by the cardinality of the test set. That is,   1| | , , 0,1  (15) 

Moreover, we obtain a global measure of the quality of the learning process when 
it is considered to be finished. It is independent of the cardinality of the test and refer-
ence set and also the cardinality of the graphs, 

 (16) 

Values  and  are obtained through two baseline learning curves. The 
first one is the ideal learning curve that at first point goes up to the maximum value 
that equals 1. The second one is the “lazy” learning curve that follows a straight line. 
It is obtained by making random predictions. If |  | and  is the average 
cardinality of the graphs in the test set, the lazy learning curve can be approximated as !  . 

We have used the Tarragona-graph database [16]. It is a database of graphs that 
represents handwritten letters and it has the peculiarity that nodes of graphs of the 
same class have been manually labelled. Nodes represent junctions or ending points 
of strokes and non-directional edges are strokes. Attributes on the nodes are the 2D 
position and edges do not have attributes. Figure 6 shows some examples of character 
A. Nodes have been manually labelled and so the ith node of each graph represents the 
ith ending-point or junction. Some nodes are missing in some characters. 

There are 26 different characters and 11 elements for each character. From each 
character, we have used the 4 first elements as the test set and the other 7 elements as 
the reference set.  

We have performed 4 experiments using CL and other 4 experiments using IL. The 
difference between these four experiments is the initial values of  and . Note 
that, in CL, these values are constant through the learning process but in IL they are 
not constant. Figure 7 shows the average learning curves of the 8 experiments. 

 

 
Fig. 6. Character A of Tarragona-graph database 
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We have carried out the following process to plot each of the 8 curves: 

Model empty 
For i = 1 to 7 do 
    For C = 1 to 26 do 
        Gci = Select_New_Graph_from_Reference_Set_belonging_to_Class_C 
        Include Gci into de model 
    If IL recompute Kn and Ke 
    Saux = 0 
    For j = 1 to 4 do 
        For C = 1 to 26 do 
            Gcj = Select_New_Graph_from_Test_Set_belonging_to_Class_C 
                (Gout,f) = 1-Nearest_Neighbour_belonging_to_Class_C (Gj) 
                g = Ideal_Labelling (Gj,Gout) 
                Saux = Saux +  Similarity (g,f) 
    Plot (Saux/(4x26),i) 

Figure 8 shows the evolution of values of  and  when new graphs are added into 
the IL system. The table on the left shows the initial values. Each of the 4 curves has 
7 points. The model has 1 graph per class in the first point, 2 graphs per class in the 
second point and so on. Note that the four curves move to the same point, which has 
the be considered the optimal one, and it is independent of the initial values. 

   
  

Fig. 7. Average learning curves respect the number of graphs in the model and given 4 different 
initial  and  values. Left plot: CL and right plot: IL. 

 

Fig. 8. Evolution of Kn and Ke. in the 4 IL experiments 
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Table 3. Global score of CL and IL depending on the initial  and  values 

Kn 0.03 0.15 0.03 0.15 
Ke 0.03 0.03 0.15 0.15 
CL 0.632 0.848 0.747 0.848 
IL 0.841 0.846 0.840 0.844 

 

Finally, Table 3 shows the Global scores (16) of the learning curves shown in fig-
ure 7. Global scores of CL curves that the initial points are far from the final point in 
figure 8 have lower values. Conversely, there is a slight difference between CL and IL 
global scores when the initial points are close to the optimal point. 

8   Conclusions and Future Work 

We have presented an interactive and adaptive graph recognition method. It is based 
on the idea that if the quality of the labelling between graphs is increased, it also does 
the quality of the recognition or identification process. The feedback of the human 
specialist is introduced into the system as the ideal labelling between graphs and it is 
used to tone the weights of the edit costs in the similarity function between graphs. 
These weights are application dependent and difficult to be manually toned. Practical 
evaluation shows an example of obtaining  and  values. We conclude the final 
values are independent of the initial ones and also there is an increase of the quality of 
the labellings when these costs are automatically obtained. 
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Exploration of the Labelling Space Given Graph Edit 
Distance Costs* 
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Abstract. Graph Edit Distance is the most widely used measure of similarity 
between attributed graphs. Given a pair of graphs, it obtains a value of their 
similarity and also a path that transforms one graph into the other through edit 
operations. This path can be expressed as a labelling between nodes of both 
graphs. Important parameters of this measure are the costs of edit operations. In 
this article, we present new properties of the Graph Edit Distance and we show 
that its minimization lead to a few different labellings and so, most of the label-
lings in the labelling space cannot be obtained. Moreover, we present a method 
that using some of the new properties of the Graph Edit Distance speeds up the 
computation of all possible labellings. 

Keywords: Graph Edit Distance, Graph Edit Costs, Graph Labelling Space. 

1   Introduction 

Usually graphs have been applied to pattern recognition, specifically in the context of 
classification. Many improvements have been made in this field, graph distance func-
tions and graph matching algorithms are the main research lines. Some graph distance 
functions have been developed [1, 2, 3]. And there also exist some graph matching 
algorithms that minimize these distances [4, 5, 6]. One of the most commonly used 
distances is the Graph Edit Distance [1, 7]. Graph Edit Distance essentially depends 
on some constants,  and , and an attribute distance function.  

These constants and the distance function are application dependant and they are 
usually adjusted by an expert or learned using some not supervised process [4, 8]. Fig. 
1 illustrates the problem when it is applied to classification. A Batch training process 
(an expert or some automatic procedure) learns  and  according to the decided 
model. Later, a classical Graph Recognition technique, such as KNN, SVM, Kernels 
and so on, is applied to perform classification tasks. 

Another type of learning is the Adaptive Learning [9] (Fig. 2). In this type of learn-
ing an initial Batch Training process, that could be the same as the Classical Learning 
shown in Fig. 1, decides initial values for  and  constants. After this 
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Edge assignation cost is defined equivalently and given by: 

, , ,,         . .0               .   ,     (4) 

Using costs defined in (3) and (4) Graph Edit Cost of two graphs is defined as: 

, , , , , ,, , ,  

Where ,  and ,  

(5) 

Finally the Graph Edit Distance is defined as the minimum cost under any bijection in 
: , , ,

, , , , , ,  (6) 

Using this definition, Graph Edit Distance depends specifically on  and  values.  

3   Exploring the Labelling Space 

It can be almost inferred from [13] and it is proven in [14] that given two graphs ,  
several values for  and  of Graph Edit Distance constants minimizes at the  
same bijection between  and . However, the final Graph Edit Cost will be different 
even the bijection that minimizes the Graph Edit Distance is the same. This is because 
Graph Edit Cost depends linearly on the edit distance constants. In this article, we  
are interested in explore how  and  values that minimize at the same bijection  
are distributed. To that aim, we define, given two graphs  and , function  Ω , , which assigns each pair of ,  values to a graph bijection that 
minimizes the Graph Edit Distance. Moreover, we define the discrete labelling space 

as  Ω , , , where  , ,2 , … , .  is defined analogously. 

Proposition 1. Given two graphs  and , any region in Ω , , where ,  are 
assigned to the same bijection ’  form a convex polygon. 

Demonstration: Given two graphs  and  and the labelling ,  used to com-
pute the Graph Edit Distance, combining (3), (4) and (5), we can compute the Graph 
Edit Cost as: , , ,  # # # #  (7) 
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Note that for ,  to be optimal given concrete values for  and . The following 
system of inequalities must hold: # # # #  

 # # # #  
(8) 

Each of the above inequalities divides the space into two parts by a linear equation. It 
is known that the intersection of any set of linear inequalities is a convex polygon 
[15]. Consequently, each optimal labelling just appears into a single convex polygon. 
Note that the above formulation allows to divide the labelling space into convex poly-
gons, each of which corresponding to a single optimal labelling. Observe that it is 
possible that (8) produces an empty result, in this case the tested labelling is never 
optimal given any pair , .  

Equations given by (8) can help to compute all optimal labelling. However, the 
number of equations that must be computed is factorial with respect to the order of the 
graphs. Next section provides an algorithm that using Proposition 1 helps on comput-
ing the discrete labelling space Ω , . 

Fig. 4.b shows the labelling space for graphs in Fig. 4.a. Fig. 4.b represents Ω ,  
for values of  and  in the range 0,0.6 . Each region  represents a different 
labelling. Two of these labelling, 2 and 3, are represented in Fig. 4.a. 

 

Fig. 4.a. Two optimal labellings taking different  
and  values 

 

Fig. 4.b. Labelling space given 
graph of Fig. 4.a 

4   Computing the Discrete Labelling Space Using an Optimal 
Graph Matching Algorithm 

With the aim of applying Adaptive Learning methodology to learn  and  con-
stants of Graph Edit Distance, we present an algorithm which computes the discrete 
labelling space in an optimal way. The method is addressed to compute for each  
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value the least possible number of optimal graph matching computations for all  
values and induce the others using Proposition 1. To this aim, we define, given a pair 
of graphs and an optimal labelling , computed with concrete values for   and  , 
a range of values for , lower than , where the labelling  will lose its optimality. 
We will name this values  and . .  represents a  value 
where we certainly know that  will not be anymore optimal, and  indicates the 

 value from where it is possible that  loses its optimality. Once these ranges are 
computed, a dichotomic search is performed to locate the exact  value where label-
ling  loses optimality. Once the new labelling is located we continue the same proc-
ess until  equals 0 or  and  indicates that the current labelling cannot 
lose its optimality. An outline of the algorithm is listed below. 

Function ComputeLabelingSpaceGrid(G1, G2, maxKn, maxKe, interval) 
labelingSpaceGrid(*,*) = -1; 

 for (currentKn=0 ; currentKn<=maxKn ; currentKn+=interval){ 
  currKe = maxKe; 
  while (currKe > 0){ 
   currLab = optimalLabeling(G1,G2,Kn,currKe); 
   labelingSpaceGrid(index(Kn),index(currKe)) = currLab; 
    = comMinRange(G1,G2,Kn,currKe,currLab); 
    = comMaxRange(G1,G2,Kn,currKe,currLab); 
   if ((maxRange-minRange)>0){ 
    [currLab,currKe]= 

doDicotomicSearchOfBorder(G1,G2,currLab,minRange,maxRange); 
labelingSpaceGrid(index(Kn),index(currKe)) = currLab; 

   } 
  } 
 } 
 
 labelingSpaceGrid=fillNotComputedLabelings(labelingSpaceGrid); 
End ComputeLabelingSpaceGrid returns labelingSpaceGrid 

 

We know, using Proposition 1, that if two points of  Ω ,  minimize at the same 
bijection, any bijection between them must be the same. Using this property of con-
vex polygons fillNotComputedLabelings induces the rest of the grid labellings. The 
computation of values  and  is described in next sections. 

4.1   Computing  

Taking into account that the algorithm outlined above traverses from high to low  
values and under the assumption that contiguous labelling in  Ω ,  should be some-
how similar we propose to compute   using the following procedure. Given the 
initial optimal labelling   (computed using ( , )) to compute   we first gen-
erate several offspring ( ..  of this initial labelling  by producing small modifi-
cations.  We proceed by computing for each child  the  value where this new 
bijection will gain the optimality. After computing all ..  we take as  the 
maximum of .. . Note that for  values lower ,  will lose its optimality, 
so we can consider that value a lower bound of  where  labelling will change in  Ω ,  space. Example 1 shows the process we propose to obtain . 
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Once all values are computed, we perform the best possible heuristic assignation. 
Recall that some values depend on  so depending on the values where we evaluate 
them we can have several minimums per row. The minimums for matrix in Fig. 6 are 
surrounded. In this case, row  has two minimums. We propose to define  as 
the maximum , lower than the current , given all possible assignations. In the 
case of Fig. 6, two are the possible minimum assignations: , , , , ,0.29 0.71 0.19 0 0 01.19 2 1.63 2 1.19 2

 
(11) 

, , , , ,0.29 0.29 2 0.19 0 0 00.77 4 1.63 2 1.19 2  0.42 

(12) 

In this case the maximum value is Inf, however the value is greater than the 
rent .6, so we take 0.42. 
5   Graduated Assignment Algorithm for Computing the Grid 

The Graduated Assignment is possibly the most commonly known algorithm for 
graph matching. We aim to evaluate how well can compute the discrete labelling 
space in comparison to an optimal algorithm. We think this comparison is necessary 
in order to use the graduated assignment algorithm for learning purposes.  

In the original article [11], section 2.5 suggests the following function to optimize 
when graphs are attributed: 

   , , ,, , , ,  (13) 

Where ,,  indicates the compatibility of  to  and , ,  indicates the 

compatibility of node  to . If we take a closer look at (13), we see that is very 
similar to the Graph Edit Cost (5). The principal difference is that the  in (5) repre-
sents a cost and  in (13) represents compatibility. To adapt the Graduated Assign-
ment to optimize the Graph Edit Cost function we perform the following adaptation. 

,, 1 1 ,,     and    , , 1 1 , ,  
(14) 

6   Experiments 

Three experiments are performed related to the aim of the article. The first experiment 
is addressed to evaluate how many optimal distance computations can be saved when 
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low. Graphs have a mean of 10 nodes, 5 real nodes and 5 null nodes which should 
give an amount of  ∑ ! possible labellings which is much greater than the 
number of labellings we can obtain modifying ,  values. 

All experiments are performed using 0, .01 and .8 . 

7   Conclusions 

The Graph Edit Distance is one of the most used Attributed Graph distance. Graph 
Edit Distance function clearly depends on two application dependant constants, node 
insertion/deletion cost  and edge insertion/deletion cost  . The article presents a 
study of the applicability of Adaptive Learning methodology to learn these constants. 
To this aim, results on the influence of Graph Edit Distance constants over labellings 
which minimizes the Graph Edit Distance are presented. Theoretical development 
confirms that for some different Graph Edit Distance constants, Graph Edit Distance 
can minimize at the same bijection. Moreover, it is mathematically proved that 
{ ,  points that minimize at the same bijection form a convex polygon. In addi-
tion to the most theoretical concepts and propositions, the article presents an algo-
rithm that using the convex polygon property computes all optimal bijections for a 
discrete set of ,  values. The presented algorithm performs the task 90% faster 
than the trivial iterative process. Besides, with the objective of computing the label-
lings for a discrete set of ,  values using a fast and suboptimal graph matching 
algorithm, the article presents a performance analysis of the Graduated Assignment 
algorithm adapted to minimize the Graph Edit Distance function. Results show that 
the algorithm commits more errors when { ,  values are small. Analyzing the 
regions that the Graduated Assignment produces, we see that these regions do not 
fulfil the convex polygon rule. With respect to the number of labellings that can be 
obtained modifying { ,  values, we see that it is very low. This small amount of 
possible labellings makes statistically difficult to find { ,  values that exactly 
matches expert decisions in a supervised learning system. 
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Abstract. This paper proposes an efficient algorithm for inexact graph matching. 
Our main contribution is that we render the graph matching process to a way of 
recovery missing data based on dot product representation of graph (DPRG). We 
commence by building an association graph using the nodes in graphs with high 
matching probabilities, and treat the correspondences between unmatched nodes 
as missing data in association graph. Then, we recover correspondence matches 
using dot product representation of graphs with missing data. Promising ex-
perimental results on both synthetic and real-world data show the effectiveness 
of our graph matching method.   

Keywords: Graph matching; Random dot product graph; Association graph.  

1   Introduction 

Graph matching is the process of finding correspondences between the nodes and the 
edges of two graphs that satisfies some constrains. It is pivotal important in high-level 
vision. Unfortunately, in many applications, the observed graphs are subject to de-
formations due to noise, intrinsic variability of the patterns. So graph matching is in-
variably approached by inexact means [1], [2].  

There is a considerable literature on the problem of inexact graph matching. Broadly 
speaking, the first category method is based on tree search techniques [1], [3], [4], [5], 
[6]. Relaxation and optimization have also been used in graph matching [7], [8], [9], 
[10]. Recently, one of the most popular approaches to the graph matching problem has 
been to use spectral method [11], [12], [13], [14], [15], [16]. For instance, Umeyama 
[14] has shown an eigendecomposition to recover the permutation matrix. Scott and 
Longuet-Higgins [12] used spectral method for correspondence analysis and align 
point-sets by performing singular value decomposition on a point association weight 
matrix between different images. Shapiro and Brady [13] developed an extension of the 
Scott and Longuet-Higgins method, in which point sets are matched by comparing the 
eigenvectors of the Gaussian point-proximity matrix. However, these methods often 
required graphs of equal size. In order to overcome the problems that match graphs 
with different numbers of the nodes and weighted graphs with weighted errors, one way 
is developed by Terry Caelli and Serhiy Kosinov [16]. They extend these methods by 
clustering algorithm. Additionally, Bai and Hancock [17] achieve graph matching by 
using spectral embedding and semidefinite programming. They firstly embed the nodes 
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of a graph in Euclidean space and then use semidefinite programming to find point 
correspondences. Another way which is proposed by Luo and Hancock is to cast the 
problem of recovering correspondences in a statistical setting [18]. In this case the 
nodes of the input graph play the role of observed data while the nodes of the model 
graph act as hidden random variables. The matching is then found by EM algorithm. 
For computer vision area such as shape matching, image registration, there are some 
other special techniques to inexact matching [23], [24]. 

From Luo’s [18] EM graph matching algorithm, we draw the following observation: 
we can render correspondences between two graphs to missing information and use 
statistic and matrix method to recovery the missing information. Based on this obser-
vation, we develop dot product representation of graph (DPRG) and cast matching of 
graphs into a missing data restoration based on DPRG.    

Recently, DPRG [19], [20], [21], [22] is successfully used for graph embedding, 
which in turn facilitates clustering and image segmentation process. Given a (weighted) 
graph, DPRG produces a mapping of vertices to vectors in Rd ; vertex i maps to vector 
xi. The desired property is that dot product of xi and xj should approximate the weight of 
edge ij. Furthermore, by introducing an iterative algorithm, Scheinerman [21] extended 
DPRG to deal with the graphs with missing value, i.e., the weights for some edges in 
the graph are unknown. In fact, this method put forward a way of recovery missing 
value for the graph with missing data. We follow this idea and expand it to graph 
matching. By treating the correspondences between the two graphs to be matched as the 
missing data, we proposed an iterative algorithm which recovers the correspondences 
in a similar manner with Scheinerman’s.  

2   Dot Product Representation of Graphs (DPRG) 

2.1   Dot Product Representation of Graphs   

We briefly recall the main idea of random dot product graphs [19] [20] [21] [22]. Given 
a set of vectors 1{ }n

i i=x where d
i R∈x is a d-dimensional vector. For i ≠ j, we assume 

that [0,1]i j⋅ ∈x x  (we can normalize ix , jx to make [0,1]i j⋅ ∈x x ), then a graph G = (V, 
E) is generated at random. The vertex set V of this graph is {1, 2… n}. For i ≠ j, the 
probability of the edge connecting nodes vi and vj is set to i j⋅x x . Let Gn denotes the set 
of all simple graphs with vertex set {1, 2… n}, the probability measure PX (G) on Gn is 
defined as follow  

( ) ( )
, ,

1X i j i j
i j ij E i j ij E

P G
< ∈ < ∉

⎛ ⎞ ⎛ ⎞
= ⋅ × − ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∏ ∏x x x x .                                  (1)  

Rather than studied on generating graphs at random from a set of vectors. Schein-
erman [21] focused on the issue of finding the vectors X = [x1, x2… xn] that “best” 
model a given graph G in advance. The optimal solution of the vectors X is the one 
which maximizes the likelihood, i.e. ( )arg max X

X
P G . 

Let A = (aij)n×n be the adjacency matrix where aij is the edge weight with nonnegative 
value between nodes vi and vj. Then, the vectors X is sought to satisfy i j ija⋅ ≈x x where 

i ≠ j, i.e.  
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2
min ( ) ( )T T

AX
f X X X A I X X= − −                                        (2) 

where I is the n×n identity matrix, is the Haddamard product and ⋅ is the Frobenius 

norm. An iterant algorithm [21] is designed to find the “best” vectors X.   

2.2   Dot Product Representation of Graphs with Missing Data  

The problem Eq (2) takes information about the weight of all edges in the graph. 
However, it is possible that for some pairs of vertices, we simply do not have infor-
mation as to whether there is an edge jointing those vertices and, if so, what its weight 
is. In the following, we introduce the idea that models these missing data graphs based 
on DPRG. The problem can be reformulated as follow 

2

,min ( ) ( )T T
A MX

f X X X A M X X= − −                                      (3) 

where M is a labeling matrix with element valued 1 if the relationship between the two 
nodes vi ,vj (weight of edge ij) is unknown or can not be determined, 0 otherwise. We 
call M as missing data label matrix (MDLM). 

It should be noted that we can recover the missing value from DPRG (solution X). 
Let X=[x1,x2,…,xn] be the final solution of the Eq (3), the missing value for edge kl can 
be directly obtained from k l⋅x x . As pointed by Scheinerman [21], the iterative algo-

rithm (algorithm 1 in the following) can be used for DPRG with missing data by 
gradually eliminating the effect of the unknown or missing entries. Although the al-
gorithm has been proved to converge to local optimum, it can give a unique solution to 
Eq. (3), because the initialization is definite.  

Algorithm 1. Dot product representation of graph with missing data 

Input:    
－A nonnegative, symmetric, n × n matrix A 
－A positive integer d, Missing data label matrix M 
Output:   
－A d × n matrix X 
Step1: Let D be a zero matrix in order n × n 

    Step2: Calculate the spectrum decomposition of matrix AM+D. U is a d × n matrix 
builds on the first d eigenvectors. e is a diagonal matrix generating by the first d 
eigenvalues, where all negative eigenvalues are set to zero.  

Step3: Calculate eUX = and ( )TD M X X=  

Step4: Repeat step 2 and step 3 until D converges. 

3   Graph Matching Based on DPRG 

In this section, we turn to formulate the graph matching problem in terms of finding the 
missing correspondences between unmatched nodes in the two graphs. We start from 
building an association graph using the nodes that have been matched already in both 
graphs, and treat the corresponding matches between unmatched nodes as missing data 
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in association graph. Then the association graph is modeled using DPRG and the 
missing correspondences are then recovered by the iterative algorithm described in 
section 2.2. 

3.1   Initialization  

The initial correspondences can be the results from traditional matching algorithms, 
such as Umeyama [14], Bai method [17], Spectral embedding and so on. Our Spectral 
embedding matching algorithm can be described as following. We commence by 
solving Eq. (2) to embed the nodes of graphs in Euclidean space and then complete 
graph matching by aligning the points using Hungarian algorithm. The initial matching 
pairs are important for the following matching process. However, it is not very accurate 
and several of the corresponding pairs are likely to be incorrect. To make the matching 
more reliable, we introduce a consistency check process which is designed to remove 
these erroneous correspondences and obtain positive correspondences from initial 
result. Its principle is to enforce coherent spatial relationships of corresponding nodes 
between graphs. To do so, a compatibility matrix C = (cij)n×n is computed for each graph 
first. The element cij can simply be obtained from adjacency matrix A, i.e. cij = aij. Also, 
we can compute cij as the geodesic distance or Euclidean distance between two nodes of 
the graph in some special cases.  

Algorithm 2. Consistency Check Algorithm 

Input:  
－The initial correspondences Imap, Graph G1 and G2. 
－The number of positive correspondence nodes to be selected Pnum.  

Output:  
－Positive correspondence nodes set Pset, Positive correspondence mapping Pmap. 

Step1: Compute the compatibility matrices C1, C2 of graph G1 and G2 determined by 
correspondences Imap. 

Step2: Initialization of Pset and Pmap. 
1. Calculate the residual compatibility matrix R=|C1-C2|. 

2. Calculate the fitness of node i in G1 as
2

1

1
( ) ( , )

( )

G

j

f i R i j
d i =

= ∑ , where d (i) is the                

degree of node i in G1. 
3. Select the top Pnum least fitness nodes as the initial positive correspondences  

         Pset and hence the Pmap.  
Step3: Determine Pset and Pmap iteratively. 

1. Re-calculate the fitness index of node i in G1 as
1

( ) ( , )
( )

setj P

f i R i j
d i ∈

= ∑ , where 

Pset is the current positive correspondence node set. 
2. Select the top Pnum least fitness nodes as the positive correspondences (Pset) and 

hence the Pmap to update the ones in the last iteration. 
3. Go to 1, if Pset changed in the current iteration, Step 4 otherwise. 

Step4: Output Pset and Pmap. 
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3.2   Association Graph (AG) 

With the positive correspondences (Pmap) in hand, we turn our attention to build an 
association graph between the graphs to be matched. Let Pmap: I1→I2 where I1, I2 are the 
label subsets of graph G1 and G2 respectively and 1 2,I I be the complement of I1, I2. The 

adjacency matrices AM1 and AM2 of G1 and G2 are first normalized as follow 

1 2
1 2

1 2
, ,

1 , 1
max( ) max( )

i j i j

AM AM
A A

AM AM
= − = −  

Then the normalized adjacency matrices are rearranged to form block matrices 

1 1

1

1 1

c

T

A B
A

B C

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

and 2 2

2

2 2

c

T

A B
A

B C

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

where 1 1 1 1 1( , ) ( ( ), ( )), , 1cA i j A I i I j i j I= = , 1 1 1 1 1 1( , ) ( ( ), ( )), 1 , 1B i j A I i I j i I j I= = =  

and 1 1 1 1 1( , ) ( ( ), ( )), , 1C i j A I i I j i j I= = ,and Ac2, B2, C2 are similarly obtained. The adja-

cency matrix of our association graph (AG) is then taken the form 

1 2

1 1

2 2

c

T
M

T

A B B

A B C O

B O C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

                                                       (4) 

where O is a zero matrix and 
1 2( ) 2c c cA A A= + . 

The above association graph (AG) integrates both positive correspondences and two 
adjacency matrices at the same time. If we see AG as an incompletely observed net-
work [19] in which the unobserved links consist of the corresponding relationship 
between nodes that are not yet matched, then we can use algorithm 1 to obtain the 
DPRG of AG. Moreover, if we assume i0 belong to 1I and j0 is its corresponding node 

in 2I , then the vector xi0 will be similar to the vector xj0 (
0 0i j⋅x x will be larger) 

where
0i

x and
0j

x are from DPRG on AG. So we can see the missing value between two 

nodes in AG as the (similarity) matching probability for them in two graphs. In our 
paper, we predict these missing values using algorithm 1. In order to do so, we define 
missing data label matrix (MDLM) as follow. 

   
O O O

MDLM O O I

O I O

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                      (5) 

where I is a unit matrix.  

3.3   Missing Correspondences Recovery by DPRG 

As discussed above, we see the missing values as the similarity between nodes and then 
can determine the correspondences based on Hungarian algorithm directly [23]. 
However, we don’t determine the correspondences for all the unmatched nodes at the 
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same time, because the unmatched nodes that have strong connections with nodes 
which have been already matched are most possibly determined robustly. So, we cast 
the recovery of correspondence matches for unmatched nodes in an iterative frame-
work. Let Pset be the positive correspondence nodes set that contains the nodes which 
have been matched already in matching process and Eset be the unmatched node set in 
graph G1. For node i0 in Eset, we define the correlation strength RS between i0 and Pset 
as 0 0 0( ) ( )RS i E d i=  where 

00 1 0{ | ( , ) 0, }i j setE e A i j j P= ≠ ∈ and 0( )d i  is the node i0 degree 

in graph G1. In our iterative matching process, we only determine the correspondences 
for the nodes in Eset that have high correlation strength value every time. Let Pmap de-
note the mapping that is relevant to the Pset, then our DPRG based graph matching can 
be described as follow. 

Algorithm 3. Graph matching based on DPRG 

Input:    
－The initial correspondence Imap, Graph G1 and G2, threshold T. 
－The number of positive correspondence nodes to be selected Pnum. 
Output:   
－The correspondences Emap between graph G1 and G2. 
Step1: Initialization. Calculate Pmap using Algorithm 2. 
Step2: Build an association graph (AG) model based on Pmap and calculate the positive 

integer d by taking the integer value of k×|AG|. 
Step3: Find the correspondences or missing data using Algorithm 1. 
Step4: Determine the correspondences for the nodes in the Eset that have high RS value 

using the missing data and Hungarian algorithm.  
Step5: If the all nodes have their correspondences, go to step 6, otherwise update Pmap, 

Eset and go to Step2. 

Step6: Calculate fitness
2

1
( ) ( , )

( ) j G

f i R i j
d i ∈

= ∑ for every node in G1. If ( )f i T< , treat the 

node i as outlier node and delete it from Emap. 

The last step guaranties that the algorithm can deal with graphs with some outliers and 
make the algorithm have the ability to handle with graphs with different sizes.   

4   Experiments 

We provide some experimental evaluation of the new matching technique. There are 
two aspects to this study. We commence with a sensitivity study on synthetic data. The 
aim is to evaluate how the method performs under controlled structural corruption. 
Then we evaluate the method on some real-world data. Both in synthetic data and 
real-world experiments we compare our method with some alternatives reported 
elsewhere in the literature. In our experiments, the parameter T chosen is2×meani (f (i)) 
where f (i) is fitness value for node i described in step 6 in algorithm 3. The Pnum is set to 
be integer value of 0.3×|G1| and the k for calculating d is 0.3. 



 Graph Matching Based on Dot Product Representation of Graphs 181 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
ct

 c
or

re
sp

on
de

nc
e 

ra
te

Relative position deviation

 

Our method

X.Bai
Scott&Longuet-Higgins

Shapiro&Brady

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
ct

 c
or

re
sp

on
de

nc
e 

ra
te

 

Our method

X.Bai
Scott&Longuet-Higgins

Shapiro&Brady

 

Fig. 1. Comparison results of the four methods on synthetic data 

4.1   Synthetic Data Experiments 

We commence with some synthetic data experiments. The aim is to evaluate how the 
new method works under controlled structural corruption and to compare it with some 
alternative methods. These alternatives are Bai [17], Shapiro and Brady [13] and Scott 
and Longuet Higgins [12] feature set matching algorithms. The last two methods use 
coordinate information for the feature points and do not incorporate the graph structural 
information. To construct our experiments, we have generated random points-sets and 
use the position of the points to generate a Delaunay graph. Firstly, we have fixed the 
number of points (50 in this experiment) and added Gaussian noise to the point posi-
tions then generated a Delaunay graph. The parameter of the noise process is the 
standard deviation of the positional jitter [18]. In our experiments, we express this 
parameter as a fraction of the average minimum distance between points. Fig. 1(left 
plot) shows the fraction of correct correspondences as a function of the noise standard 
deviation for different methods. We also evaluate the effect of structural noise. Here we 
have added a controlled fraction of additional nodes at random positions and recom-
puted the Delaunay triangulations. Fig. 1(right plot) shows the fraction of correct cor-
respondences as a function of the fraction of added nodes. For every parameter, we 
perform our algorithm 30 times. 

4.2   Real-World Data 

In this section, we apply our matching method to three image sequences (YORK, CMU 
and MOVI). The sample images are shown in Fig. 2,5,7, and the detected corner fea-
tures and their Delaunay triangulations are overlayed on the images. 

We commence our real-world evaluation on YORK sequence. Fig. 3 shows some 
results obtained when we match the second image to some subsequent images in the 
sequence. The results are summarized in Fig. 4. We demonstrate our method with our 
spectral embedding which is the initial matching algorithm for our method. Fig. 4 
shows that our method returns considerably better matches.   

 

Fig. 2. Delaunay Graphs overlayed on the YORK house images 
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Fig. 3. Our algorithm for YORK house images  
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Fig. 4. Summary of experimental results for YORK House Sequence images 

 

Fig. 5. Delaunay Graphs overlayed on the CMU house images 

  

Fig. 6. Our algorithm for CMU house images 

Table 1. Summary of two matching algorithms for the CMU House Sequence Images 

Images Points methods 
Correct  

correspondences 
False  

correspondences 
No  

correspondences 
EM - - - house1 30 

DPRG - - - 
EM 28 1 1 

house2 32 
DPRG 28 1 1 

EM 23 5 2 
house3 31 

DPRG 25 3 2 
EM 11 10 9 

house4 30 
DPRG 22 4 4 

EM 5 16 9 
house5 30 

DPRG 19 7 4 

 
We then study our real-world evaluation of the method on CMU model house se-

quence. Fig. 6 shows the results obtained when we match the first image to each of the 
subsequent image in the sequence. We compare our method (DPRG) with EM method  
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Fig. 7. Delaunay Graphs overlayed on the MOVI sample house images 

 

Fig. 8. Our algorithm for MOVI house images 

Table 2. Summary of Experimental results for the MOVI House Sequence Images 

Images Points Correct 
correspondences 

False 
correspondences 

No 
correspondences 

house1 140 - - -
house3 138 126 6 6 
house5 142 114 19 7 
house7 140 107 21 12  

[18], and the results are summarized in table 1. From this result, our method performs 
better than EM method. 

The final real-world example is furnished on MOVI sequence. Fig. 7 shows the 
some matching results in the sequence. The results are summarized in table 2. 

5   Conclusions 

An efficient graph matching algorithm is proposed in this paper. The main idea is to 
cast the graph matching process in a way of recovery missing data based on DPRG. We 
first build an association graph using the nodes that have been matched and treat the 
correspondences between unmatched nodes as missing data in association graph. Then, 
based on DPRG, we recover these correspondence matches. We have demonstrated the 
effectivity of the method on both synthetic and real-world data.    
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Abstract. In this paper an extension of index-based subgraph match-
ing is proposed. This extension significantly reduces the storage amount
and indexing time for graphs where the nodes are labeled with a rather
small amount of different classes. In order to reduce the number of pos-
sible permutations, a weight function for labeled graphs is introduced
and a well-founded total order is defined on the weights of the labels.
Inversions which violate the order are not allowed. A computational
complexity analysis of the new preprocessing is given and its complete-
ness is proven. Furthermore, in a number of practical experiments with
randomly generated graphs the improvement of the new approach is
shown. In experiments performed on random sample graphs, the num-
ber of permutations has been decreased to a fraction of 10−18 in average
compared to the original approach by Messmer. This makes indexing of
larger graphs feasible, allowing for fast detection of subgraphs.

Keywords: Graph isomorphism, Subgraph isomorphism, Tree search,
Decision tree, Indexing.

1 Introduction

Graphs play a major role in structural pattern recognition. An important task
in this field is to find similar structures (error-tolerant graph matching) or the
same structure (exact graph matching). The focus of this paper is on the latter
task, which is important if exactly the same structure or sub-structure needs to
be retrieved.

Exact graph matching is needed when the user searches for specific constel-
lations in molecules [11], in computer vision for the recognition of 3-D ob-
jects [8,14], shape matching in image analysis [6,2], or room-constellations in
floor plans [13]. In most applications, the retrieval result should be available in
real-time and the database of reference structures does not change too often. For
those situations it is advisable to build an index of the reference structures in
advance.
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Such a method has been proposed by Messmer et al. [9]. It builds an index
using the permutated adjacency matrix of the graph. The real-time search is
then based on a tree based. While the method has shown to be effective for
reference set with small graphs, it is infeasible for graphs with more than 19
vertices.

In this paper we propose a method to overcome this problem. Assuming that
the number of labels for the nodes is relatively small, we introduce a well-founded
total order and apply this during index building. This optimization decreases
the amount of possible permutations dramatically and allows building indexes
of graphs with even more than 30 vertices.

The rest of this paper is organized as follows. First, Section 2 gives an overview
over related work. Subsequently, Section 3 introduces definitions and notations
which are used and Section 3.1 describes the new preprocessing step. Next,
Section 4 will show that the number of computational steps will be significantly
decreased. Finally, Section 5 concludes the work.

2 Related Work

In [7], Goa et al. give a survey of work done in the area of graph matching. The
focus in the survey is the calculation of error-tolerant graph-matching; where
calculating a graph edit distance (GED) is an important way. Mainly the GED
algorithms described are categories into algorithms working on attributed or
non-attributed graphs. Ullman’s method [12] for subgraph matching is known
as one of the fastest methods. The algorithm attains efficiency by inferentially
eliminating successor nodes in the tree search.

Bunke [3,4] discussed several approaches in graph-matching. One way to cope
with error-tolerant subgraph matching is using the maximum common subgraph
as a similarity measure. Furthermore the application of graph edit costs which is
an extension of the well-known string edit distances. A further group of subopti-
mal methods are approximate methods, they are based on neural networks, such
Hopfield network, Kohonen map or Potts MFT neural net. Moreover methods
like genetic algorithms, the usage of Eigenvalues, and linear programming are
applied.

Graph matching is challenging in presence of large databases [1,4]. Conse-
quently, methods for preprocessing or indexing are essential. Preprocessing can
be performed by graph filtering or concept clustering. The main idea of the graph
filtering is to use simple features to reduce to number of feasible candidates. An-
other concept clustering is used for grouping similar graphs. In principle, given a
similarity (or dissimilarity) measure, such as GED [5], any clustering algorithm
can be applied. Graph indexing can be performed by the use of decision trees.

Messmer and Bunke [9] proposed a decision tree approach for indexing the
graphs. They are using the permutated adjacency matrix of a graph to build a
decision tree. This technique is quite efficient during run time, as a decision tree is
generated beforehand which contains all model graphs. However, the method has
to determine all permutations of the adjacency matrices of the search graphs.
Thus, as discussed in their experiments, the method is practically limited to
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graphs with a maximum of 19 vertices. The main contribution of this paper is
to improve the method of Messmer and Bunke for special graphs by modifying
the index building process.

3 Definitions and Notations

Basic definitions used throughout the paper are already defined in [9], such as a
labeled graph G = (V, E, Lv, Le, μ, υ), adjacency matrix (M), and permutations
on adjacency matrices (A(G)). Besides, definitions for orders on sets are needed.

Definition 1. A total order is a binary relation ≤ over a set P which is tran-
sitive, anti-symmetric, and total, thus for all a, b and c in P, it holds that:

– if a ≤ b and b ≤ a then a = b (anti-symmetry);
– if a ≤ b and b ≤ c then a ≤ c (transitivity);
– a ≤ b or b ≤ a (totality).

Definition 2. A partial or total order ≤ over a set X is well-founded,
iff (∀ Y ⊆ X : Y 
= ∅ → (∃y ∈ Y : y minimal in Y in respect of ≤)).

Additionally, a weight function is defined which assigns weight to a label of a
graph.

Definition 3. The weight function σ is defined as: σ : Lv → N.

Using the weight function, a well-founded total order is defined on the labels of
graph, for example σ(L1) < σ(L2) < σ(L3) < σ(L4). Thus the labeled graph
can be extended in its definition.

Definition 4. A labeled graph consists of a 7-tuple, G = (V, E, Lv, Le, μ, υ, σ),
where
– V is a set of vertices,
– E ⊆ V × V is a set of edges,
– Lv is a set of labels for the vertices,
– Le is a set of labels for the edges,
– μ : V → Lv is a function which assigns a label to the vertices,
– υ : E → Le is a function which assigns a label to the edges,
– σ : Lv → N is a function which assigns a weight to the label of the vertices,

and a binary relation ≤ which defines a well-founded total order on the weights
of the labels:

∀x, y ∈ Lv : σ(x) ≤ σ(y) ∨ σ(y) ≤ σ(x)

3.1 Algorithm

The algorithm for subgraph matching is based on the algorithm proposed by
Messmer and Bunke [9], which is a decision tree approach. Their basic assump-
tion is that several graphs are known a priori and the query graph is just known
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during run time. Messmer’s method computes all possible permutations of the
adjacency matrices and transforms them into a decision tree. At run time, the
adjacency matrix of the query graph is used to traverse the decision tree and
find a subgraph which is identical.

Let G = (V, E, Lv, Le, μ, υ) be a graph from the graph database and M the
corresponding n× n adjacency matrix and A(G) the set of permuted matrices.
Thus the total number of permutations is |A(G)| = n!, where n is the dimension
of the permutation matrix, respectively the number of vertices.

Now, let Q = (V, E, Lv, Le, μ, υ) be a query graph and M ′ the corresponding
m×m adjacency matrix, with m ≤ n. So, if a matrix MP ∈ A(G) exists, such
that M ′ = Sm,m(MP ), the permutation matrix P which corresponds to MP

represents a subgraph isomorphism from Q to G, i.e

M ′ = Sm,m(MP ) = Sm,m(PMPT ).

Messmer proposed to arrange the set A(G) in a decision tree, such that each
matrix in A(G) is classified by the decision tree. However, this approach has
one major drawback. For building the decision tree, all permutations of the
adjacency matrix have to be considered. Thus, for graphs with more than 19
vertices the number of possible permutations becomes intractable. In order to
overcome this issue, the possibilities of permutations have to be reduced. One
way is to define constraints for the permutations. Therefore a weight function σ
(see Definition 3) is introduced which assigns a weight for each vertex according
to its label. Thus each label has a unique weight and a well-founded total order
(see Definition 1 and Definition 2) on the set of labels which reduces the number
of allowed inversion for the adjacency matrix. Figure 1 illustrates an example
for the modified matrices and the corresponding decision tree. Let us consider
the following weights for the nodes:

Lv ={L1, L2, L3}
σ(L1) = 1,

σ(L2) = 2,

σ(L3) = 3.

Each inversion that violates the ordering is not allowed. Thus just the vertices
which have the same label, respectively the same weights, have to be permuted
and if the labels have a different weight, just the variations are required. Given
the graph G, the following labels are assigned to the vertices,

V ={v1, v2, v3}
μ(v1) = L1,

μ(v2) = L2,

μ(v3) = L2.
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Fig. 1. Modified decision tree for adjacency matrices

Hence, the only valid permutations are:

1. σ(μ(v1)) ≤ σ(μ(v2)) ≤ σ(μ(v3))
2. σ(μ(v1)) ≤ σ(μ(v3)) ≤ σ(μ(v2))
3. σ(μ(v2)) ≤ σ(μ(v3))
4. σ(μ(v3)) ≤ σ(μ(v2))

Let V A(G) be the set of all valid permutations. The decision tree is built ac-
cording to the row-column elements of the adjacency matrices MP ∈ V A(G)
and should cover all graphs from the database. So, let R be the set of semantics
R = {G1, G2, ..., Gn}, where n is the total number of graphs in the reposi-
tory, with their sets of corresponding adjacency matrices V A(G1), V A(G2), ...,
V A(Gn). Now, each set of adjacency matrices has to be added to the decision
tree. An obvious advantage of the method is that the whole process can be done
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Algorithm 1. BUILD INDEX(G = (V, E, Lv, Le, μ, υ, σ), Tree)
Require: Unsorted set V of vertices, μ labeling function, σ weight function.
1: sort(V, Lv , μ, σ)

Ensure: Vertices V are sorted according to the defined order.
2: Let O be an empty list.
3: for all li ∈ LV do
4: Let interval {va, . . . , vb} contain all v with μ(v) = li
5: Oi ← V ARIATIONS({va, . . . , vb})
6: end for
7: Let AG← O1 × . . . ×O|Lv|.
8: for all mi in AG do
9: Add row column vector for sequence of mi to Tree.

10: end for

a priori. The decision tree acts as an index for subgraphs. So, during run time
the decision tree has been loaded into memory and by traversing the decision
tree, the corresponding subgraph matrices are classified. For the query graph
the adjacency matrix is determined following the constraints defined by order-
ing. Afterwards the adjacency matrix is split up into row-column vectors ai. For
each level i the corresponding row-column vector ai is used to find the next node
in the decision tree using an index structure. As query q1 ends in a leaf of the
decision tree, the labels of the leaf are the results, query q2 stops in a node, thus
the labels of all leafs beneath the node combine the result.

3.2 Proof of Completeness

For the proposed modified algorithm it has to be proven that the algorithm
finds all solutions. The algorithm elaborated in the previous section reduces
the number of valid permutations. So, it has to be shown that by leaving out
permutations, no valid solution is lost.

Let G = (V, E, Lv, Le, μ, υ, σ) be a well-founded total ordered graph and let
A(G) be the set which contains all valid permutations of the graph’s adjacency
matrices. To be complete, the algorithm must find a solution if one exists; other-
wise, it correctly reports that no solution is possible. Thus if every possible valid
subgraph S ⊆ G, where the vertices of S fulfill the order, every corresponding
adjacency matrix M has to be an element of the set A(G), M ∈ A(G).

For this reason to proof that the algorithm is complete it has to be shown that
the algorithm generates all valid subgraphs S ⊆ G. Therefore the pseudo code
of Algorithm 1 shows how the index is build. Algorithm 2 and Algorithm 3 are
helping functions for calculating all variations of the set of vertices in an interval.
The generation of the index starts with an unsorted set of vertices. By sorting
the vertices with their associated labels using the well-founded total order, the
set is ordered according to the weights of the labels.

Now, the algorithm iterates over all intervals of vertices {va, ..., vb} where
the labels have the same weights, σ(μ(va)) == σ(μ(vb)). For each interval
{va, . . . , vb}i all variations with respect to the order have to be determined.
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Algorithm 2. PERMUTE(V, begin, end, R)
Require: Sorted set V of vertices and begin < end, with Vend−1 being last the

element.
1: Adding sequence of vertices V to R.
2: for i← end− 2 to begin do
3: for j ← i + 1 to end− 1 do
4: Swapping position i and j in V.
5: Call PERMUTE(V, i + 1, end, R).
6: end for
7: Call ROTATE(V, i + 1, end, R).
8: end for

Algorithm 3. ROTATE(V, begin, end, R)
1: Let temp← Vend−1.
2: Shift elements in V in from position begin to end− 1 one position right
3: Set Vbegin ← temp.
4: Add sequence of vertices V to R.

These variations are computed in Algorithm 4, by determining all combina-
tion of the interval {va, . . . , vb}i including the empty set and calculating all
permutations for these combinations. Algorithm 2 and Algorithm 3 realize the
algorithm proposed by Rosen [10] which computes all permutations for a de-
fined interval. It has been proven that Rosen’s algorithm computes all per-
mutations. In combinatorial mathematics, a k-variation of a finite set S is a
subset of k distinct elements of S. For each chosen variation of k elements,
where k is Linterval = length of interval; k = 1 . . . Linterval, again all permuta-
tions have to be considered. Now, assuming there would be a valid subgraph
Q = (V ′, E′, L′

v, L
′
e, μ, υ, σ), respectively the corresponding adjacency matrix A

which depends on the alignment of the vertices. To be a valid subgraph, V ′ has
to be a subset of V , V ′ ⊆ V . Furthermore the alignment of the vertices V ′

according to their labels has to fulfill the defined order, σ(μ(vi)) ≤ σ(μ(vi+1)).
For the alignment the intervals {v′a, . . . , v′b} ∈ V ′ where the weights of the labels
have the same value σ(μ(v′a))) == σ(μ(v′b) are important as they can vary. The
Algorithm 4 determines all variations for intervals with the same weights for la-
bels, thus the alignment {v′a, . . . , v′b} is considered. This holds for each interval,
thus algorithm produces all valid permutations according to the well-founded
total order. As the query graph Q also has to fulfill the order, its adjacency
matrix A will be an element of A(G), if Q is a valid subgraph of G. Thus, the
solution will be found in the decision tree.

3.3 Complexity Analysis

The original algorithm by Messmer [9] as well as the proposed algorithm need an
intensive preprocessing, the compilation of the decision tree. Messmer’s method
has to compute all permutations of the adjacency matrix of the graph, thus the
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Algorithm 4. VARIATIONS({va, . . . , vb})
Require: Sorted set V = {va, . . . , vb} of vertices, a ≤ b.
1: Let O be an empty list.
2: Determine all combinations C for {va, . . . , vb} including the empty set.
3: for all c in C do
4: Call PERMUTE(c, 0, |c|, O).
5: end for
6: Return O.

compilation of the decision tree for a graph G = (V, E, Lv, Le, μ, υ, σ) has a run
time complexity of O(|V |!).

Due to space limitations, we omit the detailed listing of all calculations. The
final result for the complexity of our proposed approach is

O(((nmax + 1)!)|Lv|),

where nmax is the maximum number of vertices with the same weight. Thus for
the worst case - where all vertices have the same label - nmax = |V |, O((|V |+1)!)
which would be worse than the method proposed by Messmer and the best case
- where all vertices have different labels (nmax = 1) is O(2|V |) To find the
average case of the algorithm the distribution of the labels in the graph has to
be considered. This distribution varies according to the represented data.

4 Evaluation

In order to examine run time efficiency of the modified subgraph matching ex-
periments on randomly generated graphs were performed. The modified decision
tree algorithm has been implemented in Java using a Java 6 virtual machine.
The experiments ran on a Intel Core Duo P8700 (2.53 GHz) CPU with 4 GByte
main memory. For the experiment 100 random graphs were generated with 15
to 30 vertices. It compares Messmers’s algorithm with its required permutations
to the modified algorithm. The permutations for the modified algorithm were
determined according to the algorithm discussed in Section 3.1 and the formula
in Section 3.3:

|Lv|∏
i=1

⎛
⎝ ni∑

j=1

(
ni

j

)
· j!
⎞
⎠

and as the original has to be calculate the permutations for all vertices (|V |!
permutations). In the second experiment the time to add a graph to the deci-
sion tree was measured and again the number of permutations of the adjacency
matrix which were added to the decision tree. As the experiment was quite
time-consuming on a desktop machine, only the performance for five smaller
graphs was measured. The results of the experiment are listed in Tab. 2. The
experiments show that the algorithm significantly reduces the number of per-
mutations (see Tab. 1). Though, the time needed to compile the decision tree is
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Table 1. Results of graph experiments (first 10 graphs)

Graph Vertices Permutations Permutations Same lables
# (modified) (original) (max.)

1 17 3.26 × 106 3.55 × 1014 5
2 21 3.59 × 109 5.10 × 1019 8
3 17 1.08 × 107 3.55 × 1014 5
4 20 2.50 × 108 2.43 × 1018 6
5 24 1.64 × 1012 6.20 × 1023 10
6 17 1.63 × 106 3.55 × 1014 3
7 21 2.04 × 107 5.10 × 1019 3
8 30 1.39 × 1012 2.65 × 1032 5
9 22 8.01 × 108 1.12 × 1021 6
...

...
...

...
...

100 23 1.00 × 109 2.58 × 1022 6� 23.05 1.09 × 1013 3.73 × 1031 5.23

Table 2. Run time for compiling the decision tree for each graph

Graph Vertices Run time Permutations Same lables
# (minutes) # (max.)

1 17 1.47 8.19× 105 4
2 17 8.90 4.17× 106 5
3 21 45.67 5.32× 107 4
4 21 10.06 8.19× 106 3
5 21 38.01 4.09× 107 3

still quite long even for small problem instance, as shown in Tab. 2. However, as
the method is designed for an off-line preprocessing and considered to run on a
server machine, it is still reasonable for practical applications.

5 Conclusions and Future Work

In this paper an extension for the method of Messmer’s subgraph matching has
been proposed. The original method is very efficient to perform exact subgraph
matching on a large database. However, it has a limitation for the maximum
number of vertices. The modification discussed in this paper enables to increase
this limit depending on how the vertices are labeled. As the number of permuta-
tions in the preprocessing step depends on the vertices with the same labels, an
analysis of the data that will be represented in graph is necessary. If there are
just a few vertices with the same label, e.g. less than five, even graphs with 30
vertices can be handled. It has been proven that the modification of the method
does not affect its completeness.

Noteworthy, the proposed method can be applied in several areas, such as
object recognition, matching of 2D or 3D chemical structures, and architec-
tural floor plan retrieval. Future work will be to perform experiments on real
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graph data sets and research strategies for choosing appropriate weight func-
tions. Furthermore, we plan to extend this method to provide a fast method for
error-tolerant graph matching.

References

1. Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters 18(8), 689–694 (1997)

2. Bunke, H., Messmer, B.: Efficient attributed graph matching and its application
to image analysis, pp. 44–55 (1995)

3. Bunke, H.: Graph matching: Theoretical foundations, algorithms, and applications.
In: Proc. Vision Interface (2000)

4. Bunke, H.: Recent developments in graph matching. International Conference on
Pattern Recognition 2, 2117 (2000)

5. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common
subgraph. In: Pattern Recognition Letters, pp. 255–259 (1998)

6. Cheng, J., Huang, T.: Image registration by matching relational structures. Pattern
Recognition 17(1), 149–159 (1984)

7. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Analysis
and Applications 13(1), 113–129 (2009)

8. Kim, W., Kak, A.: 3-d object recognition using bipartite matching embedded in
discrete relaxation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 13, 224–251 (1991)

9. Messmer, B., Bunke, H.: A decision tree approach to graph and subgraph isomor-
phism detection. Pattern Recognition 32, 1979–1998 (1999)

10. Rosen, K.H.: Discrete mathematics and its applications, 2nd edn. McGraw-Hill,
Inc., New York (1991)

11. Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G., Schom-
burg, D.: BRENDA, the enzyme database: updates and major new developments.
NUCLEIC ACIDS RESEARCH 32(SI) (January 2004)

12. Ullmann, J.: An algorithm for subgraph isomorphism. Journal of the ACM
(JACM) 23(I), 31–42 (1976)

13. Weber, M., Langenhan, C., Roth-Berghofer, T., Liwicki, M., Dengel, A., Petzold,
F.: a.SCatch: Semantic Structure for Architectural Floor Plan Retrieval. In: Bichin-
daritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, Springer, Heidelberg
(2010)

14. Wong, E.K.: Model matching in robot vision by subgraph isomorphism. Pattern
Recogn 25, 287–303 (1992)



Graph Transduction as a Non-cooperative Game

Aykut Erdem1 and Marcello Pelillo2

1 Hacettepe University, Beytepe, 06800, Ankara, Turkey
aykut.erdem@hacettepe.edu.tr

2 “Ca’ Foscari” University of Venice, Mestre, Venezia, 30172, Italy
pelillo@dsi.unive.it

Abstract. Graph transduction is a popular class of semi-supervised learning tech-
niques, which aims to estimate a classification function defined over a graph of
labeled and unlabeled data points. The general idea is to propagate the provided
label information to unlabeled nodes in a consistent way. In contrast to the tra-
ditional view, in which the process of label propagation is defined as a graph
Laplacian regularization, here we propose a radically different perspective that is
based on game-theoretic notions. Within our framework, the transduction prob-
lem is formulated in terms of a non-cooperative multi-player game where any
equilibrium of the proposed game corresponds to a consistent labeling of the
data. An attractive feature of our formulation is that it is inherently a multi-class
approach and imposes no constraint whatsoever on the structure of the pairwise
similarity matrix, being able to naturally deal with asymmetric and negative sim-
ilarities alike. We evaluated our approach on some real-world problems involving
symmetric or asymmetric similarities and obtained competitive results against
state-of-the-art algorithms.

1 Introduction

In the machine learning community, semi-supervised learning (SSL) has gained
considerable popularity over the last decade [3,19] and within the existing paradigms,
graph-based approaches to SSL, namely the graph transduction methods, constitute an
important class. These approaches model the geometry of the data as a graph with nodes
corresponding to the labeled and unlabeled points and edges being weighted by the sim-
ilarity between points, and try to estimate the labels of unlabeled points by propagating
the coarse information available at the labeled nodes to the unlabeled ones. Performing
this propagation in a consistent way relies on a common a priori assumption, known
as the “cluster assumption” [17,3], which states that (1) points which are close to each
other are expected to have the same label, and (2) points in the same cluster (or on the
same manifold) are expected to have the same label. Building on this assumption, tra-
ditional graph-based approaches formalize graph transduction as a regularized function
estimation problem on an undirected graph [9,20,17].

In this paper, we present a novel framework for graph transduction, which is derived
from a game-theoretic formulation of the competition between the multi-population of
hypotheses of class membership. Specifically, we cast the problem of graph transduc-
tion as a multi-player non-cooperative game where the players are the data points that
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play a classification game over and over until an equilibrium is reached in their re-
spective strategies. In this game, the strategies played by the labeled points are already
decided at the outset, as each of them knows which class it belongs to. On the other
hand, the strategies available to unlabeled points are the whole set of hypotheses of be-
ing a member of one of the provided classes. The players compete with each other by
selecting their own strategies, each choice obtains support from the compatible ones and
competitive pressure from all the others. In the long run, the competition will reduce
the population of strategies which assume the hypotheses that do not receive strong
support from the rest, while it will allow populations with strong support to flourish. In
this study, this evolutionary dynamics is modeled by a classic formalization of natural
selection process used in the evolutionary game theory [16], commonly referred to as
the replicator dynamics. It is worth-mentioning that our formulation is intrinsically a
multi-class approach and does not impose any constraint on the value of the payoffs
(similarities); in particular, payoffs do not have to be nonnegative or symmetric.

The remainder of this paper is structured as follows. In Section 2, we review basic no-
tions from non-cooperative game theory. In Section 3, we formulate graph transduction
in terms of a non-cooperative multi-player game. In Section 4, we present our experi-
mental results on a number of real-world classification problems. Finally, in Section 5,
we conclude the paper with a summary and directions for future work.

2 Non-cooperative Games and Nash Equilibria

Following the notations used in [16], a game with many players can be expressed in
normal form as a triple G = (I, S, π), where I = {1, . . . , n}, with n ≥ 2, is the set
of players, S = ×i∈ISi is the joint strategy space defined as the Cartesian product of
the individual pure strategy sets Si = {1, . . . , mi}, and π : S → R

n is the combined
payoff function which assigns a real valued payoff πi(s) ∈ R to each pure strategy
profile s ∈ S and player i ∈ I.

A mixed strategy of player i ∈ I is a probability distribution over its pure strategy
set Si, which can be described as the vector xi = (xi1, . . . , ximi)

T such that each com-
ponent xih denotes the probability that the player chooses to play its hth pure strategy
among all the available strategies. Mixed strategies for each player i ∈ I are con-
strained to lie in the standard simplex of the mi-dimensional Euclidean space R

mi ,
Δi = {xi ∈ R

mi :
∑mi

h=1 xih = 1, and xih ≥ 0 for all h}. Accordingly, a mixed strat-
egy profile x = (x1, . . . , xn) is defined as a vector of mixed strategies, each xi ∈ Δi

representing the mixed strategy assigned to player i ∈ I, and each mixed strategy pro-
file lives in the mixed strategy space of the game, given by the Cartesian product
Θ = ×i∈IΔi.

For the sake of simplicity, let z = (xi, y−i) ∈ Θ denote the strategy profile where
player i plays strategy xi ∈ Δi whereas other players j ∈ I \ {i} play based on the
strategy profile y ∈ Θ, that is to say, zi = xi and zj = yj for all j 
= i. The expected
value of the payoff that player i obtains can be determined by a weighted sum for any
i, j ∈ I as

ui(x) =
∑
s∈S

x(s)πi(s) =
mj∑
k=1

ui

(
ek

j , x−j

)
xjk (1)
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where ui

(
ek

j , x−j

)
denotes the payoff that player i receives when player j adopts its

kth pure strategy, and ek
j ∈ Δj stands for the extreme mixed strategy corresponding the

vector of length mj whose components are all zero except the kth one which is equal
to one.

The mixed best replies for player i against a mixed strategy y ∈ Θ, denoted by βi(y),
is the set of mixed strategies which is constructed in such a way that no other mixed
strategy other than the ones included in this set gives a higher payoff to player i against
strategy y, defined as the set βi(y) = {xi ∈ Δi : ui (xi, y−i) ≥ ui (zi, y−i) ∀zi ∈ Δi}.
Subsequently, the combined mixed best replies is defined as the Cartesian product of
best replies of all the players β(y) = ×i∈Iβi(y) ⊂ Θ.

Definition 1. A mixed strategy x∗ = (x∗
1, . . . , x

∗
n) is said to be a Nash equilibrium if it

is the best reply to itself, x∗ ∈ β(x∗), that is

ui(x∗
i , x

∗
−i) ≥ ui(xi, x

∗
−i) (2)

for all i ∈ I, xi ∈ Δi, and xi 
= x∗
i . Furthermore, a Nash equilibrium x∗ is called

strict if each x∗
i is the unique best reply to x∗, β(x∗) = {x∗}

Nash equilibrium constitutes the key concept of game theory. It is proven by Nash
that any non-cooperative game with finite set of strategies has at least one mixed Nash
equilibrium [11]. The algorithmic issue of computing a Nash equilibria for the proposed
transduction game will be discussed later in Section 3.2.

3 Graph Transduction Game (GTG)

Consider the following graph transduction game. Assume each player i ∈ I participat-
ing in the game corresponds to a particular point in a data set X = {x1, . . . ,xn} and
can choose a strategy among the set of strategies Si = {1, . . . , c}, each expressing a
certain hypothesis about its membership to a class and |Si| being the total number of
classes. Hence, the mixed strategy profile of each player i ∈ I lies in the c-dimensional
simplex Δi. By problem definition, we can categorize the players of the game into two
disjoint groups: those which already have the knowledge of their membership, which
we call determined players and denote them with the symbol ID , and those which don’t
have any idea about this in the beginning of the game, which are hence called undeter-
mined players and correspondingly denoted with IU .

The so-called determined players of the game can further be distinguished based on
the strategies they follow without hesitation, coming from their membership informa-
tion. In formal terms, ID = {ID|1, . . . , ID|c}, where each disjoint subset ID|k stands
for the set of players always playing their kth pure strategies. It thus follows from this
statement that each player i ∈ ID|k plays its extreme mixed strategy ek

i ∈ Δi. In other
words, xi is constrained to belong to the minimal face of the simplex Δi spanned by
{ek

i }. In this regard, it can be argued that the determined players do not play the game
to maximize their payoffs since they have already chosen their strategies. In fact, the
transduction game can be easily reduced to a game with only undetermined players IU
where the definite strategies of determined players ID act as bias over the choices of
undetermined players.
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It should be noted that any instance of the proposed transduction game will al-
ways have a Nash equilibrium in mixed strategies [11]. Recall that, for the players,
such an equilibrium corresponds to a steady state such that each player plays a strat-
egy that could yield the highest payoff when the strategies of the remaining players
are kept fixed, and it provides us a globally consistent labeling of the data set. Once
an equilibrium is reached, the label of a data point (player) i is simply given by the
strategy with the highest probability in the equilibrium mixed strategy of player i as
yi = arg maxh≤c xih.

3.1 Defining Payoff Functions

A crucial step in formulating transduction as a non-cooperative game is how the pay-
off function of the game is specified. Here, we make a simplification and assume that
the payoffs associated to each player are additively separable, and this makes the pro-
posed game a member of a special subclass of multi-player games, known as polymatrix
games [8,7]. Formally speaking, for a pure strategy profile s = (s1, . . . , sn) ∈ S, the
payoff function of every player i ∈ I is in the form:

πi(s) =
n∑

j=1

Aij(si, sj) (3)

where Aij ∈ R
c×c is the partial payoff matrix between players i and j. It follows that,

in terms of a mixed strategy profile x = (x1, . . . , xn), the payoffs are computed as
ui(eh

i ) =
∑n

j=1(Aijxj)h and ui(x) =
∑n

j=1 xT
i Aijxj .

In an instance of the transduction game, since each determined player is restricted to
play a definite strategy of its own, all of these fixed choices can be reflected directly in
the payoff function of a undetermined player i ∈ IU as follows:

ui(eh
i ) =

∑
j∈IU

(Aijxj)h +
c∑

k=1

∑
j∈ID|k

Aij(h, k) (4)

ui(x) =
∑
j∈IU

xT
i Aijxj +

c∑
k=1

∑
j∈ID|k

xT
i (Aij)k (5)

Now, we are left with specifying the partial payoff matrices between each pair of
players. Let the geometry of the data be modeled with a weighted graph G = (X , E , w)
in which X is the set of nodes representing both labeled and unlabeled points, and
w : E → R is a weight function assigning a similarity value to each edge e ∈ E . Rep-
resenting the graph with its weighted adjacency matrix W = (wij), we set the partial
payoff matrix between two players i and j as Aij = Ic × wij where Ic is the identity
matrix of size c1. Note that when partial payoff matrices are represented in block form
as A = (Aij), the matrix A is given by the Kronecker product A = Ic ⊗W . Our exper-
iments demonstrate that in specifying the payoffs, it is preferable to use the normalized

1 The rationale for specifying partial payoffs in this way depends on the analysis of graph trans-
duction on a unweighted undirected graph. Due to the page limit, the details will be reported
in a longer version.
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similarity data matrix Ŵ = D−1/2WD−1/2 where D = (dii) is the diagonal degree
matrix of W with its elements given by dii =

∑
j wij .

3.2 Computing Nash Equilibria

In the recent years, there has been a growing interest in the computational aspects of
Nash equilibria. The general problem of computing a Nash equilibrium is shown to
belong to the complexity class PPAD-complete, a newly defined subclass of NP [4].
Nevertheless, there are many refinements and extensions of Nash equilibria which can
be computed efficiently and moreover, the former result does not apply to certain classes
of games. Here, we restrict ourselves to the well-established evolutionary approach [16],
initiated by J. Maynard Smith [10]. This dynamic interpretation of the concept imagines
that the game is played repeatedly, generation after generation, during which a selection
process acts on the multi-population of strategies, thereby resulting in the evolution of
the fittest strategies. The selection dynamics is commonly modeled by the following set
of ordinary differential equations:

ẋih = gih(x)xih (6)

where a dot signifies derivative with respect to time, and g(x) = (g1(x), . . . , gn(x)) is
the growth rate function with open domain containing Θ = ×i∈IΔi, each component
gi(x) being a vector-valued growth rate function for player i. Hence, gih specifies the
growth rate at which player i’s pure strategy h replicates. It is generally required that
the function g be regular [16], i.e. (1) g is Lipschitz continuous and (2) gi(x) · xi = 0
for all x ∈ Θ and players i ∈ I. While the first condition guarantees that the system (6)
has a unique solution through every initial state, the condition gi(x) · xi = 0 ensures
that the simplex Δi is invariant under (6).

The class of regular selection dynamics includes a wide subclass known as payoff
monotonic dynamics, in which the ratio of strategies with a higher payoff increase at a
higher rate. Formally, a regular selection dynamics (6) is said to be payoff monotonic if

ui

(
eh

i , x−i

)
> ui

(
ek

i , x−i

)⇔ gih(x) > gik(x) (7)

for all x ∈ Θ, i ∈ I and pure strategies h, k ∈ Si.
A particular subclass of payoff monotonic dynamics, which is used to model the

evolution of behavior by imitation processes, is given by

ẋih = xih

[∑
l∈Si

xil

(
φi

[
ui

(
eh

i − el
i, x−i

)]− φi

[
ui

(
el

i − eh
i , x−i

)] )]
(8)

where φi(ui) is a strictly increasing function of ui. When φi is taken as the identity
function, i.e. φi(ui) = ui, we obtain the multi-population version of the replicator
dynamics:

ẋih = xih

(
ui(eh

i , x−i)− ui(x)
)

(9)

The following theorem states that the fixed points of (9) are Nash equilibria.
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Theorem 1. A point x ∈ Θ is the limit of a trajectory of (9) starting from the interior
of Θ if and only if x is a Nash equilibrium. Further, if point x ∈ Θ is a strict Nash
equilibrium then it is asymptotically stable, additionally implying that the trajectories
starting from all nearby states converge to x.

Proof. See [16].

In the experiments, we utilized the following discrete-time counterpart of (9), where we
initialize the mixed strategies of each undetermined player to uniform probabilities, i.e.
the barycenter of the simplex Δi.

xih(t + 1) = xih(t)
ui(eh

i )
ui(x(t))

(10)

The discrete-time replicator dynamics (10) has the same properties as the continuous
version (See [12] for a detailed analysis). The computational complexity of finding a
Nash equilibrium of a transduction game using (10) can be given by O(kcn2), where
n is the number of players (data points), c is the number of pure strategies (classes)
and k is the number of iterations needed to converge. In theory, it is difficult to predict
the number of required iterations, but experimentally, we noticed that it typically grows
linearly on the number of data points2. We note that the complexity of popular graph
transduction methods such as [20,17] is also close to O(n3).

4 Experimental Results

Our experimental evaluation is divided into two groups based on the structure of sim-
ilarities that arise in the problems. Basically, we test our approach on some real-world
problems involving symmetric or asymmetric similarities. It is noteworthy to mention
that the standard methods are restricted to work with symmetric and non-negative sim-
ilarities but our game-theoretic interpretation imposes no constraint whatsoever, being
able to naturally deal with asymmetric and negative similarities alike.

4.1 Experiments with Symmetric Similarities

We conducted experiments on three well-known data sets: USPS3, YaleB [5] and 20-
news4. USPS contains images of hand-written digits 0-9 down-sampled to 16 × 16
pixels and it has 7291 training and 2007 test examples. As used in [17], we only se-
lected the digits 1 to 4 from the training and test sets, which gave us a total of 3874
data points. YaleB is composed of face images of 10 subjects captured under varying
poses and illumination conditions. As in [2], we down-sampled each image to 30× 40

2 We observed that the dynamics always converged to a fixed point in our experiments with
symmetric and asymmetric similarities. It should be added that in the asymmetric case, the
convergence is in fact not guaranteed since there is no Lyapunov function for the dynamics.
Still, by Theorem 1, if the dynamics converges to a fixed point, it will definitely be a Nash
equilibrium.

3 http://www-stat.stanford.edu/˜tibs/ElemStatLearn/
4 http://people.csail.mit.edu/jrennie/20newsgroups/

http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://people.csail.mit.edu/jrennie/20newsgroups/
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pixels and considered a subset of 1755 images which corresponds to the individuals 2, 5
and 8. 20-news is the text classification data set used in [17], which contains 3970 news-
group articles selected from the 20-newsgroups data set, all belonging to the topic rec
which is composed of the subjects autos, motorcycles, sport.baseball and
sport.hockey. As described in [17], each article is represented in 8014-dimensional
space based on the TFIDF representation scheme.

For USPS and YaleB, we treated each image pixel as a single feature, thus each
example was represented in 256-, and 1200-dimensional space, respectively. We com-
puted the similarity between two examples xi and xj using the Gaussian kernel as

wij = exp(− d(xi,xj)
2

2σ2 ) where d(xi,xj) is the distance between xi and xj and σ is the
kernel width parameter. Among several choices for the distance measure d(·), we eval-
uated the Euclidean distance ‖xi − xj‖ for USPS and YaleB, and the cosine distance

d(xi,xj) = 1− 〈xi,xj〉
‖xi‖‖xj‖ for 20-news.

In the experiments, we compared our approach, which we denote as GTG, against
four well-known graph-based SSL algorithms, namely the Spectral Graph Transducer
(SGT) [9]5, the Gaussian fields and harmonic functions based method (GFHF) [20]6,
the local and global consistency method (LGC) [17]7 and Laplacian Regularized Least
Squares (LapRLS) [1]8. A crucial factor in the success of graph-based algorithms is
the construction of the input graph as it represents the data manifold. To be fair in
our evaluation, for all the methods, we used a fixed set of kernel widths and gen-
erated 9 different candidate 20-NN graphs by setting wij = 0 if xj is not amongst
the 20-nearest neighbors of xi. In particular, the kernel width σ ranges over the set
linspace(0.1r, r, 5)∪ linspace(r, 10r, 5)) with r being the average distance from each
example to its 20th nearest neighbor and linspace(a, b, n) denoting the set of n linearly
spaced numbers between and including a and b.

In Fig. 1, we show the test errors of all methods averaged over 100 trials with dif-
ferent sizes of labeled data where we randomly select labeled samples so that each set
contains at least one sample from each class. As it can be seen, LapRLS method gives
the best results for the relatively small data set YaleB. However, for the other two, its
performance is poor. In general, the proposed GTG algorithm is either the best or the
second best algorithm; while its success is almost identical to that of the LGC method
in USPS and Yale-B, it gives superior results for 20-news.

4.2 Experiments with Asymmetric Similarities

We carried out experiments on three document data sets – Cora, Citeseer [14]9, and We-
bKB10. Cora contains 2708 machine learning publications classified into seven classes,
and there are 5429 citations between the publications. Citeseer consists of 3312

5 We select the optimal value of the parameter c with the best mean performance from the set
{400, 800, 1600, 3200, 6400, 12800}.

6 In obtaining the hard labels, we employ the class mass normalization step suggested in [20].
7 As in [17], we set the parameter α as 0.99.
8 We select the optimal values of the extrinsic and intrinsic regularization parameters γA and γI

from the set {10−6, 10−4, 10−2, 1} for the best mean performance.
9 Both data sets are available at http://www.cs.umd.edu/projects/linqs/projects/lbc/

10 Available at http://www.nec-labs.com/˜zsh/files/link-fact-data.zip

http://www.cs.umd.edu/projects/linqs/projects/lbc/
http://www.nec-labs.com/~zsh/files/link-fact-data.zip
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(c) 20-news

Fig. 1. Performance comparisons on classification problems with symmetric similarities

scientific publications, each of which belongs to one of six classes, and there are a
total of 4732 links. WebKB contains webpages collected from computer science de-
partments of four universities (Cornell, Texas, Washington and Wisconsin), and each
classified into seven categories. Following the setup in [18], here we concentrate on
classifying student pages from the others. Each subset respectively contains 827, 814,
1166 and 1210 webpages and 1626, 1480, 2218 and 3200 links. In our experiments, as
in [18], we only considered the citation structure, even though one can also assign some
weights by utilizing the textual content of the documents. Specifically, we worked on
the link matrix W = (wij), where wij = 1 if document i cites document j and wij = 0
otherwise.

Unlike our approach, the standard methods mentioned before, namely SGT, GFHF,
LGC and LapRLS, are subject to symmetric similarities. Hence, in this context, they
can be applied only after rendering the similarities symmetric but this could result in
loss of relevant information in some cases. In our evaluation, we restrict ourselves to
the graph-based methods which can directly deal with asymmetric similarities. Specif-
ically, we compared our game-theoretic approach against our implementation of the
method in [18], denoted here with LLUD. We note that LLUD is based on the notion
of random walks on directed graphs and it reduces to LGC in the case of symmetric
similarities. However, it assumes the input similarity graph to be strongly connected,
so in [18] the authors consider the teleporting random walk (trw) transition matrix as
input, which is given by P η = ηP + (1 − η)Pu where P = D−1W and Pu is the
uniform transition matrix. For asymmetric similarity data, we also define the payoffs in
terms of this transition matrix and denote this version with GTGtrw. In the experiments,
we fixed η = 0.99 for both LLUD and GTGtrw. To provide a baseline, we also report
the results of our approach that works on the symmetrized similarity matrices, denoted
with GTGsym. For that case, we used the transformation W̃ = 0.5 × (W + WT ) for
SCOP, and the symmetrized link matrix W̃ = (wij) for the others, where wij = 1 if
either document i cites document j or vice versa, and wij = 0 otherwise.

The test errors averaged over 100 trials are shown in Fig. 2. Notice that the per-
formances of GTGtrw and LLUD are quite similar on the classification problems in
WebKB data sets. On the other hand, GTGtrw is superior in the multi-class problems
of Cora and Citeseer. We should add that symmetrization sometimes can provide good
results. In Cora and Citeseer, GTGsym performs better than the other two methods.
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(b) Citeseer
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(c) Cornell
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Fig. 2. Performance comparisons on classification problems with asymmetric similarities

5 Summary and Discussion

In this paper, we provided a game-theoretic interpretation to graph transduction. In the
suggested approach, the problem of transduction is formulated in terms of a multi-
player non-cooperative game where any equilibrium of the game coincides with the
notion of a consistent labeling of the data. As compared to existing approaches, the
main advantage of the proposed framework is that there is no restriction on the pair-
wise relationships among data points; similarities and thus the payoffs can be negative
or asymmetric. The experimental results show that the our approach is not only more
general but also competitive with standard approaches. In the future, we plan to con-
tinue exploring the generality of our approach when both similarity and dissimilarity
relations exist in data [15,6]. Another possible future direction is to focus on improving
the efficiency. In our current implementation, we use the standard replicator dynam-
ics to reach an equilibrium but we can study other selection dynamics that are much
faster [13].
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A Graph-Based Approach to Feature Selection
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Abstract. In many data analysis tasks, one is often confronted with
very high dimensional data. The feature selection problem is essentially a
combinatorial optimization problem which is computationally expensive.
To overcome this problem it is frequently assumed either that features
independently influence the class variable or do so only involving pair-
wise feature interaction. To tackle this problem, we propose an algorithm
consisting of three phases, namely, i) it first constructs a graph in which
each node corresponds to each feature, and each edge has a weight cor-
responding to mutual information (MI) between features connected by
that edge, ii) then perform dominant set clustering to select a highly co-
herent set of features, iii) further selects features based on a new measure
called multidimensional interaction information (MII). The advantage of
MII is that it can consider third or higher order feature interaction. By
the help of dominant set clustering, which separates features into clusters
in advance, thereby allows us to limit the search space for higher order
interactions. Experimental results demonstrate the effectiveness of our
feature selection method on a number of standard data-sets.

1 Introduction

High-dimensional data pose a significant challenge for pattern recognition. The
most popular methods for reducing dimensionality are variance based subspace
methods such as PCA. However, the extracted PCA feature vectors only capture
sets of features with a significant combined variance, and this renders them rel-
atively ineffective for classification tasks. Hence it is crucial to identify a smaller
subset of features that are informative for classification and clustering. The idea
underpinning feature selection is to select the features that are most relevant to
classification while reducing redundancy. Mutual information provides a princi-
pled way of measuring the mutual dependence of two variables, and has been
used by a number of researchers to develop information theoretic feature selec-
tion criteria. For example, Batti [1] has developed the Mutual Information-Based
Feature Selection (MIFS) criterion, where the features are selected in a greedy
manner. Given a set of existing selected features S, at each step it locates the
feature xi that maximize the relevance to the class I(xi; C). The selection is
regulated by a proportional term βI(xi; S) that measures the overlap informa-
tion between the candidate feature and existing features. The parameter β may
significantly affect the features selected, and its control remains an open prob-
lem. Peng et al [7] on the other hand, use the so-called Maximum-Relevance

X. Jiang, M. Ferrer, and A. Torsello (Eds.): GbRPR 2011, LNCS 6658, pp. 205–214, 2011.
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Minimum-Redundancy criterion (MRMR), which is equivalent to MIFS with
β = 1

n−1 . Yang and Moody’s [9] Joint Mutual Information (JMI) criterion is
based on conditional MI and selects features by checking whether they bring
additional information to an existing feature set. This method effectively rejects
redundant features. Kwak and Choi [5] improve MIFS by developing MIFS-U
under the assumption of a uniform distribution of information for input features.
It calculates the MI based on a Parzen window, which is less computationally
demanding and also provides better estimates.

However, there are two limitations for the above MI feature selection methods.
Firstly, they assume that each individual relevant feature should be dependent
with the target class. This means that if a single feature is considered to be
relevant it should be correlated with the target class, otherwise the feature is ir-
relevant [2]. So only a small set of relevant features is selected, and larger feature
combinations are not considered. The second weakness is that most of the meth-
ods simply consider pairwise feature dependencies, and do not check for third
or higher order dependencies between the candidate features and the existing
features. To overcome the above problem, we introduce the so called multidi-
mensional interaction information (MII) I(F ; C) = I(f1, . . . , fm; C) to select the
optimal subset of features. The main reason for using I(F ; C) as feature selection
criterion is that: because I(F ; C) is a measure of the reduction of uncertainty
in class C due to the knowledge of feature vector F = {f1, . . . , fm}, select-
ing features that maximize I(F ; C), from an information theoretic perspective,
translates into selecting those features that contain the maximum information
about class C.

Although an MII based on the second-order feature dependence assumption
can be used to select features that both maximize class-separability and simul-
taneously minimize dependencies between feature pairs, there is no reason to
assume that the final optimal feature subset formed by features that only ex-
hibit pairwise interactions. In particular the approach neglects the fact that third
or higher order dependencies feature combinations may determine the optimal
feature subset.

The primary reason for using the approximation Î(F ; C) for feature selection
instead of directly using multidimensional interaction information I(F ; C) is that
I(F ; C) requires estimation of the joint probability distribution for features us-
ing large training samples. To overcome this problem, in this paper, we propose
a graph-based approach to feature selection. In this feature selection scheme, the
original features are clustered into different dominant-sets based on dominant-set
clustering and each dominant-set just includes a small set of features. Therefore,
for each dominant set, we do not need to use the approximation Î(F ; C). Instead
we can directly use the multidimensional interaction information I(F ; C) crite-
rion for feature selection. Using the Parzen window for probability distribution
estimation, we then apply a greedy strategy to incrementally select the feature
that maximizes the multidimensional mutual information between the already
selected features and the output class set.
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2 Dominant-Set Clustering Algorithm

Concept of Dominant Set: The dominant set[6], is a combinational con-
cept in graph theory that generalizes the notion of a maximal complete sub-
graph from simple graphs to edge-weighted graphs. In fact, dominant sets turn
out to be equivalent to maximal cliques. The definition of the dominant set
simultaneously emphasizes internal homogeneity and together with external in-
homogeneity. Thus it is can be used as a general definition of a ”cluster”. To
provide an example, assume there are N training samples, each having 5 fea-
ture vectors. In order to capture the dominant features from these 5 features
(represented as F1, . . . , F5), we construct a graph G = (V, E) with node-set V ,
edge-set E ⊆ V × V and edge weight matrix W whose elements are in the in-
terval [0, 1]. Each vertex represents a feature and the edge between two features
represents their pairwise relationship. The weight on the edge reflects the degree
of relevance between two features. Therefore, we represent the graph G with
the corresponding edge-weight or weighted relevance matrix. In our example,
in Fig. 1, features {F1, F2, F3} form the dominant set, since the edge weights
“internal” to that set (0.6, 0.7 and 0.9) are larger than the sum of those between
the internal and external features (which is between 0.05 and 0.25).

For the graph G = (V, E) above, we can locate the dominant set by finding
the solutions of a quadratic program that maximizes the functional

f(x) =
1
2
xT Wx . (1)

subject to x ∈ #, where # = {x ∈ R
n : x ≥ 0and

∑n
i=1 xi = 1} and W is the

relevance weight matrix between features. The dominant set corresponds in the
strict sense with solutions of the quadratic program. Let u denote a strict local
solution of the above program. It has been proved by [6] that σ(u) = {i|ui > 0} is
equivalent to a dominant set of the graph represented by the edge-weight matrix
W. In addition, the local maximum of f(u) indicates the “cohesiveness” of the
corresponding cluster. The replicator equation can be used to solve the program
using the iterative update equation:

Fig. 1. The subset of features {F1, F2, F3} is dominant
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xi(t + 1) = xi(t)
(Wx(t))i

x(t)T Wx(t)
. (2)

where xi(t) is correspondent to the i − th feature vector at iteration t of the
update process.

Dominant-Set Clustering Algorithm: Pavan et al have demonstrated that
the concept of a dominant set provides an effective framework for iterative pair-
wise clustering. Consider a set of features represented by an undirected edge-
weighted graph with no self-loops. Let the graph be denoted by G = (V, E, ω)
where V = 1, . . . , n is the vertex set, E ⊆ V × V is the edge set, and ω is the
weight function. Each vertex represents a feature and the weight residing on
the edge between two nodes represents the pairwise affinity of the correspond-
ing features. To cluster the features into coherent groups, a dominant set of the
weighted graph is iteratively located, and then removed from the graph. This
process is repeated until the node-set of the graph is empty. The main property
of a dominant set is that the overall similarity among the internal features is
greater than that between the external features and the internal features.

3 Feature Selection Using Dominant-Set Clustering

In this paper we aim to utilize the dominant-set clustering algorithm for feature
selection. Using a graph representation of the features, there are three steps to
the algorithm, namely a) computing the relevance matrix W = (wij)n×n based
on the mutual information between feature vectors, b) dominant-set clustering
to cluster the feature vectors and c) selecting the optimal feature set from each
dominant set using the multidimensional interaction information (MII) criterion.
Fig. 2 shows a schematic view of the proposed method for feature selection. In
the remainder of this paper we describe these elements of our feature selection
algorithm in more detail.

Computing the Relevance Matrix: In accordance with Shannon’s infor-
mation theory [8], the uncertainty of a random variable Y can be measured by
the entropy H(Y ). For two variables X and Y , the conditional entropy H(Y |X)
measures the remaining uncertainty about Y when X is known. The mutual in-
formation (MI) represented by I(X ; Y ) quantifies the information gain about Y
provided by variable X . The relationship between H(Y ), H(Y |X) and I(X ; Y )
is I(X ; Y ) = H(Y )−H(Y |X).

As defined by Shannon, the initial uncertainty for the random variable Y is
expressed as:

H(Y ) = −
∑
y∈Y

P (y) log P (y) . (3)

where P (y) is the prior probability density function over Y . The remaining un-
certainty in the variable Y if the variable X is known is defined by the conditional
entropy H(Y |X)
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Fig. 2. The flowchart of our approach for feature selection

H(Y |X) = −
∫

x

p(x){
∑
y∈Y

p(y|x) log p(y|x)}dx . (4)

where p(y|x) denotes the posterior probability for variable Y given another ran-
dom variable X . After observing the variable vector x, the amount of additional
information gain is given by the mutual information (MI)

I(X ; Y ) = H(Y )−H(Y |X) =
∑
y∈Y

∫
x

p(y, x)log
p(y, x)

p(y)p(x)
dx . (5)

From the above definition, we can see that mutual information quantifies the
information which is shared by two variables X and Y . When the I(X ; Y ) is
large, this implies that variable X and variable Y are closely related, otherwise,
when I(X ; Y ) is equal to 0, this means that two variables are totally unrelated.
Therefore, in our feature selection scheme, the relevance of pairs of feature vec-
tors is computed using mutual information. Suppose there are N training sam-
ples, each having K feature vectors. The kth feature vector for the lth training
sample is f l

k, so we can represent the kth feature vector for the N training sam-
ples as the long vector Fk = {f1

k , f2
k , . . . , fN

k }. The entropy of the feature vector
Fk where (k = 1, 2, . . . , K) can be computed using Equation (3). For two feature
vectors Fk1 and Fk2, their mutual information I(Fk1, Fk2) can be computed by
Equation (5). The relevance degree between two feature vectors Fk1 and Fk2 can
be defined as [10]:

W(Fk1, Fk2) =
2I(Fk1, Fk2)

H(Fk1) + H(Fk2)
. (6)
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where k1, k2 ∈ K and the higher the value of W(Fk1, Fk2) the more relevant are
the features Fk1 and Fk2. Otherwise, if W(Fk1, Fk2) = 0, the two features are to-
tally unrelated. In addition, for the above computation, we use Parzen-Rosenblatt
window method to estimate the probability density function of random variables
Fk1 and Fk2 [7]. The Parzen probability density estimation formula is given by:
p(x) = 1

N φ(x−xi

h ), where φ(x−xi

h ) is the window function and h is the window
width. Here, we use a Gaussian as the window function, so φ(x−xi

h ) = 1

(2π)
d
2 hd|Σ| 12

exp( (x−xT
i )Σ−1(x−xi)
−2h2 ), where Σ is the covariance of (x−xi), d is the length of vec-

tor x. When d = 1, p(x) estimates the marginal density and when d = 2, p(x)
estimates the joint density of variables such as Fk1 and Fk2.

Dominant-set Clustering: As illustrated in Fig. 2, the dominant-set clus-
tering algorithm commences from the relevance matrix and iteratively
bi-partitions the features into a dominant set and a non-dominant set. It there-
fore produces the dominant-set progressively and hierarchically. The clustering
process stops when all the features are grouped into one of the dominant-sets.

Selecting Key Features: The multidimensional interaction information be-
tween feature vector F = {f1, . . . , fm} and class variable C is:

I(F ; C) = I(f1, . . . , fm; C) =
∑

f1,...,fm

∑
c∈C

P (f1, . . . , fm; c)

× log
P (f1, . . . , fm; c)

P (f1, . . . , fm)P (c)
. (7)

The main reason for using I(F ; C) as a feature selection criterion is that: because
I(F ; C) is a measure of the reduction of uncertainty in class C due to knowledge of
the feature vector F = {f1, . . . , fm}, from an information theoretic perspective se-
lecting features that maximize I(F ; C) translates into selecting those features that
contain the maximum information about class C. In practice and as noted in the
introduction, locating a feature subset that maximizes I(F ; C) presents two prob-
lems: 1) it requires an exhaustive “combinatorial” search over the feature space,
and 2) it demands large training sample sizes to estimate the higher order joint
probability distribution in I(F ; C) with a high dimensional kernel [5]. Bearing
these obstacles in mind, most of the existing related papers approximate I(F ; C)
based on the assumption of lower-order dependencies between features. For ex-
ample, the first-order class dependence assumption includes only first-order in-
teractions. That is it assumes that each feature independently influences the class
variable, so as to select the mth feature, fm, P (fm|f1, . . . , fm−1, C) = P (fm|C). A
second-order feature dependence assumption is proposed by Guo and Nixon [4] to
approximate I(F ; C), and this is arguably the most simple yet effective evaluation
criterion for selecting features. The approximation is given as

I(F ; C) ≈ Î(F ; C) =
∑

i

I(fi; C)−
∑

i

∑
j>i

I(fi; fj)

+
∑

i

∑
j>i

I(fi; fj|C) . (8)
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By using Î(F ; C) instead of I(F ; C), it is possible to locate a subset of informative
features by implementing a greedy “pick-one-feature-at-a-time” selection proce-
dure. Given K features, out of which m are to be selected (m < K), this involves
two steps: 1) select the first feature f ′

max that maximizes I(f ′; C), and 2) select
m−1 subsequent features that maximize the criterion in Equation (8), i.e., select
the second feature f ′′

max that maximizes I(f ′′; C)− I(f ′′; f ′
max)+ I(f ′′; f ′

max|C),
select the third feature f ′′′

max that maximizes I(f ′′′; C) − I(f ′′′; f ′
max) − I(f ′′′;

f ′′
max) + I(f ′′′; f ′

max|C) + I(f ′′′; f ′′
max|C) and so on.

Although an MII based on the second-order feature dependence assumption
can select features that maximize class-separability and simultaneously minimize
dependencies between feature pairs, there is no reason to assume that the final
optimal feature subset is formed by pairwise interactions between features. In-
fact, it neglects the fact that third or higher order dependencies can be lead to
an optimal feature subset.

The primary reason for using the approximation Î(F ; C) for feature selection
instead of directly using multidimensional interaction information I(F ; C) is that
I(F ; C) requires estimation of the joint probability distribution of features using
a large training sample. Consider the joint distribution P (F ) = P (f1, . . . , fm),
by the chain rule of probability

P (fi, . . . , fm) = P (f1)P (f2|f1)× P (f3|f2, f1) · · ·P (fm|f1, f2 . . . fm−1) , (9)
P (F ; C) = P (f1, . . . fm; C) = P (C)p(f1|C)P (f2|f1, C)P (f3|f1, f2, C)

×P (f4|f1, f2, f3, C) · · ·P (fi|f1, . . . , fm, C) . (10)

In our feature selection scheme, the original features are clustered into differ-
ent dominant-sets based on dominant-set clustering and each dominant-set just
includes a small set of features. Therefore, for each dominant set, we do not
need to use the approximation Î(F ; C). Instead, we can directly use the multidi-
mensional interaction information I(F ; C) criterion for feature selection. Using
Parzen windows for probability distribution estimation, we then apply the greedy
strategy to select the feature that maximizes the multidimensional mutual in-
formation between the features and the output class set. As a result the first
feature f

′
max maximizes I(f

′
, C), the second selected feature f

′′
max maximizes

I(f
′′
, f

′
, C), the third feature f

′′′
max maximizes I(f

′′′
, f

′′
, f

′
, C), and so on. For

each dominant set, we repeat this procedure until |S| = k.

4 Experiments and Comparisons

The data sets used to test the performance of our proposed algorithm are
the benchmark data sets from the NIPS 2003 feature selection challenge and
the UCI Machine Learning Repository. Table. 1 summarizes the properties of
these data-sets. Using the feature selection algorithm outlined above, we make
a comparison between our proposed feature selection method (referred to as the
DSplusMII method) (which utilises the multidimensional interaction information
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Table 1. Summary of UCI and NIPS benchmark data sets

Data-set From Examples Features Classes

Madelon NIPS 2000 500 2

Breast cancer UCI 699 10 2

Pima UCI 768 8 2

Table 2. The experiment results on three data-sets

Method Madelon Breast cancer Pima

MII {f476, f49, f178, f131,f491, {f3, f7} {f2,f8,f6,f7}
f299, f283, f121, f425,f7,

f385, f216, f458, f237,f310,
f366, f98, f499, f54,f346,

f198, f368 }
DSplusMII {f476, f379, f49, f330, f412, {f3, f7} {f2,f8,f6,f1}

f137, f11, f256, f135, f56,
f138, f283, f324, f425, f467,
f62, f455, f472, f208, f206,

f169, f424 }

(MII) criterion and dominant-sets for feature selection) and the use of multidi-
mensional interaction information (MII) using the second-order approximation,
see Equation (8).

The experimental results shown in Table. 2 demonstrate that at small dimen-
sionality, i.e. with the Breast cancer data-set(10 features and 699 examples) and
the Pima data-set (8 features and 768 examples), the feature subset selected
using our proposed method (i.e. DSplusMII ) is consistent at least to some de-
gree with those obtained using MII with second-order approximation. However,
at higher dimensionality (e.g. the Madelon data set with 500 features and 2000
examples), there is a significant difference between the selected feature subsets.
There are three reasons for this. The first reason is that dominant-set clustering
focuses on the information-contribution of each feature, so the most informative
features can be extracted. The second reason is that the multidimensional in-
teraction information (MII) criterion is applied to each dominant set for feature
selection, and can consider the effects of third and higher order dependecies be-
tween the features and the class. As a result the optimal feature combination
can be located so as to guarantee the optimal feature subset. The third and
final reason is that multidimensional interaction information (MII) by second-
order approximation simply checks for pair-wise dependencies between features
and the class, and so only limited feature subsets can be obtained. When the
database is large, our proposed method DSplusMII shows its advantage.

To illustrate the dominant-set clustering process for feature extraction in more
detail, we list the dominant sets for Pima and Breast cancer data-set in Table. 3.
By inspection, we can see that the first dominant set includes most of the im-
portant features. For example, in the Breast cancer data-set, the final selected
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Table 3. The dominant sets for Breast cancer and Pima data-set

Dominant-sets Breast cancer Pima

Dominant set 1 {f3, f4, f6, f7 {f5, f2, f4, f8

f9, f5, f8} f3, f6}
Dominant set 2 {f1, f2, f10} {f7, f1}

Table 4. J value comparisons for two methods on three data sets

Method Madelon Breast cancer Pima

MII 1.0867 3.7939 1.3867

DSplusMII 1.1082 3.7939 1.3977

features {f3, f7} are all from the first dominant-set, the second dominant-set
provides no further information relevant to the classication process. For the
Pima data-set, most of the final selected informative features are also from the
first dominant set. This reveals the advantage of our dominant-set based feature
extraction method. It focuses on the information-contribution of each feature
which is capable capturing the greatest number of informative features at a low
computation cost. Additionally, it also indicates that not all of the dominant-sets
located by dominant-set clustering are significant. It is for this reason that we
utilize the multidimensional interaction information (MII) criterion for further
feature selection.

After obtaining the discriminating features, we compute a scatter separability
criterion to evaluate the quality of the selected feature subset. This is a well
known measure of class separability introduced by Devijiver and Kittler [3], and
given by

J(Y ) =
|Sw + Sb|
|Sw| =

d∏
k=1

(1 + λk) . (11)

where Y denotes the feature set, tr(S) is the sum of the diagonal elements of
S, λk, k = 1 . . . d, are the eigenvalues of matrix S−1

w Sb, and Sw and Sb are the
between and within class scatter matrices.

In Table. 4, we compare the the performance of the two methods. At small
dimensionality there is little difference between the two methods. However, at
higher dimensionality, the features selected by our proposed DSplusMII method
are superior to the features selected by MII based on the second-order approxi-
mation. This means that our proposed DSplusMII feature selection method can
guarantee the optimal feature subset, as it not only focuses on the information-
contribution of each feature but also considers its contribution to class.

5 Conclusions

This paper has presented a new graph theoretic approach to feature selec-
tion. The proposed feature selection method offers two major advantages. First,



214 Z. Zhang and E.R. Hancock

dominant-set clustering can capture the most informative features. Second, the
MII criteria takes into account high-order feature interactions, overcoming the
problem of overestimated redundancy. As a result the features associated with
the greatest amount of joint information can be preserved.
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Abstract. This paper presents a method to create a model of an ar-
ticulated object using the planar motion in an initialization video. The
model consists of rigid parts connected by points of articulation. The
rigid parts are described by the positions of salient feature-points tracked
throughout the video. Following a filtering step that identifies points that
belong to different objects, rigid parts are found by a grouping process
in a graph pyramid. Valid articulation points are selected by verifying
multiple hypotheses for each pair of parts.

Keywords: articulated object, model extraction, graph pyramid.

1 Introduction

Tracking articulated objects is an important and active field of research in Com-
puter Vision [10,15,1]. A model of the target (the object to be tracked) is used
by tracking methods to detect and associate instances of the object of interest in
consecutive frames. This model is at the minimum a rectangle-shaped close-up of
the object (called a template) or a color histogram, but can be as sophisticated
as an online-trained classifier [11], or a hierarchical description of the objects
parts and their salient features [5].

The proposed method automatically builds such a model of an articulated
object, from a set of trajectories of feature-points in an initialization video:

1. build a triangulated graph on the positions of the points in the first frame;
2. label each triangle as “relevant” (on an object) or “separating” (connecting

objects/parts) based on the variation of its edge-lengths over the video;
3. group relevant triangles in a graph pyramid framework based on their ori-

entation variation, and obtain the “rigid” parts (build on [4]);
4. localize and verify points of articulation by observing the articulated move-

ment of the parts.

The presented approach is related to the work done in video object segmentation
(VOS), where the task is to separate foreground from background with the help of
a video sequence. VOS methods can be divided into two categories [7]: (1) Two-
frame motion/object segmentation [3,8] and (2) Multi-frame spatio-temporal
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segmentation/tracking [7,14]. With some exceptions (e.g. [8]), the output of VOS
methods is a pixel-level assignment to foreground (FG) and background (BG).
Less attention is given to modeling the FG into its constituent rigid parts and
joints. Most VOS methods work on the pixel level.

Motion segmentation (MS) [13,16] works on the basis of trajectories of fea-
tures. Here the main concern is with the segmentation of trajectories to objects
and not with detecting their parts. An advantage is that many MS methods can
deal with trajectories that do not span the whole video.

The work in factorization methods for structure from motion (SfM) [20,19,9,17]
is probably the most related to ours. These methods use a factorization technique
based on singular value decomposition to detect the linear subspaces in which
trajectories of feature-points of rigid/non-rigid parts lie. Like in our case, artic-
ulation points/axis are computed in a step following part detection. Trajectories
of feature-points that span the whole video are required.

Our approach analyzes the trajectories of features on a higher abstraction level
– in a triangulation. The used triangulated graphs encode spatial relationships
resulting out of spatial proximity between features, and are the basis for all
processes and decisions. The advantage of using a triangulation is the additional
information about the motion and behavior of features in this relationship. The
motions of parts are not constrained to linear subspaces, however, in this work,
parallel projection is assumed and only 2D motions are considered.

1.1 Paper Outline

This paper is organized as follows: Sec. 2 recalls irregular graph pyramids, which
are later used for the grouping process. Sec. 3 describes the spatio-temporal fil-
tering and the grouping process, where the “rigid” parts are identified. Sec. 4
explains how the points of articulation are determined. Sec. 5 presents the ex-
periments and in Sec. 6 conclusions are given.

2 Recall: Irregular Graph Pyramids

An irregular graph pyramid is a stack of successively reduced planar graphs P =
{G0, . . . , Gn}. A pyramid is typically build in a bottom-up manner using only
local operations. Each level Gk, 0 < k ≤ n is obtained by first contracting edges
in Gk−1, if their vertices have the same label (regions should be merged), and
then removing edges in the obtained intermediate graph to simplify the structure.
In each Gk−1 contracted edges form trees called contraction kernels. One vertex
of each contraction kernel is called a surviving vertex and is considered to have
been “survived” to Gk. The receptive field F (v) of v is the (connected) set of
vertices from level 0 that have been “merged” to v over levels 0 . . . k. Higher
in the pyramid, the receptive fields cover more of the base level and decisions
gradually change from local to global. Compared to regular pyramids, irregular
graph pyramids have the advantage that their structure is not fixed, it adapts
to the data. For more details about graph pyramids see for example [12].
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3 Rigid Part Extraction

The input of the method consists of trajectories of feature-points from a training
video. Two points can lie on: different objects, the same articulated object but
on different rigid parts, or on the same rigid part of an object. To detect the
feature points located on the same rigid part we proceed in two steps: (1) spatio-
temporal filtering of edges connecting feature points and (2) grouping of triangles
formed by the edges. In Sec. 4 we discuss the detection of points of articulation
based on the rigid parts found by the method described in the following.

Detect points on different objects. A triangulated graph T is build by a Delaunay
triangulation of the positions of the feature-points in the first frame. This step
creates a neighborhood for the points and produces entities (edges, triangles),
which have not just position, but also size and orientation. For a discussion on
the robustness of graphs built on sets of points see [18].

In the graph T a high variation of the length of an edge over the video indicates
that its end-points are very likely not located on the same rigid part. Based on
this observation, the triangles (faces of T ) are labeled as relevant if all three
edges have the maximum variation Δ(e) = max0≤t1,t2<tF {||et1 || − ||et2 ||} below
a defined threshold εr, and separating otherwise. Here ||et1 || is used to denote the
length of edge e at time t1 and F is the number of frames in the input sequence.

Connected components made of only relevant triangles of T identify detected
objects (see Sec. 5, Fig. 5).

Detect points on the same rigid part. This step groups relevant triangles to
identify the rigid parts. Only triangles that share an edge are grouped thus the
obtained parts are guaranteed to be connected.

True rigid motion is rarely observed, e.g.: the skin of a human is elastic, and
tracked feature positions are affected by noise. Thus a local decision (e.g. global
threshold on Δ(e)) cannot robustly determine which triangles belong to the same
“rigid” part (see Fig. 4). Following the approach in [4], the grouping is done using
a graph pyramid. Every vertex in the base level G0 identifies a relevant triangle.
Every vertex in the obtained top level Gn identifies a rigid part. Using a graph
pyramid allows to make local-to-global decisions by using only local operations
in a representation that is shift and rotation invariant.

The orientation variation Oe(t) of an edge e over time is a 1D signal that
encodes at each time t the accumulated orientation change relative to the ori-
entation at frame 0. More formally, Oe(t) = Oe(t − 1) + θe(t), where θe(t) is
the relative change in orientation (signed angle) of the edge e between frames
t and t − 1. For example, turning around the x axis once will give a value of
360◦ degrees and turning twice in the same direction will give 720◦, not 0◦. The
direction of rotation is encoded by the sign: counter clockwise (CCW) is positive,
and clockwise (CW) is negative.

The orientation variation Or(t) of a triangle r, at time t is defined as the
average of the orientation variations of its edges, at time t. The maximal relative
orientation change of two triangles is the highest absolute difference of their
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orientation changes over the input sequence Δ(r1, r2) = max0≤t<tF {|Or1(t) −
Or2(t)|}. The value Δ(r1, r2) is used as a cue (grouping criterion) for the triangles
r1, r2 belonging to the same part.

The graph pyramid groups relevant triangles into “rigid” parts such that:

– all the triangles inside a part have a similar Or,
– the average Or of triangles in two neighboring parts is different.

Vertices of Gk represent parts consisting of one or more triangles. An edge e in
Gk encodes that there exist two triangles r1, r2, one belonging to each of the
parts represented by the vertices connected by e, such that r1 and r2 share an
edge in T . Notice the duality between T and G0: the vertices of G0 represent
the triangles (faces) in T , the edges of G0 encode adjacency of triangles in T ,
while the edges in T connect feature-points and make up (the boundaries of)
the triangles.

This grouping is similar in spirit to the image segmentation task, where the re-
sults should be regions with homogeneous color/texture neighbored with regions
that look very different. For more details on the grouping process see [4].

4 Determine Points of Articulation

Articulated motion is a piecewise rigid motion, where the rigid parts conform
to the rigid motion constraints, but the overall motion is not rigid [2]. A point
of articulation connects rigid parts. The parts can move independent of each
other, but their distance to the point of articulation remains the same. This
paper considers articulation in the image plane (1 degree of freedom). In the
following we will call articulated parts, two parts that perform an articulated
motion constrained by a point of articulation.

Having the rigid parts in the scene (vertices in the top level Gn) we proceed
to discover the parts that move constrained by articulation and to find the
corresponding point of articulation. Determining the points of articulation is
done in two steps: (1) generate hypotheses for points of articulation (Section 4.1),
and (2) verify hypotheses and select valid ones (Sec. 4.2).

4.1 Generation of Hypotheses for Points of Articulation

Given two time steps 0 ≤ t1 < t2 < tF the motion of the points of two artic-
ulated parts A and B, can be modeled by considering rotation and translation
separately. Using matrices the point correspondence can be written as:

p′ = (R ∗ (p− c) + c) + o (1)

where p is the point at time t1 and p′ is the same point at time t2. The point
p′ is obtained by first rotating p around c with angle θ and then translating it
with offset o. R is the 2D rotation matrix with angle θ given by:

R =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
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To compute the position of the point of articulation c at time t1 it is sufficient
to know at times t1 and t2 the positions of two points of each of the two rigid
parts: pi,p′

i, 0 < i � 4. Indexes i ∈ {1, 2} are used for the points of part A
and i ∈ {3, 4} for the ones of B. These points will be denoted by the term
reference points. Taking Eq. 1 for the four points produces the following system
of equations: {

p′
i = (Ri ∗ (pi − c) + c) + o i = 1 . . . 4, (2)

where Ri = RA if i ≤ 2 and Ri = RB otherwise. The matrices RA, RB are the
2D rotation matrices of the parts A, B with angles θA, θB, respectively. Solv-
ing the system gives the 2D coordinates of c,o at time t1 and the values of
sin(θA), cos(θA), sin(θB), cos(θB).

Points of articulation do not have to be visually salient i.e. easily trackable,
and are thus not expected to belong to the tracked feature-points. We use Eq. 2
to generate hypotheses for points of articulation for every pair of parts and time
stamps t1, t2 selected as described in the following. In addition to the detected
rigid parts, the grouping step also computes for each part an orientation variation
signal as the average of Or over the contained triangles r. If no rotation exists
between frames t1, t2 the system in Eq. 2 can have an infinite number of solutions
for the point of articulation c. Thus for any two parts A, B, time stamps t1, t2
are selected, where the orientation variation signals corresponding to both rigid
parts differ between t1 and t2 with more than a value εa. In experiments we divide
the sequence in 20 fixed length time windows, and verify the above condition
for all of them. For more general purposes, the optimal time steps t1, t2 can be
found in polynomial time.

The reference points for each rigid part, at time t are the centroid of the part
and a point q. The point q is obtained by translating the centroid over a fixed
distance d > 0, in the direction given by the corresponding orientation variation
of the part, at time t. (This strategy gives a more stable estimate than selecting
two of the possibly noisy feature-point positions.) For each rigid part a local
coordinate system is derived based on the two reference points. The coordinate
system has the origin at the centroid of the part, and the directions of the two
axis defined by the motion of the part. Having the coordinates of c in each of
the two local coordinate systems at time t1, and having the reference points at
time t, it is possible to calculate the expected position of c w.r.t. each adjacent
part, at time t. Note that d only acts as a scaling factor for the local coordinate
system, and its exact value does not affect the final result. Fig. 1 illustrates the
explained concepts.

The output of this step are multiple hypotheses of points of articulation for
each pair of rigid parts. Each hypothesis for a point of articulation is described
by its position in the local coordinate system of each incident part.

4.2 Verification and Selection of Hypotheses

By definition, rigid parts performing articulated motion keep a constant distance
to the point of articulation. This is equivalent to saying that the positions of the
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Fig. 1. Determining and encoding the point of articulation in the local coordinate
system, during two time steps: left t1, right t2
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Fig. 2. Verification of hypotheses for points of articulation. Left: invalid hypothesis,
right: valid hypothesis. Each curve shows the positions of the hypothesized point of
articulation relative to one part. Positions corresponding to consecutive frames have
been connected.

points of articulation calculated with the local coordinate systems of the two
connected object parts coincide. We use this property to verify the previously
generated hypotheses and select the valid ones.

Given a hypothesis for a point of articulation, two positions are computed for
each frame of the video – one using the local coordinate system of each connected
part. The inaccuracy μ of a hypothesis is the maximum of the distances between
the two computed positions over the whole video. If μ is small the hypothesis is
considered valid (in practice we take a threshold εv). If for a pair of rigid parts
multiple valid hypotheses exist, the one with the smallest inaccuracy μ is taken.
If no hypotheses with a small μ exists, the parts are not considered connected
through a point of articulation. Fig. 2 shows positions for hypotheses of points
of articulation generated during the verification step.

5 Experiments

In our experiments the Kanade-Lucas-Tomasi tracker [6] is used to track feature
points (in this case corners) and supply the necessary trajectories. Only the
points which could be tracked successfully over the whole sequence are used.

Sequence 1 is a video with a human, sequence 2 with a finger, and sequence
3 is a synthetic video, all undergoing a globally articulated motion with locally
arbitrary deformations (see Fig. 5).
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Fig. 3. Left: deformation of the edges over time. Right: dual graph of motion of triangles
over time. Color map on the right encodes the degree of deformation and dissimilarity
of motion of triangles, where red is high and blue is low.

Fig. 4. Left, middle: Grouping result with global thresholds 0.25 and 0.6, respectively
(different color means different part). Right: Comparison of identified points of artic-
ulation with baseline approach (red stars) and proposed approach (white crosses).

Fig. 3 provides an insight into the motion of the triangles in sequence 1. It
visualizes the difference in deformation of edges and motion of triangles over
time, which points out the challenge for the grouping process.

In Fig. 4 the results of two baselines are shown: (1) grouping of triangles with
a global threshold (criterion: similar orientation of triangles over time) and (2)
identification of points of articulation depending on the number of “rigid” edges
in a triangle (criterion: two “rigid” edges and one highly deformed over time).
Notice that a correct grouping into the whole hand, torso, upper and lower arms
is not possible. The number and positions of the articulation points detected with
the baseline is incorrect (see Fig. 5 for comparison with the proposed approach).

Fig. 5 collects the results with the proposed approach for sequences 1, 2 and
3 using the parameter values in Table 1. For sequence 1, the torso is connected
with the base of the chin, because the features at the base of the chin slide when
the head is tilted and remain in the same position in the image, creating a “rigid”
triangle. In all three sequences the found points of articulation correctly connect
the rigid parts. The threshold εv is sufficient to separate valid hypotheses from
invalid ones, where there is no point of articulation in reality (e.g. head with
background in sequence 1).

As in [20], a kinematic model (tree) of the objects can be defined by the found
parts and their connections through joints.



222 N.M. Artner, A. Ion, and W.G. Kropatsch

Fig. 5. Results obtained by the proposed method. First and second row: two frames of
sequence 1,2, and 3 with spatio-temporal filtering result (white edges: relevant triangle
and gray edges: separating triangle). Third row: Results of grouping process. Forth
row: Identified points of articulation.

Discussion: The robustness of the tracker, the presence of salient points on the
object(s), and the quality of the video should be sufficient to create the required
observations (trajectories of feature-points).

The spatio temporal filtering (Sec. 3) will correctly identify triangles with
all vertices on the same object if the motion of the objects relative to each
other (distance variation) are larger than the local distance variation between
neighboring feature-points of the same object.
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Table 1. Values of the used parameters for sequences 1, 2 and 3

Sequence εr (relevant triangles) εa (generate hyp.) εv (verify hyp.)

1 (human) 20 0.4 20

2 (finger) 10 0.4 10

3 (synthetic) 15 0.4 20

The grouping into rigid parts gives a correct result if the relative orientation
change between two parts is larger than the local differences due to non-rigid
deformation (e.g skin) or to imprecisions of the computed feature-point positions.

Points of articulation can be produced between any two pairs of detected
rigid parts. To avoid detecting points of articulation between object parts and the
background or between unrelated object parts, the unrelated parts (background)
should translate with respect to each other.

In the presented approach no prior knowledge is used and it can be applied
to videos with any arbitrary articulated or rigid object (i.e.: human, finger,
animal, basket ball . . . ). The approach can only detect points of articulation,
when there is articulated motion in the video. If the video contains a rigid
foreground object moving in front of a “static” background, the result of the
approach is a separation between foreground and background.

6 Conclusion

This paper presented a graph-based approach to identify the rigid parts of artic-
ulated objects and find their points of articulation. Trajectories of feature-points
are used to describe the motion of objects in the scene. In the first frame a tri-
angulation is built with the positions of the feature-points. A spatio-temporal
filtering labels the triangles as relevant (object) or separating depending on the
deformation of the edge lengths over time. A graph pyramid is used to group the
relevant triangles into rigid parts depending on their orientation change over
time. In a following step points of articulation connecting the rigid parts are
identified. Experiments on natural and synthetic videos with articulation be-
tween quasi-rigid parts (skin, cloth) are used to verify the approach. In future
work we plan to deal with input data containing incomplete trajectories and out
of the plane motion.
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Abstract. A wide range of cheap and simple to use 3D scanning devices
has recently been introduced in the market. These tools are no longer
addressed to research labs and highly skilled professionals. By converse,
they are mostly designed to allow inexperienced users to easily and in-
dependently acquire surfaces and whole objects. In this scenario, the
demand for automatic or semi-automatic algorithms for 3D data pro-
cessing is increasing. Specifically, in this paper we concentrate on the
segmentation task applied to the acquired surfaces. Such a problem is
well known to be ill-defined both for 2D images and 3D objects. In fact,
even with a perfect understanding of the scene, many different and in-
compatible semantic or syntactic segmentations can exist together. For
this reasons, we refrain from any attempt to offer an automatic solu-
tion. Instead we introduce a semi-supervised procedure that exploits an
initial set of seeds selected by the user. In our framework segmentation
happens by iteratively visiting a weighted graph representation of the
surface starting from the supplied seeds. The assignment of each element
is driven by a greedy approach that accounts for the curvature between
adjacent triangles. The proposed technique does not require to perform
edge detection or to fit parametrized surfaces and its implementation is
very straightforward. Still, despite its simplicity, tests made on scanned
3D objects show its effectiveness and easiness of use.

1 Introduction

Segmentation is an important preliminary task in many 2D and 3D data process-
ing pipelines. For instance, splitting an image or a 3D object in smaller parts is
very useful to perform high-level recognition [1,2], reverse engineering [3,4] and
even tracking [5]. Of course, the expected outcome of a segmentation procedure
is different depending on the intended use of the resulting parts. If the goal is
to produce a set of image macro pixels, segments will be searched at a purely
syntactic level, grouping together pixels of uniform color or texture, regardless of
their belonging to one object or another. By contrast, different scenarios require
a more semantical splitting, with the aim of separating foreground from back-
ground or finding the boundaries of the objects found in the scene. Of course
these approaches tend to be more specialized, since the cues to exploit strongly
depend on the problem context and on the availability of humans in the loop.

When dealing with the 3D domain, segmentation is mostly targeted at split-
ting an object or a surface into subdomains that can be later interpreted as
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parametrized primitives. The complexity of such primitives can range from ba-
sic items, such as planes, cylinders or spheres, to complete parametrized models,
depending on the overall goal of the pipeline. Simple primitives are fitted to the
segmented parts mainly for object simplification [6,7], while completed models
can be used for direct 3D object recognition with resilience to clutter [8] or in-
variance to scale [9]. Finally, another important application that needs surface
decomposition is the angle and distance-preserving piecewise parametrization
needed to apply textures to objects [10].

Surface segmentation can happen through many different methods. Some of
them use standard clustering techniques or borrow segmentation procedures from
the 2D domain, other exploit graph partitioning algorithms, shape fitting or even
the distribution of symmetry planes over watertight objects.

Shlafman at al. propose to use a variation of K-means to group the triangles
of the mesh into clusters [11]. This is a quite direct adaptation: first the user
specify the desired number of clusters (k), then the process start by randomly
selecting a set of k well spaced seed triangles and it iterates by alternating an
assignment step (where each non-seed triangle is assigned to the nearest seed)
and an adjustment step (where new seeds are selected by picking the triangle
nearest to the center of each cluster).

Another classical technique is adapted by Moumoun et al., that suggests the
use the Watershed principle [12] on a hierarchical transformation of connected
faces structure based on the principal curvature. An interesting perspective on
3D segmentation is supplied by Podolak et al. [13], whose solution exploits the
relation between mesh elements and the symmetry planes of the whole object.

Katz et al. [13] split the problem into two separate steps: first a probabilistic
clustering is used in order to obtain meaningful but fuzzy components, then
exact boundaries are constructed by assigning shared faces to the final cluster.
A couple of years later, the same authors present an additional hierarchical
method [14] that performs three steps: the transformation of the surface into a
pose insensitive representation by mean of Multi-Dimensional Scaling (MDS);
the localization of prominent feature points to be used as seeds; the extraction
of clusters by refinement of core components obtained using spherical mirroring.

Mortara et al. [15] propose a multi-scale method based on blowing bubbles.
The surface segmentation happens by clustering vertices with respect to their
morphological behavior at different scales. This is done by centering on each
vertex spheres of increasing diameter and using the curves resulting by their
intersection with the mesh as a characterizing descriptor for the clustering pro-
cess. Shapira et al. [16] describe a method that exploits the Shape Diameter
Function (SDF), a measure related to the object volume in the neighborhood
of each point that is computed for the barycenter of each triangle. The segmen-
tation procedure relies on a two phase process. In the first phase, a Gaussian
Mixture Model is used to fit k Gaussians to the histogram of all SDF values in
order to produce a probability vector of length k for each triangle indicating its
likelihood to be assigned to each of the SDF clusters. In the second step the
segmentation is refined using the alpha expansion graph-cut algorithm, which is
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used to minimize an energy function that combines the vectors obtained in the
first phase along with boundary smoothness and concaveness.

Attene et al. [17] introduce the use of geometric primitives to drive a hierarchi-
cal segmentation. Specifically, at an initial stage each surface triangle represents
a singleton cluster associated to the primitive that best fits it. Such primitives
can be planes, spheres and cylinders. At each step, all the adjacent clusters are
considered for merging and those that can be better approximated with one
of the primitives form a new single cluster. The process stops when the desired
number of segments has been obtained. Lai et al. [18] describe a procedure based
on random walks that operates in two steps. Initially a set of seeds is chosen and
the mesh is over-segmented by assigning each face to the seed that has the high-
est probability of reaching it by a random walk. The obtained segments are then
hierarchically merged until the desired number of cluster is obtained. This is
done following an order based on the relative lengths of the intersections and
total perimeters of adjacent segments.

Finally, Golovinskiy and Funkhouser [19] use both normalized cuts and ran-
domized cuts. In a similar manner to [17], normalized cut segmentation happens
by first assigning each face of the mesh to its own cluster and then by merging
them hierarchically in an order determined by the area-normalized cut cost, i.e.
the sum of each segment perimeter (weighted by concavity) divided by its area.
In this way it is possible to obtain segments that exhibit small boundaries along
concave seams while maintaining segments with roughly similar areas. Differ-
ently, randomized cuts segmentation is initially applied to a strongly decimated
mesh, obtaining very large segments. Those segments are then hierarchically
splitted in a top-down manner, starting with all the faces in a single segment.
For each split, a set of randomized cuts is computed over the segment, and the
cut that is most consistent with others in the randomized set is identified. Among
this set of candidates, the one that results in the minimal normalized cut cost is
chosen. In both cases, the process stops when the required number of segments
has been reached.

In this paper we introduce a novel graph-based segmentation approach. Dif-
ferently from other previously proposed algorithms we do not adopt any global
optimization method and we only rely on surface normals. While an initial seed-
ing is required by the user, our approach is very simple to implement and the
experimental validation highlights its speed and its good performance when com-
pared with other graph-based systems.

2 Weighted Graph-Based Seeded Segmentation

Graph-based segmentation has been previously explored by several authors
[19,18,20]. Most of the approaches found in literature perform some global com-
putation over the graph in order to evaluate random walk reachability or optimal
cuts. The algorithm presented in this paper, after building a weighted dual graph,
adopts a straightforward greedy approach that directly extends an initial set of
seeds by picking one new vertex at a time.
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Fig. 1. Steps of the graph creation. From the initial mesh (a) the dual graph is built
creating a vertex for each face and connecting adjacent faces (b). Each edge of this
graph is then weighted according to the dot product between normals of the connected
faces.

2.1 Graph Creation

As for any graph-based mesh segmentation approach our first task is the defini-
tion of an apt graphical model for the surface that will be processed. As shown
in Fig. 1 each node of this graph corresponds to the a triangle of the mesh. There
are no geometrical relations between these node and the absolute position of the
triangles in space. For this reason we do not need any attribute on the graph
nodes. By converse, we are interested in the relations between adjacent faces,
thus we are going to define a scalar attribute for the graph edges. Specifically,
we want to assign to each edge a weight that is monotonical with the “effort”
required to move between the two barycenters of the faces. This effort should be
higher if the triangles exhibit a strong curvature with a short distance between
their centers and it should be low if the opposite happens. To this extent, given
two nodes of the graph associated to faces i and j, we define the weight between
them as:

ω(i, j) =
1− < ni, nj >

|pi − pj | (1)

where p̄ = (p1, p2...pk) is the vector of the barycenters of the faces and n̄ =
(n1, n2...nk) are the respective normals. < ·, · > denotes the scalar product and
| · | the Euclidean norm.

In Fig. 1 (c) edge weight is represented by using a proportional width in the
drawing of the line between two nodes. It can be seen how edges that connect
faces with stronger curvatures exhibit larger weight.

2.2 Seeding and Greedy Growing

Once the weighted graph has been created, the segmentation can happen. In our
framework the surface is segmented starting from one or more hints provided by
the user. This human hint expresses a binary condition on the mesh by assigning
a small fraction of all the nodes to a set called user selected green nodes and
another small portion to a set called user selected red nodes. We call green nodes
the faces (nodes) belonging to the segment of interest and red nodes the ones
that are not belonging to it, regardless of the fact that those nodes have been
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Algorithm 2.1: Grow(graph, userSelectGreenNodes, userSelectRedNodes)

greenNodes← ∅
redNodes← ∅
unassignedNodes← ∅
seeds← ∅

for each n ∈ graph.nodes

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if n ∈ userSelectGreenNodes
then seeds = seeds ∪ {< n, green, 0 >}

if n ∈ userSelectRedNodes
then seeds = seeds ∪ {< n, red, 0 >}

unassignedNodes = unassignedNodes ∪ {n}
while seeds �= ∅

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s← arg min
seed

seed.w, seed ∈ seeds

if s ∈ unassignedNodes

then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if s.type = green
then greenNodes = greenNodes ∪ {s.n}

if s.type = red
then redNodes = redNodes ∪ {s.n}

unassignedNodes = unassignedNodes \ {s.n}
for each m ∈ graph.neighbors(s.n)

do

{
if m ∈ unassignedNodes
then seeds = seeds ∪ {< m, s.type, ω(s.n, m) >}

Fig. 2. The simple, yet effective, algorithm proposed to iteratively expand the initial
user-specified seeds to cover the whole mesh

manually or automatically labeled. The proposed algorithm distributes all graph
nodes in the green nodes and red nodes sets in a greedy way.

We define a seed as triple < n, t, w > where n is the graph node referred by
this seed, t is a boolean flag that indicates if n has to be added to green or red
nodes, w is a positive value in R

+. At the initialization step, for each initial
green and red node selected by the user, a seed is created and inserted into a
priority queue with an initial weight value w = 0. All nodes are also added to
the unassigned nodes set. At each step, the seed < n, t, w > with lowest value of
w is extracted from the priority queue and its referred node n is added to green
nodes or red nodes according to the seed’s t flag. The node is also removed from
unassigned nodes to ensure that each node is evaluated exactly once during the
execution of the algorithm. For each node n′ ∈ unassigned nodes connected to n
in the graph, a new seed < n′, t′ = t, w′ = ω(n, n′) > is created and added into
the queue. It has to be noted that it is not a direct consequence of such insertion
that the final type of n′ (either green or red) is determined by the type t′ of
this seed. At any time multiple seeds referring the same node can exist in the
queue, with the only condition that a node type can be set only once. During
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Fig. 3. Benchmark evaluation of our approach (WGraph) with respect to manual seg-
mentation (Human) and other segmentation techniques. The used metrics are respec-
tively the Cut Discrepancy (CD), the Hamming Distance (Hamming), the Rand Index
(RI) and the Consistency Error (CE). See the text for details.

the execution of algorithm either the region of green nodes and the region of red
ones expands towards the nodes that would require less weight to be reached.
Once all nodes in the same connected component are visited, the result of this
assignment is shown to the user who can either refine his initial hint or accept
the proposed segmentation. Of course the procedure can be iterated to obtain
an hierarchical segmentation. In any condition, the algorithm will run in O(N)
time since, with the described greedy approach, each node is visited once.

3 Experimental Validation

3.1 Quantitative Evaluation

In order to assess the results obtained by the proposed technique in a quantita-
tive manner some kind of benchmark is needed. We chose to adopt the dataset
and metrics proposed in [21]. Namely, the dataset consists in 380 surface meshes,
organized in 19 different object categories. A ground truth of 4300 manually gen-
erated segmentations is supplied. Since the authors provided both the dataset
and the code for running the benchmark, we replicated some of their experi-
ments and added our approach to the set of algorithms to be tested against
the ground truth. The evaluation adopts four different metrics. The first one
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Fig. 4. Qualitative comparisons between the segmentation obtained with our method
(second column) and with a semi-supervised Fitting Primitives respectively with 5
segments (third column) and 10 segments (fourth column). In the first column the
ground truth segmentation is shown.

is the Cut Discrepancy, that sums the distances from points along the cuts in
the obtained segmentation with respect to the closest cuts in the ground truth
and vice-versa (CD in Fig. 3). The idea is to measure how well the segment
boundaries overlap with the ground truth. The second metric is the Hamming
Distance, that measures the overall region-based difference between two seg-
mentations. In particular we evaluate two directional Hamming Distances, the
missing rate (Hamming Rm in Fig. 3) and the false alarm rate (Hamming Rf in
Fig. 3). In addition also the average between the two is calculated (Hamming Rf

in Fig. 3). The third metric is the Rand Index (RI in Fig. 3), that accounts for
the likelihood that two triangles belong both to the same o to different clusters
in two segmentations. Finally also two Consistency Error metrics are evaluated
to measure a triangle-based compatibility between segments that is neutral to
differences in hierarchical granularity. Specifically the Global Consistency Error
(GCE in Fig. 3), that forces all local refinements to be in the same direction,
and the Local Consistency Error (LCE in Fig. 3), that allows for different re-
finement directions in different parts of the same object (refer to [21] for more
details about these metrics). The compared method were Randomized and Nor-
malized Cuts [19], Shape Diameter Functions [16], Core Extraction [14], Random
Walks [18], Fitting Primitives [17] and KMeans [11]. While most of these method
are not supervised, some required parameters such as the number of segments
to extract or initial seeds. For each approach we used the optimal parameter set
suggested in [21]. In addition also a set of totally human-supervised segmentation
is available in the benchmark. From the results shown in Fig. 3, it is apparent
that the proposed method outperforms all the compared approaches. Of course
this is somewhat expected since we use an initial set of hints supplied by the
user. However the algorithm was always fed with less than 10 seeds, resulting in
just a few seconds of operator time. It is interesting to observe that, even with
this limited user interaction, the performance obtained is on par with the fully
supervised human segmentation.

3.2 Qualitative Evaluation and Running Time

In addition to the quantitative results provided by the benchmark we also present
some sample segmentation images in order to give an insight about how the
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Fig. 5. Qualitative comparisons between the supervised segmentation obtained with
our method (second column) and with other state-of-the art unsupervised methods.
Respectively Randomized Cuts (third column) and Normalized Cuts (fourth column).
In the first column the ground truth segmentation is shown.

different methods actually compare from a qualitative point of view. In Fig. 4
we compare the fully supervised ground truth segmentation (first column) with
the result obtained by our method setting just 2 hint seeds for each segment. We
tried to replicate this result using the interactive Fitting Primitive tool avail-
able from [17], however were not able to obtain a proper segmentation with only
5 clusters (third column), while adding more clusters led the method to over-
segmentation (fourth column). In Fig. 5 comparisons are made with the best
performing automatic approaches. While objects with sharp edges are usually
easily segmented by all methods (teddy bear in the first row), some synthetic
shapes can lead to failures for Randomized Cuts and a slight imprecision for Nor-
malized Cuts (CAD model in the second row). Organic shapes (such as the bird
in the third row and the vase on the fourth) can make it difficult for automatic
algorithm to spot semantically relevant edges.

Regarding the execution time (Fig. 6), the graph building step is the more
time consuming, but it can always be performed in less than a second even for
large models. The segmentation step itself is very fast and it typically requires
less than 50 milliseconds.



Semi-supervised Segmentation of 3D Surfaces 233

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10000  20000  30000  40000  50000  60000

T
im

e
 [

m
se

c.
]

Number of triangles

WGraph

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  10000  20000  30000  40000  50000  60000

T
im

e
 [

m
se

c.
]

Number of triangles

WGraph

Fig. 6. Evaluation of the time required respectively for creating the weighted graph and
to perform a single segmentation on an object. Both scatter-plots relate the execution
time to the number of triangles in the mesh.

4 Conclusions

In this paper we introduced a simple yet effective segmentation procedure for
3D objects and surfaces. While our method requires an initial set of user hints,
results that are on par with fully supervised segmentations can be obtained even
with a very limited amount of seeds placed without special care by the user.
Moreover the time required to perform a segmentation is in the order of few
millisecond with meshes that count tens of thousands of vertices. This allows for
the inclusion of the method in tools that exploit real-time interactive use. Finally,
the proposed growing algorithm is very simple and can be easily implemented.
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Abstract. Convexity represents an important principle of grouping in
visual perceptual organization. This paper presents a new technique for
contour grouping based on convexity and has the following two prop-
erties. Firstly it finds groupings that form contours of high convexity
which are not strictly convex. Secondly it finds groupings that form both
open and closed contours of high convexity. The authors are unaware of
any existing technique which exhibits either of these properties. Con-
tour grouping is posed as the problem of finding minimum cost paths
in a graph. The proposed method is evaluated against two highly cited
benchmark methods which find strictly convex contours. Both qualita-
tive and quantitative results on natural images demonstrate the proposed
method significantly outperforms both benchmark methods.

Keywords: Salient Contour, Graph Searching, Convexity.

1 Introduction

Contours defining object shape are some of the most important features in visual
object recognition. However finding such object contours from real scenes is an
extremely difficult task. Most contours are regularly fragmented by occlusion,
shadows, and low reflectance contrast. In order to infer shape from contours the
human visual system must selectively group contours projecting from a common
object while keeping contours from different objects separate [3]. This grouping
process in the human visual system is known as perceptual organization and the
resulting contours are referred to as salient. Computational modelling of percep-
tual organization presents the following two challenges [13]. Firstly a function
which can determine the saliency of a particular contour grouping must be de-
fined. Secondly an effective algorithm for finding such groupings must be used.
Many existing contour grouping techniques are based on local Gestalt properties
such as closure, good continuation, and proximity [4]. In this work we propose a
technique for finding contour groupings of high convexity. Convexity represents
an important factor in grouping for many reasons. It is generally accepted that
the parts of an objects contour with high convexity correspond to object parts
[8]. Borra and Sarkar [2] compared several grouping methods in the context
of object recognition and found that grouping subject to a convex constraint
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Fig. 1. The book in the background is occluded by two foreground objects. The fore-
ground jar is fully visible but is not strictly convex.

gave best performance. They showed in some cases that convexity dominates
the effects of Gestalt properties such as good continuation. Convexity is also a
nonaccidential property which can distinguish structure from noise in real im-
ages [5]. For these reasons convexity, as a grouping property, has been considered
by many researchers [16,5].

Despite this progress existing techniques for finding groupings which form
convex contours are constrained in two ways. Firstly all techniques can only
find closed contours. Although closure is an important grouping property not all
salient contours form closed contours. This is case when one object is occluded
by another. For example consider the image containing three objects in Figure 1
where a book in the background is occluded by two foreground objects. Finding
a complete contour of this occluded book is not possible without prior knowl-
edge of its complete shape. If such knowledge is not available, employing the
principle of maximum entropy, we should aim to find the parts of the object’s
contour which are visible. In this example this would correspond to the open con-
tour of the occluded book which exists between the background and the book in
question. Attempting to find a complete contour of the occluded object using ex-
iting techniques would most likely fail [1]. To overcome the problem of occlusion
many authors use local features which may still be visible if the object is not
completely occluded [9]. The second constraint exhibited by existing techniques
is that they can only finding groupings that form strictly convex contours. For
example consider the object of the jar in the foreground of Figure 1. This object
is not occluded so finding a complete contour is possible. Application of existing
techniques will fail to find this contour because it exhibits high convexity but is
not strictly convex.

In this paper we propose a new technique for finding open and closed contours
of high convexity. This technique involves three steps. We begin by extracting a
set of suitable elements for grouping. A graph representation of these elements is
then constructed. Finally an efficient graph mining algorithm is applied to find
groupings which form salient contours where saliency is defined as a function of
convexity. The layout of this paper is as follows. Section 2 describes the method
used to extract elements for grouping and the conversion of these elements to
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a graph representation. Section 3 details the mining algorithm used to group
elements into salient contours. Finally sections 4 and 5 present results and draw
conclusions respectively.

2 Grouping Element Extraction and Graph Construction

The elements used for grouping are extracted from an image by the follow-
ing steps. First edge detection is performed. The resulting edge pixels are then
grouped into 8-connected contours. Then these contours are segmented into el-
ements of a suitable scale for grouping. We now describe each of these steps.

Colour edge detection is performed using the photometric invariant technique
of van de Weijer et al. [18] and the resulting edge image is thinned. The linking
of edge pixels into 8-connected contours is performed using a region growing
approach. When an edge junction is encountered the contour in question is ter-
minated and separate contours are created for each branch. In many existing
grouping algorithms the grouping elements correspond to 8-connected contours
[15,16]. Often the scale of such elements is too great. Consider Figure 2a which
shows a single 8-connected contour. This contour contains parts of two indi-
vidual salient contours corresponding to the bird and tree branch. In order to
extract these individual salient contours the scale of the original contour must
be reduced before a grouping process is applied. To overcome this issue of scale
Jacobs [5] proposed the following strategy, which was later used by Stahl et
al. [13]. When grouping two contours Jacobs removed the constraint that the
entire second contour must be contained in the grouping. This strategy is not
suitable in the context of extracting open contours. In cases where the scale of
the original contour is too great and no actual grouping is performed it will fail.
Consider again the single contour in Figure 2a. A closed contour of the bird
cannot be formed due to occlusion by the tree branch. In order to extract the
part of this contour corresponding to the bird the scale of the original contour
must be reduced. Since no grouping is required the method of Jacobs cannot
reduce the scale. To overcome this problem we propose a novel solution. We
represent each 8-connected contour as a series of smaller scale line segments.
These line segments are generated through a process of line fitting [6]. Grouping
is then performed at the line segment scale. Figure 2b shows the result of this
line fitting process applied to the contour in Figure 2a. Grouping at this scale
allows the extraction of the open contour corresponding to the bird object

To facilitate the search for salient contours we convert the above line segment
representation to a graph representation known as an image graph [17,12]. To
construct this graph each line segment endpoint is represented as a node in the
graph. All nodes have degree 1 or greater. If two endpoints are connected by
a line segment a real edge is constructed between them [12]. To allow grouping
of segments originating from different 8-connected contours virtual edges must
be constructed between them [12]. A virtual edge is constructed between two
segment endpoints if and only if both endpoints in question have degree 1 and
the spatial distance between them in the image domain is less than a specified
threshold. A path in the image graph corresponds to a contour in the image



238 P. Corcoran, P. Mooney, and J. Tilton

(a) (b)

Fig. 2. A single 8-connected edge component is plotted in red in (a). Each connected
pair of points in (b) represent a line segment.

domain. This transforms the task of finding salient contour groupings to one of
finding suitable paths in the image graph.

3 Salient Contour Grouping

In order to find salient paths in the image graph two elements are required. These
are a measure of path saliency and an effective graph searching algorithm. A
novel measure of saliency, which is a function of contour convexity, is proposed.
The graph searching algorithm used is an implementation of Beam Search [14]. A
single application of Beam search starting from a specified initialization or root
edge, if successful, will find a single contour. Therefore to find multiple salient
contours the search must be repeated multiple times from different root edges.
In the following three sections we describe the proposed measure of saliency, the
Beam search implementation and the algorithm used to determine a suitable
partially ordered set of root edges for searching.

3.1 Contour Saliency Measure

The saliency of a contour i is determined using the function CRL in
Equation 1.

CRL(i) = C(i)×R(i)× L(i) (1)

This measure is a product of three terms which we now describe. The function
C measures the convexity of the contour in question which lies in the range [0, 1]
and approaches 1 for convex contours. This is determined using the convexity
measure of Corcoran et al. [11] which has computational complexity of O(n)
[7]. The function R in Equation 1 equals the percentage of the contour length
which is constructed from real edges and lies in the range [0, 1]. This term is
important because it models the Gestalt property of good continuation where
contours with less breaks appear more salient. It is common for an image to
contain many short contours having high convexity which are not perceived by
the human visual system as being salient. In order to prevent the extraction of
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such contours the function L in Equation 1, which is defined by Equation 2,
returns a value in the range [0, 1] which approaches 1 for longer contours.

L(i) = 1− 1

1 +
(

Γi

K

)2 (2)

The variable Γi equals the total length of the contour in question. The variable
K is a specified parameter which determines the point at which this function
approaches unity. The shape of this function is such that its first derivative
decreases as contour length increases. This models the fact that short contours
are generally perceived as being non-salient but when contours are sufficiency
long, length becomes a less important factor. All three terms in the product of
Equation 1 are in the range [0, 1]. The resulting CRL saliency value will also
be in this range with higher values signifying greater saliency. Representing a
closed contour as an open contour with equal first and last vertices allows CRL
to be applied to both types of contour. The time complexity required to compute
CRL is O(n). This makes the task of finding image contours of high convexity
tractable.

3.2 Beam Search

Beam search uses a breadth-first search to build its search tree. At each level
of this tree it generates all successors but only stores a predetermined number
of these which are determined to be the best. This number is referred to as the
beam size. Due to the fact that a path may be extended in both directions the
search tree is bi-directional. A search begins with a path containing two nodes
joined by a single edge where this edge is known as the root edge. Consider the
image graph in Figure 3a where nodes are represented by circles, real edges by
solid lines and virtual edges by dashed lines. A path in this graph, represented
by the colour red, contains the four nodes (A, B, C, D, E) of which A and E
are leaf nodes in the search tree. The edge connecting nodes B and C is the root
edge and is represented by a thicker line. Due to the bidirectional nature of the
search the path may be extended along the edge connecting to A to G, and the
edge connecting to E to F.

The Beam search terminates when no further extension can be made to any
path. The most salient contour encountered during the entire search procedure
is then returned. This contour may correspond to only part of a longer path
which was discovered. For example the most salient contour encountered during
the creation of the path in Figure 3a may correspond to the path containing the
nodes (A, B, C, D) which is only a part of an overall longer path discovered.
When a path forms a cycle all edges not contained in the cycle are removed. For
example consider the path in Figure 3b. If this path was extended by adding
the edge connecting H to D this would form a cycle and in turn result in the
edge connecting D to E being removed from the path. When a cycle is formed
the path in question cannot be extended any further. The proposed Beam search
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Fig. 3. The paths in (a) and (b) contain the nodes (A, B, C, D, E) and (H, G, A, B,
C, D, E) respectively

is subject to two constraints which we now discuss. Any extension to a current
path resulting in a contour which self intersects is prohibited. The second con-
straint imposed is that if an extension results in a cycle, this cycle must contain
the corresponding root edge. In the context of Figure 3b extending the path
in question by adding the edge connecting H to B would be prohibited. This
constraint prevents searches starting at different root edges from consistently
finding the same path and was originally proposed by Saund [12].

3.3 Multiple Contour Extraction

The search for salient contours must be performed efficiently. To reduce redun-
dancy Beam searches should commence from root edges, belonging to these con-
tours, as early as possible [12]. Edges corresponding to a single line segment in
the image makes it difficult to predict, without considering additional informa-
tion, if a given edge belongs to a salient contour. To overcome this difficulty we
propose the following strategy presented in Algorithm 1. For each line segment
we create a corresponding Beam search tree with that line segment as its root
edge (line 1). We refer to this set of search trees as ST . Next we increase the
depth of each tree to a relatively small size specified by parameter RD (line 2).
We then determine the most salient sub-path in each tree and remove all trees
from ST for which this value is below a specified threshold RST (line 3). All
remaining trees are then ordered by saliency (line 4). The Beam search is then
applied to each element of ST in this order until completion (line 6). Upon com-
pletion of a given Beam search the following steps are executed: First the most
salient contour, MSC, encountered during the search is determined (line 7). If
its saliency is greater than a specified threshold CST it is accepted and added
to a set entitled SC (line 9). If accepted, the contour MSC is used to reduce
the number of elements in ST by deleting any element if its corresponding root
edge is contained in MSC (line 10). The most recently processed tree is then
removed from ST (line 12). Once all elements in ST have been processed the
complete set of contours found is returned (line 14).
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Algorithm 1. Multiple Contour Extraction
1: ST = CreateTrees()
2: increaseDepth(ST , RD)
3: removeUnsalient(ST , RST )
4: sort(ST )
5: while ST .size() > 0 do
6: completeSearch(ST [1])
7: MSC = SetT rees[1].MSC
8: if MSC.Saliency > CST then
9: SC.add(MSC)

10: ST .delete(MSC)
11: end if
12: ST .erase(1)
13: end while
14: return SC

4 Results

To evaluate the proposed technique for finding salient contour groupings the
Berkeley segmentation dataset [10] was used. To allow a comparative study the
contour grouping techniques of Wang et al. [16] and Jacobs [5] were used. Both
these techniques are constrained by the fact that they can only extract strictly
convex closed contours. We qualify this statement with the fact that the method
of Jacobs [5] is robust to noise and therefore can extract closed contours which
are not strictly but are almost convex. Also the method of Wang et al. [16] is
robust to occlusion due to the image boundary. These two techniques represent
state of the art convexity based grouping methods. When applied to images
containing unoccluded object contours which are strictly convex both techniques
perform well. Examples of this can be found in the original publications. It was
discovered that when these techniques were applied to most natural images they
performed poorly. For example consider Figure 4 which displays the results of
applying both techniques to a single image. Both techniques fail to extract the
most salient contours in this image which correspond to the contours of the
bird and the tree branches. This failure can be attributed to the fact that these
contours are occluded by the a tree branch and the image boundary respectively,
and are not strictly convex. For example the contour of the bird contains two
concave parts just below its head.

Figure 5 displays the contours extracted using the proposed technique for a
set images. These results were achieved using a Beam width of 1, RD value of
15, RST value of 0.6, CST value of 0.7 and K value of 20. When the Beam
width was greater than 1 the algorithm discovered a greater number of contours
which were salient with respect to the proposed metric but these in general did
not correspond to genuine salient contours or object parts. From this analysis we
drew the conclusion that a best first search performs the task of filtering noise. In
all cases the proposed method accurately finds the most salient contours. These
include the contours of the bird and deer in Figure 5a and Figure 5b respectively.
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(a) (b)

Fig. 4. Convex contours extracted using the methods of Wang et al. and Jacobs are
shown in (a) and (b) respectively

(a) (b)

(c) (d)

Fig. 5. Contours extracted using the proposed technique are shown

It is evident from this qualitative evaluation the proposed method outperforms
both benchmark methods. To quantify this performance, we compared precision-
recall curves on the Berkeley benchmark set [10] which contains 100 test images.
The method of Wang et al. [16] is supervised in the sense that the number
of contours extracted must be specified by the user. Therefore it cannot be
subject to this analysis. The curves in question are shown in Figure 6 and were
generated by varying the threshold applied to the gradient image processed by
both algorithms. The dip on the left hand side of the curves is due to the fact that
with a high threshold the salient contours contain many breaks in the edge image.
The curve of the proposed technique is superior to the curve corresponding to
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Fig. 6. The PR curves for the proposed and Jacobs method are shown

the method of Jacobs signifying its superior performance. In all test cases the
running time of the proposed algorithm was under 1 second.

5 Conclusions

This paper presents a new technique for finding salient image contours of high
convexity. The novelty of this technique lies in its ability to find both open and
closed contours which exhibit high convexity but may not be strictly convex.
Qualitative and quantitative results achieved on natural images show the pro-
posed technique to outperform two current methods for finding convex image
contours.

Acknowledgments

Research presented in this paper was part-funded by a Strategic Research Cluster
grant (07/SRC/I1168) and a Research Professor Award (07/RPR/I1177) from
Science Foundation Ireland under the National Development Plan.

References

1. Ansari, N., Delp, E.: Partial shape recognition: a landmark-based approach. IEEE
International Conference on Systems, Man and Cybernetics 2, 831–836 (1989)

2. Borra, S., Sarkar, S.: A framework for performance characterization of
intermediate-level grouping modules. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19(11), 1306–1312 (1997)

3. Elder, J., Elder, J., Zucker, S., Zucker, S.: A measure of closure. Vision Research 34,
3361–3369 (1994)

4. Geisler, W.S., Perry, J.S., Super, B.J., Gallogly, D.P.: Edge co-occurrence in natural
images predicts contour grouping performance. Vision Research 41(6), 711–724
(2001)

5. Jacobs, D.: Robust and efficient detection of salient convex groups. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 18(1), 23–37 (1996)



244 P. Corcoran, P. Mooney, and J. Tilton

6. Jain, R., Kasturi, R., Schunck, B.G.: Machine vision. McGraw-Hill, Inc., New York
(1995)

7. Latecki, L.: Shape similarity measure based on correspondence of visual parts.
IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1185–
1190 (2000)

8. Latecki, L.J., Lakmper, R.: Convexity rule for shape decomposition based on dis-
crete contour evolution. Computer Vision and Image Understanding 73(3), 441–454
(1999)

9. Lowe, D.G.: Object recognition from local scale-invariant features. IEEE Interna-
tional Conference on Computer Vision 2, 1150–1157 (1999)

10. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423
(July 2001)

11. Corcoran, P., Mooney, P., Tilton, J.: Convexity Measure for Partial Contours by
Shape Similarity. In: British Machine Vision Conference. Dundee, Under Review
(2011)

12. Saund, E.: Finding perceptually closed paths in sketches and drawings. IEEE
Transactions on Pattern Analysis and Machine Intelligence 25(4), 475–491 (2003)

13. Stahl, J., Wang, S.: Convex grouping combining boundary and region information.
In: IEEE International Conference on Computer Vision, vol. 2, pp. 946–953 (2005)

14. Russell, S., Norvig, P.: Artificial Intelligence: a Modern Approach, 3rd edn.
Prentice-Hall, Upper Saddle River (2009)

15. Wang, S., Kubota, T., Siskind, J., Wang, J.: Salient closed boundary extraction
with ratio contour. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 27(4), 546–561 (2005)

16. Wang, S., Stahl, J., Bailey, A., Dropps, M.: Global detection of salient convex
boundaries. International Journal of Computer Vision 71(3), 337–359 (2007)

17. Wang, S., Wang, J., Kubota, T.: From fragments to salient closed boundaries: an
in-depth study. In: IEEE Conference on Computer Vision and Pattern Recognition,
vol. 1, pp. I–291– I–298 (2004)

18. van de Weijer, J., Gevers, T., Smeulders, A.: Robust photometric invariant features
from the color tensor. IEEE Transactions on Image Processing 15(1), 118–127
(2006)



Hierarchical Interactive Image Segmentation

Using Irregular Pyramids�

Michael Gerstmayer, Yll Haxhimusa, and Walter G. Kropatsch

Pattern Recognition and Image Processing Group
Institute of Computer Graphics and Algorithms, Vienna University of Technology

{mig,yll,krw}@prip.tuwien.ac.at

Abstract. In this paper we describe modifications of irregular image
segmentation pyramids based on user-interaction. We first build a hier-
archy of segmentations by the minimum spanning tree based method,
then regions from different (granularity) levels are combined to a final
(better) segmentation with user-specified operations guiding the segmen-
tation process. Based on these operations the users can produce a final
image segmentation that best suits their applications. This work can be
used for applications where we need accuracy in image segmentation, in
annotating images or creating ground truth among others.

1 Introduction

Image segmentation cannot produce a perfect final segmentation, only by using
low-level visual cues. The reason is the intrinsic ambiguity in the exact location
of region boundaries in digital images. In general, homogeneity of low-level cues
will not map to the semantics [12], and the degree of homogeneity of a region is
in general quantified by threshold(s) for a given measure [6]. To avoid problems
with the automatic segmentation methods one can use human help to guide seg-
mentation methods, producing results acceptable by users/practitioners. Most
interactive or semi-automatic segmentation algorithms make use of this external
knowledge, some of them e.g. Snakes [11], Live Wire (or Intelligent Scissors) [17]
and recent approaches based on the Graph Cuts formalism [1,18,16] are well
known. They are often used in e.g. medical image segmentation, image or video
object extraction and to refine or improve results from automatic methods.

But the notion of ’interactive’ is ambiguous and not very well defined. Some of
the methods are initialized (e.g. statistic shape models, rule sets, training sets)
others use seed points or strokes for guiding and limiting a segmentation pro-
cess [9]. Besides initialization, existing methods can also be categorized either as
optimizing (manually guided, influenced) or post-processing methods (manually
corrected, modified) [10]. The work presented in this paper is located between the
last two categories. It uses user-interaction to guide the minimum spanning tree
(MST) based pyramid segmentation [8]. The MST-based segmentation method
produces a stack of (dual) graphs (a graph pyramid) [8] on each level of the
� This paper has been supported by the ASF under grant FWF-P20134-N13.
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pyramid (Fig. 3). Each level of this hierarchy corresponds to one image segmen-
tation. Regions from different levels of the segmentation pyramid are combined
by user interaction resulting in a modified pyramid containing the ’final good’
segmentation at top. In the regions where the user did not set any modification
operation, the algorithm will be guided automatically by a pairwise comparison
of region similarity [5].

Meine et al. [15] use the topological GeoMap representation and user inter-
action to guide a segmentation method in the medical image analysis. The use
of a topologically correct representation has a major impact on the processing
and its results. This motivated us to use combinatorial maps, as a topological
representation. The authors in [13] interactively modify a hierarchical watershed
segmentation, which is similar to our user modification(s) of the MST based
segmentation hierarchy. In our case we can, if needed, access each pixel, which
is not the case in the work of [13].

The paper is structured as follows. We first give a short overview of the combi-
natorial maps and combinatorial pyramids (Section 2). After that the operations
that a user can set are presented in Section 3.1, in Section 4 we show some results
and conclude the paper.

2 Combinatorial Image Pyramids

In this section a short overview of the most important concepts of combinatorial
image pyramids are given. Combinatorial maps and generalized combinatorial
maps define a general framework which allows to encode any subdivision on nD
topological spaces orientable or non-orientable with or without boundaries [2].
Images and its structure are represented in this work as weighted combinatorial
maps. Using 2D images, combinatorial maps may be understood as a particular
encoding of a planar graph, where each edge is split into two half-edges called
darts. Since each edge connects two vertices, each dart belongs to only one ver-
tex. A 2D combinatorial map is formally defined by the triplet G = (D, σ, α) [3]
where D represents the set of darts and σ(d) is a permutation on D encountered
when turning clockwise around each vertex. Finally α(d) is an involution on D
which maps each of the two darts of one edge to the other one. Given a combi-
natorial map G = (D, σ, α), its dual is defined by G = (D, ϕ, α), with ϕ = σ ◦α.
The cycles of permutation ϕ encode the faces/regions of the combinatorial map.
In the following cycles of α, σ(d) and ϕ containing a dart d will be respectively
denoted by α∗(d), σ∗(d) and ϕ∗(d) (an example of a combinatorial map is shown
in Fig. 1). Thus all graph definitions used in irregular pyramids are analogously
defined. A combinatorial pyramid is a stack of combinatorial maps successively
reduced by the set of contraction and removal operations, i.e. (G0, ..., Gk) where
k represents the levels of the pyramid. Each map k+1 is built from the one below,
k, by selecting a set of contraction kernels Kk,k+1 and applying it to a given com-
binatorial map Gk to get the reduced map Gk+1 = C[Gk, Kk,k+1] = Gk \Kk,k+1.
More on removal of the redundant edges can be found in [2].

Region adjacency graphs (RAG), dual graphs [8], combinatorial maps [7],
and GeoMap [15] have been used before [2] to represent the partitioning of 2D
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Fig. 1. The house and its region relations are described with permutations on the
dartset D of the combinatorial map. The infinite face f∞

ϕ is encoded with the orbit
ϕ∗(−2) = (−2, 1).

space. From these structures, we use the combinatorial maps because RAGs
cannot correctly encode multiple boundaries and inclusions. Dual graphs lack
the explicit encoding of edge orientation around vertices, which is present in a
combinatorial map [2](e.g. Fig. 1). Moreover with combinatorial maps, its dual
must not be explicitly represented. One combinatorial map is enough to fully
characterize the partition and to deduce the dual graph.

3 Interactive Operations on Pyramids

Usually, automatic segmentation methods will not be able to deliver a final seg-
mentation that is acceptable by the users (see Fig. 2). Thus there is a need to
perform a user interaction such that one can produce a better image segmenta-
tion. We have chosen a (hierarchical) pyramid based segmentation method where
we define user operations which will guide the merging and division by using re-
gions in different level of the pyramid to a final acceptable image segmentation.
The irregular (combinatorial) pyramid [7] produces automatically a stack of seg-
mented images (only some levels are shown in Fig. 2). The segmentation results
are produced automatically by merging processes that take low-level cues (in
this example RGB color values) into consideration [5].

In this work, the user can set focus on region(s) lying in different levels of the
pyramid (having different granularities). One can apply the process of manu-
ally changing the image segmentation by merging and/or division operations in
any level within the stack of segmentations. Note that in our pyramid all these
manual operations defined on the regions will change the merging tree (Fig. 3a).
Moreover they also guide the processes in changing it, resulting in a stack of seg-
mented images where the final (wished) segmentation is at top of the pyramid.
Because we keep the hierarchy it is always possible to decompose the object into
its subparts or restart the process for further refinement. Instead of doing this
with unpredictable result (e.g. effect of a stroke in Graph Cuts) we can explicitly
address each region in the merging tree (until the pixel level if needed) while non
restricting the flexibility of the algorithm in merging (other) non selected (or not
in the focus) regions automatically. E.g. Fig. 3b) shows (two) final segmentations
(level k and k + 1). The user has decided first to put focus on parts of the face
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bottom level mid level top level of the pyramid

a)

b)

Fig. 2. Image segmentation with automatic segmentation method [8];
a) Due to lack of contrast bird is merged with meadow (Image 43074 from [14]);
b) Due to the thin structure the Danube river disappears.

like eyes, mouth, nose, ears etc. (lv. k), which then got manually merged with
the face (lv. k + 1). The inclusion relations of the eyes, mouth, nose and ears,
within the face is correctly encoded in our merging tree. As it is shown, note
that in our pyramid we can keep many ’final’ segmentations.

3.1 Modifying Operations

The manual image segmentation process consists of two parts: (1) building the
irregular pyramid based on the MST [8,7], and (2) a user interface where the
user places its modification operations1. The framework uses as input the original
image, its stack of automatically generated segmented images at different levels
(e.g. images in Fig. 2a) and the hierarchical information of the merging tree.

Modifying relations between regions, requires the creation of a correspondence
between the user-operations based on regions in the user interface (visual repre-
sentation) and their combinatorial map correspondent in the same level of the
pyramid. This information is given by the structural description of the image
relations, inherently encoded in its primal and dual combinatorial maps. To get
the inter-pixel boundary [4] in the primal or the edge representing the adjacency
in its dual, a calculation is done through permutations on the darts in D (e.g.
boundary between the roof (region 1) and the wall (region 2) in Fig. 1). Each
region is represented in the primal by a dart ∈ D and its orbit ϕ∗ describing the
boundary. These darts (aligned around a vertex corresponding to this region)
encode also the relations to the neighboring regions in the dual. Therefore the
joining edge, for e.g. merging two regions, is calculated through iterating the
ϕ∗ permutations for each region until both darts belong to the same cycle of α
and hence to the same edge. This transformation from regions to edges is neces-
sary because the operations placed in the user interface implicitly describe what
1 Can be found at http://www.prip.tuwien.ac.at/

http://www.prip.tuwien.ac.at/
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a) Merging tree b) Image segmentation pyramid

k+1
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Lv. receptive field

lv. 0 lv. k lv. k + 1

Fig. 3. a) Discrete levels with the merging tree. Interactive operations combine regions
from different segmentations in different levels of the pyramid. Green vertices represent
regions inhibited from merging in further processing, and red vertices are chosen to get
merged. b) User segmentation of Image 189080 from [14].

to do and the representation in terms of combinatorial maps explicitly defines
what to be modified. In the presented work we need only the concept of regions’
boundary in order to define the user operations. Thus, the idea is general and
can be implemented also on other topological representations like region adja-
cency graphs, dual graphs [8] etc. Therefore this work is not limited to the image
representation with combinatorial maps even though it strongly benefits from
them.

The operations for the purpose of modifying the relations between the regions
are placed in the user interface either by separate selection or brushing over them
(e.g. Fig. 4). The two fundamental operations that can be applied on adjacent
regions r1 and r2 for guiding the segmentation process are:

– mrg(r1, r2): merging regions r1 and r2,
– imrg(r1): inhibition of merging r1 with other regions in the levels above

One can define other operations as a combination of these two basic modifying
operations. These operations exert influence on the merging tree. But merging
solely does not implicate that the resulting region will be inhibited automatically
since the algorithm can decide to merge it with other regions in higher levels of
the pyramid. Through nesting other combinations are possible, for e.g.:

– imrg(mrg(r1, r2)): merge and inhibit the resulting region,
– imrg(r1, r2): inhibit both from merging with other regions, etc.

Since we use a hierarchical representation, it is also possible to select regions at
different granularity from multiple levels. The basic way of doing this is traversing
through all the segmentation levels of the pyramid. The other way is the ’ex-
plore’ mode, intended to traverse down (toward higher resolution) only within
the receptive field of a single region (Fig. 4c). This can be used as a way of
applying operations in higher levels on previously merged regions (at lower level
of granularity). Its main purpose is dividing them again while e.g. inhibiting the
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a) Brush mode b) Merge mode c) Explore mode

Fig. 4. User interactions. a) Using brush mode (red line) for effectively applying merge
operations (encircle bird), b) Merging regions by selection (yellow - first selected region,
violet - region to be selected), c) Dividing a region (surrounded red) into its components
within its receptive field and restoring a single region from a lower level (indicated with
yellow) e.g. the birds beak.

current state. It is also possible that some regions (or their receptive fields) over-
lap which can lead to conflicts in operations e.g. merging two regions and one
of them is inhibited at the same time. We resolve these conflicts by analyzing
the combinatorial map and the relations of region(s) under operation i.e. the
affected edges (see Section 3.2).

The listing above of operations should be understood as an outline of the ver-
satility of the framework, since many other operations are possible. Finally a set
of operations is passed on to the framework, to perform the final segmentation.
Each operation entry is of the form {lv., op., r1[, r2]} where lv. is the level, op.
the operation, r1 the first region and r2 the second one (optional).

3.2 Building Segmentation

In the bottom-up automatic building of the pyramid [8] candidate edges for
contraction are chosen to be the smallest weighted edges. The decision whether
two regions (vertices connected by edges) are merged is guided by comparison
of region similarity [5]. The set of user operations are not immediately applied
upwards in the merging tree. Since we allow operations to be selected on different
levels of the pyramid we need to down-project these operations on a common
starting level. A common starting level is the lowest level in which at least one
operation is defined. In this common starting level the candidate-edges affected
from operations (contraction or inhibition) are determined, allowing rebuilding
the pyramid from this level upwards. More precisely, deleting all older levels
above the common starting level and recalculating new levels, i.e. the merging
tree is changed only from the common starting level above. That implies the
recalculation of the operations to an equivalent instruction set, which is achieved
with the hierarchical information, through permutations on D with ϕ and set
operations as shown in the following example.

Fig. 1 and Fig. 5 are two consecutive levels, k + 1 and k in the pyramid.
Let Fig. 5 be a common starting level. The boundary of the roof of the house
(region 1) remains the same in both of the levels. However the wall of the house
(region 2) in level k is divided into two subregions 2

′
and 2

′′
. When applying
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Fig. 5. The combinatorial map from a segmentation in a lower level (than Fig. 1) of
the hierarchy

e.g. the operation imrg(mrg(1, 2)) in level k + 1, meaning merge region 1 (roof)
and 2 (wall) in Fig. 1 and inhibit the resulting region from merging’ we can see
that this operation leads to a different non corresponding result imrg(mrg(1, 2

′
))

when applied on the combinatorial map in the level below (shown in Fig. 5).
Beginning from the relation between the regions in the common starting level

k and the level above k + 1, its ϕ permutation, the corresponding darts (or
edges) can be reconstructed as shown in Fig. 5 (right). There are two different
categories and collections of edges (inhibition and removal) necessary to process
the operation correctly:

1. Former Contractions: in each set of Rk,1 and Rk,2 some darts belong
to the same cycle of α. This edge indicates the adjacency/subdivision from
region Rk+1,2 in level k and is marked for removal e.g. (7,−7).

2. User Operations:
– all edges of Rk,1 and Rk,2 without the marked edges for removal from

former contractions represent the outer borders of regions Rk,1 and Rk,2.
All these edges are marked for inhibition, e.g. darts (3,−3)(5,−5),
(2,−2)(4,−4) and (6,−6), (5,−5)

– the darts from the outer borders of Rk,1 and Rk,2 of each region are
compared to find the edge in common. This edge is marked for removal
e.g. (5,−5).

Selection of edge (5,−5) would lead to a conflict because it appears in both inhi-
bition and removal edge sets. Because user intention is to merge, a rule decides
that this edge has to be removed. Similar to above example we have correctly
defined the assignment to the collections of user selected edges for processing
(removal or inhibition) for all other user operations. Rebuilding the pyramid
from the common starting level, is done as follows: first all edges in this col-
lection of edges are processed first, then all other edges not in this collection
are automatically processed by [8]. The processing is based on dual contrac-
tion [3] and guarantees a consistent state of the combinatorial map. Note that
all edges marked for inhibition will not be deleted by the automated process and
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survive until the top of the pyramid. The resulting segmentation pyramid con-
siders the selected regions and operations containing a new final segmentation
at top, where a final state is reached (e.g. Fig. 3, lv. k).

This framework can be used easily for creating a nested image annotation tree,
e.g. by locking all levels below the top of the pyramid and iteratively merge the
remaining regions (e.g. Fig. 3, lv. k + 1) to build a new hierarchy. In contrast to
other tools (e.g. labelme[19]) where each level of abstraction has to be created
separately, this is an enormous simplification. Furthermore it could be easily
used in creating ground truth in image and video databases.

4 Segmentation Results

We show by means of some images the applicability of the framework. The user
has to define what is the region of focus and which objects are of interest. To
produce the result in Fig. 6a three pyramid rebuilds are necessary. A detailed
set of user operations applied are shown in Table 1. The brush was used to
encircle the bird (Fig. 4a) in a level of the pyramid with a fine segmentation.
This causes that a limiting boundary is created. In the second run errors in
segmentation were removed. Finally in the third run the outside area is inhibited
and all inner regions are automatically merged to produce a final segmentation
(Fig. 6a).

In an aerial image of the Danube river (Fig. 2b) the user wants to segment the
river properly. Some parts of the river were correctly segmented automatically
in higher levels, thus these regions are inhibited in the first manual interaction.
In the thinner branches correction at pixel level is necessary, thus 36 clicks are
needed (Table 1, Fig. 6b). The last image segmented (Fig. 6c) by a user has
multiple regions of interest at different granularities (the rock, the person on
the rock and the lake/river). Within multiple levels and two rebuilds regions are
merged together and inhibited from merging. The processing takes in general per
rebuild couple of seconds on images with 500×500 on a PC (2 GHz processor with
1 GB RAM). Since each user segmentation is intended for different applications,
a straightforward comparison with other frameworks is difficult.

a) 43074: Focus on the bird b) Focus on the river c) 14036: Focus on details

Fig. 6. Final segmentation after user interaction on the segmentation hierarchy
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Table 1. Segmentation results in Fig. 6. # Lv.: number of different levels modified,
# Op.: sum of operations, Time: min:sec, interaction time contains time for placing
operations/int. time overall, computation time: time for result.

Image Run Input # Op. # Lv. Clicks Interaction Time Comp. Time

43074 1. brush 104 imrg(mrg) 1 1 01:09/01:41 00:32

2. select 7 imrg
5

7
00:13/03:51 00:55

select 3 imrg(mrg) 6

3. select 1 imrg(mrg) 1 2 00:02/00:18 00:10

River 1. select 14 imrg(mrg) 3 28
00:49/06:24 00:43

select 5 imrg 5 5

2. select 3 imrg 1 3 00:02/00:33 00:10

14036 1. select 2 imrg
3

2
00:09/01:20 01:35

select 2 imrg(mrg) 4

2. select 3 imrg
1

3
00:14/01:00 00:15

select 2 imrg(mrg) 4

5 Discussion

Depending on the object(s)/region of interest where the user wants to set the
focus on, the following ways can lead to the same final segmentation result: (1)
select different regions from different levels, (2) encircle object of interest with
the brush (or selection), (3) limit/fill-out object of interest using the brush (or
selection), (4) start from a coarse segmentation of the object and then split up
or (5) start from a fine segmentation of the object and merge. One can choose to
combine one of the above to have a hybrid approach. Explicitly defining what to
be done might cause that an object not denoted, but correctly segmented before
will get lost. As shown in Figure 6, it is possible to force a segmentation, in the
worst case by defining operations using segments at pixel level. Undoing opera-
tions relates to modify the instruction set, hence it is also possible to start from
or correct an existing segmentation produced by other segmentation methods.
A solution might be to reconstruct the hierarchical merging tree by using the
segments of the output of the segmentation method. Out of the receptive fields
of each segment, operations can be created to recalculate the intermediate levels.

The user interface interacts with the segmentation framework but is clearly
separated and no knowledge about the underlying data-structure is necessary.
We will further evaluate this framework in the terms of usability.

6 Conclusion

The approach of interactively modifying an irregular pyramid by guiding it with
user-specified operations is introduced. In contrast to other methods, the pre-
sented framework delivers a general purpose but versatile method for creating
user-guided segmentation hierarchies. The various strategies of interactions and
the solutions developed for effective processing have been analyzed and discussed.



254 M. Gerstmayer, Y. Haxhimusa, and W.G. Kropatsch

References

1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (99) (2010)

2. Brun, L., Kropatsch, W.: Contraction kernels and combinatorial maps. Pattern
Recognition Letters 24(8), 1051–1057 (2003)

3. Brun, L., Kropatsch, W.G.: Dual contraction of combinatorial maps. Tech. Rep.
PRIP-TR-54, Institute of Computer Graphics and Algorithms 186/3, Pattern
Recognition and Image Processing Group, TU Wien, Austria (1999)

4. Brun, L., Vautrot, P., Meyer, F.: Hierarchical watersheds with inter-pixel bound-
aries. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3211, pp.
840–847. Springer, Heidelberg (2004)

5. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
International Journal of Computer Vision 59(2), 167–181 (2004)

6. Fuh, C.S., Cho, S.W., Essig, K.: Hierarchical color image region segmentation
for content-based image retrieval system. IEEE Transactions on Image Process-
ing, 9(1), 156–162 (2000)

7. Haxhimusa, Y., Ion, A., Kropatsch, W.G., Brun, L.: Hierarchical image partition-
ing using combinatorial maps. In: Chetverikov, D., Czuni, L., Vincze, M. (eds.)
Proceeding of the Joint Hungarian-Austrian Conference on Image Processing and
Pattern Recognition, Hungary, May 2005, pp. 179–186 (2005)

8. Haxhimusa, Y., Kropatsch, W.G.: Segmentation graph hierarchies. In: Fred, A.,
Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR
2004. LNCS, vol. 3138, pp. 343–351. Springer, Heidelberg (2004)

9. Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation
from ct datasets. IEEE Transactions on Medical Imaging 28(8), 1251–1265 (2009)

10. Hug, J.M.: Semi-Automatic Segmentation of Medical Imagery. Ph.D. thesis, Swiss
Federal Institute of Technology Zürich (2000)
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Abstract. Recent microscopic imaging systems such as whole slide
scanners provide very large (up to 18GB) high resolution images. Such
amounts of memory raise major issues that prevent usual image repre-
sentation models from being used. Moreover, using such high resolution
images, global image features, such as tissues, do not clearly appear
at full resolution. Such images contain thus different hierarchical infor-
mation at different resolutions. This paper presents the model of tiled
top-down pyramids which provides a framework to handle such images.
This model encodes a hierarchy of partitions of large images defined
at different resolutions. We also propose a generic construction scheme
of such pyramids whose validity is evaluated on an histological image
application.

Keywords: Irregular pyramid, Topological model, Combinatorial map.

1 Introduction

The increasing amount of high resolution images raises new and major issues
in the field of image analysis and processing. For instance, microscopic scanners
have recently been improved to the point where whole slide imaging techniques
may offer a ×40 000 magnification. However, the segmentation of such images
requires to handle a hierarchy of large partitions defined on up to 18GB data
volumes. A suitable model to encode segmentation of such images should be
compatible with memory constraints induced by this large amount of data and
should allow to design segmentation algorithms based on the same top-down
analysis scheme than pathologists.

In this regard, we identified two key steps during pathologists’ manual analysis
of pyramids of histological images. First, an identification of histological com-
ponents for each resolution is performed and regions of interest are determined
according to topological or geometric features. Second, these regions of interest
are used within a hierarchical scheme from the lowest to the highest resolution
(top-down), each region being analyzed in the context defined by its ancestors.

As a consequence, a model with geometrical, topological and hierarchical fea-
tures is required to provide a segmentation of large histological images. Usual
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non hierarchical models are devoted to few partitions’ properties and do not
provide a full encoding of geometrical and topological properties of a partition.
For example, RAG data structures do not provide an efficient access to the ge-
ometry of regions’ borders. This drawback is addressed by more sophisticated
models such as topological maps [2,3] which encode both geometric and topo-
logical properties of a partition.

Hierarchical models such as quadtrees or regular pyramids are commonly used
for multi-resolution images representation and segmentation. Yet, both frame-
works entail several drawbacks [1]. For example, they may not preserve adjacency
of connected regions through different levels of a pyramid. Those drawbacks lead
to the design of irregular pyramids [2,3] in order to take advantage of the effi-
ciency of graphs and topological maps for geometric and topological operations
while keeping the advantages of their regular ancestors.

We have previously introduced the tiled maps model [4], defined as a topo-
logical map decomposed into topological tiles to encode partitions of large im-
ages. In [5], we have proposed an efficient construction scheme of tiled top-down
pyramids. Using such a construction scheme, each partition defined at a given
resolution is initialised by the projection of the partition defined at the previous
(lower) resolution and then further refined by split and merge operations. In this
paper, we focus on three main points. We first provide an improved formalism to
define our model of tiled top-down pyramid (Section 2). We propose in Section 3
a new projection step of each partition which takes into account the additional
information provided by the current resolution. We finally show in Section 4 the
efficiency of our model with the segmentation of an histological image.

2 Top-Down Framework

2.1 Topological Maps

A topological map model [2,3] encodes both topological and geometrical prop-
erties of a partition. It combines three distinct models: a 2-map that encodes
topological relationships, a matrix of interpixel elements [8] that encodes the ge-
ometry of the partition and a tree of regions for inside relationships (Figure 1).

A combinatorial map is defined from a set of abstract basic elements called
darts. Two operators denoted by βi, i ∈ {1, 2} that apply on darts allow to
represent adjacency relationships between cells (Definition 1).

Definition 1 (Combinatorial map). In two dimensions, a combinatorial map
M is a triplet M = (D, β1, β2) where:

1. D is a finite set of darts;
2. β1 is a permutation1 on D;
3. β2 is an involution2 on D.

1 A permutation is a one to one mapping from S onto S.
2 An involution f is a one to one mapping from S onto S such that f = f−1.
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(a) (b) (c)

Fig. 1. Topological maps: a combination of three models for the representation of
a partition. (a) Combinatorial map for adjacency relationships. Dotted darts belong
to the infinite region. (b) Interpixel representation for geometrical borders: bounding
pointels and linels are drawn as circles and bold segments. (c) Tree of regions for
inside/contains relationships.

Intuitively, a combinatorial map may be considered as a planar graph whose
edges are decomposed into half edges called darts. Each dart is incident to a
single vertex and belongs to a single edge and a single face. Sets of darts defining
high level entities such as vertices, edges and faces are retrieved using cycles3

of βi permutations. In practice, the β1 permutation connects a dart of a face to
the next dart encountered when turning clockwise around it. The involution β2

separates two adjacent faces and maps a dart of an edge to the only dart with an
opposite orientation which belongs to the same edge. For instance, in Figure 1(a),
β1(1) = 3 and β2(1) = 2. Vertices, edge and faces of a combinatorial map are
respectively encoded by the cycles of the permutations β1 ◦ β2, β2 and β1. All
faces of a combinatorial map but one encode finite faces (faces corresponding to
regions with a finite area). The face which does not satisfy this property encodes
the background of the partition encoded by the combinatorial map and is called
an infinite face. A combinatorial map is called minimal in number of cells if it
does not contain any vertex with a degree lower or equal to 2 and removing any
dart would change the topology.

Matrix of interpixel elements. Using interpixel elements [8], the geometry of an
an n ×m image partition is encoded by an (n + 1) × (m + 1) array of marks.
Each entry of this array encodes the existence of a given linel (or crack) element
within the set of linels encoding image’s boundaries and called bounding linels
(Figure 1(b)). Note that both pointels incident to a same bounding linel are
considered as bounding elements. We call embedding the association of bounding
cells with a topological element (vertex, edge or face). In Figure 1(b), embedding
of dart 1 is defined as the sequence of bounding elements (l1, p1, l2, p2, l3). A
region corresponds to the embedding of a face and is a set of adjacent pixels.

Tree of regions. The tree of regions describes inside/contains relationships: a re-
gion is the father of the regions it contains. In Figure 1(c), r1 contains {r2, r3, r4}.
The root of the tree encodes the background of the image and is called the infinite
region (denoted by r∞).
3 A cycle of a permutation is defined as its restriction to the set of images of an

element.
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(a) (b) (c)

Fig. 2. Tiled maps: an extension to the topological map model designed for large parti-
tions. (a) Original image decomposed into four tiles. (b) Interpixel representation: arrows
map equivalent bounding cells. (c) Tiled map: each tile is encoded by a topological map.
Darts are connected between tiles through δ1 (arcs) and δ2 (segments) operators.

2.2 Tiled Topological Maps

A tiled extension of the topological map model which decomposes a map into
smaller elements called tiles has been proposed to overtake memory issues in-
duced by the representation of large partitions [4]. Indeed, tiles may be swapped
on disk when they are not being processed. A topological tile is a geometric sub-
division of a topological map whose interpixel matrix only encodes a subdivision
of the image. Adjacency relationships between topological tiles are encoded by
equivalent interpixel cells on tiles’ shared borders: two pointels are equivalent
if they have the same coordinates in the image referential and two linels are
equivalent if their incident pointels are equivalent (Figure 2(b)). Darts’ embed-
dings are encoded within the interpixel framework as sequences of pointels and
linels. Consequently, two darts are said to have an equivalent embedding if their
embeddings correspond to equivalent sequences of pointels and linels.

Let Dt be the set of darts that belong to a tile t and Dt,t′
∂ be the subset of

Dt composed of darts that are incident to the border of t and whose embedding
has equivalent cells in t′. Connections between darts of two adjacent tiles t and
t′ are represented through a bijection ϕt,t′ : Dt,t′

∂ → Dt′,t
∂ that maps each dart

d of Dt,t′
∂ to a dart d′ of Dt′,t

∂ such that d and d′ have equivalent embeddings
(Figure 2(c)). Note that such a bijection can always be obtained if we consider a
decomposition of the tiles’ borders into basic darts whose embedding is a single
couple (pointel, linel).

Besides, the decomposition in tiles entails that some darts of a tile’s border
may encode the tile’s decomposition of the image without encoding a real bor-
der between regions. In this case, the border is considered as a fictive border.
Otherwise, the border is called a real border. Thus, two additional operators δ1

and δ2 are introduced in order to skip darts encoding fictive borders which leads
to the definition of the tiled map model (Definition 2).

Definition 2 (Tiled topological map). Let T be a set of topological tiles. Let
D be the subset of DT whose darts belong to a real border. A tiled topological
map (or tiled map) is a triplet M = (D, δ1, δ2) where:
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(a) Q = 1× 1/4 (b) Q = 2× 2/4 (c) Q = 3× 3/4

Fig. 3. Reduction windows of pointels within the interpixel representation of a pyramid
of images. (a) Non-overlapping holed pyramid. (b) Non-overlapping pyramid without
holes. (c) Overlapping pyramid.

– δ2 is an involution on D such as: δ2(d) =
{

ϕt,t′(d) if d ∈ Dt,t′
∂

β2(d) otherwise
– δ1 is a permutation on D such as: δ1(d) = β1 ◦ (δ2 ◦ β1)k(d)

with k = min{p ∈ N | β1 ◦ (δ2 ◦ β1)p(d) ∈ D }
Since δ1 and δ2 operators respectively define a permutation and an involution
on D [5], the triplet M = (D, δ1, δ2) is a combinatorial map.

2.3 Tiled Top-Down Pyramids

Tiled maps allow to represent partitions from large images. However, such images
usually contain different information at different resolutions hence requiring the
design of a multi-resolution hierarchical data structure, such as the tiled top-
down pyramidal model [5].

In this paper, we propose a novel approach for the definition of tiled top-
down pyramids based on the combination of three hierarchical data structures:
a pyramid of images encoding a multi-resolution image, a pyramid of tiles with
a constant size and a pyramid of tiled maps.

A regular pyramid of images [1] is a sequence (I0, . . . , In) of images with
exponentially increasing resolutions such that the reduction factor r encoding
the ratio between the size of two successive images remains constant along the
pyramid. Each pixel in an image Ik is related to a connected set of pixels in
Ik+1 called its reduction window and encoded as a M × N window. The value
of a pixel in Ik is deduced from the values of pixels within its reduction window
using a reduction function. Different types of pyramids may be distinguished
according to the ratio Q = M ×N/r: holed pyramids (Q < 1), non overlapping
pyramids without holes (Q = 1) and overlapping pyramids (Q > 1).

Such a pyramid may be implicitly associated to a stack of matrices of inter
pixel elements, also defining a regular pyramid with a same reduction factor.
The notion of reduction window on such a pyramid may be adapted as follows:
the reduction window of a pointel p (or RW(p)) at level k (0 ≤ k < l) is
an M ′ × N ′ window defined at level k + 1 and corresponding to the set of
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pointels encoded by p at level k. A hierarchical relationship is thus induced
between pointels, each pointel being the father of the pointels within its reduction
window. Different types of pyramids of pointels may be distinguished according
to the ratio M ′×N ′/r (Fig. 3). In the following, we use non overlapping pyramids
without holes both for images and pointels pyramids.

Let us now consider a given tile’s size and perform a tiling of each image of a
non overlapping image pyramid without holes I = (I0, . . . , In). Each tile defined
in an image Ik is expanded into r × r tiles in Ik+1, where r denote the reduc-
tion factor of I. Hierarchical relationships established within an image pyramid
induce thus hierarchical relationships between tiles decomposing each image of
the pyramid. This last hierarchy is called a pyramid of tiles (Definition 3).

Definition 3 (Pyramid of tiles). Let I be an image. A pyramid of tiles asso-
ciated with I is a couple (I, T = (T 0, . . . , T n)) where ∀k, 0 ≤ k < n:

– I = (I0, . . . , In) is a non-overlapping pyramid of images without holes asso-
ciated with I;

– T k = {t(i, j, k)}(i,j)∈[0,lk/l [×[0,hk/h [ is a rectangular tiling of the lk × hk

image Ik by a set of l × h tiles t(i, j, k);
– RW(t(i, j, k)) = {t(i′, j′, k + 1) | %i′/r& = i, %j′/r& = j} is the reduction

window of tile t(i, j, k), where %.& denotes the floor operator.

While both pyramids of images and tiles are regular hierarchical data structures,
our aim is to define an irregular pyramid of tiled maps. A tiled top-down pyramid
(Definition 4) is thus a stack of finer and finer partitions, defined at different
resolutions and encoded by tiled topological maps. The hierarchy is represented
by up/down relationships between darts and regions [4]. Moreover, since each
map Gk+1 of the pyramid is finer than Gk, a border defined at a given level of
the pyramid cannot be removed at levels below. A tiled top-down pyramid is
thus a causal structure [6]. Consequently, we propose a new definition for tiled
top-down pyramids (Definition 4) where the tiled maps (levels) are based on the
tiling of a given pyramid of tiles.

Definition 4 (Tiled top-down pyramid). Let I be an image. A tiled top-
down pyramid is a triplet (I, T ,G = (G0, . . . , Gn)) where ∀k, 0 ≤ k < n:

– (I, T ) is a pyramid of tiles composed of n + 1 levels and associated with I;
– Gk is a tiled map corresponding to the tiling of T k;
– Gk+1 is defined on (Ik+1, T k+1) and is deduced from Gk by decomposition

operations (e.g. splitting of faces of Gk) in order to be finer than Gk.

The construction scheme of a tiled top-down pyramid may rely on the notion
of focus of attention which allows to refine only regions of interest identified in
the upper levels of the pyramid. The advantage of such a construction scheme is
twofold since it may reduce memory usage and processing time while imitating
experts’ analysis scheme. Finally, note that within a given application field, only
some specified levels of the pyramid may need to be explicitly encoded.
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(a) (b) (c)

Fig. 4. Tiled top-down pyramids: a combination of three hierarchical models for
the representation of large multi-resolution images. (a) Pyramid of images (r = 2).
(b) Pyramid of tiles. (c) Pyramid of tiled maps. Dotted arrows illustrate up/down
relationships between darts and regions. Darts that belong to r∞ are not represented.

3 Segmentation Scheme

We propose a generic segmentation scheme for large multi-resolution images
based on the tiled top-down pyramid framework. Our segmentation process relies
on the definition of an Oracle that may combine several criteria of different
natures to take advantage of geometrical, topological and hierarchical features.
Since this segmentation step is part of the global construction scheme of the
tiled top-down pyramid, it must neither impact the causality of the pyramid nor
its refinement by focus of attention. The process assumes an initial partition G0

which may be a single region or which may result from an extraction algorithm
[2,3] at resolution I0. In both cases, a partition at level k + 1 is deduced from
level k by applying the following two steps procedure:

– a projection step of the regions’ borders of Gk onto Gk+1 which preserves
the topology of Gk and expands the geometry of Gk+1 borders according to
the reduction factor.

– an Oracle-based refinement step, restricted to regions whose father is a region
of interest in the previous level (focus of attention).

Figure 5 illustrates the main steps of our projection procedure. The main issue
is to project the former borders onto the current resolution while preserving
the same topology. Intuitively, the projection of a border b = (p1, . . . , pm) in
Gk is a border b′ in Gk+1 contained within the strip formed by the reduction
windows of the pointels (pi)i=1,m of b. This strip is a connected set since the
pyramid of images contains no holes. Moreover, the pyramid is not overlapping
and therefore, two projected borders cannot intersect, except on their extremities
which correspond to the intersection of several borders. Let us consider a pointel
p1 in Gk which corresponds to an intersection of borders and its projection P (p1)
in Gk+1. In order to keep the same topology in Gk and Gk+1, we define the
projection of each linel in Gk incident to p1 as an horizontal or vertical straight
line of length r in Gk+1, incident to P (p1), and with the same direction than
the initial linel. These straight lines correspond to a standard linel’s projection
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(a) (b) (c)

Fig. 5. Projection of regions borders. (a) Strip composed by the reduction windows of
the pointels that belong to the border of the previous level. (b) Restrictions on borders
extremities. (c) Shortest path according to a given energy.

which guarantees that P (p1) is the only intersection point of projected borders
within p1’s reduction window. This standard projection is also performed on
pm and the connection between the two straight lines incident to P (p1) and
P (p2) is achieved using a Dijkstra algorithm within the strip formed by the
reduction windows of pointels (pi)i=2,m−1. Dijkstra algorithm is applied with an
edge weight proportional to the inverse of the gradient computed in Ik+1, hence
taking into account the additional information provided by Ik+1.

The refinement step relies on the definition of the Oracle proposed in Algo-
rithm 1: according to a segmentation criterion (line 3), our scheme refines a
region if its father in the previous level is a region of interest (line 2) while
preserving the causality of the model (line 1).

Algorithm 1. Oracle

Data: Two adjacent pixels p and p′ of a tile t ∈ Gk+1.
Result: true if p and p′ belong to the same region.
r ← region(up(p)); r′ ← region(up(p′));
l ← incident linel to p and p′;
if l is a bounding linel then1

return false;

if up(r) is not a region of interest in Gk then2

return true;

return segmentation criterion(region(p), region(p′));3

4 Application for Large Histological Images Segmentation

We propose a practical use case4 of the top-down framework for the segmentation
of large histological images. Our objective is to demonstrate the generic aspect
of our model with the integration of an existing segmentation scheme. In this

4 Our model is implemented in C++ and computations are carried out on an Intel
E5300@2GHz with 2GB RAM.
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(a) (b) (c) (d)

Fig. 6. Classification scheme of histological images. (a) Original image. (b) Resolution
1: distinction between tissue and background. (c) Resolution 2: distinction between
lesions and tissue. (d) Resolution 3: distinction between cancer in situ and stroma.

Table 1. Segmentation of an histological image within our top-down framework

level size number number runtime (s) ram
(pixels) of tiles of regions model segmentation (MB)

1 2 500× 2 500 16 57 435 9.8 35.2 104
2 5 000× 5 000 64 132 402 43.6 186.6 101
3 10 000× 10 000 256 225 672 267.8 645.0 106

application, histological images are produced as a stack of three images with
increasing resolutions. Their manual analysis by pathologists are performed using
a focus of attention over regions of interest up to the full resolution image where
cells’ mitosis are enumerated. This estimation is then used for breast cancer
diagnosis grading.

Our top-down segmentation algorithm uses the same scheme than [9] with the
additional use of a tiled top-down pyramid (Figure 6). Successive k-means based
classifications [7] allow to label and refine regions of interest. At resolution1, the
background is separated from tissue. Then, a classification in two classes of tissue
at resolution 2 allows to extract lesions and a last classification distinguishes the
cancer in situ from stroma at resolution 3.

Table 1 presents experimental results for the segmentation of a representa-
tive histological image. Column 2, 3 and4 respectively indicate the size of the
images, the number of tiles and the number of regions of their associated par-
titions. In Column 5 and 6, we provide runtimes for both pyramid construction
scheme (model) and our segmentation algorithm (segmentation). These results
demonstrate that our model does not introduce an important additional cost
while providing an efficient access to hierarchical, topological and geometrical
features. Note that runtimes for levels’ extraction are linear with the size of the
image but slightly increase with the number of tiles due to disc access delays.
Finally, tiled maps allow to preserve a constant memory usage around 100MB
(Column 7) with a tile size of 625 × 625 pixels.
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5 Conclusion

In this paper, we have proposed a new approach to the definition of tiled top-
down pyramids which emphasizes the combination of regular and irregular hier-
archical data structures. We have described a segmentation scheme with a new
projection step which takes into account the additional information provided by
each image of the pyramid. Finally, we have demonstrated the efficiency of our
framework with an application on histological images.

This work opens interesting perspectives such as the definition of topologi-
cal criteria that could be combined to the present segmentation process. Those
criteria may enhance results by taking further advantage of our top-down frame-
work. Finally, a medical evaluation should be performed to confirm the accuracy
of the partitions provided by our method.
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Abstract. In this paper, we propose a new method to segment sets of
similar images using graph matching and community detection algorithms.
The images in a database are represented by Attributed Relational Graphs,
allowing the analysis of structural and relational information of the regions
(objects) inside them. The method gathers such information by matching
all images to each other and stores them in a single graph, called Match
Graph. From it, we can check the obtained pairwise matchings for all im-
ages of the database and which objects relate to each other. Then, with the
interactive segmentation from one single image from the dataset (e.g. the
first one) we can observe these relationships between them through a color
label, thus leading to the automatic segmentation of all images. We show
an important biological application on butterfly wings images and a case
using images taken by a digital camera to demonstrate its effectiveness.

1 Introduction

Image segmentation methods using interactive approaches (also known as semi-
automatic) have been widely described in literature (e.g. [1,2,3]). These ap-
proaches require some kind of a priori knowledge, which is provided by the
user as an input information to the program. This is used to initiate and guide
the segmentation task.

Most interactive methods only take into account the gray tone (or color) of the
pixels, or regions, in the images and do not establish any kind of neighborhood re-
lationship between them. Thus, although the semi-automatic approaches, as the
automatic ones, have raised important tools for image segmentation literature,
most of the proposed methods are not designed to take into account the overall
structure of the image in order to guide this process. Furthermore, the segmenta-
tion of (possibly large) sets of similar images is a problem that has been overlooked
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in the literature. In fact, most interactive segmentation methods would require
user interaction for each image in the set. An important application would be to
consider the automatic segmentation of sets of similar images that should con-
tain the same structure, rather than segmenting one by one, manually. These two
issues are addressed by the method introduced in the present paper.

Representations through graphs are widely used to treat structural informa-
tion in different applications such as networking, psycho-sociology, image inter-
pretation and pattern recognition [4]. In several approaches, graphs are used to
represent knowledge and information extracted from images, where the vertices
represent pixels, or regions, and edges define the relationship between them.

Therefore, for any image representation through graphs, we can gather not
just vertices information, representing regions or objects, and edges representing
the connections between them, but also the characteristics of each component.
We can thus obtain a powerful image representation that allows their exploration
in different ways [5] as graphs are a very flexible representation of data capable
of representing a large set of problems related to pattern recognition [7].

Image representation using graphs and the application of techniques of graph
matching in image processing and pattern recognition have been explored in
works such as Bunke [8], Conte et al. [9], Felzenszwalb and Huttenlocher [10]
and Wilson and Hancock [11].

In recent works [2,3], where image segmentation is seen as a model-based
recognition problem, a model of an image to be segmented is provided by the user
and a graph representation is extracted from the model. In the input image we
initially apply an over-segmentation process (using Watershed [12]) and a graph
representation is achieved. The final result of the segmentation is accomplished
by matching the input and model graphs. Therefore, we explicitly manipulate
the structural information present in the image to produce the final result.

The works of Ribalta and Serratosa [6,7] present new algorithms to find an
optimal Common Labelling (CL) of a set of atributted graphs to compute a
representative of a set of vetices. First, they compute all possible isomorphism
between the attributed graphs and then compute de CL. Although these are
interesting works, this is still a NP-problem with an exponential computational
cost depending on the number of vertices and edges of all graphs.

In this work, we aim to gather information for a particular set (database)
of images in an efficient data structure capable of representing it entirely. Each
set must contain similar images and its representation will be given as a graph
or, more specifically, as an Attributed Relational Graph (ARG), called Match
Graph (MG). The MG contains all information of the location of the regions
(objects) belonging to the set of images and the relations between them. From
the interactive segmentation of a single image of this set (reference image), we
can use these relations to propagate an obtained color label for each region of
interest, thus achieving the automatic segmentation of all images in this set. We
used the algorithm proposed by Noma et al. [3] to constitute the MG, associated
to the community detection algorithm proposed by Clauset et al. [13] to achieve
our objective.
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This paper is organized as follows. The proposed methodology is presented in
Sec. 2 where each step is discussed. After, we present the results obtained from
a set of real butterfly wings images in Sec. 3. A different application for the seg-
mentation of series of similar images obtained in burst mode of a digital camera
is also presented. We conclude with a discussion of the results and prospects of
future work in Sec. 4.

2 Methodology

Figure 1 displays the representation and the processes at each stage of the pro-
posed method. The following sections explain each step represented in this figure.

Fig. 1. (a) Illustrated representation of the proposed method
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2.1 Graph Generation

Fristly, in the Graph Generation process, all images of a given database are
represented by ARGs. In this work, an ARG is a directed graph expressed as a
tuple G = (V, E, μ, ν), where V is its set of vertices and E ⊆ V xV is its set of
edges. In Fig. 1 a vertex (circles) represents an image region (subset of pixels)
and an edge (black dotted line) is placed between vertices that represent two
regions in the image. The vertices are obtained by the Watershed transformation
[12], where each vertex represents a catchment basin (region), and the edges are
obtained by Delaunay triangulation [14]. μ : V → LV associates an object
attribute vector to each vertex of V , while ν : E → LE associates a relational
attribute vector to each edge of E. These attributes are defined in details in [3].

2.2 Graph Matching

The Graph Matching process starts by taking all pairs of images within the set.
Let A and B be two images in the dataset, represented by two ARGs GA and
GB, respectively. The outcome corresponds to a mapping function f : VA → VB ,
such that the vertices of GA are associated with a vertex in GB. Thus, for a
vertex va ∈ VA we have |VB| possibilities to perform the matching and the right
decision depends on an optimization procedure.

To help making such decisions, we used the graph matching algorithm pro-
posed by Noma et al. [3], which takes into account the differences of structural
information between images to perform it. Although the images are similar their
structures are not the same, thus leading to an inexact graph matching. This al-
gorithm runs in time proportional to O(|VA||VB |) per iteration of the algorithm.

2.3 Community Detection

Ideally, the MG should contain a well defined community structure1 [15]. How-
ever, in real images the objects are susceptible to noise and object variatons (e.g.
color and shape). Thus, undesirables edges between communities may appear in
the MG. In order to cope with this situation, we used the algorithm proposed
by Clauset et al. [13] to eliminate these edges from the MG and help to identify
the groups of vertices that correspond to the associated objects into the image
database.

The algorithm is based on the greedy optimization of the quantity known as
modularity [13]. It is a property of a network and leads to a specific proposed
division of that network into communities. It measures when the division is
good, in the sense that there are many edges within communities and only a
few between them. This algorithm is fast and suitable for very large networks,
thus its use is required for the proposed method since the number of vertices
and edges in the MG increases according to the number of images in the set.
This algorithm runs in essential linear time O(n log2 n), where n is the number
of vertices of the graph.
1 Densely connected groups of vertices with only sparser connections between groups.
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2.4 Image Label Propagation

Having defined the communities in the MG, the next process consists in labeling
them. Thus, we apply a different color label to each community, obtained by the
interactive segmentation of some single image from the set (reference image).
This image is obtained using the software avaiable by the authors in [3] or can
be drawn manually. The vertices in the MG that correspond to the regions in
the reference image are labeled as those respective regions in the image. Then,
the label is propagated to all other vertices of each community, so that each one
will be represented by a specific color defined by the user.

The final segmentation result of all the images in database is hence accom-
plished by this Image Label Propagation process. Since all vertices in each com-
munity have a color label, it is easy to identify all the corresponding regions by
propagating them with the respective color into the images.

3 Experimental Results

In order to demonstrate the effectiveness of the proposed method over real im-
ages, we aim to segment the different color structures within the wings of the
butterfly Heliconius erato (Nymphalidae). To perform this test we will use an
image database2 obtained for a previous work [16], gathered to study the role of
the host-plant used as food during the larval stage on wing shape in this species.
A small part is illustrated in Fig. 2 where eight images are displayed.

(a) (b)

(c) (d) (e) (f) (g) (h)

Fig. 2. (a)-(h): Wings of butterfly species Heliconius Erato feed with the Passiflora
edulis plant

2 This database contains 289 images obtained by removing the wings from the but-
terflies, and capturing them of the ventral side of the four wings of each individual
using a flatbed scanner (HP Scanjet 3800; Hewlett-Packard).
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The segmentation result of the butterflies wings in the eight images in this
set is shown in Fig. 3, where the results demonstrate the ability of the method
in discriminating the objects. Initially, we identified all the different wings (top
and bottom, left and right) using different color labels, according to the reference
image (first image in the set, segmented interactively). All groups and wings were
identified through the MG (Fig. 4) and the labeling was performed.

(a) (b)

(c) (d) (e) (f) (g) (h)

Fig. 3. (a)-(h): Segmentation results by the proposed method applied to images of
butterfly wings in Figs. 2(a)-2(h), respectively

Fig. 4. MG obtained for the set of images of Fig. 3 containing 4092 vertices and 57288
edges

In order to provide a more detailed segmentation of the color patterns that
compose the butterfly wings, we applied to the method a reference image con-
taining more details. This is important to identify all the color patterns on the
wings of this species in order to study, in future works, the influence that they
suffer in relation to their feeding [16].

Therefore, from the interactive segmentation of the first image of this set, we
achieve the automatic segmentation of all other images (only four were listed in
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. (a)-(d): Segmentation results by the proposed method applied to images of
butterfly wings in Figs. 2(a)-2(d), respectively; (e) MG before-CD; (f): MG after-CD

this example), showed in Figs. 5(a) to 5(d). Figure 5(e) depicts the MG obtained
before the community detection algorithm. It is worth noting that its number
of edges is greater, due to the many matchings, but then corrected after this
process, as seen in Fig. 5(f).

As the wings on the images of Fig. 2 are close together and contain differences
in shape and size, some error of matching may occur. Two vertices near each
other and that belong to different wings can be joined, thus creating a community
whose vertices represent regions of different wings. This fact is illustrated in the
images of Figs. 3(a)-3(h). Accordingly, a small labeled region in a different color
appears in the wings, in the central part of the image, indicating that there was
a spread of the label of one wing to another. In the MG illustrated in Fig. 4,
we see this problem through the vertices that were joined by edges that arise
from distinct regions of wings. However, it is worth noting that user intervention
would be required just to correct such small details, as most structures of all
images in the collection would be correctly identified. This is much easier than
requiring the user to segment each image from scratch.



272 C.I.O. Martins et al.

(a) (b)

(c) (d)

Fig. 6. (a)-(d): Images taken by digital camera in burst mode

(a) (b)

(c) (d) (e)

Fig. 7. (a)-(d): Segmentation results by the proposed method applied to images in Figs.
6(a)-6(d), respectively; (e) MG after-CD containing 2918 vertices and 13706 edges
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In Fig. 5, we can observe in detail the effect of applying the community detec-
tion algorithm. Clearly we note that the number of edges is greater, in Fig. 5(e),
than the generated MG before the process of CD. This is due to the matching
between vertices that represent neighboring regions and are similar in color or
gray level but which are not a desirable solution to the problem. In this case, af-
ter applying the CD algorithm, there is a large reduction in the number of edges
and a better definition of the number of communities is obtained, as illustrated
in the MG of Fig. 5(f).

In order to test the proposed method using other types of images, we con-
sidered its application to a set of images taken by a digital camera in burst
mode. Figure 6 depicts four images of a residential environment containing an
animated element, which is a dog, and other static objects. In this example, it is
interesting to segment each of the highlighted parties as the dog and the three
objects around it.

The automatic segmentation of the four images in Figs. 6(a)-6(d) is illustrated
in Figs. 7(a)-7(d). The obtained MG, depicted in Fig. 7(e), is naturally more
dense due to the large number of regions in the images, thus increasing the
number of added vertices.

4 Conclusion

We have presented a new method to segment similar images in a group using
graph matching and community detection algorithms. Our goal consists in gath-
ering information about the objects (regions) of all the images in a single graph,
named Match Graph. It is obtained by the pairwise matching of all image pairs
in this group and post-processed with cuts of undesirable matching edges, pro-
vided by community detection. A color label from an interactive segmentation
of some single image of the group is associated to its respective vertices and
propagated to the other vertices of their communities. Then, the label can also
be associated to all regions and an automatic segmentation of the entire group
of images is provided.

We intend to continue working to have a more robust method for identifying
each type of situation that leads to an incorrect matching. For example, by elim-
inating undesirable edges between regions according to valid criteria established
by the program (such as proximity and color or gray levels). In order to improve
our method, we are also working to improve the computational performance in
order to treat large image sets.
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Abstract. In this paper we present an algorithm for automatic street
graph construction of hand-drawn sketch maps. This detection is im-
portant for a subsequent graph matching in order to align the sketch
map with another map. Our algorithm detects a number of street candi-
dates and selects street lines by rating the candidates and their neighbors
in the street candidate graph. To evaluate this approach, we manually
generated a ground truth for some maps and conducted a preliminary
quantitative performance study.

1 Introduction

During the last years, Geographic Information Systems (GIS) became a widely-
used technology in people’s daily life. While the abilities and complexity of GI
systems are continuously increasing, there is still an absence of easy-to-use inter-
action methods. According to Schlaisich and Egenhofer [8] hand-drawn sketch
maps are an intuitive way to interact with a GIS.

There are two aspects that separate hand-drawn maps from other map types.
One is the fact that they are drawn on a paper, a whiteboard or a tablet PC by
hand. The other aspect is the difference between metric maps and sketch maps.
Metric maps display a region accurate based on a mathematical projection. In
contrast to metric maps, sketch maps are not drawn accurate. They do not show
an accurate image of a region but a conceptual one, which can be drawn by
everyone.

One application for sketch maps is the route-finding to an unknown des-
tination. Nowadays, navigation systems can guide people to each destination,
provided that the address is entered. But these systems fail without knowing
the address. Let us assume some participants of a conference want to meet at a
restaurant for dinner. One of them has seen a nice restaurant before, but does
not remember its name. He can sketch the way to the restaurant on a sheet of
paper in order to share the way with others. In order to find the restaurant,
people can take a photo of this sketch map and an automatic system under-
stands the map and finds the sketched destination on a metric map as input for
a navigation system.

Beside the navigation task, there are other applications for automatic process-
ing of sketch maps, like volunteer geographic information (VGI) systems, which
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(a) Example for
gaps between lines

(b) Overlapping
objects

(c) Separated
streets

(d) Text inside of
streets

Fig. 1. Examples inaccuracies of hand-drawn sketches

allow users to annotate, add and modify content of maps. Using sketch maps as
input would enable users to provide their knowledge in a natural way.

All such applications need to align different maps with each other. For the
navigation task, the system has to align the sketched map with a stored map in
order to identify the location of the drawn destination.

There are two ways to process sketch maps in an automatic way: online with
pen-based input devices and offline using images of sketch maps. While most
sketch processing systems use pen-based input devices, we deal with photos of
sketch maps. Thus, our approach is not restricted to special devices, but can run
on any smartphone with a build-in camera. Although the available resources on
smart phones are increasing, mobile multimedia processing [5] still has to deal
with low memory and computational power. Thus, our algorithm tries to meet
the needs of mobile devices.

Previous research has shown that sketch maps are distorted in several ways:
the drawn lengths do not correspond to the lengths in metric maps, angles tend
to be 90◦ and curved streets often are drawn straight. Even though the drawn
street network is subject to granularity (which means in this context that small
or unimportant streets might be missing in sketch maps), connections that are
drawn between streets exist in reality, too. Thus, we believe that street graph
matching is a good way to match sketch maps against both metric maps and
other sketch maps.

The detection of street networks of sketch maps is an important step for
automatic matching of sketch maps. In this paper, we present an algorithm for
such an automatic detection of street graphs from camera images of sketch maps.
The algorithm has to deal with inaccuracies of hand-drawn sketches: lines that
should be connected have gaps in between, objects can overlap each other, due
to drawing order of streets, connected streets can be separated by street border
lines and text might be drawn inside the streets. Figure 1 shows examples for
these inaccuracies. In addition, there can be inhomogeneous illumination effects
caused by the mobile camera.

We structure this paper as follows: In section 2 we will give a brief description
of related work. Section 3 is used to describe the basic idea of our algorithm as
well as the details of its parts. Some results of our algorithm are presented in
section 4. Finally, in section 5 we will give a conclusion and an outlook on future
work.
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2 Related Work

Sketch recognition has been subject of research for several years. Most of the
previous work concentrates on pen-based sketch recognition [1,3]. These meth-
ods process the sketches online and, thereby, can use a segmentation into single
strokes and the drawing order of strokes. For our offline approach, this infor-
mation is not available. Thus, different methods have to be applied to recognize
elements of the sketch.

Previous methods that were proposed to detect pairs of parallel or equidistant
lines in hand-drawn images [3,10] base on the angle of lines. Thus, these methods
can only be applied to straight lines.

The detection of street networks is not only interesting for the domain of
sketch maps. Some work has been done to detect street networks in aerial and
satellite images [7]. Hu et al. [4] presented a system for finding streets in aerial
images that follows the streets from starting points. The idea is to measure the
distance from a point to the boarder as a function of the angle. The local max-
imums will belong to the main directions of the street. For sketch maps, the
problem of such a method is to find a scale-independent way to detect start-
ing points. As people differ in their sketching style, including the dimension of
objects, some kind of scale invariance is necessary for street detection algorithms.

3 Street Graph Detection

The first proposed step for sketch map registration is to detect the street graph
of the sketch map. In this section we present our algorithm for offline detection
of street graphs from images of sketch maps. There are two ways of drawing
streets in sketch maps: as single lines or as pairs of parallel lines. The aim of our
algorithm is to detect double-lined streets and build the graph of these streets.
The core idea of the algorithm is to produce a large number of middle lines and
select the ones that belong to a street segment. These streets can be combined
into a street graph.

Our algorithm finds a number of street segment candidates using well-known
techniques like thinning. The novel approach is to select candidates that are
likely to be street segments based on a rating and the rating of their neighbors
in the candidate graph. By using ratings, the algorithm can easily be extended
to create a probabilistic graph suitable for probabilistic graph matching.

The algorithm can roughly be divided into three parts: preprocessing, line
segment detection, and graph creation. The goal of the first part is to binarize
the image and to enhance the quality of the image for further processing. By
doing so the algorithm removes artefacts, fills gaps between drawn lines and
separates text and graphic elements.

The second part finds middle lines by thinning the background. The resulting
line segments are rated according to their likelihood to be the middle line of a
street. The basic idea for the rating are the two criteria that the width of streets
does not change abruptly and that streets are much longer than wide.
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(a) Closed gaps (b) Text detection

Fig. 2. Examples for results of preprocessing operations

In a third part, the algorithm selects lines to be composed to a street graph.
This selection is based on the ratings of line segments and their neighbors.

3.1 Preprocessing

The input for the algorithm is a photo of a hand-drawn sketch map. That means
that the algorithm has to deal with both the inaccuracies of human drawings
and the typical effects of camera images like inhomogeneous illumination.

To meet the latter effect, the image binarization is done using adaptive thresh-
olding methods. For this purpose each pixel is compared to the average gray level
of a given neighborhood. Artefacts that might occur can be detected by consid-
ering the size of connected components. To reduce the computation costs, the
removal of artefacts will be done in combination with a later preprocessing step.

One consequence of inaccurate drawings are small gaps between lines. An
example of such gaps can be seen in Fig. 1(a). As streets will be detected by
thinning the background, such gaps lead to undesirable lines in the resulting
skeleton. To close these gaps, lines are extended by a fixed number N of pixels.
This can be done by thinning the drawn lines and repeating the last N pixel of a
thinned line along the contour direction. Figure 2(a) shows an example for such
extended lines.

As we use a thinning algorithm to detect streets, all elements within streets
can disturb the street detection. Beside previously mentioned artefacts, streets
can contain written text. Figure 1(d) shows an example for such text within
streets. To remove the text, we use a algorithm similar to the text / graphic
separation algorithm of Tombre et al. [9] to detect text and remove it from the
image. Figure 2(b) shows the detected text for the previous given example. The
text separation algorithm is based on connected component analysis. It detects
text based on size and ratio of the bounding box as well as the density of pixels.
Since the text separation algorithm calculates the connected components of the
image, it is possible also to remove binarization artefacts by deleting components
below a given size.

3.2 Line Segment Detection

The main idea for our algorithm is to find a huge number of potential middle
line segments of streets, rate these line segments and build a street graph based
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on these ratings. In this subsection we describe how to find middle line segments
and how to rate these segments.

To detect the line segments, we apply a thinning algorithm on the background
pixels. For further details of the used thinning algorithm see the first algorithm
proposed by Guo and Hall [2]. Figure 3(a) shows the thinning result for a typical
sketch map. By the thinning, streets are approximately reduced to their middle
lines. Beside the middle lines of the streets, the thinning algorithm also creates
lines in city blocks and between objects like houses.

As can be seen in Fig. 3(a), the skeleton contains some “twigs”. To remove the
twigs, we calculate the distance transform for the preprocessed image to get the
distance of each line pixel to the background. Later this distance can be used to
calculate the line segment width. We define line segments as “twigs” if they have
an open endpoint and if the length is less than double of the maximum distance.
This definition is meant to find line segments going from a middle point to the
border. Since these line segments do not belong to street middle lines, we remove
all twigs from the skeleton. As can be seen in Fig. 3(b) this step removes some
long background segments, too.

For the construction of the street graph, it is necessary to distinguish between
street line segments and background line segments. We rate all line segments in
order to measure the likelihood of being a street line segment. For this rating
two characteristics of streets are used:

– Streets are normally much longer than width.
– The width of streets does not change rapidly.

For the measurement of both characteristics it is necessary to know the width of
the street. Thus, we calculate a distance transform for the preprocessed image
to get the width for each line pixel. Given a line segment of n pixels with the
distances (di)i=1,...,n, we calculate the quotient q of length to average width of
the segment:

q =
n

1
n

n∑
i=1

di

=
n2

n∑
i=1

di

(1)

(a) Skeleton (b) Skeleton without twigs

Fig. 3. Line segment detection
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Fig. 4. Line segments colored by their ratings. Rating less than 0.5 (red), less than 0.75
(orange), less than 1 (yellow), less than 1.5 (light green) and 1.5 and greater (green).

To measure the change of width of line segments, we perform the derivation of
distances di and smooth the result with a Gaussian filter in order to reduce the
effect of local changes. With the smoothed derivations mi the average change of
width can be calculated by m̄ = 1

n

∑n
i=1 |mi|. Instead of defining hard threshold

we define a rating function

r(m̄, q) = exp
(
− m̄2

2σ2

)
· √q (2)

with the parameter σ to control the tolerance of street width changes.

3.3 Graph Creation

As result of the previous part we get a set of line segments, each segment with a
rating. From this set, we select the segments that are likely to be street line seg-
ments. Some parts of the sketch map can have a street-like appearance without
being a street and, thus, get a high rating. In this subsection we will describe
how considering the neighbors of a line segment can help to distinguish between
real street line segments and non-street line segments.

We perform several tests to accept line segments as street line segments. At
first we want to accept highly rated line segments that are not isolated. This
means that the lines should be connected to at least one other highly rated line.
To do so, we initially create a connectivity matrix C = (cij) for the segments
with cij = 1 if segments i and j are connected.

As mentioned in the introduction, there might be connected streets that are
separated by a line (see Fig. 1(c)). Though the line segments are not connected at
such junctions, we want to consider them for the connectivity matrix. Therefore,
we elongate line segments at endpoints that are not connected to any other
segments. We use the method that is also applied in the preprocessing part to
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fill the gaps, with the difference that the length is proportional to the width of
the street segment. For these new connections, we set a connectivity value in the
connectivity matrix. This value is a function of the elongation that is necessary
to connect both lines, which can be described by cij = 1− d

dmax
with elongation

d and maximal elongation dmax.
We use the connectivity matrix C to calculate weighted ratings for the neigh-

bors of a segment. In order to accept non-isolated, highly rated line segments,
we define two thresholds T1 and T2 and accept only segments s with a rating
r(s) ≥ T1 and a maximal weighted rating of neighbor segments rm ≥ T2. Our
experiments have shown that T1 = 1 and T2 = 0.75 are good choices.

At some points like crossroads, there can be small line segments connecting
two nearby nodes. Due to the small length, these parts have a low rating, but
are still part of the street. To detect these segments, we accept line segments
that connect two previously accepted lines and have a length below a maximal
length Lmax. Lmax is chosen that two third of all segments are below it. We had
to introduce Lmax because some segments at the border of the image can go
around the sketch and, thus, connect two segments unintentionally.

The rating and selection is done scale invariant. Beside the advantage of in-
dependence to sketch size, image resolution and distance of the camera to the
sketch, there is the disadvantage that some line segments that belong to city
blocks get a high rating and are accepted as streets. Figure 4 also shows some
examples for such segments. To remove these segments, we build the average
width of all accepted segments and remove all segments that are more than
double the width.

All accepted segments build a street graph. We perform a last selection step by
considering the connected components of this graph. Though the graph contains
two or more disconnected components, we want to remove small ones. Therefore,
we measure the size of these components and remove all components that are
less than half the size of the biggest component.

4 Results

For testing our algorithm, we used sketch maps that were created in previous
experiments to analyze people’s sketching habits. These experiments were made
without paying attention on drawing style or accuracy. Thus, these sketch maps
contain natural drawing styles with typical errors. To simulate mobile usage, we
took photos of the sketch maps with the camera of a HTC Desire smart phone.
Figure 5 shows an example sketch map with the detected street graph.

As can be seen in the figure, most of the streets could be detected, but there
are still some problems. Elongating line segments is a way to deal with connected
streets that are separated by a line, but it also connects background lines with
street lines. Especially small space between buildings and streets can be detected
as street in this way. Further work has to find a way to distinguish between both.
As can be seen in Fig. 4, in some cases text separation does not work well. This
leads to some wrong detection. One example is the street at the upper right
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Fig. 5. Algorithm result for map 1 (left) and the manually generated ground truth
(right)

border. A last element disturbing the detection are traffic circles that can not
be well detected as streets, yet.

To evaluate the results of our algorithm, we produced a ground truth for some
sketch maps by manually marking the streets. For comparing we used a method
to compare curvilinear structures [6]. This method compares two binary images,
one showing the ground truth, the other one showing the detected streets. The
evaluation method measures two error values: the false negative rate (FNR) and
the false positive rate (FPR). The first one is calculated from all streets that
were not recognized, the latter one from all line segments that were considered as
streets without being streets. Given a binary ground truth GT and its skeleton
GTS as well as the detected streets DS and their skeleton DSS . Using the
complements GT c and DSc, the two rates can be calculated by:

FNR =
|GTS ∩DSc|
|GTS | , FPR =

|DSS ∩GT c|
|DSS | (3)

Since we only detect the thinned streets, we have to reconstruct the streets from
the detected line segments by using the previously calculated distance map.
Table 1 shows both values for the maps from Fig. 6. For some of the tested maps
we obtain an error rate of more than 20 percent. This is due to similar reasons
as discussed above for the first map. Furthermore, some of these maps contain
small streets between areas like parking places. Due to the restriction on bigger
connected components in the street graph, these streets can not be detected by
our algorithm. We do not consider this fact as an disadvantage of our algorithm:
In the context of sketch maps, where positions are heavily distorted, isolated
streets cannot be used for the subsequent graph matching.

In addition, we transformed the maps using a set of 35 similarity and 10
perspective transformations to measure the stability of our algorithm. For the
similarity transformations we combined 5 scales (0.5, 0.75, 1, 1.5, and 2) with
7 rotations (0◦, 15◦, . . . , 90◦). For the perspective transformations we altered
the angle of view between 5◦ and 50◦. In each transformed map a graph is
extracted using our method, which is back transformed according to the known
transformation. Then, the back transformed graph is compared to the original
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Fig. 6. Maps used for the performance test

Table 1. Error rates and stability of the algorithm

Similarity Perspective
Map FNR FPR FNR FPR FNR FPR

Map 1 19.96% 10.35% 17.73% 8.76% 7.72% 21.82%
Map 2 12.57% 11.10% 16.84% 8.71% 19.44% 11.84%
Map 3 21.39% 31.52% 35.15% 21.46% 30.88% 28.80%
Map 4 2.25% 13.10% 13.24% 6.43% 5.08% 19.75%
Map 5 4.84% 6.21% 6.73% 5.63% 8.18% 11.46%
Map 6 17.13% 0.31% 2.86% 5.67% 5.01% 19.44%
Map 7 5.62% 13.10% 12.76% 3.63% 8.18% 11.97%
Map 8 20.10% 12.07% 28.26% 15.96% 20.84% 28.58%
Map 9 16.71% 8.29% 12.32% 9.98% 9.54% 24.26%

graph. Table 1 also shows the mean errors for both similarity and perspective
transformations and thus indicates the stability of our algorithm.

Sketch maps are not an exact image of a region and do not display every detail
of a region. Often small or unimportant streets are missing or just indicated at
a junction. Thus, graph matching algorithms for sketch maps have to be able to
deal with missing streets, even in higher numbers than the FNR of our algorithm.
Depending on the matching algorithm, it might even be good to choose more
restrictive parameters to increase the FNR and decrease the FPR.

5 Conclusion and Future Work

In this paper we have presented an algorithm that is able to extract street graphs
from the images of sketch maps. The algorithm is able to deal with different
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distortions and inaccuracies that can occur in sketch maps. The goal is to create
graphs that can be used for graph matching in order to align sketch maps with
both metric maps and other sketch maps. Although the algorithm still produces
some errors, we believe that the results could be good enough for graph matching
methods that are also able to deal with errors from the sketching process.

The presented algorithm deals with streets that are drawn by pairs of parallel
lines. An algorithm to deal with single lined streets and a method to automat-
ically distinguish between both styles will be subject of future work. Beside
broadening the class of supported maps, the next task is a graph matching al-
gorithm that is able to deal with sketch maps. Such an algorithm will allow the
alignment of sketch maps with other maps and in this way enable sketch maps as
input method for automatic systems. Some basic research on sketch maps that
can be used to develop such a matching method has previously been done [11].
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Abstract. People re-identification using single or multiple camera ac-
quisitions constitutes a major challenge in visual surveillance analysis.
The main application of this research field consists to reacquire a person
of interest in different non-overlapping locations over different camera
views. This paper present an original solution to this problem based on
a graph description of each person. In particular, a recently proposed
graph kernel is used to apply Principal Component Analysis (PCA) to
the graph domain. The method has been experimentally tested on two
video sequences from the PETS2009 database.

1 Introduction

Over a couple of decades, visual surveillance gained more and more interest due
to its important role in security. Fundamental research issues in this context
are object detection, tracking, shadow removal, an so on. However, recently,
researchers draws much attention to high-level event detection, such as behaviour
analysis, abandoned object detection, etc. An important task within this research
field is to establish a suitable correspondence between observations of people who
might appear and reappear at different times and across different cameras. This
kind of problematic is commonly known as “people re-identification”.

Several applications using single camera setup may benefit from information
induced by people re-identification. One of the main appllications is loitering
detection. Loitering refers to prolonged presence of people in an area. This be-
haviour is interesting in order to detect, for example, beggars in street corners,
or drug dealers at bus stations, and so on. Beside this, information on these
re-occurrences is very important in multi-camera setups, such as the ones used
for wide area surveillance. Such surveillance systems create a novel problem of
discontinuous tracking of individuals across large sites, which aims to reacquire
a person of interest in different non-overlapping locations over different camera
views.
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Re-identification problem has been studied for last five years approximately.
A first group [9,17,2,3] deals with this problem by defining a unique signature
which condenses a set of frames of a same individual; re-identification is then
performed using a similarity measure between signatures and a threshold to
assign old or new labels to successive scene entrances. In [9] a panoramic map is
used to encode the appearance of a person extracted from all cameras viewing
it. Such a method is hence restricted to multicamera systems. The signature
of a person in [17] is made by a combination of SIFT descriptors and color
features. The main drawback of this approach is that people to be added into
the database are manually provided by a human operator. In [2] two human
signatures, which use haar-like features and dominant color descriptor (DCD)
respectively, are proposed while in [3] the signature is based on three features,
one capturing global chromatic information and two analyzing the presence of
recurrent local patterns.

A second group ([25,4]) deals with re-identification of people by means of a
representation of a person in a single frame. Each representation corresponds
to a point in a feature space. Then a classification is performed by clustering
these points using a SVM ([25]) or a correlation module ([4]). Both [25,4] use the
so-called “color-position” histogram: the silhouette of a person is first vertically
divided into n equal parts and then some color features (RGB mean, or HSV
mean, etc.) are computed to characterize each part.

This paper can be ascribed to the second group but with some significant
novelty: first, we have a structural (graph-based) representation of a person;
second, our classification scheme is based on graph kernels. A graph kernel is a
function in graph space that shares the properties of the dot-product operator
in vector space, and so can be used to apply many vector-based algorithms to
graphs.

Many graph kernels proposed in the literature have been built on the notion
of bag of patterns. Graphlets kernels [21] are based on the number of common
sub-graphs of two graphs. Vert [14] and Borgwardt [22] proposed to compare the
set of sub-trees of two graphs. Furthermore, many graph kernels are based on
simpler patterns such as walks [13], trails [8] or paths.

A different approach is to define a kernel on the basis of a graph edit distance,
that is the set of operations with a minimal cost transforming one graph into
another. Kernels based on this approach do not rely on the (often simplistic)
assumption that a bag of patterns preserves most of the information of its as-
sociated graph. The main difficulty in the design of such graph kernels is that
the edit distance does not usually corresponds to a metric. Trivial kernels based
on edit distances are thus usually non definite positive. Neuhaus and Bunke [15]
proposed several kernels based on edit distances. These kernels are either based
on a combination of graph edit distances (trivial kernel, zeros graph kernel), use
the convolution framework introduced by Haussler [11] (convolution kernel, local
matching kernel), or incorporate within the kernel construction schemes several
features deduced from the computation of the edit distance (maximum similar-
ity edit path kernel, random walk edit kernel). Note that a noticeable exception
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to this classification is the diffusion kernel introduced by the same authors [15]
which defines the gram matrix associated to the kernel as the exponential of a
similarity matrix deduced from the edit distance.

We propose in this paper to apply a recent graph kernel [5,10] based on
edit distance, together with statistical machine learning methods, to people re-
identification. The remaining of this paper is structured as follows: we first de-
scribe in Section 2 our graph encoding of objects within a video. Moving objects
are acquired from different view points and are consequently encoded by a set of
graphs. Given such a representation we describe in Section 3 an algorithm which
allows to determine if a given input graph corresponds to a new object. If this
is not the case, the graph is associated to one of the objects already seen. The
different hypotheses used to design our algorithm are finally validated through
several experiments in Section 4.

2 Graph-Based Object Representation

The first step of our method aims to separate pixels depicting people on the
scene (foreground) from the background. We thus perform a detection of mov-
ing areas, by background subtraction, combined with a shadow elimination al-
gorithm [6]. This first step provides a set of masks which is further processed
using mathematical morphology operations (closing and opening) (Fig. 1a). De-
tected foreground regions are then segmented using Statistical Region Merging
(SRM) algorithm [16] (Fig. 1c). Finally, the segmentation of the mask within
each rectangle is encoded by a Region adjacency Graph (RAG). Two nodes of
this graph are connected by an edge if the corresponding regions are adjacent.
Labels of a node are: the RGB average color, the area, and the size η normalized
with respect to the overall image (Fig. 1d).

3 Comparisons between Objects by Means of Graph
Kernels

Objects acquired by multiple cameras, or across a large time interval, may be
subject to large variations. Common kernels [13] based on walks, trails or paths
are quite sensitive to such variations. On the other hand, graph edit distances
correspond to the minimal overall cost of a sequence of operations transforming
two graphs. Within our framework, such distances are parametrized by two sets
of functions c(u → v), c(u → ε) and c(e → e′), c(e → ε) encoding respectively
the substitution, and deletion costs for nodes and edges. Using such distances,
small graph distortions may be encoded by small edit costs, hence allowing
to capture graph similarities over sets having important within-class distance.
Unfortunately, the computational complexity of the exact edit distance is expo-
nential in the number of involved nodes, which drastically limits its applicability
to databases composed of small graphs.

This paper is based on a sub optimal estimation of the edit distance proposed
by Riesen and Bunke [18,19]. In this estimation, first a cost for matching two
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a) b)

c) d)

Fig. 1. a) Application of a suited morphological operator; b) Extraction of person
appearance; c) Image segmentation; d) RAG construction

nodes is defined, taking into account also the edges incident to the nodes. This
cost can be computed in a polynomial time (with respect to the number of
incident edges) using the Hungarian Algorithm [19]. The cost for matching a
pair of nodes depends on c(u → v), c(e → e′) and c(e→ ε).

Then, the edit distance is estimated by finding a mapping between the nodes
of the two graphs that minimizes the total cost of the mapped pairs, attributing
the deletion cost c(u → ε) to unmapped nodes. This problem can be solved in
polynomial time with the Hungarian algorithm. It can be demonstrated that the
estimate computed in this way lies below the true value of the edit distance,
since it computes the edge-related costs in an optimistic way, assuming that the
edge mapping can be performed using only local information, ignoring global
constraints.

Now we will discuss the four cost functions used for defining the edit distance.
Within our framework, each node u encodes a region and is associated to the
mean color (Ru, Gu, Bu) and to the normalized size ηu of the region (Section 2).
We experimentally observed that small regions have larger chances to be deleted
between two segmentations. Hence, the normalized size of a region can be used
as a measure of its relevance within the whole graph.

The cost of a node substitution is defined as the distance between the mean col-
ors of the corresponding regions. We additionally weigh this cost by the maximum
normalized size of both nodes. Such a weight avoids to penalize the matching of
small regions, which should have a small contribution to the global similarity of
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both graphs. Also, a term is added to account for the size difference between the
regions:

c(u → v) = max(ηu, ηv) · dc(u, v) + γNodeSize · |ηu − ηv|
where dc(u, v) is the distance in the color space, and γNodeSize is a weight pa-
rameter selected by cross validation. The distance dc(u, v) is not computed as
the Euclidean distance between RGB vectors, but uses the following definition
that is based on the human perception of colors:

dc(u, v) =

√
(2 +

r

2k
)δ2

R + 4δ2
G + (2− (2k − 1)− r

2k
)δ2

B

where k is the channel depth of the image, r = Ru+Rv

2 and δR, δG and δB encode
respectively the differences of coordinates along the red, green and blue axis.

The cost of a node deletion should be proportional to its relevance encoded
by the normalized size, and is thus defined as:

c(u → ε) = γNodeSize · ηu

Using the same basic idea, the cost of an edge removal should be proportional
to the minimal normalized size of its two incident nodes.

c((u, u′)→ ε) = γEdge · γEdgeSize ·min(ηu, ηu′)

where γEdgeSize encodes the specific weight of the edge removal operation while
γEdge corresponds to a global edge’s weight.

Within a region adjacency graph, edges only encode the existence of some
common boundary between two regions. Moreover, these boundaries may be
drastically modified between two segmentations. Therefore, we choose to base
the cost of an edge substitution solely on the substitution’s cost of its two incident
nodes.

c((u, u′) → (v, v′)) = γEdge · (c(u → v) + c(u′ → v′))

Note that all edge costs are proportional to the weight γEdge. This last parameter
allows thus to balance the importance of node and edge costs.

3.1 From Graph Edit Distance to Graph Kernels

Let us consider a set of input graphs {G1, . . . , Gn} defining our graph test
database. Our person re-identification is based on a distance of an input graph
G from the space spanned by {G1, . . . , Gn}. Such a measure of novelty detection
requires to embed the graphs into a metric space. Given our edit distance (Sec-
tion 3), one may build a n×n similarity matrix Wi,j = exp(−EditCost(Gi, Gj)/σ)
where σ is a tuning variable. Unfortunately, the edit distance does not fulfill all
the requirements of a metric; consequently, the matrix W may be not semi-definite
and hence does not define a kernel.

As mentioned in Section 1, several kernels based on the edit distance have
been recently proposed. However, these kernels are rather designed to obtain
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a definite positive matrix of similarity than to explicitly solve the problem of
kernel-based classification or regression methods. We thus use a recent kernel
construction scheme [5,10] based on an original remark by Steinke [23]. This
scheme [5,10] exploits the fact that the inverse of any regularised Laplacian
matrix deduced from W defines a definite positive matrix and hence a kernel
on {G1, . . . , Gn}. Thus, our kernel construction scheme first builds a regularised
Laplacian operator L̃ = I + λL, where λ is a regularisation coefficient and L
denotes the normalized Laplacian defined by: L = I − D− 1

2 WD− 1
2 and D is

a diagonal matrix defined by Di,i =
∑n

j=1 Wi,j . Our kernel is then defined as:
K = L̃−1. Using a classification or regression scheme, such a kernel leads to map
graphs having a small edit distance [5,10] (and thus a strong similarity) to close
values.

3.2 Novelty Detection and Person Re-identification

Within our framework, each reappeared person is represented by a set of graphs
encoding the different acquisitions of this person. Before assigning a new input
graph to an already created class, we must determine if this graph corresponds to
a person already encountered. This is a problem of novelty detection, with the
specific constraint that each class of graphs encoding an already encountered
person has a large within-class variation. Several methods, such as one class
SVM [20] or support vector domain description [24] have been used for novelty
detection. However, these methods are mainly designed to compare an incoming
data with an homogeneous data set. The method of Desobry [7] has the same
drawback and is additionally mainly designed to compare two sets rather than
one set with an incoming datum.

The method introduced by Hoffman [12] is based on kernel Principal Compo-
nent Analysis (PCA). An input datum is considered as non belonging to a class
if its squared distance from the space spanned by the first principal components
of the class is above a given threshold. Note that this method is particularly effi-
cient using high dimensional spaces such as the one usually associated to kernels.
This method has the additional advantage of not assuming a strong homogeneity
of the class.

Given an input graph G and a set of k classes, our algorithm first computes the
set {d1(G), . . . , dk(G)} where di(G) is the squared distance of the input graph
G from the space spanned by the first q principal component of class i. Our nov-
elty decision criterion is then based on a comparison of d(G) = mink=1,n dk(G)
against a threshold.

If d(G) is greater than the specified threshold, G is considered as a new person
entering the scene. Otherwise, G describes an already encountered person, which
is assigned to the class i that minimizes the value of di(G).

4 Experimental Results

We implemented the proposed method in C++ and tested its performance on
two video sequences taken from the PETS2009 [1] database (Fig. 2). Each video
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a) View 001 b) View 005

Fig. 2. Sample frames from the PETS2009 dataset

sequence is divided in two parts so as to build the training and test sets. In this
experiment we have used one frame every 2 seconds from each video, in order to
have different segmentations of each person. The training set of the first sequence
(View001) is composed of 180 graphs divided into 8 classes, while the test set
contains 172 graphs (30 new and 142 existing). The second sequence (View005)
is composed of 270 graphs divided into 9 classes for the training set, and 281
graphs (54 new and 227 existing) for the test set.

In order to evaluate the performances of the algorithm, we have used the
following measures:

– The true positives rate (TP), i.e the rate of test patterns correctly clas-
sified as novel (positive): TP = true positive/total positive

– The false positives rate (FP), i.e the rate of test patterns incorrectly
classified as novel (positive): TP = false positive/total negative

– The detection accuracy (DA):

DA = (true positive + true negative)/(total positive + total negative)

– The classification accuracy (CA), i.e the rate of samples classified as
negatives which are then correctly classified with multi-class SVM

– The Total Accuracy: TA = DA× CA.

As shown on Fig. 3 we obtained around 85% of novelty detection accuracy, and
70% of total accuracy for both View001 and View005 sequences. These results
were obtained with the Graph Laplacian Kernel using σ = 4.7 and λ = 10.0.

These results appear very promising. For a certain interval of threshold values
the classification accuracy rate keeps to the value of 100% Furthermore the True
Positive Rate curve has an high slope in correspondence of an high value of
the threshold: this means that the method is quite robust. Finally, ROC curves
(Fig. 4) show that the algorithm have a good true positives rate, with a quite
low false positives rate.
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a)

b)

Fig. 3. Performances result on the view001 (a) and view005 (b) of the PETS2009
dataset
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Fig. 4. ROC curves for the two sequences from the PETS2009 dataset

5 Conclusions

This paper presents a novel method for people re-identification based on a graph-
based representation and a graph kernel. It combines our graph kernel with a
novelty detection method based on Principal Component Analysis in order to
detect if an incoming graph corresponds to a new person and, if not, to correctly
assign the identity of a previously seen person.

Our future works will also extend the present method to people re-identification
within groups. In such cases, a whole group is encoded by a single graph. Thus,
the used kernel should be able to match subgraphs within larger graphs. We
plan to study the ability of graphlet kernels to perform this task.
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Abstract. Mathematical expression recognition is one of the challeng-
ing problems in the field of handwritten recognition. Public datasets
are often used to evaluate and compare different computer solutions
for recognition problems in several domains of applications. However,
existing public datasets for handwritten mathematical expressions and
symbols are still scarce both in number and in variety. Such scarcity
makes large scale assessment of the existing techniques a difficult task.
This paper proposes a novel approach, based on expression matching, for
generating ground-truthed exemplars of expressions (and, therefore, of
symbols). Matching is formulated as a graph matching problem in which
symbols of input instances of a manually labeled model expression are
matched to the symbols in the model. Pairwise matching cost considers
both local and global features of the expression. Experimental results
show achievement of high accuracy for several types of expressions, writ-
ten by different users.

1 Introduction

The recent renewed advent of devices such as tablets, hand-held PDAs, and elec-
tronic whiteboards continues to spark interest in online handwriting recognition.
These devices may work as a more suitable mechanism for inputting non-usual
entries such as diagrams and equations into computer systems. However, in or-
der to such devices serve fully as input mechanisms, handwriting recognition is
crucial.

Recognition of mathematical expressions figures as one of the current challeng-
ing problems in the field of handwritten recognition. Many technical documents
include some mathematical formula and their input is usually performed with
a special typesetting command such as LATEX or by using mechanisms such as
symbol selection tools. Availability of mathematical expression recognition sys-
tems would allow users to enter mathematical expressions into computer systems
naturally, in a similar way they are used to hand write them on a sheet of paper.

Common difficulties in mathematical expression recognition include the com-
plexity of structural analysis (the meaning of each symbol in the expression is
� This work is supported by CNPq, Brazil (Grants 555418/2009-0 and 308217/2009-8).
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determined by its relative position within a 2D arrangement of symbols), vari-
ations in the writing style from person to person, the large number of symbol
types, and ambiguities in the notation (both structural and symbolic) [1,2,3].

The recognition process of mathematical expressions can be roughly divided
in three steps: (i) symbol segmentation, (ii) symbol classification, and (iii) struc-
tural analysis. Most existing algorithms and systems impose some types of con-
straint (the way strokes should be written, a subset of allowed characters and
expression types, etc). In the online recognition problem, step (i) is relatively
simple because one can take advantage of the temporal information of the
strokes. However the last two steps are not simple even in the online case.
Attempts to solve these problems date back to early 1970s and continue to
nowadays [2,3,4,5,6].

The design and performance assessment of recognition algorithms require
ground-truthed dataset. Reported results are usually constrained to a reduced
number of writers, expressions, and/or symbols. The available datasets, even
considering offline data, are still quite scarce [7,6,8]. In order to allow large scale
assessment of existing recognition techniques, it is important to develop pro-
cedures for generating ground-truthed data. Some existing approaches include
writing symbols individually [5], grammar-based parsing [8], or building expres-
sions from individually written symbols [6].

This work proposes a novel and simple approach for the generation of ground-
truthed data for the online handwritten mathematical symbol recognition prob-
lem. The proposed technique assumes that writing a handful of expressions can
be performed in a more natural way than writing several symbols individually.
The main idea consists in matching a user written expression to the respec-
tive model expression, in order to find a one-to-one correspondence between
unlabeled symbols in the input expression and labeled symbols in the model
expression. By doing so, not only a large set of correctly labeled symbol samples
but also expression samples whose symbols and structure are correctly identified
can be easily generated.

A noteworthy aspect of this approach is the fact that since data is obtained
from a handwritten expression, individual symbols are much likely to better re-
semble the way they are written within an expression rather than when they are
written individually. Moreover, since no constraint is imposed to the model ex-
pressions, the proposed method has no restrictions with respect to, for instance,
expression types, grammar rules, types of symbols, or notation conventions.

Model expressions are represented as graphs and input-model matching is
formulated as a graph matching problem. Given an input instance of the model
expression, a pairwise matching cost between symbols in the input and model
expressions is established. To label the symbols in the input expression, a match-
ing that minimizes the overall matching cost is selected. Experimental results
obtained using graph deformation cost [9], that allows inclusion of local and
global features of the expression, show that the proposed approach presents a
good matching rate.
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The rest of the paper is organized as follows. Section 2 describes how handwrit-
ten expressions are captured and how they are represented as graphs. Section 3
describes the proposed technique, which is composed of three basic steps: prepos-
sessing applied to the input expression, matching cost computation, and optimal
matching computation. Section 4 presents and discusses the results obtained for
different experimental scenarios, including dataset variation, use of different con-
nectivity in the model graph, and different configurations of the matching cost
function. Section 5 summarizes the main contributions and lists some issues to be
further investigated in the context of this work.

2 Graph Representation of an Expression

When using tablet-like devices, users can be induced to write traces of one symbol
in such a way that the temporal gap between the end of a trace and the beginning
of the next trace within the same symbol is no longer than the temporal gap
between the end of a symbol and the beginning of the first trace of the next
symbol. Experimentally, we have observed that when using a tablet like device
together with a signal acquisition software with an ‘undo’ button, users can
easily adapt themselves to write according to the above rule. Thus, in this work,
we assume that symbols are correctly segmented.

Graph building. A graph is used to represent an expression. Symbols correspond
to vertices and edges to relationships between symbols. Since expressions are
2D arrangements of symbols, the center of the bounding box of each symbol is
taken as the corresponding vertex coordinate. Edges can be added to the graph
using different criteria. Considering Delaunay triangulation, the resulting graph
is planar. Another option is to consider complete graphs.

Graph features. Features can be added to vertices and edges in order to keep
information of the expression. In the vertices, besides symbol spatial coordinates,
one may consider local features such as (i) shape context [10] of the symbol, or
of the neighboring symbols, or (ii) any feature set derived from the symbols
(number of traces, curvature, relative size, etc). For the edges, a vector with
the origin in one of the symbols and with the end in the other symbol can keep
information such as relative orientation and distance between the symbols linked
by the edge.

3 Expression Matching

Given a model expression whose symbols are individually labeled, the goal is
to label symbols of an input instance of the same expression. The proposed
technique consists of four steps: (i) build GM = (VM , EM ), the graph of the
model expression, where VM is the set of vertices and EM is the set of edges;
(ii) normalize the input expression with respect to its location and scale, taking
as reference the corresponding model expression; (iii) for each symbol v in the
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set of symbols VI of the input expression, compute the matching cost c(v, u) for
all u ∈ VM ; and (iv) compute the minimum cost one-to-one matching between
vertices in VI and VM .

Input expression normalization. Before further processing, input expression is
spatially and scale aligned with the model expression. Specifically, the input ex-
pression is translated so that its bounding box center coincides with the model
expression bounding box center. Next, both height and width of the input ex-
pression are scaled to match the model expression height and width, respectively.
In this scale adjustment, the location of the center point of the bounding box of
each symbol is also proportionally adjusted. Figure 1 shows an example of input
normalization.

(a) Input (b) Model (c) Normalized input

Fig. 1. Normalization of input expressions with respect to its corresponding model.
Only symbol spatial coordinates are changed; symbol sizes are not modified.

Cost computation. We assume that the two expressions to be matched are similar
(have the same number and type of symbols and symbols are roughly arranged
in a similar way). Thus, the corresponding graph should also be similar.

If a vertex of the model
expression is replaced by
the corresponding vertex of
the input expression, the
deformation in the model
graph should be small.
Based on this reasoning,
the best matching candi-
dates for a model symbol
would be those in the input
expression that result in
small deformation. Figure 2
illustrates the idea of graph
deformation.

Model Input Model deformation

vm vm

vivi

Fig. 2. Deformation induced to the model graph
(dashed line edges) when one of its vertices (vm)
is replaced by a vertex (vi) in the input graph

Among matchings that result in similar structural deformation, the preferred
one should be the one that corresponds to the most similar symbol. Thus, a
matching cost should take into consideration both symbol (local) and structural
(global) features. The idea of deformation cost has been proposed in [9], and
here we have adapted it to our application. Following [9], a general cost function
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for pairs of vertices (vi, vm), vi ∈ VI and vm ∈ VM , may be expressed as the sum
of two terms, as:

c(vi, vm) = α c1(vi, vm) + (1 − α) c2(vi, vm, GM ) (1)

where c1 is relative to vertices, c2 is relative to edges incident to vm, and α is a
real number between 0 and 1 used to weight the two terms.

In our context, vertex cost c1(vi, vm) should be small if the respective sym-
bols have similar features. As for the second term, following [9], given two vectors
e1 and e2 incident to a common vertex, we first define the cost:

cvec(e1, e2) = β
|cosθ − 1|

2
+ (1 − β)

∣∣|e1| − |e2|
∣∣

C
(2)

where θ is the angle between the two vectors, | · | is the length of the vector,
β is a real number between 0 and 1, and C is a constant that represents the
maximum distance between two symbols in the model expression. The first term,
weighted by β, considers angular difference between the vectors and the second
one, weighted by 1− β, considers length difference.

Then, the edge cost corresponding to the pair (vi, vm) is specified as:

c2(vi, vm, Gm) =
1

|E(vm)|
∑

e∈E(vm)

cvec(ẽ, e) (3)

where E(vm) is the set of edges with one extremity in vm and |E(vm)| is its size,
e is the vector corresponding to edge e, and ẽ is the vector obtained by replacing
the extremity of e from vm to vi. The edge cost computes a kind of angular and
length mean deformation of all edges incident to vm.

Minimum cost matching computation. Given the pairwise matching costs be-
tween vertices of two graphs, an optimum matching can be computed using, for
instance, the Hungarian algorithm [11]. The computation time is not critical
in our application because the number of symbols in expressions are relatively
small. In our case, the second graph (input) consists of only nodes (no edges)
and the matching cost is the deformation cost described above.

4 Experimental Results

Dataset: Expressions were typeset in LATEX and volunteers were instructed to
write them, without specific training. The only instruction given to the volun-
teers was to write the expressions in such a way as to leave a longer time gap
between traces of two consecutive symbols than between two traces within a
same symbol. Whenever traces of different symbols were joined, the writer could
use an ‘undo’ option.

Dataset I consists of eight expressions (see Fig. 3), written on a tablet PC,
by eight writers. Each of the eight expressions will be referred as expression
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(a) Exp. 1 (b) Exp. 2 (c) Exp. 3

(d) Exp. 5 (e) Exp. 6 (f) Exp. 7

(g) Exp. 4 (h) Exp. 8

Fig. 3. The eight expressions of Dataset I, written by one of the eight writers
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Fig. 4. Mean expression matching rates and respective standard deviations for α = 0
and β ∈ {0, 0.25, 0.5, 0.75, 1} for Dataset I
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class. Therefore we have eight classes of expressions, containing eight expressions
each. To assess the validity of the proposed technique, cross-matching tests were
performed for each class: each expression in the class has been used once as the
model expression to which the remaining expressions in the same class have been
matched.

Let m be the number of expression classes, w the number of expressions in
the classes, and Eij the expression of class i written by writer j. In Dataset I,
m = 8 and w = 8. Given an expression class i, we define

– expression matching, cijk, as the number of correct symbol matchings
with respect to a specific model-input expression pair, that is, the number
of correct symbol matchings when model is Eij and input is Eik,

– model matching, cij , as the number of correct symbol matchings with
respect to the model expression Eij , that is, cij =

∑w
k=1,k �=j cijk,

– mean expression matching as
∑w

j=1 cij/(w ∗ (w−1)), and mean model
matching as

∑w
j=1 cij/w.

Figure 4 shows the mean expression matching rate and respective standard devi-
ations for α = 0 (no vertex cost) and different values of β (edge cost, Eq. 2). The
x-axis of the graphs indicate the values of parameter β. Similar results were also
obtained for a second dataset with seven expressions (due to space constraints,
the dataset as well as the corresponding results are not described here).

Based on these results, the main conclusions are: (i) For complete graphs, as
the value of β increases so does the correct matching rate. (ii) Best expression
matching rates are obtained with β = 1 for complete graphs, indicating that only
angular deformation can account for most of the relevant structural information
of the expression. More than that, since no local feature is used, that means that
only structural information is sufficient for a good matching rate. (iii) Results
with complete graphs are in general superior than with Delaunay graphs. Thus,
complete graphs can capture structural information in a more robust way. This
is specially evident for more complex expressions (for instance, 4 and 8).

Figure 5 shows some examples of worst matching errors. In each case, the
expression at the top is the model and the one at the bottom is the normalized
input. Line segments indicate wrong symbol matchings. Matching errors can
be explained based on some writing characteristics: in the first expression, the
spacing between symbols in the right half of the input expression are smaller
than the one in the left half, resulting in a strong misalignment of some parts
of the expression between model and input after normalization (compare, for
instance, the x-position of the symbol =); in the second case, symbol √ in
the model expression is unusually long and normalization changes the relative
position between √ and symbols inside it in the input expression; in the third
case, model expression is small and thus normalized input symbols tend to be-
come cluttered. To improve these results, one may consider local features such
as symbol features. As a preliminary investigation, we considered shape context
with four sections only, defined by the two diagonals passing through the ver-
tex coordinates. The number of remaining vertices falling inside each section,
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Fig. 5. Examples of worst matching errors. For each case, model expression is at the
top and input expression is below it.
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Fig. 6. Mean expression matching rates and respective standard deviations for Dataset
I. Cost function is a weighted sum of vertex cost and edge cost. For edge cost, only
angular cost was considered. x-axis of the graphs indicate the weight of vertex cost.



Mathematical Expression Matching 303

Mean model matching

Exp.
Total

Vertex cost Vertex +
Ei only edge cost

1 70 70± 0 70± 0

2 63 57± 5.7 58± 5.3

3 105 105± 0 105 ± 0

4 266 236.2 ± 22 249 ± 18.6

5 91 91± 0 91± 0

6 133 132.5 ± 0.9 132.7 ± 0.7

7 126 125.5 ± 0.9 125.7 ± 0.7

8 322 309.6 ± 13.3 313.2 ± 6.5
80 %

85 %

90 %

95 %

100 %

 1  2  3  4  5  6  7  8

Edge cost only Vertex + Edge cost

Fig. 7. Mean model matching with standard deviation, for matching cost with and
without vertex cost. Column “Total” corresponds to the number of symbols in the
expression times w − 1 = 7.

regardless their distance, were considered as the vertex feature (so that each
vertex could capture information of symbols present respectively to its right, up,
left, and down sides). Considering that when only edge costs were used the best
results were obtained for β = 1, we tested different values for α with β fixed in
1. Results for Dataset I are shown in Figure 6. Better results are achieved for α
between 0.25 and 0.5. One interesting fact is that with α = 1 (therefore with no
edge cost), the results are also quite good.

Table and graph in Fig. 7 show, respectively, the mean model matching and
mean model matching rate with respective standard deviations, when deforma-
tion cost does not (α = 0, β = 1) and does (α = 0.375, β = 1) include vertex
cost. As can be seen, conjunction of vertex and edge features not only improves
mean slightly, but also diminishes standard deviation.

5 Concluding Remarks

A graph matching based approach to automatically label symbols in handwritten
mathematical expressions have been presented. Vertices correspond to symbols
and edges indicate spatial relationship between symbols. Given a model expres-
sion and an input expression, pairwise matching cost between vertices of both
expressions are computed. In this work we have considered a simple deformation
cost that takes into consideration both local (symbol) and global (structural)
features.

Experimental results show that only structural information, obtained from
edges or in the form of shape context, yields very encouraging matching rates.
Thus, the proposed approach is a promising technique to help generation of
ground-truthed handwritten mathematical symbols. We expect that the use of
local information will generate better matching rates, with less variance. Besides
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finding simple and robust symbol features to be used in the cost function, using
matching techniques such as the ones proposed in [12,13] are possible ways to
proceed this research. We also plan experiments with a larger validation set
(number of writers and types of expressions), and development of an interactive
software tool for both matching and matching verification.
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Abstract. Curvilinear structures are useful features, particularly in
medical image analysis. Typically, a pixel-wise comparison with manually
specified ground truth is used for performance evaluation. In this paper
we propose a novel structure-based methodology for evaluating the per-
formance of curvilinear structure detection algorithms. We consider the
two aspects of performance, namely detection rate and detection accu-
racy, separately. This is in contrast to their mixed handling in earlier ap-
proaches that typically produces biased impression of detection quality.
The proposed performance measures provide a more informative and pre-
cise performance characterization. A series of experiments in the context
of retinal vessel detection are presented to demonstrate the advantages of
our approach.

1 Introduction

The term curvilinear structure denotes a line or a curve with some width. Par-
ticularly in medical imaging, curvilinear structures belong to the most widely
observed and important features; examples are blood vessels, bones, airway trees,
and other thin structures. There is only very few work on evaluation methodol-
ogy for curvilinear structure detection. It is the purpose of this work to discuss
the weaknesses of an approach that is widely used in medical image analysis
literature and to propose an improved evaluation methodology.

Throughout this paper our discussion will be exemplified by the task of de-
tecting blood vessels in retinal images. Reliable segmentation of the vasculature
in retinal images is a nontrivial task for image analysis and has immense clinical
relevance. It is important to remark that our approach is in no way bounded to
retinal images only, but instead applicable in the general context of evaluating
of 2D/3D curvilinear structure detection algorithms.

We motivate our work with a detailed description of the weaknesses of the
early non-structural approach (Section 2). Then, we describe an improved, struc-
ture-based evaluation methodology in Section 3. Experimental work demonstrat-
ing the advantages of our approach follows in Section 4. Finally, some discussions
conclude the paper.
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(a) (b) (c) (d)

Fig. 1. (a) retinal image; (b) GT; (c) MSthin; (d) MSdel

2 Drawbacks of Non-structural Performance Evaluation

Many algorithms have been proposed for vessel segmentation in retinal images;
see [6,7] and the references therein. A standard practice is to report on experi-
mental results based on data sets with manually specified ground truth. Popular
databases are STARE [4] and DRIVE [10].

Typically, a straightforward method is used for performance evaluation. Given
a machine-segmented result image (MS) and its corresponding ground truth
image (GT), any pixel marked as vessel in both MS and GT is counted as a
true positive. Any pixel marked as vessel in MS but not in GT is counted as
a false positive. The true positive rate (TPR) is established by dividing the
number of true positives by the total number of vessel pixels in GT. The false
positive rate (FPR) is computed by dividing the number of false positives by
the total number of non-vessel pixels in GT. As an alternative, the FPR can
also be based on the total number of non-vessels pixels within the circular field
of view (FOV) only. This latter version is more reasonable and thus will be
consistently used in this work. If different pairs of sensitivity and specificity can
be achieved, for instance by thresholding a soft classification or various parameter
sets, the performance of a vessel detection algorithm can be investigated by
receiver operating curves (ROC). The closer a ROC approaches the top left
corner (TPR=100%, FPR=0%), the better the performance.

A fundamental weakness of this approach is illustrated in Figure 1 with two
modified versions of the GT. MSthin results from thinning the GT at some places
while in MSdel some vessel sections are deleted and others remain unchanged. For
both MSthin and MSdel we obtain TPR=85.1% and FPR=0.0%, indicating an
equal rate of 85.1% correct detection and no spurious vessels. But in reality there
are substantial differences between the two MS images. In MSthin the entire ves-
sel network is correctly detected, but some vessels have a smaller width than GT.
In contrast MSdel perfectly equals GT except the deleted parts. A more objec-
tive performance measure would be TPR(MSthin)=1.00 and TPR(MSdel)<1.00,
indicating the percentage of the correctly detected part of the vessel network.
These correctly detected parts can be further evaluated with respect to the de-
tection accuracy, i.e. the width error. Then, we would expect a non-zero width
error for MSthin and zero width error for MSdel, respectively.

Due to the nature of curvilinear structures being thin and elongated regions, a
pixel-wise comparison is obviously not the most meaningful way of performance
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assessment. In fact, the overall performance measures TPR and FPR are both
a mixture of two different aspects of performance, namely detection rate (how
much of the vessel network structure is detected) and detection accuracy (what
is the accuracy of the detected network structure). As shown in the examples
above, such a mixture may result in a biased impression of the detection quality.

The key of a more meaningful way of performance assessment is to separate
the detection rate and detection accuracy. In our previous work [5] we represent
the structure of a vessel network by its thinned version of midline points of one
pixel width. The structures of the GT and the MS vessel network are compared
by a point matching process. While this approach is exactly what we need to
alleviate the problems addressed above, the point matching process is an ad-hoc
one and results in many non-optimal matchings. In this work we further develop
the approach of [5] by introducing an optimal point matching process.

3 Structure-Based Evaluation Methodology

Given a binary data set V , for example a blood vessel image, we define its
structure as the set of midline points along with the width information. Such
a representation fully characterizes the curvilinear network by two information
sources, allowing us to investigate the detection rate and the detection accuracy
separately. We extract this structure in the following way:

– Find the midline points by computing the skeleton Vs of V . We use the
method from [1] because it guarantees that (a) the skeleton is connected
and thin (single-pixel wide) and (b) the skeleton can be used to reconstruct
the original image with a tolerance of one pixel. Furthermore, it can be
generalized to higher dimensions.

– Compute a distance map of V . Each structure point is assigned its Euclidean
distance d to the background. Then, each structure point p ∈ Vs receives
a width value wp = 2dp. We apply the linear-time method from [8] for
computing an exact Euclidean distance transform.

Given a MS and GT, we propose to measure the detection rate by comparing
MSs and GTs only, i.e. how much of the GT curvilinear network structure is
detected in MS. In a second step the width of matched MSs and GTs structure
points is compared to give a measure of detection accuracy. The most crucial
part of our approach is how to match GTs and MSs. We formulate this problem
as one of optimal graph matching.

3.1 Graph Matching

The disjoint structure point sets GTs and MSs form a bipartite graph Ggm if
every edge connects a structure point p ∈ GTs with a structure point q ∈ MSs.
Each such edge represents a candidate for a match between the structure points
p and q, and is associated with costs that depend on the distance of p and q and
on the difference of their width information.
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A match (called a structural matching in the following) between the two dis-
joint vertex sets of a bipartite graph is a set of edges so that each vertex is
endpoint of at most one edge. In such a structural matching each structure
point in GTs is matched to at most one structure point in MSs and vice versa.
The task can now be expressed as one of maximum-cardinality minimum-cost
matching, i.e. finding an optimal structural matching with minimum costs among
all structural matchings with the maximum number of edges in Ggm.

To build the graph Ggm we need to determine the set of match candidates and
to specify their costs. Given Ggm, we have to develop a procedure for finding its
optimal matching. Based on the optimal matching we finally define a new set of
performance measures. The details of these steps are given in the following.

Selecting match candidates. Not every pair (p, q) should be a match can-
didate. We reduce the number of pairs significantly by considering only match
candidates that make sense. For a match candidate (p, q) the Euclidean dis-
tance d(p, q) should not be too high and p, q should not represent structures of
very different width. A pair (p, q) is a match candidate if and only if d(p, q) ≤
dmax ∧ |wp − wq | ≤ wmax. The two thresholds are not independent of each
other. In the case of thick structures, the allowed difference in position may be
higher than in the case of thin structures, where it is more important to match
the position exactly. To reflect this, wmax is determined from GTs: wmax =
cw ·max{wp | p ∈ GTs}. Then, dmax is determined from wmax: dmax = cd ·wmax.
Details of choosing parameters cw and cd will be discussed in Section 3.3.

Costs of match candidates. For each match candidate (p, q) ∈ Ggm, p ∈
GTs, q ∈ MSs, its cost c(p, q) should be proportional both to the Euclidean
distance d(p, q) and to the difference |wp − wq | of the structure widths. Addi-
tionally, the costs should be normalized to [0, 1] to ease the task of defining the
quality measures. Because d(p, q) is bounded by dmax and |wp −wq| is bounded
by wmax, the following definition fulfills these requirements:

c(p, q) = 1−
(

1− d(p, q)
dmax

)
·
(

1− |wp − wq|
wmax

)

Then, the cost of a structural matching M between GTs and MSs is defined as:

C(M) =
∑

(p,q)∈M

c(p, q)

Computing optimal structural matching. The problem of determining a
maximum-cardinality minimum-cost matching on Ggm can be reduced to the
computation of a minimum-cost perfect match in an auxiliary graph G′

gm; see
[2]. (A perfect match in a bipartite graph G = A ∪ B is a match so that each
vertex of A is matched to exactly one vertex of B and vice versa.)

From the bipartite graph Ggm, we form another graph G′
gm by putting Ggm

and a copy of Ggm together. Then, we connect each vertex in Ggm with its copy
and each such new edge is assigned the costs N · cmax, where N is the number
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of vertices in Ggm and cmax is the maximum cost assigned to an edge in Ggm

(in our case cmax = 1). G′
gm is again bipartite with the two disjoint vertex sets

GT1
s

⋃
MS2

s and MS1
s

⋃
GT2

s, where GT1
s and MS1

s are the vertices of GT and MS
part of Ggm, respectively, and GT2

s and MS2
s are the corresponding vertices from

the copy of Ggm. It can be shown that G′
gm contains a minimum-cost perfect

match, which corresponds to a maximum-cardinality minimum-cost match in
Ggm when all edges that end in a vertex of the copy of Ggm are eliminated
(Interested readers are referred to [2] for the proof). The problem of finding a
minimum-cost perfect match in G′

gm can be solved for example using the CSA
algorithm from [3].

3.2 Quality Measures

The optimal matching M enables us to define the following quality measures.

True positives. The successfully detected structure points of GTs are those
that have a corresponding structure point in MSs according to M. The true
positives rate (TPR) can thus be defined as:

TPR =
|M|

# stucture points in GTs

TPR tells us how much of the GT curvilinear network structure is successfully
detected in the machine segmentation. A measure of the matching quality of the
true positives is the detection error (DE):

DE =
C(M)
|M| ∈ [0, 1]

The detection error can be split into two values to separately measure the posi-
tion error (PE) and width error (WE):

PE =
1
|M|

∑
(p,q)∈M

d(p, q); WE =
1
|M|

∑
(p,q)∈M

|wp − wq|

False positives. Those structure points of MSs that have no match in GTs

according to M are false positives. The false positives rate (FPR) is defined as:

FPR =
# structure points in MSs − |M|

# non-structure points in FOV of GTs

In addition to computing FPR it is also interesting to ask about the character-
istic, for instance the width, of these spurious structures. It is probably more
problematic to erroneously detect thick structures than thin ones. To obtain this
information we can establish a width histogram of the false positives.

False negatives. Those structure points of GTs that have no match in MSs

according to M are false negatives. The false negatives rate (FNR) is defined as:

FNR =
# structure points in GTs − |M|

# structure points in GTs
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Table 1. Evaluation results for MSthin and MSdel

MSthin MSdel

TPR 99.6% 77.6%
Detection error DE 0.061 0.001
Position error PE 0.202 0.054
Width error WE 0.452 0.002

False positives 0 0

False negatives 32 1729
FN histogram – 1–2:50.3%, 2–3:11.9%, 3–4:25.0%, 4–5:9.4%

This measure indicates how much of the GT structure is missing in the machine
segmentation. Likewise we can investigate the width characteristics of these false
negatives by a width histogram.

3.3 Choosing Parameter Values

Two parameters cd and cw are used during the selection of match candidates.
They affect the number of match candidates as well as their costs, and therefore
also the optimal match M and the induced quality measures. Fortunately, it
turns out that the quality measures are fairly robust to parameter changes.

Since there is no stringent reason to treat distance in position differently from
difference in width, cd = 1 and therefore dmax = wmax is a suitable choice. This
leaves only cw to be determined.

The influence on the number of match candidates is more critical than the
influence on their costs. Since the optimal matchingM is a maximum-cardinality
match, too many match candidates inevitably lead to nonsense matches in M.
Therefore, cw must not be chosen too large. On the other hand, cw must not be
chosen too small either, to avoid the exclusion of reasonable match candidates.
Suppose the segmentation algorithm tends to mark structures wider than they
really are. Then a small value of cw quickly leads to the exclusion of reasonable
match candidates. It turns out that all reasonable match candidates are already
included for cw = 0.5: The true positives rate conforms to the expectations. The
higher TPR observed for increasing values of cw comes at the cost of match
quality: The position error PE and the width error WE increase rapidly already
for cw ≈ 1. For these reasons, a good parameter choice is cw = 0.5, cd = 1.

4 Experimental Results

A series of experiments using both synthetic and real data have been conducted
to demonstrate the effectiveness of our approach.

4.1 Synthetic Data

First we show how our method evaluates the two images in Figure 1(c)–(d),
see Table 1. As wanted, MSthin has TPR near 100%, implying a full detection
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Fig. 2. Two hand-labelings of a retinal image from STARE database

of the vessel network structure. The fact that the detected vessels are thinner
than GT is expressed by the width error 0.452 (pixel). The width error indirectly
results in a position error 0.202. In contrast MSdel leads to TPR=77.6% only and
accordingly 22.4% of the vessel network structure undetected. Since no error has
been added to the correctly detected 77.6% of the vessel network in synthesizing
MSdel, the error measures are all negligible in this case. The missing vessels in
MSdel are expressed by the high number of false negatives 1729, meaning that
1729 of the structure points of GTs cannot be matched to the segmentation
result. In comparison MSthin only has 32 missing structure points. Based on the
histogram of false negatives we see further that the missing vessels are relatively
thin; 87.2% of the missing parts have a width up to 4. The interpretation of these
evaluation measures is exactly what we postulated for more informative and
precise performance evaluation in contrast to the pixel-wise evaluation method.

4.2 STARE Database

The STARE database [4] contains 20 images1 (700 × 605 pixels, 8 bits per
color channel). There are two hand-labelings made by two different persons,
see Figure 2 for an example. The first hand-labeling, which is usually used as
ground truth in performance evaluation [4,6,10], took a more conservative view
of the vessel boundaries and in the identification of small vessels than the second
hand-labeling.

We compare our evaluation approach with the early pixel-wise method in
three different situations with the first hand-labeling being used as ground truth
in all three of them. The results averaged over 20 images are summarized in
Figure 3.

Verification-based adaptive local thresholding [6]. This vessel detection
method has been evaluated on the STARE database. Based on eight parameter
sets the ROC is plotted in Figure 3 (“multi-threshold probing”). Note that the
20 retinal images are divided into a subset of normal and a subset of abnormal
cases. The performance study thus can be done for three test instances (all,
normals, abnormals). In this case both evaluation methods have similar TPR
values. The reason lies in the fact that the results from [6] tend to be thicker
than the ground truth. Therefore, as soon as some part of the vessel network
1 Available at http://www.parl.clemson.edu/stare/probing/

http://www.parl.clemson.edu/stare/probing/
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Fig. 3. Evaluation of multi-threshold probing, filter response analysis, and second
hand-labeling on STARE database: pixel-wise evaluation (left) and our approach (right)

is detected, most of the vessel pixels of that part will be marked, leading to a
local TPR value near 100% comparable to the local TPR from our evaluation
approach. On the other hand, the FPR has much smaller values due to the use of
spurious midline pixels only in our approach instead of all spurious vessel pixels.

Piecewise threshold probing of matched filter response [4]. For this
method only one result per image for a particular parameter set is available.
Looking at Figure 3 (“filter response analysis”), we see that our evaluation
method rates the TPR considerably more positive (from lower than 70% to
almost 80%). The low TPR value of pixel-wise evaluation is caused by the algo-
rithm’s tendency of not fully marking all local vessel pixels even if the middle
part, thus the local network structure, is correctly found. Our structure-based
evaluation approach considers the aspects of structure detection and local de-
tection accuracy separately and is therefore able to characterize the behavior of
an algorithm more precisely.

Second hand-labeling. In [4,6] the second hand-labeling has been used as
“machine-segmented result images” and compared to the first hand-labeling. The
detection performance measures are then regarded as a target performance level.
In Figure 3 this level is indicated by an isolated mark in each plot (“second hand-
labeling”). Although the second observer masked the vessels more completely, the
pixel-wise TPR only amounts to about 90% because the second labeling is partly
thinner than the first one. This assessment is obviously against our intuition and
expectation. Using our approach the TPR increases to almost 100%.

Table 2 gives the details of this comparison for a single retinal image (shown
in Figure 2). The pixel-wise evaluation results in a TPR value of only 66.0% for
this image. On the other hand, our approach indicates that a much higher rate
of 92.2% of the vessel network structure has been correctly segmented by the
second observer. The large divergence is caused by the differences in position
and width of the marked vessels by the two observers, which is signified by quite
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Table 2. Evaluation results for comparing the second labeling in Figure 2 against the
first labeling

TPR 92.2%
Detection error DE 0.375
Position error PE 1.619
Width error WE 0.634

False positives 954
FP histogram 1–2:90.0%, ≥2:10.0%

False negatives 557
FN histogram 1–2:70.2%, 2–3:5.9%, 3–4:17.2%, ≥3:6.7%

(a) (b) (c) (d)

Fig. 4. (a) retinal image; (b) GT; (c) first detection results MS1; (d) second detection
result MS2

large position and width errors in our case. The second observer labels more
small vessels. This is documented by the number of false positives, namely 954.
Among them 90.0% are midline pixels of thin vessels of one pixel width. This
example makes once more our way of assessing the detection quality clear.

4.3 Further Validations

As another example, Figure 4 shows a retinal image (from the STARE database),
the corresponding ground truth, and vessel detection MS1 and MS2 from two dif-
ferent algorithms. Using the pixel-wise evaluation we obtain: MS1: TPR=91.9%,
MS2: TPR=80.3%. There is a large difference (11.6%) in TPR. The evaluation
measures based on our approach are: MS1: TPR=89.3%, MS2: TPR=87.2%. Ac-
tually, MS1 only detects 2.1% more of the vessel network structure than MS2.
The much larger difference of 11.6% above is explained by the fact that MS1

tends to be thicker than GT. Thus, it produces a better pixel-wise matching
results. Measured by our method, this is expressed by a larger width error for
MS1 (1.129) than MS2 (0.693). Here our performance measures provide again
a more precise description of the differences between algorithmic results and
ground truth.

The DRIVE database [10] consists of 40 images2 (768× 584 pixels, 8 bits per
color channel). The pixel classification approach to vessel detection from [9] has
been evaluated using both methods and the results support the same conclusions
2 Available at http://www.isi.uu.nl/Research/Databases/DRIVE/

http://www.isi.uu.nl/Research/Databases/DRIVE/
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as in case of STARE database. Due to the space limitation we do not show the
performance measures here.

5 Conclusion

In this paper we have proposed a novel structure-based methodology for perfor-
mance evaluation of algorithms for curvilinear structure detection. Our evalua-
tion framework is a reasonable alternative to the pixel-wise comparison. We plan
to conduct a large-scale comparison study, which should include a large number
of recent detection algorithms.

The description of the evaluation methodology and the experimental work
have been embedded in the context of blood vessel detection in retinal images.
It is important to point out that our approach is applicable in the general context
of evaluating curvilinear structure detection algorithms. In particular, extraction
of airway tree and other thin structures in volumetric data is a challenging task
and our evaluation technique will help assess the algorithm performance as well.
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Abstract. We present an application for mobile phones to detect indoor
signs and help in localization. Because it depends only on device capa-
bilities, it is flexible and unconstrained. Detection is accomplished online
by keygraph matching between sign images collected offline and the im-
age from a mobile camera phone. After detection we apply a simple local-
ization method based on a comparison between the detected sign and a
dataset, consisting of images of the whole environment taken at different
positions. We show the results obtained using the application in a local
indoor environment.

1 Introduction

Object detection is a subject that, despite extensive study and different ap-
proaches already developed, it still poses some challenges in computer vision.
More specifically, given the constant technological development of processing
capacity and shrinking of physical components, it is becoming very important
to adapt and develop methods for mobile devices. These equipments can be spe-
cially interesting to work with, because they are very easy to carry around and
offer a great flexibility for physical handling.

The choice of mobile devices, mainly cell phones, to perform object detection
is an area that is receiving increasing attention. Some authors showed successful
approaches using an external computer connected via wireless network to per-
form heavy processing in real time [4,13]. However, this method is somewhat
restrictive, as it is limited to regions where network is available.

The detection of artificial markers has proven to be an interesting choice for
mobile devices [8,11,14]. This approach is advantageous because markers are
usually easier to detect and results are more robust. On the other hand, it
naturally suffers from the problem that such markers need to be pre-attached
wherever the user want to go, and that may not be viable in practice. The
natural choice to overcome this problem is to detect objects that are part of
the environment. Even though this task can be more complex and demand more
computer resources, results obtained in previous works by other authors [1,12,16]
show it is already a feasible option for mobile devices.

Regardless of the choice of which object to detect, or how to process the data,
we can see that one of the most common choices to perform actual detection
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relies on keypoints methods [1,4,12,16], such as SIFT [7] or SURF [2]. The main
drawback of using such rich and robust keypoint detectors is that they are usually
complex or computationally expensive, what is considerably sensible in small low
power devices such as cell phones.

In this paper, we propose to perform detection by keygraph matching [6].
Keygraphs are built over a set of keypoints and allow us, by taking advantage
of their natural structural properties, to create richer and more discriminating
descriptors. Such richness does not necessarily come with an increase in complex-
ity, in fact, if well tuned keygraph descriptors can be much simpler than those
used by complex keypoint detectors. Also, as shall be explained in Sect. 2.3,
their properties can be specially interesting to treat the problem at hand.

Our work will focus on detection of pre-existing signs in indoor environments
by a mobile phone. The whole processing is performed in the device, without
relying on an external computer for additional processing. Besides detection, we
also show a localization method based on a comparison between the image being
captured by our camera phone and a pre-built image dataset of the environment
we are working in. It is a simple localization method implemented to show a
direct application of object detection to estimate user location without any ad-
ditional heavy computer processing, but with no intention of obtaining results
comparable to top-notch stereo vision and 3D techniques [5] or state of the art
localization works.

This paper is organized as follows. In Sect. 2 we explain the methodology and
concepts needed to implement the application. Section 3 shows some experimen-
tal results obtained in a practical real-time sign detection. Finally, in Sect. 4 we
present our conclusions.

2 Mobile Keygraph System

The system consists of one set of manually acquired sign images which are our
models and a dataset of images of a corridor in a local building. Figure 1 shows
a picture of the corridor and some of the signs we want to detect. More details
about the dataset acquisition and how it is used in our application are presented
in Sect. 2.1 and Sect. 2.2. Image detection and localization estimation is done
online, while a user holds the phone and walks along the corridor.

2.1 Building Image Dataset

The images used in this research is part of a dataset collected at the Instituto
de Matemática e Estat́ıstica, Universidade de São Paulo (IME - USP)1.

The data acquisition rig consisted of a laptop computer placed approximately
1.60m above the floor, atop a wheeled structure. The camera faced the direction
of the motion of the rig. At each acquisition step, the rig was moved 60cm forward
and brought to a complete stop. The computer then stored one picture from the
camera. The rig was then moved another 60cm forward, and the process was
1 http://www.vision.ime.usp.br/VisionDataset/AlbumDetail?albumId=36

http://www.vision.ime.usp.br/VisionDataset/AlbumDetail?albumId=36
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Fig. 1. Corridor and signs used in tests

repeated. Thus, all images were obtained while the rig was at rest. Also, since
the rig’s motion followed a straight line along a corridor, most of the elements
on the pictures are at a fixed distance from the camera. This procedure led to
the acquisition of 134 images of the corridor.

2.2 Localization

To estimate the user’s position, assuming we can identify a sign in the image
presented by the user, we use the relative proportion of the sign area in the whole
image, i.e. we compute sign area (in pixels) in each picture and then divide it by
the image area (also in pixels). Figure 2 shows some images from dataset, their
relative sign proportion (r) in each one and the distance (d) between camera
and sign in centimeters.

Using these results as samples and plotting them, we obtain the points shown
in Fig. 3. Then, by applying a least square minimization, we get the distance

(a) r = 0.024; d = 330cm (b) r = 0.035; d = 270cm (c) r = 0.058; d = 210cm

Fig. 2. Examples of images and signs ratios
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Fig. 3. Distance function d

function that, given r, we can compute distance between user and the sign,
obtaining location.

Even though simple, this result is good enough for our localization problem
and can be computed very quickly. The ratio r can be easily computed in real
time because the sign area can be immediately obtained as a result from our
detection algorithm.

2.3 Keygraphs

A keygraph is a digraph, built by taking a set of keypoints as its vertices and
adding directed arcs between them. More formally we can define a keygraph as
a pair (V, A), where V is a subset of a set of keypoints K and A is a subset of
V 2. The set of keypoints K can be obtained by using any traditional keypoint
detector, such as [9,15].

Unlike individual points, there are many ways to find correspondences between
two graphs. In this work a correspondence is an isomorphism and therefore all
keygraphs are isomorphic. Specifically, they are circuits of length 3, whose graphs
can be easily obtained from a triangulation. Isomorphisms between circuits are
trivial to find without the need to enumerate all possible bijections.

Matching keygraphs, like keypoints, is usually divided in two phases: indexing
and searching. The indexing phase is done offline and consists of building key-
graphs from model images and obtaining their respective descriptors. Searching
is done online and consists of applying these same procedures, but on a scene
image, and then selecting matches between model and scene keygraphs and per-
forming pose estimation. Figure 4 shows an example of a sign being detected.

The main motivation for using keygraphs over keypoints lies on the fact that,
by taking into consideration a set of points, we can obtain structural information
that is not available when analyzing only one point at a time. Even though it
may seem that this additional information will overload even more the matching
process and preclude real time detection, it does not necessarily mean so. Of
course, if we use a very complex keypoint detector, such as SIFT, to generate
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Fig. 4. Example of detection using keygraphs. The white lines between the image on
the left and right shows the correspondences found. Green triangles on both images
shows the keygraphs matched, and red ones on the image on the right shows keygraphs
not matched. Blue bounding box indicates estimated pose.

our keygraphs vertices, we cannot hope to speed up things very much since we
would be bounded by its detection time. However, if we apply a simpler, but
faster detector and rely on keygraph properties to build a robust descriptor
efficiently, we could expect better results. One thing that should be noticed
is that whereas the number of keypoints in an image is linear on its size, the
amount of keygraphs is exponential. Thus, to achieve real time performance, we
must impose some restrictions on arc generation. These, however, can be easily
obtained when taking into consideration the geometrical properties of keygraphs,
as shall be explained ahead.

There are many ways of creating descriptors from keygraphs. One possibility
would be to use the keypoints descriptors and add additional information ob-
tained from the graphs. However, each keypoint descriptor has its singularities
and it would be very difficult to create a model that would fit to all of them. In
that sense, we chose to discard completely keypoints descriptors and build new
ones based on arcs.

Arc descriptors can be computed by taking into consideration the intensity
profile [17,18], i.e., the grayscale values of the pixels along the arc of the key-
graph. This choice of descriptor has several advantages. First, intensity profiles
are naturally robust to rotation. Second, even though they are not originally
invariant to scale, the arcs have a well-defined concept of length that can be
used to scale the profiles accordingly and obtain robustness. Finally, as they are
unidimensional, effective descriptors do not need to be very large and can be
computed very fast.

Intensity profiles also have some problems, as they are not robust to perspective
transforms, and also impose the restriction of planarity over the object. However,
these difficulties can be circumvented by applying some restrictions. We can use
the geometrical properties of keygraphs structure to discard arcs and obtain more
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robust and significant descriptors. Not only that, these restrictions are also impor-
tant to reduce the amount of keygraphs and make real time processing feasible.

One simple criterion that can be used is the distance between vertices. If the
distance is too short, the resulting arc descriptor will be very poor, and hence
such arcs are not considered. On the other hand, very long arcs should also not be
included. The main reason for that is due to the intensity profiles used to create
descriptors. By removing long arcs, we obtain more locally restricted descriptors
that are more likely to be according to the planarity restriction. Besides, the
effects of perspective transforms are softened on short profiles. The optimum
choice of values may depend on the problem being treated, as well as on the size
of the images. In our application, we found out that choosing arcs whose length
was between 10 and 100 pixels yielded good results.

Another possible restriction is to consider the relative positioning of the key-
graphs. As we chose to work with keygraphs that are circuits with 3 vertices, we
can impose over them the restriction that all arcs in a keygraph are clockwise
oriented. This can be used to avoid some unnecessary comparisons, unless we
need to take mirroring into account, which is not the case. This constraint can
also be efficiently verified by simply computing a cross product of the vertices.

Even though the above criteria may somewhat constrain the amount of key-
graphs, it does not really decrease the asymptotic complexity of the problem.
Hence, while this restriction alone may be sufficient to be applied on model im-
ages during offline indexing phase, it most probably will not be enough to achieve
good results during online searching. In this sense, we propose the insertion of
an additional constraint for scene keygraphs, restricting arcs via Delaunay trian-
gulation. The number of triangles in such triangulation is linear in the number
of points [3], which makes the problem treatable.

It should be noted, however, that, by applying a hard constraint on keygraphs
generation, we also impoverish image description, which can make matching diffi-
cult. For that reason, we only applied triangulation restriction to scene keygraphs
and let the model have a richer description. In doing so, we allowed the model
to be found under more diverse changes in scene image. In order to guarantee
that the number of keygraphs on the model does not greatly affect matching
performance, we used an indexing library [10] to store model descriptors.

3 Experimental Results

The implementation was done in C++ with OpenCV2 library on a Nokia R©N900
cell phone. It is equipped with an ARM R©Cortex TMA8 600Mhz processor,
256MB of RAM and runs Maemo 5 OS. The application captures images via
built-in camera phone in 640x480 resolution and executes keygraph matching
and localization estimation on the fly.

Figure 5 shows the graphic user interface (GUI) shown by the application on
the device screen. In the left side, a map of the corridor is presented, showing
user’s current position in the corridor (white dot) and existing signs (yellow
2 http://opencv.willowgarage.com/wiki/

http://opencv.willowgarage.com/wiki/
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Fig. 5. User interface shown by device. The white dot on the left represents the user
position in the corridor.

rectangles) and doors (in red). The rest of the screen shows the image being
captured by the camera phone as well as its keygraphs (red and green lines, green
keygraphs indicates a match was found) and the detected sign (blue bounding
box).

For keypoint detection we chose the MSER detector [9]. Empirical results
showed that this detector worked better than the others for our approach. As
explained in Sect. 2.3, keygraphs have the important properties of considering
structural information and also are robust to scale and rotation changes. These
are specially important for the problem at hand because, as the user will be
walking around with the device, our application must be able to identify the
signs even under diverse distance and point of view changes. Besides, as signs are
very well structured objects, keygraphs are ideal to describe them and perform
detection more easily.

Figure 6 shows detection results obtained by our application. It can be seen
that detection works well even under partial occlusion and with rotation changes.
Robustness to scale is also obtained, but the sign is not detected until the
user comes closer. The blue bounding box on screen indicates when a sign was
detected.

Localization, even though simple, was also satisfactory, as shown in the map
on the left part of each picture in Fig. 7, correctly displaying user location when
a sign is detected.

Besides accuracy, we also verified that memory allocation of the application
was low and did not cause any overflow in the device memory. The observed
running time of our application was about 651 milliseconds per frame or nearly
2 frames per second. This result was obtained by computing the average time
spent in each frame while processing the videos used to obtain the results shown
above.
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Fig. 6. Results showing robustness to scale, rotation and partial occlusion

Fig. 7. Detection and respective location

4 Conclusion

We showed that keygraphs are a viable option to perform sign detection by cell
phones. Our application detects them correctly and also allows the user to know
its location in the environment online. For further work, we are interested in
doing quantitative analysis of the experimental results we obtained. For that
we will: (i) use our application to estimate user position directly on the images
from the environment dataset and (ii) compare the position obtained by our
application with a position estimated by a completely different method based
on an analysis of wi-fi networks signals. This way we can use those results as
a groundtruth to check the precision of our method. Besides, we would like to
improve detection and allow the application to detect signs even farther away.
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This could be accomplished by relaxing keygraphs thresholds and allowing richer
description of images, but doing so without additional bounds would compromise
online detection. One possible option to overcome this problem is to integrate
our localization result to restrict detection. Our localization method is still very
simple, and can only tell the distance between the user and a sign when the
sign is seen straight. But it can be further improved by taking into consideration
the homography obtained after performing pose estimation. In this way it is
possible not only to know the distance, but also the angle of view between the
user and the detected sign, obtaining greater precision in location estimation.
User position could also be tracked using a Kalman filter, allowing more robust
estimation, even when detection fails. Having an accurate estimation of user
position would allow us to decide what signs are likely to be detected and thus
decrease matching complexity.
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Abstract. In this paper, the classification of human activities based on
sequences of camera images utilizing hidden Markov models is investi-
gated. In the first step of the proposed data processing procedure, the
locations of the person’s body parts (hand, head, etc.) and objects (table,
cup, etc.) which are relevant for the classification of the person’s activity
have to be estimated for each camera image. In the next processing step,
the distances between all pairs of detected objects are computed and
the eigenvalues of this Euclidean distance matrix are calculated. This
set of eigenvalues built the input for a single camera image and serve as
the inputs to Gaussian mixture models, which are utilized to estimate
the emission probabilities of hidden Markov models. It could be demon-
strated, that the eigenvalues are powerful features, which are invariant
with respect to the labeling of the nodes (if they are utilized sorted by
size) and can also deal with graphs, which differ in the number of their
nodes.

Keywords: eigenvalues, weighted adjacency matrix, graph classifica-
tion, hidden Markov models.

1 Introduction

Graph structures naturally appear in many situations of our everyday life, e.g.
street maps with junctions (nodes) and streets (edges), communication networks,
such as the world wide web or the telephone network, and therefore graphs with
their special characteristics play also an important role in various research fields.
Cvetković et al. presented numerous applications in chemistry, physics, mathe-
matics and computer science in their book Application of Graph Spectra [1]. In
computer vision and pattern recognition, the classification of graphs is a funda-
mental issue with many applications such as scene analyses or optical character
recognition. For instance, Bunke et al. [2] proposed graphical representation of
the letters for hand-writing recognition. In bioinformatics, graph classification is
used to cluster proteins concerning their structure because the individual func-
tion is closely related to the shape of the protein.

X. Jiang, M. Ferrer, and A. Torsello (Eds.): GbRPR 2011, LNCS 6658, pp. 325–334, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Two main approaches to classify graphs have been suggested in the literature.
In the first approach, a distance measure between graphs is defined, e.g. the
graph edit distance. Utilizing this distance, graphs can be clustered or classified
in this metric space [3]. In the second one, special discriminative features are
extracted from the graphs, embedded into a finite dimensional pattern space or
vector space and then classified [4]. One possible feature of graphs is the set of
the eigenvalues of the graph’s adjacency matrix or the Laplacian matrix. These
features build the so-called spectrum of the graph [5] and serve as input vectors
for subsequent classifiers.

In this study, we investigated the approach of extracting the eigenvalues of
the weighted adjacency matrix (on the one hand with zeros on the diagonal,
on the other hand with the sum of the distances) for graph sequence classifica-
tion (for more information about the eigenvalues of Euclidean distance matrices
see [6]). The underlying data provides sequences of fully connected graphs of la-
beled nodes. Here, a node is representing a particular object and the label of the
node is the object’s position given as relative coordinates in the camera images.
The Euclidean distances between the nodes build the matrices for the spectral
computation. The spectra was utilized as feature for the sequence classification
by hidden Markov models (HMMs). HMMs have been applied for the classifica-
tion of sequential data, for instance in speech recognition [7] or recognition of
facial expressions [8], because they are able to model temporal dependencies. It
could be revealed that the eigenvalues are powerful features: for small graphs,
they are easy to compute and contain information about the topology and the
shape of the graphs. The values are invariant with respect to the labeling of the
nodes, if they are used in increasing or descending order, because the exchange
of two columns (and the corresponding rows) don’t affect the values themselves.
Because each eigenvalue includes information about all nodes, it is possible to
use just a subset of the eigenvalues (e.g. the largest n) for the classification.
Therefore, in the case of different number of nodes in the data set, only a subset
of the eigenvalues can lead to satisfying results.

The rest of the paper is organized as follows: Section 2 provides a brief overview
of the hidden Markov models and the Gaussian mixture models. In Sect. 3 the
video data and the extraction of the feature vectors are described. The applica-
tion of the classifier, the results and particularly the advantages of the features
are introduced in Sect. 4, followed by a brief summary of the paper in Sect. 5.

2 Stochastic and Functional Principles

2.1 Hidden Markov Models

A hidden Markov model λ = (Z, V, π, A, E) is a statistical model, which is com-
posed of two random processes [9][10]. The first process is a Markov chain con-
sisting of a fixed number of states Z = (z1, . . . , zn) and corresponding state
transition probabilities compiled to the transition matrix A = (aij), where aij

designates the probability of a transition from state zi to state zj (see Fig. 1).
The initial probability vector π, which defines the probabilities of the states to
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Fig. 1. A graphical representation of a HMM with four states z1, ..., z4 and an ad-
ditional initial state B to include the initial probabilities π1, . . . , π4 to the scheme.
Label aij of the edge from node zi to zj refers to the corresponding state transition
probability. The emission probabilities in matrix E influence the output O ∈ V .

be the initial state, forms the third component of this Markov chain process.
The second random process determines the output: it consists of possible ob-
servations V = (v1, . . . , vm) and the observation matrix E = {ej(k)}, where
ej(k) is defined as the probability of observation vk in state zj. The sequence
of observations provides information about the sequence of the hidden states.
The topology of the transition matrix defines the structure of the model. A con-
nection between two states zi and zj is given, if the corresponding entry aij is
greater than 0.

There are three basic problems associated with HMMs [10]. Each of it can be
solved with a specific dynamic programming algorithm:

Decoding Problem: Given the parameters of the model λ = (Z, V, π, A, E)
and an observed output sequence O = O1, . . . , OL. Evaluate the most likely
state sequence which could have generated the output sequence.
Solution: Viterbi algorithm.

Evaluation Problem: Given the parameters of the model λ = (Z, V, π, A, E).
Compute the probability of an observed output sequence O = O1, . . . , OL.
Solution: forward algorithm.

Learning Problem: Given a set of output sequences O1, . . . , OL and the struc-
ture of the model λ = (Z, V ). Determine the transition matrix A, the obser-
vation matrix E and the initial probability vector π so that the probability
for this HMM, producing O1, . . . , OL, is the maximum value.
Solution: Baum-Welch algorithm.1

The HMMs were utilized for classification of sequential data, e.g. in speech
recognition, recognition of gestures and bioinformatics. In this type of appli-
cation, usually one single HMM λi for every class i (i = 1, . . . , n) is trained

1 The Baum-Welch algorithm is an instance of the expectation-maximization algorithm.
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using only data of this class. The probabilities P (O |λi) for an unclassified ob-
servation sequence O = O1, . . . , OL and the i-th HMM were estimated with the
forward algorithm. For numerical reasons, because the probabilities could be-
come very small, the logarithm was used in the computation. The maximum
of the n achieved values P (O |λi), one for each HMM, leads to the most likely
class.

2.2 Gaussian Mixture Models

A multivariate Gaussian mixture model (GMM) g(f1, . . . , fm) is a probabilistic
model for the estimation of probability density functions [11]. It combines m
Gaussian density functions f1, . . . , fm, where fi = (μi, Σi, αi) is given by a
mean vector μi ∈ R

d and the covariance matrix Σi ∈ R
d × R

d of the i-th
component. Σi could be a full (symmetric) covariance matrix or a diagonal
matrix Σi = diag(σ2

1 , . . . , σ
2
d), where (σ2

1 , . . . , σ2
d) ∈ R

d is the vector of variances
of the d-th input dimensions. The third value αi stands for the weight of the
i-th Gaussian in the linear combination with

∑m
i=1 αi = 1.

The individual Gaussians fi are assumed to be stochastically independent and
defined by

fi(x |μi, Σi) =
1√

(2π)N/2 |Σi |
exp
(
− 1

2
(x− μi)T Σ−1

i (x− μi)
)

. (1)

This defines the total probability density function P (X | f1, ..., fm) with:

P (X | f1, ..., fm) =
m∑

i=1

αifi(X, μi, Σi) . (2)

In this study, one GMM in each state of the HMM was utilized to define the
observation probabilities E, which were mentioned in Sect. 2.1. It should be
noted that GMMs cannot take temporal dependencies into account as HMMs
do. The parameters of the GMM are trained with an expectation maximization
algorithm.

3 Application Data and Selected Features

3.1 Data Collection

The data was developed at the Institute of Neural Information Processing at
the University of Ulm. The data set consists of 289 video clips with a length
between one and eight seconds. Each video was recorded with a resolution of
356×474pixels and a frame rate of 24 fps. Figure 2 shows a freeze image of one
video. A male person is recorded, sitting at a table, playing one of three different
action classes. Every sequence belongs to one of the classes:

Drink: The person drinks out of the cup (89 samples).
Move: The person moves a cup on the table (100 samples).
Scratch: The person scratches his head (100 samples).
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3.2 Graph and Feature Extraction

The person always wore a red cap, a blue glove and used a yellow cup. Therefore,
the possibly complex object recognition could be simplified by calculating the
center of the colored areas. Each center refers to one node of a graph, labeled with
the coordinates of the center (see Fig. 3). All nodes are connected to each other
with undirected edges and every edge is labeled with the Euclidean distance of
the two connected nodes. These pairwise distances, extracted from the graph,
build the weighted adjacency matrix A for the calculation of the spectrum. We
also investigated an extension A+ of this matrix with the sum of the distances on
the diagonal (instead of zeros). Therefore, the features, which were used by the
HMMs for the classification, are sequences of spectra of the weighted adjacency
matrix A (or its extension A+), one spectrum for each single image. It should be
noted, that the eigenvalues were sorted in descending order within the feature
vector.

Fig. 2. Each action is played by a male
person, who is sitting at a table with the
camera on his right side. He is wearing a
red cap, a blue glove and is using a yellow
cup.

Fig. 3. The head, the hand and the cup
build the three nodes of a fully connected
graph. The nodes are labeled with the co-
ordinates, the edges with the distances be-
tween the two connected nodes.

4 Experimental Settings

In this study, the goal was to investigate the potential and flexibility of the
eigenvalues as input features for probability density estimation. Therefore, the
chosen dataset (see Sect. 3.1) is simple but easily expandable to more complex
variations to demonstrate the power of the spectrum for graph classification. In
the first part of this section, the settings of the HMMs and GMMs are determined
before in Sect. 4.2 the advantages of the spectrum are verified.

4.1 Settings of the HMMs and GMMs

For the implementation of the HMMs and GMMs the HMM Toolbox for Mat-
lab, written by Murphy [12], was utilized and adapted. After testing different
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settings for the HMMs and GMMs, a number of 15 states for the HMMs and four
Gaussian distributions for the GMMs provided the highest recognition rates. For
the HMMs, we tested both fully connected models and leftright models (which
means only connections to the state itself and to the following state are allowed:
aij = 0 for i > j and j > i + 1 (see Sect. 2.1). Also different types for the
covariance matrices (full and diagonal) were investigated (see Sect. 2.2). The
classification results for the different settings are shown in Table 1.

To verify the test results, a 10-fold cross validation was utilized. In each step,
one HMM for each of the three classes, with the settings as mentioned before,
was trained using just data of one class. For each sequence O in the remaining
test set, the probability P (O |λi), i = 1..3, that the HMM λi generated this
sequence, was estimated with the forward algorithm (for further information see
Sect. 2.1 or [10]). The maximum of the three achieved values P (O |λi) leads to
the most likely class.

Table 1. Classification results for the different model types of the HMMs and the types
of the covariance matrix of the GMMs. The first part of the table refers to the results
using the spectrum of the weighted adjacency matrix A, the second part to the extension
A+.

Underlying Model Covariance Classification rates

matrix type matrix drink move scratch

A

fully connected full 1.00 0.94 1.00

fully connected diagonal 1.00 0.93 1.00

leftright full 1.00 0.87 1.00

leftright diagonal 1.00 0.92 1.00

A+

fully connected full 1.00 0.95 1.00

fully connected diagonal 1.00 0.95 1.00

leftright full 1.00 0.91 1.00

leftright diagonal 1.00 0.90 1.00

4.2 Adequacy and Performance of the Features

To investigate, if the eigenvalues of the Euclidean distance matrix are an ade-
quate feature for the classification in this case, first their temporal development
was determined (see Figure 4). The eigenvalues change over time (but never their
order), whereas the development of the eigenvalues of the class drink should be
emphasized.

The classification results accentuate the good performance of the spectrum as
feature. In the case with a fully connected model and a full covariance matrix,
the class drink and the class scratch have a recognition rate of 1.00. The class
move achieves 0.94 (three sequences classified as drink, three as scratch). The
spectrum of the matrix A+ used as feature, achieved 0.95 for the class move.
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Fig. 4. Temporal development of the three eigenvalues of three example sequences

It is not necessary to use all eigenvalues: Figure 4 shows, that even only
the highest eigenvalue has a different development in the three classes. By using
just the first eigenvalue in the spectrum (the eigenvalues are sorted my size), or
the two first eigenvalues, the following classification results can be achieved(see
Table 2). For the results, fully connected models and full covariance matrices
were utilized.

Table 2. Classification rates for the different number of eigenvalues used as features
for the HMMs (results for the matrices A and A+

Underlying No.ev Classification rates

matrix drink move scratch

A
1 1.00 0.77 0.84

2 1.00 0.88 0.98

3 1.00 0.94 1.00

A+ 1 1.00 0.82 0.85

2 0.99 0.87 0.99

3 1.00 0.95 1.00

Different number of nodes has no influence: To investigate the power
of the spectrum as feature concerning insertion of nodes and different number
of nodes in the graph, extra nodes were artificially inserted in the graph (see
Fig. 5). On the one hand, a second cup was placed on the table by inserting a
node in the graph with the corresponding coordinates of [300,400]. On the other
hand, a second person was sat at the table in the same manner (coordinates are
[350,150]). Thus, the following settings were generated:

Cup: One person sitting at the table with two cups → 4 nodes.
Person: Two persons sitting at the table with one cup → 4 nodes.
Cup/Person: Either a second cup or a second person is added → 4 nodes.
Cup+person: Two persons sitting at the table with two cups → 5 nodes.
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(a) Setting: cup (b) Setting: person (c) Setting: cup+person

Fig. 5. Freeze images with inserted artificial nodes. The coordinates for the second
cup are [300,400], for the second person [350,150]. These coordinates don’t change over
time.

Table 3. Summary of the experiments and their classification rates. The experiments
differ in the number of nodes (No.nodes) and their position (see setting). Also both
distance matrices (A, A+) were used for the calculation of the spectrum.

Underlying Setting No.nodes Classification rates

matrix drink move scratch

A

Cup 3-4 1.00 0.89 1.00

Person 3-4 1.00 0.96 0.99

Cup/Person 3-4 0.99 0.94 0.99

Cup+Person 3-5 0.99 0.91 0.98

A+

Cup 3-4 0.98 0.91 0.99

Person 3-4 1.00 0.98 0.99

Cup/Person 3-4 0.98 0.91 0.98

Cup+Person 3-5 1.00 0.91 0.98

In the case Cup and the case Person, the data set includes the normal data
set with three nodes and the artificial new data set with four nodes. In the
setting Cup/Person, the normal data set and the two data sets Cup and Per-
son were utilized. In the last setting Cup+Person, the sequences of the setting
Cup/Person were used plus sequences with two cups and two persons. Because
all sequences contain at least three nodes, the first three eigenvalues are utilized
for the classification even though the number of eigenvalues can be greater.

Table 3 shows the recognition rates of all experiments, which were mentioned
before. The table is divided again in two parts: the first half refers to the weighted
adjacency matrix A as feature, the second half to the matrix A+. The second
column names the setting of the experiment. The third column shows the number
of nodes (No.nodes), which appear in the data set. The last three columns contain
the classification rates for the three classes. The results show, that even though
the settings are getting more complex, the classification still works satisfactorily
(with an average classification rate for the setting cup+person of nearly 0.96).
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The order of the nodes has no influence: One important advantage of the
spectrum is, that the order of the nodes in the graph has no influence on the
sorted spectrum itself, because by changing rows and the corresponding columns
in the distance matrix, the eigenvalues remain the same.

5 Summary

In this study the applicability and potential of the spectrum of the distance
matrix for sequential graph classification was investigated. Therefore, a simple
but expandable data set, with video clips, was utilized (see Sect. 3.1). The videos
show three different actions played by a male person sitting at a table. The first
action is drink, whereas the person drinks out of a cup. During the second action,
the cup is moved on the table (move) and during the third action the person is
scratching his head (scratch).

After extracting the three objects head, hand and cup with the corresponding
coordinates from the single images, one fully connected graph for each image
was developed with three nodes referring to the three objects (see Sect. 3.2).
The undirected edges were labeled with the Euclidean distance between the two
connected edges and the distance matrix A was generated. We also investigated
the power of an extension A+ to the matrix A with the sum of the distances
on the diagonal. In the next step, the eigenvalues of the distance matrices were
calculated, which build the spectrum of the matrix. Hence, the features for the
classification are sequences of spectra (one spectrum for each single image).

Because the dataset has a temporal development, HMMs in combination with
GMMs were used to classify the sequences (for more specific information about
HMMs and GMMs see Sect. 2).

The HMMs were tested as fully connected models and as leftright models
(only connections to the state itself and to the following state are allowed) with
15 states, the GMMs with four distributions for the linear combination and both
full and diagonal covariance matrices. To verify the rest results, a 10-fold cross
validation was applied.

To investigate the power and flexibility of the spectrum, different experiments
were accomplished. It was revealed, that it is not necessary to use all present
eigenvalues, but just the first one leads to adequate results. Therefore, graphs
with different number of nodes can be classified by using just the greatest possible
number of eigenvalues. Another advantage of the spectrum is, that it is invariant
with respect to the order of the nodes.

Future work within this ongoing research project concerns the investigation of
the adequacy and classification performance of the eigenvalues as features with
more complex scenes and user activities.
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Abstract. In this paper the use of kernel methods in automatic classi-
fication of hierarchical graphs is presented. The classification is used as
a basis for evaluation of designs in a computer aided design system. A
kernel for hierarchical graphs based on a combination of tree and graph
kernels is proposed. Hierarchical graphs-based representation used in de-
sign problems is briefly presented. The proposed approach is tested in
experiment on a flat layout design task and preliminary result are also
presented.

1 Introduction

Designing is an important process. Whether it is computer aided or traditional,
it usually has an iterative approach consisting of a number of steps. Starting
from a preliminary or conceptual design, which is then analyzed or tested in
order to find out what has to be redesigned or refined, the process of evaluation
and optimization is repeated until an acceptable solution is found. The longer
the process the more expensive it is. Thus there is a need for a method able to
speed up this process, and to lower the costs.

In the computer aided design there is a need for an adequate design represen-
tation. Graphs have been shown to be a very useful way of representing complex
objects in different domains [29]. Their ability to represent the structure of an
object as well as the relations of different types between its components makes
them particularly useful in the domain of computer aided design. Graphs can
represent any artifact being designed and they can take into account the inter-
related structure of many design objects i.e. the fact that parts of an object
can be related to other parts in different ways. As designing new artifacts re-
quires a method of generating representing them graphs many methods for graph
generation were researched.

Many of these methods were based on the approach using the theory of for-
mal languages to the computer aided design [28,12,13,15], in particular the graph
based representation jointly with graph grammars [3,12,13,14,16,26], and gram-
mar systems [5,8,9,30,24,21]. Other methods used to generate graphs representing
designs include evolutionary computations that were used in different domains of
design [3,16,26].
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All these generation methods result in producing a number of graphs repre-
senting designs. Using graph grammars and evolutionary methods, either sepa-
rately or combined together, we can build large database of graphs and thus a
database of designs.

The main problem lies in the complexity and size (understood as the number
of graphs) of such database. It is difficult to automatically evaluate and analyze
the quality of these graphs, where the quality of graph is defined as the quality
of the design a given graph represents in respect to a design problem being
solved. Thus the process of evaluation usually requires the presence of a human
designer who is responsible for choosing the best solution or give some numerical
values to each design. Unfortunately a human ”evaluator” needs all graphs to
be rendered (visualized) to designs in order to evaluate them. Until the design
problem is very simple the rendering of designs is usually a complex and costly
process resulting in long execution times. This problem is especially important
in evolutionary design systems where large numbers of graphs are generated in
each population and a speed of fitness evaluation is a key factor in getting a
usable design system. In such situations it would be useful to be able to evaluate
graphs without the need of visualizing them.

One of the methods for approaching the problem is using a number of graphs
representing designs for which a human ”evaluator” has defined a quality value
as a basis for evaluating other designs in the same design problem ( a training
set). As it can be noticed that the designs getting higher quality values usually
have some common elements, finding frequent substructures in graphs is a use-
ful approach. The results obtained with the use of the FFSM algorithm were
presented in [31], and the results obtained with the use of the gSpan algorithms
and a comparison of both results was presented in [32].

However, there is a problems that can be noticed in this method: the number
of frequent subgraphs even for high support parameters is very large. Taking
into account the fact that the evaluation of a graph representing a new design
consists in checking how many of the frequent subgraphs are also subgraphs of
the new graph the evaluation requires a huge number of subgraph isomorphism
checking operations. Even taking into account the fact that the graphs used are
labelled, what lowers considerably the computational cost of these operations,
it still is a costly and time consuming process.

Yet in majority of the situations what is needed is not a numerical quality
value, as the final decision would anyway be taken by a human, but a more
general notion of classifying each graph into good, acceptable, poor or unaccept-
able group. Then the poor and unacceptable designs could be discarded and the
good ones presented to the designer for final evaluation/decision. To be able to
classify graphs a similarity measure is needed. One of the possibilities is the use
of kernels. There has been a lot of research on different kernels for structured
data, including tree and graph kernels [2,4,10,11,20,25,27]. Yet, to the author’s
knowledge, there has been no attempt to propose a kernel for hierarchical graphs.

This paper is organized in the following way:in Section 2 a hierarchical graphs
used in design representation are presented, Section 3 contains a short review
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of existing graph kernels and then describes a proposed kernel for hierarchical
graphs, some experiments and their results and in Section 4 some conclusions
and possible future research is briefly described.

2 Hierarchical Graphs in Design Representation

There is a number of representations used in CAD problems like boundary rep-
resentations, sweep-volume representation, surface representations or CSG (con-
structive solid geometry) [22,18,23] but they allow only for the expression of
geometry of an object being designed and do not take into account the structure
of design objects i.e. the fact that parts of an object can be related to other
parts in some ways. In this paper a representations based on graphs is used.

Different types of graphs have been researched and used in this domain, in
addition to simple graphs, also hierarchical graphs, hypergraphs and hierarchical
hypergraphs were used [15,14,31,32].

In this paper an extension of graphs called hierarchical graphs is used. Such
graphs can represent an artifact being designed at different levels of detail at
different stages of the design process. In floor layout example used in this paper
using hierarchical graphs as the representation model makes it parallel to a way
a designer views a floor layout i.e. it starts by dividing the space into functional
areas (sleeping. eating, living etc.) which in turn can be divided further. Such an
approach makes it also possible to add more detailed descriptions of particular
spaces and even include, at lower level of hierarchy, elements of interior design
(like furniture or some appliances).

Hierarchical graphs (HGs) are an extension of traditional graphs. They consist
of nodes and edges. What makes them different from standard graphs is that
nodes in HGs can contain internal nodes. These nodes, called children, can in
turn contain other internal nodes and can be connected to any other nodes with
only exception being their ancestors.

A node in a hierarchical graph may represent a geometrical object or a groups
of objects. It may also be used to hide certain details of a designed object that are
not needed at a given stage of design or to group object having some common
features (geometrical or functional). A node that represents a single object is
called an object node. Nodes that do not represent actual geometric entities but
are used to represent hierarchical structure or other relations are called group
nodes. It is important to note that the edges between nodes are by no means
limited to edges between descendants of the same node. In other words there
may exist edges between nodes having different ancestors.

Nodes and edges in hierarchical graphs can be labelled and attributed. Labels
are assigned to nodes and edges by means of node and edge labelling functions
respectively, and attributes - by node and edge attributing functions. Attributes
represent properties (for example size, position, colour, length, orientation or
material) of a component represented by a given node.

As each node may either belong to the top level or be nested in other nodes a
context based labelling is defined. Three types of labelling are proposed. A node
may be referred to by its own label, by a weakly-context label, which contains a
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Fig. 1. A hierarchical graph

label of its direct ancestor and its own label separated by a dot, or by a so called
full label which contains labels of its all ancestors in the hierarchical structures
separated by a dot. For example a node labelled a in fig. 1 being a direct child
of a node labelled x, and a descendant of a node labelled c has a simple label a,
a weakly-context label x.a and a full label c.x.a.

In computer aided design a labelled attributed hierarchical graph may repre-
sent a potentially infinite number of designs. A given hierarchical graph G can
represent a, potentially, infinite subset of designs having the same structure. To
represent an actual design we must define an instance of a graph. An instance of
a hierarchical graph is a hierarchical labelled attributed graph in which to each
attribute a value has been assigned from the set of possible values of a given
attribute.

As such a hierarchical graph defines only a structure of a design to create
a visualisation of an object an interpretation is necessary. Such interpretation
determines the assignments of geometrical objects to nodes and correspondence
between edges and sets of relations between objects (components of a design).
The objects assigned to nodes are usually called primitives. So the process of
visualisation requires a lot of computation and any method that would limit the
number of graphs to be visualised would also significantly lower cost and time
of developing new designs.

3 A Kernel on Hierarchical Graphs

A hierarchical graph contains more information then a simple graph because it
adds to it information about ancestor/child relation. But such a graph can be
viewed as a combination of a tree and an underlying graph. Taking into account
that in design applications only the lowest level nodes represent actual geometric
objects and the remaining nodes serve as grouping containers the underlying
graph would include only the lowest level nodes. As the hierarchical graph does
not have to include a ”supernode” containing all nodes a special node is added to
the tree and labelled root. A process of separating the hierarchy and underlaying
structure results in a flattening of a hierarchical graph. An example of flattening
of a graph from Fig. 1 is depicted in Fig. 2.
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Fig. 2. A flattening of a graph from fig.1, consisting of a tree and an underlying graph

Let Hi be a hierarchical graph, Ti - a tree representing a hierarchical structure
of this graph and Gi - an underlying graph. Thus a combination of a tree and
a graph kernel can be used as a kernel for hierarchical graphs. Let KT (T1, T2)
be a tree kernel and KG(G1, G2) be a graph kernel. Thus both K(H1, H2) =
KT (T1, T2)KG(G1, G2) and K(H1, H2) = KT (T1, T2)+KG(G1, G2) are also ker-
nels [11].

There has been a lot of research on kernels for structured data like trees
or graphs. Tree kernels were proposed by Collins and Duffy [4] and applied to
natural language processing. The basic idea is to consider all subtrees of the tree,
where a subtree is defined as a connected subgraph of a tree containing either
all children of a vertex or none. This kernel is computable in O(|V1||V2|), where
|Vi| is the number of nodes in the i− th tree [4,11].

In case of graph kernels there is a choice of several different ones proposed
so far. One of them is based on enumerating all subgraphs of graphs Gi and
calculating the number of isomorphic ones. An all subgraph kernel was shown
to be NP-hard by Gartner et al [10]. Although taking into account that in case
of labelled graphs the computational time is significantly lower such a kernel is
feasible in design applications.

Another interesting group of graph kernels is based on computing random
walks on both graphs. It includes the product graph kernel [10] and the marginal-
ized kernels [20]. In product graph kernel a number of common walks in two
graphs is counted. The marginalized kernel on the other hand is defined as the
expectation of a kernel over all pairs of label sequences from two graphs. These
kernels are computable in polynomial time, (O(n6) [11]), although for small
graphs it may be worse then 2n, when the neglected constant factors contribute
stronger.

Taking into account the computational cost of different graph and tree kernels
a kernel for hierarchical graph would be computable in the same time as the
selected graph kernel, as the cost for tree kernel is smaller.

In this paper two kernels for hierarchical graphs are tested:

Ki
HG(H1, H2) = KT (T1, T2) + Ki

G(G1, G2) (1)
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where i denotes the type of graph kernel used (i =1, for a random walk kernel
and i=2 for an all subgraph kernel).

3.1 Experiments and Results

Two kernels KHG were tested on a design task from the domain of flat layout
design. A training set consists of 10 hierarchical graphs for which a classification
was defined by a human designer. These set contains five graphs representing
good designs, three - not so good but acceptable and two graphs representing
bad designs. Graphs representing good and acceptable designs were generated
from actual floor layouts. Graphs representing bad designs had to be generated
artificially either by ”spoiling” good designs or from scratch as it is difficult to
come across really bad designs.

In Fig. 3 four hierarchical graphs from the training set are presented. Graphs
depicted in Figs. 3a,b and c represent good designs. Graph depicted in Fig. 3d
represents a bad designs; it can be noticed that there is a number of problems
with this design. Firstly one of the bedrooms has no doors (there is no edge
labelled acc linked to the top left node labelled B), nodes labelled H and ER,
representing a hall and an eating room, are linked with an edge labelled jnt what
represent an open connection - while having no doors from hall to eating room
is not a desired property. Moreover, there is an accessibility relation between a

a) b)

c) d)

Fig. 3. Examples of hierarchical graphs representing floor layouts (nodes labelled B
represent bedrooms, Bt - bathrooms, K - kitchens, ER - eating room, LR - living
room, H- hall, St - storage, P -play room, SA - sleeping area, GA -guest area, EA
-eating area and LA - living area, edges labelled by adj represent adjacency between
spaces, acc - accessibility (wall with doors) and jnt - open access (no walls))
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kitchen and a bathroom, while normally there should not exist doors between
spaces where eating is prepared and a bathroom.

Then a set of 50 hierarchical graphs generated by a hierarchical graph gram-
mar, being a part of a larger design application [14], was analyzed.

The results are presented in Tables 1, 2 and 3, for three different node ker-
nels: a simple node label, a weakly-context label and a full label kernel, respec-
tively. The percentage values are for the kernel using random-walk kernel and
all-subgraph kernel as a graph kernel part of hierarchical graph kernel.

Table 1. The classification of hierarchical graphs with simple node kernel

algorithm Random walk All subgraph

correctly classified as good 89% 91%

wrongly classified as poor 7% 3%

Table 2. The classification of hierarchical graphs with weakly-context node kernel

algorithm Random walk All subgraph

correctly classified as good 91% 93%

wrongly classified as poor 5% 3%

Table 3. The classification of hierarchical graphs with full label node kernel

algorithm Random walk All subgraph

correctly classified as good 92% 95%

wrongly classified as poor 4% 2%

The most interesting from the application point of view are two values and
only they are presented in the tables. The first is how many of the graphs classi-
fied as good are actually good. It is important because these graphs are visualized
and presented to the human designer for final decision. Thus large proportion of
poor graphs classified as good results in large cost of unnecessary visualization
and, moreover, a designer is forced to analyze poor designs. So the higher the
percentage of correct classification the less computational time is wasted on ren-
dering and, equally importantly, less human time is wasted. Second important
value is the number of graphs wrongly classified as poor, as these graphs are not
rendered and hence the possibly good, and maybe also interesting, design is lost.

It can be noticed that the use of all-subgraphs graph kernel gives consistently
slightly better results. The all subgraph kernel was also slightly faster then a
random walk kernel, what is most likely the result of the fact that graphs used
in the experiment were smaller then 40 nodes. Thus the neglected constants in
O(n6) were actually contributing strongly to the computational time. Moreover
the labelling of nodes contributing to the time of all subgraphs kernel being
significantly smaller then the worst possible 2n.
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It can also be observed that the use of node kernel based on full labels results
in consistently better classifications. It results from the fact that nodes having
the same full label are more similar then those having only simple labels identical.
In context of design tasks it can be explained by the fact that two elements are
more similar if they are not only geometrically similar but also are placed in
similar part of a design. For example a bedroom, labelled by B, is on the level
of simple label identical with any other bedroom, but using a weakly-context
label allows for differentiating between just a bedroom and a bedroom within
the guest area (and a flat with guest area may be evaluated higher).

It had to be noted here that attributes of nodes were not taken into account
for the kernel computation. So only structural similarity of graphs is actually
analysed. Such an approach may not eliminated problems with size of shape
of spaces but it ensures the elimination of graphs representing structurally in-
valid layouts (like rooms with no doors for example). Moreover, some aspects of
geometrical properties turned out to be implicitly taken into account by these
kernels. One of the training graphs had a very large room which, as a result, was
adjacent to nearly all other rooms within a flat. As this graph was evaluated as
a bad one, existence of node with a large number of edges within a test graph
also lowered its classification.

4 Conclusions and Future Research

In this paper a use of a kernel for hierarchical graphs was proposed. It uses
well known graph and tree kernels combined together with three different node
kernels. Two of the node kernels also take into account the hierarchical structure
of the representation. The proposed kernel was tested on several examples from
the domain of computer aided design in which a hierarchical graphs are a very
useful representation. The results presented in this paper seem promising and
the application of kernel based classification methods to design patterns analysis
seems encouraging.

The kernel proposed in this paper uses two kernels, one for a tree and one for
a graph and takes a value being a sum of the two kernels. So the influence of
each parts of hierarchical graph is equal. It seems interesting to replace a simple
sum by a weighted one and experiment with different values of the weights. It
would be possible to make either the hierarchy or the underlying structure more
important.

The future plans include also experimenting with other graph kernels, espe-
cially with the shortest paths based graph kernel [2] as it has good computational
properties, and with the frequent pattern based kernel. Another research direc-
tion currently being investigated is based on using different methods of flattening
of a hierarchical graph which could result in a smaller number of nodes.

As in some design tasks hypergraphs are better suited as a representation
model a kernel based approach to hypergraphs classification is also currently
being researched. An combination of such a kernel with kernels presented in
this papers is then planed to be applied to the representation using hierarchical
hypergraphs.
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Gaüzère, Benoit 112
Gerstmayer, Michael 245
Gibert, Jaume 22
Goffe, Romain 255

Hacid, Mohand-Said 92
Han, Lin 32, 42
Hancock, Edwin R. 32, 42, 205
Hashimoto, Marcelo 315
Haxhimusa, Yll 245
Hirata, Nina S.T. 295
Hirata Jr., Roberto 315
Honda, Willian Y. 295

Ion, Adrian 215

Jain, Brijnesh J. 62, 122
Jiang, Bo 175

Jiang, Xiaoyi 275, 305
Jorge, Leonardo Ré 265
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