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Preface

PAKDD has been recognized as a major international conference in the areas of
data mining (DM) and knowledge discovery in databases (KDD). It provides an
international forum for researchers and industry practitioners to share their new
ideas, original research results and practical development experiences from all
KDD-related areas including data mining, machine learning, artificial intelligence
and pattern recognition, data warehousing and databases, statistics, knowledge
engineering, behavioral sciences, visualization, and emerging areas such as social
network analysis.

The 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD 2011) was held in Shenzhen, China, during May 24–27, 2011. PAKDD
2011 introduced a double-blind review process. It received 331 submissions af-
ter checking for validity. Submissions were from 45 countries and regions, which
shows a significant improvement in internationalization than PAKDD 2010 (34
countries and regions). All papers were assigned to at least four Program Com-
mittee members. Most papers received more than three review reports. As a
result of the deliberation process, only 90 papers were accepted, with 32 papers
(9.7%) for long presentation and 58 (17.5%) for short presentation.

The PAKDD 2011 conference program also included five workshops: the
Workshop on Behavior Informatics (BI 2011), Workshop on Advances and Issues
in Traditional Chinese Medicine Clinical Data Mining (AI-TCM), Quality Is-
sues, Measures of Interestingness and Evaluation of Data Mining Models (QIMIE
2011), Biologically Inspired Techniques for Data Mining (BDM 2011), and Work-
shop on Data Mining for Healthcare Management (DMHM 2011). PAKDD 2011
also featured talks by three distinguished invited speakers, six tutorials, and a
Doctoral Symposium on Data Mining.

The conference would not have been successful without the support of the
Program Committee members (203), external reviewers (168), Organizing Com-
mittee members, invited speakers, authors, tutorial presenters, workshop orga-
nizers, reviewers, authors and the conference attendees. We highly appreciate
the conscientious reviews provided by the Program Committee members and
external reviewers. We are indebted to the members of the PAKDD Steering
Committee for their invaluable suggestions and support throughout the orga-
nization process. Our special thanks go to the local arrangements team and
volunteers. We would also like to thank all those who contributed to the success
of PAKDD 2011 but whose names cannot be listed.

We greatly appreciate Springer LNCS for continuing to publish the main con-
ference and workshop proceedings. Thanks also to Andrei Voronkov for hosting
the entire PAKDD reviewing process on the EasyChair.org site.

Finally, we greatly appreciate the support from various sponsors and insti-
tutions. The conference was organized by the Shenzhen Institutes of Advanced
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Technology, Chinese Academy of Sciences, China, and co-organized by the Uni-
versity of Hong Kong, China and the University of Technology Sydney, Australia.

We hope you enjoy the proceedings of PAKDD 2011, which presents cutting-
edge research in data mining and knowledge discovery. We also hope all partic-
ipants took this opportunity to exchange ideas with each other and enjoyed the
modem city of Shenzhen!

May 2011 Joshua Huang
Longbing Cao

Jaideep Srivastava
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Abstract. Data reduction is to extract a subset from a dataset. The
advantages of data reduction are decreasing the requirement of storage
and increasing the efficiency of classification. Using the subset as train-
ing data is possible to maintain classification accuracy; sometimes, it
can be further improved because of eliminating noises. The key is how
to choose representative samples while ignoring noises at the same time.
Many instance selection algorithms are based on nearest neighbor deci-
sion rule (NN). Some of these algorithms select samples based on two
strategies, incremental and decremental. The first type of algorithms se-
lect some instances as samples and iteratively add instances which do
not have the same class label with their nearest sample to the sample
set. The second type of algorithms remove instances which do not have
the same class label with their majority of kNN. However, we propose an
algorithm based on Reverse Nearest Neighbor (RNN), called the Reverse
Nearest Neighbor Reduction (RNNR). RNNR selects samples which can
represent other instances in the same class. In addition, RNNR does not
need to iteratively scan a dataset which takes much processing time. Ex-
perimental results show that RNNR achieves comparable accuracy and
selects fewer samples than comparators.

Keywords: data reduction, classification, instance selection, nearest
neighbor, reverse nearest neighbor.

1 Introduction

Classification [16] is one of the most popular data mining techniques [17,18],
belonging to supervised learning. Supervised learning means each instance in
training data with a class label. The task of classification can be divided into
two parts, training and testing. Training is using training data to train a certain
classifier, e.g. knearest neighbor (kNN) [19,20], support vector machine (SVM)
[21] and decision tree [22], etc. Testing is using a classifier which is trained to
assign a class label to a new unlabelled instance. The objective of classification
is to predict the classes of unlabelled data so that users can learn which class
these data belong to. The Classification results usually can support decision
making and other analyses in various applications, such as disease [23], text
categorization [24], search engine [25], web page [26] and image [27], etc.

J.Z. Huang, L. Cao, and J. Srivastava (Eds.): PAKDD 2011, Part I, LNAI 6634, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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However, in nowadays, abundant data grow rapidly. If we do not process
these data before classification, the storage and efficiency will become a burden.
Therefore, the appearance of data reduction is for this reason. Data reduction
[28,29] is to extract a subset from a dataset, so the amount of data will be
reduced effectively. A way to measure the level of reduction is reduction rate.
The reduction rate means the percentage of instances in training data which
are chosen as samples. In spite of losing some information during the reduction
process, using the subset as training data is possible to maintain classification
accuracy. Instance selection [30,31] is one of data reduction approaches. The
task of instance selection is to choose representative samples into the subset.
However, most datasets contain noises, so we should ignore them during the
instance selection process. If noises can be removed, the accuracy of using the
subset for classification is possible to be higher than using the entire dataset.

Most instance selection algorithms have their own drawbacks, such as easy to
preserve noises, iteratively scan a dataset and need much processing time. There-
fore, the objective of this paper is to design an algorithm which can choose rep-
resentative samples, ignore noises as possible and achieve acceptable processing
time.

Nearest neighbor (NN) rule [1] is a lazy learning classifier in classification
because it does nothing when training. However, when testing, NN needs much
computation time for computing all the distances between training data and an
unlabelled instance X. Then, NN finds out the nearest neighbor of X in training
data and assigns its label to X. The concept of Reverse Nearest Neighbor (RNN)
[2] is as follows: if A is the nearest neighbor of B and C, B and C will be in the
RNN set of A. Therefore, the difference between NN and RNN is the target to
be recorded. In addition, for NN, each instance has only one nearest neighbor;
for RNN, an instance is possible to have zero or more than one reverse nearest
neighbor in its RNN set. As shown in the example in Figure 1, A is the nearest
neighbor of B and C, and C is the nearest neighbor of A. Therefore, the RNN
set of A contains B and C, and the RNN set of C contains A, but there is no
instance in the RNN set of B.

In this paper, we propose a instance selection algorithm, called the Reverse
Nearest Neighbor Reduction (RNNR). RNNR utilizes the property of RNN to
choose representative samples. The conception of RNNR is simple to understand

Fig. 1. An example of RNN



An Instance Selection Algorithm Based on Reverse Nearest Neighbor 3

and easy to implement. RNNR applies RNN to each class and selects samples
which can represent other instances in the same class. In our experiments, RNNR
achieves comparable accuracy and lower reduction rate than comparators. In
other words, we can use a smaller subset of the training data to obtain good
classification results.

The remainder of this paper is organized as follows. In Section 2, previous
approaches of instance selection are described. Section 3 presents the design
of RNNR. In Section 4, experiments will show the performance of RNNR and
comparators. Section 5 shows our conclusions and future work.

2 Relate Works

Most data reduction methods can be divided into two types, Instance Based
Learning (IBL) algorithms [32] and Clustering Based Learning (CBL) algorithms
[33]. We will focus on the former. The task of instance selection is to choose
representative samples from a dataset. Many instance selection algorithms are
proposed, based on NN. Some of these algorithms select samples based on two
strategies, incremental and decremental. The first type of algorithms, such as
Condensed NN (CNN) [6], Modified CNN (MCNN) [7], Fast NN Condensation
(FCNN) [8] and Generalized CNN (GCNN) [9], select some instances as sam-
ples and iteratively add instances which do not have the same class label with
their nearest sample to the sample set. The second type of algorithms, such as
Edited NN (ENN) [10], remove instances which do not have the same class label
with their majority of kNN. These instances will be considered as noises. Several
algorithms apply ENN to their pre-processing step, such as Iterative Case Filter-
ing (ICF) [3] and Decremental Reduction Optimization Procedure 3 (DROP3)
[4]. In addition, a case-based editing algorithm, called the RDCL case profiling
technique [12] and a new graph-based representation of a training set, called Hit
Miss Network (HMN) [5] are also proposed to reduce the amount of data. We
briefly summarize these methods as follows.

2.1 Incremental Algorithms

This type of algorithms have some characters, such as easy to preserve noises,
iteratively scan a dataset, sensitive to the order of instances and generally achieve
lower reduction rate than decremental algorithms.

CNN [6] randomly selects an instance as a sample and scans all instances
of the training set. If any instance does not have the same class label with its
nearest sample, it will be chosen as a sample. The process will continue until the
remaining instances of the training set are correctly classified by samples. On the
other word, each the remaining instance is absorbed by one of samples. However,
CNN is possible to preserve noises and sensitive to the order of instances in a
training set.

MCNN [7] solves the latter problem of CNN to generate a consistent subset.
The choosing strategy of MCNN is to select one instance for each class which is
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the nearest point to the geometrical center of its class as samples. This step is
called Centroids. If any instance is incorrectly classified by samples, MCNN will
apply the Centroids step to these misclassified instances. MCNN tends to select
samples which are not close to the decision boundary.

FCNN [8] also adopts the Centroids step but makes some changes. After se-
lecting the central instance for each class as samples, FCNN iteratively selects
the nearest neighbor with different class label for each sample as samples. How-
ever, FCNN is still possible to preserve noises.

GCNN [9] like CNN adopts random selection to its initial step, but the dif-
ference is GCNN randomly selects one instance for each class as samples. Then,
GCNN sets a threshold for enhancing the absorption criterion of CNN. Although
GCNN achieves higher classification accuracy than CNN, GCNN selects more
samples than CNN.

2.2 Decremental Algorithms

This type of algorithms have some characters, such as eliminating noises, needs
more processing time and generally achieve higher classification accuracy than
incremental algorithms.

ENN [10] removes instances which do not have the same class label with their
majority of kNN. The objective of ENN is to remove noises in a training set.
Therefore, using the sample set of ENN to classify probably achieves higher
accuracy than using the entire training set. However, since ENN removes only
noises, the reduction rate of ENN is hardly lower than other IBL algorithms.

After applying ENN to pre-processing step, DROP3 [4] removes the instance
which is farthest from the nearest neighbor with different class label in turn. But,
the hypothesis is not affecting the classification of training. Therefore, DROP3
tends to preserve instances which are close to the decision boundary.

ICF [3] applies ENN iteratively until it is impossible to remove any instance.
Then, ICF removes each instance whose reachability set is smaller than cover-
age one. Assuming an instance X, the reachability set of X contains instances
which contribute to the correct classification of X. Besides, the coverage set of
X contains instances which X contributes to the correct classification of them.
The above two sets is proposed by Smyth & Keane [11].

The RDCL case profiling technique [12] categorizes each case by four charac-
teristics, R, D, C and L. R means the reachability set. D means the dissimilarity
set which is proposed by Sarah [12]. C means the coverage set. L means the
liability set which is proposed by Delany & Cunningham [13]. Assuming an in-
stance X, the dissimilarity set of X contains instances which contribute to the
incorrect classification of X. Besides, the liability set of X contains instances
which X contributes to the incorrect classification of them. In fact, the dissimi-
larity set complements the reachability set, and the liability set complements the
coverage set. If a certain set of X is not empty, X will possess that characteristic.
Therefore, a case could possess more than one characteristic. The best removal
strategy of RDCL is removing DL and DCL cases, because these cases harm to
the classification of training.
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HMN [5] is a new graph-based representation of a training set. Each instance
of the training set has one outgoing edge for each class. Each outgoing edge points
an instance to its NN with that class. The in-degree of an instance is divided
into two part, hit-degree and miss-degree. Hit-degree means the edge connects
two instances with the same class labels. Miss-degree means the edge connects
two instances with different class labels. HMN-E removes each instance whose
number of miss-degree is equal or greater than number of hit-degree. HMN-
EI iteratively applies HMN-E until the classification of training is affected by
removing. A drawback of HMN-EI is that it needs much processing time to
iteratively construct a network for the reduced set.

3 The RNNR Algorithm

In this Section, we will introduce our instance selection algorithm, Reverse Nearest
Neighbor Reduction (RNNR). The framework of RNNR is shown in Figure 2. At
the beginning, training data are taken as the input of RNNR algorithm. Then,
RNNR extracts a sample set from the training data. The generated sample set will
be used to train a classifier. Finally, the classifier classifies some unlabelled data
(testing data), based on the sample set. The final result shows the classification
accuracy.

Fig. 2. The framework of RNNR

Since instances generally have similar features with their neighbors, we can
select the most representative instance in its neighborhood as a sample. Fur-
thermore, the RNN set of an instance contains instances which consider it as
the nearest neighbor. Therefore, RNNR implements the above idea by applying
the property of RNN. The process of RNNR algorithm is as follows. At first,
RNNR applies RNN to each class. Because an instance with larger size of RNN
set means it can represent more instances, RNNR will select it as a sample first.
Therefore, RNNR sorts instances for each class in descending order by the size
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Fig. 3. The pseudo code of RNNR

of RNN set. According to different choosing strategy, RNNR has three versions,
RNNR-AL0, RNNR-AL1 and RNNRL1. Finally, RNNR gathers samples from
each class and generates a final sample set. The pseudo code of RNNR algo-
rithm is shown in Figure 3. Then, we will introduce choosing strategies for three
versions of RNNR.

3.1 The Choosing Strategy of RNNR-AL0 (Absorption, Larger
Than ZERO)

We observed that each instance whose size of RNN set is zero can not represent
any instance, so RNNR-AL0 will not select it as a sample. Furthermore, noises
tend to be closer to instances with different class labels. It is possible that no
instance considers the noise as the nearest neighbor in the same class. Therefore,
the size of RNN set of a noise is probably zero. If an instance belongs to the RNN
set of a sample, it also will not be selected as a sample, owing to being absorbed
by the sample. In fact, the upper bound of reduction rate of RNNR-AL0 is 50%
because each sample can absorb at least one instance.
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Example. The choosing strategy of RNNR-AL0 is illustrated by the training
set in Figure 4. For class 1, after selecting A as a sample, B, C and D will not be
selected as samples because they are in the RNN set of A. Therefore, only one
sample, A, is selected for class 1. For class 2, after selecting E as a sample, F and
G will not be selected as samples because they are in the RNN set of E. Next,
the size of RNN set of H is larger than zero, so H will be selected as a sample.
Because I is in the RNN set of H, I will not be selected as a sample. Therefore,
there are two samples, E and H, in class 2. For class 3, after selecting J as a
sample, because K and L are in the RNN set of J, they will not be selected as
samples. Then, the size of RNN set of M is not larger than zero, so M will not
be selected as a sample, too. Therefore, there is only one sample, J, in class 3.
The final sample set of RNNR-AL0 is shown in Table 1.

3.2 The Choosing Strategy of RNNR-AL1 (Absorption, Larger
Than ONE)

Note that each instance whose size of RNN set is one is considered as the nearest
neighbor by only one instance. For selecting samples which are more representa-
tive, RNNR-AL1 will further not select each instance whose size of RNN set is
one as a sample. Similar to RNNR-AL0, if an instance belongs to the RNN set
of a sample, it also will not be selected as a sample, owing to being absorbed by
the sample.

Example. The choosing strategy of RNNR-AL1 is illustrated by the training
set in Figure 4. For class 1, after selecting A as a sample, B, C and D will not
be selected as samples because they are in the RNN set of A. Therefore, only
one sample, A, is selected for class 1. For class 2, after selecting E as a sample,
F and G will not be selected as samples because they are in the RNN set of E.
Next, H and I do not contain more than one member in their RNN sets, so they
will not be selected as samples, too. Therefore, there is only one sample, E, in
class 2. For class 3, after selecting J as a sample, K and L will not be selected as
samples because they are in the RNN set of J. Then, the size of RNN set of M is
not larger than one, so M will not be selected as a sample, too. Therefore, there
is only one sample, J, in class 3. The final sample set of RNNR-AL1 is shown in
Table 1.

3.3 The Choosing Strategy of RNNR-L1 (Selecting All, Larger
Than ONE)

For observing how the absorption strategy affects the classification accuracy,
RNNRL1 does not adopt the absorption strategy but selects each instance whose
size of RNN set is larger than one as a sample. In general case, most instances
contain zero or one member in their RNN sets, so the reduction rate of RNNR-L1
is still decent.
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Example. The choosing strategy of RNNR-L1 is illustrated by the training set
in Figure 4. Since A, E, J and K contain more than one member in their RNN
sets, they will be selected as samples. The final sample set of RNNR-L1 is shown
in Table 1.

Fig. 4. A training set for illustrating the choosing strategies of RNNR. These differ-
ent shapes in the figure indicate instances in different classes. Instances are sorted in
descending order by the size of RNN set for each class.

Note that all samples selected by RNNR-AL1 can be obtained from the sample
set of RNNR-AL0 via removing each sample whose size of RNN set is one.
Furthermore, because RNNR-L1 selects each instance whose size of RNN set is
larger than one as a sample, all samples selected by RNNR-AL1 are also selected
by RNNR-L1. Therefore, RNNR-AL1 should achieve the lowest reduction rate
among three versions of RNNR. A problem for RNNR-AL1 and RNNR-L1 is that
they will not select any instance as a sample if the RNN set of each instance
contains just one member. In fact, the opportunity of the above condition is
quite low.

Table 1. Sample sets which are extracted from the training set in Figure 4

Algorithm Sample set

RNNR-AL0 A,E,H,J

RNNR-AL1 A,E,J

RNNR-L1 A,E,J,K
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4 Experiments

To compare our algorithm RNNR with comparators, ICF [3], DROP3 [4] and
HMN-EI [5], we use seven real datasets from UCI repository [14]. These datasets
are summarized in Table 2. For each dataset, we perform five-fold cross validation
to evaluate the performance. The implementation of comparators is obtained
from Elena [5]. After sampling from training data for each algorithm, we use the
IB1 algorithm (NN) of Weka [15] to test accuracy. The average accuracy and the
reduction rate for each dataset are shown in Table 3 and Table 4. The reduction
rate means the percentage of instances in training data which are chosen as
samples, as shown in following Equation.

Reduction rate = No. of Samples / No. of T raining data

Table 2. Datasets used in the experiments from UCI repository

Dataset No. of Instances No. of Attributes No. of Classes

Wine 178 13 3

Iris 150 4 3

Bupa 345 6 2

Pima 768 8 2

Waveform 5000 21 3

Spambase 4601 57 2

Breast-W 683 9 2

The experimental results, including the classification accuracy and the reduc-
tion rate, are shown in Table 3 and Table 4. RNNR-AL1 achieves the highest
accuracy among all comparators on three datasets, as shown in Table 3. In addi-
tion, three versions of RNNR have better performance in accuracy than ICF and
DROP3 (comparable with HMN-EI). Especially, compared with training data
(TRAIN), RNNR-AL1 and RNNR-L1 improve the accuracy on four datasets.
Although RNNRAL1 selects fewer samples than RNNR-AL0, experimental re-
sults show that RNNRAL1 generally achieves higher accuracy than RNNR-AL0.
This confirms that samples selected by RNNR-AL1 are more representative. In
addition, RNNR-L1 achieves only slightly higher accuracy than RNNR-AL1 on
most datasets, so adopting the absorption strategy can maintain the classifica-
tion accuracy while achieving lower reduction rate.

For reduction rate, RNNR-AL1 selects the fewest samples of all comparators
on five datasets, as shown in Table 4. In Section 3, we infer that RNNR-AL1
should achieve the lowest reduction rate among three versions of RNNR, because
all samples selected by RNNR-AL1 will also be selected by RNNR-AL0 and
RNNR-L1. The experimental results confirm that RNNR-AL1 indeed achieves
lower reduction rate than RNNR-AL0 and RNNR-L1. Furthermore, the reduc-
tion rate of each version of RNNR is consistent on all datasets. On the contrary,
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Table 3. Results of experiments (average accuracy). For each dataset, the bold value
represents the highest accuracy achieved by using the data reduction algorithm. These
bold values in column TRAIN mean the classification accuracy of using training data
is higher than all reduction algorithms.

Dataset RNNR- RNNR- RNNR- ICF DROP3 HMN- TRAIN
AL0 AL1 L1 EI

Wine 93.29 96.62 96.62 93.86 93.81 94.94 96.08

Iris 95.33 96 96 91.33 94.66 96 95.33

Bupa 58.26 60.29 58.55 59.42 55.65 55.65 60.58

Pima 68.1 68.49 69.14 67.45 68.89 72.14 69.53

Waveform 77 77.38 77.42 73.02 75.54 81.82 76.9

Spambase 87.39 85.66 86.65 85.39 86.92 87.52 90.44

Breast-W 97.21 96.48 96.63 95.01 95.02 96.48 95.75

Table 4. Results of experiments (reduction rate). For each dataset, the bold value
represents the lowest reduction rate achieved by using the data reduction algorithm.

Dataset RNNR- RNNR- RNNR- ICF DROP3 HMN-
AL0 AL1 L1 EI

Wine 33.94 20.28 25.07 28.03 30.85 49.72

Iris 30.83 21.67 28 39.5 32.17 24.5

Bupa 30.29 18.84 26.59 24.86 25.58 23.11

Pima 32.09 19.38 25.86 20.46 26.74 31.82

Waveform 23.59 15.04 24.61 12.52 24.15 24.24

Spambase 30.07 19.1 24.8 25.52 30.67 35.19

Breast-W 22.05 14.65 18.65 5.42 25.97 35.46

the reduction rate of ICF and HMN-EI are easily affected by characteristics of
a dataset.

In summary, RNNR-AL1 and RNNR-L1 generally achieve higher accuracy
than ICF and DROP3 (comparable with HMN-EI). Moreover, the reduction
rate of RNNRAL1 is the lowest on most of datasets. Therefore, applying RNNR-
AL1 to data reduction can more effectively decrease the requirement of storage
and increase the efficiency of classification, while maintaining the classification
accuracy.

5 Conclusions and Future Work

In this paper, we proposed a new instance selection algorithm based on Reverse
Nearest Neighbor (RNN), called Reverse Nearest Neighbor Reduction (RNNR).
According to different choosing strategies, we designed three versions for RNNR.
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Experiments indicated RNNR-AL1 and RNNR-L1 achieved comparable accu-
racy with HME-EI and better than ICF and DROP3. On more than half of
datasets, RNNRAL1 and RNNR-L1 even improved the accuracy of NN. For
reduction rate, RNNRAL1 had the best performance among all comparators.
Therefore, applying RNNRAL1 to data reduction can more effectively decrease
the requirement of storage and increase the efficiency of classification, while
maintaining the classification accuracy.

Afterwards, we will extend RNN set to RkNN set, that is, find reverse k-
nearest neighbors for each instance in the same class. Another idea is to apply
RNN to all instances in different classes. Finally, we will observe whether the
above ideas improve RNNR.
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Abstract. In this paper, we develop a game theoretic approach for clus-
tering features in a learning problem. Feature clustering can serve as an
important preprocessing step in many problems such as feature selec-
tion, dimensionality reduction, etc. In this approach, we view features
as rational players of a coalitional game where they form coalitions (or
clusters) among themselves in order to maximize their individual payoffs.
We show how Nash Stable Partition (NSP), a well known concept in the
coalitional game theory, provides a natural way of clustering features.
Through this approach, one can obtain some desirable properties of the
clusters by choosing appropriate payoff functions. For a small number of
features, the NSP based clustering can be found by solving an integer
linear program (ILP). However, for large number of features, the ILP
based approach does not scale well and hence we propose a hierarchical
approach. Interestingly, a key result that we prove on the equivalence
between a k-size NSP of a coalitional game and minimum k-cut of an
appropriately constructed graph comes in handy for large scale prob-
lems. In this paper, we use feature selection problem (in a classification
setting) as a running example to illustrate our approach. We conduct
experiments to illustrate the efficacy of our approach.

1 Introduction

In many supervised and unsupervised learning problems, one often needs to con-
duct a preprocessing step on a feature set representing the input to make the
learning task feasible. Having some insights about usefulness of the features can
add value to finding better solutions. For example, imagine a classification prob-
lem where the number of features is so large that it is not possible to train any
satisfactory model in allotted time with available resources. In such a situation,
one needs to select a subset of features on which a model can be trained in
a reasonable amount of time without significant degradation in generalization
performance. This problem is known as the feature selection problem [12], [9],
[17]. We believe that if we can group the features according to the following two
criteria then it will not only make the task of feature selection easy but also
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would greatly improve the quality of the features selected and hence the final
generalization performance.

(1) Relevant Features vs Irrelevant Features: For a classification task, a
feature fi is a relevant feature if removal of fi alone will result in performance
deterioration of an optimal classifier. Otherwise, we call it an irrelevant feature.
See Kohavi and John [12] for a detailed discussion.

(2) Substitutable vs Complementary Features: For a classification task, we
characterize two features fi and fj as substitutable features if there is no signif-
icant difference in the generalization performance of a classifier that is trained
using both the features and the generalization performance of a classifier that is
trained using just (any) one of these two features. On the other hand, if the gener-
alization performance of the first classifier is significantly better than that of the
latter one then we attribute these two features as complementary features.

It is easy to see that having the above insights about the features would
greatly simplify the task of feature selection - one just needs to select a set of
features of the desired size in such a manner that all the features in that set are
relevant and complementary to each other. This insight about the features can
be obtained by using the feature clustering approach proposed in this paper.

In this paper, we develop a novel game theoretic approach for clustering the
features where the features are interpreted as players who are allowed to form
coalitions (or clusters)1 among themselves in order to maximize their individ-
ual payoffs (defined later). In this approach, the choice of a payoff function
would determine whether all the features within a cluster would be substitutable
or complementary to each other. It is important to mention that although we
demonstrate the feature clustering approach through the idea of substitutable
and complementary features, the approach is quite generic and can be used in
other problems like dimensionality reduction and community detection in web
graphs [7]. For any other problem, one needs to select a payoff function appro-
priately so that the desired insights become apparent in clustering the features.
We believe that this game theory based approach for feature clustering is quite
novel and unique till date.

The key contributions of this paper are as follows: (1) We draw an analogy be-
tween a coalitional game and feature clustering problem and then show that Nash
Stable Partition (NSP), a well known solution concept in the coalitional game the-
ory [15], provides a natural way of clustering the features (Section 3); (2) We show
how to get an NSP based clustering by solving an integer linear program (ILP)
(Section 3). The solution of this ILP gives an NSP based clustering of the features
for a given payoff function under the assumption of pure hedonic setting (defined
later); (3) We illustrate that depending upon how a payoff function is chosen, the
NSP based clustering would have a property that either substitutable features are
grouped together in one cluster or complementary features are grouped together
in one cluster (Section 4). Then, one can use any standard technique [9], [17] to

1 We will keep using the terms coalition and cluster interchangeably.
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choose features from these clusters. We also suggest a simple cluster ranking based
technique for selecting the features from a given set of feature clusters (Section 5);
(4) Finally, we propose a hierarchical scheme for feature clustering in the scenario
where the feature set size is very large and solving ILP is expensive (Section 6).
Interestingly, a key result that we prove on the equivalence between a k-size NSP
of a coalitional game and minimum k-cut of an appropriately constructed graph
[13],[4] comes in handy for large scale problems; (5) We demonstrate the efficacy
of our approach through a set of experiments conducted on real world as well as
synthetic datasets (Section 7).

2 Related Work

Feature selection can be thought of as a dimensionality reduction technique. The
problem of feature selection is to find a feature subset S with m features, which
jointly have the largest dependency on the target class. Feature selection methods
can be of two types: filter methods and wrapper methods [12]. Filter methods
select the relevant features by ranking all the features using some measure. On
the other hand, the wrapper methods treat an induction algorithm as a black
box and interact with it to assess the usefulness of a subset of features.

Different measures have been suggested in the literature for ranking the fea-
tures. See Guyon and Elisseeff [9] and the references therein. Some commonly
used measures are the absolute value of the Pearson correlation coefficient and
mutual information [17]. Peng et al [17] studied the feature selection problem
using maximum statistical dependency criterion based on the mutual informa-
tion. Particularly relevant to our work is the approach suggested by Cohen et al
[3], which poses the problem of feature selection as a cooperative game problem.

Cohen et al [3] proposed to use Shapley value (a solution concept for coopera-
tive games) for ranking the features. In this approach, each feature is treated as
a player of a game and the idea is to evaluate the marginal contribution of every
feature to the classification accuracy by using Shapley value and then eliminate
those features whose marginal contribution is less than a certain threshold. Since
the calculation of the Shapley value involves summing over all possible permu-
tations of the features, it becomes impractical to determine the Shapley value if
the feature set size is large. It was therefore proposed to use multi perturbation
approach of approximating the Shapley value (proposed by Keinan et al [11]).
The main drawback of this approach is that it is computationally expensive as
different classifiers need to be trained using different feature subsets.

3 Coalitional Games Preliminaries

We start with definitions of a few basic concepts in the coalitional game the-
ory which would serve as building blocks for the rest of the paper. These con-
cepts are fairly standard in the game theory literature and can be found in [8].
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Definition 1 (Coalitional Games). An n-person coalitional game (under
pure hedonic setting) is a pair (N, u(·)), where N = {x1, x2, . . . , xn} is the set of
players and u(·) = (u1(·), u2(·), . . . , un(·)) is the profile of players’ utility func-
tions. Utility function ui(·) is defined over the set of coalitions {C ⊂ N |i ∈ C}
and ui(C) signifies the utility of the player xi if he decides to join the coalition C.

The pure hedonic setting characterizes a special class of coalitional games where
the utility of a player due to joining a coalition depends only on the composition
of the coalition. The term pure hedonic setting was coined by [6]. The examples
of hedonic setting include the formation of social clubs and political parties. In
the rest of this paper, we will be working with coalitional games under the pure
hedonic setting, which we refer to as hedonic games.

The key question addressed by the coalitional game theory is that for a given
coalitional game, what coalitional structure would emerge if the players play the
game. A coalition structure C = {C1, C2, . . . , Ck} is a partitioning of the players
into k disjoint sets C1, . . . , Ck. Many stability concepts have been proposed in
the coalitional game theory [2]. In this paper we focus only on Nash Stability.

Definition 2 (NashStablePartition (NSP)). Given a hedonic game (N, u(·)),
a partition C = {C1, C2, . . . , Ck} is Nash stable if for every player i, we have
ui(CC

(i)) ≥ ui(Cj ∪ {i}) ∀Cj ∈ C ∪ {∅}, where C
C
(i) denotes the set Cj ∈ C

such that i ∈ Cj. In simple words, a partition C is an NSP if no player can ben-
efit from switching his current coalition CC (i) given that all the other players are
sticking to the coalitions suggested by the partition C . The NSP where C = {N}
is trivial NSP and any other NSP is called a non-trivial NSP. A non-trivial NSP
C = {C1, C2, . . . , Ck} is called a k-size NSP (or k-NSP for short).

The obvious question that arises next is that whether an NSP always exists
and if not then under what conditions it exists. In general, it is possible that
a given hedonic game may not have any NSP. However, for some classes of
hedonic games, existence of an NSP is guaranteed (e.g., the games with additively
separable (AS) and symmetric preferences (defined next)).

Definition 3 (AS and Symmetric Preferences). A player i’s preferences
are additively separable if there exists a function vi : N → R such that ∀ C ⊆
N for which i ∈ C, we have ui(C) =

∑
j∈C vi(j). Without loss of generality, we

can set vi(i) = 0 which would imply that ui(C) = ui(C ∪{i}) ∀C ⊆ N . Thus, we
can say that any additively separable preferences can be equivalently represented
by an n × n matrix v = [vi(j)]. Further, we say that the AS preferences satisfy
symmetry iff the matrix v is symmetric, that is vi(j) = vj(i) = vij ∀i, j.

It turns out that the problem of deciding whether an NSP exists in a pure hedonic
game with the AS preferences is NP-complete [1], [16]. However, Bogomolnaia
and Jackson [2] have shown that an NSP exists in every hedonic game having
the AS and symmetric preferences. It is worth mentioning that Bogomolnaia
and Jackson proved the existence of an NSP. But their result does not specify
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anything regarding the structure of the NSP (e.g., whether the NSP would be
trivial or non-trivial, whether there is a unique NSP or many, what is the size of
such NSP(s), etc). However, Olsen [16] has shown that the problem of deciding
whether a non-trivial NSP exists for the AS hedonic games with non-negative
and symmetric preferences is NP-complete. In the rest of the paper, we will
be working under the hedonic setting with the AS and symmetric preference
assumptions and hence we do not have to worry about the existence of an NSP
(although it could be a trivial NSP).

In what follows, we extend the notion of an NSP to an approximate NSP which
we prefer to call as ε-Regret NSP. The motivation behind this notion comes from
the facts that (1) a hedonic game with the AS and symmetric preferences may
not have a non-trivial NSP (i.e., a k-NSP with k > 1) but for any value of
1 ≤ k ≤ n, there always exists an ε ≥ 0 such that the game has an ε-Regret
k-NSP, and moreover, (2) checking for the existence of a non-trivial NSP is
NP-complete (under non-negative preferences) [16].

Definition 4 (ε-Regret k-NSP). A given k-size partition of the players in a
hedonic game is said to be ε-regret k-NSP if no player can increase his utility
by more than ε by switching his current coalition given that no other player is
switching his current coalition.

3.1 NSP Computation via Integer Linear Program (ILP)

Theorem 1. Consider an n-person hedonic game having the AS and symmetric
preferences given by a matrix v = [vij ]. Let C ∗ be a partition of the set N of
players. If C ∗ is a solution of the following ILP then C ∗ is an NSP of this game.

maximize
∑

C⊂N
α(C)v(C)

subject to
∑

C⊂N |i∈C
α(C) = 1 ∀ i ∈ N ; α(C) ∈ {0, 1} ∀C ⊂ N (1)

where v(C) =
∑

i,j|i,j∈C vij .

In the above ILP, α(C) is an indicator variable that decides whether the coalition
C is a part of the partition or not. The constraints basically ensure a partition
of the players. The objective function is nothing but the sum of values of all the
coalitions in a partition, which we call as partition’s value. Thus, we can say that
any value maximizing partition is always an NSP. Note that the above theorem
provides a sufficiency condition for an NSP and it can be directly obtained
from the existence proof of [2]. However, it is not necessary that if a non-trivial
partition C of N is an NSP then that would also be a solution of the above
ILP. For example, consider a 4× 4 symmetric matrix v having vii = 0 ∀i; v12 =
10; v13 = v14 = 1; v23 = v24 = 1; v34 = 5. It is easy to see that for this matrix
we have C = {{1, 2}, {3, 4}} as an NSP but this is not the optimal solution of
the ILP. The optimal solution of the ILP is a trivial NSP. This observation can
be generalized by saying that if the matrix v is nonnegative then the above ILP
will give only the trivial partition as the solution. Note that solving an ILP is in
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general hard and quite impractical (especially for a large number of variables).
Hence, one can work with an LP relaxation (0 ≤ α(C) ≤ 1) of the above ILP
and get an approximate solution. In fact, in our feature clustering approach
(proposed in the next section), we use an LP relaxation of this ILP.

4 Feature Clustering via Nash Stable Partition

In this section, we show that the feature clustering problem can be effectively
posed as a Nash stable partitioning problem. For this, let us consider the binary
classification problem {xl, yl}m

l=1 where we have m training examples and the
input vector xl is specified in the form of n real valued features {f1, f2, . . . , fn}
and yl ∈ {−1, +1}. Let ρij be the estimate of the Pearson correlation coefficient
between the feature fi and the feature fj. Similarly, ρiy is the Pearson correlation
coefficient between the feature fi and the class label y. Now let us set up an
analogy between a feature cluster and an NSP as follows. View each feature
as a player in the game and define a payoff function vi(j) = |ρij | ∀i, j ∈ N .
Define vi(i) = 0 ∀ i. It is easy to see that vi(j) = vj(i) = vij = |ρij |. Assume
that each feature fi has a preference relation 
i over the feature subsets such
that ∀C1, C2 � fi, we have C1 
i C2 ⇔

∑
j∈C1

vi(j) ≥
∑

j∈C2
vi(j). If the

features are allowed to form the coalitions then every feature would tend to
join a feature group which maximizes its payoff function. It is easy to see that
for the chosen function vij = |ρij |, substitutable features would tend to group
together. The above situation can be viewed as a coalitional game with the AS
and symmetric preferences for which an NSP is a reasonable solution concept
to predict the final coalitional structure. Therefore, if we use an NSP of the
above game as clusters of the features then it would have the property that
the features are stable in their own clusters and don’t want to move across
the clusters (which is a desired property of any clustering scheme). Thus, we
can say that any NSP of the above game would be a reasonable clustering of the
features where each cluster would contain substitutable features and the features
across clusters would be complementary to each other. A Nash stable partition
of the above game can be obtained by solving ILP given in (1). Recall, if vij is
nonnegative for all i and j then ILP does not have a non-trivial solution and
moreover computing a non-trivial NSP is NP-complete due to the result of Olsen
[16]. In order to tackle this situation, we can modify the payoff functions slightly
as follows: vij = |ρij | − β where 0 < β < 1. β can be viewed as a parameter
which decides a threshold (in an implicit manner) such that any two features
having vij values higher (lower) than the threshold would qualify as substitutable
(complementary) features. With this interpretation, it is easy to see that as we
increase β, the threshold increases and hence we get more and more fine grained
clusters of substitutable features.

It is interesting to note that the function vij = |ρij | − β is not the only
payoff function but there exist many other choices and depending upon the
function we decide to choose, we may either get substitutable features grouped
together or complementary features grouped together. For example, if we use
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vij = |ρiy |+ |ρjy |−|ρij |−β where 0 < β < 2 then complementary features would
tend to group together and each cluster will contain relevant and complementary
features. Note that the maximum possible value of the function |ρiy|+|ρjy|−|ρij|
is 2 and having β > 2 would make all vij , i = j negative. Because vii = 0 ∀i, this
would result in a solution where each single feature would form its own cluster.
This is the reason why we have restricted the value of β upto 2. One can also
work with the function vij = |ρiy|+ |ρjy |+ |ρij | − β where 0 < β < 3. This will
again result in substitutable features getting grouped together. In each one of
these functions, one can replace |ρij | with mij and |ρiy | with miy where mij is
the estimate of the mutual information between the features fi and fj . Below,
we suggest a few functions along with their clustering nature.

Substitutable Features: (|ρij | − β), (|ρiy|+ |ρjy|+ |ρij | − β), (mij − β), and
(miy + mjy + mij − β).

Complementary Features: (|ρiy|+|ρjy|−|ρij|−β) and (miy+mjy−mij−β).

5 Feature Selection Approaches

Here we discuss a few approaches for selecting a given number of features. In
the first approach, we choose a payoff function that puts substitutable features
in one cluster. Next, we tune the parameter β in such a way that we obtain m
feature clusters as a solution of ILP (or relaxed ILP). Now we pick the most
relevant feature from each cluster. The most relevant feature of a cluster can be
chosen by several schemes such as maximum |ρiy| or maximum miy. Note that
in this approach, there is a risk of getting an irrelevant feature selected if all
the features in that group have very low value of |ρiy|. Therefore, we propose an
alternative approach next.

In the second approach also, we choose a payoff function that puts the substi-
tutable features in one cluster. Next, we choose some value of β and obtain the
feature clusters as the solution of ILP (or relaxed ILP). In this approach, we have
no control over the number of clusters as β is not tuned. We compute a ranking
score r(C) for each cluster C in the partition and then pick the top cluster. From
this top cluster, we pick the most relevant feature (using the criterion discussed
in the previous approach) and then delete that feature from this cluster. Now we
recompute the ranking score for this cluster and perform the feature selection
step as before. We repeat this whole process until we obtain the desired num-
ber of features. A few suggested ranking functions are r(C) = (

∑
i∈C |ρiy|)/|C|;

r(C) = (
∑

i∈C miy)/|C|. One can develop similar approaches by using a payoff
function for grouping complementary features together.

6 Handling of Large Feature Set Size

In section 4, we suggested that in most of the cases, the LP relaxation of ILP
gives an approximate clustering based on NSP. However, it is easy to see that
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even the relaxed LP would have 2n variables and hence running time of any LP
solver is large even for as small a number of features as n = 20. In such a scenario,
ILP or relaxed ILP based approaches are not feasible for feature clustering. To
tackle such situations, we propose a hierarchical feature clustering approach.
This approach is based on an interesting result on the equivalence between a k-
NSP of a coalitional game and minimum k-cut of an appropriately constructed
graph (as we prove below).

6.1 Equivalence between a k-NSP and Minimum k-Cut

Consider an n-person hedonic game with the AS, symmetric, and non-negative
preferences given by an n × n symmetric and non-negative matrix v ≥ 0. This
game can be represented by an undirected graph G = (N, E) where N is the
set of nodes which is the same as the set of players. We put an undirected edge
between node i and j iff vij = vji > 0 and assign a weight vij to that edge.

Definition 5 (Minimum k-Cut). A k-cut of a graph G is defined as any
partitioning of the nodes into k (1 < k ≤ n) nonempty disjoint subsets, say
{C1, C2, . . . , Ck}. The capacity of such a k-cut is defined as the sum of the
weights of all those edges whose end points are in different partitions and is
denoted by cap(C1, C2, . . . , Ck). A minimum k-cut of this graph is a k-cut whose
capacity is minimum across all the possible k-cuts of the graph. For any given
feasible value of k, there could be multiple minimum k-cuts and the capacities of
all those cuts would be the same and we denote that by cap∗(k).

Definition 6 (Support Size). The support size s of a k-cut {C1, C2, . . . , Ck}
is defined as follows: s = mini=1,...,k |Ci|.
Theorem 2 (k-NSP and Minimum k-Cut ). Let G be a graph representation
of a hedonic game with the AS and symmetric preferences given by a matrix
v ≥ 0. Then, minimum k-cut of G having s > 1 ⇒ k-NSP .

Proof: The proof is by contradiction. If possible, let {C1, C2, . . . , Ck} be a min-
imum k-cut with support s > 1 and it is not a k-NSP. This would mean that
there exists some player i ∈ N who would gain by switching to some other coali-
tion given that no other player is switching. Let us assume that i ∈ Ct for some
t ∈ {1, 2, . . . , k}. Let ui(Cz) > ui(Ct) for some z = t and hence player i would
prefer to switch to the coalition Cz from his current coalition Ct.2 Because of the
AS and symmetric preferences, we have ui(C) =

∑
j∈C vij for any coalition C,

and hence the cut capacity of this newly formed k-cut after the switching is given
by cap(new cut) = cap(C1, . . . , Ck) + ui(Ct)− ui(Cz). Because ui(Cz) > ui(Ct),
we have cap(new cut) < cap(C1, C2, . . . , Ck) which is a contradiction to the as-
sumption that {C1, C2, . . . , Ck} is a minimum k-cut.3 (Q.E.D.)

2 Note that i cannot gain by isolating itself (i.e. Cz = ∅) because in that case ui(Cz) =
vii = 0 and 0 > ui(Ct) which is a contradiction because v is non-negative.

3 A similar result was proved by [7] in the context of web communities for k = 2.
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In the above proof, s > 1 is required to ensure that even after node i switches,
the resulting partition is a k-way cut. Theorem 2 gives a sufficiency condition for
the existence of a k-NSP and hence becomes useful in the case when computing
a minimum k-cut of a graph is an easy problem. However, it is a well known fact
that computing a minimum k-cut of a graph is NP-hard for k > 2 [20]. Therefore,
this theorem would not help much for computing a k-NSP of a given game if
k > 2. To handle that case, it is useful to define an approximate minimum cut
in the form of ε-Regret k-cut of a graph (defined below). In Theorem 3, we show
that there exists a connection between an ε-Regret k-cut of a graph and an ε-
Regret k-NSP. The proof of this theorem follows the similar line of arguments
as in the proof of Theorem 2. Hence, we skip the proof.

Definition 7 (ε-Regret k-Cut). Given a graph G, a k-cut {C1, C2, . . . , Ck}
is said to be an ε-Regret k-cut iff cap∗(k) ≤ cap(C1, C2, . . . , Ck) ≤ cap∗(k) + ε,
where cap∗(k) is the capacity of the minimum k-cut.

Theorem 3. ε-Regret k-cut having s > 1 ⇒ ε-Regret k-NSP

6.2 Hierarchical Feature Clustering

From Theorem 3, it is apparent that any scheme that efficiently computes an ε-
Regret k-cut of a graph would be an efficient scheme for computing the ε-Regret
k-NSP also. Therefore, we propose a simple hierarchical scheme (without any
theoretical bounds on the value of ε) for computing an ε-Regret k-cut and hence
an ε-Regret k-NSP. Note that when v has only positive entries (and under some
cases with negative entries also), it becomes a polynomial time solvable problem
to compute a minimum 2-cut [19]. Hence, our approach works by computing
minimum 2-cuts of a graph in a hierarchical manner.

In this approach, we begin with the whole feature set and just compute a min-
imum 2-cut of the underlying graph. Then we recursively compute the minimum
2-cut of each partition obtained in the previous step. This gives us a binary tree
structure (not necessarily balanced) where each node is the set of features and
two children of a node correspond to a minimum 2-cut of that node. We stop
splitting a node further if the number of features in that node is less than some
threshold value. All such nodes would form the leaf nodes. Finally, we take all
the leaf nodes of such a tree as feature clusters and then apply any one of the
feature selection approaches discussed earlier.

Note that at every step of the above scheme, one can use an exact algorithm
for computing a minimum 2-cut (for example, O(mn + n2log(n)) algorithm by
Stoer and Wagner [19] where m is the number of edges). However, it is possible
to have m = O(n2) in which case finding an exact solution becomes expensive
(O(n3)). In addition to this, if a graph has multiple minimum 2-cuts then we
would be interested in focusing on those cuts for which the support size is more
than 1. Therefore, in practice one may prefer a fast randomized algorithm (al-
though approximate) as opposed to an exact algorithm because we can run it
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several times and generate various minimum 2-cut solutions and then pick the
most balanced solution. Some of the methods that are fast and can generate
multiple solutions include Karger and Stein’s [10] randomized mincut algorithm
(O(n2log3n) for a cut) and spectral clustering (SC) algorithms (O(n3) for a cut).
We conducted experiments with a SC algorithm for ease of implementation and
to get a feel of the performance achievable using an approximate method. Al-
though the SC algorithm has same O(n3) complexity as the Stoer and Wagner’s
algorithm but we found that the SC algorithm was significantly faster in our
experiments. The SC algorithm which we use here is as follows [13][5]: (1) Con-
struct a diagonal matrix D of the size same as the matrix v in such a way that
each diagonal entry of D is the sum of the entries of the corresponding row of
the matrix v; (2) Compute the graph Laplacian matrix L = D− v; (3) Find the
two eigenvectors corresponding to the two lowest eigenvalues of the matrix L;
(4) Apply 2-means clustering on these two eigenvectors. These clusters would
correspond to an approximate minimum 2-cut. It is important to note that in
this approximate algorithm, the 2-means clustering algorithm involves a random
initialization of the clusters. Depending on how the initialization is done, we may
get different solutions. Among the different solutions, the final solution can be
picked by using an appropriate cluster quality measure.

7 Experiments

We illustrate our approach by conducting several experiments on the feature
selection problems for one synthetic dataset and two real world datasets - Splice
and Arrhythmia (details given later), which are binary classification problems.

Synthetic Datasets (No. of Features = 20, Training Set Size = 1000,
Test Set Size = 300): We generated synthetic datasets corresponding to 20-
dimensional zero mean correlated Gaussian random variables of 15 different co-
variance matrices. Each of these 15 datasets consisted 1000 training samples,
denoted by Xtr, and 300 testing samples, denoted by Xts. In our experiment,
we generated a coefficient vector w of size 20 for a linear classifier and used it to
obtain the class labels for the training data as follows: Ytr = sign(w′ ·Xtr). In
the same way, we generated the class labels for the test data. The vector w was
generated as 20 i.i.d. uniform random variables over the interval [−1, 1]. Next
we computed the correlation matrix ρ = [ρij ] for the training data. We set the
payoff function vij = |ρij | − β and then varied β from 0 to 1 so that we get
different size NSPs by solving the corresponding relaxed LPs for ILP (1). For
each of these NSPs, we used |ρiy | to pick the relevant features and trained a
linear least squares classifier on the training data using these selected features.
We computed the accuracy of this classifier on the test data (with the selected
features). We performed this experiment 1000 times by changing the vector w
and computed the average accuracy over these realizations. The same experiment
was repeated for 15 different covariance matrices. The results of our experiments
are summarized in Figure 1 (top panel); we have plotted the variation of aver-
age accuracy for 15 different covariance matrices in the form of blue colored
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Fig. 1. Results for Synthetic and Arrhythmia Datasets

box plots (for our method). We have also plotted a red colored box plot along
with each blue box plot. The red box plot corresponds to the variation of the
average accuracy when the features were picked from the set of features ranked
in decreasing order according to |ρiy|. We conducted statistical significance test
using Wilcoxon sign rank test at the significance level of 0.05 to compare the
two schemes of feature selection and found that for the feature set sizes of 3 to
6, the game theoretic based feature clustering approach (followed by feature se-
lection) yielded better performance than selecting the features using |ρiy | values.

Splice Datasets (No. of Features = 60, Training Set Size = 1000, Test
Set Size = 2175): The splice datasets are taken from http://theoval.cmp.
uea.ac.uk/~gcc/matlab/default.html. In this experiment our goal was to test
the relevant feature identification capability of our method. Because the number
of features is large, we used the hierarchical clustering approach (described in
Section 6) for obtaining the clusters of the features and then we picked top 7
features using the second approach for feature selection (proposed in Section 5)
by making use of the ranking function r(S) = (

∑
i∈S |ρiy |)/|S|. We repeated

this experiment 1000 times with random initialization for 2-means clustering.
We found that most of the times, 6 out of the selected 7 features belong to
the following set: {f28, f29, f30, f31, f32, f33, f34} which is almost same as the set
of relevant features identified by Meilă and Jordan [14]. This demonstrates the
effectiveness of the proposed method on real world problems.

http://theoval.cmp.uea.ac.uk/~gcc/ matlab/default.html
http://theoval.cmp.uea.ac.uk/~gcc/ matlab/default.html
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Arrhythmia Dataset (No. of Features = 246, Training Set Size =280,
Test Set Size = 140): This dataset can be obtained from the UCI repository.
We used a version of this dataset that was modified by Perkins et al [18] and was
also used by Cohen et al [3]. For this dataset, we again performed the hierarchical
feature clustering followed by the feature selection (varying the size from 10 to
30) in the same way as we did for the Splice dataset case. We repeated the whole
process for 100 different initial conditions as was done in the Splice datasets case.
For each case, we trained a simple linear least squares classifier on the selected
features and then recomputed the accuracy of the test set. We have plotted the
boxplot for the variation in accuracy in Figure 1 (bottom panel). Along with
each box plot, we have indicated the test set accuracy (in the form of red dash)
when the same number of features are selected from the set of features ranked
in decreasing order according to |ρiy| and the linear least squares classifier is
trained on those features. We see that the median of the test set accuracy with
the feature clustering is higher than 75% for each case (which was the reported
performance of Perkins et al [18]). Specifically, for 21 features, we see that the
median of the performance is 79% whereas the highest performance reaches
beyond 85% (which is higher than 84.2% reported by Cohen et al [3]).

To conclude, although the proposed approach is complete in its own, there
are several avenues for further investigations. For example, all the experiments
were conducted using the payoff functions that put substitutable features in
one cluster. One can experiment with other payoff functions which would drive
complementary features in one cluster. In the case of multiple NSPs, we assumed
that it is fine to choose any one of them. However, it is worth investigating the
quality of other NSPs.
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Abstract. Traditionally, the best number of features is determined by the so-
called “rule of thumb”, or by using a separate validation dataset. We can neither
find any explanation why these lead to the best number nor do we have any for-
mal feature selection model to obtain this number. In this paper, we conduct an
in-depth empirical analysis and argue that simply selecting the features with the
highest scores may not be the best strategy. A highest scores approach will turn
many documents into zero length, so that they cannot contribute to the training
process. Accordingly, we formulate the feature selection process as a dual objec-
tive optimization problem, and identify the best number of features for each doc-
ument automatically. Extensive experiments are conducted to verify our claims.
The encouraging results indicate our proposed framework is effective.

Keywords: Feature Selection, Feature Ranking, Text Classification, Selection
Strategy.

1 Introduction

Feature selection is used to control the dimensionality of the feature space so as to
eliminate noise from the feature set and reduce the computational complexity. In the
text domain, the number of features is on the order of ten thousand. Feature selection
is a must in most cases. We use the popular vector space model for text representation.
Every text document is regarded as a vector, and every vector consists of a set of words.
Every word is regarded as a feature. As a result, we have a multi-dimensional space.

Broadly speaking, feature selection can be divided into two steps: (1) rank all fea-
tures in the corpus by using some scoring function, and (2) select some of the top-ranked
features, such that any feature in the corpus which does not belong to those selected fea-
tures would be disregarded. The selected features are usually either the top K or top K
percent of the ranked features. While we agree that there are already numerous effective
scoring functions for feature selection ([1], [2], [3], [4], [6], [7], [8], [9], [13], [14], [15],
[17], [18], [19]), we argue that we do not have any systematic approach for determining
K. Identifying an optimal K is always treated as an empirical question by training and
evaluating the classifier for a range of different K using a separate validation dataset or
simply by the so-called “rule of thumb”. Usually we have no understanding about the
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properties of the selected features and do not know why they perform the best in that
particular K.

In addition, we have found that simply selecting the top K features may not always
lead to the best classification performance. In fact, it may turn many documents into
zero length, and they cannot contribute to the classifier training. This observation has
not been recorded elsewhere to the best of our knowledge. In this paper, we formulate
the feature selection process as a dual objective optimization problem: maximize the
information presented in the documents and minimize the feature dimensionality. It is
worthwhile to note that in our formulation, a feature which is being regarded as useful
and retained in one document may not necessarily be retained in another document as
well. Details will be discussed in later sections.

In this paper we will provide an in-depth analysis for the existing feature selection
strategy, point out its fallacies and limitations, and suggest a novel model for selecting
the features automatically. All discussion of feature selection in this paper will be with
regards to the text domain. This work will also provide a documented framework for
conducting feature selection in text classification such that the classifier performances
would be optimized. By doing so, we can have a fairer comparison among different
classification algorithms. For instance, Naive Bayes is long been regarded as inferior to
Support Vectors Machine. Yet, how inferior is it? By fine tuning the text preprocessing,
we will see that their differences are lower than expected.

The rest of this paper is organized as follows. Section 2 presents the issues related to
feature selection; Section 4 discusses existing works; Section 3 reports the experimental
results; Section 5 concludes this paper.

2 Feature Selection

For research that focuses on feature selection, the researchers merely aim at studying
how effective a scoring function (e.g. Information Gain, χ2, mutual information, etc.)
is. In this paper, we move the research in this line a step forward by not only relating
the classifier performances on the number of features that have to be selected, but also
attempt to answer the question of why such a number would be optimal.

2.1 An Overview

A typical feature selection framework usually contains the following three steps:

1. Feature Scoring. A text corpus usually contains many text categories. Let C be a
set of all categories in the corpus, and ck ∈ C be a category in C. In each ck, we
use a pre-defined scoring function (e.g. Information Gain) to assign scores to the
features based on their distributions in ck. Since we have |C| number of categories,
as a result, each feature has |C| number of different scores. Some of the most widely
used and well-documented scoring functions are: Information Gain [1,7,8,19,18],
χ2 [1,4,15,17], NGL Coefficient [13], GSS Coefficient [4], odd ratio [1,14], DIA
association factor [3], and inverse document frequency [16]. These functions inherit
the idea that the best features for ck are those which are distributed most differently
between ck and C− ck. Yet, interpreting this idea varies across different scoring
functions, and this results in different kinds of computation.
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2. Feature Ranking. In the previous step, we have assigned |C| number of different
scores to each feature. Let s jk be the score of feature f j in ck. To determine which
of the features are the dominant ones, for each feature, f j, we have to combine its
scores from all ck to obtain a single value to denote its overall importance. Let ν j be
such a combined value. The most widely used combination functions are [16]: (1)
linear summation ν j = ∑k s jk); (2) Weighted sum (ν j = ∑k P(ck)s jk); (3) Maximum
(ν j = maxk s jk).

3. Feature Selection. According to the overall scores of the features in the previous
step, we select the features with the top K highest scores and regard them as useful
indicators for classification. Any feature that does not belong to these top K fea-
tures is removed from the corpus. To our knowledge, all existing research treats the
issue of identifying an optimal K as an empirical question. It does this by training
and evaluating the classifier for a range of different K using a separate validation
dataset.

2.2 Analysis

Figure 1 (a) shows the accuracy of a multi-nominal Naive Bayes classifier [11] versus
the number of features selected.1 The x-axis denotes the number of features selected
and the y-axis denotes the accuracy of the classifier. The accuracy is measured using
the well-known F1-measure [16]. Each line in the figure denotes one of the following
commonly used scoring functions: (1) Information Gain (IG); (2) χ2; (3) Odds ratio
(OR); (4) GSS Coefficient (GSS); and (5) Inverse document frequency (IDF). Naive
Bayes is chosen because it does not require feature weighting, and therefore its perfor-
mance depends solely on the number of features selected.

In Figure 1 (a), we can see that different scoring functions have different optimal
values. If we want to understand “why”, reviewing their mathematical formulas may not
help since they all adopt the same idea that the best features for ck are those distributed
most differently between ck and c̄k. Hence, we need further analysis in order to gain a
better understanding.

Logically, when K is small (few features have been selected), the number of features
remaining in a document will be even fewer. Eventually, a document may contain no
features (i.e. its size is zero) if none of its features are found in the top K features.
The number of training examples will shrink if the number of zero-size documents in-
creases. Intuitively, the number of documents with zero size will affect the classification
accuracy negatively because these documents cannot contribute to the classifier training
process (since there are no features in these documents). Figure 1 (b) plots the number
of features selected against the percentages of documents with non-zero size. In the
figure, the x-axis denotes the number of features selected and the y-axis denotes the
percentage of non-zero-size documents (i.e. contains at least one feature).

In Figure 1 (b), we can see that only IDF will assign higher scores to features that
appear in only a few documents across the corpus. We understand that IDF is not a good
feature selection function for text classification [16] [18] [19], but for the purposes of
this illustration we try to include it. We will explain why later in the paper. In this

1 Details of the settings will be given in Section 3.
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Fig. 1. Analysis of the feature distribution. (a) No. of features selected vs. Accuracy; (b) No. of
features selected vs. Percentage of documents with non-zero size; (c) Percentage of documents
with non-zero size vs. Accuracy.

case, it will yield a very sparse document representation. According to Figure 1 (a) the
effectiveness of the scoring functions is roughly: GSS > OR > IG > χ2 > IDF, where
the number of non-zero-size documents (according to Figure 1 (b)) is also of this order.
Thus, we believe that there may be a relationship between the number of non-zero-size
documents remaining after feature selection and the performance of the classifier.

In order to have a better understanding of the relationship between the number of
zero-size documents and classifier performance, we plot a graph with the percentage of
non-zero-size documents against F1-measure in Figure 1 (c). In this figure, we found
that the effectiveness among different scoring functions seems to be “improved” (and
much similar) with respect to Figure 1 (a).

Until now, it should be clear that different scoring functions will affect the distribu-
tion of zero-size documents greatly. Yet, it does not mean including these documents
in training could improve the classification accuracy. So, we conduct another analysis
as follows. For each document, we try to maintain it to have at least M features. If the
number of features remaining in the document is less than M after feature selection,
then we will retain those features that are rank highest in that document until the size
of the document is M. Figure 2 shows two plots of this analysis by using GSS (overall
the best scoring function) and IDF (overall the worst scoring function). In the figures,
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Fig. 2. The relationship among three elements: (1) No. of features selected (x-axis); (2) Min. no.
of features has to be reminded in a document (y-axis); (3) Accuracy (z-axis)

x-axes are the number of features selected (in the order of 1000), y-axes are the value of
M, and z-axes is the F1-measure. For the purpose of visualization, we contrain M < 10.
Setting a different M does not affect the conclusions of this paper.

Regardless of the scoring functions, both of them in Figure 2 show a trend that when
M increases to some value, the accuracy of the classifier will be maximum given that
the number of features selected is the same. This is especially obvious for the scoring
function IDF which increases performance from 0.08 to 0.389 when M = 10 and the
number of features selected is 1000. This number is chosen as an example, setting
any other value will arrive at the same conclusion. This is one of the major reasons
why we include IDF in this analysis, because we can see that even a feature selection
algorithm that is sub-optimal for our purposes could improve dramatically if we have
an appropriate scheme for conducting feature selection. The best case for GSS here is
0.838 (M = 8 and 3000 features are selected), but it only obtains 0.810 if M = 0. These
two figures suggest that those documents that would become zero-size after feature
selection could in fact positively contribute to the classifier training if we have some
way to make them become “not zero-size”.

To take a step forward, one may think that the number of features remaining in
the document is highly related to the classifier effectiveness. In order to justify this
statement, we conduct a final analysis. Identify the F1-measures of the classifier such
that the maximum number of features in a document could not exceed M′. Figure 3
shows two plots for this analysis. Its definitions are similar to Figure 2 except that the
z-axis becomes M′ (the maximum number of features allowed in a document). Similar
to Figure 2, their performances would be a maximum for some values of M′ with a
given number of features selected.

According to the analysis from Figure 1 to Figure 3, we claim that it is not the number
of features selected in the corpus that would affect the performances of the classifiers,
but it is the number of features remaining in the documents.

2.3 Modeling

We should not aim at identifying a single K that optimizes the performance over all
categories. It will only lead to local optimization. We suggest that we should study
at the document level – minimize the number of zero-size documents by preserving
maximum information in a document. Yet, this objective alone is not enough, as one
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Fig. 3. The relationship among three elements: (1) No. of features selected (x-axis); (2) Max. no.
of features has to be reminded in a document (y-axis); (3) Accuracy (z-axis)

of the objectives of feature selection is to reduce the feature dimensionality. Thus, we
have our second objective – minimize the number of features in the corpus. Eventually,
a dual objectives optimization problem is formulated:

max : ∑
∀i

∑
∀ j

s jkxi j, (1)

min : ∑
∀ j

a jy j, (2)

subject to: xi j = {0,1} and y j = {0,1}, (3)

y j = 1, if ∃xi j = 1 for any i, (4)

y j = 0 otherwise (5)

i ∈ [1,N] (6)

j ∈ [1,M] (7)

a j =
N

∑i xi j
(8)

where: N is the number of documents and M is the number of features (9)

where xi j = 1 if the feature f j should be retained in document di, and xi j = 0 otherwise
or f j does not appear in di; s jk is the score of f j in category ck computed by some func-
tion. The first objective (Eq. (1)) tries to maximize the information contained in every
single document by retaining as many features as possible, while the second objective
(Eq (2)) tries to minimize the number of features selected. Specifically, if feature f j is
selected in a document, y j will be 1. Alternatively, if f j is not selected in a document,
y j will be 0. a j is a parameter trying to average the number of documents selected in the
corresponding feature f j . Our aim is to find the best combination of 0 and 1 for x, i.e.
this is a 0-1 integer programming problem. Since multi-objective problems are difficult
to solve, we combine Eq. (1) and Eq. (2):

min : λ∑
∀ j

y j−∑
∀i

∑
∀ j

si jxi j, (10)
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where λ is the parameter to balance the two objectives. It has to be set carefully so as to
balance the two components, as the first and second component will be heavily affected
by the number of features and the number of documents, respectively. In this paper, we
let λ be the ratio between these two factors by using a validation dataset. We plan to
have more detail on finding the optimal λ in future works. We will show how effective
this is in formulation of our experimental study.

3 Experiment

Extensive experiments are conducted using two benchmarks: Reuters-215782 and
Newsgroup-203. For Reuters-21578 we use ModApte spit and remove the categories
that only appear in the training set or testing set. For Newsgroup-20 there are 20 differ-
ent categories. For each category, we randomly select 80% of the postings as training
and the remaining 20% as testing. We repeat the experiments 30 times and report the
averaged result.

For each document, we remove any punctuation, numbers, Web page addresses, and
email addresses. All features are stemmed using the Lovins stemmer [10]. Following
the existing works of [16], features that appear in less than 1% of the documents are
regarded as noise. Features that appear in more than 95% of the documents are regarded
as stopwords. For feature weighting, we implemented the well-known tf·idf schema
whenever necessary.

3.1 Algorithms for Comparison

For evaluating the proposed feature selection framework, we implemented all of the
seven most widely used feature scoring functions as shown in Table 1, and compare
our framework with the existing feature selection approach. The existing approach is to
select only the top K by using a training and validation dataset such that this K would
optimize the performance of the classifier on the validation dataset.

For the classification algorithm, we implemented the Naive Bayes [11] algorithm.
Naive Bayes is chosen because it does not require feature weighting, so we can see
the impact of different feature selection frameworks easily. We use the multinomial
version of Naive Bayes and use Laplacian smoothing with m = 0.01 [11]. We have
tried different values of m, and m = 0.01 results in the best performance for almost all
situations. For performance evaluation we report only the micro-F1 value due to the
space limitation. Yet, the trend of all other measurements (precision, recall, break-even
point, etc.) have the same general pattern and can lead to the same conclusion.

3.2 Result and Discussion

Figure 4 shows the classification results of Naive Bayes with the seven different scoring
functions that are described in Section 4. Since NB does not require feature weighting
when generating its model, we do not need to compare its performance with different

2 www.daviddlewis.com/resources/testcollections/reuters21578/
3 http://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 1. Common scoring functions in feature selection

Weighting Schema Mathematical Form Citation

Information Gain (IG) ∑c ∈ {ci, c̄i}∑ f ∈ { f j , f̄ j} P( f ,c)log P( f ,c)
P( f )P(c) [1,7,8,19,18]

χ2 N · [P( f ,c)·P( f̄ ,c)·P( f ,c̄)·P( f̄ ,c̄)]2

P( f )·P( f̄)·P(c)·P(c̄) [1,4,15,17]

Odd ratio (OR) P( f |c)·(1−P( f |c̄))
(1−P( f |c))·P( f |c̄) [1,14]

NGL coefficient (NGL)
√

N ·P( f ,c)·P( f̄ ,c)·P( f ,c̄)·P( f̄ ,c̄)√
P( f )·P( f̄)·P(c)·P(c̄)

[13]

GSS coefficient (GSS) P( f ,c) ·P( f̄ ,c) ·P( f , c̄) ·P( f̄ , c̄) [4]

Inverse doc. freq. (IDF) log N
m( f ,c) [16]

Mutual information (MI) log P( f ,c)
P( f )·P(c) [19]
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Fig. 4. Classification result of NB

weighting schemes. In the figure, the black charts represent the results that are achieved
by our proposed feature selection framework, while the shaded charts represent the
results that are obtained by identifying one single K that maximizes the performance of
the classifier on the validation dataset. We call this the “top K approach”.

In the figures, regardless of which scoring function, all black charts (the proposed
feature selection framework) dominate the shaded charts. This result indicates our pro-
posed framework is highly effective. The improvement is especially visible for MI and
IDF, which are the worst two among all seven scoring functions. If the total number of
features selected is small, there will be many zero-size documents. On the other hand,
if the total number of features select is too high, then the noise in the corpus will be
high, which will eventually deteriorate the classifier performance as well. Our proposed
feature selection framework could properly remedy the above two situations by mini-
mizing the number of zero-size documents and minimizing the feature dimensionality.

Figure 5 shows the performance of Naive Bayes versus Support Vector Machines
(SVM). SVM has long been cited for its high effectiveness and reliability when in con-
ducting text classification. Note that SVM does not require feature selection for doc-
ument preprocessing as it is designed for handling very high dimensionality in a very
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noisy environment. Yet SVM does require feature weighting. In this experiment, we
use the traditional tf·idf scheme for feature weighting [18]. We use a linear kernel with
C = 1.0 which is a common setting for SVM. In Figure 5, we can see that although the
performance of SVM is still better than that of Naive Bayes, the difference is marginal.
From [16], among the existing work on Naive Bayes in the Reuters dataset, the best
performance is 0.795 whereas it is around 0.870 for SVM. However, from our study
we have found that Naive Bayes could achieve around 0.84 for the Reuters dataset if
we select the features properly. Similarly, for the Newsgroup dataset, we found that the
performance could obtain a much higher accuracy than the reported studies using our
framework.
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Fig. 6. Classification result of ROC

4 Related Work

Feature selection is a topic which has permeated fields from statistics, to image pro-
cessing. Largely, the goal of feature selection is to reduce dimensionality in data by
selecting only the most relevant criterion for classifying a body. While studying fea-
ture selection, different researchers take different approaches to which attributes of the
feature selection process are most important to the success of the algorihtm.

Some works focus on the scoring function as the way to identify the most important
features. Yang and Pedersen [19] performed an in-depth study of feature selection in
the text domain where they compared common scoring functions in feature selection.
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The results of their study show that Information Gain [1,7,8,19,18] and χ2 [1,4,15,17]
are the most effective scoring functions for text classification.

In a survey conducted by Yu and Liu [9], the feature selection algorithms are classi-
fied into several clear and defined categories based upon their search strategies, evalua-
tion criteria, and data mining tasks (the evaluation step for determining the validity of a
subset). The result of this survey does not necessarily favor one of their defined criteria,
however they propose a framework where the best feature selection algorithm is chosen
behind the scenes, completely transparent to the user.

A technical report on feature selection carried out by Arizona State University [19]
breaks feature selection algorithms down into four categories: if they are supervised,
whether they are of filter or embedded model, whether they have univariate or multi-
variate variable selection, and whether they do weight selection or set selection. The
results on the site largely suggest that no one category can determine the success of a
feature selection algorithm.

This technical report breaks the feature selection process into four parts: feature sub-
set generation, subset evaluation, stopping criteria, and results validation. The four steps
are ordered nicely in Figure 7. While all of the mentioned papers present different crite-
ria for what is most important to feature selection, this paper focuses on the ”evaluation”
step (as shown in Figure 7). As we have shown, having a robust evaluation framework
can be crucial to the success of a feature selection algorithm.

Fig. 7. Feature selection process as outlined by [19]. Figure used with permission.

5 Summary and Conclusion

In this paper, we study feature selection in the text preprocessing domain. We provide an
in-depth analysis for the existing selection framework, point out its fallacies and limita-
tions, and suggest a novel model for selecting the features automatically. We formulate
the feature selection process as a dual objective optimization problem, and identify the
best number of features for each document, rather than determining a fixed threshold
which optimizes the overall classification accuracy for different categories. We provide
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a documented framework for conducting text preprocessing in text classification in or-
der to optimize the classifier performances, regardless of which classification model
one intends to use. Extensive experiments are conducted to validate our claims. The
favorable experimental results indicate that our proposed work is highly feasible.
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Abstract. Feature weighting plays an important role in text clustering.
Traditional feature weighting is determined by the syntactic relationship
between feature and document (e.g. TF-IDF). In this paper, a seman-
tically enriched feature weighting approach is proposed by introducing
the semantic relationship between feature and document, which is imple-
mented by taking account of the local feature relatedness — the related-
ness between feature and its contextual features within each individual
document. Feature relatedness is measured by two methods, document
collection-based implicit relatedness measure and Wikipedia link-based
explicit relatedness measure. Experimental results on benchmark data
sets show that the new feature weighting approach surpasses traditional
syntactic feature weighting. Moreover, clustering quality can be fur-
ther improved by linearly combining the syntactic and semantic factors.
The new feature weighting approach is also compared with two existing
feature relatedness-based approaches which consider the global feature
relatedness (feature relatedness in the entire feature space) and the inter-
document feature relatedness (feature relatedness between different doc-
uments) respectively. In the experiments, the new feature weighting
approach outperforms these two related work in clustering quality and
costs much less computational complexity.

Keywords: Text Clustering, Feature Weighting, Feature Relatedness,
Semantics.

1 Introduction

Text clustering is one of the most common themes in data mining field. As
we know, text data is unstructured, which cannot be directly processed by the
clustering algorithms. Thus text representation plays a vital role in text mining.
Vector space model (VSM) borrowed from information retrieval is popularly used
here. In VSM, a document is represented as a feature vector which consists of the
words, phrases or other semantic units to identify the contents of the document.
Different features have different weights according to their importance for the
specific mining task. There are two open problems in VSM. One is how to select
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appropriate features. The other is how to weight these features. In this paper,
we focus on solving the second problem, feature weighting.

Feature weighting approaches can be divided into two groups according to
whether the approach makes use of the prior category label information, i.e.
supervised feature weighting and unsupervised feature weighting [1]. In this pa-
per, we aim to improve unsupervised feature weighting because our task is text
clustering, where there is no known membership information in the data set.

Traditional feature weighting approaches (e.g. TF-IDF) directly compute the
syntactic relationship between feature and document via some statistical meth-
ods. Generally, it consists of two factors: feature frequency factor representing the
content of a document and document frequency factor indicating the feature’s
discriminating power [2]. However, they consider neither the semantic relation-
ship between feature and document nor the relatedness between features.

To enrich text representation with semantic information, researchers have
begun to take advantage of feature relatedness for re-weighting feature [3,4] and
computing document similarity [5]. Jing et al. [3] and Wang et al. [4] embedded
the semantic information to document representation by multiplying document-
feature tf-idf matrix and feature relatedness matrix. Their new feature weight
contains all the relatedness between each pair of features in the whole document
collection. Huang et al. [5] designed a new document similarity measure by taking
account of the feature relatedness between two documents. However, both these
two approaches need to cost too much computational complexity.

In this paper, we propose a new semantically enriched feature weighting
method by taking account of the local feature relatedness — the relatedness
between features within each individual document. In other words, the weight of
each feature in document is calculated according to the relatedness between the
feature and its contextual content. Here, the features in the same document are
taken as the contextual content. In this case, we can say the local feature relat-
edness weight implies the semantic relationship between feature and document
because the whole features of each document can express the document’s topic.
By this method, feature highly semantically related to document’s topic can be
arranged with a higher weight. In addition, it takes much less computational
complexity than the above two feature relatedness-based approaches.

In order to measure the feature relatedness, we adopt two methods, document
collection-based implicit relatedness measure and Wikipedia link-based explicit
relatedness measure. The former mines feature relatedness on the basis of feature
distribution in document collection, while the later explicitly calculates semantic
relatedness between features according to Wikipedia hyperlink structure.

The rest of the paper is organized as follows: Section 2 describes document
representation and two feature relatedness measure methods. In Section 3, we
propose the local feature relatedness-based weighting approach and combine syn-
tactic and semantic factors in terms of document similarity. Section 4 compares
the new feature weighting method with two existing feature relatedness-based
work. Section 5 describes the experimental methodology and discusses the ex-
perimental results. Finally, we conclude the paper in Section 6.
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2 Preliminary

2.1 Document Representation

The original text documents cannot be directly processed by clustering algo-
rithms. Therefore, documents need to be converted into a more manageable
representation. Typically, a document is represented as a vector in feature space
— a sequence of features [6]. The most representation models use terms as the
features. Terms can be words or n-grams appearing in document.

With the development of the semantics-based text representation, concepts
from background knowledge are also used as features in some literature. For ex-
ample, terms appearing in document are first mapped to their most related
concepts indicated by the Wikipedia articles via the hyperlink structure in
Wikipedia, as mentioned in [7], and then document representation is built by
replacing the terms with those concepts. Concept VSM has been wide used in
existing semantics-based text mining [4,5,8,9,10].

In this paper, we propose the weighting approach by regarding both terms
and concepts as features separately.

2.2 Relatedness Measure

Our purpose is to improve feature weighting with the aid of the relatedness
between features. However, how to measure the feature relatedness is an open
problem. In this section, we introduce two relatedness measures which will be
used to improve feature weighting respectively later.

– Implicit Relatedness Measure: Feature relatedness is mined only from
document collection itself without any background knowledge, thus we called
it implicit relatedness measure. Firstly, each feature is represented as a doc-
ument vector. The weight of each component is the tf-idf value of the feature
in the document. Next, the relatedness between two features is defined as
two corresponding vectors’ cosine measure.

– Explicit Relatedness Measure: Semantic relatedness information is ex-
plicitly obtained from background knowledge (i.e. Wikipedia) rather than
document collection itself, we call it explicit relatedness measure.

If feature is represented as term, term need to be firstly mapped to the
most related Wikipedia article (concept) according to [7,11]. After getting
term’s relevant Wikipedia article, the problem that measuring the related-
ness between terms is equal to measuring the relatedness between Wikipedia
articles.

To calculate semantic relatedness between Wikipedia articles, We adopt
the Wikipedia link-based semantic relatedness measure proposed in [12].
Wikipedia link-based measure is simple because it ignores Wikipedia’s ex-
tensive textual content, but more accurate because it is more closely tied to
the manually defined semantics of the resource. It includes two aspects: one
is based on the links extending out of each article, the other is based on the
links made to them. The two measures are combined by addition operation.
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The measure based on outgoing links is defined by the angle (cosine mea-
sure) between the vectors of the links found within two articles. The weight
of each component in the vector depends on the probability of the corre-
sponding link. By the link probability, links are considered less significant
for judging the relatedness between articles if many other articles also link
to the same target. In other words, link to general concept is much less
significant than link to a specific topic [12].

The measure based on incoming links is based on link occurrences on
Wikipedia pages. Pages that contain both links indicate relatedness, while
pages with only one of the links suggest the opposite.

3 Feature Weighting

3.1 Feature Weighting Based on Syntactic Information

Feature weighting is usually implemented on the basis of syntactic relationship
between feature and document via some statistical methods, inspired by infor-
mation retrieval field. Salton et al. [2] discussed several considerations. First,
because terms that are frequently mentioned in an individual document appear
to be useful to represent the content of the document, terms frequency factor
(e.g. normal raw Term Frequency, TF) is always used as part of the feature
weighting system. Second, collection-dependent factor (e.g. Inverse Document
Frequency, IDF) is introduced to increase the term’s discriminating power to
pick up all the relevant documents from other irrelevant document. In general,
these two factors are combined by a multiplication operation.

The most popular syntactic feature weighting strategy is TF-IDF [13] showed
by Eq.(1). Here, tf(dj , ti) is the frequency of term ti appears in document dj . The
IDF factor varies inversely with the number df(ti) of documents which contain
the term ti in a collection of N documents.

Wsyn(dj , ti) = WTF IDF (dj , ti) = tf(dj , ti) × log(
N

df(ti)
) (1)

TF-IDF indicates the syntactic relationship between feature and document,
which is determined by taking just lexical information into account. It can not
reflect the semantic relationship between feature and document. Meanwhile, the
weight of feature is independent on other features.

3.2 Feature Weighting Based on Local Feature Relatedness (LFR)

To design a new weight which can represent the semantic relationship between
term and document, we propose a semantically enriched feature weighting ap-
proach by taking account of local feature relatedness — the feature relatedness
within each individual document.

Human understand document’s topic through the document’s content — a
sequence of terms, thus all the terms (selected features) in one document can
express the document’s meaning. The semantic relationship between term and
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document can be calculated by the total semantic relatedness between the term
and all the terms (called contextual terms) in the document.

As the contextual terms, their importance can be differentiate with the aid
of syntactic information. In other words, contextual term with higher syntactic
weight is more important to represent the document’s content. Thus relatedness
Rel(tk, ti) of each pair of terms is weighted by the syntactic weight of the con-
textual term tk in document dj . The semantic feature weighting based on local
feature relatedness is formulated as follows.

Wsem(dj , ti) = WLF R(dj , ti) =
∑

tk∈Tdj

Wsyn(dj , tk) × Rel(tk, ti) (2)

where Tdj means the term set of document dj , Rel(tk, ti) is the relatedness
between term tk and ti introduced in Section 2.2, Wsyn(dj , tk) represents the
syntactic weight of contextual term tk in document dj .

So far, we have given the new feature weighting approach. Based on this
approach, term will be set to more higher weight if it is more semantically
related to those important contextual terms in document. Here the importance
of contextual terms for document’s topic discrimination is measured by syntactic
feature weighting approach (e.g. TFIDF).

Feature weighting based on local feature relatedness only needs to take
O(Nm2), where N is the document number in the collection and m represents
the average number of features in one document. Furthermore, in clustering task,
the document similarity cosine measure takes O(1

2N2m + Nm). Here, 1
2N2m is

for computing the dot products of 1
2N2 pairs of document vectors (the numer-

ator of Eq.(3)), and Nm is for computing the L2-norms of N document vectors
(the denominator of Eq.(3)). It is more fast than two existing relatedness-based
document representation approaches which will be described in next section.

3.3 Combination of Syntactic and Semantic Factors

In order to consider both syntactic and semantic information in text cluster-
ing, we combine these two factors on the basis of document similarity following
[5]. Syntactic (semantic) document similarity is computed by cosine measure as
showed in Eq.(3). Sim(di, dj) = Simsyn(di, dj) when W (d, t) = Wsyn(d, t), and
Sim(di, dj) = Simsem(di, dj) when W (d, t) = Wsem(d, t)

Sim(di, dj) =
d̄i • d̄j

||d̄i||||d̄j ||
=

∑
tk∈{Tdi

⋃
Tdj

} W (di, tk) × W (dj , tk)√∑
tp∈Tdi

W 2(di, tp)
√∑

tq∈Tdj
W 2(dj , tq)

(3)

The overall document similarity is defined as linear combination of syntactic
similarity Simsyn and semantic similarity Simsem:

Simoverall(di, dj) = λSimsyn(di, dj) + (1 − λ)Simsem(di, dj) (4)
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4 Related Work

To our knowledge, local feature relatedness has not been used for feature weight-
ing. However, global feature relatedness and inter-document feature relatedness
have appeared in the literature.

4.1 Feature Weighting Based on Global Feature Relatedness (GFR)

Different from our feature weighting based on local feature relatedness, some
researchers improved feature weighting by global feature relatedness — the re-
latedness of all the feature pairs in the entire feature space. Jing et al [3] and
Wang et al. [4] enriched semantic information into feature weight by multiplying
document-term (concept) matrix by term (concept) correlation matrix. Their
weight is calculated by Eq.(5).

Wsem(dj , ti) = WGF R(dj , ti) =
∑

tk∈TD

Wsyn(dj , tk) × Rel(tk, ti) (5)

It is worth noting that TD are the term set in the entire document collection.
Although both GFR and LFR utilize syntactic weight value and the feature relat-
edness, GFR ignores the semantic relatedness within each individual document.
This is main difference between these two weighting approaches.

GFR-based feature weighing is also a semantic feature weighting approach. In
text clustering, it can be used to compute semantic document similarity, which
is combined with syntactic document similarity accord to Eq.(3) and Eq.(4).

GFR needs to take O(NMm), where M represents the number of features
(terms or concepts) in the document collection. Because almost all the features
in the document collection have non-zero weight in each document when us-
ing GFR-based feature weighting, the document similarity cosine measure takes
O(1

2N2M + NM), which is different from O(1
2N2m + Nm) of LFR.

4.2 Document Similarity Based on Inter-document Feature
Relatedness (IFR)

In the literature, inter-document feature relatedness (the relatedness between
features from different documents) was not used for feature weighting, but doc-
ument similarity measure. Huang et al. [5] represented document by a set of
concepts, each with a syntactic weight. Semantic relatedness between concepts
was applied to the similarity between documents which is defined as:

Simsem(di, dj) = SimIF R(di, dj) =

∑
∀ck∈Cdi

,∀cl∈Cdj
Wsyn(di,ck)×Wsyn(dj ,cl)×Rel(ck,cl)∑

∀ck∈Cdi
,∀cl∈Cdj

Wsyn(di,ck)×Wsyn(dj ,cl)

(6)

Where Cdi and Cdj are the concept sets in document di and dj respectively.
Wsyn(di, ck) means the syntactic weight of concept ck in document di. Rel(ck, cl)
represents the semantic relatedness between two concepts ck and cl, it is equal
to the corresponding Wikipedia articles’ relatedness introduced in Section 2.2.
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In contrast to inter-document feature relatedness, our local feature relatedness
is also called intra-document feature relatedness.

Here, semantic document similarity is directly computed by Eq.(6). As pre-
sented in [5], it can be further combined with syntactic similarity by Eq.(4).

To compute the semantic similarity between each two documents, it has to
take O(2

2N2m2). The numerator 2 means two multiply operations are required
in each loop body (see Eq. (6)).

5 Experiments

5.1 Datasets

The proposed weighting approach was tested on two real data, 20Newsgroups1

and Reuters-215782. We extracted two subsets from 20Newsgroups following [14]:

– 20NG-Multi5 was extracted from 5 categories (comp. graphics, rec. mo-
torcycles, rec. sport. baseball, sci. space, talk. politics. mideast).

– 20NG-Multi10 was extracted from 10 categories (alt. atheism, comp. sys.
mac. hardware, misc. forsale, rec. autos, rec. sport. hockey, sci. crypt, sci.
electronics, sci. med, sci. space, talk. politics. guns).

Other two data subsets were created from Reuters-21578 following [5]:

– R-Min20Max200 consists of 25 categories with at least 20 and at most
200 documents.

– R-Top10 contains 10 largest categories in the original data set.

For efficiency, 20NG-Multi5, 20NG-Multi10 and R-Top10 were created by
randomly picking 100 documents from each selected category. Table 1 lists the
number of categories and documents contained in these subsets. In this paper, we
only consider the single-label documents. Wikipedia is used as background knowl-
edge base which contains 2,388,612 articles and 8,339,823 anchors in English.

In each data set, the terms were extracted by preprocessing steps, selecting
only alphabetical sequences, stemming them, removing stop words and filtering
them by the document frequency. The concepts were mapped from terms ac-
cording to [7,11]. The number of terms and concepts extracted from each data
set are showed in Table 1.

Table 1. Data set summary

Dataset Classes Documents Terms Concepts Terms no Concepts
20NG-Multi5 5 500 3310 2735 302
20NG-Multi10 10 500 3344 2772 285
R-Min20Max200 25 1413 2904 2450 176
R-Top10 10 1000 1980 1720 100

1 http://people.csail.mit.edu/jrennie/20Newsgroups/
2 http://kdd.ics.uci.edu/databases/reuters21578/
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5.2 Methodology

In the experiments, we have two purposes. The first one is to compare the
LFR-based feature weighting with existing work, including syntactic feature
weighting, GFR-based feature weighting [3,4] and IFR-based document simi-
larity measure [5] in clustering task. The second one is to validate whether the
combination of syntactic and semantic factors can achieve better performance.
The best combined result is reported by changing the parameter λ in Eq.(4) from
0.1 to 0.9, with 0.1 interval. Here, the syntactic weight is calculated by TFIDF.
For simplicity, the abbreviations LFR, GFR and IFR are used to represent three
feature relatedness-based approaches in the following parts.

We adopt Bisecting k-means (Bi-KM) algorithm which is proven to be the best
document clustering technology [15]. In the experiments, Bi-KM in CLUTO3

toolkit is used. The parameter of Bi-KM, the number of clusters, is set to be the
true number of classes for each data set.

The input of Bi-KM is document similarity matrix. Different approaches
tested in the experiments and their input matrices are described in Table 2.

Table 2. Methodology

Notation Input
TFIDF cosine similarity based on TFIDF feature weighting
GFR cosine similarity based on GFR feature weighting
IFR IFR similarity
LFR cosine similarity based on LFR feature weighting
TFIDF+GFR linear combination of TFIDF-based cosine similarity and GFR-based cosine similarity
TFIDF+IFR linear combination of TFIDF-based cosine similarity and IFR similarity
TFIDF+LFR linear combination of TFIDF-based cosine similarity and LFR-based cosine similarity

All the above approaches can be applied on Term VSM and Concept VSM.
Meanwhile, the feature relatedness measure in GFR, LFR and IFR is calculated
by two strategies: document collection-based implicit relatedness measure (Imp)
and Wikipedia link-based explicit relatedness measure (Exp). Therefore, each
approach in Table 2 is implemented in four schemas: Term+Imp, Concept+Imp,
Term+Exp and Concept+Exp (In TFIDF, Term+Imp is equal to Term+Exp
and Concept+Imp is equal to Concept+Exp, because TFIDF does not refer the
feature relatedness measure.).

5.3 Evaluation Metrics

Since the class label of each document is known in data sets, we use the external
cluster validation method to evaluate the clustering results by calculating the
correspondence between the clusters generated by clustering algorithm and the
inherent classes of the data. Cluster quality is evaluated by F-Score [16] and the
normalized mutual information (NMI ) [17]. F-score combines the information
of precision and recall. NMI is defined as the mutual information between the
3 http://glaros.dtc.umn.edu/gkhome/views/cluto
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cluster assignments and a pre-existing labeling of the dataset normalized by the
arithmetic mean of the maximum possible entropies of the empirical marginal.
Both the two metrics range from 0 to 1, and the higher their value, the better
the clustering quality is.

5.4 Experiment Results

Table 3 compares LFR with syntactic feature weighting (TFIDF) and other two
feature relatedness-based approaches (GFR, IFR) in four schemas: Term+Imp,
Concpet+Imp, Term+Exp and Concept+Exp. Table 4 shows the clustering
results by combining syntactic factor with semantic factor in terms of docu-
ment similarity. Bold-face number indicates the best result among different
approaches. The “ * ” indicates the best result among different schemas.

From Table 3, we can see LFR achieves the better performance no matter
which schema is adopted. The success of LFR is due to the use of the feature
relatedness within each individual document. The relatedness between feature
and its contextual features implies the semantic relationship between feature
and document. IFR utilizes the semantic relatedness between features from dif-
ferent documents. LFR and IFR are designed from two different aspects, intra-
document similarity and inter-document similarity. GFR updates feature weight
by feature relatedness in the entire document collection. It neither implies the
contextual information as LFR, nor implies the feature’s discriminating power
as IFR. Thus GFR is worse than both LFR and IFR. Moreover, GFR is more
easy to introduce noise because all the feature pairs are referred.

Comparing with syntactic feature weighting, LFR always surpasses TFIDF
but GFR and IFR fail in some cases. What is the degree that LFR improves
TFIDF? This is partly due to the quality of feature relatedness. In the exper-
iments, feature relatedness threshold is changed from 0 to 0.3, we found the
smaller threshold value can usually achieve the better performance but at the
cost of time. In this paper, we report the results when threshold is set to 0. In
the future, we expect to find more proper feature relatedness measure to achieve
much better semantic feature weighting.

Comparing Table 4 with Table 3, we can see the clustering results with the
combined method are always better than using TFIDF or LRF (GRF, IRF)
solely. In other words, text clustering can be further improved by combining
syntactic factor with semantic factor, which is enriched by feature relatedness.
From Table 4, we can also see that TFIDF+LRF is usually better than both
TFIDF+GRF and TFIDF+IRF.

Comparing the implicit relatedness measure with the explicit relatedness mea-
sure, LFR with explicit schema surpasses implicit schema in most cases, while
GFR and IFR with explicit schema is worse than implicit schema. This is an in-
terest phenomenon. The explicit relatedness is calculated by mining the semantic
information from Wikipedia, which contains abundant information from all kinds
of domains. With aid of Wikipedia, two related terms (concepts) can get high
relatedness indeed. However, terms (concepts) which are unrelated in the data
set might have also relatedness in Wikipedia. In contrast, implicit relatedness is
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Table 3. Comparison of clustering performances with TFIDF, GFR, IFR and LFR

Term+Imp Concept+Imp Term+Exp Concept+Exp
Dataset Approaches F-Score NMI F-Score NMI F-Score NMI F-Score NMI

TFIDF 0.9440 0.8433 0.9641 0.8963 0.9440 0.8433 0.9641 0.8963
20NG- GFR 0.9681 0.9103 0.9601 0.8842 0.6797 0.4648 0.7506 0.5448
Multi5 IFR 0.9681 0.9060 0.9621 0.8918 0.7999 0.6641 0.8064 0.6676

LFR 0.9860 0.9571 0.9880 0.9623 0.9960* 0.9878* 0.9940 0.9808

TFIDF 0.7745 0.6604 0.6634 0.5832 0.7745 0.6604 0.6634 0.5832
20NG- GFR 0.6449 0.6246 0.6580 0.6240 0.4014 0.2857 0.4266 0.3165
Multi10 IFR 0.7166 0.6898 0.7316 0.7062 0.5949 0.4570 0.6241 0.4879

LFR 0.7786 0.6920 0.7472 0.7136 0.9038* 0.8329* 0.8619 0.7849

TFIDF 0.6415 0.6656 0.6223 0.6537 0.6415 0.6656 0.6223 0.6537
R-Min20 GFR 0.6035 0.6540 0.5698 0.6412 0.3445 0.3760 0.3692 0.3867
Max200 IFR 0.6177 0.7048 0.6153 0.6969 0.4479 0.5528 0.5510 0.6102

LFR 0.6549 0.7143 0.6326 0.7161* 0.6696* 0.6837 0.6289 0.6937

TFIDF 0.6685 0.6872 0.6910 0.6816 0.6685 0.6872 0.6910 0.6816
R-Top10 GFR 0.5444 0.5750 0.5873 0.5989 0.3371 0.2479 0.3415 0.2400

IFR 0.6797 0.6698 0.6700 0.6681 0.4679 0.4112 0.4849 0.4411
LFR 0.6933 0.6952 0.7229 0.7105 0.7352 0.7208 0.7661* 0.7351*

Table 4. Comparison of clustering performances with combined methods
(TFIDF+GFR, TFIDF+IFR and TFIDF+LFR)

Term+Imp Concept+Imp Term+Exp Concept+Exp
Dataset Approaches F-Score NMI F-Score NMI F-Score NMI F-Score NMI

20NG- TFIDF+GFR 0.9820 0.9432 0.9660 0.9004 0.7997 0.7690 0.8301 0.7685
Multi5 TFIDF+IFR 0.9680 0.9015 0.9780 0.9337 0.9540 0.8673 0.9681 0.9060

TFIDF+LFR 0.9859 0.9571 0.9880 0.9651 0.9983* 0.9930* 0.9960 0.9878

20NG- TFIDF+GFR 0.7705 0.7020 0.7215 0.7055 0.6910 0.6261 0.7083 0.6626
Multi10 TFIDF+IFR 0.7895 0.6965 0.7889 0.7247 0.7700 0.7032 0.7833 0.7227

TFIDF+LFR 0.8299 0.7587 0.7819 0.7493 0.9039* 0.8387* 0.8755 0.8079

R-Min20 TFIDF+GFR 0.6922 0.7692 0.7052 0.7792 0.7047 0.7738 0.7430 0.7754
Max200 TFIDF+IFR 0.7165 0.7929 0.7298 0.7951 0.7316 0.7936 0.7412 0.8032

TFIDF+LFR 0.7166 0.7809 0.7311 0.8014 0.7406 0.8009 0.7433* 0.8081*

TFIDF+GFR 0.6988 0.7166 0.7397 0.7267 0.6585 0.7069 0.7515 0.7421
R-Top10 TFIDF+IFR 0.7536 0.7358 0.7271 0.7178 0.7598 0.7505 0.7528 0.7515

TFIDF+LFR 0.7739 0.7429 0.7507 0.7620* 0.7740* 0.7524 0.7675 0.7519

computed according to the statistical information from document collection it-
self, which introduces less noise. From the experimental results, we conclude that
LFR is more robust because it refers to less feature pairs than GFR and IFR.
Meanwhile, it takes proper advantage of feature relatedness than GFR and IFR.

5.5 Computational Complexity

It is worth noticing that LFR is much faster than GFR and IFR. Given
document-feature tf-idf weight matrix and feature relatedness matrix, we record
the running time4 of generating document similarity matrix using different ap-
proaches in Figure 1, taking Concept+Exp schema as an example. In Figure 1,
IFR indicates the time of computing document similarity matrix using Eq. (6);
while LFR (GFR) includes the time of constructing LFR (GFR)-based
4 The time is recorded on the computer with Pentium(R) Dual-Core CPU E5400 @

2.70GHz and 2GB RAM.
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Fig. 1. Comparison of Running Time of GFR, IFR and LFR

document-feature weight matrix using Eq. (2) (Eq. (5)) and computing docu-
ment similarity matrix using Eq.(3). We can see IFR is the most time-consuming
among all the three approaches. This is because in IFR document semantic
similarity refers to all the the feature pairs from different documents. GFR
takes much more time than LFR. In GFR, the relatedness of all the feature
pairs in the entire document collection are used to generate new document-
feature weighting matrix which is very dense. In this process, too much multi-
ply operation is required and dense matrix makes document similarity is slow
to be computed. In contrast, LFR focuses on the feature relatedness within
each individual document which greatly reduces the computational complexity.
As mentioned earlier, the computational complexity of GFR, IFR and LFR is
O(NMm+ 1

2N2M +NM), O(2
2N2m2) and O(Nm2+ 1

2N2m+Nm) respectively.
In general, M is 10 to 100 times of m. The value of N and M is showed in Table
1. The obvious advantage in computational complexity makes our local feature
relatedness-based feature weighting more useful in practice.

6 Conclusions

In this paper, we propose a semantic feature weighting approachby taking account
of local feature relatedness — feature relatedness within documents. The feature
relatedness can be computed by two strategies, document collection-based implicit
relatedness measure and Wikipedia link-based explicit relatedness measure. From
experimental resultsonrealdata,weconcludethat: (1)Thesemantic featureweight-
ing approach based on local feature relatedness surpasses the syntactic feature
weighting (e.g.TFIDF); (2)Theuseof local feature relatedness surpassesglobal fea-
ture relatedness and inter-document feature relatedness in clustering quality and
computational complexity; (3) Clustering results can be further improved by com-
bining syntactic factor and semantic factorwhich is enrichedby feature relatedness.
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Abstract. Feature selection is an efficient strategy to reduce the dimensional-
ity of data and removing the noise in text categorization. However, most feature
selection methods aim to remove non-informative features based on corpus statis-
tics, which do not relate to the classification accuracy directly. In this paper, we
propose an effective feature selection method, which aims at the classification
accuracy of KNN. Our experiments show that our method is better than the tradi-
tional methods, and it is also beneficial to other classifiers, such as Support Vector
Machines (SVM).

1 Introduction

Text categorization [17] is the problem of automatically classifying the natural language
text to predefined categories based on their content. Text categorization plays an impor-
tance role in many applications, such as information retrieval [1] and Anti-Spam Email
Filtering [5], etc.

In recent years, research interest in text categorization has been growing in ma-
chine learning, as well as in information retrieval, computational linguistics, and other
fields. Statistical machine learning methods have shown great benefit over rule-based
approaches in text categorization [20]. The top-performing learning methods include
Naive Bayes [14], KNN [20], Support Vector Machines(SVM) [10] and maximum en-
tropy methods(ME) [15]. However, when these traditional machine learning methods
are applied to large-scale text categorization, a major characteristic, or difficulty, is the
high dimensionality of the feature space.

Amongst the above machine learning methods, KNN is the most sensitive to the di-
mensionality of the data because KNN suffers from two limitations. The first limitation
is that KNN requires to keep all training instances and finds the nearest neighbors by
searching the whole set of training instances. Therefore, the efficiency of KNN is very
low when both the size and dimensionality of the training data are huge. The second
limitation is that KNN is very sensitive to noise [6]. These two limitations show that
KNN is low-efficient for large-scale and high-dimensional text data. Therefore, it is
highly desired to reduce the dimensionality of the data by selecting the useful features
and removing the noise.

The approaches for this purpose, dimensionality reduction, have attracted much at-
tention recently since it make the text categorization task more efficient and save more
storage space [21,13,11,8].
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In the text domain, the popular feature extraction algorithms include Document Fre-
quency (DF), χ2 statistics (CHI), Information Gain (IG), Mutual Information (MI) , etc
[21] and Orthogonal Centroid Feature Selection(OCFS) [18].

The DF is to select the features with the first p largest document frequency. The basic
assumption is that rare terms are either non-informative for categorization nor influen-
tial in global performance. The χ2 statistics measures the lack of independence between
t and c and can be compared to the χ2 distribution with one degree of freedom to judge
extremeness. The orthogonal centroid feature selection (OCFS) [18] selects features
optimally according to the objective function implied by the Orthogonal Centroid algo-
rithm [9].

These methods aim to remove noninformative features according to corpus statistics.
The criterion used in these methods did not relate to the classification accuracy directly
[3]. Besides, they did not consider the particularity of text categorization.

In this paper, we propose an optimal feature selection method, called KNNFS, in text
categorization. KNNFS has two major characteristics. One is that cosine similarity is
taken in our feature selection criterion since it is usually used as similarity measure in
text categorization; another is that our method adopts a criterion from the viewpoint of
KNN. We calculate a score , called KNN score, for each feature and select the features
with higher scores. Our experimental results show that our approach is better than the
traditional FS methods, and it is also beneficial to other classifiers, such as Support
Vector Machines (SVM).

The rest of the paper is organized as follows: Section 2 gives the review and analysis
of the traditional feature selection methods in text categorization. Then we describe our
optimal feature selection method, KNNFS, in Section 3. Experimental evaluations of
our method and the other feature selection methods are presented in Section 4. Finally,
we give the conclusions in Section 5.

2 Reviews of Feature Selection Methods in Text Categorization

In this section, we review the representative feature selection methods, such as docu-
ment frequency [21], χ2 statistics [21] and orthogonal centroid feature selection [18],
which are used as baseline methods in our experiments.

2.1 Definitions

Firstly, we give some definitions used in this paper.
In text categorization, a corpus of documents is often mathematically represented by

a d × n document matrix X ∈ Rd×n, which is generated by the traditional TF·IDF
indexing in Vector Space Model (VSM) [16], where n is the number of documents,
and d is the number of features (terms). Each document is denoted by a column vec-
tor xi, (i = 1, 2, · · · , n). The kth entry, or feature, of xi is denoted by xk

i , (k =
1, 2, · · · , d). XT is used to denote the transpose of X . The set of predefined categories
is Ω = [ω1, · · · , ωC ], where C is the number of the categories.

We formulate the feature selection problem as follow: given a collection of n doc-
uments X = {x1, x2, · · · , xn} with labels Y = {y1, y2, · · · , yn} and yi ∈ Ω, (i =
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1, · · · , n), the task of feature selection is to find a subset of features indexed by sl, (l =
1, 2, · · · , p) such that the low dimensional representation of original data xi is denoted
by x̂ = {xs1

i , xs2
i , · · · , xsp

i )}.

2.2 Three Baseline FS Methods

Document Frequency(DF) Document frequency (DF) is the simplest feature selection
technique for text categorization.

Document frequency is the number of documents in which a term occurs. We cal-
culate the document frequency for each unique term in the training corpus. Then we
select the features with the first p largest DF or remove features whose DF is less than a
predefined threshold. The basic assumption is that rare terms are either non-informative
for categorization nor influential in global performance.

χ2 statistics(CHI). CHI is aiming at maximizing a criterion J(W ). It is also a greedy
algorithm to save the computation cost and thus is not optimal either. To a given term
t and a category ωc , suppose A is the number of times t and ωc co-occur, B is the
number of times the t occurs without ωc , C is the number of times ωc occurs without
t, D is the number of times neither ωc nor t occurs. The χ2 statistics is:

χ2(t, ωc) =
n(AD − CB)2

(A + C)(B + D)(A + B)(C + D)
. (1)

We can compute the χ2 statistics between each unique term and each category in a
training corpus, and then combine the category specific scores of each term into two
scores:

χ2
avg(t) =

C∑
c=1

Pr(ωc)χ2(t, ωc), (2)

χ2
max(t) =

C
max
c=1

χ2(t, ωc). (3)

The χ2 statistics is known not to be reliable for low-frequency terms [7].
In this paper, we choose χ2

max as one of our feature selection baseline methods.

Orthogonal Centroid Feature Selection(OCFS). Document frequency is the number
of documents in which a term occurs. We calculate the document frequency for each
unique term in the training corpus. Then we select the features with the first p largest
DF or remove features whose DF is less than a predefined threshold. The basic as-
sumption is that rare terms are either non-informative for categorization nor influential
in global performance. The χ2 statistics measures the lack of independence between t
and c and can be compared to the χ2 distribution with one degree of freedom to judge
extremeness.

The orthogonal centroid feature selection (OCFS) [18] selects features optimally ac-
cording to the objective function implied by the Orthogonal Centroid algorithm [9].
Orthogonal Centroid is a feature extraction method with projecting the feature space
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into the orthogonal subspace spanned by all the centroids of the categories. OCFS op-
timizes the objective function of Orthogonal Centroid subspace learning algorithm in a
discrete solution space.

OCFS computes the centroid for each category firstly. Using ωc to represent class
c, (c = 1, · · · , C), the mean vector of the c-th category is

mc =
1
nc

∑
xi∈ωc

xi (4)

The mean vector of all documents is

m =
1
n

n∑
i=1

xi =
1
n

C∑
c=1

ncmc (5)

Then OCFS finds the p largest features from
∑C

c=1
nc

c (mi
c −mi)2, (k = 1, · · · , d).

Figure 1 gives the flowchart of OCFS.

1. compute the centroid mc, i = 1, 2, · · · , C of each class for training data;
2. compute the centroid m of all training samples;
3. compute feature score s(i) =

∑C
c=1

nc
c

(mi
c − mi)2 for all the features;

4. find the corresponding index set K consisted of the p largest ones in set
S = s(i)|1 ≤ i ≤ d.

Fig. 1. Orthogonal Centroid Feature Selection Algorithm

2.3 Analysis of the Traditional Feature Selection Methods in Text Categorization

Although there are many other feature selection methods used in text categorization,
such as information gain (IG) and mutual information (IM). It is shown that CHI, DF
and OCFS give the competitive performance with IG and MI [21,18].

Since OCFS is derived from the Orthogonal Centroid algorithm, it need the strong
assumption that all categories are separated well by the centroids of the classes. There-
fore, OCFS fails when the centroids of the classes coincide.

3 Optimal Feature Selection for KNN

In this section, we give the KNN decision rule for text categorization firstly, then we
derive our feature selection criterion from the KNN decision rule.

3.1 K-Nearest Neighbor Classification(KNN) for Text Categorization

The KNN algorithm is quite simple: given a test document, the system finds the k near-
est neighbors among the training documents, and uses the categories of the k neighbors
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to weight the category candidates. The similarity score of each neighbor document to
the test document is used as the weight of the categories of the neighbor document. If
several of the k nearest neighbors share a category, then the per-neighbor weights of
that category are added together, and the resulting weighted sum is used as the likeli-
hood score of that category with respect to the test document. By sorting the scores of
candidate categories, a ranked list is obtained for the test document. By thresholding on
these scores, binary category assignments are obtained. The decision rule in KNN can
be written as:

y(x, ωc) = sign

⎛⎝ ∑
xi∈KNN(x)

sim(x, xi)y(xi, ωc)− bc

⎞⎠ (6)

where y(xi, ωc) ∈ {0, 1} is the indicator for document xi with respect to category ωc;
KNN(x) is the set of the k nearest neighbors of x; sim(x, xi) is the similarity between
the test document x and the training document xi and bc is the category-specific thresh-
old for the binary decisions.

Usually, the cosine value of two vectors is used to measure the similarity of the two
documents. Thus, the KNN similarity of the document x and category ωc is

sim(x, ωc) =
∑

xi∈KNN(x)

xT xi√||x||√||xi||
y(xi, ωc), (7)

where ||x|| is norm of x (||x|| =
√

xT x).

3.2 Effective Feature Selection Criterion for KNN

To improve the performance of KNN, we should select the features so that the doc-
uments have higher KNN similarities (Eq.(7))with their corresponding categories and
have lower KNN similarities with the other categories.

Given the training dataset X = {xi, yi}, (i = 1, · · · , n), where xi is the i-th docu-
ment and yi is the corresponding label, we can calculate the KNN similarity of xi and
its corresponding category as

sim+
KNN (xi) =

∑
xj∈KNN(x)

yj=yi

xT
i xj√||xi||
√||xj ||

, (8)

and the KNN similarity of xi and the other categories is calculated as

sim−
KNN (xi) =

∑
xj∈KNN(x)

yj �=yi

xT
i xj√||xi||
√||xj ||

. (9)

From the viewpoint of KNN, we should select the features which have importance con-
tributions in KNN similarity measure so that sim+

KNN(xi) is as large as possible and
sim−

KNN(xi) is as small as possible for each document xi.
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We define the KNN margin of xi as

MarginKNN(xi) = sim+
KNN(xi)− sim−

KNN(xi). (10)

So we wish to select the features to make the KNN margin as large as possible. The
larger the margin of between sim+

KNN(xi) and sim−
KNN(xi) is, the more accurate the

results of categorization are.
Thus, the total KNN margin in training set can be written as

J =
∑

i

MarginKNN(xi)

=
∑

i

( ∑
xj∈KNN(x)

yj=yi

xT
i xj√||xi||
√||xj ||

−
∑

xj∈KNN(x)

yj �=yi

xT
i xj√||xi||
√||xj ||

)

=
∑
i,j

xT
i xjWij , (11)

where W is a sparse symmetric n× n matrix with Wij .

Wij =

⎧⎪⎨⎪⎩
1√

||xi||
√

||xj||
: j ∈ KNN(i), yi = yj

−1√
||xi||

√
||xj||

: j ∈ KNN(i), yi = yj

0 : j /∈ KNN(i)

(12)

By simple algebra formulation, the total KNN margin can be written as:

J =
∑
i,j

xT
i xjWij =

∑
i,j

(∑
k

xk
i xk

j

)
Wij

=
∑

k

⎛⎝∑
i,j

xk
i Wijx

k
j

⎞⎠
=
∑

k

(
XkW (Xk)T

)
=
∑

k

F (k) (13)

where F (k) = XkW (Xk)T .
For the k-th feature, the larger F (k) is, the more its contribution is to maximize the

total KNN margin. We call F (k) the KNN score and use it as our criterion of feature
selection.

Alg. 1 gives the flowchart of KNNFS.
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1. compute the matrix W with Eq.(12);
2. compute the KNN score for each feature: F (k) = XkW (Xk)T ;
3. find the corresponding index set K consisting of the p largest ones

in set S = {s(i)|1 ≤ i ≤ d}.

Alg. 1. The proposed KNNFS Algorithm

3.3 An Illustrating Example

To give an intuitive comparison between the OCFS [18] and KNNFS, we apply them
to select two features for 2D visualization on the 3D artificial dataset. The dataset is
constituted by three classes. One class is generated from single Gaussian distribution,
and both the rest two classes are generated with the mixture of two Gaussian distribu-
tions. The centroids of three classes coincide. Figure 2 demonstrates the results of 2D
visualization by OCFS and KNNFS. KNNFS gives the perfect result, but OCFS fails
since all the feature scores are zeros.

4 Experiments

In this section, we conduct our experiments on three real large scale text data sets to
show the performance of KNNFS. We first describe the experiments setup, then give
the experimental results, and finally discuss the results.

4.1 Datasets

To demonstrate the efficacy of KNNFS, we performed experiments on three data sets:
Reuters21587 [14], 20 Newsgroups [12] and WebKB [4].

Reuters21587. The ApteMod version of Reuters21587 [14] which was obtained by
eliminating unlabeled documents and selecting the categories which have at least one
document in the training set and the test set. This process resulted in 90 categories in
both the training and test sets. After eliminating documents which do not belong to
any of these 90 categories, we obtained a training set of 7768 documents, a test set
of 3019 documents, and a vocabulary of 23793 unique words after stemming and stop
word removal. The number of categories per document is 1.23 on average. The category
distribution is skewed; the most common category has a training set frequency of 2877
but 82% of the categories have less than 100 instances, and 33% of the categories have
less than 10 instances.

20 Newsgroups. The 20 Newsgroups data consists of Usenet articles Lang collected
from 20 different newsgroups [12]. Over a period of time 1000 articles were taken from
each of the newsgroups, which make up of an overall number of 20000 documents in
this collection. Except for a small fraction of the articles, each document belongs to
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Fig. 2. 2D visualization of OCFS and KNNFS on 3D artificial dataset

exactly one newsgroup. We use the ”bydate” version of data whose training and testing
data are split previously by the data provider1. There are 18941 documents and 70776
unique words after stemming and stop word removal.

WebKB. The WebKB data set [4] contains web pages gathered from university com-
puter science departments. The pages are divided into seven categories: student, faculty,
staff, course, project, department and other. In this paper, we use the four most popular
entity-representing categories: student, faculty, course and project, all together contain-
ing 4199 pages. We just remove the html tags (’</p>’, ’</h1>’, etc.) and stop words.
After stemming, the resulting vocabulary has 22021 words. We use four-fold cross val-
idation by training on three of the universities plus the misc collection, and testing on
the pages from a fourth, held-out university.

4.2 Classifiers

In order to compare the different feature selection methods, we apply them to the three
categorization method: KNN with RCut [19], KNN with SCut [21,19] and SVM [2].

1 http://people.csail.mit.edu/jrennie/20Newsgroups/
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KNN with RCut. The RCut is a thresholding strategies [19]. In RCut, we sort cate-
gories by score for each document, and assign this document to each of t top-ranking
categories. RCut is parameterized by t which can be either specified manually or auto-
matically tuned using a validation set. In this paper, we set t = 1 since that the number
of categories per document is closer to 1 in our experiments.

KNN with SCut. The formulation of KNN with SCut is in Eq.(6). We tune the thresh-
old bc for each category by a validation set of documents. The category-specific thresh-
old bc is automatically learned using a validation set of documents. That is, we used
a subset of the training documents not used the test documents to learn the optimal
threshold for each category. By optimization, we mean the threshold that yield the best
F1 score on the validation documents.

In this paper, we use leave-one-out cross validation to choose the optimal thresholds.

SVM. Besides KNN classification, we also test the performance of KNNFS with SVM
to see whether KNNFS is helpful for the other classifiers. For SVM classifier, we choose
SVMlib [2] with multi-class classification. We use the radial basis kernel in our experi-
ments.

4.3 Performance Measurement

In this section, we use micro-averaging F1 [20] to measure the performance of each
result.

4.4 Experimental Results

Reuters21587. The performances of the different feature selection algorithms on
Reuters21587 data are reported in Table 1. From this table, we can see that the low
dimensional spaces selected by KNNFS have better performance than its counterpart
selected by the other methods(DF, CHI and OCFS). CHI gives poor results in the lower
dimension, but becomes better with the increasing of the dimensionality. It is also shown
that all methods are overfit when the dimensionality is over 1024 because the noise or
redundant features could appear. Besides, the performance of SVM with KNNFS is
better than the other FS methods, which indicates that KNNFS not only improves the
performance of KNN, but is helpful for SVM.

20 Newsgroups. The performances of the different feature selection algorithms on 20
Newsgroups data are reported in Table 2. It is also shown that KNNFS has better per-
formance than the other FS methods. There is not overfit for each method. The reason
may be that the original feature dimensionality is very large and the selected features
are just little proportion of the original features. Therefore, there may have the fewer
redundant features in selected features.

WebKB. The performances of the different feature selection algorithms on WebKB
data are reported in Table 3. It is also proved that KNNFS outperform the other FS
methods. Besides, all methods are overfit in high dimensional space.
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Table 1. Micro-averaging F1 on Reuters21587 dataset

Number of Features
Classifier FS 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

DF 21.3 38.2 40.4 52.9 56.4 62.0 67.3 70.4 73.0 73.9 76.4 75.6 75.8
RCut CHI 21.3 21.3 21.4 26.7 30.2 31.1 64.9 73.7 76.4 79.6 79.3 76.1 75.1
KNN OCFS 23.8 24.3 26.2 41.0 51.6 68.9 73.0 72.8 76.1 76.7 75.9 75.3 75.0

KNN 27.2 40.4 48.8 55.0 62.6 69.4 73.4 76.9 78.8 80.6 80.2 80.8 80.4

DF 13.6 19.0 28.5 35.8 41.2 48.0 56.9 62.1 69.8 73.7 77.4 77.8 77.6
SCut CHI 0 0.1 0.4 14.0 32.5 37.4 53.4 64.1 70.4 76.3 78.5 77.5 77.7
KNN OCFS 9.4 15.5 20.1 35.2 41.7 56.6 66.2 68.8 73.9 76.5 77.7 78.1 77.7

KNN 8.4 21.3 35.9 40.8 44.9 57.8 68.6 70.2 72.7 78.4 80.8 81.3 81.3

DF 38.4 38.2 43.2 53.7 59.3 64.8 70.4 72.4 73.9 74.2 74.0 72.0 70.4
CHI 32.1 32.1 32.2 37.6 55.3 55.9 67.8 74.1 77.5 78.9 77.2 74.1 70.5

SVM OCFS 34.9 40.0 44.1 53.5 58.6 71.6 76.1 77.1 77.6 76.6 74.2 71.7 70.3
KNN 32.1 40.1 51.3 57.0 62.5 73.7 76.3 76.7 77.8 79.0 78.3 75.0 70.9

Table 2. Micro-averaging F1 on 20 Newsgroups dataset

Number of Features
Classifier FS 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

DF 4.9 6.3 9.8 12.6 16.1 20.7 29.6 40.1 50.8 58.4 64.4 68.7 72.5
RCut CHI 8.6 11.5 20.8 27.3 32.9 45.9 54.5 59.8 65.3 69.6 71.9 73.9 74.5
KNN OCFS 4.3 4.7 5.0 7.5 12.4 29.4 46.6 56.1 61.0 64.5 67.9 71.3 73.4

KNN 8.4 13.7 25.7 31.2 36.8 46.7 55.5 61.9 66.3 70.9 72.9 75.0 76.2

DF 9.4 9.7 12.1 13.8 17.0 21.0 30.2 39.8 49.5 55.2 61.0 65.7 68.7
SCut CHI 7.8 11.7 20.6 24.4 33.2 41.6 47.3 50.8 54.9 59.6 65.6 69.6 71.8
KNN OCFS 1.7 3.7 7.5 10.6 13.3 22.3 35.4 45.4 53.0 59.3 64.7 68.4 69.9

KNN 7.8 13.7 21.0 27.7 35.7 46.2 47.8 53.2 55.1 61.1 66.0 70.6 73.2

DF 5.9 7.2 12.1 13.6 19.5 27.2 39.3 49.7 62.3 69.6 75.0 77.4 78.7
CHI 9.6 12.6 22.0 28.3 41.8 51.1 60.2 65.0 70.5 74.6 77.9 79.7 80.7

SVM OCFS 5.4 5.9 9.4 10.2 15.4 33.2 52.0 61.4 68.3 73.0 76.8 78.9 79.7
KNN 8.4 13.9 23.1 29.1 45.8 54.9 63.7 65.2 71.8 76.5 78.6 79.3 81.2

4.5 Discussion of Results

From the experiments we can see that the proposed KNNFS is better than DF, CHI and
OCFS in most cases. From the experimental results, we can draw the conclusion that
KNNFS can get significant improvements than baselines, since it is an effective feature
selection approach from the KNN decision rule directly, can outperform the greedy ones.

Besides, we notice that the accuracies of KNNFS are lower than other methods when
the number of selected features is 2. This phenomenon occurs due to the overfitting
when the selected feature dimension is small.

There are two reasons why KNNFS outperforms the other methods. One is that KN-
NFS selects features from the viewpoint of KNN directly. Another is that KNNFS max-
imizes the KNN margin, which can reduce the generalization error potentially.
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Table 3. Micro-averaging F1 on WebKB dataset

.

Number of Features
Classifier FS 2 4 8 16 32 64 128 256 512 1024 2048

DF 23.0 26.2 19.5 58.3 66.7 70.2 72.8 75.7 74.9 75.3 75.8
RCut CHI 23.4 33.7 35.4 50.2 74.2 79.5 81.5 81.7 80.0 79.0 76.8
KNN OCFS 23.4 24.9 24.9 36.3 63.7 69.5 71.1 71.8 74.7 75.4 76.2

KNN 23.4 33.0 36.9 55.2 79.2 80.0 83.5 83.9 81.3 80.3 76.6

DF 24.1 26.9 29.8 41.6 51.3 53.0 56.0 61.9 66.7 70.7 74.2
SCut CHI 29.7 38.3 39.5 45.2 51.7 58.4 64.0 65.9 68.8 72.8 74.9
KNN OCFS 26.8 29.3 30.5 41.5 50.5 54.7 55.8 58.7 64.8 70.1 74.2

KNN 26.8 39.9 43.3 45.9 55.9 60.7 64.5 68.8 69.2 73.4 75.4

DF 64.3 60.9 59.6 61.6 68.0 76.3 81.9 84.5 84.8 83.5 83.3
CHI 73.1 78.4 79.3 79.7 76.0 83.4 84.9 86.1 86.4 85.2 84.5

SVM OCFS 68.8 70.2 71.1 65.7 70.1 76.8 79.3 82.8 83.3 82.4 82.3
KNN 68.8 79.5 79.4 79.7 81.1 83.2 85.4 89.8 89.2 85.7 85.3

Similar with the other methods, the accuracies of KNNFS also drop when the number
of selected features is enough large. The reason is that there is no measure of redun-
dancy between selected features, which could destroy the performance of KNNFS.

5 Conclusion

In this paper, we propose a new feature selection method, called KNNFS, for text catego-
rization. There are two contributions in our work. One is that our method adopts a criterion
from the viewpoint of KNN, which selects useful features according to the KNN decision
rule in text categorization directly. Another is that cosine similarity, instead of Euclidean
distance, is adopted since it is usually used as similarity measure in text categorization.

In the future, we will investigate how to learn the best number of selected features
automatically based on KNN margin. In addition, we will also extend our feature selec-
tion criterion by imposing the penalty to the redundant features.
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Abstract. Kernel method is one of the promising approaches to learn-
ing with tree-structured data, and various efficient tree kernels have been
proposed to capture informative structures in trees. In this paper, we
propose a new tree kernel function based on “subpath sets” to capture
vertical structures in rooted unordered trees, since such tree-structures
are often used to code hierarchical information in data. We also propose
a simple and efficient algorithm for computing the kernel by extending
the multikey quicksort algorithm used for sorting strings. The time com-
plexity of the algorithm is O((|T1|+ |T2|)log(|T1|+ |T2|)) time on average,
and the space complexity is O(|T1| + |T2|), where |T1| and |T2| are the
numbers of nodes in two trees T1 and T2. We apply the proposed kernel
to two supervised classification tasks, XML classification in web min-
ing and glycan classification in bioinformatics. The experimental results
show that the predictive performance of the proposed kernel is compet-
itive with that of the existing efficient tree kernel for unordered trees
proposed by Vishwanathan et al. [1], and is also empirically faster than
the existing kernel.

Keywords: Kernel methods, tree kernels, convolution kernels.

1 Introduction

Recently, machine learning methods for complex-structured data such as strings,
trees and graphs, have been becoming increasingly important. In natural lan-
guage processing, sentences are often represented as strings, and parsed sen-
tences are represented as trees [2]. In bioinformatics, there are various kinds of
sequential-structure data such as DNAs, RNAs and proteins, and tree-structured
data such as glycans and secondary structures of RNAs. Sometimes structures
of chemical compounds and proteins are represented as graph-structured data.
In Web mining, documents are written in tree-structured XML and HTML, and
access and purchase behaviors of visitors to Web pages are represented as trees

J.Z. Huang, L. Cao, and J. Srivastava (Eds.): PAKDD 2011, Part I, LNAI 6634, pp. 62–74, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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or graphs. Effective and efficient analysis of such complex-structured data play
key roles in businesses, healthcare and scientific researches.

In this paper, we focus on learning with tree-structured data, more specifically,
rooted unordered trees. In general learning problems, data are represented as
vectors in a feature space. If we can properly define the bases of the feature
space, we can just pass the feature vectors to learning algorithms. However,
when we handle more complex-structured data such as sequences, trees, and
graphs that have structures among their constituent elements, proper vector
representation is not obvious, and the step of feature design can be difficult and
time-consuming.

Probably, one of the reasonable strategies for handling such complex-
structured data is to use their local structures as features, for example, sub-
strings and subsequences for strings, subtrees and tree-structured subgraphs for
trees, and paths and subgraphs for graphs. The feature vectors can be con-
structed by using the numbers of times such substructures appear in target data
as features. However, as the numbers of such substructures are enormous, it is
sometimes prohibitive to explicitly enumerate them to construct feature vectors.
There is also another serious problem called “curse of dimensionality”, which is
degradation of predictive performance in high-dimensional feature spaces.

Kernel methods [3] are one of the promising approaches to learning with
complex-structured data. Kernel methods use only the inner products of feature
vectors when they access data. This means that even if the dimensionality of
the feature vector is extremely large, the dimensionality does not explicitly af-
fect the computational cost as long as efficient procedures to compute the inner
products are available. The functions computing the inner products efficiently
are called “kernel functions”, and kernel methods can work efficiently in high
dimensional feature spaces by using kernel functions. Moreover, a well-known
kernel method, the support vector machine(SVM), is known to have good gen-
eralization properties, both theoretically and experimentally, and overcome the
“curse of dimensionality” problem in high dimensional feature spaces [4].

Haussler [5] introduced convolution kernels, a general framework for handling
discrete data structures with kernel methods. In convolution kernels, structured
data are decomposed into their parts, and kernel functions are defined in terms
of the parts. By using this framework, Collins and Duffy [6] designed a convolu-
tion kernel for parse trees used in natural language processing. They implicitly
constructed feature vectors by using the number of times each tree-structured
subgraph appears in parse trees, and defined a kernel function as the inner
product of those feature vectors. They proposed an efficient kernel computation
algorithm by using dynamic programming. After the seminal work by Collins
and Duffy [6], various kernels for more general trees were developed including
labeled ordered trees [7,8] and variants of ordered trees such as positional trees [9]
and syntactic trees [10]. However, there are only a few works on kernel design
for rooted unordered trees because of the hardness result for computing gen-
eral kernels for unordered trees [11]. Vishwanathan et al. [1] proposed a simple
but efficient kernel for unordered trees based on subtrees. It converts trees into
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strings, and boils down tree comparison to string comparison. By employing ap-
propriate data structures such as suffix trees and suffix arrays, their kernel can
be computed in linear time, that is, O(|T1|+ |T2|). The feature space spanned by
the linear-time tree kernel is constructed not by using tree-structured subgraphs,
but by using subtrees. Therefore, the kernel is suitable for capturing horizon-
tal substructures, but not for vertical substructures such as paths from root to
leaves.

On the other hand, in the context of information retrieval, Ichikawa et al. [12]
proposed a tree similarity using subpaths of paths from tree root to leaves, and
showed its effectiveness in text retrieval tasks. Inspired by their work, we propose
a new tree kernel for rooted unordered trees based on tree subpaths, and a fast
and space-efficient algorithm to compute the kernel by extending the multikey
quicksort algorithm [13] for sorting strings. The computational complexity of
our kernel is O((|T1|+ |T2|) log(|T1|+ |T2|)) on average, which is worse than the
linear-time tree kernel by vishwanathan et al. [1]. However, in practice, it is very
efficient, and actually, faster than the linear-time kernel in our experiments.

Finally, we demonstrate the predictive accuracy and efficiency of the proposed
kernel by using two tasks, XML classification task in Web mining, and glycan
classification tasks in bioinformatics. The results show our kernel is competitive
with the linear-time tree kernel in predictive performance, and is faster than the
linear-time kernel.

This paper is organized as follows. Section 2 reviews the existing tree ker-
nels such as the parse tree kernel [6], the labeled ordered tree kernel [7], and
especially the linear-time tree kernel [1]. In Section 3, based on the idea of tree
subpaths [12], we propose a new tree kernel by using the subpaths. We also
propose an efficient algorithm for computing the proposed kernel function. In
Section 4, we show experimental results on two kinds of classification tasks, one
with XML data, and the other one with glycan data. Section 5 reviews the re-
lated work, and Section 6 gives discussion and future work, and concludes this
paper.

2 A Linear-Time Kernel for Rooted Unordered Trees

Vishwanathan et al. [1] proposed a linear-time kernel for rooted labeled un-
ordered trees, whose computational complexity is O(|T1| + |T2|). The substruc-
tures that the kernel can use as features are restricted to a subset of those used by
the previous tree kernels. However, thanks to this simplification, they achieved
the linear-time complexity.

The basic idea of their tree kernel is to convert two trees into two strings and
then apply the string kernel to them. First, it converts the two trees into two
string as follows. Let us denote by T one of the target trees, and by label(ns) the
label of a node ns in T . tag(ns) denotes the string representation of the subtree
of T rooted at ns. Therefore, tag(nroot) is the string representation of T , where
nroot is the root of T . We recursively apply the following steps in a bottom-up
manner to obtain tag(nroot).



A Subpath Kernel for Rooted Unordered Trees 65

– If the node ns is a leaf, let tag(ns) = [label(ns)].
– If the node ns is not a leaf and has c children n1, n2, . . . , nc, sort

tag(n1), tag(n2), ..., tag(nc) in lexical order to obtain
tag(1), tag(2), ..., tag(c), and let tag(ns) = [label(ns)tag(1)tag(2)...tag(c)].

Figure 1 shows an example of the tree-to-string conversion. In the resultant
string, a substring starting from ‘ [’ and ending at ‘ ]’ with the same number of
‘ [’s and ‘ ]’s corresponds to a subtree rooted at a particular node.

Fig. 1. An example of the tree-to-string conversion

We apply the above conversion to two trees T1 and T2 to obtain two strings
S1 and S2. Now we define the tree kernel between T1 and T2 via the two strings
S1 and S2 as

K(T1, T2) = K(S1, S2)

=
∑

s∈Σ∗
w|s|num(S1s)num(S2s), (1)

where Σ∗ is the set of substrings of S1 and S2, num(S1s) and num(S2s) are
the numbers of times a substring s appears in S1 and S2, respectively. w|s| is a
weight parameter for substrings of length |s|. Typical choices for w|s| are:

– constant weighting (defined as w|s| = 1),
– k-spectrum weighting (defined as w|s| = 1 if |s| = k, and w|s| = 0 otherwise),

and
– exponential weighting (defined as w|s| = λ|s| where 0 ≤ λ < 1 is a decaying

rate).

To compute the kernel (1), it is sufficient to enumerate all of the common sub-
strings of S1 and S2, and to count the numbers of times they occur in each of S1

and S2. It can be done in O(|S1|+ |S2|) time by employing suffix trees or suffix
arrays [1,14]. If we assume the maximum number of bits needed to describe a
node label is constant, the lengths of the converted strings are |S1| = O(|T1|)
and |S2| = O(|T2|), respectively. Therefore, the computational complexity of
computing the kernel function (1) is O(|T1|+ |T2|).

Despite the efficiency of the linear-time tree kernel, there is a drawback of the
linear-time tree kernel. The drawback is that the kernel considers only subtrees
as features, namely, subtrees were required to match some portion of the labeled
unordered tree perfectly. Such a property is not preferred in the case of large
trees and many kinds of node labels.
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3 A New Tree Kernel Based on Tree Subpaths

3.1 Subpath Set

In this section, we propose another efficient tree kernel that can capture vertical
structures in trees without false positive enumerations of common substructures.
Since tree-structured data often represent hierarchical structures such as inclu-
sive relations of tags in HTML and XML documents, it is important for tree
kernels to take such vertical structures into account. We employ the idea of sub-
path sets introduced by Ichikawa et al. [12], who modeled a sentence as a tree
and used tree similarities for information retrieval. A substring of a path from
the root to one of the leaves is called a subpath, and a subpath set is a set of
subpaths included in trees. They defined a similarity measure using the subpath
set. Figure 2 shows an example of a subpath set.

Fig. 2. An example of a subpath set Fig. 3. An example of a common subpath
set

3.2 A Subpath Tree Kernel

Let us assume that we want to define a tree kernel K(T1, T2) between two trees
T1 and T2. By using the subpath set,we define our tree kernel as

K(T1, T2) =
∑
p∈S

w|p|num(T1p)num(T2p), (2)

where S is the subpath set of T1 and T2, |p| is the number of nodes included in a
subpath, and num(T1p) and num(T2p) are the numbers of a subpath p included
in T1 and T2, respectively. w|p| is the weight parameter introduced in Section 2.

Therefore, the proposed kernel defines its features as a subpath set, and takes
the inner product of two feature vectors with weights according to subpath
lengths. Figure 3 shows an example of a common subpath set of two trees.

3.3 An Efficient Algorithm for the Subpath Tree Kernel

Since the size of a subpath set of a tree T is O(|T |2) generally, naive computation
of the subpath tree kernel (2) costs O(|T |2)-computation time. In this subsec-
tion, we propose a more efficient algorithm by extending the multikey quicksort
algorithm [13].
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The basic idea behind our algorithm is to enumerate prefixes of common
suffixes of two trees, where a suffix of a tree is the string starting from a node
and ending at the root. For example, in Figure 2, the set of suffixes of the tree is
{A, BA, CA, DBA, EBA}. When the number of nodes in a tree is n, the number
of suffixes is also n.

Let us denote a suffix starting from node n1 by label(n1)label(n2)...label(nroot),
where label(m) denotes the label of node m and label(nroot) denotes the
root label. Let d be the number of nodes included in this suffix. We call
label(n1)label(n2)...label(nk) (k ≤ d) a prefix of suffix of n1. Noting that a sub-
path set is defined as the substrings of a path from the root to a leaf, prefixes of
all suffixes of a tree are identical to the set of (reversed) subpaths. Therefore, we
can compute the kernel (2) by enumerating all prefixes of common suffixes of two
trees.

Next, we describe an efficient way to enumerate all prefixes of common suf-
fixes of two trees. We extend the idea of the multikey quicksort algorithm [13],
which is a simple and efficient algorithm for sorting a set of strings. The multikey
quicksort algorithm resembles the general quicksort algorithm, but is different
from the quicksort in the following two points. (1) The multikey quicksort al-
phabetically compares labels in strings from their beginning to the end one by
one (not the whole strings). The comparison starts at the first labels, and pro-
ceed to the next position if sorting is not completed yet. (2) At each step of the
algorithm, the multikey quicksort sets a pivot, and divides the strings into three
groups by comparing the labels at the current position with the pivot.

The following is a brief description of the algorithm of the multikey quicksort.

1. Initialize the current position h as h := 1, and the current set S as the set
of all strings.

2. For strings included in the current set S,
(a) Choose one of the labels at the current position as a pivot at random.
(b) Compare the labels at the current position with the pivot label, and di-

vide the strings into three sets Ssmall, Slarge and Sequal, that are, strings
with the current position labels alphabetically larger than the pivot, ones
with smaller labels than the pivot, and the others (with the same labels
with the pivot label), respectively.

(c) Recursively apply Step 2 to each of Ssmall and Slarge by setting S :=
Ssmall or S := Slarge.

(d) Set h := h + 1.
(e) Remove strings with no labels at h from Sequal, and apply Step 2 to

Sequal by setting S := Sequal.

The multikey quicksort recursively divides the dataset by using pivots just as
the quicksort algorithm with incrementing the current position. If the number
of target strings is n, the multikey quicksort runs in O(nlogn) on average, and
O(n2) in the worst case.

Extending the idea of the multikey quicksort, the algorithm for computing
the proposed kernel function (2) between two trees T1 and T2 is described as
follows.
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1. Initialize the kernel function value k as k := 0, the current position h as
h := 1, and the current set S the set of all nodes in T1 and T2.

2. For nodes included in the current set S,
(a) Choose one of the node labels in S as a pivot at random.
(b) Compare the node labels in S with the pivot label, and divide the nodes

into three sets Ssmall, Slarge and Sequal, that are, nodes with labels alpha-
betically larger than the pivot, nodes with smaller labels than the pivot,
and the others (with the same labels with the pivot label), respectively.

(c) If Ssmall has at least one node from both of T1 and T2, apply Step 2 to
S := Ssmall.

(d) Apply Step 2(c) to Slarge.
(e) If Sequal has at least one node from both of T1 and T2, update k by using

k := k + whL(T1)L(T2)

where wh is the weight parameter, L(T1) and L(T2) are the number
of nodes in Sequal originated from T1 and T2, respectively. Otherwise,
exit from the current recursion. Set h := h + 1 and apply Step 2 to
S := parents(Sequal), where parents(Sequal) denotes the set of parent
nodes of Sequal.

The proposed algorithm recursively computes the kernel function in a bottom-up
manner. At each recursion of the algorithm, we recursively divide a current node
set into three non-overlapping sets just like the multikey quicksort. Therefore,
the time complexity of the algorithm is O((|T1|+ |T2|)log(|T1|+ |T2|)) on average
and O((|T1| + |T2|)2) in the worst case, which is more efficient the original tree
kernels. The time complexity is slightly worse than that of [1], but in practice,
our algorithm is more efficient than the linear-time kernel, which will be demon-
strated in the experimental section. Note that the pointers from nodes to parents
can be constructed in linear time by using the depth first search.

Figure 4 shows an illustration of how the algorithm works for the two trees
given in Figure 3. At the first step, the algorithm initializes the current position
h and the kernel function value k as h =: 1 and k := 0, respectively. It sets
the current set S as the union set of all nodes in T1 and T2. For example in
Figure 3, T1 : D indicates that S includes a node with label ‘D’ in T1. At Step
2(a), the algorithm chooses one of the node labels in S as a pivot at random. In
this example, let us assume that we choose B as the pivot label. Then in Step
2(b), we compare the labels in S with the pivot label, and divide the nodes in
the current set into three sets, Ssmall(= {T1 : A, T2 : A}), Sequal(= {T1 : B,
T2 : B}), and Slarge(= {T1 : D, T1 : E, T1 : C, T2 : C, T2 : E, T2 : D}). Finally,
the algorithm recursively calls itself for each of Ssmall and Slarge (at Step 2(c)
and Step 2(d)). As for Sequal, it updates k and h, and recursively applies the
algorithm for S := parents(Sequal) (at Step 2(e)).

This algorithm enumerates all of the prefixes of the common suffixes of two
trees, but it does not explicitly construct all of the suffixes in memory. The
memory required for the explicit construction is O(|T1|2 + |T2|2), which can not
achieve the time complexity of the proposed algorithm.
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Fig. 4. A flowchart of our proposed algorithm applied to the two trees in Figure 3

We can imagine that other efficient data structures such as the suffix tree of a
tree can be an option for efficient computation of the kernel. Several linear-time
construction algorithms of the suffix tree of a tree were proposed, e.g. by [15].
However, to apply it to the kernel computation, if one node has several children
with an identical label, we need to merge them to one node, which changes the
structure of the target tree and results in imprecise kernel values.

In addition to the practical efficiency of the proposed algorithm, another virtue
of the algorithm is its simpleness. This is contrast with the fact that efficient
implementations of the linear-time approaches using suffix arrays or suffix trees
are very complex.

4 Experiments

In this section, we demonstrate the performance of the proposed tree kernel for
binary classification tasks by using three datasets.

First, we compare the predictive performance of the proposed kernel (denoted
by ‘Subpath”) and the linear-time tree kernel [1] (denoted by ‘Vishwanathan’)
combined with the three weighting schemes [14], the constant weighting (CW),
the k-spectrum weighting (kSW) and the exponential weighting (EW) defined
in Eqs. (2) and (1). We also use the three baseline kernels based on similarity
measures proposed by Kailing et al. [16] (denoted by ‘Kailing’). In Kailing ker-
nels, each kernel is defined as the L1 distance of histograms of heights, degrees
or node labels. All of the performance results are evaluated in AUC measured
by using the 10-fold cross-validation.

Next, we compare the execution time of the proposed kernel (Subpath) to the
linear-time tree kernel (Vishwanathan). We use the the linear-time tree kernel
implemented by Teo and Vishwanathan [17]. We run all the experiments on
a Core2 Duo 2.00GHz Windows machine. In all of the experiments, we use
LIBSVM [18] as the SVM implementation.

4.1 An XML Classification Dataset

In this subsection, we show experimental results using an XML dataset. We
use the XML dataset provided by Zaki and Aggarwal [19]. The dataset collects
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Fig. 5. Results for the XML classification task. The performances were measured in
AUC with the 10-fold cross-validation.

the access behaviors of visitors within the Web site of some computer science
department during three weeks. The access behaviors of a particular visitor are
represented as an unordered tree. Each data is assigned either of two classes, ‘edu’
or ‘other’, where ‘edu’ means that the visitors came from educational domains
such as universities, while ‘other’ corresponds to visitors from the other domains.
The goal of this classification task is to discriminate visitors from ‘edu’ domain
and those from the other domains. Since the dataset includes many small trees,
we use only trees whose depths are more than 4. The size of the resultant dataset
is 3,183 (773 ‘edu’s and 2,410 ‘other’s).

We show the SVM classification results with the XML dataset in Figure 5.
For Subpath kernel and Vishwanathan with the three weighting schemes, the
constant weighting (CW), the k-spectrum weighting (kSW) and the exponen-
tial weighting (EW)2). The hyper-parameters are determined by using cross-
validation.

The AUCs of the Subpath kernels with two weighting schemes (CW and EW)
are higher than the Kailing kernel using node labels. Since the Kailing kernel
based on node labels does not consider tree structures at all, this result shows
that Subpath kernel can capture tree structures appropriately. Moreover, the
AUC of the Subpath kernel is the highest among all of the results. In contrast
to Subpath kernel, the AUCs of Vishwanathan kernel are lower than those of
the Kailing kernel. This is probably because the number of different node label
is very large in this XML dataset, and therefore subtrees are not appropriate as
features. According to the results, the proposed Subpath kernel performs well in
the XML classification task.

4.2 Glycan Classification Datasets

Next, we show experimental results on glycan classification, which is an impor-
tant task in bioinformatics. Glycans are carbohydrate chains, which are consid-
ered to play an important role in various fundamental biological processes such
as cell-cell interaction. The structure of a glycan is abstractly represented as a
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tree structure by representing carbohydrates as nodes and their covalent bonds
as edges. The glycan structure dataset used in the experiment was retrieved
from the KEGG/GLYCAN database [20], and the annotations were retrieved
from the CarbBank/CCSD database [21]. The tree structures obtained from the
glycan data include 29 distinct node labels, while all the edge labels are omitted
for simplicity. We evaluated the predictive performance of our tree kernels on the
following two sets of glycan data, leukemia and cystic fibrosis. In the leukemia
data set, the glycan structures annotated as leukemic cells were used as pos-
itive training examples, while those annotated as the other blood components
erythrocyte, serum, and plasma without leukemia were used as negative training
examples. The numbers of positive and negative data were respectively 191 and
289. In the cystic fibrosis data set, the glycan structures annotated as cystic
fibrosis (a lethal genetic disorder affecting mainly the lungs and respiratory sys-
tem) were used as positive training examples, while those annotated including
the substring bronch and respir without cystic fibrosis were used as negative
training examples. The numbers of positive and negative data were respectively
89 and 71.

For the cystic dataset, the overall trend in the results shown in Fig. 6 is
similar to that for the XML dataset. Subpath kernel outperforms Vishwanathan
kernel with any of the weighting schemes, which shows that a vertical path
is effective as features. Especially, the exponential weighting performs the best.
Vishwanathan kernel performs only slightly better than the Kailing kernel based
on label nodes, although the number of node label is not so large and the size of
trees is comparatively small in this dataset. This implies that subtrees are not
effective features for this dataset. For the leukemia dataset, Vishwanathan kernel
with the constant weight (CW) performs the best among all of the methods and
the subtrees are effective as features, but Subpath kernel outperforms the linear-
time kernel for the other two weighting schemes. From those results, we conclude
Subpath kernel is competitive with Vishwanathan kernel in glycan classification
tasks.
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Fig. 6. Results for the cystic data (left) and the leukemia data (right) in the glycan
classification task. The performances were measured in AUC with the 10-fold cross-
validation.
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4.3 Comparison of Execution Times of the Proposed Kernel and
the Linear-Time Tree Kernel

In the previous subsections 4.1 and 4.2, we demonstrated that the proposed
kernel (Subpath kernel) is competitive with the linear-time tree kernel (Vish-
wanathan kernel) in predictive performance by using real-world datasets. Here,
we compare the execution time of Subpath kernel to that of Vishwanathan ker-
nel on the three datasets. We calculated the gram matrices of the two kernels,
and measured the average computation times needed for a single evaluation of
a kernel function (by dividing the computation time of a whole gram matrix by
the number of elements in the gram matrix). Figure 7 shows the average times
of Subpath kernel and Vishwanathan kernel for the three datasets. The results
show that Subpath kernel is consistently faster than Vishwanathan kernel, which
means our kernel is quite efficient in practice despite of its worst case complexity.
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Fig. 7. Comparison of execution times of the proposed kernel and the linear-time kernel

5 Related Work

Since Haussler [5] introduced the framework of the convolution kernel, kernel
functions for various kind of discrete structures, for example, strings [22,23,24],
trees [6,7,1,8,10,9], and graphs [25,26] have been proposed.

The first tree kernel was proposed for parse trees by Collins and Duffy [6],
and then it was generalized for labeled ordered trees [7,8], syntactic trees [10],
and positional trees [9]. However, all of these kernels (explicitly or implicitly)
exploit edge order information at each node in their definitions or algorithms, and
therefore cannot be directly applied to unordered trees. For unordered trees, a
hardness result for tree kernels using general tree-structured features was shown
by Kashima [11]. Vishwanathan et al. [1] proposed an efficient linear-time kernel
based on subtrees.

Another approach to complex-structured data is to use the pattern min-
ing methods studied in the field of data mining [27,19]. They first enumerate
substructure-patterns that frequently appear in datasets, and construct explicit
feature vectors using the substructures. Since the number of substructures are
enormous, it is not usually possible to construct the feature vectors within poly-
nomial time, and various heuristic techniques for fast enumeration of substruc-
tures have been proposed.



A Subpath Kernel for Rooted Unordered Trees 73

6 Conclusion

In this paper, we proposed a new kernel for rooted labeled unordered trees based
on tree subpath sets, and an efficient algorithm for computing the kernel func-
tion. The proposed algorithm is based on the multikey quicksort algorithm [13],
and its computational complexity is O((|T1| + |T2|)log(|T1| + |T2|)) on average,
which is more efficient than the subgraph-based tree kernels using dynamic pro-
gramming. We performed experiments on classification tasks, XML classification
and glycan classification, and showed that the predictive accuracy of the pro-
posed kernel was competitive with the existing unordered tree kernel [1], and is
faster than the linear-time tree kernel in practice.

One of the possible future work is to further accelerate the proposed algo-
rithm so that its worst case complexity is linear. Another direction is to allow
mismatches of subpaths when computing the proposed kernels. To this goal, the
techniques used in the mismatch string kernel [24] should be incorporated into
the proposed algorithm.
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Abstract. Conventional dimensionality reduction algorithms such as
principle component analysis (PCA) and non-negative matrix factoriza-
tion (NMF) are unsupervised. Supervised probabilistic PCA (SPPCA)
can utilize label information. However, this information is usually treated
as regression targets rather than discrete nominal labels. We propose a
classification probabilistic PCA (CPPCA) which is an extension of prob-
abilistic PCA. Unlike SPPCA, the label class information is turned into
a class probabilistic function by using a sigmoidal function. As the pos-
terior distribution of latent variables are non-Gaussian, we use Laplace
approximation with Expectation Maximization (EM) to obtain the so-
lution. The formulation is applied to a domain adaptation classification
problem where the labeled training data and unlabeled test data come
from different but related domains. Experimental results show that the
proposed model has accuracy over conventional probabilistic PCA, SP-
PCA and its semi-supervised version. It has similar performance when
compared with popular dedicated algorithms for domain adaptation, the
structural correspondence learning (SCL) and its variants.

Keywords: dimensionality reduction, probabilistic PCA, domain adap-
tation, supervised projection.

1 Introduction

Many machine learning problems, such as image processing and text related min-
ing, involve high dimensional data. Such data are often inefficiently processed
in their original input spaces. The data can be projected to lower dimensional
spaces so that they can be processed more efficiently in terms of computational
time and space. Furthermore, hidden structures or features embedded in data
can also be revealed. For example, latent semantic analysis (LSA)[5] in docu-
ment analysis can capture synonymy information which is useful in document
retrieving.

Conventionally, dimensionality reduction is done with LSA, PCA [9], proba-
bilistic LSA [7], or probabilistic PCA [14]. These algorithms have two common
features: they are unsupervised and the derived low dimensional space is usually
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corresponding to the directions of the original input space where the attributes of
data have large variance. There are some other unsupervised approaches such as
non-negative matrix factorization (NMF) [11]. These are classical unsupervised
approaches in dimensionality reduction.

When label information of observations is available, dimensionality reduction
should be guided by label information so that a better low dimensional space can
be constructed to reflect this information. Linear discriminant analysis (LDA,
Fisher’s LDA) [13] can be used to produce a low dimensional space where the
intra-class compactness and inter-class separation are accounted. However, it
cannot incorporate unlabeled data in cases that labeled data are rare and ex-
pensive. Even semi-supervised LDA [3] is proposed to take the advantage of
unlabeled data by incorporating the unlabeled data to regularization of LDA,
this approach is still not suitable for applications such as domain adaptation
[2], [1] where intra-covariance of data of different domains are highly concerned
rather than inter-class separation or intra-class compactness considered in LDA.
Some other related work including [10] also consider supervised dimensionality
reduction from other perspectives.

Recently, supervised probabilistic PCA (SPPCA) [14] and its extension semi-
supervised probabilistic PCA (S2PPCA) [14] were proposed. In these approaches,
the observed data, including its target values, and the latent variables are usu-
ally assumed to be linear dependant (with isotropic Gaussian noise) and hence
the target values are treated as real values to be regressed. This assumption does
not match the classification problems where target values are discrete and the
loss should be the hinge loss. In this paper, we propose a classification proba-
bilistic PCA (CPPCA) in which the class labels of training data are transformed
to class conditional probabilities by using a sigmoidal function and thus hinge
loss is implicitly employed. The introduction of this nonlinear function causes
the model a little bit complex because the posterior probability distributions
of latent variables are no longer Gaussian and their exact derivation and fur-
ther processing are very difficult. We propose using Laplace approximation with
expectation maximization (EM) to approximate these posterior distributions.

One of the applications of CPPCA is to tackle domain adaptation problems.
Details will be given in Section 3. The rest of this paper is organized as following.
In Section 2, the original probabilistic PCA is briefly reviewed and then followed
by the formulation of CPPCA. Section 3 gives experimental results of CPPCA
when applied to a domain adaptation problem. Finally, conclusions are presented
in Section 4.

2 Classification Probabilistic PCA (CPPCA)

We follow the notation and style of [7] and [14], if possible, so that readers can
follow all the work easily. Consider NL labeled observations and NU unlabeled
observations denoted by M dimensional vectors {xn}NL+NU

n=1 , xn ∈ χ ⊂ RM .
Labels are binary values {0, 1}. Vectors of reduced dimensional space (i.e. vectors
of latent variables) are denoted by z ∈ Z ⊂ RK , a K dimensional space with
K < M .
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2.1 Probabilistic PCA (PPCA) Revisited

In PPCA, dimensionality reduction is unsupervised and each observation x is
generated as

x = Wxz + μx + εx , (1)

where Wx is a M×K matrix and μx ∈ RM . The vector z is Gaussian distributed
with zero mean and unit variance, z ∼ N (0, I). In (1), z plays as the vector
of latent variables and noise εx is assumed isotopic and Gaussian, i.e. εx ∼
N (0, σx

2I) in which the noise level depends on σx. The parameters of the model
thus are Ω = {Wx, μx, σ2

x}. The values of Ω are optimized corresponding to
the maximum log likelihood of all x which can be found by EM or computed
explicitly. We quote the EM approach here because this approach will be used
subsequently in later subsections. In the E-step, the posterior distribution of zn

is given by

zn|xn ∼ N (M−1WT
x (xn − μx), σ2

xM
−1) , (2)

where M = WT
x Wx + σ2

xI. Hence, the expectation of posterior distribution of
zn given xn is

< zn|xn >= M−1WT
x (xn − μx) , (3)

and the expectation < znzT
n |xn > can be obtained by

< znzT
n |xn >= σ2

xM
−1+ < zn|xn >< zn|xn >T , (4)

where < · > denotes the expectation operator over the posterior distribution of
zn.

For simplicity, < zn|xn > will be denoted by < zn > in the sequel, and it
is assumed that the observations xn have zero empirical mean, subtracting the
empirical mean if not. In the M-step, parameters in Ω are updated to

μ̃x = 0 , (5)

W̃x = XTZC−1 , (6)

and

σ̃2
x =

1
MN

[
Nu∑
n=1

‖ xn ‖2 +tr
(
W̃x

T
W̃xC

)
−2tr

(
W̃xZTX

)]
, (7)

where X = [x1, . . . ,xNu ]T , Z = [< z1 >, . . . , < zNu >]T , C =
∑Nu

n=1 < znzT
n >,

‖ · ‖ denotes the L2 norm, and tr(·) denotes the matrix trace. Iteration on EM
will eventually gives converged parameters.
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2.2 Classification Probabilistic PCA (CPPCA)

In this subsection, we consider the scenario that there are NL +NU observations
with the first NL are labeled with yi ∈ {0, 1} where i = 1, . . . , NL. In order to
incorporate the label information, the vector of latent variables zi not only be
responsible to the generation of the observations xi but also effect the discrete
values yi. For unlabeled observations, xj, where j = NL + 1, . . . , NL + NU , is
generated the same as that in the previously described PPCA. Since yi is discrete
while zi is real valued, we propose using the sigmoidal function to transform the
labels to class conditional probabilities p(yi = 1|zi), and p(yi = 0|zi) = 1−p(yi =
1|zi). As a result, the CPPCA generates x and y as follows.

x = Wxz + μx + εx , for all observations, (8)

p(y = 1|z) = φ(vTz) , for labeled observations, (9)

where εx ∼ N (0, σ2
xI), vT ∈ RK is the transpose of the parameter vector v of

the sigmoidal function

φ(t) =
1

1 + e−t
. (10)

Thus the parameters of the model described by (8) and (9) are Ω =
{Wx, μx,vT, σ2

x}. The conditional distribution of x given z is the same as that
in probabilistic PCA which is given by N (Wxz + μx, σ2

xI) and the prior of z is
also N (0, I). The posterior of z depends on x, and y if y is given. By applying
the Bayes’ theorem to the labeled observations,

p(zn|xn, yn) ∝ p(xn, yn|zn)p(zn), for n = 1, . . . , NL . (11)

From the model equations, x and y are independent given z, hence,

p(zn|xn, yn) ∝ p(xn|zn)p(yn|zn)p(zn) for n = 1, . . . , NL . (12)

For unlabeled observations,

p(zn|xn) ∝ p(xn|zn)p(zn) for n = NL + 1, . . . , NL + NU . (13)

By referring to (2), p(zn|xn) = N (μz|x, Σz|x), where

Σz|x =
[

1
σ2

x

WT
x Wx + I

]−1

, (14)

and

μz|x = Σz|x

[
1
σ2

x

WT
x (x − μx)

]
. (15)

On the other hand, finding p(zn|xn, yn) is not easy because p(yn|zn) is sigmoidal
and not Gaussian and hence p(zn|xn, yn) is not Gaussian. We propose using the
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Laplace approximation to approximate p(zn|xn, yn) as Gaussian. With this ap-
proach, the approximated Gaussian mean is given by the maximum a posteriori
(MAP) of the product of terms in the right hand side of (12) and the covariance
matrix is given by the negative inverse of the Hessian matrix at MAP.

Let L denotes the logarithm of the right hand side terms of (12). After
substituting (14) and (15) into L and dropping terms independent of zn, we
get

L(zn) = (logφ(vTzn))yn(log(1−φ(vTzn)))1−yn− 1
2
(zn − μz|x)TΣ−1

z|x(zn − μz|x).

(16)

Since the quadratic term (including the negative sign) in the above equation is
concave and logarithm of a sigmoidal function is concave as well, L is concave
and has a maximum. We use the Newton-Raphson method to find the maximum.
Gradient of L and the Hessian matrix are given by

∇L = (yn − φ(vTzn))vT −Σ−1
zn|x(z− μz|x) , and (17)

∇∇L = H−Σ−1
z|x , (18)

where
H = −φ(vTzn)(1 − φ(vTzn))vvT . (19)

The Newton-Raphson iteration equation is then

z(t+1)
n = z(t)

n − (H−Σ−1
z|x)

−1∇L . (20)

Having found the maximum posterior z∗n, the Laplace approximation to
p(zn|xn, yn) as Gaussian is given by

p(zn|xn, yn) ≈ N (zn
∗, (Σ−1

z|x −H)−1) . (21)

2.3 EM Learning for CPPCA

The parameters in Ω of CPPCA given by (8) and (9) can be learnt by EM. The
E-step involves in finding the posterior distribution of zn for each observation,
observations with and without labels. Since all posterior distributions are now
Gaussian, they can be identified by their own sufficient statistics, < zn > and
< znzT

n >. These sufficient statistics can be obtained from (14) and (15) for
unlabeled observations, and (21) for labeled observations.

< zn >=
{

zn
∗ for n = 1, . . . , NL

μzn|xn
for n = NL + 1, . . . , NL + NU

(22)
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< znzT
n >=

{
(Σ−1

z|x −H)−1+ < zn >< zn >T for n = 1, . . . , NL

Σzn|xn
+ < zn >< zn >T for n = NL + 1, . . . , NL + NU

(23)

In the M-step, parameters in Ω can be updated by maximizing the expectation
of the complete log likelihood < Ψ > over the posterior distribution of zn, given
by the following equation,

< Ψ >=
NL∑
n=1

∫ ∞

−∞
p(zn|xn, yn)log(p(zn)p(xn|zn)·

p(yn|zn))dzn +
NL+NU∑
n=NL+1

∫ ∞

−∞
p(zn|xn)·

log(p(zn)p(xn|zn))dzn

(24)

By setting partial derivative with respect to parameters Wx, μx, σ2
x in Ω to zero,

the following update equations are obtained.

μ̃x = 0 , (25)

W̃x = (XT
LZL + XT

UZU)(CL + CU)−1 , (26)

σ̃2
x =

1

MN

[
Nu∑
n=1

‖ xn ‖2 +tr
(
W̃x

T
W̃x(CL + CU)

)
− 2tr

(
W̃x(ZT

LXL + ZT
UXU)

)]
,

(27)

where CL,CU,ZL,ZU,XL,XU are defined as that in (7), noting for labeled
and unlabeled observations as indicated in the subscript. For updating vT in the
M-step, setting the derivative of < Ψ > with respect to vT to zero results in a
nonlinear equation in vT.

NL∑
n=1

(
yn − φ(vTzn)

)
zn = 0 . (28)

Again, this equation can be solved easily with Newton-Raphson method. The
Jacobian matrix J of left hand side of (28) is

J =
NL∑
n=1

−φ(vTzn)(1− φ(vTzn))znzT
n , (29)

and hence the iteration equation for vT is given by

vT(t+1) = vT(t) − J−1

[
NL∑
n=1

(
yn − φ(vTzn)

)
zn

]
(30)
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This EM iteration continues until the change of Ω between two consecutive EM
iterations below a user specified threshold. After the EM learning processes,
arrival of unseen unlabeled observation x̂ will be mapped to latent variable ẑ
having Gaussian distribution identified by (14) and (15). For an unseen labeled
observation (x̂, ŷ), ẑ is given by (21).

3 Experimental Results

In this section, we describe the application of the CPPCA to domain adaptation
of classification problems. Traditionally, many statistical learning algorithms as-
sume that training data and test data come from an identical and independent
distribution (iid). Unfortunately, this assumption is often inappropriate. Owing
to many factors, such as sampling techniques, time changes, etc., training data
and test data may have different statistical properties. In domain adaptation
problems, the difference is due to training data and test data coming from dif-
ferent but related domains. This problem is very common in natural language
processing. For example, we may have a large corpus from one domain and large
effort and resources has been spent on annotating it. We would like to use the
results to analyze corpora coming from other domains.

With training data and test data coming from different domains, learning a
classifier such as support vector machine (SVM) [4] with the training data and
classifying the test data may have degarded results. Sample re-weighting [15] is
one of the popular approaches for domain adaptation. For example, Huang [8]
found the weights for instances of samples by minimizing the maximum mean
discrepancy (MMD) [6]. This approach, however, cannot be directly applied to
high dimensional data with sparse attributes. Some attributes may appear only
in training data while some others appear only in test data and hence minimiz-
ing MMD is not effective. Another approach for this problem is to project both
training data and test data to a common feature structure [1] or a low dimen-
sional latent space followed by minimizing the MMD or embed this procedure
in finding the low dimensional space as proposed by Pan [12]. These two ap-
proaches actually assume that there is a common space where the discrepancy
of distributions of training and test data is minimized.

An intuitive approach for domain adaptation without minimizing MMD ex-
plicitly is to stack the training and test data together and then perform a prob-
abilistic PCA to find the common latent random variables that generate both
training and test data. Since now all the data are assumed to be generated from
one set of latent random variables, the MMD is automatically minimized in the
latent space formed by these variables. The success of this approach depends
on whether the stacked data can be represented by these random variables with
low error. For domain adaptation of classification task, class labels are usually
available. This information can be incorporated by the proposed CPPCA rather
than probabilistic PCA so that the low dimensional space found is prevalent to
the task. We tested this approach with some experiments. Owing to the limited
space, we report the one having larger scale.
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3.1 Product Review Adaptation Experiment

This experiment deals with an Amazon product review dataset1 [1] of four dif-
ferent types of products: books, DVDs, electronic appliances, and kitchen ap-
pliances. Each review has a rating, 0 - 5 stars, given by a reviewer. In the
experiment, reviews with more than three stars were labeled as positive reviews
and those with less than three stars were regarded as negative reviews. Three
stars reviews were discarded because their sentiments were ambiguous. Unigram
and bigram features were used to form the bag-of-words representation. Since,
there were over a million of features, we simply removed less frequent words and
then removed reviews with zero words so that 5834 features were left. Table 1
gives a brief summary for this dataset.

Table 1. Summary of the Amazon product review dataset

Books DVDs Electronic Kitchen
appliances appliances

Number of unlabeled patterns 4445 3555 5677 5936
Number of labeled patterns 1992 1992 1998 1992

In order to compare our results with that of Blitzer et al. [1], we followed
their experimental setup. For each domain, 1600 labeled patterns were selected
as the training set, and the rest, about 400 labeled patterns, formed the test
set. The label information of the test set was solely used for accuracy evalua-
tion and would not be used by any algorithms. The test set and the unlabeled
patterns of the domain would be mixed to form the unlabeled set. The goal of
the experiment was to try to use the training set of one domain to predict the
labels of the test sets of other domains as accurately as possible. For example, in
a domain adaptation of Books domain to DVDs domain, 1600 labeled patterns
of book reviews formed the labeled training set. All the unlabeled patterns of
book reviews (i.e. 4445 book patterns) were mixed with 392 labeled patterns of
DVDs to form the unlabeled set and the task was try to predict the labels of
these 392 DVDs patterns accurately. The first part of this experiment is to study
the performance of in-domain classification, both the training set and test set
coming from the same domain. The data was firstly projected to a 100 dimen-
sional space with different projection algorithms and followed by classification
done with a logistic classifier. The baseline was the accuracy obtained with a
logistic classifier working on the original input space. Results are illustrated in
Table 2. Classification accuracies shown in the table are the means obtained with
five-fold cross-validation.

The results in Table 2 show that classification of the dataset in a projected
lower dimensional space has some accuracy loss, compared to the baseline logis-
tic classifier. PPCA and S2PPCA have nearly the same results indicating that
the label information of the training set is not properly exploited by S2PPCA.
1 The dataset can be found at http://www.cs.jhu.edu/ mdredze/datasets/sentiment/
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Table 2. In-domain classification accuracy of the Amazon product review dataset

Logistic classifier PPCA + S2PPCA + CPPCA +
Domains (baseline) Logistic classifier Logistic classifier Logistic classifier

Books 0.80 0.80 0.79 0.82
DVDs 0.82 0.79 0.80 0.83

Electronic appliances 0.84 0.82 0.82 0.83
Kitchen appliances 0.88 0.85 0.84 0.88

On the other hand, CPPCA has better performance because the hinge loss is
used. CPPCA has accuracy similar to the baseline logistic classifier. This implies
almost all the required classification information is preserved during projections.
For the Books domain and DVDs domain, CPPCA even has better accuracy.
This is possible because there are additional unlabeled patterns involved in the
projections with CPPCA.

The second part of the experiment is concerned with domain adaptation,
training set and test set coming from different domains. The results are shown
in Figure 1 and 2. In these figures, the thick horizonal line indicates the accuracy
of in-domain classification for reference. The name of domains are abbreviated
as “B” for Books, “D” for DVDs, “E” for Electronic appliances, and “K” for
Kitchen appliances. Moreover, “B → D” means domain adaptation from the
Books domain to the DVDs domain, and so on.

From the figures, projection with PPCA and S2PPCA followed by logistic clas-
sification has only little advantage over classification in the original input space.
CPPCA works better. Comparing with the baseline classification, domain adap-
tation with CPPCA has significant improvements, about 0.03-0.06 increase in
accuracy, for D→B, E→B, E→D and B→E. Overall average increase in accu-
racy is 0.022. Although the average improvement seems small, the performance
of CPPCA is not bad. Firstly, the Kitchen appliances domain and the Electronic

in−domain: 0.824

0.804in−domain:

Fig. 1. Classification accuracy of domain adaptation. Left: from other domains to
Books (B), right: from other domains to DVDs (D).
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Fig. 2. Classification accuracy of domain adaptation. Left: from other domains to Elec-
tronic appliances (E), right: from other domains to Kitchen appliances (K).

appliances domain are very close to each other. It is because many appliances in a
kitchen are electronic appliances. As a result, classification accuracy of K→E and
E→K are quite close to the in-domain accuracy even no domain adaptation. The
Books domain and the DVDs domain are also believed to be close to each other.

Finally, we compare our CPPCA results with the quoted results of Blitzer’s
work [1], which employed the structural correspondence learning (SCL) [2] do-
main adaptation algorithm and its variant SCL-MI. Since SCL and SCL-MI used
both the attributes of projected spaces and attributes of the original space, we
augmented our CPPCA projected patterns with the original input attributes for
fairness. The results are illustrated in Figure 3 and 4.

Comparing to baseline accuracy, the average improvements are 0.023, 0.035,
and 0.029 for SCL, SCL-MI, and augmented CPPCA, respectively. The accuracy
of SCL-MI for K→E exceeds in-domain accuracy because unlabeled patterns

in−domain : 0.804

in−domain : 0.824

Fig. 3. Classification accuracy of domain adaptation. Left: from other domains to
Books (B), right: from other domains to DVDs (D).
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in-domain: 0.844

Fig. 4. Classification accuracy of domain adaptation. Left: from other domains to Elec-
tronic appliances (E), right: from other domains to Kitchen appliances (K).

were used in SCL-MI while they were ignored in in-domain classification. By
comparing the results of CPPCA in Figure 1 and 2 and augmented CPPCA in
Figure 3 and 4, it can be seen that augmented CPPCA has average accuracy
gain 0.007 only. This shows that CPPCA preserves almost all useful information
in projection, and augmenting the original input attributes to it does not benefit
much. As a result, CPPCA is very suitable for dimensionality reduction in cases
that maintaining classification accuracy is important. In above experiments, we
only projected the patterns to 100 dimensional spaces. It is because the perfor-
mance of CPPCA for this dataset is quite stable when the projected dimension
is above 100.

4 Conclusions

Many data mining problems are high dimensional. Projecting the data to a
much lower dimensional space enables the saving of temporal and spatial cost.
Classical unsupervised dimensionality reduction algorithms such as PPCA and
NMF cannot utilize label information dimensionality reduction. In this paper,
we propose CPPCA to incorporate discrete label information of a classification
task in deriving a low dimensional projected space. By stacking the training data
and test data followed by using CPPCA, domain adaptation can be achieved at
low dimensional latent spaces. Experimental results show that this approach has
performance advantage over PPCA and S2PPCA in terms of accuracy. In-domain
experiments also show that nearly all useful classification information can be
preserved during projection with CPPCA. Finally, we would like to mention that
domain adaptation is not the only application for CPPCA. It can be applied to
other problems where PPCA can be applied.
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Abstract. The clustering of the semantic relations between entities ex-
tracted from a corpus is one of the main issues in unsupervised relation
extraction (URE). Previous methods assume a huge corpus because they
have utilized frequently appearing entity pairs in the corpus. In this pa-
per, we present a URE that works well for a small corpus by using word
sequences extracted as relations. The feature vectors of the word se-
quences are extremely sparse. To deal with the sparseness problem, we
take the two approaches: dimension reduction and leveraging context
in the whole corpus including sentences from which no relations are ex-
tracted. The context in this case is captured with feature co-occurrences,
which indicate appearances of two features in a single sentence. The ap-
proaches are implemented by a probabilistic matrix factorization that
jointly factorizes the matrix of the feature vectors and the matrix of
the feature co-occurrences. Experimental results show that our method
outperforms previously proposed methods.

Keywords: Unsupervised Relation Extraction, Probabilistic Matrix
Factorization, Dimension Reduction.

1 Introduction

Extracting semantic relations between entities from texts is one of the main
tasks in text mining, and the unsupervised approach can find unknown relations
without human input and is widely applicable to new domains. Unsupervised re-
lation extraction (URE) can be viewed as a combination of two steps: extracting
relational tuples from texts, and clustering those that have synonymous rela-
tions. (The tuples consist of two entities and a word sequence that indicate the
relation between them.) This clustering step involves the main issue of URE.
The tuples that mean “collaboration between two musicians M1 and M2”, for
example, are described with different word sequences, such as (M1, collaborated
with, M2), (M1, worked alongside, M2) or (M1, partnered with, M2). We want
to cluster such tuples into a single cluster which indicates the “collaboration”
relation.

In existing URE methods [5,8,14] synonymous tuples are found by looking for
tuples having the same pair of entities. Tuples with the same entity pair, however,
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do not necessarily have the same meaning. Moreover, multiple appearances of
the same entity pair are so rare in a target corpus that the exiting methods need
a huge amount of corpus data (in [14], e.g., 2.1 million tuples) and the extracted
relations tend to be general. These methods are thus not suitable when we are
interested in a specific domain, such as a long tail one or a technical one in which
a relatively small amount of text is available, and want to extract domain-specific
relations.

We have therefore developed a URE that works well for a small specific corpus
in which almost all the entity pairs of tuples appear only once. Our URE doesn’t
use the frequently appearing entity pairs used by the existing URE methods. We
extract features of the tuples mainly from the word sequences. Because only a few
features are extracted from the word sequence, however, we have sparse feature
vectors with elements that are mostly zeros. It is widely known that clustering
sparse vectors does not work well.

Our approach to the sparseness is dimension reduction, which projects the
original feature vectors in a high-dimensional space to compressed feature vectors
in a lower-dimensional space and consequently mitigates the sparseness. Directly
applying a standard dimension reduction such as Latent Semantic Indexing (LSI)
[3] to feature vectors of tuples does not work well, however, because the feature
vectors of tuples are sparser than those of targets that often used in natural
language processing (e.g., documents).

Our solution is to leverage contexts in the whole corpus together with dimen-
sion reduction. Unlike existing URE methods, our URE utilizes the sentences
from which a tuple is not extracted. A part of features are extracted from words,
and the features appear not only in tuples but in contexts of such sentences. The
contexts have information on meanings of such features [4] and thus help to esti-
mate the compressed feature vectors that represent meanings of the tuples. The
contexts in this case are captured with feature co-occurrences, which indicate
that two features appear in a single sentence, and are leveraged by a probabilis-
tic matrix factorization (PMF) that jointly factorizes the feature vector matrix
(each row of which is the feature vector) and the feature co-occurrence matrix
(each element of which is the frequency of feature co-occurrences). A part of
estimated parameters of the PMF are used as the compressed feature vectors.
We call this PMF context-leveraged PMF (CL-PMF) and experimentally show
that the feature vectors compressed by CL-PMF are clustered with higher purity
than those compressed by existing dimension-reduction methods.

2 Related Work

Our dimension reduction with matrix factorization is related to LSI [3], which
uses singular value decomposition (SVD) to factorize a document-term matrix
into low rank matrices and obtains a low-rank approximation. The row vector
of the left/right singular matrix represents a latent concept (a large portion of
information) of the corresponding document/term and is therefore used as its
compressed vector in the low-dimensional space. Analysis tasks such as document
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clustering and word sense disambiguation can be performed with the compressed
vectors.

Dimension-reduction methods for semantic relations between entities were
proposed in [13]. In that work, entities (assumed to be general nouns) were
extended with a thesaurus and queried to a search engine to gather features.
The resultant feature vectors are compressed with LSI. This work shows the
effectiveness of a dimension reduction. The method uses rich linguistic resources
not expected in a specific domain, whereas our method uses the feature co-
occurrences in the target corpus, which are naturally obtained.

Word sense disambiguation using word co-occurrences was proposed in [11].
Each element of a word co-occurrence matrix is the frequency with which two
words appear in a single sentence in a corpus. The similarities between meanings
of words can be calculated with the corresponding row vectors of the matrix. The
vectors are compressed with LSI, and the compressed vector, which represents
the latent concept of the word, is used for the word sense disambiguation. In a
similar way, CL-PMF uses a feature co-occurrence matrix to estimate the latent
concepts of features (this is explained in Section 3.3.1).

Joint matrix factorizations related to CL-PMF are the link-content matrix
factorization using link information for Web page classification [15] and the joint
matrix factorization used with collaborative filtering using social connections to
make recommendations [6]. While these methods model two matrices of the same
size, in our model one matrix is bigger than the other. As explained in Section
3.3.2, this size difference plays an important role to exploit kinds of features that
appear not in extracted tuples but in the target corpus. In addition, we introduce
a full Bayesian approach, which are reported to boost the performance of matrix
factorization [10].

3 Unsupervised Relation Extraction

The outline of our URE is as follows: First we discover relations from texts and
extract relational tuples (Section 3.1). Then we extract features from the tuples
and construct the feature vectors (Section 3.2). We then use CL-PMF to com-
press the feature vectors into a low-dimensional space (Section 3.3). Finally, we
use a conventional clustering method to cluster the compressed feature vectors.

3.1 Relation Discovery

The relations that we want to extract take the form of a tuple t = (e1, s, e2),
where e1 and e2 indicate entities, and s is a word sequence that indicates the
relation between them. The following process for extracting tuples was inspired
by the full-scale relation extraction in [1,2].

The sentences in the target corpus are first parsed with a dependency parser
to obtain their dependency graph representations. For the parsed sentences, the
system finds all the named entities, which are used as entities, e1 or e2. When
a sentence contains more than two entities, the system detects the dependency
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path (path of the dependency graph) connecting two entities. The system then
extracts tuples when the dependency path from e1 to e2 does not contain a
sentence-like boundary, such as a relative clause, and the number of words be-
tween e1 and e2 is less than 10. The word sequence s is extracted as the part of
the sentence based on the parse structure between e1 and e2. Two examples of
extracted tuples are (Sasha Allen, has also toured with, Alicia Keys) and (Kings
Cross, shared the stage with, Kasabian).

3.2 Feature Extraction

The following three kinds of features are extracted from a tuple.

Unigram Feature: A unigram feature, which is extracted from a word, is a
pair consisting of the word’s stemmed form and part of speech. We extract
this feature from each word in the word sequence s. The unigram features of
stop words (common words that are filtered out prior to a processing) on the
dependency path from e1 to e2 are used to capture the word’s impact (e.g.,
“studied” and “studied at”), and stop words not on the path are filtered out.

Bigram Feature: A bigram feature is a conjunction of the two unigram features
alongside the dependency path from e1 to e2.

Entity Tag Feature: An entity tag feature consists of named entity tags for
the two entities. The tags are tagged by a named entity tagger. The used tags
are PERSON, LOCATION, and ORGANIZATION.

We use a vector space model to represent a tuple with these features. An
element of a feature vector is a frequency of the corresponding feature, and a
large number of kinds of features are extracted from tuples in a target corpus.
The feature vector of a tuple is therefore high-dimensional and sparse.

3.3 CL-PMF for Dimension Reduction

Here we first present an intuitive description of CL-PMF. Then we define a
feature co-occurrence matrix, describe CL-PMF, and describe its inference.

3.3.1 Intuitive Description of CL-PMF
Let X = {xij ; i = 1, . . . , N, j = 1, . . . , M} be a feature vector matrix, where the
row vector xi ∈ RM corresponds to the feature vector of the i-th tuple, N is the
number of tuples, and M is the number of kinds of features for X. Under the
assumptions of linear transform, dimension reduction can be expressed as the
matrix factorization,

X ≈ UT V, (1)

where we define D(D < M) as the number of dimensions of a low dimensional
space, U is the D×N matrix in which the column Ui ∈ RD corresponds to the
compressed feature vector of the i-th tuple, and V is the D×N matrix in which
the column Vj ∈ RD corresponds to the compressed vector representing the
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latent concept of the j-th kind of feature. This matrix factorization represents a
low rank approximation like LSI. In our task, matrix U and matrix V are not
well estimated because the feature vector matrix X is sparse in that each row xi

is sparse as explained in Section 3.2 and the number of the rows of X (i.e., the
number of feature vectors) is small because the appearances of tuples are not
frequent in a small corpus.

To resolve the shortage of the feature vectors we utilize the contexts of all
sentences in the corpus. We use a feature vector matrix of sentences Xs, where
each row is the feature vector of each sentence in the corpus. The features of a
sentence are unigram features extracted from words in the sentence. Note that
the unigram features used in X is also used in Xs. Consider the following matrix
factorization:

Xs ≈ UT
s Vs, (2)

where Us and Vs are defined in the same way as they are in Eq. (1). In this
case, Vs is well estimated because we have an enough number of the sentences.
Now, we regard a tuple as a short sentence and use Vs, which represents the
latent concepts of features estimated by the sentences, for the tuples. To utilize
Vs for V, we combine the two matrix factorizations by sharing the columns
corresponding to the same unigram features in V and Vs. However, we don’t
need Us in Eq. (2). For a compact parameter representation, we calculate as
follows:

XT
s Xs ≈

(
UT

s Vs

)T
UT

s Vs = VT
s

(
UT

s Us

)
Vs = VT

s Vs, (3)

where we assume UT
s Us = I (I is the identity matrix), using a freedom of the

matrix factorization in Eq. (2) and for example, SVD meets the assumption.
We use XT

s Xs instead of Xs and consequently we do not have to consider Us.
XT

s Xs is a feature co-occurrence matrix, where each element is a frequency of
corresponding feature co-occurrences. We combine the two matrix factorizations
in Eq. (1) and Eq. (3). Since the shared columns of V are well estimated, we
expect U and the rest of V (i.e., the columns of bigram features and entity tag
features) to be well estimated, too.

3.3.2 Feature Co-occurrence Matrix
We incorporate bigram features and entity tag features in XT

s Xs and define
the feature co-occurrence matrix F = {fjk; j = 1, . . . , L, k = 1, . . . , L}, where
L(L ≥ M) is the number of kinds of features for F. F is a symmetric matrix
and both rows and columns of F correspond to kinds of features. The first M
kinds of features of F are same as those of X and the rest kinds of features
correspond to kinds of unigram features not in any of tuples (i.e., kinds of uni-
gram features not used in X, but used in XT

s Xs). Note that L is greater than
M because to capture the contexts in the whole corpus, we additionally use new
kinds of unigram features not in any of the tuples. An element corresponding to
two unigram features describes a frequency with which the two unigram features
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Fig. 1. Graphical model of CL-PMF

appear in a single sentence. For the count, all the sentences in the target corpus
are used. Elements not corresponding to two unigram features (i.e., elements
related to bigram features and entity tag features) are set at zero. The size
of V is increased to L with the increase of kinds of features. Here are some
samples of the feature co-occurrences that extracted from the sentence “Spector
had recently produced his solo single”: (had/VB, recent/NN), (had/VB, produc
/VB), (solo/JJ, singl/NN).

We apply the weighting function W (x) = log(1 + x) [7] to the values of the
elements of the data matrices, X and F.

3.3.3 Context-Leveraged PMF
CL-PMF models the combination of the matrix factorizations in Eq. (1) and
Eq.(3). CL-PMF is a probabilistic model over observed elements in X and F
with Gaussian observation noise. A zero value in the matrices is interpreted to
be un-observed. We use a full Bayesian approach [10].

CL-PMF is given by:

p(X,F|U,V, αX , αF)=
N∏

i=1

M∏
j=1

[p(xij |Ui,Vj , αX)]I
X
ij

L∏
j=1

L∏
k=1

[p(fjk|Vj ,Vk, αF)]I
F
jk,

p (xij |Ui,Vj , αX) = N
(
xij |UT

i Vj , αX

)
,

p (fjk|Vj ,Vk, αF ) = N
(
fjk|VT

j Vk, αF

)
,

where IX
ij is the indicator variable of X which is equal to 1 if an element xij is

observed and is equal to 0 otherwise, IF
jk is the indicator valuable of F, N(x|μ, α)

denotes the Gaussian distribution with mean μ and precision (inverse of variance)
α, αX is the precision of all the elements of X, and αF is the precision of all
the elements of F. The graphical model for CL-PMF is shown in Fig. 1. Both
X and F are conditioned on V. This corresponds to the share of V between the
two matrix factorizations explained in Section 3.3.1.
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The prior distributions are as follows:

p (U|μU ,AU ) =
N∏

i=1

p (Ui|μU ,AU ) and p (Ui|μU ,AU ) = N (Ui|μU ,AU ) ,

p (αX |kX , θX) = Gam (αX |kX , θX) ,

where μU and AU are the mean and the precision of the Gaussian distribution
and Gam(x|k, θ)denotes the Gamma distribution with shape parameter k and
scale parameter θ. Because of the symmetry of the model, the prior distribution
of V is identical to that of U. The prior of αF is same as the prior of αX . These
priors are conjugate priors for the model described above.

Given the data and the prior distributions, we can now write the posterior
distribution, which is the distribution of parameters conditioned on observed
data and hyper parameters. The posterior distribution is given by

p (U,V, αX , αF , |X,F,Ψ) ∝ p (U,V, αX , αF |Ψ) p (X,F|U,V, αX , αF ) ,

where Ψ = {μU , μV ,AU ,AV , kX , kF , θX , θF } is the set of hyper parameters of
the prior distributions. We use the expectation of Ui over the posterior distri-
bution as the compressed feature vector of the i-th tuple.

3.3.4 Inference
We use Gibbs sampling for inferring the parameters. Gibbs sampling cycles
through the parameters, sampling each from its distribution conditioned on the
current values of the other parameters. Because of the use of conjugate priors
for the parameters, the posterior distributions are easy to sample from.

First, the posterior over parameter U is given. Each Ui is conditionally inde-
pendent. The posterior distribution over Ui is given by:

p (Ui|X,V, αX , μU ,AU ) = N
(
Ui|μ∗

Ui
,A∗

Ui

)
,

where

μ∗
Ui

=
[
A∗

Ui

]−1

⎛⎝αX

M∑
j=1

IX
ij [xijVj ] + AUμU

⎞⎠
A∗

Ui
= AU + αX

M∑
j=1

IX
ij

[
VjVT

j

]
.

Next, the posterior distribution of Vj is as follows:

p (Vj |X,F,U,V−j , αX , αF , μV ,AV ) = N
(
Vj |μ∗

Vj
,A∗

Vj

)
, (4)
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where

μ∗
Vj

=
[
A∗

Vj

]−1

⎛⎝αF

L∑
k=1,k �=j

IF
jk [fjkVk] + αX

N∑
i=1

IX
ij [xijUi] + AV μV

⎞⎠
A∗

Vj
= AV + αF

L∑
k=1,k �=j

IF
jk

[
VkVT

k

]
+ αX

N∑
i=1

IX
ij

[
UiUT

i

]
.

Here V−j = {Vk|k = j} and IX
ij is extended in such a way that it is equal to 0

if i or j exceeds the size of the matrix.
Next, we present the posterior distributions over the precisions of the data:

p (αX |X,U,V, kX , θX) = Gam (αX |k∗
X , θ∗X) ,

where

k∗
X = kX +

1
2

N∑
i=1

M∑
j=1

IX
ij and θ∗X = θX +

1
2

N∑
i=1

M∑
j=1

IX
ij

(
xij −UT

i Vj

)2
,

and

p (αF |F,V, kF , θF ) = Gam (αF |k∗
F , θ∗F ) ,

where

k∗
F = kF +

1
2

L∑
j=1

L∑
k=1

IF
jk and θ∗F = θF +

1
2

L∑
j=1

L∑
k=1

IF
jk

(
fjk −VT

j Vk

)2
.

That completes our presentation of the Gibbs sampling algorithm for CL-PMF.

4 Experiments

We examined the performance of CL-PMF, and compared it with the perfor-
mance of existing dimension-reduction methods, by measuring the performance
for the clustering of the compressed feature vectors. We assume that the better
a dimension-reduction method compressed the feature vector, the better clusters
are obtained with the compressed vectors. We used k-means clustering and used
cosine similarity to measure the distance between two vectors. Since clustering
performance depends on the number of clusters K, we ran k-means, varying the
cluster number K.

In our experiments, we didn’t directly cluster the tuples but instead defined
the sequence of words on the dependency path from e1 to e2 as a relevant word
sequence and clustered the relevant word sequences. We assume that the tuples
sharing a relevant word sequence express a same relation. A feature vector of a
relevant word sequence is the sum of the feature vectors of the tuples having the
relevant word sequence.
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Table 1. Descriptions of the datasets. N ,
M , and L are defined in Section 3.3, and
nonzero is the average number of nonzero
values in the feature vectors.

SENT500 “Musicians” “Companies”

N 328 2,159 861

M 297 4,754 4,548

L 7,750 24,955 21,852

nonzero 4.8 7.3 6.6

Table 2. Labels for “Musicians”
and “Companies”

“Musicians” “Companies”

collaboration acquisition
appearance (TV) location

tour (place) part of
sign partner

release listing
member production
reference headquarter

win (award) establishment
tour with investment
birthplace kind

4.1 Annotated Corpus

We performed clustering on three datasets: the published dataset SENT500 [2], a
set of articles from the “Musicians” category in Wikipedia, and a set of articles
from the “Companies” category in Wikipedia. Because there’re few published
dataset for our task, we manually built the second and the third dataset. The
sizes of the datasets are shown in Table 1. Our target corpus is a small specific
corpus in which almost all the entity pairs of tuples appear once, and each of
the datasets from Wikipedia is such a corpus. In the “Musicians”/“Companies”
dataset, the 98.6%/98.8% of the entity pairs appear once.

SENT500: The dataset consists of 500 sentences. Each sentence has an identi-
fied entity pair in one of the four relations: “acquisition”, “birthplace”, “inven-
tor”, “win (award)” 1. The four relations are used as the gold standard. From
SENT500 we obtained 328 relevant word sequences. Because we don’t have an
original corpus from which the sentences in SENT500 have extracted, we don’t
have enough sentences to gather feature co-occurrences. We used the sentences
in the Wikipedia articles corresponding to the 50 entities identified in SENT500.
(SENT500 includes the 50 unique entities and we used all of them.)

“Musicians” and “Companies”: We applied the relation discovery method
described in Section 3.1 to the Wikipedia articles in the “Musicians” category
and the “Companies” category for evaluation in a realistic situation. In the case
of the Wikipedia articles, one entity of a pair must be the title of an article,
and the other needs to be an anchor text that links to another article and start
with a capital letter. The relevant word sequences from both categories were
labeled by hand for evaluation of clustering. For each dataset we prepared 10

1 SENT500 actually has no labels of relations. We labeled the dataset with the four
relations. The labels are available at
http://www.r.dl.itc.u-tokyo.ac.jp/~takamatsu/SENT500Label

http://www.r.dl.itc.u-tokyo.ac.jp/~takamatsu/SENT500Label
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labels of relations likely to have a large number of relevant word sequences in
each corpus. We then labeled the relevant word sequences in one of the 10 labels.
The labels differed between “Musicians” and “Companies.” The used labels are
shown Table 2. Because of the limited availability of space, we omit the definition
of the labels. In the “Musicians“/“Companies” category we used the 4,997/4,063
articles and labeled 2,159/861 relevant word sequences.

4.2 Evaluation

We used as a measure of clustering performance the purity defined as follows:

purity =
∑

c Nmost
c∑

c Nc
,

where Nmost
c is the number of elements of the label that is most frequent in

cluster c, Nc is the number of elements in cluster c, and the summation is over
all the clusters. High purity in a small number of clusters indicates a good
clustering performance. Our goal is to obtain a small number of clusters with
high purity.

4.3 Methods

We used the following (compressed) feature vectors for input of k-means:

Raw Feature Vector (RFV): We used the raw feature vector xi as a baseline
and used the weighting function W (x). The URE proposed in [5] employs this
method.

Second-Order Feature Vector (2ndOrder): The feature vector was con-
structed by integrating the feature co-occurrence matrix in the feature vec-
tor xi [12]. The feature vector x′

i = (x′
ij ; j = 1, . . . , L) is defined as x′

ij =
IX
ij xij +

∑M
k=1 xikfkj . The feature vectors have information on the feature co-

occurrence matrix F. We applied W (x) to each element of the feature vector x′
i.

LSI: LSI inputs the feature vector matrix X and outputs the row vectors of the
left singular matrix corresponding to the top D singular values. These row vec-
tors are used as the compressed feature vectors.

PMF: We applied the standard PMF [9] to the feature vector matrix X and
used the expectation of Ui over the posterior as the compressed feature vector.

CL-PMF: We chose the prior distributions for U and V with zero mean,
μU = μV = 0, and precision matrix, AU = AV = aI. The value of a deter-
mined by the experimental optimization was 15 for SENT500 and was 60 for
“Musicians” and “Companies”. We discuss the value of the precision a in Sec-
tion 4.5. For the prior distributions of αX and αF we set kX = kF = 1 and
θX = θF = 1.

The dimension-reduction methods described above input the feature vectors
of the relevant word sequences including unlabeled ones, while we use labeled
ones for clustering. We set D to 8 for SENT500, and to 20 for “Musicians” and
“Companies”. We discuss the value of D in Section 4.5.
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Fig. 2. Purities for the three data sets. The standard errors of the CL-PMF in the true
K were 0.004 for SENT500, 0.015 for “Musicians” and 0.014 for “Companies.”

4.4 Results and Discussion

In Fig. 2 the purities obtained with each of the methods are, for each dataset,
plotted against the number of clusters. CL-PMF achieves the highest purity for
each dataset and for each number of clusters. Note that CL-PMF outperforms
others in a small number of clusters. The performances of LSI and PMF are infe-
rior to or not far superior to those of RFV. This implies that a direct application
of a standard dimension-reduction method doesn’t work with the sparse feature
vectors of the tuples, whereas CL-PMF works well because it uses the informa-
tion of the feature co-occurrences in the entire corpus. CL-PMF performs better
than 2ndOrder, which also utilizes the information of the feature co-occurrences.
2ndOrder is inferior to RFV because 2ndOrder is believed to be suffered from
noise. CL-PMF leverages the feature co-occurrences better than 2ndOrder by
introducing the compressed feature vectors U and assuming observation noise.

The purities of the CL-PMF are not relatively high in the large numbers
of clusters in SENT500, where the clustering problem is so simple that RFV
performs well. The feature co-occurrences are believed to have information for
estimating the compressed feature vectors but also contain noise. In this simple
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Fig. 3. The left panel shows purity as a fuction of D (when a = 60). The right panel
shows purity as a function of a (when D = 20).

situation, the feature co-occurrences can become noise rather than a help for the
estimation.

4.5 Parameters for CL-PMF

We performed experiments to see how the clustering was affected by the di-
mension D of the compressed feature vectors and the precision a of the prior
distribution, using the “Musicians” dataset and setting K to 10.

The left panel in Fig. 3 shows that the purity peaks as the dimension D
increases. The number of the dimension is believed to indicate the granular-
ity of the semantic information. A small D prevents CL-PMF from capturing
sufficient detail for accurate clustering. On the other hand, a large D causes over-
estimation, or excessive noise adaptation. The full Bayesian approach mitigates
that.

The right panel in Fig. 3 shows a high value for the precision of the prior
distributions, a, performs better than a low value. The prior distribution that
has a high value of the precision keeps the compressed vectors Ui around the zero
mean of the prior. This heavily takes into account their directions rather than
their lengths when the compressed feature vectors are estimated. The similarities
between the compressed vectors are measured well by the cosine similarity that
we employed.

5 Conclusion

In this paper we have proposed CL-PMF for URE. CL-PMF compresses dimen-
sions of sparse feature vectors of relational tuples, utilizing feature co-occurrences
in the whole corpus including sentences where tuples are not extracted. Since
our method doesn’t assume the redundancy extracted from a huge amount of
corpus, it works well for a small corpus such as that of a long tail domain.
The experimental results show that the dimension reduction with CL-PMF is
more effective for clustering of the sparse feature vectors of tuples than existing
dimension-reduction methods and baseline methods.
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Abstract. Semi-supervised learning has attracted much attention over
the past decade because it provides the advantage of combining unlabeled
data with labeled data to improve the learning capability of models. Co-
training is a representative paradigm of semi-supervised learning meth-
ods. Typically, some co-training style algorithms, such as co-training and
co-EM, learn two classifiers based on two views of the instance space. But
they have to satisfy the assumptions that these two views are sufficient
and conditionally independent given the class labels. Other co-training
style algorithms, such as multiple-learner, use two different underlying
classifiers based on only a single view of the instance space. However,
they could not utilize the labeled data effectively, and suffer from the
early convergence. After analyzing various co-training style algorithms,
we have found that all of these algorithms have symmetrical framework
structures that are related to their constraints. In this paper, we propose
a novel unsymmetrical-style method, which we call the unsymmetrical co-
training algorithm. The unsymmetrical co-training algorithm combines
the advantages of other co-training style algorithms and overcomes their
disadvantages. Within our unsymmetrical structure, we apply two un-
symmetrical classifiers, namely, the self-training classifier and the EM
classifier, and then train these two classifiers in an unsymmetrical way.
The unsymmetrical co-training algorithm not only avoids the constraint
of the conditional independence assumption, but also overcomes the
flaws of the early convergence and the ineffective utilization of labeled
data. We conduct experiments to compare the performances of these co-
training style algorithms. From the experimental results, we can see that
the unsymmetrical co-training algorithm outperforms other co-training
algorithms.

1 Introduction

Over the course of the past decade, researchers have developed various types of
semi-supervised learning methods. Co-training [1] is a representative paradigm
of semi-supervised learning methods that are based on the multiple representa-
tions from difference views. Co-training was inspired by the observation discov-
ered in the Web pages classification [1], in which a Web page has two different
representations (views): the words occurring on the page itself; and the words
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contained in the anchor text of hyperlinks pointing to the page. The initial form
of co-training is to train two classifiers separately on two sufficient and redun-
dant views of data, and let these two classifiers label some unlabeled instances
for each other. Like other semi-supervised learning methods, co-training requires
its own assumptions to guarantee its success. Blum and Mitchell [1] proved that
co-training can be successful if the two sufficient and redundant views are condi-
tionally independent given the class label. Many researchers have supported the
observation that co-training is sensitive to this theoretical assumption [18] [2].
However, the sufficient and redundant views are rarely found in most real-world
application scenarios.

In order to tease out the effect of view-splitting from the effect of labeling,
Nigam and Ghani [2] proposed a hybrid algorithm of expectation-maximization
(EM) and co-training, called co-EM. Like co-training, co-EM tries to divide the
instance space into two conditional independent views, and to train two EM
classifiers based on these two views, respectively. But unlike co-training, co-
EM uses all the unlabeled data every time, instead of incrementally selecting
some confident predictions to update the training set. Nigam and Ghani [2]
also provided a method for ideally splitting the view of instance space based on
the conditional mutual information criteria between two subsets of attributes.
However, this method is NP-hard and difficult to apply in practice.

Since both co-training and co-EM suffer from the conditional independence
assumption, variants of co-training have been developed based on only a single
view (without splitting the attribute set). For example, Goldman and Zhou [3]
used two different learning algorithms in the paradigm of co-training without
splitting the attribute set. Steedman et al. [4] developed a similar co-training
algorithm that applies two diverse statistical parsers. Wang and Zhou [5] proved
that if the two classifiers are largely diverse, co-training style algorithms are able
to succeed. Because these variants substitute multiple views by multiple classi-
fiers, these algorithms are referred to as multiple-learner algorithms. Since the
multiple-learner algorithms are trained on the same attribute set, it is impor-
tant to keep the two classifiers different during the process in order to prevent
early convergence. Maintaining separated training sets is one approach for this
purpose. However, assigning labeled instances to two different initial training
sets will cause the ineffective utilization of labeled data sets in a semi-supervised
learning scenario.

Considering the framework structures of co-training, co-EM, and multiple-
learner algorithms, we can see that each structure is symmetrical. The co-training
algorithm splits the instance space into two symmetrical views, trains two clas-
sifiers symmetrically, and lets two classifiers teach each other in a symmetrical
way. Similarly, the co-EM algorithm sets up two symmetrical EM classifiers based
on their related views. And likewise, the multiple-learner algorithm also has a
symmetrical structure, where two classifiers are trained in parallel and combined
together to score the unlabeled instances. Therefore, we define these algorithms
as the symmetrical-style co-training algorithms.
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In this paper, we propose an unsymmetrical co-training algorithm - a novel,
semi-supervised, unsymmetrical-style algorithm. The unsymmetrical co-training
algorithm combines the advantages of other co-training style algorithms and
overcomes their disadvantages. The unsymmetrical co-training algorithm com-
bines two unsymmetrical classifiers, namely, an EM classifier and a self-training
classifier. In the algorithm, the self-training classifier takes the responsibility for
a section of unlabeled instances in a data pool; and the EM classifier maintains
a global view over the entire instance set. Without the two-view splitting, the
unsymmetrical co-training algorithm uses the full set of attributes so that it
can avoid the intractable constraint of the conditional independence assump-
tion. Although both classifiers are initially trained by labeled instances, the EM
classifier and the self-training classifier have different training sets once they en-
ter the iteration procedure. The unsymmetrical co-training algorithm does not
need to hold different initial training sets and is therefore able to utilize the
labeled instances more effectively. Furthermore, according to the study of Wang
and Zhou [5], the multiple-learner algorithm could not further improve the per-
formance after a number of learning rounds because the difference between the
two learners become smaller and smaller. Since the unsymmetrical co-training
algorithm uses two unsymmetrical classifiers in an unsymmetrical structure, it
does not need to worry about the difference between these two classifiers fading
too quickly. We conduct the experiments to compare the performances of co-
training, co-EM, multiple-learner, and unsymmetrical co-training algorithms on
30 data sets from Weka [6]. From the experimental results, we can see that the
unsymmetrical co-training algorithm outperforms other algorithms.

The remainder of this paper is organized as follows. After introducing some
preliminaries about co-training, co-EM, and multiple-learner algorithm in Sec-
tion 2, we present our unsymmetrical co-training algorithm in Section 3. Then,
the experiments to compare the performances of algorithms are reported in Sec-
tion 4. Finally, we give our conclusion and look toward future work in Section 5.

2 Preliminaries

Suppose we have the instance space X = X1 × X2, where X1 and X2 corre-
spond to the two different views of the instance space, respectively, and the
class label space Y . Given the data set L ∪ U , we have a labeled data set
L = {〈(x1

1, x
2
1), y1

〉
, · · · , 〈(x1

l , x
2
l ), yl

〉} ⊂ X × Y and an unlabeled data set
U = {(x1

l+1, x
2
l+1), · · · , (x1

l+u, x2
l+u)} ⊂ X . In addition, we have two classifiers

h1 and h2, which are used to compose the following algorithms.

2.1 Co-training

Co-training [1] first tries to divide the instance space X into two different views
X1 and X2, which are conditionally independent given the class label. Then, two
classifiers h1 and h2 are trained based on these two different views, respectively.
Classifier h1 classifies the unlabeled instances and “teaches” the other classifier
h2 the predicted class labels of unlabeled instances about which it feels most
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confident. These confident unlabeled instances are added into the training set
of h2 together with their predicted class labels. At the same time, classifier h2

teaches h1 the predicted class labels about which it feels more confident. After
that, each classifier is retrained with the updated training set. Such a process
can be repeated until a certain stopping condition is satisfied. The framework
structure of co-training is shown in Figure 1. From Figure 1, we observe that the
framework structure of co-training is symmetrical: the instance space is divided
into two views symmetrically; the two classifiers are trained symmetrically; and
they update each other’s training set in a symmetrical way.

Some theoretical studies have analyzed why and how the co-training algorithm
can succeed. With proposing the co-training algorithm, Blum and Mitchell [1] de-
fined the co-training model in a PAC-style theoretical framework and proved that
the two different views are supposed to satisfy the following conditions: (1) each
view is sufficient and consistent to train a good classifier; (2) each view is condi-
tionally independent to the other one given the class label. Dasgupta et al. [20] also
provided a PAC-style theoretical analysis for co-training. Yu et al. [7] proposed a
graphical model for the co-training algorithm based on the conditional indepen-
dence assumption. Abney [8] showed that weak dependence can also guarantee
co-training’s working. Balcan et al. [9] proposed a much weaker “expansion” as-
sumption on the underlying data distribution, and proved that it is sufficient for
the iterative co-training to succeed. Wang and Zhou [10] analyzed the co-training
algorithm as a combinative label propagation over two views, and provided the
sufficient and necessary condition for co-training to succeed.
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2.2 Co-EM

Nigam and Ghani [2] compared the performances of the co-training algorithm with
the EM algorithm, and studied how sensitive the co-training algorithm is to the
conditional independence assumption. They the proposed a hybrid algorithm of
EM and co-training, called co-EM. The co-EM algorithm is similar to the EM algo-
rithm, which is an iterative procedure that uses all the unlabeled instances every



104 B. Wang et al.

time, instead of incrementally selecting some unlabeled instances to update the
training set. On the other hand, the co-EM algorithm is also like the co-training
algorithm, which tries to divide the instance space into two conditionally inde-
pendent views. Nigam and Ghani [2] argued that the co-EM algorithm is a closer
match to the theoretical argument established by Blum and Mitchell [1].

In the co-EM algorithm, two EM classifiers, h1 and h2, are chosen to cor-
respond to the two different views X1 and X2. Initially, classifier h1 is trained
only based on the labeled data set L with view X1. Then, classifier h1 proba-
bilistically labels all the unlabeled instances in data set U . Next, classifier h2

is trained using the labeled instances from the view X2 of data set L, plus the
unlabeled instances from the view X2 of data set U with the class labels given
by h1. Classifier h2 then relabels the instances for the retraining of h1. This
process iterates until the classifiers converge. The framework structure of co-EM
is shown in Figure 2. From Figure 2, we can see the symmetrical structure of
the co-EM algorithm.

2.3 Multiple-Learner

Since the paradigmatic assumptions of co-training are difficult to satisfy in real-
world application scenarios, many researchers begin to study the variants of
co-training that do not require the two-view splitting [3] [4] [11]. Because those
algorithms usually use multiple learners, they are referred to as the multiple-
learner algorithms. Ng and Cardie [12] summarized multiple-learner algorithms
and proposed their own algorithm1. In their multiple-learner algorithm, two
different classifiers h1 and h2 are used and trained based on the single view of
instance space. At each iteration, each classifier labels and scores all the instances
in a data pool. Some instances with scores found to be high by classifier h1 are
added to the training set of classifier h2 together with their predicted class labels
from h1, and vice verse. Then, the entire data pool is flushed and replenished
using instances drawn from the unlabeled data set U after each iteration. The
process is repeated until no further instances can be labeled. The framework
structure of multiple-learner algorithm is shown in Figure 3. Here we can see
that the structure of multiple-learner algorithm is also symmetrical, where two
classifiers are trained in parallel and combined together to score the unlabeled
instances in the data pool.

3 Unsymmetrical Co-training

As we have already emphasized, the co-training algorithm, the co-EM algorithm,
and the multiple-learner algorithm all have symmetrical framework structures.
Some of the constraints that restrict these algorithm are related to their sym-
metrical structures. For example, both the co-training algorithm and the co-EM

1 The multiple-learner algorithm that appears in later sections refers to the version of
Ng and Cardie [12]
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algorithm are required to symmetrically divide the instance space into two suf-
ficient and conditionally independent views, and their performances are quite
sensitive to these assumptions. However, fulfilling these assumptions is a NP-
hard problem, and these assumptions are intractable in practice. Although the
multiple-learner algorithm does not suffer from the same intractable assump-
tions, it nevertheless still requires two different classifiers that are trained in a
symmetrical way. Wang an Zhou [10] reported that if the two initial classifiers
have large difference, they can be improved together using the multiple-learner
algorithm. They also discovered that, as the multiple-learner algorithm proceeds,
more and more unlabeled data are labeled, which makes the difference between
the two learners become smaller and smaller. In other words, even though the
two classifiers have big difference initially, they become more and more similar
after several learning rounds since they are trained in a symmetrical way, and
the performance of the multiple-learner algorithm cannot be further improved.
Moreover, if the two selected classifiers are only slightly different from one an-
other, two different training sets are required in order to avoid convergence of
the algorithm at an early stage in the symmetrical structure. However, in the
scenario of semi-supervised learning, assigning labeled instances to two different
initial training sets will cause the ineffective utilization of labeled data set. To
escape the constraints of symmetrical structures, we attempt to design a new
algorithm that still performs with the style of co-training but has an unsymmet-
rical framework structure.

In this paper, we propose the unsymmetrical co-training algorithm. This al-
gorithm uses two unsymmetrical classifiers, namely, the EM classifier and the
self-training classifier. The EM classifier is a kind of generative model that has
been successfully applied in semi-supervised learning [13]. The EM algorithm
includes two steps: the E-step and the M-step. The E-step estimates the expec-
tations of the class information of unlabeled instances, and the M-step maximizes
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the likelihood of the model parameters using the expectations from the previous
E-step. The EM classifier performs an iterative hill-climbing process to find a
local maxima of model probability and then assigns the class labels in terms
of the established model. Self-training might be the earliest technique for semi-
supervised learning [14] [15] and is commonly applied in many domains [17] [16].
In the self-training classifier, an underlying classifier is iteratively trained and
used to label the unlabeled instances, and then some unlabeled instances having
the confident predictions are used to update the training set for the next round
training of the underlying classifier.

Not only are two unsymmetrical classifiers applied in the unsymmetrical co-
training algorithm, but these two classifiers are also applied within an unsym-
metrical framework structure. In the structure, a data pool has been created for
the self-training classifier by randomly selecting instances from the unlabeled in-
stance set U . This data pool is the labeling objective on which the self-training
classifier focuses in the process of the algorithm. But the EM classifier does not
focus on a specific section of unlabeled instances. Instead, it faces the entire un-
labeled instance set U during the algorithm. Moreover, the training sets used to
train these two classifiers are different. For the self-training classifier, the train-
ing set consists of the labeled instances and the unlabeled instances from the
data pool with their predicted class labels. For the EM classifier, the training
set is the labeled instances plus the whole unlabeled instances together with the
class labels assigned from the previous learning round. The framework structure
of unsymmetrical co-training algorithm is shown in Figure 4.

The unsymmetrical co-training algorithm learns the two classifiers in an un-
symmetrical way. Initially, both of the classifiers are trained based on the labeled
instance set L with the single view (the full set of attributes). Then, the EM clas-
sifier labels all the unlabeled instances, and the self-training classifier predicts the
labels of unlabeled instances in the data pool. The predicted class labels of unla-
beled instances in the data pool will be used to substitute the class labels of cor-
responding unlabeled instances that have been assigned by the EM classifier. The
EM classifier is then retrained by the updated training set and relabels the unla-
beled instances. The unlabeled instances in the data pool, for which class labels
from the self-training classifier are identical to the class labels from EM classifier,
will be selected to update the training set of self-training classifier together with
their predicted class labels. If there are not enough such unlabeled instances, the
confidence degree metric will be used to select other unlabeled instances with high
confidence in the data pool to update the training set together with the predicted
class labels from the self-training classifier. Next, the data pool will be replenished
by other unlabeled instances. The procedure is repeated until there are no further
instances in the data pool. The predictions for new-coming instances are obtained
using the combination of predictions from the EM classifier and the self-training
classifier, just as the co-training algorithm does [1]. The formal description of un-
symmetrical co-training algorithm is shown in Figure 5.

According to the theoretical study of Wang and Zhou [5], the co-training style
algorithm is able to succeed if the two classifiers are vastly different. From the
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Input: Labeled instance set L, unlabeled instance set U, self-training classifier hself , and EM classifier hEM .
Initialization:

– Initialize the training set for hself by L.
– Create the data pool for hself by randomly selecting from U.
– Build hEM by L, and use hEM to label all the unlabeled instances in U.
– Create the training set for hEM using all the labeled instances and unlabeled instances with predicted class

labels from hEM .

Loop if hself ’s data pool still has some instances

– Build hself using its training set.
– Use hself to label the instances in its data pool.
– Use the predicted labels in hself ’s data pool to replace the corresponding instances’ class labels in hEM ’s

training set.
– Build hEM by the updated training set.
– Relabel all the unlabeled examples using hEM , and return the predicted class labels of instances in the data

pool to hself .
– hself selects some instances in the data pool if:

1. their predicted labels are identical to the labels from hEM ; or
2. they have higher scores ranked by the confidence degree metric of hself .

– Add selected instances into the training set of hself together with their predicted class labels.
– Replenish instances in the data pool using other unlabeled instances.

Output: The combination of predictions for new-coming instances from hself and hEM .

Fig. 5. The description of unsymmetrical co-training algorithm

description above, we can see that the unsymmetrical co-training is consistent
with their theory. The self-training classifier and the EM classifier not only dis-
play different characteristics on learning, but also are deployed differently in the
unsymmetrical framework structure. Although they are both initially trained by
the same labeled instances, these two classifiers have different training sets once
they enter the iteration procedure. Therefore, the unsymmetrical co-training al-
gorithm avoids the early convergence of both classifiers to the same hypothesis,
and utilizes the labeled and unlabeled instances more effectively than does the
multiple-learner algorithm. Moreover, unlike the multiple-learner algorithm, in
which two classifiers become more and more similar as the algorithm proceeds,
our algorithm always maintains the differences between the two classifiers due
to its unsymmetrical way of learning. On the other hand, the unsymmetrical
co-training algorithm uses the single view of instance space so that it avoids the
intractable conditional independent view-splitting.

In the unsymmetrical co-training algorithm, the self-training classifier and the
EM classifier can complement each other. The EM algorithm essentially uses
the naive Bayes method to assign class membership probabilities to unlabeled
instances. The EM classifier is expected to do well when it satisfies the con-
ditional independence assumption of naive Bayes. However, these probabilities
are always poorly estimated because the conditional independence assumption
is violated. Self-training, on the other hand, uses the class membership probabil-
ities for ranking the confidences of unlabeled instances instead of directly using
them for the classification. Thus, the conditional independence assumption influ-
ences the self-training classifier more weakly than does the EM classifier. From
another point of view, self-training is an incremental procedure and always suf-
fers from the reinforcement of any misclassifications from previous updates. In
the unsymmetrical co-training algorithm, the EM classifier is like a supervisor
beside the self-training classifier, which checks the predicted class labels made
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by self-training and provides opinions for these predictions in terms of its own
knowledge. It is useful to reduce the chance of adding misclassifications to the
next iteration in the procedure. Moreover, the self-training classifier restricts its
view only on the labeled instances and the unlabeled instances in the data pool.
Since the EM classifier is able to see the entire set of labeled and unlabeled
instances, the view of the EM classifier is much broader than that of the self-
training classifier. Therefore, the EM classifier might be seen to make predictions
from a global view to help self-training, and the self-training classifier likewise
boosts EM from its local view.

We summarize the differences of co-training, co-EM, multiple-learner, and un-
symmetrical co-training algorithms from several points of view in Table 1. From
Table 1, we can see that the unsymmetrical co-training algorithm not only com-
bines the advantages of other algorithms, but also overcomes their disadvantages.
In the next section, we design the experiments to compare the performances of
these algorithms in the next section.

Table 1. The differences of co-training, co-EM, multiple-learner and unsymmetrical
co-training algorithms

co-training co-EM mult-learner unsym co-training
Structure Symmetrical Symmetrical Symmetrical Unsymmetrical
Split attribute set Yes Yes No No
Split training set No No Yes No
Learning style Incremental Iterative Incremental Incremental

and iterative
Num of instances Fixed Variable Fixed Variable
added per iteration
Use data pool Yes No Yes Yes
Example selection Higher scored N/A Agreed and Agreed and
for two learners (no need to select) higher scored higher scored

4 Experiments

In this section, we design the experiments to compare the performances of co-
training, co-EM, multiple-learner, and unsymmetrical co-training algorithms. The
experiments are conducted on 30 data sets from Weka [6], which are selected from
the UCI repository. There are some preprocessing stages adopted on each data set.
First, we use the filter ReplaceMissingV alues in Weka to replace the missing val-
ues of attributes in each data set. Second, we use the filter Discretize in Weka,
which is the unsupervised ten-bin discretization, to discretize numeric attributes.
Thus, all the attributes are nominal. Moreover, we notice that some attributes do
not contribute any information for the purpose of prediction if the numbers of these
attributes are almost equal to the numbers of instances in the corresponding data
sets. The third preprocessing stage is to use the filter Remove in Weka to delete
such attributes. We implement co-training, co-EM, multiple-learner and unsym-
metrical co-training algorithms in the Weka framework. The underlying classifiers
used by algorithms are naive Bayes classifiers, except the co-EM and a part of the
unsymmetrical co-training algorithms that use the EM classifiers.

Our experiments are configured as follows. In each data set, 10% of the in-
stances are used as testing instances; 10% of the remaining data set is used as the
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Table 2. Experimental results on accuracy for co-training, co-EM, multiple-learner
and unsymmetrical co-training algorithms

Dataset UnSymCoTrain Co-training Co-EM Mult-Learner
zoo 85.36 79.48 76.24 80.19
labor 78.83 78.5 65.9 79.87
iris 89.2 89.33 79.47 90.4
vote 88.62 88 88.23 88.26
breast-cancer 72.25 65.94 71.63 70.97
lymph 74.21 55.1 64.65 57.63
primary-tumor 34.29 30.98 25.38 30.44
hepatitis 82.55 80.5 80.08 82.18
balance-scale 72.38 70.03 53.68 65.63
glass 45.43 42.27 42.42 43.53
audiology 31.46 34.27 26.55 35.16
heart-h 83.2 74.27 81.36 79.12
heart-c 81.99 67.27 82.75 74.53
colic.ORIG 58.45 59.02 54.88 57.38
heart-statlog 81.04 77.67 70.07 81.07
autos 46.79 45.58 41.22 45.67
credit-a 84.29 82.14 75.64 83.88
colic 72.2 74.17 67.37 73.54
breast-w 97.44 97.02 97.4 97.08
diabetes 71.66 71.79 69.37 70.75
anneal.ORIG 77.04 77.38 69.32 77.61
soybean 77.71 68.3 62.29 70.77
ionosphere 84.64 80.34 80.6 82.73
anneal 86.15 83.44 68.93 84.66
vowel 30.59 26.82 18 26.86
kr-vs-kp 65.55 74.27 51.63 72.82
credit-g 69.03 67.51 67.13 65.73
vehicle 50.33 47.26 43.91 46.34
sonar 65.23 56.55 55.7 56.82
mushroom 90.04 93.06 89.24 92.96
w/t/l 2/20/8 0/20/10 2/20/8

set of labeled instances; and all other instances are used as unlabeled instances.
For the co-training and co-EM algorithms based on two views, the attribute set
is randomly divided into two disjointed subsets. For the co-training, co-EM, and
unsymmetrical co-training algorithms that need the data pool, the size of the
data pool is set to 10% of the unlabeled instance set. For the co-training and
multiple-learner algorithms that fix the number of instances added per iteration,
the number of added instances for each class label is decided by the class label
distribution in the original labeled instance set: for the class label with the min-
imum percentage, the number is set to 1; and for all the other class labels, the
numbers are set to the times of that the class label has the minimum percentage.
The accuracy score is used to evaluate the performances of algorithms. In our
experiments, the accuracy scores of each algorithm are obtained via 10 runs of
ten-fold cross-validation and evaluated on the same testing sets. Finally, we con-
duct two-tailed t-test with a 95% confidence level to compare the unsymmetrical
co-training algorithm to the other algorithms. The results are shown in Table 2.

In Table 2, the two-tailed t-test results are shown in the bottom row, where
each entry has the format of w/t/l. This means that, comparing with the unsym-
metrical co-training algorithm, the algorithm in the corresponding column wins
w times, ties t times, and loses l times. From the experimental results, we ob-
serve that the unsymmetrical co-training algorithm outperforms other algorithms,
where it wins 8 times and loses 2 times against the co-training and multiple-learner
algorithms, and wins 10 times and never loses against the co-EM algorithm.

The evidences provided by the above experiments can be explained as follows.
The unsymmetrical structure is more effective in the scenario of semi-supervised
learning than are the symmetrical structures. The unsymmetrical co-training
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algorithmcombines the EM classifier, which learns from a global view, and the self-
training classifier, which boosts the learning from the local view. These two clas-
sifiers, which complement each other in the unsymmetrical structure, enhance the
learning ability of the co-training style framework.The co-training andco-EMalgo-
rithms are sensitive to the conditional independence assumption. Randomly split-
ting the attribute sets decreases the overall performances of co-training and co-EM
algorithms. Although the multiple-learner algorithm does not need two-view split-
ting, just as the unsymmetrical co-training algorithm does, the small number of
labeled instances cannot be utilized effectively in the symmetrical structure. Be-
sides, as the multiple-learner algorithm proceeds, its underlying classifiers become
more and more similar so that the performance cannot be further improved.

5 Conclusion

In this paper, we propose the unsymmetrical co-training algorithm, which is
a novel semi-supervised learning method in the co-training style. In the algo-
rithm, two unsymmetrical classifiers, namely, the self-training classifier and the
EM classifier, are learned in an unsymmetrical way within an unsymmetrical
framework structure. Compared with other co-training style algorithms, such as
co-training, co-EM, and multiple-learner, the unsymmetrical co-training algo-
rithm has several advantages. First, the unsymmetrical co-training algorithm is
based on the single view of instance space, so it does not suffer from the violation
of conditional independence assumption as co-training and co-EM algorithms do.
Second, the unsymmetrical structure makes the utilization of labeled instances
more effective since there is no need to split the labeled instance set into two
different initial training sets for two underlying classifiers. Moreover, the two un-
symmetrical classifiers do not easily become more similar after several learning
rounds because the unsymmetrical training of the algorithm prevents growing
similarity. We conduct the experiments to compare the performances of these
algorithms. The experimental results show that the unsymmetrical co-training
algorithm overall outperforms other algorithms.

In the future, we will continue the study of semi-supervised learning meth-
ods in the co-training style, especially within the unsymmetrical framework
structure. More experiments will be conducted to compare our unsymmetrical
co-training algorithm with other co-training style methods under various circum-
stances. The different underlying classifiers will be tested within this unsymmet-
rical structure to see whether the performance can be improved further. It will
also be interesting to apply the unsymmetrical co-training algorithm to real-
world applications, especially for the applications suitable for semi-supervised
learning, such as natural Language processing (NLP) and bioinformatics.
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Balance Support Vector Machines Locally Using

the Structural Similarity Kernel
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Abstract. A structural similarity kernel is presented in this paper for
SVM learning, especially for learning with imbalanced datasets. Kernels
in SVM are usually pairwise, comparing the similarity of two examples
only using their feature vectors. By building a neighborhood graph (kNN
graph) using the training examples, we propose to utilize the similarity of
linking structures of two nodes as an additional similarity measure. The
structural similarity measure is proven to form a positive definite kernel
and is shown to be equivalent to a regularization term that encourages
balanced weights in all local neighborhoods. Analogous to the unsuper-
vised HITS algorithm, the structural similarity kernel turns hub scores
into signed authority scores, and is particularly effective in dealing with
imbalanced learning problems. Experimental results on several bench-
mark datasets show that structural similarity can help the linear and
the histogram intersection kernel to match or surpass the performance
of the RBF kernel in SVM learning, and can significantly improve im-
balanced learning results.

1 Introduction

Measuring the degree of similarity between two examples is a critical task in
machine learning. Many positive definite kernels used in the support vector ma-
chines (SVM) can be considered as similarity measures, such as the linear kernel
kLIN(x1, x2) = xT

1 x2, the RBF kernel kRBF(x1, x2) = exp(−γ‖x1− x2‖2), or the
histogram intersection kernel [14]

kHI(x1, x2) =
∑

j
min(x1j , x2j) . (1)

However, these kernels which only take into account the two features vectors x1

and x2 might provide misleading similarity scores, especially when the intra-class
variation is large. Fig. 1 illustrates this idea. In the middle row of Fig. 1, the
digit ‘7’ (example x2) is the nearest neighbor of the digit ‘2’ (example x1) when
the RBF kernel is used.

A kernel that only compares pairwise similarities is susceptible to such unde-
sired mismatches. However, Fig. 1 also illustrates that the structural similarity
can greatly help remove the ambiguities. We use the notation x1 �→ x2 to indi-
cate that x2 is among the nearest neighbors of x1. The first row in Fig. 1 shows
the other ten nearest neighbors of x1 (‘2’) excluding x2 (‘7’) in the decreasing
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Fig. 1. Structural similarity helps disambiguate the digits ‘2’ and ‘7’ in the middle row

order of similarity. And the third row shows the nearest neighbors of x2 (x1 is
not in the neighborhood of x2 in this example). Since x1 and x2 do not share
any common neighbor (i.e., x1 and x2 are exhibiting completely different link-
ing structures in the neighborhood graph), they are not similar in terms of the
structural similarity. A combination of the pairwise and structural similarity will
generally improve the classification of examples.

In this paper we propose to use bibliographic coupling strength [6] to measure
the structural similarity of examples x1 and x2, i.e., counting the number of
examples that are nearest neighbors of both x1 and x2. One advantage of this
simple structural similarity measure is that we can encode a local graph as
a sparse neighborhood vector. By appending the neighborhood vector to the
original feature vector, existing SVM training and testing techniques can be
performed without any change if the linear or histogram intersection kernel is
used. The similarity of two examples, though, becomes a combination of both
the pairwise similarity and the structural similarity.

We further prove that when the linear or histogram intersection kernel is used,
graph structural similarity is equivalent to adding a regularization term that en-
courages local balance. Given a set of labeled examples (xi, yi), i = 1, . . . , n,
yi ∈ {−1, +1}, a constraint

∑
i αiyi = 0 is enforced for dual variables αi in the

dual SVM problem if a bias term is used. We will call this constraint the global
balance constraint. Instead, structural similarity leads to the minimization of
‖s‖2, where s = [s1, . . . , sn]T and sj =

∑
i:xi 	→xj

αiyi. We call sj the local bal-
ance term because it measures the balance of α in the small subset of examples
that emit edges toward xj . SVM classifiers usually suffer from imbalanced data
distributions. When one class (the minority class) has much less examples than
another class (the majority class), the minority class accuracy is generally sig-
nificantly lower than that of the majority class. SVM with structural similarity
leads to similar performances in both the minor and the major classes because
of the locally balanced property. We also show that the local balance term s is a
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natural supervised learning extension of the authority scores in the unsupervised
HITS algorithm [9].

Experimented on 6 benchmark datasets, the proposed locally balanced SVM
with structural similarity shows improved accuracies in most datasets than nor-
mal SVM. In imbalanced problems, the proposed method can increase the minor-
ity class accuracy by up to 100%, without harming the majority class accuracy.

The rest of this paper introduces the structural similarity kernel (Sec. 2), the
local balance property (Sec. 3), and the signed authority score interpretation
(Sec. 4). After discussing related research in Sec. 5, experiments (with discussions
of limitations of the proposed method) are presented in Sec. 6.

2 Bibliographic Coupling Based Structural Similarity

Bibliographic coupling was originally proposed for comparing scientific docu-
ments [6]. For documents p and q, it is defined as the number of documents
cited by both p and q, based on the intuition that p and q are closely related
if they share many common bibliography items. A similar intuition applies to
structural similarity: if the set of nearest neighbors of x1 and x2 share many
common members, then it is highly probable that x1 and x2 are in the same
class.

The nearest neighbor relationship, however, depends on a training set X =
{x1, . . . , xn}. As illustrated in Fig. 1, a kNN graph ΓX can be built for X , where
a data point xi corresponds to a node in ΓX , and a directed edge from xi to
xj is created if and only if xj is in the k-nearest-neighbors of xi (denoted as
xi �→ xj).1 We then define the structural similarity kernel as

kSTR(xi, xj) = |{x : x ∈ X, xi �→ x and xj �→ x}| , (2)

in which | · | is size of a set. Note that kSTR is a data-dependent kernel – it is
defined with respect to the training set X . In order to use kSTR in an SVM, we
need to prove that it is a positive definite kernel. Let G be the adjacency matrix
of ΓX , i.e., Gij equals 1 if xi �→ xj , and 0 if otherwise. It is easy to see that
KSTR = GGT , where KSTR is the kernel matrix satisfying KSTR

ij = kSTR(xi, xj).
Alternatively, we can define a neighborhood vector n(x) for any sample x.

n(x) is defined as a n × 1 vector where n(x)j equals 1 if xj is in the k-nearest-
neighbors in X of x, and 0 if otherwise. The neighborhood vector n(x) and x

can be concatenated into an augmented vector a(x) =
[
xT n(x)T

]T . Using the
augmented vector, we can easily combine the structural similarity and pairwise
similarity, because kSTR(xi, xj) = n(xi)T n(xj) and consequently

kLIN(a(xi), a(xj)) = kSTR(xi, xj) + kLIN(xi, xj) . (3)

It is also possible to trade-off the importance between the two similarity terms
by defining a(x) as a(x) =

[
xT λn(x)T

]T and varying the value of λ.

1 We will assume that xi �→ xi is always true.
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Algorithm 1. SVM learning algorithm utilizing the structural similarity
1: Input: k, λ, and a training set (xi, yi), i = 1, . . . , n, yi ∈ {−1, +1}.
2: Training:
3: Find the k-NN of every example xi and augment xi to a(xi) = [xT

i λn(xi)
T ]T ;

4: Train a linear or histogram intersection SVM using augmented examples (a(xi), yi).

5: Testing:
6: For any testing example q, find its k-NN and augment it as a(q) = [qT λn(q)T ]T ;
7: Applying the trained SVM model to a(q) to get classification result for q.

Note that n(x) equals to one row of G if x ∈ X . However, n(x) is well-defined
even if x ∈ X . Thus kSTR can be easily applied in inductive learning methods. For
example, in the SVM learning we first construct a(x) for every training example
x. We can then train an SVM using a(x) instead of x. During the testing phase,
any testing example q is converted to a(q) and the trained SVM model can be
readily applied. The SVM training and testing method that utilizes structural
similarity is summarized in Algorithm 1.

It is worth noting that any kernel or distance measure can be used to find
the nearest neighbors and to generate the augmented vectors a(x) (line 3 and
line 6 of Algorithm 1). It is not necessary to use the same kernel to generate the
augmented vectors and to train the SVM (line 4 of Algorithm 1).

Since min(x1, x2) = x1x2 if x1, x2 ∈ {0, 1}, we have kHI(a(xi), a(xj)) =
kSTR(xi, xj) + kHI(xi, xj). Thus the histogram intersection kernel kHI(x1, x2) =∑

j min(x1j , x2j) is able to combine structural similarity with pairwise similarity.
The RBF kernel, however, does not have this property.

3 From Global to Local Balance

The structural similarity kernel kSTR can play several roles in SVM classification.
Besides adding structural similarity in addition to pairwise similarity (and in-
troducing non-linearity into linear SVM classification), it also introduces a local
balance heuristic to the dual variables.

Given a set of labeled training examples (xi, yi), i = 1, . . . , n, a soft margin
linear SVM with the optimal separating hyperplane wT x + b = 0 solves the
following optimization problem [3]:

min
w,b

1
2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi(wT xi + b) ≥ 1− ξi, ξi ≥ 0, ∀ i . (4)

The primal form Eq.4 has a corresponding dual form

min
α

f(α) =
1
2
(α � y)T K(α� y)− eT α (5)

s.t.
n∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, ∀ i , (6)
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where y = [y1, . . . , yn]T , e = [1, . . . , 1]T , Kij = xT
i xj , and � is the element-

wise product operator. We will refer to Eq. 6 as the global balance constraint,
as it specifies that the sum of dual variables in the two classes must be equal
to each other in the entire training set. As observed in [16], in an imbalanced
problem (where the majority/negative class has much more examples than the
minority/positive class), Eq. 6 usually leads to more support vectors in the
majority class than in the minority one. It is stated in [16] that a positive example
close to the boundary are more likely to be classified as negative due to the global
balance constraint Eq. 6.

When we train on the augmented examples a(xi) instead of xi, the dual
objective function now becomes (with the constraints remain unchanged)

f ′(α) = f(α) +
1
2
‖s‖2 , (7)

where we define s = GT (α � y). In addition to minimizing the usual SVM
objective function f(α), the term ‖s‖2 imposes another heuristic that encourages
sj to be 0 (or small) for all j = 1, . . . , n.

Since

sj =
n∑

i=1

Gijαiyi =
∑

i:xi 	→xj

αiyi , (8)

it measures the balance in the local neighborhood {xi : xi �→ xj} related to the
example xj . In other words, sj = 0 means that the dual variables in this local
neighborhood is balanced between the positive and the negative class, which we
term as the local balance. Local balance is a desired property when the training
set is imbalanced. If the local balance property is strictly satisfied (i.e., sj = 0
for all j), it is guaranteed that for any support vector in the negative class, there
will be at least one support vector in the positive class in a local neighborhood.
The weights (dual variables αi) of these support vectors are balanced. Thus, even
a positive test example near the boundary will not be dominated by negative
examples.

The global balance property Eq. 6 can be safely neglected if local balance is
strictly satisfied for all support vectors. These two balance properties are linked
by the following relationship:

n∑
j=1

sj =
n∑

j=1

∑
i:xi 	→xj

αiyi =
n∑

i=1

αiyi

⎛⎝ ∑
j:xi 	→xj

1

⎞⎠ = k

n∑
i=1

αiyi . (9)

The last equality in Eq. 9 uses the fact that ΓX is a kNN graph and the out-
degree of any node xi is k. When sj = 0 for all j (which implies a less strict
condition

∑
j sj = 0), global balance is automatically satisfied.

From now on we will only consider support vector machines that do not have
the bias term b (and consequently without the global balance constrain Eq. 6).
If a bias term is needed, one can append to each example an additional feature
dimension with constant value 1.
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4 From Hub Scores to Signed Authority Scores

The form of the definition s ≡ GT (α� y) reminds us of the equation that turns
hub scores into authority scores in the HITS algorithm [9]. This resemblance
leads to an alternative view of Algorithm 1.

The HITS algorithm finds authoritative sources in a hyperlinked environment
(i.e., directed graph). For example, for a text-based web search “car maker”,
authorities are those nodes (webpages) that contain useful information about
car manufacturers. Authoritative nodes are expected to have a large number of
incoming edges. Hubs are defined in [9] as those nodes that have many outgoing
edges. The authority score v and hub score u of all nodes are then iteratively
updated by the relationship v = GT u and u = Gv, where G is the adjacency
matrix of the directed graph.

The HITS algorithm is an unsupervised method. In our supervised learning
settings, the vector α�y acts as signed hub scores. The optimized dual variables
α contain the weights or relative importance levels of the training examples. This
vector is analogous to the hub score vector u in the HITS algorithm. The vector
α � y is a natural extension of the hub scores into supervised learning. The
local balance vector s = GT (α� y) is then a good candidate for the supervised
extension of the authority score vector v.

Let us consider a simplified problem where we only take into account the
structural similarity. An example xi is converted into the neighborhood vector
n(xi) = Gi:, where Gi: is the i-th row of the adjacency matrix G. A linear SVM
using n(xi) as training examples will lead to a classification boundary that is

w =
n∑

i=1

αiyin(xi) = GT (α� y) = s . (10)

In other words, the local balance vector s equals the classification boundary w
if we only consider the structural similarity. In this scenario, the local balance
vector s contains in effect the signed authority scores learned through the SVM
optimization. When a test example q is given, the neighborhood vector n(q) is a
sparse vector with the value 1 in j-th position only if xj is within the k nearest
neighbors of q. Thus the decision value for q is n(q)T w = n(q)T s =

∑
j:q 	→j sj .

We just need to find the k nearest neighbors of q, and they will each contribute
a local signed authority score sj . The classification of q is then determined by
the sum of these k local signed authority scores. This fact exhibits an important
property of structural similarity in SVM learning: during the testing time, only
the nearest neighbors of the query q will affect the classification result. Support
vectors that are far away from q will not affect the decision on q. This property
is advantageous in learning imbalanced problems.

When we use the complete augmented vectors a(xi) = [xT
i n(xi)T ]T to train

a linear SVM, the last n dimensions of the resulting classification boundary will
correspond to s. The decision value for q is then

∑
j:q 	→j sj +

∑n
i=1 αiyix

T
i q.

The second term can also be expressed in terms of local signed authority scores.
Denoting qX = [xT

1 q, . . . , xT
n q]T , the second term can be written as (α�y)T qX =

sT (G−1qX).
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5 Related Research

Local geometry has long been utilized in machine learning, e.g., in (unsupervised)
dimensionality reduction (LLE [12]). A neighborhood graph (in which nodes and
edges denote examples and similar example pairs respectively) is a common way
to utilize the local geometry information (e.g., PageRank [10]). In Kleinberg’s
HITS algorithm [9], link analysis techniques are applied on the neighborhood
graph to find authoritative and hub webpages in an iterative and unsupervised
manner (c.f. Sec. 4). In webpage classification, natural link structures exist and
bibliographic coupling has been used to extract features [11].

Linking structures are particularly useful when the pairwise similarity com-
puted only using the feature vectors of two examples are not accurate. For exam-
ple, in computer vision and image analysis, visual features frequently suffer from
the fact that their intra-class variation is bigger than the inter-class variation.
Graph structural similarity have been successfully used to unsupervisedly rec-
ognize objects [7] and localizing regions of interest [8]. The structural similarity
in [7] was computed using a method that combines both bibliographic coupling
and co-citation (refer to [1]), and is computationally more expensive than Eq. 2.
The co-citation count between nodes xi and xj is the number of nodes that
have edges pointing to both xi and xj , i.e., reversing the edge directions of the
bibliographic couping count in Eq. 2.

Graphs that encode local geometry also form a major thread of methods for
semi-supervised learning [19]. In semi-supervised learning, the nodes are exam-
ples (may be unlabeled) and edges connect similar pairs of nodes. A graph is
usually coupled with a function f which must be close to the labels of labeled
nodes, and is smooth on the entire graph [19]. Thus the graph is acting as a
smoothing constraint for the problem.

In particular, a global smoothness functional based on normalized co-citation
counts was used in [18]. Another closely related semi-supervised method [13]
defines a family of data-dependent norms, which can warp the structure of a
reproducing kernel Hilbert space to the geometry of both labeled and unlabeled
data. Thus a supervised kernel learning method can be turned to learn from both
labeled and unlabeled data, and can be applied to test unseen examples. The
smoothness assumption in [13] is implemented through the graph Laplacian, and
requires inverting of a n× n matrix where n is the total number of examples.

6 Experiments

6.1 Setup

Experiments on 6 datasets are used to test the proposed method. These datasets
are ijcnn1, protein, satimage, shuttle, splice, and vowel. We used the
scaled version of these datasets downloaded from the LIBSVM dataset page.2

2 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Baseline SVM accuracies are provided using the RBF, linear, and histogram
intersection kernel (columns rbf, lin, and hik in Table 1, respectively). SVM-
weight with RBF kernel is used as a baseline imbalanced learning SVM method
(column rbf-w), which (although simple) has been shown to be very effective
in imbalanced learning [15]. In SVM-weight, different costs are associated with
errors in the minority class (C+) and the majority class (C−). We set C+

C− = n−
n+

,
where n+ and n− are the number of examples in the minority and majority
classes, respectively.

As the structural similarity kernel can be seamlessly combined with the lin-
ear and histogram intersection kernel (Algorithm 1), the proposed method is
presented for these two kernels. Since the kernel (or distance measure) used to
generate a kNN graph needs not to be the same as the kernel used in SVM
training, we use a notation “X+Y”: ‘X’ represents the kernel for generating the
neighborhood kNN graph and augmented feature vectors, and ‘Y’ represents the
kernel for subsequent SVM training. Note that the γ parameter in the RBF ker-
nel will not affect the kNN graph when ‘X’ equals RBF. In this case, we simply
ignore the exponential function and the γ parameter when building a kNN graph
for better numerical stability.

The LIBSVM package [2] is used for RBF kernel SVM (which uses the 1-vs-
1 strategy for multi-class classification). The LIBLINEAR package [5] is used
for linear SVM methods. Although the histogram intersection kernel (HIK) is
not a positive definite kernel for real-valued feature vectors. It is proved to be
a positive definite kernel when feature values are non-negative numbers, and
achieves better performances than the linear kernel in most cases [17]. For HIK
SVM, we linearly quantize all feature values into the range [0 100], and use
the fast HIK SVM method proposed in [17]. The 1-vs-all strategy is used in
both LIBLINEAR and [17]. SVM parameters (C in all methods, and γ in RBF
SVM) are searched using 5-fold cross-validation on the training set, in the range
log2 C ∈ [−11 15] and log2 γ ∈ [−11 3], with the search grid size being 2.

In an augmented feature vector a(x) = [xT λn(x)T ]T , the parameter λ con-
trols the trade-off between the pairwise similarity and the structural similarity.
In linear SVM, we simply set λ = 1. In HIK SVM, the features x are quantized
to [0 100], and we set λ = 10. The number of nearest neighbors k is set to 10
for all experiments.

6.2 Results

Three accuracy numbers are reported for every method. In every cell of Table 1
the first number is the overall accuracy (number of correctly predicted examples
divided by total number of testing examples, acc) in percentage. The second
number is the arithmetic average (a-mean) accuracy of all classes (i.e., average of
the diagonal entries of the confusion matrix). The third number is the geometric
average (g-mean) accuracy of all classes, which is a commonly used performance
measure in imbalanced learning.

Note that g-mean is always less than or equal to a-mean. And we usually ob-
serve that g-mean < a-mean� acc in imbalanced learning problems. Although
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Table 1. Comparing accuracies of baseline SVM and SVM that integrates structural
similarity, in which a-m and g-m mean a-mean and g-mean, respectively. rbf-w means
SVM-weight with the RBF kernel.

rbf lin lin+lin rbf+lin

acc a-m g-m acc a-m g-m acc a-m g-m acc a-m g-m

ijcnn1 98.03 92.22 91.94 91.71 63.15 52.38 96.13 86.31 85.45 97.09 90.61 90.25

protein 69.19 65.79 65.07 68.98 64.34 62.96 68.07 63.55 62.22 69.10 64.83 63.68

satimage 89.30 86.98 85.64 81.60 74.73 57.11 86.80 83.10 80.21 89.70 87.67 86.62

shuttle 99.68 69.02 00.00 91.82 41.31 00.00 98.86 67.17 57.72 99.88 92.38 91.73

splice 89.66 89.70 89.70 84.97 84.88 84.86 83.86 83.82 83.81 86.76 86.79 86.78

vowel 54.98 54.98 51.90 41.56 41.56 36.58 45.02 45.02 41.30 50.43 50.43 45.79

Avg. 83.47 76.45 64.04 76.77 61.66 48.98 79.79 71.49 68.45 82.16 78.79 77.48

rbf-w hik hik+hik rbf+hik

ijcnn1 96.56 93.86 93.80 94.88 84.43 83.44 97.08 92.37 92.18 97.60 93.47 93.33

protein 68.90 65.83 65.22 68.81 65.40 64.69 69.94 66.52 65.82 69.20 65.83 65.14

satimage 87.70 87.40 87.02 89.10 87.10 85.93 89.35 87.44 86.41 89.70 87.79 86.78

shuttle 97.94 96.24 96.08 99.01 85.46 83.74 99.92 93.77 93.04 99.90 95.23 94.83

splice 89.66 89.70 89.70 93.43 93.51 93.49 93.89 93.95 93.94 93.84 93.93 93.90

vowel 54.98 54.98 51.90 41.13 41.13 35.60 50.22 50.22 45.63 55.19 55.19 52.68

Avg. 82.62 81.34 80.62 81.06 76.17 74.48 83.40 80.71 79.50 84.24 81.91 81.11

there are more sophisticated statistics to measure imbalanced learning perfor-
mance (e.g., area under the Prevision-Recall or ROC curve [4]), the two simple
average accuracy measures are sufficient to clearly show the differences in Ta-
ble 1. Also note that both the arithmetic and geometric mean apply to problems
with multiple classes.

As shown in Table 1, incorporating the structural similarity improves SVM
classification accuracies in most cases, no matter whether a linear or histogram
intersection kernel is used. In the linear SVM, the neighborhood vectors n(x)
extracts non-linear features from x and increases the capacity of the classifier.
The mean accuracies on the 6 datasets increases from 76.77% (linear SVM) to
82.16% by adding structural similarity (RBF kNN graph plus linear SVM). The
rbf+lin method achieves higher accuracies than a simple linear SVM in all
datasets and all three measures. Using the linear kernel to generate kNN graph
and structural similarity is not as effective as the RBF kernel. However, lin+lin
still achieves higher accuracies than lin in 4 out of 6 datasets. It is worth noting
that lin+lin usually outperforms lin by a large margin (4-7%). But when lin
have higher accuracies than lin+lin, the differences are usually only about 1%.

Similarly, structural similarity also boosts performance of the HIK SVM. Both
rbf+hik and hik+hik outperforms hik in all datasets and all performance mea-
sures. The absolute level of improvements by structural similarity in HIK SVM,
however, is smaller than that in linear SVM. One reason might be that the
HIK SVM itself has higher discriminative power than the linear SVM. It is
worth noting that rbf+hik has better acc performances than RBF SVM in al-
most all datasets, except in the ijcnn1 dataset where rbf+hik is slightly worse.
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In fact, when structural similarity (RBF kNN graph) is used, even the linear
SVM performs closely to the RBF kernel SVM.

Structural similarity, however, is most effective in dealing imbalanced prob-
lems. In plain SVM methods, the a-mean measure is usually much higher than
the g-mean measure. After equipped with the structural similarity, the SVM
classifiers have similar a-mean and g-mean values. For example, in rbf+hik, the
difference is smaller than 1%. This phenomenon means that the accuracy in
different classes are close to each other, based on the inequality of arithmetic
and geometric means, i.e., the proposed imbalanced learning strategy is indeed
effective. The average a-mean measure is improved from 61.66% (linear SVM) to
78.79% (rbf+lin), and from 76.17% (HIK SVM) to 81.91% (rbf+hik) in these
datasets. We can observe even larger improvements of the g-mean measure in
Table 1.

The shuttle dataset is the most imbalanced one, with only 2 training ex-
amples in the smallest class and 11478 examples in the largest class. The RBF
kernel SVM has an a-mean accuracy of 69.02%, in which the 4 classes with less
than 50 training examples are almost completely misclassified (in consequence
the g-mean measure is 0.). The linear and histogram intersection kernel are not
effective in dealing with this highly imbalanced problem either. Structural simi-
larity, however, successfully recognizes examples from these minority classes. For
example, rbf+hik has an a-mean of 95.23% and a g-mean of 94.83%. Specifically,
lin has 0% accuracies on all these 4 minority classes. However, the accuracy of
rbf+lin for these 4 classes are 76.92%, 94.87%, 75%, and 100% , respectively.

In Table 1 we also compare the proposed method with SVM-weight, a simple
but effective imbalanced SVM learning method. The rbf+hik method outper-
forms rbf-w in all three performance measures. Although SVM-weight is also
effective in balancing the accuracies between the minority and majority classes,
it has lower average a-mean and g-mean values than rbf+hik. We want to em-
phasize that imbalanced learning methods such as SVM-weight usually increase
measures such as g-mean at the cost of a reduced accuracy acc. However, the
proposed method carries out effective imbalanced learning without hurting the
classification accuracy acc. In fact, rbf+hik has a higher average acc value
than that of SVM classifiers with linear, histogram, and RBF kernels, and the
SVM-weight classifier.

We end our discussions about Table 1 with a note about the splice dataset.
This dataset is almost balanced (the number of examples in the minority class
is close to that of the majority class). rbf-w and rbf achieve exactly the same
accuracies on this dataset. However, the similarity kernels can still improve all
the three performance measures over the plain SVM in rbf+lin, hik+hik, and
rbf+hik.

6.3 Discussions of Limitations

In spite of its effectiveness, the structural similarity kernel requires a time-
consuming step to construct a kNN graph. At the testing phase, finding the
k-nearest neighbor of a query is also computationally expensive. On the other
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hand, because fast SVM training algorithms are available for both the linear and
the histogram intersection kernel SVM, the time for cross-validation parameter
selection and SVM training can be significantly reduced. For example, the total
time for parameter selection, training, and testing is 4524 seconds for RBF ker-
nel SVM on the shuttle dataset. The total time for rbf+lin and rbf+hik are
only 769 seconds and 1028 seconds, respectively.

Another issue is the choice of λ. A too small or too large λ will effectively
reduce the augmented vector a(x) to either the original feature vector x or the
neighborhood vector n(x). Although the experiments in Table 1 indicates that
the default choice of λ leads to reasonable results, it is worthwhile to learn a
suitable λ for each dataset. For example, x and n(x) can be used to construct
two kernel matrices separately. By formulating structural similarity SVM as a
multiple kernel learning problem, MKL methods can be used to learn the value
of λ. An additional advantage is that kernels besides the linear kernel and the
histogram intersection kernel can be used together with the structural similarity
kernel (e.g., X+rbf).

7 Concluding Remarks

A structural similarity kernel is presented in this paper for SVM learning, and
in particular when the problem is imbalanced. Kernels like the RBF kernel com-
putes the similarity of two examples using only the feature vectors of them.
However, after building a neighborhood graph (kNN graph), the linking patterns
of two examples (nodes) convey useful information about how similar they are.
The proposed structural similarity kernel captures this structural similarity by
computing the bibliographic coupling count, and its feature space representation
corresponds to rows of the adjacency matrix of the kNN graph. The structural
similarity kernel is a data-dependent kernel.

The structural similarity kernel can be seamlessly integrated into the linear
SVM or the histogram intersection kernel SVM. We show that it is equivalent
to adding a regularization term that encourages balanced weights in all local
neighborhoods defined by incoming edges in the kNN graph. Analogous to the
unsupervised HITS algorithm, the structural similarity kernel turns hub scores
into signed authority scores, and is particularly effective in dealing with imbal-
anced learning problems. Experimental results on several datasets show that
structural similarity can help linear and histogram intersection kernel to match
or surpass the performance of the RBF kernel in terms of classification accuracy.
When the problem is imbalanced, structural similarity can significantly improve
imbalanced learning performance measures such as g-mean, while at the same
time it still maintains high classification accuracy.

Further research that will improve the structural similarity kernel SVM in-
cluding at least two directions: a fast (maybe approximate) way to create the
kNN graph, and the use of multiple kernel learning to learn an appropriate λ
parameter value.
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Abstract. Many learning algorithms perform poorly when the training
data are incomplete. One standard approach involves first imputing the
missing values, then giving the completed data to the learning algorithm.
However, this is especially problematic when the features are nominal.
This work presents “classifier-based nominal imputation” (CNI), an easy-
to-implement and effective nominal imputation technique that views nom-
inal imputation as classification: it learns a classifier for each feature (that
maps the other features of an instance to the predicted value of that fea-
ture), then uses that classifier to predict the missing values of that feature.
Our empirical results show that learners that preprocess their incomplete
training data using CNI using support vector machine or decision tree
learners have significantly higher predictive accuracy than learners that
(1) do not use preprocessing, (2) use baseline imputation techniques, or (3)
use this CNI preprocessor with other classification algorithms. This im-
provement is especially apparent when the base learner is instance-based.
CNI is also found helpful for other base learners, such as näıve Bayes and
decision tree, on incomplete nominal data.

Keywords: incomplete data, imputation, support vector machine,
instance-based learning, nominal data.

1 Introduction

It is often difficult to learn good classifiers when the training data are missing
attribute values. To deal with missing data in classification tasks, many learners
first use some imputation technique to fill in the missing values, before giving
the completed data to a complete-data learner. A simple imputation technique
is to replace each missing value of a real-valued attribute with the mean of the
observed values of the attribute (MEI), or a nominal attribute with its most
commonly observed value (MCI). This is used by the WEKA implementations
for many classification algorithms [4]. However, these trivial imputers generally
do not help produce high-quality classifiers for incomplete data.
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Many learning algorithms have algorithm-specific built-in schemes for han-
dling missing value – e.g., näıve Bayes can simply ignore the missing attributes
at both learning and classification time, and some instance-based algorithms
simply set the distance measure to any attribute (of an instance) missing an
entry to the associated maximum value [1]. However, these simple missing data
handling methods often do not produce accurate estimates to fill in the missing
values. As we anticipate that answers based on accurately imputed data will
be better than those based on the original incomplete data and on less accu-
rately imputed data, we expect preprocessing the incomplete data with accurate
imputers can boost the classification performance of machine learners on incom-
plete data. In general, an “imputation-helped learner” uses some imputation
techniques to fill in the missing values before training a classifier. Su et al. in-
vestigated such imputation-helped learners in the context of numeric features,
and showed that certain numerical imputation techniques can improve classifi-
cation performance [9]. However, few existing works specifically investigate how
imputation techniques can improve classification performance on nominal data.

This work explores imputation-helped learners for nominal features. We
first propose an easy-to-implement algorithm for imputing nominal features,
classifier-based nominal imputation (CNI), which treats imputation as a classifi-
cation task: first learn a classifier for each feature, then use this trained classifier
to impute values for the missing entries. We let the notation “kNN-CNI(SVM)”
refer to the learning system that preprocesses the incomplete training data by
learning a SVM classifier for each attribute to impute each missing value of
this attribute (so if there are n attributes with missing values, this produces n
different classifiers); the resulting completed dataset from this CNI(SVM) pre-
processing is then given to the learner kNN (“k nearest neighbors” [1]) to produce
a final classifier. In general, the “B-CNI(L)” learner first uses the learner L to
learn n different classifiers for imputing values for the n attributes, then gives
the completed data to the base learner B.

We first investigate the imputation performance of our proposed CNI imputa-
tion using 10 machine learners as imputation classifiers, and found that (1) each
of these CNI imputers has more accurate predictions than the baseline kNN
imputation and MCI, and (2) CNI(SVM) (classifier-based nominal imputation
that uses support vector machine) and CNI(DT) (that uses decision tree) per-
form especially well.

By applying the top-performing CNI imputers to preprocess incomplete nom-
inal data, our empirical experiments show that these imputation techniques can
significantly improve classification performance for instance-based algorithms on
incomplete nominal data with either a high or low percentage of missing values.
While imputation is not as critical for other learning algorithms, such as näıve
Bayes and decision tree, we found that our proposed B-CNI(L) approach can
still boost their classification performance when the missing ratio is at or below
20%.

Section 2 describes the framework of this paper, Section 3 provides our ex-
perimental design and results, and Section 4 contains the conclusions.
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2 Framework

2.1 Imputation for Nominal Data

As many real-world datasets are missing some information, imputation tech-
niques are often used to fill in the missing values with estimated values; this
often leads to performance that is better than just using the original incomplete
data. Imputation techniques for numeric data, such as EM (expectation maxi-
mization) and BMI (Bayesian multiple imputation), involve iteratively updating
estimates of means and covariance matrices, as the data is assumed to be nor-
mally distributed [9]. This is, of course, typically not appropriate for nominal
data.

A baseline imputation for such nominal data is MCI (most common [value]
imputation), which fills the missing values with the most frequently observed
value of the attribute. However, MCI distorts the distribution of the values by
overestimating the most frequent value, which often leads to incorrect inferences.
Figure 1 shows that MCI does not produce a similar shape of attribute value
distribution as the original missing data, while our proposed CNI imputation
does; see details in the next subsection.

Another well-known nominal imputation technique is kNN imputation (kNNI)
[2], which imputes a missing value of an attribute in an instance as the most
common value of that attribute in the instance’s k nearest neighbors. However,
kNNI is not very effective because of the way that kNN selects the nearest
neighbors: this is based on a distance function that is problematic in the presence
of incomplete data (see Section 2.3 below).

We therefore propose an easy-to-implement nominal data imputation tech-
nique: classifier-based nominal imputation. This paper investigates whether this
nominal imputation technique can be used to improve classification performance
for machine learned classifiers on incomplete nominal data.

2.2 Classifier-Based Nominal Imputation

The basic idea of classifier-based nominal imputation (CNI) is simple: treat
imputation as classification. For each attribute fi with missing values, learn a
classifier ci(. . .) that takes as input the values of the other n − 1 attributes
{fj|j = i} for an instance, and returns the value for fi for this instance. CNI(L)

Fig. 1. Attribute value distributions on the “date” attribute of the Soybean-large
dataset with 30% of the values missing: (from left to right) (1) the original missing
data, (2) after most common imputation (MCI), (3) after CNI using decision tree
imputation CNI(DT)
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uses the learning algorithm L to learn this ci(. . .) classifier from the training
instances with observed values on fi; CNI then uses this ci(. . .) to impute the
missing values of this attribute in the remaining instances. Algorithm 1 illustrates
the CNI imputation algorithm.

After imputing incomplete data using CNI(L), B-CNI(L) passes the resulting
completed dataset to the base learner B, which produces a classifier that can
then classify (possibly incomplete) test instances. Note that the L learner must
be able to deal with incomplete data as its data sample D+

i (see Algorithm 1)
will typically have missing values, and the ci(. . .) classifier that it produces must
also be able to handle missing information. However the base learner B will only
need to deal with complete instances. The resulting classifier will predict class
labels for the original incomplete test data.

Note that the values imputed for one attribute could be used in the later
iterations of imputation. For example, if attribute f1 was the first imputed at-
tribute, its imputed values could be used when imputing values for f2 and for
all other subsequent attributes. However, to simplify the algorithm and focus on
the general techniques, we did not use the previously imputed values for any of
the later attributes in this work.

Here, we investigate the following Imputation Learners L: decision tree (C4.5),
decision table (dTable), lazy Bayesian rules (LBR), naive Bayes (NB), one rule
(OneR), decision list (DecList), random forest (RF), support vector machine
(SVM), radial basis function neural networks (RBF), and multilayer perceptron
neural network (MLP). Each of the learners and the CNI technique are imple-
mented within the WEKA [4] framework, and use WEKA’s default approach for
dealing with missing values, at both learning and performance time. When there
are too few observed feature values to train reasonable classifiers (here, under
three instances with observed values for attribute fi in D+

i ), we simply use MCI
to impute a value for that attribute. For comparison, we also implement the
baseline nominal imputation techniques kNNI and MCI.

Algorithm 1. CNI(ImputationLearner L)

for t = 1 . . . n do % over each feature (attribute column of dataset D)
% View feature fi as the class and the other columns as features
Divide instances D = D+

i + D−
i

where training set D+
i contains the instances with observed values of attribute

fi, and test set D−
i contains the instances that miss values of attribute fi

Let ci(. . .) = L(D+
i ) be classifier trained using learner L on D+

i

using L’s default approach to handle missing data, as necessary
for each instance d ∈ D−

i do
Let d−i be the n − 1 “non-fi” values in d
Impute the “fi” value of d as ci(d−i)

% Move on to the next attribute

% return the resulting completed dataset D′
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Fig. 2. The B-CNI(L) framework of improving the classification performance of ma-
chine learning algorithm B using L imputation as the preprocessor for the nominal
training data

As these classifiers are well-known, we do not provide detailed descriptions
for each of them here. We use default parameter settings of WEKA for L and B
learners unless they are explicitly specified otherwise. For the imputation learner
L=SVM, we use the linear kernel [7].

2.3 Using CNI to Improve Classification Performance of Machine
Learned Classifiers

Figure 2 shows the general B-CNI(L) framework, which first uses some nominal
learner L for imputing the missing nominal values in the training set to generate
an imputed training dataset, then gives the completed dataset to a learning
algorithm B (e.g., kNN) to learn a classifier. We then use this classifier to classify
the (possibly incomplete) test instances.

Although it is legitimate to impute training data together with test data (ex-
cluding the labels of the test data), our imputers only work on the training
data, and use the original incomplete test data for evaluation. (When predicting
class labels for each incomplete test instance, we use the missing data handling
strategy of the classifier associated with the base learner B). We use this imputa-
tion scenario for dealing with incomplete training/test data because, in practice,
training data and test data often come in different times. Therefore, it would be
impractical to impute training data and test data together in many cases.

We investigate how our proposed CNI imputation can help machine learners
such as instance-based learning algorithms, näıve Bayes, decision tree, and neural
network.

Instance-based learning is a kind of “lazy learning” that assigns a label to
a new unlabeled instance based on the “closest” labeled instances appearing
in the training set. A commonly used instance-based learning algorithm is the
k-nearest neighbor algorithm, which first identifies the k neighbors nearest to
the “to be labeled instance” (based on the distance values calculated between
this new instance with each of the instances in the training set) and returns
the majority class over these neighbors, or perhaps some variant that weights
the labels of these neighbors. The distance function in instance-based learning
is usually defined as [1]:
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Dis(x, y) =

√√√√ n∑
i=1

f(x, y) (1)

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are instances, each over n attributes.
For numeric attributes, f(xi, yi) = (xi − yi)2, and for Boolean and nominal
attributes, f(xi, yi) = I(xi = yi) which is 0 if xi = yi and is 1 otherwise. The
nearest neighbor for an instance x is argminyDis(x, y) over all instances y in
the training set.

Of course, Equation 1 is not defined if any f(xi, yi) value is undefined. How-
ever, as f(. . .) must return an answer even if either xi or yi is missing, many
nearest-neighbor systems will use extreme values – ie, set f(xi, yi) to the maxi-
mum value if either xi or yi is missing [1]. As this simple approach often leads to
biased distance values, we suspect that a reasonable estimate of missing values
in the training set will improve the resulting classifier.

The best value of k often depends on the dataset. In general, a larger k value
reduces noise on the classification, but can impair performance if it is too big.
A good k can be selected by using various techniques, such as cross-validation
or some heuristic. We often consider k > 1 nearest neighbors and set k to an
odd value to prevent ties for binary classification. (For multiple classes, we use
the plurality of the votes.) Some instance-based classifiers will also weight each
neighbor in this vote by using 1/Distance or 1 −Distance, both of which give
higher weights to nearer neighbors [4].

When using imputation to help instance-based algorithms, imputing the train-
ing set will replace the missing values for the instances in the training set, while
the missing values that have penalized distance values in the test instances are
still present. Imputation reduces the number of times where instance-based learn-
ing algorithms will use the maximized distance values.

Many other learning algorithms deal naturally with incomplete data, and there-
fore imputation may not be so critically helpful. For example, näıve Bayes makes
classifications based on only observed values [6], while C4.5, a well-known decision
tree classifier, will in effect simply disregard the missing values during training [8].

3 Experimental Design and Results

We explored 12 nominal datasets from the UCI machine learning repository (see
dataset description in Table 1) [3]. Six of the 12 datasets have both nominal and
numeric attributes; these have italicized names in Table 1 – e.g., the dataset
“Australian” has 8 nominal attributes out of a total of 14 attributes. Most of
the nominal data have more than two attribute values. Here, when corrupting
the data by removing values, we only remove some of the nominal attributes,
and leave all of the numeric attributes.

To investigate the performance on datasets with different missing ratios, we
generate five incomplete datasets for each of the above datasets by randomly
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deleting 10%, 20%, 30%, 40%, and 50% of the observed values – this is done by
removing each [instance, attribute] independently, with probably 0.1 [resp., 0.2,
. . . , 0.5].

We first evaluate our proposed CNI(L) imputation algorithms using different
machine learned classifiers L; we then pick the top two CNI imputers in terms
of their estimation accuracy (see next subsection) to impute the incomplete
nominal training sets, before applying a base learner to train a classifier on
the imputed training set, which we subsequently use to classify the incomplete
instances in the test set. The classification results reported are the average of
five cross validation folds.

We then evaluate how CNI imputation can improve the classification per-
formance for machine learners kNN, näıve Bayes, decision tree, and MLP on
incomplete nominal data.

3.1 Evaluation of CNI Imputation Algorithms

As we generated the incomplete datasets by removing values from the complete
datasets, we have the ground truth for each missing value. Therefore, our nominal
imputation algorithms can be evaluated in terms of the estimation accuracy by
checking the imputed values against their respective ground truth values.

Accuracy =
1
N

N∑
i=1

I(Pi = Ri) (2)

where Pi is the estimated value produced by the imputer (for some [instance,
attribute] pair), Ri is the ground truth value, and N is the total number of the
imputed values.

Figure 3 illustrates the imputation performance of the CNI imputers L ∈
{SVM, C4.5, NB, RF}, kNNI and MCI, when 30% of the data is missing.

Table 1. Datasets from the UCI Machine Learning Repository

dataset #instances
#attributes average

#classes
(nominal/all) attribute values

Chess 3196 35 2.03 2
Corral 128 6 2 2
Flare 1066 10 3.3 2
Mofn-3-7-10 1324 10 2 2
Soybean-large 562 35 2.86 19
Vote 435 16 3 2
Australian 690 8/14 4.63 2
Cleve 296 7/13 2.71 2
Crx 653 9/15 4.56 2
German 1000 13/20 4.31 2
Hepatitis 80 13/19 2 2
Lymphography 148 15/18 2.93 4
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Fig. 3. Estimation accuracies of the CNI imputers, kNNI, and MCI on the datasets
with a missing ratio of 30%

Our proposed nominal imputation algorithm – classifier-based nominal impu-
tation (CNI) – performs significantly better than the commonly used nominal im-
puters, kNNI and MCI. While each CNI(L) imputer (that uses the learner L) we
investigated outperforms kNNI and MCI, each of the top performers CNI(SVM)
and CNI(C4.5) has more than 7% and 15% higher average estimation accuracies
over kNNI and MCI respectively. Statistically, CNI(SVM) and CNI(C4.5) out-
perform kNNI with 1-sided t-test p < 2×10−8 and p < 1×10−8 respectively, and
even the worst performing CNI(RBF) and CNI(MLP) still slightly outperform
kNNI, albeit with p < 0.01 and p < 0.1. As expected, the estimation accuracies
of the imputers decrease as the missing ratio of the datasets increases.

For all of the 10 nominal imputers we investigated, the ranking of the nominal
imputers in terms of their average estimation accuracies over the 12×5 datasets
(five datasets with different missing ratios between 10% and 50% generated from
each of 12 base datasets) is: CNI(SVM), CNI(C4.5), CNI(DecList), CNI(NB),
CNI(LBR), CNI(RF), CNI(OneR), CNI(dTable), CNI(RBF), CNI(MLP), kNNI,
and MCI. We will therefore use the best two, CNI(SVM) and CNI(C4.5), as
nominal imputers in the investigations below.

3.2 The Impact of Nominal Imputers on the Classification
Performance for Instance-Based Learning Algorithms

Now we evaluate how much nominal imputers can improve the classification
performance for instance-based learning algorithms.

We work on instance-based algorithms with different weighting schemes.
Rather than setting the best k value for each different dataset, different nominal
imputer and distance weighting scheme, we will instead simply use k = 5 for all
cases.

Table 2 is a summary of the classification results, with cells that record the av-
erage classification accuracy over the 12 nominal datasets. Figure 4(a) illustrates
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how nominal imputers improve the classification performance of instance-based
algorithms on the dataset “Australian” over various different missing ratios.

Table 2 and Figure 4(a) show that instance-based algorithms decrease their
classification accuracy fast with the increase of the missing ratio of data. With
the help of nominal imputers, kNN can achieve a statistically significant improve-
ment of classification accuracy (here, this is based on a 1-sided paired t-test, with
p < 0.05; note all statistical claims are based on this test). This is true for all
the datasets with all missing ratios we investigated (in the range of 10% and
50%), and for different distance weighting schemes of instance-based algorithms,
including (1-distance) weighting, inverse distance weighting, and no weighting.

We anticipate a more accurate imputation technique will further improve
the classification performance. Over the 12 datasets, kNN-CNI(SVM) and kNN-
CNI(C4.5) each achieve about 2–4% higher average classification accuracies than

Table 2. Average Classification accuracy over the 12 datasets for instance-based algo-
rithms using different nominal imputers as preprocessors (from top to bottom, bolded
are best values) (a) kNN using (1-distance) weighting, (b) kNN using 1/distance
weighting, (c) kNN without distance weighting

Missing Original kNN- kNN- kNN- biggest-
Ratio(%) kNN MCI CNI(C4.5) CNI(SVM) lift (%)

10 83.02 83.94 84.27 84.55 1.85
20 80.72 81.35 83.37 83.06 3.28
30 78.48 80.01 80.83 81.36 3.67
40 76.14 78.11 78.57 78.92 3.65
50 74.14 75.54 76.00 75.86 2.51

average 78.5 79.79 80.61 80.75 2.99

Missing Original kNN- kNN- kNN- biggest-
Ratio(%) kNN MCI CNI(C4.5) CNI(SVM) lift (%)

10 82.44 83.99 84.36 84.55 2.57
20 81.21 82.06 83.32 82.92 2.6
30 79.2 79.97 80.82 81.37 2.74
40 76.6 78.03 78.57 78.93 3.04
50 73.89 75.57 76.02 75.9 2.88

average 78.67 79.93 80.62 80.73 2.76

Missing Original kNN- kNN- kNN- biggest-
Ratio(%) kNN MCI CNI(C4.5) CNI(SVM) lift (%)

10 82.67 83.72 83.97 84.78 2.56
20 80.57 81.94 83.13 82.38 3.17
30 78.34 79.61 80.77 81.39 3.9
40 76.17 77.88 78.64 78.90 3.58
50 73.73 75.34 75.72 75.7 2.7

average 78.3 79.7 80.44 80.63 3.18
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Fig. 4. (from left to right) (a) Case study on the dataset “Australian”: using nom-
inal imputers to preprocess incomplete training data helps improve the classification
performance; and a better imputer (such as CNI(SVM)) will give a bigger lift of the
classification accuracy. (b) The average classification accuracy of MLP, and MLP using
MCI and CNI(SVM) as preprocessor for incomplete training data over all 12 datasets.

kNN on the original incomplete datasets, with 1-sided paired t-test p < 0.0006
and p < 0.001 respectively. KNN using MCI as the preprocessor slightly outper-
forms the original kNN by 1–2% on average, with p < 0.01.

3.3 The Impact of Nominal Imputers on Other Machine Learned
Classifiers

We have shown that using high-quality imputation techniques to preprocess in-
complete data will increase the classification performance for instance-based al-
gorithms on nominal data. We now further investigate whether nominal imputers
can help other classifiers perform better on incomplete nominal data, especially
those with better missing data handling schemes – ie, where imputation may
not be as critical.

We work on three machine learning algorithms, näıve Bayes [6], C4.5 [8], and
MLP neural network [5], on the 12× 5 datasets. We use one baseline imputer,
MCI, and one top performer of our CNI imputers, CNI(SVM), as the nominal
imputers for the training data before learning the classifiers. We compare with
the classifiers that do not use imputation before training. Table 3 summarizes
the results, and Figure 4(b) depicts the average accuracy for MLP, MLP-MCI,
and MLP-CNI(SVM) on datasets of different missing ratios.

As Table 3 and Figure 4(b) indicate, accurate nominal imputers such as
CNI(SVM) can help improve classification accuracy when the incomplete data
has low missing ratios (e.g., at or below 20%), while using an inaccurate imputer
such as MCI may lead to worse classification performance than the classifier
that does not use any imputation for training data. When the missing ratio goes
higher (i.e., missing ratio higher than 30%), neither CNI imputers nor MCI can
help the learner to improve its classification accuracy. This is partially because
many classifiers, such as NB, have more effective ways to deal with incomplete
data than using imputation for highly sparse data. When the missing ratio is
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Table 3. The average classification accuracies of the machine learned classifiers NB,
C4.5, and MLP with and without using nominal imputers MCI and CNI(SVM)

10.00% 20.00% 30.00% 40.00% 50.00% average

NB 83.31 83.03 81.85 80.65 77.82 81.33
NB-MCI 82.73 81.87 81.07 79.07 75.43 80.03
NB-CNI(SVM) 83.35 83.14 81.62 79.15 76.69 80.79

C4.5 83.27 80.51 78.85 75.96 71.25 77.97
C4.5-MCI 83.31 81.28 79.15 76.08 74.09 78.78
C4.5-CNI(SVM) 84.40 81.11 77.56 75.34 71.77 78.04

MLP 82.55 79.56 78.56 76.25 72.80 77.95
MLP MCI 81.22 79.07 77.44 71.91 70.44 76.01
MLP -CNI(SVM) 82.98 81.10 78.71 74.17 71.34 77.66

high, the nominal imputers will become less accurate (see Section 3.1), and the
benefit of using imputation will be offset by its inaccuracy.

Why are accurate nominal imputers effective for instance-based learning algo-
rithms on both high-missing-ratio data and low-missing-ratio data? We suspect
that this is partially due to the poor way that instance-based algorithms handle
missing data, as using the maximized distance calculation can lead to poor classi-
fication accuracy, while using CNI imputation to preprocess incomplete nominal
data before learning the base classifier will perform better.

As many real-world dataset are missing under 20% of the values, there is
practical significance for our finding that an accurate nominal imputer (such
as our proposed CNI imputation) can improve the classification performance
of many machine learners on such incomplete datasets, even over learners that
include effective built-in schemes for handling missing data.

4 Conclusions

Incomplete nominal data often make it difficult for learning algorithms to pro-
duce effective classifiers. Simple schemes of imputing the missing values, such as
using the most common value for nominal missing data, are often not very effec-
tive. In this paper, we explore methods for improving classification performance
for machine learning algorithms on incomplete nominal data. We first propose an
easy-to-implement and effective nominal imputation algorithm: classifier-based
nominal imputation (CNI), which fills in the missing values of attribute fi by
the values produced by a learned classifier that takes the other values in that
instance, where this classifier is learned using as the training data the instances
that contain the observed values of fi. Our empirical results show that, of the
10 classification algorithms for imputation we investigated, the support vector
machine (SVM) and C4.5 decision tree perform the best as CNI imputation
learners. Our CNI imputers have significantly higher estimation accuracy than
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the commonly used nominal imputation techniques, kNN imputation (kNNI) and
most common imputation (MCI). Applying CNI imputers such as CNI(SVM)
and CNI(C4.5) as the preprocessors for incomplete nominal training data can
impressively improve the classification performance of instance-based learning
algorithms on incomplete datasets over the entire range of missing ratios that
we investigated. CNI imputers are also found helpful in improving the classifica-
tion performance of machine learners that have effective missing data schemes,
such as NB and C4.5, when the datasets have missing ratios at or below 20%.

In our future work, we plan to improve our CNI imputation algorithm by
using the previously imputed values for the later iterations of imputations, in
the order of imputations based on how dense or informative the attributes are.
We also plan to explore ways to improve the instance-based learning algorithm
using nominal imputations for other data types, such as mixed data (with both
numeric and nominal data) and ordinal data.
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Abstract. This paper presents a novel Bayesian formulation to exploit shared
structures across multiple data sources, constructing foundations for effective
mining and retrieval across disparate domains. We jointly analyze diverse data
sources using a unifying piece of metadata (textual tags). We propose a method
based on Bayesian Probabilistic Matrix Factorization (BPMF) which is able to
explicitly model the partial knowledge common to the datasets using shared sub-
spaces and the knowledge specific to each dataset using individual subspaces. For
the proposed model, we derive an efficient algorithm for learning the joint factor-
ization based on Gibbs sampling. The effectiveness of the model is demonstrated
by social media retrieval tasks across single and multiple media. The proposed so-
lution is applicable to a wider context, providing a formal framework suitable for
exploiting individual as well as mutual knowledge present across heterogeneous
data sources of many kinds.

1 Introduction

Recent developments in computing and information technology have enabled us to
jointly analyze data from multiple sources such as multiple news feeds, social media
streams and so on. Discovering structures and patterns from multiple data sources helps
us to unravel certain commonalities and differences which otherwise is not possible
when analyzing each data source separately. This information provides valuable inputs
for various data mining and representation tasks. Whilst the data mining community has
developed techniques to analyze a single data source, there is a need to develop formal
frameworks for analyzing multiple data sources exploiting their common strengths.

However, modeling the data across multiple heterogeneous and disparate sources is a
challenging task. For example, how do we model text, image and video together? At the
semantic level, they provide much richer information together, and the question is how
to exploit these strengths at lower levels? One solution is to exploit textual metadata
for each data source in the form of tags. These tags are rich metadata sources, freely
available across disparate data sources (images, videos, blogs etc.) and at topical or
conceptual levels, they are often more meaningful than what current content processing
methods extract [2]. However, tags can be ambiguous, incomplete and subjective [7]
due to a lack of constraints during their creation. Due to this problem, performance
of any data mining task using tags suffers significantly. Therefore, it is imperative to
model the uncertainties of tag data to improve the performance of several data mining
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tasks. Work on tag denoising has been, broadly speaking, aimed at determining tag
relevance through modification or the recommendation of additional tags [11,7]. But
these approaches typically focus solely within the internal structure of a given tagging
source, and are thus bounded by the information content and noise characteristics of the
tagging source. Moreover, these methods, working individually for each data source,
lack in exploiting the collective strengths of all data sources.

Addressing the problem of constructing a unified framework for disparate sources,
we develop a Bayesian framework which can model the uncertainties of multiple data
sources jointly using the textual tags from each source as a unified piece of metadata.
Our method allows multiple data sources to exploit collective strength by learning prob-
abilistic shared subspaces and, at the same time, crucially retains the differences of
each data source by learning probabilistic individual subspaces. Retaining the differ-
ences between data sources is very important; ignoring this aspect often leads to “neg-
ative knowledge transfer”. Another strength of the proposed framework is that both the
shared and individual subspaces are probabilistic in nature, which helps in modeling
the uncertainties involved in real world applications. Similar work by Gupta et al [5]
also models the shared and individual subspaces but has certain limitations. First, their
framework is restrictive in part as it can model only nonnegative data sources. Second,
their model supports only two data sources, which renders the model unusable when
working with more than two data sources. Third, the subspaces learnt are not proba-
bilistic and do not cater for uncertainties such as missing tags and tag ambiguity.

Previous works on shared subspace learning are mainly focused on supervised or
semi-supervised learning. Ji et al [6] and Yan et al [12] provide frameworks for ex-
tracting shared structures in multi-label classification by learning a common subspace
which is assumed to be shared among multiple labels. Si et al [10] propose a family of
transfer subspace learning algorithms by minimizing Bregman divergence between the
distributions of the training and test samples. This approach, while being fairly generic
for transfer learning, is not appropriate for multi-task learning and can not exploit the
knowledge strengths from the multiple data sources. In another work, Gu and Zhou [4]
propose multi-task clustering by learning a shared subspace for all tasks. This approach
provides a way to learn shared subspaces, but has no way of controlling the sharing
level, a crucial aspect when dealing with heterogeneous data sources. Moreover, the
sharing is imposed among all tasks which is unrealistic in many scenarios.

Our framework is based on the state-of-the-art Bayesian probabilistic matrix factor-
ization (BPMF) model, recently proposed in [9]. We extend BPMF to enable joint mod-
eling of multiple data sources deriving common and individual subspaces, and derive
inference algorithms using Rao-Blackwellized Gibbs Sampling (RBGS). To demon-
strate the usefulness of our approach, we examine two applications – improving social
media retrieval using auxiliary sources, and cross-social media retrieval. We use three
disparate data sources – Flickr, YouTube and Blogspot – to show the effectiveness of
shared subspace learning frameworks.

Our main contributions are :

– The construction of a novel Bayesian shared subspace learning framework for ex-
traction of shared and individual subspaces across an arbitrary number of data
sources using joint matrix factorization.
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– Efficient inference based on RBGS (Gibbs sampling) for joint factorization.
– Algorithms for retrieval within one social medium or across disparate social media

using Bayesian shared subspace learning framework.
– Two real-world applications using three popular social media sources: Blogspot,

Flickr and YouTube. We demonstrate (1) improvement in social media retrieval by
leveraging auxiliary media, and (2) effective cross-social media retrieval.

The novelty of our approach lies in the framework and algorithms for learning across
diverse data sources. Our probabilistic shared and individual subspaces not only exploit
the mutual strengths of multiple data sources but also handle the uncertainties.

The significance of our work lies in the fact that theoretical extensions made to
BPMF [9] for multiple data sources allow for the flexible transfer of knowledge across
disparate media. In addition, RBGS sampling derived for our model achieves better
inference (i.e. Markov chain mixes better) compared to [9]. Our work brings a broad
scope of open opportunities and applications—it is appropriate wherever one needs to
exploit multiple and heterogeneous datasets for knowledge transfer among them, such
as collaborative filtering or sentiment analysis.

The rest of the paper is organized as follows. Section 2 presents the Bayesian shared
subspace learning formulation and describes Gibbs sampling based inference proce-
dure. Section 3 and 4 demonstrate the applicability of the proposed framework to social
media retrieval applications. Conclusions are drawn in Section 5.

2 Bayesian Shared Subspace Learning (BSSL)

We introduce a framework for learning individual and shared subspaces across an arbi-
trary number of data sources. Let a set of n data sources be represented by data matrices
X1, . . . , Xn, which, for example, can be term-document matrices (each row a word
and each column a document with tf -idf features [1]) for retrieval applications or user
rating matrices (each row a user and each column an item with ratings as features) for
collaborative filtering applications. We assume that matrices Xi have the same number
of rows. Whenever it is not the case, one can always merge the vocabularies of each
data source to form a common vocabulary. Our goal is to factorize each matrix Xi as
Xi = W i ·Hi + Ei such that the decomposition captures arbitrary sharing of basis
vectors among data sources whilst preserving their individual bases. For example, when
n = 2, we create three subspaces: a shared subspace matrix W12 and two individual
subspaces W1, W2. We thus write X1 and X2 as

X1 = [W12 |W1]︸ ︷︷ ︸
W 1

⎡⎣H1,12

H1,1

⎤⎦
︸ ︷︷ ︸

H1

+E1 and X2 = [W12 | W2]︸ ︷︷ ︸
W 2

⎡⎣H2,12

H2,2

⎤⎦
︸ ︷︷ ︸

H2

+E2 (1)

To define subspaces at data source level, we define W 1 = [W12 |W1] and W 2 =
[W12 |W2] for the two data sources. Note however that the encoding coefficients corre-
sponding to the shared subspace W12 are different, and thus, an extra subscript is used
to make it explicit in H1,12 and H2,12. Notation-wise, we use bold symbols W ,H to
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denote the entire decomposition at a data source level and normal capital letters W , H
at the shared level. E1 and E2 denote the residual factorization error.

To see how we can generalize these expressions for n datasets, we continue with this
example by constructing the power set over {1, 2} as S (2) = {∅, {1} , {2} , {1, 2}}.
Our intention is to create an index set over the subscripts {1, 2, 12} used in matrices
presented in Eq (1) so that a summation can be conveniently written. To do so, we
further use S (2, i) to denote the subset of S (2) in which only elements involving i
are retained, i.e. S (2, 1) = {{1}, {1, 2}} and S (2, 2) = {{2}, {1, 2}}. With a slight
relaxation in the set notation, we rewrite them as S (2, 1) = {1, 12} and S (2, 2) =
{2, 12}. Thus, Eq (1) can be re-written as

X1 =
∑

v∈{1,12}
Wv ·H1,v + E1 and X2 =

∑
v∈{2,12}

Wv ·H2,v + E2

For a set of n datasets, let S (n) denote the set of all subsets over {1, 2, . . . n} and for
each i = 1, . . . , n, denote by S (n, i) = {v ∈ S (n) | i ∈ v} the index set associated
with the i-th data source. Our proposed shared subspace learning framework seeks a set
of expression in the following forms for i = 1, . . . , n

Xi = W i ·Hi + Ei =
∑

v∈S(n,i)

Wv ·Hi,v + Ei, i = 1, . . . , n (2)

It is also clear from Eq (2) that the total subspace W i and its corresponding encoding
matrix Hi for the i-th data matrix are horizontally augmented matrices over all Wv and
vertically augmented over all Hi,v for v ∈ S (n, i) respectively. That is, if we explicitly
list the elements of S (n, i) as S (n, i) = {v1, v2, . . . , vZ} then W i, Hi are

W i = [Wv1 |Wv2 | . . . |WvZ ] and Hi =

⎡⎢⎣Hi,v1

...
Hi,vZ

⎤⎥⎦ (3)

2.1 Bayesian Representation

We treat the residual errors (Ei) probabilistically and model each Ei, ∀i as i.i.d.
and normally distributed with mean zero and precisions ΛXi

. Although we consider
Bayesian shared subspace learning for arbitrary number of data sources, for simplicity,
we show the graphical model for the case of two data sources in Figure 1. For each
i ∈ {1, 2, . . . n} and v ∈ S (n, i), our probabilistic model is then given as

p (Xi (m, l) |W i,Hi, ΛXi
) = N

(
Xi (m, l) |W (m)

i H[l]
i , Λ−1

Xi

)

p (Wv | μWv , ΛWv) =
M∏

m=1

N
(

W (m)
v | μWv , Λ−1

Wv

)

p (Hi | μHi , ΛHi) =
Ni∏
l=1

N
(
H[l]

i | μHi , Λ−1
Hi

)
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Fig. 1. Graphical Model for BSSL (a special case for two data sources, i.e. n = 2)

where B(m) denotes the m-th row, i.e. B (m, :) while B[l] denotes the l-th column, i.e.
B (:, l) of a matrix B. Since Ei’s are i.i.d., we set ΛXi = αXiI for each i. Going fully
Bayesian, we further use a normal-Wishart prior on the parameters {μWv , ΛWv}. The
normal-Wishart prior is given by

p (μWv , ΛWv | Ψ0) = N
(
μWv | μ0, (s0ΛWv )−1

)
W (ΛWv | Δ0, ν0)

where W (. | Δ0, ν0) is Wishart distribution with Kv × Kv scale matrix Δ0 and ν0

degree of freedom. Similar priors are placed on the parameters {μHi , ΛHi}. For future
reference, we define all the hyperparameters as Ψ0 � {μ0, s0, Δ0, ν0, αX1 , . . . , αXn

}.

2.2 Gibbs Inference

Given data matrices {Xi}n
i=1, the goal of BSSL is to learn the factor matrices Wv and

Hi for all i ∈ {1, 2, . . . n} and v ∈ S (n, i). In our Bayesian setting, this translates to
performing posterior inference on the distribution of random (row or column) vectors
from Wv and Hi. Since we are treating these vectors as Gaussian with proper conjugate
prior normal-Wishart distribution, posterior inference can be conveniently carried out
using Gibbs sampling, which is guaranteed to converge asymptotically.

In a typical Gibbs sampling setting, our state space for sampling is {Wv, μWv , ΛWv}
and {Hi, μHi , ΛHi} conditioned on the hyperparameters Ψ0 and data {Xi}n

i=1. How-
ever, {μWv , ΛWv} and {μHi , ΛHi} are nuisance parameters which can be integrated
out to reduce the variance of the Gibbs samples (for better mixing of Markov chain) –
a scheme which is known as Rao-Blackwellized Gibbs Sampling (RBGS).

After integrating out these nuisance parameters, our state space reduces to only the
factor matrices {Wv,Hi} for all i ∈ {1, 2, . . . n} and v ∈ S (n, i). Our Gibbs sampler
then iteratively samples each row of Wv and column of Hi conditioned on the observed
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data and the remaining set of variables in the state space from the previous Gibbs it-
eration. Algorithm 1 outlines these sampling steps while the rest of this section shall
briefly explain how to obtain the Gibbs conditional distributions as in Eqs (6-9).

Recalling W i and Hi from Eq. (3), the conditional distribution over W
(m)
v , condi-

tioned on matrices Wu for all u ∈ S (n, i) except v, all the rows of matrix Wv except

m-th row (denoted by W
(\m)
v ), the coefficient matrices Hi for all i, observed data Xi

for all i and the hyperparameters Ψ0, is given by

p
(
W (m)

v |X1:n, W (\m)
v , W{u∈S(n,i)}\v,H1:n, Ψ0

)
∝
[

n∏
i=1

Ni∏
l=1

p
(
Xi (m, l) |W (m)

i H[l]
i , Λ−1

Xi

)]
× p

(
W (m)

v |W (\m)
v , Ψ0

)
(4)

Algorithm 1. Rao-Blackwellized Gibbs Sampling (RBGS) for BSSL.

1: Input: Hyperparameters Ψ0, number of samples L.
2: For each i, initialize matrices W i, Hi randomly.
3: for r = 1, . . . , L do
4: For each v, draw r-th sample [Wv]r from normal distribution parameterized by Eqs.(6–7).
5: For each i, draw r-th sample [Hi]

r from normal distribution parameterized by Eqs.(8–9).
6: end for
7: For each v and i, get an estimate of Wv and Hi using the Gibbs samples as Wv �

1
L

∑L
r=1 [Wv]

r , Hi � 1
L

∑L
r=1 [Hi]

r.
8: Output: Samples {[Wv]r}L

r=1, {[Hi]
r}L

r=1 and estimates Wv, Hi for each v and i.

Note that the above posterior is proportional to the data-likelihood as a function of
W

(m)
v and Hi for each i and the predictive distribution of W

(m)
v given W

(\m)
v . The pre-

dictive distribution of W
(m)
v conditioned on W

(\m)
v and Ψ0 is obtained by integrating

over the parameters of the normal–inverse–Wishart posterior distribution and is multi-
variate Student–t [3]. Assuming νl > Kv + 1, this predictive density has finite covari-
ance and is known to be approximated well by a normal distribution through matching
the first two moments [3]. Thus, the predictive distribution is given as

p
(
W (m)

v |W (\m)
v , Ψ0

)
≈ N

(
W (m)

v | μpred

W
(m)
v

, Λpred

W
(m)
v

)
(5)

where μpred

W
(m)
v

=
s0μ0 +

∑M
l=1
l �=m

W
(l)
v

s0 + (M − 1)
, Λpred

W
(m)
v

=
(sm + 1)Δ−1

m

sm (νm −KWv − 1)
,

Δ−1
m = Δ−1

0 +
M∑
l=1
l �=m

W (l)
v

(
W (l)

v

)T

+
s0 (M − 1)
s0 + M − 1

(
μ0 − μ̄Wv\m

) (
μ0 − μ̄Wv\m

)T
,
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μ̄Wv\m � 1
(M − 1)

M∑
l=1
l �=m

W (l)
v , sm = s0 + M − 1, νm = ν0 + M − 1, Wv ∈ RM×Kv

Using Eqs (4) and (5), the posterior distribution can be written as

p
(
W (m)

v |X1:n, W (\m)
v , W{u:u�=v},H1:n, Ψ0

)
=N

(
W (m)

v |, μpost

W
(m)
v

, Λpost

W
(m)
v

)
where

Λpost

W
(m)
v

= Λpred

W
(m)
v

+
n∑

i=1

Hi,vΛXi
HT

i,v (6)

(
μpost

W
(m)
v

)T

=
[
Λpost

W
(m)
v

]−1
[
Λpred

W
(m)
v

(
μpred

W
(m)
v

)T

+
n∑

i=1

Hi,vΛXi

(
A(m)

i,v

)T
]

(7)

and A(m)
i,v � X

(m)
i −∑{u:u�=v} W

(m)
u Hi,u. Similar to W

(m)
v , the posterior distribution

over the l-th column of matrix Hi conditioned on its remaining columns is normally
distributed with mean vector and precision matrix as

Λpost

H
[l]
i

= Λpred

H
[l]
i

+ W T
i ΛXi

W i (8)

μpost

H
[l]
i

=
[
Λpost

H
[l]
i

]−1 [
Λpred

H
[l]
i

μpred

H
[l]
i

+ W T
i ΛXi

X
[l]
i

]
(9)

2.3 Subspace Dimensionality and Complexity Analysis

Let the number of rows in X1, . . . , Xn be M and the number of columns be Ni, giving
M × Ni dimension for X i. Since each W i consists of an augmentation of individual
and shared subspaces Wv , we use Kv to denote the number of basis vectors in Wv .
Assuming Ri to be the total number of basis vectors in W i, we have

∑
v∈S(n,i) Kv =

Ri. Determining the value of Kv is a model selection problem and depends upon the
common features among various data sources. According to a heuristic proposed in [8],
a rule of thumb is to use Kv ≈

√
Mv/2 where Mv is the number of common features

in sharing configuration v. Following the above notation for the dimensionalities of
matrices, for each i ∈ {1, 2, . . . n}, assuming Ri < M (generally the case for real
world data), the complexity of sampling Hi matrices from its posterior distributions
is O (M ×Ni × Ri) whereas the complexity involved in sampling W i matrices from
its posterior distributions is O (

M ×Ni ×R2
i

)
. Thus the computation complexity of

BSSL remains similar to BPMF model [9] and does not grow any further.

3 Social Media Applications

We demonstrate the usefulness of BSSL in two real world applications. (1) Improving
social media retrieval in one medium by transferring knowledge from auxiliary me-
dia sources. (2) Performing retrieval across multiple media. The first application can be
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seen as an multi-task learning application, whereas the second application is a direct
manifestation of mining from multiple data sources.

3.1 BSSL Based Social Media Retrieval

Let the tag-item matrix of the target medium (from which retrieval is to be performed)
be denoted as Xk. Further, let us assume that we have many other auxiliary media
sources which share some features with the target medium. Let the tag-item matrices
of these auxiliary media be denoted by Xj , j = k. In a multi-task learning setting,
we leverage these auxiliary sources to improve the retrieval precision for the target
medium, and given a set of query keywords SQ, a vector q of length M (vocabulary
size) is constructed by putting tf-idf values at each index where the vocabulary contains
a word from the keywords set or else setting it to zero. Next, we follow Algorithm 2 for
BSSL based retrieval.

3.2 BSSL Based Cross-Social Media Retrieval

To retrieve items across media, we use the common subspace among them along with
the corresponding coefficient matrices for each medium. As an example, for n = 3
(three media sources), we use the common subspace matrix W123 and coefficient ma-
trices H1,123, H2,123 and H3,123 for first, second and third medium respectively.

Similar to subsection 3.1, we construct a vector q of length M using a set of query
keywords SQ. We proceed similar to Algorithm 2 with the following differences. Given
q, we wish to retrieve relevant items from each domain, which is performed by project-
ing q onto the augmented common subspace matrix (W123 for the case when n = 3
media sources) to get its representation h in the common subspace. Next, we compute
similarity between h and the columns of matrices H1,123, H2,123 and H3,123 (the rep-
resentation of media items in the common subspace spanned by columns of W123) to
find similar items from medium 1, 2 and 3 respectively. The results are ranked based on
these similarity scores either individually or jointly.

For both retrieval applications, we use cosine-similarity as it seems to be more robust
than Euclidean distance based similarity measures in high-dimensional spaces. As we
are dealing with distributions, we also tried out KL-divergence based similarity mea-
sures, but cosine-similarity gives better results.

Algorithm 2. Social Media Retrieval using BSSL.

1: Input: Target X j , auxiliaries Xk, k �= j, query q , set of items from medium j, denoted as
I =

{
I1, I2, ......., INj

}
, number of items to be retrieved N .

2: Get Gibbs estimates of W j and Hj using Algorithm 1.
3: Project q onto the subspace spanned by W j to get h as h = W †

jq where † is
Moore-Penrose pseudoinverse of a matrix.

4: For each item (indexed by m) in Xj , with its subspace representation hm = m-th column

of Hj , compute its cosine similarity with query projection h : sim (h, hm) = hThm
‖h‖2‖hm‖2

5: Output: Return the top N items in decreasing order of similarity.
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Table 1. Description of the YouTube-Flickr-Blogspot data set

Media Dataset
Size

Concepts Used for Creating Dataset Avg. Tags/Item
(rounded)

Blogspot 10000 ‘Academy Awards’, ‘Australian Open’, ‘Olympic
Games’, ‘US Election’, ‘Cricket World Cup’,

‘Christmas’, ‘Earthquake’

6

Flickr 20000 ‘Academy Awards’, ‘Australian Open’, ‘Olympic
Games’, ‘US Election’, ‘Holi’, ‘Terror Attacks’,

‘Christmas’

8

YouTube 7000 ‘Academy Awards’, ‘Australian Open’, ‘Olympic
Games’, ‘US Election’, ‘Global Warming’, ‘Terror

Attacks’, ‘Earthquake’

7

4 Experiments

4.1 Dataset

To conduct the experiments, we created a social media dataset using three different
sources : YouTube1, Flickr2 and Blogspot3. To obtain the data, we first chose common
concepts – ‘Academy Awards’, ‘Australian Open’, ‘Olympic Games’, ‘US Election’ –
and queried all three websites using their service APIs. To have some pairwise sharing,
we additionally used the concept ‘Christmas’ to query Blogspot and Flickr, ‘Terror At-
tacks’ to query YouTube and Flickr, and ‘Earthquake’ to query Blogspot and YouTube.
Lastly, to retain some differences between each medium, we used the concepts ‘Cricket
World Cup’, ‘Holi’ and ‘Global Warming’ to query Blogspot.com, Flickr and YouTube
respectively. Table 1 provides further details of the dataset size and average tag counts
for each data source. The total number of tags from all three sources combined is 3740.

4.2 Subspace Learning and Parameter Setting

For clarity, let us denote YouTube, Flickr and Blogspot tag-item matrices as X1, X2

and X3 respectively. To learn BSSL based factorization, we use Eqs (6)–(9) to sample
W and H matrices. Recalling the notation Kv (dimensionality of subspace spanned by
Wv), for learning factorization, we set the individual subspace dimensions as K1 =
K2 = K3 = 10, pairwise shared subspace dimensions as K12 = K23 = K13 = 15,
and the common to all subspace dimension as K123 = 25. To obtain these param-
eters, we first initialize them using the heuristic described in [8] and then do cross-
validation based on retrieval precision. In addition, we also set the error precisions
αX1 = αX2 = αX3 = 2, hyperparameters μ0 = [0, . . . , 0]T, s0 = 1, Δ0 = I and
ν0 = Kv for corresponding Wv , Hi,v. The values of αXi

depend upon the quality
of the tags and a small value implies high tag uncertainty. For the dataset described

1 http://code.google.com/apis/youtube/overview.html
2 http://www.flickr.com/services/api/
3 http://www.blogger.com/
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above, Gibbs sampling usually takes around 50 iterations to converge (convergence
plots are omitted due to space restrictions), however, we collect 100 samples to ensure
convergence. The first 20 samples are rejected for “burn-in” and the remaining 80 Gibbs
samples are averaged to get an estimate of Wv , Hi,v matrices.

4.3 Experiment 1: Social Media Retrieval Using Auxiliary Sources

To carry out our experiments, we choose YouTube as the target dataset and Blogspot and
Flickr as auxiliary datasets. To perform BSSL based retrieval from YouTube, we first
generate samples of basis matrix W 1 � [W1 |W12 |W13 |W123] and representation
matrix H1 � [H1,1 | H1,12 | H1,13 | H1,123] according to Eqs (6)–(9) and then get an
estimate of W 1 and H1 following Algorithm 2.

To compare the performance with other methods, we choose three baselines. The first
baseline performs retrieval by matching the tag-lists of videos without any subspace
learning. To get the similarity with other items, Jaccard coefficent4 is used and the
results are ranked based on the similarity scores. The second baseline is retrieval work
based on subspace learning using Principle Component Analysis (PCA). For the third
baseline, we use a recent state-of-the-art BPMF model proposed in [9] for Bayesian
matrix factorization. For both second and third baselines, we do not use any auxiliary
data (e.g. tags of Flickr or Blogspot) and use the tags of YouTube only, but increase the
YouTube datasize so as to keep the total datasize equal to the combined data (target +
auxiliary) used for the first baseline to make the comparison fair.

To evaluate our retrieval algorithm, we use a query set of 20 concepts defined as Q =
{‘beach’, ‘america’, ‘bomb’, ‘animal’, ‘bank’, ‘movie’, ‘river’, ‘cable’, ‘climate’, ‘fed-
erer’, ‘disaster’, ‘elephant’, ‘europe’, ‘fire’, ‘festival’, ‘ice’, ‘obama’, ‘phone’, ‘santa’,
‘tsunami’}. Since there is no public groundtruth available, we manually go through the
set of retrieved items and evaluate the results.

Figure 2 compares the retrieval performance of BSSL with all the baselines in
terms of precision-scope (P@N) curve5, mean average precision (MAP) and 11-point
precision-recall curve [1]. Figure 2 clearly shows that BSSL outperforms the baselines
in terms of all three evaluation criteria. Although, BPMF performs better than PCA
due to its ability to handle uncertainties well, it can not surpass BSSL as it is confined
to the tag data of YouTube only. Intuitively, BSSL is able to utilize the related data
from auxiliary sources and resolve the tag ambiguities by reducing the subjectivity and
incompleteness of YouTube tags. In essence, the use of multiple sources in subspace
learning helps discover improved tag co-occurrences and gives better results.

4.4 Experiment 2: Cross Media Retrieval

The effectiveness of BSSL for cross-media retrieval is demonstrated using the YouTube-
Flickr-Blogspot dataset with the subspace learning parameters as in subsection 4.2. For
evaluation, we again use precision-scope (P@N), mean average precision (MAP) and
11-point interpolated precision-recall curves. Let q be a query term, Gi be the ground

4 Jaccard (A,B) = |A ∩ B| / |A ∪ B|.
5 For example, P@10 is the retrieval precision when considering the top 10 retrieved items.
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Fig. 2. YouTube retrieval results using auxiliary sources Flickr and Blogspot (a) Precision-Scope,
MAP (b) 11-point interpolated Precision-Recall; for tag-based matching (baseline 1), PCA (base-
line 2), BPMF [9] (baseline 3) and proposed BSSL
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Fig. 3. Cross-media retrieval results: (a) precision-scope, MAP (b) 11-point interpolated
precision-recall; for tag-based matching and proposed BSSL

truth set for the i-th medium and Ai be the answer set for query q using a retrieval
method for the i-th medium. Then, the precision and recall measures for cross-media
retrieval are

Precision =
∑n

i=1 |Ai ∩Gi|∑n
i=1 |Ai| , Recall =

∑n
i=1 |Ai ∩Gi|∑n

i=1 |Gi|
As far as baselines are concerned, we note that both BPMF and PCA are not applica-
ble for cross-media retrieval as they do not support analysis of multiple data sources
in their standard form. Therefore, we compare the performance of BSSL against tag-
based matching (based on Jaccard coefficient without any subspace learning) only.
Other works on cross-media retrieval [13,14] use the concept of a Multimedia Doc-
ument (MMD), which requires co-occurring multimedia objects on the same webpage
which is not available in our case. Therefore, these methods can not be applied directly.

Figure 3 depicts the cross-media retrieval results across all three media - Blogspot,
Flickr and YouTube. To generate the graphs, we again average the retrieval results over
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the query set Q defined in subsection 4.3. It can be seen from Figure 3 that BSSL
significantly outperforms tag based matching in terms of all three evaluation criteria.
Improvement in terms of MAP criteria is around 13%. This improvement in perfor-
mance is due to the learning of shared subspaces which not only handle the problem of
‘synonymy’ and ‘polysemy’ in tag-space, but also the uncertainties probabilistically.

5 Conclusion

We have presented a Bayesian framework to learn individual and shared subspaces
from multiple data sources (BSSL) and demonstrated its application to social media re-
trieval across single and multiple media. Our framework, being based on the principle
of Bayesian probabilistic matrix factorization (BPMF) [9], provides an efficient algo-
rithm to learn the subspace. Our Gibbs sampler (RBGS) provides better Markov chain
mixing than BPMF without increasing the complexity of the model. Our experiments
have demonstrated that BSSL significantly outperforms the baseline methods for both
retrieval tasks on Blogspot, Flickr and YouTube datasets. More importantly, our solution
provides a generic framework to exploit collective strengths from heterogeneous data
sources and we foresee its wider adoption in cross-domain data mining and beyond.
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On the Global Convergence HOSVD and
ParaFac Algorithms
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Abstract. Matrix factorizations and tensor decompositions are now
widely used in machine learning and data mining. They decompose input
matrix and tensor data into matrix factors by optimizing a least square
objective function using iterative updating algorithms, e.g. HOSVD
(High Order Singular Value Decomposition) and ParaFac (Parallel Fac-
tors). One fundamental problem of these algorithms remains unsolved:
are the solutions found by these algorithms global optimal? Surpris-
ingly, we provide a positive answer for HSOVD and negative answer
for ParaFac by combining theoretical analysis and experimental evi-
dence. Our discoveries of this intrinsic property of HOSVD assure us
that in real world applications HOSVD provides repeatable and reliable
results.

1 Introduction

Tensor based dimension reduction has recently been extensively studied for data
mining, pattern recognition, and machine learning applications. Typically, such
approaches seek subspaces such that the information are retained while the
discarded subspaces contains noises. Most tensor decomposition methods are
unsupervised which enable researchers to apply them in any machine learning
applications including unsupervised learning and semi-supervised learning. In
such applications, one of the central focuses is the uniqueness of the solution.
For example, in missing value completion problem, such as social recommenda-
tion system [1], tensor decompositions are applied to obtain optimal low rank
approximation [2]. Since the missing value problem requires iteratively low rank
decomposition, the convergence of each iteration is crucial for the whole solution.
Other real world applications also highly rely on the stability of the decomposi-
tion approaches, such as bioinformatics[3], social network [4], and even marketing
analysis [5].

Perhaps High Order Singular Value Decomposition (HOSVD) [6] [7] and Par-
allel Factors (ParaFac) are some of the most widely used tensor decompositions.
Both of them could be viewed as extensions of SVD of a 2D matrix. HOSVD is
used in computer vision by Vasilescu and Terzopoulos [8] while ParaFac is used
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in computer vision by Shashua and Levine [9]. More recently, Yang et al. [10] pro-
posed a two dimensional PCA (2DPCA) Ye et al. [11] proposed a method called
Generalized Low Rank Approximation of Matrices (GLRAM). Both GLRAM
and 2DPCA can be viewed in the same framework in 2DSVD (two-dimensional
singular value decomposition) [12], and solved by non-iterative algorithm [13].
Similar approaches are also applied as supervised feature extraction [14,15]. The
error bounds of HOSVD have been derived [16] and the equivalence between
tensor K-means clustering and HOSVD is also established [17].

Although tensor decompositions are now widely used, many of their properties
so far have not been well characterized. For example, the tensor rank problem
remains a research issue. Counter examples exist that argue against optimal
low-dimension approximations of a tensor.

In this paper, we address the solution uniqueness issues1. More precisely,
non-unique solutions due the existence of large number of local solutions. This
problem arises because the tensor decomposition objective functions are non-
convex with respect to all the variables and the constraints of the optimization
are also non-convex. Standard algorithms to compute these decompositions are
iterative improvement. The non-convexity of the optimization implies that the
iterated solutions will converge to different solutions if they start from different
initial points.

Note that this fundamental uniqueness issue differs from other representa-
tion redundancy issues, such as equivalence transformations (i.e. rotational in-
variance) that change individual factors (U, V, W ) but leaves the reconstructed
image untouched. These representation redundancy issues can be avoided if we
compare different solutions at the level of reconstructed images, rather in the
level of individual factors.

The main findings of our investigation are both surprising and comforting.
On all real life datasets we tested (we tested 6 data sets and show results for 3
data set due to space limitation), the HOSVD solutions are unique (i.e., different
initial starts always converge to an unique global solution); while the ParaFac
solution are almost always not unique. Furthermore, even with substantial ran-
domizations (block scramble, pixel scramble, occlusion) of these real datasets,
HOSVD converge to unique solution too.

These new findings assure us that in most applications using HOSVD, the
solutions are unique — the results are repeatable and reliable.

We also found that whether a HOSVD solution is unique can be reasonably
predicted by inspecting the eigenvalue distributions of the correlation matrices
involved. Thus the eigenvalue distributions provide a clue about the solution
uniqueness or global convergence. We are looking into a theoretical explanation
of this rather robust uniqueness of HOSVD.

1 For matrix and tensor decompositions, there often exists equivalent solutions. For
example in SVD of X ∼= UV T , if (U∗, V ∗) is an optimal solution, (U∗R, V ∗R) is an
equivalent optimal solution, where R is an arbitrary rotational matrix with appro-
priate dimension. In practice, this problem is fixed by the computational procedure
and not considered here.
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2 Tensor Decomposition

2.1 High Order SVD (HOSVD)

Consider 3D tensor: X = {Xijk}n1
i=1

n2
j=1

n3

k=1
. The objective of HOSVD is to select

subspace U, V,, W and core tensor S such that the L2 reconstruction error is
minimized,

min
U,V,W,S

J1 = ||X − U ⊗1 V ⊗2 W ⊗3 S||2 (1)

where U ∈ �n1×m1 , V ∈ �n2×m2 , W ∈ �n3×m3 , S ∈ �m1×m2×m3 . Using
explicit index,

J1 =
∑
ijk

(
Xijk −

∑
pqr

UipVjqWkrSpqr

)2

. (2)

In HOSVD, W, U, V are required to be orthogonal:

UT U = I, V T V = I, WT W = I.

With the orthonormality condition, setting ∂J1/∂S = 0, we obtain S = UT ⊗1

V T ⊗2WT ⊗3X, and J1 = ‖X‖2−‖S‖2. Thus HOSVD is equivalent to maximize

max
U,V,W

‖S‖2 = ‖UT ⊗1 V T ⊗2 WT ⊗3 X‖2 (3)

= Tr UT FU (4)
= Tr V T GV (5)
= Tr WT HW. (6)

where

Fii′ =
∑

jj′��′
Xij�Xi′j′�′(V V T )jj′ (WWT )��′ (7a)

Gjj′ =
∑
ii′��′

Xij�Xi′j′�′(UUT )ii′ (WWT )��′ (7b)

H��′ =
∑
ii′jj′

Xij�Xi′j′�′(UUT )ii′ (V V T )jj′ (7c)

Standard HOSVD algorithm starts with initial guess of of (U, V, W ) and solve
Eqs(3,4,5) alternatively using eigenvectors of the corresponding matrix.
Since F, G, H are semi-positive definite, ||S||2 are monotonically increase
(non-decrease). Thus the algorithm converges to a local optimal solution.

HOSVD is a nonconvex optimization problem: The objective function of
Eq.(2) w.r.t. (U, V, W ) is nonconvex and the orthonormality constraints of Eq.(2)
are nonconvex as well. It is well-known that for nonconvex optimization prob-
lems, there are many local optimal solutions: starting from different initial guess
of (U, V, W ), the converged solutions are different. Therefore theoretically, solu-
tions of HOSVD are not unique.
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2.2 ParaFac Decomposition

ParaFac decomposition [18,19] is the simplest and also most widely used decom-
position model. It approximates the tensor as

X ≈
R∑

r=1

u(r) ⊗ r(r) ⊗w(r), or Xijk ≈
R∑

r=1

UirVjrWkr (8)

where R is the number of factors and U = (u(1), · · · ,u(R)), V = (v(1), · · · ,v(R)),
W = (w(1), · · · ,w(R)). ParaFac minimizes the objective

JParaFac =
n1∑
i=1

n2∑
j=1

n3∑
k=1

||Xijk −
R∑

r=1

UirVjrWkr ||2 (9)

We enforce the implicit constraints that columns of U = (u(1), · · · , u(R)) are
linearly independent; columns of V = (v(1), · · · , v(R)) are linearly independent;
and columns of W = (w(1), · · · , w(R)) are linearly independent.

Clearly the ParaFac objective function is nonconvex in (U, V, W ). The linearly
independent constraints are also nonconvex. Therefore, the ParaFac optimization
is a nonconvex optimization.

Many different computational algorithms were developed for computing
ParaFac. One type of algorithm uses a sequence of rank-1 approximations [20,21,9].
However, the solution of this heuristic approach differ from (local) optimal
solutions.

The standard algorithm is to compute one factor at a time in an alternat-
ing fashion. The objective decrease monotonically in each step, and the itera-
tion converges to a (local) optimal solution. However, due to the nonconvexity
of ParaFac optimization, the converged solution depends heavily on the initial
starting point. For this reason, the ParaFac is often not unique.

3 Unique Solution

In this paper, we investigate the problem of whether the solution of a tensor
decomposition is unique. This is an important problem, because if the solutions
is not unique, then the results are not repeatable and the image retrieval is not
reliable.

For a convex optimization problem, there is only one local optimal solution
which is also the global optimal solution. For a non-convex optimization problem,
there are many (often infinite) local optimal solutions: converged solutions of the
HOSVD/ParaFac iterations depend on the initial starting point.

In this paper, we take the experimental approach. For a tensor decomposition
we run many runs with dramatically different starting points. If the solutions of
all these runs agree with each other (to computer machine precision), then we
consider the decomposition has a unique solution.

In the following, we explain the (1) The dramatically different starting point
for (U, V, W ). (2) Experiments on three different real life data sets. (3) Eigenvalue
distributions which can predict the uniques of the HOSVD.
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4 A Natural Starting Point for W : The T1
Decomposition and the PCA Solution

In this section, we describe a natural starting point for W . Consider the T1
decomposition [6]

Xijk ≈
m3∑

k′=1

Cijk′Wkk′ or X
(k)
ij ≈

m3∑
k′=1

C
(k′)
ij Wkk′ . (10)

C, W are obtained as the results of the optimization

min
C,W

JT1 =
n3∑

k=1

||X(k) −
m3∑

k′=1

C(r)Wkk′ ||2. (11)

This decomposition can be reformulated as the following:

JT1 = ||X ||2 −Tr (WT H̃W ), H̃kk′ = Tr (X(k)[X(k′)]T ) =
∑
ij

XijkXijk′ (12)

C is given by C(r) =
∑n3

k=1 X(k)Wkr. This solution is also the PCA solution. The
reason is the following. Let A = (a1, · · · , an) be a collection of 1D vectors. The
corresponding covariance matrix is AAT and Gram matrix is AT A. Eigenvectors
of AT A are the principal components. Coming back to the T1 decomposition,
H̃ is the Gram matrix if we consider each image X(k) as a 1D vector. Solution
for W are principal eigenvectors of H̃ , which are the principal components.

5 Initialization

For both HOSVD and ParaFac, we generate 7 different initializations:

(R1) Use the PCA results W as explained in §4. Set V to identity matrix (fill
zeros in the rest of the matrix to fit the size of n2 ×m2). This is our standard
initialization.

(R2) Generate 3 full-rank matrixes W and V with uniform random numbers
of in (0, 1).

(R3) Randomly generate 3 rank deficient matrices W and V with proper size.
For first initialization, we randomly pick a column of W and set the column to
zero. The rest of columns are randomly generated as in (R2) and the same for V .
For second and third initializations, we randomly pick two or three columns of
W and set them to zero, and so on. Typically, we use m1 = m2 = m3 = 5  10.
Thus the rank-deficiency at m3 = 5 is strong.

We use the tensor toolbox [22]. The order of update in the alternating updat-
ing algorithm is the following: (1) Given (V, W ), solve for U (to solve Problem
4); (2) Given (U, W ), solve for V (Problem 5); (3) Given (U, V ), solve for W
(Problem 6); Go back to (1) and so on.
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6 Run Statistics and Validation

For each dataset with each parameter setting, we run 10 indepedent tests. For
each test, we run HOSVD iterations to convergence (because of the difficulty of
estimating convergence criterion, we run total of T=100 iterations of alternating
updating which is usually sufficient to converge).

For each independent test, we have 7 different solutions of (Ui, Vi, Wi) where
i = 1, 2, · · · , 7 for the solution starting from the i-th initialization. We use the
following difference to verify whether the solutions are unique:

d(t) =
1
6

7∑
i=2

(‖U t
i − U t

1‖+ ‖V t
i − V t

1 ‖+ ‖W t
i −W t

1‖
)
,

where we introduce the HOSVD iteration index t, and U t
i , V

t
i , W t

i are the solution
in t-th iteration.

If an optimization problem has a unique solution, d(t) typically starts with
nonzero value and gradually decrease to zero. Indeed, this occurs often in Figure
2 The sooner d(t) decreases to zero, the faster the algorithm converges. For
example, in the 7th row of Figure 2, the m1 = m2 = m3 = 5 parameter setting,
the algorithm converges faster than the m1 = m2 = m3 = 10 setting.

In our experiments, we do 10 different tests (each with different random
starts). If in all 10 tests d(t) decreases to zero, we say the optimization has
a unique solution (we say they are globally convergent).

If an optimization has no unique solution (i.e., it has many local optima),
d(t) typically remains nonzero at all times, we say the solution of HOSVD is not
unique. In Figure 1, we show the results of HOSVD and ParaFac on a random
tensor. One can see that in each of the 10 tests, shown as 10 lines in the figure,
none of them ever decrease to zero.

For ParaFac we use the difference of reconstructed tensor to evaluate the
uniqueness of the solution: d′(t) = 1

6

∑7
i=2 ‖X̂t

i − X̂t
1‖, where X̂t

i is the recon-
struction tensor in the t-th iteration with the i-th starting point. ParaFac algo-
rithm converge slower than HOSVD algorithm. Thus we run 2000 iterations for
each test.

7 Eigenvalue Distributions

In these figures, the eigenvalues of F , G, andH are calculated using Eqs.(7a,7b,7c),
but setting all UUT , V V T , WWT as identity matrix. The matrices are centered in
all indexes. The eigenvalues are sorted and normalized by the sum of the all the
eigenvalues. For all F, G, and H , the first eigenvalue is ignored, since it is equivalent
to the average along the corresponding index.

8 Datasets

The first image dataset is WANG [23] which contains 10 categories and 100
images for each category. The original size of the image is either 384 × 256
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or 256 × 384. We select Buildings, Buses, and Food categories and resize the
images into a 100× 100 size. We also transform all images into 0-255 level gray
images. The selected images form a 100× 100× 300 tensor. The second dataset
is Caltech 101 [24] which contains 101 categories. About 40 to 800 images per
category. Most categories have about 50 images. Collected in September 2003 by
Li, Andreetto, and Ranzato. The size of each image is roughly 300× 200 pixels.
We randomly pickup 200 images, resize and transform them into 100×100 0-255
level gray images to form a 100× 100× 200 tensor.

9 Image Randomization

Three types randomization are considered: block scramble, pixel scramble and
occlusion. In block scramble, an image is divided into n = 2, 4, 8 blocks; blocks
are scrambled to form new images (see Figure 2).

In pixel sample, we randomly pick up α = 40%, 60%, 80% of the pixels in the
image, and randomly scramble them to form a new image (see Figure 2).

We also experimented with occlusions with sizes up to half of the images.
We found that occlusion consistently produce smaller randomization affects and
HOSVD results converge to the unique solution. For this reason and the space
limitation, we do not show the results here.

10 Main Results

From results shown in Figure 2, we observe the following:

1. For all tested real-life data, ParaFac solutions are not unique, i.e., the con-
verged solution depends on initial starts. This is consistent with the non-
convex optimization as explained in §2.2.

2. For all tested real-life data, HOSVD solutions are unique, although theoreti-
cally, this is not guaranteed since the optimization of HOSVD is non-convex
as explained in §2.1;

3. For even heavily rescrambled (randomized) real-life data, HOSVD solutions
are also unique; This is surprising, given that the HOSVD optimization are
non-convex.

4. For very severely rescrambled real-life data and pure randomly generated
data, HOSVD solutions are not unique.

5. The HOSVD solution for a given dataset may be unique for some parameter
setting but non-unique for some other parameter setting.

6. Whether the HOSVD solution for a given dataset will be unique can largely
be predicted by inspecting the eigenvalue distribution of the matrices F, G, H .
See next section.

11 Eigenvalue-Base Uniqueness Prediction

We found Empirically that the eigenvalue distribution help to predict whether
the HOSVD solution on a dataset with a parameter setting is unique or not.
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For example, in AT&T dataset HOSVD converges in all parameter settings
except in 8 × 8 block scramble with m1 = m2 = m3 = 5. This is because the
ignored 3 eigenmodes have very similar eigenvalues as the first five eigenvalues.
It is ambiguous for HOSVD to select which of the 8 significant eigenmodes. Thus
HOSVD fails to converge to a unique solution.

But when we increase m1, m2, m3 to 10, all 8 significant eigenmodes can be
selected and HOSVD converges to a unique solution. This also happens in the
other two datasets (see the forth rows in top part of Figure 2.

For 80% pixel scramble in dataset WANG, when m1 = m2 = m3 = 5, 10,
HOSVD is ambiguous as to select eigenmodes because there are a large number
of them with nearly identical eigenvalues around the cutoff. However, if we reduce
the dimensions to m1 = m2 = 2, m3 = 4 or m1 = m2 = m3 = 3, this ambiguity
is gone: HOSVD clearly selects the top 2 or 3 eigenmodes. converges (see the last
row of the top panel in Figure 2). This same observation also applies to Caltech
101 dataset at 80% pixel scramble in 101 (see the last row of the top part of
Figure 2).

For random tensor shown in Figure 1, the eigenvalues are nearly identical
to each other. Thus for both parameter setting (m1 = m2 = m3 = 5 and
m1 = m2 = m3 = 10), HOSVD is ambiguous to selection eigenmodes and thus
does not converge.

We have also investigated the solution uniqueness problem of the GLRAM
tensor decomposition. The results are very close to HOSVD. We skip it due to
space limitation.
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Fig. 1. HOSVD and ParaFace convergence on a 100 × 100 × 100 random tensor

12 Theoretical Analysis

Theoretical analysis of the convergence of HOSVD is difficult due to the fact that
U, V, W are orthonormal: they live in Stiefel manifold. Thus the domain of U, V, W
are not convex which renders the standard convex analysis not applicable here.

In spite of the difficult, we present two analysis which shed some lights on
this global convergence issue.

We consider HOSVD with m3 = n3 which implies W = I. Furthermore, let
X = (X1 · · ·Xn3) and we restrict that Xm ∈ �r×r is symmetric. In this case,
V=U, and HOSVD is simplified to

min
U

J1 =
∑
m

||Xm − USmUT ||2, s.t., UT U = I. (13)

where U ∈ �r×k and Sm ∈ �k×k.
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Fig. 2. Convergence analysis for WANG dataset (300 images, 100 × 100 size for each)
and Caltech 101 dataset (200 images of size 100 × 100 each). Shown are eigenvalues of
F, G, H , and solution uniqueness of HOSVD and ParaFac.
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At first glance, due to UT U = I. it is hard to prove the global convergence of
this problem (convexity). However, we can prove the global convergence using a
slightly modified approach.

We can easily show that Sm = UT XmU, and the optimization becomes

max
U

J2(U) =
∑
m

(
||Xm||2 −TrXmUUT XmUUT

)
Now let Z = UUT . We study the convexity of

max
Z

J2(Z) =
∑
m

TrXmZXmZ. (14)

We now prove

Theorem 1. The optimization of Eq.(14) is convex when Xm is semi-positive
definite(S.P.D.).

Proof. We have ∂J2
∂Zij

= 2
∑

m

(
XmZXm

)
ij

. The Hessian matrix H = (H[ij][kl])

is

H[ij][kl] =
∂2J1

∂Zij∂Zkl
= 2

∑
m

Xm
ikXm

lj .

To see if H is s.p.d., we evaluate

h ≡
∑
ijkl

ZijH[ij][kl]Zkl = 2
∑
m

∑
kl

(ZT Xm)jk(ZXm)kj

= 2
∑
m

Tr(ZT XmZXm)

Now, every spd matrix Xm can be decomposized into Xm = BT
mBm. Thus we

have
h = TrZT BT

mBmZBT
mBm = TrBmZT BT

mBmZBT
m

= Tr(BmZBT
m)T (BmZBT

m) ≥ 0

Therefore, H is s.p.d. and the optimization of J1(U) is a convex problem. �
Indeed, even when Xm are random s.d.p. matrices, the standard HOSVD algo-
rithm convergence to a unique solution no matter what is the starting point.

Next, we consider a nonsymmetric HOSVD problem of Eqs.(4,7) with F =
XV V T XT , i.e., we solve

max
U,V

Tr(UT XV V T XT U). (15)

We can similary prove

Theorem 2. The optimization of Eq.(15) is convex.
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Indeed, even when X are random s.d.p. matrices, the standard HOSVD algo-
rithm convergence to a unique solution no matter what is the starting point.

In the simplified HOSVD problems of Eqs.(14,15), we avoided the orthogonal-
ity constraints, and thus can prove rigorously the convexity of the optimization
problem. In generic HOSVD, the orthogonality constraints cannot be removed
and thus the problem is much harder to deal with. We are currently looking into
other techniques to analyze the global convergence of HOSVD.

13 Summary

In summary, for all real life datasets we tested, the HOSVD solution are unique
(i.e., different initial starts always converge to an unique global solution); while
the ParaFac solution are almost always not unique. These finding are new (to the
best of our knowledge). They also surprising and comforting. We can be assured
that in most applications using HOSVD, the solutions are unique — the results
are reliable and repeatable. In the rare cases where the data are highly irregular
or severely distored/randomized, our results indicate that we can predict whether
HOSVD solution is unique by inspecting the eigenvalue distributions.
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Abstract. Nearest neighbor search is one of the most fundamental problem in
machine learning, machine vision, clustering, information retrieval, etc. To han-
dle a dataset of million or more records, efficient storing and retrieval techniques
are needed. Binary code is an efficient method to address these two problems. Re-
cently, the problem of finding good binary code has been formulated and solved,
resulting in a technique called spectral hashing [21]. In this work we analyze the
spectral hashing, its possible shortcomings and solutions. Experimental results
are promising.

1 Introduction

Nearest neighbor search is one of the most fundamental problem in many applications
including pattern recognition, image retrieval, object recognition, clustering, etc. For
each application, given an object, a set of problem-dependent features is extracted and
is used to represent that object. The retrieval process consists in comparing the features
vector from the query object and that of the database’s objects to find the nearest neigh-
bors or simply near enough neighbors. With today’s explosion of digital content the size
of the database can be very large. A Naïve comparison cannot be used in practice.

To quickly find nearest neighbors from a very large dataset, there are generally two
approaches namely the space partitioning technique and the hashing technique. The first
approach aims at organizing the feature space or the dataset, using additional data struc-
ture. The simplest organization consists in dividing data into groups or clusters. Then
the retrieval process is done in two steps that are the search for the closest cluster and
the comparison between the query and each object present in this cluster. Tree structure,
e.g. [7,14,5], can be used to speed up the search for closest cluster. However, for dataset
which does not have a well-defined cluster structure, one may fail to identify neighbors
of query point that falls near the cluster’s boundary. To cope with this problem, it is
necessary to consider not only the closest cluster but its neighbor clusters as well. As
the number of dimension increases, this overhead cost of verifying neighbor clusters
increases as well.

To speed-up this search, [2,13] propose to assign a priority to each cluster based on
the distance to the query point. This allows accelerating the search but can return only
an approximate solution. To further speed-up the search, multiple kd-trees are consid-
ered in [19]. Indeed, the authors propose to construct multiple kd-trees with different

J.Z. Huang, L. Cao, and J. Srivastava (Eds.): PAKDD 2011, Part I, LNAI 6634, pp. 160–170, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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parameters such that the nodes inside different trees are independent from each other,
thus reduce the redundancy in the verification process. Other speed-up method consists
in using a more advance tree structure like the cover tree [3] that allow fast rejection
of clusters not containing the query point. The lower-bound tree [4] uses information
of data in each clusters to estimate the lower bound of the distance between the query
point and each point in this cluster in order to quickly discard the clusters candidate
while traversing the tree. For ring-cover tree [11], the recursive walk down each node
or cluster of the tree depends on the structure of the data in this node, weather it has a
clear separable structure (ring node) or it need a subset of elements to cover the whole
data (cover node).

Another interesting indexing and search technique called the redundant bits vector or
RBV [9] does not use a tree structure for organizing the dataset. Indeed, RBV partitions
the feature space into bins, each one being identified by a feature and an interval of
values. Given an object, a set of corresponding bins can be identified by analyzing
its feature’s value. For each bin, RBV keeps an index, that is a set of objects whose
corresponding feature’s value falls into the interval of this bin. Given a query object, an
intersection between all indexes of the corresponding bins is returned as set of nearest
neighbors. A binary string is used to encode index in each bin for fast comparison.
Experimentally, we have found that RBV works well if query is indeed in the database
or if a nearly duplicated elements exist in the database.

The second approach of fast nearest neighbor search is the hashing technique
[12,16,21,20]. The idea is to find a mapping function that transforms each object into
a binary code such the Hamming distance between the resulting codes reflects the dis-
tance in the original feature space, e.g. Euclidean distance. Working with binary code
has two obvious advantages. Firstly, it is an efficient method to store million or more
data in memory. It is then more scalable for coping with large or huge dataset or even
with web-scale dataset. Secondly, the calculation of the distance between two binary
codes requires only bit-wise operations and the summation over integer values. These
operations are much faster than the floating-point operations. As a consequence the
Hamming distance is much cheaper than the other distance. However, finding good bi-
nary code that reflects the distance in the original space is a difficult task.

Locality sensitive hashing or LSH [11,8] is one of the most important step in hashing-
based technique for fast nearest neighbor search. Indeed, LSH idea is to find a function
that yields, with high probability, the same value for neighbor objects and different val-
ues for dissimilar objects. In the original paper [11], the authors show that a random
bit hashing function can be used to preserve the Hamming distance. Later, it is proven
[1], using concept of stable distribution, that one may construct a hashing function ran-
domly while preserving the Euclidean distance. Hamming embedding or HE [12] also
relies on a random projection to construct a binary code. HE also consider additional
information from cluster structure of the dataset while comparing the binary codes.

In practice, the binary code obtained from the random construction, LSH or HE, is
not efficient, that is large number of hash functions are needed to approximate the Eu-
clidean distance or other distances in the original space. A learning machine can be used
to carefully train a compact and efficient binary code as demonstrated in [16]. Followed
the same idea, [20] has adopted the boosting similarity sensitive coding technique [18]
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and the stacked restricted Boltzmann machines [15] to learn binary codes for a dataset
of 12.9 million web images. Even for this very large-scale dataset, the retrieval process
using binary code can be done in a fraction of a second [20]. In [21] another approach
of find a good binary code has been proposed. Indeed, the authors formally formulate
an optimization problem describing the problem of finding a good binary code. The
resulting algorithm called spectral hashing is simple but produces an efficient code
that outperforms prior techniques. This work analyzes the spectral hashing, its possible
shortcomings and solutions.

2 Spectral Hashing

2.1 Formulation and Algorithm

Let x = [x1; ...; xd]T ∈ Rd be a feature vectors in d dimensions. Spectral hashing,
shorten as SH hereafter, searches for a binary mapping function f minimizing the aver-
age distance between the resulting codes with respect to the Euclidean distance in the
original space. Formally, this is done by solving the following problem:

min
f

�
W (x,x′)‖f(x)− f(x′)‖2p(x)p(x′)dxdx′ (1)

subject to f(x) ∈ {−1, 1}m

�
f(x)p(x)dx = 0

�
f(x)f(x)T p(x)dx = I

where W (x,x′) = exp(−‖x−x′‖2/ε2) is the weight function, p(x) is the distribution
of x. The second constraint

�
f(x)p(x)dx = 0 requires that each bit has equal chance

of being 1 or 0, while the third constraint
�

f(x)f(x)T p(x)dx = I requires that the
bits are uncorrelated. By relaxing the first constraint f(x) ∈ {−1, 1}m, several analyt-
ical solutions are possible. These solutions are eigenfunctions of the weighted Laplace-
Beltrami operator defined on the manifold [21]. More explicitly, let Lp be the weighted
Laplacian that maps a function f to g = Lpf with g(x)/f(x) = D(x)f(x)p(x) −�
s
W (s,x)f(s)p(s)ds and D(x) =

�
s
W (x, s)p(s)ds. The solutions to the above prob-

lem are any functions f satisfying Lpf = βf for some real value β, in other word f is
an eigenfunction of Lp.

To obtain the solution of the above problem, the original spectral hashing makes
two assumptions; 1) p(x) is a separable distribution and 2) each feature is uniformly
distributed. The first assumption implies that we may construct an eigenfunction of
d-dimensional data by a product of one-dimensional eigenfunctions corresponding to
each feature. The second assumption allows us picking the following eigenfunctions as
one-dimensional eigenfunctions:

Φk(x) = sin
(

π

2
+ kπ

(x− a)
(b− a)

)
(2)

βk = 1− exp

(
− ε2

2

(
kπ

b− a

)2
)

(3)
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where x is a real number uniformly distributed in range [a, b], βk the corresponding
eigenvalues with k a parameter of these eigenfunctions. The multi-dimensional eigen-
function is then constructed implicitly from these one-dimensional eigenfunction.

The above discussion leads to a two steps algorithm; The first step is the principal
component analysis (PCA) step and the second one is the eigenfunction selection step.
In fact, an example of a separable distribution is a multidimensional Gaussian, once
rotated so that the axes are aligned. That is the reason why PCA is used in the first step.
Note that for non-vectorial data, kernel PCA [17] can also be used in this step instead.
After this step, each object can be represented as a vector in the principal subspace.

The second step consists in evaluating the above eigenvalues (equation (3)) for all
possible k = 1, ..., K and for all features i = 1, ..., l with l the dimension of the princi-
pal subspace. This result in a list of lK eigenvalues which are sorted in increasing order.
Then ignoring the smallest eigenfunction (which corresponds to eigenvalue 0), the next
m smallest eigenfunctions are selected to encode object into m bits code. Finally the
output from each selected eigenfunction is thresholded to obtain the binary value.

It should be noted that the range of data on each principal axis varies proportional to
the variance of the data projected on this axis. It is known that the variance of the ith

PCA feature is given by the eigenvalue of this projection axis. As a consequence, the
second step of spectral hashing can then be done by sorting eigenfunctions in decreas-
ing order of λi/k2 with λ1, ..., λl the eigenvalues obtained from the PCA step, then
selecting the top m eigenfunctions.

Using the same relation, the eigenfunction (i, k) can be defined on Rd as follows:

Φi,k(x) = sin
(

π

2
+ kπ

(〈vi,x〉+ 3
√

λi)
6
√

λi

)
(4)

with vi the ith eigenvector, λi its corresponding eigenvalue. The binary code is then
obtained from SIGN(Φi,k(x)).

2.2 Discussion

The spectral hashing relies on the sign of an eigenfunction to encode the projection of
data on each principal axis into a binary code. It should be noted that the considered
eigenfunction is indeed a sinus function. This function partitions the whole range of
data into intervals of equal length and assign the binary code 1 and 0 to these intervals
alternately. Uniform distribution implies that the same amount of data falls into each
interval. In the following, we shall refer to the amount of data in each interval as its
size. Thus, uniform distribution assures that the whole range of data is partitioned into
intervals not only of the same length but also of the same size. Two solutions are con-
sidered in this work. The first one is based on the probability integral transform theorem
[6]. The second one relies on manual partition of the data into equal size intervals, then
assign the binary code 1 and 0 to these intervals alternately.

Apart from the problem with uniform distribution, the binary encoding with eigen-
function cannot guarantee that the resulting code has equal chance of being 1 or 0. In fact,
the parameter k of the eigenfunction partitions the data into k + 1 intervals. The first in-
terval is labeled with binary code 1, then the code 0 and 1 are assigned to next intervals
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alternately. As a consequence when k is even, there will be more intervals of 1 than that
of 0. Thus there will be more 1 than 0 for this bit, even if the data is uniformly distributed.

The above problem can be overcome by first sort the data in increasing order. Then
carefully select k thresholds values for partition the whole data into k+1 intervals such
than the odd (respectively the even) intervals are of the same size and such that the total
size of all odd intervals is equal to that of even intervals. While this procedure solves
the problem due to the data distribution and equalize the amount of 1 and 0 for the
resulting bit, it is inconsistent with the eigenfunction selection procedure. Indeed, the
eigenfunction selection criterion is based on the ratio λi/k2 which corresponds roughly
to the squared of the length of the interval along the eigen axis vi partitioned into k + 1
equal portions. Having this criterion in mind, the selection of eigenfunction should be
done as function of the squared of the average length of the intervals. These different
extensions of SH will be studied in next section.

3 Proposed Methods

This section discusses two extensions of SH to handle non-uniform distribution. The
first extension (Sect. 3.1) relies on a probabilistic model to transform feature into uni-
form distribution. The second extension relies manual partition does not require any
additional assumption on the data distribution. This technique called generalized SH,
will be presented in Sect. 3.2.

3.1 SH with Probability Transform

To address the issue of uniform distribution, we propose to further transform the PCA-
based feature using the probability integral transform theorem. Indeed, if a random
variable Y has continuous accumulated distribution function F , then the probability
integral transform theorem states that the new random variable Z = F (Y ) will fol-
low uniform distribution in range [0, 1] [6]. Using this fact, one may try to estimate a
probabilistic model for each PCA-based feature, then use the corresponding cumula-
tive distribution function (cdf.) to transform this feature into a new feature following
uniform distribution.

For instance, let’s consider the Gaussian distribution. If y follows Gaussian distribu-
tion with mean 0 and variance σ2 , then its cdf. is given by:

cdf(y; σ2) =
1
2

[
1 + erf

(
y√
2σ2

)]
. (5)

Using this transformation function cdf(y; σ2) will be uniformly distributed in [0, 1]. For
an eigenfunction (i, k), if we assume that the projection of data along the ith principal
axis follows Gaussian distribution with 0 means and λi variance, then the following
eigenfunction can be used instead of Φi,k (equation (4)):

Φgauss
i,k (x) = sin

(π

2
+ kπ cdf(〈vi,x〉; λi)

)
. (6)

In the following, we shall refer to the SH using this eigenfunction as the SH with Gaus-
sian transform.
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3.2 Generalized SH

The figures 1 (a), (b), and (c) show the projection of MNIST data along the first three
principal axes. It is clear from this figure that the data distribution is not Gaussian. A
better solution would be the use of empirical cdf. similar to the histogram equalization
procedure in the image processing [10]. The latter requires, however, a user-selected
number of bins for the histogram calculation. A more general solution for partitioning
the data into intervals of equal size can be done by first sorting the data in increasing
order, then carefully chosen the thresholds based on this sorted list.

This is done by first applying the PCA as in normal SH. Then the projection of data
on each principal axis i = 1, ..., l is computed and is sorted in increasing order. Let
zi
1, ..., z

i
n be this sorted list. Then a set of k thresholds ti,k1 , ..., ti,kk is selected from

zi
1, ..., z

i
n by

ti,kj = zi
jn

k+1
, j = 1, ..., k. (7)

The average length of the resulting intervals is then computed as follows:

leni,k =
1

(k + 1)2

⎛⎝(ti,k1 − zi
1)

2 + (zi
n − ti,kk )2 +

k∑
j=2

(ti,kj − ti,kj−1)
2

⎞⎠ . (8)

The m eigenfunctions having largest average length of intervals leni,k are selected for
encoding.

For an eigenfunction (i, k) with vi the corresponding eigenvector and ti,k1 , ..., ti,kk

the corresponding thresholds, the output binary code for a new vector x is computed by

1. Compute z the projection of x on the axis vi, i.e. z = 〈vi,x〉
2. If z < ti,k1 return 1

3. If ti,kk ≤ z return 1 if k is even and 0 if k is odd

4. Otherwise find index j∗ such that ti,kj∗−1 ≤ z < ti,kj∗ , if j∗ is odd then return 1 else
return 0.

The final m bits code of the vector x is the concatenation of the binary code from all
m selected eigenfunctions. In the following, this new encoding scheme will be called
generalized SH or GSH.
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Fig. 1. The distribution of the projection of MNIST data along the three first principal axes
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3.3 Toward a More Efficient Code

For GSH, for each eigenfunction (i, k) the equality between the number of 1 and 0 can
be guarantee by carefully chosen the thresholds ti,kj , j = 1, ..., k. Indeed, if the data
is partitioned into equal size intervals and labeled with binary code 1 and 0 alternately,
then when k is even there will be more interval labeled with 1 than that with 0. There-
fore, there will be more 1 than 0 for the binary code resulting from this eigenfunction.
One may adjust these k thresholds such that

1. the size of all odd intervals are equal to no

2. the size of all even intervals are equal to ne

3. the total size of all odd intervals is equal to the total size of even intervals.

These three requirements can be satisfied by letting

no =

{
n

k+2 k mod 2 = 0
n

k+1 otherwise

ne =

{
n
k k mod 2 = 0
n

k+1 otherwise.

Then the k thresholds are selected by

1. told = 0
2. For j = 1, ..., k do

(a) t = told +

{
ne j mod 2 = 0
no otherwise

(b) ej = zi
t

(c) told = t

with zi
1, ..., z

i
n be this sorted list of data projected on the axis vi.

4 Experiments

In this section, we describe the results of several experiments on the nearest neighbor
search using binary codes from SH and its extensions.

4.1 Datasets and Evaluation Measures

The evaluation is performed on the MNIST dataset1. This is a standard dataset for hand-
written digit recognition task. It is composed of 60,000 training examples. Each exam-
ple, is a bitmap of 28x28 pixels. We simply converted this bitmap into a vector of 784
dimensions. This is a medium size dataset with high dimensional data. Two thousands
examples were randomly chosen as test queries.

1 http://yann.lecun.com/exdb/mnist/
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To evaluate different methods, for each test query two sorted lists were computed.
The first one was the index of data in the dataset sorted in increasing order of Hamming
distance between the databases binary codes and the binary code of the test query. The
second one was sorted in increasing order of the Euclidean distance to the test query’s
features vector. The first 1% in this second sorted list were considered as the true nearest
neighbors. By comparing these two lists, a precision/recall graph can be drawn.

4.2 Experimental Results

In this experiment, four methods were compared namely:

1. SH
2. SH with Gaussian transform
3. GSH-1: GSH where all intervals are of the same size
4. GSH-2: GSH where each bit has equal chance of being 1 and 0 (Sect. 3.3).

The first method, the spectral hashing or SH, relies on the uniform data distribution
assumption. The second method, SH with Gaussian transform, tries to cope with this
problem by using Gaussian assumption. Even if this assumption is also made arbitrary,
its parameters are obtained from the actual data. This could lead to an improvement over
the normal SH. The next two methods, GSH-1 and GSH-2, try to generalize the idea of
SH for any data distribution. GSH-1 relies on the equal-size partition while GSH-2 tries
to equalize the number of time each bit is 1 and 0.

Figure 2 shows precision/recall graphs of three methods on MNIST dataset with 8
bits (a), 16 bits (b), 32 bits (c), 64 bits (d), 128 bits (e), and 256 bits (f). From this
figure, one may see that the vanilla SH performs surprisingly well compared to other
extension, even if this data is clearly not uniformly distributed (see Figure 1). Moreover,
one may see that the two extension of SH clearly outperform the normal SH when small
number of bits is used (8, 16, or 32 bits). When large number of bits is used (64, 128,
and 256 bits), these extensions yield higher precision result while losing the recall.

In fact, different SH extensions tend to produce search result with higher precision
but with less recall. This can be seen clearer on the figures 3 (a) and (b). These figures
plot precision and recall as function of the thresholds on the Hamming distance to the
query using binary code of 32 bits and 256 bits respectively. These results indicate
that the precision of the resulting binary code increases as we rectify the underlying
assumption about the data distribution. These results also indicate that if we accept all
data having Hamming distance to the query object less than a redefined threshold as
a neighbor of the query, then the result become more reliable as we move from SH to
GSH. For some tasks where precision is more important that recall, e.g. k-NN classifier,
GSH represents an interesting technique.

4.3 Computational Cost

Note that using 32-bits code, one will need less than 240 kilobytes to index 60,000
training examples of MNIST dataset. Using this code, on an Intel Core2Duo 1.83Ghz
machine the nearest neighbors search is done in roughly 2.3 milliseconds for all meth-
ods. This is due to the fact that these methods produces the same type of binary code.
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Fig. 2. Precision/recall graphs obtained from the SH and its extension on MNIST dataset with 8
bits (a), 16 bits (b), 32 bits (c), 64 bits (d), 128 bits (e), and 256 bits (f)
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Fig. 3. Plots of precision and recall as function of the thresholds on the Hamming distance. These
plots are obtained from the SH and its extensions on MNIST dataset with 32 bits (a), and 256
bits (b).
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The difference between these methods lies in the derivation of the eigenfunction. To
compute GSH’s eigenfunction, the sorted list of data projection on each principal axis
is required. As a consequence, it may not be suited for very large dataset. Indeed, we
believe that in this case, empirical cdf should be prefered to speed up the calculation.

The retrieval speed can be further improved by pre-computing the Hamming dis-
tance. In fact, each binary code is kept in the computer’s memory as a sequence of
chars. For example, a 64-bits code can be represented by 8 chars. Each char has 256
possible values. It is then possible to pre-compute the Hamming distance between any
two chars and store them in a look-up table. The Hamming distance between two codes
is then the summation of the Hamming distance between the chars representing these
codes. Using this pre-computed distance and look-up table, the search time for 32-bits
code reduces to 1.8 milliseconds.

It is worthy note that the Hamming distance assumes that all bits are of the same
importance. In practice, some bit may convey more information that the others; Thus
we may assign different weight for each bit in the code. The idea of the pre-computed
distance and the look-up table allows computing this weighted Hamming distance with-
out increasing the computational cost. In our preliminary study of this work, we have
tried to retrieved nearest neighbors based on this idea with weights selected heuristi-
cally. The results were interesting. We are currently working on an automatic selection
of these weights.

5 Conclusion and Future Works

In this work, we have analyzed the spectral hashing technique that has been designed
to efficiently encode object into a binary string for fast nearest neighbor search. Two
extensions of the spectral hashing have been considered. The first one focuses on the
uniform distribution assumption. We have shown that by assuming that the data on
each principal axis is Gaussian distributed and by using the Gaussian cdf. to further
transform this feature, a more efficient code could be obtained. A more general solu-
tion called generalized SH is also proposed. These extensions yield search result with
more precision than that obtained from the normal SH. Evaluation of these different
techniques on larger dataset is currently under investigation.
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Abstract. The language modeling approach is widely used to improve
the performance of text mining in recent years because of its solid theo-
retical foundation and empirical effectiveness. In essence, this approach
centers on the issue of estimating an accurate model by choosing appro-
priate language models as well as smooth techniques. Semantic smooth-
ing, which incorporates semantic and contextual information into the
language models, is effective and potentially significant to improve the
performance of text mining. In this paper, we proposed a high-order
structure to represent text data by incorporating background knowl-
edge, Wikipedia. The proposed structure consists of three types of ob-
jects, term, document and concept. Moreover, we firstly combined the
high-order co-clustering algorithm with the proposed model to simul-
taneously cluster documents, terms and concepts. Experimental results
on benchmark data sets (20Newsgroups and Reuters-21578) have shown
that our proposed high-order co-clustering on high-order structure out-
performs the general co-clustering algorithm on bipartite text data, such
as document-term, document-concept and document-(term+concept).

Keywords: Text mining, High-order co-clustering, Representation
Model, Semantics, Wikipedia.

1 Introduction

Clustering is an indispensable text mining technique such as query search results
organization, automatic abstracting, and etc.. The goal of text clustering is to
group documents with similar themes together while separate those with differ-
ent topics. In order to achieve this goal, the fundamental problem is creating
a reasonable and information-abundant representation model. Traditional doc-
ument representation model in text clustering is term-based vector space model
(term VSM) [1]. However, term VSM only covers the syntactic information of
a document discarding the semantic information because it assumes all terms
independent.

In order to consider the semantic information, latent topic models (e.g., LDA
[3] and pLSI [10]) were recently proposed to identify the topics, and terms be-
longing to one topic are taken to be relevant to each other. This kind of models,
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to some extent, makes up for the shortage of term VSM, but cannot discover as
much semantic information as described in text data only by analyzing syntactic
information via statistic methods. Another way to overcome the weakness of the
term VSM is incorporating background knowledge (ontology or encyclopedia)
into text representation model [11,2,12,19,14,13,15] as concept features to build
VSM model.

Even though the background knowledge was used in the literatures
[11,12,19,14,13,15] to improve document clustering performance, their final re-
sults only contain the document clusters rather than word clusters and even
concept clusters. Actually, clustering words is also very important in text clus-
tering besides dividing documents into different groups. Such clustering can be
called co-clustering or bi-clustering. Actually, bi-clustering was very popular in
biological data analysis [4]. For text mining, Dhillon et al.[6] gave an information
theoretic co-clustering to group documents and words simultaneously. However,
this simple co-clustering can not deal with complicated data structure, say, het-
erogeneous data. Gao et al.[8] designed an extended co-clustering with consistent
information theory, which can handle heterogeneous data, e.g., documents, terms
and document labels. Recently, Dai et al.[5] and Wang et al.[20] applied this idea
to self taught learning to do document classification with the aid of auxiliary
data.

In this paper, we make use of the background knowledge (Wikipedia) to rep-
resent text corpus via a high-order structure. The structure contains three parts,
terms, documents and Wikipedia concepts. The Wikipedia concepts will be used
to represent a document if they are related to the terms appearing in the given
document. Meanwhile, the high-order structure is combined with the high-order
co-clustering algorithm [8,9,20] to simultaneously obtain the term groups, con-
cept groups and document groups (We named this kind of co-clustering proce-
dure as HOCOClu). Experimental on real text data have shown that HOCOClu
can get better document clustering performance than co-clustering on document-
term, document-concept and even document-(term+concept) respectively. Fur-
thermore, the term clusters and concept clusters make sense by investigating the
text data.

The rest of the paper is organized as follows: Section 2 introduces the proposed
high-order structure by utilizing Wikipedia concepts. In Section 3, the high-order
co-clustering (HOCOClu) is firstly combined with the high-order structure to
simultaneously find the term group, concept group and document group. The
experimental results will be listed and discussed in Section 4. Finally, we conclude
the paper in Section 5.

2 High-Order Representation Structure

In this section, we will present a high-order structure to represent document
set, as shown in Fig.1. The structure consists of three types of objects: C =
{c1, c2, · · · , cp} with p concepts, D = d1, d2, · · · , dN with N documents, and
T = t1, t2, · · · , tm with m terms. In other words, the documents are represented
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with both terms and concepts. In this structure, the relationship between docu-
ment and term is measured by the term frequency-inverse document frequency
(tf · idf).

c1 c2 c3 cl cp… …

d1 d2 d3 dj dN
… …

t1 t2 t3 ti tm… … Term Object

Document Object

Concept Object

Fig. 1. High-Order Representation Structure

The key step to build the high-order structure is to select the concepts for each
document and calculate the contribution of concepts to the document. Wikipedia
is, here, used as the concept resources. Given a document, if its term is an anchor
in the corresponding Wikipedia articles (in Wikipedia, the title of each article
is a concept) [16], this Wikipedia concept is taken to be related to this term.
Usually, there are almost twenty Wikipedia concepts related to one term [13].
In this paper, following [17], the most obvious sense (concept) for each term is
kept, while the others are removed in order to improve the processing efficiency
by discarding insignificant concepts.

Fig.2 gives the framework on how to build the relationship between Wikipedia
concept and document. According to the obvious measure, one term can be
connected with one Wikipedia concept or not if the term is not an anchor,
while one concept can be semantically related to more than one term as shown
in Fig.2. Once obtaining the related concepts for each document, we adopt a
context-based method [17] to evaluate the semantic relatedness between term
and its relevant Wikipedia concept in one document, i.e. Rij in Fig.2.

Term concept

mapping

Document dj Term Extraction

c1 c2 ci cp… …

t1 t2 t3 tx tl tm… …tl+1t4 …

Unannotated

term set

R11 R21 R32 R4i Rxp Rlp

Fig. 2. Mapping from Document terms to Wikipedia concepts
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Rel(t, ci|dj) =
1

|T | − 1

∑
tl∈T&tl �=t

SIM(ci, cl) (1)

and
SIM(ci, cl) = 1 − log(max(|A|, |B|)) − log(|A ∩ B|)

log(|W |) − log(min(|A|, |B|)) (2)

where T is the term set of the jth document dj , tl is a term in dj except
for t, i.e., tl ∈ T and tl = t. cl is the Wikipedia concept related to term tl.
SIM(ci, cl) indicates the semantic relatedness between two concepts which is
computed according to the hyperlink structure of Wikipedia [18]. In Eq.(2), A
and B are the sets of all articles that link to concepts ci and cl respectively,
and W is the set of all articles in Wikipedia. If A and B do not have any
common article, i.e., |A ∩ B| = 0, we set SIM(ci, ck) = 0. Eq.(2) is based on
term occurrences on Wikipedia-pages. Pages that contain both terms indicate
relatedness, while pages with only one of the terms suggest the opposite.

Rel(t, ci|dj) indicates the semantic relatedness between term t and concept
ci in document dj according to term t’s context. Higher value of Rel(t, ci|dj)
shows that concept ci is more semantically related to term t because ci is much
more similar to the relevant concepts of other terms in dj (other terms are the
context of term t in dj). Then, the importance of concept ci in document dj can
be calculated as follows.

SAL(ci, dj) =
∑

t∈dj&t∼ci

w(t, dj) × Rel(t, ci|dj). (3)

where w(t, dj) is the weight (tfidf is used here) of term t in document dj . That
is, the importance of concept ci in document dj is the weighted sum of the related
terms’ weight based on the semantic relatedness between ci and its related terms.

So far, a document is represented with a high-order structure which effi-
ciently integrates the syntactic information and semantic information (provided
by Wikipedia) and contains three types of objects, term, document and concept.
Next, we will make use of this high-order representation structure to simultane-
ously find the clusters of documents, terms and concepts.

3 High-Order Co-clustering Method

In this section, we will show how to determine tripartite clusters based on
the high-order representation structure. Gao et al. [8,9] proposed a kind of co-
clustering methods to cluster high-order heterogeneous data. Among them, CIT
[9] and CoCC[5,20] were based on consistency information theory [6] and proven
to be more efficient and effective than CBGC [8]. All these three methods are
used on the heterogeneous text data with category-document-term format, here
category is the document category label. However, in real applications, very few
documents have category information. In this section, we will show how to ap-
ply the consistency information theory on text data represented via high-order
structure to identify document clusters, term clusters and concept clusters simul-
taneously. Also, we adopted a more effective optimizing process [5] to implement
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this high-order co-clustering, named as HOCOClu. To the best of our knowledge,
our work is the first one to use high-order co-clustering to find concepts, docu-
ments and terms clusters simultaneously.

c1 c2 c3 cl cp… …

d1 d2 d3 dj dN
… …

t1 t2 t3 ti tm… …

Fig. 3. Tripartite graph of concept-document-term

The goal of HOCOClu can be taken as finding the tripartite graph of the high-
order representation, as shown in Fig.3. With this tripartite graph, we can group
objects C, D and T into different clusters denoted as Ĉ, D̂, and T̂ respectively,
e.g., the data objects are separated by the dotted line. The whole clustering
procedure can be implemented via the consistency information theory [6] by
optimizing the following objective function.

F (C,D, T ) = (I(C,D) − I(Ĉ, D̂)) + λ(I(T, D) − I(T̂ , D̂))
= DKL(p1(C, D)||q1(C, D)) + λDKL(p2(T, D)||q2(T, D))

(4)

where λ is a trade-off parameter to balance the influence between the syntac-
tic information and the semantic information. DKL(p||q) is the KL-divergence.
p(dj , cl) indicates the joint probability between concept cl and document dj and
is calculated via p(dj , cl) = v(dj ,cl)∑p

i=1
∑N

j=1 v(dj ,cl)
. v(dj , cl), computed with Eq.(3), is

the weight of concept cl in document dj . Similarly, p(dj , ti) indicates the joint
probability between term ti and document dj , where v(dj , ti) is tf · idf value
when calculating p(dj , ti).

In Eq.(4), q1(C, D) is the distribution between concept cluster and document
cluster, similarly, q2(T, D) for term cluster and document cluster, which are
formulated as follows.

q1(C, D) = p1(Ĉ, D̂)p1(C|Ĉ)p1(D|D̂) C ∈ Ĉ D ∈ D̂ (5)

and
q2(T, D) = p2(T̂ , D̂)p2(T |T̂ )p2(D|D̂) T ∈ T̂ D ∈ D̂ (6)

where T̂ , D̂, and Ĉ are the group of terms, document, and concept which are
iteratively choose via

CC(c) = arg min
ĉ∈Ĉ

D(p1(D|c)||q1(D|ĉ)) (7)

CT (t) = arg min
t̂∈T̂

D(p2(D|t)||q2(D|t̂)) (8)
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and

CD(d) = arg min
d̂∈D̂

(p1(d)D(p1(C|d)||q1(C|d̂)) + λp2(d)D(p2(T |d)||q2(T |d̂))) (9)

Eq.(7-9) are conditions to appropriately cluster concepts, terms and documents
respectively. Therefore, Eq.(4) can be taken as a consistent fusion of two pair-
wise co-clustering sub-problems (D-C co-clustering and D-T co-clustering) by
sharing the same document variable D and document clustering result D̂. Such
consistent fusion can make the overall partitioning be globally optimal under
objective function Eq.(4). Based on the above definition, the best T̂ , D̂, and Ĉ
can be simultaneously returned by Algorithm 1.

Algorithm 1. HOCOClu Algorithm

input : Text data set probability distribution (p1(C, D), p2(T, D)) under
high-order structure; Parameter λ; Number of iterations H ; Number of
Term clusters kT , number of concept clusters kC and number of
document clusters kD

output: The final clustering result T̂ , D̂, and Ĉ

{Initialize cluster distribution}1

Initialize term clusters, concept clusters and document clusters, i.e., set C
(0)
T (t) ,2

C
(0)
C (c), and C

(0)
D (d).

{Compute the initial posterior probability distribution}3

Compute q
(0)
1 (C, D) and q

(0)
2 (T, D) based on initialization T̂ , Ĉ and D̂ with4

Eq.(5) and Eq.(6) respectively.

{Iteratively update CC(c), CT (t) and CD(d)}5

for ∀h = 1, · · · , H do6

Update C
(h)
C (c) based on p1(C,D), q

(t−1)
1 (C, D) and Eq.(7).7

Update C
(h)
T (t) based on p2(T, D), q

(t−1)
2 (T, D) and Eq.(8).8

Update C
(h)
D (d) based on p1(C, D), p2(T, D), q

(h−1)
1 (C, D), q

(h−1)
2 (T, D) and9

Eq.(9).

Update q
(h)
1 (C, D) based on p1(C,D), C

(h)
C (c), C

(h)
D (d) and Eq.(5).10

Update q
(h)
2 (T, D) based on p2(C, D), C

(h)
T (t), C

(h)
D (d) and Eq.(6).11

end12

Return C
(H)
C , C

(H)
T and C

(H)
D as the final clustering results on the concepts,13

terms and documents respectively.

4 Experimental Results and Discussion

4.1 Dataset

In this section, we would test our proposed highi-order representation
structure and HOCOClu co-clustering on real data sets (20Newsgroups and
Reuters-21578) with the aid of Wikipedia. Five test sets were created from
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20Newsgroups. 20NG-Diff4 with four substatially different classes, and 20NG-
Sim4 with four similar classes with 1000 documents in each class. Another three
data sets, Binary, Multi5 and Multi10 were created following [6]. Among them,
Binary contains two similar classes with 250 documents in each class, Multi5
covers five categories with 100 documents per category, and Multi10 includes
ten groups with 50 documents per group. Reuters-21578 consists of short news
articles dating back to 1987. We created the R Min20Max200 set following [14]
which contains the Reuters categories that have at lest 20 and at most 200 docu-
ments and R Top 10 consisting of the largest 10 classes. All these seven data sets
in Table 1 only contain the single-label documents. For the multi-label document
clustering, we will study in the future.

Table 1. Data set summary

Dataset Description �Classes �Documents �Words �Concepts �Words no Concepts

D1 Binary 2 500 2000 1649 204
D2 Multi5 5 500 2000 1667 209
D3 Multi10 10 500 2000 1658 194
D4 20NG-Diff4 4 4000 5433 4362 503
D5 20NG-Sim4 4 4000 4352 3502 426
D6 R Min20Max200 25 1413 2904 2450 176
D7 R Top 10 10 8023 5146 4109 448

For each data set, the words were extracted by preprocessing steps, selecting
only alphabetical sequences, stemming them and removing stop words. For data
sets 20NG-Diff4, 20NG-Sim4, R Min20Max200 and R Top 10, we removed the
infrequent words that appeared in less three documents. For data sets Binary,
Multi5 and Multi10, we adopted the feature selection method following [6], i.e.,
selecting the top 2000 words according to the MI score between words and corpus,
so that it is more reasonable to compare with the clustering result of the original
co-clustering algorithm proposed in [6]. The Wikipedia concepts for these words
in each data set were determined via the method in Section 2.

4.2 Clustering Results and Discussion

Since the category of each document was known in these data sets, we used the
external cluster validation method to evaluate the clustering results by calculat-
ing the correspondence between the clusters generated by a clustering algorithm
and the inherent categories of the data set. Table 2 lists the three evaluation func-
tions, Entropy [21], FScore [21] and the normalized mutual information (NMI )
[22], which were used to evaluate clustering results.These functions can be in-
terpreted as follows. The smaller the Entropy, the better the clustering perfor-
mance. The larger the FScore/NMI , the better the clustering performance.
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Table 2. Evaluation Functions

Entropy
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∑
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nj , nl are the numbers of documents in class Lj and in cluster Cl respectively
njl is the number of documents occurring in both class Lj and cluster Cl

n is the total number of documents in the data set, and k is the number of classes.

Next, we will demonstrate the performance of HOCOClu on text data repre-
sented via high-order structure by comparing with the original co-clustering on
document-term (D-T), document-concept (D-C) and document-(term+concept)
(D-(T+C)) models.
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Fig. 4. The document clustering FScore curves as a function of trade-off parameter λ

In the experiments, the term clusters and concept clusters were initialized by
k-means clustering algorithm on term-document TFIDF matrix and concept-
document TFIDF matrix respectively. For document clusters initialization, in
co-clustering of D-T, document clusters were obtained by k-means on document-
term TFIDF matrix, while, in co-clustering of D-C, document clusters were got
by k-means on document-concept TFIDF marix. In HOCOClu, we ensembled
the document clustering results of k-means on the above two matrices with the
method proposed in [7]. The number of document clusters is set to be the true
number of classes. For term and concept, we set the number of term clusters and
concept clusters with different values from m/10 to m/100 (m is the number of
terms or concepts), finally, the best clustering result for each dataset was shown.

For trade-off parameter λ in Eq.(4), we constructed a series of experiments
to show how λ affects the clustering performance. Fig.4 presents the document
clustering FScore curve given by HOCOClu along with changing λ on three
small data sets. From this figure, it can be seen that, when λ decreases, im-
plying the weights of the concept (i.e., semantic) information being lower, the
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performance of HOCOClu declines. On the other hand, when λ is sufficiently
large, i.e., λ > 1, meaning the weights of the term (i.e., syntactic) information
being lower, the performance of HOCOClu also decreases slightly. This indicates
that clustering performance benefits from both term and concept information,
esp., when treating syntactic information and semantic information equally. In
the following experiments, we set the trade-off parameter λ to be 1, which is the
best point in Fig.4.

Table 3. Comparison of the co-clustering (COClu) performance with different strate-
gies and HOCOClu clustering on High-order representation structure (Bold-face num-
bers indicate the best evaluation result in the four models)

Dataset D1 D2 D3 D4 D5 D6 D7

EN 0.8513 0.3457 0.5397 0.1708 0.5546 0.2764 0.2180
D-T F 0.6342 0.7717 0.5804 0.8967 0.6851 0.6242 0.5931

NMI 0.1761 0.6647 0.4841 0.8507 0.5141 0.6928 0.5481
EN 0.8474 0.3544 0.4910 0.1740 0.5592 0.2712 0.2221

COClu D-C F 0.6332 0.7526 0.6109 0.8948 0.6722 0.6221 0.5764
NMI 0.1817 0.6595 0.5402 0.8471 0.5142 0.6989 0.5408
EN 0.8586 0.3501 0.5259 0.1651 0.5547 0.2749 0.2219

D-(T+C) F 0.6261 0.7713 0.6015 0.8980 0.6765 0.6091 0.5642
NMI 0.1689 0.6626 0.5068 0.8564 0.5179 0.6956 0.5435

EN 0.8548 0.0833 0.4017 0.1547 0.4811 0.1936 0.1975
HOCOClu F 0.6487 0.9721 0.7053 0.9016 0.7359 0.6927 0.6019

NMI 0.1723 0.9170 0.6039 0.8676 0.5851 0.7797 0.5699

Table 3 gives the comparison clustering results on seven data sets. Three
figures in each cell represent the values of Entropy (En), FScore (F) and NMI
respectively. The good clustering results are marked in the bold case. We can
see that the proposed HOCOClu on high-order structure can achieve the better
clustering performance than all co-clustering results on D-T, D-C and D-(T+C),
because HOCOClu efficiently makes use of the term and concept information
than the other three methods.

Meanwhile, HOCOClu has ability to identify the word and concept clusters.
Next, we will take Multi5 data set as an example to show the advantage of
HOCOClu.

Table 4. Confusion matrix obtained by HOCOClu on Multi5

Category Description C1D C2D C3D C4D C5D

comp.graphics 0 0 4 96 0
rec.motorcycles 0 0 99 1 0
rec.sport.baseball 0 95 4 1 0
sci.space 95 0 1 2 2
talk.politics.mideast 0 0 0 0 100
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Table 5. Term and concept clusters IDs corresponding to Multi5 document clusters
identified by HOCOClu

DocClu ID Word Cluster (WC) IDs Concept Cluster (CC) IDs

C1D 2,6,8,10,12,13,17,18,19, 2,4,7,9,11,15,19,20,21,
20,21,24,32,37,39 23,25,27,30,34,35,38

C2D 11,16,25,34,35,42,44 13,24,31,37,39,47
C3D 7,22,28,31,36,46,48,49 5,22,43,48,49,50
C4D 1,23,29,30,33,38,45,47 1,26,28,32,33,44,45,46
C5D 3,4,5,9,14,15,26,27,40, 3,6,8,10,12,14,16,17,18,

41,43,50 29,36,40,41,42

Table 4 indicates the confusion matrix of Multi5 obtained by HOCOClu.
In our experiments, the document clustering performance was best when the
number of word clusters and number of concept clusters were set to be 50 (i.e.,
2000/40). From Table 4, we can see document cluster C1D talks about sci.space,
C2D about rec.sport.baseball, C3D mainly about rec.motorcycles, C4D mainly
about comp.graphics and C5D about talk.politics.mideast.

Table 5 gives the term cluster IDs and concept cluster IDs corresponding to
each Multi5 document cluster. In order to check whether the word cluster or con-
cept cluster is related to the document cluster (i.e., related to the cluster topic),
we list ten words and five concepts (separated by space) of each representative
word or concept cluster (two word clusters and two concept clusters shown here)
for Multi5 in Table 6. Obviously, the words or concepts in the representative
clusters are semantically related to the topic of document clusters.

Table 6. Representative term and concept clusters corresponding to Multi5 document
clusters identified by HOCOClu

DocClu Term Clu and Concept Clu
WC18 space orbit probe mission launch earth satellite astronaut moon lunar
WC21 sci comet rocket flight constant wing energy material aircraft global

C1D CC20 Science Natural-environment Remote-(band) Chemical-element Aircraft
CC25 Space-Shuttle Mercury-(planet) Lander-(spacecraft) Atmosphere Astronomy
WC42 game baseball player sport team netcom season pitch blue hitter
WC44 win catcher rbi score sandberg bat brave cub era rookie

C2D
CC24 Sports-league Closer-(baseball) Netcom-(USA) pitch-(baseball) Team
CC37 Midway-(fair) Pennant-(sports) Player-(game) Win-(baseball) Batting-average
WC31 motorcycle ride bike drink aber denizen nec rider bmw uknet
WC46 rec mike tech arizona roger glove fan spring phoenix quick

C3D
CC22 Motorcycle Bicycle Rider Alcohol Leather
CC43 Technology Rogers-Communications Spring Fasting Speed
WC23 sgi color algorithm visual postscript bounce op symposium siemen monitor
WC29 compute ibm bit level server user keyword version library band

C4D CC28 Code Program-Management Window Interface-(computer science) Visible-spectrum
CC33 Keyword-(computer programming) Manufacturing Library Computer Pixel
WC3 armenian isra turkish arab israel party mideast jew hasan turk
WC43 politic talk libertarian peace leader woman border negotiate vote commit

C5D CC8 Terrorism Karabakh Baku-(spirit) Palestine Religion
CC36 Impressment Injury Count Agreement-(linguistics) Monarchy
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5 Conclusions and Future Work

In this paper, we presented a semantics-based high-order structure for text rep-
resentation with the aid of Wikipedia. The proposed structure contains three
types of objects, term, document and concept. The contribution of concept to
document is calculated based on the semantic relatedness between concept and
its related terms in the current document. This proposed structure takes into
account both semantic information and syntactic information. Combining the
high-order co-clustering algorithm, the clusters of terms, documents and con-
cepts can be simultaneously identified. Experimental results on real data set
have shown that the high-order co-clustering on high-order representation struc-
ture outperforms the co-clustering on document-term, document-concept and
document-(term+concept) model.

Even though the concept information was used in the proposed method, there
is abundant information in Wikipedia, e.g., category information. Such category
information is also helpful in text clustering [13]. In the future, we plan to build
text representation model by integrating Wikipedia category, so that the rela-
tionship between Wikipedia concepts could be taken into account.
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Abstract. High-dimensional data arise naturally in many domains, and have reg-
ularly presented a great challenge for traditional data-mining techniques, both
in terms of effectiveness and efficiency. Clustering becomes difficult due to the
increasing sparsity of such data, as well as the increasing difficulty in distin-
guishing distances between data points. In this paper we take a novel perspec-
tive on the problem of clustering high-dimensional data. Instead of attempting
to avoid the curse of dimensionality by observing a lower-dimensional feature
subspace, we embrace dimensionality by taking advantage of some inherently
high-dimensional phenomena. More specifically, we show that hubness, i.e., the
tendency of high-dimensional data to contain points (hubs) that frequently occur
in k-nearest neighbor lists of other points, can be successfully exploited in clus-
tering. We validate our hypothesis by proposing several hubness-based cluster-
ing algorithms and testing them on high-dimensional data. Experimental results
demonstrate good performance of our algorithms in multiple settings, particularly
in the presence of large quantities of noise.

1 Introduction

Clustering in general is an unsupervised process of grouping elements together, so that
elements assigned to the same cluster are more similar to each other than to the remain-
ing data points [1]. This goal is often difficult to achieve in practice. Over the years,
various clustering algorithms have been proposed, which can be roughly divided into
four groups: partitional, hierarchical, density-based, and subspace algorithms. Algo-
rithms from the fourth group search for clusters in some lower-dimensional projection
of the original data, and have been generally preferred when dealing with data that is
high-dimensional [2,3,4,5]. The motivation for this preference lies in the observation
that having more dimensions usually leads to the so-called curse of dimensionality,
where the performance of many standard machine-learning algorithms becomes im-
paired. This is mostly due to two pervasive effects: the empty space phenomenon and
concentration of distances. The former refers to the fact that all high-dimensional data
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sets tend to be sparse, because the number of points required to represent any distri-
bution grows exponentially with the number of dimensions. This leads to bad density
estimates for high-dimensional data, causing difficulties for density-based approaches.
The latter is a somewhat counterintuitive property of high-dimensional data represen-
tations, where all distances between data points tend to become harder to distinguish
as dimensionality increases, which can give rise to problems with distance-based algo-
rithms [6,7,8].

The difficulties in dealing with high-dimensional data are omnipresent and abundant.
However, not all phenomena which arise are necessarily detrimental to clustering tech-
niques. We will show in this paper that hubness, which is the tendency of some data
points in high-dimensional data sets to occur much more frequently in k-nearest neigh-
bor lists of other points than the rest of the points from the set, can in fact be used for
clustering. To our knowledge, this has not been previously attempted. In a limited sense,
hubs in graphs have been used to represent typical word meanings in [9]. This, however,
was not used for data clustering. Therefore, we focused first of all on exploring the po-
tential value of using hub points in clustering by constructing hubness-based clustering
algorithms and testing them in high-dimensional settings. The hubness phenomenon
and its relation to clustering will be further addressed in Section 3.

The rest of the paper is structured as follows. In the next section we present re-
lated work, Section 3 discusses in general the phenomenon of hubness, while Section 4
describes the proposed algorithms that are exploiting hubness for data clustering. Sec-
tion 5 presents the experiments we performed on both synthetic and real world data,
and in Section 6 we give our final remarks.

2 Related Work

Even though hubness has not been given much attention in data clustering, hubness
information is drawn from k-nearest-neighbor lists, which have been used in the past
to perform clustering in various ways. These lists may be used for computing den-
sity estimates, by observing the volume of space determined by the k nearest neigh-
bors. Density-based clustering methods often rely on this kind of density estimation
[10,11,12]. The implicit assumption made by density-based algorithms is that clusters
exist as high-density regions separated from each other by low-density regions. In high-
dimensional spaces this is often difficult to estimate, due to data being very sparse.
There is also the issue of choosing the proper neighborhood size, since both small and
large values of k can cause problems for density-based approaches [13]. Enforcing k-
nearest-neighbor consistency in algorithms such as K-means was also experimented
with [14]. This approach proposed moving closed neighbor-sets between clusters in
iterations instead of using single data points. However, the most typical usage of k-
nearest-neighbor lists relates to constructing a k-NN graph, where nodes are connected
by an edge if one of them is in the k-nearest-neighbor list of the other [15]. The problem
is then reduced to graph clustering, with a number of approaches available.
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3 The Hubness Phenomenon

Hubness is an aspect of the curse of dimensionality pertaining to nearest neighbors
which has only recently come to attention, unlike the much discussed distance concen-
tration phenomenon. Let D ⊂ �

d be a set of data points and let Nk(x) denote the
number of k-occurrences of point x, i.e., the number of times x occurs in k-nearest-
neighbor lists of other points from D. As the dimensionality of data increases, the
distribution of k-occurrences becomes considerably skewed [16]. As a consequence,
some data points, which we will refer to as hubs, are included in many more k-nearest-
neighbor lists than other points. Moreover, in the rest of the text we will refer to the
number of k-occurrences of point x ∈ D as its hubness score. It has been shown that
hubness appears in high-dimensional data as an inherent property of high dimension-
ality, and is not an artefact of finite samples nor a peculiarity of some specific data
sets [16].

3.1 The Emergence of Hubs

Hubness is closely related to the aforementioned concentration of distances in high-
dimensional spaces. If distances do concentrate for a given data set, then its points
are lying approximately on a hypersphere centered at the data mean. Naturally, if data
is drawn from several distributions, as is usually the case in clustering problems, this
could be rephrased by saying that data are lying approximately on several hyperspheres
centered at the corresponding distribution means. However, it has been shown that the
variance of distances to the mean is still non-negligible, regardless of the concentration
phenomenon – for any finite number of dimensions [7]. This implies that some of the
points will still end up being closer to the data (or cluster) mean than other points.
It is well known that points closer to the mean tend to, on average, be closer to all
other points, for any observed dimensionality. However, in high-dimensional data, this
tendency is amplified [16]. On average, points which are closer to all other points will
naturally have a higher probability of being included in k-nearest-neighbor lists of other
points in the data set, which gives rise to an increase in their hubness scores.

3.2 Relation of Hubs to Data Clusters

There has been some previous work on how well high-hubness elements cluster, as well
as the general impact of hubness on clustering algorithms [16]. A correlation between
low-hubness elements and outliers was also observed. A low hubness score indicates
that a point is on average far from the rest of the points and hence probably an outlier.
In high-dimensional spaces, however, low-hubness elements are expected to occur by
the very nature of these spaces and data distributions. These data points will lead to an
average increase in intra-cluster dissimilarity. It was also shown for several clustering
algorithms that hubs do not cluster well compared to the rest of the points. This is due
to the fact that some hubs are actually close to points in different clusters. Hence, they
also lead to a decrease in inter-cluster dissimilarity. However, this does not necessarily
hold for an arbitrary cluster configuration.
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(a) Minimal distances for d = 30 (b) Maximal distances for d = 30

(c) Minimal distances for d = 2 (d) Maximal distances for d = 2

Fig. 1. Evolution of minimal and maximal distances from cluster centroids to hubs and medoids
on synthetic data for neighborhood size 10 in case of 10 data clusters

It was already mentioned that points closer to cluster means tend to have higher hub-
ness scores than the rest of the points. A natural question which arises is: Are hubs
medoids? When observing the problem from the perspective of partitioning clustering
approaches, of which K-means is the most commonly used representative, a similar
question might also be posed: Are hubs the closest points to data centroids in clustering
iterations? To answer this question, we ran K-means++ [17] multiple times on sev-
eral randomly generated Gaussian mixtures for various fixed numbers of dimensions,
observing the high-dimensional case. We measured in each iteration the distance from
current cluster centroid to the medoid and to the hub, and scaled by the average intra-
cluster distance. This was measured for every cluster in all the iterations, and for each
iteration the minimal and maximal distance from any of the centroids to the correspond-
ing hub and medoid were computed. Figure 1 gives example plots of how these ratios
evolve through iterations for the case of 10-cluster data, used neighborhood size 10,
with 30 dimensions for the high-dimensional case, and 2 dimensions to illustrate low-
dimensional behavior.

It can be noticed from the charts that, in the low-dimensional case, hubs in the
clusters are far away from the centroids, even farther than average points. There is
no correlation between data means and high-hubness instances in the low-dimensional
scenario. On the other hand, for the high-dimensional case, we observe that the minimal
distance from centroid to hub converges to minimal distance from centroid to medoid.
This implies that some medoids are in fact cluster hubs. Maximal distances to hubs
and medoids, however, do not match. There exist hubs which are not medoids, and
vice versa. Also, we observe that maximal distance to hubs also drops with iterations,
hinting that as the iterations progress, centroids are becoming closer and closer to data
hubs. This brings us to the idea that will be explained in detail in the following section:
Why not use hubs to approximate data centers? After all, we expect points with high
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Fig. 2. Illustrative example. The red dashed circle marks the centroid (C), yellow dotted circle
the medoid (M ), and green circles denote two elements of highest hubness (H1, H2), for neigh-
borhood size 3.

hubness scores to be closer to centers of relatively dense regions in high-dimensional
spaces than the rest of the data points, making them viable candidates for representa-
tive cluster elements. We are not limited to observing only the points with the highest
hubness scores, we can also take advantage of hubness information for any given data
point. More generally, in case of irregularly shaped clusters, hubs are expected to be
found near the centers of compact sub-clusters, which is also beneficial.

4 Hub-Based Clustering

If hubness is viewed as a kind of local centrality measure, it may be possible to use
hubness for clustering in various ways. In order to test this hypothesis, we opted for an
approach that allows observations about the quality of resulting clustering configura-
tions to be related directly to the property of hubness, instead of being a consequence
of some other attribute of the clustering algorithm. Since it is expected of hubs to be
located near the centers of compact sub-clusters in high-dimensional data, a natural way
to test the feasibility of using them to approximate these centers is to compare the hub-
based approach with some centroid-based technique. For that reason, the considered
algorithms are made to resemble K-means, by being iterative approaches for defining
clusters around separated high-hubness data elements.

As Fig. 1 showed, centroids and medoids in K-means iterations tend to converge to
locations close to high-hubness points. This implies that using hubs instead of either of
these could actually speed up the convergence of the algorithms leading it straight to the
promising regions in the data space. To illustrate this point, consider the simple example
shown in Fig. 2, which mimics in two dimensions what normally happens in multidi-
mensional data, and suggests that not only might taking hubs as centers in following
iterations provide quicker convergence, but that it also might prove helpful in finding
the best end configuration. Centroids depend on all current cluster elements, while hubs
depend mostly on their neighboring elements and therefore carry local centrality infor-
mation. We will consider two types of hubness below, namely global hubness and local
hubness. We define local hubness as a restriction of global hubness on any given cluster,
considered in the context of the current algorithm iteration. Hence, the local hubness
score represents the number of k-occurrences of a point in k-nearest-neighbor lists of
elements from within the same cluster.1

1 Henceforth, we will use the capitalized K to represent the desired number of clusters and small
k for neighborhood size.
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The fact that hubs emerge close to centers of dense subregions might suggest some
sort of a relationship between hubness and the density estimate at the observed data
point. There are, however, some important differences. First of all, hubness does not
depend on scale. Let D1 and D2 be two separate sets of points. If the local distance
matrices defined on each of them separately are proportional, we might think of D1

and D2 as two copies of the same abstract data model appearing at different scales. Even
though the density estimate might be significantly different, depending on the defining
volumes which are affected by scale, there will be a perfect match in hubness scores of
the corresponding points. However, there is a more subtle difference. Let Dk(x) be the
set of points where x is among the k nearest neighbors. Hence, the hubness score of x
is then given by Nk(x) = |Dk(x)|. For each xi ∈ Dk(x), whether point x is among
the k nearest neighbors of xi depends on two things: distance(x, xi), and the density
estimate at point xi, not the density estimate at point x. Consequently, a hub might be
a k-neighbor for points where density is high, as well as for points where density is
low. Therefore, there is no direct correspondence between the magnitude of hubness
and point density. Naturally, since hubs tend to be close to many points, it would be
expected that density estimates at hub points are not low, but they do not necessarily
correspond to the points of highest density among the data. Also, in order to calculate
the exact volume of the neighborhood around a given point, one needs to have a suitable
data representation. For hubness, one only needs the distance matrix.

Computational complexity of hubness-based algorithms is mostly determined by the
cost of computing hubness scores. Computing the entire distance matrix may not be
feasible for some very large datasets. However, it was demonstrated in [18] that it is
possible to construct a k-NN graph (from which hubness scores can be read) in Θ(ndt),
where the user-defined value t > 1 expresses the desired quality of graph construction.
It was shown that good quality may be achieved with small values of t.

4.1 Deterministic Approach

A simple way to employ hubs for clustering is to use them as one would normally use
centroids. Also, it allows us to make a direct comparison with the K-means algorithm.
The algorithm, referred to as K-hubs, is given in Algorithm 1.

Algorithm 1 K-hubs

initializeClusterCenters();
Cluster[] clusters = formClusters();
repeat

for all Cluster c ∈ clusters do
DataPoint h = findClusterHub(c);
setClusterCenter(c, h);

end for
clusters = formClusters();

until noReassignments
return clusters
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After initial evaluation on synthetic data, it became clear that even though the algo-
rithm manages to find good and even best configurations often, it is quite sensitive to
initialization. To increase the probability of finding the global optimum, we resorted to
the stochastic approach described in the following section. However, even though K-
hubs exhibited low stability, it converges to the stable configurations very quickly, in no
more than four iterations on all the data sets used for testing, most of which contained
around 10000 data instances.

4.2 Probabilistic Approach

Even though points with highest hubness are without doubt the prime candidates for
cluster centers, there is no need to disregard the information about hubness scores of
other points in the data. In the algorithm described below, we implemented a squared
hubness-proportional stochastic scheme based on the widely used simulated annealing
approach to optimization [19]. The temperature factor was introduced to the algorithm,
so that it may start as being entirely probabilistic and eventually end by executing de-
terministic K-hubs iterations. We will refer to this algorithm, specified by Algorithm 2,
as hubness-proportional clustering (HPC).

Algorithm 2 HPC

initializeClusterCenters();
Cluster[] clusters = formClusters();
float t = t0; {initialize temperature}
repeat

float θ = getProbFromSchedule(t);
for all Cluster c ∈ clusters do

float choice = randomFloat(0,1);
if choice < θ then

DataPoint h = findClusterHub(c);
setClusterCenter(c, h);

else
for all DataPoint x ∈ c do

setChoosingProbability(x, N2
k (x));

end for
normalizeProbabilities();
DataPoint h = chooseHubProbabilistically(c);
setClusterCenter(c, h);

end if
end for
clusters = formClusters();
t = updateTemperature(t);

until noReassignments
return clusters

The reason why hubness-proportional clustering is reasonable in the context of high
dimensionality lies in the skewness of the distribution of k-occurrences. Namely, there
exist many more data points having a low hubness score, making them bad candidates
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Fig. 3. Estimated quality of clustering for various durations of probabilistic search in HPC

for cluster centers. Such points will have a low probability of being selected. To further
emphasize this, we use the square of the actual hubness score instead of making the
probabilities directly proportional to Nk(x).

The HPC algorithm defines a search through the data space based on hubness as a
kind of a local centrality estimate. It is possible to take as the output the best solution
according to some predefined criterion like minimum squared error, rather than sim-
ply taking the last produced cluster configuration. This may in some situations produce
even better clustering results. We were mostly focused on finding the best stable hub
configuration, thus we only used the last produced configuration to estimate the results
for tests presented in the rest of the paper. To justify the use of the proposed stochastic
scheme, we executed a series of initial tests for a synthetic mixture of Gaussians, for
dimensionality d = 50, n = 10000 instances, and K = 25 clusters in the data. Neigh-
borhood size was set to k = 10 and for each preset number of probabilistic iterations
in the annealing schedule, the clustering was run 50 times, each time re-initializing the
seeds. The results are displayed in Fig. 3. The silhouette index [20] was used to estimate
the clustering quality. Due to the significant skewness of the squared hubness scores,
adding more probabilistic iterations helps in achieving better clustering, up to a certain
plateau that is eventually reached. The same shape of the curve also appears in the case
of not taking the last, but the error-minimizing configuration.

5 Experiments and Evaluation

We tested our approach on various high-dimensional synthetic and real-world data sets.
We will use the following abbreviations in the forthcoming discussion: KM (K-Means),
GKH (Global K-Hubs), LKH (Local K-Hubs), GHPC (Global Hubness-Proportional
Clustering) and LHPC (Local Hubness-Proportional Clustering), local and global re-
ferring to the type of hubness score that was used (see Section 4). For all algorithms,
including KM, we used the D2 initialization procedure described in [17]. Hubness could
also be used for cluster initialization, an option which we have not fully explored yet.
For determining Nk(x) we used k = 10 by default in our experiments involving syn-
thetic data, since the generated sets were large enough to insure that such a value of k
would not overly smooth out hubness. There is no known way of selecting the best k for
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finding neighbor-sets, with the problem also depending on the particular application. To
check how the choice of k reflects on hubness-based clustering, we ran a series of tests
on a fixed synthetic data set for a range of k values. The results suggest that the algo-
rithms proposed in this paper are not very sensitive to changes of k, with no observable
monotonicity in scores, meaning that the clustering quality does not rise with rising k,
or vice versa. (We omit these charts due to space considerations.)

In the following sections, as a baseline we will use K-means++, since it is suitable
for determining the feasibility of using hubness to estimate local centrality of points.

5.1 Synthetic Data: Gaussian Mixtures

For comparing the resulting clustering quality, we used mainly the silhouette index as
an unsupervised measure of configuration validity, and average cluster entropy as a su-
pervised measure of clustering homogeneity. Since most of the generated data sets are
“solvable,” i.e., consist of non-overlapping Gaussian distributions, we also report the
normalized frequency with which the algorithms were able to find these perfect config-
urations. We ran two lines of experiments, one using 5 Gaussian generators, the other
using 10. For each of these, we generated data of ten different high dimensionalities,
more specifically for 10, 20, 30, . . . , 100. In each case, 10 different Gaussian mixtures
were randomly generated, resulting in 200 different generic sets, 100 of them contain-
ing 5 data clusters, the other containing 10. On each of the data sets, KM and all of the
hub-based algorithms have been executed 30 times and the averages were calculated.

Table 1 shows the final summary of all these runs. (Henceforth, we use boldface to
denote measurements that are significantly better than others, in the sense of having no
overlap of surrounding one-standard deviation intervals.) Global hubness is definitely to
be preferred, especially in the presence of more clusters, which further restricts neigh-
bor sets in the case of local hubness scores. Probabilistic approaches significantly out-
perform the deterministic ones, even though GKH and LKH also sometimes converge
to the best configurations, but much less frequently. More importantly, the best overall
algorithm in these tests was GHPC, which outperformed KM on all basis, having lower
average entropy, a higher silhouette index, and a much higher frequency of finding the
perfect configuration. This suggests that GHPC is a good option for clustering high-
dimensional Gaussian mixtures. Regarding the number of dimensions when the actual

Table 1. Averaged results of algorithm runs on high-dimensional mixtures of Gaussians. Standard
deviations taken over dataset averages are given on the side.

LKH GKH LHPC GHPC KM

Silhouette 0.47 ± 0.03 0.52 ± 0.02 0.62 ± 0.02 0.63 ± 0.02 0.58 ± 0.02
K = 5 Entropy 0.31 ± 0.04 0.16 ± 0.01 0.078 ± 0.02 0.05 ± 0.01 0.10 ± 0.01

Perf. 0.35 ± 0.05 0.41 ± 0.06 0.78 ± 0.08 0.78 ± 0.06 0.57 ± 0.05

Silhouette 0.39 ± 0.03 0.49 ± 0.01 0.53 ± 0.02 0.59 ± 0.01 0.54 ± 0.01
K = 10 Entropy 0.51 ± 0.06 0.21 ± 0.01 0.21 ± 0.03 0.07 ± 0.01 0.12 ± 0.01

Perf. 0.07 ± 0.03 0.07 ± 0.03 0.32 ± 0.06 0.42 ± 0.07 0.14 ± 0.02
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Table 2. Estimated cluster quality at various noise levels

GKH GHPC KM

Silhouette Entropy Silhouette Entropy Silhouette Entropy
Avg. total 0.78 0.35 0.83 0.28 0.70 0.62

Avg. noise 10–50% 0.77 0.37 0.82 0.29 0.68 0.66
Avg. noise 30–50% 0.73 0.42 0.80 0.32 0.66 0.71

improvements begin to show, in our lower-dimensional test runs, GHPC was better al-
ready on 6-dimensional mixtures. Since we concluded that using global hubness leads
to better results, we only consider GKH and GHPC in the rest of the experiments.

5.2 Clustering in the Presence of High Noise Levels

Real-world data often contains noisy or erroneous values due to the nature of the data-
collecting process. It is natural to assume that hub-based algorithms will be more ro-
bust with respect to noise, since the hubness-proportional search is driven mostly by the
highest-hubness elements, not the outliers. In the case of KM, all of the instances within
the current cluster directly determine the location of the centroid in the next iteration.
When the noise level is low, some sort of outlier removal technique may be applied.
In setups involving high levels of noise this is not the case. We generated a data set
of 10000 instances as a mixture of 5 clearly separated Gaussians, farther away from
each other than in the previously described experiments. To this data we incrementally
added noise, 250 instances at a time, drawn from a uniform distribution on a hypercube
containing all the data points. In other words, clusters were immersed in uniform noise.
The highest level of noise for which we tested was the case when there was an equal
number of actual data instances in original clusters and noisy instances. At each noise
level, KM, GKH and GHPC were run 50 times each. To reduce the influence of noise
on hubness estimates, k = 20 was used. The silhouette index and average entropy were
computed only on the non-noisy restriction of the data, i.e., the original Gaussian clus-
ters. A brief summary of total averages is given in Table 2. The hub-based algorithms
show substantial improvements in higher noise levels, which is a useful property. The
difference in entropy was quite convincing, 0.62 for KM and only 0.28 for GHPC on
average over all the runs. Even though KM had a smaller square error calculated on the
combined noisy data set, hub-based approaches were better at finding the underlying
structure of the original data.

5.3 Experiments on Real-World Data

The two-part Miss-America data set (cs.joensuu.fi/sipu/datasets/) was used
for evaluation. Each part consists of 6480 instances having 16 dimensions. Results were
compared for various predefined numbers of clusters in algorithm calls. Each algorithm
was tested 50 times for each number of clusters. Neighborhood size was set to 5. The
silhouette index was again used to measure quality. For all the experiments on real-
world data we used only the silhouette index because categories in real world data sets
often violate the cluster assumption, so any conclusions based on label entropy would

cs.joensuu.fi/sipu/datasets/


The Role of Hubness in Clustering High-Dimensional Data 193

Table 3. Cluster configuration quality measured by the silhouette index, on the Miss-America
data set, parts I and II, for various cluster numbers

K 2 4 6 8 10 12 14 16

GKH 0.40 0.20 0.10 0.09 0.06 0.06 0.06 0.06
Part I GHPC 0.42 0.31 0.31 0.21 0.21 0.15 0.14 0.12

KM 0.21 0.13 0.12 0.08 0.08 0.08 0.07 0.07

GKH 0.31 0.13 0.07 0.06 0.05 0.05 0.05 0.05
Part II GHPC 0.36 0.23 0.12 0.09 0.09 0.08 0.09 0.07

KM 0.18 0.12 0.10 0.08 0.08 0.08 0.08 0.07

Table 4. Cluster configuration quality measured by the silhouette index, on some UCI datasets

dataset size d K GKH-Sil. GHPC-Sil. KM-Sil.

wdbc 569 30 2 0.43 0.43 0.43
spambase 4601 57 2 0.28 0.44 0.39

arcene 100 1000 2 0.35 0.36 0.34
ovarian 253 15154 2 0.22 0.22 0.21

iris 158 4 3 0.56 0.58 0.58

be less reliable. The results for both parts of the data set are given in Table 3. GHPC
clearly outperformed both other algorithms, showing highest improvements for smaller
numbers of clusters. Observe that for K = 2 it achieved a double of KM’s silhouette
index, 0.42 compared to 0.21 on Part I and 0.36 compared to 0.18 on Part II.

Tests were also run on several UCI datasets (archive.ics.uci.edu/ml/
datasets.html). Values of all the individual features in the data sets were normal-
ized prior to testing. The results, shown in Table 4, are mostly comparable between the
algorithms. Value of k was set to 20. The datasets were simple, composed only of few
clusters, so the results being similar is not surprising. Note, however, that GHPC did as
well as KM on Iris dataset, which is only 4-dimensional. This suggests that hubness-
based algorithms might also be successfully applied in some lower-dimensional cases.

6 Conclusions and Future Work

Using hubness for data clustering has not previously been attempted. We have shown
that using hubs to approximate local data centers is not only a feasible option, but also
frequently leads to improvement over the centroid-based approach. In our experiments
GHPC (Global Hubness-Proportional Clustering) had an overall best performance in
various test settings, on both synthetic and real-world data, as well as in the presence
of high levels of artificially introduced noise. Global hubness estimates are generally to
be preferred to the local ones if used in the proposed framework. Hub-based algorithms
are designed specifically for high-dimensional data. This is an unusual property, since

archive.ics.uci.edu/ml/datasets.html
archive.ics.uci.edu/ml/datasets.html
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the performance of most standard clustering algorithms deteriorates with an increase of
dimensionality. Hubness, on the other hand, is an inherent property of high-dimensional
data, and this is precisely where GHPC may offer greatest improvement.

The proposed algorithms represent only one possible approach to using hubness for
improving high-dimensional data clustering. Next, we will explore related agglomera-
tive approaches. However, even the described algorithms offer space for improvements,
since some questions are left unanswered: What is the best choice of k? Is it possible
to automatically determine the appropriate number of clusters by carefully inspecting
the hubs? In cases such as one depicted in Fig. 2 that would probably be possible.
What is the best annealing schedule in GHPC? Is it possible to use several different
values of k in LHPC to avoid over-smoothing the hubness estimates for small clusters
over iterations and make local hubness more useful? Is there a better way to initialize
hubness-based algorithms? We plan to address all these details in our future work.
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Abstract. Due to the inherent characteristics of spatial datasets, spa-
tial clustering methods need to consider spatial attributes, non-spatial
attributes and spatial correlation among non-spatial attributes across
space. However, most existing spatial clustering methods ignore spatial
correlation, considering spatial and non-spatial attributes independently.
In this paper, we first prove that spatial entropy is a monotonic decreas-
ing function for non-spatial attribute similarity and spatial correlation.
Then we propose a novel density-based spatial clustering method called
SEClu, which applies spatial entropy in measuring non-spatial attribute
similarity and spatial correlation during the clustering process. The ex-
perimental results from both the synthetic data and the real applica-
tion demonstrate that SEClu can effectively identify spatial clusters with
spatial correlated patterns.

Keywords: Spatial Clustering, Spatial Entropy, Spatial Correlation.

1 Introduction

Spatial clustering is an active research area in the field of spatial data mining,
which groups objects into meaningful subclasses based on their spatial and non-
spatial attributes [1], [2]. In spatial data, spatial attributes, such as coordinates,
describe the locations of objects. Non-spatial attributes include the non-spatial
features of objects, such as oil saturation, population or species. Meanwhile,
spatial correlation generally exists in spatial datasets, describing the dependent
relationship on the non-spatial attributes across space.

Spatial clustering has previously been based on only the spatial attributes of
the data. However, the non-spatial attributes may have a significant influence
on the results of the clustering process. For example, in image processing, the
general procedure for region-based segmentation compares a pixel with its im-
mediate surrounding neighbors. Region growing is heavily based on not only on
the location of pixels but also on the attributes of those pixels [3].

Meanwhile, spatial correlation is always considered important for spatial
datasets. Spatial correlation always indicates the dependency between the spa-
tial and non-spatial attributes, with the chance that some cause and effect lead
to it. Of particular interest the higher degrees of spatial correlation [2].

J.Z. Huang, L. Cao, and J. Srivastava (Eds.): PAKDD 2011, Part I, LNAI 6634, pp. 196–208, 2011.
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In order to identify meaningful clusters from spatial datasets, spatial cluster-
ing methods need to consider spatial attributes, non-spatial attributes and in-
herent spatial correlations during the clustering process. We will illustrate these
requirements using the following examples. Fig. 1 (a) includes two round shaped
groups. The grey values of the left group change to darker consistently from
the center, which shows strong spatial correlation. The grey values of the right
group are randomly distributed, indicating weak or no spatial correlation mean-
ing that this group should not be identified as a cluster. Similarly, we should be
able to identify an arbitrary shaped cluster with spatial correlation such as the
cluster shown in Fig. 1 (b). Fig. 1 (c) shows a raster data set with intensity as
the non-spatial attributes. Since the data objects are evenly distributed (i.e. cell
by cell), without considering the non-spatial attribute, the whole dataset might
be clustered into one. However, the values of the non-spatial attribute form two
spatially correlated clusters with the non-spatial attribute values differing sig-
nificantly at the boundary. Thus, two spatial clusters should be identified from
the spatial correlated area in this dataset.

However, most existing methods only focus on the spatial attributes or con-
sider spatial and non-spatial independently. These methods are not suitable for
those spatial datasets in which the non-spatial attributes and spatial correlation
play important roles.

Fig. 1. Three sample spatial datasets. (c) is with color in electronic version.

Spatial entropy is the extension of Shannon Entropy with the spatial con-
figuration. It measures the distribution of a non-spatial attribute in the spatial
domain [4]. In this paper, we propose to apply spatial entropy to measure local
non-spatial attribute similarity and spatial correlation. A novel spatial entropy-
based clustering method, called SEClu, is proposed to take into account spatial
attributes, non-spatial attributes and spatial correlations.

Spatial clustering based on both non-spatial attributes and spatial correlation
is a new research topic. To our best knowledge, none of the previous methods are
able to identify useful clusters directly from spatial correlation, hence the focus
of this research. The main contributions of this paper are summarized below.

First, we establish that spatial entropy is an unbiased measure of local non-
spatial attribute similarity and spatial correlation. Specifically, spatial entropy
decreases for both local non-spatial attribute similarity and spatial correlation,
thus a smaller spatial entropy value denotes that the corresponding spatial data
is more likely to be grouped into a cluster.
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Second, we propose a novel spatial clustering method named spatial entropy-
based clustering, SEClu. SEClu discovers clusters that are not only dense spa-
tially but that also have high spatial correlation based on their non-spatial at-
tributes across that space.

Third, SEClu is demonstrated using both synthetic data and data from a real
application. Results show that SEClu discovers more meaningful spatial clusters
than methods considering spatial and non-spatial attributes independently.

The remainder of the paper is organized as follows. In Section 2, we present
some related work. Section 3 introduces spatial entropy as the measure of spatial
correlation and proposes a new density-based spatial clustering algorithm termed
SECLu. Experiments on synthetic and real datasets are performed in Section 4.
Section 5 summarizes the paper and discusses priorities for future work.

2 Related Work

In this section, we review some related spatial clustering methods.
DBSCAN is the first proposed density-based spatial clustering method. It

starts from an arbitrary point q by performing a neighborhood query. If the
neighborhood contains fewer than MinPts points, then point q is labeled as noise.
Otherwise, a cluster is created and all points in q’s neighborhood are placed in
this cluster. Then the neighborhood of each of q’s neighbors is examined to see
if it can be added to the cluster. If so, the process is repeated for every point in
this neighborhood, and so on. If a cluster cannot be expanded further, DBSCAN
chooses another arbitrary unlabelled point and repeats the process. Although
DBSCAN gives extremely good results and is efficient in many datasets, it is
not suitable for cases where the non-spatial attributes play a role in determining
the desired clusters since it does not take into consideration the non-spatial
attributes in the dataset [1],[3].

Over the years, very few algorithms have been proposed for dealing with both
spatial and non-spatial attributes during clustering process. One option is to
handle non-spatial attributes and spatial attributes in two separate steps, as
described in CLARANS [5]. The other option is to deal with the non-spatial at-
tributes and spatial attributes together in the clustering process. The similarity
functions for non-spatial attributes, and distance functions for spatial attributes,
are handled simultaneously in order to define the overall similarity between ob-
jects. Algorithms that have taken this approach include GDBSCAN [1], DBRS
[3], and Clustering of Multi-represented Objects [6].

GDBSCAN [1] takes into account the non-spatial attributes of an object as a
“weight” attribute, which is defined by the weighted cardinality of the singleton
containing the object. The weight can be the size of the area of the cluster-
ing object, or a calculated value from several non-spatial attributes. DBRS [3]
introduces the concept of ‘purity’ to determine the categorical attributes of ob-
jects in the neighborhood. ‘Purity’ is defined as the percentage of objects in the
neighborhood, with the same characteristic for a particular non-spatial attribute
as the center object. For non-spatial attributes, this can avoid creating clusters
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of points with different values, even though these points may be close to one
other. However, ‘purity’ is only defined for categorical non-spatial attributes.
Clustering of Multi-represented Objects (CMRO) [6] extends DBSCAN by re-
trieving information from one attribute to multiple attributes. Within a set of
attributes, either spatial or non-spatial, ‘density reachability’ is defined as the
union or intersection of the selected attributes.

Even though all of the above methods consider the significance of non-spatial
attributes, they ignore the spatial correlations between the spatial and non-
spatial attributes.

3 Spatial Entropy-Based Clustering

In this paper, we are interested in identifying arbitrary-shaped clusters based on
spatial correlations. Since non-spatial attributes in a spatially correlated cluster
usually change continuously, the values of non-spatial attributes might differ sig-
nificantly for the whole cluster. Therefore, in this research, we require similarity
in a small area but not in the whole cluster.

In the following, we will first introduce spatial entropy and then justify that
it is an unbiased measure in spatial clustering with respect to local non-spatial
similarity and spatial correlation.

3.1 Spatial Entropy

Spatial entropy is an information measure of non-spatial attributes that also
takes into account the influence of spatial spaces. Various forms of spatial entropy
have been developed for how to quantify the extent of the role played by space
[4],[7]. In this paper, we select the one from [4] because it is simple and can
handle both discrete and continuous non-spatial attributes.

dint
i =

⎧⎨⎩
1

|Di|×|Di−1|
∑|Di|

j=1,j∈Di

∑|Di|
k=1,k �=j,k∈Di

dist(j, k) if|Di| > 1

λ otherwise
(1)

dext
i =

⎧⎨⎩
1

|Di|×|D−Di|
∑|Di|

j=1,j∈Di

∑|D−Di|
k=1,k �=j,k/∈Di

dist(j, k) ifD = Di

β otherwise
(2)

Given a dataset D with a non-spatial attribute prop in spatial spaces {S1 · · ·
Sm}, {Di · · ·Di · · ·Dn} is a partition of D based on prop, i.e. Di⊂D, ∪Di= D,
and Di∩Dj= #, i =j. p1,· · ·,pi,· · ·,pn are the fraction of the number of objects
in category Di over the whole dataset D, i.e. pi=|Di|/|D| and

∑
pi = 1. The

intra-distance of Di, denoted by dint
i is the average distance between objects in

Di (shown in Eq. (1)). The extra-distance of Di, denoted by dext
i is the average

distance of objects in Di to other partition classes of D (shown in Eq. (2)).
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In Eq. (1), when Di is empty or contains only one object, we assume its intra-
distance is very small and a small constant λ is assigned to dint

i to avoid the
influence of null values on the computation. In Eq. (2), when Di includes all
of the objects in D, i.e. all objects have similar values of prop, we assume that
the extra-distance dext

i is very large, and assign the extra-distance with a large
constant β. dist(j, k) is the distance between objects j and k in spatial spaces.

Definition 1. The spatial entropy of dataset D based on its partition {D1, · · · ,
Di, · · · , Dn} is defined as (from [4]):

Hs(p1 · · · pi · · · pn) = −
n∑

i=1

dint
i

dext
i

pilog2(pi) (3)

In this definition, a spatial configuration dint
i /dext

i is added as a weight factor
in the Shannon Entropy. The weight factor decreases when either the intra-
distance decreases or the extra-distance increases, which enables spatial entropy
to measure the spatial distribution. Besides, given D and its partition, the spatial
entropy is similar to Shannon Entropy in that it reaches the maximum value
when p1 = · · · pi · · · = pn.

3.2 Using Spatial Entropy in Spatial Clustering

In this section, we demonstrate that spatial entropy is a monotonic decreasing
function for local non-spatial attribute similarity and spatial correlation.

Spatial Entropy vs. Local Non-Spatial Similarity. The non-spatial at-
tribute prop of the spatial dataset D can be viewed as a random variable with
its probability density function approximated using a histogram. If the non-
spatial attribute prop is random, it follows an even distribution. As the local
non-spatial similarity increases, prop tends to be more concentrated.

It has been shown that Shannon entropy of an even distribution reaches max-
imum value and tends to decrease as the concentration of the distribution in-
creases. Spatial Entropy Hs is a special form of Shannon entropy and has a
spatial configuration weight factor dint

i /dext
i . Even though each object’s non-

spatial attribute is correlated within the spatial spaces, the probability distri-
bution of prop is independent from dint

i /dext
i . Hence, the weight factor dint

i /dext
i

does not influence the property of spatial entropy Hs, which is a measure of ran-
domness. Therefore, when prop follows an even distribution, its spatial entropy
value reaches the maximum, otherwise the spatial entropy Hs decreases as the
concentration of the probability distribution increases.

In Fig. 2 (a), datasets 1 and 2 have the same spatial attributes, but points
in dataset 2 have more similar non-spatial attributes than dataset 1. From the
histograms, it is evident that more than 60% of points in dataset 2 have grey
values between [150,200] while values in dataset 1 are random. Fig. 2 (b) shows
that the spatial entropy value decreases from dataset 1 to dataset 2.
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Fig. 2. (a) Scatter plots and histograms for three grey value point datasets (b) Spatial
entropy for the three datasets shown in Fig. 2 (a)

Spatial Entropy vs. Spatial Correlation. Spatial entropy measures spatial
correlation by quantifying spatial diversity. As in [8], the First Law of Geogra-
phy states “ everything is related to everything else, but near things are more
related than distant things”. It implies not only the general existence of spatial
correlation but also, as in [4], spatial diversity increases when either the distance
between different objects decreases or the distance between similar entities in-
creases. The intra-distance and the extra-distance are integrated into the spatial
entropy using the form of dint

i /dext
i , which keeps the spatial entropy decreasing

when similar objects are close and diverse objects are far from each other. Spa-
tial objects where similar non-spatial attribute values are close and where spatial
objects with different non-spatial attributes are far from each other, dint

i /dext
i de-

creases. Therefore, spatial entropy decreases when spatial correlation increases.
In Fig. 2 (a), datasets 2 and 3 have the same spatial and non-spatial attributes,

but different distributions for the non-spatial attribute. Here the spatial corre-
lation increases from 2 to 3 (high value points centered and low value in the
periphery), and the spatial entropy value decreases accordingly, as shown in
Fig. 2 (b).

3.3 A Spatial Entropy-Based Spatial Clustering Method

In this section, we propose a novel spatial clustering method, Spatial Entropy-
based Clustering (SEClu). Given a spatial dataset SD with a non-spatial at-
tribute prop, a symmetric distance function dist, and parameters Eps, MinNum
and MaxSp, we introduce the following definitions for SEClu.

Definition 2. The neighborhood of spatial object p, denoted by NEps(p), is
defined as NEps(p) = {q ∈ SD|dist(p, q) ≤ Eps} (from [9]).

SEClu extends DBSCAN by applying spatial entropy to control the local non-
spatial similarity and spatial correlation of NEps(p). The previous discussion
demonstrates that the spatial entropy value decreases for the local non-spatial
attribute similarity and that spatial correlation increases. Therefore, SEClu in-
troduces the maximum threshold of spatial entropy, denoted by MaxSp.

In SEClu, a core object is an object whose neighborhood (1) has at least
MinNum neighbors in spatial spaces, (2) has similar non-spatial attributes and
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high spatial correlation in its neighborhood satisfying Hs(NEps(p)) � MaxSp.
A border object is a neighbor object of a core object which is not a core object
itself. Objects other than core objects or border objects are noise.

Definition 3. A spatial object p is directly density-spEntropy-reachable to
an object q w.r.t Eps, MinNum, MaxSp if (1) q ∈ NEps(p); (2) NEps(p) ≥
MinNum; and (3) Hs(NEps(p)) ≤MaxSp.

In the above definition, the second condition examines the density of the neigh-
borhood of p. The third condition examines non-spatial attribute of the neigh-
borhood of p. A smaller value of spatial entropy Hs implies objects in NEps(p)
have higher non-spatial similarity and spatial correlation.

Definition 4. Spatial objects p and q are density-spEntropy reachable
(DSR-reachable) w.r.t Eps, MinNum, MaxSp, denoted by DSR(p,q), if there
is a chain of objects p1 · · · pn, p1 = q, pn = p such that pi+1 is directly density-
spEntropy reachable from pi.

Definition 5. A density-spEntropy based cluster C is a non-empty subset
of SD satisfying: ∀p, q ∈ SD, if p ∈ C and DSR(p,q) holds, then q ∈ C.

It is obvious that for each pair of objects (p, q) ∈ C, when C is a density-
spEntropy based cluster, DSR(p, q) holds. Therefore, SEClu finds a cluster by
identifying all objects that are density-spEntropy reachable.

Algorithm 1. SEClu(SD, Eps, MinNum, MaxSp)
1: for each unclassified p ∈ SD do
2: if |NEps(p)| < MinNum or Hs(NEps(p)) > MaxSp then
3: mark p as noise
4: else
5: creat a new cluster C and put x ∈ NEps(p) in C
6: add x ∈ NEps(p) into a queue Q
7: while Q is not empty do
8: q = first object in Q and remove q from Q
9: if |NEps(q)| � MinNum and Hs(NEps(q)) � MaxSp then

10: for each object t ∈ NEps(q) do
11: if t is unclassified then
12: add t into Q and put t in C
13: else if t is noise then
14: put t into C

As shown in Algorithm 1, SEClu starts by querying the neighborhood of
an arbitrary object p in spatial space to see if it is dense enough NEps(p) ≥
MinNum. If not, p is labeled as noise, otherwise SEClu continues to check
the non-spatial attribute. If the non-spatial attribute of p’s neighborhood has a
random pattern, i.e., it cannot satisfy Hs(NEps(p)) ≤ MaxSp, then p is labeled
as noise. Otherwise, a new cluster C is created and all objects x ∈ NEps(p) are
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placed in C. The neighborhood of each of p’s neighbors is examined in the same
way to see if it can be added to C. This process is repeated until all objects that
are density-spEntropy reachable to p have been added to cluster C. If cluster
C cannot be expanded further, SEClu chooses another unlabelled object and
repeats this process until all objects have been assigned to a cluster or labeled
as noise. The average complexity of SEClu is O(n(log n + k2)), where n is the
number of the objects in SD and k is the average number of objects in NEps(pi).

Calculating Spatial Entropy Efficiently. In SEClu, the spatial entropy Hs

is computed on the non-spatial attribute of NEps(p). To be able to use Hs to
measure the spatial correlation, a partition process of NEps(p) is generated in the
first step. Given a spatial dataset D = NEps(p) with the non-spatial attribute
prop, if prop is discrete it is binned into n slots with different values. If prop
is continuous, it is binned into n contiguous slots (χ1, · · · , χi, · · · , χn) with the
interval of Δ. Then, each object in D is assigned to a unique slot based on its
prop value, and a partition of D, denoted by {D1, · · · , Di, · · · , Dn}, is generated.

The number of subsets n should be selected carefully. If n is too large, each
subset may contain a very small number of data and also result in a high compu-
tational cost. Sturges’ rule [10] is widely recommended for choosing a histogram
interval since it provides a good approximation of the best n in capturing the
distribution pattern. In this paper, we adopt the Sturges’ rule, and the subset
number n is given by Eq. (4). Since SEClu is a density-based method, an effective
way is to assign MinNum to N.

n = 1 + log2 N, N is the number of objects in D (4)

In practice, spatial entropy Hs is computed numerically. Since prior knowledge
of the distribution of prop is always unknown, pi is estimated from the frequency
pi = |Di|/|D|. dint

i and dext
i can be computed from Eqs. (1) and (2), respectively.

Assume Di contains k objects, Eq. (1) calculates dist for k(k − 1) times, which
computes the distance from each object to the other (k − 1) objects.

dint
i =

⎧⎨⎩
2

|Di|×|Di−1|
∑|Di|

j=1,j∈Di

∑|Di|
k=j+1,k∈Di

dist(j, k) if|Di| > 1

λ otherwise
(5)

To avoid the distance between each pair of objects in Di being computed twice,
Eq. (1) can be substituted to a low computation cost formula Eq. (5) when dist
is a symmetric function. Eq. (5) does not calculate duplicate distances, which
computes dist for k(k − 1)/2 times, half from Eq. (1).

Also, Hs needs to be normalized in order to make a fair comparison. It has
been demonstrated that dint

i ≤ 2dext
i [7]. Also, for a discrete random variable its

Shannon entropy value satisfies 0 ≤ −∑n
i=1 pi log2(pi) ≤ log2 n, then:

0 ≤ Hs = −
n∑

i=1

dint
i

dext
i

pi log2(pi) ≤ −2
n∑

i=1

pi log2(pi) ≤ 2 log2 n (6)
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Algorithm 2. Spatial Entropy Hs(D)
1: Bin D into {D1 · · ·Di · · ·Dn} based on D.prop
2: for each Di do
3: Compute pi, dint

i and dext
i (from Eqs (5) and (2), respectively)

4: compute Hs (from Eq. (3))
5: return Hs

In the following, all spatial entropy values are normalized by Hs/2 log2 n ∈ [0, 1].
Algorithm 2 shows the pseudocode for the spatial entropy calculation.

Spatial Entropy Parameter Maxsp. In SEClu, the parameters Eps and
MinNum can be determined by using the heuristic method in [9]. Besides, given
Eps and MinNum, MaxSp can be determined by the following rationale. Meet-
ing the requirement of NEps(p) ≥ MinNum, p should form a core object if it
satisfies Hs(NEps(p)) ≤ MaxSp. Thus, the MaxSp can be determined by seek-
ing a threshold that makes the cluster the “thinnest”. As in Fig. 3, when Eps
and MinNum are fixed, the core object number is changing with respect to the
MaxSp value. The MaxSp threshold is determined with the highest gradient,
which appears as the first jump point in Fig. 3. Here all objects with the spatial
entropy value higher than the threshold (above the line) are noise and the others
are core objects.

Fig. 3. Core objects number vs. MaxSp for the sample dataset in Fig. 1 (a)

4 Experiments

In this section, we evaluate SEClu by applying to both synthetic datasets and
a real-world dataset. All experiments are performed on a 2.8GHz PC with 3G
memory.

Experiment one – spatial clustering of synthetic datasets
This experiment shows the accuracy of SEClu for identifying clusters with spa-
tial correlation. Fig. 4 shows three sample datasets. Each dataset includes x, y
coordinates as the spatial attribute and a grey/intensity value as the non-spatial
attribute.
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Fig. 4. Three synthetic spatial datasets. (c) is with color in electronic version.

The three datasets have different shapes and follow different spatial correlation
functions. Fig. 4 (a) includes three round shaped groups. The grey values of
points in group 1 decrease as an exponential function with distance from the
center. The grey values of group 2 are random. The grey values in group 3
increase linearly with distance to the center. Since both groups 1 and 3 have
strong spatial correlation they should be identified as clusters. Group 2 does not
form a cluster with spatial correlations and should be labeled as noise. Fig. 4
(b) shows three irregularly shaped groups. The S-shaped and new moon shaped
groups have clusters with spatial correlation while the objects in the V-shaped
group have random non-spatial attributes and should be identified as noise. Fig. 4
(c) shows a raster dataset (i.e. the objects are distributed cell by cell) with a
spatial correlated non-spatial attribute. Three clusters exist in the dataset with
the non-spatial attribute values varying significantly at the boundary of each
cluster.

For SEClu, we set the parameters (MinNum=18, Eps=0.017, MaxSp=0.29)
for datasets (a) and (b) in Fig. 4. Since dataset (c) has evenly distributed spatial
attributes, we apply a 5 × 5 window to decide the neighbor objects in Eps(pi),
and MaxSp is set as 0.3. Fig. 5 shows the clustering results on three datasets.
From the figure, it is evident that: first, SEClu discovers clusters with spatial
correlations successfully. In Fig. 5 (a), data groups with either high value cen-
ter correlation or low value center correlation are identified as clusters, while the
random one is labeled as noise. Second, since SEClu is a density-based clustering
method, it can discover clusters with irregular shapes, e.g., SEClu identifies the
S-shaped and the new moon shaped spatial correlated clusters. Third, SEClu
finds clusters with both spatial correlation and high local non-spatial similarity.
For example, in Fig. 5 (c) three spatial correlated clusters locate very close to
each other. Measuring the local non-spatial attribute similarity, SEClu success-
fully separates the three clusters by detecting the significant dissimilarities in
the non-spatial attribute.

Fig. 5. SEClu clustering results. (The electronic version is with color).
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Fig. 6. GDBSCAN clustering results. (The electronic version is with color).

We also compare SEClu with GDBSCAN [1]. In GDBSCAN, the non-spatial
attribute is treated similar to the spatial attributes and has a “weight”. In the
experiments, for datasets (a) and (b), the grey value is linearly normalized to
the range of the x coordinate and can be viewed as the third coordinate. The
parameters to GDBSCAN are set as (MinPts=18, Eps=0.017), which is simi-
lar to the SEClu configuration. For dataset (c), the intensity value is linearly
normalized into [0,1] and the non-spatial attribute weight function keeps the
intensity difference in a small range, i.e. max|color(pi)− color(pj)| < 0.1, where
pi and pj are two arbitrary objects in the neighborhood. We also use a 5 × 5
window as the neighborhood.

Table 1. Accuracy comparision between SEClu and GDBSCAN

Dataset (No. of
data objects)

SEClu GDBSCAN
Correct Error Accuracy Correct Error Accuracy

Dataset(a) (900 pts) 900 0 100% 600 300 66.7%

Dataset(b) (1500 pts) 1500 0 100% 1000 500 66.7%

Dataset(c) (6000 cells) 6000 0 100% 3963 2037 66.1%

Fig. 6 shows the clustering result of GDBSCAN. In datasets (a) and (b), con-
sidering the non-spatial attribute as independent from spatial attributes GDB-
SCAN incorrectly labels data with random distributed grey values as clusters.
In dataset (c), even though spatial correlation exists in the three clusters, the
non-spatial attribute changes. Since GDBSCAN only considers non-spatial at-
tribute similarity, it is not suitable for identifying clusters in which the values of
the non-spatial attribute are dissimilar but that still follow spatial correlations.
Compared with the results of GDBSCAN, SEClu finds more meaningful clusters.

A detailed accuracy comparison between SEClu and GDBSCAN is shown in
Table 1. From the table, the accuracy of SEClu to the three datasets is 100%
while GDBSCAN is around 66%, which demonstrates SEClu performs better
than GDBSCAN in identifying clusters with spatial correlations.

Experiment Two – real application to the census map of Alberta
The second experiment is performed on the 2006 Census dataset of Alberta,
Canada. In this experiment, our goal is to identify clusters containing strong
spatial patterns between population and community locations. There are 5181
community records available in the dataset. Each record is represented as a
point, with the spatial attributes referring to the coordinates and the non-spatial
attribute referring to the population.
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Fig. 7. Alberta census data clustering results from SEClu

We set (Eps=0.13, MinNum=15, MaxSp=0.3) to SEClu, and the clustering
results are shown in Fig. 7 overlaid on the map of the Province of Alberta. In
Fig. 7, clusters identified by SEClu, exhibit meaningful spatial patterns. All 7
clusters are around major cities in Alberta, which are downtown centered and
have a radial shape extending to the suburb area. Also, the clustered communi-
ties close to city centers tend to have more population than those locating in the
suburb, which reveals the phenomenon that many more people live in cities as
compared to rural areas in Alberta. For example, the population in the cluster
area reaches 2.56 million, which counts 76% of the total population in Alberta.
This is consistent with records from Alberta Municipal Affairs that 81% of the
Alberta population lives in urban cities and only 19% lives in rural area.

5 Conclusions

In this paper, we first demonstrate that spatial entropy is a decreasing func-
tion when spatial correlation and local non-spatial attribute similarity increase.
Then, we propose a novel spatial clustering method, termed SEClu, that is based
around the use of spatial entropy. SEClu considers spatial attributes, non-spatial
attributes and spatial correlation during the clustering process and can identify
arbitrary shaped clusters with spatial correlations. In our experiments, we apply
SEClu to synthetic datasets and to a real-world application, and compare the
clustering results with those of GDBSCAN. Results show that SEClu can dis-
cover meaningful spatial clusters, and perform better than GDBSCAN at finding
clusters with spatial correlations.
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In the future, we will improve SEClu in terms of the following aspects. First,
we will further evaluate SEClu with larger dataset and extend it to be able
to deal with more spatial data types, such as polygons. Second, we will apply
SEClu to real-world geological datasets, which usually have large amounts of
data, complicated spatial correlations and have significance for real applications.
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Abstract. Spectral clustering has been applied in various applications.
But there still exist some important issues to be resolved, among which
the two major ones are to (1) specify the scale parameter in calculating
the similarity between data objects, and (2) select propoer eigenvectors
to reduce data dimensionality. Though these topics have been studied
extensively, the existing methods cannot work well in some complicated
scenarios, which limits the wide deployment of the spectral clustering
method. In this work, we revisit the above two problems and propose
three contributions to the field: 1) a unified framework is designed to
study the impact of the scale parameter on similarity between data ob-
jects. This framework can easily accommodate various state of art spec-
tral clustering methods in determining the scale parameter; 2) a novel
approach based on local connectivity analysis is proposed to specify the
scale parameter; 3) propose a new method for eigenvector selection. Com-
pared with existing techniques, the proposed approach has a rigorous
theoretical basis and is efficient from practical perspective. Experimen-
tal results show the efficacy of our approach to clustering data of different
scenarios.

Keywords: spectral clustering, scale parameter, eigenvector selection.

1 Introduction

Clustering is a common procedure of statistical data analysis, which is exten-
sively used in machine learning, data mining and pattern recognition([7], [16],
[6], [9]). The goal of clustering is to partition a data set into a number of groups
with high intra-group relevance and low inter-group relevance. Among all the
clustering techniques, spectral clustering is popular and has many fundamental
advantages ([11], [1], [23], [3], [22], [12], [4]). Spectral clustering stems from a
strong theoretical foundation ([2], [5]) and its performance often outperforms
other traditional approaches. Hence, spectral clustering has been successfully
applied in many areas including image segmentations ([19],[13], [15], [28], [27],
[20], [21], [20], [14]), bioinformatics ([5], [17], [18]), social network([10], [26], [24]),
and document clustering ([8]). Among all the previous works, Ng-Jordan-Weiss’
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framework (NJW for short) lays a remarkable foundation in emphasizing the
importance of expressing the data appropriately [15]. Firstly, NJW utilizes a
weighted graph to represent the raw data. Then it calculates the eigenvectors of
this weighted graph’s Laplacian matrix and selects the top k biggest eigenvectors
w.r.t the eigenvalues for further processing. Finally, the selected eigenvectors are
normalized and k-means clustering method is utilized to cluster the normalized
eigenvectors data. Apparently, how to build the weighted graph and further the
quality of the weighted graph are critical for the clustering performance.

In NJW’s framework, a global scale parameter is used in establishing the
weighted graph from the raw data. But this solution ignores the difference among
data points in term of their local shapes. To fix this weakness, Zelnik-Manor and
Perona (ZP) [28] specify a local scaling parameter for each data point. In their
method, the distance between a point and its K-th neighbor is selected as this
point’s scale parameter. Though this approach takes into account a point’s local
shape characteristics to some extent, it may neglect the facts that the resulting
neighbor data points may belong to different groups. In seeking a better solution
to remedy NJW’s weakness, we propose in this paper another approach to spec-
ifying the local scaling parameter based on data local connectivity information,
with an aim of providing a scale parameter self-adjusting spectral clustering
algorithm.

Besides specifying the scaling parameter for each data point, another impor-
tant problem in spectral clustering is to select appropriate eigenvectors for fur-
ther processing (e.g., clustering). Recently, several works have been proposed.
Xiang and Gong proposed a probability-based method to select eigenvectors
[25]. In their approach, the elements of each eigenvector follow either unimodal
or multmodal distributions based on whether the eigenvector is relevant. Un-
der this formulation, every eigenvector has an importance score, which is used
to select informative eigenvectors. Another work by Zhao et al. [29] evaluates
the importance of an eigenvector by its entropy. Different from the existing ap-
proaches, our method utilizes both eigenvalues and eigenvectors in choosing most
appropriate eigenvectors. Moreover, the proposed method is simple to implement
yet very efficient in practice.

The contribution of this work is three-fold. First, we build a unified frame-
work to study the impact of the scale parameter on calculating similarity between
data objects. This framework can easily accommodate various state of art meth-
ods spectral clustering methods for performance comparison study. Second, we
design a new approach to specifying the scale parameter based on local connec-
tivity analysis. Third, we present an effective method for eigenvector selection.
Compared with previous works, our solution has sound theoretical basis and is
efficient from practical perspective. The experimental results show the efficacy
of our approach in handling the data clustering of different scenarios.

2 Methodology

This work is inspired by Ng et al.[15] that establishes the spectral clustering
framework (NJW for abbreviation) and Zelnik-Manor and Perona’s attempt on
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improving NJW method [28]. To make this paper self-contained, a concise intro-
duction of NJW algorithm is presented in the following.

For a given data set S = {s1, s2, . . . , sn}(si ∈ Rl, where l ∈ R is the total
dimensions of the data object attributes space; n is the number of data objects),
the goal is to partition S into k different subsets. Algorithm 1 describes the NJW
framework.

Algorithm 1. Ng-Jordan-Weiss Algorithm
1: Form the affinity matrix A ∈ Rn×n:

Aij =

{
exp(−d(si, sj)

2/2σ2) i �= j;
0 i = j.

(1)

where σ is a scale parameter, and d(si, sj) is a distance function, such as Euclidean
distance formula;

2: Construct the Laplacian matrix L = D−1/2AD−1/2 of the weighted graph, where
D is a diagonal matrix, Dii =

∑
j Aij ;

3: Get an matrix X = [x1, x2, . . . , xk] ∈ Rn×k, where xi is an eigenvector and it
corresponds to the i’th largest eigenvalue of L;

4: Normalize matrix X into matrix Y : Yij = Xij/(
∑

j X2
ij)

1/2

5: Clustering rows in Y with k-means.

As shown in Algorithm 1, there are two data representation transformations.
The first one is that the raw data S is represented by the affinity matrix A. The
second is to represent the data by top K eigenvectors of the Laplacian matrix,
denoted by X . In this paper, we focus on how to improve the spectral clustering
from each transformation. In Section 2.1, we propose a local connectivity-based
method to specify the scale parameter, which produces a high quality affinity
matrix proved by the experimental evaluation. In Section 2.2, method taking ad-
vantage of both eigenvectors and eigenvalues is proposed to choose eigenvectors.

2.1 Local Connectivity-Based Scaling

While representing the raw data with the affinity matrix(which is also named as
the weighted graph) an ideal transformation of the data is to allocate the data
points in a same group closely in the new representation space, and data points
from different groups far away from each other. Therefore, different groups have
weak connectivities, which is helpful to separate the data objects correctly ([2],
[5]). Let us give one example to explain the impact of different affinity matrices
on representing the data.

Figure 1(a) is the desired clustering result, where there are two groups of data
points: a fish shape group and a line shaped group. In Figures 1(b) to 1(d), we
use the horizontal axis and the vertical axis to represent the first and second
eigenvectors, respectively. By comparing these three figures, we can easily draw
the conclusion that the representation in Figure 1(b) is better for clustering the
data, since points in different groups are separated clearly. On the other hand,
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(a) (b)

(c) (d)

Fig. 1. Original Data Set and Examples of Different Representations with Top 2
Eigenvectors of Affinity Laplacian Matrix L

shadow and hollow points are quite mixed each other in Figures 1(c) and 1(d),
which shows the difficulty in correct clustering. Actually, these three affinity
matrices are generated by three different parameter values, which will be intro-
duced in more details later. In spectral clustering, all affinities are calculated by
Equation 1. In this paper, we focus on how to improve this calculation (Equation
1), and further the quality of the affinity matrix.

Before giving a detailed description of the proposed approach, we firstly intro-
duce a concept of Core Set. Consider a point si ∈ S, its Core Set, denoted as
C(si), includes all the data points that have high affinities to si. Let α be the
threshold to determine whether there exists an affinity or not. C(si) is defined as:

C(si) = {sj |Aij ≥ α, sj ∈ S}. (2)
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Let σsi be the specified scale parameter for si, then:

α = exp(
−1× R2(si)

2× σ2
si

). (3)

where R(si) is the Core Radius of C(si), which is defined by:

R(si) = max
sj∈C(si)

d(sj , si) (4)

Therefore, if point sj has the distance of R(si) to point si, the affinity between si

and sj will be quantified as α. Given α and σsi , R(si) can also be calculated by:

R(si) =
√
−2× ln(α)× σ2

si
. (5)

In NJW algorithm, σ is a user-customized global parameter, which means for
each data point, its σsi is always equal to the assigned σ. Furthermore, α, used to
define a small similarity value, is also a global parameter. According to Equation
5, the Core Radius values of all points are equal. Unfortunately, this global
scaling scheme can easily cause two unexpected situations, namely, partial-fitting
and over-fitting, which are illustrated in Figures 2(a) and 2(b).

Figure 2(a) shows the scenario of partial-fitting. For a point si, partial-fitting
means that there exists at least one point whose desired class is the same as si,
but it is not in C(si). Let L(si) be a function to denote si’s true clustering label,
partial-fitting can be formulated as:

|{sj|sj /∈ C(si) and L(si) = L(sj), sj ∈ S}| ≥ 1 (6)

Figure 2(b) shows the scenario of over-fitting. over-fitting means there exists at
least one such point, whose desired class is not the same as si’s, but it is involved
in si’s Core Set. Formally,

|{sj |sj ∈ C(si) and L(si) <> L(sj), sj ∈ S}| ≥ 1 (7)

To fix this weakness, Zelnik-Manor and Perona utilized a point’s neighboring
information to specify the scale parameter. In their method, σsi is equal to the
distance between point si and its K-th closest neighbor. Therefore according
to Equation 5, the Core Radius value will be different for different points. This
method improves NJW spectral clustering to certain extent. However, it can-
not resolve the problem completely. Figures 2(c) and 2(d) show the results of
their method, where K is equal to 4. Apparently, partial-fitting and over-fitting
problems do exist.

The essential reason that both NJW and ZP algorithms cannot overcome
partial-fitting and over-fitting problems is that their approaches cannot guaran-
tee that all the points in C(s) have the same desired cluster label as s’s. In order
to solve these problems, we propose an approach based on local connectivity
analysis that the data point can utilize its local information to self adjust the
scale parameter. Figures 2(e) and 2(f) show the results from our method for data
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(a) C(s1) in NJW Algorithm (b) C(s2) in NJW Algorithm

(c) C(s1) in ZP Algorithm (d) C(s2) in ZP Algorithm

(e) C(s1) in Our Algorithm (f) C(s2) in Our Algorithm

Fig. 2. Instances of Core Set in Different Algorithms. The cycle indicates the Core
Set, where its center is the currently considered point si and its radius is equal to si’s
Core Radius.



Self-adjust Local Connectivity Analysis for Spectral Clustering 215

points s1 and s2. Obviously, all points in C(s1)(C(s2)) share the same expected
cluster label of s1(s2) so there is no over-fitting. Our approach avoids the partial-
fitting problem for data point s1 and over-fitting problem for data point s2, which
were suffered from other approaches shown in Figures 2(a) through 2(d).

In the following, we introduce the concept of adjacent region for a data point
s in a multi-dimension space. It is denoted by η(s) and formally defined as:

η(s) = {p|si − r ≤ pi ≤ si + r, 1 ≤ i ≤ m} (8)

where si denotes the i-th dimension of data point s, and r is a user specified
constant parameter. In this work, we set r is equal to 1. It is easy to check that
if si ∈ η(sj), then sj ∈ η(si). Either sj ∈ η(si) or si ∈ η(sj) implies that si, sj

are adjacent.
Let si, sj ∈ S be two data points, si, sj are said to be connected, if (1) si ∈

η(sj), or (2) there exists a point sequence si, st1 , . . . , stm , sj , where st1 ∈ η(si),
stp ∈ η(stp+1) for 1 ≤ p ≤ m − 1 and stm ∈ η(sj); otherwise, si, sj are discon-
nected. For simplicity purpose, we define this point sequence as a path, denoted
as psi,sj . If all points in p(si, sj) are in a point set U , we call that psi,sj is sat-
urated in U , denoted as χ(psi,sj , U). With the above notations, we can redefine
Core Set of si as:

C(si) = arg maxU⊆S |U |
s.t. ∀sj ∈ U, ∃psi,sj and χ(psi,sj , U). (9)

As shown in Equation 9, we employed two principles in forming the Core Set : no
over-fitting and minimize partial-fitting. With the constraint, we can avoid over-
fitting absolutely. The objective function tries to maximize the size of the core
set, which is equivalent to minimizing partial-fitting problem. Figure 3 illustrate
the concept with an example.

g

h

i

d

c f

e

a
5=r

b

Fig. 3. Core Set and Core Radius Illustration
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There are nine points labeled a, b, . . . , i in Figure 3. All the points are scattered
in a grid space where each grid cell has a length of one unit. When consider the
point a, using the principle of no over-fitting, we can expand and find its Core Set
according to the formulation in Equation 9. According to the criterion defined
in Equation 8 in determining adjacency relationship, points b, c, d are supposed
to be involved in point a’s Core Set. The distance between points a and c is

√
5.

If we further expand the Core Set, the next point being considered should be
e. However, the path a, b, c, f, h, i, g, e is not saturated in the set of {a, b, c, d, e}.
Therefore, e can not be involved. So point a’s Core Set is {b, c, d}, and its Core
Radius R(a) is equal to

√
5 according to Equation 4.

Consider two points si and sj , the affinity between them is different when
we look it from distinct viewpoints. From point si, the affinity is exp(−1 ×
d2(si, sj)/(2 × σ2

i ), while it is exp(−1 × d2(si, sj)/(2 × σ2
j ) from point sj ’s per-

spective. We unify the affinity between points si and sj by Equation 10.

Aij = max(exp(
−d2(si, sj)

2× σ2
i

), exp(
−d2(si, sj)

2× σ2
j

)) (10)

In addition, for the point itself, its own affinity Aii is defined to be equal to 0.
In our approach, parameter α needs to be specified. We will show in the

following that this is an easy task. Clustering performance can be evaluated by
the difference between the intra-cluster affinity summation and the inter-cluster
affinity summation, which is given as:

φ(V, A) = max
V

1
2
(

k∑
t=1

∑
i,j∈Vt

Aij −
k∑

t=1

∑
i∈Vt,j /∈Vt

Aij) (11)

where A is a given data set, k is the total number of clusters, V is the clustering
result, and Vt indicates the point set of the tth cluster. The ideal performance
φ∗ of clustering on A is defined as:

φ∗ = max
V

φ(V, A) (12)

We utilize an example to illustrate the relation between α and φ∗ in Figure 4.
In Figure 4(a), the horizontal axis represents different α values, and the vertical
axis shows the clustering performance values of φ∗. As depicted in Figure 4(a),
there is a high φ∗ area, which corresponds to a value range of α close to 0. When
α is equal to 0.0052, φ∗ achieves the highest value of 20.9393, and the data set
will be clustered correctly as shown in Figure 4(b). When α value increases, φ∗

value will decrease (clustering performance drops). When α value is too big, it
is difficult to cluster data set correctly. This scenario is reflected in Figures 4(c)
and 4(d), when α is equal to 0.045 and 0.1, respectively.

Theoretically, α is supposed to be a small value. Recall the process of forming
the Core Set, we prefer the data points involved to have the same clustering
results as the one being considered. According to Equation 11, a good clustering
result should have big difference between the internal affinity summation and the
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(a) a function between α and φ∗ (b) clustering result when α = 0.0052

(c) clustering result when α = 0.045 (d) clustering result when α = 0.1

Fig. 4. Clustering Results with Different α values On Example Data Set

external affinity summation. Therefore, a simple way is to let points outside of
si’s Core Set have zero affinity to si. In other words, the points whose distances
to si are equal to the Core Radius should have a small affinity. On the other
hand, if let si have high affinity to all other points, φ∗ will be small, which
has been proved by Figure 4(a). Practically, α can be regarded as a small value
constant, say 0.0001.

2.2 Eigenvector Selection

Recently, eigenvector selection has been deployed to improve the performance
of spectral clustering [25] [29]. In this work, we proposed a simple yet effective
strategy, which considers both eigenvalues and eigenvectors, to select eigenvec-
tors for clustering. Eigenvalues are used to determine the candidate eigenvectors.
Further decisions are based on analyzing the selected eigenvectors.

The goal of eigenvector selection is to select informative eigenvectors as the
representation of the original data objects set. Different from the method given
in NJW framework (where the top K biggest eigenvectors are selected), we firstly
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(a) (b)

(c) (d)

Fig. 5. Comparisons between Using and Not Using Eigenvector Selection

choose K + t (t is a constant, and it is equal to 2 in this work) biggest ones as
candidates. And then we employ the following criterion for further selection:

ρ(z) =
var(z)

mean(z)
=

√∑n
i=1 (zi −mean(z))

mean(z)
(13)

Where z is an eigenvector in X , zi is the i-th item in z. mean(z) is the mean
value of z, which is equal to 1

n

∑n
i=1 zi and var(z) is the standard deviation of

its elements. We give one example to illustrate the effectiveness of this approach.
In Figure 5, there is a comparison between using and not using eigenvector

selection. Figure 5(a) is drawn by top 2 eigenvectors without eigenvector selec-
tion, and Figure 5(b) is the corresponding clustering result of this approach.
According to these two figures, we can learn that the top 2 eigenvectors are
not always good candidates for clustering. Figure 5(c) is generated by the two
eigenvectors selected through Equation 13, and Figure 5(d) shows its clustering
result. Obviously, these two eigenvectors represent the data in a better way, and
the clustering result is desirable.
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3 Experimental Evaluation

To evaluate the performance of our approach, we compare it with both NJW
and ZP methods. As there is a user-specified parameter in each algorithm, our
comparison will focus on both the correctness of the results and the convenience
of assigning the parameters.

On evaluating the convenience of assigning the parameter, we developed two
metrics: accuracy and coverage. Let D = {d1, d2, . . . , dn} (n ∈ R) be a data set,
p be a parameter and its value will be drawn from v = {v1, v2, . . . , vm}(m ∈ R).
Assume f(vi, dj) be the function to judge whether an algorithm can cluster
dj correctly when p = vi. If the algorithm can produce the desired result, then
f(vi, dj) is equal to 1; otherwise, we assign 0 to it. With these notations, accuracy
is defined as:

accu(p = vi, D) =

∑
dj∈D f(vi, dj)

|D| (14)

As shown in Equation 14, if accu(p = vi, D) is larger then more data points can be
clustered correctly given p = vi. In other words, it is easy for us to decide the value
of parameter p. An ideal situation is that accu(p = vi, D) is equal to 1, then p can
be treated as a constant. Metric accuracy is used to measure the effectiveness of
clustering on entire training data set with a specified parameter value.

Metric coverage is introduced to quantify the complexity of determining the
parameter to one sample, we define it as:

cover(p, dj) =

∑
vi∈v f(vi, dj)

|v| (15)

According to Equation 15, if cover(p, dj) is larger, it is easier to find a proper
p value for dj . Scenario cover(p, dj) = 1 means any candidate parameter value
can give the expected result.

To examine the effectiveness of the proposed approach, we evaluated 12 data
sets in the experiments, which are shown in Figure 6. The data sets evaluated
are roughly in four groups. Figures 6(a) to 6(c) are Letters. Figures 6(d) to 6(f)
are Numbers. Figures 6(g) to 6(i) are Dot-Line in different shapes. Figures
6(j) to 6(l) are different combinations of Cycles.

These four classes of figures are very typical on analyzing the performance of
spectral clustering, and similar data sets have been studied widely ([15], [28],
[29]). The challenge in clustering Letters is that some letters are complex, such
as ’A’ and ’B’, and if some letters are embedded into others, such as ’PAKDD’
and ’CP’, which makes the problem more complicated. Without proper scaling,
most of the example figures cannot be clustered correctly. Figure 7(a) is K-
means’s result on the data in Figure 6(b).

Numbers is also a difficult task for clustering in many cases. For example,
there are four numbers in Figure 6(e), and these numbers are mixed together.
K-means cannot separate them correctly, whose result is shown in Figure 7(b).

The difficulty of clustering Dot-Line data sets is that the segment of the line
which is very close to a dot can be easily clustered into the dot group. Figure
7(c) gives one example of this scenario.
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(a) Characters: A,B,C (b) Characters: P,A,K,D,D (c) Characters: C,P

(d) Numbers: 3,1,3 (e) Numbers: 2,0,1,1 (f) Numbers: 1,0,7

(g) (h) (i)

(j) (k) (l)

Fig. 6. Date Sets for Experiments

For Cycles data sets, more cycles may share the same center, then they are
difficult to be clustered without re-presentation. Figure 7(d) is one example of
this case.

We test all three algorithms (NJW, ZP and ours) on all figures given in Figure
6. For each algorithm, we test its parameter within a range. For NJW algorithm, σ
changes from 0.1 to 2.0, and its step of change is set to be 0.1. For k in ZP algorithm,
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(a) K-means’s Result to Figure 6(b) (b) K-means’s Result to Figure 6(e)

(c) K-means’s Result to Figure 6(h) (d) K-means’s Result to Figure 6(l)

Fig. 7. Clustering Examples by Our Algorithm

(a) NJW Algorithm (b) ZP Algorithm (c) Our Algorithm

Fig. 8. Experimental Results of Three Algorithms

it ranges from 1 to 10, and its step length is 1. α in our algorithm is between 0.0001
to 0.02, and its step length is 0.0001. All the results of these algorithm are given in
Figure 8. In these three figures, the horizontal axis indicates the data set indexes,
where 1 to 16 correspond Figures 6(a) to 7(d), and the vertical axis represent the
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(a) NJW’s Accuracy (b) ZP’s Accuracy

(c) Our Accuracy (d) Coverage Comparison

Fig. 9. Performance Comparison Results

parametervaluesof thealgorithm.Furthermore, one square indicatesacorrect case.
For example, there is a square at (1, 0.1) in Figure 8(c), which means that when
α = 0.1, Figure 6(a) can be clustered correctly.

The comparison results of coverage and accuracy on these three algorithms
are given in Figure 9. As described in Figures 9(a) to 9(c), our algorithm works
very well. When α is in {0.0001, 0.0002, 0.0003, 0.0004}, it reaches the ideal
scenario - the accuracy is equal to 1. Therefore, we can simply take α as a
constant, whose value is 0.0001. Furthermore α’s accuracy is much higher than
σ’s and k’s, and it also fluctuates much smaller than σ, k.

On the metric coverage, our parameter α also gets high performance, which is
described in Figure 9(d). Surprisingly, α gets the coverage of 1 in 83.3% data sets
(10/12). Due to the page limitation, we won’t be able to show more scenarios
that our algorithm can work effectively with α = 0.0001.

It should be noticed that though connectivity plays an important role in our
algorithm, we still can handle ’unexpected’ situations. In Figure 6(j), while the
outer cycle is broken, α’s coverage of this data set is even 1.
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4 Conclusions

In this paper, we proposed a scale parameter specification approach to improve
the NJW algorithm [15] as a scale parameter self-adjusting one. Compared with
the specification method given in [28], our approach is less sensitive to the
datasets. We also presented a new method for eigenvector selection, which is
easier to apply than current approaches [25], [29]. Experimental results and
comparisons demonstrated that our algorithm can deal with different scenarios,
and can handle more instances which ZP’s algorithm cannot cluster well. In
the future, we will test and improve the proposed approach through more real
applications.

Acknowledgment

This work is partially supported by OU-Beaumont Multidisciplinary Research
Award. Xingquan Zhu is sponsored by ARC Future Fellowship under Grant No.
FT100100971.

References

1. Bach, F.R., Jordan, M.I.: Learning spectral clustering. In: Advances in Neural
Information Processing Systems, vol. 16. MIT Press, Cambridge (2003)

2. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in
Mathematics, vol. 92. American Mathematical Society, Providence (February 1997)

3. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normal-
ized cuts. In: KDD 2004: Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 551–556. ACM, New
York (2004)

4. Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spec-
tral methods for clustering. Pattern Recogn. 41(1), 176–190 (2008)

5. Higham, D.J., Kalna, G., Kibble, M.: Spectral clustering and its use in bioinfor-
matics. J. Comput. Appl. Math. 204(1), 25–37 (2007)

6. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264–323 (1999)

7. Jain, A.K.: Data Clustering: 50 Years Beyond K-means. In: Daelemans, W.,
Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211,
pp. 3–4. Springer, Heidelberg (2008)

8. Kamvar, S.D., Klein, D., Manning, C.D.: Spectral learning. In: IJCAI 2003, pp.
561–566 (2003)

9. Kleinberg, J.: An impossibility theorem for clustering. In: Becker, S., Thrun, S.,
Obermayer, K. (eds.) Neural Information Processing Systems, vol. 14, pp. 446–453.
MIT Press, Cambridge (2002)
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Abstract. We present an effective tree-based clustering technique (Gene
ClusTree) for finding clusters over gene expression data. GeneClusTree
attempts to find all the clusters over subspaces using a tree-based density
approach by scanning the whole database in minimum possible scans and
is free from the restrictions of using a normal proximity measure [1]. Ef-
fectiveness of GeneClusTree is established in terms of well known z-score
measure and p-value over several real-life datasets. The p-value analy-
sis shows that our technique is capable in detecting biologically relevant
clusters from gene expression data.

Keywords: Maximal space cluster, reduced space cluster, coherent pat-
terns, z-score, p-value.

1 Introduction

According to [2], most data mining algorithms developed for microarray gene
expression data deal with the problem of clustering. Clustering groups of genes
with similar expression patterns into the same cluster based on a proximity mea-
sure. One of the characteristics of gene expression data is that it is meaningful
to cluster both in terms of genes or samples. Co-expressed genes can be grouped
into clusters based on their expression patterns ([3], [4]). In gene-based cluster-
ing, the genes are treated as the objects, while the samples are the features. In
sample-based clustering, the samples can be partitioned into homogeneous groups
where the genes are regarded as features and the samples as objects. Both the
gene-based and sample-based clustering approaches search exclusive and exhaus-
tive partitions of objects that share the same feature space. Apart from these, a
third category, that is subspace clustering, captures clusters formed by a subset
of genes across a subset of samples. For subspace clustering algorithms, either
genes or samples can be regarded as objects or features. The goal of gene ex-
pression clustering is to group co-expressed genes together. Co-expressed genes
indicate co-function and co-regulation [5]. The purpose of clustering gene expres-
sion data is to reveal the natural structure inherent in the data. A good clustering
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algorithm should depend as little as possible on prior knowledge, for example
requiring the pre-determined number of clusters as an input parameter. Cluster-
ing algorithms for gene expression data should be capable of extracting useful
information from noisy data. Gene expression data are often highly connected
and may have intersecting and embedded patterns [6]. Therefore, algorithms for
gene-based clustering should be able to handle this situation effectively. Finally,
biologists are not only interested in the clusters of genes, but also in the re-
lationships (i.e., closeness) among the clusters and their sub-clusters, and the
relationship among the genes within a cluster (e.g., which gene can be consid-
ered as the representative of the cluster and which genes are at the boundary
area of the cluster). A clustering algorithm, which also provides some graphi-
cal representation of the cluster structure is much favored by the biologists and
therefore a tree structured clustering of gene expression data helps biologists
to identify the inherent details. A large number of clustering techniques have
been been reported for analyzing gene expression data, such as Partitional clus-
tering such as K-means [7], Fuzzy c-means [8], Quality Threshold Clustering [9]
and Self Organizing Maps (SOMs) [10], Hierarchical clustering (Unweighted Pair
Group Method with Arithmetic Mean, UPGMA) [4], Self-Organizing Tree Algo-
rithm [11], Divisive Correlation Clustering Algorithm (DCCA) [12] and Dynami-
cally Growing Self-Organizing Tree (DGSOT) [13], Density-based clustering such
as Kernel Density-based [14], Density-based Hierarchical Clustering (DHC) [6],
Regulation based density clustering (RDClust) [15], a recent density gene cluster-
ing (DGC) [16] and Shared nearest neighbor based clustering [17], Model-based
methods like Self-Organizing Maps [10], neural networks [18], Graph-theoretic
clustering (Cluster Affinity Search Techniques (CAST) [3], CLuster Identifica-
tion via Connectivity Kernels (CLICK) [19], E-CAST [20] and graph clustering
algorithm [21]. A recent graph based automated clustering technique (GCE) is
presented in [22]. In [23], a two stage clustering algorithm for gene expression
data using genetic algorithms is presented. A novel multi-objective genetic fuzzy
clustering followed by support vector machine based classification is presented
in [24]. Recently, a subspace clustering algorithm, CLIC, has been proposed in
[25]. Majority of the clustering techniques are dependent on a choice of proximity
measure. Also, due to the inherent high dimensionality and presence of noise in
gene expression data, it is a challenging task to find the clusters inherent in the
subspaces of the dataset. The hierarchical approach of clustering genes helps in
visualizing the clusters at different levels of hierarchy. Also, it is important to
establish that the clusters obtained are biologically relevant. In this paper, we
introduce an effective clustering technique (GeneClusTree), which attempts to
find all the possible clusters over subspaces and represents the results in a tree
based structure. The proposed GeneClusTree can be found significant in view
of the following basic advantages: (i) capable of identifying biologically relevant
clusters of all shapes in presence of noise, (ii) does not require the number of
clusters apriori, and (iii) free from the restrictions of using any specific proximity
measure.
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2 GeneClusTree

GeneClusTree is a gene based clustering technique which attempts to cluster the
gene dataset using a tree-based density approach. GeneClusTree groups together
genes with similar expression patterns and the tree structure provides a natural
way to graphically represent the data set. At first, the gene expression data is
normalized to have mean 0 and standard deviation 1. Expression data having a
low variance across conditions as well as data having more than 3-fold variation
are filtered out. Discretization is then performed on this normalized expression
data by retaining the up- or down- regulation information in each of the condi-
tions for a particular gene. Also, to avoid the restrictions caused due to the use
of any normal proximity measure, it exploits the angle information computed
over the normalized expression values.

2.1 Regulation Information Extraction

Let G be the set of all genes, T be the set of all conditions with cardinality nT .
The regulation information extraction for a gene gi ∈ G is carried out as follows:

(i) ξ of gene gi at the first condition,
i.e., at t1 is:

ξgi,t1 =

⎧⎨⎩
1 if εgi,t1 > 0
0 if εgi,t1 = 0
−1 if εgi,t1 < 0

(ii) Similarly, ξ of gene gi at conditions
tj (j = 2,..,nT ) i.e., at the rest of the
conditions (T − {t1}) are:

ξgi,tj+1 =

⎧⎨⎩1 if εgi,tj < εgi,tj+1

0 if εgi,tj = εgi,tj+1

−1 if εgi,tj > εgi,tj+1

We see in the above discretization process that the first condition, t1, is treated
as a special case and it’s discretized value is directly based on εgi,t1 i.e., the
expression value at condition t1. For the rest of the conditions the discretized
regulation value is calculated by comparing its expression value with that of the
previous expression value. This helps in finding whether the gene is up- (1) or
down- (-1) regulated at that particular condition. Each gene will now have a
regulation pattern (℘) of 0, 1, and -1 across the conditions or time points and
is represented as a string. Next, GeneClusTree computes the angle information
condition-wise for each of the gene profile based on their normalized expression
values. The angle information gives the trend angle between each pair of condi-
tions. We illustrate the whole gene-condition space as a graph with conditions
across x-axis and expression levels along y-axis. Let the x-axis for a gene gi be
denoted as xtj for condition tj and its corresponding y-axis be denoted by the
expression value εgi,tj . Now, for the gene gi, the angle information for each of its
nT conditions is computed according to the formula1 given in Equation below.

αεgi,tj
,εgi,tj+1

= arccos

(
εgi,tj+1−εgi,tj√

(εgi,tj+1−εgi,tj
)2+(xtj+1−xtj

)2

)
1 Available in http://mathematics.learnhub.com/lesson/5945-trigonometry-basics
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Each gene gi will now have a pattern of angle information αgi consisting of
nT values. This angle information is then further discretized by dividing it into
discrete equal intervals depending on their angle values where the width of the
interval is a user input. After discretization of the angle values, each gene, gi,
will have a pattern of angle ids (α′

gi
) across conditions, the angle id value at

the kth condition is denoted as α′
gi,tk

. The regulation information and discretized
angle patterns are used together to cluster the gene expression dataset using a
tree-based density approach. A string matching approach is used for matching
the regulation and the discretized angle patterns of two genes. Next, we give
some definitions which provide the foundation of GeneClusTree.

Definition 1. Matched Subspace: The matched subspace (M(gi, gj)) is the set
of k conditions where both the genes gi and gj match and θ ≤ k ≤ nT and θ is
a user defined parameter.

Definition 2. Maximal Matched Subspace: A matched subspace is called maxi-
mal if no superset of this can be found to be a matched subspace.

Definition 3. Neighbor of a gene: A gene gj is said to be a neighbor of gene gi

i.e., gj ∈ Nl(gi), iff

i. gi and gj are in the same level, say, l,
ii. |M(gi, gj) |≥ θ, and

iii. α′
gj ,tk

= [α′
gi,tk

+ δ, α′
gi,tk

− δ], where tk refers to k conditions and δ has an
initial value of 1 in the first level for each subtree and is incremented by 1
in every subsequent levels.

For regulation matching, GeneClusT ree initially attempts to find neighbors of
a gene gi over full set of conditions i.e., nT number of conditions. If no match
is found, the number of conditions is decremented by 1 at each step upto a
certain threshold (say, θ) till a match occurs i.e., ℘(gi) ≈ ℘(gj). However, at
each subsequent step, the previously computed matching information is used
which makes the searching more efficient.

Definition 4. Initiator: A gene gi in the lth level is said to be an initiator if
| Nl(gi) |≥ σ.

The neighborhood of a gene gi is searched for genes satisfying the initiator
condition. If no neighbor gene is found, then the process is repeated with another
unclassified gene. In our experiments we have obtained good results for σ = 2.

Definition 5. Node: A node ni in the lth level is a non-empty subset of genes
of G where, any gene gj ∈ ni is either
(i) itself an initiator gene, or
(ii) is within the neighborhood of an initiator gene gi ∈ ni i.e., gj ∈ Nl(gi).

Definition 6. Node Reference Vector: Reference Vector of a node is the subset
of conditions where all the genes belonging to that node match maximally.
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The Reference Vector of a node ni (RVni) to which, say, genes gi and gj belong
to is computed as follows:

RVni =

⎧⎪⎪⎨⎪⎪⎩
1 if ℘gi,t = ℘gj,t = 1
0 if ℘gi,t = ℘gj,t = 0
−1 if ℘gi,t = ℘gj,t = −1
x otherwise

Definition 7. Intra-node reachability: A pair of genes (gi, gj) in any level, say
l, is said to be intra-node reachable if,
(i) one of them is an initiator and the other is a neighbor of it, or
(ii) another gene gk is an initiator and gi, gj ∈ Nl(gk), or
(iii) both gi, gj are initiators and they are neighbors to each other i.e., either
gi ∈ Nl(gj) or gj ∈ Nl(gi).

The intra-node reachable genes satisfy the condition that they match in the same
subset of conditions of regulation pattern.

Definition 8. Inter-node Reachability: A gene gj ∈ nc is said to be inter-node
reachable from another gene gi ∈ np, where np is the parent of nc, if ℘gj matches
with ℘gi in a total of (nT − (lc − 1)) number of conditions, where, lc is the level
of nc.

Finding subspace clusters in different levels gives different level of finer clustering
of a dataset which may be useful for the biologists.

Definition 9. Maximal-Space cluster: A node ni is said to be maximal-space
cluster if ni is created at the first level (i.e., level 1) and the set of genes in ni

match in a set of k conditions, where θ ≤ k ≤ nT .

Definition 10. Reduced-Space cluster: A node ni is a said to be a reduced-space
cluster if ni is created in the jth level and the set of genes in ni match in a set
of (k − (j − 1)) conditions where k is cardinality of the set of conditions in
which the genes in the parent node of ni match in the (j − 1)th level where
2 ≤ j ≤ (k − (θ − 1)).

Definition 11. Noise Genes: Let n1, n2, · · ·np be the set of subspace clusters of
G, then noise genes in G is the set of genes not belonging to any subspace cluster
ni, i.e., noise = {gx ∈ G | ∀i : gx /∈ ni}
In the rest of the paper, we will use the terms node and subspace cluster inter-
changeably to represent a cluster over a subset of conditions.

GeneClusTree starts by creating a tree structure in a depth-first manner with an
empty node as the root. The root is at level 0 and is connected to all the nodes
in level 1. The nodes in level 1 are created by a density based approach and each
of these nodes is the basis of formation of the reduced-space clusters of the sub-
tree. The process of creating a level 1 node i.e., a maximal space cluster starts
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with an arbitrary unclassified gene gi and the neighborhood of gi is searched to
check whether it is an initiator. If no gene is found to satisfy the neighborhood
condition with gi, then the process restarts with another unclassified gene. On
the other hand, if gi is an initiator gene it initiates the process of creating a new
node with a node reference vector formed according to Definition 6. Then the
process proceeds with finding all the genes that satisfies the intra-node reacha-
bility condition with gi in terms of the node reference vector and are assigned
to the same node to which gi belongs. If any gene gj from the set of intra-node
reachable genes of gi satisfies the initiator gene condition, then the node expan-
sion proceeds with the gene gj. The process continues till no more genes can be
assigned to the node. Each of the nodes in level 1 is a maximal-space cluster and
determines the nodes to be formed as reduced-space clusters, across different
subset of conditions, in the next level of the sub-tree. After completion of the
formation of the node(s) of a particular level in a sub-tree, the value of level is
incremented by 1. Each of the nodes formed at level 1 becomes the parent node
of the sub-trees formed at the next level (i.e., level 2). Similarly, for the nodes
in level i, their parents will be in level (i - 1). Also, with the increase in the
height of the tree, the cardinality of the matched condition set decreases from
parent to child by 1 at each level. For a particular sub-tree, the genes in each of
the ith nodes agrees over a set of (k − (l − 1)) conditions of the parent node’s
reference vector. Genes belonging to the sibling node(s) at the same level in a
particular sub-tree have the same cardinality of matched conditions, however
the match is over different set(s) of conditions. On completion of the child nodes
along with their sibling nodes of a particular node in a sub-tree, the process
continues similarly in the next level until the sub-tree reaches a depth of θ or
no more nodes can be added to the sub-tree. The process then backtracks to
level 1 and finds the next maximal subspace cluster and inserts it as a child
of the root. The sub-tree of this node is created in the similar manner as de-
scribed before. The whole process repeats itself until no more maximal subspace
clusters are inserted in level 1 of the tree. All the remaining unclassified genes
are treated as noise genes. An implementation of GeneClusTree is available at:
http://202.141.129.18/d̃kb/resources/gene clus tree.rar. The following lemmas
are formulated from the definitions of GeneClusTree.

Lemma 1. A gene gi belonging to n1,i (n1,i is the ith subspace cluster of level
1) cannot be a neighbor of any gene gj ∈ n1,j, where n1,j is the jth subspace
cluster of level 1.

Proof. Suppose, gi ∈ n1,i and gj ∈ n1,j and let gi ∈ Nl(gj). Then, gi is intra-node
reachable from gj according to Definition 7. Therefore, both gi and gj belongs
to the same node (subspace cluster). Therefore, we come to a contradiction and
hence the proof.

Lemma 2. A gene gj belonging to ni,j may not belong to n(i−1),k (i = 2,
3,· · · , θ) where ni,j refers to jth subspace cluster of level i.

Proof. Let gj ∈ ni,j, then according to Definition 8, gj is inter node reachable
from any node ni−1,k in level (i − 1) and gk ∈ ni−1,k. Then ℘(gj) matches in
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a total of (nT − ((i − 1) − 1)) conditions, i.e., one condition less than gk. The
reference vector of ni,j will be same as that for ni−1,k except for the condition
where gk and gj do not match. Therefore, gj /∈ ni−1,k and hence the proof.

Lemma 3. If gi ∈ ni and gj ∈ nj where ni and nj are two subspace clusters,
then gi and gj are not intra-node reachable.

Proof. Let gi and gj be two intra-node reachable genes and gi ∈ ni and gj ∈
nj, where ni and nj are two subspace clusters at any level. Then, according to
Definition 7, either they are neighbors or both of them are neighbors of another
initiator gene, that is, gi and gj must be in the same subspace cluster according
to Definition 5. Therefore, gi and gj are not intra-node reachable.

Lemma 4. Assume gi ∈ ni and gj ∈ nj where ni and nj are two subspace
clusters (ni and nj are not parent-child or vice versa), then gi and gj are not
inter-node reachable.

Proof. Let gi and gj be two inter-node reachable genes and gi ∈ ni and gj ∈
nj, where ni and nj are two subspace clusters but do not share a parent-child
relationship between them. However, according to Definition 8, two genes are
inter-node reachable if one of them belongs to a parent node and the other to its
child. Therefore, ni and nj should be parent-child or vice versa and hence, are
not inter-node reachable.

Theorem 1. Two genes gi and gj belonging to two different nodes are not
coherent.

Proof. Let gi ∈ ni and gj ∈ nj. Now, as per lemma 1, gi cannot be a neighbor
of gj. Again, since genes gi and gj are not neighbors, then the conditions given
in Definition 2 do not satisfy and hence they are not coherent.

Theorem 2. A gene gi without a neighbor is a noise.

Proof. A gene gi without a neighbor is neither intra-node nor inter-node reach-
able from any other node, hence such a gene gi can be trivially proved to be a
noise gene according to Definition 11, lemma 3 and lemma 4.

Complexity of GeneClusTree in average case is O(B×(nT×ncavg)×log(levelmax)),
where B is the total number of branches in the tree and ncavg is the average
number of genes corresponding to a branch and levelmax is the maximum depth
of the tree.

3 Performance Evaluation

GeneClusTree was implemented in Java in Windows environment and evaluated
with several real-life datasets. Of the various datasets, the results of some of
the datasets as reported in Table 1 are presented next. All the datasets are nor-
malized to have mean 0 and standard deviation 1. The clusters formed from
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Table 1. Datasets used for evaluating GeneClusTree

Serial No. Dataset No. of
genes

No of condi-
tions

Source

1 Yeast CDC28-13 [26] 384 17 http://faculty.washington.edu/
kayee/cluster

2 Yeast Diauxic Shift [27] 6089 7 http://www.ncbi.nlm.nih.gov/
geo/ query

3 Subset of Human Fibrob-
lasts Serum [28]

517 13 http://www.sciencemag.org/
feature/data/984559.hsl

Fig. 1. a) Some of the clusters from the Dataset 1 b) Some of the clusters obtained
from Dataset 2

Dataset 1 and 2 are shown in Figure 1 (a) and (b). Figure 3 (a), shows some of
the maximal space and reduced space clusters of Dataset 1. The maximal and
reduced space clusters of Dataset 3 reported in [28] are shown in Figure 3 (b).
In order to validate our clustering result, we employ z-score [29] as the measure
of agreement.

Z-score [29] is calculated by investigating the relation between a clustering
result and the functional annotation of the genes in the cluster. We have used
Gibbons ClusterJudge [29] tool to calculate the z-score. A higher value of z
indicates that genes would be better clustered by function, indicating a more
biologically relevant clustering result. To test the performance of the clustering
algorithm, we compare clusters identified by GeneClusTree with the results from
RDClust, DCCA and UPGMA. In this paper, the reported z-score is averaged
over 10 repeated experiments. The result of applying the z-score on Dataset 1
is shown in Table 2. In this table the proposed algorithm has been compared
with the well known agglomerative hierarchical algorithm, UPGMA, DCCA and
RDCLust. Table 2 clearly shows that GeneClusTree outperforms UPGMA, RD-
Clust and DCCA w.r.t. the cluster quality. We note here that unlike k-means
our method does not require the number of clusters as an input parameter. It
detects the clusters present in the dataset automatically and gives the rest as
noise. However, the algorithm UPGMA requires the input parameter cutoff .
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Fig. 2. (a) Each of the rows represents the six clusters formed from Dataset 1. Starting
from the second column of each row, the reduced space clusters are illustrated for the
maximal space cluster given in the first column. (b) Each of the rows represents some
of the clusters formed from Dataset 3. Starting from the second column of each row,
the reduced space clusters are illustrated for the maximal space cluster given in the
first column.

The biological relevance of a cluster can be verified based on the gene ontology
(GO) annotation database http://db.yeastgenome.org/cgi-bin/GO/goTermFind
er. It is used to test the functional enrichment of a group of genes in terms of three
structured controlled ontologies, viz., associated biological processes, molecular
functions and biological components. The functional enrichment of each GO
category in each of the clusters obtained is calculated by its p-value [30]. A low
p-value indicates the genes belonging to the enriched functional categories are
biologically significant in the corresponding clusters. To compute the p-value, we
used the software FuncAssociate [30]. Due to the constraint in the page limit, the
enriched functional categories for some of the clusters obtained by GeneClusTree
on Dataset 1 are partially listed in Table 3. The functional enrichment of each GO
category in each of the clusters is calculated by its p-value. Cluster C2 contains
genes involved in DNA replication with the highly enriched category being ‘MCM
complex’ with a p-value of 1.1× 10−12. The highly enriched categories in C5 is
the ‘cellular bud’ with a p-value of 7.0 × 10−07. The genes in cluster C10 are
involved in cell cycle. C10 contains the highly enriched cellular components of
‘DNA metabolic process’, ‘DNA replication’, ‘chromosome’, ‘chromosomal part’,
‘cell cycle, etc. with p-values of 1.8×10−22, 1.8×10−21, 9.7×10−21, 1.5×10−20

Table 2. z-scores for GeneClusTree and its counterparts for Dataset 1

UPGMA SOM CAST ECAST DCCA RDClust GCE GeneClusTree
No. of clusters 16 09 11 42 10 10 15 17

z-score 5.57 3.2 2.48 3.97 6.2 6.95 6.37 7.42
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Table 3. P -value of some of the clusters of Dataset 1

Cluster P-value GO number GO category
1.1e-12 GO:0042555 MCM complex
5.2e-10 GO:0005656 pre-replicative complex
5.2e-10 GO:0006267 pre-replicative complex assembly
1.5e-09 GO:0000084 S phase of mitotic cell cycle
3.5e-09 GO:0031261 DNA replication preinitiation complex
3.5e-09 GO:0043596 nuclear replication fork
3.5e-09 GO:0005739 S phase
1.1e-08 GO:0044455 DNA replication origin binding

C2 3.8e-08 GO:0051329 interphase of mitotic cell cycle
4.1e-08 GO:0051325 interphase
5.4e-08 GO:0005657 replication fork
6.3e-08 GO:0006270 DNA replication initiation
7.2e-08 GO:0008094 DNA-dependent ATPase activity
1.1e-07 GO:0009378 four-way junction helicase activity
1.2e-07 GO:0022403 cell cycle phase
3.9e-07 GO:0022402 cell cycle process
7e-07 GO:0005933 cellular bud
5.1e-06 GO:0004857 enzyme inhibitor activity
8.3e-06 GO:0004860 protein kinase inhibitor activity
8.3e-06 GO:0019210 kinase inhibitor activity

C5 9.6e-06 GO:0030427 site of polarized growth
2.8e-05 GO:0005935 cellular bud neck
4.7e-05 GO:0019887 protein kinase regulator activity
5.6e-05 GO:0019207 kinase regulator activity
6.7e-05 GO:0004861 cyclin-dependent protein kinase inhibitor activity
1.8e-22 GO:0006259 DNA metabolic process
1.8e-21 GO:0006260 DNA replication
9.7e-21 GO:0005694 chromosome
1.5e-20 GO:0044427 chromosomal part
8.8e-19 GO:0007049 cell cycle
1.4e-18 GO:0006281 DNA repair
1.3e-16 GO:0006974 response to DNA damage stimulus
4.7e-16 GO:0009719 response to endogenous stimulus
6.4e-16 GO:0006261 DNA-dependent DNA replication
1e-05 GO:0006261 DNA-dependent DNA replication
5.6e-14 GO:0022402 cell cycle process
9.6e-14 GO:0005634 nucleus
1e-13 GO:0007064 mitotic sister chromatid cohesion
7.2e-13 GO:0005657 replication fork
9.1e-13 GO:0022403 cell cycle phase
3e-12 GO:0051276 chromosome organization and biogenesis

C10 3.5e-12 GO:0000228 nuclear chromosome
4.4e-12 GO:0000278 mitotic cell cycle
6.4e-12 GO:0007062 sister chromatid cohesion
1.2e-11 GO:0044454 nuclear chromosome part
7.5e-11 GO:0006273 lagging strand elongation
3.1e-10 GO:0043228 non-membrane-bounded organelle
3.1e-10 GO:0043232 intracellular non-membrane-bounded organelle
4.2e-10 GO:0006271 DNA strand elongation during DNA replication
4.2e-10 GO:0022616 DNA strand elongation
5.1e-10 GO:0030894 replisome
5.1e-10 GO:0043601 nuclear replisome
5.7e-10 GO:0006950 response to stress
9.1e-10 GO:0051052 regulation of DNA metabolic process
1.1e-09 GO:0000819 sister chromatid segregation
1.5e-09 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid

metabolic process
6.5e-09 GO:0045934 negative regulation of nucleobase, nucleoside, nu-

cleotide and nucleic acid metabolic process
6.5e-09 GO:0000070 mitotic sister chromatid segregation
8.6e-09 GO:0043596 nuclear replication fork
3.1e-08 GO:0051301 cell division
3.8e-08 GO:0000793 condensed chromosome
5.4e-08 GO:0031324 negative regulation of cellular metabolic process
5.4e-08 GO:0003677 DNA binding
5.7e-08 GO:0009892 negative regulation of metabolic process
7.8e-08 GO:0000279 M phase
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and 8.8× 10−19 being the highly enriched one. To restrict the size of the article
we have reported the p-values of only three clusters obtained from Dataset 1.
From the Table 3, we can conclude that GeneClusTree shows a good enrichment
of functional categories and therefore project a good biological significance.

4 Conclusions and Future Work

This work presents a tree-based density approach which finds useful subgroups
of genes within a cluster and obtains a tree structure of the dataset where the
clusters at the top level gives the finer clustering of the dataset. GeneClusTree
does not require the number of clusters apriori and the clusters obtained have
been found satisfactory on visual inspection and also based on z-score as well
as p-values for three real datasets. However, work is going on for establishing
the effectiveness of GeneClusTree over more real-life human gene datasets. In
our future work, we plan to fuse the analysis of gene expression datasets with
biological information during node expansion to identify the co-regulated genes.
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Abstract. In this paper, we propose a novel nonlinear discriminative dimen-
sionality reduction method for clustering high dimensional data. The proposed
method first represents the desired low dimensional nonlinear embedding as lin-
ear combinations of predefined smooth vectors with respect to data manifold,
which are characterized by a weighted graph. Then the optimal combination co-
efficients and optimal cluster assignment matrix are computed by maximizing
between-cluster scatter and minimizing within-cluster scatter simultaneously as
well as preserving smoothness of the cluster assignment matrix with respect to
the data manifold. We solve the optimization problem in an iterative algorithm,
which is proved to be convergent. The contributions of the proposed method are
two folds: 1) obtained nonlinear embedding can recover intrinsic manifold struc-
ture as well as enhance the cluster structure of the original data; 2) the cluster
results can also be obtained in dimensionality reduction procedure. Extensive ex-
periments conducted on UCI data sets and real world data sets have shown the
effectiveness of the proposed method for both clustering and visualization high
dimensional data set.

Keywords: dimensionality reduction; cluster; Laplacian graph; spectral
regularization.

1 Introduction

Real applications in many domains such as pattern recognition, computer vision and
data mining often lead to very high dimensional data. Dimensionality Reduction (DR)
is an effective and widely used approach to deal with such high dimensional data, due to
its potential of mitigating the so-called “curse of dimensionality”. Up to now, many di-
mensionality reduction methods (DRs) have been developed, such as Principal Compo-
nent Analysis (PCA) [1], Isomap [2], Locally Linear Embedding (LLE) [3], Laplacian
Eigenmap (LE) [4] and supervised Linear Discriminant Analysis (LDA) [5].

Although existing unsupervised DRs have different motivations and concrete imple-
mentations, they obtain the desired low dimensional coordinates by preserving a certain
property of original data, whether global or local. For example, property that PCA pre-
serves is the global variance and Isomap aims to preserve the geometric distance on the
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intrinsic manifold. While some other approaches try to preserve a certain local property
of data, such as locality that LE tries to preserve and neighborhood relationship that
LLE aims to preserve.

However, cluster structure as a key property of data, which reflects intrinsic distri-
bution of data and plays a crucial role in further analyzing and utilizing data [6], has
been ignored by these popular DRs. Here the term “cluster structure” means the natural
aggregation of similar objects and natural separation of dissimilar objects in concept
level. Hence, it is appealing to devise DR method for clustering that can preserve or
enhance cluster structure of the original high dimensional data in the transformed low
dimensional embedded space.

On the other hand, due to sparsity of data in high dimensional space, clustering
directly on high dimensional data is still a challenging problem. A natural solution is
to transform data into a low dimensional compact space through aforementioned DRs
such as PCA before clustering. However, due to the intrinsic gap between clustering
and existing DRs, which are not designed originally for clustering, clustering structure
of original data can’t be well preserved and may be even destroyed in the transformed
low dimensional space.

Therefore, in this paper, a novel DR approach for clustering is proposed. In the pro-
posed method, both nonlinear DR and clustering task can be achieved simultaneously.
Firstly, according to graph embedding theory [7], a weighted graph which can charac-
terize manifold structure of the whole data is constructed. Then the desired low dimen-
sional coordinates are represented as linear combinations of smooth functions defined
on data graph, which are the eigenvectors corresponding to the smallest eigenvalues of
the Laplacian matrix of data graph. The key idea behind this is that the learned low
dimensional coordinates should be as smooth as possible with respect to the data man-
ifold. Finally optimal combination coefficients and cluster assignment matrix can be
computed by maximizing between-cluster scatter and minimizing within-cluster scat-
ter simultaneously as well as preserving smoothness of cluster assignment matrix with
respect to data manifold.

2 Spectral Regularization on Manifold

Given a data set of n objects X = {xi}n
i=1, first a weighted graph G(X , W ) can be

constructed, where the (i, j) entry wij of affinity matrix W measures similarity be-
tween samples xi and xj . There are various similarity criteria. In this paper, the popular
Gaussian similarity as Ref. [8] is adopted.

According to [9], smoothness of a function f : X → R on graph G can be measured
by:

Ω(f) =
1
2

∑
i,j

wij(f(xi)− f(xj))2 (1)

The smaller Ω(f) is, the smoother f is. This measure penalizes large changes over data
points that have large similarities. It is the same as manifold assumption that nearby
points are likely to have the same labels.
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Let L = D −W be the Laplacian matrix of graph G, where D is diagonal matrix
with element dii =

∑
j wij . Then the smoothness of function f defined in Eq. (1) can

be also expressed as:

Ω(f) = fTLf (2)

where f = (f(x1), f(x2), . . . , f(xn))T. One can also use the normalized smoothness
measure L̄ = D−1/2LD−1/2 instead of L in Eq. (2). Note that any function f on graph
G is identical to an n-dimensional vector f . Thus one can also regard an n-dimensional
vector as a function on graph G.

It is noteworthy to study the smoothness of the eigenvectors of matrix L. Let (λi, vi)
be the pair of eigenvalue and eigenvector of L, where 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn and vi

has been normalized to 1. Then smoothness of vi is:

Ω(vi) = vT
i Lvi = λi (3)

This means that eigenvalue λi measures smoothness of eigenvector vi: the smaller λi

is, the smoother vi is.
From definition of L, one can see that L is positive semidefinite. Thus these n eigen-

vectors of L are mutual orthogonal and form the orthogonal basis of function space on
graph G. Then for any function f on G, it can be expressed as:

f =
n∑

i=1

aivi (4)

Note that λ1 = 0 and v1 = e/
√

n, where e is all 1’s vector with suitable dimensionality.
So v1 is a trivial function on graph G. Then we rewrite Eq. (4) as:

f = a1v1 +
m∑

i=1

ai+1vi+1 +
n∑

i=m+2

aivi = T0 + T1 + T2 (5)

where m � n. The T0, T1 and T2 are called the trivialness component, smoothness
component and noise component of function f , respectively. Discarding noise compo-
nent T2 of function f is to improve the smoothness of function and discarding trivialness
component T0 is just to translate function and has no essential effect. Hence represent-
ing a function as T1 term in fact imposes smoothness assumption on function. This
regularization technique is called spectral regularization [10]. Here we also introduce
the trivialness component T0, which is a little different from the original spectral regu-
larization proposed in Ref. [10]. The convenience of this variation will be given in the
following section.

3 The Proposed Method

3.1 Problem Formulation and Its Solution

Our main goal is to cluster the given data set X = {xi}n
i=1 into K clusters Ci(i =

1, 2, . . . , K) in DR procedure. Denote the cluster assignment matrix by P = (pij) ∈
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Bn×K where pij = 1 if xi ∈ Cj and otherwise pij = 0. A scaled cluster assignment
matrix P̂ = (p̂ij), where p̂ij = pij/

√
nj and nj is the number of samples in cluster

Cj , can also be introduced. It is easy to check that P̂ = P (PTP )−1/2 and P̂TP̂ = IK

where IK is the K ×K identity matrix.
Let F = (f1, f2, . . . , fd)T be the desired low dimensional coordinates ofX where the

ith column vector is the new low dimensional representation of sample xi. According
to manifold assumption, i.e., nearby points should be also close to each other in the low
dimensional space, for each vector fi in F , we would like it to be a smooth function
on the data graph G. This implies that we can only use the smoothness component T1

to represent fi, i.e., fi can be expressed as a linear combination of predefined smooth
function of graph G:

fi =
m∑

j=1

ajivj+1 = Vmai (6)

where Vm = (v2, v3, . . . , vm+1). Then F = (VmA)T where A = (a1, a2, . . . , ad).
Since vT

i e = 0(i = 2, 3, . . . , n), we have Fe = (VmA)Te = 0, which implies that
in new low dimensional space, the samples are automatically centered at origin. This
property can significantly simplify computation of total scatter matrix St and between-
cluster scatter matrix Sb in the transformed space, which can be expressed as:

St = FFT = (VmA)T(VmA) = ATA; Sb = FP̂ P̂TFT = ATV T
m P̂ P̂TVmA

As stated in section 1, besides obtaining low dimensional embedding, the main goal
of our method is to preserve or even enhance cluster structure of data in low dimen-
sional space. This is implemented by maximizing between-cluster scatter and minimiz-
ing within-cluster scatter simultaneously:

max :
tr (Sb)
tr (St)

=
tr (ATV T

m P̂ P̂TVmA)
tr (ATA)

(7)

To make the problem well defined, we impose orthogonal constraint ATA = Id on
combination coefficient A. Hence the above trace ratio problem can be reduced to the
following constrained trace maximization problem:

max
ATA=Id

: tr (ATV T
m P̂ P̂TVmA) (8)

Another consideration for cluster assignment matrix is that points with high similarities
are much likely to have the same cluster label. Mathematically, it is equal to minimize
the following regularization term on P̂ :

min
P̂TP̂=IK

: tr (P̂TLP̂ ) (9)

Combining the objective in Eqs. (8) and (9), then we can derive the final optimization
objective for the proposed method:

max
ATA=Id

P̂TP̂=IK

: tr (ATV T
m P̂ P̂TVmA)− γ tr (P̂TLP̂ ) (10)
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where γ > 0 is a trade-off parameter to balance the two terms. Since the discrete con-
straint of p̂ij makes the problem an NP-hard problem, we will relax it to be continuous
value as many spectral clustering algorithms do [11].

As one can see, the objective in Eq. (10) depends on both A and P̂ , which depend
on each other. We cannot give a closed-form solution. Here we optimize them in an
iterative manner. In other words, we will optimize the objective with respect to one
variable while fixing the other one. This procedure repeats until convergence.

For a fixed P̂ , optimal combination coefficients A can be obtained by solving the
following trace maximization problem:

max
ATA=Id

: tr (ATV T
m P̂ P̂TVmA) (11)

Based on Ky Fan theorem [11], the optimal A consists of d eigenvectors of V T
m P̂ P̂TVm

corresponding to the first d largest eigenvalues, i.e., A = (a1, a2, . . . , ad) where ai(i =
1, 2 . . . , d) is the ith largest eigenvector of matrix V T

m P̂ P̂TVm .
Similarly, for a fixed A, optimal relaxed assignment matrix P̂ can be computed by

maximizing the following:

max
P̂TP̂=IK

: tr (ATV T
m P̂ P̂TVmA)− γ tr (P̂TLP̂ ) = tr (P̂T(VmAATV T

m − γL)P̂ )

After obtaining continuous optimal scaled cluster assignment matrix, we can use K-
means or spectral rotation to obtain discrete cluster assignment matrix [12].

We refer to the proposed method as Nonlinear Discriminative Embedding for Clus-
tering via Spectral Regularization (NDECSR), whose algorithm procedure are summa-
rized in the following:

NDECSR with its iterative solution:

Input: Data matrix X = [x1, x2, . . . , xn)], the number of smooth basis vectors m, trade-off
parameter λ, neighborhood size k, the desired dimensionality d, the number of clusters K.
Output: low dimensional coordinates F , cluster assignment matrix P .

1: Construct weighted graph G with neighborhood size k and compute Vm

2: Cluster data into K clusters by K-means algorithm to obtain initial P̂0.
3: Iterative optimization: For q = 1, 2, . . . , qmax, do

(1). Solve eigenvalue decomposition problem:

V T
m P̂q−1P̂

T
q−1Vmui = λiui, (i = 1, 2, . . . , d) (12)

where ui is the ith largest eigenvector. Set U = [u1, u2, . . . , ud].
(2). Reshape U for orthogonal transformation invariance: let S = UUTVmV T

mUUT, solve
eigenvalue decomposition:

Sai = γiai (13)

and let Aq = [a1, a2, . . . , ad], where ai is the ith largest eigenvector.

(3). Solve eigenvalue decomposition problem:

(VmAqA
T
q V T

m − γL)uj = λ′
juj , (j = 1, 2, . . . , K) (14)

where uj is the jth largest eigenvector. Set U = [u1, u2, . . . , uK ].
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(4). Reshape U for orthogonal transformation invariance: let S = UUTXXTUUT, solve eigen-
value decomposition:

Spi = γipi (15)

and let P̂q = [p1, . . . , pK ], where pi is the ith largest eigenvector.

if ‖Aq − Aq−1‖2
F < ε and ‖P̂q − P̂T

q−1‖2
F < ε (we set ε = 0.001 in our experiments), then

return.
4: Let the optimal coefficient matrix A = Aq and P̂ = P̂q . Obtain the discrete cluster assignment
matrix P via K-means or spectral rotation and compute low embedding F via F = (VmA)T.

3.2 Convergence Analysis

In this subsection, we will study the convergence of our NDECSR algorithm.
Denote the objective function value in each iteration by

J(P̂q, Aq) = tr (AT
q V T

m P̂qP̂
T
q VmAq)− γ tr (P̂T

q LP̂q)

= tr (P̂T
q (VmAqA

T
q V T

m − γL)P̂q) (16)

then we have Theorem 1.

Theorem 1. The objective function J(P̂q , Aq) satisfies the following inequality:

J(P̂q , Aq) ≤ J(P̂q, Aq+1) ≤ J(P̂q+1, Aq+1) (17)

Proof. According to our NDECSR algorithm, P̂q+1 and Aq+1 satisfy:

Aq+1 = arg max
ATA=Id

tr(ATV T
m P̂qP̂

T
q VmA)

= arg max
ATA=Id

tr(ATV T
m P̂qP̂

T
q VmA)− γ tr(P̂T

q LP̂q) = arg max
ATA=Id

J(P̂q , A)

(18)

P̂q+1 = arg max
P̂TP̂=IK

tr(P̂T(VmAq+1A
T
q+1V

T
m − γL)P̂ ) = arg max

P̂TP̂=IK

J(P̂ , Aq+1)

(19)

Then we have: J(P̂q, Aq) ≤ J(P̂q, Aq+1) ≤ J(P̂q+1, Aq+1).

Theorem 1 means that the objective function monotonously increases as the iteration
number q. Another fact is that the objective function has upper bound under constraints
in (10). Therefore objective function will converge in limited iterations. Then we can
further obtain the following Theorem which gives the convergency of Aq and P̂q:

Theorem 2. The matrix sequence {(P̂q, Aq)} obtained by NDECSR is convergent.

Proof. From Theorem 1, we can assume there exist Q iterations when the objective
function converges. Then we have:

J(P̂Q, AQ) = J(P̂Q, AQ+1) = J(P̂Q+1, AQ+1) (20)
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Substituting (16) into (20) and by using (18) and (19), we can obtain that:

tr(AT
QV T

m P̂QP̂T
QVmAQ) = tr(AT

Q+1V
T
m P̂QP̂T

QVmAQ+1)

= max
ATA=Id

tr(ATV T
m P̂QP̂T

QVmA)

=⇒∃ orthogonal matrix O such that: AQ+1 = AQO (21)

tr(P̂T
Q+1(VmAQ+1A

T
Q+1V

T
m − γL)P̂Q+1) = tr(P̂T

Q (VmAQ+1A
T
Q+1V

T
m − γL)P̂Q)

= max
P̂TP̂=IK

tr(P̂T(VmAQ+1A
T
Q+1V

T
m − γL)P̂ )

=⇒∃ orthogonal matrix O′ such that: P̂Q+1 = P̂QO′ (22)

Hence AQ+1 and AQ have the same column space. So do P̂Q+1 and P̂Q. Note that
in step 3(2) and 3(4) of our NDECSR algorithm, we have reshaped Aq and P̂q for
orthogonal transformation invariance. Thus AQ+1 = AQ and P̂Q+1 = P̂Q. This means
that when the objective function convergences, the obtained coefficient matrix Aq and
relaxed assignment matrix P̂q also converge.

4 Experimental Results

In this section, the clustering performance of NDECSR is compared with K-means
clustering (KM), Normalized Cut (NCut) [13], Discriminative K-means (DKM) [14]
and Spectral Embedded Clustering (SEC) [8] via systematic experiments. Moreover,
the visualization results of NDECSR are also compared with two popular manifold
learning algorithms: LLE [3] and LE [4].

4.1 Data Sets

Experiments are conducted on three categories of data sets, which are popular bench-
mark data sets covering a wide range of applications.

UCI data: Three UCI data set Ionosphere, Iris and Wine are used in our experiments.

Image data: We perform experiments on four image data sets: ORL face data set1,
MNIST data set2, Coil-20 data set [15] and a scene category data set (Scene) [16],
which are the representatives of four different image recognition problems. For ORL
face data, the images are resized to 32×32. For MNIST data set we only select five
digits ’1’,’2’,’3’,’4’ and ’5’ and 300 images per digit. The Coil-20 data set contains 20
objects and each object has 72 images with size 32×32. In the original scene category
data set, there are 8 different scenes. We only select 4 different scenes including coast,
forest, high way and tall building. We use the feature called Spatial Envelope [16] to
represent each scene image, the feature is a 960-dimensional vector.

1 http://www.uk.research.att.com/facedatabase.html
2 http://yann.lecun.com/exdb/mnist/
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Text data: We also perform experiments on two text data sets: 20newsgroup3 and
TDT24. For 20newsgroup data set, we random choose 2380 documents from the topic
rec which contains autos, motorcycles, baseball and hockey, and delete the words that
occur less than 10 times in all these 2380 documents. The final TF-IDF representa-
tion of each document is a 4477-dimensional vector. For TDT2 data set, we select all
documents from categories 20013, 20070, 20044 and 20076, which are the categories
that contain 4th, 5th, 6th and 7th most documents, respectively. They are total 1931
documents and we also delete the words that occur less than 5 times, the final TF-IDF
representation of each document is a 7906-dimensional vector.

Table 1 summarizes the details of data sets used in our experiments. For the random
selected subset data, we conduct 10 random experiments to obtain the average results.

Table 1. Descriptions of the Data sets

category Data #Samples #Dim #class
Ionosphere 351 33 2

UCI Iris 150 4 3
Wine 178 13 3
ORL 400 1024 40

MNIST-12345 1500 784 5image
COIL20 1440 1024 20
Scene 1304 960 4

20NG rec 2380 4477 4text
TDT2 1931 7906 4

Table 2. Comparison of Clustering Accuracy of different methods

KM NCut DKM SEC NDECSR
Ionosphere 0.712 0.715 0.715 0.725 0.849

Iris 0.855 0.946 0.876 0.946 0.950
Wine 0.953 0.966 0.944 0.972 0.978
ORL 0.554 0.683 0.635 0.690 0.690

MNIST-12345 0.742 0.690 0.720 0.764 0.921
COIL20 0.615 0.806 0.635 0.834 0.861
Scene 0.641 0.890 0.739 0.871 0.895

20NG rec 0.632 0.904 0.844 0.907 0.943
TDT2 0.896 0.989 0.967 0.998 0.998

4.2 Clustering Evaluation and Parameter Selection

Two standard clustering evaluation metrics Clustering Accuracy (ACC) and Normalized
Mutual Information (NMI) are used in our experiments to evaluate the performance of
the involved clustering algorithms.

3 http://people.csail.mit.edu/jrennie/20Newsgroups/
4 http://www.nist.gov/speech/tests/tdt/tdt98/index.html
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Since many clustering algorithms have one or more parameters to be tuned, in order
to compare fairly, we run these algorithms under different parameters, and report their
best average results. For all clustering algorithms, the number of clusters is set to be
equal to the true number of classes for all data sets.

For all graph-based algorithms, such as Normalized Cut, SEC and our NDECSR
method, the width parameter σ in Gaussian similarity is automatically selected by self-
tuning spectral clustering method [17] and neighborhood size k is tuned from {5, 10,
15, 20, 50, 100}.

For our NDECSR method, we set m = min(#Dim, 15), where #Dim is the dimen-
sionality of original data. The dimensionality of the desired low dimensional space d
is selected from {3, 5, 10, 15} and no greater than m for all data sets. The trade-off
parameter γ is tuned from {10−6, 10−3, 0.01, 0.1, 0.5, 1, 5, 10, 50, 100, 103}.

For SEC, there are two trade-off parameters μ and γ. As the way in SEC [8], we set
γ = 1, and tune μ from {10−10, 10−7, 10−4, 10−1, 1, 102, 105, 108}.

Table 3. Comparison of Normalized Mutual Information of different methods

KM NCut DKM SEC NDECSR
Ionosphere 0.131 0.145 0.142 0.142 0.358

Iris 0.716 0.830 0.680 0.851 0.844
Wine 0.841 0.875 0.834 0.893 0.909
ORL 0.755 0.815 0.788 0.817 0.823

MNIST-12345 0.585 0.697 0.510 0.708 0.824
COIL20 0.746 0.877 0.765 0.922 0.943
Scene 0.508 0.713 0.560 0.721 0.741

20NG rec 0.483 0.724 0.606 0.730 0.754
TDT2 0.879 0.961 0.929 0.992 0.989

Given the constructed affinity graph and the number of clusters, there is no other pa-
rameter in Normalized Cut. DisKmeans needs to determine a regularization parameter
γ. We also tune it from {10−10, 10−7, 10−4, 10−1, 1, 102, 105, 108}.

For all methods that produce the continuous assignment matrix, we obtain the final
cluster results using the spectral rotation method introduced in [12].

4.3 Clustering Performance

The clustering performance of involved algorithms are compared in Table 2 and Table 3,
in both of which the best results are highlighted in boldface. From these comparisons,
one can see that our NDECSR method outperforms KM, NCut, DKM and SEC in most
cases. Especially on Ionosphere and MNIST 12345 data set, our NDECSR method can
significantly improve the clustering performance of the other methods. This demon-
strates that learning both smooth low dimensional coordinates and smooth cluster ma-
trix with respect to the data manifold can improve the clustering performance.
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4.4 Clustering Performance vs. Parameters

There are three parameters that should be specified manually in our NDECSR algo-
rithm. We have also performed extensive experiments to evaluate the sensitivity of clus-
tering performance of NDECSR to these parameters. Due to space limitations, we only
plot the ACC and NMI versus the parameters on wine and MNIST 12345 data set in
Figs. 1, 2, respectively. From these plots, one can see that the clustering performance is
a little sensitive to these three parameters. Generally, too large or too small parameters
will result in poor performance. Fortunately, for all data sets, we find that under the
parameter setting γ = 0.001, k = 10, d = 10, our NDECSR method can always obtain
good performance. So we can use this parameter setting for simplicity in practice.
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Fig. 1. Clustering performance of NDECSR with respect to different parameters on Wine data
set: (a) Clustering performance vs. γ with k = 20, d = 3; (b) Clustering performance vs. k with
γ = 0.001, d = 3; (c) Clustering performance vs. d with γ = 0.001, k = 20.
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Fig. 2. Clustering performance of NDECSR with respect to different parameters on
MNIST 12345 data set: (a) Clustering performance vs. γ with k = 5, d = 5; (b) Clustering per-
formance vs. k with γ = 0.01, d = 5; (c) Clustering performance vs. d with γ = 0.01, k = 5.

4.5 Comparison on the Embeddings

Besides the clustering result, our algorithm can also yield the nonlinear embedding
of original high dimensional data. While the traditional clustering algorithms such as
NCut, DKM and SEC have no such an ability. They can either obtain the linear em-
bedding or a fixed dimensionality embedding. Here we compare the 3D-embedding
obtained by our method with two popular manifold learning algorithms: LLE [3] and
LE [4]. The 3D embeddings of three algorithms on MNIST 12345 and Scene data set
are shown in Fig. 3 and 4. As can be seen, our NDECSR method can preserve the cluster
structure better than LLE and LE.
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(b) 3D embedding of LLE
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Fig. 3. Comparison on 3D embeddings of different methods on MNIST 12345 data set: (a) 3D
embedding of NDECSR under γ = 0.01, k = 5; (b) 3D embedding of LLE under neighborhood
size k = 10; (c) 3D embedding of LE under neighborhood size k = 10
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(b) 3D embedding of LLE
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Fig. 4. Comparison on 3D embeddings of different methods on Scene data set: (a) 3D embedding
of NDECSR under γ = 0.001, k = 5; (b) 3D embedding of LLE under neighborhood size
k = 10; (c) 3D embedding of LE under neighborhood size k = 10

5 Conclusions

Since traditional dimensionality reduction are developed originally for classification or
recovering the geometric structure of data (known as manifold), there exists intrinsic
separation between existing DRs and clustering. On the other hand, existing clustering
algorithms still have some problems when directly working on high dimensional data.
Therefore, in this paper, a novel dimensionality reduction method for clustering called
NDECSR is proposed. The key property of the proposed method is that the nonlinear
dimensional reduction and clustering task can be achieved simultaneously in a unified
framework. To our best knowledge, this is the first method that can yield both nonlinear
embedding and cluster result in a unified framework in the literature. Extensive exper-
iments on three data sets from UCI machine learning repository and real world image
and text document data sets demonstrate its effectiveness as a cluster algorithm as well
as its effectiveness as a nonlinear dimensionality reduction method.
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Abstract. This study proposes an efficient non-parametric classifier
for bankruptcy prediction using an adaptive fuzzy k -nearest neighbor
(FKNN) method, where the nearest neighbor k and the fuzzy strength
parameter m are adaptively specified by the particle swarm optimization
(PSO) approach. In addition to performing the parameter optimization
for FKNN, PSO is utilized to choose the most discriminative subset
of features for prediction as well. Time varying acceleration coefficients
(TVAC) and inertia weight (TVIW) are employed to efficiently control
the local and global search ability of PSO. Moreover, both the continuous
and binary PSO are implemented in parallel on a multi-core platform.
The resultant bankruptcy prediction model, named PTVPSO-FKNN, is
compared with three classification methods on a real-world case. The ob-
tained results clearly confirm the superiority of the developed model as
compared to the other three methods in terms of Classification accuracy,
Type I error, Type II error and AUC (area under the receiver operat-
ing characteristic (ROC) curve) criterion. It is also observed that the
PTVPSO-FKNN is a powerful feature selection tool which has indenti-
fied a subset of best discriminative features. Additionally, the proposed
model has gained a great deal of efficiency in terms of CPU time owing
to the parallel implementation.

Keywords: Fuzzy k -nearest neighbor, Parallel computing, Particle
swarm optimization, Feature selection, Bankruptcy prediction.

1 Introduction

Accurately identifying the potentially financial failure of companies remains a
goal of many stakeholders involved. Because there is no underlying economic
theory of bankruptcy, searching for more accurate bankruptcy prediction mod-
els remains the goal in the field of the bankruptcy prediction. A fair amount
of models has been developed for bankruptcy prediction. These models have
progressed from statistical methods to the artificial intelligence (AI) approach.
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A number of statistical methods such as the simple univariate analysis, multi-
variate discriminant analysis technique, logistic regression approach and factor
analysis technique have been typically used for financial applications includ-
ing bankruptcy prediction. Recent studies in the AI approach, such as artificial
neural networks (ANN) , rough set theory , support vector machines (SVM) ,
k -nearest neighbor method (KNN) and Bayesian network models have also been
successfully applied to bankruptcy prediction (see [1][2]). Among these tech-
niques, ANN has become one of the most popular techniques for the prediction
of corporate bankruptcy due to its high prediction accuracy. However, a ma-
jor disadvantage of ANN lies in their knowledge representation. The black box
nature of ANN makes it difficult for humans to understand how the networks
predict the bankruptcy.

Compared with ANN, KNN is simple, easily interpretable and can achieve
acceptable accuracy rate. Albeit these advantages, the standard KNN methods
place equal weights on all the selected neighbors regardless of their distances
from the query point. In this way, once the class has been assigned, there is no
indication of the significance of membership to indicate how much the instance
belongs to a particular class. An improvement over the standard KNN classifier
is the Fuzzy k -nearest neighbor classifier (FKNN) [3], which uses concepts from
fuzzy logic to assign degree of membership to different classes while considering
the distance of its k nearest neighbors. The FKNN method has been frequently
used for the classification of biological data, image data and so on. Nevertheless,
only few works have paid attention to using FKNN to classify the financial
data. Bian et al. [4] used FKNN as a reference classifier in their experiments in
order to show the superiority of the proposed Fuzzy-rough KNN method, which
incorporated the rough set theory into FKNN to further improve the accuracy of
bankruptcy prediction. However, they did not comprehensively investigate the
nearest neighbors k and the fuzzy strength parameter m, which play a significant
role in improving the prediction power for FKNN. This study aims to explore
the full potential of FKNN by automatically determining k and m to exploit the
maximum classification accuracy for bankruptcy prediction.

Besides choosing a good learning algorithm, feature selection is also an im-
portant issue in building the bankruptcy prediction models [5], which refers to
choosing subset of attributes from the set of original attributes. The purpose of
the feature selection is to identify the significant features, eliminate the irrel-
evant of dispensable features and build a good learning model. In bankruptcy
prediction, genetic algorithms (GA) are usually used to select a subset of input
features or to find appropriate hyper-parameter values of a predictor. Compared
with GA, particle swarm optimization (PSO) algorithm has no crossover and mu-
tation operators, it is simple and computationally inexpensive both in memory
and runtime. In this work, we will focus on exploring the PSO-based parameter
optimization and feature selection approach. The continuous PSO algorithm will
be employed to evolve an adaptive FKNN, where the nearest neighbor k and the
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fuzzy strength parameter m are adaptively specified. On the other hand, the
binary PSO will be used as a feature selection vehicle to identify the most infor-
mative features as well.

When dealing with the practical problems, the evolutionary-based methods
such as the PSO and GA will cost a lot of computational time. There is an urgent
need to improve the performance using high-performance computing techniques.
For this reason, it is one of the major purposes of this paper to use a parallel
environment to speed up the search and optimization process. Both the con-
tinuous and binary time variant PSO are implemented on a multi-core platform
using OpenMP (Open Multi-Processing) which is a portable, scalable model that
gives programmers a simple and flexible interface for developing parallel appli-
cations for platforms [6]. The efficacy of the proposed bankruptcy prediction
model PTVPSO-FKNN is compared with three reference classification meth-
ods on a real-world case. All these classifiers are compared with respect to the
classification accuracy, Type I error, Type II error and the AUC (area under
the receiver operating characteristic (ROC) curve) criterion. The experimen-
tal results demonstrate that the proposed model can not only obtain the most
appropriate parameters but also show high discriminating power as a feature
selection tool. Further comparison is also made between the parallel model and
serial model. Based on the experiments conducted, it is inferred that the parallel
model PTVPSO-FKNN can significantly reduce the computational time.

The rest of the paper is organized as follows. In Section 2, we give a brief
description of the fuzzy k -nearest neighbor method (FKNN) and particle swarm
optimization algorithm (PSO). Section 3 proposes our model, the simultaneous
optimization of relevant parameters and feature subset by the PSO approach
in a parallel environment. In the next section, the detailed experimental design
is presented, and Section 5 describes all the empirical results and discussion.
Finally, Conclusions are summarized in Section 6.

2 Background Materials

2.1 Fuzzy k-Nearest Neighbor Algorithm (FKNN)

The k -nearest neighbor algorithm (KNN) is one of the oldest and simplest non
parametric pattern classification methods [7]. In the KNN algorithm a class is
assigned according to the most common class amongst its k nearest neighbors.
In 1985, Keller proposed a fuzzy version of KNN by incorporating the fuzzy set
theory into the KNN algorithm, and named it as ”fuzzy KNN classifier algo-
rithm” (FKNN) [3]. According to his approach, rather than individual classes as
in KNN, the fuzzy memberships of samples are assigned to different categories
according to the following formulation:

ui(x) =

k∑
j=1

uij(1/||x− xj ||2/(m−1) )

k∑
j=1

(1/||x− xj ||2/(m−1) )
(1)
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where i = 1, 2, · · · , c, and j = 1, 2, · · · , k, with c number of classes and k number
of nearest neighbors. The fuzzy strength parameter m is used to determine how
heavily the distance is weighted when calculating each neighbor’s contribution to
the membership value, and its value is usually chosen as m ∈ (1, +∞). ‖x− xj‖
is the Euclidean distance between x and its jth nearest neighbor xj . And uij

is the membership degree of the pattern xj from the training set to the class i,
among the k nearest neighbors of x. There are two ways to define uij , one way
is the crisp membership, i.e., each training pattern has complete membership in
their known class and non-memberships in all other classes. The other way is
the constrained fuzzy membership, i.e., the k nearest neighbors of each training
pattern (say xk) are found, and the membership of xk in each class is assigned
as:

uij(xk) =

{
0.51 + (nj/K) ∗ 0.49, if j = i

(nj/K) ∗ 0.49, otherwise.
(2)

The value nj is the number of neighbors found which belong to the jth class. In
our experiments, we have found that the second way lead to better classification
accuracy. After calculating all the memberships for a query sample, it is assigned
to the class with which it has the highest membership value.

2.2 Time Variant Particle Swarm Optimization (TVPSO)

Particle swarm optimization (PSO) was first developed by Kennedy and Eber-
hart [8]. In PSO each individual is treated as a particle in d -dimensional space,
and each particle has a position and velocity. The position vector of the ith par-
ticle is represented as Xi = (xi,1, xi,2, . . . , xi,d), and its corresponding velocity
is represented as Vi = (vi,1, vi,2, . . . , vi,d). The velocity and position are updated
as follows:

vn+1
i,j = w × vn

i,j + c1 × r1(p
n
i,j − xn

i,j) + c2 × r2(p
n
g,j − xn

i,j) (3)

xn+1
i,j = xn

i,j + vn+1
i,j , j = 1, 2, · · · , d (4)

where vector Pi = (pi,1, pi,2, . . . , pi,d) represents the best previous position of
the ith particle that gives the best fitness value, which is known as the personal
best position (pbest). Vector Pg = (pg,1, pg,2, . . . , pg,d) is the best particle among
all the particles in the population, which is known as the global best position
(gbest). r1 and r2 are random numbers, generated uniformly in the range [0, 1].
The velocity vi,j is restricted to the range [−vmax, vmax]. Inertia weight w is
updated according to the following equation:

w = wmin + (wmax − wmin)
(tmax − t)

tmax
(5)

where wmax, wmin are the predefined maximum and minimum values of the
inertia weight w, t is the current iteration of the algorithm and tmax is the max-
imum number of iterations. Eq. (5) is also known as Time varying inertia weight



An Adaptive Fuzzy k -Nearest Neighbor Method for Bankruptcy Prediction 253

(TVIW), which will be incorporated to the TVPSO. c1 and c2 are acceleration
coefficients, to better balance the search space between the global exploration
and local exploitation, Time varying acceleration coefficients (TVAC) have been
introduced in [9]. This concept will be adopted in this study to ensure the better
search for the solutions. The core idea of TVAC is that c1 decreases from its
initial value of c1i to c1f , while c2 increases from c2i to c2f using the following
equations as in [9]. TVAC can be mathematically represented as follows:

c1 = (c1f − c1i)
t

tmax
+ c1i (6)

c2 = (c2f − c2i)
t

tmax
+ c2i (7)

where c1f , c1i, c2f and c2i are constants, t is the current iteration of the algorithm
and tmax is the maximum number of iterations. For the binary PSO, one discrete
PSO version introduced by Kennedy and Eberhart [10] was employed to act as
the feature selection tool. In the binary PSO, A sigmoid function is applied to
transform the velocity from continuous space to probability space:

sig(vi,j) =
1

1 + exp(−vi,j)
, j = 1, 2, . . . , d (8)

The velocity update Eq. (3) keeps unchanged except that xi,j , pi,j and pg,j ∈
{0, 1}, and in order to ensure that bit can transfer between 1 and 0 with a
positive probability, vmax was introduced to limit vi,j . The new particle position
is updated using the following rule:

xn+1
ij =

{
1, if rnd < sig(vi,j)
0, if rnd ≥ sig(vi,j)

, j = 1, 2, · · · , d (9)

where sig(vi,j) is calculated according to Eq. (8), and rand is a uniform random
number in the range [0, 1].

3 Proposed PTVPSO-FKNN Prediction Model

In this section, we describe the proposed PTVPSO-FKNN model for bankruptcy
prediction. As mentioned in the Introduction, the aim of this model is to opti-
mize the FKNN classifier by automatically: 1) determining the nearest neighbor
k and the fuzzy strength parameter m and 2) identifying the subset of best
discriminative features. In order to achieve this goal, the continuous and binary
time variant PSO are combined together to dynamically conduct the parameter
optimization and feature selection. The obtained appropriate feature subset can
served as the input into the FKNN classifier to conduct the classification task.
Here, we first describe the model based on the serial PSO algorithm, termed
TVPSO-FKNN, and then implement it in parallel.
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3.1 TVPSO-FKNN Model Based on the Serial PSO Algorithm

The flowchart of the TVPSO-FKNN model for bankruptcy prediction was con-
structed through the following main steps as shown in Fig. 1.

– Step 1: Encode the particle with n+2 dimensions. The first two dimensions
are k and m which are continuous values. The remaining n dimensions is
Boolean features mask, which is represented by discrete value, ’1’ indicates
the feature is selected, and ’0’ represents the feature is discarded.

– Step 2: Initialize the individuals of the population with random numbers.
Meanwhile, specify the PSO parameters including the lower and upper
bounds of the velocity, the size of particles, the number of iterations, etc.

– Step 3: Train the FKNN with the selected feature vector in Step 2.
– Step 4: It is well known that higher the AUC value the better the classifier

is said to be. And the particle with high AUC value and the small number
of selected features can produce a high fitness value. Hence, we took both of
them into consideration in designing the fitness function, The fitness value
was calculated according to the following objective function:⎧⎪⎨⎪⎩

f1 = AUC

f2 = (1−
∑n

j=1 fti

n )
f = α× f1 + β × f2

(10)

where variable AUC in the first sub-objective function f1 represents the
area under the ROC curve achieved by the FKNN classifier via K-fold cross-
validation (CV), here K=5. Note that here the 5-fold CV is used to determine
the optimal parameters (including k and m) which is different from the
outer loop of 10-fold CV, which is used to do the performance estimation.
In the second sub-objective function f2, fti is the value of feature mask (’1’
represents that feature is selected and ’0’ indicates that feature is discarded),
n is the total number of features. The weighted summation of the two sub-
objective functions is selected as the final sub-objective function. In the
function f , variable α is the weight for FKNN classification accuracy, β
indicates the weight for the selected features. The weight can be adjusted
to a proper value depends on the importance of the sub-objective function.
Because the classification performance more depend on the classification
accuracy, hence the α value is set as much bigger than that of β. According to
our preliminary experiments, the value of α and β were taken as 0.85 and 0.15
respectively. After the fitness value was obtained, the global optimal fitness
was saved as gfit, personal optimal fitness as pfit, global optimal particle as
gbest and personal optimal particle as pbest.

– Step 5: Increase the number of iteration.
– Step 6: Increase the number of population. Update the position and velocity

of k, m using Eqs.(3-4) and the features using Eq.(3), Eqs.(8-9) in each
particle.

– Step 7: Train the FKNN classifier with the feature vector obtained in Step 6
and calculate the fitness value of each particle according to Eq. (10). Notice
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that PSO is used for optimization tasks where the nearest neighbor k to
be optimized is integer number. Hence, an extra step is taken to round
the encoded value k to the nearest integer number before the particle is
evaluated.

– Step 8: Update the personal optimal fitness (pfit) and personal optimal posi-
tion (pbest) by comparing the current fitness value with the pfit stored in the
memory. If the current fitness is dominated by the pfit stored in the memory,
then keep the pfit and pbest in the memory; otherwise, replace the pfit and
pbest in the memory with the current fitness value and particle position.

– Step 9: If the size of the population is reached, then go to Step 10. Otherwise,
go to Step 6.

– Step 10: Update the global optimal fitness (gfit) and global optimal particle
(gbest) by comparing the gfit with the optimal pfit from the whole pop-
ulation, If the current optimal pfit is dominated by the gfit stored in the
memory, then keep the gfit and gbest in the memory; otherwise, replace the
gfit and gbest in the memory with the current optimal pfit and the optimal
pbest from the whole population.

– Step 11: If the stopping criteria are satisfied, then go to Step 12. Otherwise,
go to Step 5. The termination criteria are that the iteration number reaches
the maximum number of iterations or the value of gfit does not improve after
100 consecutive iterations.

– Step 12: Get the optimal (k, m) and feature subset from the best particle
(gbest).

3.2 Parallel Implementation of the TVPSO-FKNN Model on the
Multi-core Platform (PTVPSO-FKNN)

In this section, we put forward a parallel implementation of TVPSO-FKNN
model which is performed on multi-core processor by using OpenMP. The ar-
chitecture of the multi-core platform is divided into three lays as shown in Fig.
2(a): 1) TVPSO-FKNN: It consists of a number of particles, which can supply
computing requirements. The parallel algorithm controls the iterations of par-
ticles and each particle is calculated separately. 2) OpenMP: It guarantees to
implement parallel synchronization and establish the communications with op-
erating system (OS). The main part of OpenMP is scheduler, which provides
the system with job scheduling and allocation. 3) Multi-core processor: The job
is dispatched by OpenMP via OS.

The pseudo-code of the parallel TVPSO-FKNN is summarized in Algorithm 1.

4 Experimental Design

4.1 Data Description

The financial data used for this study was taken from Wieslaw [11] dataset
which contains 30 financial ratios and 240 cases in total (112 from bankrupt
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Algorithm 1. PTVPSOFKNN

Initialize system parameters.
Train FKNN model.
//current number of iteration (cni), maximum number of iteration (mni)
while cni < mni do

for each particle do
Update position.
Update velocity.
Train FKNN model.
Calculate fitness.
Calculate pfit. // personal optimal fitness (pfit)
Calculate pbest. // personal optimal position (pbest)

end for
Calculate gfit. // global optimal fitness (gfit)
Calculate gbest. // global optimal particle (gbest)
cni =cni + 1.

end while

Polish companies and 128 from non-bankrupt ones between 1997 and 2001).
All the observations cover the period spanning 2 to 5 years before bankruptcy
toke place. It should be noted that the size of the data set is not that large
compared to the majority of bankruptcy prediction studies. However, according
to [12], the dataset is reliable since increasing the dataset length does not lead
to the accuracy increase. Fig. 2(b) illustrates the distribution of the two classes
of 240 samples in the subspace formed by the two best features according to the
principal component analysis (PCA) algorithm. As shown in this figure, there is
apparently strong overlap between the bankrupt companies and non-bankrupt
ones.

Data was normalized by scaling them into the interval of [−1, 1]. In order to
gain an unbiased estimate of the generalization accuracy, the k -fold CV presented
by Salzberg [13] was used to evaluate the classification accuracy. This study set k
as 10, i.e., the data was divided into ten subsets. Each time, one of the 10 subsets
is used as the test set and the other 9 subsets are put together to form a training
set. Then the average error across all 10 trials is computed. The advantage of
this method is that all of the test sets are independent and the reliability of the
results could be improved.

4.2 Experimental Setup

The proposed PTVPSO-FKNN model was implemented using Visual C++ 2008
and OpenMP. For SVM, LIBSVM implementation is utilized, which was orig-
inally developed by Chang and Lin [14]. We implemented the PSO algorithm,
FKNN and KNN from scratch. The MLP was created, trained and implemented
using Matlab neural network toolbox with BP and the training algorithm of
Levenberg-Marquardt. The computer is Intel Quad-Core Xeon 2.0 GHz CPU; 4
GB RAM and the system is Windows Server 2003.
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Fig. 2. (a)The architecture of parallel running environment of TVPSO-FKNN. (b)Two-
dimensional distribution of the two classes (bankrupt and non-bankrupt) in the sub-
space formed by the best couple of features obtained with the PCA algorithm.

The detail parameter setting for PTVPSO-FKNN was set as follows. The
number of the iterations and particles was set to 250 and 8, respectively. The
searching ranges for k and m are as follows: k ∈ [1, 100] and m ∈ [1, 10]. vmax

was set about 60% of the dynamic range of the variable on each dimension for
the continuous type of dimensions. Therefore, [−vmax, vmax] was predefined as
[0.6, 60] for parameter k, and as [0.6, 6] for parameter m. For the discrete type
particle for feature selection, [−vmax, vmax] was set as [−6, 6]. As suggested in
[9],c1i,c1f ,c2i and c2f were set as follows: c1i = 2.5,c1f = 0.5,c2i = 0.5,c2f = 2.5.
According to our preliminary experiment, wmax and wmin were set to 0.9 and
0.4, respectively.

For SVM, we considered the nonlinear SVM based on the popular Gaussian
(RBF) kernel, and a grid-search technique [15] was employed using 10-fold CV
to find out the optimal parameter values of RBF kernel function. The range of
the related parameters C and γ were varied between C = {2−5, 2−3, . . . , 215}
and γ = {2−15, 2−13, . . . , 21}. For KNN, we found the best result was achieved
when k = 1 by using 10-fold CV. Therefore, we selected k = 1 for the subsequent
analysis. Concerning MLP, we used the three layer back-propagation network to
train ANN. We tried different settings of the number of nodes in the hidden
layers (5, 10, 15, 20, 25 and 30) and the different learning epochs (50, 100, 200
and 300) as the stopping criteria for training. The best result was obtained with
the hidden layer of 15 and the learning epoch of 200.

4.3 Measure for Performance Evaluation

Type I error, Type II error, total classification accuracy (ACC) and the area
under the Receiver Operating Characteristic curve (AUC) [16] were used to
test the performance of the proposed PTVPSO-FKNN model. They were the
most widely used measures to assess the performance of bankruptcy prediction
systems [1]. Type I and Type II errors were two important measures which
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described how well the classifier discriminates between case with non-bankruptcy
and with bankruptcy. Type I error measures the proportion of bankrupt cases
which are incorrectly identified as non-bankrupt ones. Type II error measures the
proportion of non-bankrupt cases which are incorrectly identified as bankrupt
ones. The receiver operating characteristic (ROC) curve is a graphical display
that gives the measure of the predictive accuracy of a logistic model [16]. The
curve displays the true positive rate and false positive rate. AUC is the area
under the ROC curve, which is one of the best methods for comparing classifiers
in two-class problems.

5 Experimental Results and Discussion

5.1 Experiment I: Classification in the Whole Original Feature
Space

As mentioned earlier, in this experiment we evaluated the effectiveness of the
proposed model on the entire feature space with 30 features (financial ratios).
In order to verify the effectiveness of the proposed model, TVPSO-FKNN was
compared with three other reference classifiers (SVM, KNN and ANN). Table
1 shows the results achieved with all four investigated classifiers (PTVPSO-
FKNN, SVM, KNN and ANN) for the financial data with the form of ’average
± standard deviation’. It is well known that higher the AUC value the better the
classifier is said to be. Accordingly, the classifiers are arranged in the descending
order of AUC in the table. As clearly indicated in the table, PTVPSO-FKNN
outperforms all other methods with the classification accuracy of 81.67%, Type
I error of 17.58%, Type II error of 19.04% and AUC of 81.69%. MLP is next to
PTVPSO-FKNN with classification accuracy of 77.92%, Type I error of 20.84%,
Type II error of 21.46% and AUC of 78.71%, followed by KNN and SVM. The
superiority of the PTVPSO-FKNN is statistically significant as shown by the
paired t -test in Tables (2-3), where the significant level is 5%. The results are
interesting and exciting, it suggests that the FKNN approach can become a
promising alternative bankruptcy prediction tool in financial decision-making,
where SVM and ANN are known to be the best models [2].

The better performance of the proposed model can be explained by the fact
that the TVPSO has aided the FKNN classifier to achieve the maximum classi-
fication performance by automatically detecting the optimal nearest neighbor k

Table 1. The ACC, Type I and Type II errors and AUC achieved with different
classifiers

Classifiers ACC (%) Type I error (%) Type II error (%) AUC (%)

PTVPSO-FKNN 81.67±2.15 17.58±0.78 19.04±3.96 81.69±2.04
SVM 76.67±4.65 18.96±8.46 26.55±7.93 77.26±5.62
KNN 78.75±3.65 21.46±5.07 21.39±4.13 78.57±3.78
MLP 77.92±5.22 20.84±7.21 21.46±9.84 78.71±6.48
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Table 2. Paired t-test results of Type I and Type II error

Type I error / Type II error TVPSO-FKNN t-value (significance)

MLP -2.243(0.037)/-2.589(0.047)
KNN -2.332(0.045)/-2.366(0.042)
SVM -3.045(0.026)/-3.122(0.032)

Negative values indicate that the ith classifier has a Type I error /Type II error
higher than that of the jth one.

Table 3. Paired t-test results of ACC and AUC

ACC / AUC TVPSO-FKNN t-value (significance)

MLP -3.345(0.017)/-3.623(0.021)
KNN -3.280(0.009)/-3.168(0.011)
SVM -4.458(0.005)/-4.854(0.023)

Negative values indicate that the ith classifier has an
ACC/AUC lower than that of the jth one.

Table 4. The detailed parameter values obtained through 10-fold CV

Fold #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

k 23 33 55 14 1 25 86 43 22 15
m 1.27 1.33 1.39 1.35 1.29 1.34 1.67 1.45 1.32 3.00

and the fuzzy strength parameter m. The detailed values of parameters k and m
via 10-fold CV using the proposed model is shown in Table 4. From the table, it
can be observed that the values of k and m are different for each fold of the data.
And according to our preliminary experiment, they can be varied automatically
when perform another run of 10-fold CV. The explanation lies in the fact that
the two parameters are evolved together by the TVPSO algorithm according
to the specific distribution of the training data at hand. It indicates that the
optimal values of k and m can always be adaptively specified by TVPSO during
each run of the experiment. Moreover, it is interesting to see that the standard
deviation for the acquired performance by the PTVPSO-FKNN is much smaller
than that of the other three classifiers, which indicates consistency and stability
of the proposed model.

5.2 Experiment II: Classification Using the PTVPSO-FKNN Model
with Feature Selection

As described earlier, the proposed PTVPSO-FKNN model aimed at enhanc-
ing the FKNN classification process by not only dealing with the parameters
optimization but also automatically identifying the subset of the most discrimi-
native features. In this experiment, we attempt to explore the capability of the
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PTVPSO-FKNN to further boost the performance of the FKNN classifier by
using the TVPSO. Table 5 lists the best results of PTVPSO-FKNN with and
without feature selection for Wieslaw dataset. As shown in this table, results
obtained using PTVPSO-FKNN with feature selection significantly outperforms
PTVPSO-FKNN without feature selection in terms of the Type I error, Type
II error, AUC and classification accuracy at the statistical significance level of
5%. By using feature selection, the classification accuracy, AUC values, Type I
error and Type II error have been improved by 2.5%, 2.55%, 1.71% and 3.38%
on average, respectively.

Table 5. Experimental results of the PTVPSO-FKNN with and without feature
selection(%)

Performance metric PTVPSO-FKNN with-
out feature selection

PTVPSO-FKNN with feature selection Paired t−test
p-value

Type I error 17.58±0.78 15.87±2.42 0.0429
Type II error 19.04±3.96 15.66±1.94 0.0202
AUC 81.69±2.04 84.24±1.75 0.0029
ACC 81.67±2.15 84.17±1.76 0.0051

To explore how many features and what features are selected during the PSO
feature selection procedure, we further conducted an experiment on the Wieslaw
dataset to investigate the detail of the feature selection mechanism of the PSO
algorithm. The original numbers of features of the dataset is 30. As shown in
Table 6, not all features are selected for classification after the feature selec-
tion. Furthermore, feature selection has increased the classification accuracy, as
demonstrated in Table 5. The average number of selected features by PTVPSO-
FKNN is 15.3, and its most important features are X1, X2, X4, X5, X7, X9,
X16, X18, X20, X23, X25 and X27, which can be found in the frequency of the
selected features of 10-fold CV as shown in Fig. 3(a). It should be noticed that
important features (financial ratios) selected by the proposed model are indeed
important from the knowledge perspective also as they are related to current
liabilities and long term liabilities, current assets, shareholders’ equity and cash,
sales, inventory, working capital, net profit, receivables, liabilities, total assets.

To observe the evolutionary process in PTVPSO-FKNN, Fig. 3(b) shows the
evolution of the best fitness for fold #1 during 10-fold CV. The evolutionary
processes are quite interesting. It can be observed that the fitness curves gradu-
ally improved from iteration 1 to 130 and exhibited no significant improvements
after iteration 22, eventually stopped at the iteration 130 where the particles
reached the stopping criterion(100 successively same gbest values). The fitness
increase rapidly in the beginning of the evolution, after certain number of gen-
erations, it starts increasing slowly. During the latter part of the evolution, the
fitness keeps stability until the stopping criterion is satisfied. It demonstrates
that PTVPSO-FKNN can converge quickly toward the global optima, and fine
tune the solutions very efficiently. The phenomenon illustrates the effectiveness
of PTVPSO-FKNN in simultaneously evolving the parameters (k and m) and
the features through using TVPSO algorithm.
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Table 6. The subset of features selected by PTVPSO-FKNN via 10-fold CV

Fold Selected features

#1 X2 X4 X5 X7 X10 X11 X12 X15 X20 X22 X23 X26 X27

#2 X1 X3 X4 X6 X7 X8 X11 X13 X15 X16 X17 X18 X19 X20 X23

X25 X30

#3 X1 X2 X4 X6 X7 X9 X13 X16 X20 X22 X23 X24 X25 X27

#4 X1 X2 X3 X4 X5 X9 X10 X12 X13 X15 X17 X18 X20 X22 X23

X24 X25 X29

#5 X1 X2 X3 X6 X7 X8 X9 X10 X11 X12 X15 X18 X19 X20 X23 X25

X27 X28 X29 X30

#6 X5 X7 X9 X14 X17 X18 X19 X21 X23 X24 X25 X27 X30

#7 X2X4 X5 X7 X8 X12 X13 X16 X17 X18 X21 X23 X25 X29 X30

#8 X1 X2 X3 X4 X5 X7 X8 X16 X19 X20 X25 X27 X29

#9 X1 X5 X9 X12 X16 X18 X20 X23 X24 X25 X26 X28

#10 X1 X2 X5 X8 X9 X10 X11 X14 X15 X16 X17 X18 X21 X23 X25

X27 X28 X30
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Fig. 3. (a) The frequency of the selected features in 10-fold CV on Wieslaw dataset.
(b) The best fitness during the training stage for fold #1.

5.3 Experiment III: Comparison between the Parallel
TVPSO-FKNN Model and the Serial One

In order to reduce further the running time of the serial TVPSO-FKNN model,
we implemented the TVPSO-FKNN model on a multi-core platform. To vali-
date the efficiency of the parallel version, here we attempted to compare the
performance of the PTVPSO-FKNN with that of TVPSO-FKNN. Table 7 re-
ported the best results of Type I error, Type II error, ACC, AUC and the
average computational time in seconds using the two models. It can be seen that
PTVPSO-FKNN and TVPSO-FKNN give almost the same results, the minor
different results between two models may be attributed to different partitions of
the data are chosen when perform different runs of 10-fold CV. Thus, it verifies
the correctness of the parallel design and implementation. However, the training
time for the TVPSO-FKNN was 3.3 times that of the PTVPSO-FKNN, which
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indicates that the TVPSO-FKNN has benefited a great deal from the parallel
implementation with respect to the computational time. Additionally, it should
be noted that only a quad-core processor was used in this experiment, thus the
computational time will be further reduced with increase of the cores.

Table 7. The performance comparison of PTVPSO-FKNN with TVPSO-FKNN

Performance metric PTVPSO-FKNN TVPSO-FKNN

Type I error (%) 15.87±2.42 15.53±2.56
Type II error (%) 15.66±1.94 15.95±1.87
AUC (%) 84.24±1.75 84.26±1.98
ACC (%) 84.17±1.76 84.20±1.55
CPU Time (s) 1150.46±23.34 3796.51±30.45

6 Conclusions

This study provides an attractive model PTVPSO-FKNN for bankruptcy predic-
tion. The main novelty of this model is in the proposed TVPSO-based approach,
which aims at aiding the FKNN classifier to achieve the maximum classification
performance. On the one hand, the continuous TVPSO is employed to adaptively
specify the two important parameters k and m of the FKNN classifier. On the
other hand, the binary TVPSO is adopted to identify the most discriminative
features. Moreover, both the continuous and binary TVPSO are implemented
in a parallel environment to reduce further the computational time. The ex-
perimental results demonstrate that the developed model performs significantly
better than the other three state-of-the-art classifiers (KNN, SVM and MLP) in
financial application field in terms of the Type I error, Type II error, ACC and
AUC on a real life dataset. Moreover, the experiment reveals that the PTVPSO-
FKNN is also a powerful feature selection tool which has detected a subset of
best discriminative financial ratios that are really important from the knowledge
perspective. Furthermore, the proposed model computes rather efficiently owing
to the high performance computing technology.

Hence, it can be safely concluded that, the developed PTVPSO-FKNN model
can serve as a promising alternative early warning system in financial decision-
making. Meanwhile, we should note that the proposed model does perform effi-
ciently on the data at hand; however, it is not obvious that the parallel algorithm
will lead to significant improvement when applying to the financial data with
larger instances. Future investigation will pay much attention to evaluating the
proposed model in the larger dataset.
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Abstract. Semi-supervised clustering can yield considerable improve-
ment over unsupervised clustering. Most existing semi-supervised clus-
tering algorithms are non-hierarchical, derived from the k-means
algorithm and designed for analyzing numeric data. Clustering
categorical data is a challenging issue due to the lack of inherently mean-
ingful similarity measure, and semi-supervised clustering in the cate-
gorical domain remains untouched. In this paper, we propose a novel
semi-supervised divisive hierarchical algorithm for categorical data. Our
algorithm is parameter-free, fully automatic and effective in taking ad-
vantage of instance-level constraint background knowledge to improve
the quality of the resultant dendrogram. Experiments on real-life data
demonstrate the promising performance of our algorithm.

1 Introduction

Clustering categorical data is more challenging than clustering numeric data due
to the lack of an inherently meaningful similarity measure. With large amounts
of categorical data being generated in real life, clustering of categorical data has
been receiving increasing attention in recent years [3,7,9,10,16,20]. Moreover, in
many real-life applications on categorical data, prior knowledge exists in relation
to the need or the goal of the data analysis. For example, when a market analyst
performs clustering for market segmentation from survey data, he/she will likely
want that the customers from the same family be grouped together instead
of trivial separation between men and women. None of existing algorithms for
clustering categorical data can exploit such prior background knowledge.

Most existing semi-supervised clustering algorithms are non-hierarchical and
focus on analyzing numeric data [5]. These non-hierarchical clustering algorithms
are derived from the k-means algorithm [2,4,14,18,19]. Besides the k-means vari-
ants, labeled instances have been used to help set the parameters of a density-
based clustering algorithm in [15], as appropriately setting the parameters is
critical but difficult, especially when the density of the clusters differs widely.
However, neither the concept of objective function or Euclidean distance used in
the non-hierarchical methods nor the density notion in density-based clustering
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algorithms is naturally meaningful for categorical data. Moreover, most of exist-
ing algorithms have some parameters to tune, these parameter-laden algorithms
impose our prejudices and presumptions on the data [12].

Incorporating instance-level constraints in hierarchical clustering is more chal-
lenging than in partitioning clustering due to the feasibility problem of satisfying
the constraints [5,19]. Some studies suggest that hierarchical algorithms can pro-
duce better-quality clusters [11,17]. However, little work has been done on the
application of background knowledge to hierarchical clustering [4,13], and even
these few published hierarchical algorithms are all agglomerative, not divisive.
The concept of comparing similarity between pairwise instances, which is used in
agglomerative method, is not suitable for categorical data [9,20], thus the error-
propagation issue of agglomerative method is even more critical in categorical
domain. Furthermore, the high time complexity of agglomerative methods pre-
vents them from being used on very large data sets.

In this paper, we propose several novel concepts and methods suitable for cat-
egorical data, based on which, we propose a semi-supervised clustering algorithm
for categorical data. We view semi-supervised clustering of categorical data as
an optimization problem with extra instance-level constraints. As the optimiza-
tion problem in the clustering is NP hard [1], thereby we propose a heuristic
approach to guide the optimization process to a better solution in terms of sat-
isfying the constraints. We name the new algorithm SDHCC (Semi-supervised
Divisive Hierarchical Clustering of Categorical data). SDHCC is systematic and
parameter-free. To our knowledge, SDHCC is the first semi-supervised clustering
algorithm for categorical data.

2 Instance-Level Constraints

In this paper, prior background knowledge is provided as must-link and cannot-
link constraints on pairs of instances [18,19]. A must-link constraint indicates
that the two instances have to be in the same cluster, while a cannot-link con-
straint indicates that the two instances must not be placed in the same cluster.

Since must-link constraints are equivalence relations, they can be used to gen-
erate transitive closures. Cannot-link constraints then can be transformed to a
cannot-link matrix representing link relationship between closures. In this pa-
per, a transitive closure is also called a constraint closure. Besides the transitive
closure, a single instance which is not involved in any must-link constraint but
is involved in a cannot-link constraint is also called a constraint closure.

The cannot-link matrix is generated from the constraint closures and the
cannot-link constraints. Let l be the number of constraint closures; then the
cannot-link matrix M is of order l× l, where mij = 1 if closure ci and cj cannot
link, otherwise, mij = 0. Closures ci and cj cannot link if ∃Xi ∈ ci and ∃Xj ∈ cj

such that (Xi, Xj) is in the set of cannot-link constraints. Thus the cannot-link
matrix M is a symmetric Boolean matrix.

The feasibility of satisfying all constraints for non-hierarchical and agglom-
erative hierarchical clustering has been studied in [4,5]. The feasibility problem
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is more complex in divisive hierarchical clustering, because a divisive method
starts with an all-inclusive cluster containing all the instances, and repeatedly
chooses one cluster to split into two sub-clusters, which may make violations of
cannot-link constraints unavoidable lower down (closer to the root) in the clus-
tering hierarchy. In this paper, must-link constraints are satisfied at all levels of
the clustering tree, whereas cannot-link violation is tolerated, especially at the
lower levels (closer to the root). Note that we assume the constraints are con-
sistent, dealing with the erroneous constraints is out of the scope of this paper.
The following definitions help to measure the degree of cannot-link violation in
a cluster (under the assumption that all the must-link constraints are satisfied).

Definition 1. Given two constraint closures ci and cj, and the cannot-link ma-
trix M , the cannot-link weight of the closure ci with respect to cj is

wi(j) =

{
|cj |, mij = 1;
0, mij = 0.

where |cj | is the number of instances in closure cj.

Definition 2. The degree of cannot-link violation of cluster C is defined as:

w(C) =
∑
ci∈C

w(ci|C) =
∑
ci∈C

∑
cj∈C

wi(j) (1)

where w(ci|C) =
∑

cj∈C wi(j) is the cannot-link weight of ci in cluster C.

3 The Algorithm

The categorical data set χ = {Xi}n
i=1 is represented by an indicator matrix,

denoted as Z. Each instance Xi is a multidimensional vector of m categorical
attributes with domains D1, · · · , Dm, respectively. In the new data representa-
tion, each categorical value represents a dimension. Let J =

∑m
t=1 |Dt| be the

total number of categorical values, then the indicator matrix Z is of order n×J ,
and the general entry of the indicator matrix Z is as follows:

zij =

{
1, if instance Xi takes the jth value (1 ≤ j ≤ J);
0, otherwise.

In the following presentation of this paper, we use Zi to denote instance Xi

according to the indicator matrix data representation.
We view constraint-free clustering categorical data from an optimization per-

spective, and propose a novel objective function, i.e., the sum of Chi-square error
(SCE). We set the objective of clustering χ into K clusters to minimize SCE,
which is defined as follows:

SCE =
K∑

k=1

∑
Zi∈Ck

dChi(Zi, Ck) (2)
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where K is the number of clusters. dChi(Zi, Ck) is the Chi-square distance be-
tween instance Zi and Cluster Ck, which is defined as follows:

dChi(Zi, Ck) =
∑

j

(zij − μkj)2

μkj
(3)

Here μkj(1 ≤ j ≤ J) is the jth element of cluster center of cluster Ck, which can
be mathematically derived as

μkj =

(
1
|Ck|

∑
Zi∈Ck

zij

)1/2

. (4)

For semi-supervised clustering based on the divisive hierarchical approach, we
iteratively deal with the constrained optimization problem with K=2. SDHCC
starts with an all-inclusive cluster containing all the categorical instances, and
repeatedly chooses one cluster to split into two sub-clusters. Each bisection step
consists of three phases: initialization; iterative refinement based on Chi-square
distance; and alleviation of the cannot-link violation.

3.1 Initialization

The initialization of the bisection consists of two steps, i.e., preliminary split-
ting based on multiple correspondence analysis (MCA), and redistributing the
instances involved in must-link constraints to satisfy the must-link constraints.
The following paragraph describes MCA calculation on indicator matrix of χ
(the calculation on a cluster is the same), the interested reader can refer to
[8,20] for more details.

Since Z has a total sum of n ×m, which is the total number of occurrence
of all the categorical values, the correspondence matrix is P = Z/nm. Thus
the vector of row mass of the correspondence matrix is r = 1

n1, the row mass
matrix is Dr = (1/n)I; the column mass matrix is Dc = (1/nm)diag(ZTZ), the
vector of column mass can be denoted as c = Dc× 1. Under the null hypothesis
of independence, the expected value of pij is ricj , and the difference between
the observation and the expectation, called the residual value, is pij − ricj .
Normalization of the residual value involves dividing the difference by the square
root of ricj . So the standardized residuals matrix is written as:

S = D−1/2
r (P − rcT)D−1/2

c =
√

n

(
Z

nm
− 1

n
11TDc

)
D−1/2

c (5)

Hence, the singular value decomposition (SVD) to compute the residuals matrix
(5) is as follows:

√
n

(
Z

nm
− 1

n
11TDc

)
D−1/2

c = UΣV T (6)

where UTU = V TV = I. Σ is a diagonal matrix with singular values in descend-
ing order: σ1 ≥ σ2 ≥ · · · ≥ σs > 0, where s is the rank of the residuals matrix.
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The columns of U are called the left singular vectors, which give us the scale
values for the n instances.

The first step of bisection initialization proceeds as follows. To bisect a cluster
CP with |CP | instances, we apply MCA on the indicator matrix Z(P ) of order
|CP | × J from the |CP | instances to get the left singular vectors U (P ). Each
instance Zi whose first coordinate U

(P )
i1 ≤ 0 goes to the left child of CP , which

is denoted by CL
P , and each Zi whose first coordinate U

(P )
i1 > 0 goes to the right

child of CP , which is denoted by CR
P .

The second step aims to satisfy all the must-link constraints. In fact, the
preliminary splitting in first step may distribute the instances in a constraint
closure in the two sub-clusters. Each closure c split by the first step is re-assigned
to the sub-cluster that holds most of its members; i.e., if |c ∩ CL

P | ≥ |c ∩ CR
P | ,

the closure c goes to the left child CL
P , otherwise, the closure c goes to the right

child CR
P .

3.2 Refinement

In the refinement phase, we employ the Chi-square distance to measure the dis-
similarity between a single instance, as well as a constraint closure, and a cluster.
In fact, after re-assignment of the second step of the initialization phase, the in-
stances from each closure are assembled together, so the instances in a closure
will be treated as an entity in performing the refinement. Therefore, we define the
dissimilarity between a closure and a cluster of categorical instances as follows.

Definition 3. The dissimilarity between a constraint closure c and a cluster Ci

is the Chi-square distance between them, i.e.,

dChi(c, Ci) =
∑

j

(c̄j − μij)2

μij
(7)

where c is in cluster Ci, and c̄j(1 ≤ j ≤ J) is the jth element of the center of

closure c, i.e., c̄j =
(

1
|c|
∑

Zi∈c zij

)1/2

. When c is a singleton closure, Formula
(7) is the same as (3).

Theorem 1. In a refinement phase (not limited to bisection operation of hier-
archical clustering), deciding the membership of a closure according to the Chi-
square distance defined in (7) is equivalent to making the decision according to
the sum of the Chi-square distance of all the instances in the closure, which is
defined in (3).

The proof of Theorem 1 is omitted here due to lack of space.
Definition (3) and Theorem (1) provide a significant computational advan-

tage. They show that it is only necessary to store the statistic features of each
constraint closure and those of the two resulting sub-clusters, to speed up the
refinement process. In other words, the instances in a closure are treated as an
entity, the number of instances for refinement is thus reduced. The cluster fea-
tures of CP have two elements: one is the J-dimensional vector of numbers of



270 T. Xiong et al.

occurrences of all the categorical values, denoted as NOP ; and the other is the
number of instances in the cluster, denoted as |CP |. The features of a closure
are the same as those of a cluster. We do not need to revisit all the instances
in the cluster to update the cluster features; instead, we just need to record the
instances which were relocated to do the update, so the cluster features can thus
be updated efficiently after each iteration cycle.

The statistic feature of Chi-square distance requires that individual instance
(or closure) be in the measured set. When calculating the distance between an
instance Zi and cluster CP , where Zi is not in CP , we should proceed as if Zi is in
cluster CP by updating the cluster features to rP ×NOP +Zi and rP ×|CP |+1,
and after that, restore the cluster features. Here rP is the balance ratio of cluster
size of the two resulting sub-clusters. The balance ratio is set to 1.0 for CL

P , and
|CL

P |/|CR
P | for CR

P if |CL
P | ≥ |CR

P |, vice versa if |CL
P | ≤ |CR

P |. The same applies
to the distance calculation between a closure c and CP , where c is not in CP .
We use the balance ratio to solve the bias issue in the relocation process. This
is because that the rare categorical value of the individual instance/closure has
relative high frequency in smaller cluster, which leads to smaller Chi-square
distance.

The refinement of the instances in CL
P and CR

P proceeds as in Algorithm 1.

Algorithm 1. Refinement after initialization

1. Calculate the cluster features of CL
P and CR

P .
2. For each instance Zi in CL

P

if Zi ∈ c {if dChi(c, CR
P ) < dChi(c, CL

P ), move c to CR
P ;}

else if dChi(Zi, C
R
P ) < dChi(Zi, C

L
P ), move Zi to CR

P ;
For each instance Zi in CR

P

if Zi ∈ c {if dChi(c, CL
P ) < dChi(c, CR

P ), move c to CL
P ;}

else if dChi(Zi, C
L
P ) < dChi(Zi, C

R
P ), move Zi to CL

P ;
3. Update the cluster features of NOL

P , |CL
P | and NOR

P , |CR
P |.

4. Repeat steps (2) and (3) until the membership no longer changes.

3.3 Alleviation of Cannot-Link Violation

In this subsection, a novel divide-and-merge method is proposed to alleviate the
cannot-link violation in each bisection. It proceeds as follows (The pseudo-code
is given in Algorithm 2):

Dividing operation: in each sub-cluster (CL
P or CR

P ), if it has a cannot-link
constraint, divide it into two sets. One of these, called the alien set, contains the
target constraint closure which is most dissimilar with the sub-cluster, and also
the instances that are similar to the target closure (how to choose the target
closure will be presented afterwards); the other set, which is called the native
set, contains the rest of the instances in the sub-cluster. The pseudo-code for
the dividing operation is shown in Algorithm 3.
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Merging operation: After dividing operation, the alien set is merged with
the native set of the other sub-cluster if doing so can decrease the sum of the
degree of cannot-link violation of CL

P and CR
P . The pseudo-code for the merging

operation is shown in Algorithm 4.

Algorithm 2. Alleviating the cannot-link violation

1. if CL
P has cannot-link violation

find target closure cL
t ;

Divide-Cluster(CL
P ,cL

t ); //divide CL
P into CLL

P and CLR
P , cL

t ⊆ CLR
P

else CLL
P = CL

P ; CLR
P = ∅;

2. if CR
P has cannot-link violation

find target closure cR
t ;

Divide-Cluster(CR
P ,cR

t ); //divide CR
P into CRL

P and CRR
P , cR

t ⊆ CRR
P

else CRL
P = CR

P ; CRR
P = ∅;

3. if(CLR
P = ∅ or CRR

P = ∅ )
Merge-Clusters(CLL

P ,CLR
P ,CRL

P ,CRR
P );

4. Repeat steps (1), (2) and (3) until no target closure can be found to
decrease the sum of the degree of cannot-link violation of CL

P and CR
P .

5. Recall Algorithm 1.

Algorithm 3. Divide-Cluster
Input: Cluster C, target closure ct, ct ⊂ C
Output: Cluster CL, CR, CL ∪ CR = C; CL ∩CR = ∅; ct ⊆ CR

1. Initialize cluster Ct = C
2. Repeat until termination condition is satisfied

(a) Initialize bisection of Ct;
(b) recall Algorithm 1 to refine the instances in CtL and CtR;
(c) if (ct ⊆ CtL), Ct = CtL; else Ct = CtR;

3. CR = Ct; CL = C − CR

Algorithm 4. Merge-Clusters
Input: Clusters CLL

P ,CLR
P ,CRL

P ,CRR
P

Output: Cluster CL
P , CR

P

if w(CLL
P ∪ CRR

P ) + w(CRL
P ∪ CLR

P ) < w(CL
P ) + w(CR

P )
CL

P = CLL
P ∪ CRR

P ; CR
P = CRL

P ∪ CLR
P .

else if w(CL
P ∪CRR

P ) + w(CRL
P ) < w(CL

P ) + w(CR
P )

CL
P = CL

P ∪CRR
P ; CR

P = CRL
P .

else if w(CR
P ∪ CLR

P ) + w(CLL
P ) < w(CL

P ) + w(CR
P )

CL
P = CLL

P ; CR
P = CR

P ∪ CLR
P .

The closure which has the largest cannot-link weight in the sub-cluster is cho-
sen as the target closure; if in a sub-cluster there is more than one closure with
the largest cannot-link weight, choose the one with the greatest Chi-square dis-
tance from the cluster. To use the constraint knowledge to guide the assignment
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of unconstrained instances, the unconstrained instances which are similar with
the target closure are removed together. The divide-and-merge operation on CL

P

and CR
P proceeds iteratively until the sum of the degree of cannot-link violation

of CL
P and CR

P cannot decrease.
We make use of the global clustering quality measure proposed in [3] to de-

cide when to terminate splitting in Algorithm 3 and the splitting process in
constructing the clustering tree. The termination condition is that either of the
two conditions given below is satisfied:

1. Algorithm 1 ends with one cluster, which means that the relocation algorithm
finally converges into placing all the instances into one cluster.

2. Clustering quality does not increase, i.e., Q({Ct}) ≥ Q({CtL, CtR}), and
neither CtL nor CtR violates the cannot-link constraints.

In the condition (2), Q(Γ ) denotes the global clustering quality measure [3].

4 Experimental Results

In this section, we study the performance of SDHCC on real data sets from
the UCI Machine Learning Repository and 20-Newsgroup text data. We imple-
mented a semi-supervised clustering algorithm for categorical data by combining
the semi-supervised algorithm COP-KMEANS in [19] and the k-modes algorithm
for categorical data in [16]; the combination is called SKModes in this paper.
We also compared our algorithm with SKModes, as well as the state-of-the-art
semi-supervised clustering algorithms for numeric data, which are constrained
agglomerative hierarchical clustering algorithm in [5], named AggHie in this pa-
per, and the algorithm based on Hidden Markov Random Fields [2], named
HMRF-Kmeans in this paper. Both complete version (named SDHCC-M-C)
and ablated version (named SDHCC-M) of SDHCC are used for comparison.
In SDHCC-M, the cannot-link constraints are only used in the termination con-
dition to justify whether a cluster should be split or not. We investigate the
effectiveness of using instance-level constraint knowledge by comparing the clus-
tering results of the semi-supervised algorithms with those of its underlying
unsupervised algorithms.

In our performance evaluation, we adopt the F -measure as the clustering
validation measure. In hierarchical clustering, the maximum is taken over all
clusters i at all levels; in partitioning clustering, the maximum is taken over the
K clusters. To evaluate the performance of the algorithms objectively, we used
twofold cross-validation on each data set for 20 trials. In each trial, we randomly
selected 50% of the instances as the test set, and the F -measure was calculated
only on the test set. The remaining half of the data set was used as a training
set, and the constraints were generated by randomly selecting pairs of instances
from the training set, creating a must-link constraint if the pair instances have
the same label and a cannot-link constraint if they have different labels. The
clustering algorithms were run on the whole data set, and the results given are
the averages of the results of the 20 trials.
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4.1 Data Sets

The four UCI data sets used in this paper are the Zoo, Congressional Voting
Records (Votes), Wisconsin breast cancer (Cancers) and Mushroom sets. The
numbers of categorical values for these sets are J=36,48,91 and 117 respectively.

We also extracted two data sets from the 20-Newsgroup data, and both data
sets are preprocessed by removing stop-words and very high-frequency and low-
frequency words, the same as the methodology used in [6]. After preprocessing,
each data set is prepared with two versions, one is numeric data using TF-IDF
weighting method, for details, refer to [6]; the other is categorical (transactional)
data, where each article is simply represented by collection of the words appear-
ing in the article (after preprocessing). The description of the two data sets is
as follows.
Similar-2: this data set consists of 200 articles from two similar topics, i.e.,
comp.sys.ibm.pc.hardware and comp.sys.mac.hardware, and each topic has 100
articles. The data is represented in 1233 dimensions (words), and in the categor-
ical version, J = 1233× 2 as each word is analogous to one categorical attribute
which takes two values indicating inclusion or non-inclusion of the word.
Different-3: this data set consists of 300 articles from three different topics,
i.e., alt.atheism, comp.sys.ibm.pc.hardware and talk.politics.mideast, and each
topic has 100 articles. The data is represented in 2470 dimensions (words), thus
J = 2470× 2 in the categorical version.

4.2 Results and Discussion

Figure 1, 2, 3 and 4 show the clustering results on the Zoo, Votes, Cancers,
and Mushroom data sets respectively. For SKModes, we set K=7 on Zoo; K=3
on Votes and Cancers, as it fails to generate a clustering when the number of
constraints is greater than 100 if we set K=2; K=4 on Mushroom for the same
reason. For HMRF-Kmeans, we set K to the number of classes on the four data
sets. AggHie and HMRF-Kmeans run on the Boolean indicator matrix of the
categorical data sets.

From these figures we can see that the use of instance-level prior knowledge
produces a remarkable improvement in SDHCC, except on the Cancers data
set. The unsupervised algorithm (DHCC) already yields outstanding clustering
results on Cancers, with an F -measure attaining 0.97; thus, the instance-level
constraints do not provide much informative knowledge to guide the cluster-
ing process. On the Zoo and Votes data sets, SDHCC-M-C and SDHCC-M
show quite comparable clustering performance, while on the Mushroom data
set, which is of higher dimension and much larger size, SDHCC-M-C outper-
forms SDHCC-M by a wide margin. For other three algorithms, none of them
can reap potential benefit of prior knowledge on the four UCI data sets, ex-
cept SKModes on the simple Zoo data set. Especially for AggHie, the clustering
performance deteriorates when the instance-level constraints are incorporated.
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Fig. 1. Clustering results on Zoo
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Fig. 2. Clustering results on Votes
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Fig. 3. Clustering results on Cancers
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Fig. 4. Clustering results on Mushroom

Overall, our complete SDHCC algorithm shows superior clustering perfor-
mance on the UCI real-life data. The values of F -measure on the four data sets
are all greater than 0.9, which means the clusters discovered by SDHCC-M-C
closely match the natural classification.

Figure 5 and 6 show the clustering results on Similar-2 and Different-3
data sets respectively. We set K=2 on Similar-2 and K=3 on Different-3 for
SKModes and HMRF-Kmeans. In these figures, AggHie-N and HMRF-Kmeans-
N indicate the results on numeric data, while AggHie-C and HMRF-Kmeans-C
indicate the results on categorical data.

From these figures we can see that our algorithm can reap remarkable improve-
ment even on the succinct categorical representation of text data, especially on the
Different-3 data set. Similar-2 data impose more challenge than Different-3 on
clustering algorithms, since the overlap between the two topics in Simila-2 is sig-
nificant. SDHCC-M-Coutperforms its ablated versionSDHCC-Mon the text data.
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Fig. 5. Clustering results on Similar-2
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Fig. 6. Clustering results on Different-3

HMRF-Kmeans demonstrates superior performance on numeric TF-IDF data;
however, it gains much less improvement on the categorical data. SDHCC-
M-C outperforms HMRF-Kmeans by a wide margin on categorical version of
Different-3 data set. On the categorical Similar-2 data, SDHCC-M-C performs
best in terms of the improvement of clustering quality. AggHie reaps potential
benefit from prior knowledge on numeric TF-IDF data, however, its performance
on categorical version deteriorates when the instance-level constraints are incor-
porated, the same as it does on the UCI data set. For SKModes, the prior
instance-level knowledge has little influence on the clustering performance.

5 Conclusions

In this paper, we have proposed a semi-supervised divisive hierarchical cluster-
ing algorithm for categorical data (SDHCC).We formalize clustering categorical
data as optimizing the objective function, and exploit pairwise must-link and
cannot-link constraint knowledge to guide the optimization process to a better
solution in terms of satisfying the constraints, which would also be beneficial
to the unconstrained instances. Experimental results on UCI data sets and 20-
Newsgroup text data demonstrate that our semi-supervised algorithm shows re-
markable improvement over the unsupervised clustering algorithm DHCC. Most
important, our semi-supervised clustering algorithm could take advantage of the
potential improvement from a small amount of knowledge, which is very useful
in real applications, as it is very expensive to provide large numbers of pairwise
constraints from human experts.

Our experiments also show that the mainstream semi-supervised clustering al-
gorithms for numeric data, such as AggHie and HMRF-Kmeans, are not suitable
for categorical data. Incorporating the instance-level constraint knowledge even
could deteriorate the clustering quality of the underlying unsupervised clustering
algorithm.
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Abstract. In this study we investigate how to identify hidden contexts
from the data in classification tasks. Contexts are artifacts in the data,
which do not predict the class label directly. For instance, in speech recog-
nition task speakers might have different accents, which do not directly
discriminate between the spoken words. Identifying hidden contexts is
considered as data preprocessing task, which can help to build more ac-
curate classifiers, tailored for particular contexts and give an insight into
the data structure. We present three techniques to identify hidden con-
texts, which hide class label information from the input data and parti-
tion it using clustering techniques. We form a collection of performance
measures to ensure that the resulting contexts are valid. We evaluate
the performance of the proposed techniques on thirty real datasets. We
present a case study illustrating how the identified contexts can be used
to build specialized more accurate classifiers.

1 Introduction

In classification tasks some variables directly predict the class label, others can
describe context. Contexts are artifacts in the data, which do not directly predict
the class label, like accent in speech recognition. Taking contexts into the learning
process can help to build more specialized and accurate classifiers [2], solve
sample selection bias [12], concept drift [17] problems.

Context may not necessarily be present in a form of a single variable in the
feature space. To recover hidden contexts the input data can be clustered [5, 9,
15]. The problem is, that clustering can capture some class label information,
which would shade away the contexts. Consider a diagnostics task, where patient
tests are taken by two pieces of equipment, which are calibrated differently. If
we cluster patient data, the resulting clusters might correspond to ’healthy’ and
’sick’ (which are the classes) or ’sample taken by equipment A’ and ’sample
taken by equipment B’ (which is a context), but likely a mix of both. Thus, to
capture context specific information, we intend to force independence between
contexts and class labels. In addition, capturing noise is undesired, therefore the
resulting contexts need to be non-random and stable.

Context identification has predictive and descriptive goals. Grouping the data
provides an opportunity to achieve more accurate classification employing con-
text handling strategies, as well as better understand the phenomenon behind
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Fig. 1. An example of two contexts

the data. Context identification can be considered as a preprocessing step in su-
pervised learning, like feature selection, instance selection, or recovering missing
values. We aim for a filter approach, where contexts are generic, not tied with a
particular handling strategy.

In this study we propose three techniques for identifying hidden contexts,
which force independence between the contexts and class labels. The objective
is to output an explicit grouping of the data. We require the grouping to ignore
the class label information. Thus, we aim to hide class discriminatory information
before partitioning. These techniques can be used in different context handling
strategies or for forming new ones.

We analyze the performance of the proposed techniques on thirty real datasets.
We also present a case study, which illustrates one example strategy for handling
the identified contexts in classification.

The paper is organized as follows. Section 2 defines context. Section 3 discusses
related work. In Section 4 we propose three techniques for identifying hidden
contexts. Sections 5 and 6 present experimental evaluation. Section 7 concludes
the study.

2 Problem Set-Up

Consider a classification problem in p-dimensional space. Given a set of instances
with labels (X ∈ X ,y ∈ Y) the task is to produce a classifier h : X → Y. In
this study we define context as a secondary label z of an instance X , which
is independent from the class label y, but can explain the class label better
when used together with the predictive features. That is, p(y|z) = p(y), but
p(y|X∗, z) = p(y|X∗), where X∗ ⊆ X . Context might be expressed as a variable
in the feature space (known context) or as a latent variable (unknown context).

Consider as a toy example a task, where a patient is diagnosed ’sick’ or
’healthy’ based on the body temperature. It is known that in the evening people
tend to have higher temperature independently of being sick or healthy. If we
know the context, i.e. whether the temperature was measured in the morning
or in the evening, diagnostic task is easy, as illustrated in Figure 1. However, if
the time is unknown, then diagnosing becomes problematic. The time itself is
independent from the class label, stand alone it does not diagnose.

Some more examples of context include accent in speech recognition, light in
image recognition, seasonality in sales prediction, weekday in electricity load or
bus travel time prediction, industry crisis in credit scoring.
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The context label may be directly observable or hidden, depending on the
application. Hidden context variable z is not explicitly present as a feature x
in the feature space X , but information about it is assumed to be captured in
the feature space X , i.e. z = f(X), X ∈ X . An example of directly observable
context is time. Customer segments in marketing tasks or bankruptcy prediction
represent hidden context. Different segments might have different behavior.

Evaluation of the identified contexts is not straightforward. Different context
handling strategies can lead to different gains or losses in the classification accu-
racies, which are not necessarily due to good or bad context identification. We
require the resulting contexts to be independent from the class labels, valid (not
random grouping of the data) and stable on random subsamples of the same
data. The criteria to measure these aspects are formulated in Section 5.

3 Positioning within Related Work

Context-awareness is widely used in ubiquitous and pervasive computing to char-
acterize the environmental variables [14]. In machine learning the term usually
characterizes the features that do not determine or influence the class of an ob-
ject directly [2, 15]. A wide body of literature on concept drift considers only
time context [7, 17]. Typically contexts assumed to be known. Mixture models
(see [4]) can be considered as an approach to identify hidden contexts.

Our context identification techniques are novel as they force independency
from the class labels. A need for such approaches was mentioned before in a light
of context handling strategies [16] and multiple classifier systems [3]. Turney [16]
formulated the problem of recovering implicit context information and proposed
two techniques: input data clustering and time sequence (which we leave out of
the scope assuming that the chronological order is unknown). Turney expressed
a concern that clustering might capture class label information and indicated a
need for further research, our work can be seen as a follow up.

A recent work by Dara et al [3] explores the relation between the characteris-
tics of data partitions and final model accuracy in multiple classifier systems. The
work experimentally confirms the benefits of partitions which are not correlated
with the class labels. These results support the motivation of our work.

As a result of their analysis Dara et al [3] propose a semi-randomized partition-
ing strategy to cluster and then swap some instances across the clusters, which
can be seen as a mixture of clustering and boosting. We excluded this strat-
egy from our investigations after preliminary experiments, since even though it
pushes towards independence in class labels within the partitions (which is our
objective as well), due to randomization the procedure of assigning an unseen
instance to one of the partitions can no longer be deterministic.

Extracting hidden context is related to the context handling strategies [16].
The strategies are not limited to building a separate classifier or a combination
for each context. Contextual information can be also used to adjust the input
data, model parameters or model outputs. Analysis of the performance of dif-
ferent handling strategies is out of the cope of this study. The identified and
validated contexts can be used as building blocks to handling strategies.
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Fig. 2. An illustration of Overlay technique

4 Three Techniques for Identifying Hidden Contexts

In this section we present techniques for identifying hidden contexts. Given a
dataset, the task is to allocate the instances into k groups, so that the data
within the groups is related, but the groups are not related to the class labels.

Context identification techniques require two mechanisms: (1) how to group
the training data X into k contexts and (2) how to assign an unseen instance
X ∈ X to one of the contexts.

Clustering (CLU) of the input data is the baseline technique to identify hid-
den contexts, when building local models [5, 9–11]. The procedure is summarized
in Figure 4. Clustering captures closeness of the data instances in the feature
space. For classification tasks the feature space is typically formed with an in-
tention to predict the class labels. If class membership information is strongly
present in the data, clustering is likely to capture it as well.

To overcome this issue we propose Overlay (OVE) technique. To hide the
label information we move the classes on top of each other, as illustrated in
Figure 2, by normalizing each class to zero mean. The technique assumes that
class discriminatory information lies in the class means. We cluster the overlayed
data to extract contexts. Unfortunately, for the incoming new data we cannot
do overlay, because the labels are unknown. We solve this by introducing a su-
pervised context learning. Given the instances X we treat the obtained contexts
z as labels and learn a classifier z = KOVE (X). We use the diagonal linear
discriminant [4] as a classifier KOVE . The procedure is summarized in Figure 4.

Overlay technique is based on the assumption that the class distributions are
symmetric across different contexts, which often might not be true. We generalize
Overlay by introducing Projection (PRO) technique, which rotates the data
to hide the class label information. The idea is opposite to Linear Discriminant
Analysis (LDA) [4]. The goal is to find a transformation that minimizes between-
class variance and maximizes within-class variance, see Figure 3.

We seek to find a transformation w to obtain a projection x̆ = w′X. Within-
class ci covariance is s2

i =
∑

yj=ci
(Xj − μi)(Xj − μi)′, where μi is the class
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Fig. 3. An illustration of Projection technique

mean. The total within class covariance is Ss := s2
1 + s2

2 + . . .+ s2
c . Between-class

covariance is Sb := 1
c

∑c
i=1(μi−μ)(μi−μ)′, where μ is the mean of all the data.

In LDA Fisher criterion J(w) = w′Sbw
w′Ssw

is maximized. We minimize it. The
problem transforms into eigenvalue decomposition S−1

s Sbw = λw. We choose
the eigenvector w corresponding to the smallest eigenvalue minλ. To determine
contexts z, we transform the training data into 1D space x̆ = w′X and simply
split the range of values into k equal intervals (like slicing a loaf of bread). An
unseen instance X is transformed into 1D x̆ = wX and assigned a context, based
on the interval, to which it falls into. The procedure is presented in Figure 4.

In addition to Overlay and Projection, we explore Feature underselection
(FUS) technique, which discards the features, that are the most correlated with
the class label, and clusters the remaining features. It is described in Figure 4.

All the presented techniques assume that k is given. In the case study (Sec-
tion 6) we will show, how k can be determined using the stability criterion.

5 Experimental Evaluation

The goal of the experiments is to compare the introduced techniques in terms
of the desired properties: not to capture the class labels, at the same time con-
trolling, that the resulting partitions are valid and stable.

5.1 Evaluation Criteria

To measure the three desired characteristics (independence from the class labels,
validity and stability) we adopt metrics commonly used in clustering evaluation.

For measuring independence between the labels and the identified con-
texts, we employ Normalized Mutual Information (NMI), which is widely used
to assess clustering performance [18]. It evaluates the purity of clusters with re-
spect to class labels. For the context identification task low NMI is desired. For
two random variables y and z NMI (y, z) = I(y, z)/

√
H(y)H(z), where I(y, z)

is the mutual information, H(x) and H(z) are the respective entropies. Note,
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Clustering (CLU)
input: dataset X; number of contexts k.
output: context labels z; the rule for assigning unseen instancesz = KCLU (X).

1. Cluster the dataset to obtain contexts z = clust(X, k), where clust(., k) is any
distance based clustering algorithm.

2. Fix the rule for unseen instances KCLU (X) : z = arg mini=1..k dist(X, Ci),
where C1, . . . , Ck ∈ X are the resulting cluster centers and dist() is a distance
function corresponding to the chosen clustering algorithm.

Overlay (OVE)
input: labeled dataset (X,y); number of contexts k.
output: context z; rule for unseen instances z = KOVE (X).

1. Split X into c groups: Xj ∈ Xi if yj = i,∀X ∈ X, c is the number of classes.
2. Shift each class to zero mean: for i = 1 . . . c X̂i = Xi − μi, where μi is the

mean of class ci.
3. Overlay the classes X̂ = {X̂1 ∪ . . . ∪ X̂c}.
4. Cluster X̂ to obtain the contexts z = clust(X̂, k).
5. Learn a classifier z = KOVE (X) using X as input data and z as labels.

Projection (PRO)
input: labeled dataset (X,y); number of contexts k.
output: context z; rule for unseen instances z = KPRO (X).

1. Find a transformation vector w, corresponding to the smallest eigenvalue
min λ in S−1

s Sbw = λw, where Ss is within-class covariance and Sb is
between-class covariance.

2. Transform into 1D space: x̆ = w′X.
3. For j = 1 . . . k find the intervals rj = x̆min + q(j − 1), where

q = (x̆max − x̆min)/k.
4. Find context labels z = j|x̆ ∈ rj ,∀x̆ ∈ x̆.
5. Fix the rule KPRO(X) : z = j|x̆ ∈ rj , x̆ = w′X.

Feature underselection (FUS)
input:labeled dataset (X,y); a number of contexts k; number of features to select m.
output: context z; rule for unseen instances z = KFUS (X).

1. For i = 1 . . . p find ρi = corr (xi,y), where p is the dimensionality, xi is the ith

dimension of the data.
2. Sort correlations: |ρi1| ≤ |ρi2| ≤ . . . ≤ |ρip|.
3. Pick m dimensions, the least correlated with class labels: X̃ = (xi1xi2 . . .xim)′.
4. Cluster X̃ to obtain the contexts z = clust(X̃, k).
5. Fix the rule KFUS (X) : z = arg mini=1..k dist(X̃, C̃i), where

X̃ = (xi1xi2 . . . xim)′ and C̃1, . . . , C̃k ∈ X̃ .

Fig. 4. Techniques for finding hidden contexts
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that NMI ∈ [0, 1] and NMI(y,y) = 1. Given the context assignments z and
the respective class labels y, the NMI is estimated [18] as

NMI (y, z) =
Σk

l=1Σ
c
h=1Nlh log nNlh

nln̂h√
(Σk

l=1nl log nl

n )(Σc
h=1n̂h log n̂h

n )
, (1)

where nl is the number of data instances contained in the cluster Cl (1 ≤ l ≤ k),
n̂h is the number of instances belonging to the class h (1 ≤ h ≤ c), Nlh is the
number of instances that are in the intersection between the cluster Cl and the
class h, and n is the total number of instances.

Measuring validity. If we optimized only NMI, assigning instances to contexts
at random would be the optimal solution. To control that the identified contexts
are not random, we require the identified context labels to be learnable from
the data. We use the Naive Bayes (NB) classifier. VAL(z|X) is the error rate of
NB using 10 fold cross validation, the smaller the better. We normalize it w.r.t.
random assignment of contexts NVAL(z|X) = VAL(z|X)/VAL(φ(k)|X), where
φ(k) is a set of contexts (k) assigned at random, thus NVAL ∈ [0, 1].

Measuring stability. In addition to independence and validity we want to
minimize the chance of overfitting the training data, which we measure using
the stability index for clustering proposed in [13]. The dataset X is at random
split into two sets of equal size {Xu ∪Xv} = X. Each subset is clustered us-
ing the same clustering algorithm u = clustu(Xu), v = clustv(Xv), clustu()
and clustv() denotes fixed parameterizations resulting after clustering (e.g. clus-
ter centers in k-means). Then the fixed clustv() is applied to the subset Xu

to obtain alternative cluster assignment ù = clustv(Xu). If clustering is stable,
given a correct permutation u∗ = map(u) of cluster labels ù and u∗ should be
the same. The (in)stability index is the share of different cluster assignments
STA(u, ù) = 1

nΣn
i=11(ui = map(ùi)), where 1() = 1 if true, otherwise 0. The

smaller (in)stability (STA) the better. We normalize STA w.r.t. to random as-
signment to get NSTA ∈ [0, 1].

5.2 Datasets and Experimental Protocol

We test the techniques on thirty real classification datasets, which are diverse in
size, dimensionality, number of classes and the underlying problems they repre-
sent. The characteristics are summarized in Table 1. We do not expect all of the
datasets to have distinct underlying contexts and we do not know the true num-
ber of contexts. Thus, we use the stability measure in the evaluation to indicate
whether the found contexts are persistent in the data.

In the experiments we fix the number of contexts to k = 3 for all the datasets
(no specific reason). Feature underselection technique requires to specify the
number of features, we choose m = 5 for all the datasets. We normalize the
feature values of the input features to fall in the interval [0,1], add 1% random
noise and transform the data according to its principal components. Noise does
not distort class discriminatory information, neither it influences the allocation



284 I. Žliobaitė

Table 1. Datasets: N - size, d - dimensionality, y - number of classes

dataset N d y dataset N d y dataset N d y

balance1 625 4 3 shuttle21 14500 9 7 wis. cancer1 569 30 2
blood1 748 4 2 shuttle11 43500 9 7 luxembourgh4 1901 31 2

mammographic1 961 5 2 vowels1 990 10 11 king-rock-pawn1 3196 36 2
car1 1728 6 4 page blocks1 5473 10 5 connect-41 67557 42 3

elec2[6] 44235 7 2 magic1 19020 10 2 marketing(c)[8] 8993 48 2
chess4 503 8 2 marketing(d)[8] 8993 13 2 brazil3 50000 49 2
pima1 768 8 2 adult1 32561 14 2 spam[8] 4601 57 2

nursery1 12960 8 5 australian1 690 15 2 ozone81 2534 72 2
tic-tac-toe1 958 9 2 vehicles1 846 18 4 ozone11 2536 72 2

contraceptive1 1473 9 3 german1 1000 24 2 user12 1500 100 2

of contexts. Noise and principal component rotation are needed to prevent ill
posed covariance matrixes of some high dimensional datasets.

We empirically explore and compare five techniques: OVE, PRO, FUS, CLU
and RAN. CLU is an ordinary clustering, which we use as the baseline method.
Overlay (OVE), Projection (PRO) and Feature underselection (FUS) are the
three context identification techniques introduced in this paper. RAN is a bench-
mark partitioning technique (sanity check), which assigns contexts uniformly at
random. In this study we use k-means as the base clustering technique.

5.3 Results

Table 2 presents the results aggregated into three groups based on the dimen-
sionality of the datasets: small (up to 10 features), medium (10-19 features)
and large (more than 20 features) and all together. The results are plotted
in Figure 5, where each dot represent one dataset. The figure shows that in
terms of not capturing class labels (NMI) Overlay and Projection are doing well,
while Feature underselection and the baseline Clustering are doing not that well.
High NMI is consistent with higher validity, where Clustering outperforming the
others, as presented in Table 2.

For all the techniques the validity deteriorates with increase in dimension-
ality. It can be expected, challenges of measuring distance in high dimensional
space has been widely acknowledged [1]. FUS technique demonstrates the worst
validity in high dimensional space. It can be explained by relatively low number
of the selected features (we fixed m = 5).

Clustering has the best validity and stability, but captures a part of class
discriminatory information, as expected, especially in low dimensional tasks.
Projection has fine independence, good validity but it is rather unstable. This
is mostly due to slicing of the resulting 1D projection. Likely, the resulting cut
points might be not optimal and induce instability.
1 UCI Irvine Machine Learning Repository http://archive.ics.uci.edu/ml/
2 Katakis http://mlkd.csd.auth.gr/concept_drift.html
3 PAKDD 2009 competition http://sede.neurotech.com.br:443/PAKDD2009/
4 Žliobaitė collection http://sites.google.com/site/zliobaite/resources-1

http://archive.ics.uci.edu/ml/
http://mlkd.csd.auth.gr/concept_drift.html
http://sede.neurotech.com.br:443/PAKDD2009/
http://sites.google.com/site/zliobaite/resources-1
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Table 2. Summary of context identification results (the best in bold)

CLU OVE PRO FUS RAN CLU OVE PRO FUS RAN

all
NMI 0.12 0.02 0.05 0.03 0

small
NMI 0.13 0.02 0.06 0.05 0

val. 0.12 0.18 0.18 0.16 1 val. 0.05 0.11 0.15 0.08 1
stab. 0.36 0.38 0.59 0.53 1 stab. 0.43 0.45 0.63 0.49 1

large
NMI 0.09 0.01 0.01 0.01 0

med
NMI 0.13 0.05 0.11 0.03 0

val. 0.19 0.26 0.25 0.27 1 val. 0.11 0.17 0.11 0.14 1
sta. 0.32 0.37 0.50 0.67 1 sta. 0.29 0.28 0.68 0.38 1

Fig. 5. Context identification results

Feature underselection has surprisingly low stability as well as mediocre valid-
ity in high dimensional tasks. This is explainable by a fixed number of features
m in our experiments (for comparability across datasets). In high dimensional
spaces the selected features make rather small share of all features and are thus
more likely to represent noise rather than context or predictive information.
Good news is that for designing individual context handling strategies that can
be resolved by manipulating m value.

Overlay has good independence and stability, while not so good but acceptable
validity. This is due to supervised learning procedure to assign context to unseen
instances. It introduces extra uncertainty, while the other techniques can identify
context for an unseen instance directly.

To sum, all three techniques avoid capturing class label information well and
show similar validity; in terms of stability, Overlay technique is preferable.

Fig. 6. Determining the number of contexts for adult data
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6 Case Study

The following case study illustrates how context information can be used to
benefit the final classification. We present it as a proof of concept rather than an
attempt to select the most accurate context handling strategy. The case study
focuses on determining the number of contexts (k) from the data and building
one local classifier for each context.

We use adult dataset (alphabetically). We consider it suitable because of two
reasons: the task (predicting income of a person) intuitively is context dependent
and the dataset is relatively large (> 30 th. instances).

We evaluate the accuracies using six base classifiers: decision tree (CART),
logistic regression, Naive Bayes, linear discriminant (LDA), neural network (with
4 hidden layers), 1-nearest neighbor (1NN), and a collection. Collection means
that the most accurate base classifier is selected from a pool of all but neural
network (as it performs well on its own). We run 10-fold cross validation.

We run four context identification techniques (CLU, OVE, PRO, FUS) using
different number of contexts k = 2 . . . 8. The resulting stabilities are presented
in Figure 6. Several strategies show the best stability at two contexts, then at
four and seven. This tendency is also visible from the two principal components
in the same figure. We choose to analyze k = 4 for this case study, since it is
more interesting because of a larger distinction from single context. For a full
picture, we also report the ranking of the techniques at k = 2 and k = 7.

How do we know that there are variable contexts at all? It can be concluded
from the stability test and the plot of principal components. If there were no
distinct contexts, the stability would be bad and the data in the principal com-
ponent plot would be mixed.

Set up. The simplest context handling strategy is to build one local classifier
for each context. We test how it works using the context labels identified by
our techniques. For comparison we include a random split into contexts (RAN)
and no split into contexts (ALL), which we use as baselines. We also add to
the tests an ensemble (ENS) of CLU, OVE, PRO, FUS and RAN, which makes
classification decision using simple majority voting.

The testing errors are provided in Table 3. For the final evaluation, we average
over the errors of different classifiers. Statistical significance is tested using a
paired t-test. Symbol ’•’ means the technique is significantly better than the
baseline (ALL). symbol ’◦’ means the technique is significantly worse than the
baseline. Symbol ’−’ means no statistical difference.

In terms of accuracy CLU performs not bad, NMI score shows that it captures
not so much class label information on this data. Interestingly, RAN sometimes
outperforms ALL. It can be seen as a variant of boosting, though suffering from
small training sample. OVE and FUS performs on average better than CLU, it
is mainly due to bad performance of CLU on the last test (collection).

We find that an ensemble (ENS) is the best in terms of accuracy. It is sup-
ported by experiments with different number of contexts. The rankings are:
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Table 3. Errors of local classifiers

CLU OVE PRO FUS RAN ALL ENS

cart tree 19.62− 19.66− 19.60− 20.03− 20.44◦ 19.70 16.73•
log. reg. 16.51• 16.82• 17.43− 17.23• 17.45− 17.46 16.72•
n. bayes 19.28− 18.32• 19.02• 18.70• 19.31− 19.31 18.76•
LDA 21.62• 22.57• 22.30• 22.56• 23.28− 23.35 21.64•
neural n. 15.18• 15.79− 15.29• 15.83− 15.58• 15.91 15.06•
kNN 20.51− 20.62◦ 20.51− 20.54− 21.61◦ 20.50 20.47−
collection 19.86◦ 17.10• 18.71◦ 17.46− 17.52− 17.43 16.62•
mean 18.94 18.70 18.98 18.91 19.32 19.10 18.00

k = 2 ENS≺PRO≺FUS≺OVE≺ALL≺CLU≺RAN;
k = 4 ENS≺OVE≺FUS≺CLU≺PRO≺ALL≺RAN;
k = 7 ENS≺PRO≺ALL≺OVE≺FUS≺RAN≺CLU.

The scope of the study is to analyze context identification rather than explore
context handling strategies. Thus, we explore in depth only selection strategy and
do not claim that it is the best. We report it as an illustration, complementary
to the proposed identification techniques. It demonstrates, how the accuracy can
be improved having no domain knowledge about underlying contexts, starting
from identification of the number of contexts to training the actual classifiers.

7 Conclusion

Context identification techniques can be considered as a preprocessing step in
classification, aimed to improve the accuracy, as well as contribute to under-
standing of the data. We require the contexts to be independent from the class
labels, valid (non random) and stable.

We proposed three techniques for identifying hidden contexts from the data,
directed not to capture class discriminatory information. The experiments on
thirty datasets indicate that all the three techniques avoid capturing class label
information pretty well and show similar validity; in terms of stability Over-
lay technique is preferable. The case study illustrates the benefits of context
identification when used with classifier selection strategy.

Our study opens a range of follow up research opportunities for context han-
dling strategies in static and dynamic (concept drift, discrimination aware learn-
ing) settings.
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Abstract. Recently the sentiment classification problem interests the researchers
over the world, but most sentiment corpora are in English, which limits the re-
search progress on sentiment classification in other languages. Cross-lingual sen-
timent classification aims to use annotated sentiment corpora in one language
(e.g. English) as training data, to predict the sentiment polarity of the data in an-
other language (e.g. Chinese). In this paper, we design a bi-view non-negative
matrix tri-factorization (BNMTF) model for the cross-lingual sentiment classi-
fication problem. We employ machine translation service so that both training
and test data is able to have two representation, one in source language and the
other in target language. Our BNMTF model is derived from the non-negative
matrix tri-factorization models in both languages in order to make more accurate
prediction. Our BNMTF model has three main advantages: (1) combining the in-
formation from two views (2) incorporating the lexical knowledge and training
document label knowledge (3) adding information from test documents. Experi-
mental results show the effectiveness of our BNMTF model, which can
outperform other baseline approaches to cross-lingual sentiment classification.

Keywords: Sentiment, Cross-Lingual, Matrix Factorization.

1 Introduction

Sentiment classification is the task to predict the sentiment polarity of a given review
document or a comment sentence. In recent years, sentiment classification interests
more and more researchers in natural language processing and data mining fields be-
cause of rapid development of techniques and growing population of sentiment-rich
resources.

But most annotated sentiment corpora are in English, and annotating the sentiment
corpora in other language is difficult, time-consuming or expensive. In order to solve
the lack of annotated data problem, cross-lingual sentiment classification aims to use
annotated sentiment corpora in one language (e.g. English) as training data, to predict
the sentiment polarity of the data in another language (e.g. Chinese). Some pilot studies
projected the data in target language into source language, and then treated the problem
as sentiment classification in single language. Although various projection techniques
(dictionary-based, machine-translation-based, etc.) have been applied, the performance
is far from satisfactory.

J.Z. Huang, L. Cao, and J. Srivastava (Eds.): PAKDD 2011, Part I, LNAI 6634, pp. 289–300, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In this paper, we target at finding an effective approach for the cross-lingual senti-
ment classification problem. To achieve our goals, we propose a bi-view non-negative
matrix tri-factorization (BNMTF) model. Our BNMTF model attacks the problem from
the following directions:

– Combine the information from both the source language view and the target lan-
guage view by connecting the two views through a useful and important constraint.

– Incorporate both the lexical knowledge and the document label knowledge by ex-
tended non-negative matrix factorization.

– Add the information from the test data by transductive learning setting.

The rest of the paper is organized as follows. We review some related work in Section 2.
Then we give the formal definition and setting of the cross-lingual sentiment classifica-
tion problem we address in this paper in Section 3. The BNMTF model is proposed in
Section 4, and we also give some brief analysis on our solution. We conduct a series of
experiments to evaluate the effectiveness of our proposed model in Section 5. Finally,
we conclude our work in Section 6.

2 Related Work

In this section, we review the prior researches mostly related to our work. Most of
the related work comes from two research areas, cross-lingual information access and
sentiment classification.

Cross-lingual information access (CLIA) is concerned with technologies and appli-
cations that enable people to freely access information that is expressed in any language.
A lot of previous work emphasizes on cross-lingual text classification and clustering.
[2] studied English-Spanish cross-language classification problem in the poly-lingual
and cross-lingual cases. [11] classified Czech documents using the classifier built on
English training data by a probabilistic English-Czech dictionary. [9] developed a novel
method known as the information bottleneck technique for Chinese web pages classi-
fication using the English web pages as training data. [17] proposed a framework to
cross-lingual query classification which extended the cross-lingual classification prob-
lem into short text case. [18] incorporated document similarity propagation method with
the spectral clustering algorithm to cluster the news in different languages.

In this paper, we focus on cross-lingual text classification and we also employ the
machine translate system to help us project the data from one language into another
language.

Sentiment classification aims to predict the sentiment polarity of text data. The ap-
proaches to solve the problem can be generally categorized into lexicon-based and
corpus-based. Lexicon-based approaches measure the sentiment of the text based on
sentiment lexicons. [14] proposed the semantic oriented method to predict the senti-
ment orientation of a review while [6] built three models to assign sentence sentiment.
Corpus-based approaches classify the sentiment of a given sentence or document by
the classifier built using labeled sentiment data. Since the work of [13], various corpus-
based methods have proposed.
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An important issue in sentiment classification is the domain dependency problem, so
a lot of efforts on domain adaptation have been made. [3] proposed the structural cor-
respondence learning (SCL) algorithm while [12] proposed the spectral feature align-
ment (SFA) algorithm for the cross-domain sentiment classification problem. And we
can also treat the cross-lingual adaptation as a special case of domain adaptation if we
consider different languages as different domains. The cross-lingual sentiment classifi-
cation problem has also been studied by some previous work. [10] used cross-lingual
projection through dictionaries or parallel corpora to judge the document subjectivity,
while [1] and [15] employed the machine translation systems to bridge the data in dif-
ferent languages. [16] proposed to use the co-training approach to address the problem.

In this paper, we try to combine the lexicon-based and corpus-based approaches like
previous work on non-negative matrix tri-factorization [8]. In fact, the NMTF model
can be treated as the basic component of our models. We refine the model to satisfy the
cross-lingual condition in the problem we address in this paper. And Like [16], we also
view the classification problem in two independent views, the source language view
and the target language view. But we have two main difference between the standard
co-training approach. One is that our model incorporate the lexical knowledge, and the
other is that we combine the two views in the matrix factorization process so that we
only need to train the BNMTF classifier once while a series of classifiers need to be
trained if the standard co-training approach is applied.

3 Problem Setting

Before giving a formal definition of the problem we address in this paper, we first
present some definitions.

Definition 1. (Vocabulary) Vs denotes the vocabulary in source language, while Vt

denotes the vocabulary in target language. Furthermore, |Vs| = ms and |Vt| = mt.

In this paper, we use English as source language and Chinese as target language.

Definition 2. (Sentiment Lexicon) W+
s = {w+

s 1, w
+
s 2, ...} denotes the positive lexi-

con in source language, while W−
s = {w−

s 1, w
−
s 2, ...} denotes the negative lexicon in

source language. Similarly, we can define W+
t and W−

t .

Sentiment lexicons are very useful and important to the lexicon-based approaches for
sentiment classification.

Definition 3. (Document Set) Ds = {ds1, ds2, ..., dsns
} denotes the document set in

source language. We have dsi ∈ V ∗
s . Similarly, we can define Dt.

Definition 4. (Label) Ys = {ys1, ys2, ..., ysns
} denotes the label set for the document

set in source language. ysi = +1 if the overall sentiment expressed in dsi is positive,
while ysi = −1 if the overall sentiment expressed in dsi is negative. Similarly, we can
define Yt.
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Please notice that in the problem we address in this paper, Ys is given, but the Yt is
unknown and needs us to predict.

As sentiment lexicons to the lexicon-based approaches, labeled documents are very
useful and important to the corpora-based approaches for sentiment classification.

Definition 5. (Translator) Tsrc→tar : V ∗
s → V ∗

t denotes a translator from the source
language to the target language. And dt

si denotes Tsrc→tar(dsi) while Dt
s denotes

Tsrc→tar(Ds). Similarly, we can define Ttar→src, ds
t i and Ds

t .

In practice, translators can be dictionaries, machine translation systems, or other projec-
tions from one language to another language. Through the translators, each document is
able to have two views (one in source language and the other in target language) despite
its original language.

Based on the definitions described above, now we can define the problem we try to
address in this paper as follows:

Definition 6. (Cross-Lingual Sentiment Classification) Given Vs, Vt, W+
s , W−

s , W+
t ,

W−
t , Ds, Dt, Ys, Tsrc→tar and Ttar→src, we need to predict Yt.

In order to solve this problem, we try to achieve the following subgoals:

– Combine the information from both the source language view and the target lan-
guage view because both views are helpful and able to contribute to the prediction
accuracy.

– Incorporate both the lexical knowledge (lexicon-based approach) and the document
label knowledge (corpora-based approach) into the model.

– Furthermore, adding information from the test unlabeled data to the model can help
reduce the distribution divergence between the training data and test data.

4 Bi-view Non-negative Matrix Tri-Factorization

In this section, we describe our basic idea of our bi-view non-negative matrix factor-
ization (BNMTF) model, and then give the mathematical formulation. We also analyze
our solution briefly in this section.

4.1 Basic Idea

Firstly, let’s consider the problem in the source language side. We build a term-document
matrix Xs using Vs, Ds and Ds

t . Here machine translation service is employed so that
all the documents(including training and test) have representations in both source lan-
guage and target language. And in this paper, we use both the training documents and
the test documents together to build the term-document matrix in order to add knowl-
edge from the unlabeled data to the model, which means the models we proposed here
is transductive (i.e., we use test data without label in training phrase).

And then similar to [8], we can set up a non-negative matrix tri-factorization (NMTF)
problem as equation (1).
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min
Fs�0,Gs�0,Ss�0

‖ Xs − FsSsG
T
s ‖

2
+ αsTr[(Fs − F0s)

TC1s(Fs − F0s)]

+βsTr[(Gs −G0s)
TC2s(Gs −G0s)]

αs > 0, βs > 0,
∑
ij

Xsi,j = 1,
∑

k

Fsik = 1,
∑

k

Gsjk = 1,
∑

k

Sskk = 1

(1)

We normalize these matrices so that we can explain the equation using the concepts in
probabilistic latent semantic indexing (PLSI) model [5]. Xs, Fs, Gs and Ss can be treat
as the joint distribution between words and documents, the word class-conditional prob-
ability, the document class-conditional probability and the class probability
distribution.

According to [8], the lexical knowledge and training document label knowledge can
be incorporated. Here we incorporate them by the following ways:

– (Lexical Knowledge) We set (F0s)i1 = p (p ≈ 1) and (F0s)i2 = 1 − p if the
i-th word is positive, while (F0s)i2 = p and (F0s)i1 = 1 − p if the i-th word is
negative. And we set (C1s)ii = 1 if we know the lexical knowledge of the i-th
word and (C1s)ii = 0 otherwise.

– (Training Document Label Knowledge) We set (G0s)j1 = q (q ≈ 1) and (G0s)j2 =
1 − q if the j-th document is positive, while (G0s)j2 = q and (G0s)j1 = 1 − q if
the j-th document is negative. And we set (C2s)jj = 1 if we know the label of the
j-th document and (C1s)jj = 0 otherwise.

For the test documents, it is better if good prior can be given. In [8], the authors use the
K-means clustering results for initialization. Here we proposed an alternative way. We
use the training data to build a traditional classifier (e.g. maximum entropy classifier,
support vector machine, etc.), and then using the classification results on the test data
as prior knowledge. In our model, we also put this prior knowledge into G0s.

Now we have given the details of our model in source language view, while in the
target language view everything is almost the same. Similar to equation (1), we can set
up another non-negative matrix tri-factorization problem as equation (2) using the data
in target language view.

min
Ft�0,Gt�0,St�0

‖ Xt − FtStG
T
t ‖

2
+ αtTr[(Ft − F0t)

TC1t(Ft − F0t)]

+βtTr[(Gt −G0t)
TC2t(Gt −G0t)]

αt > 0, βt > 0,
∑
ij

Xti,j = 1,
∑

k

Ftik = 1,
∑

k

Gtjk = 1,
∑

k

Stkk = 1

(2)

The corresponding matrices can be set in the same way as in source language view.
After we set up the two NMTF problems, we see them as two views of our model

and connect them in order to combine the information from the two views. Equation (3)
is a simple constraint which gives a useful connection: The sentiment of a document is
the same (at least close to each other) in the two views.

Gs ≈ Gt (3)
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The schema of our basic idea is shown in Figure 1. We build two term-document matri-
ces, one according to representation of all the documents(both training and test) in the
source language and the other in the target language. The transductive learning setting
ensure the information from test data included. And then we factorize the two matri-
ces into document and word space, the lexical knowledge and training document label
knowledge is incorporated in the factorization process. The factorization process is also
under a useful constraint so that we can combine the information from two views.

Fig. 1. The Schema of Our Basic Idea

4.2 Mathematical Formulation and Brief Analysis

In this subsection, we propose our BNMTF model in mathematical formulation and a
iterative solution to the BNMTF with some brief analysis.

If we put equation (1) and (2) together with a bi-view coefficient γ and let Gs =
Gt = G, we get equation (4). It is a good mathematical representation of our basic idea
in last subsection.

min
Fs�0,Ss�0,Ft�0,St�0,G�0

γ{‖ Xs − FsSsG
T ‖2

+αsTr[(Fs − F0s)
TC1s(Fs − F0s)] + βsTr[(G−G0s)

TC2s(G−G0s)]}
+(1− γ){‖ Xt − FtStG

T ‖2

+αtTr[(Ft − F0t)
TC1t(Ft − F0t)] + βtTr[(G−G0t)

TC2t(G−G0t)]}
αs > 0, βs > 0,

∑
ij

Xsi,j = 1,
∑

k

Fsik = 1,
∑

k

Sskk = 1

αt > 0, βt > 0,
∑
ij

Xti,j = 1,
∑

k

Ftik = 1,
∑

k

Stkk = 1,
∑

k

Gjk = 1

(4)

γ ∈ [0, 1] is the bi-view coefficient which indicate how confident we are to each view.
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To solve equation (4), we design a iterative procedure which is list as follows1.

– r = s/t
– Iteration:

Gjk ← Gjk
[γ(XT

s FsSs + βsC2sG0s) + (1 − γ)(XT
t FtSt + βtC2tG0t)]jk

[γ(GGTXT
s FsSs + βsC2sG) + (1 − γ)(GGTXT

t FtSt + βtC2tG)]jk
(5)

Frik ← Frik

(XrGrS
T
r + αrC1rF0r)ik

(FrFT
r XrGrST

r + αrC1rFr)ik
(6)

Srik ← Srik
(FT

r XrGr)ik

(FT
r FrSrGT

r Gr)ik
(7)

– Initialization:

G ← γG0s + (1− γ)G0t (8)

Fr ← F0r (9)

Sr ← FT
r XrG (10)

Then, we briefly analyze the correctness2, convergence3 and computational complexity
of our updating rules.

For proving the correctness, we need just calculate the gradient of the objective func-
tion, and then test the KKT condition like [4].

For proving the convergence, we need just use auxiliary function approach like [7].
And empirically, we need only a few iterations before practical convergence (see in
Subsection 5.4).

Last but not the least, let us consider about computational complexity. The same as
NMTF model, our BNMTF model scales linearly with the dimensions and density of
the term-document matrices. For one iteration, it takes O(k2(ms +mt +ns +nt)+kz)
time, while k = 2 and z � (ms + mt)(ns + nt) is the number of non-zero entries in
the two term-document matrices here.

5 Experiments

In this section, we describe our experiments to show the effectiveness of our proposed
bi-view non-negative matrix factorization (BNMTF) model for cross-lingual sentiment
classification.

1 We normalize the matrices after each iteration.
2 The algorithm converges to a local optima.
3 The algorithm converges in finite steps.
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5.1 Datasets

We use three review datasets in different domains (MOVIE/BOOK/MUSIC) in the ex-
periments. On the English side, we use movie reivews from the IMDB archives used
in [13], book and music reviews from Amazon.com used in [3], while on the Chinese
side, we collect movie, book and music reviews from a popular Chinese social web,
douban4. We treat the English reviews as training data, and use the Chinese reviews for
test. Furthermore, to evaluate our algorithm, we label the Chinese reviews according to
the users’ ratings.

For all the datasets, all the reviews are translated into another language by Google
Translate Service5. The data in English view is tokenized and lowercased by some perl
scripts6, while the data in Chinese view is segmented by the Stanford Chinese Word
Segmenter7. At last stopwords are removed.

The summary of the review datasets is shown in Table 1.

Table 1. Summary of the review datasets

Dataset Language #Positive #Negative #Terms in Chinese #Terms in English
MOVIE Eng. 1,000 1,000 84,530 62,091

Chn. 1,000 1,000
BOOK Eng. 1,000 1,000 54,295 35,788

Chn. 1,000 1,000
MUSIC Eng. 1,000 1,000 49,085 30,730

Chn. 1,000 1,000

And we also use four sentiment lexicons from HowNet Knowledge Database8. To-
tally, there are 3,730 positive words and 3,116 negative words in Chinese, with 3,594
positive words and 3,563 negative words in English.

5.2 Baselines

In the experiments, we use the following baseline methods to compare with our BNMTF
model described in Subsection 4.2. For the first three baselines, only training data is
used in training phrase, while for others, all the data is used (except the labels of test
data).

– MaxEnt(CHN): It applies maximum entropy classifier 9 with only Chinese terms.
– MaxEnt(ENG): It applies maximum entropy classifier with only English terms.
– MaxEnt(CE): It averages the results of MaxEnt(CHN) and MaxEnt(ENG).

4 http://www.douban.com
5 http://translate.google.com/
6 http://www.statmt.org/wmt08/scripts.tgz
7 http://nlp.stanford.edu/software/segmenter.shtml
8 http://www.keenage.com/
9 We use Maximum Entropy Modeling Toolkit for Python and C++ by Le Zhang,

http://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit.html
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– CoTrain: It is like the co-training approach for cross-lingual sentiment classification
in [16]. The only difference is here we use the test data as unlabeled auxiliary data.

– NMTF(CHN): It solves equation(2). The prediction of MaxEnt(CHN) on test data
is used as prior knowledge.

– NMTF(ENG): It solves equation(1). The prediction of MaxEnt(ENG) on test data
is used as prior knowledge.

– NMTF(CE): It averages the results of NMTF(CHN) and NMTF(ENG).

We also calculate the 10-fold for every dataset by 10-fold cross validation on the test
data using maximum entropy classifier. It is an approximation of the upper bound of
classification results.

A quick word about parameter setting. According to [8], we set αsrc = αtar = 0.5
and βsrc = βtar = 1. And we set γ = 0.5 and I = 100 (the number of iterations for
non-negative matrix tri-factorization) for the overall comparison.

5.3 Overall Comparison Results

We use accuracy to evaluate the classification result.

accuracy =
#{samples classified correctedly}

#{all samples} (11)

Figure 2 shows the overall comparison results. From the figure, we can observe that our
BNMTF model outperforms other baseline methods significantly.

The first three baseline methods do not use the unlabeled test data in training phrase,
so they can not perform as good as other methods which are benefited by the informa-
tion from the unlabeled test data. Among all the baselines, the accuracy of CoTrain is
almost the closest to that of our BNMTF model because these two methods combine
the information both Chinese view and English view in the whole process, where others
are trained in only one view or combine the two views in the last time. We can also see
that generally NMTF models are better than corresponding MaxEnt models because of
the sentiment lexical knowledge. It indicates that both sentiment lexicons and labeled
training documents is useful and important to sentiment classification task. It is also the
main reason why our BNMTF outperform the strongest baseline, CoTrain. We also note
that on MUSIC, our BNMTF model even outperform the uppperbound. It is reasonable
because our BNMTF model contains the sentiment lexical knowledge which is not used
when we calculate the 10-fold.

5.4 Influence of Parameters

We test two main parameters of our BNMTF model, the number of iterations (I) and
the bi-view coefficient (γ).

Figure 3(a) shows the influences of number of iterations to the classification perfor-
mance. In this experiment, we fix γ = 0.5 and change the value of I from 25 to 150
with step length 25. We can see that after 100 iterations, the classification accuracy be-
come robust. On MOVIE and MUSIC, the accuracy increases after 100 iterations but
the speed is slower. On BOOK, the accuracy decreases after 100 iterations because the
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Fig. 2. The Overall Comparison Results

noise of the data, but the results are still acceptable. The experiment results show that
our algorithms converge fast in practice, which implies the scalability of our approach.

Figure 3(b) shows the influences of bi-view coefficient to the classification perfor-
mance. In this experiment, we fix I = 100 and change the value of γ from 0.1 to 0.9
with step length 0.1. Generally speaking, the classification accuracy is higher when γ
is closer to 0.5. The experiment results indicate that both Chinese view and English
view are beneficial to classification accuracy. And our BNMTF model, which combines
the information from the two views, is able to gain the benefits from both views. Al-
though the Chinese view on BOOK is a little poor so that we get the best results on
BOOK when γ = 0.3 not γ = 0.5, we can also see the benefit of the Chinese view.
Furthermore, this situation implies that we can estimate the parameter via a validation
set instead of setting it manually.
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(a) Number of Iterations (b) Bi-view Coefficient

Fig. 3. The Influence of Parameters

6 Conclusion and Future Work

In this paper, we propose a bi-view non-negative matrix tri-factorization (BNMTF)
model for the cross-lingual sentiment classification problem. Our model have three
main advantages, (1) combining the information from two views by a useful and im-
portant constraint, (2) incorporating the lexical knowledge and training document label
knowledge by the extended NMTF and (3) adding information from test documents by
the transductive learning setting. Our experiments on cross-lingual sentiment classifica-
tion in three different domains demonstrate the effectiveness of our proposed approach.

In the future, we are planning to extend our BNMTF model from transductive learn-
ing setting into inductive learning setting. To do this, we need just use other unlabeled
data10 instead of the test data in training phrase, and then predict the test data in the non-
negative matrix tri-factorization framework. In additional, currently we estimate all the
parameters manually, while it seems more reasonable if we can estimate parameters via
a validation set. Finally, we are also planning to extend our proposed BNMTF models
to solve more general cross-lingual classification and other cross-lingual information
access problems.
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Abstract. Adaptive classification evolving over time is an important
learning task that arises in many applications. In this paper, a sequen-
tial dynamic multi-class model (SDMM) is proposed for representing the
multi-class adaptive learning task, which is based on the polychotomous
response model and dynamic logistic regression. Multiple state chains
in the SDMM are coupled by the observable labels and feature vectors.
Each state chain is modeled as a first-order Markov process with time-
varying covariance parameters for characterizing the non-stationary gen-
erating process of sequential labels. Augmented auxiliary variables are
introduced for developing efficient inference procedures according to the
popular data augmentation strategy. Variational Bayesian methods are
applied to estimate the dynamic state variables and augmented auxil-
iary variables recursively. According to the results of recursive filtering
procedures using mean-field approximation forms, one-step-ahead pre-
dicted probabilities are calculated by marginalizing the state variables.
Experiment results based on both synthetic and real data show that
the proposed model significantly outperforms the non-sequential static
methods for the multi-class adaptive learning problems with missing la-
bels. Encouraging results have been obtained by comprising well-known
multi-class data stream algorithms.

1 Introduction

The growing interest in adaptive learning has been received from various chal-
lenging learning tasks in non-stationary environments such as non-invasive brain-
computer interface (BCI), intrusion detection and fault detection. For example,
online adaptation of the classifier is an important requirement for BCI as brain
activity changes naturally over time [1]. In particular, qualitative and quantita-
tive evidence indicating non-stationary in the BCI classification problem has
been provided by [2]. In these real-world learning tasks, online learning ap-
proaches should be temporally adaptive when underlying concept of observable
data changes over time. However, traditional static learning approaches do not
care about the data generating process and ignore the dynamical characteristics
of a set of observations.

J.Z. Huang, L. Cao, and J. Srivastava (Eds.): PAKDD 2011, Part I, LNAI 6634, pp. 301–312, 2011.
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Over the past ten years, researchers have explored several approaches to the
adaptive learning. One approach uses particle filters [3], whose performance is
demonstrated on the problem of fault detection of dynamical operated marine
diesel engines. A non-stationary logistic regressionmodel presented in [4], in which
weights of the model evolve dynamically, uses the usual logistic function as the
classifier. The extended Kalman filter is employed to update the weights in an on-
line manner and the time-varying state noise variance parameters are estimated
by a line search method. Successive research work build on the model. Sykacek
et al. use the variational Kalman filtering as an inference method for sequential
classification in BCI [5]. A windowed Kalman filter procedure is implied to com-
pute a bound of the log evidence. Recently, two different approaches, i.e., dynamic
logistic regression using nonlinear Kalman filters and a dynamic generalized lin-
ear model, are adopted to the sequential classification [6]. In the more closely
related work, sequential Monte Carlo sampling and the extended Kalman filter
have been utilized for solving the same problem [7][8][9]. Research also developed
almost parallel in several different communities, such as data mining and statis-
tics [10][11]. An efficient and effective approach to handle the problem of concept
change in data streams is called concept-adapting very fast decision tree (CVFDT)
[12]. CVFDT builds the decision trees in an incremental manner and detects the
changing data concept from a sliding window of a fixed size.

However, much of previous research efforts only focused on two-class learning
problems and they did not provide explicit representations for multi-class learn-
ing problems. Traditional approaches for the multi-class problems by combining
a set of two-class problems such as 1-vs.-all and 1-vs.-1, have some drawbacks.
The approaches ignore the relations between the classes and have computational
disadvantages. Although extensions to multi-class had been suggested by intro-
ducing multinomial distributions with time-varying parameters, corresponding
inference algorithms can not be derived straightforwardly from that of two-class
learning problems. Furthermore, the extensions substantially complicate the in-
ference procedures, leading to different algorithms for statistical inference. This
motivates us to investigate the multi-class learning problems. In this study, one
of major contributions is that we provide a sequential dynamic multi-class model
(SDMM) in conjunction with the polychotomous response model and dynamic
logistic regression. Latent variables of the model follow a multivariate random
walk. In a novel contribution, we employ the variational Bayesian methods in a
recursive manner for estimating the dynamic latent variables from data feature
vectors and labels. Approximate inference in the learning procedure is formed
on each time step separately. Our proposed inference method is inspired by
the recursive noise adaptive Kalman filtering where on each step the state of
discrete-time linear state space model is estimated with Kalman filter [13].

The rest of this article is structured as follows. In Section 2, SDMM model is
given. In Section 3, the variational Bayesian approach is introduced to
approximate the posterior distributions of the latent variables in a recursive
filtering manner. A learning algorithm is proposed to estimate parameters. Sec-
tion 4 provides a calculation approach for one-step-ahead predictive distribution.



A Sequential Dynamic Multi-class Model and Recursive Filtering 303

After presenting some experimental results in Section 5, conclusions and future
research are given in Section 6.

2 Sequential Dynamic Multi-class Model

Let x1, ..., xt, ..., xT denote an observed input stream at time t = 1, 2, ..., T , la-
beled in K classes. In this research we are concerned with developing a sequential
classifier for multi-class learning problems where K is greater than two. The data
points arrive one xt at a time t. A correct label Zt ∈ {1, ..., K} is revealed after
the one-step-ahead prediction is done by the classifier, but before the next data
point xt+1 is observed. The classifier is updated in an online manner by using the
data observed at time t. Considering a given input feature vector ht at time t ,
a sequential polychotomous response model to the dynamic multi-class learning
has the following form:

wt,k = wt−1,k + vt,k (1)

yt,k ∼ N(hT
t wt,k, 1) (2)

Zt = j, if yt,j = max
1≤k≤K

{yt,k} (3)

where vt,k ∼ N(0, qt,kI) is the Gaussian process noise whose covariance is con-
strained to a scaled identity matrix qt,kI. Compared to the polychotomous model
proposed by [14], the d-dimensional state variable wt,k using a random-walk
model is time-evolving to capture the non-stationary. Moreover, adopting the
form of the random-walk model for state variables means that our model is
best suitable for sequential classification in the presence of steady changes. Con-
tinuous auxiliary variables yt,k are introduced to augment multinomial probit
regression model. As detailed in [15], the multinomial probit takes the following
form by explicitly marginalizing the auxiliary variables:

p(Zt = i|wt) =
∫

δ(yt,i > yt,k, ∀k = i)
K∏

j=1

p(yt,j|wt,j)dy

= Ep(u){
∏
j �=i

Φ(u + hT
t (wt,i−wt,j))}

(4)

where the random variable u ∼ N(0, 1) is standardized normal, Φ()is the stan-
dardized normal Cumulative Distribution Function (CDF).

Fig.1 shows a directed acyclic graph for the hierarchical generating process.
The next task is to estimate the state variable wt,k according to the observable
labels and feature vectors by Bayesian filtering methods.

3 Recursive Filtering by Variational Bayes

3.1 Variational Bayes Approximation

To infer the state variables of the nonlinear state space model above, Bayes’s rule
is utilized for the recursive evaluation of the filtering distribution p(wt,k|Z1:t, h1:t).
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Fig. 1. Graphical model for the generating process of the observed multi-class labels
given the feature vectors at time t

However, owing to the non-linear and non-Gaussian of observation function, ap-
proximation methods are required to simplify the estimation procedure. We use
Variational Bayes (VB) approximation method to infer posterior distributions
and variational EM to fit the hyperparameters [16].

Assume that the VB approximation has been applied at the previous time
step t−1, i.e., the conditional distribution for wt−1,k given the labels Z1:t−1 and
the feature vectors h1:t−1 takes the form as follows:

p(wt−1,k|Z1:t−1, h1:t−1) = N(m̃t−1,k, P̃t−1,k) (5)

Since the state process is linear, the prediction distribution is:

p(wt,k|Z1:t−1, h1:t−1) = N(m−
t,k, P−

t,k) (6)

where m−
t,k = m̃t−1,k and P−

t,k = P̃t−1,k + qt,kI.
Next, a mean-field approximation for the updated posterior distribution is

adopted as follows:

p(wt, yt|Z1:t, h1:t) ≈
K∏

k=1

Q(wt,k)Q(yt,k) (7)

Following the VB methodology, a lower bound F (Q(wt, yt), θt) of the logarithmic
marginal likelihood log p(Zt, ht|θt) is:

F (Q(wt, yt), θt) =
∫ K∏

k=1

Q(yt,k)Q(wt,k) log
[{

K∑
i=1

δ(yt,i > yt,k, ∀k = i)δ(Zt = i)
}

K∏
k=1

p(yt,k|wt,k)p(wt,k|m−
t,k, P−

t,k)
]

dydw +
K∑

k=1

H(Q(yt,k)) +
K∑

k=1

H(Q(wt,k))

(8)
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Maximizing the lower bound (8) and applying the Euler equation and constraints
of Lagrange multiplier type, the solution for each Q(wt,k) and Q(yt,k)can be
derived as follows:

Q(wt,k) = N(m̃t,k, P̃t,k) for k = 1, ..., K (9)

Q(yt) = Z−1
∏
k

N(yt,k|hT
t m̃t,k, 1) (10)

where:

Z =
∫ +∞
−∞ N(yt,i|hT

t m̃t,i, 1)
∏
j �=i

∫ yt,i

−∞ N(yt,j|hT
t m̃t,j , 1)dyt,idyt,j

= Ep(u)

{∏
j �=i

Φ[u + hT
t (m̃t,i − m̃t,j)]

}

with assuming that Zt = i the ith dimension of yt is always the largest [15].
The parameters of the distributions are the following:

m̃t,k = St,k(m−
t,k + ỹt,kP−

t,kht) (11)

P̃t,k = St,kP−
t,k (12)

St,k = I − P−
t,khth

T
t

1 + hT
t P−

t,kht

(13)

for Zt = i:

ỹt,i = hT
t m̃t,i −

⎡⎣∑
j �=i

(ỹt,j − hT
t m̃t,j)

⎤⎦ (14)

for all k = i:

ỹt,k = hT
t m̃t,k −

Ep(u)

{
N(u|hT

t (m̃t,k − m̃t,i), 1)Φt,k,i
u

}
Ep(u)

{
Φ(u + hT

t (m̃t,k − m̃t,i), 1)Φt,k,i
u

} (15)

where Φt,k,i
u =

∏
j �=i,k

Φ
[
u + hT

t (m̃t,i − m̃t,j)
]
. Unlike the parameters of Q(wt,k)

with determination solutions, that of Q(yt,k) are obtained by importance sam-
pling method.

Finally, we provide the expression of the variational lower bound by using
(8,11-15):

F (Q(wt, yt), θt) = log Zt −
(

K−1
2

)
log 2π + 1

2

K∑
k=1

log
∣∣∣P̃t,k(P−

t,k)−1
∣∣∣

+ 1
2

K∑
k=1

tr{I − [P̃t,k+(m̃t,k −m−
t,k)(m̃t,k −m−

t,k)T ](P−
t,k)−1}

(16)

The value of the bound can be employed to set a convergence criterion for
iteratively updating the parameters of Q(wt,k) and Q(yt,k) using (11) to (15).
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The calculation as described above is called E-step of variational Bayesian
expectational maximizing algorithm (VB-EM), whose purpose is to estimate the
hidden states. The M-step of VB-EM is to estimate the state evolution noise
variance qt,k using the states estimated in the previous E-step. Ideally, all qt,k

are obtained by maximizing the variational lower bound (16) at the end of each
E-step, which is guaranteed that the likelihood will not decrease. However, it
is difficult to evaluate qt,k by setting the derivative of (16) with respect to the
parameters qt,k to zero. Inspired by the setting methods for the covariance matrix
of adaptive autoregressive model in [17], we set qt,k to UC × trace(P̃t−1,k)/d,
where trace() denotes the trace of matrix, UC as the update coefficients with
0 < UC < 1. Small UC means the state variables change slowly with time and
only a small non-stationary takes place.

3.2 Summary

Here, we give a step-by-step overview of the proposed recursive filtering method:

Initialization: Given a set of measurements z′ = {Zt, t = 1, . . . , L} and feature
vectors h′ = {ht, t = 1, . . . L} , initialize the parameters m̃0,k using logistic
regression or to random values, and set the parameters P̃0,k to q0,kI , where q0,k

are set by hand.

Iterate the VB Approximate Algorithm: Given the approximate posterior
distribution Q(wt−1,k), first calculate p(wt,k|Z1:t−1, h1:t−1) using (10), for k =
1, . . . , K . Then iterate the following a few steps:

Step 1 Calculate Q(yt,k) using (10);
Step 2 Calculate Q(wt,k) using (9);
Step 3 Calculate F (Q(wt, yt), θt) using (16) to monitor the convergence of the

above iterating procedure.
We close the summary by analyzing the time and space complexity of the

method.
Given S samples for the required importance sampling method, the most

expensive operation in Step 1 is to compute (15), which takes O(K(K − 1)Sd)
time. The complexity of Step 2 is O(Kd3) for computing matrix multiplications
in (12). Step 3 has to compute the matrix inversion, hence, takes O(Kd3).The
space complexity of the recursive filtering method is O(max(S, Kd2)).

4 Variational Predictive Distributions of New Inputs

For a new feature vector ht+1 at the time step t + 1 , one-step-ahead predic-
tive distribution can be obtained by firstly marginalizing the state variables as
follows:

p(yt+1|ht+1, w1:t) =
∫

p(yt+1|ht+1, wt+1)p(wt+1|m−
t+1, P

−
t+1)dwt+1

=
K∏

k=1

∫
N(yt+1,k|hT

t+1wt+1,k, 1)N(wt+1,k|m−
t+1,k, P−

t+1,k)dwt+1,k

=
K∏

k=1

N(yt+1,k|hT
t+1m

−
t+1,k, v2

t+1,k
)

(17)
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where vt+1,k =
√

1 + hT
t+1P

−
t+1,kht+1. As shown in [15], using the definition:

δt+1,k ≡ p(Zt+1 = k|yt+1) = δ(yt+1,k > yt+1,i ∀i = k)δ(Zt+1 = k)

then:

p(Zt+1 = k|ht+1, w1:t) =
∫

δt+1,k

K∏
k=1

N(yt+1,k|hT
t+1m

−
t+1,k, vt+1,k)dyt+1,k

= Ep(u){
∏
j �=k

Φ[uvt+1,k+hT
t+1(m

−
t+1,k −m−

t+1,j)/vt+1,j ]}
(18)

Constrained by the definition of probabilistic distribution, a proper normaliza-
tion for the posterior distribution over classes {1, . . . , K} should be adopted:

K∑
k=1

p(Zt+1 = k|ht+1, w1:t) = 1

When labels received are sparse, the classification problem can be reformu-
lated as an incomplete learning problem with missing labels. The one-step-ahead
method can also be applied to infer the missing labels. In turn, the predictive la-
bels with the largest posterior probabilities are set to ”quasi-targets” for further
recursive filtering. The approach can also be viewed as a semi-supervised learn-
ing problem of time series. As illustrated in [6], moreover, active label requesting
can be adopted when observing labels may be expensive. In practice, successive
applying of one-step-ahead for missing labels can bring high cumulative errors by
the recursive filtering method proposed as above. Therefore, requesting actively
a label is important to the further research.

5 Experiment Results

Despite increasing interest and importance of this topic, there have few publiclly
available benchmark data sets for dynamic multi-class learning tasks involving
non-stationary environments. We present results over three data sets: A synthetic
data set,a real data set of electroencephalogram(EEG) and the Waveform data
set from the UCI Machine Learning Repository. Some static classifiers, as well
as CVFDT and an online linear discriminant classifier (O-LDC) presented in
[10], are compared with our proposed approach on the two data sets. CVFDT
only reports the one-step-ahead results on the three data sets because it fails to
tackle the problems with missing input labels. Although O-LDC is one of the
few dynamic multi-class classifiers, it is linear.

5.1 Synthetic Problem

For demonstration purposes, we firstly consider a synthetic four-class problem,
where four Gaussian distributions rotate in a circular fashion around a central
point [0, 0]. Initialization mean points of the four Gaussian distributions locate
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Fig. 2. Four Gaussian distributions rotating in a circular fashion at time step: (a)
t = 160;(b) t = 400; (c) t = 640

at the left, upper, right and lower points of a circle whose radian is 2 respectively.
Covariance matrices of the Gaussian distributions are equally set to 0.04I2. Tar-
get classes change with time in an interleaving manner, i.e. {1, 2, 3, 4, 1, 2, · · ·}.
Figure 2 gives three snapshots of the moving-circle class configurations.

The input feature vector ht at time t in the experiments is represented as
ht = [xT

t ; 1]T and xt is a two-dimensional input data. The initialization values
of parameters are given as follows: m̃0,k ∼ N(0, 1);UC = 0.55.

Results: (1) We performed experiments using first 20 labeled inputs. The re-
maining 620 inputs were used for testing. One-step-ahead predicted labels were
computed by the recursive filtering, the test error was only 1.61%. As a com-
parison, CVFDT and O-LDA gave the test error rate of 55.8% and 70.8% re-
spectively. We attribute the improvements of performance to the fact that our
model takes advantages of non-linear classifier.

(2) Another experiment was performed for missing input labels. Besides the
first 40 inputs which must be labeled, 10% to 90% of the remaining 600 in-
puts were labeled randomly. The predictive results by our proposed method
(SDMM) were compared with other three classifiers. Figure 3 illustrated the
performances of each classifiers evaluated over 10 independent runs. The pa-
rameters of variational Bayesian multinomial probit regression with Gaussian
process priors (VBGP) are set to be default [15]. In support vector machines
(SVM) with Gaussian kernels, gamma coefficient was set to be 3 according to
the best predictive results by observing various numerical experiments under
different gamma values (γ = 0.1, 0.5, 1, 2, 3, 5). We combined the binary SVM
classifiers by using 1-vs.-1 scheme [18]. In k-nearest neighbors classifiers, k was
set to be 7 according to the best predictive results among k = 1, 3, 5, 7, 9.

The left panel of Fig.3 shows that our method (SDMM) takes advantages
of sequential dynamic learning. The error rate clearly shows a slow trend to
the probabilities of missing labels. Even there are 90% unlabeled test data, the
average error rate is only 13%. The other three non-sequential classifiers fail to
discrimination. Their error rates have little improvements than that of random
labeled procedure.
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The results provide the similar conclusion, presented in [6] for the sequential
dynamic learning of two-class problems, that the classification performances of
the model do not worsen in proportion to the number of missing labels. Although
the complexity of the SDMM and corresponding inference algorithms increases,
the classification performances with sparse observed labels remain almost un-
changeable. Therefore, the results indicate the extension of two-class adaptive
classifiers to multi-class environment is feasible.

5.2 Four-Class Motor Imagery EEG Data for the BCI-Competition
2005

BCI aims to establishing a direct connection between the human and the com-
puter, which enables the person to control the computer with the imagination
or other mental tasks. Extensive training is required for the adaptation of the
user to the designed BCI system. Non-stationary of brain signals during mo-
tor imagery poses a challengeable task for the accuracy of BCI control. For
investigating the significant challenge, we tried to apply the sequential dynamic
multi-class model for a four-class motor imagery task.

The data we use is available at http://www.bbci.de/competition/iii/, whose
detailed description of the acquisition procedure is presented in [19]. A four-class
classification task including the motor imagery of the left/right hand, one foot,
or tongue was provided for the 2005 BCI competition from Graz. For demon-
stration purposes, we only considered subject k3b, where 90 trials per condition
were recorded. According the experimental results in [20], we adopted following
feature extraction procedure. Firstly, two monopolar channels �3 and �34 were
selected to perform single-channel analysis. Data within the interval of to 6.8s
after down sampling from 250 to 125 samples per second were remained. Then,
three-order AAR procedure was calculated for the difference of two monopo-
lar channels of each trail. Finally, 75-dimensional input data for each trail were
obtained to construct the input feature vector ht = [xT

t ; 1]T . Similarly, first 40
inputs and randomly sam-pled inputs from 10% to 90% of the remaining 320
inputs were labeled. UC = 0.0055 ; Weights of the logistic regression classifier
on first 40 inputs were taken as the initialization values of m̃0,k .

The predictive performance of our proposed method (SDMM) was also com-
pared with another four classifiers (VBGP, SVM, k-NN and LR). The reported
labeling errors are averages over 10 randomly drawn observable and missing data
sets. Figure 4 shows that the comparison of the error rate via five different clas-
sifiers on the four-class motor imagery EEG data set. Here, gamma for SVM was
set to be 0.01 in order to achieve the best results. PCA (principal component
analysis) is used to extract 8 principal component features before k-NN classi-
fiers applying to these features. LR stands for Logistic Regression of multi-class
learning.

In the right panel of Fig.3, our proposed method (SDMM) has an accuracy
improvement of 9% averagely. It is able to achieve higher classification perfor-
mances than the other four non-sequential models. We use the paired t-test
and the p-values for the nine groups under varying fraction of missing labels.
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All p-values of pairs between our SDMM method and other methods are less
than 0.01 excluding that of pair between the SDMM and SVM on the seventh
group (p=0.02053). According to the quantitative results of statistical analysis,
the error rate of SDMM is significantly smaller than that of four static classifiers.

It might be argued that the performance of both classifiers almost does not
change when the number of missing labels changes. There are two possible rea-
sons: 1) A simple feature extraction approach was presented in our experiments
and would lead lower absolute classification accuracies; 2) In BCI, the labels
of subject training are not always accurate [8]. In addition, unlike the other
classifiers improving performances by extensive cross validation procedures, our
method is prone to online computation style.
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Fig. 3. Percent error rates of VBGP, SVM, k-NN and SDMM corresponding to all of
the 9 tests under varying fraction of missing labels. Error bars are standard errors of the
mean (SEM) over the ten runs with random realizations of the labeled inputs. The left
and right panels show the performance comparision results with different probabilities
of missing labels on the synthetic problem and the four-class motor imagery EEG data
respectively.

5.3 Waveform Data Set from the UCI Machine Learning Repository

The original Waveform data set consists of 5000 instances in three classes with
21 attributes. To form a large data stream, the data set is repeatedly stacked
according the order of attributes. For every segment partitioned by the selected
attribute, all instances in the segment are ascendingly sorted according to the
value of attribute [21]. Therefore, the Waveform data set has 105000 instances.

For the large scale stream learning problem, SDMM is compared against the
popular multi-class data stream classifier CVFDT. The CVFDT algorithm has
some parameters to be set. Typical parameter setting used by the corresponding
paper and free software can not achieve the low error rate along time for the
data set. In our study, we observed that the setting ”-tc 0.25 -sc 0.1 -chunk 20”
can give the best results. In our SDMM algorithm, we set UC = 0.0055.

In Fig.4 the incremental one-step-ahead error rate is illustrated for the two ri-
val algorithms. It is observed that SDMM outperforms CVFDT when the number
of instances is less than 50000. However, accuracy of CVFDT improves steadily
as more instances are increased. This is explained by the fact that SDMM, as a
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Fig. 4. Incremental one-step-ahead error rate of rival algorithms on Waveform data set

model-based classifier learned by the Bayesian methods, is prone to tackle the
small scale learning problems. Another possible reason is that our SDMM algo-
rithm keeps a sliding window with fixed size 1 and reduces the significance of
the most recent instances arrived.

6 Conclusions

We have presented the sequential dynamic multi-class model for adaptive learn-
ing of data streams. We have adopted the variational Bayesian approach for
recursive filtering of the model. Our experiments have shown that this model
outperforms the static approach in the presence of time-varying classification
decisions and sparse labeled data. In comparison to the well-known multi-class
data stream algorithms, we report promising results.

Sequential adaptive learning is important for exploring the nature of non-
stationary and non-linear of online learning problems. Future work will focus on
developing an advanced filtering method along an adaptive sliding window with
varying size. Active label requesting also deserves further study.
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Abstract. Few online classification algorithms based on traditional in-
ductive ensembling focus on handling concept drifting data streams while
performing well on noisy data. Motivated by this, an incremental algo-
rithm based on random Ensemble Decision Trees for Concept-drifting
data streams (EDTC) is proposed in this paper. Three variants of ran-
dom feature selection are developed to implement split-tests. To better
track concept drifts in data streams with noisy data, an improved two-
threshold-based drifting detection mechanism is introduced. Extensive
studies demonstrate that our algorithm performs very well compared
to several known online algorithms based on single models and ensemble
models. A conclusion is hence drawn that multiple solutions are provided
for learning from concept drifting data streams with noise.

Keywords: Data Stream, Random Decision Tree, Concept Drift, Noise.

1 Introduction

With the development of Web Services technology, streaming data from the In-
ternet span across a wide range of domains, including shopping transactions,
Internet search requests, and etc. In contrast to the traditional data sources of
data mining, these streaming data present new characteristics as being contin-
uous, high-volume, open-ended and concept drifting. As an important branch
of data mining, classification can be solved by inductive learning models[20,23].
Decision trees, due to their advantages, are one of the most popular techniques.
They are widely used as a basic model in ensemble classifiers. However, it is still
a challenge to learn from data streams with these traditional models. Thus, new
decision-tree-based algorithms have been developed for data streams, including
a continuously-changing data stream algorithm-CVFDT[16], a Streaming En-
semble Algorithm-SEA[24], a weighted ensemble algorithm[25], a boosting-like
method[22] and new variants of Bagging for concept drifting data streams[3].
However, few of them focus on tackling different types of concept drifts while
considering the effect from noise in the concept drifting detection.

Contrary to these existing efforts, we introduce a new Ensemble algorithm
based on random Decision Trees for Concept drifting data streams with noise
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(EDTC). Our major contributions are as follows. First, the incremental gener-
ation of random decision trees in EDTC is different from all existing random
decision trees. Second, we develop three variants of random feature selection to
determine the split-information. Observations in [10,19] reveal that algorithms
with random feature selection are more effective and efficient compared to those
with informed split-tests in heuristic methods. Lastly, we develop a double-
threshold-based mechanism of concept drifting detection in Hoeffding Bounds
inequality[13]. Experiments show that EDTC enables tackling concept drifting
data streams with certain noisy data compared to other online algorithms.

The rest of this paper is organized as follows. Section 2 reviews the related
work. Our EDTC algorithm is described in detail in Section 3. Section 4 provides
the experimental study and Section 5 is the summary.

2 Related Work

Many efforts based on ensemble random decision trees have emerged for data
stream handling, which are summarized below. An ensembling method [9] based
on random decision trees [10] was proposed to improve the accuracy of classifi-
cation and adapt quickly to sudden drifts. An online algorithm[1] of Stream-
ing Random Forests extended from Random Forests was presented for data
streams. To further apply this algorithm to tackle concept drifts, an algorithm
using an entropy-based drift-detection technique[2] was developed for evolving
data streams. In addition, an algorithm of Multiple Semi-Random decision Trees
called MSRT[18] was also presented for concept-drifting data streams. It adopts
a double-threshold-based mechanism to detect concept drifts.

In contrast to the aforementioned algorithms based on random decision trees,
our EDTC algorithm presents three different characteristics. i) Instead of gener-
ating all trees with fixed heights in advance[9,10,18], decision nodes are scaled up
incrementally after seeing real training data. ii) Various versions of random fea-
ture selection are explored to solve the split-information in the growing of trees.
All variants are different from the random-feature-selection mechanism in [2].
iii) A double-threshold-based drift-detection technique is utilized to distinguish
concept drifts from noise. This is different from MSRT regarding the evaluation
method for error rates of classification and the values of thresholds.

3 The EDTC Algorithm

Our EDTC algorithm aims for concept drifting detection in data streams with
noisy data. The processing flow is shown in Algorithm 1. With the continuous
incoming of data streams, EDTC will generate N -random decision trees incre-
mentally in various strategies of random feature selection, called the component
of GenerateIncrTree. If the total number of training data arrived amounts to a
drifting check period-DP, EDTC will distinguish concept drifts from noisy data
streams and adjust the detection mechanism for adaptation to concept drifts.
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Algorithm 1: EDTC

Input: Training set: TR={tr1, tr2, · · ·, trm}; Test set: TE={te1, te2, · · ·, ten}; Count of attribute

dimensions: |Attr|: Attribute set: A={a1, a2, · · ·, a|Attr|}; Maximum height of trees: h0;

Minimum count of split instances: nmin; Tree count: N ; Memory check period: MP ;

Drifting check period: DP ; Sliding window: SW
Output: Error rate of classification

Procedure EDTC (TR, TE, |Attr|, A, h0, nmin, N, MP, DP, SW )

1. for each training instance-tri∈TR, 1 ≤ i ≤ m
2. for each tree-Tk, k∈{1, ..., N}
3. GenerateIncTree(Tk, tri, h0, nmin, A, SW );
4. if the count of training instances observed in tree-Tk satisfies the value of DP
5. DetectDrifts(DP, SW );
6. if the count of training instances observed in tree-Tk meets the value of MP
7. AdjustMemory();
8. return Voting(TE);

Function 1: GenerateIncTree{Tk , tri, h0, nmin, A, SW }
1. if there is no root in the decision tree Tk

2. Generate the root of Tk;
3. for a training instance tri

4. Store the instance tri into SW
5. if the number of instances exceeds the size of SW
6. Release the instance in SW by the mechanism of first in first out;
7. while the height of tree-Tk≤h0
8. Sort tri into an available node;
9. if the passed current node of nodecur is a growing node without splitting

10. Select a split-attribute Aj ∈ A at nodecur;
11. if Aj is a numerical attribute
12. Mark the node as continuous and update the statistical information;
13. if Aj is a discrete attribute
14. Generate a child by the attribute value of Aj in tri;
15. Set this child node to the current node of nodecur and go to Step 3;
16. if it is a continuous node without cut-point and the count of instances ≥ nmin

17. Do split-test for a split-point;
18. if the node of nodecur is a leaf with the height level of h0
19. Update the information of attribute values relevant to all attributes in A;

This is called the component of DetectDrifts. Meanwhile, if the number of
training instances arrived is up to the memory check period-MP, it will release
the space to avoid space overflow, called AdjustMemory. Last, it will adopt a
simple voting method to validate the performance itself after training, called
Voting. In the following subsections, we will describe each component in detail.

Incremental Generation of Decision Trees
In the component of GenerateIncTree, to avoid growing sub-branches blindly,
each node is generated only if a real training instance arrives. Meanwhile, to ob-
tain the maximum utility of each decision path, the split-test mechanism in the
growing of each tree follows that discrete attributes should not be chosen again
in a decision path while numerical attributes can be chosen multiple times. In
addition, with the continuous incoming data streams, a sliding window is intro-
duced to store training data for future reconstruction of sub-branches. Instances
in the window follow the forgetting mechanism of “first in and first out”. More
details refer to Function 1. In this function, the statistical information involved
in Step 12 includes the count of instances, the distribution of class labels and
the attribute values relevant to this split-attribute only. Attribute values will be
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stored in an ascending order and discritized into min(10, the number of these
sequential attribute values) intervals for future split-tests. In Steps 14 and 17,
a doubly linked list of Parent-Children is created for future bottom-up search,
called PCList. Each element is a triple, consisting of a self-pointer, a parent
pointer and a sibling pointer. It is used in the concept drifting detection.

Random Feature Selection
To solve cut-points for growing nodes with numerical attributes, three random
feature selection strategies are adopted in this paper. The first one refers to
Randomization with the heuristic method in Hoeffding Bounds inequality, called
RHB. The second one specifies Randomization with the heuristic method of
Information Gain, named as RIG, and the third one indicates RANdomization
without any heuristic method, called RAN. Details are as follows. In the first
strategy, a cut-point is selected from the statistic attribute values of the current
split-attribute (e.g., aj). It is determined in the evaluation function (denoted
as H (·)) relevant to Information Gain and Hoeffeding Bounds inequality. The
definition of Hoeffeding Bounds inequality is given below. Consider a real-valued
random variable r whose range is R. Suppose we have made n independent
observations of this variable, and computed their mean r̄, which shows that,
with probability 1-δ, the true mean of the variable is at least r̄-ε,

P(r≥ r̄ - ε)=1-δ, ε=
√

R2ln(1/δ)/2n (1)

where R is set to log2(the number of class labels), and n indicates the number
of instances required in a split-test (using nmin instead). According to Eq.(1),
suppose ΔH =H (aj(x ))-H (aj(y)) refers to the difference between two candidate
cut-points with the highest gain for attribute-aj . For a given τ1, if the condi-
tion of ΔH >ε or ΔH≤ε<τ holds, the attribute value of the x th cut-point with
the highest gain will be selected as the final split-point. In the second strategy,
the evaluation function is only related to Information Gain. In other words, if
satisfying H(aj(x)) > H(aj(y)), the attribute value of x th cut-point with the
highest gain will be selected as the final split-point. However, the third strategy
evaluates the cut-point without any heuristic method. That is, it first randomly
selects a discretization interval index of attribute values for the current numerical
split-attribute, and then specifies the average value of the selected interval as the
split-point. In brief, because each strategy implies a certain random character-
istic in the feature selection, we call them variants of random feature selection2.

Concept Drifting Detection
A double-threshold-based concept drifting detection mechanism presented in this
section is developed to improve the performance in the tracking of concept drifts
under noise. Our thought is enlightened from the drifting detection in [11], but a

1 τ is the threshold that we do not care about which classifier is more accurate, i.e.,
the case of ties. In general, the value of τ is set to 0.05 [16][19].

2 The executable file is available on http://www1.hfut.edu.cn/organ/kddweb/
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difference is that thresholds are determined in the Hoeffding Bounds inequality.
Details of drifting detection in DetectDrifts are as follows. In terms of the struc-
ture PCList, a bottom-up scanning in each tree starts on decision nodes with
the 2nd highest level and ends at the root of the current tree for each drifting
check period. More precisely, for each available decision node, we first calculate
the sum error rate of classification in Näıve Bayes at its children nodes. Sup-
pose this is the pth check period. Estimation values in the pth and (p − 1)th

periods are denoted as ef and es respectively. Both variables are considered
as independent ones, which follow the Normal distribution. According to the re-
producibility of Normal distribution, the linear transformations of these variants
(e.g., Δe = ef−es) also follow this distribution. Considering that the probability
distribution is unchanged when the context is static, then the 1- δ confidence
interval for Δe is approximately (ēf − ēs)±cε according to the inequality of Ho-
effding Bounds, where c is a constant, ēf = 1/p ·

∑p
k=1

ek, ēs = 1/(p− 1) ·
∑p−1

k=1
ek

, and ek indicates the error rate in the kth checking period. In our algorithm, we
ignore the deviation between ēf and ēs, because with the increasing of the value
of p, the difference of ēf − ēs approaches to zero. In the analysis of the relation
among c, Δe and δ, we find that the larger value of c indicates the larger value
of Δe and the smaller value of δ while the larger value of Δe indicates the larger
deviation in the data distribution during different periods, namely, the more
possibility that concept drifts occur (i.e., the larger value of 1− δ). In addition,
regarding the noise impact in the concept drifting detection, we use two different
values of c (c1 and c2, c1<c2) to distinguish concept drifts from noise. Hence,
we could obtain three cases relevant to concept drifts below.

i) If Δe ≤ c1ε, we only consider that a potential concept drift is occurring
with the confidence 1 - δl, where c1ε=1 / exp[δl

2·2n/R2].
ii) If Δe ≥ c2ε, it indicates that a true concept drift is involved with the

confidence 1 - δh, where c2ε = 1 /exp[δh
2·2n/R2]. In this case, sub-trees will be

reconstructed using the instances in SW for better tracking concept drifts.
iii) Otherwise, a plausible concept drift is considered due to the impact from

noise. In the first two cases, n indicates the instance count at the current node.

Handling of Space Overflow
To avoid space overflow in the growing of a decision tree, we provide an ap-
proach to space relief in the component of AdjustMemory. That is, firstly, stop
all undergoing splits of growing nodes and change them into leaves. Secondly,
release the storage space of attribute values at decision nodes. It is implemented
by traversing from bottom to top using the structure of PCList. Lastly, to per-
form simple pruning, cut off several sub-trees from bottom to top with the roots
whose error rates of classification are more than 50%.

Majority Voting for Classification
Regarding the classification in our algorithm, the strategy of majority voting
is utilized to classify each test instance. It is implemented after the individual
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decision from each tree in the Näıve Bayes method, namely choosing the
majority class label as the classification result.

Analysis: Estimation on Generalization Error
In the theorem of generalization errors for a model of random tree ensembling,
an upper bound [6] is given in Eq.(2), where p̄ indicates the correlation among
trees while s indicates the strength of each individual tree.

PE ≤ p̄(1−s2)/s2 = p̄(1/s2−1) (2)

This is also suitable for our random ensemble decision trees[15]. According to the
definitions on three strategies of random feature selection mentioned above, all
trees in the ensemble model are created in a completely random selection method
on split-attributes, the correlation among trees is hence lower, namely ensuring a
smaller value of p̄. However, considering the value of s, it is non-deterministic due
to the different randomization in each individual model. To evaluate the strength
of our model, it is sufficient to take into account the probability that this model
is optimal, as the higher predictive accuracy in a model infers the more likelihood
that this model is optimal[8]. More specifically, supposing a database has only
one relevant attribute ai and the remaining |Attr|-1 attributes are irrelevant,
there are two extreme cases as follows.

Case1 (Best Case): There are pure discrete-only attributes in the database
and all of the discrete attributes are binary. Each decision path from the root to
a leaf is completely independent.

Case2 (Worst Case): All attributes in the database are numerical. Each node
in a tree only generates two children branches at most. The sampling mechanism
with replacement is used in the generation of trees.

In both cases, probabilities of an attribute to appear in the Lth level of a
decision path are defined in Eqs.(3) and (4) respectively (let K=|Attr|). Thus,

Case1 : pmax = K−1
K

· K−2
K−1

· · · · · K−L
K−L+1

· 1
K−L

= 1

|Attr| (3)

Case2 : pmin = K−1
K

· K−1
K

· · · · · K−1
K

· 1
K

= [1 − 1

|Attr|
]L−1 · 1

|Attr|
(4)

we have the least probability for at least one path to involve the only relevant
attribute in Eq.(5), namely, our model is optimal with the value of LP at least.

LP = 1− (1−pmax)N·2h0−1 (5)

The generalization errors mentioned above are obtained on the assumption that
the distribution of training data is i.i.d. However, it is hard to hold in the concept
drifting data streams. Thus, regarding the impact from concept drifts, we give
an infimum bound of generalization errors for our random ensemble model in Eq.
(6), where T t specifies the current decision tree ensembling generated over the
sequential data chunks {θk, 1 ≤k≤ t}. Each data chunk θk contains all instances
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in the kth drifting check period. Due to the page limitation, the detailed inference
of Eq. (6) is omitted.

PE∗ ≥ P
(Tt,θt)

(LP ≤ 0.5) (6)

4 Experiments

To validate the efficiency and effectiveness of our EDTC algorithm, several
single and ensemble algorithms for concept drifting data streams, including
CVFDT[16], HT-DDM (a single Hoeffding Tree with a Drift Detection Method)
[11], HT-EDDM (a single Hoeffding Tree with an Early Drift Detection Method)
[4], Bag10-ASHT-W+R3[3] and MSRT[18], are selected to compare with our al-
gorithm on benchmark concept drifting databases and real streaming data. All
experiments are performed on a P4, 3.00GHz PC with 2G main memory, running
Windows XP Professional. Algorithms of CVFDT, MSRT and EDTC are devel-
oped in C++ while others are coded in Java from the open source MOA4[14].
Thus, only those algorithms coded in the same platform with EDTC on the
overheads of space and time are contrasted for fair comparisons. In addition,
because three strategies of random feature selection in EDTC are designed for
cut-points of nodes with numerical attributes, only a copy of experimental val-
ues is presented for databases with pure discrete-only attributes. All denotations
involved in this section are summarized as shown in Table 1.

Parameter Estimation
With respect to the parameters of h0 and N in EDTC, it is sufficient to ensure
better performance for the current ensemble model if satisfying h0=|A|/2 (or 5)
and N =10[8,19]. Considering the parameters of nmin and δ in the growing of a
tree, an experimental conclusion[19] reveals that the model performs sufficiently
well if nmin=200 and δ = 10−7. Regarding the values of c1 and c2, we also use
the control limit of 2-σ or 3-σ[11] to partition concept drifts and noise. In EDTC,
let δl equal to 0.05, namely, the confidence level for drifts is set to 95% while the
confidence of 1-δh could be more than 99%. In addition, for other parameters in
EDTC, they are set to DP=1k5, MP=500k and SW =10k. However, for the pa-
rameters in the comparison algorithms, they follow the default settings involved
in [16,11,4,3,18] respectively.

Evaluations on Concept Drifting Data Sets

SEA. It is a well-known data set of concept shift with numerical attributes
only[24]. This database consists of a three-dimensional feature space with two
3 Online Bagging based on ten Adaptive Size Hoeffding Trees, which uses weighted

classifiers and replaces oversized trees with new ones.
4 Massive Online Analysis: a software environment for implementing algorithms and

running experiments for online learning from data streams.
5 The larger the value of DP, the more the frequency of drifting detection. However,

this indicates the more probability that false alarms occur and the more time con-
sumption. To trade-off these values, an experimental conclusion is set to DP=1k.
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Table 1. Denotations

Symbol Description
Memory The memory consumption in a single tree, Unit: (M).

Mean+Variance The mean error rate of classification+the standard deviation, Unit: (%).
AD The average number of concept drifting detections.
FA The probability that false alarms occur in the drifting detection, Unit: (%).

Miss The number of concepts missed in the drifting detection.
AE The average count of examples till detection, Unit: (k) (1k=1000).

classes and four concepts. We use the data generator of SEA in MOA to generate
a test set with 100k-sized instances and a training set with 400k-sized instances
containing four concepts. Both data sets contain 5% class noise.

STAGGER. It is a standard database of concept-shifting data streams to test
the abilities of inductive algorithms[21]. This database consists of three attribute
values and three alternative underlying concepts. We also use the database gen-
erator of STAGGER in MOA to generate a training set with instances of 1000k
and a test set with 500k-sized instances respectively. The training set includes
0.1k concepts and each concept contains 10k-sized instances.

KDDCup99. It is a database for network intrusion detection[17], containing 24-
class labels and 41-attribute dimensions in total with 34 dimensions of numerical
attributes. We select this database because it has been simulated as streaming
data with sampling change [27]. The times of concept changes is 36.

Predictive accuracy
In this subsection, two aspects are concerned to evaluate the predictive ability
of EDTC. In one dimension, Figures 1-36 present the cases of tracking con-
cept drifts on benchmark databases. We can see that false alarms are prone to
appear at the beginning of learning from training data. For instance, all false
alarms appear before the first concept shift in SEA. 64.3% false alarms appear
when learning from only 1/10 training data of STAGGER. This is because there
are larger fluctuations of error rates classified in the model learning from in-
sufficient training data. Concept drifts are hence probably considered falsely.
Furthermore, Table 2 reports the statistical results of drifting detection, which
show that our algorithm with random feature selection could detect most of the
concept changes in a few instances after a drift occurs. Meanwhile, regarding
values of estimation metrics[12], i.e., FA, Miss and AE, EDTC-RAN performs
best. In the other dimension, Figure 4 presents predictive results on the test
data. The observations are as follows. i) On SEA, EDTC-RHB performs worse
than EDTC-RIG and EDTC-RAN on the predictive accuracy by 2%. The best

6 In Figures 1-3, values of error rate are reported incrementally every 1k-sized training
data. Detection positions and false alarms are plotted in symbols of “+” and “◦”
respectively while drifting concepts are drawn in dotted lines. In Figure 3, concept
drifts indicate the distributions of class labels, which are marked in the right coor-
dinate axis. Figure 2 reports ten concepts of STAGGER only for clear presentation.
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Table 2. Drifting detection statistics on training data with concept drifts

SEA STAGGER KDDCup99
EDTC-RHB EDTC-RIG EDTC-RAN EDTC EDTC-RHB EDTC-RIG EDTC-RAN

AD 77 75 69 1019 123 123 126
FA(%) 6.49 10.67 7.25 7.36 7.32 4.87 3.17
Miss 0 0 1 14 8 8 9
AE(k) 7.000 6.930 6.700 1.877 4.166 4.968 1.963

predictive accuracy in EDTC-RIG is lower than CVFDT by 3% while the devi-
ation from Bag10-ASHT-W+R, HT-DDM and HT-EDDM is limited to 1%. ii)
On STAGGER, EDTC is superior to all other algorithms. The predictive accu-
racy is improved by 10% at least. iii) On KDDCup99, predictive accuracies in
EDTC-RIG and EDTC-RAN are only lower than that of Bag10-ASHT-W+R by
around 4% while they are improved by the range of [14%, 45%] compared to the
remaining algorithms. However, it seems abnormal for EDTC-RHB with a more
than 80% error rate. This is resulted from the fact that KDDCup99 presents a
heavily skewed distribution of class labels. Meanwhile, the constraint of Hoeffd-
ing Bounds inequality used in EDTC-RHB impedes the growing of trees. It is
hence prone to generate tree stumps, which leads to a poor performance on the
predictive ability.

Speed and Space
A set of experiments is conducted to evaluate the overheads of runtime and space
in EDTC. Experimental results shown in Table 3 present that our algorithm
demands in a light weight way compared to other algorithms. More precisely,
on SEA, the lowest time consumption is only 1/2 of that in MSRT and 1/16 of
that in CVFDT respectively while the space overhead is no more than 1/38 of
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Fig. 6. Classification on the database of Yahoo shopping data

those in CVFDT and MSRT. On STAGGER, EDTC performs as approximately
as CVFDT, especially on the time consumption while it outperforms MSRT
explicitly on the overheads of runtime and space. However, on KDDCup99, the
heaviest overhead of time in EDTC is twice more than that in CVFDT while
the space consumption is less than 1/7 of that in CVFDT.
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Table 3. Overheads of space and runtime on databases of concept drift

Database Algorithms CVFDT MSRT EDT-RHB EDT-RIG EDT-RAN
SEA Memory(M) 76 77 <2 <2 <2

Training+Test time(s) 321+1 38+2 19+1 19+1 19+1
STAGGER Memory(M) 5 60 <40

Training+Test time(s) 21+4 77+13 25+6
KDDCup99 Memory(M) 29 67 <4 <4 <4

Training+Test time(s) 75+18 92+504 85+51 75+201 90+118

Robustness
In another dimension, we adopt the noisy database of LED (with 24 dimen-
sions of attributes containing 17 irrelevant attributes and 7 drifting attributes)
generated by MOA[14] to validate the robustness to noise in EDTC. This data
set contains 1000k-sized training data and 500k-sized test data. Experimental
results shown in Figure 57 present that EDTC is superior to other algorithms in
the resilience to noise. As the noise rates vary from 5% to 30%, the predictive
accuracy in EDTC is improved from 2% to 7%. The reason is that EDTC makes
use of a semi-random strategy or completely random strategy to select split-
features. The process of selecting attributes is independent of the distribution of
classes, which reduces the impact of noisy data on classification largely.

Application on Web Shopping Data
In this last subsection, a real data stream from Yahoo shopping databases is
obtained via Yahoo web services[26] to verify the feasibility in EDTC. The data
set contains 113k-sized records and 22-dimension attributes with 16-dimension
numerical ones. To mine the relation between the credibility of merchants and
possible factors, we define the attribute of “OverallRating” as the class label and
divide its values into five class labels. In our experiments, we randomly select
2/3 of total records as the training set and the remaining 1/3 as the test set
corresponding to the original distribution of class labels. Experimental results
shown in Figure 6 reveal that EDTC-RIG and EDTC-RAN perform as well as
Bag10-ASHT-W+R on the predictive accuracy while all of them outperform
other algorithms very much. For instance, the lowest predictive accuracy and
the highest one in EDTC-RIG are improved by 1.28% and 70.26% respectively.
Meanwhile, the maximum time consumption in a single tree is no more than 20s
and the space overhead is only 4M at most. These data confirm that EDTC is
suitable for handling real streaming data.

5 Conclusion

In this paper, we have proposed an algorithm of random Ensemble Decision Trees
for Concept drifting data streams called EDTC. Unlike other random decision
trees, three variants of random feature selection are developed to determine the
cut-points in the growing of decision trees. Meanwhile, two thresholds defined
in Hoeffding Bounds inequality are adopted to track concept drifts from noisy
7 In this figure, the symbol of “L”/“R” refers to the left/right coordinate axis.
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data streams. Experimental evaluations show that EDTC performs better than
several state-of-the-art online algorithms. An application of EDTC on a real-
world Yahoo shopping data has also shown promising results. However, how to
adapt to gradual concept drifts is an issue for our future work.
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4. Baena-Garćıa, M., Campo-Ávila, J.D., Fidalgo, R., Bifet, A., Gavaldà, R., Morales-
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Abstract. Labeled review corpus is considered as a very valuable re-
source for the task of sentiment classification of product reviews. Fortu-
nately, there are a large amount of product reviews on the Web, and each
review is associated with a tag assigned by users to indicate its polar-
ity orientation. We can download such reviews with tags and use them
as training corpus for sentiment classification. However, users may as-
sign the polarity tag arbitrarily and inaccurately, and some tags are not
appropriate, which results in that the automatically constructed corpus
contains many noises and the noisy instances will deteriorate the clas-
sification performance. In this paper, we propose the co-cleaning and
tri-cleaning algorithms to collaboratively clean the corpus and thus im-
prove the sentiment classification performance. The proposed algorithms
use multiple classifiers to iteratively select and remove the most confi-
dently noisy instances from the corpus. Experimental results verify the
effectiveness of our proposed algorithms, and the tri-cleaning algorithm
is most effective and promising.

1 Introduction

Sentiment classification is a task of identifying the polarity orientation for a
given text or document. Usually, the polarity orientation can be either positive
or negative. Product review is one of the most popular text genres in previous
researches. Various methods have been proposed for addressing this task, includ-
ing lexicon-based methods and corpus-based methods. In this study, we focus on
corpus-based methods for review sentiment classification.

For corpus-based methods, the labeled training corpus is the most valuable
resource and the task is usually addressed by training a classifier on the corpus
and then applying the classifier to predict the polarity orientation of unlabeled
reviews. Generally speaking, there are the following two ways for constructing
the training corpus: 1) The corpus is manually labeled by human subjects; 2)
The corpus is automatically constructed by using web mining and statistical
learning techniques. The first way is very time-consuming and labor-intensive,
and the second way is more preferable than the first way. Fortunately, on a few
online shopping web sites, users usually write reviews for a particular product

J.Z. Huang, L. Cao, and J. Srivastava (Eds.): PAKDD 2011, Part I, LNAI 6634, pp. 326–337, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Collaborative Data Cleaning for Sentiment Classification 327

and they also attach a tag to each review for indicating the polarity orientation
of the review. The reviews and the associated tags can be automatically crawled
and used to construct the training corpus. For example, on a popular Chinese
online shopping web site (www.amazon.cn), a user can write a review about
a particular product, and then assign one or more stars to the product. The
number of the stars indicates the review’s polarity orientation. Based on our
observation and analysis, if the star number is equal to or less than two, the
review is negative, and if the star number is equal to or larger than three, the
review is positive.

However, some users assign the tags to the reviews in an arbitrary way and not
all users assign the tags consistently, and thus a few tags are incorrectly assigned.
For example, we manually check the consistency between the polarity orienta-
tion of 1000 reviews and the associated stars on the web site (www.amazon.cn),
and we find that the stars for 95 reviews are incorrectly assigned, and some
negative reviews are assigned with three or more stars, while some positive re-
views are assigned with two or less stars. For example, a negative review for
Nokia 1616 is “The order made on Nov. 4, 2010 has not shipped yet, and the
service by Joyo is lacking”1, but it is inconsistently assigned with four stars.
These reviews are called noisy reviews in the corpus, and they can deteriorate
the classifier’s classification performance because the proportion of noisy re-
views is not small, and current classifiers can not tolerate such a noisy training
corpus.

In order to address the above problem, we propose novel algorithms (i.e. co-
cleaning and tri-cleaning) to find and remove the noisy reviews from the training
corpus, and thus improve the sentiment classification performance based on the
cleaned corpus. The proposed algorithms use multiple classifiers to iteratively
identify and remove the most confidently noisy reviews. In particular, at each
iteration in the co-cleaning and tri-cleaning algorithms, the noisy reviews are
identified in a collaborative way by using two or three classifiers to help each
other. Experimental results verify the effectiveness of the proposed algorithms.
The tri-cleaning algorithm is validated to be the best one for corpus cleaning.
The cleaned corpus can be provided as a valuable resource for the community
of sentiment analysis.

The rest of this paper is organized as follows: Section 2 introduces related
work. Sections 3 and 4 introduce the problem and propose our novel solu-
tions, respectively. The empirical evaluation is presented in Section 5. Lastly, we
conclude this paper in Section 6.

2 Related Work

2.1 Sentiment Classification

The methods for document sentiment classification can be generally categorized
into lexicon-based and corpus-based. Lexicon-based methods usually involve

1 It is a manual translation for the original Chinese review.
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deriving a sentiment measure for text based on sentiment lexicons [7, 13, 16, 17,
31]. In this section, we focus on corpus-based methods. Corpus-based methods
consider the sentiment analysis task as a classification task and they usually
use a labeled sentiment corpus to train a sentiment classifier. Since the seminal
work of [26], various classification models and linguistic features have been in-
vestigated [23, 27, 28, 34]. Most recently, a structured model has been proposed
for jointly classifying the sentiment of text at varying levels of granularity [21].
Domain adaptation for sentiment classifiers has been investigated in [4], focusing
on online reviews for different types of products. Andreevskaia and Bergler [2]
present a new system consisting of the ensemble of a corpus-based classifier and a
lexicon-based classifier with precision-based vote weighting. Li et al. [20] propose
a novel approach to learn from lexical prior knowledge in the form of domain-
independent sentiment-laden terms, in conjunction with domain-dependent un-
labeled data and a few labeled documents. Kim et al. [18] propose an approach
to utilizing term weights for sentiment analysis tasks and shows how various
term weighting schemes improve the performance of sentiment analysis systems.
Dasgupta and Ng [6] propose a semi-supervised approach to sentiment classifi-
cation where they first mine the unambiguous reviews using spectral techniques
and then exploit them to classify the ambiguous reviews via a novel combina-
tion of active learning, transductive learning, and ensemble learning. Chinese
sentiment analysis has also been studied [19, 30] and most such work uses sim-
ilar lexicon-based or corpus-based methods for Chinese sentiment classification.
In the most recent years, several studies have been performed to leverage rich
English resources for sentiment analysis in other languages [3, 22, 32, 33].

2.2 Data Cleaning

Data cleaning is a traditional research area in the fields of database and data
mining [12]. Several works have used data cleaning techniques in the filed of com-
putational linguistics. For example, previous works have used task-dependent or
task-independent data cleaning techniques for the NLP tasks of POS tagging
[1, 8, 9, 25], verb modality identification [24], PP-attachment [1] and word seg-
mentation [29]. Data cleaning methods have also been used for improving text
categorization. Fukumoto and Suzuki [11] address the problem of dealing with
category annotation errors which deteriorate the overall performance of text clas-
sification, by integrating information from two different classification algorithms:
NB and SVM. The proposed method is strictly learner-dependent, because it
only works with SVMs as learners, and it is limited to cleaning the support
vectors. Esuli and Sebastiani [10] present different techniques for performing
training data cleaning in the context of boosting-based learning methods. The
techniques correspond to different ways of estimating the likelihood of being
mislabeled for each training instance. They evaluate them on two widely used
text categorization benchmarks by their capability of spotting misclassified texts
purposefully inserted in the training set. And the confidence-based technique has
the overall best performance.
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3 Problem Statement

Given an crawled sentiment corpus consisting of N reviews and the associated
polarity tags, we denote the corpus as C = {< xi, yi > |i = 1, 2, ..., N}, where
xi is a review in the review set X , yi is the user-assigned polarity tag. We let
yi = +1 iff xi is a positive review and yi = −1 iff xi is a negative review. Based on
the training corpus C, a sentiment classifier fC : X → R can be learned by using
a basic classifier f , and the classifier’s prediction value for an unlabeled review
xi is denoted as fC(xi). The polarity orientation of xi is finally obtained based
on fC(xi). In this study, we use the SVM classifier as f , and thus the sign of
fC(xi) indicates the polarity orientation of xi, i.e., xi is positive iff sign(fC(xi))
is +1, and xi is negative iff sign(fC(xi)) is -1. The performance of the classifier
on a test set T is measured as A(fC , T ).

Because there are many noisy instances in the original corpus C, the learned
classifier is deemed to be not very effective and the performance value A(fC , T )
is deemed to be not high. The problem is how to clean the original corpus C by
removing the noisy instances Rnoise from C. The cleaned corpus is denoted as
C∗ = C − Rnoise, and we expect that the performance of the classifier learned
on C∗ can be improved, i.e., A(fC∗ , T ) > A(fC , T ).

4 The Data Cleaning Algorithms

4.1 Overview

In this study, we propose three algorithms for training data cleaning in the
task of sentiment classification. The common aim of the algorithms is to find
the most confidently mislabeled instances from the original corpus and then
remove them. The first algorithm (Self-Cleaning) is an improvement of the pre-
vious confidence-based technique in [10], and it leverages only one classifier for
identifying and removing noisy instances in an iterative way. The second algo-
rithm (Co-Cleaning) is inspired by the co-training algorithm [5], and it leverages
two classifiers to collaboratively find the noisy instances for each other. The
third algorithm (Tri-Cleaning) is an improvement of the second algorithm, and
it leverages three classifiers for collaborative data cleaning. The details of the
three techniques are described in next sections, respectively.

Note that all the three algorithms require a basic text classifier and they are
independent of a specific classifier. That is to say, any existing text classifier
can be used in the three algorithms. Typical text classifiers include Support
Vector Machine (SVM), Näıve Bayes (NB), Maximum Entropy (ME), K-Nearest
Neighbor (KNN), etc. In this study, we adopt the widely-used SVM classifier [15]
with the linear kernel and default parameter values. Viewing input data as two
sets of vectors in a feature space, SVM constructs a separating hyperplane in the
space by maximizing the margin between the two data sets. And the features used
for sentiment classification include all unigrams and bigrams, and the feature
weight is simply set to term frequency as in [32]. Note that for Chinese text, a
unigram refers to a Chinese word and a bigram refers to two adjacent Chinese
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words after word segmentation. The sign of the SVM prediction value is used
for predicting the polarity labels and the absolute value is used for indicating
the confidence level of the prediction.

After we obtain the cleaned corpus by applying one of the above data cleaning
algorithms, we can learn a SVM classifier based on the cleaned corpus, and then
apply the learned classifier to predict the polarity orientation for the reviews in
the test set.

4.2 Self-cleaning

This algorithm is an extension of the previous confidence-based technique in [10]
by iteratively applying the confidence-based technique to identify and remove the
noisy instances in the corpus. It leverages only one classifier to iteratively train
on the current corpus and then select and remove the noisy instances to further
refine the corpus.

Given the original corpus C = {< xi, yi > |i = 1, 2, ..., N}, the refined corpus
C∗ = C, and the basic learner f , the self-cleaning algorithm loops for I iterations
as follows:

1. Learn the classifier fC∗ from C∗ using the basic learner f ;
2. Use fC∗ to label all the reviews in C∗;
3. Identify from C∗ the potentially noisy instances whose predicted labels are

inconsistent with the original labels: R = {< xi, yi > |fC∗(xi)yi < 0};
4. Rank the instances in R in decreasing order of the confidence value |fC∗(xi)|

and select the top k instances into Rnoise;
5. Remove the instances in Rnoise from C∗, i.e. C∗ = C∗ −Rnoise;

In the algorithm, I is a parameter controlling the iteration number, and k is a
parameter controlling the number of noisy instances removed at each iteration.
We can deduce that at most I × k instances can be removed from the original
corpus.

The rationale of the algorithm lies in that the noisy instances can be selected
based on the prediction values of the learner, and after each iteration, the learner
can be refined and improved, and its predictions are more reliable, and thus the
corpus can be further refined.

Finally, a classifier is learned based on C∗ and then the classifier is applied to
predict for the reviews in the test set.

4.3 Co-cleaning

In the above self-cleaning algorithm, the classifier is learned based on the noisy
corpus and then the classifier is applied to predict for each review in the same
corpus. Thus some mislabeled reviews can be potentially predicted to be consis-
tent with their original labels because they have been already used for training
the classifier. We call it as “noise fitting”.

In order to address the above problem of the self-cleaning algorithm, we pro-
pose the co-cleaning algorithm by splitting the original corpus into two sets and
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leveraging two classifiers to collaboratively find noisy instances for each other.
The proposed co-cleaning algorithm is inspired by the famous co-training algo-
rithm [5]. The co-training algorithm is a typical bootstrapping method, and it
starts with a set of labeled data, and increase the amount of annotated data
using some amounts of unlabeled data in an incremental way. One important
aspect of co-training is that two views are required for co-training to work, and
two classifiers are learned based on the two views and they choose confident
training examples from the unlabeled data for each other. Different from the
co-training algorithm, our proposed co-cleaning algorithm aims to use one clas-
sifier’s prediction results to help identify and remove noisy instances from the
training set for the other classifier, and the co-cleaning algorithm do not require
two independent views of the data.

Given the original corpus C = {< xi, yi > |i = 1, 2, ..., N} and the basic
learner f , the co-cleaning algorithm first randomly split C into two sets C1, C2

with equal sizes, and we have C = C1∪C2. Two refined training sets are defined
as C∗

1 = C1, C∗
2 = C2. The algorithm then loops for I iterations as follows:

1. Learn the first classifier fC∗
1

from C∗
1 using the basic learner f ;

2. Learn the second classifier fC∗
2

from C∗
2 using the basic learner f ;

3. Refine C∗
1 as follows:

a) Use fC∗
2

to label all the reviews in C∗
1 ;

b) Identify from C∗
1 the potentially noisy instances whose predicted labels are

inconsistent with the original labels: R1 = {< xi, yi > |fC∗
2
(xi)yi < 0 and <

xi, yi >∈ C∗
1};

c) Rank the instances in R1 in decreasing order of the confidence value
|fC∗

2
(xi)| and select the top p instances into Rnoise

1 ;
d) Remove the instances in Rnoise

1 from C∗
1 , i.e. C∗

1 = C∗
1 −Rnoise

1 ;
4. Similarly refine C∗

2 by using fC∗
1
;

In the algorithm, I is a parameter controlling the iteration number, and p is
a parameter controlling the number of noisy instances removed from each set
at each iteration. And we can deduce that at most 2 × I × p instances can be
removed from the original corpus.

The rationale of the algorithm lies in that the noisy instances in one review
set are selected based on the prediction values of the learner trained on the
other review set, and after a few iterations, the two learners can be refined
and improved, and thus their predictions are more reliable for each other. We
believe that the prediction values are more reliable than that in the self-learning
algorithm, because the training set for one classifier is different from the review
set to be predicted by the classifier in the co-cleaning algorithm.

Finally, a classifier is learned based on C∗
1

⋃
C∗

2 and then the classifier is
applied to predict for the reviews in the test set.

4.4 Tri-cleaning

In the above co-cleaning algorithm, the prediction of a review in one set is decided
only by one another classifier, which may be potentially not very reliable, because
the classifier is still trained on a noisy corpus.
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In order to address the above problem of the co-cleaning algorithm, we further
propose the tri-cleaning algorithm by splitting the original corpus into three sets
and training three classifiers, and then using the voting of two classifiers to find
noisy instances in the third set. The underlying idea is that the prediction based
on two classifiers is usually more reliable than that based on only one classifier.

Given the original corpus C = {< xi, yi > |i = 1, 2, ..., N} and the basic
learner f , the tri-cleaning algorithm first randomly split C into three sets C1,
C2, C3 with equal sizes, and we have C = C1

⋃
C2

⋃
C3. Three refined training

sets are defined as C∗
1 = C1, C∗

2 = C2, C∗
3 = C3. The algorithm then loops for I

iterations as follows:

1. Learn the first classifier fC∗
1

from C∗
1 using the basic learner f ;

2. Learn the second classifier fC∗
2

from C∗
2 using the basic learner f ;

3. Learn the third classifier fC∗
3

from C∗
3 using the basic learner f ;

4. Refine C∗
1 as follows:

a) Use fC∗
2

and fC∗
3

to label all the reviews in C∗
1 , respectively;

b) Identify from C∗
1 the potentially noisy instances whose labels are consis-

tently predicted by the two classifiers, but inconsistent with the original la-
bels: R1 = {< xi, yi > |fC∗

2
(xi)fC∗

3
(xi) > 0, and fC∗

2
(xi)yi < 0, fC∗

3
(xi)yi <

0, and < xi, yi >∈ C∗
1};

c) Rank the instances in R1 in decreasing order of the confidence value
|fC∗

2
(xi)|+ |fC∗

3
(xi)|, and select the top m instances into Rnoise

1 ;
d) Remove the instances in Rnoise

1 from C∗
1 , i.e. C∗

1 = C∗
1 −Rnoise

1 ;
5. Similarly refine C∗

2 by using fC∗
1

and fC∗
3
;

6. Similarly refine C∗
3 by using fC∗

1
and fC∗

2
;

In the algorithm, I is a parameter controlling the iteration number, and m is
a parameter controlling the number of noisy instances removed from each set
at each iteration. During each iteration, at most 3 ×m noisy instances can be
removed, and thus we can deduce that at most 3 × I × m instances can be
removed from the original corpus.

The rationale of the algorithm lies in that the noisy instances in one review
set are selected based on the “voting” of two learners trained on the other two
review sets. We believe that the predicted labels are more reliable than that in
the co-cleaning algorithm, because the labels are voted by two classifiers, and
thus in the tri-cleaning algorithm, the noisy instances selected from one set by
the other two classifiers can be more trusted.

Finally, a classifier is learned based on C∗
1

⋃
C∗

2

⋃
C∗

3 and then the classifier
is applied to predict for the reviews in the test set.

5 Empirical Evaluation

5.1 Evaluation Setup

The training review set and the test review set were constructed as follows:

Original Training Set: We crawled a large number of product reviews and their
associated tags from a popular Chinese online shopping web site -AmazonChina
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(www.amazon.cn). The dataset consists of 45898 positive reviews and 24146
negative reviews. The reviews are about various products, such as consumer
electronics, mobile phones, digital products, books, and so on. The polarity tag
of each review was automatically judged by the number of the assigned stars of
the review. If the star number is equal to or less than two, the review is labeled
as negative, and otherwise, the review is labeled as positive.

Test Set: We used the same test set as in [33]. The test set contained 886
product reviews downloaded from another popular Chinese IT product web site
IT168 (www.it168.com). The sentiment polarity of each review was manually
labeled. The dataset consisted of 451 positive reviews and 435 negative reviews.
The reviews focused on IT products.

We used the standard precision, recall and F-measure to measure the perfor-
mance of positive and negative class, respectively, and used the accuracy metric
to measure the overall performance of the system. The metrics are defined the
same as in general text categorization.

In the experiments, the proposed algorithms are compared with the following
three baseline methods:

Baseline1 (Lexicon-Based): It is a lexicon-based method used in [32]. The
semantic orientation value for a review is computed by summing the polarity
values of all words in the review, making use of both the word polarity defined
in the positive and negative lexicons and the contextual valence shifters defined
in the negation and intensifier lexicons. The lexicons are derived from HowNet2.

Baseline2 (NoCleaning): It directly uses the original training corpus to train
the SVM classifier, without training data cleaning.

Baseline3 (BasicCleaning): It use a basic cleaning method to remove po-
tentially noisy instances from the original training set, and then learn a SVM
classifier based on the refined training corpus. The basic training data cleaning
method is similar to the confidence-based technique in [10]. The method first
identifies the potentially mislabeled instances whose sign(fC(xi)) is not equal
to the originally label tag, i.e., fC(xi)yi < 0. Then the instances are sorted by de-
creasing order of |fC(xi)|. And the top n instances in the ranked list are removed
from the original corpus. n is empirically set to 1000 when the performance is
the best.

5.2 Evaluation Results

In the experiments, for the three proposed algorithms, we let k = 2p = 3m to
guarantee that the total numbers of nosy instances to be removed for the three
algorithms are equal after each iteration. We investigate three typical sets of
parameter values: (k = 300, p = 150, m = 100), (k = 150, p = 75, m = 50),
(k = 90, p = 45, m = 30). We report the best accuracy for each algorithm after
a few iterations. Table 1 shows the comparison results. The actual iteration
numbers for the algorithms are given in the table.
2 http://www.keenage.com/html/e_index.html

http://www.keenage.com/html/e_index.html
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Table 1. Comparison results

Method F-measure(Positve) F-measure(Negative) Total Accuracy

Self-Cleaning(k = 300; I = 7) 0.827 0.771 0.802
Co-Cleaning(p = 150; I = 7) 0.829 0.773 0.805

Tri-Cleaning(m = 100; I = 13) 0.834 0.790 0.815
Self-Cleaning(k = 150; I = 15) 0.829 0.775 0.806
Co-Cleaning(p = 75; I = 34) 0.829 0.784 0.809
Tri-Cleaning(m = 50; I = 25) 0.835 0.792 0.816
Self-Cleaning(k = 90; I = 25) 0.829 0.775 0.806
Co-Cleaning(p = 45; I = 55) 0.832 0.786 0.812
Tri-Cleaning(m = 30; I = 44) 0.835 0.792 0.816

BasicCleaning 0.821 0.756 0.793
NoCleaning 0.815 0.733 0.781

Lexicon-based 0.786 0.677 0.743

Seen from the table, we can see that all the data cleaning algorithms (includ-
ing the BasicCleaning algorithm) can improve the classification accuracy. And
the proposed three data cleaning algorithms can outperform the BasicCleaning
algorithm. In particular, the proposed three algorithms can significantly outper-
form the baseline NoCleaning method by using sign test, and the tri-cleaning
algorithm can significantly outperform the BasicCleaning algorithm by using
sign test. For the proposed three algorithms, we can see that the co-cleaning al-
gorithm outperforms the self-cleaning algorithm, and the tri-cleaning algorithm
outperforms the co-training algorithm. The results demonstrate that our pro-
posed algorithms are effective and the tri-cleaning algorithm is the best one for
training data cleaning because two classifiers’ voting is more reliable than one
single classifier’s prediction when the training corpus contains noises.

We further investigate how the classification performance of the proposed
three algorithms is influenced by the iteration number I. Figures 1, 2, 3 present
the accuracy curves of the three algorithms with the three parameter settings,
respectively. Note that when I is equal to 0, the proposed three algorithms are
actually the same with the baseline NoCleaning method.

Seen from the figures, the accuracy values of the three algorithms first increase
with the iteration number, and then tend to decrease after a few iterations. The
performance curves are very similar to that for the original co-training algorithm.
The reason is that when the iteration number is large, the algorithms may incor-
rectly select and remove some normal instances from the training corpus, after
all the noisy instances have been removed.

We can also see that the performance of the self-cleaning algorithm drops more
quickly than the other two algorithms, and the co-cleaning algorithm can outper-
form the self-cleaning algorithm after a few iterations. The tri-cleaning algorithm
can almost always outperform the self-cleaning and co-cleaning algorithms. The
results further demonstrate that the co-cleaning algorithm is more effective and
robust than the self-cleaning algorithm, and the tri-cleaning algorithm is more
effective and robust than the self-cleaning and co-cleaning algorithms.
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Fig. 1. Accuracy (k = 300, p = 150, m = 100) vs. Iteration number

Fig. 2. Accuracy (k = 150, p = 75, m = 50) vs. Iteration number

Fig. 3. Accuracy (k = 90, p = 45, m = 30) vs. Iteration number
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6 Conclusion and Future Work

In this paper, we propose novel algorithms for finding and removing noisy in-
stances in the training corpus automatically crawled on the web. The three
algorithms can improve the sentiment classification accuracy. The proposed tri-
cleaning algorithm is the best choice in the experiments.

Though we focus on the task of sentiment classification in this study, the
proposed algorithms can also be used for the more general text categorization
task, and we will investigate to apply the proposed algorithms for general text
categorization tasks to further demonstrate the robustness of the algorithms.
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Abstract. Discriminative pattern mining looks for association patterns
that occur more frequently in one class than another and has important
applications in many areas including finding biomarkers in biomedical
data. However, finding such patterns is challenging because higher or-
der combinations of variables may show high discrimination even when
single variables or lower-order combinations show little or no discrimina-
tion. Thus, generating such patterns is important for evaluating discrim-
inative pattern mining algorithms and better understanding the nature
of discriminative patterns. To that end, we describe how such patterns
can be defined using mathematical constraints which are then solved
with widely available software that generates solutions for the resulting
optimization problem. We present a basic formulation of the problem
obtained from a straightforward translation of the desired pattern char-
acteristics into mathematical constraints, and then show how the pattern
generation problem can be reformulated in terms of the selection of rows
from a truth table. This formulation is more efficient and provides deeper
insight into the process of creating higher order patterns. It also makes
it easy to define patterns other than just those based on the conjunctive
logic used by traditional association and discriminant pattern analysis.
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1 Introduction

Given a transaction data set where the transactions have class labels, discrimi-
native pattern mining looks for association patterns that occur more frequently
in one of the classes than the others. Although such patterns may not cover all
the transactions in a data set, they can provide useful classification rules if the
discrimination provided by the patterns is accurate enough for the application
under consideration. One potentially useful area for discriminative patterns is
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Table 1. Values of three binary variables and their combinations. The first 10 rows
belong to one class (cases), while the last 10 belong to another (controls). The last row
is the number of ones in cases minus the number of ones in controls.

x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3

Cases

1 1 1 1 1 1 1
1 0 0 0 0 0 0
1 1 1 1 1 1 1
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0

Controls

1 0 1 0 1 0 0
0 1 1 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 0 1 0 0 0
0 0 0 0 0 0 0

ones in cases -
ones in controls

0 0 0 0 0 0 2

medical studies that involve a set of subjects that are divided into cases (those
with a specific disease) and controls (those without the disease). In such situa-
tions, any discriminative patterns that are discovered can help identify important
factors in the disease and/or its development. The discovery of such biomarkers
is often of great benefit.

However, finding such patterns is challenging because higher order
combinations of individual variables may show high discrimination even when sin-
gle variables or lower-order combinations only show little or no discrimination. To
illustrate, Table 1 shows the values of three binary variables (x1, x2, x3) for 10 cases
and controls, along with their combinations: x1x2, x1x3, x2x3, and x1x2x3, which
are the logical and of the indicated variables. The last row in the table shows the
difference in the occurrence of ones between cases and controls. All single variables,
and the pairs they form, show no discrimination between cases and controls, but
the combination of all three variables does. If ones indicate the presence of a partic-
ular genetic characteristic, then this may indicate, for example, that the presence
of all three genetic factors is necessary for the development of a disease.

It is easy to construct examples of such patterns involving only two variables,
e.g., let both variables have 5 ones in both cases and controls, but let the ones in
the two variables overlap completely in cases and not at all in controls. However,
it becomes more challenging for patterns of size 3 and higher. There may even
be some question about the existence of such patterns. Examples of higher order
patterns that have better discrimination than any lower order pattern composed
of the same variables can indeed be found for sets of variables beyond 3, although
as later discussion will show, the difference between the discriminative power of
a combination of binary variables and its subpatterns decreases as the number
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of variables increases.1 To address such fundamental questions concerning the
nature of discriminative patterns and provide patterns for testing the perfor-
mance of current discriminative pattern finding algorithms, this paper proposes
a constraint-based approach to specifying and generating such higher order pat-
terns. In the rest of the paper, higher order pattern will refer only to those higher
order patterns having more discriminative power than any of their subsets.

Although there are synthetic data generators for ordinary association pat-
terns, such as the IBM Quest Market-Basket Synthetic Data Generator described
in [1], we know of no such generator for the higher order discriminative patterns
we have been discussing. However, during the course of our research into algo-
rithms on discriminative pattern mining, we encountered the need for such a
capability. As a result, we developed the constraint based approach described in
this paper. More specifically, we realized that such patterns can be defined using
mathematical constraints which are then solved with widely available software
that uses linear programming techniques (or extensions of it) to find solutions to
resulting optimization problems. Despite the challenges in creating the proper
models and limitations on the size of patterns it is feasible to produce, the de-
sired example patterns can usually be generated (often in a relatively short time,
i.e., usually seconds or minutes) for patterns up to size 9 or 10.2

The insights that can be gained into the nature of higher order patterns are,
however, perhaps even more important than generating higher order discrimina-
tive patterns for testing discriminative pattern finding algorithms. For instance,
through experimental runs and theoretical analysis, we explore the maximum
discriminative power that can be expected of a higher order pattern for differ-
ent numbers of variables. In addition, this work has resulted in a formulation of
the pattern generation problem in terms of the selection of rows from a truth
table. This formulation is more efficient and provides deeper insight into the
process of creating higher order patterns than the formulation obtained from a
straightforward translation of the desired pattern characteristics into mathemat-
ical constraints. It also makes it easy to define patterns other than just those
based on the conjunctive logic used by traditional association and discriminant
pattern analysis. For example, it is possible to define a pattern that is present if
j out of the k variables have a value of 1. It is also possible to impose additional
constraints on the patterns to further tailor them to specific needs.

Overview: In Section 2 we begin with a more formal definition of discriminative
patterns and of the DiffSup measure that is used to evaluate the discriminative
power of such patterns. Section 3 presents the basic approach to pattern specifi-
cation and generation, while Section 4 describes a more powerful approach that
is more efficient and more general. Experimental results are presented in Section
5, and more formally analyzed in Section 6. Section 7 summarizes the paper and
the areas for future work.

1 As measured in terms of the DiffSup measure used in this paper, but perhaps not
in terms of other measures, such as statistical significance.

2 By the time pattern sizes of 9 or 10 are reached, computational difficulties arise in
some cases.
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2 Discriminative Patterns

This section provides a formal description of discriminative patterns and the
DiffSup measure that is often used to measure the discriminative power of a
binary variable or a set of binary variables. This is followed by a brief overview
of previous work in discriminative pattern mining. As mentioned, we are not
aware of previous work in generating synthetic discriminative patterns. (Again,
we are only considering those patterns whose discriminative power is greater
than that of any subpattern.)

2.1 Definitions

Let D be a binary transaction data set consisting of m transactions, each of
which is a subset of n possible items. D can be represented as a binary data
matrix, where each item is a binary variable (column of the matrix), each trans-
action is a row, and the ijth entry is 1 if transaction i has item j. For instance,
the transactions (rows) could be subjects in a medical study, while the binary
variables (columns) represent the presence or absence of various genetic features
in a subject. In many cases the transactions are divided into classes, e.g., cases
(those subjects with a condition) and controls (those without). Without loss of
generality, we only consider discriminative patterns for the binary class problem.
An extension to multiple classes is described in [2].

Assume there are m = mA+mB transactions, where mA is the number of cases
and mB is the number of controls. Instead of viewing an itemset, X , as a set of
items, we will find it more convenient to use an equivalent representation in which
the itemset is represented as a logical conjunction of Boolean variables, i.e., as
X = xi1xi2 ...xik

, where xij is the Boolean variable associated with the jth item.
Let support countA(X) and support countB(X) be the number of transactions
for which X is true in classes A and B, respectively. Then, the relative supports
of X in classes A and B are defined as RelSupA(X) = support countA(X)

mA
and

RelSupB(X) = support countB(X)
mB

, respectively.
DiffSup, which was originally defined in [2] is the absolute difference of the

relative supports of X in classes A and B.

DiffSup(X) = |RelSupA(X)−RelSupB(X)| (1)

An itemset, X , is r− discriminative if DiffSup(X) ≥ r. The goal of discrimina-
tive pattern mining is to discover all patterns in a data set with DiffSup greater
than or equal to r. However, higher order patterns are not useful or interesting
unless their discriminating power is greater than the discriminating power of
their subpatterns.

Other measures of ‘goodness’ for discriminative patterns are sometimes used.
For instance, instead of taking the difference of relative support, an alternative
measure of discriminative power, the Growth Rate, can be defined as the ratio
of the two supports [4]. Other variations include information gain [3], the χ2-
test [2], the Gini index [13], the odds ratio [13], and various other measures
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[12]. These discriminative measures are generally not anti-monotonic as shown
by [4,2,3], a fact that poses significant challenges both for pattern finding and
generation. It is possible that our approach could be used to generate higher
order patterns for some of these other measures, but we have not yet explored
that possibility.

2.2 Previous Work in Discriminative Pattern Mining

Discriminative patterns have been investigated by a number of researchers, some-
times under other names. Dong and Li [4] define emerging patterns (EP) as
itemsets with a large growth rate (support ratio) between two classes. Emerging
patterns have been extended to several special cases such as jumping emerging
patterns [9] and minimal emerging patterns[11,10]. In [2], contrast sets (CSETs),
were proposed as another possible formulation of discriminative patterns and
an algorithm to mine them, CSET, was presented. In [8], contrast set mining
was shown to be a special case of rule learning, where the contrast set is the
antecedent of a rule whose consequent is a group. As mentioned above, vari-
ous statistical discriminative measures have also been studied for discriminative
pattern mining. There has also been recent work on the efficient discovery of
low support discriminative patterns from dense and high-dimensional data sets
[6]. Another approach [5] builds a decision tree with frequent patterns at each
decision node that partition the data set into successively purer subsets.

3 Defining Higher Order Patterns with Constraints

The starting situation is a set of k binary variables which take on some assign-
ment of zeros and ones (truth values) for a set of mA cases and mB controls in
a set of m = mA + mB subjects. The goal is to find one or more assignments
of values to the variables that maximizes the DiffSup of the combination of all
variables, while ensuring that the DiffSup of lower order combinations is less
than a specified limit. A more formal definition is provided below.

Problem Statement: Find an assignment of truth values to m instances (mA

in cases, mB in controls) of the variables, x1, x2, . . . , xk, that satisfies the
following objective and constraints:

maximize DiffSup( x1x2 . . . xk )

subject to DiffSup( xi1xi2 . . . xij ) ≤ limit, where 1 ≤ j < k �

This statement of the problem combines constraint satisfaction with optimiza-
tion. Generating solutions for just the constraint portion of the problem would
typically yield size k patterns whose DiffSup is less than that of their subpatterns
and thus not interesting.

This type of constrained optimization problem, although simply stated, needs
to be translated into a practical optimization model. For this purpose, we chose
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AMPL (A Modeling Language for Programming) [7]. “AMPL is a computer
language for describing production, distribution, blending, scheduling and many
other kinds of problems known generally as large-scale optimization or mathe-
matical programming” and has a long history of use in the optimization com-
munity. Although we used a commercial implementation of AMPL, along with
the IBM ILOG CPLEX Optimizer as a solver, there are non-commercial ver-
sions of AMPL (or AMPL subsets) available. For instance, GLPK (GNU Linear
Programming Kit), may also provide a suitable platform for solving the problem
posed above. However, we have not tried our examples on GLPK.

A key problem in the translation, and indeed, in the solution of this problem
is the fact that the satisfaction of the constraints and maximization of the objec-
tive depend on the combinations of all variables. This poses at least two major
challenges. First, the number of the combinations is 2k − 1, where k is the num-
ber of individual variables. Thus, the number of constraints grows exponentially
with k. However, for pattern sizes of 10 or less (1023 combinations or less) we
found this manageable.

The second challenge arises because the values of the combinations are, of
course, functions of the variable values being sought. This functional relationship
needs to be specified either implicitly or explicitly. When an implicit approach is
used, the AMPL model file requires (1) defining a variable for each combination,
7 in all, and (2) defining constraints for each of the combinations. This approach
generates a higher order pattern with the desired properties, but the model file
rapidly increases in size. Although this file could be generated automatically, we
also discovered that the solver was having difficulty producing a solution once
we got to five variables. Thus, although this representation provides a relatively
direct translation of the problem statement given above, it is not as compact or
efficient as the approach described in the next section.

4 A More General Approach

Given the limitations of the previous solution, we sought a new formulation that
would provide a more flexible and efficient approach to specifying and generating
higher order patterns, as well as providing deeper insight into the nature of higher
order patterns and the ability to specify patterns other than those involving
logical and.

The approach is the following. For k variables, define the truth table that gives
the possible values of the variables and all the combinations of variables up to
size k. For now, the combinations are assumed to be logical and. For example, a
truth table for 3 variables and its combinations is shown in Table 2. The same
constraint problem is solved, but the constraint solution is transformed into one
of selecting, mA rows for cases and mB rows for controls, from the 2k rows of
the truth table, so that the constraints given in the problem statement above
are satisfied. In this approach, the relationships between the combinations of
variables and individual variables are defined explicitly and do not need to be
specified as constraints. As a result, the solver has far fewer constraints to handle
and runs (in our experience) far more quickly.
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Table 2. Truth table for three binary variables and their combinations

row x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3

1 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0
3 0 1 0 0 0 0 0
4 0 1 1 0 0 1 0
5 1 0 0 0 0 0 0
6 1 0 1 0 1 0 0
7 1 1 0 1 0 0 0
8 1 1 1 1 1 1 1

The model file is also much simpler and does not need to be changed as the
number of variables changes. Figure 1 shows the new AMPL model file. This
file is much smaller than the model file for the original approach (which is not
shown in order to save space) and is not specific to any number of variables.
This approach is also more flexible than the original one in several ways. First,
variable combinations can be defined to be something other than logical and
without changing the model file. For instance, we could define a combination of
size k to be 1 if at least k − 1 of the variables are 1. This is not to say that
any truth table that can be created will be meaningful or even have a feasible
solution. Second, we could choose to only use some of the rows of the truth table.
Again, this may not yield a feasible solution. However, for example, it is possible
to omit the 0 row (i.e., the assignment of zeros to all variables) and still obtain
solutions, sometimes with a similar value of the objective function.3

Admittedly, this approach also has a number of limitations. The table grows
in size exponentially as the number of variables increases. The number of con-
straints that must be solved by the solver, although fewer than in the previous
approach where combinations were defined via constraints, is still exponential
in k as well, specifically 2k − 1. (There is no escaping that unless the problem
statement is changed.) In practice, we found that for a larger number of vari-
ables (9 or 10), larger numbers of cases and controls (200 or more), and smaller
limits on DiffSup (0.3 or less) the solver either ran out of memory (we were
using 32 bit AMPL and CPLEX) or took so long to run that we stopped the
job. Nonetheless, most of the other cases ran in very little time, i.e., just a few
seconds or minutes.

For both approaches, it is possible to add additional constraints. For instance,
we used this algorithm plus a few additional constraints to generate the spe-
cialized discriminative patterns found by the algorithm described in [6]. This
algorithm finds only a subset of discriminative patterns, but can find patterns
missed by other discriminative mining algorithms. By specifying and generating
these patterns, we gained a better understanding of the types of patterns this
algorithm discovers or misses.

3 However, the row of all zeros does play an important role in creating a data set with
the optimal value and often shows up in our solutions.
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param limit >= 0.0 ; param mA > 0 ; param mB > 0 ;

param nv0 >= 2 ; param nv = (2^nv0) ; param nvm1 = nv - 1 ;

set CLASSA = 1 .. mA by 1 ;
set CLASSB = (mA+1) .. (mA+mB) by 1 ;

set SINGLES = 1 .. nv0 by 1 ;

set SUBJECT = 1 .. (mA+mB) by 1 ;
set COMBINATION = 1 .. (nv-1) by 1 ;
set COMBINATIONm0 = 1 .. (nv-2) by 1 ;

set VALUES = 1 .. nv by 1 ;
set LINKS = { i in SUBJECT, j in VALUES } ;

param L { i in VALUES, j in COMBINATION } ;
var Select { (i , j) in LINKS } binary ;

maximize diffX0: (1/mA) * sum { i in CLASSA } ( sum { j in VALUES } Select[ i , j ] * L[ j , nvm1 ] ) -
(1/mB) * sum { i in CLASSB } ( sum { j in VALUES } Select[ i , j ] * L[ j , nvm1 ] ) ;

subject to dij { k in COMBINATIONm0 }:
-limit <= (1/mA) * (sum { i in CLASSA } ( sum { j in VALUES } Select[ i , j ] * L[ j , k ] )) -

(1/mB) * (sum { i in CLASSB } ( sum { j in VALUES } Select[ i , j ] * L[ j , k ] )) <= limit ;

subject to oneperSUB { i in SUBJECT }: sum{ (i,j) in LINKS } Select[ i , j ] = 1 ;

Fig. 1. AMPL model file for the truth table approach. The truth table implicity spec-
ifies the relationship between a combination of variables and the individual variables.

5 Experimental Results

This section presents experimental results that show how the optimal DiffSup
value that is found varies with the DiffSup limit for the subpatterns, the number
of variables, and the size of the data set, i.e., number of cases and controls. To
show this for both balanced and unbalanced data sets, we used six cases. For
both unbalanced and balanced data sets, mA took the values 10, 25, 50, 100,
200, and 250. For unbalanced data sets mB was double, while for balanced data
sets it was, of course, the same. We summarize the results and present a few
plots that support our summary.

First, the optimal DiffSup value does not vary much with the size of the data
set for a fixed limit and number of variables. Intuitively, once the data set is
large enough to achieve a certain pattern, this pattern can be repeated multiple
times for larger data sets. This is true for both balanced and unbalanced data
sets. This is illustrated in Figure 2 for a balanced data set with 5 variables which
shows the optimal DiffSup values across different DiffSup subpattern constraint
levels and numbers of cases. Because of this lack of variation, we illustrate the
rest of the points we want to make by using data sets with mA = 50.

A minor point is that the optimal DiffSup value sometimes decreases slightly
as mA increases from 10 to 25, e.g., for limits 0.3 and 0.5. As we will see in the
next section, reducing the DiffSup values of subpatterns less than size k while
maximizing the DiffSup of the size k pattern requires adding a certain number of
records in cases and controls to ‘balance out’ the occurrence of the subpatterns
of size less than k. Intuitively, this is more difficult when the data set size is
small. Our conjecture is that for 5 variables data sets of size 10 and 25 are both
too small to perform this balancing process as well as in larger data sets, but
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Fig. 2. Optimal DiffSup values for 5 variables across different limits and numbers of
cases. mA = mB

that the balancing works more efficiently for a data set of size 10 than for a data
set of size 25. However, a formal analysis is needed to confirm this.

The second major observation is that for a given limit and data set size, the
optimal DiffSup value decreases as the number of variables increases. This is
not surprising, since intuitively, there are far more constraints to be satisfied as
the number of variables increases. (Recall the number of constraints is 2k − 1.)
This is shown for both the balanced and the unbalanced cases by figures 3 and
4. These figures also show that the optimum attained in an unbalanced data
set is often less than that of the corresponding balanced set, at least for smaller
values of the limit. Also note that for both balanced and unbalanced, the DiffSup
optimum does not change much once 9 or 10 variables are reached. Note that
the results for 10 variables are shown as a dashed line, while the results for 9
variables are shown just as orange crosses, without any accompanying line.

6 Formal Analysis

It is possible, at least in some cases, to perform a more formal analysis of this
approach to determine the optimal DiffSup as the number of variables increases.
We briefly sketch this approach for limit = 0 and balanced data sets. The
approach is to fill out the m rows of the data file one by one. We begin by
putting a row consisting of all ones in the cases. Every combination, including
that of k variables, has the value 1. To achieve the goal of maximizing the DiffSup
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for the size k combination, while maintaining every other combination with a 0
DiffSup, it is necessary to add rows to cases and controls that ‘cancel out’ all
other combinations.

We begin by canceling out the
(

k
k−1

)
= k subpatterns of size k − 1. This

can be done by adding, for each such subpattern, the row from the truth table
that contains a 1 for that pattern. For example, if k = 3, then there are 3
pairs of variables. Rows 4, 6, and 7 of Table 2 are the rows in the truth table
that will cancel the net occurrence for these pairs when placed in controls. This
accomplishes the goal that the DiffSup of the pairs is 0. More generally, canceling
out the k subpatterns of size k − 1 requires that k rows be added to controls.

However, doing this increases the occurrence of the size k − 2 subpatterns
in controls by 2. Each k − 1 subpattern contains

(
k−1
k−2

)
= k − 1 subpatterns

of size k − 2. Thus, when k = 3, pairs contain two individual subpatterns of
size 1 (which is obvious). Since there are

(
k

k−2

)
= k(k − 1)/2 patterns of size

k − 2, the total occurrence in controls of a k − 2 size pattern from the k rows
just added is k(k − 1)/(k(k − 1)/2) = 2. More generally, adding these k rows
increases the occurrence in controls of size k − i patterns, 1 ≤ i ≤ (k − 1), by i.
(Proof omitted.) For instance, when k = 3, pairs have an occurrence in controls
of 1 and individual variables have an occurrence of 2.

Thus, some rows need to be added to cases to cancel out the excess count that
was added to controls. This can be done by adding

(
k

k−2

)
rows from the truth

table, where these rows all have a value of 1 for a particular k − 2 size pattern,
but do not have a 1 for any higher level pairs. While this reduces the DiffSup of
all the k− 2 size patterns to 0, size k − 3 patterns now have a excess count of 1
in cases. This process continues, adding

(
k

k−i

)
patterns of size k − i alternately

to cases and control until k rows corresponding to individual variables are added
to either cases or controls.

Thus, adding one row of all ones to cases requires adding many rows to both
cases and controls to achieve 0 DiffSup in the subpatterns. It is possible to
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compute how many rows are added to cases and controls and then to compute
the value of DiffSup for the size k pattern. mA =

∑(
k
i

)
, i = k, k − 2, . . . , 2

or 1 depending on whether k is even or odd, respectively, and mB =
∑(

k
i

)
,

i = k − 1, k− 3, . . . , 1 or 2 depending on whether k is even or odd, respectively.
These values will differ by 1 and thus, to get the DiffSup of the patterns to
actually cancel will require adding the row consisting of all zeros from the truth
table to either cases or controls to make the data set balanced. This represents
the best solution (proof omitted) for limit = 0 and thus constitutes an upper
bound.

Table 3 shows the number of rows this process generates in cases and controls
for each variable size (omitting the one zero row that must be added to balance
the data set). This table also shows the maximum DiffSup attainable. We can
make some observations (which can be more formally proven), e.g., that the
mA = mB = 2k−1 and DiffSup = 1/2k−1. This agrees with Figure 3 and even
appears to hold for the unbalanced data results shown in Figure 4. This result
could be used as the basis for a simple algorithm that creates optimal size k
patterns for limit = 0 and balanced data sets that are multiples of size 2k.

Table 3. Table showing the mA and mB values required for 0 DiffSup subpatterns
and maximal DiffSup for the size k pattern.

num vars 2 3 4 5 6 7 8 9 10
mA 1 4 7 16 31 64 127 256 511
mB 2 3 8 15 32 63 128 255 512

DiffSup 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0078 0.0039 0.0020

Although this analysis is interesting and yields some useful insights, much
more analysis is possible and could well yield equally interesting results.

7 Conclusion and Future Work

We have presented a constraint based approach for generating higher order com-
binations of individual variables which may show high discrimination even when
the single variables or lower order combinations little or no discrimination. The
basic approach quickly lead to a new approach based on building a data set by
choosing rows from a truth table. This formulation provides more insight into
the process of creating higher order patterns than does the formulation obtained
from a straightforward translation of the desired pattern characteristics into
mathematical constraints, as was demonstrated by the derivation of an upper
bound for the DiffSup of a size k pattern for a balanced data set and limit = 0.
It also allows for the easy definition of patterns other than just those based on
the traditional conjunctive logic used by traditional association and discrimi-
nant pattern analysis. Experimental results and formal analysis were presented
to give insight into the behavior of higher order patterns.

There are many directions worthy of further investigation. First, there are
many aspects of the results presented here that remain to be addressed. One is
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establishing bounds on the DiffSup of size k patterns for different types of data
sets, different numbers of variables, and different limits. We plan to investigate
alternative approaches for analyzing the problem that may provide such answers
more readily than the two approaches presented in this paper. Another task is
to investigate truth tables that reflect types of logic other than logical and or
that require solutions that don’t involve a row of all zeros. Finding larger sets
of solutions, even if slightly suboptimal, might also be useful since the goal
is to generate different types of discriminative patterns. Along similar lines,
we could subject different subpatterns to different constraints. We could also
explore other types of solution methods, either other constraint based methods
or non-constraint based methods. It is even conceivable that a thorough analysis
could produce a non-optimization based algorithm for generating higher order
discriminative patterns. It would be especially interesting to investigate if the
insights that arise from our work can lead to new or improved discriminative
pattern mining algorithms. Yet another significant challenge is to investigate
other measures of discrimination .
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Abstract. A spatial co-location is a set of spatial events being fre-
quently observed together in nearby geographic space. A common frame-
work for mining spatial association patterns employs a level-wised search
method (like Apriori). However, the Apriori-based algorithms do not
scale well for discovering long co-location patterns in large or dense spa-
tial neighborhoods and can be restricted for only short pattern discovery.
To address this problem, we propose an algorithm for finding maximal
co-located event sets which concisely represent all co-location patterns.
The proposed algorithm generates only most promising candidates, tra-
verses the pattern search space in depth-first manner with an effective
pruning scheme, and reduces expensive co-location instance search op-
erations. Our experiment result shows that the proposed algorithm is
computationally effective when mining maximal co-locations.

1 Introduction

As one of important spatial data mining tasks, spatial association pattern
mining has been popularly studied for discovering spatial dependencies among
objects [19,23,25,9,16,13,8,22]. Shekhar et al. [19] defined a spatial association
pattern (called spatial co-location) based on clique neighbor relationships among
spatial features. A spatial co-location pattern represents “a set of spatial features
which are frequently observed together in a spatial proximity”. Examples of co-
location patterns include symbiotic species, e.g., West Nile disease and stagnant
water sources in epidemiology [12], and interdependent events, e.g., traffic jam,
car accident, ambulances and police men in transportation [18]. Co-location min-
ing results can be also used for finding dependencies among services requested
by mobile users close in the geographic sense or discovering the relationship of
spatial distributions among various kinds of mineral elements for geologists.

The problem of mining association rules based on spatial predicates (e.g.,close
to, near and overlap) was first discussed in [13]. Most of spatial association min-
ing algorithms [16,13,19,23,25] use a generation-and-test method like Apriori.
Apriori-inspired co-location mining algorithms traverse the search space in a
breadth-first manner and find prevalent co-located event sets by enumerating
their co-location instances from an input spatial dataset. In order to produce
a co-located event set of length k, all 2k of its subsets are searched since they
too must be co-location patterns. The size of search space in spatial co-location
� Corresponding author.
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mining gives more significant effect on the computational performance than clas-
sical association mining since a large fraction of the computation time is devoted
to identifying co-location instances having clique relationships from input spa-
tial data. When very long patterns present in the data, it is often impractical
to generate the entire set of co-location patterns. Current algorithms may be
restricted for short length patterns or sparse data. However, long co-location
patterns often present with large or dense spatial neighborhoods.

Toaddress this problem,wepropose analgorithmfor findingmaximal co-located
event sets which concisely represent all co-location patterns. We follow the defi-
nition of maximal in classical association rule mining [17]. A co-located event set
with a minimum prevalence is maximal if and only if it has no super event set that
is prevalent. In classical data mining literature, there are many works for discov-
ering maximal frequent itemsets from transaction databases [17,26,14,4,10]. How-
ever, it is non trivial to reuse them directly for discovering maximal co-locations
since, unlike market-basket data, distinct transactions are not explicit in spatial
data. Spatial objects are embedded in a continuous space and share a variety of
spatial relationships with each other. The depth and complexity of pattern search
space in large and dense spatial databases also make challenges in finding maximal
co-location patterns.

The main contributions of this work are to formulate the maximal co-location
mining problem, and develop an algorithm (MAXColoc) for efficiently extracting
only maximal co-located event sets from large spatial data. The proposed algo-
rithm generates only most promising candidates and traverses the pattern search
space in both depth-first and breadth-first manners. The depth-first traversal is
used in order to quickly identify maximal co-location patterns. A ‘subset pruning
by a superset’ strategy is used for further reducing the search space throughout
the mining process. We use the breadth-first traversal for pruning all subsets
of maximal co-locations. Our schemes eventually reduce the expensive opera-
tion to find co-location instances forming cliques. We show that the algorithm
is correct and complete in finding maximal co-locations. Experimental results
with real data and synthetic data show that the proposed algorithm is effec-
tively to reduce the number of candidates and computationally efficient over a
state-of-the-art co-location mining algorithm in finding maximal co-locations.

The remainder of this paper is organized as follows. Section 2 shows the basic
concept of co-location pattern mining, our problem statement, and the related
work. Section 3 describes the proposed algorithm and analysis. The experimental
result is presented in Section 4. Section 5 ends with the summary.

2 Problem Statement and Related Work

We first introduce the basic concepts of spatial co-location mining and then
present our problem statement and the related work.

2.1 Basic Concepts of Spatial Co-location Mining

Given a set of spatial event types E, a set of their observed objects S, and a neigh-
bor relationship R over S, a co-location X is a subset of spatial event types,
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X ⊆ E, whose objects frequently form cliques under the neighbor relationship
(i.e., are neighbors to each other). The term co-location is interchangeably used
with a co-located event set throughout this paper. When the Euclidean metric
is used for the neighbor relationship R, two spatial objects are neighbors if the
ordinary distance between them is not greater than a given distance threshold.
Fig. 1 (a) shows an example spatial dataset which has five spatial event types
named with A, B, C, D and E. Each object is represented by its event type and
unique id, e.g., A.1. Identified neighbor objects are connected by a line in the
figure. A co-location instance I of a co-location X is a set of objects, I ⊆ S,
which includes the objects of all event types in X and forms a clique neighbor
relationship. For example, in Fig. 1 (a), {A.1, C.1, E.1} is a co-location instance
of {A, C, E} but {A.3, C.3, E.2} is not. We also call the co-location instance
the clique instance. The prevalence strength of a co-location pattern is often
measured by its participation index [19]. The participation index Pi(X) of a
co-location X is defined as Pi(X) = minei∈X{Pr(X, ei)}, where Pr(X, ei) is the
participation ratio of event type ei in a co-location X = {e1, . . . , ek}, that is
the fraction of objects of event ei in the neighborhood of co-location instances of
X − {ei}, i.e., Pr(X, ei) = Number of distinct objects of ei in instances of X

Number of objects of ei
. The mea-

sure indicates that wherever an event in X is observed, with a probability of at
least Pi(X), all other events in X can be observed in its neighborhood. For ex-
ample, in Fig. 1 (a), there are two instances of a co-location X={A,C,E}, {A.1,
C.1, E.1} and {A.4, C.1, E.1}. The participation ratio of event A in X , Pr(X ,
A) is 2

4 since only A.1 and A.4 among four objects of event A are involved in the
co-location instances. In the same way, Pr(X , C) is 1

3 and Pr(X , E) is 1
2 . Thus

the participation index of X , Pi(X), is min{Pr(X , A), Pr(X , C), Pr(X , E)} =
1
3 . All co-located event sets having participation index above a given minimum
prevalence threshold are returned as prevalent co-locations.

2.2 Problem Statement

We define a key term and the problem statement for finding maximal co-location
patterns.

Definition 1. If X is a co-located event set which is prevalent but no super
event set of X is prevalent, we say that X is a maximal co-location.

Given
1) A set of spatial event types E = {e1, . . . , em}
2) A dataset of spatial point objects S = S1 ∪ . . . ∪ Sm where Si(1 ≤ i ≤ m) is
a set of objects of event type ei. Each object o ∈ Si has a vector information of
< event type ei, object id j, location (x, y) >, where 1 ≤ j ≤ |Si|.
3) A spatial neighbor relationship R
4) A minimum prevalent threshold θ
Develop
An algorithm to find all maximal co-locations efficiently in computation.
Constraint
The result set of maximal co-locations is correct and complete.
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2.3 Related Work

Spatial association rule mining problem was first discussed in Koperski et al. [13].
Castro et al. [6] proposed a clustering-based map overlay approach for discover-
ing spatial association patterns. Most works on co-location pattern mining have
presented different approaches for identifying co-location instances and choos-
ing interest measures. Morimoto [16] discovered frequent neighboring class (i.e.,
co-located event) sets using a support count measure. Shekhar et al. [19] pro-
posed statistically meaningful interest measures for co-location patterns and a
join-based co-location mining algorithm. Approaches to reduce expensive join
operations used in [19] for finding clique instances were proposed in [23] and
[25]. Xiao et al. [22] proposed a density based approach for identifying co-location
instances. Zhang et al. [27] enhanced the co-location pattern proposed by [19]
and proposed an approach to find spatial star, clique and generic patterns. Al-
Naymat [2] proposed the problem of enumeration of maximal cliques for mining
spatial co-location patterns. This work can find maximal co-location patterns as
ours. However it finds prevalent maximal co-locations after retrieving all max-
imal cliques. Clique enumeration problem is known as NP -Hard, and is well
studied in graph theory [1,15,21]. We more concern to reduce candidate event
sets and to find clique instances for only filtered candidates.

In classical data mining literature, there are many works for discovering max-
imal frequent itemsets from transaction database [17,26,14,4,10]. Bayardo [17]
proposed the Max-Miner algorithm for discovering maximal frequent itemsets.
Zaki et al. [26] presented the algorithms MaxEclat and MaxClique for iden-
tifying maximal frequent itemsets. Lin et al. [14] have proposed an algorithm
called Pincer-Search for mining long maximal frequent itemsets. MAFIA [5,4] is
the most recent method for mining the patterns. We adopt one of its pruning
strategies for our algorithm.

3 Algorithm

We first describe our algorithmic design concept in four parts: preprocess, candi-
date generation, candidate pruning and instance filtering, and then present the
algorithm. In the end, we analyze the proposed algorithm for completeness and
correctness.

3.1 Preprocess

An input spatial dataset can be represented as a neighbor graph with the spatial
objects being its vertex set and an undirected edge between two objects where
they are neighbors each other as shown in Fig. 1 (a). A brute-force approach
to discover maximal co-location patterns is first to find all co-location instances
forming cliques from the neighbor graph, compute a participation index per event
set and then find out the maximal co-locations. However, it is computationally
expensive to find all cliques directly from a graph [7]. Instead, we represent the
input spatial data as a set of neighborhood transactions.
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Fig. 1. Preprocess: neighborhood transactions

Definition 2. Given a spatial object oi ∈ S, the neighborhood transaction
of oi is defined as a set of spatial objects: {oi, oj ∈ S|R(oi, oj) = true∧o′is event
type = o′js event type}, where R is a neighbor relationship.

For example, in Fig. 1 (a), C.1 has neighbor relationships with each A.1, A.4,
D.2 and E.1. The neighborhood transaction of C.1 is {C.1, A.1, A.4, D.2, E.1}
including itself as shown in Fig. 1 (b). Note that each object in a transaction
has a neighbor relationship with the first object, C.1, which is called a refer-
ence object. The set of distinct events in the neighborhood transaction is called
an event neighborhood transaction. The size of event neighborhood trans-
actions is usually much smaller than the original neighborhood transactions.
Event neighborhood transactions are used for generating candidate event sets.
Neighborhood transactions are used for filtering their co-location instances.

3.2 Candidate Generation

Rather than considering all possible sets, it would be desirable to focus on only
candidates which can have a clique relationship. For example, in Fig. 1 (a), the
objects of events A, B and D do not make any clique relationship. If we know this
kind of event sets in advance, we can avoid searching their co-location instances.
It is important to reduce the number of candidate sets since a large fraction of
the computation time is devoted to identifying their co-location instances having
clique relationships [24]. The basic idea of our candidate generation is properly
combining the event neighbor information of each reference event.

First, we generate event sets for co-location candidates using modified FP-tree
and FP-growth algorithm [11]. FP-tree is a popular data structure for association
rule mining. We adopt the data structure to store the neighbor relations of a
reference event type. We build one FP-tree per each event type and combine the
results of frequent event sets from each tree to generate co-location candidates.
In Fig. 2, let us see a tree which stores the neighbor relation information of event
type A. The tree consists of one root labeled as a reference event type (here, A)
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Fig. 2. Candidate generation

and a set of event prefix subtrees as the children of the root. Each node of the tree
consists of three fields: event− type, count, and node− link, where event− type
denotes an event this node represents, and count registers the number of event
neighborhood transactions of the reference event represented by the portion of
the path reaching this node. And node− link links to the next node in the tree
carrying the same event-type. We call the tree to the candidate pattern tree
of a reference event.

Frequent event sets with a minimum threshold (i.e., a given prevalence thresh-
old) are generated from each candidate pattern tree using FP-growth algo-
rithm [11]. The difference from the output of the original FP-growth is that
each set has the event item of the root node as its first element. Fig. 2 (a) shows
event sets generated from each tree. We call the result ‘star candidates’ since
all elements in a set have neighbor relationships with its first element (which
was the root node of the tree). The output also gives a frequency information,
i.e., support, which presents the frequency that its first item has a neighbor rela-
tionship with all other items in the set. That represents the upper bound of the
chance (i.e., participation ratio) that the reference event has a clique relationship
with the other events in the set.

After generating all star candidates, we combine them for filtering co-location
candidates. For example, in Fig. 2 (a), to be {A,B,C} a co-location candidate,
three star candidates {A,B,C}, {B,A,C} and {C,A,B} should be there. Fig. 2
(b) shows all combined candidates which are called ‘clique candidates’ or ‘co-
location candidates’.
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Y
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(a) A subset tree with
clique candidates
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(b) After finding a {A C D
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Fig. 3. Subset pruning by a superset

3.3 Candidate Pruning

We present additional scheme (‘subset pruning by a superset’) to reduce the can-
didates further during the pattern mining process. Fig. 3 (a) shows the pattern
search space with candidates generated using a lexicographic subset tree. We as-
sume that there is a total ordering ≥L of the event item (e.g., lexicographic). In
the subset tree, the size k event sets are ordered lexicographically on each level
and all children are associated with the earliest subset in the previous level. The
event set identifying each node will be referred to as the node’s head, while pos-
sible extensions of the node are called the tail. For example, consider node Y in
Fig. 3 (a). Y’s head is {A} and the tail is the set {B,C,D,E}. The head union
tail (HUT) is {A,B,C,D,E}. These terms are borrowed from [5].

We traverses the subset tree in both depth-first and breadth-first manners
during the maximal mining process. The depth-first traversal is used in order
to quickly identify maximal co-location patterns. The breadth-first traversal is
used for the subset pruning by supersets. Once we determine maximal event sets
at each level, we do the subset pruning with checking whether the HUT of each
node is a subset of a current maximal set. If the HUT is a subset, the subtree
whose root is the current node is pruned out. For example, in Fig. 3 (a), suppose
{A,C,D,E} is a maximal co-located event set. In the first level, the HUT of a
node having A is {A,B,C,D,E}. Since it is not a subset of {A,C,D,E}, we cannot
prune the subtree whose root is A. Next, see the node having C. The HUT is
{C,D,E} which is subset of the maximal {A,C,D,E}. We thus prune the subtree
rooted at C. Fig. 3(b) shows the status of the search space tree after pruning all
subsets with a maximal co-location {A,C,D,E}.

3.4 Candidate Instance Filtering

To find co-location instances having clique relationships efficiently, we use a filter-
and-refine strategy. The instances of a co-location candidate are gathered with
scanning neighborhood transactions whose first item’s event type is the same
with the first item of the candidate. The instances are called star instances.
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3.5 Algorithm and Analysis

We present an algorithm for mining MAXimal Co-location patterns (MAX-
Coloc). Algorithm 1 shows the pseudo code.

Preprocess(Step 1-2): Given an input spatial dataset and a neighbor relation-
ship, first find all neighboring object pairs using a geometric method such as
plane sweep [3], or a spatial query method using quaternary trees or R-trees [18].
Neighborhood transactions are simply generated with grouping the neighboring
objects per each object. Event neighborhood transactions are generated with
event types in the neighborhood transactions.
Candidate Generation (Step 3-6): A candidate pattern tree per each event type
is constructed with the event neighborhood transactions of the reference event.
Star candidates with the minimum prevalence are generated using a project
based mining algorithm (FP-growth) [11]. Co-location candidates are filtered
with combining the star candidates.
Select size k co-location candidates (Step 7-9): The maximal pattern mining
is processed from the longest size of candidate events to size 2. Select size k
candidates from the candidate pool.
Gather the star instances of candidates (Step 10): The star instances of candi-
dates are gathered from the neighborhood transactions whose first object’s event
type is the same with the first item of the candidate.
Filter the co-location instances of a candidate and compute its participation in-
dex (Step 11-15): Next filter true co-location instances from the star instances
of a candidate examining all neighbor relationships of objects except the first
object in the star instance. Here we use neighbor pair information generated
in preprocess without additional geographic operations. After finding all true
instances of a candidate, compute its participation index.
Update the result set and prune the subsets (Step 16-17): If the candidate set’s
participation index is greater than a prevalence threshold, it becomes a maximal
co-location and is inserted in the result. All subsets of the maximal set are
removed from the set of remaining candidates.
Return the final result (Step 20): The procedure of step 8 to step 19 is repeated
until k reaches to 2 or there is no candidate. Finally, return the final result of
the maximal patterns.

Next we analyze the proposed algorithm (MAXColoc) for completeness and cor-
rectness. Completeness means MAXColoc finds all maximal co-locations which
satisfies Definition 1. Correctness means that co-located event sets discovered by
MAXColoc are all maximal co-locations.

Theorem 1. The MAXColoc algorithm is complete and correct.

Proof. The completeness can be briefly explained in the following two parts.
First, we show that the candidate generation and pruning procedures do not drop
any potential maximal event sets. The candidate generation procedure (step 3-6)
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Algorithm 1. MAXColoc algorithm

Inputs
E = {e1, . . . , em}:a set of spatial event types
S:a spatial dataset, R:a spatial neighbor relationship
θ:a minimum prevalence threshold

Variables
NT: a set of neighborhood transactions
ENT: a set of event neighborhood transactions
NP: a set of all neighbor pairs (size 2)
Treei: the candidate pattern tree of type ei, k:interest co-location size
C:a set of all candidate sets, Ck:a set of size k candidates
pi: participation index
CIc: a set of clique instances of a candidate c
SIc: a set of star instances of a candidate c
SIk: a set of star instances of size k co-located event sets SIc ∈ SIk
R:a set of maximal co-located patterns
Rk:a set of size k maximal co-located patterns

MAXColoc
1) NP=find neighbor pairs(S, R);

2) (NT,ENT)=gen neighbor transactions(NP);

3) for i=1 to m do

4) Treei=build candidate pattern tree(ei, ENT, θ);
5) end do

6) C=gen candidates(Tree1, . . . , T reem);

7) k = Find longest size( C );

8) while( k ≥ 2 or C �= ∅ ) do

9) Ck = Get k candidates(C, k);
10) SIk = Find star instances( Ck, NT );

11) for each candidate c in Ck do

12) CIc = Find clique instances( SIk, c, NP );

13) pic = Calculate pi( CIc );

14) if pic > θ then Insert( c, Rk );

15) end do

16) R=R ∪ Rk; C=C-Ck;

17) C=Subset Pruning( Rk, C );

18) k=k-1;
19) end do

20) return R;

filters a candidate event set using the upper bound of participation ratio of its
reference event and the combine procedure is correct. The true participation ratio
of an event is not greater than its upper bound value. The participation index
of a co-location is a minimum value of all participation ratios of it. The subset
pruning procedure (step 17) drops only the subsets of maximal co-locations since
the comparision with the HUT of a node is correct. Second, we need to show the
methods to find co-location instances are correct. The neighborhood transactions
generated from the neighboring objects of each object do not miss any neighbor
relation (step 1-2). Instances gathered from the neighborhood transactions whose
first item’s event type is the same as the first item of a co-located set, has correct
star relationships(step 10). Any co-location instance is not missed since the star
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instances are a super set of the clique instances of co-location. It is also correct
to filter co-location(clique) instances from the star instances using neighbor pair
information (step 12). In the other hand, the correctness of MAXColoc algorithm
can be guaranteed by steps 14 and 16. By step 17, the candidate pool keeps
maximal candidates. If a candidate is prevalent, it becomes a maximal set.

4 Experimental Results

We examined the computational effectiveness of MAXColoc in mining maximal
co-location patterns. We compared MAXColoc with a general co-location mining
algorithm [19] which is called ‘GeneralColoc’ in this paper. GeneralColoc has a
postprocess to return only maximal sets. We used synthetic data and real data
for the experiment. A synthetic dataset(DATASET#1) had 54 event types and a
total of 5378 data points. The max neighbor degree (number of neighbors) is 31.
The real data is about points of interest(POI) in California from [20]. We view
the category type such as ‘church’, ‘school’ and ‘cliff’, as event type . We made
several experiment datasets from this base data. One dataset (DATASET#2)
has 9949 data points in San Francisco area with 50 different event types. The
other datasets (DATASET#3, #4, #5 and #6) have each 12000, 24000, 36000
and 48000 data points with 40 event types. All the experiments were performed
on a PC Linux system with 2.0 GB main memory. Main programming language
for the implementation is C++.

1) Comparison in the number of candidates: First, we examined the numbers
of candidates considered for finding their co-location instances from MAXColoc
and GeneralColoc using DATASET#1. The minimum prevalence threshold was
0.1. As shown in Fig. 4 (a), MAXColoc generates much less number of candidates
compared with GeneralColoc. MAXColoc has zero candidate at size 2 and the
mining process finishes at size 3. In contrast, GeneralColoc dramatically increases
the number of candidates until size 7.
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2) Effect of prevalence threshold: Next, we examined the performance effect with
different prevalence thresholds. We used DATASET#2 for this experiment. As
shown in Fig. 4 (b), the execution times for the MAXColoc and GeneralColoc
have decreased with increase of the threshold value. MAXColoc shows overall
better performance than GeneralColoc.

3) Effect of the number of data points: In the last experiment, we compared
the effect of the number of data points in the different algorithms. We use four
datasets different in size (DATASET#3, #4, #5 and #6). As shown in Fig. 4
(c), the execution times increased with number of data points. MAXColoc slowly
increased compared with GeneralColoc.

5 Conclusion

In this paper, we propose an algorithm for finding maximal co-located event sets
which concisely represents all co-location patterns. The proposed algorithm has
a preprocess to convert input spatial data to sets of neighborhood transactions.
It reduces examined candidates and traverses the maximal search space in a
depth-first manner with an effective pruning mechanism. The algorithm also uses
a filter-and-refine strategy for finding co-location instances. A few experiment
results show that the proposed algorithm performs more efficiently against a
general co-location mining algorithm in finding maximal co-location patterns.
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Abstract. As information available over computer networks is grow-
ing exponentially, searching for useful information becomes increasingly
more difficult. Accordingly, developing an effective information filtering
mechanism is becoming very important to alleviate the problem of infor-
mation overload. Information filtering systems often employ user profiles
to represent users’ information needs so as to determine the relevance of
documents from an incoming data stream. This paper presents a novel
two-stage information filtering model which combines the merits of term-
based and pattern-based approaches to effectively filter sheer volume of
information. In particular, the first filtering stage is supported by a novel
rough analysis model which efficiently removes a large number of irrel-
evant documents, thereby addressing the overload problem. The second
filtering stage is empowered by a semantically rich pattern taxonomy
mining model which effectively fetches incoming documents according to
the specific information needs of a user, thereby addressing the mismatch
problem. The experimental results based on the RCV1 corpus show that
the proposed two-stage filtering model significantly outperforms both the
term-based and pattern-based information filtering models.

Keywords: Pattern mining, Information filtering, User profile,
Threshold.

1 Introduction

An Information Filtering (IF) [1] system monitors an incoming document stream
to find the documents that match information needs of users. With information
filtering, the representation of the user information needs is variously referred
to as user profiles or a topic profile where the filters are applied to the dynamic
streams of incoming data. Unlike the traditional search query, user profiles are
persistent, and tend to reflect a long-term information need [1].

The traditional IF systems make the decision of rejection or reception for a
document when it arrives in the stream. The relevant document is displayed
to its users without further scrutiny. This decision-making is completed in one
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step. Such systems often have difficulties in dealing with issues, such as the
feature selection on how to remove noisy and non-relevant features, and threshold
setting (how to learn the optimal threshold). To improve the robustness of the
IF systems, this paper will propose a novel two-stage framework for information
filtering.

To illustrate the two-stage IF model, consider an example that may occur in
a TV series. Louisa is a girl from a big city looking for a partner. There are three
strategies Louisa may adopt, (i) set herself criteria, check out the information of
as many people as possible. When Mr Right meets the criteria, she chooses him
and lives happily ever after, (ii) date with everyone that is available, rank them
according to suitability, then choose the highest-ranked person and live happily
ever after, (iii) set herself criteria for rejection, date with a small number of
people then choose the best fit.

The first approach has some obvious setbacks. If the criteria are set too high,
Louisa may never find Mr Right. If the criteria are too low, she would have
difficulties choosing Mr Right. The second strategy is also not practical. What
is the point in wasting the energy with every one and ranking the obviously
not suitable people? The third approach is a two-stage method. It is the only
sensible and efficient way in the three approaches.

Within the new two-stage IF framework, the first filtering stage is supported
by a novel rough analysis model which efficiently removes a large number of
irrelevant documents. The intention after the first stage is that only a relatively
small amount of potentially highly relevant documents remain as the input to
the second stage. The second filtering stage is empowered by a semantically rich
pattern taxonomy mining model which effectively rank incoming documents ac-
cording to the specific information needs of a user and fetches the top ranking
documents for a user. The initial idea already proposed in the paper [2]. The
main contribution of this research work is that a novel rough sets based optimal
filtering threshold calibration method has been developed. It was found that a
good “balance” must be found between reducing the “noise” at the first stage,
and at the same time, effectively matching incoming documents with a semanti-
cally rich user profile at the second stage. With the help of the first topic filtering
stage, pattern mining and matching can be conducted efficiently and applied to
realistic IF settings.

The remainder of the paper is organized as follows. Section 2 highlights pre-
vious research in related areas. Section 3 introduces the Rough Set Decision
Rule-based Topic Filtering. Section 4 presents filtering model based on the pat-
tern taxonomy mining. The empirical results are reported in Section 5. Section
6 describes the findings of the experiments and discusses the results. Concluding
remarks are sketched in Section 7.

2 Related Work

The term-based approaches for IF have been proposed to address the problems
of overload and mismatch over the past decades. The term-based IF systems
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used terms to represent the user profiles. Such profiles are the most simplest and
common representation of the profiles. For examples: the probabilistic models [3],
BM25 [4], rough set-base models [5], and ranking SVM [6] based filtering models
used the term-based user profiles. The advantage of term-based model is efficient
computational performance as well as mature theories for term weighting, which
have emerged over the last couple of decades from the IR and machine learning
communities. However, term-based models suffer from the problems, such as,
the relationship among the words can not be reflected and also, only considering
single words as features is the semantic ambiguity.

In the presence of these setbacks, sequential closed patterns used in data min-
ing community have turned out to be a promising alternative to phrases [7].
Pattern mining techniques can be used to find various text patterns, such as
co-occurring terms and multiple grams, maximal frequent patterns, and closed
patterns, for building up a representation with these new types of features.
In [8], data mining techniques have been used for text analysis by extracting
co-occurring terms as descriptive phrases from document collections. However,
the effectiveness of the text mining systems using phrases as text representation
showed no significant improvement. Mining maximal frequent patterns [9] was
also proposed to reduce the time complexity of mining all frequent patterns,
where an itemset (or a pattern) was maximal frequent if it had no superset that
was frequent.

To consider the very important semantic relationships between the terms,
a pattern taxonomy model (PTM) for IF has been proposed in [10]. Pattern
taxonomy is a tree-like hierarchy that reserves the sub-sequence (that is, “is-a”)
relationship between the discovered sequential patterns. These pattern based
approaches have shown encouraging improvements on effectiveness, but at the
expense of computational efficiency. Another challenging issue for PTM is to
deal with low frequency patterns because the measures used in data mining to
learn profiles turn out to be not suitable in the filtering tasks.

3 Rough Set-Based Topic Filtering

To deal with the uncertainty issues, a Rough Set-based IF model(RSIF) has been
developed in [11]. There are two key tasks in developing a RSIF model. The first
one is using discovered rough patterns to represent the topic profiles. The second
task is deciding an optimal threshold based on the obtained topic profiles. In this
paper, only the positive documents will be used to represent the user profile as
a rough set. It is less efficient to use the features of the non-relevant documents
for an information filter since coverage of the feature descriptions for negative
documents can be very large.

3.1 Discovery of R-Patterns

A set of terms is referred to as a termset. Given a positive document di and a
term t, tf(di, t) is defined as the number of occurrences of t in di. A set of term
frequency pairs
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d̂i = {(t, f)|t ∈ T, f = tf(t, di)}

is referred to as an initial r-pattern (rough pattern) in this paper.
Let termset(p) = {t|(t, f) ∈ p} be the termset of r-pattern p. In this paper,

r-pattern p1 equals to r-pattern p2 if and only if termset(p1) = termset(p2).
Two initial r-patterns can be composed if they have the same termset. In this
paper, we use the composition operation, ⊕, that defined in [11] to compose
r-patterns. For example,

{(t1, 2), (t2, 5)} ⊕ {(t1, 1), (t2, 3)} = {(t1, 3), (t2, 8)}

(Notice: ⊕ is also suitable for patterns with different termsets, e.g., {(t1, 2),
(t2, 5)} ⊕ {(t1, 1)} = {(t1, 3), (t2, 5)}).

Based on the above definitions, for a given set of positive documents D+ =
{d1, d2, . . . , dn}, there are n corresponding initial r-patterns d̂1, d̂2, . . . , d̂n. We
can also group the initial r-patterns that have the same termset into clusters
and use their composition, a r-pattern, to represent the cluster. Therefore, the
training set of positive documents, D+, is described as a set of r-patterns, RP =
{p1, p2, . . . , pr}, where r ≤ n, and n = |D+| is the number of positive documents
in D. We write this process as RP = {p1, p2, . . . , pr} = ⊕({d̂1, d̂2, . . . , d̂n}).

Let cluster(pi) be the set of documents (initial patterns) that are composed
to generate pi. We can define the support of a r-pattern pi as follows:

support(pi) =
|cluster(pi)|

|D+| . (1)

Theorem 3.11 Let RP = {p1, p2, . . . , pr} be the set of r-patterns discovered in
D+. We have ∑

pi∈RP

support(pi) = 1.

Proof. For any two r-patterns pi and pj , we have cluster(pi) ∩ cluster(pj) =
∅ since the documents in the different r-patterns have the different termset.
Therefore, we have

|cluster(pi)|+ |cluster(pj)| = |cluster(pi) ∪ cluster(pj)|.

Based on this equation and Eq. 1, we also have∑
pi∈RP

support(pi) =
∑

pi∈RP

|cluster(pi)|
|D+| =

1
|D+| × |

⋃
pi∈RP

cluster(pi)| = 1
|D+| × |D

+| = 1.



Pattern Mining for a Two-Stage Information Filtering System 367

3.2 Rough Threshold Model

Up to now, the positive documents in the training set have been represented
as r-patterns. In the topic filtering stage, discovered r-patterns are employed to
filter out most irrelevant documents rather than to identify relevant documents.

Formally the relationship between r-patterns and terms can be described as
the following association mapping if we consider term frequencies:

β : RP → 2T×[0,1], (2)

such that
β(pi) = {(t1, w1), (t2, w2), . . . , (tk, wk)},

where pi ∈ RP is a r-pattern; and wi = fi∑
k
j=1 fj

if we assume

pi = {(t1, f1), (t2, f2), . . . , (tk, fk)}.

We call β(pi) the normal form of r-pattern pi in this paper. The association
mapping β can derive a function for the weight distribution of terms on T in
order to show the importance of terms in the positive documents, which satisfies:

prβ(t) =
∑

pi∈RP,(t,w)∈β(pi)

support(pi)× w (3)

for all t ∈ T .

Theorem 3.21 Let RP be the set of discovered r-patterns, then prβ is a proba-
bility function on T if β(pi) be the normal form of all r-pattern pi ∈ RP .

Proof. Based on Eq. 3 and Theorem 3.11, we have∑
t∈T

prβ(t) =
∑
t∈T

∑
pi∈RP,(t,w)∈β(pi)

support(pi)× w =

∑
pi∈RP

∑
(t,w)∈β(pi)

support(pi)× w =

∑
pi∈RP

(support(pi)×
∑

(t,w)∈β(pi)

w) =

∑
pi∈RP

support(pi)× 1 = 1.

Based on the above discussion, a positive document di can be described as an
event that represents what users want with the probability value. Therefore, the
weight of a positive document di is

Wdi = prob(di) =
∑

t∈di∩T

prβ(t).
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To work out the suitable thresholds, it is assumed that document d is irrelevant
if it is not closed to the common feature of the topic profiles in the training
set. For a given topic, it consists of a set of the positive document, D+. Each
document di has a weight Wdi . To capture the common feature of the topic from
the training data, the distributions of the document weights for a given topic
must be first understood.

Many simplistic models assume normal distribution, that is, the data is sym-
metric about the mean. The normal distribution has a skewness of zero. It is
reasonable to assume that the scores of the document follow a normally dis-
tributed pattern. Using the mean of the Rough Set weights as a threshold would
be a good initial choice, because the mean represents the “common feature”.
According to the statistical approach, if the distributions of the weights of the
documents is assumed as a normal distribution then the common feature, ξj for
a topic can be modelled as:

ξj =
1
n

∑
di∈D+

prob(di);

where n is the number of the positive documents, n = |D+|. In fact, ξj is the
mean, m, of the probabilities of the positive documents in D+. The thresholds,
therefore, can be simply determined as threshold = ξj .

However, real data points are not always perfectly symmetric. Skewness is
a measure of the asymmetry of the probability distribution of a real-valued
random variable. By observations from the experiments conducted in this study,
the distributions of the weights of the documents have exhibited a high degree
of skewness. To obtain the “real” common feature, both the standard derivation
and the skewness must be taken into consideration for modeling the document
weights. The following features have been used to characterize a histogram in
this paper.

σ is the standard deviation of the probabilities of positive documents. It is
given by:

σ =
√

1
n

∑
di∈D+

(prob(di)−m)2 (4)

μ is the skewness of the probabilities. The skewness is given by:

μ =
√

n
∑

di∈D+ (prob(di)−m)3

(
∑

di∈D+ (prob(di)−m)2)
3
2

(5)

A linear discriminated function is used to make a decision based on features
obtained from the above analysis. Therefore, the threshold can be determined
as follows:

threshold = ξj + γ(σ + μ) (6)

where γ is an experimental coefficient obtained from specific data sets. It is
an empirical value. When the user profiles are specific, a lower value of γ can
be used and allow more documents into the second stage filtering. Likewise, a
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higher value of γ will potentially limit the irrelevant documents into next stage.
If adaptive filtering will be the study, γ can be a dynamic parameter (reducing)
as the user profiles become more certain.

4 Pattern Taxonomy Mining

In the second stage, all the documents (training and testing documents) are split
into paragraphs and each paragraph is treated as an individual transaction (a
sequence). Each transaction consists of a set of words (terms). So, a given doc-
ument di yields a set of paragraphs DP . Given a document d = {S1, S2, ..., Sn},
where Si is a sequence representing a paragraph in d. Let T = {t1, t2, ..., tn} be
a set of all items - an item is a term which can be a word or keyword in a text
document. An itemset is a termset. A sequence S is an ordered list of terms, such
that S = 〈s1, s2, ...sl〉 where sj is a termset and sj ∈ T . S is called a sequential
pattern of d if there is a Si ∈ d such that S + Si.

Given a termset X in a document d = {S1, S2, ..., Sn}, X̂ is used to denote the
covering set of X , which includes all sequences S ∈ d such that X ⊆ S, i.e., X̂ =
{S|S ∈ d, X ⊆ S}. The absolute support of X is used to indicate the number
of occurrences of X in d. It is denoted as suppa(X) = |{S|S ∈ d, X + S}|. The
relative support of X is the fraction of the sequences that contain the termset
X , denoted as suppr(X) = |X̂|

|d| . The purpose of using the relative support of
termset X is to properly estimate the significance of the pattern. The absolute
support of X only measures the frequency of X in d. A termset X with the
same frequency will acquire the same support in documents of varying lengths.
However, with the same frequency, a termset X is more significant in a short
document than in a long one, because we decompose a document into a set of
transactions and discover the frequent patterns in them by using data mining
methods; the relative support is estimated by dividing the absolute support by
the number transactions in a document. Therefore, a termset X can have an
adequate support in various document lengths with the same frequency.

A termset X is called a frequent sequential pattern if its relative support
suppr(X) is greater than or equal to a predefined minimum support, that is,
suppr(X) ≥ min sup. The purpose of using min sup in our approach is to reduce
the number of patterns discovered in a large document. Otherwise, these patterns
with a lower relative support will increase the burden of the training. Removing
the less significant patterns will save much computational time without affecting
the performance very much.

A frequent sequential pattern X is called a closed sequential pattern if there
exists no frequent sequential pattern X

′
such that X ⊂ X

′
and suppa(X) =

suppa(X
′
). The relation ⊂ represents the strict part of the subsequence relation

+. The closed pattern mining can substantially reduce the redundant patterns
and increase both efficiency and effectiveness.

The closed sequential patterns discovered from a document collection (a train-
ing set) then can be structured into a taxonomy by using the “is-a” relationship
between the patterns. Pattern taxonomy is a tree-like hierarchy that reserves the
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sub-sequence relationship between discovered sequential patterns [10]. Pattern
taxonomy model (PTM) is a rich semantic representation of users information
needs. On the other hand, documents are also represented by frequent sequen-
tial patterns. The monotonic reasoning framework is then used to infer if certain
documents satisfy the information needs of a specific information seeker.

After the pattern taxonomies are obtained, the next step is to develop a
method to measure how important patterns are to a given topic, that is, develop
a pattern weighting function.

If each mined sequential pattern p in a pattern taxonomy is viewed as a rule
p → positive , then a value can be assigned to each pattern by exploiting the
support or confidence of the patterns within the relevant documents. One of
existing pattern weighting functions using the confidence of pattern in [12] is as
follow:

w(p) =
|{di|di ∈ D+, p ⊆ di}|
|{dj|dj ∈ D, p ⊆ dj}|

where D is the training set of documents, and D+ is the set of positive document
in D.

However, using support or confidence as a significant measurement of the
patterns suffers from time-consuming and ineffective problems. The measures
used by data mining (“support” and “confidences”) to learn the profile lead
to the low frequency patterns problem; thus, it is not suitable in the filtering
stage. Patterns have different lengths. Intuitively, the long patterns have more
specificity and a lower frequency; the short ones are more general and have a
higher frequency. By way of illustration, given a specified topic, a highly frequent
pattern (normally a short pattern with a large support) is usually a general
pattern or a specific pattern having a low frequency.

Instead of evaluating the pattern’s support, we evaluate a term’s support
(weights) within a discovered pattern and then calculate a specificity value for
each pattern. The difference between this term weight method and the IR term-
based approaches is that a component of a given term’s weighting of the term-
based method is based on its appearance in the documents.

Formally, for all positive document di ∈ D+, we first deploy its closed patterns
on a common set of terms T in order to obtain the following r-patterns:

−→
di =< (ti1 , ni1), (ti2 , ni2), . . . , (tim , nim) > (7)

where tij in pair (tij , nij ) denotes a single term and nij is its support in di which
is the number of closed patterns that contain tij .

These r-patterns are composed by using an association mapping (see Eq 2).
The supports of terms can be calculated by using Eq 3.

After the supports of terms have been computed from the training set, the
specific value of a pattern p for the given topic is defined as follows:

spe(p) =
∑
t∈p

support(t).

It is also easy to verify spe(p1) ≤ spe(p2) if p1 + p2, that is, p1 a sub-pattern
of pattern p2. This property shows that a document should be assigned a large
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weight if it contains many large patterns. Based on this observation, we will
assign the following weight to a document d for ranking documents in the second
stage:

weight(d) =
∑
t∈T

support(t)τ(t, d).

5 Experiments

The Reuters Corpus Volume 1 (RCV1) has been selected to test the effectiveness
of the new two-stage information filtering model. All 100 TREC-11 topics have
been used in our experiments. F1 = 2PR

(P+R) matrix is used and the paired two-
tailed t-test is applied over all 100 topics on F1 scores.

The proposed two-stage filtering model (T-SM) integrates two types of filter-
ing models: a term-based and a pattern mining-based model. In the first stage,
a threshold setting method is developed based on the rough set analysis. In the
second stage, a document ranking model is developed based on the pattern tax-
onomy model. The major objectives of the experiments are to show how the
rough threshold model of the first stage can affect the performance of the two-
stage filtering system and how the pattern mining method can help improve the
performance in the second stage. Hence, to give a comprehensive investigation
for the proposed model, our experiments involve comparing the filtering perfor-
mance of the different threshold setting methods and the different combinations
of term-based and pattern-based filtering models.

The Different Threshold Setting Methods. The two-stage models use
thresholdmin developed in [11] and threshold (see Eq. 6)newly developed in
this study at the first stage, respectively. The results on F1 matrix and p−value
of t-test display in Table 1. As can be seen from Table 1, the performance of
the two-stage model using threshold is better than the two-stage model using
thresholdmin on F1 over F1 matrix. For the t-test, the p − value is less than
0.0001. This is considered to be extremely statistically significant. With regard-
ing to the threshold setting methods, the newly developed threshold setting
method significantly outperforms than the threshold setting method developed
in [11].

Table 1. threshold vs thresholdmin

thresholdmin threshold p − value

Fβ=1 0.4535 0.5144 5.7727E-13

The Different Types of Two-stage Models. Table 2 illustrates the possible
combinations of a term-based model integrated with the pattern-based model
or a term-based model integrated with another term-based model, where for the
efficiency issue, the model that used for the first stage should be a term-based
model. In this section, the topic filtering model developed in this study is called
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Table 2. Different integrations of filtering models

Integration Model

Term + Pattern T-SM (TFM+PTM)
Term + Pattern BM25+PTM
Term + Pattern SVM+PTM
Term + Term TFM+BM25
Term + Term TFM+SVM

Table 3. T-SM vs other types of two-stage models

Fβ=1 p-value

T-SM 0.5144
BM25+PTM 0.4749 2.15271E-07
SVM+PTM 0.4783 2.02454E-06
TFM+BM25 0.4564 4.90958E-08
TFM+SVM 0.4612 4.23648E-07

a Topic Filtering Model(TFM). This term-based model will be integrated with
other term-based model to form a term-based + term-based two stage models.
The results shown in Table 3 are the comparisons of T-SM with other possible
two-stage models. The BM25 and SVM based term weight methods are used in
the first stage for the BM25 + PTM and SVM + PTM models. The results show
that T-SM significantly outperforms all other two-stage models. The purpose of
the topic filtering stage is to move the “noisy” and prepare more “clean” data for
pattern-mining stage. As can be seen from the above results TFM can achieve
this goal because the design objectives of TFM are different from the traditional
filtering models. The TFM has an excellent performance for determining non-
relevant information comparing with the traditional models that focus on the
performance for determining relevant information.

6 Discussion

As was mentioned previously, the pattern taxonomy mining is sensitive to the
data noise. To deal with this phenomenon, a two-stage theory was put forward.
In the proposed two-stage model, the rough threshold model were used to remove
the majority of the irrelevant documents in the first stage. The goal of the first
stage is to produce a relatively small set of mostly relevant documents as the
input for the second stage, pattern taxonomy mining.

In theoretical perspective, any incoming document with a larger probability
value than the minimum score of positive documents in the training set should
be considered as possibly relevant. However, in real life, user profiles can be
very uncertain. Using the minimum positive score as the threshold will allow
too many irrelevant documents into the second stage. In certain cases, when the
user profiles are most specific, using the minimum score as the threshold would
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Fig. 1. Threshold by training set mean weight

be appropriate. However, in most cases, the user profiles are not well defined;
therefore, the higher score should be used.

Observe the typical document score distributions shown in Figure 1, where the
distributions of the positive documents for Topic 155 in both the training set and
testing set are illustrated. It is clearly illustrated that the use of minimum score of
positive documents in the training set can only filter out a few testing documents.
In the rough threshold model, the mean score of the positive documents in the
training set was used as the threshold instead of the minimum score because
it describes the common feature of the positive documents in the training set.
Also, a significant improvement was achieved using the common feature as the
threshold.

We also observed that many of the positive training sets’ scores do not strictly
follow the normal distributions. Therefore, the mean plus a fraction of the stan-
dard deviation and the skew was used for the rough threshold model.

7 Conclusions

Compared with some other possible types of “two-stage” models, the experimen-
tal results confirm that the proposed two-stage IF model (T-SM) significantly
outperforms the other models. The substantial improvement is mainly due to the
rough sets based threshold optimization method applied to the first stage and
the “semantic” based patterns mining and matching applied to the second stage.
This research work has delivered a very promising methodology for developing
effective and efficient filtering systems based on positive relevance feedback.
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Abstract. The popularity of online location services provides opportu-
nities to discover useful knowledge from trajectories of moving objects.
This paper addresses the problem of mining longest common route (LCR)
patterns. As a trajectory of a moving object is generally represented by
a sequence of discrete locations sampled with an interval, the different
trajectory instances along the same route may be denoted by different
sequences of points (location, timestamp). Thus, the most challenging
task in the mining process is to abstract trajectories by the right points.
We propose a novel mining algorithm for LCR patterns based on turning
regions (LCRTurning), which discovers a sequence of turning regions to
abstract a trajectory and then maps the problem into the traditional
problem of mining longest common subsequences (LCS). Effectiveness of
LCRTurning algorithm is validated by an experimental study based on
various sizes of simulated moving objects datasets.

Keywords: spatial temporal data mining, trajectories of moving ob-
jects, longest common route patterns.

1 Introduction

The popularity of online location services provides opportunities to discover use-
ful knowledge from trajectories of moving objects for various applications. This
paper addresses the problem of mining longest common route (LCR) patterns.
Mining LCR patterns is one of the fundamental issues in mining trajectories of
moving objects. LCR patterns are the longest LSPs (Long, Sharable Patterns)[1].
However, different from [1], the aim of this paper is to tackle the following two
challenges to retrieve LCR patterns: (1) Accuracy Challenge: As a trajectory
of a moving object is generally represented by a sequence of discrete locations
sampled with an interval, the different trajectory instances along the same route
may be denoted by different sequences of points (location, timestamp) [2] [3] [4].
(2) Efficiency Challenge: the sampling interval can be very small to ensure the
accuracy of trajectories but this approach generates a large number of useless
points on trajectories [3][5] [2].
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To tackle the above two challenges, we propose a novel mining algorithm for
LCR patterns based on popular Turning regions (LCRTurning) and explain its
effectiveness using examples in Fig. 1. We classify LCR patterns into two classes:
Polygon line based LCR (P-LCR) and Direct line based LCR (D-LCR), as shown
in Fig. 1 (a) and (b), respectively. We observe that the turning points, where
objects change their directions, are always critical and thus we abstract each tra-
jectory by using a sequence of turning points. In Fig. 1 (a), two trajectories are
simplified as A1B1C1D1FH and A2B2C2D2EG, by using turning points. Then,
we group all the turning points on both simplified trajectories into different clus-
ters based on their spatial proximity; examples are cluster 1: {A1, A2}, cluster
2: {B1, B2}, cluster 3: {C1, C2} and cluster 4: {D1, D2}. We define a popular
turning region be an area that encloses at least min sup (minimal number of
supports) points in a cluster and assume min sup = 2; examples include Region
A, B, C and D. Finally, we unify the two trajectories as two strings: ABCDFH
and ABCDEG. By the above three steps, problem of mining LCR from tra-
jectories is mapped into the traditional problem of mining Longest Common
subsequences (LCS) from strings. Obviously, the common string is ABCD in
this example. Then we refine ABCD by ABCDE and ABCDE is a P-LCS pat-
tern in this case. Meanwhile, D-LCR patterns are discovered by another method.
For example, the moving object MO1 travels from A to B in Fig. 1 (b), where
MO1 also passes other four regions: E, C, D and F , but these four points are not
recorded in the trajectory of MO1. So, we retrieve common direct line segments
to find D-LCR patterns (e.g. EF in Fig. 1 (b)). Therefore, the LCRTurning
algorithm simplifies trajectories by turning points to remove a large number
of useless points and then discovers popular turning regions to simplify trajec-
tories further; these tackle Efficiency Challenge. Moreover, it tackles Accuracy
Challenge by unifying simplified trajectories based on popular turning regions.

(a) P-LCR pattern: ABCDE (min_sup=2). (b) D-LCR pattern: EF (min_sup=2) and CD (min_sup=3).
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Fig. 1. Two classes of LCR patterns

Our LCRTurning algorithm is different from already exist algorithms and
can retrieve LCR efficiently and accurately and we explain as follows. In [2],
Douglas-Peucker (DP) algorithm [6] is used to simplify the trajectories, which
tackles Efficiency Challenge. We not only validate that DP algorithm is effec-
tive to find turning points in single trajectory in our proposed algorithm, but
also consider global popularity of a turning region to simplify trajectories fur-
ther. Moreover, we discover LCR patterns mainly through clustering turning
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points other than mainly clustering direct line segments in [2]. In [3], CuTS
(Convoy Discovery using Trajectory Simplification) algorithm is provided, which
firstly retrieves coarse candidate results based on DP-simplified trajectories and
then validate candidates by clustering locations at every timestamp. The coarse
searching screens a large volume of points to be checked further to increase the
efficiency, but it did not evaluate the accuracy of CuTS since the correct pat-
terns were unknown. In this paper, to evaluate both false positive rates and false
negative rates of our LCRTurning algorithm, we develop a benchmark method
to denote a trajectory by using the intersections and every trajectory along the
same route can be detected exactly by the sequences of intersections. Note that
our LCRTurning algorithm do not depend on any road network information. In
[5], popular regions visited frequently by moving objects, are used to dynami-
cally define region of interests (RoIs) and then help discover trajectory patterns.
However, the popular regions cannot be discovered precisely because the large
number of meaningless locations may lead to find false popular regions. Also, if
we use intersections as RoIs and define a neighborhood of each intersection to
help remove useless non-intersection locations on sampled original trajectories
to tackle Accuracy Challenge, it is time consuming to retrieve common patterns
since there are a huge number of intersections; our experimental results validate
this. The efficiency of our LCRTuring algorithm is validated by an experimental
study based on various sizes of moving objects datasets.

The rest of this paper is organized as follows. We model the problem in
Section 2. The LCRTurning algorithm is provided in Section 3, while the per-
formance of the proposed algorithm is evaluated in Section 4. Finally, Section 5
concludes the paper.

2 Problem Definition

We formally define basic terms and then model the problem.

Definition 1. A trajectory of moving object is a sequence of points S =<
p1, ..., pu, ..., pk >, where pu = (xu, yu, tu), tu (u = 0..k) is a timestamp for
a snapshot, ∀0≤u<k, tu < tu+1 , and (xu, yu) are 2-D locations.

Definition 2. Distance, dlp(p, AB), between one point p = (x, y) and one direct
line segment AB is the minimal distance between p and any point on AB.

Definition 3. Turning point is a point pi = (xi, yi, ti), on a trajectory S =<
p1, ..., pu, ..., pk > that satisfies one of the two conditions: (1) i=1 or k for the
start or end points of the trajectory; (2) dlp(pi, pbpa) > λ (λ is a distance thresh-
old), where 2 ≤ b, i, a ≤ k − 1, and pb is sampled before pi and pa is sampled
after pi; any other point, pj (b < j < a ), a point on original trajectory between
pb and pa satisfies dlp(pj , pbpa) < λ, where dlp(pj , pbpa) is the distance between
pj and pbpa.

Definition 4. A turning point simplified trajectory is a sequence of turning
points TP =< p1, ...pi, ...pw >, where pi = (xi, yi, ti) is the ith turning point.
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Definition 5. Interest region. Given the following condition:(1) A is a 2-D re-
gion area with arbitrary shape; (2) a set of turning point simplified trajectories
Σ = {TP1, ...TPu, ...TPm} in a period of [T 1, T 2], where T 1 and T 2 are times-
tamps, and a set of points F = {Q1, ..., Qi, ...Qc}, where Qi = (xi, yi, ti) ∈
TP1 ∪ ...TPu...∪TPm and (xi, yi) ∈ A; and (3) min sup is the minimal number
of supports. There are two types of Interest region: (1) If c ≥ min sup, then
A is a (Explicit) Popular turning region. (2) If c < min sup and a set
of line segments on different trajectories: {Seg1, ..., Segi, ..., Segb} (i ∈ [1, b]),
satisfies two conditions: (1) ∃j∀i(dlp(locj , Segi) < λ), where locj = (xj , yj),
Qj = (locj,tj) ∈ F and locj ∈ A; (2) b ≥ min sup − c, then A is an Implicit
popular turning region.

Definition 6. A Longest Common Route (LCR) pattern of moving objects is a
route ζ =< r1, ..., ri, ..., rn > (n ≥ 2 and ri (1 ≤ i ≤ n ) is an interest region)
that is visited by a set of moving objects MOset = {MO1, MO2, ......, MOk}
and an LCR pattern satisfies three conditions: (1) k ≥ min sup ; (2) k is the
maximum value, no other moving objects MOi /∈ MOset visit the whole route
ζ; (3) ζ is the longest route visited by the whole set MOset.

Definition 7. A Polygon line based LCR (P-LCR) pattern is an LCR pattern
which includes at least two popular turning regions.

Definition 8. A Direct line based LCR (D-LCR) pattern is an LCR pattern
which includes at most one popular turning region and at least one implicit
popular turning region.

Definition 9. Given N sequences, Longest Common Subsequence (LCS) is the
longest subsequence with at least min sup supports, 2 ≤ min sup ≤ N .

Definition 10. Distance, dll , between two direct line segments AB and CD
is the minimal distance between any point p on AB and CD, that is, dll=min
(dpl(p, CD)), where p ∈ AB and dpl is defined in Definition 2.

Definition 2 and Definition 10 are based on the similar definitions in [3]. Then, the
problem of mining LCR patterns is modeled as follows. We first detect turning
points (Definition 3) by the DP algorithm and a single trajectory is denoted by a
turning point simplified trajectory (Definition 4). We then group all the turning
points in a set of trajectories into clusters and turning points in the same cluster
are taken as in the same popular turning region (Definition 5). Thus, a trajectory
can be abstracted using a sequence of popular turning region IDs. Note that we
only mark region IDs on the turning points but keep the original locations in
order to compute the distance between region IDs. Therefore, we can discover P-
LCR patterns (Definition 7) by mining LCS (Definition 9). Finally, we discover
implicit popular turning regions (Definition 5). Based on dlp (Definition 2), we
compute dll (Definition 10) of two direct line segments. Two direct line segments
can be grouped into the same cluster, if dll is in a bounded error and the angle
between the two direct line segments is also in another bounded error. So, for
each direct line segment cluster, we discover the implicit popular turning regions



Efficiently Retrieving Longest Common Route Patterns of Moving Objects 379

through analyzing the overlap part of the direct line segments. This is the process
we retrieve D-LCR patterns (Definition 8). We prove that P-LCR and D-LCR
patterns compose the whole set of LCR patterns (Definition 6).

Theorem 1. Given a P-LCR pattern set SPLCR, a D-LCR pattern set SDLCR

and a LCR pattern set SLCR for the same input trajectories, then they satisfy:
(1) SPLCR ∩ SDLCR = Φ; (2) SLCR = SPLCR ∪ SDLCR.

Proof. (1) We use a pair of interest region IDs, P , to denote for a D-LCR pattern
and a sequence (no less than two) of interest region IDs , H , to denote for a P-
LCR pattern. P ∈ SDLCR and H ∈ SPLCR. We firstly may insert the implicit
popular turning regions in P into H , denoted by H ′, if P is included in a piece
of segment of H and any of P ’s ID is not in H yet. There are two cases:

Case 1: a D-LCR pattern is fully included in a P-LCR pattern, that is H ′ ⊇ P
(this means P is a subsequence of H ′), since a P-LCR pattern includes no less
than two popular turning region IDs and a D-LCR pattern includes at most one
popular turning region IDs. If H ′ = P , then P is not the longest common route
and thus P is not a LCR; this also means P /∈ SDLCR. Therefore, H ′ = P , a
D-LCR pattern is a sub sequence of a P-LCR pattern, in this case, we neglect
this D-LCR pattern.

Case 2: two lists of moving objects, MOSet1 and MOSet2 supports H ′ and
P , respectively and a part of a D-LCR pattern is included in a P-LCR pattern,
that is H ′ ∩ P ⊂ P or (P − H ′) ∩ H ′ = Φ. If MOSet1=MOSet2, then this
produces a paradox: moving objects that supports both H ′ and P not only
changed direction but also went straight without direction change. Therefore,
MOSet1 = MOSet2 and H ′ ∩ P = Φ. This proves Theorem 1(1).

(2) According to definition 7 and 8, SPLCR ⊆ SLCR and SDLCR ⊆ SLCR.
Thus, SPLCR ∪ SDLCR ⊆ SLCR. Suppose except P-LCR patterns and D-LCR
patterns, there is another type of patterns, say X pattern, which belong to LCR
pattern. That’s SPLCR∪SDLCR∪SX = SLCR and SX ∩ (SPLCR∪SDLCR) = Φ.
According to definition 7, a P-LCR pattern includes m popular turning regions,
m ≥ 2. According to definition 8, a D-LCR pattern includes n popular turning
regions, 0 ≤ n < 2. Suppose an X pattern includes k popular turning regions,
because SX ∩ (SPLCR ∪ SDLCR) = Φ, 0 ≤ k < 2 and (k < 0 or k ≥ 2). Thus,
k < 0. This is not correct, since k ≥ 0. So, SX = φ. This proves Theorem 1 (2).

3 Mining Algorithm for Longest Common Route
Patterns Based on Turning Regions

In this section, we present the LCRTurning algorithm.

3.1 Discovering Turning Regions

According to Definition 3, DP algorithm [6][7] is suitable to detect turning points
for trajectory simplification. The main idea of the DP algorithm in [7] is given
as follows. The first point and the last point of one trajectory are chosen as the
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anchor point and float point respectively. For intermediate points, the cut point
is the point with the maximum perpendicular distance, which is greater than a
pre-defined threshold, λ, to the line connecting anchor and float points. The cut
point becomes the new float point for the first segment and the anchor point for
the second segment. If no cut point exists, the procedure stops. This procedure
is recursively repeated for both segments.

Then we develop a following Clustering Turning Points (CTP) algorithm
based on DBSCAN algorithm [8][9] to group turning points (Definition 3) into
popular turning regions (Definition 5):

Step 1. Build neighbour lists of each point on trajectories. The neighbours of
point q(x,y,t) must satisfy the criteria that the locations of neighbours are in
the neighbourhood circle area with (x,y) as the centre and eps as the radius.
Step 2. Build a core point set, I. The number of a core point’s neighbors is
greater than MinPts.
Step 3. All core points are marked “unused”. For each unused core point p, put
p and p’s neighbors into cluster class id and mark the point as “used”. Any core
point r in cluster class id will recruit r’s neighbors into cluster class id.
Step 4. Unused points are assigned into a special noise cluster.

Finally, trajectories are denoted by sequences of popular turning region IDs.

3.2 Retrieving Longest Common Route Patterns

(1) Mining Polygon Line based LCR (P-LCR) Patterns
In the MPLCR algorithm (Algorithm 1), SuffixT ree CS procedure retrieves
the common sequences based on suffix trees [10][11] and Remove SubSeq proce-
dure removes short patterns. Fig. 2 (b) shows an example LCS: BCD. Assuming

Algorithm 1. Mining P-LCR patterns (MPLCR) Algorithm. 

Input: A sequences of popular turning region IDs: SPTR ; Output: P-LCR patterns. 

1.  STr Build suffix tree for SPTR;

2.  SCS  SuffixTree_CS(STr); 

3.  SLCS Remove_SubSeq (SCS);

4.  For each LCSSlcs

5.  For LineSet at fth end /*two ends of a LCS */ 

6.  { If LineSet  min_sup { 

6a. LineClusterSet CL_DBSCAN (LineSet, Angle_eps, CL_MinPts);

6b. For each cluster i in LineClusterSet /* LineClusterSet={L1, L2, …,Lm} */ 

{ If iL min_sup

{ExtendSetf A new interest region, K, discovered at the end of the ith

(i=min_sup) longest direct line segment in iL ;}}} /* Fig 2. (b)*/ 

7.  PLCRSet Extend LCS according to ExtendSet1 and ExtendSet2;

8.  Output (PLCRSet); } 

(a) Algorithm. 

(b) Example of extending LCS: BCD to achieve P-LCR. 

B
C

D

K

Q1Q2

Fig. 2. Algorithm of Mining P-LCR Patterns
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Algorithm 2. Mining D-LCR patterns (MDLCR) Algorithm.

Input: A set of direct line segments with support less than min_sup;

Output: D-LCR patterns. 

1. Cluster_DLS DL_DBSCAN(DLSet, DL_angle, DL_eps, MinPts);

2. For each cluster i  

2a. CutSet DIP(cluster i); /* Algorithm 3 */ 

2b. Put the longest subsections of CutSet with support no less than 

min_sup into DLCRSet;

2c. Output (DLCRSet);  

Fig. 3. Algorithm of Mining D-LCR Patterns

BCD has a support list of m ≥ min sup (min sup =3) moving objects, we may
check the direct line segments that connect to the two ends of the LCS, shown in
Fig. 2(b). Note that only the trajectories of moving objects that support BCD
are checked. We develop CL DBSCAN (CL denotes Constraint Line) based on
the DBSCAN algorithm to cluster the direct line segments at each end of an
LCS by checking whether they have the same moving direction. Then, the ith

(i = min sup) longest direct line segment is the newly discovered part of the
route; DK in Fig. 2(b) shows an example. Given min sup = 2, Q1BCDK and
Q2BCDK in Fig. 2(b) are two P-LCR patterns.

(2) Mining D-LCR Patterns
In the MDLCR algorithm (Algorithm 2), DL DBSCAN (DL denotes Direct
Line) clusters direct line segments based on two criteria to determine the simi-
larity of two direct line segments: (1) Spatial closeness to each other; (2) Similar
direction. We use dll (Definition 10) to define the spatial closeness and measure
the direction similarity by computing the angle by f(u, v) = arccos( u•v

|u|∗|v| ), f ∈
[0, 180◦], where u and v are two vectors, and |u| and |v| denote the lengths of the
two vectors respectively. DL angle and DL eps are the threshold angle and the
threshold distance. The DIP Algorithm (Algorithm 3) discover implicit popu-
lar turning regions (Definition 5). Suppose DL DBSCAN generates n clusters
denoted by Φ1 , Φ2, ..., Φn and Φ = Φ1 ∪ Φ2 ∪ ......Φn ∪ Φnoise. Firstly, average
direction, −→v , of each direct line segment cluster is computed, then we rotate the
axes so that the X axis is parallel to −→v . The most related work that compute a
representative trajectory in a direct line segment cluster is given in [12]. Taking a
different approach, we rotate a cluster of direct line segments to help discover cuts
(or implicit popular turning regions). Given RDLSCluster = {AB, CD, FE},
A(x1, y1), B(x2, y2), C(x3, y3), D(x4, y4), E(x5, y5) and F (x6, y6) in X − Y
coordinate, we can compute A′(x1′, y1′), B′(x2′, y2′), C′(x3′, y3′), D′(x4′, y4′),
E′(x5′, y5′) and F ′(x6′, y6′) in X ′ − Y ′ coordinate by Eq. 1.[

x,

y,

]
=
[

cosφ sinφ
− sinφ cosφ

]
×
[

x
y

]
. (1)

Given x6′ < x1′ < x3′ < x5′ < x4′ < x2′ in Fig. 4 (b), for each direct line
segment cluster, we find all the cut points and sort them. The list of sorted cuts
is < x6′, x1′, x3′, x5′, x4′, x2′ >, so there are 5 cut sections: [x6′, x1′], [x1′, x3′],
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[x3′, x5′], [x5′, x4′] and [x4′, x2′]. For each cut section [xi′, xj′] included in any
line segments in RDLSCluster, the number of supports are counted. Note that
one direct line segment here may be supported by more than one moving ob-
jects. Finally, all the longest consecutive cut sections with supports no less than
min sup are put into DLCRSet. In Fig. 4 (b), given min sup=3, the original
direct line section according to cut section [C(x3′), E(x5′)] is an D-LCR pattern.
Short D-LCR patterns may be neglected.

Algorithm 3. Discover Implicit Popular turning regions (DIP) Algorithm.

Input: A cluster of direct line segments; Output: implicit popular turning regions; 

1.  Put average direction angle of Cluster_DLS[i] into avAngle;

2.  For each direct line segment j in Cluster_DLS[i] {

2a.  RDLSCluster[j] Rotate(avAngle, Cluster_DLS[i][j]); \\ see Eq. (1) 

2b.  CutSet RDLSCluster[j].x1’;  CutSet RDLSCluster[j].x2’;}

3. Qsort(CutSet); Remove redundant one from CutSet;

4.  For each point j in CutSet

5.  For each direct line segment k in Cluster_DLS[i]

6.  If ([CutSet[j],CutSet[j+1] [RDLSCluster[k].x1’, RDLSCluster[k].x2’]) 

{CutSupport[j]+=Cluster_DLS[i][j].nSupport;}

7. Put the longest subsections of CutSet with support (>min_sup) into DLCRSet;

(a) Algorithm. 

(b) Cut points in a cluster of direct line segments. 

p4

Y’

X

p1

p2

p3

X’

B

A

C

D
E

F

Y

Fig. 4. Discover Implicit Popular turning regions (DIP) Algorithm

4 Performance Evaluations

In our experiments, we used a Network-based Generator of Moving Objects [13]
to generate various sizes of moving object datasets described in Table 1, where we
chose an open road map of Oldenburg (a city in Germany) as the network input.
Several parameters of our algorithms are given in Table 2. We set DL eps = eps
and MinPts = 2. We now briefly describe our experimental setup. Given the
trajectories exactly denoted by intersections provided by the simulator, we ran
MPLCR algorithm to retrieve a set of longest common sub-sequences of inter-
sections supported by at least min sup moving objects as benchmarks (shown
in Table 1), which were used to measure the accuracy of our proposed methods.
We studied three cases of proposed algorithms: DP2, DP5 and DP10, where
DPi denote using DP (λ = i) to abstract trajectories as input for LCRTurning
algorithm (e.g. CTP, MPLCR and MDLCR). First, we studied the optimal eps
and optimal DL angle by setting min sup = 2. Then, we observed the scala-
bility based on datasets with various data sizes shown in Table 1. We adopted
the same optimal values of eps and DL angle in the scalability test. We use
false positive rate and false negative rate to measure the accuracy of patterns.
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Table 1. Moving Objects Datasets Using Generator in [13]

Parameter Test 1 Test 2 Test 3 Test 4 Test 5

Max. Timestamps 60 120 180 240 300 

Number of MOs 1,295 1,600 1,900 2,200 2,500

Number of Points 65,012 121,833 179,314 230,082 264,348

Data size (Mb) 3.2 6.2 9.2 11.7 13.8 

Total pattern length 

Benchmarks(Meter)
24470 54509 81502 103613 117839

Table 2. Parameters of LCRTurning Algorithm

Parameter Explanation Parameter Explanation 

Angle_eps Threshold angle in CL_DBSCAN Pre-defined distance threshold in DP

DL_Angle Threshold angle in DL_DBSCAN eps Threshold distance in DBSCAN

DL_eps Threshold of lld  in DL_DBSCAN min_sup Threshold number of supports for a pattern. 

MinPts In three clustering algorithms: DBSCAN, CL_DBSCAN and DL_DBSCAN.

Given the benchmark total pattern length, L′, and the total retrieved pattern
length, L = Lc + Le, where Lc is the correct retrieved pattern length and Le is
the error retrieved pattern length. False positive rate is Le/L′ and false negative
rate is (L′ − Lc)/L′. All experiments were conducted on an IBM Laptop with
Microsoft Windows XP, Genuine Intel 1.83GHz CPU and 512MB main memory.
We implemented the proposed algorithms mainly by using C++, and the suffix
tree based retrieving LCS algorithm was implemented by Java.

4.1 Optimal eps and DL angle

Letting L Angle = 5o, L eps = eps and min sup=2, we ran our proposed al-
gorithms on dataset Test1. Time spent on retrieving LCR patterns is plotted
in Fig. 5 (a); it shows that the greater the value of eps is, the less time spent
on running algorithms DP2, DP5 and DP10. DP10 performed more efficiently
than both DP2 and DP5, and DP5 was more efficient than DP2. We analyze
the accuracy of patterns shown in Fig. 5(b)(c). The whole trend of the three
algorithms in Fig. 5 (b) is that the lowest values of false positive rate are all at
eps=15. Also, DP2 performs better than DP10 and DP5, with the lowest false
negative rate (4.7%) at eps=30 as shown in Fig. 5 (c). Overall, the best effective-
ness and false negative rate is achieved at eps=30, while the best false positive
rate is achieved at eps=15. Since all three algorithms performed more efficiently
at eps=30 than at eps=15, eps=30 was the optimal one with best effectiveness.

Letting L eps = eps = 30, we studied the optimal DL angle. We plotted time
changing with angles in Fig. 5(d), where DP2 consumes more time than DP5 and
DP10. DP2 achieves best false negative rate, near to zero at L Angle = 35 in
Fig. 5 (f). Fig. 5 (f) also shows that the greater the angle is, the lower the value
of false negative rate, while Fig. 5 (e) shows that the value of false positive rate
is increased with the angle. Overall, DP2 is more accurate but less efficient. The
best false positive rate and the best time efficiency are achieved at L Angle = 5
and the best false negative rate is achieved at L Angle = 35.
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(f) False negative rates changing with angle.

Fig. 5. Analysis of optimal parameters

4.2 Efficiency and Accuracy

Based on the results in Section 4.1, we let eps=30 and L Angle = 35o to evaluate
the efficiency and accuracy of our algorithms in various dataset sizes.

Our proposed algorithms are more efficient than both Benchmark and Impre-
cise Intersections methods as shown in Fig. 6 (b). In the Imprecise Intersections
method, where the intersections provided by the simulator are not repeated ex-
actly, we use the CTP algorithm with eps = 0.1 to group imprecise intersections
into region clusters and mine LCS of region IDs. The Imprecise Intersections
method is not efficient, since a huge number of imprecise intersections make the
CTP algorithm time-consuming. The time costs of DP2, DP5 and DP10 are
all nearly linear, while the time cost of Benchmark and Imprecise Intersections
climbed quickly with increased data size, up to around four times and twelve
times respectively that spent on DP10. The Imprecise Intersections method -
that has worst time efficiency - also validates that using turning regions to re-
trieve LCR patterns is efficient. Fig. 6 (a) shows in DP2, the time spent on CTP
is increased around 14 times from 24s at data size of 3.2Mb to 356s at 13.7Mb,
and the time spent on MPLCR is increased around 18 times from 10s to 186s,
while time spent on MDLCR is unchanged at around 24s. The time spent on
CTP is around twice that spent on MPLCR.

The accuracy of our proposed algorithms is shown in Fig. 7(a)(b). When data
size is increased, false positive rate stays in the range of 30%-35%, and false
negative rate is lower, always less than 15%. Fig. 7(c) shows that the correct
lengths of D-LCR patterns are nearly the same in various data sizes, which
also only constitute a very small part of the total lengths. The correct length
of P-LCR patterns is the major part: from 86% at data size=3.2Mb to 98%
at data size =13.7Mb. Although we evaluate our proposed algorithm by using
simulating traffic moving objects, LCRTurning algorithm can be used widely to
any trajectories of moving objects that may not follow a network, since turning
regions are discovered automatically from trajectories.
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Fig. 6. Time Efficiency
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Fig. 7. Accuracy

5 Conclusions

We proposed a novel LCRTurning algorithm to retrieve longest common route
patterns from moving object trajectories. The LCRTurning algorithm have wide
applications for any trajectories that may not follow a network. Experimen-
tal results validated that the LCRTurning algorithm is more efficient than the
algorithms that retrieve LCR patterns by using intersections while achieving
reasonable accuracy.
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Abstract. Research in Weighted Association Rule Mining (WARM) has
largely concentrated on mining traditional static transactional datasets.
Whilst there have been a few attempts at researching WARM in a data
stream environment, none have addressed the problem of assigning and
adapting weights in the presence of concept drift, which often occurs
in a data stream environment. In this research we experiment with two
methods of adapting weights; firstly, a simplistic method that recomputes
the entire set of weights at fixed intervals, and secondly a method that
relies on a distance function that assesses the extent of change in the
stream and only updates those items that have had significant change
in their patterns of interaction. We show that the latter method is able
to maintain good accuracy whilst being several times faster than the
former.

Keywords: Weighted Items, Valency Model, Data Stream Mining.

1 Introduction

Ever since its inception, data stream mining has remained one of the more
challenging problems within the data mining discipline. Although extensively
researched, many unsolved problems remain. Yet streams are an increasingly im-
portant and rich source of data that can yield valuable knowledge when mined
effectively. Data from a wide variety of application areas ranging from online
retail applications such as online auctions and online bookstores, telecommu-
nications call data, credit card transactions, sensor data and climate data are
but a few examples of applications that generate vast quantities of data on a
continuous basis. Furthermore, data produced by such applications are highly
volatile with new patterns and trends emerging on a continuous basis.

Association Rule Mining (ARM) is one approach to mining such data streams.
However a well known limitation of ARM is that it has the potential to generating
a large number of rules, most of which are trivial or of no interest to the decision
maker. One method of overcoming this problem is to weight items in terms
of importance so that rules that only contain high weight items are presented
to the user. The crucial factor in ensuring the success of this approach is the
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assignment of weights to items. The typical approach is for users to supply the
weights through a subjective process based on their specialized knowledge of
the domain involved. While this subjective weight assignment may be feasible
in an environment where data is stable, we believe that it will not be effective
in the context of data stream mining where data is subject to constant change.
Such change or concept drift is bound to invalidate any weight assignment over
a period of time. In this research we thus propose an algorithm to adapt item
weights to reflect changes that take place in the data stream.

Recent research by Koh et al. [1] has shown that automatic inference of weights
from a transaction graph is an effective method of ranking items according to
their interest measure, or Valency. The Valency model assigns a weight to an item
depending on how strongly it interacts with other items. However the Valency
model was not designed to operate in a dynamic environment and in this research
we focus on extending the Valency model to adapt weights by capturing the
changing patterns of interaction over time.

The rest of the paper is organized as follows. In the next section we review
work that has been done on item weighting and briefly cover work done on
incremental methods employed in a data stream environment. In Section 3 we
describe the Valency model in greater detail, while in Section 4 we describe our
methodology for incremental update of weights. Our experimental results are
presented in Section 5. The paper concludes in Section 6 where we assess to
what extent we have achieved our goal of evolving weights over a stream as well
as presenting our thoughts for future research in this area.

2 Background and Related Work

There has been much work in the area of pattern mining in data streams
[2,3,4]. However, there has been very little research specifically directed at mining
weighted patterns in a data stream environment. The few attempts to address
this problem have not employed automatic methods for item weight assignment
and maintenance.

Ahmed et al. [5] proposed a sliding window based technique WFPMDS
(Weighted Frequent Pattern Mining over Data Streams) which employs a single
pass through the data stream. They utilized an FP tree to keep track of the
weighted support of items and hence their mining scheme was essentially based
on the FP tree algorithm with the major difference being that weighted support
was used in place of raw support. Kim et al. [6] proposed a weighted mining
scheme based on two user defined thresholds t1 and t2 to divide items into in-
frequent, latent and frequent categories. Items with weighted support < t1 were
categorized into the infrequent category and those with weighted support > t2
were grouped into the frequent category; all others were taken to be latent. Items
in the infrequent category were pruned while items in the other two categories
were retained in a tree structure based on an extended version of the FP tree.
However in common with Ahmed et al., their weight assignment scheme was
both subjective and static, and as such would degrade in the face of concept
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drift that occurs in many real world situations. When concept drift occurs such
mining schemes essentially take on the character of frequent pattern mining as
items are not re-ranked in terms of importance, and changes in their weighted
support only reflect changes taking place in support, rather than item rank.

The main challenge to be overcome in weighted association rule mining over
a stream is to be able to adapt item weights according to the changes that
take place in the environment. Such changes force adjustments to previously
assigned weights in order to make them better reflect the new data distribution
patterns. We argue that it is not possible for domain experts to play the role
that they normally do in static data environments. Firstly, due to the open ended
nature of a data stream, it will be very difficult for a human to constantly keep
updating the weights on a regular basis. Secondly, even if they regularly invest
the time to keep the weights up to date, it will be very hard, if not impossible
to keep track of changes in the stream for applications such as click stream
mining, fraud detection, telecommunications and online bookstore applications,
where the number of items is very large and the degree of volatility in the data
can be high. Our weight assignment scheme is based on the Valency model
due to its success in generating high quality rules as reported in [1]. However,
as connectivity between items plays a critical role in the Valency model, it is
necessary to monitor the stream and identify which items have had significant
changes in their interactions with other items in order to efficiently adapt the
weights. In a stream containing N items, a naive method of performing such an
estimation would be to check the interactions between all pairs of items which
has a worst case time complexity of O(N2). With N having values in the tens of
thousands or even hundreds of thousands, such an approach would be extremely
inefficient or even prohibitive in the case of high speed data streams. Thus the
challenge boils down to finding an efficient and accurate estimation method that
has a worst case time complexity closer to the ideal value of O(N). We describe
such a method in Section 4.

3 Valency Model

The Valency model, as proposed by Koh et al. is based on the intuitive notion
that an item should be weighted based on the strength of its connections to other
items as well as the number of items that it is connected with. Two items are
said to be connected if they have occurred together in at least one transaction.
Items that appear often together relative to their individual support have a high
degree of connectivity and are thus weighted higher. The total connectivity ck

of item k which is linked to n items in its neighborhood is defined as:

ck =
n∑
i

count(ki)
count(k)

(1)

The higher the connectivity ck of a given item k, the higher its weight should be,
and vice versa. While high connectivity is a necessary condition for a high weight,
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it is not considered to be sufficient by itself, as the weighting scheme would then
be too dependent on item support which would bias weighting too much towards
the classical (un-weighted) association rule mining approach. With this in mind,
a purity measure was defined that encapsulated the degree to which an item
could be said to be distinctive. The smaller the number of items that a given
item interacted with, the higher the purity and vice versa. The reasoning here
is that an item should not be allowed to acquire a high weight unless it also has
high purity, regardless of its connectivity. The role of purity was thus to ensure
that only items with high discriminative power could be assigned a high weight,
thus reducing the chances of cross support patterns from manifesting.

Formally, the purity of a given item k was defined as:

pk = 1 − log2(|Ik|) + log2(|Ik|)2
log2(|U |)3 (2)

where |U | represents the number of unique items in the dataset and |Ik| repre-
sents the number of unique items which are co-occurring with item k. Purity as
defined in Equation 2 ensures that the maximum purity of 1 is obtained when the
number of items linked with the given item is 1, whereas the purity converges to
the minimum value of 0 as the number of linkages increases and becomes close to
the number of items in the universal set of items. The logarithmic terms ensure
that the purity decreases sharply with the number of linkages in a non linear
fashion.

The Valency contained by an item k, denoted by vk as the combination of
both the purity and the connectivity components is defined below:

vk = β.pk + (1 − β).
n∑
i

count(ki)
count(k)

.pi (3)

where β is a parameter that measures the relative contribution of the item k
over the items that it is connected with in the dataset and is

β =
1
n

n∑
i

count(ik)
count(k)

We use the Valency contained by an item as its weight.

4 Our Weight Adaptation Methodology

We use a sliding window mechanism to keep track of the current state of the
stream. Our weight adaptation scheme uses a distance function to assess the
extent of change in the stream. In order to keep overheads within reasonable
bounds the distance computation is only applied periodically, or after every b
number of instances (i.e. a block of data of size b) are processed. Thus a block
consists of a number of overlapping windows.

We now present a 2-phased approach to capturing interactions between items
and detecting change points in the data stream. In phase 1 an initial block of
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data is read and item neighborhoods are built in the form of 1-level trees in order
for an initial assignment of weights to be made. In the second phase, weights
are adapted through the use of a distance function as subsequent blocks of data
arrive in the data stream.

In phase 1 (Read in initial block): Each transaction is read and items are
sorted in their arrival order in the stream. Whenever a new item is detected, a
1-level tree is created with that item as its root. Figure 1 shows the trees created
for a transaction containing 4 items, A B, C, and D. The 1-level trees so formed
enable easy computation of the connectivity and purity values for each item.
Once the purity and connectivity is calculated for an item its weight is then
computed by applying Equation 3.

Fig. 1. Graph Node

In phase 2 (Read in subsequent blocks): The oldest transaction in the window
is deleted from the inverted index matrix and the new transaction is inserted.
At the conclusion of the current block a distance function is applied to each
item to determine whether or not its joint support with neighboring items (i.e.
items that it occurs with) has changed significantly enough, in which case it
is recomputed from a buffer containing transactions in the current block. The
update to the joint support of an item A with another item B triggers an update
to the connectivities of both items, A and B. The purity of an item is only
updated if a new item is introduced or if an item disappears from the current
block. We recalculate weights for any items that have had their connectivity or
purity values changed.

4.1 Data Structure: Inverted Index Matrix

We use an inverted index to buffer transactions in the current block. Transactions
are represented by a prefix tree structure. The index key consists of the item id.
The support of the item is also stored with the index key in order to speed up
retrieval. Each index value consists of a triple < i, j, k > where i is a pointer to
the next key, j is the tree prefix that the item occurs in, and k is the support
of the item with respect to tree j. Given an initial transaction (A, B, C, D, E),
arriving in this order, Table 1(a) shows the initial entry, whereby the initial tree
id is 1. Given the arrival of another transaction (B, A, C, F ), we now sort this
transaction into the order: (A, B, C, F ). Here the entry for A(2, 1, 1) is updated
to (2,1,2); this is repeated for each subsequent entry until item C where an entry
(6, 1, 1) is added to slot 2 of the index value array to point to its successor F .
A new slot is required for entry (6,1,1) as this represents a new branch in the
prefix tree structure. Table 1(b) shows the updated index after the arrival of the
second transaction.
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Table 1. Inserting into the modified Inverted Matrix

(a) Before Insertion of
transaction (B, A, C, F)

loc Index Transactional Array
1 2

1 (A,1) (2,1,1)
2 (B,1) (3,1,1)
3 (C,1) (4,1,1)
4 (D,1) (5,1,1)
5 (E,1) (φ,1,1)

(b) After Insertion

loc Index Transactional Array
1 2

1 (A,2) (2,1,2)
2 (B,2) (3,1,2)
3 (C,2) (4,1,1) (6,1,1)
4 (D,1) (5,1,1)
5 (E,1) (φ,1,1)
6 (F,1) (φ,1,1)

Table 2. Deleting from the modified Inverted Matrix

(a) Before Deletion

loc Index Transactional Array
1 2

1 (A,4) (2,1,3) (4,2,1)
2 (B,4) (3,1,3) (6,3,1)
3 (C,3) (4,1,2) (6,1,1)
4 (D,2) (5,1,1) (5,2,1)
5 (E,2) (φ,1,1) (φ,2,1)
6 (F,2) (φ,1,1) (φ,3,1)

(b) After Deletion

loc Index Transactional Array
1 2

1 (A,3) (2,1,2) (4,2,1)
2 (B,3) (3,1,2) (6,3,1)
3 (C,2) (4,1,2)
4 (D,2) (5,1,1) (5,2,1)
5 (E,2) (φ,1,1) (φ,2,1)
6 (F,1) (φ,3,1)

The inverted matrix structure supports efficient deletion of transactions as
well. Table 2 shows the state of the index after the arrival of a number of ad-
ditional transactions. Given the oldest transaction (A, B, C, F ) in the current
window, with tree id 1, we find the position of A with tree id 1 and reduce
the count corresponding to this position by one. Here the entry for A(2, 1, 2) is
updated to (2,1,1); this is repeated for each subsequent entry until item F is
encountered. As the count for the F(φ,1,1) is updated to (φ,1,0), this entry is
removed from the matrix.

The inverted matrix structure is used to buffer transactions across only two
blocks, since our distance and estimation functions only require the comparison
of the state of the current block with that of the previous block. Another ad-
vantage of using this data structure is the efficiency in finding the joint support
between two items. Given two items, A and C, the joint support AC, is obtained
by carrying out an intersection operation between the items based on their tree
ids. For each tree that this pair occurs in we extract the minimum of their tree
count values and accumulate this minimum across all trees that this pair par-
ticipates in. As A and C appear in only one tree with tree id 1, the minimum
count across tree 1 is taken, which happens to be 2.

The inverted matrix while being efficient at computing the joint support of
item pairs does not efficiently support the maintenance of an item’s connectivity.
To update the connectivity of an item, its neighborhood needs to be enumerated.
This would require excessive traversal of the inverted matrix. Hence we also
maintain one level trees for each item, as described earlier. For every new item
which appears in the stream, an entry is added to the inverted matrix and a link
is established to its one level tree where that item appears as a root node.
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4.2 Distance Function

To calculate the weights for an item using the Valency model mentioned in
Section 3, we track the joint support of an item with other items in its neighbor-
hood. In order to prevent expensive and unnecessary updates, we use a distance
function d(X, Y ) to assess the extent of change in joint support between a given
item X with another item Y . Let Sn(X) be the actual support of item X in
block n and Ŝ(X)n be its support conditional on no change taking place in the
connectivity between it and item Y in consecutive windows n − 1 and n. The
distance function is then given by:

d(X, Y ) = |Ŝ(X)n − S(X)n|

where Ŝ(X)n is given by:

Ŝ(X)n = S(XY )n−1
S(Y )n

S(X)n

S(X)n−1

S(Y )n−1

1
C(X, Y )n−1

where n is the current block number.

Rationale. Under the assumption of no pattern drift in the connectivity between
X and Y we have:

C(X, Y )n = C(X, Y )n−1

where C(X, Y )n−1, C(X, Y )n are the connectivities between X and Y in blocks
n-1 and n respectively. We estimate:

Ŝ(X)n =
Ŝ(XY )n

C(X, Y )n
=

Ŝ(XY )n

C(X, Y )n−1

In the absence of concept drift the joint support between X and Y will remain
stable only if the factor

S(Y )n

S(Y )n−1

S(X)n−1

S(X)n

remains stable between blocks. Our intention is to trap any significant changes
to the join support arising out of significant changes to this factor. Under the
assumption of stability in this factor and no concept drift between X and Y we
have:

Ŝ(XY )n = S(XY )n−1
S(Y )n

S(Y )n−1

S(X)n−1

S(X)n

and so we reformulate Ŝ(X)n as:

Ŝ(X)n = S(XY )n−1
S(Y )n

S(X)n

S(X)n−1

S(Y )n−1

1
C(X, Y )n−1

We now have an estimation of the support of X that is sensitive to changes in
the stream. Any significant departure from our assumption of no drift will now
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be trapped by the distance function d(X, Y ) = |Ŝ(X)n−S(X)n| since it includes
the drift sensitive term Ŝ(X)n.

In order to assess which values of d(X, Y ) are significant we note that the
function is a difference between the sample means of two random variables which
are drawn from unknown distributions. In order to assess significance between
the means we make use of the Hoeffding bound [7]. The Hoeffding bound is
attractive as it is independent of the probability distribution generating the
observations. The Hoeffding bound states that, with probability 1 − δ, the true
mean of a random variable, r, is at least r − ε when the mean is estimated over
t samples, where

ε =

√
R2ln(1/δ)

2t

R is the range of r. In our case the variable r is denoted by Ŝ(X)n − Sn(X),
which has a range value R of 1, and the number of samples t = b, the block size.
Thus for any value of d(X, Y ) > ε our assumption of no concept drift is violated
and an update of the join support Sn(XY ) is required from the transactions in
our buffer for block n.

However we were also conscious of the fact that even small changes in the
joint support Sn(XY ) not signalled by the distance function can accumulate
over all items Y in item X ’s neighborhood. Although each of the deviations
are small individually they could become significant when added over all the
links between X and its neighbors. We thus decided to add a correction factor
(but not an update) to the joint support even in the event that d(X, Y ) ≤ ε.
Our experimentation showed the importance of adding this correction factor,
with it in place the precision of identifying high weight items increased quite
significantly.

The correction factor is given by:

S(XY )n = S(XY )n−1 + S(XY )n−1 ∗ (S(X)n − Ŝ(X)n) ∗ C(X, Y )n−1

2

The correction factor basically adds or subtracts, as the case may be, a factor to
the joint support that is equal to the product of the connectivity with the median
value of the deviation between S(X)n and Ŝ(X)n. We carry out a complete
update of the joint support of every pair of items after p number of blocks.
This is to ensure that the estimation remains within a reasonable range. The
parameter p has to be set at a reasonable value to achieve a good balance between
precision and efficiency. In all our experimentation we set p to 10.

5 Evaluation

We report on a comparative analysis of our incremental approach, referred to
as WeightIncrementer, with the simple approach of updating all item weights
periodically at each block of data, referred to as Recompute. Our experimentation
used both synthetic and real world datasets. We compared both approaches
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on execution time. In addition, we tracked the precision of WeightIncrementer
relative to Recompute. Using Recompute we tracked the identity of items having
weights in the top k% and used the identity of these items to establish the
precision of WeightIncrementer. The precision is given by: |WI

⋂
R|

|R| where WI is
the set of items returned by WeightIncrementer as its top k% of items; R is the
set of items returned by Recompute as its top k% of items.

Our experimentation on the synthetic data was conducted with the IBM
dataset generator proposed by Agrawal and Srikant [8]. To create a dataset D,
our synthetic data generation program takes the following parameters: number
of transactions |D|, average size of transactions |T |, average size of large itemsets
|I|, and number of large itemsets |L|. We chose not to compare our methods with
other existing item weight schemes for data streams, as they require explicit user
defined weights, thus making any comparison inappropriate.

5.1 Precision

In this set of experiments, we used the following parameters |T |20|I|4|D|500K
and the number of unique item as 1000. Figure 2 shows the variation of Pre-
cision with the number of large |L| items which were varied in the range from
5 to 25, in increments of 5. The top k% parameter was varied from 10% to
60%. The overall precision of WeightIncrementer vis-a-vis Recompute across all
such experiments (i.e. over all possible combinations of L and k parameters)
was 0.9. To measure the effect of the ε parameter in the Hoeffding bound we
varied the reliability parameter δ. We used values of 0.00001, 0.001, 0.01, 0.1,
and 0.2 for δ and tracked the precision for the top 20% of the items using a
block size of 50K. Table 3 displays the results of precision based on the varying
values. Overall there is a general trend where Precision increases with δ (i.e.
decreasing ε).

Table 3. Variation of Precision with δ

Large Itemset δ value
0.2 0.1 0.01 0.001 0.00001

5 0.95 0.95 0.95 0.95 0.90
10 0.81 0.81 0.80 0.80 0.78
15 0.91 0.91 0.80 0.80 0.80
20 0.94 0.94 0.94 0.94 0.89
25 0.97 0.89 0.88 0.88 0.88

5.2 Execution Time

We next compared the two methods on execution time. Both algorithms used
the same data structure as described in the previous section. In this set of ex-
periments, we used the following parameters |T |20|I|4|L|20 and the number of
unique items as 1000. We varied the number of transactions (|D|) from 500K to
5M, with a block size of 100K. Figure 3 shows the execution time for the two
methods for varying values of δ.
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Fig. 2. Precision based on datasets L5 to
L25 Fig. 3. Execution Time

In the experiments above, with a δ value of 0.00001 the percentage of updates
to joint support (considering all possible pairs of items that interact with each
other in a given block) was 27% whereas when the δ value was increased to 0.2 the
percentage of updates increased to 37%. We also tracked the speedup achieved
by WeightIncrementer with respect to Recompute. The speedup, defined as the
ratio of the speed of WeightIncrementer to the speed of Recompute, ranged from
a minimum of 1.4 to a maximum of 8.3.

5.3 Evaluating Drift

To evaluate the performance of WeightIncrementer in capturing drift we modified
the IBM data generator to inject known drift patterns to track the sensitivity of
WeightIncrementer to drift detection. We select x random points in time which:

– Introduce large itemsets: The main motivation is to simulate emerging pat-
terns. Given the original set of large itemsets introduced, we hold off in-
troducing a particular large itemset until we reach a predetermined point.
Once we reach that point we introduce a large itemset into the stream with
a probability of occurrence that increases incrementally over time.

– Remove large itemsets: The main motivation is to simulate disappearing
patterns. When we reach a predetermined point, we remove a large itemset
from the stream by incrementally decreasing its probability of occurrence
over a period of time.

To evaluate whether our approach captures drift, we compare the results of the
two methods, WeightIncrementer, with Recompute. We track the success rate
of Recompute in detecting the large itemsets in the top 50% that were deliber-
ately injected/removed and use this as a baseline to measure the performance of
WeightIncrementer. We denote the ratio of the success rate of WeightIncrementer
to Recompute as the Hit Ratio. If WeightIncrementer is able to capture all the
items that were deliberately injected/removed relative to Recompute, then the
hit ratio would be 1. In this experiment we modified the |T |20|I|4|L|40|D|500K
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dataset; we use a block size of 50K and a δ value of 0.1. We injected various drift
points into the dataset. Table 4 displays the results for the various drift points.

Table 4 shows that WeightIncrementer was able to detect both emerging as
well as disappearing patterns with a minimum hit ratio of 74%, demonstrating
that it can effectively adapt item weights and re-rank items with a high degree
of precision in the presence of concept drift.

Table 4. Drift Analysis based on Hit Ratio

Drift Points Large Items Injected Large Items Removed Hit Ratio
10 5 5 0.88
10 10 0 0.74
10 0 10 1.00
20 10 10 0.95
20 20 0 0.80
20 0 20 0.95

5.4 Real World Dataset: Accident

To evaluate our algorithm on a real dataset, we choose to evalute our algorithm
on the accident dataset [9,10]. The accident dataset was provided by Karolien
Geurts and contains (anonymized) traffic accident data. In total, 340,184 traffic
accident records are included in the data set. In total, 572 different attribute
values are represented in the dataset. On average, 45 attributes are filled out for
each accident in the data set.

We ran experiments using multiple block size at 25K, 40K, and 60K. We then
looked at the precision of the items based on the top 50%. We also compared
the speedup of WeightIncrementer against Recompute. As Table 5 shows, the
speedup ranged from 1.5 to 1.7. From Table 5 we note that the precision based
on the top 50% of items was around the 87% mark. We also observed that the
precision was not sensitive to changes in the δ value, remaining fairly constant
across the δ range.

Table 5. Results based on the Accident
Dataset

Block
Size

WeightIncrementer
Recom-
pute

Precision
(Top 50%)

Percentage
of Updates

Time
(s)

Time
(s)

25K 0.86 0.39 776 1187
40K 0.87 0.36 736 1377
60K 0.90 0.38 575 955

Table 6. Hit Ratio vs δ (Block
60K)

Delta 0.2 0.1 0.01 0.00001

Precision 0.90 0.90 0.89 0.88

Overall we notice that the results from the accident dataset is consistent
with that of synthetic data. The distance function works well to detect drift and
estimate joint support. However we do acknowledge that under certain situations
the run time performance of WeightIncrementer approaches that of Recompute;
this happens when there are rapid changes, or fluctuations in the data stream.
This will cause a substantial drift amongst all items in the dataset. When this
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occurs, most of the joint support values need to be updated. However this only
occurs in unusual circumstances with certain types of datasets, and we would
not normally expect to see this kind of trend in a typical retail dataset displaying
seasonal variations.

6 Conclusion

In this paper we proposed an algorithm to adaptively vary the weights of items
in the presence of drift in a data stream. Item weights are assigned to items
on the basis of the Valency model, and we formulated a novel scheme for de-
tecting and adapting the weights to drift. Our approach reduces the number
of updates required substantially and increases efficiency without compromis-
ing on the quality of the weights. We tested our drift detection mechanism on
both synthetic and real datasets. Our evaluation criteria focussed on precision
and efficiency in runtime. We were able to achieve Precision rates ranging from
86% to the 95% mark whilst achieving substantial speedup in runtime for both
synthetic and real-world data.
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Abstract. Private companies backed by venture capitalists or private
equity funds receive their funding in a series of rounds. Information
about when each round occurred and which investors participated in each
round has been compiled into different databases. Here we mine one such
database to model how the private company will exit the VC/PE space.
More specifically, we apply a random forest algorithm to each of nine
sectors of private companies. Resampling is used to correct imbalanced
class distributions. Our results show that a late-stage investor may be
able to leverage purely qualitative knowledge of a company’s first three
rounds of funding to assess the probability that (1) the company will not
go bankrupt and (2) the company will eventually make an exit of some
kind (and no longer remain private). For both of these two-class classifi-
cation problems, our models’ out-of-sample success rate is 75% and the
area under the ROC curve is 0.83, averaged across all sectors. Finally,
we use the random forest classifier to rank the covariates based on how
predictive they are. The results indicate that the models could provide
both predictive and explanatory power for business decisions.

1 Introduction

Venture capitalists (VC’s) face the challenge of choosing a few outstanding in-
vestments from a sea of thousands of potential opportunities. A VC funds a
startup company with cash in exchange for an equity stake. From this point of
view, it may appear that the dynamics of the transaction are similar to that of
an investor buying shares of a publicly traded company. Such appearances are
false. When a VC funds a startup, the VC often takes an active role in managing
the startup, providing expertise and advice in both managerial and technical ar-
eas. In this way, the experience and wisdom of the VC’s who invest in a startup
directly influence the startup’s trajectory.

When confronted with a company they have not seen before, one question
that potential investors would like to be able to answer is: how will this company
eventually exit the private equity space? In this study, we assume that the final
outcome of a private company will be one of five outcomes. The private company
can (1) go bankrupt, (2) proceed via an initial public offering (IPO) to become a
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publicly traded company, (3) be subject to a leveraged buyout (LBO), (4) merge
with or be acquired by another company, or (5) stay private.

Our goal in this paper is to use information about who invests in a pri-
vate company and when these investments are made to predict how the com-
pany will exit. Our prediction is generated by a statistical model inferred from
data available through the Private Equity module of ThomsonONE, a data set
formerly known as VentureXpert. Numerous academic libraries have access to
this database, and it is often used as a source of data for research papers in
the VC/PE space—see [2, 6, 5, 12, 13]. Here we develop a method for convert-
ing each VC- or PE-backed company in the database into a list of numeri-
cal and nominal attributes with a class label corresponding to one of the five
possible states; we then use this list of labeled instances to train and test a
classifier.

The random forest algorithm [3], [10, Chap. 15] and other machine learning
algorithms such as support vector machines and boosting are available as free
codes, implemented in a variety of languages and environments. Such algorithms
have proven useful in a wide variety of applications. Though it seems very natural
to leverage machine learning algorithms and large databases to model the exits
of VC-/PE-backed companies, to the best of our knowledge, this is the first
study to do so. As such, this paper represents a first attempt at solving the
problem.

Our analysis shows that a late-stage investor may be able to use knowledge
of a company’s first three rounds of funding together with a random forest clas-
sifier to assess the probability that the company will not go bankrupt, and also
to assess the probability that the company will eventually make an exit of some
kind (and no longer remain private). For both of these two-class classification
problems, our models’ average success rate across all sectors is 75% and the
average area under the ROC curve is 0.83.

In what follows, we discuss the details of our procedure, starting from the data,
proceeding to issues of representation, investor ranking and instance resampling,
and then on to specific working models and their associated results.

2 Data Extraction and Representation

For this study, we focused on the following attributes:

– The year in which the company was founded. See the right panel of Figure 1
for a histogram of the inception years for all companies in Sector 6 (energy)
used in this study—the most populated decade is the decade from 2000 to
the present. Other sectors’ distributions are similar.

– The company’s sector, encoded as a four-digit number.
– The rounds, i.e., dates on which the company received funding.
– A list of historical investors in the company. This list includes each investor’s

name, type, and a list of the rounds in which that investor participated.
– The company’s exit status.
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Table 1. Summary of exit types by broad sector category for 77,160 private companies.
All companies are either formerly or currently VC- or PE-backed.

Exit

Sector Bankrupt IPO LBO M&A Private Totals

1xxx: Communications 1540 826 295 2073 3289 8023

2xxx: Computer 3197 1541 653 4872 9941 20204

3xxx: Electronics 511 604 215 853 1852 4035

4xxx: Biotech/Pharma 283 458 67 509 1652 2969

5xxx: Medical/Health 704 740 412 1228 2787 5871

6xxx: Energy 204 287 150 238 850 1729

7xxx: Consumer 1317 865 1715 1395 4997 10289

8xxx: Industrial 614 473 1009 974 2763 5833

9xxx: Other 2374 1675 2636 2307 9215 18207

Totals 10744 7469 7152 14449 37346 77160

All of these attributes have to do with who invested in the private company
and when the investment was made. Notably, the amount of money invested by
the investor in each round of funding, as well as the pre- and/or post-money val-
uations of the companies are absent. In short, our study makes use of qualitative
rather than quantitative features of a private company’s investment history.

Let us elaborate on a few of the attributes mentioned above. The company’s
exit status is, in the original data set, a nominal attribute with 12 possible values.
Since exit status is the class variable, we group a few of these categories together
to reduce the number of classes from 12 to five. We list here the five class labels
in italics together with the original exit types contained in each class:

1. Bankrupt: Defunct, Bankruptcy - Chap. 7, Bankruptcy - Chap. 11
2. IPO: Went Public
3. LBO: LBO
4. M&A: Acquisition, Merger, Pending Acquisition
5. Private: Active, Other, In Registration, and Private Company (Non-PE)

The company’s market sector is encoded as a four-digit number. The first digit
of this four-digit number gives us a broad sector categorization, as seen in the
left-most column of Table 1, which also shows the breakdown of exits by sector.
One can readily see two trends. First, the classes are imbalanced, necessitating
the use of a resampling procedure described in Section 3.1.

Second, different sectors behave differently:

– For sector 2xxx, only 3.23% of companies had an LBO exit, while for sector
8xxx, 17.30% of companies exited via LBO.

– For sector 6xxx, 16.60% of exits are IPO and 13.77% of exits are M&A. For
sector 1xxx, 10.30% of exits are IPO and 25.84% of exits are M&A.
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Fig. 1. In the left panel, we plot log10 of the number of companies in the database with
x rounds of funding, as x goes from 1 to 27. Linear decay in this plot shows that the
same plot with a non-logarithmic y-axis would feature exponential decay. In the right
panel, we plot the distribution of inception years for Sector 6 (energy) companies.

It is plausible that the reason the percentages differ so much from one sector
to the next is that the factors influencing success/failure differ greatly from one
sector to another. For these reasons, in the present study, we shall segregate the
data by the broad sectors indicated in Table 1.

2.1 Social Network Ranking

Here we explain how we turn the investor name into an attribute. The social
network of coinvestment plays a key role. There are 9545 unique investors in our
data set, so we seek a mapping from the set of all investor names to the set of
integers P = {1, 2, 3, . . . , 9545}.

Let each investor be a node, and join two nodes by an edge if the two investors
both invested in the same company at some point of time. To repeat, the coin-
vestment need not occur at the same time. Once we form the adjacency matrix
for this social network, we sort investors by degree. Ties are broken simply by
using the order in which we encounter the investor as we parse the data. Once
the investors are sorted by degree, we have our mapping: the investor is mapped
to its position p ∈ P in the sorted list.

In the sorted list, the top two investors, Undisclosed Firm and Individuals, are
placeholders that do not correspond to any one firm. The next 10 investors are: J.
P. Morgan Partners (FKA: Chase Capital Partners), New Enterprise Associates,
Inc., Intel Capital, Kleiner Perkins Caufield & Byers, Oak Investment Partners,
Sequoia Capital, Goldman, Sachs & Co., Mayfield Fund, HarbourVest Partners
LLC, and Bessemer Venture Partners. These names should be familiar to those
who follow the VC/PE space, indicating that even a rough social network ranking
does correspond to intuitive/anecdotal rankings of VC’s and PE funds.
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Next we turn to the investor type. This is a nominal attribute with 18 pos-
sible values: Development, Buyouts, Seed Stage, Balanced Stage, Recap, Un-
known, Energy, Early Stage, Expansion, Fund of Funds, Mezzanine Stage, Later
Stage, Turnaround, Distressed Debt, Real Estate, Other Private Equity, Sec-
ondary Funds, and Generalist. There is effectively a 19th possible value when
the type of the investor is not listed, i.e., the datum is missing. We let Q be the
set of 19 possible investor types.

2.2 Mapping Companies to N-tuples

In what follows, we use the term vector to mean an N -tuple x = (x1, x2, . . . , xn);
one N -tuple represents one company. All the ingredients are in place to define a
function that maps companies to vectors. One issue is that the number of rounds
of funding enjoyed by a private company varies from one company to the next.
Let n(x) be the number of companies that have received precisely x rounds of
funding; Figure 1 shows log10 n(x) versus x. The graph is approximately linear,
indicating an exponential decay of n(x). There are two considerations to make:

– The maximum number of rounds for any company is 27, yet 92.5% of
companies have at most 5 rounds of funding.

– From the point of view of applicability, a model that predicts exit type
accurately using fewer rounds worth of investor information is preferable.

Based on both considerations, we develop a round-by-round representation of
the data. We find that there are a maximum of 31 investors in any round of
funding. One round of funding then corresponds to a vector (p,q) ∈ P 31 ×Q31,
where P and Q were both defined in Section 2.1. We have p = (p1, p2, . . . , p31),
and each pj is the result of mapping the j-th investor name to P using social
network ranking. We also have q = (q1, q2, . . . , q31), and each qj ∈ Q is the
investor type for investor j.

We see, then, that the representation of a company consists of a number of
distinct rounds. We use superscripts to denote the round number. Then, in a
model where we retain only the first five rounds of funding, a company C is
represented by a vector C = (h,p1,q1,p2,q2,p3,q3,p4,q4,p5,q5).

Besides the information contained in the investor lists, we have a relatively
small amount of information that we represent by a vector h. For the model with
k rounds of funding, we have h ∈ Z3+k, with h1 equal to the precise four-digit
sector code, h2 equal to the year in which the company was founded, h3 = k,
and h4 through h3+k equal to integer representations of the dates on which the
k rounds of funding occurred.

Note that entry-wise addition of two N -tuples generally results in an N -
tuple that is not a meaningful representation of any possible company. This
lack of linearity excludes a host of statistical methods. This is in contrast to
a “bag of words” representation of our data, where we would represent the
investor list for one company by a vector v ∈ R9545, where vk represents the
number of times that investor k participated in a round of funding for that
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company. This representation of the data does have a linear structure and lends
itself to models based on matrix factorizations such as the SVD, yielding latent
semantic analysis-type models [7]. Though linear models based on the SVD have
performed very well on other problems, we found through detailed testing that
for our problem, such models suffered from poor predictive power and extremely
long computation times. The latter was due to the higher-dimensional spaces
incurred by the bag of words representation. For this reason, we moved away
from a linear representation of the data to the (p,q) structure described above.

2.3 Missing Entries

The most striking thing about our representation of the data set is the relatively
large number of missing entries incurred. To see how this arises, consider that
one company’s first round may involve three investors while another company’s
first round may involve 30. In the first instance, only the first three components
of p1 and q1 would be populated with meaningful information—the remaining
28 components are missing. In the second instance, there would be only one
missing component in each of p1 and q1. As long as we wish to retain as much
information per round as we have on hand, our representation of the data will
lead to missing entries.

Both the missing entries and the lack of vector space structure point to random
forests as an appropriate class of models for this problem. Classification/decision
tree algorithms upon which random forests are based contain natural methods
for estimating missing data. Breiman’s tests [3] indicate that random forests can
yield accurate models even with 80% missing data.

3 Model Development and Results

In this work, we focus on two two-class problems: distinguishing companies
labeled as “bankrupt” from those that are not, and distinguishing companies
labeled as “private” from those that are not.

We develop models that make predictions using only the first three funding
rounds. We discard all rounds later than round three, and we cap the “number
of rounds” entry h3 of h so that it is at most equal to three.

3.1 Resampling and Cross-Validation

As can be seen from Table 1, the bankrupt vs. non-bankrupt problem will be
highly imbalanced regardless of sector. The imbalance causes problems for all
classifiers that we have tried. The problem manifests in a classifier that always
predicts “non-bankrupt”, yielding an area under the ROC curve close to 0.5, i.e.,
a perfectly useless model, even if its overall accuracy is anywhere from 70−90%.
To avoid this issue, for any training set that we feed to the random forest, we
sample with replacement from the training set to form a new training set with
uniform class distribution. We do not touch the test set. To summarize:
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1. Let X = collection of all labeled vectors for one of the two-class problems
for one of the sectors.

2. Randomly partition X into K disjoint subsets {Si}K
i=1.

3. For i = 1 : K,
(a) Let S =

⋃
j �=i Sj . Sample with replacement from S to form a new training

set S̃ with uniform class distribution.
(b) Train a random forest with training set S̃.
(c) Test the random forest on Si.

4. Aggregate the test results from all K folds of cross-validation.

Similar approaches have been discussed by Breiman et al [4]. The imbalance is
not as acute but still exists for the private vs. non-private problem, so we employ
the resampling procedure for that problem as well.

3.2 Results

All results will be for random forests with 80 trees per forest and 25 randomly
chosen attributes per tree. The results are computed using Weka RandomForest
[9]. We have found that the test results—both overall correctness and area under
the ROC curve—are relatively insensitive to the parameters chosen. For example,
varying the number of trees from 35 to 160 in steps of 10 yields ROC areas and
overall correctness within 5% of the results quoted below.

In Weka, we have built models using a number of different classifiers appro-
priate for the attributes and instances in our data set. Even with the resampling
procedure described above, the following methods yielded models with poorer
predictive power than random forests: logistic regression, support vector ma-
chines (with standard kernels), and neural networks. Meta-classifiers such as
boosting and bagging performed well and deserve investigation in future work.

Bankrupt vs. Non-Bankrupt Problem. Across all sectors, we find our model
performs best for companies in the energy sector (sector 6). The classifier’s over-
all accuracy is 83.4%. The confusion matrix in this case is as follows:

predicted bankrupt predicted non-bankrupt
truly bankrupt 167 37
truly non-bankrupt 250 1275

Here the positive class is “bankrupt” and the negative class is “non-bankrupt.”
Let T/F denote true/false and P/N denote positive/negative. Then we define

Positive Precision =
TP

TP + FP
, Positive Recall =

TP

TP + FN
(1)

Negative Precision =
TN

TN + FN
, Negative Recall=

TN

TN + FP
(2)
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We compute these metrics to assist with decision-making. Each quantity is an
estimate of a conditional probability:

Pos Precision = P (truly + | predict +) Pos Recall = P (predict + | truly +)
Neg Precision = P (truly - | predict -) Neg Recall = P (predict - | truly -)

What we notice for Sector 6 is high negative precision, i.e., when the model says
that a company is not going to be bankrupt, there is a 97.2% chance it will
not go bankrupt. However, when the model says that a company is going to go
bankrupt, there is only a 40% chance that it will truly go bankrupt. There are
two reasons why this happens:

First, the original data set is rich with examples of non-bankrupt companies,
and poor with examples of bankrupt companies. This is purely a function of
how the data was gathered—companies that have gone bankrupt already have
no incentive to give their historical details to ThomsonONE, and because infor-
mation on private companies need not be reported publicly, ThomsonONE has
no way of finding out about all past bankrupt companies.

Second, given that positive and negative recall are above 0.8, it may well be
the case that if our trained models were merely tested on data sets with a much
larger number of bankrupt companies, the performance would be much improved.
Right now our algorithm predicts bankrupt in over 80% of the cases where the
company truly is bankrupt (positive recall = 0.819), but unfortunately, our data
set is only 11% bankrupt.

Added together, the two reasons just presented indicate that if the model were
trained on a data set that included a more rich set of bankrupt companies, the
positive precision would increase.

In addition to the above metrics, there is the ROC curve, formed by accounting
for not only the classifier’s prediction but also the value of its margin function for
each instance—for more details about the construction of ROC curves, see [8].
The curve indicates that a practical decision-making system can be designed
based on the margin. When the margin is high, i.e., when we are at the part of
the ROC curve near (0, 0), the classifier is consistently correct, giving the curve
a large positive slope. This implies that when the margin is high, the classifier
gives a useful and trustworthy prediction.

Similar results can be noted across all sectors, as shown in Table 2. ROC
curves for all 9 sectors are plotted in the left and right panels of Figure 2. We
have separated the ROC curves into two panels merely to enable the reader to
distinguish them.

Private vs. Non-Private Problem. Here the model performs much more
uniformly across all sectors. This time, let us examine the performance for the
largest sector, Sector 2, comprising companies in the general area of computers.
The confusion matrix is:

predicted private predicted non-private
truly private 2312 767
truly non-private 765 2217
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Fig. 2. ROC curves for the Bankrupt vs. Non-Bankrupt classification problem. Each
curve corresponds to test set results for a sector-specific random forest model.
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Fig. 3. ROC curves for the Private vs. Non-Private classification problem. Each curve
corresponds to test set results for a sector-specific random forest model.

We use the same definitions as given above in (1-2), but now the positive
class is “private” and the negative class is “non-private.” All four metrics are
very close to each other: positive precision = 0.751, positive recall = 0.751,
negative precision = 0.743 and negative recall = 0.743. The classifier correctly
classifies 74.7% of all instances, and the area under the ROC curve is 0.828.

Very similar results can be noted across all sectors, as shown in Table 3. ROC
curves for all 9 sectors are plotted in the left and right panels of Figure 3. Again,
we have separated the ROC curves into two panels merely to enable the reader
to distinguish them.
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Table 2. Sector-by-sector results for the binary classification problem with “Bankrupt”
as the positive (+) class and “Non-Bankrupt” as the negative (-) class. “AUC” stands
for area under the ROC curve. Results show metric-wise consistency and sector-wise
variation. Averaged across all sectors, the AUC is 0.83 and the accuracy is 0.75.

Random Forest Results

Sector +Precision +Recall -Precision -Recall AUC Accuracy

1: Communications 0.331 0.742 0.913 0.644 0.765 0.663

2: Computer 0.306 0.816 0.950 0.651 0.801 0.677

3: Electronics 0.264 0.634 0.933 0.743 0.770 0.729

4: Biotech/Pharma 0.241 0.614 0.952 0.797 0.803 0.780

5: Medical/Health 0.277 0.756 0.956 0.731 0.824 0.734

6: Energy 0.400 0.819 0.972 0.836 0.880 0.834

7: Consumer 0.352 0.838 0.970 0.774 0.876 0.782

8: Industrial 0.297 0.726 0.961 0.798 0.850 0.790

9: Other 0.348 0.835 0.969 0.765 0.881 0.774

Table 3. Sector-by-sector results for the binary classification problem with “Private”
as the positive (+) class and “Non-Private” as the negative (-) class. AUC stands for
area under the ROC curve. Results are consistent across both metrics and sectors.
Averaged across all sectors, the AUC is 0.83 and the accuracy is 0.75.

Random Forest Results

Sector +Precision +Recall -Precision -Recall AUC Accuracy

1: Communications 0.812 0.726 0.657 0.758 0.809 0.739

2: Computer 0.751 0.751 0.743 0.743 0.828 0.747

3: Electronics 0.793 0.719 0.702 0.779 0.838 0.746

4: Biotech/Pharma 0.774 0.721 0.789 0.832 0.860 0.783

5: Medical/Health 0.795 0.771 0.755 0.780 0.847 0.776

6: Energy 0.760 0.696 0.711 0.773 0.825 0.734

7: Consumer 0.755 0.804 0.777 0.723 0.840 0.765

8: Industrial 0.758 0.764 0.735 0.729 0.821 0.747

9: Other 0.747 0.743 0.750 0.754 0.828 0.748

Ranking the Covariates. As detailed by Breiman [3], random forests provide
estimates of variable importance. In Weka, the built-in RandomForest module
does not include this feature; we have utilized an extension of the module devel-
oped by Livingston [11]. In the table below, we rank our attributes (or covariates)
by their importance in the random forest. The importance is given as a RawScore
averaged across 10 rounds of cross-validation. For reasons of space, we include
in Table 4 only the top 10 attributes for Sector 6: results for other sectors show
the same general grouping of attributes.
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Table 4. Ranking of attributes for sector 6 random forest models, with bankrupt vs.
non-bankrupt results on the left and private vs. non-private results on the right.

RawScore Attribute RawScore Attribute

99.9 Date of rnd 1 89.1 Date of rnd 1
58.1 Type of inv 1 in rnd 1 52.5 Type of inv 1 in rnd 1
32.0 Identity of inv 1 in rnd 1 34.4 Four-digit sector code
27.5 Four-digit sector code 29.2 Identity of inv 1 in rnd 1
17.4 Total # of rnds 22.4 Inception year
17.2 Inception year 15.0 Type of inv 2 in rnd 1
13.1 Type of inv 2 in rnd 1 13.3 Total # of rnds
12.4 Type of inv 1 in rnd 2 12.1 Type of inv 1 in rnd 2
10.2 Date of rnd 2 10.3 Date of rnd 2
6.76 Type of inv 1 in rnd 3 6.79 Type of inv 3 in rnd 1

There are several clear trends to discern from the ranking. Early rounds of
funding matter more than later rounds of funding. The type of an investor mat-
ters just as much if not more than its identity. Finally, the rankings for both
two-class problems show remarkable similarity, both in terms of the order of the
ranking and the clustering of the RawScore values in certain intervals. The top
four most important attributes are the same for both two-class problems.

4 Discussion and Conclusion

Having performed this study, we see three main ideas for improving the model
using currently available data.

First, from Table 4, we see that the identity of the first investor in round one
is one of the most important attributes for the random forest models built in
this paper. Since this identity consists of the investor’s social network ranking,
we are left to believe that a more informative social network may lead to better
predictions of company exits. The network used in this study ignores temporal
details such as the fact that investor A may be completely divested from a startup
company by the time that investor B decides to invest. In this case, our network
prescribes a connection between the two investors that is not present in reality.
Another point is that we have formed one network for all investors/companies;
forming different networks for each sector may yield better models.

Second, based on our knowledge of the data set, when we view the rankings
in Table 4, we infer that attributes that have very low percentages of missing
entries (such as the dates of the rounds of funding, which are never missing) are
much more important for the model’s predictive power. We therefore believe that
a better understanding of missing entries may yield a more predictive model.
Indeed, there may be something significant to learn from (a) the number of
investors in each round and (b) which investors do and do not participate in a
given round of funding. This is analogous to wisdom from the winners of the
Netflix prize, who found that modeling which movies were and were not rated
by a user improved their predictions [1].
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Finally, as hinted above, we have only begun to explore other ensemble clas-
sifiers such as boosting and bagging. It is likely that combining random forests
with other models will yield a model that beats our current results—the only
question is how to search for this combination in a principled fashion.

We form two main conclusions: (1) applying resampling and random forests
to qualitative data in the VC/PE-space does indeed yield models with useful
predictive and explanatory power; and (2) a late-stage investor who has purely
qualitative knowledge of a company’s first three rounds of funding can use this
information to improve his/her understanding of that company’s future trajec-
tory. Overall, the results indicate that data mining can be used to provide both
predictive and explanatory power for VC decisions.
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Abstract. Rule-based classification methods, which provide the inter-
pretation of a classification, are very useful in churn prediction. However,
most of the rule-based methods are not able to provide the prediction
probability which is helpful for evaluating customers. This paper pro-
poses a rule induction based classification algorithm, called CRL. CRL
applies several heuristic methods to learn a set of rules, and then uses
them to predict the customer potential behaviours. The experiments were
carried out to evaluate the proposed method, based on 4 datasets of Uni-
versity of California, Irvine(UCI) and one dataset of telecoms. The exper-
imental results show that CRL can achieve high classification accuracy
and outperforms the existing rule-based methods in churn prediction.

Keywords: Churn Prediction, Rule-based Classification, Hill-climbing
Search, High Order Rules.

1 Introduction

Service companies in telecommunications suffer from a loss of valuable customers
to competitors; this is known as customer churn. In the last few years, there
have been many changes in the telecommunications industry, such as, new ser-
vices, technologies and the liberalizations of the market increasing competition.
Recently, data mining techniques have been emerged to tackle the challenging
problem of customer churn in telecommunication service fields [1,2,3,4]. As one
of the important measures to retain customers, churn prediction has been a
concern in telecommunication industry and research.

As one of the important phases in churn prediction process, classification
can directly affect the prediction results. Many modelling techniques have been
successfully used for the classification, including Decision Tree (DT), Logistic
Regression (LR), Artificial Neural Networks (ANN), Naive Bayes (NB) and Sup-
port Vector Machine (SVM). However, they still have some limitations. Most of
the modelling techniques provide either prediction probability or classification
rules. For example, NB, LR [5,6,7], ANN [8,9] and SVM [10,11] can only provide
the probability of classification, whereas they do not produce decision rules. DT
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[12,13,14] can produce rules, however, the probability of classification cannot be
obtained from DT model[15].

A number of Genetic Algorithm (GA) based classification models also have
been reported in[16,17,18]. These models can be efficient. However, they have
high computational complexity. Recently, DMEL (Data Mining by Evolutionary
Learning) [15], a GA based prediction approach was proposed. This technique
not only provides classification rules, but also gives the probability of classifica-
tion. It was shown that DMEL is a very promising modelling technique, however,
its computational complexity is too high.

This paper proposes a new rule-based classification method named CRL
(Classification by Rule Learning). CRL can not only classify samples by a set of
generated rules, but also it is able to produce the prediction probability. More-
over the processing time of this method is reasonable. CRL consists of two main
procedures: Firstly, generating rules by applying the heuristic of hill-climbing
and pruning unimportant and redundant rules. Secondly, predicting one of the
categories to which a test case belongs according to the rules. In the experiments,
Lift Curve and AUC, were applied to demonstrate the performance of algorithm.

The rest of this paper is organized as follows: Section 2 introduces the re-
lated work. Section 3 describes the details of the proposed algorithm.
Section 4 provides the experimental results and discussion. The conclusion and
future work are given in Section 5.

2 Related Work

Rule-based classification is a well known domain. One of the main characteristics
of rule induction is that they are more transparent and understandable than
some other training models. A significant amount of research effort has been
put into this domain. In a rule-induction process, usually two strategies are
applied: general-to-specific (top-down) and specific-to-general (bottom-up). Due
to that the strategy of general-to-specific is more widely applied in rule learning,
this section will introduce several approaches by using it, besides examples of
rule induction by applying the strategy of specific-to-general can be found in
[19,20,21].

Among all the different methods for constructing the rules, decision tree based
algorithms are the most popular [12,13,14]. C4.5 has proved to be one of the
most well known among all tree-based classifiers. A tree is constructed using
the method of divide-and-conquer. C4.5 starts to search an attribute with the
highest information gain, and then the data is partitioned into classes according
to this attribute. Each sub-tree represents a class, and will be recursively further
partitioned using the same policy until some stopping criteria are satisfied, such
as the leaf node has been reached etc. The rules can be obtained by traversing
each branch of the tree. The details of this algorithm can be found in [12].

CN2 [22] works in an iterative way, each iteration searches one rule that covers
(see section 3.1 for the definition) a large number of training cases by making
use of beam search method. Entropy and likelihood ratio are used to evaluate
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the quality and the significance of the rules. Rules are ranked in accordance with
the quality of rules. When classifying a test case, CN2 goes through each rule
until finding a rule that covers the case, then assigns the class label of that rule
to the case.

DMEL is a genetic classification technique. The DMEL classifier consists of
a set of labelled rules which were found by rule induction technique. DMEL
starts by generating first−order rules, then high−order rules can be constructed
iteratively by randomly combining lower order rules. Given a sample without
labels, the DMEL classifier applies the rules to model the sample and makes the
classification decisions. DMEL has been shown to be an efficient classifier. The
details of this technique can be found in [15].

3 Algorithm of CRL

Although experimental results from [15] showed that DMEL is efficient at detect-
ing churners, there is still improvement that can be done for better classification
results. The objective in designing CRL is to improve the classification accu-
racy. CRL does so by considering several aspects: Firstly, CRL applies different
heuristic methods for constructing classification rules; Secondly, constraints were
introduced to avoid bad rules, by applying better strategies.

3.1 Basic Concepts

The Rules are of the following form: IF antecedent THEN consequence, where
antecedent describes a conjunction of a certain number of <attribute, interval>
pair, and consequence denotes the class label. Another basic concept of rule in-
duction is Cover, which expresses the case that a sample satisfies the antecedent
part of the rule. A rule Correctly Covers a sample when it correctly predicts
the covered sample. The task of rule induction is to build a model by generating
a set of rules, which either do or do not Cover cases.

general rule and specific rule are two important concepts. Usually, a rule
with a smaller number of <attribute, interval> pairs in the antecedent part is
more general than the one having more. The reverse case is more specific. most
general occurs when the number of antecedent is 1, while most specific means
the number of antecedent is the total number of attributes. Normally, the most
specific rules should not be considered since they are too specific and not able
to describe a relative big data space.

3.2 Rule Learning

CRL is a general-to-specific strategy based method, so it starts by generating
the most general rules, first-order rules, then iteratively constructing higher-
order rules based on the lower-order rules. Algorithm 1 illustrates the process of
learning rules. SETrules is the set of generated rules, k denotes the number of
orders, and threshold denotes the maximal number of orders.
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Algorithm 1. CRL Algorithm(training data)
1: SETrules ← φ;
2: k ← 1;
3: SETrules ← First−order−rules(training data);
4: while k <= threshold do
5: high−order ← Higher−order−rules(lower−order−rules);
6: SETrules ← SETrules

⋃
high−order;

7: k + +;
8: end while
9: return SETrules

First-order Rules. Algorithm 2 illustrates the process of generating the first-
order rules. In order to avoid information loss, all possible combinations of
<attribute, interval> pair were taken into account. In Algorithm 2,
num−attribute, num−interval and num−class respectively denotes the number
of attributes, the number of intervals of the current attribute and the number
of different categories. Initially, the set of first−order−rule is empty, ruleijk

expresses a rule having the form ”IFfi = Intervalj THEN Classk”, if Prun-
ing (ruleijk) returns false, then ruleijk can be accepted as a useful rule (Rule
pruning is described in section 3.3).

Algorithm 2. First−order−rules(training data)
1: First−order−rules ← φ;
2: for i = 1; i <= num−attribute; i + + do
3: for j = 1; j <= num−interval; j + + do
4: for k = 1; k <= num−class; k + + do
5: if Pruning(ruleijk) returns false then
6: First−order−rules ← First−order−rules

⋃
ruleijk;

7: end if
8: end for
9: end for

10: end for
11: return First−order−rules

High-order Rules. Higher-order rules are iteratively constructed based on the
previous set of lower-order rules. The second-order is grounded on the
first−order, the third−order is based on the second−order. Generally, (n −
1)−order rules are the base for the n−order rules. Algorithm 3 illustrates the pro-
cedure of constructing a set of high−order rules. Positive lower order rules, which
have the positive prediction, and negative lower order rules, which reversely have
the negative prediction, can be separately obtained from the lower−order−rules.
In algorithm 3, item is used to define a <attribute, interval> pair. positive−items
consist of all exclusive items extracted from all positive rules. We generate
negative-items in the same way. Each positive rule becomes more specific by
using the hill−climbing strategy to add one item into the antecedent part of
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the current rule. Algorithm 4 describes the heuristic of hill−climbing for con-
structing one high order rule. It will be discussed in detail. The rule pruning
is also an important step for generating high−order rules. In order to reduce
computation time, we get rid of rules having the same quality. Many methods
can be used to assess the quality of rules. They either focus on the coverage or
on the accuracy. However, a measure having the ability to make a good trade
off between coverage and accuracy is more suited for rule learning. Therefore,
Weighted Relative Accuracy(WRA) [23], which can be calculated by Eq. (1) is
applied.

WRA =
Num−(a)

Num−total
× (

Num−(a, c)
Num−(a)

− Num−(c)
Num−total

) (1)

where Num−(a) and Num−(c) represent the number of data cases that are cov-
ered by the antecedent and the consequence of a rule, respectively. Num−(a, c)
is the number of cases correctly covered by a rule, and Num−total denotes the
total number of cases in the training set. Line 9 expresses that only rules with
exclusive quality can be added.

Algorithm 3. Higher−order−rules(a set of lower−order−rules)
1: all−rules ← φ;
2: positive−items ← get all exclusive items from positive−lower−order−rules;
3: negative−items ← get all exclusive items from negative−lower−order−rules;
4: accuracy−list ← φ;
5: for i = 1; i <= num−positive−rules; i + + do
6: high−rule ← hill−climbing(positivei, positive−item);
7: if Pruning(high−rule) returns false then
8: WRAi ← calculate the Weighted−Relative−Accuracy for high−rule;
9: if WRAi is not in the list of accuracy−list then

10: all−rules ← all−rules
⋃

high−rule;
11: accuracy−list ← accuracy−list

⋃
WRAi;

12: end if
13: end if
14: end for
15: do the same work to generate negative−rules;
16: all−rules ← all−rules

⋃
negative−rules;

17: return all−rules;

Algorithm 4 illustrates the process of generating one high−order rule. Let
accuracy−list, which is a list consisting of different WRA values, be empty
in the beginning. Basically, one piece of high−order is based on one piece
of lower−order rule and a new item, which has been mentioned earlier. If
the new item does not occur in the antecedent of the lower−order rule, then
one−high−order can be built by combining one−lower−rule and the new item.
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Meanwhile, the WRA value of the newly built one−high−order is stored in
the accuracy−list. This algorithm returns one of the high−order rules with the
highest WAR value.

Algorithm 4. hill−climbing(one−lower−rule, all−low−items)
1: accuracy−list ← φ;
2: for i = 1; i <= num−low−items; i + + do
3: if one−lower−rule does not include itemi then
4: one−high−rule ← combination of one−lower−rule and itemi;
5: WRAi ← calculate Weighted−Relative−Accuracy for one−high−rule;
6: accuracy−list ← accuracy−list

⋃
WRAi;

7: end if
8: end for
9: BEST ← one of high order rules having the highest WRA;

10: return BEST

3.3 Pruning Rules

The number of generated rules can be huge, to make the classification effective,
we must prune bad rules with insignificant or noisy information. Several criteria
are used for pruning rules. Usually, χ2 statistic test is used to test if there exists
strong relative relationship between two attributes. In this paper, χ2, which can
be calculated by Eq. (2), is applied to decide whether a rule is significant which
means all the attributes occurring in antecedent part of the rule correlate to the
consequence.

χ2 =
(O − E)2

E
(2)

where O and E are the observed and expected frequency, which can be expressed
by Eq. (3):

O = Num−(a, c) E =
Num−(a) × Num−(c)

Num−total
(3)

In addition to χ2, Support and Confidence are another two essential factors
when deciding if a rule should be pruned or not. Support and Confidence can
be calculated by Eq. (4).

Support =
Num−(a, c)
Num−total

Confidence =
Num−(a, c)
Num−(a)

(4)

Algorithm 5 illustrates the pruning method. α is the critical value for χ2 signif-
icance test, and it is set to be 3.84 in this research. minS and minC are two
threshold values, which define the minimal value of support and confidence, re-
spectively. In this research, the minimum value of support and confidence were
set to be 0.01 and 0.5, respectively. A rule can be retained if it satisfies all the
threshold values.
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Algorithm 5. Pruning(rule)
1: F lag ← true;
2: if chi-square statistics > α AND Support−rule > minS AND Confidence−rule >

minC then
3: F lag ← false;
4: end if
5: return Flag;

3.4 Classification

This section discusses how to classify cases based on a number of classification
rules. Rules consist of two categories, churn and non−churn. Two prediction
models can be built based on all churn rules and all non−churn rules, re-
spectively. In order to estimate the importance of each rule, we rank rules in
each model based on a set of principles, which are also used in [24] and can be
described as follows:

1. If confidence−1 > confidence−2, then rule−1 has higher priority than
rule−2;

2. If confidence−1 = confidence−2 and support−1 > support−2, then rule−1
also has higher priority than rule−2;

3. If confidence−1 = confidence−2, support−1 = support−2 and rule−1 is
more general than rule−2, then rule−1 has higher priority than rule−2.

After ranking, each rule has a position in each prediction model, one is more
important than another rule if it has a better position than the other. We define
the significance of each rule as follows:

Significance−level =
Num−rules− position

Num−rules
(5)

where Num−rules is the number of rules, position denotes the rule index of the
ranked rule set.

Therefore, in a prediction model, the Significance−level of the most impor-
tant rule is 1, while that of the least important one is 1

Num−rules . To classify
a case, finding all covered rules from the churn model and non−churn model,
respectively, if the sum Significance−level of covered rules in churn model is
greater than that of non−churn, then assign churn to the case as the class label,
otherwise, non−churn will be assigned. Apart from the mentioned two cases, if
the current data case had the same sum Significance−level for churn model
and non−churn, the majority class label should be assigned.

In order to know which customers are more likely to churn, CRL scores each
customer according to the sum of its Significance−level. If one is predicted to
churn, then this customer is scored the sum of Significance−level of the churn
model. Otherwise, the sum of Significance−level in non−churn model will be
used to score that individual. Customers are sorted separately according to the
prediction, cases predicted to churn are sorted in descending order, while cases
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predicted to stay (non−churn) are sorted in ascending order. For both of the
sorted lists, customers close to the top are more likely to become churners.

4 Experiments and Discussion

Experiments were conducted based on four UCI repository datasets [25] and
a telecommunication dataset (six different class distributions) of the Ireland
Telecoms[26]. The datasets are described in Table 1. Each of these datasets was
equally divided into one training dataset and one testing dataset, they have the
same distribution.

Table 1. Dataset descriptions

Dataset Names # Instances # attributes Class Distribution

German Credit Data(UCI) 1000 20 30% : 70%

Heart Disease(UCI) 270 13 44.44% : 55.56%

Pima Indians Diabetes(UCI) 768 8 34.89% : 65.11%

Japan Credit Screening(UCI) 569 14 44.5% : 55.5%

Telecommunication 1 2181 121 1% : 99%

Telecommunication 2 2203 121 2% : 98%

Telecommunication 3 2249 121 4% : 96%

Telecommunication 4 2297 121 6% : 94%

Telecommunication 5 2300 121 8% : 92%

Telecommunication 6 2300 121 10% : 90%

4.1 Evaluation

In order to evaluate the classification performance, Lift Curve measure [27] is
used. The Lift Curve measure is calculated by scoring each data case, sorting
cases according to their scores, calculating two parameters that indicate the
percentage of samples and the percentage of True Positive, respectively. The
two parameters can be calculated by Eq. (6):

X =
Num−Samples

Num−Total
Y =

Num−True−Positive

Num−Total−Positive
(6)

where Num−Samples, Num−Total, represent the number of sample data,
the total number of testing cases, respectively. Let Num−True−Positive and
Num−Total−Positive be the number of samples that have been identified as
positive, and the total number of positive cases in the whole testing dataset,
respectively.

Occasionally, it is difficult to use lift curve to evaluate the detected percentages
from different prediction modelling techniques or different feature subsets of
data. To overcome this problem, we use the area under Lift Curve (AUC) [28]
to evaluate the models. The area under a Lift Curve can be calculated by the
following equation:

AUC =
S0 − n0 × (n0 + 1) × 0.5

n0n1
(7)
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where S0 is the sum of the ranks of the class 0 (churn) test patterns, n0 is the
number of patterns in the test set which belong to class 0 (churn), and n1 is the
number which belongs to class 1 (nonchurn). The details of AUC can be found
in [27,28].

4.2 Discussion

Figure 1 shows the experimental results, which compare the prediction perfor-
mance between the new proposed classification method and DMEL. Each graph
is generated by a different churn rate of training and testing dataset. In or-
der to reduce costs, telecommunication operators randomly select(contact) a
small amount of customers to offer special consideration or attractive services.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Comparison of Lift Curves between CRL and DMEL, each sub-figure has dif-
ferent churn rate, (a):1%, (b): 2%, (c): 4%, (d): 6%, (e): 8%, (f): 10%
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(a) (b)

Fig. 2. (a): Compare of AUC values between CRL and DEML on different churn rate,
(b): Comparison of time between CRL and DMEL

Fig. 3. Compare of AUC values between CRL and DMEL on a set of UCI data

The objective is catching relative more potential churners by contacting a rela-
tive small amount of customers. In Figure 1, the horizontal axis represents the
percentage of contacted customers, while the vertical axis is the percentage of
identified churners under the contacted customers. We can clearly see that the
results based on CRL are more effective than DMEL. The lift curves generated
by CRL always look better than those of DMEL for all percentages of contacted
customers when the churn rates are 1%, 4%, 6% and 8%. When the churn rates
are 2% or 10%, the lift curves representing CRL are not always higher than
those of DMEL. We still regard CRL as the better algorithm given that it is not
appropriate to contact so large a portion of customers when seeking to reduce
costs for a telecommunication operator.

Moreover, the result of AUC measurement is consistent with that of Lift
Curve. Figure 2(a) shows that there is a big difference between the AUC values
of CRL and DMEL when the churn rates are 1%, 4% and 6%. For the rest of the
cases, there still exists obvious difference. Figure 2(b) displays the precessing
time when using the two algorithms. It shows that the proposed method is
quicker than DMEL.

In order to show that CRL can be extended to other data collections, several
sets of artificial data were tested. Figure 3 compares the AUC values between
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the proposed classification algorithm and DMEL on four sets of UCI data. In
Figure 3, the horizontal axis denotes different data set, while the vertical axis
shows the obtained AUC values based on the two algorithms. It shows that the
proposed algorithm produced better classification for each data set.

5 Conclusion and Future Works

In this paper, we proposed a new rule learning based classification algorithm.
The experiments were conducted based on a telecommunication data sets and
4 other data-sets. The Lift Curve and AUC techniques are used to evaluate the
performance of the algorithms. The experimental results show that CRL is more
efficient than DMEL.

The classification results slightly vary when setting different values for the
order to generate rules. Thus, it is necessary to find a proper threshold to control
the number of high order rules rather than setting the size arbitrarily. In addition,
the minimum values of support and confidence should also be considered more
in the future since these will impact on the effectiveness of rule pruning.
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Abstract. Most of the existing methods for XML keyword search are based on
the notion of Lowest Common Ancestor (LCA). However, as we explore the
most important fundamental flaw inside those result models is that the search
results are eternally determined and nonadjustable. In order to serve better re-
sults, we propose a novel and flexible result model which can avoid all these
defects. Within our model, a scoring function is presented to judge the quality of
each result. The considered metrics of evaluating results are weighted, and can be
updated as needed. Based on the result model, three heuristic algorithms are pro-
posed. Moreover, a mechanism is employed to select the most suitable one out of
these algorithms to generate better results. Extensive experiments show that our
approach outperforms any LCA-based ones with higher recall and precision.

Keywords: Keyword Search, XML, LCA.

1 Introduction and Motivation

XML Keyword Search is a user-friendly information discovery technique, which at-
tracts many interests these years. Different with keyword search over flat documents,
the search object is a single XML document/database with structure information inside
and the results are supposed to be fragments of it containing keywords. Since it is dif-
ficult and sometimes impossible to identify users’ intentions through keywords, it is
indeed a difficult task to determine which fragments should be returned. Many valuable
models are proposed to define the results, and the most popular ones are the Small-
est Lowest Common Ancestor (SLCA) model [11] and its variations [2],[3],[4],[6],
[7],[9],[10],[12], all of which are called as the LCA-based models in this paper. These
researches regard the XML document as a rooted, labeled, unordered tree in which
each inner node is an element or an attribute and each leaf is a value which may contain
some keywords. In SLCA model a result is defined as a subtree that: (1) the labels of
whose nodes contain all the keywords, (2) none of its subtree satisfies the first condi-
tion except itself. The root of such a subtree is called a SLCA node. It’s recognized
that SLCA model is definitely not a perfect one. Later works like [4],[5],[6],[12] il-
lustrate that some results of the SLCA method are meaningless and some meaningful
ones are missing by giving different examples, which are called the false positive and
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Fig. 1. Original examples from LCA-based approaches

the false negative problems respectively. Interestingly, the remedy approaches they pro-
pose sometimes conflict with each other, and counterexamples can always be found to
testify that the two problems still happen.

In order to explain these issues we employ the original examples from former re-
searches [4],[6],[12], which are illustrated in Figure 1 as three separate XML trees. In
these trees keywords are marked in bold and important nodes are identified by num-
bers. Besides, we use nodei to denote the node with the number i in any of the trees.
Consider keywords {“XML”, “David”} issued on the XML document in Figure 1(a),
apparently SLCA method can find two subtrees rooted in node7 and node17. In many
cases the subtrees are not appropriate for users because their sizes are too large and
plenty of meaningless information is involved. GDMCT [3] approach proposes a good
way to handle this that it returns the Minimum Connecting Trees (MCTs) instead. A
MCT is defined as a subtree which employs the SLCA node as root and the keyword
nodes as leaves. Since the refining of the final results is not a focus in this paper, for
convenience a search result is considered as a group of keyword nodes instead of a
document fragment by us. In this example, SLCA method finds two results {node9,
node11} and {node19, node21} which are two separate papers in semantics.

MLCA method [7] and GDMCT method [3] should agree with the answers because
they both define a result model very similar to SLCA. But, ELCA [2][12] method will
claim that several reasonable results are missed. For instance, {node3, node25} and
{node16, node23}, which indicate a conference and one of its sessions respectively and
are perfectly exclusive to each other, along with two SLCA results, are regarded as
qualified ELCA results. However, neither node1 nor node14 is a SLCA node due to at
least one SLCA node is their descendant node.
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The semantics of Exclusive Lowest Common Ancestor (ELCA) is firstly proposed
in [2] although it is not named as this. Afterwards, Xu et al. [12] and Zhou et al. [14]
provide more efficient algorithms to retrieve the ELCA nodes. The formal definition of
ELCA is complicated, however all the ELCA nodes can be retrieved through a straight-
forward two-step process which can help understanding the concept: (1) find all the
SLCA nodes, halt the process if there isn’t any; (2) remove all the SLCA nodes along
with the subtrees rooted in them, then turn to the first step. The union of all the SLCA
nodes obtained each time in the first step is indeed the set of ELCA nodes. Obviously,
ELCA method can obtain more reasonable results.

Seemingly ELCA model has fixed the false negative issue of SLCA model and
thus can find results perfect enough. However, based on the example illustrated in
Figure 1(b), Li et al. [6] claim that both SLCA and ELCA models suffer from the
false positive problem. Suppose {“XML”, “John”} are the keywords, either SLCA or
ELCA method returns {node6, node15} as the only result which is thought meaningless
in [6]. Actually, more examples can be found to support this point of view because in
some cases the keyword nodes in a result could be really far from each other in the tree.
Rather than implement semantics inference to improve the results as XSeek [8] does, Li
et al. introduce a simple rule to filter all the ELCA nodes. For any two keyword nodes
ni and nj in an ELCA result, suppose lca(ni, nj) is the LCA node of ni and nj and two
nodes n′

i and n′
i are the ones in the paths “lca(ni, nj) → ni” and “lca(ni, nj) → nj”

respectively satisfy that n′
i and n′

j have the same elementary type, then the result is
unqualified. Accordingly, {node6, node15} is not a qualified result because node4 and
node9 have the same elementary type. After the filtering, the left ELCA nodes are called
Valuable Lowest Common Ancestor (VLCA) nodes.

The rule of VLCA method is actually first proposed by Cohen et al. [1]. They use
this to determine if two keyword nodes are “meaningfully related”. Indeed it is kind of
overstrict, and more relaxed criteria could be used such as the LCA have to be low or the
result should have a good compactness. Kong et al. present a counterexample in [4]. To
search the keywords {“Liu”, “Chen”, “XSeek”} in the tree from Figure 1(c), {node4,
node6, node8} is a reasonable answer yet will be eliminated by VLCA method because
node4 and node5 have the same elementary type “author”. Kong et al. [4] also propose a
concept called Related Tightest Fragments (RTF) as final search results, which is equal
to representing the results of ELCA method in MCTs. Obviously, it keeps the vague
problem of false positive results being existed.

Following the common sense that results should be returned as many as possible,
we shouldn’t care too much about the false positive issue actually. At least we can still
return them to users with lower rank scores. On the other hand, another thing needs to
be paid more attention to is how to evaluate the results properly and so that to judge if
returned results are good enough or are there better ones can be found. No doubt out
of the aforementioned models ELCA method can get the maximum number of results
which is actually a superset of the results returned by any other LCA-based method.
Next we use another example to discuss the ELCA results to explain the problem.

Example 1: Figure 2 illustrates another XML document in tree structure which stores
the information of proceedings and journals in DBLP. There is a recursive situation
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in the document that a paper element could have a descendant which is also a paper.
Given three keywords {“XML”, “Bob”, “David”}, there are four ELCA results could
be found in the document which are illustrated in closed dashed curves. Apparently,
{node7, node10, node12} is a very good answer which is a paper whose title is about
“XML” and its authors are “Bob” and “David”. From another point of view, the LCA
node is appropriately low and the compactness (which is recognized as an important
measure by many researches and can be calculated through dividing the number of key-
word nodes by the number of all nodes in a result) is good. Another result {node15,
node18, node25, node27, node29} consists of two connected papers and also can be
regarded as a meaningful one. With respect to the other two results some people prob-
ably have different opinions. For {node32, node35, node37}, although it satisfies the
constraint VLCA model requires, it is hard to say that node35 and node37 are meaning-
fully related. For {node40, node43, node46, node50}, many may argue that it will be
better if it is split into two separate results {node40, node50} and {node43, node46}.
Suppose another keyword “SIGMOD” is added into the query, there will be a single
large result which can be represented by the subtree rooted in node2 returned by ELCA
approach. It is too large to be an appropriate result for users, yet it cannot be divided
since any of its subparts (such as the three in the closed dashed curves) is considered
totally meaningless because it doesn’t contain all the keywords. Besides, the keyword
nodes in the subtree rooted in node38 can never be included in any result because of the
same reason. The false negative problem still happens in a way.

Here we enumerate four defects of ELCA result model, which are actually the flaws
of all the LCA-based models.

1. A lack of universal criteria to judge whether a result is qualified or not.
VLCA model tries to point out the false positive problem of ELCA model through
the specific example in Figure 1(b) and afterwards provides a strict rule to filter
results. The practicability of the rule is simply disconfirmed by the RTF model
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through another specific example. We don’t think either of their arguments is
convincing. In an extreme case, we can say that any fragment containing keywords
is meaningful. However, to clarify which ones are qualified results and which ones
are not, what we need is a quantifiable metric rather than some strict rules.

2. Not enough features are considered.
In the ELCA model, a result is restricted to contain all the keyword nodes. Be-
sides, only the LCA nodes of the results are considered. At least two important
features are missed: the compactness and the size. Because the size doesn’t mean
anything in ELCA model (or any of other LCA-based models), large-size results
keep showing. Although some works [2],[4],[5] consider several features in their
ranking models, except for LCA nothing is taken into account in the process of
retrieving the results.

3. Some useful information is omitted in the results.
For instance in Example 1 when the keywords {“XML”, “Bob”, “David”,
“SIGMOD”} are used to search the document, any keyword node in the subtree
rooted in node38 is ignored despite they are more or less meaningful to users. Ac-
tually all the LCA-based models only serve the best results and refuse to organize
and return the second-best ones. Although some works [5],[10] support the OR se-
mantics and so that can find such information, this only can be utilized in a narrow
way that users have to specify the AND/OR logic in their queries. In this example,
users have to provide a query like “(XML AND Bob AND David) OR SIGMOD”
even though they have no idea of what exactly the real data is.

4. Despite different users probably have distinct intentions by using the same key-
words, the search results are eternally determined and nonadjustable.
Check Example 1 again. When given keywords are {“XML”, “Bob”, “David”,
“SIGMOD”} we don’t know which one is better: to return a proceeding with a
lot of information or to generate smaller and compact papers. However with any
LCA-based approach neither the administrator nor a user has a choose to improve
their search results. Therefore, we need to provide a more flexible model in which
we can adjust the results according to the context or the feedback from users.

In this paper, we propose a novel result model for XML keyword search which can
avoid all these defects perfectly. Instead of applying restrictions upon the results we
give each result a score to evaluate the quality of it. Such a score is generated by a
scoring function considering sufficient features, and each is weighted so that can be
adjusted as necessary. Obviously, a result gets a better quality if it has a higher score.
Since the results could be distinct when the features are given different weights. We
provide multiple algorithms to generate results and based on the values given to the
parameters in the scoring function the most suitable algorithm will be chosen to serve
better results. Each of our algorithms is supposed to find not only the results with the
highest scores as many as possible but also those second-best ones with lower scores.

The remainder of the paper is organized as follows.Section 2 defines the novel model
for XML keyword search results. The algorithms are proposed in Section 3. After-
wards, experimental results are exhibited in Section 4. Finally we conclude the paper in
Section 5.
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2 Result Model

In this section, we provide the formal definition of our search results. As explained
before we use a set of keyword nodes to represent a final result for simplicity. Besides,
rather than applying some restrictions upon the results, we give each result a score to
evaluate its quality (how meaningful it is). Such a score of a keyword node set R is
calculated through a function score(R). R is a better result if it has a higher score(R),
and in our opinion any R satisfying score(R) > 0 can be regarded as a result. Unlike
any LCA-based model, in which overlapping and inclusion are not allowed between
two individual results, we hold a different opinion that we think two results can share
some common nodes as long as none of them is a keyword node, which means our
model is more relaxed to the results.

Definition 1: (XML Keyword Search Results) T is an XML document/databse which
could be viewed as a tree. Given a set of t keywords {w1, . . . wt}, K is the set of all
the keyword nodes whose labels contain any keyword. Then, the result set of searching
{w1, . . . wt} in T is R which satisfies:

– ∀R ∈ R is a set of keyword nodes that score(R) > 0;
– ∀Ri, Rj ∈ R, Ri ∩ Rj = ∅;
–
⋃

R∈R
R = K .

From these three conditions in Definition 1 we can see that the XML tree is divided into
separate fragments each of which is meaningful. In other words, XML keyword search
can be regarded as a problem that dividing the set of all keyword nodes into groups
that are meaningful. Clearly, excessive partitions of K can be qualified result sets in
accordance with Definition 1 and we have to judge which ones are gratifying and which
ones are not. However, comparing with the LCA-based models it has two advantages.
First, each result is not given specific restrictions yet can be appraised. Second, all the
keyword nodes are involved in the results which definitely brings a high recall. Next
we define a concept of the optimal result set which is supposed to be a standard for our
result-finding algorithms to pursue.

Definition 2: (Optimal XML Keyword Search Result Set) Suppose R is a partition
set of K and |R| = n. We arrange the items in R to be a sequence S = {R1, ..., Rn}
which satisfies: for any 1 ≤ i < j ≤ n, score(Ri) ≥ score(Rj). Then, R is called an
optimal result set iff:

– ∀R′ ⊂ (Rk ∪ ... ∪ Rn), 1 ≤ k ≤ n, score(Rk) ≥ score(R′).

In other words, score(R1) is the biggest score can be found in the set of all the keyword
nodes K , and score(R2) is the greatest score in the set (K − R1), and so on. The
rationality of this definition is quite clear that users always prefer the best results and in
our model the best results are those results with the largest scores.

A proper scoring function represents a well-designed evaluation model, in which
at least four metrics need to be involved: (1) the content information, which mainly
refers to the keywords it contains; (2) the structure information, which specifically
means the hierarchical position of the root (the LCA of the keyword node set); (3) the
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compactness, which usually can be calculated through dividing the number of keyword
nodes by the number of all nodes in the fragment; (4) the size, which must not be
too large. More importantly, the evaluation model should be adjustable to suit different
contexts. As a matter of fact, in the evaluation model we can use as many features as
possible when they are reasonable. Meanwhile, the LCA-based models only consider
the first two features, the content and the structure information, and that’s why they
suffer from those defects aforementioned.

Some extra notations have to be defined as follows before the scoring function is
proposed:

– K is the set of all the keyword nodes;
– for any node v, dpt(v) returns the depth of v in the tree (the depth of the root is 1,

and the height of the tree is h);
– for any set of keyword nodes N , kn(N) is the function to get the exact number of

keywords N contains.
– for any set of keyword nodes N , mct(N) is the set of all the nodes contained by

the MCT of N .

For any result R we provide separate formulas to evaluate the four kinds of features a
result possesses: T (R), H (R), C (R) and S (R). Each of the functions returns a real
number between [0, 1], and the greater the value is R is better in one respect.

– Content Information: T (R) = kn(R)/t;
– Structure Information: H (R) = dpt(lca(R))/h;
– Compactness: C (R) = |R|/|mct(R)|;
– Size:

S (R) =

{
1 |mct(R)| ≤ st

0 |mct(R)| > st

In the formula of S (R), st is an integer which is the size threshold of R’s MCT. When
the size exceeds the threshold, the result is considered inappropriate to be
returned. Finally, the scoring function is defined as follows.

score(R) =
(1 + T (R))α × (1 + H (R))β × (1 + C (R))γ × S (R)

2(α+β+γ)
(1)

In formula (1) α, β, and γ are three adjustable parameters, each of which should be
a positive real number greater than or equal to 1. Furthermore, according to former
discussion under normal circumstances α should be set much greater than β, at the
same time β is usually larger than γ. Hence we have α > β > γ ≥ 1. It is easy to find
that any score(R) is either equal to zero or between (1/2(α+β+γ), 1].

3 Algorithms

For an XML tree and given keywords, to find the optimal result set is certainly the
ultimate goal of us. Nevertheless, there is a lack of an efficient way to achieve this
purpose due to a complicated situation that any feature in the scoring function is allowed
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Algorithm 1. Matrix(K)

1: transform K to C;

2: build the score matrix M for C

3: while there is a positive item in M

4: find the greatest mi j in M ;

5: remove Ci and Cj from C;

6: add Ci ∪ Cj into C;

7: update M according to current C;

8: return C;

to be weighted casually. In a naive approach, we have to enumerate all the possible
subsets of K to find the result with the greatest score which alone has a time complexity
of O(2n). Therefore, in this section we propose several heuristic algorithms with high
efficiency to generate results hoped to be close to the optimal one. Especially, some
of them are developed to adapt to specific circumstances. In the next section, many
experimental results show the effectiveness of these algorithms.

3.1 Matrix Algorithm

From Definition 1, the XML keyword search problem is equivalent to dividing the set of
all the keyword nodes into groups that are meaningful, which is actually the clustering
techniques are supposed to handle. In this subsection, we provide a basic agglomerative
hierarchical clustering algorithm to obtain the result set R. Before conduct the algorithm
(or any algorithm we propose later) the nodes in the XML tree have been encoded by
Dewey code and the inverted index of term-node has been built. So that, each time the
calculation of a score costs O(1).

The input of the clustering algorithm is the set of all the keyword nodes K which is
then transformed to a candidate set C that each entry C ∈ C is a node set and originally
contains an individual keyword node. Afterwards, a Score Matrix of C is built. Suppose
|K| = n and C = {C1, ..., Cn}, then the score matrix of C is an n-by-n matrix M
that each item mi j is set to be score(Ci ∪ Cj) if score(Ci ∪ Cj) is greater than both
score(Ci) and score(Cj), otherwise mi j is 0. At each step we find the highest mi j in
the matrix and merge Ci and Cj to be a new result in C. Then, the matrix is updated to
be a |C| × |C| one for current C. The program stops when there is no positive value left
in the matrix, then C is the final result.

Such an algorithm is called the Matrix algorithm and is shown in Algorithm 1. As we
know the space complexity of this algorithm is O(n2), and in the worst case the time
complexity is O(n3). If the scores are stored as sorted lists (or heaps), the time complex-
ity is reduced to O(n2logn). Still it is not as good as the performance of the algorithms
from the LCA-based approaches. However, theoretically it generates much better re-
sults because it calculates possible scores as many as possible and always chooses the
largest one.
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Algorithm 2. CIF (K)
1: while K �= ∅
2: m = |K|;
3: set K1 as the set with the smallest size in K;

4: if (m == 1)

5: R = R ∪ clustering(K1);

6: break;

7: else

8: remove K1 from K;

9: transform K1 to semi-results S;

10: for (2 ≤ i ≤ m);

11: transfer one or more nodes from Ki into each set in S;

12: if Ki = ∅ remove Ki from K;

13: R = R ∪ S;

14: return R;

3.2 Content-Information-First (CIF) Algorithm

Many believe that the Content information should be an overwhelming criterion to eval-
uate a result and thus in our scoring function they would prefer α to be much larger than
β and γ. Under this circumstance, the results containing all the keywords should be re-
turned as many as possible and a results with insufficient content information R will
only be generated in two cases. First, there is no result R′ can be found that satisfies:
(1) R ∪ R′ contains all the keywords; (2) score(R ∪ R′) > score(R′). Second, such a
R′ can be found however the size of R∪R′ exceeds the limit. Among these results with
insufficient content information one definitely dominates another when it contains more
keywords. In this subsection, we present an algorithm called the Content-Information-
First (CIF) algorithm to retrieve such results.

Given a set of t keywords {w1, ..., wt} there are t sets of keyword nodes K1, ..., Kt

possessed through the inverted index and each Ki stores all the keyword nodes contain-
ing the keyword wi. Let K1 be the one with the smallest size. In line with the principle
that a keyword node only exists in a single result, we can only obtain |K1| results con-
taining all the keywords at most. Thus, we employ a program that for each set from
K2 to Kt we distribute one or more keyword nodes in it to every node in K1 which
can form a result with highest score. We use an example to explain the details before
presenting the CIF algorithm.

Let K = {K1, ..., Kt} and R to be the set of results which is empty originally,
then the pseudo-code of CIF algorithm is illustrated in Algorithm 2. In the best case
(when the sizes of the keyword node sets are even) the time complexity of CIF is
O(|K1| ×

∑
2≤i≤t(|Ki|)), and in the worst case the time complexity is O(|K1| ×∑

2≤i≤t(|Ki|2)).



432 W. Yang et al.

3.3 Structure-Information-First (SIF) Algorithm

In some specific cases, we concern what the structure of a result much more than how
much keyword information inside. For example, it is quite reasonable to assume that
no matter how many keywords a result contains only those papers are qualified when
proceeding keyword search on DBLP data set. In this case, we can set α close to or
even smaller than β and γ and then generate results based on some restrictions built
on the structure. Here we provide an algorithm called the Structure-Information-First
Algorithm (SIF) which actually comes from another work of us [13] in which it is called
the Core-driven Clustering Algorithm. To save space we don’t explain the details here.
Normally the time complexity of Algorithm SIF is O(n), and O(n2) in the worst case.

4 Experiments

Extensive experiments are performed to compare our approaches with SLCA and ELCA
approaches. For SLCA and ELCA approaches the Indexed Lookup Eager Algorithm
[11] and the Indexed Stack Algorithm [12] are implemented respectively.

We use two metrics to evaluate them: recall and precision. Since we presume any
keyword node is meaningful to users, the recall value can be simply calculated by di-
viding the number of the keyword nodes in the result set with the number of all keyword
nodes in the document. The standard definition of precision from Information Retrieval
is difficult to be followed here. Because in any search, each result returned is believed
to be a satisfying one, which means they all consider the precision of their result set
to be 1. Therefore, we design a variation called the proximity precision. Out of the set
of results we find the one with the greatest score which is then considered as the best
result and used as a standard . For a certain small number k, the top-k results with the
largest scores are found and then an average score value is calculated which afterwards
is divided by the greatest score to get the value of proximity precision.

Figure 3(a) and Figure 3(b) show that the results generated by our approach have a
overwhelming recall value comparing with SLCA and ELCA. We can see that SLCA
always gets a poor value because lots of keyword nodes are abandoned. Our approach
always has the largest recall since any keyword node is considered meaningful and
included in a result. Figure 3(c) and Figure 3(d) illustrate how the proximity precision
values change when we vary the number of keywords. The parameters are set to static
values, and for any approach we only consider the scores of top-10 results. Obviously,
Matrix and CIF overcome the other three. SIF doesn’t act quite good since in the scoring
function α is set much larger than β and γ. Similarly, when we give the parameters
some static values and use three keywords to search each of the data sets, Figure 3(e)
and Figure 3(f) show how the proximity precision values change as the value of k
varies. There is a dramatic decline while k is enlarged for SLCA and ELCA. This can
be explained that they usually only find a few best results and omit those second-best
ones. In the last two graphs in Figure 3 the keyword numbers are both 4. We can see that
when we change the values of parameters Matrix has a stable and excellent performance
which is much better than SLCA and ELCA do. The most interesting thing is, for either
CIF or SIF the proximity precision changes severely with different parameter values.
That’s why it is so important to select the appropriate algorithms according to them.
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5 Conclusion

In this paper, several defects of LCA-based result models are explored. After that we
propose a result model more effective and flexible which is mainly built upon a scoring
function. Based on the novel model heuristic algorithms are provided to generate the
keyword search results. Most importantly according to the given values of some param-
eters in the scoring function the most suitable algorithm can be automatically selected
to generate the quality results efficiently. Finally, experimental results show that our
approach outperforms any LCA-based ones with higher recall and precision.
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Abstract. This paper provides a new approach to topical trend anal-
ysis. Our aim is to improve the generalization power of latent Dirich-
let allocation (LDA) by using document timestamps. Many previous
works model topical trends by making latent topic distributions time-
dependent. We propose a straightforward approach by preparing a dif-
ferent word multinomial distribution for each time point. Since this ap-
proach increases the number of parameters, overfitting becomes a critical
issue. Our contribution to this issue is two-fold. First, we propose an effec-
tive way of defining Dirichlet priors over the word multinomials. Second,
we propose a special scheduling of variational Bayesian (VB) inference.
Comprehensive experiments with six datasets prove that our approach
can improve LDA and also Topics over Time, a well-known variant of
LDA, in terms of test data perplexity in the framework of VB inference.

Keywords: Bayesian methods, topic models, trend analysis, variational
inference, parallelization.

1 Introduction

This paper provides a simple and efficient approach to Bayesian analysis of
topic time-dependency for large-scale document sets. Our aim is to improve
the generalization power of latent Dirichlet allocation (LDA) [3] in terms of
test data perplexity by proposing a topic model where we use document times-
tamps as a key factor for improvement. Our approach is based on the intu-
ition that a careful analysis of word frequency differences among time points
will help topic extraction by LDA-like Bayesian models. We propose a simple
time-dependent variant of LDA and devise a special scheduling of variational
Bayesian (VB) inference [3]. In our model, a different word multinomial distribu-
tion is prepared for each time point. When we have T time points and K topics,
T × K word multinomials are prepared in total. As this leads to a large num-
ber of parameters, overfitting becomes critical. Our contribution to this issue is
two-fold:
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1. We propose a non-trivial way of defining Dirichlet priors over T × K word
multinomials. When we define a single common Dirichlet prior over all these
word multinomials, overfitting is too strongly suppressed. Thus we propose
an effective way of defining Dirichlet priors over these word multinomials.

2. We propose a special scheduling of VB inference. As an initialization, VB
for LDA described in [3] is conducted for a certain number of iterations, and
our model is initialized with the estimated parameters. We further introduce
another twist as a finalization whose details will be exposed later.

We conduct comprehensive experiments on six datasets, four of which are in
English, one in Japanese, and the rest one in Korean. The largest dataset con-
tains 368,000 documents, a set of one-year news articles, and 32,800,000 unique
document-word pairs. Since our model has a simple construction, it does not
sacrifice the efficiency in computation cost for mathematical sophistication and
thus can easily handle large datasets. Our approach requires at most 1.5 times
as much computation time as LDA in the framework of VB inference paral-
lelized for multi-core CPU. With this efficiency, our approach can improve the
generalization power of LDA and further that of Topics over Time (TOT) [16],
a well-known time-dependent variant of LDA, by up to 15 percent.

The rest of the paper is organized as follows. Section 2 discusses previous works
related to topical trend analysis. Section 3 provides the details of our proposal.
Section 4 presents the settings and the results of our evaluation experiments.
Section 5 concludes the paper with discussions and future work.

2 Previous Works

Recent Web analysis has focused on processing timestamped documents, because
we can observe an immense increase in the number of realtime posts sent to a
variety of SNS sites, e.g. Twitter, Facebook, etc. Bayesian approach, one of the
mainstreams in text mining, also seeks a method for analyzing time-dependency
of topics latent in large-scale document sets to capture salient topical trends.

We briefly introduce LDA [3], a standard document model in Bayesian text
mining. With LDA, we can take each document as a conglomerate of multiple se-
mantic contents. LDA characterizes each document by a probability distribution
defined over a fixed number K of latent topics. Precisely, LDA attaches a multi-
nomial distribution Multi(θj) defined over the topics {c1, . . . , cK} to each of the
given documents {d1, . . . , dJ}, where θj denotes the parameters (θj1, . . . , θjK) of
the topic multinomial for document dj . We can regard θjk as the probability that
any word token in document dj expresses topic ck, not the other topics. Further,
LDA characterizes each topic by the multinomial Multi(φk) defined over the
fixed word set {v1, . . . , vW }, where φk denotes the parameters (φk1, . . . , φkW ) of
the word multinomial for topic ck. We can regard φkw as the probability that
topic ck is expressed by any token of word vw, not of the other words.

A remarkable feature of LDA is that all topic multinomial parameters {θ1,
. . . , θJ} are drawn from a single common Dirichlet prior distribution Di(α),
where α denotes the set of the K hyperparamters (α1, . . . , αK). Further, all word



Steering Time-Dependent Estimation of Posteriors 437

multinomial parameters {φ1, . . . , φK} are drawn from another single common
Dirichlet prior Di(β), where β denotes the W hyperparamters (β1, . . . , βW ). In
the following, we simply call Di(α) topic Dirichlet prior and call Di(β) word
Dirichlet prior. With these two priors, LDA can reduce the diversity among the
topic multinomials and also the diversity among the word multinomials, and
thus can achieve a generalization power better than PLSI [7].

When making LDA time-dependent, we can consider the following two as-
sumptions [12]: (i) Topic distributions vary along time; (ii) Word distributions
vary along time. Many previous works [2,10,11,15] adopt the former assumption.
While Srebro et al. [12] give discussions supporting the former, other works adopt
the latter [8] or combine both [9]. In this paper, we adopt the latter assumption
and prepare a different word multinomial distribution for each time point. In
[11], a highly sophisticated modeling is devised, and the former assumption is
combined with the assumption of infinite topics [13]. While our approach may be
combined with nonparametric approach, we do not pursue this direction in this
paper. The topic model in [8] is similar to ours, because this model has a differ-
ent word multinomial for each time point. However, this work further considers
multiscale effects of the past word frequencies at each time point and realizes a
flexible time-dependent posterior estimation. Consequently, the model becomes
quite complicated and requires an approximated inference, whose implementa-
tion becomes intricate when we attempt to achieve a tolerable computation cost.
In contrast, our approach seeks an efficient balance between generalization power
and computation cost.

3 Method

3.1 Model Construction

In this paper, we model the time-dependency of topics by using a different word
multinomial for each of the given time points {s1, . . . , sT }. Therefore, our model
has T ×K word multinomials Multi(φtk), t = 1, . . . , T , k = 1, . . . , K, where φtk

denotes the multinomial parameters (φtk1, . . . , φtkW ). That is, we have T×K×W
word multinomial parameters in total, as in [8]. However, we take an approach
different from [8] in defining Dirichlet priors over the word multinomials.

As is discussed in Section 2, LDA has K word multinomials each corresponding
to a different topic and defines a single Dirichlet prior over these K multinomials.
Therefore, we first defined a single Dirichlet prior over all T ×K multinomials in
our model. However, a preliminary experiment showed that overfitting was too
strongly suppressed and that a poor generalization power was obtained.

Therefore, in another preliminary experiment, we tested the three options
in Table 1. As a result, Option 1 achieved success for many datasets. Op-
tion 1 defines a common Dirichlet prior Di(βk) over the T word multinomi-
als Multi(φ1k), . . . , Multi(φTk) for each k. βk refers to the hyperparameters
(βk1, . . . , βkW ) of Di(βk) prepared for topic ck. As the T word multinomials
Multi(φ1k), . . . , Multi(φTk) are drawn from the same prior, we have a smooth-
ing only separately for each topic, not over all word multinomials. Therefore, we
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Table 1. Three options for defining word Dirichlet priors

Option 1 Prepare a different prior Di(βk) for each of the K disjoint groups of
word multinomials, where each group corresponds to a different topic
ck and contains T word multinomials Multi(φ1k), . . . , Multi(φTk).
This option gives K × W word Dirichlet hyperparamters in total.

Option 2 Prepare a different prior Di(βt) for each of the T disjoint groups of
word multinomials, where each group corresponds to a different time
point st and contains K multinomials Multi(φt1), . . . , Multi(φtK).
This option gives T × W word Dirichlet hyperparamters in total.

Option 3 Prepare a different prior Di(βtk) for each of the T ×K word multino-
mials separately. This option gives T ×K ×W word Dirichlet hyper-
paramters in total.

can achieve a more moderate smoothing than a single common prior. However,
Option 3 also gave impressive results for some datasets. When we take Option
3, the hyperparameters of the word Dirichlet priors are endowed with fully fine-
grained indices βtkw. Since these indices are as fine-grained as the indices of the
word multinomial parameters φtkw , Option 3 gives a smoothing effect more mod-
erate than Option 1 and thus showed poor results due to overfitting for several
datasets. However, since Option 3 was effective for some datasets, we combine
Option 1 with Option 3 in our inference, as will be described in Section 3.2. The
detailed results of the preliminary experiments will be given in Section 4.4.

The topic model proposed in [8] adopts Option 3 and does not consider Op-
tion 1 and Option 2. That is, the hyperparameters of the word Dirichlet pri-
ors are endowed with fully fine-grained indices βtkw . The model in [8] seems
to avoid overfitting with multiscale analysis, which can exploit the interaction
among word Dirichlet priors attached to different time points. This may cause a
smoothing effect and thus may lead to a good generalization power. In contrast,
we avoid such complication in modeling and consider various ways of indexing
the hyperparameters of the word Dirichlet priors, as in Table 1, to obtain a
special scheduling of VB inference where some of these options are combined.

3.2 Posterior Inference

For posterior inference, we adopt variational Bayesian (VB) inference [3]. One
reason of this choice is that parallelization is easier than collapsed Gibbs sam-
pling (CGS) [5] and collapsed variational Bayesian (CVB) inference [14]. Many
operations in VB inference are embarrassingly parallel like EM alogorithm [4],
and thus our approach can scale up to larger datasets. Another reason is that
VB achieves a generalization power comparable with CGS and CVB [1].

Due to space limitation, we only give an outline of the formula derivation for
our VB, which is similar to that for LDA [3]. Let (ιj1, . . . , ιjK) be the parameters
of the variational Dirichlet posterior defined over the topics {c1, . . . , cK} and
attached to document dj . Intuitively, ιjk tells how strongly the word tokens in
document dj express topic ck. Further, let (ζtk1, . . . , ζtkW ) be the parameters
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of the variational Dirichlet posterior defined over the words {v1, . . . , vW } and
attached to the pair of time point st and topic ck. Intuitively, ζtkw tells how
strongly topic ck is expressed by the tokens of word vw at time point st. With a
variational approximation, we obtain the lower bound L of the log evidence as:

L =
∑
j,w,k

njwπjwk

{
Ψ(ιjk) − Ψ(

∑
k

ιjk) + Ψ(ζtjkw) − Ψ(
∑
w

ζtjkw) − log πjwk

}
−
∑
j,k

[
Γ (αk) − Γ (ιjk) − (αk − ιjk)

{
Ψ(ιjk) − Ψ(

∑
k

ιjk)
}]

−
∑
t,k,w

[
Γ (βkw) − Γ (ζtkw) − (βtw − ζtkw)

{
Ψ(ζtjkw) − Ψ(

∑
w

ζtjkw)
}]

, (1)

where πjwk, satisfying
∑

k πjwk = 1, refers to the approximated posterior proba-
bility that a token of word vw in document dj expresses topic ck. njw denotes the
number of the tokens of word vw in document dj . Further, Γ (resp. Ψ) denotes
the gamma (resp. digamma) function, and tj ∈ {1, . . . , T} is the index of the
timestamp of document dj .

From the partial derivatives of L, we obtain the following update formulas:

πjwk ∝ exp
{
Ψ(ιjk) − Ψ(

∑
k

ιjk) + Ψ(ζtjkw) − Ψ(
∑
w

ζtjkw)
}

, (2)

ιjk = αk +
∑
w

njwπjwk , (3)

ζtkw = βkw +
∑

{j:tj=t}
njwπjwk , (4)

αk = Ψ−1
(∑

k

αk +
∑

j

{Ψ(ιjk) − Ψ(
∑

k

ιjk)}/J
)

, (5)

βkw = Ψ−1
(∑

w

βkw +
∑

t

{Ψ(ζtkw) − Ψ(
∑
w

ζtkw)}/T
)

, (6)

where Ψ−1 is the inverse of the digamma function.
While we used the formulas above in a preliminary experiment, any start from

a random initialization was likely to find a poor local optimum. Therefore, we
propose a special initialization. We first conduct VB for LDA with a random
initialization by ignoring all timestamps. After a fixed number of iterations (50
iterations in our experiments) of this VB inference, we initialize the parameters
of our model with the parameters estimated by this VB for LDA and start the
VB for our model by using the update formulas shown above.

In the VB for LDA as an initialization, we use the following update formulas:

πjwk ∝ exp
{

Ψ(ιjk) − Ψ(
∑

k

ιjk) + Ψ(ηkw) − Ψ(
∑
w

ηkw)
}

, (7)

ιjk = αk +
∑
w

njwπjwk , (8)
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ηkw = βw +
∑

j

njwπjwk , (9)

where ηkw is the approximated posterior parameter telling how strongly topic
ck is expressed by the tokens of word vw. These three formulas correspond to
Eqs. (2), (3), and (4), respectively. In our special scheduling, we first conduct
the VB inference for LDA by using Eqs. (7), (8), and (9) and then initialize
the parameters πjwk and ιjk of our model with the estimations obtained by
this VB for LDA. At the same time, we initialize the posterior parameters ζtkw ,
k = 1, . . . , K, w = 1, . . . , W of our model as ζtkw = ηkw for each t.

As is discussed in Section 3.1, Option 3 in Table 1 sometimes gave impressive
results in the preliminary experiment. Therefore, we use Option 3 as a finalization
of our VB inference. After conducting VB for LDA as an initialization, we train
our model with Option 1 for a large enough number of iterations (140 iterations
in our experiments). Then, we use the hyperparameters βkw to initialize the
hyperparameters βtkw in Option 3. Precisely, we set βtkw = βkw for each t.
After this, we conduct a small number of iterations of VB inference update
(10 iterations in our experiments) with Option 3 as a finalization. The update
formula for βtkw in Option 3 can be written as follows:

βtkw = Ψ−1
(∑

w

βtkw + Ψ(ζtkw) − Ψ(
∑
w

ζtkw)
)

. (10)

With respect to the effectiveness of Option 3, Section 4.4 includes detailed
discussions based on the experimental results.

Our three-stage VB inference scheduling is summarized in the left panel of
Figure 1. While the number of iterations at each stage is determined based
on the preliminary experiments, the important point is that we give a gradu-
ally increasing degree of freedom to word posterior estimation as VB inference
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Fig. 1. The proposed inference scheduling for our model (left panel) and an example
of the topical trends extracted by our approach (right panel). Each column in the right
panel corresponds to a different time point (year) and includes the words sorted in the
decreasing order of ζtkw (cf. Eq. (4)) from top to bottom.
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proceeds. In this manner, we S teer T ime-dependent Estimation of Posteriors
with HY perparameter indexing. We call our approach STEPHY by concatenat-
ing the italicized uppercase letters in the previous sentence.

4 Experiments

4.1 Datasets

We prepared the six datasets in Table 2 for our experiments. J , W , T , and P in
Table 2 are the numbers of documents, different words, different time points, and
different document-word pairs, respectively. NIPS is the dataset often used in the
experiments for machine learning. We used a well-cleaned version appearing in
[6]1. We regarded each publication year as a different time point. This dataset is
far smaller than the other five datasets. DBLP dataset is a part of the XML data
available at the DBLP Web site2. We regarded the paper title as a document and
the publication year as a timestamp. Since we used the papers dated from 1990
to 2009, T is equal to 20. DONGA is a set of Korean news articles issued in 2008
and were downloaded from the politics section of the Donga Ilbo Web site3. Each
article was processed by KLT morphological analyzer4 to segment each sentence
into word tokens. We regarded each week as a single time point. Consequently,
we have 53 different time points. TDT is the dataset prepared for the 2002-2003
Evaluation in Topic Detection and Tracking, Phase 45. We regarded the date of
each document as a timestamp. This dataset has the largest number of different
time points among the six datasets. NSF is the dataset available at UCI machine
learning repository6. Each document has an ID (e.g. “a9000006”). We regard its
first two digits (e.g. “90”) as a timestamp. The resulting timestamps range from
90 (i.e., 1990) to 02 (i.e., 2002). YOMI is a set of the Japanese news articles
of Yomiuri newspaper published in 20057. The documents were processed by
MeCab8 morphological analyzer to extract words. As in case of DONGA, we
regarded each week as a timestamp. For all datasets, we removed the words of
low and high frequency by following a common practice of text mining.

4.2 Settings

For comparison, we also adopt VB inference for both LDA and TOT. The VB
for LDA is explained in [3]. For TOT, no preceding works report the update
formulas of VB. Since the formulas are a slight modification of those of LDA,

1 http://www.cs.huji.ac.il/∼amitg/htmm.html
2 http://dblp.uni-trier.de/xml/dblp.xml.gz
3 http://news.donga.com/Politics
4 http://nlp.kookmin.ac.kr/HAM/kor/
5 http://projects.ldc.upenn.edu/TDT4/
6 http://archive.ics.uci.edu/ml/
7 http://www.ndk.co.jp/yomiuri/
8 http://mecab.sourceforge.net/

http://dblp.uni-trier.de/xml/dblp.xml.gz
http://news.donga.com/Politics
http://nlp.kookmin.ac.kr/HAM/kor/
http://projects.ldc.upenn.edu/TDT4/
http://archive.ics.uci.edu/ml/
http://www.ndk.co.jp/yomiuri/
http://mecab.sourceforge.net/
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Table 2. Specifications of six datasets used in our experiments

J W T P J W T P

NIPS 1,740 11,998 13 919,916 TDT 96,256 51,849 123 11,460,231
DBLP 1,235,988 273,173 20 7,814,175 NSF 128,181 25,325 13 10,388,976

DONGA 24,093 71,621 53 7,949,288 YOMI 367,910 84,060 52 32,762,456

we omit the details here. We only note that the parameters of per-topic Beta
distributions in TOT should be rescaled as in case of CGS [16]. We set the
rescaling factor to 0.7 based on preliminary trials. Also for TOT, any start from
a random initialization gave a poor generalization power. Therefore, we first
train LDA and use the resulting posteriors for initializing TOT as in STEPHY.

The experiments are conducted on a Fedora 12 Linux PC equipped with Intel
Core i7 920 CPU at 2.67 GHz and 12 Gbytes of main memory. For all cases
in our experiments, this main memory size is enough to store all of the input
data and the model parameters. To exploit the full potential of our multi-core
CPU, we parallelize the operations in VB with OpenMP library by implementing
the inference from scratch. Every execution time reported in this paper is a
wall-clock time obtained by running eight threads on the four cores of our CPU.

4.3 Evaluation Measure

We evaluate the generalization power of each compared approach by test data
perplexity, which tells how well each topic model can generalize to test data.
We randomly select 10 percent word tokens from the entire dataset as test word
tokens and use them for calculating the perplexity defined as follows:

perplexity ≡ exp
{
−
∑

j

∑
i

log
∑

k

ῑjk ζ̄tjkxji

/
Ntest

}
, (11)

where Ntest is the number of the test word tokens, tj ∈ {1, . . . , T} is the index
of the timestamp of document dj , and xji ∈ {1, . . . , W} is the index of the
word appearing as the ith test word token of document dj . The summation∑

i in Eq. (11) is taken only over the test word tokens. Further, ῑjk and ζ̄tkw

are the posterior probabilities obtained by normalizing the posterior Dirichlet
parameters ιjk and ζtkw , appearing in Eq. (3) and Eq. (4), as follows:

ῑjk =
ιjk∑
k ιjk

, ζ̄tkw =
ζtkw∑
w′ ζtkw′

. (12)

A smaller perplexity corresponds to a better generalization power. The perplexity
for LDA and TOT is defined similarly by using ηkw in Eq. (9) instead of ζtkw .

4.4 Preliminary Experiments

Before giving the results of the main experiment comparing STEPHY with LDA
and TOT, we overview the results of our preliminary experiments in Table 3 and
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Table 3. Results of the preliminary experiment comparing initialization methods

Option 1 (Random init.) Option 1 (LDA init.)

NIPS 1604.0±9.8 1394.4±10.2
DBLP 3299.3±9.4 3065.9±12.2

DONGA 3026.2±79.8 2195.9±23.1
TDT 3963.7±71.4 2049.6±15.3
NSF 3382.5±6.3 1700.5±13.6

YOMI 3477.7±76.4 2768.2±20.1

Table 4. Results of the preliminary experiment comparing various options for hyper-
parameter indexing

Option 1 Option 2 Option 3 Single common prior

NIPS 1394.4±10.2 1633.9±8.9 1779.0±10.7 1334.0±11.5
DBLP 3065.9±12.2 3625.3±9.1 3327.5±21.5 3311.8±17.7

DONGA 2195.9±23.1 3211.4±13.4 2310.6±19.0 2599.2±19.5
TDT 2049.6±15.3 3811.4±12.0 2706.8±15.0 2787.6±41.4
NSF 1700.5±13.6 3422.7±4.3 1723.2±12.8 3373.2±4.9

YOMI 2768.2±20.1 4847.2±24.6 3130.8±29.8 3041.6±34.0

Table 4 to support the discussions in Section 3.1 and Section 3.2. These tables
give the test data perplexity at the 200th iteration, i.e., the final iteration, of the
VB inference when we set K = 50. Each perplexity is averaged over 20 different
execution instances, and the corresponding standard deviation is also presented.

Table 3 shows the effect of our special initialization. The leftmost column
includes the tags of the six datasets. When we train our model with Option 1 in
Table 1 after a random initialization, we obtain the test data perplexity shown in
the center column. When we train our model with Option 1 after an initialization
using the posterior estimation of LDA, we obtain the perplexity in the rightmost
column. Table 3 proves that the initialization with VB for LDA gives a better
generalization power than the random initialization for all datasets.

Table 4 shows a comparison between the various ways of indexing the hyper-
parameters of word Dirichlet priors. We applied the initialization with VB for
LDA to each compared case. When we prepare a single common word Dirichlet
prior for all T ×K word multinomials, we obtain the perplexity in the rightmost
column. When we adopt Option 1, Option 2, and Option 3 in Table 1, we obtain
the results in the second, third, and fourth column, respectively.

When we only define a single common word Dirichlet prior, the test data per-
plexity is poor for many datasets, as is shown in the rightmost column of Table 4.
While the perplexity for NIPS dataset is occasionally good, this dataset is far
smaller than the other datasets and does not represent the general situation. It
seems that a single word Dirichlet prior is enough to cover the topical diversity
latent in NIPS dataset. In contrast, the perplexity for NSF dataset is of disas-
trous level. This may be because overfitting is too strongly suppressed by a single
common prior. Option 2 also gives a poor perplexity for many datasets. Option
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Table 5. Test data perplexity and wall-clock computation time after 200 iterations

Test data perplexity Computation time (in sec.)
STEPHY TOT LDA STEPHY TOT LDA

NIPS 1407.9±13.8 1685.2±9.8 1659.9±8.4 489.0 (×1.46) 373.5 334.7
DBLP 3027.6±17.3 3439.4±39.6 3446.2±30.3 4737.8 (×1.39) 3700.6 3411.4

DONGA 2062.2±26.7 2524.4±25.7 2475.1±24.9 3925.5 (×1.39) 3130.1 2829.2
TDT 1897.1±31.7 2005.5±11.6 1988.7±10.7 5354.4 (×1.39) 4292.3 3842.8
NSF 1684.1±18.8 1689.5±12.4 1691.8±14.2 3800.4 (×1.09) 3876.6 3473.8

YOMI 2671.8±33.3 2850.2±18.0 2844.2±14.9 13380.5 (×1.18) 12701.5 11390.8

2 defines a common word Dirichlet prior Di(βt) over the K word multinomials
Multi(φt1), . . . , Multi(φtK) each corresponding to a different topic. This defi-
nition is used for each time point st separately. Therefore, while Option 2 can
differentiate between various time points, the topical diversity is not well cap-
tured, because the word posteriors corresponding to different topics share the
same Dirichlet prior. In contrast, the perplexity achieved by Option 3 is fairly
good. Option 3 gives the second best perplexity for DONGA, TDT, and NSF
datasets. However, Option 3 requires a large computation time, because Option
3 gives T × K × W word Dirichlet hyperparameters in total and thus requires
considerable time for the hyperparameter update using Eq. (10). Therefore, we
adopt Option 1, giving the best result for all datasets except NIPS, as the main
driving force and use Option 3 for finalization. Based on this line of reasoning,
we propose an inference scheduling drawn in the left panel of Figure 1.

4.5 Main Experiment

The results of our main experiment are summarized in Table 5. Both test data
perplexity and computation time are obtained at the 200th iteration, i.e., at
the final iteration, and are averaged over the results of 20 different execution
instances. We also include the corresponding standard deviation for test data
perplexity. Table 5 shows that STEPHY gives a smaller perplexity than LDA and
TOT for all datasets. Especially, for DONGA dataset, the perplexity is reduced
by 16.7 percent when compared with LDA. While the margin of improvement is
not significantly large only for NSF dataset, we can say that STEPHY can put
an improvement into the VB inference framework of LDA-like topic models.

Further, we can compare STEPHY in Table 5 with Option 1 in Table 4. As
the left panel of Figure 1 shows, STEPHY conducts 10 iterations with Option 3
as a finalization after the 140 iterations with Option 1. By comparing STEPHY
in Table 5 with Option 1 in Table 4, it can be observed that this finalization
improves the perplexity for the following five datasets: DBLP (3027.6 ± 17.3 <
3065.9± 12.2), DONGA (2062.2± 26.7 < 2195.9± 23.1), TDT (1897.1± 31.7 <
2049.6±15.3), NSF (1684.1±18.8 < 1700.5±13.6), and YOMI (2671.8±33.3 <
2768.2± 20.1). We can contend that the finalization with Option 3 works.

The comparison experiment also shows that the increase in computation
cost brought by our approach is moderate. Table 5 includes the wall-clock
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computation time each compared method requires for each dataset. The com-
putation time of STEPHY is at most 1.46 times of LDA. With this increase in
computation time, we can achieve a significant improvement shown in Table 5.
While TOT requires less running time than STEPHY, TOT improves LDA only
for DBLP and NSF datasets with a small margin. We can say that STEPHY
provides a good balancing between generalization power and computation cost.
We additionally conducted a set of experiments also for the case K = 100, i.e.,
the case where the number of topics is 100. The results, omitted due to space
limitation, confirm our conclusion on the efficiency of STEPHY.

The right panel of Figure 1 gives an example of the topical trend extracted by
STEPHY from DBLP dataset. Each column corresponds to a different time point
and includes the words sorted in the decreasing order of the posterior parameters
ζtkw from top to bottom for one topic arbitrarily selected from the 50 topics.
We can interpret the parameter ζtkw as showing how popularly word vw is used
to express topic ck at time point st. In the right panel of Figure 1, two or three
top-ranked words keep their positions over many different time points. However,
some explicit topical trends can be observed under these top-ranked words. For
example, the word “web” shows a peak around five or six years ago from 2009,
and the word “mobile” shows a stable popularity in recent three or four years.
Further, the rapid growth of the popularity of the words “wireless” and “sensor”
may correspond to the recent rise of the trend related to wireless and sensor
networks. Since our approach provides a different word posterior distribution
for each time point, this type of trend analysis can be easily conducted only by
inspecting the estimated values of ζtkw along the time axis.

5 Conclusion

In this paper, we propose a simple time-dependent variant of LDA and an effec-
tive VB for the proposed model. STEPHY, our total schema for time-dependent
topic modeling, improves LDA and TOT in terms of test data perplexity and
only increases the computation time of LDA by at most a factor of 1.5.

With respect to the balancing between generalization power and computa-
tion cost, we can add the following discussion. STEPHY improves LDA only
based on the intra-epoch document similarity assumption, i.e., the assumption
that the documents having the same timestamp are semantically related to each
other. We do not explicitly model any interrelationships of word frequencies over
neighboring time points. Therefore, our model does not require an intricate in-
ference. In contrast, many time-dependent topic models are further based on the
inter-epoch similarity assumption, i.e., the assumption that the documents hav-
ing different but close timestamps are also semantically related, and intensively
exploit the topical dependency over neighboring time points [2,8,9,10,11,15,16].
Consequently, the inference requires detailed tricks and becomes less scalable.
Our experiments show that, with the intra-epoch similarity, STEPHY achieves
an efficient balance between computation cost and generalization power.



446 T. Masada et al.

STEPHY leaves intact the model construction related to latent topics in LDA.
Therefore, one possible future work is to combine our approach with the as-
sumption of infinite topics [13,11], though we should shift the balance against
computational efficiency and check if STEPHY can contribute more than the
nonparametric approach that takes advantage of intricate inference.

Another more challenging future work is to apply STEPHY to the proba-
bilistic models where each topic is characterized by a probability distribution
other than multinomial distribution. By steering the time-dependent estimation
of posteriors with some hyperparameter indexing strategies like those given in
Table 1, we can make a similar proposal for efficiently exploring the parameter
space also with respect to those models.
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Abstract. In opinion mining of product reviews, one often wants to
produce a summary of opinions based on product features. However, for
the same feature, people can express it with different words and phrases.
To produce an effective summary, these words and phrases, which are
domain synonyms, need to be grouped under the same feature. Topic
modeling is a suitable method for the task. However, instead of simply
letting topic modeling find groupings freely, we believe it is possible to
do better by giving it some pre-existing knowledge in the form of auto-
matically extracted constraints. In this paper, we first extend a popular
topic modeling method, called Latent Dirichlet Allocation (LDA), with
the ability to process large scale constraints. Then, two novel methods
are proposed to extract two types of constraints automatically. Finally,
the resulting constrained-LDA and the extracted constraints are applied
to group product features. Experiments show that constrained-LDA out-
performs the original LDA and the latest mLSA by a large margin.

Keywords: Opinion Mining, Feature Grouping, Constrained LDA.

1 Introduction

One form of opinion mining in product reviews is to produce a feature-based
summary [1]. In this model, product features are first identified, and positive and
negative opinions on them are aggregated to produce a summary of opinions on
the features. Product features are attributes and components of products, e.g.,
”picture quality”, ”battery life” and ”zoom” of a digital camera.

In reviews (or any writings), people often use different words and phrases to
describe the same product feature. For example, ”picture” and ”photo” refer
to the same feature for cameras. Grouping such synonyms is critical for opinion
summary. Although WorldNet and other thesaurus dictionaries can help to some
extent, they are insufficient because many synonyms are domain dependent. For
example, ”movie” and ”picture” are synonyms in movie reviews, but they are
not synonyms in camera reviews as ”picture” is more likely to be synonymous
to ”photo” while ”movie” to ”video”. This paper deals with this problem, i.e.,
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grouping domain synonym features. We assume that all the feature expressions
have been identified by an existing algorithm.

Topic modeling is a principled approach to solving this problem as it groups
terms of the same topic into one group. This paper takes this approach. However,
we believe instead of letting a topic modeling method to run completely unsu-
pervised, some pre-existing knowledge can be incorporated into the process to
produce better results. The pre-existing knowledge can be inputted manually or
extracted automatically. In this work, we extract such knowledge automatically.

Topic modeling methods can be seen as clustering algorithms that cluster
terms into homogeneous topics (or clusters). In the classic clustering research
in data mining, there is a class of semi-supervised clustering algorithms which
allow constraints to be set as prior knowledge to restrict or to guide clustering
algorithms to produce more meaningful clusters to human users [2, 3]. These con-
straints are in the forms of must-links and cannot-links. A must-link constraint
specifies that two data instances must be in the same cluster. A cannot-link
constraint specifies that two data instances cannot be in the same cluster.

In this paper, we incorporate these two types of constraints into the popular
topic modeling method LDA to produce a semi-supervised LDA method, called
constrained-LDA. To the best of our knowledge, this is the first constrained
LDA model which can process large scale constraints in the forms of must-
links and cannot-links. There are two existing work by Andrzejewski and Zhu
[4, 5] that are related to the proposed model. However, [4] only considers must-
link constraints. In [5], the number of maximal cliques grow exponentially in
the process of encoding constraints. Thus, [5] cannot process a large number of
constraints (see Section 2). As we will also see in the related work section, our
method of incorporating the two types of constraints is entirely different from
the way that they did.

Although we call them must-link and cannot-link constraints, they are treated
as ”soft” rather than ”hard” constraints in the sense that they can be violated
or relaxed in the topic modeling process. The relaxation mechanism is needed
because some constraints may not be correct especially when the constraints are
extracted automatically. In our case, all constraints are extracted automatically
with no human involvement. Thus, the constraints may be more appropriately
called probabilistic must-link and cannot-link constraints.

On extracting must-link and cannot-link constraints for our application, we
use two observations. First, we observed that a review sentence may comment
on several product features, e.g., ”I like the picture quality, the battery life,
and zoom of this camera” and ”The picture quality is great, the battery life is
also long, but the zoom is not good”. From either of the sentences, we can see
that the features, ”picture quality”, ”battery life” and ”zoom” are unlikely to
be synonyms or belonging to the same topic simply because people normally
will not repeat the same feature in the same sentence. This observation allows
us to extract many cannot-link constraints automatically. As for must-links, we
observed that two noun phrases that shared one or more words are likely to
fall into the same topic, e.g., ”battery life” and ”battery power”. Clearly, the
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2 methods for identifying constraints are not perfect, i.e., they may find wrong
constraints. The constraint relaxation mechanism comes to help.

Experiments show that the proposed constrained-LDA produces significantly
better results than the original LDA and the latest multilevel topic modeling
method, mLSA [6] which also uses LDA.

2 Related Work

This study is related to 2 research areas, topic modeling and synonym grouping.

Topic Modeling and LDA: Blei et al. [7] proposed the original LDA using
EM estimation. Griffiths and Steyvers [8] applied Gibbs sampling to estimate
LDA’s parameters. Since these works, many variations have been proposed. In
this paper, we only focus on the variations that add supervised information in
the form of latent topic assignments.

Blei and McAuliffe [9] introduced a supervised latent Dirichlet allocation
(sLDA). In sLDA, the authors added to LDA a response variable associated
with each document, such as document’s class label or document’s rating. Ra-
mage et al. [10] proposed a labeled LDA which considers the tag information
of the documents. Chang and Blei [11] developed a relational topic model by
adding the link information between documents. All these studies improve LDA
by adding the labeled information of documents, whereas our constrained-LDA
adds supervision to individual terms.

In [4], predefined topic-in-set knowledge (which means predefined terms for
certain topics) was added to supervise the topic assignment for individual terms.
Compared with our model, their model only used the must-link knowledge, not
cannot-links. Moreover, our model’s ”topic-in-set knowledge” is updated dynam-
ically after each Gibbs sampling, rather than fixed as predefined. Probability
information is also introduced to the ”topic-in-set knowledge”.

In [5], must-link and cannot-link constraints were encoded with a Dirichlet
Forest and were further incorporated into LDA. However, their model has a fa-
tal limitation, as illustrated in Section 3.3 of [5], namely, the number of maximal
cliques Q(r) in a connected component of cannot-links’ complementary graph
can grow exponentially O

(
3|r|/3

)
, where |r| is the size of cannot-links’ comple-

mentary graph. In our experiments (see Section 5), when 1/20 constraints in
Table 2 are used, Q(r) are 992 and 432 on camera and phone data sets, respec-
tively; when 1/5 constraints are used, Q(r) grow to 3,019,414 and 3,254,972, and
then the program, downloaded from [5] authors’ website1, crashed our server
computer (2 Quad-Core AMD Opteron Processors, 2.70 GHz, 16GB Memory).

Synonyms Grouping: In [12], the authors proposed a method based on several
similarity metrics to map discovered feature expressions to features in a given
feature taxonomy of a domain. This is very different from our work as we do
not have predefined feature taxonomy. The proposed method produces group-
ings automatically. [13] grouped product features using WordNet synonyms with
1 http://pages.cs.wisc.edu/ãndrzeje/research/df lda.html
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poor results. [14] extracted and clustered semantic properties of reviews based on
pros/cons annotations, which is different from our work of grouping product fea-
tures (also we do not have pros/cons). In [15], a semi-supervised learning method
is used. However, it requires the user to provide labeled examples, whereas this
study does not need any pre-labeled examples. It thus solves a different prob-
lem. In [6], product features were grouped using a multilevel latent semantic
association technique, called mLSA. At any level of their multilevel algorithm
the original LDA is directly applied. We propose constrained-LDA.

3 The Proposed Algorithm

The original LDA is a purely unsupervised model, ignoring any pre-existing
domain knowledge. However, as it is known in the semi-supervised clustering re-
search [2, 3], the pre-existing knowledge can guide clustering algorithms to pro-
duce better and/or more meaningful clusters. We believe that they can help LDA
as well, which is essentially a clustering algorithm. In our application domain,
the prior knowledge about product features can help group domain synonym fea-
tures, as explained in Section 1. In this section, we first give an introduction to
LDA and then present the proposed constrained-LDA which can use pre-existing
knowledge expressed as must-link and cannot-link constraints.

3.1 Introduction to LDA

A variety of probabilistic topic models have been proposed, and LDA is one
of the most popular topic modeling methods [16]. Similar to other methods,
LDA’s input is a term × document matrix, and it outputs the document-topic
distribution θ and topic-word distribution φ. In order to obtain the distributions
θ and φ, two main algorithms were proposed, EM [7] and Gibbs Sampling [8].
In this study, we use the Gibbs Sampling. For Gibbs sampling based LDA, the
most important process is the updating of topic for each term in each document
according to the probabilities calculated using Equation 1.

P (zi = k|wi = v, z−i,w−i) =
CWT

vk + β∑
v CWT

vk + V β

CDT
dk + α∑

k CDT
dk + Kα

(1)

where zi = k represents the assignment of the ith term in a document to topic k,
wi = v represents that the observed term wi is the vth term in the vocabulary of
the text corpus, and z−i represents all the topic assignments excluding the ith

term. CWT
vk is the number of times that term v is assigned to topic k, and CDT

dk

is the number of times that topic k has occurred in document d. Furthermore,
K is the number of topics (which is an input given by the user), V is the size of
the vocabulary, α and β are the hyper-parameters for the document-topic and
topic-word Dirichlet distributions, respectively. (α and β are set to 50/K and 0.01
by default.) After N iterations of Gibbs sampling for all terms in all documents,



452 Z. Zhai et al.

document-topic distribution θ and topic-word distribution φ are finally estimated
using Equations 2 and 3.

θdk =
CDT

dk + α∑
k CDT

dk + Kα
(2)

φvk =
CWT

vk + β∑
v CWT

vk + V β
(3)

3.2 Constrained-LDA

For constrained-LDA, constraints from the existing knowledge are added, and
each term in the constraints is assumed to belong to only one topic. Compared
with LDA, constrained-LDA has 2 more inputs, a set of must-link constraints and
a set of cannot-link constraints. The main idea of the proposed approach is to
revise the topic updating probabilities computed by LDA using the probabilities
induced from the constraints. That is, in the topic updating process (shown in
Equation 1), we compute an additional probability q(zi = k) from the must-links
and cannot-links for every candidate topic in 1, 2,, K, and then multiply it to
the probability calculated by the original LDA model as the final probability for
topic updating (see Equation 4).

P (zi = k|wi = v, z−i,w−i) = q(zi = k)
CWT

vk + β∑
v CWT

vk + V β

CDT
dk + α∑

k CDT
dk + Kα

(4)

As illustrated by Equations 1 and 4, q(zi = k) plays a key role in constrained-
LDA, because q(zi = k) represents intervention or help from pre-existing knowl-
edge of must-links and cannot-links. In this study, q(zi = k) is computed as
follows: For the given term wi, if wi is not constrained by any must-links or
cannot-links, {q (zi = k) |k = 1, . . . , K}=1; otherwise, {q (zi = k) |k = 1, . . . , K}
is calculated using the following 4 steps in Figures 1 and 2.

Fig. 1. Computing the weights for must-
topics and cannot-topics

Input:    wi;
               wi’s must-topics’ weights:   weight(wi, Tk), k=1,2,…,K;
               wi’s cannot-topics’ weights: weight(wi, tk), k=1,2,…,K;
Output: {q(zi=k)|k=1,2,…,K}

 1.    Initial all {q(zi=k)|k=1,2,…,K} to zero 
 2.    //Step 3 - Aggregate 
 3.    for (k in {1,2,…,K}) 
 4.          if (k in { wi’s must-topics }) q(zi=k) += weight(wi, Tk)
 5.          if (k in { wi’s cannot-topics }) q(zi=k) -= weight(wi, tk)
 6. 
 7.    //Step 4 - Normalize and relax
 8.    max = {q(zi=k)|k=1,2,…,K}max
 9.    min = {q(zi=k)|k=1,2,…,K}min
10.   for (k in {1,2,…,K})
11.         ���� � �� �

	�
�������

�������

12.         ���� � �� � ���� � �� � � � �� � ��

Fig. 2. Probability aggregation and
relaxation
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Step 1 - get the must-topics weight and cannot-topics weight of wi. Here must-
topics mean the topics that the term wi should be grouped into, while cannot-
topics mean the topics that the term wi should not be grouped into. For the given
term wi, its must-linked and cannot-linked terms are first found by querying
must-links and cannot-links stores. Second, the topics of these terms are further
obtained from the topic modeling. Then, we can obtain wi’s must-topics and
cannot-topics weights.

For example, wi’s must-linked and cannot-linked terms are M1, M2 and C1,
C2, C3 respectively. Furthermore, M1, M2 and C1, C2, C3 are assigned to topic k
by LDA (denoted by M1[k], M2[k] and C1[k], C2[k], C3[k]). So, for topic k, wi’s
must-topics and cannot-topics weights are weight(wi, Tk (|{M1, M2}|))=weight
(wi, Tk (2))=2 and weight(wi, tk (|{C1, C2, C3}|))=weight(wi, tk (3))=3, respec-
tively. Here, weight(wi, Tk) or weight(wi, tk) is the weight that wi should or
should not be assigned to topic k; Tk (2) represents there are 2 linked terms
being assigned to topic k in the must category, and tk (3) represents there are 3
linked terms being assigned to topic k in the cannot category.

Step 2 - adjust the relative influences between must-link category and cannot-
link category. In extracting the two types of constraints, the qualities of must-
links and cannot-links may be different from each other. We use a damping factor
λ to adjust the relative influences based on the constraint qualities. Specifically,
all the must-topics’ weights are multiplied by λ, while the cannot-topics’ weights
are multiplied by (1- λ).

Following the above example, Tk (2) is adjusted to Tk (2 × λ) while tk (3) to
tk (3 × (1 − λ)). In this study, the default value of λ is empirically set to 0.3.

Based on the results of above two steps, Steps 3 and 4 are fur-
ther proposed to convert the weights of must-topics and cannot-topics to
{q (zi = k) |k = 1, . . . , K}, as shown in Figure 2.

Step 3 - aggregate the weights for each candidate topic. For the given term wi, its
candidate topics can fall into one of the three types, must-topics, unconstrained
topics and cannot-topics. Recall must-topics mean the topics that wi should be
assigned to while cannot-link means the topics that wi should not be assigned
to. Thus, for calculating the probability that wi will be assigned to candidate
topic k, if k is in must-topics, we add weight (wi, Tk) to q (zi = k) in order to
enhance the probability that wi is assigned to topic k; if k is in cannot-topics,
we subtract weight (wi, tk) to q (zi = k) in order to decrease the probability that
wi is assigned to topic k (lines 2 to 6 in Figure 2).

In the above example, for the candidate topic k, the weight q (zi = k) is:
0 + weight (wi, Tk (2 × λ)) −weight (wi, tk (3 × (1 − λ))) = 2× λ− 3× (1 − λ).

Step 4 - normalize and relax the weight of each candidate topic. Since the
constraints are not guaranteed to be correct especially when the constraints are
extracted automatically, there should be a parameter to adjust the constraint’s
strength to the model according to the quality of the constraints. When the
constraints are completely correct, the model should treat these constraints as
hard-constraints; when the constraints are all wrong, the model should discard
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them. In order to achieve this aim, {q (zi = k) |k = 1, . . . , K} are adjusted by
the relaxation factor as follows:

Before being relaxed, {q (zi = k) |k = 1, . . . , K} are normalized to [0, 1] using
Equation 5 (lines 8 to 11 in Figure 2). In Equation 5, max and min represent
the maximum and minimum values of {q (zi = k) |k = 1, . . . , K}, respectively.

q (zi = k) =
q (zi = k) − min

max − min
(5)

Then, {q (zi = k) |k = 1, . . . , K} are relaxed by the relaxation factor based on
Equation 6 (line 12 in Figure 2). The default value of is set to 0.9 in our study
(see the evaluations in Section 5.6).

q (zi = k) = q (zi = k) × η + (1 − η) (6)

Note that, for our application of grouping product features, each product feature
is considered as a term. Moreover, only φ needs to be estimated by Equation 3
to output a set of topics and each topic contains a set of terms which belong to
the topic.

4 Constraint Extraction

We now come back to our application and discuss how to extract constraints
automatically. The general idea has been discussed earlier. For completeness, we
briefly discuss them here again.

Must-link: If two product features fi and fj share one or more words, we
assume them to form a must-link, i.e., they should be in the same topic, e.g.,
”battery power” and ”battery life”.

Cannot-link: If two product features fi and fj occur in the same sentence
and they are not connected by ”and”, the two features form a cannot-link. The
reason for this is that people usually do not repeat the same feature in the
same sentence. Features linked by ”and” are not used as our experience showed
that ”and” can be quite unsafe. It frequently links features from the same topic,
especially product names based features.

5 Experimental Evaluation

In this Section, we evaluate the proposed constrained-LDA model in a variety
of settings, and compare it with the original LDA and the recent multilevel
mLSA. We do not compare with the similarity based method in [12] because
their technique requires a given feature taxonomy, which we do not use.

5.1 Data Sets

In order to demonstrate the generality of the proposed algorithm, experiments
have been conducted in two domains: digital camera and cell phone. We used
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two data sets with feature annotations from the Customer Review Datasets2,
which have been widely used by researchers for opinion mining. We selected the
reviews for digital cameras and cell phones. Their feature annotations are used
in our system. Since these two data sets are too small for topic modeling, we
crawled many other camera and phone reviews from Amazon.com. The details
of each data set are given in Table 1.

Table 1. Summary of the data sets

#Reviews #Sentences #Vocabulary

Camera 2,400 20,628 7,620
Phone 1,315 18,393 7,376

5.2 Gold Standard

Since the product features in the Customer Review Datasets have already been
annotated by human annotators, these annotated product features are grouped
manually to form a gold standard for each data set. For the digital camera data
set, we group the features into 14 topics, according to the camera’s taxonomy
published by Active Sales AssistantTM, a product of Active Decisions, which
is available at www.activebuyersguide.com [12]. For the cell phone data set, the
topics published by Google products are adopted, and all the cell phone features
are grouped into 9 topics.

5.3 Evaluation Measure

The performance of our product features grouping algorithm is evaluated using
Rand Index [17], which has been used by several researchers [14, 18, 3]. Rand
Index is also the evaluation measure used in [6].

5.4 Compared with LDA

[5] proposed the most recent LDA model (called DF-LDA) that can consider
must-link and cannot-link constraints. However, as explained in Section 2.1, DF-
LDA cannot process a large number of constraints. Due to DF-LDA’s limitation,
we only report the comparison results with the original LDA. Both the original
LDA and the proposed constrained-LDA were run using different numbers of
topics, 20, 40, 60, 80, 100 and 120, in the two domains. Note that LDA requires
the number of topics to be specified by the user. Note also we do not report
the results of using the original numbers of topics (14 and 9) for the two data
sets as they were poorer (see the trends in Figure 3). Using only must-links,
only cannot-links, and their combination were all experimented. The number of
constraints extracted from each data set is given in Table 2. All the results are
shown in Figure 3.
2 http://www.cs.uic.edu/̃liub/FBS/sentiment-analysis.html
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Table 2. Number of the extracted constraints

#Must-links #Cannot-links

Camera 300 5172
Phone 184 5009
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Fig. 3. RI results of constrained-LDA and the original LDA

From Figure 3, we can see that the patterns are about the same for differ-
ent methods on different data sets, which show that the results are consistent.
Below we make some additional observations: (1 )All the constrained methods
(LDA+cannot, LDA+must and LDA+must+cannot) perform much better than
the original LDA model (LDA). For smaller numbers of topics, the improve-
ments were more than 10% for the digital camera corpus, and around 7% for
the cell phone corpus. With more topics, the improvements are slightly less, but
still 7% for the digital camera and 4% for the cell phone. (2 )Both cannot-links
(LDA+cannot) and must-links (LDA+must) perform well, although cannot-links
are slightly more effective than must-links on average. This phenomenon indi-
cates that our assumption about cannot-link is reasonable and the quality of the
extracted cannot-links is good. When the number of topics is small or large, the
must-links are slightly better than cannot-links. We believe the reason is that in
these two ends, cannot-link terms were either forced into the same topics (for a
small number of topics), or easily spread into too many topics. The original LDA
also shows this behavior, which is fairly easy to understand. (3 )The combina-
tion of must-links and cannot-links (LDA+must+cannot) consistently outper-
forms each individual type of constraints alone (LDA+cannot and LDA+must).
Although the margins of improvements were not very large, they were consis-
tent. This also indicates that the must-link and cannot-link constraints are al-
ready quite effective individually.(4 )In practice, it is often more effective to use
a smaller number of topics, which are easy to understand and to handle by the
users. In both cases, 40 topics seem to be optimal.

In summary, we can see that unsupervised topic modeling can be improved by
adding must-link and cannot-link constraints. Note that each feature expression
is considered as a term in all our experiments.
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5.5 Comparing with mLSA

As mentioned earlier, the recent multilevel latent semantic association method
mLSA [6] solves the same problem as we do. [6] shew that mLSA performs better
than the existing methods, e.g., LDA-based and Kmeans-based algorithm. We
thus only compare the proposed constrained-LDA with mLSA, but not other
existing methods. The comparisons are made based on both the digital camera
corpus and the cell phone corpus. The results are shown in Figure 4. We only
used 40 topics, which appeared to be the optimal number among our tested topic
numbers in Figure 3.

As demonstrated in Figure 4, mLSA(2: red bar) achieves encouraging re-
sults by transforming the input document content before applying LDA. Our
constrained-LDA model does not make any efforts to re-organize or transform
the input document content, and our input is the set of original reviews. How-
ever, the results produced by constrained-LDA(LDA+cannot, LDA+must and
LDA+must+cannot) are all substantially better than those of mLSA. This
observation shows the positive influence of constraints.
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5.6 Influence of Parameters

Compared to the original LDA model, the proposed constrained-LDA has two
additional parameters, i.e., damping factor λ and relaxation factor η, as men-
tioned in Section 3.2. In this section, we discuss their influences to the overall
performance.

Influence of the damping factor - λ: Recall that damping factor λ is used to ad-
just the relative influences of must-links and cannot-links on the proposed model.
In Figure 5, λ=0 means the proposed model is only constrained by cannot-links,
whereas λ=1 means that the proposed model is only constrained by must-links.
That is, larger λ values mean more influences of must-links and less influence of
cannot-links. As shown in Figure 5, with increased influence of must-links over
cannot-links, the performance of constrained-LDA improves slightly. However,
when there is only must-links (λ=1), the performance drops sharply to the low-
est point. This illustrates the synergetic effect of must-links and cannot-links:
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they help each other. Since the λ values after 0.3 produce very similar results,
we used λ=0.3 as the default for λ. The experimental results in Figures 3 and 4
all used this default damping factor.

Influence of the relaxation factor - η: In this study, the relaxation factor η
represents the strength of the constraints on the LDA model. When η=0, it
means that no constraint is added to the LDA model. Then, constrained-LDA
reduces to the original LDA. When η=1, it means that both must-link and
cannot-link constraints become hard constraints and cannot be violated. The
influence of η on the overall performance is shown in Figure 6.
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Fig. 6. η’s influence on the overall performance (#topics = 40)

As shown in Figure 6, with the growth of the strength of the constraints,
the performances of LDA+cannot, LDA+must and LDA+must+cannot increase
considerably. This observation not only shows that the constraints clearly help
the performances of topic modeling (or LDA), but also shows that the qualities of
the extracted must-links and cannot-links are quite good, especially the extracted
cannot-links. In fact, using both must-link and cannot-link constraints, when η=
1, the results are the best for both the digital camera data and cell phone data.
We use η=0.9 as the default in the system as in general one may not be able
to extract very high quality constraints. In our experiments reported earlier in
Figures 3, 4 and 5, the default η= 0.9 was used.

6 Conclusions

This paper enhanced the popular topic modeling method LDA with the ability
to consider existing knowledge in the form of must-link and cannot-link con-
straints. In our application, we experimented with two opinion mining data sets
to group product feature synonyms, and the proposed Constrained-LDA outper-
formed the existing methods by a large margin, which showed that constraints
as prior knowledge can help unsupervised topic modeling. Moreover, this paper
also proposed two methods to extract the two types of constraints automatically.
Experimental results showed that their qualities were high (see Figure 6).



Constrained LDA for Grouping Product Features in Opinion Mining 459

References

1. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of
SIGKDD, pp. 168–177 (2004)

2. Basu, S., Davidson, I., Wagstaff, K.: Constrained clustering: Advances in algo-
rithms, theory, and applications. Chapman & Hall/CRC, Boca Raton (2008)

3. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering
with background knowledge. In: Proceedings of ICML, pp. 577–584 (2001)

4. Andrzejewski, D., Zhu, X.: Latent Dirichlet Allocation with topic-in-set knowledge.
In: Proceedings of NAACL HLT, pp. 43–48 (2009)

5. Andrzejewski, D., Zhu, X., Craven, M.: Incorporating domain knowledge into topic
modeling via Dirichlet forest priors. In: Proceedings of ICML, pp. 25–32 (2009)

6. Guo, H., Zhu, H., Guo, Z., Zhang, X., Su, Z.: Product feature categorization with
multilevel latent semantic association. In: Proceedings of CIKM, pp. 1087–1096
(2009)

7. Blei, D., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine
Learning Research 3(3), 993–1022 (2003)

8. Griffiths, T., Steyvers, M.: Finding scientific topics. Proceedings of the National
Academy of Sciences 101(Suppl 1), 5228–5535 (2004)

9. Blei, D., McAuliffe, J.: Supervised topic models. Advances in Neural Information
Processing Systems 20, 121–128 (2008)

10. Ramage, D., Hall, D., Nallapati, R., Manning, C.: Labeled, LDA: A supervised
topic model for credit attribution in multi-labeled corpora. In: Proceedings of
EMNLP, pp. 248–256 (2009)

11. Chang, J., Blei, D.: Relational topic models for document networks. In:
Proceedings of the 12th International Conference on Artificial Intelligence and
Statistics(AISTATS), Clearwater Beach, Florida, USA (2009)

12. Carenini, G., Ng, R., Zwart, E.: Extracting knowledge from evaluative text. In:
Proceedings of International Conference on Knowledge Capture, pp. 11–18 (2005)

13. Liu, B., Hu, M., Cheng, J.: Opinion Observer: Analyzing and Comparing Opinions
on the Web. In: Proceedings of WWW, pp. 342–351 (2005)

14. Branavan, S.R.K., Chen, H., Eisenstein, J., Barzilay, R.: Learning document-level
semantic properties from free-text annotations. In: Proceedings of ACL, pp. 569–
603 (2008)

15. Zhai, Z., Liu, B., Xu, H., Jia, P.: Grouping Product Features Using Semi-supervised
Learning with Soft-Constraints. In: Proceedings of COLING (2010)

16. Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Handbook of Latent
Semantic Analysis, pp. 424–440 (2007)

17. Rand, W.: Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical Association 66(336), 846–850 (1971)

18. Cardie, C., Wagstaff, K.: Noun phrase coreference as clustering. In: Proceedings of
the Eleventh National Conference on Artificial Intelligence, pp. 82–89 (1999)



Semantic Dependent Word Pairs Generative

Model for Fine-Grained Product Feature Mining

Tian-Jie Zhan and Chun-Hung Li

Department of Computer Science
Hong Kong Baptist University

{tjzhan,chli}@comp.hkbu.edu.hk

Abstract. In the field of opinion mining, extraction of fine-grained
product feature is a challenging problem. Noun is the most important
features to represent product features. Generative model such as the
latent Dirichlet allocation (LDA) has been used for detecting keyword
clusters in document corpus. As adjectives often dominate review corpus,
they are often excluded from the vocabulary in such generative model for
opinion sentiment analysis. On the other hand, adjectives provide useful
context for noun features as they are often semantically related to the
nouns. To take advantage of such semantic relations, dependency tree is
constructed to extract pairs of noun and adjective with semantic depen-
dency relation. We propose a semantic dependent word pairs generative
model for pairs of noun and adjective for each sentence. Product features
and their corresponding adjectives are simultaneously clustered into dis-
tinct groups which enable improved accuracy of product features as well
as providing clustered adjectives. Experimental results demonstrated the
advantage of our models with lower perplexity, average cluster entropies,
compared to baseline models based on LDA. Highly semantic cohesive,
descriptive and discriminative fine-grained product features are obtained
automatically.

Keywords: Product feature mining, semantic dependency, generative
model.

1 Introduction

Challenge in opinion mining is to identify the precise object on which the opinion
is expressed that is finding fine-grained product features from the user reviews.
For example, ”I do not like the camera with low memory capacity.”, the au-
thor expressed its negative opinion on the camera memory capacity rather than
the camera as a whole, but the classical approach will classify the sentence into
negative category. To overcome the shortcomings, feature-based opinion mining
[1] proposed to extract such a pair of noun and adjective that is adjacent to
each other so that noun can indicate a product feature and adjective indicates
the opinion orientation. But standard approaches take each noun as a unique
product feature rather than categorize the nouns into clusters by their semantic
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relevance to each other so that each of the clusters could represent a discrimina-
tive product feature. To extract fine-grained product feature, similarity measures
between the nouns are designed based on manual annotated tags and ontology
dictionary such as WordNet [3,4]. Then classical machine learning approaches are
used to categorize the nouns into different product features. In text processing
domain, generative models are efficient for document clustering and word clus-
tering, e.g., latent Dirichlet allocation (LDA) [10]. A local version of LDA [3] has
been proposed to categorize the noun words as the product feature. A multi-level
latent semantic association model [4] extracted fine-grained product features by
exploring the sliding window based context of each noun but it does not consider
semantic relevance between the noun and the words in the context. Though there
is some work [6] taking advantage of semantic relations for sentiment classifica-
tion, most of the previous works [1,2,3] on extracting product features only take
account of nouns or with a little bit utilization of non-nominal terms such as ad-
jectives. Even if non-nominal terms are considered, but their semantic relevance
to the nouns gets less attention. To utilize the non-nominal terms, a typical ap-
proach [5] defined the noun’s context features as its co-occurring words in noun
phrases and then use a graph clustering method on the co-occurrence relations
between nouns and their context features to categorize the noun words. Another
similar approach [7] is to apply non-negative matrix factorization method on the
co-occurrence of nouns and their semantic relevant context features. But both
of them disregard the direct co-occurrence between nouns. To combine the co-
occurrence of nouns and semantic dependencies between nouns and other terms,
this paper contributes to propose a semantic dependent word pair generative
model to take advantage of nouns, adjectives and their semantic relevance for
the extraction of fine-grained product features.

2 Data Representation and Problem Definition

Bag-of-word is a popular representation of document in text processing but is
not sufficient for feature-based opinion mining [2]. To extract relation between
product feature and opinions on the feature, noun-adjective pairs are extracted
from sentences in [1,2]. In their work, moving window method are used to capture
text pieces following a pattern where the word at window’ center is a noun and
adjectives within the window are opinionated terms to evaluate the product
feature indicated by the noun. For example, it can be extracted that pairs such
as 〈 “restaurant”, “good”〉, 〈“service”, “friendly”〉 and 〈“price”, “reasonable”〉
from the sentence shown in Fig.1. But syntactical approaches may extract noisy
pairs which do not have a dependency relation. For example, bad pairs like 〈“food
quality” ,“friendly”〉 and 〈“service”, “reasonable”〉 would be included by moving
window of size two, which may deliver negative effect on extraction of product
feature. Another problem is that unigram noun is not sufficient to represent a
product feature such as “food quality” as shown in Fig.1.

A dependency tree is represented as a set of dependencies {wh
i , wm

i , ri} where
head node wh

i and modifier node wm
i forms a head-modifier dependency of ri
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Fig. 1. Illustration of dependency tree and semantic neighborhood structure. Top is the
dependency tree of a sentence and bottom is the associated semantic neighbors struc-
ture where square box contains the noun fragments and elliptical box is the semantic
neighbors of associated noun fragments with arrow represents dependency.

type relation as shown in the top half of Fig.1. So the noun compound is defined
with syntactical rules by largest sequence of consecutive noun words with each
word tagged as NN by parts-of-speech (POS) or such a noun sequence including
word “of”. By merging each word in a noun compound, the dependency tree
obtains a new node representing the noun compound, denoted as noun node.
And semantic neighbors of noun node are the nodes with adjacent dependency
relation to the associated noun compound in the dependency tree, e.g., “good”
and “means” as the semantic neighbor of “restaurant” in Fig.1. Thereafter a
semantic structure comprised of noun compound and their semantic neighbor
nodes can form a semantic neighborhood structure, e.g., the bottom half in
Fig.1 where an arrow suggests a neighboring relation between a noun fragment
and a semantic neighbor with associated POS tag following the lexicons for each
node. Here POS Tag is specific to denote the noun fragments instead of noun
word only.

We use word “noun” to denote noun or noun compounds discussed above
and “neighbor” is used to denote the semantic neighbor. To concentrate on the
generative process to produce pairs of noun and neighbor, only the most typical
neighbors are considered, including neighbors with POS tag “JJ”, “JJR”,“JJS”,
“VBN” and “VBG”, namely, adjectives and adjectival-verbs, as shown in

Table 1. Noun-neighbor pairs generation rules from dependency tree of a sentence

Sub-tree of the semantic neighbors structure Pairs generated

〈wH/NN, wM/Tag〉:Tag=JJ|JJS|JJR|VBN|VBG 〈wH , wM 〉
〈wR/VB, wH/NN〉, 〈wR/VB, wJ/Tag〉:

Tag=JJ|JJS|JJR, wR is a link verb
〈wH , wJ 〉

〈wR/MD, wH/NN〉, 〈wR/MD, wV /V〉, 〈wV /VB, wJ/Tag〉:
Tag=JJ|JJS|JJR, wR is a link verb

〈wH , wJ 〉
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Table 1. The resultant semantic dependent word pairs from Fig.1 are
〈“restaurant”, “good”〉, 〈“food quality”, “excellent”〉, 〈“service”, “friendly”〉 and
〈“price”, “reasonable〉. Given a collection of sentences related to some product
domain such as “restaurant”, “hotel”, the sentences are assumed to be prepro-
cessed into a triple stream {〈di, wn

i , ws
i 〉} where di, wn

i , ws
i are the sentence

index, noun phrase drawn from a vocabulary VNN and the associated semantic
neighbors drawn from vocabulary VSNei respectively. Also a sentence s can be
represented as a set of pairs { wn

i , ws
i | di=s}. Given the processed data, now the

problem is given as below.

Problem Definition: Given the triple stream {〈di, wn
i , ws

i 〉}, the problem is
how to extract representative and semantic relevant lexicons from the noun vo-
cabulary VNN and adjective vocabulary VS to represent and distinguish different
fine-grained product features.

Different with the unigram representation, our problem should deal with pairs
of noun and adjective with semantic relevance, from which cluster of nouns and
adjectives should be obtained for each fine-grained product feature. Unlike pre-
vious work [3] to formalize the noun words clustering as a bi-clustering problem
and appeal to LDA, our problem is to generate words from two independent
vocabularies of noun and adjective. Our institution is to extend the LDA into
a “variant” with semantic dependency between pairs of Part-of-speech tokens,
which will be discussed in detail in the following sections.

3 Semantic Dependent Word Pair Generative Model

To extract the fine-grained product feature, we propose our approach with a
generative mode. The semantic dependent word pair generative model (SDWP)
can be regarded as an extension of Latent Dirichlet Allocation (LDA). Each
cluster learned by the model would be regarded as a product feature. The orig-
inal LDA models document as a mixture of topics (clusters) with each topics
comprised of words in a vocabulary. As sentence based analysis is more suitable
for fine-grained product feature extraction, LDA mentioned in this paper will be
referred as sentence based LDA. The basic assumption made in LDA is the ex-
changeability between words in a sentence. To include the semantic dependency
between words into LDA, the SDWP model assumes that sentence is compose by
a mixture of exchangeable nouns and another mixture of exchangeable seman-
tic neighbors. Based on such assumption, SDWP could be proposed to generate
word pairs {〈wn

i , ws
i 〉} for each sentence.

Suppose we have a stream of triples {〈di, wn
i , ws

i 〉} from ND sentences, given
hyper-parameters H = {α, βNN , βS} for Dirichlet smoothing and the pre-defined
number of clusters k, generative process of SDWP can be depicted as below.

1. For each cluster f , draw multinomial distribution φ(f) ∼Dirichlet(βNN)
2. For each cluster f , draw multinomial distribution ψ(f) ∼Dirichlet(βS)

3. Given sentence s = di , draw multinomial distribution θ(s) ∼Dirichlet(α)



464 T.-J. Zhan and C.-H. Li

Draw a cluster index z from distribution θ(s),
Draw a noun phrase wn

i from distribution φ(z),
Draw a semantic neighbor ws

i from distribution ψ(z),
Get triple 〈s, wn

i , ws
i w〉.

The graphical model of SDWP can be illustrated in Fig.2. Recalling the graphical
model definition in Fig.2, given the cluster index z, the sentence index s are
independent with wn

i and ws
i respectively as in the case of LDA. It is consist

with the results in [7] that wn
i and ws

i are independent conditional on the cluster
index.

Fig. 2. Graphical model of SDWP where circle nodes represent the variables of the
model with the filled black one as the observed variables. N is the total number of such
triples.

4 Inference and Parameter Estimation

As described above about the SDWP, given the hyper-parameter H and a collec-
tion of sentences S = {ds}s, we can calculate the evidence likelihood of tokens
streams comprised by noun-neighbor pairs as W={〈wn

i , ws
i 〉}|i=1:1:N below. The

sentence index for each pair 〈wn
i , ws

i 〉 is denoted by di. We would start the study
of the probability of the model from the parameters θ={θ(s)}s, φ={φ(i)}i and
ψ={ψ(i)}i which is leading the generative process. Some word counting statistics
used for inference is listed in Table 2.

Table 2. Definition of some word counts used in the inference

Denotation Comment

n(d, c) Counts of number of pairs assigned to cluster c in sentence d

n(c, i, ·) Counts of assignment to cluster c of the ith noun in VNN

n(c, ·, j) Counts of assignment to cluster c of the jth neighbor term in VS

As shown in Fig.2, given the sentence s, zi is drawn from θ(s). Then given the
topic zi, noun wn

i and adjective ws
i are drawn from φ(zi) and ψ(zi) respectively,

where for each sentence θ(s) is a K-dimension vector {θs,1, θs,2, . . . , θs,K} drawn
from a Dirichlet distribution conditional on hyper-parameter α={α1, α2, . . . , αK}
as in (1):
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p(θ(s) | H) = p(θ(s) | α) =
Γ (
∑K

i=1 αi)∏K
i=1 Γ (αi)

θα1
s,1, θ

α2
s,2, . . . , θ

αK

s,K . (1)

where Γ is Gamma function, αi is positive meanwhile θs,i > 0 and subjected to∑
i θs,i=1 .
Similarly, given parameter H with βNN = {βNN

1 , βNN
2 , . . . , βNN

LNN
} and βS =

{βS
1 , βS

2 , . . . , βS
LS

}, the probability density function of φ and ψ can be computed
as in (2) and (3),

p(φ | H) = p(φ | βNN) =
K∏

i=1

Γ (
∑LNN

j=1 βNN
j )∏LNN

j=1 Γ (βNN
j )

φ
βNN
1

i,1 , φ
βNN
2

i,2 , . . . , φ
βNN

LNN

i,LNN
, (2)

p(ψ | H) = p(ψ | βS) =
K∏

i=1

Γ (
∑LS

j=1 βS
j )∏LS

j=1 Γ (βS
j )

ψ
βS
1

i,1, ψ
βS
2

i,2, . . . , ψ
βS

LS

i,LS
. (3)

where φi = {φi,1, φi,, . . . , φi,LNN} and ψi = {ψi,1, ψi,, . . . , ψi,LS} are the param-
eters of multinomial distribution of the ith cluster, associated with noun and
semantic neighbor vocabulary respectively, with constraints of

∑
j φi,j = 1 and∑

j ψi,j = 1 while each φi,j and ψi,j are positive, for each cluster i. Here LNN

and LS are the size of nouns vocabulary VNN and semantic neighbor terms
vocabulary VS respectively.

Given the parameters θ, for each associated pair 〈wn
i , ws

i 〉, it can be drawn the
latent variables zi indicating which cluster the pair belong to. The stream of {zi}
is denoted by Z. Based on the model illustrated in Fig.2, the joint probability
of Z and W and the parameters {θ, φ, ψ} can be written as

p(W,Z, θ, φ, ψ |H)= p(θ |H)p(φ |H)p(ψ |H)
∏
i∈W

p(zi |θ, s)p(wn
i |zi, φ)p(ws

i |zi, ψ). (4)

From the multinomial distribution with parameter θ(s), it is easy to know that
p(zi | θ, s) equals to θs,zi . Similarly p(wn

i | zi, φ) equals to φzi,wn
i

and p(ws
i | zi, ψ)

equals to ψzi,ws
i
.

Substituted with (1) (2) and (3), (4) can be rewritten as

p(W, Z, θ, φ, ψ |H)= C

K∏
i=1

∏
s∈S

θ
αi+n(s,i)
s,i

LNN∏
j=1

φ
βNN

j +n(i,j,·)
i,j

LS∏
j=1

ψ
βS

j +n(i,·,j)
i,j . (5)

where C is the normalized factor calculated as

C =
Γ (
∑K

i=1 αi)∏K
i=1 Γ (αi)

Γ (
∑LNN

j=1 βNN
j )∏LNN

j=1 Γ (βNN
j )

Γ (
∑LS

j=1 βS
j )∏LS

j=1 Γ (βS
j )

. (6)

With the probability discussed above, we can infer the latent variable {zi} and
parameters H with details in the subsections.
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4.1 Latent Variable Inference

Similar to LDA, the latent variables is intractable for inference. So approximating
approaches have been proposed to infer the latent variables with LDA such as
Gibbs sampling and variant method. In this paper, we employ collapse Gibbs
sampling for inference of the latent variables. Parameters {θ, φ, ψ} could be
integrated out on the joint probability (6) as

p(W,Z | H)=
∫ ∫ ∫

C

K∏
i=1

∏
s∈S

θ
αi+n(s,i)
s,i

LNN∏
j=1

φ
βNN

j +n(i,j,·)
i,j

LS∏
j=1

ψ
βS

j +n(i,·,j)
i,j dθdφdψ.

which can be computed as

p(W,Z |H)= C(
∏
s∈S

K∏
i=1

Γ(αi+n(s, i))

Γ (
K∑

i=1

αi+N)

)(

K∏
i=1

LNN∏
j=1

Γ(βNN
j +n(i, j, ·))

Γ(
LNN∑
j=1

βNN
j +N)

)(

K∏
i=1

LS∏
j=1

Γ(βS
j +n(i, ·, j))

Γ(
LS∑
j=1

βS
j +N)

).

(7)

In Gibbs sampler, the essence is to randomly reserve one variable for sampling
while assuming the others are the true samples drawn from the model. We denote
z−i as subset of Z excluding zi. The posterior probability of zi conditioned on
H ,W and z−i can be compute as

p(zi =k |z−i,W,H)=
n(di, k)− 1+αk

K∑
j=1

αj +N−1

n(k, wn
i , ·)− 1+βNN

wn
i

LNN∑
j=1

βNN
j +N − 1

n(k, ·, ws
i ) − 1+βS

ws
i

LS∑
j=1

βS
j +N − 1

. (8)

4.2 Parameter Estimation

Similar to LDA, giving the sampling results of Z, the joint probability of
parameters {θ, φ, ψ} can be written as

p(θ, φ, ψ | Z, W, H)∝ C

K∏
i=1

∏
s∈S

θ
αi+n(s,i)
s,i

LNN∏
j=1

φ
βNN

j +n(i,j,·)
i,j

LS∏
j=1

ψ
βS

j +n(i,·,j)
i,j ,

which implies the conditional independency among θ, φ and ψ in between and
indicates that

θs | Z, W, H ∼Dirichlet(α1 + n(s, 1), α2 + n(s, 2), . . . , αK + n(s, K)),
φi | Z, W, H ∼Dirichlet(βNN

1 +n(i, 1, ·), βNN
2 +n(i, 2, ·), . . . , βNN

LNN
+n(i, LNN, ·)

ψi | Z, W, H ∼Dirichlet(βS
1 + n(i, ·, 1), βS

2 + n(i, ·, 2), . . . , βS
LS

+ n(i, ·, LS))

where φi = {φi,1, φi,2, . . . , φi,LNN}, ψi = {ψi,1, ψi,2, . . . , ψi,LS}.
Using expectation of Dirichlet distribution, E(Dir(α))=〈α1, α2, . . . , αK〉/∑
i αi, on the results obtained above, the parameters can be estimated as
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θs,i =
αi + n(s, i)∑

j αj + N
, φi,j =

βNN
j + n(i, j, ·)∑

t βNN
t + n(i, t, ·) , ψi,j =

βS
j + n(i, ·, j)∑

t βS
t + n(i, ·, t) . (9.1)

4.3 Hyper-parameter Estimation

As discussed in [14], LDA is effective and robust enough but sensitive to different
setting of hyper-parameters such as α. To eliminate the influence of improper
setting of hyper-parameter to the models, we follow the rules of equation (8)
to update the hyper-parameter α. In this approach, hyper-parameters {αi} is
represented by α0 and mi where α0 is the sums of {αi} and mi=αi/α0, where
probabilistic distribution {mi} is assumed to be drawn from a Poisson distribu-
tion with α0 drawn from a Gamma distribution. So given the topical variable
samples from Gibbs sampling, hyper-parameters can be updated by

αNew
i =

∑
s∈S

∑n(s,i)
j=1 1/(αold

i + j − 1)∑
s∈S

∑|s|
j=1 1/(αold

i + j − 1)
, (9.2)

where |s| is the number of pairs in sentence s.

5 Evaluation

The SDWP model is approximated by Gibbs sampling method to infer the clus-
ter index of each pairs 〈wn

i , ws
i 〉. With the samplers drawn from Gibbs sampling

process, the model’s parameters can be estimated by (9.1). θs can be inter-
preted as the mixture weights of cluster occurring in sentence s. φi and ψi are
the nouns and semantic neighbor’s occurring probability distribution in the ith

cluster respectively. To evaluate the clustering results, three measures are used
including perplexity, average clustering entropy (ACE) and normalized mutual
information index (NMI) which will be discussed below.

5.1 Perplexity

Perplexity is an effective measure for generative language models. It is defined
as the exponential of geometrical mean of the probability of each word-pair’s
occurrence. The model learned from the training corpus is denoted by MTrain =
{θT , φT , ψT }. The likelihood of the testing sentences WTest given the hyper-
parameters and models can be calculated by integrating out the latent variables
and the parameters as

p(WTest | MTrain, H) =
∏

i′∈WTest

K∑
k=1

p(z = k | θTest)φT
k,wn

i’
ψT

k,ws

i’
. (10)

Here θTest is estimated by applying equation (9.1) on samples drawn from Gibbs
sampling on the testing dataset. So the perplexity on joint probability of noun
and semantic neighbor can be computed as



468 T.-J. Zhan and C.-H. Li

PPX(WTest) = exp(−
∑

i′∈WTest
log(

∑K
k=1 p(z = k | θTest)φT

k,wn

i’
ψT

k,ws

i’
)

2 · NTest
). (11)

where PPX is the perplexity function and NTest is the total number of occurrence
of pairs in the testing sentences WTest. This perplexity is a word occurrence
perplexity averaging between noun and adjective. Square of the perplexity in
(11) is a perplexity of the occurrence of a word pair of noun and adjective.

To calculate the perplexity of noun features, there are two ways, including
marginalize the semantic neighbor variables and calculate the likelihood of noun
features conditional on semantic neighbor feature.

To represent the noun and semantic feature, WTest can be rewritten as
{WNN, WS} where WNN={wn

i : i ∈ WTest} and WS={ws
i , i ∈WTest}. So the

marginal perplexity and conditional perplexity can be computed as below:

PPX(WNN) = exp(−
∑

i′∈WTest
log(

∑K
k=1 p(z = k | θTest)φT

k,wn

i’
)

NTest
). (12)

5.2 Average Cluster Entropy

After running Gibbs sampling on the training sentences WTrain, the model’s
parameters can be estimated by (9.1) as θT ={θT

s,i}, φT ={φT
i,j} and ψT ={ψT

i,j} As
discussed above, given cluster i, φT

i ={φT
i,j}|j and ψT

i ={ψT
i,j}|j are the probability

distribution of nouns and semantic neighbor’s terms respectively. So the entropy
of nouns in topic i can be computed as

EntNN(z = i) = −
∑

j
(φT

i,j log(φT
i,j)) (13)

Similarly the entropy of semantic neighbors for cluster i is

EntS(z = i) = −
∑

j
(ψT

i,j log(ψT
i,j)) (14)

The average cluster entropy of nouns and semantic neighbors are the mean of
EntNN and EntS respectively. Low average cluster entropy means more discrimi-
native between clusters, more cohesive within cluster and so better performance.

5.3 Normalized Mutual Information Index

The normalized mutual information (NMI) is an important external cluster eval-
uation measure for the density of clusters. To calculate NMI, mutual entropy be-
tween cluster and the feature should be computed in advance as I(C, F ) where
C is the cluster variable and F is the data’s features. In our case, there are
two set of features for each sentences including the nouns words and semantic
neighbor terms. Based on the samples of {zi} from the Gibbs sampling process,
a cluster assignment statistics matrix A={ai,j} can be built by taking ai,j as
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c(i, j), for noun feature, and matrix B={bi,j} can be built with bi,j set as m(i, j)
for semantic neighbors. The mutual entropy between cluster variable and noun
WNN is calculated on A as

I(C, WNN) =
∑
i,j

c(i, j)
|c| log(

c(i, j)|c|∑
t c(i, t)

∑
t c(t, j)

), |c| =
∑
i,j

c(i, j). (15)

By normalization, the NMI can be computed as

NMI(C, WNN) = I(C, WNN)/
√

H(C)H(WNN). (16)

H(C) and H(WNN ) are the entropy of cluster and noun features, written as
−(

∑
i s(i, ·)log(s(i, ·)/|c|))/|c| and −(

∑
j s(·, j)log(s(·, j)/|c|))/|c| respectively

where s(i, ·)=∑j c(i, j) and s(·, j)=∑i c(i, j) could be interpreted as sum of en-
tries in a row and column of matrix c(·, ·) respectively. Similarly, NMI between
cluster variable and semantic neighbor feature can be computed by alternating
matrix A with B in (14).

6 Experiments

We conduct the experiments on two public datasets. “CitySearch” dataset
used in [12] contains user reviews of restaurants in US, which is crawled from
newyork.citysearch.com. And “TripAdvisor” dataset [13] includes user re-
views on hotels, which is crawled from tripadvisor.com. Preprocessing steps
include first POS tagging with OpenNLP packages [9], and then dependency
parsing by Malt Parser [11]. Then a standard stop-word list [15] is used and
dozens of corpus frequent terms is removed. After removal of nouns, neighbors
and sentences with only one occurrence, a dictionary VNN of 3377 noun fragments
and a dictionary VSNei of 2583 neighbors are obtained from 16456 sentences for
CitySearch. The details of the two datasets are shown in Table 3.

Table 3. Summary of the dataset used in the experiment

�������Product
Item

#Sentence #Word Pair Size of VNN Size of VSNei

Restaurant 16456 38751 3377 2853

Hotel 16914 44022 4024 3236

We introduce two baseline models based on conventional LDA for comparison.
The first model is a sentence based unigram LDA to generate the noun occur-
rence regardless of the adjectives. The second baseline model takes account of
the adjectives into the sentence based unigram LDA by treating nouns and ad-
jectives exchangeable in the sentence and merging the two vocabularies VNN and
VSNei into a united vocabulary V accordingly. The second model can be inter-
preted as running a unigram LDA on a non-discriminating mixture of nouns and
adjectives.

newyork.citysearch.com
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To evaluate the general performance of our models, we conduct 46 independent
runs of Gibbs sampling of 6000 iterations to train the three models to extract
from variant number of clusters while ten percent sentences are left out for test-
ing. All evaluation measures discussed on Section 4 are computed with samples
drawn after 500 iterations of Gibbs sampling on the test set. Hype-parameter is
set to be update every 20 Gibbs sampling iterations. The performance of per-
plexity results, average cluster entropies and normalized mutual entropy index
measure are shown in Fig. 3, 4 and 5 respectively. In Fig. 3, lowest perplexity is
achieved by SDWP on noun marginally which implies that SDWP is superior to
the unigram LDA as SDWP combines naturally the two views of semantic depen-
dency between nouns and neighbors and the association of nouns co-occurring in
one sentence. The average perplexity of SDWP is also lower than the bag-of-word
based LDA (“LDA on mixture”) due to the effective introduction of dependency

(a) log(Perplexity) of CitySearch dataset (b) log(Perplexity) of TripAdvisor dataset

Fig. 3. Logarithmic Perplexity on two datasets where “SDWP on noun” is perplexity on
marginalized likelihood of noun and “SDWP on Pair” is perplexity of SDWP averaging
between noun and adjective computed as Equation (11)

(a) ACE on CitySearch dataset (b) ACE of TripAdvisor Dataset

Fig. 4. Average cluster entropies of SDWP and the two baseline modes
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(a) NMI of CitySearch Dataset (b) NMI of TripAdvisor Dataset

Fig. 5. Measure by normalized mutual entropy index on SDWP and the baseline models

Table 4. Top 10 items of each of the 15 noun clusters extracted by sentence based
unigram LDA on the noun vocabulary in CitySearch dataset. Underlined terms indicate
semantic relevance to the associated cluster.

1 steak, chicken, ribs, potatoes, shrimp, fries, tuna, spinach, salmon, sandwich

2 chocolate, desserts, cupcakes, gras, cookies, specials, cakes, crepes, pies, pastries

3 service, staff, atmosphere, decor, prices, ambiance, waitstaff, menu, experience, music

4 staff, atmosphere, drinks, crowd, music, bar, dining room, night, spot, bartenders

5 staff, dishes, wine list, menu, wines, wine, owners, tapas, price, bartender

6 tables, decor, space, interior, lighting, walls, bar, dining room, atmosphere, wood

7 pizza, bread, oil, crust, fare, course, portion, steaks, ingredients, fish

8 cheese, toast, flavor, burger, bread, style, dish, potato fries, salad, hot dog

9 chicken, menu, beef, sauce, meat, rice, rib, mussels, dumplings, noodles

10 service, waitress, waiter, experience, waiters, servers, hostess, server, night, wait staff

11 dishes, flavors, sushi, menu, cuisine, fish, service, rolls, chef, fare

12 coffee, tea, meats, bistro, ice cream, pie, zimbabwe, baristas juggle orders, home, cheeses

13 margaritas, dinner, brunch, cafes, afternoon, armchair, cream, guacamole, services, saturday night

14 service, restaurants, prices, spot, meals, party, addition, trip, patio, joint

15 appetizers, courses, entrees, chicken, dessert, salmon, potatoes, appetizer, course, steak

relation between noun and neighbors. It is a promising direction in future to ex-
tend the work to include all pairs of dependency relation. Lowest average cluster
entropies attained by SDWP as shown in Fig. 4 indicates the clusters generated
by SWDP is more cohesive and clusters give more probability mass to terms
which is more discriminative and representative for the clusters, also evident
from the extracted topic words in Table 5. The higher normalized mutual en-
tropy index of SDWP in Fig. 5 is also another indication of the consistence and
higher cohesion of the clusters of SDWP than that of the baseline models. All
the three measures demonstrate consistently that our model SDWP outperforms
the unigram LDA for the task of finger-grain product feature mining. Top 10
terms of each cluster extracted by SDWP on restaurant review dataset is shown
in Table 5, which is obtained by ranking the terms with their cluster conditional
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Table 5. Top 10 items of each cluster extracted by SDWP model from the CitySearch
dataset. On the right side of each cluster index of the 15 clusters, upper row is noun
fragments and down-side row is the associated group of semantic neighbor. Underlined
terms indicate semantic relevance to the associated cluster.

1
tables, space, spot, seating, table, dining room, bar, dining, party, cafe

outdoor, comfortable, empty, hot, main, cozy, outside, tiny, east, private

2
chicken, steak, tuna, salmon, duck, oil, shrimp, bass, appetizer, gras

grilled, delicious, fried, perfect, amazing, dry, olive, rare, tasty, special

3
staff, waiter, waitstaff, waitress, wait staff, waiters, server, servers, bartender, bartenders

friendly, attentive, helpful, knowledgeable, polite, pleasant, professional, courteous, knowledgable, cute

4
experience, meal, night, dinner, service, lunch, visit, spot, waiter, dining experience

overall, real, late, perfect, special, romantic, amazing, entire, quiet, pleasant

5
atmosphere, decor, ambience, ambiance, space, crowd, service, setting, vibe, environment

cozy, warm, romantic, cool, beautiful, perfect, comfortable, friendly, trendy, modern

6
desserts, wine, chocolate, drinks, dessert, cake, hot dogs, sangria, margaritas, brulee

delicious, hot, tasty, white, perfect, sweet, amazing, complimentary, creme, rich

7
music, lighting, decor, interior, walls, wood, space, dining room, band, tables

live, white, loud, warm, soft, low, cool, dark, beautiful, bright

8
potatoes, fries, toast, cheese, chicken, spinach, bread, burgers, potato fries, appetizers

delicious, french, sweet, mashed, fried, grilled, cold, tasty, soft, blue

9
bread, crust, pizza, cheese, tea, pizzas, pasta, sauce, burger, sausage

thin, delicious, hot, cold, sweet, iced, warm, amazing, thick, fantastic

10
dishes, menu, course, fish, sushi, courses, dish, appetizers, rolls, salads

main, delicious, tasty, fixe, special, creative, unique, amazing, simple, raw

11
prices, wine list, drinks, service, menu, price, wines, wine, cocktails, desserts

reasonable, delicious, amazing, extensive, affordable, worth, expensive, tasty, average, priced

12
ribs, rice, fish, meat, rib, beans, beef, chicken, pork, lamb

delicious, fried, short, tender, black, flavorful, grilled, dry, tasty, sweet

13
service, ambience, services, ambiance, wine, seating, attitude, ambiance, meal, staffs

friendly, attentive, prompt, efficient, slow, warm, professional, impeccable, quick, helpful

14
menu, cuisine, dishes, restaurants, fare, flavors, ingredients, cooking, wines, bistro

italian, french, japanese, authentic, traditional, asian, american, mexican, indian, delicious

15
service, waiter, staff, hostess, waitress, manager, waiters, drinks, management, atmosphere

rude, bad, slow, poor, terrible, horrible, worst, awful, obnoxious, cold

probability learned by the model. Similarly, top 10 terms of each cluster can be
obtained by sentence based unigram LDA from nouns of CitySearch dataset. It
can be found that the clusters extracted by SDWP are more descriptive and
informative by both the groups of nouns and neighbors for each cluster. For
example, it is clear to indicate product features as staff & service, grilled food
and atmosphere in cluster 2, 3 and 5 in Table 5 respectively while the associated
clusters in Table 4 are not so clear, e.g. cluster 3 is the mixture of staff and
atmosphere. There are some interesting new clusters special in Table 5, such as
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“internal environment” in cluster 7, “comparison of cuisine” in cluster 14 and etc.
Furthermore, there are more descriptive and discriminative fine-grained clusters
in Table 5, e.g. “good” and “bad” staff is differentiated between cluster 3 and
15, “internal” and “outdoor” environment differentiated between cluster 1 and
7 and etc. To analysis the disadvantage of conventional LDA, it is found that
noise is brought in when conventional LDA takes into account the co-occurrence
of nouns and adjectives without dependency relation.

Highly cohesive fine-grained product features are obtained as shown in
Table 5. Furthermore, the associated group of semantic neighbors helps to
discriminative the context of the features, e.g. cluster 3 and 15 in Table 5,
which cannot be achieved by the conventional methods. The semantic neigh-
bors of each SDWP cluster contain subjective and objective terms where ob-
jective terms provide fact context of each product feature and the subjective
terms are good semantic candidates to build feature-specific opinionated words
vocabulary for further sentiment analysis. The clusters generated by LDA on
the non-discriminative mixture of noun and adjective are shown in Table 6,
where the terms are not as informative and cohesive as that of SDWP in
Table 5. Due to limitation of paper number,Comparison between results on
TripAdvisor dataset obtained by SDWP and unigram LDA will not be shown
in this paper. Interested readers could find full results on both dataset at
“http://www.comp.hkbu.edu.hk/~tjzhan/SDWP_Results.html”.

Table 6. Top 10 items of each of the 15 noun clusters extracted by unigram LDA on
non-discriminative mixture of nouns and adjectives in CitySearch dataset. Underlined
terms indicate semantic relevance to the associated cluster.

1 white, lighting, low, decor, walls, warm, dark, key, tables, wood

2 menu, french, dishes, italian, wine list, traditional, asian, wines, cuisine, fare

3 hot, cold, chocolate, spot, creme, tea, available, iced, fantastic, warm

4 service, rude, slow, bad, waiter, poor, staff, worst, experience, horrible

5 real, restaurants, italian, true, mexican, authentic, culinary, japanese, chef, cuisine

6 delicious, menu, special, drinks, dishes, tasty, sushi, amazing, creative, fish

7 atmosphere, decor, cozy, service, warm, ambience, beautiful, cool, romantic, ambiance

8 outdoor, seating, tables, space, night, bar, dinner, table, late, beautiful

9 friendly, service, staff, attentive, helpful, knowledgeable, waiter, prompt, professional, waitstaff

10 music, live, loud, crowd, cuban, mixed, cool, band, happy, jazz

11 prices, service, reasonable, experience, worth, price, overall, meal, decent, fine

12 grilled, delicious, chicken, fried, ribs, sweet, short, potatoes, black, tender

13 main, course, courses, dishes, dish, east, upper, dim, single, decent

14 delicious, fried, thin, bread, dry, cold, cheese, french, tasteless, perfect

15 delicious, sweet, perfect, desserts, wine, tasty, appetizers, dessert, amazing, margaritas

To measure the quality of representative terms for the clusters in a quantita-
tive manner, a semantic relevance score is defined as ratio of number of manual
evaluated semantic relevant items, namely, the underlined items, to the number

http://www.comp.hkbu.edu.hk/~tjzhan/SDWP_Results.html
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of items representing each cluster in the Table 4, 5 and 6. For example, the se-
mantic relevance score of cluster 1 in Table 5 is 15/20. Comparison of averaged
semantic relevance scores of clusters extracted by SDWP and the two baseline
models is shown in Table 7, where the each cluster is represented by ten top items
of noun and (or) adjective. The results in Table 7 are consisting with the topical
results and discussion above, which demonstrate that SDWP outperforms the
other two unigram LDA baseline models.

Table 7. Noun-neighbor pairs generation rules from dependency tree of a sentence

Model SDWP LDA on noun LDA on mixture of noun and neighbor

Averaged SRS 0.87 0.76 0.80

7 Conclusion

Different from the bag-of-word approach in this paper, we model sentence as
pairs of noun and adjective with semantic dependency. The semantic dependency
between nouns and adjectives are combined with the sentential co-occurrence
between nouns to develop a semantic dependent word pair generative model to
extract semantic cohesive clusters of nouns and of adjectives for representing
fine-grained product feature. Gibbs sampling is applied to infer the hidden vari-
ables and to infer the parameters. To evaluate the performance of the model,
we computes the perplexity, average cluster entropies and normalize mutual en-
tropy index on the samples drawn from the Gibbs sampling. The sentence based
LDA is employed as the baseline mode represented by bag-of-noun corpus and
non-discrimination mixture of nouns and adjectives corpus respectively. The ex-
perimental results demonstrate the advantage of our model and show promising
direction on further research.

Acknowledgments. This work is partially supported by HKBU research grant
FRG2/09-10/052.

References

1. Hu, M., Liu, B.: Mining and Summarizing Customer Reviews. In: ACM SIGKDD
(2004)

2. Ding, X., Liu, B., Yu, P.S.: A Holistic Lexicon based Approach to Opinion Mining.
In: WSDM, pp. 231–239 (2008)

3. Brody, S., Elhadad, N.: An Unsupervised Aspect-Sentiment Model for Online
Reviews. In: NAACL, Los Angeles, CA, pp. 804–812 (2010)

4. Guo, H., Zhu, H., Guo, Z., Zhang, X.X., Su, Z.: Product feature categorization
with multilevel latent semantic association. In: CIKM, pp. 108–121 (2009)

5. Raju, S., Shishtla, P., Varma, V.: A Graph Clustering Approach to Product At-
tribute Extraction. In: Indian International Conference on Artificial Intelligence
(2009)



Semantic Dependent Word Pairs Generative Model 475

6. Joshi, M., Penstein-Ros, C.: Generalizing dependency features for opinion mining.
In: ACL-IJCNLP (2009)

7. Zhan, T.J., Li, C.H.: Product Feature Mining with Nominal Semantic Structure.
In: IEEE/WIC/ACM International Conference on Web Intelligence (2010)

8. Wallach, H.: Structured Topic Models for Language”, PhD thesis, University of
Cambridge (2008)

9. A NLP package, http://opennlp.sourceforge.net/
10. Blei, D.M., Ng, A.Y., Jordan, M.I., Lafferty, J.: Latent Dirichlet Allocation. JMLR

(2003)
11. Nivre, J., Hall, J.: MaltParser: A Language-Independent System for Data-Driven

Dependency Parsing. In: Proceedings of the Fourth Workshop on Treebanks and
Linguistic Theories (2005)

12. Ganu, G., Elhadad, N., Marian, A.: Beyond the stars: Improving rating predictions
using review text content. In: WebDB (2009)

13. TripAdvisor datasets discussed in this paper,
http://patty.isti.cnr.it/~baccianella/reviewdata/

14. Wallach, H., Mimno, D., McCallum, A.: Rethinking LDA: Why Priors Matter. In:
NIPS (2009)

15. A popular public stop-word list,
http://truereader.com/manuals/onix/stopwords.html

http://opennlp.sourceforge.net/
http://patty.isti.cnr.it/~baccianella/reviewdata/
http://truereader.com/manuals/onix/stopwords.html


Grammatical Dependency-Based Relations for

Term Weighting in Text Classification

Dat Huynh, Dat Tran, Wanli Ma, and Dharmendra Sharma

Faculty of Information Sciences and Engineering
University of Canberra
ACT 2601, Australia

{dat.huynh,dat.tran,wanli.ma,

dharmendra.sharma}@canberra.edu.au

Abstract. Term frequency and term co-occurrence are currently used
to estimate term weightings in a document. However these methods do
not employ relations based on grammatical dependency among terms to
measure dependency between word features. In this paper, we propose
a new approach that employs grammatical relations to estimate weight-
ings of terms in a text document and present how to apply the term
weighting scheme to text classification. A graph model is used to encode
the extracted relations. A graph centrality algorithm is then applied to
calculate scores that represent significance values of the terms in the
document context. Experiments performed on many corpora with SVM
classifier show that the proposed term weighting approach outperforms
those based on term frequency and term co-occurrence.

Keywords: Text representation, relation extraction, grammatical de-
pendency, graph weighting model, text classification.

1 Introduction

In text classification, a single or multiple category labels will be automatically
assigned to a new text document based on category models created after learning
a set of labelled training text documents. Current text classification methods
convert a text document into a relational tuple using the popular vector-space
model to obtain a list of terms with corresponding frequencies.

Term frequency (TF) has been used to measure the importance levels of terms
in a document. Firstly, TF is considered as a key component to evaluate term
significances in a specific context [11]. The more a term is encountered in a cer-
tain context, the more it contributes to the meaning of the context. Secondly,
some approaches have combined TF and Inverse Document Frequency (IDF)
as a term weighting measure. These approaches outcome the considerable re-
sults as applied to text classification tasks [4,16,17]. However, with an abstract
and complex corpus such as Ohsumed1, the TF-based methods fail to leverage

1 ftp://medir.ohsu.edu/pub/ohsumed

J.Z. Huang, L. Cao, and J. Srivastava (Eds.): PAKDD 2011, Part I, LNAI 6634, pp. 476–487, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Grammatical Dependency-Based Relations for Term Weighting 477

the classification results [4,17]. According to Hassan and Banea [2], TF-based
approaches can be effective for capturing the relevance of a term in a local con-
text, but they fail to account for the global effects that terms exist on the entire
document.

To overcome this shortcoming, the relationships among terms have been in-
vestigated to figure out the representation of a document. Recent studies have
introduced the pre-defined relations among terms. These relations can be ex-
tracted from a predefined knowledge source such as Wikipedia Encyclopedia
[1,3,12,14], in which the relations (Wikipedia links) are regarded as the main
components to represent for the document context. In a case of finding out the
methods that can extract the representation of unpredictable text documents,
these pre-tagging-based methods are limited to encounter to the variety kinds
of document.

The term co-occurrence (TCO) are popularly used to model the relations
between terms [2,15]. It is also a model to get over the shortcoming of TF-based
methods as well as to deal with the universal kinds of text documents. The idea
of taking term co-occurrence as a relation is not only to capture the dependency
of terms in local contexts but also to take into account the global effects of terms
in the entire document. In order to estimate importance levels of terms, a graph
model is used to connect all these relations and a centrality algorithm is used to
calculate term weighting values.

Although TCO-based methods give the considerable results in comparison to
the TF-based methods when they are used to estimate important terms of a
given document for TC tasks [2], some certain concerns need to be considered.
Firstly, when working in a certain window size as the local context, these meth-
ods accept every single pair of terms within the window size as a relation. So, the
number of relations would be small or even really large depending on the choice
of the window size. In those cases, the expectable relations can be eliminated, or
the redundancy relations are still retained. Secondly, although the idea of these
approaches is to extract important terms in a document context, the way of
making pair of relations under a window size does not guaranty for the contri-
bution of the relations in weighting important terms. With those explanations,
we argue that not only TF-based model but also TCO-based model may not be
the best technique to capture those important terms.

In this paper, we propose an alternative method to extract and weighting im-
portant terms in a given document. The method firstly considers the advantages
of the relations among terms to address the shortcoming of TF-based methods.
Secondly, under the light of the success of TextRank [9,2], instead of using term
co-occurrence as a dependency, we are more concentrating on relations based
on grammatical dependency among terms. The choice of the relations not only
prevents the issues of window sizes but also discloses more hidden relations as
walking along the path connected terms.

As the framework of our method, we start firstly with extracting relations
from the given text document. Secondly, the graph model is used to encode
contexts of the document, which is constructed by connecting all these relations.
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Then, a graph centrality algorithm is applied to calculate scores that represent
significant values of terms in the document context. Finally, the top list of high
weighted terms will be used as a representation of the given document.

The remaining of this paper is organised as follows. In Section 2, a framework
of term weighting approach is presented. Section 3 explains the methodology
of extracting grammatical relationships among words. Section 4 shows how to
use the graph model to estimate the importance level of terms. How to apply
the document representation to text categorisation tasks is presented in Sec-
tion 5. Section 6 describes experimental setups, results and discussions. Finally,
a conclusion and future work will be discussed in Section 7.

2 The Proposed Term Weighting Framework

The term weighting framework includes the following phases (see Fig. 1):

1. Relation Extraction: Given an input document, the relation extraction phase
extracts a set of tuples (relations) representing to the document.

2. Term Weighting: A weighted graph is conducted by encoding all the ex-
tracted relations. A graph ranking model is used to estimate term weightings
for document representation.

Fig. 1. The proposed term weighting framework

The proposed framework is capable of extracting more relationships among
terms within a document, and the relations include not only grammatical rela-
tions, but also hidden relations which are explored by walking along the paths
connecting the ideas of each sentence. A global context of the document is cap-
tured using a graph model and a centrality ranking algorithm. The graph model
is able to inter-connect the major ideas of the document together, and is a place
for the centrality algorithm to estimate the important levels of vertices. The term
weighting framework allows the important terms of a document to be “voted”
by other terms in the same document.
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3 Relation Extraction

Relation extraction is an important research area in text mining, which aims to
extract relationships between entities from text documents. In the framework,
a relation is considered as a tuple t = (ei, rij , ej), where ei and ej are strings
denoted as words (terms), and rij is a string denoted as the relationship between
them.

The relation can be extracted based on linguistic analysis, particularly
grammatical relations among terms are the key components for extracting
information.

For instance, from the following sentence “Antibiotics kill bacteria and are
helpful in treating infections caused by these organisms”, a list of relations ex-
tracted includes (Antibiotic, kill, bacteria), (Antibiotic, treat, infection), (An-
tibiotic, treat infection cause, organism), and (infection, cause, organism).

In order to extract relations, the sentences are identified from the input text
document using a sentence detection technique, a linguistic parser such as Stan-
ford parser2 is then used to analyse each sentence and outputs a graph of link-
ages (Fig. 2), and finally a heuristic algorithm is designed to walk along paths
from the linkage graph and extract the expectable relations.

Elephant garlic has a role in cardiovascular disease

nsubjamod

pobj
pobj

amodprepdet

the prevention of

dobj

det prep

Fig. 2. Graph of linkages extracted from the following sentence: “Elephant garlic has a
role in the prevention of cardiovascular disease”. Each label assigned each curve plays
a role of a grammatical relation connecting two words. An expectable relation can
be extracted based on the grammatical relation only or based on the shortest paths
connecting terminated words.

The heuristic algorithm firstly scans the parsed sentence and identifies pairs
of base terms3 (ei, ej) with i < j. From each pair of base terms, if there is a
shortest path connecting from ei to ej , the algorithm will go along the path to
identify a sequence of words between ei and ej. These order words is considered
as a potential connection rij to form the raw tuple t = (ei, rij , ej). If ei and ej

are connected directly, the connection rij is regarded as the name of the linkage
(label). Finally, if the raw tuples are passed through all given constraints, they
will be retained for the next processing step. Constraints to test the raw tuples
include:
2 The Stanford parser http://nlp.stanford.edu/software/lex-parser.shtml
3 In this case, a base term is a single word in accordance with POS filter.
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– ei and ej have to be base terms with POS filter
– rij has to be in a shortest path connecting ei to ej

– rij has to contain a verb or a preposition, or it is a grammar connection

After extracting the set of raw tuples from each document, components in each
tuple should be optimised as follows. All non-essential words such as adverbs,
relative clause marker (who, whom, which, that, etc.), and stop-words will be
eliminated from all components of tuple. The morphology technique is then
used to convert all words to their simple forms, such as converting plural words
into singular form and any kinds of verb forms into their “root” words [8]. For
instance, the noun phrase “developing countries” is converted to “develop coun-
try”, and the verb phrase “have been working” is converted to “have be work”.
Once all wired tuples are eliminated, the remaining tuples are considered as a
set of relations represented the document and is ready to build the graph for
selecting term representatives.

4 Graph Construction: Constructing, Weighting and
Ranking Graph

Graph model is an alternative way to model information to show relation-
ships between vertices. It groups related information in a certain way that the
centrality algorithms can take the best advantages.

4.1 Constructing Graph

A graph model is built to connect all extracted relations. Given a relation
t = (ei, rij , ej), where ei and ej are considered as vertices in the graph and
rij is considered as an edge connecting between ei and ej . The weighting of the
edge rij is calculated based on the redundancy of the tuple t and the relatedness
between ei and ei.

4.2 Weighting Graph

The weighting of a edge w(rij) is calculated based on two factors. Firstly, it
depends on the frequency of the relation t in the document d. The higher redun-
dancy of relation t is, the more important it is in the document d. Secondly, the
weighting of the edge w(rij) is also based on the redundancy of relation t in the
corpus. The redundancy of a tuple determines how valuable of that information
from its document [6].

Let t = (ei, rij , ej) be a relation of d, and e = (ei, w(rij), ej), be an edge of
the graph, the weighting w(rij) is calculated as:

w(rij) = freq(t, C) ∗ rf(t, d) (1)

rf(t, d) =
freq(t, d)

|t:t∈d|∑
i=1

freq(ti, d)

(2)
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where freq(t, C) is the frequency of tuple t in the corpus C, freq(t, d) is the
frequency of tuple t in the document d, and rf(t, d) is the relation frequency
value of the relation t in the document d.

4.3 Ranking Graph

Once a document is represented as a weighted graph, a graph ranking algorithm
is used to estimate scores of its vertices. According to Sinha and Mihalcea [10],
the centrality algorithm PageRank [5] shows its outstanding ability on weighting
graph and hence it is adapted in our approach. The basic idea of PageRank
algorithm is that a web page will have a high rank if there are many web pages
or high ranking web pages pointing to it. Therefore, we treat each node in the
term graph as a web page, every undirected edge e = (ei, w(rij), ej) needs to
be converted to two directed edges −→e = (ei, w(rij), ej) and ←−e = (ej , w(rij), ei).
Then the directed graph is passed through the PageRank as its input and the
output is a set of vertices with their ranking scores. Every vertex (term) ei in
the graph (document) d has its ranking score pr(ei, d), which is considered as
degree of significance of the vertex (term) in the graph (document).

5 Applying Graph-Based Document Representation to
Text Classification

Given a text document d from a corpus C, the list of n term representatives of
d is defined as

d =
{(

w1, pr(w1, d)
)
,
(
w2, pr(w2, d)

)
, . . . ,

(
wn, pr(wn, d)

)}
(3)

where wi is the text value of term i in the document d and pr(wi, d) is the
ranking value of term wi of the document d. The list of categories of the corpus
C is C = {c1, c2, . . . , cm}.

In the following section, we proposes a measure that takes into account de-
pendencies between terms and classes, which can justify term weighting values
to adapt with text classification tasks.

5.1 Proposed Term Class Dependence (TCD)

The idea of calculating class dependence value of terms is that terms represented
for a document are normally dependent of its categories (classes). Therefore, we
propose a measurement tcd, which takes into account the information of cate-
gories and denotes the degree of dependence of a term to a particular category.
If a word frequently occurs in many documents of one class and infrequently
occurs in other classes, it should be considered as representative for the class if
its ranking value from the document is also comparable. We suggest a measure
of degree of dependence of the term wi to the category ci
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tcd(wi, cj) =
tf(wi, cj) ∗ df(wi, cj)

m∑
k=1

tf(wi, ck) ∗ df(wi, ck)
(4)

where ck is a categories of the corpus C.
With the purpose of classifying text, we propose a combination of term ranking

on documents (pr) and category-based calculation (tcd), which establishes a
formula to weight terms wi from a document dj that belongs to a category ck

as follows:
pr.tcd(wi, dj , ck) = pr(wi, dj) ∗ tcd(wi, ck) (5)

and the pr.tcd value of each term will be added to the feature vector for
classification task.

5.2 Proposed Hybrid Term Weighting Methods Based on TCD

With the purpose of evaluating the effectiveness of term weighting methods based
on term frequency, term co-occurrence relations, and grammatical relations, we
suggest the following combinations to form hybrid term weighting methods for
text classification:

– tf.tcd : a combination of term frequency and term class dependency. The
purpose of tf.tcd is to evaluate the effectiveness between tf and pr when
making the comparison between tf.tcd and pr.tcd. The tf.tcd value of a term
wi in a document dj is

tf.tcd(wi, dj) = tf(wi, dj) ∗ tcd(wi, dj) (6)

where

tf(wi, dj) =
freq(wi, dj)

n∑
k=1

freq(wk, dj)
(7)

n is number of terms in the document dj .
– rw.tcd : a combination term weighting method based TextRank(rw)4 and

term class dependency (tcd). The purpose of rw.tcd is to evaluate the ef-
fectiveness between rw and pr when making the comparison between rw.tcd
and pr.tcd. The rw.tcd value of a term wi in a document dj is

rw.tcd(wi, dj) = rw(wi, dj) ∗ tcd(wi, dj) (8)

where rw(wi, dj) is the random-walk weighting value of a term wi in a
document dj .

4 We implemented the TextRank framework which outcomes the weightings of terms
based on term co-occurrence and random walk algorithm on the graph [9,2] for
comparison purposes.
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– pr.idf : a combination our term ranking method pr and invert document
frequency. The purpose of pr.idf is to evaluate the effectiveness between tf
and pr when making the comparison between tf.idf and pr.idf. The pr.idf
value of a term wi in a document dj is

pr.idf(wi, dj) = pr(wi, dj) ∗ idf(wi, dj) (9)

6 Experiments

6.1 Classifier and Data Sets

Support Vector Machine [13] is a state-of-the-art classifier. In our experiments,
we used the linear kernel since it was proved to be as powerful as other kernels
when tested on data sets for text classification [16].

Our term weighting approach is mainly based on the grammatical relations
among terms in English sentences. In order to test its effectiveness in comparison
to other methods, we have chosen highly standard English grammar corpora
which are Wikipedia XML, Ohsumed, and NSFAwards.

Wikipedia Corpus: We used the collection Wikipedia XML Corpus compiled
by Denoyer & Gallinari [7]. We randomly selected a subset of the English Single-
Label Categorization Collection which provides a single category to each doc-
ument. After the pre-processing step, we obtained a total of 8502 documents
assigned to 53 categories. These documents are divided randomly and equally
to form a training data set and a test data set including 4251 documents and 53
categories for each set.

Ohsumed: This corpus contains 50216 abstract documents5, we selected the
first 10000 for training and the second 10000 for testing. The classification task is
to assign the documents to one or multiple categories of the 23 MeSH “diseases”
categories. After pre-processing step, there are 7643 documents in the test set
and 6286 documents in the training set.

NSFAwards: This data set consists of 129000 relatively short abstracts in En-
glish, describing awards granted for basic research by the US National Science
Foundation during the period 1990-2003. For each abstract, there is a consider-
able amount of meta-data available, including the abbreviation code of the NSF
division that processed and granted the award in question. We used this NSF
division code as the class of each document. The title and the content of the ab-
stract were used as the main content of the document for classification tasks. We
used part of the corpus for our experiment by selecting 100 different documents
for each single category, test set and training set. After the pre-processing step,
we obtained 19018 documents for training set, 19072 documents for test set and
199 categories.
5 ftp://medir.ohsu.edu/pub/ohsumed
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6.2 Performance and Discussion

To evaluate the classification system we used the traditional accuracy measure
defined as the number of correct predictions divided by the number of evaluated
examples. Six weighting models that need to be tested are tf.idf , tf.tcd, rw.idf ,
rw.tcd, pr.idf and pr.tcd. We used the accuracy results from tf.idf , and rw.idf
as the baseline measures.

GR-based Method versus Baseline Methods. The GR-based method pr.tcd
provided outstanding results in comparison to tf.idf and rw.idf . Table 1 shows
the classification results using the SVM classifier. The Ohsumed corpus is one of
the challenging text classification datasets when tf.idf and rw.idf achieved under
40% accuracy. However, pr.tcd achieved a considerable result with about 16%
accuracy higher than the two previous methods. Wikipedia and NSFAwards also
show the similarity trends, yet the gap between pr.tcd and two baseline methods
reduced to about 4% from NSFAwards corpus and to about 10% from Wikipedia
corpus.

Table 1. SVM results among of pr.tcd, tf.idf and rw.idf weighting methods

tf.idf rw.idf pr.tcd

Wikipedia 73.27% 74.99% 84.92%

Ohsumed 39.75% 39.02% 56.9%

NSFAwards 67% 64.98% 70.9%

Moreover, from the classification results of six weighting methods in Table 2,
it is seen that the GR-based method (pr.tcd) also shows the comparable results
to other similarity methods.

Table 2. SVM results from six weighting schemas

tf.idf tf.tcd rw.idf rw.tcd pr.idf pr.tcd

Wikipedia 73.27% 77.4% 74.99% 82.66% 77.72% 84.92%

Ohsumed 39.75% 39.73% 39.02% 56.03% 39.24% 56.9%

NSFAwards 67% 71.2% 64.98% 70.95% 65.2% 70.9%

Grammatical Relation versus Term Frequency: The effectiveness of gram-
matical relation and term frequency can be measured when making comparisons
of the accuracy results of two pairs (tf.idf, pr.idf) and (tf.tcd, pr.tcd). The chart
from Fig. 3 shows that pr always gives better performance than tf when it is
combined with tcd in the term weighting methods. However, this trend is not
stable when pr goes along with idf . Particularly, pr.idf presents outstanding
performance on Wikipedia corpus, but tf.idf shows its strength on the other
two corpora Ohsumed and NSFAwards.
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Fig. 3. The chart shows the accuracy comparison between term weighting schema based
on term frequency and grammatical relation

Fig. 4. The chart shows the accuracy comparison between term weighting schema based
on term frequency and grammatical relation

Grammatical Relation versus Term Co-occurrence Relation. The ideas
behind term weighting schema based on these methods have some similarity.
However, each of them has their strengths and weaknesses. The effectiveness of
these approaches can be measured by taking the comparison between two pairs
of weighting schemas (rw.idf, pr.idf) and (rw.tcd, pr.tcd). The chart from the
figure 4 shows that the majority cases term weighting methods based on gram-
matical relations outperforms to those based on term co-occurrence relations.
Particularly, the biggest gaps between the classification accuracy between two
methods is 2.7%, whereas just only 1 out of 6 cases the TCO-based methods
show the comparable result to GR-based methods. In the case of NSFAwards
corpus, TCO-based methods achieve higher 0.1% accuracy results in comparison
to GR-based methods.

Term Class Dependency versus Inverse Document Frequency. The in-
formation from the chart of Fig. 5 shows another view of information. It presents
the comparison between the contribution of inverse document frequency and
term class dependency measures in term weighting schemas. Most of the cases,
whenever term important evaluation (tf, rw, pr) combines with tcd shows the
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Fig. 5. The chart shows the accuracy comparison between term weighting schema based
on term frequency and grammatical relation

outstanding results in compare with idf . There is just only one cases from the
Ohsumed corpus that idf shows better results than tcd.

In the summary, we have presented the experiment results and have made
the comparisons related to the strengths and weaknesses of proposed meth-
ods. Although some aspects need to be considered, the proposed term weigh-
ing approach for text classification using grammatical relations outperforms
to other traditional term weighing approaches based on term frequency and
term co-occurrence, and the term class dependency measure can be used as the
alternative information evaluation instead of inverse document frequency.

7 Conclusion and Future Work

The paper has presented term weighting method for text classification based
on grammatical relations. With the same datasets, the approach has improved
accuracy of text classification in comparison to the traditional term weighting
method. The approach overcomes the less of frequency of information by self-
creating the frequency based on the grammar structure of text content. This
approach also raises motivations for our further investigation on the benefits of
relations on text classification as well as text mining.

Our approach uses the concept of relations, we still do not take the closed
considerations on its semantic aspect, we have just used the relations as connec-
tions between terms as a first attempt for getting more statistical information.
For further investigation, we are more focusing on taking the semantic infor-
mation from tuples and its connection from the graph to form representations
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of given documents. Moreover, the grammatical relations is extracted based on
the grammar structure of text body, this procedure has consumed much compu-
tational processing. Therefore, the need for quick and reliable extraction from
input text should be considered as the further investigations.
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Abstract. The traditional Vector Space Model (VSM) is not able to
represent both the structure and the content of XML documents. This
paper introduces a novel method of representing XML documents in a
Tensor Space Model (TSM) and then utilizing it for clustering. Empir-
ical analysis shows that the proposed method is scalable for large-sized
datasets; as well, the factorized matrices produced from the proposed
method help to improve the quality of clusters through the enriched
document representation of both structure and content information.

1 Introduction

Rapid growth of web technologies has witnessed a sudden surge in the num-
ber of XML (eXtensible Markup Language) documents. For instance, English
Wikipedia contains 3.1 million web documents in XML format; the ClueWeb
dataset, used in Text Retrieval Conference (TREC) tracks, contains 503.9
million XML documents collected from the web in January and February 2009.
The majority of existing XML document clustering methods utilize either the
structure features [2] or the content features present in the documents. Cluster-
ing methods utilizing only the content features of the documents consider the
documents as a “bag of words” or a Vector Space Model (VSM) and ignore the
structure features [2]; clustering methods utilizing only the structure features of
the documents represent each document as a set of paths (sequences) or trees.

However, these methods, with their single-feature focus, tend to falsely group
documents that are similar in for documents that are similar in both features.
To correctly identify similarity among documents, the clustering process should
use both their structure and their content information. Approaches on clustering
both the structure and the content features of the XML documents are limited.
Approaches using the VSM often fail to scale for even small collections of a
few hundred documents, and in some situations have resulted in poor accuracy
[14]. VSM cannot model both structure and content features of XML documents
effectively as the mapping between the structure and its corresponding content
is lost. The content and structure features inherent in an XML document should
be modeled in a way that the mapping between the content of the path or tree
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can be preserved and used in further analysis. In this paper we propose a novel
method that represents the XML documents in a Tensor Space Model (TSM)
and uses the TSM for clustering. In the TSM, storing the content corresponding
to its structure helps to analyze the relationship between structure and content.

Unlike the VSM, which uses a vector to model, TSM is based on the multi-
linear algebraic character level high-order tensors (generalization of matrices)
[13]. Decomposition algorithms are used to analyze the relationships between
various tensor orders (ways or modes). However, existing decomposition algo-
rithms could be used to analyze small size and sparse TSMs. TSMs that are
large and dense cannot be loaded into memory. Consequently, large datasets
with tensor representation cannot be analyzed using these decomposition tech-
niques. In this paper, we propose a randomized tensor decomposition technique
that could upload the large size tensors into memory and decompose them with
significant speedups. Experiments on a real-life dataset containing more than
50K documents show that the proposed method helps to improve the cluster
quality through the enriched document representation of both structure and
content information. The contributions of this paper can be summarized as: (1)
a clustering method, XML document Clustering with TSM (XCT), that utilizes
the tensor model to efficiently combine the content and structure features of
XML documents; and (2) a new tensor decomposition algorithm, Progressive
Tensor Creation and Decomposition (PTCD), for large sized tensors.

2 Related Work

Tensor Space Modeling (TSM) has been successfully used in representing and
analyzing multi-way data in signal processing, web mining and many other fields
[13]. Tensor clustering is a multi-way data analysis task which is currently gain-
ing importance in the data mining community. The simplest tensor clustering
scenario, co-clustering or bi-clustering, in which two orders are simultaneously
clustered, is well established [6]. Another recently proposed approximation based
Combination Tensor Clustering algorithm [7] clusters along each of the orders
and then represents the cluster centers in the tensor. These co-clustering tech-
niques capture only the 2-way relationships among the features and ignore the
dependence of multiple orders in clustering: this may result in loss of information
while grouping the objects.

Several decomposition algorithms, such as Higher Order SVD (HOSVD); CP,
a higher-order analogue of Singular Value Decomposition (SVD) or Principal
Component Analysis (PCA); Tucker and Multi-Slice Projection, have been re-
viewed in detail in [5]. Incremental Tensor Analysis (ITA) methods [8] have been
proposed recently to detail with large datasets for efficiently decomposing sparse
tensors (density ≤ 0.001%). However, real-life XML documents represented in
TSM are dense with about 127M non-entries with over 1M terms and these de-
composition algorithms fail to scale. MET [9], a memory-efficient implementation
of Tucker proposed to avoid the intermediate blow-up in tensor factorization, is
shown in our results shows not to scale to our medium-sized and large-sized
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datasets. In MACH [13], a recently proposed random decomposition algorithm
suitable for large dense datasets, the number of entries in the tensor is randomly
reduced using Achlioptas-McSherry’s technique [1] to decrease the density of the
dataset. However, as discussed in section 5, MACH often ignores smaller length
documents and tends to group most of the smaller length documents in a single
cluster in spite of differences in their structure and content. To remove this lack
of decomposition algorithms suitable for very large-sized datasets, in this paper
we propose a new decomposition algorithm, the Progressive Tensor Creation
and Decomposition (PTCD) algorithm, that progressively unfolds a tensor into
a matrix and applies SVD on this generated matrix.

3 The Proposed XCT Method

3.1 Problem Definition and Preliminaries

Let there be a collection of XML documents D = {D1, D2, . . . , Dn}, where
Di is an XML document containing tags and data enclosed within those tags.
The structure of Di can be defined as a list of tags showing the hierarchical
relationships between them. The structure of Di is modeled as a rooted, ordered
and node-labeled document tree, DTi = (N, n0, E, f), where (1) N is the set of
nodes that correspond to tags in Di, with the node labels corresponding to tag
names; (2) n0 is the root node which does not have any edges entering in it; (3)
E is the set of edges in DTi; and (4) f is a mapping function f : E → N × N .
Previous research has shown that, in a dataset, only the content constrained
within the concise common or frequent subtrees (Closed Frequent Induced -
CFI) can be used to group the documents, rather than the entire content of
the XML documents [10]. Therefore the proposed XCT method generates these
CFI subtrees to represent the common subtrees in the dataset and uses these
CFI subtrees to extract the content of the documents corresponding to them.
The process begins by identifying the subtrees that belongs to a document tree.
A subtree CFIj ∈ CFI is present in document tree DTi, if CFIj preserves
the same parent-child relationship as that of DTi. The document content( or
structure-constrained content) contained within the CFIj subtree in DTi, noted
as C(Di, CFIj), is retrieved from the XML document Di, a collection of node
values or terms. The node value of a node (or tag) of a CFIj , C(Ni) in Di is a
vector of terms, {t1, . . . , tk} that the node contains. The term t is obtained after
stop-word removal and stemming.

The next step involves modeling the derived structure and content features of a
tensor model. Firstly,the tensor notations and conventions used in this paper are
akin to the notations used by previous works [5,8,13]. Let T ∈ RM1×M2×M3×...×Mn

be a tensor of n orders where Mi is an order. In this work, we focus on the third-
order tensor, T ∈ RM1×M2×M3 . Entries of a tensor are shown using aijk and the
subscript (i, j, k) range from I, J, K in each order. Each element (or entry) of a
tensor needs n indices to represent or reference its precise position in a tensor.
For example, the element aijk is an entry value at the i, j and k orders. Given
the documents set D, its corresponding set of CFI subtrees and the set of terms
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for each CFI subtree, the collection of XML documents is now represented as a
third-order tensor T ∈ RD×CFI×Terms. The tensor is populated with the num-
ber of occurrences of the structure-constrained term Termsi that corresponds
to the CFIj for document Dk. Two optimization techniques are applied on the
two orders, CFI and Terms, to reduce the size of the tensor. Fig. 1 provides an
overview of the XCT method. It begins with mining the CFI subtrees using the
PCITMinerConst algorithm and then identifying the constrained content within
those CFI subtrees for a given document. Once the structure and content fea-
tures are obtained for each document, the documents are represented in the TSM
along with their structure and content features. The next task is to decompose
the created TSM to obtain factorized matrices. Lastly, the K-means algorithm
is applied to one of the factorized matrices representing the left singular matrix
for the “Document” order UD and the clusters of documents are obtained.

Input: Document Dataset; D, Document Tree Dataset:DT, Minimum Support:min supp,
Length Constraint: len, NumCluster: c, RI Vectors Length: γ
Output: Clusters: {Clust1 . . . Clustc}
Method:
1. Compute CFI = {CFI1, . . . , CFIp} for DT using the PCITMinerConst algorithm

for the given min supp and len.
2. Form clusters of similar CFI subtrees, CFISC = {(CFI1, . . . , CFIq), . . . , (CFIt, . . . , CFIu)},

where CFISC = {CFISC1, . . . , CFISCh}, k � p using large itemset algorithm.
3. For every document Di ∈ D

a.Identify the CFISC existing in DTi, δ(DTi) = {CFISCl, . . . , CFISCh}
b. For every CFISCj in δ(DTi) retrieve the structure-constrained content in Di,
C(Di, CFISCj) = C(N1), . . . , C(Nm). The set C(Nm) = t1, . . . , tk ∈ Terms, where
Terms is the term list in D.

4. Apply random indexing using the γ length random vectors on the terms collection to
reduce the term space to Terms′

5. Form a tensor T ∈ R
D×CF ISC×Terms′ , where each tensor element is the number of

times a term tk occurs in CFISCj for a given document Di.
6. Apply the proposed tensor decomposition algorithm, PTCD to the tensor T and get the

resulting left singular matrices UD , UCF ISC and UT erms′ .
7. Apply K-means clustering to UD to generate the c number of clusters.

Fig. 1. High-level definition of XCT

3.2 Generation of Structure Features for TSM

The Prefix-based Closed Induced Tree Miner (PCITMiner) algorithm [10] is
modified to generate the length-constrained CFI subtrees from the document
tree dataset DT . The length constrained CFI subtrees are used in this method
for the following reasons: (1) Extracting all the CFI subtrees is computationally
expensive for datasets with a high branching factor; (2) All CFI subtrees are not
required while utilizing them in retrieving the content. In fact the long sized CFI
subtrees become more specific and result in retrieving distinct terms associated
only with this tree. This may result in a higher number of clusters with uneven
sizes. We call the modified algorithm the PCITMinerConst algorithm.

Fig. 1 illustrates the computationally expensive operation of checking whether
the mined CFI exists in a given document tree due to the graph isomorphism
problem. This step can be optimized by grouping similar subtrees based on their
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similarity and then retrieving the content corresponding only to the group of
similar CFI. A large itemset algorithm for clustering transactional data has been
modified to include subtrees, rather than items, to conduct the grouping of the
CFI trees based on the similarity of the subtrees. The clusters of CFI subtrees,
called Closed Frequent Induced Subtree Cluster (CFISC), become a tensor
order for representing and analyzing XML documents. Let CFISC be a set of
CFI subtrees given by {(CFI1, . . . , CFIq)(CFIr , . . . , CFIs)(CFIt, . . . , CFIu)}.

3.3 Generation of Content Features for TSM

CFISC is used to retrieve the structure-constrained content from the XML doc-
uments. We now define the coverage of a CFISCj and its constrained content
for the given document Di. Compared with the content features of an XML
document, the structure-constrained content features include the node values
corresponding only to the node labels of the set of CFI subtrees in CFISCj .

Definition 1: Structure-Constrained Content Features. These features of
a given CFISCj , C(Di, CFISCj) of an XML document Di, are a collection of
node values corresponding to the node labels in the CFISCj where CFISCj is a
cluster of CFI subtrees corresponding to DTi. The node value of a node (or tag)
of a CFISCj ∈ CFISC, C(Ni), in Di is a vector of terms, {t1, . . . , tk} that the
node contains. The term t is obtained after using pre-processing techniques such
as stop-word removal and stemming. Firstly, the CFI subtrees corresponding
to the CFISCj = {CFIr, . . . , CFIs} for a given document Di are flattened
into their nodes {N1, . . . , Nm} ∈ N , where N is the list of nodes in DT. Then
the node values of {N1, . . . , Nm} are accumulated and their occurrences for a
document Di are recorded.

In large datasets, the number of terms in the structure-constrained content is
very large with more than 1M terms and 127M tensor entries for INEX (Initia-
tive for Evaluation of XML retrieval) 2009 Wikipedia even after pre-processing.
To reduce this very large term space, we apply a Random Indexing (RI) tech-
nique which has been favored by many researchers due to its simplicity and low
computationally complexity [12]. In RI, each term in the original space is given
a randomly generated index vector as shown in Fig. 2. These index vectors are
sparse in nature and have ternary values (0 , -1 and 1). Sparsity of the index
vectors is controlled via a seed length that specifies the number of randomly
selected non-zero features.

rij =
√

3

{
+1 with probability 1/6

0 with probability 2/3

−1 with probability 1/6

(1)

We utilize Achlioptas’s proposed equation 1 [1] to generate distribution for creat-
ing the random index vector for every term in the structure-constrained content
of CFISC. For a given document Di, the index vectors of length l for all the
terms corresponding to the given CFISCj are added. We illustrate this concept
of RI on tensor using the Fig. 2, in which we consider a tensor= R3×2×4 (in
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Fig. 2(a)) with 3 documents, 2 CFISC, 4 terms and 7 non-zero entries. The
entries in the tensor correspond to the occurrences of a given term in the given
CFISC for the document. Using that equation 1, the random index vectors of
length 6 for the 4 terms are generated (see in Fig. 2(b). Let us consider document
D1 with three tensor entries a121 = 1, a123 = 1 and a124 = 1 corresponding to
CFISC1 and three terms Term1, Term3 and Term4. The random vectors (from
Fig. 2(b)) are added to these three terms in D1. The sparse representation of the
resulting vector (a12:) for D1 (given in Fig. 2(c)) contains two non-zero tensor
entries a123 = 1 and a124 = −1. Fig. 2(d) shows the final reduced tensor Tr in
sparse representation containing 6 non-zero entries.This example demonstrates
how our technique can reduce the term space for such a small dataset.

1 -1 0 0 0 0

0 0 1 -1 0 0
-1 1 0 0 0 0

0 -1 1 0 0 0

1 0 0 -1 0 0

0 -1 0 1 0 0T
T

a12:=

a21:=

a31:=

= a121=1; a123=1; a124=1;
a212=1; a213=2; 
a312=1; a313=1;

(a) (b) (c)

r= a123=1; a124=-1; 
a211=1; a212=-1; 
a311=1; a312=-1;

(d)

1 -1 0 0 0 0

Term1=

Term2=

Term4=

Term3=

Fig. 2. Illustration of Random Indexing on a 3-order tensor resulting in a randomly
reduced tensor Tr

It can be seen that the number of entries in Tr, randomly reduced T , is
less in number than its original and maintains the shape of T as it retains the
same similarity between D2 and D3. The index vectors in RI are sparse; hence
the vectors use less memory store and they are added faster. The randomly-
reduced structure-constrained content of CFISC becomes another tensor mode
for representing and analyzing XML documents.

3.4 The TSM Representation, Decomposition and Clustering

Given the tensor T , the next task is to find the hidden relationships between the
tensor orders. The tensor decomposition algorithms enable an overview of the
relationships that can be further used in clustering. However, as already men-
tioned, most of these decomposition algorithms cannot be applied on very large
or dense tensor as the tensors cannot be loaded into memory [13]. To alleviate
this problem, the tensors need to be built and unfolded or matricized incremen-
tally. Fig. 3 shows the process of matricization or unfolding along the mode-1 of
T which results in a matrix T(1) . This means that the mode-1 fibers (higher or-
der analogue of rows and columns) are aligned to form a matrix. Essentially this
means that the mode-1 fibers of T are mapped to the rows of matrix T(1) and
the modes-2 and -3 are mapped to the columns of this matrix. We apply the pro-
posed PTCD as shown in Fig. 4 to progressively build and then decompose the
tensor using SVD. The motivation for this new tensor decomposition algorithm
is that the computations by other decompositions store the fully formed ma-
trices, which are dense and hence cannot scale to very large sized tensors. But
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T(1)T

Fig. 3. Mode-1 matricization of a 3-order tensor

Input: Data File: TF , block size: b, number of modes(orders) : M
where m ∈ {1, 2, . . . , M} and Number of required dimensions: η
Output: Matricized Tensor : T
and left singular matrix with η dimensions for 1-mode : Uη

1. For every T(m) ∈ {T(1),T(2), . . ., T(M) }
a. Initialize T(m) = φ

2. Divide TF into blocks of size b
3. For every block b do

a. Create tensor Tb

b. For m = 1 to M do
T′

(m) = Unfold Tb along its mth mode //Matricize the tensor

T(m) =T(m)+T′
(m) //Update the Mode-m matricized tensor

4. Compute SVD on T with η dimensions, Tη= UηΣη VT
η

Fig. 4. Progressive Tensor Creation and Decomposition algorithm (PTCD)

PTCD stores the sparse matrices generated progressively and enables further
processing to be performed on the tensor. PTCD builds the tensor progressively
by unfolding the tensor entries for the user-defined block size b to a sparse ma-
trix T′

(m) where m ∈ {1, 2, . . . , M} and M is the number of modes. Then this
unfolded matrix, T′

(m) is used to update the final sparse matrix T(m). After up-
dating, all the tensor entries to the final matrix, T(m) is then decomposed to the
user-defined number of required dimensions η using SVD.

Huang et al. [6] have theoretically proved that HOSVD on a tensor simultane-
ously reduces the subspace and groups the values in each order. For the 3-order ten-
sorT , the left singularmatrix on the document order,Uη(D)provides the clustering
results on the data index direction; hence they are the cluster indicators for group-
ing the documents. Consequently, we apply the K-means clustering algorithm on
the Uη(D) matrix to generate the required number of clusters of the documents.

4 Experiments and Discussion

Experiments are conducted to evaluate the accuracy and scalability performance
of XCT on the real-life datasets.

4.1 Datasets

Three real-life XML datasets which have extreme characteristics, INEX 2009
Wikipedia documents collection (Wikipedia)1, INEX 2006 IEEE [4](IEEE) and

1 http://www.inex.otago.ac.nz/tracks/wiki-mine/wiki-mine.asp
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ACM SIGMOD (ACM)[2,10], were used after a careful analysis of a number of
datasets. The INEX 2009 document mining track used the Wikipedia dataset
with semantically annotated tags to perform the clustering task. This dataset
contains a very large number of documents with deeper structure and a high
branching factor. It also supports multi-label categories in which one document
can have more than one category. On the other hand, IEEE has single-labeled
categories and contains more formatting tags and fewer semantic tags. Finally,
the ACM is a small dataset that contains 140 XML documents correspond-
ing to two DTDs, IndexTermsPage.dtd and OrdinaryIssuePage.dtd (with about
70 XML documents for each DTD), similar to the setup in XProj [2]. This
dataset has been chosen in order to evaluate our method against other repre-
sentations and decomposition algorithms which could work only on this kind of
small datasets.

4.2 Experimental Design

Experiments were conducted on the High Performance Computing system, with
a RedHat Linux operating system, 16GB of RAM and a 3.4GHz 64bit Intel Xeon
processor core. Experiments were conducted to evaluate the accuracy of cluster-
ing results of XCT over other clustering techniques, decomposition techniques
and representation. Previous research for XML documents clustering [2] has used
the ACM to cluster the documents into two groups according to their structural
similarity. To compare our work with this earlier research, we conducted our ex-
periments not only with two cluster categories according to structural similarity
but also on 5 categories using expert knowledge considering both the structure
and the content features of XML documents. Due to the small number of terms
in this dataset, the random indexing option for XCT has been disabled.

Table 1. Details of the real life datasets

Dataset Names / Attributes Wikipedia IEEE ACM
No. of Docs 54,575 6054 140
No. of tags 34,686 165 38

No. of internal nodes 15,128,407 472,351 2070
Max length of a document 10347 691 45

No. of distinct terms 1,900,072 114,976 7135
Total No. of words 21,480,198 3,695,550 38141

Size of the collection 2.94GB 272MB 1 MB
Presence of formatting tags Yes Yes No

Presence of Schema Yes Yes Yes
Number of Categories 12,803 18 5

Following are the representation and the other existing algorithms used for
comparing the outputs of the proposed XCT method.

Structure Only (SO) Representation: An input matrix D × CFI is
generated similar to XProj [2].

Content Only (CO) Representation: The content of XML documents is
represented in a matrix D × Terms with each matrix entry containing term
frequency of terms in D.
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Structure and Content Representation (S+C) using VSM: The struc-
ture and the content features for the documents are represented in a matrix by
concatenating the CO and SO representations side by side.

Clustering Using CP and Tucker: The left singular matrix resulting from
applying CP or Tucker decomposition on the tensor is used as an input for
k-means clustering.

Clustering Using MACH: The MACH decomposition technique has been
applied on the original tensor with random indexing. MACH randomly projects
the original tensor to a reduced tensor with smaller percentage of entries (10%
from the original tensor as specified in [13]) and then uses Tucker decomposition
to decompose the reduced tensor. To compare with XCT, we apply k-means
clustering on the left singular matrix to group the documents.

Moreover, since the INEX dataset has been used by other researchers: we provide
the results cited by other researchers [4,11] as well in our analysis.

4.3 Evaluation Measures

The standard criterion of purity is used to determine the quality of clusters
by measuring the extent to which each cluster contains documents primarily
from one class. The macro and micro purity of the entire clustering solution is
obtained as a weighted sum of the individual cluster purity. In general, the larger
the value of purity,the better the clustering solution is.

Purity =
# Documents with the majority label in cluster k

# Documents in cluster k
(2)

Micro − Purity =

∑n
k=0 Purity(k) ∗ # Documents Found By Class(k)∑

n
k=0 # Documents Found By Class(k)

(3)

Macro − Purity =

∑n
k=0 Purity(k))

Total Number of Categories
(4)

4.4 Empirical Analysis

Accuracy of Clustering: Tables 2 and 3 provide the purity results of cluster-
ing on the datasets using XCT, other representations and other decomposition
algorithms. As can be seen from these three tables, the proposed XCT method
not only outperforms our benchmarks but also other INEX submissions in terms
of the accuracy of their clustering solution. It should be noted that algorithms

Table 2. Clustering results on Wikipedia and IEEE

#50 clusters #100 clusters
Methods Micro- Macro- Micro- Macro-

purity purity purity purity
XCT 0.13 0.14 0.14 0.13

S+C using VSM 0.13 0.14 0.13 0.14
Clustering using MACH 0.087 0.089 0.089 0.088

CO 0.10 0.12 0.12 0.13
SO 0.09 0.11 0.11 0.10

BilWeb-CO[11] NA NA 0.10 0.13

Methods Micro- Macro-
purity purity

XCT 0.23 0.23
S+C using VSM 0.18 0.14

Clustering using MACH 0.17 0.20
CO 0.10 0.12
SO 0.08 0.10

Nayak et. al [4] NA 0.18
Doucet et. al [4] NA 0.13
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Table 3. Results of clustering on ACM

#2 clusters #5 clusters
Methods Micro-purity Macro-purity Micro-purity Macro-purity

XCT 1 1 0.91 0.91
S+C using VSM 0.98 0.98 0.75 0.79

Clustering using MACH 0.97 0.93 0.70 0.75
Clustering using Tucker 0.56 0.48 0.59 0.87

Clustering using CP 0.89 0.93 0.84 0.93
CO 0.97 0.94 0.73 0.78
SO 1 1 0.64 0.72
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Fig. 5. Sensitivity of length constraint on the micro-purity values for IEEE

such as CP, Tucker could not scale even to the medium-sized dataset, IEEE
and hence their results were not reported but the proposed PTCD was able to
decompose even large dataset as shown in Tables 2 and 3. As the categories in
IEEE was based on both the structure and the content we utilized this dataset
for analyzing the sensitivity of the length constraint and min supp values on the
purity. We conducted experiments by varying the length constraint(len) of the
CFI subtrees from 3 to 10 for support thresholds from 10% to 30%. From Fig. 5
which indicates that with the increase in the length constraint the micro-purity
and macro-purity values drops especially at 10% and 30% support threshold.
Also, length constraint of over 7 shows a negative impact on the purity. With
longer length patterns the content corresponding to the CFI subtrees becomes
specific and hence results in less accuracy than the content corresponding to
shorter subtrees. This shows the suitability of constraining the CFI subtrees as
in PCITMinerConst.

Time Complexity Analysis: The time complexity of XCT is composed of
five major components, namely frequent mining for CFI subtrees, clustering of
CFI subtrees, random indexing, matricization and decomposition in PTCD. It
is given by O(dsm) + O(drp)+ O(tkγ) + O(drγ) + O(dk′γ) where d represents
the number of documents, s is the number of 1-Length CFI subtrees, m is
the number of PCITMinerConst iterations, r is the number of structure-based
clusters, p is the number of similarity computation iterations, γ is the size of the
random index vector, k and k′ are the non-zero entries per column in the tensor
before random indexing and in the matricized tensor after random indexing
respectively. The time complexity of PTCD is O(drγ)+O(dk′γ), which includes
the cost of matricization along the mode-n and the sparse SVD.
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Fig. 6. Scalability of PTCD

Scalability Test: All the three datasets were used for this analysis with
min supp at 10%, len at 5, γ at 100 and the number of clusters chosen, 5, 18 and
100 respectively. Also we used 1000 documents each for IEEE and Wikipedia.
The execution time of PCITMinerConst is less than a few 10 milliseconds and
hence it has not been reported as it is not of much significance. We can see from
Fig. 6 that both XCT and PTCD scale nearly linearly with the dataset size. The
PTCD algorithm includes two main steps: (1)loading the tensor file into mem-
ory by matricization, and (2) decomposing the matrices using SVD. As it can be
seen from Fig. 6 that minimal time is spent on decomposition and a large chunk
of time on loading the tensor file into memory. Also, it is interesting to note the
PTCD for ACM is greater in comparison to IEEE which indicates that random
indexing option in XCT method helps to reduce the complexity of decomposition
by reducing the term space. An interesting problem is how to choose the value γ
for the seed length in random indexing. The Johnson- Lindenstrauss result was
used to get the bounds for γ as given by γ =

⌈
4(ε2/2 − ε3/3)−1ln n

⌋
. However,

we found that for Wikipedia dataset with ε=0.5, γ is 433 but in the experiments,
γ ≈ 100 was sufficient to obtain good accuracy similar to the results by [3].

5 Conclusion

In this paper, we have proposed a clustering method, XCT, for effectively com-
bining both the structure and the content features in XML documents using
TSM model. The experimental results clearly ascertain that XCT outperforms
other existing approaches in improving accuracy. Also, our proposed decompo-
sition algorithm PTCD has demonstrated that it has potential for decomposing
tensors effectively and could scale for very large datasets. Our future work will
focus on reducing the complexity of XCT and applying it on various types of
other types of semi-structured documents.
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Abstract. As the rapid growth of the scientific documents in digital
libraries, the search demands for the documents as well as specific compo-
nents increase dramatically. Accurately detecting the component bound-
ary is of vital importance to all the further information extraction and
applications. However, document component boundary detection (espe-
cially the table, figure, and equation) is a challenging problem because
there is no standardized formats and layouts across diverse documents.

This paper presents an efficient document preprocessing technique to
improve the document component boundary detection performance by
taking advantage of the nature of document lines. Our method easily
simplifies the component boundary detection problem into the sparse
line analysis problem with much less noise. We define eight document
line label types and apply machine learning techniques as well as the
heuristic rule-based method on identifying multiple document compo-
nents. Combining with different heuristic rules, we extract the multiple
components in a batch way by filtering out massive noises as early as
possible. Our method focus on an important un-tagged document for-
mat – PDF documents. The experimental results prove the effectiveness
of the sparse line analysis.

Keywords: Preprocessing, Boundary Detection, Sparse Line Property,
PDF documents, Table and Equation.

1 Introduction

Most prior works on information extraction in digital documents have focused
on extracting information from texts. However, often, the most important in-
formation being reported in a digital document is presented in multiple com-
ponents (e.g., tables, equations, figures, algorithms, etc.) and special sections
(e.g., abstract and conclusion). These components are widely used in web pages,
scientific documents, financial reports, etc. Researchers always adopt these com-
ponents to introduce a new theory or an important algorithm, to display the
latest experimental results, the valuable statistical information, or a summary
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of their exciting findings in a condensed fashion. Other researchers, for example,
who are conducting an empirical study in the same topic, can quickly obtain
valuable insights via examining these components.

Although these components are ubiquitous with a history that pre-dates that
of sentential texts, they are far from been fully analyzed and utilized, especially
the tables and equations. Along with the explosive development of the digital li-
brary and internet, these components have became a valuable information source
for information seeking and data analysis. Based on the increasing demands to
unlock the information inside, more applications appear, e.g., the table search
[12] or equation understanding. Considering the life cycles of these components,
they are generated and sometimes modified to fit new regulations or to display
in new devices. With the content repurposing, each component can be viewed
and shared by more people. If the data reported in these components can be
extracted and stored in a database, the data can be queried and integrated with
other data using database management systems. In order to prepare the data
source for further applications, accurately detecting the boundaries of these com-
ponents plays a crucial role for the later information extraction. While there has
been some research on component boundary detection, most them only focus
on a single component each time. Although approaches on component analysis
are diverse, they share two analyzing steps: boundary detection and structure
decomposition. For the further content storage and sharing (e.g., the table data
extraction or the equation search), locating the component boundary is the first
and crucial step.

In this paper, we propose a novel, efficient and universal method to detect the
boundaries of all the listed specific components. Comparing with the previous
works, our method has the following contributions:

1) Although document component boundary detection is not a new topic,
most previous works only focus on an individual component and it is difficult to
apply their methods/algorithms to another different component without much
modification. Our method can detect the boundary of a batch of important but
different components from a document in one simple iteration. In this paper we
focus on the table and equation boundary detection. However, other components
e.g., figures and algorithms can also be detected simultaneously.

2) In general, the component boundary detection problem can be transformed
into the problem of identifying the lines of the target components, which consti-
tute the component boundaries. With observation of multiple components with
diverse layouts from different documents, we notice an interesting phenomenon
according to the nature of document layouts, almost all the lines within the com-
ponent boundaries share an important property: majority lines belonging to the
specific component components are sparse in terms of the text density. Based on
this interesting property, most document logical components can be identified
together with different features. Existing filter-out based component discovering
methods identify the target lines from the entire set of document lines according
to certain rules, which in turn results in low recall. However, for applications such
as table search [12], recall is more important than precision because once the true
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target lines are removed, it is difficult to retrieve them back. Fortunately, the
false positive rate can be easily lowered in later structure decomposition step.
In this paper, we propose a novel but effective method to quickly locate the
component boundary by taking advantage of the aforementioned property. We
also propose an exclusive based method for identifying component lines, which
generates high recall and saves substantial effort to analyze the noisy lines.

3)The PDF format is commonly used for the exchange of documents on the
Web and there is a growing need to understand and extract or repurpose data
held in PDF documents. Many systems for processing PDF files use algorithms
designed for scanned documents, which analyze a page based on its bitmap
representation. We believe this approach to be inefficient. Not only does the
rasterization step cost processing time, but information is also lost and errors
can be introduced. Although we can convert PDF documents into other media
(e.g., html, text), then analyze the new documents using the existing methods,
identifying various component logical components as well as the contents [2]
is still a challenging problem. The major difficulties come from the following
aspects: most PDF documents are untagged and do not have basic high-level
document logical structural information, which makes the reuse or modification
of the documents difficult. In addition, almost all the PDF text extraction tools
have the text sequence errors. If converting PDF documents into other media
(e.g., image), new noises can be generated by some necessary tools (e.g., OCR).

The rest of the paper is organized as follows. Section 2 reviews several relevant
studies in component boundary detection area and the applied machine learning
methods in this field. Section 3 introduces the sparse-line property we proposed,
describes in detail the sparse line detection and the noise line removing using the
conditional random field and support vector machine (SVM) techniques. We also
elaborate the label types and the feature sets. Section 4 explains how to locate
the component boundary based on the labeled lines as well as other important
heuristic rules, e.g., keywords. The detailed experimental results are displayed
in Section 5. We conclude our paper with plans for future work in Section 6.

2 Related Works

Chao et al. [2] reported their work on extracting the layout and content from
PDF documents. Hadjar et al. developed a tool for extracting the structures
from PDF documents. They believe that, to discover the logical components
of a document, all/most of the page objects listed by PDF document content
stream need to be analyzed (e.g., text objects, image objects, path objects).
However, the object overlapping problem happens frequently. If all the objects
are analyzed, more effort needs to be spent to firstly segment them from each
other. In addition, even we identified these objects, they are still too high level
to fulfill many special goals, e.g., detecting the tables, figures, mathematical
formulas, footnotes, references, etc. Instead of converting the PDF documents
into other media types (e.g., image or HTML) and then applying the existing
techniques, we process PDF documents directly from the text level.
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In the past two decades, a good number of researches have been done to
discover the document layout by converting the PDFs to image files. However,
the image analysis step can introduce noise (e.g., some text may not be rec-
ognized or some images may not be correctly recognized). In addition,because
of the limited information in the bitmap images, most of them only work on
some specific document types with minimal object overlap: e.g., business letters,
technical journals, and newspapers. Some researchers combine the traditional
layout analysis on images with low-level content extracted from the PDF file.
Even if the version 6 of PDF allows a user to create a file containing structure
information, most of them do not contain such information. In this paper, we
propose a method that relies solely on the PDF extracted content, not longer
requiring the conversion to any other document medium and apply any further
processing methods.

3 The Sparse-Line Property

Although the PDF was designed as a powerful fixed-layout format that allows
documents created within any desktop publishing package to be viewed in the
original typeset design, regardless of the systems where it is being displayed,
there were trends to recover the document structural layouts and to identify
logical components from PDFs. To successfully get the data from an important
component, detecting the component boundary is a crucial step. Based on the
observation, we notice that different lines in a same document page have different
widths, text densities, and the sizes of the internal spaces between words. A
document page contains at least one column. Many journals/conferences require
two (e.g., ACM and IEEE templates) or three even four columns. Some document
lines have the same length as the width of the regular document column (e.g.,
most lines in this paper), some others are much longer (e.g., cross over multiple
document columns) or shorter. Based on the size of the internal spaces within
a document line, the majority of document lines contain normal space sizes
between two adjacent words while some lines have large spaces.

Sparse line is originally proposed in [14]. Because we extend the table compo-
nent to all the document logical components in this paper, we modify the sparse
line definition as follow. A document line is a sparse line if either condition is
satisfied: 1) The maximum space gap between a pair of consecutive words within
the line is larger than a threshold sg; 2) The length of the line is shorter than
a threshold ll. Different “ ll” may generate different sparse line labeling results.
We define it as the half of the regular document column width.

Figure 1 shows a snapshot of a PDF document page as an example. We
highlight the sparse lines in red rectangles and the lines with specific keywords
in blue rectangles. Apparently, the table/ equation/ figure body-content lines
are labeled as sparse lines according to the definition. Four sparse lines are not
located within the component boundary we pre-defined: one caption lines and
three short lines that are the last line in a paragraph. We label them as sparse
lines because they satisfy the second condition. Heading/footer lines may also
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Fig. 1. An example PDF page

belong to this category. Since such short-length lines also happen in some table
rows with only one filled cell, we consider them as sparse lines to avoid missing
out the potential table lines. Such noise sparse lines are very few because they
usually only exist at the headings or the last line of a paragraph. In addition,
the short length restriction also reduce the frequency. We can easily get rid of
them based on the coordinate information later. Comparing with [14], which
automatically identified the table boundary based on sparse lines analysis, this
paper aims to identify multiple document components (tables, equations, figures,
etc.) simultaneously.

3.1 Machine Learning Methods

In this paper, we apply two machine learning methods – Support Vector Ma-
chine (SVM) [1] and Conditional random fields (CRF) [11] on the component
boundary detection Furthermore, we elaborate the feature selection, analyze the
factor effects of different features, and compare the performance of CRF/SVM
approaches with our proposed rule-based method. Different from most CRF ap-
plications, the unit of our problem is a document line, instead of a single word.
Before classifying the document lines, we have to construct the lines first. Our
bottom-up line construction approach can be found in [14].

Overall, our features can be classified into three categories: the orthographic
features, the lexical features, and the document layout features. Most related
works treat the vocabulary as the simplest and most obvious feature set. Such
features, named as orthographic features, define how these input data appear
based on regular expressions as well as prefixes and suffixes. For the table bound-
ary detection, layout features are the most important parts. However, for this
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paper, we found that the first two types are more crucial because of the nature
of document components. The detailed features can be found in [14].

Different from the traditional component boundary detection works, we use
an exclusive method to label all the potential target lines. Each document line
will be examined and labeled with a predefined category. For the boundary
detection of a specific document component, we can easily identify the noisy
document zones and remove them as early as possible.

4 Component Boundary Detection

After labeling each line using machine learning methods, Figure 2 shows the
distribution of the sparse lines in a document page. In order to detect multiple
component boundaries in a batch way, we adopt a universal boundary detection
method, which contains the follow four steps:

Fig. 2. The sparse lines in a PDF page

1) Locating one end of the boundary by detecting the pre-defined keywords.
Although caption lines are not included in the boundary, the keywords are
usually powerful indicators, which facilitates the boundary detection.

2) Deciding the other end of the boundary by judging the caption location.
Although most caption lines are not included in the boundary area, the caption
location (below/top) is crucial to find the other side of the boundary, especially
when multiple components appear in a same page altogether.

3) Analyzing the collected sparse lines between two ends; We focus on differ-
ent aspects for different components. For example, tabular structure is the key
feature of a table. Because of the inherited sequence error problem of PDF text
extraction tools, the line sequence resorting work usually happens in this step.

4) Removing noisy sparse lines and retrieving the positive lines labeled as
non-sparse lines that are filtered out in the early stage, if needed. Usually the
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noisy sparse lines are located just beyond the component boundary. Using table
boundary as an example, a typical positive line to be retrieved is the long table
lines (e.g., long nesting table lines).

Because of the limited space, we use table and equation boundary detection as
two examples. We define the main table content rows as the table boundary,
which does not include the table caption and the footnote. In order to facilitate
the table starting boundary detection, we define a keyword list, which contains
all the possible starting keywords of table captions, such as “Table, TABLE,
Form, FORM,” etc. Most tables have one of these keywords in the captions.
If more than one tables are displayed together, the keyword is very useful to
separate the tables from one another. Once we detect a line (not only the sparse
line) starting with such a keyword, we treat it as a table caption candidate.
Then we check all the nearby sparse lines and merge them with the sparse area
according to the vertical distances between adjacent lines. Tabular structure
within the sparse area is the key feature to verify a table boundary.

Comparing with other components, the equation boundary always contains a
set of sparse lines which satisfy some particular patterns: short lengths, disor-
dered sequences, inconsistent font information, and single characters or words
together with mathematic operation symbols. In addition, the most important
difference between equation boundary and table boundary is that there is no
obvious tabular structure within an equation.

In previous researches with imbalanced data, recall is usually lower than preci-
sion for the true class. However, in the document component boundary detection
problem, recall is more important than precision at least in the information re-
trieval (IR) field, because collecting the real target lines as more as possible is
crucial to the overall boundary detection accuracy. The texts within the detected
component boundary will be analyzed carefully in the later structure decompo-
sition phase. Once we locate a component boundary, we zoom in the detected
boundary and try to retrieve the missing lines (e.g, long table lines) that are
labeled as non-sparse lines or to remove the false lines (e.g., surrounding noisy
sparse lines) to improve the recall.

5 Experiments and Results

In this section, we demonstrate the experimental results of evaluating the doc-
ument component boundary detection with two machine learning methods Our
experiments can be divided into four parts: the performance evaluation of differ-
ent methods, different feature settings, different datasets, and different parameter
settings.

5.1 Data Set

Instead of analyzing document components from a specific domain, we aim to
collect components as much different varieties as possible from digital libraries.
We continue our experiments based on the same data sources in [14]: chemical
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scientific digital libraries (Royal Chemistry Society1), Citeseer2, and archeology3

in chemistry, computer science and archeology fields. The size of each PDF
repository we collected exceeds 100, 000, 10, 000 and 8, 000 respectively in terms
of scientific papers. We extended the size of our training set to 450 randomly
selected pages. Among these pages, we refer 150 pages from the chemistry field
as the dataset H , 150 pages from the computer science field as the dataset S, and
150 come from the archeology field as the dataset A. The total number of the lines
in three datasets are 17035, 20468, and 13945 respectively. For every document
line, we manually identify it with a defined label. In order to get an accurate
and robust evaluation on the component boundary detection performance, we
adopt a hold-out method by randomly dividing the dataset into five parts and
in each round we train four of the five parts and tested on the remaining one
part. The final overall performance comes from the combined five results. In
our experiment, we use the java-implemented, first-order CRF implementation
– Mallet – to train two versions of the CRF with binary features and the actual
values. For SVM, we adopt SVM light [7].

Because this work can be viewed as an extension of our previous work in [14],
the results of the line construction can be found there. In this paper, we mainly
test the performance of line labeling for each specific component by considering
the pre-defined keywords and rules.

5.2 Performance of Sparse Line Detection

We perform a five-user study to evaluate the quality of the sparse line detec-
tion. Each user checks the detected sparse lines in 30 randomly selected PDF
document pages in each dataset. The evaluation metrics are precision and recall,
which are defined in [14]. The results are listed in Table 2.

Table 1. The performance evaluation of the sparse line detection

datasets H A S
The Number of PDF pages 150 150 150
Recall of sparse line detection 99.75 99.40 99.38
Precision of sparse line detection 98.33 98.75 98.68

There are two reasons for the potential errors: 1) some tables have long cells
or very small spaces between the adjacent table columns because of the crowd
layout. 2) The mathematical equation boundary may include some surrounding
noisy sparse lines. In order to include the correct lines in each component, we
regulate thresholds by setting ll with a tolerate value and sp with a smaller value.
The trade off is mislabeling some non-sparse lines as sparse lines. However, we
have further steps to do the boundary structure analysis, including such non-
sparse or noisy lines(low precision) is not a big problem. Within the datasets H ,
1 http://www.rsc.org/
2 http://citeseer.ist.psu.edu/
3 http://www.saa.org/publications/AmAntiq/AmAntiq.html

http://www.rsc.org/
http://citeseer.ist.psu.edu/
http://www.saa.org/publications/AmAntiq/AmAntiq.html
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A and S, 80.25% lines are labeled as non-sparse lines and can be easily removed
as noise.

5.3 Performance of Noise Line Removal

Different from [14], the noise lines here refer all the sparse lines that are not
belong to the target component boundary, e.g., the last sparse line in Figure 2.
The input of this step is all the detected sparse lines while the output should
be the filtered sparse lines that are located in the components. Because of the
limited space, we use equation and table as examples.

Table 2 lists the noise removal results, measured in precision and recall. FP
refers the beginning dataset – all lines in a page. RNS refers the non-sparse
lines. RH refers the noisy heading lines. HF refers the noisy header and foot-
note lines. CAP is the noisy caption lines, REF is the noisy reference lines,
and PP represents the postprocessing step. Along with the noise removing, the
size of the sparse line dataset decreases and the precision of the table/equation
line labeling increase steadily. Non-sparse line removing and the postprocessing
are two crucial steps for the table/equation boundary detection problem. The
results on three datasets are consistent without any remarkable difference. The
precision value is improved from 10.48% to 61.47% after removing all noises. In
addition, the further steps are much easier because of the dramatically reduced
sparse line set. Although the results are still not satisfying, the remaining false
positive table/equation lines scatter in the page and the large distance to the
table caption is an important feature to identify the table lines.

Table 2. The performance evaluation of the noisy sparse line removal

D/NLC H precision H recall A precision A recall S precision S recall
FP 10.79 100.00 11.25 100.00 10.48 100.00

RNS 43.18 99.20 43.76 99.25 42.55 98.21
RH 53.60 99.16 55.84 99.06 53.13 98.08
HF 55.76 99.13 56.98 98.92 55.32 97.80

CAP 57.55 99.06 58.10 98.55 57.28 97.25
REF 60.83 98.97 61.47 98.83 60.79 97.36
PP 98.33 98.85 98.75 98.80 98.68 97.28

Table 2 also shows the recall curves with the same experimental conditions.
The initial recall values are 100% because no line is removed. Along with each
step, the recall is decreasing because few true table/equation lines are mislabeled
and removed. Within three datasets, dataset S has the worst recall value because
most computer science documents do not follow the standard template strictly
and some true table lines are mislabeled.

5.4 Table/Equation Boundary Detection

Although the remaining sparse line set contains almost all the table lines and the
equation lines, the accuracy is still not satisfying. the typical false positive table
lines are the lines with short length. Such lines are usually located at the end



An Efficient Pre-processing Method to Identify Logical Components 509

of paragraphs, the last line of a table caption, or a short table footnote without
special beginning symbol etc. Considering the distance features, most of the first
type can be filtered out. For those missed true table lines, analyzing the location
information of adjacent sparse line sections together with the table caption help
us to retrieve them back. With these heuristical rules, the precision values is
enhanced to 95.79% and the recall values is close to 98.61%. After we decide
the table boundary, we treat all the remained of the sparse lines as the potential
equation boundary. Based on the dataset in section 5.1, the recall of equation
boundary detection is 95.25 and the precision is 87.85. Because we will launch
the equation structure decomposition (see details in another paper) based on
the detected equation boundary, we welcome high recall and the relatively low
precision will be improved easily.

6 Conclusions

In this paper, we propose a preprocessing method to detect the boundaries of
a batch of different document components. With an interesting observation of
the document lines, we simplify the document boundary detection problem into
a line labeling problem by considering the nature of document lines. The whole
method can be viewed as a classification and filtering sequence. As the noisy lines
are removed, we can easily detect the target lines to constitute the components.
Combining different heuristic rules, our method is applicable to detect multiple
document components.
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Abstract. Named entity recognition (NER) is the process of seeking to lo-
cate atomic elements in text into predefined categories such as the names of
persons, organizations and locations.Most existingNERsystems are based
on supervised learning. This method often requires a large amount of la-
belled training data, which is very time-consuming to build. To solve this
problem, we introduce a semi-supervised learning method for recognizing
named entities in Vietnamese text by combining proper name coreference,
named-ambiguityheuristicswithapowerfulsequential learningmodel,Con-
ditional Random Fields. Our approach inherits the idea of Liao and Veera-
machaneni [6] and expands it by using proper name coreference. Starting
by training the model using a small data set that is annotated manually,
the learning model extracts high confident named entities and finds low
confident ones by using proper name coreference rules. The low confident
named entities are put in the training set to learn new context features. The
F-scores of the system for extracting “Person”, “Location” and “Organiza-
tion” entities are 83.36%, 69.53%and 65.71%when applyingheuristics pro-
posed by Liao and Veeramachaneni. Those values when using our proposed
heuristics are 93.13%, 88.15% and 79.35%, respectively. It shows that our
method is good in increasing the system accuracy.

Keywords: information extraction, named entity extraction, entity
coreference, semi-supervised learning, CRFs.

1 Introduction

Named Entity Recognition is a subtask of information extraction. Its purpose is
to identify and classify certain proper nouns into some predefined target entity
classes such as person, organization, location and temporal expressions.

Much previous work on NER followed the supervised learning approach [2],
[3], [9], [12], [15] which requires a large hand-annotated corpus. Such approaches
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can achieve good performances. However, annotating such a corpus requires a
lot of human effort. This problem can be solved by using a sequence-based semi-
supervised method that trains a classification model on an initial set of labelled
data, makes predictions on a separate set of unlabelled data, and then iteratively
attempts to create an improved model using predictions of the previously gener-
ated model (plus the original labelled data). Based on this method, we propose
a semi-supervised learning method for recognizing named entities in Vietnamese
text by combining proper name coreference, named-ambiguity heuristics with
a powerful sequential learning model, Conditional Random Fields (CRFs). Our
approach inherits the idea of Liao and Veeramachaneni [6] and expands it by
using proper name coreference. Starting by training the model using a small
data set that is tagged manually, the learning model extracts high confident
named entities with and finds low confident NEs by using proper name corefer-
ence rules. The low confident NEs are put in the training data set to learn new
context features.

Example 1.
(a) ��� ��� �� �	� 
�� � ����� ��� �� 	�
 ���� /It rains heavily in

Hochiminh city today.
(b) ���� ��� ���� ��� ���� ���� ����� ��� �	��� � � �	� /The govern-

ment is finding a method to solve traffic jam in Hochiminh city.

In Example 1, both “����� ��� �� �� ����/Hochiminh city” and “� ��”
are Location entities and refer to one location. However, the system can only
find one Location entity with high confident score, which is “����� ��� �� ��
����/Hochiminh city”. The phrase “� ��” is not recognized as a Location
entity by the system since the confidence score of this phrase is smaller than the
threshold. Based on the coreferent rules, the system discovers that “����� ���
�� �� ����/Hochiminh city” and “� ��” refer to the same location. From
that point of view, “� ��” is considered as a low confidence part of “�����
��� �� �� ����/Hochiminh city”. “� ��” is then forced to be a Location
entity. It is put in the training set to relearn the new feature context.

In addition, based on our empirical study, several named entity (NE) rules
are manually added to the system, in order to create new training data from
unlabelled text.

The rest of this paper is organized as follows. Section 2 introduces recent
studies on semi-supervised NER methods and works that inspire our research.
Section 3 briefly introduces include CRF and the training and inference of the
CRF. Section 4 discusses the semi-supervised NER problem for Vietnamese text
and our solution to this problem. Section 5 analyzes our experimental results.
Finally, our conclusions and future work are given in Section 6.

2 Related Works

The term “semi-supervised” (or “weakly supervised”) is relatively recent. The
main technique for semi-supervised learning is called “bootstrapping” and
involves a small degree of supervision for starting the learning process.
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Niu et al [13] present a bootstrapping approach for NER. This approach only
requires a few common noun/pronoun seeds that correspond to the concept for
the target NE type, e.g. he/she/man/woman for Person entity. The entire boot-
strapping procedure is implemented as training two successive learners: (i) a
decision list is used to learn the parsing-based high precision NE rules; (ii) a
Hidden Markov Model is then trained to learn string sequence-based NE pat-
terns. The second learner uses the training corpus automatically tagged by the
first learner.

Mohit and Hwa [11] used Expectation Maximization (EM) algorithm along
with their Näıve Bayes classifier to form a semi supervised learning framework.
In this framework, the small labelled dataset is used to do the initial assignments
of the parameters for the Näıve Bayes classifier. After this initialization step, in
each iteration the Näıve Bayes classifier classifies all of the unlabelled examples
and updates its parameters based on the class probability of the unlabelled and
labelled NE instances. This iterative procedure continues until the parameters
reach a stable point. Subsequently, the updated Näıve Bayes classifies the test
instances for evaluation.

Perrow and Barber [14] take advantage of the simple idea that if a term is
annotated with a label in one name, it is highly likely that this term should
be annotated with the same label everywhere in the data. Then they annotated
this label everywhere in the corpus, assuming that the annotations are the same
unless explicitly told otherwise (by further annotations). In this way, they used
all the data in the corpus, containing largely only partially annotated records.
To learn the parameters (the transition and emission probability tables) they use
the Expectation Maximization (EM) algorithm which is an iterative algorithm
that increases the likelihood of the corpus given the model parameters in each
iteration.

The Yarowsky algorithm [17], originally proposed for word sense disambigua-
tion, makes the assumption that it is very unlikely for two occurrences of a word
in the same discourse to have different senses. This assumption is exploited by se-
lecting words classified with high confidence according to sense and adding other
contexts of the same words in the same discourse to the training data, even if
they have low confidence. This allows the algorithm to learn new contexts for
the senses leading to higher accuracy.

Wong and Hwee [16] use the idea of multiple mentions of a token sequence
being to the same named entity for feature engineering. They use a named entity
recognition model based on the maximum entropy framework to tag a large
unlabelled corpus. Then the majority tags of the named entities are collected
in lists. The model is then retrained by using these lists as extra features. This
method requires a sufficient amount of manually tagged data initially to work.

Liao and Veeramachaneni [6] repeated learning to improve training corpus
and the feature set by selecting unlabelled data that has been classified with
low confidence by the classifier trained on the original training data, but whose
labels are known with high precision from independent evidence. They propose
two strategies of obtaining such independent evidence for NER. The first strategy
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is based on the fact that multiple mentions of capitalized tokens are likely to
have the same label and occur in independently chosen context and call that the
multi-mention property. The second strategy is based on the fact that entities
such as organizations, persons, etc., have context that is highly indicative of the
class, yet is independent of the other context (e.g. company suffixes like Inc., Co.,
etc.; person titles like Mr., CEO, etc.). They use two heuristics to find the low
confidence sequence tokens. In the first heuristics, if the sequence of tokens has
been classified as (Organization, Person, Location) with high confidence score
(larger than a threshold T), their system forces the labels of other occurrences of
the same sequence in the same document, to be (Organization, Person, Location)
and adds all such duplicate sequences classified with low confidence (smaller than
T) to the training data for the next iteration. The second heuristics is removing
company suffix or person title from the sentence. Then the system reclassifies the
sentence after removing the company suffix or person title and checks whether
the labels have low confidence score or not. If it has low confidence score, the
sequence will be added to the training data.

Our research bases on [6] and expands it by combining proper name corefer-
ence, named-ambiguity heuristics with a powerful sequential learning model, Con-
ditional Random Fields. This approach will be discussed in detailed in Section 4.

3 Conditional Random Field

Conditional random fields are undirected graphical models trained to maximize
a conditional probability [7].

A linear-chain CRF with parameters λ = {λ1, . . . , λN} defines a conditional
probability for a state (or label) sequence y = y1, . . . , yT given an input sequence
x = x1, . . . , xT to be

Pλ(y|x) =
1
Zx

exp

(
T∑

t=1

N∑
k=1

λkfk(yt−1, yt,x, t)

)
. (1)

where T is the length of sequence, N is the number of features, Zx is the normal-
ization constant that makes the probability of all state sequences sum to one,
fk(yt−1, yt,x, t) is a feature function which is often binary-valued, but can be
real-valued, and λk is a learned weight associated with feature fk. Large positive
values for λk indicate a preference for such an event, while large negative values
make the event unlikely.

The weights of a CRF, λ = {λ1, . . . , λN}, are a set to maximize the conditional
log-likelihood of labelled sequences in some training set, D = {(x1, l1),
(x2, l2), . . . , (xM , lM )}:

Lλ =
M∑

j=1

log(Pλ(lj |xj)) −
N∑

k=1

λ2
k

2σ2
. (2)

where the second sum is a Gaussian prior over parameters (with variance σ) that
provides smoothing to help cope with sparsity in the training data.
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When the training labels make the state sequence unambiguous (as they often
do in practice), the likelihood function in exponential models such as CRF is
convex, so there are no local maxima, and thus finding the global optimum is
guaranteed. It has recently been shown that quasi-Newton methods, such as L-
BFGS, are significantly more efficient than traditional iterative scaling and even
conjugate gradient [10].

Inference in CRF is to find the most probable state sequence y∗ corresponding
to the given observation sequence x.

y∗ = argmaxy∗p(y|x) . (3)

In order to find y∗, one can apply the dynamic programming technique with a
slightly modified version of the original Viterbi algorithm for HMMs.

4 Named Entity Recognition in Vietnamese Text

The training module of our NER takes as input a small set of Vietnamese
documents that have been annotated for three types of named entities in-
cluding Person, Organization and Location, e.g., !�� <Person>"�#�$� ���
%	&��</Person> ��'� ��( ��)� *+ ��� ��'# �,	��� <Orgnization>�,	��� -.� �/�
0��� 1�2� �� "3�</Orgnization > /Mr.Nguyen Canh Luong currently keeps the
position of vice-president of Hanoi University of Science and Technology.

The model after one training step is used to repredict unlabelled training
data. The confident score is computed to find the high confidence NEs. The low
confident NEs are then found based on the confident score and heuristics.

Section 4.1 presents Vietnamese characteristics that involve the organization
of named-entities, in order to create heuristics for finding low confidence NEs.
From that point of view, the heuristics are used in our system are proposed.
Section 4.2 introduces the semi-supervised learning algorithm for recognizing
named entities.

4.1 Characteristics of Vietnamese Proper Names

There are some cases of ambiguities between entities in Vietnamese text, as
shown below.

1. Case 1: One name or one NE is a part of another NE. More specifically,
one NE may be the middle part or the last part of another NE. In this case,
the NE that covers the larger text should be tagged instead of the smaller
one. For example, the phrase “��� ��  ��� �,�4�  �5� �6� �. 7#���
08#/The Ta Quang Buu software development company” is the name of an
organization. This phrase contains the word “�. 7#��� 08#” which is the
name of a Vietnamese famous scientist. In this case, this phrase should be
tagged as an organization name instead of tagging “�. 7#��� 08#” as a
person name.

2. Case 2: The recognition of a name entity depends on its context. For
example:
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Example 2.
(a) ��� ���9 ���� �� �� �: ��)� 
�;� �2�� ��2 ��� ����� *�;� /Today,

the FPT company organizes a party for its employees.
(b) ��� ���9 ��<�� ��� => �: ��)� 
�;� �2�� � ���� �� �� /Today, we

organize a party at the FPT company.

The FPT company is an organization in the first sentence, whereas it is a
location in the second one.

These ambiguities will be considered to create NER rules, as reported in
Section 4.2.

Beside the above rules, the forms of named entities in Vietnamese are also
considered to recognize NE. These forms are shown below:

• Person Names: [prefix] + [family name] + [middle name] + name
• Organization Names: [prefix] + [category] + [category of business] + name

+ [location]
• Location Names: [prefix] + name

In the above forms,the words in the square brackets are optional and the name
can sometimes be abbreviated. This abbreviation can be placed in round brackets
or not. Based on above forms, Nguyen and Cao [5] created the proper name
coreference rules for Vietnamese text as shown in Table 1.

Some rules in Table 1 can be applied suitably with other languages. For ex-
ample, rule 2 can be used to find name coreference in English, e.g, Steven Paul
Jobs and Jobs. Specific rules for a certain language are also welcoming to make
our system more efficient when being operated for that language.

4.2 Semi-supervised Learning Algorithm

Based on the idea of Liao and Veeramachaneni [6] , our system starts by training
a model from a small labelled data L. This model is used to find new training
data from unlabelled text. After extracting NEs by using the model getting from
the training process, the low confidence NEs in unlabelled texts are detected by
using heuristics for proper name coreference, some special rules, and rules for
resolving ambiguity problems in labeling entities. The system is then retrained on
the new data which includes low confidence NEs above. This process is repeated
until the system cannot be improved. The algorithm is shown in Table 2 below.

In the training process (Step 1), training documents are first parsed by a Part
of Speech (POS) tagger [8] to split documents into words and to get the syntactic
roles of words in the sentences. Then features used in the CRF algorithm are
calculated and a model C is build. The features are common features that are
widely applied in other NER systems. These features are the word itself, the
orthographic feature, the gazetteer feature and the POS of the current word,
two words before and two words after the current word. In other words, all
above mentioned features are calculated for the window size of five.
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Table 1. Proper Name Coreferent Rules1

Rule Content

1 Two names are similar.

2 One name is a part of another name, e.g., “������ ��	 
��” and “
��”.
3 One name is an alias of another name, e.g., “�� ���” and “�� �� ��	 
���”.
4 One name is an abbreviation of another name, e.g., “�� ��
” and “�����

��� �� ��	 
���”.
5 The first k words and the last m words of the two names are similar, in which

k + m is the total number of words of one name, e.g., “���� �� �� ���� ���
��” and “���� �� ��� ��”.

6 Except the prefix, all words of N2 appear in N1 or are abbreviations of N1,
e.g., “���� �� ���� �����  �!� ��"”, “��� �����  �!� ��"”, and “����
�� ����” are names of a company.

7 One name is the postfix of another name, e.g., “������ ��	 
��” and “��	

��”.

8 The postfix of one name is the abbreviation of words in the postfix of another
word; the remaining parts of the two names are similar. For example, with two
names “#$ ��%& '() �� ��& ��&” and “#$ �*&��”, the string “�*&��”
is the abbreviation of “��%& '() �� ��& ��&”.

9 The last k words of two names are similar, the prefix of N2 is an abbreviation
of the prefix of N1, in which N2 has k + 1 words. For example, “���� �� ��
 �” and “��� ��  �”.

10 All abbreviations of N2 abbreviate for phrases in N1 and all the remaining
words in N2 are appeared in N1. For example, all phrases “���� �� ����
��+,��� ��)-�.'  �!� ��"”, “��� ��  �”, “��  �”, “��  �!� ��"”, and
“���� �� ��  �!� ��"” are names of one company.

11 Two names appear continuously in a document in the format N1(N2), in
which N2 has only one word and is recognized as a NE. For example, “�����
��/0�� "�� �� ���� ����!�  �!� ��" 1 ��23”, “4�5� 6&�� #7�� 6%  �!�
��" 1 883”, and “���� )��� �� ��& 9�  � 1��.�)&3”.

In the extracting process (Step 2), the unlabelled documents are parsed by a
POS tagger and calculated all features like Step 1. Then, these documents are
labelled by the classifier that is produced by using the model C received from
Step 1.The documents after being labelled in this process are called labelled
documents. After the labeling process, the confidence scores are calculated by
using constrained forward-backward algorithm [4] (Step 2.1). This algorithm
calculates the sum of probabilities of all paths passing through the constrained
segment (constrained to be the assigned labels).

Then, all NEs (Person, Location, Organization) that have high confidence
scores (the score is larger than a threshold t 1) will be combined with the proper
name coreference rules in Table 1 to create searching patterns. The NE with a
high confidence score is called a high-confident NE. Each searching pattern is
accompanied by the label of the high-confident NE that produces that pattern.
For examples, if the old C finds that the phrase “"�#�$� �� ���/Nguyen Chi

1 In Table 1, N1 and N2 are two names that are being compared.
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Table 2. The semi-supervised NER algorithm

Given:
L - a small set of labelled training data
U - unlabelled data

Loop for k iterations:
Step 1: Train a model C based on L
Step 2: Extract new data D based on C

2.1 Classify kth portion of U and compute confidence scores
2.2 Find high-confidence NE segments and use them to find

proper name coreference to tag other low-confidence words
2.3 Tag named entities corresponding to rules that the system

cannot detect
2.4 Find qualified O words
2.5 Shuffle part of the NEs in the extracted data
2.6 Add extracted data to D

Step 3: Add D to L

Mai” is a Person entity with high confidence score, after applying proper name
conference rules, the patterns “���”, “"�#�$�/Nguyen”, “�� ���” and “"�#�$�
�� ���/Nguyen Chi Mai” are detected. These patterns are also tagged as Per-
son. With these produced patterns, we perform a process of pattern matching
on the labelled documents to extract matched sequences of tokens, called entity
candidates. Each entity candidate is assigned a label which is similar to the label
associated with the pattern it matches (Step 2.2). The candidates which have
low confidence scores (the score is smaller than t 2) or have no label in terms of
the old model will be added to the training data with their assigned labels (Step
2.5 and 2.6). These entity candidates are considered as “good entity candidates”.
This heuristics is called heuristic Group 1.

The reason for using two thresholds t 12 and t 23 is to ensure only the new
knowledge that the old model does not have is added to the training data. The
NEs whose confidence score is in the range of t 1 and t 2 are not used for finding
new NEs and are not added to the training data to avoid potential ambiguities.

As mentioned in Section 4.1, there are several ambiguities in Vietnamese text.
Due to these ambiguities, some good entity candidates found above may not be
real entities, but are parts of other entities. They may have been assigned with
a label different than their correct label. To solve this problem, the good entity
candidates are processed further as indicated below:

1. Post process 1: In the labelled documents, for each of the good entity can-
didates, the smallest Noun Phrase (NP) containing this candidate is checked
to see whether the first words of this NP is a prefix of Person, Organiza-

2 t 1 = 0, 95
3 t 2 = 0, 85

These thresholds are chosen based on our experimental results.
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tion, or Location or not. If yes, the entity candidate will be replaced by this
NP and the label of this NP is determined by the prefix mentioned above.
This method allows us to find NEs with complex structures in Vietnamese
documents.

Example 3.
(a) ��� ���9 ��? ������ 	�
 ��� �� @�� AB� /Ms. Nguyen Chi Mai

goes to Saigon today.
(b) ��� ���9 ���� �� ������ 	�
 ��� �� �8� /The Nguyen Chi Mai

company opens today.

The phrase “"�#�$� �� ���/Nguyen Chi Mai” in Example 3a is a high-
confident NE that has the Person label in the old model. By applying the
process of pattern matching, the system finds that “"�#�$� �� ���/Nguyen
Chi Mai” in Example 3b is a good entity candidate with the Person label,
although it is actually just a part of a bigger entity - “��� �� "�#�$�
�� ���/The Nguyen Chi Mai Company”. In this case, the system finds
the smallest NP that contains the phrase “"�#�$� �� ���/Nguyen Chi
Mai”, which is “��� �� "�#�$� �� ���/The Nguyen Chi Mai Company”.
Since the first word of “��� �� "�#�$� �� ���/The Nguyen Chi Mai
Company” is a prefix of Organization, this NP is used to replace our good
entity candidate “"�#�$� �� ���/ Nguyen Chi Mai” in the training data
with the Organization label.

2. Post process 2: if a good entity candidate or the NP that replaces an NE
candidate in the Post process 1 is preceded by a location adverb (�/in, �.�/at,
�5�/near, etc.), this candidate or NP will be reannotated with Location.

Example 4.
(a) ��� ���9 ���� �� �� �: ��)� 
�;� �2�� ��2 ��� ����� *�;� /Today,

the FPT company organizes a party for its employees.
(b) ��� ���9 ��<�� ��� => �: ��)� 
�;� �2�� � ���� �� �� /Today, we

organize a party at the FPT company.

The entity ���� �� C �/FPT company in Example 4a is the Organization
entity. It is the Location entity in Example 4b.

Besides the above heuristics, the system also uses other NER rules that are
proposed by us, based on our empirical study. These rules are called Group 2
and are shown in Table 3 below (Step 2.3). Again, some modifications and/or
additions that are specific for different languages can help the system adapt
successfully to other languages.

In addition, to balance the training data, the word which is predicted as O
by C with high confidence score and satisfies one of three conditions (contains
no capitalized token, is not a number, is not in a stopword list) will be added to
the training data (Step 2.4).

Since the window size is five (two words on the left and two words on the
right of the current token), features of two consecutive tokens before and after
the low confidence NEs are also added to the training data.
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Table 3. Rules in Group 2

Rule Definition
1 If the NP has a prefix in one of three prefix dictionaries Person, Location and Organization,

it will be labelled based on the prefix.
The following rules deal with NPs that have two properties:

+Having no prefix in three prefix dictionaries of Person, Location,
and Organization.

+Containing only one word and all letters of this word are capitalized.
If a NP is followed by a chain of words conforming the following form:

2 [added word][definition word][numeral word] [word belonging to one of Person,
Location, Organization dictionaries]
in which:

+Added word: ��/already, ����/in the process of, ���/still, �	
/already, ��/will,
etc

+Definition word: �/is, ����� �/be, ��/do, ���/only, etc
+Numeral word: ���/many, �����/many, ��
/all, ���/one, ��
/some, etc

Definition word is obligation, whereas added words and numeral words are optional.
The label of this NP will be the type of the dictionary that contains it.

Example 5.
(a) ������ ���	� � ��� �
�� ��� ���� �� /Andrew Grove is a director of the company.

(b) 
� �� ��� � ��� ����� ��� � ���!
 /Ho Chi Minh is the legendary road.

In Example 5, Andrew Grove is a Person entity, whereas "	 #�� $
��/Ho Chi Minh is a
Location entity.

3 If a NP is preceded by a word belonging to one of two kinds: verbs which are often followed
by a location (�%�/come, �
/go, �&
/reach, etc) or adverbs which often indicates a place
(�!
/at, '/at, �(�/near, etc), this NP will be labelled as the Location entity.
If a NP is followed by a chain of words conforming the following form:

4 [definition mark][numeral word] [word belonging to one of Person, Location,
Organization dictionaries]
Definition marks include comma “,” , figure dash “-”, open parentheses “(” (these marks
can usually be an indicator to a definition for its previous word in Vietnamese)
Then, the NP is labelled by the type of the dictionary (Person, Location, Organization)

Example 6. 1. ��������) ���� �� ��� &� ��*� +
,� -��) ��.� ����� /0 �1� 2345
/Vinamilk, the biggest dairy company in Vietnam, is established in 1976.

Vinamilk is an Organization entity in Example 6.
if a NP is preceded by a chain of words conforming the following form:

5 [numeral word][word belonging to one of Person, Location, Organization Mark-
ers][word that supplements the meaning of the previous word][mark “:” or listing
word]
in which:

+ Listing words includes: ���/like, �	�/include, �	� �6/include, etc
+ Supplemental word is often an adjective

Then, the NP and all of the words following this NP are labelled according to the Markers
(Person, Location, Organization) in the form above (the words must contain only capital-
ized tokens and punctuations such as comma or semi-colon are ignored)

Example 7. 1. #�� ��&� �
7� �
%� ���8 ��� ���� ���)9 9 9 � � :��� �;� �%� �*� � 

��� /Advanced countries like USA, Japan, France ... are all concerned about this
issue.

In Example 7, $</USA, -�/�/Japan, =��0/France are Location entities (since the word

“��&�/country” is listed in the Location Markers).
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5 Experiments and Discussion

Table 5 show the result of nine iterations of the process when the heuristics in
Group 1 and Group 2 are used.

Our experiments use 900 unlabelled documents, and 50 documents labelled
manually. Each document contains about 750 tokens. All of these documents are
taken from newspaper websites on economics, politics, cultures and education.

50 labelled documents are taken as initial training data; and 900 unlabelled
documents are used as testing data. After each round running the training pro-
cess, 100 documents from those 900 unlabelled documents are taken to find low
confidence NEs.

Three experiments were carried out: (i) using the two heuristics in [6]; (ii)
using the heuristics in Group 1; and (iii) using the heuristics in Group 1 and
Group 2. The results are shown in Table 4 below.

These experiments are evaluated based on Precision, Recall, and F-measure,
in which:

◦ Precision (P ): number of correctly assigned labels divided by the total
number of labelled items.

◦ Recall (R): number of correctly assigned labels divided by the number of
items that should have been assigned a particular label.

◦ F-measure: F = 2×P×R
P+R

Table 4 shows that when the proper name coreference heuristics are used, the
results are better than when using the heuristics in [6], especially for the Location

Table 4. Experimental results

Method Person Location Organization
P R F P R F P R F

Heuristic[6] 79.61 87.48 83.36 65.39 74.23 69.53 67.35 64.15 65.71

Group 1 86.62 90.82 88.67 78.80 85.32 81.93 72.62 80.59 76.40

Group 1 + Group 2 93.53 92.73 93.13 85.32 91.17 88.15 77.10 81.74 79.35

Table 5. Results of 9 interations when heuristics of Group 1 and Group 2 are used

Time Person Location Organization
P R F P R F P R F

1 69.88 73.51 71.65 48.27 65.95 55.74 46.03 53.75 49.16

2 73.06 77.38 75.16 58.49 69.85 63.67 58.22 65.33 61.57

3 76.13 79.21 77.64 63.34 75.07 68.71 65.66 71.07 68.26

4 80.17 80.89 80.53 69.11 76.97 72.83 67.67 73.60 70.51

5 85.65 84.30 84.97 71.20 78.31 74.59 69.55 75.13 72.23

6 87.45 87.25 87.35 74.83 81.28 77.92 71.83 75.92 73.82

7 91.31 88.57 89.92 75.42 83.78 79.38 75.20 78.85 76.98

8 91.80 91.14 91.47 79.18 86.63 82.74 76.01 80.16 78.03

9 93.53 92.73 93.13 85.32 91.17 88.15 77.10 81.74 79.35
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and Organization entities. This is because the Location and Organization entity
in Vietnamese text are very complicated. When the heuristics in Group 1 and
Group 2 are used, the system also receives higher F-scores.

Table 5 shows that the more new data is added to the training data, the more
accurate the system is. If a bigger corpus is used, the system promises to provide
a higher accuracy.

6 Conclusions

This paper presents a semi-supervised learning method for recognizing named
entities in Vietnamese text. The system starts by training a model with a small
labelled data set using CRFs algorithm, then the received model is used to
find new training data from unlabelled text. After extracting NEs by using the
model getting from the training process, the low confidence NEs in unlabelled
text are detected by using heuristics for proper name coreference, some special
rules, and rules for resolving ambiguity problems in labeling entities. The system
is then retrained on the new data which includes these low confidence NEs.
In evaluating the system, our experiments are carried out with the heuristics
mentioned above and the heuristics in [6]. The experimental results show that
our heuristics outperform the heuristics in [6]. Our future work includes: (i)
carrying out experiments with a larger corpus; (ii) investigating other rules that
can improve the accuracy of the system; and (iii) experimenting the system with
other entity types.
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Abstract. We propose a web user profiling and clustering framework
based on LDA-based topic modeling with an analogy to document analy-
sis in which documents and words represent users and their actions. The
main technical challenge addressed here is how to symbolize web access
actions, by words, that are monitored through a web proxy. We develop
a hierarchical URL dictionary generated from Yahoo! Directory and a
cross-hierarchical matching method that provides the function of auto-
matic abstraction. We apply the proposed framework to 7500 students
in Osaka University. The results include, for example, 24 topics such as
”Technology Oriented”, ”Job Hunting”, and ”SNS-addict.” The results
reflect the typical interest profiles of University students, while perplexity
analysis is employed to confirm the optimality of the framework.

Keywords: Web user clustering, Latent Dirichlet Allocation, topic mod-
eling, Proxy logs based analysis.

1 Introduction

Web access user behavior analysis is, in general, the first crucial step of person-
alized web applications such as advertizing, recommendation, and web search.
A survey by Guandong Xu et al. [10] indicated that those applications include
personalization and recommendation systems [13,19,7,3], web site modification
or redesign [17] and business intelligence and e-commerce [1].

To realize the analysis needed, the application system monitors web access
behavior at sites, which are categorized into clients, servers and proxies. De-
pending on the application, the monitoring site category and modeling of user
web access may differ. This paper focuses on ”topic modeling” which means that
documents (i.e., users) are represented as mixtures of topics (i.e., abstracted
user profile components), where a topic is a probability distribution over words
(i.e., user web access actions). There have been comprehensive contributions
regarding the topic modeling of user web access behavior.

J.Z. Huang, L. Cao, and J. Srivastava (Eds.): PAKDD 2011, Part I, LNAI 6634, pp. 525–536, 2011.
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Most successful topic modeling techniques target domain-specific and
application-oriented web analysis. By narrowing user actions to viewed contents,
it offers excellent performance for recommendation and targeted advertisement
[2,5,9,14,22,23]. The extracted topics, in other words, abstracted user intentions,
enable the system to infer the user’s next action. Please note that they used SVD
(singular value decomposition) [8], LSI (Latent Semantic Indexing) [18] or pLSA
(probabilistic Latent Semantic Analysis) [20] as the probabilistic models, since
their contributions appeared in the early 2000’s. As an update, LDA (Latent
Dirichlet Allocation) [6] or more sophisticated models could be used instead.

The motivation for this paper lies in the authors’ belief that proxy data with
a better topic and action model will yield deeper user analysis, whose results are
not domain-specific nor application-oriented, but rather broadened to represent
social group descriptions. The research scope of this paper seems to be similar
to [11], which compared LDA to pLSA for probabilistic modeling, and associ-
ated user sessions with multiple topics to describe the user sessions in terms
of viewed web pages. This paper, however, focuses on the association between
words (i.e., user web accesses) and the observed click streams rather than proba-
bilistic modeling. We also use an LDA model for topic modeling though, simply
taking viewed pages as words doesn’t work, since a click stream contains many
meaningless pages. Given a lot of proxy data, the key issue is how to select the
appropriate words so as to symbolize sessions.

Our original contributions consist of

1. a word association scheme: we call it the ”cross-hierarchical directory match-
ing method”. It extracts multiple words from each user session by matching
against a directory database. We use Yahoo! Directory for cross-hierarchical
directory matching since it resolves the ambiguity caused by multiple matches
in the same domain by choosing most the abstract URL (i.e., the uppermost
URL in the directory tree). Its benefits are shown in the following section.

2. an empirical study at Osaka University of proxy log analysis. The log con-
tains 40GB click streams of 7500 students collected over several months.
The study successfully visualized social groups, say 24 segments, each with
clearly distinct user profiles. To be exact, the 7500 students are characterized
by LDA topics such as job hunting, SNS, IT, etc.

1.1 LDA Formulation

We assume topic modeling where the user accesses Web pages under certain
topics (i.e., abstracted user intentions or tasks). For example, the user accesses
a certain SNS site under his latent topic ”SNS-addict”, or accesses a certain job
site under her latent topic ”Job Hunting”. In this case, by applying the concepts
of LDA, a Web user should correspond to a document, accessed web contents
correspond to words, and their latent topics correspond to topics of documents.
The observed accesses of each user are input to the LDA model, which then
outputs the association between users and topics.
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1.2 Cross-Hierarchical Directory Matching

Given a session with time duration t, the task is to label the session with mul-
tiple words. In the text mining domain, dictionaries and abstraction are being
used with promising results [15,25]. A dictionary should cover a broad set of
comprehensive concepts and words.

We use Yahoo! Directory [26] for the dictionary as it has a simple ontology
structure, a category hierarchy containing paths of abstraction. For example, we
extract a specific site ’The New York Times’ from a session from web accesses
it contains.

We may have more specific sites such as ’China - The New York Times’ as
a sub-category of Newspapers. In this example, we abstract those specific sub-
categories to the uppermost sites that appear in the session. The results mirror
breadth-first search (BFS) with multiple outputs. Our underlying assump-
tion is that the most abstract URL that appears in the session best
represents the user’s intention. Those abstracted URLs are identified from
bookmarks and the landing URLs of search results. Thus, along with the direc-
tory structure, we can apply automatically adjusted abstraction to the found
URLs. We call our proposal ’Cross-Hierarchical Directory matching.

2 LDA-Based Topic Modeling

User topic modeling is the action of identifying topics that web users are inter-
ested in based on their web actions. To realize it, we employ the LDA model,
which was originally proposed as a probabilistic document-topic model in the
document categorization domain. LDA assumes a ”bag of words”, i.e. each doc-
ument is thought of as a vector of word counts. Each document is represented
as a probability distribution of some topics, while each topic is represented as
a probability distribution over a number of words. More formally, by assuming
the Dirichlet distribution for per-topic word multinomial as shown in [21], the

T d
d

N

vβ

α θ

z

φ

Fig. 1. Graphical model represenation of LDA
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document-topic distribution p(z|d) is denoted as θ and the topic-word distribu-
tion p(v|z) is denoted as φ, where z represents a topic, d represents a document,
v represents a word, α and β represent hyper-parameters , Nd is the total number
of words in document d under the graphical model shown in Figure 1.

We assume topic modeling where the user accesses Web pages under certain
topics (i.e., abstracted user intentions or tasks). For example, the user accesses
a certain SNS site under his latent topic ”SNS-addict”, or accesses a certain job
site under her latent topic ”Job Hunting”. In this case, by applying concepts of
LDA, a Web user should correspond to a document, accessed web pages corre-
spond to words, and their latent topics correspond to topics of documents. The
observed accesses of each user are input to the LDA model, which then outputs
the association between users and topics. In detail, under the notation shown in
Table 1, the input and the outputs are as follows:

Table 1. Notations for LDA model.

D

A set of documents : D={dm|1 ≤ m ≤ |D| }
where dm represents each user.

V

A set of words : V = {vw |1 ≤ w ≤ |V |}
where vw represents each accessed URLs.

Z

A set of topics : Z = {zk|1 ≤ k ≤ |Z|}
where zk represents each topic.

ν(dm, vw) An element of matrix N .

θ(dm, zk) An element of matrix Θ.

φ(zk, vw) An element of matrix Φ.

Inputs: matrix N where each line denotes the counts of words each user
accessed.

Output1: matrix Θ where each line denotes the topic distribution of each user.
Output2: matrix Φ where each line denotes word distributions of each topic.

The goal of topic modeling is to derive the optimal outputs Θ and Φ, where the
topics of each user are represented by Θ and each topic is represented by Φ. To
realize this, optimal input N is needed. The simplest approach, which takes all
the accessed URLs as words (i.e. the approach of [11]) doesn’t work, since many
URLs are not related to the users’ intention. Moreover, it is said in the text
mining domain that word sets should be abstracted by dictionaries if a proper
model is desired.

3 Symbolizing URLs from Proxy Log

Our goal is to model user-topic association. This can be realized by deriving
the optimal input matrix N for the LDA model by using dictionaries in the
abstraction of the original web accesses. In this section, we will show an approach
based on the use of proxy logs.



Topic Analysis of Web User Behavior Using LDA Model on Proxy Logs 529

3.1 Description of Proxy log

To reach our goals, we require that the proxy log for each user dm satisfies the
following conditions; each record has, at least, access time and accessed URL.
The records are sorted in chronological order. A user session is also defined as a
series of continuous records for each user. Each session has a time out interval
δ, so the session ends when the user does not access any web page in interval δ.
Formally, under the notation shown in Table 2, for each user dm, each session
S

(m)
i consists of a series of records and each record s

(m)
ij consists of access time

t
(m)
ij and accessed URL l

(m)
ij .

3.2 Basic Idea of Labeling Words to User Session

We define word set V
(m)
i is the abstraction of URLs from L

(m)
i , a series of URLs

in session S
(m)
i . For example, when user dm accesses a certain SNS community

site, the abstracted URL is vw, so word vw is assigned as the session label. Details
of the abstraction process are explained in the next subsection.

An example of the relationships between sessions and words is shown in
Figure 2. Each session is labeled by one or more words. For example in
Session1, both URLs are abstracted to v1 and v1 is assigned to the session.

Table 2. Notations for Proxy log for user um

S
(m)
i

The i − th user session : S
(m)
i = {s(m)

ij |1 ≤ j ≤ |S(m)
i |}

where s
(m)
ij represents j − th record of the session recorded at t

(m)
ij .

L
(m)
i

A set of URLs accessed in session S
(m)
i : L

(m)
i = {l(m)

ij |1 ≤ j ≤ |S(m)
i |}

where l
(m)
ij represents accessed URL of s

(m)
ij .

V
(m)
i

A word set labeled to session S
(m)
i :

V
(m)
i = {vw |vw ∈ V ∩ vw is labeled to session S

(m)
i }

UID Time URL Abstracted

URL

Assigined

Word Set

u1 t1 http://x.y.z/a.html v1
v1

u1 t2 http://x1.y.z/a.html v1

u1 t3 http://x4.y.z/ v1

v1,v2u1 t4 http://x4.y.z/b.gif v1

u1 t5 http://x.y.z/w5/c.html v2

u1 t6 http://x.y.z/a.html v3

v3,v4,v5u1 t7 http://x1.y.z/a.html v4

u1 t8 http://x4.y.z/ v5

Session 1

Session 2

Session 3

δ>−
23

tt

δ>−
56

tt

Fig. 2. The relationships between sessions and actions
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Note that we allow multiple words to be labeled to a single session shown by
Session 2 and 3 in the figure.

After all sessions of all users are labeled, a set of words V can be derived as
the union of words in all sessions of all users, while the number of words accessed
by each user ν(um, cw) can be derived as the number of sessions labeled vw for
each user um. This is formally represented as follows:

V = ∪M
m=1 ∪|S(m)|

i=1 V
(m)
i , N(dm, vw) = |{S(m)

i |∃i : vw ∈ V
(m)
i }| (1)

3.3 Cross-Hierarchical Directory matching

Cross-Hierarchical Directory matching (CHDM) [12] is a method that uses a hi-
erarchical dictionary to get a set of abstracted URLs that are broader in concept
than the originally accessed URLs. We apply CHDM to each user session to get
a set of abstracted URLs in the session.

Simple examples are shown in Figure 3. The figure places a user session on
the left, and the hierarchical dictionary on the right. The dictionary should have
an ontology structure and a category hierarchy among URLs (To distinguish
these URLs from proxy log entries, we call the former SURL.) that supports
path abstraction. 6 URLs are accessed in the session, and there are 5 categories
(c1-c5) and 4 SURLs are found in the dictionary.

At the matching step, URLs accessed at t1, t2, t3, t4, and t5 belong to
the respective SURLs in the dictionary as in the column ’Matched SURL’.
Corresponding categories of the matched SURLs are also obtained straightfor-
wardly in the column ’Matched Category’. This yields pairs (c2, ’http://x2.y.z/’),
(c3, ’http://x.z.y/’), (c4, http://x4.y.z/), and (c5, ’http://x.y.z/w/’) which are
assigned to the session.

c5c4

c3c2

c1

User session Hierarchical Dictionary

http://x2.y.z/

http://x.y.z/

http://x4.y.z/ http://x.y.z/w/

UID Time URL Matched

SURL

Matched

Category

u1 t1 http://x.y.z/a.html http://x.y.z/ c3

u1 t2 http://x1.y.z/a.html NULL NULL

u1 t3 http://x4.y.z/ http://x4.y.z/ c4

u1 t4 http://x.y.z/b.html http://x.y.z/ c3

u1 t5 http://x.y.z/w5/c.html http://x.y.z/w/ c5

u1 t6 http://x2.y.z/ http://x2.y.z/ c2

word set
http://x.y.z/ 

http://x2.y.z/

discarded

abstracted to the 

broader concept  at 

the abstraction step

proxy log generated at the matching step

SURL

Fig. 3. Example of Cross-Hierarchical Directory matching
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In the abstraction step, both ’http://x4.y.z/’ and ’http://x.y.z/w/’ are
abstracted to ’http://x.y.z/’ since corresponding categories (c4 and c5) are
subordinate concepts of c3.

As a result, the set of remaining SURLS, i.e. (’http://x.y.z/’, and
’http://x2.y.z’) is the abstracted set of accessed web URLs in the session, and
so is assigned as the word set.

4 Experiments and Results

In this section, we show two results of an experiment on a real proxy log. The
first result shows the optimality of CHDM, and the second shows the 24 topics
derived for students in Osaka University.

4.1 Data Sets and Evaluation Settings

We captured a set of proxy log recorded accesses from over 7500 students in
Osaka University. The log, which occupied 40 GB, covered the four month period
from April to July 2010. We divided the records into sessions for each user
where session timeout δ was set to 1800 [sec]. This yielded 175831 sessions for
7537 users. We prepared a dictionary by crawling Yahoo! JAPAN Directory [26]
in July 2010. This yielded a hierarchical dictionary with about 570 thousand
distinct SURLs.

We matched the log entries against the dictionary in the manner of CHDM.
This yielded, as the first result, over 20 thousand distinct words including many
very minor words. We eliminated minor words (those with fewer than 4 users)
to obtain 1150 test words.

We ran LDA following [24] which describes the parallel implementation of
LDA and used Gibbs sampling as the inference algorithm. We set hyper-
parameters α and β to |Z|/50 and 0.01 respectively as recommended by the
authors.

4.2 Evaluation Metrics

To evaluate the optimality of the LDA model, we introduce perplexity [6], a
common evaluation metric of clustering quality. Perplexity is a measure of the
ability of a model to generalize documents. The better the generalization per-
formance of a model is, the lower is the perplexity score of its output. More
formally, perplexity is:

perplexity = exp(−Σ
|D|
m=1 log p(dm̃)

Σ
|D|
m=1Nm

) (2)

log p(dm̃) = Σ
|V |
w=1ν(dm̃, vw) log p(Σ|Z|

k=1θ
′
m̃kφ′

kw) (3)

θ′m̃k =
θ(dm̃, zk) + α

Σ
|Z|
k=1(θ(dm̃, zk) + α)

, φ′
kw =

φ(zk, vw) + β

Σ
|V |
w=1(φ(zk, vw) + β)

(4)



532 H. Fujimoto et al.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

p
e
r
p
le
x
it
y

Number of topics

non-abstraction

rough-abstraction

directory-matching

Cross-Hierarchical 

Drirectory matching

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

p
e
r
p
le
x
it
y

Number of topics

30 sec

300 sec

1800 sec

1 day

Fig. 4. Optimality Analysis of the model

where Nm is the total number of observed words for each user dm. Perplexity
is derived as cross-validated value such that φ(zk, vw) is derived from training
set while θ(dm̃, zk) is derived from test set. (To distinguish users in the training
set, users in the test set are denoted as m̃.) We prepared a proxy log of the data
gathered over the first 3 months as the training set and the last 1 month as the
test set.

4.3 Optimality Analysis of LDA Model

We first show the perplexity versus the number of topics |Z| from 4 to 100; the
parameter is session timeout δ with input matrix N . The plots are shown in
Figure 4. Since the results show that 1800 [sec] is a good choice and yields a
better LDA model than the other values, we empirically set δ to 1800 [sec].

Next we examine the optimality analysis of Cross-Hierarchical Directory
matching in a comparison against other three word sets. The first is non-
abstraction; that is, the word set is simply the URLs accessed in the session,
i.e. L

(m)
i . This is the same approach as [11]. The second is directory-matching;

the word set is the set of matched SURLs in the dictionary, i.e. L
′(m)
i . The third

is rough abstraction; that is, all the URLs that contains ”osaka-u” (a part of
the domain name of Osaka University) are abstracted to the one word ”Osaka
University” after processed the Cross-Hierarchical Directory matching. This is,
the abstraction does not follow the conceptual hierarchy.

The results are shown in Figure 4(right). Our method yields the lowest per-
plexity. In particular, its perplexity is about 10% lower than that of directory-
matching (the number of topics is 24), so the abstraction ability of our approach
is quite good even when the same dictionary is used. Moreover rough-abstraction
suffers from the performance degradation imposed by Cross-Hierarchical Di-
rectory matching. Our clear finding is that abstraction without following the
conceptual hierarchy does not work.
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Table 3. 24 topics and their major words

Topic Major Words Topic Major Words Topic Major Words

#1
MSN
User

Hotmail,
SkyDrive

#9
Search
Books

Library of
Osaka Univ.

#17
Net

Shopping

Yahoo!
Auctions,
Amazon

#2
Video
Freak

Youtube,
MegaVideo

#10
Internet
Equity

Yahoo!
Finance

#18
Major in

Engineering

Site of
Engineering
Osaka Univ.

#3
Full-Time

Job Hunting

Recruit
Portals, Job
search diaries

#11
Light
User

Osaka Univ.
Portal

#19
Wikipedia

User Wikipedia

#4
SNS Addict SNS sites

#12
Anonymous-

Forum Addict
Anonymous

Forums

#20
Part-time

Job Hunting
Part-time

Job Portals
#5

Making Plans
to go out

Weather
forecasts,

Google maps
#13
Geek

Sites for
Geek

#21
Writing
Report

Latex
learning

sites
#6

Newspaper
Reader

Newspaper
sites

#14
News

Sensitive
Yahoo!
News

#22
Information

Search
Question
Boards

#7
Sports
Fan

Yahoo!
Sports

#15
Blog

Watcher
Yahoo!
Blog

#23
Twitterer

Twitter,
Flickr

#8
Major in
Bioscience

Sites about
heredity or

protein

#16
Geek

Video Freak

Video sites
for Japanese

Geek

#24
Technology-

Oriented

C-language
learning

sites

Please note that our approach is based on the heuristic assumption that the
most abstracted URLs that appear in the session represents the users’ intensions.
Although the assumption is proved to be correct by the empirical evaluation
conducted on our data sets, there is no assurance the same will be achieved with
other data or other dictionaries.

4.4 Visualizing 24 Topics and Student Characterization

Finally we describe below the 24 interesting topics output by LDA. (We chose
the number of topics as 24 such that all the topics involve more than 1 %
students.) All the topics (named by authors) and their major words (or their
description) are shown in Table 3. Each topic has distinctive words and they
imply the interests or tasks of the corresponding users.

Another interesting finding is that some topics are strongly biased by the
students’ attributes such as grades or majors. To visualize this, we defined the
pair of attribute values ”science degree (xm)” and ”higher grades degree (ym)” as
implicit attributes of each user derived from the latent topics. We then modeled
the associations between the latent topics and the implicit attributes for each
user as a regression formula as follows:
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Input:{θ(dm, zk), ak}24
k=1

Output:am, where ak is the pair of attribute values (xk,yk) of each topic, and
am is the pair of implicit attribute values (xm,ym) of user dm

The attribute value of each topic ak was derived as follows. We can know which
topics each student focused on by choosing the topic with maximum probability
on matrix Θ. We also prepared two real attribute values, i.e. ”major” and ”grade”
for each user. The major was taken from the students’ major (science major set
1 and non-science major set -1), while the grade was taken from their grade (1st
grade set 1,..., 4th grade set 4). Finally we determined ak as follows where xk is
the average ”major” and yk is the average ”grade” among the students focusing
on the topic. We placed a group of students into a learning set for the formula.
In the learning phase, output am was set to ak̃ where k̃ was the topic of interest
of each user. We trained the formula by Relevance Vector Regression using RVM
[16], which yielded a pair of implicit attributes am for each student. The results
are shown in Figure 5. The implicit attribute values of all 7537 users are plotted
where the x-axis represents ”science degree” and the y-axis represents ”higher
grade degree”. Each point is color-coded by the user’s topic of interest. The figure
also plots the distribution of the number of students interested in each topic at
the lower left of the figure where each topic number (from 1 to 24) mirrors the
number in Table 3.

The figure shows that points with the same topic tend to cluster together.
This indicates the fact that there is a strong relationship between the topics of
interest and the attributes of students. Of particular interest topics points that

#3: Full-Time

Job Hunting

#19: Wikipedia User

#8: Major in Bioscience

#21: Writing Report

They search jobs since they will graduate soon.

(Most science students go to graduate school)

Most of them are in the department of 

Pharmacy or Biology. They learn about their 

courses or researches.

They are searching or learning 

about their course on Wikipedia.

They are learning to write 

report on UNIX

Fig. 5. Plot of implicit attribute values for each user and their latent topics
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are strongly attribute-biased tend to form clearly distinct vectors. Examples of
attribute-biased topics are ”Full-Time Job Hunting” (#3), ”Major in Bioscience”
(#8), ”Wikipedia User”(#19) or ”Writing Report” (#21). We investigated the
corresponding Web accesses in the proxy log and the summarization is as shown
in the figure. On the other hand, ”SNS Addict”(#4) or ”Twitterer”(#23) are
not biased, i.e. students use these community sites regardless of their attributes.

5 Conclusion

Profiling Web users by their interests is a key technique for many Web appli-
cations such as recommendation, site optimization, and collaborative filtering.
In this paper, we proposed a user profiling method that uses the LDA model to
assess Web access patterns and their latent topics. To derive an optimal model,
our method employs a hierarchical URL dictionary to abstract Web accesses
into broader concept words. Experiments on real proxy log data showed the op-
timality of our method, and also visualized 24 interesting topics. In future, we
intend to apply our model to a recommendation of Web contents and evaluate
the effectiveness on real application.
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Abstract. Detecting if two Web pages are near replicas, in terms of
their contents rather than files, is of great importance in many web in-
formation based applications. As a result, many deduplicating algorithms
have been proposed. Nevertheless, analysis and experiments show that
existing algorithms usually don’t work well for short Web pages1, due
to relatively large portion of noisy information, such as ads and tem-
plates for websites, existing in the corresponding files. In this paper, we
analyze the critical issues in deduplicating short Web pages and present
an algorithm (AF SpotSigs) that incorporates them, which could work
15% better than the state-of-the-art method. Then we propose an al-
gorithm (SizeSpotSigs), taking the size of page contents into account,
which could handle both short and long Web pages. The contributions
of SizeSpotSigs are three-fold: 1) Provide an analysis about the relation
between noise-content ratio and similarity, and propose two rules of mak-
ing the methods work better; 2) Based on the analysis, for Chinese, we
propose 3 new features to improve the effectiveness for short Web pages;
3) We present an algorithm named SizeSpotSigs for near duplicate detec-
tion considering the size of the core content in Web page. Experiments
confirm that SizeSpotSigs works better than state-of-the-art approaches
such as SpotSigs, over a demonstrative Mixer of manually assessed near-
duplicate news articles, which include both short and long Web pages.

Keywords: Deduplicate, Near Duplicate Detection, AF SpotSigs,
SizeSpotSigs, Information Retrieval.

1 Introduction

Detection of duplicate or near-duplicate Web pages is an important and difficult
problem for Web search engines. Lots of algorithms have been proposed in recent
years [6,8,20,13,18]. Most approaches can be characterized as different types of
distance or overlap measures operating on the HTML strings. State-of-the-art
algorithms, such as Broder et al.’s [2] and Charikar’s [3], achieve reasonable
precision or recall. Especially, SpotSigs[19] could avert the process of removing
noise in Web page because of its smart feature selection. Existing deduplicate
1 In this page, Web pages are classified into long (Web) pages and short (Web) page

based on their core content size.
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algorithms don’t take size of the page core content into account. Essentially, these
algorithms are more suitable for processing the long Web pages because they just
take surfacing features to present documents. For short documents, however, the
presentation is not sufficient. Especially, when documents have noise information,
like ads within the Web page, the presentation is worse. Our experiments in
section 5.3 also proves that the state-of-the-art deduplicate algorithm is relatively
poor for short Web pages, just 0.62(F1) against 0.92(F1) for long Web pages.

In fact, there are large amount of short Web pages which have duplicated
core content on the World Wide Web. At the same time, they are also very
important, for example, the central bank announces some message, such as,
interest rate adjustment. Fig.1 shows a pair of same-core Web pages that only
differ in the framing, advertisements, and navigational banners. Both articles
exhibit almost identical core contents, reporting on the match review between
Uruguay and Netherlands.

Fig. 1. Near-duplicate Web Pages: identical core content with different framing and
banners(additional ads and related links removed) and the size of core contents are
short

So it is important and necessary to improve the effectiveness of deduplication
for short Web pages.
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1.1 Contribution

1. Analyze the relation between noise-content ratio and similarity, and propose
two rules of making the methods work better;

2. Based on our analysis, for Chinese, we propose 3 new features to improve the
effectiveness for short Web pages, which leads to AF SpotSigs algorithm;

3. We present an algorithm named SizeSpotSigs for near duplicate detection
considering the size of the core content in Web page.

2 Related Work

There are two families of methods for near duplicate detection. One is content-
based methods, the other is non-content-based methods. The content-based
methods were to detect near duplicates by computing similarity between contents
of documents, while the non-content-based methods made use of non-content
features[10,1,17](i.e. URL pattern) to detect near duplicates. The non-content-
based methods were only used to detect the near duplicate pages in one web
site while the content-based methods have no any limitation. Content-based
algorithms could be also divided into two groups according to whether they
need noise removing. Most of the existing content-based deduplicate algorithms
needed the process of removing noise.

Broder et al. [6] proposed a DSC algorithm(also called Shingling), as a method
to detect near duplicates by computing similarity among the shingle sets of the
documents. The similarity between two documents is computed based on the
common Jaccard overlap measure between these document shingle set. In or-
der to reduce the complexity of Shingling for processing large collections, DSC-
SS(also called super shingles) was later proposed by Broder in [5]. DSC-SS makes
use of meta-shingles, i.e., shingles of shingles, with only a little decrease in
precision. A variety of methods for getting good shingles are investigated by
Hod and Zobel [14]. Buttcher and Clarke [7] focus on Kullback-Leibler diver-
gence in the more general context of search. A lager-scale evaluation was im-
plemented by Henzinger[13] to compare the precision of shingling and simhash
algorithms by adjusting their parameters to maintain almost same recall. The
experiment shows that neither of the algorithms works well for finding near-
duplicate pairs on the same site because of the influence of templates, while both
achieve a higher precision for near-duplicate pairs on different sites. [21] proposed
that near-duplicate clustering should incorporating information about document
attributes or the content structure.

Another widespread duplicate detection technique is to generate a docu-
ment fingerprint, which is a compact description of the document, and then to
compute pair-wise similarity of document fingerprints. The assumption is that
fingerprints can be compared much more quickly than complete documents. A
common method of generating fingerprints is to select a set of character se-
quences from a document, and to generate a fingerprint based on the hash val-
ues of these sequences. Similarity between two documents is measured by Jaccard
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formula. Different algorithms are characterized, and their computational costs
are determined, by the hash functions and how character sequences are selected.
Manber [18] started the research firstly. I-Match algorithm [9,16] uses external
collection statistics and make recall increase by using multiple fingerprints per
document. Position based schemes [4] select strings based on their offset in a
document. Broder etc. [6] pick strings whose hash values are multiples of an
integer. Indyk and Motwani [12,15] proposed Locality Sensitive Hashing (LSH),
which is an approximate similarity search technique that scales to both large and
high-dimensional data sets. There are many variant of LSH, such as LSH-Tree
[3] or Hamming-LSH [11].

Generally, the noise removing is an expensive operation. If possible, the near-
duplicate detection algorithm should avoid noise removing. Martin Theobald
proposed SpotSigs [19] algorithm, which used word chain around stop words
as features to construct feature set. For example, consider the sentence: “On a
street in Milton, in the city’s inner-west, one woman wept as she toured her wa-
terlogged home.” Choosing the articles a, an, the and the verb is as antecedents
with a uniform spot distance of 1 and chain length of 2, we obtain the set of spot
signatures S = {a:street:Milton, the:city’s:inner-west}. The SpotSigs only needs
a single pass over a corpus, which is much more efficient, easier to implement,
and less error-prone because expensive layout analysis is omitted. Meanwhile,
it remains largely independent of the input format. The method will be taken
as our baseline. In this paper, considering special merits, we focus on the algo-
rithms without noise removing, and we also take Jaccard overlap measure as our
similarity measure.

3 Relation between Noise-Content Ratio and Similarity

3.1 Concepts and Notation

For calculating the similarity, we need to extract features from Web pages. We
define all the features from one page as page-feature set ; Also we split these
features into content-feature set and noise-feature set. A feature comes from the
core content of page is defined as content feature (element) and belongs to the
content feature set; otherwise, the feature is called noise feature (element) and
belongs to the noise feature set. The noise-content (feature) ratio represents the
ratio between the size of noise feature set and the size of content feature set.

3.2 Theoretical Analysis

Let sim(P1, P2) = |P1∩P2|/|P1∪P2| be the default Jaccard similarity as defined
over two sets P1 and P2, each consisting of distinct page-feature set in our case.
P1c and P2c are the content-feature sets; P1nand P2n are the noise-feature sets,
which subject to P1c ∪ P1n = P1 and P2c ∪ P2n = P2. The similarity between
P1c and P2c is sim(P1c, P2c) = |P1c ∩P2c|/|P1c ∪P2c|, which is the real value we
care in the near-duplicate detection.



SizeSpotSigs: An Effective Deduplicate Algorithm 541

As we know, in fact, near-duplicate detection is to compare the similarity of
the core contents of two pages, but Web pages have many noisy
content, such as banners and ads. Most of algorithms is to use sim(P1, P2) to
approach sim(P1c, P2c). If sim(P1, P2) is close to sim(P1c, P2c), it shows that
the near-duplicate detection algorithm works well, and vice versa. In order to
describe the difference between sim(P1, P2) and sim(P1c, P2c), we could get the
Theorem 1 as follow:

Theorem 1. Given two sets, P1 and P2, subject to P1c ⊂ P1, P1n ⊂ P1 and
P1c ∪ P1n = P1. Similarly, P2c ⊂ P2, P2n ⊂ P2 and P2c ∪ P2n = P2; At the same
time, sim(P1, P2) = |P1∩P2|/|P1∪P2| and sim(P1c, P2c) = |P1c∩P2c|/|P1c∪P2c|.
Let the noise-content ratio |P1n|

|P1c| ≤ ε and |P2n|
|P2c| ≤ ε, where ε is a small number.

Then,
−2ε

1 + 2ε
≤ sim(P1, P2) − sim(P1c, P2c) ≤ 2ε (1)

Proof: letA = |P1c ∩ P2c|, B = |P1c ∪ P2c|, then

A ≤ |(P1c ∪ P1n) ∩ (P2c ∪ P2n)| ≤ A + 2 ∗ max{|P1n|, |P2n|} (2)

B ≤ |(P1c ∪ P1n) ∪ (P2c ∪ P2n)| ≤ B + 2 ∗ max{|P1n|, |P2n|} (3)

From (2) and (3), we can get the following inequality:

A

B + 2 ∗ max{|P1n|, |P2n|}
≤ |(P1c ∪ P1n) ∩ (P2c ∪ P2n)|

|(P1c ∪ P1n) ∪ (P2c ∪ P2n)| ≤
A + 2 ∗ max{|P1n|, |P2n|}

B
(4)

From (4), wet get the following inequality:

−2A ∗ max{|P1n|, |P2n|}
B(B + 2 ∗ max{|P1n|, |P2n|})

≤
|(P1c ∪ P1n) ∩ (P2c ∪ P2n)|
|(P1c ∪ P1n) ∪ (P2c ∪ P2n)|

−
A

B
≤

2 ∗ max{|P1n|, |P2n|}
B

(5)

Obviously, A ≤ B and B ≥ max{|P1c|, |P2c|}. So, we get:

max{|P1n|, |P2n|}
B

≤ max{|P1n|, |P2n|}
max{|P1c|, |P2c|} ≤ ε. (6)

Another inequality is:

−2A ∗ max{|P1n|, |P2n|}
B(B + 2 ∗ max{|P1n|, |P2n|} =

−2A

B

max{|P1n|, |P2n|}
B + 2 ∗ max{|P1n|, |P2n|}

≥ −2
max{|P1n|, |P2n|}

B + 2 ∗ max{|P1n|, |P2n|}
≥ −2

max{|P1n|, |P2n|}
max{|P1c|, |P2c|} + 2 ∗ max{|P1n|, |P2n|}

≥ −2
max{|P1n|,|P2n|}
max{|P1c|,|P2c|}

1 + 2∗max{|P1n|,|P2n|}
max{|P1c|,|P2c|}

≥ (−2ε)/(1 + 2ε) (7)
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So, (5)could be reformed as:

− 2ε

1 + 2ε
≤ |(P1c ∪ P1n) ∩ (P2c ∪ P2n)|

|(P1c ∪ P1n) ∪ (P2c ∪ P2n)| −
A

B
≤ 2ε (8)

That is,

− 2ε

1 + 2ε
≤ sim(P1, P2) − sim(P1c, P2c) ≤ 2ε (9)

Theorem1 shows:(1). When ε is small enough, the similarity sim(P1, P2) is close
to the similarity sim(P1c, P2c); (2). When ε reaches a certain small value, the
difference between two similarity is little even though ε continue to become
smaller, the difference varies little. That is, when noise-content ratio reaches a
certain small number, the increase of effectiveness of near-duplicate detection
algorithm will be little.

Without loss of generality, we assume |P2n|
|P2c| ≤ |P1n|

|P1c| = ε. Then Formula (9)
could be reformed as:

− 2|P1n|
|P1c| + 2|P1n| ≤ sim(P1, P2) − sim(P1c, P2c) ≤ 2|P1n|

|P1c| (10)

Formula(10) shows |P1c| should be large for robust; Otherwise, |P1c| or |P1n|
changes slightly will cause fierce change of upper bound and lower bound, which
shows the algorithm is not robust. For example, assume two upper-bounds: 5/100
and 5/100, the upper bound become (5+5)/(100+100) after combining feature
sets, which is equal with 5/100. but (5+1)/100 > (5+5+1)/(100+100). Obvi-
ously, (5+5)/(100+100) is more robuster than 5/100, though they have same
value.

In a word, when ε is large relatively, we could make the algorithm work
better by two rules as follows:(a). Select features that have small noise-content
ratio to improve effectiveness; (b). When the noise-content ratios of two types
of feature are the same, we should select the feature with larger content-feature
set to make the algorithm robust, which implies that if the noise-content ratios
of several types of features are very close, these features should be combined to
increase the robustness while the effectiveness changes little.

4 AF SpotSigs and SizeSpotSigs Algorithm

SpotSigs[19] provided a stopword feature, which aimed to filter natural-language
text passages out of noisy Web page components, that is, noise-content ratio was
small, which gave us an intuition that we should choose features that tend to oc-
cur mostly in the core content of Web documents and skip over advertisements,
banners, and the navigational components. In this paper, based on thought
in SpotSigs and our analysis in section 3.2, we developed four features which
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Fig. 2. Table of Meaning of Chinese Punctuations and Table of Markers of Chinese
Stopwords in the paper

all have small noise-content ratio. Details are as follows: 1).Stopword feature;
It is similar to the feature in SpotSigs that is a string of stopword and its
neighboring words, except that the stopwords are different because languages
are different; Because the stopwords in noisy content are less than ones in core
content, so the features could decrease the noise-content ratio against Shingling
features. The Chinese stopwords and corresponding marker used in this paper
are listed in the Fig.2. 2).Chinese punctuation feature; In English, many punc-
tuations are the same with the special characters in HTML language. So in
English, we can’t use the punctuation to extract feature. In Chinese, however,
this is not the case. As we known, the Chinese punctuations occurs less in the
noisy area. We choose a string of punctuation and its neighboring words as
Chinese punctuation feature, which makes the noise-content ratio small. The
Chinese punctuations and corresponding English punctuations used in this paper
are also listed in the Fig.2. 3).Sentence feature; The string between two Chinese
punctuations is thought as sentence; Considering the sentence with punctuation
is little in noisy area, so the sentence features could decrease noise-content ratio
notably. 4).Sentence shingling feature; Assuming the length of one sentence is n,
all 1-gram, 2-gram, ..., (n-1)-gram are taken as new features, aiming to increase
the number of content-feature set for robustness and effectiveness, which would
also make noise-content ratio small based on sentence feature.

The Stopword feature is used by the state-of-the-art algorithm, SpotSigs [19].
Though the stopwords are different because languages are different, we still call
the algorithm SpotSigs. The experiments in Section 5.3 showed that SpotSigs
could reach 0.92(F1) on long Web pages, but only 0.62 on short Web pages. Ob-
viously, SpotSigs could not process the short Web pages well, and we need new
algorithm. If all four features are used to detect near duplication, the algorithm
is called AF SpotSigs. The experiments in Section 5.3 showed that AF SpotSigs
could reach 0.77(F1) against 0.62(F1) of SpotSigs for short Web pages, but only
increasing by 0.04(F1) with 28.8 times time overhead for long Web pages, which
presents AF SpotSigs could work better than SpotSigs for short Web pages,
and the effectiveness of AF SpotSigs is slightly better than that of SpotSigs
for long Web pages but cost is higher. Considering the balance between effi-
ciency and effectiveness, we propose algorithm called SizeSpotSigs that chooses
only stopword features to judge the near duplication for long Web pages(namely
SpotSigs) while the algorithm chooses all four-type features mentioned above for
short Web pages(namely AF SpotSigs).
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5 Experiment

5.1 Data Set

For verifying our algorithms, AF SpotSigs and SizeSpotSigs, we construct 4
datasets. Details are as follows:

Collection Shorter/Collection Longer : we construct the Collection Shorter
and Longer humanly. The Collection Shorter has 379 short Web pages and 48
clusters; And the Collection Longer has 332 long Web pages and 40 clusters.

Collection Mixer/Collection Mixer Purity: The Collection Shorter and Col-
lection Longer are mixed as Collection Mixer, which includes 88 clusters and 711
Web pages totally. For each Web page in the Collection Mixer, we get its core
content according to human judge, which lead to Collection Mixer Purity.

5.2 Choice of Stopwords

Because quantity of stopwords is large, e.g. 370 more in Chinese, we need to select
the most representative stopwords to improve performance. SpotSigs, however,
just did experiments on English Collection. We don’t know how to choose stop-
words or the length of its neighboring words on Chinese collection. At the same
time, for AF SpotSigs, we also need to choose stopwords and the length. We
find that F1 varies slightly about 1 absolute percent from a chain length of 1 to
distance of 3 (figures omitted). So we choose two words as length parameter for
the two algorithms.

In this section, we will seek to the best combination of stopwords for AF Spot
Sigs and SpotSigs for Chinese. We now consider variations in the choice of Spot-
Sigs antecedents(stopwords and its neighboring words), thus aiming to find a
good compromise between extracting characteristic signatures while avoiding an
over-fitting of these signatures to particular articles or sites.

For SpotSigs, which is fit for long Web pages, the best combination was
searched in the collection Longer Sample which was sampled 1/3 clusters from
the collection Longer. Moreover, for AF SpotSigs, which is fit for short Web
pages, we get the parameter over the collection Shorter Sample, which was
sampled 1/3 clusters from the collection Shorter.

Fig.3(a) shows that we obtain the best F1 result for SpotSigs from a com-
bination of De1, Di, De2, Shi, Ba, Le, mostly occurring in core contents and
less likely to occur in ads or navigational banners. Meanwhile, for AF SpotSigs,
Fig.3(b) shows the best F1 result is obtained on stopword “De1”. Using a full
stopword list (here we use the most frequent 40 stopwords) already tends to yield
overly generic signatures but still performs good significantly.

5.3 AF SpotSigs vs. SpotSigs

After obtaining the parameters of AF SpotSigs and SpotSigs, we could compare
the two algorithms from F1 value to computing cost. So, the two algorithms run
on the Collection Shorter and Longer to do comparison.
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Fig. 3. (a)The effectiveness of SpotSigs with different stopwords on Longer collec-
tion;(b)The effectiveness of AF SpotSigs with different stopwords on Shorter collection

Fig.4 shows the F1 scores of AF SpotSigs are both better than SpotSigs on
Shorter and Longer. Moreover, F1 score of SpotSigs is far worse than AF SpotSigs
on Shorter while F1 scores of two algorithms are very close on Longer. However,
Table 1 shows that AF SpotSigs took much more time than SpotSigs.

Considering balance between effectiveness and efficiency, we could partition
one collection into two parts, namely the short part and long part. SpotSigs works
on the long part while AF SpotSigs runs on the short part, namely SizeSpotSigs
algorithm.

Shorter Longer

F
1

0.622

0.921

0.772

0.960SpotSigs

AF_SpotSigs

Fig. 4. The effectiveness of SpotSigs
and AF SpotSigs on Shorter and Longer

Shorter Longer

SpotSigs
F1 0.6223 0.9214

Time(Sec.) 1.743 1.812

AF SpotSigs
F1 0.7716 0.9597

Time(Sec.) 21.17 52.31

Table 1. The F1 value and cost of two
algorithms
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Fig. 5. F1 values of SizeSpotSigs, AF SpotSigs and SpotSigs on Collection
Mixer purity(a) and Mixer(b)

5.4 SizeSpotSigs over SpotSigs and AF SpotSigs

To verify SizeSpotSigs, all clusters in Mixer are sorted from small to large as
their average size of core contents. We select three partition point (22,44,66) to
partition set of clusters. For example, if partition point is 22, the first 22 clusters
in the sorted clusters are took as small part while the rest clusters are large part.
Table 2 demonstrates the nature of two parts in the every partition. Specially,
0/88 means that all clusters are took into large part which make SizeSpotSigs
becomes SpotSigs while 88/0 means all clusters belong to small part which make
SizeSpotSigs becomes AF SpotSigs.

Fig.5(b) shows SizeSpotSigs works better than SpotSigs while worse than
AF SpotSigs. Moreover, the F1 value of SizeSpotSigs increases with the increase
of partition point.

When purified collection is used, noise-content ratio is zero. So based on for-
mula (9), sim(P1, P2) = sim(P1c, P2c), which leads to F1 value depends on
sim(P1c, P2c) completely. Fig.5(a) demonstrates F1 of SizeSpotSigs rise and fall
in a irregular manner, but among a reasonable interval, which all above 0.91.
All details are listed in Table 3.

Table 2. The Nature of Partitions

Partition 0/88 22/66 44/44 66/22 88/0

Avg Size(Byte) 0/2189.41 607.65/2561.43 898.24/3247.73 1290.25/4421.20 2189.41/0

File Num 0/711 136/575 321/390 514/197 711/0
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Table 3. the F1 value and time for 3 algorithms on partitions(s is Sec.)

SpotSigs
(0/88)

AF SpotSigs
(88/0)

SizeSpotSigs
(22/66)

SizeSpotSigs
(44/44)

SizeSpotSigs
(66/22)

Mixer
F1 0.6957 0.8216 0.7530 0.7793 0.8230

Time(s) 3.6094 148.20 7.142 22.81 61.13

Mixer Purity
F1 0.9360 0.9122 0.9580 0.9306 0.9165

Time(s) 2.2783 134.34 4.0118 15.99 47.00

6 Conclusions and Future Works

We analyzed the relation between noise-content ratio and similarity theoretically,
which leads to two rules that could make the near-duplicate detection algorithm
work better. Then, the paper proposed 3 new features to improve the effec-
tiveness and robustness for short Web pages, which leaded to our AF SpotSigs
method.

Experiments confirm that 3 new features are effective, and our AF SpotSigs
work 15% better than the state-of-the-art method for short Web pages. Besides,
SizeSpotSigs that considers the size of page core content performs better than
SpotSigs over different partition points.

Future work will focus on 1). How to decide the size of the core content of
Web page automatically or approximately; 2). Design more features that is fit for
short Web page to improve the effectiveness, as well as generalizing the bounding
approach toward other metrics such as Cosine.
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Abstract. This paper explores bridging the content of two different languages
via latent topics. Specifically, we propose a unified probabilistic model to si-
multaneously model latent topics from bilingual corpora that discuss compara-
ble content and use the topics as features in a cross-lingual, dictionary-less text
categorization task. Experimental results on multilingual Wikipedia data show
that the proposed topic model effectively discovers the topic information from
the bilingual corpora, and the learned topics successfully transfer classification
knowledge to other languages, for which no labeled training data are available.

Keywords: Cross-lingual knowledge transfer, Latent topic models, Text
categorization.

1 Introduction

Cross-lingual text mining aims to transfer knowledge across different languages to help
applications such as cross-lingual information retrieval, summarization and categoriza-
tion in cases where translation and class-labeled resources are scarce. A specific chal-
lenge is to build models that capture content of comparable corpora, i.e. texts that to a
varying degree contain shared and non-shared content. Recently, with the rapid devel-
opment of online social networks, such as Facebook, MySpace, Ning, and Twitter, users
have generated a huge volume of valuable multilingual language resources. However,
content is seldom well-paired across the languages, forming cross-lingual parallel cor-
pora. For example, a user may write a lot in English about her recent travel in a blog, but
write only a few sentences in French. Indeed, even in well-organized Wikipedia doc-
uments, one cannot find an exact translation of a page across the different languages.
However, there are many so-called “comparable” corpora available, where the docu-
ments discuss similar content in different languages, but the content in one language
is not an exact translation of the content in the other language. Extracting knowledge
from these comparable corpora is very valuable for cross-lingual tasks.

Current research for text categorization on bilingual corpora often focuses on learn-
ing the classification model from monolingual labeled documents and their cross-lingual
pairing. Few efforts are made to directly build cross-lingual models, with which the
classification knowledge can be transferred across different languages.
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In this paper, we address the problem of knowledge transfer across multilingual and
comparable corpora. We propose a unified probabilistic model to simultaneously extract
latent topics from the multilingual corpora. The learned topic models capture the com-
mon knowledge across the different languages which can be used in many applications.
We apply the topic models to bilingual document classification. Our experimental results
on multilingual Wikipedia data (written in English, Spanish, French and Italian) show
that the proposed Bilingual Latent Dirichlet Allocation (Bi-LDA) model can effectively
represent a target language without the use of any information from translation dictionar-
ies. Additionally, the learned bilingual topic models yield a very strong categorization
performance in target languages, for which no labeled training examples are available.

The rest of the paper is organized as follows: Section 2 formally formulates the
problem. Section 3 explains the proposed model. Section 4 gives experimental results
that validate the effectiveness of our methodology. Finally, Section 5 discusses related
work and Section 6 concludes.

2 Problem Definition

In this section, we present several necessary definitions and then define the subproblems
of knowledge transfer across multilingual documents addressed in this paper.

Table 1. Definition of symbols

Symbol description
K number of topics
C bilingual corpus
M number of paired documents in C
Nd number of words in document d
wd vector form of words in document d
θd multinomial distribution over topics specific to document d
φi multinomial distribution over words for topic zi for the source lan-

guage
ψi multinomial distribution over words for topic zi for the target language
LS labeled data in the source language S

UT unlabeled data in the target language T

A paired bilingual document corpus can be defined as C = {(dS
1 , dT

1 ), · · · ,
(dS

M , dT
M )}, where (dS

j , dT
j ) (briefly dj for simplicity) is a pair of documents in the

source language S and the target language T , respectively. Each document may de-
scribe a number of topics. For example, the Wikipedia page of a city may describe
topics related to history, culture, and tourism. Before formulating the problem, we first
give the definition of a probabilistic topic model.

Definition 1. Topic model of documents: A topic model φ of a document collection
D is a multinomial distribution of words p(w|φi) over a vocabulary V, for each φi

represented in θd where d ∈ D. The document collection is considered a mixture of
multiple topics θ.
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The underlying assumption of a topic model is that words in the document are sampled
following word distributions corresponding to each topic, i.e. p(w|φi) and p(φi|θd).
Therefore, words with the highest probability in the distribution represent the semantic
field contained in the topic. For example, the words travel, tourist, and hotel would
represent the topic “Travel”. Given this, we can define the problem of bilingual topic
modeling.

Problem 1. Bilingual topic modeling. Given a collection of paired documents in lan-
guage S and T , i.e. C = {(dS

1 , dT
1 ), · · · , (dS

M , dT
M )}, the goal of bilingual topic mod-

eling is to learn for every document pair a set of K topics θ, each of which defines an
associated set of words in S and in T .

The topic model θ bridges knowledge across documents in two languages, which cre-
ates many potential applications. In this work, we consider a general application, i.e.
bilingual document classification. In particular, we consider how to take advantage of
the topic models to transfer knowledge from one language to help document classifica-
tion in another language. More specifically, let LS be a labeled document collection in
the source language, in which each document dS

j is annotated with a class label c ∈ YS ,
where YS = {c1, · · · , cSp} denotes the label space and Sp is the number of class la-
bels in the source language. Let UT be a unlabeled document collection in the target
language. Formally, we can define the problem of bilingual document classification as
follows.

Problem 2. Bilingual document classification. Given a labeled document collection
LS in the source language S, an unlabeled document collection UT in the target lan-
guage T , and the learned bilingual topic models, the goal is to transfer the labeled
supervision information from the source language to predict the label of the documents
in the target language.

Please note that although we only give the definition of bilingual document modeling
and classification, the problem can easily be extended to multilingual corpora.

3 Our Approach

For bilingual topic modeling, we can simply consider a general topic model as a base-
line method, i.e. Latent Dirichlet Allocation (LDA) [3], to model the topic informa-
tion of all bilingual documents. We propose a probabilistic topic model, referred to
as Bi-LDA, to simultaneously model bilingual documents within a unified model. The
model describes each pair of bilingual documents (dS

j , dT
j ) using a common mixture θj ,

thus knowledge can be transferred across different languages via the common mixture
model.

In the remainder of this section, we will first briefly review Latent Dirichlet
Allocation, and then describe our proposed approach in detail.

3.1 Latent Dirichlet Allocation

Recently, probabilistic topic models attracted considerable interest and have been suc-
cessfully applied to text mining tasks such as information retrieval, recommendation,
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and text analysis [13,3]. Latent Dirichlet Allocation (LDA) [3] is a three-level Bayesian
network, which models documents using a latent topic layer. In LDA, for each docu-
ment dj in the corpus, a multinomial distribution θj over topics is first sampled from a
Dirichlet distribution with parameter α. Second, for each word wji, a topic zji is chosen
from θj and the word wji is generated from a topic-specific multinomial φzji . Thus, the
generating probability of word w from document dj is:

P (w|dj , θ, φ) =
K∑

z=1

P (w|z, φz) · P (z|θj) (1)

In other words, it uses the topic distribution θj of the document and the probability φw
z

of the topic generating word w to calculate the word’s probability. Directly applying
LDA to our bilingual problem means that the contents of both documents of a pair have
to be combined together as one big document, learning a topic model were the two
languages are mixed. This approach will serve as our baseline.

3.2 Bilingual Latent Dirichlet Allocation

Algorithm 3.1: BILINGUAL LDA()

for each document pair dj

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

sample θ ∼ Dir(α)
for each word position i ∈ dS

j

do
{

sample zS
ji ∼ Mult(θj)

sample wS
ji ∼ Mult(φ, zS

ji)
for each word position i ∈ dT

j

do
{

sample zT
ji ∼ Mult(θj)

sample wT
ji ∼ Mult(ψ, zT

ji)

Figure 1 shows the graphical representation of the proposed model, Bilingual Latent
Dirichlet Allocation (Bi-LDA). In Algorithm 3.1 we present its generative story. For
each document pair dj , a topic distribution θ is sampled from a K-dimensional Dirichlet
distribution with parameter α. θ defines a distribution common to both languages (S
and T ). Then, each word wS

ji in the source language is generated from a multinomial
distribution φzS

ji
, specific to a chosen topic zS

ji. Similarly, each word wT
ji of the target

language is also sampled with a same procedure. We see that there is a one common
θ for both languages, which implies that all topics in θ are shared across the bilingual
documents.

To train this model, we used the Gibbs sampling approach. This requires two sets of
formulas to converge to correct distributions: one for each topic zS

ji and one for each
topic zT

ji. For the first, the updating formula becomes:

p(zS
ji = k|wS

dj
, wT

dj
, zS

¬ji, z
T ) =

nS
j,k,¬i + nT

j,k + α

nS
j,·,¬i + nT

j,· + K · α ·
vS

k,wS
ji,¬ + β

vS
k,·,¬ + WS · β (2)
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Fig. 1. Graphical representation of LDA and Bi-LDA

where nS
j,k is the number of times that topic k has been sampled from the multinomial

distribution specific to document dS
j . nS

j,k,¬i is the same except the current zS
ji is not

counted. vS
k,·,¬ is the number of times that word wS

ji in language S has been generated
by topic k minus one (not including the currently associated word wS

ji). In these coun-
ters a dot (·) means summation over all values of this variable, i.e. all topics in case of
nS

j,· and all words in vS
k,·,¬.

For zT
ji, the change in formula 2 is trivial.

3.3 Cross-Lingual Document Classification

For cross-lingual document classification, we are given a set of labeled documents in
the source language and no labeled documents in the target language. The objective
is to learn a classification model from the labeled documents of the source language
and apply to the classification of documents in the target language. The task obviously
cannot be achieved by the traditional method that only uses words as features, as there
is minimal word overlap between the two languages.

Our idea for cross-lingual document classification is to take advantage of the com-
mon topics learned by the proposed topic models, to transfer the knowledge from the
source language to the target language. Basically we first learn the topic models (either
LDA or Bi-LDA) on a general bilingual corpus (e.g., Wikipedia). Then given a bilin-
gual document classification task, i.e., a LS in language S and an unlabeled document
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collections UT in language T (in the same domain as the source documents), we use
the learned topic model to infer the topic distribution of each document in LS and UT .

Each document is then taken as a data instance in the classification model and the
features are defined as the inferred topic distribution. The value of each feature of an
instance (e.g., document dS

j ) is the probability of the corresponding topic k in the doc-
ument, i.e. p(z = k|dS

j ). For the classification model, one can use any classifier such as
Naive Bayes, Perceptron, Maximum Entropy, and Support Vector Machine (SVM). In
this paper, we use SVM.

4 Experimental Results

4.1 Experimental Setup

Datasets: We conduct the experiments on two datasets, one (called Topic) for training
and evaluating the topic models, and one (called Classification) for evaluating the trans-
fer classification. Both datasets are downloaded from the online encyclopedia Wikipedia,
from the English, Spanish, French and Italian language sections. All documents were
acquired from Wikipedia dumps, which mirror the entire online encyclopedia, are
regularly updated and can be downloaded freely.

For the Topic dataset we collect three bilingual corpora with paired documents by
following “language links” between articles. Table 2 shows statistics of the Topic dataset.
Note that not every article appears in each language, resulting in a different content for
each bilingual dataset.

Table 2. Statistics of the Topic dataset with S = English and different values for T

W S W T #Pair-docs
T = Spanish 29, 201 27, 745 18, 672
T = French 27, 033 20, 860 18, 911
T = Italian 23, 346 31, 388 18, 898

The Classification dataset, which is different from the Topic dataset, is collected by
exploiting the category-labels of Wikipedia. Specifically, we first select 5 high level
categories: books (“book”), films (“film”), programming languages (“prog”), sports
(“sport”) and videogames (“video”). Then for each category, we extract up to 1,000
articles which are annotated with the category label. To acquire a workable set of doc-
uments, the categories were chosen to have examples of very broad and more specific
classes. A Wikipedia article can have more than one label, and these labels can be very
specific. Using the hierarchy that Wikipedia provides, we extract all subcategories for
the above base classes up to three sublevels. Articles are then crawled that belonged to
any one of these subcategories. Since not all Wikipedias have as large a collection of
articles, we sometimes collected fewer than thousand articles for Spanish, French and
Italian. Table 4.1 shows the size of the Classification dataset.
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Table 3. # documents of the Classification dataset

books films program sport video
English 1, 000 1, 000 1, 000 1, 000 1, 000
Spanish 1, 000 1, 000 263 1, 000 1, 000
French 1, 000 1, 000 592 1, 000 1, 000
Italian 1, 000 1, 000 290 1, 000 764

Comparison Methods: We compare the following methods for bilingual classification:

– SVM+LDA. This will be our baseline method. It combines each bilingual pair of
documents into a single document, mixing the words from both languages, and
employs LDA to learn the topic model from the Topic data set and then to infer the
the topic distribution of the Classification data set. The two languages thus share
only one common topic space. The learned topic distribution is used as the feature
for SVM to learn the classification model. For SVM, we employ SVM-light.1

– SVM+Bi-LDA. This method uses the proposed Bi-LDA to learn the topic distribu-
tion from the bilingual corpora and then uses the inferred topic distribution as the
features for SVM.

The code for this process is implemented in C++ and will be publicly available along
with the data sets.

4.2 Perplexity

Perplexity measures a topic model’s capability of predicting previously unseen doc-
uments. For a collection of these new documents (in our case the articles from the
Classification dataset) Cu, it is calculated as:

Perp(Cu) = exp

(
−
∑

d∈Cu
log

(∏
w∈d p(w)

)∑
d∈Cu

Nd

)
(3)

A lower perplexity score means that the model has assigned a higher probability to
the documents. Theoretically, if a model is good, i.e. has a low perplexity, it will be
well adapted to the new documents and therefore yield a good representation. Although
trained on paired bilingual documents, inference of each of these models has to hap-
pen on one language at a time (as we do not have any a priori information of the test
document’s content). Therefore we present the perplexity for both of the languages
separately.

Table 4 lists the perplexity of each model for all three language pairs, averaged over
a number of different parameter settings for the model. These settings are: (named
settings will be used in further experiments)

– for LDA and Bi-LDA: ranging the number of topics from 10 to 200 in steps of 10.

1 http://svmlight.joachims.org/

http://svmlight.joachims.org/
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Table 4. Average perplexity of the different models, for each language pair

LDA English - French English - Italian English - Spanish
Bi-LDA 1040.3 1082.2 1139.3 1523.6 1111.9 1277.3

The difference between the perplexity of LDA and Bi-LDA can be explained easily:
since the vocabulary sizes doubles by merging the two languages in the LDA model, it
follows that the probability of each word halves, which then again results in a doubling
of the perplexity.

4.3 Classification Accuracy

The use of knowledge transfer in a cross-lingual text categorization task is to our knowl-
edge not studied in the literature. As a baseline we use LDA performed on concatenated
texts (SVM + LDA) where the two vocabularies are mixed. Table 5 summarizes the per-
formance of the models for each of our chosen classes, in each language pair. The F1
score is again averaged, over the same ranges of number of topics used for Table 4.
It can be seen that the Bi-LDA model realizes an acceptable transfer of categorization
knowledge.

Table 5. Average F1-score for the SVM classification, for each model and language pair

book film prog sport video
English -
Spanish

LDA 5.7 12.0 48.5 27.7 42.6
Bi-LDA 80.5 60.0 74.3 59.4 59.6

English -
French

LDA 3.9 1.4 67.9 42.6 64.5
Bi-LDA 53.2 64.0 86.5 85.4 34.8

English -
Italian

LDA 1.8 3.4 64.7 62.0 17.6
Bi-LDA 52.1 46.7 84.1 79.3 76.9

In order to better assess the capabilities of the proposed topic models for
cross-lingually transferring knowledge, we perform a number of additional tests.

4.4 Topic Smoothing

In this subsection, we first analyze how the bilingual document classification is influ-
enced by different parameters (i.e., number of topics and hyperparameters), and then
present a new method, called topic smoothing, to further improve the performance of
bilingual document classification.

Effect of #topics on the categorization We train the Bi-LDA model with the number
of topics varied, and each time we apply the learned model to the bilingual document
classification. Figure 2 plots the F1-score of the classification results using Bi-LDA,
when choosing a different number of topics a priori. We see on some categories the
classification results are not very sensitive to the number of topics, except when the
number is very small. But on several tasks (e.g., the classification on Italian), the results
vary largely with the different number of topics.
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book film prog sport video
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Fig. 2. Bi-LDA’s performance for several values of K, language combinations and categories

Topic smoothing. To deal with the above sensitivity problem, we present a strategy
of topic smoothing. Basically, for Bi-LDA the smoothing method is to combine topic
models that are learned with a different number of topics for bilingual document clas-
sification. We train ten topic models, with the number of topics ranging from 10 to 200
with a 20 topic step. Then we apply the topic models to inference the topic distribution
of the documents in the test data set, and concatenate all the different topic distributions
as features of the SVM to train the classification model. Specifically, different topic
models are trained using different hyperparameters, and then topic distributions from
the different topic models are concatenated as features to train the classification model.
Table 6 shows the comparison of Bi-LDA and sBi-LDA. It can be seen that the smooth-
ing method can efficiently improve (averagely +8.5%) the classification performance.
As a trade-off of course, it requires substantially more computation.

Table 6. Average F1-score for the smoothed LDA compared to the average over the unsmoothed
models (SBi-LDA − smoothed Bi-LDA)

book film prog sport video
English -
Spanish

Bi-LDA 80.5 60.0 74.3 59.4 59.6
SBi-LDA 83.6 60.3 77.7 61.3 72.5

English -
French

Bi-LDA 53.2 64.0 86.5 85.4 34.8
SBi-LDA 65.5 72.1 92.3 87.0 49.9

English -
Italian

Bi-LDA 52.1 46.7 84.1 79.3 76.9
SBi-LDA 58.9 53.9 88.1 83.3 79.1

5 Related Work

Cross-lingual text mining is a popular research topic and quite a few research works
have been conducted for cross-lingual information retrieval (e.g., [12,27,21,24]); how-
ever, cross-lingual classification is up till now rarely studied. Existing methods often
rely on a translation tool to bridge documents of different languages and thus transform
the problem into a monolingual classification [9,22]. Cross-lingual sentiment classifi-
cation in text has recently drawn the attention [17] relying on translation dictionaries.
Some efforts have also been made to reduce the number of labeled examples in both
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languages using techniques such as co-training [1,25]. However, these methods still
rely on a well-organized parallel multilingual corpus [11] or on a translation tool. In the
work presented here we train and test on comparable corpora and do not make use of
any external translation resources.

Recently, how to model the multilingual corpora so as to discover the common and
differential topics among the different languages becomes an interesting research topic
and many methods have been proposed. A basic idea in these methods is to use La-
tent Semantic Analysis (LSA) [19,6,26], document clustering [16], word alignment and
machine translation [28], and parallel LDA [20,18,8] to find the correlation between
different languages. While much progress has been made, two fundamental problems
have been largely ignored. First, the bilingual corpora may be quite unbalanced, i.e.,
documents of the source language may not be comparable with the target language.
The cross-lingual documents on the Web, in particular the Web 2.0, are freely authored
by the users, thus the contents would be very different. Second, it is unclear how to
model the bilingual documents simultaneously. Directly employing LSA, clustering, or
LDA can only model the bilingual content in a common space, but cannot differentiate
the topics specific to each language.

Another related work is transfer learning, which aims to transfer knowledge from a
source domain to a related target domain. Two fundamental issues in transfer learning
are “what to transfer” and “when to transfer”. Many approaches have been proposed by
reweighting instances in the source domain for use in the target domain [7]. [10] propose
a locally weighted ensemble framework which can utilize different models for transfer-
ring labeled information from multiple training domains. Also many works rely on new
feature representations [14,15]. For example, [2] propose a method to learn a shared
low-dimensional representation for multiple related tasks and the task functions simul-
taneously. [23] propose to use a large amount of unlabeled data in the source domain to
improve the performance on the target domain in which there are only few labeled data.
They don’t assume that the two domains share the class labels or topic distributions.
[4] proposed a structural correspondence learning approach to induce correspondences
among features from source and target domains. There are also other approaches which
transfer information by shared parameters [5] or relational knowledge. Transfer learning
techniques are widely used in classification, regression, clustering and dimensionality
reduction problems.

The use of bilingual topic models for transferring the category knowledge across
languages is completely new. Moreover, our topic models are trained on comparable
corpora which are abundantly available.

6 Conclusion

In this paper we investigate knowledge transfer across multilingual corpora via latent
topics. We formalize the major tasks and propose a probabilistic approach to solve the
tasks. We study and compare several strategies for simultaneously modeling the content
of bilingual documents. One is the bilingual topic model based on LDA. We present a
sampling algorithm to learn the model. Experimental results for categorizing Wikipedia
documents according to their labels demonstrate the effectiveness of the proposed trans-
fer learning approach.
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There are several directions for future work. It would be interesting to develop new
algorithms to automatically find the number of topics, and detect topics that are not
shared between comparable documents. As the information in different languages might
be very unbalanced, the numbers of topics in the documents of different languages could
also be different. Another potential issue is to apply the proposed approach to other
applications (e.g., recommendation, and link prediction across multilingual documents,
cross-lingual information retrieval or cross-lingual summarization) to further validate
its effectiveness.
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Jorge, Aĺıpio Mário II-432

Kang, U II-13
Kantarcioglu, Murat II-198
Kasabov, Nikola II-161
Kashima, Hisashi I-62, II-222
Kechadi, M.-T. I-411
Khoshgoftaar, Taghi M. I-124
Kimura, Daisuke I-62
Kinno, Akira I-525
Kitsuregawa, Masaru II-38
Koh, Yun Sing I-387
Kremer, Hardy II-444
Kuboyama, Tetsuji I-62
Kudo, Mineichi II-234
Kumar, Vipin I-338
Kutty, Sangeetha I-488

Lau, Raymond Y.K. I-363
Laufkötter, Charlotte II-444
Le, Huong Thanh I-512
Le, Trung II-246
Lewandowski, Micha�l II-173
Li, Chao II-87
Li, Chun-Hung I-75, I-460
Li, Jhao-Yin II-111
Li, Lian II-63
Li, Nan I-423
Li, Pei II-407
Li, Peipei I-313
Li, Xiaoming I-537
Li, Yuefeng I-363, I-488
Li, Yuxuan II-321
Li, Zhaonan II-506
Liang, Qianhui I-313
Ling, Charles X. II-395
Liu, Bing I-448
Liu, Da-You I-249
Liu, Dayou II-123
Liu, Hongyan II-407
Liu, Huan I-26
Liu, Jie I-249
Liu, Wei II-345
Liu, Xiaobing I-537
Liu, Ying I-500
Lu, Aidong II-1

Luo, Chao II-370
Luo, Dan II-370
Luo, Dijun I-148
Luo, Jun II-87
Luo, Wei II-135

Ma, Lianhang II-258
Ma, Wanli I-476, II-246
Makris, Dimitrios II-173
Mao, Hua II-420
Mao, Xianling I-537
Marukatat, Sanparith I-160
Masada, Tomonari I-435
Mayers, André I-265
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