

Lecture Notes in Artificial Intelligence 6565
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Marcello Balduccini Tran Cao Son (Eds.)

Logic Programming,
Knowledge Representation,
and Nonmonotonic Reasoning

Essays Dedicated to Michael Gelfond
on the Occasion of His 65th Birthday

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Marcello Balduccini
Eastman Kodak Company
Rochester, NY 14650, USA
E-mail: marcello.balduccini@gmail.com

Tran Cao Son
New Mexico State University
Department of Computer Science
Las Cruces, NM 88003, USA
E-mail: tson@cs.nmsu.edu

The illustration appearing on the cover of this book is the work of Daniel Rozenberg
(DADARA).

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-20831-7 e-ISBN 978-3-642-20832-4
DOI 10.1007/978-3-642-20832-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011926416

CR Subject Classification (1998): I.2.3, I.2, F.4.1, D.1.6

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Sketch of Michael Gelfond by Veena Mellarkod

Preface

Michael Gelfond has been an extraordinary mentor, teacher, and colleague for
many people in the knowledge representation and reasoning (KR&R), logic pro-
gramming (LP), and answer set programming (ASP) communities.

Michael’s current and former students often like to tell stories about their
experience with Michael as a supervisor. These stories invariably begin with
meetings in which Michael would review the student’s work. The review would
usually not go past the first few paragraphs of the work: Michael would simply
find too many mistakes, inaccuracies, parts that need clarification! But these
stories also invariably end with the students explaining how Michael’s mentoring
turned them into better researchers and better persons, how he taught them to
appreciate the importance of accuracy, of slow, deliberate and careful thinking,
of academic and personal integrity.

Michael is not only an amazing researcher, who has changed our areas of
research in many ways. He is also an amazing person. Even among people who
do not share his views, he is deeply respected for his integrity and straightfor-
wardness. He has a keen interest in people, which makes him very caring and
understanding – first of all toward his students. Thanks to Michael’s ability
of “slow thinking,” which he says he learned from his advisor Nikolai Aleksan-
drovich Shanin – but which Michael has undoubtedly refined on his own – he can
think with astonishing lucidity about any topic, be it scientific or non-scientific.

It is because of all these reasons, and so many more that we could never
discuss in this brief preface, that we have decided to honor Michael on the occa-
sion of his 65th birthday with a collection of papers written by his closest friends
and colleagues. Several of these papers were presented during the Symposium on
Constructive Mathematics in Computer Science, held in Lexington, KY, during
October 25–26, 2010.

We would like to take this opportunity to thank all the authors, who worked
so hard to turn this collection into a reality, and to the colleagues who acted as
peer-reviewers, whose names are listed at the end of the preface. We thank Veena
Mellarkod for drawing the beautiful sketch of Michael that opens this volume.
Special thanks also go to Victor Marek and Mirek Truszczynski for taking care
of the local organization, and to Lara and Greg Gelfond for convincing Michael
to spend a few extra days in Lexington after the end of NonMon@30, thus giving
us the opportunity to surprise him with the symposium.

Dear Michael, this volume is a testimony to how you have touched the lives
of many people around the whole world. We wish to be able to celebrate many
such anniversaries in the years to come!

October 2010 Marcello Balduccini
Tran Cao Son

Organization

Reviewers

The contributions that appear in this volume have been peer-reviewed by:

Marcello Balduccini Eastman Kodak Company, USA
Chitta Baral Arizona State University, USA
Gerhard Brewka University of Leipzig, Germany
Pedro Cabalar Corunna University, Spain
Marina De Vos University of Bath, UK
Agostino Dovier Università degli Studi di Udine, Italy
Esra Erdem Sabanci University, Turkey
Michael Fink Technische Universität Wien, Austria
Alfredo Gabaldon New University of Lisbon, Portugal
Martin Gebser Universität Potsdam, Germany
Roland Kaminski Universität Potsdam, Germany
Vladimir Lifschitz University of Texas at Austin, USA
Fangzhen Lin Hong Kong University of Science and Technology,

China
Jorge Lobo IBM J. Watson Research Center, Hawthorne,

NY USA
Lúıs Moniz Pereira Universidade Nova de Lisboa, Portugal
Alexandre Miguel Pinto Universidade Nova de Lisboa, Portugal
Enrico Pontelli New Mexico State University
Francesco Ricca Università della Calabria, Italy
Nelson Rushton Texas Tech University, USA
Chiaki Sakama Wakayama University, Japan
Tran Cao Son New Mexico State University
Francesca Toni Imperial College London, UK

Michael Gelfond and Colleagues
Picture taken at “Symposium on Constructive Mathematics in Computer

Science” held in honor of Michael Gelfond’s 65th birthday (Oct 25-26 2010)

Michael Gelfond and Colleagues
Picture taken at “Theories of Logic Programming, Non-Monotonic Reasoning,
and their Application to Reasoning about Actions: a Symposium in Honor of

Michael Gelfond’s 50th Birthday” (Nov 5 1995)

Table of Contents

Opening: Homage to Michael Gelfond on His 65th Birthday 1
Jack Minker

Foundations: ASP and Theories of LP, KR, and NMR

Answer Set Programming’s Contributions to Classical Logic:
An Analysis of ASP Methodology . 12

Marc Denecker, Joost Vennekens, Hanne Vlaeminck,
Johan Wittocx, and Maurice Bruynooghe

Closure and Consistency Rationalities in Logic-Based Argumentation . . . 33
Phan Minh Dung and Phan Minh Thang

Manifold Answer-Set Programs and Their Applications 44
Wolfgang Faber and Stefan Woltran

On the Minimality of Stable Models . 64
Paolo Ferraris and Vladimir Lifschitz

Challenges in Answer Set Solving . 74
Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and
Torsten Schaub

Exploring Relations between Answer Set Programs 91
Katsumi Inoue and Chiaki Sakama

Compact Translations of Non-disjunctive Answer Set Programs to
Propositional Clauses . 111

Tomi Janhunen and Ilkka Niemelä

Effectively Reasoning about Infinite Sets in Answer Set
Programming . 131

Victor Marek and Jeffrey B. Remmel

Inspecting Side-Effects of Abduction in Logic Programs 148
Lúıs Moniz Pereira and Alexandre Miguel Pinto

Argumentation and Answer Set Programming . 164
Francesca Toni and Marek Sergot

XII Table of Contents

Interlude: Cantor’s Paradise Regained: Constructive Mathematics from
Brouwer to Kolmogorov to Gelfond . 181

Vladik Kreinovich

Interlude: Recollections on Michael Gelfond’s 65th Birthday 191
Alessandro Provetti

ASP and Dynamic Domains

Evolving Logic Programs with Temporal Operators 193
José Júlio Alferes, Alfredo Gabaldon, and João Leite

On Representing Actions in Multi-agent Domains . 213
Chitta Baral and Gregory Gelfond

Nonmonotonic Multi-Context Systems: A Flexible Approach for
Integrating Heterogeneous Knowledge Sources . 233

Gerhard Brewka, Thomas Eiter, and Michael Fink

Perspectives on Logic-Based Approaches for Reasoning about Actions
and Change . 259

Agostino Dovier, Andrea Formisano, and Enrico Pontelli

Refinement of History-Based Policies . 280
Jorge Lobo, Jiefei Ma, Alessandra Russo, Emil Lupu,
Seraphin Calo, and Morris Sloman

Translating General Game Descriptions into an Action Language 300
Michael Thielscher

Revisiting Epistemic Specifications . 315
Miros�law Truszczyński

Interlude: Answer Set; Programming? . 334
Pedro Cabalar

Interlude: Michael Gelfond: Essay in Honour of His 65th Birthday 344
Stefania Costantini

ASP – Applications and Tools

PLINI: A Probabilistic Logic Program Framework for Inconsistent
News Information . 347

Massimiliano Albanese, Matthias Broecheler, John Grant,
Maria Vanina Martinez, and V.S. Subrahmanian

Table of Contents XIII

ASP as a Cognitive Modeling Tool: Short-Term Memory and
Long-Term Memory . 377

Marcello Balduccini and Sara Girotto

A Temporally Expressive Planner Based on Answer Set Programming
with Constraints: Preliminary Design . 398

Forrest Sheng Bao, Sandeep Chintabathina, A. Ricardo Morales,
Nelson Rushton, Richard Watson, and Yuanlin Zhang

Applications of Answer Set Programming in Phylogenetic
Systematics . 415

Esra Erdem

ASP at Work: Spin-off and Applications of the DLV System 432
Giovanni Grasso, Nicola Leone, Marco Manna, and Francesco Ricca

Combining Answer Set Programming and Prolog: The ASP–PROLOG
System . 452

Enrico Pontelli, Tran Cao Son, and Ngoc-Hieu Nguyen

On the Practical Side of Answer Set Programming 473
Tommi Syrjänen

ASTREA: Answer Sets for a Trusted Reasoning Environment for
Agents . 490

Richard Watson and Marina De Vos

Ending: Tea Times with Gelfond . 510
Veena S. Mellarkod

Author Index . 513

Homage to Michael Gelfond on His 65th Birthday

Jack Minker

Department of Computer Science
and

University of Maryland Institute for Advanced Computer Studies
College Park, MD 20742
minker@cs.umd.edu

http://www.cs.umd.edu/˜minker

Abstract. Michael Gelfond is one of the world leading scientists in the field
of logic programming and nonmonotonic reasoning. This essay covers several
aspects of Michael’s personal life, starting from his birth in the USSR, through his
experiences in the USSR up to the time he emigrated to the United States (U.S.).
This is followed by his first experiences in the U.S.: how he became involved in
logic programming and nonmonotonic reasoning and some of his major scientific
achievements. Michael is a warm, generous person, and I discuss his impact on
some colleagues and students. In the concluding section, I observe that starting
his career with impediments in the FSU, he overcame them to become one of the
top computer scientists in logic programming and nonmonotonic reasoning.

1 Introduction

The editors to this Festschrift invited me to contribute an essay on Michael Gelfond and
his personal life. They had heard that I had helped several scientists to emigrate from
the Former Soviet Union (FSU) and asked whether or not this was true. Although I did
help many Soviet scientists to emigrate, I never helped Michael. I wrote several articles
in the Communications of the Association for Computing Machinery, starting in 1981,
listing all computer scientists in the world, whose human rights were violated. Most of
the computer scientists were from the Soviet Union. Michael never appeared on my lists
since he emigrated in 1977, before I wrote my reports. Although, in general, I know a
great deal about the reasons Soviet scientists wished to emigrate from the FSU, I did
not know Michael’s particular situation. Thanks to those cited in the Acknowledgment
section, I was able to obtain the information needed for this essay.

2 Michael Gelfond in the USSR (1945-1977)

Michael (Misha) Gelfond was born a few months after the end of World War II on
November 7, 1945 in the city of Leningrad (now St. Petersburg) in the Former Union
of Soviet Socialist Republics (USSR) to Jewish parents, Ruth and Gregory Gelfond.
Michael was brought up in Leningrad, and went to Leningrad State University, where
he received an M.S. in Mathematics in 1968. He met his friend and colleague Vladimir

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 1–11, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cs.umd.edu/~minker

2 J. Minker

Lifschitz in 1963, when they both enrolled at Leningrad State University and took many
courses together. At the time they enrolled, it was difficult for Jews to get into the best
universities, such as Leningrad, because of anti-Semitism. However, because of their
excellent scholarship they were accepted and completed their degrees.

Michael attended the famous Steklov Mathematical Institute, where he studied for a
Ph.D. in Mathematics. As told to me by Vladimir Lifschitz, both he and Michael obtained
their Kandidat degrees (Ph.D. equivalent) from the Steklov Institute without being en-
rolled. In the USSR, one could take several exams and write and defend a dissertation to
obtain the degree and that is what they did. Although not an official student at the Steklov
Institute, Michael was able to study with two outstanding researchers in logic, Sergey
Maslov and Nikolai Alexandrovich Shanin who were at the Institute. He completed his
Ph.D. thesis, “Classes of formulae of classical analysis compatible with constructive
interpretation,” under the direction of Shanin and received his degree in 1974.

Michael met Larisa (Lara) Kozinetz, his wife-to-be, in a desert near the sea, as might
have happened in biblical days. The story, as told to me by Lara, is as follows.

It was standard practice in the USSR to send non-workers (non manual labor)
to work on collective farms (seasonal) or other projects, such as construction
work. Students were the first to go (they provided free labor), whether or not
they liked the idea. In her 2nd year at the University, Lara had a choice: to
work on a collective farm in the fall or on construction work in the summer.
Refusal to do either would mean that she would not be able to have a room in
a dormitory. Renting in a private home was close to impossible.

Her choice was “railroad construction”, which was, at least, something new
and far away. The project was in Kazakhstan, by the Caspian Sea. It is a desert,
with very rough conditions and absolutely nothing around for miles. Michael
made the same choice that year. They met when Michael and a friend were
visiting the camp. It was love at first sight.

Several months after he received his M.S. degree, Michael married Larisa on February
12, 1969. Lara was also a mathematician who received her M.S. degree from Leningrad
State University, and then worked as an engineer/chief engineer at a laboratory that
studied turbine blades, and at a geographical image processing laboratory where she
made topological maps from satellite images. Their first child, Yulia (now Yulia Gelfond
Kahl), was born in Leningrad on January 8, 1970. A second child, Gregory Gelfond
(named after Michael’s father), was born in San Jose, California on October 15, 1979.

Both Lara and Michael’s families had lived in the Greater Russian Empire for many
generations. Michael’s family lived in today’s Latvia. Lara’s family was from Russia
and Ukraine. Their parents served valiantly in the Russian military during World War
II. Michael’s father served as a naval commander in the battles of Sevastopol and Odessa
(two major battles on the Russian front on the Black Sea). He also served in the Japanese
campaign as well as in naval military intelligence. His mother served as a naval officer in
naval intelligence as an analyst and a translator. Lara’s father served as a tank battalion
commander on the western front, and her mother served as a medical doctor operating
in a Mobile Army Surgical Hospital unit on the western front. Her parents helped to
liberate the concentration camp at Majdanek on the outskirts of Lublin, Poland. A large
number of Michael’s relatives were murdered during the Nazi invasion of the USSR.

Homage to Michael Gelfond on His 65th Birthday 3

To understand the situation faced by Jews in the USSR, I quote a part of an unpub-
lished paper by Ambassador Richard Schifter written in honor of my 65th birthday in
1992.

Russia has had a long tradition of anti-Semitism. In the early part of this Cen-
tury, when most other European countries had left the most overt aspects of
anti-Jewish discrimination behind them, the Empire of the Czar still held on
to them. Equal rights for Jews came finally with the democratic revolution in
February 1917. When the Bolsheviks take over in October, they continued this
non-discrimination policy.

But this period of equal rights lasted for not much more than about fifteen years.
As Stalin consolidated his hold on the country, his own-anti-Semitic feelings
became increasingly more evident. A large number of Jews could be found
among the victims of the purges of the Thirties. Thereafter, gradually, Jews
were barred from entering on a career in certain sensitive job classifications,
such as the secret police and the foreign service. Glass ceilings beyond which
Jews who were already in the system could not rise were established in these
job categories and in a variety of other fields, such as the Communist Party and
the military forces. After World War II, Stalin set about wiping out traditional
Jewish culture, killing a number of writers and actors. The so-called doctors’
plot of 1952 indicated that he had additional anti-Jewish measures in mind.

Stalin’s successors were not men who equaled him in brutality. But they, too,
were committed to moving the Soviet Union’s Jewish population to the side-
lines. By the 1960’s they had a policy in place under which the glass ceiling
against the promotion of Jews beyond a certain level was extended through-
out the entire system of governmental institutions. And then, discriminatory
policies were initiated in education.

During his university days, Michael spoke freely and openly and his comments did
not always follow the USSR party line. He also attended a seminar called “Theory
of Systems,” organized by Sergey Maslov. A variety of different intellectuals such as
scientists, priests and writers, lectured on different subjects. According to Larisa, the
“Maslov seminar was a very important part of our lives. We had a chance to meet a
lot of absolutely remarkable people and to hear exceptional presentations on different
subjects - science, literature, history, religion, etc. It helped us to be “alive” and mind
growing, and be informed on today’s events (there were no information/news, just plain
propaganda every minute of the day - radio, TV, newspapers - all the same and abso-
lutely unreadable for anyone who can think).” In addition there were also discussions
of some underground literature, and unofficial news. As was common in the USSR,
there were always individuals who reported to government authorities and informed the
authorities of the discussions. As a consequence, attendance at the seminar was consid-
ered a form of unconventional behavior not approved by the KGB (along with attend-
ing church or synagogue services, studying non-Marxist philosophy, telling jokes about
Brezhnev, socializing with foreigners, and many others). Individuals not approved by
the KGB were “black listed.” When they applied for a job, their names were checked
against this list. “Dissidents” in the USSR referred to individuals who generally wanted

4 J. Minker

to change the country or openly protested government actions. One such dissident was
the world renowned nuclear physicist Andre Sakharov. Unlike Sakharov, Michael and
Lara did not consider themselves to be dissidents–they were intellectuals who wanted
to discuss the pros and cons of current issues freely and openly. However, Lara is con-
vinced that many of the attendees of the Maslov seminar were viewed as dissidents and
some may really have been dissidents. However, merely because one sometimes may
have openly disagreed with the government, was sufficient, either to place them on a
“black list” or to add this information to the investigative files kept by the KGB.

Following his Ph.D., Michael found it difficult to obtain a job commensurate with
his talents either because of anti-Semitism or because he was on a black list. However,
for a while, he was able to obtain a job doing programming; then found a job teaching
in a high school for gifted students; at a regular high school; and for a short while at a
financial/economics institute. As related to me by Vladimir, Michael’s attitude towards
teaching high-school students was to be open to students about his values and views,
and he spent a lot of time discussing these “dangerous” topics with them. This was rare
among high school teachers: their job was to prepare their students to the life of loyal
Soviet citizens, enthusiastic about Communist ideology! Michael’s unorthodox attitude
towards his teenage students was probably not looked upon favorably in the eyes of the
KGB. He was unable to retain these jobs and became unemployed. It was fortunate that
anonymous individuals or organizations sent the family packages. They were able to
sell some of the packages to survive.

The USSR had a policy that if an individual was not working, he was deemed a
“parasite” (a drain on society) and was sent to a labor camp. To avoid being a “parasite”,
Michael had an opportunity to register as a baby sitter for some of his friends and also as
a tutor. Although being a tutor was not sufficient to avoid being labeled a parasite, being
registered with the state as a baby sitter kept him from being considered a parasite.

During the period he was not working, he began to consider his future in the USSR
and the future of his daughter. He could not work up to his level of competence be-
cause of anti-Semitism and because he was black listed and was unable to find a job;
his daughter, was subjected to anti-Semitic statements while in kindergarten and when
she grew up she would not have the opportunity to live up to her potential. However,
according to Vladimir Lifschitz the main reason that he and Michael had for emigrating
was, “Unwillingness to live under totalitarian control . . . An intelligent and sensitive
person in the USSR had two options: either to do many things that were against his
conscience (and abstain from doing things that he felt he must do) or to be sent, perhaps
for years, to prison, to a labor camp, or to a psychiatric hospital.”

According to Michael’s son Gregory, his parents’ decision to emigrate from the
USSR came after they were visited by a pair of KGB agents and were told that he
had two options: leave for the “West” (i.e. out of the country) or to the “East” (be sent
to a labor camp). This was a typical Catch 22 situation. Not able to find a job because
the government discriminated against Jews, and because it was known he openly spoke
out against government policies, he would be subject to being sent to a labor camp.
Taking the implied advice of the KGB agents, the Gelfonds immediately decided to
apply for an exit visa. The visit from the KGB may have been caused partially by his
attendance in the Maslov Seminar and by his openness with his high school students.

Homage to Michael Gelfond on His 65th Birthday 5

Neither Michael nor Lara could figure out what exactly prompted the KGB to pay them
this critical visit. At the time Michael’s conjecture was: when an investigative surveil-
lance file reaches certain level - they need to do something. Since they started to collect
information during his university years it probably was full and ready for an action.
There were some events before this visit - a search warrant for underground literature
at a friend’s house. They were warned in advance and were able to load a suit case with
all the relevant books and papers and take it to the “most neutral” friend that they had
before the KGB visit so everything was “clean” when the KGB arrived. Lara believes
that all the factors specified in this paragraph played a role leading to the KGB visit.

However, before they could apply for an exit visa, Larisa, who was still working, had
to obtain an official statement from her employer stating that, in effect, she did not “owe
the company” anything, such as overdue books, or checked out equipment. To obtain
such a statement, she was forced to resign her job. Once that was done, they applied
for their exit visas in the summer of 1977. Many Soviet Jews who wished to obtain exit
visas were denied on their first attempts and could only emigrate after being refused
over many years — they were referred to as “refuseniks”. Michael and Larisa received
their exit visas within six months, possibly with the aid of the KGB who may have
wanted to rid the country of those who they deemed a thorn in their sides. Michael and
Lara were fortunate that they never became refuseniks. They emigrated on December
28, 1977.

3 Michael and Larisa Gelfond’s Early Years in the United States
(1978-1980)

In 1972 there was a sharp increase of Soviet Jews who emigrated from the USSR,
primarily because of anti-Semitism. The Brezhnev regime, to limit the “brain drain”,
imposed a prohibitively expensive exit tax on educated Jews who wanted to leave.
The backlash on this policy by Western governments forced the Soviets to relent.
By the time the Gelfonds applied, there was no exit tax. But, in its place, they had
to “refuse/denounce” Soviet citizenship and pay 500 rubles per adult (a total of 1000
rubles) for the process. That was an enormous amount of money, but the Gelfonds had
saved some kopeks, were fortunate to have won some money in a lottery and Michael’s
mother made up the difference.

Neither Gelfond knew much about the United States or Israel. However, some of their
friends were already in the U.S. and they had neither family nor contacts in Israel. They
were also concerned that their marriage would not be recognized in Israel since Lara
was not Jewish and they were unaware of what it would take to be considered Jewish
or at least to be married legally. The only foreign language Michael had studied in
school was German. They believed it was possible, although difficult, to learn English,
but no one on Michael’s side of the family had known Hebrew for generations. For
these reasons, they decided to try to go to the U.S. The USSR only allowed émigrés
to exchange about a total of $200 when they left the country. Their journey to the U.S.
took them through several places. The trip from Leningrad to Vienna, Austria was paid
for from funds they were not allowed to take out of the country. Since they were short of
funds when they arrived in Vienna, they applied to The Hebrew Immigrant Aid Society

6 J. Minker

(HIAS) for support. HIAS was well-known for its lifesaving services to world Jewry to
rescue, reunite and resettle families over many generations. HIAS paid for their tickets
for the rest of their journey and gave them money for food. The funding was an interest
free loan, where they signed a promise to return it at some point. Naturally, the Gelfonds
repaid the funds when they could afford it. After 10 days, they went from Vienna to
Rome, stayed in Rome for about 3 months and then went to New York City.

In Rome, they applied to the U.S. on the ground of being refugees. They had been
in contact with the Jewish community in San Jose, California, which guaranteed to
the U.S. government that they would not be “public charges” and promised to support
them until they could find jobs. In New York, they received social security numbers and
permission to work. They stayed in New York for about a week with friends since the
Jewish community in San Jose was busy with the Passover holidays. The symbolism of
the holy day of Passover being a commemoration of the exodus of Jews from slavery
in Egypt, took on a double meaning for the Gelfond family as their exodus and that of
other Jews from the Soviet Union.

Their primary financial support in the U.S. was from the Jewish community in San
Jose. They paid the rent and utility cost for the apartment in a modest housing complex.
By Russian standards, their modest housing looked very good to them. They received
about $180.00 a month for food. The Jewish community also provided them with the
various essentials - beds, a dining table and other furniture. There were no luxury items,
no new items, but there was much thought and care put into it and they felt very wel-
comed. There were even some toys for Yulia (Gregory had not been born yet). This
kindness is appreciated to this day. To come from the “mother country” which did
not want them, to an unknown place, and to feel so accepted by people who did not
know them, made a lasting impression on them. Both Michael and Larisa also learned
to drive in the U.S. and for the $200.00 they had brought with them from the USSR,
they bought their first car, as it was impossible to travel to work in California without
a car.

Although Michael had some private lessons in English in the USSR, he essentially
knew no English. He learned by reading with a dictionary and listening to TV. But in
some programs, such as the children’s show, Mister Roger’s Neighborhood, they spoke
too fast to permit him to recognize words he already knew.

With limited ability in English, finding a job was not easy. He told his son many
amusing stories common to many immigrants who were not fluent in English. At one
interview he was asked a question along the following lines, “What happens when you
hit the space bar on a keyboard?” He thought about it and to the amazement of the
interviewer, started to try to describe how the signal travels through the bus etc. It never
occurred to Michael to simply say that a “whitespace” comes up.

Six months after coming to San Jose, he obtained a job at Measurex, a company
based in Cupertino, California. Measurex developed computer control systems for in-
dustry, primarily the paper-making industry. He was hired as an applications program-
mer. Although he had experience in programming in the USSR, it was a limited ability.
Working with his coworkers, he learned how to systematically debug a program and
other tools of the programming trade. After a while, one of his friends who worked for
a company in San Jose, called Mohawk, convinced him to change jobs. Unfortunately,

Homage to Michael Gelfond on His 65th Birthday 7

he did not realize that his insurance at the new company would not pay for hospitaliza-
tion when his son was born two weeks later, since the insurance company at the new
company did not pay for “pre-existing conditions”.

4 Michael Gelfond’s Scientific Contributions

In 1979, Vladimir Lifschitz was hired in his first tenure track position as an Assistant
Professor in the Mathematics Department at the University of Texas at El Paso (UTEP).
A short while after that he told a colleague at UTEP about Michael and recommended
that they interview him for a faculty position. He was interviewed and accepted a job as
an Assistant Professor in the Mathematics Department. As happened at many universi-
ties at that time, a short while after Michael arrived, UTEP turned its interdepartmental
computer science program into a department, and Michael and Vladimir were among its
first faculty members. During that time Michael, Vladimir and a friend became involved
with writing a compiler from scratch.

Michael started his work in logic programming and nonmonotonic reasoning after
he came to the University of Texas at El Paso. It is interesting to note how he came to
work in these fields. As related by Michael in his paper [Gelfond, 2006], he wrote that
in the early eighties he became interested in knowledge representation and reasoning.

At that time Vladimir Lifschitz and I were involved in the development of the
computer science program at the University of Texas at El Paso, and Vladimir
decided to go to a Stanford Summer School to learn more about important CS
topics. There he listened to John McCarthy’s course on AI and came back with
fascinated stories about defaults, non-monotonic logics and circumscription.
The next year was my turn. I took the same course together with the course on
Logic Programming taught by Kenneth Bowen. In that class I wrote my first
Prolog program and got introduced to Prolog’s treatment of negation.

It seems that everything in AI and nonmonotonic reasoning originates with John Mc-
Carthy.

A few years after Michael came to UTEP, Halina and Teodor Przymusinski were
hired. Although they only worked together for a short period of time at the same uni-
versity in logic programming and nonmonotonic reasoning, Michael, Vladimir, Halina
and Teodor, became one of the strongest groups in the country in these fields. According
to Halina,

Michael’s interest in non-monotonic reasoning and its formalizations came
from his cooperation with Vladimir. When I joined the CS department at UTEP,
Michael was already working on the relationship between the CWA and cir-
cumscription. He asked me to work with him on that topic. At that time our
knowledge of the literature on the subject was quite limited. It was therefore
not surprising that the first paper that Michael and I were to present at a confer-
ence turned out to contain results already published by Jack Minker. We both
felt awful about this situation but Michael immediately thought about gener-
alization of the original results to the case of prioritized circumscription. As a
result our honor was saved and the tough lesson was learned.

8 J. Minker

I was always impressed that Halina and Michael, two immigrants new to the field
of logic programming and the English language, were able independently to develop
results on the Generalized Closed World Assumption (GCWA) that I had developed
earlier. Both Halina and Michael went on to develop significant results following this
impressive start.

It is not possible in the space allowed for this essay to do justice to all of Michael’s
scientific accomplishments. I shall highlight just a few: Stable Models/Answer Set Pro-
gramming (with Lifschitz) and the introduction of logical negation into logic programs
(with Lifschitz); knowledge bases (with Chitta Baral) and others; dynamic domains and
applications (with Lifschitz and many others); and synthesizing Prolog with probabilis-
tic reasoning.

The work that Michael and Vladimir Lifschitz did on stable models, which
has been renamed answer set programming (ASP), is perhaps their major achieve-
ment to date. Their paper, “The Stable Model Semantics for Logic Programs”
[Gelfond and Lifschitz, 1988], received the Most Influential Paper in 20 Years Award
from the Association for Logic Programming in 2004. It is interesting to note that their
first attempt to publish the paper was rejected from a conference. As noted by David
Pearce in his excellent 2008 survey article [Pearce, 2008], they came to stable mod-
els through two different directions, “. . . Vladimir who was most closely associated
with minimal model reasoning through his work on circumscription, while Michael
Gelfond had noticed an interesting connection between logic programs and autoepis-
temic reasoning, where models are defined via a fixpoint construction.” Their extension
to include logical negation together with default negation was another significant con-
tribution [Gelfond and Lifschitz, 1990]. Additionally, they extended stable models to
apply to disjunctive theories [Gelfond and Lifschitz, 1991]— this paper, too, was first
rejected from a conference. ASP has become the standard in the field. There has been an
explosion of papers extending the work. Contributing to this explosion is the implemen-
tation and commercialization of logic programming systems that incorporate ASP that
are now available and handle large databases and rules. Two such systems are Smodels
[Niemelä and Simons, 1997]; DLV [Eiter et al., 2000]. CLASP [Gebser et al., 2007] is
another system of interest. It is possibly the best current answer set solver. Although it
is not a commercial product, it is available for free use in the public domain. All three
systems have been expanded to include many features.

Another major contribution is Michael and Chitta Baral’s survey paper on knowl-
edge base systems [Baral and Gelfond, 1994]. It demonstrated conclusively how logic
programming and nonmonotonic reasoning, using ASP, represented and reasoned about
complex knowledge representation problems.

Michael has developed an impressive series of papers on dynamic domains which
deal with practical problems that arise in real world applications. These domains are
concerned with problems such as handling multiple agents, inter-agent communica-
tion, changing environments, exogenous actions and time that must be accounted for.
He started this work with Vladimir Lifschitz [Gelfond and Lifschitz, 1992]. This pa-
per was followed by the journal version [Gelfond and Lifschitz, 1993]. The paper was
among the papers in the early 1990s that changed the direction of research in situa-
tion calculus and reasoning about actions. While in the past, research in this field was

Homage to Michael Gelfond on His 65th Birthday 9

example based, this was one of the pioneer papers which brought a systematic approach
to research in this field. Later, together with Chitta Baral, Michael defined the encoding
of the same knowledge into ASP, and provided definitions of algorithms for planning
and explanation of observations [Baral and Gelfond, 2000]. In his paper with Marcello
Balduccini [Balduccini and Gelfond, 2001], they described an ASP-based architecture
for intelligent agents capable of reasoning about and acting in changing environments.
The design is based upon a description of the domain that is shared by all of the rea-
soning modules. The generation and execution of plans are interleaved with detecting,
interpreting, and recovering from, unexpected observations. This is on-going work that
has been expanded to other topics in dynamic domains.

Michael’s work in dynamic systems led him to implement, the first practical
industrial-sized application of ASP-based planning for NASA on the Reaction Con-
trol System of the Space Shuttle. The work was, however, not used in a space shuttle,
but in simulation studies. His paper with Marcello Balduccini and Monica Nogueira,
covers this work [Balduccini, Gelfond, and Nogueira, 2006].

Among Michael’s current research is work on attempting to synthesize Prolog with
probabilistic reasoning (what he calls P-log). His work with Chitta Baral and Nelson
Rushton [Baral, Gelfond, and Rushton, 2009] was influenced by work of Judea Pearl
[Pearl, 1988]. The work combines the ASP part of a P-log program to describe pos-
sible beliefs, while causal Bayes nets serve as a probabilistic foundation and allows
knowledge engineers to quantify the degrees of these beliefs. It is important research,
as a P-log program combines the logical knowledge representation power of answer set
programming with causal probabilistic reasoning; the former, perhaps for the first time,
allows non-monotonic specification of the set of possible worlds.

For his scientific achievements, in addition to his award in 2004 for the Most Influ-
ential Paper in 20 Years from the Association for Logic Programming, he was elected
a Fellow of the American Association for Artificial Intelligence and a member of the
European Academy of Sciences.

From the above brief description of Michael’s contributions, it is clear that he is
among the world leading researchers in our field.

5 Michael Gelfond the Person

Michael is not only an outstanding scientist, but also a warm, caring, nurturing indi-
vidual. He inspires others with whom he works. He always has a smile on his face and
kind words for those he knows or meets. As Halina Przymusinska wrote to me, “It was
not just Michael a scientist that grabbed my interest in his research but it was primarily
Michael—a wonderful human being and a friend who provided me and Teodor with a
fascinating and very rewarding adventure—the study of non-monotonic reasoning and
Logic Programming. We will be grateful to him for that forever.”

Halina adds, “Michael continues to share his enthusiasm and knowledge and pro-
vides encouragement to many young (and not so young) computer scientists. Good
scientists are rare, but people like Michael are truly exceptional even among good sci-
entists.” To Halina’s comment, Chitta Baral wrote, “His mentoring and nurturing (of
young researchers) in the two fields of answer set programming and reasoning about

10 J. Minker

actions was an important reason why so many young researchers made their research
careers in those two fields. He co-founded TAG (Texas Action Group) with Vladimir to
have on-line discussion on those two topics, and it now has members from all over the
world.”

I share the comments made by Halina and Chitta. On a personal level, I have al-
ways been impressed and thankful that one of my outstanding Ph.D. students, Chitta
Baral, was taken under Michael’s wings after he left the University of Maryland. Chitta
blossomed further to become one of the world leading researchers in our field. Michael
contributed to the well-being of my scientific family. With Michael’s son, Gregory,
working for his Ph.D. with Chitta, I look forward to welcoming Grisha as part of my
scientific family.

6 Concluding Remark

It is ironic that the Gelfonds, forced to leave the ‘paradise’ of the Former Soviet Union
(FSU) after their families had lived there and in Greater Russia for several generations;
where Michael and Lara’s parents served their country valiantly during World War II;
where Michael had been born on November 7th, the date that used to be celebrated in
Russia as the “October revolution” (in 1917); where both Lara and Michael excelled
as students and had graduate degrees—Michael a Ph.D. and Lara an M.S.; and yet the
FSU did not want and could not take advantage of these productive scientists. Michael,
unwelcome in the country of his birth, was then able to thrive in a welcoming, tolerant
country, open to all religions, races and creeds that accepted him and his family as full
citizens whose religion was Judaism, and gave them an opportunity to use their science
in the United States. Despite having a difficult life in the FSU, Michael succeeded in
this land of freedom, where one need not be afraid to speak one’s mind openly, and
became an internationally renowned researcher in logic programming, nonmonotonic
reasoning, knowledge representation and reasoning, and artificial intelligence. It is a
tribute to Michael that he was able to overcome all impediments to his career.

Mazal Tov, Misha, it is an honor to have you as a friend and colleague, and to cele-
brate you on your 65th birthday. May you have many more productive years and may
you and your family continue to thrive. Zolst leben biz ein hundert und zvanzig (May
you live until 120)!

Acknowledgments

I especially want to thank the Gelfond family (of course Michael was not involved) and
Vladimir Lifschitz for their assistance. I learned a great deal of information from the
Gelfonds about their lives in the USSR and their early years following their emigration.
Vladimir provided me information about his and Michael’s challenges in their education
in the USSR and made several constructive suggestions about the entire essay. I am also
grateful to Lara for the material she provided on how she and Michael met and to the
entire Gelfond family who provided valuable information and reviewed the entire essay.
I greatly appreciate Halina and Teodor Przymusinski’s contribution with information
about Michael the person and their early work with him at UTEP. I wish to thank Son

Homage to Michael Gelfond on His 65th Birthday 11

Tran and Marcello Balduccini for inviting me to write this essay. Together with Chitta
Baral, they provided valuable suggestions about Michael’s research and some aspects
of his life.

References

[Balduccini and Gelfond, 2001] Balduccini, M., Gelfond, M.: The Autonomous Agent Architec-
ture. The Newsletter of the Association of Logic Programming 23 (2010)

[Balduccini, Gelfond, and Nogueira, 2006] Balduccini, M., Gelfond, M., Nogueira, M.: Answer
Set Based Design of Knowledge Systems. Ann. Math. Artif. Intell. 47(1-2), 183–219 (2006)

[Baral and Gelfond, 1994] Baral, C., Gelfond, M.: Logic programming and knowledge represen-
tation. Journal of Logic Programming 19/20, 73–148 (1994)

[Baral, Gelfond, and Rushton, 2009] Baral, C., Gelfond, M., Rushton, N.: Probabilistic reason-
ing with answer sets. Theory and Practice of Logic Programming 9(1), 57–144 (2009)

[Baral and Gelfond, 2000] Baral, C., Gelfond, M.: Reasoning Agents in Dynamic Domains. In:
Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 257–279. Kluwer Academic Pub-
lishers, Dordrecht (2000)

[Eiter et al., 2000] Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem- Solving Us-
ing The DLV System. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 79–103.
Kluwer Academic Publishers, Boston (2000)

[Gebser et al., 2007] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-Driven An-
swer Set Enumeration. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 136–148. Springer, Heidelberg (2007)

[Gelfond, 2006] Gelfond, M.: Answer Sets in KR: a Personal Perspective. The Association for
Logic Programming Newsletter 23 (2006)

[Gelfond and Lifschitz, 1988] Gelfond, M., Lifschitz, V.: The stable model semantics for logic
programs. In: Bowen, K., Kowalski, R. (eds.) Proc. 5th International Conference on Logic
Programming, pp. 1070–1080. MIT Press, Cambridge (1988)

[Gelfond and Lifschitz, 1990] Gelfond, M., Lifschitz, V.: Logic Programs with Classical Nega-
tion. In: Warren, D., Szeredi, P. (eds.) Proceedings of ICLP 1990, pp. 579–597. MIT Press,
Cambridge (1990)

[Gelfond and Lifschitz, 1991] Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs
and Disjunctive Databases. New Generation Computing 9, 365–385 (1991)

[Gelfond and Lifschitz, 1992] Gelfond, M., Lifschitz, V.: Representing actions in extended logic
programs. In: Apt, K. (ed.) Joint International Conference and Symposium on Logic Pro-
gramming, pp. 559–573. MIT Press, Cambridge (1992)

[Gelfond and Lifschitz, 1993] Gelfond, M., Lifschitz, V.: Representing actions and change by
logic programs. Journal of Logic Programming 17(2,3,4), 301–323 (1993)

[Niemelä and Simons, 1997] Niemelä, I., Simons, P.: Smodels - An Implementation of the Sta-
ble Model and Well-Founded Semantics for Normal LP. In: Proceedings of the 4th Interna-
tional Conference on on Logic Programming and Nonmonotonic Reasoning, pp. 421–430.
Springer, Heidelberg (2003)

[Pearce, 2008] Pearce, D.: Sixty years of Stable Models. In: Proceedings of the International
Conference on Logic Programming, vol. 52 (2008)

[Pearl, 1988] Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible In-
ference. Morgan Kaufmann, San Francisco (1988)

Answer Set Programming’s Contributions to

Classical Logic

An Analysis of ASP Methodology

Marc Denecker, Joost Vennekens, Hanne Vlaeminck,
Johan Wittocx, and Maurice Bruynooghe

Department of Computer Science, K.U. Leuven

Abstract. Much research in logic programming and non-monotonic rea-
soning originates from dissatisfaction with classical logic as a knowledge
representation language, and with classical deduction as a mode for au-
tomated reasoning. Discarding these classical roots has generated many
interesting and fruitful ideas. However, to ensure the lasting impact of
the results that have been achieved, it is important that they should not
remain disconnected from their classical roots. Ultimately, a clear pic-
ture should emerge of what the achievements of answer set programming
mean in the context of classical logic, so that they may be given their
proper place in the canon of science. In this paper, a look at different
aspects of ASP, in an effort to identify precisely the limitations of classi-
cal logic that they exposed and investigate how the ASP approaches can
be transferred back to the classical setting. Among the issues we thus
address are the closed world assumption, “classical” and default nega-
tion, default reasoning with exceptions, definitions, lp-functions and the
interpolation technique and the strong introspection operator. We inves-
tigate the ASP-methodology to encode knowledge using these language
constructs and come across a dichotomy in the ASP-methodology.

1 Introduction

In the late fifties, a thesis of logic-based AI was that classical first order logic (FO)
and deductive theorem provers for FO would play a key role in building intelligent
systems [21]. In the late sixties and early seventies, the disappointing results of
this project led a number of new research directions. In logic-based AI, two
areas that arose as a reaction were logic programming (LP) and non-monotonic
reasoning. In logic programming, the idea was that FO was too expressive and
had to be restricted to Horn clause logic to allow efficient theorem proving [16].
The origin of non-monotonic reasoning lies in the dissatisfaction about the use
of FO for representing common sense knowledge. To overcome the limitations
of FO, new logics and logic principles were studied. Examples are the Closed
World Assumption [26], Circumscription [22] and Default logic [28]. Although
having completely different points of departure, both areas converged in the
late eighties and early nineties mainly under the influence of Michael Gelfond

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 12–32, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Answer Set Programming’s Contributions to Classical Logic 13

and Vladimir Lifschitz who sought to explain logic programming with negation
as failure using non-monotonic reasoning principles [12], and turn it into an
expressive knowledge representation language [13]. Michael and Vladimir thus
became founding fathers of the field of Answer Set Programming (ASP) [1],
which has developed into a flourishing, dynamic field with many applications
and powerful systems [9,8].

Currently, there is undeniably a large conceptual gap between ASP and clas-
sical logic. As a long-term situation, this is undesirable. First of all, despite its
limitations, FO provides a set of essential connectives, together with a well-
understood methodology for their use, which makes it an invaluable kernel for
KR languages. Second, the conceptual gap also hampers recognition of ASP’s
contributions to AI and computational logic, thus compromising the use of the
ASP languages and tools in other fields.

This paper will try to identify limitations of classical logic exposed by Gel-
fond’s work and investigate how the ASP solutions can be transferred back into
classical logic. This boils down to identifying important forms of knowledge, to
study how they are represented in ASP and to investigate how they can be rep-
resented in (extensions of) FO. Thus, this paper also studies the methodology of
ASP, and compares it with the methodology of FO. It identifies also key contri-
butions of the ASP language and integrates them with FO. Among the issues we
thus address are the closed world assumption, “classical” and default negation,
default reasoning with exceptions, definitions, lp-functions and the interpolation
technique and the strong introspection operator.

Integrating classical logic and ASP is not a trivial task, as research on rule
languages for the semantic web is now also discovering [25]. Expanding the sta-
ble semantics to the syntax of FO as in [10] is obviously redefining FO, not
integrating ASP and FO. Among subtle problems and tricky mismatches, one
glaring difference clearly stands out: ASP uses the answer set as its basic seman-
tic construct, whereas FO of course uses interpretations (or structures). There is
a profound difference between the two concepts. As defined in [13], an answer set
is a set of literals that represents a possible state of belief that a rational agent
might derive from the logic program. In other words, an answer set is subjective;
it does not talk directly about the world itself, but only about the beliefs of an
agent about this world. This conception of answer sets is not a philosophical
afterthought, but is tightly connected with the view of negation as failure as
a modal, epistemic or default operator, and therefore truly lies at the heart of
ASP. By contrast, FO has a possible world semantics, in which each model of a
theory represents a state of the world that is possible according to this theory.
In other words, FO is concerned with objective forms of knowledge, that do not
involve propositional attitudes such as the belief or knowledge of an epistemic
agent, etc. Modal extensions of classical logic that can express such forms of
subjective knowledge typically use Kripke structures (or the special case of sets
of possible worlds) as a semantic object.

Answer sets fall between classical interpretations and Kripke structures: an
answer set represents a belief state, and thus differs from an interpretation which

14 M. Denecker et al.

describes a possible state of the world, but it does so in a less complex and less
accurate way than a Kripke structure or sets of possible worlds, since it only
describes what literals are believed rather than arbitrary formulas. This mis-
match between ASP’s basic semantic constructs and the semantic constructs of
FO and its modal extensions seriously complicates the task of formally com-
paring ASP with FO, and it will be the focus of much of this paper. We will
come across a dichotomy in the use of ASP programs: in some, an answer set
represents the belief state of an existing rational agent, in many others the pro-
grammer carefully crafts the mind of an imaginary agent so that solutions of
a problem can be extracted from the belief sets of that agent. This dichotomy
stands orthogonal to the (many) ways in which stable semantics can be for-
malised [18]. We will show that this leads to two different methodologies and, de
facto, to two different KR languages, as pointed out long time ago by Gelfond
and Lifschitz[13] and, from a different angle, in [6].

Overview. In Section 2 we briefly recall the relevant basics of answer set program-
ming and first order logic. In Section 3, we discuss the basic semantic principles
of knowledge representation in ASP and contrast them with those of FO. We
distinguish two methodologies for knowledge representation in ASP. In Section 4
we introduce FO(ID), the extension of first order logic with inductive definitions.
In Section 5 we take a close look at different forms of objective knowledge, how
they are represented in ASP and what is their representation in FO(ID). We
discuss unique names and domain closure assumptions, different forms of closed
world assumptions, the representation of definitions in ASP and defaults. In
Section 6, we extend FO with a simple epistemic operator with which we can
simulate negation as failure and strong negation.

2 Preliminaries of ASP and FO

We briefly recall the basic concepts of Answer Set Programming and of classical
logic. A vocabulary Σ consists of a set ΣFun of constant and function symbols
and a set ΣPred of predicate symbols. An answer set program P over vocabulary
Σ is a collection of rules l : - l1, . . . , lm, not lm+1, . . . , not ln. and constraints:
: - l1, . . . , lm, not lm+1, . . . , not ln. where each l, li is an atom P(t1, . . . , tk) or
a strong negation literal ¬P(t1, . . . , tk). A constraint is seen as a special rule
defining F as a new symbol: F : - not F, l1, . . . , lm, not lm+1, . . . , not ln. An answer
set program with variables is seen usually as the set of all ground instances
obtained by substituting ground terms of Σ for all variables. A disjunctive answer
set program is a set of rules where the head l may be a disjunction l′1 v . . . v l′k
of atoms and strong negation literals.

An answer set A of P is a set of ground atoms and strong negation literals
such that A is a ⊆-minimal element in the collection of all sets S of such literals
that have the property that, for each rule

l′1v . . .vl
′
k : - l1, . . . , lm, not lm+1, . . . , not ln.

if l1, . . . , lm ∈ S and lm+1, . . . , ln /∈ A, then at least one l′i ∈ S.

Answer Set Programming’s Contributions to Classical Logic 15

Note that for a constraint, there exists at least one literal li such that either
1 ≤ i ≤ m and li /∈ A or m + 1 ≤ i ≤ n and li ∈ A.

As for the informal semantics, an answer set program P is seen as the repre-
sentation of all knowledge of some rational introspective epistemic agent. A rule
l′1v . . . vl

′
k : - l1, . . . , lm, notlm+1, . . . , notln. expresses that this agent believes one

of l′k if he believes l1, . . . , lm to be true and considers it possible that each of
lm+1, . . . , ln is false. The agent obeys a rationality principle, that is that he does
not believe an atom or a strong negation literal unless his theory gives him an
argument for believing it. In the answer set semantics, this rationality principle
is formalized by the minimality requirement. Each answer set represents the set
of believed literals in one of the possible states of belief of the agent.

First order logic (FO) formulas ϕ over vocabulary Σ are constructed us-
ing standard inductive rules for ∧,¬,∨,⇒,⇔, ∃, ∀. A Σ-interpretation I (or
Σ-structure) consists of a domain UI , for each function symbol F/n an n-ary
function F I : Un

I → UI and for each predicate symbol P/n an n-ary relation
P I on UI . The interpretation of a term and the satisfaction of a formula under
I and some variable assignment θ is defined by standard inductive rules, such
as (F (t1, . . . , tn))Iθ = F Iθ(tIθ

1 , . . . , tIθ
n) and the (non-monotonic) inductive rule

for the truth of negated formulas: Iθ |= ¬ϕ if Iθ �|= ϕ. The interpretation of
variable-free ground terms t and sentences ϕ does not depend on the variable
assignment θ. We use tI to denote t’s interpretation and write I |= ϕ (I is a
model) to denote that ϕ is satisfied in Iθ for arbitrary θ.

A Herbrand interpretation is one in which UI is the set of ground terms of
Σ (called the Herbrand universe) and I interprets each ground term t by itself,
i.e., for each function symbol F and all term tuples t1, . . . , tn, F I(t1, . . . , tn) =
F (t1, . . . , tn). An alternative representation of a Herbrand interpretation is as a
set of its true ground atoms. In this representation, a Herbrand interpretation
is mathematically identical to an answer set of Σ. However, this is accidental
and should not be taken to mean that both concepts are the same: in Tarskian
model semantics, an interpretation (Herbrand or otherwise) does not represent
a state of belief of an agent.

3 Basic Principles of Knowledge Representation in ASP
and FO

An exquisite property of FO is the clarity and precision of the informal semantics
of its connectives and quantifiers, and consequently, of its formulas. Tarskian
model semantics is a mathematical theory developed to formalize this informal
semantics. In the Tarskian model semantics, a model of an FO theory T is viewed
as an abstract representation of a state of the world that satisfies all axioms in
T , hence that is a possible world according to T . This makes FO an objective
language in that the truth of its formulas can be evaluated in the context of an
objective world state. This is in contrast to negation-as-failure literals not P in
ASP rules, whose truth is not determined by the material world but by the state
of belief of an epistemic agent.

16 M. Denecker et al.

An FO theory T over Σ can of course also be understood as representing a
state of belief of some agent. The belief state of T is formalized by the collection1

of its models: a model is a state of the world that is possible in that state of belief.
Such a collection of interpretations, henceforth called a collection (or set, in case)
of possible worlds, offers an extremely detailed representation of a belief state.
Therefore, sets of possible worlds are used in the semantics of (propositional)
epistemic logics such as kd45 as the representation of the belief state of the agent;
such sets correspond to Kripke structures with the total accessibility relation.

As a representation of a belief state of an agent, a collection of possible worlds
is vastly more precise than a (single) answer set. From any set of possible worlds,
the corresponding answer set is the set of literals that are satisfied in all. But vice
versa, not much information can be derived from an answer set of an agent about
his collection of possible worlds. For instance, take Σ = {P,Q} and assume that
all we know about some agent is that his answer set is ∅, i.e., he or she knows
(can derive) no literals. There are many sets of possible worlds with that answer
set; the agents possible world set could be the set of models of the tautology
true, or of P ∨ Q, or ¬P ∨ Q, or P ∨ ¬Q, or ¬P ∨ ¬Q, or P ⇔ Q and more.
In each case, he would not be able to derive a literal. Knowing only this answer
set, all we can tell about the possible worlds is that there is at least one in which
P is true and one in which P is false, and the same for Q. There is not a single
interpretation that can be decided to be a possible world or rejected to be one.
Hence, an answer set is a very coarse representation of a belief state. As we
illustrate now, this has major impact on ASP methodology.

An answer set of an ASP program represents the belief of a rational agent—
but who is this agent? The rational agent could be an existing epistemic entity
in the real world: it could be a knowledge base that is being queried, or it could
be us, the people writing the ASP program. As an example of this, we take the
following scenario from [13].

Example 1. Assume a database with complete knowledge about the GPA (Grade
Point Average) of students and partial knowledge about whether they belong to
a minority group. A student is eligible for a grant if his GPA is high, or if
he has a fair GPA and belongs to a minority. The policy of the department
is to interview students who may be (but are not necessarily) eligible. In ASP,
incomplete databases can be represented by a theory consisting of ground literals,
such as:

FairGPA(Bob). Minority(Bob). ¬Minority(Dave).
FairGPA(Ann). HighGPA(John).

The partial completeness of this database is expressed by two CWA rules:

¬FairGPA(x)← not FairGPA(x).
¬HighGPA(x)← not HighGPA(x).

The next rule expresses who is to be interviewed:

Interview(x)← FairGPA(x), not Minority(x), not¬Minority(x).
1 In general, the collection of models of an FO theory is too large to be a set.

Answer Set Programming’s Contributions to Classical Logic 17

In the database, Ann is the only student with fair GPA and unknown minority
status. This ASP program has a unique answer set including the literals in
the database and the atom Interview(Ann). This corresponds to our beliefs
about this domain; hence, the rational agent can be viewed to be us, the ASP
programmer. Our possible worlds are all Herbrand interpretations satisfying the
literals in the answer set. In the CWA rules and the Interview rule, the epistemic
nature of negation as failure is well exploited, in the latter to verify that the
KB knows that person x is neither a minority nor a non-minority. This is an
interesting sort of application that cannot be directly expressed in classical logic.

Many present-day examples of ASP concern computational problems such as
graph coloring, Hamiltonian path, planning and scheduling problems, and many
others. The only epistemic entity around in such domains is us, the people writ-
ing the ASP programs. Our knowledge is about data and the properties of a
correct solution. The solutions that we want our systems to compute are given
by certain output predicates in worlds that are possible according to this knowl-
edge – the coloring predicate in a state in which the graph is correctly colored,
the action predicates in a state where the actions form a correct plan, and so on.
Unfortunately, our knowledge in such domains is highly disjunctive and there is
no way in which possible worlds could be reconstructed from the set of literals
that we “believe”, i.e., that can be derived from our knowledge. For such do-
mains, ASP developed a successful alternative methodology that makes use of
a “virtual” non-existent agent. The “mind” of this figment of our imagination
has been craftily constructed by us, the answer set programmer, in such a way
that each of his possible belief sets corresponds to a single correct solution of
the problem, i.e., to a possible world.

Example 2. The following ASP program represents the graph coloring problem
for a given graph:

color(x, R) v color(x, B) v color(x, G) :- node(x).
:- color(x,c), color(y,c), edge(x,y).
node(1). node(2). node(3). edge(1,2). edge(2,3). edge(1,3).

This program produces 6 answer sets, each of which corresponds to a coloring
of the graph. E.g., the answer set

{ node(1). node(2). node(3). edge(1,2). edge(2,3). edge(1,3).
color(1,R). color(2,B). color(3,G).}

tells us that the (unique) color of 1 is R, that of 2 is B, and that of 3 is G.
Obviously, this one answer set does not describe our beliefs about the colorings
of this graph, since we know that there also exists, e.g., a coloring in which node
1 is not R.

In this example, and in many other ASP applications, our knowledge is repre-
sented by the set of possible worlds consisting of all Herbrand interpretations
that are mathematically identical to the answer sets of the virtual agent. And
there is no way in which the possible worlds, and hence, the solutions to the
problem, could be extracted from our belief set.

18 M. Denecker et al.

The above observations show us that in ASP two different methodologies are
in use. That of Example 1, called henceforth the ASP-belief methodology, is
to represent the belief state(s) of an existing epistemic agent in the field. The
second, called ASP-world methodology (Example 2), aims to characterize a col-
lection of possible worlds by an answer set program of a virtual agent whose
states of belief correspond to possible worlds. There is a simple heuristic crite-
rion to determine which of these methodologies is used in an ASP application.
Indeed, a real epistemic agent such as us or an existing knowledge base may have
incomplete knowledge about the application domain, but in practice it is clear
what this agent believes. I.e., the epistemic agent has a unique state of belief.
Hence, ASP-belief programs typically have a unique answer set while ASP-world
programs often have multiple answer sets.

The distinction between the ASP-belief and ASP-world methodologies is remi-
niscent of a discussion in Michael Gelfond’s and Vladimir Lifschitz’s seminal 1991
paper [13]. In this paper, they state that a set of rules without strong negation
and disjunction can be viewed either as a general logic program or as an answer
set program. In both cases the semantics of such a rule set is determined by the
same stable models. The crucial difference, dixit Gelfond and Lifschitz, is that a
stable model of the rule set, viewed as a general logic program, represents a Her-
brand interpretation, i.e., a possible world, while it represents an answer set in
the second case. There is an evident match here between general logic program-
ming and the ASP-world methodology: ASP-world is the KR methodology of
general logic programming. The distinction between general logic programs and
answer set programs lays purely on the informal level. This might explain why it
did not enter the eye of the ASP community and why the concept of general logic
programs has not catched on in the ASP community. Yet, at present, it seems
that the vast majority of ASP applications follows the ASP-world methodology
and these programs are therefore to be viewed as (extensions of) general logic
programs.

The relevance of distinguishing between these two methodologies is that in
each different style, different kinds of knowledge can be represented, or the same
knowledge is to be represented in different ways. Which methodology is cho-
sen depends on the available knowledge and on the problem to be solved, e.g.,
whether a solution is (part of) a possible world, or what a KB knows/believes. If
we want to match ASP to FO, our effort will therefore need to be parameterized
on the particular way in which ASP is used. In the remainder of this paper, we
will investigate how different sorts of knowledge can be represented in ASP-belief
or ASP-world and in (extensions of) FO.

4 Adding (Inductive) Definitions to FO

A prototypical ASP-world application is the Hamiltonian cycle problem. The
goal is to compute a Hamiltonian cycle through the graph, i.e., a path that
passes through each node exactly once and then returns to the initial node. A
typical ASP encoding is given by:

Answer Set Programming’s Contributions to Classical Logic 19

in(X, Y) v out(X, Y) :- edge(X,Y).
reached(X) :- reached(Y), in(Y,X).
reached(X) :- start(Y), in(Y,X).
:- node(X), not reached(X).
:- in(X,Y), in(X,Z), Y != Z.
:- in(X,Y), in(Z,Y), X != Z.
node(1). node(2). node(3). edge(1,2). edge(2,3). edge(1,3).

The reachability relation defined in this program is a well-known example of
an inductively definable concept that cannot be expressed in FO[17]. Defini-
tional knowledge is an important form of human expert knowledge [4,7]. While
simple non-inductive definitions can be expressed through explicit definitions
∀x̄(P (x̄) ⇔ ϕP [x̄]), FO needs to be extended for inductive definitions. In the
logic FO(LFP) [17], FO is extended with a least fixpoint construct. The defini-
tion of the reached relation would be expressed as:

∀x(Reached(x) ⇔ lfpR,x[(∃y (Start(y) ∨R(y)) ∧ In(y, x))
]
(x)

In FO(ID) [7], inductive definitions are represented in a rule-based syntax, similar
to the ASP encoding.{

∀x Reached(x) ← ∃y Reached(y) ∧ In(y, x).
∀x Reached(x) ← ∃y Start(y) ∧ In(y, x).

}

A rule (over Σ) is an expression of the form ∀x̄ P (t̄) ← ϕ where P (t̄) is an
atomic formula and ϕ an FO formula, and ← is the definitional implication. A
definition Δ is a set of rules. A predicate symbol P in the head of a rule of Δ is
called a defined predicate of Δ; a symbol of Σ that occurs in Δ but is not defined
by it is called a parameter or open symbol of Δ. The set of defined predicates is
denoted Def(Δ), the remaining symbols Param(Δ). An FO(ID) theory is a set
of FO sentences and definitions.

The satisfaction relation |= of FO(ID) is defined through the standard induc-
tive rules for FO with one additional rule:

– I |= Δ, if I|Def(Δ) = wfmΔ
I|Param(Δ)

where wfmΔ
I|Param(Δ)

is the parameterized well-founded model of Δ in the inter-
pretation I|Param(Δ). That is, to check whether I is a model, we restrict I to
the parameter symbols of Δ, extend this interpretation by performing the well-
founded model construction in [29]2 and verify whether this well-founded model
coincides with the (2-valued) interpretation I on the defined symbols. The well-
founded semantics formalizes the most common forms of inductive definitions
such as monotone inductive definitions (e.g., reachability) and (non-monotone)
definitions by induction over a well-founded order (e.g., the satisfaction relation
I |= ϕ) [7].
2 The well-founded model construction of [29] extends the original one of [30] by

allowing arbitrary FO bodies and parameter symbols (interpreted by an extensional
database).

20 M. Denecker et al.

In the next section, we identify useful, objective forms of knowledge that can
be nicely encoded in ASP and we investigate how to represent them in FO(ID).

5 Representing Objective Knowledge in ASP and FO(ID)

5.1 Representing UNA and DCA

Implicitly, ASP maintains the Unique Names Assumption (UNA(Σ)) [27] that
all ground terms of ΣFun represent different objects, and the Domain Closure
Assumption (DCA(Σ)) [27] that each object in the universe is represented by at
least one ground term of ΣFun. These assumptions hold in many applications
(e.g., databases), but neither UNA nor DCA are imposed in FO. That is, in FO
they should be explicitly expressed.

UNA(Σ) is expressed by the FO theory UNAFO(Σ) that consists of, for each
pair of different function symbols F/n,G/m ∈ Σ [27]:

∀x̄ȳ ¬(F (x̄) = G(ȳ))
∀x̄ȳ F (x̄) = F (ȳ) ⇒ x̄ = ȳ

It follows from the compactness of FO, that DCA(Σ) cannot be expressed in FO,
but it can be expressed in FO(ID) through the following theory DCAFO(ID)(Σ):

⎧⎨
⎩

. . .
∀x̄ U(F (x̄)) ← U(x1) ∧ · · · ∧ U(xn).
. . .

⎫⎬
⎭

∀x U(x)

where the definition consists of one rule for each constant or function sym-
bol F/n ∈ Σ and U is a new predicate representing the universe. The mod-
els of UNAFO(Σ) ∧ DCAFO(ID)(Σ) are the Herbrand interpretations (up to
isomorphism).

In many applications, UNA and DCA are too strong. For instance, in the
applications typically considered in description logics, neither holds. In other
applications, these axioms are applicable to only a subset σ of ΣFun. A (very)
early example of this is Peano arithmetic, Peano’s standard second order theory
of the natural numbers where σ = {0, S/1}. This theory contains UNAFO(σ)
and a second order axiom expressing DCA(σ), i.e., the induction axiom. Thus,
UNA and DCA are not applied to +/2 and ×/2, the two other function symbols
of Peano’s theory.

In view of this, a number of variants of the ASP language have been designed
with relaxations of UNA and/or DCA. An early one in which UNA still holds
but DCA is dropped was proposed by Gelfond and Przymusinska [14]. In [19],
an extension of ASP with functions is defined. This ASP extension applies the
kind of relaxed UNA+DCA(σ) axioms as observed above in Peano arithemetic.
As a consequence, other function symbols represent arbitrary functions in the
Herbrand universe of σ. In Open Answer Set Programming [15], UNA and DCA

Answer Set Programming’s Contributions to Classical Logic 21

are dropped altogether. Applications of all these extensions arguably follow the
ASP-world methodology: answer sets represent belief states of a virtual agent
but possible worlds of the human expert.

5.2 Different Forms of CWA in Complete and Partial Databases

The general idea of the Closed World Assumption (CWA) [26] in the context
of a theory T is the assumption that atoms that cannot be derived from T
are false. In the context of incomplete knowledge, this principle often leads to
inconsistency and needs to be relaxed. There are different options to do that. In
fact, ASP-belief and ASP-world provide different forms of CWA.

In ASP-belief, CWA is expressed through ASP formulas of the form:

¬P(x̄) : - not P(x̄).

Informally, the rule states that P(x̄) is false if it is consistent to assume so. Such
rules can be used to represent databases with complete and partial knowledge.
Thus, the epistemic not connective of ASP allows us to explicitate a local form
of CWA.

Example 3. An ASP-belief representation of a complete database :

FairGPA(Bob). Minority(Bob). FairGPA(Ann). HighGPA(John).
¬FairGPA(x)← not FairGPA(x).
¬HighGPA(x)← not HighGPA(x).
¬Minority(x)← not Minority(x).

By deleting the CWA rule for Minority and adding strong negation literal
¬Minority(Dave) we obtain the partial database with incomplete knowledge
of Example 1.

In ASP-world, no CWA axioms need to be added; on the contrary, axioms are
needed to express where the CWA does not hold. Thus in ASP-world, (a form
of) CWA is implicit and needs to be overruled when necessary.

Example 4. An ASP-world representation of the complete database of Example 3:

FairGPA(Bob). Minority(Bob). FairGPA(Ann). HighGPA(John).

The partial database of Example 1 is represented by extending this with a con-
straint and a disjunctive rule to open up Minority:

Minority(x) v Minority∗(x).
: - Minority(Dave).

There are several alternative syntaxes to do the latter in ASP, such as the lparse
syntax “0{Minority(x)}1.” or the traditional cycle over negation:

Minority(x) : -not Minority∗(x).
Minority∗(x) : - not Minority(x).

22 M. Denecker et al.

Interestingly, the mathematical closure principle underlying stable semantics,
according to which an atom belongs to a stable model only if it can be derived
by a rule, acts as a rationality principle in ASP-belief, but as a form of CWA
in ASP-world! This is a clear example of how the same form of knowledge is
represented in different ways in ASP-belief or ASP-world. Note that adding
CWA-rules in ASP-world such as ¬FairGPA(x)← not FairGPA(x) is of no use:
it expresses that the virtual epistemic agent has CWA on this predicate but not
that we, the ASP programmer, have CWA on FairGPA. The effect is merely
to add strong negation literals such as ¬FairGPA(John) to all answer sets, but
strong negation literals are irrelevant since they are ignored when computing the
possible worlds from the virtual agent’s answer sets.

Recapitulating, in ASP-belief, CWA is not imposed unless explicit rules are
added; in ASP-world, CWA is imposed unless overridden explicitly by rules that
open up an atom.

The CWA cannot be expressed directly in FO, due to FO’s monotonicity.
However, a local form of CWA can be simulated through predicate completion
[5] , as in the axiom:

∀x(FairGPA(x) ⇔ x = Bob ∨ x = Ann)

An alternative solution in FO(ID) is to use definitions to close predicates. The
above partial database is represented in FO(ID) as:{

FairGPA(Bob). FairGPA(Ann).
}{

HighGPA(John).
}

Minority(Bob). ¬Minority(Dave).

Inductive definitions in mathematics quite clearly comprise some form of CWA.
Indeed, an object or tuple does not belong to an inductively defined set unless it
is explicitly derived by a rule application. It is not uncommon to find inductive
definitions in mathematical texts that contain explicit CWA-like statements, as
in the following definition:

We define the set of natural numbers by induction:
– 0 is a natural number;
– if n is a natural number then n + 1 is a natural number;
– no other objects are natural numbers.

Thus, definitions are an informal form of CWA that we understand with great
precision. In one of the next sections, we will use this form of CWA to represent
defaults.

The following example shows that the CWA’s expressed in ASP-belief differ
from the one implicit in ASP-world and in definitions.

Example 5. In the context of the complete student database of Example 3, the
following ASP-belief rules express which students are eligible for a grant :

Eligible(x) : -HighGPA(x).
Eligible : -FairGPA(x), Minority(x).
¬Eligible(x) : -not Eligible(x)

Answer Set Programming’s Contributions to Classical Logic 23

There is a problem with this representation in the context of the incomplete
database. Indeed, Ann has a fair GPA but an unknown Minority status, and
hence, is unknown to be eligible. Hence, the CWA rule jumps to the wrong
conclusion that she is not eligible3. An ASP-world representation of eligibility
is obtained by dropping the CWA rule from this definition. This is similar to
FO(ID), where the predicate Eligible can be defined as:

{
∀x(Eligible(x)← HighGPA(x).
∀x(Eligible← FairGPA(x) ∧Minority(x)).

}

The ASP-world representation as well as the FO(ID) representation is correct
whether the database is complete or only partially complete.

An ASP-belief CWA rule turns ignorance of an atom into falsity. Intuitively, if
there is one possible world in the agents belief state where the atom is false, the
atom is false in all possible worlds. In contrast, in ASP-world and in definitions
of FO(ID), a defined atom is false in a possible world if it cannot be produced
by rule application in that particular world. Thus, in one world, Ann might be
eligible and in another she might not be. This is a weaker form of CWA than
the one expressed in ASP-belief, but more useful in this application. This clearly
shows that the form of CWA that can be expressed in ASP-belief differs from
the form of CWA implicit in ASP-world and in FO(ID) definitions.

5.3 Representing Definitions in ASP

Definitions are important in KR [4]. Many applications, also in ASP, contain
rules that make up for a definition of one or more predicates. Examples in this
paper are the rule defining Interview in Example 1 and the rules for Eligible
in the previous section. (Inductive) definitions can be correctly represented in
ASP-world and of course in FO(ID). It is more difficult to represent them in
ASP-belief, as we saw in the previous section.

As shown in Example 5, representing definitions in ASP-belief is simple as
long as the ASP program has complete knowledge on the parameter predicates.
In that case, it suffices to add a CWA rule to the rules expressing the defini-
tion. Such a representation unfortunately leads to errors in case of incomplete
databases (The parameter predicate Minority is incomplete in Example 5). To
solve this problem in ASP-belief, we can use the interpolation technique devel-
oped by Baral, Gelfond and Kosheleva in [2,3]. They develop a technique to
approximate lp-functions by an answer set program. An lp-function consists of
a set of rules (without strong negation) and a set of input and output param-
eters. There is a clear and intuitive match between definitions of FO(ID) and
lp-functions: a definition can be seen as an lp-function with the definitions pa-
rameters matching the input parameters, and the defined predicates matching
the output parameters of the corresponding lp-function. The algorithm that they
propose can be used to translate the rules for Eligible into an interpolation: an

3 We will discuss a solution for this problem in Section 5.3.

24 M. Denecker et al.

answer set program that approximates the original rules in the context of an
incomplete database. Applying this algorithm on the rules of Eligible yields:

MayBeMinority(x)← not¬Minority(x).
Eligible(x)← HighGPA(x).
Eligible(x)← FairGPA(x), Minority(x).
MaybeEligible(x)← HighGPA(x).
MaybeEligible(x)← FairGPA(x), MayBeMinority(x).
¬Eligible(x)← notMaybeEligible(x).

The algorithm adds predicates representing students that might be minorities or
might be eligible and defines ¬Eligible as the complement of the maybe eligible
predicate.

The algorithm depends on which predicates the database has incomplete
knowledge about and needs to be modified when more parameter predicates
are unknown (e.g., FairGPA, HighGPA). The correctness and the accuracy of the
approach depends on certain conditions as expressed in the correctness theorem
in [3]. In particular, if there is disjunctive knowledge on the parameters of the
definition, accuracy will be lost. For instance, if we add to the database that also
John has a fair GPA and either he or Ann is a minority but not both, then the
natural conclusion that either John or Ann is not eligible cannot be drawn from
an interpolation.

This shows that representing definitions in ASP-belief has its pitfalls. Also, it
shows that introducing incomplete knowledge in ASP-belief has more impact on
the representation than in ASP-world and FO(ID).

5.4 Representing Defaults

Nonmonotonic Reasoning has its motivation in the problems of FO for repre-
senting common sense knowledge [23]. One problem is the qualification problem:
many universally quantified statements are subject to a very long, if not endless
list of qualifications and refinements. The standard example is the statement that
birds can fly. But what about ostriches? Chickens? Chicks? Birds with clipped
or broken wings? Etc. All we can say is: normally, a bird can fly, or most birds
can fly. This gave rise to the domain of defaults and default reasoning. Defaults
are approximative statements and reason about normality (typically, normally,
usually, often, most, few, ..).

An essential part of human intelligence is the ability to reason with incom-
plete, vague, and uncertain information. When such information is represented
in classical logic, where sentences are either wholly true or wholly false, the result
is a crisp approximation of the fuzzy reality. The knowledge of a human expert
evolves with time, e.g., when he learns more about particular objects or comes
across new special cases and exceptions. Hence, the theory has to be continually
refined and revised. An important issue here is elaboration tolerance; the ease by
which new knowledge can be integrated in an old theory.

Let us illustrate this in a traditional example scenario. Assume that we want
to represent knowledge about locomotion of animals. We know that most birds

Answer Set Programming’s Contributions to Classical Logic 25

fly and that Tweety and Clyde are birds. If that is all we know, it is reasonable
to assume that both fly. One approximately correct FO theory that entails the
desired conclusions is:

T =
{
∀x(Bird(x) ⇒ Fly(x)), Bird(Tweety) ∧Bird(Clyde)

}
Next, we find out that Tweety is a penguin and want to extend our theory to,
e.g.,

∀x(Penguin(x)⇒ Bird(x)), ∀x(Penguin⇒ ¬Fly(x)), P enguin(Tweety)

However, this theory is inconsistent, and we also need to weaken the axiom that
birds fly:

∀x(Bird(x) ∧ ¬Penguin(x) ⇒ Fly(x))

Unfortunately, we now have lost the desirable but defeasible conclusion that
Clyde flies. Adding the reasonable assumption ¬Penguin(Clyde) (since “most
birds are not penguins”) would solve the problem, at the risk of adding poten-
tially false information, since our assumption may be wrong. And even if Clyde
turns out to be an eagle, we might later find out that he is a chick, and these
don’t fly. Clearly, FO’s lack of elaboration tolerance makes it quite messy to
maintain our formula that most birds fly.

An important goal of nonmonotonic reasoning is to design elaboration tolerant
logics and methodologies that support this process of representing and refining
evolving expert knowledge. For defaults, ASP achieves elaboration tolerance by
means of its non-monotonic negation not, which allows additional exceptions to
existing rules to be added with minimal effort:

Flies(x) : -Bird(x), not Abnormal(x).
Abnormal(x) : -Penguin(x).

Adding an additional exception can now be done by the almost trivial operation
of introducing a new rule with the abnormality predicate in its head.

In the context of FO, we can achieve a remarkably similar effect, by again
turning to the inductive definition construct of FO(·). Indeed, inductive defi-
nitions are essentially a non-monotonic language construct, in the sense that
the operation of adding a new definitional rule to an existing definition is a
non-monotonic operation, due to the CWA embodied in a definition. We can
leverage this property to represent a default d stating that “P s are typically Qs”
as follows:

∀x P (x) ∧ ¬Abd(x) ⇒ Q(x)
{∀x Abd(x) ← f.}

This theory defines the abnormality predicate as empty, and is therefore equiv-
alent to the sentence ∀x P (x) ⇒ Q(x). However, when new exceptions to the

26 M. Denecker et al.

default come to light, they can easily be added as new definitional rules. For
instance, if we discover that the default does not apply to Rs:

∀x P (x) ∧ ¬Abd(x) ⇒ Q(x){
∀x Abd(x) ← f.

∀x Abd(x) ← R(x).

}

This has the effect of turning the theory into one equivalent to ∀x P (x)∧¬R(x) ⇒
Q(x), but does so in an elaboration tolerant way.

In a sense, every definition includes a kind of default information, namely that
the defined concept is false by default, where the rules express the exceptions.
For instance, the definition:

{∀x Square(x) ← Rectangle(x) ∧Rhombus(x).}

expresses that objects typically are not squares, with those objects that are both
a rectangle and a rhombus forming an exception to this general rule. This allows
us to represent certain kinds of interplaying defaults in a quite compact but still
elaboration tolerant way. For instance, the following definition expresses that
“animals typically do not fly (d1), but birds are an exception, in the sense that
these typically do fly (d2), unless they happen to be penguins, which typically
do not fly (d3)”:

⎧⎪⎨
⎪⎩
∀x F lies(x) ← Bird(x) ∧ ¬Abd2(x).
∀x Abd2(x) ← Penguin(x) ∧ ¬Abd3(x).
∀x Abd3(x) ← f.

⎫⎪⎬
⎪⎭

A new exception to d1 might be that all bats also fly: this is the simple update
of adding the definitional rule ∀x F lies(x) ← Bat(x) ∧ ¬Abd4(x) and an empty
definition for the latter abnormality predicate. A new exception to d2 might be
a bird with a broken wing: ∀x Abd2(x) ← BrokenWing(x). Finally, a penguin
with a jet pack: ∀x Abd3(x) ← JetPack(x).

6 Adding an Epistemic Operator to FO(·)
In this section, we are concerned with expressing inherently epistemic ASP ap-
plications of the kind that can be expressed in ASP-belief. For this, we return to
Example 1, where we had an ASP-belief partial knwoledge base with the follow-
ing rule to express that students with fair GPA and unknown minority status
need to be interviewed:

Interview(x)← FairGPA(x), not Minority(x), not¬Minority(x).

In ASP-world, the latter rule does not work for the simple reason that the vir-
tual agent has different beliefs about minority students than the knowledge base

Answer Set Programming’s Contributions to Classical Logic 27

(or we) has. E.g., in the context of the ASP-world partial database of Example 4,
adding the above rule would lead to one answer set containing Minority(Ann)
and no Interview(Ann) and another answer set without Minority(Ann) but with
Interview(Ann). This is not what we need.

To express this example in a natural way, an epistemic operator is needed as
provided in autoepistemic logic (AEL [24]). Applying the translation from ASP
to AEL [12], we obtain a correct AEL representation:

FairGPA(Bob) ∧Minority(Bob) ∧ ¬Minority(Dave) ∧ FairGPA(Ann)
∀x(¬FairGPA(x) ⇐ ¬KFairGPA(x))
∀x(Interview(x) ⇐ FairGPA(x) ∧ ¬KMinority(x) ∧ ¬K¬Minority(x))

In general, due to its self-referential nature, an AEL theory may have multiple
stable expansions, each describing a different state of belief. This would be highly
undesirable in this application, since we want the knowledge base to come up
with a single set of people to be interviewed. Fortunately, the above theory is a
stratified one. Therefore, it has a unique stable expansion [20] which correctly
captures what the knowledge base knows.

For applications of this kind, it will suit us to develop an approach that is
both simpler and closer to FO than AEL. Given that we already have an FO
theory defining our incomplete database and its associated set of possible worlds,
it is natural to consider a layered approach, where we keep our original database
theory and just add an additional layer on top of that. This new layer is again
just another FO theory, with the exception that it may query the knowledge
contained in the database theory. More generally, it is of course equally possible
to consider many layers, each building on the knowledge contained in previous
layers. This suggests the following straightforward multi-modal extension of FO
for reasoning on knowledge bases composed from multiple knowledge sources.

Definition 1. An ordered epistemic theory T over vocabulary Σ is a finite set
of multi-modal logic theories over Σ that satisfies the following conditions:

– Each T ∈ T is a multi-modal logic theory, possibly using modal operators
KT ′ , where T ′ ∈ T .

– The modal operators are used in a stratified way, i.e., there is a partial order
< on T and if the modal literal KTϕ occurs in a formula of subtheory T ′ or
in the scope of another modal literal KT ′ψ, then T < T ′.

Intuitively, each T ∈ T is expressing the knowledge of a component of the
knowledge base. Theories in higher levels possess the knowledge of lower theories
and can query lower levels through expressions KTϕ. Note that if T is minimal
in <, then it is an FO theory. If T is maximal, then KT occurs nowhere in T .

Self-referential autoepistemic statements such as T = {¬KTP ⇒ P} cannot
be expressed in ordered epistemic logic. The benefit is that FO semantics extends
easily. To keep things simple and standard, we consider only Herbrand interpre-
tations of the vocabulary Σ. This effectively means that DCA(Σ) and UNA(Σ)

28 M. Denecker et al.

hold4 and moreover, that all function and constant symbols σ are rigid: they have
the same interpretation in all possible worlds. Let T |T denote the restriction of
T to {T ′ ∈ T |T ′ ≤ T }.

For any (Herbrand) Σ-interpretation M and variable assignment θ, we define
that Mθ satisfies a formula ϕ, denoted Mθ |= ϕ, by extending the standard
inductive rules of FO with one extra rule5:

– Mθ |= KTϕ if for each interpretation M ′ such that M ′ |= T |T , it holds that
M ′θ |= ϕ.

As usual, we define M |= ϕ for sentences ϕ -without free variables- if for some
variable assignment θ, Mθ |= ϕ. M satisfies an ordered epistemic theory T if
it satisfies each sentence in each T ∈ T . Thus, a theory T can be seen as the
distributed knowledge of a layered set of agents, where each higher agent posses
the knowledge of its lower agents but not vice versa. Just like an FO theory, an
ordered epistemic theory defines a unique possible world set, namely the set of
all its models.

A useful feature of this logic is that it is straightforward to extend it with
other objective language constructs in FO(·) such as definitions and aggregates.
In the sequel, we will include definitions in the examples.

It is easy to see how our example fits into ordered epistemic logic. Let DB
be either our FO or FO(ID) representation—it does not matter which—of the
incomplete database. We now build on top of this a second layer TI > DB,
consisting of a single definition:

TI =
{{

∀x Interview(x) ← FairGPA(x)∧
¬KDB(Minority(x)) ∧ ¬KDB(¬Minority(x)).

}}

Alternatively, we could of course also have used an FO equivalence:

T ′
I =

{
∀x Interview(x) ⇔ FairGPA(x)∧

¬KDB(Minority(x)) ∧ ¬KDB(¬Minority(x)).

}

Note that we have strengthened the original implication specifying Interview
into an arguably more accurate definition.

It is easy to see that the ordered epistemic theory T = (DB,TI) has two mod-
els: one in which Ann is a minority member, one in which she is not. Therefore,
T entails that only Ann needs an interview.

While in many useful cases, an ordered epistemic theory can be viewed as an
autoepistemic theory, we will not delve in this.
4 A standard way in modal logic of relaxing the assumption of a fixed domain in all

worlds is to introduce a unary universe predicate U and allowing only relativized
quantifier formulas ∃x(U(x) ∧ ϕ) and ∀x(U(x) ⇒ ϕ).

5 Observe that this is the second time in this paper that we extend FO’s satisfaction
relation |= by adding a rule to its definition (the first time was for formal FO(ID)
definitions). This illustrates that the elaboration tolerant, non-monotonic update
operations that we used in Section 5.4 in the FO(ID) encoding of defaults, occurs
also in informal inductive definitions.

Answer Set Programming’s Contributions to Classical Logic 29

Disjunction in ASP-Belief – A Epistemic Operator in ASP-World

As shown in the beginning of this section, negation as failure cannot be used as
epistemic operator to query partial ASP-world knowledge bases. In [11], Gelfond
investigated this problem in the context of disjunctive answer set programs. To
motivate his approach, Gelfond illustrated the epistemic use of negation as failure
with Example 1 including the ASP-belief rule:

Interview(x)← FairGPA(x), not Minority(x), not ¬Minority(x).

This rule will correctly identify the students to be interviewed in all simple
ASP-belief databases. Next, Gelfond considered a database with the disjunctive
information that either Ann or Mike are members of a minority group:

FairGPA(Ann). FairGPA(Mike).
Minority(Ann) v Minority(Mike).

In this case, we would like to infer that both Ann and Mike need to be inter-
viewed. However, the program has two answer sets, one with Interview(Ann),
and another with Interview(Mike), and therefore, the answer of this program
to, e.g., the query Interview(Mike) is unknown.

To solve this problem, Gelfond proposed to add another epistemic operator
K to ASP, called the strong introspection operator, that queries whether a literal
is present in all answer sets. Using this operator, we can correctly express the
definition of Interview by:

Interview(x)← FairGPA(x), not K not Minority(x), not K Minority(x).

The resulting program has two correct answer sets:

{FairGPA(Ann), FairGPA(Mike), Minority(Ann), Interview(Ann), Interview(Mike)}
{FairGPA(Ann), FairGPA(Mike), Minority(Mike), Interview(Ann), Interview(Mike)}

This representation not only works for Gelfonds disjunctive datatase but also
for the ASP-world partial database of Example 4.

In ordered epistemic logic, the problem could be solved by the theory T
consisting of DB < T1 where T1 is as before and

DB =
{
FairGPA(Ann). FairGPA(Mike.)
Minority(Ann) ∨Minority(Mike).

}

This is a correct representation of the scenario and entails that both will be
interviewed.

What Gelfond basically observed here is that the use of disjunction in the
head turns an ASP-belief program into an ASP-world one. Before adding the
disjunction, the answer set represents a belief state of the knowledge base; after
adding the disjunction, this is no longer the case. The belief state of the knowl-
edge base is reflected by the set of possible worlds in which either Ann or Mike

30 M. Denecker et al.

is a minority. This belief set does not correspond to any of the two answer sets
of the disjunctive program. Thus, the use of disjunction in ASP leads here and
in many other cases to ASP-world programs. What we can conclude here is as
follows:

– Without strong introspection, ASP-world does not provide an autoepistemic
operator. ASP-world is not suitable to express introspective statements.

– ASP-belief is not suitable to express disjunctive information.
– Introduction of disjunction (in any of the known ways: disjunctive rule, loop

over negation, weight constraints) in a programs including epistemic opera-
tors may force us to modify the ASP program. In comparison, the represen-
tation in ordered epistemic FO(.) is more elaboration tolerant.

In conclusion, this section has considered an interesting class of epistemic ASP-
belief programs, namely, those in which conclusions need to be drawn from
incomplete knowledge bases. ASP’s combination of strong negation and NAF
allows such problems to be elegantly represented and most applications in which
strong negation plays a significant role seem to be of this kind. These applications
naturally exhibit a layered structure, in which each layer is a knowledge base
with its own area of expertise, and different layers may build on each other’s
knowledge. This suggest the simple epistemic logic that we have presented in
this section. This logic has the benefit of simplicity and, moreover, it integrates
effortlessly into classical logic or its extensions. While the logic is weaker than
AEL, in the sense that it does not allow self reference, it guarantees a unique
epistemic model, and it is possible to prove that inference tasks have a lower
complexity than in AEL and in disjunctive answer set programming.

7 Conclusion

Gelfond and Lifschitz have merged ideas of logic programming and non-
monotonic reasoning to build a practically useful KR-language — answer set
programming. In this paper, we have highlighted and analysed these contribu-
tions by investigating what they contribute to classical first order logic (FO). We
studied how forms of knowledge for which ASP was designed can be represented
in FO or in suitable extensions of FO.

A prime factor in our analysis turned out to be the dichotomy between the
ASP-belief and ASP-world methodologies: whether a program is written so that
an answer set represents a belief set of an existing agent or a possible world.
This decision turns out to have an overwhelming effect on the knowledge repre-
sentation process in ASP:

– Some knowledge principles are implicit in one and not in the other (e.g.,
CWA).

– Some forms of knowledge can only be expressed in one (e.g., disjunction,
autoepistemic statements).

– Some forms of knowledge can be expressed in both, but in considerably
different ways (e.g., definitions – with interpolation in ASP-belief).

Answer Set Programming’s Contributions to Classical Logic 31

In the development of ASP, Gelfond and Lifschitz were led by the ASP-belief
view. In the current state of the art, it seems that by far most applications of
ASP are developed according to ASP-world view. We have explained the reason
for this: answer sets are simply too coarse grained to represent the belief state
of a real agent or knowledge base in sufficient detail.

To consolidate the contributions of ASP to KR, we believe that the best
strategy is to integrate its contributions to FO. The same holds also for other
KR-extensions of logic programming such as abductive logic programming. In
the past, we have been led by this idea in the development of FO(.). We have
shown here how ASP’s KR-contributions can be mapped to elaboration tolerant
FO(.) theories. For the development of FO(.), we are indebted to Michael Gelfond
and Vladimir Lifschitz, whose work, as can be seen in this paper, has been a
continous source of inspiration.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

2. Baral, C., Gelfond, M., Kosheleva, O.: Approximating general logic programs. In:
ILPS, pp. 181–198 (1993)

3. Baral, C., Gelfond, M., Kosheleva, O.: Expanding queries to incomplete databases
by interpolating general logic programs. J. Log. Program. 35(3), 195–230 (1998)

4. Brachman, R.J., Levesque, H.J.: Competence in knowledge representation. In: Na-
tional Conference on Artificial Intelligence (AAAI 1982), pp. 189–192 (1982)

5. Clark, K.L.: Negation as failure. In: Logic and Data Bases, pp. 293–322. Plenum
Press, New York (1978)

6. Denecker, M.: What’s in a model? Epistemological analysis of logic programming.
In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) KR, pp. 106–113. AAAI Press,
Menlo Park (2004)

7. Denecker, M., Ternovska, E.: A logic of nonmonotone inductive definitions. ACM
Transactions on Computational Logic (TOCL) 9(2), Article 14 (2008)

8. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second
Answer Set Programming competition. In: Erdem, E., et al. (eds.) [9], pp. 637–654

9. Erdem, E., Lin, F., Schaub, T. (eds.): LPNMR 2009. LNCS, vol. 5753. Springer,
Heidelberg (2009)

10. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Veloso,
M.M. (ed.) IJCAI, pp. 372–379 (2007)

11. Gelfond, M.: Strong introspection. In: AAAI, pp. 386–391 (1991)

12. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Kowalski, R.A., Bowen, K.A. (eds.) ICLP/SLP, pp. 1070–1080. MIT Press,
Cambridge (1988)

13. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4), 365–386 (1991)

14. Gelfond, M., Przymusinska, H.: Reasoning on open domains. In: LPNMR, pp. 397–
413 (1993)

15. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Open answer set programming
with guarded programs. ACM Trans. Comput. Log. 9(4) (2008)

32 M. Denecker et al.

16. Kowalski, R.A.: Predicate logic as programming language. In: IFIP Congress, pp.
569–574 (1974)

17. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
18. Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M.,

Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg
(2008)

19. Lin, F., Wang, Y.: Answer set programming with functions. In: Brewka, G., Lang,
J. (eds.) KR, pp. 454–465. AAAI Press, Menlo Park (2008)

20. Marek, V.W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38(3),
588–619 (1991)

21. McCarthy, J.: Programs with common sense. In: Teddington Conference on the
Mechanization of Thought Processes (1958)

22. McCarthy, J.: Applications of circumscription to formalizing common-sense knowl-
edge. Artificial Intelligence 28(1), 89–116 (1986)

23. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4,
pp. 463–502. Edinburgh University Press, Edinburgh (1969)

24. Moore, R.C.: Possible-world semantics for autoepistemic logic. In: Proceedings of
the Workshop on Non-Monotonic Reasoning, pp. 344–354 (1984); reprinted in:
Ginsberg, M. (ed.) Readings on Nonmonotonic Reasoning, pp. 137–142. Morgan
Kaufmann, San Francisco (1990)

25. Pührer, J., Heymans, S., Eiter, T.: Dealing with inconsistency when combining
ontologies and rules using dl-programs. In: Aroyo, L., Antoniou, G., Hyvönen, E.,
ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010.
LNCS, vol. 6088, pp. 183–197. Springer, Heidelberg (2010)

26. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic
and Data Bases, pp. 55–76. Plenum Press, New York (1977)

27. Reiter, R.: Equality and domain closure in first-order databases. Journal of the
ACM 27(2), 235–249 (1980)

28. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1-2), 81–132 (1980)
29. Van Gelder, A.: The alternating fixpoint of logic programs with negation. Journal

of Computer and System Sciences 47(1), 185–221 (1993)
30. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general

logic programs. Journal of the ACM 38(3), 620–650 (1991)

Closure and Consistency Rationalities in

Logic-Based Argumentation

Phan Minh Dung and Phan Minh Thang

Department of Computer Science, Asian Institute of Technology
GPO Box 4, Klong Luang, Pathumthani 12120, Thailand

{dung,thangphm}@cs.ait.ac.th

Abstract. Caminada and Amgoud have argued that logic-based argu-
mentation systems should satisfy the intuitive and natural principles of
logical closure and consistency. Prakken has developed this idea further
for a richer logic. A question arises naturally whether a general structure
guaranteeing the logical closure and consistency properties could be iden-
tified that is common for all underlying logics. We explore this question
by first defining a logic-based argumentation framework as combination
of an abstract argumentation framework with a monotonic Tarski-like
consequence operator. We then demonstrate that the logical closure and
consistency properties are rested on a simple notion of a base of argu-
ments from which the argument could be constructed in an indefeasible
way (using the monotonic consequence operator) and the only way to
attack an argument is to attack its base. We show that two natural prop-
erties of structural closure and consistency covering based on the idea of
bases of arguments indeed guarantee the logical closure and consistency
properties. We demonstrate how the properties of structural closure and
consistency covering are captured naturally in argumentation systems of
Caminada, Amgoud and Prakken as well as in assumption-based argu-
mentation.

1 Introduction

How do we know whether an argumentation framework is appropriate for its
purposes ? Caminada and Amgoud [3] have argued that for logic-based systems,
they should at least satisfy two intuitive and natural principles of logical closure
and consistency. Prakken [8] has developed this idea further for a richer logic.
But as there are many logics, Caminada, Amgoud and Prakken’s results do
not cover all of them. As argumentation is charaterized by arguments and the
attack relation between them, a natural question is whether the logical closure
and consistency principles could be captured in abstract argumentation without
associating to a specific logic?

Logic-based abstract argumentation is viewed as abstract argumentation
equipped with a general Tarski-like (monotonic) consequence operator. We de-
velop in this paper two general principles of structural closure and consistency
covering in logic-based abstract argumentation and show that they indeed

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 33–43, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

34 P.M. Dung and P.M. Thang

capture the intuitions of the logical closure and consistency principles. The prin-
ciples of structural closure and consistency covering rest on a simple notion of
a base of arguments from which the argument could be constructed in an inde-
feasible way (using the monotonic consequence operator) and the only way to
attack an argument is to attack its base. In other words the principle of log-
ical closure boils down to the idea that if an argument is considered to be a
“indefeasible logical consequence” of a set of arguments then the former must
be acceptable wrt the later. The principle of consistency covering reduces the
logical consistency to a kind of a conflict-freeness.

2 Logic-Based Abstract Argumentation Theories

Argumentation is a form of reasoning, that could be viewed as a dispute resolu-
tion, in which the participants present their arguments to establish, defend, or
attack certain propositions. An abstract argumentation framework [5] is defined
simply by a pair (AR , att) where AR is a set of arguments and att is a binary
relation over AR representing the relation that an argument A attacks an argu-
ment B for (A,B) ∈ att. The semantics of abstract argumentation is determined
by the acceptability of arguments and various associated notions of extensions.
For the purpose of this paper, we introduce two of them. A set of argument S
attacks an argument A if some argument in S attacks A; S is conflict-free if
it does not attack itself. An agument A is acceptable wrt set of arguments S
if S attacks each attack against A. S is admissible if S is conflict-free and it
counter-attacks each attack against it. The characteristic function F assigns to
each set of arguments S the set of arguments that are acceptable wrt S. As F
is monotonic, F has a least fixed point. A complete extension is defined as a
fixed point of F while the grounded extension is the least fixed point of F . A
stable extension is defined as a conflict-free set of arguments that attacks every
argument not belonging to it. It is well-known that each stable extension is a
complete extension but not vice versa. Stable extensions generalize the stable
and answer set semantics of [6, 7].

Intuitively, an argument is a proof of some conclusion. In many cases, such
proofs are constructed following some proof theory of some formal logics. Such
logics could be nonmonotonic. The notion of closure is then defined accordingly
as the set of consequences following from the monotonic parts of the underlying
logics. For illustration, we use an example borrowed from [3].

Example 1. The logics in consideration consists of a set of strict rules R0 =
{→ wr; → go; b → ¬hw; m → hw} and a set of defeasible rules D = {wr ⇒
m; go⇒ b}1. The monotonic logic is defined by the set of strict rules R0. There
are 6 arguments2:

1 wr = “John wears something that looks like a a wedding ring”, m = “John is
married”, hw = “John has a wife”, go = “John often goes out until late”, b = “John
is a bachelor”.

2 For a precise definition see defintion 7.

Closure and Consistency Rationalities in Logic-Based Argumentation 35

A1 : → wr, A3 : → wr ⇒ m, A5 : → wr ⇒ m→ hw.
A2 : → go, A4 : → go⇒ b, A6 : → go⇒ b→ ¬hw.

Arguments A3, A5, A4, A6 are also often written as A1 ⇒ m, A3 ⇒ hw, A2 ⇒
b and A4 ⇒ ¬hw respectively.

Attack relation: A5 attacks A6 and vice versa. There are no other attacks. Let
att0 = {(A5, A6)}. The grounded extension contains arguments A1, A2, A3, A4.
Hence the conclusions of the arguments in the grounded extension are not con-
sistent wrt (monotonic) logic defined by the set of strict rules R0.

There are two preferred extensions {A1, A2, A3, A4, A5} and {A1, A2, A3,
A4, A6}. The conclusions of the arguments of neither is closed wrt (monotonic)
logic defined by R.

In this paper, we are interested in argumentation frameworks whose arguments
could be intuitively understood as proofs of some (possibly nonmonotonic) un-
derlying logic over a language L. The monotonic part of the underlying logic is
assummed to be represented by a Tarski-like consequence operator CN(X) for
set of sentences X over L such that following properties are satisfied:

1. X ⊆ CN(X)
2. CN(X) = CN(CN(X))
3. CN(X) =

⋃
{CN(Y) |Y ⊆ X andY is finite }

4. A notion of contradictory is introduced by a set CONTRA of subsets of
L (CONTRA ⊆ 2L) such that if S ∈ CONTRA then each superset of
S also belongs to CONTRA. A set belonging to CONTRA is said to be
contradictory.
The set CN(∅) is not contradictory, i.e. CN(∅) �∈ CONTRA.

A set of sentences X is said to be inconsistent wrt CN if its closure CN(X) is
contradictory. X is said to be consistent if it is not inconsistent. X is closed if
it coincides with its own closure.

The language in example 1 consists of literals whose atoms occur in the (strict
and defeasible) rules. The consequence operator CN0 is defined by the set R0

of strict rules, namely CN0(X) is the smallest (wrt set inclusion) set of literals
satisfying the propositions that X ⊆ CN0(X) and for any strict rule r ∈ R0,
if the premises of r are contained in CN0(X) than the head of r also belongs
to CN0(X). For example CN0({m}) = {wr, go,m, hw} and CN0({m, b}) =
{wr, go,m, hw, b,¬hw} and CN0(∅) = {wr, go}. A contradictory set is any set
containing a pair of literals {l,¬l}. Hence the set CN0({m, b}) is contradictory
while the set {m, b} is inconsistent wrt CN0.

Definition 1. A logic-based abstract argumentation framework over a language
L is a triple (AF,CN,Cnl) where AF is an abstract argumentation framework,
CN is a Tarski-like consequence operator over L and for each argument A,
Cnl(A) is the conclusion of A.

For a set S of arguments, Cnl(S) denotes the set of the conclusions of the
arguments in S. The Tarski-consequence operator has been employed in [1] to

36 P.M. Dung and P.M. Thang

give a general definition of a logic-based argument. In contrast, we use a Tarski-
like consequence operator to only specify the logical consequences of arguments
without any hint about how an argument is constructed.

From now on until the end of this section, we assume an arbitrary but fixed
logic-based abstract argumentation framework (AF,CN,Cnl) and often simply
refer to it as an argumentation framework.

Definition 2. Let (AF,CN,Cnl) be a logic-based abstract argumentation frame-
work.

1. AF is said to satisfy the logical closure-property if for each complete
extension E, Cnl(E) is closed.

2. AF is said to satisfy the logical consistency-property if for each complete
extension E, Cnl(E) is consistent.

Example 2. (Continuation of example 1) The grounded extension of the ar-
gumentation framework in example 1 is GE = {A1, A2, A3, A4}. Cnl(GE) =
{wr, go,m, b} and CN0(Cnl(GE)) = Cnl(GE) ∪ {hw,¬hw}. Hence the consid-
ered argumentation framework satisfies neither the logical consistency- nor the
closure-property.

It turns out that the properties of logical closure and consistency of argumenta-
tion is based on an intuitive idea of a base of an argument.

Definition 3. Given a logic-based argumentation framework (AF,CN,Cnl).
We say that a set of arguments S is a base of an argument A if the conclusion
of A is a consequence of the conclusions of S (i.e. Cnl(A) ∈ CN(Cnl(S))) and
each attack against A is an attack against S and vice versa.

We say that a set of arguments S is a base of a set of arguments R if
Cnl(R) ⊆ CN(Cnl(S)) and each attack against R is an attack against S and
vice versa.

We say that an argument A is based in a set of arguments S if S contains a
base of A.

In example 1, though Cnl(A5) ∈ CN0(Cnl(A3)), the set {A3} is not a base of
A5 since A6 attacks A5 but A6 does not attack A3. Note that ∅ is a base of A1

and A2 and the set {A1, A2}.

Example 3. Consider a modified version of the example 1 where the set R1 of
strict rules is obtained by adding to R0 two more strict rules ¬hw → ¬m; and
hw → ¬b. The corresponding consequence operator is denoted by CN1. There
are two more arguments: A7 : A5 → ¬b and A8 : A6 → ¬m. The attack relation
is defined by att1 = {(A7, A4), (A7, A6), (A7, A8), (A8, A3), (A8, A5), (A8, A7)}.
{A3} is now a base of A5 and A7 and {A5, A7}. It is also easy to see that {A3, A4}
is a base of {A5, A6}.

Lemma 1. Let E be a complete extension of a logic-based argumentation frame-
work LAF. Further let S be a base of a subset of E. Then S ⊆ E

Closure and Consistency Rationalities in Logic-Based Argumentation 37

Proof. As each attack against S is an attack against E, each argument in S is
acceptable wrt E. Hence S ⊆ E.

The imposition of the closure and consistency-properties on an argumentation
framework wrt consequence operator suggests intuitively that if a sentence σ
follows from the conclusions of a set of arguments S wrt consequence operator
CN then there exists an argument A with conclusion σ constructed from some
arguments in S using the rules of the underlying monotonic logic. In other words,
argument A is acceptable wrt S.

Definition 4. We say that a logic-based argumentation framework (AF,CN,Cnl)
is structurally closed if for each set of arguments S, for each sentence α ∈
CN(Cnl(S)) there exists an argument A based in S such that Cnl(A) = α.

The argumentation framework in example 1 is not structurally closed since al-
though hw ∈ CN0(Cnl(A3)) and A5 is the only argument with conclusion hw,
A5 is not based in {A3} as A6 attacks A5 but A6 does not attack A3. In contrast,
the argumentation framwork generated by the set of strict rules R1 in example
3 together with the defeasible rules in D is structurally closed.

Lemma 2. Suppose a logic-based abstract argumentation framework LAF =(AF,
CN,Cnl) is structural closed. Then LAF satisfies the logical closure-property.

Proof. Let E be a complete extension. Let α ∈ CN(Cnl(E)). Therefore from
the structural closure, there is an argument A based in E such that Cnl(A) = α
such that each attack against A is an attack against E. Because admissibility of
E, E attacks each attack against A. Hence A is acceptable wrt E, i.e. A ∈ E. E
is hence closed wrt CN.

We say that an argument A is generated by a set S of arguments if A is based
in a base of S.

In example 3, {A3} is a base of both A5 and A7. Hence A7 is generated by
{A5}.

We say that a set of arguments S implicitly attacks an argument B if there
is an argument A generated by S such that A attacks B. S is said to implictly
attack itself if S implicitly attacks an argument in S.

Consider again example 3. A base of A3, A6 is {A3, A4}. As A7 is generated
by {A3, A4} and A7 attacks A4, {A3, A6} implicitly attacks itself.

Definition 5. A logic-based argumentation framework is said to be consis-
tency covering if for each set of arguments S such that Cnl(S) is inconsistent,
S implicitly attacks itself.

In the argumentation framework in 1, for the grounded extension GE =
{A1, A2, A3, A4}, Cnl(GE) = {wr, go, b,m} is inconsistent. I is not difficlt to
see that {A3, A4} is a base of {A1, A2, A3, A4} and the arguments generated by
{A3, A4} are {A1, A2, A3, A4}. Hence GE does not implicitly attack itself. The
consistency covering property is not satisfied for this framework.

38 P.M. Dung and P.M. Thang

In contrast, in example 3, a base for S = {A1, A2, A3, A4} is also {A3, A4}, and
a base of (A7) is {A3}. It follows that A7 is based in S. Because A7 attacks A4,
S implicitly attacks itself. Overall, the logic-based argumentation framework of
this example satisfies the consistency covering property (see section 4 for precise
proof).

Theorem 1. Let LAF be a structural closed and consistency covering argumen-
tation framework. Then LAF satisfies both the logical closure- and consistency-
properties.

Proof. From lemma 2, we need to prove only the consistency property. Let E be
a complete extension of LAF . Suppose E is inconsistent. From the consistency
covering of LAF , it follows that there is an argument A generated by E attack-
ing some argument B in E. Therefore A attacks E. E hence attacks A. Since any
base of E is a subset of E (lemma 1), A is based in E. Hence any attack against
A is an attack against E. E hence attacks itself. Contradiction.

In the next sections, we present two different argumentation systems slightly
generalizing similar systems from the literature to demonstrate how to capture
the structural-closedness and consistency covering property.

3 Abstract Assumption-Based Argumentation

We assume a language L, a set of assumptions A ⊆ L, a contrary operator
(.) : A −→ L, and a Tarski-like consequence operator CN with a set CONTRA
of contradictory sets. Note that we do not assume that sets containing both α
and α for an assumption α ∈ A belong to CONTRA. In case of normal logic
programming [2, 5, 6], CONTRA is empty while for extended logic programming
[7] CONTRA contains sets containing pair of literals {l,¬l} where ¬ is explicit
negation3.

An argument is a pair (X,σ) where X is a finite set of assumption X and
σ ∈ CN(X). An argument (X,σ) attacks an argument (Y, δ) if σ = α for some
α ∈ Y .

The just defined logic-based argumentation framework is referred to in the
rest of thic section as abstract assumption-based argumentation AAA.

Example 4. For illustration, consider the famous bird-fly example. Let CN be
the consequence operator defined by the following set of strict rules {→ p; p→
b; p, np → ¬f ; b, nb → f ; p → ¬nb} with np, nb (for normal penguin and
normal bird respectively) being assumptions and np = ¬np and nb = ¬nb. Let
A1 = ({np},¬f), A2 = ({},¬nb), A3 = ({nb}, f). A2 attacks A3.

Definition 6. The consequence operator CN is said to be assumption-
discriminate if for each inconsistent set of assumptions X ⊆ A, there is α ∈ X
such that α ∈ CN(X).

3 Negation as failure is denoted by not-l.

Closure and Consistency Rationalities in Logic-Based Argumentation 39

The argumentation framework in example 4 is assumption-discriminate. For il-
lustration, the set X = {np, nb} is inconsistent and ¬nb ∈ CN(X).

Lemma 3. Suppose CN is assumption-discriminate. Then the abstract assump-
tion-based argumentation framework is structurally closed and consistency-
covering.

Proof. We first show the structural closure. Let S be a set of arguments and
σ ∈ CN(Cnl(S)). Let X be a minimal subset of Cnl(S) such that σ ∈ CN(X).
Further let SX be a minimal set of arguments from S whose conclusions belong
to X. Let A = (Y, σ) such that Y =

⋃
{Z | (Z, δ) ∈ SX}. It is obvious that A is

an argument. We show now that SX is a base of A. Suppose B is an argument
attacking SX . Then there is (X, δ) ∈ SX such that Cnl(B) = α for some α ∈ X .
Hence B attacks A. Suppose now that B attacks A. Then Cnl(B) = α for some
α ∈ Y . Hence there is (X, δ) ∈ SX such that Cnl(B) = α for some α ∈ X . B
therefore attacks SX .

We have proved that that the abstract assumption-based argumentation
framework is structurally closed. We show now that it is consistency cover-
ing. We need some new notations. For an argument A = (X,σ), let NB(A) =
{({α}, α) |α ∈ X}. It is easy to see that NB(A) is a base of A. Similarly, for a
set S of arguments, NB(S) =

⋃
{NB(A) |A ∈ S} is a base of S.

Let S be a set of arguments such that Cnl(S) is inconsistent. Let Y = NB(S)
Hence Y is inconsistent. From the assumption-discrimination of CN, it follows
that there is Z ⊆ Y such that A = (Z,α) is an argument. As NB(S) is a base of
S, A is generated by S. Since A attacks each argument having α as an assump-
tion, A attacks S. Hence S implicitly attacks itself.

It follows immediately from lemma 3 and theorem 1

Theorem 2. Suppose CN is assumption-discriminate. Then the abstract
assumption-based argumentation framework satisfies both the logical closure- and
consistency-properties.

4 Argumentation with Strict and Defeasible Rules

In this section, we apply our results developed in previous section on a defeasible
logic similar to the one studied by [3, 8, 10].

The language L is a set of literals. A set of literals is said to be contradic-
tory if it contains a pair {l,¬l}. The set of all contradictory sets is denoted by
CONTRA. Arguments are built from strict rules and defeasible rules. The set of
strict rules is denoted by Rs while the set of defeasible rules by Rd. Strict rules
are of the form l1, . . . , ln −→ h and defeasible rules of the form l1, . . . , ln ⇒ h
where l1, . . . , ln, h are literals from L.

Definition 7. Let α1, . . . , αn → α (respectively α1, . . . , αn ⇒ α) be a strict
(respectively defeasible) rule. Further suppose that A1, . . . , An , n ≥ 0, are ar-
guments with αi = Cnl(Ai), 1 ≤ i ≤ n. Then A1, . . . , An → α (respectively
A1, . . . , An ⇒ α) is an argument with conclusion α.

40 P.M. Dung and P.M. Thang

Arguments of the form A1, . . . , An → α or A1, . . . , An ⇒ α are also often
viewed as proof trees with the root labelled by α and A1, . . . , An are subtrees
whose roots are children of the proof tree root.

A strict argument is an argument containing no defeasible rule.
B is a subargument of an argument A, denoted by B � A if B = A or B is a

subargument of some Ai if A is of the form A1, . . . , An → α or A1, . . . , An ⇒ α .

The consequence operator CNRs(X) (or simply CN(X) if no misunderstanding
is possible) is defined by the set of conclusions of strict arguments over the set
of rules Rs(X) = Rs ∪ {→ α |α ∈ X}.

For a strict argument A over a set of rules Rs(X), the set of premises of
A, denoted by Prem(A), is the set of literals from X labelling the leaves of A
(viewed as a proof tree).

Basic arguments are arguments whose last rule is a defeasible one. For a
basic argument B, the last rule of B is denoted by Lr(B).

The following notion of attack is adopted but slightly modified from the ones
given in [3, 8–10].

An argument A attacks a argument B if one of the following conditions is
satisfied:

1. (Undercutting) B is basic and Cnl(A) = ¬Oj(Lr(B)) where for a defeasible
rule r, Oj(r) is a literal denoting that the rule is applicable.

2. (Rebutting) B is basic and Cnl(A) = ¬Cnl(B)
3. A attacks a basic subargument of B.

An example of argumenttion based on strict and defeasible rules is given in
example 3.

Definition 8. The consequence operator CNRs is said to be discriminate if
for each inconsistent set X of literals, there is a literal σ ∈ X such that ¬σ ∈
CNRs(X) holds.

Theorem 3. Let Rs,Rd be sets of strict and defeasible rules respetively. Let
AR be the arguments built from these rules and att be the associated attack
relation and AF = (AR, att). Then the logic-based argumentation framework
LAF = (AF,CNRs , Cnl) is structurally closed and consistency covering if the
consequence operator CNRs is discriminate.

Proof. We first show that LAF is structurally closed. Suppose now that σ ∈
CN(Cnl(S)). Let X be a minimal subset of Cnl(S) such that σ ∈ CN(X). Hence
there is a strict argument A0 over Rs(X) with conclusion σ. Further let SX be
a minimal set of arguments from S whose conclusions belong to X. Let A be the
argument obtained by replacing each leave in A0 (viewed as a proof tree) labelled
by a literal α from X by an argument with conclusion α from SX . It is obvious
that the conclusion of A is σ. We show now that SX is a base of A. Suppose B is an
argument attacking SX . Then it is obvious that B attacks A. Suppose now that B

Closure and Consistency Rationalities in Logic-Based Argumentation 41

attacks A. Then B attacks a basic argument of A. Since A0 is a strict argument
overRs(X), B must attacks a basic subargument of some argument in SX . Hence
B attacks SX .

We have proved that that the logic-based argumentation framework LAF is
structurally closed. We show now that it is consistency covering. We need some
new notations.

Among the bases of arguments, a special kind of base called normal base plays
a key role. The normal base of argument A is defined by NB(A) = {B |B is
a basic subargument of A and for each argument C, if C �= B and B � C � A
then C is strict }. For a set S of arguments, NB(S) is the union of the normal
bases of elements of S. The following lemma shows that a normal base is indeed
a base.

Lemma 4. For any argument A, NB(A) is a base of A.

Proof of Lemma 4. From the definition of NB(A), it is obvious that Cnl(A) ∈
CNR∫ (NB(A)). It is also obvious that each argument attacking NB(A) also
attacking A. Let B be an argument attacking A. From the definition of attack,
B attacks a basic subargument C of A. From the definition of NB(A), there is
an argument C′ ∈ NB(A) such that C � C′. Hence B attacks C′ and therefore
NB(A).
Continuation of Proof of Theorem 3. It is obvious that NB(S) is also a base
of set of arguments S. Suppose now that Cnl(S) is inconsistent. It follows im-
mediately that the set Cnl(NB(S)) is also inconsistent. Let X = Cnl(NB(S)).
From the definition 8, it follows that there is α ∈ X such that ¬α ∈ CNRs(X).
Since α ∈ X , there is a basic argument B ∈ NB(S) with conclusion α. From the
structural closure of LAF, there is an argument A with conclusion ¬α based in
NB(S). Hence A is generated by S and A attacks B. As B ∈ NB(S), there is
C ∈ S s.t. B ∈ NB(C). Hence A attacks C. Therefore S implicitly attacks itself.

It follows immediately from theorem 1

Theorem 4. Let Rs,Rd be sets of strict and defeasible rules respectively. Then
the associated logic-based abstract argumentation framework LAF =(AF,CNRs)
satisfies the logical closure- and consistency-properties if CNRs is discriminate.

We next show that theorem 4 generalizes the results in Caminada and Amgoud
[3], Prakken [8].

A set of strict rules Rs is said to be closed under transposition if for each rule
α1, . . . , αn → σ in Rs, all the rules of the form

α1, . . . , αi−1,¬σ, αi+1, αn → ¬αi also belong to Rs.

A set of strict rulesRs is said to satisfy the contraposition-property if for each
set of literals X, for each argument A (with conclusion σ) wrtRs(X) and for each
α ∈ Prem(A), there is an argument whose premises is Prem(A) − {α} ∪ {¬σ}
and conclusion is ¬α.

42 P.M. Dung and P.M. Thang

Theorem 5. CNRs is discriminate if the set of strict rules Rs is closed under
transposition or satisfies the contraposition-property.

Proof. We first prove the following assertion.
Assertion. Let A be a strict argument overRs(X) whose conclusion is σ and ∅ �=
Prem(A) ⊆ X . Then there is an argument B with premises in Prem(A)∪{¬σ}
and conclusion ¬α for some α ∈ Prem(A).
Proof of Assertion. The assertion holds immediately if Rs satisfies the
contraposition-property.

Supoose that Rs is closed under transposition. We prove by induction on the
height of A (as a proof tree).

If the heitght of A is 1, the theorem is obvious.
Suppose A is of the form A1, . . . , An → σ where Cnl(Ai) = αi. Suppose

Prem(An) �= ∅. From the closure under transposition, α1, . . . , αn−1,¬σ → ¬αn

also belongs to Rs. Let A0 be the argument A1, . . . , An−1,¬σ → ¬αn.
From the induction hypothesis, there is a tree C whose premises in Prem(An)

∪ {¬αn} and whose conclusion is ¬α for some α ∈ Prem(An).
Let B be the tree obtained from C by replacing each occurence of premise

¬αn by the argument A0. It is clear that Prem(B) ⊆ Prem(A) ∪ {¬σ} and
Cnl(B) = ¬α. Note α ∈ Prem(A).

Continuation of Proof of Theorem 5. Let X be an inconsistent set of literals.
Hence there are two arguments A0, A1 with premises in X and conclusions σ,¬σ
respectively. From the above assertion, it follows that there exists an argument B
with conclusion ¬α for some α ∈ Prem(A0) and Prem(B) ⊆ Prem(A0)∪{¬σ}.
Let A be the argument obtained by replacing leaves labelled by ¬σ in B by trees
A1. It is clear that Prem(A) ⊆ X and the conclusion of A is labelled by ¬α for
some α ∈ X .

In [11], a generalized assumption-based argumentation framework combining
assumption-based argumentation with strict and defeasible rule has been pro-
posed and shown to be both consistent and closed. It would be interesting to see
how this generalized framework behaves wrt the principles of structural closure
and consistency covering.

5 Conclusion

In general, an argumentation system could take a large number of arguments,
many of them could be redundant. For efficiency, many of the redundant argu-
ments should be avoided. In [4], principles for dealing with redundant arguments
have been studied. It would be interesting to see how such principles could be
integrated with the concepts of structural closure and consistency covering for
modeling practical argumentation.

Acknowledgements

Many thanks to Marcello Balduccini and Tran Cao Son for the invitation to
contribute to this event.

Closure and Consistency Rationalities in Logic-Based Argumentation 43

References

1. Amgoud, L., Besnard, P.: Bridging the gap between abstract argumentation sys-
tems and logic. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp.
12–27. Springer, Heidelberg (2009)

2. Bondarenko, A., Dung, P.M., Kowalski, R., Toni, F.: An abstract argumentation-
theoretic approach to default reasoning. Artificial Intelligence 93, 63–101 (1997)

3. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Ar-
tificial Intelligence 171, 286–310 (2007)

4. Dung, P.M., Toni, F., Mancarella, P.: Some design guidelines fo practical argu-
mentation systems. In: Third International Conference on Computational Models
of Argument, Italy (2010)

5. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77, 321–357 (1995)

6. Gelfond, M., Lifschitz, V.: The stable model semantics of logic programs. In: Proc.
of ICLP 1988. MIT Press, Cambridge (1988)

7. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Proc. of
ICLP 1990. MIT Press, Cambridge (1990)

8. Prakken, H.: An abstract framework for argumentation with structured arguments.
Journal of Argumentation and Computation 1 (2010)

9. Pollock, J.: Defeasible Reasoning. Cognitive Science 11, 481–518 (1987)
10. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-

sible priorities. J. of Applied Non-Classical Logics 7, 25–75 (1997)
11. Toni, F.: Assumption-based argumentation for closed and consistent defeasible

reasoning. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007.
LNCS (LNAI), vol. 4914, pp. 390–402. Springer, Heidelberg (2008)

Manifold Answer-Set Programs and Their Applications�

Wolfgang Faber1 and Stefan Woltran2

1 University of Calabria, Italy
wf@wfaber.com

2 Vienna University of Technology, Austria
woltran@dbai.tuwien.ac.at

Abstract. In answer-set programming (ASP), the main focus usually is on com-
puting answer sets which correspond to solutions to the problem represented by
a logic program. Simple reasoning over answer sets is sometimes supported by
ASP systems (usually in the form of computing brave or cautious consequences),
but slightly more involved reasoning problems require external postprocessing.
Generally speaking, it is often desirable to use (a subset of) brave or cautious
consequences of a program P1 as input to another program P2 in order to provide
the desired solutions to the problem to be solved. In practice, the evaluation of
the program P1 currently has to be decoupled from the evaluation of P2 using
an intermediate step which collects the desired consequences of P1 and provides
them as input to P2. In this work, we present a novel method for representing
such a procedure within a single program, and thus within the realm of ASP
itself. Our technique relies on rewriting P1 into a so-called manifold program,
which allows for accessing all desired consequences of P1 within a single an-
swer set. Then, this manifold program can be evaluated jointly with P2 avoiding
any intermediate computation step. For determining the consequences within the
manifold program we use weak constraints, which is strongly motivated by com-
plexity considerations. As applications, we present encodings for computing the
ideal extension of an abstract argumentation framework and for computing world
views of a particular class of epistemic specifications.

1 Introduction

In the last decade, Answer Set Programming (ASP) [1,2], also known as A-Prolog [3,4],
has emerged as a declarative programming paradigm. ASP is well suited for modelling
and solving problems which involve common-sense reasoning, and has been fruitfully
applied to a wide variety of applications including diagnosis (e.g. [5]), data integration
(e.g. [6]), configuration (e.g. [7]), and many others. Moreover, the efficiency of the
latest tools for processing ASP programs (so-called ASP solvers) reached a state that
makes them applicable for problems of practical importance [8]. The basic idea of ASP

� This work was supported by the Vienna Science and Technology Fund (WWTF), grant ICT08-
028, and by M.I.U.R. within the Italia-Austria internazionalization project “Sistemi basati sulla
logica per la rappresentazione di conoscenza: estensioni e tecniche di ottimizzazione” and the
PRIN project LoDeN. A preliminary version of this paper appeared in the Proceedings of
the the 10th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2009), pp. 115–128, Springer LNAI 5753, 2009.

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 44–63, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Manifold Answer-Set Programs and Their Applications 45

is to compute answer sets of a logic program from which the solutions of the problem
encoded by the program can be obtained.

However, frequently one is interested not only in the solutions per se, but rather in
reasoning tasks that have to take some or even all solutions into account. As an exam-
ple, consider the problem of database repair, in which a given database instance does
not satisfy some of the constraints imposed in the database. One can attempt to mod-
ify the data in order to obtain a consistent database by changing as little as possible.
This will in general yield multiple possibilities and can be encoded conveniently using
ASP (see, e.g., [9]). However, usually one is not interested in the repairs themselves,
but in the data which is present in all repairs. For the ASP encoding, this means that
one is interested in the elements which occur in all answer sets; these are also known
as cautious consequences. Indeed, ASP systems provide special interfaces for comput-
ing cautious consequences by means of query answering. But sometimes one has to
do more, such as answering a complex query over the cautious consequences (not to
be confused with complex queries over answer sets). So far, ASP solvers provide no
support for such tasks. Instead, computations like this have to be done outside ASP
systems, which hampers usability and limits the potential of ASP.

In this work, we tackle this limitation by providing a technique, which transforms
an ASP program P into a manifold program MP which we use to identify all con-
sequences of a certain type (we consider here the well-known concepts of brave and
cautious consequence, but also definite consequence [10]) within a single answer set.
The main advantage of the manifold approach is that the resulting program can be ex-
tended by additional rules representing a query over the brave (or cautious, definite)
consequences of the original program P , thereby using ASP itself for this additional
reasoning. In order to identify the consequences, we use weak constraints [11], which
are supported by the ASP-solver DLV [12]. Weak constraints have been introduced to
prefer a certain subset of answer sets via penalization. Their use for computing conse-
quences is justified by a complexity-theoretic argument: One can show that computing

consequences is complete for the complexity classes FPNP
|| or FPΣP

2
|| (depending on

the presence of disjunction), for which also computing answer sets for programs with
weak constraints is complete1, which means that an equivalent compact ASP program
without these extra constructs does not exist, unless the polynomial hierarchy collapses.
In principle, other preferential constructs similar to weak constraints could be used as
well for our purposes, as long as they meet these complexity requirements.

We discuss three particular applications of the manifold approach. First, we spec-
ify an encoding which decides the SAT-related unique minimal model problem, which
is closely related to closed-world reasoning [13]. The second problem stems from the
area of argumentation (cf. [14] for an overview) and concerns the computation of the
ideal extension [15] of an argumentation framework. For both problems we make use of
manifold programs of well-known encodings (computing all models of a CNF-formula

1 The first of these results is fairly easy to see, for the second, it was shown [11] that the related

decision problem is complete for the class ΘP
2 or ΘP

3 , from which the FPNP
|| and FP

ΣP
2

||
results can be obtained. Also note that frequently cited NP, ΣP

2 , and co-NP, ΠP
2 completeness

results hold for brave and cautious query answering, respectively, but not for computing brave
and cautious consequences.

46 W. Faber and S. Woltran

for the former application, computing all admissible extensions of an argumentation
framework for the latter) in order to compute consequences. Extensions by a few more
rules then directly provide the desired solutions, requiring little effort in total. As a final
application, we consider an encoding for (a certain subclass of) epistemic specifica-
tions as introduced by Gelfond [16]. In a nutshell, these specifications are extensions
of ASP programs, which may include modal atoms to allow for reasoning over answer-
sets within the object language, and thus are closely related to some of the ideas we
present here. Epistemic specifications (already introduced in 1991 [17]) have received
increasing interest only over the last years (see, e.g. [18,19,20,21]) but nowadays get
more and more recognized as an highly expressive and important extension of standard
answer-set programming.

Organization and Main Results. After introducing the necessary background in the
next section, we

– introduce in Section 3 the concept of a manifold program for rewriting proposi-
tional programs in such a way that all brave (resp. cautious, definite) consequences
of the original program are collected into a single answer set;

– lift the results to the non-ground case (Section 4); and
– present applications for our technique in Section 5. In particular, we provide ASP

encodings for computing the ideal extension of an argumentation framework and
for computing world views of a particular class of epistemic specifications.

The paper concludes with a brief discussion of related and further work.

2 Preliminaries

In this section, we review the basic syntax and semantics of ASP with weak constraints,
following [12], to which we refer for a more detailed definition.

An atom is an expression p(t1, . . .,tn), where p is a predicate of arity α(p) = n ≥ 0
and each ti is either a variable or a constant. A literal2 is either an atom a or its negation
not a.

A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, and where a1, . . . , an, b1, . . . , bm are atoms.
The head of r is the set H(r) = {a1, . . . , an}, and the body of r is the set B(r) =

{b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore,B+(r) = {b1, . . . , bk} and B−(r) =
{bk+1, . . . , bm}. We will sometimes denote a rule r as H(r) :-B(r).

A weak constraint [11] is an expression wc of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l]

where m ≥ k ≥ 0 and b1, . . . , bm are literals, while weight(wc) = w (the weight) and
l (the level) are positive integer constants or variables. For convenience,w and/or l may

2 For keeping the framework simple, we do not consider strong negation in this paper. However,
the formalism can easily be adapted to deal with them.

Manifold Answer-Set Programs and Their Applications 47

be omitted and are set to 1 in this case. The sets B(wc), B+(wc), and B−(wc) are
defined as for rules. We will sometimes denote a weak constraint wc as :∼ B(wc).

A program P is a finite set of rules and weak constraints. We will often use semi-
colons for separating rules and weak constraints in order to avoid ambiguities. With
Rules(P) we denote the set of rules in P and WC(P) denotes the set of weak con-
straints in P . wP

max and lPmax denote the maximum weight and maximum level over
WC(P), respectively. A program (rule, atom) is propositional or ground if it does not
contain variables. A program is called strong if WC(P) = ∅, and weak otherwise.

For any program P , let UP be the set of all constants appearing in P (if no constant
appears in P , an arbitrary constant is added to UP); let BP be the set of all ground
literals constructible from the predicate symbols appearing in P and the constants of
UP ; and let Ground(P) be the set of rules and weak constraints obtained by applying,
to each rule and weak constraint in P all possible substitutions from the variables in
P to elements of UP . UP is usually called the Herbrand Universe of P and BP the
Herbrand Base of P .

A ground rule r is satisfied by a set I of ground atoms iff H(r) ∩ I �= ∅ whenever
B+(r) ⊆ I and B−(r) ∩ I = ∅. I satisfies a ground program P , if each r ∈ P is
satisfied by I . For non-ground P , I satisfies P iff I satisfies Rules(Ground(P)). A
ground weak constraint wc is violated by I , iff B+(wc) ⊆ I and B−(wc)∩ I = ∅; it is
satisfied otherwise.

Following [22], a set I ⊆ BP of atoms is an answer set for a strong program P iff it
is a subset-minimal set that satisfies the reduct

P I = {H(r) :-B+(r) | I ∩B−(r) = ∅, r ∈ Ground(P)}.

A set of atoms I ⊆ BP is an answer set for a weak program P iff I is an answer set
of Rules(P) and HGround(P)(I) is minimal among all the answer sets of Rules(P),
where the penalization function HP (I) for weak constraint violation of a ground pro-
gram P is defined as follows:

HP (I) =
∑lPmax

i=1

(
fP (i) ·

∑
w∈NP

i (I) weight(w)
)

fP (1) = 1, and
fP (n) = fP (n− 1) · |WC(P)| · wP

max + 1 for n > 1.

where NP
i (I) denotes the set of weak constraints of P in level i violated by I . For

any program P , we denote the set of its answer sets by AS(P). In this paper, we use
only weak constraints with weight and level 1, for which HGround(P)(I) amounts to
the number of weak constraints violated in I .

A ground atom a is a brave (sometimes also called credulous or possible) conse-
quence of a program P , denoted P |=b a, if a ∈ A holds for at least one A ∈ AS(P).
A ground atom a is a cautious (sometimes also called skeptical or certain) consequence
of a program P , denoted P |=c a, if a ∈ A holds for all A ∈ AS(P). A ground atom a
is a definite consequence [10] of a program P , denoted P |=d a, if a is a cautious con-
sequence of P and AS(P) �= ∅. The sets of all brave, cautious, definite consequences
of a program P are denoted as BC(P), CC(P), DC(P), respectively.

48 W. Faber and S. Woltran

3 Propositional Manifold Programs

In this section, we present a translation which essentially creates a copy of a given
strong propositional program for each of (resp. for a subset of) its atoms. Thus, we
require several copies of the alphabet used by the given program.

Definition 1. Given a set I of literals, a collection I of sets of literals, and an atom a,
define Ia = {pa | atom p ∈ I} ∪ {not pa | not p ∈ I} and Ia = {Ia | I ∈ I}.

The actual transformation to a manifold is given in the next definition. We copy a given
program P for each atom a in a given set S, whereby the transformation guarantees the
existence of an answer set by enabling the copies conditionally.

Definition 2. For a strong propositional program P and S ⊆ BP , define its manifold
(w.r.t. S) as

P tr
S =

⋃
r∈P

{H(r)a :- {c} ∪B(r)a | a ∈ S} ∪ {c :-not i ; i :-not c}.

We assume BP ∩BP tr
S

= ∅, that is, all symbols in P tr
S are assumed to be fresh.

Example 1. Consider
Φ = {p ∨ q :- ; r :- p ; r :- q}

for which we have AS(Φ) = {{p, r}, {q, r}}, and thus BC(Φ) = {p, q, r} and
CC(Φ) = DC(Φ) = {r}. When forming the manifold for BΦ = {p, q, r}, we ob-
tain

Φtr
BΦ

=

⎧⎨
⎩

pp ∨ qp :- c ; rp :- c, pp ; rp :- c, qp ; c :-not i ;
pq ∨ qq :- c ; rq :- c, pq ; rq :- c, qq ; i :-not c ;
pr ∨ qr :- c ; rr :- c, pr ; rr :- c, qr

⎫⎬
⎭

Note that given a strong programP and S ⊆ BP , the construction of P tr
S can be done in

polynomial time (w.r.t. the size of P). The answer sets of the transformed program con-
sist of all combinations (of size |S|) of answer sets of the original program (augmented
by c) plus the special answer set {i} which we shall use to indicate inconsistency of P .

Proposition 1. For a strong propositional program P and a set S ⊆ BP , AS(P tr
S) =

A ∪ {{i}}, where

A = {
|S|⋃
i=1

Ai ∪ {c} | 〈A1, . . . , A|S|〉 ∈
∏
a∈S

AS(P)a}.

Note that
∏

denotes the Cartesian product in Proposition 1.

Example 2. For Φ of Example 1, we obtain that AS(Φtr
BΦ

) consists of {i} plus (copies
of {q, r} are underlined for readability)

{c, pp, rp, pq, rq, pr, rr}, {c, qp, rp, qq, rq, qr, rr},
{c, qp, rp, pq, rq , pr, rr}, {c, pp, rp, qq, rq, pr, rr}, {c, pp, rp, pq, rq , qr, rr},
{c, qp, rp, qq, rq, pr, rr}, {c, qp, rp, pq, rq , qr, rr}, {c, pp, rp, qq, rq, qr, rr}.

Manifold Answer-Set Programs and Their Applications 49

Using this transformation, each answer set encodes an association of an atom with some
answer set of the original program. If an atom a is a brave consequence of the original
program, then a witnessing answer set exists, which contains the atom aa. The idea is
now to prefer those atom-answer set associations where the answer set is a witness.
We do this by means of weak constraints and penalize each association where the atom
is not in the associated answer set, that is, where aa is not in the answer set of the
transformed program. Doing this for each atom means that an optimal answer set will
not contain aa only if there is no answer set of the original program that contains a,
so each aa contained in an optimal answer set is a brave consequence of the original
program.

Definition 3. Given a strong propositional program P and S ⊆ BP , let

P bc
S = P tr

S ∪ {:∼ not aa | a ∈ S} ∪ {:∼ i}

Observe that all weak constraints are violated in the special answer set {i}, while in the
answer set {c} (which occurs if the original program has an empty answer set) all but
:∼ i are violated.

Proposition 2. Given a strong propositional program P and S ⊆ BP , for any A ∈
AS(P bc

S), {a | aa ∈ A} = BC(P) ∩ S.

This result would also hold without including :∼ i in P bc
S . It has been included for

clarity and for making the encoding more uniform with respect to the encoding for
definite consequences, which will be presented below.

Example 3. For the program Φ as given Example 1,

Φbc
BΦ

= Φtr
BΦ
∪ {:∼ not pp ; :∼ not qq ; :∼ not rr ; :∼ i}.

We obtain that AS(Φbc
BΦ

) = {A1, A2}, where

A1 = {c, pp, rp, qq, rq , pr, rr};
A2 = {c, pp, rp, qq, rq , qr, rr},

as these two answer sets are the only ones that violate no weak constraint. We can
observe that {a | aa ∈ A1} = {a | aa ∈ A2} = {p, q, r} = BC(Φ).

Concerning cautious consequences, we first observe that if a program is inconsistent (in
the sense that it does not have any answer set), each atom is a cautious consequence. But
if P is inconsistent, then P tr

S will have only {i} as an answer set, so we will need to find
a suitable modification in order to deal with this in the correct way. In fact, we can use
a similar approach as for brave consequences, but penalize those associations where an
atom is contained in its associated answer set. Any optimal answer set will thus contain
aa for an atom only if a is contained in each answer set. If an answer set containing
i exists, it is augmented by all atoms aa, which also causes all weak constraints to be
violated.

50 W. Faber and S. Woltran

Definition 4. Given a strong propositional program P and S ⊆ BP , let

P cc
S = P tr

S ∪ {:∼ aa | a ∈ S} ∪ {aa :- i | a ∈ S} ∪ {:∼ i}

Proposition 3. Given a strong propositional program P and S ⊆ BP , for any A ∈
AS(P cc

S), {a | aa ∈ A} = CC(P) ∩ S.

Similar to P bc
S , this result also holds without including :∼ i.

Example 4. Recall program Φ from Example 1. We have

Φcc
BΦ

= Φtr
BΦ
∪ {:∼ pp ; :∼ qq ; :∼ rr ; pp :- i ; qq :- i ; rr :- i ; :∼ i}.

We obtain that AS(Φcc
BΦ

) = {A3, A4}, where

A3 = {c, qp, rp, pq, rq , pr, rr};
A4 = {c, qp, rp, pq, rq , qr, rr},

as these two answer sets are the only ones that violate only one weak constraint, namely
:∼ rr. We observe that {a | aa ∈ A3} = {a | aa ∈ A4} = {r} = CC(Φ).

We next consider the notion of definite consequences. Different to cautious conse-
quences, we do not add the annotated atoms to the answer set containing i. However,
this answer set should never be among the optimal ones unless it is the only one. There-
fore we inflate it by new atoms ia, all of which incur a penalty. This guarantees that this
answer set will incur a higher penalty (|BP |+ 1) than any other (≤ |BP |).

Definition 5. Given a strong propositional program P and S ⊆ BP , let

P dc
S = P tr

S ∪ {:∼ aa; ia :- i; :∼ ia | a ∈ S} ∪ {:∼ i}

Proposition 4. Given a strong propositional program P and S ⊆ BP , for any A ∈
AS(P dc

S), {a | aa ∈ A} = DC(P) ∩ S.

Example 5. Recall program Φ from Example 1. We have

Φdc
BΦ

= Φtr
BΦ
∪ {:∼ pp ; :∼ qq ; :∼ rr ;

ip :- i ; iq :- i ; ir :- i ; :∼ ip ; :∼ iq ; :∼ ir ; :∼ i}.

As in Example 4, A3 and A4 are the only ones that violate only one weak constraint,
namely :∼ rr, and thus are the answer sets of Φdc

BΦ
.

Obviously, one can compute all brave, cautious, or definite consequences of a program
by choosing S = BP . We also note that the programs from Definitions 3, 4 and 5 yield
multiple answer sets. However each of these yields the same atoms aa, so it is sufficient
to compute one of these. The programs could be extended in order to admit only one
answer set by suitably penalizing all atoms ab (a �= b). To avoid interference with the
weak constraints already used, these additional weak constraints would have to pertain
to a different level.

Manifold Answer-Set Programs and Their Applications 51

4 Non-ground Manifold Programs

We now generalize the techniques introduced in Section 3 to non-ground strong pro-
grams. The first step in Section 3 was to define the notion of annotation. There, we
annotated propositional atoms with propositional atoms. Also in the non-ground case,
we want to annotate atoms with atoms in some way, but it is not immediately clear what
kind of atoms should be used for annotations — ground atoms or non-ground atoms?

The first thought would be to annotate using ground atoms, since after all the goal
is to produce a copy of the program for each possible ground consequence. This would
amount mean annotating each predicate (and thus also each atom) with ground atoms of
some subset of the Herbrand Base. For example, annotating the rule p(X,Y) :- q(X,Y)
with the set {r(a), r(b)} would yield the annotated rules pr(a)(X,Y) :- qr(a)(X,Y)
and pr(b)(X,Y) :- qr(b)(X,Y). The tacit assumption here is that r(a) and r(b) are the
only two ground instances of predicate r which are of interest.

Since we want to keep our description as general as possible, we assume annota-
tion using the full Herbrand Base. In this scenario it makes sense to annotate with
non-ground atoms, in order to ease readability and reduce the size of the (non-ground)
manifold program. In particular, the arguments of these non-ground atoms should be
mutually different variables, in order to represent all possible ground instances of the
atom. The idea is that we can then use the standard grounding definition also on the
annotations.

In the example given earlier, we would annotate using r(Z). In order to be able
to fall back on the regular grounding defined for non-annotated programs, we will
annotate using only the predicate r and extend the arguments of p, yielding the rule
dr

p(X,Y, Z) :-dr
q(X,Y, Z) (we use predicate symbols dr

p and dr
q rather than pr and qr

just for pointing out the difference between annotation by predicates versus annotation
by ground atoms).

This notation is quite general, as it can restrict the annotations to ground atoms of
special interest by adding appropriate atoms to the rule body. In our example, this
amounts to writing pr(X,Y, Z) :- qr(X,Y, Z), rdom(Z) where the predicate rdom
identifies the instances of r for which annotations should be produced. In the following,
recall that α(p) denotes the arity of a predicate p.

Definition 6. Given an atom a = p(t1, . . . , tn) and a predicate q, let atr
q be the atom

dq
p(t1, . . . , tn, X1, . . . , Xα(q)) where X1, . . . , Xα(q) are fresh variables and dq

p is a new
predicate symbol with α(dq

p) = α(p)+α(q). Furthermore, given a set L of literals, and
a predicate q, let Ltr

q be {atr
q | atom a ∈ L} ∪ {not atr

q | not a ∈ L}.

Note that we assume that even though the variables X1, . . . , Xα(q) are fresh, they will
be the same for each occurrence of atr

q . We define the manifold program in analogy to
Definition 2, the only difference being the different way of annotating.

Definition 7. Given a strong program P and a set S of predicates, define its manifold
as

P tr
S =

⋃
r∈P

{H(r)tr
q :- {c} ∪B(r)tr

q | q ∈ S} ∪ {c :-not i ; i :-not c}.

52 W. Faber and S. Woltran

Example 6. Consider program

Ψ = {p(X) ∨ q(X) :- r(X) ; r(a) :- ; r(b) :- }

for which

AS(Ψ) =
{
{p(a), p(b), r(a), r(b)},
{p(a), q(b), r(a), r(b)},
{q(a), p(b), r(a), r(b)},
{q(a), q(b), r(a), r(b)}

}
.

Hence, we have BC(Ψ) = {p(a), p(b), q(a), q(b), r(a), r(b)} and moreover CC(Ψ) =
DC(Ψ) = {r(a), r(b)}. Forming the manifold for S = {p}, we obtain

Ψ tr
S =

{
dp

p(X,X1) ∨ dp
q(X,X1) :- dp

r(X,X1), c ;
dp

r(a,X1) :- c ; dp
r(b,X1) :- c ; c :- not i ; i :- not c

}

AS(Ψ tr
S) consists of {i} plus 16 answer sets, corresponding to all combinations of the

4 answer sets in AS(Ψ).

Now we are able to generalize the encodings for brave, cautious, and definite conse-
quences. These definitions are direct extensions of Definitions 3, 4, and 5, the differ-
ences are only due to the non-ground annotations. In particular, the diagonalization
atoms aa should now be written as dp

p(X1, . . . , Xα(p), X1, . . . , Xα(p)) which represent
the set of ground instances of p(X1, . . . , Xα(p)), each annotated by itself. So, a weak
constraint :∼ dp

p(X1, . . . , Xα(p), X1, . . . , Xα(p)) gives rise to {:∼ dp
p(c1, . . . , cα(p),

c1, . . . , cα(p)) | c1, . . . , cα(p) ∈ U} where U is the Herbrand base of the program in
question, that is one weak constraint for each ground instance annotated by itself.

Definition 8. Given a strong program P and a set S of predicate symbols, let

P bc
S = P tr

S ∪ {:∼ not Δq | q ∈ S} ∪ {:∼ i}
P cc

S = P tr
S ∪ {:∼ Δq ; Δq :- i | q ∈ S} ∪ {:∼ i}

P dc
S = P tr

S ∪ {:∼ Δq ; Iq :- i ; :∼ Iq | q ∈ S} ∪ {:∼ i}

where Δq = dq
q(X1, . . . , Xα(q), X1, . . . , Xα(q)) and Iq = iq(X1, . . . , Xα(q)).

Proposition 5. Given a strong program P and a set S of predicates, for an arbitrary
A ∈ AS(P bc

S), (resp., A ∈ AS(P cc
S), A ∈ AS(P dc

S)), the set {p(c1, . . . , cα(p)) |
dp

p(c1, . . . , cα(p), c1, . . . , cα(p)) ∈ A} is the set of brave (resp., cautious, definite) con-
sequences of P with a predicate in S.

Example 7. Consider again Ψ and S = {p} from Example 6. We obtain

Ψ bc
S = Ψ tr

S ∪ {:∼ not dp
p(X1, X1) ; :∼ i}

and we can check that AS(Ψ bc
S) consists of the sets

Manifold Answer-Set Programs and Their Applications 53

R ∪ {dp
p(a, a), dp

p(b, b), dp
q(a, b), dp

q(b, a)},
R ∪ {dp

p(a, a), dp
p(b, b), dp

p(a, b), dp
q(b, a)},

R ∪ {dp
p(a, a), dp

p(b, b), dp
q(a, b), dp

p(b, a)},
R ∪ {dp

p(a, a), dp
p(b, b), dp

p(b, a), dp
p(b, a)};

where R = {dp
r(a, a), dp

r(a, b), dp
r(b, a), dp

r(b, b)}. For each A of these answer sets we
obtain {p(t) | dp

p(t, t) ∈ A} = {p(a), p(b)} which corresponds exactly to the brave
consequences of Ψ with a predicate of S = {p}.

For cautious consequences, we have

Ψ cc
S = Ψ tr

S ∪ {:∼ dp
p(X1, X1) ; dp

p(X1, X1) :- i ; :∼ i}

and we can check that AS(Ψ cc
S) consists of the sets

R ∪ {dp
q(a, a), dp

q(b, b), dp
q(a, b), dp

q(b, a)},
R ∪ {dp

q(a, a), dp
q(b, b), dp

p(a, b), dp
q(b, a)},

R ∪ {dp
q(a, a), dp

q(b, b), dp
q(a, b), dp

p(b, a)},
R ∪ {dp

q(a, a), dp
q(b, b), dp

p(b, a), dp
p(b, a)};

where R = {dp
r(a, a), dp

r(a, b), dp
r(b, a), dp

r(b, b)}, as above. For each A of these an-
swer sets we obtain {p(t) | dp

p(t, t) ∈ A} = ∅ and indeed there are no cautious conse-
quences of Ψ with a predicate of S = {p}.

Finally, for definite consequences,

Ψdc
S = Ψ tr

S ∪ {:∼ dp
p(X1, X1) ; ip(X1) :- i ; :∼ ip(X1) ; :∼ i}.

It is easy to see that AS(Ψdc
S) = AS(Ψ cc

S) and so {p(t) | dp
p(t, t) ∈ A} = ∅ for

each answer set A of Ψdc
S , and indeed there is also no definite consequence of Ψ with a

predicate of S = {p}.

These definitions exploit the fact that the semantics of non-ground programs is defined
via their grounding with respect to their Herbrand Universe. So the fresh variables in-
troduced in the manifold will give rise to one copy of a rule for each ground atom.

In practice, ASP systems usually require rules to be safe, that is, that each variable
occurs (also) in the positive body. The manifold for a set of predicates may therefore
contain unsafe rules (because of the fresh variables). But this can be repaired by adding
a domain atom domq(X1, . . . , Xm) to a rule which is to be annotated with q. This
predicate can in turn be defined by a rule domq(X1, . . . , Xm) :-u(X1), . . . , u(Xm)
where u is defined using {u(c) | c ∈ UP }. One can also provide smarter definitions for
domq by using a relaxation of the definition for q.

We also observe that ground atoms that are contained in all answer sets of a pro-
gram need not be annotated in the manifold. Note that these are essentially the cautious
consequences of a program and therefore determining all of those automatically before
rewriting does not make sense. But for some atoms this property can be determined
by a simple analysis of the structure of the program. For instance, facts will be in all

54 W. Faber and S. Woltran

answer sets. In the sequel we will not annotate extensional atoms (those defined only
by facts) in order to obtain more concise programs. One could also go further and omit
the annotation of atoms which are defined using non-disjunctive stratified programs.

As an example, we present an ASP encoding for boolean satisfiability and then cre-
ate its manifold program for resolving the following problem: Given a propositional
formula in CNF ϕ, compute all atoms which are true in all models of ϕ. We provide a
fixed program which takes a representation of ϕ as facts as input. To apply our method
we first require a program whose answer sets are in a one-to-one correspondence to the
models of ϕ. To start with, we fix the representation of CNFs. Let ϕ (over atoms A) be
of the form

∧n
i=1 ci. Then, Dϕ = {at(a) | a ∈ A} ∪ {cl(i) | 1 ≤ i ≤ n} ∪ {pos(a, i) |

atom a occurs positively in ci} ∪ {neg(a, i) | atom a occurs negatively in ci}. We con-
struct program SAT as the set of the following rules.

t(X) :- not f (X), at(X); f (X) :- not t(X), at(X);
ok (C) :- t(X), pos(C,X); ok (C) :- f (X), neg(C,X);

:- not ok (C), cl(C).

It can be checked that the answer sets of SAT∪Dϕ are in a one-to-one correspondence
to the models (over A) of ϕ. In particular, for any model I ⊆ A of ϕ there exists an
answer set M of SAT ∪Dϕ such that I = {a | t(a) ∈ M}. We now consider SATcc

{t}
which consists of the following rules.

dt
t (X,Y) :- c, not dt

f (X,Y), at(X); dt
f (X,Y) :- c, not dt

t (X,Y), at(X);
dt
ok (C, Y) :- c, dt

t (X,Y), pos(C,X); dt
ok (C, Y) :- c, dt

f (X,Y), neg(C,X);
:- c, not dt

ok (C, Y), cl(C); dt
t (X,X) :- i ;

c :- not i; i :- not c;
:∼ dt

t (X,X); :∼ i.

Given Proposition 5, it is easy to see that, given some answer set A of SATcc
{t} ∪Dϕ,

{a | dt
t (a, a) ∈ A} is precisely the set of atoms which are true in all models of ϕ.

5 Applications

In this section, we put our technique to work and show how to use meta-reasoning over
answer sets for three application scenarios. The first one is a well-known problem from
propositional logic, and we will reuse the example from above. The second example
takes a bit more background, but presents a novel method to compute ideal extensions
for argumentation frameworks which was also implemented in the logic-programming
based argumentation system ASPARTIX [23].3 Finally, we address Michael Gelfond’s
epistemic specification, a powerful extension of standard ASP with modal atoms which
allow for meta-reasoning over answer sets. In particular, we will consider a certain
subclass which is directly amenable to manifolds.

3 For a web frontend, see http://rull.dbai.tuwien.ac.at:8080/ASPARTIX

http://rull.dbai.tuwien.ac.at:8080/ASPARTIX

Manifold Answer-Set Programs and Their Applications 55

5.1 The Unique Minimal Model Problem

As a first example, we show how to encode the problem of deciding whether a given
propositional formula ϕ has a unique minimal model. This problem is known to be
in ΘP

2 and to be co-NP-hard (the exact complexity is an open problem). Let I be the
intersection of all models of ϕ. Then ϕ has a unique minimal model iff I is also a
model of ϕ. We thus use our example from the previous section, and define the program
UNIQUE as SATcc

{t} augmented by rules

ok(C) :- dt
t (X,X), pos(C,X);

ok(C) :- not dt
t (X,X), neg(C,X);

:- not ok(C), cl(C).

We immediately obtain the following result.

Theorem 1. For any CNF formula ϕ, it holds that ϕ has a unique minimal model, if
and only if program UNIQUE ∪Dϕ has at least one answer set.

A slight adaption of this encoding allows us to formalize CWA-reasoning [13] over a
propositional knowledge base ϕ, since the atoms a in ϕ, for which the corresponding
atoms dt

t (a, a) are not contained in an answer set of SATcc
{t} ∪ Dϕ, are exactly those

which are added negated to ϕ for CWA-reasoning.

5.2 Computing the Ideal Extension

Our second example is from the area of argumentation, where the problem of computing
the ideal extension [15] of an abstract argumentation framework was recently shown
to be complete for FPNP

|| in [24]. Thus, this task cannot be compactly encoded via
normal programs (under usual complexity theoretic assumptions). On the other hand,
the complexity shows that employing disjunction is not necessary, if one instead uses
weak constraints. We first give the basic definitions following [25].

Definition 9. An argumentation framework (AF) is a pair F = (A,R) where A ⊆ U
is a set of arguments and R ⊆ A× A. (a, b) ∈ R means that a attacks b. An argument
a ∈ A is defended by S ⊆ A (in F) if, for each b ∈ A such that (b, a) ∈ R, there exists
a c ∈ S, such that (c, b) ∈ R. An argument a is admissible (in F) w.r.t. a set S ⊆ A if
each b ∈ A which attacks a is defended by S.

Semantics for argumentation frameworks are given in terms of so-called extensions.
The next definitions introduce two such notions which also underlie the concept of an
ideal extension.

Definition 10. Let F = (A,R) be an AF. A set S ⊆ A is said to be conflict-free (in
F), if there are no a, b ∈ S, such that (a, b) ∈ R. A set S is an admissible extension of
F , if S is conflict-free in F and each a ∈ S is admissible in F w.r.t. S. The collection
of admissible extensions is denoted by adm(F). An admissible extension S of F is a
preferred extension of F , if for each T ∈ adm(F), S �⊂ T . The collection of preferred
extensions of F is denoted by pref (F).

56 W. Faber and S. Woltran

The original definition of ideal extensions is as follows [15].

Definition 11. Let F be an AF. A set S is called ideal for F , if S ∈ adm(F) and
S ⊆

⋂
T∈pref (F) T . A maximal (w.r.t. set-inclusion) ideal set of F is called an ideal

extension of F .

It is known that each AF possesses a unique ideal extension. In [24], the following
algorithm to compute the ideal extension of an AF F = (A,R) is proposed. Let

X−
F = A \

⋃
S∈adm(F)

S and

X+
F = {a ∈ A | ∀b, c : (b, a), (a, c) ∈ R⇒ b, c ∈ X−

F } \X
−
F ,

and define the AF F ∗ = (X+
F ∪ X−

F , R∗) where the attack relation R∗ is given as
R ∩ {(a, b), (b, a) | a ∈ X+

F , b ∈ X−
F }. F ∗ is a bipartite AF in the sense that R∗ is a

bipartite graph.

Proposition 6 ([24]). The ideal extension of AF F is given by
⋃

S∈adm(F∗)(S ∩X+
F).

The set of all admissible atoms for a bipartite AF F can be computed in polynomial time
using Algorithm 1 of [26]. This is basically a fixpoint iteration identifying arguments
in X+

F that cannot be in an admissible extension: First, arguments in X0 = X+
F are

excluded, which are attacked by unattacked arguments (which are necessarily in X−
F),

yielding X1. Now, arguments in X−
F may be unattacked by X1, and all arguments in

X1 attacked by such newly unattacked arguments should be excluded. This process is
iterated until either no arguments are left or no more argument can be excluded. There
may be at most |X+

F | iterations in this process.
We exploit this technique to formulate an ASP-encoding IDEAL. We first describe a

program the answer sets of which characterize admissible extensions. Then, we use the
brave manifold of this program in order to determine all arguments contained in some
admissible extension. Finally, we extend this manifold program in order to identify F ∗

and to simulate Algorithm 1 of [26].
The argumentation frameworks will be given to IDEAL as sets of input facts. Given

an AF F = (A,R), let DF = {a(x) | x ∈ A} ∪ {r(x, y) | (x, y) ∈ R}. The program
ADM, given by the rules below, computes admissible extensions (cf. [27,23]):

in(X) :- not out(X), a(X);
out(X) :- not in(X), a(X);

:- in(X), in(Y), r(X,Y);
def(X) :- in(Y), r(Y,X);

:- in(X), r(Y,X), not def(Y).

Indeed one can show that, given an AF F , the answer sets of ADM∪DF are in a one-to-
one correspondence to the admissible extensions of F via the in(·) predicate. In order
to determine the brave consequences of ADM for predicate in, we form ADMbc

{in}, and

Manifold Answer-Set Programs and Their Applications 57

extend it by collecting all brave consequences of ADM ∪DF in predicate in(·), from
which we can determine X−

F (represented by in−(·)), X+
F (represented by in+(·), using

auxiliary predicate not in+(·)), and R∗ (represented by q(·, ·)).

in(X) :- din
in(X,X);

in−(X) :- a(X), not in(X);
in+(X) :- in(X), not not in+(X);

not in+(X) :- in(Y), r(X,Y);
not in+(X) :- in(Y), r(Y,X);

q(X,Y) :- r(X,Y), in+(X), in−(Y);
q(X,Y) :- r(X,Y), in−(X), in+(Y).

In order to simulate Algorithm 1 of [26], we use the elements in X+
F for marking the

iteration steps. To this end, we use an arbitrary order < on ASP constants (all ASP
systems provide such a predefined order) and define successor, infimum and supremum
among the constants representing X+

F w.r.t. the order <.

nsucc(X,Z) :- in+(X), in+(Y), in+(Z), X < Y, Y < Z;
succ(X,Y) :- in+(X), in+(Y), X < Y, not nsucc(X,Y);

ninf(Y) :- in+(X), in+(Y), X < Y ;
nsup(X) :- in+(X), in+(Y), X < Y ;

inf(X) :- in+(X), not ninf(X);
sup(X) :- in+(X), not nsup(X).

We now use this to iteratively determine arguments that are not in the ideal extension,
using nid(·, ·), where the first argument is the iteration step. In the first iteration (iden-
tified by the infimum) all arguments in X+

F which are attacked by an unattacked argu-
ment are collected. In subsequent iterations, all arguments from the previous steps are
included and augmented by arguments that are attacked by an argument not attacked
by arguments in X+

F that were not yet excluded in the previous iteration. Finally, ar-
guments in the ideal extension are those that are not excluded from X+

F in the final
iteration (identified by the supremum).

att0(X) :- q(Y,X);
atti(J, Z) :- q(Y, Z), in+(Y), not nid(J, Y), in+(J);
ideal(X) :- in+(X), sup(I), not nid(I,X);
nid(I, Y) :- succ(J, I), nid(J, Y);
nid(I, Y) :- inf(I), q(Z, Y), in+(Y), not att0(Z);
nid(I, Y) :- succ(J, I), q(Z, Y), in+(Y), not atti(J, Z).

If we put ADMbc
{in} and all of these additional rules together to form the program

IDEAL, we obtain the following result:

Theorem 2. Let F be an AF and A ∈ AS(IDEAL∪DF). Then, the ideal extension of
F is given by {a | ideal(a) ∈ A}.

58 W. Faber and S. Woltran

5.3 Epistemic Specifications

Epistemic Specifications have been defined in [16], and are an extension of programs as
defined in Section 2 by the possible occurrence of epistemic operators K and M. In this
paper, we will consider a simple class of epistemic specifications, which includes the
main motivating example of [16]4.

A simple epistemic literal is one of Ka, ¬Ka, Ma or ¬Ma, where a is an atom as in
Section 2. A simple epistemic specification is a set of epistemic rules

a1 ∨ · · · ∨ an :- B1, . . . , Bk, not bk+1, . . . , not bm (1)

where n ≥ 0, m ≥ k ≥ 0, n + m > 0, B1, . . . , Bk are atoms or simple epistemic
literals and a1, . . . , an, bk+1, . . . , bm are atoms. We say that an atom a directly modally
depends on an atom b if a is one of a1, . . . , an and b occurs in a simple epistemic literal
of B1, . . . , Bk in a rule of the form (1). A simple epistemic specification is modally
acyclic if no atom depends modally on itself in the transitive closure of the direct modal
dependency relation. A specification is one-step modal if each atom a directly modally
depends only on atoms which do not depend modally on other atoms.

Herbrand Universe and Base are defined as for standard logic programs, considering
also atoms in simple epistemic literals (but no modal operators). In the context of epis-
temic specifications, collections of interpretations are called world views. Satisfaction
of standard atoms by interpretations is defined as usual. Satisfaction of simple epis-
temic literals is defined with respect to world views: A world view W satisfies Ka,
written W |= Ka, iff ∀B ∈ W : a ∈ B. W satisfies Ma, written W |= Ma, iff
∃B ∈ W : a ∈ B. Moreover, W |= ¬Ka iff W �|= Ka and W |= ¬Ma iff W �|= Ma.

The modal reduct of a simple epistemic specification Π with respect to a world view
W , denoted ΠW , is obtained by deleting all epistemic rules of Π of the form (1) where
W �|= Bi for some simple epistemic literal Bi, and by deleting all simple epistemic
literals of the remaining rules. Note that ΠW is a standard program without epistemic
literals. W is a world view of Π iff W = AS(ΠW).

Observe that standard programs without weak constraints are epistemic specifica-
tions, and their modal reduct is equal to the original program. These programs therefore
have a single world view, the collection of the answer sets of the program.

A one-step modal epistemic specification Π can be split into two specifications Π1

(the lower part) and Π2 (the upper part), where Π1 ∩Π2 = ∅ and Π1 ∪Π2 = Π , such
that Π1 does not contain K or M, and no head atom of Π2 occurs in Π1. This is similar
to, and in fact a special case of, splitting epistemic specifications as defined in [28].

In order to be able to compute world views of one-step modal epistemic specifica-
tions by means of manifold programs, we would like them to have a single world view.
The reason is that it is not clear how to differentiate between a specification having
multiple world views and a specification having a single world view that contains all
sets of the multiple world views of the first specification. The issues are best explained
by an example.

4 Here we do not consider strong negation (except for negating epistemic operators) in order to
keep the framework simple. It can be extended without major efforts to incorporate also strong
negation.

Manifold Answer-Set Programs and Their Applications 59

Example 8. Consider the following one-step modal epistemic specification

:- a,Kb;
:- b,Ka;
:- Ma,Mb;

a ∨ b :- .

It has two world views, {{a}} and {{b}}. It is not clear how to find a manifold encoding
for this specification which lets one differentiate its output from a manifold encoding of
a specification having one world view {{a}, {b}} (for example the specification con-
sisting only of a ∨ b). The difficulty is that one would have to encode also an indicator
in which world view(s) an interpretation occurs, which appears to be a hard, if not
impossible, task.

The important observation in the example is that the upper part of the specification can
trigger incoherences (in this case because of constraint violations), and for this reason
not all answer sets of the lower part necessarily have a corresponding answer set in a
world view of the complete specification. A similar issue has been described in [28],
where specifications are called safe if (for the special case of one-step modal epistemic
specifications) the modal reduct of the upper part with respect to the collection of an-
swer sets of the lower part has answer sets when any answer set of the lower part is
added as a set of facts, that is if

∀A ∈ AS(Π1) : AS(ΠAS(Π1)
2 ∪A) �= ∅.

For any safe one-step modal epistemic specification Π and one of its world views W ,
any A ∈ W extends an A′ ∈ AS(Π1) and, vice versa, each A′ ∈ AS(Π1) is contained
in some A ∈ W . Therefore, for any epistemic literal � in Π and any world view W of
Π , we have that W |= � if and only if AS(Π1) |= �, and as a consequence ΠW =
ΠAS(Π1) and so W = AS(ΠAS(Π1)) is unique.

Example 9. Consider the following variant Πg of the main motivating example of [16].

eligible(X) :- highGPA(X);
eligible(X) :- minority(X), fairGPA(X);

notEligible(X) :- notFairGPA(X),notHighGPA(X);
interview(X) :- ¬Keligible(X),¬KnotEligible(X).

This (and any extensions by facts) is a safe one-step modal epistemic specification: The
first three rules form the lower part Π1 and the last rule forms the upper part Π2.

Moreover, observe that due to the considerations above, for the lower part Π1 of a one-
step modal epistemic specification Π , AS(Π1) |= Ma iff Π1 |=b a (AS(Π1) |= ¬Ma
iff Π1 �|=b a) and AS(Π1) |= Ka iff Π1 |=c a (AS(Π1) |= ¬Ka iff Π1 �|=c a) for
epistemic literals Ma,¬Ma,Ka,¬Ka in Π .

We can then use Proposition 5 in order to simulate the modal reduct ΠW of the
unique world view W of Π . In particular,

W |= Mp(t1, . . . , tn) iff dp
p(t1, . . . , tn,X) ∈ AS(Π1

bc
p),

60 W. Faber and S. Woltran

(with X being a sequence of suitably chosen variables, cf. Section 4) and

W |= Kp(t1, . . . , tn) iff dp
p(t1, . . . , tn,X) ∈ AS(Π1

cc
p).

Moreover, we have W |= ¬Mp(t1, . . . , tn) iff dp
p(t1, . . . , tn,X) �∈ AS(Π1

bc
p), and

W |= ¬Kp(t1, . . . , tn) iff dp
p(t1, . . . , tn,X) �∈ AS(Π1

cc
p). Making sure that all Π1

cc
p

and Π1
bc
p use distinct symbols, different also from those in Π , we can form the union

of all of these programs.
That means that we can replace each occurrence of Kp(t1, . . . , tn) in Π by the

manifold atom dp
p(t1, . . . , tn,X) (and ¬Kp(t1, . . . , tn) by the corresponding default

negated atom, i.e. not dp
p(t1, . . . , tn,X)) and add Π1

cc
{p}; symmetrically, we can re-

place each occurrence of Mp(t1, . . . , tn) by dp
p(t1, . . . , tn,X) (and ¬Mp(t1, . . . , tn)

by not dp
p(t1, . . . , tn,X)) and add Π1

bc
{p}. Let us call the program obtained in this way

Π . Π can be split such that Π1
bc
{p} and Π1

cc
{p} form the bottom program Π1, and the

partial evaluation Π
′

of Π with respect to AS(Π1) coincides with ΠW for the unique
world view W of Π . It follows that the restriction of each A ∈ AS(Π) to the symbols
of Π is in W , and for each A ∈ W , an A′ ∈ AS(Π) exists, such that the restriction of
A′ to symbols in Π is A.

Example 10. Reconsider the main motivating example Πg of [16] as reported in Ex-
ample 9. Πg is:

eligible(X) :- highGPA(X);
eligible(X) :- minority(X), fairGPA(X);

notEligible(X) :- notFairGPA(X),notHighGPA(X);

interview (X) :- not deligible
eligible(X,X), not dnotEligible

notEligible(X,X);

deligible
eligible(X,X1) :- c1, d

eligible
highGPA(X,X1);

deligible
eligible(X,X1) :- c1, d

eligible
minority (X,X1), deligible

fairGPA(X,X1);

deligible
notEligible(X,X1) :- c1, d

eligible
notFairGPA(X,X1), deligible

notHighGPA(X,X1);

deligible
eligible(X1, X1) :- i1;

c1 :- not i1;
i1 :- not c1;

:∼ deligible
eligible(X1, X1);

:∼ i1;

dnotEligible
eligible (X,X1) :- c2, d

notEligible
highGPA (X,X1);

dnotEligible
eligible (X,X1) :- c2, d

notEligible
minority (X,X1), dnotEligible

fairGPA (X,X1);

dnotEligible
notEligible(X,X1) :- c2, d

notEligible
notFairGPA(X,X1), dnotEligible

notHighGPA(X,X1);

dnotEligible
notEligible(X1, X1) :- i2;

c2 :- not i2;
i2 :- not c2;

:∼ dnotEligible
notEligible(X1, X1);

:∼ i2.

Manifold Answer-Set Programs and Their Applications 61

This rewriting can be extended to safe modally acyclic epistemic specifications essen-
tially by a repeated application, but special care must be taken of the involved weak
constraints.

6 Conclusion

In this paper, we provided a novel method to rewrite ASP programs in such a way that
reasoning over all answer sets of the original program can be formulated within the
same program. Our method exploits the well-known concept of weak constraints. We
illustrated the impact of our method by encoding the problems of (i) deciding whether
a propositional formula in CNF has a unique minimal model, (ii) computing the ideal
extension of an argumentation framework. For (i) and (ii), known complexity results
witness that our encodings are adequate in the sense that efficient ASP encodings with-
out weak constraints or similar constructs are assumed to be infeasible. As a final ap-
plication we considered (iii) epistemic specifications, where we used our concepts to
simulate the semantics of epistemic literals within a single world view (thus we had
to restrict ourselves to a particular subclass of epistemic specifications). Our encodings
provide evidence that the class of disjunctive (non-disjunctive) safe one-step modal
epistemic specifications is easier to evaluate (in ΘP

3 resp. ΘP
2) as the respective general

class of disjunctive (non-disjunctive) epistemic specifications (which have been shown
to be hard for ΣP

3 resp. ΣP
2 in [21]).

Concerning related work, we remark that the manifold program for cautious con-
sequences is closely related to the concept of data disjunctions [29] (this paper also
contains a detailed discussion about the complexity class ΘP

2 and related classes for
functional problems). Concepts similar to manifold programs have also been studied
in the area of default logic, where a method for reasoning within a single extension
has been proposed [30]. That method uses set-variables which characterize the set of
generating defaults of the original extensions. However, such an approach differs con-
siderably from ours as it encodes certain aspects of the semantics (which ours does not),
which puts it closer to meta-programming (cf. [31]).

As future work, we intend studying the use of alternative preferential constructs in
place of weak constraints. Moreover, we are currently developing a suitable language
for expressing reasoning with brave, cautious and definite consequences, allowing also
for mixing different reasoning modes. This language should serve as a platform for

natural encodings of problems in complexity classes ΘP
2 , ΘP

3 , FPNP
|| , and FPΣP

2
|| . A

first step towards this direction has already been undertaken in [32]; such extensions
should also pave the way to simulate a broader class of epistemic specifications.

References

1. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: Apt, K., Marek, V.W., Truszczyński, M., Warren, D.S. (eds.) The Logic Pro-
gramming Paradigm – A 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)

2. Niemelä, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Ann. Math. Artif. Intell. 25(3-4), 241–273 (1999)

62 W. Faber and S. Woltran

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2002)

4. Gelfond, M.: Representing knowledge in A-prolog. In: Kakas, A., Sadri, F. (eds.) Compu-
tational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 413–451.
Springer, Heidelberg (2002)

5. Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The USA-advisor: A case study in
answer set planning. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS
(LNAI), vol. 2173, pp. 439–442. Springer, Heidelberg (2001)

6. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina,
G.: The INFOMIX System for advanced integration of incomplete and inconsistent data. In:
Proceedings of the 24th ACM SIGMOD International Conference on Management of Data
(SIGMOD 2005), pp. 915–917. ACM Press, New York (2005)

7. Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing configuration knowledge
with weight constraint rules. In: Provetti, A., Son, T.C. (eds.) Proceedings of the 1st Interna-
tional Workshop on Answer Set Programming (2001)

8. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first
answer set programming system competition. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer, Heidelberg (2007)

9. Bravo, L., Bertossi, L.E.: Logic programs for consistently querying data integration systems.
In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI 2003), pp. 10–15. Morgan Kaufmann, San Francisco (2003)

10. Saccà, D.: Multiple total stable models are definitely needed to solve unique solution prob-
lems. Inf. Process. Lett. 58(5), 249–254 (1996)

11. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE
Trans. Knowl. Data Eng. 12(5), 845–860 (2000)

12. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–
562 (2006)

13. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and Databases,
pp. 55–76. Plenum Press, New York (1978)

14. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. In-
tell. 171(10-15), 619–641 (2007)

15. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. In-
tell. 171(10-15), 642–674 (2007)

16. Gelfond, M.: Logic programming and reasoning with incomplete information. Annals of
Mathematics and Artificial Intelligence 12(1-2), 89–116 (1994)

17. Gelfond, M.: Strong introspection. In: Proceedings of the 9th National Conference on Artifi-
cial Intelligence (AAAI 1991), pp. 386–391. AAAI Press / The MIT Press (1991)

18. Wang, K., Zhang, Y.: Nested epistemic logic programs. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 279–290. Springer,
Heidelberg (2005)

19. Zhang, Y.: Computational properties of epistemic logic programs. In: Doherty, P., Mylopou-
los, J., Welty, C.A. (eds.) Proceedings of the 10th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2006), pp. 308–317. AAAI Press, Menlo
Park (2006)

20. Zhang, Y.: Updating epistemic logic programs. J. Log. Comput. 19(2), 405–423 (2009)
21. Truszczyński, M.: Revisiting epistemic specifications. In: Balduccini, M., Son, T.C. (eds.)

Gelfond Festschrift. LNCS (LNAI), vol. 6565, pp. 315–333. Springer, Heidelberg (2011)
22. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.

New Generation Comput. 9(3/4), 365–386 (1991)

Manifold Answer-Set Programs and Their Applications 63

23. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation
frameworks. Argument and Computation 1(2), 144–177 (2010)

24. Dunne, P.E.: The computational complexity of ideal semantics. Artif. Intell. 173(18), 1559–
1591 (2009)

25. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

26. Dunne, P.E.: Computational properties of argument systems satisfying graph-theoretic con-
straints. Artif. Intell. 171(10-15), 701–729 (2007)

27. Osorio, M., Zepeda, C., Nieves, J.C., Cortés, U.: Inferring acceptable arguments with answer
set programming. In: Proceedings of the 6th Mexican International Conference on Computer
Science (ENC 2005), pp. 198–205. IEEE, Los Alamitos (2005)

28. Watson, R.: A splitting set theorem for epistemic specifications. In: Baral, C., Truszczyński,
M. (eds.) Proceedings of the 8th International Workshop on Non-Monotonic Reasoning,
NMR 2000 (2000), http://arxiv.org/abs/cs/0003038

29. Eiter, T., Veith, H.: On the complexity of data disjunctions. Theor. Comput. Sci. 288(1),
101–128 (2002)

30. Delgrande, J.P., Schaub, T.: Reasoning credulously and skeptically within a single extension.
Journal of Applied Non-Classical Logics 12(2), 259–285 (2002)

31. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Computing preferred answer sets by meta-
interpretation in answer set programming. TPLP 3(4-5), 463–498 (2003)

32. Faber, W., Woltran, S.: A framework for programming with module consequences. In: de
Vos, M., Schaub, T. (eds.) Proceedings of the LPNMR 2009 Workshop on Software Engi-
neering for Answer Set Programming, SEA 2009, pp. 34–48 (2009),
http://sea09.cs.bath.ac.uk/downloads/sea09proceedings.pdf

http://arxiv.org/abs/cs/0003038
http://sea09.cs.bath.ac.uk/downloads/sea09proceedings.pdf

On the Minimality of Stable Models

Paolo Ferraris1 and Vladimir Lifschitz2

1 Google, USA
2 Department of Computer Science, University of Texas at Austin, USA

Abstract. The class of logic programs covered by the original definition
of a stable model has the property that all stable models of a program
in this class are minimal. In the course of research on answer set pro-
gramming, the concept of a stable model was extended to several new
programming constructs, and for some of these extensions the minimal-
ity property does not hold. We are interested in syntactic conditions on
a logic program that guarantee the minimality of its stable models. This
question is addressed here in the context of the general theory of stable
models of first-order sentences.

1 Introduction

A Prolog program with negation, viewed as a logical formula, usually has several
minimal Herbrand models, and only one of them may reflect the actual behavior
of Prolog. For instance, the propositional rule

p← not q,

viewed as the formula
¬q → p (1)

written in logic programming notation, has two minimal models, {p} and {q}; the
first of them is the “intended” model. Early research on the semantics of nega-
tion as failure [Bidoit and Froidevaux, 1987, Gelfond, 1987, Apt et al., 1988,
Van Gelder, 1988, Van Gelder et al., 1988] was motivated by the need to dis-
tinguish between the intended model of a logic program and its other minimal
models.

The definition of a stable model proposed in [Gelfond and Lifschitz, 1988]
had a similar motivation. According to Theorem 1 from that paper, every stable
model of a logic program is minimal. The converse, for programs with negation,
is usually not true. One corollary to the fact that all stable models are minimal
is that the collection of stable models of a program is an antichain: one stable
model cannot be a subset of another.

In the course of research on answer set programming, the concept of a stable
model was extended to several new programming constructs, and for some of
these extensions the antichain property does not hold. Take, for instance, choice

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 64–73, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Minimality of Stable Models 65

rules, which play an important role in the language of lparse.1 The set of stable
models of the program consisting of the single choice rule

{p}

is {∅, {p}}. It is not an antichain. If we identify this choice rule with the formula

p ∨ ¬p, (2)

as proposed in [Ferraris, 2005], then we can say that the singleton {p} is a stable
but nonminimal model of (2).

The situation is similar for some cardinality constraints containing negation
as failure. The one-rule lparse program

p← {not p} 0

has the same stable models as the choice rule above, ∅ and {p}. According
to [Ferraris, 2005], this program can be identified with the formula

¬¬p→ p. (3)

The singleton {p} is a nonminimal stable model of (3).
Under what syntactic conditions on a logic program can we assert that every

stable model of the program is minimal? What is the essential difference, for
instance, between formula (1) on the one hand, and formulas (2) and (3) on the
other? In this note we address this question in the context of the general theory
of stable models proposed in [Ferraris et al., 2010]. The main definition of that
paper, reproduced in the next section, describes the “stable model operator”
SMp, where p is a tuple of predicate constants. This operator turns any first-
order sentence F into a conjunction of F with a second-order sentence. The
stable models of F relative to the given choice of “intensional” predicates p are
defined in [Ferraris et al., 2010] as models of SMp[F] in the sense of classical
logic. The definition of SMp[F] is very similar to the definition of the parallel
circumscription of p in F [McCarthy, 1986], which we will denote by CIRCp[F].
The circumscription formula characterizes the models of F in which the extents
of the predicates p are minimal. Thus the question that we are interested in can
be stated as follows: Under what conditions is CIRCp[F] entailed by SMp[F]?

2 Review: Circumscription and Stable Models

This review follows [Ferraris et al., 2010]. We assume that, in the definition of
a formula, the propositional connectives ⊥ (falsity), ∧, ∨, → are chosen as
primitives, and ¬F is treated as an abbreviation for F → ⊥.

Notation: if p and q are predicate constants of the same arity then p ≤ q
stands for the formula ∀x(p(x) → q(x)), where x is a tuple of distinct object
1 See http://www.tcs.hut.fi/Software/smodels/lparse.ps for a description of the

language.

http://www.tcs.hut.fi/Software/smodels/lparse.ps

66 P. Ferraris and V. Lifschitz

variables. If p and q are tuples p1, . . . , pn and q1, . . . , qn of predicate constants
then p ≤ q stands for the conjunction

(p1 ≤ q1) ∧ · · · ∧ (pn ≤ qn),

and p < q stands for (p ≤ q) ∧ ¬(q ≤ p). In second-order logic, we apply the
same notation to tuples of predicate variables.

Let p be a list of distinct predicate constants.2 The circumscription operator
with the minimized predicates p, denoted by CIRCp, is defined as follows: for
any first-order sentence F , CIRCp[F] is the second-order sentence

F ∧ ¬∃u((u < p) ∧ F (u)),

where u is a list of distinct predicate variables of the same length as p, and
F (u) is the formula obtained from F by substituting the variables u for the
constants p. Models of CIRCp[F] will be called p-minimal models of F .

Let p be a list of distinct predicate constants p1, . . . , pn. The stable model
operator with the intensional predicates p, denoted by SMp, is defined as follows:
for any first-order sentence F , SMp[F] is the second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where u is a list of n distinct predicate variables u1, . . . , un, and F ∗(u) is defined
recursively:

– pi(t)∗ = ui(t) for any tuple t of terms;
– F ∗ = F for any atomic formula F that does not contain members of p;3

– (F ∧G)∗ = F ∗ ∧G∗;
– (F ∨G)∗ = F ∗ ∨G∗;
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (∀xF)∗ = ∀xF ∗;
– (∃xF)∗ = ∃xF ∗.

Models of SMp[F] will be called p-stable models of F .
It is clear that if F does not contain implication then F ∗(u) is identical to

F (u), SMp[F] is identical to CIRCp[F], and the class of p-stable models of F is
identical to the class of p-minimal models of F .

Example 1. If F is (1) then CIRCpq[F] is

(¬q → p) ∧ ¬∃uv(((u, v) < (p, q)) ∧ (¬v → u))

(u, v are propositional variables). This formula is equivalent to

(p ∧ ¬q) ∨ (¬p ∧ q),

2 In this note, equality is not considered a predicate constant, so that it is not allowed
to be a member of p.

3 This includes the case when F is ⊥.

On the Minimality of Stable Models 67

so that the pq-minimal models of (1) are {p} and {q}. To apply the operator
SMpq to formula (1) we need to remember that this formula is shorthand for

(q → ⊥) → p.

So F ∗(u, v) is

(((v → ⊥) ∧ (q → ⊥)) → u) ∧ ((q → ⊥) → p),

which can be abbreviated as

((¬v ∧ ¬q) → u) ∧ (¬q → p).

Then SMpq[F] is

(¬q → p) ∧ ¬∃uv(((u, v) < (p, q)) ∧ ((¬v ∧ ¬q) → u) ∧ (¬q → p)).

This formula is equivalent to p ∧ ¬q, so that the only pq-stable model of (1)
is {p}.
Example 2. Let F be the formula

∀xy(p(x, y) → q(x, y)) ∧ ∀xyz(q(x, y) ∧ q(y, z)→ q(x, z)).

Then CIRCq[F] is the conjunction of F with the formula

¬∃u((u < q) ∧ ∀xy(p(x, y) → u(x, y)) ∧ ∀xyz(u(x, y) ∧ u(y, z)→ u(x, z)))

(u is a binary predicate variable). This conjunction expresses that q is the transi-
tive closure of p. Furthermore, SMq[F] is the conjunction of F with the formula

¬∃u((u < q) ∧ ∀xy(p(x, y) → u(x, y))
∧ ∀xy(p(x, y) → q(x, y))
∧ ∀xyz(u(x, y) ∧ u(y, z)→ u(x, z))
∧ ∀xyz(q(x, y) ∧ q(y, z)→ q(x, z))).

This conjunction is equivalent to CIRCq[F], and consequently it expresses the
same relationship: q is the transitive closure of p.4

3 Critical Subformulas

Recall that an occurrence of a symbol in a formula is called strictly positive if
it does not belong to the antecedent of any implication.5

About an occurrence of a formula G in a first-order formula F we say that it is
critical if it is the antecedent of an implication G→ H in F , and this implication
4 Formula F in this example is a canonical theory in the sense of [Kim et al., 2009,

Section 4]. The fact that the stable models of this formula are identical to its minimal
models is a special case of Proposition 2 from that paper.

5 We do not add “and is not in a scope of a negation” because ¬F is treated here as
an abbreviation.

68 P. Ferraris and V. Lifschitz

(i) is in the scope of a strictly positive ∨, or
(ii) is in the scope of a strictly positive ∃, or

(iii) belongs to the antecedents of at least two other implications.

Theorem 1. For any first-order sentence F and any list p of predicate con-
stants, if members of p do not occur in critical subformulas of F then every
p-stable model of F is p-minimal.

In other words, under the condition on critical subformulas above, SMp[F] entails
CIRCp[F].

For example, formula (1) has no critical subformulas, so that the condition
in the statement of the theorem holds in this case trivially. The same can be
said about the formula from Example 2.6 The second occurrence of p in (2) is
critical (recall that ¬p is shorthand for p → ⊥), as well as the first occurrence
of p in (3). Consequently neither (2) nor (3) is covered by our theorem, which
could be expected: each of these formulas has a nonminimal stable model.

Logic programs in the sense of [Gelfond and Lifschitz, 1988] are, from the
perspective of [Ferraris et al., 2010], conjunctions of the universal closures of
formulas of the form

L1 ∧ · · · ∧ Lm → A,

where L1, . . . , Lm (m ≥ 0) are literals, and A is an atom. These formulas do not
have critical subformulas. (Thus our Theorem 1 can be viewed as a generalization
of Theorem 1 from [Gelfond and Lifschitz, 1988].) The same can be said about
“disjunctive logic programs”—conjunctions of the universal closures of formulas
of the form

L1 ∧ · · · ∧ Lm → A1 ∨ · · · ∨An, (4)

where L1, . . . , Lm are literals, and A1, . . . , An are atoms (m,n ≥ 0).
Proposition 1 below gives an example of a formula without critical subformulas

that is “very different” from disjunctive logic programs. Recall that first-order
formulas F and G are strongly equivalent to each other if, for any formula H , any
occurrence of F in H , and any list p of distinct predicate constants, SMp[H] is
equivalent to SMp[H ′], where H ′ is obtained from H by replacing the occurrence
of F by G [Ferraris et al., 2010, Section 5.2].

Proposition 1. No conjunction of propositional formulas of the form (4) is
strongly equivalent to (p→ q) → q.

If we drop any of conditions (i)–(iii) from the definition of a critical subformula
then the assertion of the theorem will become incorrect. The need to include
condition (i) is illustrated by formula (2). Formula (3) shows that (iii) is required.
The need for (ii) follows from the following proposition:

6 More generally, the examination of the definition of a canonical theory from
[Kim et al., 2009] shows that our condition on critical subformulas holds for all
canonical theories.

On the Minimality of Stable Models 69

Proposition 2. Formula

p(a) ∧ (q(a) → p(b)) ∧ ∃x(p(x) → q(x)) (5)

has a pq-stable model that is not pq-minimal.

4 Proofs

In Lemmas 1–4, F is a first-order formula, p is a tuple of distinct predicate
constants, and u is a tuple of distinct predicate variables of the same length
as p.

Lemma 1. If F does not contain members of p then F ∗(u) is equivalent to F .

Proof. Immediate by structural induction.

Lemma 2. If all occurrences of members of p in F are strictly positive then the
formula

(u ≤ p) ∧ F (u) → F ∗(u)

is logically valid.

Proof. By structural induction. The only nontrivial case is when F has the form
G→ H ; G does not contain members of p, and all occurrences of members of p
in H are strictly positive. By the induction hypothesis, the formula

(u ≤ p) ∧H(u) → H∗(u) (6)

is logically valid. Assume (u ≤ p) ∧ F (u), that is,

(u ≤ p) ∧ (G→ H(u)). (7)

We need to derive F ∗(u), that is,

(G∗(u) → H∗(u)) ∧ (G→ H).

In view of Lemma 1, this formula is equivalent to

G→ (H∗(u) ∧H).

Assume G. Then, by (7),
(u ≤ p) ∧H(u),

and, by (6), H∗(u). The formula

(u ≤ p) ∧H∗(u) → H (8)

is logically valid [Ferraris et al., 2010, Lemma 5]. Consequently H follows as well.

70 P. Ferraris and V. Lifschitz

Lemma 3. If no occurrence of any member of p in F belongs to the antecedent
of more than one implication then the formula

(u ≤ p) ∧ F ∗(u) → F (u)

is logically valid.

Proof. By structural induction. The only nontrivial case is when F has the form
G → H ; all occurrences of members of p in G are strictly positive, and no
occurrence of any member of p in H belongs to the antecedent of more than one
implication. By Lemma 2, the formula

(u ≤ p) ∧G(u) → G∗(u) (9)

is logically valid. By the induction hypothesis, the formula

(u ≤ p) ∧H∗(u) → H(u) (10)

is logically valid. Assume (u ≤ p) ∧ F ∗(u), that is,

(u ≤ p) ∧ (G∗(u) → H∗(u)) ∧ (G→ H). (11)

Our goal is to prove G(u) → H(u). From G(u), the first conjunctive term of (11),
and (9), G∗(u). Then, by the second conjunctive term of (11), H∗(u). Then H(u)
follows by (10).

Lemma 4. If members of p do not occur in critical subformulas of F then the
formula

u ≤ p ∧ F ∧ F (u) → F ∗(u)

is logically valid.

Proof. By induction on F . There are three nontrivial cases: when F is G ∨H ,
G → H , or ∃xG(x). If F is G ∨ H or ∃xG(x) then the antecedents of all im-
plications occurring in F are critical and consequently do not contain members
of p. Thus all occurrences of members of p in F are strictly positive, and the
assertion to be proved follows from Lemma 2. Let F be G → H . In formula G,
no occurrence of any member of p belongs to the antecedent of more than one
implication, because otherwise the antecedent of the innermost implication con-
taining that occurrence would be critical in F . By Lemma 3, it follows that the
formula

(u ≤ p) ∧G∗(u) → G(u) (12)

is logically valid. By the induction hypothesis, the formula

u ≤ p ∧H ∧H(u) → H∗(u) (13)

is logically valid. Assume
u ≤ p ∧ F ∧ F (u); (14)

On the Minimality of Stable Models 71

our goal is to derive F ∗(u), that is,

(G∗(u) → H∗(u)) ∧ F.

The second conjunctive term is immediate from (14). To prove the first conjunc-
tive term, assume G∗(u). Then, by the first conjunctive term of (14) and (12),
G(u). Consequently, by the third conjunctive term of (14), H(u). On the other
hand, the formula

(u ≤ p) ∧G∗(u) → G

is logically valid [Ferraris et al., 2010, Lemma 5]; hence G, and, by the second
conjunctive term of (14), H . Then, by (13), H∗(u).

Proof of Theorem 1. Take a sentence F such that members of p do not occur
in critical subformulas of F . We need to show that SMp[F] entails CIRCp[F].
Assume that

F ∧ ¬∃u((u < p) ∧ F ∗(u)) (15)

but
(u < p) ∧ F (u).

Then, by Lemma 4, F ∗(u), which contradicts (15).

The proof of Proposition 1 below refers to reducts in the sense of [Ferraris, 2005].
It uses two facts about them. One is a characterization of strong equivalence in
terms of reducts:

Lemma 5. Propositional formulas F and G are strongly equivalent to each other
iff, for every set X of atoms, the reducts FX and GX are equivalent to each other
in the sense of classical logic.

This is part of the statement of Proposition 2 from [Ferraris, 2005].7

The second fact is a property of disjunctive logic programs:

Lemma 6. If Π is a conjunction of propositional formulas of form (4) then, for
any sets X, Y and Z of atoms such that X ⊆ Y ⊆ Z, if Z |= Π and X |= ΠY

then X |= ΠZ .

This observation is made in [Eiter et al., 2005] (and expressed there using some-
what different terminology, in terms of SE-models instead of reducts).

Proof of Proposition 1. Let F stand for (p → q) → q, and assume that Π is
a conjunction of propositional formulas of form (4) that is strongly equivalent
to F . It is easy to check that {p, q} |= F and that

∅ |= F {p}, ∅ �|= F {p,q}.

7 The definition of strong equivalence in [Ferraris, 2005] is somewhat different from the
definition given above, which is taken from [Ferraris et al., 2010]. But in application
to propositional formulas the two definitions are equivalent to each other, because, as
discussed in these papers, each definition is equivalent in this case to the provability
of F ↔ G in the logic of here-and-there.

72 P. Ferraris and V. Lifschitz

It follows that {p, q} |= Π (because strongly equivalent formulas are classically
equivalent) and, by Lemma 5, that

∅ |= Π{p}, ∅ �|= Π{p,q}.

But this is impossible by Lemma 6: take X = ∅, Y = {p}, and Z = {p, q}.

Proof of Proposition 2 (Hint). The Herbrand interpretation {p(a), p(b), q(a)} is
a pq-stable model of (5) that is not pq-minimal.

5 Conclusion

In this note, we gave a syntactic condition that ensures the minimality of all
stable models of a first-order sentence. The condition is expressed in terms of
critical subformulas. It shows that in the propositional case all possible excep-
tions to the general principle that stable models are minimal are similar to the
examples given in the introduction: they contain an implication in the scope of
a disjunction, as (2), or three implications nested within each other, as (3). In
the presence of variables, the restriction on disjunctions has to be extended to
existential quantifiers.

Acknowledgements

We are grateful to Dan Lessin for useful discussions on the topic of this paper,
and to Gerhard Brewka for comments on the previous version. The second author
was supported by the National Science Foundation under grant IIS-0712113.

References

[Apt et al., 1988]Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowl-
edge. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Program-
ming, pp. 89–148. Morgan Kaufmann, San Mateo (1988)

[Bidoit and Froidevaux, 1987]Bidoit, N., Froidevaux, C.: Minimalism subsumes default
logic and circumscription in stratified logic programming. In: Proceedings LICS
1987, pp. 89–97 (1987)

[Eiter et al., 2005]Eiter, T., Tompits, H., Woltran, S.: On solution correspondences
in answer-set programming. In: Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), pp. 97–102 (2005)

[Ferraris et al., 2010]Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscrip-
tion8. Artificial Intelligence 175, 236–263 (2011)

[Ferraris, 2005]Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco,
G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp.
119–131. Springer, Heidelberg (2005)

8 http://peace.eas.asu.edu/joolee/papers/smcirc.pdf

http://peace.eas.asu.edu/joolee/papers/smcirc.pdf

On the Minimality of Stable Models 73

[Gelfond and Lifschitz, 1988]Gelfond, M., Lifschitz, V.: The stable model semantics for
logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of International
Logic Programming Conference and Symposium, pp. 1070–1080. MIT Press, Cam-
bridge (1988)

[Gelfond, 1987]Gelfond, M.: On stratified autoepistemic theories. In: Proceedings of
National Conference on Artificial Intelligence (AAAI), pp. 207–211 (1987)

[Kim et al., 2009]Kim, T.-W., Lee, J., Palla, R.: Circumscriptive event calculus as an-
swer set programming. In: Proceedings of International Joint Conference on Artifi-
cial Intelligence (IJCAI), pp. 823–829 (2009)

[McCarthy, 1986]McCarthy, J.: Applications of circumscription to formalizing common
sense knowledge. Artificial Intelligence 26(3), 89–116 (1986)

[Van Gelder et al., 1988]Van Gelder, A., Ross, K., Schlipf, J.: Unfounded sets and
well-founded semantics for general logic programs. In: Proceedings of the Seventh
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
Austin, Texas, March 21-23, pp. 221–230. ACM Press, New York (1988)

[Van Gelder, 1988]Van Gelder, A.: Negation as failure using tight derivations for gen-
eral logic programs. In: Minker, J. (ed.) Foundations of Deductive Databases and
Logic Programming, pp. 149–176. Morgan Kaufmann, San Mateo (1988)

Challenges in Answer Set Solving

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub	

Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam

Abstract. Michael Gelfond’s application of Answer Set Programming (ASP) in
the context of NASA’s space shuttle has opened the door of the ivory tower. His
project has not only given our community self-confidence and served us as a ref-
erence for grant agencies and neighboring fields, but ultimately it helped freeing
the penguins making them exclaim “Yes, we can [fly] !”. The community has
taken up this wonderful assist to establish ASP as a prime tool for declarative
problem solving in the area of Knowledge Representation and Reasoning. De-
spite this success, however, ASP has not yet attracted broad attention outside this
area. This paper aims at identifying some current challenges that our field has
to overcome in the mid-run to ultimately become a full-fledged technology in
Informatics.

1 Introduction

A central goal of the field of Knowledge Representation and Reasoning is to furnish
methods for automated yet declarative problem solving. Unlike programming, where
the idea is to use programs to specify how a problem is to be solved, the idea is to
view a program as a formal representation of the problem as such. Accordingly, the
mere execution of a traditional program is replaced by an automated search through the
solution space spanned by the problem’s representation. Looking at chess, this amounts
to specifying the rules of chess and searching in the resulting state space rather than
writing a chess program. In the latter case, the intelligence lies with the programmer,
while in the former it is the system that cares about finding a solution in a smart way.
Also, the procedural approach is bound to playing chess, while the problem-solving
oriented approach is free to play any other game that can be specified in the realm of
the input language, as witnessed in the area of General Game Playing [1].

Answer Set Programming (ASP; [2]) is nowadays one of the most popular ap-
proaches to declarative problem solving. This is due to its appealing combination of
a rich yet simple modeling language with high-performance solving capacities. ASP
has its roots in Knowledge Representation and (Nonmonotonic) Reasoning, Logic Pro-
gramming (with negation), Databases, and Boolean Constraint Solving. ASP allows for
solving all search problems in NP (and NPNP) in a uniform way, offering more succinct
problem representations than propositional logic [3]. Meanwhile, ASP has been used in
many application areas, among them, product configuration [4], decision support for
NASA shuttle controllers [5], composition of Renaissance music [6], synthesis of mul-
tiprocessor systems [7], reasoning tools in systems biology [8, 9], team-building [10],

� Affiliated with the School of Computing Science at Simon Fraser University, Canada, and the
Institute for Integrated and Intelligent Systems at Griffith University, Australia.

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 74–90, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Challenges in Answer Set Solving 75

and many more.1 The success story of ASP has its roots in the early availability of
ASP solvers, beginning with the smodels system [11], followed by dlv [12], SAT-based
ASP solvers, like assat [13] and cmodels [14], and the conflict-driven ASP solver clasp,
demonstrating the performance and versatility of ASP solvers by winning first places at
international competitions like ASP’09, PB’09, and SAT’09.

Despite this success, ASP has not yet become an out-of-the-box technology like,
for instance Prolog, or even a natural subject of undergraduate teaching, like relational
databases or functional programming. A major prerequisite for this ambitious goal is
to enable the scalability of ASP, even when used by non-expert users. However, ASP’s
declarative methodology for problem posing and solving does not scale for free. Actu-
ally, the decent performance of ASP systems often conceals a lack of scalability and has
so far impeded the community’s awareness of this limitation. In what follows, we aim
at sharpening the community’s awareness of the challenges ahead of us and to motivate
a joined effort in addressing them. Enjoy!

2 ASP Solving

As with traditional computer programming, the ASP solving process amounts to a
closed loop. Its steps can be roughly classified into

1. Modeling,
2. Grounding,
3. Solving,
4. Visualizing, and
5. Software Engineering.

We have illustrated this process in Figure 1 by giving the associated components. It all
starts with a modeling phase, which results in a first throw at a representation of the
given problem in terms of logic programming rules. The resulting program2 is usually
formulated by means of first-order variables, which are systematically replaced by el-
ements of the Herbrand universe in a subsequent grounding phase. This yields a finite
propositional program that is then fed into the actual ASP solver. The output of the
solver varies depending on the respective reasoning mode. Often, it consists of a textual
representation of a sequence of answer sets. Depending on the quality of the resulting
answer, one then either refines the last version of the problem representation or not.

Program Grounder Solver Output� � �

�

Fig. 1. ASP Solving Process

1 See http://www.cs.uni-potsdam.de/∼torsten/asp for an extended listing of
ASP applications.

2 This is of course a misnomer but historically too well established to be dropped.

76 M. Gebser et al.

As pointed out in the introductory section, the strongholds of ASP are usually re-
garded to be its rich modeling language as well as its high-performance solving capac-
ities. We revisit both topics, Modeling and Solving, in the following sections and close
by commenting briefly on the remaining issues.

Grounding, or more generally propositionalization, is common to all approaches ex-
ploiting the computational advantages of propositional representations; besides ASP
this includes, for instance, Satisfiability Checking (SAT;[15]) and Planning [16]. Un-
like the latter, however, ASP is the only area having widely used, highly optimized
grounding systems. Even so, some problems are as a matter of fact prone to a combina-
torial blow-up in space and thus beyond the realm of any efficient grounding procedure.
Given that such problems usually comprise large but flat domains, there is definitely
a need to further investigate database techniques for grounding or finite-domain con-
straint processing techniques for hybrid solving, as done in [17–19].

Visualization becomes indispensable when problems and their resulting answer sets
involve a high number of entities and relations among them. Although the relational
nature of ASP suggests tables as an obvious means of visualization, at the end of the
day, tables are just another domain-independent way of characterizing the actual objects
of interest. But despite this application-specific nature of visualization, it remains a
great challenge whether a highly declarative, general-purpose paradigm such as ASP
can be lifted from a purely textual level towards a more appealing graphical stage. A
first approach in this direction is described in [20].

Software-engineering becomes more and more important to ASP in view of its in-
creasing range of applications. Among others, this involves effective development tools,
including editors and debuggers, as well as the dissemination of (open-source) tools and
libraries connecting ASP to other computing paradigms. For instance, classical debug-
ging techniques do often not apply to ASP because of its high degree of declarativity,
or in other words, its lack of a procedural semantics that could be subject to debugging
and tracing. This “curse of declarativity” is well recognized withing the ASP commu-
nity and addressed within a dedicated workshop series [21, 22]; first approaches can be
found in [23–26].

3 Modeling

ASP Modeling is an art; it requires craft, experience, and knowledge. Although the re-
sulting problem specifications are usually quite succinct and easy to understand, craft-
ing such beautiful specification that also shows its best performance is not as obvious
as it might seem. To illustrate this, we conduct a little case study in the next section.

All experiments were conducted with gringo (3.0.03) and clasp (1.3.4).

3.1 A Case-Study

Let us consider the well-known n-Queens problem that consists of placing n queens on
an n× n-square board such that no queen may attacks another one.

3 The release candidate was referred to as bingo.

Challenges in Answer Set Solving 77

Following the common generate-and-test methodology of ASP, this problem can be
specified in four rules, the first providing a generator positioning n queens on the n×n
board, and the three remaining ones excluding two queens on the same row, column,
and diagonal, respectively. The first throw at a formalization of these constraints in ASP
is given in Table 1.

Table 1. n-Queens problem, first throw

% place n queens on the chess board
n { q(1..n,1..n) } n.

% at most one queen per row/column
:- q(X,Y1), q(X,Y2), Y1 != Y2.
:- q(X1,Y), q(X2,Y), X1 != X2.

% at most one queen per diagonal
:- q(X1,Y1), q(X2,Y2), X1 != X2, #abs(X1-X2) == #abs(Y1-Y2).

A first improvement is to eliminate symmetric ground rules, expressing the same
constraint. For example, rule :- q(X,Y1), q(X,Y2), Y1 != Y2. gives rise
to ground instances :- q(3,1), q(3,2). and :- q(3,2), q(3,1). both
of which prohibit the same placements of queens. This redundancy can be removed
by some simple symmetry breaking. In our example, it suffices to replace inequality
Y1 != Y2 by Y1 < Y2. Globally applying this simple way of symmetry breaking to
the encoding in Table 1 yields the one in Table 2. The latter encoding strictly halves
the number of ground instances obtained from the three integrity constraints. For in-
stance, on the 10-Queens problem, the number of ground rules drops from 2941 to
1471. Despite this reduction, the improved encoding still scales poorly, as witnessed by
the 1646701 rules obtained after 28.26s on the 100-Queens problem (cf. Table 5 at the
end of this section).

Table 2. n-Queens problem, second throw

% place n queens on the chess board
n { q(1..n,1..n) } n.

% at most one queen per row/column
:- q(X,Y1), q(X,Y2), Y1 < Y2.
:- q(X1,Y), q(X2,Y), X1 < X2.

% at most one queen per diagonal
:- q(X1,Y1), q(X2,Y2), X1 < X2, #abs(X1-X2) == #abs(Y1-Y2).

78 M. Gebser et al.

Analyzing the encoding in Table 2 a bit further reveals that all three integrity con-
straints give rise to a cubic number of ground instances, that is, on the n-Queens prob-
lem they produce O(n3) ground rules. This can be drastically reduced by replacing the
rule restricting placements in rows, viz. :- q(X,Y1), q(X,Y2), Y1 < Y2.,
by4

:- X = 1..n, not 1 { q(X,Y) } 1.

asserting that there is exactly one queen in a row. One rule per row, results in O(n)
rules (each of size O(n)) rather than O(n3) as before. Clearly, the same can be done for
columns, yielding :- Y = 1..n, not 1 { q(X,Y) } 1. Note that the new
rules imply that there is exactly one queen per row and column, respectively. Hence, we
may replace the cardinality constraint n { q(1..n,1..n) } n. by the uncon-
strained choice { q(1..n,1..n) }. This is advantageous because it constitutes
practically no constraint for clasp. Finally, what can we do about the integrity con-
straint controlling diagonal placements? It fact, the same aggregation can be done for
the diagonals, once we have an enumeration scheme. The idea is to enumerate diago-
nals in two ways, once from the upper left corner to the lower right corner, and similarly
from the upper right corner to the lower left corner. Let us illustrate this for n = 4:

1 2 3 4
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6
4 4 5 6 7

1 2 3 4
1 4 3 2 1
2 5 4 3 2
3 6 5 4 3
4 7 6 5 4

These two enumeration schemes can be captured by the equations D = X +Y − 1 and
D = X − Y + n, respectively. For instance, the first equation tells us that diagonal 6
consists of positions (4, 3) and (3, 4). Given both equations, we may replace the rule
restricting placements in diagonals by the two following rules:

:- D = 1..n*2-1, not { q(X,Y) : D==X-Y+n } 1.
:- D = 1..n*2-1, not { q(X,Y) : D==X+Y-1 } 1.

As above, we thus obtain one rule per diagonal, inducing O(n) ground rules (each of
size O(n)). The resulting encoding is given in Table 3.

For 10 and 100 queens, the encoding of Table 3 yields 55 and 595 ground rules,
respectively, in contrast to the 1471 and 1646701 rules obtained with the encoding in
Table 2. Despite the much smaller grounding size, however, the grounding time does
not scale as expected. To see this, note that grounding the encoding in Table 3 for 100
queens takes less than second, while 500 queens require more than 100 seconds of
grounding time (although only 2995 ground rules are produced).

Further investigations5 reveal that the last two rules in Table 3 are the source of
the problem. In fact, it turns out that during grounding the tests D==X-Y+n and
D==X-Y-1 are repeated over and over. This can be avoided by pre-calculating both
conditions. To this end, we add the rules

4 The construct X = 1..n can be read as X ∈ {1, . . . , n}.
5 This can be done with gringo’s debug option --verbose.

Challenges in Answer Set Solving 79

d1(X,Y,X-Y+n) :- X = 1..n, Y = 1..n.
d2(X,Y,X+Y-1) :- X = 1..n, Y = 1..n.

and replace the two conditions D==X-Y+n and D==X-Y-1 by d1(X,Y,D) and
d2(X,Y,D), respectively. The resulting encoding is given in Table 4. Although this
encoding adds a quadratic number of facts, their computation is linear and exploits in-
dexing techniques known from database systems.

Table 3. n-Queens problem, third throw

% place n queens on the chess board
{ q(1..n,1..n) }.

% exactly one queen per row/column
:- X = 1..n, not 1 { q(X,Y) } 1.
:- Y = 1..n, not 1 { q(X,Y) } 1.

% at most one queen per diagonal
:- D = 1..n*2-1, not { q(X,Y) : D==X-Y+n } 1.
:- D = 1..n*2-1, not { q(X,Y) : D==X+Y-1 } 1.

Table 4. n-Queens problem, fourth throw

% place n queens on the chess board
{ q(1..n,1..n) }.

% exactly one queen per row/column
:- X = 1..n, not 1 { q(X,Y) } 1.
:- Y = 1..n, not 1 { q(X,Y) } 1.

% pre-calculate the diagonals
d1(X,Y,X-Y+n) :- X = 1..n, Y = 1..n.
d2(X,Y,X+Y-1) :- X = 1..n, Y = 1..n.

% at most one queen per diagonal
:- D = 1..n*2-1, not { q(X,Y) : d1(X,Y,D) } 1.
:- D = 1..n*2-1, not { q(X,Y) : d2(X,Y,D) } 1.

Table 5. Experiments contrasting different encodings of the n-Queens problem. All runs con-
ducted with clasp --heuristic=vsids --quiet .

n Encoding 1 Encoding 2 Encoding 3 Encoding 4

50 2.95 42.10 1.95 41.16 0.12 0.04 0.05 0.05
100 41.50 — 28.26 — 0.81 0.16 0.13 0.18
500 — — — — 96.91 16.34 3.60 16.84

1000 — — — — 767.70 166.80 20.98 168.75

80 M. Gebser et al.

3.2 Some Hints on (Manual) Modeling

Finally, let us give some hints on modeling based upon our experience.

1. Keep the grounding compact
– If possible, use aggregates
– Try to avoid combinatorial blow-up
– Project out unused variables
– But don’t remove too many inferences!

2. Add additional constraints to prune the search space
– Consider special cases
– Break symmetries
– . . .
– Test whether the additional constraints really help

3. Try different approaches to model the problem
– Problems involving time steps might be parallelized

4. It (still) helps to know the systems
– gringo offers options to trace the grounding process
– clasp offers many options to configure the search6

3.3 Non-ground Pre-processing

We have conducted a preliminary case-study illustrating the potential of non-ground
pre-processing techniques. To this end, we explored two simple techniques.7

Concretion The idea of concretion is to replace overly general rules by their effectively
used partial instantiations. In other words, concretion eliminates redundant rule
instances from the program whenever their contribution is re-constructable from an
answer set and not needed otherwise. Consider the following simple program.

q(X,Y) :- p(X), p(Y).
r(X) :- q(X,X).

Given that the binary predicate q is only used with identical arguments, concretion
replaces the first rule by

q(X,X) :- p(X).

Similarly, concretion replaces the first rule in

q(X,X) :- p(X).
r(X) :- q(X,2).

by

q(2,2) :- p(2).

6 clasp was run with --heuristic=vsids to solve the large n-Queens problem.
7 We are grateful to Michael Grosshans and Arne König for accomplishing this case-study!

Challenges in Answer Set Solving 81

Note that concretion does not preserve answer sets. However, the original answer
sets can be reconstructed from the resulting ones by means of the original program.

Projection aims at reducing the number of variables in a rule in order to scale down the
number of its ground instances. To this end, one eliminates variables with singleton
(or say “isolated”) occurrences and replaces the encompassing literal(s) with a new
literal only containing the remaining variables.
For illustration, consider the rule

q(X) :- z(X,W), v(X,Y,Z,0), u(Z,W).

In this rule, variable Y is irrelevant to the remainder of the rule and can thus be
eliminated by projection. As a result, projection replaces the above rule by the two
following ones.

q(X) :- z(X,W), v_new(X,Z), u(Z,W).
v_new(X,Z) :- v(X,Y,Z,0).

The predicate v new yields the value combinations necessary for deriving in-
stances of q. Note that this reduces the number of variables from four to three,
which may significantly reduce the number of ground instances depending on the
size of the respective domains.
Projection was first applied to ASP in [27], tracing back to well-known database
techniques [28, p. 176].

Similar and often much more refined techniques can be found in the literature, how-
ever, frequently in different research areas, like (deductive) databases, traditional logic
programming, automated planning, etc.

As a proof-of-concept, we have implemented both techniques in the prototypical
grounder pyngo8 [29] and conducted some preliminary experiments. First and foremost,
it is worth mentioning that both techniques are useless for common benchmarks because
most of them have been designed by experts in ASP. For instance, both techniques
cannot really improve the encodings furnished during the last modeling-oriented ASP
competition [30]. Hence, our experiment design rather aimed at use-cases covering non-
expert usage of ASP.

The two use-cases envisaged for concretion are the usage of library programs in more
specific contexts. To this end, we took encodings necessitating complex sub-problems.
The first benchmark set computes for each element of the residue class ring modulo
n the multiplicative inverse, while the second one takes numbers n and a and con-
ducts the Solovay-Strassen primality test. Note that the benchmarks involve computing
the greatest common divisor, quadratic remainders, and potencies in the residue class
rings.

Table 6(a) summarizes the results obtained on both benchmarks. We measured
the run-time of clingo restricted to 120sec on a 3.6GHz PC running Linux. Compar-
ing the run-times on the original encoding with those obtained after applying concretion

8 pyngo is a Python-based grounder, developed by Arne König for rapid prototyping of grounder
features.

82 M. Gebser et al.

Table 6. Experimental results applying concretion

(a) Multiplicative Inverse

n Original Transform
50 0.680 0.010

100 10.690 0.060
200 – 0.210
500 – 2.030

1000 – 15.490
1500 – 51.000
2000 – 114.240
2500 – –

(b) Solovay-Streets Test

n Original Transform
100 0.130 0.000
500 12.650 0.050

1000 97.880 0.120
2000 – 0.390
5000 – 2.410

10000 – 9.590
20000 – 37.370
50000 – –

(indicated as ‘Transform’ in Table 6(a)), we observe a clear improvement after pre-
processing. In this case, this betterment is due to the fact that all of the aforementioned
sub-problems were subject to concretion.

Our second experiment deals with single-player games from the area of General
Game Playing [1] and aims at illustrating the potential of projection. All benchmarks
were obtained through automatic transformations from original specifications in the
Game Description Language [31] into ASP. This provides us with a benchmark set
not at all designed for ASP and rather comparable to Prolog programs (over a finite
Herbrand base).

Table 7 summarizes our results. This time we distinguish between grounding and
solving time, and provide as well the size of the ground program. This is interesting
because the program modifications of projection are more substantial, and may thus
have different effects. As before, all benchmarks were run on a 3.6GHz PC under Linux
yet now with a timeout of 1200sec; the grounding size is given in MB. We observe in
22 out of 32 benchmarks an improvement that usually affected both grounding as well
as solving time. A remarkable decrease was observed on Sudoku, where grounding time
and size was reduced by two orders of magnitude and solving time dropped from over
20min, viz. the cut-off time, to a bit more than 4sec. But despite these ameliorations,
projection can also lead to a deterioration of performance, as drastically shown on God,
where projection increased the grounding by an order of magnitude and pushed solving
time beyond the cut-off.

All in all, our preliminary case-study demonstrates the great potential of automatic
non-ground pre-processing techniques for improving ASP code. Moreover, it revealed
significant research challenges in identifying not only more such pre-processing tech-
niques but furthermore in gearing them towards true improvements.

4 Solving

Advanced Boolean Constraint Solving is sensitive to parameter tuning. Clearly, this
carries over to modern ASP Solving. In fact, an ASP Solver like clasp offers an
arsenal of parameters for controlling the search for answer sets. Choosing the right
parameters often makes the difference between being able to solve a problem or not.

Challenges in Answer Set Solving 83

Table 7. Experimental results applying projection

Original Transform
Game Grounding Size Solving Grounding Size Solving

8puzzle 1.59 9.8 74.37 0.19 1.4 6.90
aipsrovers 0.23 1.9 1.16 0.20 1.9 1.08
asteroids 0.07 0.5 1.15 0.12 0.8 1.73
asteroidsparallel 0.17 1.2 53.38 0.21 1.6 39.02
asteroidsserial 0.40 2.8 14.62 0.49 4.0 4.81
blocksworldparallel 0.11 0.8 0.08 0.04 0.3 0.01
brainteaser 0.03 0.1 0.02 0.07 0.2 0.23
chinesecheckers 12.35 96.9 21.71 11.36 92.9 12.23
circlesolitaire 0.06 0.4 0.07 0.05 0.3 0.04
coins 0.04 0.2 0.02 0.03 0.2 0.03
firefighter 0.09 0.7 0.04 0.05 0.4 0.02
god 38.76 354.8 349.8 1151.91 426.5 –
hanoi6 1.29 9.6 - 1.36 11.0 –
hanoi7(1) 7.83 44.0 - 8.04 52.0 –
hanoi7(2) 7.84 44.0 4.83 8.14 52.0 7.42
hanoi 0.20 1.8 - 0.26 2.2 16.03
incredible 0.31 2.2 2.28 0.08 0.6 0.12
knightmove 0.24 1.7 - 0.25 1.8 1031.80
lightsout 0.04 0.1 2.16 0.02 0.2 15.73
maxknights 1.10 7.6 0.79 0.58 3.7 0.42
pancakes6 39.99 325.7 737.33 40.11 325.8 631.70
pancakes 43.72 325.7 556.22 39.28 325.8 465.92
peg(1) 64.42 509.2 - 3.43 30.7 –
peg(2) 66.68 509.2 - 3.24 30.7 –
queens 2.36 13.3 36.58 5.81 34.3 29.26
slidingpieces 3.93 24.6 2.79 3.53 32.5 4.66
snake2008 0.59 4.2 27.18 0.66 4.8 5.50
snake2009 0.94 6.5 542.57 0.85 6.3 –
sudoku 221.94 1643.8 - 3.64 34.1 4.30
tpeg 65.84 509.1 - 3.10 31.5 –
troublemaker 0.03 0.1 0.04 0.01 0.1 0.00
twistypassage 0.93 5.9 1.27 0.83 6.8 0.66

4.1 Another Case-Study

Let us analyze the performance of clasp in the context of the NP problems used
at the 2009 ASP Solver Competition [30]. To this end, we begin with contrast-
ing the default configuration of clasp with a slightly changed configuration de-
noted by clasp+. The latter invokes clasp with options --sat-prepro and
--trans-ext=dynamic. For comparison, we also give results for ASP solvers
cmodels [32] and smodels [11].9 All experiments were run on an Intel Quad-Core
Xeon E5520, possessing 2.27GHz processors, under Linux. Each benchmark instance
was run three times with every solver, each individual run restricted to 600 seconds

9 Version information is given below Table 8.

84 M. Gebser et al.

Table 8. Solving the 2009 ASP Competition (NP problems)

Benchmark # clasp clasp+ cmodels[m] smodels

15Puzzle 16 (16/0) 33.01 (0) 20.18 (0) 31.36 (0) 600.00 (48)
BlockedNQueens 29 (15/14) 5.09 (0) 4.91 (0) 9.04 (0) 29.37 (0)
ChannelRouting 10 (6/4) 120.13 (6) 120.14 (6) 120.58 (6) 120.90 (6)
EdgeMatching 29 (29/0) 0.23 (0) 0.41 (0) 59.32 (0) 60.32 (0)
Fastfood 29 (10/19) 1.17 (0) 0.90 (0) 29.22 (0) 83.93 (3)
GraphColouring 29 (9/20) 421.55 (60) 357.88 (39) 422.66 (57) 453.77 (63)
Hanoi 15 (15/0) 11.76 (0) 3.97 (0) 2.92 (0) 523.77 (39)
HierarchicalClustering 12 (8/4) 0.16 (0) 0.17 (0) 0.76 (0) 1.56 (0)
SchurNumbers 29 (13/16) 17.44 (0) 49.60 (0) 75.70 (0) 504.17 (72)
Solitaire 27 (22/5) 204.78 (27) 162.82 (21) 175.69 (21) 316.96 (36)
Sudoku 10 (10/0) 0.15 (0) 0.16 (0) 2.55 (0) 0.25 (0)
WeightBoundedDomSet 29 (29/0) 123.13 (15) 102.18 (12) 300.26 (36) 400.84 (51)
∅(Σ) (tight) 264 (182/82) 78.22(108) 68.61 (78) 102.50 (120) 257.99(318)
ConnectedDomSet 21 (10/11) 40.42 (3) 36.11 (3) 7.46 (0) 183.76 (15)
GeneralizedSlitherlink 29 (29/0) 0.10 (0) 0.22 (0) 1.92 (0) 0.16 (0)
GraphPartitioning 13 (6/7) 9.27 (0) 7.98 (0) 20.19 (0) 92.10 (3)
HamiltonianPath 29 (29/0) 0.07 (0) 0.06 (0) 0.21 (0) 2.22 (0)
KnightTour 10 (10/0) 124.29 (6) 91.80 (3) 242.48 (12) 150.55 (3)
Labyrinth 29 (29/0) 123.82 (12) 82.92 (6) 142.24 (6) 594.10 (81)
MazeGeneration 29 (10/19) 91.17 (12) 89.89 (12) 90.41 (12) 293.62 (42)
Sokoban 29 (9/20) 0.73 (0) 0.80 (0) 3.39 (0) 176.01 (15)
TravellingSalesperson 29 (29/0) 0.05 (0) 0.06 (0) 317.82 (7) 0.22 (0)
WireRouting 23 (12/11) 42.81 (3) 36.36 (3) 175.73 (12) 448.32 (45)
∅(Σ) (nontight) 241 (173/68) 43.27 (36) 34.62 (27) 100.19 (49) 194.11(204)
∅(Σ) 505 (355/150) 62.33(144) 53.16(105) 101.45 (169) 228.95(522)

clasp (1.3.1)
clasp+ = clasp --sat-prepro --trans-ext=dynamic
cmodels[m] (3.79 with minisat 2.0)
smodels (2.34 with option -restart)

and 2GB RAM. Our experiments are summarized in Table 8, giving average runtimes
in seconds (and numbers of timed-out runs in parentheses) for every solver on each
benchmark class, with timeouts taken as 600 seconds. The table gives in the column
headed by # the number of instances per benchmark class. In addition, Table 8 provides
the respective partition into satisfiable and unsatisfiable instances in parentheses. The
rows marked with ∅(Σ) provide the average runtimes and number of timeouts wrt the
considered collection of benchmark classes.

We see that the performance of clasp’s default configuration is quite inferior to that
of clasp+ on this set of benchmarks. In fact, almost all benchmark classes contain
extended rules. However, not all of them are substantial enough to warrant a dedicated
treatment. This situation is accounted for by the configuration of clasp+, using a
hybrid treatment of extended rules. The option --trans-ext=dynamic excludes
“small” extended rules from an intrinsic treatment (cf. [33]) and rather transforms them
into normal ones. This results in a higher number of Boolean constraints, which is

Challenges in Answer Set Solving 85

counterbalanced by invoking option --sat-prepro that enables Resolution-based
pre-processing [34]. This greatly reduces the number of timeouts, namely, from 144
benchmarks unsolved by the default configuration to 105 unsolved ones by clasp+.

Let us get a closer look at three classes that were difficult for clasp. To this end,
it is important to get a good idea about the features of the considered benchmark class.
This involves static properties of the benchmark as such as well as dynamic features
reflecting its solving process.

The WeightBoundedDomSet benchmark class consists of tight, rather small, unstruc-
tured logic programs having many solutions. The two latter features often suggest a
more aggressive restart strategy, making the solver explore an increased number of dif-
ferent locations in the search space rather than performing fewer yet more exhaustive
explorations.

Indeed, invoking clasp (1.3.1) with --restarts=256, indicated by clasp	

below, yields an average Time of 4.64s (versus 123.13s) and makes the number of time-
outs drop from 15 to zero.

Benchmark # clasp clasp+ clasp	 cmodels[m] smodels

WBDS 29 (29/0) 123.13(15) 102.18(12) 4.64 (0) 300.26 (36) 400.84(51)

The ConnectedDomSet benchmark class consists of non-tight, rather small logic pro-
grams containing a single large integrity cardinality constraint. The difficulty in solv-
ing this class lies in the latter integrity constraint. In fact, the default configuration of
clasp treats extended rules as special Boolean constraints rather then initially compil-
ing them into normal rules. However, on this benchmark the conflict learning scheme
of clasp spends a lot of time extracting all implicit conflicts comprised in this con-
straint. Unlike clasp (and smodels), cmodels unwraps these conflicts when com-
piling them into normal rules, so that its solving process needs not spend any time in
recovering them.

This behavior is nicely reflected by invoking clasp (1.3.1) with Option
--trans-ext=weight10, indicated by clasp	 below, yielding an average time
of 4.19s (versus 40.42s) and no timeouts (versus 3).

Benchmark # clasp clasp+ clasp	 cmodels[m] smodels

ConnectedDomSet 21 (10/11) 40.42(3) 36.11 (3) 4.19 (0) 7.46 (0) 183.76(15)

The KnightTour benchmark class consists of non-tight logic programs containing
many large cardinality constraints and exhibiting many large back-jumps during solv-
ing. The latter runtime feature normally calls for progress saving [35] enforcing the
same truth assignment to atoms chosen on subsequent descents into the search space.
Also, it is known from the SAT literature that this works best in combination with an
aggressive restart strategy.

In fact, invoking clasp (1.3.1) with --restarts=256 and
--save-progress, indicated by clasp	 below, reduces the average time to
1.47s (versus 124.29s) and leaves us with no timeouts (versus 6).

10 --trans-ext=integrity, if using clasp 1.3.3 or later versions.

86 M. Gebser et al.

Benchmark # clasp clasp+ clasp	 cmodels[m] smodels

KnightTour 10 (10/0) 124.29(6) 91.80 (3) 1.47 (0) 242.48 (12) 150.55 (3)

4.2 Some Hints on (Manual) Solving

The question then arises how to deal with this vast “configuration space” and how to
conciliate it with the idea of declarative problem solving. Currently, there seems to be
no true alternative to manual fine-tuning when addressing highly demanding application
problems.

As rules of thumb, we usually start by investigating the following options:

--heuristic: Try vsids instead of clasp’s default berkmin-style heuristic.
--trans-ext: Applicable if a program contains extended rules, that is, rules in-

cluding cardinality and weight constraints. Try at least the dynamic transformation.
--sat-prepro: Resolution-based preprocessing works best on tight programs with

few cardinality and weight constraints. It should (almost) always be used if ex-
tended rules are transformed into normal ones (via --trans-ext).

--restarts: Try aggressive restart policies, like Luby-256 or the nested policy, or
try disabling restarts whenever a problem is deemed to be unsatisfiable.

--save-progress: Progress saving typically works nicely if the average back-
jump length (or the #choices/#conflicts ratio) is high (≥10). It usually performs
best if combined with aggressive restarts.

4.3 Portfolio-Based Solving

A first step to overcome the sensitivity of modern ASP solvers to parameter settings
and thus to regain a certain degree of declarativity in solving is to use a portfolio-
based approach to ASP solving. The general idea is to identify a set of different solving
approaches, either different systems, configurations, or both, and to harness existing
machine learning techniques to build a classifier, mapping benchmark instances to the
putatively best solver configurations. Such approaches have already shown their versa-
tility in neighboring areas such as Constraint and SAT solving [36, 37].

This idea resulted in the portfolio-based ASP-solver claspfolio [29], winning
the first place in the category “Single-System Teams” at the Second ASP competi-
tion [30].11 Unlike other heterogeneous approaches using distinct systems in their
portfolio, claspfolio takes advantage of clasp’s manifold search gearing options
to identify a portfolio of different configurations. This has originally resulted in 30
different clasp configurations that were run on an extensive set of benchmarks. These
results are then used to select a reduced portfolio of “interesting” settings by eliminat-
ing configurations whose exclusion does not significantly decrease the quality of the
overall selection. This resulted in 12 configurations on which a support-vector machine
is trained to predict the potentially fastest configuration for an arbitrary benchmark
instance. To this end, we extract from each training instance 140 static and dynamic

11 claspfolio was developed by Stefan Ziller.

Challenges in Answer Set Solving 87

features by appeal to claspre. While the static features, like number of rule types
or tightness, are obtained while processing the input benchmark, the dynamic ones are
obtained through a limited run of clasp, observing features like number of learned
nogoods or average length of back-jumps. Once the support-vector machines are estab-
lished, a typical run of claspfolio starts by launching claspre for feature extrac-
tion upon which the support-vector machines select the most promising solver config-
uration to launch clasp. The option --mode=su also allows for a two-step classi-
fication by first predicting whether the instance is SAT, UNSAT, or unknown and then
selecting the best configuration among specific SAT-, UNSAT-, and remaining portfo-
lios, respectively.

The computational impact of this approach can be seen by contrasting the perfor-
mance of claspfolio (0.8) with that of clasp’s default (1.3.4), its best but fixed
configuration, a random selection among the portfolio, and the virtually best clasp
version obtained my taking for each benchmark the minimum run-time among all
solvers in the portfolio. Considering all systems on a set of 2771 benchmark instances
restricted to 1200s, we observed an average run-time of 87.95s for clasp’s default
configuration (and 127 timeouts); clasp’s best configuration took 70,42s (79 time-
outs), while the virtually best solver among all 30 configurations spent 20,46s and that
among the portfolio 24.61s on average (both trivially without timeouts).12 While a ran-
dom selection among the portfolio configurations run 97.89s on average (145 timeouts),
the trained approach of claspfolio used 38.85s of which it spent 37.38s on solving
only (with 22 timeouts). claspfolio has thus a clear edge over clasp’s best but
rigid configuration.

All in all, claspfolio takes some burden of parameter tuning away from us and
lets us concentrate more on problem posing. Nonetheless real applications still need
manual interference. In this respect, claspfolio can be used as a first guide indicat-
ing which search parameters are most promising for attacking an application at hand.13

The true research challenge however lies in getting a solid understanding in the link
between problem features and search parameters.

5 Conclusion

ASP has come a long way. Having its roots in Nonmonotonic Reasoning [38], we can
be proud of having taught Tweety how to fly. We have build impressive systems by
drawing on solid formal foundations. And although there is still a long way to go to
establish ASP among the standard technologies in Informatics, the future is bright and
conceals many interesting research challenges.

Thank you Michael (and Vladimir) for putting us on the right track!

Acknowledgments. This work was supported by the German Science Foundation (DFG)
under grants SCHA 550/8-1 and -2.

12 Learning is restricted to benchmarks solvable by at least one configuration.
13 For instance, claspfolio --dir=<dir> --skip-solving --fstats provides a

ranking of the best clasp configuration on the benchmark instances in directory <dir>.

88 M. Gebser et al.

References

1. Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI competi-
tion. AI Magazine 26(2), 62–72 (2005)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

3. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on
Computational Logic 7(2), 261–268 (2006)

4. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product
configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 305–319. Springer,
Heidelberg (1999)

5. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-prolog deci-
sion support system for the space shuttle. In: Ramakrishnan, I. (ed.) PADL 2001. LNCS,
vol. 1990, pp. 169–183. Springer, Heidelberg (2001)

6. Boenn, G., Brain, M., de Vos, M., Fitch, J.: Automatic composition of melodic and harmonic
music by answer set programming. In: [39], pp. 160–174

7. Ishebabi, H., Mahr, P., Bobda, C., Gebser, M., Schaub, T.: Answer set vs integer linear pro-
gramming for automatic synthesis of multiprocessor systems from real-time parallel pro-
grams. Journal of Reconfigurable Computing (2009)

8. Erdem, E., Türe, F.: Efficient haplotype inference with answer set programming. In: [40],
pp. 436–441

9. Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large biological
networks with answer set programming. Theory and Practice of Logic Programming 11(2),
1–38 (2011)

10. Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An ASP-based system for
team-building in the gioia-tauro seaport. In: Carro, M., Peña, R. (eds.) PADL 2010. LNCS,
vol. 5937, pp. 40–42. Springer, Heidelberg (2010)

11. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

12. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006)

13. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence 157(1-2), 115–137 (2004)

14. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based answer set solver enhanced to non-tight
programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp.
346–350. Springer, Heidelberg (2003)

15. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. Frontiers in
Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

16. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan
Kaufmann Publishers, San Francisco (2004)

17. Mellarkod, V., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint
logic programming. Annals of Mathematics and Artificial Intelligence 53(1-4), 251–287
(2008)

18. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: [41], pp. 235–249
19. Drescher, C., Walsh, T.: A translational approach to constraint answer set solving. In: The-

ory and Practice of Logic Programming. Twenty-sixth International Conference on Logic
Programming (ICLP 2010) Special Issue, vol. 10(4-6), pp. 465–480. Cambridge University
Press, Cambridge (2010)

Challenges in Answer Set Solving 89

20. Cliffe, O., de Vos, M., Brain, M., Padget, J.: ASPVIZ: Declarative visualisation and anima-
tion using answer set programming. In: [39], pp. 724–728

21. de Vos, M., Schaub, T. (eds.): Proceedings of the Workshop on Software Engineering for
Answer Set Programming (SEA 2007). Number CSBU-2007-05 in Department of Computer
Science, University of Bath, Technical Report Series (2007) ISSN 1740-9497

22. de Vos, M., Schaub, T. (eds.): Proceedings of the Second Workshop on Software Engineering
for Answer Set Programming (SEA 2009). Department of Computer Science, University of
Bath, Technical Report Series (2009)

23. Brain, M., de Vos, M.: Debugging logic programs under the answer set semantics. In: de
Vos, M., Provetti, A. (eds.) Proceedings of the Third International Workshop on Answer Set
Programming (ASP 2005). CEUR Workshop Proceedings (CEUR-WS.org), vol. 142, pp.
141–152 (2005)

24. Pontelli, E., Son, T.C.: Justifications for logic programs under answer set semantics. In:
Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 196–210. Springer,
Heidelberg (2006)

25. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging ASP
programs by means of ASP. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 31–43. Springer, Heidelberg (2007)

26. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debug-
ging answer-set programs. In: [40], pp. 448–453

27. Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using database optimization techniques for
nonmonotonic reasoning. In: Proceedings of the Seventh International Workshop on Deduc-
tive Databases and Logic Programming (DDLP 1999), pp. 135–139 (1999)

28. Ullman, J.: Principles of Database and Knowledge-Base Systems. Computer Science Press,
Rockville (1988)

29. http://potassco.sourceforge.net/
30. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set

programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

31. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game play-
ing: Game description language specification. Technical Report LG-2006-01, Stanford
University (March 2008)

32. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

33. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: On the implementation of weight con-
straint rules in conflict-driven ASP solvers. In: [41], pp. 250–264

34. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimina-
tion. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer,
Heidelberg (2005)

35. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability
solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–
299. Springer, Heidelberg (2007)

36. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based rea-
soning in an algorithm portfolio for constraint solving. In: Bridge, D., Brown, K., O’Sullivan,
B., Sorensen, H. (eds.) Proceedings of the Nineteenth Irish Conference on Artificial Intelli-
gence and Cognitive Science, AICS 2008 (2008)

37. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selection
for SAT. Journal of Artificial Intelligence Research 32, 565–606 (2008)

http://potassco.sourceforge.net/

90 M. Gebser et al.

38. Ginsberg, M. (ed.): Readings in Nonmonotonic Reasoning. Morgan Kaufmann, San
Francisco (1987)

39. Garcia de la Banda, M., Pontelli, E. (eds.): ICLP 2008. LNCS, vol. 5366. Springer,
Heidelberg (2008)

40. Fox, D., Gomes, C. (eds.): Proceedings of the Twenty-third National Conference on Artificial
Intelligence (AAAI 2008). AAAI Press, Menlo Park (2008)

41. Hill, P.M., Warren, D.S. (eds.): ICLP 2009. LNCS, vol. 5649. Springer, Heidelberg (2009)

Exploring Relations between Answer Set

Programs�

Katsumi Inoue1 and Chiaki Sakama2

1 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

2 Department of Computer and Communication Sciences, Wakayama University
Sakaedani, Wakayama 640-8510, Japan

Abstract. Equivalence and generality relations over logic programs have
been proposed in answer set programming to semantically compare in-
formation contents of logic programs. In this paper, we overview previous
relations of answer set programs, and propose a general framework that
subsumes previous relations. The proposed framework allows us to com-
pare programs possibly having non-minimal answer sets as well as to
explore new relations between programs. Such new relations include rel-
ativized variants of generality relations over logic programs. By selecting
contexts for comparison, the proposed framework can represent weak,
strong and uniform variants of generality, inclusion and equivalence re-
lations. These new relations can be applied to comparison of abductive
logic programs and coordination of multiple answer set programs.

1 Introduction

Relations between theories have attracted a lot of interests in design and main-
tenance of knowledge bases. In particular, the notion of equivalence is important
for verification, simplification and optimization of logic programs. Maher [26]
introduced the notion of equivalence as program segments for definite programs,
which has later been explored as strong equivalence for answer set programming
by Lifschitz et al. [21]. Sagiv [37] defined the notion of uniform equivalence of
Datalog programs as equivalence of the outputs of programs for any set of input
atoms, which has also been extended for answer set programming by Eiter and
Fink [4]. These two notions of equivalence are then unified in a more general
concept called relative/relativized equivalence [25,15,49,7,31,50,48], which char-
acterizes equivalence with respect to contexts. By changing contexts, we can
consider various forms of equivalence relations in answer set programming.

Inter-theory relations between logic programs are not necessarily limited to
equivalence. We also would like to know what kind of relations hold between
programs when they are not equivalent. Eiter et al. [7] define a general cor-
respondence framework to compare answer sets of programs not only under

� This research is supported in part by the 2008-2011 JSPS Grant-in-Aid for Scientific
Research (A) No. 20240016.

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 91–110, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

92 K. Inoue and C. Sakama

equivalence but under inclusion, and Oetsch et al. [31] extend the framework to
the uniform variant. Inoue and Sakama [17] define another inter-theory relation
called generality for answer set programming. Their main concern is to compare
the amounts of information brought by logic programs and thus to assess the
relative value of each program. It turns out that inclusion by [7] is a special case
of generality.

Generality relations have many important applications. First, generality has
been central in the theory of inductive logic programming (ILP) [34,28,29] as
a criterion to rank hypotheses whenever alternative hypotheses can be con-
sidered. Intuitively, a program P1 is considered more general than a program
P2 if P1 brings more information than P2. In learning nonmonotonic theories
[13,32,39,45], hypotheses are constructed in the form of logic programs with
negation as failure. Then, we need to rank such hypotheses according to some
generality relations. Secondly, answer set programming is used for describing
and refining knowledge bases related to ontologies [6]. In this process, generality
relations can be used as criteria to judge whether descriptions are really refined
[18]. Thirdly, integration, merging, and coordination of multiple descriptions are
important in multi-agent systems; one may modify her own description in ac-
cordance with those from other agents by constructing a minimal generalization
or a maximal specialization of multiple descriptions [44], or may compose a new
description by gathering agents’ descriptions [42], or may build a consensus be-
tween agents’ beliefs [43]. These combination operations can be formalized as
minimal upper or maximal lower bounds of multiple programs under generality
relations [17].

In this paper, we will consider stronger versions of generality. The idea is
to introduce some focused contexts for comparison, which makes two programs
comparable under particular program extensions. As in the case of equivalence,
strong or uniform variants of generality is considered to represent a situation
that a generality relation between two programs is preserved after adding any
set of rules or facts, respectively. Moreover, these two notions of generality can
be unified into the notion of relativized generality as in the case of relativized
equivalence. Motivation behind this relativized generality lies in the fact that
we learn from it robustness of generality between programs: one program brings
more information than another whatever rules in a focused context are added
to those programs. More justifications for consideration of relativized generality
will be discussed from the viewpoint of inductive generality. As an application
of relativized generality, we will show that explanatory power of abductive logic
programs [20] can be compared using the proposed framework. Although the
notion of abductive generality is defined in [19] from the viewpoint of abduc-
tive explanations, we will see that it can be characterized as a special case of
relativized generality. Further applications of this generality would be logical
foundations of coordination between multiple abductive agents.

Note that the generality relations are defined in [17] for extended disjunctive
programs using the Smyth (�) and Hoare (�) orderings from domain theory [11],
which respectively reflect orderings on inclusion relations of the skeptical and

Exploring Relations between Answer Set Programs 93

credulous consequences. Those previous results require an anti-chain property
for the answer sets of programs, which limits the applicability of the framework
to EDPs. In this paper, these previous orderings as well as newly proposed or-
derings can be applied to more extended classes of programs that may possess
non-minimal answer sets [24,40,14,23,8], as well as logic programs with aggre-
gates [46,27,47]. Abductive logic programs [20] can also be considered to have
non-minimal answer sets due to augmentation with abducibles even when the
background program is an EDP.

The rest of this paper is organized as follows. Section 2 defines �- and �-
generality relations over the class of all sets of literal sets. Section 3 applies
these generality relations to ordering logic programs. Section 4 considers strong,
uniform and relativized variants of generality relations and analyzes their prop-
erties. Section 5 relates relativized generality with abductive generality. Section 6
gives related work and Section 7 summarizes the paper.

2 Generality Relations over Semantic Structures

This section presents generality relations defined over the sets of literal sets.
We recall some mathematical definitions about domains [11]. A pre-order (or
quasi-order) � is a binary relation which is reflexive and transitive. A pre-order
� is a partial order if it is also anti-symmetric. A pre-ordered set (resp. partially
ordered set ; poset) is a set D with a pre-order (resp. partial order) � on D. For
a pre-ordered set 〈D,�〉 and x, y ∈ D, we write x � y if x � y and y �� x.

For a pre-ordered set 〈D,�〉 and any set X ⊆ D, we denote the minimal and
maximal elements of X as follows.

min�(X) = { x ∈ X | ¬∃y∈X.x � y },
max�(X) = { x ∈ X | ¬∃y∈X. y � x }.

We often denote these as min(X) and max(X) by omitting �. We also assume
that the relation � is well-founded (resp. upwards well-founded) on D1 whenever
min�(X) (resp. max�(X)) is concerned in order to guarantee the existence of
a minimal (resp. maximal) element of any X ⊆ D.2 Note that, when D is finite,
any pre-order is both well-founded and upwards well-founded on D.

For any set D, let P(D) be the powerset of D. Given a pre-ordered set 〈D,�〉
and X,Y ∈ P(D), the Smyth order is defined as

X �
 Y iff ∀x∈X ∃y∈Y. x � y ,

and the Hoare order is defined as

X �� Y iff ∀y∈Y ∃x∈X.x � y .

1 A relation R is well-founded on a class D iff every non-empty subset of D has a
minimal element with respect to R. A relation R is upwards well-founded on D iff
the inverse relation R−1 is well-founded on D.

2 For example, Theorems 2.1 (2), 2.2 (2) and 3.2 (2) assume the upwards well-
foundedness. Note that the relation ⊆ is well-founded on D even if D is infinite.

94 K. Inoue and C. Sakama

The relations �
 and �� are pre-orders on P(D), and both 〈P(D),�
〉 and
〈P(D),��〉 are pre-ordered sets. Note that the orderings �
 and �� are slightly
different from those in domain theory:3 we allow the empty set ∅ (∈ P(D)) as
both the top element�
 in 〈P(D),�
〉 and the bottom element ⊥� in 〈P(D),��〉.

Example 2.1. Consider the poset 〈P({p, q}),⊇〉. Then, we have {{p, q}} �

{{p}} �
 {{p}, {q}}. On the other hand, {{p, q}} �� {{p}, {q}} �� {{p}}. Since
{∅, {p}} �
 {∅, {q}} �
 {∅, {p}} holds, �
 is not a partial order.

We now define orderings over the sets of literal sets. We assume a first-order
language, and denote by Lit the set of all ground literals in the language. A
literal set T ⊆ Lit is inconsistent if T contains a pair of complementary literals
L,¬L; otherwise, T is consistent. The (logical) closure of T is defined as

cl(T) =
{
T , if T is consistent;
Lit , if T is inconsistent.

A literal set T is closed if T = cl(T) holds.
We define a semantic structure called a composite set as an element in

P(P(Lit)), i.e., a class of sets of ground literals from Lit . A composite set
is consistent if it contains a consistent literal set; otherwise, it is inconsis-
tent. Hence, if a composite set Σ is inconsistent, then either Σ = ∅ or every
set T ∈ Σ is inconsistent. We denote the closures of a composite set Σ as
Cl(Σ) = {cl(T) | T ∈ Σ}. Two composite sets Σ1 and Σ2 are equivalent, de-
noted as Σ1 ≡ Σ2, if Cl(Σ1) = Cl(Σ2). A composite set Σ is closed if Σ = Cl(Σ)
holds. Given a pre-order �, a composite set Σ is irredundant (with respect to �)
if Σ is an anti-chain on the set 〈P(Lit),�〉, that is, for any S, T ∈ Σ, S � T
implies T � S.

To define generality ordering over composite sets, let us assume a pre-ordered
set 〈D,�〉 such that the domain D is P(Lit), i.e., the class of sets of ground
literals in the language, and the pre-order � is the inclusion relation ⊇ over
P(Lit). We denote by LS the class of all composite sets which can be constructed
in the language. That is, LS = P(P(Lit)). Then, the Smyth and Hoare orderings
on P(P(Lit)) can be defined, which enable us to order composite sets.

Definition 2.1. Assume a pre-ordered set 〈P(Lit),⊇〉, and let Σ1 and Σ2 be
any two composite sets in LS. Σ1 is more �-general than (or equal to) Σ2,
written Σ1 |=
 Σ2, if Cl(Σ1) �
 Cl(Σ2). Σ1 is more �-general than (or equal to)
Σ2, written Σ1 |=� Σ2, if Cl(Σ1) �� Cl(Σ2).

By definition, �- and �-generality reflect the following situations. Σ1 |=
 Σ2 means
that any set in Σ1 has logically more information than (or equal to) some set in
Σ2. On the other hand, Σ1 |=� Σ2 means that any set in Σ2 has logically less
information than (or equal to) some set in Σ1. For notational convenience, we

3 This is because we enable comparison of all classes of programs by associating ∅ with
the class of programs having no answer set [17].

Exploring Relations between Answer Set Programs 95

write |=
/� to represent the �- or �-generality relations together, which denotes
either |=
 or |=�. It is easy to see that 〈LS, |=
/�〉 is a pre-ordered set.

In the following theorems, we assume a pre-ordered set 〈P(Lit),⊇〉, and let
Σ1, Σ2 ∈ LS. The next theorem shows that the minimal (resp. maximal) ele-
ments determine the |=
 (resp. |=�) relation between composite sets.

Theorem 2.1. (1) Σ1 |=
 Σ2 iff min(Σ1) |=
 min(Σ2).
(2) Σ1 |=� Σ2 iff max(Σ1) |=� max(Σ2).

Proof. We prove (1) but (2) can be proved in the same way. Suppose that Σ1 |=

Σ2. Then, ∀S1 ∈ min(Cl(Σ1)), ∃S2 ∈ Cl(Σ2) such that S1 ⊇ S2, and then
∃S′

2∈min(Cl(Σ2)) such that S2 ⊇ S′
2. Hence, min(Σ1) |=
 min(Σ2). Conversely,

suppose that min(Σ1) |=
 min(Σ2). For any T1 ∈ Cl(Σ1), ∃T ′
1 ∈min(Cl(Σ1))

such that T1 ⊇ T ′
1. Then by the supposition, for T ′

1, ∃T2 ∈min(Cl(Σ2)) such
that T ′

1 ⊇ T2. Then, T2 ∈ Cl(Σ2) by the definition of min. Hence, Σ1 |=
 Σ2. ��

Theorem 2.2. (1) Σ1 |=
 Σ2 and Σ2 |=
 Σ1 iff min(Σ1) ≡ min(Σ2).
(2) Σ1 |=� Σ2 and Σ2 |=� Σ1 iff max(Σ1) ≡ max(Σ2).

Proof. (1) By Theorem 2.1 (1), Σ1 |=
 Σ2 and Σ2 |=
 Σ1 iff (i) min(Σ1) |=

min(Σ2) and (ii) min(Σ2) |=
 min(Σ1). By (i), ∀S1 ∈ Cl(min(Σ1)), ∃S2 ∈
Cl(min(Σ2)) such that S1 ⊇ S2. Then by (ii), ∃S′

1 ∈ Cl(min(Σ1)) such that
S2 ⊇ S′

1. Then, S1 ⊇ S′
1 holds, but both belong to Cl(min(Σ1)) = min(Cl(Σ1)).

Hence, S1 = S′
1 = S2. That is, S1 ∈ Cl(min(Σ1)) implies S1 ∈ Cl(min(Σ2)).

Hence, Cl(min(Σ1)) ⊆ Cl(min(Σ2)). Similarly, Cl(min(Σ2)) ⊆ Cl(min(Σ1)).
(2) can also be proved in a similar way. ��

Corollary 2.3. For irredundant composite sets Σ1 and Σ2, the following three
are equivalent: (i) Σ1 |=
 Σ2 |=
 Σ1; (ii) Σ1 |=� Σ2 |=� Σ1; (iii) Σ1 ≡ Σ2.

Proof. If Σ is an irredundant composite set, max(Σ) = min(Σ) = Σ holds.
Then the corollary holds by Theorem 2.2. ��

The next property states that �- and �-generality relations are monotonic with
respect to addition of literal sets.

Proposition 2.4. If Σ1 ⊇ Σ2, then Σ2 |=
 Σ1 and Σ1 |=� Σ2.

In the following propositions, we assume a pre-ordered set 〈P(Lit),⊇〉.

Proposition 2.5 (Independence). Let Σ1 and Σ2 be composite sets, and T1

and T2 literal sets. If Σ1 |=
/� Σ2 and T1 ⊇ T2, then Σ1 ∪ {T1} |=
/� Σ2 ∪ {T2}.

Corollary 2.6 (Refinement). Let Σ be a composite set, and T a literal set
such that T ∈ Σ. If S is a literal set such that S ⊇ T , then (Σ\{T })∪{S} |=
/� Σ.

Proposition 2.7 (Robustness). Let Σ1, Σ2 and Σ3 be composite sets. If
Σ1 |=
/� Σ2 and Σ1 |=
/� Σ3, then Σ1 |=
/� Σ2 ∪Σ3.

Proposition 2.8 (Extended Equivalence). Let Σ1, Σ2, Π1 and Π2 be com-
posite sets. If Σ1 ≡ Σ2 and Π1 ≡ Π2, then Σ1 ∪Π1 ≡ Σ2 ∪Π2.

96 K. Inoue and C. Sakama

3 Ordering Logic Programs

This section applies the Smyth and Hoare orderings over LS to order logic
programs. Generalizing the results for the class of extended disjunctive programs
[17], we allow any class of programs possibly having non-minimal answer sets.

In this paper, we can compare any class of logic programs as long as the
semantics of a program is defined as a closed composite set, which is a collection
of literal sets called answer sets [10] or stable models [9] of the program.4 For
example, here we can consider a general extended disjunctive program (GEDP)
[24,14], which is a set of rules of the form:

L1 ; · · · ; Lk ; notLk+1 ; · · · ; notLl ← Ll+1, . . . , Lm, not Lm+1, . . . , not Ln

(1)
where 0 ≤ k ≤ l ≤ m ≤ n, each Li is a literal, not is negation as failure (NAF),
and “;” represents disjunction. A rule of the form (1) is an (integrity) constraint
if k = 0, and is a fact if k = l = m = n ≥ 1. A fact is disjunctive if k > 1. A fact
is often denoted by omitting ←. A more general class of programs called nested
programs [23] can be considered here, although any nested program is equivalent
to some GEDP [23]. Similarly, any propositional formula can be used as a logic
program [8]. Another important class of programs we can compare includes logic
programs with aggregates [46,27,47]. Examples of subclasses of GEDPs are as
follows. If any rule of the form (1) in a GEDP P satisfies k = l, P is called an
extended disjunctive program (EDP) [10]. If any rule of the form (1) in an EDP
P satisfies k = l ≤ 1, P is called an extended logic program (ELP). An ELP P is
a normal logic program (NLP) if every literal appearing in P is a positive literal.
A program P is NAF-free if every rule of the form (1) in P never contains not,
i.e., k = l and m = n. A NAF-free program P is a positive disjunctive program
(PDP) if every literal appearing in P is a positive literal. A PDP P is a definite
program if k = 1 holds for any rule in P .

The definition of answer sets for each class of programs can be referred to the
original papers mentioned above, so we will omit it here. The set of all answer
sets of a program P is written as A(P). A program P is consistent if A(P) is
consistent. It is known that A(P) is irredundant for any EDP P , that is, every
answer set of an EDP is minimal [10]. On the other hand, answer sets of GEDPs,
nested programs and logic programs with aggregates are non-minimal in general.
Notice also that we can consider any semantics other than the original answer set
semantics for a logic program as long as it is defined as a closed composite set.
Then, this setting allows comparison of EDPs under the possible model semantics
[40] or the supported model semantics [14,48], which has representation of non-
minimal literal sets. Moreover, when PDPs P1 and P2 are compared, we can
even consider their classical models Mod(Pi) (i = 1, 2) instead of their minimal
models that are answer sets.

In the answer set semantics, a program containing variables is a shorthand of
its ground instantiation. In the case of non-ground programs, however, we need
4 Stable models are used to refer to answer sets of logic programs in which explicit

negation (¬) does not appear, and are sets of atoms instead of literals in this paper.

Exploring Relations between Answer Set Programs 97

to assume that the relation ⊇ is upwards well-founded on P(Lit) whenever the
maximal elements are concerned (see Footnotes 1 and 2 in Section 2). Also the
issue of decidability is of concern for non-ground programs [5,22,30]. To simplify
the discussion, we assume that programs in this paper are finite propositional.

We denote by LP the class of all programs which can be constructed in the
language. A subclass of programs is then denoted as C ⊆ LP . Examples of such
subclasses C are the class of all programs LP , the class of EDPs, the class of
programs constructed with a subset of Lit , a set of programs, and a set of literal
sets. The following correspondence notions have been proposed in the literature.

Definition 3.1. Let P1, P2 ∈ LP be programs, and C ⊆ LP .

(1) P1 and P2 are (weakly) equivalent, written P1 ≡ P2, if A(P1) = A(P2) holds.
(2) P1 and P2 are strongly equivalent, written P1 ≡s P2, if A(P1∪R) = A(P2∪R)

holds for any program R ∈ LP [21].
(3) P1 and P2 are uniformly equivalent, written P1 ≡u P2, if A(P1 ∪ U) =

A(P2 ∪ U) holds for any literal set U ∈ P(Lit) [4].
(4) P1 and P2 are (strongly) equivalent with respect to C, written P1 ≡C P2, if

A(P1 ∪R) = A(P2 ∪R) holds for any R ∈ C [15].
(5) P1 ans-includes P2, written P1 P2, if A(P1) ⊇ A(P2) holds [7].
(6) P1 strongly ans-includes P2, written P1 s P2, if A(P1 ∪ R) ⊇ A(P2 ∪ R)

holds for any R ∈ LP [7]. P1 (strongly) ans-includes P2 with respect to C,
written P1 C P2, if A(P1 ∪R) ⊇ A(P2 ∪R) holds for any R ∈ C.

Relativized (strong) equivalence in Definition 3.1 (4) is the most general notion of
equivalence in the sense that the other notions can be regarded as its special cases
with particular contexts C [15].5 That is, (1) weak, (2) strong and (3) uniform
equivalence are the cases of C = {∅}, C = LP , and C = P(Lit), respectively.
The notion of relativized (strong) inclusion is likewise, and in particular we can
define that P1 uniformly ans-includes P2 [31] iff P1 strongly ans-includes P2

with respect to P(Lit). We can further define the notions of relativized uniform
equivalence [15,49] and relativized uniform inclusion [31] as special cases of (4)
relativized equivalence and (6) relativized inclusion, respectively, such that C =
P(U) for some literal set U ⊆ Lit .

Assuming a poset 〈P(Lit),⊇〉, the Smyth and Hoare orderings have been
defined on P(P(Lit)) in Section 2. Then, a program P is associated with its
answer sets A(P) to define generality orderings over the programs in LP .

Definition 3.2. Assume the poset 〈P(Lit),⊇〉, and let P1, P2 ∈ LP . P1 is more
(or equally) �-general than P2, written P1 |=
 P2, if A(P1) |=
 A(P2). P1 is more
(or equally) �-general than P2, written P1 |=� P2, if A(P1) |=� A(P2).
5 This representation with a context C in Definition 3.1 (4) is similar to that in [48].

This is a slightly more general definition than that in [15], which can be represented
by setting C = P(R) for some rule set R ∈ LP. Likewise, this is more general than
the definition in [49,50], which can be expressed by setting C as the class of programs
constructed with some literal set U ⊆ Lit [49] or as the class of programs that use
possibly different alphabets for the heads and bodies of rules [50].

98 K. Inoue and C. Sakama

In Definition 3.2, because A(Pi) is closed for each program Pi, it holds that,
P1 |=
/� P2 iff A(P1) �
/� A(P2). Note that Definition 3.2 is essentially the
same as [17, Definition 2.2], but now we allow comparison of programs having
non-minimal answer sets, whereas [17] only considers EDPs.

Theorem 3.1. Let P1, P2 ∈ LP. If P1 P2, then P2 |=
 P1 and P1 |=� P2.

Theorem 3.1 follows from Proposition 2.4, and shows that the inclusion relation
[7] can be interpreted in terms of generality relations.

An equivalence class under the |=
/� relation can be characterized by the next
proposition, which follows from Theorem 2.2.

Theorem 3.2. Let P1, P2 ∈ LP.

(1) P1 |=
 P2 and P2 |=
 P1 iff min(A(P1)) = min(A(P2)).
(2) P1 |=� P2 and P2 |=� P1 iff max(A(P1)) = max(A(P2)).

In the case of EDPs, as shown in [17], each equivalence class precisely charac-
terizes the set of weakly equivalent EDPs.

Corollary 3.3. Let P1 and P2 be EDPs. Then, the following three are equiva-
lent: (1) P1 |=
 P2 |=
 P1; (2) P1 |=� P2 |=� P1; (3) P1 ≡ P2.

Proof. This has been proved in [17], but can be easily proved as follows. For any
EDP P , A(P) is irredundant. Then the result follows from Corollary 2.3. ��

Example 3.1. Consider the following programs:

P1 = { p← not q },
P2 = { p← not q, q ← not p },
P3 = { p ; q ← },
P4 = { p ; q ← , p← q, q ← p },
P5 = { p ; not p← , q ; not q ← , ← not p, not q }.

Then, P4 |=
 P1 |=
 P2 and P4 |=� P2 |=� P1 hold (see Example 2.1). P2 ≡ P3,
and thus P2 |=
 P3 |=
 P2 and P2 |=� P3 |=� P2.

For P5, A(P5) = {{p}, {q}, {p, q}} is not irredundant, where {p, q} is non-
minimal. Then, P1 |=
 P5 |=
 P2 |=
 P5 and P5 |=� P4 |=� P5 |=� P2 hold.

Minimal upper bounds (mubs) and maximal lower bounds (mlbs) have been im-
portant in the theory of generalization and in ILP [34,28], and can be applied
to coordination [44], composition [42] and consensus [43] of multiple agents [17].
We can show that both a minimal upper bound and a maximal lower bound
of any pair of programs exist with respect to �- and �-generality orderings, but
omit the details here.

As a result, we can induce the poset 〈LP
/�,�
/�〉, where LP
/� is the equiva-
lence classes from 〈LP , |=
/�〉 and �
/� is a partial order satisfying that [P1] �
/�

[P2] if P1 |=
/� P2 for any P1, P2 ∈ LP and [P1], [P2] ∈ LP
/�. Then, this poset

Exploring Relations between Answer Set Programs 99

constitutes a complete lattice such that (1) a program P is in the top (resp.
bottom) element of 〈LP
,�
〉 iff A(P) = ∅ (resp. A(P) = {∅}), and that (2) a
program P is in the top (resp. bottom) element of 〈LP�,��〉 iff A(P) = {Lit}
(resp. A(P) = ∅).

When a logic program has multiple answer sets, the �- and �-generality rela-
tions can be connected with skeptical and credulous entailment, respectively.

Definition 3.3. Let P ∈ LP be a program, and ψ a set of literals, which is
interpreted as the conjunction of literals in ψ.6 Then, ψ is a skeptical consequence
of P if ψ ⊆ S for every S ∈ A(P). ψ is a credulous consequence of P if ψ ⊆ S
for some S ∈ A(P). The sets of skeptical and credulous consequences of P are
denoted as Skp(P) and Crd(P), respectively.

Proposition 3.4. Let P ∈ LP. If P is consistent, Skp(P) =
⋂

S∈A(P) P(S)
and Crd(P) =

⋃
S∈A(P) P(S). If A(P) = ∅, Skp(P) = P(Lit) and Crd(P) = ∅.

If A(P) = {Lit}, Skp(P) = Crd(P) = P(Lit).

Theorem 3.5. Let P1, P2 ∈ LP.

(1) If P1 |=
 P2 then Skp(P1) ⊇ Skp(P2).
(2) P1 |=� P2 iff Crd(P1) ⊇ Crd(P2).

Proof. (1) Assume that P1 |=
 P2. If P1 is inconsistent, then Skp(P1) = P(Lit)
and thus Skp(P1) ⊇ Skp(P2). Suppose that P1 is consistent and ψ ∈ Skp(P2).
Then, ψ ⊆ T for every T ∈ A(P2). By P1 |=
 P2, for any S ∈ A(P1), there is
T ′ ∈ A(P2) such that S ⊇ T ′. Since ψ ⊆ T ′, ψ ⊆ S too. That is, ψ ∈ Skp(P1),
and thus Skp(P1) ⊇ Skp(P2).

(2) The only-if part can be proved in a similar way as (1). To prove the if part,
suppose that P1 �|=� P2. Then, A(P1) �= {Lit} and A(P2) �= ∅. Then, there is a
set T ∈ A(P2) such that S �⊇ T for any S ∈ A(P1). That is, for each S ∈ A(P1),
we can pick a literal ϕS ∈ (T \ S). Then, ψ = {ϕS | S ∈ A(P1)} ⊆ T , whereas
ψ �⊆ S for any S ∈ A(P1). Hence, ψ ∈ Crd(P2) and ψ �∈ Crd(P1), and thus
Crd(P1) �⊇ Crd(P2). ��

By Theorem 3.5, the more �-general (resp. �-general) a program is, the more
it entails skeptically (resp. credulously). Hence, the Smyth and Hoare order-
ings over programs reflect the amount of information by skeptical and credu-
lous entailment, respectively. Moreover, �-generality precisely reflects informa-
tiveness of credulous entailment. On the other hand, the converse of Theo-
rem 3.5 (1) does not hold for �-generality.7 For example, for A(P1) = {{p}}
and A(P2) = {{q}, {r}}, Skp(P1) = {∅, {p}} and Skp(P2) = {∅} hold, and thus
Skp(P1) ⊃ Skp(P2) but P1 �|=
 P2.

6 This definition extends the previous one in [17, Definition 4.1], in which a conse-
quence was defined for each single literal instead of a conjunction of literals.

7 The converse of Theorem 3.5 (1) would also hold if we could include disjunctive facts
along with conjunctions of literals in the consequences. For example, for A(P2) =
{{q}, {r}}, the extended set of skeptical consequences of P2 contains q; r.

100 K. Inoue and C. Sakama

Example 3.2. In Example 3.1, A(P3) = {{p}, {q}} and A(P4) = {{p, q}}, and
thus P4 |=
 P3 and P4 |=� P3. By Definition 3.3, Skp(P3) = ∅, Crd(P3) =
{∅, {p}, {q}}, and Skp(P4) = Crd(P4) = P({p, q}). Correspondingly, Skp(P4) ⊃
Skp(P3) and Crd(P4) ⊃ Crd(P3), which verify Theorem 3.5. Note here that
Crd(P3) �= Crd(P4), because {p, q} is only included in the latter. Note also that
Crd(P4) = Crd(P5), and correspondingly P5 |=� P4 |=� P5.

4 Strong, Uniform and Relativized Generality

A possible issue in generality by Definition 3.2 is that generality of programs is
determined solely by their answer sets. However, since the set of answer sets of a
program does not monotonically decrease as the program grows, we often want
to know how the generality relation between programs changes when some rules
are added to those programs. In this section, we examine such context-dependent
versions of generality relations. Then, robustness of generality between programs
can be discussed by the property that one program brings more information
than another whatever any set of rules in a focused context are added to those
programs.

Another concern on generality is the question of whether or not a general-
ity relation under consideration agrees with the property of classical generality
relation defined in ILP for first-order logic. In first-order logic, a theory T1 is
defined to be more (or equally) general than T2 if every formula derived from T2

is derived from T1, i.e., T1 |= T2 [34,29]. Hence, classical generality is defined as
the first-order entailment. Although the syntax of logic programming is differ-
ent from first-order logic, it has been a convention that the class of PDPs and
definite programs can also be regarded as a set of first-order formulas. We say
that a generality relation � satisfies the classical inductive generality if it holds
that P1 � P2 iff P1 |= P2 for all PDPs P1 and P2. With this regard, the gener-
ality relation |=
/� cannot make programs with the same answer sets different,
hence does not satisfy the classical inductive generality. This property is often
inconvenient from the viewpoint of program development.

Example 4.1. Suppose the three programs containing single rules, P1 = {r1},
P2 = {r2} and P3 = {r3}, where

r1 : p← q,

r2 : p← q, r,

r3 : p← q, not r.

Because the answer sets of all programs are {∅}, they are weakly equivalent,
i.e., P1 ≡ P2 ≡ P3. In ILP, however, P1 is regarded as more general than
P2 because P1 |= P2 but P2 �|= P1. In this case, under the classical models,
Mod(P1) |=
 Mod(P2) and Mod(P2) �|=
 Mod(P1) hold by Mod(P2) � Mod(P1)
and Proposition 2.4. Similarly, P1 is considered more general than P3 in ILP. In
program development, r1 is often called a generalization of both r2 and r3, and
conversely r2 and r3 are called specializations of r1.

Exploring Relations between Answer Set Programs 101

Example 4.1 indicates that, even in definite programs (P1 and P2), the generality
relation |=
/� does not satisfy the classical inductive generality as long as only
the answer sets (i.e., minimal models) are concerned. This is because information
contents brought by the collection of answer sets represents only the “solutions”
of the current program, and “predictive (or deductive) power” of the program
does not appear in the resultant answer sets but is implicit in the program
itself. In this respect, too, we need to consider more context-sensitive notions of
generality.

The notion of strong generality has already been introduced briefly in [17] as
a counterpart of strong equivalence [21]. In this section, we firstly recall strong
generality and newly consider uniform and relativized variants of generality re-
lations in answer set programming. These three notions of generality are all
context-sensitive variants of generality, but the strong and uniform versions can
be regarded as special cases of relativized generality.

Definition 4.1. Let P1, P2 ∈ LP be programs, and C ⊆ LP .

(1) P1 is strongly more �-general than P2, written P1 �

s P2, if P1∪R |=
 P2∪R

for any program R ∈ LP. P1 is strongly more �-general than P2, written
P1 ��

s P2, if P1 ∪R |=� P2 ∪R for any program R ∈ LP [17].
(2) P1 is uniformly more �-general than P2, written P1 �

u P2, if P1∪U |=
 P2∪U
for any literal set U ∈ P(Lit). P1 is uniformly more �-general than P2, written
P1 ��

u P2, if P1 ∪ U |=� P2 ∪ U for any literal set U ∈ P(Lit).
(3) P1 is (strongly) more �-general than P2 with respect to C, written P1 �

C P2,
if P1 ∪ R |=
 P2 ∪ R for any R ∈ C. P1 is (strongly) more �-general than P2

with respect to C, written P1 ��
C P2, if P1 ∪R |=� P2 ∪R for any R ∈ C.

The notions of strong �/�-generality and uniform �/�-generality are represented
in Definition 4.1 (1) and (2), which can be expressed as special cases of Def-
inition 4.1 (3) such that C = LP and C = P(Lit), respectively. Similarly, we
can define the notion of relativized uniform �/�-generality as a special case of
Definition 4.1 (3) such that C = P(U) for some U ⊆ Lit . In a special case, the
context can be given as a set consisting of a single program as C = {R} for some
R ∈ LP. This corresponds to the concept of relative generalization in ILP [34],
in which P1 is called more general than (or equal to) P2 relative to background
knowledge R. Other relations among these definitions hold as follows.

Proposition 4.1. (1) P1 �
/�
s P2 implies P1 �
/�

u P2.
(2) P1 �
/�

u P2 implies P1 |=
/� P2, and hence P1 �
/�
s P2 implies P1 |=
/� P2.

(3) For any C ⊆ LP, P1 �
/�
s P2 implies P1 �
/�

C P2.
(4) For any C ⊆ LP such that ∅ ∈ C, P1 �
/�

C P2 implies P1 |=
/� P2.

Note that the condition ∅ ∈ C is indispensable in Proposition 4.1 (4). For ex-
ample, when P1 = {p ← q} and P2 = {p ← } are compared in the context
C = {{q ← }}, we have P1 �

C P2 but P1 �|=
 P2.
It has been shown in [17] that programs belonging to the same equivalence class

induced by strong generality become strongly equivalent in the case of EDPs. We
here see that similar results also hold for uniform and relativized generality.

102 K. Inoue and C. Sakama

Proposition 4.2. Let P1 and P2 be EDPs, and C a set of EDPs. Then, in each
of the following, the statements (i), (ii) and (iii) are equivalent.

(1) [17] (i) P1 �

s P2 �

s P1; (ii) P1 ��
s P2 ��

s P1; (iii) P1 ≡s P2.
(2) (i) P1 �

u P2 �

u P1; (ii) P1 ��

u P2 ��
u P1; (iii) P1 ≡u P2.

(3) (i) P1 �

C P2 �

C P1; (ii) P1 ��
C P2 ��

C P1; (iii) P1 ≡C P2.

Theorem 4.3. Let P1, P2 ∈ LP. Suppose that Lit is finite.
(1) If P1 �

s P2 then P2 P1. (2) If P1 ��
s P2 then P1 P2.

Proof. We prove (1), but (2) can be proved in a similar way.
Assume that P2 � P1. Then, A(P2) �⊇ A(P1), and hence D = A(P1)\A(P2) �=

∅. If there is an answer set S ∈ D (⊆ A(P1)) such that S ⊂ T for any answer set
T ∈ A(P2), then P1 �|=
 P2 and thus P1�

sP2. Otherwise, S �⊂ T for any S ∈ D
and any T ∈ A(P2), and moreover S �⊆ T by the fact that T �∈ D and hence
S �= T . Then, S \ T �= ∅. Let C = { ← notL1, . . . , not Ln | Li ∈ (Si \ T), D =
{S1, . . . , Sn}, T ∈ A(P2) }. Each constraint in C is always satisfied by some
Si ∈ A(P1), but can never be satisfied by any T ∈ A(P2). Hence, A(P1 ∪C) �= ∅
and A(P2 ∪ C) = ∅. Therefore, P1 ∪C �|=
 P2 ∪C, and hence P1�

s
P2. ��

Theorem 4.3 states that strong �/�-generality implies inclusion. This rather un-
expected result can be explained by tracking the proof as follows. Simply assume
that both P1 and P2 have single answer sets, A(P1) = {S} and A(P2) = {T }.
If S ⊃ T , the relation P1 |=
 P2 holds. However, adding to P1 and P2 the con-
straint C = { ← notL} for some L ∈ S \T makes P2∪C inconsistent, and hence
P2 ∪ C |=
 P1 ∪ C holds. Therefore, for P1 to be strongly more �-general than
P2, it is necessary that S \ T = ∅. From Theorem 4.3, we can derive the next
stronger result:8 strong generality is equivalent to strong inclusion.

Theorem 4.4. Let P1, P2 ∈ LP, and suppose that Lit is finite. Then, P1 �

s P2

iff P2 ��
s P1 iff P2 s P1.

Proof. We prove (P1 �

s P2 iff P2 s P1), but (P1 ��

s P2 iff P1 s P2) can be
proved in a similar way. Suppose P1 �

s P2. By definition, P1 ∪R |=
 P2 ∪R for
any R ∈ LP . Then, (P1 ∪ R1) ∪ R2 |=
 (P2 ∪ R1) ∪ R2 for any R1, R2 ∈ LP .
By definition, P1 ∪ R1 �

s P2 ∪ R1 for any R1 ∈ LP . By Theorem 4.3 (1),
A(P2 ∪ R1) ⊇ A(P1 ∪ R1) for any R1 ∈ LP . Hence, P2 s P1. Conversely,
suppose P2 s P1. By definition, A(P2 ∪ R) ⊇ A(P1 ∪ R) for any R ∈ LP . By
Theorem 3.1, P1 ∪R |=
 P2 ∪R for any R ∈ LP . Hence, P1 �

s P2. ��

Example 4.2. Consider P1, P2 and P3 in Example 4.1. For R1 = { q ← not p },
A(P1∪R1)=∅, while A(P2∪R1)={{q}}. By contrast, for R2 ={ q ← , ← not p },
A(P1 ∪ R2) = {{p, q}}, while A(P2 ∪ R2) = ∅. Hence, P1�

sP2 and P2�

sP1.
Similarly, for R3 = { r← , q ← not p }, A(P1 ∪ R3) = ∅ and A(P3 ∪ R3) =
{{q, r}}. However, for R4 = { q ← , r ← , ← not p }, A(P1 ∪ R4) = {{p, q, r}}
and A(P3 ∪R4) = ∅. Hence, P1�

sP3 and P3�

sP1.

8 This property was pointed out to the authors by Jianmin Ji for EDPs.

Exploring Relations between Answer Set Programs 103

Example 4.2 indicates that strong generality does not satisfy the classical induc-
tive generality even for definite programs.

On the other hand, we see that both P1 �

u P2 and P1 �

u P3 hold. Uni-
form generality thus satisfies the classical inductive generality for Example 4.1.
Indeed, the next result states that uniform generality collapses to classical entail-
ment in the case of PDPs. Related results are stated in [26,4] such that uniform
equivalence coincides with classical equivalence for PDPs.

Proposition 4.5. Let P1 and P2 be PDPs. Then, P1 �

u P2 iff P1 |= P2, that

is, P1 classically entails P2.

Proof. It is easy to see that P1 |= P2 implies P1 �

u P2. Conversely, suppose that

P1 �|= P2. Then, there is a set M of ground atoms such that M ∈ Mod(P1) and
M �∈ Mod(P2). Let M ′ = M ∪ {¬A ∈ Lit | A �∈ M}. Since M is not a model
of P2, P2 ∪M ′ is inconsistent. By Herbrand’s theorem, there is a finite subset
U ⊆M ′ of ground literals such that P2 ∪ U is inconsistent. Since M is a model
of P1, P1 ∪U is consistent. Then, there is a consistent answer set of P1 ∪U , but
Lit is the unique inconsistent answer set of P2∪U . Obviously, P1∪U �|=
 P2∪U .
Hence, P1�

uP2. ��
Proposition 4.6. Let P1 and P2 be PDPs without integrity constraints. Then,
P1 ��

u P2 iff P1 |= P2.

Proof. The property (if P1 ��
u P2 then P1 |= P2) can be proved in the same

way as Proposition 4.5. To show that (if P1 |= P2 then P1 ��
u P2), we need

the condition that P1 does not contain integrity constraints. When P1 has no
constraint, P1∪U always has an answer set for any literal set U ∈ P(Lit). Then,
P1 ∪ U |=� P2 ∪ U . ��

Example 4.3. Consider P1, P2 and P3 in Example 4.1. We see that both P1 �

C

P2 and P1 �

C P3 hold for C = P(R), where R = {p, q, r, p; q, p; r, q; r, p; q; r}.

Example 4.3 strengthens the classical inductive property for uniform generality
to that for relativized generality with the context C including disjunctive facts.
Moreover, relativized generality also holds when the context C is the class of
PDPs.

Proposition 4.7. Let C be the class of PDPs. Then, for any two PDPs P1, P2 ∈
C, P1 �

C P2 iff P1 |= P2.

Proof. P1 |= P2 implies P1∪R |=
 P2∪R for any R ∈ C. Hence, P1 |= P2 implies
P1 �

C P2. The converse property (P1 �|= P2 implies P1�

CP2) can be proved in
the same way as Proposition 4.5. ��
Proposition 4.8. Let C be the class of PDPs having no integrity constraint.
Then, for any two PDPs P1, P2 ∈ C, P1 ��

C P2 iff P1 |= P2.

Proof. Let R be any PDP in C. Since P1, P2 and R are PDPs containing no
constraints, P1∪R has always an answer set, and thus P1 |= P2 implies P1∪R |=�

P2 ∪R. Hence, P1 |= P2 implies P2 ��
C P1. The converse direction can be proved

in the same way as Proposition 4.6. ��

104 K. Inoue and C. Sakama

In both Propositions 4.6 and 4.8, the condition that P1 does not contain an
integrity constraint is necessary to establish the relations that P1 |= P2 implies
P1 ��

u P2 and P1 ��
C P2. For example, when P1 = { ← a } and P2 = ∅, P1 |= P2

holds. However, for U = { a ← }, A(P1 ∪ U) = ∅ and A(P2 ∪ U) = {{a}}, and
hence P1�

�

u
P2 and P1�

�

CP2.

5 Abductive Generality

In this section, we show that relativized generality in the previous section can be
well applied to generality relations for abductive logic programming (ALP) [20].
Then, such generality relations could be applied to give logical foundations of
coordination between multiple abductive agents by extending results of [44,42,43]
to combination of abductive programs.

A semantics for ALP is given by extending answer sets of the background
program with addition of abducibles. Such an extended answer set is called a
generalized stable model [20] or a belief set [16].

Definition 5.1. An abductive (logic) program is a pair 〈P, Γ 〉, where P ∈ LP is
a logic program and Γ ⊆ Lit is a set of literals called abducibles.9 Put Γ = P(Γ).

Let A = 〈P, Γ 〉 be an abductive program, and E ∈ Γ, i.e., E ⊆ Γ . A belief set
of A (with respect to E) is a consistent answer set of the logic program P ∪ E.
The set of all belief sets of A is denoted as B(A). A set S ∈ B(A) is often
denoted as SE when S is a belief set with respect to E.

An observation G is defined as a set of ground literals, which is interpreted as
the conjunction of its literals. A set E ∈ Γ is a brave (resp. cautious) explanation
of G in A if G is true in some (resp. every) belief set of A with respect to
E.10 When G has a brave (resp. cautious) explanation in A, G is bravely (resp.
cautiously) explainable in A.

Note that B(A) is a composite set not containing Lit . Inoue and Sakama [19]
introduce two measures for comparing (brave) explanation power of abductive
programs. One is aimed at comparing explainability for observations in differ-
ent theories, while the other is aimed at comparing explanation contents for
observations.

Definition 5.2. A1 is more (or equally) bravely (resp. cautiously) explainable
than A2, written A1 �b A2, (resp. A1 �c A2), if every observation bravely (resp.
cautiously) explainable in A2 is also bravely (resp. cautiously) explainable in A1.

9 The abducibles can be defined as Γ ∈ LP by allowing rules, but such an extended
form of abductive program 〈P, Γ 〉 can be reduced to an abductive program in Defi-
nition 5.1 by moving each rule in Γ to P with a new abuducible literal added to the
body so that adding the new abducible enables the rule in abduction [12].

10 Brave and cautious explanations are also called credulous and skeptical explanations,
respectively. The properties of cautious explanations have not been studied in [19]
and are newly investigated in this paper.

Exploring Relations between Answer Set Programs 105

On the other hand, A1 is more (or equally) bravely (resp. cautiously) ex-
planatory than A2, written A1 �b A2 (resp. A1 �c A2), if, for any observation
G, every brave (resp. cautious) explanation of G in A2 is also a brave (resp.
cautious) explanation of G in A1.

Note that A1 �b A2 implies A1 �b A2 and that A1 �c A2 implies A1 �c A2. To
simplify the problem, we hereafter assume that A1 = 〈P1, Γ 〉 and A2 = 〈P2, Γ 〉
are abductive programs with the same abducibles Γ .

Example 5.1. Let A1 = 〈P1, Γ 〉 and A2 = 〈P2, Γ 〉 be abductive programs,
where P1 = { p← a, a← b }, P2 = { p← a, p← b }, and Γ = {a, b}. Then,
A1 �b A2 and A2 �b A1, while A1 �b A2 but A2 ��bA1. In fact, {b} is an
explanation of a in A1, but is not in A2. So with the relations �c and �c.

The relationships between the notions of abductive generality and (relativized)
generality relations for logic programs can be established as follows. Note that
these relationships are not obvious from the definitions.

Theorem 5.1. A1 �b A2 iff B(A1) |=� B(A2).

Proof. This result follows from the property proved in [19] that, A1 �b A2 holds
iff for any belief set S2 of A2, there is a belief set S1 of A1 such that S1 ⊇ S1. ��
An abductive program A = 〈P, Γ 〉 can be translated to a logic program as follows
[14]. Let Cons = { ← L,¬L | L ∈ Lit } [21], and put P+ = P ∪ Cons . Next,
let Abd(Γ) = {L;notL ← | L ∈ Γ }, and put P+

Γ = P+ ∪ Abd(Γ). Then,
B(A) = A(P+

Γ) holds [14]. With this result we get the next.

Corollary 5.2. Let A1 = 〈P1, Γ 〉 and A2 = 〈P2, Γ 〉 be abductive programs.
Then, A1 �b A2 iff P1

+
Γ |=� P2

+
Γ .

Theorem 5.3. Let A1 = 〈P1, Γ 〉 and A2 = 〈P2, Γ 〉 be abductive programs.
Then, A1 �b A2 iff P1

+ ��
Γ P2

+.

Proof. A1 �b A2 iff for any E ∈ Γ and any SE ∈ B(A2), there is TE ∈ B(A1)
such that TE ⊇ SE [19] iff for any E ∈ Γ, for any S ∈ A(P+

2 ∪ E) there is
T ∈ A(P+

1 ∪ E) such that T ⊇ S. Hence, the result follows. ��
Corollary 5.2 and Theorem 5.3 give us a better intuition on how explainable and
explanatory generality are different in brave abduction: the former is character-
ized by �-generality, while the latter by relativized �-generality.

By contrast, explanatory (and explainable) generality in cautious abduction
can be characterized by relativized strong �-generality, but only as a sufficient
condition.

Theorem 5.4. Let A1 = 〈P1, Γ 〉 and A2 = 〈P2, Γ 〉 be abductive programs. If
P1

+ �

Γ P2

+ then A1 �c A2 (and then A1 �c A2).

Proof. If P1
+ �

Γ P2
+ then P1

+∪E |=
 P2
+∪E for any E ∈ Γ. Then, Skp(P1

+∪
E) ⊇ Skp(P2

+ ∪E) for any E ∈ Γ by Theorem 3.5 (1). Hence, A1 �c A2. ��
Note that the converse of Theorem 5.4 does not hold as the converse of Theo-
rem 3.5 (1) used in the proof does not hold.

106 K. Inoue and C. Sakama

Inoue and Sakama [16] study two equivalence relations in abduction called
explainable/explanatory equivalence. Pearce et al. [33] characterize a part of these
problems in the context of equilibrium logic. Since these abductive equivalence
notions are defined in terms of brave explanations, they are related with brave
abductive generality notions in [19]. Formally, two abductive programs A1 and
A2 are explainably equivalent if, for any observation O,11 O is explainable in
A1 iff O is explainable in A2. On the other hand, A1 and A2 are explanatorily
equivalent if, for any observation O, E is an explanation of O in A1 iff E is an
explanation of O in A2.

Characterization of abductive equivalence has already been investigated in
depth in [16,19]. Using results in Sections 2 and 4, these relations can easily be
derived as corollaries of Theorems 5.1 and 5.3 as follows.

Corollary 5.5. Let A1 = 〈P1, Γ 〉 and A2 = 〈P2, Γ 〉 be abductive programs.

(1) [19] A1 and A2 are explainably equivalent iff max(B(A1)) = max(B(A2)).
(2) [19] A1 and A2 are explanatorily equivalent iff P1

+ ��
Γ P2

+ ��
Γ P1

+

iff max(A(P+
1 ∪E)) = max(A(P+

2 ∪ E)) for any E ∈ Γ.
(3) [16] Suppose that both P1 and P2 are EDPs. Then, A1 and A2 are explana-

torily equivalent iff P+
1 ≡Γ P+

2 .

6 Discussion

The inclusion relation in answer set programming was firstly considered in Eiter
et al. [7]. It is argued in [7] that, if every answer set of a program P is also an
answer set of a program Q, i.e., Q P , then Q can be viewed as a skeptically
sound approximation of P , meaning that Skp(P) ⊇ Skp(Q). However, a program
which has no inclusion relation with P can be a skeptically sound approximation
of P as well. For example, suppose two programs P = {p ← , q ← p} and
Q = {p ← }. Then, A(P) = {{p, q}} and A(Q) = {{p}}, and hence Q is sound
with respect to skeptical reasoning from P although the inclusion relation does
not hold between P and Q. Using generality, we can conclude that P |=
 Q.

Section 2 gives a fairly general framework for comparing semantic structures
called composite sets. This notion can be further extended by allowing any theory
as an element of a composite set. For example, if a composite set is defined as
a set of closed first-order theories, it can be applied to represent the semantic
structure of default logic [36]. In Example 4.1, we have seen weakly equivalent
programs, P1, P2 and P3. As long as each rule in a program is interpreted as a
first-order formula, the models of P1 include those of P2, and hence satisfy the
classical inductive generality. With this regard, generality relations over default
theories, which allow first-order formulas along with default rules, are proposed
in [18]. Then, P1 is properly ordered to be more general than P2 if these programs
are regarded as default theories. Unfortunately, the approach of [18] cannot
11 This definition of explainable equivalence for ALP is not exactly the same as that in

[16, Definition 4.3]. In [16] an observation is a single ground literal, while we allow
a conjunction of ground literals as an observation.

Exploring Relations between Answer Set Programs 107

differentiate P1 and P3 because r1 can be interpreted as either a propositional
formula or a default but r3 can only be regarded as a default. We have seen that
they are properly ordered using uniform generality and relativized generality.

We have introduced the notion of composite sets and their orderings to com-
pare answer set programs in this paper. Since any pre-order � can be considered
in an underlying pre-ordered set, an application of ranking or preferring com-
posite sets to decision theory would be interesting in AI and economics. In this
context, the �-ordering has been used to extend a preference relation over a
possibly infinite set X to its powerset P(X) [1]. The comparison framework pro-
posed in this paper could be the basis for ordering answer set programs in such
a decision theoretic context. For example, we can compare two prioritized logic
programs [41] by setting the pre-order � as the preference relations between
answer sets.

There are some other approaches to order logic programs in the literature.
In [38], answer set programs are ordered according to multi-valued interpreta-
tions for programs. A promising approach is to order programs according to
the implication relation with HT-models based on the logic of here-and-there
[2,52]. A related approach is to use SE-models instead of HT-models for defining
entailment and consequence relations [51,3]. As is stated in [52], any generality
relation in [17] does not coincide with any of [52]. Considering relativized versions
of generality in this paper, however, it is worth investigating precise relations
between these approaches and ours. In fact, as far as consistent programs are
compared, the ordering based on HT-models results in a similar ordering to our
strong generality.

7 Conclusion

In this paper, we have extended the �- and �-generality orderings of [17] in various
ways. The original contributions in this paper are summarized as follows.

– Applicability of comparison under generality is extended from EDPs to any
class of logic programs including nested programs and logic programs with
aggregates. In comparison under �- (resp. �-) generality, it is shown that the
minimal (resp. maximal) answer sets determine the generality relation.

– Strong, uniform and relativized generality for logic programs are proposed as
context-sensitive versions of generality, and several relations between them
are investigated. For example, we have shown that:

• Every generality relation is an instance of relativized generality.
• Strong generality coincides with strong inclusion.
• Uniform generality for PDPs collapses to classical entailment.
• Relativized equivalent EDPs can be characterized as an equivalence class

induced by relativized � or �-generality.

– The notions of explainable and explanatory generality in abductive logic pro-
gramming are characterized using �-generality and relativized �-generality,
which provide us a better intuition on how they are different.

108 K. Inoue and C. Sakama

As for the computational complexity of the proposed framework, we can apply
several previously known results to establish complexity results for our frame-
work. Since our comparison framework is general enough to include many known
equivalence and inclusion relations, hardness results can be easily obtained from
complexity results for such subproblems, e.g., [4,7,31,19]. On the other hand,
those necessary and sufficient conditions such as Theorem 4.4, Propositions 4.5
and 4.7, Corollary 5.2 and Theorem 5.3 can be used to establish completeness
results. Roughly speaking, the complexity classes range from coNP to ΠP

3 in
the polynomial hierarchy, and more precise characterizations will be reported
elsewhere.

Other important future work includes incorporation of the notion of projec-
tion used in the framework of [7,31,35] into our generality framework and more
investigation of generality in the non-ground case like studies for equivalence in
[25,5,22,30].

References

1. Ballester, M.A., De Miguel, J.R.: Extending an order to the power set: the leximax
criterion. Social Choice and Welfare 21, 63–71 (2003)

2. Cabalar, P., Pearce, D.J., Valverde, A.: Minimal Logic Programs. In: Dahl, V.,
Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 104–118. Springer, Heidelberg
(2007)

3. Delgrande, J., Schaub, T., Tompits, H., Woltran, S.: Merging Logic Programs un-
der Answer Set Semantics. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS,
vol. 5649, pp. 160–174. Springer, Heidelberg (2009)

4. Eiter, T., Fink, M.: Uniform Equivalence of Logic Programs under the Stable Model
Semantics. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238.
Springer, Heidelberg (2003)

5. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and uniform equivalence
in answer-set programming: characterizations and complexity results for the non-
ground case. In: Proceedings AAAI 2005, pp. 695–700 (2005)

6. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. In: Proceedings KR
2004, pp. 141–151. AAAI Press, Menlo Park (2004)

7. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set
programming. In: Proceedings IJCAI 2005, pp. 97–102 (2005)

8. Ferraris, P.: Answer Sets for Propositional Theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005)

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings ICLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)

10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

11. Gunter, C.A., Scott, D.S.: Semantic domains. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, vol. B, pp. 633–674. North-Holland, Amsterdam
(1990)

12. Inoue, K.: Hypothetical reasoning in logic programs. J. Logic Programming 18,
191–227 (1994)

Exploring Relations between Answer Set Programs 109

13. Inoue, K., Kudoh, Y.: Learning extended logic programs. In: Proceedings IJCAI
1997, pp. 176–181. Morgan Kaufmann, San Francisco (1997)

14. Inoue, K., Sakama, C.: Negation as failure in the head. J. Logic Programming 35,
39–78 (1998)

15. Inoue, K., Sakama, C.: Equivalence of Logic Programs Under Updates. In: Alferes,
J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 174–186. Springer,
Heidelberg (2004)

16. Inoue, K., Sakama, C.: Equivalence in abductive logic. In: Proceedings IJCAI 2005,
pp. 472–477 (2005)

17. Inoue, K., Sakama, C.: Generality Relations in Answer Set Programming. In:
Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 211–225.
Springer, Heidelberg (2006)

18. Inoue, K., Sakama, C.: Generality and equivalence relations in default logic. In:
Proceedings AAAI 2007, pp. 434–439 (2007)

19. Inoue, K., Sakama, C.: Comparing abductive theories. In: Proceedings 18th Euro-
pean Conference on Artificial Intelligence, pp. 35–39 (2008)

20. Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming.
In: Gabbay, D., Hogger, C., Robinson, J. (eds.) Handbook of Logic in Artificial
Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press,
Oxford (1998)

21. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2, 526–541 (2001)

22. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR
2007. LNCS (LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007)

23. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence 25, 369–389 (1999)

24. Lifschitz, V., Woo, T.Y.C.: Answer sets in general nonmonotonic reasoning (pre-
liminary report). In: Proceedings KR 1992, pp. 603–614. Morgan Kaufmann, San
Francisco (1992)

25. Lin, F.: Reducing strong equivalence of logic programs to entailment in classical
propositional logic. In: Proceedings KR 2002, pp. 170–176 (2002)

26. Maher, M.J.: Equivalence of logic programs. In: Minker, J. (ed.) Foundations of
Deductive Databases and Logic Programming, pp. 627–658 (1988)

27. Marek, V.W., Niemelä, I., Truszczyński, M.: Logic programs with monotone ab-
stract constraint atoms. Theory and Practice of Logic Programming 8, 167–199
(2007)

28. Muggleton, S., de Raedt, L.: Inductive logic programming: theory and methods. J.
Logic Programming 19/20, 629–679 (1994)

29. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming.
LNCS (LNAI), vol. 1228. Springer, Heidelberg (1997)

30. Oetsch, J., Tompits, H.: Program correspondence under the answer-set semantics:
the non-ground case. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 591–605. Springer, Heidelberg (2008)

31. Oetsch, J., Tompits, H., Woltran, S.: Facts do not cease to exist because they are
ignored: relativised uniform equivalence with answer-set projection. In: Proceedings
AAAI 2007, pp. 458–464 (2007)

32. Otero, R.: Induction of stable models. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001.
LNCS (LNAI), vol. 2157, pp. 193–205. Springer, Heidelberg (2001)

110 K. Inoue and C. Sakama

33. Pearce, D., Tompits, H., Woltran, S.: Relativised equivalence in equilibrium logic
and its applications to prediction and explanation: preliminary report. In: Proceed-
ings LPNMR 2007 Workshop on Correspondence and Equivalence for Nonmono-
tonic Theories, pp. 37–48 (2007)

34. Plotkin, G.D.: A note on inductive generalization. In: Meltzer, B., Michie, D. (eds.)
Machine Intelligence, vol. 5, pp. 153–163. Edinburgh University Press, Edinburgh
(1970)

35. Pührer, J., Tompits, H.: Casting Away Disjunction and Negation under a Gener-
alisation of Strong Equivalence with Projection. In: Erdem, E., Lin, F., Schaub, T.
(eds.) LPNMR 2009. LNCS, vol. 5753, pp. 264–276. Springer, Heidelberg (2009)

36. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
37. Sagiv, Y.: Optimizing datalog programs. In: Minker, J. (ed.) Foundations of De-

ductive Databases and Logic Programming, pp. 659–668 (1988)
38. Sakama, C.: Ordering default theories and nonmonotonic logic programs. Theoret-

ical Computer Science 338, 127–152 (2005)
39. Sakama, C.: Induction from answer sets in nonmonotonic logic programs. ACM

Transactions on Computational Logic 6, 203–221 (2005)
40. Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic

programs and deductive databases. J. Automated Reasoning 13, 145–172 (1994)
41. Sakama, C., Inoue, K.: Prioritized logic programming and its application to com-

monsense reasoning. Artificial Intelligence 123, 185–222 (2000)
42. Sakama, C., Inoue, K.: Combining Answer Sets of Nonmonotonic Logic Programs.

In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 320–339.
Springer, Heidelberg (2006)

43. Sakama, C., Inoue, K.: Constructing Consensus Logic Programs. In: Puebla, G.
(ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 26–42. Springer, Heidelberg (2007)

44. Sakama, C., Inoue, K.: Coordination in answer set programming. ACM Transac-
tions on Computational Logic 9(2), A9 (2008)

45. Sakama, C., Inoue, K.: Brave induction: a logical framework for learning from
incomplete information. Machine Learning 76(1), 3–35 (2009)

46. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artificial Intelligence 138, 181–234 (2002)

47. Son, T.C., Pontelli, E., Tu, P.H.: Answer sets for logic programs with arbitrary
abstract constraint atoms. J. Artificial Intelligence Research 29, 353–389 (2007)

48. Truszczyński, M., Woltran, S.: Hyperequivalence of logic programs with respect to
supported models. In: Proceedings AAAI 2008, pp. 560–565 (2008)

49. Woltran, S.: Characterizations for Relativized Notions of Equivalence in Answer
Set Programming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI),
vol. 3229, pp. 161–173. Springer, Heidelberg (2004)

50. Woltran, S.: A common view on strong, uniform, and other notions of equivalence
in answer set programming. Theory and Practice of Logic Programming 8, 217–234
(2008)

51. Wong, K.-S.: Sound and complete inference rules for SE-consequences. Journal of
Artificial Intelligence Research 31, 205–216 (2008)

52. Zhou, Y., Zhang, Y.: Rule Calculus: Semantics, Axioms and Applications. In:
Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293,
pp. 416–428. Springer, Heidelberg (2008)

Compact Translations of Non-disjunctive Answer Set
Programs to Propositional Clauses

Tomi Janhunen and Ilkka Niemelä

Aalto University
Department of Information and Computer Science

P.O. Box 15400, FI-00076 Aalto, Finland
{Tomi.Janhunen,Ilkka.Niemela}@aalto.fi

Abstract. Propositional satisfiability (SAT) solvers provide a promising compu-
tational platform for logic programs under the stable model semantics. Comput-
ing stable models of a logic program using a SAT solver presumes translating
the program into a set of clauses in the DIMACS format which is accepted by
most SAT solvers as input. In this paper, we present succinct translations from
programs with choice rules, cardinality rules, and weight rules—also known as
SMODELS programs—to sets of clauses. These translations enable us to harness
SAT solvers as black boxes to the task of computing stable models for logic
programs generated by any SMODELS compatible grounder such as LPARSE or
GRINGO. In the experimental part of this paper, we evaluate the potential of SAT
solver technology in finding stable models using NP-complete benchmark prob-
lems employed in the Second Answer Set Programming Competition.

1 Introduction

Logic programs under the stable model semantics [9] provide an interesting basis for
solving search problems using the answer set programming (ASP) paradigm [20,16,22].
In ASP a problem is solved by devising a logic program such that the stable models of
the program provide the answers to the problem, i.e., solving the problem is reduced to
a stable model computation task. For the success of ASP, efficient solver technology is
a key issue. Typically, ASP solvers use a two level architecture where a grounder takes
an input program with variables and compiles it to a ground program which preserves
the stable models of the original program, and then a model finder is used for computing
stable models of the resulting ground program. Current ASP systems such as SMODELS

[24], DLV [14], and CLASP [8] provide efficient grounder and model finder components.
In some systems the components are separate and can be combined in various ways.
This is the case, for example, for the grounder LPARSE and the model finder SMODELS

and similarly for the grounder GRINGO and the model finder CLASP. In addition to these
native model finders, a number of other systems have been developed to exploit SAT
solver technology in the computation of stable models. Naturally, the idea is to benefit
from the rapid development of SAT solvers.

In this paper we investigate this approach further with the goal of developing a com-
pact translation of ground ASP programs to propositional clauses so that a SAT solver
can be used unmodified as the model finder component of an ASP system.

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 111–130, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

112 T. Janhunen and I. Niemelä

For a number of subclasses of normal programs the translation to clauses can be done
using Clark’s completion Comp(P) [3]. The most well-known class is that without pos-
itive recursion, so-called tight [6] logic programs. For a tight program P , the respective
sets of stable models SM(P), supported models SuppM(P), and classical models of
Comp(P) coincide. To deal with non-tight programs in a similar fashion further con-
straints become necessary in addition to Comp(P). One possibility is to introduce loop
formulas [19] on the fly to exclude models of the completion (i.e., supported models)
which are not stable models. As witnessed by the ASSAT system [19] this strategy can
be highly efficient. A drawback of the approach is that, at worst, the solver might in-
troduce exponentially many loop formulas in program length (denoted ‖P‖). Although
the number of loop formulas often stays reasonably low, e.g., when computing just one
stable model, they can become a bottleneck when finding all models—or proving their
non-existence—is of interest. There is a follow-up system CMODELS [15] which imple-
ments an improved ASP-SAT algorithm detailed in [10]. As demonstrated therein, there
are logic programs for which the number of supported models is exponentially greater
than that of stable models. Therefore, extra bookkeeping is required in order to avoid
repetitive disqualification of supported but non-stable models.

The translations from normal programs into propositional theories [2,18,11] provide
a way to circumvent the worst-case behavior of the strategy based on loop formulas.
However, the translation in [2] does not yield a one-to-one correspondence of models,
and the one in [18] is quadratic which makes it infeasible for larger program instances.
The most compact proposal [11] exploits a characterization of stable models in terms
of level numberings—leading to a translation of the order of ‖P‖× log2 |At(P)| where
At(P) is the set of atoms appearing in P . Additionally, the idea of the translation is to
remove all positive body literals from a normal program which makes Clark’s comple-
tion sound for a program transformed in this way. There is also an implementation of
this transformation, a translator called LP2SAT, evaluated in [11]. Quite recently, it has
also been established that stable models of normal programs can be captured in an ex-
tension of propositional logic, called difference logic, using level rankings [23] which
are quite close to the level numbering technique in [11]. Difference logic can be seen
as an instance of the satisfiability modulo theories (SMT) framework and practically all
major SMT solvers support it. The translation is very compact, linear size, and when
using current SMT solvers it leads to very competitive performance [13]. Our objective
is to take a similar approach when translating programs into propositional logic.

The goal of this paper is to develop effective compact translations from ground logic
programs to propositional clauses based on results in [11,23,13] in such a way that a
SAT solver can be used unmodified as the model finder component in an ASP system.
The developed translation has a number of novel features. It handles not just normal pro-
grams but also programs with cardinality and weight constraints (so-called SMODELS

programs) in a compact way. The main part of the translation is done by logic program
level transformations from an SMODELS program P to a normal program P ′ in such a
way that the stable models of P correspond to the supported models of P ′. In this way
ASP techniques can be applied for succinctly representing the additional constraints
and to optimize the encoding. Moreover, a standard Clark’s completion based technique
can be used directly to P ′ to generate a set of clauses capturing the supported models

Compact Translations of Non-disjunctive Answer Set Programs 113

of P ′ and, hence, the stable models of P . The rest of the paper is structured as follows.
In the next section we explain briefly the necessary basics of logic programs. In Sec-
tion 3, the translation from logic programs to clauses is developed. Section 4 provides
an experimental evaluation of the translations compared to state-of-the-art techniques
for computing stable models. Finally, we present our conclusions in Section 5.

2 Preliminaries

A propositional normal program P is a set of normal rules of the form

a← b1, . . . , bn, ∼c1, . . . , ∼cm. (1)

where a, b1, . . . , bn, and c1, . . . , cm are propositional atoms, and ∼ denotes default
negation. In the sequel, propositional atoms are called just atoms for short. The intuition
behind a normal rule r of the form (1) is that the head atom H(r) = a is true whenever
the body B(r) = {b1, . . . , bn, ∼c1, . . . , ∼cm} of the rule is satisfied. This is the case
exactly when the positive body atoms in B+(r) = {b1, . . . , bn} are necessarily true by
the other rules in the program whereas none of the negative body atoms in B−(r) =
{c1, . . . , cm} is satisfied in this sense. We define the positive part r+ of a rule r as
H(r) ← B+(r) hence omitting negative body conditions. A normal programP is called
positive, if r = r+ holds for every rule r ∈ P . Occasionally, we also use integrity
constraints which are rules (1) without the head a and denoting the falsity of the body.
Such constraints can expressed using a new head atom f and the literal ∼f in the body.

To define the semantics of normal programs, we write At(P) for the set of atoms
that appear in a program P . An interpretation I ⊆ At(P) of P determines which
atoms a ∈ At(P) are true (a ∈ I) and which atoms are false (a ∈ At(P) \ I). A rule
r is satisfied in I , denoted by I |= r iff I |= H(r) is implied by I |= B(r) where ∼ is
treated classically, i.e., I |= ∼ci iff I �|= ci. An interpretation I is a (classical) model of
P , denoted I |= P iff I |= r for each r ∈ P . A model M |= P is a minimal model of P
iff there is no model M ′ |= P such that M ′ ⊂ M . In particular, every positive normal
program P has a unique minimal model, i.e., the least model LM(P) of P .

The least model semantics can be extended to cover an arbitrary normal program P
[9] by reducing P into a positive program PM = {r+ | r ∈ P and M ∩ B−(r) = ∅}
with respect to any model candidate M ⊆ At(P). In particular, an interpretation M ⊆
At(P) is a stable model of P iff M = LM(PM). The number of stable models can
vary in general and we write SM(P) for the set of stable models associated with P . The
stable model semantics was preceded by an alternative semantics, namely the one based
on supported models [1]. A classical model M of a normal program P is a supported
model of P iff for every atom a ∈ M there is a rule r ∈ P such that H(r) = a
and M |= B(r). Inspired by this idea, we define for any program P and interpretation
I ⊆ At(P), the set of supporting rules SuppR(P, I) = {r ∈ P | I |= B(r)}. As
shown in [21], stable models are also supported models, but not necessarily vice versa.

The positive dependency graph DG+(P) of a normal program P is formally a pair
〈At(P),≤〉 where b ≤ a iff there is a rule r ∈ P such that H(r) = a and b ∈ B+(r).
A strongly connected component (SCC) of DG+(P) is a non-empty subset S ⊆ At(P)
such that (i) a ≤∗ b holds for each a, b ∈ S and the reflexive and transitive closure ≤∗

114 T. Janhunen and I. Niemelä

of ≤ and (ii) S is maximal with this property. The set of rules associated with an SCC
S is DefP (S) = {r ∈ P | H(r) ∈ S}. The same notation is also overloaded for single
atoms by setting DefP (a) = DefP ({a}).

The completion of a normal program P , denoted by Comp(P), contains a formula

a↔
∨

r∈DefP (a)

(
∧

b∈B+(r)

b ∧
∧

c∈B−(r)

¬c) (2)

for each atom a ∈ At(P). For a propositional theory T and its signature At(T), we
define the set of classical models by setting CM(T) = {M ⊆ At(T) | M |= T}. It is
well-known that SuppM(P) = CM(Comp(P)) holds for any normal program P .

3 Translations

The aim of this section is to provide a compact translation of a ground logic program
P into a set S of clauses such that the stable models of P are captured as classical
models of S. In addition to normal rules we show how to treat also choice rules and
rules with cardinality and weight constraints, i.e., the class of programs supported by
the SMODELS system [24]. Such a transformation will be devised in three steps:

1. First we show how to translate SMODELS programs into normal programs in a se-
mantics preserving way (Section 3.2).

2. Then we develop a translation which extends a normal program P in such a way
that the supported models of the transformed program coincide with the stable
models of P (Section 3.3).

3. The final step is to map the transformed program to a set of clauses. This can be
implemented directly with Clark’s completion [3] because the classical models of
the completion capture the supported models of the program (Section 3.4).

Step 2 is rather involved and it is based on a characterization of stable models with level
rankings [23]. A level ranking l(·) is a function that maps an atom a to a natural number
l(a), i.e., its level rank. The translation in Step 2 is given using only two primitive
operations for comparing the level ranks associated with atoms a and b:

– l(b) < l(a), denoted by a new atom lt(b, a), and
– l(a) = l(b) + 1, analogously denoted by an atom succ(b, a).

In Section 3.1 we show how to define lt(b, a) and succ(b, a) capturing conditions
l(b) < l(a) and l(a) = l(b) + 1, respectively. This is based on the idea of representing
level ranks in binary using vectors of new propositional atoms following the approach
of [11]. Next we outline the main ideas of the transformation in Step 2 where the aim is
to devise a translation for any given normal program P so that the supported models of
the transformed program correspond to the stable models of the original program P .

Roughly speaking, we resort to the supported models of the original program P aug-
mented by further rules to exclude non-stable models. These rules are used to represent
conditions for checking the existence of a level ranking [23] of atoms in the program
which is closely related to a level numbering [11] of atoms and rules of the program. It

Compact Translations of Non-disjunctive Answer Set Programs 115

turns out that a supported model M of a program of P is a stable model of P iff it has a
level ranking such that each atom a ∈M has a defining supporting rule whose positive
body literals have a level rank strictly lower than that of a [23]. To capture the existence
of a level ranking the additional rules include for each normal rule (1), a rule

just(a) ← b1, . . . , bn, ∼c1, . . . , ∼cm, lt(b1, a), . . . , lt(bn, a). (3)

and moreover for each atom a, a constraint

← a, ∼just(a). (4)

where just(a) is a new atom and lt(bi, a) is a new atom implementing the comparison
l(bi) < l(a) between the level ranks l(bi) and l(a) of atoms bi and a, respectively (see
Section 3.1 for the definition of the atoms lt(bi, a)) .The idea of the translation is that

– a supported model of the translation gives a supported model of the original pro-
gram which has a level ranking, i.e. is a stable model of the original program [23];

– a stable model of the original program can be extended to a supported model of the
translation.

Hence, the translation preserves existence of models and can be used in standard rea-
soning tasks such as brave and cautious reasoning, and checking the existence of sta-
ble models. It can be extended to guarantee that there is a one-to-one correspondence
between the stable models of the original program and the supported models of the
translation by adding strong ranking constraints [23]. There are two variants of strong
ranking constraints as put forth in [13]. The local strong ranking constraints add the re-
quirement that each supported rule (1) has a positive body literal bi whose level ranking
is at most one lower than that of the head a, i.e., l(bi) + 1 ≥ l(a) holds [23]. Global
strong level ranking constraints, on the other hand, concern the support of a globally
and require the existence of at least one supporting rule (1) where l(a) = l(bi)+1 holds
for some bi. Using rules these constraints are encoded as follows.

– The local strong ranking constraints include for every normal rule (1), the constraint

← b1, . . . , bn, ∼c1, . . . , ∼cm,
lt(b1, a),∼succ(b1, a), . . . , lt(bn, a),∼succ(bn, a). (5)

where each lt(bi, a) is a new atom implementing the comparison l(bi) < l(a) and
succ(bi, a) the comparison l(a) = l(bi)+1 as to be detailed in Section 3.1. Rule (5)
formalizes the ranking constraint in a denial form, i.e., it cannot be the case that for
a supported rule the condition l(bi)+1 ≥ l(a) is false for every positive body literal
bi. Notice that the condition that l(bi)+1 ≥ l(a) does not hold, i.e. l(bi)+1 < l(a)
holds, is equivalently stated as the conjunction of l(bi) < l(a) and l(a) �= l(bi) + 1.

– The global strong ranking constraints contain for each rule of the form (1), the rules

next(a) ← b1, . . . , bn, ∼c1, . . . , ∼cm, succ(b1, a).
. . .
next(a) ← b1, . . . , bn, ∼c1, . . . , ∼cm, succ(bn, a).

(6)

116 T. Janhunen and I. Niemelä

and then for each atom a a constraint

← a,∼next(a). (7)

where next(a) is a new atom and succ(bi, a) is an atom implementing the com-
parison l(a) = l(bi) + 1 given in Section 3.1.

The translation can be optimized considerably by exploiting the strongly connected
components (SCCs) of the positive dependency graph of a program in two ways:

– The translation can be done one SCC at a time reducing substantially the number
of bits needed in the binary representation of level ranks.

– The definition of non-circular justification for an atom a, as captured by the def-
inition (3) of just(a) above, can be further separated to external support coming
from outside of the SCC of a and internal support originating from the SCC of a
and then utilizing the relationship of external and internal support.

Moreover, the translation can be made more compact by introducing new atoms to
exploit the shared substructure of the rules. For example, the condition that the body
b1, . . . , bn, ∼c1, . . . , ∼cm of a rule r is satisfied appears multiple times in the trans-
lation and can be distinguished by introducing a new atom bt(r) and a defining rule

bt(r) ← b1, . . . , bn, ∼c1, . . . , ∼cm. (8)

Section 3.3 describes the further details of an optimized translation.

3.1 Primitives for Representing Level Rankings

In this section we present primitives for handling level rankings needed in the second
step of our translation from SMODELS programs into a set of clauses. In that step we
are going to extend a normal program P in such a way that the supported models of
the transformed program coincide with the stable models of P (see Section 3.3). The
translation is based on level rankings and is stated using two primitive operations for
comparing the level ranks l(a) and l(b) associated with atoms a and b: lt(a, b) and
succ(a, b) capturing conditions l(a) < l(b) and l(b) = l(a) + 1, respectively.

In order to encode these operations, we closely follow the approach of [11] and use
a vector a1 . . . an of new propositional atoms to encode the level rank l(a) in binary.
In such a vector, the atoms a1 and an, respectively, capture the most and the least
significant bits of l(a). On the semantical side, the precise idea will be that the ith bit of
the number l(a) equals to 1 iff the proposition ai is true in a supported model M , i.e.,

l(a) =
∑
{2n−i | 1 ≤ i ≤ n and M |= ai}. (9)

The number n of bits required depends on the size of the SCC S in which a resides and
this number equals to $log2 |S|%. To further optimize our encodings, we represent level
ranks using off-by-one values 0, . . . , |S| − 1 rather than 1, . . . , |S| used in [11,23].

Table 1 introduces the subprograms for defining the atoms lt(b, a) and succ(b, a).
These subprograms concern two distinct atoms a and b involved in a non-trivial SCC

Compact Translations of Non-disjunctive Answer Set Programs 117

Table 1. Subprograms related with bit vectors

Primitive Definition using normal rules

SELn(a) {ai ← ∼ai. ai ← ∼ai. | 1 ≤ i ≤ n}

CLRn(a) {← ai. | 1 ≤ i ≤ n}

LTn(a, b) {lt(a, b)i ← ∼ai, bi. | 1 ≤ i ≤ n}∪

{lt(a, b)i ← ∼ai, ∼bi, lt(a, b)i+1. | 1 ≤ i < n}∪

{lt(a, b)i ← ai, bi, lt(a, b)i+1. | 1 ≤ i < n}

EQn(a, b) {eq(a, b)1 ← a1, b1. eq(a, b)1 ← ∼a1, ∼b1. | 1 < n}∪

{eq(a, b)i ← eq(a, b)i−1, ai, bi. | 2 ≤ i < n}∪

{eq(a, b)i ← eq(a, b)i−1, ∼ai, ∼bi. | 2 ≤ i < n}

SUCCn(a, b) {succ(a, b)1 ← ∼a1, b1. }∪

{succ(a, b)i ← eq(a, b)i−1, ∼ai, bi. | 2 ≤ i ≤ n} ∪

{succ(a, b)i ← succ(a, b)i−1, ai, ∼bi. | 2 ≤ i ≤ n}

S with |S| > 1 and their level ranks l(a) and l(b) which are represented by vectors
of new atoms a1 . . . an and b1 . . . bn where n = $log2 |S|%. For the sake of flexibility,
we allow for adding extra positive/negative conditions to control the activation of these
subprograms. To this end, we use a notation similar to that of normal rules (1). For
example, the program CLRn(a) ← a, ext(a) would consist of integrity constraints

← a1, a, ext(a). . . .← an, a, ext(a).

These rules illustrate how the extra conditions are added to all rules of the program sub-
ject to this construction. The primitives listed in Table 1 serve the following purposes.

1. The program SELn(a) selects a level rank 0 ≤ l(a) < 2n for the atom a. Since
a1 . . . an do not have any other defining rules we call them input atoms. They can be
treated very succinctly in the completion step (see Section 3.4 for details). The new
atoms a1, . . . , an act as complements of a1, . . . , an and they are only required to
define input atoms with normal rules and do not appear elsewhere in our translation.

2. The role of CLRn(a) is to clear the rank l(a), i.e., to assign l(a) = 0 for atom a.
3. The program LTn(a, b) checks whether l(a) < l(b). To keep the length of this

program linear in n, a vector of new atoms lt(a, b)1 . . . lt(a, b)n is introduced.
The informal reading of lt(a, b)i is that l(a) < l(b) holds if only bits in positions
i, . . . , n are taken into account. Hence, the atom lt(a, b)1 related with the first (most
significant) bits of l(a) and l(b) captures the overall result of the comparison.

4. The purpose of EQn(a, b) is to test whether the first i bits of l(a) and l(b) coincide
and this is also the informal reading of the new atom eq(a, b)i. The case i = n is
not needed by the program SUCCn(a, b) below and is hence omitted.

118 T. Janhunen and I. Niemelä

5. The program SUCCn(a, b) is used to check whether l(b) = l(a) + 1 holds. This
can be achieved recursively: the informal reading of succ(a, b)i is that the first i
bits of l(a) and l(b) constitute successive numbers in binary. In particular, rules of
the second kind break down recursion as they detect a trivial successor relationship
for the first i bits using eq(a, b)i−1 from the subprogram EQn(a, b).

3.2 Translating SMODELS Programs into Normal Programs

In addition to normal rules of the form (1), also known as basic rules, answer set pro-
grams in the SMODELS system are based on three extended rule types

{a1, . . . , ah} ← b1, . . . , bn,∼c1, . . . ,∼cm. (10)

a← l ≤ {b1, . . . , bn,∼c1, . . . ,∼cm}. (11)

a← w ≤ {b1 = wb1 , . . . , bn = wbn ,∼c1 = wc1 , . . . ,∼cm = wcm}. (12)

where a, ai’s, bj’s, and ck’s are propositional atoms. The head {a1, . . . , ah} of a choice
rule (10) denotes a choice to be made when the body of the rule is satisfied: any of
ai’s can be true. The body of a cardinality rule (11) is satisfied when the number of
satisfied literals is at least l. More generally, the body of a weight rule (12) is satis-
fied if the sum of weights (denoted by wbj ’s and wck

’s above) of satisfied literals is at
least w.

Since our goal is to translate any SMODELS program P into a program solely con-
sisting of normal rules (1), denoted Normal(P), the heads of choice rules (10) and
the bodies of cardinality rules (11) and weight rules (12) have to be dealt with. A
choice rule r of the form (10) can be turned into a normal rule (1) by replacing its
head by a new atom bt(r), denoting that the body of r is true, and by adding normal
rules

a1 ← bt(r), ∼a1. . . . ah ← bt(r), ∼ah.
a1 ← ∼a1. . . . ah ← ∼ah.

with new atoms a1, . . . , ah that denote the complements of a1, . . . , ah, respectively.
It is quite demanding to represent the body of a cardinality rule (11) using normal

rules succinctly.1 To obtain a polynomial encoding, we resort to a representation which
is formulated by Eén and Sörensson [5] when translating pseudo-Boolean constraints.
In the general case, l × (n + m− l) new atoms of the form cnt(i, j) are needed. Here
1 ≤ i ≤ l counts the number of satisfied literals and l − i + 1 ≤ j ≤ n + m −
i + 1 selects the jth literal (either bj or ∼cj−n) amongst b1, . . . , bn, ∼c1, . . . , ∼cm

in the body of (11). The intuitive reading of cnt(i, j) is that, from the jth up to the
(n + m)th literal, the number of true literals in the body of the rule is at least i.
Hence, the atom cnt(l, 1) captures the intended condition for making the head a of
(11) true. Given these considerations, a cardinality rule (11) translates into following
rules:

1 In general, there are
(

n+m
l

)
ways to satisfy the body—suggesting that an exponential number

of normal rules would be required to represent a cardinality rule in the worst case.

Compact Translations of Non-disjunctive Answer Set Programs 119

a ←− cnt(3, 1)
∼b1←− cnt(3, 2)

∼b2←− cnt(3, 3)

↑ b1 ↑ b2 ↑ b3

cnt(2, 2)
∼b2←− cnt(2, 3)

∼b3←− cnt(2, 4)

↑ b2 ↑ b3 ↑ ∼c1

cnt(1, 3)
∼b3←− cnt(1, 4)

∼c1←− cnt(1, 5)

↑ b3 ↑ ∼c1 ↑ ∼c2

Fig. 1. Counting grid capturing a cardinality constraint

cnt(1, j) ← bj . (l ≤ j ≤ n)
cnt(1, j) ← ∼cj−n. (max(l, n + 1) ≤ j ≤ n + m)
cnt(i, j) ← cnt(i− 1, j), bj. (1 < i ≤ l and l − i + 1 ≤ j ≤ n)
cnt(i, j) ← cnt(i− 1, j), ∼cj−n. (1 < i ≤ l and max(l, n + 1) ≤ j ≤ n + m − i + 1)
cnt(i, j) ← cnt(i, j + 1), ∼bj. (1 < i ≤ l and l − i + 1 ≤ j < n)
cnt(i, j) ← cnt(i, j + 1), ∼cj−n. (1 < i ≤ l and max(l, n + 1) ≤ j < n + m − i + 1)
cj−n ← ∼cj−n. (max(l, n + 1) ≤ j < n + m − i + 1)
a← cnt(l, 1).

These rules give rise to a kind of a counting grid. One such grid is illustrated in Figure 1
in the case of parameter values l = 3, n = 3, and m = 2. As regards the soundness
of the overall transformation, the complementary atoms cj−n used in the translation
deserve special attention. They pre-empt the creation of new positive dependencies2

between the head atom a and the negative body atoms c1, . . . , cn and are therefore
crucial under stable model semantics. This aspect does not arise in Eén and Sörensson’s
translation [5] due to the symmetry of truth values under classical semantics.

Example 1. Consider a cardinality rule a← 3 ≤ {b1, b2, b3, ∼c1, ∼c2} and its trans-
lation as illustrated by the grid structure in Figure 1. Literals marked along the arrows
give the conditions on which truth can be propagated for atoms appearing in the nodes
of the grid. For instance, if ∼c2 and ∼c1 are satisfied, atoms cnt(1, 5) and cnt(2, 4)
can be inferred to be true. If b3 and b2 are not satisfied, then ∼b3 and ∼b2 are. Con-
sequently, atoms cnt(2, 3) and cnt(2, 2) become true. If, in addition, b1 is satisfied,
then cnt(3, 1) and eventually a can be inferred to be true. In this way, the levels 1, 2,
and 3 count the number of satisfied literals. There are also alternative ways to infer a
true. Intuitively, each vertical “move” in the grid captures the satisfaction of one further
literal whereas any horizontal one leaves the count of true literals unchanged. �

The treatment of weight rules (12) is much more challenging in the general case. To
simplify the setting, we concentrate on the case m = 0. This is without loss of generality
because an arbitrary weight rule can be transformed into such a form by introducing
complementary atoms defined in terms of normal rules c1 ← ∼c1, . . . , cm ← ∼cm and
by rewriting (12) as a purely positive weight rule

a← w ≤ {b1 = wb1 , . . . , bn = wbn , c1 = wc1 , . . . , cm = wcm}. (13)

2 The notion of positive dependency straightforwardly generalizes for the rule types (10)–(12).

120 T. Janhunen and I. Niemelä

where the weights wc1 , . . . , wcm remain unchanged. This step is also beneficial for
the forthcoming translation because the definitions of c1, . . . , cm block any positive
dependencies from the head a to the negative body atoms c1, . . . , cm.

As regards the evaluation of the rule body (12) in the case m = 0, we take a quite
straightforward approach and count the sum of weights associated with satisfied body
literals dynamically. The intermediate results of summing up these numbers are repre-
sented using vectors of propositional atoms in analogy to Section 3.1. The number of
bits b required is determined by the bound w and the unconditional (maximum) sum of
weights

∑
1≤i≤n wbi . Suppose that the vector y1 . . . yb encodes the sum up to first i−1

atoms and x1 . . . xb is the new value to be computed using bi in the body of (12) with
m = 0. If bi is not satisfied, then x1 . . . xb is simply made a copy of y1 . . . yb as follows:

xj ← yj ,∼bi. (1 ≤ j ≤ b and 1 ≤ i ≤ n) (14)

Otherwise, the vector x1 . . . xb should represent the sum of y1 . . . yb and the weight
w1 . . . wb of bi in binary. This is achieved by the following rules conditioned by bi:

wj = 0 wj = 1
xj ← bi, yj , ∼carry(xj+1, yj+1).
xj ← bi, ∼yj, carry(xj+1, yj+1).
carry(xj , yj) ←

bi, yj , carry(xj+1, yj+1).

xj ← bi, yj , carry(xj+1, yj+1).
xj ← bi, ∼yj, ∼carry(xj+1, yj+1).
carry(xj , yj) ← bi, yj .
carry(xj , yj) ← bi, carry(xj+1, yj+1).

xb ← bi, yb. xb ← bi, ∼yb.
carry(xb, yb) ← bi, yb.

In the rules above, the index j varies in the range 1 ≤ j < b and the new atom
carry(xj , yj) represents the carry bit associated with xj and yj . The translation de-
pends statically on the value of jth bit wj of the weight of bi. Now, if x represents the
result of all additions for b1, . . . , bn and w is the overall limit, then a← gte(x,w)1 cap-
tures the weight rule (12) with m = 0 in the presence of the subprogram GTEb(x,w):

gte(x,w)j ← xj . (wj = 0 and 1 ≤ j ≤ b)
gte(x,w)j ← ∼xj , gte(x,w)j+1. (wj = 0 and 1 ≤ j < b)
gte(x,w)j ← xj , gte(x,w)j+1 . (wj = 1 and 1 ≤ j < b)

This program formalizes the test for greater than or equal and is in this sense comple-
mentary to LTb(x,w) given in Table 1. However, static role of the weight w is fully
taken into account. More importantly, we cannot use a ← ∼lt(x,w)1 as the overall
translation of (12) with m = 0 because the positive dependency of a on b1, . . . , bn

would be lost—accordingly endangering the soundness of our transformation.

Theorem 1. Let P be an SMODELS program.

1. If M ∈ SM(P), then there is a unique stable model N ∈ SM(Normal(P)) such
that M = N ∩At(P).

2. If N ∈ SM(Normal(P)), then M ∈ SM(P) for M = N ∩At(P).

Using the terminology from [12], the outcome of Theorem 1 is that if new atoms are
hidden, any SMODELS program P is visibly equivalent to the result Normal(P) of nor-
malization. The normalization procedure as described above is also highly modular as

Compact Translations of Non-disjunctive Answer Set Programs 121

it can be constructed on a rule-by-rule basis. As regards the soundness of normalization
(Theorem 1), it is important that the positive dependencies between atoms in At(P) are
preserved in spite of the new atoms involved in Normal(P).

Normalization procedures have also been implemented in other ASP solvers. In the
CMODELS system, a reduction [7] from weight rules to nested rules [17] is applied.
Basically, such a reduction can be exponential in the worst case but it remains polyno-
mial if new atoms are introduced [7]. Optionally, also CLASP can remove extended rule
types from its input program if supplied the option flag -trans-ext=all from the
command line. According to the source code of CLASP both a worst-case quadratic and
a worst-case exponential transformation of cardinality/weight rules are implemented.

3.3 Capturing Stability Using Supported Models

We proceed to the details of a translation function LP2LPw(·) sketched in the begin-
ning of Section 3. It is a mapping within the class of normal programs—aiming at a
semantical shift from stable models to supported models. Our first mapping will be
based on weak ranking constraints only, hence the superscript w in the notation.

The translation LP2LPw(P) exploits the SCCs of the positive dependency graph of
the input program P in order to reduce the number of bits required to represent level
ranks of atoms. Essentially, the treatment of an SCC S ⊆ At(P) involves the translation
of the atoms in S and their defining rules, i.e., the subprogram DefP (S). By a slight
abuse of notation, we write LP2LPw(S) to denote the translation LP2LPw(DefP (S))
of the component S. Given a partitioning of At(P) into SCCs S1, . . . , Sm and the
respective subprograms DefP (S1), . . . ,DefP (Sm) of P , the translation LP2LPw(P)
is feasible component-by-component. Although LP2LPw(·) is non-modular in general,
the translation LP2LPw(P) can be realized as the union⋃m

i=1 LP2LPw(Si).

This program is typically different from LP2LPw(P) because level ranks are repre-
sentable with fewer bits. This also reveals the essential source of non-modularity in the
translation. The case of a trivial (singleton) SCC {a} is straightforward: it is sufficient
to remove all tautological rules r ∈ DefP (a) for which a ∈ B+(r). Thus, we define

LP2LPw({a}) = {r ∈ DefP (a) | a �∈ B+(r)}.

Let us then consider any non-trivial SCC S satisfying |S| > 1 and any atom a ∈
S involved in this component. Following an existing translation [13] into difference
logic, we introduce two new atoms ext(a) and int(a): these formalize the external and
internal support for the atom a via its definition DefP (a) ⊆ DefP (S). The atom a
contributes the following parts to the translation LP2LPw(S) where n = $log2 |S|%:

1. Each rule r ∈ DefP (a) is split into two normal rules

a← bt(r). bt(r) ← B(r). (15)

The latter rule coincides with (8) and the intermediate new atom bt(r) will control
the activation of other rules which depend on the satisfaction of this rule body.

122 T. Janhunen and I. Niemelä

2. For each rule r ∈ DefP (a) such that B+(r) ∩ S = ∅, a rule for external support:

ext(a) ← bt(r). (16)

3. The program SELn(a) from Table 1 is used to select a level rank l(a). Addition-
ally, it is important to assign l(a) = 0 using subprograms CLRn(a) ← ∼a and
CLRn(a) ← a, ext(a). These rules decrease degrees of freedom and they be-
come highly relevant when a one-to-one correspondence of models is sought later.

4. For each rule r ∈ DefP (a) such that B+(r) ∩ S = {b1, . . . , bm} �= ∅, a rule

int(a) ← bt(r), lt(b1, a)1, . . . , lt(bm, a)1, ∼ext(a). (17)

which captures internal support for a together with the subprograms LTn(b1, a) ←
bt(r), . . . ,LTn(bm, a) ← bt(r). These programs are used to evaluate the condi-
tions l(b1) < l(a), . . . , l(bm) < l(a) on level ranks associated with the rule r.

5. Finally, we require that a true atom in a component must have either external or
internal support by including an integrity constraint of the form

← a,∼ext(a),∼int(a). (18)

Roughly speaking, the rules of the translation LP2LPw(S) aim to express that if an
atom a ∈ S of a non-trivial SCC S is true in a stable model M ∈ SM(P), then it must
have either external or internal support by (18). This is how (4) is implemented when
these types of support are distinguished. External support can only be provided by a
rule r ∈ DefP (a) which does not positively depend on S and whose body is true under
M , i.e., B+(r)∩S = ∅ and r ∈ SuppR(DefP (a),M). If none of the rules of the forms
(16) and (15) enable the derivation of ext(a), then int(a) must be derivable by (17).
This means that a must have internal support: a rule r ∈ SuppR(DefP (a),M) such
that B+(r) ∩ S �= ∅ and l(a) > l(b) for every b ∈ B+(r) ∩ S. This captures (3) but
restricted to positive body atoms within the SCC in which a resides. The net effect of
the rules introduced above is that the non-stable supported models of P are eliminated.

Example 2. Consider a normal logic program P consisting of the following six rules:

r1 : a← b, c. r3 : c← ∼d. r5 : a← d.
r2 : b← a, ∼d. r4 : d← ∼c. r6 : b← a, ∼c.

The graph DG+(P) contains three SCCs, viz. S1 = {a, b}, S2 = {c}, and S3 = {d}.
Hence, the rules r3 and r4, related with the trivial SCCs of P are left untouched. On the
other hand, the translation of S1 requires the distinction of internal and external support
for a and b. To this end, we rewrite the rules in DefP (S1) = {r1, r2, r5, r6} by (15):

a← bt(r1). bt(r1) ← b, c. a← bt(r5). bt(r5) ← d.
b← bt(r2). bt(r2) ← a, ∼d. b← bt(r6). bt(r6) ← a, ∼c.

This is the first part of the translation LP2LPw(S1). The second part captures the po-
tential external support for a in terms of a rule of the form (16):

ext(a) ← bt(r5).

Compact Translations of Non-disjunctive Answer Set Programs 123

No such rules are introduced for b as it does not have a defining rule r such that B+(r)∩
S1 = ∅. The rest deals with level rankings that are representable with n = $log2 2% = 1
bit, i.e., only ranks 0 and 1 are essentially required. The third part chooses level ranks
using subprograms SEL1(a) and SEL1(b) as well as subprograms

CLR1(a) ← ∼a. CLR1(b) ← ∼b.
CLR1(a) ← a, ext(a). CLR1(b) ← b, ext(b).

i.e., the following rules altogether:

a1 ← ∼a1. a1 ← ∼a1. b1 ← ∼b1. b1 ← ∼b1.
← a1, ∼a. ← b1, ∼b.
← a1, a, ext(a). ← b1, b, ext(b).

The weak ranking constraints about a and b are captured by rules of the form (17) and
subprograms LT1(b, a) ← bt(r1), LT1(a, b) ← bt(r2), and LT1(a, b) ← bt(r6):

int(a) ← bt(r1), lt(b, a)1, ∼ext(a). lt(b, a)1 ← ∼b1, a1, bt(r1).
int(b) ← bt(r2), lt(a, b)1, ∼ext(b). lt(a, b)1 ← ∼a1, b1, bt(r2).
int(b) ← bt(r6), lt(a, b)1, ∼ext(b). lt(a, b)1 ← ∼a1, b1, bt(r6).

Finally, the relationship of internal and external support must be constrained by (18).

← a, ∼ext(a), ∼int(a). ← b, ∼ext(b), ∼int(b).

The supported models of the translation LP2LPw(P) introduced so far are

M1 = {c} and M2 = {a, b, d, b1, a1, int(b),bt(r6), lt(a, b)1, ext(a),bt(r5)}.
In particular, there is no supported model M extending {a, b, c} simply because this
would imply the falsity of ext(a) and ext(b) which, in turn, necessitates the truth of
int(a) and int(b) in M . But then both lt(a, b)1 and lt(b, a)1 ought to be true under
M by the defining rules of int(a) and int(b). This is clearly impossible and so is M .
Moreover, we deduce l(a) = 0 and l(b) = 1 by applying Equation (9) to M2. �

Theorem 2. Let P be a normal logic program.

1. If M ∈ SM(P), then there is N ∈ SuppM(LP2LPw(P)) so that M = N∩At(P).
2. If N ∈ SuppM(LP2LPw(P)), then M ∈ SM(P) for M = N ∩At(P).

However, the relationship of stable and supported models established in Theorem 2
need not be one-to-one although this happens to be the case in Example 2. The situation
would already be different if further bits were introduced to select ranks l(a) and l(b)
leading to a one-to-many relationship of models. Given these observations about model
correspondence, the translation LP2LPw(P) will be sufficient when the goal is to com-
pute only one stable model, or to check the existence of stable models. However, if the
goal is to compute all stable models, or to count the number of stable models, further
constraints have to be expressed (using normal rules subject to supported models) in
order to avoid generation of stable models N1, N2 ∈ SuppM(LP2LPw(P)) satisfying
N1 �= N2, N1 ∩At(P) = M = N2 ∩At(P), and M ∈ SM(P) by Theorem 2. In what
follows, we strengthen the conditions on level rankings by introducing rules similar to
(5), (6), and (7), but which take the SCC of a properly into account and try to share
primitives from Table 1 as far as possible:

124 T. Janhunen and I. Niemelä

6. For each rule r ∈ DefP (a) such that B+(r) ∩ S = {b1, . . . , bm} �= ∅, a constraint

← bt(r), lt(b1, a)1, ∼succ(b1, a)n, . . . , lt(bm, a)1, ∼succ(bm, a)n (19)

7. For each rule r ∈ DefP (a) such that B+(r) ∩ S = {b1, . . . , bm} �= ∅, rules

next(a) ← bt(r), succ(b1, a)n. . . . next(a) ← bt(r), succ(bm, a)n.
(20)

together with one global constraint

← int(a), ∼next(a). (21)

These rules must be accompanied by the respective subprograms

SUCCn(b1, a) ← bt(r), . . . , SUCCn(bm, a) ← bt(r) and
EQn(b1, a) ← bt(r), . . . , EQn(bm, a) ← bt(r)

required by them. Items 6 and 7 above give rise three new variants of our translation:

– LP2LPwl(P) extends LP2LPw(P) with constraints from Item 6,
– LP2LPwg(P) extends it with rules and the global constraint from Item 7, and
– LP2LPwlg(P) extends LP2LPw(P) using both.

As a result of these additional constraints, if it is possible to assign a level rank l(a) to
each atom residing in a non-trivial SCC of DG+(P) and true in a supported model M
of any translation LP2LPw∗(P) above, this can be done only in a unique way.

Example 3. For the program P of Example 2, the translation LP2LPw(P) was already
presented. As n = 1, the constraints and rules arising from (19) are simply as follows:

← bt(r1), lt(b, a)1, ∼succ(b, a)1. succ(b, a)1 ← ∼b1, a1, bt(r1).
← bt(r2), lt(a, b)1, ∼succ(a, b)1. succ(a, b)1 ← ∼a1, b1, bt(r2).
← bt(r6), lt(a, b)1, ∼succ(a, b)1. succ(a, b)1 ← ∼a1, b1, bt(r6).

On the other hand, the global formulations are based on (20) and (21):

next(a) ← bt(r1), succ(b, a)1. next(b) ← bt(r2), succ(a, b)1.
next(b) ← bt(r6), succ(a, b)1.

← int(a), ∼next(a). ← int(b), ∼next(b).

The stable models of the resulting translations are essentially the same (recall M1 and
M2 from Example 2) except that M2 has to be extended by the following new atoms
related with the additional rules and supposed to be true in M2: succ(a, b)1 in any case
and next(b) if rules of the form (20) are present. Given these additions to M2, it is
clear that none of the constraints listed above is violated by M2. �

Theorem 3. Let P be a normal logic program.

1. If M ∈ SM(P), then there is a unique model N ∈ SuppM(LP2LPwl(P)) such
that M = N ∩At(P).

2. If N ∈ SuppM(LP2LPwl(P)), then M ∈ SM(P) for M = N ∩At(P).

The analogs of Theorem 3 hold for translations LP2LPwg(P) and LP2LPwlg(P).

Compact Translations of Non-disjunctive Answer Set Programs 125

3.4 Completion and Clausification

The final translation presented in this section aims to capture supported models of a
normal logic program P using Clark’s completion [3] and classical models. For the
completion, we basically apply (2). However, in order to keep the resulting clausal
representation of the completion, denoted by CCC(P), linear in the length of P , we
introduce a new atom for each rule body—also known as the Tseitin transformation
[25]. To define the contribution of an atom a ∈ At(P) in CCC(P), we refer to its
definition DefP (a) = {r1, . . . , rk} and introduce a new atom bt(ri) for each rule ri

involved. An individual rule ri of the form (1) is encoded by

bt(ri) ↔ b1 ∧ · · · ∧ bn ∧ ¬c1 ∧ · · · ∧ ¬cm. (22)

Then the definition DefP (a) is essentially captured by an equivalence

a↔ bt(r1) ∨ · · · ∨ bt(rk). (23)

Each equivalence (22) with 1 ≤ i ≤ k contributes to CCC(P) the following clauses:

bt(ri) ∨ ¬b1 ∨ · · · ∨ ¬bn ∨ c1 ∨ · · · ∨ cm,
¬bt(ri) ∨ b1, . . . , ¬bt(ri) ∨ bn,
¬bt(ri) ∨ ¬c1, . . . , ¬bt(ri) ∨ ¬cm.

Finally, the formula (23) clausifies into

¬a ∨ bt(r1) ∨ · · · ∨ bt(rk), and a ∨ ¬bt(r1), . . . , a ∨ ¬bt(rk).

We distinguish certain special cases in the implementation, though. If k = 1, bt(r1)
is not introduced and a is substituted for bt(r1) in (22) which replaces (23). If k = 0,
then a unit clause ¬a is created to falsify a. This clause is omitted if a happens to be an
input atom and is supposed to vary freely. Last, if the truth values of certain atoms are
known in advance, it is possible to simplify resulting clauses using them. However, we
leave any further propagation of truth values as the SAT solvers’ responsibility.

Theorem 4. Let P be a normal logic program.

1. If M ∈ SuppM(P), then there is a unique N ∈ CM(CCC(P)) such that M =
N ∩At(P).

2. If N ∈ CM(CCC(P)), then M ∈ SuppM(P) for M = N ∩At(P).

Corollary 1. Let P be an SMODELS program and S the set of clauses

CCC(LP2LPwl(Normal(P))).

1. If M ∈ SM(P), then there is a unique interpretation N ⊆ At(S) such that N |= S
and M = N ∩At(P).

2. If N |= S for N ⊆ At(S), then M ∈ SM(P) for M = N ∩At(P).

An analogous corollary holds for the respective translation obtained using strong global
ranking constraints or both, i.e., translation LP2LPwg(·) or LP2LPwlg(·).

126 T. Janhunen and I. Niemelä

gringo program.lp \
| smodels -internal -nolookahead \
| lpcat \
| lp2normal \
| igen \
| smodels -internal -nolookahead \
| lpcat -s=symbols.lp \
| lp2lp2 \
| lp2sat -n \
| minisat

Fig. 2. Unix shell pipeline for running LP2SAT2

4 Implementation and Experiments

In this section, we present a prototype implementation of the program transformations
described in Section 3 and report the results of a performance analysis based on the
benchmark instances used in the Second Answer Set Programming Competition [4].

The main components of our preliminary implementation3 are three translators,
namely LP2NORMAL (v. 1.11), LP2LP2 (v. 1.17), and LP2SAT (v. 1.15), correspond-
ing to the respective program transformations Normal(·), LP2LPw∗(·), and CCC(·)
described in Section 3. Each tool expects to receive its input in the SMODELS file for-
mat. The first translator, LP2NORMAL, produces only basic rules (1) as required by the
last two translators, i.e., LP2LP2 and LP2SAT. The latter of these produces a CNF in the
DIMACS format as its output. Hence, typical SAT solvers can be used as model finders
for its output and we tried out MINISAT4 (v. 1.14 and v. 2.2.0), PRECOSAT5 (v. 570), and
CLASP6 (v. 1.3.5 in SAT solver mode) in our experiments as back-ends to our transla-
tors. We call the combination of the three translators LP2SAT2 that can be considered
as a new version of the overall system LP2SAT7 proposed in [11]. However, this system
employs a different translation and also a translator LP2ATOMIC instead of LP2LP2. The
transformation implemented by LP2ATOMIC effectively removes all positive subgoals
from a normal logic program given as its input: an atomic normal program consists of
rules of the form (1) with n = 0 which makes Clark’s completion trivially sound with
respect to the stable model semantics.

Figure 2 demonstrates how LP2SAT2 is used in our tests in terms of a shell com-
mand line. The first step uses GRINGO (v. 2.0.5) to ground the answer set program
program.lp in question. The resulting ground program is then forwarded for SMOD-
ELS8 (v. 2.34) for simplification using the principles of the well-founded semantics [26]
among others. As the next step, we compress the ground program after simplification
using LPCAT (v. 1.18). As a result of a relocation step, only consecutive atom numbers
appear in the resulting program. Then the normalization takes place using LP2NORMAL

3 All of our tools are available under http://www.tcs.hut.fi/Software/
4 http://minisat.se/
5 http://fmv.jku.at/precosat/
6 http://www.cs.uni-potsdam.de/clasp/
7 http://www.tcs.hut.fi/Software/lp2sat/
8 http://www.tcs.hut.fi/Software/smodels/

http://www.tcs.hut.fi/Software/
http://minisat.se/
http://fmv.jku.at/precosat/
http://www.cs.uni-potsdam.de/clasp/
http://www.tcs.hut.fi/Software/lp2sat/
http://www.tcs.hut.fi/Software/smodels/

Compact Translations of Non-disjunctive Answer Set Programs 127

Table 2. Numbers of solved problem instances

LP2SAT2
Benchmark / Number of Instances CLASP CMODELS LP2DIFF LP2SAT -l -g -lg

15Puzzle 16 16 11 0 16 16 16 16 16
BlockedNQueens 29 29 28 29 29 29 29 29 29
ChannelRouting 11 8 8 8 8 8 8 8 8
ConnectedDominatingSet 21 20 21 18 21 21 21 20 21
DisjunctiveScheduling 10 5 5 1 5 5 5 5 5
EdgeMatching 29 29 29 5 29 29 29 29 29
Fastfood 29 29 16 29 28 29 29 29 29
GeneralizedSlitherlink 29 29 29 29 29 29 29 29 29
GraphColouring 29 9 5 9 9 10 10 10 10
GraphPartitioning 13 13 10 8 5 6 6 6 6
HamiltonianPath 29 29 29 29 29 29 29 29 29
Hanoi 15 15 15 15 15 15 15 15 15
HierarchicalClustering 12 12 12 12 12 12 12 12 12
KnightTour 10 10 8 6 1 1 1 1 1
Labyrinth 29 26 13 0 0 23 20 22 17
MazeGeneration 29 25 25 27 15 19 17 16 17
SchurNumbers 29 29 25 28 29 28 28 28 28
Sokoban 29 29 27 29 29 29 29 29 28
Solitaire 27 19 15 22 20 22 22 22 22
Sudoku 10 10 10 10 10 10 10 10 10
TravellingSalesperson 29 29 24 29 27 0 29 29 29
WeightBoundedDominatingSet 29 27 16 25 15 28 28 28 28
WireRouting 23 23 6 10 6 6 7 5 6

TOTAL 516 470 387 378 387 404 429 427 424

and IGEN (v. 1.5) is used to remove the input interface of the program for backward
compatibility reasons. Then the program can be passed on for another round of simpli-
fication using SMODELS. After that LPCAT is used to compress the program again and
to extract symbolic names of atoms so that the actual answer set can be later recovered.
Having recorded the symbols, the ground program is ready to be translated by LP2LP2
and LP2SAT. The outcome is a valid input for MINISAT which is used to compute one
model or to show non-existence of models. The strong ranking constraints involved
in the translation function LP2LPw∗(·) can be activated by supplying option flag -l
(local) and/or option flag -g (global) to the translator lp2lp2.

The goal of our experiment was to compare the performance of four systems based
on the pipeline shown in Figure 2 with a number of reference systems—both a native
ASP solver and other translation-based approaches for finding stable models:

1. A native state-of-the-art solver CLASP (v. 1.3.5) based on conflict-driven clause
learning [8].

2. A solver CMODELS9 (v. 3.79) [15] that uses loop formulas on top of Clark’s com-
pletion in order to exclude non-stable supported models computed by SAT solvers.

3. The previous version of LP2SAT [11] with MINISAT (v. 1.14) as its back-end.
9 http://www.cs.utexas.edu/users/tag/cmodels.html

http://www.cs.utexas.edu/users/tag/cmodels.html

128 T. Janhunen and I. Niemelä

4. The approach of translating SMODELS programs into difference logic [13] using
LP2DIFF10 (v. 1.26) and a state-of-the-art SMT solver Z311 (v. 2.11) as its back-end.
We tried out strong ranking constraints but obtained best performance without.

As benchmarks, we used the original sets of problem instances from the Second Answer
Set Programming Competition [4] which was run under the auspices of KU Leuven
in Belgium. More precisely, we used the 516 instances submitted to the category of
NP-complete problems. A summary of contributors can be found in [4]. Most of the
ASP encodings used to solve the problems in question are due to the Potassco12 team
and published under the Asparagus site13. We used GRINGO to ground each problem
instance accompanied by the respective encoding of the problem. In this way, each
system is provided an identical ground program as its input. Moreover, we decided to
run each solver using its default parameters.14 As hardware we used Intel Q9550 Dual
Core CPUs with 2.8 Ghz clock rate and 8 GB of main memory. The running time of
each solver was limited to 600 seconds as in the second ASP competition. This limit
applies to all processing steps from grounding to printing an answer set or declaring its
non-existence. Moreover, we constrained the amount of available memory to 2.79 GBs
in order to simulate the arrangements of the actual competition. The models computed
by various systems were verified using SMODELS (v. 2.34) as a reference.

Table 2 collects the numbers of solved problem instances—both satisfiable and un-
satisfiable ones. The approaches based on the translations presented in this paper scale
very similarly. Strong ranking constraints improved the performance of MINISAT and,
in particular, for satisfiable problem instances. The best performance was obtained us-
ing strong local ranking constraints (option -l of LP2LP2). The state-of-the-art ASP
system CLASP outperforms these by roughly 40–65 solved instances within the given
time and memory limits. This difference is mainly due to problems GraphPartitioning,
KnightTour, WireRouting, and partly TravellingSalesperson. The improvement with re-
spect to the old version, viz. LP2SAT [11] is also clear: 17–42 solved instances. We also
tried other SAT solvers as the back-end of our translators but the overall performance
slightly degraded in this way. For PRECOSAT, the numbers of solved instances were
419, 415 (option -l), 420 (option -g), and 410 (options -l and -g). Hence strong
local ranking constraints slowed down PRECOSAT slightly. The respective numbers for
CLASP were 398, 410, 417, and 409 that also indicate the positive effect of strong global
ranking constraints. The numbers obtained for MINISAT2 were alike: 401, 407, 411, and
410 solved instances. Thus, using the latest version of MINISAT does not seem to im-
prove performance in the computation of answer sets with our translators.

An account of running times is included in Table 3. These results parallel the ones
obtained in terms of numbers of solved instances. The performance difference with
respect to CLASP is emphasized by time spent on solved instances. Perhaps it should be
noted that timeouts sanctioned by 40–65 unsolved instances amount to 6.7–10.8 hours.

10 http://www.tcs.hut.fi/Software/lp2diff/
11 http://research.microsoft.com/en-us/um/redmond/projects/z3/
12 http://potassco.sourceforge.net/
13 http://asp.haiti.cs.uni-potsdam.de/
14 To the contrary, the rules of the ASP competition allowed benchmark-specific encodings as

well as tuning the parameters of the solver in question to obtain the best possible performance.

http://www.tcs.hut.fi/Software/lp2diff/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://potassco.sourceforge.net/
http://asp.haiti.cs.uni-potsdam.de/

Compact Translations of Non-disjunctive Answer Set Programs 129

Table 3. Total running times in hours

System CLASP CMODELS LP2DIFF LP2SAT LP2SAT2 -l -g -lg
On solved instances 1.5 4.0 5.6 3.7 4.8 5.6 5.1 5.2
Timeouts 7.7 21.5 23.0 21.5 18.7 14.5 14.8 15.3

TOTAL 9.2 25.5 28.6 25.2 23.5 20.1 19.9 20.5

5 Conclusions

SAT solver technology has been developing rapidly and provides a very promising com-
putational platform for implementing also ASP systems. The goal of the paper is to
develop a compact translation from ground programs with cardinality and weight con-
straints to clauses so that a SAT solver can be used unmodified for the task of computing
stable models of SMODELS programs. Based on the results in [11,23,13] we present a
compact translation from SMODELS programs to propositional clauses using normal
programs subject to the supported model semantics [1] as an intermediary represen-
tation. This enables the direct exploitation of improving SAT solvers as stable model
finders without any changes. The translation technique is novel as it exploits program
transformations and ASP encoding techniques for achieving a compact and computa-
tionally efficient overall translation. Our preliminary experimental results indicate that
this translation provides the most effective way of using current state-of-the-art SAT
solvers for stable model computation with a performance which is surprisingly close to
that of the top state-of-the-art ASP solver.

There are a number of interesting topics for future research including, for exam-
ple, developing preprocessing techniques for optimizing the translation, investigating
alternative ways of translating cardinality and weight constraints, and evaluating more
systematically the performance of different SAT solver techniques for SAT instances
resulting from the translation.

Acknowledgments. The authors would like to thank Martin Gebser for his insightful
comments and observations about a draft of this paper. This research has been partially
funded by the Academy of Finland under project #122399.

References

1. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In: Foundations
of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufmann, San Fran-
cisco (1988)

2. Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Programs. An-
nals of Mathematics and Artificial Intelligence 12(1-2), 53–87 (1994)

3. Clark, K.: Negation as failure. In: Logic and Data Bases, pp. 293–322. Plenum Press, New
York (1978)

4. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set
programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

130 T. Janhunen and I. Niemelä

5. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satis-
fiability, Boolean Modeling and Computation 2(1-4), 1–26 (2006)

6. Erdem, E., Lifschitz, V.: Tight logic programs. Theory and Practice of Logic Program-
ming 3(4-5), 499–518 (2003)

7. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of
Logic Programming 5(1-2), 45–74 (2005)

8. Gebser, M., Kaufmann, B., Schaub, T.: The conflict-driven answer set solver clasp: Progress
report. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 509–514.
Springer, Heidelberg (2009)

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceed-
ings of ICLP 1988, pp. 1070–1080 (1988)

10. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

11. Janhunen, T.: Representing normal programs with clauses. In: Proceedings of ECAI 2004,
pp. 358–362 (2004)

12. Janhunen, T.: Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics 16(1-2), 35–86 (2006)

13. Janhunen, T., Niemelä, I., Sevalnev, M.: Computing stable models via reductions to differ-
ence logic. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp.
142–154. Springer, Heidelberg (2009)

14. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Scarcello, F.: The DLV System for
Knowledge Representation and Reasoning. ACM Transactions on Computational Logic 7(3),
499–562 (2006)

15. Lierler, Y.: Cmodels – SAT-based disjunctive answer set solver. In: Baral, C., Greco, G.,
Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 447–451.
Springer, Heidelberg (2005)

16. Lifschitz, V.: Answer set planning. In: Proceedings of ICLP 1999, pp. 23–37 (1999)
17. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Math-

ematics and Artificial Intelligence 25(3-4), 369–389 (1999)
18. Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal logic

programs to propositional logic. In: Proceedings of IJCAI 2003, pp. 853–858 (2003)
19. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artifi-

cial Intelligence 157(1-2), 115–137 (2004)
20. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.

In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer, Hei-
delberg (1999)

21. Marek, V.W., Subrahmanian, V.S.: The relationship between stable, supported, default and
autoepistemic semantics for general logic programs. Theoretical Computer Science 103,
365–386 (1992)

22. Niemelä, I.: Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

23. Niemelä, I.: Stable models and difference logic. Annals of Mathematics and Artificial Intel-
ligence 53(1-4), 313–329 (2008)

24. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

25. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.,
Wrightson, G. (eds.) Automation of Reasoning 2: Classical Papers on Computational Logic
1967–1970, pp. 466–483. Springer, Heidelberg (1983)

26. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic pro-
grams. Journal of the ACM 38(3), 620–650 (1991)

Effectively Reasoning about Infinite Sets in

Answer Set Programming�

Victor Marek1 and Jeffrey B. Remmel2

1 Department of Computer Science,
University of Kentucky, Lexington, KY 40506

marek@cs.uky.edu.edu
2 Departments of Mathematics and Computer Science,

University of California at San Diego, La Jolla, CA 92903
jremmel@ucsd.edu

Abstract. In answer set programming (ASP), one does not allow the
use of function symbols. Disallowing function symbols avoids the problem
of having logic programs which have stable models of excessively high
complexity. For example, Marek, Nerode, and Remmel showed that there
exist finite predicate logic programs which have stable models but which
have no hyperarithmetic stable model. Disallowing function symbols also
avoids problems with the occurs check that can lead to wrong answers
in logic programs. Of course, by eliminating function symbols, one loses
a lot of expressive power in the language. In particular, it is difficult to
directly reason about infinite sets in ASP.

Blair, Marek, and Remmel [BMR08] developed an extension of logic
programming called set based logic programming. In the theory of set
based logic programming, the atoms represent subsets of a fixed
universe X and one is allowed to compose the one-step consequence
operator with a monotonic idempotent operator (miop) O so as to en-
sure that the analogue of stable models are always closed under O. We
let SP denote the set of fixed points of finite unions of the sets repre-
sented by the atoms of P under the miops associated with P . We shall
show that if there is a coding scheme which associates to each element
A ∈ SP a code c(A) such that there are effective procedures, which
given two codes c(A) and c(B) of elements A, B ∈ SP , will (i) decide
if A ⊆ B, (ii) decide if A ∩ B = ∅, and (iii) produce the codes of the
closures of A ∪ B and of A ∩ B under the miop operators associated
with P , then we can effectively decide whether an element A ∈ SP is
a stable model of P . Thus in such a situation, we can effectively rea-
son about the stable models of P even though SP contains infinite sets.
Our basic example is the case where all the sets represented by the
atoms of P are regular languages but many other examples are pos-
sible such as when the sets involved are certain classes of convex sets
in Rn.

� This is an updated and expanded version of [MR09].

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 131–147, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

132 V. Marek and J.B. Remmel

1 Introduction

Computer Science for the most part reasons about finite sets, relations and func-
tions. There are many examples in computer science where adding symbols for
infinite sets or arbitrary function symbols into programming languages results in
big jumps in the complexity of models of programs. For example, finding the least
model of a finite Horn program with no function symbols can be done in linear
time [DG82] while the least model of finite predicate logic Horn program with
function symbols can be an arbitrary recursively enumerable set [Sm68]. If we
consider logic programs with negation, Marek and Truszczyński [MT93] showed
that the question of whether a finite propositional logic program has a stable
model is NP-complete. However Marek, Nerode, and Remmel [MNR94] showed
that the question of whether a finite predicate logic program with function sym-
bols possesses a stable model is Σ1

1 complete. Similarly, the stable models of
logic programs that contain function symbols can be quite complex. Starting
with [AB90] and continuing with [BMS95] and [MNR94], a number of results
showed that the stable models of logic programs that allow function symbols
can be exceedingly complex, even in the case where the program has a unique
stable model. For example, Apt and Blair [AB90] have shown that arithmetic
sets can be defined with stable models of stratified programs and Marek, Nerode
and Remmel [MNR94] showed that there exist finite predicate logic programs
which have stable models but which have no hyperarithmetic stable model.

While these type of results may at first glance appear negative, they had a
positive effect in the long run since they forced researchers and designers to limit
themselves to cases where programs can be actually processed. The effect was
that processing programs called solvers such as cmodels [BL02, GLM06], smodels
[SNS02], clasp [GKN+], ASSAT [LZ02], and dlv [LPF+06] had to focus on
finite programs that do not admit function symbols (dlv allows for use of a very
limited class of programs with function symbols). The designers of solvers have
also focused on the issues of both improving processing of the logic programs
(i.e. searching for a stable model) and improving the use of logic programs as
a programming language. The latter task consists of extending the constructs
available to the programmer to make programming easier and more readable.
This development resulted in a class of solvers that found use in combinatorial
optimization [MT99, Nie99], hardware verification [KN03], product configuration
[SNTS01], and other applications.

Of course, by eliminating function symbols, one loses a lot of expressive power
in the language. One of the motivations of this paper was to find ways to extend
the ASP formalism to allow one to reason directly about infinite sets yet still
allow the programs to be processed in an effective manner. This requires a very
careful analysis of the complexity issues involved in the formalisms as well as
developing various ways to code the infinite sets involved in any given application
so that one can process information effectively. Part of our motivation is that
with the rise of the Internet, there are now many tools which use the Internet
as a virtual data base. While all the information on the Internet at any given
point of time is a finite object, it is constantly changing and it would be nearly

Effectively Reasoning about Infinite Sets in Answer Set Programming 133

impossible to characterize the totality of information available in any meaningful
way. Thus, for all practical purposes, one can consider the information on the
Internet as an infinite set of information items. Hence we need to consider ways
in which one can extend various formalisms in computer science to reason about
infinite objects.

The main goal of this paper is to show that there are extensions of the ASP
formalism where one can effectively reason about infinite languages which are
accepted by deterministic finite automata (DFAs). In particular, we shall show
that in a recent extension of logic programming due to Blair, Marek, and Remmel
[BMR08], one can effectively reason about languages which are accepted by finite
automaton. We will also show that under reasonable assumptions, this approach
can be lifted to other areas as well.

In [BMR01], Blair, Marek, and Remmel developed an extension of the logic
programming paradigm called spatial logic programming in which one can di-
rectly reason about regions in space and time as might be required in applica-
tions like graphics, image compression, or job scheduling. In spatial logic pro-
gramming, one has some fixed space X be the intended universe of the program
rather than having the Herbrand base be the intended underlying universe of
the program and one has each atom of the language of the program specify a
subset of X , i.e. an element of the set 2X .

As pointed out in [BMR08], if one reflects for a moment on the basic aspects
of logic programming with an Herbrand model interpretation, a slight change in
one’s point of view shows that it is natural to interpret atoms as subsets of the
Herbrand base. In ordinary logic programming, we determine the truth value of
an atom p in an Herbrand interpretation I by declaring I |= p if and only if
p ∈ I. However, this is equivalent to defining the sense, [[p]], of an atom p to be
the set {p} and declaring that I |= p if and only if [[p]] ⊆ I. By this simple move,
we have permitted ourselves to interpret the sense of an atom as a subset of a
set X rather than the literal atom itself in the case where X is the Herbrand
base of the language of the program.

It turns out that if the underlying space X has structure such as a topology
or an algebraic structure such as a group or vector space, then a number of
other natural options present themselves. That is, Blair, Marek, and Remmel
[BMR08] extended the theory of spatial logic programming to what they called
set based logic programming where one composes the one-step consequence op-
erator of spatial logic programing with a monotonic idempotent operator. For
example, if we are dealing with a topological space, one can construct a new one-
step consequence operator T by composing the one-step consequence operator
for spatial logic programming with an operator that produces the topological
closure of a set or the interior of a set. In such a situation, we can ensure that
the new one-step consequence operator T always produces a closed set or al-
ways produces an open set. Similarly, if the underlying space is a vector space,
one might construct a new one-step consequence operator T by composing the
one-step consequence operator for spatial logic programming with the operator
that produces the smallest subspace containing a set, the span operator, or with

134 V. Marek and J.B. Remmel

the operator that produces the smallest convex closed set containing a set, the
convex closure operator. In this way, one can ensure that the new one-step con-
sequence operator T always produces a subspace or always produces a convex
closed set. More generally, We say that an operator O : 2X → 2X is monotonic
if for all Y ⊆ Z ⊆ X , we have O(Y) ⊆ O(Z) and we say that O is idempotent for
all Y ⊆ X , O(O(Y)) = O(Y). Specifically, many familiar operators such as clo-
sure, interior, or the span and convex-closure operators in vector spaces over the
rationals and other fields are monotonic idempotent operators. We call a mono-
tonic idempotent operator a miop. We say that a set Y is closed with respect to
miop O if and only if Y = O(Y). Besides of examples listed above, in the context
or regular languages, we discuss a number of monotone idempotent operators
in Example 3, Section 4. By composing the one-step consequence operator for
spatial logic programs with the operator O, we can ensure that the resulting
one-step consequence operator always produces a fixed point of O. We can then
think of the operator O as a parameter. This naturally leads us to a situation
where we have a natural polymorphism for set based logic programming. That
is, one can use the same logic program to produce stable models with different
properties depending on how the operator O is chosen.

Moreover, in such a setting, one also has a variety of options for how to
interpret negation. In normal logic programming, a model M satisfies ¬p if
p /∈M . From the spatial logic programming point of view, when p is interpreted
as a singleton {p}, this would be equivalent to saying that M satisfies ¬p if
(i) {p} ∩ M = ∅, or (equivalently) (ii) {p} � M . When the sense of p is a
set with more than one element, it is easy to see that saying that M satisfies
¬p if [[p]] ∩M = ∅ (strong negation) is different from saying that M satisfies
¬p if [[p]] � M (weak negation). This leads to two natural interpretations of
the negation symbol which are compatible with the basic logic programming
paradigm. When the underlying space has a miop cl, one can get even more
subsidiary types of negation by taking M to satisfy ¬p if cl([[p]]) ∩M ⊆ cl(∅)
(strong negation) or by taking M to satisfy ¬p if cl([[p]]) � M (weak negation).

Blair, Marek, and Remmel [BMR08] showed that set based logic programing
provides the foundations and basic techniques for crafting applications in the an-
swer set paradigm as described in [MT99, Nie99] and then [GL02, Ba03]. That
is, if in a given application, topological, linear algebraic, or similar constructs are
either necessary or at least natural, then one can construct an answer set pro-
gramming paradigm whose models correspond to natural closed structures. The
expressive power of miops allows us to capture functions and relations intrinsic
to the domain of a spatial logic program, but independent of the program. This
permits set based logic programs to seamlessly serve as front-ends to other sys-
tems. Miops play the role of back-end, or “behind-the-scenes”, procedures and
functions.

We let SP denote the set of least fixpoints with respect to the miops associated
with P containing all finite unions and intersections of sets represented by the
atoms of a finite set based logic program P . Here the elements of SP may be
finite or infinite. The main goal of this paper is find conditions on SP which

Effectively Reasoning about Infinite Sets in Answer Set Programming 135

ensure that we can effectively decide whether a given element of SP is a stable
model of P . We shall show that if there is a way of associating codes c(A) to the
elements of A ∈ SP such that there are effective procedures which, given codes
c(A) and c(B) for elements of A,B ∈ SP , will (i) decide if A ⊆ B, (ii) decide if
A∩B = ∅, and (iii) produce of the codes of closures of A∪B and A∩B under miop
operators associated with P , then we can effectively decide whether a code c(A)
is the code of a stable model of P . Our running example will be the case where
P is a finite set-based logic program over a universe X = Σ∗ where Σ is a finite
alphabet and the sets represented by atoms in P are languages contained in X
which are accepted by finite automaton and the miops O involved in P preserve
regular languages, i.e, if A is an automata such that the language L(A) accepted
by A is contained in X , then we can effectively construct an automaton B such
that the language L(B) accepted by B equals O(L(A)). Then, we shall show
that the stable models of P are languages accepted by finite automaton and one
can effectively check whether a language accepted by finite automaton is a stable
model. Thus in this setting, one can effectively reason about an important class
of infinite sets. However, it will be clear from our proofs that the only properties
that we use for regular languages coded by their accepting DFAs are that the
procedures for (i), (ii), and (iii) are effective.

The outline of this paper is as follows. In Section 2, we shall give the basic
definitions of set based logic programming with miops. as developed by Blair,
Marek, and Remmel [BMR08]. In Section 3, we shall review that basic properties
of languages accepted by finite automata that we shall need. In Section 4, we
shall show how the formalisms of finite automata can be seamlessly incorporated
into the set based logic programming formalism. Finally, in Section 5, we give
conclusions and directions for further research.

2 Set Logic Programs: Syntax, Miops, and Semantics

We review the basic definitions of set based logic programming as introduced
by Blair, Marek, and Remmel [BMR08]. The syntax of set based logic programs
will essentially be the syntax of DATALOG programs with negation.

Following [BMR08], we define a set based augmented first-order lan-
guage (set based language, for short) L as a triple (L,X, [[·]]), where

(1) L is a language for first-order predicate logic (without function symbols other
than constants),
(2) X is a nonempty (possibly infinite) set, called the interpretation space,
and
(3) [[·]] is a mapping from the atoms of L to the power set of X , called the sense
assignment. If p is an atom, then [[p]] is called the sense of p.

In our setting, a set based logic program has three components.

1) The language L which includes the interpretation space and the sense assign-
ment.

136 V. Marek and J.B. Remmel

2) The IDB (Intentional Database): A finite set of program clauses, each of
the form A← L1, . . . , Ln, where each Li is a literal, i.e. an atom or the negation
of an atom, and A is an atom.
3) The EDB (Extensional Database): A finite set of clauses of the form A←
where A is an atom.

Given a set based logic program P , the Herbrand base of P is the Herbrand base
of the smallest set based language over which P is a set based logic program.

We shall assume that the classes of set based logic programs that we consider
are always over a language for first-order logic L with no function symbols except
constants, and a fixed set X . We let HBL denote the Herbrand base of L, i.e.
the set of atoms of L. We omit the subscript L when the context is clear. Thus
we allow clauses whose instances are of the following form:

C = A← B1, . . . , Bn,¬C1, . . . ,¬Cm. (1)

where A, Bi, and Cj are atoms for i = 1, . . . , n and j = 1, . . . ,m. We let
head(C) = A, Body(C)=B1, . . . , Bn,¬C1, . . . ,¬Cm, and PosBody(C)={B1, . . . ,
Bm}, and NegBody(C) = {C1, . . . , Cm}.

We let 2X be the powerset of X . Given [[·]] : HBL −→ 2X , an interpretation I
of the set based language L = (L,X, [[·]]) is a subset of X .

2.1 Examples of Monotonic Idempotent Operators

A second component of a set based logic program is one or more monotonic
idempotent operators O : 2X → 2X that are associated with the program.
Recall that an operator O : 2X → 2X is monotonic if for all Y ⊆ Z ⊆ X , we have
O(Y) ⊆ O(Z) and we say that O is idempotent for all Y ⊆ X , O(O(Y)) = O(Y).
We call a monotonic idempotent operator a miop (pronounced “my op”). We
say that a set Y is closed with respect to miop O if and only if Y = O(Y).

For example, suppose that the interpretation space X is either Rn or Qn

where R is the reals and Q is the rationals. Then, X is a topological vector space
under the usual topology so that we have a number of natural miop operators:

1. opid(A) = A, i.e. the identity map is simplest miop operator,
2. opc(A) = Ā where Ā is the smallest closed set containing A,
3. opint(A) = int(A) where int(A) is the interior of A,
4. opconvex(A) = K(A) where K(A) is the convex closure of A, i.e. the smallest

set K ⊆ X such that A ⊆ K and whenever x1, . . . , xn ∈ K and α1, . . . , αn

are elements of the underlying field (R or Q) such that
∑n

i=1 αi = 1, then∑n
i=1 αixi is in K, and

5. opsubsp(A) = (A)∗ where (A)∗ is the subspace of X generated by A.

We should note that (5) is a prototypical example if we start with an algebraic
structure. That is, in such cases, we can let opsubstr(A) = (A)∗ where (A)∗ is the
substructure of X generated by A. Examples of such miops include the following:

(a) if X is a group, we can let opsubgrp(A) = (A)∗ where (A)∗ is the subgroup
of X generated by A,

Effectively Reasoning about Infinite Sets in Answer Set Programming 137

(b) if X is a ring, we can let opsubrg(A) = (A)∗ where (A)∗ is the subring of X
generated by A,

(c) if X is a field, we can let opsubfld(A) = (A)∗ where (A)∗ is the subfield of
X generated by A,

(d) if X is a Boolean algebra, we can let opsubalg(A) = (A)∗ where (A)∗ is the
subalgebra of X generated by A or we can let opideal(A) = Id(A) where
Id(A) is the ideal of X generated by A, and

(e) if (X,≤X) is a partially ordered set, we can let opuideal(A) = Uid(A) where
Uid(A) is the upper order ideal of X (that is, the least subset S of X
containing A such that whenever x ∈ S and x ≤X y, then y ∈ S).

2.2 Set Based Logic Programming with Miops

Now suppose that we are given a miop op+ : 2X → 2X and Horn set based
logic program P over X . Here we say that a set based logic program is Horn if
its IDB is Horn. Blair, Marek, and Remmel [BMR08] generalized the one-step
consequence-operator of ordinary logic programs with respect to 2-valued logic
to set based logic programs relative to a miop operator op+ as follows. First, for
any atom A and I ⊆ X , we say that I |=[[·]],op+ A if and only if op+([[A]]) ⊆ I.
Then, given a set based logic program P with IDB P , let P ′ be the set of
instances of a clauses in P and let

TP,op+(I) = op+(I1 ∪ I2)

where I1 =
⋃
{[[a]] | a← L1, . . . , Ln ∈ P ′, I |=[[·]],op+ Li, i = 1, . . . , n} and

I2 =
⋃
{[[a]] | a← is an instance of a clause in the EDB of P}.

We then say that a supported model relative to op+ of P is a fixed point of
TP,op+ .

We iterate TP,op+ according to the following.

TP,op+ ↑0 (I) = I
TP,op+ ↑α+1 (I) = TP,op+(TP,op+ ↑α (I))
TP,op+ ↑λ (I) = op+(

⋃
α<λ

{TP,op+ ↑α (I)}), λ limit

It is easy to see that if P is a Horn spatial logic program and op+ is a miop,
then TP,op+ is monotonic. Blair, Marek, and Remmel [BMR08] proved the fol-
lowing.

Theorem 1. Given a miop op+, the least model of a Horn set based logic pro-
gram P exists and is closed under op+ , is supported relative op+, and is given
by TP,op+ ↑α (∅) for the least ordinal α at which a fixed point is obtained.

We note, however, that if the Herbrand universe of a set based logic program
is infinite (contains infinitely many constants) then, unlike the situation with
ordinary Horn programs, TP,op+ will not in general be upward continuous even
in the case where op+(A) = A for all A ⊆ X . That is, consider the following
example which was given in [BMR08].

138 V. Marek and J.B. Remmel

Example 1. Assume that op+ is the identity operator on 2X . To specify a set
based logic program, we must specify the language, EDB and IDB. Let L =
(L,X, [[·]]) where L has four unary predicate symbols: p, q, r and s, and count-
ably many constants e0, e1, . . . , . X is the set N

⋃
{N} where N is the set of

natural numbers, {0, 1, 2, . . .}. [[·]] is specified by [[q(en)]] = {0, . . . , n}, [[p(en)]] =
{0, . . . , n + 1}, [[r(en)]] = N, and [[s(en)]] = {N}.

The EDB is q(e0) ← and the IDB is: p(X)← q(X) and s(e0) ← r(e0).

Now, after ω iterations upward from the empty interpretation, r(e0) becomes
satisfied. One more iteration is required to reach an interpretation that satisfies
s(e0), where the least fixed point is attained. �

Next we consider how we should deal with negation in the setting of miop op-
erators. Suppose that we have a miop operator op− on the space X . We do not
require that op− is the same as that miop op+ but it may be. Our goal is to
define two different satisfaction relations for negative literals relative to the miop
operator op− which are called strong and weak negation in [BMR08] 1.

For the rest of this paper, we shall think of a set based logic program P as a
set of clauses of the form (1) where it may be that either n or m equals 0. We let
horn(P) denote the set of all Horn clauses in P and nohorn(P) = P \ horn(P).

Definition 1. Suppose that P is a set based logic program over X and op+ and
op− are miops on X and a ∈ {s, w}.

(I) Given any atom A and set J ⊆ X , then we say
J |=a

[[·]],op+,op− A if and only if op+([[A]]) ⊆ J .
(II)s (Strong negation) Given any atom A and set J ⊆ X , then we say

J |=s
[[·]],op+,op− ¬A if and only if op−([[A]]) ∩ J ⊆ op−(∅).

(II)w (Weak negation) Given any atom A and set J ⊆ X , then we say
J |=w

[[·]],op+,op− ¬A if and only if op−([[A]]) � J .

Definition 2. For any given set J ⊆ X we define the strong Gelfond-Lifschitz
transform, GLs

J,[[·]],op+,op−(P), of a program P with respect to miops op+ and
op− on 2X , in two steps. First, we consider all clauses in P ,

C = A← B1, . . . , Bn,¬C1, . . . , Cm (2)

where A,B1, . . . , Bn, C1, . . . , Cm are atoms. If for some i, it is not the case that
J |=s

[[·]],op+,op− ¬Ci, then we eliminate clause C. Otherwise we replace C by the
Horn clause

A← B1, . . . , Bn. (3)

Then, GLs
J,[[·]],op+,R(P) consists of the set of all Horn clauses produced by this

two step process.
1 Lifschitz [Li94] observed that different modalities, thus different operators, can be

used to evaluate positive and negative part of bodies of clauses of normal programs.

Effectively Reasoning about Infinite Sets in Answer Set Programming 139

We define the weak Gelfond-Lifschitz transform, GLw
J,[[·]],op+,op−(P), of a pro-

gram P with respect to miops op+ and op− on 2X in a similar manner except
that we use |=w

[[·]],op+,op− in place of |=s
[[·]],op+,op− in the definition.

Note that since GLa
J,[[·]],op+,op−(P) is a Horn set based logic program for either

a = s or a = w, the least model of GLa
J,[[·]],op+,op−(P) relative to op+ is defined.

We then define the a-stable model semantics for a set based logic program P
over X relative to the miops op+ and op− on X for a ∈ {s, w} as follows.

Definition 3. J is an a-stable model of P relative to op+ and op− if and only
if J is the least fixed point of TGLa

J,[[·]],op+,op− (P),op+ .

Next we give a simple example to show that there is a difference between s-stable
and w-stable models.

Example 2. Suppose that the space X = R2 is the real plane. Our program will
have two atoms {a, b}, {c, d} where a, b, c and d are reals. We let [a, b] and [c, d]
denote the line segments connecting a to b and c to d respectively. We let the
sense of the these atoms be the corresponding subsets, i.e. we let [[{a, b}]] = {a, b}
and [[{c, d}]] = {c, d}. We let op+ = op− = opconvex. The consider the following
program P .

(1) {a, b} ← ¬{c, d}
(2) {c, d} ← ¬{a, b}

There are four possible candidate for stable models in this case, namely (i) ∅,
(ii) [a, b], (iii) [c, d], and (iv) opconvex{a, b, c, d}. Let us recall that opconvex(X)
is the convex closure of X which, depending on a, b, c, and d may be either a
quadrilateral, triangle, or a line segment.

If we are considering s-stable models where J |=s
[[·]],op+,op− ¬C if and only if

op−(C) ∩ J = op−(∅) = ∅, then the only case where there are s-stable models if
[a, b] and [c, d] are disjoint in which (ii) case and (iii) are s-stable models.

If we are considering w-stable models where J |=w
[[·]],op+,op− ¬C if and only if

op−(C) � J , then there are no w-stable models if [a, b] = [c, d], (ii) is a w-stable
model if [a, b] � [c, d], (iii) is w-stable model if [c, d] � [a, b] and (ii) and (iii) are
w-stable models if neither [a, b] ⊆ [c, d] nor [c, d] ⊆ [a, b]. �
It is still the case that the a-stable models of a set based logic program P form
an antichain for a ∈ {s, w}. That is, we have the following result.

Theorem 2. Suppose that P is a set based logic program over X, op+ and op−

are miops on X, and a ∈ {s, w}. If M and N are a-stable models of P and
M ⊆ N , then M = N .

Proof. It is easy to see that in general if M ⊆ N , then

GLa
N,[[·]],op+,op−(P) ⊆ GLa

M,[[·]],op+,op−(P).

140 V. Marek and J.B. Remmel

Hence the least fixed point of TGLa
N,[[·]],op+,op− (P),op+ is a subset of the least fixed

point of TGLx

M,[[·]],op+,op− (P),op+ . But if M ⊆ N and M and N are a-stable models,
then N equals the least fixed point of TGLa

N,[[·]],op+,op− (P),op+ and M equals the
least fixed point of TGLa

M,[[·]],op+,op− (P),op+ so that N ⊆M . �

3 Languages Accepted by Finite Automaton

In this section, we shall briefly list some of the basic properties of languages
accepted by finite automaton that we shall need.

Recall that a deterministic finite automaton (DFA) M is specified by a quin-
tuple M = (Q,Σ, δ, s, F) where

Q is a finite alphabet of state symbols,
Σ is finite alphabet of input symbols,
δ : Q×Σ → Q is a transition function,
s in Q is the start state, and
F ⊆ Q is the set of final (accepting) states.

We let L(M) denote the set of all words w accepted by M . A nondeterministic
automaton (NFA) M = (Q,Σ, δ, s, F) is specified by similar 5-tuple except that
in this case δ ⊆ Q×Σ×Q. It is well known that for any fixed finite alphabet Σ,
the set of languages L ⊆ Σ∗ accepted by DFAs and the set languages of L ⊆ Σ∗

accepted by NFA’s are the same. Moreover, given any two DFAs M1 and M2,
there are standard constructions of DFAs M3, M4, and M5 such that

L(M3) = L(M1) ∩ L(M2),
L(M4) = L(M1) ∪ L(M2), and
L(M5) = Σ∗ − L(M1).

We shall denote these three DFAs by M3 = M1 ∩ M2, M4 = M1 ∪ M2, and
M5 = M̄1. We notice that in such setting the automaton accepting the language
L is a code for L. It is a well-known fact that instead of DFA one can consider
a different class of codes for regular languages, namely regular expressions.

A crucial property of DFAs is the pumping lemma of [BPS61].

Lemma 1. Let M = (Q,Σ, δ, s, F) be a DFA and p = |Q|. Then for all words
w ∈ L(M) such that |w| ≥ p, we can write w = xyz for some x, y, z ∈ Σ∗ such
that

1. |xy| ≤ p,
2. |y| ≥ 1, and
3. xyiz ∈ L(M) for all i ≥ 0.

One immediate consequence of the pumping lemma is that we can effectively
decide whether L(M) is empty or finite. That is, we have the following lemmas.

Lemma 2. Let M = (Q,Σ, δ, s, F) be a DFA. Then, L(M) is empty if and only
if for every w ∈ Σ∗ such that |w| < |Q|, w is not accepted by L(M).

Effectively Reasoning about Infinite Sets in Answer Set Programming 141

Lemma 3. Let M = (Q,Σ, δ, s, F) be a DFA. Then, L(M) is finite if and only
if for every w ∈ Σ∗ such that |Q| ≤ |w| < 2|Q|, w is not accepted by L(M).

Thus the complexity of the decision procedure to decide whether L(M) is empty
or finite depends directly on |Q| and |Σ|. The fact that we can effectively decide
if L(M) = ∅ also means that we can decide for any given DFAs M1 and M2

whether

1. L(M1) ⊆ L(M2) since L(M1) ⊆ L(M2) if and only if L(M1 ∩ M̄2) = ∅,
2. L(M1) = L(M2) since L(M1) = L(M2) if and only if L(M1) ⊆ L(M2) and

L(M2) ⊆ L(M1), and
3. L(M1)∩L(M2) = ∅ since L(M1)∩L(M2) = ∅ if and only if L(M1∩M2) = ∅.

4 Set Based Logic Programming with Automata

In this section, we shall consider finite set based logic programs P over L =
(L,X, [[·]]) where X = Σ∗ for some finite alphabet Σ. Thus P consists of clauses
of the form

C = A← B1, . . . , Bn,¬C1, . . . , Cm (4)

where A,B1, . . . , Bn, C1, . . . , Cm are atoms. We shall assume that X = Σ∗ for
some finite alphabet Σ and that for any clause of the form (4) in P ,

[[A]], [[B1]], . . . , [[Bn]], [[C1]], . . . , [[Cm]]

are all accepted by DFAs whose alphabet of symbols is Σ. For the moment,
assume also that op+ and op− are the identity operators. For ease of
notation, we shall assume that for any atom A that appears in P , A is a DFA
whose over the alphabet Σ and that [[A]] = L(A).

Proposition 1. For every finite set based program P where op+ = opid, every
weak or strong stable model of P is a finite union of the sense assignments of
the heads of clauses in P .

Thus any weak or strong stable model of P must be a finite union of languages
in Σ∗ which are accepted by DFAs and, hence, the stable model itself is accepted
by a DFA since languages accepted by DFAs are closed under union. We claim
that if M is a DFA whose alphabet of symbols is Σ, then we can effectively
decide whether L(M) is a weak or strong stable model of P .

The first thing to observe is that we can effectively find the weak or strong
Gelfond-Lifschitz transform of P . That is, under our assumptions for any atom
A and any a ∈ {s, w},

1. L(M) |=a
[[·]],op+,op− A if and only if L(A) ⊆ L(M),

2. L(M) |=s
[[·]],op+,op− ¬A if and only if L(A) ∩ L(M) = ∅, and

3. L(M) |=w
[[·]],op+,op− ¬A if and only if L(A) � L(M).

142 V. Marek and J.B. Remmel

It follows from the results in Section 3, that we can effectively decide whether
L(M) |=a

[[·]],op+,op− A, L(M) |=s
[[·]],op+,op− ¬A, and L(M) |=w

[[·]],op+,op− ¬A. Hence,
we can effectively construct GLs

L(M),[[·]],op+,op−(P) and GLw
L(M),[[·]],op+,op−(P).

Now suppose that Q is a finite Horn set based logic program over L =
(L,X, [[·]]) where X = Σ∗ for some finite alphabet Σ and op+ and op− are
the identity operators. Moreover, assume that for any atom A which appears in
Q, [[A]] is a language accepted by a DFA whose alphabet is Σ. Again, for ease
of notation, we shall assume that for any atom A that appears in P , A is a
DFA whose alphabet is Σ and that [[A]] = L(A). Then, we claim that we can
effectively construct a DFA M such that L(M) is the least model of Q. First,
we shall show that for all n ≥ 1, we can effectively construct a DFA Mn such
T n

Q,op+(∅) = L(Mn). Note that TQ,op+(∅) is equal to
⋃
{L(A) : A ← ∈ Q}.

Now if {A ← ∈ Q} is empty, then TQ,op+(∅) = ∅ and the least model of Q
equals ∅ so that we simply let M1 be the one state DFA which has no accepting
state. Otherwise, suppose

{A : A← ∈ Q} = {A0
1, . . . , A

0
n0
}.

Then, we set M1 = A0
1∪· · ·∪A0

n0
. Now assume that we have constructed a DFA

Mn such that T n
Q,op+(∅) = L(Mn). Then,

TQ,op+(L(Mn)) = op+(I1 ∪ I2)

where I1 =
⋃
{[[A]] | A ← B1, . . . , Bm ∈ Q,L(Mn) |=[[·]],op+ Bi, i = 1, . . . , n}

and I2 =
⋃
{[[A]] | A← is a clause in the EDB of Q}.

Note that I1 ∪ I2 is finite since Q is finite. Since we can effectively decide
whether L(N) ⊆ L(Mn) for any DFA N , we can effectively decide whether
L(Mn) |=[[·]],op+ Bi for any atom Bi and hence we can effectively compute I1
and I2. Then we simply let L(Mn+1) be the DFA whose language is the union
of all the L(A) such that A ∈ I1 ∪ I2.

Finally, we can effectively check whether L(Mn+1) = L(Mn). Since the least
model of Q equals L(Mn) where n is the least integer such that L(Mn+1) =
L(Mn), we can effectively construct a DFA R such that L(R) is the least model
of Q.

It follows that we can effectively construct DFAs Ms and Mw such that L(Ms)
is the least model of GLs

L(M),[[·]],op+,op−(P) and L(Mw) is the least model of
GLw

L(M),[[·]],op+,op−(P). Since we can effectively check whether L(M) = L(Ms)
and whether L(M) = L(Mw), it follows that we can effectively decide if L(M)
is a weak or strong stable model of P .

We can extend our analysis to finite set based logic programs P with miops
assuming that the miops for P satisfy the following property.

Definition 4. We say that a miop op : 2Σ∗ → 2Σ∗
is effectively automata

preserving if for any DFA M whose underlying alphabet of symbols is Σ, we can
effectively construct a DFA N whose underlying alphabet of symbols is Σ such
that L(N) = op(L(M)).

Effectively Reasoning about Infinite Sets in Answer Set Programming 143

We will now give a number of examples of miops on regular languages.

Example 3. Suppose that Σ = {0, 1, . . . ,m}. Then, the following are effectively
automata preserving operators.

1. If N is a DFA whose underlying set of symbols is Σ, then we can define
op : 2Σ∗ → 2Σ∗

by setting op(S) = S ∪ L(N) for any S ⊆ Σ∗. Clearly if
S = L(M) for some DFA M whose underlying set of symbols is Σ, then
op(L(M)) = L(M ∪N) so op is effectively automaton preserving.

2. If N is a DFA whose underlying set of symbols is Σ, then we can define
op : 2Σ∗ → 2Σ∗

by setting op(S) = S ∩ L(N) for any S ⊆ Σ∗. Clearly if
S = L(M) for some DFA M whose underlying set of symbols is Σ, then
op(L(M) = L(M ∩N) so op is effectively automata preserving.

3. If T is any subset of Σ, we can let op(S) = S(T ∗). Again op will be an
effectively automata preserving miop since if M is DFA whose underlying
set of symbols is Σ, then let N be NFA constructed from M by adding loops
on all the accepting states labeled with letters from T . It is easy to see that
N accepts L(M)T ∗ and then one can use the standard construction to find
a DFA N ′ such that L(N ′) = L(N). Note that in the special case where
T equals Σ, we can think of op as constructing the upper ideal of S in Σ∗

relative to the partial order � where for any words u, v ∈ Σ∗, u � v if and
only if u is prefix of v, i.e. v is of the form uw for some w ∈ Σ∗. For any
poset (P,≤P), we say that a set U ⊆ P is an upper ideal in P , if whenever
x ≤P y and x ∈ P , then y ∈ P . Clearly, for the poset (Σ∗,�), op(S) is the
upper ideal of (Σ∗,�) generated by S.

4. Let P = (Σ,≤) be a partially-ordered set. For any w,w′ ∈ Σ∗, we say that
w′ is a factor of w if there are words u, v ∈ Σ∗ with w = uw′v. Define the
generalized factor order on P ∗ by letting u ≤ w if there is a factor w′ of w
having the same length as u such that u ≤ w′, where the comparison of u
and w′ is done componentwise using the partial order in P . Again we can
show that if op(S) is the upper ideal generated by S the generalized factor
order relative to P ∗, then op is an effectively automata preserving miop.
That is, if we start with a DFA M = (Q,Σ, δ, s, F), then we can modify M
to an NFA that accepts op(L(M)) as follows. Think of M as a digraph with
edges labeled by elements of Σ in the usual manner. First, we add a new
start state s0. There are loops from s0 labeled with all letters in Σ. There
is also a λ-transition from s0 to the old start state s. We then modify the
transitions in M so that if there is an edge from state q to q′ labeled with
symbol r, then we add an edge from q to q′ with any symbol s such that
r ≤ s. Finally we add loops to all accepting states such that labeled with all
letters in in Σ.

5. If we allow multiple representations of the infinite dimensional vector space
V∞ for the field GFq where q is prime, then the operator opsubsp can be
thought of an automaton preserving miop. Let Σ = {0, . . . , q − 1}. The
standard way to represent the elements of V∞ is to let 0 = 0 and think
of a non-zero element of V∞ as a finite sequence σ1 . . . σn where σn �= 0.
The operations of scalar multiplication and addition are then performed

144 V. Marek and J.B. Remmel

componentwise. In our case, we will let any element σ ∈ V∞ have multiple
representations, namely, σ can be represented by σ0n for any n ≥ 0. Then,
we let opsubsp(S) be the set of all representatives of the subspace of V∞
generated by S. In what follows, we shall only describe how to construct
NFA’s that accept the desired languages since the Myhill-Nerode Theorem
allows us to construct in a uniform manner, for any NFA M , a DFA D such
that L(M) = L(D). First, consider miop op1 such that op1(S) is the set of all
representations of elements of S. If M is a DFA whose underlying alphabet
is Σ, then we can modify M to an NFA N that accepts op1(S) as follows.
First, any state q such that there is an n such that the word 0n starting at
state q ends in an accepting state is an accepting state of N . In particular,
every accepting state of M is an accepting state of N . In addition, we add
loops labeled with 0 to all the accepting states of N .
Next we let op2(S) denote the set of all representations of any element which
is a scalar multiple of an element of S. We claim op2 is also an automaton
preserving miop. That is, if M is a DFA whose underlying alphabet is Σ, then
we can modify M to an NFA N̄ that accepts op2(S) as follows. First, let N
be the NFA such that op1(L(M)) = L(N). The for each a ∈ {0, . . . , q−1}, let
aN be the NFA that is constructed from N by replacing each edge labeled
with the letter x by an edge labeled ax. Then, it is clear that L(aN) =
{(aσ1) . . . (aσn) : σ1 . . . σn ∈ L(N)} so that op2(L(M)) = L(N̄) where N̄ =
0N ∪ 1N ∪ · · · ∪ (q − 1)N .
Finally for any a, b ∈ {0, . . . , q − 1}, we let opa,b(S) denote the set of all
representatives of the form aσ + bτ such that σ, τ are in S and |σ| = |τ |.
opa,b is not a miop, but nevertheless for any DFA M , we can construct an
NFA Ra,b such that L(Ra,b) = opa,b(L(M)). First, let N = (Q,Σ, δ, s, F)
be the DFA such that L(N) = op2(L(M)). Then, the set of states of Ra,b

will be Q × Q, (s, s) will be the start state of Ra,b, and F × F will be the
set of final states of Ra,b. Now suppose that there are edges from p0 to p1

labeled with α and from q0 to q1 labeled with β in N . Then, we will have
an edge in Ra,b from (p0, q0) to (p1, q1) labeled with aα + bβ. It is easy to
see that L(Ra,b) = opa,b(L(M)). and hence if we let R be the DFA such
that R =

⋃
(a,b)∈Σ×Σ Ra,b, then S ⊆ L(R) ⊆ opsubsp(S) and L(R) has the

property that if s1, s2 ∈ S, then as1 + bs2 ∈ L(R) for any a, b ∈ GFq .
By a similar argument, we can construct for any finite sequence of distinct
elements a1, . . . , ar from GFq , a DFA Ua1,...,ar such that L(Ua1,...,ar) equals
the set of all a1t1 + · · ·+ artr such that t1, . . . tr ∈ L(R). It then follows that
opsubsp(S) equal the union of L(Ua1,...,ar) over all possible finite sequence of
distinct elements from GFq and hence is we can construct a DFA U which
accepts opsubsp(S). �

It is then easy to check that if op+ : 2Σ∗ → 2Σ∗
, then for any Horn set based

logic program Q with the properties described above, we can construct a DFA
Mn such that T n

Q,op+(∅) = L(Mn) and, hence, we can effectively construct the
least model of Q. Thus we have the following result.

Effectively Reasoning about Infinite Sets in Answer Set Programming 145

Theorem 3. Suppose that P is a finite set based logic program over L=(L,X, [[·]])
where X = Σ∗ for some finite alphabet Σ and op+ : 2Σ∗ → 2Σ∗

and op− :
2Σ∗ → 2Σ∗

are effectively automaton preserving miops. Moreover, assume that
for any atom A which appears in Q, [[A]] is a language accepted by a DFA whose
underlying set of symbols is Σ. Then:

1. Every weak (strong) stable model of P is a language accepted by a DFA.
2. For any DFA M whose underlying set of symbols is Σ, we can effectively

decide whether L(M) is a weak or strong stable model of P .

Note that under the assumptions of Theorem 3, there are only finitely many
possible strong or weak stable models the program P , namely a union of the
sense of the head of certain clauses, and these are all recognizable by DFAs.
Hence it is decidable whether such a set based logic program has a weak or
strong stable model and there is an algorithm to find all such weak or strong
stable models.

5 Conclusions

We showed in Theorem 3 that if the senses of the atoms of a finite set based
logic program P are all regular languages over some fixed finite alphabet and
the miops involved are all automaton preserving miops, then we can effectively
decide if P has weak or strong stable model and there is an algorithm to find
all weak and strong stable models. In fact, it is not difficult to see that all the
operations in searching for either a weak or strong stable model of such programs
are effective so that it is possible to extend existing search engines to produce
either weak or strong stable models of such programs. However, we suspect that
the problem of how to optimize such extensions of existing search engines will be
an interesting and challenging research problem. Finite automaton are useful for
carrying out a lot of recognition tasks such as search for keywords or ensuring
documents or strings have a proper form so that our results show that we can
add ASP programming on top of such recognition tasks.

If we examine the proof of Theorem 3, it is clear that we used DFAs as codes
for set of regular languages SP that arise by taking the closures under op+ and
op− of finite unions of the languages associated with atoms of P . Here we consider
the empty set as the empty union so that the emptyset is in SP . Then the only
properties of such regular languages that were necessary to prove Theorem 3 was
that we have effective procedures which, given codes for A,B ∈ mathcalSP , (i)
decide if A ⊆ B, (ii) decide A∩B = ∅, and (iii) produce the codes of op+(A∪B),
op+(A ∩B), op−(A ∪B) and op+(A ∪B).

For any finite set based logic program P , we let SP denote set of fix points
of all finite unions of sets represented by the atoms of a finite set based logic
program P of the miops associated with P . If we can associate a code c(A) to
each elements of A ∈ SP such that there are effective procedures which, given
codes c(A) and c(B) for elements of A,B ∈ SP , will (i) decide if A ⊆ B, (ii)
decide if A ∩ B = ∅, and (iii) produce of the codes of closures of A ∪ B and

146 V. Marek and J.B. Remmel

A∩B under miop operators associated with P , then we can prove the analogue
of Theorem 3 for P . We have shown that the case where the code of an atom A is
a DFA which accepts A (alernatively a regular expression describing A) then we
have such procedures. However, such codes and procedures are available in many
other cases. For example, if all sets involved are the convex closures of a finite
set of points in Rn and op+ = opconvex and op− = opid or if all sets involved are
finite dimensional vector spaces over a computable fiel and op+ = op− = opsubsp,
then such codes and procedures as described above can be constructed.

Acknowledgments. The first author was partially supported by NASA-JLP
contract 1401954. The second author has been partially supported by NSF grant
DMS 0654060.

References

[AB90] Apt, K., Blair, H.A.: Arithmetic Classification of Perfect Models of Strat-
ified Programs. Fundamenta Informaticae 13, 1–17 (1990)

[BL02] Babovich, Y., Lifschitz, V.: Cmodels (2002),
http://www.cs.utexas.edu/users/tag/cmodels.html

[Ba03] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press, Cambridge (2003)

[BPS61] Bar-Hillel, Y., Perles, M.A., Shamir, E.: On formal properties of simple
phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft
und Kommunikationsforschung 14, 143–172 (1961)

[BMR01] Blair, H.A., Marek, V.W., Remmel, J.B.: Spatial Logic Programming. In:
Proceedings SCI 2001, Orlando, FL (July 2001)

[BMR08] Blair, H.A., Marek, V.W., Remmel, J.B.: Set Based Logic Programming.
Annals of Mathematics and Artificial Intelligence 52, 81–105 (2008)

[BMS95] Blair, H.A., Marek, V.W., Schlipf, J.S.: The Expressivness of Locally Strat-
ified Programs. Annals of Mathematics and Artificial Intelligence 15, 209–
229 (1995)

[BG02] Blumensath, A., Grädel, E.: Automatic Structures. In: Proceedings of the
15th Symposium on Logic in Computer Science, LICS 2000, pp. 51–62
(2000)

[Den00] Denecker, M.: Extending classical logic with inductive definitions. In:
Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U.,
Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS
(LNAI), vol. 1861, pp. 703–717. Springer, Heidelberg (2000)

[DG82] Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing satisfia-
bility of propositional Horn formulae. Journal of Logic Programming 3,
267–284 (1984)

[GKN+] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp – a Conflict-
driven Answer Set Solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg
(2007)

[KN03] Heljanko, K., Niemelä, I.: Bounded LTL model checking with stable mod-
els. Theory and Practice of Logic Programming 3, 519–550 (2003)

[GL02] Gelfond, M., Leone, N.: Logic Programming and Knowledge Representa-
tion – A-Prolog perspective. Artificial Intelligence Journal 138, 3–38 (2002)

http://www.cs.utexas.edu/users/tag/cmodels.html

Effectively Reasoning about Infinite Sets in Answer Set Programming 147

[GL88] Gelfond, M., Lifschitz, V.: The stable model semantics for logic program-
ming. In: Proceedings of the International Joint Conference and Sympo-
sium on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)

[GLM06] Giunchiglia, E., Lierer, Y., Maratea, M.: Answer Set Programming Based
on Propositional Satisfiability. Journal of Automated Reasoning 36, 345–
377 (2006)

[KN95] Khoussainov, B., Nerode, A.: Automatic Presentations of Structures. In:
Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer,
Heidelberg (1995)

[KNRS07] Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic struc-
tures: richness and limitations. Logical Methods of Computer Science 3(2),
18(electronic) (2007)

[LPF+06] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scar-
cello, F.: The dlv system for knowledge representation and reasoning. ACM
Transactions on Computational Logic 7, 499–562 (2006)

[Li94] Lifschitz, V.: Minimal belief and negation as failure. Artificial Intelligence
Journal 70, 53–72 (1994)

[LZ02] Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by
SAT solvers. In: Proceedings of the 18th National Conference on Artificial
Intelligence (AAAI 2002), pp. 112–117. AAAI Press, Menlo Park (2002)

[MNR94] Marek, W., Nerode, A., Remmel, J.B.: The stable models of predicate logic
programs. Journal of Logic Programming 21(3), 129–154 (1994)

[MR09] Marek, V.W., Remmel, J.B.: Automata and Answer Set Programming. In:
Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 323–337.
Springer, Heidelberg (2008)

[MT93] Marek, W., Truszczyński, M.: Nonmonotonic Logic – Context-Dependent
Reasoning. Springer, Heidelberg (1993)

[MT99] Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic
Programming Paradigm. In: The Logic Programming Paradigm. AI, pp.
375–398. Springer, Heidelberg (1999)

[Nie99] Niemelä, I.: Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelli-
gence 25, 241–273 (1999)

[SNS02] Simons, P., Niemelä, I., Soininen, T.: Extending and implementing stable
semantics of logic programs. Artificial Intelligence Journal 138, 181–234
(2002)

[SNTS01] Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing Configu-
ration Knowledge with Weight Constraint Rules. In: Answer Set Program-
ming 2001 (2001)

[Sm68] Smullyan, R.: First-order Logic. Springer, Heidelberg (1968)

Inspecting Side-Effects of Abduction in Logic Programs

Luís Moniz Pereira and Alexandre Miguel Pinto

Centro de Inteligência Artificial (CENTRIA)
Departamento de Informática, Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
{lmp,amp}@di.fct.unl.pt

Abstract. In the context of abduction in Logic Programs, when finding an abduc-
tive solution for a query, one may want to check too whether some other literals
become true (or false) as a consequence, strictly within the abductive solution
found, that is without performing additional abductions, and without having to
produce a complete model to do so. That is, such consequence literals may con-
sume, but not produce, the abduced literals of the solution. We show how this type
of reasoning requires a new mechanism, not provided by others already available.
To achieve it, we present the concept of Inspection Point in Abductive Logic Pro-
grams, and show, by means of examples, how one can employ it to investigate
side-effects of interest (the inspection points) in order to help choose among ab-
ductive solutions. We show how to implement inspection points on top of already
existing abduction solving systems — ABDUAL and XSB-XASP — in a way
that can be adopted by other systems too.

Keywords: Logic Programs, Abduction, Side-Effects.

1 Introduction

Abductive logic programming offers a formalism to declaratively express and solve
problems in areas such as decision-making, diagnosis, planning, belief revision and
hypothetical reasoning.

When finding an abductive solution for a query, one may want to check too whether
some other literals become true (or false) as a consequence, strictly within the abductive
solution found, i.e. without performing additional abductions, and without having to
produce a complete model to do so. That is, such consequence literals may consume,
but not produce, the abduced literals of the solution. We show how this type of reasoning
requires a new abduction mechanism, that of Inspection Points (IPs).

Electing a specific abducible occurrence as an inspection point can be afforded
by using an intentional abduction device, for convenience dubbed “meta-abduction"
or “conditional abduction”; that is, in lieu of abducing that occurrence, one instead
(meta-) abduces just the intent to simply check that the abducible’s actual abduction
occurs somewhere in the abductive solution, by virtue of some other occurrence of it.
Consequently, as we shall see, inspecting the side-effects of abduction is achievable by
using abduction itself.

We begin by presenting the motivation, plus some background notation and defini-
tions follow. Then issues of reasoning with logic programs are addressed in section 2, in

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 148–163, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Inspecting Side-Effects of Abduction in Logic Programs 149

particular, we take a look at abductive reasoning and the nature of backward and forward
chaining and their relationship to query answering in an abductive framework. In sec-
tion 3 we introduce inspection points, illustrate their need and their use with examples,
and provide a declarative semantics. In section 4 we describe in detail our implemen-
tation of inspection points and illustrate its workings with an example. We close with
conclusions, comparisons, and future work.

1.1 Motivation

Often, besides needing to abductively discover which hypotheses to assume in order
to satisfy some condition, we may also want to know some of the side-effects of those
assumptions; in fact, this is rather a rational thing to do. But, most of the time, we do
not wish to know all possible side-effects of our assumptions, as some of them may be
irrelevant to our concern, e.g. in decision-making. Likewise, the side-effects inherent in
abductive explanations might not all be of interest, e.g. in model-based fault-diagnosis.
Another common application of abductive reasoning is that of finding which actions
to perform, action names being coded as abducibles; again, only some of an action’s
side-effects may be of interest. A simple example will help bring out the abduction
side-effect issue and our approach to it.

Example 1. Relevant and irrelevant side-effects. Consider this logic program where
drink_water and drink_beer are abducibles. Suppose we want to satisfy the Integrity
Constraint (IC), and also to check if we get drunk or not. However, we do not care about
the glass becoming wet — that being completely irrelevant to our current concern. Thus,
in general, computation of whole models can be a waste of time since we are normally
only interested, as for side-effects, in some subset of the program’s literals.

← thirsty, not drink. % this is an Integrity Constraint
wet_glass← use_glass. use_glass← drink.
drink ← drink_water. drink ← drink_beer.
thirsty. drunk ← drink_beer.
unsafe_drive← drunk.

Moreover, in this example, we may wish to decide a possible action (whether to drive
or not) only after we know which side-effects are true. In such cases, we do not want
simply to introduce an extra IC expressed as← not unsafe_drive, because that would
always impose abducing not drink_beer, irrespective of whether we are not even con-
sidering to drive. We want to allow all possible abductive solutions for the single IC
← thirsty, not drink and only then check for the side-effects of each solution, in
order to then decide the driving action.

What we need is an inspection mechanism that permits checking the truth value of
given side-effect literals (like drunk) as a consequence of abductions made to satisfy a
given query and the program’s ICs, but without further abducing whilst checking. This
is achieved simply via our inspect/1 meta-predicate, by introducing instead the extra
IC ← inspect(not unsafe_drive), rather than just ← not unsafe_drive. The so-
formulated (passive) IC is not allowed to be met by actively introducing abductions to
that effect, but only by consuming abductions introduced to satisfy the query and other
(active) ICs, like← thirsty, not drink.

150 L. Moniz Pereira and A.M. Pinto

1.2 Background Notation and Definitions

Definition 1. Logic Rule. A Logic Rule has the general form
H ← B1, . . . , Bn, not C1, . . . , not Cm

where H is an atom, and the Bi and Cj are atoms.

H is the head of the rule, and B1, . . . , Bn, not C1, . . . , not Cm is its body, where any
rule variables are deemed universally quantified. Throughout, we use ‘not ’ to denote
default negation. When the body is empty, we say its head is a fact and write the rule just
as H . If the head is empty, the rule is said to be an Integrity Constraint (IC). The atoms
true and false are by definition respectively true and false in every interpretation.

Definition 2. Logic Program. A Logic Program (LP for short) P is a (possibly infinite)
set of Logic Rules, where non-ground rules stand for all their ground instances.

In this paper, we consider solely so-called Normal LPs (NLPs), those whose heads
of rules are positive literals, i.e. positive atoms, or empty, as per the above definition
of rules. We focus furthermore on abductive logic programs, i.e. NLPs allowing for
abducibles—user-specified positive literals without rules, whose truth-value is not as-
sumed initially. Abducible instances or their default negations may appear in bodies of
rules, like any other literal. They stand for hypotheses, each of which may indepen-
dently be assumed true, in positive literal or default negation form, as the case may be,
in order to produce an abductive solution to a query.

Definition 3. Abductive Solution. An abductive solution is a consistent set of ab-
ducible instances or their negations that, when replaced by true everywhere in P , or
equivalently simply omitted, affords a (Herbrand) model of P that satisfies the query
and (of course) the ICs—a so-called abductive model, for the specific semantics being
used on P .

We replace abducibles or their negations into P—instead of the more standard adding
of abducibles as facts to P—because we also may abduce negations of abducibles, since
the latter are not assumed false by default to begin with.

2 Abductive Reasoning with Logic Programs

Logic Programs have been used for a few decades now in knowledge representation
and reasoning. Amongst the most common kinds of reasoning performed using them,
one can find deduction, induction and abduction. Abduction, or inference to the best ex-
planation, is a reasoning method whereby one chooses those hypotheses that would, if
true, best explain the observed evidence—by meeting the corresponding ICs—and sat-
isfy some query. Within deduction, and its abduction counterpart, so-named “brave” and
“cautious" reasoning varieties are distinguished. “Brave” reasoning consists in finding
if there exists at least one consistent model of the program—according to some pre-
established semantics—which entails the query. “Cautious” reasoning demands that
every model of the program entail the query.

In LPs, abductive hypotheses (or abducibles) are named literals of the program which
have no rules. They can be considered true or false for the purpose of answering a query.

Inspecting Side-Effects of Abduction in Logic Programs 151

Abduction in LPs ([1,5,6,10,11]) can naturally be used in top-down query-oriented
proof-procedures to find an (abductive) solution to a query, where the abducibles in
the solution are leaves in the procedure’s query-rooted call-graph—that is the graph re-
cursively engendered by the procedure calls from literals in bodies of rules to heads of
rules, and thence from the literals in a rule’s body.

When query-answering, wherein abduction is enjoined as needed, if we know the
underlying semantics is relevant, i.e. guarantees it is enough to use only the rules rel-
evant to the query (those in its call-graph) to assess its truthfulness, then we need not
compute a whole model in order to find an answer to a query: it suffices just to use
the call-graph or relevant part of the program and determine the truth of a subset of the
program’s literals, those in the query’s call-graph. Thus, top-down finding a solution to
a query, dubbed “backward chaining”, is possible only when the underlying semantics
is relevant, in the above sense, because then the extension of that subset to a full model
is guaranteed.

When performing abductive reasoning, we typically wish to find by need only—via
backward chaining—the abductive solutions to a query. However, sometimes we also
want to know which are some of the consequences (or side-effects) of such abductive
solutions. I.e., we desire to know the truth value of some other literals, not part of the
query’s call-graph, whose truth-value may be determined by a found abductive solu-
tion. In some cases, we might be interested in knowing every possible side-effect—the
truth-value of every literal in a complete model satisfying the query. In other situations
though, our focus is frequently just on some specific side-effects.

In our approach, the side-effects of interest are explicitly indicated by the user, by
wrapping the corresponding goals within the reserved construct inspect/1.

2.1 Abductive Logic Program Procedures

Currently, the standard 2-valued semantics used by the logic programming community
is Stable Model (SM) semantics [9]. Its properties are well known and there are efficient
implementations (such as DLV and SModels [4,12]). However, SM misses out on some
important properties, both from the theoretical and practical perspectives: guarantee
of model existence for every NLP, relevance and cumulativity—though the latter will
not be of concern in the present context. Most importantly, since SM do not enjoy
relevance they cannot just use backward chaining for query answering, irrespective of
whether abduction is involved— indeed, odd-loops over default negation, outside the
query’s call-graph, may prevent model existence. This means SM implementations need
to compute whole models, and so one will waste computational resources, because extra
time and memory are required to compute parts of the model which are irrelevant to
the query and ICs, i.e. outside their call-graph. The problem becomes compounded in
abductive reasoning, because then the truth-value combinations of every abducible must
be considered in order to provide complete models, even where abducibles are irrelevant
to the query at hand. Moreover, such irrelevant abducibles and their combinations must
subsequently be weeded out from the abductive models, at additional computational
cost. On the other hand, because whole models are computed side-effects of abductive
choices are computed too.

152 L. Moniz Pereira and A.M. Pinto

The Well-Founded Semantics (WFS) [8]—which enjoys model existence, relevance,
and cumulativity—allows for top-down abductive query answering. Whole models need
not to be computed, but then testing for side-effects involves extra querying about side-
effected literals. One important issue we address with the introduction of inspection
points is how to query the side-effects of a given abductive solution without performing
additional abductions in the process. In so doing we avoid producing whole models still.
We used WFS in the specific implementation described in section 4 based on ABDUAL
[1]. Though WFS is 3-valued, the abduction mechanism it employs can be, and in our
case is, 2-valued.

Because they do not depend on any other literal in the program, abducibles can be
modeled in a LP system without specific abduction mechanisms by automatically in-
cluding for each abducible an even loop over default negation, e.g.,

abducible← not neg_abducible. neg_abducible← not abducible.

where neg_abducible is a new abducible atom, representing the (abducible) negation
of the abducible. This way, under the SM semantics, a program may have models where
some abducible is true and another where it is false, i.e. neg_abducible is true. If there
are n abducibles in the program, there will be 2n models corresponding to all the possi-
ble combinations of true and false for each. Under the WFS without a specific abduction
mechanism, both abducible and neg_abducible remain undefined in the Well-Founded
Model (WFM), but may hold (as alternatives) in Partial Stable Models. In ABDUAL,
however, a specific distinct mechanism is employed: abducibles and their negations are
explicitly collected during search.

Using the SM semantics, unless the program is stratified, abduction must be done
by guessing the truth-value of each abducible, providing the whole model and testing
it for stability; whereas using WFS, even for non-stratified programs, abduction can
be performed by need, induced by the top-down query solving procedure, solely for
the relevant abducibles—i.e., irrelevant abducibles are left unconsidered. Thus, top-
down abductive query answering is a means of finding those abducible values one might
commit to in order to satisfy a query.

A new additional procedural preoccupation, addressed in this paper, is when one
wishes to only passively determine which abducibles would be sufficient to satisfy some
goal but without actually abducing them, just consuming other goals’ needed and pro-
duced abductions. The difference is subtle but of importance, and it requires a new
construct. Its mechanism, of inspecting without abducing, can be conceived and imple-
mented through meta-abduction, or conditional abduction, as discussed in detail in the
sequel.

3 Inspection Points

When faced with some situation where several alternative courses of actions are avail-
able a rational agent must decide and choose which action to take. A priori preferences
can be applied before choosing in order to reduce the number of considerable possible
actions curtailing the explosion of irrelevant combinations of choices, but still several
(possibly exclusive) may remain available.

Inspecting Side-Effects of Abduction in Logic Programs 153

To make the best possible informed decision, and commit to a course of action, the
agent must be enabled to foresee the consequences of its actions and then prefer on
the basis of those consequences (with a posteriori preferences). Choosing which set of
consequences is most preferred corresponds to an implicit choice on restricting which
course of action to take. But only consequences relevant to the a posteriori preferences
should be calculated: there are virtually infinitely many consequences of a given ac-
tion, most of which are completely irrelevant to the preference-based decision making.
Other consequences may be just predictions about the present state of the world, and
observing whether they are verified can eliminate hypothetical scenarios where certain
decisions would appear to make sense.

Not all consequences are experimentally observable though, hence Inspection Points
(IPs) may serve to focus on the ones that are, and thus guide the experimentation re-
quired to decide among competing hypotheses. That is, IPs can be put to the service
of sifting through competing explanations. In science, such decisive consequences are
known as "crucial" side-effects, because they exclude untoward hypotheses. However,
this is not the place to discuss the varied uses of abduction and its pragmatics. Instead,
we direct the reader to Robert Kowalski’s online book draft, available at his home page.

3.1 Backward and Forward Chaining

Abductive query-answering is intrinsically a backward-chaining process, a top-down
dependency-graph oriented proof-procedure. Finding the side-effects of a set of abduc-
tive assumptions may be conceptually envisaged as forward-chaining, as it consists of
progressively deriving consequences from the assumptions until the truth value of the
chosen side-effect literals is determined.

The problem with full-fledged forward-chaining is that too many (often irrelevant)
conclusions of a model are derived. Wasting time and resources deriving them only to
be discarded afterwards is a flagrant setback. Even worse, in combinatorial problems,
there may be many alternative solutions whose differences repose just on irrelevant
conclusions. So, the unnecessary computation of irrelevant conclusions in full forward-
chaining may be multiplied, leading to immense waste.

A more rational solution, when one is focused on some specific conclusions from a
set of premises, is afforded by a selective top-down ersatz forward-chaining. In this set-
ting, the user can specify the conclusions she is focused on, and only those are computed
in a backward-chaining fashion, checking whether they are consequences of desired ab-
ductions, but without further abducing. Combining backward-chaining with such ersatz
forward-chaining allows for a greater precision in specifying what we wish to know,
and altogether improve efficient use of computational resources, because focusing on
the points of interest.

Crucially, if abduction is enabled, the computation of side-effects should take place
without further abduction, passively —but not destructively— just “consuming” ab-
ducibles “produced” elsewhere by abduction, for the top query.

In the sequel, we show how such ersatz forward-chaining from a set of hypotheses
can be achieved by backward chaining from the consequences focused on—the inspec-
tion points—by virtue of a controlled form of abduction.

154 L. Moniz Pereira and A.M. Pinto

3.2 Meta-abduction for Side-Effects Inspection

“Meta-abduction” is used in abduction inhibited inspection. Intuitively, when an ab-
ducible is considered under mere inspection, meta-abduction abduces only the intention
to a posteriori check for its abduction elsewhere, i.e. it abduces the intention of verify-
ing that the abducible is indeed adopted—that is, it abduces on condition. In practice,
when we want to meta-abduce some abducible ‘X’, we abduce a literal ‘consume(X)’
(or ‘abduced(X)’), which represents the intention that ‘X’ is eventually abduced else-
where in the process of finding an abductive solution. The pairing check is performed
after a complete abductive answer to the top query is found. Meta-abduction, by its very
nature, can be supported by any abduction capable system.

In the examples below, we are not propounding a methodology for using abduction,
but simply illustrating the concepts we have introduced.

Example 2. Police and Tear Gas Issue. Consider this NLP, where ‘tear_gas’, ‘fire’,
and ‘water_cannon’ are the only abducibles. Notice the two rules for ‘smoke’. The
first states that one explanation for smoke is fire, when assuming the hypothesis ‘fire’.
The second states ‘tear_gas’ is also a possible explanation for smoke. However, the
presence of tear gas is a much more unlikely situation than the presence of fire; after
all, tear gas is only used by police to contain riots and that is truly an exceptional
situation. Fires are much more common and spontaneous than riots. For this reason,
‘fire’ is a much more plausible explanation for ‘smoke’ and, therefore, in order to let
the explanation for ‘smoke’ be ‘tear_gas’, there must be a plausible reason—imposed
by some other likely phenomenon. This is represented by inspect(tear_gas) instead
of simply ‘tear_gas’.

← police, riot, not contain. % this is an Integrity Constraint
contain← tear_gas. contain← water_cannon.
smoke← fire. smoke← inspect(tear_gas).
police. riot.

The ‘inspect’ construct disallows regular abduction—allowing only a conditional meta-
abduction to be performed whilst trying to solve ‘tear_gas’. I.e., if we take tear gas
as an abductive solution for smoke, this rule imposes that the step where we abduce
‘tear_gas’ is performed elsewhere, not under the derivation tree for ‘smoke’. Thus,
‘tear_gas’ is an inspection point. The IC, because there is ‘police’ and a ‘riot’, forces
‘contain’ to be true, and hence, ‘tear_gas’ or ‘water_cannon’ or both must be ab-
duced. ‘smoke’ is only explained if, at the end of the day, ‘tear_gas’ is abduced to
enact containment. Abductive solutions should be plausible, and ‘smoke’ is plausibly
explained by ‘tear_gas’ if there is a reason, a best explanation, that makes the presence
of tear gas plausible; in this case the riot and the police. Crucially, if the police were
not around, or there was no riot, ‘tear_gas’ could not be abduced to explain ‘smoke’.
Plausibility is an important concept in science, for lending credibility to hypotheses.
Assigning plausibility measures to situations is an orthogonal issue though.

Example 3. Nuclear Power Plant Decision Problem. This example was extracted
from [13] and adapted to our current designs, and its abducibles do not represent ac-
tions. In a nuclear power plant there is decision problem: cleaning staff will dust the

Inspecting Side-Effects of Abduction in Logic Programs 155

power plant on cleaning days, but only if there is no alarm sounding. The alarm sounds
when the temperature in the main reactor rises above a certain threshold, or if the alarm
itself is faulty. When the alarm sounds everybody must evacuate the power plant imme-
diately! Abducible literals are cleaning_day, temperature_rise and faulty_alarm.

dust ← cleaning_day, inspect(not sound_alarm)
sound_alarm← temperature_rise
sound_alarm← faulty_alarm
evacuate ← sound_alarm

← not cleaning_day

Satisfying the unique IC imposes cleaning_day true (we may not employ a fact as
cleaning_day is an abducible and these may not have rules), and that gives us three
minimal abductive solutions to what happens on a cleaning day:

S1 = {dust, cleaning_day},
S2 = {cleaning_day, sound_alarm, temperature_rise, evacuate}, and
S3 = {cleaning_day, sound_alarm, faulty_alarm, evacuate}.

If we pose the query ?−not dust we want to know what could justify the cleaners dust-
ing not to occur given that it is a cleaning day (enforced by the IC). However, we do not
want to abduce the rise in temperature of the reactor nor to abduce the alarm to be faulty
in order to prove not dust. Any of these justifying two abductions must result as a side-
effect of the need to explain something else, for instance the observation of the sounding
of the alarm, expressible by adding the IC← not sound_alarm, which would then ab-
duce one or both of those two abducibles as plausible explanations. Hence S2 and S3

are not solutions to the query, as intended in [13]. They would be, however, if the query
were ?− not dust, evacuate. The inspect/1 in the body of the rule for dust prevents
any abduction below sound_alarm to be made just to make not dust true. One other
possibility would be for two observations, coded by ICs ← not temperature_rise
or ← not faulty_alarm, to be present in order for not dust to be true as a side-
effect. A similar argument can be made about evacuating: one thing is to explain why
evacuation takes place, another altogether is to justify it as necessary side-effect of root
explanations for the alarm to go off. These two pragmatic uses correspond to different
queries: ?− evacuate and ?− inspect(evacuate), respectively.

3.3 Declarative Semantics of Inspection Points

A simple transformation Π maps any NLP P , with possibly nested inspection points—
that is inspection points under the scope of other ones—into a NLP TP without them.

Definition 4. Abductive Models. Abductive Models are those models obtained by the
abductive solutions—according to the base semantics which is applied to the trans-
formed program TP—in which each abduced(X) is required to be matched by the
corresponding X . Thus the transformation Π provides a definitional transformative
declarative semantics for P , no matter what the base semantics chosen and its actual
implementation

156 L. Moniz Pereira and A.M. Pinto

Both the Stable Models or the Well-Founded Semantics are used in this paper, cor-
responding to different implementations naturally. For instance, the Abductive Stable
Models of some TP , are the stable models for its abductive solutions, with respect to
the source abducibles for P plus those abducibles introduced by the transformation.
Likewise for the Abductive Well-Founded Models.

In essence,TP adds toP duplicates of its rules, wrapping each literal with inspect/1,
except for the abducibles, which are treated differently. Mark, below, that the abduc-
tive Stable Models of the transform TP—in which, by definition, each abduced(X)
is required to be matched by the corresponding X—clearly correspond to the intended
meaning ascribed to the inspection points of the original program, as the example illus-
trates.

Definition 5. Transforming Inspection Points. Let P be a program containing rules
whose body possibly contains inspection points. The program Π(P) consists of:

1. all the rules obtained from the rules in P by systematically replacing:
– inspect(not L) with not inspect(L);
– inspect(L) with abduced(a)

if L is an abducible a, and keeping inspect(L) otherwise.
2. plus, for each rule A ← L1, . . . , Lt in the replaced rules of P from step 1, the

additional rule:
inspect(A) ← L

′
1, . . . , L

′
t where for every 1 ≤ i ≤ t:

L
′
i =

⎧⎨
⎩

abduced(Li) if Li is an abducible
inspect(X) if Li is inspect(X)
inspect(Li) otherwise

The semantics of the inspect/1 predicate is exclusively given by the generated rules for
inspect/1. Moreover, ‘abduced/1’ is an abducible, joining the original abducibles.

Example 4. Transforming a Program P with Nested Inspection Points.

x← a, inspect(y), b, c, not d y ← inspect(not a)
z ← d y ← b, inspect(not z), c

where the abducibles are a, b, c, d. Then, Π(P) is:

x ← a, inspect(y), b, c, not d
inspect(x) ← abduced(a), inspect(y), abduced(b), abduced(c), not abduced(d)
y ← not inspect(a)
y ← b, not inspect(z), c
inspect(y) ← not abduced(a) % by two rewrites
inspect(y) ← abduced(b), not inspect(z), abduced(c)
z ← d
inspect(z) ← abduced(d)

The single abductive stable model of Π(P)—that its stable model for its single abduc-
tive solution—respecting the meaning of the inspection points declarations in P is:
{x, a, b, c, abduced(a), abduced(b), abduced(c), inspect(y)}.

Note that indeed for each abduced(X) the corresponding X is in the model.

Inspecting Side-Effects of Abduction in Logic Programs 157

4 Implementation

We based our practical work on a formally defined, XSB-implemented, true and tried
abduction system—ABDUAL [1]. ABDUAL lays the foundations for efficiently com-
puting queries over ground 3-valued abductive frameworks for extended logic programs
with integrity constraints, on the well-founded semantics and its partial stable models.

The query processing technique in ABDUAL relies on an admixture of program
transformation and tabled evaluation. A transformation removes default negative literals
(by making them positive) from both the program and the integrity rules. Specifically,
a dual transformation is used, that defines for each objective literal O (i.e. an atom
or explicit negated atom) and its set of rules R, a dual set of rules whose conclusions
not (O) are true if and only if O is false in R. Tabled evaluation of the resulting program
turns out to be much simpler than for the original program, whenever abduction over
negation is needed. At the same time, termination and complexity properties of tabled
evaluation of extended programs are preserved by the transformation, when abduction is
not needed. Regarding tabled evaluation, ABDUAL is in line with SLG [15] evaluation,
which computes queries to normal programs according to the well-founded semantics.
To it, ABDUAL tabled evaluation adds mechanisms to handle abduction and deal with
the dual programs.

ABDUAL is composed of two modules: the preprocessor which transforms the orig-
inal program by adding its dual rules, plus specific abduction-enabling rules; and a
meta-interpreter allowing for top-down abductive query solving. When solving a query,
abducibles are dealt with by means of extra rules the preprocessor added to that effect.
These rules just add the name of the abducible (or its negation) to an ongoing list of
current abductions, unless the negation of the abducible was added before to the lists,
then failing in order to ensure abduction consistency. Our conditional meta-abduction is
implemented adroitly by means of a reserved predicate, ‘inspect/1’ taking some literal
L as its argument, which engages the abduction mechanism to try and discharge any
conditional meta-abductions performed under L by matching with the corresponding
abducibles, adopted elsewhere outside from under any ‘inspect/1’ call. The approach
taken can easily be adopted by other abductive systems, albeit in part—e.g. inspect-
ing only abducibles directly, and so omitting inspection nesting too—as we had the
occasion to check, namely with the authors of system [3]. We have also enacted an
alternative implementation, relying on XSB-XASP and the declarative semantics trans-
formation above, which is reported further below.

Procedurally, in the ABDUAL implementation, the checking of an inspection point
corresponds to performing a top-down query-proof for the inspected literal, but with
the specific proviso of disabling new abductions during that proof. The proof for the
inspected literal will succeed only if the abducibles needed for it were already adopted,
or will be adopted, in the present ongoing solution search for the top query. Conse-
quently, this check is performed after a solution for the query has been found, except
for “quick-kill” cases, as when the opposite abduction has already been collected in the
ongoing solution. At “inspection-point-top-down-proof-mode”, whenever an abducible
is encountered, instead of adopting it, we simply adopt the intention to a posteri-
ori check if the abducible is part of the answer to the query. That is, one condition-
ally (meta-) abduces the checking of some abducible A, and the check consists in

158 L. Moniz Pereira and A.M. Pinto

confirming that A is part of the abductive solution by matching it with the object of
the check. According to our method, the side-effects of interest are explicitly indicated
by the user by wrapping the corresponding goals, those to be subject to inspection mode,
with the reserved construct ‘inspect/1’.

4.1 ABDUAL with Inspection Points—Details

Inspection points in ABDUAL function mainly by means of controlling the general
abduction step, which involves very few changes, both in the pre-processor and the
meta-interpreter, that might be imported into other abduction systems. Whenever an
‘inspect(X)’ literal is found in the body of a rule, where ‘X’ is a goal, a meta-
abduction-specific counter—the ‘inspect_counter’, initialized with zero—is increased
by one, in order to keep track of the allowed character, active or passive, of ongoing ab-
duction performing. The top-down evaluation of the query for ‘X’ then proceeds nor-
mally. Active abductions are only allowed if the counter is set to zero, otherwise only
meta-abductions are permitted. After finding an abductive solution to query ‘X’, the
counter is decreased by one, since that inspection execution of X has been completed.
Backtracking over counter assignations is duly accounted for. Of course, this way of
implementing the inspection points (with a single ‘inspect_counter’) presupposes the
abductive query answering process is carried out “depth-first”, guaranteeing that the
order of the literals in the bodies of rules actually corresponds to the order they are
processed in. For simplicity of description, we assume such a “depth-first” discipline
in the implementation of inspection points, described in detail below. We then lift this
restriction at the end of the subsection.

Changes to the pre-processor:

1. A new dynamic predicate was added: the ‘inspect_counter/1’. This is initialized
to zero (‘inspect_counter(0)’) via an assert, before a top-level query is launched.

2. The original rules for the normal abduction step are now preceded by an additional
condition checking that the ‘inspect_counter’ is indeed set to zero.

3. Extra rules for the “inspection” abduction step are added, preceded by a condition
checking the ‘inspect_counter’ is set to greater than zero. When these rules are
called, the corresponding abducible ‘A’ is not abduced as it would happen in the
original rules; instead, ‘consume(A)’ (or ‘abduced(A)’) is abduced. This corre-
sponds to the conditional meta-abduction: we abduce the need to abduce ‘A’, the
need to ‘consume’ the abduction of ‘A’, which is finally checked when derivation
for the very top goal is finished.

Changes to the meta-interpreter: The changes to the meta-interpreter include all
the remaining processing needed to correctly implement inspection points, namely the
matching of the abduction of ‘consume(X)’ against the abduction of ‘X’. If a condi-
tional meta-abduction on ‘X’ (producing ‘consume(X)’) is not matched by an actual
abduction on ‘X’ when the end of solving the top query is reached, the candidate ab-
ductive answer is considered invalid and the attempted query solving fails. On back-
tracking, an alternative abductive solution (possibly with other meta-abductions) will
be sought.

Inspecting Side-Effects of Abduction in Logic Programs 159

In detail, the changes to the meta-interpreter include:

1. Two “quick-kill” rules for improved efficiency that detect and immediately solve
trivial cases for conditional meta-abduction:

– When literal ‘X’ about to be meta-abduced (‘consume(X)’ about to be added
to the abductions list) has actually been abduced already (‘X’ is in the abduc-
tions list) the meta-abduction succeeds immediately and ‘consume(X)’ is not
added to the abductions list;

– When the situation in the previous point occurs, but with ‘not X’ already ab-
duced instead, the meta-abduction immediately fails.

2. Two new rules for the general case of meta-abduction, that now specifically
treat the ‘inspect(not X)’ and ‘inspect(X)’ literals. In either rule, first we in-
crease the ‘inspect_counter’ mentioned before, then proceed with the usual meta-
interpretation for ‘not X’ (‘X’, respectively), and, when this evaluation succeeds,
we then decrease ‘inspect_counter’.

3. After an abductive solution is found to the top query, ensure that every meta-
abduction, i.e. every ‘consume(X)’ literal abduced, is indeed matched by a corre-
sponding and consistent abduction, i.e. that it is matched by the abducible ‘X’ in
the abductions list; otherwise the tentative solution found fails.

A counter—‘inspect_counter’—is employed instead of a simple toggle because sev-
eral ‘inspect(X)’ literals may appear at different graph-depth levels under one another,
and resetting a toggle after solving a lower-level meta-abduction would enable producer
abductions under the higher-level meta-abduction. An example clarifies this.

Example 5. Nested Inspection Points. Consider again the program of the previous
example, where the abducibles are a, b, c, d:

x← a, inspect(y), b, c, not d. y ← inspect(not a).
z ← d. y ← b, inspect(not z), c.

When we want to find an abductive solution for x—skipping over the low-level techni-
cal details—we proceed as follows:

1. a is an abducible and since the ‘inspect_counter’ is still set initially to 0 we can
abduce a by adding it to the running abductions list;

2. y is not an abducible and so we cannot use any “quick-kill” rule on it. We increase
the ‘inspect_counter’—which now takes the value 1—and proceed to find an ab-
ductive solution to y;

3. Since the ‘inspect_counter’ is different from 0, only meta-abductions are allowed;
4. Using the first rule for y we need to ‘inspect(not a)’, but since we have already ab-

duceda, a “quick-kill” is applicable here: we already know that this ‘inspect(not a)’
will fail. The value of the ‘inspect_counter’ will remain 1;

5. On backtracking, the second rule for y is selected, and now we meta-abduce b by
adding ‘consume(b)’ to the ongoing abductions list;

6. Increase the ‘inspect_counter’ again, making it take the value 2, and continue on
searching for an abductive solution to not z;

160 L. Moniz Pereira and A.M. Pinto

7. The only solution to not z is by abducing not d, but since the ‘inspect_counter’
is greater than 0, we can only meta-abduce not d, i.e.
‘consume(not d)’ is added to the running abductions list;

8. Returning to y’s rule: the meta-interpretation of ‘inspect(not z)’ succeeds and so
we decrease the ‘inspect_counter’ by one—it takes the value 1 again. Now we
proceed and attempt to solve c;

9. c is an abducible, but since the inspect_counter is set to 1, we only meta-abduce
c by adding ‘consume(c)’ to the running abductions list;

10. Returning to x’s rule: the meta-interpretation of ‘inspect(y)’ succeeds and so we
decrease the ‘inspect_counter’ once more, and it now takes the value 0. From this
point onwards regular abductions will take place instead of meta-abductions;

11. We abduce b, c, and not d by adding them to the abductions list;
12. A tentative abductive solution is found to the initial query. It consists of the abduc-

tions list: [a, consume(b), consume(not d), consume(c), b, c, not d];
13. The abductive solution is now checked for matches between meta-abductions and

producer abductions.
In this case, for every ‘consume(A)’ in the abduction list there is actually an A also
in the abduction list, i.e. each abduction intention ‘consume(A)’ is satisfied by a
producer abduction A, where the A in consume(A) is just any abducible literal a
or its default negation not a. It is irrelevant in which order a ‘consume(A)’ and
the correspondingA appear or were placed in the abductions list. Because this final
checking step succeeds, the abductive solution is actually accepted.

In this example, we can clearly see that the inspect predicate can be used on any arbi-
trary literal, and not just on abducibles.

The correctness of this implementation against the declarative semantics provided
before can be sketched by noticing that whenever the inspect_counter is set to 0 the
meta-interpreter performs actual abduction, which corresponds to the use of the original
program rules; whenever the inspect_counter is set to some value greater than 0, the
meta-interpreter just abduces consume(A)—where A is the abducible being checked
for its abduction being produced elsewhere—and that corresponds to the use of the
transformed program rules for the inspect predicate.

The implementation of ABDUAL with inspection points is available on request.

More general query solving. In case the “depth-first” discipline is not followed, ei-
ther because goal delaying is taking place, or multi-threading, or co-routining, or any
other form of parallelism is being exploited, then each queried literal will need to
carry its own list of ancestors with their individual ‘inspect_counters’. This is nec-
essary so as to have a means, in each literal, to know which and how many inspects
there are between the root node and the currently being processed literal, and which
inspect_counter to update; otherwise there would be no way to know if abductions or
meta-abductions should be performed.

4.2 Alternative Implementation Method

The method presented forthwith is an avenue for the implementation of the inspection
points mechanism through a simple syntactic transformation that can readily be em-
ployed by any SMs system, like SModels or DLV. Using a SMs implementation alone,

Inspecting Side-Effects of Abduction in Logic Programs 161

one can get the abductive SMs of some program P by computing the SMs of P ′, where
P ′ is obtained from P by applying the program transformation we presented before
for the declarative semantics of the inspection points, and then adding an even loop
over negation for each declared abducible—as shown in section 2.1. When using XSB-
Prolog’s XSB-XASP interface, the process method is the same as for when using a SMs
implementation alone, but instead of sending the whole P ′ to the SMs engine, only the
residual or remainder program [2], the one that results from a query evaluated in XSB
using tabling [14], relevant for the query at hand, is sent. This way, abductive reason-
ing may benefit from the relevance property enjoyed by the Well-Founded Semantics
implemented in XSB-Prolog’s SLG-WAM.

Given the top-down proof procedure for abduction, implementing inspection points
for program P becomes just a matter of adapting the evaluation of derivation subtrees
falling under ‘inspect/1’ literals, at meta-interpreter level, subsequent to performing
the transformation Π(P) presented before, which actually defines the declarative se-
mantics. Basically, any considered abducibles evaluated under ‘inspect/1’ subtrees,
say A, are codified as ‘abduced(A)’, where, as in section 2.1:

abduced(A) ← not neg_abduced(A)
neg_abduced(A) ← not abduced(A)

All abduced/1 literals collected during computation of the residual program are later
checked against the stable models themselves. Every ‘abduced(A)’ in a model must
pair with a corresponding abducible A for the model to be accepted.

5 Conclusions, Comparisons, and Future Work

In the context of abductive logic programs, we have presented a new mechanism of
inspecting literals that can be used to check for side-effects, by relying on conditional
meta-abduction. We have implemented the inspection mechanism within the Abdual [1]
meta-interpreter, as well as in XSB-XASP. We have further checked that our approach
can easily be adopted, in part, by other systems [3] with the help of these cited authors.

HyProlog [3] is an abduction/assumption system which allows for the user to specify
if an abducible is to be consumed only once or many times. In HyProlog, as the query
solving proceeds, when abducible/assumption consumptions take place, they are exe-
cuted by storing the corresponding consumption intention in a store. After an abductive
solution for a query is found, the actual abductions/assumptions are matched against
the consumption intentions. Overall, there is not such a big gap between the operational
semantics of HyProlog and the inspection points implementation we present; however,
there is a major functional difference: in HyProlog we can only specify consumption
directly on abducibles, whereas in our more general inspection points approach we can
declare inspection of any literal (not just abducibles)—meaning any abducible found
below an inspect-wrapped literal call is automatically just inspected.

In [13], the authors detect a problem with the IFF abductive proof procedure [7] of
Fung and Kowalski, in what concerns the treatment of negated abducibles in integrity
constraints (e.g. in their examples 2 and 3). They then specialize IFF to avoid such
problems, which arise only in ICs, and prove correctness of the new procedure. The

162 L. Moniz Pereira and A.M. Pinto

detected problem refers to the active use of an IC comprising in its body some notA,
where A is an abducible, whereas the intended use should be a passive one, simply
checking whether some A is proved in the abductive solution found. To that effect,
by means of an inference rule used during query evaluation, it’s as if they replaced
such occurrences of notA by ‘not provable(A)’, before moving each as a disjunct
’provable(A)’ to the IC head along with other disjuncts, so as to ensure that no new
abductions are allowed during IC checking, by virtue of ’provable/1’. For a detailed
exposition the reader is referred to their section 4.2. Our own work generalizes the
scope of the problem they solved, and solves the problems arising in this wider scope.
For one, we abduce both positive and negative literals, and the latter are not true by
default. Moreover, we allow for passive checking not just of negated abducibles but
also of positive ones, as well as passive checking of any literal, whether or not abducible
and whether in ICs or other rules. Furthermore, we allow to single out which specific
occurrences are passive or active. Thus, we can cater for both passive and active ICs,
depending on the desired usage. Our solution uses abduction itself to solve the problem,
making it general for deployment in other abductive frameworks and procedures.

A future application of inspection points is planning in a multi-agent setting. An
agent may have abduced a plan and, in the course of carrying out its abduced actions, it
may find that another agent has undone some of its already executed actions. So, before
executing an action, the agent should check all necessary preconditions still hold. Note
that it should only check, thereby avoiding abducing again a plan for them: this way,
should the preconditions hold, the agent can continue and execute the planned action.
The agent should only take measures to enforce the preconditions again whenever the
check fails. Clearly, an “inspection” of the preconditions is what is needed here.

More generally, inspection points afford us with the ability to avoid having to gener-
ate complete abductive models in order to glean the consequences of interest of abduc-
tive solutions. The developed techniques can be employed too for permitting passive
ICs, which are not allowed to actively abduce but only to verify their satisfaction with
regard to given abductions, in contrast to active ICs that can further abduce in order to
be satisfied. Plus, of course, to enable ICs which contain a combination of both active
and passive literals.

Another future use concerns the computation of inspected consequences of partially
defined 2-valued models, obtained by top-down querying of NLPs, wherein the ab-
ducibles are the default nots themselves, plus appropriate ICs to enforce consistency.
Once again, the computation of complete models can thus be avoided. A 2-valued se-
mantics which enjoys relevance must then be used, or otherwise a guarantee that the
NLP is stratified or does not contain loops over default negation via an odd number of
nots.

Acknowledgements

We thank Robert Kowalski, Verónica Dahl and Henning Christiansen for discussions,
Pierangelo Dell’Acqua for the declarative semantics, and Gonçalo Lopes for help with
the XSB-XASP implementation. A special thanks to our helpful reviewer, Francesca
Toni.

Inspecting Side-Effects of Abduction in Logic Programs 163

References

1. Alferes, J.J., Pereira, L.M., Swift, T.: Abduction in well-founded semantics and generalized
stable models via tabled dual programs. Theory and Practice of Logic Programming 4(4),
383–428 (2004)

2. Brass, S., Dix, J., Freitag, B., Zukowski, U.: Transformation-based bottom-up computation
of the well-founded model. TPLP 1(5), 497–538 (2001)

3. Christiansen, H., Dahl, V.: HyProlog: A new logic programming language with assumptions
and abduction. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 159–
173. Springer, Heidelberg (2005)

4. Citrigno, S., Eiter, T., Faber, W., Gottlob, G., Koch, C., Leone, N., Mateis, C., Pfeifer, G.,
Scarcello, F.: The dlv system: Model generator and advanced frontends (system description).
In: 12th Workshop on Logic Programming (1997)

5. Denecker, M., De Schreye, D.: SLDNFA: An abductive procedure for normal abductive pro-
grams. In: Apt, K. (ed.) Proceedings of the Joint International Conference and Symposium
on Logic Programming, Washington, USA, pp. 686–700. The MIT Press, Cambridge (1992)

6. Eiter, T., Gottlob, G., Leone, N.: Abduction from logic programs: semantics and complexity.
Theoretical Computer Science 189(1-2), 129–177 (1997)

7. Fung, T.H., Kowalski, R.: The IFF proof procedure for abductive logic programming. J. Log.
Prog. 33(2), 151–165 (1997)

8. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic pro-
grams. J. of ACM 38(3), 620–650 (1991)

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP,
pp. 1070–1080. MIT Press, Cambridge (1988)

10. Inoue, K., Sakama, C.: A fixpoint characterization of abductive logic programs. Journal of
Logic Programming 27(2), 107–136 (1996)

11. Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming. In: Handbook
of Logic in AI and LP, vol. 5, pp. 235–324. Oxford University Press, Oxford (1998)

12. Niemelä, I., Simons, P.: Smodels - an implementation of the stable model and well-founded
semantics for normal logic programs. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR
1997. LNCS (LNAI), vol. 1265, pp. 420–429. Springer, Heidelberg (1997)

13. Sadri, F., Toni, F.: Abduction with negation as failure for active and reactive rules. In: Lamma,
E., Mello, P. (eds.) AI*IA 1999. LNCS (LNAI), vol. 1792, pp. 49–60. Springer, Heidelberg
(2000)

14. Swift, T.: Tabling for non-monotonic programming. AMAI 25(3-4), 201–240 (1999)
15. Swift, T., Warren, D.S.: An abstract machine for SLG resolution: definite programs. In: Pro-

cedings of the 1994 International Symposium on Logic Programming, ILPS 1994, Symposia,
Melbourne, pp. 633–652. MIT Press, Cambridge (1994) ISBN 0-262-52191-1

Argumentation and Answer Set Programming

Francesca Toni and Marek Sergot

Department of Computing,
Imperial College London, UK
{ft,mjs}@imperial.ac.uk

Abstract. Argumentation and answer set programming are two of the
main knowledge representation paradigms that have emerged from logic
programming for non-monotonic reasoning. This paper surveys recent
work on using answer set programming as a mechanism for computing
extensions in argumentation. The paper also indicates some possible di-
rections for future work.

1 Introduction

Argumentation was developed, starting in the early ’90s [9,16,8], as a com-
putational framework to reconcile and understand common features and dif-
ferences amongst most existing approaches to non-monotonic reasoning. These
include various alternative treatments of negation as failure in logic program-
ming [32,26,52,19], Theorist [43], default logic [45], autoepistemic logic [38],
non-monotonic modal logic [37] and circumscription [36]. Argumentation relies
upon

– the representation of knowledge in terms of an argumentation framework;
defining arguments and a binary attack relation between the arguments;

– dialectical semantics for determining acceptable sets of arguments;
– a computational machinery for determining the acceptability of a given (set

of) argument(s) or for computing all acceptable sets of arguments (also re-
ferred to as extensions), according to some dialectical semantics.

Answer set programming (ASP) [31] constitutes one of the main current trends
in logic programming and non-monotonic reasoning. ASP relies upon

– the representation of knowledge in terms of (possibly disjunctive) logic pro-
grams with negation as failure (possibly including explicit negation, various
forms of constraints, aggregates etc);

– the interpretation of these logic programs under the stable model/answer
set semantics [32,33] and its extensions (to deal with explicit negation, con-
straints, aggregates etc);

– efficient computational mechanisms (ASP solvers) to compute answer sets for
grounded logic programs, and efficient ‘grounders’ to transform non-ground
logic programs into ground (variable-free) ones.

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 164–180, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Argumentation and Answer Set Programming 165

Standard computational mechanisms for argumentation are defined using trees
(e.g. [18]) or disputes (e.g. [20]) and only construct relevant parts of extensions.
ASP can instead be used to support the full computation of extensions.

This paper provides a survey of recent work using ASP for computing ex-
tensions in abstract argumentation frameworks [16] and some other forms of
argumentation. It also indicates possible directions for future work and cross-
fertilisation between ASP and argumentation.

The paper is organised as follows. Section 2 gives some background on argu-
mentation (focusing on abstract argumentation [16]) and ASP. Section 3 surveys
existing approaches using ASP to compute extensions in argumentation (again
focusing on abstract argumentation). Section 4 indicates some possible directions
for future work. Section 5 concludes.

2 Background

2.1 Argumentation

An abstract argumentation (AA) framework [16] is a pair 〈Arg, att〉 where Arg
is a finite set, whose elements are referred to as arguments, and att ⊆ Arg×Arg
is a binary relation over Arg. Given α, β ∈ Arg, α attacks β iff (α, β) ∈ att.
Given sets X,Y ⊆ Arg of arguments, X attacks Y iff there exists x ∈ X and
y ∈ Y such that (x, y) ∈ att. A set of arguments is referred to as an extension.
An extension X ⊆ Arg is

– conflict-free iff it does not attack itself;
– stable iff it is conflict-free and it attacks every argument it does not contain;
– acceptable wrt a set Y ⊆ Arg of arguments iff for each β that attacks an

argument in X , there exists α ∈ Y such that α attacks β;
– admissible iff X is conflict-free and X is acceptable wrt itself;
– preferred iff X is (subset) maximally admissible;
– complete iff X is admissible and X contains all arguments α such that {α}

is acceptable wrt X ;
– grounded iff X is (subset) minimally complete.

In addition, an extension X ⊆ Arg is

– ideal [18] iff X is admissible and it is contained in every preferred set of
arguments;

– semi-stable [12] iff X is complete and X ∪ X+ is (subset) maximal, where
X+ = {β | (α, β) ∈ att for some α ∈ X}.

These notions of extensions constitute different alternative dialectical semantics,
giving different approaches for determining what makes arguments dialectically
viable. Arguments can be deemed to hold credulously wrt a given dialectical
semantics if they belong to an extension sanctioned by that semantics. Argu-
ments can be deemed to hold sceptically wrt a given dialectical semantics if they

166 F. Toni and M. Sergot

belong to all extensions sanctioned by that semantics. In some cases credulous
and sceptical reasoning coincide, e.g. for grounded and ideal extensions, since
these are unique.

For AF = 〈Arg, att〉, the characteristic function FAF is such that FAF (X) is
the set of all acceptable arguments wrt X . Then, a conflict-free X ⊆ Arg is

– an admissible extension iff X ⊆ FAF (X),
– a complete extension iff it is a fixpoint of FAF , and
– a grounded extension iff X is the least fixpoint of FAF .

Several other argumentation frameworks have been given in the literature,
concretely specifying arguments and attacks, some instantiating abstract argu-
mentation, e.g. assumption-based argumentation [9,8,17] and logic programming-
based argumentation frameworks such as [44], some equipped with dialectical
semantics other than the ones proposed for abstract argumentation, e.g. [7,30].
Moreover, extensions of abstract argumentation have been proposed, e,g, value-
based argumentation [5].

2.2 Answer Set Programming (ASP)

A logic program is a set of clauses of the form

p1 ∨ . . . ∨ pk ← q1 ∧ . . . ∧ qm ∧ not qm+1 ∧ . . . ∧ not qm+n

for k ≥ 0, m ≥ 0, n ≥ 0, k + m + n > 0, where the pi and qj are literals,
that is, of the form p or ¬p where p is an atom. not denotes negation as failure.
Expressions of the form not qj where qj is a literal are called ‘negation as fail-
ure literals’, or nbf-literals for short. We will refer to {p1, . . . , pk} as the head,
{q1, . . . , qm, not qm+1, . . . not qm+n} as the body and {not qm+1, . . . not qm+n} as
the negative body of a clause. We will also refer to clauses with k = 0 as denial
clauses, clauses with k > 1 as disjunctive clauses, and clauses with n = 0 as
positive clauses.

All variables in clauses in a logic program are implicitly universally quantified,
with scope the individual clauses. A logic program stands for the set of all
its ground instances over a given Herbrand universe. The semantics of logic
programs is given for their grounded version over this Herbrand universe.

The answer sets of a (grounded) logic program are defined as follows [33].
Let X be a set of literals (that is, expressions p or ¬p where p is an atom). A

literal is true in X if it belongs to X . A nbf-literal not p is true in X if the literal
p does not belong to X . A clause is true in X if its head is true in X (there
exists a literal in the head that is true in X) whenever its body is true in X (i.e.,
when all the literals and all the nbf-literals in that body are true in X). Thus,
denial clauses are true in X if and only if their body is false in X (i.e., some
literal in the body is not true in X). A set of literals X is closed under a set of
clauses P if every clause in P is true in X . X is ‘consistent’ if it contains no pair
of complementary literals p and ¬p for some atom p; X is logically closed if it is
consistent or if it is the set of all literals otherwise.

Argumentation and Answer Set Programming 167

If P is a set of positive clauses, that is, a set of clauses containing no occur-
rences of negation as failure not, then X is an answer set of P if it is a (subset)
minimal set of literals that is logically closed and closed under the clauses in P .

If P is any set of clauses (not necessarily positive ones) the Gelfond-Lifschitz
reduct PX of P wrt to the set of literals X is obtained from P by deleting (1)
all clauses in P containing a nbf-literal not p in the body where p is true in X ,
and (2) the negative body from all remaining clauses. PX is a set of positive
clauses. Then X is an answer set of P when X is an answer set of PX .

None of the logic programs presented in section 3 of this paper contain occur-
rences of classical negation (¬): all of the literals in all of the clauses are atoms.
For programs P of this type, the answer sets of P are also the stable models [32]
of P .

Several very efficient ASP solvers are widely available and can be used to
compute answer sets and/or perform query answering wrt answer sets. These
solvers include Smodels1, DLV2 and clasp3. These solvers incorporate, or are
used in combination with, grounders, programs whose function is to generate,
prior to computing answer sets, a finite ground logic program from a non-ground
logic program (over a given, not necessarily finite Herbrand Universe).

3 ASP for Argumentation

Several approaches have been proposed for computing (several kinds of) exten-
sions of abstract argumentation (AA) frameworks using ASP solvers [39,53,23,27].
All rely upon the mapping of an AA framework into a logic program whose
answer sets are in one-to-one correspondence with the extensions of the orig-
inal AA framework. All those summarised below use the DLV solver to com-
pute these answer sets (and thus the extensions). The approaches differ in the
kinds of extensions they focus on and in the mappings and correspondences they
define, as we will see below. They fall into two groups: those which result in
an AA framework-dependent logic program, and those which result in a logic
program with an AA framework-dependent component and an AA framework-
independent (meta-)logic program.

3.1 Nieves, Cortés and Osorio [39]: Preferred Extensions

Nieves et al [39] focus on the computation of preferred extensions. Their map-
ping relies upon the method of [6] using propositional formulas to express con-
ditions for sets of arguments to be extensions of AA frameworks. The mapping
produces a disjunctive logic program defining a predicate def , where def (α) can
be read as ‘argument α is defeated’. Intuitively,

– each pair (α, β) in the att component of an AA framework (Arg, att) is
mapped to a disjunctive clause def (α) ∨ def (β) ← ;

1 http://www.tcs.hut.fi/Software/smodels/
2 http://www.dbai.tuwien.ac.at/proj/dlv/
3 http://potassco.sourceforge.net/

168 F. Toni and M. Sergot

– for each pair (β, α) ∈ att, a clause def (α) ← def (γ1) ∧ . . . ∧ def (γk) (k ≥ 0)
is introduced, where γ1, . . . , γk are all the ‘defenders’ of α against β (that is,
where (γ1, β), . . . , (γk, β) ∈ att, and there are no other attacks against β in
att).

a ��b ��c

Fig. 1. Graph representation for the AA framework ({a, b, c}, {(a, b), (b, c)})

For the AA framework of figure 1, the mapping returns

def (a) ∨ def (b) ←
def (b) ∨ def (c) ←
def (c) ← def (a)
def (b) ←

The answer sets of the disjunctive logic program P pref
NCO thus obtained are in one-

to-one correspondence with the preferred extensions of the original AA frame-
work 〈Arg, att〉, in that the complement

C(AS) =def {α ∈ Arg | def (α) �∈ AS}

of each answer set AS of P pref
NCO is a preferred extension of 〈Arg, att〉.

In the example of the AA framework of figure 1 and the resulting P pref
NCO given

earlier, the only answer set is {def (b)}, corresponding to the only preferred
extension {a, c} = C({def (b)}) of the original AA framework.

a��

Fig. 2. Graph representation for the AA framework ({a}, {(a, a)})

In the example of figure 2, P pref
NCO is

def (a) ∨ def (a) ←
def (a) ← def (a)

with answer set {def (a)} corresponding to the (only) preferred extension {} of
the original AA framework. In the case of the AA framework of figure 3, P pref

NCO

is

def (a) ∨ def (b) ←
def (a) ← def (a)
def (b) ← def (b)

with answer sets {def (a)} and {def (b)} corresponding to the preferred extensions
{b} and {a} (respectively) of the original AA framework.

Argumentation and Answer Set Programming 169

a ��b��

Fig. 3. Graph representation for the AA framework ({a, b}, {(a, b), (b, a)})

3.2 Wakaki and Nitta [53]: Complete, Stable, Preferred, Grounded,
and Semi-stable Extensions

Wakaki and Nitta [53] focus on the computation of complete, stable, preferred,
grounded, and semi-stable extensions. Their mappings rely upon Caminada’s
reinstatement labellings [11] and correspondences between various kinds of con-
straints on such labellings and various notions of extensions in abstract argumen-
tation. Intuitively, a reinstatement labelling is a total function from arguments
to labels {in, out, undec} such that (i) an argument is labelled out iff some ar-
gument attacking it is labelled in, and (ii) an argument is labelled in iff all
arguments attacking it are labelled out.

All mappings given by Wakaki and Nitta result in a logic program that con-
tains, for a given AA framework 〈Arg, att〉), a set P〈Arg,att〉 of clauses arg(α) ←
for all arguments α ∈ Arg and clauses att(α, β) ← for all pairs (α, β) ∈ att. For
example, in the case of the AA framework of figure 1, one obtains:

arg(a) ←
arg(b) ←
arg(c) ←
att(a, b) ←
att(b, c) ←

In the case of complete extensions, the logic program P compl
WN resulting from

the mapping includes in addition to P〈Arg,att〉 the following (AA framework-
independent) clauses (directly corresponding to the notion of reinstatement la-
belling):

in(X)← arg(X) ∧ not ng(X)
ng(X)← in(Y) ∧ att(Y,X)
ng(X)← undec(Y) ∧ att(Y,X)
out(X) ← in(Y) ∧ att(Y,X)
undec(X)← arg(X) ∧ not in(X) ∧ not out(X)

The answer sets of P compl
WN thus obtained are in one-to-one correspondence with

the original AA framework 〈Arg, att〉, in that the in arguments

I(AS) =def {α ∈ Arg | in(α) ∈ AS}

of each answer set AS of P compl
WN is a complete extension of 〈Arg, att〉.

In the example AA framework of figure 1, there is just one answer set of
P compl

WN : {in(a), in(c), out(b)}, corresponding to the only complete extension
{a, c} = I({in(a), in(c), out(b)}) of the original AA framework. In the example

170 F. Toni and M. Sergot

AA framework of figure 2, there is just one answer set of P compl
WN : {undec(a)},

corresponding to the only complete extension {} = I({undec(a)}) of the orig-
inal AA framework. In the example AA framework of figure 3, there are three
answer sets of P compl

WN : {in(a), out(b)}, {in(b), out(a)}, and {undec(a), undec(b)},
corresponding to the three complete extensions {a}, {b} and {}, respectively, of
the original AA framework.

In the case of stable extensions, the logic program defined by Wakaki and
Nitta is P stable

WN obtained by extending P compl
WN with the clause

← undec(X)

which imposes the further requirement that reinstatement labellings have an
empty undec component. Thus, in the case of the AA framework of figure 3,
there are only two answer sets of P stable

WN , since {undec(a), undec(b)} is not an
answer set in this case. In the case of the AA framework of figure 2, there is also
no answer set of P stable

WN , since {undec(a)} is no longer an answer set. The answer
sets of P stable

WN are in one-to-one correspondence with the original AA framework
〈Arg, att〉, in that the in arguments I(AS) of each answer set AS of P stable

WN is a
stable extension of 〈Arg, att〉, similarly to complete extensions.

Caminada [11] has proven that reinstatement labellings with a minimal in
component, a maximal in component, and a minimal undec component corre-
spond, respectively, to grounded, preferred and semi-stable extensions. In order
to impose these maximality/minimality conditions and obtain logic programs
with answer sets corresponding to grounded, preferred and semi-stable exten-
sions, Wakaki and Nitta extend P compl

WN to include meta-logic programs to be
used to check answer sets of P compl

WN (and thus reinstatement labellings). Such
answer sets are determined in a ‘guess & check’ fashion [25]. The meta-logic
programs are different for the three notions of extensions, but include a common
core MPWN consisting of the following (meta-)clauses

m1(int(X)) ← in(X) ∧ arg(X)
m1(undect(X)) ← undec(X) ∧ arg(X)

where int(α) and undect(α) are terms corresponding to atoms in(α) and undec(α)
in P compl

WN and m1 is a meta-predicate expressing the candidate reinstatement la-
belling to be checked, as well as (meta-)clauses, for all answer sets AS of P compl

WN :

m2(int(X), ψ(AS)) ← in(X) ∈ AS

m2(undect(X), ψ(AS)) ← undec(X) ∈ AS

ψ is a function assigning a unique natural number to every answer set of P compl
WN

and m2 is a meta-predicate expressing alternative reinstatement labellings to be
compared with the candidate reinstatement labelling being checked.

Then, P pref
WN is P compl

WN ∪MPWN extended with

← d(Z) ∧ not c(Z)
d(ψ(AS)) ← m2(int(X), ψ(AS)) ∧ notm1(int(X))
c(ψ(AS)) ← m1(int(X)) ∧ notm2(int(X), ψ(AS))

Argumentation and Answer Set Programming 171

P grounded
WN is P compl

WN ∪MPWN extended with

← c(Z) ∧ not d(Z)
d(ψ(AS)) ← m2(int(X), ψ(AS)) ∧ notm1(int(X))
c(ψ(AS)) ← m1(int(X)) ∧ notm2(int(X), ψ(AS))

Finally, P semi
WN is P compl

WN ∪MPWN extended with

← d(Z) ∧ not c(Z)
d(ψ(AS)) ← m2(undect(X), ψ(AS)) ∧ notm1(undect(X))
c(ψ(AS)) ← m1(undect(X)) ∧ notm2(undect(X), ψ(AS))

As in the case of complete and stable extensions, preferred, grounded and semi-
stable extensions correspond to the in arguments I(AS) of answer sets AS of
the respective logic programs.

3.3 Egly, Gaggl and Woltran [23,24]: Conflict-Free, Admissible,
Preferred, Stable, Semi-stable, Complete, Grounded Extensions

Egly et al [23] deal with the computation of conflict-free, admissible, preferred,
stable, complete, and grounded extensions. Like Wakaki and Nitta [53] sum-
marised in the previous section, an AA framework 〈Arg, att〉 is first mapped to
a set of clauses P〈Arg,att〉 to be included in logic programs defined for computing
the various notions of extension.

For conflict-free extensions, the logic program P cf
EGW consists of P〈Arg,att〉

together with4

← in(X) ∧ in(Y) ∧ att(X,Y)
in(X) ← not out(X) ∧ arg(X)
out(X) ← not in(X) ∧ arg(X)

The answer sets of P cf
EGW are in one-to-one correspondence with the conflict-free

extensions of the AA framework 〈Arg, att〉 mapped onto the P〈Arg,att〉 compo-
nent of P cf

EGW , in the same sense as in [53] (namely that the in arguments I(AS)
of the answer sets AS correspond to conflict-free extensions).

A similar correspondence exists for the other kinds of extensions and the
answer sets of the logic programs given below.

For stable extensions, the logic program P stable
EGW consists of P cf

EGW and

← out(X) ∧ not defeated(X)
defeated(X) ← in(Y) ∧ att(Y,X)

4 Note that predicates in and out here are different from those used in [53] and, in
particular, do not refer to the reinstatement labelling of [11].

172 F. Toni and M. Sergot

For admissible extensions, the logic program P adm
EGW consists of P cf

EGW and

← in(X) ∧ not defended(X)
not defended (X) ← att(Y,X) ∧ not defeated(Y)
defeated(X)← in(Y) ∧ att(Y,X)

For complete extensions, the logic program P compl
EGW consists of P adm

EGW and

← out(X) ∧ not not defended(X)

For grounded extensions, the logic program P grounded
EGW is obtained by mirroring

the characteristic function presentation of this semantics (see section 2.1). The
program makes use of an arbitrary ordering < over arguments assumed to be
given a priori. The program consists of three components. The first component
P<

EGW uses the given ordering < over arguments to define notions of infimum
inf , supremum sup and successor succ over arguments, as follows:

succ(X,Y) ← lt(X,Y) ∧ not nsucc(X,Y)
nsucc(X,Z)← lt(X,Y) ∧ lt(Y, Z)
lt(X,Y) ← arg(X) ∧ arg(Y) ∧X < Y

inf (X) ← arg(X) ∧ not ninf (X)
ninf (Y) ← lt(X,Y)
sup(X)← arg(X) ∧ not nsup(X)
nsup(X)← lt(X,Y)

The second component computes all arguments defended (by all arguments cur-
rently in) in the layers obtained using inf , sup and succ, as follows:

defended(X) ← sup(Y) ∧ defended up to(X,Y)
defended up to(X,Y) ← inf (Y) ∧ arg(X) ∧ not att(Y,X)
defended up to(X,Y) ← inf (Y) ∧ in(Z) ∧ att(Z, Y) ∧ att(Y,X)
defended up to(X,Y) ← succ(Z, Y) ∧ defended up to(X,Z) ∧ not att(Y,X)
defended up to(X,Y) ← succ(Z, Y) ∧ defended up to(X,Z) ∧ in(V) ∧

att(V, Y) ∧ att(Y,X)

The third component of P grounded
EGW simply imposes that all defended arguments

should be in:

in(X) ← defended(X)

Further, for preferred extensions, P pref
EGW is P adm

EGW ∪P<
EGW extended with a fur-

ther component incorporating a maximality check on the in arguments. This is
done by guessing a larger extension with more in arguments than the current
extension, and checking that this is not admissible, again in a ‘guess & check’

Argumentation and Answer Set Programming 173

fashion [25]. Membership in the guessed larger extension is defined using a new
predicate inN (and corresponding new predicate outN). This additional com-
ponent in P pref

EGW is:

← not spoil

spoil← eq

eq ← sup(Y) ∧ eq up to(Y)
eq up to(Y) ← inf (Y) ∧ in(Y) ∧ inN(Y)
eq up to(Y) ← inf (Y) ∧ out(Y) ∧ outN(Y)
eq up to(Y) ← succ(Z, Y) ∧ in(Y) ∧ inN(Y) ∧ eq up to(Z)
eq up to(Y) ← succ(Z, Y) ∧ out(Y) ∧ outN(Y) ∧ eq up to(Z)
spoil← inN(X) ∧ inN(Y) ∧ att(X,Y)
spoil← inN(X) ∧ outN(Y) ∧ att(Y,X) ∧ undefeated(Y)
undefeated(X) ← sup(Y) ∧ undefeated up to(X,Y)
undefeated up to(X,Y) ← inf (Y) ∧ outN(X) ∧ outN(Y)
undefeated up to(X,Y) ← inf (Y) ∧ outN(X) ∧ not att(Y,X)
undefeated up to(X,Y) ← succ(Z, Y) ∧ undefeated up to(X,Z) ∧ outN(Y)
undefeated up to(X,Y) ← succ(Z, Y) ∧ undefeated up to(X,Z) ∧ not att(Y,X)
inN(X)← spoil ∧ arg(X)
outN(X) ← spoil ∧ arg(X)

Finally, for semi-stable extensions, Egly et al define P semi
EGW as a variant of

P pref
EGW (see [24] for details).

3.4 Faber and Woltran [27]: Ideal Extensions

Faber and Woltran present an encoding of the computation of ideal extensions
into so-called manifold answer set programs [27]. These programs allow various
forms of meta-reasoning to be implemented within ASP, including credulous and
sceptical reasoning. The manifold answer set program used for computing ideal
extensions follows the algorithm of [21], which works as follows.

– Let adm be the set of all the admissible extensions of a given argumentation
framework 〈Arg, att〉.

– Let X− = Arg \
⋃

S∈adm S.
– Let X+ = {α ∈ Arg | ∀β, γ ∈ Arg : (β, α), (α, γ) ∈ att⇒ β, γ ∈ X−} \X−.
– Let 〈Arg∗, att∗〉 be the argumentation framework with Arg∗ = X+ ∪ X−

and att∗ = att ∩ {(α, β), (β, α) | α ∈ X+, β ∈ X−}.
– Let adm∗ be the set of all admissible extensions of 〈Arg∗, att∗〉.

Then, the ideal extension of 〈Arg, att〉 is
⋃

S∈adm∗ S ∩X+.
The admissible extensions of (Arg∗, att∗) can be computed using a fixpoint

iteration (which can be done in polynomial time since this argumentation frame-
work is bipartite [21]). At the first iteration, X1 is generated by eliminating all

174 F. Toni and M. Sergot

arguments in Arg∗ that are attacked by unattacked arguments. At the sec-
ond iteration, X2 is X1 minus all arguments that are attacked by arguments
unattacked by X1, and so on, until no more arguments can be eliminated (after
at most |X+| iterations).

The logic program whose answer sets correspond to ideal extensions is ob-
tained by using the manifold for credulous reasoning of the logic program for
admissible extensions given by [23], further extended to identify (Arg∗, att∗) and
to simulate the fixpoint algorithm outlined above. Details of this logic program
can be found in [27].

3.5 DLV for ASP for Abstract Argumentation

All approaches described above have been implemented using the DLV ASP
solver.

For the method of [39] (section 3.1) DLV can be used to perform credulous
and sceptical reasoning under preferred extensions as follows. Given the logic
program P pref

NCO for an AA framework (Arg, att) and the query α? for an argu-
ment α ∈ Arg, DLV used in -brave mode determines whether α belongs to a
preferred extension of (Arg, att), and in -cautious mode whether α belongs to
all preferred extensions of (Arg, att).

DLV is employed in a system5 that can perform credulous and sceptical rea-
soning under the various semantics considered by [53] (section 3.2 above). DLV is
also the core of the ASPARTIX system6 [23,22]. This system supports the com-
putation of admissible, stable, complete, grounded, preferred and ideal exten-
sions, following the work of [23,27] (see section 3.3 above), as well as semi-stable
extensions [12] and cf2 extensions [3] (see section 3.6 below) following encodings
given in [24].

3.6 ASP for Other Forms of Argumentation

ASP has been used as a computational tool for abstract argumentation under
other semantics, notably the cf2 extensions semantics [3], as well as for forms of
argumentation other than abstract argumentation. In particular:

– Thimm and Kern-Isberner [48] present mappings of the DeLP argumentation
framework [30] onto ASP.

– Egly et al [23] define mappings for value-based argumentation [5], a form
preference-based abstract argumentation [1] and bipolar argumentation [2].

– Wakaki and Nitta [54] use ASP for computing extensions of a form of ab-
ductive argumentation they define.

– Devred et al [15] use ASP to compute extensions of abstract argumentation
frameworks extended with constraints in the form of propositional formu-
las. Their mapping of constrained argumentation onto ASP uses lists and, as

5 http://www.ailab.se.shibaura-it.ac.jp/compARG.html
6 http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/

Argumentation and Answer Set Programming 175

a consequence, only ASP solvers capable of dealing with lists can be used
with the outcome of this mapping. These include DLV-complex7 [10] and
ASPerIX8 [35].

– Gaggl and Woltran [29] and Egly et al [24] propose encodings for abstract
argumentation under the cf2 extensions semantics [3]. These are incorporated
within the ASPARTIX system (see section 3.5).

– Osorio et al [40] propose an alternative mapping for abstract argumentation
under the cf2 extensions semantics and use the DLV system to compute these
extensions under the given mapping.

4 Some Future Directions

The approaches presented in section 3 employ the DLV system as the underly-
ing ASP solver of choice. The approach of [39] (section 3.1) makes use of the
capability of DLV to deal with disjunctive clauses and deploy the brave and
cautious modes of DLV. The approach of [23,24] (section 3.3) makes use of the
< ordering that is built into DLV. The approach of [53] (section 3.2) uses the
brave and cautious modes of DLV. It would be interesting to see whether other
ASP solvers, e.g. the clasp and claspD (for disjunctive clauses)9 solvers, could be
beneficially used to support the computation of extensions and query answering
in abstract argumentation. It would also be interesting to perform a comparative
performance analysis of the methods presented in section 3 to identify the most
efficient method to support various kinds of applications.

With the exception of a few works (see section 3.6) ASP has been deployed
to support abstract argumentation. However, the majority of applications of
argumentation, e.g. medical decision making [28] and legal reasoning [4], require
concrete argumentation frameworks, where arguments and attacks are built from
knowledge bases of rules and facts and are constructed on demand, that is to say,
as determined by the needs of a given query/claim to be argued for or against.
In particular, there are a number of approaches to argumentation based on logic
programming (e.g [44,47,42]), extending logic programming (e.g. assumption-
based argumentation [9,8,17]), or based upon classical logic (e.g. [7]). It would
be useful to see whether these other forms of argumentation could be fruitfully
computed using ASP.

Evidently this can always be done in the sense that these concrete forms
of argumentation are (usually) also instances of abstract argumentation frame-
works: having generated the relevant arguments and attacks, one could compute
the extensions of the resulting abstract argumentation framework using any of
the methods described in previous sections. What we have in mind however is
rather different. What we would really like is a mapping from the rule base R
used to construct arguments and attacks to a logic program P used to compute
extensions, but one which retains some well defined correspondence between the
argument-generating rules in R and (some of) the clauses in P .
7 http://www.mat.unical.it/dlv-complex
8 http://www.info.univ-angers.fr/pub/claire/asperix/
9 http://potassco.sourceforge.net/

176 F. Toni and M. Sergot

As has often been remarked, ASP computations are oriented primarily to-
wards the generation of models (answer sets) rather than to proofs or chains of
reasoning as in other forms of logic programming. In several of the existing appli-
cations of argumentation, however, it is precisely the explanation/justification of
answers to queries, in the form of arguments for and against a particular claim,
that matters more than the answers themselves. This is an essential feature, for
example, when argumentation is used in a collaborative setting, e.g. as in [46,13],
where arguments are constructed and evaluated across agents with possibly dif-
ferent knowledge bases, and explanations serve to inform and share information.
In applications concerned with the (internal) resolution of dilemmas, conflicts
between defeasible rules of conduct, decisions about vague or uncertain out-
comes, it is often the explanations/justifications that are of primary interest.
In an argumentation setting, explanations/justifications take the form of a di-
alectical structure which presents the relevant arguments, identifies the attacks
between them, possibly classifying them into different types, and provides some
representation of how arguments are defended against attacks. The specific de-
tails vary according to the concrete form of argumentation employed and the
chosen dialectical semantics.

It would be extremely valuable to investigate to what extent dialectical expla-
nations could be meaningfully extracted from extensions computed by means of
ASP. A step in this direction has been made with the ASPARTIX system (see
section 3.5) which includes a graphical interface labelling nodes of argumenta-
tion graphs to provide a visualisation of abstract argumentation frameworks. In
general, however, and especially when the graph is large, only relevant parts of
the graph should be presented (as the presentation of full extensions tends to
obscure matters).

The survey presented in this paper was motivated in part by an interest
in how argumentation frameworks could be extended with priorities (also re-
ferred to as ‘preferences’ in the literature). We are interested in how priori-
ties (relative strengths of rules and arguments) could be used in the resolution
of conflicts between defeasible rules of belief, and between defeasible rules of
conduct in practical reasoning. There is reason to think that these forms of
reasoning, though similar, might nevertheless be different in some important
respects. See, for example, the recent discussion in [41] (though that is not pre-
sented in argumentation terms). There is some existing work on incorporating
forms of priority/preference in (non-abstract) argumentation. See for example
[44,34,49,51,50]. It is fair to say that it is still fragmented, however, certainly
when compared to the long standing investigations of priorities/preferences in
nonmonotonic reasoning. See [14] for a survey and classification of approaches,
including the computation of answer sets. As observed in [14], a major difficulty
in adding a treatment of priority into a (rule-based) argumentation framework
lies in defining a suitable ordering on the strength of arguments based on a pri-
ority ordering of the rules from which they are constructed. It may be that it
is better to approach the problem by ordering the strengths of attacks instead
of the strengths of arguments, or some combination of the two. These questions

Argumentation and Answer Set Programming 177

remain to be investigated, as well as possible relationships to existing work on
priorities/preferences in ASP. There is then the further issue, essential for the
kind of applications we have in mind, of finding some way of extracting dialectical
explanations from the computed extensions.

5 Conclusions

Argumentation and answer set programming are two of the main knowledge
representation paradigms that have emerged from logic programming for non-
monotonic reasoning.

We have surveyed a number of existing approaches to using ASP for com-
puting extensions in argumentation. The majority of these approaches focus on
abstract argumentation, and rely upon mapping abstract argumentation frame-
works onto logic programs whose answer sets correspond to (various kinds of)
extensions for abstract argumentation. We have seen that approaches exist for
computing the majority of existing notions of extensions (including conflict-free,
admissible, stable, preferred, complete, semi-stable, and ideal extensions). All
presented approaches have been implemented in DLV.

We have also indicated some possible directions for future research on us-
ing ASP for argumentation, including: (i) deploying ASP solvers other than
DLV, e.g. claspD, (ii) considering concrete (rather than abstract) argumentation
frameworks in support of applications, and (iii) developing methods for explain-
ing answers to queries (claims) in dialectical terms, drawing from relevant parts
of answer sets corresponding to extensions where the claims hold true.

Acknowledgements

We thank Luis Moniz Pereira for useful comments on an earlier version of this
paper.

References

1. Amgoud, L., Cayrol, C.: A reasoning model based on the production of accept-
able arguments. Annals of Mathematics and Artificial Intelligence 34(1-3), 197–215
(2002)

2. Amgoud, L., Cayrol, C., Lagasquie-Schiex, M.-C., Livet, P.: On bipolarity in argu-
mentation frameworks. International Journal of Intelligent Systems 23(10), 1062–
1093 (2008)

3. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for
argumentation semantics. Artificial Intelligence 168(1-2), 162–210 (2005)

4. Bench-Capon, T., Prakken, H., Sartor, G.: Argumentation in legal reasoning. In:
Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp. 363–382.
Springer, Heidelberg (2009)

5. Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argu-
mentation frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)

178 F. Toni and M. Sergot

6. Besnard, P., Doutre, S.: Characterization of semantics for argument systems. In:
Dubois, D., Welty, C.A., Williams, M.-A. (eds.) Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Ninth International Conference (KR
2004), pp. 183–193. AAAI Press, Menlo Park (2004)

7. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)
8. Bondarenko, A., Dung, P., Kowalski, R., Toni, F.: An abstract, argumentation-

theoretic approach to default reasoning. Artificial Intelligence 93(1-2), 63–101
(1997)

9. Bondarenko, A., Toni, F., Kowalski, R.: An assumption-based framework for non-
monotonic reasoning. In: Nerode, A., Pereira, L. (eds.) Proc. 2nd International
Workshop on Logic Programming and Non-monotonic Reasoning, pp. 171–189.
MIT Press, Cambridge (1993)

10. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in asp: Theory
and implementation. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

11. Caminada, M.: On the issue of reinstatement in argumentation. In: Fisher, M., van
der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160,
pp. 111–123. Springer, Heidelberg (2006)

12. Caminada, M.: Semi-stable semantics. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.)
Proceedings of the Second International Conference on Computational Models of
Argument (COMMA 2006). Frontiers in Artificial Intelligence and Applications,
vol. 144, pp. 121–130. IOS Press, Amsterdam (2006)

13. de Almeida, I.C., Alferes, J.J.: An argumentation-based negotiation for distributed
extended logic programs. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006.
LNCS (LNAI), vol. 4371, pp. 191–210. Springer, Heidelberg (2007)

14. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification and survey of
preference handling approaches in nonmonotonic reasoning. Computational Intel-
ligence 20(2), 308–334 (2004)

15. Devred, C., Doutre, S., Lefèvre, C., Nicolas, P.: Dialectical proofs for constrained
argumentation. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G. (eds.) Proceed-
ings of the Third International Conference on Computational Models of Argument
(COMMA 2010), vol. 216. IOS Press, Amsterdam (2010)

16. Dung, P.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77, 321–357 (1995)

17. Dung, P., Kowalski, R., Toni, F.: Assumption-based argumentation. In: Rahwan,
I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp. 199–218. Springer,
Heidelberg (2009)

18. Dung, P., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Arti-
ficial Intelligence, Special Issue on Argumentation in Artificial Intelligence 171(10-
15), 642–674 (2007)

19. Dung, P.M.: Negations as hypotheses: An abductive foundation for logic program-
ming. In: Proceedings of 8th International Conference on Logic Programming,
ICLP 1991, pp. 3–17 (1991)

20. Dung, P.M., Thang, P.M.: A unified framework for representation and development
of dialectical proof procedures in argumentation. In: Boutilier, C. (ed.) Proceedings
of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009,
pp. 746–751 (2009)

21. Dunne, P.E.: The computational complexity of ideal semantics. Artificial Intelli-
gence 173(18), 1559–1591 (2009)

Argumentation and Answer Set Programming 179

22. Egly, U., Gaggl, S.A., Wandl, P., Woltran, S.: ASPARTIX conquers the web. In:
Baroni, P., Giacomin, M., Simari, G. (eds.) Proceedings of the Second International
Conference on Computational Models of Argument (COMMA 2010). Frontiers in
Artificial Intelligence and Applications. IOS Press, Amsterdam (2010)

23. Egly, U., Gaggl, S.A., Woltran, S.: ASPARTIX: Implementing argumentation
frameworks using answer-set programming. In: de la Banda, M.G., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 734–738. Springer, Heidelberg (2008)

24. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. In: Argument and Computation (2010) (accepted for pub-
lication)

25. Eiter, T., Polleres, A.: Towards automated integration of guess and check pro-
grams in answer set programming: a meta-interpreter and applications. Theory
and Practice of Logic Programming 6(1-2), 23–60 (2006)

26. Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In:
Proceedings of 6th International Conference on Logic Programming, ICLP 1989,
pp. 234–254 (1989)

27. Faber, W., Woltran, S.: Manifold answer-set programs for meta-reasoning. In:
Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 115–128.
Springer, Heidelberg (2009)

28. Fox, J., Glasspool, D., Grecu, D., Modgil, S., South, M., Patkar, V.:
Argumentation-based inference and decision making–a medical perspective. IEEE
Intelligent Systems 22(6), 34–41 (2007)

29. Gaggl, S., Woltran, S.: CF2 semantics revisited. In: Baroni, P., Cerutti, F.,
Giacomin, M., Simari, G. (eds.) Proceedings of the Third International Conference
on Computational Models of Argument (COMMA 2010), vol. 216, pp. 243–254.
IOS Press, Amsterdam (2010)

30. Garcia, A., Simari, G.: Defeasible logic programming: An argumentative approach.
Theory and Practice of Logic Programming 4(1-2), 95–138 (2004)

31. Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation, ch. 7, pp.
285–316. Elsevier, Amsterdam (2007)

32. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference
and Symposium Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)

33. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4), 365–386 (1991)

34. Kowalski, R.A., Toni, F.: Abstract argumentation. Journal of Artificial Intelligence
and Law, Special Issue on Logical Models of Argumentation 4(3-4), 275–296 (1996)

35. Lefèvre, C., Nicolas, P.: The first version of a new asp solver: Asperix. In: Erdem, E.,
Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 522–527. Springer,
Heidelberg (2009)

36. McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artificial In-
telligence 13, 27–39 (1980)

37. McDermott, D.V.: Nonmonotonic logic ii: Nonmonotonic modal theories. J.
ACM 29(1), 33–57 (1982)

38. Moore, R.C.: Semantical considerations on nonmonotonic logic. Artif. Intell. 25(1),
75–94 (1985)

39. Nieves, J.C., Cortés, U., Osorio, M.: Preferred extensions as stable models.
TPLP 8(4), 527–543 (2008)

180 F. Toni and M. Sergot

40. Osorio, M., Nieves, J.C., Gómez-Sebastià, I.: CF2-extensions as answer-set models.
In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G. (eds.) Proceedings of the Third
International Conference on Computational Models of Argument (COMMA 2010),
vol. 216. IOS Press, Amsterdam (2010)

41. Parent, X.: Moral particularism and deontic logic. In: Governatori, G., Sartor, G.
(eds.) DEON 2010. LNCS, vol. 6181, pp. 84–97. Springer, Heidelberg (2010)

42. Pereira, L.M., Pinto, A.M.: Approved models for normal logic programs. In:
Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp.
454–468. Springer, Heidelberg (2007)

43. Poole, D.: A logical framework for default reasoning. Artificial Intelligence 36(1),
27–47 (1988)

44. Prakken, H., Sartor, G.: Argument-based extended logic programming with defea-
sible priorities. Journal of Applied Non-classical Logics 7, 25–75 (1997)

45. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132
(1980)

46. Schroeder, M., Schweimeier, R.: Fuzzy argumentation for negotiating agents. In:
Proceedings of the First International Joint Conference on Autonomous Agents &
Multiagent Systems, AAMAS 2002, pp. 942–943. ACM, New York (2002)

47. Schweimeier, R., Schroeder, M.: A parameterised hierarchy of argumentation se-
mantics for extended logic programming and its application to the well-founded
semantics. Theory and Practice of Logic Programming 5(1-2), 207–242 (2005)

48. Thimm, M., Kern-Isberner, G.: On the relationship of defeasible argumentation and
answer set programming. In: Besnard, P., Doutre, S., Hunter, A. (eds.) Proceedings
of the Second International Conference on Computational Models of Argument
(COMMA 2008). Frontiers in Artificial Intelligence and Applications, vol. 172, pp.
393–404. IOS Press, Amsterdam (2008)

49. Toni, F.: Assumption-based argumentation for closed and consistent defeasible
reasoning. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007.
LNCS (LNAI), vol. 4914, pp. 390–402. Springer, Heidelberg (2008)

50. Toni, F.: Assumption-based argumentation for epistemic and practical reasoning.
In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.) Computable Models
of the Law. LNCS (LNAI), vol. 4884, pp. 185–202. Springer, Heidelberg (2008)

51. Toni, F.: Assumption-based argumentation for selection and composition of ser-
vices. In: Sadri, F., Satoh, K. (eds.) CLIMA VIII 2007. LNCS (LNAI), vol. 5056,
pp. 231–247. Springer, Heidelberg (2008)

52. Van Gelder, A., Ross, K., Schlifp, J.: The well-founded semantics for general logic
programs. Journal of ACM 38(3), 620–650 (1991)

53. Wakaki, T., Nitta, K.: Computing argumentation semantics in answer set program-
ming. In: Hattori, H., Kawamura, T., Idé, T., Yokoo, M., Murakami, Y. (eds.) JSAI
2008. LNCS, vol. 5447, pp. 254–269. Springer, Heidelberg (2009)

54. Wakaki, T., Nitta, K., Sawamura, H.: Computing abductive argumentation in an-
swer set programming. In: McBurney, P., Rahwan, I., Parsons, S., Maudet, N.
(eds.) ArgMAS 2009. LNCS, vol. 6057, pp. 195–215. Springer, Heidelberg (2010)

Cantor’s Paradise Regained:

Constructive Mathematics
from Brouwer to Kolmogorov to Gelfond

Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso

El Paso, TX 79968 USA
vladik@utep.edu

Abstract. Constructive mathematics, mathematics in which the exis-
tence of an object means that that we can actually construct this object,
started as a heavily restricted version of mathematics, a version in which
many commonly used mathematical techniques (like the Law of Excluded
Middle) were forbidden to maintain constructivity. Eventually, it turned
out that not only constructive mathematics is not a weakened version of
the classical one – as it was originally perceived – but that, vice versa,
classical mathematics can be viewed as a particular (thus, weaker) case
of the constructive one. Crucial results in this direction were obtained by
M. Gelfond in the 1970s. In this paper, we mention the history of these
results, and show how these results affected constructive mathematics,
how they led to new algorithms, and how they affected the current ac-
tivity in logic programming-related research.

Keywords: constructive mathematics; logic programming; algorithms.

Science and engineering: a brief reminder. One of the main objectives of science
is to find out how the world operates, to be able to predict what will happen
in the future. Science predicts the future positions of celestial bodies, the future
location of a spaceship, etc.

From the practical viewpoint, it is important not only to passively predict
what will happen, but also to decide what to do in order to achieve certain
goals. Roughly speaking, decisions of this type correspond not to science but to
engineering. For example, once we have come up with the design of a spaceship,
once we know how exactly it will be launched, Newton’s equations can predict
where exactly it will be at any future moment of time – and if our goal is to
reach the Moon, whether it will reach it or not. If we happen to stumble upon
the design and initial conditions that satisfy our goal, great, but in practice,
such situations are rare. Usually, we need to find the initial conditions (and the
design) for which the spaceship will safely reach the Moon.

Similarly, once the bridge is designed, we can use the known equations of
mechanics to predict its stability and vulnerability to winds. However, a more
important problem is to design a bridge that will withstand the expected loads
under prevailing winds.

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 181–190, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

182 V. Kreinovich

Resulting need for constructive mathematics. The ultimate objective of a scien-
tific analysis is to formulate an exact mathematical model of the corresponding
physical phenomena. Once the corresponding physical model is formulated in
precise mathematical terms, the practical (engineering) problem can be also for-
mulated in mathematical terms: find an object x (design, trajectory, etc.) that
satisfies the given precisely formulated condition P (x).

At first glance, it may seem that similar statement exist in mathematics: for
example, mathematicians can prove statements of the type ∃xP (x). Intuitively,
to claim to prove that something exists often means to actually construct the
corresponding object, Indeed, for many centuries, most mathematical proofs of
the existence statements were based on the actual construction. Once in a while
there were proofs from contradiction, but they were rare. The situation changed
drastically at the end of the 19th century. The first important result for which
an existence proof was provided without an explicit construction was David
Hilbert’s 1888 proof of the Finite Basis Theorem [10, 16–18]. This proof answered
an important question (raised by a mathematician Paul Gordan from Göttingen)
about the invariants of homogeneous polynomials. A polynomial P (x1, . . . , xn)
is called homogeneous if all its monomials are of the same total degree d: e.g.,

we can have
n∑

i=1

ai · xi or
∑
i,j

aij · xi · xj , with aij = aji. A polynomial function

f(aα) of the coefficients aα of this polynomial is called invariant it for every linear
transformation of the unknowns xi → x′

i
def=
∑

cij ·xj , this function changes by a
multiplicative constant f(a′α) = λ({cij})·f(aα). For example, for quadratic forms
of two variables a11 ·x2

1+2a12 ·x1 ·x2+a22 ·x2
2, a discriminant D = a11 ·a22−a2

12 is
an invariant. It was known that for the case of n ≤ 8 variables, for every degree
d, invariants have a finite basis in the sense that we can select finitely many
invariants so that every other invariant is a polynomial of the selected ones. For
example, for n = 2 and d = 2, every invariant is a power of the discriminant D.
Hilbert proved that such a finite basis exists for all n and all d, but – in contrast
to the previously known proofs for n ≤ 8 – his by-contradiction proof did not
provide any actual construction of the corresponding finite set. After reading
this proof, Paul Gordan himself said: “This is not mathematics; it is theology”;
see, e.g., [33].

Hilbert himself provided later a constructive proof of this result [19, 20], but
the floodgates were opened for non-constructive proofs. After Hilbert’s theo-
rem, came numerous such proofs, including proofs from Cantor’s set theory. The
most well-known of them was the diagonal proof that there exist irrational and
transcendental numbers – the “father” of all the modern diagonalization proofs.

Indirect proofs of existence became fully accepted in the mainstream math-
ematics – because, strictly speaking, the existence of an object does not mean
that we must be able to actually construct it. The famous topologist L. E. J.
Brouwer agreed with this statement – that the existence in traditional math-
ematics does not imply constructibility – but he made a different conclusion:
since we do need to construct objects, we must hence change the meaning of the
existential quantifier in mathematics. He therefore proposed a new mathematics

Constructive Mathematics from Brouwer to Kolmogorov to Gelfond 183

– what we now call constructive mathematics – in which the only way to prove
a statement ∃xP (x) is to produce a construction of an object x for which P (x)
is true; see, e.g., [7, 8]. Brouwer argued that this new understanding of the exis-
tential quantifiers is in better accordance with our intuition – at least with the
intuition of applied mathematicians who want, e.g., to solve equations, not just
“prove” that the solution exists. Because of this argument, he called his approach
to mathematics intuitionism – instead of blindly following formal constructions,
even when we start deviating of our intuitive meaning of the corresponding no-
tions, we should also listen to our intuition when formal constructions lead us
astray.

To illustrate Brouwer’s point, it is actually not necessary to consider the case
when we have infinitely many possible objects x. The same idea can be illustrated
on the example of a simple disjunction A∨B, when we have only two alternatives
A and B. For example, in classical mathematics, the Law of Excluded Middle
holds, according to which every statement is either true or false A∨¬A. However,
a construction interpretation of a disjunction P ∨Q means that we know either
P or Q. Since we do not know the truth value of a generic statement A, in
intuitionistic logic, the Law of Excluded Middle is not generally true.

First years of constructive mathematics: constructive mathematics as a straight-
jacket. Several mathematicians whose interests were close to applications agreed
with (at least some of) Brouwer’s ideas, the most famous of them Hermann Weyl,
whose interest in application of mathematics to space-time has led him to inter-
esting intuitionistic ideas [35].

However, such converts were rare. The main reason for this rarity is that to
avoid non-constructive existence proofs, Brouwer proposed to restrict allowed
logical constructions – so that proofs by contradiction become impossible. These
restrictions severely limited the ability of mathematicians to prove new results.
Not surprisingly, most mathematicians did not want to place themselves under
such severe restrictions. The general opinion was best expressed by David Hilbert
himself. By then, he has become the leading mathematician of that time. In 1900,
he was tasked, by the world mathematics community, to prepare the list of most
important problem that the 19 century mathematics should leave for the 20
century mathematicians to solve.

In regards to constructive mathematics, Hilbert famously said: “No one shall
drive us from the paradise that Cantor has created for us.”

Kolmogorov: it is the classical logic that is a straightjacket, not the constructive
one. For several years, constructive mathematics and the related constructive
logic were viewed as severely restricted version of the traditional ones. In logic,
this view changed drastically in 1925, when the famous Russian mathematician
A. N. Kolmogorov showed that classical logic can be interpreted as a subset of
the constructive one. To perform such a translation, we need to interpret each
classical statement A as a double negation ¬¬A. Correspondingly, e.g., a classical
disjunction A ∨B must be interpreted as ¬¬(¬¬A ∨ ¬¬B), etc.

Because of Kolmogorov’s result, the constructive logic was no longer perceived
as a poor, limited version of the classical one: vice versa, the classical logic

184 V. Kreinovich

is a particular case of the constructive one. Thus, the constructive logic was
shown to be richer and more versatile than the classical one: it allowed, e.g.,
in addition to the “classical” disjunction ¬¬(¬¬A ∨ ¬¬B), to also consider a
different “constructive” disjunction A ∨B.

Constructive logic became a widely used, widely studied, and well-respected
part of logic. But not yet constructive mathematics.

From the ubiquity of constructive logic to the ubiquity of constructive mathemat-
ics: Gelfond’s groundbreaking results. In the beginning, constructive mathemat-
ics was perceived as a kind of a limited version of the classical one – the tools
are limited and thus, was the argument, it is understandable that the results are
limited. Even constructive mathematicians themselves originally believed in this
tradeoff: yes, our theorems are not as plentiful and not as sophisticated, but they
are deeper: every time we prove existence, we have a construction. Of course,
the need to provide constructions limits us – but makes our results more useful
in applications.

As more and more research was done in constructive mathematics, more and
more results became constructively proven – and these results became more
and more sophisticated. The real breakthrough came with the 1967 book of
E. Bishop, a classical mathematician who “saw the light” of constructive ideas
and transformed a large portion of basic math into constructive language [3].

With all these results, it became clearer that for every mathematical statement
that does not explicitly contain a construction, classical truth implies construc-
tive truth. Clearer, but still, every time, we needed to re-do the original classical
proof by meticulously avoiding constructively “non-kosher” ideas (like the Law
of Excluded Middle) that might have been used in the original classical proof.
This re-doing was taking a lot of time and effort. A general, “meta”-result of this
type was badly needed to save all this time. And this general result was proven
by M. G. Gelfond in his groundbreaking papers [11–13].

Similarly to the way Kolmogorov interpreted a classical logical statement A
as ¬¬A and each logical connective A ' B as ¬¬(¬¬A ' ¬¬B), Gelfond inter-
preted classical real numbers (= classically converging sequences of integers) in
the constructive terms. Specifically, a classical sequence rn, which can be equiv-
alently reformulated as a predicate P (n, r) for which for every n, there is exactly
one r satisfying this property (∀n∃!r P (r, n), where ! stands for uniqueness) was
constructivized into a logical property P (n, r) for which ∀n¬¬∃!r P (n, r) (a fill-
ing in the sense of [32]). This enabled Michael Gelfond to prove a meta-result
about real numbers, continuous functions, etc.

Later, with V. Lifschitz, they extended this result to a large portion of set
theory – and thus working mathematics – by designing a constructive version
of set theory that allowed high-level constructions similar to the classical set
theories like ZF.

Because of their results, the constructive mathematics can no longer be per-
ceived as a poor, limited version of the classical one: vice versa, the classical
mathematics is a particular (weaker) case of the constructive one. The construc-
tive mathematics was shown to be richer and more versatile than the classical

Constructive Mathematics from Brouwer to Kolmogorov to Gelfond 185

one: it allowed, e.g., in addition to the “classical” non-constructive existential
quantifier, to also consider a different “constructive” one.

Cantor’s paradise was regained – and an even better constructive one was
built on top of it.

How these exciting results influenced my own research. In the early 1970s, when
Michael Gelfond and Vladimir Lifschitz developed their excising results in St.
Petersburg, Russia, I was a student attending the logical seminars where their
presented different stage of their research – and attending seminars led by them,
e.g., the seminar on set theory and its possible constructivization. I learned from
them (and they gave me an official A for their seminar :-), I ran my ideas by
them, they helped me present my ideas and edit my papers.

My interest at that time was in using Gelfond’s theorem to prove new results
about constructive existence. I concentrated on three related directions.

First, since it is well known that it is not possible, in general, to compute the
exact solutions to a system of equation or the exact location of a maximizing
point, in practice – since measurements and implementations are approximate
anyway – we only need ε-approximate solutions, for an appropriate accuracy ε.
For many practical problems like solving systems of equations and finding loca-
tions of maxima, the algorithmic computability of such approximate solutions
was well known. I used Gelfond’s theorem to extend these results to more general
problems involving integration, minimization, and maximization.

My second direction was related to the fact that the proofs of most algo-
rithmic non-computability results essentially use functions which have several
maxima and/or equations which have several solutions. It turned out that this
is not an accident: uniqueness actually implies algorithmic computability. Such
a result was first proven by Lacombe [31] who designed an algorithm that inputs
a constructive function of one or several real variables on a bounded set that
attains its maximum on this set at exactly one point – and computes this global
maximum point. V. Lifschitz extended this result to constructive functions on
general constructive compact spaces [32].

In my paper [25] and in my dissertation [27], I showed how this result can
be applied to design many algorithms: from optimal approximation of functions
to designing a convex body from its metric to constructive a shortest path in
a curved space to designing a Riemannian space most tightly enclosing unit
spheres in a given Finsler space [9].

The third direction was to search for other classes of mathematical statements
for which classical validity automatically implies their constructive validity. I
found a few such classes (e.g., functions attaining maxima at two points, with
a known lower bound on the distance between them), but mostly, the results
turned out to be negative. For example, Lacombe-Lifschitz-style algorithm is
not possible for functions that have exactly two global maxima, not possible for
functions on non-compact sets, etc. [25–29].

In the Appendix, we provide an informal explanation of what is so special
about uniqueness, and how classes like this can be constructed.

186 V. Kreinovich

Constructive mathematics after Gelfond: very briefly. Since the 1970s, many
interesting results were constructively proved within constructive mathematics;
see, e.g., [1, 2, 4–6, 29, 30, 34]. It is impossible to enumerate all such results in
this short paper. Let us just mention that the uniqueness-implies-computability
results were effectively used by Kohlenbach and his school to come up with new
efficient algorithms; see, e.g., [21–23].

Gelfond’s research after constructive mathematics. While I was working on
Michael Gelfond’s constructive ideas, Michael himself moved further, in the di-
rection that very naturally follows from his constructive research. Indeed, as we
have mentioned earlier, constructive mathematics started with an observation
that the meaning of disjunction A∨B (“A or B”) in mathematics is sometimes
different from the intuitive meaning of “or”. A thorough analysis of this dis-
tinction led to the realization that to adequately represent our intuition about
“or”, we need (at least) two different disjunction operations: the constructive
disjunction and the classical disjunction.

This distinction – and constructive mathematics in general – got a great boost
in the 1950s and 1960s, when computers became ubiquitous and construction
became not just a theoretical concept but rather an everyday task. This boost
led to the urgent need for translating the existing knowledge into algorithmic
computer-understandable terms. The experience of such translation showed that
“or” is not the only logical connective whose intuitive and mathematical mean-
ings sometime differ; the same turned out to be for other connectives as well.

This realization started with the implication A → B (“A implies B”). In
classical mathematics, A→ B simply means that either B is true or A is false.
As a result, in mathematics, statements like “if 2 + 2 = 5 then witches can
fly” make perfect sense. From the intuitive viewpoint, however, “A implies B”
means that the statement A was actually used in proving the statement B –
i.e., crudely speaking, that the statement B would be not true without A. This
intuitive meaning of implication was partly captured by if-then rules of logic
programming.

For logic programs without negation, the intuitive meaning of commonsense
implication has been captured by the notion of a minimal model, i.e., a model in
which the smallest possible set of atoms is true. This means, in particular, that
if A is true, then either it was assumed to be true from the very beginning, or
it follows from a rule of the type A ← B,C, . . . in which all the conditions B,
C, etc. are already proven to be true. However, until the late 1980s, there was
no similar intuitively clear semantics of logic program with negation. Such a se-
mantics – called stable semantics – was provided by M. Gelfond and V. Lifschitz
in their 1988 paper [14]. This semantics – in essence, formalizing the above in-
tuitive meaning of implication – indeed proved to be very adequate in capturing
the intuitive meaning of if-then rules, and thus, in transforming abstract com-
monsense and expert knowledge into a set of constructive rules – rules enabling
us to algorithmically solve problems.

Constructive Mathematics from Brouwer to Kolmogorov to Gelfond 187

After the success with implication, came another realization: that the math-
ematical and intuitive meanings of negation are also slightly different, and that
in order to capture this intuitive meaning, we need two different negations: clas-
sical negation (meaning that A is known to be false) and “negation as failure”
(meaning that we cannot prove A) [15].

This was just the beginning. Then came the use of disjunctions in logic pro-
gramming, the use of sets, and – slowly but surely – we seem to be arriving
at a situation where classical mathematics will become a particular case of this
generalized “logic programming” – like it became, in effect, a particular case of
constructive mathematics.

And when we reach this stage – sometime in the next century – then no one
shall drive us from the paradise that Brouwer, Kolmogorov, Gelfond, Lifschitz,
and others have created for us!

Acknowledgments. This work was supported in part by the National Sci-
ence Foundation grants HRD-0734825 and DUE-0926721 and by Grant 1 T36
GM078000-01 from the National Institutes of Health. The author is greatly
thankful to Michael Gelfond for his guidance and help, and to Tran Cao Son
and Marcello Balduccini for their organization of Gelfond Festschrift.

References

1. Aberth, O.: Precise Numerical Analysis Using C++. Academic Press, New York
(1998)

2. Beeson, M.J.: Foundations of Constructive Mathematics. Springer, New York
(1985)

3. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)
4. Bishop, E., Bridges, D.S.: Constructive Analysis. Springer, New York (1985)
5. Bridges, D.S.: Constructive Functional Analysis. Pitman, London (1979)
6. Bridges, D.S., Via, S.L.: Techniques of Constructive Analysis. Springer, New York

(2006)
7. Brouwer, L.E.J.: Over de Grondslagen der Wiskunde, Ph.D. thesis, Universiteit van

Amsterdam (1907); in Dutch, English translation in Heyting, A. (ed.), Collected
Works of L.E.J. Brouwer. I: Philosophy and Foundations of Mathematics, pp. 11–
101. North-Holland, Amsterdam (1975)

8. Brouwer, L.E.J.: Über die Bedeutung des Satzes vom ausgeschlossenen Dritten
in der Mathematik, insbesondere in der Funktionentheorie. Journal für die reine
und angewandte Mathematik 154, 1–7 (1924) (in German); English translation:
On the significance of the principle of excluded middle in mathematics, especially
in function theory. In: van Heijenoort, J. (ed.), A Source Book in Mathematical
Logic, 1879-1931, From Frege to Gödel, pp. 334–345. Harvard University Press,
Cambridge (1967)

9. Busemann, H.: The Geometry of Geodesics. Dover Publ., New York (2005)
10. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer,

New York (1997)
11. Gel’fond, M.G.: On constructive pseudofunctions. Proceedings of the Leningrad

Mathematical Institute of the Academy of Sciences 16, 20–27 (1969) (in Russian);
English translation in: Seminars in Mathematics Published by Consultants Bureau
(New York-London) 16, 7–10 (1971)

188 V. Kreinovich

12. Gel’fond, M.G.: Relationship between the classical and constructive developments
of mathematical analysis. Proceedings of the Leningrad Mathematical Institute
of the Academy of Sciences 32, 5–11 (1972) (in Russian); English translation in
Journal of Soviet Mathematics 6(4), 347–352 (1976).

13. Gelfond, M.G.: Classes of formulas of classical analysis which are consistent with
the constructive interpretation, PhD Dissertation, Leningrad Mathematical Insti-
tute of the Academy of Sciences (1975) (in Russian)

14. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of the Fifth International Conference on Logic Programming ICLP,
pp. 1070–1080 (1988)

15. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

16. Hilbert, D.: Zur Theorie der algebraischen Gebilde. Nachrichten von der
Königlichen Gesellschaft der Wissenschaften und der Georg- Augusts-Universität
zu Göttingen, 450–457 (1988); 25–34, 423–430 (1889) (in German)

17. Hilbert, D.: Über die Theorie der algebraischen Formen. Mathematische An-
nalen 36, 473–534 (1890) (in German)

18. Hilbert, D.: Über die theorie der algebraischen invarianten. Nachrichten von der
Königlichen Gesellschaft der Wissenschaften und der Georg- Augusts-Universität
zu Göttingen, 232–241 (1891); 6–16, 439–448 (1892) (in German)

19. Hilbert, D.: Über die vollen Invariantensysteme. Mathematische Annalen 42, 313–
370 (1893) (in German)

20. Hilbert, D.: Theory of Algebraic Invariants. Cambrdige University Press,
Cambridge (1993) (Lecture Notes from 1897)

21. Kohlenbach, U.: Theorie der majorisierbaren und stetigen Funktionale und ihre
Anwendung bei der Extraktion von Schranken aus inkonstruktiven Beweisen: Ef-
fektive Eindeutigkeitsmodule bei besten Approximationen aus ineffektiven Ein-
deutigkeitsbeweisen, Ph.D. Dissertation, Frankfurt am Main (1990) (in German)

22. Kohlenbach, U.: Effective moduli from ineffective uniqueness proofs. An unwinding
of de La Vallée Poussin’s proof for Chebycheff approximation. Annals for Pure and
Applied Logic 64(1), 27–94 (1993)

23. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Springer, Heidelberg (2008)

24. Kolmogorov, A.N.: O printsipe tertium non datur. Matematicheskij Sbornik 32,
646–667 (1925) (in Russian); English translation: On the principle of excluded
middle. In: A Source Book in Mathematical Logic, 1879-1931, van Heijenoort, J.
(ed.), From Frege to Gödel, pp. 414–437. Harvard University Press, Cambridge
(1967)

25. Kreinovich, V.: Uniqueness implies algorithmic computability. In: Proceedings
of the 4th Student Mathematical Conference, pp. 19–21. Leningrad University,
Leningrad (1975) (in Russian)

26. Kreinovich, V.: Reviewer’s remarks in a review of Bridges. In: D.S.: Constrictive
Functional Analysis. Pitman, London (1979); Zentralblatt für Mathematik 401,
22–24 (1979)

27. Kreinovich, V.: Categories of space-time models, Ph.D. dissertation, Novosibirsk,
Soviet Academy of Sciences, Siberian Branch, Institute of Mathematics (1979) (in
Russian)

28. Kreinovich, V.: Physics-motivated ideas for extracting efficient bounds (and algo-
rithms) from classical proofs: beyond local compactness, beyond uniqueness. In:
Abstracts of the Conference on the Methods of Proof Theory in Mathematics,
Max-Planck Institut für Mathematik, Bonn, Germany, June 3-10, p. 8 (2007)

Constructive Mathematics from Brouwer to Kolmogorov to Gelfond 189

29. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational complexity and
feasibility of data processing and interval computations. Kluwer, Dordrecht (1998)

30. Kushner, B.A.: Lectures on Constructive Mathematical Analysis. Amer. Math.
Soc., Providence (1984)

31. Lacombe, D.: Les ensembles récursivement ouvert ou fermés, et leurs applications
à l’analyse récurslve. Compt. Rend. 245(13), 1040–1043 (1957)

32. Lifschitz, V.A.: Investigation of constructive functions by the method of fillings.
J. Soviet Math. 1, 41–47 (1973)

33. Noether, M.: Paul Gordan. Mathematisce Annalen 75, 1–41 (1914)
34. Pour-El, M., Richards, J.: Computability in Analysis and Physics. Springer, New

York (1989)
35. Weyl, H.: Das Kontinuum. Veyt, Leipzig (1918) (in German); English translation:

The Continuum: A Critical Examination of the Foundation of Analysis. Dover
Publ., New York (1994)

Appendix

Explanation of why uniqueness naturally appears and how other possible classes
of statements can be thus generated

Let us explain why uniqueness naturally appears in our attempts to describe
classes of properties P (x) for which the classical validity of the existence state-
ment ∃xP (x) implies its constructive validity.

To find such classes, let us try to describe all possible reasonable classes of
properties P (x). It is, in general, algorithmically impossible to construct an ob-
ject x that satisfies the given property P (x); thus, instead, we may look for an
object that satisfies the given property only “approximately” (in some reason-
able sense). To formally describe the notion of an approximation, we also need
relations like d(x, y) ≤ ε, meaning that the two points x and y are ε-close. To de-
scribe a general class, we can combine the atomic properties P (x) and d(x, y) ≤ ε
by using propositional connectives and quantifiers.

We need at least two different variables x and y to meaningfully use the
formula d(x, y) ≤ ε. For simplicity, let us restrict ourselves to the case when
there are no quantifiers (other than implicitly assumed universal quantifiers in
front of the formula) and that we have exactly two different variables in a formula
describing the class.

We are looking for classes of classical (non-constructive) formulas, so the
propositional connectives should also be understood in terms of the classical
logic. In the classical logic, every propositional statement can be described in a
CNF form, as a conjunction C1 &C2 & . . . of clauses Ci, and every clause Ci is
a disjunction of literals (i.e., atomic statements or their negations). Thus, ev-
ery possible class of properties described by such formulas is an intersection of
classes corresponding to clauses. So, to study general classes, it is sufficient to
study classes described by individual clauses.

In the classical logic, every clause a∨b∨. . .∨c can be equivalently described as
a rule ¬a&¬b& . . .→ c. So, instead of studying clauses, we will study possible
rules.

190 V. Kreinovich

Rules must relate to the original property, thus, one of the literals in the clause
must be P (x) or ¬P (x). Since we must have an approximation – otherwise, no
general algorithm is possible – at least one other literal must come from the
atomic statement d(x, y) ≤ ε. For this literal to be meaningful, we must have
at least one literal with the variable x and at least one with the variable y.
These clauses can only contain literals coming from the atoms P (x), P (y), and
d(x, y) ≤ ε. Let us classify the corresponding rules.

One of these rules to uniqueness: the rule P (x) &P (y) → d(x, y) ≤ ε. Indeed,
this rule means that all the solution to our problem are ε-close to each other –
i.e., that, in effect, with the accuracy ε, we have a unique solution. Let us show
that other possible rules do not lead to meaningful classes.

If one of the literals corresponding to P (x) is positive, we can make it a
conclusion of the corresponding if-then rule. Depending on whether each of the
remaining two literals is positive or negative, we have four possibilities:
– The first possibility is P (x) & d(x, y) ≤ ε → P (y); in this case, once P (x)

holds for some object x, it holds for all ε-close values y. In the usual case
when the set of objects is a connected set (e.g., the set of real numbers, Rn,
the class of all continuous or differentiable functions), in which we can get
from each point x to every other point y by a sequence of ε-neighbors, this
means that if P (x) holds for one object x, it holds for every x as well. Thus,
this case covers only two trivial properties P (x): the property that is always
true and the property that is always false.

– The second possibility is the rule ¬P (x) & d(x, y) ≤ ε → P (y). In this case,
for y = x, we conclude that ¬P (x) → P (x) thus, that ¬P (x) is impossible,
and P (x) holds for all x – also a trivial case.

– The third possibility is P (x) & d(x, y) > ε → P (y). Similarly to the first
possibility, we can also usually connect every two elements by a sequence in
which every next one is ε-far from the previous one, so we also only get two
trivial cases.

– The fourth possibility is ¬P (x) & d(x, y) > ε → P (y), i.e., equivalently,
¬P (x) &¬P (y) → d(x, y) ≤ ε. In this case, all the objects that do not
satisfy the property P (x) are ε-close. So, with the exception of this small
vicinity, every object satisfies the property P (x). In this sense, this case is
“almost” trivial.

Finally, let us consider the clauses in which literals corresponding to both atoms
P (x) and P (y) are negative. In this case, we have two possibilities:
– the possibility P (x) &P (y) → d(x, y) ≤ ε that we already considered, and
– the possibility P (x) &P (y) → d(x, y) > ε; in this case, taking x = y, we

conclude that P (x) is impossible, so the property P (x) is always false.

For the case of two variables x and y, the (informal) statement is proven.
For a larger number of variables, we can have clauses of the type

P (x) &P (y) &P (z)→ (d(x, y) ≤ ε ∨ d(y, z) ≤ ε ∨ d(x, z) ≤ ε)

corresponding to the assumption that there are exactly two objects satisfying
the property P (x), etc.

Recollections on Michael Gelfond’s 65th Birthday

Alessandro Provetti

Dept. of Physics - Informatics section, University of Messina.
Viale F. Stagno d’Alcontres, 31. I-98166 Messina, Italy

ale@unime.it

Having been invited to write an essay about Michael, both as a person and as a re-
searcher, I welcome the opportunity, forewarning the reader, however, that in so doing
I will have to write about myself, also as a person and as a researcher, through my
experience as one of Michaels first PhD students. So, walk with me for a while.

Michael and I first met in mid-June 1992 when he was invited by Stefania Costantini
and Elio Lanzarone to Milan for a seminar. His presentation was about the then-novel
Stable model semantics for (propositional) logic programs with negation. I thoroughly
enjoyed the talk, both the speaker and the subject seeming, strangely, both rational and
friendly. It was only at the end of the seminar, hearing the repeated and somewhat
pointed questions from the skilled logicians who had attended the presentation that I
came to understand that something big was going on, and that events had been set in
motion. Right after the seminar Stefania took us to a café nearby where, during a lively
and pleasant technical discussion that went on for some time, I had the chance to speak
to Michael about some -probably very half-baked- idea of mine on reasoning about
actions. Whereas Italian academics in general are often careful and sometimes slightly
alarmed when young people come up with ideas, to my surprise, Michael encouraged
me to try harder in that direction, adding that reasoning about actions had become one
of his interests and that he would like to hear more about it. That was very motivating
for a first-year PhD student who was still only half-sure about his vocation and skills.
Subsequent talks during the GULP Conference on Lake Como only reinforced the -I
believe mutual- appreciation and before long, July 1992, I was on a plane to El Paso, to
work under Michael for the rest of the summer.

It turned out to be a life-changing experience that has motivated and sustained me
ever since to purse the research topics Michael pointed us students towards. On the face
of it, what a hot El Pasoan summer that was: in the middle of the Chihuahua desert, a
group of heavily-accented expats from almost everywhere (and that includes the USA,
represented by Bonnie Traylor and Richard Watson, both Michaels Masters students
at the time) were taking on some of the hardest topics of Logical AI. Michaels group
worked inside what I thought one of the most bizarre buildings on the University of
Texas-El Paso campus: a windowless, keystone-shaped, concrete structure whose con-
crete walls were so thick that one could only assume the building had been designed
to resist a nuclear explosion from nearby Trinity point NM! Never mind the location,
and the heat outside, the energy, clarity and focus of Michaels research and supervi-
sion easily made up for it all. Memorable were the seminars, where discussions with
Prof. Vladik Kreinovich and Prof. Amine Khamsi were as lively as a (legal) academic
exchange can get.

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 191–192, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

192 A. Provetti

One important feature of Michael’s research and teaching is the ability to have a
focused, even narrow, area of interest, yet to nurture several of these interests at the
same time and find the conceptual connections and synergies between them. In this
sense I see his works on Stable model semantics and formal models of reasoning about
actions, as well as his application projects, viz. the USA Advisor project, as coexisting
and complementing each other seamlessly. In this propitious environment, I myself
became interested and active in these three areas, even though I freely admit it has
proved a tall order to replicate such insight and effectiveness. Michaels ability to work
with diverse students and colleagues and to help them, all of them, to develop research
skills is well-known and the present volume, filled by accomplished academicians and
scientists from industry, bears witness to it.

Having been one of the first PhD students he mentored, I believe I also had a unique
opportunity to share time with Michael and even to be a guest of his family repeat-
edly for long periods. So, Lara, Greg, Yulia and Patrick became my family in the US.
And thanks, Lara, for those wonderful, hearty dinners. Which were followed, and com-
plemented, by wide-ranging discussions on Philosophy, religion, democracy, literature,
all the way to the history of Mathematics and the scientific method. All of Michael’s
students and colleagues joined in at one time or another: Chitta, Olga, Son, Monica,
Alfredo, Marcello, Ramon, Pedro, Ann, Mary, Veena, Joel and more than I can men-
tion here. These days, immersed in the rarefied formality of Italian academia, I fondly
remember those hot summers with you-all.

To sum up, on the personal level, you will forgive me for feeling that I have received
so much in the way of a scientific and personal relationship that I seriously doubt I will
ever be able to give it back to my students in equal measure. On the scientific level,
I am still and always grateful for the opportunity to be exposed to Michaels research,
as I was as recently as last March at the Datalog 2.0 event in Oxford. The work on
probabilities he presented there came across as ambitious, deeply conceptual and yet
easy-to-grasp, thanks to Michaels rational and gentle presentation style. Indeed, some
colleagues later commented to me that they thought they were finally starting to enjoy
probabilities through Michaels work!

Evolving Logic Programs with Temporal

Operators

José Júlio Alferes, Alfredo Gabaldon, and João Leite

CENTRIA – Center for Artificial Intelligence,
Universidade Nova de Lisboa, Portugal

Abstract. Logic Programming Update Languages have been proposed
as extensions of logic programming that allow specifying and reasoning
about knowledge bases where both extensional knowledge (facts) as well
as intentional knowledge (rules) may change over time as a result of
updates.

Despite their generality, these languages are limited in that they do
not provide a means to directly access past states of the evolving knowl-
edge. They only allow for so-called Markovian change, i.e. change which
is entirely determined by the current state of the knowledge base.

After motivating the need for non-Markovian change, we extend the
language EVOLP – a Logic Programming Update Language – with Lin-
ear Temporal Logic-like operators, which allow referring to the history of
an evolving knowledge base. We then show that it is in fact possible to
embed the extended EVOLP into the original one, thus demonstrating
that EVOLP itself is expressive enough to encode non-Markovian dy-
namic knowledge bases. This embedding additionally sheds light on the
relationship between Logic Programming Update Languages and Modal
Temporal Logics. The embedding is also the starting point of our imple-
mentation.

1 Introduction

While belief update in the context of classical knowledge bases has traditionally
received significant devotion [15], only in the last decade have we witnessed
increasing attention to this topic in the context of non-monotonic knowledge
bases, notably using logic programming (LP) [25, 5, 24, 10, 11, 31, 35, 30, 27,
3, 6, 2, 34]. Chief among the results of such efforts are several semantics for
sequences of logic programs (dynamic logic programs) with different properties
[25, 5, 24, 10, 31, 35, 30, 2, 34], and the so-called LP Update Languages: LUPS
[6], EPI [9, 11], KABUL [24] and EVOLP [3].

LP Update Languages are extensions of LP designed for modeling dynamic,
non-monotonic knowledge bases represented by logic programs. In these knowl-
edge bases, both the extensional part (a set of facts) and the intentional part (a
set of rules) may change over time due to updates. In these languages, special
types of rules are used to specify updates to the current knowledge base leading
to a subsequent knowledge base. LUPS, EPI and KABUL offer a very diverse set

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 193–212, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

194 J.J. Alferes, A. Gabaldon, and J. Leite

of update commands, each specific for one particular kind of update (assertion,
retraction, etc). On the other hand, EVOLP follows a simpler approach, staying
closer to traditional LP.

In a nutshell, EVOLP is a simple though quite powerful extension of ASP
[18, 17] that allows for the specification of a program’s evolution, in a single
unified way, by permitting rules to indicate assertive conclusions in the form of
program rules. Syntactically, evolving logic programs are just generalized logic
programs1. But semantically, they permit to reason about updates of the pro-
gram itself. The language of EVOLP contains a special predicate assert/1 whose
sole argument is a full-blown rule. Whenever an assertion assert (r) is true in a
model, the program is updated with rule r. The process is then further iterated
with the new program. These assertions arise both from self (i.e. internal to the
program) updating, and from external updating (e.g. originating in the environ-
ment). EVOLP can adequately express the semantics resulting from successive
updates to logic programs, considered as incremental knowledge specifications,
and whose effect can be contextual. Whenever the program semantics allows for
several possible program models, evolution branching occurs, and several evo-
lution sequences are made possible. This branching can be used to specify the
evolution of a situation in the presence of incomplete information. Moreover, the
ability of EVOLP to nest rule assertions within assertions allows rule updates to
be themselves updated down the line. Furthermore, the EVOLP language can
express self-modifications triggered by the evolution context itself, present or
future—assert literals included in rule bodies allow for looking ahead on some
program changes and acting on that knowledge before the changes occur. In
contradistinction to other approaches, EVOLP also automatically and appropri-
ately deals with the possible contradictions arising from successive specification
changes and refinements (via Dynamic Logic Programming2 [5, 24, 2]).

Update languages have been applied in areas such as Multi-Agent Systems to
represent the dynamics of both beliefs and capabilities of agents [23, 21], Legal
Reasoning to represent the way rules and regulations change over time and how
they update existing ones [29], Role Playing Games to represent the dynamic
behavior of Non-Playing Characters [22] and Knowledge Bases to describe their
update policies [9]. Furthermore, it was shown that Logic Programming Update
Languages are able to capture Action Languages A, B and C [19], making them
suitable for describing domains of actions [1].

1 Logic programs that allow for rules with default negated literals in their heads.
2 Dynamic Logic Programming determines the semantics of sequences of generalized

logic programs representing states of the world at different time periods, i.e. knowl-
edge undergoing successive updates. As individual theories may comprise mutually
contradictory as well as overlapping information, the role of DLP is to employ the
mutual relationships among different states to determine the declarative semantics,
at each state, for the combined theory comprised of all individual theories. Intu-
itively, one can add newer rules at the end of the sequence, leaving to DLP the task
of ensuring that these rules are in force, and that previous ones are valid (by inertia)
only so far as possible, i.e. they are kept for as long as they are not in conflict with
newly added ones, these always prevailing.

Evolving Logic Programs with Temporal Operators 195

Despite their generality, none of the update languages mentioned above pro-
vides a means to directly access past states of an evolving knowledge base. These
languages were designed for domains where updates are Markovian, meaning
that their dynamics are entirely determined by the current state of the knowl-
edge base. Although in many cases this is a reasonable assumption, there are
also many scenarios where the behavior of the knowledge base is complex and
depends on the particular way it has evolved. In order to capture such com-
plex behavior, it is necessary to be able to refer to properties of the knowledge
base at previous states in its “history.” This is the motivation behind our pro-
posed language, which we call EVOLPT . The following example attempts to
illustrate this.

Consider a knowledge base of user access policies for a number of computers
at different locations. A login policy may say, e.g., that after the first failed login
a user receives a warning by sms, and if there is another failed login attempt the
account is blocked. Moreover, if there are two simultaneous failed login attempts
from different ip addresses of the same domain, then the domain is considered
suspect. This policy could be expressed by the following rules:

sms(User) ← �(not sms(User)), fLogin(User, IP).
assert(block(User)) ← ♦(sms(User)), fLogin(User, IP).
assert(suspect(D)) ← fLogin(User1, IP1), fLogin(User2, IP2),

domain(D, IP1), domain(D, IP2), IP1 �= IP2.

where fLogin(User, IP) represents the external event of a failed login attempt
by the user User at the ip IP . The ability to represent such external influence
on the contents of a knowledge base is one of the features of EVOLP (and of
EVOLPT , which we present below). The symbols ♦ and � represent Past Linear
Temporal Logic (Past LTL) like operators. Intuitively, ♦ϕ means that there is a
past state where ϕ was true and �ϕ means that ϕ was true in all past states.
The assert construct is one of the main features of EVOLP. It allows the user
to specify updates to a knowledge base by declaring new rules to be asserted
without worrying about conflicts with rules already in the knowledge base.

Referring back to the example, the first rule above specifies that, at any given
state, if there is a failed login attempt, fLogin(User, IP), and the user has not
received an SMS warning in the past, �(not sms(User)), then the user is sent
a warning, sms(User). The second rule specifies that if there is a failed login
attempt, fLogin(User, IP), and the user has received an SMS warning sometime
in the past, ♦(sms(User)), then the user is blocked, assert(block(User)). Notice
that in this case the fact block(User) is asserted while in the case of the SMS
warning the atom sms(User) holds in the current state but is not asserted.
Intuitively, the atom sms(User) only holds in the state where the rule fires. On
the other hand, the fact block(User), which is asserted, persists by inertia until
possibly a subsequent update falsifies it.

Now suppose we want to model some updates made later on by the system
administrator. Consider for instance that the sys admin decides that for those

196 J.J. Alferes, A. Gabaldon, and J. Leite

domains which have remained suspect since the last failed login attempt, from
now on, i) immediately block any user failing a login from such a domain and
ii) not send sms warnings to users failing logins from such domains.

This may be captured by the rules:

assert(assert(block(User)) ← fLogin(User, IP), domain(IP,Dom).) ←
S(suspect(Dom), fLogin(Usr2, IP2)),
domain(IP2, Dom).

assert(not sms(User) ← fLogin(User, IP), domain(IP,Dom).) ←
S(suspect(Dom), fLogin(Usr2, IP2)),
domain(IP2, Dom).

The symbol S represents an operator similar to the Past LTL operator “since”.
The intuitive meaning of S(ψ, ϕ) is: at some point in the past ϕ was true, and
ψ has always been true since then.

The ability to refer to the past, such as referring to an sms never having
been sent in the past or that a domain has remained suspect since a failed
login occurred, is lacking in EVOLP and other similar update languages. For
instance, in [9], Eiter et al. discuss that a possible useful extension of their EPI
language would be to add a set of constructs for expressing complex behavior
that takes into account the full temporal evolution of a knowledge base, and
mention as an example a construct prev() for referring to the previous stage of
the knowledge base.

In this paper, we introduce EVOLPT , an extension of EVOLP with LTL-
like operators which allow more flexibility in referring to the history of the
evolving knowledge base.3 We proceed by showing that, with a suitable intro-
duction of new propositional variables, it is possible to embed EVOLPT into
the original EVOLP, thus demonstrating that EVOLP is expressive enough
to capture non-Markovian knowledge base dynamics. In addition to this ex-
pressivity result, the embedding proves interesting also for shedding light into
the relationship between Logic Programming Update Languages and modal
temporal logics. The embedding is also a starting point for an implementa-
tion, which we also describe in this paper, and that is freely available from
http://centria.di.fct.unl.pt/~jja/updates/.

2 Preliminaries

EVOLP [3] is a logic programming language that includes the special predicate
assert/1 for specifying updates. An EVOLP program consists of a set of rules
of the form

L0 ← L1, . . . , Ln

where L0, L1 . . . , Ln are literals, i.e., propositional atoms possibly preceded by
the negation-as-failure operator not . Notice that EVOLP allows not to appear in
3 EVOLPT was first introduced in [4], a preliminary shorter version of this paper.

http://centria.di.fct.unl.pt/~jja/updates/

Evolving Logic Programs with Temporal Operators 197

the head of rules. The predicate assert/1 takes a rule as an argument. Intuitively,
assert(R) means that the current knowledge base will be updated by adding
rule R.

An EVOLP program containing rules with assert in the head is capable of
going through a sequence of changes even without influence from outside. Exter-
nal influence is captured in EVOLP by means of a sequence of programs each of
which represents an update due to external events. In other words, using pred-
icate assert one can specify self-modifying behavior in an EVOLP knowledge
base, while updates issued externally are specified as a sequence of programs in
the same language. The following definitions make these intuitions precise.

Definition 1. Let L be any propositional language (not containing the predicate
assert/1). The extended language Lassert is defined inductively as follows:

– All propositional atoms in L are propositional atoms in Lassert;
– If each of L0, . . . , Ln is a literal in Lassert (i.e. a propositional atom A or its

default negation notA), then L0 ← L1, . . . , Ln is a generalized logic program
rule over Lassert;

– If R is a rule over Lassert then assert(R) is a propositional atom of Lassert;
– Nothing else is a propositional atom in Lassert.

An evolving logic program over a language L is a (possibly infinite) set of logic
program rules over Lassert.

By nesting assert/1 one can specify knowledge base updates that may in turn
introduce further updates. As mentioned earlier, in addition to these “internal
updates,” one can specify “external events” intuitively of two types: observation
(of facts or rules) events that occur at a given state, and direct assertion com-
mands which specify an update to the knowledge base with new rules. The main
difference between the two types of event is that observations only hold in the
state where they occur, while rules that are asserted persist in the knowledge
base. Syntactically, observations are represented in EVOLP by rules without
the assert predicate in the head, and assertions by rules with it. A sequence of
external events is represented as a sequence of EVOLP programs:

Definition 2. Let P be an evolving program over the language L. An event
sequence over P is a sequence of evolving programs over L.

Given an initial EVOLP program and an event sequence, the semantics dic-
tates what holds and what does not after each of the events in the sequence.
More precisely, the meaning of a sequence of EVOLP programs is given by a
set of evolution stable models, each of which is a sequence of interpretations
〈I1, . . . , In〉. Each evolution stable model describes some possible evolution of
an initial program after a number n of evolution steps, given the events in the
sequence. Each evolution is represented by a sequence of programs 〈P1, . . . , Pn〉,
where each Pi corresponds to a knowledge base constructed as follows: regard-
ing head asserts, whenever the atom assert(Rule) belongs to an interpretation in

198 J.J. Alferes, A. Gabaldon, and J. Leite

a sequence, i.e. belongs to a model according to the stable model semantics of
the current program, then Rule must belong to the program in the next state.
Assert literals in the bodies of rules are treated as are any other literals.

Definition 3. An evolution interpretation of length n over L is a finite sequence
I = 〈I1, I2, . . . , In〉 of sets of propositional atoms of Lassert. The evolution trace
of P under I is the sequence of programs 〈P1, P2, . . . , Pn〉 where

– P1 = P and
– Pi = {R | assert(R) ∈ Ii−1} for 2 ≤ i ≤ n.

Sequences of programs are then treated as in dynamic logic programming [5],
where the most recent rules are set in force, and previous rules are valid (by
inertia) insofar as possible, i.e. they are kept for as long as they do not conflict
with more recent ones. The semantics of dynamic logic programs [2] is a gen-
eralization of the answer-set semantics of [26] in the sense that if the sequence
consists of a single program, the semantics coincide.

Before we define this semantics, we need to introduce some notation. Let
ρs(P1, ..., Pn) denote the multiset of all rules appearing in the programs P1, ..., Ps.
If r is a rule of the form L0 ← L1, . . . , Ln, then H(r) = L0 (dubbed the head of
the rule) and B(r) = L1, . . . , Ln (dubbed the body of the rule). Two rules r, r′ are
said to be conflicting rules, denoted by r � r′, iff H(r) = A and H(r′) = notA
or H(r) = notA and H(r′) = A. By least(P) we denote the least model of
the definite program obtained from the argument program P by replacing every
default literal notA by a new atom not A. For every set of propositional atoms
M in Lassert, we define M ′ = M ∪ {not A | A �∈M}. Finally, we need to define
the following two sets. Given a program sequence P and a set of atoms M , the
first set denotes the set of negated atoms notA that hold wrt a state s:

Defs(P ,M) def= {notA | �r ∈ ρs(P), H(r) = A,M
 B(r)} .

The second is the set of rules that are “rejected” because of the appearance of
a conflicting rule later in the sequence and whose body is satisfied by M :

Rejs(P ,M) def= {r | r ∈ Pi, ∃r′ ∈ Pj , i ≤ j ≤ s, r � r′,M
 B(r′)} .

Definition 4. Let P = 〈P1, . . . , Pn〉 be a sequence of programs over L. A set,
M , of propositional atoms in Lassert is a dynamic stable model of P at state s,
1 ≤ s ≤ n, iff

M ′ = least ([ρs(P)−Rejs(P ,M)] ∪Defs(P ,M)) .

Whenever s = n, we simply say that M is a stable model of P.

Going back to EVOLP, the events received at each state must be added to the
corresponding program of the trace before testing the stability condition of stable
models of the evolution interpretation.

Evolving Logic Programs with Temporal Operators 199

Definition 5 (Evolution Stable Model). Let I = 〈I1, ..., In〉 be an evolu-
tion interpretation of an EVOLP program P and 〈P1, P2, . . . , Pn〉 be the corre-
sponding execution trace. Then I is an evolution stable model of P given event
sequence 〈E1, E2, . . . , En〉 iff for every i (1 ≤ i ≤ n), Ii is a stable model of
〈P1, P2, . . . , (Pi ∪ Ei)〉.

3 EVOLP with Temporal Operators

EVOLP programs have the limitation that rules cannot refer to past states in the
evolution of a program. In other words, they do not allow one to specify behavior
that is conditional on the full evolution of the system being modeled. Despite the
fact that the whole evolution is available as a sequence of evolving programs,
the body of a rule at any state is always evaluated only with respect to that
state. In fact, a careful look at the above definition of the semantics of dynamic
logic programs makes this evident: in the definitions of both Defs(P ,M) and
Rejs(P ,M), rules in previous states are indeed taken into account, but the rule
bodies are always evaluated with respect to model M which is the model defined
for the knowledge base at state s.

Our goal here is to extend the syntax and semantics of EVOLP to overcome
this limitation, defining a new language called EVOLPT . Our approach is similar
to the approach in [12, 14] where action theories in the Situation Calculus are
generalized with non-Markovian control. In particular, we extend the syntax of
EVOLP with Past LTL modalities ©(G), ♦(G) �(G), and S(G1, G2), which
intuitively mean, respectively: G holds in the previous state; G holds in some
past state; G holds in all past states; and G1 holds since G2 holds.

Moreover, we allow arbitrary nesting of these operators as well as negation-
as-failure in front of their arguments. Unlike not , however, temporal operators
are not allowed in the head of rules. The only restriction on the body of rules
is that negation is allowed to appear in front of atoms and temporal operators
only. The formal definition of the language and programs in EVOLPT is as
follows.

Definition 6 (EVOLP with Temporal Operators). Let L be any propo-
sitional language (not containing the predicates assert/1, ©/1, ♦/1, S/2 and
�/1). The extended temporal language LassertT and the set of b-literals4 G are
defined inductively as follows:

– All propositional atoms in L are propositional atoms in LassertT and b-literals
in G.

– If G1 and G2 are b-literals in G then ©(G1), ♦(G1), S(G1, G2) and �(G1)
are t-formulae5, and are also b-literals in G.

– If G is a t-formula or an atom in LassertT then notG is a b-literal in G.
– If G1 and G2 are b-literals in G, then (G1, G2) is a b-literal in G.

4 Intuitively, b-literal stands for body-literal.
5 Intuitively, t-formula stands for temporal-formula.

200 J.J. Alferes, A. Gabaldon, and J. Leite

– If L0 is a propositional atom A in LassertT or its default negation notA, and
each of G1, . . . Gn is a b-literal, then L0 ← G1, . . . , Gn is a generalized logic
program rule over LassertT and G.

– If R is a rule over LassertT then assert(R) is a propositional atom of LassertT .
– Nothing else is a propositional atom in Lassertor a b-literal in G.

An evolving logic program with temporal operators over a language L is a (pos-
sibly infinite) set of generalized logic program rules over LassertT and G.

For example, under this definition the following is a legal EVOLPT rule:

assert(a← not♦(b)) ← not�(not♦((b, not assert(c← d)))).

Notice the nesting of temporal operators and the appearance of negation, con-
junction and assert under the scope of the temporal operators, which is all al-
lowed.

On the other hand, the following are examples of rules that are not legal
according to the definition:

assert(�(b) ← a) ← b.
a← ♦(not (a, b)).
a← not not b.

In the first rule, �(b) appears in the argument rule �(b) ← a, but temporal
operators are not allowed in the head of rules. The second rule applies negation
to a conjunctive b-literal, and the third rule has double negation. But negation
is only allowed in front of atoms and t-formulae.

As in EVOLP, the definition of the semantics is based on sequences of in-
terpretations 〈I1, . . . , In〉 (evolution interpretations). Each interpretation in a
sequence stands for the propositional atoms (of LassertT) that are true at the
corresponding state, and a sequence stands for a possible evolution of an initial
program after a given number n of evolution steps. However, whereas in the orig-
inal EVOLP language the satisfiability of rule bodies in one such interpretation
Ii can easily be defined in terms of set inclusion—all the positive atoms must be
included in Ii, all the negative ones excluded—in EVOLPT satisfiability is more
elaborate as it must account for the Past LTL modalities.

Definition 7 (Satisfiability of b-literals). Let I = 〈I1, ..., In〉 be an evolution
interpretation of length n of a program P over LassertT , and let G and G′ be
any b-literals in G. The satisfiability relation is defined as:

I |= A iff A ∈ In ∧A ∈ LassertT

I |= notG iff 〈I1, ..., In〉 �|= G
I |= G,G′ iff 〈I1, ..., In〉 |= G ∧ 〈I1, ..., In〉 |= G′

I |= ©(G) iff n ≥ 2 ∧ 〈I1, ..., In−1〉 |= G
I |= ♦(G) iff n ≥ 2 ∧ ∃i < n : 〈I1, ..., Ii〉 |= G
I |= S(G,G′) iff n > 2 ∧ ∃i < n : 〈I1, ..., Ii〉 |= G′ ∧ ∀i < k < n : 〈I1, ..., Ik〉 |= G
I |= �(G) iff ∀i < n : 〈I1, ..., Ii〉 |= G

Evolving Logic Programs with Temporal Operators 201

Given an evolution interpretation, an evolution trace (defined below) represents
one of the possible evolutions of the knowledge base. In EVOLPT , whether an
evolution trace is one of these possible evolutions additionally depends on the
satisfaction of the t-formulae that appear in rules. Towards formally defining
evolution traces, we first define an elimination procedure which evaluates satis-
fiability of t-formulae and replaces them with a corresponding truth constant.

Definition 8 (Elimination of Temporal Operators). Let I = 〈I1, . . . , In〉
be an evolution interpretation and L0 ← G1, . . . , Gn a generalized logic program
rule. The rule resulting from the elimination of temporal operators given I, de-
noted by El(I, L0 ← G1, . . . , Gn), is obtained by:

– replacing by true every t-formula Gt in the body such I |= Gt; and
– by replacing all remaining t-formulae by false

where constants true and false are defined, as usual, such that the former is
true in every interpretation and the latter is not true in any interpretation.

The program resulting from the elimination of temporal operators given I,
denoted by El(I, P), is obtained by applying El(I, r) to each rule r of P .

Evolution traces are defined as in Def. 3 except that t-formulae are eliminated
by applying El:

Definition 9 (Evolution Trace of EVOLPT Programs). Let I=〈I1, . . . , In〉
be an evolution interpretation of an EVOLPT program P . The evolution trace
of P under I is the sequence of programs 〈P1, P2, . . . , Pn〉 where:

– P1 = El(〈I1〉, P) and
– Pi = El(〈I1, . . . , Ii〉, {R | assert(R) ∈ Ii−1}) for 2 ≤ i ≤ n.

Since the programs in an evolution trace do not mention t-formulae, evolution
stable models can be defined in a similar way as in Def. 5, only taking into ac-
count that the temporal operators must also be tested for satisfiability, and elim-
inated accordingly, from the evolution trace and also from the external events.
Here, events are simply sequences of EVOLPT programs.

Definition 10 (Evolution Stable Models of EVOLPT Programs). Let
I = 〈I1, . . . , In〉 be an evolution interpretation of an EVOLPT program P and
〈P1, P2, . . . , Pn〉 be the corresponding execution trace. Then I is an evolution
stable model of P given event sequence 〈E1, E2, . . . , En〉 iff Ii is a stable model
of

〈P1, P2, . . . , (Pi ∪ E∗
i)〉

for every i (1 ≤ i ≤ n), where E∗
i = {El(〈I1, . . . , Ii〉, r) | r ∈ Ei}.

Since various evolutions may exist for a given length, evolution stable models
alone do not determine a truth relation. But one such truth relation can be
defined, as usual, based on the intersection of models:

202 J.J. Alferes, A. Gabaldon, and J. Leite

Definition 11 (Stable Models after n Steps of EVOLPT Programs). Let
P be an EVOLPT program over the language L. We say that a set of propositional
atoms M over LassertT is a stable model of P after n steps given the sequence
of events E iff there exist I1, . . . , In−1 such that 〈I1, . . . , In−1,M〉 is an evolution
stable model of P given E.

We say that propositional atom A of LassertT is:

– true after n steps given E iff all stable models after n steps contain A;
– false after n steps given E iff no stable model after n steps contains A;
– unknown after n steps given E otherwise.

It is worth noting that basic properties of Past LTL operators carry over to
EVOLPT . In particular, in EVOLPT , as in LTL, some of the operators are not
strictly needed, since they can be express in terms of other operators:

Proposition 1. Let I=〈I1, . . . , In〉 be an evolution stable model of an EVOLPT

program given a sequence of events E. Then, for every G ∈ G:

– I |= �(G) iff I |= not♦(notG);
– I |= ♦(G) iff I |= S(true, G)

Moreover, it should also be noted that EVOLPT is an extension of EVOLP
in the sense that when no temporal operators appear in the program and in
the sequence of events, then evolution stable models coincide with those of the
original EVOLP. As an immediate consequence of this fact, it can also be noted
that EVOLPT coincides with answer-sets when, moreover, the sequence of events
is empty and predicate assert/1 does not occur in the program.

We end this section by illustrating the results of EVOLPT semantics on the
motivating example of the Introduction.

Example 1. The initial program P is made of the rules specifying the initial
policy plus, for the example, some facts about ips and domains:

sms(User) ← �(not sms(User)), fLogin(User, IP).
assert(block(User)) ← ♦(sms(User)), fLogin(User, IP).
assert(suspect(D)) ← fLogin(User1, IP1), fLogin(User2, IP2),

domain(D, IP1), domain(D, IP2), IP1 �= IP2.

domain(ip1, d1). domain(ip2, d2). domain(ip3, d2). domain(ip4, d2).

At this initial state, assuming an empty E1, the only evolution stable model is
〈I1〉 with I1 only including the domain/2 facts.

Now suppose that there is an event of a failed login from John at ip1, repre-
sented by the program E2 with the single fact fLogin(john, ip1).

The only evolution stable model of P given 〈E1, E2〉 is the interpretation
〈I1, I2〉 where I1 includes the domain/2 facts and I2 includes, besides the
domain/2 facts, sms(john), which intuitively means that upon receiving the

Evolving Logic Programs with Temporal Operators 203

event of the failed login from John, an sms is sent to him. Indeed, the evolution
trace is 〈P1, P2〉 where P2 is empty (since I1 has no domain/1 predicates) and
P1 = El(〈I1, I2〉, P) is:

sms(User) ← true, fLogin(User, IP).
assert(block(User)) ← false, fLogin(User, IP).
assert(suspect(D)) ← fLogin(User1, IP1), fLogin(User2, IP2),

domain(D, IP1), domain(D, IP2), IP1 �= IP2.

domain(ip1, d1). domain(ip2, d1). domain(ip3, d2). domain(ip4, d2).

It is easy to verify that I1 is a stable model of 〈P1 ∪E∗
1)〉 and I2 a stable model

of 〈P1, (P2 ∪ E∗
2)〉.

Continuing the example, suppose that there is an event of another failed login
from John, this time at ip3, and of a failed login from Eva at ip4 (represented by
the program E3 with the facts fLogin(john, ip3) and fLogin(eva, ip4)). Now
the evolution stable model is 〈I1, I2, I3〉 were I1 and I2 are as above, I3 in-
cludes sms(eva), and also assert(block(john)) and assert(suspect(d2)). As such,
block(john) and suspect(d2) will be added to the evolution trace in the subse-
quent step.

Suppose now that the system administrator issues the update with the rules
shown in the Introduction, including them in E4, and subsequently, in E5,
there are failed logins from Carl at ip4 and from Vic at ip1. In this case, af-
ter these 5 steps, assert(block(carl)) becomes true (blocking Carl’s access),
and no sms is sent to him because the more recent rule not sms(User) ←
fLogin(User, IP), domain(IP, d2) (belonging to P5 because of the assertion in
E4) overrides the first rule in the initial program. The same does not happen for
Vic, since this rule is not asserted for domain d1, as it was not suspect.

4 Embedding Temporal Operators in EVOLP

In this section we show that it is possible to transform EVOLPT programs into
regular EVOLP programs. This transformation is important for at least two
reasons. On one hand, it shows that EVOLP is expressive enough to deal with
non-Markovian conditions, although not immediately nor easily. On the other
hand, given the existing implementations of EVOLP, the transformation readily
provides a means to implement EVOLPT , as we describe below.

Transforming EVOLPT programs and sequences of events into EVOLP mainly
amounts to eliminating the t-formulae by introducing new propositional atoms
that will represent the t-formulae, and rules that will model how the truth value
of the t-formulae changes as the knowledge base evolves. We start by defining
the target language of the resulting EVOLP programs.

Definition 12 (Target language). Let P and E be an EVOLPT program and
a sequence of events, respectively, in a propositional language L. Let G(P, E) be
the set of all non-atomic b-literals that appear in P or E.

204 J.J. Alferes, A. Gabaldon, and J. Leite

The EVOLP target language is

LE(L, P, E) def= L ∪ {′L′ | L ∈ G(P, E)}

where by ′L′ we mean a propositional variable whose name is the (atomic) string
of characters that compose the formula L (which is assumed not to occur in L).

The transformation takes the rules in both program and events, and replaces all
occurrences of t-formulas and conjunctions in their bodies by the corresponding
new propositional variables in the target language. Moreover, extra rules are
added to the program for encoding the behavior of the operators.

Definition 13 (Transformation). Let P be an EVOLPT program and E =
〈E1, E2, . . . , En〉 be a sequence of events in a propositional language L. Then
TrE(P, E) = (TP , 〈TE1 , . . . , TEn〉) is a pair consisting of an EVOLP program
(i.e., without temporal operators) and a sequence of events, both in the language
LE(L, P, E), defined as follows:6

1. Rewritten program rules. For every rule r in P (resp. each of the Ei),
TP (resp. TEi) contains a rule obtained from r by replacing every t-formula
G in its body by the new propositional variable ′G′;

2. Previous-operator rules. For every propositional variable of the form ′©
(G)′, appearing in LE(L, P, E), TP contains:

assert(′©(G)′) ← ′G′.
assert(not ′© (G)′) ← not ′G′.

3. Sometimes-operator rule. For every propositional variable of the form
′♦(G)′, appearing in LE(L, P, E), TP contains:

assert(′♦(G)′) ← ′G′.

4. Since-operator rules. For every propositional variable of the form
′S(G1, G2)′, appearing in LE(L, P, E), TP contains:

assert(′S(G1, G2)′) ← ′G′
1,

′©(G2)′.
assert(assert(not ′S(G1, G2)′) ← not ′G′

1) ← assert(′S(G1, G2)′).

5. Always-operator rules. For every propositional variable of the form ′�(G)′,
appearing in LE(L, P, E), TP contains:

′�(G)′ ← ′G′, not © true.
assert(not ′�(G)′) ← not ′G′.

6. Conjunction and negation rules. For every propositional variables of the
form ′notG′, or of the form ′G1, G

′
2 appearing in LE(L, P, E), TP contains,

respectively:
′notG′ ← not ′G′
′G1, G

′
2 ← ′G′

1,
′ G′

2.′G1, G
′
2 ← ′G′

2,
′ G′

1.

6 When G is an atom, ′G′ stands for the same atom G.

Evolving Logic Programs with Temporal Operators 205

Before establishing the correctness of this transformation with respect to
EVOLPT , it is worth giving some intuition on how the rules added in the trans-
formed program indeed capture the meaning of the temporal operators.

The rule for ♦(G) guarantees that whenever ′G′ is true at some state, the
fact ′♦(G)′ is added to the subsequent program. So, since no rule for not ′♦(G)′

is ever added in the transformation and rules with ♦(G) in the head are not
allowed in EVOLPT programs, ′♦(G)′ will continue to hold in succeeding states.
The first rule for ©(G) is similar to the one for ♦(G). But the second one adds
the fact not © (G) in case notG is true. So ′ © (G)′ will be true in the state
after the one in which ′G′ is true, and will become false in a state immediately
after one in which ′G′ is false, as desired.

The rules for �(G) are also easy to explain, and in fact result from the du-
alization of the ♦(G) operator. More interesting are the rules for S(G1, G2).
The first simply captures the condition where ′S(G1, G2)′ first becomes true: it
adds a fact for it, in the state immediately after one in which ′G′

1 is true and
which is preceded by one in which ′G′

2 is true. With the addition of this fact,
according to the semantics of EVOLP, ′S(G1, G2)′ will remain true by inertia
in subsequent states until a rule that asserts not ′S(G1, G2)′ fires. We want this
to happen only until a state immediately after one in which ′G′

1 becomes false.
This effect is obtained with the second rule by adding, at the same time as the
fact ′S(G1, G2)′ is asserted, a rule stating that the falsity of ′G′

1 leads to the
assertion of not ′S(G1, G2)′.

These intuitions form the basis of the proof of the following theorem, which
we sketch below.

Theorem 1 (Correctness). Let P be an evolving logic program with tempo-
ral operators over language L, and let Tr(P) be the transformed evolving logic
program over language LE(L, P, 〈〉). Then M = 〈I1, . . . , In〉 is an evolving stable
model of P iff there exists an evolving stable model M ′ = 〈I ′1, . . . , I ′n〉 of Tr(P)
such that

I1 = (I ′1 ∩ Lassert), . . . , In = (I ′n ∩ Lassert).

Proof. (Sketch) The proof proceeds by induction on the length of the sequence of
interpretations, showing that the transformed atoms corresponding to t-formulae
satisfied in each state, and some additional assert-literals guarantying the asser-
tion of t-formulae, belong to the interpretation state.

For the induction step, the rules of the transformation are used to guarantee
that the new propositional variables belong to the interpretation of the trans-
formed program whenever the corresponding temporal b-literals belong to the
interpretation of the original EVOLPT program. For example, if some G ∈ Ii

then, according to the EVOLPT semantics, for every j > i, ♦(G) ∈ Ij ; by in-
duction hypothesis, ′G′ ∈ I ′i and the “sometime-operator rule” guarantees that
′♦(G)′ is added to the subsequent program and so, since no rule for not ′♦(G)′ is
added in the transformation, for every j > i, ′♦(G)′ ∈ I ′j . As another example,
note that the first “previous-operator” rule is similar to the “sometime-operator
rule” and the second adds the fact not ′© (G)′ in case not ′G′ is true; so, as in

206 J.J. Alferes, A. Gabaldon, and J. Leite

the EVOLPT semantics, ′© (G)′ ∈ I ′i+i. A similar reasoning is applied also for
the since-operator and always-operator rules.

To account for the nesting of temporal operators first note that the transfor-
mation adds the above rules for all possible nestings. However, since this nesting
can be combined with conjunction and negation, as per the definition of the
syntax of EVOLPT (Def. 6), care must be taken with the new propositional
variables that stand for those conjunctions and negations. The last rules of the
transformation guarantee that a new atom for a conjunction is true in case the
b-literals in the conjunction are true, and that a new atom for the negation of a
b-literal is true in case the negation of the b-literal is true. ��

Since events are also EVOLPT programs, we can easily deal with events by ap-
plying the same transformation. First, when transforming the main program P ,
we take into account the t-formulae in the event sequence. Then the transfor-
mation is applied to the events themselves.

Definition 14 (Transformation of EVOLPT with Event Sequence). Let
P be an evolving program with temporal operators and E = 〈E1, . . . , Ek〉 be an
event sequence, both over L. Then Tr(P, 〈E1, . . . , Ek〉) is an EVOLP program
(without temporal operators) over language LE(L, P, E) obtained from P by ap-
plying exactly the same procedure as in Def. 13, only replacing “appearing in P”
by “either appearing in P or in any of the Ei’s”.

Theorem 2. Let P be an evolving logic program with temporal operators over
language L, and let Tr(P) be the transformed evolving logic program over lan-
guage LE(L, P, E).

Then M = 〈I1, . . . , In〉 is an evolving stable model of P given 〈E1, . . . , Ek〉 iff
there exists an evolving stable model M ′ = 〈I ′1, . . . , I ′n〉 of Tr(P, 〈E1, E2, . . . , Ek〉)
given the sequence 〈Tr(E1), . . . , T r(Ek)〉 such that

I1 = (I ′1 ∩ Lassert), . . . , In = (I ′n ∩ Lassert).

5 EVOLPT Implementations

We have developed two implementations of EVOLPT . One follows the evolution
stable models semantics defined above, while the second one computes answers to
existential queries under the well-founded semantics [16], i.e., it is sound, though
not complete, with respect to the truth relation of Def. 11. The implementations
rely on two consecutive program transformations: the first is the transformation
from EVOLPT into EVOLP described above which eliminates temporal opera-
tors. The second transformation is based on previous work [33] and takes the
result of the first and generates a normal logic program.

5.1 Evolution SM Semantics Implementation

Here we discuss some of the intuitions behind the second transformation and
then describe the actual implementation and its usage. We then describe our
implementation of query answering under the well-founded semantics.

Evolving Logic Programs with Temporal Operators 207

The implementation proceeds by using the transformation presented in [33]
which converts the resulting EVOLP program and sequence of events into a
normal logic program over an extended language whose stable models have a one-
to-one correspondence with the evolution stable models of the original EVOLP
program and sequence of events.

As described in [33], the extended language over which the resulting program
is constructed is defined as follows:

Ltrans
def=
{
Aj , Aj

neg

∣∣ A ∈ Lassert ∧ 1 ≤ j ≤ n
}

∪
{

rej(Aj , i), rej(Aj
neg, i)

∣∣ A ∈ Lassert ∧ 1 ≤ j ≤ n ∧ 0 ≤ i ≤ j
}

∪{ u } .

Atoms of the form Aj and Aj
neg in the extended language allow us to compress

the whole evolution interpretation (consisting of n interpretations of Lassert, see
Def. 3) into just one interpretation of Ltrans. The superscript j then encodes
the index of these interpretations. Atoms of the form rej(Aj , i) and rej(Aj

neg, i)
are needed for simulating rule rejection. Roughly, an atom rej(Aj , i) intuitively
means that, at step j, rules with head A that were added at the earlier step i have
been rejected and thus cannot be used to derive A. Similarly for rej(Aj

neg, i). The
atom u will serve to formulate constraints needed to eliminate some unwanted
models of the resulting program.

To simplify the notation in the transformation’s definition, we will use the
following conventions: Let L be a literal over Lassert, Body a set of literals over
Lassert and j a natural number. Then:

– If L is an atom A, then Lj is Aj and Lj
neg is Aj

neg.
– If L is a default literal notA, then Lj is Aj

neg and Lj
neg is Aj .

– Body j = {Lj | L ∈ Body }.

Definition 15. [33] Let P be an evolving logic program and E=(E1, E2, . . . , En)
an event sequence. By a transformational equivalent of P given E we mean the
normal logic program PE = P 1

E ∪P 2
E ∪. . .∪Pn

E over Ltrans, where each P j
E consists

of these six groups of rules:

1. Rewritten program rules. For every rule (L← Body .) ∈ P , P j
E contains

the rule
Lj ← Body j ,not rej(Lj , 1).

2. Rewritten event rules. For every rule (L ← Body .) ∈ Ej , P j
E contains

the rule
Lj ← Bodyj ,not rej(Lj , j).

3. Assertable rules. For every rule r = (L ← Body .) over Lassert and all i,
1 < i ≤ j, such that (assert(r))i−1 is in the head of some rule of P i−1

E , P j
E

contains the rule

Lj ← Body j , (assert(r))i−1,not rej(Lj, i).

208 J.J. Alferes, A. Gabaldon, and J. Leite

4. Default assumptions. For every atom A ∈ Lassert such that Aj or Aj
neg

appears in some rule of P j
E (from the previous groups of rules), P j

E also
contains the rule

Aj
neg ← not rej(Aj

neg, 0).

5. Rejection rules. For every rule of P j
E of the form

Lj ← Body ,not rej(Lj , i).7

P j
E also contains the rules

rej(Lj
neg, p) ← Body . (1)

rej(Lj, q) ← rej(Lj , i). (2)

where:
(a) p ≤ i is the largest index such that P j

E contains a rule with the literal
not rej(Lj

neg, p) in its body. If no such p exists, then (1) is not in P j
E .

(b) q < i is the largest index such that P j
E contains a rule with the literal

not rej(Lj, q) in its body. If no such q exists, then (2) is not in P j
E .

6. Totality constraints. For all i ∈ { 1, 2, . . . , j } and every atom A ∈ Lassert

such that P j
E contains rules of the form

Aj ← Bodyp,not rej(Aj , i).

Aj
neg ← Bodyn,not rej(Aj

neg, i).

P j
E also contains the constraint

u← notu,notAj ,notAj
neg.

A thorough explanation of this transformation can be found in [33].
Also in [33] it is proved that there is a one-to-one relation between the stable

models of the so transformed normal program and the stable models of the
original EVOLP program. From that result and Theorem 2, it follows that the
composition of these two transformations is correct, i.e. that the stable models
of the resulting normal logic program correspond to the stable models of the
original EVOLPT program plus events.

Our implementation relies on the composed transformation described above.
More precisely, the basic implementation takes an EVOLPT program and a
sequence of events and preprocesses it into a normal logic program.

The preprocessor available at http://centria.di.fct.unl.pt/~jja/
updates/ is implemented in Prolog. It takes a file that starts with an EVOLPT

program, where the syntax is just as described in Def. 6, except that the rule
7 It can be a rewritten program rule, a rewritten event rule or an assertable rule

(default assumptions never satisfy the further conditions). The set Body contains all
literals from the rule’s body except the not rej(Lj , i) literal.

http://centria.di.fct.unl.pt/~jja/
updates/

Evolving Logic Programs with Temporal Operators 209

symbol is <- and the symbols previous/1, sometime/1, since/2, always/1 are
used instead of ©(G), ♦(G), S(G1, G2) and �(G), respectively. The EVOLPT

program is ended by a fact newEvents. The rules after this fact constitute the
first event, which is again ended by a fact newEvents, after which the rules for
the second event follow, etc.

For efficiency reasons, the preprocessor applies both transformations simul-
taneously, rather than applying them in sequence as described in the previous
subsection. This is done by a simple combination of the sequences of steps from
each of the transformations. Moreover, instead of creating new atomic names,
as done in both transformations, the preprocessor uses Prolog terms for the new
propositions accounting for the b-literals (e.g. it uses a term sometime(p) in-
stead of ′♦(p)′ or ′sometime(p)′), which eases the processing of nested temporal
operators. Similarly, it adds an argument j to atoms, instead of creating new
propositions of the form Aj , as in the second transformation.

The programs obtained by the Prolog preprocessor can then run in any answer-
set solver to obtain the set of the stable models of the original EVOLPT program
and events. We have tested the implementation using the lparse grounder and the
smodels solver(http://www.tcs.hut.fi/Software/smodels/). The implemen-
tation can also take advantage of the implementation of EVOLP and interface
described in [32]. For this, we provide a version that starts by applying the first
transformation, then feeds the result to the (java-based) implementation from [32]
which in turn performs the second transformation and computes the stable models
(using smodels).

5.2 Query-Answering under WF Semantics Implementation

Instead of computing the stable models of the resulting normal program, one may
compute its well-founded model [16]. This provides a (3-valued) model which is
sound, though not complete, w.r.t. the intersection of all stable models and thus
also with respect to the truth relation of Def. 11. That is, for programs with
stable models, if an atom A(n) belongs to the well founded model then A is true
in all stable models of the program and events after n steps; if notA(n) belongs
to the well founded model then A belongs to no stable models after n steps; if
neither A(n) nor notA(n) belong to the well founded model, then nothing can
be concluded.

Despite the incompleteness, the well founded model has the advantage of hav-
ing polynomial complexity and allowing for (top-down) query-driven procedures.
With this in mind, we have done another implementation, also available online,
that besides the preprocessor also includes a meta-interpreter that answers ex-
istential queries under the well founded semantics. The meta-interpreter is im-
plemented in XSB-Prolog, and relies on its tabling mechanisms for computing
the well founded model. For top-down querying we provide a top goal predi-
cate G after I in (N1,N2) which, given a goal G and two integers N1 and N2,
returns in I all integers between N1 and N2 such that in all stable models af-
ter I steps, G is true. This XSB-Prolog implementation also allows for a more

http://www.tcs.hut.fi/Software/smodels/

210 J.J. Alferes, A. Gabaldon, and J. Leite

interactive usage, e.g. allowing to add events as they occur (and adjusting the
transformation on the fly), separately from the initial programs, and querying
the current program (after as many steps as the number of events given).

6 Related Work and Conclusions

We have introduced the language EVOLPT for representing and reasoning about
evolving knowledge bases with non-Markovian dynamics. The language general-
izes its predecessor EVOLP by providing rules that may refer to the past states
in a knowledge base evolution through Past LTL modalities. In addition to defin-
ing a syntax and semantics for the new language, we show, through a syntactic
transformation, that an evolving logic program in EVOLPT can be compiled
into a regular program in EVOLP. The latter is thus proved to be expressive
enough to capture non-Markovian evolving knowledge bases as defined above.

The use of temporal logic in computer science is widespread. Here we would
like to mention some of the most closely related work. Eiter et al. [11] present a
very general framework for reasoning about evolving knowledge bases. This ab-
stract framework allows the study of different approaches to logic programming
knowledge base update, including those specified in LUPS, EPI, and KABUL.
For the purpose of verifying properties of evolving knowledge bases in this lan-
guage, they define a syntax and semantics for Computational Tree Logic (CTL),
a branching temporal logic, modalities. While in [11] temporal logic is only used
for verifying meta-level properties, in EVOLPT temporal operators are used in
the object language to specify the behavior of an evolving knowledge base.

In the area of reasoning about actions, [28] and [20] describe extensions of the
action language A with Past LTL operators, which allows formalizing actions
whose effects depend on the evolution of the described domain. On a similar vein
but in the more expressive situation calculus, [12, 14] shows a generalization of
Reiter’s Basic Action Theories for systems with non-Markovian dynamics and
[13] introduces a transformation, somewhat similar to ours, of non-Markovian
Basic Action Theories into traditional Markovian ones. Both the action language
and the situation calculus based formalisms provide languages that can refer to
past states in the evolution of a dynamic system. However, the focus of these
formalisms is on solving the projection problem, i.e., reasoning about what will
be true in the resulting state after executing a sequence of actions. On the
other hand, the focus in the EVOLPT language is specifying updates to the
system’s knowledge base itself due to internal or external influence. For example,
a system formalized in EVOLPT would be able to modify the description of its
own behavior, which is not possible in A or in Basic Action Theories.

Also designed for specifying dynamic systems using temporal logic is the
multi-agent language MetateM [8]. A program in this language consists of
rules of the form P ⇒ F , where P is a Past LTL formula and F is a Future LTL
formula. Intuitively, such a rule evaluated in a state specifies that if the evolution
of the system up to this state satisfies P , then the system must proceed in such
a way that F be satisfied. EVOLPT does not include Future LTL connectives

Evolving Logic Programs with Temporal Operators 211

(our future work) so MetateM is more expressive in that sense. On the other
hand, MetateM does not have a construct for updates and it is monotonic,
unlike EVOLPT . In [7] the authors propose a non-monotonic extension of LTL
with the purpose of specifying agent’s goals. Whereas [7] share with our work
the the use of LTL operators and non-monotonicity, like MetateM it provides
future operators, but the non-monotonic character in [7] is given by limited
explicit exceptions to rules, thus appearing to be less general than our proposal.

References

1. Alferes, J.J., Banti, F., Brogi, A.: From logic programs updates to action descrip-
tion updates. In: Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487,
pp. 52–77. Springer, Heidelberg (2005)

2. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for
semantics of dynamic logic programming. Studia Logica 79(1), 7–32 (2005)

3. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In:
Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI),
vol. 2424, pp. 50–61. Springer, Heidelberg (2002)

4. Alferes, J.J., Gabaldon, A., Leite, J.: Evolving logic programming based agents
with temporal operators. In: IEEE/WIC/ACM Int’l Conf. on Intelligent Agent
Technology (2008)

5. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.:
Dynamic updates of non-monotonic knowledge bases. The Journal of Logic Pro-
gramming 45(1-3), 43–70 (2000)

6. Alferes, J.J., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: LUPS – a lan-
guage for updating logic programs. Artificial Intelligence 138(1&2) (June 2002)

7. Baral, C., Zhao, J.: Non-monotonic temporal logics for goal specification. In: IJCAI
2007, pp. 236–242 (2007)

8. Barringer, H., Fisher, M., Gabbay, D., Gough, G., Owens, R.: Metatem: A frame-
work for programming in temporal logic. In: de Bakker, J.W., de Roever, W.-P.,
Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 94–129. Springer, Heidelberg
(1990)

9. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: A framework for declarative update
specifications in logic programs. In: IJCAI 2001, pp. 649–654 (2001)

10. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming 2(6) (2002)

11. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: Reasoning about evolving non-
monotonic knowledge bases. ACM Trans. Comput. Log. 6(2), 389–440 (2005)

12. Gabaldon, A.: Non-markovian control in the situation calculus. In: AAAI 2002,
pp. 519–524. AAAI Press, Menlo Park (2002)

13. Gabaldon, A.: Compiling control knowledge into preconditions for planning in the
situation calculus. In: IJCAI 2003, pp. 1061–1066 (2003)

14. Gabaldon, A.: Non-Markovian Control in the Situation Calculus. Artificial Intelli-
gence 175(1), 25–48 (2011)

15. Gabbay, D., Smets, P. (eds.): Handbook of Defeasible Reasoning and Uncertainty
Management Systems. Belief Change, vol. 3. Kluwer, Dordrecht (1998)

16. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3), 620–650 (1991)

212 J.J. Alferes, A. Gabaldon, and J. Leite

17. Gelfond, M.: Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.)
Handbook of Knowledge Representation, ch. 7, pp. 285–316. Elsevier, Amsterdam
(2008)

18. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: 7th Int’l
Conf. on Logic Programming (1990)

19. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial
Intelligence 3, 195–210 (1998)

20. Gonzalez, G., Baral, C., Gelfond, M.: Alan: An action language for non-markovian
domains. In: NonMon. Reasoning, Action and Change Workshop (2003)

21. Leite, J.: Playing with rules. In: Baldoni, M., Bentahar, J., van Riemsdijk, M.B.,
Lloyd, J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 1–19. Springer, Heidelberg (2010)

22. Leite, J., Soares, L.: Evolving characters in role-playing games. In: EMCSR 2006,
vol. 2, pp. 515–520 (2006)

23. Leite, J., Soares, L.: Adding evolving abilities to a multi-agent system. In: Inoue,
K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS (LNAI), vol. 4371, pp. 246–265.
Springer, Heidelberg (2007)

24. Leite, J.A.: Evolving Knowledge Bases. IOS Press, Amsterdam (2003)
25. Leite, J., Moniz Pereira, L.: Generalizing updates: From models to programs. In:

Dix, J., Moniz Pereira, L., Przymusinski, T.C. (eds.) LPKR 1997. LNCS (LNAI),
vol. 1471, p. 224. Springer, Heidelberg (1998)

26. Lifschitz, V., Woo, T.: Answer sets in general nonmonotonic reasoning (preliminary
report). In: KR 1992 (1992)

27. Marek, V., Truszczynski, M.: Revision programming. Theor. Comput. Sci. 190(2),
241–277 (1998)

28. Mendez, G., Lobo, J., Llopis, J., Baral, C.: Temporal logic and reasoning about ac-
tions. In: 3rd Symp. on Logical Formalizations of Commonsense Reasoning (1996)

29. Saias, J., Quaresma, P.: A methodology to create legal ontologies in a lp based web
information retrieval system. Artif. Intell. Law 12(4), 397–417 (2004)

30. Sakama, C., Inoue, K.: Updating extended logic programs through abduction. In:
Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730,
p. 147. Springer, Heidelberg (1999)

31. Šefránek, J.: Irrelevant updates and nonmonotonic assumptions. In: Fisher, M., van
der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160,
pp. 426–438. Springer, Heidelberg (2006)

32. Slota, M., Leite, J.: Evolp: An implementation. In: Sadri, F., Satoh, K. (eds.)
CLIMA VIII 2007. LNCS (LNAI), vol. 5056, pp. 288–298. Springer, Heidelberg
(2008)

33. Slota, M., Leite, J.: Evolp: Tranformation-based semantics. In: Sadri, F., Satoh,
K. (eds.) CLIMA VIII 2007. LNCS (LNAI), vol. 5056, pp. 117–136. Springer,
Heidelberg (2008)

34. Slota, M., Leite, J.: On semantic update operators for answer-set programs. In:
ECAI 2010, pp. 957–962. IOS Press, Amsterdam (2010)

35. Zhang, Y., Foo, N.Y.: Updating logic programs. In: ECAI 1998. John Wiley &
Sons, Chichester (1998)

On Representing Actions in Multi-agent Domains

Chitta Baral and Gregory Gelfond

Department of Computer Science and Engineering
Arizona State University

Abstract. Reasoning about actions forms the foundation of prediction,
planning, explanation, and diagnosis in a dynamic environment. Most
of the research in this field has focused on domains with a single agent,
albeit in a dynamic environment, with considerably less attention being
paid to multi-agent domains. In a domain with multiple agents, inter-
esting issues arise when one considers the knowledge of various agents
about the world, as well about as each other’s knowledge. This aspect of
multi-agent domains has been studied in the field of dynamic epistemic
logic. In this paper we review work by Baltag and Moss on multi-agent
reasoning in the context of dynamic epistemic logic, extrapolate their
work to the case where agents in a domain are classified into three types
and suggest directions for combining ideas from dynamic epistemic logic
and reasoning about actions and change in order to obtain a unified
theory of multi-agent actions.

1 Introduction

Actions, when executed, often change the state of the world. Reasoning about
actions enables us to predict whether a given sequence of actions is indeed going
to achieve some goal; it allows us to plan, or obtain a sequence of actions that
would achieve a particular goal; it grants us the ability to explain observations
in terms of actions that may have taken place; and it allows us to diagnose faults
in a system by determining those actions whose consequences may have lead to
them. When actions have non-deterministic effects, higher level reasoning about
them is needed to verify and construct policies, enabling us to maintain various
properties in addition to achieving certain goals.

As the number of states within a domain is often exponential in terms of
the number of fluents (individual properties of the world), a central aspect in
reasoning about actions is to develop languages which enable the concise rep-
resentation of actions and their effects, and whose semantics define transitions
between “states” due to their execution. In a single-agent domain, if we assume
that an agent has complete knowledge of the values of the fluents, states may be
thought of as states of the world. In the presence of incompleteness and sensing
actions, states may be thought of as pairs which combine states of the world,
together with an agent’s knowledge state.

Considerable research has been done on the development of a class of lan-
guages, called action languages, that allow one to describe the world and the

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 213–232, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

214 C. Baral and G. Gelfond

effects of various actions, and in using them for various tasks such as predic-
tion, planning, counterfactual reasoning, as well as in proving the correctness
of plans, policies and execution programs. The importance of reasoning about
actions in the context of AI was mentioned as early as 1969 by McCarthy [10].
A systematic approach has evolved over the past twenty years which has been
guided and influenced by the high level action language approach (beginning
with the language A [7]), the approach of Sandewall [12], and the approach of
the Toronto school [9,11].

With few exceptions, [13,8,6], the majority of these approaches have assumed
that actions were performed by a single agent. Even in instances where multiple
agents have been referred to, their interactions have been kept simple [3] (e.g.,
two agents simultaneously lifting a large table). In the real world however, inter-
actions between multiple agents are more involved. One key issue that presents
itself in multi-agent domains is the potential for discrepancies between the beliefs
of various agents due to their different frames of reference.

While this issue has not been studied thoroughly within the reasoning about
actions community, it has been explored in a somewhat different setting by the
dynamic epistemic logic community [4,1]. In this paper we review work by Baltag
and Moss [1] and discuss how some of its ideas can be applied to the reasoning
about actions setting. We then pose some questions that need to be addressed
in order to perform various reasoning tasks in a multi-agent domain.

The rest of the paper is structured as follows. In Sect. 2, we give a bit of
background on modal logic and Kripke models. In Sect. 3, we introduce Baltag
and Moss’s action models and present a few examples (taken from the literature)
of their use for modeling multi-agent actions. In Sect. 4 we show how Baltag and
Moss’s action models can be used to express multi-agent actions involving three
classes of agents. In Sect. 5 we discuss some of our concerns with this approach
and suggest some ways to overcome them and present an avenue for developing
a high-level language to represent and reason about actions in a multi-agent
setting. We then conclude with some final thoughts.

2 Background: Modal Logic and Kripke Models

We begin our discussion with an overview of modal logic, which forms the foun-
dation of many of the concepts discussed in this work.

Definition 1 (Multi-Agent Domain). A multi-agent domain is defined as a
triple, (AG,F ,A), where AG is a finite, non-empty set of agent names, F is a
finite, non-empty set of propositional atoms, and A is a finite, non-empty set of
action names.

Intuitively, AG defines the set of agents who are operating in the domain, F de-
fines the physical properties of the domain, and A denotes the actions which the
agents are capable of performing. Given a multi-agent domain, various properties
of the domain are described by modal formulae.

On Representing Actions in Multi-agent Domains 215

Definition 2 (Modal Formula). Given a multi-agent domain, (AG,F ,A), a
modal formula is defined as follows:

– if φ ∈ F , then φ is modal formula
– if φ is a modal formula, then ¬φ is a modal formula
– if φ is a modal formula, then Kiφ, where i ∈ AG, is a modal formula
– if φ is a modal formula, then Eαφ, where α ⊆ AG, is a modal formula
– if φ is a modal formula, then Cαφ, where α ⊆ AG, is a modal formula
– if φ and ψ are modal formulae, then φ ∧ ψ, φ ∨ ψ, φ ⇒ ψ, and φ ⇔ ψ are

modal formulae

Intuitively, a modal formula of the form Kiφ means that “agent i knows φ”.
Modal formulae of the form Eαφ, mean that “every agent in the group α knows
φ.” Lastly, modal formulae of the form Cαφ, mean that “φ is common knowledge
amongst the agents in α.”1 Before defining the entailment relation, it is necessary
to define the notions of a Kripke structure, and a Kripke world.

Definition 3 (Kripke Structure). A Kripke structure,M , over a set of agents
AG, and a set of fluents F , is defined as a tuple (S, π, {Ri | i ∈ AG}) where:

– S is a non-empty set of state symbols (or possible worlds)
– π is a function mapping elements of S onto interpretations of F
– each Ri is a binary relation on S (called an accessibility relation)

Intuitively, a pair (σ, τ) ∈ Ri is understood to mean that from within possi-
ble world σ, agent i cannot distinguish between σ and τ . Depending on the
modality of discourse, the accessibility relations have different properties, which
correspond to axiom systems associated with that modality. For example, the
axiom system S5 is often used with the knowledge modality, in which case the
accessibility relations must be reflexive, symmetric, and transitive. On the other
hand, the axiom system KD45 is often used with the belief modality, in which
case the accessibility relations are euclidean, serial, and transitive.

Definition 4 (Kripke World). A Kripke world is defined as a pair (M,σ),
where M is a Kripke structure, and σ is a state symbol of M . σ is said to be the
state which designates the real physical state of the world.

Having defined the notions of a Kripke structure and a Kripke world, we can
define the semantics of modal logic.

Definition 5 (Entailment Relation for Modal Formulae). Let φ and ψ be
modal formulae, and let (M,σ) be a Kripke world over a multi-agent domain D =
(AG,F ,A). The entailment relation for modal formulae is defined as follows:

– if φ ∈ F , then (M,σ) |= φ if and only if π(σ)(φ) = �
– (M,σ) |= ¬φ if and only if (M,σ) �|= φ
– (M,σ) |= φ ∧ ψ if and only if (M,σ) |= φ and (M,σ) |= ψ

1 The readings of the various modal formulae use the term knows in order to remain
consistent with prior work done in the field of dynamic epistemic logic.

216 C. Baral and G. Gelfond

– (M,σ) |= φ ∨ ψ if and only if (M,σ) |= φ or (M,σ) |= ψ
– (M,σ) |= φ⇒ ψ if and only if (M,σ) |= ¬φ ∨ ψ
– (M,σ) |= φ⇔ ψ if and only if (M,σ) |= (φ⇒ ψ) ∧ (ψ ⇒ φ)
– (M,σ) |= Kiφ if and only if (M, τ) |= φ for all τ such that (σ, τ) ∈ Ri

– (M,σ) |= Eαφ if and only if (M,σ) |= Kiφ for every agent i ∈ α

Let E0
αφ be an abbreviation for φ, and let Ek+1

α φ = Ek
αEαφ.

– (M,σ) |= Cαφ if and only if (M,σ) |= Ek
αφ for k = 0, 1, 2, . . .

Example 1 (The Strongbox Domain of [1]). Consider a domain in which two
agents, A and B, are together in a room containing a strongbox in which there
is a coin. This fact is common knowledge amongst the agents, as is the fact
that none of them knows which face of the coin is showing. Suppose that the
coin is actually lying heads up. The Kripke world shown in Fig. 1 represents the
initial configuration of the world and the agents’ knowledge about the world.
In the figure, circles represent states and a double circle represents the real
physical state of the world. The Kripke world in Fig. 1 entails the following
modal formulae (among others):

– (M,σ) |= H
– (M,σ) |= ¬KAH ∧ ¬KA¬H
– (M,σ) |= ¬KBH ∧ ¬KB¬H
– (M,σ) |= C{A,B}(¬KAH ∧ ¬KA¬H ∧ ¬KBH ∧ ¬KB¬H)

σ : H

A,B

τ : ¬H

A,B

A,B

Fig. 1. Kripke world for the Strongbox Domain. Neither A nor B know the real world;
the external observer knows that H is true in the real world.

3 Baltag-Moss Action Models

In a multi-agent setting, the agents in the domain may have differing frames
of reference with respect to an action. Continuing with the Strongbox Domain,
agent A may peek into the box to find that the coin is showing heads with agent
B watching this take place. Baltag and Moss [1] describe a construct called
an action model which they use to represent these differences of perspective.
Moreover, they define a means by which an action model may be used to update
a Kripke world in order to obtain a successor world modeling the effects of the
execution of the underlying action.

Intuitively, an action model may be thought of as a directed graph, whose
nodes are referred to as simple actions, and are labeled by modal formulae rep-
resenting their preconditions. The edges of an action model are labeled by the
names of the agents in the domain, and are meant to convey the frames of ref-
erence of the agents with respect to the complex action described by the model.

On Representing Actions in Multi-agent Domains 217

Definition 6 (Action Model). An action model, Σ, over a set of agents AG,
is defined as a tuple (Σ, s, {Ri | i ∈ AG}, pre)

– Σ is a set whose elements are called simple actions
– s ⊆ Σ is a set of designated simple actions
– each Ri is a binary relation on Σ
– pre is a function mapping each simple action α ∈ Σ onto a modal formula

representing its preconditions

Action models correspond to individual occurrences of a complex, knowledge
producing action2, and induce an update operation on the Kripke worlds de-
scribing the state of the world prior to its execution. Within this paper they
are represented as directed graphs, whose nodes correspond to the set of simple
actions (and are labeled by the modal formulae describing their preconditions),
and whose arcs are defined by the binary relations over Σ. Prior to defining the
update operation, we introduce the notion of a knowledge state.

Definition 7 (Knowledge State). A knowledge state in a multi-agent do-
main is defined as a set of Kripke worlds that have the same underlying Kripke
structure and differ only in the state representing the physical state of the world.
The different physical state of the world are from the frame of reference of an
external observer.

Example 2 (Knowledge State in the Strongbox Domain). Consider a domain in
which two agents, A and B, are together in a room containing a strongbox in
which there is a fair coin. This fact is common knowledge amongst the agents,
as is the fact that none of them knows which face of the coin is showing. The
graph shown in Fig. 2 shows the knowledge state of the agents A and B. Notice

σ : H

A,B

τ : ¬H

A,B

A,B

Fig. 2. A knowledge state in the Strongbox Domain; neither A, nor B and nor the
external observer know the real world

that from our frame of reference as external observers, we ourselves do not know
which state corresponds to the real physical state of the world, and consequently
both σ and τ are marked as possibilities.

For notational convenience, given a knowledge state S, let S[S] denote the set
of state symbols in S; S[s] denote the set of state symbols in S describing the
possible real physical states of the world; S[π] denote the interpretation function

2 Baltag and Moss limit their discussion in [1] to actions which affect the knowledge of
the agents, as opposed to the physical state of the domain, hence the term knowledge
producing action.

218 C. Baral and G. Gelfond

in S; and S[Ri] denote the accessibility relation for agent i in S. Similarly, given
an action model Σ, let Σ[S] denote the set of action symbols in Σ; Σ[s] denote
the set of action symbols in Σ describing the designated simple actions; and
Σ[Ri] denote the relation for agent i in Σ.

Definition 8 (Update Operation Induced by an Action Model). Let S
denote a knowledge state within a multi-agent domain, and let Σ be an action
model for a knowledge producing action. The update operation, induced by Σ,
is defined as a new knowledge state, O(S) = S⊗Σ where:

– O(S)[S] = {(σ, τ) : σ ∈ S[S], τ ∈ Σ[S] and (M,σ) |= pre(τ)}, where M is
the underlying Kripke structure of S

– ((σ, τ), (σ′, τ ′)) ∈ O(S)[Ri] if and only if (σ, σ′) ∈ S[Ri] and (τ, τ ′) ∈ Σ[Ri]
– (σ, τ) ∈ O(S)[s] if and only if (σ, τ) ∈ O(S)[S] and σ ∈ S[s], τ ∈ Σ[s]
– O[π]((σ, τ)) = S(π)(σ)

We now present several action models from [1] and their impact on the knowledge
state of the Strongbox Domain shown in Fig. 1. Throughout this paper the
examples of successor knowledge states obtained as a consequence of the update
operation have been simplified (for example by removing states from O(S)[S],
along with their incoming and outgoing arcs, which are not reachable from those
in O(S)[s]). Due to space considerations a full description of these simplification
actions has been omitted.

3.1 Global Announcement Actions

The first class of an action scenario that we examine is that of global announce-
ments, actions in which a new piece of information is made common knowledge
amongst the agents of the domain3.

Example 3 (Global Announcement Actions). Consider the variant of the Strong-
box Domain mentioned in Ex. 2. Suppose that it is announced to both A and B
that the coin is showing heads. The corresponding action model, Σ1, is shown
in Fig. 3. Note that the intuitive reading of the model is that the action causes

α : H

A,B
Σ1

Fig. 3. Baltag-Moss action model for the global announcement of H to A and B

H to be common knowledge to both A and B. Furthermore, the real state of the
world is the one in which H is true. Application of the update operation yields
the transition shown in Fig. 4.

The action model from Fig. 3 may be generalized to the global announcement
of an arbitrary modal formula as shown in Fig. 5.
3 It is assumed that global announcements only convey factually correct information.

On Representing Actions in Multi-agent Domains 219

σ : H

A,B

τ : ¬H

A,B

A,B H

A,B

Σ1

Fig. 4. Transition defined by Σ1, the global announcement that H is true

α : φ

A1,…,An
Σ2

Fig. 5. Global announcement of a modal formula ϕ to agents {A1, . . . , An}

3.2 Private Announcement Actions

In the previous subsection we considered announcement actions that were made
globally. In private announcements the announcement is only made to a selected
group of agents. The rest of the agents are oblivious about the announcement.

Example 4 (Private Announcement Actions). As before, we begin by considering
the variant of the Strongbox Domain mentioned in Ex. 2. Suppose that agent A
peeks into the strongbox, learning that the coin is showing heads, and that agent
B is unaware of this. The corresponding action model, Σ3, is shown in Fig. 6.
The intuitive reading of this model is that agent A knows H to be true in the

α : H

A

β : ⊤

A,B

B

Σ3

Fig. 6. Action model for agent A observing H unbeknownst to agent B

real physical state of the world, and also correctly believes that the knowledge
of agent B is unchanged (represented by the state labeled �). The transition
defined by application of the update operation is shown in Fig. 7.

The action model in Fig. 6 may be viewed as a special case of an action in which
differing pieces of information are declared to the agents. Specifically, the model
may be interpreted as the composition of two simple actions, the first of which
announces a formula, ϕ = H to agent A, while the second essentially models
an announcement by agent A that nothing has changed to agent B (represented
by the formula ψ = �). With this reading in mind, the action model may be
generalized in a fashion as shown in Fig. 8.

220 C. Baral and G. Gelfond

H

A,B

¬H

A,B

H

A,B

A,B

B B
σ : H

A,B

τ : ¬H

A,B

A,B
Σ3

Fig. 7. Transition defined by Σ3

α : φ

A

β : ψ

A,B

B

Σ4

Fig. 8. Action model, Σ4: Agent A learns ϕ, but agent B believes that ψ was announced
to A instead and A is aware of B’s mistaken belief

Notice that in both Fig. 6 and Fig. 8, the external observer knows the actual
state of the world (in the former, we are directly told that agent A observes H ,
in the later this is extended to the formula ϕ).

3.3 Sensing Actions

In addition to acquiring new information about the domain through announce-
ments, agents may perform sensing actions in order to learn more about their
surroundings. The effect of sensing actions is not known in advance, consequently,
the external observers do not a-priori know the result.

Example 5 (Sensing Actions). As before, consider the variant of the Strong-
box Domain in which we have n agents, A1, . . . , An. Now suppose that agents
A1, . . . , Am peek into the box together, thereby learning which side of the coin
is facing up while agents Am+1, . . . , An remain unaware of what has transpired.
The corresponding action model Σ5 is shown in Fig. 9.

γ : ⊤

A1,…,An

Am+1,…,An

β : ¬HA1,…,Am

α : HA1,…,Am

Am+1,…,An

Σ5

Fig. 9. Agents A1, . . . , Am secretly sense value of H ; agents Am+1, . . . , An are oblivious

On Representing Actions in Multi-agent Domains 221

All of the previous examples of sensing actions have assumed that agents within
a domain could be partitioned into two categories: actors, and oblivious agents.
Baltag and Moss also consider a different class of non-actors, who are not directly
sensing but are (partially) observing the occurrence of the sensing actions. We
call such agents partial-observers as they do not know the result of such an
action, but do know that it occurred.

Example 6 (Sensing Actions with Partial Observers). Consider the variant of the
Strongbox Domain from Ex. 5. Suppose however that agents A1, . . . , Am peek
into the box together with the knowledge of agents Am+1, . . . , An (e.g., agents
Am+1, . . . , An are watching this take place). The corresponding action model Σ6

is shown in Fig. 10.

α : H

A1,…,An

β : ¬H

A1,…,An

Am+1,…,An

Σ6

Fig. 10. Agents A1, . . . , Am sense H to be true; agents Am+1, . . . , An are aware of H
being sensed but not the value that was sensed

In addition to the deterministic sensing actions discussed before, there are also
nondeterministic sensing actions. Such actions represent the notion of an agent
possibly performing a sensing action.

Example 7 (Nondeterministic Sensing Actions). Consider the Strongbox Do-
main from Ex. 5. Suppose that agents A1, . . . , Am may have peeked into the
box, possibly determining the face of the coin, and that the remaining agents
Am+1, . . . , An, are aware of this possibility. The corresponding action model Σ7

is shown in Fig. 11.

β : H

A1,…,An

γ : ¬H

A1,…,An

Am+1,…,An

α : ⊤

A1,…,An

Am+1,…,An Am+1,…,An

Σ7

Fig. 11. Agents A1, . . . , Am may have peeked into the box; agents Am+1, . . . , An, are
aware of this possibility

A further variant of sensing deals with the case where one agent believes that
some other agent may have sensed the value of a fluent. The actions models
representing two instances of this scenario are given in Fig. 12 and Fig. 13.

222 C. Baral and G. Gelfond

Fig. 12 deals with the case where the mistaken belief of one agent is later proven
to be true, while Fig. 13 deals with the case in which one agent has lied to an-
other. Both scenarios are modeled as the sequential composition of two separate
actions, the first of which (given by Σ8 and Σ10 respectively) is common to
both of them. This action in essence sets the stage for its successor, by allowing
the possibility for one agent to have potentially erroneous information about the
domain.

β : H

A,B

γ : ¬H

A,B

B

α : ⊤

A,B

B B

Σ8

β : H

A,B

γ : ¬H

A,B

B

α : ⊤

A,B

B B

Σ9

Fig. 12. Σ8: Agent B mistakenly believes that agent A has peeked into the box. Σ9:
Agent A has indeed peeked and agent B correctly believes this to be the case.

Σ10

σ : H

A,B

ρ : ¬H

A,B

B

μ : ⊤

A,B

BB φ
¬KAH

A

ψ
H ∧ KAH

A,B

B

Σ11

Fig. 13. Σ10: Agent B mistakenly believes that agent A may have peeked. Σ11: Agent
A does not know the value of H but successfully lies to B that it knows and the value
is H .

4 Using Baltag-Moss Action Models to Express Three
Classes of Agents

The various action models in the previous section are from [1] and other works.
They propose a notion of action signatures generalizing those action models.
They also propose a notion of program models built using action models and
action signatures. In this section we do a generalization of their actions in a
different dimension.

On Representing Actions in Multi-agent Domains 223

Broadly speaking, the action models described by Baltag and Moss separate
the agents into two groups. Each action defines a set of actors, representing
the set of agents who are “recipients” of the action’s direct effects. In addition,
an action either defines a set of agents who are observers, i.e., agents who are
aware that some action has occurred, and as a consequence receive the action’s
indirect effects; or who are oblivious, i.e., are completely unaware that the action
has transpired, and whose knowledge is therefore unchanged.

It is often the case however that two classes of agents are not enough to fully
express the consequences of a knowledge producing action. Consider for example
a variant of the Strongbox Domain consisting of three agents, A, B, and C. In
this case it is quite natural to envision a scenario in which agent A performs
some action, with agent B observing, and agent C being completely oblivious as
to what has transpired.

4.1 Extending Announcement Actions

The global announcements described by Baltag and Moss may be thought of as
a special case of an announcement, where all of the agents within the domain
are actors. Suppose however, that only a specific subset of the agents receives
the announcement. In this case the action is more complex, with differing effects
depending upon how the agents are grouped with respect to their awareness of
the action occurrence.

Example 8 (Announcements with Partial Observers). Consider a variant of the
Strongbox Domain comprised of three agents, A, B, and C, and in which the
initial knowledge state is unchanged. Suppose that it is announced to agent A
that the coin is showing heads. Furthermore, let us suppose that agent B is aware
that some piece of information concerning the coin has been announced to agent
A, and that agent C is oblivious to what has transpired. The action model,
Σ12, is shown in Fig. 14.

Applying the update yields the transition shown in Fig. 15.

β :⊤

A,B,C

γ : ¬H

A,B

C

α : H

A,B

C B

Σ12

Fig. 14. Action model for the announcement of H to A with agent B as an observer,
and an oblivious agent C

224 C. Baral and G. Gelfond

H

A,B,C

¬H

A,B,C

H

A,B

A,B,C

C

C

¬H

A,B

C

C

B

σ : H

A,B,C

τ : ¬H

A,B,C

A,B,C
Σ12

Fig. 15. Transition defined by Σ12

Note that in the resulting Kripke world, agent A knows that H is true; agent
B knows that agent A knows the value of H but does know what the value is;
however, as far as agent C is concerned, he believes that none of the agents know
the value of H .

4.2 Sensing Actions with Three Classes of Agents

As with communication actions, sensing actions also need to be extended to the
case where all three classes of agents are present.

Example 9 (Extended Sensing Actions). Consider the the Strongbox Domain in
which we have three agents, A, B, and C. Suppose that agent A performs a
sensing action (as originally introduced in Ex. 5), with agent B observing the
occurrence but not the result, and agent C oblivious to what has transpired.
Fig. 16 shows the corresponding action model, Σ13, for this action occurrence.
Applying the update yields the transition shown in Fig. 17.

γ : ⊤

A,B,C
C

C

Σ13 β : ¬HA,B

α : HA,B

B

Fig. 16. Action model for a sensing action performed by agent A, with agent B as a
partial observer, and an oblivious agent C

As with sensing actions, we also extend nondeterministic sensing actions to the
case where all three classes of agents are represented.

Example 10 (Nondeterministic Sensing Actions). As with Ex. 9, we begin with
the Strongbox Domain comprised of three agents, A, B, and C. Suppose that

On Representing Actions in Multi-agent Domains 225

σ : H

A,B,C

τ : ¬H

A,B,C

A,B,C

H

A,B

¬H

A,B

B

H

A,B,C

¬H

A,B,C

A,B,C

C

C

C

C

Σ13

Fig. 17. Transition defined by Σ13

agent A attempts to use a sensor (which may or may not work properly) to
discern which face of the coin is showing. As before, let us suppose that agent
B watches this occur (but does not know the outcome) and that agent C is
oblivious. The action model, Σ14, for this scenario is shown in Fig. 18, and
yields a considerably more complex successor state shown in Fig. 19.

β :⊤

A,B,C

γ :⊤

A,B

α : H

A,B

δ : ¬H

A,B

B

B

B

C

C

C

Σ14

Fig. 18. Action model for agent A attempting to sense the value of H while partially
observed by agent B with C unaware of what has happened

4.3 Actions of Misdirection with Three Classes of Agents

Lastly we consider the class of actions dealing with lying and misdirection in
which all three categories of agents are present.

Example 11 (Lying About the World). Consider the Strongbox Domain com-
prised of three agents, A, B, and C, and suppose that as before, it is common
knowledge that none of them know which face of the coin is showing. Suppose
that agent A lies to B, convincing that he knows the coin is truly showing heads,
while agent C is oblivious to what has occurred. As with the case in which we
have two classes of agents, such an action is modeled by the sequential compo-
sition of two simpler actions: the first in which agent B develops a suspicion
that agent A may know which face of the coin is showing; and the second in

226 C. Baral and G. Gelfond

σ : H

A,B,C

τ : ¬H

A,B,C

A,B,C
H

A,B,C

¬H

A,B,C

H

A,B

A,B,C

C

C

¬H

A,B

C

C

B

H

A,B

¬H

A,B

A,B

C C
C C

BB

B B

Σ14

Fig. 19. Transition defined by Σ14

Σ15

σ : H

A,B

ρ : ¬H

A,B

B

τ : ⊤

A,B,C

μ : ⊤

A,B

C

C

C

B

B

φ
¬KAH

A

ψ
H ∧ KAH

A,B

B

Σ16

⊤

A,B,C

C C

Fig. 20. Action models for lying about knowledge with three class of agents. Σ15:
Agent B believes that agent A may have peeked. Agent C is oblivious. Σ16: Agent A
does not know the value of H but successfully lies to B that it knows and the value is
H . Agent C is oblivious.

which A actually lies. The action models for both of these actions, Σ15 and Σ16

respectively, are shown in Fig. 20 below. Applying the update operation induced
by Σ15 to our initial state defines the intermediate transition shown Fig. 21.
Once this intermediate state has been obtained, we apply the update operation
induced by Σ16 in order to obtain our final successor state shown in Fig. 22.

In addition to lying about the value of a particular fluent, “The coin is facing
heads.”, agents may mislead each other about their knowledge with respect to
a particular fluent, “I know which face of the coin is showing”. The latter is
captured in Ex. 12.

Example 12 (Lying About Knowledge). As with Ex. 11, we consider the Strong-
box Domain consisting of three agents A, B, and C. Suppose that agent A lies
to agent B by telling him that he knows which face of the coin is showing, while
agent C remains oblivious. As before, this scenario is modeled by the sequential

On Representing Actions in Multi-agent Domains 227

σ : H

A,B,C

τ : ¬H

A,B,C

A,B,C

α
(H,σ)A,B

β
(¬H,ρ)A,B

ε
(H,μ)A,B

γ
(H,σ) A,B,C

δ
(¬H,ρ) A,B,C

λ
(¬H,μ) A,B

C

C

B

B
B

C

A,B

B
B

C

C

C

C

A,B,C

C

Σ15

Fig. 21. Intermediate transition corresponding to agent B suspecting that A knows
which face of the coin is showing, while agent C is oblivious

H

A

¬H

A

A

H

A,B,C

¬H

A,B,C

A,B,C

H

A,B

BB

CC

C C

CC

α
(H,σ)A,B

β
(¬H,ρ)A,B

ε
(H,μ)A,B

γ
(H,σ) A,B,C

δ
(¬H,ρ) A,B,C

λ
(¬H,μ) A,B

C

C

B

B
B

C

A,B

B
B

C

C

C

C

A,B,C

C

Σ16

Fig. 22. Final transition for lying about the world with three classes of agents

composition of two simpler actions: the first being identical to the one discussed
in Ex. 11, as is the intermediate transition; and the second being almost identical
to the one discussed there as well, with the only change being in the modal for-
mulae associated as preconditions to the component simple actions. The action
model for this second action, Σ17, is shown in Fig. 23, and the final transition
is shown in Fig. 24.

5 From Action Models to High Level Action Languages

In Sect. 3 we presented the Baltag-Moss action models and several examples
of their use. We also presented several action signatures as defined by Baltag

228 C. Baral and G. Gelfond

φ
¬KAH ∧

¬KA¬H

A

ψ
KAH ∨
KA¬H

A,B

B

Σ17

⊤

A,B,C

C C

Fig. 23. Agent A does not know the value of H but successfully lies to B that it may
know. Agent C is oblivious.

α
(H,σ)A,B

β
(¬H,ρ)A,B

ε
(H,μ)A,B

γ
(H,σ) A,B,C

δ
(¬H,ρ) A,B,C

λ
(¬H,μ) A,B

C

C

B

B
B

C

A,B

B
B

C

C

C

C

A,B,C

C

Σ17

H

A

¬H

A

A

H

A,B

¬H

A,B

B

H

A,B,C

¬H

A,B,C

A,B,C

B

B B

B

C C

C C

C C

Fig. 24. Final transition when lying about knowledge with three classes of agents

and Moss. Action models and signatures seem to be good technical devices for
expressing certain kinds of multi-agent actions. The update operations induced
by action models are simple to understand and seem to be a natural extension of
the set product operator to graphs with nodes labeled by propositional formulae.
Baltag and Moss also give a language to construct programs, which they call
program models, from action models.

We believe that although action models, action signatures, and program mod-
els are a good start, further work needs to be done to express multi-agent action
scenarios.

5.1 Future Directions on Action Models

Currently, even though one could give meaning to actions models that are con-
structed from the given action signatures, we could find no work in the literature

On Representing Actions in Multi-agent Domains 229

that gives meaning to individual nodes and edges of action models in such a
way that they can be used to build up the overall meaning of an action model.
Discovering or developing such a semantics would be very helpful.

Alternatively, developing a general algorithm to construct action models for
certain kinds of action scenarios would also be helpful. This seems to be a promis-
ing direction as we were able to generalize the examples in Sect. 3 to come with
action models for various interesting multi-agent action scenarios when there
are three classes of agents. We presented those examples in Sect. 4. Our action
model examples of Sect. 4 are simple extensions of the known action models;
yet they are novel in the sense that they do not follow any of the known action
signatures and lead to new action signatures.

5.2 A High Level Action Language That Uses Action Models as a
Semantic Tool

Another representational aspect of action models that needs to be enhanced is
that there is often a dependency between an agent’s role with respect to an action
scenario and the state of the world. For example, consider an enhancement of the
Strongbox Domain, where agent A has various actions at her disposal such as:
(a) an action to distract another agent who is watching the strongbox and (b)
an action to signal an agent that is not watching the strongbox to pay attention.
Such actions when executed change subsequent action scenarios. For example,
suppose that agent C is initially watching the strongbox and agent A distracts
him. If agent A then peeks into the strongbox, C will be oblivious.

Such knowledge can be expressed in the style of high-level action language A
[7] by agent-role statements of the following kinds:

– Y observes peek(X) if lookingAt(Y,X), near(Y,X)
– Y partially observes peek(X) if lookingAt(Y,X),¬near(Y,X)

Using statements of the above kind one can determine who are the observers,
partial observers, and oblivious agents with respect to an action like peek. Once
that is determined one can then construct the appropriate action model and
compute the transition due to that action model.

One can then borrow the other constructs of high level languages to express
world changing actions as well as relationship between properties of the world.
Some of those constructs are the following:

– Dynamic Causal Laws: a causes φ if ψ
– Executability Conditions: executable a if φ
– Sensing Actions: a determines f
– Non-deterministic Sensing Actions: amay determine φ
– Static Causal Laws: ψ if φ
– Initial State Axioms: initially ψ

Intuitive readings of the aforementioned statements are as follows. Dynamic
causal laws state that when an action a is performed in a state where φ is true,
ψ becomes true in the resulting state. Executability conditions state that an

230 C. Baral and G. Gelfond

action a is only executable in states where φ is true. Sensing actions state that
after the performing the action a, the agent knows the value of the fluent f .
Nondeterministic sensing actions are taken to mean that after performing the
action a, the agent may know the value of the fluent f . Static causal laws state
that all states which satisfy φ must also satisfy ψ. Initial state axioms state that
ψ is true in the initial state.

The above readings are appropriate for domains with one active agent. In the
presence of multiple agents however, they may change slightly. For example, in a
multi-agent domain the meaning of a sensing action is that after an occurrence
of the action a, the value of the fluent f becomes known to those agents who are
observing that action, the fact that the action occurred is known to the agents
who are partially observing the action, while all other agents are oblivious.

Thus a high level action language for multi-agent domains can be defined
by combining existing constructs from action languages with new ones such as
agent-role statements. The semantics of such a language would then be defined
by generalizing the transition semantics of existing action languages with the
addition that in the presence of multiple agents, an action is enhanced to an
action model by the application of agent-role statements, and then the action
model is used to compute the corresponding transition.

The above is a good first step in the development of a high level language for
multi-agent domains. However, several other concerns need to be addressed.

Various reasoning about action tasks, such as planning, require the notion
of an initial state. Since in a multi-agent domain the initial state axioms may
contain modal formulae, and the Kripke worlds satisfying them may have an
infinite number of states, there is a need to identify a subset of modal logic for
use in these axioms such that: the Kripke worlds satisfying them are finite; can
be constructed easily; and are able to express interesting and important domains
from the multi-agent literature (for example, the muddy-children domain [5,2]).
One such sub-language is where ψ is a formula without modal operators, or has
the form Cϕ or C(Kiϕ∨Ki¬ϕ), where ϕ is a formula without modal operators.

5.3 Knowledge and Belief

A major concern that needs to be addressed in the future is that even though
we may begin with the knowledge modality, after a number of actions occur we
begin to have a mixture of belief and knowledge. For example, consider Σ3 and
its associated transition as shown in Fig. 7. Prior to the execution of that action,
it is common knowledge among agents A and B that neither knows the value of
H . After the execution of Σ3, A knows that H is true. But what about agent
B’s knowledge? Per Baltag and Moss, the given reading of the successor state
shown in Fig. 7 is that B knows that A does not know the value of H . However,
it is often argued that one may only know truths, yet believe falsehoods. In this
case, a more appropriate reading would be that B believes that A does not know
the value of H . To be able to do this, one needs to capture both the knowledge
and belief modalities. One possible approach would be to treat the Kripke models

On Representing Actions in Multi-agent Domains 231

in [1] and this paper as a short hand for a more complex Kripke model that
has accessibility relations covering both knowledge and belief. We are currently
working on formalizing this structure.

6 Final Thoughts

As was mentioned in the introduction, considerable bodies of research with re-
spect to both single, and multi-agent reasoning have been developed. With a
few exceptions however ([13,8,6]), there has not been much crossover between
these two areas. With regards to single-agent domains, a myriad of techniques
has arisen, involving the use of action languages for reasoning about actions with
application in planning, diagnosis, and other reasoning tasks. From the multi-
agent standpoint, the use of modal logics and other methods has produced a body
of work for reasoning about the knowledge and beliefs of the agents present in a
domain.

The work done by Baltag and Moss begins to provide a framework for de-
scribing the effects of knowledge producing actions within a multi-agent setting.
While somewhat limited from the standpoint of knowledge representation, we
believe that a higher level action language can be developed by adding agent-role
statements to existing action languages and characterizing the new language by
translating the higher level language of causal laws to their corresponding ac-
tion model representations. Successor states could then be defined in terms of
the update operation induced by these action models. Once this has been accom-
plished, one can extend the work done with respect to various reasoning about
action tasks such as planning and diagnosis from single, to multi-agent domains.

References

1. Baltag, A., Moss, L.: Logics for epistemic programs. Synthese (2004)
2. Baral, C., Gelfond, G., Son, T., Pontelli, E.: Using answer set programming to

model multi-agent scenarios involving agents’ knowledge about other’s knowledge.
In: AAMAS 2010 (2010)

3. Baral, C., Son, T., Pontelli, E.: Modeling multi-agent domains in an action language:
An empirical study using C. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009.
LNCS, vol. 5753, pp. 409–415. Springer, Heidelberg (2009)

4. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer,
Heidelberg (2007)

5. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press, Cambridge (1995)

6. Gelfond, G.: A declarative framework for modeling multi-agent systems. Masters
Thesis, Texas Tech. University (2007)

7. Gelfond, M., Lifschitz, V.: Representing actions in extended logic programs. In:
Apt, K. (ed.) Joint International Conference and Symposium on Logic Program-
ming, pp. 559–573. MIT Press, Cambridge (1992)

8. Ghaderi, H., Levesque, H., Lespérance, Y.: A logical theory of coordination and
joint ability. In: AAAI 2007, pp. 421–426 (2007)

232 C. Baral and G. Gelfond

9. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming 31(1-
3), 59–84 (1997)

10. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of ar-
tificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4,
pp. 463–502. Edinburgh University Press, Edinburgh (1969)

11. Reiter, R.: Knowledge in action: logical foundation for describing and implementing
dynamical systems. MIT Press, Cambridge (2001)

12. Sandewall, E.: The range of applicability of some non-monotonic logics for strict
inertia. Journal of Logic and Computation 4(5), 581–616 (1994)

13. Shapiro, S., Lespérance, Y., Levesque, H.: The cognitive agents specification
language and verification environment for multiagent systems. In: Proceedings of
the First International Joint Conference on Autonomous Agents and Multiagent
Systems (2002)

Nonmonotonic Multi-Context Systems:
A Flexible Approach for Integrating Heterogeneous

Knowledge Sources�

Gerhard Brewka1, Thomas Eiter2, and Michael Fink2

1 Universität Leipzig, Augustusplatz 10-11, 04109 Leipzig, Germany
brewka@informatik.uni-leipzig.de

2 Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,fink}@kr.tuwien.ac.at

Abstract. In this paper we give an overview on multi-context systems (MCS)
with a special focus on their recent nonmonotonic extensions. MCS provide a
flexible, principled account of integrating heterogeneous knowledge sources. By
a knowledge source we mean a knowledge base formulated in any of the typical
knowledge representation languages, including classical logic, description logics,
modal or temporal logics, but also nonmonotonic formalisms like logic programs
under answer set semantics or default logic. We will motivate the need for such
systems, describe what has been achieved in this area, but we also discuss work
in progress and introduce generalizations of the existing framework which we
consider useful.

1 Introduction

In this paper we give an overview on multi-context systems (MCS) with a special focus
on their recent nonmonotonic extensions. MCS provide a flexible, principled account
of integrating heterogeneous knowledge sources. By a knowledge source we mean a
knowledge base formulated in any of the typical knowledge representation languages,
including classical logic, description logics, modal or temporal logics, but also non-
monotonic formalisms like logic programs under answer set semantics or default logic.

There are several reasons why the integration of multiple knowledge representation
formalisms, logics in our terminology, is highly important. First of all, larger and larger
bodies of knowledge are being formalized, by different groups of researchers and with
different intended uses. It is a matter of fact that these efforts, which have been par-
ticularly fueled by the vision of the semantic web, are based on a variety of different
representation languages. Re-representing all this knowledge in a single “standard” for-
malism is out of the question for practical reasons. Secondly, and may be even more
importantly, a single universal knowledge representation language is not in sight, and

� This work has been supported by the Austrian Science Fund (FWF) projects P20840 &
P20841, the EC ICT Integrated Project Ontorule (FP7 231875), and the Vienna Science and
Technology Fund (WWTF) project ICT08-020. The first author acknowledges funding from
Deutsche Forschungsgemeinschaft under grant Br 1817/3.

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 233–258, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

234 G. Brewka, T. Eiter, and M. Fink

there are good reasons to doubt that such a language exists. The needs of different appli-
cations in terms of expressiveness and/or efficiency vary tremendously. For this reason
we strongly believe that the plurality of formalisms we see today is necessary and will
not disappear in the future.

If this analysis is correct, then the integration of formalisms is an issue that needs
to be addressed urgently. MCS provide a principled approach to such an integration. A
context here is a knowledge base represented in a logical formalism. A multi-context
system describes the information available in a number of contexts (i.e., to a number
of people/agents/databases/modules, etc.) and specifies the information flow between
those contexts. The contexts themselves may be heterogeneous in the sense that they
can use different logical languages and different inference systems, and no notion of
global consistency is required. The information flow is modeled via so-called bridge
rules which can refer in their premises to information from other contexts.

The history of MCS started in Trento in the Nineties of the last century. Furthering
work in [35,42], the Trento School developed monotonic heterogeneous multi-context
systems [36] with the aim to integrate different inference systems; informally, contexts
were viewed as pairs Context i = ({Ti}, Δbr) where each Ti = (Li, Ωi, Δi) is a formal
system consisting of a languageLi, a set of axioms Ωi ⊆ Li, and a set of inference rules
Δi. Δbr consists of bridge rules of the form

(c1 : p1), . . . , (ck : pk) ⇒ (cj : qj)

using labeled formulas (c : p) where p is from the languageLc. Giunchiglia and Serafini
gave a collection of such contexts a semantics in terms of local models plus compat-
ibility conditions (see also [34]), which respects information flow across contexts via
bridge rules. Noticeably, reasoning within/across contexts is monotonic.

The first, still somewhat limited attempts to include nonmonotonic reasoning are
[43] and [11]. To allow for reasoning based on the absence of information from a con-
text, in both papers default negation is allowed in the rules. In this way contextual and
default reasoning are combined. The former paper is based on a model theoretic ap-
proach where so-called information chains are manipulated. The latter is based on a
multi-context variant of default logic (respectively its specialization to logic programs
under answer set semantics).

The MCS of [9] substantially generalized these approaches, by accommodating het-
erogeneous and both monotonic and nonmonotonic contexts. They are thus capable of
integrating “typical” monotonic KR logics like description logics or temporal logics,
and nonmonotonic logics like Reiter’s Default Logic, Answer Set Programming, cir-
cumscription, defeasible logic, or theories in autoepistemic logic; in several of the lat-
ter, a knowledge base gives rise to multiple belief sets in general. Since we consider
nonmonotonic formalisms as essential in knowledge representation we focus entirely
on this type of MCS here.

It is far from incidental that this paper appears in a collection honoring Michael
Gelfond’s 65th birthday. To the contrary, there are many intimate connections to his
work, and it is more than fair to say that without Michael’s seminal contributions this
research area would still be in its (monotonic) infancy. The following connections are
the most obvious ones:

Nonmonotonic Multi-Context Systems 235

1. Although MCS are “pluralistic”1 in admitting a variety of different knowledge rep-
resentation languages, we foresee that logic programs under answer set semantics,
as developed by Gelfond and Lifschitz [32,33,31], will play a highly prominent role
as particular context languages in MCS.

2. Nonmonotonic rules and their semantics provide the formal tools for integrating
knowledge in MCS and thus play a crucial role in our framework.

3. The construction used to define grounded equilibria (see Sect. 2.2) is a direct gen-
eralization of the Gelfond-Lifschitz reduct [32] to multiple contexts.

4. Mediators extend the basic MCS framework with revision and consistency handling
methods. Michael Gelfond has made numerous contributions to these topics which
we believe will prove highly fruitful. As an example let us just mention his work
on consistency restoring rules [3].

The outline of the rest of the paper is as follows. We first present (heterogeneous
nonmonotonic) MCS [9], recalling their basic definitions. We also discuss ways of
implementing such systems. The next section presents techniques for handling incon-
sistencies in MCS. Such inconsistencies arise naturally whenever different knowledge
bases, often developed by different researchers, are being integrated. Consequently,
there is a need for adequate consistency restoring methods.

We then discuss argumentation context systems (ACS) [10]. These system are less
general than MCS in one respect: they are homogeneous and use Dung-style argumen-
tation frameworks [19] as their single context logics. However, they go beyond MCS
in two important aspects: (a) they allow contexts not only to augment other contexts,
but also to update (e.g. revise) other contexts, and (b) they introduce so-called media-
tors which resolve conflicts among the update information which is obtained from other
contexts through (generalized) bridge rules.

After, we report about some ongoing and future work. Here, a natural question to
ask is then whether both ACS and MCS can be generalized to a framework which
combines the additional functionality of ACS with the wide coverage of heterogeneous
formalisms of MCS. We will address this in Sect. 5.4, where we outline one possible
way to realize such a framework. A brief discussion of related work concludes the paper.

2 Heterogeneous Nonmonotonic MCS

As mentioned in the Introduction, a multi-context system describes the information
available in a number of contexts and specifies the information flow between those
contexts via bridge rules. In this section we will first present the basic notions under-
lying MCS, leading to the equilibrium semantics [9]. We then discuss groundedness of
equilibria, applying a generalization of the Gelfond-Lifschitz reduct to MCS to solve
a potential problem for a certain subset of MCS. We finally discuss implementation
issues.

2.1 Formal Concepts

A “logic” is, very abstractly, a tuple L = (KBL,BSL,ACCL), where

1 One might even say “promiscuous”.

236 G. Brewka, T. Eiter, and M. Fink

– KBL is a set of well-formed knowledge bases, each being a set (of formulas),
– BSL is a set of possible belief sets, each being a set (of formulas), and
– ACCL : KBL → 2BSL assigns to each kb ∈ KBL a set of acceptable belief sets.

L is monotonic, if ACCL assigns to each kb a single belief set (denoted Skb), and
kb ⊆ kb′ implies Skb ⊆ Skb′ . Examples of knowledge bases as logic programs, default
theories, description logic ontologies, classical propositional or first order theories, etc.
The possible belief sets are those which are syntactically admissible (e.g., deductively
closed sets of sentences, sets of literals, etc). Moreover, ACCL respects that a knowl-
edge base might have one, multiple, or even no acceptable belief set in the logic.

Access to other contexts is facilitated via bridge rules for heterogenous logics. Given
logics L = L1, . . . , Ln, an Li-bridge rule over L, 1 ≤ i ≤ n, is of the form

s← (r1 : p1), . . . , (rj : pj), not (rj+1 : pj+1), . . . ,not (rm : pm) (1)

where rk ∈ {1 . . . , n} and pk is an element of some belief set of Lrk
, 1 ≤ k ≤ m, and

kb ∪ {s} ∈ KBi for each kb ∈ KBi.
Multi-context systems are then defined as follows.

Definition 1. A multi-context system M = (C1, . . . , Cn) consists of contexts Ci =
(Li, kbi, bri), where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi is a knowledge base,
and bri is a set of Li-bridge rules over L = L1, . . . , Ln, 1 ≤ i ≤ n.

Example 1. As a simple example, we consider M = (C1, C2), where the contexts
are different views of a paper by its co-authors A1 and A2 who reason in different
logics. In C1, we have Classical Logic as L1, the knowledge base kb1 = { unhappy ⊃
revision }, and the bridge rules br1 = { unhappy ← (2 : work) }. Intuitively, if A1

is unhappy about the paper, then she wants a revision, and if A2 finds that the paper
needs more work, then A1 feels unhappy. In C2, we have Answer Set Programming as
L2, the knowledge base kb2 = { accepted ← good , not ¬accepted } and bridge rules
br2 = {work ← (1 : revision); good ← not (1 : unhappy)}. Intuitively,A2 thinks that
the paper, if good, is usually accepted; moreover, she infers that more work is needed
if A1 wants a revision, and that the paper is good if there is no evidence that A1 is
unhappy.

The semantics of an MCS is defined in terms of special belief states, which are se-
quences S = (S1, . . . , Sn) such that each Si is an element of BSi. Intuitively,Si should
be a belief set of the knowledge base kbi; however, also the bridge rules must be re-
spected; to this end, kbi is augmented with the conclusions of its bridge rules that are
applicable. More precisely, a bridge rule r of form (1) is applicable in S, if pi ∈ Sri ,
for 1 ≤ i ≤ j, and pk �∈ Srk

, for j + 1 ≤ k ≤ m. Denote by head(r) the head of r and
by app(R,S) the set of bridge rules r ∈ R that are applicable in S. Then,

Definition 2. A belief state S = (S1, . . . , Sn) of a multi-context system M is an equi-
librium iff Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)}), 1 ≤ i ≤ n.

An equilibrium thus is a belief state which contains for each context an acceptable belief
set, given the belief sets of the other contexts.

Nonmonotonic Multi-Context Systems 237

Example 2 (ctd). Reconsidering M = (C1, C2) from Example 1, we find that M has
two equilibria, viz.

– E1 = (Cn({unhappy , revision}), {work}) and
– E2 = (Cn({unhappy ⊃ revision}), {good , accepted}),

where Cn(·) is the set of all classical consequences. As for E1, the bridge rule of C1

is applicable in E1, and Cn({unhappy , revision}) is the (single) acceptable belief set
of kbi ∪ {unhappy}; the first bridge rule of C2 is applicable in E1, but not the second;
clearly, {work} is the single answer set of kb2 ∪ {work }.

As for E2, the bridge rule of C1 is not applicable in E1, and Cn({unhappy ⊃
revision} = Cn(kb1); now the second bridge rule of C2 is applicable but not the first,
and {good , accepted} is the single answer set of kb2 ∪ {good}.

The notion of equilibrium may remind the reader of similar game-theoretic concepts,
and in fact we may view each context Ci as a player in an n-person game where players
choose belief sets; we will discuss this more in detail in Section 6.

2.2 Groundedness

Equilibria suffer, similar as the answer sets of modular logic programs in [24], from
groundedness problems due to cyclic justifications. Informally, the reason is that bridge
rules might be applied unfoundedly. E.g., in Example 1, the formula unhappy has only
a cyclic justification in the equilibrium

E1 = (Cn({unhappy , revision}), Cn({work})).

The formula is accepted in C1 via the bridge rule, as work is accepted in C2; the latter
is also accepted via a bridge rule, as revision is accepted in C1 (by modus ponens
from unhappy ⊃ revision and unhappy). Here, the application of the bridge rules is
unfounded.

Inspired by the definition of answer set semantics, [9] proposed grounded equi-
libria to overcome this. They are defined in terms of a GL-style reduct which trans-
forms M = (C1, . . . , Cn), given a belief state S = (S1, . . . , Sn), into another MCS
MS = (CS

1 , . . . , C
S
n) that behaves monotonically, such that a unique minimal equilib-

rium exists; if it coincides with S, we have groundedness.
Formally, CS

i = (Li, redi(kbi, S), brS
i), where redi(kbi, S) maps kbi and S to a

monotonic core of Li and brS
i is the GL-reduct of bri w.r.t. S, i.e., contains s ← (r1 :

p1), . . . , (rj : pj) for each rule of form (1) in bri such that pk /∈ Srk
, k = j+1, . . . ,m.

In addition, the following reducibility conditions are assumed: (i) redi(kbi, Si) is
antimonotonic in Si, (ii) Si is acceptable for kbi iff ACCi(redi(kbi, Si)) = {Si}, and
(iii) redi(kbi, S) ∪ Hi = redi(kbi ∪H,S), for each Hi ⊆ {head(r) | r ∈ bri}. This
condition is trivially satisfied by all monotonic logics, by Reiter’s Default Logic, answer
set programs, etc. Grounded equilibria are then defined as follows.

Definition 3. A belief state S = (S1, . . . , Sn) is a grounded equilibrium of M iff S is
the unique minimal equilibrium of MS , where minimality is componentwise w.r.t. ⊆.

238 G. Brewka, T. Eiter, and M. Fink

Example 3 (ctd.). In our review example, naturally red(kbi, S) is identity and red(kb2,
S) the GL-reduct. Then E1 is not a grounded equilibrium: ME1 has the single mini-
mal equilibrium (Cn({unhappy ⊃ revision}), ∅)) �= E1. On the other hand, E2 is a
grounded equilibrium of M .

Grounded equilibria are in fact equilibria of M , as well as minimal ones. Similar as for
answer sets, the grounded equilibrium of MS can be characterized as the least fixpoint
of an operator [9].

Brewka and Eiter also introduced a wellfounded semantics for MCS. The reader is
referred to [9] for the details.

2.3 Implementing MCS

As for implementing MCS, we assume that the belief sets under consideration are
uniquely identified by finite sets of beliefs, which serve as kernels (cf. [9]) that rep-
resent (potentially infinite) belief sets. Suppose also that the alphabets Σi, 1 ≤ i ≤ n
for these beliefs are pairwise disjoint for contexts (which can always be achieved, e.g.,
by prefixing). Moreover, let us consider two different scenarios: taking a centralized
stance, one is interested in computing equilibria as global views on the system, while
taking a decentralized stance the goal is to compute partial global views (partial equi-
libria) by a distributed computation which is initiated at a particular context. In the
following, we give a brief account of the main ideas underlying implementations that
have been developed for both application scenarios.

Centralized MCS implementation. The computation of equilibria for a given MCS has
been realized by a declarative implementation using HEX-programs [26] which can be
evaluated using the dlvhex system.2 HEX-programs extend disjunctive logic programs
with access to external information by means of so-called external atoms (and with
higher order features, which we disregard here).

Focusing on ground (variable-free) HEX-programs, we say that an ordinary atom is
a predicate p(c1, . . . , cn) where p, and c1, . . . , cn are constants. An external atom is of
the form

&g[v](w),

where v, and w are fixed length lists of constants, and &g ∈ G is an external predicate
name. Intuitively, an external atom provides a way for deciding the truth value of g(w)
in an external source which is accessed providing the extension of predicates v as input.

A HEX rule r is of the form

α1 ∨ . . . ∨ αk ← β1, . . . , βm, notβm+1, . . . ,notβn (2)

m, k ≥ 0, where all αi are ordinary atoms and all βj are ordinary or external atoms. As
usual, a rule r is a constraint, if k = 0. Furthermore, a HEX-program (or program) is a
finite set of HEX rules.

The semantics of HEX-programs is defined considering interpretations I over the or-
dinary Herbrand base HBP of a program P and a set of constants C. An interpretation

2 http://www.kr.tuwien.ac.at/research/systems/dlvhex/

http://www.kr.tuwien.ac.at/research/systems/dlvhex/

Nonmonotonic Multi-Context Systems 239

I satisfies an external atom α= &g[v](w) (denoted I |=α), if f&g(I,v,w) = 1, where
v ∈Cn, w ∈Cm, and f&g is a (fixed) function f&g : 2HBP × Cn+m → {0, 1}, repre-
senting the (semantics of the) corresponding external source. For an ordinary atom α, a
rule r, or a program P , the satisfaction relation I |=α (respectively I |= r or I |=P) is
defined as usual.

The FLP-reduct [27] of P wrt. I is the set fPI ⊆ P of all rules r of form (2) in
P such that I |= βi, for all i ∈ {1, . . . ,m} and I �|= βj for all j ∈ {m + 1, . . . , n}.
Eventually, I is an answer set of P , if I is a ⊆-minimal model of fPI .

Note that this semantics is another generalization of the Gelfond-Lifschitz reduct
[32], i.e., on programs without external atoms the semantics coincide. For a more de-
tailed account of HEX and its relation to MCS see [20].

Concerning our main purpose, given an MCS M , we assemble a program P (M) for
computing equilibria of M as follows, where 1 ≤ i ≤ n. An arbitrary truth assignment
to beliefs is guessed:

ai(p) ∨ āi(p). ∀p ∈ Σi (3)

Each bridge rule (1) is evaluated by corresponding HEX rules, wrt. the guess:

bi(s) ← ac1(p1), . . . , acj (pj),
not acj+1(pj+1), . . . ,not acm(pm). (4)

Finally, constraints ensure that answer sets of the program correspond to equilibria:

← not &con outi [ai, bi](). (5)

Given an interpretation I , let AI
i = {p | ai(p) ∈ I}, 1 ≤ i ≤ n, denote a belief set

for context Ci (corresponding to the guess on Σi in (3)), and let BI
i = {s | bi(s) ∈ I}

denote the set of bridge rule heads, from bridge rules br i, which are applicable wrt. the
guessed belief state. Each external atom in (5) represents ACCi: it returns true iff
context Ci accepts a belief set upon input of BI

i , which corresponds to the guessed AI
i .

Formally, we define f&con outi(I, ai, bi) = 1 iff there exists an S ∈ ACCi(kbi ∪BI
i)

such that S = AI
i .

Proposition 1. Answer sets I of P (M) correspond 1-1 to equilibria SI of M , where
I � SI = (SI

1 , . . . , S
I
n) and SI

i = {p | ai(p) ∈ I}, i = 1, . . . , n.

For further details on a concrete implementation we refer the reader to the MCS-IE

system [5].

Decentralized MCS implementation. For the remainder of this section, we make our
assumption on the representation of belief sets slightly more precise, supposing that
they are represented by truth assignments vSi : Σi → {0, 1} to a finite set Σi of propo-
sitional atoms. Furthermore, let Σ =

⋃
i Σi.

In a decentralized setting, given an MCS M and a starting context Ck , we aim at
finding so-called partial equilibria of M wrt. Ck in a distributed way. For this purpose,
an algorithm called DMCS has been developed, whose instances run independently at

240 G. Brewka, T. Eiter, and M. Fink

each context node and communicate with other instances for exchanging sets of par-
tial belief states. It provides a method for distributed model building, and the DMCS
algorithm can be applied to any MCS such that appropriate solvers for the respective
context logics are available. As a main feature, DMCS can also compute projected par-
tial equilibria, i.e., partial equilibria projected to a relevant portion of the signature of
the so-called import closure of the starting context. This can be exploited for specific
tasks like, e.g., local query answering or consistency checking.

The notion of import closure formally captures contexts that are ‘reachable’ from a
given context according to the MCS topology given by its bridge rules. It essentially
defines a subsystem M ′ of M that is connected by bridge rules. Let In(k) = {ci |
(ci : pi) ∈ B(r), r ∈ brk}, for a given context Ck of an MCS M . Then, the import
closure IC (k) of Ck is the smallest set S such that (i) k ∈ S and (ii) In(i) ⊆ S, for
all i ∈ S. The import closure provides a syntactic notion of ‘relevance’ to consider
partial equilibria which are local to M ′. (Note however, that the MCS semantics does
not satisfy a relevance property akin to the one in [17] in general.) Based on the import
closure partial equilibria are defined as follows.

Definition 4 (Partial Belief States and Equilibria)
Let M = (C1, . . . , Cn) be an MCS, and let ε /∈

⋃n
i=1 BSi. A partial belief state of M is

a sequence S = (S1, . . . , Sn), such that Si ∈ BSi ∪ {ε}, for 1 ≤ i ≤ n.
A partial belief state S = (S1, . . . , Sn) of M is a partial equilibrium of M w.r.t. a

context Ck iff i ∈ IC (k) implies Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(br i, S)}), and
if i �∈ IC (k), then Si = ε, for all 1 ≤ i ≤ n.

For combining partial belief states S = (S1, . . . , Sn) and T = (T1, . . . , Tn), their
join S �� T is defined as the partial belief state (U1, . . . , Un) with (i) Ui = Si, if
Ti = ε or Si = Ti, and (ii) Ui = Ti, if Ti �= ε and Si = ε, for all 1 ≤ i ≤ n.
This notion is extended to sets S and T of partial belief states in the obvious way:
S �� T = {S �� T | S ∈ S, T ∈ T }.

In the sequel, we present the main idea of a basic version of the DMCS algorithm,
which assumes that the topology of the overall MCS is not known at context nodes
(enhancements are possible given topology information): starting from context Ck, the
import closure of Ck is visited by expanding In(k) at each context like in a depth-
first search, maintaining visited contexts in a set hist , until a leaf context is reached,
or a cycle is detected (by noticing the presence of the current context in hist). A leaf
context simply computes its local belief sets, transforms them into partial belief states,
and returns this result to its parent (invoking context). In case of a cycle, the context
detecting the cycle, say Ci, must also break it, by

1. guessing belief sets for the “export” interface of Ci,
2. transforming the guesses into partial belief states, and
3. returning them to the invoking context.

The results of intermediate contexts are partial belief states, which can be joined, i.e.,
consistently combined, with partial belief states from their neighbors; a context Ck

returns its local belief sets, joined with the results from its neighbors, as final result.

Nonmonotonic Multi-Context Systems 241

For computing projected partial equilibria, the algorithm offers a parameter V , the
relevant interface. Given a (partial) belief state S and a set V ⊆ Σ of variables, the
restriction of S to V , denoted S|V , is the (partial) belief state S′ = (S1|V , . . . , Sn|V),
where Si|V = Si ∩ V if Si �= ε, and ε|V = ε; the restriction of a set of (partial) belief
states S to V is S|V = {S|V | S ∈ S}. Let V (k) = {pi | (ci : pi) ∈ B(r), r ∈ brk}
denote the import interface of context Ck. By V ∗(k) =

⋃
i∈IC (k) V (i), the recursive

import interface of Ck, we refer to the interface of the import closure of Ck.
For a context Ck, we have two extremal cases: 1. V = V ∗(k) and 2. V = Σ. In

Case 1, DMCS basically checks for consistency on the import closure of Ck by com-
puting partial equilibria projected to interface variables only. In Case 2, the algorithm
computes partial equilibria w.r.t. Ck. Between these two, by providing a fixed interface
V , problem-specific knowledge (such as query variables) and/or infrastructure infor-
mation can be exploited to keep computations focused on relevant projections of par-
tial belief states. For further details and a concrete implementation see [15,1] and the
DMCS system [2].

3 Inconsistency Handling in MCS

Inconsistency in an MCS is the lack of an equilibrium. As the combination and inter-
action of heterogeneous systems can easily have unforeseen and intricate effects, in-
consistency is a major problem in MCS. The eventual aim of understanding and giving
reasons for inconsistency is to provide support for restoring consistency. We assume that
every context is consistent if no bridge rules apply, and thus, reasons of inconsistency
can fully be captures in terms of bridge rules.

Example 4. Consider an extension of Example 1 given by MCS M ′ = (C1, C
′
2, C3),

where the third context represents the view of a mentor of co-author A2. For sim-
plicity, let C3 also have Answer Set Programming as L3, and assume that kb3 =
{ comments ← done } and that br3 = { r3 }, where r3 = done ← not (2 : work).
Intuitively, the mentor provides comments as soon as author A2 considers the paper
finished, i.e., she does not believe that the paper needs more work. The author A2 takes
this information into account via the extended set of bridge rules br′2 = br2 ∪{ r1, r2 },
where r1 = advice ← (3 : comments), and r2 = ack ← not (3 : comments). Thus,
either there is advice (comments) from the mentor, or the mentor acknowledges the
current status of the paper (no comments). Moreover, the following knowledge is in-
consistent with A2’s views: she believes that the paper needs more work but her men-
tor acknowledges it; she does not believe that the paper needs more work but there
is further advice. This is reflected in the following extension of her knowledge base:
kb′2 = kb2 ∪ {← work , ack ; ← advice , not work }.

This MCS turns out to be inconsistent. Indeed, one can easily verify that whatever
the views of A1 and the mentor, there is no consistent belief set for A2 which is in
equilibrium (i.e., compliant with applicable bridge rules).

We will use the following notation. Given an MCS M and a set R of bridge rules
(compatible with M), by M [R] we denote the MCS obtained from M by replacing
its set of bridge rules brM with R (e.g., M [brM] = M and M [∅] is M with no bridge

242 G. Brewka, T. Eiter, and M. Fink

rules). By M |= ⊥ we denote that M has no equilibrium, i.e., is inconsistent, and by
M �|= ⊥ the opposite. For any set of bridge rules A, heads(A) = {α← | α←β ∈ A}
are the rules in A in unconditional form.

3.1 Diagnoses and Explanations

In the following, we focus on two main possibilities for explaining inconsistency in
MCSs considered in [22]: first, a consistency-based notion called diagnosis, which iden-
tifies a part of the bridge rules which need to be changed to restore consistency. Second,
an entailment-based notion termed inconsistency explanation, which identifies a part of
the bridge rules that is necessary to make the MCS inconsistent.

Diagnoses. Adding knowledge, as well as removing knowledge, can both cause and
prevent inconsistency. Therfore, we consider pairs of sets of bridge rules, such that if
we deactivate the rules in the first set, and add the rules in the second set in unconditional
form, the MCS becomes consistent (i.e., admits an equilibrium).

Definition 5. Given an MCS M , a diagnosis of M is a pair (D1, D2), D1, D2 ⊆ brM ,
s.t. M [brM \D1 ∪ heads(D2)] �|= ⊥. D±(M) is the set of all such diagnoses.

A more relevant set of diagnoses is obtained by preferring pointwise subset-minimal
diagnoses. For pairs A = (A1, A2) and B = (B1, B2) of sets, the pointwise subset
relation A ⊆ B holds iff A1 ⊆ B1 and A2 ⊆ B2. The set of all pointwise subset-
minimal diagnoses of an MCS M is denoted by D±

m(M).

Example 5 (ctd.). In our extended running example, the MCS M ′ (cf. Example 4)
which is inconsistent, D±

m(M) =
{

({r1} , ∅) , ({r2} , ∅) , ({r3} , ∅) , (∅, {r3})
}

. Ac-
cordingly, deactivating any of the ‘new’ (wrt. M in Example 1) bridge rules r1, r2, or
r3, will result in a consistent MCS; likewise if r3 is added in unconditional form.

Note that one could generalize Definition 5 to more fine-grained changes of rules, such
that only some body atoms are removed instead of all. However, while this significantly
increases the search space for diagnoses, there is little information gain: every diagno-
sis (D1, D2) as above, together with a witnessing equilibrium S, can be refined to a
generalized diagnosis (D1, D

′
2), where D′

2 ⊆ {α←β | α←β, γ ∈ brM} contains for
each α ← β, γ in D2 some α ← β that is applicable in S. Conversely, every general-
ized diagnosis (D1, D

′
2), together with a witnessing equilibrium S, induces a diagnosis

(D1, D2) as above (D2 contains all heads of rules in D′
2 that are applicable in S).

Explanations. In the spirit of abductive reasoning, an inconsistency explanation (subse-
quently also called explanation) is a pair of sets of bridge rules, such that their presence,
respectively absence, necessarily entails an inconsistency in the given MCS.

Definition 6. Given an MCS M , an inconsistency explanation of M is a pair (E1, E2)
of sets E1, E2 ⊆ brM of bridge rules s.t. for all (R1, R2) where E1 ⊆ R1 ⊆ brM

and R2 ⊆ brM \ E2, it holds that M [R1 ∪ heads(R2)] |= ⊥. By E±(M) we denote
the set of all inconsistency explanations of M , and by E±

m(M) the set of all pointwise
subset-minimal ones.

Nonmonotonic Multi-Context Systems 243

The intuition about inconsistency explanations is as follows: bridge rules in E1 cause
an inconsistency in M (M [E1] |= ⊥), and this inconsistency is relevant for M . By
this we mean that adding some bridge rules from brM (the set of original bridge rules)
to M [E1] never yields a consistent system. Note that a set of bridge rules may also
create an inconsistency which is irrelevant for M (if it does not occur given that more
bridge rules are present). Similarly, bridge rules in E2 govern the addition of bridge
rules in unconditional form: M [E1] cannot be made consistent by adding bridge rule
heads unconditionally, unless at least one bridge rule head from E2 is used. In summary,
bridge rules E1 create a relevant inconsistency, and at least one head of a bridge rule in
E2 must be added unconditionally to repair that inconsistency.

Example 6 (ctd.). In our running example, we have just one minimal inconsistency ex-
planation, namely ({r1, r2, r3} , {r3}). Thus, all three additional bridge rules must be
present in the system to get inconsistency with author A2’s views; if they are present,
then it can only be resolved by telling the mentor unconditionally that they are
done.

Again it is possible to consider more fine-grained modifications of rules (rather than
heads(R2)) in Definition 6, but this would not alter the notion of inconsistency expla-
nation. Thus, in contrast to diagnoses, one cannot infer from an explanation whether
the addition of a more fine-grained version of a rule in E2 would yield consistency.
However, this could be achieved considering explanations of a transformed MCS.

Properties. Intuitively, the two components of diagnoses and explanations represent
dual aspects wrt. causation and prevention of inconsistency. For minimal diagnoses and
explanations the definitions are closely related. Given a set X of pairs (A,B) of sets A
and B, let

⋃
X denote the pair (

⋃
{A | (A,B) ∈ X},

⋃
{B | (A,B) ∈ X}).

Theorem 1. Given an inconsistent MCS M ,
⋃

D±
m(M) =

⋃
E±

m(M), i.e., the unions
of all minimal diagnoses and all minimal inconsistency explanations coincide.

This theorem strengthens the view that both notions capture exactly those parts of an
MCS that are relevant for inconsistency: two different perspectives on inconsistency
reveal exactly the same parts of an MCS as erroneous. In practice this allows to compute
the set of all bridge rules which are relevant for restoring consistency (i.e., that appear in
at least one diagnosis) in two ways, either by computing all minimal explanations, or by
computing all minimal diagnoses. Moreover, this result also holds if the unconditional
addition of bridge rule heads is not admitted.

Another important property concerns modularization. A syntactic criterion which
allows to break up the computation of explanations for an MCS into computing
explanations for parts of it is obtained by adapting the notion of splitting sets as in-
troduced in the context of logic programming [41]. This can be exploited for comput-
ing minimal explanations more efficiently for certain classes of MCSs. Since an MCS
may include contexts with arbitrary logics, a purely syntactical criterion can only be
obtained resorting to beliefs occurring in bridge rules, hence splitting at the level of
contexts.

244 G. Brewka, T. Eiter, and M. Fink

Let c (M) denote the set of contexts of an MCS M , and for a bridge rule r, let hc (r)
be the context in its head and bc (r) the set of contexts referenced in its body. A set of
contexts U ⊆ c (M) is a splitting set of an MCS M , if hc (r) ∈ U implies bc (r) ⊆ U ,
for every rule r ∈ brM . The set bU ⊆ brM of rules such that r ∈ bU iff hc (r) ∈ U , is
called the bottom relative to U .

Intuitively, if U is a splitting set of M , then the consistency or inconsistency of
contexts in U does not depend on contexts in c (M) \U . Thus if M [bU] is inconsistent,
M stays inconsistent.

Proposition 2. Let U be a splitting set of an MCS M . Then each (minimal) explanation
of M [bU] is a (minimal) explanation of M , and each (minimal) diagnosis of M [bU] is
a pointwise subset of a (minimal) diagnosis of M .

Thus, if both U and U ′ = c (M) \ U are splitting sets of an MCS M , then M can be
partitioned into two parts where minimal explanations can be computed independently.

Computation. Regarding computation, a complexity analysis of recognizing diagnoses
respectively explanations was provided in [22]. As diagnosis recognition has the same
computational complexity as equilibrium existence, diagnoses can be computed using
HEX-programs with external atoms (for oracle calls) in a similar way as outlined for the
computation of equilibria in Section 2.3.

Note however, that for the purpose of recognizing diagnoses (and explanations), it
suffices to check for consistency, i.e., for the existence of some equilibrium in a (modi-
fied) MCS. This consistency check can be done by limiting the equilibrium calculation
to output beliefs, i.e., the beliefs used in bodies of bridge rules (rather than considering
all beliefs in Σ).

Consider the program PD(M) for calculating diagnoses which is obtained from pro-
gram P (M) (cf. Section 2.3) restricted to output beliefs as follows: for each bridge rule
r ∈ brM , a guess is added:

norm(r) ∨ d1 (r) ∨ d2 (r). (6)

Moreover, rules (4) are replaced by two corresponding HEX rules:

bi(s) ← not d1 (r), ac1 (p1), . . . , acj (pj),
not acj+1(pj+1), . . . ,not acm(pm). (7)

bi(s) ← d2 (r). (8)

Then, PD(M) can be used to compute diagnoses according to the following correspon-
dence result.

Proposition 3. For each diagnosis (D1, D2) ∈ D±(M) where D1 ∩D2 = ∅, at least
one corresponding answer set of PD

p (M) exists. Each answer set I of PD
p (M) corre-

sponds to a unique diagnosis DI , where I � DI = ({r | d1 (r)∈I}, {r | d2 (r)∈I}).

This approach has been followed in the implementation of the MCS-IE System for Ex-
plaining Inconsistency in Multi-Context Systems, cf. [5] and references therein.

Nonmonotonic Multi-Context Systems 245

3.2 Assessing Inconsistency

Large sets of diagnoses or explanations call for a further assessment, taking application
specific criteria into account. For realizing such selection criteria on consistency restora-
tions, preference-based approaches are a natural choice since they allow for a declar-
ative specification. Two basic elements of preference-based selection can be found in
the literature: filters, which discard non-preferred solutions that fail some preference
condition, and qualitative comparison relations establishing preference orders to single
out the most appealing solutions.

Selection-based preference on diagnoses, i.e. filters, allow a designer of an MCSs to
apply sanity checks on diagnoses, thus they can be seen as hard constraints on them:
diagnoses that fail to satisfy the conditions are filtered out and not considered for con-
sistency restoration.

Definition 7. Let M be an MCS with bridge rules brM . A diagnosis filter for M is a
function f :2brM×2brM → {0, 1} and the set of filtered diagnoses is D±

f (M) = {D ∈
D± (M) | f(D) = 1}.
Comparison-based preference on diagnoses provides a means to compare (minimal)
diagnoses. In general, a preference order over diagnoses for an MCS M is a transitive
binary relation * on 2br

M × 2br
M ; we say that D is preferred to D′ iff D * D′.

Definition 8. Let M be an inconsistent MCS. A diagnosis D ∈ D±(M) of M is called
pre-most preferred iff for all D′ ∈ 2brM × 2brM with D′ * D ∧D �* D′ it holds that
D′ /∈ D±(M). A diagnosis D ∈ D±(M) is called most preferred, iff D is subset-
minimal among all pre-most preferred diagnoses.

Given that MCSs are decentralized systems, users may want to express preferences
on diagnoses solely based on a local set of bridge rules, assuming all other things
equal. Such preferences can be formalized using conditional preference networks (CP-
nets) [8], which are an extension of ceteris paribus orders (“all else being equal”) and
exhibit appealing features of locality and privacy.

For a further details on associating a CP-net with an MCS for inconsistency as-
sessment, as well as on the realization of filters and comparison-based selection on
diagnoses inside the MCS framework by using meta-reasoning on consistency restora-
tions, i.e., utilizing a rewriting which yields a transformed system such that consistency
restorations of the latter directly correspond to preferred consistency restorations of the
original system (wrt. the given filter, preference order, or CP-net), the interested reader
may consult [23].

4 Argumentation Context Systems

Argumentation context systems (ACS) [10] specialize multi-context systems in one re-
spect, and are more general in another. First of all, in contrast to the MCS of [9], they
are homogeneous in the sense that all reasoning components in an ACS are of the same
type, namely Dung-style argumentation frameworks [19]. The latter are widely used
as abstract models of argumentation. They are based on graphs whose nodes represent

246 G. Brewka, T. Eiter, and M. Fink

abstract arguments and edges describe attacks between arguments. Different semantics
for argumentation frameworks have been defined; they specify extensions, i.e., subsets
of the arguments which are considered jointly acceptable.

However, ACS go beyond MCS in two important aspects:

1. The influence of an ACS module M1 on another module M2 can be much stronger
than in an MCS. M1 may not only provide information for M2 and thus augment
the latter, it may directly affect M2’s KB and reasoning mode: M1 may invalidate
arguments or attack relationships in M2’s argumentation framework, and even de-
termine the semantics to be used by M2.

2. A major focus in ACS is on inconsistency handling. Modules are equipped with ad-
ditional components called mediators. The main role of the mediator is to take care
of inconsistencies in the information provided by connected modules. It collects the
information coming in from connected modules and turns it into a consistent up-
date specification for its module, using a pre-specified consistency handling method
which may be based on preference information about other modules.

The first property listed above makes it possible to capture – in addition to peer-to-
peer types of information exchange – hierarchical forms of argumentation as they are
common in legal reasoning. Here a judge may declare certain arguments as invalid, for
instance because they are based on evidence which was obtained illegally, or the type
of trial may require a particular proof standard.

Technically, the additional functionality is achieved by explicitly representing possi-
ble updates to be performed on the underlying argumentation framework in a genuine
description language. This language contains expressions which allow us to introduce
- respectively delete - arguments, attack relations, preferences among arguments, val-
ues and value orderings, and also to fix a reasoning mode (sceptical vs. credulous) and
an argumentation semantics (stable, preferred, grounded). Expressions of this language
rather than formulas are then used as heads of the bridge rules. For more details on the
language the reader is referred to [10].

Consistency handling is achieved by the introduction of mediators. Mediators are
components which, intuitively, collect the update information for the underlying ar-
gumentation framework from connected modules and resolve potential conflicts within
this information. As in MCS, the collection of the relevant information from other mod-
ules is done via bridge rules.

For the conflict resolution, mediators are equipped with a specific consistency han-
dling method. The choice of different such methods allows a broad range of scenarios
to be modeled, from strictly hierarchical ones (a judge decides) to more “democratic”
forms of decision making (based on voting). In each case, the mediator takes the heads
of its applicable bridge rules as input and returns one or several consistent sets of update
statements, called (update) contexts. Each context then specifies how the argumentation
framework is to be modified, and which semantics is to be applied.

Let A be an argumentation framework, C an update context. We call a subset E of
A’s arguments acceptable under C, if E is an extension of the argumentation framework
obtained from A by applying modifications specified by C under the semantics fixed
by C. We are now in a position to introduce the ACS framework more formally.

Nonmonotonic Multi-Context Systems 247

Definition 9. An (argumentation) module M = (A,Med) consists of an argument
framework A and a mediator Med for A based on some argumentation frameworks
A1, . . . ,Ak

3.

Definition 10. An argumentation context system (ACS) is a sequence

F = (M1, . . . ,Mn)

of modulesMi = (Ai,Medi), 1 ≤ i ≤ n, such that each mediator Medi is based only
on argumentation frameworksAi1 , . . . ,Aik

, where ij∈{1, . . . , n} (self-containedness).

We next define the acceptable states for the framework, which correspond to the equilib-
ria of MCS. Intuitively, such a state consists of an update context and a set of arguments
for all modules Mi. Again states have to satisfy a certain equilibrium condition: for
each module, the chosen arguments must be an acceptable set of arguments for Ai un-
der the respective update context, and this context (determined by Medi) must be one
of the contexts produced by the mediator’s consistency method with respect to the argu-
ment sets chosen for the parent modules ofAi (we call such update contexts acceptable
for Medi with respect to the state). More formally,

Definition 11. Let F = (M1, . . . ,Mn) be an ACS. A state of F is a function S that
maps each Mi = (Ai, Medi) to a pair S(Mi) = (Acci, Ci), where Acci is a subset
of the arguments ofAi and Ci is an update context for Ai.
S is acceptable, if (i) each Acci is an acceptable Ci-extension for Ai, and (ii) each

Ci is an acceptable context for Medi wrt. S.

We refer the reader to [10] for more details and illustrative examples.

5 Ongoing and Future Work

The work on MCS from the previous sections is, beyond improvements and further
elaborations, complemented with several streams of ongoing and future work. In this
section, we briefly consider some of them, where focus on generalizing MCS based
on ACS.

5.1 Handling Incomplete Information

The approach to explain inconsistency in an MCS that we considered above is based
on the assumption that the agent performing this tasks has an omniscient view of the
system, i.e., has full information about each context, including the logic, the knowledge
base, and the bridge rules. However, in real world scenarios, it is not expected that
all this information is available, and some of the contexts are like “black boxes” in
which the knowledge base and the logic respectively the precise semantics of the (in
detail unknown) knowledge base is hidden. Such information hiding may be desired for
various reasons, e.g. security, privacy or business motivated (intellectual property) etc.
One may only have partial knowledge about the context, like the input-output behavior
in particular cases, and some additional knowledge about properties of this behavior.

3 This means the mediator’s bridge rules only refer to A1, . . . ,Ak in their bodies.

248 G. Brewka, T. Eiter, and M. Fink

In [21], an approach to deal with partial knowledge about MCS is developed using a
two-level representation:

– the lower level aims to capture the known behavior of a context on various inputs
and outputs in terms of a partially defined Boolean function, i.e., a Boolean func-
tion that leaves the value for some inputs open. Here, the complete semantics of a
context C is abstracted to a Boolean function fC(i,o), where i = i1, . . . , in are the
beliefs that occur in the bodies of the bridge rules of C, and o = o1, . . . , om are the
beliefs from C which occur in the bodies of any bridge rule in the MCS, and all ij ,
ok are viewed as Boolean variables; intuitively, i and o are input and output beliefs
of C, while all other beliefs in C are hidden. The function takes the value 1 iff after
adding the input beliefs according to i to the knowledge base, there exists some
acceptable belief set for the augmented knowledge base in which the membership
of the output beliefs is given by o. The implementation of MCS described above
uses essentially this abstraction.

– The higher level captures specific properties like consistency, monotonicity, func-
tionality etc. which can be exploited to reason about context properties.

Then, using this representation, semantic approximations of diagnoses and explanations
are developed, in terms of under- and over-approximations of actual diagnoses and ex-
planation under complete information. Furthermore, strategies are discussed how to
query contexts with a limited number of queries for some inputs to improve the approx-
imation accuracy.

As it appears, dealing with incomplete information about contexts is not easy, and
best methods to deal with it will require quite some efforts.

5.2 Aggregating Information

In real world scenarios, MCS may include some rather plain contexts whose knowledge
bases are relational databases and the “logics” of their belief semantics will basically be
given by querying these databases. An important aspect for databases is the possibility
to aggregate data, for example for salary data, to find out the maximum, average, or sum
of all salaries. In standard database query languages, this is supported via designated
aggregation constructs; more recently, such aggregates have also been introduced in An-
swer Set Programming. Given that bridge rules allow to “import” data from a context,
it would be desirable to perform aggregation of such data also in bridge rules, given that
the access to data (and aggregation at the source context) might not be feasible.

To introduce useful aggregates in bridge rules requires in fact two extensions of the
MCS formalism above: firstly, one has to move from a sentential setting of the context
logics to a predicate logic setting, where we can talk about objects and their properties;
e.g., sal (1, joe, 20K) encoding the salary of an employee with internal ID 1 and name
Joe. Then, atoms in bridge rules should be atoms in the predicate languages (permitting
constants and variables). Secondly, we need aggregation constructs, and besides syntax
also a semantics.

Current work at the KBS group of TU Vienna is developing such an extension, in
which open bridge rules (with variables) have a grounding semantics over a (possibly

Nonmonotonic Multi-Context Systems 249

virtual) domain shared by the contexts. For example, the import of the sum of salaries
from a database relation sal at some context Ci could be accomplished by the following
bridge rule:

total sali(X) ← X = #sum{S, I : (i : sal(I,N, S))} (9)

Here the atom in the body involves an aggregation expression according to the DLV
convention, where each fact sal(I,N, S) distinct on S and I (and as I determines S,
distinct on I) is considered and the values of S are summed up. Aggregates of this form
will be very useful to aggregate information from different sources, e.g., salary data in
different databases, especially if this data is stored in heterogeneous formats.

Another interesting form of aggregation will be to collect information across differ-
ent contexts, using also variables to access contexts. This will be particularly useful
to gather a global picture in a MCS, which is needed for applications in which social
choice based on group decisions (e.g., voting) plays a role. For example, an expres-
sion #count{C : (C : vote(yes))} could count all contexts C which have the fact
vote(yes) in their belief set. Buccafurri et al.’s work on Social ASP [12,13] is in this di-
rection, based on Answer Set Programs as logics at particular contexts. However, while
support for aggregating information is available, this and a similar MCS formalism still
lack a mechanism for decision making according to a protocol, which would need to be
encoded from first principles.

5.3 Dynamic MCS

The use of variables for contexts is also important for a generalization of MCS that
takes a dynamic configuration into account. So far an MCS M is static in the sense
that the contexts and the information interlinkage via bridge rules is fixed. One can
imagine, however, that M is not completely specified at the beginning, but has to be
formed from a pool P of contexts that may be connected with each other. For example,
in a scenario different contexts may provide ontological information about diseases, but
only one of the contexts should be included in the MCS. A natural problem is then,
given a schematically described MCS M , to pick contexts from the pool for the generic
contexts in the schema and concrete information links for the bridge rules such that a
working MCS results. In a sense, this may be viewed as a configuration problem where
the components are contexts and the constraints between the components are given by
schematic bridge rules.

The KBS group at TU Vienna currently develops a framework for dynamic MCS
of this kind, where besides variables for contexts also variable for beliefs in schematic
bridge rules are introduced. The instantiation of the context proceeds by finding con-
crete contexts whose beliefs match with the beliefs p that are mentioned in the bridge
rules. To this end, a matchmaker is involved which determines the quality of match
between p and beliefs p′ in some context C; as perfect matches will not always exist,
best matching beliefs may be considered, with a loss of accuracy. The task is then to
find, given a starting set S of schematic contexts from the pool P , a binding for each
context in S to contexts and beliefs in them, such that all variables are eliminated and an
ordinary MCS results; this may involve the addition of further contexts. As in general,

250 G. Brewka, T. Eiter, and M. Fink

multiple solutions exist, an optimal one according to some criteria (e.g., the accuracy
of information, and/or the number of contexts involved) may be desired. Given that
finding optimal solutions is expensive, reasonable heuristics will be important (possibly
also general qualitative preferences like in [16]). A formal framework and a respective
algorithm configuration for dynamic configuration, which proceeds by neighborhood
search, will be available in the near future. It will also move MCS closer to peer-to-
peer systems, where also systems of peers are demand-driven formed ad hoc following
a neighborhood selection. Furthermore, dynamic addition and removal of contexts to
respectively from the pool (which may be large) can be accomplished.

5.4 Towards Mediator Based MCS

As we have seen, ACS go beyond MCS as they allow one context to modify another
by not only adding, but also deleting information. Moreover, mediators in ACS pro-
vide inconsistency handling methods which make sure the required modifications make
sense. On the other hand, ACS are not heterogeneous: they require a specific context
logic, namely Dung argumentation frameworks. The natural question to ask, then, is:
can we have the best of both worlds and generalize both ACS and MCS in such a way
that heterogeneous contexts can be used, and yet contexts can be updated as in ACS?

In this section we give some initial answers to this question and introduce mediator
based MCS (MMCS). Starting from the original MCS definitions, gradually more func-
tionality is added to the contexts. Contrary to ACS where mediators and contexts are
separated, we integrate the two within the contexts. A motivation for this is simplicity
and uniformity of the overall approach, and closeness to the original MCS definitions.

Step 1: Revising rather than augmenting KBs. From an abstract point of view, a me-
diator can be seen as a function taking as input a set of - possibly conflicting - expres-
sions specifying how the context’s knowledge base is to be updated, and producing as
output a revised knowledge base, respectively a collection of revised knowledge bases,
each of them representing an acceptable update. If there is a conflict in the mediator’s
input, then the mediator is expected to resolve this conflict.

The first extension we thus need is a language for specifying relevant modifications.
For this language we rely, in this first step, on operations studied in the area of belief re-
vision (see [6] for a collection of recent papers), namely expansion (adding a formula),
contraction (making a formula underivable) and revision (integrating a formula in a con-
sistent way). We may use expressions of the form add(F), contract(F), revise(F),
respectively, to denote these operations, where F is a formula of the respective context
logic. The set of update expressions for logic L will be denoted UPL.

Expressions of this language replace formulas in the heads of a context’s bridge rules.
An MMCS bridge rule for logic L thus is of the form

s← (r1 : p1), . . . , (rj : pj), not (rj+1 : pj+1), . . . ,not (rm : pm) (10)

where s ∈ UPL and the body elements are as before. Intuitively, update expressions
allow us to specify the required knowledge base modifications via applicable bridge

Nonmonotonic Multi-Context Systems 251

rules. However, it may be necessary for the mediator to resolve conflicts within the set
of update expressions generated by the bridge rules. For this reason, each context Ci

has an additional mediator componentmedi, which associates with each pair (U, kbi) ∈
2UPLi ×KBLi a set of knowledge bases from KBLi which are intuitively the different
possible outcomes of the update (which in general might not be unique).

An MMCS is (as before) a structure M = (C1, . . . , Cn), yet now each Ci is an
MMCS context. What still needs to be defined is a new notion of equilibrium. Intu-
itively, an equilibrium is a belief state such that the belief set chosen for each context is
a belief set of one of the KBs which result from applying the mediator to the heads of
applicable bridge rules (first argument) and kbi (second argument).

More formally, this is captured as follows: Let M = (C1, . . . , Cn) be an MMCS,
S = (S1, . . . , Sn) a belief state, that is each Sj is a belief set of context Cj . S is an
equilibrium iff for each i, 1 ≤ i ≤ n, we have

Si ∈ ACCi(kb∗i) for some kb∗i ∈ medi(upi, kbi)

where upi = {s ∈ UPLi | s head of a bridge rule r ∈ bri, r applicable in S}.
Clearly the original MCS are special cases of MMCS: given an MCS M1 we can

define an associated MMCS M2 with the same equilibria. We just have to replace the
heads of all bridge rules in M1 with corresponding add statements, generating in this
way the bridge rules form M2. The mediators are defined in such a way that they just
pass on the additional information, that is all modifications are just augmentations.

Step 2: Multiple semantics. ACS allow the semantics of a context logic to be con-
trolled explicitly. To introduce this useful feature in MMCS, we need a more general
form of logics, allowing for a choice of semantics. We assume that for each logic L an
index set IL is given. The indices are used to refer to the different semantics.

We then can view a logic is a tuple L = (KBL, BSL, {Acci
L}i∈IL), where KBL

and BSL are as before, and IL is an index set such that each index denotes a semantics.
Thus, the different semantics a logic may have are represented using a collection of

Acc functions. In addition, we need to foresee expressions in the update language UPL

which allow a semantics to be fixed. This is simply achieved by introducing in UPL

expressions of the form sem(i) where i ∈ IL. Finally, the mediator must produce a
second output, namely one of the semantics:

medi : 2UPLi ×KBLi → 2KBLi × I.

An equilibrium now must satisfy the additional condition that the belief set selected for
each context must be a belief set under the chosen semantics. The equilibrium condition
thus becomes:

Si ∈ ACCj
i (kb∗i) for some kb∗i ∈ KB∗

where medi(upi, kbi) = (KB∗, j) and upi = {s ∈ UPLi | s head of a bridge rule r ∈
bri, r applicable in S}.

252 G. Brewka, T. Eiter, and M. Fink

In ACS a distinction was made not only between semantics (grounded, preferred, sta-
ble) but also between reasoning modes (skeptical vs. credulous) for each argumentation
context. For simplicity, whenever an arbitrary context semantics allows for a distinction
between different reasoning modes, we subsume this under the semantics. For instance,
credulous stable reasoning and skeptical stable reasoning for logic programs are con-
sidered as two different semantics.

Step 3: Keeping track of sources of update information. So far our mediators are
still very abstract. We simply assumed that the mediator takes care of potential incon-
sistencies within the set of update expressions obtained through applicable bridge rules
- without specifying how this is to be done. Similarly, we assumed that, once conflicts
are resolved, the mediator produces a revised knowledge base (or a collection of such
knowledge bases) - again without specifying how.

There are numerous methods for conflict handling, and a whole area of research,
namely belief revision, is investigating how to revise belief sets, respectively belief
bases, in the light of new information. We believe that different ways of instantiating
mediators will be useful, in particular given the large variety of underlying logics multi-
context systems encompass. Also, a pluralistic view regarding conflict resolution and
revision methods fits well to the pluralistic view regarding context logics. For this rea-
son we refrain from specifying particular methods at this point and prefer to keep the
MMCS framework as abstract as it currently is.

However, we would at least like to point out a further extension of the framework that
will be useful for a variety of conflict handling methods. Most of these methods will,
in some way or the other, take information about the sources of update information
(and potentially information about the reliability of sources) into account. The input of
the mediator function so far does not contain this source information. In the context
of MMCS it is natural to identify sources with the context(s) from which the update
information stems (the contexts appearing in the bodies of bridge rules). Another natural
option would be to take the particular bridge rule used to derive the information as its
source. The mediator then could be based on preference information, stored in a local
mediator knowledge base, about the context’s bridge rules.

To realize this, the input of the mediator function would not be just a set of update
expressions e, it would consist of pairs (e, s) where s is the source of expression e. How
the modification is computed out of this information is then an issue which is internal
to the mediator.

6 Related Work and Conclusion

Most closely related to MCS as considered above are the pioneering multi-context sys-
tems of the Trento School that we have already briefly discussed in the Introduction.

Distributed ontologies. Other work that has been carried out at the Trento group and
which is related to MCS is work on distributed ontologies. Here, the scenario is that
ontology parts, which reside in multiple knowledge bases that are formulated in a De-
scription Logic, should be put together into a single global ontology, such that particular

Nonmonotonic Multi-Context Systems 253

reasoning tasks across the knowledge base can be solved. Here in fact different views
of the ontology information in the knowledge bases are possible: seeing them as parts
of a dispersed or divided ontology (in database terms akin to the local-as-view sce-
nario), or as relatively autonomous units which should be synthesized in a bottom up
fashion (akin to global-as-view in databases). A recent survey and comparison of vari-
ous approaches to distributed ontologies, is given in [38]. There, four main formalisms
have been considered, viz. distributed description logics (DDL) [7], E-connections [40],
package-based description logics (P-DL) [4], and integrated DDL (IDDL) [46]. They
are based on different principles and offer interlinkage with special bridge respectively
integration axioms that allow to enforce semantic relationships between concepts and
role across knowledge bases, or to important concepts and roles with their semantics
relationships. However, there are some differences to MCS.

Firstly, distributed ontologies often assume a homogenous, or at least a similar, for-
mat of the knowledge bases which is in contrast to the heterogeneity of MCS. Secondly,
distributed ontologies aim at a tight integration and an alignment of the signatures, but
also of the domain of global models. To this end, different kinds of mappings between
domain elements for the knowledge interlinkage are considered, and the linkage is at
the level of concepts and roles, applied to individuals. In MCS, there is prima facie no
domain of discourse and the linkage is at the sentential level; however, the work on ag-
gregation mentioned in the previous section is heading towards such a more fine-grained
setting. Thirdly, nonmonotonicity does not play a role in distributed ontologies.

Combining rules and ontologies. Besides distributed ontologies also the issue of com-
bining rules and ontologies, which has been a hot topic in the recent years in the KR
and Semantic Web research, is related to MCS (see [18] for a survey). In particular,
[25] presented an approach in which a logic program P can query a Description Logic
knowledge base L using special DL-query atoms in rule bodies. Prior to evaluating the
query, L may be augmented with assertions that copy the value of predicates in P to
assertions about concepts respectively roles in L. A nonmonotonic description logic
(DL) program KB then consists of a finite set P of such generalized rules and L. We
may see KB as an MCS, with one context for P and one for each query atom in P ;
the information flow between P and L can be emulated using bridge rules that are quite
natural (but cumbersome to write). Furthermore, to capture the semantics of KB, one
may need to resort to notions of grounded equilibria. While in this particular setting,
MCS come close to a knowledge integration formalism, one has to keep in mind that
plain MCS are not formalisms for knowledge integration per se, which adhere to a spe-
cial integration semantics or perform alignment of knowledge. This would have to be
defined either on top of an MCS, or encoded via the context logics. The mediator MCS
discussed above are closer to a knowledge integration formalism, providing means to
incorporate beliefs from other knowledge bases respectively contexts according to a
particular incorporation semantics, which can emulate integration respective alignment
to some extent. A detailed comparison of MCS to the many formalisms for combining
rules and ontologies is beyond the scope of this article.

Multi-agent systems. Another area that naturally seems to be closely related to MCS
are multi-agent systems, where agents share information over a communication

254 G. Brewka, T. Eiter, and M. Fink

infrastructure such that some global state emerges from the local states of the agents;
see e.g. [44,45]. However, there is a salient difference between a multi-agent system
and a multi-context system. In multi-agent systems, an important element even for in-
formation exchange is communication, which proceeds usually in multiple steps ac-
cording to a protocol (see for example agent communication languages like KQML
[28] or FIPA ACL [29]), which may foresee different options of how to deal with in-
formation requests and to integrate information into an agent’s knowledge base. The
communication primitives are designed according to the specific needs of agents taking
into account fundamental aspects like autonomy, intentions and goals of an agent, etc.
In particular, an agent may refuse information. In MCS, there are no such mechanisms
for information exchange according to a protocol; rather, the semantics establishes a
spontaneous “information equilibrium” via the links given by bridge rules, without any
higher goals or intentions. Such goals and intentions, and a protocol, respectively pol-
icy, specifying how to deal with new information, would have to be mimicked within
the knowledge base (assuming the underlying logic is capable of encoding the relevant
aspects). We note that [12] presents “Communicating Answer Set Programs”, whose
semantics is closely related to minimal equilibria semantics of MCS and especially the
semantics of Social ASP [12,13]. However, no mechanism for protocol support etc is
incorporated there.

Game theory. We might disregard communication and other particular distinctive fea-
tures of agents, and consider ensembles of “agents” from a more abstract perspective as
the one in game theory; also here, we find salient differences, despite the possibility to
view equilibria of an MCS as game-theoretic solutions.

Assume that an outcome (i.e., belief state) S = (S1, . . . , Sn), has for Ci reward 1
if Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)}) and 0 otherwise. Then, it is easy
to see that each equilibrium of M is a Nash equilibrium of this game (indeed, each
player has optimal reward); on the other hand, there might be Nash equilibria that do
not correspond to any equilibrium. This may happen e.g. if no acceptable belief sets are
possible. For instance, the MCS M = (C1, C2), where C1 and C2 are isolated answer
set programs {a ← not a}, has no equilibrium, but S = (∅, ∅) is a Nash-equilibrium
of the game. Clearly, if M has equilibria, then they coincide with the Pareto-optimal
solutions of the game; under additional conditions (e.g., ACCi(bi ∪Hi) �= ∅ for each
Hi ⊆ {h(r) | r ∈ bri}) they coincide with the Nash equilibria.

However, these characterizations are technical in nature and employ games with triv-
ial instances of the important aspects of an agent from a game-theoretic view: a non-
trivial utility function of different outcomes and a (sophisticated) rational strategy of
behavior. On the other hand, as MCS just serve for basic belief interlinkage without a
deeper theory behind, only such a simple utility function and strategy may be expected.

Fibring logics. The combination of logical systems is a natural problem that has been
considered abundantly, and many approaches have been developed. An influential one
is Gabbay’s Fibring Logics [30], which roughly aims at obtaining the logicsL built over
the combined languages of two logics L1 and L2 that conservatively extend each logic

Nonmonotonic Multi-Context Systems 255

Li and are minimal in this respect. It involves two issues: characterizing the notion of
a logical system (using e.g. algebraic structures and proof systems) and characterizing
the methods how to combine logics in general. Here, syntactic and semantic based com-
binations can be conceived, where the latter raise more difficulties; for more discussion,
see e.g. [14].

Fibring logics and similar approaches are only remotely related to MCS. The notion
of “logic” in MCS is very abstract. Contrary to the respective component in Gabbay’s
approach, it does not require specific features of a logical system (such as e.g. a proof
system or inference rules). This takes into account that, as often in realistic situations,
the “logics” in use at a context may not be fully described logical systems. Hence,
also “fibring” does not seem to make sense for arbitrary MCS (or would be trivial).
Furthermore, bridge rules - an essential ingredient in MCS - do not have an apparent
counterpart in the fibring construction.

Distributed SAT and CSP. From a computational point, evaluating a decentralized
MCS as in Section 2.3 can be reduced to distributed SAT solving, given that the lo-
cal semantics of each context (i.e., the acceptability function for belief sets) can be
encoded to a SAT instance. In fact, this is the approach underlying the implemen-
tation of the DMCS system [15,1,2]. Overall, this means that the computation of a
global equilibrium is reducible to solving a distributed SAT instance; algorithms like
the family of MULTI-DB algorithms in [37] may be used for that. Similar as in An-
swer Set Programming, where transformations of ASP programs to SAT instances can
take advantage of improvements on SAT solvers, reductions of decentralized MCS to
distributed SAT can benefit from advances on distributed SAT solvers. In connection
with this, it would be interesting to explore the usability of distributed CSP solving for
some of the extensions of MCS mentioned above. In turn, algorithms for Distributed
SAT/CSP may inspire algorithms for MCS that are based on specific contexts, e.g., ASP
contexts.

6.1 Conclusion

In this paper, we have reviewed nonmonotonic multi-context systems (MCS) from [9]
that emerged from previous work of the Trento School on multi-context systems, as a
flexible and generic formalism that allows for the interlinkage of heterogeneous (possi-
bly nonmonotonic) knowledge bases via possibly non-monotonic bridge rules. We have
discussed recent and ongoing work on MCS, as well as variants and possible general-
izations that are planned for the future.

It should be re-emphasized that the ground-breaking work of Michael Gelfond on
the semantics of logic programs with negation, and in particular the way to define an-
swer set semantics, has been fundamental for our work on MCS, like for many other
formalisms and systems that we have developed. We are looking forward to face new
frontiers and problems in knowledge representation where Michael’s results can be
fruitfully applied, and undoubtedly there will be plenty of them.

Acknowledgement. The authors are grateful for the constructive review comments.

256 G. Brewka, T. Eiter, and M. Fink

References

1. Bairakdar, S.E.-D., Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Decomposition of
distributed nonmonotonic multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) [39]

2. Bairakdar, S.E.-D., Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: The DMCS solver
for distributed nonmonotonic multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) [39]

3. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In: Inter-
national Symposium on Logical Formalization of Commonsense Reasoning, AAAI 2003
Spring Symposium Series, pp. 9–18 (2003)

4. Bao, J., Honovar, V.: Extension to support collaborative ontology building. In: Poster &
Demonstration Proceedings of the 3rd International Semantic Web Conference (ISWC 2004),
page PID 37 (2004) (poster)

5. Bögl, M., Eiter, T., Fink, M., Schüller, P.: The MCS-IE system for explaining inconsistency
in multi-context systems. In: Janhunen, T., Niemelä, I. (eds.) [39]

6. Bonanno, G., Delgrande, J.P., Lang, J., Rott, H.: Special issue on formal models of belief
change in rational agents. J. Applied Logic 7(4), 363 (2009)

7. Borgida, A., Serafini, L.: Distributed description logics: Directed domain correspondences
in federated information sources. In: Meersman, R., Tari, Z. (eds.) CoopIS 2002, DOA 2002,
and ODBASE 2002. LNCS, vol. 2519, pp. 36–53. Springer, Heidelberg (2002)

8. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: A tool for repre-
senting and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell.
Res (JAIR) 21, 135–191 (2004)

9. Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems.
In: AAAI 2007, pp. 385–390. AAAI Press, Menlo Park (2007)

10. Brewka, G., Eiter, T.: Argumentation context systems: A framework for abstract group ar-
gumentation. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp.
44–57. Springer, Heidelberg (2009)

11. Brewka, G., Roelofsen, F., Serafini, L.: Contextual Default Reasoning. In: IJCAI 2007, pp.
268–273 (2007)

12. Buccafurri, F., Caminiti, G.: Logic programming with social features. TPLP 8(5-6), 643–690
(2008)

13. Buccafurri, F., Caminiti, G., Laurendi, R.: A logic language with stable model semantics for
social reasoning. In: de la Banda, M.G., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
718–723. Springer, Heidelberg (2008)

14. Caleiro, C., Sernadas, A., Sernadas, C.: Fibring logics: Past, present and future. In: Artëmov,
S.N., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J. (eds.) We Will Show Them!
(1), pp. 363–388. College Publications (2005)

15. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic multi-context
systems. In: Proceedings 12th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR 2010), Toronto, Canada, May 9-13 (2010)

16. Dell’Acqua, P., Pereira, L.M.: Preferring and updating in logic-based agents. In: Bartenstein,
O., Geske, U., Hannebauer, M., Yoshie, O. (eds.) INAP 2001. LNCS (LNAI), vol. 2543, pp.
70–85. Springer, Heidelberg (2003)

17. Dix, J.: A Classification-Theory of Semantics of Normal Logic Programs: II. Weak Proper-
ties. Fundamenta Informaticae XXII(3), 257–288 (1995)

18. Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Małuszyński, J.: Hybrid
reasoning with rules and ontologies. In: Bry, F., Małuszyński, J. (eds.) Semantic Techniques
for the Web. LNCS, vol. 5500, pp. 1–49. Springer, Heidelberg (2009)

Nonmonotonic Multi-Context Systems 257

19. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

20. Eiter, T., Brewka, G., Dao-Tran, M., Fink, M., Ianni, G., Krennwallner, T.: Combining
nonmonotonic knowledge bases with external sources. In: Ghilardi, S., Sebastiani, R. (eds.)
FroCoS 2009. LNCS, vol. 5749, pp. 18–42. Springer, Heidelberg (2009)

21. Eiter, T., Fink, M., Schüller, P.: Approximations for explanations of inconsistency in par-
tially known multi-context systems. In: Informal Proceedings Conference Thirty Years of
Nonmonotonicty (NonMon30), Lexington, October 22-25 (2010)

22. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency in multi-
context systems. In: Proceedings 12th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2010), Toronto, Canada, May 9-13 (2010)

23. Eiter, T., Fink, M., Weinzierl, A.: Preference-based inconsistency assessment in multi-
context systems. In: Janhunen, T., Niemelä, I. (eds.) [39]

24. Eiter, T., Gottlob, G., Veith, H.: Modular logic programming and generalized quantifiers.
In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 290–309.
Springer, Heidelberg (1997)

25. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set
Programming with Description Logics for the Semantic Web. Artificial Intelligence 172(12-
13), 1495–1539 (2008); Preliminary version Tech.Rep. INFSYS RR-1843-07-04, Inst. Infor-
mation Systems, TU Vienna (January 2007)

26. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-
soning and external evaluations in answer-set programming. In: International Joint Confer-
ence on Artificial Intelligence, pp. 90–96 (2005)

27. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Seman-
tics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 200–212. Springer, Heidelberg (2004)

28. Finin, T.W., Fritzson, R., McKay, D.P., McEntire, R.: Kqml as an agent communication lan-
guage. In: CIKM, pp. 456–463. ACM, New York (1994)

29. Foundation for Intelligent Physical Agents (FIPA). Fipa2000 agent specification (2000),
http://www.fipa.org

30. Gabbay, D. (ed.): Fibring Logics. Oxford University Press, Oxford (1999)
31. Gelfond, M.: Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook

of Knowledge Representation. Foundations of Artificial Intelligence, ch. 7, pp. 285–316.
Elsevier, Amsterdam (2007)

32. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP
1988, pp. 1070–1080. MIT Press, Cambridge (1988)

33. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and deductive databases.
New Generation Computing 9, 365–385 (1991)

34. Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reason-
ing=locality+compatibility. Artif. Intell. 127(2), 221–259 (2001)

35. Giunchiglia, F.: Contextual reasoning. Epistemologia XVI, 345–364 (1993)
36. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: How we can do without

modal logics. Artificial Intelligence 65(1), 29–70 (1994)
37. Hirayama, K., Yokoo, M.: The distributed breakout algorithms. Artif. Intell. 161(1-2), 89–

115 (2005)
38. Homola, M.: Semantic Investigations in Distributed Ontologies. PhD thesis, Comenius Uni-

versity, Bratislava, Slovakia (April 2010)
39. Janhunen, T., Niemelä, I. (eds.): JELIA 2010. LNCS, vol. 6341. Springer, Heidelberg (2010)
40. Kutz, O., Wolter, F., Zakharyaschev, M.: Connecting abstract description systems. In: Fensel,

D., Giunchiglia, F., McGuinness, D.L., Williams, M.-A. (eds.) KR, pp. 215–226. Morgan
Kaufmann, San Francisco (2002)

http://www.fipa.org

258 G. Brewka, T. Eiter, and M. Fink

41. Lifschitz, V., Turner, H.: Splitting a logic program. In: International Conference on Logic
Programming (ICLP), pp. 23–37 (1994)

42. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1029–1035 (1987)
43. Roelofsen, F., Serafini, L.: Minimal and absent information in contexts. In: Proc. IJCAI 2005

(2005)
44. Weiss, G. (ed.): Multiagent Systems. A Modern Approach to Distributed Artifical Intelli-

gence. MIT-Press, Cambridge (2000) (2nd print)
45. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and Sons, Chichester

(2002); 2nd edn. (2009)
46. Zimmermann, A.: Integrated distributed description logics. In: Calvanese, D., Franconi, E.,

Haarslev, V., Lembo, D., Motik, B., Turhan, A.-Y., Tessaris, S. (eds.) Description Logics.
CEUR Workshop Proceedings, vol. 250, CEUR-WS.org (2007)

Perspectives on Logic-Based Approaches for Reasoning
about Actions and Change

Agostino Dovier1, Andrea Formisano2, and Enrico Pontelli3

1 Univ. di Udine, Dip. di Matematica e Informatica
agostino.dovier@uniud.it

2 Univ. di Perugia, Dip. di Matematica e Informatica
formis@dmi.unipg.it

3 New Mexico State University, Dept. Computer Science
epontell@cs.nmsu.edu

Abstract. Action languages have gained popularity as a means for declaratively
describing planning domains. This paper overviews two action languages, the
Boolean language B and its multi-valued counterpart BMV . The paper analyzes
some of the issues in using two alternative logic programming approaches (An-
swer Set Programming and Constraint Logic Programming over Finite Domains)
for planning with B and BMV specifications. In particular, the paper provides an
experimental comparison between these alternative implementation approaches.

1 Introduction

As illustrated by Lifschitz [19], research on planning requires the resolution of two
key problems: development of languages for the description of planning problems—
using declarative and elaboration tolerant notations—and design of efficient and scal-
able planning algorithms.

Action languages [15] have gained popularity over the years as viable declarative
notations for the description of planning domains. Since the original proposal of the
languages A, B, and C by Gelfond and Lifschitz [15], a variety of new action lan-
guages have appeared in the literature, with declarative features aimed at capturing
important features of real-world planning domains, such as preferences [27], time and
duration s[1], numerical reasoning [17], and beliefs [13].

In recent years, we have witnessed an increased interest in exploring ways of bridg-
ing the gap between the declarative problem encodings offered by action language and
the development of effective implementations. In particular, an interesting line of work
has been developed to study the relationships between action languages and logic pro-
gramming. The link between these two paradigms is quite natural, considering the log-
ical foundations underlying the semantics of most action languages. Furthermore, this
direction of research is fueled by some very attractive properties of logic programming,
such as:

◦ Research in logic programming has significantly enhanced the performance of mod-
ern logic programming inference engines; for example, answer set solvers are cur-
rently competitive with state-of-the-art SAT solvers (e.g., clasp in the 2009 SAT
Competition—http://www.satcompetition.org).

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 259–279, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

formis@dmi.unipg.it
http://www.satcompetition.org

260 A. Dovier, A. Formisano, and E. Pontelli

◦ Logic programming implementations of action languages maintain the declarative
nature of the original encoding, enabling, for example, to maintain a good level of
elaboration tolerance in the executable encoding.

◦ The declarative nature of logic programming makes it feasible to envision the use
of user-defined search strategies, expressed as logic programming theories. Further-
more, it facilitates the orthogonal introduction of domain knowledge, that can be
used to guide the search for solutions during planning.

The advent of Answer Set Programming (ASP) [20, 22] has significantly impacted
the area of logic programming encoding of action languages—the support for non-
monotonic reasoning provided by ASP nicely matches the needs of action languages
(e.g., facilitating the resolution of the frame problem [21]).

Over the last few years, we have embarked on a comparative investigation of the
features of two of the most popular logic programming paradigms—answer set pro-
gramming and constraint logic programming over finite domains (CLP(FD)) [16]. Some
preliminary results have been presented in [3, 4, 6]. Recently, this line of work has
focused to the investigation of the respective strengths and weaknesses of ASP and
CLP(FD) in dealing with planning problems and action languages. We have investi-
gated the relative performances of the two paradigms on different classes of planning
problems and on different types of action languages [5, 10, 7, 8].

In this paper, we continue this line of work with several contributions:

◦ We explore some modifications of the encodings in both ASP (Section 3) and
CLP(FD) (Section 4), leading to significant improvements in performance;

◦ We make use of the state-of-the-art systems in ASP and CLP(FD)—in particular,
ASP technology has made significant improvements since our previously published
results (e.g., [10]);

◦ We expand the pool of benchmarks, including more challenging problems like the
reverse folding problem and the tangram (Section 6);

◦ We emphasize the role of multi-valued fluents in gaining efficiency in planning and
compactness of domain descriptions (Section 5).

2 The Action Language B
In this section, we revisit the syntax and semantics of the action description language
B. The syntax and semantics presented in the following sections is a slight modification
of the original definitions from the seminal paper of Gelfond and Lifschitz [15].

2.1 Syntax of B
An action signature consists of a set F of fluent names, a set A of action names,
and a set V of values for fluents in F . In this section, we consider Boolean fluents,
hence V = {0, 1} (or {false, true}). A fluent literal is either a fluent f or its negation
neg(f). Fluents and actions are concretely represented by ground atomic formulae
p(t1, . . . , tm) from an underlying logic languageL—where p is a predicate symbol and
t1, . . . , tm are ground terms. We assume that the set of allowed terms for L is finite.

Perspectives on Logic-Based Approaches for Reasoning about Actions and Change 261

The language B allows us to specify an (action) domain description D. The core
components of a domain description are its fluents—properties used to describe the state
of the world, that may dynamically change in response to execution of actions—and
actions—denoting how an agent can affect the state of the world. Fluents and actions
are introduced by assertions of the forms fluent(f) and action(a). An action
description D relates actions and fluents using axioms of the following types —where
[list-of-conditions] denotes a list of fluent literals:

– causes(a, �, [list-of-conditions]): this axiom encodes a dynamic
causal law, describing the effect (i.e., truth assignment to the fluent literal �) of the
execution of the action a in a state of the world that satisfies all the conditions in
[list-of-conditions];

– caused([list-of-conditions], �): this axiom describes a static causal
law—i.e., the fact that the fluent literal � is true in any state satisfying all the given
preconditions.

Moreover, preconditions can be imposed on the executability of actions by means of
assertion of the forms:

– executable(a, [list-of-conditions]): this axiom asserts that, for the
action a to be executable, all the given conditions have to be satisfied in the current
state of the world.

A domain description is a set of static causal laws, dynamic laws, and executability
conditions. A specific planning problem 〈D,O〉 contains a domain descriptionD along
with a set O of observations describing the initial state and the desired goal, specified
using the following types of statements:

– initially(�) asserts that the fluent literal � is true in the initial state of the
world;

– goal(�) asserts that the goal requires the fluent literal � to be true in the final state
of the world.

In the concrete specification of an action theory, we will allow a Prolog-like syntax to
express in a more succinct manner the laws of the theory. For instance, to assert that in
the initial state of the world all fluents are true, we can simply write the following rule:

initially(F) :- fluent(F).

instead of writing a fact initially(f) for each possible fluent f .

2.2 Semantics of B
We will rely on sets of fluent literals to describe a state of the world. If � is a fluent
literal, and S is a set of fluent literals, we say that S |= � if and only if � ∈ S. A list
of literals L = [�1, . . . , �m] denotes a conjunction of literals, hence S |= L if and only
if S |= �i for all i ∈ {1, . . . ,m}. We denote with ¬S the set {f ∈ F : neg(f) ∈
S} ∪ {neg(f) : f ∈ S ∩ F}. We are interested in considering only sets of literals that
satisfy certain properties:

262 A. Dovier, A. Formisano, and E. Pontelli

– A set of fluent literals is consistent if there is no fluent f s.t. S |= f and S |=
neg(f).

– If S ∪ ¬S ⊇ F then S is complete.
– A set S of literals is closed w.r.t. a set of static laws

SL = {caused(L1, �1), . . . ,caused(Lm, �m)}

if, for all i ∈ {1, . . . ,m}, it holds that S |= Li implies S |= �i.

The set CloSL(S) is defined as the smallest set of literals containing S and closed w.r.t.
SL. CloSL(S) is uniquely determined and not necessarily consistent. Whenever we are
working with a domain description D, we will also denote with CloD(S) the result of
CloSL(S) where SL is the set of all static causal laws in D.

Let D be an action description defined on the action signature 〈V ,F ,A〉, composed
of dynamic laws DL, executability conditions EL, and static causal laws SL. The se-
mantics of D is given in terms of a transition system 〈S, ν, R〉, consisting of a set S of
states, a total interpretation function ν : S → F → V (in this section V = {0, 1}), and
a transition relation R ⊆ S ×A× S.

Given a transition system 〈S, ν, R〉 and a state s ∈ S, let:

Lit(s) = {f ∈ F : ν(s)(f) = 1} ∪ {neg(f) : f ∈ F , ν(s)(f) = 0}.

Observe that Lit(s) is consistent and complete.
Given the set of all the dynamic causal laws

{causes(a, �1, L1), . . ., causes(a, �m, Lm)}
for the action a ∈ A present in D and a state s ∈ S, we define the (direct) effects of a
in s as follows:

ED(a, s) = {�i : 1 � i � m,Lit(s) |= Li}.
The action a is said to be executable in a state s w.r.t. D if it holds that

Lit(s) |=
h∨

i=1

Ci, (1)

where executable(a, C1), . . ., executable(a, Ch) for h > 0, are the executabil-
ity axioms for the action a inD. Observe that multiple executability axioms for the same
action a are considered disjunctively. Hence, for each action a, at least one executable
axiom must be present in the action description.

The transition system 〈S, ν, R〉 described by D is such that:

– S is the set of all states s such that Lit(s) is closed w.r.t. SL;
– R is the set of all triples 〈s, a, s′〉 such that a is executable in s and

Lit(s′) = CloD(ED(a, s) ∪ (Lit(s) ∩ Lit(s′))) (2)

Let 〈D,O〉 be a planning problem instance, where {� | initially(�) ∈ O} is a
consistent and complete set of fluent literals. A trajectory in 〈S, ν, R〉 is a sequence

〈s0, a1, s1, a2, · · · , aN, sN〉

such that 〈si, ai+1, si+1〉 ∈ R for all i ∈ {0, . . . ,N− 1}.

Perspectives on Logic-Based Approaches for Reasoning about Actions and Change 263

A sequence of actions 〈a1, . . . , aN〉 is a solution (a plan) to the planning problem
〈D,O〉 if there is a trajectory 〈s0, a1, s1, . . . , aN, sN〉 in 〈S, ν, R〉 such that:

– Lit(s0) |= r for each initially(r) ∈ O, and
– Lit(sN) |= � for each goal(�) ∈ O.

The plans characterized in this definition are sequential—i.e., we disallow concurrent
actions. Observe also that the desired plan length N is assumed to be given.

3 Answer Set Planning

The idea of using logic programming to address planning problems dates back to the
origins of logic programming [28]. The idea of using extended logic programming and
answer set programming can be traced back to the seminal works of Gelfond and Lifs-
chitz [14] and Subrahmanian and Zaniolo [25]. The various encodings proposed in the
literature tend to share similar ideas—fluents are represented by atoms of a logic pro-
gram, with an additional parameter used to represent the state si of a trajectory they
refer to.

3.1 The General Encoding

Let us describe how a domain D and a problem instance 〈D,O〉 can be mapped to
a logic program ΠD(N,O); the intuition is that the mapping should guarantee that
there is a one-to-one correspondence between plans of length N for 〈D,O〉 and an-
swer sets of ΠD(N,O). In the rest of this section, we illustrate the construction of
ΠD as performed by a Prolog translator developed by the authors—and available at
www.dimi.uniud.it/CLPASP. The structure of the translation follow the general
lines delineated in [19, 23].

The initial components of ΠD(N,O) are facts used to identify actions and fluents of
the domain; for each f ∈ F and for each a ∈ A we assume that the facts

fluent(f). action(a).

are present in ΠD(N,O).
The encoding of the content of O is also immediate: for each initially(�) and

for each goal(�′) inO we assume the presence of analogous facts in ΠD(N,O) —i.e.,
O ⊆ ΠD(N,O).

Auxiliary rules are introduced in order to provide the definition of some of the con-
cepts used in the definition of the semantics of domain specifications; in particular, we
introduce in ΠD(N,O) rules aimed at defining the notions of literal and complement of
a literal, as follows:

literal(F) :- fluent(F). literal(neg(F)) :- fluent(F).
complement(F,neg(F)). complement(neg(F), F).

The parameter N is used to denote the length of the desired trajectory; we introduce the
facts time(0..N) to identify the range of time points in the desired trajectory.

www.dimi.uniud.it/CLPASP

264 A. Dovier, A. Formisano, and E. Pontelli

The states si of a trajectory (for i = 0, . . . ,N) are described by the predicate holds;
intuitively, ν(si)(f) = 0 iff holds(neg(f), i) is true and ν(si)(f)=1 iff holds(f, i)
is true.

The various axioms lead to the following rules:

– The executability conditions for an action a provide the definition of a predicate
possible. Let us assume that executable(a, L1), . . . , executable(a, Lh)
are all the executability axioms for a inD, and let us assume that for j∈{1, . . . , h}:
Lj = [�j

1, . . . , �
j
rj

]. Then the following rules are provided in ΠD(N,O):

possible(a, T) :- time(T),holds(�11, T), . . . ,holds(�1r1
, T).

· · ·
possible(a, T) :- time(T),holds(�h

1 , T), . . . ,holds(�h
rh
, T).

– Each static causal law caused([�1, . . . , �r], �) leads to the introduction of a rule
of the form

holds(�, T):-time(T),holds(�1, T), . . . ,holds(�r, T).

– Each dynamic causal law causes(a, �, [�1, . . . , �r]) in D introduces the following
rule

holds(�, T + 1):-time(T),occ(a, T),holds(�1, T), . . . ,holds(�r, T).

– The constraint that ensures consistency of each state constructed is

:-time(T),fluent(F),holds(F, T),holds(neg(F), T).

– The rule that provides the solution to the frame problem is

holds(L, T + 1) :- time(T),literal(L),holds(L, T),
complement(L,L1), not holds(L1, T + 1).

The following additional rules are needed to model the instance O:

– In order to model the initial state, we need the additional rule to generate the de-
scription of the state at time 0:

holds(L, 0):-initially(L).

– In order to model the satisfaction of the goal, we introduce the constraint

:-goal(L), notholds(L,N).

The following final rule is used to support the generation of a plan:

– The rules that generate the sequence of actions constituting the plan are:

1{occ(A, T) : action(A)}1:-time(T), T < N.
:-action(A),time(T),occ(A, T), notpossible(A, T).

Proposition 1. Let us consider a planning problem instance 〈D,O〉 and the program
ΠD(N,O) constructed as discussed earlier. 〈a1, . . . , aN〉 is a plan for 〈D,O〉 iff there
is an answer set M of ΠD(N,O) such that {occ(a1, 0), . . . ,occ(aN,N− 1)} ⊆M .

Perspectives on Logic-Based Approaches for Reasoning about Actions and Change 265

3.2 An Optimized Encoding

If the action theory does not contain any static causal laws, then it becomes possible to
simplify the translation to ASP. In particular, it becomes possible to avoid the creation of
separate atoms for representing negative literals. At the semantic level, we can observe
that, in absence of static causal laws, the formula (2) becomes

Lit(s′) = (Lit(s) \ ¬(ED(a, s))) ∪ ED(a, s)

Practically, this simplification leads to the following changes to the ASP encoding:

– In the encoding of the executability conditions, for each axiom

executable(a, [p1, . . . , pr,neg(q1), . . . ,neg(qs)]).

we can generate the rule

possible(a, T):- time(T),holds(p1, T), . . . ,holds(pr, T),
notholds(q1, T), . . . , notholds(qs, T).

– The encoding of the dynamic causal laws of the form causes(a, f, L), for a fluent
f , is as before, while each law of the form

causes(a,neg(r), [p1, . . . , pr, not q1, . . . , not qs])

in D introduces the following rules

:- holds(r, T + 1),time(T),occ(a, T),
holds(p1, T), . . . ,holds(pr, T),
notholds(q1, T), . . . , notholds(qs, T).

non inertial(r, T + 1):-time(T),occ(A, T).

– Finally, the frame problem has a slightly different encoding: we exploit the above
rules, defining non inertial, together with the rule:

hold(F, T + 1):- time(T),fluent(F),hold(F),
notnon inertial(F, T + 1).

The main advantage of this encoding is to reduce the number of atoms and the size of
the ground version of the ASP encoding. However, considering our experiments, this
smaller grounding does not always guarantee better performance in the solving phase.

4 Planning Using CLP

In this section, we illustrate the main aspects of the encoding of the language B into
constraint logic programming for the purpose of planning. Specifically, the target of
the encoding is a constraint logic program over finite domains (CLP(FD)). The model
presented here is an evolution of the pioneering work described in [10], with several
modifications aimed at enhancing performance.

As for the ASP encoding, we are interested in computing plans with N action oc-
currences, relating a sequence of N + 1 states s0, . . . , sN. For each state si and for

266 A. Dovier, A. Formisano, and E. Pontelli

each fluent f , we introduce a Boolean variable F i to describe the truth value of f
in si. The value of the literal neg(F i) is simply 1 − F i. A list of literals α =
[p1, . . . , pk,neg(q1), . . . ,neg(qh)] interpreted as a conjunction of literals in a state
i is described by a variable α̂i defined by the constraint:

α̂i ≡

⎛
⎝ k∧

j=1

P i
j = 1 ∧

h∧
j=1

Qi
j = 0

⎞
⎠

We will also introduce, for each action a, a Boolean variable Ai, representing whether
the action is executed or not in the transition from si−1 to si.

Let us consider a state transition between si to si+1; we develop constraints that
relate the variables F i+1, F i, and Ai+1 for each fluent f and for each action A. This is
repeated for i = 0, . . . ,N− 1. Moreover, constraints regarding initial state and goal are
added.

Let us consider a fluent f , and let

causes(at1 , f, α1) · · · causes(atm , f, αm)
causes(az1 ,neg(f), β1) · · · causes(azp ,neg(f), βp)

caused(δ1, f) · · · caused(δh, f)
caused(γ1,neg(f)) · · · caused(γk,neg(f))

be all of the dynamic and static laws that have f or neg(f) as their consequences. For
each action aj let us assume that its executability conditions are the following:

executable(aj , ηr1) · · · executable(aj , ηrq)

Figure 1 describes the Boolean constraints that can be used in encoding the relations
that determine the truth value of the fluent literal F i+1. A fluent f is true in state i + 1
(see rule (3)) if a dynamic rule or a static rule explicitly forces it to be true (captured by
PosFiredf) or if it was true in state i and no dynamic or static rule forces it to be false
(expressed by NegFiredf). The constraint (4) forbids the execution of static/dynamic
rules with contradictory consequences, thus ensuring the consistency of the states being
created. The constraints (5) and (8) defines the conditions that make a fluent true or
false in the following state, either as effect of an action execution (constraints (6) and
(9)) or as result of static causal laws being triggered (constraints (7) and (10)). Two ad-
ditional constraints on actions are also added. The constraint (11) states that at least one
executability condition must be fulfilled in order for an action to occur. The constraint
(12) states that exactly one action per transition is allowed.

As a technical consideration, differently from older versions of the solver (e.g.
[5, 10]) conjunction and disjunction constraints are implemented using the built-in
CLP(FD) predicate minimum and maximum, respectively. Moreover, constraints (3)
and (4) regarding four variables, are dealt with the combinatorial constraint table
(only six 4-tuples are candidate solutions). This allows us to restrict the search to the 6
solutions of the two combined constraints, instead of blindly exploring the 16 possible
combinations of values at each state transition. Several other minor code optimizations
have been implemented.

Perspectives on Logic-Based Approaches for Reasoning about Actions and Change 267

F i+1 = 1 ≡ PosFiredi
f ∨ (¬NegFiredi

f ∧ F i = 1) (3)

¬PosFiredi
f ∨ ¬NegFiredi

f (4)

PosFiredi
f ≡ PosDyni

f ∨ PosStati+1
f (5)

PosDyni
f ≡

∨m
j=1(α̂i

j ∧ Ai+1
tj

= 1) (6)

PosStati
f ≡

∨h
j=1 δ̂i

j (7)

NegFiredi
f ≡ NegDyni

f ∨ NegStati+1
f (8)

NegDyni
f ≡

∨p
j=1(β̂i

j ∧ Ai+1
zj

= 1) (9)

NegStati
f ≡

∨k
j=1 γ̂i

j (10)

Ai+1
j = 1 →

∨q
j=1 η̂i

rj
(11)∑

aj∈A Ai
j = 1 (12)

Fig. 1. Constraints for the fluent f and for all the actions aj in the transition (si, si+1)

5 From Boolean to Multi-valued

We have investigated several extensions of B (see, e.g., [10]). In this section, we sum-
marize the extension which allows the use of multi-valued fluents in the description of
a domain and references to values of fluents in past states. We refer to this extended
version of the language as BMV .

The syntax of the action language is modified to allow the declaration of a domain
for each fluent—the domain indicates the set of values that can be assigned to each
fluent. The domain declarations have the form

fluent(f, {v1, . . . , vk})

For the sake of simplicity, we restrict our attention to domains containing integer num-
bers. If the domain is an interval [a . . . b] of integer numbers, one is allowed to write
simply: fluent(f, a, b).

Fluents can be used in Fluent Expressions (FE), which are defined inductively as
follows:

FE ::= n | f t | FE⊕ FE | rei(FC)

where n ∈ Z, ⊕ ∈ {+,−, ∗, /,mod}, t ∈ N with t ≤ 0, and f ∈ F . The notation
f0 will be often written simply as f , and it refers to the value of f in the current
state; the notation f i denotes the value the fluent f had in the ith preceding state. The
expression rei(C) denotes the reification of a the constraint C (i.e., 1 if C is entailed,
0 otherwise). FC are Fluent Constraints and they are defined as follows:

FC ::= FE rel FE | ¬FC | FC ∧ FC | FC ∨ FC

where rel ∈ {=, �=,≥,≤, >,<}. We will also refer to fluent constraints of the type
FE rel FE as primitive fluent constraints.

268 A. Dovier, A. Formisano, and E. Pontelli

The languageBMV allows one to specify an action domain description, which relates
actions, states, and fluents using predicates of the following forms (c denotes a primitive
fluent constraint, while C is a fluent constraint):

◦ Axioms of the form executable(a, C), stating that the fluent constraint C has
to be entailed by the current state for the action a to be executable.

◦ Axioms of the form causes(a, c, C) encode dynamic causal laws. When the ac-
tion a is executed, if the constraint C is entailed by the current state, then state pro-
duced by the execution of the action is required to entail the primitive constraint c.

◦ Axioms of the form caused(C, c) describe static causal laws. If the fluent con-
straint C is satisfied in a state, then the constraint c must also hold in such state.

For example, a dynamic causal law can have the form:

causes(pour(X,Y), contain(Y) = contain(Y)−1 + contain(X)−1,
[Y − contain(Y)0 ≥ contain(X)0]).

The description of the semantics of this modified version of the language is beyond the
scope of this paper; it requires two major changes: (1) a state is now a function that
assigns to each fluent a value drawn from the fluent’s domain; (2) the truth of a fluent
constraint is expressed with respect to a trajectory, in order to enable the resolution
of the time references on the fluents. For example, a trajectory 〈s0, a1, s1, · · · , ak, sk〉
entails the constraint f0 = f−1 + f−2 if the value of f in sk is equal to the sum
of the value of f in sk−1 and the value of f in sk−2. The translation to CLP(FD) is
also a relatively simple extension of what discussed earlier; the main changes are: (1)
the variables F i are no longer Boolean variables, but they are finite domain variables,
whose domain is derived from the domain declarations in the action language; (2) the
constraints of Figure 1 need to map annotated fluents f t to corresponding variables
F i+t. The interested reader is referred to [10] for more details.

6 Experiments and Evaluation

We report here the results on experiments performed on a collection of domains used
as benchmarks. Some of these domains (and instances) have been selected from prob-
lems presented in the last ASP competition (dtai.cs.kuleuven.be/events/
ASP-competition/) and in some of the past International Planning Competitions
(e.g., ipc.informatik.uni-freiburg.de/).

For problems modeled in B we used the following two approaches:

• ASP: We first translated the domain, given the desired plan length, using the trans-
lator described in Section 3. The result of the translation was processed by the
gringo grounder [12] and the answer sets computed using the clasp [11] answer set
solvers.1

• CLPFD: In this case we compile the solver SICSplan presented in Section 4 to-
gether with the domain and ask for the existence of a plan of a given length N.

1 We used the combination of gringo and clasp since it provides the fastest ASP solver currently
available. Other systems such as lparse+smodels/cmodels can be used as well.

dtai.cs.kuleuven.be/events/
ASP-competition/
ipc.informatik.uni-freiburg.de/

Perspectives on Logic-Based Approaches for Reasoning about Actions and Change 269

In this case different search heuristics have been used. It is a relatively simple ex-
ercise to use different CLP(FD) systems—e.g., translations to B-Prolog have been
investigated.

All the domains, the instances, the compiler, and the solvers are available at
www.dimi.uniud.it/CLPASP.2

For the problems modeled in the BMV language, we used the CLP (FD) solver
SICSplanMV. The BMV domains have been also translated to the corresponding
Boolean versions, where each multi-valued fluent f with domain {a1, . . . , ak} has been
replaced by k propositional fluents f1, . . . , fk, and the axioms changed accordingly. Let
us make some observations about the drawbacks of this translation to the Boolean case.
Let us consider, for instance, two fluents f and g, each with the interval 1 . . . 100 as
domain; let us also assume that a dynamic causal law has the following effect:

f = f−1 + g−1

This is a unique constraint on three variables in the BMV encoding. In its propositional
version, this constraint becomes:

for {X,Y, Z} ⊆ {1, . . . , 100} s.t. Z = X + Y : f−1
X ∧ g−1

Y → fZ

This implies the use of 300 fluents and 4, 950 ground constraints:

f−1
1 ∧ g−1

1 → f2 f−1
1 ∧ g−1

2 → f3 · · · f−1
1 ∧ g−1

99 → f100

...
f−1
99 ∧ g−1

1 → f100

More in general, if the domain contains k values and the constraint includes 3 fluents,
the Boolean encoding will required 3k Boolean fluents and the ground version of the
constraint will lead to O(k2) constraints.

An alternative encoding can be realized using a logarithmic encoding of numbers. In
the example above, for each fluent we can introduce 7 Boolean fluents, say, fb6 , . . . , fb0 ,
each representing one bit of the binary encoding of the value of the fluent. Then, the
various rules will have the form:

neg(f−1
b6

) ∧ neg(f−1
b5

) ∧ f−1
b4

∧ f−1
b3

∧ f−1
b2

∧ f−1
b1

∧ f−1
b0

∧
neg(g−1

b6
) ∧ neg(g−1

b5
) ∧ f−1

g4 ∧ f−1
g3 ∧ f−1

g2 ∧ f−1
g1 ∧ f−1

g0 →
neg(fb6) ∧ fb5 ∧ fb4 ∧ fb3 ∧ fb2 ∧ fb1 ∧ neg(fb0)

This is the the rule for the sum 31 + 31 = 62. In general, for domains with k elements,
we will need for each fluent b = $log2 k%Boolean fluents, and the number of constraints
becomes O(2b2b) = O(k2), which leads to the same overall complexity of encoding.

6.1 Domains Used

We briefly describe here the domains used for testing the two approaches to handle
planning domains.

2 A slightly adapted version of the solver, tailored to be executed by B-Prolog, is available too.

www.dimi.uniud.it/CLPASP

270 A. Dovier, A. Formisano, and E. Pontelli

9

9 �

�

�

�

�

�

�

�

�

9

9 �

�

�

� � � � � �

9

9 �

� �

� �

� �

� �

9

9 �

�

� � �

�

��

�

Fig. 2. Reverse folding problem. Four foldings with k=9: The initial (straight line) folding, the
result of a clockwise pivot move on the 4th element, a zigzag folding, and a spiral folding.

From the 2009 Answer Set Competition, We encoded the Peg Solitaire, the classical
Sam Lloyd’s 15 puzzle, and the Towers of Hanoi problems, drawn from the Asparagus
repository.3 We also include the Hydraulic planning problem by Michael Gelfond, Ri-
cardo Morales, and Yuanlin Zhang. This is a simplified version of the hydraulic system
on a space shuttle, that is modeled with a directed graph, where nodes are labeled as
tanks, jets, or junctions, and every link between two nodes is labeled by a valve. Tanks
can be full or empty. Valves can be opened or closed. A node of G is pressurized if it
is a full tank or if there exists a path from some full tank to this node such that all the
valves on the edges of this path are open. The problem is to find a shortest sequential
plan to pressurize a given node.

Instead of looking for a solution exploiting graph algorithms (as done, e.g., by the
Potassco group in the ASP competition), we modeled the problem as a domain ex-
pressed in B and left the search to the solvers. We also developed a multi-valued nu-
merical extension of this problem that points out the benefits of multi-valued modeling
language.

We also encoded the following additional problems:

• The trucks domain from the IPC5 planning competition;
• A generalized version of the classical barrels problem; the generalization uses the

parameters 2k/k + 1/k − 1, for k ∈ N: there are three barrels of capacity 2k/k +
1/k − 1. At the beginning, the largest barrel is full of wine while the other two are
empty. We wish to reach a state in which the two larger barrels contain the same
amount of wine and the third is empty. The only permissible action is to pour wine
from one barrel to another, until the latter is full or the former is empty.

• The Gas Diffusion problem, originally proposed in [10]. A building contains a
number of rooms. Each room is connected to (some) other rooms via gates. Ini-
tially, all gates are closed and some of the rooms contain a quantity of gas—while
the other rooms are empty. Each gate can be opened or closed—open(x,y) and
close(x,y) are the only possible actions, provided that there is a gate between
room x and room y. When a gate between two rooms is open, the gas contained in
these rooms flows through the gate. The gas diffusion continues until the pressure

3 asparagus.cs.uni-potsdam.de/contest

asparagus.cs.uni-potsdam.de/contest

Perspectives on Logic-Based Approaches for Reasoning about Actions and Change 271

�
�

��

�
�

�
�

�
�

�

�
�

�
�

��

�
�1

2

3

4

5
6

7

0 1 2 3 4
0

1

2

3

4

�
�

��

�
�

��
1,2

�
�

��

3 4,5

0 1 2 3 4
0

1

2

�
�

�
�

�
�

�
�

�
�

7

6

0 1 2
-1

0

1

2

3

�
�

�
�

�
�

�

�
�

�
�

��

�
�

���
�

�
�

�
�

��

�
�

��

�
�

�
�

�
�

��

�
�

�
�

��

�
�

�
�

�
�

�

�
�

�
�

��

�
�

�� �
�

0 1 2 3 4
0

1

2

3

4

0 2
1

3
4 6

5

7
12 14

13

15

16 18
17

19

48 50
49

51
60 62

61

63

Fig. 3. Tangram solution, “base” position of the seven blocks, and space discretization using
triangles

reaches an equilibrium. The only condition to be always satisfied is that a gate in
a room can be opened only if all the other gates are closed. The goal is to move a
desired quantity of gas to one specified room.

• A simplified version of the reverse folding problem. Given a string (e.g., represent-
ing a protein) composed of k consecutive elements, we wish to place it on a 2D
plane (e.g., a 2D grid). The only admissible angles are 0 (straight line), −90◦ (left
turn) and +90◦ (right turn). Different elements must occupy different positions. We
refer to each placement of the string as a folding. A pivot move is obtained by se-
lecting an element i ∈ {2, . . . , k − 1} and turning clockwise or counter-clockwise
the part of the string related to the elements i + 1, . . . , k.

The simplified reverse folding problem we propose is the following: given two
foldings in a plane, such that points 1 and 2 are set in the positions (k, k) and
(k, k + 1) of the grid, we wish to find the sequence of pivot moves that transforms
the first folding into the second. In our tests, we set the initial folding as a straight
line, while the final foldings is set either as a sort of stair (zigzag) or as a spiral (see
Figure 2).

• The Tangram puzzle: there are seven blocks of different forms (see Figure 3) and
a form to be reconstructed (we just focus on the big square). The challenge for its
representation is that the sizes of the blocks are related by the irrational number√

2 and therefore cannot be easily discretized. We encoded it in B based on a dis-
cretization of the space in small triangles. Each move puts a block in a certain point
and with a certain rotation—we allow 8 angles: 0◦, 180◦,±45◦,±135◦,±90◦. Our
implementation is inherently Boolean and does not benefit from multi-valued rep-
resentations.

6.2 Experimental Results

We experimented with several instances for each of the domains described earlier. The
B encodings have been translated into ASP, as described in Section 3, and solved using
gringo 2.0.5 and clasp 1.3.3. The CLP-based planners for B and BMV (named
B-SICSplan and BMV-SICSplan, resp.) have been executed in SICStus Prolog version
4.1.1. All planners have been executed on an AMD Opteron 2.2GHz Linux machine.

An excerpt of the experimental results is reported in the Appendix. Tables 1–3 show
the results for the B-solvers while those regarding BMV-SICSplan are reported in
Table 4. For the ASP solver, we separately report the time required for grounding

272 A. Dovier, A. Formisano, and E. Pontelli

Sicsplan ASP both none
pe

rc
en

ta
ge

of
in

st
an

ce
s

100%

0%

Barrels Hanoi
towers

Hydraulic
planning

15-puzzle Peg
solitaire

Tangram Reverse
folding

Trucks Gas
diffusion

Fig. 4. Qualitative comparison of the ASP- and CLP-based solvers for B. Each bar shows the
percentage of instances solved by B-SICSplan, clasp, both solvers, or left unsolved within the
fixed time limits. When part of the instances are solved by both solvers, the thickness of the bars
reflects their relative efficiency (i.e., the larger, the faster).

the ASP program and the time for solving the instances. Similarly, for the CLP-based
solvers, we separately report the time spent in imposing the constraint and the time
to perform the search for solution (using labeling). The symbol “M” denotes that the
solver ran out of memory (a bound of 2GB was imposed for each instance); “T” denotes
that the problem could not be solved within a fixed period of time (a time bound of 60
minutes was imposed for the instances of the Towers of Hanoi domain, the bound was
30 minutes for all other domains).

The experiments confirmed that action languages such as B, are suitable for express-
ing highly declarative specifications of planning domains. Moreover, the experiments
indicate that this approach represents a viable alternative to solve even complex plan-
ning problems with reasonable efficiency. This has been made possible by recent im-
provements in the available implementations of non-monotonic and constraint logic
programming. We believe that solvers for B are reaching a sufficiently mature stage of
development to become, in the near future, competitive with state-of-the-art planners
that exploit various kinds of problem-dependent heuristics in reasoning. However, as
reported in [8], our approach already outperforms (in terms of efficiency) other logic
programming approaches to reasoning with action and changes like GOLOG [18] and
Flux [26] when they are used for planning.

The CLP-based implementations of B are competitive with the state-of-the-art ASP-
solver clasp. Nevertheless, clasp remains a better choice whenever the length of the plan
is large. We believe that further improvements in the strategies adopted in the labeling
phase have to be designed in order to amend such weakness of B-SICSplan.

Figure 4 visualizes a qualitative comparison of the results obtained by the two solvers
for B. Each bar shows the percentage of instances solved by B-SICSplan, clasp, both
solvers, or left unsolved within the fixed time limits. When part of the instances have
been solved by both solvers, the thickness of the bars reflects their relative efficiency.

Perspectives on Logic-Based Approaches for Reasoning about Actions and Change 273

best-B BMV both none

pe
rc

en
ta

ge
of

in
st

an
ce

s

100%

0%

15-puzzle Barrels Reverse
folding

Gas
diffusion

Fig. 5. Qualitative comparison between BMV-SICSplan and the best among the solvers for B

E.g., for the Barrels domain, clasp and B-SICSplan solved the same instances but the
latter showed better performance. On the other hand, for the Trucks domain clasp was
faster and solved more instances.

The results obtained by BMV-SICSplan (Table 4) confirm that the introduction of
multi-valued fluents and constraints as first-class objects of the action language, allows
us to develop more compact encodings—requiring a smaller number of fluents and ac-
tions. This translates in a faster constraint-solving phase and, consequently, in the ability
of BMV-SICSplan to solve more instances that the solvers for B. This is particularly ev-
ident for those domains where numerical fluents can be naturally introduced (c.f. also
the summary of the analysis reported in Figure 5).

7 Current Directions and Conclusion

In this paper, we summarized the current results from an experimental study aimed to
compare ASP and CLP(FD) in the encoding of action description languages. In particu-
lar, we emphasized some of the new features of the proposed encoding, such as the use
of the table constraint to speed-up computation of state transitions, and the impact
of the new answer set solvers (e.g., clasp) on the performance of ASP-based planners.
The investigation relied on a new set of benchmarks, drawn from different sources and
encoded using both Boolean and multi-valued action description languages.

The current directions of our investigation are pushing towards the development of
new action description languages that can better meet the needs of real-world planning
domains, while taking full advantage of the features of the underlying logic program-
ming inference engines (e.g., the features offered by modern constraint logic program-
ming systems). Some of the current directions being pursued are described next.

• Multi-agency: we are investigating extensions of B and BMV to support the de-
scription of multi-agent domains, where agents can interact in different ways (e.g.,
cooperatively, competitively). Several features have been already investigated, in-
cluding the creation of a core modeling framework and its encoding in CLP(FD)

274 A. Dovier, A. Formisano, and E. Pontelli

[7, 8], the modeling of cooperative features like negotiation [24], and the use of
reasoning about agents’ knowledge and beliefs [13]. While the majority of the
current approaches rely on a centralized perspective in the description of multi-
agent systems, we have also launched an investigation of how logic programming
(specifically CLP(FD) with blackboard-style mechanisms) can be used to provide
a distributed implementation of a multi-agent action domain language [9].

• Heuristics: logic programming’s ability to implement search strategies has not been
properly employed to enhance efficiency of logic-based planning. CLP(FD)’s abil-
ity of dealing with search structures and with graphs is expected to provide very
effective ways of implementing both well-known search heuristics used by the plan-
ning community (e.g., graph plan [2]) as well as new heuristics made possible by
the declarative specification of planning domains provided by the action languages.
The interaction between planning heuristics and search strategies explored by the
constraint programming community is also an open area of investigation that we
intend to explore.

Acknowledgments. The research has been partially supported by grants GNCS-INdAM:
Tecniche innovative per la programmazione con vincoli in applicazioni strategiche;
MUR-PRIN: Innovative and multidisciplinary approaches for constraint and prefer-
ence reasoning; Ricerca di base 2009–cod.2009.010.0336; NSF grants IIS-0812267,
CBET-0754525, and HRD-0420407.

References

[1] Baral, C., Son, T., Tuan, L.-C.: A transition function based characterization of actions
with delayed and continuous effects. In: Fensel, D., Giunchiglia, F., McGuinness, D.L.,
Williams, M.-A. (eds.) KR 2002: Principles of Knowledge Representation and Reasoning,
pp. 291–302. Morgan Kaufmann, San Francisco (2002)

[2] Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelli-
gence 90, 281–300 (1997)

[3] Dovier, A., Formisano, A., Pontelli, E.: A comparison of CLP(FD) and ASP solutions to
NP-complete problems. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668,
pp. 67–82. Springer, Heidelberg (2005)

[4] Dovier, A., Formisano, A., Pontelli, E.: An experimental comparison of constraint logic
programming and answer set programming. In: Howe, A., Holt, R. (eds.) AAAI 2007: Pro-
ceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 1622–1625. AAAI
Press, Menlo Park (2007)

[5] Dovier, A., Formisano, A., Pontelli, E.: Multivalued action languages with constraints in
CLP(FD). In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 255–270.
Springer, Heidelberg (2007)

[6] Dovier, A., Formisano, A., Pontelli, E.: An empirical study of CLP and ASP solu-
tions of combinatorial problems. Journal of Experimental & Theoretical Artificial Intel-
ligence 21(2), 79–121 (2009)

[7] Dovier, A., Formisano, A., Pontelli, E.: Representing multi-agent planning in CLP. In: Er-
dem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 423–429. Springer,
Heidelberg (2009)

Perspectives on Logic-Based Approaches for Reasoning about Actions and Change 275

[8] Dovier, A., Formisano, A., Pontelli, E.: An investigation of Multi-Agent Planning in CLP.
Fundamenta Informaticae (2010) (to appear)

[9] Dovier, A., Formisano, A., Pontelli, E.: Autonomous agents coordination: Action descrip-
tion languages meet CLP(FD) and Linda. In: Proceedings of the 25th Italian Conference
on Computational Logic. Workshop Proceedings, vol. 598, CEUR (2010)

[10] Dovier, A., Formisano, A., Pontelli, E.: Multivalued action languages with constraints in
CLP(FD). Theory and Practice of Logic Programming 10(2), 167–235 (2010)

[11] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer
set solver. In: Baral, C., Brewka, G., Schlipf, J.S. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

[12] Gebser, M., Schaub, T., Thiele, S.: GrinGo: A new grounder for answer set programming.
In: Baral, C., Brewka, G., Schlipf, J.S. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp.
266–271. Springer, Heidelberg (2007)

[13] Gelfond, G., Baral, C., Pontelli, E., Tran, S.: Logic programmin for finding models in the
logics of knowledge and its applications. Theory and Practice of Logic Programming 10(4-
6), 675–690 (2010)

[14] Gelfond, M., Lifschitz, V.: Representing actions in extended logic programming. In: Joint
International Conference and Symposium on Logic Programming, pp. 559–573. The MIT
Press, Cambridge (1992)

[15] Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial Intelli-
gence 2, 193–210 (1998)

[16] Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal of Logic Program-
ming 19/20, 503–581 (1994)

[17] Lee, J., Lifschitz, V.: Describing additive fluents in action language C+. In: Gottlob, G.,
Walsh, T. (eds.) Proceedings of the Eighteenth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2003, Acapulco, Mexico, August 9-15, pp. 1079–1084. Morgan
Kaufmann, San Francisco (2003)

[18] Levesque, H., Pirri, F., Reiter, R.: GOLOG: a logic programming language for dynamic
domains. Journal of Logic Programming 31(1-3), 59–83 (1997)

[19] Lifschitz, V.: Answer set planning. In: de Schreye, D. (ed.) Proc. of the 16th Intl. Confer-
ence on Logic Programming, pp. 23–37. MIT Press, Cambridge (1999)

[20] Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: Apt, K., Marek, V., Truszczyński, M., Warren, D. (eds.) The Logic Program-
ming Paradigm: A 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)

[21] McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial in-
telligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4, pp. 463–502.
Edinburgh University Press, Edinburgh (1969)

[22] Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

[23] Son, T., Baral, C., McIlraith, S.A.: Planning with different forms of domain-dependent
control knowledge - an answer set programming approach. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 226–239. Springer,
Heidelberg (2001)

[24] Son, T., Pontelli, E., Sakama, C.: Logic programming for multiagent planning with negotia-
tion. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 99–114. Springer,
Heidelberg (2009)

[25] Subrahmanian, V.S., Zaniolo, C.: Relating stable models and ai planning domains. In: Ster-
ling, L. (ed.) ICLP 1995: Proceedings of the Twelfth International Conference on Logic
Programming, pp. 233–247. The MIT Press, Cambridge (1995)

276 A. Dovier, A. Formisano, and E. Pontelli

[26] Thielscher, M.: Reasoning about actions with cHRs and finite domain constraints. In:
Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 70–84. Springer, Heidelberg (2002)

[27] Tran, S., Pontelli, E.: Planning with preferences using logic programming. Theory and
Practice of Logic Programming 6(5), 559–607 (2006)

[28] Warren, D.: WARPLAN: A system for generating plans. Technical Report DCL Memo 76,
University of Edinburgh (1974)

A Appendix: Experimental Results

Table 1. An excerpt of the experimental results for the B encodings (timing in seconds)

Instance num.of
fluents

num.of
actions

plan
length

gringo+clasp B-SICSplan

barrels-5-7-12 27 6 11 0.20+0.81 0.03+0.60+0.69
barrels-7-9-16 35 6 15 0.40+8.47 0.05+1.75+2.98
barrels-9-11-20 43 6 19 0.71+67.54 0.06+3.03+8.58
barrels-11-13-24 51 6 23 1.17+183.32 0.55+0.55+21.05
barrels-15-17-32 67 6 31 2.51+1871.43 0.17+14.25+79.16
barrels-31-33-64 131 6 63 T M
barrels-63-65-128 259 6 127 T M
hanoi.16-50-6 42 33 34 T T
hanoi.16-54-6 42 33 38 T T
hanoi.16-56-6 42 33 40 T T
hanoi.20-50-7 52 42 30 T T
hanoi.20-55-7 52 42 35 T T
hanoi.21-53-6 42 33 32 T T
hanoi.27-7 52 42 27 T 0.67+3023.23
hanoi.30-7 52 42 30 T 0.68+522.35
hanoi.31-6 42 33 31 T 0.56+3062.04
hanoi.32-6 42 33 32 T 1.32+3224.68
hanoi.32-63-6 42 33 31 T 0.59+3421.79
hanoi.32-7 52 42 32 T T
hanoi.33-6 42 33 33 T T
hanoi.34-6 42 33 34 T T
hanoi.35-6 42 33 35 T T
hanoi.36-6 42 33 36 T T
hanoi.36-7 52 42 36 T T
hanoi.37-6 42 33 37 T T
hanoi.37-7 52 42 37 T T
hanoi.38-6 42 33 38 T T

Perspectives on Logic-Based Approaches for Reasoning about Actions and Change 277

Table 2. An excerpt of the experimental results for the B encodings (timing in seconds)

Instance num.of
fluents

num.of
actions

plan
length

gringo+clasp B-SICSplan

hyd.cg21 24 13 3 0.01+0.01 0.01+0.01
hyd.cg22 24 13 2 0.01+0.01 0.01+0.01
hyd.cg23 24 13 2 0.01+0.01 0.01+0.01
hyd.cg31 36 20 3 0.01+0.01 0.01+0.01
hyd.cg32 36 20 3 0.01+0.01 0.01+0.01
hyd.cg33 36 20 3 0.01+0.01 0.01+0.01
hyd.cg61 104 64 16 0.07+0.07 0.34+0.06
hyd.cg62 104 64 16 0.07+0.07 0.34+0.06
hyd.cg63 104 64 16 0.07+0.07 0.31+0.06
rev-fold-s-4-2 65 4 2 0.64+0.01 0.36+0.03
rev-fold-s-9-4 325 14 4 82.70+11.63 M
rev-fold-z-4-2 65 4 2 0.65+0.01 0.38+0.32
rev-fold-z-5-3 101 6 3 2.62+0.01 2.47+0.36
rev-fold-z-6-4 145 8 4 8.15+0.06 11.17+2.88
rev-fold-z-8-6 257 12 6 49.00+19.88 M
rev-fold-z-16-6 1025 28 6 T M
15-puzzle-1 256 16 35 0.70+3.25 T
15-puzzle-2 256 16 35 0.69+0.49 T
15-puzzle-3 256 16 35 0.70+4.64 T
15-puzzle-4 256 16 35 0.70+8.26 T
15-puzzle-5 256 16 35 0.96+2.37 T
15-puzzle-6 256 16 36 0.72+5.63 T
15-puzzle-7 256 16 36 0.70+7.54 T
15-puzzle-8 256 16 36 0.70+1.18 T
15-puzzle-9 256 16 36 0.70+10.24 T
15-puzzle-10 256 16 40 0.78+8.08 T
15-puzzle-11 256 16 40 0.79+3.22 T
15-puzzle-12 256 16 40 0.80+0.99 T
15-puzzle-13 256 16 40 0.80+3.67 T
15-puzzle-14 256 16 40 0.76+0.96 T
15-puzzle-15 256 16 40 0.77+4.95 T
tangram-1 135 578 7 1.10+0.07 20.49+0.52
tangram-2 135 661 7 1.38+0.26 24.31+339.42
tangram-3 135 744 7 1.56+1.55 29.08+273.72
trucks-p01 99 324 13 0.31+0.51 0.03+1.26+9.06
trucks-p02 128 420 17 0.49+14.82 0.03+2.37+635.67
trucks-p03 205 939 20 1.24+1066.85 T
trucks-p04 243 1116 23 T T
trucks-p05 347 2067 25 T T

278 A. Dovier, A. Formisano, and E. Pontelli

Table 3. An excerpt of the experimental results for the B encodings (timing in seconds)

Instance num.of
fluents

num.of
actions

plan
length

gringo+clasp B-SICSplan

peg-asy-24 33 76 24 0.11+0.12 1.02+0.02
peg-asy-25 33 76 25 0.12+2.33 1.02+0.02
peg-asy-26 33 76 26 0.13+0.13 0.94+0.02
peg-asy-27 33 76 27 0.13+1.87 0.95+0.03
peg-asy-28 33 76 28 0.13+64.91 0.92+0.03
peg-asy-29 33 76 29 T 0.81+3.37
peg-asy-30 33 76 30 T 0.83+4.64
peg-asy-31 33 76 31 T T
peg-asy-32 33 76 32 T T
peg-center-24 33 76 24 0.11+0.02 0.96+0.02
peg-center-25 33 76 25 0.11+0.03 0.97+0.02
peg-center-26 33 76 26 0.12+3.57 0.98+0.02
peg-center-27 33 76 27 0.13+3.62 0.99+0.02
peg-center-28 33 76 28 0.14+288.39 0.91+0.13
peg-center-29 33 76 29 0.14+81.79 0.85+1.83
peg-center-30 33 76 30 T T
peg-center-31 33 76 31 T 0.79+23.82
peg-center-32 33 76 32 T T
peg-edge-24 33 76 24 0.11+0.11 1.02+0.02
peg-edge-25 33 76 25 0.12+0.12 1.01+0.03
peg-edge-26 33 76 26 0.13+0.21 1.09+0.03
peg-edge-27 33 76 27 0.13+7,93 0.95+0.03
peg-edge-28 33 76 28 0.13+181.88 0.98+0.95
peg-edge-29 33 76 29 0.14+20.88 0.86+108.87
peg-edge-30 33 76 30 T T
peg-edge-31 33 76 31 T 0.76+382.82
peg-edge-32 33 76 32 T T
gas-i1a 3433 24 9 M T
gas-i1b 3433 24 9 M T
gas-i1c 3433 24 9 M T
gas-i2a 3433 24 13 M T
gas-i2b 3433 24 13 M T
gas-i2c 3433 24 13 M T
gas-i3a 3433 24 15 M T
gas-i3b 3433 24 15 M T
gas-i3c 3433 24 15 M T
gas-i4a 3433 24 9 M T
gas-i4b 3433 24 9 M T
gas-i4c 3433 24 9 M T
gas-i5e 1123 24 11 45.18+257.38 T
gas-i5f 1123 24 11 T M
gas-i5g 1123 24 11 M T
gas-i5h 1123 24 11 M T

Perspectives on Logic-Based Approaches for Reasoning about Actions and Change 279

Table 4. An excerpt of the experimental results for the BMV-encodings (timing in seconds)

Instance num.of
fluents

num.of
actions

plan
length

BMV-SICSplan

rev-fold-s-4-2 9 4 2 0.07+0.01
rev-fold-s-9-4 19 14 4 3.11+0.02
rev-fold-z-4-2 9 4 2 0.06+0.01
rev-fold-z-5-3 11 6 3 0.22+0.01
rev-fold-z-6-4 13 8 4 0.55+0.04
rev-fold-z-8-6 17 12 6 2.33+12.67
rev-fold-z-16-6 33 28 6 48.37+24.94
barrels-5-7-12 3 6 11 0.05+0.05
barrels-7-9-16 3 6 15 0.06+0.10
barrels-9-11-20 3 6 19 0.08+0.18
barrels-11-13-24 3 6 23 0.12+0.27
barrels-15-17-32 3 6 31 0.14+0.59
barrels-31-33-64 3 6 63 0.45+3.19
barrels-63-65-128 3 6 127 0.69+18.99
gas-i1a 23 24 9 0.14+166.21
gas-i1b 23 24 9 0.13+127.99
gas-i1c 23 24 9 0.13+273.04
gas-i2a 23 24 13 T
gas-i2b 23 24 13 0.16+679.95
gas-i2c 23 24 13 0.17+1654.44
gas-i3a 23 24 15 T
gas-i3b 23 24 15 0.25+0.94
gas-i3c 23 24 15 0.24+1.47
gas-i4a 23 24 9 0.15+163.43
gas-i4b 23 24 9 0.15+128.08
gas-i4c 23 24 9 0.14+270.96
gas-i5e 23 24 11 0.15+282.44
gas-i5f 23 24 11 0.15+17.92
gas-i5g 23 24 11 0.18+282.51
gas-i5h 23 24 11 0.14+284.53
MV-hyd-5 21 28 5 0.30+0.01
MV-hyd-9 20 40 9 0.97+2.89
MV-hyd-12 21 41 12 1.46+102.02
MV-hyd-14 30 45 14 2.91+7.24

Refinement of History-Based Policies

Jorge Lobo1, Jiefei Ma2, Alessandra Russo2, Emil Lupu2

Seraphin Calo1, and Morris Sloman2

1 IBM T.J. Watson Research Center,
New York, United States

2 Department of Computing, Imperial College London,
United Kingdom

Abstract. We propose an efficient method to evaluate a large class of
history-based policies written as logic programs. To achieve this, we dy-
namically compute, from a given policy set, a finite subset of the history
required and sufficient to evaluate the policies. We maintain this history
by monitoring rules and transform the policies into a non history-based
form. We further formally prove that evaluating history-based policies
can be reduced to an equivalent, but more efficient, evaluation of the
non history-based policies together with the monitoring rules.

1 Introduction

The concept of policy is ubiquitous and it is frequently used to describe general
rules that constrain the behavior of a system. For example, in computer systems
we find policies that prescribe how often and what kind of data to back-up. In
networks one can set policies to handle data traffic in different ways based on
service agreements signed by the producers or consumers of the traffic. Good
policy specification languages should be expressive yet succinct and amenable to
efficient evaluation. Defining such languages is essentially a knowledge represen-
tation problem. Thus, logic programs [3,11,14] are frequently used as the basis
for policy specification language. Logic programs are expressive, analysable and
have well understood semantics.

It is often necessary to specify policies with historical conditions that refer to
past system states or past policy decisions. For example, “X is allowed to turn
on the fan if the room temperature is above a threshold anytime within the past 5
minutes”, or “X is not allowed to enter room A if X was allowed to enter room B
30 minutes ago”. We have developed a formal framework for the representation
and analysis of authorization and obligation policies. Policies are represented in
a limited but expressive logic progamming based language, which can capture
complex dependencies amongst policy rules [2,6], including historical conditions.

For many policies, especially access control policies, the speed of evaluation
is crucial, as it is performed upon every access request, thereby increasing the
need of quick system response time. Policy evaluation can be interpreted as
the process of answering a query posed to a small logic program representing
the policy rules and the facts describing the current system state or the system

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 280–299, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Refinement of History-Based Policies 281

history. However, storing a full history is impractical since the size of the history
dominates both the size and time complexities of policy evalution; hence many
existing policy enforcement systems (such as PONDER2 [15], CIM-SPL [1] and
XACML [16]) limit their evaluations to single state conditions and leave the
managment of the history to the application.

One goal in our framework is to let policy administrators write policies in
high-level languages, possibly constrained natural language, and provide auto-
matic or semiautomatic tools to refine high-level policies into policies that can
be enforced by existing policy systems. The general problem of policy refine-
ment is complex [5] but in this paper we would like to address the refinement
of policies with historical conditions into policies that will be enforced by pol-
icy systems that do not support history-based evaluations. We use a technique
originally proposed by Chomicki [4] for the management of temporal integrity
constraints in relational databases and later on used by Gabaldon [7] and Gon-
zales et al. [10] to handle temporal conditions in reasoning about actions to do
the refinement. In the same spirit of those works, we propose a policy transfor-
mation method, which transforms a set of history-based policies to an equivalent
set of history-free policies that can be evaluated efficiently by existing systems.
By syntactically analysing a policy set, we identify a subset of the system history
sufficient to evaluate the conditions. Then, a set of monitoring rules is automat-
ically generated to monitor this information (as current conditions), and record
(and maintain) it in a store of auxiliary facts. Policies are then transformed into
their history-free form where simple queries to the store replace the original his-
torical conditions. Both the monitoring rules and the history-free policies are
represented as logic programs which provide us with a formal framework for our
proofs of complexity and correctness. Although the paper focuses on authorisa-
tion policies, the method presented can also be applied to other general policies
(see [6]).

The paper is organised as follows. We first discuss related work and describe
the policy language. We then present the generic transformation method and
prove its correctness. Finally, we discuss the evaluation complexity, extensions
of the method, review a reference implementation of the basic transformations
and present some concluding remarks.

2 Related Work

Many studies describe policies using rule languages. See, for example, [3] and [13]
for policy languages for the Web, and [9], [12] and [11] for languages based on
logic programs. Although many aim to provide efficient implementations, none
addresses the topic of temporal conditions.

Within artificial intelligence and database communities several approaches
have been proposed for handling temporal constraints. The work in [7] proposes
an extension of the Situation Calculus to encode Past Linear Temporal Logic
(PLTL) connectives and provides a theorem to perform regression over the tem-
poral operators. The work in [10] has shown how to extend the action language

282 J. Lobo et al.

A with PLTL connectives and use answer set computation for evaluating condi-
tions. These studies as well as our earlier work in [6] are motivated by the need
to reason about actions and their consequences and less by policy evaluation.
Most related to our work is the approach proposed in [4], for efficient check-
ing of temporal integrity constraints in DBMS. In this work, PLTL constraints
are reduced to conditions depending only on the current and previous state,
as historical information is re-computed inductively at each state and updated
immediately. Our policy transformation method has been inspired by this work
but differs in two ways. It deals with historical conditions expressed in first-order
logic policy specification languages and, most importantly, it does not require
immediate updates of the historical conditions - historical information can be
updated with delays depending on the conditions, instead of at each state, so
gaining in performance.

Another related topic is event correlation systems. Event correlation has been
studied for long time (see e.g. [17]). Our approach can be seen as transforming
temporal or historical conditions into event evaluations so that we can monitor
events to update our working storage.

3 Policy Specification Language

Basic language: Craven et al.’s [6] policy language L is a many-sorted logic based
language for the specification of security policies. We will use a subset of L to
describe our approach. An authorisation policy in L is a rule of the form:

[permitted/denied](Sub, Tar,Act, T)← H1, . . . , Hm, C1, . . . , Cn

where Sub, Tar and Act represent the subject, target and action regulated by
the policy and are of predefined sorts Subject, Target and Action respectively
– standard components of access control policy specifications (e.g. see [16]). T is
of the sort T ime – the non-negative real numbers and refers to the time when
the policy is evaluated. Each Ci is a time constraint – an expression of the form
T1 ⊕ T2 ± c, where T1 and T2 are different time variables, c is a non-negative
real number and ⊕ is one of {=, <,≤}. Each Hi is a policy condition, and is
either a positive literal (an atom) or a negative literal (an atom preceded with
the negation as failure not) with one of the following predicates: req/4, do/4,
deny/4, permitted/4, denied/4, with arguments 〈Sub, Tar,Act, T 〉, holds(F, T)
and happens(E, T). An instance do(sub, tar, act, t) (deny(sub, tar, act, t)) means
that subject sub applied (was denied the application of) action act on target tar
at time t. This t must always be before the time T when the policy is evalu-
ated and refers to previous authorisation decisions (do: the request was permit-
ted, deny: the request was denied). The instances of permitted and denied are
self-explanatory. holds(f, t) intuitively says that a property (or fluent) f of the
system holds at time t, and happens(e, t) denotes an exogenous event e occur-
ring at time t (these are events not regulated by the policies thus different from
do and deny). An instance req(sub, tar, act, t) denotes a special non-regulated
exogenous event, a request by sub to perform act on tar occurring at time t

Refinement of History-Based Policies 283

(an authorization decision is always the result of a request). In addition, any
time variable appearing in the time constraints must be the time argument of a
condition or of the head of the rule. Conditions with the same time argument T
as in the head of the rule must not be do or deny predicates, and for any other
time argument Ti in a condition, it must be the case that C1, . . . , Cn |= Ti ≤ T .
This ensures that authorisations do not depend on “future” properties. We refer
to conditions with the same time variable as that in the head of a policy rule as
current conditions, and any other condition as historical conditions. The policy
set is assumed to be locally stratified. The following are examples of policies:
Example 1. “If a file was declassified at least 3 days ago, then it is allowed to be
deleted now.”

permitted(X, file(Y), delete, T)←
do(Z, file(Y), declassify, T1), T1 ≤ T − 3days.

Example 2. “If a node has already broadcasted one message within the past 2
seconds, then it is not allowed to broadcast any message now.”

denied(node(X),message(Y), broadcast, T) ←
do(node(X),message(Z), broadcast, T1),
T − 2seconds ≤ T1, T1 ≤ T.

Durative historical conditions. Historical conditions may require two time vari-
ables to express conditions with duration. These are temporal conditions, typical
of PLTL, of the form: a condition must at some point (or always) hold (or not
hold) between two time points. To express these notions, we need to extend the
policy language with “duration” predicates that can appear as policy conditions
among the Hi literals and assume additionally seven pairs of domain independent
axioms of the form:

RBetween(
−→
X,T1, T) ←R(

−→
X,T2), T1 ≤ T2, T2 ≤ T.

unRBetween(
−→
X,T1, T)← not R(

−→
X,T2), T1 ≤ T2, T2 ≤ T.

where R is replaced with one of do, deny, req, permitted, denied, holds or
happens with the appropriate arguments. Then we can express policies such as:

Example 3. “A server can start data transfer if the client has authenticated itself
after the request was made.”

permitted(X,Y, transfer, T)←
do(Y,X, request, T1), T1 ≤ T,
doBetween(Y,X, auth, T1, T).

Example 4. “A client is allowed to connect to a server if the server has always
been in subnet A since its start-up.”

permitted(X,Y, connect, T)←
do(admin, Y, startup, T1), T1 ≤ T,
not unholdsBetween(in(Y, subnetA), T1, T).

Note that Example 4 shows a historical condition equivalent to one using the
since operator in PLTL.

284 J. Lobo et al.

3.1 Semantics

The evaluation of a policy depends on system states, where each state represents
a system “snapshot” and transitions between states are marked by occurrences
of a req or a happens event. We assume authorisation policies define permitted
and denied, as, in practice, both are used by administrators and many policy
languages. The system should execute do/deny according to the evaluation of
domain-independent axioms, also defined in L, that solve conflicts between per-
mitted and denied. For example, axioms could look like:

do(S, Ta,A, T)←
req(S, Ta,A, T), permitted(S, Ta,A, T),
not denied(S, Ta,A, T).

deny(S, Ta,A, T)←
req(S, Ta,A, T), denied(S, Ta,A, T).

See [6] for more details on conflict resolution axioms expresible in L.
We consider a function clock that maps a system state to a time value, i.e.

clock(S) = T . Using it we formally define the notions of system state and system
trace.

Definition 1 (System State). A system state S, with associated time t =
clock(S), is a set of ground facts from L such that:

– req(−→x , t) ∈ S iff a request of −→x takes place at t;
– [do/deny](−→x , t) ∈ S iff the action of −→x is executed/denied at t;
– happens(e, t) ∈ S iff an event e occurs at t;
– holds(f, t) ∈ S iff the system property f holds at t

Definition 2 (System Trace). A system trace T is a (possibly infinite but
countable) sequence of states 〈S0, S1, . . .〉, where S0 denotes the initial state.
The meaning of T , denoted as M(T), is the union of the facts of all the states
the trace contains (

⋃
i Si).

Intuitively, a trace is a history of the system execution. The laws governing how
holds changes over time in a trace is not of interest here. In a typical policy
evaluation system these values can be obtained from multiple sources (e.g. a
system database or monitoring instruments such as a card or fingerprint reader).
In our discussion we assume that they form a regular extensional database that
is updated appropriately and can be accessed at any time. Let Ti and Tj be the
time for states Si and Sj in a system trace, then Ti < Tj iff Si precedes Sj .

Definition 3 (Policy Satisfaction). Let P be a set of locally stratified policies
together with the domain independent axioms and T be a system trace, let R be
a ground instance of a rule in P and r(−→x , t) be the head of r. We say R is
supported by T if and only if P ∪M(T) |=sm r(−→x , t′) where t′ is the biggest time
associated to a state in T such that t′ ≤ t, and |=sm is the logical entailment
under the Stable Model semantics[8].

This definition tells us, for example, how to build a monitoring system that
detects policy violations by sending an alert as soon as a do or a deny that is

Refinement of History-Based Policies 285

not supported is detected in a trace. An auditing or policy compliance system
can be built by checking whether all do’s and deny’s in the logs of traces are
supported. Our interest, however, is to provide the system with an enforcement
mechanism such that only traces that do not violate policies are generated. Such
a mechanism must intersect every req in real time and only let do’s and deny’s
that obey the policies be executed.

4 Policy Transformation

To evaluate a policy with historical conditions at time t, it is sufficient to record
only the portion of the trace that is relevant to the specific historical conditions.
The challenge is thus to identify what to record, how to record it efficiently and
when to record it or remove it once it is no longer needed.

We associate the truth value of each historical condition instance with an
auxiliary fact. Each fact is tagged with a counter and is maintained in a store
(or database) by two operations: assertion which inserts the fact with its counter
set to 1 if it was not in the store, or increments the fact’s counter otherwise, and
retraction which decrements the fact’s counter if it is greater than 1, or removes
the fact otherwise. Syntactically, each historical condition has two parts: the
condition part (i.e. a predicate with a time variable) and the constraint part
(i.e. the set of temporal constraints describing how the time variable relates to
the evaluation time). The condition part can be evaluated at any state, but
the changes of its value affect future evaluation of the whole historical condition
only when the time span satisfies the constraint part. Therefore, by syntactically
analysing a given policy, we can identify the conditions of interest, and generate
a set of monitoring rules1, which force the system to evaluate the conditions
pro-actively at each state and to update the auxiliary store at the appropriate
future state(s) depending on the evaluation results. The original history-based
policy can then be transformed into a rule in which all the historical conditions
are reduced to auxiliary store queries.

A policy may contain multiple historical conditions in the body, which can
always be reduced to the combination of basic pair-wise temporal relations of the
conditions and the head. There are four basic relations – the first three cover any
arbitrary set of constraints (of the form T1⊕T2±c) involving two time variables,
and the last one is the durative condition since. In the rest of this section, we first
describe how to handle these basic relations. Then, due to space limitations, we
only sketch a general algorithm for transforming policies with multiple historical
conditions for which the time constraints form a tree-like hierarchy.

4.1 Basic Historical Conditions

For simplicity, we use p(
−→
X,T) and h(

−→
X,T) as shorthands for a policy’s head and

condition respectively. When the context is clear, we may drop
−→
X and denote

1 They can be implemented as Event-Condition-Action rules.

286 J. Lobo et al.

them as p(T) and h(T). We use h1, h2, etc. to denote different conditions. Hence,
a policy with a single historical condition has the simplified form:

p(T)← h(T ′), c(T ′, T).

where c(T ′, T) is a relation denoting the set of constraints over time variables
T ′ and T . Two basic relations are:

Case 1: let ε be a non-negative con-
stant and T be the current time, the
condition must hold any time before
T − ε ago.

p1(T) ← h1(T1), T1 ≤ T − ε.(ε ≥ 0)

Case 2: let φ be a positive con-
stant and T be the current time, the
condition must hold any time within
T − φ ago.

p2(T) ←
h2(T2), T − φ ≤ T2, T2 ≤ T.(φ > 0)

Examples 1 and 2 are instances of these two cases. In Case 1, as long as the
condition holds from time t, the policy should be evaluated to true from t + ε
onwards, regardless of the truth value of the condition after t. However, in Case
2 if the condition holds from t and ceases to hold at t′, the policy evaluates to
true only from t to t′ + φ. Thus, let h′

1(T) and h′
2(T) be the transformed cur-

rent conditions (i.e. auxiliary store queries) replacing the historical conditions in
Cases 1 and 2 respectively, and h′1 and h′2 be their associated auxiliary facts (i.e.
whose presence in store implies the truth value of the transformed conditions),
then the transformed policies and generated monitoring rules are:

p1(T) ← h′
1(T).

on h1 changes value at T
if h1 is true
do assert h′1 at T + ε

p2(T) ← h′
2(T).

on h2 changes value at T
if h2 becomes true
do assert h′2 at T
on h2 changes value at T
if h2 becomes false
do retract h′2 at T + φ

A single negative historical condition can be handled similarly. However, the
condition will be replaced with a positive query and the generated monitoring
rules will monitor the negated value of the condition instead. For example, the
policy p(T) ← not h(T ′), T ′ ≤ T − ε can be rewritten as p(T) ← nh(T ′), T ′ ≤
T − ε. The transformed policy will be p(T) ← nh′(T) and the monitoring rule
will be “on h changes at T , if h is false, do assert nh′ at T + ε”.

Refinement of History-Based Policies 287

Combining time relations in Cases 1 and 2 gives Case 3:

Case 3: let ε and φ be positive constants such that φ ≥ ε and T be the
current time, the condition must hold sometime within the past period
T − φ and T − ε.

p3(T)← h3(T3), T − φ ≤ T3, T3 ≤ T − ε.(φ ≥ ε > 0)

The transformation for Case 3 is the same as for Case 2 except that the first
monitoring rule is replaced by the one generated for Case 1. One can think of φ
as infinite for Case 1, thus, no need for the second rule. Note that policies with
pattern p(T) ← h(T ′), T ′ = T − c, are special cases of Case 3 where φ = ε = c
and c > 0.

Store Update Dependencies. Without the auxiliary fact counters, interleav-
ing assert and retract operations triggered by a pair of monitoring rules may
have unintended effects. For example, in Case 3, if φ is sufficiently larger than
ε, and h3 becomes true, false and true again at t, t + c1, t + c2 respectively, for
a c2 > c1 and c2 + ε < c1 + φ, then, the assertion rule triggers twice (at t and
t+c2) and the retraction rule would trigger between them (at t+c1). Because of
the delay between the store updates and the triggering of monitoring rules, the
actual assertions occur at t+ ε and t + c2 + ε, whilst the retraction occurs after
them at t + c1 + φ. In theory, the retraction should be “cancelled” by the first
“assertion” and hence the fact should remain after t+ c1 +φ. Thus, counters are
necessary for matching assert/retract pairs of store updates.

Serial and Parallel Compositions. Let T and T ′ be two time variables and
let T ′ ≺ T denote a set of time constraints between T ′ and T that matches one of
Cases 1–3. Then, conditions associated with T ′ are historical w.r.t. those associ-
ated with T . If h1(

−→
X 1, T1) denotes a policy condition (or head), and h2(

−→
X 2, T2)

and h3(
−→
X 3, T3) denote two historical conditions w.r.t. h1(

−→
X 1, T1), then, the two

historical conditions can be combined either: in a serial composition, such that
T3 ≺ T2∧T2 ≺ T1, or in a parallel composition, such that T3 ≺ T1∧T2 ≺ T1. For
serial composition, we first consider h2(

−→
X 2, T2), h3(

−→
X 3, T3), T3 ≺ T2 as a single

condition combined h2(
−→
X 2,

−→
X 3, T2) and transform it w.r.t. h1(

−→
X 1, T 1) accord-

ing to T2 ≺ T1. Then we transform h3(
−→
X 3, T3) w.r.t. h2(

−→
X 2, T2) according to

T3 ≺ T2. For parallel composition, we can transform h2(
−→
X 2, T2) and h3(

−→
X 3, T3)

independently w.r.t. h1(
−→
X 1, T1) according to T2 ≺ T1 and T3 ≺ T1 respectively.

For the serial transformation to work we need to limit any time variable to appear
in the left hand side of a single time constraint (note that Tj−φ ≤ Ti, Ti ≤ Tj−ε

288 J. Lobo et al.

is considered a single time constraint) other than Ti ≤ T . With this restriction
the relation ≺ forms a tree over the time variables as nodes rooted at T , the
time variable occuring in the head of the rule.

Undetermined Composition: T ′′ − c ≤ T ′. Consider the following policy
where c > 0,

p(T)← h1(T1), h2(T2), T1 ≤ T, T2 ≤ T, T1 − c ≤ T2.

Neither condition h1 nor condition h2 is historical to the other, but they are
not independent to each other due to T1 − c ≤ T2 (equivalently T1 ≤ T2 + c).
Nevertheless the policy can be decomposed into two rules:

p(T) ← h1(T1), h2(T2), T2 ≤ T, T1 ≤ T2.
p(T) ← h1(T1), h2(T2), T1 ≤ T, T1 − c ≤ T2, T2 ≤ T1.

and then transform them separately.
Let 1 be the smallest time interval in the implementation system, then T1 < T2

can be defined as T1 ≤ T2 − 1 (this is defined by the granularity of the clock
used). > and ≥ can be defined by < and ≤ respectively with the two sides
swapped. Therefore, our approach presented so far can handle policies with up
to two (non-durative) historical conditions with temporal constraints of the form
T1 ⊕ T2 ± c.

4.2 Durative Historical Condition

If a durative predicate appears as a positive condition in a policy, it can al-
ways be replaced by its definition. For instance, the policy in Example 3 can be
expanded as

permitted(X,Y, transfer, T)←
do(Y,X, request, T1), T1 ≤ T, do(Y,X, auth, T2),
T1 ≤ T2, T2 ≤ T.

The new policy has two historical conditions forming the serial composition, and
hence can be transformed.

However, when a duration predicate appears as a negative condition in a
policy (e.g. of Example 4), we cannot replace the predicate with its definition
because of the presence of not in the condition. This results in the basic case of
since:

Case 4: Condition h2 since condition h1.

p(T)← h1(T1), T1 ≤ T, not un h2 Between(T1, T).

Consider the following situations:

– if h1 becomes true at t, and if h2 is true, then h2 since h1 should be true
at t. If h2 remains true, then so does h2 since h1.

Refinement of History-Based Policies 289

– if h2 becomes true at t, and if h1 is true, then h2 since h1 should be true
at t too. If h2 remains true, then so does h2 since h1.

– if h1 becomes false at t, it has no effect to the value of h2 since h1; if h2

becomes false at t, it will change the truth value of h2 since h1 at t.

Thus, in order to evaluate p(T), both h1 and h2 must be monitored, but only
three monitoring rules are required. Let h′(T) be the transformed current condi-
tion for h1(T1), T1 ≤ T, not not h2 Between(T1, T), and h′ be its auxiliary fact:

p(T)← h′(T).
on h1 changes at T
if h1 is true, h2 is true
do insert h′ at T
on h2 changes at T
if h2 is true, h1 is true
do insert h′ at T
on h2 changes at T
if h2 is false
do retractall∗ h′ at T

(∗retractall removes h′ regardless its counter)

The case for not h2 Between/2 can be handled similarly (i.e. the negated
value of h2 is used in the conditions of the monitoring rules).

4.3 Transformation of Multiple Conditions

We first use a flow chart (Figure 1) to illustrate the general transformation
algorithm steps, and then use an example (Example 5) to walk though the steps.

The general algorithm has three main steps. (1) In the pre-processing phase,
if the given policy contains undetermined composition conditions, then it is
rewritten to an equivalent set of policies without such conditions. These new
policies can be handled separately. (2) In the compilation phase, each policy is
syntactically analysed, and a Directed Connected Graph (DCG) representing the
policy conditions and their relations is constructed. Each node of the graph is a
condition, and each directed arc is the temporal relation (i.e. matching one of
Cases 1–4) between the two connecting conditions. Note that if the graph is not
connected, at least one condition is neither a current nor a historical condition,
and hence the policy is malformed. If the graph is not acyclic, then at least
two conditions are historical to each other, and hence the policy will always be
evaluated to false and can be removed. The algorithm is limited to policies whose
DCGs are trees. (This limitation will be discussed in Section 6). Finally, the tree
is topologically sorted, and a set of policies that do not contain serial composition
historical conditions will be generated by recursively traversing the tree. This
process will be illustrated in Example 5. (3) In the last transformation phase,
policies generated from the tree will be transformed according to the basic cases.
Thus, the final output of the algorithm will be a set of history-free policies with
the corresponding monitoring rules.

290 J. Lobo et al.

Fig. 1. General Transformation Steps

Example 5 A policy with multiple historical conditions:

p(T) ← h1(T1), h2(T2), h3(T3), h4(T4),
T1 ≺1 T, T2 ≺2 T, T3 ≺3 T2, T4 ≺4 T2.

[Transformation Steps:]

1. Without loss of generality, we may assume there is no undetermined com-
position of the conditions. Thus, the policy’s tree is constructed and sorted:

h4

h3 h2

h1

p
≺3

≺4

≺2

≺1

2. As we can see, the original policy has serial composition conditions (e.g.
T3 ≺3 T2 ≺2 T and T4 ≺4 T2 ≺2 T), and hence needs to be compiled. We do
so by traversing the tree starting from the root node (i.e. p), and recursively
generate new policies:
(a) There are two arcs connecting h1 and h2 to p. The sub-tree starting from

h2 and the sub-tree containing only h1 represent two parallel historical
conditions to p (one being composite and the other being single). The
following policies are generated:

p(T) ←
h1(T1), T1 ≺1 T, comb h2(T2), T2 ≺2 T.

comb h2(T)←
h2(T), h4(T4), T4 ≺4 T, h3(T3), T3 ≺3 T.

Refinement of History-Based Policies 291

(b) Now none of the policies contains serial composition conditions. They
can be transformed according to the basic Cases 1–4 and the parallel
composition pattern, and the monitoring rules are generated. For exam-
ple, the final history-free policies are:

p(T)←
h′

1(T), comb h′
2(T).

comb h2(T)←
h2(T), h′

4(T), h′
3(T).

where h′
1, comb h2′, h′

3 and h′
4 are auxiliary store checking conditions.

5 Correctness of the Transformation

To prove the correctness theorem, we use the notion of a synchronised system
trace as a mathematical tool for simplying the proof. A synchronised system
trace synchronises an independent time line structure with a system trace. The
synchronised trace is given by a system clock which generates pulses causing
transitions between consecutive states. No property change (including the store)
can occur between two consecutive pulses and thus the interval between two
pulses is the smallest time unit (interval). A synchronised trace is defined as:

Definition 4 (Synchronised System Trace). Let T be a system trace and ω
the smallest time unit. A synchronised system trace T syn of T is a sequence of
states such that:

1. T syn contains all the states of T
2. for consecutive states Si and Si+1 with associated time Ti and Ti+1 in T ,
T syn contains extra (Ti+1−Ti)/ω− 1 states, all of which are identical to Si

except that their associated times are Ti + ω, Ti + 2ω, . . . , Ti+1 − ω.

Numbers appearing in time constraints without explicit units (e.g. mins, seconds)
represent multiples of ω e.g., T + 1 is the smallest time after T . The meaning
of a synchronised system trace extends the meaning of its corresponding system
trace with all the ground facts for the extra states. In fact, they contain the
same information, and one can be computed from the other.

To reason about the satisfaction of transformed policies, we also need to model
the store and its update operations as logical rules. A monitoring rule of the form:

on hj(
−→
X j) changes value at T

if h1(
−→
X 1) ∧ · · · ∧ hn(

−→
Xn) becomes true (1 ≤ j ≤ n)

do assert h′(
−→
X) at T + ε

can be modelled as a logic formula

assert(h′(
−→
X), T + ε) ←

not (h1(
−→
X 1, T − 1) ∧ · · · ∧ hn(

−→
Xn, T − 1))∧

h1(
−→
X 1, T) ∧ · · · ∧ hn(

−→
Xn, T).

292 J. Lobo et al.

Note that when T = 0 (i.e. system start-up), not (h1(
−→
X 1,−1)∧· · ·∧hn(

−→
Xn,−1))

will be vacuously true. Hence, if h1(
−→
X 1, 0) ∧ · · · ∧ hn(

−→
Xn, 0) is true then so is

assert(h′(
−→
X), ε). This is important as rules will reflect the correct auxiliary store

initialisation at system start-up.
A monitoring rule of the form:

when hj(
−→
X j) changes value at T

if h1(
−→
X1) ∧ · · · ∧ hn(

−→
Xn) becomes false (1 ≤ j ≤ n)

then retract h′(
−→
X) at T + ε

can be modelled as a logic formula

retract(h′(
−→
X), T + ε) ←

h1(
−→
X 1, T − 1) ∧ · · · ∧ hn(

−→
Xn, T − 1)∧

not (h1(
−→
X 1, T) ∧ · · · ∧ hn(

−→
Xn, T)).

Finally, the effects of store update operations can be modelled with the following
axioms:

instore(h′(
−→
X), T) ← assert(h′(

−→
X), T 1), T 1 ≤ T,

not retracted(h′(
−→
X), T 1, T).

retracted(h′(
−→
X), T 1, T)←

retract(h′(
−→
X), T 2), T 1 ≤ T 2 < T.

h′(
−→
X,T)← instore(h′(

−→
X), T).

where the last rule links the evaluation of a transformed condition h′(
−→
X) and

its corresponding auxiliary fact h′(
−→
X). Due to space limitations, we assume that

no conflicting store updates may occur, to simplify the presentation of the proof
sketch. In the full proof, the counter for each auxiliary fact in store is modelled
as an extra argument of the instore/2 predicate, and the rules governing store
update operations are adjusted accordingly. The main reasoning steps remain the
same but the counter needs to be considered when reasoning about the effects
of store updates.

Theorem 1 (Correctness of Policy Transformation). Given a set of lo-
cally stratified history-based policies P plus the domain independent axioms and
a system trace T , let P ′ be the set of transformed non history-based policies,
T syn be the synchronised system trace, ECA be the set of generated monitoring
rules and ST be effect axioms of auxiliary store updates. If p(−→x , t) is the head
of a ground instance of a policy rule in P and in P ′, then

P ∪M(T) |=sm p(−→x , t) ⇔ P ∪M(T syn) |=sm p(−→x , t)
⇔ P ′ ∪ ECA ∪ ST ∪M(T syn) |=sm p(−→x , t)

Proof Sketch: we only outline the main steps here. The logic programs P∪M(T),
P ∪M(T syn) and P ′ ∪ECA∪ST ∪M(T syn) are all locally stratified, and thus
have unique stable models. Let M0, M1 and M2 be their respective stable
models. To show the first equivalence, we need to show that p(

−→
X, t) is in M0 iff

Refinement of History-Based Policies 293

it is in M1. This is easy as M0 is a subset of M1 (T syn merely duplicates state
information from T), let B be the body of the policy instance for p(

−→
X, t), then

M0 |= B iff M1 |= B. To show the second equivalence:

– We first consider the case where p(−→x , t) is the head of a policy with a single
historical condition of Case 1, 2, 3 or 4, because the condition can be trans-
formed directly with a set of monitoring rules generated. We also need to
show that p(−→x , t) is in M1 iff it is in M2. If p(−→x , t) is in M1, then the his-
torical condition must have been satisfied. By reasoning on the monitoring
rules’ conditions, we can show that the assertion rule must have triggered
at some point t′ ≤ t but since then the retraction rule has not. This further
implies that the auxiliary fact must be in store at t, and hence p(−→x , t) is in
M2 (e.g. by ST). Similarly, if p(−→x , t) is not in M1, then either the assertion
rule has never triggered or the retraction rule has triggered after the asser-
tion rule. Thus, the auxiliary fact must not be in store at t and p(−→x , t) will
not be in M2.

– We then consider the case where p(−→x , t) is the head of a policy with multiple
historical conditions that are from Cases 1–4. This is proven by induction on
its corresponding set of transformed policies with single historical condition.

Finally, we show that the theorem holds for policies with same head but different
definitions (this is trivial). �
Note again that the stable model containing M(T syn) is used for proving cor-
rectness only. To evaluate a transformed policy at t in practice, only the system
state and the auxiliary store at t are required.

6 Discussions

Complexity of the Evaluation. Given a policy with multiple historical conditions,
let m be the total number of historical conditions in the output policies of
the compilation phase, let C = size(Subject)× size(Target)× size(Action) +
size(Fluent), then the maximum size of the encoded bounded history used for
evaluation is equal to the total number of all the auxiliary facts relevant to the
transformed policies, i.e. C × m. Hence, given n history-based policies, where
the maximum number of (generated) historical conditions for each policy is m,
the maximum auxiliary store size is max space(Store) = C × n × m, i.e. it
is polynomial in the number of policies and the number of historical conditions
in the policies. However, in practice this upper bound is hardly met for most
common policies.

The evaluation of a history-free policy body or a history-free monitoring rule
condition consists of the queries to the domain properties, say there are k, the
queries to the auxiliary store, say there are l, and the trigger of evaluation of
other (transformed or non-transformed) history-free policies, e.g. permitted and
denied, say there are j. If j = 0, then let Cdomain and Cstore be the average time
required for each domain property query and auxiliary store query respectively,

294 J. Lobo et al.

the maximum time required for the evaluation will be time(Evaluation) =
Cdomain × k + Cstore × l. If j �= 0, it is easy to see the the logic program formed
by the policies is equivalent to a Datalog program (since function symbols are
never nested), and hence the evaluation time in this case is the same as that for
a Datalog query.

Dynamic Injection of Policies. So far we assume that policies are given before
the system starts, so that the necessary partial history can be encoded in the
auxiliary store from the beginning. In practice, we should allow policies to be
added at system runtime. But this may change the partial history required for
policy evaluation and it will be too late to recover the information. To cope
with such situation we can manage the system as follows: (1) we transform
a policy when it is added; (2) we first activate only the monitoring rules, so
that the system can start to accumulate the extra history; (3) when sufficient
partial history is collected, the transformed policies can be activated. Only at
this point, the new policy is considered to be fully added to the system and its
correct evaluation can be guaranteed afterward.

Tree-like Dependency Assumption for Multiple Historical Conditions. Consider
the following policy:

p(T) ← h1(
−→
X 1, T 1), h2(

−→
X2, T 2),

T − φ ≤ T 1, T 1 ≤ T,
T − φ ≤ T 2, T 2 ≤ T,
T 1 ≤ T 2.

The temporal relationships between T , T 1 and T 2 are T 1 ≺ T, T 2 ≺ T, T 1 ≺′

T 2, i.e. the DCG of the policy is not a tree but a triangle. If it were to be
transformed using the algorithm presented in this paper, two history-free policies
would be generated:

p(T) ← h1′(
−→
X 1, T), combined h2′(

−→
X 2,

−→
X 1, T).

combined h2(
−→
X 2,

−→
X 1, T) ← h2(

−→
X2, T), h1′′(

−→
X 1, T).

and three sets of monitoring rules would be generated for h1′(T) (replacing
h1(T 1), T 1 ≺ T), h1′′(T) (replacing h1(T 1), T 1 ≺′ T 2), and combined h2(T)
(replacing combined h2(T 2), T 2 ≺ T). Note that condition h1 would then be
monitored independently by two sets of monitoring rules (i.e. for h1′ and h2′′).
Consider the following situation: let h1 hold at and only at time t3 and t1, and
h2 hold at and only at time t2. If the first generated policy is evaluated at t, and
the constraints t3 < t − φ, t − φ < t2 < t, t − φ < t1 < t, t2 < t1 are satisfied,
then the evaluation result will be true, which is incorrect. One possible way to
address this problem is to extend h1′ and combined h2′ to carry the time of the
h1 fact that is used to proved h1′ and combined h2′ to make sure that both
predicates will use the same h1. Thus, this new time argument shared between
h1′ to combined h2′ needs to be added to the vector of variables already passed
from h1′ to combined h2′. The new rules generated would look like:

Refinement of History-Based Policies 295

p(T)← h1′(
−→
X 1, T 1, T), combined h2′(

−→
X 2,

−→
X 1, T 1, T).

combined h2(
−→
X2,

−→
X 1, T 1, T)← h2(

−→
X2, T), h1′′(

−→
X 1, T 1, T).

With these extensions the counters tagged to the facts in the store will not work
since copies of the same fact need to be tagged now with different time stamps.
The ECA rules would need to be changed too. Changes to the assert are easy
but the retracts would need to figure out what is the right fact to retract. This
change may require the storing of a considerably larger amount of history but
we still need to work out the details.

Covering Conditions in PLTL. To handle conditions expressed as a PLTL for-
mula, we need to allow basic terms of the form R(

−→
X) as first argument of the

predicate holds,2 and recursively defined with FOL connectives and, or, not, and
PLTL connectives such as since and previously. We also need the following
domain independent axioms:

holds(F1 and F2, T)← holds(F1, T), holds(F2, T).
holds(F1 or F2, T) ← holds(F1, T).
holds(F1 or F2, T) ← holds(F2, T).

holds(previously F, T) ← holds(F, T1), T1 = T − 1.
holds(not F, T) ← not holds(F, T).
holds(F1 since F2, T) ← holds(F2, T1), T1 ≤ T,

not unholdsBetween(F1, T1, T).
holds(R(

−→
X), T) ←R(

−→
X,T) for each R

in {do, deny, req, permitted, denied, holds, happens}.
With these axioms we are able to cover PLTL formulas, with Fi at the literal
level, in the condition of authorisations. To cover the full set of PLTL formu-
las, i.e. handling cases such as holds(not ((F ′

1 or F ′
2) since F ′

3), T), we need
to extend the approach to perform recursive transformation of the generated
monitoring rules.

7 A Glance to Our Implementation

We have a reference implementation of our basic cases writen in Java for the Im-
perius policy language SPL (http://incubator.apache.org/imperius/). Be-
low we give an overview of the implementation but first we describe briefly the
operational semantics of the formal framework introduced in [6].

7.1 The Formal Framework

The operational semantics of the formal framework [6] can be illustrated in the
following diagram:

2 Note that these terms have no time argument.

296 J. Lobo et al.

Regulated
System

PDP/PEP

Regulated
System

PDP/PEP

input
regulatory

input
regulatory

output
regulatory

state
regulatory

state
regulatory

event
non-regulatory

event
non-regulatory

event
non-regulatory

state
non-regulatory

state
non-regulatory

T1 � T2 < T3
Operational Model [6]

A system can be seen as a state machine:

– system actions or events will lead the system from one state to another;
– the system is assumed to be sequential (at the moment), i.e. no concurrent

actions or events;
– at any state when a request for a system action is received by the Policy

Enforcement Point (PEP), the relevant policies will be evaluated by the Pol-
icy Decision Point (PDP) according to the current or past state properties,
and/or the past actions or events. Depending on the evaluation result, the
request will be either permitted or denied. In the former case, the action
will be performed by the system; whereas in the latter case the system will
deny the request explicitly. In both cases, the system will move to a new
state.

– a trace is a sequence of system states that obeys the regulation of the policies
(specified by administrators).

The language described in Section 3 can be used to model authorisation policies
for the system.

7.2 Design Overview

Below is a diagram showing the different components necessary for the imple-
mentation and the interactions between the components:

Policy Management Module (the PEP/PDP): it is the module that stores
and enforces given policies. It implements the PEP/PDP of the framework,
which intercepts the requests of actions from the domain (system resources),
grants permissions to and performs the actions according to the policies.

System Domain: this is the set of all system resources whose operations/inter-
actions are regulated by the security policies (i.e. managed by the PEP/PDP).

Auxiliary Store: it is used for storing the auxiliary facts generated by the
Monitor.

Refinement of History-Based Policies 297

Translator

Monitor

ECA
Module

Clock

Store

PEP/PDP

Domain

policies with historical conditions

ECA rules enforceable polices

schedules

updates

manages

subscribes

notifies

Security System

uses

uses

Translator: it takes given policies with historical conditions, transforms them
into low level enforceable policies (i.e. without historical conditions) for the
PEP/PDP, and generates a set of ECA rules for the Monitor.

Monitor: it has two sub-components:
– the ECA module which stores and executes ECA rules from the transla-

tor;
– the Clock which can be used to schedule updates to the Storage.

When a new ECA rule is received by the Monitor, the Monitor will sub-
scribe relevent notifications from the PEP/PDP, the Domain and the Store.
A subscribed notification may be generated and sent to the Monitor when
the PEP/PDP receives a request, or acts after a decision is made, or when
a monitored resource property (including the Store) has changed. The no-
tifications sent to the Monitor may trigger the activations of some ECA
rules. Depending on the conditions and the resulting actions, the Monitor
will assert/retract auxiliary facts to/from the Store. The Monitor Clock may
help to schedule the actions at correct time. The Store is accessible by the
PEP/PDP and the ECA module of the Monitor for policy evaluation.

8 Conclusion and Future Work

We have presented a transformation approach that allows history-based poli-
cies modelled as logic formulas to be implemented and evaluated efficiently in
practice. By analysing the historical conditions of a set of policies, we automat-
ically generate system monitoring rules that track changes at each state during

298 J. Lobo et al.

execution and collect required information for future evaluation of historical con-
ditions. The information collected is recorded as propositions/facts in a store.
Historical conditions in the original policies are then replaced with “online” store
queries, and policies can be evaluated efficiently at each state. We have given
a proof sketch of the correctness theorem corresponding to this transformation.
We gave an overview of our current implementation. The implementation only
covers the base cases and paralallel temporal conditions. Our next step is to
extend the implementation to cover sequential temporal conditions.

Acknowlegements

This research was sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence and was accomplished under Agreement Number
W911NF-06-3-0001. The views and conclusions contained in this document are
those of the author(s) and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Army Research Laboratory, the
U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The
U.S. and U.K. Governments are authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation hereon.

References

1. Agrawal, D., Calo, S.B., Lee, K.-W., Lobo, J.: Issues in designing a policy lan-
guage for distributed management of it infrastructures. In: Integrated Network
Management, pp. 30–39 (2007)

2. Bandara, A.K.: A Formal Approach to Analysis and Refinement of Policies. PhD
thesis, Imperial College London (2005)

3. Bonatti, P.A., Olmedilla, D.: Rule-based policy representation and reasoning for
the semantic web. In: Reasoning Web, pp. 240–268 (2007)

4. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Trans. Database Syst. 20(2), 149–186 (1995)

5. Craven, R., Lobo, J., Lupu, E., Russo, A., Sloman, M.: Decomposition techniques
for policy refinement. In: International Conference on Network and Service Man-
agement (2010)

6. Craven, R., Lobo, J., Ma, J., Russo, A., Lupu, E., Bandara, A., Calo, S., Sloman,
M.: Expressive policy analysis with enhanced system dynamicity. In: ASIACCS
2009 (2009)

7. Gabaldon, A.: Non-markovian control in the situation calculus. In: Eighteenth
National Conference on Artificial Intelligence, pp. 519–524. American Association
for Artificial Intelligence, Menlo Park (2002)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K. (eds.) Proceedings of the Fifth International Conference
on Logic Programming, pp. 1070–1080. The MIT Press, Cambridge (1988)

9. Gelfond, M., Lobo, J.: Authorization and obligation policies in dynamic systems.
In: ICLP, pp. 22–36 (2008)

10. Gonzalez, G., Baral, C., Gelfond, M.: Alan: An action language for modelling non-
markovian domains. Studia Logica 79(1), 115–134 (2005)

Refinement of History-Based Policies 299

11. Gurevich, Y., Neeman, I.: Dkal: Distributed-knowledge authorization language. In:
CSF 2008: Proceedings of the 2008 21st IEEE Computer Security Foundations
Symposium, pp. 149–162. IEEE Computer Society, Washington, DC (2008)

12. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. Database Syst. 26(2), 214–260 (2001)

13. Kolovski, V., Hendler, J., Parsia, B.: Analyzing web access control policies. In:
WWW 2007: Proceedings of the 16th International Conference on World Wide
Web, pp. 677–686. ACM, New York (2007)

14. Li, N., Mitchell, J.C., Winsborough, W.H.: Beyond proof-of-compliance: security
analysis in trust management. J. ACM 52(3), 474–514 (2005)

15. Lupu, E., Dulay, N., Sloman, M., Sventek, J., Heeps, S., Strowes, S., Twidle, K.,
Keoh, S.-L., Schaeffer-Filho, A.: Amuse: autonomic management of ubiquitous e-
health systems. Concurr. Comput.: Pract. Exper. 20(3), 277–295 (2008)

16. OASIS. OASIS eXtensible Access Control Markup Language (XACML) TC (2005)
17. Yemini, S.A., Kliger, S., Mozes, E., Yemini, Y., Ohsie, D.: High speed and robust

event correlation. Communications Magazine 34(5), 82–90 (1996)

Translating General Game Descriptions into an

Action Language

Michael Thielscher

School of Computer Science and Engineering
The University of New South Wales

mit@cse.unsw.edu.au

Abstract. The game description language (GDL), which is the basis
for the grand AI challenge of general game playing, can be viewed as yet
another action language. However, due to its unique way of addressing
the frame problem, GDL turned out to be surprisingly difficult to relate
to any of the classical action formalisms. In this paper, we present the
first complete embedding of GDL into an existing member, known as,
C+, of the family of action languages. Our provably correct translation
paves the way for applying known results from reasoning about actions,
including competitive implementations such as the Causal Calculator, to
the new and ambitious challenge of general game playing.

1 Introduction

General game playing is concerned with the development of systems that under-
stand the rules of previously unknown games and learn to play these games well
without human intervention. Identified as one of the contemporary grand AI
challenges, this endeavour requires to build intelligent agents that are capable of
high-level reasoning and learning. An annual competition has been established in
2005 to foster research in this area [10]. This has lead to a number of successful
approaches and systems [12,5,18,6].

Representing and reasoning about actions is a core technique in general game
playing. A game description language (GDL) has been developed to formalise
the rules of arbitrary n-player games (n ≥ 1) in such a way that they can be
automatically processed by a general game player [14]. The emphasis is on high-
level, declarative descriptions. This allows successful players to reason about the
rules of an unknown game in order to extract game-specific knowledge [19,23]
and to automatically design evaluation functions [12,5,18].

The game description language shares principles with action formalisms, a
central aspect of logic-based knowledge representation ever since the introduction
of the classical Situation Calculus [15]. For instance, a game description must
entail the conditions under which a move is legal. This corresponds to action
preconditions. Furthermore, the rules of a game must include how the various
moves change the game state. This corresponds to effect specifications.

Although GDL can thus be viewed as a special-purpose action language, for-
mally relating GDL relates to any existing action formalism proved to be sur-
prisingly difficult. The main reason seems to be that GDL is based on a rather

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 300–314, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Translating General Game Descriptions into an Action Language 301

unique solution to the fundamental frame problem [16] where positive frame
axioms are combined with the principle of negation-by-failure [4] to encode neg-
ative effects. This makes it notoriously difficult to infer the explicit positive and
negative effects of an individual move from its GDL description [21].

In this paper, we present the first formal result that links the general game
description language to an existing action formalism. Specifically, we develop an
embedding of GDL into a successor of the Action Description Language invented
by Michael Gelfond and his colleague Vladimir Lifschitz [9]. The target action
language we chose, known as C+ [11], allows to circumvent the problem of
identifying the positive and negative effects of individual moves. As the main
result we formally prove that our embedding is correct and provides an easily
automatable translation of full GDL into an action language.

Our result paves the way for applying known methods from reasoning about
actions in the area of general game playing. For example, we can immediately
deploy an existing implementation for C+, the Causal Calculator [11,1], to do
automated reasoning with, and about, game descriptions in GDL. In this way
the relatively new field of General Game Playing can profit from many years
of research in reasoning about actions. Conversely, this grand AI challenge may
provide a new and interesting testbed for existing action formalisms.

The rest of the paper is organised as follows. In Section 2, we recapitulate the
basic syntax and semantics of the general game description language, followed
by a brief introduction to action languages. In Section 3, we present a complete
embedding of this language into the action language C+. In the section that
follows, we prove that this translation is correct. We conclude in Section 5.

2 Preliminaries

2.1 Describing Games in GDL

The Game Description Language (GDL) has been developed to formalise the
rules of any finite game with complete information in such a way that the de-
scription can be automatically processed by a general game player [10,14]. GDL
is based on the standard syntax of logic programs, including negation. We as-
sume familiarity with the basic notions of normal logic programs, as can be
found in [3]. We adopt the Prolog convention according to which variables are
denoted by uppercase letters and predicate and function symbols start with a
lowercase letter. As a tailor-made specification language, GDL uses a few pre-
defined predicate symbols shown in Table 1. The use of these keywords must
obey the following syntactic restrictions [14].

Definition 1. In a valid GDL game description,

– role only appears in facts;
– init and next only appear as head of clauses;
– init does not depend 1 on any of true, legal, does, next, terminal,

or goal;
1 A predicate p is said to depend on a predicate q if q occurs in the body of a clause

for p, or if some predicate in a clause for p depends on q.

302 M. Thielscher

Table 1. The pre-defined keywords of GDL

role(R) R is a player
init(F) F holds in the initial position

true(F) F holds in the current position
legal(R,M) player R has legal move M

does(R,M) player R does move M

next(F) F holds in the next position

terminal the current position is terminal
goal(R,N) player R gets goal value N

– true and does only appear in the body of clauses; and
– neither of legal, terminal, or goal depends on does.

Example 1. Figure 1 depicts a game description of standard Tic-Tac-Toe,
where two players, respectively called xplayer and oplayer , take turn in mark-
ing the cells of a 3×3-board. (For the sake of simplicity, the straightforward
definitions of termination and winning criteria are omitted.) Of particular in-
terest from the viewpoint of action logics is the encoding of position updates.
The first clause with head next specifies the direct positive effect of marking
a cell. The second clause serves as an action-independent frame axiom for state
feature cell . The third and fourth clause for next describe how the argument
of control alters between consecutive moves. It is especially noteworthy that
the clauses together entail the implicit negative effect that control(xplayer) will
become false (after any joint move) unless control(oplayer) holds in the current
position, and vice versa. This is a consequence of the negation-as-failure prin-
ciple built into the semantics of GDL, which we will briefly recapitulate below.
The reader should also note the clausal definition of the predicate taken . This
clause acts as a state constraint, giving rise to the indirect effect that a cell will
be taken after a player has marked it.

GDL imposes some general restrictions on a set of clauses as a whole. Specifically,
it must be stratified [2], allowed [13], and comply with a recursion restriction
that guarantees that the entire set of clauses is equivalent to a finite set of ground
clauses (we refer to [14] for details). Stratified logic programs are known to admit
a specific standard model [17], which coincides with its unique stable model (also
called its answer set) [8,7].

Based on the concept of this standard model, a GDL description is understood
as a state transition system as follows [20]. To begin with, any valid game de-
scription G contains a finite set of function symbols, including constants, which
implicitly determines a set of ground terms Σ . This set constitutes the symbol
base Σ in the formal semantics for G.

The players R ⊆ Σ and the initial position of a game can be directly de-
termined from the clauses for role and init, respectively. In order to determine

Translating General Game Descriptions into an Action Language 303

role(xplayer).

role(oplayer).

init(control(xplayer)).

legal(P,mark(M,N)) :- true(control(P)),

index(M), index(N), ¬taken(M,N)
legal(xplayer,noop) :- ¬true(control(xplayer))
legal(oplayer,noop) :- ¬true(control(oplayer))

next(cell(M,N,Z)) :- marking(M,N,Z)

next(cell(M,N,Z)) :- true(cell(M,N,Z))

next(control(oplayer)) :- true(control(xplayer))

next(control(xplayer)) :- true(control(oplayer))

marking(M,N,x) :- does(xplayer,mark(M,N))

marking(M,N,o) :- does(oplayer,mark(M,N))

taken(M,N) :- marker(Z), true(cell(M,N,Z))

index(1).

index(2).

index(3).

marker(x).

marker(o).

terminal :- ...

goal(xplayer,100) :- ...

Fig. 1. A GDL description of Tic-Tac-Toe. Game positions are encoded using two
features: control (P), where P ∈ {xplayer , oplayer}, and cell(M, N, Z), where M, N ∈
{1, 2, 3} and Z ∈ {x, o} (the markers).

the legal moves, update, termination, and goal values (if any) for a given position,
this position has to be encoded first, using the keyword true. To this end, for
any finite subset S = {f1, . . . , fn} ⊆ Σ of ground terms, the following set of
logic program facts encodes S as the current position:

Strue def= {true(f1)., . . . , true(fn).}

Furthermore, for any function A : ({r1, . . . , rk} 0→ Σ) that assigns a move to
each player r1, . . . , rk ∈ R, the following set of facts encodes A as a joint move:

Adoes def= {does(r1, A(r1))., . . . , does(rk, A(rk)).} (1)

Adding the unary clauses Strue ∪ Adoes allows to infer the position that re-
sults from taking moves A in state S . All this is summarised in the following
definition.

304 M. Thielscher

Definition 2. Let G be a GDL specification whose signature determines the
set of ground terms Σ . Let 2Σ be the set of finite subsets of Σ . The semantics
of G is the state transition system (R,S0, T, l, u, g) where 2

– R = {r ∈ Σ : G |= role(r)} (the players);
– S0 = {f ∈ Σ : G |= init(f)} (the initial position);
– T = {S ∈ 2Σ : G ∪ Strue |= terminal} (the terminal positions);
– l = {(r, a, S) : G ∪ Strue |= legal(r, a)}, where r ∈ R, a ∈ Σ , and S ∈ 2Σ

(the legality relation);
– u(A,S) = {f ∈ Σ : G ∪ Strue ∪Adoes |= next(f)}, for all A : (R 0→ Σ) and

S ∈ 2Σ (the update function);
– g = {(r, v, S) : G ∪ Strue |= goal(r, v)}, where r ∈ R, v ∈ N, and S ∈ 2Σ

(the goal relation).

For S, S′ ∈ 2Σ we write S A→ S′ if A : (R 0→ Σ) is such that (r, A(r), S) ∈ l
for each r ∈ R and S′ = u(A,S) (and S /∈ T). We call

S0
A0→ S1

A1→ . . . An−1→ Sn

a development (where n ≥ 0).

Example 1. (Continued) The clauses in Figure 1 obviously entail the ini-
tial state S0 = {control(xplayer)}. Suppose, therefore, Strue

0 is added to the
program:

true(control(xplayer)).

Since all instances of taken(m,n) are false in the standard model of the program
thus obtained, it follows that xplayer has nine legal moves, viz. mark(m,n) for
each pair of arguments (m,n) ∈ {1, 2, 3} × {1, 2, 3}. The only derivable legal
move for oplayer is the constant noop . In order to determine the outcome of
a particular joint move, say A = {xplayer 0→ mark(2, 2), oplayer 0→ noop}, we
have to further add Adoes to the program:

does(xplayer,mark(2,2)).
does(oplayer,noop).

The resulting position is determined as the derivable arguments of keyword
next, which in this case are

{cell(2, 2, x), control(oplayer)}
Definition 2 provides the basis for interpreting a GDL description as an abstract
k-player game as follows. In every position S , starting with S0 , each player r
chooses a move a that satisfies l(r, a, S). As a consequence the game state
changes to u(A,S), where A is the joint move. The game ends if a position
in T is reached, and then the goal relation, g, determines the outcome. The
restrictions in GDL ensure that entailment wrt. the standard model is decid-
able and that only finitely many instances of each predicate are entailed. This
guarantees that the definition of the semantics is effective.
2 Below, entailment |= is via the aforementioned standard model for a stratified set

of clauses.

Translating General Game Descriptions into an Action Language 305

2.2 Action Languages

Michael Gelfond and Vladimir Lifschitz in the early 1990s developed a basic
language called A to describe action domains in a simple and intuitive way but
with a precise, formal semantics [9]. The purpose of this language was to facilitate
the assessment and comparison of existing AI formalisms and implementations
for reasoning about actions. Over the years, A has been extended in various
ways, and today there exists a whole family of action languages, including one
called C+ [11], along with several implementations.

Unlike GDL, all action languages use a sorted signature which distinguishes
between actions and fluents. In C+, there is the further distinction between sim-
ple fluents and statically determined ones. For example, a description of Tic-Tac-
Toe as action domain may use the simple fluents control(P) and cell (M,N,Z)
(for all instances P ∈ {xplayer , oplayer}, M,N ∈ {1, 2, 3}, and Z ∈ {x, o});
the statically determined fluent legal(xplayer ,noop); and, with the same domain
for M,N,Z , the actions marking(M,N,Z) and does(xplayer ,mark (M,N)).

Given a sorted domain signature, a fluent formula in the action language C+
is a formula with only fluents as atoms, while an action formula is a formula
with at least one action as atom. A general formula can have both actions and
fluents as atoms. For instance, with the fluents and actions just introduced,
¬control(xplayer) is a fluent formula while any instance of the (reverse) impli-
cation marking(M,N,Z)⊂does(xplayer ,mark (M,N)) is an action formula.

A domain description in C+ is composed of so-called causal laws, of which
there are three types.

1. A static law is of the form caused F if G, where F and G are fluent
formulas. Intuitively, it means that there is a cause for F to be true in
every state in which G holds. An example is

caused legal(xplayer ,noop) if ¬control(xplayer)

2. An action dynamic law is of the same form, caused F if G, but with F an
action formula and G a general formula. An example is

caused marking(M,N,Z)⊂does(xplayer ,mark(M,N)) if �

where symbol � denotes the unconditional truth.
3. A fluent dynamic law is of the form G causes F , where G is a general

formula and F is a fluent formula without statically determined fluents.
Intuitively, it means that there is a cause for F to be true in the next state
if G is true in the current one.3 An example is

marking(M,N,Z) causes cell (M,N,Z)

The formal semantics for causal laws will be introduced in Section 4 as part of
the main correctness proof in this paper.
3 Full C+ uses a slightly more general definition of fluent dynamic laws, but the

restricted version suffices as a target language for translating GDL.

306 M. Thielscher

3 Translating GDL into Action Language C+

In this section we construct, step by step, a complete embedding of GDL into the
action language C+. For this we assume given an arbitrary game description G.
By grd(G) we denote the (finite) set of ground instances of the clauses in G.

Since action languages use a sorted signature, the first step of translating
GDL into action language C+ is to assign a unique sort to the various syntactic
elements of a given game description. This is easily done as follows.

Definition 3. Let G be a GDL game description with roles R.

1. The simple fluents are the ground terms f that occur as arguments in
init(f), true(f), or next(f) in some clause in grd(G).

2. The statically determined fluents are
– the instances of the three pre-defined predicates legal, terminal, and

goal; and
– the instances of the atoms other than the pre-defined GDL predicates

(cf. Table 1) that occur in some clause in grd(G) and do not depend
on does.

3. The actions are
– all terms of the form does(r, a) such that r ∈ R and “a” is a ground

term with does(, a) or legal(, a) appearing in a clause in grd(G);
and

– the instances of the atoms other than the pre-defined GDL predicates that
occur as a head of some clause in grd(G) and that depend on does.

This assignment of sorts is straightforward with the exception of the domain-
dependent predicates whose definition depends on the GDL keyword does (an
example is the predicate marking(M,N,Z) in Figure 1). These predicates need
to be formally treated as actions for purely syntactic reasons, as will become
clear in Section 4 when we prove the correctness of the translation.

Example 1. (Continued) Recall the Tic-Tac-Toe clauses in Figure 1. They
determine the simple fluents4

control(xplayer), control(oplayer), cell(1, 1, x), . . . , cell (3, 3, o)

along with the statically determined fluents

legal(xplayer ,mark(1, 1)), . . . , legal(oplayer ,noop),
terminal , goal (xplayer , 100), . . . ,
taken(1, 1), . . . , taken(3, 3), index (1), . . . , marker (o)

4 For the sake of clarity, we only mention some of the instances of the fluents and
actions in this domain; the actual sets are larger and include irrelevant instances
such as cell(xplayer , xplayer , xplayer). When deploying our translation in practice,
such instances should be detected with the help of a pre-processor, which can be
built using a method described in [18] to compute the domains of the predicates in
a GDL description.

Translating General Game Descriptions into an Action Language 307

and the actions

does(xplayer ,noop), does(oplayer ,noop), does(xplayer ,mark(1, 1)), . . .
marking(1, 1, x), . . . , marking(3, 3, o)

Next we present the main result of this paper, which provides a fully automatic
translation for any given GDL description into a set of causal laws in action
language C+.

Definition 4. Consider a GDL description G in which each occurrence of
true(f) has been substituted by f . The translation of G into C+ is obtained
as follows.

1. For every clause f :-B in grd(G) where f is a statically determined fluent
(or a user-defined action predicate, respectively) introduce the law

caused (f ⊂B+) if B− (2)

where B+ (respectively, B−) is the conjunction of all atoms that occur
positively (respectively, negatively) in B.

2. For every statically determined fluent f (and every user-defined action pred-
icate, respectively) add the law

caused ¬f if ¬f (3)

3. For every clause next(f) :-B in grd(G) introduce the fluent dynamic law

B causes f (4)

4. For every simple fluent f add the fluent dynamic law∧
j

¬Bj causes ¬f (5)

where the conjunction ranges over the bodies (taken as conjunctions) of all
clauses next(f) :-Bj ∈ grd(G).5

5. For every action does(r, a) introduce the action dynamic law

caused does(r, a) if does(r, a) ∧ legal(r, a) (6)

6. For every pair of actions does(r, a) and does(r, a′) such that a �= a′ add
the fluent dynamic law

does(r, a) ∧ does(r, a′) causes ⊥ (7)

7. Add the fluent dynamic law∨
r

∧
a

¬does(r, a) causes ⊥ (8)

5 As usual, an empty body of a clause is equivalent to �, and an empty conjunction
is equivalent to ⊥, which stands for the unconditional falsity.

308 M. Thielscher

This construction deserves some explanation. According to law (2), if there is a
clause for a statically determined fluent or user-defined action f , then there is a
cause for f being implied by the positive atoms in the body of this clause if the
negative atoms in the body hold.6 Law (3) says that no such cause is needed for
f to be false (more precisely, ¬f suffices as cause for itself); this corresponds
to the negation-as-failure principle used in GDL when a user-defined predicate
is false in a situation where none of the clauses for this predicate applies. Note
that (2) and (3) are static laws if f is a fluent, but action dynamic laws if f is
an action.

Laws (4) and (5) say that for a fluent f to hold as a result of a move, there
must be an applicable clause with head next(f), otherwise there is a cause for
this fluent to be false. This is analogous to the negation-as-failure principle in
GDL for negative effects of moves.

Law (6) is the formal way to express that action occurrences do not require
a cause as long as they are legal. This corresponds to the treatment of moves
as exogenous when they are added to a GDL program via (1) as outlined in
Section 2.1. Finally, laws (7) and (8) together say that each player has to choose
exactly one move in each step.

It is easy to see that the translation is modular. If we assume that the num-
ber of players, fluents, and actions is small in comparison to the number of
game rules, then the resulting action theory is linear in the size of the GDL
description. As an example, the translation of our Tic-Tac-Toe game is shown
in Figure 2.7

4 Correctness

4.1 Syntactic Correctness

We begin by showing that our translation always results in a syntactically correct
C+ domain theory.

Proposition 1. Let G be a valid GDL description. Given the signature of Def-
inition 3, all laws constructed from G by Definition 4 are syntactically correct.

Proof:

– By Definition 1, neither of the pre-defined predicates legal, terminal, or
goal depends on does in G. Also, no other statically determined fluent
depends on does according to Definition 3. Hence, in case f is statically
determined fluent, (2) and (3) are syntactically correct static laws since f ,
B , ¬f , and

∧
j Bj are all fluent formulas. In case f is an action formula,

both (2) and (3) are syntactically correct action dynamic laws.
6 For a subtle reason, which will be revealed in Section 4, the more straightforward

translation of the corresponding GDL clause into caused f if B+∧B− is, in general,
incorrect.

7 Again we refrain from depicting the specifications of termination and goal values, for
the sake of simplicity. Also not shown are the generic executability laws according
to items 5–7 of Definition 4.

Translating General Game Descriptions into an Action Language 309

marking(M, N, Z) causes cell(M, N, Z)
cell(M, N, Z) causes cell(M, N, Z)

¬marking(M, N, Z) ∧ ¬cell(M, N, Z) causes ¬cell(M, N, Z)
control (xplayer) causes control (oplayer)

¬control (xplayer) causes ¬control (oplayer)
control (oplayer) causes control (xplayer)

¬control (oplayer) causes ¬control (xplayer)

caused legal(P,mark(M, N)) ⊂ control (P) ∧ index(M) ∧ index(N)
if ¬taken(M, N)

caused legal(xplayer , noop) if ¬control (xplayer)
caused legal(oplayer ,noop) if ¬control (oplayer)
caused ¬legal(P, A) if ¬legal(P, A)

caused marking(M, N, x) ⊂ does(xplayer ,mark(M, N))
if �

caused marking(M, N, o) ⊂ does(oplayer ,mark(M, N))
if �

caused ¬marking(M, N, Z) if ¬marking(M, N, Z)

caused taken(M, N) ⊂ marker(Z) ∧ cell(M, N, Z)
if �

caused ¬taken(M, N) if ¬taken(M, N)

caused index (1) if �
. . .
caused marker (o) if �

Fig. 2. Beginning with the fluent dynamic laws, these are the C+ laws that result
from translating the game rules for Tic-Tac-Toe in Section 2.1. Laws with variables
represent the collection of their ground instances.

– By Definition 3, if f occurs as argument in next(f) in some clause then f
is a simple fluent. Hence, (4) and (5) are syntactically correct fluent dynamic
laws since both f and ¬f are fluent formulas without statically determined
fluents.

– By Definition 3, does(r, a) is an action formula. Hence, (6) is a syntactically
correct action dynamic law.

– Laws (7) and (8) are syntactically correct fluent dynamic laws since ⊥ is a
fluent formula without statically determined fluents. �

4.2 From C+ to Causal Theories

In order to prove that our translation from GDL results in a correct C+ domain
description, we need to recapitulate the precise meaning of the resulting set of
causal laws. Following [11], the semantics is obtained in two steps. First, any C+
domain D along with any non-negative integer m, which indicates the number of
time steps to be considered, defines a set Dm of so-called causal rules as follows.

310 M. Thielscher

1. The signature of Dm consists in the pairs i : c for all i ∈ {0, . . . ,m} and
fluents c, and the pairs i : c for all i ∈ {0, . . . ,m − 1} and actions c. The
intuitive meaning of i :c is that c holds at time step i.

2. For every static law caused F if G, Dm contains the causal rule

i :F ⇐ i :G

for every i ∈ {0, . . . ,m} .8
3. For every action dynamic law caused F if G, Dm contains the causal rule

i :F ⇐ i :G

for every i ∈ {0, . . . ,m− 1} .
4. For every fluent dynamic law G causes F , Dm contains the causal rule

i + 1:F ⇐ i :G

for every i ∈ {0, . . . ,m− 1} .
5. For every simple fluent f , Dm contains the two causal rules

0 :f ⇐ 0:f
¬0:f ⇐ ¬0:f

Intuitively, a causal rule p ⇐ q means that there is a cause for p if q is true.
The purpose of these rules is to allow the application of the principle of universal
causation, according to which everything that holds must have a cause. This is
made precise in the second step of defining the semantics for C+. Let I be an
interpretation, that is, a set of atoms from the signature for Dm as given above.
The reduct DI

m is the set of all heads of causal rules in Dm whose bodies are
satisfied by I . A model of Dm is an interpretation I which is the unique model
of DI

m .

Example 1. (Continued) Consider the following small—and simplified—
extract of the causal theory corresponding to the C+ translation of Tic-Tac-Toe
(cf. Figure 2):

0 : legal(xplayer ,mark(1, 1)) ⊂ 0:control(xplayer)
⇐ ¬0: taken(1, 1)

0 : legal(xplayer ,noop) ⇐ ¬0:control(xplayer)
¬0: legal(xplayer ,mark(1, 1)) ⇐ ¬0: legal(xplayer ,mark(1, 1))

¬0: legal(xplayer ,noop) ⇐ ¬0: legal(xplayer ,noop)

0 : taken(1, 1) ⊂ 0:cell (1, 1, x) ⇐ �
¬0: taken(1, 1) ⇐ ¬0: taken(1, 1)

0 :control(xplayer) ⇐ 0:control(xplayer)
¬0:control(xplayer) ⇐ ¬0:control(xplayer)

0 :cell (1, 1, x) ⇐ 0:cell(1, 1, x)
¬0:cell (1, 1, x) ⇐ ¬0:cell(1, 1, x)

8 If F is a formula, then i : F denotes the result of placing “i :” in front of every
action or fluent occurrence in F .

Translating General Game Descriptions into an Action Language 311

Let these rules be denoted by D0 . Consider, then, the interpretation

I = {0:control(xplayer), 0: legal(xplayer ,mark(1, 1))}

The reduct DI
0 is

0 : legal(xplayer ,mark (1, 1)) ⊂ 0:control(xplayer)
¬0: legal(xplayer ,noop)
0 : taken(1, 1) ⊂ 0:cell (1, 1, x)
¬0: taken(1, 1)
0 :control(xplayer)
¬0:cell (1, 1, x)

Obviously, I is the unique model for this reduct, hence it is a model for D0. The
reader may verify that the following two are also models for this causal theory:

I ′ = {0: legal(xplayer ,noop)}
I ′′ = {0:cell(1, 1, x), 0: taken(1, 1), 0: legal(xplayer ,noop)}

4.3 Game Developments and Causal Models Coincide

For the following we adopt from [11] a layered representation of interpretations
for causal theories Dm. To this end, let i :si denote the set of all fluent atoms
of the form i : f that are true in a given interpretations, and let i : ei denote
the set of all action atoms of the form i :a that are true. Any interpretation can
then be represented in the form

(0:s0) ∪ (0 :e0) ∪ (1 :s1) ∪ (1 :e1) ∪ . . . ∪ (m− 1:em−1) ∪ (m :sm) (9)

This enables us to define a formal correspondence between models of a causal
theory and game developments.

Definition 5. Consider a game with terminal positions T and goal relation g.
A game development S0

A0→ S1
A1→ . . . An−1→ Sn coincides with a model (9) if,

and only if,

1. m = n;
2. Si and si agree on all simple fluents, for all i = 0, . . . , n;
3. Ai and ei agree on all actions does(r, a), for all i = 0, . . . , n− 1;
4. Si �∈ T and i : terminal �∈ si, for all i = 0, . . . , n− 1;
5. Sn ∈ T iff i : terminal ∈ sn; and
6. (r, v, Si) ∈ g iff i :goal (r, v) ∈ si, for all i = 0, . . . , n.

We are now prepared to state—and prove—our main result on the correctness
of the mapping developed in Section 3 from GDL to C+.

Theorem 1. Consider a valid GDL game G with initial state S0. For a given
non-negative number n ≥ 0 let Dn be the causal theory determined by the

312 M. Thielscher

translation of G into C+ with horizon n. With the addition of causal rules for
the initial game state,

0:f ⇐ for all f ∈ S0

¬0:f ⇐ for all simple fluents f �∈ S0
(10)

every game development S0
A0→ S1

A1→ . . . An−1→ Sn for G coincides with some
causal model for Dn ∪ (10) and vice versa.

Proof: By induction on n.
For the base case n = 0, items 2, 5, and 6 of Definition 5 are the only relevant
ones. In a lemma used in the proof for their Proposition 3, Giunchiglia et al. [11]
show that the answer sets for a logic program are equivalent to the models of
the causal theory that is obtained by

– identifying each clause f :-B with the rule (f ⊂B+) ⇐ B− and
– adding ¬f ⇐ ¬f for every atom.

This observation can be directly applied to prove our base case: the construction
in (10) ensures that the initial game state, S0 , agrees with the (unique) causal
model for D0 ∪ (10) on all simple fluents; furthermore, the construction of the
static laws (2) and (3) from the respective clauses in G ensures that the game
model coincides with the causal model on all statically determined fluents, in
particular terminal and goal .9

For the induction step, consider a game development S0
A0→ . . . An−1→ Sn

and a causal model (0 : s0) ∪ (0 : e0) ∪ . . . ∪ (n : sn) for Dn so that the two
coincide and both Sn and sn are non-terminal states. From the aforementioned
lemma in [11] it follows that the game model and the causal model coincide
on the interpretation of the statically determined fluent legal . With this, the
construction of the dynamic laws (6), (7), and (8) ensures that for every joint
legal action An in state Sn there is a model (0 :s0)∪ (0 :e0)∪ . . .∪ (n :sn)∪ (n :
en) ∪ (n + 1 : sn+1) for Dn+1—and vice versa—so that An and en agree on
all actions does(r, a). Moreover, the construction of the action dynamic laws (2)
and (3) along with the fluent dynamic laws (4) and (5) ensure that the updated
states Sn+1 and sn+1 agree on all simple fluents. Items 5 and 6 of Definition 5
again follow from the aforementioned lemma in [11]. �

5 Conclusion

The game description language GDL has been developed to provide a basis
for the new, grand AI challenge of general game playing [10]. Although GDL

9 At this point it becomes clear why we have to map clauses f :-B onto causal laws
caused f ⊂B+ if B− (cf. Footnote 6). The aforementioned observation in [11]
would not hold if a clause f :-B were identified with the causal rule f ⇐ B . For
example, the standard model for the program {p :- p} is {}, whereas the causal
theory {p ⇐ p,¬p ⇐ ¬p} admits two causal models, viz. {} and {p}.

Translating General Game Descriptions into an Action Language 313

can be viewed as a special-purpose action language, as yet it had not been
formally related to any of the existing formalisms for reasoning about actions.
In this paper, we have presented the first formal result in this regard, by giving
a complete embedding of GDL into the action language C+.

Our result paves the way for applying results from reasoning about actions to
various aspects of general game playing, and conversely to use this AI challenge
as an interesting and ambitious testbed for existing methods in reasoning about
actions. Specifically, the embedding of GDL into C+ allows to directly deploy
an existing implementation, the Causal Calculator [11,1], to reason about game
descriptions in GDL. Further interesting directions for future work are, first,
to investigate the formal relation between GDL and other existing action for-
malisms, possibly with C+ as intermediary language on the basis of our result;
and second, to investigate how the extension of GDL to imperfect information
games [22] can be related to an existing action language suitable for representing
both incomplete knowledge and sensing actions.

Acknowledgement. The author is indebted to Marina De Vos for her valuable
comments on an earlier version of this paper. The author is the recipient of an
Australian Research Council Future Fellowship (project number FT 0991348).

References

1. Akman, V., Erdogan, S., Lee, J., Lifschitz, V., Turner, H.: Representing the Zoo
world and the Traffic world in the language of the Causal Calculator. Artificial
Intelligence 153(1-2), 105–140 (2004)

2. Apt, K., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In:
Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, ch.
2, pp. 89–148. Morgan Kaufmann, San Francisco (1987)

3. Apt, K., Bol, R.: Logic programming and negation: A survey. Journal of Logic
Programming 19/20, 9–71 (1994)

4. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press, New York (1978)

5. Clune, J.: Heuristic evaluation functions for general game playing. In: Proceedings
of the AAAI Conference, pp. 1134–1139 (2007)

6. Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing.
In: Proceedings of the AAAI Conference, pp. 259–264 (2008)

7. Gelfond, M.: Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.)
Handbook of Knowledge Representation, pp. 285–316. Elsevier, Amsterdam (2008)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Proceedings of the International Joint Conference and Symposium on Logic
Programming (IJCSLP), pp. 1070–1080 (1988)

9. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs.
Journal of Logic Programming 17, 301–321 (1993)

10. Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI
competition. AI Magazine 26(2), 62–72 (2005)

11. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal
theories. Artificial Intelligence 153(1-2), 49–104 (2004)

314 M. Thielscher

12. Kuhlmann, G., Dresner, K., Stone, P.: Automatic heuristic construction in a com-
plete general game player. In: Proceedings of the AAAI Conference, pp. 1457–1462
(2006)

13. Lloyd, J., Topor, R.: A basis for deductive database systems II. Journal of Logic
Programming 3(1), 55–67 (1986)

14. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General Game
Playing: Game Description Language Specification. Technical Report LG–2006–01,
Computer Science Department, Stanford University (2006), games.stanford.edu

15. McCarthy, J.: Situations and Actions and Causal Laws. Stanford Artificial Intelli-
gence Project, Memo 2, Stanford University (1963)

16. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of ar-
tificial intelligence. Machine Intelligence 4, 463–502 (1969)

17. Przymusinski, T.: On the declarative semantics of deductive databases and logic
programs. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Pro-
gramming, pp. 193–216. Morgan Kaufmann, San Francisco (1988)

18. Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In: Pro-
ceedings of the AAAI Conference, pp. 1191–1196 (2007)

19. Schiffel, S., Thielscher, M.: Automated theorem proving for general game play-
ing. In: Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pp. 911–916 (2009)

20. Schiffel, S., Thielscher, M.: A multiagent semantics for the Game Description Lan-
guage. In: Filipe, J., Fred, A., Sharp, B. (eds.) Agents and Artificial Intelligence:
Proceedings of ICAART. CCIS, vol. 67, pp. 44–55. Springer, Heidelberg (2009)

21. Schiffel, S., Thielscher, M., Zhao, D.: Decomposition of multi-player games. In:
Nicholson, A., Li, X. (eds.) AI 2009. LNCS, vol. 5866, pp. 475–484. Springer,
Heidelberg (2009)

22. Thielscher, M.: A general game description language for incomplete information
games. In: Proceedings of the AAAI Conference, pp. 994–999 (2010)

23. Thielscher, M., Voigt, S.: A temporal proof system for general game playing. In:
Proceedings of the AAAI Conference, pp. 1000–1005 (2010)

games.stanford.edu

Revisiting Epistemic Specifications

Mirosław Truszczyński

Department of Computer Science
University of Kentucky

Lexington, KY 40506, USA
mirek@cs.uky.edu

In honor of Michael Gelfond on his 65th birthday!

Abstract. In 1991, Michael Gelfond introduced the language of epistemic speci-
fications. The goal was to develop tools for modeling problems that require some
form of meta-reasoning, that is, reasoning over multiple possible worlds. De-
spite their relevance to knowledge representation, epistemic specifications have
received relatively little attention so far. In this paper, we revisit the formalism of
epistemic specification. We offer a new definition of the formalism, propose sev-
eral semantics (one of which, under syntactic restrictions we assume, turns out to
be equivalent to the original semantics by Gelfond), derive some complexity re-
sults and, finally, show the effectiveness of the formalism for modeling problems
requiring meta-reasoning considered recently by Faber and Woltran. All these
results show that epistemic specifications deserve much more attention that has
been afforded to them so far.

1 Introduction

Early 1990s were marked by several major developments in knowledge representation
and nonmonotonic reasoning. One of the most important among them was the intro-
duction of disjunctive logic programs with classical negation by Michael Gelfond and
Vladimir Lifschitz [1]. The language of the formalism allowed for rules

H1 ∨ . . . ∨Hk ← B1, . . . , Bm,not Bm+1, . . . ,not Bn,

where Hi and Bi are classical literals, that is, atoms and classical or strong negations
(¬) of atoms. In the paper, we will write “strong” rather than “classical” negation, as it
reflects more accurately the role and the behavior of the operator. The answer-set se-
mantics for programs consisting of such rules, introduced in the same paper, generalized
the stable-model semantics of normal logic programs proposed a couple of years earlier
also by Gelfond and Lifschitz [2]. The proposed extensions of the language of nor-
mal logic programs were motivated by knowledge representation considerations. With
two negation operators it was straightforward to distinguish between P being false by
default (there is no justification for adopting P), and P being strongly false (there is
evidence for ¬P). The former would be written as not P while the latter as ¬P . And
with the disjunction in the head of rules one could model “indefinite” rules which, when
applied, provide partial information only (one of the alternatives in the head holds, but
no preference to any of them is given).

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 315–333, 2011.
© Springer-Verlag Berlin Heidelberg 2011

316 M. Truszczyński

Soon after disjunctive logic programs with strong negation were introduced, Michael
Gelfond proposed an additional important extension, this time with a modal operator
[3]. He called the resulting formalism the language of epistemic specifications. The
motivation came again from knowledge representation. The goal was to provide means
for the “correct representation of incomplete information in the presence of multiple
extensions” [3].

Surprisingly, despite their evident relevance to the theory of nonmonotonic reasoning
as well as to the practice of knowledge representation, epistemic specifications have
received relatively little attention so far. This state of affairs may soon change. Recent
work by Faber and Woltran on meta-reasoning with answer-set programming [4, 5]
shows the need for languages, in which one could express properties holding across all
answer sets of a program, something Michael Gelfond foresaw already two decades ago.

Our goal in this paper is to revisit the formalism of epistemic specifications and show
that they deserve a second look, in fact, a place in the forefront of knowledge represen-
tation research. We will establish a general semantic framework for the formalism, and
identify in it the precise location of Gelfond’s epistemic specifications. We will derive
several complexity results. We will also show that the original idea of Gelfond to use
a modal operator to model “what is known to a reasoner” has a broader scope of ap-
plicability. In particular, we will show that it can also be used in combination with the
classical logic.

Complexity results presented in this paper provide an additional motivation to study
epistemic specifications. Even though programs with strong negation often look “more
natural” as they more directly align with the natural language description of knowledge
specifications, the extension of the language of normal logic programs with the strong
negation operator does not actually increase the expressive power of the formalism.
This point was made already by Gelfond and Lifschitz, who observed that there is a
simple and concise way to compile the strong negation away. On the other hand, the
extension allowing the disjunction operator in the heads of rules is an essential one.
As the complexity results show [6, 7], the class of problems that can be represented
by means of disjunctive logic programs is strictly larger (assuming no collapse of the
polynomial hierarchy) than the class of problems that can be modeled by normal logic
programs. In the same vein, extension by the modal operator along the lines proposed
by Gelfond is essential, too. It does lead to an additional jump in the complexity.

2 Epistemic Specifications

To motivate epistemic specifications, Gelfond discussed the following example. A cer-
tain college has these rules to determine the eligibility of a student for a scholarship:

1. Students with high GPA are eligible
2. Students from underrepresented groups and with fair GPA are eligible
3. Students with low GPA are not eligible
4. When these rules are insufficient to determine eligibility, the student should be

interviewed by the scholarship committee.

Gelfond argued that there is no simple way to represent these rules as a disjunctive logic
program with strong negation. There is no problem with the first three rules. They are

Revisiting Epistemic Specifications 317

modeled correctly by the following three logic program rules (in the language with both
the default and strong negation operators):

1. eligible(X)← highGPA(X)
2. eligible(X)← underrep(X), fairGPA(X)
3. ¬eligible(X)← lowGPA(X).

The problem is with the fourth rule, as it has a clear meta-reasoning flavor. It should
apply when the possible worlds (answer sets) determined by the first three rules do
not fully specify the status of eligibility of a student a: neither all of them contain
eligible(a) nor all of them contain¬eligible(a). An obvious attempt at a formalization:

4. interview(X) ← not eligible(X),not ¬eligible(X)

fails. It is just another rule to be added to the program. Thus, when the answer-set
semantics is used, the rule is interpreted with respect to individual answer sets and not
with respect to collections of answer-sets, as required for this application. For a concrete
example, let us assume that all we know about a certain student named Mike is that
Mike’s GPA is fair or high. Clearly, we do not have enough information to determine
Mike’s eligibility and so we must interview Mike. But the program consisting of rules
(1)-(4) and the statement

5. fairGPA(mike) ∨ highGPA(mike)

about Mike’s GPA, has two answer sets:

{highGPA(mike), eligible(mike)}
{fairGPA(mike), interview(mike)}.

Thus, the query ?interview(mike) has the answer “unknown.” To address the prob-
lem, Gelfond proposed to extend the language with a modal operator K and, speaking
informally, interpret premises Kϕ as “ϕ is known to the program” (the original phrase
used by Gelfond was “known to the reasoner”), that is, true in all answer-sets. With this
language extension, the fourth rule can be encoded as

4′. interview(X) ← not K eligible(X),not K¬eligible(X)

which, intuitively, stands for “interview if neither the eligibility nor the non-eligibility
is known.”

The way in which Gelfond [3] proposed to formalize this intuition is strikingly el-
egant. We will now discuss it. We start with the syntax of epistemic specifications. As
elsewhere in the paper, we restrict attention to the propositional case. We assume a fixed
infinite countable set At of atoms and the corresponding language L of propositional
logic. A literal is an atom, say A, or its strong negation ¬A. A simple modal atom is
an expression Kϕ, where ϕ ∈ L, and a simple modal literal is defined accordingly. An
epistemic premise is an expression (conjunction)

E1, . . . , Es,not Es+1, . . . ,not Et,

318 M. Truszczyński

where every Ei, 1 ≤ i ≤ t, is a simple modal literal. An epistemic rule is an expression
of the form

L1 ∨ . . . ∨ Lk ← Lk+1, . . . , Lm,not Lm+1, . . . ,not Ln, E,

where every Li, 1 ≤ i ≤ k, is a literal, and E is an epistemic premise. Collections of
epistemic rules are epistemic programs. It is clear that (ground versions of) rules (1)-(5)
and (4′) are examples of epistemic rules, with rule (4′) being an example of an epistemic
rule that actually takes advantage of the extended syntax. Rules such as

a ∨ ¬d← b,not ¬c,¬K(d ∨ ¬c)
¬a← ¬c,not ¬K(¬(a ∧ c) → b)

are also examples of epistemic rules. We note that the language of epistemic programs
is only a fragment of the language of epistemic specifications by Gelfond. However, it is
still expressive enough to cover all examples discussed by Gelfond and, more generally,
a broad range of practical applications, as natural-language formulations of domain
knowledge typically assume a rule-based pattern.

We move on to the semantics, which is in terms of world views. The definition of
a world view consists of several steps. First, let W be a consistent set of literals from
L. We regard W as a three-valued interpretation of L (we will also use the term three-
valued possible world), assigning to each atom one of the three logical values t, f and u.
The interpretation extends by recursion to all formulas in L, according to the following
truth tables

¬
f t
t f
u u

∨ t u f

t t t t
u t u u
f t u f

∧ t u f

t t u f
u u u f
f f f f

→ t u f

t t u f
u t u u
f t t t

Fig. 1. Truth tables for the 3-valued logic of Kleene

By a three-valued possible-world structure we mean a non-empty family of consis-
tent sets of literals (three-valued possible worlds). Let A be a three-valued possible-
world structure and let W be a consistent set of literals. For every formula ϕ ∈ L, we
define

1. 〈A,W 〉 |= ϕ, if vW (ϕ) = t
2. 〈A,W 〉 |= Kϕ, if for every V ∈ A, vV (ϕ) = t
3. 〈A,W 〉 |= ¬Kϕ, if there is V ∈ A such that vV (ϕ) = f .

Next, for every literal or simple modal literal L, we define

4. 〈A,W 〉 |= not L if 〈A,W 〉 �|= L.

We note that neither 〈A,W 〉 |= Kϕ nor 〈A,W 〉 |= ¬Kϕ depend on W . Thus, we will
often write A |= F , when F is a simple modal literal or its default negation.

Revisiting Epistemic Specifications 319

In the next step, we introduce the notion of the G-reduct of an epistemic program.

Definition 1. Let P be an epistemic program, A a three-valued possible-world struc-
ture and W a consistent set of literals. The G-reduct of P with respect to 〈A,W 〉, in
symbols P 〈A,W 〉, consists of the heads of all rules r ∈ P such that 〈A,W 〉 |= α, for
every conjunct α occurring in the body of r.

Let H be a set of disjunctions of literals from L. A set W of literals is closed with
respect to H if W is consistent and contains at least one literal in common with every
disjunction in H . We denote by Min(H) the family of all minimal sets of literals that
are closed with respect to H . With the notation Min(H) in hand, we are finally ready
to define the concept of a world view of an epistemic program P .

Definition 2. A three-valued possible-world structure A is a world view of an epis-
temic program P if A = {W |W ∈ Min(P 〈A,W 〉)}.
Remark 1. The G-reduct of an epistemic program consists of disjunctions of literals.
Thus, the concept of a world view is well defined.

Remark 2. We note that Gelfond considered also inconsistent sets of literals as minimal
sets closed under disjunctions. However, the only such set he allowed consisted of all
literals. Consequently, the difference between the Gelfond’s semantics and the one we
described above is that some programs have a world view in the Gelfond’s approach
that consists of a single set of all literals, while in our approach these programs do not
have a world view. But in all other cases, the two semantics behave in the same way.

Let us consider the ground program, say P , corresponding to the scholarship eligibility
example (rule (5), and rules (1)-(3) and (4′), grounded with respect to the Herbrand
universe {mike}). The only rule involving simple modal literals is

interview(mike) ← not K eligible(mike),not K¬eligible(mike).

Let A be a world view of P . Being a three-valued possible-world structure, A �= ∅.
No matter what W we consider, no minimal set closed with respect to P 〈A,W 〉 con-
tains lowGPA(mike) and, consequently, no minimal set closed with respect to P 〈A,W 〉

contains ¬eligible(mike). It follows thatA �|= K¬eligible(mike).
Let us assume that A |= K eligible(mike). Then, no reduct P 〈A,W 〉 contains

interview(mike). Let W = {fairGP(mike)}. It follows that P 〈A,W 〉 consists only of
fairGPA(mike) ∨ highGPA(mike). Clearly, W ∈ Min(P 〈A,W 〉) and, consequently,
W ∈ A. Thus, A �|= K eligible(mike), a contradiction.

It must be then that A |= not K eligible(mike) and A |= not K¬eligible(mike).
Let W be an arbitrary consistent set of literals. Clearly, the reduct P 〈A,W 〉 contains
interview(mike) and fairGPA(mike)∨highGPA(mike). If highGPA(mike) ∈W ,
the reduct also contains eligible(mike). Thus, W ∈ Min(P 〈A,W 〉) if and only if

W = {fairGPA(mike), interview(mike)}, or
W = {highGPA(mike), eligible(mike), interview(mike)}.

It follows that if A is a world view for P then it consists of these two possible worlds.
Conversely, it is easy to check that a possible-world structure consisting of these two
possible worlds is a world view for P . Thus, interview(mike) holds in A, and so our
representation of the example as an epistemic program has the desired behavior.

320 M. Truszczyński

3 Epistemic Specifications — A Broader Perspective

The discussion in the previous section demonstrates the usefulness of formalisms such
as that of epistemic specifications for knowledge representation and reasoning. We will
now present a simpler yet, in many respects, more general framework for epistemic
specifications. The key to our approach is that we consider the semantics given by two-
valued interpretations (sets of atoms), and standard two-valued possible-world struc-
tures (nonempty collections of two-valued interpretations). We also work within a rather
standard version of the language of modal propositional logic and so, in particular, we
allow only for one negation operator. Later in the paper we show that epistemic speci-
fications by Gelfond can be encoded in a rather direct way in our formalism. Thus, the
restrictions we impose are not essential even though, admittedly, not having two kinds
of negation in the language in some cases may make the modeling task harder.

We start by making precise the syntax of the language we will be using. As we stated
earlier, we assume a fixed infinite countable set of atoms At . The language we consider
is determined by the set At , the modal operator K , and by the boolean connectives ⊥
(0-place), and ∧, ∨, and→ (binary). The BNF expression

ϕ ::= ⊥ |A | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) |Kϕ,

where A ∈ At , provides a concise definition of a formula. The parentheses are used
only to disambiguate the order of binary connectives. Whenever possible, we omit them.
We define the unary negation connective ¬ and the 0-place connective � as abbrevia-
tions:

¬ϕ ::= ϕ→ ⊥
� ::= ¬⊥.

We call formulas Kϕ, where ϕ ∈ LK , modal atoms (simple modal atoms that we
considered earlier and will consider below are special modal atoms with K-depth equal
to 1). We denote this language by LK and refer to subsets of LK as epistemic theories.
We denote the modal-free fragment of LK by L.

While we will eventually describe the semantics (in fact, several of them) for arbi-
trary epistemic theories, we start with an important special case. Due to close analogies
between the concepts we define below and the corresponding ones defined earlier in the
context of the formalism of Gelfond, we “reuse” the terms used there. Specifically, by
an epistemic premise we mean a conjunction of simple modal literals. Similarly, by an
epistemic rule we understand an expression of the form

E ∧ L1 ∧ . . . ∧ Lm → A1 ∨ . . . ∨An, (1)

where E is an epistemic premise, Li’s are literals (in L) and Ai’s are atoms. Finally, we
call a collection of epistemic rules an epistemic program. It will always be clear from
the context, in which sense these terms are to be understood.

We stress that ¬ is not a primary connective in the language but a derived one (it
is a shorthand for some particular formulas involving the rule symbol). Even though

Revisiting Epistemic Specifications 321

under some semantics we propose below this negation operator has features of default
negation, under some others it does not. Thus, we selected for it the standard negation
symbol ¬ rather than the “loaded” not .

A (two-valued) possible-world structure is any nonempty family A of subsets of At
(two-valued interpretations). In the remainder of the paper, when we use terms “inter-
pretation” and “possible-world structure” without any additional modifiers, we always
mean a two-valued interpretation and a two-valued possible-world structure.

Let A be a possible-world structure and ϕ ∈ L. We recall that A |= Kϕ precisely
when W |= ϕ, for every W ∈ A, and A |= ¬Kϕ, otherwise. We will now define the
epistemic reduct of an epistemic program with respect to a possible-world structure.

Definition 3. Let P ⊆ LK be an epistemic program and let A be a possible-world
structure. The epistemic reduct of P with respect to A, PA in symbols, is the theory
obtained from P as follows: eliminate every rule with an epistemic premise E such that
A �|= E; drop the epistemic premise from every remaining rule.

It is clear that PA ⊆ L, and that it consists of rules of the form

L1 ∧ . . . ∧ Lm → A1 ∨ . . . ∨An, (2)

where Li’s are literals (in L) and Ai’s are atoms.
Let P be a collection of rules (2). Then, P is a propositional theory. Thus, it can

be interpreted by the standard propositional logic semantics. However, P can also be
regarded as a disjunctive logic program (if we write rules from right to left rather than
from left to right). Consequently, P can also be interpreted by the stable-model seman-
tics [1, 2] and the supported-model semantics [8–11]. (For normal logic programs, the
supported-model semantics was introduced by Apt et al. [8]. The notion was extended
to disjunctive logic programs by Baral and Gelfond [9]. We refer to papers by Brass and
Dix [10], Definition 2.4, and Inoue and Sakama [11], Section 5, for more details). We
write M(P), ST (P) and SP(P) for the sets of models, stable models and supported
models of P , respectively. An important observation is that each of these semantics
gives rise to the corresponding notion of an epistemic extension.

Definition 4. Let P ⊆ LK be an epistemic program. A possible-world structure A is
an epistemic model (respectively, an epistemic stable model, or an epistemic supported
model) of P , if A = M(PA) (respectively, A = ST (PA) or A = SP(PA)).

It is clear that Definition 4 can easily be adjusted also to other semantics of propositional
theories and programs. We briefly mention two such semantics in the last section of the
paper.

We will now show that epistemic programs with the semantics of epistemic sta-
ble models can provide an adequate representation to the scholarship eligibility exam-
ple for Mike. The available information can be represented by the following program
P (mike) ⊆ LK :

1. eligible(mike)∧ neligible(mike)→ ⊥
2. fairGPA(mike) ∨ highGPA(mike)

322 M. Truszczyński

3. highGPA(mike) → eligible(mike)
4. underrep(mike) ∧ fairGPA(mike) → eligible(mike)
5. lowGPA(mike)→ neligible(mike)
6. ¬K eligible(mike),¬Kneligible(mike)→ interview(mike).

We use the predicate neligible to model the strong negation of the predicate eligible
that appears in the representation in terms of epistemic programs by Gelfond (thus, in
particular, the presence of the first clause, which precludes the facts eligible(mike) and
neligible(mike) to be true together). This extension of the language and an extra rule
in the representation is the price we pay for eliminating one negation operator.

Let A consist of the interpretations

W1 = {fairGPA(mike), interview(mike)}
W2 = {highGPA(mike), eligible(mike), interview(mike)}.

Then the reduct [P (mike)]A consists of rules (1)-(5), which are unaffected by the
reduct operation, and of the fact interview(mike), resulting from rule (6) when the
reduct operation is performed (as in logic programming, when a rule has the empty
antecedent, we drop the implication symbol from the notation). One can check that
A = {W1,W2} = ST ([P (mike)]A). Thus, A is an epistemic stable model of P (in
fact, the only one). Clearly, interview(mike) holds in the model (as we would expect
it to), as it holds in each of its possible-worlds. We note that in this particular case, the
semantics of epistemic supported models yields exactly the same solution.

4 Complexity

We will now study the complexity of reasoning with epistemic (stable, supported) mod-
els. We provide details for the case of epistemic stable models, and only present the
results for the other two semantics, as the techniques to prove them are very similar to
those we develop for the case of epistemic stable models.

First, we note that epistemic stable models of an epistemic program P can be rep-
resented by partitions of the set of all modal atoms of P . This is important as a priori
the size of possible-world structures one needs to consider as candidates for epistemic
stable models may be exponential in the size of a program. Thus, to obtain good com-
plexity bounds alternative polynomial-size representations of epistemic stable models
are needed.

Let P ⊆ LK be an epistemic program and (Φ, Ψ) be a partition of the set of modal
atoms of P (all these modal atoms are, in fact, simple). We write P|Φ,Ψ for the program
obtained from P by eliminating every rule whose epistemic premise contains a conjunct
Kψ, where Kψ ∈ Ψ , or a conjunct ¬Kϕ, where Kϕ ∈ Φ (these rules are “blocked”
by (Φ, Ψ)), and by eliminating the epistemic premise from every other rule of P .

Proposition 1. Let P ⊆ LK be an epistemic program. If a possible-world structure A
is an epistemic stable model of P , then there is a partition (Φ, Ψ) of the set of modal
atoms of P such that

Revisiting Epistemic Specifications 323

1. ST (P|Φ,Ψ) �= ∅
2. For every Kϕ ∈ Φ, ϕ holds in every stable model of P|Φ,Ψ

3. For every Kψ ∈ Ψ , ψ does not hold in at least one stable model of P|Φ,Ψ .

Conversely, if there are such partitions, P has epistemic stable models.

It follows that epistemic stable models can be represented by partitions (Φ, Ψ) satisfying
conditions (1)-(3) from the proposition above.

We observe that deciding whether a partition (Φ, Ψ) satisfies conditions (1)-(3) from
Proposition 1, can be accomplished by polynomially many calls to an ΣP

2 -oracle and,
if we restrict attention to non-disjunctive epistemic programs, by polynomially many
calls to an NP -oracle.

Remark 3. If we adjust Proposition 1 by replacing the term “stable” with the term “sup-
ported,” and replacing ST () with SP(), we obtain a characterization of epistemic sup-
ported models. Similarly, omitting the term “stable,” and replacing ST () with M()
yields a characterization of epistemic models. In each case, one can decide whether a
partition (Φ, Ψ) satisfies conditions (1)-(3) by polynomially many calls to an NP-oracle
(this claim is evident for the case of epistemic models; for the case of epistemic sup-
ported models, it follows from the fact that supported models semantics does not get
harder when we allow disjunctions in the heads or rules).

Theorem 1. The problem to decide whether a non-disjunctive epistemic program has
an epistemic stable model is ΣP

2 -complete.

Proof: Our comments above imply that the problem is in the class ΣP
2 . Let F =

∃Y ∀ZΘ, where Θ is a DNF formula. The problem to decide whether F is true is ΣP
2 -

complete. We will reduce it to the problem in question and, consequently, demonstrate
its ΣP

2 -hardness. To this end, we construct an epistemic program Q ⊆ LK by including
into Q the following clauses (atoms w, y′, y ∈ Y , and z′, z ∈ Z are fresh):

1. Ky → y ; and Ky′ → y′, for every y ∈ Y
2. y ∧ y′ → ; and ¬y ∧ ¬y′ → , for every y ∈ Y
3. ¬z′ → z ; and ¬z → z′, for z ∈ Z
4. σ(u1)∧ . . .∧ σ(uk) → w , where u1 ∧ . . .∧ uk is a disjunct of Θ, and σ(¬a) = a′

and σ(a) = a, for every a ∈ Y ∪ Z
5. ¬Kw → .

Let us assume that A is an epistemic stable model of Q. In particular, A �= ∅. It must
be that A |= Kw (otherwise, QA has no stable models, that is, A = ∅). Let us define
A = {y ∈ Y | A |= Ky}, and B = {y ∈ Y | A |= Ky′}. It follows that QA consists
of the following rules:

1. y, for y ∈ A, and y′, for y ∈ B
2. y ∧ y′ → ; and ¬y ∧ ¬y′ → , for every y ∈ Y
3. ¬z′ → z ; and ¬z → z′, for z ∈ Z
4. σ(u1)∧ . . .∧ σ(uk) → w , where u1 ∧ . . .∧ uk is a disjunct of Θ, and σ(¬a) = a′

and σ(a) = a, for every a ∈ Y ∪ Z .

324 M. Truszczyński

Since A = ST (QA) and A �= ∅, B = Y \ A (due to clauses of type (2)). It is clear
that the program QA has stable models and that they are of the form A ∪ {y′ | y ∈
Y \ A} ∪ D ∪ {z′ | z ∈ Z \ D}, if that set does not imply w through a rule of type
(4), or A ∪ {y′ | y ∈ Y \ A} ∪ D ∪ {z′ | z ∈ Z \ D} ∪ {w}, otherwise, where D is
any subset of Z . As A |= Kw, there are no stable models of the first type. Thus, the
family of stable models of QA consists of all sets A∪ {y′ | y ∈ Y \A} ∪D ∪ {z′ | z ∈
Z \D}∪{w}, where D is an arbitrary subset of Z . It follows that for every D ⊆ Z , the
set A ∪ {y′ | y ∈ Y \A} ∪D ∪ {z′ | z ∈ Z \D} satisfies the body of at least one rule
of type (4). By the construction, for every D ⊆ Z , the valuation of Y ∪ Z determined
by A and D satisfies the corresponding disjunct in Θ and so, also Θ. In other words,
∃Y ∀ZΘ is true.

Conversely, let ∃Y ∀ZΘ be true. Let A be a subset of Y such that Θ|Y/A holds for
every truth assignment of Z (by Θ|Y/A, we mean the formula obtained by simplifying
the formulaΘ with respect to the truth assignment of Y determined byA). LetA consist
of all sets of the form A ∪ {y′ | y ∈ Y \ A} ∪ D ∪ {z′ | z ∈ Z \ D} ∪ {w}, where
D ⊆ Z . It follows that QA consists of clauses (1)-(4) above, with B = Y \ A. Since
∀ZΘ|A/Y holds, it follows that A is precisely the set of stable models of QA. Thus, A
is an epistemic stable model of Q. �

In the general case, the complexity goes one level up.

Theorem 2. The problem to decide whether an epistemic program P ⊆ LK has an
epistemic stable model is ΣP

3 -complete.

Proof: The membership follows from the earlier remarks. To prove the hardness part,
we consider a QBF formula F = ∃X∀Y ∃ZΘ, where Θ is a 3-CNF formula. For each
atom x ∈ X (y ∈ Y and z ∈ Z , respectively), we introduce a fresh atom x′ (y′ and z′,
respectively). Finally, we introduce three additional fresh atoms, w, f and g.

We now construct a disjunctive epistemic program Q by including into it the follow-
ing clauses:

1. Kx→ x; and Kx′ → x′, for every x ∈ X
2. x ∧ x′ →; and ¬x ∧ ¬x′ →, for every x ∈ X
3. ¬g → f ; and ¬f → g
4. f → y ∨ y′; and f → z ∨ z′, for every y ∈ Y and z ∈ Z
5. f ∧ w → z; and f ∧ w → z′, for every z ∈ Z
6. f ∧ σ(u1) ∧ σ(u2) ∧ σ(u3) → w, for every clause C = u1 ∨ u2 ∨ u3 of Θ, where

σ(a) = a′ and σ(¬a) = a, for every a ∈ X ∪ Y ∪ Z
7. f ∧ ¬w → w
8. ¬K¬w →

Let us assume that ∃X∀Y ∃ZΘ is true. Let A ⊆ X describe the truth assignment on X
so that ∀Y ∃ZΘX/A holds (we define ΘX/A as in the proof of the previous result). We
will show that Q has an epistemic stable model A = {A ∪ {a′ | a ∈ X \ A} ∪ {g}}.
Clearly, Kx, x ∈ A, and Kx′, x ∈ X \ A, are true in A. Also, K¬w is true in A. All
other modal atoms in Q are false in A. Thus, QA consists of rules x, for x ∈ A, x′, for
x ∈ X \ A and of rules (2)-(7) above. Let M be a stable model of QA containing f .
It follows that w ∈ M and so, Z ∪ Z ′ ⊆ M . Moreover, the Gelfond-Lifschitz reduct

Revisiting Epistemic Specifications 325

of QA with respect to M consists of rules x, for x ∈ A, x′, for x ∈ X \ A, all ¬-free
constraints of type (2), rule f , and rules (4)-(6) above, and M is a minimal model of
this program.

Let B = Y ∩M . By the minimality of M , M = A ∪ {x′ | x ∈ X \ A} ∪ B ∪
{y′ | y ∈ Y \ B} ∪ Z ∪ Z ′ ∪ {f, w}. Since ∀Y ∃ZΘX/A holds, ∃ZΘX/A,Y/B holds,
too. Thus, let D ⊆ Z be a subset of Z such that ΘX/A,Y/B,Z/D is true. It follows that
M ′ = A ∪ {x′ | x ∈ X \ A} ∪ B ∪ {y′ | y ∈ Y \ B} ∪D ∪ {z′ | z ∈ Z \D} ∪ {f}
is also a model of the Gelfond-Lifschitz reduct of QA with respect to M , contradicting
the minimality of M .

Thus, if M is an answer set of QA, it must contain g. Consequently, it does not
contain f and so no rules of type (4)-(7) contribute to it. It follows that M = A ∪
{a′ | a ∈ X \A} ∪ {g} and, as it indeed is an answer set of QA, A = ST (QA). Thus,
A is a epistemic stable model, as claimed.

Conversely, let as assume that Q has an epistemic stable model, say, A. It must be
thatA |= K¬w (otherwise, QA contains a contradiction and has no stable models). Let
us define A = {x ∈ X | A |= Kx} and B = {x ∈ X | A |= Kx′}. It follows that QA

consists of the clauses:

1. x, for x ∈ A and x′, for x ∈ B
2. x ∧ x′ →; and ¬x ∧ ¬x′ →, for every x ∈ X
3. ¬g → f ; and ¬f → g
4. f → y ∨ y′; and f → z ∨ z′, for every y ∈ Y and z ∈ Z
5. f ∧ w → z; and f ∧ w → z′, for every z ∈ Z
6. f ∧ σ(u1) ∧ σ(u2) ∧ σ(u3) → w, for every clause C = u1 ∨ u2 ∨ u3 of Φ, where

σ(a) = a′ and σ(¬a) = a, for every a ∈ X ∪ Y ∪ Z .
7. f,¬w → w

We have that A is precisely the set of stable models of this program. Since A �= ∅,
B = X \ A. If M is a stable model of QA and contains f , then it contains w. But
then, as M ∈ A, A �|= K¬w, a contradiction. It follows that there is no stable model
containing f . That is, the program consisting of the following rules has no stable model:

1. x, for x ∈ A and x′, for x ∈ X \A
2. y ∨ y′; and z ∨ z′, for every y ∈ Y and z ∈ Z
3. w → z; and w→ z′, for every z ∈ Z
4. σ(u1) ∧ σ(u2) ∧ σ(u3) → w, for every clause C = u1 ∨ u2 ∨ u3 of Θ, where

σ(a) = a′ and σ(¬a) = a, for every a ∈ X ∪ Y ∪ Z .
5. ¬w → w

But then, the formula ∀Y ∃ZΘ|X/A is true and, consequently, the formula ∃X∀Y ∃ZΘ
is true, too. �

For the other two epistemic semantics, Remark 1 implies that the problem of the ex-
istence of an epistemic model (epistemic supported model) is in the class ΣP

2 . The
ΣP

2 -hardness of the problem can be proved by similar techniques as those we used for
the case of epistemic stable models. Thus, we have the following result.

Theorem 3. The problem to decide whether an epistemic program P ⊆ LK has an
epistemic model (epistemic supported model, respectively) is ΣP

2 -complete.

326 M. Truszczyński

5 Modeling with Epistemic Programs

We will now present several problems which illustrate the advantages offered by the lan-
guage of epistemic programs we developed in the previous two sections. Whenever we
use predicate programs, we understand that their semantics is that of the corresponding
ground programs.

First, we consider two graph problems related to the existence of Hamiltonian cycles.
Let G be a directed graph. An edge in G is critical if it belongs to every hamiltonian
cycle in G. The following problems are of interest:

1. Given a directed graph G, find the set of all critical edges of G
2. Given a directed graph G, and integers p and k, find a set R of no more than p new

edges such that G ∪R has no more than k critical edges.

Let HC(vtx, edge) be any standard ASP encoding of the Hamiltonian cycle problem,
in which predicates vtx and edge represent G, and a predicate hc represents edges of a
candidate hamiltonian cycle. We assume the rules of HC(vtx, edge) are written from
left to right so that they can be regarded as elements of L. Then, simply adding to
HC(vtx, edge) the rule:

Khc(X,Y) → critical(X,Y)

yields a correct representation of the first problem. We write HCcr(vtx, edge) to denote
this program. Also, for a directed graph G = (V,E), we define

D = {vtx(v) | v ∈ V } ∪ {edge(v, w) | (v, w) ∈ E}.

We have the following result.

Theorem 4. Let G = (V,E) be a directed graph. If HCcr(vtx, edge) ∪ D has no
epistemic stable models, then every edge in G is critical (trivially). Otherwise, the epis-
temic program HCcr(vtx, edge) ∪ D has a unique epistemic stable model A and the
set {(v, w) | A |= critical(u, v)} is the set of critical edges in G.

Proof (Sketch): Let H be the grounding of HCcr(vtx, edge)∪D. If H has no epistemic
stable models, it follows that the “non-epistemic” part H ′ of H has no stable models
(as no atom of the form critical(x, y) appears in it). As H ′ encodes the existence of
a hamiltonian cycle in G, it follows that G has no Hamiltonian cycles. Thus, trivially,
every edge of G belongs to every Hamiltonian cycle of G and so, every edge of G is
critical.

Thus, let us assume that A is an epistemic stable model of H . Also, let S be the set
of all stable models of H ′ (they correspond to Hamiltonian cycles of G; each model
contains, in particular, atoms of the form hc(x, y), where (x, y) ranges over the edges
of the corresponding Hamiltonian cycle). The reduct HA consists of H ′ (non-epistemic
part of H is unaffected by the reduct operation) and of C′, a set of some facts of the
form critical(x, y). Thus, the stable models of the reduct are of the formM∪C′, where
M ∈ S. That is, A = {M ∪ C′ | M ∈ S}. Let us denote by C the set of the atoms
critical(x, y), where (x, y) belongs to every hamiltonian cycle of G (is critical). One
can compute now that HA = H ′ ∪ C. Since A = ST (HA), A = {M ∪ C |M ∈ S}.

Revisiting Epistemic Specifications 327

Thus, HCcr(vtx, edge) ∪ D has a unique epistemic stable model, as claimed. It also
follows that the set {(v, w) | A |= critical(u, v)} is the set of critical edges in G. �

To represent the second problem, we proceed as follows. First, we “select” new edges
to be added to the graph and impose constraints that guarantee that all new edges are
indeed new, and that no more than p new edges are selected (we use here lparse syntax
for brevity; the constraint can be encoded strictly in the language LK).

vtx(X) ∧ vtx(Y) → newEdge(X,Y)
newEdge(X,Y) ∧ edge(X,Y) → ⊥
(p + 1){newEdge(X,Y) : vtx(X), vtx(Y)} → ⊥
KnewEdge(X,Y) ∧ ¬newEdge(X,Y) → ⊥
¬KnewEdge(X,Y) ∧ newEdge(X,Y) → ⊥.

Next, we define the set of edges of the extended graph, using a predicate edgeEG:

edge(X,Y) → edgeEG(X,Y)
newEdge(X,Y) → edgeEG(X,Y)

Finally, we define critical edges and impose a constraint on their number (again, ex-
ploiting the lparse syntax for brevity sake):

edgeEG(X,Y) ∧Khc(X,Y) → critical(X,Y)
(k + 1){critical(X,Y) : edgeEG(X,Y)} → ⊥.

We define Q to consist of all these rules together with all the rules of the program
HC(vtx, edgeEG). We now have the following theorem. The proof is similar to that
above and so we omit it.

Theorem 5. Let G be a directed graph. There is an extension of G with no more than
p new edges so that the resulting graph has no more than k critical edges if and only if
the program Q ∪D has an epistemic stable model.

For another example we consider the unique model problem: given a CNF formula F ,
the goal is to decide whether F has a unique minimal model. The unique model problem
was also considered by Faber and Woltran [4, 5]. We will show two encodings of the
problem by means of epistemic programs. The first one uses the semantics of epistemic
models and is especially direct. The other one uses the semantics of epistemic stable
models.

Let F be a propositional theory consisting of constraints L1 ∧ . . .∧Lk → ⊥, where
Li’s are literals. Any propositional theory can be rewritten into an equivalent theory of
such form. We denote by FK the formula obtained from F by replacing every atom x
with the modal atom Kx.

Theorem 6. For every theory F ⊆ L consisting of constraints, F has a least model if
and only if the epistemic program F ∪ FK has an epistemic model.

Proof: Let us assume that F has a least model. We define A to consist of all models
of F , and we denote the least model of F by M . We will show that A is an epistemic
model of F ∪ FK . Clearly, for every x ∈ M , A |= Kx. Similarly, for every x �∈ M ,

A |= ¬Kx. Thus, [FK]A = ∅. Consequently, [F ∪ FK]A = F and so, A is precisely

the set of all models of [F ∪ FK]A. Thus, A is an epistemic model.

328 M. Truszczyński

Conversely, let A be an epistemic model of F ∪ FK . It follows that [FK]A = ∅
(otherwise, [F ∪ FK]A contains ⊥ and A would have to be empty, contradicting the

definition of an epistemic model). Thus, [F ∪ FK]A = F and consequently, A is the
set of all models of F . Let M = {x ∈ At | A |= Kx} and let

a1 ∧ . . . ∧ am ∧ ¬b1 ∧ . . . ∧ ¬bn → ⊥ (3)

be a rule in F . Then,

Ka1 ∧ . . . ∧Kam ∧ ¬Kb1 ∧ . . . ∧ ¬Kbn → ⊥

is a rule in FK . As [FK]A = ∅,

A �|= Ka1 ∧ . . . ∧Kam ∧ ¬Kb1 ∧ . . . ∧ ¬Kbn.

Thus, for some i, 1 ≤ i ≤ m, A �|= Kai, or for some j, 1 ≤ j ≤ n, A |= Kbj . In
the first case, ai /∈ M , in the latter, bj ∈ M . In either case, M is a model of rule (3).
It follows that M is a model of F . Let M ′ be a model of F . Then M ′ ∈ A and, by the
definition of M , M ⊆M ′. Thus, M is a least model of F . �

Next, we will encode the same problem as an epistemic program under the epistemic
stable model semantics. The idea is quite similar. We only need to add rules to generate
all candidate models.

Theorem 7. For every theory F ⊆ L consisting of constraints, F has a least model if
and only if the epistemic program

F ∪ FK ∪ {¬x→ x′ | x ∈ At} ∪ {¬x′ → x | x ∈ At}

has an epistemic stable model.

We note that an even simpler encoding can be obtained if we use lparse choice rules.
In this case, we can replace {¬x → x′ | x ∈ At} ∪ {¬x′ → x | x ∈ At} with
{{x} | x ∈ At}.

6 Connection to Gelfond’s Epistemic Programs

We will now return to the original formalism of epistemic specifications proposed by
Gelfond [3] (under the restriction to epistemic programs we discussed here). We will
show that it can be expressed in a rather direct way in terms of our epistemic programs
in the two-valued setting and under the epistemic supported-model semantics.

The reduction we are about to describe is similar to the well-known one used to
eliminate the “strong” negation from disjunctive logic programs with strong negation.
In particular, it requires an extension to the language L. Specifically, for every atom
x ∈ At we introduce a fresh atom x′ and we denote the extended language by L′. The
intended role of x′ is to represent in L′ the literal ¬x from L. Building on this idea, we
assign to each set W of literals in L the set

W ′ = (W ∩ At) ∪ {x′ | ¬x ∈ W}.

Revisiting Epistemic Specifications 329

In this way, sets of literals from L (in particular, three-valued interpretations of L) are
represented as sets of atoms from L′ (two-valued interpretations of L′).

We now note that the truth and falsity of a formula form L under a three-valued
interpretation can be expressed as the truth and falsity of certain formulas from L′ in
the two-valued setting. The following result is well known.

Proposition 2. For every formula ϕ ∈ L there are formulas ϕ−, ϕ+ ∈ L′ such that for
every set of literals W (in L)

1. vW (ϕ) = t if and only if uW ′(ϕ+) = t
2. vW (ϕ) = f if and only if uW ′(ϕ−) = f

Moreover, the formulas ϕ− and ϕ+ can be constructed in polynomial time with respect
to the size of ϕ.

Proof: This a folklore result. We provide a sketch of a proof for the completeness sake.
We define ϕ+ and ϕ− by recursively as follows:

1. x+ = x and x− = ¬x′, if x ∈ At
2. (¬ϕ)+ = ¬ϕ− and (¬ϕ)− = ¬ϕ+

3. (ϕ ∨ ψ)+ = ϕ+ ∨ ψ+ and (ϕ ∨ ψ)− = ϕ− ∨ ψ−; the case of the conjunction is
dealt with analogously

4. (ϕ→ ψ)+ = ϕ− → ψ+ and (ϕ→ ψ)− = ϕ+ → ψ−.

One can check that formulas ϕ+ and ϕ− defined in this way satisfy the assertion. �

We will now define the transformation σ that allows us to eliminate strong negation.
First, for a literal L ∈ L, we now define

σ(L) =
{
x if L = x
x′ if L = ¬x

Furthermore, if E is a simple modal literal or its default negation, we define

σ(E) =

⎧⎪⎪⎨
⎪⎪⎩

Kϕ+ if E = Kϕ
¬Kϕ− if E = ¬Kϕ
¬Kϕ+ if E = not Kϕ
Kϕ− if E = not ¬Kϕ

and for an epistemic premise E = E1, . . . , Et (where each Ei is a simple modal literal
or its default negation) we set

σ(E) = σ(E1) ∧ . . . ∧ σ(Et).

Next, if r is an epistemic rule

L1 ∨ . . . ∨ Lk ← F1, . . . , Fm,not Fm+1, . . . ,not Fn, E

we define

σ(r) = σ(E)∧σ(F1)∧. . .∧σ(Fm)∧¬σ(Fm+1)∧. . .∧¬σ(Fn) → σ(L1)∨. . .∨σ(Lk).

330 M. Truszczyński

Finally, for an epistemic program P , we set

σ(P) = {σ(r) | r ∈ P}) ∪ {x ∧ x′ → ⊥}.

We note that σ(P) is indeed an epistemic program in the language LK (according to
our definition of epistemic programs). The role of the rules x∧x′ → ⊥ is to ensure that
sets forming epistemic (stable, supported) models of σ(P) correspond to consistent sets
of literals (the only type of set of literals allowed in world views).

Given a three-valued possible structure A, we define A′ = {W ′ | W ∈ A}, and
we regard A′ as a two-valued possible-world structure. We now have the following
theorem.

Theorem 8. Let P be an epistemic program according to Gelfond. Then a three-valued
possible-world structure A is a world view of P if and only if a two-valued possible-
world structure A′ is an epistemic supported model of σ(P).

Proof (Sketch): Let P be an epistemic program according to Gelfond, A a possible-
world structure and W a set of literals. We first observe that the G-reduct P 〈A,W 〉 can
be described as the result of a certain two-step process. Namely, we define the epistemic
reduct of P with respect to A to be the disjunctive logic program PA obtained from P
by removing every rule whose epistemic premise E satisfies A �|= E, and by removing
the epistemic premise from every other rule in P . This construction is the three-valued
counterpart to the one we employ in our approach. It is clear that the epistemic reduct
of P with respect to A, with some abuse of notation we will denote it by PA, is a
disjunctive logic program with strong negation.

Let Q be a disjunctive program with strong negation and W a set of literals. By the
supp-reduct of Q with respect to W , Rsp(Q,W), we mean the set of the heads of all
rules whose bodies are satisfied by W (which in the three-valued setting means that
every literal in the body not in the scope of not is in W , and every literal in the body
in the scope of not is not in W). A consistent set W of literals is a supported answer
set of Q if W ∈ Min(Rsp(Q,W)) (this is a natural extension of the definition of a
supported model [8, 9] to the case of disjunctive logic programs with strong negation;
again, we do not regard inconsistent sets of literals as supported answer sets).

Clearly, P 〈A,W 〉 = Rsp(PA,W). Thus, A is a world view of P according to the
definition by Gelfond if and only if A is a collection of all supported answer sets
of PA.

We also note that by Proposition 2, if E is an epistemic premise, thenA |= E if and

only if A′ |= σ(E). It follows that σ(PA) = σ(P)A
′
. In other words, constructing the

epistemic reduct of P with respect to A and then translating the resulting disjunctive
logic program with strong negation into the corresponding disjunctive logic program
without strong negation yields the same result as first translating the epistemic program
(in the Gelfond’s system) into our language of epistemic programs and then computing
the reduct with respect to A′. We note that there is a one-to-one correspondence be-
tween supported answer sets of PA and supported models of σ(PA) (σ, when restricted
to programs consisting of rules without epistemic premises, is the standard transforma-
tion eliminating strong negation and preserving the stable and supported semantics).
Consequently, there is a one-to-one correspondence between supported answer sets of

Revisiting Epistemic Specifications 331

PA and supported models of σ(P)A
′

(cf. our observation above). Thus, A consists of

supported answer sets of PA if and only if A′ consists of supported models of σ(P)A
′
.

Consequently,A is a world view of P if and only ifA′ is an epistemic supported model
of σ(P). �

7 Epistemic Models of Arbitrary Theories

So far, we defined the notions of epistemic models, epistemic stable models and epis-
temic supported models only for the case of epistemic programs. However, this restric-
tion is not essential. We recall that the definition of these three epistemic semantics
consists of two steps. The first step produces the reduct of an epistemic program P
with respect to a possible-world structure, say A. This reduct happens to be (modulo a
trivial syntactic transformation) a standard disjunctive logic program in the language L
(no modal atoms anymore). If the set of models (respectively, stable models, supported
models) of the reduct program coincides withA,A is an epistemic model (respectively,
epistemic stable or supported model) of P . However, the concepts of a model, stable
model and supported model are defined for arbitrary theories in L. This is obviously
well known for the semantics of models. The stable-model semantics was extended to
the full language L by Ferraris [12] and the supported-model semantics by Truszczyn-
ski [13]. Thus, there is no reason precluding the extension of the definition of the cor-
responding epistemic types of models to the general case. We start be generalizing the
concept of the reduct.

Definition 5. Let T be an arbitrary theory in LK and let A be a possible-world struc-
ture. The epistemic reduct of T with respect toA, TA in symbols, is the theory obtained
from T by replacing each maximal modal atom Kϕ with �, if A |= Kϕ, and with ⊥,
otherwise.

We note that if T is an epistemic program, this notion of the reduct does not coincide
with the one we discussed before. Indeed, now no rule is dropped and no modal literals
are dropped; rather modal atoms are replaced with� and⊥. However, the replacements
are executed in such a way as to ensure the same behavior. Specifically, one can show
that models, stable models and supported models of the two reducts coincide.

Next, we generalize the concepts of the three types of epistemic models.

Definition 6. Let T be an arbitrary theory in LK . A possible-world structure A is an
epistemic model (respectively, an epistemic stable model, or an epistemic supported
model) of P , if A is the set of models (respectively, stable models or supported models)
ofM(PA).

From the comments we made above, it follows that if T is an epistemic program, this
more general definition yields the came notions of epistemic models of the three types
as the earlier one.

We note that even in the more general setting the complexity of reasoning with
epistemic (stable, supported) models remains unchanged. Specifically, we have the
following result.

332 M. Truszczyński

Theorem 9. The problem to decide whether an epistemic theory T ⊆ LK has an epis-
temic stable model is ΣP

3 -complete. The problem to decide whether an epistemic theory
T ⊆ LK has an epistemic model (epistemic supported model, respectively) is ΣP

2 -
complete.

Proof(Sketch): The hardness part follows from our earlier results concerning epistemic
programs. To prove membership, we modify Proposition 1, and show a polynomial time
algorithm with a ΣP

2 oracle (NP oracle for the last two problems) that decides, given a
propositional theory S and a modal formula Kϕ (with ϕ ∈ LK and not necessarily in
L) whether ST (S) |= Kϕ (respectively,M(S) |= Kϕ, or SP(S) |= Kϕ). �

8 Discussion

In this paper, we proposed a two-valued formalism of epistemic theories — subsets
of the language of modal propositional logic. We proposed a uniform way, in which
semantics of propositional theories (the classical one as well as nonmonotonic ones:
stable and supported) can be extended to the case of epistemic theories. We showed that
the semantics of epistemic supported models is closely related to the original seman-
tics of epistemic specifications proposed by Gelfond. Specifically we showed that the
original formalism of Gelfond can be expressed in a straightforward way by means of
epistemic programs in our sense under the semantics of epistemic supported models.
Essentially all that is needed is to use fresh symbols x′ to represent strong negation¬x,
and use the negation operator of our formalism, ϕ → ⊥ or, in the shorthand, ¬ϕ, to
model the default negation not ϕ.

We considered in more detail the three semantics mentioned above. However, other
semantics may also yield interesting epistemic counterparts. In particular, it is clear that
Definition 6 can be used also with the minimal model semantics or with the Faber-
Leone-Pfeifer semantics [14]. Each semantics gives rise to an interesting epistemic for-
malism that warrants further studies.

In logic programming, eliminating strong negation does not result in any loss of the
expressive power but, at least for the semantics of stable models, disjunctions cannot
be compiled away in any concise way (unless the polynomial hierarchy collapses). In
the setting of epistemic programs, the situation is similar. The strong negation can be
compiled away. But the availability of disjunctions in the heads and the availability of
epistemic premises in the bodies of rules are essential. Each of these factors separately
brings the complexity one level up. Moreover, when used together under the semantics
of epistemic stable models they bring the complexity two levels up. This points to the
intrinsic importance of having in a knowledge representation language means to repre-
sent indefiniteness in terms of disjunctions, and what is known to a program (theory)
— in terms of a modal operator K .

Acknowledgments

This work was partially supported by the NSF grant IIS-0913459.

Revisiting Epistemic Specifications 333

References

1. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385 (1991)

2. Gelfond, M., Lifschitz, V.: The stable semantics for logic programs. In: Proceedings of the
5th International Conference on Logic Programming (ICLP 1988), pp. 1070–1080. MIT
Press, Cambridge (1988)

3. Gelfond, M.: Strong introspection. In: Proceedings of AAAI 1991, pp. 386–391 (1991)
4. Faber, W., Woltran, S.: Manifold answer-set programs for meta-reasoning. In: Erdem, E.,

Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 115–128. Springer, Heidelberg
(2009)

5. Faber, W., Woltran, S.: Manifold answer-set programs and their applications. In: Balduccini,
M., Son, T.C. (eds.) Gelfond Festschrift. LNCS (LNAI), vol. 6565, pp. 44–63. Springer,
Heidelberg (2011)

6. Marek, W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38, 588–619 (1991)
7. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: proposi-

tional case. Annals of Mathematics and Artificial Intelligence 15, 289–323 (1995)
8. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In: Minker, J.

(ed.) Foundations of Deductive Databases and Logic Programming, pp. 89–142. Morgan
Kaufmann, San Francisco (1988)

9. Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal of Logic
Programming 19/20, 73–148 (1994)

10. Brass, S., Dix, J.: Characterizations of the Disjunctive Stable Semantics by Partial Evalua-
tion. Journal of Logic Programming 32(3), 207–228 (1997)

11. Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Programming 35,
39–78 (1998)

12. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N., Ter-
racina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131. Springer, Heidelberg
(2005)

13. Truszczynski, M.: Reducts of propositional theories, satisfiability relations, and general-
izations of semantics of logic programs. Artificial Intelligence (2010) (in press), available
through Science Direct at http://dx.doi.org/10.1016/j.artint.2010.08.
004

14. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: seman-
tics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 200–212. Springer, Heidelberg (2004)

http://dx.doi.org/10.1016/j.artint.2010.08.004
http://dx.doi.org/10.1016/j.artint.2010.08.004

Answer Set; Programming?�

Pedro Cabalar

Dept. Computación,
University of Corunna, Spain

cabalar@udc.es

Abstract. Motivated by a discussion maintained by Michael Gelfond
and other researchers, this short essay contains some thoughts and re-
fections about the following question: should ASP be considered a pro-
gramming language?

1 Introduction

During a break in the Commonsense1 2007 Symposium, sat around a table in
some cafeteria inside the Stanford campus, an interesting and solid debate be-
tween Michael Gelfond and some well-known researcher (call him A.B.) in the
area of Logic Programming and Nonmonotonic Reasoning was initiated. The dis-
cussion started when A.B. claimed at some point that Answer Set Programming
(ASP) was a programming paradigm. Although at that moment, this seemed a
quite obvious, redundant and harmless assertion, surprisingly, Gelfond’s reac-
tion was far from agreement. With his usual kind but firm, rational style, he
proceeded to refute that argument, defending the idea that ASP was exclusively
a logical knowledge representation language, not a programming language. This
short essay contains some disconnected, personal thoughts and reflections moti-
vated by that discussion.

2 Programming as Implementing Algorithms

Of course, the keypoint relies on what we consider to be a programming language
or more specifically which is the task of programming. In its most frequent use,
this term refers to imperative programming, that is, specifying sets of instruc-
tions to be executed by a computer in order to achieve some desired goal. This
is opposed to declarative programming, which is frequently defined as specifying
what is to be considered a solution to a given problem, rather than the steps
describing how to achieve that solution. ASP would perfectly fit in this sec-
ond definition, had not it been the case that declarative programming actually
involves much more than this ideal goal of pure formal specification.
� This work was partially supported by Spanish MEC project TIN2009-14562-C05-04

and Xunta de Galicia project INCITE08-PXIB105159PR.
1 Eighth International Symposium on Logical Formalizations of Commonsense Rea-

soning.

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 334–343, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Answer Set; Programming? 335

In practice, despite of the big differences between imperative and declarative
programming languages, we can generally identify programming as implement-
ing algorithms. We actually expect that a programming language allows us a
way to execute algorithms on a computer. When a (declarative) programmer
designs a program, either in Prolog or in some functional language, she must
not only write a formal specification (using predicates, functions, equations,
etc), but also be aware of how this specification is going to be processed by
the language interpreter she is using, so that both things together become the
algorithm implementation. This idea was clearly expressed by Kowalski’s equa-
tion [7] “Algorithm = Logic + Control” or A = L + C, meaning that a given
algorithm A can be obtained as the sum of a logical description L (our formal
specification) plus a control strategy C (top-down, bottom-up, SLD, etc). The
same algorithm A can be the result of different combinations, say A = L1 + C1

or A = L2 + C2. Efficiency issues and even termination will strongly depend on
the control component C we choose. If we use an interpreter like Prolog, where
the control component is fixed, we will face the typical situation where the logic
component L must be adapted to the control strategy. A simple change in the
ordering among clauses or literals in L may make the program to terminate
or not.

Now, back to our concern for ASP, despite of being an LP paradigm, it seems
evident that the algorithmic interpretation for Predicate Logic [16] (which was
in the very roots of the LP area) is not applicable here. In fact, in an ASP
program, there is no such a thing as a “control strategy.” In this sense, we reach
a first curious, almost paradoxical, observation:

Observation 1. ASP is a purely declarative language, in the sense that it ex-
clusively involves formal specification, but cannot implement an algorithm, that
is, cannot execute a program!

Thus, ASP fits so well with the ideal of a declarative programming language
(i.e., telling what and not how) that it does not allow programming at all.

3 Programming as Temporal Problem Solving

The previous observation saying that ASP cannot implement an algorithm may
seem too strong. One may object that ASP has been extensively used for solving
temporal problems in transition systems, including planning, that is, obtaining
a sequence of actions to achieve a desired goal. This may look close to algorithm
implementation. Let us illustrate the idea with a well-known example.

Example 1 (Towers of Hanoi). We have three vertical pegs a, b, c standing on a
horizontal base and a set of n holed disks, numbered 1, . . . , n, whose sizes are
proportional to the disk numbers. Disks must always be stored on pegs, and a
larger disk cannot rest on a smaller one. The HANOI problem consists in moving
a tower formed with the n disks in peg a to peg c, by combination of individual
movements that can carry the top disk of some peg on top of another peg. ��

336 P. Cabalar

Figure 1 shows an ASP program for solving HANOI in the language of lparse2.
Constant n represents the number of disks and constant pathlength the num-
ber of transitions, so that, we must make iterative calls to the solver vary-
ing pathlength=0,1,2,. . . until a solution is found. For instance, for n=2 the
first solution is found with pathlength=3 and consists in the sequence of ac-
tions move(a,b,0) move(a,c,1) move(b,c,2); for n=3, the minimal solution
is pathlength=7 obtaining the sequence:

move(a,c,0) move(a,b,1) move(c,b,2) move(a,c,3) move(b,a,4)
move(b,c,5) move(a,c,6)

whereas for n=3 with pathlength=15 we get:

move(a,b,0) move(a,c,1) move(b,c,2) move(a,b,3) move(c,a,4)
move(c,b,5) move(a,b,6) move(a,c,7) move(b,c,8) move(b,a,9)
move(c,a,10) move(b,c,11) move(a,b,12) move(a,c,13) move(b,c,14)

Although the ASP program correctly solves the HANOI problem, it is far from
being an algorithm. In particular, we would expect that an algorithm told us how
to proceed in the general case for an arbitrary number n of disks. This means
finding some general process from which the above sequences of actions can be
extracted once we fix the parameter n. For instance, in the sight of the three
solved instances above, it is not trivial at all how to proceed for n = 4.

In the case of HANOI, such a general process to generate an arbitrary solution
does exist. In fact, the HANOI problem is a typical example extensively used
in programming courses to illustrate the idea of a recursive algorithm. We can
divide the task of shifting n disks from peg X to peg Y , using Aux as an auxiliary
peg, into the general steps

1. Shift n− 1 disks from X to Aux using Y as auxiliary peg;
2. Move the n-th disk from X to Y ;
3. Shift n− 1 disks from Aux to Y using X as auxiliary peg.

This recursive algorithm is encoded in Prolog in Figure 2, where predicate
hanoi(N,Sol) gets the number of disks N and returns the solution Sol as a
list of movements to be performed.

Note now the huge methodological difference between both programs. On the
one hand, the ASP program exclusively contains a formal description of HANOI
but cannot tell us how to proceed in a general case, that is, cannot yield us a
general pattern for the sequences of actions for an arbitrary n. On the other
hand, the Prolog program (or any implementation3 of the recursive algorithm)
tells us the steps that must be performed in a compact (and in fact, much more
efficient) way, but contains no information at all about the original problem.
The recursive algorithm is just a “solution generator” or if preferred, a regular
way of describing the structure of sequences of actions that constitute a solution.
2 http://www.tcs.hut.fi/Software/smodels/lparse.ps
3 We could perfectly use instead any programming language allowing recursive calls.

In the same way, Prolog can also be used to implement a planner closer to the
constraint-solving spirit of the ASP program.

http://www.tcs.hut.fi/Software/smodels/lparse.ps

Answer Set; Programming? 337

%---- Types and typed variables

disk(1..n). peg(a;b;c).

transition(0..pathlength-1). situation(0..pathlength).

location(Peg) :- peg(Peg). location(Disk) :- disk(Disk).

#domain disk(X;Y). #domain peg(P;P1;P2). #domain transition(T).

#domain situation(I). #domain location(L;L1).

%---- Inertial fluent: on(X,L,I) = disk X is on location L at time I

on(X,L,T+1) :- on(X,L,T), not otherloc(X,L,T+1). % inertia

otherloc(X,L,I) :- on(X,L1,I), L1!=L.

:- on(X,L,I), on(X,L1,I), L!=L1. % on unique location

%---- Defined fluents

% inpeg(L,P,I) = location L is in peg P at time I

% top(P,X,I) = location L is the top of peg P. If empty, the top is P

inpeg(P,P,I).

inpeg(X,P,I) :- on(X,L,I), inpeg(L,P,I).

top(P,L,I) :- inpeg(L,P,I), not covered(L,I).

covered(L,I) :- on(X,L,I).

%---- State constraint: no disk X on a smaller one

:- on(X,Y,I), X>Y.

%---- Effect axiom

on(X,L,T+1) :- move(P1,P2,T), top(P1,X,T), top(P2,L,T).

%---- Executability constraint

:- move(P1,P2,T), top(P1,P1,T). % the source peg cannot be empty

%---- Generating actions

movement(P1,P2) :- P1 != P2. % valid movements

1 {move(A,B,T) : movement(A,B) } 1. % pick one at each transition T

%---- Initial situation

on(n,a,0). on(X,X+1,0) :- X<n.

%---- Goal: at last situation, all disks in peg c

onewrong :- not inpeg(X,c,pathlength).

:- onewrong.

Fig. 1. An ASP program to solve the HANOI problem

This naturally leads to the following topic: verification. How can we guarantee
that the actions recursively generated for some n actually move our tower to the
desired target without violating the problem constraints? Verifying the recursive
algorithm is a crucial work, since it contains no information on the original
puzzle. In the case of the ASP encoding, since it already constitutes a formal
specification, verification is a much more subtle task. It would require providing

338 P. Cabalar

hanoi(N,Sol) :- shift(N,a,c,b,Sol).

shift(0,_,_,_,[]) :- !.

shift(N,X,Y,Aux,Sol) :- N1 is N-1,

shift(N1,X,Aux,Y,Pre),

append(Pre,[move(X,Y)|Post],Sol),

shift(N1,Aux,Y,X,Post).

Fig. 2. A Prolog program implementing a recursive algorithm to solve HANOI

a second, different enough, formal specification (perhaps using mathematical
objects closer to the original problem) and proving afterwards that the answer
sets we obtain are in one-to-one correspondence to the solutions of our second
representation.

Together with verification, another typical issue in algorithm analysis is com-
plexity. The recursive algorithm can be easily used to prove that a solution to
HANOI requires 2n − 1 steps. Obtaining this complexity result from the ASP
program (plus the iteration of pathlength) is far from trivial. Although the com-
plexity of arbitrary ASP is well-known, a different open and interesting question
is how to use ASP for complexity analysis of a given encoded temporal problem.

One final comment that stresses the difference between both programs is that,
obviously, the recursive algorithm approach is not elaboration tolerant at all. A
simple variation of HANOI that allowed a fourth peg would lead to shorter
solutions (for instance, with n = 4 a solution is found in 9 steps). Note that
the only change in the ASP representation would just require adding the fact
peg(d). It is easy to think about simple variations that would even make the
Prolog program to become incorrect.

4 Programming as Implementing a Turing Machine

One of the usually desirable properties of programming languages is Turing
completeness, that is, the capability of capturing any computation that can be
performed by a Turing machine. It is well-known [15] that Prolog (in fact Horn
clauses with functions) is Turing complete. Figure 3 shows one possible encoding
of a generic Turing machine in Prolog. It just consists of five rules for predicate
tm(S,L,X,R) which represents a machine configuration. The current state is
represented by argument S and the tape is fragmented into three portions: L
is the (reversed) list of symbols to the left of the machine head; X is the tape
symbol currently pointed by the head; and R is the list of symbols to the right
of the head. Constant 0 stands for the blank symbol. Predicate nexttm is just a
recursive call to tm preceded by a display output of the new configuration.

In order to implement a particular machine, we just have to include facts for
the predicates t/5 (the transition table), and final/1 (which states are final),
assuming that no transition is given for a final state. As an example, the following
facts would specify a 3 state, 2 symbol busy beaver:

Answer Set; Programming? 339

tm(S, _, _, _) :- final(S).

tm(S,[Y|L],X, R) :- t(S,X,S1,X1,l), nexttm(S1,L,Y,[X1|R]).

tm(S, L, X,[Y|R]) :- t(S,X,S1,X1,r), nexttm(S1,[X1|L],Y,R).

tm(S, L, X, []) :- t(S,X,S1,X1,r), nexttm(S1,[X1|L],0,[]).

tm(S, [], X, R) :- t(S,X,S1,X1,l), nexttm(S1,[],0,[X1|R]).

nexttm(S,L,X,R) :- write(tm(S,L,X,R)),nl,tm(S,L,X,R).

Fig. 3. A general implementation of a Turing machine in Prolog

t(a,0,b,1,r). t(b,0,a,1,l). t(c,0,b,1,l). t(a,1,c,1,l).
t(b,1,b,1,r). t(c,1,halt,1,r). final(halt).

The execution of the busy beaver on an empty tape beginning with state ‘a’
would correspond to the query call shown in Figure 4.

Back again to ASP, under its most accepted understanding as a logic program-
ming paradigm [8,13], one of its characteristic features is the complexity class it
can cover: NP-completeness for normal logic programs [9]; ΣP

2 -completeness for
disjunctive programs [4]. Both results refer to existence of a stable model for a
propositional program. The use of variables as abbreviations of all their possi-
ble ground instances to obtain a finite propositional program is possible thanks
to another fundamental feature of the traditional ASP paradigm: forbidding
function symbols. These complexity bounds point out that, although useful for
solving many constraint-like problems, ASP is far from being a Turing-complete
programming language.

However, this “traditional” picture needs to be revised in the sight of recent
results obtained during the last years. First, in the theoretical field, the classical
definition of stable models [6], which was only applicable to propositional pro-
grams, has been extended for covering any arbitrary first order theory, thanks to
the definition of First Order Equilibrium Logic [14], a nonmonotonic formalism
relying on a monotonic intermediate logic, or the equivalent General Theory of
Stable Models [5], a syntactic construct very close to Circumscription [12]. Un-
der these extensions, we can even remove the restriction to Herbrand models,
so that assumptions like, for instance, domain closure or unique names are now
optional. Thus, at least as a theoretical device, the new generalisations of ASP
can now perfectly deal4 with (Herbrand models) of the encoding of a Turing
machine we presented in Figure 3.

But this capability is not limited to the theoretical field. A second important
recent breakthrough has been the introduction of functions in ASP [2] and its im-
plementation with solver DLV-complex [3]. When a program with functions, dis-
junction and negation satisfies a given property, so-called being finitely-ground, it
has nice computational features: brave and cautious reasoning become decidable,
and its answer sets are computable. An interesting result is that finitely-ground
programs can encode any computable function. This was proven by encoding a
4 A correctness proof of this program with respect to any of these two first order

formalisms would be interesting.

340 P. Cabalar

?- nexttm(a,[],0,[]).

tm(a, [], 0, [])

tm(b, [1], 0, [])

tm(a, [], 1, [1])

tm(c, [], 0, [1, 1])

tm(b, [], 0, [1, 1, 1])

tm(a, [], 0, [1, 1, 1, 1])

tm(b, [1], 1, [1, 1, 1])

tm(b, [1, 1], 1, [1, 1])

tm(b, [1, 1, 1], 1, [1])

tm(b, [1, 1, 1, 1], 1, [])

tm(b, [1, 1, 1, 1, 1], 0, [])

tm(a, [1, 1, 1, 1], 1, [1])

tm(c, [1, 1, 1], 1, [1, 1])

tm(halt, [1, 1, 1, 1], 1, [1])

Yes

Fig. 4. A query and its corresponing display output for the 3 state, 2 symbol busy
beaver machine

Turing machine as an ASP program so that a function computation stops in
the machine iff its ASP encoding is finitely recursive (and the answer set will
contain the execution steps). As it can be expected, checking whether a program
is finitely recursive is undecidable. In fact, the encoding of Figure 3 is practically
the same one5 recently used in [1] to prove Turing-completeness of ASP with
functions. In practical terms, this means that we can feed a program similar to
the one in Figure 3 to DLV-complex and, as the machine halts, obtain one answer
set containing all the facts for tm shown in Figure 4.

At the sight of this new scenario, we must reconsider our main question: should
ASP be considered now a programming language? Capturing a Turing machine
looks an undeniable proof. However, we can still find a subtle distinction between
ASP and Prolog behaviours. The ASP encoding is being used to represent a
Turing machine and its computations, whereas the Prolog encoding actually
executes those computations. We can associate a time stamp to each of the
ordered lines that the computer prints to solve the Prolog query: time is “real.”
Contrarily, the answer set would contain the same set of tm facts, but with no
associated ordering. In fact, if we wanted to reconstruct the order among the
steps followed by the machine, we would have to include one more parameter for
an explicit representation of time. Thus, in ASP time is “virtual.”

Observation 2. Although ASP and Prolog can encode a Turing machine, ASP
represents the machine computations using virtual, reified time, whereas Prolog
executes the machine computations using real time.

Under our point of view, this observation reaffirms the idea of seeing ASP as
a formal specification language rather than a programming language. Note how

5 The original encoding considered a version of Turing machine with a left-ended tape.

Answer Set; Programming? 341

the ASP orientation could be used to analyse a real-time application or a reactive
system, but not to implement it in a real scenario.

5 Programming as a Craft

Finally, one more meaning we may sometimes associate to the idea of program-
ming to distinguish it from formal specification is that the former involves some
kind of craft work whereas the latter is frequently seen as an accurate task and
free from efficiency issues. In the particular case of Prolog programs, we all know
that practical programming involves capabilities like a reasonable use of the cut
predicate or an efficient list construction strategy. This usually means important
sacrifices in program readability and declarativeness (the simple inclusion of a
cut predicate may easily change the program semantics).

Unfortunately, efficiency considerations are also present in practical ASP
(mostly related to reduce grounding) and, as happens with Prolog, they fre-
quently introduce a sacrifice with respect to the program quality too. As ASP
is a formal specification language, this sacrifice does not have to do with a lack
of declarativeness – we can say that ASP programs are always declarative. The
cost to pay may come as a lack of elaboration tolerance [10]. As defined by John
McCarthy:

“A formalism is elaboration tolerant to the extent that it is convenient
to modify a set of facts expressed in the formalism to take into account
new phenomena or changed circumstances.”

The quest for elaboration tolerance was present in ASP from its very beginning.
Stable models and their use of default negation allowed establishing a fruitful
connection between Logic Programming and Nonmonotonic Reasoning (NMR).
We can even say that ASP constitutes nowadays one of the most successful tools
for practical NMR. However, the fact that a language is elaboration tolerant (up
to some degree) does not necessarily mean that any program built with that
language is elaboration tolerant too. When we talk about elaboration tolerance
of ASP, we mean that there exists a flexible way of representing a problem,
not that any encoding of that problem in ASP will have the same degree of
elaboration tolerance, or that it will have that property at all.

For instance, back to our HANOI problem, we will have few actions (and so,
few choice points) if we consider, as we did, movements from one peg to another:
for three pegs, this always means six possible actions. On the contrary, if we take,
for instance, movements from a given disk to a given location (a peg base or
another disk), the number of possible actions blows up as n increases. The peg-
to-peg representation is, however, less elaboration tolerant, as it is more focused
on the given problem we try to solve rather than the physical possibilities of the
scenario. As an example, assume now that some marked disks could be carried
with all the disks they have above at a time. The disk-to-location encoding would
still be valid, but the peg-to-peg representation no, as it implicitly assumes that
we always take the top disk. Decisions like this arise in almost any ASP problem
solving project.

342 P. Cabalar

To further illustrate this dilemma, think about the Second ASP Solver Com-
petition6, where efficiency plays a preeminent role, as expected. In this edition,
the competition just defined the input and output format of the benchmark
problems, and the final encoding was left to the competitors. This idea had the
important advantage of opening the competition to solvers that accepted dif-
ferent languages, so they could compete altogether for a faster solution. The
disadvantage, however, is obvious: we are measuring not only the performance
of a given solver, but also the craft or experience of the ASP programmer to ob-
tain a more “efficient representation” (usually, a less grounding-consuming one).
Furthermore, if we look at the three ASP encodings available in the competition
site for the HANOI problem we will find out that elaboration tolerance sacrifices
have been considerable. None of the three solutions contain the default rule of
inertia to avoid the frame problem [11], which has been the cornerstone of the
NMR area of Reasoning about Actions and Change. In fact, the use of negation
is quite limited (no defaults are really used) and two of the encodings contain an
automaton-style description, which is probably one of the less elaboration toler-
ant ways of describing a problem (any slight variation usually means rebuilding
the whole automaton).

Although we recognize the crucial importance of an efficiency competition for
an active improvement of the available solvers (as happened in the SAT area),
it is perhaps worth to consider a different track including benchmarks focused
on an fixed, elaboration tolerant encoding of a given problem. After all, our
final goal should proving that efficient elaboration tolerance is feasible. We can
summarize this focusing by ending up with another quote by McCarthy, when
talking about the use of chess as a drosophila for AI:

“Unfortunately, the competitive and commercial aspects of making com-
puters play chess have taken precedence over using chess as a scientific
domain. It is as if the geneticists after 1910 had organized fruit fly races
and concentrated their efforts on breeding fruit flies that could win these
races.”

6 Conclusions

After examining several aspects of the idea of programming, we claim that ASP
is not a programming paradigm in a strict sense, but a formal specification lan-
guage instead. Still, we find that the term Answer Set programming can be more
vaguely used to refer to the craft (and perhaps in the future, to the methodolo-
gies) for developing an efficient and elaboration tolerant formal representation
of a given problem.

Acknowledgements. Special thanks to Michael Gelfond for his always inspiring
and enlightening discussions - hearing or reading him always means extracting

6 http://dtai.cs.kuleuven.be/events/ASP-competition/index.shtml

http://dtai.cs.kuleuven.be/events/ASP-competition/index.shtml

Answer Set; Programming? 343

new valuable ideas. Also thanks to Ramón P. Otero and Alessandro Provetti,
who introduced me to Dr. Gelfond and brought my attention to his work some
years ago.

References

1. Alviano, M., Faber, W., Leone, N.: Disjunctive ASP with functions: Decid-
able queries and effective computation. Theory and Practice of Logic Program-
ming 10(4-6), 497–512 (2010)

2. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable Functions in ASP: Theory
and Implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

3. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: An ASP System with Functions, Lists,
and Sets. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753,
pp. 483–489. Springer, Heidelberg (2009)

4. Eiter, T., Gottlob, G.: Complexity results for disjunctive logic programming and
application to nonmonotonic logics. In: Proceedings of the International Logic Pro-
gramming Symposium (ILPS), pp. 266–278. MIT Press, Cambridge (1993)

5. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proc.
of the International Joint Conference on Artificial Intelligence (IJCAI 2007), pp.
372–379 (2007)

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K.A. (eds.) Logic Programming: Proc. of the Fifth Inter-
national Conference and Symposium, vol. 2, pp. 1070–1080. MIT Press, Cambridge
(1988)

7. Kowalski, R.: Algorithm = logic + control. Communications of the ACM 22(7),
424–436 (1979)

8. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming
paradigm, pp. 169–181. Springer, Heidelberg (1999)

9. Marek, W., Truszczyński, M.: Autoepistemic logic. Journal of the ACM 38, 588–619
(1991)

10. McCarthy, J.: Elaboration tolerance. In: Proc. of the 4th Symposium on Logical
Formalizations of Commonsense Reasoning (Common Sense 1998), pp. 198–217,
London, UK (1998), Updated version at
http://www-formal.stanford.edu/jmc/elaboration.ps

11. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of ar-
tificial intelligence. Machine Intelligence Journal 4, 463–512 (1969)

12. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artif. In-
tell. 13(1-2), 27–39 (1980)

13. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273
(1999)

14. Pearce, D., Valverde, A.: Towards a First Order Equilibrium Logic for Nonmono-
tonic Reasoning. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI),
vol. 3229, pp. 147–160. Springer, Heidelberg (2004)

15. Tärnlund, S.-A.: Horn clause computability. BIT 16(2), 215–226 (1977)
16. van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-

ming language. J. ACM 23(4), 733–742 (1976)

http://www-formal.stanford.edu/jmc/elaboration.ps

Michael Gelfond: Essay in Honour of His 65th Birthday

Stefania Costantini

Università degli Studi di L’Aquila, Dipartimento di Informatica
Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy

Stefania.Costantini@univaq.it

I have been requested to prepare an essay “about the birthday boy” in honour of Michael
Gelfond. Though gratified by the proposal and willing to do my best, I found it fairly
difficult to present Michael Gelfond to his students and colleagues, and even more to the
many scientists in the world that are aware of his important contributions to Computer
Science. Then, I drew inspiration from Benjamin Franklin, who, in the incipit of his
autobiography, motivates his writing it by saying: “I have ever had pleasure in obtaining
little anecdotes of my ancestors” and assuming that the same might hold for his relatives
and friends. Likewise, Michael’s friends and, I hope, Michael himself may take some
pleasure in my telling some anecdotes related to my long-termed acquaintance with
Michael. Actually, I realized that I have quite a bit of stories to tell, and that the subtitle
of this essay might be “Pleasures and inconveniences of traveling abroad”.

I met Michael for the first time in 1990, at the Workshop on Logic Programming and
Non-Monotonic Reasoning, held in conjunction to the NACLP Conference in Austin.
Of that Conference I remember a very funny Halloween Parade in Austin downtown
and a very intriguing keynote speech by Raymond Smullyan at the Social Dinner about
three, four, . . .n Wise Men and their hats, where the Wise Men became so many as
to make three Japanese colleagues who were sitting next to me fall fast asleep (to my
astonishment, I must say). I noticed at the Workshop this impressive man with a peculiar
beard, and I understood that he was the author of two papers that I had found particularly
interesting, and that had strongly influenced the work I was presenting at the workshop.
I was not yet aware of the seminal paper about the stable model semantics. However,
we introduced ourselves and had the occasion to talk together. Since then we have
always been in contact. I consider Michael to be my mentor, and not without reason,
as he has constantly followed, supported and encouraged my work on stable model
semantics and, later on, on answer set programming. He has always demonstrated a
consideration of my work which has greatly contributed to my self-esteem, especially
when sometimes it was about to drop low.

As soon as I became aware of the work by Michael Gelfond and Vladimir Lifschitz
introducing the stable model semantics, I grew so interested in the matter as to make it
one of my main research directions. In 1992, I happened to be the Chairperson of the
Seventh Italian Conference GULP’92, to be held in Tremezzo, a lovely location along
the Como lake, and invited Michael to give a talk there. Michael decided to arrive some
days earlier, so as to visit me in Milan and then join me to Tremezzo. He claimed not
to need help for lodging, as his travel agent had booked a hotel near the Linate Airport,
which is close to Milan city center. I am afraid that the deal had been concluded on
the phone (Internet was in its early days) where, due to the American pronunciation,

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 344–346, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Michael Gelfond: Essay in Honour of His 65th Birthday 345

‘Linate’ had been taken for ‘Lainate’, another location around Milan, but a lot farther.
After clarifying the misunderstanding (and, again on the phone, this was not so easy), I
reached Lainate by car to fetch Michael. I found him in a very luxurious hotel related
to an exclusive golf course, where the man at the reception looked at us with some
condescendence, probably because we were underdressed for that context I believe
however that Michael enjoyed the Conference in Tremezzo, that was held in a wonderful
palace on the lake.

When in 1999 I attended the LPNMR Conference in El Paso, chaired by Michael,
he made me the honour of an invitation to give a seminar about my work on stable
semantics at his Department. I was also invited to visit him at home, so I got acquainted
with his sweet and witty wife Lara.

In September 2003, Michael was invited to Messina (Sicily) by Alessandro Provetti
(a former student of Michael’s who had become an Associate Professor there) to give
a talk at the ASP 2003 Workshop. In the meanwhile in fact, the term ASP, for “An-
swer Set Programming”, had surfaced, and, to witness the growing success of the new
paradigm, the ASP series of Workshops had been started, and Alessandro was at that
time the Coordinator of an European Network of Excellence, the “Working Group on
Answer Set Programming” (WASP). In Messina, we experienced a black-out that, orig-
inated by some fault in Switzerland, that left large part of Europe without electricity
for many hours. There was an initial astonishment and confusion about what might be
happening and everybody was worried about the family, as both telephones and the In-
ternet were out of service. Luckily, we were soon reassured thanks to somebody who
had a car radio. Then, as the University was equipped with generators, we could enjoy
one day at the Workshop after having washed ourselves . . . with mineral water! In the
afternoon however, the electricity came back and we were rewarded by a shower and
a nice social trip to Milazzo, ending with a gorgeous dinner in the perfect tradition of
Sicilian hospitality. After the workshop, Michael took the occasion and came to visit
me in L’Aquila. Thus, luckily he could see that wonderful town (and my house) before
the devastation brought by the earthquake of April 6, 2009. To his way to the airport
to fly back home, Michael, Alessandro and myself found the time for a nice walk in
Rome, a roundabout that Michael seemed to greatly appreciate.

In April 2005, while attending the Workshop on Nonmonotonic Reasoning, Answer
Set Programming and Constraints at Schloss Dagstuhl (Germany) I met Michael on
the door, just arriving by taxi, without luggage and barely wearing, in the not-too-mild
German spring, his usual sleeveless shirt. It came out that not only he had had to divide
his journey into two parts, as for some (maybe meteorological?) reason he had been
forced to make a stop of one day somewhere, but they had been able to lose his baggage
twice! Luckily I had noticed that at the Reception they sold sweaters with a multi-color
drawing of the castle, so Michael could avoid freezing until his baggage was delivered
the day after.

At ICLP 2008, in Udine (Italy) it kept raining a whole weak, and because of the
wet pavements a bad accident occurred to Micheal’s wife Lara, who had to undergo
an operation. Michael himself incurred some health problem more or less in the same
period. Luckily, both recovered good health, and in 2010 I met them in Oxford, where
Michael once again surprised the audience by introducing a novel unexpected extension

346 S. Costantini

to answer set programming. One thing that I find amazing with Michael is his ability
to introduce profound concepts by means of very simple though inevitably convincing
examples. This in my opinion is an ability that is partly innate and partly refined by
himself in that quest for essentiality which is proper of the true scientist.

Then, Happy Birthday Michael, your 65 years are a milestone, I am sure, on a long
way where you will continue to enlighten all of us with your intelligence, wit and pro-
foundness.

PLINI: A Probabilistic Logic Program Framework for
Inconsistent News Information�

Massimiliano Albanese1, Matthias Broecheler1, John Grant1,2,
Maria Vanina Martinez1, and V.S. Subrahmanian1

1 University of Maryland, College Park, MD 20742, USA
{albanese,matthias,grant,mvm,vs}@umiacs.umd.edu

2 Towson University, Towson, MD 21252
jgrant@towson.edu

Abstract. News sources are reliably unreliable. Different news sources may pro-
vide significantly differing reports about the same event. Often times, even the
same news source may provide widely varying data over a period of time about
the same event. Past work on inconsistency management and paraconsistent log-
ics assume that we have “clean” definitions of inconsistency. However, when
reasoning about events reported in the news, we need to deal with two unique
problems: (i) are two events being reported on the same or are they different?
and (ii) what does it mean for two event descriptions to be mutually inconsis-
tent, given that these events are often described using linguistic terms that do not
always have a uniquely accepted formal semantics? The answers to these two
questions turn out to be closely interlinked. In this paper, we propose a prob-
abilistic logic programming language called PLINI (Probabilistic Logic for In-
consistent News Information) within which users can write rules specifying what
they mean by inconsistency in situation (ii) above. We show that PLINI rules can
be learned automatically from training data using standard machine learning al-
gorithms. PLINI is a variant of the well known generalized annotated program
framework that accounts for similarity of numeric, temporal, and spatial terms
occurring in news. We develop a syntax, model theoretic semantics, and fixpoint
semantics for PLINI rules, and show how PLINI rules can be used to detect in-
consistent news reports.

1 Introduction

Google alone tracks thousands news sites around the world on a continuous basis, col-
lecting millions of news reports about a wide range of phenomena. While a large per-
centage of news reports are about different types of events (such as terrorist attacks,
meetings of G-8 leaders, results of sporting events, to name a few), there are also other
types of news reports such as editorials and style sections that may not always be linked
to events, but to certain topics (which in turn may include events). For example, it is
quite common to read editorials about a nuclear nonproliferation treaty or about a po-
litical candidate’s attacks on his rival. Thus, even in news pieces that may not directly
be about an event, there are often references to events.
� Some of the authors of this paper were funded in part by AFOSR grant FA95500610405 and

ARO grant W911NF0910206.

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 347–376, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

348 M. Albanese et al.

In this paper, we study the problem of identifying inconsistency in news reports
about events. The need to reason about inconsistency is due to the fact that different
news sources generate their individual stories about an event which may differ from
one another. We do not try to develop methods to resolve the inconsistency or perform
paraconsistent reasoning in this paper. Existing methods for inconsistency resolution
and paraconsistent logics [1,2,3,4,5,6,7,8] can be used on top of what we propose.

For instance, we may have a single event (a bombing in Ahmedabad, India in July
2008) that generates the following different news reports.

(S1) An obscure Indian Islamic militant group is claiming responsibility for a bombing
attack that killed at least 45 people in a western Indian city.1

(S2) Police believe an e-mail claiming responsibility for the bombing that killed 45
people Saturday was sent from that computer in a Mumbai suburb.2

(S3) MUMBAI – Police carried out a manhunt here Tuesday, believing that the se-
rial blasts that rocked the western Indian city of Ahmedabad over the weekend,
killing 42 people, were hatched in a Mumbai suburb.3

Any reader who reads these reports will immediately realize that, despite the inconsis-
tencies, they all refer to the same event. The inconsistencies in the above reports fall
into the categories below.

1. Linguo-Numerical Inconsistencies. (S1) says at least 45 people were killed; (S2)
says 45 people were killed; (S3) says 42 people were killed. (S1) and (S3) as well
as (S2) and (S3) are inconsistent.

2. Spatial Inconsistencies. (S1) and (S3) are apparently (but not intuitively) incon-
sistent in terms of the geospatial location of the event. (S1) says the event occurred
in a “western Indian city”, while (S3) says the event occurred in Ahmedabad. An
automated computational system may flag this as an inconsistency if it does not
recognize that Ahmedabad is in fact a western Indian city.

3. Temporal Inconsistencies. (S2) says the bombing occurred on Saturday, while
(S3) says the bombing occurred over the weekend. When analyzing when the event
occurred, we need to realize that the “Saturday” in (S2) refers to the past Saturday,
while the “weekend” referred to in (S3) is the past weekend. Without this realiza-
tion - and the realization that Saturday is typically a part of a weekend, a system
may flag this as inconsistent.

In fact, when reasoning about events, many other kinds of inconsistencies or appar-
ent inconsistencies can also occur. For example, a report that says an event occurred
within 5 miles of College Park, MD and another report that says the event occurred
in Southwest DC would (intuitively) be mutually inconsistent. When reasoning about
inconsistency in reporting about news events, we need to recognize several factors.

– Are two news reports referring to the same event or not? The answer to this question
determines whether integrity constraints (e.g. ones that say that if two violent events
are the same, then the number of victims should be the same) are applicable or not?

1 Canadian TV report on July 27, 2008.
2 WBOC, based on an AP news report of July 28, 2008.
3 The Wall Street Journal, based on an AP news report of July 30, 2008.

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 349

– Are the two event reports inconsistent or not? If the two events are deemed to be the
same, then they should have “similar” attribute values. However, if the two events
are considered to be different, then they may have dissimilar attribute values.

– A third problem, as mentioned above, is that inconsistency can arise in the linguistic
terms used to describe news events. When should varying numbers, temporal ref-
erences, and geospatial references be considered to be “close enough”? This plays
an important role in determining whether news reports are inconsistent or not.

A problem arises because of circularity. The answer to the first question is based on
whether the events in question have similar attribute values, while the answer to the sec-
ond question says that equivalent events should have similar attribute values. The ability
to distinguish whether two reports refer to the same event or not, and whether they are
inconsistent or not, is key to the theory underlying PLINI. We start in Section 2 with an
informal definition of what we mean by an event. In Section 3, we provide a formal syn-
tax and semantics for PLINI-formulas that contain linguistically modified terms such as
“about 5 miles from Ahmedabad”, “over 50 people” and “the first weekend of May
2009.” We briefly show how we can reason about linguistic modifications to numeric,
temporal, and geospatial data. We discuss similarity functions in Section 4. Then, in
Section 5, we provide a syntax for PLINI-programs. Section 6 provides a formal model
theory and fixpoint semantics for PLINI-programs that is a variant of the semantics of
generalized annotated programs [9]. The least fixpoint of the fixpoint operator associ-
ated with PLINI-programs allows us (with additional clustering algorithms) to infer that
certain events should be considered identical, while other events should be considered
different. This additional clustering algorithm is briefly described in Section 7. Finally,
in Section 8, we describe our prototype implementation and experiments.

Figure 1 shows the architecture of our PLINI framework. We start with an informa-
tion extraction program that extracts event information automatically from text sources.
Our implementation uses T-REX [10], though other IE programs may be used as well.
Information extracted from news sources is typically uncertain and may include infor-
mation that is linguistically modified as for the sentences (S1), (S2), (S3) above. Once
the information extractor has identified events and extracted properties of those events,
we need to identify which events are similar (and this in turn requires determining which
properties of events are similar). To achieve this, we assume the existence of similarity
functions on various data types – we propose several such functions for certain data
types that are common in processing news information. PLINI-programs may be auto-
matically extracted from training data using standard machine learning algorithms and
a training corpus. The rules in a PLINI-program allow us to determine the similarity be-
tween different events. Our PLINI-Cluster algorithm clusters events together based on
the similarity determined by the rules. PLINI-Cluster runs very quickly and partitions
the set of events into clusters. All events within the same cluster are deemed equivalent.
Once this is done, we can determine whether a real inconsistency exists or not.

Our experiments are based on event data extracted by the T-REX [10] system. T-REX
has been running continuously for over three years. It primarily extracts information on
violent events worldwide from over 400 news sources located in 130 countries. Over
126 million articles have been processed to date by T-REX which has automatically

350 M. Albanese et al.

Fig. 1. Architecture of the PLINI-system

Table 1. Examples of event descriptions

eS1 (type , “bombing attack ′′), (perpetrator , “Indian Islamic Militant Group′′),
(place , “western Indian city ′′), (number of victims, “at least 45 ′′)

eS2 (type , “bombing ′′), (date, “Saturday ′′),
(report time, 7/28/2008), (number of victims, 45)

eS3 (type , “serial blast ′′), (number of victims , 42), (report time, 7/30/2008)
(place , “Ahmedabad ′′), (date , “over the weekend ′′)

extracted a database of approximately 19 million property-value pairs related to violent
events. We have conducted detailed experiments showing that the PLINI-architecture
can identify inconsistencies with high precision and recall.

2 What Is an Event?

We assume that every event has three kinds of properties: a spatial property describing
the region where the event occurred, a temporal property describing the period of time
when the event occurred, and a set of event-specific properties describing various as-
pects of the event itself. The event specific properties vary from one type of event to
another. Some examples of events are the following.

– Terrorist act: Here, the spatial property describes the region where the event oc-
curred (e.g. Mumbai suburb), and various event-specific properties such as num-
ber of victims, number injured, weapon, claimed responsibility, arrested,
etc.

– Political meeting: Here, the event specific properties here might include attendee,
photo, agreement reached, etc.

– Natural disaster: Here, the spatial properties may be somewhat different from
those above. For instance, if we consider the 2004 tsunami in the Indian ocean, the
region where the event occurred may be defined as a set of regions (e.g. Aceh, Sri
Lanka, and so forth), while the time scales may also be different based on when the
tsunami hit the affected regions. The event-specific attributes might include prop-
erties such as number of victims, number injured, number houses destroyed,
property damage value, and so forth.

An event can be represented as a set of (property , value) pairs. Table 1 describes the
events presented in Section 1.

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 351

3 PLINI Wffs: Syntax and Semantics

As shown in Section 1, news reports contain statements that contain numeric, spatial,
and temporal indeterminacy. In this section, we introduce a multi-sorted logic syntax to
capture such statements.

3.1 Syntax of Multi-sorted Wffs

Our definition of multi-sorted well formed formulas (mWFFs for short) builds upon
well-known multi-sorted logics [11] and modifies them appropriately to handle the
kinds of linguistic modifiers used in news articles as exemplified in sentences (S1),
(S2) and (S3). In this section, we introduce the syntax of mWFFs.

Throughout this paper, we assume the existence of a set S of sorts. The set S includes
sorts such as Real , Time , TimeInterval , Date, NumericInterval , Point , Space, and
ConnectedPlace . Each sort s has an associated set dom(s) whose elements are called
constants of sort s. For each sort s ∈ S, we assume the existence of an infinite set Vs

of variable symbols.

Definition 1 (Term). A term t of sort s is any member of dom(s) ∪ Vs. A ground term
is a constant.

We assume the existence of a set P of predicate symbols. Each predicate symbol p ∈ P
has an associated arity, arity(p), and a signature. If a predicate symbol p ∈ P has arity
n, then its signature is of the form (s1, . . . , sn) where each si ∈ S is a sort.

Definition 2 (Atom). If p ∈ P is a predicate symbol with signature (s1, . . . , sn), and
t1, . . . , tn are (resp. ground) terms of sorts s1, . . . , sn respectively, then p(t1, . . . , tn)
is a (resp. ground) atom.

Definition 3 (mWFF). A multi-sorted well formed formula (mWFF) is defined as fol-
lows:

– Every atom is an mWFF (atomic mWFF).
– If A and B are mWFFs, then so are A ∧B, A ∨B, and ¬A.
– If s ∈ S, X ∈ Vs, and A is an mWFF, then ∀sX.A and ∃sX.A are also mWFFs.

We are now ready to give a semantics for the syntactic objects introduced above. We
start with the definition of denotation of various syntactic constructs.

Definition 4 (Denotation). Suppose s ∈ S is a sort, and c ∈ dom(s). Each sort s
has a fixed associated denotation universe Us. Each ground term t of sort s and each
predicate symbol p ∈ P has a denotation �t� (�p� resp.), defined as follows.

– �c� is an element of Us for each c ∈ dom(s).
– If p ∈ P is a predicate symbol with signature (s1, . . . , sn), then �p� is a subset of
Us1 × . . .× Usn .

This paper considers the sorts: Real , Time , TimeInterval , Date, Point , Space , and
ConnectedPlace . We describe each of these sorts below.

352 M. Albanese et al.

Real. Real is a sort whose domain is the set R of real numbers. The denotation of
symbols in dom(Real) is:

– The denotation universe is UReal = R.4

– For each symbol r ∈ Real , �r� = r ∈ R, i.e., real numbers denote themselves.

Time. Let us assume that Time is a sort having the set of symbols such as 2008,
08/2008, 08/01/2008, etc. as its domain.5 The denotation of symbols in dom(Time)
can be defined as follows:

– The denotation universe is UTime = ℘(Z) where Z is the set of non-negative inte-
gers and each t ∈ Z encodes a point in time, i.e. the number of time units elapsed
since the origin of the time scale adopted by the user. As an example, t ∈ Z may
encode the number of seconds elapsed since January 1st 1970, 0:00:00 GMT.

– The denotation of each symbol t′ ∈ dom(Time) is an element of ℘(Z), i.e. an
unconstrained set of points in time.

TimeInterval. TimeInterval is a sort whose domain is the set of symbols of the form
(start, end) where start, end ∈ Z. The denotation of symbols in dom(TimeInterval)
can be defined as follows:

– The denotation universe is UTimeInterval = {I ∈ ℘(Z) | I is connected}.
– The denotation of each symbol (start, end) ∈ dom(TimeInterval) is defined in

the obvious manner: �(start, end)� = [start, end) — note that this is a left-closed,
right open interval.

Date. Let us assume that Date is a sort having the set of symbols of the form month-
day-year as its domain and dom(Date) ⊂ dom(TimeInterval). The denotation of
symbols in dom(Date) can be defined as follows:

– The denotation universe is UDate = {D ∈ UTimeInterval | sup(D)− inf(D) = τ
∧ inf(D) mod τ = 0}, where τ is the number of time units, in the selected time
scale, contained in a day. For example, if the adopted time scale has a granularity
of hours, then τ = 24.

Point. Point is a sort whose domain is the set R × R. The denotation of symbols in
dom(Point) can be defined as follows:

– The denotation universe is UPoint = R× R.
– For each symbol p = (r1, r2) ∈ dom(Point), �p� is the point p = (r1, r2) ∈ R×R.

4 Though the domain and denotation universe of Real are identical, this is not the case for all
sorts (the sorts Space and ConnectedPlace below are examples).

5 Formally, we could define this set of symbols as follows. Every non-negative integer is a year.
Every integer from 1 to 12 is a month. Every integer from 1 to 31 is a day. Every year is in
dom(Time). If m is a month and y is a year, then m/y is in dom(Time). If d is a day, m is
a month, and y is a year, then d/m/y is in dom(Time). The fact that 31/2/2009 is not a valid
date can be handled by adding an additional “validity” predicate. We do not go into this as this
is not the point of this paper.

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 353

Space. Space is a sort whose domain is an enumerated set of strings such as Atlantic
Ocean, Great Lakes, WashingtonDC, etc. The denotation of symbols in
dom(Space) can be defined as follows:

– The denotation universe is USpace = ℘(R × R), where ℘(R × R) is the power set
of R× R.

– For each symbol a ∈ dom(Space), �a� is a member of ℘(R × R), i.e. an uncon-
strained set of points in R× R.

For instance, the denotation, �Paris�, of Paris, is a set of points on the 2-dimensional
Cartesian plane that corresponds to the region referred to as Paris. Another example of
an element of sort Space is United States, whose denotation is the set of points that is
the union of all points in the real plane corresponding to each of the regions that form
the country (continental US, Alaska, Hawaii, etc.).

Connected Place. ConnectedPlace’s domain is the subset of Space’s domain that con-
sists of connected regions. The denotation of symbols in dom(ConnectedPlace) can
be defined as follows:

– The denotation universe is UConnectedPlace = {a ∈ USpace | a is connected}.
– For each symbol l ∈ dom(ConnectedPlace), �l� is a connected element l of ℘(R×

R), i.e. a connected region in R×R that corresponds to l. Thus, �Washington DC �
might be the set {(x, y) | 10 ≤ x ≤ 12 ∧ 36 ≤ y ≤ 40} and �Paris� might be
similarly defined.

Note that while continental US is an element of sort ConnectedPlace , United States
is not because the US is not a connected region. Throughout the rest of this paper we
assume an arbitrary but fixed denotation function �� for each constant and predicate
symbol in our language.

Definition 5 (Assignment). An assignment σ is a mapping, σ : ∪s∈SVs → ∪s∈SUs

such that for every X ∈ Vs, σ(X) ∈ Us.

Thus σ assigns an element of the proper sort for every variable. We write σ[A] to denote
the simultaneous replacement of each variable X in A by σ(X).

Definition 6 (Semantics of mWFFs). The evaluation of an mWFF under assignment
σ is defined as follows:

1. If p is a predicate symbol of arity n and signature (s1, . . . , sn), and t1, . . . , tn are
terms of sort s1, . . . , sn respectively, then the atomic mWFF σ[p(t1, . . . , tn)] is
true iff (�σ(t1)�, . . . , �σ(tn)�) ∈ �p�.

2. If A is an mWFF, then σ[¬A] is true iff σ[A] is not true.
3. If A and B are both mWFFs, then σ[A ∧ B] is true iff σ[A] is true and σ[B] is

true.
4. If A and B are both mWFFs, then σ[A ∨B] is true iff σ[A] is true or σ[B] is true.
5. If A is an mWFF and X ∈ Vs, then σ[∀sX.A] is true iff for each possible assign-

ment τ , identical to σ except possibly for X , τ [A] is true.
6. If A is an mWFF and X ∈ Vs, then σ[∃X.A] is true iff there is an assignment τ ,

identical to σ except possibly for X , for which τ [A] is true.

354 M. Albanese et al.

Table 2. Denotations for selected linguistically modified numeric predicates

Predicate Symbol Signature Denotation Associated Region

almost (Real, Real, Real) {(x, ε, y) | x, ε, y ∈ R The interval [(1 − ε) × x, x)
(0 < �ε� ≤ 1) ∧ ((1 − ε) × x ≤ y < x)}

at least (Real, Real, Real) {(x, ε, y) | x, ε, y ∈ R The interval [x, x + (ε × x)]
(0 ≤ �ε� ≤ 1) ∧ (x ≤ y ≤ (x + (x × ε))}

around (Real, Real, Real) {(x, ε, y) | x, ε, y ∈ R ∧ (0 ≤ �ε� ≤ 1) The interval [x − (ε × x), x + (ε × x)]
(x − (x × ε) ≤ y ≤ x + (x × ε))}

most of (Real, Real, Real) {(x, ε, y) | x, ε, y ∈ R ∧ (0.0 < �ε� < 0.5) The interval [x − (x × ε), x)
(x × (1 − ε) ≤ y < x)}

between (Real, Real, Real, Real) {(x, y, ε, z) | x, y, z, ε ∈ R ∧ (0 ≤ �ε� ≤ 1) The interval [x − (x × ε), y + (y × ε)]
(x − (x × ε) ≤ z ≤ y + (y × ε))}

Table 3. Denotations for selected linguistically modified spatial predicates

Predicate Symbol Signature Denotation Associated Region

Positional Indeterminacy
center (ConnectedPlace, Real, Point) {(l, δ, p) | l ∈ UConnectedPlace ∧ δ ∈ [0, 1] Circle centered at the center of the

∧ p ∈ UPoint ∧ d(p, Cent(l)) ≤ δ · hside(l)} rectangle maximally contained

in l6, with radius equal to a
fraction δ of half the length of the
smaller side of the rectangle

boundary (Space, Point) {(a, p) | a ∈ USpace ∧ p ∈ UPoint
∧ (∀ε > 0 : (∃p1 ∈ a, p2 /∈ a : d(p1, p) < ε Points on the edge of a
∧ d(p2, p) < ε))}

Distance Indeterminacy
distance (Space, Real, Point) {(a, r, p) | a ∈ USpace ∧ r ∈ R ∧ p ∈ UPoint Points at a distance r from a point

∧ (∃p0 ∈ a : d(p0, p) = r)} in a

within (Space, Real, Point) {(a, r, p) | a ∈ USpace ∧ r ∈ R ∧ p ∈ UPoint Points at a distance r or less from
∧ (∃p0 ∈ a : d(p0, p) ≤ r)} a point in a

Directional Indeterminacy
north (Space, Real, Space) {(a, θ, p) | a ∈ USpace ∧ θ ∈ R ∧ p ∈ UPoint NCone(θ, p): �0 upwards

∧ (∃p0 ∈ a : p ∈ NCone(θ, p0))} parallel to the Y -axis
ne (Space, Real, Space) {(a, θ, p) | a ∈ USpace ∧ θ ∈ R ∧ p ∈ UPoint NECone(θ, p): �0 to the right

∧ (∃p0 ∈ a : p ∈ NECone(θ, p0))} with slope 1
nw (Space, Real, Space) {(a, θ, p) | a ∈ USpace ∧ θ ∈ R ∧ p ∈ UPoint NWCone(θ, p): �0 to the left

∧ (∃p0 ∈ a : p ∈ NWCone(θ, p0))} with slope −1
south (Space, Real, Space) {(a, θ, p) | a ∈ USpace ∧ θ ∈ R ∧ p ∈ UPoint SCone(θ, p): �0 downwards

∧ (∃p0 ∈ a : p ∈ SCone(θ, p0))} parallel to the Y -axis

An mWFF A is true iff σ[A] is true for all assignments σ.

The above definitions describe the syntax and semantics of mWFFs. It should be clear
from the preceding examples that we can use the syntax of mWFFs to reason about
numbers with attached linguistic modifiers (e.g. “around 25”, “between 25 and 30”. “at
least 40”), about time with linguistic modifiers (e.g. “last month”, “morning of June 1,
2009”,) and spatial information with linguistic modifiers (e.g. “center of Washington
DC”, “southwest of Washington DC”).

Table 2 shows denotations of some predicate symbols for linguistically modified
numbers, while Tables 3 and 4 do the same for linguistically modified geospatial and
temporal quantities, respectively.

Example 1 (Semantics for linguistically modified numbers). Consider the predicate
symbol most of in Table 2. Given 0 < ε < 0.5, we say that most of(x, ε, y) is
true (y is “most of” x) iff x × (1 − e) ≤ y ≤ x. Thus, when x = 4, e = 0.3, y = 3.1,
we see that y lies between 2.8 and 4 and hence most of(4, 0.3, 3.1) holds. However,
if e = 0.2, then most of(4, 0.2, 3.1) does not hold because y must lie in the interval
[3.2, 4].

6 We are assuming there is one such rectangle; otherwise a more complex method is used.

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 355

Table 4. Denotations for selected linguistically modified temporal predicates

Predicate Symbol Signature Denotation Associated Region

morning (Date, Date) {(d1, d2) | d1, d2 ∈ UDate ∧ The entire first half
GLB(d1) ≤ d2 ≤ (GLB(d1) + LUB(d1)/2} of a day

last month (Date, Date) for m = 1, {((m, d0, y), z) | (m, d0, y), z ∈ UDate ∧ The denotation of the
(∃i) s.t. (12, i, y − 1) ∈ Date ∧ z ∈ �(12, i, y − 1)�} month immediately
for m ≥ 2, {((m, d0, y), z) | (m, d0, y) ∈ UDate , z ∈ UTime preceding m
∧ (∃i) s.t. (m − 1, i, y) ∈ Date ∧ z ∈ �(m − 1, i, y)�}

around (Date, Real, TimeInterval) {((m, d0, y), k, (zs, ze)) | (m, d0, y) ∈ UDate The time points which
∧ zs, ze ∈ UTime ∧ k ∈ Real ∧ zs = inf((ms, ds, ys) ∧ are within a few days
ze = sup((me, de, ye))}, where (ms, ds, ys) and (me, de, ye) of a given date
refer to the days which are exactly k days before and after (m, d0, y)

shortly before (Date, Real, TimeInterval) {((m, d0, y), k, (zs, ze)) | (m, d0, y) ∈ UDate The period shortly
∧ zs, ze ∈ UTime ∧ k ∈ UReal ∧ zs = inf((ms, ds, ys)) before a given date
∧ ze = inf((m, d0, y))]}, where (ms, ds, ys) refers to the day
which is exactly k days before (m, d0, y)

shortly after (Date, Real, TimeInterval) {((m, d0, y), k, (zs, ze)) | (m, d0, y) ∈ UDate The period shortly
∧ zs, ze ∈ UTime ∧ k ∈ UReal ∧ zs = sup((m, d0, y)) after a given date
∧ ze = inf((me, de, ye))]}, where (me, de, ye) refers to the day
which is exactly k days after (m, d0, y)

(a) (b)

Fig. 2. Example of (a) point p in the northwest of a region a; (b) application of simP
1 and simP

2

Example 2 (Semantics for linguistically modified spatial concepts). Consider the pred-
icate symbol boundary defined in Table 3 (boundary is defined with respect to a set of
points in a 2-dimensional space) and consider the rectangle a′ defined by the constraints
1 ≤ x ≤ 4 and 1 ≤ y ≤ 5. A point p is on the boundary of a iff for all ε > 0, there is
a point p1 ∈ a and a point p2 /∈ a such that the distance between p and each of p1, p2

is less than ε. Using this definition, we see immediately that the point (1, 1) is on the
boundary of the rectangle a′, but (1, 2) is not.

Now consider the predicate symbol nw defining the northwest of a region (set of
points). According to this definition, a point p is to the northwest of a region a w.r.t.
cone-angle θ iff there exists a point p0 in a such that p is in NWCone(θ, p0).
NWCone(θ, p0)7 is defined to be the set of all points p′ obtained by (i) drawing
a ray L0 of slope −1 to the left of vertex p0, (ii) drawing two rays with vertex p0

at an angle of ±θ from L0 and (iii) looking at between the two rays in item (ii).
Figure 2(a) shows this situation. Suppose a is the shaded region and θ = 20 (de-
grees). We see that p is to the northwest of this region according to the definition in
Table 3.

7 The other cones referenced in Table 3 can be similarly defined.

356 M. Albanese et al.

4 Similarity Functions

We now propose similarity functions for many of the major sorts discussed in this paper.
We do not claim that these are the only definitions – many definitions are possible,
often based on application needs. We merely provide a few in order to illustrate that
reasonable definitions of this kind exist.

We assume the existence of an arbitrary but fixed denotation function for each sort.
Given a sort s, a similarity function is a function sims : dom(s) × dom(s) → [0, 1],
which assigns a degree of similarity to each pair of elements in dom(s). All similarity
functions are required to satisfy two very basic axioms.

sims(a, a) = 1 (1)

sims(a, b) = sims(b, a) (2)

4.1 Sort Point

Consider the sort Point , with denotation universe UPoint = R×R. Given two terms a
and b of sort Point , we can define the similarity between a and b in any of the following
ways.

simP
1 (a, b) = e−α·d(�a�,�b�) (3)

where d(�a�, �b�) is the distance in R × R between the denotations of a and b8, and α

is a factor that controls how fast the similarity decreases as the distance increases.

simP
2 (a, b) =

1
1 + α · d(�a�, �b�)

(4)

where d() and α have the same meaning as in Equation 3.

Example 3. Assuming that street addresses can be approximated as points, consider
the points a = “8500 Main St.” and b = “1100 River St.” in Figure 2(b), with de-
notations (4, 8) and (9, 2) respectively. Assuming α = 0.3, then d(�a�, �b�) = 7.81,
simP

1 (a, b) = 0.096, and simP
2 (a, b) = 0.299.

4.2 Sort ConnectedPlace

Consider the sort ConnectedPlace , with denotation universe UConnectedPlace =
{a ∈ USpace | a is connected}. Given two terms a and b of sort ConnectedPlace , the
similarity between a and b can be defined in any of the following ways.

simCP
1 (a, b) = e−α·d(c(�a�),c(�b�)) (5)

where c(�a�), c(�b�) inR×R are the centers of �a� and �b� respectively, d(c(�a�), c(�b�))
is the distance between them, and α is a factor that controls how fast the similarity de-
creases as the distance between the centers of the two places increases. This similarity
function works well when comparing geographic entities at the same level of granular-
ity. When places can be approximated with points, it is equivalent to simP

1 (a, b).

simCP
2 (a, b) =

1
1 + α · d(c(�a�), c(�b�))

(6)

8 If elements in UPoint are pairs of latitude, longitude coordinates, then d() is the great-circle
distance. We will assume that d() is the Euclidean distance, unless otherwise specified.

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 357

(a) (b)

Fig. 3. Example of the application of similarity functions for sort ConnectedPlace

where c(), d() and α have the same meaning as in Equation 5.

Example 4. Consider the two places a = “Lake District” and b = “School District” in
Figure 3(a), and suppose their denotations are the two shaded rectangles in the figure. It
is easy to observe that c(�a�) = (13, 7.5), c(�b�) = (9.5, 2.5), and d(c(�a�), c(�b�)) =
6.103. Hence, for α = 0.3, simCP

1 (a, b) = 0.160 and simCP
2 (a, b) = 0.353.

Other two similarity functions can be defined in terms of the areas of the two regions.

simCP
3 (a, b) =

A(�a� ∩ �b�)
A(�a� ∪ �b�)

(7)

where A(�t�) is a function that returns the area of �t�. Intuitively, this function uses the
amount of overlap between the denotations of a and b as their similarity.

simCP
4 (a, b) =

A(�a� ∩ �b�)
maxt∈{a,b} A(�t�)

(8)

where A(�t�) has the same meaning as in Equation 7.

Example 5. Consider the two connected places a = and b = in Figure 3(a), and their
respective denotations. The intersection of the two denotations is the darker shaded
region, whereas their union is the whole shaded region. It is straightforward to see
that A(�a�) = 42, A(�b�) = 65, A(�a� ∩ �b�) = 6, and A(�a� ∪ �b�) = 101. Thus,
simCP

3 (a, b) = 0.059 and simCP
4 (a, b) = 0.092

In order to better illustrate the great expressive power of our framework, we now con-
sider a more complex scenario, where the terms being compared are linguistically mod-
ified terms. We show how the similarity of such terms depends on the specific denota-
tions assumed by the user for each predicate symbol.

Example 6. Consider the two linguistically modified terms of sort ConnectedPlace
a = “In the center of Weigfield” and b = “Northeast of Oak St. Starbucks”, where
Weigfield is the fictional city depicted in Figure 3. Assuming the denotation of center
and ne shown in Table 3, we now compute the similarity between a and b for different

358 M. Albanese et al.

Table 5. Value of simCP
3 (a, b) for different values of δ and θ

δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8

θ = 15◦ 0.0132 0.0276 0.0346 0.0380
θ = 30◦ 0.0157 0.0413 0.0593 0.0699
θ = 45◦ 0.0167 0.0494 0.0777 0.0970

values of δ and θ. Figure 3(b) shows denotations of a for values of δ of 0.2, 0.4, 0.6,
and 0.8, and denotations of b for values of θ of 15◦, 30◦, and 45◦. In order to simplify
similarity computation, we make the following assumptions (without loss of general-
ity): (i) the term “Oak St. Starbucks” can be interpreted as a term of sort Point ; (ii)
the denotation of “Oak St. Starbucks” coincides with the geometrical center (8, 5.5) of
the bounding box of �“Weigfield”�; (iii) the cones do not extend indefinitely, but rather
within a fixed radius (8 units in this example) from their vertex. Table 5 reports the value
of simCP

3 (a, b) for different values of δ and θ. The highest similarity corresponds to
the case where δ = 0.8 and θ = 45◦, which maximizes the overlap between the two
regions. Intuitively, this result tells us that a user with a very restrictive interpretation of
center and ne (i.e., δ 1 1 and θ 1 90◦ respectively) will consider a and b less similar
than a user with a more relaxed interpretation of the same predicates.

Another similarity function can be defined in terms of the Hausdorff distance [12].

simCP
5 (a, b) = e−α·H(�a�,�b�) (9)

where H(P,Q) = max(h(P,Q), h(Q,P)), with P,Q ∈ ℘(R × R), is the Hausdorff
distance, where h(P,Q) = maxp∈P minq∈Qd(p, q) is the distance between the point
p ∈ P that is farthest from any point in Q and the point q ∈ Q that is closest to p.
Intuitively, the Hausdorff distance is a measure of the mismatch between P and Q; if
the Hausdorff distance is d, then every point of P is within distance d of some point of
Q and vice versa.

Example 7. Consider again the two connected places a = “Lake District” and b =
“School District” in Figure 3, and their respective denotations. In this example, the
Hausdorff distance between �a� and �b� can be interpreted as the distance between
the two points A and B shown in the figure. Therefore, H(�a�, �b�) = 8.062 and
simCP

5 (a, b) = 0.089 for α = 0.3. Exchanging the roles of �a� and �b� would lead
to a shorter value of the distance, whereas H() selects the maximum.

simCP
6 (a, b) = e−α·d(c(�a�),c(�b�)) · e−β·(1−o(�a�,�b�)) (10)

where c(), d() and α have the same meaning as in Equation 5, o(�a�, �b�) = A(�a�∩�b�)
A(�a�∪�b�)

is the amount of overlap between �a� and �b�, and β is a factor that controls how fast
the similarity decreases as the amount of overlap between the two places decreases9.

Example 8. Consider again the two connected places in Figure 3, and their respective
denotations. In this example, simCP

6 (a, b) = 0.056 for α = 0.3 and β = 0.5.

9 Alternatively, one could specify o(�a�, �b�) = A(�a�∩�b�)
maxt∈{a,b} A(�t�)

.

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 359

Table 6. Comparison between similarity functions over sort ConnectedPlace

simCP
1 simCP

2 simCP
3 simCP

4 simCP
5 simCP

6 simCP

1′
simCP

2′
simCP

3′
simCP

4′
simCP

5′
simCP

6′
h

(a) 0.10 0.30 0.03 0.04 0.03 0.17 0.36 0.59 0.03 0.04 0.03 0.35 0.27
(b) 0.35 0.48 0.25 0.25 0.11 0.27 1.00 1.00 1.00 1.00 1.00 1.00 0.50
(c) 0.81 0.82 0.25 0.25 0.28 0.35 1.00 1.00 1.00 1.00 1.00 1.00 0.57
(d) 1.00 1.00 0.64 0.64 0.66 0.38 1.00 1.00 1.00 1.00 1.00 1.00 0.90
(e) 0.07 0.52 0.00 0.00 0.02 0.16 0.31 0.56 0.00 0.00 0.02 0.35 0.07
(f) 0.40 0.52 0.14 0.17 0.12 0.28 0.67 0.79 0.14 0.17 0.12 0.37 0.37
(g) 0.40 0.54 0.14 0.17 0.22 0.28 0.67 0.79 0.14 0.17 0.22 0.37 0.37
(h) 0.66 0.70 0.25 0.25 0.43 0.33 1.00 1.00 1.00 1.00 1.00 1.00 0.53
(i) 0.43 0.54 0.25 0.25 0.18 0.29 1.00 1.00 1.00 1.00 1.00 1.00 0.53
(j) 1.00 1.00 0.05 0.05 0.12 0.38 1.00 1.00 1.00 1.00 1.00 1.00 0.37
(k) 0.47 0.57 0.46 0.46 0.12 0.30 1.00 1.00 1.00 1.00 1.00 1.00 0.70

Table 7. Correlation between similarity functions and human judgment for α = 0.045 and β = 1

simCP
1 simCP

2 simCP
3 simCP

4 simCP
5 simCP

6 simCP

1′ simCP

2′ simCP

3′ simCP

4′ simCP

5′ simCP

6′
0.74 0.73 0.96 0.95 0.76 0.74 0.79 0.79 0.75 0.75 0.75 0.74

The similarity function simCP
1′ below considers two places equivalent when their de-

notations are included into one another. We can define simCP
2′ , . . . , simCP

6′ in a similar
way by modifying simCP

2 , . . . , simCP
6 analogously.

simCP
1′ (a, b) =

{
1 if �a� ⊆ �b� ∨ �b� ⊆ �a�
simCP

1 (a, b) otherwise (11)

Experimental evaluation of similarity functions. In order to compare spatial similar-
ity functions with human intuition, we asked three independent subjects to evaluate, on
a 1 to 10 scale, the similarity of 11 pairs of connected regions, corresponding to rows
(a), . . ., (k) in Table 6. Table 7 shows the correlation between each similarity function
and average human-judged similarity, for the values of α and β that maximize corre-
lation (α = 0.045 and β = 1). Average inter-human correlation was found to be 0.82
– therefore simCP

3 and simCP
4 exhibit a correlation with average human judged simi-

larity stronger than average inter-human correlation. It is worth noting that the second
(“primed”) version of the 6 base similarity functions does not improve correlation, ex-
cept for the case of simCP

1 and simCP
2 , which are based solely on the distance between

the centers, and thus lack the notion of overlap, which is implicitly used by humans as
a measure of similarity. This notion is introduced in simCP

1 and simCP
2 by their aug-

mented versions, therefore simCP
1′ and simCP

2′ perform slightly better.

4.3 Sort Space

Consider the sort Space , with denotation universe USpace = ℘(R×R), where ℘(R×R)
is the power set of R × R. Given a term a of sort Space , let P (�a�) denote a subset of
UConnectedPlace such that

⋃
x∈P (�a�) x = �a�, elements in P (�a�) are pairwise disjoint

and maximal, i.e. �y ∈ UConnectedPlace, x1, x2 ∈ P (�a�) s.t. y = x1 ∪ x2. Intuitively,
P (�a�) is the set of the denotations of all the connected components of a. Given two
terms a and b of sort Space , the distance between a and b may be defined in many ways
– two are shown below.

dS
c (a, b) = avg

ai∈P (�a�),bi∈P (�b�)

d(c(ai), c(bi)) (12)

360 M. Albanese et al.

Fig. 4. Example of application of similarity functions for sort Space

where c() and d() have the same meaning as in Equation 5.

dS
h(a, b) = avg

ai∈P (�a�),bi∈P (�b�)

H(ai, bi) (13)

where H() is the Hausdorff distance.
Intuitively dS

c and dS
h measure the average distance between any two connected com-

ponents of the two spaces being compared. Alternatively, the avg operator could be
replaced by either min or max. As in the case of sort ConnectedPlace , a similarity
function over sort Space can be defined in any of the following ways.

simS
1 (a, b) = e−α·dS

c (a,b) (14)

simS
2 (a, b) =

1
1 + α · dS

c (a, b)
(15)

where dS
c is the distance defined by Equation 12 and α is a factor that controls how fast

the similarity decreases as the distance increases.

Example 9. Consider the terms a = “City buildings” and b = “Schools” of sort Space
in Figure 4 with denotations �a� = {a1, a2} and �b� = {b1, b2} respectively. By com-
puting and averaging the distances between the centers of all pairs ai, bj ∈ P (�a�) ×
P (�b�) (see dashed lines in the figure), we obtain dS

c (a, b) = 7.325 and simS
1 (a, b) =

0.111, and simS
2 (a, b) = 0.313 for α = 0.3.

simS
3 (a, b) =

A(�a� ∩ �b�)
A(�a� ∪ �b�)

(16)

simS
4 (a, b) =

A(�a� ∩ �b�)
maxt∈{a,b} A(�t�)

(17)

where A(�t�) is a function that returns the area of �t�.

simS
5 (a, b) = e−α·dS

h(a,b) (18)

where dS
h is the distance defined by Equation 13 and α is a factor that controls how fast

the similarity decreases as the distance increases.

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 361

simS
6 (a, b) = e−α·dS

c (a,b) · e−β·(1−o(�a�,�b�)) (19)

where dS
c is the distance defined by Equation 12, α has the usual meaning, o(�a�, �b�) =

A(�a�∩�b�)
A(�a�∪�b�) is the amount of overlap between �a� and �b�, and β is a factor that controls
how fast the similarity decreases as the overlap between the two places decreases.

Example 10. Consider again the two terms of sort Space in Figure 4. It is straightfor-
ward to see that A(�a�) = 30, A(�b�) = 32.5, A(�a� ∩ �b�) = 4.5, and A(�a�∪ �b�) =
58. Therefore, simS

3 (a, b) = 0.078, simS
4 (a, b) = 0.138, and simS

6 (a, b) = 0.044, for
α = 0.3 and β = 1.

4.4 Sort TimeInterval

Consider the sort TimeInterval , with denotation universe UTimeInterval ={I ∈ ℘(Z) |
I is connected}10. Given two terms a and b of sort TimeInterval , the similarity be-
tween a and b can be defined in any of the following ways.

simTI
1 (a, b) = e−α·|c(�a�)−c(�b�)| (20)

where, for each time interval t ∈ dom(TimeInterval), c(�t�) = avgz∈�t� z is the center
of �t�, and α is a factor that controls how fast the similarity decreases as the distance
between the centers of the two time intervals increases.

simTI
2 (a, b) =

1
1 + α · |c(�a�)− c(�b�)| (21)

where c() and α have the same meaning as in Equation 20.

Example 11. Consider the two terms of sort TimeInterval a=“around May 13, 2009”
and b = “shortly before May 16, 2009”, and assume that the denotation of around is
a time interval extending 4 days before and after the indeterminate date, and the de-
notation of shortly before is the time interval extending 2 days before the indeter-
minate date. Then, �a� is the time interval [05/9/09, 05/17/09] and �b� is the time
interval [05/14/09, 05/16/09]. Assuming a time granularity of days, we have c(�a�) =
05/13/09 and c(�b�) = 05/15/0911. Therefore, assuming α = 0.3, we conclude that
simTI

1 (a, b) = 0.549 and simTI
2 (a, b) = 0.625.

simTI
3 (a, b) =

|�a� ∩ �b�|
|�a� ∪ �b�| (22)

Intuitively, simTI
3 is the ratio of the number of time units in the intersection of the

denotations of a and b to the number of time units in the union.

simTI
4 (a, b) =

|�a� ∩ �b�|
maxt∈{a,b} |�t�|

(23)

simTI
5 (a, b) = e−α·H(�a�,�b�) (24)

10 Each t ∈ Z encodes a point in time, i.e. the number of time units elapsed since the origin of
the time scale adopted by the user.

11 Since we are assuming a time granularity of days, we are abusing notation and using 05/13/09
instead of the corresponding value z ∈ Z.

362 M. Albanese et al.

whereH(P,Q)=max(h(P,Q), h(Q,P)), with P,Q∈℘(Z), is the Hausdorff distance.

simTI
6 (a, b) = e−α·|c(�a�)−c(�b�)| · e−β·(1−o(�a�,�b�)) (25)

where c() and α have the same meaning as in Equation 20, o(�a�, �b�) = |�a�∩�b�|
|�a�∪�b�| is

the amount of overlap between �a� and �b�, and β is a factor that controls how fast the
similarity decreases as the amount of overlap between the two time intervals decreases.

Example 12. Consider again the two terms of sort TimeInterval of Example 11. We
observe that |�a�| = 9, |�b�| = 3, |�a� ∩ �b�| = 3, and |�a� ∪ �b�| = 9. Therefore,
simTI

3 (a, b) = 0.333 and simTI
4 (a, b) = 0.333. In addition, H(�a�, �b�) = 5, which

implies simTI
5 (a, b) = 0.22 and simTI

6 (a, b) = 0.469, when α = 0.045 and β = 1.

4.5 Sort NumericInterval

Consider the sort NumericInterval , with denotation universe UNumericInterval = {I ∈
℘(N) | I is connected}12. As in the case of the sort TimeInterval , given two terms a
and b of sort NumericInterval , the similarity between a and b can be defined in any of
the following ways.

simNI
1 (a, b) = e−α·|c(�a�)−c(�b�)| (26)

where, for each numeric interval t ∈ dom(NumericInterval), c(�t�) = avgn∈�t� n is
the center of �t�, and α is a factor that controls how fast the similarity decreases as the
distance between the centers of the two numeric intervals increases.

simNI
2 (a, b) =

1
1 + α · |c(�a�)− c(�b�)| (27)

where c() and α have the same meaning as in Equation 26

Example 13. Consider the two terms of sort NumericInterval a=“between 10 and 20”
and b = “at least 16”, and assume that the denotation of between and at least are those
shown in Table 2, with ε = 0.1 and ε = 0.5 respectively. Then, �a� is the interval [9, 22]
and �b� is the interval [16, 24]. We have c(�a�) = 16 and c(�b�) = 20. Therefore, for
α = 0.3, simNI

1 (a, b) = 0.301 and simNI
2 (a, b) = 0.455.

simNI
3 (a, b) =

|�a� ∩ �b�|
|�a� ∪ �b�| (28)

simNI
4 (a, b) =

|�a� ∩ �b�|
maxt∈{a,b} |�t�|

(29)

simNI
5 (a, b) = e−α·H(�a�,�b�) (30)

where H(P,Q) is the Hausdorff distance.

simNI
6 (a, b) = e−α·|c(�a�)−c(�b�)| · e−β·(1−o(�a�,�b�)) (31)

12 This seems to be a natural denotation for indeterminate expressions such as “between 3 and
6”, “more than 3”, etc. An exact quantity can be also represented as a singleton.

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 363

where c() and α have the same meaning as in Equation 26, o(�a�, �b�) = |�a�∩�b�|
|�a�∪�b�| is the

amount of overlap between �a� and �b�, and β controls how fast the similarity decreases
as the amount of overlap between the two numeric intervals decreases.

Example 14. Consider again the two terms of sort NumericInterval of Example 13.
We observe that |�a�| = 14, |�b�| = 9, |�a�∩ �b�| = 7, and |�a�∪ �b�| = 16. Therefore,
simNI

3 (a, b) = 0.438 and simNI
4 (a, b) = 0.5. Moreover, H(�a�, �b�) = 7, which

implies simNI
5 (a, b) = 0.122 and simNI

6 (a, b) = 0.447, when α = 0.045 and β = 1.

5 PLINI Probabilistic Logic Programs

In this section, we define the concept of a PLINI-rule and a PLINI-program. Informally
speaking, a PLINI-rule states that when certain similarity-based conditions associated
with two events e1, e2 are true, then the two events are equivalent with some proba-
bility. Thus, PLINI-rules can be used to determine when two event descriptions refer
to the same event, and when two event descriptions refer to different events. PLINI-
rules are variants of annotated logic programs [9] augmented with methods to handle
similarity between events, as well as similarities between properties of events. Table 8
shows a small event database that was automatically extracted from news data by the
T-REX system [10]. We see here that an event can be represented as a set of (prop-
erty,value) pairs. Throughout this paper, we assume the existence of some set E of event
names.

Definition 7. An event pair over sort s is a pair (p, v) where p is a property of sort s
and v ∈ dom(s). An event is a pair (e, EP) where e ∈ E is an event name and EP is
a finite set of event pairs such that each event pair ep ∈ EP is over some sort s ∈ S.

We assume that a setA of properties is given and use the notation eventname.property
to refer to the property of an event. We start by defining event-terms.

Definition 8 (Event-Term). Suppose E is a finite set of event names and V is a possibly
infinite set of variable symbols. An event-term is any member of E ∪ V .

Example 15. Consider the event eS3 presented in Section 2. Both eS3 and v, where v
is a variable symbol, are event-terms.

We now define the concept of an equivalence atom. Intuitively, an equivalence atom
says that two events (or properties of events) are equivalent.

Definition 9 (Equivalence Atom). An equivalence atom is an expression of the form

– ei ≡ ej , where ei and ej are event-terms, or
– ei.ak ≡ ej .al, where ei, ej are event-terms, ak, al ∈ A, and ak, al are both of sort

s ∈ S, or
– ei.ak ≡ b, where ei is an event-term, ak ∈ A is an attribute whose associated sort

is s ∈ S and b a ground term of sort s.

364 M. Albanese et al.

Table 8. Example of Event Database extracted from news sources

Event name Property Value

Event1 date 02/28/2005
location Hillah
number of victims 125
weapon car bomb

Event2 location Hilla , south of Baghdad
number of victims at Least 114
victim people
weapon massive car bomb

Event3 killer twin suicide attack
location town of Hilla
number of victims at least 90
victim Shia pilgrims

Event4 date 02/28/2005
weapon suicide car bomb
location Hilla
number of victims 125

Event5 killer suicide car bomber
location Hillah
number of victims at least 100

Event6 location Hillah
number of victims 125
victim Iraqis
weapon suicide bomb

Event7 weapon suicide bombs
location Hilla south of Baghdad
number of victims at least 27

Event8 date 2005/02/28
location Hilla
number of victims between 136 and 135
victim people queuing to obtain medical identification cards
weapon suicide car bomb

Event9 date 2005/03/28
location Between Hillah and Karbala
number of victims between 6 and 7
victim Shiite pilgrims
weapon Suicide car bomb

Example 16. Let us return to the case of the events eS1, eS2, eS3 from Table 1. Some
example equivalence atoms include:

eS1 ≡ eS2.

eS1.place ≡ eS3.place

eS3.place ≡ Ahmedabad.

Note that two events need not be exactly identical in order for them to be considered
equivalent. For instance, consider the events eS1, eS2, eS3 given in Section 2. It is clear
that we want these three events to be considered equivalent, even though their associated
event pairs are somewhat different. In order to achieve this, we first need to state what
it means for terms over various sorts to be equivalent. This is done via the notion of a
PLINI-atom.

Definition 10 (PLINI-atom). If A is an equivalence atom and μ ∈ [0, 1], then A : μ is
a PLINI-atom.

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 365

The intuitive meaning of a PLINI-atom can be best illustrated via an example.

Example 17. The PLINI-atom (e1.weapon≡e2.weapon) :0.683 says that the weapons
associated with events e1 and e2 are similar with a degree of at least 0.683. Likewise,
the PLINI-atom (e1.date ≡ e2.date) : 0.575 says that the dates associated with events
e1 and e2 are similar with a degree of at least 0.575.

When providing a semantics for PLINI, we will use the notion of similarity function for
sorts as defined in Section 4. There we gave specific examples of similarity functions
for the numeric, spatial, and temporal domains. Our theory will be defined in terms
of any arbitrary but fixed set of such similarity functions. The heart of our method for
identifying inconsistency in news reports is the notion of PLINI-rules which intuitively
specify when certain equivalence atoms are true.

Definition 11 (PLINI-rule). Suppose A is an equivalence atom, A1 : μ1, . . . , An : μn

are PLINI-atoms, and p ∈ [0, 1]. Then

A
p←− A1 : μ1 ∧ . . . ∧ An : μn

is a PLINI-rule. If n = 0 then the rule is called a PLINI-fact. A is called the head of the
rule, while A1 : μ1 ∧ . . . ∧ An : μn is called the body. A PLINI-rule is ground iff it
contains no variables.

Definition 12 (PLINI-program). A PLINI-program is a finite set of PLINI-rules where
no rule may appear more than once with different probabilities.

Note that a PLINI-program is somewhat different in syntax than a probabilistic logic
program [13] as no probability intervals are involved. However, it is a variant of a
generalized annotated program due to [9]. In classical logic programming [14], there
is a general assumption that logic programs are written by human (logic) program-
mers. However, in the case of PLINI-programs, this is not the case. PLINI-programs
can be inferred automatically from training data. For instance, we learned rules (semi-
automatically) to recognize when certain violent events were equivalent to other violent
events in the event database generated by the information extraction program T-REX
[10] mentioned earlier. To do this, we first collected a set of 110 events (“annotation cor-
pus”) extracted by T-REX from news events and then manually classified which of the
resulting pairs of events from the annotation corpus were equivalent. We then used two
classical machine learning programs called JRIP and J48 from the well known WEKA
library13 to learn PLINI-rules automatically from the data. Figure 5 shows some of the
rules we learned automatically using JRIP.

We briefly explain the first two rules shown in Figure 5 that JRIP extracted auto-
matically from the T-REX annotated corpus. The first rule says that when the similarity
between the date field of events e1, e2 is at least 95.5997%, and when the similarity
between the number of victims field of e1, e2 is 100%, and the similarity between their
location fields is also 100%, then the probability that e1 and e2 are equivalent is 100%.
The second rule says that when the dates of events e1, e2 are 100% similar, and the
killer fields are at least 57.4707% similar, then the events are at least 75% similar.

13 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

366 M. Albanese et al.

e1 ≡ e2
1.0←− e1.date ≡ e2.date : 0.955997 ∧

e1.number of victims ≡ e2.number of victims : 1 ∧
e1.location ≡ e2.location : 1.

e1 ≡ e2
0.75←− e1.date ≡ e2.date : 1 ∧ e1.killer ≡ e2.killer : 0.574707.

e1 ≡ e2
0.5833←− e1.date ≡ e2.date : 1 ∧

e1.weapon ≡ e2.weapon : 0.634663 ∧
e1.location ≡ e2.location : 1.

Fig. 5. Some automatically learned PLINI-rules from T-REX data using JRIP

We see from this example that PLINI-programs weave together notions of similarity
from different domains (within the annotations of equivalence atoms in the rule body)
and the notion of probability attached to a rule. We now recall the standard concept of
a substitution.

Definition 13 (Substitution). Suppose R is a PLINI-rule. A substitution σ = [X1/e1,
. . . , Xn/en] for R is a finite set of pairs of terms where each ei is an event-term and
Xi �= Xj when i �= j.

A ground instance of R under σ is the result of simultaneously replacing all variables
Xi in R with the event-term ei where Xi/ei ∈ σ.

6 Model Theory and Fixpoint Theory

In this section, we specify a formal model theory for PLINI-programs by leveraging
the semantics of generalized annotated programs [9]. For each sort s ∈ S, we assume
the existence of a similarity function sims : dom(s) × dom(s) → [0, 1]. Intuitively,
sims(v1, v2) returns 0 if domain values v1, v2 are completely different and returns 1 if
the two values are considered to be the same. We have already provided many possible
definitions for similarity functions in Section 4. We first need to define the Herbrand
Base.

Definition 14 (Herbrand Base). BE is the set of all ground equivalence atoms that can
be formed from the event-terms, attributes, and constant symbols associated with E .

Clearly, BE is finite. We now define the concept of an interpretation.

Definition 15 (Interpretation). Any function I : BE → [0, 1] is called an interpreta-
tion.

Thus, an interpretation just assigns a number in [0, 1] to each ground equivalence atom.
We now define satisfaction of PLINI-rules by interpretations.

Definition 16 (Satisfaction). Let I be a interpretation, and let A,A1, . . . , An ∈ BE .
Then:

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 367

– I |= A : μ iff I(A) ≥ μ.
– I |= A1 : μ1 ∧ . . . ∧ An : μn iff I |= Ai : μi for all 1 ≤ i ≤ n.
– I |= A

p←− A1 : μ1 ∧ . . . ∧ An : μn iff either I �|= A1 : μ1 ∧ . . . ∧ An : μn or
I(A) ≥ p}.

I satisfies a non-ground rule iff it satisfies all ground instances of the rule. I satisfies a
PLINI-program Π iff it satisfies all PLINI-rules in Π .

The first part of the above definition says that for A : μ to be true w.r.t. an interpretation
I , we should just check that I(A) is greater than or equal to μ. Satisfaction of conjunc-
tions is defined in the obvious way. Satisfaction of a ground PLINI-rule is defined in a
more complex way. Either the body of the rule should be false with respect to I or I
must assign a value at least p to the head. As usual, A : μ is a logical consequence of
Π iff every interpretation that satisfies Π also satisfies A : μ.

Definition 17. Suppose Π is a PLINI-program and we have a fixed set of similarity
functions sims for each sort s. The augmentation of Π with similarity information is

the PLINI-program Πsim = Π ∪ {(x ≡ y)
sims(x,y)←− | x, y are ground terms of sort s

in Π}.
Throughout the rest of this paper, we only consider the augmented program Πsim. We
are interested in characterizing the set of ground equivalence atoms that are logical
consequence of Πsim. Given a PLINI-program Π , we are now ready to associate with
Π , a fixpoint operator TΠ which maps interpretations to interpretations.

Definition 18. TΠ(I)(A) = A : sup{p| A p←− A1 : μ1 ∧ . . . ∧ An : μn is a ground
instance of a rule in Π and for all 1 ≤ i ≤ n, either I(Ai) ≥ μi or Ai has the form
xi ≡ yi and sims(xi, yi) ≥ μi}.
The above definition says that in order to find the truth value assigned to a ground atom
A by the interpretation TΠ(I), we first need to look at all rules in Π that have A as the
head of a ground instance of that rule. To check whether the body of such a rule is true
w.r.t. I , we need to look at each ground equivalence atom Ai : μi where Ai has the
form (xi ≡ yi). This atom is satisfied if either I(xi ≡ yi) is greater than or equal to
μi or if the similarity function for sort s (of the type of xi, yi) assigns a value greater
than or equal to μi to (xi, yi). Note that the TΠ operator operates on the Πsim program

without explicitly adding equivalence atoms of the form (x ≡ y)
sims(x,y)←− to Π , thus

ensuring a potentially large saving.
It is easy to see that the set of all interpretations forms a complete lattice under the

following ordering: I1 ≤ I2 iff for all ground equivalence atoms A, I1(A) ≤ I2(A).
We can define the powers of TΠ as follows.

TΠ ↑ 0(A) = A : 0 for all ground equivalence atoms A.

TΠ ↑ (j + 1)(A) = (TΠ(TΠ ↑ j))(A).

TΠ ↑ ω(A) =
⋂
{TΠ ↑ j(A) | j ≥ 0}.

The result below follows directly from similar results for generalized annotated pro-
grams [9] and shows that the TΠ operator has some nice properties.

368 M. Albanese et al.

Proposition 1. Suppose Π is a PLINI-program and sims is a family of similarity func-
tions for a given set of sorts. Then:

1. TΠ is monotonic, i.e. I1 ≤ I2 → TΠ(I1) ≤ TΠ(I2).
2. TΠ has a least fixpoint, denoted lfp(TΠ) which coincides with TΠ ↑ ω.
3. I satisfies Πsim iff TΠ(I) = I .
4. A : μ is a logical consequence of Πsim iff lfp(TΠ)(A) ≥ μ.

7 Event Clustering Algorithm

Suppose e1, e2 are any two reported events. The least fixpoint of the TΠ operator gives
the probability that the two events are equivalent (i.e., they refer to the same real-world
event). Alternatively, lfp(TΠ)(e1 ≡ e2) can be interpreted as the similarity between
e1 and e2, meaning that if the similarity between two events is high, they are likely to
refer to the same real-world event. In other words, the least fixpoint of the TΠ operator
gives us some information on the pairwise similarity between events. However, we
may have a situation where the similarity according to lfp(TΠ) between events e1

and e2 is 0.9, between e2, and e3 is 0.7, but the similarity between e1 and e3 is 0.5. In
general, given a finite set E of events, we would like to look at the results computed by
lfp(TΠ), and cluster the events into buckets of equivalent events. We then need to find
a partition P = {P1, . . . , Pk} of E , such that similar events are assigned to the same
partition and dissimilar events are assigned to different partitions. In this section, we
define the PLINI-Cluster algorithm, which can find a sub-optimal solution – w.r.t. the
score function defined below – in polynomial time.

Definition 19 (Score of Event Partition). Let Π be a PLINI-program and τ ∈ [0, 1]
a threshold. Let E be a set of events and P = {P1, . . . , Pk} a partition of E , i.e.⋃k

i=1 Pi = E , and (∀i �= j) Pi ∩ Pj = ∅. We define the score of partition P as

S(P) = Si(P) + Se(P)

where Si(P) is the internal score of partition P given by

Si(P) =
∑

Pj∈P

∑
er ,es∈Pj ,er =es

(lfp(TΠ)(er ≡ es)− τ)

and Se(P) is the external score of partition P given by

Se(P) =
∑

er ,es∈E,er∈Pu,es∈Pv,u=v

(τ − lfp(TΠ)(er ≡ es))

Intuitively, Si(P) measures the similarity between objects within a partition compo-
nent. Two events e1, e2 in the same cluster contribute positively to the internal score if
their similarity is above the threshold τ . Instead, if their similarity is below the threshold
the partition is penalized. Analogously, Se(P) measures the similarity across multiple
partition components. The external score of a partition is higher when events in dif-
ferent clusters have lower similarity. Two events e1, e2 in different clusters contribute
positively to the external score if their similarity is below the threshold τ .

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 369

Algorithm 1. PLINI-Cluster(Π,E , τ)

1: P ← ∅
2: for all ei ∈ E do
3: P ← P ∪ {{ei}}
4: end for
5: repeat
6: for all Pi, Pj ∈ P s.t. i = j do
7: // Compute the change in the score of the partition, if we were to merge clusters Pi , Pj

8: si,j ← S ((P \ {Pi, Pj}) ∪ {Pi ∪ Pj}) − S(P) =
= 2 ·∑ er∈Pi,es∈Pj

(lfp(TΠ)(er ≡ es) − τ) // Note that si,j = sj,i

9: end for
10: su,v ← maxi,j∈[1,|P|]∧i�=j{si,j}
11: if su,v > 0 then
12: // Merge the two clusters that provide the highest increase of the score
13: P ← (P \ {Pu, Pv}) ∪ {Pu ∪ Pv}
14: end if
15: until su,v ≤ 0

Table 9. Degrees of similarity as given by lfp(TΠ)(ei ≡ ej)

e1 e2 e3 e4

e1 1 0.2 0.9 0.3
e2 1 0 0.8
e3 1 0.6
e4 1

Finding the partition P = {P1, . . . , Pk}which maximizes the score S defined above
gives rise to a combinatorial optimization problem. Note that k is a problem parameter
and not known a priori, in contrast to common clustering problems in machine learning
and other areas. Ozcan et al. [15] were the first to determine how to partition a set of
entities under this intuition – they did so in the context of partitioning a set of activities
an agent is supposed to perform so that the activities in each component of the partition
could be executed by leveraging commonalities of tasks amongst those activities. They
proved that the partitioning problem was NP-hard and provided efficient heuristics to
solve the problem. Later, Bansal et al. [16] showed that finding the optimal partition
with respect to the score S is NP-complete. Demaine and Immorlica [17] presented
an efficiently computable O(log n) approximation based on integer program relaxation
and proved that the bound is optimal for such relaxations. We now present a simple,
greedy, hill-climbing algorithm for this task (Algorithm 1). The algorithm starts by
assigning each event to a different cluster. Then, at each iteration, it merges the two
clusters that provide the highest increase of the score. It stops when no further increase
of the score can be achieved by merging two clusters.

Example 18. Suppose we have 4 events e1, e2, e3, e4, and assume τ = 0.5. Table 9
shows the degree of similarity for each pair of events according to some fixed PLINI-
program Π , i.e. the values of lfp(TΠ)(ei ≡ ej). The algorithm starts by initializing
P1 = {e1}, P2 = {e2}, P3 = {e3}, P4 = {e4}. In the first iteration, P1 and P3 are
merged, because this leads to the largest increase in S(P), s1,3 = 0.8. In the second
iteration, P2 and P4 are merged for the same reason, with s2,4 = 0.6. In the third

370 M. Albanese et al.

iteration, the algorithm terminates because no score increase can be achieved, as merg-
ing the remaining two clusters would decrease the score by 1.8. Hence, the resulting
partition is {{e1, e3}, {e2, e4}}.

The following result shows that the above algorithm finds the locally optimal partition
w.r.t the cost function and that its worst case runtime complexity is O(n3).

Proposition 2. Suppose Π is a PLINI-program, E a set of events, and τ a threshold.
Then PLINI-Cluster(Π, E , τ) finds a locally optimal partition of E w.r.t. to the score
function S, and its worst case complexity is O(n3) where n is the total number of
events.

Proof. Let n denote the total number of events. We assume that we have an oracle
to look up or compute lfp(TΠ) for any pair of events in constant time. During each
iteration of the algorithm either two clusters are merged or the algorithm terminates. The
algorithm starts with a partition of size n and since a merger reduces the partition size by
one, there can be at most n iterations. Now we turn to the complexity of each iteration,
namely the cost of computing the si,j’s. For any given iteration, we have at most O(n)
clusters of constant size and a constant number of clusters of size O(n), since the total
number of elements (i.e. events) is n. If |Pi| ∈ O(1) and |Pj | ∈ O(1), then the cost of
computing si,j is O(1) as well. Similarly, if |Pi| ∈ O(n) and |Pj | ∈ O(1), this cost is
O(n) and if |Pi| ∈ O(n) and |Pj | ∈ O(n) the cost is O(n2). Since we compute si.j for
all pairs of clusters, the overall complexity is

O(n)×O(n) ×O(1) + O(n)× O(1)×O(n) + O(1)×O(1) ×O(n2) = O(n2)

where the first summand is the complexity for pairs of constant size partitions, the
second summand for pairs of linear with constant size partitions, and the last summand
for pairs of linear size partitions. Hence, the complexity of each iteration is O(n2) and
therefore the overall runtime complexity of the event clustering algorithm is in O(n3).�

Note that due to the sparsity of event similarities in real world datasets, we can effec-
tively prune a large number of partition comparisons. We can prune the search space
for the optimal merger even further, by considering highly associated partitions first.
These optimizations do not impact the worst case runtime complexity, but render our
algorithm very efficient in practice.

8 Implementation and Experiments

Our experimental prototype PLINI system was implemented in approximately 5700
lines of Java code. In order to test the accuracy of PLINI, we developed a training data
set and a separate evaluation data set. We randomly selected a set of 110 event descrip-
tions from the millions automatically extracted from news sources by T-REX [10]. We
then generated all the 5,995 possible pairs of events from this set and asked human
reviewers to judge the equivalence of each such pair. The ground truth provided by
the reviewers was used to learn PLINI-programs for different combinations of learning
algorithms and similarity functions. Specifically, we considered 588 different combina-
tions of similarity functions and learned the corresponding 588 PLINI-programs using

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 371

both JRIP and J48. The evaluation data set was similarly created by selecting 240 event
descriptions from those extracted by T-REX.

All experiments were run on a machine with multiple, multi-core Intel Xeon E5345
processors at 2.33GHz, 8GB of memory, running the Scientific Linux distribution of
the GNU/Linux operating system. However, the current implementation has not been
parallelized and uses only one processor and one core at a time.

PLINI-programs corresponding to each combination of algorithms and similarity
functions were run on the entire set of 28,680 possible pairs of events in the test set.
However, evaluation was conducted on subsets of pairs of a manageable size for human
reviewers. Specifically, we selected 3 human evaluators and assigned each of them two
subsets of pairs to evaluate. The first subset was common to all 3 reviewers and included
50 pairs that at least one program judged equivalent with confidence greater than 0.6
(i.e. TΠ returned over 0.6 for these pairs) and 100 pairs that no program judged equiva-
lent with probability greater than 0.6. The second subset was different for each reviewer,
and included 150 pairs, selected in the same way as the first set. Thus, altogether we
evaluated a total of 600 distinct pairs.

We then computed precision and recall as defined below. Suppose Ep is the set of
event pairs being evaluated. We use e1 ≡h e2, to denote that events e1 and e2 were
judged to be equivalent by a human reviewer. We use P (e1 ≡ e2) to denote the prob-
ability assigned by the algorithm to the equivalence atom e1 ≡ e2. Given a threshold
value τ ∈ [0, 1], we define the following sets.

– T Pτ
1 = {(e1, e2) ∈ Ep|P (e1 ≡ e2) ≥ τ ∧ e1 ≡h e2} is the set of pairs flagged as

equivalent (probability greater than the threshold τ) by the algorithm and actually
judged equivalent by human reviewers;

– T Pτ
0 = {(e1, e2) ∈ Ep|P (e1 ≡ e2) < τ ∧ e1 �≡h e2} is the set of pairs flagged

as not equivalent by the algorithm and actually judged not equivalent by human
reviewers;

– Pτ
1 = {(e1, e2) ∈ Ep|P (e1 ≡ e2) ≥ τ} is the set of pairs flagged as equivalent by

the algorithm;
– Pτ

0 = {(e1, e2) ∈ Ep|P (e1 ≡ e2) < τ} is the set of pairs flagged as not equivalent
by the algorithm;

Given a threshold value τ ∈ [0, 1], we define precision, recall, and F-measure as fol-
lows.

P τ
1 =

|T Pτ
1 |

|Pτ
1 |

P τ
0 =

|T Pτ
0 |

|Pτ
0 |

P τ =
|T Pτ

1 |+ |T Pτ
0 |

|Ep|

Rτ
1 =

|T Pτ
1 |

|{(e1, e2) ∈ Ep|e1 ≡h e2}|
14 F τ =

2 · P τ
1 · Rτ

1

P τ
1 + Rτ

1

Note that all the quality measures defined above are parameterized by the threshold τ .

Accuracy results. Tables 10(a) and 10(b) report the overall performance of the PLINI-
programs derived using J48 and JRIP, respectively for different values of the thresh-
old τ . Performance measures are averaged over all the 588 combinations of similarity

14 Given the nature of the problem, most pairs of event descriptions are not equivalent. Therefore,
the best indicators of our system performance are recall/precision w.r.t. equivalent pairs.

372 M. Albanese et al.

Table 10. Performance of (a) J48 and (b) JRIP for different values of τ

τ P τ
1 P τ

0 P τ Rτ
1 F τ

0.50 83.5% 88.6% 88.2% 36.9% 0.512
0.60 84.4% 88.5% 88.2% 36.5% 0.510
0.70 84.5% 88.5% 88.2% 36.4% 0.509
0.80 89.7% 87.9% 88.1% 32.5% 0.477
0.90 92.3% 87.3% 87.6% 28.2% 0.432
0.95 91.8% 86.5% 86.7% 22.7% 0.364

τ P τ
1 P τ

0 P τ Rτ
1 F τ

0.50 78.6% 94.8% 92.3% 74.0% 0.762
0.60 82.9% 94.2% 92.6% 70.6% 0.763
0.70 86.8% 92.0% 91.4% 57.9% 0.695
0.80 91.6% 86.6% 86.8% 23.5% 0.374
0.90 90.7% 86.0% 86.1% 19.3% 0.318
0.95 96.3% 85.2% 85.4% 13.7% 0.240

(a) (b)

(a) (b)

Fig. 6. (a) Recall/Precision and (b) F-measure for J48 and JRIP

metrics and over all the reviewers. Figure 6(a) shows precision/recall curves for both
algorithms, while Figure 6(b) plots the F-measure vs. different values of τ .

As expected, when τ increases P τ
1 increases and Rτ

1 decreases. However, Rτ
1 de-

creases more rapidly than the increase in P τ
1 , causing F τ to degrade. In general, rules

extracted with JRIP outperform those extracted using J48, but it is also clear that the
performance of JRIP in terms of F-measure degrades more rapidly than J48 due to
a drastic drop in recall for higher thresholds. In fact, for thresholds above 0.75, J48-
derived PLINI-programs surpass JRIP-derived PLINI-programs in terms of F-measure.
Also note that when τ increases P τ

0 decreases. This is because higher thresholds cause
a larger number of equivalent pairs to be classified as non equivalent, therefore the
fraction of pairs flagged as not equivalent which are actually not equivalent decreases.
However, precision is very high. When J48 and JRIP are used, the optimal value of the
F-measure is achieved for τ = 0.6, which corresponds to 84% precision and 37% recall
for J48, and 83% precision and 71% recall for JRIP.

JMAX (which we defined) assigns to each equivalence atom the maximum of the
probabilities assigned by JRIP-derived rules and J48-derived PLINI-rules. Figure 6(a)
shows that JMAX produces significantly higher recall at the expense of a slight decrease
in precision. The overall gain in performance is more evident in Figure 6(b), which
shows that the F-measure for JMAX is higher than that for both J48 or JRIP for virtually
all values of the threshold τ . The optimal value of F is achieved for τ = 0.6, which
corresponds to 80% precision and 75% recall.

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 373

Table 11. Average performance of JRIP for τ = 0.6 when compared with different reviewers

Algorithm Reviewer P τ
1 P τ

0 P τ Rτ
1 F τ

1 87.6% 87.9% 87.9% 33.6% 0.486
J48 2 74.4% 89.9% 88.8% 36.1% 0.486

3 90.7% 87.7% 87.9% 39.3% 0.548
1 84.6% 93.9% 92.6% 68.8% 0.759

JRIP 2 80.2% 95.9% 93.7% 76.1% 0.781
3 83.9% 92.9% 91.6% 67.8% 0.750
1 82.5% 94.8% 92.9% 73.8% 0.779

JMAX 2 74.3% 96.5% 93.0% 80.2% 0.771
3 82.9% 94.6% 92.6% 75.8% 0.792

Table 11 reports the average performance of PLINI-programs derived using the 3
algorithms – J48, JRIP, JMAX when individually compared with the ground truth pro-
vided by each of the 3 reviewers enrolled for the evaluation. There is no significant
difference between the reviewers and, in fact, they unanimously agreed in 138 out of
the 150 common cases (92%).

We found that in general using both J48-based PLINI-rules and JRIP-based PLINI-
rules (encompassed in our JMAX strategy) offers the best performance, while using
only J48-derived PLINI-rules is the worst.

9 Related Work

The problem of event equivalence identification addressed in this work is closely re-
lated to a class of problems called entity resolution in machine learning [18]. Given a
set of (potentially different types of) entities, entity resolution asks for a partition of
this set such that entities are grouped together iff they are equivalent. In our problem,
the entities of primary interest are events, but we also reason about the equivalence of
actors, locations, and weapons which are entities of secondary interest.

Traditional machine learning approaches to entity resolution focus on pairwise entity
equivalence determination using established techniques such as Bayesian networks [19],
support vector machines [20], or logistic regression [21]. Hence, for each pair of entities
a classifier is used to determine equivalence. In a post processing step, inconsistencies
due to violations of transitivity are resolved.

Recent work has considered joint entity resolution in the case when entities are re-
lated [22]. Such approaches are termed relational, because they determine all event
equivalences at once and take relationships between entities into account instead of
making a series of independent decisions. Some proposals for relational entity reso-
lution define a joint probability distribution over the space of entity equivalences and
approximate the most likely configuration using sampling techniques, such as Gibbs
sampling [23], or message passing algorithms, such as loopy belief propagation [24].
While these approaches are based on a probabilistic model they provide no convergence
guarantee and allow little theoretical analysis. Other relational approaches are purely

374 M. Albanese et al.

procedural in that they apply non-relational classifiers in an iterative fashion until some
convergence criterion is met. While iterative methods are fast in practice, they are not
amenable to theoretical analysis or convergence guarantees. All these approaches are
feature driven and do not have a formal semantics.

10 Conclusion

The number of “formal” news sources on the Internet is mushrooming rapidly. Google
News alone covers thousands of news sources from around the world. If one adds con-
sumer generated content and informal news channels run by individual amateur news-
men and women who publish blogs about local or global items of interest, the number
of news sources reaches staggering numbers. As shown in the Introduction, inconsis-
tencies can occur for many reasons.

The goal of this paper is not to resolve these inconsistencies, but to identify when
event data reported in news sources is inconsistent. When information extraction pro-
grams are used to automatically mine event data from news information, the resulting
properties of the events extracted are often linguistically qualified. In this paper, we
have studied three kinds of linguistic modifiers typically used when such programs are
used – linguistic modifiers applied to numbers, spatial information, and temporal infor-
mation. In each case, we have given a formal semantics to a number of linguistically
modified terms.

In order to determine whether two events described in one or more news sources are
the same, we need to be able to compare the attributes of these two events. This is done
via similarity measures. Though similarity measures for numbers are readily available,
no formal similarity mechanisms exist (to the best of our knowledge) for linguistically-
modified numbers. The same situation occurs in the case of linguistically-modified
temporal information and linguistically modified geospatial information. We provide
formal definitions of similarity for many commonly used linguistically modified nu-
meric, temporal, and spatial information.

We subsequently introduce PLINI-programs as a variant of the well known gener-
alized annotated program (GAP) [9] framework. PLINI-programs can be learned au-
tomatically from a relatively small annotated corpus (as we showed) using standard
machine learning algorithms like J48 and JRIP from the WEKA library. Using PLINI-
programs, we showed that the least fixpoint of an operator associated with PLINI-
programs tells us the degree of similarity between two events. Once such a least fixpoint
has been computed, we present the PLINI-Cluster algorithm to cluster together sets of
events that are similar, and sets of events that are dissimilar.

We have experimentally evaluated our PLINI-framework using many different simi-
larity functions (for different sorts), many different threshold values, and three alterna-
tive ways of automatically deriving PLINI-programs from a small training corpus. Our
experiments show that the PLINI-framework produced high precision and recall when
compared with human users evaluating whether two reports talked about the same event
or not.

There is much work to be done in the future. PLINI-programs do not include nega-
tion. A sort of stable models semantics [25] can be defined for PLINI-programs that

PLINI: Probabilistic Logic Program Framework for Inconsistent News Information 375

include negation. However, the challenge will be to derive such programs automatically
from a training corpus (standard machine learning algorithms do not do this) and to
apply them efficiently as we can do with PLINI.

References

1. Belnap, N.: A useful four valued logic. Modern Uses of Many Valued Logic, 8–37 (1977)
2. Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling of inconsis-

tent knowledge bases: A comparative study part 1: The flat case. Studia Logica 58, 17–45
(1997)

3. Besnard, P., Schaub, T.: Signed systems for paraconsistent reasoning. Journal of Automated
Reasoning 20(1-2), 191–213 (1998)

4. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theoretical Computer
Science 68(2), 135–154 (1989)

5. da Costa, N.: On the theory of inconsistent formal systems. Notre Dame Journal of Formal
Logic 15(4), 497–510 (1974)

6. Fitting, M.: Bilattices and the semantics of logic programming. Journal of Logic Program-
ming 11(2), 91–116 (1991)

7. Flesca, S., Furfaro, F., Parisi, F.: Consistent query answers on numerical databases under
aggregate constraints. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp.
279–294. Springer, Heidelberg (2005)

8. Flesca, S., Furfaro, F., Parisi, F.: Preferred database repairs under aggregate constraints. In:
Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI), vol. 4772, pp. 215–229.
Springer, Heidelberg (2007)

9. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its
applications. Journal of Logic Programming 12(3&4), 335–367 (1992)

10. Albanese, M., Subrahmanian, V.S.: T-REX: A domain-independent system for automated
cultural information extraction. In: Proceedings of the First International Conference on
Computational Cultural Dynamics, pp. 2–8. AAAI Press, Menlo Park (2007)

11. Cohn, A.G.: A many sorted logic with possibly empty sorts. In: Proceedings of the 11th
International Conference on Automated Deduction, pp. 633–647 (1992)

12. Munkres, J.: Topology: A First Course. Prentice Hall, Englewood Cliffs (1974)
13. Ng, R., Subrahmanian, V.S.: Probabilistic logic programming. Information and Computa-

tion 101(2), 150–201 (1992)
14. Lloyd, J.: Foundations of Logic Programming. Springer, Heidelberg (1987)
15. Ozcan, F., Subrahmanian, V.S.: Partitioning activities for agents. In: Proceedings of the 17th

International Joint Conference on Artificial Intelligence, pp. 1218–1228 (2001)
16. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1), 89–113

(2004)
17. Demaine, E.D., Immorlica, N.: Correlation clustering with partial information. In: Arora,

S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS,
vol. 2764, pp. 71–80. Springer, Heidelberg (2003)

18. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM Transactions
on Knowledge Discovery from Data (TKDD) 1(1) (2007)

19. Heckerman, D.: A tutorial on learning with bayesian networks. Proceedings of the NATO
Advanced Study Institute on Learning in Graphical Models 89, 301–354 (1998)

20. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines. Cambridge
University Press, Cambridge (2000)

376 M. Albanese et al.

21. Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: A comparison of logistic
regression and naive bayes. Advances in Neural Information Processing Systems 2, 841–848
(2002)

22. Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDD Explorations Newsletter 7(2),
3–12 (2005)

23. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classi-
fication in network data. AI Magazine 29(3), 93 (2008)

24. Murphy, K., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference:
An empirical study. In: Foo, N.Y. (ed.) AI 1999. LNCS, vol. 1747, pp. 467–475. Springer,
Heidelberg (1999)

25. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceed-
ings of the 5th International Conference on Logic Programming, pp. 1070–1080 (1988)

ASP as a Cognitive Modeling Tool:
Short-Term Memory and Long-Term Memory

Marcello Balduccini1 and Sara Girotto2

1 Kodak Research Laboratories
Eastman Kodak Company

Rochester, NY 14650-2102 USA
marcello.balduccini@gmail.com

2 Department of Psychology
Texas Tech University

Lubbock, TX 79409 USA
sara.girotto@ttu.edu

Abstract. In this paper we continue our investigation on the viability of Answer
Set Programming (ASP) as a tool for formalizing, and reasoning about, psycho-
logical models. In the field of psychology, a considerable amount of knowledge is
still expressed using only natural language. This lack of a formalization compli-
cates accurate studies, comparisons, and verification of theories. We believe that
ASP, a knowledge representation formalism allowing for concise and simple rep-
resentation of defaults, uncertainty, and evolving domains, can be used success-
fully for the formalization of psychological knowledge. In previous papers we
have shown how ASP can be used to formalize a rather well-established model of
Short-Term Memory, and how the resulting encoding can be applied to practical
tasks, such as those from the area of human-computer interaction. In this paper
we extend the model of Short-Term Memory and introduce the model of a sub-
stantial portion of Long-Term Memory, whose formalization is made particularly
challenging by the ability to learn proper of this part of the brain. Furthermore,
we compare our approach with various established techniques from the area of
cognitive modeling.

1 Introduction

In this paper we continue our investigation on the viability of Answer Set Programming
(ASP) [1,2,3] as a tool to formalize psychological knowledge and to reason about it.

ASP is a knowledge representation formalism allowing for concise and simple repre-
sentation of defaults, uncertainty, and evolving domains, and has been demonstrated to
be a useful paradigm for the formalization of knowledge of various kinds (e.g. intended
actions [4] and negotiation [5] to name a few examples).

The importance of a precise formalization of scientific knowledge has been known
for a long time (see e.g. Hilbert’s philosophy of physics). Most notably, formalizing a
body of knowledge in an area improves one’s ability to (1) accurately study the proper-
ties and consequences of sets of statements, (2) compare competing sets of statements,
and (3) design experiments aimed at confirming or refuting sets of statements. In the

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 377–397, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

378 M. Balduccini and S. Girotto

field of psychology, some of the theories about the mechanisms that govern the brain
have been formalized using artificial neural networks and similar tools (e.g. [6]). That
approach works well for theories that can be expressed in quantitative terms. However,
theories of a more qualitative or logical nature, which by their own nature do not provide
precise quantitative predictions, are not easy to formalize in this way.

In [7], we have presented an ASP-based formalization of the mechanism of Short-
Term Memory (STM). Taking advantage of ASP’s direct executability, i.e. the fact that
the consequences of collections of ASP statements can be directly – and often efficiently
– computed using computer programs, we have also applied our encoding of STM to
practical tasks from the area of human-computer interaction.

However, as argued by various sources (e.g. [8]), to assess the viability of ASP for
knowledge representation and reasoning, researchers need to build a number of theories,
thus testing ASP’s expressive power on a variety of domains. Therefore, in this paper
we continue our investigation by using ASP to formalize a substantial part of the mecha-
nism of Long-Term Memory (LTM), focusing in particular on a more complete account
of the phenomenon of chunking (e.g. [9,10]), where by chunking we mean the brain’s
ability to recognize familiar patterns and store them efficiently (for example, it has
been observed that it is normally difficult for people to remember the sequence CN NIB
MMT VU SA, while most people have no problems remembering the sequence CNN
IBM MTV USA, because each triplet refers to a familiar concept). Whereas chunking
has been partially covered in [7], here we go far beyond the simplified representation of
chunks adopted in our previous paper, and tackle the formalization of the LTM’s ability
to learn chunks upon repeated exposure, which is technically rather challenging. In this
paper, we also compare our approach with various established techniques from the area
of cognitive modeling.

As we already did in previous papers, it is worth stressing that we do not intend to
claim that the psychological models we selected are the “correct” ones. On the con-
trary, any objections to the models that may come as a result of the analysis of our
formalizations are a further demonstration of the benefits of formalizing psychological
knowledge.

This paper is organized as follows. We start by providing a background on ASP and
on the representation of dynamic domains. Next, we give an account of the mechanics of
STM, LTM, and chunking, as it is commonly found in psychology literature. Then, we
recap our ASP-based formalization of the mechanics of STM. The following section
presents our formalization of the model of LTM and chunking. Finally, we compare
with other approaches and conclude with a discussion on what we have achieved and
on possible extensions.

2 Answer Set Programming and Dynamic Domains

Let us begin by giving some background on ASP. We define the syntax of the language
precisely, but only give the informal semantics of the language in order to save space.
We refer the reader to [1,11] for a specification of the formal semantics. Let Σ be a
propositional signature containing constant, function and predicate symbols. Terms and
atoms are formed as usual in first-order logic. A (basic) literal is either an atom a or

ASP as a Cognitive Modeling Tool 379

its strong (also called classical or epistemic) negation ¬a. A rule is a statement of the
form:

h1 ∨ . . . ∨ hk ← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s and li’s are ground literals and not is the so-called default negation. The
intuitive meaning of the rule is that a reasoner who believes {l1, . . . , lm} and has no
reason to believe {lm+1, . . . , ln}, must believe one of hi’s. Symbol ← can be omitted
if no li’s are specified.

Often, rules of the form h ← not h, l1, . . . , not ln, where h is a fresh literal, are
abbreviated into ← l1, . . . , not ln, and called constraints. The intuitive meaning of
a constraint is that {l1, . . . , lm, not lm+1, . . . , not ln} must not be satisfied. A rule
containing variables is interpreted as the shorthand for the set of rules obtained by
replacing the variables with all the possible ground terms.

A program is a pair 〈Σ,Π〉, where Σ is a signature and Π is a set of rules over Σ.
We often denote programs just by the second element of the pair, and let the signature
be defined implicitly. Finally, an answer set (or model) of a program Π is one of the
collections of its credulous consequences under the answer set semantics. Notice that
the semantics of ASP is defined in such a way that programs may have multiple an-
swer sets, intuitively corresponding to alternative views of the specification given by
the program. In that respect, the semantics of default negation provides a simple way
of encoding choices. For example, the set of rules {p ← not q. q ← not p.} intu-
itively states that either p or q hold, and the corresponding program has two answer
sets, {p}, {q}.

Because a convenient representation of alternatives is often important in the formal-
ization of knowledge, the language of ASP has been extended with constraint literals
[11], which are expressions of the form m{l1, l2, . . . , lk}n, where m, n are arithmetic
expressions and li’s are basic literals as defined above. A constraint literal is satisfied by
a set X of atoms whenever the number of literals from {l1, . . . , lk} that are satisfied by
X is between m and n, inclusive. Using constraint literals, the choice between p and q,
under some set Γ of conditions, can be compactly encoded by the rule 1{p, q}1 ← Γ .
A rule of this form is called choice rule. To further increase flexibility, a constraint lit-
eral m{l(a1, b1, . . .), l(c2, d2, . . .), . . . , l(ck, dk, . . .)}n can also be specified using in-
tentional notation, with an expression m{l(X,Y, . . .) : doma(X) : domb(Y) : . . .}n,
where X and Y are variables, and relations doma and domb define the domain of the
corresponding variables. We refer the reader to [11] for a more detailed definition of
the syntax of constraint literals and of the corresponding extended rules. Readers who
are familiar with ASP may have noticed that we do not impose restrictions on the domi

relations above. This is done to keep the presentation short. From the perspective of
the implementation, when using ASP parsers that expect each domi to be a domain
predicate, one would have to use a slightly more elaborate encoding of knowledge.

Because of the dynamic nature of STM and LTM, for their formalization we use
techniques from the area of reasoning about actions and change. The key elements of
the representation techniques are presented next; we refer the readers to e.g. [12,13] for
more details. Fluents are first-order ground terms, and intuitively denote the properties
of interest of the domain (whose truth value typically depends on time). For example,

380 M. Balduccini and S. Girotto

an expression of the form on(block1, block2) is a fluent, and may mean that block1 is
on top of block2. A fluent literal is either a fluent f or its negation (¬f). Actions are also
first-order ground terms. For example, move(block3, block2) may mean that block3 is
moved on top of block2. A set of fluent literals is consistent if, for every fluent f , f and
¬f do not both belong to the set. A set of fluent literals is complete if, for every fluent
f , either f or ¬f belong to the set. The set of all the possible evolutions of a dynamic
domain is represented by a transition diagram, i.e. a directed graph whose nodes – each
labeled by a consistent set of fluent literals – correspond to the states of the domain in
which the properties specified by the fluents are respectively true or false, and whose
arcs – each labeled by a set of actions – correspond to the occurrence of state transitions
due to the occurrence of the actions specified. When complete knowledge is available
about a state, the corresponding set of fluent literals is also complete. When instead a set
of fluent literals is not complete, that means that the knowledge about the corresponding
state is incomplete (e.g. it is unknown whether f or ¬f holds). Incomplete or partial
states are typically used to represent uncertainty about domains.

The size of transition diagrams grows exponentially with the increase of the number
of fluents and actions; a direct representation is thus usually impractical. Instead, tran-
sition diagrams are encoded using an indirect representation, in the form of a domain
description in an action language [12], or as a program in ASP (like in [14,15,16]).
Here, we adopt the latter approach.

The encoding is based on the notion of a path in the transition diagram from a given
initial state, corresponding to a particular possible evolution of the domain from that
initial state. The steps in a path are identified by integers (with 0 denoting the initial
state), and logical statements (often called laws) are used to encode, in general terms,
the transitions from one step to the next. The fact that a fluent f holds at a step i in
the evolution of the domain is represented by the expression h(f, i), where relation h
stands for holds. If¬f is true, we write ¬h(f, i). Occurrences of actions are represented
by expressions of the form o(a, i), saying that action a occurs at step i (o stands for
occurs). An action description is a collection of laws describing the evolution of the
domain, and in particular the changes of state caused by the execution of actions. For
example, the effect of flipping a switch on a connected bulb could be represented by the
action description:

h(on(bulb), S + 1) ← ¬h(on(bulb), S),
h(connected(switch, bulb), S),
o(flip(switch), S).

¬h(on(bulb), S + 1) ← h(on(bulb), S),
h(connected(switch, bulb), S),
o(flip(switch), S).

Given an action description AD, a description of the initial state σ0 (e.g. σ0 =
{h(f1, 0),¬h(f2, 0), . . .}), and a sequence of occurrences of actions α (e.g. α =
{o(a1, 0), o(a3, 0), o(a4, 1), . . .}), the corresponding path(s) in the transition diagram
can be computed by finding the answer set(s) of AD ∪ σ0 ∪ α.

ASP as a Cognitive Modeling Tool 381

3 Short-Term Memory, Long-Term Memory, and Chunking

STM is “the memory storage system that allows for short-term retention of information
before it is either transferred to long-term memory or forgotten” [10]. This view is
based on the so called three-stage model of memory [17]: sensory inputs are first stored
in Sensory Memory, which is very volatile and has large capacity; then, a portion of
the inputs is processed – and possibly transformed into more rich representations – and
moved to STM, which is less volatile than Sensory Memory, but of limited capacity.
STM is also often viewed as a working memory, i.e. as a location where information
is processed [18]. Finally, selected information is moved to LTM, which has larger
capacity and longer retention periods.1

Beginning in the 1950s, several studies have been conducted to determine the capac-
ity of STM. Miller [19] reported evidence showing that the capacity of STM in humans
is of 7 pieces of information. Later studies have lowered the capacity limit of STM to
about 4 pieces of information (e.g. [20]). Interestingly, the limit on the number of pieces
of information that STM can hold does not affect directly the amount of information (in
an information-theoretic sense) that STM can hold. In fact, STM appears to be capable
to storing references to concepts that are stored in LTM. Although one such reference
counts as a single piece of information toward the capacity limit of STM, the amount
of information it conveys can be large. For example, it has been observed that it is nor-
mally difficult for people to remember the 12-letter sequence CN NIB MMT VU SA,
while most people have no problems remembering the sequence CNN IBM MTV USA,
because each triplet refers to a concept stored in LTM, and can thus be represented in
STM by just 4 symbols [9]. The phenomenon of the detection and use of known pat-
terns in STM is referred to as chunking. The patterns stored in LTM – such as CNN or
USA – are called chunks.

Another limit of STM is that the information it contains is retained only for a short
period of time, often set to about 30 seconds by researchers [10].2 This limit can be
extended by performing maintenance rehearsal, which consists in consciously repeat-
ing over and over the information that needs to be preserved. To increase the flexibility
of our formalization, in our encoding we abstract from specific values for the limits of
capacity and retention over time, and rather write our model in a parametric way. This
makes it possible, among other things, to use our formalization to analyze the effects
of different choices for these parameters, effectively allowing us to compare variants of
the theory of STM.

As we mentioned earlier, LTM serves as a long-term storage of information. The
literature describes several types of information that LTM has been found to store and
arrange differently, ranging from information about statements which are known to be
true (or false), to information about episodes of our life (see e.g. [10]). Researchers claim

1 In fact, according to some researchers, LTM has unlimited capacity and retention periods.
When information is forgotten, that is because of an indexing problem, and not because the
information is actually removed from LTM.

2 Notice however that the issue of a time limit on the information stored in STM is somewhat
controversial – see e.g. [20,18]. For example, according to [18], decay is affected by variables
such as the number of chunks that the user is trying to remember, and retrieval interference
with similar chunks.

382 M. Balduccini and S. Girotto

that, in spite of their being treated differently, the various types of information interact
with each other. For example, information about episodes of our life may be used by
the brain to derive knowledge about statements which are known to be true or false.

The information stored in LTM appears to serve two main purposes: (1) it can
be recalled in order to perform inference by integrating it with information present
in STM, and (2) it can be used to perform chunking. The conditions under which
the memorization of information in LTM is triggered appear to be quite complex.
Researchers have observed that repeated exposure to the same pieces of informa-
tion causes them to be eventually moved from STM to LTM. Storage is more likely
to occur when the exposures are spread over time. Maintenance rehearsal of infor-
mation in STM can also be used to promote the transfer to LTM. Because of the
amount of information stored in LTM, proper indexing plays an important role in
being able to access the information at a later time. In order to improve the quality
of the indexing for information that is being stored in LTM, one can replace main-
tenance rehearsal by elaborative rehearsal, which consists in consciously thinking
about the information of interest and establishing links with knowledge that is already
available.

4 A Formalization of Short-Term Memory

This section provides a brief overview of our formalization of STM. For a complete
description, the reader is invited to refer to [7].

Using a common methodology in ASP-based knowledge representation, we start
our formalization by condensing its natural-language description, as it is found in the
literature, into a number of statements – still written in natural language, but precisely
formulated. Next, the statements are encoded using ASP.

The statements describing STM are:

1. STM is a collection of symbols;
2. The size of STM is limited to ω elements;
3. Each symbol has an expiration counter associated with it, saying when the piece of

information will be “forgotten”;
4. New symbols can be added to STM. If a symbol is added to STM when ω ele-

ments are already in STM, the symbol that is closest to expiring is removed from
STM (“forgotten”). In the case of multiple symbols equally close to expiring, one
is selected arbitrarily;

5. When a symbol is added to STM its expiration counter is reset to a fixed value ε;
6. When maintenance rehearsal is performed, the expiration counters of all the sym-

bols in STM are reset to a constant value ε;
7. At each step in the evolution of the domain, the expiration counter is decreased

according to the duration of the actions performed;
8. When the expiration counter of a symbol in STM reaches zero, the symbol is re-

moved from STM.
9. Simplifying assumption: only a single operation (where by operation we mean ei-

ther addition of one symbol or maintenance rehearsal) can occur on STM at any
given time.

ASP as a Cognitive Modeling Tool 383

We now show how the statements above are formalized in ASP. Fluent in stm(s) says
that symbol s (where s is a possibly compound term) is in STM; expiration(s, e)
says that symbol s will expire (i.e. will be “forgotten”) in e units of time, un-
less the expiration counter is otherwise altered. Action store(s) says that symbol s
is stored in STM; action main rehearsal says that maintenance rehearsal is per-
formed on the current contents of STM. Relation symbol(s) says that s is a sym-
bol. Relation stm max size(ω) says that the size of STM is limited to ω elements;
stm expiration(ε) states that the symbols in STM expire after ε units of time. Finally,
in order to update the expiration counters based on the duration of the actions executed
at each step, relation dur(i, d) says that the overall duration of step i, based on the
actions that took place, is d units of time.

The direct effect of storing a symbol s in STM is described by the following axioms.3

h(in stm(S), I + 1) ← symbol(S), step(I), o(store(S), I).

h(expiration(S,E), I + 1) ← symbol(S), stm expiration(E), o(store(S), I).

The above axioms say that the effect of the action is that s becomes part of STM, and
that its expiration counter is set to ε. The next axioms ensure that the size of STM does
not exceed its limit when a new symbol is added:

¬h(in stm(S2), I + 1) ←
o(store(S1), I),
stm max size(MX), curr stm size(MX, I),
not some expiring(I), picked for deletion(S2, I).

1{ picked for deletion(S2, I) : oldest in stm(S2, I) }1 ←
o(store(S1), I),
stm max size(MX), curr stm size(MX, I),
not some expiring(I).

The first axiom states that, if adding a symbol to STM would cause the STM size limit
to be exceeded, then one symbol that is the closest to expiring will be removed from
STM. Notice that the simplifying assumption listed among the natural language state-
ments above guarantees that it is sufficient to remove one symbol from STM (lifting
the assumption is not difficult, but would lengthen the presentation). The second ax-
iom states that, if multiple symbols are equally close to expiring, then one is selected
arbitrarily. From a practical perspective, this encoding allows to consider the evolu-
tions to STM corresponding to all the possible selections of which symbol should be
forgotten. The definition of auxiliary relation oldest in stm can be found in [7]. The
reader should however note that the two axioms above extend the encoding of [7] by
allowing to deal with cases with symbols equally close to expiring (this situation may
occur, for example, as the result of performing a maintenance rehearsal action, whose
formalization is discussed later). It is worth pointing out that the second axiom can be

3 To save space, we drop atoms formed by domain predicates after their first use and, in a few
rules, use default negation directly instead of writing a separate rule for closed-world assump-
tion. For example, if p holds whenever q is false and q is assumed to be false unless it is
known to be true, we might write p ← not q instead of the more methodologically correct
{p ← ¬q. ¬q ← not q.}.

384 M. Balduccini and S. Girotto

easily modified to mimic the behavior formalized in [21], in which an arbitrary symbol
(rather one closest to expiring) is forgotten.

The next axiom (together with auxiliary definitions) says that it is impossible for two
STM-related actions to be executed at the same time.

← o(A1, I), o(A2, I), A1 �= A2, stm related(A1), stm related(A2).

stm related(store(S)) ← symbol(S).

stm related(maint rehearsal).

The direct effect of performing maintenance rehearsal is formalized by an axiom stating
that, whenever maintenance rehearsal occurs, the expiration counters of all the symbols
in STM are reset:

h(expiration(S,E), I + 1) ←
stm expiration(E),
h(in stm(S), I),
o(maint rehearsal, I).

The next group of axioms deals with the evolution of the contents of STM over time.
Simple action theories often assume that fluents maintain their truth value by inertia
unless they are forced to change by the occurrence of actions. In the case of fluent
expiration(s, e), however, the evolution over time is more complex (and such fluents
are then called non-inertial). In fact, for every symbol s in STM, expiration(s, ε)
holds at first, but then expiration(s, ε) becomes false and expiration(s, ε − δ) be-
comes true, where δ is the duration of the latest step, and so on, as formalize by the
axioms:

noninertial(expiration(S,E)) ← symbol(S), expiration value(E).

h(expiration(S,E − D), I + 1) ←
expiration value(E),
h(expiration(S,E), I),
dur(I,D), E > D,
not different expiration(S,E − D, I + 1),
not ¬h(in stm(S), I + 1).

different expiration(S,E1, I) ←
expiration value(E1),
expiration value(E2),
E2 �= E1,
h(expiration(S,E2), I).

The inertia axiom, as well as axioms defining the evolution of fluent in stm(s) depend-
ing on expiration(s, e) and the auxiliary relations, can be found in [7].

5 A Formalization of Long-Term Memory and Chunking

In this section we describe our formalization of LTM. As mentioned earlier, we focus
in particular on the learning of new chunks and on the phenomenon of chunking of the
contents of STM by replacing them with references to suitable chunks from LTM.

ASP as a Cognitive Modeling Tool 385

In the discussion that follows, we distinguish between chunks, described in Section 3,
and proto-chunks, which are used in the learning of new chunks. Like a chunk, a proto-
chunk provides information about a pattern that has been observed, such as the symbols
it consists of. However, differently from a chunk, a proto-chunk is also associated with
information used to establish when it should be transferred to LTM and transformed
into a chunk, such as the number of times it has been observed and the time elapsed
from its first detection. Furthermore, proto-chunks cannot be used to perform chunking
of the contents of STM.

In order to simplify the presentation, the ASP encoding shown here is focused on
dealing with sequences of items, called tokens. (Extending the formalization to arbi-
trary data is not difficult.) A token is either an atomic token, such as a digit, or a
compound token, which denotes a sequence of tokens. Given a sequence of tokens,
the expression seq(n, k), denotes the sub-sequence starting at the nth item and con-
sisting of token k. If k is atomic, then the sub-sequence is the token itself. If k is
compound, then the sub-sequence consists of the atomic elements of k. In the termi-
nology introduced for the formalization of STM, seq(n, k) is a symbol (see item (1) of
Section 4).

As in the previous section, we begin our formalization by providing a natural-
language description consisting of precisely formulated statements. To improve clar-
ity, we organize the statements in various categories. Category LTM model contains the
statements:

1. LTM includes a collection of chunks and proto-chunks;
2. A chunk is a token;4

3. Each chunk and proto-chunk is associated with a set of symbols, called elements;
4. A proto-chunk is associated with counters for the times it was detected and the

amount of time since its first detection.

Category chunking consists of the statements:

5. A chunk is detected in STM if all the symbols that are associated with it are in
STM;

6. When a chunk is detected in STM, the symbols associated with it are removed from
STM and the corresponding chunk symbol is added to STM;

7. A symbol can be extracted from STM if it belongs to STM, or if it is an element of
a chunk that can be extracted from STM;5

8. Simplifying assumption: chunks can only be detected when STM is not in use (i.e.
no addition of maintenance rehearsal operations are being performed);

9. Simplifying assumption: at every step, at most one chunk can be detected.

Category proto-chunk detection contains the statements:

10. A proto-chunk is present in STM if all the symbols that are associated with it are
in STM; a proto-chunk is detected in STM if it is present in STM, and the sym-
bols associated with it have not been previously used for proto-chunk formation or
detection;

4 Note that a proto-chunk is not considered a token.
5 This statement can of course be applied recursively.

386 M. Balduccini and S. Girotto

11. When a proto-chunk is detected in STM, the counter for the number of times is
incremented;

12. After a proto-chunk is detected, those particular occurrences of its elements in STM
cannot be used for detection again except after performing maintenance rehearsal.

13. Simplifying assumption: presence of proto-chunks can only be verified when STM
is not in use (see statement (8)), and no chunks are detected.

Category proto-chunk formation consists of the statements:

14. A new proto-chunk is formed by associating with it symbols from STM that have
not yet been used for proto-chunk formation or detection;

15. A proto-chunk can only be formed if there are at least 2 suitable symbols in STM;
16. Simplifying assumption: when a proto-chunk is formed, it is associated with all the

symbols from STM, which have not been previously used for proto-chunk forma-
tion or detection;

17. Simplifying assumption: proto-chunks can only be formed when STM is not in
use (see statement (8)), no chunks are detected, and no proto-chunks are present;6

Category chunk learning contains the statements:
18. A proto-chunk is replaced by a chunk after being detected at least τ times over a

period of π units of time;
19. When a proto-chunk is replaced by a chunk, the elements associated with the proto-

chunk become associated with the chunk, and the proto-chunk is removed.

5.1 LTM Model

Category LTM model is formalized in ASP by defining suitable fluents and relations (the
actual code is omitted to save space). In particular, fluent in ltm(c) says that chunk
c is in LTM; chunk element(c, s) says that s is an element of c; chunk len(c, l)
says that the number of elements associated with c is l; is pchunk(c) says that c is
a proto-chunk (and is in LTM); pchunk element(c, s) says that s is an element of
proto-chunk c; pchunk len(c, l) says that the number of elements associated with c
is l; times seen(c, n) says that proto-chunk c was detected n times; age(c, a) says
that the age of proto-chunk c (i.e. the time since its first detection) is a; finally,
fluent considered(s) says that symbol s in STM has already been used for proto-
chunk formation or detection. Relation min times promotion(τ) says that a proto-
chunk must be detected τ or more times before it can be transformed into a chunk;
min age promotion(π) says that π units of time must have elapsed from a proto-
chunk’s first detection, before it can be transformed into a chunk.

5.2 Detection of Chunks

Category chunking of statements is formalized as follows. The detection of a chunk is
encoded by auxiliary relation detected(seq(p, c), i), intuitively stating that the symbols
corresponding to chunk c were detected, at step i, starting at position p in the sequence
of tokens stored in STM. The detection occurs, when STM is not in use as per sim-
plifying assumption (8), by checking if there is any chunk whose components are all

6 As a consequence, at every step, at most one proto-chunk can be formed.

ASP as a Cognitive Modeling Tool 387

in STM. If symbols corresponding to multiple chunks are available in STM, only one
chunk is detected at every step, as per assumption (9). The choice of which chunk is
detected is non-deterministic, and encoded using a choice rule, as follows:

1{ detected(seq(P,C), I)
: chunk(C) : h(in ltm(C), I)
: ¬chunk element missing(seq(P,C), I) }1 ←

stm idle(I),
chunk detectable(I).

chunk detectable(I) ←
stm idle(I),
chunk(C), h(in ltm(C), I),
position(P),
not chunk element missing(seq(P,C), I).

¬chunk element missing(seq(P,C), I) ←
not chunk element missing(seq(P,C), I).

chunk element missing(seq(P,C), I) ←
chunk element instance(P, C, I, S),
¬h(in stm(S), I).

chunk element instance(P1, C, I, seq(P1 + P2 − 1, T)) ←
h(chunk element(C, seq(P2, T)), I).

¬stm idle(I) ←
o(A, I), memory related(A).

stm idle(I) ←
not ¬stm idle(I).

Relation detected(seq(p, c), i), where c is a chunk, says that sub-sequence seq(p, c)
was detected in STM at step i. When such a sub-sequence is detected in STM, we
say that chunk c was detected in STM. Relation chunk element missing(seq(p, c), i)
says that, at step i, the sub-sequence seq(p, c) is not contained in STM, because one or
more elements of c is missing. Relation chunk detectable(i) says that there exists at
least one chunk c such that the sub-sequence seq(p, c) is in STM for some position p.
Relation chunk element instance(p, c, i, s) says that, at step i, symbol s is an item
of the sub-sequence seq(p, c).

It is interesting to note that the components of a detected chunk are allowed to be
located anywhere in STM. However, now that the model is formalized at this level of
detail, one cannot help but wonder whether in reality the focus of the mechanism of
chunking is on symbols that have been added more recently. We were unable to find
published studies regarding this issue.

The next three axioms state that, when a chunk is detected in STM, the symbols
associated with it are replaced by the chunk symbol in STM7, whose expiration counter
is set to ε.

7 Our simplifying assumption that at most one chunk can be detected at every step ensures that
the number of items in STM does not increase as a result of the chunking process.

388 M. Balduccini and S. Girotto

¬h(in stm(S), I + 1) ←
detected(seq(P,C), I),
chunk element instance(P, C, I, S).

h(in stm(seq(P,C)), I + 1) ←
detected(seq(P,C), I).

h(expiration(seq(P,C), E), I + 1) ←
stm expiration(E),
detected(seq(P,C), I).

Finally, the fact that a symbol can be extracted from STM if it belongs to it, or if it is
an element of a chunk that can be extracted from STM, is encoded by axioms:

from stm(S, I) ←
h(in stm(S), I).

from stm(S, I) ←
from stm(seq(P,C), I),
chunk element instance(P, C, I, S).

It is worth stressing that it is thanks to ASP’s ability to encode recursive definitions that
this notion can be formalized in such a compact and elegant way.

5.3 Detection of Proto-chunks

Next, we discuss the formalization of category proto-chunk detection of statements. The
presence of a proto-chunk in STM is determined by the axioms:

pchunk present(seq(P,C), I) ←
stm idle(I),
not chunk detectable(I),
h(is pchunk(C), I),
¬pchunk element missing(seq(P,C), I).

some pchunk present(I) ←
pchunk present(seq(P,C), I).

The first axiom informally states that, if proto-chunk c is in LTM and the sub-sequence
of all of its elements is found in STM starting from position p, then proto-chunk is
present in STM, and starts at that position. Following simplifying assumption (13),
the axiom is only applicable when STM is not in use, and no chunks are detected.
The definition of relation pchunk element missing(seq(p, c), i) is similar to that of
relation chunk element missing(seq(p, c), i), shown above. The axioms that follow
are a rather straightforward encoding of statement (13), describing the conditions under
which a proto-chunk is detected:

pchunk detected(seq(P,C), I) ←
pchunk present(seq(P,C), I),
not ¬pchunk detected(seq(P,C), I).

¬pchunk detected(seq(P,C), I) ←
pchunk present(seq(P,C), I),
pchunk element instance(P, C, I, S),
h(considered(S), I).

ASP as a Cognitive Modeling Tool 389

Whenever a proto-chunk is detected, the counter for the number of times it was observed
is incremented. Furthermore, the occurrences, in STM, of the symbols that it consists of
are flagged so that they can no longer be used for proto-chunk detection or formation.
The flag is removed when maintenance rehearsal is performed:

h(times seen(C, N + 1), I + 1) ←
h(is pchunk(C), I),
pchunk detected(seq(P,C), I),
h(times seen(C, N), I).

h(considered(S), I + 1) ←
pchunk detected(seq(P,C), I),
pchunk element instance(P, C, I, S),
h(in stm(S), I).¬h(considered(S), I + 1) ←
h(in stm(S), I),
o(maint rehearsal, I).

5.4 Proto-chunk Formation

The statements in category proto-chunk formation are formalized as follows. First, we
encode the conditions for the formation of a new proto-chunk listed in statements (14)
and (15).

new pchunk(I) ←
stm idle(I),
not chunk detectable(I),
not some pchunk present(I),
num avail sym in stm(N, I),
N > 1.

num avail sym in stm(N, I) ←
N{ avail sym(S, I) : symbol(S) }N.

avail sym(S, I) ←
h(in stm(S), I),
¬h(considered(S), I).

In the axioms above, relation new pchunk(i) intuitively states that a new proto-chunk
can be formed at step i. Relation num avail sym in stm(n, i) says that STM contains
n symbols that are available for chunk formation (that is, that have not been previously
used for proto-chunk formation or detection). Whenever the conditions for chunk for-
mation are met, the following axioms are used to create the new proto-chunk.

h(is pchunk(p(I)), I + 1) ←
new pchunk(I).

h(pchunk element(p(I), seq(P2 − P1 + 1, T)), I + 1) ←
new pchunk(I),
lowest seq index(P1, I),
h(in stm(seq(P2, T)), I),
¬h(considered(seq(P2, T)), I).

lowest seq index(P, I) ←
h(in stm(seq(P,T)), I),
not ¬lowest seq index(P, I).

390 M. Balduccini and S. Girotto

¬lowest seq index(P2, I) ←
P2 > P1,
h(in stm(seq(P1, T)), I).

The first axiom causes fluent is pchunk(c, i) to become true. Function term p(·) is
used to assign a name to the new proto-chunk. The name is a function of the current
step. Note that naming convention relies on the simplifying assumption that at most one
proto-chunk is formed at each step. The second statement determines the elements of
the new proto-chunk. The sequence of elements of a proto-chunk is indented start from
position 1. However, because the contents of STM expire over time, all the symbols in
STM may be associated with a position greater than 1. For this reason, in the axiom we
offset the position of each symbol accordingly. The offset is determined by finding the
smallest position of a symbol in STM. More precisely, the third axiom above says that
p is the smallest position that occurs in STM unless it is known that it is not. The last
axiom states that p is not the smallest position that occurs in STM if there is a symbol
in STM whose position is smaller than p.

The next set of axioms resets the age and the counter for the times the proto-chunk
was detected, and describes how the age of a proto-chunk increases from one step to the
next according to the duration of the current step (see Section 6 regarding limitations of
this representation, and ways to improve it). Because these fluents are functional (that
is, each describes a function, with the value of the function encoded as a parameter of
the function itself), we represent them as non-inertial fluents.8

noninertial(times seen(C, N)).

h(times seen(p(I),1), I + 1) ← new pchunk(I).

noninertial(age(C,A)).

h(age(p(I),0), I + 1) ← new pchunk(I).

h(age(C,A + D), I + 1) ←
h(is pchunk(C), I), h(age(C,A), I),
dur(I,D), not ¬h(age(C,A + D), I + 1).

5.5 Chunk Learning

Finally, we discuss the formalization of the statements in category chunk learning. The
following axiom determines when the conditions from statement (18) are met:

can be promoted(C,I) ←
min times promotion(Nmin),
min age promotion(Amin),
h(is pchunk(C), I),
h(times seen(C,N), I),
N ≥ Nmin,
h(age(C,A), I),
A ≥ Amin.

8 The non-inertial encoding appears to be more compact than the inertial encoding, in that it
avoids having to write a rule explicitly stating that f(n) becomes false whenever f(n + 1)
becomes true.

ASP as a Cognitive Modeling Tool 391

When the conditions are met, a suitable chunk is added to LTM:

h(in ltm(C), I + 1) ←
can be promoted(C, I).

h(chunk element(C,S), I + 1) ←
h(is pchunk(C), I),
can be promoted(C, I),
h(pchunk element(C,S), I).

The proto-chunk is removed from LTM with axioms such as the following (the other
axioms are similar and omitted to save space):

¬h(is pchunk(C), I + 1) ←
can be promoted(C,I).

5.6 Experiments

To demonstrate that our formalization captures the key features of the mechanisms of
STM, LTM, and chunking, we subjected it to a series of psychological tests. Here we
use variations of the memory-span test. In this type of test, a subject is presented with a
sequence of digits, and is asked to reproduce the sequence [9]. By increasing the length
of the sequence and by allowing or avoiding the occurrence of familiar sub-sequences
of digits, one can verify the capacity limit of STM and the mechanics of LTM and
chunking. Experiments using the basic type of memory-span test were described and
used in [7]. Here we expand the tests by introducing a phase in which the subject learns
chunks, which can be later used to memorize sequences the subject is presented with.
This allows the testing of the detection and formation of proto-chunks, of the learning
of chunks, and of the mechanism of chunking.

Because we are only concerned with correctly modeling the mechanisms of interest,
we abstract from the way digits are actually read, and rather represent the acquisition
of the sequence of digits directly as the occurrence of suitable store(s) actions. Sim-
ilarly, the final reproduction of the sequence is replaced by checking the contents of
STM and LTM at the end of the experiment. As common in ASP, all computations are
reduced to finding answer sets of suitable programs, and the results of the experiments
are determined by observing the values of the relevant fluents in such answer sets.

From now on, we refer to the above formalization of STM, LTM, and chunking by
ΠMEM . Boundary conditions that are shared by all the instances of the memory-span
test are encoded by the set ΠP of rules, shown below. The first two rules of ΠP set
the value of ω to a capacity of 4 symbols (in line with [20]) and the value of ε to 30
time units. The next rule states that each step has a duration of 1 time unit. This set-up
intuitively corresponds to a scenario in which STM has a 30 second time limit on the
retention of information and the digits are presented at a rate of one per second. The
next two rules set the value of τ to 2 detections and the value of π to 3 units of time.
The last set of rules define the atomic tokens for the experiments.

stm max size(4).
stm expiration(30).

dur(I, 1).

392 M. Balduccini and S. Girotto

min times promotion(2).
min age promotion(3).

token(0). token(1). . . . token(9).

The initial state of STM is such that no symbols are initially in STM. This is encoded
by σSTM :

¬h(in stm(S), 0) ← symbol(S).

In the first instance, the subject is presented with the sequence 2, 4. Human subjects
are normally able to reproduce this sequence. Moreover, based on our model of LTM
and chunking, we expect our formalization to form a proto-chunk for the sequence
(intuitively, this simply means that LTM sets up the data structures needed to keep
track of future occurrences of the sequence). The sequence of digits is encoded by set
SPAN1 of rules:

o(store(seq(1, 2)), 0). o(store(seq(2, 4)), 1).

To predict the behavior of the brain and determine which symbols will be in STM at the
end of the experiment, we need to examine the path(s) in the transition diagram from the
initial state, described by σSTM , and under the occurrence of the actions in SPAN1.
As explained earlier in this paper, this can be accomplished by finding the answer set(s)
of Π1 = ΠMEM ∪ΠP ∪ σSTM ∪ SPAN1. It is not difficult to check that, at step 2,
the state of STM is encoded by an answer set containing:

h(in stm(seq(1, 2)), 2), h(in stm(seq(2, 4)), 2),
h(expiration(seq(1, 2), 29), 2), h(expiration(seq(2,4), 30), 2),

which shows that the sequence is remembered correctly (and far from being forgotten,
as the expiration counters show). We also need to check that the proto-chunk has been
correctly formed. For that, one can observe that the answer set contains:

h(is pchunk(p(2)), 3),
h(pchunk element(p(2), seq(1, 2)), 3),
h(pchunk element(p(2), seq(2, 4)), 3),
h(times seen(p(2), 1), 3),
h(age(p(2),0), 3).

This shows that a proto-chunk named p(2) has indeed been formed for the sequence
2, 4. The counter for the number of times it has been detected is initially set to 1, and
the age of the proto-chunk is set to 0.

Let us now consider another instance, in which the sequence of digits 2, 4 is pre-
sented, and then, after a brief pause, maintenance rehearsal occurs. The corresponding
actions are encoded by SPAN2 = SPAN1 ∪ {o(maint rehearsal, 4)}. The pause is
intended to provide enough time for the formation of the proto-chunk before mainte-
nance rehearsal occurs. As explained earlier, maintenance rehearsal helps human sub-
jects learn information. Because of the limit we have chosen for τ and π, we expect
SPAN2 to cause a chunk to be formed in LTM. It is not difficult to verify that our
formalization exhibits the expected behavior. In fact, according to the answer set of
program Π2 = ΠMEM ∪ΠP ∪ σSTM ∪ SPAN2, the state of LTM at the end of the
experiment is:

ASP as a Cognitive Modeling Tool 393

h(in ltm(p(2)), 7),
h(chunk element(p(2), seq(1, 2)), 7),
h(chunk element(p(2), seq(2, 4)), 7),

which shows that a new chunk p(2) describing the sequence 2, 4 has been added to
LTM. As a further confirmation of the correctness of the formalization, it is not difficult
to check that the answer set also contains:

h(in stm(seq(1, p(2))), 8),

showing that chunking of the contents of STM occurred as soon as the new chunk
became available.

In the next instance, we perform a thorough test of chunk learning and chunking
by presenting the subject with a sequence that is, in itself, too long to fit in STM.
We assume the subject’s familiarity with the area code 806, encoded by the set Γ1

of axioms:
h(in ltm(ac(lbb)), 0).
h(chunk element(ac(lbb), seq(1, 8)), 0).
h(chunk element(ac(lbb), seq(2, 0)), 0).
h(chunk element(ac(lbb), seq(3, 6)), 0).

Initially, the sequence 5, 8, 5 is presented, and maintenance rehearsal is performed as
before, in order to allow the subject to learn a new chunk. Then, the sequence 8, 0, 6−
5, 8, 5 is presented, where “−” represents a 1-second pause in the presentation of the
digits. This sequence is, in principle, beyond the capacity of STM. However, if chunk
learning and chunking are formalized correctly, then the sequence can be chunked using
just two symbols, and thus easily fits in STM.9 The sequence of digits is encoded by
SPAN3:

o(store(seq(1, 5)), 0). o(store(seq(2, 8)), 1). o(store(seq(3, 5)), 2).
o(maint rehearsal, 5).
o(store(seq(1, 8)), 7). o(store(seq(2, 0)), 8). o(store(seq(3, 6)), 9).
o(store(seq(4, 5)), 11). o(store(seq(5, 8)), 12). o(store(seq(6, 5)), 13).

From a technical perspective, the experiment is made more challenging by the fact that
5, 8, 5 is initially presented so that it starts at position 1, but later it occurs as a sub-
sequence of 8, 0, 6 − 5, 8, 5, starting from position 4. This allows to verify that chunk
learning and chunking occur in a way that is position-independent. It is not difficult to
check that at step 8, the state of LTM predicted by our formalization includes:

h(in ltm(p(3)), 8),
h(chunk element(p(3), seq(1, 5)), 8),
h(chunk element(p(3), seq(2, 8)), 8),
h(chunk element(p(3), seq(3, 5)), 8),

which shows that the chunk for 5, 8, 5 was learned correctly. At the end of the experi-
ment (we select step 15 to allow sufficient time for the chunking of the final triplet to
occur), the state of STM predicted by our formalization is:

9 The 1-second pause is used to allow sufficient time for the detection of the first chunk. Subject
studies have shown that chunk detection does not occur or occurs with difficulty when the
stimuli are presented at too high a frequency.

394 M. Balduccini and S. Girotto

h(in stm(seq(1, ac(lbb))), 15),
h(in stm(seq(4, p(3))), 15),
h(expiration(seq(1, ac(lbb)), 26), 15),
h(expiration(seq(4, p(3)), 30), 15).

As can be seen, the sub-sequence 8, 0, 6 was chunked using the information encoded
by Γ1, while the sub-sequence 5, 8, 5 was chunked using the learned chunk for 5, 8, 5.
Summing up, (1) a chunk for 5, 8, 5 has been learned, and (2) the chunking of the two
sub-sequences has occurred, allowing STM to effectively store a sequence of digits that
is longer than ω symbols.

Although space restrictions prevent us from formalizing alternative theories of STM,
LTM, and chunking, and from performing an analytical comparison, it is worth noting
that even the single formalization presented here allows comparing (similar) variants of
the theories corresponding to different values of parameters ω, ε, τ , and π. One could
for example repeat the above experiments with different parameter values and compare
the predicted behavior with actual subject behavior, thus confirming or refuting some
of those variants.

6 Discussion and Related Work

In this paper we have continued our investigation on the viability of ASP as a tool for
formalizing, and reasoning about, psychological models. Expanding the formalization
from [7], we have axiomatized a substantial portion of LTM, with particular focus on
the mechanisms of chunk learning and of chunking. The resulting formalization has
been subjected to psychological experiments, in order to confirm its correctness and to
show its power.

The formalization allows analysis and comparison of theories, and it allows one to
predict the outcome of experiments, thus making it possible to design better experiments.
Because of the direct executability of ASP, and the availability of ASP-based reason-
ing techniques, it is also possible to use the formalization in experiments involving e.g.
planning and diagnosis (see e.g. [22,23,24]). Various reasons make the formalization
of knowledge of this kind challenging. As we hope to have demonstrated, ASP allows
one to tackle the challenges, thanks to its ability to deal with common-sense, defaults,
uncertainty, non-deterministic choice, recursive definitions, and evolving domains.

We believe it is difficult to find other languages that allow writing a formalization at
the level of abstraction of the one shown here, and that are also directly executable.

An interesting attempt in this direction was made by Cooper et al. in [21]. Their
motivation was similar to ours, in that they wanted to define a language suitable for
specifying cognitive models, and satisfying four key requirement: “(1) being syntac-
tically clear and succinct; (2) being operationally well defined; (3) being executable;
and (4) explicitly supporting the division between theory and implementation detail.”
The language proposed by Cooper et al., called Sceptic, is an extension of Prolog that
introduces a forward chaining control structure consisting of rewrite rules and triggers.
The rewrite rules are used to express the procedural control aspects of the program, thus
keeping them separate from the formalization of the theory. An example of a Sceptic
statement, used to describe memory decay in the Soar 4 architecture (see e.g. [25]), is:

ASP as a Cognitive Modeling Tool 395

memory decay :
parameter(working memory decay,D),
wm match(WME),
wme is terminal(WME),
random(Z),
Z < D

⇒ wm remove(WME).

The intuition is that memory decay occurs with the probability specified by pa-
rameter working memory decay (implemented using random number generation);
when memory decay occurs, one terminal memory element is deleted by generating
a wm remove event. As can be seen from the structure of the Sceptic statement, the
modeling approach adopted by [21] does not explicitly represent the evolution of the
domain over time. Using the terminology adopted here, we would say that a particular
path in the transition diagram is traversed during the execution of the program, but the
path itself is not explicitly represented in the conclusions of the program. Because of
that, it is difficult to analyze such path, and to compare alternative paths whenever mul-
tiple evolutions of the domain are possible (see e.g. the last memory-span test described
in [7]). The approach is also likely to suffer from the known limitations inherited from
Prolog – e.g. regarding the handling of defaults and uncertainty, especially when yield-
ing multiple alternative conclusions – as well as the aspects of procedural flavor such
as the importance of the order of rules within the program and of the elements of the
body within a rule. One rather interesting claim made in [21] is that Sceptic allows to
clearly distinguish between a psychological theory and the specification of the “imple-
mentation details”, such as the definition of when certain conditions occur. To a large
extent, this discussion seems to be motivated by the general lower level of abstraction
of Prolog, compared to ASP, and thus does not apply to our approach. However, the
discussion seems to also apply, at least in part, to the specification of boundary condi-
tions, of which we gave a simple example earlier with the definition of the values of
parameters such as τ and π. The intuition is that the specification of the theory and that
of the boundary conditions should be kept clearly separated. We believe that this can
be achieved by adopting one of the extensions of ASP that provide modules (see e.g.
[26,27]).

In the area of cognitive modeling, quite popular is also the use of cognitive architec-
tures, especially Soar [25] and ACT-R [28]. These are quite sophisticated architectures,
not dissimilar from agent architectures, which often cover all the aspects of information
processing in the brain, from input acquisition, to output generation. Their parametric
and modular structure makes it possible to test alternative theories by replacing suitable
modules or adjusting parameter values. In both Soar and ACT-R, the stress seems to be
on the definition of a specific architecture, with assumptions being made on the way
certain processes occur. Thus, formalization of theories that are not compatible with
those assumptions seems difficult. On the other hand, our approach does not enforce
any particular assumption, and allows greater freedom of formalization. Furthermore,
in the area of cognitive architectures there appears to be no particular interest in, nor
means for, the direct theoretical analysis of the properties of the architecture and their
components. Whereas we have stressed that ASP allows for inspection of the formal-
ization and comparison of alternative axiomatizations, in these architectures the main

396 M. Balduccini and S. Girotto

tool for analysis appears to be the simulation of the architecture itself, and the analysis
of the experimental results (see e.g. [29]; [21] constitutes a remarkable exception).

As a concluding remark, let us stress that the formalization presented here could
be made richer in various ways. Our formalization of fluents involving actual time,
such as age, is rather simplified. A more sophisticated axiomatization can be obtained
by adopting the techniques from e.g. [30]. This would also allow to model continu-
ous decay. Several simplifying assumptions made earlier could be lifted by introducing
additive fluents [31]. Furthermore, there may be benefits in describing the interaction
between STM and LTM by using an agent architecture framework such as the one in
[32].

Acknowledgments

The authors to thank Esra Erdem for the useful comments and suggestions.

References

1. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385 (1991)

2. Marek, V.W., Truszczynski, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398.
Springer, Heidelberg (1999)

3. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

4. Baral, C., Gelfond, M.: Reasoning about Intended Actions. In: Proceedings of the 20th Na-
tional Conference on Artificial Intelligence, pp. 689–694 (2005)

5. Son, T.C., Sakama, C.: Negotiation Using Logic Programming with Consistency Restoring
Rules. In: 2009 International Joint Conferences on Artificial Intelligence, IJCAI (2009)

6. McCarley, J.S., Wickens, C.D., Gob, J., Horrey, W.J.: A Computational Model of Atten-
tion/Situation Awareness. In: Proceedings of the 46th Annual Meeting of the Human Factors
and Ergonomics Society (2002)

7. Balduccini, M., Girotto, S.: Formalization of Psychological Knowledge in Answer Set
Programming and its Application. Journal of Theory and Practice of Logic Programming
(TPLP) 10(4-6), 725–740 (2010)

8. Formalizing and Compiling Background Knowledge and its Applications to Knowledge Rep-
resentation and Question Answering. In: AAAI 2006 Spring Symposium Series (2006)

9. Kassin, S.: Psychology in Modules. Prentice Hall, Englewood Cliffs (2006)
10. Nevid, J.S.: Psychology: Concepts and Applications, 2nd edn. Houghton Mifflin Company,

Boston (2007)
11. Niemela, I., Simons, P.: Extending the Smodels System with Cardinality and Weight Con-

straints. In: Logic-Based Artificial Intelligence, pp. 491–521. Kluwer Academic Publishers,
Dordrecht (2000)

12. Gelfond, M., Lifschitz, V.: Action Languages. Electronic Transactions on AI 3(16) (1998)
13. Gelfond, M.: Representing Knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.) Com-

putational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 413–451.
Springer, Heidelberg (2002)

ASP as a Cognitive Modeling Tool 397

14. Balduccini, M., Gelfond, M., Nogueira, M.: A-Prolog as a tool for declarative programming.
In: Proceedings of the 12th International Conference on Software Engineering and Knowl-
edge Engineering (SEKE 2000), pp. 63–72 (2000)

15. Delgrande, J.P., Grote, T., Hunter, A.: A general approach to the verification of cryptographic
protocols using answer set programming. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR
2009. LNCS, vol. 5753, pp. 355–367. Springer, Heidelberg (2009)

16. Thielscher, M.: Answer Set Programming for Single-Player Games in General Game Play-
ing. In: 10th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2009), pp. 327–341 (September 2009)

17. Atkinson, R.C., Shiffrin, R.M.: The Control of Short-Term Memory. Scientific Ameri-
can 225, 82–90 (1971)

18. Card, S.K., Moran, T.P., Newell, A.: The Psychology of Human-Computer Interaction. L.
Erlbaum Associates Inc., Mahwah (1983)

19. Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity
for Processing Information. Psychological Review 63, 81–97 (1956)

20. Cowan, N.: The Magical Number 4 in Short-Term Memory: A Reconsideration of Mental
Storage Capacity. Behavioral and Brain Sciences 24, 87–185 (2000)

21. Cooper, R.P., Farringdon, J., Fox, J., Shallice, T.: A Systematic Methodology for Cognitive
Modelling. Artificial Intelligence 85, 3–44 (1996)

22. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138, 39–
54 (2002)

23. Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. Journal of Theory and
Practice of Logic Programming (TPLP) 3(4-5), 425–461 (2003)

24. Balduccini, M., Gelfond, M., Nogueira, M.: Answer Set Based Design of Knowledge Sys-
tems. Annals of Mathematics and Artificial Intelligence 47(1-2), 183–219 (2006)

25. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: An Architecture for General Intelligence.
Artificial Intelligence 33, 1–64 (1987)

26. Baral, C., Dzifcak, J., Takahashi, H.: Macros, Macro Calls and Use of Ensembles in Mod-
ular Answer Set Programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS,
vol. 4079, pp. 376–390. Springer, Heidelberg (2006)

27. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity Aspects of Disjunctive
Stable Models. Journal of Artificial Intelligence Research 35, 813–857 (2009)

28. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An Integrated
Theory of the Mind. Psychological Review 111(4), 1036–1060 (2004)

29. Halverson, T., Gunzelmann, G., Moore Jr., L.R., Dongen, H.V.: Modeling the Effects of Work
Shift on Learning in Mental Orientation and Rotation Task. In: 10th International Conference
on Cognitive Modeling (ICCM 2010) (August 2010)

30. Chintabathina, S., Gelfond, M., Watson, R.: Modeling Hybrid Domains Using Process De-
scription Language. In: Proceedings of ASP 2005 – Answer Set Programming: Advances in
Theory and Implementation, pp. 303–317 (2005)

31. Lee, J., Lifschitz, V.: Additive Fluents. In: Provetti, A., Son, T.C. (eds.) Answer Set Pro-
gramming: Towards Efficient and Scalable Knowledge Representation and Reasoning. AAAI
2001 Spring Symposium Series (March 2001)

32. Balduccini, M., Gelfond, M.: The AAA Architecture: An Overview. In: AAAI Spring Sym-
posium 2008 on Architectures for Intelligent Theory-Based Agents, AITA 2008 (March
2008)

A Temporally Expressive Planner Based on

Answer Set Programming with Constraints:
Preliminary Design

Forrest Sheng Bao, Sandeep Chintabathina, A. Ricardo Morales,
Nelson Rushton, Richard Watson, and Yuanlin Zhang

Texas Tech University, USA

Abstract. Recently, a new language ACC was proposed to integrate an-
swer set programming (ASP) and constraint logic programming (CLP).
In this paper, we show that ACC can be employed to build a temporally
expressive planner for PDDL2.1. Compared with the existing planners,
the new approach put less restrictions on the planning problems and
is easy to extend with new features like PDDL axioms, thanks to the
expressive power of ACC. More interestingly, it can also leverage the
inference engine for ACC which has the potential to exploit the best
reasoning mechanisms developed in the ASP, SAT and CP communities.

1 Introduction

In a realistic setting, it is hard to have a clear separation of planning and schedul-
ing problems. Planning problems ask what actions to take to achieve a goal while
scheduling problems involve the decision of when to take the actions. The last
two decades have seen significant efforts to investigate the planning and schedul-
ing problems (e.g., IxTeT [1], INOVA [2], EUROPA [3] and ZENO [4]). In 2003,
as an extension to the PDDL language, PDDL2.1 introduced durative actions to
represent temporal information of a domain [5]. Several solvers, e.g., SGPlan [6]
and CPT [7], had been developed for PDDL2.1. However, Cushing et al. [8] ob-
served that those solvers are capable of handling only a subset of PDDL2.1, and
they can not find plans for temporally expressive problems. A planning problem
is temporally expressive if any plan of the problem requires concurrent actions.

To address the weakness of the existing solvers, Coles et al. [9] developed a new
system Crikey for temporally expressive problems. Huang et al. [10] developed
a SAT based approach, and Hu [11] proposed a constraint satisfaction problems
based planner.

As an ad hoc system, it is hard for Crikey to fully exploit the the existing
inference engines (e.g., SAT and constraint solvers). Another drawback of this
approach is its extensibility to handle new features (e.g., PDDL axioms [12]).
Huang et al’s method needs the discretization of time. It may lead to large
problem instances and therefore the planner may be very slow because of the
huge search space. This approach cannot take advantage of effective constraint

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 398–414, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Temporally Expressive Planner Based on ASP with Constraints 399

reasoning algorithms either. Hu’s translation works only for planning problems
without continuous durative actions or PDDL axioms.

Our approach is based on a general purpose language ACC we proposed re-
cently. The language used in this paper is a revised version of the ACC in [13].
ACC integrates answer set programming (ASP) and constraint logic program-
ming (CLP). It is well known that ASP provides elegant descriptions for plan-
ning problems while CLP can effectively represent and reason with (temporal)
constraints. In this paper we will show how to employ ACCto encode problems
represented by PDDL2.1. Preliminary materials about PDDL2.1 and ACC are
given in Sect. 2, the ACC encoding of PDDL2.1 planning problems is given in
Sect. 3, and the paper is concluded in Sect. 4.

2 Preliminaries

In this section, we cover the basics of PDDL2.1 and ACC language.

2.1 PDDL2.1 Planning Instances

In this section, we will introduce a compact definition of PDDL2.1. It is slight
different from standard PDDL2.1 syntax for convenience.

A signature is a tuple 〈N,R,X〉 where N = {a1, . . . , al} is a set, each element
of which is called an action name, R = {p1, . . . , pm} is a set, each element of
which is called a propositional letter, and X = {x1, . . . , xn} is a set, each element
of which is called a variable. ∀x ∈ X,x ∈ R ∪ {⊥} where R is the set of real
numbers and ⊥ means undefined. A propositional letter or its negation is called
a literal.

Arithmetic expressions are formed from variables, numbers and arithmetic
operators. Arithmetic constraints are of the form exp1◦exp2 where ◦ ∈ {=,≥,≤}
and exp1 and exp2 are numerical expressions. For example, x1 · x2 − x3 ≤ 5 is
an arithmetic constraint. Arithmetic constraints of the form x = a, where x is a
variable and a a number, are called simple constraints.

A formula is defined as follows.

– A propositional letter is a formula.
– An arithmetic constraint is a formula.
– If F and G are formulas, F ∧G and F ∨G are formulas.
– If F is a formula, ¬F is formula.

As an example, p1 ∧ (x1 + x2 ≤ 3) ∨ ¬p2 is a formula.
A simple action is a tuple 〈name, π, ε〉:

1. name ∈ N .
2. π is a formula. It is called the preconditions of the action.
3. ε is a set of conjunctions of literals and statements of the form lv 2 exp

where lv is a variable, 2 ∈ {assign, increase, decrease, scaleup, scaledown},
and exp is an arithmetic expression. Each conjunct is called an effect of
the action. The statement of the form lv 2 exp is called an assignment

400 F.S. Bao et al.

statement. It is called direct assignment if 2 = assign, called additive as-
signment if 2 ∈ {increase, decrease}, and called scaling assignment if 2 ∈
{scaleup, scaledown}.

As an example, consider the action to pour water from one jug (jug1) to another
jug (jug2). The precondition can be that jug1 is not empty. The effects can
be that the amount of water in jug1 becomes 0 while the amount of water
in jug2 increases by the amount of water in jug1. This action “pour” can be
represented as

〈pour, (amount jug1 > 0),
{(amount jug2 increase amount jug1) ∧ (amount jug1 assign 0)}〉.

Given an action a, we use a.π and a.ε to denote the preconditions and effects of
a. For example, pour.π = amount jug1 > 0 and

pour.ε = {amount jug2 increase amount jug1 ∧ amount jug1 assign 0}

A durative action is a tuple 〈name, c, π, ε〉:
1. name ∈ N ,
2. c = 〈cs, ce〉, where cs and ce are formulas which may involve the special

variable ?duration that is not in X . c is called duration constraints. cs

and ce are called start duration constraints and end duration constraints,
respectively.

3. π = 〈πs, πo, πe〉, where πs, πo, πe are formulas. π is called the conditions. πo

is called invariant over the duration of the action.
4. ε = 〈εs, εc, εe〉, called effects.

– εs (and εe respectively) is a set of conjunctions of literals and statements
of the form lv2exp where lv is a variable, 2 ∈ {assign, increase, decrease,
scaleup, scaledown}, and exp is an arithmetic expression.

– εc is a conjunction of statements of the form lv increase exp ∗ Δt or
lv decrease exp ∗ Δt where Δt is understood as the time lapsing from
the start of the action. εc is called continuous effects.

We use dot to access the elements of a durative action. For example, given a
durative action da, da.εs refers to the effects εs of da.

Suppose in the “pour” action we discussed above, the water is poured into a
jug at a constant speed. Then the “pour” action can be regarded as a durative
action in which the duration is the amount of water in jug1 divided by the
pouring speed. Then,

pour.c = 〈?duration = amount jug1/speed, T rue〉,
pour.πs = pour.πo = pour.πe = amount jug1 > 0,
pour.εs = ∅,
pour.εe = {amount jug1 assign 0},
pour.εc = {amount jug2 increase speed∗Δt∧ amount jug1 decrease speed∗Δt}

where speed is the pouring speed.

A Temporally Expressive Planner Based on ASP with Constraints 401

If εc �= ∅, the action is called a continuous action. Otherwise, it is called a
discrete action.

Intuitively, πs must hold before the start of the action, πo over the duration,
and πe before the end. εs is the effect of the start of the action, εe the effect
of the end of the action, and εc the continuous effect over the duration of the
action.

A planning instance is a tuple I = 〈N,R,X, Init,Goal, A〉 where A is a set
of simple and durative actions, Init, called initial state, is a set of propositional
letters and simple constraints; Goal, called goal state, is a formula.

2.2 Plans of PDDL2.1 Planning Instances

A state is a tuple (t, s,b) where t is a real number denoting the time, s is
a set of propositional letters, and b is a vector of values 〈b1, . . . , bn〉, imply-
ing x1 = b1, · · · , xn = bn, where x1, · · · , xn are variables in X as defined in
Sect. 2.1.

A formula α is satisfied by a state (t, s,b) if it is true under the assignment
p = T (true) for all p ∈ s and p = F (false) for all p /∈ s, and X = b, i.e.,
x1 = b1, . . . , xn = bn. As an example, the formula p ∧ ¬q ∨ (x1 + x2 ≤ 5) is
satisfied by the state (5, {p}, 〈2.0, 3.0〉) because it is true under the assignment
that p = T , q = F , and 〈x1, x2〉 = 〈2.0, 3.0〉.

A plan is a set of timed pairs of either the form (t, a[t′]) or (t, a) where t is
a real number for time, a an action name and t′ a rational value specifying the
duration when the action is durative.

A happening sequence 〈ti〉i=0...k of a plan P , denoted by H(P), is an ordered
sequence of the times in P . For any time instant t, the set of actions Et =
{a | (t, a) ∈ P or (t, a[t′]) ∈ P or (t − t′, a[t′]) ∈ P} of a plan P is called a
happening at time t.

The induced plan of a plan P , denoted by simplify(P), is the union of

– {(t, a) | (t, a) ∈ P}
– {(t, as[t′]), (t + t′, ae[t′]) | (t, a[t′]) ∈ P}
– {((ti + ti+1)/2, ainv) | (t, a[t′]) ∈ P, ti, ti+1 ∈ H(P), and t ≤ ti < t + t′}

where as, ae and ainv are new simple actions that are defined in terms of the
discrete durative action a, as follows

– as: as.π = a.πs ∪ a.cs and as.ε = a.εs.
– ae: ae.π = a.πe ∪ a.ce and ae.ε = a.εe.
– ainv: ainv.π = a.πo and ainv.ε = ∅.

Intuitively, a discrete durative action a is replaced (equivalently) by two simple
actions as and ae and a set of occurrences of simple action ainv to monitor
whether the invariant holds from over the duration of a.

We need the following notations to define the continuous update function.
First we introduce a function

402 F.S. Bao et al.

signed(2, exp) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(exp) if 2 = increase

(−(exp)) if 2 = decrease

(exp) if 2 = scaleup

(1/(exp)) if 2 = scaledown

For example, let an assignment statement be

amount(t1) increase 5,

then we have
signed(increase, 5) = 5.

Given an additive assignment lv 2 exp, its derived function is f : (R ∪ {⊥})n →
(R ∪ {⊥})n such that

f(x1, ..., xi−1, lv, xi+1, ..., xn) = (x1, ..., xi−1, lv + signed(2, exp), xi+1, ..., xn).

The updating function generated from a set of additive assignments is the com-
position of all derived functions from the assignments.

Let C be a set of continuous effects for a planning instance I, and St = (t, s,b)
a state. The continuous update function defined by C for state St is the function
f : R→ Rn, such that:

df

dt
= g (1)

and
f(0) = b (2)

where g is the updating function generated from the additive assignments

{(lv 2 exp) | (lv 2 exp ∗Δt) ∈ C}

A continuous effect Q of timed pairs (t, a[d]) is active in interval (ti, ti+1) if
(ti, ti+1) ⊆ [t, t+ d]. Given a planning instance I and a plan P , define Cts(P) =
{(C, ti, ti+1) | C is the set of active continuous effects over (ti, ti+1) and ti, ti+1 ∈
H(simplify(P)) }, i.e., Cts(P) consists of the active continuous effects for each
time interval (ti, ti+1).

Given a planning instance I that includes continuous durative actions, and
a plan P , let 〈ti〉i=1...k be the happening sequences for simplify(P), and S0 be
the initial state. The trace for P is the sequence of states 〈Si〉i=0..k+1 defined as
follows:

1. If there is no active continuous effect in (ti, ti+1), Si+1 is the resulting state
of applying the happening at ti in simplify(P) to Si.

2. If there are active continuous effects in (ti, ti+1), let Ti be the result of
substituting f(ti+1 − ti) for the variables of Si, where f is the continuous
update function defined by the active effects in (ti, ti+1). Si+1 is the resulting
state of applying the happening at ti in simplify(P) to the state Ti. If f is
undefined, Si+1 is undefined.

A Temporally Expressive Planner Based on ASP with Constraints 403

Intuitively, here we define the state transition given a set of timed actions. In
the case where continuous effects are involved, we apply continuous effects to Si

to obtain Ti by updating the corresponding variables in Si, and then apply the
actions simplify(P) to Ti to obtain Si+1.

Given a planning instance I and a plan P , for each (C, ti, ti+1) ∈ Cts(P), let
fi be the continuous update function defined by C. P is invariant safe if for each
invariant constraint Q of (t, a[d]), and for each fi such that (ti, ti+1) ⊆ (t, t+ d),
and for all x ∈ (ti, ti+1), Q′ is satisfied by S′

i where Q′ and S′
i are the result of

substituting fi(x− ti) for X in Q and X in Si respectively.
Given a planning instance I and a plan P , P is executable if the trace of P is

defined and the trace is invariant safe, and P is valid if it is executable and the
final state of the trace satisfies the goal in I.

A PDDL2.1 problem is to find a valid plan for a planning instance.

2.3 Syntax of ACC
ACC is a typed language. Its programs are defined over a sorted signature Σ,
consisting of sorts, and properly typed predicate symbols, function symbols and
variables.

By a sort, we mean a non-empty countable collection of strings over some
fixed alphabet. Strings of a sort S are referred as object constants of S. Each
variable takes on values of a unique sort.

A term of Σ is either a constant, a variable, or an expression f(t1, . . . , tn)
where f is an n-ary function symbol, and t1, . . . , tn are terms of proper sorts.

An atom is of the form p(t1, . . . , tn) where p is an n-ary predicate symbol, and
t1, . . . , tn are terms of proper sorts. A literal is either an atom or its negation.

Sorts of ACC can be partitioned as regular and constraint. Intuitively, a sort is
declared to be a constraint sort if it is a large (often numerical) set with primitive
constraint relations, e.g., ≤.

For example, steps or times in a planning problem can be constraint sorts. In
our examples above, jug is a regular sort.

A function f : S1 × · · · × Sn → S, where S1, . . . , Sn are regular sorts and S
is a constraint sort, is called a bridge function. We introduce a special predicate
symbol val where val(f(t), y) holds if y is the value of function symbol f for
argument t. For simplicity, we write f(t) = y instead of val(f(t), y). The do-
main and range of a bridge function f are denoted as domain(f) and range(f)
respectively.

The partitioning of sorts induces a natural partition of predicates and liter-
als of ACC. Regular predicates denote relations among objects of regular sorts;
constraint predicates denote primitive numerical relations on constraint sorts;
predicate val is called the bridge predicate; all the other predicates are called
defined predicates.
ACC uses declarations to describe signatures. A regular/constraint sort dec-

laration consists of the keyword #rsort/#csort followed by a list of sort names,
like:

404 F.S. Bao et al.

#rsort sort name1, . . . , sort namen

or
#csort sort name1, . . . , sort namen

A predicate declaration is an expression of the form:

#pred name(sort name1, . . . , sort namen)

where pred name is an n-ary predicate symbol and sort name1, . . . , sort namen

is a list of sort names corresponding to the types of the arguments of pred name.
A bridge function declaration is an expression of the form:

#func name(sort name1, . . . , sort namen) : sort name

where func name is an n-ary bridge function symbol, sort name1, . . . ,
sort namen is a list of sort names corresponding to the types of the arguments
of func name, and sort name is the sort of func name.

For simplicity, we allow multiple predicate and bridge function declarations
in the same line preceded by a single # symbol.

A rule in ACC is an expression of the form

l0 ← l1, . . . , lm, not lm+1, . . . , not ln

where l’s are literals of Σ.
A program Π of ACC is a collection of rules and declarations over a signature

Σ. Every predicate and sort used in a rule of Π must appear in a declaration
statement.

2.4 Semantics of ACC
Terms, literals, and rules are called ground if they contain no variables and no
symbols for arithmetic functions.

A bridge assignment is a mapping from every bridge function symbol f and
element x ∈ domain(f) to a value y ∈ range(f). Such an assignment will be
represented by the set of atoms f(x) = y. A set S of ground literals is an answer
set of an ACC program Π if there is a bridge assignment V such that S is an
answer set of the ASP program Π ∪ V .

An extended literal is an expressions of the form l and not l where l is a literal.
We identify every answer set A of Π with the extended answer set :

A ∪ {not p | p is an atom of Π and p �∈ A}

3 Translation of a PDDL Problem to an ACC Program

Given a planning instance I = 〈N,R,X, Init,Goal, A〉, we form anACC program
as follows.

A Temporally Expressive Planner Based on ASP with Constraints 405

3.1 Sorts

To represent the variables {x1, x2, . . . , xn} from X , we need a regular sort Sv =
{1, . . . , n} which denotes the indexes of variables. To represent planning steps,
we also need a regular sort Ss = {0, 1, . . . , ls}. To represent action names from
N , we need a regular sort Sa = {a1, . . . , aN}. We also need a constraint sort R
for real numbers.

3.2 Predicates

The predicates of the ACC program are {p/1 | p ∈ R}. For every p ∈ R, p(S)
means the value of p at step S. More will be added later.

3.3 Variables and Time

For variables X , we introduce a bridge function m(I, S) : V ar, where I is of sort
Sv, S of sort Ss, and V ar is a variable of the constraint sort R.

For each step of Ss, we introduce a bridge function at(S) : T , where S is of
Ss and T is a non-negative real number. It means that step S occurs at T .

For each step, we introduce a predicate occurs(Name, S), where Name is of
sort Sa and S is of sort Ss, meaning that action Name occurs at step S.

3.4 Formulas

Given a step S of sort Ss and a formula α, we define the following two operations
on α. αT (S) is an atom and αP (S) is a set of the rules to be added into ACC.

– if α is a propositional letter p,
αT (S) ≡ p(S).
αP (S) = ∅.

– if α is an arithmetic constraints c, let {x1, ..., xi} be all the variables of c,
without loss of generality.
αT (S) ≡ m(1, S) = X1, ...,m(i, S) = Xi, c

′. where c′ is the result of substi-
tuting Xj for xj (for all j ∈ [1..i]) in c.
αP (S) = ∅.

– if α = α1 ∧ α2, introduce a new predicate p/1.
αT (S) ≡ p(S).
αP (S) = αP

1 (S) ∪ αP
2 (S) ∪ {p(S) ← αT

1 (S), αT
2 (S).}.

– if α = α1 ∨ α2, introduce a new predicate p/1.
αT (S) ≡ p(S)
αP (S) = αP

1 (S) ∪ {p(S) ← αT
1 (S). p(S) ← αT

2 (S).}
– if α = ¬α1, introduce new predicates p/1.

αT (S) ≡ p(S).
αP (S) = αP

1 (S) ∪ {p(S) ← ¬αT
1 (S).}.

Example: Given S and a formula α = ¬((p∨q)∧(x2−x1 > 3)), αT (S) = p′′′′(S),
and αP (S) is

406 F.S. Bao et al.

p′(S) ← p(S).
p′(S) ← q(S).
p′′′(S) ← p′(S),m(1, S) = X1,m(2, S) = X2, X2 −X1 > 3.
p′′′′(S) ← ¬p′′′(S).

3.5 Initial and Goal States

For any propositional letter p in the initial state, we have the fact

p(0).

For any propositional letter q, we have the following closed world assumption

¬q(0) ← not q(0).

For every simple constraint xi = c in the initial state, we have the fact

m(i, 0) = c.

Let α be the goal formula, we need the ACC rules αP (S) and the rules

goal← αT (S).

← not goal.

3.6 Simple Actions

As defined in Sect. 2.1, a simple action is a tuple a = 〈name, π, ε〉.
For precondition π of action name, we add πP (S) and this ACC rule

← occurs(name, S),not πT (S).

For each positive literal p ∈ ε,

p(S + 1) ← occurs(name, S).

For each negative literal ¬p ∈ ε,

¬p(S + 1) ← occurs(name, S).

For every propositional letter p ∈ R, we have the inertia law

p(S + 1) ← p(S),not ¬p(S + 1).
¬p(S + 1) ← ¬p(S),not p(S + 1).

Let xi 2 exp, where xi ∈ X is a variable and 2 is an assignment operator, be
an assignment in the effects of a simple action aj . The assignment statements
on variable xi will be encoded as follows.

A Temporally Expressive Planner Based on ASP with Constraints 407

1. If 2 is assign, then the rule encoding the effect is:

m(i, S + 1) = exp′ ← occurs(aj , S),m(1, S) = X1, . . . ,m(n, S) = Xn.

where Xj (1 ≤ j ≤ n) is the value of xj at step S, and exp′ results from
substituting the variables in exp by Xi’s.

2. If 2 is scaleup or scaledown, we need to first define the scaling contribution
(s contribution(i, aj, S)) of action aj to xi at step S.

s contribution(i, aj, S) = signed(2, exp′) ← occurs(aj , S),
m(1, S) = X1,

...
m(n, S) = Xn.

s contribution(i, aj, S) = 1 ← not occurs(aj , S).

where exp′ is defined as before.
For any action ak which does not have any scaling effect on xi, we have

s contribution(i, ak, S) = 1.

The value of xi at S is the production of all contributions to it.

m(i, S + 1) = Y ← scaled(i, S),
s contribution(a1, S) = C1,

...
s contribution(aN , S) = CN ,

m(i, S) ∗
N∏

k=1

Ck = Y.

3. If 2 is increase or decrease, we need to first define the additive contribution
(contribution(i, aj, S)) of action aj to xi at step S.

contribution(i, aj, S) = signed(2, exp′) ← occurs(aj , S),
m(1, S) = X1,

...
m(n, S) = Xn.

contribution(i, aj, S) = 0 ← not occurs(aj , S).

For any action ak where xi does not appear in an additive assignment, the
contribution of this action to xi is 0 at any step.

contribution(i, ak, S) = 0.

408 F.S. Bao et al.

The value of xi at S is the accumulation of all contributions to it.

m(i, S + 1) = Y ← added(i, S),
contribution(a1, S) = C1,

...
contribution(aN , S) = CN ,

m(i, S) +
N∑

k=1

Ck = Y.

Note that our treatment of the additive assignments is similar to the ap-
proach employed by Lee and Lifschitz (2003) in action language C+.

The auxiliary predicates used above are defined as follows: assigned(i, S) holds
if there is a direct assignment to xi at step S; scaled(i, S) holds if there is a
scaling assignment to xi at step S; and added(i, S) holds if there is an additive
assignment to xi.

For every action a whose effects contain a direct assignment to xi, we have

assigned(i, S)← occurs(a, S).

For any action a that has an effect of additive assignment to xi, we have

added(i, S) ← occurs(a, S).

For any action a that has an effect of scaling assignment to xi, we have

scaled(i, S)← occurs(a, S).

Finally, the values of variables follow the law of inertia.

m(I, S + 1) = X ← m(I, S) = X,

not assigned(I, S),
not added(I, S),
not scaled(I, S).

Note that the PDDL2.1 restriction of no heterogeneous assignments in Sect. 3.9
ensures that at any step, we have at most one type of assignment statements.

3.7 Discrete Durative Actions

A durative action is a tuple da = 〈name, c, π, ε〉 where c = 〈cs, ce〉, π = 〈πs,
πo, πe〉, and ε = 〈εs, εc, εe〉.

We introduce two new simple actions das = 〈names, π1, ε1〉 and dae =〈namee,
π2, ε2〉 indicating the start and the end of the durative action. Here, names

and namee are new names. The preconditions of das and dae are from the

A Temporally Expressive Planner Based on ASP with Constraints 409

corresponding preconditions and duration constraints of da: π1 = πs ∧ cs and
π2 = πe ∧ ce. So are the effects of das and dae: ε1 = εs and ε2 = εe.

The simple actions can be translated into an ACC program as in the previous
section.

Since here we try to use simple actions names and namee to mimic the dura-
tive action name, we need the following constraints. There must be namee after
each names. Similarly, there must be names before each namee.

← occurs(names, S), not haveAnEnd(names, S).

haveAnEnd(names, S) ← occurs(namee, S1), S1 > S.

Where haveAnEnd(names, S) means that there is a namee occurred after S.
Similarly,

← occurs(namee, S), not haveABegining(namee, S).

haveABegining(namee, S) ← occurs(names, S1), S1 < S.

The next constraint is that the occurrences of the same durative action do not
overlap. We say that two occurrences of a simple action names (and namee

respectively) are consecutive (consecutive(A,S1, S2), where A is of the action
sort, S1 and S2 the step sort Ss) if there is no namee (and names respectively)
in between S1 and S2. For any durative action name, non-overlapping means
that there should not be consecutive names or namee.

← consecutive(names, S1, S2).

← consecutive(namee, S1, S2).

consecutive(names, S1, S2) ← occurs(names, S1), occurs(names, S2),
not existEnd(names, S1, S2).

existEnd(names, S1, S2) ← occurs(namee, S), S1 < S, S < S2.

consecutive(namee, S1, S2) ← occurs(namee, S1), occurs(namee, S2),
not existStart(namee, S1, S2).

existStart(namee, S1, S2) ← occurs(names, S), S1 < S, S < S2.

To translate cs (and similarly ce) which may involve the special variable
?duration, we introduce a new predicate duration/3 such that duration(name,
S1, S2) where S1, S2 ∈ Ss holds if the action name starts at step S1 and ends
at step S2. Its definition is given in Sect. 3.10.

Let α be an arithmetic constraint in cs of action name. Assume the variables
of α be x1, ..., xi, and ?duration. We define αT (S) = p′(S) where p′ is a new
predicate, and αP (S) is

p′(S) ← m(1, S) = X1, ...,m(i, S) = Xi, duration(name, S1, S2),
at(S1) = T1, at(S2) = T2, D = T2 − T1, cs[?duration→ D].

410 F.S. Bao et al.

cs[?duration → D] denotes the result of substituting D for ?duration in cs

simultaneously.
Finally, to make sure that the invariant πo of action name holds during the

duration of an action, we need the following rule.

← not πT
o (T1), S1 ≤ T1, T1 ≤ S2, duration(name, S1, S2).

Note that when there are continuous effects, we need an alternative approach to
the invariants as discussed in the next subsection.

3.8 Continuous Effect

For every variable xi that appears in the left hand side of a continuous assignment
statement, we introduce a defined predicate f(i, S,ΔT) : X , where ΔT is real
number. It means that the value of xi at Step S after the lapse of time ΔT is
X . The value of xi at step S is related to f in the following way.

m(i, S + 1) = X ← at(S) = T1, at(S + 1) = T2,

ΔT = T2 − T1, f(i, S,ΔT) = X.

For assignment statements of continuous effects, we introduce a predicate delta(i,
name, S, ΔT) to represent the impact of durative action name on xi at step
S after the lapse of time ΔT . Recall that for continuous effect, we have only
additive assignments. Let xi 2 exp be an continuous effect of durative action
name.

action on(name, S) ← duration(name, S1, S2),
S1 ≤ S, S ≤ S2.

delta(i, name, S,ΔT) = C ← action on(name, S),
m(1, S) = X1, · · · ,m(n, S) = Xn,

C = signed(2, exp′ ∗ΔT).
delta(i, name, S,ΔT) = 0 ← not action on(name, S).

For any action name that does not have any continuous effect on xi, we have

delta(i, name, S,ΔT) = 0.

The following rule accumulates all the contributions to the xi.

f(i, S,ΔT) = X ← at(S + 1) = T1, at(S) = T0,

0 ≤ ΔT,ΔT ≤ T1 − T0,

X = m(i, S) +
∑

Name∈DN

delta(i, Name, S,ΔT).

where DN denotes the set of all continuous durative actions.
Finally we consider how to monitor the invariant. When the invariant does not

contain any variables that may change continuously, the earlier translation works

A Temporally Expressive Planner Based on ASP with Constraints 411

well. If it contains variables changing continuously, it is much more complex to
represent the invariant by an ACC program. Here, for simplicity, we assume the
invariant α consists of only an arithmetic constraint.

If α is false at certain moment of the duration, the invariant does not hold.
Without loss of generality, let x1, ..., xi be the variables of α. Let name be the
action involving α. We have the following rules.

violated(name, Ss, Se) ← duration(name, Ss, Se),
at(Ss) = T1, at(Se) = T2,

Ss ≤ S, S ≤ Se, T1 ≤ T, T ≤ T2.

f(1, S,ΔT) = X1,

...
f(i, S,ΔT) = Xi,

¬α′,
← violated(name, Ss, Se).

where α′ is the result of substituting Xj for xj (j ∈ [1..i]) of α.

3.9 Encoding PDDL2.1 Restrictions on Actions

PDDL2.1 imposes some restrictions on the occurrence of actions in a plan. We
will discuss these restrictions and how to encode them into ACC rules.

Given an action a, GPrea denotes the set of propositional letters in the pre-
conditions of a, Adda the set of positive literals in the effects of a, Dela the set
of negative literals in the effects of a, Ra the set of variables on the right hand
side of assignment statements of a, and La and L′

a are defined as follows:

– La = {x | x appears as an lvalue in a}, and
– L′

a = {x | x appears as an lvalue in an additive assignment effect in a}.

Two actions a and b are non-interfering, if

GPrea ∩ (Addb ∪Delb) = GPreb ∩ (Adda ∪Dela) = ∅
Adda ∩Delb = Addb ∩Dela = ∅

La ∩Rb = Ra ∩ Lb = ∅
La ∩ Lb ⊆ L′

a ∩ L′
b

Two actions are mutex if they are not non-interfering.
Here are the restrictions on actions of a plan by PDDL2.1.

1. No heterogeneous assignments: at any time, a variable cannot appear as
lvalue in more than one simple assignment effect, or in more than one dif-
ferent type of assignment effect.

2. Non-zero-separation: mutex actions much have different end (starting and
stopping) points. make use of a value if one of the two is accessing the value
to update it.

412 F.S. Bao et al.

No Heterogeneous Assignments. For any two simple actions a and b such
that a.ε and b.ε have different types of assignment on the same variable, we do
not allow them to occur at the same moment, i.e.,

← occurs(a, S), occurs(b, S).

For a simple action a and a continuous durative action b such that a.ε and
b.εo have different types of assignment on the same variable, we do not allow
overlapping of the occurrence of a and b, i.e.,

← occurs(a, S), duration(b, S1, S2), S1 ≤ S, S ≤ S2.

Non-Zero-Separation. For any two mutex actions a and b, the non-zero-
separation rule requires them to have different starting time and different ending
time, namely,

← duration(a, Sa, Ea),
duration(b, Sb, Eb),
shareends(Sa, Ea, Sb, Eb).

where

shareends(Sa, Ea, Sb, Eb) ← at(Sa) = at(Sb).
shareends(Sa, Ea, Sb, Eb) ← at(Sa) = at(Eb).
shareends(Sa, Ea, Sb, Eb) ← at(Eb) = at(Sb).
shareends(Sa, Ea, Sb, Eb) ← at(Eb) = at(Eb).

3.10 Plan Generation

The search for a plan starts from length 1. The length of a plan is defined
as the number of distinct starting and ending time points of durative actions
and the occurring time points of simple actions. Assume we are looking for a
plan with length t. We use two neighboring steps to represent every distinct
starting, ending or occurring point. Hence, the total number of steps is 2t and
thus Ss = {0..2t − 1}. Furthermore, we require that a simple action can only
occur at even numbered steps. The real time mapping to the even step and its
next step is the same, i.e.,

← even(S), at(S) �= at(S + 1).

In the plan generation, for any simple action name and any even step S, oc-
curs(name, S) either happens or not, i.e.,

occurs(name, S) or ¬occurs(name, S) ← even(S).

A Temporally Expressive Planner Based on ASP with Constraints 413

Note that we use or here, which can be translated into ACC rules in a standard
way [15]. For any durative action name, it could occur at any even step and
could occur as many times as necessary.

occurs(names, S) or ¬occurs(names, S) ← even(S).

occurs(namee, S) or ¬occurs(namee, S) ← even(S).

Note that to mimic action name, the occurrences of names and namee must
satisfy the constraints given in Sect. 3.7.

We now define duration(name, S,E) which means durative action name oc-
curs at step S and ends at step E.

duration(name, S,E) ← occurs(names, S), occurs(namee, E),
notexistSE(names, S, E).

existSE(names, S, E) ← occurs(names, S1), S < S1, S1 < E.

existSE(names, S, E) ← occurs(namee, S1), S < S1, S1 < E.

Finally, we require the time of steps follow the chronological order, and different
steps, except those have to be mapped to the same time, be mapped to different
time.

T1 < T2 ← even(S1), even(S2), at(S1) = T1, at(S2) = T2, S1 < S2.

T1 < T2 ← odd(S1), odd(S2), at(S1) = T1, at(S2) = T2, S1 < S2.

4 Conclusion

In this paper, we introduce a method to encode temporal planning problems
represented in PDDL2.1 into ACC. Thanks to the non monotonicity of ACC
and its power in representing constraints, the encoding is rather natural and
straightforward. The generality of ACC also makes it easy to incorporate new
features like PDDL axioms. The planner is complete for the temporally expres-
sive problems. In addition to the work mentioned in the introduction section, we
also note that Dovier et al. [16] proposed a new action language which is able to
represent constraints conveniently. In the future, besides proving the correctness
of the proposed ACC based method, we will carry out a detailed comparison of
the new method with the existing approaches and empirical evaluation of it.

Acknowledgement

We would like to thank Michael Gelfond, whose earlier collaborative work with
us on ACC and process has laid the foundation of the wrok reported here.

414 F.S. Bao et al.

References

1. Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal plan-
ner. In: Proceedings of the 2nd International Conference on Artificial Intelligence
Planning Systems (AIPS), pp. 61–67 (1994)

2. Tate, A.: Representing plans as a set of constraints. In: Proceedings of the 3rd
International Conference on Artificial Intelligence Planning Systems (AIPS), pp.
221–228 (1996)

3. Ai-Chang, M., Bresina, J., Farrell, K., Hsu, J., Jnsson, A., Kanefsky, B., Mc-
Curdy, M., Morris, P., Rajan, K., Vera, A., Yglesias, J., Charest, L., Maldague, P.:
MAPGEN: Mixed-intiative activity planning for the mars exploratory rover mis-
sion. IEEE Intelligent Systems 19(1), 8–12 (2004)

4. Penberthy, J.S., Weld, D.S.: Temporal planning with continuous change. In: Pro-
ceedings of the 12th National Conference on Artificial Intelligence (AAAI), vol. 2,
pp. 1010–1015 (1994)

5. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal plan-
ning domains. Journal of Artificial Intelligence Research (JAIR) 20, 61–124 (2003)

6. Chen, Y., Wah, B., Hsu, C.-W.: Temporal planning using subgoal partitioning and
resolution in sgplan. Journal of Artificial Intelligence Research (JAIR) 26, 323–369
(2006)

7. Vidal, V., Geffner, H.: Branching and pruning: an optimal temporal POCL planner
based on constraint programming. Artificial Intelligence 170(3), 298–335 (2006)

8. Cushing, W., Kambhampati, S., Weld, M., Weld, D.: When is temporal planning
really temporal? In: Proceedings of the 20th International Joint Conference on
Artifical Intelligence (IJCAI), pp. 1852–1859 (2007)

9. Coles, A., Fox, M., Long, D., Smith, A.: Planning with problems requiring tem-
poral coordination. In: Proceedings of the 23rd National Conference on Artificial
Intelligence (AAAI), vol. 2, pp. 892–897 (2008)

10. Huang, R., Chen, Y., Zhang, W.: An optimal temporally expressive planner: Initial
results and application to P2P network optimization. In: Proceedings of the 19th
International Conference on Automated Planning and Scheduling (ICAPS), pp.
178–185 (2009)

11. Hu, Y.: Temporally-expressive planning as constraint satisfaction problems. In:
Proceedings of 17th International Conference on Automated Planning and Schedul-
ing (ICAPS), pp. 192–199 (2007)

12. Thiébaux, S., Hoffmann, J., Nebel, B.: In defense of PDDL axioms. Artificial In-
telligence 168(1), 38–69 (2005)

13. Mellarkod, V.S., Gelfond, M., Zhang, Y.: Integrating answer set programming
and constraint logic programming. Annals of Mathematics and Artificial Intelli-
gence 53(1-4), 251–287 (2008)

14. Lee, J., Lifschitz, V.: Describing additive fluents in action language C+. In:
Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1079–1084 (2003)

15. Baral, C.: Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press, Cambridge (2003)

16. Dovier, A., Formisano, A., Pontelli, E.: Multivalued action languages with con-
straints in CLP(FD). In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670,
pp. 255–270. Springer, Heidelberg (2007)

Applications of Answer Set Programming in
Phylogenetic Systematics

Esra Erdem

Faculty of Engineering and Natural Sciences, Sabancı University
Orhanlı, Tuzla, İstanbul 34956, Turkey
esraerdem@sabanciuniv.edu

Abstract. We summarize some applications of Answer Set Programming (ASP)
in phylogenetics systematics, focusing on the challenges, how they are handled
using computational methods of ASP, the usefulness of the ASP-based meth-
ods/tools both from the point of view of phylogenetic systematics and from the
point of view of ASP.

1 Introduction

Since the concept of a stable model was defined by Michael Gelfond and Vladimir Lif-
schitz [25], the declarative programming paradigm of Answer Set Programming (ASP)
has emerged [32,37,30,31] and flourished with many efficient solvers (e.g., CLASP [22],
CMODELS [29], DLV [13,28], SMODELS [35,37]) and applications. One active area
for ASP has been computational biology and bioinformatics. Various computational
problems have been studied in systems biology [38,39,40,23,24,36,10,26], haplotype
inference [17,14,41], query answering and inconsistency checking over biomedical on-
tologies [1,20,21,19], and phylogenetic systematics [11,5,16,18,15,3,4,7,6] using com-
putational methods of ASP. These applications have led to useful methods/tools not
only for experts in these areas but also for the ASP community.

In this chapter, based on our earlier studies, we summarize some applications of ASP
in phylogenetic systematics—the study of evolutionary relations between species based
on their shared traits [27]. Represented diagrammatically, these relations can form a
tree whose leaves represent the species, internal vertices represent their ancestors, and
edges represent the genetic relationships between them. Such a tree is called a “phy-
logeny”. We consider reconstruction of phylogenies as the first step of reconstructing
the evolutionary history of a set of taxa (taxonomic units). The idea is then to recon-
struct (phylogenetic) networks, which also explain the contacts (or borrowings) between
taxonomic units, from the reconstructed phylogenies by adding some horizontal bidi-
rectional edges. We have studied both steps of inferring evolutionary relations between
species, using computational methods of ASP. We have illustrated the applicability and
effectiveness of these ASP-based methods for the historical analysis of languages (e.g.,
Indo-European languages and Chinese dialects), the historical analysis of parasite-host
systems (e.g., Alcatenia species), and the historical analysis of oak trees (e.g., Quercus
species). While working on these real datasets in close collaboration with the experts,
we have faced some challenges and introduced novel solutions to each one of them. The

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 415–431, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cs.uni-potsdam.de/clasp
http://www.cs.utexas.edu/users/tag/cmodels.html
http://www.dbai.tuwien.ac.at/proj/dlv
http://www.tcs.hut.fi/Software/smodels

416 E. Erdem

������� 	
��� ��
��� ������ �����

�� � � �

�����
�
�������

�����
�
�����
���

� � � � �

Fig. 1. A phylogeny reconstructed for English, German, French, Spanish, Italian with respect to
a leaf-labeling function over two characters, “Hand” and “Father”

following sections summarize these challenges, and our solutions and their usefulness
both from the point of view of phylogenetic systematics and from the point of view of
ASP. We conclude with a discussion of further challenges in phylogenetic systematics
that pose challenges for ASP.

2 Reconstructing Phylogenies

A phylogeny (V,E, L, I, S, f) for a set of taxa is a finite rooted binary tree 〈V,E〉
along with two finite sets I and S and a function f from L × I to S, where L ⊆ V is
the set of leaves of the tree. The set L represents the given taxonomic units whereas the
set V \L describes their ancestral units and the set E describes the genetic relationships
between them. The elements of I are usually positive integers (“indices”) that represent,
intuitively, qualitative characters (i.e., shared traits), and elements of S are possible
states of these characters. The function f “labels” every leaf v by mapping every index i
to the state f(v, i) of the corresponding character in that taxonomic unit. Figure 1 shows
a phylogeny for five languages, L = {English, German, French, Spanish, Italian}, with
two characters, I = {“Hand”, “Father”}, that have two states, S = {1, 2}.

Our studies in phylogenetic systematics are based on the compatibility criterion [9],
where the goal is to reconstruct a phylogeny with a large number of characters that are
“compatible” with it. Intuitively, a character is compatible with a phylogeny/network if
the taxonomic units that instantiate this character in the same way (i.e., that have the
same character state) are connected via a tree in that phylogeny.

A character i ∈ I is compatible with a phylogeny (V,E, L, I, S, f) if there exists a
function g : V × {i} → S such that

Applications of ASP in Phylogenetics 417

������� 	
��� ��
��� ������ �����

�� � � �

�����
�
�������

�

�

�

�

Fig. 2. An example for a compatible character (“Hand”): all vertices labeled by 1 (resp. 2) are
connected via a rooted tree

– for every leaf v of the phylogeny, g(v, i) = f(v, i); and
– for every s ∈ S, if the set Vis = {x ∈ V : g(x, i) = s} is nonempty then the

digraph 〈V,E〉 has a subgraph with the set Vis of vertices that is a rooted tree.

A character is incompatible with a phylogeny if it is not compatible with that phylogeny.
For example, in Figure 2, Character “Hand” is compatible with respect to the given

phylogeny, since all vertices labeled with the same state are connected with a tree.
In Figure 3, Character “Father” is incompatible, since there is no possible labeling of
internal vertices such that all vertices labeled with the same state are connected with a
tree.

The computational problem we are interested in is the following problem:

n-INCOMPATIBILITY PROBLEM Given three sets L, I , S and a function f , and a
non-negative integer n, decide the existence of a phylogeny (V,E, L, I, S, f) with
at most n incompatible characters.

This problem is NP-hard [9,2,34,5].
In [4,3], we described this decision problem as an ASP program whose answer sets

correspond to such phylogenies, and proved the correctness of this formalization. We
observed that domain-specific geographical/temporal constraints could be added to the
main program as constraints, to compute more plausible phylogenies.

Usually, instead of finding one phylogeny with the minimum number of incompatible
characters, experts are interested in finding all phylogenies with a small number n of
characters. Finding these phylogenies, by first computing all the answer sets and then
extracting distinct phylogenies from them may not be efficient since there are many

418 E. Erdem

������� 	
��� ��
��� ������ �����
�����
�
�����
���

� � � � �

�

�

�

�

(a)

������� 	
��� ��
��� ������ �����
�����
�
�����
���

� � � � �

�

�

�

�

(b)

Fig. 3. An example for an incompatible character (“Father”): if you label the internal vertices by
1 as in (a) (resp. 2 as in (b)), the vertices labeled by 1 (resp. 2) are connected but the vertices
labeled by 2 (resp. 1) are not connected

answer sets that correspond to the same phylogeny due to different possible labelings
of internal vertices (e.g., the root of the phylogeny in Figure 2 can be labeled as 1 or
2, leading to two different labelings of vertices of the same tree). On the other hand,
we can compute all phylogenies with i = 0, ..., n incompatible characters as in [3,4]

Applications of ASP in Phylogenetics 419

by iteratively calling an ASP solver to find a phylogeny different from the previously
computed ones until no answer set is found. After that, the experts can identify the
phylogenies that are plausible.

Although the ASP formulation of phylogeny reconstruction as in [4,3] is applicable
to many real datasets, we observed in our studies that it is not applicable to real datasets
with “ambiguous” labelings, i.e., where a leaf is labeled by a set of states rather than
a unique state. Such ambiguities are mostly due to polymorphic characters. If a real
dataset (such as Indo-European languages) has only a few such ambiguities, then every
possible combination of these labelings are considered as a new character. However, if a
dataset has many ambiguities (like Turkic languages), enumerating all possibilities will
lead to too many new characters. In such cases, to deal with this challenge, we modified
our ASP program by adding an explicit definition of a leaf-labeling function that picks
exactly one state for each group, from the set of states that label the group, as described
in [5].

3 Computing Similar/Diverse Phylogenies

For a given dataset, we usually compute all phylogenies with a large number of com-
patible characters, that also satisfy the given domain-specific constraints. However,
sometimes there are too many such phylogenies, and then the experts have to ana-
lyze/compare them manually to pick the most plausible ones.

In our experiments with Indo-European languages [3,4], we observed that one way
the experts analyze phylogenies is as follows: try to classify the phylogenies by finding
few diverse phylogenies, and pick the most plausible one among them; afterwards, try to
find phylogenies close to this plausible phylogeny. So if we can compute similar/diverse
phylogenies, and phylogenies close/distant to a given set of phylogenies, then there is
no need to compute all phylogenies in advance. With this motivation, we studied the
following two main problems:

n k-SIMILAR PHYLOGENIES (resp. n k-DIVERSE PHYLOGENIES)
Given an ASP program that formulates reconstruction of phylogenies with at most
l incompatible characters, a distance measure Δ that maps a set of phylogenies to a
nonnegative integer, and two nonnegative integers n and k, decide whether a set S
of n phylogenies with at most l incompatible characters exists such that Δ(S) ≤ k
(resp. Δ(S) ≥ k).

k-CLOSE PHYLOGENY (resp. k-DISTANT PHYLOGENY)
Given an ASP program that formulates reconstruction of phylogenies with at most
l incompatible characters, a distance measure Δ that maps a set of phylogenies to
a nonnegative integer, a set S of phylogenies, and a nonnegative integer k, decide
whether a phylogeny s (s �∈ S) with at most l incompatible characters exists such
that Δ(S ∪ {s}) ≤ k (resp. Δ(S ∪ {s}) ≥ k).

We studied in [11,6] various related decision/optimization problems, analyzed their
complexities, and computational methods for solving them offline/online. We also in-
troduced novel distance functions for comparing phylogenies.

420 E. Erdem

In particular, we investigated three sorts of online methods to compute n k-similar
or diverse phylogenies. In the first method, the idea is to reformulate the ASP program
for phylogeny reconstruction to compute n-distinct phylogenies, to formulate the dis-
tance function as an ASP program, and then to extract n k-similar (resp. k-diverse)
phylogenies from an answer set for the union of these ASP programs.

The second method does not modify the ASP program for phylogeny reconstruction
but formulates the distance function as an ASP program, so that a unique k-close (resp.
k-distant) phylogeny can be extracted from an answer set for the union of these ASP
programs and a previously computed phylogeny; then, by iteratively computing k-close
(resp. k-distant) phylogenies one after other, it computes online a set of n k-similar (or
k-diverse) solutions.

The third method is different from the first two methods in that it does not modify the
ASP program encoding phylogeny reconstruction, and it does not formulate the distance
function as an ASP program. Instead it modifies the search algorithm of an ASP solver
to compute all n k-similar (or k-diverse) phylogenies at once with respect to the dis-
tance function implemented as a C++ program. For this method, we modified the search
algorithm of CLASP [22], in the spirit of a branch-and-bound algorithm to compute sim-
ilar/diverse solutions. CLASPperforms a DPLL-like [8,33] branch and bound search to
find an answer set for a given ASP program: at each level, it “propagates” some literals
to be included in the answer set, “selects” new literals to branch on, or “backtracks”
to an earlier appropriate point in search while “learning conflicts” to avoid redundant
search. We modified CLASP to obtain CLASP-NK as in Algorithm 1; the modifications
are shown in color red. CLASP-NK can compute n k-similar/diverse solutions. In our ex-
periments for reconstructing similar/diverse solutions for Indo-European languages, we
observed that this method is computationally more efficient than the other two methods
in terms of time/space and that it allows for computing similar/diverse solutions in ASP
when the distance function cannot be formulated in ASP (e.g., due to some numerical
functions).

4 Computing Weighted Phylogenies

Another way to find more plausible phylogenies is to assign a weight to each phylogeny
to characterize its plausibility, and to compute phylogenies whose weights are over
some given threshold. For that we studied in [6,7] the following problem:

AT LEAST (resp. AT MOST) w-WEIGHTED PHYLOGENY: Given an ASP program
that formulates reconstruction of phylogenies with at most l incompatible charac-
ters, a weight measure ω that maps a phylogeny to a nonnegative integer, and a
nonnegative integer w, decide whether a phylogeny S with at most l incompatible
characters exists such that ω(S) ≥ w (resp. ω(S) ≤ w).

Motivated by our studies on computing similar/diverse solutions in ASP [11], we stud-
ied representation/search-based online methods for computing weighted solutions in
ASP. We introduced novel weight functions that take into account domain-specific in-
formation such as expected groupings of taxonomic units. We also modified the search
algorithm of CLASP to compute weighted solutions; this modified version is called
CLASP-W.

http://www.cs.uni-potsdam.de/clasp
http://www.cs.uni-potsdam.de/clasp
http://www.cs.uni-potsdam.de/clasp
http://krr.sabanciuniv.edu/projects/SimilarDiverseSolnsInASP/
http://krr.sabanciuniv.edu/projects/SimilarDiverseSolnsInASP/
http://www.cs.uni-potsdam.de/clasp
http://krr.sabanciuniv.edu/projects/SimilarDiverseSolnsInASP/

Applications of ASP in Phylogenetics 421

Algorithm 1. The algorithm of CLASP-NK

Input: An ASP program Π , nonnegative integers n, and k
Output: A set X of n solutions that are k similar (n k-similar solutions)

A ← ∅ // current assignment of literals
� ← ∅ // set of conflicts
X ← ∅ // computed solutions
while |X| < n do

PartialSolution ← A
// compute a lower bound for the distance between any completion of a partial solution

and previously computed solutions
LowerBound ← DISTANCE-ANALYZE(X,PartialSolution)
PROPAGATION(Π,A,�)
if Conflict in propagation OR LowerBound > k then

RESOLVE-CONFLICT(Π,A,�) // learn and update the conflict set and do backtracking
else

if Current assignment does not yield an answer set then
SELECT(Π,A,�) // select a literal to continue search

else
X ← X ∪ A
A ← ∅

end if
end if

end while
return X

5 Reconstructing Phylogenies for Very Large Datasets

For many real datasets, using the ASP program of [4,3] using an existing ASP solver
is quite inefficient and even not possible. For a more efficient computation, we investi-
gated methods to reduce the datasets and to improve the search.

In phylogeny reconstruction, one way to handle a large dataset is to reduce it to a
smaller dataset by some preprocessing (e.g., by removing the noninformative parts of
the dataset as in [3]). With such a preprocessing, for instance, out of 282 characters of
Indo-European languages, 21 are found to be informative. However, such preprocessing
may not be applicable to all datasets, like Quercus (oak trees), since every bit of the
given information is essential in reconstructing a phylogeny.

In such cases, a phylogeny can be computed by a divide-and-conquer approach, if
the experts provide some domain-specific information about how the species could be
grouped; usually the experts provide such information. For instance, [3] applies this idea
on Indo-European languages: first 8 language groups are identified over 24 languages by
the historical linguist Don Ringe, then a plausible phylogeny is reconstructed for each
group by “propagating up” the labelings of taxonomic units towards the root, and finally
a main phylogeny is reconstructed over the roots of these phylogenies. However, this
bottom-up approach may not be applicable to all datasets, like Quercus, where a group
of taxonomic units may lead to many different phylogenies and cannot be characterized
by a unique node. Note that if we pick one of these phylogenies and accordingly decide

http://krr.sabanciuniv.edu/projects/SimilarDiverseSolnsInASP/

422 E. Erdem

(a) (b)

(c) (d)

(e)

Fig. 4. (a) Given taxonomic units (b) and their groupings. (c) A main phylogeny for all groups,
where the triangles denote a labeling for the groups. (d) Phylogenies reconstructed for each group.
(e) A complete phylogeny obtained by combining the main phylogeny for all groups with the
phylogenies for each group.

for a labeling for the groups, we may end up reconstructing a main phylogeny with
more number of incompatible characters. However, since the main phylogeny charac-
terizes deep evolution, experts expect less number of incompatible characters for such
phylogenies.

To be able to automatically reconstruct phylogenies for large datasets, including
Quercus, [5] introduces a different divide-and-conquer method for reconstructing large
phylogenies with a top-down approach (Figure 4): first a main phylogeny is computed
viewing each group as a unique node, and then phylogenies are computed for each
group. This approach is applicable to datasets where the groupings are not as clean as
in Indo-European. However, it still needs to address some challenges.

To be able to reconstruct a main phylogeny for the groups of taxonomic units, we
need a labeling of these groups. How can we pick such a labeling considering the label-
ings of the taxonomic units? Recall that the ASP program of [4,3] for reconstruction of
phylogenies assumes that a leaf-labeling function f is given as an input. As described
at the end of Section 2, this program can be modified to handle ambiguous data (as in

Applications of ASP in Phylogenetics 423

[5]) by adding an explicit definition of a leaf-labeling function that picks exactly one
state for each group, from the set of states that label the group. By this way, labels of
groups can be determined automatically while reconstructing the phylogeny.

The divide-and-conquer approach of [5] reconstructs two sorts of phylogenies: one
phylogeny for each group of taxonomic units, and one main phylogeny for all groups.
In each case, we may end up computing too many possible phylogenies for a set of taxa,
with a large number of compatible characters. Instead, in each case, we can compute the
most plausible phylogenies using domain-specific information provided by the experts.
For instance, for the first kind of phylogenies, according to the compatibility criterion,
we can group taxonomic units with more number of identical character states closer to
each other. Once we define a weight measure (as in [6,7] introduced for Indo-European
languages) to characterize this idea of plausibility, we can find a max-weighted phy-
logeny using methods of Section 4. For the reconstruction of the main phylogeny, we
can utilize further domain-specific information about possible classification of groups
so that the phylogenies that classify the groups with respect to the given domain-specific
information have more weight. For that, we can define a weight measure that takes into
account hierarchical groupings of taxonomic units (as in [7] introduced for Quercus
species); and utilize our methods described in Section 4 for computing max-weighted
phylogenies.

6 PHYLO-ASP

We implemented some of the methods/algorithms for reconstructing/analyzing/
comparing phylogenies summarized above, as part of a phylogenetic system, called
PHYLO-ASP. This system has mainly four components.

PHYLORECONSTRUCT-ASP is used for reconstructing (weighted) phylogenies. Its
overall structure is illustrated in Figure 5. To use this system, the expert provides a leaf-
labeling function for a set of taxonomic units. Optionally, she can choose one of the
four available weight measures, two domain-independent and two domain-dependent
[5], or provide a new weight measure; and provide some domain-specific information
about groupings of taxonomic units. Before reconstruction of phylogenies, the system
performs some preprocessing as described in [3] and [5]. If some grouping information
is provided then the system follows the divide-and-conquer algorithm of Section 5 by
utilizing the methods for computing weighted phylogenies of Section 4. Otherwise, it
computes phylogenies as described in Sections 2 and 4. According to the given option,
the system can solve various optimization/decision problems.

PHYLORECONSTRUCTN-ASP is used for computing similar/diverse phylogenies, uti-
lizing the methods described in Section 3. The expert needs to provide a leaf-labeling
function for a set of taxonomic units. The system implements two distance measures,
one domain-independent and one domain-dependent [11]; so the expert can choose one
of them. Depending on the appropriate option, the system can solve various optimiza-
tion/decision problems.

424 E. Erdem

Fig. 5. The Overall System Architecture of PHYLORECONSTRUCT-ASP

PHYLOANALYZE-ASP is used for analyzing a given phylogeny or a given dataset, as
described in [5]. For instance, we can find informative characters in a given dataset, or
compatible characters with respect to a given phylogeny using this system.

PHYLOCOMPARE-ASP is used for comparing phylogenies offline, as described in
[11]. For instance, we can find similar/diverse phylogenies among some given phy-
logenies. The system implements two distance measures, one domain-independent and
one domain-dependent [11]; so the expert can choose one of them.

Applications of ASP in Phylogenetics 425

We applied PHYLO-ASP to reconstruct and analyze Chinese dialects, Indo-European
languages, Turkic languages, Alcataenia species (a tapeworm genus), and Quercus
species (oak trees). After reconstructing phylogenies for each taxa using PHYLO-ASP,
we identified the phylogenies that are plausible. For instance, for the Chinese dialects
and Indo-European languages, the plausibility of phylogenies is identified with respect
to the available linguistics and archaeological evidence. For Alcataenia, the plausibil-
ity of the phylogeny we compute is dependent on the knowledge of host phylogeny
(e.g., phylogeny of the seabird family Alcidae), chronology of the fossil record, and
biogeographical evidence. On the other hand, we computed similar/diverse phyloge-
nies for these datasets using PHYLO-ASP. All these experimental results are detailed
in [5,6,7,16,11,3,4].

7 Reconstructing Temporal Networks

A phylogeny for a given set of taxonomic units characterizes the genetic evolution-
ary relations between them. If there are few characters left that are not compatible
with the phylogeny, then the relations between the taxonomic units can be explained
differently for these characters. For instance, contacts/borrowings may explain how
these characters have such states. To characterize such relations, we transform the phy-
logeny into a network by adding a small number of horizontal edges that represent
contact/borrowings between the taxonomic units.

For some datasets, like languages, experts can provide us explicit temporal informa-
tion about extinct languages—by estimates of the dates when those languages could be
spoken. Such temporal information can be integrated into the concept of a phylogeny
and a network with a “date” assigned to each vertex, leading to the concepts of “tem-
poral phylogenies” and “temporal networks” (Figure 6). Dates monotonically increase
along every branch of the phylogeny, and the dates assigned to the ends of a lateral
edge are equal to each other. With such an extended definition of a phylogeny/network,
we can talk not only about the languages that are represented by the vertices, but also
about the “intermediate” languages spoken by members of a linguistic community at
various times.

A “temporal phylogeny” is a phylogeny along with a function τ from vertices of
the phylogeny to real numbers denoting the times when these taxonomic units emerged
(Figure 6(a)). A contact between two taxonomic units can be represented by a horizontal
edge added to a pictorial representation of temporal phylogeny (Figure 6(b)). The two
endpoints of the edge are simultaneous “events” in the histories of these communities.
An event can be represented by a pair v↑t, where v is a vertex of the phylogeny and t is
a real number.

A finite set C of contacts defines a temporal (phylogenetic) network 〈V ∪VC , EC〉—
a digraph obtained from T = 〈V,E〉 by inserting the elements v↑t of the contacts from
C as intermediate vertices and then adding every contact in C as a bidirectional edge.
We say that a set C of contacts is simple if the endpoints of all lateral edges are different
from the vertices of T , and each lateral edge subdivides an edge of T into exactly two
edges.

About a simple set C of contacts (and about the corresponding temporal network
〈V ∪ VC , EC〉) we say that it is perfect if there exists a function g : (V ∪ VC)× I → S

426 E. Erdem

2000
0

0

500

1000

1500

1

10

1

00

1
A

B

C

D
0

0

0

500

1000

1500

2000
1

10

1

00

1

0

0

1

1

11

A

B

C

D
10 0

(a) (b)

Fig. 6. A temporal phylogeny (a), and a perfect temporal network (b) with a lateral edge connect-
ing B↑1750 with D↑1750

such that the function g extends f from leaves to all internal nodes of the temporal
network, and that every state s of every character i could evolve from its original occur-
rence in some “root” (i.e., every character i is compatible with the temporal network).

We are interested in the problem of turning a temporal phylogeny into a perfect
temporal network by adding a small number of simple contacts. For instance, given the
phylogeny in Figure 6(a), the single contact {B↑1750, D↑1750} is a possible answer.

It is clear that the information included in a temporal phylogeny is not sufficient for
determining the exact dates of the contacts that turn it into a perfect temporal network.
To make this idea precise, let us select for each v ∈ V \{R} a new symbol v↑, and define
the summary of a simple set C of contacts to be the result of replacing each element
v↑t of every contact in C with v↑. Thus summaries consist of 2-element subsets of the
set V ↑= {v↑ : v ∈ V \ {R}}. For instance, the summary of the set of contacts of
Figure 6(b) is {{B↑, D↑}}. Then the computational problem we are interested in can
be described as follows:

n-INCREMENT TO PERFECT SIMPLE TEMPORAL NETWORK (n-IPSTN) Given
a phylogeny 〈V,E, I, S, f〉, a function v 0→ (τmin(v), τmax(v)) from the vertices of
the phylogeny to open intervals, and a nonnegative integer n, decide the existence
of a set of 2-element subsets of V ↑ that is the summary of a perfect simple set
of n contacts for a temporal phylogeny 〈V,E, I, S, f, τ〉 such that, for all v ∈ V ,
τmin(v) < τ(v) < τmax(v).

This problem is NP-hard [5]. [16] describes the n-IPSTN problem as an ASP program
whose answer sets correspond to such networks characterized by summaries of contacts.

While studying this problem we faced several difficulties. One challenge was to mod-
ify the mathematical model of a temporal network in such a way that we do not have to
deal with (real) numbers; so we introduced the concept of summaries and related them
to networks.

To ensure that the edges are horizontal, we need to solve a sort of time interval
analysis problem; since it involves reasoning over (real) numbers, we investigated other
methods that are better suited than ASP. Essentially, we solved n-IPSTN problems in

Applications of ASP in Phylogenetics 427

2

11

2
1

3 2

3

1

1 1

1
3 3

2

2

2

(a)

11

2
1

3 2

3

1

1 1

1
3

2

2

2

2

11

2
1

3 2

3

1
1

3
2

2

2

2

11

2
1

3 2

3

1

1

1
3 3

2

2

2

2
1

1 1

3
3

(b)

Fig. 7. A network (a) and its corresponding digraph (b)

two steps: use an ASP system (CMODELS) to compute summaries so that every char-
acter is compatible with the network, and then use a Constraint Logic Programming
system (ECLiPSe) to check, for each summary, whether the corresponding contact oc-
curs within the given time intervals.

Reconstructing all networks for real datasets, such as Indo-European languages, with
this approach is still quite inefficient since the datasets are very large. To handle this
challenge, we investigated in [15] the idea of using our ASP program on smaller prob-
lems, embedded in a divide-and-conquer algorithm: first reconstruct a set of minimal
networks for each character, and then find a minimal hitting set using also ASP. We
could compute solutions with this divide-and-conquer approach, that we could not com-
pute earlier.

We also investigated the effect of reformulating the problem in ASP [16]. We
observed that our ASP program is not tight due to bidirectional lateral edges in the
network: Recall that we need to check the compatibility of every character with the net-
work, and for that we need to check whether every vertex labeled by the same state are
connected by a tree with root r; thus, for connectedness, we need to check the reachabil-
ity of a vertex from another; therefore, with the usual recursive definition of reachability,
our ASP program is not tight. We also observed that our ASP program that describes a

http://www.cs.utexas.edu/users/tag/cmodels.html

428 E. Erdem

network with n bidirectional edges can be turned into a tight program: consider instead
n + 1 copies of the network connected by n additional edges (as in Figure 7), define
the reachability of a vertex in one network from a vertex in another network, and check
the compatibility of a character with respect to this directed acyclic graph. We observed
that the tight version of the program led to more efficient computations.

We implemented a phylogenetic system, called PHYLONET-ASP [5], for recon-
structing (temporal) phylogenetic networks based on the tight formulation of the n-
IPSTN problem, and by considering a simpler version of the interval analysis problem
so that an ASP solver can be used to solve it. In our experiments with Indo-European
languages, Chinese dialects and Quercus species, after identifying a plausible phy-
logeny for each taxa, we transformed the phylogeny into phylogenetic networks using
PHYLONET-ASP [5,15,18].

8 Discussion

All of the ASP-based methods/tools briefly described above present novelties for phylo-
genetic systematics: new mathematical models for reconstructing phylogenies/networks
based on the compatibility criterion (e.g., concept of a temporal phylogeny/network),
new software for reconstructing phylogenies/networks (PHYLORECONSTRUCT-
ASP and PHYLONET-ASP), new domain-specific/independent distance/weight
measures for phylogenies, new software for comparing and analyzing phylogenies
(PHYLOCOMPARE-ASP and PHYLOANALYZE-ASP) and computing similar/diverse/
weighted phylogenies (PHYLORECONSTRUCTN-ASP). Due to the compatibility cri-
terion, our ASP-based methods are applicable to datasets (mostly based on morpho-
logical characters) with no (or very rare) backmutation; they are not applicable to
genomic datasets. Therefore, the usefulness of these approaches have been shown on
various morphological datasets, such as Indo-European languages, Chinese dialects,
Turkic languages, Alcatenia species, and Quercus species: various plausible phyloge-
nies/networks are computed that conformed with the available evidences; some of these
results were different from the ones computed earlier.

All these applications have been useful in understanding the strengths of ASP (e.g.,
easy representation of recursive definitions, such as reachability of a vertex from an-
other vertex in a directed cyclic graph, easy representation of cardinality constraints,
elaboration-tolerant representation of domain-specific information in terms of
constraints) and the weaknesses of ASP. In particular, understanding the latter has led to
novel methods/methodologies for solving computational problems as part of real world
applications.

For instance, for many large datasets, it is not possible to reconstruct phylogenies/
networks using a straightforward representation of the problem with an existing ASP
solver. To handle this challenge, we have investigated methods to reduce the datasets
and to make the search more efficient. First, we have developed some preprocessing
methods to find the informative part of the datasets. When we noticed that preprocessing
is not sufficient to reconstruct phylogenies for some datasets, we have developed a
divide-and-conquer algorithm that computes a phylogeny in pieces and combines them
in the end. Similarly, we have developed a divide-and-conquer algorithm to reconstruct
networks from phylogenies, making use of hitting sets.

Applications of ASP in Phylogenetics 429

When we noticed that some numerical computations (e.g., some weight/distance
measures) are not supported by the ASP solvers, we have modified the ASP solver
CLASP to compute a weighted solution where the weight function is implemented as
a C++ program. The modified version of CLASP, called CLASP-W, is general enough
to compute weighted solutions for other computational problems such as planning. An-
other novelty of CLASP-W is that it builds a weighted solution incrementally in the spirit
of a branch-and-bound algorithm; by this way, redundant search is avoided. Similarly,
we have modified CLASP to compute similar/diverse solutions with respect to a given
distance function; the modified version is called CLASP-NK.

To handle many of the challenges, we have used computational methods of ASP in
connection with other computational methods. For instance, for reconstructing tempo-
ral networks, we have used an ASP solver (CMODELS) for reconstructing a network and
a Constraint Programming system (ECLIPSE) for time interval analysis. Also, in some
applications, we have embedded ASP solvers as part of larger implementations (cf. the
overall structure of PHYLORECONSTRUCT-ASP in Figure 5). One interesting idea in
connection with these ideas of using ASP with other paradigms and embedded in more
complex algorithms is to investigate the other way around: how other computational
methods can be embedded in ASP. The latest studies on programs with external predi-
cates [12] and their implementations (e.g., DLVHEX) may be helpful for extending the
ASP solvers, like CLASP, whose input language is the same as LPARSE’s.

On the other hand, we have investigated how the straightforward ASP formulations
of the problems can be modified to obtain better computational efficiency in terms of
time and space. For instance, for network reconstruction, we have turned the non-tight
ASP program that includes the usual recursive definition of reachability to a tight ASP
program. In our studies for computing weighted phylogenies, we have observed that
using aggregates in the definitions of weight functions, compared to their explicit def-
initions, leads to better computational performance. One useful direction to investigate
would be the effect of reformulation in ASP for various computational problems.

Acknowledgments

Our work on the use of ASP in phylogenetic systematics has involved, at various
stages, close collaborations with Yasin Bakis, Balkiz Ozturk Basaran, Dan Brooks,
Duygu Cakmak, Thomas Eiter, Halit Erdogan, Selim Erdogan, Michael Fink, Vladimir
Lifschitz, Luay Nakhleh, James Minett, Mehmet Olmez, Don Ringe, Ugur Sezerman,
Feng Wang. Agostino Dovier has provided useful suggestions on an earlier version of
this paper.

References

1. Bodenreider, O., Çoban, Z.H., Doğanay, M.C., Erdem, E., Koşucu, H.: A preliminary report
on answering complex queries related to drug discovery using answer set programming. In:
Proc. of ALPSWS (2008)

2. Bodlaender, H.L., Fellows, M.R., Warnow, T.J.: Two strikes against perfect phylogeny. In:
Proc. of 19th International Colloquidum on Automata Languages and Programming, pp.
273–283. Springer, Heidelberg (1992)

http://www.cs.uni-potsdam.de/clasp
http://www.cs.uni-potsdam.de/clasp
http://krr.sabanciuniv.edu/projects/SimilarDiverseSolnsInASP/
http://krr.sabanciuniv.edu/projects/SimilarDiverseSolnsInASP/
http://www.cs.uni-potsdam.de/clasp
http://krr.sabanciuniv.edu/projects/SimilarDiverseSolnsInASP/
http://www.kr.tuwien.ac.at/research/systems/dlvhex/
http://www.cs.uni-potsdam.de/clasp
http://www.tcs.hut.fi/Software/smodels

430 E. Erdem

3. Brooks, D.R., Erdem, E., Erdoğan, S.T., Minett, J.W., Ringe, D.: Inferring phylogenetic trees
using answer set programming. Journal of Automated Reasoning 39(4), 471–511 (2007)

4. Brooks, D.R., Erdem, E., Minett, J.W., Ringe, D.: Character-based cladistics and answer set
programming. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp.
37–51. Springer, Heidelberg (2005)

5. Cakmak, D.: Reconstructing weighted phylogenetic trees and weighted phylogenetic net-
works using answer set programming, M.S. Thesis, Sabancı University (2010)

6. Cakmak, D., Erdem, E., Erdogan, H.: Computing weighted solutions in answer set program-
ming. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 416–422.
Springer, Heidelberg (2009)

7. Cakmak, D., Erdogan, H., Erdem, E.: Computing weighted solutions in ASP: Representation-
based method vs. search-based method. In: Proc. of RCRA Workshop on Experimental Eval-
uation of Algorithms for Solving Problems with Combinatorial Explosion (2010)

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-
nications of the ACM 5, 394–397 (1962)

9. Day, W.H.E., Sankoff, D.: Computational complexity of inferring phylogenies by compati-
bility. Systematic Zoology 35(2), 224–229 (1986)

10. Dworschak, S., Grell, S., Nikiforova, V.J., Schaub, T., Selbig, J.: Modeling biological net-
works by action languages via answer set programming. Constraints 13(1-2), 21–65 (2008)

11. Eiter, T., Erdem, E., Erdogan, H., Fink, M.: Finding similar or diverse solutions in answer set
programming. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 342–356.
Springer, Heidelberg (2009)

12. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-
soning and external evaluations in answer-set programming. In: Proc. of IJCAI, pp. 90–96
(2005)

13. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for non-
monotonic reasoning. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 364–375. Springer, Heidelberg (1997)

14. Erdem, E., Erdem, O., Ture, F.: HAPLO-ASP: Haplotype inference using answer set pro-
gramming. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp.
573–578. Springer, Heidelberg (2009)

15. Erdem, E., Lifschitz, V., Nakhleh, L., Ringe, D.: Reconstructing the evolutionary history
of indo-european languages using answer set programming. In: Dahl, V. (ed.) PADL 2003.
LNCS, vol. 2562, pp. 160–176. Springer, Heidelberg (2003)

16. Erdem, E., Lifschitz, V., Ringe, D.: Temporal phylogenetic networks and logic programming.
Theory and Practice of Logic Programming 6(5), 539–558 (2006)

17. Erdem, E., Ture, F.: Efficient haplotype inference with answer set programming. In: Proc. of
AAAI, pp. 436–441 (2008)

18. Erdem, E., Wang, F.: Reconstructing the evolutionary history of Chinese dialects (2006)
(accepted for presentation at the 39th International Conference on Sino-Tibetan Languages
and Linguistics, ICSTLL 2006)

19. Erdem, E., Yeniterzi, R.: Transforming controlled natural language biomedical queries into
answer set programs. In: Proc. of BioNLP, pp. 117–124 (2009)

20. Erdogan, H., Bodenreider, O., Erdem, E.: Finding semantic inconsistencies in UMLS using
answer set programming. In: Proc. of AAAI (2010)

21. Erdogan, H., Erdem, E., Bodenreider, O.: Exploiting umls semantics for checking semantic
consistency among umls concepts. In: Proc. of MedInfo (2010)

22. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
Proc. of IJCAI, pp. 386–392 (2007)

Applications of ASP in Phylogenetics 431

23. Gebser, M., Guziolowski, C., Ivanchev, M., Schaub, T., Siegel, A., Thiele, S., Veber, P.:
Repair and prediction (under inconsistency) in large biological networks with answer set
programming. In: Proc. of KR (2010)

24. Gebser, M., Schaub, T., Thiele, S., Usadel, B., Veber, P.: Detecting inconsistencies in large
biological networks with answer set programming. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 130–144. Springer, Heidelberg (2008)

25. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski,
R., Bowen, K. (eds.) Logic Programming: Proceedings of the Fifth International Conference
and Symposium, pp. 1070–1080 (1988)

26. Grell, S., Schaub, T., Selbig, J.: Modelling biological networks by action languages via an-
swer set programming. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079,
pp. 285–299. Springer, Heidelberg (2006)

27. Hennig, W.: Phylogenetic Systematics. University of Illinois Press, Urbana (1966); translated
from: Davis, D. D., Zangerl, R.: Grundzuege einer Theorie der phylogenetischen Systematik
(1950)

28. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv sys-
tem for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562
(2006)

29. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based answer set solver enhanced to non-tight
programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp.
346–350. Springer, Heidelberg (2004)

30. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138, 39–
54 (2002)

31. Lifschitz, V.: What is answer set programming? In: Proc. of AAAI (2008)
32. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.

In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer,
Heidelberg (1999)

33. Marques-Silva, J., Sakallah, K.: Grasp: A search algorithm for propositional satisfiability.
IEEE Trans. Computers 5, 506–521 (1999)

34. Nakhleh, L.: Phylogenetic Networks. Ph.D. thesis, The university of Texas at Austin (2004)
35. Niemelä, I., Simons, P.: Smodels - an implementation of the stable model and well-founded

semantics for normal lp. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 421–430. Springer, Heidelberg (1997)

36. Schaub, T., Thiele, S.: Metabolic network expansion with answer set programming. In: Hill,
P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 312–326. Springer, Heidelberg
(2009)

37. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138, 181–234 (2002)

38. Tari, L., Anwar, S., Liang, S., Hakenberg, J., Baral, C.: Synthesis of pharmacokinetic path-
ways through knowledge acquisition and automated reasoning. In: Proc. of PSB, pp. 465–476
(2010)

39. Tran, N., Baral, C.: Reasoning about triggered actions in ansprolog and its application to
molecular interactions in cells. In: Proc. of KR, pp. 554–564 (2004)

40. Tran, N., Baral, C.: Hypothesizing about signaling networks. J. Applied Logic 7(3), 253–274
(2009)

41. Ture, F., Erdem, E.: Efficient haplotype inference with answer set programming. In: Proc. of
AAAI, pp. 1834–1835 (2008)

ASP at Work: Spin-off and Applications

of the DLV System�

Giovanni Grasso, Nicola Leone, Marco Manna, and Francesco Ricca

Department of Mathematics, University of Calabria, Italy
{grasso,leone,manna,ricca}@mat.unical.it

Abstract. Answer Set Programming (ASP) is a declarative language
for knowledge representation and reasoning. After its proposal, in a sem-
inal paper by Michael Gelfond and Vladimir Lifschitz dated in 1988, ASP
has been the subject of a broad theoretical research-work, ranging from
linguistic extensions and semantic properties to evaluation algorithm and
optimization techniques. Later on, the availability of a number of effi-
cient systems made ASP a powerful tool for the fast development of
knowledge-based applications. In this paper, we report on the ongoing
effort aimed at the industrial exploitation of DLV– one of the most pop-
ular ASP systems – in the area of Knowledge Management. Two spin-off
companies of University of Calabria are involved in such an exploitation:
Dlvsystem Srl and Exeura Srl. They have specialized DLV into some
Knowledge Management products for Text Classification, Information
Extraction, and Ontology Representation and Reasoning, which have al-
lowed to develop a number of successful real-world applications.

Keywords: ASP, DLV System, Knowledge Management, Applications.

1 Introduction

Answer Set Programming (ASP) is a powerful logic programming language hav-
ing its roots in the seminal papers [38,39] by Michael Gelfond and Vladimir Lif-
schitz. ASP is a purely declarative and expressive language that can represent,
in its general form allowing for disjunction in rule heads [50] and nonmonotonic
negation in rule bodies, every problem in the complexity classes ΣP

2 and ΠP
2

(under brave and cautious reasoning, respectively) [27]. The comparatively-high
expressive power of ASP comes with the capability of providing, in a compact-
yet-elegant way, ready-to-execute formal specifications of complex problems. In-
deed, the ASP encoding of a large variety of problems is very concise, simple,
and elegant [5,26,36,23].

As an example, consider the well-known NP-complete problem 3-coloring:
given an undirected graph G = (V,E), assign each vertex one of three colors
-say, red, green, or blue- such that adjacent vertices always have distinct colors.
3-coloring can be encoded in ASP as follows:
� This work was partially supported by the Regione Calabria and EU under POR

Calabria FESR 2007-2013 within the PIA project of TopClass Srl.

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 432–451, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ASP at Work: Spin-off and Applications of the DLV System 433

vertex(v). ∀ v ∈ V
edge(u,v). ∀ (u, v) ∈ E
col(X,red) v col(X,green) v col(X,blue) :- vertex(X).

:- edge(X,Y), col(X,C), col(Y,C).

The first two lines introduce suitable facts, representing the input graph G, the
third line states that each vertex needs to have some color.1 The last line acts
as an integrity constraint since it disallows situations in which two connected
vertices are associated with the same color.

After the formal definition of the semantics of ASP, in more than twenty years
the core language has been extensively studied and extended by: constructs for
dealing with optimization problems [13,16,15,17,14,19,46,62]; probabilities [7];
special atoms handling aggregate functions [32,22,30,42,54]; function symbols
[12,10,11,21,1,29,64,65]; complex terms (allowing the explicit usage of lists and
sets) [21]; consistency-restoring rules [3]; ontology handling constructs [28,56,55,
57,24]; nested expressions [48,18,53], and many others.

Unfortunately, the high expressiveness of ASP comes at the price of a high
computational cost in the worst case, which makes the implementation of ef-
ficient systems a difficult task. Nevertheless, starting from the second half of
the 1990ies, and even more in the latest years, a number of efficient ASP sys-
tems have been released [46,61,62,67,49,2,35,44,47,25]. The availability of effi-
cient systems gave rise to the exploitation of ASP in real-world applications. For
instance, one of the first significant applications of ASP was the development
of a decision support system for the Space Shuttle flight controllers (the USA-
Advisor) [4]. The system was employed by the NASA for maneuvering the Space
Shuttle while it is in orbit. Afterwards, many other ASP applications followed,
developed for solving complex knowledge-based problems arising in Artificial
Intelligence [6,8,34,33,36,52] as well as in Information Integration [45] and in
other areas of Knowledge Management (KM) [5,9,41]. These applications have
confirmed the viability of the ASP exploitation for advanced knowledge-based
tasks, and stimulated further research in this field and some interest also in indus-
try. Currently, the research group of the University of Calabria, which developed
the popular ASP system DLV [46], has been trying the industrial exploitation
of DLV in the area of Knowledge Management. Two spin-off companies of Uni-
versity of Calabria are involved in such an exploitation: Dlvsystem Srl and
Exeura Srl.

In this paper, we describe some market-oriented specialization of DLV into
Knowledge Management products for Text Classification, Information Extrac-
tion (IE), and Ontology Representation and Reasoning. Moreover, we overview
some successful applications of these products, and we briefly report also on some
further applications exploiting DLV directly. These applications fall in many dif-
ferent domains, including Team Building in a Seaport [40], E-Tourism [43], and
E-Government.

1 The semantics of ASP ensures that solutions are minimal w.r.t. set inclusion, thus
each vertex will be associated to precisely one color in each solution.

434 G. Grasso et al.

2 The Language of DLV

In this section, we describe the language of the DLV system by examples, pro-
viding the intuitive meaning of the main constructs. For further details and the
formal definition, we refer to [46,21,31]. We first introduce the basic language,
which is based on the founding work by Gelfond and Lifschitz [39] and then
we illustrate a number of extensions including aggregates [31], weak constraints
[20], complex terms [21], queries, and database interoperability constructs [66].

2.1 Basic Language

The main construct in the DLV language is a rule, an expression of the form:

Head :− Body.

where Body is a conjunction of literals and Head is a disjunction of atoms. In-
formally, a rule can be read as follows: “if Body is true, then Head is true”. A
rule without a body is called a fact, since it models an unconditional truth (for
simplicity :− is omitted); whereas a rule with an empty head, called strong
constraint, is used to model a condition that must be false in any possible so-
lution. A set of rules is called program. The semantics of a program is given by
its answer sets [39]. A program can be used to model a problem to be solved:
the problem’s solutions correspond to the answer sets of the program (which
are computed by DLV). Therefore, a program may have no answer set (if the
problem has no solution), one (if the problem has a unique solution) or several
(if the problem has more than one possible solutions).

As an example, consider the problem of automatically creating an assess-
ment test from a given database of questions where each question is identi-
fied by a unique string, covers a particular topic, and requires an estimated
time to be answered. The input data about questions can be represented by
means of a set of facts of type question(q, topic, time); in addition, facts of
the form relatedTopic(topic) specify the topics related to the subject of the
test. For instance, consider the case in which only four questions are given,
represented by facts: question(q1,computerscience,8). question(q3,math,15).

question(q2,computerscience,15). question(q4,math,25).

Moreover, suppose that computer science is the only topic to be covered by
the test, therefore relatedTopic(computerscience) is also part of the input facts.
The program consisting only of these facts has one answer set A1 containing
exactly the five facts.

Assessment creation amounts to selecting a set of questions from the database,
according to a given specification. To single out questions related to the subject
of the test, one can write the rule:

relatedQuestion(Q) :- question(Q,Topic,Time), relatedTopic(Topic).

that can be read: “Q is a question related to the test if Q has a topic related
to some of the subjects that have to be assessed”. Adding this rule to the input
facts reported earlier yields one answer set:

ASP at Work: Spin-off and Applications of the DLV System 435

· A2 = A1 ∪ {relatedQuestion(q1), relatedQuestion(q2)}

For determining all the possible subsets of related questions the following dis-
junctive rule can be used:

inTest(Q) v discard(Q) :- relatedQuestion(Q).

Intuitively, this rule can be read as: “if Q identifies a related question, then
either Q is taken in the test or Q is discarded.” The rule has the effect of
associating each possible choice of related questions with an answer set of the
program. Indeed, the answer sets of the program consisting of the above rules
and the input facts are: A3 = A2 ∪ {discard(q1), discard(q2)}, A4 = A2 ∪
{inTest(q1), discard(q2)}, A5 = A2 ∪ {discard(q1), inTest(q2)}, A6 = A2 ∪
{inTest(q1), inTest(q2)}, corresponding to the four possible choices of questions
{}, {q1}, {q2}, {q1, q2}. Note that, the answer sets are minimal with respect to
subset inclusion. Indeed, for each question Q there is no answer set in which
both inTest(Q) and discard(Q) appear.

At this point, some strong constraints can be used to single out some solutions
respecting a number of specification requirements. For instance, suppose we are
interested in tests containing only questions requiring less than 10 minutes to
be answered. The following constraint models this requirement:

:- inTest(Q), question(Q,Topic,Time), Time < 10.

The new program obtained by adding this constraint has only two answer sets:
A3 and A4.

2.2 Aggregate Functions

More involved properties requiring operations on sets of values can be expressed
by aggregates, a DLV construct similar to aggregation in the SQL language.
DLV supports five aggregate functions, namely #sum, #count, #times, #max, and
#min.

In our running example, we might want to restrict the included questions to
be solvable in an estimated time of less than 60 minutes. This can be achieved
by the following strong constraint:

:- not #sum{Time,Q: inTest(Q), question(Q,Topic,Time)} < 60.

The aggregate sums up the estimated solution times of all questions in the test,
and the constraint eliminates all scenarios in which this sum is not less than 60.

2.3 Optimization Constructs

The DLV language also allows for specifying optimization problems (i.e., prob-
lems where some goal function must be minimized or maximized). This can be
achieved by using weak constraints. From a syntactic point of view, a weak con-
straint is like a strong one where the implication symbol :- is replaced by :∼.
Contrary to strong constraints, weak constraints allow for expressing conditions
that should be satisfied, but not necessarily have to be.

436 G. Grasso et al.

The informal meaning of a weak constraint :∼ B is “try to falsify B”, or
“B should preferably be false”. Additionally, a weight and a priority level for
the weak constraint may be specified enclosed in square brackets (by means of
positive integers or variables). The answer sets minimize the sum of weights
of the violated (unsatisfied) weak constraints in the highest priority level and,
among them, those which minimize the sum of weights of the violated weak
constraints in the next lower level, and so on.

As an example, if we want to prefer quick-to-answer questions in tests, the
following weak constraint represents this desideratum.

:∼ inTest(Q), question(Q,Topic,Time). [Time:1]

Intuitively, each question in the test increases the total weight of the solution by
its estimated solution time. Thus, solutions where the total weight is minimal
are preferred.

2.4 Complex Terms

The DLV language allows for the use of complex terms. In particular, it supports
function symbols, lists, and sets. Prolog-like syntax is allowed for both function
symbols and lists, while sets are explicitly represented by listing the elements in
brackets.

As an example, we enrich the question database for allowing two types of
questions, open and multiple choice. Input questions are now represented by
facts like the following:

question(q1, math, open(text), 10).

question(q2, physics, multiplechoice(text,{c1,c2,c3},{w1,w2,w3}), 3).

where function symbols open and multiplechoice are used for representing the
two different types of questions. In particular, open is a unary function whose
only parameter represents the text of the question, while multiplechoice has
three parameters, the text of the question, a set containing correct answers and
another set of wrong answers.

The use of sets allows for modeling multi-valued attributes, while function
symbols can be used for modeling “semi-structured” information.

Handling complex terms is facilitated by a number of built-in predicates. For
instance, the following rule uses the #member built-in for selecting correct answers
given by a student in the test:

correctAnswer(Stud,QID,Ans) :- inTest(QID), answer(Stud,QID,Ans),

question(QID,To,multiplechoice(Tx,Cs,Ws),Ti), #member(Ans,Cs).

2.5 Queries

The DLV language offers the possibility to express conjunctive queries. From
a syntactic point of view, a query in DLV is a conjunction of literals followed
by a question mark. Since a DLV program may have more than one answer

ASP at Work: Spin-off and Applications of the DLV System 437

set, there are two different reasoning modes, brave and cautious, to compute a
query answer. In the brave (resp. cautious) mode, a query answer is true if the
corresponding conjunction is true in some (resp. all) answer sets.

For instance, the answers to the following simple query are the questions
having as topic computerscience that are contained in some (resp. all) answer
sets of the program when brave (resp. cautious) reasoning is used.

inTest(Q), question(Q,computerscience,T)?

2.6 Database Interoperability

The DLV system supports interoperability with databases by means of the
#import/#export commands for importing and exporting relations from/to a
DBMS. The #import command reads tuples from a specified table of a rela-
tional database and stores them as facts with a predicate name provided by the
user. In our example, questions can be retrieved from a database by specifying
in the program the following directive:

#import(questionDB,"user","passwd","SELECT * FROM question",question).

where questionDB is the name of the database, "user" and "passwd" are the data
for the user authentication, "SELECT * FROM question" is an SQL query that
constructs the table that will be imported, and question is the predicate name
which will be used for constructing the new facts. Similarly, command #export

allows for exporting the extension of a predicate in an answer set to a database.

3 Spin-off Companies

In this section, we give a brief overview of the two spin-off companies
(Dlvsystem Srl and Exeura Srl) that are engaged in the industrial exploita-
tion of ASP in the area of Knowledge Management.

3.1 Dlvsystem Srl

The Dlvsystem2 Srl is a research spin-off of the University of Calabria. It was
founded in 2005 by professors and researchers from University of Calabria, TU
Wien, and University of Oxford, with the aim of developing and commercially-
distributing the DLV [46] system.

The founders of Dlvsystem are all the key participants of the DLV project.
Among them we recall Prof. T. Eiter (TU Wien), Prof. W. Faber, (University
of Calabria), Prof. G. Gottlob (Oxford University), Prof. N. Leone (University
of Calabria), and Dr. G. Pfeifer (Novell). Dlvsystem currently employs 4 per-
manent workers, and many consultants. The staff members have an excellent
technical profile and backgrounds, with postdoctoral degrees in Informatics and
an in-depth knowledge on ASP.

2 See http://www.dlvsystem.com

http://www.dlvsystem.com

438 G. Grasso et al.

In the last few years, Dlvsystem Srl has been actively involved in several
projects on both research and applications. Currently, its main project concerns
the engineering of DLV and its extension for information integration and for
the semantic web. It is supported by the Regione Calabria and EU under POR
Calabria FESR 2007-2013 within the PIA (Pacchetti Integrati di Agevolazione
industria, artigianato e servizi) programme. Moreover, Dlvsystem currently
provides consultancy on ASP and DLV usage in a number of knowledge based
applications, including the team-building application and the e-tourism applica-
tion described in Section 5.1 and 5.2, respectively.

3.2 Exeura Srl

Exeura3 Srl is a spin-off company founded by a group of professors from the
University of Calabria. Exeura has the aim of employing advanced technologies,
stemming from research results, for developing industrial products. The targets
of the company are both software houses interested in enhancing their platforms
by enriching them with intelligent and adaptive capabilities, and companies ask-
ing for specific knowledge-based applications.

Exeura enrolls about 30 highly-skilled employees which develop innovative
Knowledge Management technologies and advanced IT services.

Among the products we recall Rialto, a data mining suite, OntoDLV [55,56],
an advanced platform for ontology management and reasoning, HiLeX [59,58]
a text extraction system and OLEX [60] a document classification system. The
last three products are based on the ASP system DLV, and have been already
successfully applied in several contexts (more details in the next sections).

In the last few years, Exeura completed several research projects and devel-
oped solutions for data mining and knowledge management systems.

4 DLV-Based Systems for KM

In this section, we overview the three main KM industrial products that are
strongly based on DLV: OntoDLV [55,56], OLEX [60], HiLeX [59,58]. A number
of real-world applications based on these systems are described in Section 5.

4.1 OntoDLV

The basic ASP language is not well-suited for ontology specifications, since it
does not directly support features like classes, taxonomies, individuals, etc. These
observations motivated the development of OntoDLV [55,56], which is a sys-
tem for ontologies specification and reasoning based on DLV. Indeed, by us-
ing OntoDLV, domain experts can create, modify, store, navigate, and query
ontologies; and, at the same time, application developers can easily develop
their own knowledge-based applications. OntoDLV implements a powerful logic-
based ontology representation language, called OntoDLP, which is an extension
3 See http://www.exeura.com

http://www.exeura.com

ASP at Work: Spin-off and Applications of the DLV System 439

of (disjunctive) ASP with all the main ontology constructs including classes,
inheritance, relations, and axioms. Importantly, OntoDLV supports a powerful
interoperability mechanism with OWL [63], allowing the user to retrieve infor-
mation from external OWL ontologies and to exploit this data in OntoDLP
ontologies and queries.

In OntoDLP, a class can be thought of as a collection of individuals who
belong together because they share some features. An individual, or object, is
any identifiable entity in the universe of discourse. Objects, also called class
instances, are unambiguously identified by their object-identifiers (oid ’s) and
belong to a class. A class is defined by a name (which is unique) and an ordered
list of attributes, identifying the properties of its instances. Each attribute has a
name and a type, which is, in truth, a class. This allows for the specification of
complex objects (objects made of other objects). Classes can be organized in a
specialization hierarchy (or data-type taxonomy) using the built-in is-a relation
(multiple inheritance). Relationships among objects are represented by means of
relations, which, like classes, are defined by a (unique) name and an ordered list
of attributes (with name and type). OntoDLP relations are strongly typed while
in ASP relations are represented by means of simple flat predicates. Importantly,
OntoDLP supports two kind of classes and relations:

1. (base) classes and (base) relations, that correspond to basic facts (that can
be stored in a database); and

2. collection classes and intensional relations, that correspond to facts that can
be inferred by logic programs.

In particular, collection classes are mainly intended for object reclassification
(i.e., for repeatedly classifying individuals of an ontology). For instance, the fol-
lowing statement declares a class modeling questions, which has two attributes,
namely: topic of type Topic, and time of type Time.

class Question(topic:Topic, time:Time).

As in ASP, logic programs are sets of logic rules and constraints. However, On-
toDLP extends the definition of logic atoms by introducing class and relation
predicates, and complex terms (allowing for a direct access to object properties).
This way, the OntoDLP rules merge, in a simple and natural way, the declarative
style of logic programming with the navigational style of object-oriented systems.
In addition, logic programs are organized in reasoning modules, to take advan-
tage of the benefits of modular programming. For example, with the following
program we single out questions having the same topic:

module (SameTopic) {
sameTopic(Q1,Q2) :- Q1:Question(topic:T), Q2:Question(topic:T). }

Note that, attributes are typed (and the system ensures that only well-typed
rules are accepted as input), and the presence of attribute names allows for
more compact and readable rule specifications, where irrelevant attributes can
be omitted.

440 G. Grasso et al.

The core of OntoDLV is a rewriting procedure [56] that translates ontologies
and reasoning modules to equivalent ASP programs run on the DLV system.

Importantly, if the rewritten program is stratified and non-disjunctive
[39,37,51] (and the input ontology resides in relational databases), then the
evaluation is carried out directly in mass memory by exploiting a specialized
version of the same system, called DLVDB [66]. Note that, since class and re-
lation specifications are rewritten into stratified and non-disjunctive programs,
queries on ontologies can always be evaluated by exploiting a DBMS. This makes
the evaluation process very efficient, and allows the knowledge engineer to for-
mulate queries in a language more expressive than SQL. Clearly, more complex
reasoning tasks are dealt with by exploiting the standard DLV system instead.

4.2 OLEX

The OntoLog Enterprise Categorizer System (OLEX) [60] is a corporate classi-
fication system supporting the entire content classification life-cycle, including
document storage and organization, pre-processing and classification. OLEX ex-
ploits a reasoning-based approach to text classification which synergically com-
bines: (a) pre-processing technologies for a symbolic representation of texts; and
(b) a categorization rule language. Logic rules, indeed, provide a natural and
powerful way to encode how document contents may relate to document cat-
egories. More in detail, the main task of OLEX is text categorization, which
consists on assigning documents (containing natural language texts) to prede-
fined categories on the basis of their content. OLEX exploits a method for the
automatic construction of rule-based text classifiers, which are sets of classifica-
tion rules of the form: “if at least one of the terms T1, . . . , Tn occurs in document
d, and none of the terms Tn+1, . . . , Tr (r > n > 0) occurs in d, then classify d
under category cat”, where each Ti = ti1 ∧ . . . ∧ tik (k > 0) is a conjunction
of occurrences of terms. A classification rule of this kind is easily encoded in
ASP as:

positiveForCategory(cat,Doc) :- term(Doc,t1
1),...,term(Doc,t

1
k).

...

positiveForCategory(cat,Doc) :- term(Doc,tn
1),...,term(Doc,t

n
k).

negativeForCategory(cat,Doc) :- term(Doc,tn+1
1),...,term(Doc,tn+1

k)

...

negativeForCategory(cat,Doc) :- term(Doc,tr
1),...,term(Doc,t

r
k)

classify(cat,Doc) :- positiveForCategory(cat,Doc),

not negativeForCategory(cat,Doc).

where facts of the form term(d, t) associate terms t occurring in document d.
Clearly, the system has to pre-process input documents in order to produce a
logic representation of their contents (i.e., term facts). Essentially, the OLEX
pre-processor performs the following tasks: Pre-Analysis and Linguistic Anal-
ysis. The former consists of document normalization, structural analysis and

ASP at Work: Spin-off and Applications of the DLV System 441

tokenization; whereas the latter includes lexical analysis, which determines the
Part of Speech (PoS) of each token, reduction (elimination of the stop words),
and frequency analysis. The obtained facts are fed into the DLV system together
with the classification rules for computing an association between the processed
document and categories.

4.3 HiLeX

HiLeX [59,58] is an advanced system for ontology-based information extraction
from semi-structured (document repositories, digital libraries, Web sites, ...) and
unstructured documents (mainly, free texts written in natural language), that
has been (already) exploited in many relevant real-world applications. In prac-
tice, the HiLeX system implements a semantic approach to the Information
Extraction problem based on a new-generation semantic conceptual model by
exploiting:

· Ontologies as knowledge representation formalism;
· A general document representation model able to unify different document

formats (html, pdf, doc, ...);
· The definition of a formal attribute grammar able to describe, by means of

declarative rules (a sort of “semantic enhanced regular expressions”), ob-
jects/classes w.r.t. a given ontology.

HiLeX is based on OntoDLP for describing ontologies, since this language per-
fectly fits the definition of semantic extraction rules.

Regarding the unified document representation, the idea is that a document
(unstructured or semi-structured) can be seen as a suitable arrangement of ob-
jects in a two-dimensional space. Each object has its own semantics, is char-
acterized by some attributes, and is located in a two-dimensional area of the
document, called portion. Each portion “contains” one or more objects and an
object can be recognized in different portions.

The language of HiLeX is founded on the concept of ontology descriptor.
A “descriptor” looks like a production rule in a formal attribute grammar,
where syntactic items are replaced by ontology elements, and where extensions
for managing two-dimensional objects are added. Each descriptor allows us to
describe:

· An ontology object in order to recognize it in a document; or
· How to “generate” a new object that may be added in the original ontology.

In particular, an object may have more than one descriptor, allowing one to
recognize the same kind of information when it is presented in different ways;
but also, a descriptor might generate more than one object.

In the following, we show some sentences (and their intuitive semantics)
hightailing some of the HiLeX features for IE tasks. Suppose we have a semi-
structured/unstructured document d and the following OntoDLP ontology:

442 G. Grasso et al.

class Token (value:string).

relation hasLemma (tk:token, lm:string , tag:string).

relation synonymous(lemma1:string , lemma2:string).

synonymous(L1,L2) :- synonymous(L2,L1).

synonymous(lemma1:"street", lemma2:"road").

...

class StockMarket(name:string).

sm01:StockMarket(name:"NASDAQ").

sm02:StockMarket(name:"Dow Jones").

...

class Evaluation(sm:StockMarket, value:integer).

First of all, without writing any descriptor, we could “select” (in d) any token
of length three (only whitespace is filtered) by writing the rule:

<T:Token(value:V), #hasLenght(V,3)>?

that behaves like a query run on a document rather than on a database
(#hasLenght is a built-in function). Moreover, if we enable the Natural Language
Processing (NLP) Tool, the HiLeX system automatically and transparently pop-
ulates (from d) relation hasLemma. Suppose that we want to “select” the tokens
(in d) whose lemmas are synonymous of street we might use the following rule:

<T:Token(), hasLemma(T,L,"noun"), synonymous(L,"street")>?

As mentioned before, HiLeX allows to define descriptors for existing objects. For
instance, the following rules “define” how to “recognize” Stock Markets :

<sm01> -> <T:token(V), #tolower(V,"nasdaq")>

<sm02> -> <T1:token(V1), #tolower(V1,"dowjones")> |

<T2:token(V2), #tolower(V2,"dow")> <T3:token(V3), #tolower(V3,"jones")>

where the above two descriptors can be, respectively, read as follows: “recognize
object sm01 in d whenever there is a token whose value is nasdaq” and “recognize
object sm02 (in d) if there is either a token whose value is dowjones or there are
two consecutive tokens whose values are dow and joens”. Moreover, HiLeX allows
for generating new ontology objects by combining already recognized objects:

<Evaluation(SM,N)> -> <SM:StockMarket()> <N:Number()>

Here, we create a new evaluation instance whenever an instance of class Number

follows an instance of class StockMarket in the document.

5 Applications

In this section, we report a brief description of a number of applications and
commercial products employing DLV.

ASP at Work: Spin-off and Applications of the DLV System 443

5.1 Team-Building in the Gioia-Tauro Seaport

In this section, we give a short overview of a system [40], based on DLV, that has
been employed in the port authority of Gioia Tauro for solving a problem about
Intelligent resource allocation and Constraint Satisfaction: the automatic gen-
eration of the teams of employees in the seaport. In detail, the seaport of Gioia
Tauro4 is the largest transshipment terminal of the Mediterranean Sea. Several
ships of different size moor in the port every day, transported vehicles are han-
dled, warehoused, if necessary technically processed and then delivered to their
final destination. The goal is to serve them as soon as possible. Data regarding
the mooring ships (arrival/departure date, number and kind of vehicles, etc.),
is available at least one day in advance; and, suitable teams of employees have
to be arranged for the purpose. Teams are subject to many conditions. Some
constraints are imposed by the contract (e.g., an employee cannot work more
than 36 hours per week, etc.), some other by the required skills. Importantly,
heavy/dangerous roles have to be turned over, and a fair distribution of the
workload has to be guaranteed. Once the information regarding mooring ships
is received, the management easily produces a meta-plan specifying the number
of employees required for each skill; but a more difficult task is to assign the
available employees to shifts and roles (each employee might cover several roles
according to his/her skills) in such a way that the above-mentioned constrains
can be satisfied every day. The impossibility of allocating teams to incoming
ships might cause delays and/or violations of the contract with shipping compa-
nies, with consequent pecuniary sanctions for the company serving the seaport.
To cope with this crucial problem DLV has been exploited for developing a team
builder. A simplified version of the kernel part of the employed ASP program is
reported in Figure 1. The inputs are modeled as follows:

· the employees and their skills by predicate skill(employee, skill);
· a meta-plan specification by predicate metaPlan(shift, skill, neededEmployees,

duration);
· weekly statistics specifying, for each employee, both the number of worked

hours per skill and the last allocation date by predicate wstat(employee, skill,
hours, lastTime);

· absent employees by predicate absent(employee);
· employees excluded due to a management decision by predicate manuallyEx-

cluded(employee).

Following the guess&check programming methodology [46], the disjunctive rule
r (see Figure 1) generates the search space by guessing the assignment of a
number of available employees to the shift in the appropriate roles. Absent or
manually excluded employees, together with employees exceeding the maximum
number of weekly working hours are automatically discarded. Then, admissible
solutions are selected by means of constraints: c1 discards assignments with a
wrong number of employees for some skill; c2 avoids that an employee covers two

4 See http://www.portodigioiatauro.it/index.php

http://www.portodigioiatauro.it/index.php

444 G. Grasso et al.

r assign(E,Sh,Sk) v nAssign(E,Sh,Sk) :- skill(E,Sk),

metaPlan(Sh,Sk, , D), not absent(E), not manuallyExcluded(E),

workedHours(E,Wh), Wh + D ≤ 36.

c1 :- metaPlan(Sh,Sk,EmpNum,), #count{E : assign(E,Sh,Sk)} �= EmpNum.

c2 :- assign(E,Sh,Sk1), assign(E,Sh,Sk2), Sk1 �= Sk2.

c3 :- wstats(E1,Sk, ,LastTime1), wstats(E2,Sk, ,LastTime2),

LastTime1 > LastTime2, assign(E1,Sh,Sk), not assign(E2,Sh,Sk).

c4 :- workedHours(E1,Wh1), workedHours(E2,Wh2), threshold(Tr),

Wh1 + Tr < Wh2, assign(E1,Sh,Sk), not assign(E2,Sh,Sk).

r′ :- workedHours(E,Wh) :- skill(E,), #count{H,E : wstats(E, ,H,)} = Wh.

Fig. 1. Team Builder Encoding

roles in the same shift; c3 implements the turnover of roles; and c4 guarantees
a fair distribution of the workload. Finally, rule r′ computes the total number
of worked hours per employee. Note that, only the kernel part of the employed
logic program is reported here (in a simplified form), and many other constraints
were developed, tuned and tested.

The complete system features a Graphical User Interface (GUI) developed
in Java, and either builds new teams or completes the allocation automatically
when the roles of some key employees are fixed manually. Computed teams
can be also modified manually, and the system is able to verify whether the
manually-modified team still satisfies the constraints. In case of errors, causes
are outlined and suggestions for fixing a problem are proposed. E.g., if no plan
can be generated, then the system suggests the user to relax some constraints. In
this application, the pure declarative nature of the language allowed for refining
and tuning both problem specifications and encodings together while interacting
with the stakeholders of the seaport. It is worth noting that, the possibility of
modifying (by editing text files) in a few minutes a complex reasoning task (e.g.,
by adding new constraints), and testing it “on-site” together with the customer
has been a great advantage of the approach. The system, developed by Exeura
Srl, has been adopted by the company ICO BLG operating automobile logistics
in the seaport of Gioia Tauro.

5.2 E-Tourism: The IDUM System

IDUM [43] is an e-tourism system developed in the context of the project “IDUM:
Internet Diventa Umana” funded by the administration of the Calabria Region.
The IDUM system helps both employees and customers of a travel agency in
finding the best possible travel solution in a short time. It can be seen as a
“mediator” system finding the best match between the offers of the tour op-
erators and the requests of the turists. IDUM, like other existing portals, has
been equipped with a proper (web-based) user interface; but, behind the user
interface there is an “intelligent” core that exploits knowledge representation
and reasoning technologies based on ASP. In IDUM, the information regarding
the touristic offers provided by tour operators is received by the system as a set
of e-mails. Each e-mail might contain plain text and/or a set of leaflets, usually

ASP at Work: Spin-off and Applications of the DLV System 445

class Place (description:string).

class TransportMean (description:string).

class TripKind (description:string).

class Customer (firstName:string , lastName:string , birthDate:Date,

status:string , childNumber:positive integer , job:Job).

class TouristicOffer (start:Place, destination:Place, kind:TripKind,

means:TransportMean, cost:positive integer , fromDay:Date,

toDay:Date, maxDuration:positive integer , deadline:Date, uri:string).

relation PlaceOffer (place:Place, kind:TripKind).

relation SuggestedPeriod (place:Place, period:positive integer).

relation BadPeriod (place:Place, period:positive integer).

intentional relation Contains (pl1:place, pl2:place) {
Contains(P1,P2) :- Contains(P1,P3), Contains(P3,P2).

Contains(‘Europe’, ‘Italy’). ... }

Fig. 2. Some entities from the Tourism Ontology

distributed as pdf or image files which store the details of the offer (e.g., place,
accommodation, price etc.). Leaflets are devised to be human-readable, might
mix text and images, and usually do not have the same layout. E-mails (and
their content) are automatically processed by using the HiLeX system, and the
extracted data about touristic offers is used to populate an OntoDLP ontology
that models the domain of discourse: the “Tourism Ontology”. The resulting on-
tology is then analyzed by exploiting a set of reasoning modules combining the
extracted data with the knowledge regarding places (geographical information)
and users (user preferences). The system mimics the typical deductions made
by a travel agency employee for selecting the most appropriate answers to the
user needs. In the following, we briefly describe the Tourism Ontology and the
implementation of the ASP-based features of IDUM.

The Tourism Ontology. The Tourism Ontology has been specified by ana-
lyzing the nature of the input in cooperation with the staff of a real touristic
agency. This way, the key entities that describe the process of organizing and
selling a complete holiday package could be modeled. In particular, the Tourism
Ontology models all the required information, such as geographic information,
kind of holiday, transportation means, etc. In Figure 2, we report some entities
constituting the Ontology. In detail, class Customer allows us to model the per-
sonal information of each customer. The kind of trip is represented by using a
class TripKind. Examples of TripKind instances are: safari, sea holiday, etc. In
the same way, e.g., airplane, train, etc., are instances of class TransportMean.
Geographical information is modeled by means of class Place, which has been
populated by exploiting Geonames5, one of the largest publicly-available geo-
graphical databases. Moreover, each place is associated with a kind of trip by
means of the relation PlaceOffer (e.g., Kenya offers safari, Sicily offers both sea
and sightseeing). Importantly, the natural part-of hierarchy of places is easily

5 See www.geonames.org

www.geonames.org

446 G. Grasso et al.

modeled by using the intensional relation Contains. The full hierarchy is com-
puted by evaluating a rule (which, basically, encodes the transitive closure).

The mere geographic information is, then, enriched by other information that
is usually exploited by travel agency employees for selecting a travel destination.
For instance, one might suggest avoiding sea holidays in winter; whereas, one
should be recommended a visit to Sicily in summer. This was encoded by means
of the relations SuggestedPeriod and BadPeriod. Finally, the TouristicOffer class
contains an instance for each available holiday package. The instances of this class
are added either automatically, by exploiting the HiLeX system or manually by
the personnel of the agency. This has been obtained by encoding several ontology
descriptors (actually, we provided several descriptors for each kind of file received
by the agency). As an example, the following descriptor:

<TouristicOffer(destination:D,fromDay:FD,toDay:TD)> -> <D:Place("Sicily")>

<T1:Token()>* <FD:Date()> <T2:Token()>* <TD:Date()>.

was used to extract instances of class TouristicOffer (from leaflets) regarding
trips to Sicily. Moreover, it also extracts the period in which this trip is offered.

Personalized Trip Search. This feature has been conceived to simplify the
task of selecting the holiday packages that best fit the customer needs. In a typ-
ical scenario, when a customer enters the travel agency, what has to be clearly
understood (for properly selecting a holiday package fitting the customer needs)
is summarized in the following four words: where, when, how, and budget. How-
ever, the customer does not directly specify all this information, for example,
he can ask for a sea holiday in January but he does not specify a precise place,
or he can ask for a kind of trip that is unfeasible in a given period. In IDUM,
current needs are specified by filling an appropriate search form, where some of
the key information has to be provided (i.e., where and/or when and/or available
money and/or how). Note that, the Tourism Ontology models the knowledge of
the travel agent. Moreover, the extraction process continuously populates the
ontology with new touristic offers. Thus, the system, by running a specifically
devised reasoning module, combines the specified information with the one avail-
able in the ontology, and shows the holiday packages that best fit the customer
needs. For example, suppose that a customer specifies the kind of holiday and
the period, then the following (simplified) module creates a selection of holiday
packages:

module (kindAndPeriod) {
%detect possible and suggested places

possiblePlace(P) :- askFor(tripKind:K), PlaceOffer(place:P, kind:K).

suggestPlace(P) :- possiblePlace(P), askFor(period:D),

SuggestedPeriod(place:P1, period:D),

not BadPeriod(place:P1, period:D).

%select possible packages

possibleOffer(O) :- O:TouristicOffer(destination:P), possiblePlace(P). }

ASP at Work: Spin-off and Applications of the DLV System 447

The first two rules select: possible places (i.e., the ones that offer the kind of holi-
day in input); and places to be suggested (because they offer the required kind of
holiday in the specified period). Finally, the remaining rule searches in the avail-
able holiday packages the ones which offer an holiday that matches the original
input (possible offer). The example above reports one of the several reasoning
modules that have been devised for implementing the intelligent search.

5.3 Text Categorization Applications

In this section, we give a brief overview of some applications developed by Exeura
Srl, which are based on OLEX and applied in different domains.

e-Government. In this field, the objective was to classify legal acts and decrees
issued by public authorities. The system employs an ontology based on TE.SE.O
(Thesaurus of the Senato della Repubblica Italiana), on an archive that contains
a complete listing of words arranged in groups of synonyms and related concepts
regarding juridical terminology employed by the Italian Parliament, and on a
set of categories identified by analyzing a corpus of 16,000 documents of the
public administration. The system, validated with the help of the administrative
employees of the Regione Calabria, performed very well. In particular, it obtained
an f-measure of 92% and a mean precision of 96% in real-world documents.

e-Medicine. Here, the goal was to develop a system able to automatically
classify case histories and documents containing clinical diagnoses. In particular,
it was developed for conducting epidemiological analysis, by the ULSS n.8 (which
is, a local authority for health services) of the area of Asolo, in the Italian region
Veneto. Basically, available case histories are classified by the system in order to
help the analysts of the ULSS while browsing and searching documents regarding
specific pathologies, supplied services, or patients living in a given place etc.
The application exploits an ontology of clinical case histories based on both the
MESH (Medical Subject Headings) ontology and ICD9-CM a system employed
by the Italian Ministry of the Heath for handling data regarding medical services
(e.g., X-Rays analysis, plaster casts, etc.). The system has been deployed and is
currently employed by the personnel of the ULSS of Asolo.

5.4 Other Applications

In this Section, we report on a number of further real-world applications still
exploiting DLV.

The European Commission funded a project on Information Integration, which
produced a sophisticated and efficient data integration system, called INFOMIX,
which uses DLV at its computational core [45], and DLV was successfully em-
ployed to develop a real-life integration system for the information system of the
University of Rome “La Sapienza”. The DLV system has been used for Census
Data Repair [33], where the main objective was to identify and eventually repair
errors in census data. DLV has been employed at CERN, the European Labo-
ratory for Particle Physics, for an advanced deductive database application that

448 G. Grasso et al.

involves complex knowledge manipulation on large-sized databases. The Polish
company Rodan Systems S.A. has exploited DLV in a tool (used by the Polish
Securities and Exchange Commission) for the detection of price manipulations
and unauthorized use of confidential information. The Italian region Calabria
is experimenting a reasoning service exploiting DLV for automatic itinerary
search. The system builds itineraries from a given place to another in the region.
In the area of self-healing Web Services, DLV was exploited for implementing
the computation of minimum cardinality diagnoses [34].

6 Conclusion

In this paper we have reported on the industrial exploitation of the ASP system
DLV. In particular, we have presented two spin-off companies of the University
of Calabria: Dlvsystem Srl and Exeura Srl which have as vision the commercial-
ization of DLV and the development of DLV-based software products. Although
the industrial exploitation of DLV has started very recently, there are already a
number of systems having DLV as kernel component. The most valuable ones,
for team-building, e-tourism, and text categorization, are also described in detail
in this paper.

References

1. Alviano, M., Faber, W., Leone, N.: Disjunctive ASP with Functions: Decidable
Queries and Effective Computation. In: TPLP, 26th Int’l. Conference on Logic
Programming (ICLP 2010) Special Issue, vol. 10(4-6), pp. 497–512 (2010)

2. Babovich, Y., Maratea, M.: Cmodels-2: Sat-based answer sets solver enhanced
to non-tight programs (2003), http://www.cs.utexas.edu/users/tag/cmodels.

html

3. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules.
In: Proceedings of AAAI 2003 Spring Symposium Series (2003)

4. Balduccini, M., Gelfond, M., Watson, R., Nogeira, M.: The USA-advisor: A case
study in answer set planning. In: Eiter, T., Faber, W., Truszczyński, M. (eds.)
LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 439–442. Springer, Heidelberg (2001)

5. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solv-
ing.CUP (2003)

6. Baral, C., Gelfond, M.: Reasoning Agents in Dynamic Domains. In: Logic-Based
Artificial Intelligence, pp. 257–279 (2000)

7. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets.
TPLP 9(1), 57–144 (2009)

8. Baral, C., Uyan, C.: Declarative specification and solution of combinatorial auc-
tions using logic programming. In: Eiter, T., Faber, W., Truszczyński, M. (eds.)
LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 186–199. Springer, Heidelberg (2001)

9. Bardadym, V.A.: Computer-Aided School and University Timetabling: The New
Wave. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 22–45
(1996)

10. Baselice, S., Bonatti, P.A., Criscuolo, G.: On Finitely Recursive Programs. TPLP
(TPLP) 9(2), 213–238 (2009)

http://www.cs.utexas.edu/users/tag/cmodels.html
http://www.cs.utexas.edu/users/tag/cmodels.html

ASP at Work: Spin-off and Applications of the DLV System 449

11. Bonatti, P.A.: Reasoning with infinite stable models II: Disjunctive programs. In:
Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 333–346. Springer, Heidelberg
(2002)

12. Bonatti, P.A.: Reasoning with infinite stable models. Artificial Intelligence 156(1),
75–111 (2004)

13. Brewka, G.: Logic Programming with Ordered Disjunction. In: NMR 2002, pp.
67–76 (April 2002)

14. Brewka, G.: Answer Sets: From Constraint Programming Towards Qualitative
Optimization. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI),
vol. 2923, pp. 34–46. Springer, Heidelberg (2003)

15. Brewka, G., Benferhat, S., Le Berre, D.: Qualitative Choice Logic. In: Proceedings
of (KR 2002), pp. 158–169 (April 2002)

16. Brewka, G., Niemelä, I., Syrjänen, T.: Implementing ordered disjunction using
answer set solvers for normal programs. In: Flesca, S., Greco, S., Leone, N., Ianni,
G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 444–455. Springer, Heidelberg
(2002)

17. Brewka, G., Niemelä, I., Truszczyński, M.: Answer Set Optimization. In: IJCAI
2003, Acapulco, Mexico, pp. 867–872 (August 2003)

18. Bria, A., Faber, W., Leone, N.: Normal form nested programs. FI 96(3), 271–295
(2009)

19. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints.
IEEE TKDE 12(5), 845–860 (2000)

20. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints.
IEEE TKDE 12(5), 845–860 (2000)

21. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable Functions in ASP: The-
ory and Implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

22. Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate well-founded and stable se-
mantics for logic programs with aggregates. In: Codognet, P. (ed.) ICLP 2001.
LNCS, vol. 2237, pp. 212–226. Springer, Heidelberg (2001)

23. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The Second
Answer Set Programming Competition. In: Erdem, E., Lin, F., Schaub, T. (eds.)
LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

24. Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Ma�luszyński,
J.: Hybrid Reasoning with Rules and Ontologies. In: Bry, F., Ma�luszyński, J. (eds.)
Semantic Techniques for the Web. LNCS, vol. 5500, pp. 1–49. Springer, Heidelberg
(2009)

25. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M.,
Schaub, T.: Conflict-Driven Disjunctive Answer Set Solving. In: KR 2008, Sydney,
Australia, 2008, pp. 422–432. AAAI Press, Menlo Park (2008)

26. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Declarative Problem-Solving Using the
DLV System. In: Logic-Based Artificial Intelligence, pp. 79–103 (2000)

27. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22(3), 364–
418 (1997)

28. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-
Order Reasoning and External Evaluations in Answer Set Programming. In: IJCAI
2005, nburgh, UK (August 2005)

29. Elkabani, I., Pontelli, E., Son, T.C.: SmodelsA - A System for Computing Answer
Sets of Logic Programs with Aggregates. In: Baral, C., Greco, G., Leone, N., Ter-
racina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 427–431. Springer,
Heidelberg (2005)

450 G. Grasso et al.

30. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)

31. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates
in answer set programming. In: AI (2010) (accepted for publication)

32. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implemen-
tation of aggregate functions in the dlv system. TPLP 8(5–6), 545–580 (2008)

33. Franconi, E., Palma, A.L., Leone, N., Perri, S., Scarcello, F.: Census Data Repair:
A Challenging Application of Disjunctive Logic Programming. In: Nieuwenhuis, R.,
Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 561–578. Springer,
Heidelberg (2001)

34. Friedrich, G., Ivanchenko, V.: Diagnosis from first principles for workflow exe-
cutions. Technical report. Alpen Adria University, Applied Informatics, Klagen-
furt, Austria (2008), http://proserver3-iwas.uni-klu.ac.at/download_area/

Technical-Reports/technical_report_2008_02.pdf
35. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set

solving. In: IJCAI 2007, pp. 386–392 (January 2007)
36. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński,

M.: The first answer set programming system competition. In: Baral, C., Brewka,
G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer,
Heidelberg (2007)

37. Gelfond, M., Leone, N.: Logic Programming and Knowledge Representation – the
A-Prolog perspective. AI 138(1–2), 3–38 (2002)

38. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming.
In: ICLP/SLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)

39. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. NGC 9, 365–385 (1991)

40. Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An ASP-Based
System for Team-Building in the Gioia-Tauro Seaport. In: Carro, M., Peña, R.
(eds.) PADL 2010. LNCS, vol. 5937, pp. 40–42. Springer, Heidelberg (2010)

41. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV Applications for Knowl-
edge Management. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 591–597. Springer, Heidelberg (2009)

42. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators.
JACM 48(4), 880–907 (2001)

43. Ielpa, S.M., Iiritano, S., Leone, N., Ricca, F.: An ASP-Based System for e-Tourism.
In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 368–
381. Springer, Heidelberg (2009)

44. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.-H.: Unfolding Partiality
and Disjunctions in Stable Model Semantics. ACM TOCL 7(1), 1–37 (2006)

45. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni,
G., Ka�lka, E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis,
W., Terracina, G.: The INFOMIX System for Advanced Integration of Incomplete
and Inconsistent Data. In: SIGMOD 2005, Baltimore, Maryland, USA, 2005, pp.
915–917. ACM Press, New York (2005)

46. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV System for Knowledge Representation and Reasoning. ACM TOCL 7(3),
499–562 (2006)

47. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: Baral, C.,
Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662,
pp. 447–451. Springer, Heidelberg (2005)

http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf
http://proserver3-iwas.uni-klu.ac.at/download_area/Technical-Reports/technical_report_2008_02.pdf

ASP at Work: Spin-off and Applications of the DLV System 451

48. Lifschitz, V., Tang, L.R., Turner, H.: Nested Expressions in Logic Programs.
AMAI 25(3–4), 369–389 (1999)

49. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT
Solvers. In: AAAI-2002, AAAI Press, Menlo Park (2002)

50. Minker, J.: On Indefinite Data Bases and the Closed World Assumption. In: Love-
land, D.W. (ed.) CADE 1982. LNCS, vol. 138, pp. 292–308. Springer, Heidelberg
(1982)

51. Minker, J.: Overview of Disjunctive Logic Programming. AMAI 12, 1–24 (1994)
52. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog

Decision Support System for the Space Shuttle. In: Ramakrishnan, I.V. (ed.) PADL
2001. LNCS, vol. 1990, pp. 169–183. Springer, Heidelberg (2001)

53. Pearce, D., Sarsakov, V., Schaub, T., Tompits, H., Woltran, S.: A Polynomial
Translation of Logic Programs with Nested Expressions into Disjunctive Logic
Programs: Preliminary Report. In: NMR 2002 (2002)

54. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and Stable Semantics of
Logic Programs with Aggregates. TPLP 7(3), 301–353 (2007)

55. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: On-
toDLV: An ASP-based System for Enterprise Ontologies. Journal of Logic and
Computation 19(4), 643–670 (2009)

56. Ricca, F., Leone, N.: Disjunctive Logic Programming with types and objects: The
DLV+ System. Journal of Applied Logics 5(3), 545–573 (2007)

57. Rosati, R.: On Combining Description Logic Ontologies and Nonrecursive Datalog
Rules. In: Proceedings of the 2nd International Conference on Web Reasoning and
Rule Systems, Berlin, Heidelberg, pp. 13–27 (2008)

58. Ruffolo, M., Leone, N., Manna, M., Saccà, D., Zavatto, A.: Exploiting ASP for
Semantic Information Extraction. In: Proceedings ASP05 - Answer Set Program-
ming: Advances in Theory and Implementation, Bath, UK, pp. 248–262 (2005)

59. Ruffolo, M., Manna, M.: HiLeX: A System for Semantic Information Extraction
from Web Documents. In: ICEIS (Selected Papers). Lecture Notes in Business
Information Processing, vol. 3, pp. 194–209 (2008)

60. Rullo, P., Policicchio, V.L., Cumbo, C., Iiritano, S.: Olex: Effective Rule Learning
for Text Categorization. IEEE TKDE 21, 1118–1132 (2009)

61. Simons, P.: Smodels Homepage (1996),
http://www.tcs.hut.fi/Software/smodels/

62. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable
Model Semantics. AI 138, 181–234 (2002)

63. Smith, M.K., Welty, C., McGuinness, D.L.: OWL web ontology language guide.
W3C Candidate Recommendation (2003), http://www.w3.org/TR/owl-guide/

64. Son, T.C., Pontelli, E.: A Constructive Semantic Characterization of Aggregates
in ASP. TPLP 7, 355–375 (2007)

65. Syrjänen, T.: Omega-Restricted Logic Programs. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 267–279.
Springer, Heidelberg (2001)

66. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries
in database and logic programming systems. TPLP 8, 129–165 (2008)

67. Zhao, Y.: ASSAT homepage, since (2002), http://assat.cs.ust.hk/

http://www.tcs.hut.fi/Software/smodels/
http://www.w3.org/TR/owl-guide/
http://assat.cs.ust.hk/

Combining Answer Set Programming and Prolog:
The ASP−PROLOG System

Enrico Pontelli, Tran Cao Son, and Ngoc-Hieu Nguyen

Department of Computer Science
New Mexico State University

{epontell,tson,nhieu}@cs.nmsu.edu

Abstract. This paper presents a framework for combining Answer Set Program-
ming and Prolog, as developed in theASP−PROLOG system. The paper focuses
on the development of a model-theoretical account for ASP−PROLOG. It also
illustrates the use of ASP−PROLOG in several practical applications in knowl-
edge representation and reasoning, common-sense reasoning, and planning.

1 Introduction

Answer Set Programming (ASP) [Niemelä, 1999, Marek and Truszczyński, 1999] arises
from the research in logic programming and has become a viable declarative program-
ming paradigm. ASP has been applied in several important areas, such as diagnosis
and planning for space shuttle missions [Balduccini et al., 2001], multi-agent reason-
ing [Baral et al., 2010], natural language processing [Baral et al., 2008], bioinformat-
ics [Gebser et al., 2010], and LTL model checking [Heljanko and Niemelä, 2003]. The
continued improvements of answer set solvers, with respect to the representation lan-
guage and the implementation techniques, enable ASP to be competitive with other
state-of-the-art technologies in several domains (e.g., planning [Tu et al., 2010]).

The growing availability of data, e.g., the online deployment of portals and domain
specific data repositories and resources, has brought new challenges to Computer Sci-
ence. One of these challenges is the integration of several knowledge bases, possibly un-
der different semantics, for use as a unique information source. This need has inspired
the development of Multi-Context Systems (MCS) [Brewka and Eiter, 2007], of which
the ASP−PROLOG system [El-Khatib et al., 2005] has been one of the first represen-
tatives. An implementation of MCS is described in [Dao-Tran et al., 2010]. The key
difference between these two systems lies in the fact that the implementation of MCS
through the DMCS algorithm [Dao-Tran et al., 2010] focuses on computing the partial
equilibria (or the semantics) of MCSs, while the ASP−PROLOG system provides an
environment for query answering with multiple knowledge bases. In other words, the
former represents a bottom-up evaluation of MCSs while ASP−PROLOG provides
a top-down one. To the best of our knowledge, there exists no formal comparison be-
tween these two systems. One of the main difficulties in this endeavor is the lack of a
model-theoretical account for ASP−PROLOG system.

In this paper, we address the aforementioned issue and present a model-theoretical
semantics for the ASP−PROLOG system. We will also present a revised operational

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 452–472, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Combining Answer Set Programming and Prolog 453

semantics for ASP−PROLOG, which builds on the new model-theoretical semantics.
We illustrate the flexibility of ASP−PROLOG in several applications, mostly drawn
from the field of Knowledge Representation and Reasoning.

We will begin with the description of the syntax of ASP−PROLOG (Section 2).
In Section 3, we present the semantics of ASP−PROLOG and a brief description of
the ASP−PROLOG system (Section 4). We illustrate the use of ASP−PROLOG in
various applications (Section 5) and conclude in Section 6.

2 ASP−PROLOG: The Syntax

2.1 Describing a Knowledge Base

The syntax of ASP−PROLOG builds on a signature 〈F , Π,V〉, whereF is a countable
collection of function symbols, Π is a countable collection of predicate symbols, and
V is a collection of variables. We make the following initial assumptions:

• There is an arity function ar : F ∪Π → N.
• The set Π is partitioned as Π = Πu ∪ Πi; we refer to p ∈ Πu as a user-defined

predicate, while q ∈ Πi is referred to as an interface predicate. We assume, for this
presentation, that {assert,retract,model,clause} ⊆ Πi.

• The two symbols ← and ∧ belong to F , both with arity 2, as well as the symbol
not with arity 1.

• There is subset Fu ⊆ F and a bijection ζ : Πu → Fu.

We assume that the two symbols ⊥,� are present in Π , both with arity 0; these are
used to denote, respectively, false and true.

The notions of term and atom are defined as usual. A term is either a variable from V
or an entity of the form f(t1, . . . , tn) where t1, . . . , tn are terms, f ∈ F and ar(f) = n.
An atom is an entity of the form p(t1, . . . , tn) where t1, . . . , tn are terms, p ∈ Π and
ar(p) = n. An atom is a i-atom if p ∈ Πi, otherwise it is an u-atom. Given an atom A,
we denote with pred(A) the predicate used in the construction of A. We denote with
H(F) the Herbrand universe of F (i.e., the set of all ground terms built using terms of
F) and with P(Π,F) the Herbrand base of F and Π (i.e., all the ground atoms built
using predicates of Π and terms of H(F)). With a slight abuse of notation, we use the
notationH(F ,V) to denote all the possible terms built with functions symbols from F
and variables from V .

A rule is an entity of the form

A:-B1, . . . , Bn, not C1, . . . , not Cm (1)

where A, B1, . . . , Bn, and C1, . . . , Cm are atoms, and A is an u-atom. If A = ⊥, then
we will write the rule simply as

:-B1, . . . , Bn, not C1, . . . , not Cm

Given a rule r of the form (1), we denote with head(r) the atom A and with body(r)
the set {B1, . . . , Bn, not C1, . . . , not Cm}. A knowledge base is a collection of rules.

454 E. Pontelli, T.C. Son, and N.-H. Nguyen

A substitution σ is a function σ : V → H(F ,V); the substitution is grounding if, for
each v ∈ V , we have that σ(v) ∈ H(F). Given a knowledge base P , we denote with
ground(P) = {σ(r) | r ∈ P, σ is a grounding substitution}.
With a slight abuse of notation, we also:

◦ Use the function symbols← and ∧ in infix notation, i.e., we write s← t and s ∧ t
instead of← (s, t) and ∧(s, t);

◦ Use the simplified notation t1∧ t2∧· · ·∧ tn as a syntactic sugar for t1∧(t2∧(· · ·∧
(tn−1 ∧ tn)));

◦ Extend the function ζ to a function over u-atoms and rules:
– if p(t1, . . . , tn) is a u-atom, then ζ(p(t1, . . . , tn)) = ζ(p)(t1, . . . , tn).
– if the rule r is of the form A:-B1, . . . , Bn, not C1, . . . , not Cm, then ζ(r) =

ζ(A) ← ζ(B1) ∧ · · · ∧ ζ(Bn) ∧ not (ζ(C1)) ∧ · · · ∧ not (ζ(Cm)).

Given a knowledge base P , we denote

def(P) = {p | p ∈ Πu, r ∈ P, pred(head(r)) = p}

2.2 Describing a Collection of Knowledge Bases

A module is a knowledge base that has the capabilities of interacting with other knowl-
edge bases. In order to make the interaction possible, we need to introduce, first of all,
some extensions to the syntax of a knowledge base.

A qualified atom is a formula of the form t : A where A is an atom and t is a
term. We modify the notion of rule (1) by allowing B1, . . . , Bn and C1, . . . , Cm to be
either atoms or qualified atoms (note that A is still required to be an atom)—we refer to
these as qualified rules. A qualified knowledge base is a knowledge base composed of
qualified rules. We also use the term literal to denote either an atom A or the formula
not A and the term qualified literal to denote either a qualified atom t : A or a formula
not (t : A). A program literal is either a literal or a qualified literal. We denote with
PL(Π,F ,V) the set of all program literals, and with PL(Π,F) the set of all ground
program literals.

Intuitively, the term t in the annotation is used to represent the scope in which the
atom will be evaluated—and the scope will be a set of interpretations identified by the
term t. We denote with used(α) the annotation of α, i.e., used(A) = ∅ for an atom A
and used(t : A) = {t} for a qualified atom t : A. This notion is extended to the case of
rules; if r is a rule of the form (1), then used(r) =

⋃n
i=1 used(Bi) ∪

⋃m
j=1 used(Cj);

and for a program P , used(P) =
⋃

r∈ground(P) used(r).
A module is a tuple M = 〈name, type, P, I, O〉 where

• name is a ground term, indicating the name of the module (denoted by name(M));
• type is either prolog or asp (denoted by type(M));
• P is a qualified knowledge base (denoted by pgm(M));
• I is a set of ground terms—referred to as the import set (denoted by import(M));

we require I to satisfy the following conditions: used(P) ⊆ I and name �∈ I; and
• O ⊆ def(P)—referred to as the export set (denoted by export(M)).

Combining Answer Set Programming and Prolog 455

Intuitively, each module has a name, a type (which defines the semantics to be used to
interpret the module), a collection of rules defining the “meaning” of the module, an im-
port set—containing the names of other modules from which we import knowledge—
and an export set—containing the predicates defined in the module and visible to the
outside world.

A program is a finite collection {M1, . . . ,Mk} of modules, with the following con-
straints

• For each i = 1, . . . , k, if t ∈ import(Mi), then there exists Mj such that
name(Mj) = t;

• For each t : A occurring in a rule of ground(Mi), if name(Mj) = t then
pred(A) ∈ export(Mj).

For the sake of simplicity, we often denote the module M with Mname(M). Addition-
ally, given a program P , we denote with name(P) = {name(M) |M ∈ P}. We also
extend the function ζ to operate with qualified atoms and qualified rules in the obvious
manner, starting with the assumption that ζ(t : A) = t : ζ(A).

2.3 Additional Considerations

The interface predicates in Πi are meant to provide built-in mechanisms to enable
meaningful interaction between modules. We distinguish two types of interface predi-
cates:

• Querying: these are predicates that are used to access the semantics of other mod-
ules;

• Updating: these are predicates used to modify the content of other modules.

In the rest of the discussion, we classify the predicates model and clause as static,
while assert and retract are classified as dynamic.

Whenever a module contains occurrences of dynamic predicates, we refer to it as a
dynamic module, otherwise we refer to it as a static module. A program is static if it
contains exclusively static modules, otherwise it is considered to be dynamic.

The distinction is important, as it affects the way the semantics of programs is devel-
oped. A static program can be modeled model-theoretically, as a collection of models.
On the other hand, in presence of dynamic predicates, we wish to model the dynamic
evolution of the modules—i.e., we intend to model the semantics of the program P as
an evolving sequence of programs P1, P2, . . . each with its own semantics.

3 ASP−PROLOG: The Semantics

3.1 Preliminary Definitions

Let us consider a program P . The import/export declarations present in the various
modules establish a dependence relation among modules. We say that Mi depends
on Mj (denoted Mj ≺ Mi) if name(Mj) ∈ import(Mi). The dependence rela-
tion can be also seen in the form of a dependence graph where the set of nodes is

456 E. Pontelli, T.C. Son, and N.-H. Nguyen

N = {name(M) |M ∈ P} and the set of edges is E = {(name(Mi), name(Mj)) |
Mi,Mj ∈ P,Mj ≺ Mi}. We denote with graph(P) the graph (N,E) generated by
the modules in the program P . We also denote with ≺∗ the transitive closure of ≺.

For the first part of our discussion, we impose some restrictions on the admissible
structures for graph(P):

• graph(P) is acyclic;
• There exists a topological sort n1, n2, . . . , nk of graph(P) such that

◦ If Mni ≺Mnj then i < j;
◦ For each 1 ≤ i < k we have that Mni ≺∗ Mnk

.
• predicates from Πi are used exclusively in qualified atoms.

We refer to the module Mnk
as the entry module, and we denote it with entry(P). For

the sake of simplicity we also consider only modules that export all their predicates.
In the rest of the discussion, we rely on the fact that each module should be inter-

preted according to a possibly different semantics. We also assume that the semantics
of each module can be described by a collection of models, in turn described by sets
of atoms. Given a knowledge base P (without qualifications) of type κ, we denote with
SEMκ(P) ⊆ 2P(Π,F) the κ-semantics of P , described as sets of atoms. For example,

if κ is prolog, then SEMprolog(P) includes a single element, which corresponds
to the least Herbrand model of P ,1 while if κ is asp, then SEMasp(P) contains the
answer sets of P [Gelfond and Lifschitz, 1988]. Whenever we refer to a module M , we
often use the notation SEM(M) to simply denote SEMtype(M)(pgm(M)).

3.2 Model-Theoretic Semantics

In order to develop a model-theoretic semantics for ASP−PROLOG, we will restrict
our attention to static programs. The intuition behind the construction of the semantics
of a program P is as follows:

◦ The semantics is described in terms of assignments of a collection of models to
each module of the program;

◦ The construction follows the topological sort of graph(P)—i.e., if n1, n2, . . . , nk

is the sorted list of modules, then the semantics assigned to ni will build on the se-
mantics assigned to the modules n1, . . . , ni−1. Intuitively, the semantics of ni will
be constructed by constructing a “reduced” version of Mni , where each qualified
atom t : A is interpreted according to the semantics assigned to the module Mt

(and accordingly removed from the module), and then using SEM to determine
the semantics of the reduced version of the module.

The starting point of the construction is the introduction of a model naming function—
i.e., a function which maps ground terms to interpretations. The need for model naming
comes from the need to interpret qualified atoms of the form t : A, where t is treated
as the name of a model of a different module. Formally, a model naming function is a
function τ : H(F) → 2P(Π,F) which maps ground terms to possible interpretations.

1 We assume Prolog modules to contain definite programs and admit a least Herbrand model.

Combining Answer Set Programming and Prolog 457

Let us consider a program P with module names n1, n2, . . . , nk (already topologi-
cally sorted according to graph(P)). An ASP−PROLOG-interpretation of P is a pair
I = (τ, π) where τ is a model-naming function and π is a function π : name(P) →
22P(Π,F)

. Intuitively, for each module name nj , π(nj) is a set of interpretations to be
used with the module Mnj .

Given an ASP−PROLOG-interpretation I = (τ, π), we define the notion of entail-
ment of qualified atoms w.r.t. I and the module named ni in P (denoted by |=P

ni
) as

follows:

• If t : A is a ground qualified atom and t ∈ import(Mni) then I |=P
ni

t : A iff
∀X ∈ π(t) we have that A ∈ X (i.e., A is skeptically entailed by all the models of
the module named t).

• If t : A is a ground qualified atom and t ∈ import(Mni), then I |=P
ni

not t : A iff
∃X ∈ π(t) such that A �∈ X .

• If t : A is a ground qualified atom and t �∈ import(Mni), then I |=P
ni

t : A iff
∃s ∈ import(Mni) such that τ(t) ∈ π(s) and A ∈ τ(t)—i.e., t is the name of an
interpretation which entails A and it is one of the models of one of the imported
modules (i.e., A is credulously entailed by one of the imported modules).

• If t : A is a ground qualified atom and t �∈ import(Mni), then I |=P
ni

not t : A iff
either ∀s ∈ import(Mni) we have that τ(t) �∈ π(s) or ∃s ∈ import(Mni) such that
τ(t) ∈ π(s) and A �∈ τ(t).

The interface predicates model and clause are interpreted as follows:

• Given a ground atom of the form t : model(s), we have that I |=P
ni

t : model(s)
iff t ∈ import(Mni) and τ(s) ∈ π(t)—i.e., s is a name associated to an interpreta-
tion that is a valid model of the imported module s.

• Given a ground atom of the form t :clause(r), we have that I |=P
ni

t :clause(r)
iff t ∈ import(Mni) and ζ−1(r) ∈ pgm(Mt).

Given a program P , a module name ni and an ASP−PROLOG-interpretation I , we
define a notion of reduct used to eliminate from a module all qualified entities—and
using the interpretation I to determine whether the qualified items are true or false.
Formally:

• If A is a ground atom, then AI
ni

= A and (not A)I
ni

= not A—i.e., unqualified
items are left unchanged in the reduction process;

• (t : A)I
ni

= true (resp. (t : A)I
ni

= false) iff I |=P
ni

t : A (resp. I �|=P
ni

t : A);
• (not (t : A))I

ni
= true (resp. (not (t : A))I

ni
= false) iff I |=P

ni
not (t : A) (resp.

I �|=P
ni

not (t : A)).

Given a generic qualified rule r ∈ ground(P) of the form A:-B1, . . . , Bk, a program
P , a module name ni in P , and an ASP−PROLOG-interpretation I , we denote with
rI
ni

the ASP−PROLOG-reduct of r w.r.t. I and ni, defined as

rI
ni

=
{
∅ if there exists 1≤j≤k such that (Bj)I

ni
= false

{A:-(B1)I
ni
, . . . , (Bk)I

ni
} otherwise

458 E. Pontelli, T.C. Son, and N.-H. Nguyen

The entailment relation and the topological sort of the modules in graph(P) allow
us to introduce the notion of ASP−PROLOG-reduct of a program. Given a program
P = {Mn1 , . . . ,Mnk

} (where n1, n2, . . . , nk is the topological sort of graph(P))
and an ASP−PROLOG-interpretation I , the ASP−PROLOG-reduct of ground(P)
w.r.t. I , denoted ground(P)I , is the program {M I

n1
,M I

n2
, . . . ,M I

nk
}, where M I

ni
is a

module identical to Mni except for the following:

pgm(M I
ni

) =
⋃

r∈ground(pgm(Mni
))

rI
ni
.

We can now define the intended meaning of a program P : an ASP−PROLOG-
interpretation I = (τ, π) is an intended meaning for P if for each module n in P

we have that SEMtype(Mn)(ground(pgm(M I
n))) = π(n).

Proposition 1. Given a ASP−PROLOG program P and a model naming function τ ,
there is a unique function π such that I = (τ, π) is an intended meaning for P .

Proposition 2. Let P be a program, τ a model naming function, and I = (τ, π) the
corresponding intended meaning for P . If M ∈ P is a module such that for each other
module M ′ ∈ P we have that M ′ �≺ M , then SEMtype(M)(ground(pgm(M))) =
π(name(M)).

Example 1. Let us consider a two-module program; the first module is of type asp, it
is named m1, and it contains the rules

p:-not q q:-not p

The second module, named m2, is of type prolog, and it includes the rules

r:-m1 : p s:-t1 : model(m1), t1 : q s:-t2 : model(m1), t2 : q

Let us consider a model naming function τ where

τ(t1) = {p} τ(t2) = {q} τ(t3) = {s}
It is easy to see that any ASP−PROLOG-interpretation I which is a model of the
program should have π(m1) = {{p}, {q}}. This guides the reduct of m2 to become

s:-

which can be satisfied by requiring π(m2) = {{s}}.

3.3 Semantics for Dynamic Programs

In presence of dynamic programs, we propose a goal-oriented operational semantics—
since the dynamic changes provided by predicates like assert and retract are
sensitive to the order of execution. For the sake of simplicity, in the rest of the discus-
sion we will concentrate exclusively on programs composed of two types of modules—
prolog and asp. We assume that the natural semantics SEM for prolog is the
least Herbrand model, while for asp SEM corresponds to the answer set semantics.
Furthermore, we assume that dynamic interface predicates are used exclusively in qual-
ified atoms in prolog programs, and for each program P we have that head(P) is
a prolog module. Since the modifications of the program are based on adding or

Combining Answer Set Programming and Prolog 459

removing rules from programs, they will not affect the structure of graph(P). Thus, we
will work with different versions of a program with respect to a fixed graph structure
and with the same topological sort n1, n2, . . . , nk of its modules. Formally:

• Two modules M and M ′ are variants (denoted M3M ′) if name(M)=name(M ′),
type(M) = type(M ′), import(M) = import(M ′), export(M) = export(M ′).

• Two programs P1 = {M1
1 , . . . ,M

1
k} and P2 = {M2

1 , . . . ,M
2
k} are variants (P1 3

P2) if M1
1 3M2

1 , . . . ,M
1
k 3M2

k .

Given a program P , we refer to PR(P) = {P ′ | P ′ 3 P} to denote the set of all
possible variants of P . For each P ′ ∈ PR(P), we denote with P ′(ni) the module
named ni in P ′.

Given two ASP−PROLOG programs P1 3 P2, we say that P1 and P2 are i-
compatible (i ≤ k) if P1(nj) = P2(nj) for j ≥ i.

In presence of dynamic operations, we need to associate the elements of an interpre-
tation with the modified program that supports such element. A dynamic atom is a tuple
(P1, A, P2) where A is a ground atom and P1, P2 are ASP−PROLOG programs such
that P1, P2 ∈ PR(P). Intuitively, a dynamic atom (P1, A, P2) indicates that the truth
of A in P1 is possible only if the program P1 is transformed into the program P2 as
result of the asserts and retracts involved in the rules related to A; alternatively,
one could say that A is true in P1, but its truth requires transforming P1 to P2.

A dynamic interpretation is a collection of dynamic atoms. The notion of interpre-
tation in ASP−PROLOG can be modified to become a dynamic ASP−PROLOG-
interpretation (τ, π), where τ is a model naming function, while π(n) will correspond
to a set of dynamic interpretations for the module n.

For the sake of simplicity the successive discussion assumes that P is a ground pro-
gram. We will successively discuss the lifting to the non-ground case.

Dynamic Natural Semantics. Let us start by modifying the notion of standard seman-
tics of a knowledge base M (without qualifications) to the case of dynamic interpreta-
tions. The intuition is to transform the programs so that they deal with dynamic atoms
and are interpreted using dynamic interpretations.

Let us start with some preliminary notation. If r is a rule of the form

A:-B1, . . . , Bh, not Bn+1, . . . , not Bm

(with m ≥ 1) in P1(name(M)) then r̂(P1,m) contains all the rules of the form

(P1, A, Pm+1):-(Pi1 , B1, Pi1+1), (Pi2 , B2, Pi2+1), . . . , not (Pim , Bm, Pim+1)

where 〈i1, . . . , im〉 is a permutation of 〈1, . . . ,m〉, P1, . . . , Pm+1 ∈ PR(P), and for
each 1 ≤ j ≤ m, if Bj is not a qualified atom, then Pij = Pij+1. The intuition is
that the order in which the elements in the body of a rule are coinsidered is meaningful,
thus we generate rules that can account for any order (the permutation 〈i1, . . . , im〉).
The connection between the different variants of the program allows to capture the
successive changes to the program that may be required in asserting the truth of each
element in the body of the program.

If r is a fact A in P1(name(M)) (i.e., a rule with an empty body), then r̂(P1,m) =
{(P1, A, P1)}.

460 E. Pontelli, T.C. Son, and N.-H. Nguyen

We also introduce the notation r̂(m) to contain the union of all the r̂(P1,m) for each
P1 such that P1(m) contains the rule r.

The semantics in absence of qualifications and imports for a module M (named m)
is as follows: for each P1 ∈ PR(P), if S ∈ SEM(P1(m)) then

{(P1, a, P1) | a ∈ S} ∈ SEMd(m)

and no other models are considered.

Dynamic Reduct and Dynamic Semantics. In order to expand the definitions of Sec-
tion 3.2, we now need to extend the notion of entailment to the case of dynamic in-
terpretations and dynamic programs. In the following discussion, n denotes the name
of a module in the program P , and by P (n) we denote the module M ∈ P such
that name(M) = n. The entailment is equivalent, for the most part, to the case of
non-dynamic programs, except for the use of dynamic atoms. The novelty is in the
ability to process assert and retract statements. Given I = (τ, π) a dynamic
ASP−PROLOG-interpretation, and a program P , the entailment of qualified ground
atoms is defined as follows (in all the following cases, P1, P2 ∈ PR(P)):

• If t : A is a ground qualified atom and t ∈ import(P (n)) then I |=n (P1, t : A,P2)
iff for each X ∈ π(t) we have that (P1, A, P2) ∈ X .

• If t : A is a ground qualified atom and t ∈ import(P (n)) then I |=n not (P1, t :
A,P2) iff there exists X ∈ π(t) such that (P1, A, P2) �∈ X .

• If t : A is a ground qualified atom and t �∈ import(P (n)) then I |=n (P1, t : A,P2)
iff ∃s ∈ import(P (n)) such that τ(t) ∈ π(s) and (P1, A, P2) ∈ τ(t).

• If t : A is a ground qualified atom and t �∈ import(P (n)) then I |=n not (P1, t :
A,P2) iff either ∀s ∈ import(P (n)) we have that τ(t) �∈ π(s) or there exists
s ∈ import(P (n)) such that τ(t) ∈ π(s) but (P1, A, P2) �∈ τ(t).

• If t : model(s) is a ground qualified atom, then I |=n (P1, t : model(s), P2) iff
t ∈ import(P (n)), τ(s) ∈ π(t), and P1 = P2.

• If t : clause(r) is a ground qualified atom, then I |=n (P1, t : clause(r), P2)
iff t ∈ import(P (n)), ζ−1(r) ∈ pgm(P1(n)), and P1 = P2.

• If t : assert(r) is a ground qualified atom, then I |=n (P1, t : assert(r), P2)
iff t ∈ import(P (n)), M ′ is a module such that M ′ 3 P1(t),
pgm(M ′) = pgm(P1(t))∪{ζ−1(r)}, and P2 = (P1 \{P1(t)})∪{M ′}. Intuitively,
P2 should be a program obtained by introducing the rule r in the module t of
program P1.

• If t : retract(r) is a ground qualified atom, then I |=n (P1, t : retract(r), P2)
iff t ∈ import(P (n)), M ′ is a module such that M ′ 3 P1(t),
pgm(M ′) = pgm(P1(t))\{ζ−1(r)}, and P2 = (P1 \{P1(t)})∪{M ′}. Intuitively,
P2 should be a program obtained by removing the rule r from the module t of
program P1.

Given a ground program P = {Mn1 , . . . ,Mnk
} and a dynamic ASP−PROLOG-

interpretation I , it is now possible to determine the ASP−PROLOG-reduct of P as
the program {(M̂n1)I , . . . , (M̂nk

)I}, and proceed in defining the notion of intended
meaning in the same way as done for the static case. In particular,

Combining Answer Set Programming and Prolog 461

◦ For each dyanmic literal or qualified literal �, we define �I
n as follows:

− For each ground dynamic atom � ≡ (P1, A, P2), �I
n = �;

− For each ground dynamic literal � ≡ not (P1, A, P2), �I
n = �;

− For each ground qualified dynamic atom � ≡ (P1, t : A,P2), we have that
�I
n = true (resp. �I

n = false) iff I |=n � (resp. I �|=n �);
− For each ground qualified literal � = not(P1, t : A,P2), we have that �I

n = true
(resp. �I

n = false) iff I |=n � (resp. I �|= �).
◦ Let r be a rule in P1(n) and let us consider an element ρ of the formA:-B1, . . . ,Bk

in r̂(P1, n); ρI
n is the rule

ρI
n =

{
∅ there is a qualified literal B in body(r) such that BI

n = false
{A:-(B1)I

n, . . . , (Bk)I
n} otherwise

◦ for a module M̂m containing imports, and given a dynamic interpretation I , we

denote with M̂m

I
the module such that M̂m

I
3Mm and

pgm(M̂m

I
) =

⋃
r ∈ pgm(P1(m))

ρ ∈ r̂(P1, n)

ρI
m

◦ Finally, we can define a dynamic ASP−PROLOG-interpretation I = (τ, π) to be

an intended meaning of P if for each module n in P we have that SEM(M̂n

I
) =

π(n).

Example 2. Let us consider a program P composed of a module t1 containing the rules
p:-q, r and q:- and the module t2 containing the rule s:-t1 : assert(r), t1 : q.

Let us consider the variant P1 of the program where the only change is the addition
of the fact r:- to the module t1, then we have that M̂t1 will include only the following
two rules with head atoms of the type (P1, ·, ·):

(P1, p, P1):-(P1, q, P1), (P1, r, P1) (P1, q, P1):- (P1, r, P1):-

Thus, the dynamic semantics will ensure that each dynamic model of this module will
include the dynamic atom (P1, r, P1). The dynamic reduct of the rules of the module t2
for P include the fact (P, s, P1):-. Thus, the dynamic models for the module t2 will
include (P, s, P1).

Operational Semantics for Dynamic Programs. The top-down nature of the compu-
tation in the case of dynamic programs can be captured through the notion of derivation.
This provides us also with a mechanism to lift the previous definitions to the non-ground
case. Let us start with some preliminary definitions. Let us refer to a goal as a sequence
of program literals. A computation rule

ρ : PL(Π,F ,V)∗ → PL(Π,F ,V)∗ × PL(Π,F ,V)× PL(Π,F ,V)∗

is a function that, given a sequence of program literals, it selects a particular program
literal, splitting the sequence in two parts, the part preceding the selected literal and the
part following it.

462 E. Pontelli, T.C. Son, and N.-H. Nguyen

A computation state is a tuple σ = 〈α, θ, P 〉where α is a goal (referred to a goal part
and denoted by goal(σ)), θ is a substitution for the variables V (denoted by subs(σ))
and P is an ASP−PROLOG program (denoted by program(σ)).

Given a goal α and an ASP−PROLOG program P , the initial computation state
w.r.t. α and P is the computation state σ0(G) = 〈α, ε, P 〉.2

We introduce a resolution relation between computation states, denoted by n,I
ρ ,

where ρ is a computation rule, I is an intended meaning of the program, and n is

the name of a prolog module. We will also denote with
∗

n,I

ρ the reflexive and
transitive closure of the relation n,I

ρ . We have that 〈α, θ, P1〉 n,I
ρ 〈α′, θ′, P ′〉 if

ρ(α) = (α1, γ, α2) and:

• If γ is an atom A and r is a new variant of a rule in pgm(P (n)) such that head(r)
unifies with Aθ then3

- α′ = α1 · body(r) · α2;
- θ′ = θ ◦ μ where μ is the most general unifier of Aθ and head(r);
- P ′ = P1.

• If γ is a qualified atom t : A, there exists a substitution ψ such that t(θ ◦ ψ) ∈
import(P (n)), type(P (t)) = prolog, and 〈A, θ ◦ ψ, P1〉

∗
t(θ◦ψ),I

ρ (�, σ, P ′)
then

- α′ = α1 · α2;
- θ′ = σ

• If γ is a qualified atom t : A, there exists a substitution ψ such that t(θ ◦ ψ) ∈
import(P (n)), type(P (t)) = asp, A(θ ◦ ψ) is ground and there is a program
P ′ ∈ PR(P) such that (P1, A(θ ◦ ψ), P ′) ∈ X for each X ∈ π(t(θ ◦ ψ)), then

- α′ = α1 · α2;
- θ′ = θ ◦ ψ

• If γ is a qualified atom t : A, there is a substitution ψ such that t(θ ◦ ψ) �∈
import(P (n)), there is s ∈ import(P (n)) such that τ(t(θ ◦ ψ)) ∈ π(s), and there
is a program P ′ ∈ PR(P) such that (P1, A(θ ◦ ψ), P ′) ∈ τ(t(θ ◦ ψ)), then

- α′ = α1 · α2;
- θ′ = θ ◦ ψ

• If γ is of the form not t : A, there is a substitution ψ such that t(θ ◦ ψ) ∈
import(P (n)), X ∈ π(t(θ ◦ ψ)), for all ground instances A(θ ◦ ψ ◦ σ) and for
all P ′ ∈ PR(P) we have that (P1, A(θ ◦ ψ ◦ σ), P ′) �∈ X , then

- α′ = α1 · α2;
- θ′ = θ ◦ ψ
- P ′ = P1

• If γ is of the form not t : A, there is a substitution ψ such that t(θ ◦ ψ) �∈
import(P (n)), there is s ∈ import(P (n)) such that τ(t(θ ◦ ψ)) ∈ π(s), and
for each ground instance A(θ ◦ ψ ◦ σ) and for all P ′ ∈ PR(P) we have that
(P1, A(θ ◦ ψ ◦ σ), P ′) �∈ τ(t(θ ◦ ψ)), then

2 We denote with ε the identity substitution, i.e., the substitution such that for each X ∈ V we
have that ε(X) = X.

3 · represents concatenation of lists and ◦ represents function composition.

Combining Answer Set Programming and Prolog 463

- α′ = α1 · α2;
- θ′ = θ ◦ ψ
- P ′ = P1

• If γ is of the form t : model(s), there is a substitution ψ such that t(θ ◦ ψ) ∈
import(P (n)), and τ(s(θ ◦ ψ)) ∈ π(t(θ ◦ ψ)), then

- α′ = α1 · α2;
- θ′ = θ ◦ ψ
- P ′ = P1

• If γ is of the form t : clause(r), there is a substitution ψ such that t(θ ◦ ψ) ∈
import(P (n)), ζ−1(r(θ ◦ ψ)) ∈ pgm(P1(t(θ ◦ ψ))), then

- α′ = α1 · α2;
- θ′ = θ ◦ ψ
- P ′ = P1

• If γ is of the form t : assert(r), there is a substitution ψ such that ζ−1(r(θ ◦ψ))
is a well-formed rule, t(θ ◦ ψ) ∈ import(P (n)), M ′ is a module such that M ′ 3
P1(t(θ ◦ ψ)) and pgm(M ′) = pgm(P1(t(θ ◦ ψ))) ∪ {ζ−1(r(θ ◦ ψ))}, then

- α′ = α1 · α2;
- θ′ = θ ◦ ψ
- P ′ = (P1 \ P1(t(θ ◦ ψ))) ∪ {M ′}

• If γ is of the form t : retract(r), there is a substitution ψ such that t(θ ◦ ψ) ∈
import(P (n)), ζ−1(r(θ ◦ ψ)) ∈ pgm(P1(t(θ ◦ ψ))), M ′ is a module such that
M ′ 3 P1(t(θ ◦ ψ)) and pgm(M ′) = pgm(P1(t(θ ◦ ψ))) \ {ζ−1(r(θ ◦ ψ))}, then

- α′ = α1 · α2;
- θ′ = θ ◦ ψ
- P ′ = (P1 \ P1(t(θ ◦ ψ))) ∪ {M ′}

The notion of computed answer can be given as follows: for a goal α, a computed
answer substitution θ is such that there exists a derivation 〈α, ε, P 〉nk

ρ
∗〈�, θ, P ′〉.

4 ASP−PROLOG: An Overview of the Implementation

A first implementation of ASP−PROLOG was developed in 2004; it built on the CIAO
Prolog system and on a modified version of the lparse/smodels systems. A new
implementation is currently in progress, which advances the state-of-the-art w.r.t. the
original implementation in the following directions:
• The new implementation builds on the new semantics presented in this paper;
• The implementation presented in [El-Khatib et al., 2004, El-Khatib et al., 2005]

builds on a relatively less popular Prolog system and requires modified versions
of ASP solvers (lparse, smodels); this prevents the evolution of the system
and the use of state-of-the-art ASP solvers. The new implementation makes use of
ASP solvers as black boxes, enabling the use of the most efficient solvers avail-
able. Additionally, the new implementation builds on a more standard and popular
Prolog system, i.e., SICStus Prolog.

464 E. Pontelli, T.C. Son, and N.-H. Nguyen

A new implementation is currently under development. The new implementation aims
at more precisely implementing the formal semantics illustrated in the previous section,
which provides the foundation of the ASP−PROLOG system. The current prototype
provides only a minimal set of predicates aimed at providing the basic interaction be-
tween Prolog modules and ASP modules and among ASP modules. It has the following
predicates:

– use asp(ASPModule, PModule, Parameters): a Prolog module, named
PModule, is created as an interface storing the results of the computation of answer
sets of the ASP programASPModulewith the parameters specified in Parameters.
The new module contains the atoms entailed by all the answer sets of ASPModule,
atoms of the form model/1, and has sub-modules which encode the answer sets
of ASPModule. Two special cases:
• use asp(ASPModule,PModule): this has the same effect as
use asp(ASPModule,PModule,[]).

• use asp(ASPModule): same as use asp(ASPModule,ASPModule).
This predicate provide the analogous of the import declaration discussed in the for-
mal syntax; the implementation extends it by allowing its use as a dynamic pred-
icate, i.e., allowing the dynamic import of ASP modules at any point during the
execution.4

– import(PModule,PredsIn, ASPModule, PredsOut, NewPModule,
Parameters): a Prolog module named NewPModule is created from the ASP
program ASPModule by (i) importing from the Prolog module PModule the atoms
specified in PredsIn, a list of pairs of the form (f(X), g(Y)) into ASPModule

where the set of free variables in Y is a subset of the set of free variables in X ; (ii)
computing the answer sets of the new program with the parameters Parameters;
and (iii) exporting the results according to PredsOut to the new Prolog module
NewPModule.

– assertnb(ASPModule, Progs) and retractnb(ASPModule, Progs): (i) as-
sert and retract, respectively, the clauses specified in Progs to the ASPModule

and (ii) create new modules similar to use module(ASPModule). The “nb” in the
names of these predicates indicate that their effects are “non-backtrackable”, i.e.,
they persist as Prolog backtracks over their executions.

5 ASP−PROLOG: An Illustration

In this section, we present a set of sample applications exhibiting the main features of
ASP−PROLOG.

5.1 Reasoning with Answer Set Semantics

The authors of [Gelfond and Leone, 2002] stipulate two different modes of reasoning
with the answer set semantics: the skeptical and the credulous reasoning mode. An

4 It is a simple, though tedious, exercise to extend the semantics presented earlier to cover this
dynamic import behavior.

Combining Answer Set Programming and Prolog 465

atom a is skeptically entailed by a program P if a belongs to every answer set of P .
It is credulously entailed if it belongs to at least one answer set of P . Both reasoning
modes can be used in ASP−PROLOG, as shown in the next example.

Example 3. Suppose that we have the ASP program t1.lp which contains the follow-
ing clauses:

{p← not q. q ← not p. c← p. c← q.}

After the execution of ?- use asp(t1). in ASP−PROLOG, the following queries
and answers can be obtained:

Query Answer Reason

?- t1:p. No p is not true in all answer sets of t1.lp
?- t1:c. Yes c is true in all answer sets of t1.lp
?- t1:model(Q). Q = t11

Q = t12 if ask for the second answer
?- t1:model(Q),Q:p. Q = t11 or since p is contained in one answer set

Q = t12

Observe that the query ?- m1:q, m2:model(Q), Q:p represents a combination of
the two reasoning modes: skeptical reasoning about q in module m1 and credulous rea-
soning about p in module m2. Such ability might become important when one wants
to combine several knowledge bases whose semantics might be different (e.g., as dis-
cussed in [Brewka and Eiter, 2007]). The terms t11 and t12 are automatically generated
names for the answer sets of t1.

5.2 Commonsense Reasoning

Logic programs with answer set semantics have been used extensively in knowledge
representation and reasoning (see, e.g., [Baral and Gelfond, 1994] for a survey). The
following example illustrates the use of ASP−PROLOG in this area.

Example 4. Suppose that we have the ASP program bird.lp

bird(tweety). bird(sam). bird(fred). bird(X) ← penguin(X).
f ly(X)← bird(X), not ab f(X). ab f(X)← penguin(X).

After the execution of ?- use asp(bird) in ASP−PROLOG, the following queries
and answers can be obtained:

?- bird:bird(X). As expected, the system will respond with X = tweety, X
= sam, and X = fred.
?- bird:fly(X). Again, we will receive three answers, as none of the birds is
declared as a penguin in the program.
?- bird:penguin(X). This will result in the answer No, as expected.

The execution of ?- assertnb(bird, [penguin(tweety)]). results in the fol-
lowing changes of the three queries as follows:

466 E. Pontelli, T.C. Son, and N.-H. Nguyen

?- bird:bird(X). Answer: X = tweety, X = sam, and X = fred.
?- bird:fly(X). Answer: X = sam, and X = fred.
?- bird:penguin(X). Answer: X = tweety.

The execution of
?- assertnb(bird, [injured(fred), ab f(X):- injured(X)]).

results in the following change of the second query:

?- bird:fly(X). Answer: X = sam.

Example 5. Consider an instance of the well-known knapsack problem with four ob-
jects 1, 2, 3, and 4 whose values and weights are given by the pairs (10, 2.1), (15, 1.2),
(6, 0.4), and (10, 1.1), respectively. Furthermore, the weight limit is 1.5. Computing a
solution for this problem cannot be done in current answer set solvers as real-valued
arithmetic is not supported.5 The problem can be solved in ASP−PROLOG using an
ASP-encoding, called knapsack.lp,

object(1). object(2). object(3). object(4). {selected(X) : object(X)}.

and a prolog program that obtains the answer sets of knapsack and finds the best
answer. The code of this program, called ek.pl, is given next:

:- use_asp(knapsack).
description(1, 10, 2.1). description(2, 15, 1.2).
description(3, 6, 0.4). description(4, 10, 1.1).
compute(Bound) :-

findall(Q, knapsack:model(Q), L), evaluation(L, E, Bound),
best(E, X), print_solution(X).

evaluation([], [], _).
evaluation([H|T], Result, Bound):-

evaluation(T, X, Bound),
findall(O, H:selected(O), LO),
value_weight_of(LO,V,W),
(W =< Bound -> append([(H, V, W)], X, Result);

append([], X, Result)).
value_weight_of([], 0, 0).
value_weight_of([H|T], TotalV, TotalW):-

description(H, V, W),
value_weight_of(T, VR, WR),
TotalV is V + VR, TotalW is W + WR.

best([(H,V,W)|[]], (H,V,W)).
best([(H,V,W)|T], Result):-

best(T, (H1,V1,W1)),
(V1 =< V -> Result=(H,V,W); Result=(H1,V1,W1)).

print_solution((X,V,W)):-
findall(O, X:selected(O), LO),
write(’The selected objects are: ’), write(LO), nl,
write(’Total weight: ’), write(W), nl,
write(’Total value: ’), write(V), nl.

5 Scaling the values by 10 will help in this case. However, identifying a scalar for each instance
is rather cumbersome.

Combining Answer Set Programming and Prolog 467

Compiling ek.pl, we get:
| ?- compute(1.5).
The selected objects are: [3,4]
Total weight: 1.5
Total value: 16

5.3 Planning

In this subsection, we will discuss different applications of ASP−PROLOG in plan-
ning. Given a planning problem P = 〈D, I,G〉 where D is an action theory in the
language B [Gelfond and Lifschitz, 1998], I is a set of fluents representing the ini-
tial state, and G is a set of fluent literals representing the goal, answer set planning
[Lifschitz, 2002] solves it by translating P into an ASP program, Π(P), whose answer
sets correspond one-to-one to solutions of P . Solutions of P are then computed using
an answer set solver. This method requires the user to specify the length of the plans
that need to be computed. For instance, the command

cclingo −c length=n Π(P)

will compute a solution of length n of P , if it exists. When the user does not have a
good guess on the length of the plan, he/she can compute a shortest plan by (i) setting n
to 1 and (ii) incrementing n by 1 until a solution is found. This process can be expressed
in ASP−PROLOG using the following clauses:

plan(Name):- compute_plan(Name, 0).

compute_plan(Name, I) :-
Paras = [c(length=I)],
use_asp(Name,Name,Paras),
(Name:model(_) ->

format("Shortest plan length = ˜q ˜n",[I]),
print_plan(Name);

I1 is I+1,compute_plan(Name,I1)).

where print plan(Name) collects the action occurrences in an answer set of Name
and prints it out.6

One of the advantages of answer set planning is its simplicity and its generality. This
has been shown in the extensive literature on answer set planning: planning with domain
knowledge [Son et al., 2006], durative actions [Son et al., 2004], incomplete informa-
tion [Tu et al., 2006], etc. To tackle a new type of planning domains, all it is needed is
an encoding in ASP. This, however, does not allow one to exploit the different heuristics
specialized for planning. Most heuristic search-based planners, on the other hand, were
developed mainly for a specific type of planning domains. ASP−PROLOG provides
an ideal environment to exploit the best of the two worlds. We will next describe a
heuristic-based planner in ASP−PROLOG. We will assume that the planning domain
is given by a Prolog programs defining the following predicates:

6 Iclingo, a solver developed by the Potsdam’s group, has the ability to compute answer sets
of a program incrementally and can be used for this purpose as well. However, there are some
syntactically differences between Iclingo and clingo.

468 E. Pontelli, T.C. Son, and N.-H. Nguyen

– action(A): A is an action;
– fluent(F): F is a fluent;
– executable(A,Conditions): A is executable when Conditions is meet;
– causes(A,Effects, Conditions): Effects will be true after the execution of A if

Conditions are true;
– caused(L,Conditions): L is true whenever Conditions is true.

where L is a fluent literal (a fluent or its negation) and Conditions and Effects are lists
of fluent literals. The following is an example of the block world domain with three
blocks a, b, and c.

% initial 3-blocks
blk(a). blk(b). blk(c).

fluent(on(X,Y)):- blk(X), blk(Y), X \== Y.
fluent(ontable(X)):- blk(X).
fluent(clear(X)):- blk(X).

action(move(X,Y,Z)):-
blk(X), blk(Y), blk(Z), X \== Y, X \== Z, Y \==Z.

action(movetotable(X,Y)):- blk(X), blk(Y), X \== Y.
action(movefromtable(X,Y)):- blk(X), blk(Y), X \== Y.

causes(move(X,Y,Z),[on(X,Y),
neg(clear(Y)),clear(Z),neg(on(X,Z))],[]):- action(move(X,Y,Z)).

causes(movetotable(X,Y), [ontable(X),
neg(on(X,Y)),clear(Y)],[]):- action(movetotable(X,Y)).

causes(movefromtable(X,Y),[on(X,Y),
neg(clear(Y)),neg(ontable(X))],[]):- action(movefromtable(X,Y)).

executable(move(X,Y,Z), [clear(X),clear(Y),on(X,Z)]):-
action(move(X,Y,Z)).

executable(movetotable(X,Y), [on(X,Y), clear(X)]):-
action(movetotable(X,Y)).

executable(movefromtable(X,Y), [ontable(X), clear(X), clear(Y)]):-
action(movefromtable(X,Y)).

Translating a domain representation from its Prolog encoding to its ASP-encoding is
simple and can be done in Prolog as well. For example, we can use the translation from
http://www.cs.nmsu.edu/˜tson/ASPlan/Knowledge/. We assume that
the initial state is given by a set of clauses defining the predicate initially(L). With
this, a generic heuristic search based planner can be implemented in ASP−PROLOG
by the following code:

search(Name, [(State,CPlan,Value)|Rest], Goal):-
checkGoal(State, Goal) ->
((write(’Plan found: ’), nl, pretty_print(CPlan));
(expand(Name, State, CPlan, Rest, Goal, Queue),
search(Name, Queue, Goal))).

where

http://www.cs.nmsu.edu/~tson/ASPlan/Knowledge/

Combining Answer Set Programming and Prolog 469

– (State, CP lan, V alue) represents a node in the search tree, where State is the
module name storing the content of the state, CPlan is the plan used to reach
State (from the initial state), and V alue is the heuristic value of State;

– Queue is a priority queue (an ordered list) of nodes, ranked by the heuristic value
of the nodes;

– checkGoal(State, Goal): true iff Goal is satisfied by State;
– expand(Name, CurrentQueue, Goal, Queue): this predicate is true iff

Queue is the list of all nodes that need to be explored after expansion of the first
element of CurrentQueue.

The key clauses in this program are those defining the expansion step expand(Name,

CurrentQueue, Goal, Queue) and computing heuristic of a given state. The
expand predicate is defined by:

expand(Name, [(State, CPlan, _)|Rest], Goal, NewQueue):-
import(State,[(holds(X,1),holds(X,0))],Name,

[holds/2,occ/2],NewState,[]),
findall((Q, X), (NewState:model(Q), Q:occ(X,0)), Models),
update_heuristics(CPlan, Models, Goal, NextStates),
update_list(Rest, NextStates, NewQueue).

The first step in expand creates an ASP module containing the domain representation
(specified by Name), the initial state (by the module named State), with the list of
import predicates in the second parameter and the list of export atoms with their arities.
The successor states are updated with their corresponding heuristic and then combined
with the rest of the CurrentQueue to create the NewQueue.

We experimented with the GraphPlan distance heuristic [Hoffmann and Nebel, 2001]
which can be easily implemented in Prolog. We observe that the planner performs much
better than the Prolog breadth-first planner, in the sense that the number of nodes which
are expanded is smaller. It remains to be seen whether this method of planning can be
competitive to state-of-the-art planners. We plan an extensive experimental evaluation
of this method of planning in the near future.

5.4 Multi-agent Planning

The previous sections present different uses of ASP−PROLOG with one single ASP
program. In this section, we show how an algorithm for computing a coordination plan
between multiple agents can be implemented in ASP−PROLOG. We will assume that
each agent A is associated to a planning problem encoded as an ASP program, called
Π(A), similar to the program described in the previous subsection, with the following
additional information:
◦ Π(A) contains atoms of the form agent(X), denoting that X is one of the agents

who can help A (or ask for help from A);
◦ actions in Π(A) are divided into two groups: the first group is specific to A and the

second group has the form get this(F,X) (A establishes F for X) or
give me(F,X) (A asks for help from X to establish F);

◦ Π(A) contains the initial condition as well as the goal of A.

470 E. Pontelli, T.C. Son, and N.-H. Nguyen

For simplicity, we assume that the integrity constraints among the worlds of agents
are encoded in Π(A) as well. Detailed description of this problem can be found in
[Son et al., 2009]. Given a collection of planning problems (ai, plani) for i = 1, . . . , n,
where ai is the agent and plani is ai’s planning problem, we can compute a coordination
plan incrementally by:
(i) computing a possible solution, as a sequence of elements of the form (aj ,mj)

where 1 ≤ j ≤ k and mj is an answer set of planj , for the first k agents; and
(ii) expanding the solution by computing an answer set of plank+1 that is compatible

with the current solution.
The computation of a step is realized by the following Prolog code.

compute_step(S, [], _, S):- S = [_|_].
compute_step([S|L], [(A,ProbA)|Agents], Len, Plans):-

compatible(S, A, ProbA, Len, Models),
Models = [_|_],
update(S,Models,NS),
compute_step(NS, Agents, Len, Plans).

compute_step([S|L], [(A,ProbA)|Agents], Len, Plans):-
compute_step(L, [(A,ProbA)|Agents], Len, Plans).

compatible(S, A, ProbA, Len, Models):-
findall(request(give_me(F,B), T),

(member((B,MB),S), MB:occ(get_this(F,A),T)), Get),
remove_dups(Get, ToGet),
findall(request(get_this(F,B), T),

(member((B,MB),S), MB:occ(give_me(F,A),T)), Give),
remove_dups(Give, ToGive),
append(ToGet, ToGive, Occs),
findall(considered(Ag), member((Ag,MAg), S), Considered),
request_okay(Occs),
... {create constraints on ProbA} ...
... {prepare the parameters Paras} ...
use_asp(ProbA, ProbA, Paras),
findall((A,Q), ProbA:model(Q), RModels),
remove_dups(RModels, Models).

compute step has four parameters: the list of possible solutions for the agents that
have been considered, the list of agents without plans and their problems, the plan
length, and the final solution (output). It tries to find a compatible answer set of the
next agent (compatible/5) to update the list of possible solutions. It either gets some
solutions (when the set of agents without plans is empty) or fails (when the set of
possible solutions becomes empty while there are some agents without plans).

The basic steps in compatible/5 include (i) collecting all exchanges generated
by the previous agents and involving the agent in question; (ii) verifying that these
exchanges are eligible (request okay); (iii) creating the constraints on the answer set
of the agent being considered; (iv) computing a possible plan for the agent.

We experimented with a problem involving three agents originally described in
[Son et al., 2009] and observed that the program quickly gets to a solution even though

Combining Answer Set Programming and Prolog 471

the size of the set of answer sets for each individual agent is large (128, 9746, and
456, respectively). As with heuristic planning, an investigation on the scalability and
performance of this method for multi-agent planning will be our focus in the near future.

6 Conclusion and Future Work

In this paper, we presented a system, called ASP−PROLOG, for combining ASP and
Prolog. We developed a model-theoretical semantics for static programs and an oper-
ational semantics for dynamic programs. We briefly discussed a preliminary prototype
of ASP−PROLOG and showed how several practical applications can be encoded in
ASP−PROLOG. One of our main goals in the near future is to complete the develop-
ment of a full fledge ASP−PROLOG system and employ it in real-world applications.
We will also investigate the relationship between ASP−PROLOG and MCSs.

Acknowledgments

We are indebted to Michael Gelfond for his pioneering work in answer set semantics of
logic programs and the many fruitful discussions on the use of answer set programming
in practical applications and the need for tools which simplify the development of an-
swer set programming applications. The important ideas underlying this paper, includ-
ing the model-theoretical account based on reduction, the use of logic programming
in knowledge representation and reasoning (KRR), and the development of tools for
KRR’s applications, have been greatly influenced by his research. The authors would
also like to acknowledge the partial support from the NSF grants HRD-0420407 and
IIS-0812267.

References

[Balduccini et al., 2001] Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The USA-
Advisor: A Case Study in Answer Set Planning. In: Eiter, T., Faber, W., Truszczyński, M.
(eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 439–442. Springer, Heidelberg (2001)

[Baral et al., 2008] Baral, C., Dzifcak, J., Son, T.C.: Using answer set programming and lambda
calculus to characterize natural language sentences with normatives and exceptions. In: AAAI,
pp. 818–823. AAAI Press, Menlo Park (2008)

[Baral et al., 2010] Baral, C., Gelfond, G., Pontelli, E., Son, T.C.: Logic programming for finding
models in the logics of knowledge and its applications: A case study. TPLP 10(4-6), 675–690
(2010)

[Baral and Gelfond, 1994] Baral, C., Gelfond, M.: Logic programming and knowledge represen-
tation. Journal of Logic Programming 19/20, 73–148 (1994)

[Brewka and Eiter, 2007] Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic
Multi-Context Systems. In: AAAI, pp. 385–390 (2007)

[Dao-Tran et al., 2010] Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed non-
monotonic multi-context systems. In: KRR. AAAI Press, Menlo Park (2010)

[El-Khatib et al., 2004] Elkhatib, O., Pontelli, E., Son, T.C.: ASP-PROLOG: A System for Rea-
soning about Answer Set Programs in Prolog. In: Jayaraman, B. (ed.) PADL 2004. LNCS,
vol. 3057, pp. 148–162. Springer, Heidelberg (2004)

472 E. Pontelli, T.C. Son, and N.-H. Nguyen

[El-Khatib et al., 2005] El-Khatib, O., Pontelli, E., Son, T.C.: Integrating an Answer Set Solver
into Prolog: ASP-PROLOG. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR
2005. LNCS (LNAI), vol. 3662, pp. 399–404. Springer, Heidelberg (2005)

[Gebser et al., 2010] Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in
large biological networks with answer set programming. TPLP 10(4-6) (2010)

[Gelfond and Leone, 2002] Gelfond, M., Leone, N.: Logic programming and knowledge repre-
sentation – the A-Prolog perspective. Artificial Intelligence 138(1-2), 3–38 (2002)

[Gelfond and Lifschitz, 1988] Gelfond, M., Lifschitz, V.: The stable model semantics for logic
programming. In: ICLP, pp. 1070–1080 (1988)

[Gelfond and Lifschitz, 1998] Gelfond, M., Lifschitz, V.: Action languages. ETAI 3(6) (1998)
[Heljanko and Niemelä, 2003] Heljanko, K., Niemelä, I.: Bounded LTL model checking with

stable models. Theory and Practice of Logic Programming 3(4,5), 519–550 (2003)
[Hoffmann and Nebel, 2001] Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Gen-

eration Through Heuristic Search. Journal of Artificial Intelligence Research 14, 253–302
(2001)

[Lifschitz, 2002] Lifschitz, V.: Answer set programming and plan generation. Artificial Intelli-
gence 138(1-2), 39–54 (2002)

[Marek and Truszczyński, 1999] Marek, V., Truszczyński, M.: Stable models and an alternative
logic programming paradigm. In: The Logic Programming Paradigm: a 25-year Perspective,
pp. 375–398 (1999)

[Niemelä, 1999] Niemelä, I.: Logic programming with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence 25(3,4), 241–273
(1999)

[Pontelli et al., 2009] Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs un-
der answer set semantics. TPLP 9(1), 1–56 (2009)

[Son et al., 2004] Son, T.C., Tuan, L.C., Baral, C.: Adding Time and Intervals to Procedural and
Hierarchical Control Specifications. In: AAAI, pp. 92–97. AAAI Press, Menlo Park (2004)

[Son et al., 2006] Son, T.C., Baral, C., Tran, N., McIlraith, S.: Domain-dependent knowledge in
answer set planning. ACM Trans. Comput. Logic 7(4), 613–657 (2006)

[Son et al., 2009] Son, T.C., Pontelli, E., Sakama, C.: Logic programming for multiagent plan-
ning with negotiation. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp.
99–114. Springer, Heidelberg (2009)

[Son and Sakama, 2009] Son, T.C., Sakama, C.: Reasoning and planning with cooperative ac-
tions for multiagents using answer set programming. In: Baldoni, M., Bentahar, J., van Riems-
dijk, M.B., Lloyd, J. (eds.) DALT 2009. LNCS, vol. 5948, pp. 208–227. Springer, Heidelberg
(2010)

[Tu et al., 2006] Tu, P.H., Son, T.C., Baral, C.: Reasoning and Planning with Sensing Actions,
Incomplete Information, and Static Causal Laws using Logic Programming. Theory and Prac-
tice of Logic Programming 7, 1–74 (2006)

[Tu et al., 2010] Tu, P.H., Son, T.C., Gelfond, M., Morales, R.: Approximation of action theories
and its application to conformant planning. Artificial Intelligence Journal (2010) (to appear)

On the Practical Side of Answer Set
Programming

Tommi Syrjänen

Variantum Oy
Tekniikantie 12, 02150 Espoo, Finland

tommi.s.syrjanen@iki.fi

Abstract. We examine issues that arise from creating practical tools
that combine answer set programming (ASP) with programs created
using traditional programming languages. A tool is mostly written in
a traditional language and it calls an ASP solver as an oracle to solve
some difficult subproblem that is best represented using ASP. We give a
brief introduction on a generate-and-test based methodology for creating
ASP programs and on how to optimize them for efficiency. We examine
methods for computing answer sets incrementally based on user choices
and show how we can guide the user in making the choices and how
to give diagnostic information in the case that the user’s choices are
inconsistent. We use the kakuro puzzles as a practical example.

1 Introduction

If we want to use Answer Set Programming (ASP) to solve practical problems,
it is not enough to create an ASP encoding for the problem. A usable tool has
to have a convenient way to enter the problem instances into the system and it
needs to present the solutions in a way that is easy to understand.

Most ASP semantics are not Turing-complete.1 This is both a strength and
a weakness at the same time. It is a weakness because we cannot implement
arbitrary algorithms. On the other hand, when we restrict the computational
power of a language, we can design it so that we can have elegant and efficient
programs for some set of interesting problems. In particular, many NP-complete
problems have simple and natural encodings as ASP programs.

In particular, the declarative ASP semantics are not suitable for input han-
dling and output processing so a real-life tool has to embed an ASP program
in a framework that is implemented using a traditional programming language.
The traditional program uses an ASP solver as an oracle to solve a problem that
is difficult to handle with traditional programming languages.

There are several other considerations in creating ASP programs. One is effi-
ciency. In an ideal world all correct encodings would be suitable for practical use.
In practice it is common that two problem encodings that are equivalent in the
sense that they have the same answer sets have vastly different runtime
1 A language is Turing-complete if it is possible to simulate the computations of an

arbitrary Turing machine using a program written with it.

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 473–489, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

474 T. Syrjänen

–

14

–

5

–

10
4

–
7

6
21

–

–

14

–

5

–

10
4

– 1 3
7

6
2 5

21
– 7 2 4 8

6 2

Fig. 1. A cross-sum/kakuro puzzle and a solution

performances. Computing answer sets is a difficult operation because we are usu-
ally working on NP-hard problems. In difficult problem instances a solver can
make a poor guess early in the computation and then spend a lot of time examin-
ing a part of the search space that does not contain any answer sets at all [5].

Another consideration is that the user may not necessarily want to compute a
complete solution at one time. For example, in the configuration problem a user
wants to find a configuration that satisfies all her requirements and there may
be any number of them, including none if the requirements are inconsistent. We
could require the user to enter all the requirements before starting the solver but
a more usable system allows interactive configuration. The user enters her choices
one at a time and the system checks what remaining choices are possible after
each selection and presents only those options to her and gives an explanation
why the other options are impossible.

In the remaining paper we will examine issues that arise when we want to
create a program to solve kakuro puzzles. We will first give a straightforward
encoding that directly follows the problem definition and then create an opti-
mized encoding that allows us to solve larger puzzles. Finally, we examine how
to create a complete puzzle game where the player solves the puzzles manually
but she can ask the ASP oracle for hints when stuck. We will use Smodels [9]
for our programs but the principles extend also to other ASP systems.

1.1 Kakuro or Cross Sum Puzzles

In a kakuro or cross sum puzzle we have to find a way to place a number from
the interval 1–9 to each square of a grid so that the rows and columns sum to
given totals. There is an additional restriction that each line may contain each
number at most once.

Figure 1 shows an example puzzle and one of its solutions. This is a poor
quality example in that it has more than one solution as a well-formed kakuro
puzzle should have a unique answer.

2 Principles of ASP Encodings

Herb Sutter’s observation that “it is far, far easier to make a correct program
fast than it is to make a fast program correct” [11] holds also in ASP. The first
step in creating an ASP program is to create a straightforward encoding of the
problem domain and optimize it only if it is not efficient enough for real use.

On the Practical Side of Answer Set Programming 475

2.1 Generate and Test Method

Usually the simplest approach is the generate and test method [8,2]. In the ASP
context it means that we divide our problem into two parts:

1. a generator that creates all possible solution candidates; and
2. a tester that checks whether a particular candidate is, indeed, a valid

solution.

The generator contains the rules that create choices over atoms. These choices
should be made as clear as possible. How exactly we implement them depends
on the ASP semantics that we are using.

In the original stable model semantics for normal logic programs [3] choices
are made using even negative recursion: a is true if b is false and b is true if a
is false. It is possible to create a program whose answer sets are defined by
complex arrangements of negative recursion where each atom depends on most
other atoms of the program. The problem with this approach is that the resulting
program is difficult to debug. The tiniest mistake in the program code results in
an unsatisfiable program and it is not easy to find the exact place of the error.

Keeping the generator part separate from the tester makes debugging easier as
there are fewer interactions between predicates to consider. When we use normal
logic programs with classical negation [4] a good pattern for creating choices is
the pair of rules:

choose(X)← option(X), not ¬choose(X) (1)
¬choose(X)← option(X), not choose(X) . (2)

In its simplest form a tester may be a single constraint that prunes out invalid
answer set candidates:

← choose(X), invalid-choice(X) . (3)

Conceptually it is often useful to identify auxiliary predicates as the third part of
the program. These predicates are used during computation but they themselves
are not really part of the solution. For example, if we want to solve the Hamilto-
nian cycle problem we need to compute the transitive closure of the edges of the
cycle to ensure that it visits every node but the closure itself is not interesting
to the user.

These auxiliary predicates should not introduce new choices to the program.
Instead, their extensions should follow directly from predicates defined by the
generator or from facts given as input to the program. This is particularly impor-
tant when we need to preserve the number of solutions—if an auxiliary predicate
can add a new choice to the program, then there may be many answer sets that
all correspond to the same solution.

In this paper we use Smodels choice rules for encoding the generators. A
choice rule has the form:

{ choose(X) : option(X) } . (4)

476 T. Syrjänen

Intuitively, a choice rule states that if the body of the rule is satisfied, then any
number of the atoms in its head may be true. Here (4) states that we can take
any set of atoms choose(X) where option(X) is true.

If we are using an ASP system based on disjunctive logic programming [2],
we can express the same condition with the rule:

choose(X) | ¬choose(X)← option(X) . (5)

2.2 Uniform Encodings

A problem encoding is uniform [10,2,6] if we can use it to solve all instances of
the problem: we have a non-ground program that encodes the constraints of the
problem domain and each problem instance is defined as a set of ground facts.

The main advantage of using uniform encodings is modularity. We can often
create a program by partitioning it into subproblems and then combining their
encodings. This is much easier to do when the encodings are uniform and then
we can also replace a component by another logically equivalent one.

2.3 On Optimization

Each atom that occurs in a ground ASP program potentially doubles the size of
the search space. Fortunately the situation is not as bad as that in most practical
cases since such an exponential growth would prevent us from using ASP on any
real-life problems. Computationally hard instances of NP-complete problems
are rare [1,7] but even relatively easy instances may be hard to solve in practice
and the difficulty goes up with the size of the program. Thus, one of the most
important goals in optimizing encodings is to try to minimize the number of
atoms that occur in a program.

At this point there are no comprehensive guides for optimizing answer set
programs. It is likely that there is no single approach that always would lead to
the most efficient encoding. For example, it is possible that sometimes adding a
new atom may allow us to define new constraints to prune out the search space
so the larger program is more efficient. It can also happen that adding a new
constraint actually increases the running time because processing it takes some
time and it removes so small portions of the search space that it could have been
explored faster. Also, the solvers use complex heuristics to decide the order that
they explore the search space and a small change in a program may have a large
effect on how well the heuristics behaves for the problem.

Our practical experience has been that using the following procedure leads to
reasonably efficient encodings:

1. Create a working encoding in the most straightforward way as possible.
2. Define new auxiliary predicates that allow tighter definitions for rules in the

generator in the sense that we get less candidate answer sets.
3. Add new constraints to prune out parts of search space that can be guaran-

teed to not contain valid solutions.

On the Practical Side of Answer Set Programming 477

6
–

line(l)
line-data(l, 6, 3)
in-line(l, x, y)
in-line(l, x + 1, y)
in-line(l, x + 2, y)

Fig. 2. Kakuro input encoding

3 Basic Encoding

Creating a uniform ASP encoding happens in two steps: we have to decide what
facts we use to represent the instances and we need to write the actual rules.

3.1 Representing the Puzzle Instances

From the viewpoint of the user the most convenient way to define kakuro puzzles
is to have a graphical tool that allows her to draw a grid on the screen and set
the line totals. We need to take this representation and turn it into a set of facts.

The lines are the key concept of kakuro puzzles so we structure the encoding
around them. We need to know what squares belong to which lines and the
totals for each line. We give an unique identifier for each horizontal and vertical
line and use the predicates that are shown in Fig 2 to connect the squares
with the totals. An atom line(l) denotes that l is an identifier for a line and
in-line(l, x, y) denotes that the square (x, y) occurs in a line with the identifier l.
An atom line-data(l, n, t) denotes that the line with the identifier l sums to the
total t and is n squares long.2

The tool that translates the user-generated puzzle description into facts is re-
sponsible for generating the line identifiers and identifying which squares belong
to which lines. Both are straightforward things to do with traditional program-
ming languages.

3.2 Rules of the Game

As the first step we define two auxiliaries that we use in defining the rules:

square(X, Y)← in-line(L, X, Y) (6)
number(1 . . 9) . (7)

For our generator we need a rule that selects a number for every square of the
puzzle:

1 {has-number(N, X, Y) : number(N)} 1← square(X, Y) . (8)

2 The basic encoding does not use the line length data but the optimized one does. It
is included already here because then the same preprocessor can be used for both
encodings.

478 T. Syrjänen

The first rule of the tester ensures that no number occurs twice on one line:

← 2 {has-number(N, X, Y) : in-line(L, X, Y)},number(N), line(L). (9)

A total of a line may not be too large:

← T + 1 [has-number(N, X, Y) : number(N) : in-line(L, X, Y) = N],
line(L).

(10)

This is a weight constraint rule where we assign the weight n for each atom
has-number(n, x, y) and then asserts that it is an error if the total weight of the
atoms selected to be true is too large for the rule.

Finally, the total of a rule may not be too small:

← [has-number(N, X, Y) : number(N) : in-line(L, X, Y) = N] T − 1,

line(L).
(11)

4 Optimized Encoding

The basic encoding creates a great number of spurious choices since it has rules
for placing all digits in all squares, even though in most cases we can immediately
rule out some of them. Consider the line in Fig 2. As the only combination of
three digits whose sum is six is 1 + 2 + 3 = 6, we know for certain that the line
has to contain these digits in some order and no other choices are possible.

We can make the encoding more efficient by using a two-phase selection where
we choose a digit combination for an entire line and then place the digits of a
combination into the squares of the line in some order.

We first compute the combinations that may possibly occur on a given line,
and then select one of them. We have to make a decision of what we mean with a
possible combination. A literalist approach would be to define that a combination
is possible if it occurs in a correct solution of the puzzle. This would be useless in
practice since we would have to solve the puzzle to know what solutions it has.
Instead, we want an approximation that allows us to prune out most incorrect
combinations without losing correct solutions while still being easy to compute.

A simple heuristics is that we start with the set of combinations of the correct
length and total, and then look at the intersections of the lines. If a combination
for one line contains only digits that may not occur in the other line, we remove
that combination as impossible. Similarly, we remove a combination if it contains
some digit that cannot be placed in any square of the line. We can implement this
heuristics using a stratified set of rules so we can find the possible combinations
with a straightforward least model computation.

Example 1. Consider the leftmost vertical line from Fig 3. Since the only two-
digit combination that sums to four is {1, 3}, we know that no other digits
are possible for the two squares. The rightmost vertical line has three plausible
combinations: {1, 7}, {2, 6}, and {3, 5}. Next, we examine the horizontal line

On the Practical Side of Answer Set Programming 479

-

4

-

8

10

-

{1, 3}

{3} {3, 7}

{1, 3, 5}

-

4

-

8

10

-

Fig. 3. A puzzle and a computed set of possible numbers

that has four plausible combinations: {1, 9}, {2, 8}, {3, 7}, and {4, 6}. As its left
square has either 1 or 3, we can immediately rule out {2, 8} and {4, 6}. As the
right square may not contain a digit higher than 7, we can reject also {1, 9} since
there is no square where we could place 9. Finally, we can reject the combination
{2, 6} from the right vertical line since neither of the numbers can occur in the
horizontal line.

4.1 Representing the Combinations

Each non-zero digit may occur zero or one times in a line so there are 29 − 1 =
511 different possible number combinations.3 As there are so few combinations,
we can compute them in advance and store them as ground facts. An atom
combination(id, len, sum) denotes that the combination with the identifier id
has the length len and the total sum and an atom in-combination(id, d) denotes
that the digit d occurs in the combination id.

4.2 Selecting Combinations and Numbers

We use predicates p-combination(C, L) and p-number(N, X, Y) to denote the
possible combinations and numbers. An atom p-combination(c, l) is true if the
combination c can occur in the line l and an atom p-number(n, x, y) is true if
the number n may occur in the square (x, y).

We choose exactly one combination for each line out of the possible options:

1 {has-combination(C, L) : p-combination(C, L)} 1← line(L) . (12)

Each square has exactly one possible number.

1 {has-number(N, X, Y) : p-number(N, X, Y)} 1← square(X, Y) . (13)

Note that (13) does not depend on the selected combination directly. This allows
us to have only one ground rule that can be used to derive an atom which is
a micro-optimization that may in some cases help to guide the solver heuristics to

3 High-quality kakuro puzzles do not contain lines of length one so they have only
502 combinations. However, a real kakuro solver should be able to handle also the
poor-quality puzzles.

480 T. Syrjänen

the right direction. We then need to add a constraint to ensure that the chosen
numbers belong to the chosen combination:

← has-number(N, X, Y), has-combination(C, L),
not in-combination(C, N), p-number(N, X, Y),
p-combination(C, L), in-line(L, X, Y) .

(14)

We also need a variant of (9) to say that no number occurs twice in one line:

← 2 {has-number(N, X, Y) : in-line(L, X, Y)},
p-combination(C, L), in-combination(C, N) .

(15)

4.3 Possible Combinations

We compute the possible combinations by starting with an assumption that
combinations that match the length and the total are plausible and then by
removing all combinations that we can prove to be impossible.

pl-combination(C, L)← line-data(L, N, T), combination(C, N, T) . (16)

A number is plausible if it occurs in a plausible combination of a line:

pl-number(N, L, X, Y)← pl-combination(C, L), in-line(L, X, Y),
in-combination(C, N) .

(17)

All numbers that are not plausible for both intersecting lines have to be removed:

remove(N, X, Y)← in-line(L, X, Y),number(N),
not pl-number(N, L, X, Y) .

(18)

A combination is impossible for a line if some number in it has been removed
from every square of the line:

impossible(C, L)← remove(N, X, Y) : in-combination(C, N),
pl-combination(C, L), in-line(L, X, Y) .

(19)

Here we use a Smodels conditional literal for universal quantification inside
the rule body. During instantiation the conditional literal remove(N, X, Y) :
in-combination(C, N) is replaced by the conjunction of atoms {remove(n, X, Y) |
in-combination(c, n) is true} and the values of X and Y are bound by the atom
in-line(L, X, Y).

A combination is also impossible if all its numbers are removed from a square:

impossible(C, L)← remove(N, X, Y) : in-combination(C, N),
pl-combination(C, L), in-line(L, X, Y) .

(20)

On the Practical Side of Answer Set Programming 481

Table 1. Comparison of encodings

Encoding Puzzle: Fig. 1 Puzzle: Fig. 4
Atoms Rules Choices Atoms Rules Choices

Basic 252 275 2 512 513 487196
Optimized 183 565 3 414 675 0

When we have marked a combination impossible, we may have to remove its
numbers from the set of possible numbers. We need to keep track of which
combinations have a number and remove it after all of them are ruled out:

provides(N, C, L, X, Y)← pl-number(N, L, X, Y),
pl-combination(C, L), (21)
in-combination(C, N) .

remove(N, X, Y)← impossible(C, L) : provides(N, C, L, X, Y),
in-line(L, X, Y),number(N) . (22)

Finally, all plausible combinations that are not impossible are possible and all
plausible numbers that are not removed are possible:

p-combination(C, L)← pl-combination(C, L), not impossible(C, L) . (23)
p-number(N, X, Y)← pl-number(N, L, X, Y), not remove(N, X, Y) . (24)

4.4 Comparison

Table 1 shows how the two encodings behave when we use smodels-2.34 to
solve the kakuro puzzles that are shown in Fig 1 and Fig 4. The table shows
the numbers of ground atoms and rules in the instantiation of the programs and
also the number of choices that the solver had to make while searching for the
solution.

In both cases the optimized encoding has much fewer atoms but it has more
rules. In the case of the smaller example the solver found an answer as easily
using both—the one extra choice for the optimized encoding comes for selecting
a combination for a line. The larger example shows the importance of good
encodings. With the basic encoding the solver had to explore almost half a
million choices before finally finding the unique correct answer but with the
optimized encoding it found the answer without having to make a single guess.

5 Interactive Use

The two encodings both allow us to completely solve kakuro puzzles. Unfortu-
nately, this is not what the average user wants to do. Instead, most people who
are interested in kakuro puzzles want to solve them themselves. In this section
we examine how we can create a kakuro solver that gives as much support to the
user that she wants and no more. The goal is to have a program where the user

482 T. Syrjänen

can solve puzzles using her usual methods but where she can ask a hint from
the computer when stuck. The issues that we meet occur also in other problem
domains, such as in product configuration.

5.1 Use Cases

The first thing to do is to identify the possible user groups and what they would
want to do with a tool that can solve puzzles. The two main groups that would
be interested in such a tool are:

1. people who solve puzzles for fun; and
2. people who create new puzzle instances.

We will concentrate mostly on the first group. Creating high-quality puzzles in
an automatic or semi-automatic fashion is a complex problem that cannot be
addressed adequately in this work.

Next, we have to identify what the puzzle solvers would want to do with a
kakuro solver. Roughly speaking the things can be divided into two categories:

1. hints that tell the user how to proceed towards the solution; and
2. explanations that tell the user why some choices are impossible or necessary.

There should be different levels of hints so that the user will not get too much
information if that is not desired. People solving puzzles typically look at local
information trying to find places where it is possible to make deductions about
the contents of a single line based on the lines that intersect with it and the
hints should guide that process. The possible hints that we examine are:

1. identifying which squares can be filled based on the existing partial solution;
2. identifying the set of numbers that might go into a particular square; and
3. identifying the places where the user made an error.

The two first cases are specific to kakuro solving but the third case occurs in
every problem domain where we compute answer sets based on the user input.
For example, if the user requirements for a configuration are impossible to satisfy,
we have to have a way to find out the incompatible requirements.

Explanations are closely related to the problem of inconsistent user input. If
there are no answer sets that would satisfy the user’s requirements, it is not
enough to just tell her that the choices are inconsistent but there should also be
a concrete explanation that tells how to resolve the problem. An advantage of
ASP is that it is often possible to compute the explanation on the fly.

5.2 Representing User Choices

We use the predicate symbol user-choice/4 to represent the numbers that the
user has placed on the grid. An atom user-choice(d, x, y, i) denotes that the ith
move of the user was to place the digit d into the square (x, y). We use a new
predicate symbol instead of defining has-number/3 directly because it allows
more flexibility in computing hints and explanations. We store the order of the
moves because we may want to answer questions like: “What was the first mistake
that the user made.”

On the Practical Side of Answer Set Programming 483

5.3 Identifying User Errors

In many problem domains we want to detect inconsistent user input as early as
possible. An interactive system should have a satisfiability check after each input
choice if the problem instance is simple enough that the check can be executed
fast enough to not annoy the user. As kakuro is a game we do not do this and
instead make the consistency check only if the user requests it.

There are two possible approaches that we can take for finding the errors:

1. we can find the first error that the user made and invalidate all choices made
after that; or

2. we can compute a minimal set of inputs that cause an inconsistency.

If a puzzle instance has only one solution, we can compare the correct answer
to the user choices to find the errors. This is not enough if we want our tool to
be able to handle arbitrary puzzles that may have multiple answers. There may
also be many different minimal sets that cause a contradiction. For practical
purposes it is enough that the tool reports one such set to the user.

Trying to find a minimal set of inputs that cause an inconsistency in a Smodels
program is computationally in the second level of the polynomial hierarchy4 [12].
The expressive power of the full language would allow us to write a program to
solve it directly but the program would be unintuitive and inefficient. Instead,
it is more efficient to use an approach where we use a series of ASP queries to
find the answer.

The idea is to start with the assumption that all user choices can be met and
then progressively relax this condition by canceling choices until the resulting
program is satisfiable.

The general rule is that if the user puts a number somewhere, it has to be
there unless the choice is explicitly canceled:

← user-choice(N, X, Y, I), not has-number(N, X, Y), not cancel(I) . (25)

When we want to find a minimal set of errors, we state that at most n choices
may be canceled:

{cancel(I) : choice(I)} n . (26)

The numerical constant n is set by the main program that calls the ASP solver
as an oracle. Setting n to zero allows us to check whether the user choices are
satisfiable and if not, we can increase it by one at a time until an answer set
exists.5 The atoms cancel/1 that are true in the answer set denote the errors
that the user made.

We can find the first error using the rule:

cancel(I)← choice(I), I > n . (27)
4 This holds when there are no function symbols in the program and the number of

variables that may occur in a rule is limited.
5 We could also use a Smodels minimize statement to get the same effect. However,

minimize statements are often less efficient in practice than using multiple queries
with hard limits.

484 T. Syrjänen

where n is again a numerical constant set by the main program. In this case we
can use binary search to find the point where the program gets unsatisfiable.
Rules (26) and (27) should not be used in the same query.

5.4 Identifying Solvable Squares

The rules that we use to compute the possible combinations and numbers already
give us a way to identify the squares that can be filled at the beginning of the
puzzle: they are those where there is exactly one true atom p-number(N, X, Y).
Now we extend this idea to take into account the choices that the user has made
during the play. We introduce new predicate symbols so that the new rules do not
interfere with the original computation of possible combinations and numbers.

If the user has placed a number into a square, it occurs in all lines that go
through the square:

occurs(N, L)← user-choice(N, X, Y, I), in-line(L, X, Y) . (28)

A choice may have ruled out some possible combinations:

ruled-out(C, L)← p-combination(C, L), occurs(N, L),
not in-combination(C, N) .

(29)

A digit can occur in a line if it occurs in a combination that is not ruled out and
if it is not anywhere else in the line:

can-occur(N, L)← p-combination(C, L), in-combination(C, N),
not ruled-out(C, L), not occurs(N, L) .

(30)

A number is a possible choice for a square if it can occur in all lines that go
through the square:

p-choice(N, X, Y)← can-occur(N, L) : in-line(L, X, Y),
number(N), square(X, Y) .

(31)

Finally, we identify the squares that contain exactly one option:

m-choice(X, Y)← p-choice(N1, X, Y), p-choice(N2, X, Y), N1 < N2 . (32)
only-choice(X, Y)← square(X, Y), not m-choice(X, Y) . (33)

The squares for which only-choice(X, Y) is true can be filled at this point. We
can tell the user either one or all of these squares. Figure 4 shows an example
where we can fill three squares after the first move. The predicate p-choice tells
us which numbers are possible for which squares and we can tell those also the
user if she desires it.

On the Practical Side of Answer Set Programming 485

Fig. 4. An example of hint computation. Squares marked with ‘?’ can be immediately
deduced

5.5 Explanations

High-quality explanations are particularly useful for ASP programs that are
intended to be used by the general public. We cannot expect an ordinary non-
expert user to understand the program and its answer sets—the syntax and
semantics of logic programs are often difficult to even programmers who are not
familiar with them. An explanation abstracts away the rules of the program and
connects the user choices to the results. The driver program has to have some
pretty-printing facility that takes out the explanation computed by the ASP
engine and presents it to the user in some format that is easy to understand.

In the kakuro case we examine the case where the user asks for the reason why
a specific square cannot contain a specific number.6 Note that this question has
a reasonable answer only if the previous choices constrain the choices enough.
The user queries are given with the predicate user-explain(N, X, Y).

When checking why a number is not in a square, we first assert that it is not
possible. This prevents us from trying to compute an non-existing explanation.

← user-explain(N, X, Y), not remove(N, X, Y) . (34)

It often happens that it is not enough to examine only one square when con-
structing an explanation so we define a new predicate for marking the interesting
squares and initialize it with the user query:

explain(N, X, Y)← user-explain(N, X, Y) . (35)
6 The case of finding out why a particular number has to be in a square can be solved

using rules based on Section 5.4.

486 T. Syrjänen

The simplest reason why a number may not be in a square is that it has been
placed on a different square of the same line:

already-in(N, X1, Y1, X2, Y2)← explain(N, X1, Y1),
user-choice(N, X2, Y2, I),
in-line(L, X1, Y1), in-line(L, X2, Y2),
((X1 �= X2) ∨ (Y1 �= Y2)) .

(36)

The second possibility is that the number does not exist in any plausible combi-
nation for one of the lines that goes through the square. In practice, this happens
only if the total of the line is small.

no-combination(N, L)← explain(N, X, Y), in-line(L, X, Y),
not pl-number(N, L, X, Y) .

(37)

In other cases we have to deduce why the number has been removed. For this
we need to identify why all combinations containing it have been ruled out.

explain-impossible(C, L)← pl-combination(C, L), explain(N, X, Y),
in-combination(C, N) .

(38)

A combination is impossible if the user has placed a number on the line that is
not in it:

incompatible-choice(C, L, N, X, Y)← explain-impossible(C, L),
pl-combination(C, L),
not in-combination(C, N),
user-choice(N, X, Y, I),
in-line(L, X, Y) .

(39)

If we find out that there is an existing incompatible choice, we do not need a
further explanation for the impossible combination.

explained(C, L)← incompatible-choice(C, L, N, X, Y),
plausible-combination(C, L),
in-combination(C, N), in-line(L, X, Y) .

(40)

A combination is also impossible if one of its numbers cannot be placed in any
square. In these cases we need an explanation for the removed number.

removed-number(C, N, L)← explain-impossible(C, L), pl-combination(C, L),
remove(N, X, Y) : in-line(L, X, Y), (41)
in-combination(C, N), not explained(C, L) .

explain(N, X, Y)← removed-number(C, N, L), in-line(L, X, Y),
in-combination(C, N), (42)
pl-combination(C, L) .

On the Practical Side of Answer Set Programming 487

A combination is also impossible if no number from it can fit in some square of
the line:

empty-square(C, L, X, Y)← explain-impossible(C, L), pl-combination(C, L),
remove(N, X, Y) : in-combination(C, N), (43)
in-line(L, X, Y), not explained(C, L) .

explain(N, X, Y)← empty-square(C, L, X, Y), pl-combination(C, L)
in-line(L, X, Y), in-combination(C, N) . (44)

Giving the user an answer set as an explanation does not help much. Instead,
it has to be translated into terms that she understands. This means extracting
the explanatory atoms from the answer set and processing them into a human-
readable format. The intuitive meanings of the explanatory atoms are:
– already-in(N, X1, Y1, X2, Y2): the number N may not be placed at (X1, Y1)

because it is already present at (X2, Y2).
– no-combination(N, L): there is no combination at all for line L that con-

tains N .
– incompatible-choice(C, L, N, X, Y): the combination C cannot be placed on

the line L because it does not contain the number N that is already placed
on the square (X, Y) that belongs to L.

– removed-number(C, N, L): the combination C may not be placed on the
line L since the number N from it cannot be placed in any square of it.

– empty-square(C, L, X, Y): the combination C may not be placed on the line L
since no number from it can be placed on the square (X, Y).

5.6 Puzzles with Multiple Solutions

The low-quality puzzles that have more than one solution have the problem that
there will be situations where the user cannot proceed with pure deduction since
there is more than one valid option for every remaining square. In these cases
we can use the ASP program to force the puzzle to have a unique solution.

We do this by first computing one solution and then reveal enough numbers
from it to guarantee an unique solution for the remaining squares. One way to
do this is to select squares one at a time by random and checking whether the
puzzle still has more than one solution after the number is fixed in place.

5.7 Considerations on Puzzle Generation

Even though automatic creation of puzzles is too large a subject to examine a
detail, some general observations can be made. The first thing to note is that
a puzzle creator can easily use the kakuro solver to check whether a puzzle has
a unique answer. If there are more than one, she can tweak the grid layout and
check again.

The second observation is that the solver can be used for estimating the
difficulty of a problem instance. We can count the number of squares that can
be deduced at the start and perhaps at some other points of game play and then
compute a suitable metric based on that figure.

488 T. Syrjänen

6 Conclusions

The aim of this paper was to give a brief introduction to issues that have to be
considered when writing an ASP program intended for the general public. The
output of ASP solvers is cryptic to the uninitiated. We cannot expect that an
average user can decode an answer set or find out why the solver gives only ‘False’
as its output. Instead, we have to build a supporting framework with traditional
programming languages that creates the input for the solver and then translates
the answer to terms that the user understands.

In particular, a tool should be able to handle cases where there is no answer
set. When the user gives an inconsistent input, we should be able to find out
where the error lies and explain its causes to her. It is often possible to use an
ASP program for the error-finding. The technique from Section 5.3 where we
allow a set of user choices to be canceled is applicable to many problem domains
for that purpose.

The more the tool uses ASP, the more important it is that the problem encod-
ing is efficient enough. A delay of one second may be too long in an interactive
program. Long waits are inevitable if the problem is very difficult but many
practical problem instances are small enough that we can call the solver without
causing perceptible slowdown for the main program. This allows us to use ASP
facilities to compute extra information on the problem instance and to present
it to the user to guide her operations.

Answer set programming is a powerful tool for analyzing and solving difficult
problems. It is already possible to embed an ASP solver into an application but
a lot of work has to be done before we get to the point where an average com-
puter programmer who is not an expert on logic can use ASP to solve practical
problems in a robust way.

References

1. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the Really Hard Problems
Are. In: 12th International Joint Conference on Artificial Intelligence, pp. 331–
337. Morgan Kaufmann, San Francisco (1991)

2. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database
Syst. 22(3), 364–418 (1997)

3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
5th International Conference on Logic Programming, pp. 1070–1080. The MIT
Press, Cambridge (1988)

4. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: 7th Interna-
tional Conference on Logic Programming, pp. 579–597. The MIT Press, Cambridge
(1990)

5. Gomes, C.P., Selman, B., Kautz, H.: Heavy-tailed phenomena in satisfiability and
constraint satisfaction problems. J. Autom. Reasoning 24, 67–100 (2000)

6. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K., Marek, V., Truszczyński, M., Warren, D. (eds.)
The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer,
Heidelberg (1998)

On the Practical Side of Answer Set Programming 489

7. Mitchell, D.G., Selman, B., Levesque, H.J.: Hard and easy distributions for SAT
problems. In: Rosenbloom, P., Szolovits, P. (eds.) 10th National Conference on
Artificial Intelligence, pp. 459–465. AAAI Press, Menlo Park (1992)

8. Newell, A., Simon, H.A.: Computer science as empirical inquiry: symbols and
search. Commun. ACM 19(3), 113–126 (1976)

9. Niemelä, I., Simons, P., Syrjänen, T.: Smodels: A system for answer set program-
ming. In: 8th International Workshop on Non-Monotonic Reasoning (2000)

10. Schlipf, J.S.: The expressive powers of logic programming semantics. J. Comput.
Syst. Sci. 51(1), 64–86 (1995)

11. Sutter, H., Alexandrescu, A.: C++ Coding Standards. Addison-Wesley, Reading
(2005)

12. Syrjänen, T.: Logic Programs and Cardinality Constraints: Theory and Practice.
Doctoral dissertation, TKK Dissertations in Information and Computer Science
TKK-ICS-D12, Helsinki University of Technology, Faculty of Information and Nat-
ural Sciences, Department of Information and Computer Science, Espoo, Finland
(2009)

ASTREA: Answer Sets for a Trusted Reasoning

Environment for Agents

Richard Watson1 and Marina De Vos2

1 Department of Computer Science
Texas Tech University

Lubbock, TX 79409, USA
richard.watson@ttu.edu

2 Department of Computer Science
University of Bath

Bath BA2 7AY, UK
mdv@cs.bath.ac.uk

Abstract. In recent years, numerous papers have shown the power and
flexibility of answer set programming (ASP) in the modeling of intelligent
agents. This is not surprising since ASP was developed specifically for
non-monotonic reasoning - including common-sense reasoning required
in agent modeling. When dealing with multiple agents exchanging infor-
mation, a common problem is dealing with conflicting information. As
with humans, our intelligent agents may trust information from some
agents more and than from others. In this paper, we present ASTREA,
a methodology and framework for modeling multi-agent systems with
trust. Starting from agents written in standard AnsProlog , we model
the agent’s knowledge, beliefs, reasoning capabilities and trust in other
agents together with a conflict resolution strategy in CR-Prolog. The
system is then able to advise the agent what information to take into
account and what to discard.

1 Introduction

The world is full of situations where entities interact with each other and ex-
change information. Whether the interactions are between humans, machines,
or some combination thereof, interaction is often necessary in order for each to
achieve their goals. To model such situations it is therefore important to be able
to represent and reason about the various agents and their interaction. One of
the difficulties in modeling such agents is dealing with conflicting information.
Conflicts may arise for a number of reasons. In extreme cases one agent may be
intentionally lying to another agent, but it is more often the case that the agent
is simply mistaken in its beliefs. An agent, modeling the behavior of a human,
should reason based on assumptions just as a human does. Such assumptions
may be wrong and, when passed to another agent, may disagree with informa-
tion held by that agent or received from other agents. Conflicts may even arise

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 490–509, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ASTREA: Answer Sets for a Trusted Reasoning Environment for Agents 491

when modeling electrical or mechanical systems. Such systems often rely on sen-
sors to observe the world. If a sensor malfunctions, it may lead to a false belief
about the true state of the world.

It is often difficult, if not impossible, to resolve conflicting information in a way
that guarantees that the agent’s beliefs are correct with respect to what is true in
the world. This is a normal state of affairs when considering common-sense rea-
soning where the primary concern is that the agent’s reasoning is rational, even
if it turns out later that the agent was wrong. As an example, suppose a person
asks two other people to answer a mathematics’ problem. One of the persons
asked is a first year math student and the other is a professor of mathematics.
If the answers are different and the person has no other reason to disbelieve the
professor, they should trust the professor over the student. This does not imply
the professor was correct, but it is the rational choice under those circumstances.

There are three major topics one must consider when modeling agents: 1) the
choice of language, 2) the methodology used for modeling, and 3) the framework
under which the agents operate. In this paper we discuss our approach to agent
modeling, ASTREA, which stands for “Answer Sets for a Trusted Reasoning
Environment for Agents”. As stated in the name, for the language we use Answer
Set Programming (ASP). For conflict resolution, due to information arriving
from different sources, we propose the use of CR-Prolog. Consistency restoring
rules are used to indicate whether information supplied by a particular agent
should be disbelieved in case of a conflict. Different conflict resolution strategies,
based on the trust agents have in each other, can be encoded in CR-Prolog to
provide that the most appropriate consistency restoring rules be used.

The rest of the paper is organized as follow. In Section 2 we provide a short
introduction to multi-agent systems, answer set programming, and CR-Prolog. In
Section 3, we introduce our ASTREA model. After highlighting the motivation
behind our methodology, we propose the formal model of an ASTREA agent
in Section 3.2. The mapping to CR-Prolog of the agent’s knowledge base is
detailed in Section 3.2. The different trust-based conflict resolution strategies
are discussed in Section 3.3. and comments on future work.

2 Preliminaries

2.1 Multi-Agent Systems

The key contributors to a Multi-Agent System (MAS) are, naturally, agents.
Despite the vast number of research papers published in this area, no general
consensus exists about a definition of an agent. In this paper we take the defini-
tion from [33] which is an adaption of the one given in [34]:

An agent is a computer system that is situated in some environment
and that is capable of autonomous action in this environment in order
to meet its design objectives.

492 R. Watson and M. De Vos

A MAS contains a number of agents, each with their own objectives and goals,
that affect the environment and collaborate to achieve their individual goals. A
detailed discussion on MAS and its history can be found in [33]

Conceptually agents operate in an observe-deliberate-act loop [10,7]. In general
the loop has the form:

1. observe and integrate observations, gather information (also referred to as
beliefs)

2. consider the options available (also referred desires)
3. select goal (also referred to as intentions)
4. plan
5. execute

When implementing these agents one often finds that each phase is implemented
by different components which share common knowledge [1,26].

This paper is concerned with the first step of the loop where the agent makes
the observations and reflects upon the beliefs it holds about the state of the
world. Among these observations are the things that the agent has been told
by other agents. The agent must then decide what can consistently be believed
from among those things it was told. This is, of course, not the easiest of tasks.
Not only does one have to worry about the agent being told directly conflicting
information, but information may also conflict indirectly.

Take, for example, an agent reasoning about cars and getting additional in-
formation from two other agents. Suppose the agent asks for information about
a particular car and is told by one of his sources that the car has 4 doors and
told by the other that the car is a Mazda Miata. While this information is not
directly contradictory, if the agent knows that a Maita is a 2-door sports car
then it knows that one of the two must be mistaken.

2.2 Answer Set Programming

To model the knowledge and beliefs of the individual agents we have opted for
a form of logic programming, called Answer Set Programming (ASP) [23] de-
veloped by Michael Gelfond and his colleague Vladimir Lifschitz. Here we only
present a short flavor of the language AnsProlog, and the interested reader is
referred to [8] for in-depth coverage. AnsProlog and its extensions have demon-
strated [7,9,13,18,24,12,16] that they are a good and useful tool in the domain
of multi-agent systems.

AnsProlog is a knowledge representation language that allows the program-
mer to describe a problem and the requirements on the solutions in an intuitive
way, rather than the algorithm to find the solutions to the problem. The basic
components of the language are atoms; elements that can be assigned a truth
value. An atom, a, can be negated using classical negation so creating the literal
¬a. An inconsistency occurs when both a and ¬a are true. A literal l can be
negated using negation as failure so creating the extended literal, not l. We say
that not l is true if we cannot find evidence supporting the truth of l. If l is true
then not l is false and vice versa. Atoms, literals, and extended literals are used

ASTREA: Answer Sets for a Trusted Reasoning Environment for Agents 493

to create rules of the general form: l :– B, not C., where l is an literal and B and
C are sets of literals. Intuitively, this means if all elements of B are known/true
and no element of C is known/true, then l must be known/true. We refer to l
as the head and B ∪ not C as the body of the rule. Rules with empty body are
called facts. A program in AnsProlog is a finite set of rules.

The semantics of AnsProlog is defined in terms of answer sets, i.e. consistent
assignments of true and false to all atoms in the program that satisfy the rules
in a minimal and consistent fashion. A program has zero or more answer sets,
each corresponding to a solution.

When used as a knowledge representation and programming language, Ans-
Prolog is enhanced to contain constraints (e.g. :– b, not c.), cardinality con-
straints [28] (e.g. n[a1, . . . , ak, not b1, . . . not bl]m) and weight constraints L ≤
{a1 = wa1 , . . . , ak = wak

,¬b1 = wb1 , . . . , bl = wbl
} ≤ U . The first type are

rules with an empty head, stating that an answer set cannot meet the condi-
tions given in the body. Cardinality constraints are a short hand notation a
non-deterministic choice; for the constraint to hold a number between n and m
of literals in the construct need to be contained in an answer set. Weight con-
straints are similar to cardinality constraints except that each literal is now given
a weight. It is the addition of the weight of all the literals that are true which
is taking into account. These additions are syntactic sugar and can be removed
with linear, modular transformations (see [8]). Variables and predicated rules are
also used and are handled, at the theoretical level and in most implementations,
by instantiation (referred to as grounding).

Most ASP systems are composed of two processes: removing the variables
from the program by instantiation with a grounder; and computing answer sets
of the propositional program with an answer set solver. Common grounders are
lparse [27] and Gringo [22] while smodels [27], clasp [21] and dlv [20] are
frequently used solvers.

2.3 CR-Prolog

Programs do not always return answer sets. While this is exactly the behavior one
would expect for certain problems (e.g. if the problem has no solution); in other
situations having an answer is essential (e.g. a decision is required). A program
fails to produce an answer set when the program is inherently contradictory.
Removing or adding selected rules could resolve this contradiction; resulting in
the program returning answer sets. While a learning system could learn the rules
to add in certain system, it is more than often the designer’s responsibility to
specify these rules.

CR-Prolog [5,4] is a knowledge representation language which extends tra-
ditional answer set programming with consistency-restoring rules (cr-rules for
short). These rules can be added to the program to automatically resolve the con-
tradictions. The use of cr-rules allows for modeling situations that are unlikely,
unusual, or avoided when possible. CR-Prolog has been successfully applied in
areas like planning and diagnostic reasoning [6].

494 R. Watson and M. De Vos

A CR-Prolog program1 consists, apart from the normal AnsProlog rules, of
consistency restoring rules of the form: r : l +– B, not C where r is a label
for the rule, l is a literal, and both B and C are sets of literals. These rules
have a similar meaning as normal AnsProlog rules except that they are only
added when inconsistencies occur in the standard program. Given the nature of
cr-rules, we of course want to add as few2 of them as possible.

When there are different sets of cr-rules which could be added to resolve an
inconsistency – i.e. various answer sets can be obtained – it is possible to add a
preference to indicate which rules should be used. This can be done using atoms
of the form prefer (r1, r2) where r1 and r2 are the labels of cr-rules. When this
atom is true, it indicates that no solutions using r2 should be considered unless
no solution with r1 can be found. Adding this preference to the program also
rules out solutions in which both r1 and r2 are used.

crmodels is the associated answer set solver for CR-Prolog programs. It is
constructed on top of lparse and smodels [27]. The solver starts with checking
if the normal part of the cr-program is consistent by calling smodels. If inconsis-
tencies occur, crmodels iterative adds CR-rules on the basis of the preference
relations until answer sets are found.

We will be using CR-Prolog to resolve inconsistencies that occur when beliefs
from various agents are merged. Based on the trust an agent has in the other
agents, it will be more likely to believe information from one agent than an other.

3 ASTREA

3.1 Motivation

As discussed in the previous section, an agent’s knowledge and reasoning capa-
bilities are modeled as a logic program under the Answer Set Semantics. The
Answer Set Programming approaches used to model the knowledge of agents
have been quite effective. In such approaches the agent’s knowledge is modeled
as rules in logic programming. The answer sets of the resulting program corre-
spond to the possible sets of beliefs of a rational agent. This works well in a single
agent environment, however, when there are multiple agents passing information
problems can arise. The problem lies in the absence of any differentiation in how
strongly the agent holds each of the beliefs. For illustration, consider the follow-
ing well-known example. The agent is aware of the existence of a bird, Tweety.
The agent also knows that, while there are exceptions, birds can normally fly.
If this is the only information the agent has, the agent would rationally believe
that Tweety could fly. Suppose the agent is then told by another agent that
Tweety cannot fly. This contradicts the agent’s beliefs. The question is how to
resolve the contradiction. As a human reasoner, it is easy to see that either the
agent was missing the knowledge that Tweety was an exception to the rule about

1 In this paper we will restrict ourselves to non-disjunctive programs (i.e. rules only
have one head atom).

2 With respect to set theoretic inclusion, not cardinality.

ASTREA: Answer Sets for a Trusted Reasoning Environment for Agents 495

flying or the second agent was wrong about Tweety not being able to fly. The
contradiction would also be resolved if the agent was wrong about Tweety being
a bird. This third possibility is not one that would be normally considered as it
may be assumed that Tweety being a bird is not in question. The real question is
one of which of the agent’s beliefs is the agent sure of, and which are subject to
doubt. The formalism presented in this paper will address the agent’s confidence
in its facts.

Contradiction between what an agent believes and what is it told by others
is due to the fact that agents almost always have to reason with incomplete,
and sometimes unreliable, information. Reasoning with such information leads to
uncertainty. Uncertainty about an agent’s knowledge can arise in several different
ways. As mentioned before, one possibility is that the agent may be unsure of
some of its own “facts”. For example, in the situation above, if the statement
was “The agent is aware of an animal, named Tweety, which the agent thinks
is a bird” then there would be cause to be less than positive about Tweety
actually being a bird. It is often the case that agents, human or otherwise,
receive their information from sensors which are not infallible. Hence one often
hears statements which begin with phrases such as “I thought I just saw...”. A
second reason for uncertainty is because the agent was using a defeasible rule and
has incomplete information. In the situation above, if the agent has no reason
to believe the bird is an exception to the rule about flying, the agent believes
that Tweety can fly. The agent knows however that it is making an assumption
that may be wrong. If on the other hand the agent knew that Tweety was
not an exception, then it would be more certain. A third reason that can lead to
uncertainty is that the agent may be reasoning using premises that are uncertain.
It the agent above was reasoning about a cage for Tweety, they may reason that
if a bird can fly then its cage needs to have a roof. As the agent is not certain
that the bird can fly, they cannot be certain that the cage needs a roof. Finally,
an agent may have uncertainty about a belief because it is something they were
told by another agent.

3.2 ASTREA Agents

Formalization. An ASTREA framework consists of a number of agents A.
Each agent is a 6-tuple of the form a = 〈ida, Πa, Ca, Ia, trusta , ρ〉. Here, the first
element, ida, is a unique name for the agent. We denote the set of all agent names
as Aid . The second element, Πa, is the agents knowledge and beliefs written as
a standard AnsProlog program. The set of literals, Ca, are the facts within
Πa that the agent is certain of. To help establish communication and make it
possible to receive information we specify the agents from which agent a can
receive information. This is denoted as Ia with Ia ∈ 2Aid\ida . With the possi-
bility of conflicting information, agents also contain a trust relation to specify
their confidence in themselves and the agents they communicate with regarding
the correctness of the beliefs they hold. The trust function is defined as follows:
trusta : Ia ∪ {ida} → N. The higher the number the more trusted the agent is.

496 R. Watson and M. De Vos

In this paper we assume that agents assign single trust values to communicating
agents but this could easily be extended to a function where trust is also assigned
on the basis of topic.

Depending on the type of reasoning that is needed by the agent, the trust
relation can be used in a variety of ways to inform the agent’s reasoning. In this
paper we look at three different trust strategies plus the situation in which the
trust relationship is ignored. In the later case, we obtain all possible ways of
obtaining a consistent set of beliefs. When the trust relationship is taken into
account, we can take the views of the most trusted agent. In case of conflicts at
the highest level, we obtain several possibilities and it will be up to the agent
to decided upon one. Another option is to give each agent a vote and count
the votes for each side of the contradiction and follow the majority. A similar
strategy is to use a weighted voted mechanism on the trust level. More details
will be given in the section where we model each strategy. Each agent within the
ASTREA framework can have its own preference strategy. Its choice is denoted
by ρ with ρ ∈ {none, trusted, majority , weighted -majority}. The set of choices
can easily be expanded as more trust relations are formalized.

We assume that the information the agent receives from other agents is in
response to a request, r, that each request from a given agent has a unique id
number, and that such information consists of a set of ground literals. We further
assume that the literals in such a response come from a set of common literals.
Formally, for an agent a, the set of all responses received by a will be denoted by
Ra. Elements of Ra are 3-tuples of the form r = 〈ri, aj , s〉 where ri is the unique
request id that is being responded to, aj is the name of the agent returning the
response, and s is the set of ground literals which make up the response.

In order to resolve inconsistencies, ASTREA agents consider what they have
been told by other agents. In doing so the whole set of literals in a response
will either be believed or rejected as a group. The reasoning behind rejecting all
elements of a response as a group is that, since the set is in response to a request,
one can assume that the literals in the set are likely related and therefore if one is
rejected the rest are also suspect. Identifying conditions under which one might
only partially reject a response are left for future research.

Before discussing the implementation of ASTREA agents, we will first give an
example of a possible program, Π , that an agent may have and a response the
agent may receive concerning the domain in question. The example is a precisely
stated and expanded version of the Tweety bird problem mentioned earlier in
the paper. This example will be used throughout the remainder of the paper to
illustrate the use of ASTREA.

Example 1 (A traditional method of modeling an agents knowledge in ASP).
The agent knows that birds can normally fly, but that there are exceptions. One
such exception is penguins. The agent knows that penguins cannot fly. Another
exception is wounded birds. Depending on the nature of the injury, a wounded
bird may be able to fly or it may not. However, knowing a bird is wounded is
enough reason for the agent to withhold judgment whether it can fly or not. The
agent has knowledge of two birds, Tweety and Sally. The agent also believes that

ASTREA: Answer Sets for a Trusted Reasoning Environment for Agents 497

Sally is wounded. There is a third bird, Sam, that the agent is currently unaware
of. There are other agents who know about Sam, some of whom believe Sam is
a penguin.

Using the traditional methods, this agent’s knowledge can be represented by
the following program Π :

fly(X) :– bird(X), not ab(X).
bird(X) :– penguin(X).
ab(X) :– penguin(X).
¬fly(X) :– penguin(X).
ab(X) :– wounded(X).
bird(tweety).
bird(sally).
wounded(sally).

Note that another standard method of representing the first rule above is:

fly(X) :– bird(X), not ab(X), not ¬fly(X).

In this case the third rule, which states that penguins are abnormal, is not
needed. Writing the first rule in this way is useful in the single agent case. If
the agent knows a bird cannot fly, but does not have any knowledge about the
bird being abnormal, the resulting program would be still be consistent with the
alternate rule, but not with the one originally given. In a multi-agent situation
however, the encoding we gave is preferable. With the information given in the
story above, the agent would believe Tweety can fly. If told by another agent
that Tweety could not fly, the addition would be consistent with the alternate
rule. This is not the behavior we want - the agent should not automatically
believe such an assertion without the other agent giving a reason to believe the
bird was abnormal.

Given the story, a possible request the agent may make is to ask other agents
for the information they have about birds. An example of a possibly response is

〈ri, aj , {¬fly(tweety),¬fly(sam), bird(sam), penguin(sam)}〉

with ri the request id and aj the name of the agent that responded. In this
case, the information about Sam is new. It does not contradict anything the
agent currently believes so the agent has no reason to disbelieve it. However, the
information about Tweety contradicts the agent’s belief that Tweety can fly. It
is contradictions such as this that ASTREA is meant to resolve.

Modeling Agent’s Beliefs. In the example above the domain was modeled in
a standard way, as is usual in a single agent environment. In this work, however,
we need to be able to resolve conflicts between multiple agents. There are several
ways we could approach this problem. We could create either: a new semantics; a
new methodology for modeling the domain; or a translation from models created

498 R. Watson and M. De Vos

using the traditional approach into new models which meets our needs. In this
paper we opt for the third solution and present a translation. This will allow users
to program in a formalism they are familiar with and to use existing off-the-shelf
tools.

Before we present the translation we will start by highlighting the assump-
tions we make. First, for this paper we assume a single time instant and only
the rules of the agent which concern the agents knowledge. That is, we do not
consider rules regarding the actions of the agent. This assumption is not criti-
cal, however it does simplify the discussion in the paper. We also assume that
the predicate disbelieved of arity 2 does not to exist in Π . If such a predicate
did exist we could simply use a different, unused predicate in the translation.
Again, this assumption just simplifies the discussion. Furthermore, we assume
the agents themselves are consistent. In other words, the program representing
the agent’s knowledge using traditional methods has at least one answer set. This
assumption is quite natural since we assume rational agents and it is irrational
for an agent to have inconsistent beliefs.

With respect to the translation, we assume that, for the sake of grounding,
the set of all constants used by the agents are known to each agent. This will
simplify our discussion of the translation. In actual use one would need to modify
the translated program if new constants were discovered in communications with
other agents. Due to space consideration, rules which are not changed by the
translation will be left ungrounded.

Definition 1 (Translation ΠT
a)

Let a = 〈ida, Πa, Ca, Ia, trusta , ρ〉 be an agent. Using Πa (grounded) and Ca we
create the translated program ΠT

a as follows:

For each rule with an empty body (fact) in Π

l.

we add one the following to ΠT
a :

if l ∈ Ca then add

l. (1)

otherwise, two rules are added

l :– not disbelieved (x, id a). (2)
r(x, id a) : disbelieved (x, ida) +– . (3)

where x is a unique identification number for each new rule.
For each rule in Π with a non-empty body

l0 :– l1, . . . , lm, not lm+1, . . . , not ln.

ASTREA: Answer Sets for a Trusted Reasoning Environment for Agents 499

(including rules with empty heads) add the rule to ΠT
a and for each m+1 ≤ i ≤ n,

add the following two rules to ΠT
a :

li :– disbelieved (x, ida). (4)
r(x, id a) : disbelieved (x, ida) +– . (5)

where, as before, x is a unique identification number for each new rule.

In addition to translating the agents own knowledge, the responses received from
other agents must also be translated. The translation of responses, RT

a , is formed
as follows:

Definition 2 (Translation RT
a)

Let a be an agent and Ra be the set of responses received by that agent from its
requests. For each r = 〈ri, aj, s〉 ∈ Ra with s = {l1, . . . , ln} the rule

r(ri, aj) : disbelieved (ri, aj) +– . (6)

is added to RT
a and for each

1 ≤ k ≤ n the following rule is also added:

lk :– not disbelieved (ri, aj). (7)

As in the case of the non-translated program, answer sets of the translated
program correspond to possible sets of beliefs of the agent. It is possible that
information from other agents in response to requests leads to conflicts. In this
case CR-Prolog will automatically try to restore consistency by firing cr-rules.

Each cr-rule fired will add a disbelieved predicate to the answer set. If a
disbelieved predicate added is one from a rule of type 2 then it indicates the
agent chose to disbelieve an uncertain fact in the agent’s original information. If
it is from a rule of type 4, it indicates the agent chose to believe a literal occurring
under default negation may be true, hence blocking that default rule. Finally, if
the predicate is of the form disbelieved (r, a), where r is a request number and a is
the name of another agent, then the agent chose to disbelieve the entire response
from agent a to request r. By firing some subsets of the cr-rules, consistency will
be restored. Notice that, since we assume the agent itself is consistent, in the
worst case disbelieving all responses from other agents will necessarily result in
consistency. There will often be more than one minimal subset of cr-rules by
which consistency can be restored. The resulting answer sets are the possible
beliefs of the agent. This will be illustrated by the following example.

Example 2 (Translation and restoring consistency). Recall the Tweety bird story
from Example 1. The agent’s knowledge was represented by the following pro-
gram, Π :

fly(X) :– bird(X), not ab(X).
bird(X) :– penguin(X).
ab(X) :– penguin(X).

500 R. Watson and M. De Vos

¬fly(X) :– penguin(X).
ab(X) :– wounded(X).
bird(tweety).
bird(sally).
wounded(sally).

For this example, assume that the current agent is named agent0 and the unique
ids used in the rules start from 1. Furthermore, assume that
C0 = {bird(tweety), bird(sally), wounded(sally)}. Using our translation, the re-
sulting translated program, ΠT

0 is:

fly(X) :– bird(X), not ab(X).
ab(tweety) :– disbelieved (1, agent0).
r(1, agent0) : disbelieved (1, agent0).
ab(sally) :– disbelieved (2, agent0).
r(2, agent0) : disbelieved (2, agent0).
ab(sam) :– disbelieved(3, agent0).
r(3, agent0) : disbelieved (3, agent0).
bird(X) :– penguin(X).
ab(X) :– penguin(X).
¬fly(X) :– penguin(X).
ab(X) :– wounded(X).
bird(tweety).
bird(sally).
wounded(sally).

As mentioned, for space rules were kept unground when possible.
If then, in response to a request with id 4, the agent receives information from

another agent, agent1, stating that they believe that Tweety cannot fly but Sally
can (i.e. R0 = {〈4, agent1, {¬fly(tweety), fly(sally)}〉}), then RT

0 is:

¬fly(tweety) :– not disbelieved (4, agent1).
fly(sally) :– not disbelieved (4, agent1).
r(4, agent1) : disbelieved (4, agent1) +– .

If not for the cr-rules, the resulting program, ΠT
0 ∪ RT

0 would entail both
fly(tweety) and ¬fly(tweety) and hence it would be inconsistent. However, using
CR-Prolog, one of the two cr-rules will fire, adding either disbelieved (1, agent0)
or disbelieved (4, agent1). Firing the first cr-rule and adding disbelieved (1, agent0)
corresponds to the agent deciding that they may be wrong about Tweety not be-
ing abnormal with respect to flying. It is then safe for the agent to believe what
they were told by the other agent; that Tweety could not fly and Sally could.

ASTREA: Answer Sets for a Trusted Reasoning Environment for Agents 501

If the second cr-rule was fired instead, it would correspond to the case when
the agent chooses to disbelieve what they had been told by the other agent.
As a result, the agent would go on believing that Tweety could fly and would
hold no belief one way or the other as to Sally’s ability to fly. Even though the
information about Sally does not conflict with the beliefs of the agent, the whole
response is rejected. Notice that if a response from a different agent had stated
that Sam was a penguin and could not fly, then the agent would believe the
response in either case as it would not cause any contradictions.

Without adding any additional code, the answer sets returned will correspond
to all possible minimal ways of resolving the contradiction. There is no preference
given between them. This is the behavior the agent will have if the agent’s choice
of preference strategy, ρ, equals none.

In general, if ρ = none the agent computes its possible sets of beliefs by using
CR-Prolog to find the answer sets of ΠT

a ∪RT
a . Each answer set is a possible set

of beliefs of the agent. In the subsections that follow the other trust relations
will be shown.

3.3 Building on Trust

Recall from Section 3.2 that each agent has its own trust function. Two of the
four trust relations given below require that the values of this trust function
be encoded. If a = 〈ida, Πa, Ca, Ia, trusta , ρ〉 is an agent where ida = agent0

and Ia = {agent1, . . . , agentn} then we define Ta as the program consisting of
all facts of the form trust(agent i, t). where 0 ≤ i ≤ n and trusta(agent i) = t.
Recall that the agent will quantify the trust it has in its own ability.

Distrust Lowest Trust Levels First. The first preference relation presented
here is one in which the agent prefers to disbelieve information from agents it
trusts less when they are in conflict with information from agents it trusts more.
This corresponds to the agent having trust strategy ρ = trusted . This strategy
is encoded using the following program, denoted by Tr :

prefer (r(N1, A1), r(N2, A2)) :– trust(A1, T 1), trust(A2, T 2), T 1 < T 2,

disbelieved (N1, A1), not disbelieved (N2, A2).
prefer (r(N1, A1), r(N2, A2)) :– trust(A1, T 1), trust(A2, T 2), T 1 < T 2,

not disbelieved (N1, A1), disbelieved (N2, A2).

In order to compute beliefs of an agent using this strategy, CR-Prolog is used
on the program ΠT

a ∪RT
a ∪ Ta ∪ Tr .

Example 3 (Trust Strategy “Trusted”). Consider an agent, agent0, ΠT
0 as in

example 2, and T0 as follows:

trust(agent0, 2).
trust(agent1, 3).
trust(agent2, 1).

502 R. Watson and M. De Vos

Notice this means that the agent trusts agent1 more then they trust themselves,
but agent2 least of all. Suppose, in response to a request, the agent had RT

0 =

¬fly(tweety) :– not disbelieved (4, agent1).
r(4, agent1) : disbelieved (4, agent1) +– .

fly(tweety) :– not disbelieved (4, agent2).
r(4, agent2) : disbelieved (4, agent2) +– .

In other words, in their responses agent1 said Tweety cannot fly but agent2 says
Tweety can.

When the resulting program, ΠT
0 ∪ RT

0 ∪ T0 ∪ Tr , is run using CR-Prolog
there is only one answer set. The answer set contains ¬fly(tweety) and both
disbelieved (1, agent0) and disbelieved (4, agent2). This is the desired result as
agent1 said Tweety could not fly and agent1 is the most trusted agent.

If there is a conflict between two equally trusted agents and there is no agent with
a higher trust level that resolves the same conflict then there will be multiple
answer sets. Note that, if there are multiple requests, an agent may be believed
on some of its responses and disbelieved on others.

Trust the Majority. Another trust relation an agent might use is to choose to
trust the majority (ρ = majority). In this case there is no need to specify specific
trust levels. In case of a conflict the agent minimizes the number of responses
it needs to disbelieve, hence believing the majority. As it is very difficult to
tell which disbelieved statements within ΠT

a correspond to a given response, if
anything is disbelieved within ΠT

a then the agent counts itself as one response
disbelieved. In order to implement this relation, the following program, Mv is
used:

agentvote :– disbelieved (N, ida).
count(C + V) :– C{disbelieved(J, K) : request(J) : agent(K)}C,

V {agentvote}V.

ac(C) : countallowed(C) +– .

prefer (ac(C1), ac(C2)) :– C1 < C2.

¬count(C) :– not countallowed(C).

Notice that here we also need predicates request(J) and agent(K) for each re-
quest id, J , and agent name, K, other than ida. The program works by forcing
an inconsistency unless the number of responses disbelieved (plus one if the agent
has to disbelieve anything in its own knowledge and beliefs) is not equal to the
allowed count. The allowed count is controlled by a cr-rule with a preference
for answer sets with lower counts. As a result the agent gets the answer set(s)
with the minimum count. As the trust function is not used here, the beliefs are
computed by passing ΠT

0 ∪RT
0 ∪Mv to CR-Prolog.

ASTREA: Answer Sets for a Trusted Reasoning Environment for Agents 503

Example 4 (Trust Strategy “Majority”). Consider an agent, agent0, with ΠT
0 as

in Example 2, and RT
0 as in example 3. In this case, since both the agent itself

and agent2 believe the Tweety can fly and only agent1 believes that Tweety
cannot, there is only one answer set. In that answer set Tweety can fly, as that
was the majority.

It is interesting to note, however, that if agent1’s response had been that
Tweety cannot fly and furthermore Tweety is a penguin, then there would have
been two answer sets. One, as before, in which Tweety can fly, and one in which
Tweety is a penguin and hence cannot fly. This is due to the fact that agent1’s
beliefs were only in conflict with the agents beliefs in the first case because agent1

said that Tweety could not fly but did not give any reason for agent0 to believe
Tweety was abnormal. By adding that Tweety was a penguin, agent1’s response
is no longer in conflict with the beliefs of agent0. This is because, if agent0

accepts what agent1 replied, it assumes it was simply missing the information
that Tweety was a penguin and therefore an exception to the rule about flying.

A Weighted Majority Wins. The third trust relation is also based on a
majority, however this time, agents with higher trust levels carry more weight
than those with lower trust levels when deciding the majority. It can be viewed
as a voting system where some agents may get more votes than others. This is
the strategy used when ρ = weighted -majority . For this, the program, Wm is:

vote(R, A, V) :– disbelieved (R, A), trust(A, V).
#weight vote(J, K, L) = L.

agentvote :– disbelieved (N, ida).
#weight trust(ida, T) = T.

#weight agentvote = trust(ida, T).
count(C + V) :– C{vote(J, K, L) : request(J) :

agent(K) : numvotes(L)}C,

V {agentvote}V.

ac(C) : countallowed(C) +– .

prefer (ac(C1), ac(C2)) :– C1 < C2.

¬count(C) :– not countallowed(C).

The code is similar to the code for the previous relation with a few changes.
First, and most importantly, the trust level returned by the agent’s trust func-
tion for each agent is the number of votes that agent receives. Next, the predicate
numvotes(L) must exist for each value L in the range of the agent’s trust func-
tion. Finally, weight rules from smodels are used to assign weights to each vote.
The program works similarly to that in the previous example except here total
number of votes is minimized rather than simply the number of responses dis-
believed. As we use the trust function in this relation, the CR-Prolog program
used is ΠT

0 ∪RT
0 ∪ Ta ∪Wm .

504 R. Watson and M. De Vos

Example 5 (Trust Strategy “Weighted-Majority”). Consider an agent, agent0,
with ΠT

0 as in example 2, and both RT
a and Ta as in example 3. The agent

and agent2 both agree that Tweety can fly. In order to accept this belief, agent1

would have to be disbelieved. Since agent1 has 3 votes, that is 3 votes against this
answer. agent1 says Tweety cannot fly. Accepting that response would require
that both the agent itself and agent2 be disbelieved. Together they also have 3
votes. There is a tie so there are two answer sets, one in which the agent believes
Tweety can fly, one in which the agent believes Tweety cannot.

If, as in the previous example, agent1 had added that Tweety was a penguin
then in the case where Tweety cannot fly, the agent is not in conflict so there is
only one vote against. Therefore there is only one answer set, the one in which
Tweety cannot fly.

4 Related Work

The ASP community has a vast body of research in the area of representing either
preferences, order, priority, or trust in answer set programs. Some researchers
allow preferences expressed on the level of atoms, within the program [11], or
on the Herbrand base [29], while others define them through rules [14,17]. In
some systems the preferences are used to select the most appropriate solution
after the models are computed [31], while others use them for computing their
solutions [19]. It is beyond the scope of this paper to give a detailed overview
of all those systems. In CR-Prolog, preference is based on rules. Because of
our transformation of the initial AnsProlog program, the rules on which the
preferences are defined are facts. So one could argue that due to construction we
have obtained an ordering on atoms. Each of these atoms is a disbelieved atom
indicating that all information received from a certain agent about a certain
request is ignored. The preferences used in CR-Prolog are tightly linked with its
consistency restoring mechanism. While we would have been able to encode the
preference in other formalisms using different transformations, we believe that
the CR-Prolog’s philosophy, believe everything unless you have no other option,
fitted in the most natural way.

One of the ways of dealing with contradiction between information supplied
from agents that we presented used a voting mechanism. To our knowledge, [25]
is the only other paper to describe voting mechanisms in answer set program-
ming. In that paper voters provide a partial preference relation over the set
of candidates and three voting mechanism are provided: Borda, plurality, Con-
dorcet. In our paper, voting only takes place when a contradiction takes place
and votes are distributed on either side of the contradiction. It is either a straight
majority vote or the preference relation is used to assign weighted votes.

Multi-agent systems is a very active research domain, but most of research
focuses on agents’ actions. While there is research on modeling agents’ beliefs
[32], very little research has been taken place so far in updating the beliefs of
the agents.

ASTREA: Answer Sets for a Trusted Reasoning Environment for Agents 505

[15] proposes an agent architecture based on intelligent logic agents. Abduc-
tion is used to model agent reasoning. The underlying language is LAILA, a logic-
based language which allows one to express intra-agent reasoning and inter-agent
coordination coordinating logic based agents. No preferences between sources can
be expressed. Using CR-Prolog together with our disbelieved atoms mimics up
to a certain point abductive behavior, as we try to deduce who is or could be
responsible for the contradiction in the belief set.

In [30], the authors use program composition to model agent cooperation
and information sharing. We believe that is not a viable way in large multi-
agent systems due to the size of the program. Furthermore, one could imagine
agents being reluctant to share all the information (including possible private
information) with others.

In the Minerva architecture [26], the authors build their agents out of sub-
agents that work on a common knowledge base written as a MDLP (Multi-
Dimensional Logic Programs) which is an extension of Dynamic Logic Program-
ming. Our agents do not work with a common knowledge base; each agent decides
what she wants to keep private or make available. Minerva does not restrict it-
self to modeling the beliefs of agents, but allows for full BDI-agents that can
plan towards a certain goal. It would be interesting to see if this can also be
incorporated in our system.

5 Conclusions and Future Work

In this paper we proposed a new methodology for modeling and reasoning about
multi-agents system in which the agents exchange information that is possibly
contradictory. The information processing part of the agents uses answer set
programming to describe the current knowledge, beliefs and capabilities. When
new data is added as a result of a series of requests, the program is translated
into CR-Prolog program that resolves possible inconsistencies. Our framework
currently offers four different strategies to select the most appropriate conflict
resolution recommendations. Two of these are based on the trust agent’s place
in themselves and communicating agents when it comes to supplying correct
information.

One area for future work concerns knowledge versus belief. With new and pos-
sibly contradicting information coming from other agents and an ever-changing
environment, it is important that agents make a distinction between knowledge,
pieces of information that cannot be refuted, and beliefs, information that can
be changed over time. This was dealt with to some extent in the formalism pre-
sented in that the agent can differentiate between facts it is certain of and those
it is not. But what about information passed in a response? A responding agent
could separate their response into two parts; the part it knows to be true and the
part that it only believes. If we assume that if an agent says it “knows” a literal
then the literal must be true in the real world, then the receiving agent could
always accept the known part of the response even if it rejected the believed
part. The next question that arises is “how does an agent tell the difference

506 R. Watson and M. De Vos

between what it knows and what it believes?” Answering these questions and
incorporating the answers into ASTREA could result in a more robust system.
We have some preliminary work on these questions. Our current approach in-
volves a larger, more complex translation of the agent’s knowledge. It is not
presented here due to space constraints.

A somewhat related topic is the question of when can an agent accept part
of a response while rejecting the rest. When the parts in question are beliefs
this is a much more difficult question. In our examples in this paper, we were
concerned with birds and their ability to fly. As a human reasoner we can see
that a response which contained information about two different birds could be
split. The question is how to incorporate that reasoning ability in the agents.
One approach may be to limit requests to try to prevent the responses from
containing information that was not closely related. That approach, however,
seems to be overly restrictive. For us partial acceptance is an open question.

Another open question concerns incorporating knowledge from responses into
the agent’s facts. At present new information gained from other agents as a result
of a request for information is not added to the agent’s knowledge base for future
use. Neither is the program updated when the agent finds out that some of its
beliefs are false. CR-Prolog guarantees that if disbelieved information is removed,
a consistent program remains. However, difficulties arise when CR-Prolog returns
with several equally preferred ways of restoring consistency. In the future, we
plan to look at different update strategies. It is, of course, theoretically possible
to continue to store responses and reason with them as a separate component.
In human reasoning however, there comes a time in which the agent moves
beliefs from “things they were told” into “things they believe” and no longer
try to remember where they heard them. Deciding when and how to do this
in ASTREA agents is an interesting question for future consideration. In [2],
the authors present dynamic logic programs to capture a knowledge base that
changes of over time. EvoLP [3] is an extension of this language designed for
multi-agent system. While both deal with inconsistencies, neither consider trust
to determine the update. It will be interesting to see if both we can combine
updates with trust.

At present agents only communicate facts. One could envisage situations in
which agents want to communicate rules as well. Using CR-Prolog, it should
be easy to incorporate this. As mentioned earlier, preference relations could be
expanded to specify preferences not only on the basis of the agent but also on
the topic.

In this paper CR-Prolog was only used as a tool. The research did, however,
inspire several ideas about potential modifications to CR-Prolog. While the cur-
rent version of CR-Prolog can use clasp as its solver, CR-Prolog itself is tightly
coupled to lparse. As a result, some new constructs available in clasp, such as
aggregates, cannot be used. Such aggregates would have been useful in encoding
some of the trust relations presented in this paper. A new version of CR-Prolog,
which was either based on gringo or which allowed the easy addition of new
language feature, is a possible area for future research.

ASTREA: Answer Sets for a Trusted Reasoning Environment for Agents 507

Another direction for further research on CR-Prolog concerns preferences.
One of the trust relations presented in this paper was one in which, in case of
conflict, you prefer to disbelieve agents with lower trust levels over those with
higher trust levels. An obvious way to model this would be to have the rule

prefer(r(N1, A1), r(N2, A2)) :– trust(A1, T 1), trust(A2, T 2), T 1 < T 2.

where A1 and A2 are agents identifiers, N1 and N2 are either unique agent
rule identifiers or unique request identifiers, and T 1 and T 2 are trust levels.
Unfortunately, this would not give the desired results. In the current version
of CR-Prolog, given two cr-rules, r1 and r2, if rule r1 is preferred to rule r2
then if there is a model which uses r1 but not r2 it is preferred to a model
which uses r2 but not r1. However, it also disallows models which use both r1
and r2. Suppose there are three agents, a1, a2, and a3 with a1 being the least
trusted and a3 being most trusted. For the desired trust relation, disbelieving
a1 is preferred to disbelieving a2, but it may be necessary to disbelieve both if
they are both in conflict with a3. The ability to use different preference relations
within CR-Prolog would enhance its abilities and would allow for more elegant
problem solutions in some cases.

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The socs
computational logic approach to the specification and verification of agent societies.
In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 314–339. Springer,
Heidelberg (2005)

2. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: Semantics for dynamic logic pro-
gramming: A principle-based approach. In: Lifschitz, V., Niemel, I. (eds.) LPNMR
2003. LNCS, vol. 2923, pp. 8–20. Springer, Heidelberg (2003)

3. Alferes, J., Brogi, A., Leite, J., Pereira, L.: Logic programming for evolving agents.
In: Klusch, M., Zhang, S.-W., Ossowski, S., Laamanen, H. (eds.) CIA 2003. LNCS
(LNAI), vol. 2782, pp. 281–297. Springer, Heidelberg (2003)

4. Balduccini, M.: Answer set based design of highly autonomous, rational agents.
Phd thesis, Texas Tech University (December 2005)

5. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In:
AAAI Spring 2003 Symposium, pp. 9–18 (2003)

6. Balduccini, M., Gelfond, M.: The aaa architecture: An overview. In: AAAI 2008
Spring Symposium on Architectures for Intelligent Theory-Based Agents (2008)

7. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Minker, J.
(ed.) Logic Based Artificial Intelligence, pp. 257–279. Kluwer Academic Publishers,
Dordrecht (2000)

8. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge Press, Cambridge (2003)

9. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Logic-based
artificial intelligence, pp. 257–279. Kluwer Academic Publishers, Dordrecht (2000)

10. Bratman, M.E.: What is intention? In: Cohen, P.R., Morgan, J.L., Pollack, M.E.
(eds.) Intentions in Communication, pp. 15–32. MIT Press, Cambridge (1990)

508 R. Watson and M. De Vos

11. Brewka, G., Niemelä, I., Truszczynski, M.: Answer set programming. In: Interna-
tional Joint Conference on Artificial Intelligence (JCAI 2003). Morgan Kaufmann,
San Francisco (2003)

12. Buccafurri, F., Caminiti, G.: A social semantics for multi-agent systems. In: Baral,
C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI),
vol. 3662, pp. 317–329. Springer, Heidelberg (2005)

13. Buccafurri, F., Gottlob, G.: Multiagent compromises, joint fixpoints, and stable
models. In: Kowalski, R.A. (ed.) Computational Logic: Logic Programming and
Beyond. LNCS (LNAI), vol. 2407, pp. 561–585. Springer, Heidelberg (2002)

14. Buccafurri, F., Leone, N., Rullo, P.: Disjunctive ordered logic: Semantics and ex-
pressiveness. In: Cohn, A.G., Schubert, L.K., Shapiro, S.C. (eds.) Proceedings of
the Sixth International Conference on Principles of Knowledge Representation and
Reasoning, June 1998, pp. 418–431. Morgan Kaufmann, Trento (1998)

15. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Cooperation and com-
petition in alias: A logic framework for agents that negotiate. Annals of Mathe-
matics and Artificial Intelligence 37, 65–91 (2003), doi:10.1023/A:1020259411066

16. Cliffe, O., De Vos, M., Padget, J.: Specifying and analysing agent-based social
institutions using answer set programming. In: Boissier, O., Padget, J., Dignum,
V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda,
J. (eds.) ANIREM 2005 and OOOP 2005. LNCS (LNAI), vol. 3913, pp. 99–113.
Springer, Heidelberg (2006)

17. De Vos, M., Cliffe, O., Watson, R., Crick, T., Padget, J., Needham, J., Brain, M.:
T-LAIMA: Answer Set Programming for Modelling Agents with Trust. In: Euro-
pean Workshop on Multi-Agent Systems (EUMAS 2005), pp. 126–136 (December
2005)

18. De Vos, M., Vermeir, D.: Extending Answer Sets for Logic Programming Agents.
Annals of Mathematics and Artifical Intelligence 42(1-3), 103–139 (2004); Special
Issue on Computational Logic in Multi-Agent Systems

19. Delgrande, J., Schaub, T., Tompits, H.: Logic programs with compiled preferences.
In: Horn, W. (ed.) European Conference on Artficial Intelligence, pp. 392–398. IOS
Press, Amsterdam (2000)

20. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: The KR system dlv:
Progress report, comparisons and benchmarks. In: Cohn, A.G., Schubert, L.,
Shapiro, S.C. (eds.) KR1998: Principles of Knowledge Representation and Rea-
soning, pp. 406–417. Morgan Kaufmann, San Francisco (1998)

21. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: M. Veloso, editor, Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI 2007), pp. 386–392. AAAI Press/The
MIT Press (2007), http://www.ijcai.org/papers07/contents.php.

22. Gebser, M., Schaub, T., Thiele, S.: GrinGo: A New Grounder for Answer Set
Programming. In: Baral, C., Brewka, G., Schlipf, J.S. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 266–271. Springer, Heidelberg (2007)

23. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3-4), 365–386 (1991)

24. Gelfond, M., Morales, R.: Encoding conformant planning in a-prolog. In: DRT 2004
(2004)

25. Konczak, K.: Voting theory in answer set programming. In: Fink, M., Tompits, H.,
Woltran, S. (eds.) Proceedings of the Twentieth Workshop on Logic Programmin
(WLP 2006). Number INFSYS RR-1843-06-02 in Technical Report Series, pp. 45–
53. Technische Universität Wien (2006)

http://www.ijcai.org/papers07/contents.php.

ASTREA: Answer Sets for a Trusted Reasoning Environment for Agents 509

26. Leite, J.A., Alferes, J.J., Pereira, L.M.: Minerva - a dynamic logic programming
agent architecture. In: Intelligent Agents VIII. LNCS (LNAI), vol. 2002, pp. 141–
157. Springer, Heidelberg (2002)

27. Niemelä, I., Simons, P.: Smodels: An implementation of the stable model and
well-founded semantics for normal LP. In: Dix, J., Furbach, U., Nerode, A. (eds.)
LPNMR 1997. LNCS (LNAI), vol. 1265, pp. 420–429. Springer, Berlin (1997)

28. Niemelä, I., Simons, P.: Extending the smodels system with cardinality and weight
constraints. In: Logic-Based Artificial Intelligence, pp. 491–521. Kluwer Academic
Publishers, Dordrecht (2000)

29. Sakama, C., Inoue, K.: Representing Priorities in Logic Programs. In: Maher, M.
(ed.) Proceedings of the 1996 Joint International Conference and Symposium on
Logic Programming, September 2–6, pp. 82–96. MIT Press, Cambridge (1996)

30. Sakama, C., Inoue, K.: Coordination between Logical Agents. In: ao Leite, J.,
Torroni, P. (eds.) Pre=Proceedings of CLIMI V: Computation logic in multi-agent
systems, Lisbon, Portugal, September29–30, pp. 96–113 (2004)

31. Van Nieuwenborgh, D., Vermeir, D.: Preferred answer sets for ordered logic pro-
grams. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS
(LNAI), vol. 2424, pp. 432–443. Springer, Heidelberg (2002)

32. Witteveen, C., Brewka, G.: Skeptical reason maintenance and belief revision. Ar-
tificial Intelligence 61(1), 1–36 (1993)

33. Wooldridge, M.: An introduction to multiagent systems. Wiley, Chichester (2002)
ISBN: 0 47149691X

34. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. The
Knowledge Engineering Review 10(02), 115–152 (1995)

M. Balduccini and T.C. Son (Eds.): Gelfond Festschrift, LNAI 6565, pp. 510–512, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Tea Times with Gelfond

Veena S. Mellarkod

The MathWorks Inc.,
3 Apple Hill Dr., Natick, MA, USA

veena.mellarkod@mathworks.com

С Днем Рождения, Dr.Gelfond, Я желаю тебе долгих лет жизни

I must thank Marcello Balduccini and Tran Cao Son for giving me this opportunity to
revisit and recount my education with Prof. Michael Gelfond. Not everyone is
fortunate to have a dedicated teacher at any phase of life. In this regard, I consider
myself to be among the luckiest few to have learned from someone who cares so
much about imparting knowledge as part of their students’ education. It has been a
couple of years since I have left the Knowledge Representation lab of Texas Tech,
and yet it seems not too long ago that I was learning about Prof. Gelfond. It certainly
was well before I started learning from him. The ten best years of my life were spent
immersed in learning from THE TEACHER among teachers, Prof. Michael Gelfond.
Writing in celebration of his 65th birthday is an honor and a fitting tribute to the times
well spent.

My Guru

Maatha, pitha, Guru, Daivam: Mother, father, teacher, and God; this is precisely the
order of importance and honor one must confer, according to Vedic philosophy.
Giving parents the highest regards can perhaps be rationalized because the individual
owes his or her life to them. Giving guru the next place is rationalized because it is
the guru that guides the individual towards the path of enlightenment. Growing up in
India, I was taught to practice this ideal throughout my life. One can readily follow
and offer respects to one’s parents. What about guru? Vedic times dictated that an
individual is sent to study with a guru for an extended time – often years – to be

 Tea Times with Gelfond 511

considered a learned one. Where does one get an opportunity or time to study with
and learn from a single guru these days? Naturally, I wondered whether the concept
of guru is still relevant for our times and, if it were, when I would come across a guru
worthy of complete devotion. I consider it my good karma for I did find a modern-
day guru – one who taught me everything that I know today about intelligent
computing and algorithm development – over many cups of tea and home-made
cakes, no less. Finding a guru is a treasure in itself. But finding a guru patni
(teacher’s wife) who cares for the students as well as the guru must truly be a
blessing. Our celebration of Michael and Lara on this momentous occasion is no less
than the celebration of teachers everywhere who serve as role models in their
students’ lives.

Learning from Dr. Gelfond

My association with Dr. Gelfond goes back to the turn of the century in 1999. I was
a naïve graduate student freshly admitted to the computer science department at
University of Texas at El Paso. Dr. Gelfond taught one of the courses in my first
semester, Algorithms and Data Structures. Despite a lack of background in computer
science – my undergraduate training was in chemical engineering – Dr. Gelfond’s
articulation of the technical concepts clarified my numerous doubts about the
subject. Little did I realize then that this would be a continuous learning experience
in the years ahead! Dr. Gelfond would also engage in lively discussions during a
seminar series organized on behalf of Knowledge Representation lab at The
University of Texas at El Paso. It was his course on the History of Logic
Programming and teaching style that inspired me to pursue a challenging topic for
my master’s thesis instead of finishing up the coursework to get a degree. Rather
than limiting the discussion to technical developments, Dr. Gelfond took us to the
times and circumstances faced by those great minds that put forward the many
advances in logic programming. His desire and enthusiasm to instill a thirst for
knowledge in his students is contagious enough to drive a chemical engineer towards
pursuing a PhD in computer science.

Tea Times at Tech

Prof. Michael Gelfond moved to Texas Tech University soon after and I, along with
few other students, followed him to TTU with a single-minded interest in learning
from him. The Knowledge Representation lab took roots once again at Texas Tech
and lively debates ensued over a diverse array of topics such as Artificial
Intelligence (including Spielberg’s movie of the same name), logic programming,
philosophers of yore, global cultures, origin of religions, and existence of God or
lack thereof. Dr. Gelfond would often walk over to the lab with a non-descript green
cup filled with tea and ask in general, “what’s up?”; the lab members would arrange
themselves in a circle and chat over cups of their preferred beverage, usually coffee,
tea, or water. The participants of these debates would often join in or leave as they
please but the dynamic discussion progressed regardless. Our interaction with Dr.
Gelfond was full of such intellectual discussions in the lab, which I would call tea
times with Gelfond.

512 V.S. Mellarkod

A True Advisor

Beyond being an exceptional teacher and outstanding researcher, Dr. Gelfond is truly
an advisor and a friend for life. A kind human being, he taught me many qualities one
should imbibe in one’s personality. He taught me the necessity of discipline and
patience, the importance of being kind and rational, the art of listening and the virtues
of a good human being. I will forever be grateful for his guidance in making me the
person I am today. The fable of eka Lavya from Indian epic Mahabharata celebrates
guru drOnachArya for famously inspiring students to learn his art. As many of his
current and former students agree, Dr. Michael Gelfond is worth the devotion of many
such eka Lavyas. Thank you, Dr. Gelfond, for all the time you put into shaping us to
be the individuals we are today. Hope you will continue to inspire many more
students to come.

Author Index

Albanese, Massimiliano 347
Alferes, José Júlio 193

Balduccini, Marcello 377
Bao, Forrest Sheng 398
Baral, Chitta 213
Brewka, Gerhard 233
Broecheler, Matthias 347
Bruynooghe, Maurice 12

Cabalar, Pedro 334
Calo, Seraphin 280
Chintabathina, Sandeep 398
Costantini, Stefania 344

Denecker, Marc 12
De Vos, Marina 490
Dovier, Agostino 259
Dung, Phan Minh 33

Eiter, Thomas 233
Erdem, Esra 415

Faber, Wolfgang 44
Ferraris, Paolo 64
Fink, Michael 233
Formisano, Andrea 259

Gabaldon, Alfredo 193
Gebser, Martin 74
Gelfond, Gregory 213
Girotto, Sara 377
Grant, John 347
Grasso, Giovanni 432

Inoue, Katsumi 91

Janhunen, Tomi 111

Kaminski, Roland 74
Kaufmann, Benjamin 74
Kreinovich, Vladik 181

Leite, João 193
Leone, Nicola 432
Lifschitz, Vladimir 64

Lobo, Jorge 280
Lupu, Emil 280

Ma, Jiefei 280
Manna, Marco 432
Marek, Victor 131
Martinez, Maria Vanina 347
Mellarkod, Veena S. 510
Minker, Jack 1
Moniz Pereira, Lúıs 148
Morales, A. Ricardo 398

Nguyen, Ngoc-Hieu 452
Niemelä, Ilkka 111

Pinto, Alexandre Miguel 148
Pontelli, Enrico 259, 452
Provetti, Alessandro 191

Remmel, Jeffrey B. 131
Ricca, Francesco 432
Rushton, Nelson 398
Russo, Alessandra 280

Sakama, Chiaki 91
Schaub, Torsten 74
Sergot, Marek 164
Sloman, Morris 280
Son, Tran Cao 452
Subrahmanian, V.S. 347
Syrjänen, Tommi 473

Thang, Phan Minh 33
Thielscher, Michael 300
Toni, Francesca 164
Truszczyński, Miros�law 315

Vennekens, Joost 12
Vlaeminck, Hanne 12

Watson, Richard 398, 490
Wittocx, Johan 12
Woltran, Stefan 44

Zhang, Yuanlin 398

	Title
	Preface
	Organization
	Table of Contents
	Homage to Michael Gelfond on His 65th Birthday
	Introduction
	Michael Gelfond in the USSR (1945-1977)
	Michael and Larisa Gelfond's Early Years in the United States (1978-1980)
	Michael Gelfond's Scientific Contributions
	Michael Gelfond the Person
	Concluding Remark
	References

	Foundations: ASP and Theories of LP, KR, and NMR
	Answer Set Programming’s Contributions to Classical Logic
	Introduction
	Preliminaries of ASP and FO
	Basic Principles of Knowledge Representation in ASP and FO
	Adding (Inductive) Definitions to FO
	Representing Objective Knowledge in ASP and FO(ID)
	Representing UNA and DCA
	Different Forms of CWA in Complete and Partial Databases
	Representing Definitions in ASP
	Representing Defaults

	Adding an Epistemic Operator to FO()
	Conclusion
	References

	Closure and Consistency Rationalities in Logic-Based Argumentation
	Introduction
	Logic-Based Abstract Argumentation Theories
	Abstract Assumption-Based Argumentation
	Argumentation with Strict and Defeasible Rules
	Conclusion
	References

	Manifold Answer-Set Programs and Their Applications
	Introduction
	Preliminaries
	Propositional Manifold Programs
	Non-ground Manifold Programs
	Applications
	The Unique Minimal Model Problem
	Computing the Ideal Extension
	Epistemic Specifications

	Conclusion
	References

	On the Minimality of Stable Models
	Introduction
	Review: Circumscription and Stable Models
	Critical Subformulas
	Proofs
	Conclusion
	References

	Challenges in Answer Set Solving
	Introduction
	ASP Solving
	Modeling
	A Case-Study
	Some Hints on (Manual) Modeling
	Non-ground Pre-processing

	Solving
	Another Case-Study
	Some Hints on (Manual) Solving
	Portfolio-Based Solving

	Conclusion
	References

	Exploring Relations between Answer Set Programs
	Introduction
	Generality Relations over Semantic Structures
	Ordering Logic Programs
	Strong, Uniform and Relativized Generality
	Abductive Generality
	Discussion
	Conclusion
	References

	Compact Translations of Non-disjunctive Answer Set Programs to Propositional Clauses
	Introduction
	Preliminaries
	Translations
	Primitives for Representing Level Rankings
	Translating smodels Programs into Normal Programs
	Capturing Stability Using Supported Models
	Completion and Clausification

	Implementation and Experiments
	Conclusions
	References

	Effectively Reasoning about Infinite Sets in Answer Set Programming
	Introduction
	Set Logic Programs: Syntax, Miops, and Semantics
	Examples of Monotonic Idempotent Operators
	Set Based Logic Programming with Miops

	Languages Accepted by Finite Automaton
	Set Based Logic Programming with Automata
	Conclusions
	References

	Inspecting Side-Effects of Abduction in Logic Programs
	Introduction
	Motivation
	Background Notation and Definitions

	Abductive Reasoning with Logic Programs
	Abductive Logic Program Procedures

	Inspection Points
	Backward and Forward Chaining
	Meta-abduction for Side-Effects Inspection
	Declarative Semantics of Inspection Points

	Implementation
	ABDUAL with Inspection Points—Details
	Alternative Implementation Method

	Conclusions, Comparisons, and Future Work
	References

	Argumentation and Answer Set Programming
	Introduction
	Background
	Argumentation
	Answer Set Programming (ASP)

	ASP for Argumentation
	Nieves, Cortés and Osorio DBLP:journals/tplp/NievesCO08: Preferred Extensions
	 Wakaki and Nitta DBLP:conf/jsai/WakakiN08: Complete, Stable, Preferred, Grounded, and Semi-stable Extensions
	 Egly, Gaggl and Woltran DBLP:conf/iclp/EglyGW08,aspartix-theory: Conflict-Free, Admissible, Preferred, Stable, Semi-stable, Complete, Grounded Extensions
	 Faber and Woltran DBLP:conf/lpnmr/FaberW09: Ideal Extensions
	DLV for ASP for Abstract Argumentation
	ASP for Other Forms of Argumentation

	Some Future Directions
	Conclusions
	References

	Cantor’s Paradise Regained: Constructive Mathematics from Brouwer to Kolmogorov to Gelfond
	References

	Recollections on Michael Gelfond’s 65th Birthday

	ASP and Dynamic Domains
	Evolving Logic Programs with Temporal Operators
	Introduction
	Preliminaries
	EVOLP with Temporal Operators
	Embedding Temporal Operators in EVOLP
	EVOLPT Implementations
	Evolution SM Semantics Implementation
	 Query-Answering under WF Semantics Implementation

	Related Work and Conclusions
	References

	On Representing Actions in Multi-agent Domains
	Introduction
	Background: Modal Logic and Kripke Models
	Baltag-Moss Action Models
	Global Announcement Actions
	Private Announcement Actions
	Sensing Actions

	Using Baltag-Moss Action Models to Express Three Classes of Agents
	Extending Announcement Actions
	Sensing Actions with Three Classes of Agents
	Actions of Misdirection with Three Classes of Agents

	From Action Models to High Level Action Languages
	Future Directions on Action Models
	A High Level Action Language That Uses Action Models as a Semantic Tool
	Knowledge and Belief

	Final Thoughts
	References

	Nonmonotonic Multi-Context Systems: A Flexible Approach for Integrating Heterogeneous Knowledge Sources
	Introduction
	Heterogeneous Nonmonotonic MCS
	Formal Concepts
	Groundedness
	Implementing MCS

	Inconsistency Handling in MCS
	Diagnoses and Explanations
	Assessing Inconsistency

	Argumentation Context Systems
	Ongoing and Future Work
	Handling Incomplete Information
	Aggregating Information
	Dynamic MCS
	Towards Mediator Based MCS

	Related Work and Conclusion
	Conclusion

	References

	Perspectives on Logic-Based Approaches for Reasoning about Actions and Change
	Introduction
	The Action Language B
	Syntax of B
	Semantics of B

	Answer Set Planning
	The General Encoding
	An Optimized Encoding

	Planning Using CLP
	From Boolean to Multi-valued
	Experiments and Evaluation
	Domains Used
	Experimental Results

	Current Directions and Conclusion
	References

	Refinement of History-Based Policies
	Introduction
	Related Work
	Policy Specification Language
	Semantics

	Policy Transformation
	Basic Historical Conditions
	Durative Historical Condition
	Transformation of Multiple Conditions

	Correctness of the Transformation
	Discussions
	A Glance to Our Implementation
	The Formal Framework
	Design Overview

	Conclusion and Future Work
	References

	Translating General Game Descriptions into an Action Language
	Introduction
	Preliminaries
	Describing Games in GDL
	Action Languages

	Translating GDL into Action Language C+
	Correctness
	Syntactic Correctness
	From C+ to Causal Theories
	Game Developments and Causal Models Coincide

	Conclusion
	References

	Revisiting Epistemic Specifications
	Introduction
	Epistemic Specifications
	Epistemic Specifications — A Broader Perspective
	Complexity
	Modeling with Epistemic Programs
	Connection to Gelfond's Epistemic Programs
	Epistemic Models of Arbitrary Theories
	Discussion
	References

	Answer Set; Programming?
	Introduction
	Programming as Implementing Algorithms
	Programming as Temporal Problem Solving
	Programming as Implementing a Turing Machine
	Programming as a Craft
	Conclusions
	References

	Michael Gelfond: Essay in Honour of His 65th Birthday

	ASP – Applications and Tools
	PLINI: A Probabilistic Logic Program Framework for Inconsistent News Information
	Introduction
	What Is an Event?
	PLINI Wffs: Syntax and Semantics
	Syntax of Multi-sorted Wffs

	Similarity Functions
	Sort Point
	Sort ConnectedPlace
	Sort Space
	Sort TimeInterval
	Sort NumericInterval

	PLINI Probabilistic Logic Programs
	Model Theory and Fixpoint Theory
	Event Clustering Algorithm
	Implementation and Experiments
	Related Work
	Conclusion
	References

	ASP as a Cognitive Modeling Tool: Short-Term Memory and Long-Term Memory
	Introduction
	Answer Set Programming and Dynamic Domains
	Short-Term Memory, Long-Term Memory, and Chunking
	A Formalization of Short-Term Memory
	A Formalization of Long-Term Memory and Chunking
	LTM Model
	Detection of Chunks
	Detection of Proto-chunks
	Proto-chunk Formation
	Chunk Learning
	Experiments

	Discussion and Related Work
	References

	A Temporally Expressive Planner Based on Answer Set Programming with Constraints: Preliminary Design
	Introduction
	Preliminaries
	PDDL2.1 Planning Instances
	Plans of PDDL2.1 Planning Instances
	Syntax of ACC
	Semantics of ACC

	Translation of a PDDL Problem to an ACC Program
	Sorts
	Predicates
	Variables and Time
	Formulas
	Initial and Goal States
	Simple Actions
	Discrete Durative Actions
	Continuous Effect
	Encoding PDDL2.1 Restrictions on Actions
	Plan Generation

	Conclusion
	References

	Applications of Answer Set Programming in Phylogenetic Systematics
	Introduction
	Reconstructing Phylogenies
	Computing Similar/Diverse Phylogenies
	Computing Weighted Phylogenies
	Reconstructing Phylogenies for Very Large Datasets
	Phylo-ASP
	Reconstructing Temporal Networks
	Discussion
	References

	ASP at Work: Spin-off and Applications of the DLV System
	Introduction
	The Language of DLV
	Basic Language
	Aggregate Functions
	Optimization Constructs
	Complex Terms
	Queries
	Database Interoperability

	Spin-off Companies
	Dlvsystem Srl
	Exeura Srl

	DLV-Based Systems for KM
	OntoDLV
	OLEX
	HiLeX

	Applications
	Team-Building in the Gioia-Tauro Seaport
	E-Tourism: The IDUM System
	Text Categorization Applications
	Other Applications

	Conclusion
	References

	Combining Answer Set Programming and Prolog: The $ASP−PROLOG$ System
	Introduction
	ASP-PROLOG: The Syntax
	Describing a Knowledge Base
	Describing a Collection of Knowledge Bases
	Additional Considerations

	ASP-PROLOG: The Semantics
	Preliminary Definitions
	Model-Theoretic Semantics
	Semantics for Dynamic Programs

	ASP-PROLOG: An Overview of the Implementation
	ASP-PROLOG: An Illustration
	Reasoning with Answer Set Semantics
	Commonsense Reasoning
	Planning
	Multi-agent Planning

	Conclusion and Future Work
	References

	On the Practical Side of Answer Set Programming
	Introduction
	Kakuro or Cross Sum Puzzles

	Principles of ASP Encodings
	Generate and Test Method
	Uniform Encodings
	On Optimization

	Basic Encoding
	Representing the Puzzle Instances
	Rules of the Game

	Optimized Encoding
	Representing the Combinations
	Selecting Combinations and Numbers
	Possible Combinations
	Comparison

	InteractiveUse
	Use Cases
	Representing User Choices
	Identifying User Errors
	Identifying Solvable Squares
	Explanations
	Puzzles with Multiple Solutions
	Considerations on Puzzle Generation

	Conclusions
	References

	ASTREA: Answer Sets for a Trusted Reasoning Environment for Agents
	Introduction
	Preliminaries
	Multi-Agent Systems
	Answer Set Programming
	CR-Prolog

	ASTREA
	Motivation
	ASTREA Agents
	Building on Trust

	Related Work
	Conclusions and Future Work
	References

	Tea Times with Gelfond

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

