

Lecture Notes in Computer Science 6655
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Oktay Günlük Gerhard J. Woeginger (Eds.)

Integer Programming
and Combinatoral
Optimization

15th International Conference, IPCO 2011
New York, NY, USA, June 15-17, 2011
Proceedings

13

Volume Editors

Oktay Günlük
IBM T. J. Watson Research Center
Mathematical Sciences Department
Yorktown Heights, NY 10598, USA
E-mail: gunluk@us.ibm.com

Gerhard J. Woeginger
TU Eindhoven
Department of Mathematics and Computer Science
P.O. Box 513
5600 MB, Eindhoven, The Netherlands
E-mail: gwoegi@win.tue.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-20806-5 e-ISBN 978-3-642-20807-2
DOI 10.1007/978-3-642-20807-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011925954

CR Subject Classification (1998): F.2, E.1, I.3.5, G.2, G.1.6, F.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the 33 papers presented at IPCO 2011, the 15th Con-
ference on Integer Programming and Combinatorial Optimization, held during
June 15–17, 2011 at the IBM T.J. Watson Research Center in New York, USA.
IPCO conferences are sponsored by the Mathematical Optimization Society.

The first IPCO conference took place at the University of Waterloo in May
1990. A lot of things have changed over the course of the 20 years since then.
IPCO has become extremely visible, and it has grown into one of the main events
for the mathematical programming community. IPCO has also become bigger
in size (for instance, the number of submissions has increased from 76 to 110,
and the number of Program Committee members has increased from 8 to 14).
And IPCO has become considerably broader in scope (nowadays the meeting
covers topics that did not even exist in 1990). Of course there are other things
that remained constant over time. For instance, the format of IPCO is still a
single stream of non-parallel sessions (this has become IPCO tradition, and is
unlikely to change in the near future). The number of accepted papers still is 33
(plus/minus 3). And – most important – the quality of the presented research is
at the very very top.

Altogether IPCO 2011 received 110 extended abstracts. Each submission was
reviewed by at least three, and on average by four, Program Committee members
prior to the committee meeting in January 2011 in Aussois. During the commit-
tee meetings all 110 submission were discussed thoroughly and 33 papers were
selected for presentation. We expect the full versions of the papers contained in
this volume to be submitted for publication in refereed journals.

Many people contributed to the smooth running and the success of IPCO
2011. In particular our thanks go to:

– All authors who submitted their current research to IPCO
– Our reviewers and subreferees whose expertise flowed into the decision process
– The members of the Program Committee who graciously gave their time and

energy
– The members of the Local Organizing Committee who made the conference

possible
– The organizers of the 2011 Aussois workshop on combinatorial optimization

(Michael Jünger, Gerhard Reinelt, Giovanni Rinaldi) for kindly giving us the
opportunity to have a physical Program Committee meeting

– The EasyChair conference management system for hosting the evaluation
process

June 2011 Oktay Günlük
Gerhard J. Woeginger

Organization

Program Committee

Nikhil Bansal IBM T.J. Watson Research Center, USA
Michele Conforti Universitá degli Studi di Padova, Italy
Bertrand Guenin University of Waterloo, Canada
Oktay Günlük IBM T.J. Watson Research Center, USA
Tibor Jordán Eötvös University, Budapest, Hungary
Jochen Könemann University of Waterloo, Canada
Andrea Lodi DEIS, University of Bologna, Italy
Franz Rendl University of Klagenfurt, Austria
Giovanni Rinaldi IASI – CNR, Italy
Günter Rote Freie Universität Berlin, Germany
Cliff Stein Columbia University, USA
Frank Vallentin TU Delft, The Netherlands
Jens Vygen University of Bonn, Germany
Gerhard Woeginger TU Eindhoven, The Netherlands

Organizing Committee

Sanjeeb Dash
Oktay Günlük
Jon Lee
Maxim Sviridenko

External Reviewers

Aardal, Karen Achterberg, Tobias
Ahmed, Shabbir Archer, Aaron
Atamturk, Alper Bachoc, Christine
Barvinok, Alexander Bateni, Mohammad Hossein
Beck, Matthias Bhatnagar, Nayantara
Bienstock, Dan Bogart, Tristram
Bonami, Pierre Borodin, Allan
Bosse, Hartwig Brandstädt, Andreas
Buchbinder, Niv Byrka, Jaroslaw
Büsing, Christina Caprara, Alberto
Chakrabarty, Deeparnab Chan, Yuk Hei
Cheriyan, Joseph Cornuéjols, Gérard
D’Ambrosio, Claudia D’Andreagiovanni, Fabio

VIII Organization

Dash, Sanjeeb Di Summa, Marco
Dutour Sikirić, Mathieu Dyer, Martin
Dür, Mirjam Epstein, Leah
Faenza, Yuri Fekete, Sandor
Felsner, Stefan Fleiner, Balázs
Fleiner, Tamás Frangioni, Antonio
Frank, András Fukasawa, Ricardo
Gärtner, Bernd Galli, Laura
Garg, Naveen Geelen, Jim
Geleji, János Gentile, Claudio
Georgiou, Konstantinos Gerards, Bert
Gouveia, Luis Grandoni, Fabrizio
Grant, Elyot Grappe, Roland
Gupta, Shubham Gvozdenović, Neboǰsa
Hajiaghayi, Mohammad Taghi Harvey, Nick
Held, Stephan Helmberg, Christoph
Henrion, Didier Hildebrand, Martin
Hurkens, Cor Hähnle, Nicolai
Ishii, Toshimasa Iwata, Satoru
Iyengar, Garud Jansen, Klaus
Jüttner, Alpár Kaibel, Volker
Katoh, Naoki Kellerer, Hans
Kim, Edward D. Király, Csaba
Kis, Tamás Kiwiel, Krzysztof
Korula, Nitish Král, Daniel
Krishnaswamy, Ravishankar Labbé, Martine
Laurent, Monique Lejeune, Miguel
Levin, Asaf Li, Fei
Li, Yanjun Li, Zhentao
Liberti, Leo Linderoth, Jeff
Louveaux, Quentin Lozin, Vadim
Mahjoub, Ridha Makarychev, Konstantin
Makino, Kazuhisa Malaguti, Enrico
Manlove, David F Marx, Dániel
Maßberg, Jens Mathieu, Claire
Miklós, Zoltán Mirrokni, Vahab
Mitchell, John Monaci, Michele
Murota, Kazuo Nagarajan, Viswanath
Nguyen Kim, Thang Niemeier, Martin
Nutov, Zeev Oliveira, Fernando
Olver, Neil Oriolo, Gianpaolo
Ouorou, Adam Pap, Gyula
Pap, Júlia Parekh, Ojas
Peis, Britta Pendavingh, Rudi
Pfetsch, Marc Phillips, David

Organization IX

Pivotto, Irene Post, Ian
Pritchard, David Raack, Christian
Ralph, Daniel Ravi, R.
Roberti, Roberto Rothvoß, Thomas
Römisch, Werner Salvagnin, Domenico
Sanità, Laura Scheideler, Christian
Schürmann, Achill Schultz, Rüdiger
Sebő, András Sen, Suvrajeet
Sethuraman, Jay Shmoys, David
Singh, Mohit Skutella, Martin
Smith, Cole Spieksma, Frits
Srinivasan, Aravind Svensson, Ola
Sviridenko, Maxim Svitkina, Zoya
Swamy, Chaitanya Szabó, Jácint
Szigeti, Zoltán Theis, Dirk Oliver
Thomas, Rekha Tramontani, Andrea
Tunçel, Levent Van Der Vlerk, Maarten
Van Vyve, Mathieu Ventura, Paolo
Verschae, José Vetta, Adrian
Vielma, Juan Pablo Von Heymann, Frederik
Vondrak, Jan Vredeveld, Tjark
Végh, László Wiegele, Angelika
Wolkowicz, Henry Wollan, Paul
Wolsey, Laurence Xiao, Lin
Yaman, Hande Zambelli, Giacomo
Zenklusen, Rico Zhang, Guochuan
Zhang, Lisa Ziegler, Günter M.

Table of Contents

An Excluded Minor Characterization of Seymour Graphs 1
Alexander Ageev, Yohann Benchetrit, András Sebő, and
Zoltán Szigeti

Complexity Analyses of Bienstock–Zuckerberg and Lasserre Relaxations
on the Matching and Stable Set Polytopes . 14

Yu Hin Au and Levent Tunçel

A Probabilistic Analysis of the Strength of the Split and Triangle
Closures . 27

Amitabh Basu, Gérard Cornuéjols, and Marco Molinaro

Partial Convexification of General MIPs by Dantzig-Wolfe
Reformulation . 39

Martin Bergner, Alberto Caprara, Fabio Furini, Marco E. Lübbecke,
Enrico Malaguti, and Emiliano Traversi

Lift-and-Project Cuts for Mixed Integer Convex Programs 52
Pierre Bonami

TSP on Cubic and Subcubic Graphs . 65
Sylvia Boyd, René Sitters, Suzanne van der Ster, and Leen Stougie

Approximability of Capacitated Network Design . 78
Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and
Nitish Korula

Facility Location with Client Latencies: Linear Programming Based
Techniques for Minimum Latency Problems . 92

Deeparnab Chakrabarty and Chaitanya Swamy

An Exact Rational Mixed-Integer Programming Solver 104
William Cook, Thorsten Koch, Daniel E. Steffy, and Kati Wolter

Valid Inequalities for the Pooling Problem with Binary Variables 117
Claudia D’Ambrosio, Jeff Linderoth, and James Luedtke

On the Chvátal-Gomory Closure of a Compact Convex Set 130
Daniel Dadush, Santanu S. Dey, and Juan Pablo Vielma

Design and Verify: A New Scheme for Generating Cutting-Planes 143
Santanu S. Dey and Sebastian Pokutta

XII Table of Contents

Contact Center Scheduling with Strict Resource Requirements 156
Aman Dhesi, Pranav Gupta, Amit Kumar, Gyana R. Parija, and
Sambuddha Roy

Set Covering with Ordered Replacement: Additive and Multiplicative
Gaps . 170

Friedrich Eisenbrand, Naonori Kakimura, Thomas Rothvoß, and
Laura Sanità

Backdoor Branching . 183
Matteo Fischetti and Michele Monaci

A Subexponential Lower Bound for Zadeh’s Pivoting Rule for Solving
Linear Programs and Games . 192

Oliver Friedmann

An Iterative Scheme for Valid Polynomial Inequality Generation in
Binary Polynomial Programming . 207

Bissan Ghaddar, Juan C. Vera, and Miguel F. Anjos

A New Approach to the Stable Set Problem Based on Ellipsoids 223
Monia Giandomenico, Adam N. Letchford, Fabrizio Rossi, and
Stefano Smriglio

Capacitated Vehicle Routing with Non-uniform Speeds 235
Inge Li Gørtz, Marco Molinaro, Viswanath Nagarajan, and R. Ravi

Approximation Algorithms for Single and Multi-Commodity Connected
Facility Location . 248

Fabrizio Grandoni and Thomas Rothvoß

Safe Lower Bounds For Graph Coloring . 261
Stephan Held, William Cook, and Edward C. Sewell

Computing the Maximum Degree of Minors in Mixed Polynomial
Matrices via Combinatorial Relaxation . 274

Satoru Iwata and Mizuyo Takamatsu

Constructing Extended Formulations from Reflection Relations 287
Volker Kaibel and Kanstantsin Pashkovich

Integrality Gaps of Linear and Semi-Definite Programming Relaxations
for Knapsack . 301

Anna R. Karlin, Claire Mathieu, and C. Thach Nguyen

Degree Bounded Forest Covering . 315
Tamás Király and Lap Chi Lau

A Primal-Dual Algorithm for Weighted Abstract Cut Packing 324
S. Thomas McCormick and Britta Peis

Table of Contents XIII

Convexification Techniques for Linear Complementarity Constraints 336
Trang T. Nguyen, Mohit Tawarmalani, and Jean-Philippe P. Richard

Iterative Packing for Demand and Hypergraph Matching 349
Ojas Parekh

Universal Packet Routing with Arbitrary Bandwidths and Transit
Times . 362

Britta Peis and Andreas Wiese

A Layered Graph Model and an Adaptive Layers Framework to Solve
Delay-Constrained Minimum Tree Problems . 376

Mario Ruthmair and Günther R. Raidl

Jump Number of Two-Directional Orthogonal Ray Graphs 389
José A. Soto and Claudio Telha

Optimal Matching Forests and Valuated Delta-Matroids 404
Kenjiro Takazawa

Fixed-Charge Transportation on a Path: Linear Programming
Formulations . 417

Mathieu Van Vyve

Author Index . 431

An Excluded Minor Characterization of

Seymour Graphs

Alexander Ageev1, Yohann Benchetrit2, András Sebő2, and Zoltán Szigeti2

1 Sobolev Institute of Mathematics, Novosibirsk, Russia
2 Laboratoire G-SCOP, Grenoble, France

Abstract. A graph G is said to be aSeymour graph if for any edge
set F there exist |F | pairwise disjoint cuts each containing exactly one
element of F , provided for every circuit C of G the necessary condition
|C∩F | ≤ |C \F | is satisfied. Seymour graphs behave well with respect to
some integer programs including multiflow problems, or more generally
odd cut packings, and are closely related to matching theory.

A first coNP characterization of Seymour graphs has been shown
by Ageev, Kostochka and Szigeti [1], the recognition problem has been
solved in a particular case by Gerards [2], and the related cut packing
problem has been solved in the corresponding special cases. In this article
we show a new, minor-producing operation that keeps this property, and
prove excluded minor characterizations of Seymour graphs: the operation
is the contraction of full stars, or of odd circuits. This sharpens the pre-
vious results, providing at the same time a simpler and self-contained
algorithmic proof of the existing characterizations as well, still using
methods of matching theory and its generalizations.

1 Introduction

Graphs. In this paper graphs are undirected and may have loops and multiple
edges. Let G = (V, E) be a graph. Shrinking X ⊆ V means the identification of
the vertices in X , keeping all the edges incident to X ; the result will be denoted
by G/X . The deletion and contraction of an edge e ∈ E are the usual operations
(the latter is the same as shrinking the endpoints of the edge), as well as the
deletion of a vertex which means the deletion of the vertex together with all
the edges incident to it. We will use the notation G − e, G/e for the deletion,
respectively contraction of edge e, and G − v for the deletion of vertex v. The
vertex-set, edge-set of the graph G will be denoted by V (G), E(G), whereas for
X ⊆ V (G), δ(X) will denote the cut induced by X that is the set of edges with
exactly one endpoint in X , E(X) the set of induced edges, that is those that
have both of their endpoints in X , I(X)= δ(X) ∪ E(X) and N(X) the set of
neighbors of X .

A graph H = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. If H =
G(X):= (X, E(X)) for some X ⊆ V , then H is called an induced subgraph of
G (induced by X). If F̂ is a subgraph of Ĝ = G/Y then the corresponding
subgraph of G will be denoted by F.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 1–13, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 A. Ageev et al.

Cut Packings. A family of subsets of a set S is a packing if the sets are disjoint,
and a 2-packing if every s ∈ S is contained in at most two members of the family.

Let F ⊆ E. A complete packing of cuts for (G, F) is a family of |F | pairwise
edge-disjoint cuts, each containing an element of F . An obvious necessary condi-
tion for the existence of a complete packing of cuts for (G, F) is that F is a join,
that is, for every circuit C of G, |C ∩ F | ≤ |C \ F |. Indeed, if Q is a complete
packing of cuts for (G, F) then for every e ∈ C ∩ F one of the cuts Qe ∈ Q
contains e, and one more edge of the circuit C which is not in F . Similarly, a
complete 2-packing of cuts for (G, F) is a 2-packing of 2|F | cuts each containing
an element of F , and the existence of a complete 2-packing of cuts for (G, F)
implies that F is a join in G. These obvious facts will be used without reference
all over the paper. If Q is a packing of cuts then we will denote by 2Q the
2-packing of cuts obtained from Q by duplication.

The two graphs, the K4 and the prism, that can be found in Figure 1 play an
important role in our results.

K4 prism

Fig. 1. The complete graph K4 on four vertices and the prism

The graph K4 (or the prism) with a join consisting of a perfect matching
shows that a complete packing of cuts does not necessarily exist. However, by a
theorem of Lovász [3] for every join F there exists a complete 2-packing of cuts
for (G, F). This result (more precisely a slight sharpening) plays a key-role in
the proof of all the characterizations of Seymour graphs.

Seymour graphs. The graph G is said to be a Seymour graph if for every
join F ⊆ E there exists a complete packing of cuts. Let us immediately show a
condition that is sufficient for this property to fail:

Let us call a circuit C of G tight with respect to (G, F), if |C ∩ F | = |C \ F |,
that is, if the inequality |C ∩F | ≤ |C \F | is satisfied with equality. In the above
proof of ”conservativeness” (from the existence of a complete packing of cuts)
we have equality for tight circuits, that is in any complete packing Q of cuts the
family {Q ∩ C �= ∅ : Q ∈ Q} is a partition of C into pairs of edges {e, f} where
e ∈ F and f /∈ F . The following fact straightforwardly follows:

Fact 1. Let G be a graph. If there exists a join F in G and a set of tight circuits
with respect to (G, F) whose union is non-bipartite, then G is not Seymour.

Indeed, if C is an arbitrary circuit in the union of tight circuits, and Q is a
complete packing of cuts for (G, F), then all the edges of C are contained in

An Excluded Minor Characterization of Seymour Graphs 3

some member of Q, by the previous remark. Therefore the nonempty members
of {Q ∩ C : Q ∈ Q} partition C. Since all the classes of this partition are even,
|C| is even, proving that G is bipartite.

The examples of Figure 1 show non-bipartite graphs where every edge belongs
to a tight circuit for an arbitrary perfect matching, and hence these graphs are
not Seymour graphs.

T-joins. Matchings and shortest paths between any two vertices of a graph are
simple examples of joins (as well as arbitrary T -joins, see below.) Moreover it can
be readily seen that complete packings of cuts in the dual graph (or matroid)
correspond to circuits, each containing exactly one element of F , that is, to
paths, each joining the endpoints of one element of F . They also occur in the
dual of matching problems or of the Chinese Postman problem.

The latter has a general setting containing also matchings, planar multiflows
and where the main ideas of matching theory still work: T -joins. Let G = (V, E)
be a connected graph and T ⊆ V , where |T | is even. A subset F ⊆ E is called
a T -join if the set of vertices having an odd number of incident edges from F
is T . For any subset X ⊆ V , the cut δ(X) is called a T -cut if |X ∩ T | is odd.
Since in every graph the number of vertices of odd degree is even, each T -join
must have at least one edge in common with each T -cut. Hence, if we denote
by ν(G, T) the maximum number of edge disjoint T -cuts and by τ(G, T), the
minimum cardinality of a T -join in G, then ν(G, T) ≤ τ(G, T). The example
G = K4 and T = V (G) shows that this inequality can be strict.

The usual definition of a Seymour graph is that the equality ν(G, T) = τ(G, T)
holds for all subsets T ⊆ V (G) of even cardinality. Indeed, this is equivalent to
the above definition since every minimum T -join F , |F | = τ(G, T) is a join
(Guan’s lemma [6]) and a complete packing of cuts for (G, F) is a family of
|F | = τ(G, T) disjoint T-cuts. Conversely, every join F is a minimum T -join
where T is the set of vertices incident to an odd number of edges of F , and
|F | = τ(G, T) = ν(G, T) implies that a family of ν(G, T) disjoint T -cuts is a
complete packing of cuts for (G, F). This reformulation is well-known and has
been exploited already in Seymour’s article [9].

Several particular cases of Seymour graphs have been exhibited by Seymour
[8] [9], Gerards [2], Szigeti [10] while the existence of complete packing of cuts
in graphs has been proved to be NP-hard [5].

Odd K4 and odd prism. We will work with different types of subdivisions of
the K4 and the prism. Let us emphasize that in any subdivision of the K4 or
the prism every vertex is of degree 2 or 3.

A graph G is called an odd K4 if it is a subdivision of the K4 such that each
circuit bounding a face of G has an odd length. A graph G is an odd prism if it
is a subdivision of the prism such that each circuit bounding a triangular face
of G has an odd length while each circuit bounding a quadrangular face has an
even length. (See Figure 2(a).)

A subdivision of a graph G is said to be even if the number of new vertices
inserted in every edge of G is even (possibly zero). (See Figure 2(b).) Analogously,

4 A. Ageev et al.

odd K4 odd prism

o

o

e

(a)

o

oo
e

even subdivisions

(b)

Seymournon-Seymour
odd K4 graph

(c)

Fig. 2. (a) An odd K4 and an odd prism, (b) even subdivisions of the K4 and the
prism, (c) a Seymour graph containing a non-Seymour odd K4

a subdivision of a graph G is said to be odd if the number of new vertices inserted
in every edge of G is odd. An even subdivision of the K4 (respectively of the
prism) is clearly an odd K4 (respectively an odd prism).

Subclasses of Seymour graphs. It is well known that Seymour graphs in-
clude bipartite graphs (Seymour [8]) and series-parallel graphs (Seymour [9]).
For better comparison let us mention this latter class as the family of graphs
not containing any subdivision of the K4. Gerards [2] generalized the previous
results by proving that graphs not containing odd K4 or odd prism subgraphs
are Seymour. Figure 2(c) shows a subdivision of the K4 which is not a Seymour
graph but adding a new vertex joined to two old ones, or replacing the bottom
path of length three by just one edge we obtain a Seymour graph. This shows
that the property is not inherited to minors.

A further restriction of the excluded minors (and thus a generalization of the
sufficient condition) is to exclude only the non-Seymour subdivisions of the K4

and the prism. The list of these was provided by [10] and served as an impor-
tant preliminary of [1]. Szigeti’s theorem [10] stated that a graph that does not
contain a non-Seymour subdivision of the K4 or of the prism as subgraph, is a
Seymour graph. This theorem generalizes all the previous results, but the suffi-
cient condition it provides is still not necessary: the second graph on Figure 2(c)
contains a non-Seymour subdivision of the K4 (even as an induced subgraph)
but is Seymour.

Continuing on this road, excluding only even subdivisions of the K4 and the
prism is already a necessary condition, that is, all Seymour graphs are contained
in the defined class of graphs. Indeed, any perfect matching of an even subdivision
of the K4 is a join in the graph and there exists no complete packing of cuts.
Similarly for the prism.

The main contribution of the present work is an excluded minor characteri-
zation of Seymour graphs. In Section 2 we state the main results including also
the preliminaries. In Section 3 we provide a self-contained proof of the results.

2 Results

Previous characterization of Seymour graphs. The following result (con-
jectured by Sebő in 1992, proved by Ageev, Kostochka & Szigeti [1]), places the
Seymour property in co-NP and implies all the above inclusions.

An Excluded Minor Characterization of Seymour Graphs 5

Theorem 1. The following statements are equivalent for a graph G:

(1) G is not a Seymour graph,
(2) G has a join F and a set of tight circuits whose union is non-bipartite,
(3) G has a join F and two tight circuits whose union forms an odd K4 or an

odd prism.

This theorem has the drawback that it depends on the join F , it is not suit-
able for testing the property, and heavy for algorithmic handling. A reason can
be captured in the complexity of the coNP characterization: it uses a subgraph
and a set F while we provide here characterizations by property keeping minor-
producing operations. The main result of this paper avoids these formal draw-
backs, leads to a simpler proof and is trying to pave the way to the recognition.
We will exhibit several characterizations, some of which play mainly the role of
a bridge in the proof, but may also be useful for studying the complexity of the
problem in the future. For this we have to introduce some notions:

Factor-contraction. A graph G is called factor-critical if the graph G − v
has a perfect matching for any vertex v of G. Note that a vertex and an odd
circuit is factor-critical. The following result due to Lovász [4], that provides a
characterization of factor-critical graphs, will play an important role in the main
result of this paper.

Fact 2. A graph G is factor-critical if and only if a single vertex can be obtained
from G by a series of odd circuit contractions.

A factor-contraction is the contraction of I(X) (all edges incident to a vertex
set X), where G(X) is factor-critical. There is a rich appearence of such sets X
in the T -join structure [7], which is “robust” whith respect to the contraction of
I(X). We will denote the result of this operation by GX . If X = {v}, v ∈ V , then
we will write Gv, and we call this operation a star-contraction, the contraction
of the full star of v. (A star is a graph consisting of edges all incident to a given
vertex. A star is called full, if it contains all edges of G incident to v.)

We will apply the following lemma that makes possible factor-contractions
unless the graph is bicritical. The first part of this statement is part of a result
in [7]. The second part is much simpler and is implicit in [9].

Lemma 1. Let G = (V, E) be a graph, F ⊆ E a join, and x0 ∈ V arbitrary.

(1) For F �= ∅, there exists a complete 2-packing {δ(X) : X ∈ C} of cuts for
(G, F) and C ∈ C so that
(a) G(C) is factor-critical,
(b) {c} ∈ C for all c ∈ C (if |C| = 1, then C is contained twice in C) and
(c) none of the members of C contain x0.

(2) If there exists a complete packing of cuts for (G, F) then there is one con-
taining a full star different of δ(x0).

6 A. Ageev et al.

Stoc-minor. A factor-contraction can be decomposed into two operations both
of which are nontrivial if |X | > 1 : the contraction of (the edges induced by)
X , and the contraction of the edges in δ(X). After the contraction of X we just
have to contract a star, which thus keeps the Seymour property.

But does the contraction of a factor-critical graph also keep the property?
If yes, then in particular, the contraction of an odd circuit also keeps it! By
Fact 2, the contraction of the edges of a factor-critical graph is equivalent to
a succession of contractions of odd circuits, in case of a yes answer, two very
simple and basic operations would be sufficient to handle Seymour graphs: star-
and odd-circuit-contraction. This was a raised and forgotten open question in
[10].

The main novelty of the present work is that indeed, these two operations
keep the Seymour property. This refined approach simplifies the results and
their proofs of the known characterizations as well. However, we were not able
to prove it directly without involving essentially the entire proof.

We will say that a graph G′ is the stoc-minor of G if it arises from G by a
series of star and odd circuit contractions. Stoc-minors would generate though
an immediate simplification: prisms disappear! Indeed, the K4 is a stoc-minor
of the prism.

Biprism. The biprism is obtained from the prism by subdividing each edge that
connects the triangles by a vertex. The set X of the three new vertices is called
the separator of the biprism H . Note that H−X has two connected components,
and both are triangles. These will be called the two sides of the biprism. For
a subdivided biprism the two sides include the new vertices of the subdivisions
connected to the triangles on each side. We mention that for a subdivided biprism
the underlying biprism and the two sides are not necessarily uniquely determined,
so whenever necessary, we will tell more about the subdivision we are speaking
about.

For t ∈ {2, 3}, a t-star is a star containing t edges. We will also deal with the
families of the subgraphs L of G that are even or odd subdivisions of a t-star.
The set of the t vertices of degree one in L is called the base of L. For a subgraph
H of G, a vertex-set U ⊂ V (H) is called a t-core of H if |δH(U)| = t and IH(U)
is an even subdivision of a t-star. A core is either a 2-core or a 3-core.

Obstructions. We will say that G contains a K-obstruction, where K is the K4,
the prism or the biprism if there exists a subgraph H of G with a subpartition
U of V (H) satisfying the following properties:

– H is a subdivision of K.
– For every U ∈ U the graph IH(U) is an even subdivision of a star.
– Any path of G joining two vertices u1 ∈ U1 ∈ U and u2 ∈ V (H) − U1 has

length at least 2 if u2 is of degree 3 in H and it has length at least 3 if
u2 ∈ U2 ∈ U .

An Excluded Minor Characterization of Seymour Graphs 7

– Shrinking each I(U) in G (they are disjoint because of the previous condition)
we get an even subdivision of K, and for the biprism we also require that
there is no edge of G between vertices on different sides. (Meaning that
among the possible choices of the separator, there is one satisfying this.)

We will say that (H,U) is an obstruction of G. Note that if K is the K4 or the
prism and a subgraph H of G with subpartition U empty is a K-obstruction, then
H is simply an even subdivision of K. We mention that the graph of Figure 2(c)
does not contain a K4-obstruction because the distances of the vertices of degree
three are at most two in G.

Let us explain the definition of obstructions with other words, using only
contractions and not using distances (see Figure 3):

U1

U2

contraction
in G

�

(a)

U1

U2

contraction

in G

(b)

U3

U4

�

Fig. 3. (a) A K4-obstruction and (b) a biprism-obstruction

An odd K4 subgraph H of G with a set U of disjoint 3-cores Ui of H is a
K4-obstruction if after contracting in G the set of edges of G having at least one
end-vertex in one of Ui’s (that is IG(Ui) for Ui ∈ U), H tranforms into an even
subdivision of the K4.

An odd prism subgraph H of G with a set U of disjoint 2 or 3-cores Ui of H
is a prism-obstruction (respectively a biprism-obstruction) if after contracting
in G the set of edges of G having at least one end-vertex in one of Ui’s (that
is IG(Ui) for Ui ∈ U), H tranforms into H ′, an even subdivision of the prism
(respectively of the biprism; and in this latter case with the further property that
for a convenient separator X of the underlying biprism no edge of G connects the
two connected components of H ′ −X). We mention that 2-cores are necessary
because of the separator of the biprism.

Let us continue with three results on obstructions. The proofs are omitted
due to space limitation.

Proposition 1. Let G = (V, E) be a graph, A ⊂ V and Ĝ = G/I(A). Suppose
that Ĝ contains a K-obstruction (Ĥ, Û). Let H be the subgraph of G defined by
the edge set of Ĥ and T = V (H) ∩N(A).

(a) If |T | = 2 and G(A ∪ T) contains an even path between the vertices of T ,
or

(b) if |T | = 3 and G(A ∪ T) contains an even or odd subdivision of a 3-star
with base T ,
then G also contains a K-obstruction.

8 A. Ageev et al.

Proposition 2. If G contains an obstruction (H, ∅), then G has a join F and
two tight circuits whose union is H and dF (v) = 1 if dH(v) = 3.

Lemma 2. Let us suppose that the subgraph H and the subpartition U form an
obstruction of G so that |V (H)|+∑

U∈U |U | is minimum. Let U ∈ U be a 3-core.
Then there exists no edge of G between a vertex in NH(U) and a vertex of U
that are not neighbors in H.

The next definition we need serves purely technical purposes. It is in itself not
very interesting, but it is useful in the proof, and makes a bridge between the
new generation of the results and the previous ones.

Visibly non-Seymour. We will say that the graph G is visibly non-Seymour
(shortly VNS) if it has a subgraph H containing an edge set F , so that

(a) H is the union of two tight circuits with respect to (G, F),
(b) H is non-bipartite,
(c) the maximum degree is 3 in H ,
(d) there exists a complete 2-packing of cuts for (G, F), which contains all the

stars in G of the vertices of degree 3 in H (with multiplicity at least 1).

Matching-covered graphs. We will need some definitions and results from
matching theory. A connected graph is called matching-covered if each edge be-
longs to a perfect matching. A connected graph G is called bicritical if the graph
G − {u, v} has a perfect matching for any two different vertices u and v of G;
in other worlds: G− u is factor-critical for any vertex u of G. A bicritical graph
is non-trivial if |V (G)| > 2. Note that a bicritical graph is matching-covered.
Adding an edge between the vertices of a bicritical graph it remains bicritical,
and therefore a graph has a bicritical subgraph if and only if it has a bicritical
induced subgraph. The graph K3

2 is defined to be a set of three parallel edges.
The following two similar results on matching-covered graphs will be crucial

for us. Fact 3 is due to Lovász and Plummer [4]. We mention that none of them
implies the other one.

Fact 3. Every non-bipartite matching-covered graph contains an even subdivi-
sion of the K4 or the prism.

Lemma 3. Every 3-star of a matching-covered graph belongs to an even subdi-
vision of the K4 or the K3

2 .

A similar observation on odd prisms will also be applied.

Fact 4. Every 3-star of an odd prism belongs to an even or odd subdivision of
the K3

2 .

New characterization of Seymour graphs. We squeeze the main results of
this paper into one theorem:

An Excluded Minor Characterization of Seymour Graphs 9

Theorem 2. The following statements are equivalent for the graph G:

(i) G is not a Seymour graph,
(ii) G can be factor-contracted to a graph that contains a non-trivial bicritical

subgraph,
(iii) G can be factor-contracted to a graph that contains an even subdivision of

the K4 or of the prism as a subgraph,
(iv) G contains an obstruction,
(v) G is a visibly non-Seymour graph,
(vi) G has a stoc-minor containing an even subdivision of the K4 as a subgraph.

Note that the prism disappeared! A tempting additional equivalent statement
would be that G can be star-contracted to a graph that contains a bicritical
graph on at least four vertices as a subgraph. This is not true as the biprism
shows: it is not Seymour but contracting any of the stars it becomes Seymour.
Yet it does not contain a bicritical subgraph.

3 Proof of Theorem 2

(i) implies (ii): Let G = (V, E) be a minimal counter-example that is

(a) G is not a Seymour graph,
(b) every factor-contraction of G is a Seymour graph and
(c) G contains no non-trivial bicritical subgraph.

By (a), there exists a non-empty join F so that no complete packing of cuts
exists for (G, F). The following lemma contradicts (c).

Lemma 4. G′ := G(V (F)) is a non-trivial bicritical graph.

Proof. First we show that

no star is contained twice in a complete 2-packing Q of cuts for (G, F). (∗)

To see this suppose to the contrary that 2δ(v) ⊆ Q. Let us contract the full star
of v. Then F v := F \ δ(v) is a join in Gv of size |F | − 1 because Q− 2δ(v) is a
complete 2-packing of cuts for (Gv, F v). Since the graph Gv is obtained from G
by a factor-contration, we have by (b) that Gv is a Seymour graph and hence
there exists a complete packing Q′ of cuts for (Gv, F v) and then Q′ ∪ δ(v) is a
complete packing of cuts for (G, F), which is a contradiction.

Let x0 be an arbitrary vertex of F . Let Q and C ∈ Q be the sets provided by
(1) of Lemma 1. We recall that G(C) is factor-critical and C ⊆ V (F) − x0. In
fact,

C = V (F)− x0. (∗∗)
To see this suppose to the contrary that C ⊂ V (F)− x0. Then, since δ(C) con-
tains only one edge of F , the set FC := F \ I(C) is non-empty. This edge set

10 A. Ageev et al.

FC is a join in GC , since Q \ ({δ(C)} ∪ {δ(c) : c ∈ C}) is a complete 2-packing
of cuts for (GC , FC). By (b), GC is a Seymour graph and hence there exists
a complete packing QC of cuts for (GC , FC). By (2) of Lemma 1, δ(v) ∈ QC

for some v ∈ V (G) \ (C ∪N(C)). Then (2QC) ∪ ({δ(C)} ∪ {δ(c) : c ∈ C}) is a
complete 2-packing of cuts for (G, F), which is a contradiction by (∗).

It follows, by (∗), that |C| �= 1 and by (∗∗), that G′ − x0 = G(C) is factor-
critical for every x0 ∈ V (G′), that is G′ is a non-trivial bicritical graph. ��
(ii) implies (iii): By Fact 3, a non-trivial bicritical graph contains an even
subdivision of the K4 or the prism.

(iii) implies (iv): Let G satisfy (iii), that is, G can be factor-contracted to a
graph Ĝ that contains an even subdivision H of the K4 or the prism. Then (H, ∅)
is an obstruction of Ĝ. To show that G satisfies (iv), that is G itself contains an
obstruction, we prove the following lemma and then we are done by induction:

Lemma 5. If GC (C ⊆ V, G(C) is factor-critical) contains an obstruction, then
so does G.

Proof. Let Ĝ1 := GC , (Ĥ1, Û) an obstruction of Ĝ1, H1 the subgraph of G
defined by the edge set of Ĥ1 and T := {v1, . . . , vl} = V (H1) ∩N(C). Since the
vertices of Ĥ1 are of degree 2 or 3, we have that l ≤ 3.

Case 1. If l ≤ 1, then (H1,U) is an obstruction of G, and we are done.
Thus we may suppose without loss of generality that l ≥ 2. Let Ĝ2 be the

graph obtained from G by contracting V −C. Since vi ∈ N(C), we can choose a
neighbor ui of vi in C for all i = 1, . . . , l. Since G(C) is factor-critical, G(C)−ui

contains a perfect matching and hence Ĝ2 has a perfect matching Mi containing
viui. Then the subgraph Ŝ of Ĝ2 induced by the edge set

⋃l
1 Mi is matching-

covered.
Case 2. If l = 2, then S is an even path in G(C ∪ T) and by Proposition 1(a),
G contains an obstruction, and we are done.

Thus from now on we suppose that l = 3. By Lemma 3, there exists in Ŝ an
even subdivision Ĥ2 either of the K4 or of the K3

2 containing the three edges
u1v1, u2v2 and u3v3.

Case 3. If Ĥ2 is an even subdivision of the K3
2 , then H2 is an even subdivision

of a 3-star with base T in G(C ∪ T) and by Proposition 1(b), we are done.
So we suppose that Ĥ2 is an even subdivision of K4, that is (Ĥ2, ∅) is a

K4-obstruction in Ŝ.

Case 4. If Ĥ1 is an odd prism of Ĝ1, then by Fact 4, there exists an even or
odd subdivision L̂ of the K3

2 in Ĝ1, so L is an even or odd subdivision of the
3-star in H1 with base T in G((V − C −N(C)) ∪ T) and we are done again by
Proposition 1(b).
Case 5. Finally, if Ĥ1 is an odd K4 in Ĝ1 and Ĥ2 is an even subdivision of the
K4 in Ĝ2, then H1 ∪ H2 is an odd prism of G. If the contracted vertex of Ĝ1

An Excluded Minor Characterization of Seymour Graphs 11

belongs to one of the cores Ûi say to Ûj , then let Ui := Ûi for i �= j and Uj is
deleted, otherwise let Ui := Ûi for 1 ≤ i ≤ k. Then (H1∪H2,U) is an obstruction
of G because after contracting the sets Ui ∈ U we get an even subdivision of the
prism or the biprism. ��
(iv) implies (v): Let (H,U) be an obstruction of G, G′ := G/ ∪k

1 IG(Ui) and
H ′ := H/∪k

1 IG(Ui). By Proposition 2, there exist a join F ′ of G′ and two tight
circuits C′

1 and C′
2 whose union is H ′ and for each 3-core Ui exactly one edge ei

of F ′ is incident to the vertex ui that corresponds to Ui in G′. For each 3-core
Ui there is a unique edge viwi ∈ δH(Ui) such that vi ∈ Ui, wi ∈ V − Ui and ei

is incident to wi. For each 2-core Ui, let wivi be one of the two edges of the cut
δH(Ui) with vi ∈ Ui. For each core Ui, let Fi be the unique perfect matching of
H(Ui)− vi. Let F := F ′ ∪k

1 (Fi + viwi).
By Lemma 1, there exists a complete 2-packing Q′

0 of cuts for (G′, F ′). Let
Q0 be the corresponding complete 2-packing of cuts for (G, F ′). Let Qi := {v :
v ∈ Ui} ∪ {Ui} and Q := ∪k

0Qi. Then Q is a complete 2-packing of cuts for
(G, F) hence F is a join of G.

Moreover, C′
1 and C′

2 correspond to two tight circuits of G whose union is H .
Thus G is VNS.

(v) implies (i): Let H be a subgraph of G, F an edge set in H andQ a complete
2-packing of cuts for (G, F) that show that G is VNS. By (d), F is a join of G,
by (a), H is the union of two tight circuits with respect to (G, F), and by (b),
H is non-bipartite, so by Fact 1, G is not a Seymour graph.

(iii) implies (vi): By Fact 2, a factor-contraction can be replaced by a series
of contractions of odd circuits and then the contraction of a star. Moreover, we
can contract an odd circuit in an even subdivion of the prism to get an even
subdivision of the K4. Hence, if G can be factor-contracted to a graph that
contains an even subdivision of the K4 or of the prism as a subgraph, then G
has a stoc-minor containing an even subdivision of the K4 as a subgraph.

(vi) implies (i): Let Ĝ be a stoc-minor of G that contains an even subdivision
H of the K4. Then any perfect matching of H is a join of Ĝ, and H is the union
of two tight circuits with respect to (Ĝ, F), so by Fact 2, Ĝ is not a Seymour
graph, that is Ĝ satisfies (i). To show that G satisfies (i) we prove the following
lemma and then we are done by induction:

Lemma 6. Let C be a full star or an odd circuit. If G/C satisfies (i), then so
does G.

Proof. If C is a full star, then since G/C satisfies (i), it satisfies (iii). A full star
contraction is a factor-contraction, so G also satisfies (iii) and hence (i).

From now on C is an odd circuit. Since G/C satisfies (i), it satisfies (iv), that
is G/C contains a K-obstruction (Ĥ,U) where K is the K4, the prism or the
biprism. Take a minimal one as in Lemma 2.

12 A. Ageev et al.

Case 1: If |V (C) ∩ V (H)| ≤ 2 and c is not in a separator of the biprism. If
c ∈ V \ ∪NH(Ui), then the obstruction Ĥ can be extended by the even part of
C, that is G also satisfies (iv) and hence (i). Otherwise, c ∈ NH(Ui) for some i,
that is H contains an edge cy so that y ∈ Ui.

If there exists no edge of G between Ui and the even path C2 of the cycle C
between c1 and c2 then the obstruction Ĥ can be extended by C2, that is G also
satisfies (iv) and hence (i). Otherwise, take that edge xc3 of G with x ∈ Ui for
which c3 is on C2 and the distance d of c2 and c3 on C2 is as small as possible.
By Lemma 2, x = y. If d is even then for the edge yc3 we are in the above case.
If d is odd, then changing H as shown on Figure 4, where Q is an odd path in
H , and deleting U from U , we get a K4-obstruction.

c1

v

U

cz

v

U

z z

v

c1

Q
c2 c2

y y y
c3 c3

Fig. 4. A new K4-obstruction

Case 2: If |V (C) ∩ V (H)| = 2 and c is in a separator of the biprism. Let a and
b be the two vertices of C that are incident to the two edges of H incident to c.
Then a and b partition C into an odd path C1 and an even path C2. If a = b,
then (Ĥ,U) remains a biprism-obstruction in G, so G satisfies (iv) and hence
G also satisfies (i). If a �= b, then let H ′ be obtained from Ĥ by adding C1 and
deleting the path between v5 and v6 defined in Figure 5. Let U ′ be obtained
from U by deleting those cores that correspond to inner vertices of the deleted
path. Then (H ′,U ′) is a K4-obstruction in G, so G satisfies (iv) and hence G
also satisfies (i). (See Figure 5)

Case 3: If |V (C)∩V (H)| = 3. Then since G/C satisfies (iv), it satisfies (v) with
the same Ĥ . By (d) of VNS for c, there exists exactly one edge e in F incident
to c and both tight circuits contains e. Let u be the end vertex of e in C, M a
perfect matching of C − u, F ∗ = F ∪M and H∗ = H ∪ C. The vertices of H
partition C into 3 paths. If exatly one of them is of odd length, then delete from
H∗, F ∗ and C that odd path. Let Q∗ := Q \ δ(c) ∪ {δ(x) : x ∈ C′}. Then H∗

satisfies (a), (b), (c) and (d) of VNS, so G satisfies (v) and hence (i). ��
In order to convert this proof into an algorithm for either finding the complete
packing or certifying that the graph is not Seymour no more ideas are needed.
However, the size constraints of this volume oblige us to postpone this for the
full journal version of this paper. The problem of recognizing Seymour graphs is
still open.

An Excluded Minor Characterization of Seymour Graphs 13

Cc

v4 v5

v6

v3

v2v1 v1

v3

v6

v4

v2

v5

a

b

a

b

C1

Fig. 5. Finding a K4-obstruction

References

1. Ageev, A.A., Kostochka, A.V., Szigeti, Z.: A characterization of Seymour graphs.
J. Graph Theory 24, 357–364 (1997)

2. Gerards, A.M.H.: On shortest T-joins and packing T-cuts. J. Combin. Theory Ser.
B 5, 73–82 (1992)

3. Lovász, L.: 2-matchings and 2-covers of hypergraphs. Acta. Math. Sci. Hungar. 26,
433–444 (1975)

4. Lovász, L., Plummer, M.D.: Matching Theory, Akadémiai Kiadó, Budapest (1986)
5. Middendorf, M., Pfeiffer, F.: On the complexity of the edge-disjoint paths problem.

Combinatorica 13(1), 97–108 (1993)
6. Guan, M.G.: Graphic programming using odd and even points. Chinese Mathe-

matics 1, 273–277 (1962)
7. Sebö, A.: o, Undirected distances and the postman structure of graphs. J. Combin.

Theory Ser. B 49, 10–39 (1990)
8. Seymour, P.D.: The matroids with the max-flow min-cut property. J. Combin.

Theory Ser. B 23, 189–222 (1977)
9. Seymour, P.D.: On odd cuts and plane multicommodity flows. Proc. London Math.

Soc. Ser. 42(3), 178–192 (1981)
10. Szigeti, Z.: On Seymour graphs, Technical Report No. 93803, Institute for Opera-

tions Research, Universität Bonn (1993)

Complexity Analyses of Bienstock–Zuckerberg

and Lasserre Relaxations on the Matching and
Stable Set Polytopes�

Yu Hin Au and Levent Tunçel

Department of Combinatorics and Optimization, Faculty of Mathematics,
University of Waterloo, Waterloo, Ontario,

N2L 3G1 Canada

Abstract. Many hierarchies of lift-and-project relaxations for 0,1 inte-
ger programs have been proposed, two of the most recent and strongest
being those by Lasserre in 2001, and Bienstock and Zuckerberg in 2004.
We prove that, on the LP relaxation of the matching polytope of the
complete graph on (2n+1) vertices defined by the nonnegativity and de-
gree constraints, the Bienstock–Zuckerberg operator (even with positive
semidefiniteness constraints) requires Θ(

√
n) rounds to reach the inte-

gral polytope, while the Lasserre operator requires Θ(n) rounds. We also
prove that Bienstock–Zuckerberg operator, without the positive semidef-
initeness constraint requires approximately n/2 rounds to reach the sta-
ble set polytope of the n-clique, if we start with the fractional stable
set polytope. As a by-product of our work, we consider a significantly
strengthened version of Sherali–Adams operator and a strengthened ver-
sion of Bienstock–Zuckerberg operator. Most of our results also apply to
these stronger operators.

Keywords: matching polytope, lift-and-project methods, integer pro-
gramming, semidefinite programming, convex relaxations.

1 Introduction

Given a polytope P ⊆ [0, 1]n, we are interested in PI := conv {P ∩ {0, 1}n}, the
integer hull of P . While it is impossible to efficiently find a description of PI for
a general P (unless P = NP), we may use properties that we know are satisfied
by points in PI to derive inequalities that are valid for PI but not P .

Lift-and-Project methods provide a systematic way to generate a sequence
of convex relaxations converging to the integer hull PI . These methods have
a special place in optimization as they lie at the intersection of combinatorial
optimization and convex analysis (this goes back to work by Balas and others
in the late 1960s and the early 1970s, see for instance Balas [Bal98] and the
references therein). Some of the most attractive features of these methods are:

� This research was supported in part by an OGSST Scholarship, a Sinclair Scholar-
ship, an NSERC Scholarship and NSERC Discovery Grants.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 14–26, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Complexity Analyses of Relaxations 15

– Convex relaxations of PI obtained after O(1) rounds of the procedure are
tractable provided P is tractable (here tractable means that the underlying
linear optimization problem is polynomial-time solvable).

– Many of these methods use lifted (higher dimensional) representations for
the relaxations. Such representations sometimes allow compact (polynomial
size in the input) convex representations of exponentially many facets.

– Most of these methods allow addition of positive semidefiniteness constraints
in the lifted-space. This feature can make the relaxations much stronger in
some cases, without sacrificing polynomial-time solvability. Moreover, these
semidefiniteness constraints can represent an uncountable family of defining
linear inequalities, such as those of the theta body of a graph.

– Systematic generation of tighter and tighter relaxations converging to PI in
at most n rounds makes the strongest of these methods good candidates for
utilization in generating polynomial time approximation algorithms for hard
problems, or for proving large integrality gaps (hence providing a negative
result about approximability in the underlying hierarchy).

In the last two decades, many lift-and-project operators have been proposed
(see [SA90], [LS91], [BCC93], [Las01] and [BZ04]), and have been applied to
various discrete optimization problems. For instance, many families of facets of
the stable set polytope of graphs are shown to be easily generated by these proce-
dures [LS91] [LT03]. Also studied are their performances on set covering [BZ04],
TSP relaxations [CD01] [Che05], max-cut [Lau02], and so on. For general prop-
erties of these operators and some comparisons among them, see [GT01], [HT08]
and [Lau03].

In this paper, we focus on the strongest of the existing operators. Analyz-
ing the behaviour of these strong operators on fundamental combinatorial opti-
mization problems such as matching and the stable set problem, improves our
understanding of these operators and their limitations. This in turn provides fu-
ture research directions for further improvements of these hierarchies and related
algorithms as well as the design and discovery of new ones.

Two of the strongest operators known to date are Las by Lasserre and BZ+ by
Bienstock and Zuckerberg. We are interested in these strongest operators because
they provide the strongest tractable relaxations obtained this way. On the other
hand, if we want to prove that some combinatorial optimization problem is
difficult to attack by lift-and-project methods, then we would hope to establish
them on the strongest existing hierarchy for the strongest negative results. For
example, some of the known non-approximability results on vertex cover are
based on Lovász and Schrijver’s LS+ operator ([GMPT06], [STT06]), which is
known not to be the strongest. By understanding the more powerful operators (or
better yet, inventing new ones), we could either obtain better approximations for
vertex cover (and other hard problems), or lay the groundwork for yet stronger
non-approximability results.

Our most striking findings are on the matching and stable set polytopes.
Stephen and the second author [ST99] proved that LS+ requires n rounds on
the matching polytope of the (2n + 1)-clique, establishing the first bad

16 Y.H. Au and L. Tunçel

instance for LS+ since it was proposed in 1991. Subsequently, some other lift-
and-project operators have been shown to also perform poorly in this instance.
For the Balas–Ceria–Cornuéjols operator [BCC93], Aguilera, Bianchi and Nasini
[ABN04] showed that n2 rounds are needed. More recently, Mathieu and Sin-
clair [MS09] proved that Sherali–Adams operator requires (2n− 1) rounds. The
related question for the Lasserre operator has been open since 2001, and for the
BZ+ operator since 2003. We answer these questions as Θ(n) rounds and Θ(

√
n)

rounds respectively. This establishes the first example on which BZ+ requires
more than O(1) rounds to reach the integer hull. For some bad instances for
Lasserre’s operator, see [Lau02] and [Che07]. An implication of our results is
that all of these procedures become exponential time algorithms on the match-
ing problem (assuming that they are implemented as stated). As a by-product
of our analysis, we develop some new tools and modify some existing ones in the
area. We also construct a very strong version of Sherali–Adams operator that we
call SA+ (there are other weaker versions of SA+ in the recent literature called
Sherali–Adams SDP, see [BGM10] and the references therein) and relate it to
the BZ+ operator. Also, as another by-product of our approach we strengthen
the BZ, BZ+ operators (our analyses also applies to these stronger versions). We
conclude the paper by proving that the BZ operator requires approximately n/2
rounds to compute the stable set polytope of the n-clique.

2 Preliminaries

For convenience, we denote {0, 1}n by F and the set {1, 2, . . . , n} by [n] herein.

Given x ∈ [0, 1]n, let x̂ denote the vector
(

1
x

)
in Rn+1, where the new coordinate

is indexed by 0. Let ei denote the ith unit vector, and for any square matrix M
let diag(M) denote the vector formed by the diagonal entries of M . Next, given
P ⊆ [0, 1]n, define the cone

K(P) :=
{(

λ
λx

)
∈ R⊕ Rn : λ ≥ 0, x ∈ P

}
.

Define A := 2F . For each x ∈ F , we define the vector xA ∈ RA such that

xA
α =

{
1 if x ∈ α
0 otherwise.

I.e., each coordinate of A can be interpreted as a subset of the vertices of the
n-dimensional hypercube, and xA

α = 1 if and only if the point x is contained in
the set α. It is not hard to see that for all x ∈ F and i ∈ [n], we have xA

F = 1,
and xA

{y∈F :yi=1} = xi. Another important property of xA is that, given disjoint
subsets α1, α2, . . . , αk ⊆ F , we know that

xA
α1

+ xA
α2

+ · · ·+ xA
αk
≤ 1, (1)

and equality holds if {α1, α2, . . . , αk} partitions F . Let Sn denote the set of n-
by-n real, symmetric matrices and Sn

+ ⊂ Sn denote the set of symmetric, positive

Complexity Analyses of Relaxations 17

semidefinite n-by-n matrices. For any given x ∈ F , if we define Y x
A := xA(xA)T ,

then we know that the entries of Y x
A have considerable structure. Most notably,

the following must hold:

– Y x
A ∈ SA

+ ; Y x
AeF = (Y x

A)T eF = diag(Y x
A) = xA; Y x

Aeα ∈
{
0, xA} , ∀α ∈ A;

– Y x
A[α, β] = 1 ⇐⇒ x ∈ α ∩ β

– If α1 ∩ β1 = α2 ∩ β2, then Y x
A [α1, β1] = Y x

A[α2, β2].

Zuckerberg [Zuc03] showed that most of the existing lift-and-project operators
can be interpreted under the common theme of placing constraints that are re-
laxations of the above conditions on submatrices of Y x

A . In the remainder of this
section, we define the operators proposed by Lasserre [Las01] and Bienstock–
Zuckerberg [BZ04]. However, it is helpful to look at a strengthened version
of the Sherali–Adams’ operator [SA90] first, which has an additional positive
semidefiniteness constraint. (We denote the new operator by SA+.) Our SA+

is similar to an operator studied by Benabbas, Georgiou and Magen [BGM10]
and others, even though our version is stronger. The SA+ operator will be useful
in simplifying our analysis and improving our understanding of the Bienstock–
Zuckerberg operator. For ease of reference, Figure 1 provides a glimpse of the
relative strengths of various known lift-and-project operators. Each arrow in the
chart denotes “is refined by” (i.e. the operator that is at the head of an arrow
is stronger than that at the tail). Also, operators whose labels are framed in a
box are new (the operators BZ′ and BZ′

+ will be defined in Section 2.3).

Fig. 1. A strength chart of lift-and-project operators

While all of these operators can be applied to any polytope contained in the
unit hypercube (and in the Lasserre operator’s case, sets defined by polyno-
mial inequalities), we will focus our discussion on their application to lower-
comprehensive polytopes (polytopes P such that u ∈ P , 0 ≤ v ≤ u implies
v ∈ P), since our main objects of interest are the matching and stable set poly-
topes.

2.1 The SA and SA+ Operator

Given a set of indices S ⊆ [n] and t ∈ {0, 1}, we define

S|t := {x ∈ F : xi = t, ∀i ∈ S} . (2)

18 Y.H. Au and L. Tunçel

To reduce cluttering, we write i|t instead of {i} |t. Also, for ease of reference,
given any α ∈ A in the form of S|1 ∩T |0 where S, T ⊆ [n] are disjoint, we call S
the set of positive indices in α, T the set of negative indices in α, and |S|+ |T |
the order of α. Finally, for any integer i ∈ [0, n], define Ai := {S|1 ∩ T |0 :
S, T ⊆ [n], S ∩ T = ∅, |S|+ |T | ≤ i} and A+

i := {S|1 : S ⊆ [n], |S| ≤ i}. Given a
fixed integer k ∈ [1, n], the SAk and SAk

+ operators can be defined as follows:

1. Let S̃A
k
(P) denote the set of matrices Y ∈ RA+

1 ×Ak that satisfy all of the
following conditions:

(SA 1) Y [F ,F] = 1;
(SA 2) x̂(Y eα) ∈ K(P) for every α ∈ Ak;
(SA 3) For each S|1 ∩ T |0 ∈ Ak−1, impose

Y eS|1∩T |0 = Y eS|1∩T |0∩j|1 + Y eS|1∩T |0∩j|0 , ∀j ∈ [n] \ (S ∪ T).

(SA 4) For each α ∈ A+
1 , β ∈ Ak such that α ∩ β = ∅, impose Y [α, β] = 0;

(SA 5) For every α1, α2 ∈ A+
1 , β1, β2 ∈ Ak such that α1 ∩ β1 = α2 ∩ β2, impose

Y [α1, β1] = Y [α2, β2].
2. Let S̃A

k

+(P) denote the set of matrices Y ∈ SAk
+ that satisfies all of the

following conditions:
(SA+ 1) (SA 1), (SA 2) and (SA3);
(SA+ 2) For each α, β ∈ Ak such that α ∩ β ∩ P = ∅, impose Y [α, β] = 0;
(SA+ 3) For any α1, α2, β1, β2 ∈ Ak such that α1 ∩ β1 = α2 ∩ β2, impose

Y [α1, β1] = Y [α2, β2].
3. Define

SAk(P) :=
{
x ∈ Rn : ∃Y ∈ S̃A

k
(P) : Y eF = x̂

}
and

SAk
+(P) :=

{
x ∈ Rn : ∃Y ∈ S̃A

k

+(P) : x̂(Y eF) = x̂
}

.

The SAk
+ operator extends the lifted space of the SAk operator to a set of square

matrices, and imposes an additional positive semidefiniteness constraint. More-
over, SAk

+ refines the LSk
+ operator devised by Lovász and Schrijver in [LS91],

which we define below. Given P ⊆ [0, 1]n,

LS+(P) := {x ∈ Rn : ∃Y ∈ Sn+1
+ ; Y e0 = diag(Y) = x̂;

Y ei, Y (e0 − ei) ∈ K(P), ∀i ∈ [n]}.
For any integer k ≥ 1, define LSk

+(P) := LS+(LSk−1
+ (P)), where LS0

+(P) := P .
Then we have the following:

Proposition 1. For every polytope P ⊆ [0, 1]n and every integer k ≥ 1,
SAk

+(P) ⊆ LS+(SAk−1
+ (P)).

It follows immediately from Proposition 1 that SAk
+(P) ⊆ LSk

+(P). We also
remark that the condition (SA+ 2) can be efficiently checked. For α, β ∈ Ak, α =
S|1 ∩ T |0 and β = S′|1 ∩ T ′|0, α∩ β ∩P = ∅ if and only if χS∪S′ �∈ P , since P is
lower-comprehensive.

Complexity Analyses of Relaxations 19

2.2 The Lasserre Operator

We next turn our attention to Lasserre’s operator defined in [Las01], denoted
Lask herein. Our presentation of the operator is closer to that in [Lau03]. Given
P := {x ∈ [0, 1]n : Ax ≤ b}, and an integer k ∈ [n],

1. Let L̃as
k
(P) denote the set of matrices Y ∈ S

A+
k+1

+ that satisfy all of the
following conditions:

(Las 1) Y [F ,F] = 1;
(Las 2) For each j ∈ [m], let Aj be the jth row of A. Define the matrix Y j ∈ SA+

k

such that

Y j [S|1, S′|1] := bjY [S|1, S′|1]−
n∑

i=1

Aj
iY [(S ∪ {i})|1, (S′ ∪ {i})|1]

and impose Y j � 0.
(Las 3) For every α1, α2, β1, β2 ∈ A+

k such that α1 ∩ β1 = α2 ∩ β2, impose
Y [α1, β1] = Y [α2, β2].

2. Define
Lask(P) :=

{
x ∈ Rn : ∃Y ∈ L̃as

k
(P) : x̂(Y eF) = x̂

}
.

In our setting, the Las-rank of a polytope P (the smallest k such that Lask(P) =
PI) is equal to the Theta-rank, defined in [GPT10].

2.3 The Bienstock-Zuckerberg Operators

Finally, we look into the operators devised by Bienstock and Zuckerberg [BZ04].
One of the features of their algorithms is that they use variables in A that were
not exploited by the operators proposed earlier, in conjunction with some new
constraints. We denote their algorithms by BZ and BZ+, but we also present
modified variants called BZ′ and BZ′

+. These modified algorithms have the ad-
vantage of being stronger; moreover, they are simpler to present. We discuss this
in more detail after stating the algorithm.

Suppose we are given P := {x ∈ [0, 1]n : Ax ≤ b}. The BZ′ algorithm can be
viewed as a two-step process. The first step is refinement. Recall that Ai is the
i-th row of A. If O ⊆ [n] satisfies

O ⊆ supp(Ai);
∑
j∈O

Ai
j > bi; |O| ≤ k or |O| ≥ |supp(Ai)| − k,

for some i ∈ [m], then we call O a k-small obstruction. (Here, supp(a) denotes
the support of a, i.e., the index set of nonzero components of a.) Let O denote
the set of all k-small obstructions of P (or more precisely, of the system Ax ≤ b).
Notice that, for any obstruction O ∈ O, and for every integral vector x ∈ P , the
inequality

∑
i∈O xi ≤ |O| − 1 holds. Thus,

PO :=

{
x ∈ P :

∑
i∈O

xi ≤ |O| − 1, ∀O ∈ O
}

20 Y.H. Au and L. Tunçel

is a relaxation of the integer hull of P that is potentially tighter than P . We call
PO the k-refinement of P .

The second step of the algorithm is lifting. Before we give the details of this
step, we need another intermediate collection of sets of indices, called walls. We
call W ⊆ [n] a wall if either W = {i} for some i ∈ [n], or if there exist � ≤ k
distinct obstructions O1, . . . , O� ∈ O such that W =

⋃
i,j∈[�],i�=j(Oi ∩Oj). That

is, each subset of up to k obstructions generate a wall, which is the set of elements
that appear in at least two of the given obstructions.

Next, we define the collection of tiers

S :=

⎧⎨⎩S ⊆ [n] : ∃Wi1 , . . . , Wik−1 ∈ W , S ⊆
k−1⋃
j=1

Wij

⎫⎬⎭ .

I.e., we include a set of indices S as a tier if there exist k− 1 walls whose union
contains S. Note that the empty set and the singleton-sets are always tiers.

Finally, for any set U ⊆ [n] and a nonnegative integer r, we define

U |<r :=

{
x ∈ {0, 1}n :

∑
i∈U

xi ≤ r − 1

}
. (3)

We will see that the elements in A that are being generated by BZ′ all take the
form S|1 ∩ T |0 ∩ U |<r, where S, T, U are disjoint sets of indices. For a set α in
this form, we let S (resp. T) denote the set of positive (resp. negative) indices of
α, and define the order of α to be |S|+ |T |+ |U |. We are now ready to describe
the lifting step:

1. Define A′ to be the set consisting of the following: For each tier S ∈ S and
each T ⊆ S such that |T | ≤ k − 1, include the sets

(S \ T)|1 ∩ T |0; (4)

if |T | < k − 1, and U ⊆ S \ T such that |U |+ |T | > k − 1, then also include

(S \ (T ∪ U))|1 ∩ T |0 ∩ U |<|U|−(k−1−|T |), (5)

2. Let B̃Z
′k

(P) denote the set of matrices Y ∈ SA′
that satisfy all of the

following conditions:
(BZ′ 1) Y [F ,F] = 1;
(BZ′ 2) For any column x of the matrix Y ,

(i) 0 ≤ xα ≤ xF , for all α ∈ A′;
(ii) x̂(x) ∈ K(PO);
(iii) xi|1 + xi|0 = xF for every i ∈ [n];
(iv) For each α ∈ A′ in the form of S|1 ∩ T |0 impose the inequalities

xi|1 ≥ xα, ∀i ∈ S, (6)
xi|0 ≥ xα, ∀i ∈ T, (7)

xα + x(S∪{i})|1∩(T\{i})|0 = xS|1∩(T\{i})|0 , ∀i ∈ T, (8)∑
i∈S

xi|1 +
∑
i∈T

xi|0 − xα ≤ (|S|+ |T | − 1)xF . (9)

Complexity Analyses of Relaxations 21

For each α ∈ A′ in the form S|1∩T |0∩U |<r, impose the inequalities

xi|1 ≥ xα, ∀i ∈ S, (10)
xi|0 ≥ xα, ∀i ∈ T, (11)∑

i∈U

xi|0 ≥ (|U | − (r − 1))xα, (12)

xα = xS|1∩T |0 −
∑

U ′⊆U,|U ′|≥r

x(S∪U ′)|1∩(T∪(U\U ′))|0 . (13)

(BZ′ 3) For each pair α, β ∈ A′, if α ∩ β ∩ P = ∅, then impose Y [α, β] = 0;
(BZ′ 4) For variables α1, β1, α2, β2 ∈ A′, if α1 ∩ β1 = α2 ∩ β2, then impose

Y [α1, β1] = Y [α2, β2].
– Define

BZ′k(P) :=
{

x ∈ Rn : ∃Y ∈ B̃Z
′k

(P) : x̂(Y e0) = x̂
}

,

and

BZ′k
+(P) :=

{
x ∈ Rn : ∃Y ∈ B̃Z

′k
(P) ∩ SA′

+ : x̂(Y e0) = x̂
}

.

Similar to the case of SAk, BZ′k can be seen as creating columns that correspond
to sets that partition F . While SAk only generates a partition for each subset of
up to k indices, BZ′k does so for every tier, which is a much broader collection
of indices. For a tier S up to size k, it does the same as SAk and generates 2|S|

columns corresponding to all possible negations of indices in S. However, for
S of size greater than k, it generates a “k-deep” partition of S: a column for
(S \ T)|1 ∩ T |0 for each T ⊆ S of size up to k − 1, and the column S|<|S|−k+1.
Moreover, it also generates columns that partition (S \ T)|1 ∩ T |0 for every tier
S and every T ⊆ S such that |T | < k − 1: For each U ⊆ S that is disjoint from
T such that |T |+ |U | > k − 1, the algorithm introduces the columns

(S \ T)|1 ∩ T |0 ∩ (U \ U ′)|1 ∩ U ′|0
for all U ′ of size ≤ (k−1)−|T | (so the total number of the negative indices does
not exceed k − 1). It also generates a column for

(S \ T)|1 ∩ T |0 ∩ U |<|U|−(k−1−|T |)

to capture the remainder of the partition.
Notice that in BZ′, we have generated exponentially many variables, whereas

in the original BZ only polynomially many are selected. The role of walls are
also much more important in selecting the variables in BZ, which we have inten-
tionally suppressed in BZ′ to make our presentation and analysis easier. We will
only use these modified operators to establish negative results, so that the same
bounds apply to the original Bienstock–Zuckerberg operators, details of which
will be in the full version of this extended abstract.

22 Y.H. Au and L. Tunçel

The main result Bienstock and Zuckerberg achieved with the BZk algorithm
is when it is applied to set covering problems. Given an inequality aT x ≥ a0

such that a ≥ 0 and a0 > 0, its pitch is defined to be the smallest j ∈ N such
that

S ⊆ supp(a), |S| ≥ j ⇒ aT χS ≥ a0.

Also, let ē denote the all-ones vector of suitable size. Then they showed the
following powerful result:

Theorem 2. Suppose P := {x ∈ [0, 1]n : Ax ≥ ē} where A is a 0, 1 matrix.
Then for every k ≥ 2, every valid inequality of PI that has pitch at most k
is valid for BZk(P).

Note that all inequalities whose coefficients are integral and at most k have pitch
no more than k.

2.4 Matching Polytope and the Notion of Rank

We next define the matching polytope of graphs. Given a simple, undirected
graph G = (V, E), we define

MT (G) :=

⎧⎨⎩x ∈ [0, 1]E :
∑

j:{i,j}∈E

xij ≤ 1, ∀i ∈ V

⎫⎬⎭ .

Then the integral points in MT (G) are exactly the incidence vectors of the
matchings of G. For any lift-and-project operator Γ , we abbreviate Γ (MT (G))
as Γ (G). Also, for any polytope P , we define the Γ -rank of P to be the smallest
integer k such that Γ k(P) = PI . The notion of rank gives us a measure of how
close P is to PI with respect to Γ . Moreover, it is useful when comparing the
performance of different operators.

3 Some Tools for Upper Bound Analyses

In this section, we present some intermediate results that will help us establish
our main results. These tools could be useful in analyzing the lift-and-project
ranks of other polytopes as well. Given j ∈ Z+, let [n]j denote all subsets of [n]
of size j. Suppose Y ∈ SA′

for some A′ ⊆ A. We say that Y is �-established if
all of the following conditions hold:

(�1) Y [F ,F] = 1;
(�2) Y � 0;
(�3) A+

� ⊆ A′;
(�4) For any α, β, α′, β′ ∈ A+

� such that α ∩ β = α′ ∩ β′, Y [α, β] = Y [α′, β′].
(�5) For any α, β ∈ A+

� , Y [F , β] ≥ Y [α, β].

Complexity Analyses of Relaxations 23

Notice that any matrix Y ∈ S̃A
�

+(P) is �-established. A matrix in the lifted
space of BZ′

+ is also �-established if all subsets of size up to � are generated as
tiers. Given such a matrix, we may define M :=

⋃2�
i=0[n]i and y ∈ RM such that

yS = Y [S′|1, S′′|1], where S′, S′′ are subsets of [n] of size at most � such that
S′ ∪ S′′ = S. Notice that by (�4), the value of yS does not depend on the choice
of S′, S′′. Finally, we define Z ∈ R{0}∪[2�] such that

Zi :=
∑

S⊆[n]i

yS , ∀i ≥ 0.

By (�1), Z0 is always equal to 1. Also note that, Z1 =
∑n

i=1 Y [i|1,F]. We see
that the entries of Z are related to each other. For example, if x̂(Y eF) is an
integral 0, 1 vector, then by (�5) we know that yS ≤ 1 for all S, and yS > 0 only
if y{i} = 1, ∀i ∈ S. Thus, we can infer that

Zj =
∑

S∈[n]j

yS ≤
(

Z1

j

)
, ∀j ∈ [2�].

Next, we show that the positive semidefiniteness of Y also forces the Zi’s to relate
to each other, somewhat similarly to the above. The following result would be
more intuitive by noting that

(
p

i+1

)
/
(
p
i

)
= p−i

i+1 .

Proposition 3. Suppose Y ∈ SA′
is �-established, and y, Z are defined as above.

If there exists p ∈ R+ such that

Zi+1 ≤
(

p− i

i + 1

)
Zi, ∀i ∈ [�, 2�− 1],

then Zi ≤
(

p
i

)
, ∀i ≤ 2�. In particular, Z1 ≤ p.

An immediate but noteworthy implication of Proposition 3 is the following:

Corollary 4. Suppose Y ∈ SA′
is �-established, and y, Z are defined as above.

If there exists p ∈ [0, �] such that Zi = 0, ∀i > p, then Z1 ≤ p.

4 The SA+-rank, the Las-rank, and the Theta-rank of
the Matching Polytope

We now turn to our main results and determine the lift-and-project ranks of
MT (K2n+1) for various operators. First, we study the SA+-rank.

Theorem 5. The SA+-rank of MT (K2n+1) is at least
⌊

n
2

⌋
+ 1.

Proof (sketch). We prove our claim by showing that 1
4n ē ∈ SAn

+(K4n+1),
implying that MT (K4n+1) has SA+-rank at least n + 1, from which our

24 Y.H. Au and L. Tunçel

assertion follows. Define Y ∈ SAn such that Y [∅, ∅] := 1, and Y [S1|1, S2|1] :=∏|S1∪S2|
i=1

1
4n+2−2i if S1 ∪ S2 is a matching and 0 otherwise. Also, set Y [S1|1 ∩

T1|0, S2|1 ∩ T2|0] :=
∑

U⊆T1∪T2
(−1)|U|Y [S1 ∪ (U ∩ T1)|1, S2 ∪ (U ∩ T2)|1].

Notice that x̄(Y eF) = 1
4n ē, and (SA1), (SA3), (SA+ 2) and (SA+ 3) all hold

by the construction of Y . Also, it was shown in [MS09] that (SA2) holds. Thus,
it only remains to verify that Y � 0. By exploiting the linear dependencies of
the columns of Y and the symmetries of the complete graph, the task of showing
Y � 0 can be reduced to showing Y ′ � 0, where

Y ′[i, j] :=
∑

S1,S2⊆E,
|S1|=i,|S2|=j

Y [S1|1, S2|1], ∀i, j ∈ {0, 1, . . . , n} .

It can be checked that Y ′[i, j] =
(4n+1

2
i

)(4n+1
2
j

)
for all integers i, j ∈ [0, n]. Hence

Y ′ = (Y ′e0)(Y ′e0)T and our claim follows. ��
Next, we employ the upper bound proving techniques from Section 3 and the
notion of �-established to prove the next result.

Proposition 6. The SA+-rank of MT (K2n+1) is at most n−
⌊√

2n+1−1
2

⌋
.

Somewhat surprisingly, a lower bound of the Las-rank of the matching polytope
follows almost immediately from the proof of Theorem 5.

Theorem 7. The Las-rank and Theta-rank of MT (K2n+1) is at least
⌊

n
2

⌋
and

at most n.

5 The BZ+-rank of the Matching Polytope

Next, we turn to the BZ+-rank of the matching polytope. Before we do that, it
is beneficial to characterize some of the variables generated by the stronger BZ′k

+

that obviously do not help generate any cuts. We say that a tier S generated by
BZ′k is �-useless if

1. For all T ⊆ S such that |T | ≤ k − 1, (S \ T)|1 ∩ P = ∅;
2.

∑
i∈S xi ≤ |S| − k is valid for SA�(PO).

Then, we have the following:

Lemma 8. Suppose there exists � ∈ Z+ such that all tiers S generated by BZ′k

of size greater than � are �-useless. Then

BZ′k(P) ⊇ SA2�(PO) and BZ′k
+(P) ⊇ SA�

+(PO).

We are now ready to approximate the BZ+-rank of MT (K2n+1), to within a
constant factor.

Theorem 9. Suppose G = K2n+1. Then the BZ+-rank of MT (G) is between√
n and

√
2n + 1.

Complexity Analyses of Relaxations 25

In fact, we prove that the above lower bound applies to the stronger BZ′.
We also remark that, in general, adding redundant inequalities to the system
Ax ≤ b would generate more obstructions and walls, and thus could improve
the performance of BZ+. In fact, if we let G := K2n+1 and include every
valid inequality of MT (G) in the initial description of the polytope MT (G),
then any matrix Y ∈ B̃Z

2

+(G) is actually n-established, which implies that
x̂(Y eF) ∈ K(MT (G)I).

6 The BZ-rank of the Stable Set Polytope

Another family of polytopes related to graphs that has been studied extensively
is the family of stable set polytopes. Given a graph G = (V, E), its fractional
stable set polytope is defined to be

FRAC(G) :=
{
x ∈ [0, 1]V : xi + xj ≤ 1, ∀ {i, j} ∈ E

}
.

Then the stable set polytope STAB(G) := FRAC(G)I is precisely the convex
hull of incidence vectors of stable sets of G. For the complete graph G := Kn,
FRAC(G) is known to have rank 1 with respect to the LS+ and Las operators.
Proposition 1 implies that it also has SA+-rank 1. Its BZ+-rank is 1 as well, as
it is not hard to see that SA1

+ is refined by BZ1
+. However, the rank is known to

be Θ(n) for all other operators that yield only polyhedral relaxations, such as
SA and Lovász–Schrijver’s N operator [LS91]. We show that BZ operator also
has the same property.

Theorem 10. Suppose G is the complete graph on n ≥ 5 vertices. Then the
BZ-rank of FRAC(G) is either

⌈
n
2 − 1

⌉
or

⌈
n
2

⌉
.

Again, the lower bound of the above also applies to BZ′.

References

[ABN04] Aguilera, N.E., Bianchi, S.M., Nasini, G.L.: Lift and project relaxations
for the matching and related polytopes. Discrete Appl. Math. 134(1-3),
193–212 (2004)

[Bal98] Balas, E.: Disjunctive programming: properties of the convex hull of fea-
sible points. Discrete Appl. Math. 89(1-3), 3–44 (1998)

[BCC93] Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algo-
rithm for mixed 0-1 programs. Math. Programming 58(3, Ser. A), 295–324
(1993)

[BGM10] Benabbas, S., Georgiou, K., Magen, A.: The Sherali-Adams system ap-
plied to vertex cover: why Borsuk graphs fool strong LPs and some tight
integrality gaps for SDPs (2010) (extended Abstract)

[BZ04] Bienstock, D., Zuckerberg, M.: Subset algebra lift operators for 0-1 integer
programming. SIAM J. Optim. 15(1), 63–95 (2004)

[CD01] Cook, W., Dash, S.: On the matrix-cut rank of polyhedra. Math. Oper.
Res. 26(1), 19–30 (2001)

26 Y.H. Au and L. Tunçel

[Che05] Cheung, K.K.H.: On Lovász-Schrijver lift-and-project procedures on the
Dantzig-Fulkerson-Johnson relaxation of the TSP. SIAM J. Optim. 16(2),
380–399 (2005)

[Che07] Cheung, K.K.H.: Computation of the Lasserre ranks of some polytopes.
Math. Oper. Res. 32(1), 88–94 (2007)

[GMPT06] Georgiou, K., Magen, A., Pitassi, T., Tourlakis, I.: Tight integrality gaps
for vertex cover SDPs in the Lovász-Schrijver hierarchy. Electronic Collo-
quium on Computational Complexity (ECCC) 13(152) (2006)

[GPT10] Gouveia, J., Parrilo, P.A., Thomas, R.R.: Theta bodies for polynomial
ideals. SIAM Journal on Optimization 20(4), 2097–2118 (2010)

[GT01] Goemans, M.X., Tunçel, L.: When does the positive semidefiniteness con-
straint help in lifting procedures? Math. Oper. Res. 26(4), 796–815 (2001)

[HT08] Hong, S.-P., Tunçel, L.: Unification of lower-bound analyses of the lift-
and-project rank of combinatorial optimization polyhedra. Discrete Appl.
Math. 156(1), 25–41 (2008)

[Las01] Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0-1 pro-
grams. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081,
pp. 293–303. Springer, Heidelberg (2001)

[Lau02] Laurent, M.: Tighter linear and semidefinite relaxations for max-cut based
on the Lovász-Schrijver lift-and-project procedure. SIAM J. Optim. 12(2),
345–375 (2001/2002)

[Lau03] Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and
Lasserre relaxations for 0-1 programming. Math. Oper. Res. 28(3), 470–
496 (2003)

[LS91] Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1
optimization. SIAM J. Optim. 1(2), 166–190 (1991)

[LT03] Lipták, L., Tunçel, L.: The stable set problem and the lift-and-project
ranks of graphs. Math. Program. 98(1-3, Ser. B), 319–353 (2003); Integer
programming (Pittsburgh, PA, 2002)

[MS09] Mathieu, C., Sinclair, A.: Sherali-Adams relaxations of the matching poly-
tope. In: STOC 2009. ACM Press, New York (2009)

[SA90] Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the contin-
uous and convex hull representations for zero-one programming problems.
SIAM J. Discrete Math. 3(3), 411–430 (1990)

[ST99] Stephen, T., Tunçel, L.: On a representation of the matching polytope via
semidefinite liftings. Math. Oper. Res. 24(1), 1–7 (1999)

[STT06] Schoenebeck, G., Trevisan, L., Tulsiani, M.: A linear round lower bound
for Lovász-Schrijver SDP relaxations of vertex cover. In: IEEE Conference
on Computational Complexity, pp. 6–98. IEEE Computer Society, Los
Alamitos (2006)

[Zuc03] Zuckerberg, M.: A Set Theoretic Approach to Lifting Procedures for 0,1
Integer Programming. PhD thesis, Columbia University (2003)

A Probabilistic Analysis of the Strength of the

Split and Triangle Closures

Amitabh Basu1, Gérard Cornuéjols2,�, and Marco Molinaro2,��

1 University of California, Davis
2 Carnegie Mellon University

Abstract. In this paper we consider the relaxation of the corner poly-
hedron introduced by Andersen et al., which we denote by RCP. We
study the relative strength of the split and triangle cuts of RCP’s. Basu
et al. showed examples where the split closure can be arbitrarily worse
than the triangle closure under a ‘worst-cost’ type of measure. However,
despite experiments carried out by several authors, the usefulness of tri-
angle cuts in practice has fallen short of its theoretical strength.

In order to understand this issue, we consider two types of measures
between the closures: the ‘worst-cost’ one mentioned above, where we
look at the weakest direction of the split closure, and the ‘average-cost’
measure which takes an average over all directions. Moreover, we consider
a natural model for generating random RCP’s. Our first result is that,
under the worst-cost measure, a random RCP has a weak split closure
with reasonable probability. This shows that the bad examples given
by Basu et al. are not pathological cases. However, when we consider
the average-cost measure, with high probability both split and triangle
closures obtain a very good approximation of the RCP. The above result
holds even if we replace split cuts by the simple split or Gomory cuts.
This gives an indication that split/Gomory cuts are indeed as useful as
triangle cuts.

1 Introduction

Consider an IP in standard form:

min ay

Ay = b (IP)

y ≥ 0, y ∈ Zd.

Suppose that B is an optimal basis for the LP relaxation of (IP). Rewriting IP
in tableaux form with respect to B (i.e., pre-multiplying the system by B−1) we

� Supported by NSF grant CMMI1024554 and ONR grant N00014-09-1-0033.
�� Supported by NSF grant CMMI1024554 and a Mellon Fellowship.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 27–38, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

28 A. Basu, G. Cornuéjols, and M. Molinaro

obtain the equivalent system

min āNyN

yB = b̄− N̄yN (IP’)

y ≥ 0, y ∈ Zd

where āN ≥ 0 due to the optimality of B.
In [1], Andersen et al. introduced a relaxation of (IP’) which we call Relaxed

Corner Polyhedron (RCP). This is a further weakening of the Corner relaxation
[12] where: (i) the integrality constraints are dropped for the nonbasic vari-
ables and (ii) the non-negativity constraints are dropped for the basic variables.
Rewriting in a different way, an RCP is a MIP of the form

min cs

x = f +
n∑

j=1

rjsj (RCP)

x ∈ Zm, s ≥ 0

with c ≥ 0.
An RCP is defined by the vectors f, r1, . . . , rn and the cost vector c. We call

a tuple 〈f, r1, r2, . . . , rn〉 an ensemble. Given an ensemble E and cost vector c,
we use RCP (E , c) to denote the corresponding RCP.

In this work, we are interested in comparing the cost of an optimal solution
to RCP (E , c) against the cost of an optimal solution to some of its relaxations.
In order to simplify things, we work over the projection onto the s-space; the
crucial property given by the structure of RCP’s is that the projection of any
solution onto the s-space has the same cost as the original solution. We define
P (E) as the projection of the convex hull of feasible solutions of RCP (E , c) onto
the s-space. In other words, P (E) = conv({s ≥ 0 | f +

∑n
j=1 rjsj ∈ Zm}).

Intersection cuts. Let X be a closed, full-dimensional convex set in Rm which:
(i) contains f in its interior and (ii) does not contain any integer point in its
interior. The functional ψX : Rm → R is defined as

ψX(r) = inf{λ > 0 : f +
r

λ
∈ X}. (1)

The inequality
∑n

j=1 ψX(rj)sj ≥ 1 is valid for P (E), since it is an intersection
cut [2]. Moreover, it was shown in [8] that all minimal inequalities of P (E) are of
this form (for some X). Since these inequalities are constructed based on convex
sets in Rm, this gives a geometric way of analyzing P (E).

One important family of inequalities is derived from sets X which are ‘splits’,
that is, X is of the form {x : b1 ≤ ax ≤ b2}. We call them split cuts. The split
closure of P (E), denoted by S(E), is the intersection of all split cuts. We also
consider cuts from simple splits, that is, splits of the form {x : �b� ≤ eix ≤ �b�}
where b ∈ R \Z and ei is the ith canonical vector in Rm. We denote the closure
of these cuts by G(E). Finally, for the case m = 2, another important family is
when X is a triangle. The triangle closure is denoted by T (E).

A Probabilistic Analysis of the Strength of the Split and Triangle Closures 29

Strength of relaxations. In [6] the authors showed a family of RCP’s whose split
closure gets arbitrarily weaker than the triangle closure. In their work, a ‘worst-
case’ type of measure is used to compare these two closures. Interestingly, split
cuts for (IP) derived by taking into account all integrality constraints actually
perform very well in practice [4]. The apparent strength of triangle cuts suggests
that even stronger cuts for (IP) can be obtained from them.

Motivated by this observation, several authors recently started to test exper-
imentally the effectiveness of the triangle cuts [11,3,5,10]. Despite some positive
results obtained by Balas and Qualizza in [3], the usefulness of the triangle cuts
has been very far from those indicated by theory.

However, it is still not clear if the disappointing performance of triangle cuts is
due to insufficient separation heuristics or it is really an innate property of these
cuts, although the latter seems more likely. Our goal in this paper is to further
explore the relative strength of the split and triangle closure from a theoretical
perspective.

Our results. Informally, the results presented in this paper can be described as
follows. We consider two ways of comparing the closures P (E), G(E), S(E) and
T (E). Roughly, in the ‘worst-cost’ measure we look at the direction where the
relaxation is weakest, while in the ‘average-cost’ measure we take an average over
all directions. We show that the strength of the split closure is very dependent
on which measure is used to perform the comparison.

First we consider the worst-cost measure and m = 2. We show that with
reasonable probability the split closure of a random RCP is very weak when
compared to the triangle closure. This generalizes the bad examples from [6] and
shows that they are not as pathological as one could think. On the other hand,
with respect to the average-cost measure we show that, with high probability,
the simple split closure G(E) is a very good approximation of P (E). Since P (E) ⊆
T (E) ⊆ S(E) ⊆ G(E), this shows in particular that the split and the triangle
closure are very similar under the average-cost measure and also approximate
the integer hull very well. This gives a partial justification why triangle cuts
seem to have a similar performance to split cuts in practice.

We remark that, due to space constraints, the proof of some claims are omit-
ted; they can be found in [7].

Related work. Two recent papers address the fundamental question of comparing
the strengths of triangle and split cuts from a probabilistic point of view.

He et al. [13] use the same random model for generating RCP’s, but a different
measure to compare the strength of cuts, comparing the random coefficients of
the inequalities induced by the randomness of the rays. Their analysis does
not consider the important triangles of Type 3. Although the results cannot be
directly compared, their paper also indicates that split cuts perform at least as
well as some classes of triangles.

Del Pia et al. [14] base their analysis on the lattice width of the underly-
ing convex set. They show that the importance of triangle cuts generated from

30 A. Basu, G. Cornuéjols, and M. Molinaro

Type 2 triangles (the same family which was considered in [6]) decreases with
decreasing lattice width, on average. They also have results for triangles of Type
3 and for quadrilaterals.

Our approach is very different from these two papers.

2 Preliminaries

Measures of strength. Let A and B be convex relaxations of P (E) such that
A, B ⊆ Rn

+. A closed, convex set X ⊆ Rn
+ is said to be of blocking type if

y ≥ x ∈ X implies y ∈ X . It is well-known that the recession cone of P (E)
is Rn

+(see [9]) and hence P (E), A and B are convex sets of blocking type. A
traditional measure of strength for integer programs is the integrality gap, which
compares the ratio of the minimization over the IP and its linear relaxation.
More generally, we define the gap between A and B with respect to the cost
vector c as:

gap(A, B, c) =
inf{cs : s ∈ A}
inf{cs : s ∈ B} . (2)

Notice that this value is greater than 1 if A is stronger than B, i.e. A ⊆ B. We
define the gap to be +∞ if A is empty or inf{cs : s ∈ B} = 0.

Based on this idea, we can define the worst-cost measure between the two
relaxations A and B as the worst possible gap over all non-negative cost vectors:

wc(A, B) = sup
c∈R

m
+

{gap(A, B, c)} (3)

= sup
c∈[0,1]m

{gap(A, B, c)} , (4)

where the second equation follows from the fact that the ratios are preserved
under positive scaling of the cost vectors. Note that for convex sets of block-
ing type, only non-negative cost vectors have bounded optimum, hence we will
restrict ourselves to this case.

Now we define another (more robust) measure of strength which tries to cap-
ture the average strength with respect to different costs. Consider a distribution
C over vectors in Rm

+ and let c ∼ C indicate that c is a random vector with
distribution C. Then, the average-cost measure between A and B is defined by

avg(A, B, C) = Ec∼C [gap(A, B, c)] . (5)

In the sequel we study the worst-cost and average-cost strength of the split and
triangle closures for random RCP’s. We define our model for random RCP’s
next.

Random model. Let Dm
n denote the distribution of ensembles 〈f, r1, . . . , rn〉

where f is picked uniformly from [0, 1]m and each of r1, . . . , rn is picked in-
dependently and uniformly at random from the set of rational unit vectors in
Rm. We make a note here that the rays in RCP can be assumed to be unit vec-
tors, by suitably scaling the cost coefficients. In other words, given an ensemble

A Probabilistic Analysis of the Strength of the Split and Triangle Closures 31

E and a cost vectors c, there exists an ensemble E ′ all of whose rays are unit
vectors and a cost vector c′, such that the optimal value of RCP(E , c) equals
to the optimal value of RCP(E ′, c′). Moreover, there exists an invertible affine
transformation A : Rn → Rn such that P (E) = A(P (E ′)). Hence, in our model
we assume that the rays are sampled from the set of rational unit vectors. When
the dimension is 2 we write Dn for the distribution, omitting the superscript.

3 Worst-Cost Measure in R2

The main result of this section is that, for a significant fraction of the RCP’s in
the plane, S(E) is significantly worse than T (E) based on the worst-cost measure.

Theorem 1. For any α ≥ 1 and β ∈ [0, 1], a random ensemble E ∼ Dn satisfies

Pr (wc(T (E), S(E)) ≥ α) ≥
[
1− 2

(
1− g(

β

4α
)
)n] [1− β

α
− 1− β2

4α2

]
,

where

g(x) =
1
2π

(
x

0.75− (2 −√2)x
− x

1− (2−√2)x

)
.

Notice that this bound increases as n grows. In the limit n →∞, and using the
optimal choice β → 0, the bound becomes 1/α−1/4α2. To obtain an idea about
the probabilities in the above theorem, Table 1 presents the bound obtained for
different values of n and α.

Remark 1. Since P (E) ⊆ T (E), Theorem 1 implies that the same statement
holds when T (E) is replaced by P (E), showing that the split closure is a bad
approximation of the integer hull with the same probability.

Table 1. Values of the bound of Theorem 1 for different values of n and approximation
factor α. The value of β in every entry was chosen empirically and attempts to optimize
the bound.

n α β Pr

100 1.5 0.37 25.7%
100 2 0.43 16.7%
500 2 0.16 33.6 %
500 3 0.22 21.3%
1000 2 0.01 37.7%
1000 3 0.14 25.0 %
1000 4 0.17 18.2 %
+∞ 2 0 43.75 %
+∞ 4 0 30.56 %

The way to prove this result is to consider a particular (deterministic) ensem-
ble 〈f, r1, r2〉 which is ‘bad’ for the split closure and show that it appears with
significant probability in a random ensemble. We employ the following mono-
tonicity property to transfer the ‘badness’ to the whole RCP.

32 A. Basu, G. Cornuéjols, and M. Molinaro

Lemma 1. Consider an ensemble E = 〈f, r1, . . . , rn〉 and let E ′ = 〈f, ri1 ,
ri2 , . . . , rik 〉 be a subensemble of it. Then wc(T (E), S(E)) ≥ wc(T (E ′), S(E ′)).

3.1 A Bad Ensemble for the Split Closure

First, we introduce the following notation: Given a point f and a ray r, we say
that f + r crosses a region R ⊆ Rn if there is λ ≥ 0 such that f + λr ∈ R.

In this part we will focus on ensembles E = 〈f, r1, r2〉 where f ∈ (0, 1)2,
and f + r1 and f + r2 cross the open segment connecting (0, 0) to (0, 1). The
high-level idea is the following. Suppose that r1 an r2 have x1-value equal to -1
and consider a lattice-free triangle T containing the points f + r1 and f + r2,
and also containing f in its interior. This triangle gives an inequality which
is at least as strong as s1 + s2 ≥ 1, hence we have a lower bound of 1 for
minimizing s1 + s2 over the triangle closure T (E). However, further assume that
the angle between rays r1 and r2 is large. Then we can see that any split that
contains f in its interior will have a very large coefficient for either s1 or s2.
More specifically, suppose that there is a large M such that, for every inequality
ψ(r1)s1 + ψ(r2)s2 ≥ 1 coming from a split, we have max{ψ(r1), ψ(r2)} ≥ M .
Then the point (s1, s2) = (1/M, 1/M) satisfies every such inequality and hence
is feasible for the split closure S(E); this gives an upper bound of 2/M for
minimizing s1 + s2 over the split closure. Then using the choice of c = [1, 1]
in the maximization in (3) gives wc(T (E), S(E)) ≥ M/2. The following lemma
formalizes the observation that if r1 and r2 are spread out then the split closure
is weak.

Lemma 2. Consider an ensemble E = 〈f, r1, r2〉 where f = (f1, f2) ∈ (0, 1)2,
r1 = c1(−1, t1) and r2 = c2(−1, t2) with c1, c2 ≥ 0 and t1 ≥ t2. Moreover,
assume that both f + r1 and f + r2 cross the left facet of the unit square. Then

min{c1s1 + c2s2 : (s1, s2) ∈ S(E)} ≤ 2
t1 − t2

.

Now we are ready to establish the main lemma of this section, which exhibits
bad ensembles for the split closure.

Lemma 3. Consider an ensemble E = 〈f, r1, r2〉 where f = (f1, f2) ∈ (0, 1)2.
Suppose that f + r1 crosses the open segment connecting (0, 1 − ε) and (0, 1)
and that f + r2 crosses the open segment connecting (0, 0) and (0, ε), for some
0 < ε < 1. Then wc(T (E), S(E)) ≥ (1− 2ε)/2f1.

Proof. Let v1 = (−1, t1), v2 = (−1, t2) and let c1, c2 ≥ 0 be such that r1 = c1v
1

and r2 = c2v
2. By the assumptions on the rays, we have t1 ≥ t2.

Consider the rays v1 = (−1, t1) and v2 = (−1, t2) such that f + v1 crosses
(0, 1− ε) and f + v2 crosses (0, ε).

Notice that t1 ≥ t1 ≥ t2 ≥ t2, implying that t1 − t2 ≥ t1 − t2. Moreover,
using similarity of triangles we obtain that t1 − t2 = 1−2ε

f1
. Therefore, t1 − t2 ≥

(1− 2ε)/f1.

A Probabilistic Analysis of the Strength of the Split and Triangle Closures 33

Employing Lemma 2 over E ′ gives min{c1s1 + c2s2 : (s1, s2) ∈ S(E ′)} ≤
2f1/(1 − 2ε). In contrast, min{c1s1 + c2s2 : (s1, s2) ∈ T (E ′)} ≥ 1, because of
the inequality c1s1 + c2s2 ≥ 1 derived from the lattice-free triangle with vertices
f+v1, f+v2 and f−(γ, 0) for some γ > 0. Notice that such γ exists because f+v1

and f + v2 do not cross the points (0, 1) and (0, 0) respectively. Using the cost
vector c = [c1, c2], we obtain the desired bound wc(T (E), S(E)) ≥ (1− 2ε)/2f1.

3.2 Probability of Bad Ensembles

Using the ensemble constructed in the previous section and the monotonicity
property from Lemma 1, we now analyze the probability that a random ensemble
E ∼ Dn is bad for the split closure. Let Δ denote the triangle in R2 with vertices
(0, 0), (0, 1), (1/2, 1/2).

Lemma 4. Let E = 〈f, r1, . . . , rn〉 be a random ensemble from Dn, where f =
(f1, f2). Then for all f̄ = (f̄1, f̄2) ∈ Δ and all ε ∈ (0, 1/2), we have

Pr
(

wc(T (E), S(E)) ≥ 1− 2ε

f̄1

∣∣∣f = f̄

)
≥ 1− 2

(
1− g(f̄1)

)n
,

where

g(x) =
1
2π

(
x

1− ε− (2−√2)x
− x

1− (2−√2)x

)
.

Proof. Let us call portals the open segment connecting (0, 1− ε) and (0, 1) and
the open segment connecting (0, ε) and (0, 0). Due to Lemmas 1 and 3 it suffices
to lower bound the probability that a random ensemble has rays ri and rj such
that f + ri crosses one portal and f + rj crosses the other portal.

Consider a ray ri; the probability that f + ri crosses the open segment con-
necting (0, 1 − ε) and (0, 1) equals to θ/2π, where θ is the angle between the
vectors (0, 1 − ε) − f̄ and (0, 1) − f̄ . Expressing θ using the function arctan(.)
and then using the concavity of the later, one can prove that θ ≥ 2πg(f̄1) (we
refer to the full version of the paper for a proof). Therefore, the probability that
f̄ + ri crosses the open segment connecting (0, 1− ε) and (0, 1) is at least g(f̄1).
By symmetry, we can also prove that the probability that f̄ +ri crosses the open
segment connecting (0, ε) and (0, 0) is also at least g(f̄1); this bounds also holds
for this case because it is independent of f̄2.

Let B1 denote the event that no ray of E crosses the open segment connecting
(0, 1− ε) and (0, 1) and let B2 denote the even that no ray of E crosses the open
segment connecting (0, ε) and (0, 0). Using our previous bound we obtain that
Pr(B1) ≤ (1− g(f̄1))n, and the same lower bound holds for Pr(B2). Notice that
the probability that E has rays ri and rj such that f +ri and f +rj cross distinct
portals is 1− Pr(B1 ∨ B2); from union bound we get that this probability is at
least 1− 2(1− g(f̄1))n. This concludes the proof of the lemma.

34 A. Basu, G. Cornuéjols, and M. Molinaro

3.3 Proof of Theorem 1

In order to conclude the proof of Theorem 1 we need to remove the conditioning
in the previous lemma. To make progress towards this goal, for t ∈ [0, 1/2] let
Δt = Δ∩{(x1, x2) : x1 ≤ t}. It is easy to see that the area of Δt equals (1− t)t.
Now it is useful to focus on the set Δt \ Δβt, for some β ∈ [0, 1], since we
can bound the probability that a uniform point lies in it and Lemma 4 is still
meaningful. Using the independence properties of the distributionDn we get that
for every β ∈ [0, 1] and ε ∈ (0, 1/2) a random ensemble E = 〈f, r1, . . . , rn〉 ∼ Dn

satisfies:

Pr
(

wc(T (E), S(E)) ≥ 1− 2ε

2t

∣∣∣f ∈ Δ

)
≥ Pr

(
wc(T (E), S(E)) ≥ 1− 2ε

2t

∣∣∣f ∈ Δt \Δβt

)
Pr

(
f ∈ Δt \Δβt

∣∣∣f ∈ Δ
)

≥ [1− 2 (1− g (βt))n] · 4 · [(1− t)t− (1− βt)βt] ,

where the first inequality follows from the fact that Δt \Δβt ⊆ Δ and the second
inequality follows from the fact that βt ≤ f1 ≤ t and that the function g(x) is
increasing in x.

Finally, notice that this bound holds for all four 90-degree rotations of Δ
around the point (1/2, 1/2); this is because of the symmetries of Dn. Thus, by
law of total probability we can remove the last conditioning. Using ε = 1/4 and
α = 1/4t we then obtain Theorem 1. We remark that we fixed the value of ε
in order to simplify the expression in the theorem and that the value 1/4 was
chosen experimentally in order to obtain good bounds specially for reasonably
small values of n.

Since T (E) is a relaxation of P (E), as a corollary of the theorem we obtain a
bound on the probability that the split closure is bad for random RCP’s.

Corollary 1. For any α ≥ 1 and β ∈ [0, 1], a random ensemble E ∼ Dn satisfies

Pr (wc(P (E), S(E)) ≥ α) ≥
[
1− 2

(
1− g(

β

4α
)
)n] [1− β

α
− 1− β2

4α2

]
,

4 Average-Cost Measure

For ε > 0 we define the product distribution Pε over [ε, 1]n where a vector is
obtained by taking each of its n coefficients independently uniformly in [ε, 1]. In
this section we show that avg(P (E), G(E),Pε) is small for most ensembles E in
Dm

n .

Theorem 2. Fix reals ε > 0 and α > 1 and an integer m > 0. Then for large
enough n,

Pr
E∼Dm

n

(avg(P (E), G(E),Pε) ≤ α) ≥ 1− 1
n

.

A Probabilistic Analysis of the Strength of the Split and Triangle Closures 35

Remark 2. Since P (E) ⊆ T (E) ⊆ S(E) ⊆ G(E), Theorem 2 implies that S(E)
is a good approximation of T (E) and P (E) under the average-cost measure.
In fact, the same statement as Theorem 2 holds for any pair of bodies from
P (E), T (E), S(E), G(E) with the appropriate containments. We remark that the
property that the cost vector is bounded away from zero in every coordinate
is crucial in our analysis. This is needed because the ratio in (2) can become
ill-defined in the presence of rays of zero cost.

The high level idea for proving the theorem is the following. Consider an ensemble
E = 〈f, r1, . . . , rn〉. Define f̂ as the integral point closest to f in l2 norm. It is
not difficult to see that for every c ∈ Pε, min{cs : s ∈ P (E)} is lower bounded
by ε|f̂ − f |, and this is achieved when the ensemble has the ray (f̂ − f)/|f̂ − f |
with cost ε. We prove that this lower bound also holds for minimizing over
G(E) instead of P (E). In addition, we show that for most ensembles E , there are
enough rays similar to f̂−f that have small cost. This allows us to upper bound
min{cs : s ∈ P (E)} by roughly ε|f̂ − f | for most of the ensembles, which gives
the desired result.

We start by proving the upper bound. For that, we need to study a specific
subset of the ensembles in Dm

n . We remark that the bounds presented are not
optimized and were simplified in order to allow a clearer presentation.

4.1 (β, k)-Good Ensembles

Consider an ensemble E = 〈f, r1, . . . , rn〉. At a high level, we consider special
regions in Rm ‘around’ f − f̂ , whose size depends on a parameter β > 0; then
an ensemble is (β, k)-good if it has at least k rays in each of these regions.

To make this precise, let Sm−1 denote the (m − 1)-dimensional unit sphere
in Rm. Define t = f̂ − f and let ρ be a rotation of Rm which maps t/|t| into
em. Let C̄(β) be the cap of the hypersphere Sm−1 consisting of all unit vectors
with dot product at least β with em. We also define H+

i as the halfspace given
by {x ∈ Rm : xi ≥ 0} and H−

i = {x ∈ Rm : xi ≤ 0}. We use the halfspaces
H+

i and H−
i to partition C̄(β) into 2m−1 parts. That is, for I ⊆ [m − 1], let

C̄I(β) = C̄(β)∩ (
⋂

i∈I H+
i)∩ (

⋂
i∈[m−1]\I H−

i). Finally, let C(β) = ρ−1C̄(β) and
CI(β) = ρ−1C̄I(β), that is, the sets obtained by applying the inverse rotation
ρ−1.

Using these structures, we say that E is (β, k)-good if for every I ⊆ [m − 1]
there are at least k rays ri in CI(β). The main property of such ensembles is
that they allow us to use the following lemma.

Lemma 5. Let R be a subset of the rays of E such that R ∩ CI(β) �= ∅ for
all I ⊆ [m − 1]. Then there is a solution s ∈ P (E) supported in R such that∑n

i=1 si ≤ |t|
β .

Proof. Without loss of generality assume that R∩C(β) = {r1, r2, . . . , rn′}. First,
one can use Farkas’ Lemma and the hypothesis R∩CI(β) �= ∅ for all I ⊆ [m−1]
to show that t ∈ cone(R ∩C(β)) (see full version of the paper for more details).

36 A. Basu, G. Cornuéjols, and M. Molinaro

So consider s1, s2, . . . , sn′ ≥ 0 with
∑n′

i=1 sir
i = t. We claim that

∑n′

i=1 si ≤
|t|/β. To see this, first notice that by definition of C(β) we have r(t/|t|) ≥ β for all
r ∈ C(β). Then multiplying the equation

∑n′

i=1 sir
i = t by t gives

∑n′

i=1 siβ|t| ≤∑n′

i=1 sir
it = tt = |t|2 and the claim follows.

Since f + t = f̂ is integral we obtain that s is a feasible solution for P (E).
This concludes the proof of the lemma.

Using this lemma we can prove an upper bound on optimizing a cost vector in
Pε over P (E).

Lemma 6. Fix β, ε > 0 and an integer k ≥ 0. Consider a (β, k)-good ensemble
E and let z(c) = min{cs : s ∈ P (E)}. Then

Ec∼Pε [z(c)] ≤ |t|
(

p
ε

β2
+ (1 − p)

1
β

)
,

where

p = 1− 2m−1

(
1− ε/β

1− ε

)k

.

Proof. Consider a vector c which satisfies the following property: (*) for each
I ⊆ [m − 1] there is a ray in CI(β) which has cost w.r.t c at most ε/β. Then
employing Lemma 5 we obtain that z(c) ≤ |t|ε/β2. Similarly, for a general vector
c ∈ [ε, 1]m we have the bound z(c) ≤ |t|/β.

Now consider a vector c ∼ Pε. For a fixed I, the probability that every ray in
E ∩ CI(β) has cost greater than ε/β is at most ((1 − ε/β)/(1 − ε))k. By union
bound, c satisfies property (*) with probability at least

1− 2m−1

(
1− ε/β

1− ε

)k

.

The lemma then follows by employing the bounds on z(c).

4.2 Probability of Obtaining a (β, k)-Good Ensemble

In this section we estimate the probability that a random ensemble in Dm
n is

(β, k)-good. Let

k̄
.= n

area(C̄∅(β))
area(Sm−1)

−
√

n(ln n + m− 1)
2

. (6)

Using some Chernoff bound arguments, we can show the following lemma.

Lemma 7. Consider a random ensemble E ∼ Dm
n and let k̄ be defined as in (6).

If k̄ ≥ 0, then

Pr
(E is (β, k̄)-good

) ≥ 1− 1
n

.

A Probabilistic Analysis of the Strength of the Split and Triangle Closures 37

4.3 Lower Bound for Simple Splits

In this section we show that ε|t| is also a lower bound for optimizing any vector
in [ε, 1]n over G(E).

Lemma 8. Fix ε > 0 and consider an ensemble E in Dm
n and a vector c ∈ [ε, 1]n.

For t defined as before, we have

min{cs : s ∈ G(E)} ≥ ε|t|.
Proof. To prove this lemma, let Si ≡

∑n
j=1 ψi(rj)sj ≥ 1 be the inequality for

P (E) obtained from the simple split {x : 0 ≤ xi ≤ 1}. Clearly Si is valid for
G(E). Using the definition of Minkowski’s functional, it is not difficult to see
that

ψi(rj) =
rj
i

[rj
i ≥ 0]− fi

,

where [rj
i ≥ 0] is the function that is equal to 1 if rj

i ≥ 0 and equal to 0 otherwise.
Now consider the inequality

∑n
j=1 ψ(rj)sj ≥ 1 where

ψ(rj) =
∑m

i=1(f̂i − fi)2ψi(rj)∑m
i=1(f̂i − fi)2

.

This inequality is a non-negative combination of the inequalities Si and therefore
is valid for G(E). We claim that for any c ∈ [ε, 1]m, min{cs :

∑n
j=1 ψ(rj)sj ≥

1} ≥ ε|t|, which will give the desired lower bound on optimizing c over G(E).
To prove the claim recall that

∑m
i=1(f̂i − fi)2 = |t|2 and notice that

ψ(rj) =
1
|t|2

m∑
i=1

(f̂i − fi)2ψi(rj) =
1
|t|2

m∑
i=1

(f̂i − fi)2r
j
i

[rj
i ≥ 0]− fi

.

Employing the Cauchy-Schwarz inequality and using the fact that |rj | = 1, we get

ψ(rj) ≤ 1
|t|2 |r

j |

√√√√ m∑
i=1

(
(f̂i − fi)2

[rj
i ≥ 0]− fi

)2

≤ 1
|t|2

√√√√ m∑
i=1

(f̂i − fi)4

([rj
i ≥ 0]− fi)2

.

However, since f̂ is the integral point closest to f , for all i it holds that (f̂i−fi)2 ≤
([rj

i ≥ 0]− fi)2. Employing this observation on the previous displayed inequality
gives ψ(rj) ≤ 1/|t|. Therefore, any s satisfying

∑n
j=1 ψ(rj)sj ≥ 1 also satisfies∑n

j=1 sj ≥ |t|. The claim then follows from the fact that every coordinate of c is
lower bounded by ε. This concludes the proof of Lemma 8.

4.4 Proof of Theorem 2

Recall that ε, α and m are fixed. Let β be the minimum between
√

2/α and a
positive constant strictly less than 1; this guarantees that C̄∅(β) > 0. Consider

38 A. Basu, G. Cornuéjols, and M. Molinaro

a large enough positive integer n. Let E be a (β, k̄)-good ensemble in Dm
n , where

k̄ is defined as in (6). Notice that k̄, as a function of n, has asymptotic behavior
Ω(n). We assume that n is large enough so that k̄ > 0.

Now let us consider Lemma 6 with k = k̄. The value p defined in this lemma is
also function of n, now with asymptotic behavior 1−o(1). Thus, if n is chosen suf-
ficiently large we get 1−p ≤ εβα/2 and hence Ec∼Pε [z(c)] ≤ |t|εα. If in addition
we use the lower bound from Lemma 8, we obtain that avg(P (E), G(E),Pε) ≤ α.
The theorem then follows from the fact that an ensemble in Dm

n is (β, k̄)-good
with probability at least 1− 1/n, according to Lemma 7.

References

1. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two
rows of a simplex tableau. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007.
LNCS, vol. 4513, pp. 1–15. Springer, Heidelberg (2007)

2. Balas, E.: Intersection cuts-a new type of cutting planes for integer programming.
Operations Research 19(1), 19–39 (1971)

3. Balas, E., Qualizza, A.: Personal communication
4. Balas, E., Saxena, A.: Optimizing over the split closure. Mathematical Program-

ming, Series A 113(2), 219–240 (2008)
5. Basu, A., Bonami, P., Cornuéjols, G., Margot, F.: Experiments with two-row

cuts from degenerate tableaux. To appear in INFORMS Journal on Computing,
doi:10.1287/ijoc.1100.0437

6. Basu, A., Bonami, P., Cornuéjols, G., Margot, F.: On the relative strength of split,
triangle and quadrilateral cuts. Mathematical Programming, Series A 126, 281–314
(2011)

7. Basu, A., Cornuéjols, G., Molinaro, M.: A probabilistic comparison of split, triangle
and quadrilateral cuts for two row mixed-integer programs (extended version),
http://www.optimization-online.org/DB_HTML/2010/10/2770.html

8. Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer constraints.
Mathematics of Operations Research 34(3), 538–546 (2009)

9. Cornuéjols, G., Margot, F.: On the facets of mixed integer programs with two
integer variables and two constraints. Mathematical Programming, Series A 120,
429–456 (2009)

10. Dey, S.S., Lodi, A., Tramontani, A., Wolsey, L.A.: Experiments with two row
tableau cuts. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS,
vol. 6080, pp. 424–437. Springer, Heidelberg (2010)

11. Espinoza, D.G.: Computing with multi-row gomory cuts. Operations Research Let-
ters 38(2), 115–120 (2010)

12. Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra
and its Applications 2(4), 451–558 (1969)

13. He, Q., Ahmed, S., Nemhauser, G.: A probabilistic comparison of split and type
1 triangle cuts for two row mixed-integer programs. Working paper, School of
OR&IE, Goergia Tech (2009), http://www.optimization-online.org/DB_HTML/
2010/06/2636.html

14. Del Pia, A., Wagner, C., Weismantel, R.: A probabilistic comparison of the strength
of split, triangle, and quadrilateral cuts. Working paper, ETH Zürich (September
2010), http://arxiv.org/abs/1009.5253

http://www.optimization-online.org/DB_HTML/2010/10/2770.html
http://www.optimization-online.org/DB_HTML/2010/06/2636.html
http://www.optimization-online.org/DB_HTML/2010/06/2636.html
http://arxiv.org/abs/1009.5253

Partial Convexification of General MIPs

by Dantzig-Wolfe Reformulation

Martin Bergner1,�, Alberto Caprara2, Fabio Furini1,
Marco E. Lübbecke1, Enrico Malaguti2, and Emiliano Traversi2

1 Chair of Operations Research, RWTH Aachen University,
Templergraben 64, 52056 Aachen, Germany

{martin.bergner,fabio.furini,marco.luebbecke}@rwth-aachen.de
2 DEIS, Università di Bologna,

Viale Risorgimento 2, 40136 Bologna, Italy
{alberto.caprara,enrico.malaguti,emiliano.traversi2}@unibo.it

Abstract. Dantzig-Wolfe decomposition is well-known to provide strong
dual bounds for specially structured mixed integer programs (MIPs) in
practice. However, the method is not implemented in any state-of-the-art
MIP solver: it needs tailoring to the particular problem; the decomposi-
tion must be determined from the typical bordered block-diagonal matrix
structure; the resulting column generation subproblems must be solved
efficiently; etc. We provide a computational proof-of-concept that the
process can be automated in principle, and that strong dual bounds can
be obtained on general MIPs for which a solution by a decomposition
has not been the first choice. We perform an extensive computational
study on the 0-1 dynamic knapsack problem (without block-diagonal
structure) and on general MIPLIB2003 instances. Our results support
that Dantzig-Wolfe reformulation may hold more promise as a general-
purpose tool than previously acknowledged by the research community.

1 Introduction

A considerable, if not the major, part of the computational (mixed) integer pro-
gramming machinery is about outer approximating the convex hull of integer
feasible points (or mixed integer sets). The addition of valid inequalities, a.k.a.
cutting planes, is the traditional general-purpose device which proved powerful
in strengthening the linear programming relaxations. Given that the integer hull
is the ultimate object of desire, we ask: Why don’t we just work with it? Being
fully aware of the boldness of this question, we want to seriously re-consider it
by explicitly constructing parts of the integer hull via a generic Dantzig-Wolfe
type reformulation (decomposition). This extends previous partial convexifica-
tion approaches which only separate a subset of facets from the integer hull.

Dantzig-Wolfe reformulation (DWR) ofmixed integer programs (MIPs) became
a computationally very successful—sometimes the only applicable—approach to
� Supported by the German Research Foundation (DFG) as part of the Priority Pro-

gram “Algorithm Engineering” under grant no. LU770/4-1.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 39–51, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

40 M. Bergner et al.

producing high-quality solutions for well-structured combinatorial optimization
problems like vehicle routing, cutting stock, p-median, generalized assignment,
and many others. Their common structure is the (bordered) block-diagonal form
of the coefficient matrix, the traditional realm of Dantzig-Wolfe decomposition.
Be aware that so far its use is tailored to the application and far from being a
general-purpose tool: It is the user who does not only know that there is an ex-
ploitable structure present but also what it looks like, and how to exploit it algo-
rithmically. In particular in view of the automatism with which general-purpose
cutting planes are separated in all serious MIP solvers, this is an unsatisfactory
situation. This raises several research questions of increasing ambition:

– When the MIP contains a known structure suitable to Dantzig-Wolfe refor-
mulation, can an algorithm detect and exploit it?

– When the contained structure is unknown (to be stated more precisely later),
can it still be detected and exploited?

– When it is known that the MIP does not contain a structure amenable to
DWR in the traditional sense, can DWR still be a useful computational tool?

Re-arranging matrices into particular forms is a well-known topic. However, as
we will see, when there are several choices, a “good” one may not be obvious to
find at all. Besides our work, we are not aware of any attempts to systematically
answer the first two questions in a DWR context, and it can be taken as a fact
that the research community is very inclined to answer the last, and most in-
teresting question in the negative. In our computational study on several of the
hardest MIPLIB2003 instances, we do not only suggest first attempts to accom-
plish the structure detection in a DWR context. We also support the DWR’s
potential of becoming a general-purpose method for improving dual bounds by
giving surprisingly encouraging computational results. Of course, at the moment,
our work is not intended to produce a competitive tool, but to provide a proof-
of-concept and demonstrate that the direction is promising. The main findings
of our work can be summarized as follows:

– A known or hidden double-bordered block-diagonal (so-called: arrowhead)
matrix structure can be effectively recovered and prepared for use in DWR
by a suitable use of (hyper-)graph partitioning algorithms.

– For the dynamic 0-1 knapsack problem, the natural formulation of which
does not expose any bordered block-diagonal structure, we give impressive
computational results which demonstrate the potential of our method for
closing the integrality gap.

– For some of the hardest MIPLIB2003 instances our reformulations produce
stronger dual bounds than CPLEX 12.2 with default cutting planes enabled.

– We provide a general-purpose implementation which reads an LP file and
performs the detection, the reformulation, and the column generation itself
in order to obtain a strong LP relaxation, with only mild user interaction.

The flow of the paper is as follows: We briefly introduce the concept of partial
convexification, and the overall approach. This is then applied first to a problem

Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation 41

not containing a matrix structure directly amenable to classical Dantzig-Wolfe
reformulation, and then to general MIPs. We report on extensive computational
experiments and close with a discussion of our results.

1.1 Partial Convexification and Dantzig-Wolfe Reformulations

Consider a MIP of the form

max{ctx : Ax ≤ b, Dx ≤ e, x ∈ Zn−q ×Qq} . (1)

Let P := {x ∈ Qn : Dx ≤ e} and PIP := conv{P ∩ Zn−q × Qq} denote the LP
relaxation and the integer hull with respect to constraints Dx ≤ e, respectively.
We assume for ease of presentation that P is bounded. In the classical Dantzig-
Wolfe reformulation of constraints Dx ≤ e we express x ∈ PIP as a convex
combination of the vertices V of PIP , which leads to

max{ctx : Ax ≤ b, x =
∑
v∈V

λvv,
∑
v∈V

λv = 1, λ ≥ 0, x ∈ Zn−q ×Qq} . (2)

It is well-known that the resulting LP relaxation is potentially stronger than that
of (1) when PIP � P , which is a main motivation of performing the reformulation
in the first place. This partial convexification with respect to the constraints
Dx ≤ e corresponds to adding (implicitly) all valid inequalities for PIP to (1),
which in a sense is the best one can hope for.

The reformulated MIP (2) has fewer constraints remaining, the so-called mas-
ter constraints Ax ≤ b, plus the convexity constraint and the constraints linking
the original x variables to the extended λ variables. On the downside of it, in
general MIP (2) has an exponential number of λ variables, so its LP relaxation
is solved by column generation, where the pricing or slave MIP problem to check
whether there are variables with positive reduced cost to be added to the current
master LP problem calls for the optimization of a linear objective function over
PIP . This slave MIP can either be solved by a general-purpose solver or by a
tailored algorithm to exploit a specific structure, if known.

In the classical DWR setting, k disjoint sets of constraints are partially con-
vexified, namely when the matrix D has block-diagonal form

D =

⎡⎢⎢⎢⎣
D1

D2

. . .
Dk

⎤⎥⎥⎥⎦ ,

where Di ∈ Qmi×ni for i = 1, . . . , k. In other words, Dx ≤ e decomposes into
Dixi ≤ ei (i = 1, . . . , k), where x = (x1, x2, . . . , xk), with xi being an ni-vector
for i = 1, . . . , k. Every Dixi ≤ ei individually is partially convexified in the
above spirit. We call k the number of blocks of the reformulation. Often enough,

42 M. Bergner et al.

constraints are not separable by variable sets as above, and a double-bordered
block-diagonal (or arrowhead) form is the most specific structure we can hope
for, i.e. the constraint matrix of (1) looks like this⎡⎢⎢⎢⎢⎢⎣

D1 F 1

D2 F 2

. . .
...

Dk F k

A1 A2 · · · Ak G

⎤⎥⎥⎥⎥⎥⎦ .

The constraints associated with the rows of A1 are called the coupling constraints
and the variables associated with the columns of F 1 are called the linking vari-
ables. One can obtain a form without linking variables (and with additional link-
ing constraints) by replacing each linking variable by one copy for each nonzero
entry of the associated column and adding constraints imposing that all these
copies be equal (see e.g., [13]). Then we are back to the above traditional setting.

1.2 Related Literature

For a general background on Dantzig-Wolfe reformulation of MIPs we refer to the
recent survey [15]. The notion of partial convexification has been used before.
For instance, Sherali et al. [12] choose small subsets of integer variables (and
usually only one constraint) to directly separate cutting planes from the partial
convexification PIP . Our approach goes far beyond that in terms of number of
constraints and variables involved in the reformulation.

There are several implementations which perform a Dantzig-Wolfe reformula-
tion of a general MIP, and handle the resulting column generation subproblems
in a generic way, like BaPCod [14], DIP [11], G12 [10], and GCG [8]. In [8] it is shown
that a generic reformulation algorithm performs well when a block-diagonal ma-
trix structure is known and given to the algorithm. Tebboth, in his thesis [13],
derived some decomposable matrix structures from the problem given in a spe-
cific modeling language. A similar approach is taken in the G12 project. However,
we do not know of a code which automatically detects a possible structure just
from the matrix, that is well-suited and helpful for a Dantzig-Wolfe reformulation
(or creates one by variable splitting), let alone evaluates or exploits it.

Bordered block-diagonal matrices play an important role in, e.g., numerical
linear algebra. One typically tries to identify a fixed number of blocks of almost
equal size with as few constraints in the border as possible. The motivation is to
prepare a matrix for parallel computation, like for solving linear equation sys-
tems, see, e.g., [2], and the references therein. We are not aware of any attempts
to evaluate the quality of the re-arranged matrices in terms of suitability for
DWR.

We would also like to note the following possible connection to multi-row cuts
which recently received some attention. Computational experiments [6] suggest
that obtaining valid inequalities from more than one row of the simplex tableau
holds some potential. However, in order to use this potential it seems to be

Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation 43

imperative to have a criterion for which rows to select. As our choice of which
rows to convexify is equally important for similar reasons, the lessons we learn
may help there as well.

2 Almost Automatic Detection of an Arrowhead Form

As mentioned, permuting a matrix A into arrowhead form is a common topic in
numerical linear algebra. There is a folklore connection between a matrix and an
associated (hyper-)graph which is also used in the graph partitioning approach
by Ferris and Horn [7]. We first briefly illustrate their algorithm and then adapt
it to our purpose of finding tighter LP relaxations of MIPs through DWR.

Assume the number k of blocks is given. Consider the bipartite graph G with
one node ri associated with each row i of A, one node cj associated with each
column j of A, and one edge (ri, cj) whenever aij �= 0. Assuming the number
m+n of nodes is a multiple of k, find a min k-equicut of G, i.e. partition its node
set into k subsets of equal size so that the number of edges in the cut, i.e. that
join nodes in different subsets, is minimized. Finally, remove a set of nodes of G
so as to ensure, for the remaining graph, that no edge joins nodes in different
subsets of the partition. This yields the final arrowhead form: the row nodes
removed represent the coupling constraints, the column nodes removed represent
the linking variables, and the remaining row and column nodes in the ith subset
of the partition define the submatrix Di. In practice, min k-equicut is solved
heuristically by using Metis which is an implementation of the multilevel graph
partitioning algorithm in [9]. The final removal is done greedily by iteratively
removing the node joined to nodes in other subsets by the largest number of
edges. Moreover, to eliminate the need to require that the number of nodes be
a multiple of k or to insist in having subsets of the same size, dummy nodes
disconnected from the rest of the graph are added before doing the partitioning.
This imposes only an upper bound on the size of each subset and on the number
of subsets (note that subsets with dummy nodes only are irrelevant in the end).

We use a variant of this method because we would like to avoid the final
removal phase. Specifically, we define the hypergraph H with a node for each
nonzero entry of A. There is a constraint hyperedge joining all nodes for nonzero
entries in the ith row of A. Moreover, there is a variable hyperedge joining all
nodes for nonzero entries in the jth column of A. To each hyperedge we associate
a cost to penalize the use of coupling constraints and linking variables.

Then, we find a heuristic min k-equicut of H , now with the objective of min-
imizing the sum of the costs of the hyperedges in the cut, i.e. that join nodes
in different subsets of the partition. The solution already defines the arrowhead
form, as the constraint hyperedges in the cut represent the coupling constraints,
the variable hyperedges in the cut represent the linking variables, and the re-
maining constraint and variable hyperedges joining only nodes in the ith subset
of the partition define the submatrix Di. Also in this case we use dummy nodes
for allowing for unequal block sizes, 20% proved useful.

44 M. Bergner et al.

(a) original 10teams (b) detected structure

Fig. 1. (a) Matrix structure directly from the LP file (10teams) and (b) with a bordered
block-diagonal structure detected by our algorithm

3 Computational Results

3.1 Notes on the Implementation and Experimental Setup

All experiments were done on Intel i7 quad-core PCs (2.67MHz, 8GB memory)
running Linux 2.6.34 (single thread). As MIP and LP solver we used CPLEX 12.2
(single thread). Two independent jobs were run in parallel which has an impact
on the CPU time of about 3% in our experiments. The min k-equicut problems to
determine a reformulation (see Sect. 2) are heuristically solved using Hmetis [9].

Concerning the implementation, the overall algorithm detects an arrowhead
form in the matrix, splits linking variables in order to obtain a bordered block-
diagonal form, and then performs a Dantzig-Wolfe reformulation of the resulting
blocks. Certain parameters must be given to the algorithm like the number k
of blocks or the weights of the hyperedges in the k-equicut problem. We ex-
perimented with very few different settings and selected good decompositions
instance dependent to demonstrate the concept. In the full version of this paper
we plan to show that the whole process can be automated without any user
interaction at all.

3.2 A Class of Structured MIPs without Block-Diagonal Form

We first consider a class of problems which has a natural MIP formulation with
a coefficient matrix which is very structured, but not bordered block-diagonal
at all. A dynamic MIP extends a MIP

max{ctx : Ax ≤ b, x ∈ Zn−q ×Qq}
by a time horizon [0, T] and a time interval [sj , fj] ⊆ [0, T] in which each variable
xj is active. In the dynamic MIP all constraints must be satisfied at any instant
in the time horizon restricting attention to the variables that are active at that
instant (with the other variables fixed to 0). It is elementary to observe that
attention can be restricted to the instants I := {s1, . . . , sn, f1, . . . , fn} in which
variables become active or inactive, yielding the following MIP formulation of
the dynamic MIP:

max{ctx : Aix ≤ b (i ∈ I), x ∈ Zn−q ×Qq}, (3)

Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation 45

where Ai is obtained from A by setting to 0 all the entries of columns associated
with variables not active at i ∈ I.

A simple example of a dynamic MIP is the dynamic 0-1 knapsack problem,
in which q = 0 and Ax ≤ b takes the form atx ≤ b, 0 ≤ x ≤ 1 for some
a ∈ Qn

+ and b ∈ Q+. In words, we have a set of items each with a size aj and
active for time interval [sj , fj] and a container of capacity b and we must select
a set of items to pack in the container (for the whole interval in which they are
active) so that the total size packed in each instant is at most b. This problem is
also known as resource allocation or unsplittable flow on a line. The latter name
is due to the fact that the time dimension may in fact be a (one-dimensional)
spatial dimension, as it is the case in the following real-world application that we
encountered in railway service design [5]. We are given a railway corridor with m
stations 1, . . . , m and n railcars, the jth having weight aj and to be transported
from station sj to station fj , gaining profit cj in this case. Moreover, we have
a train that travels from station 1 to station m and can carry at the same time
railcars for a total weight b. The problem is to decide which railcars the train
carries in order to maximize the profit, and is clearly a dynamic 0-1 knapsack
problem.

The dynamic 0-1 knapsack problem was recently proven to be strongly NP-
hard and approximable within a constant [3] but a polynomial-time approxima-
tion scheme is not known.

In Table 1 we report the results obtained on a hard representative instance in
each of the 0-1 dynamic knapsack classes considered in [4] when the parameter
k varies. This parameter is chosen in such a way to enforce a decomposition in
blocks of equal size of 128, 64, and 32 constraints each (this proved to provide best
bounds as compared to computation times; for a larger number of much smaller
blocks, computation times went up considerably). As one can see, on average,
the DWR approach is able to close almost all of the root node’s integrality
gap. However, it takes an order of magnitude longer to obtain these results
(see below). Nonetheless, the excellent quality of the dual bound helps in faster
obtaining an integer optimal solution, as we see next.

Even though we do not wish to advocate for a principal “battle” of branch-
and-price “versus” branch-and-cut (because branch-price-and-cut is probably the
most versatile computational tool anyway), the direct comparison is instructive.
To this end, we developed a very basic depth-first branch-and-price algorithm.
Each node’s linear programming relaxation is solved via DWR. We branch on
the most fractional original variable and compare this setting to CPLEX 12.2
default branch-and-cut. Table 2 lists the results. We report the time required
by branch-and-bound and, in case this exceeds the time limit of one hour, the
relative gap between the best dual bound and the best primal solution found.
The table shows the clear advantage of using the DWR. All instances can be
solved to optimality within minutes, whereas CPLEX reaches the one-hour time
limit for all instances except I65 (where profits equal volume). The results on
the other instances in the six classes are analogous.

46 M. Bergner et al.

Table 1. Quality of the dual bound obtained by our DWR approach on the dynamic
0-1 knapsack problem, in comparison to a state-of-the-art IP solver. Listed are the
instance name, the number of constraints and variables, the number k of blocks, the
number � of linking variables, and number c of coupling constraints. Under the heading
LP one finds the relative integrality gap of the LP relaxation (in percent). The relative
integrality gaps of DWR and CPLEX with default cuts applied are listed under DWR and
CPLEX+cuts, respectively. The percentage of the LP gap closed is given under %closed
for both approaches. The last row lists arithmetic means of the columns.

LP DWR CPLEX+cuts

instance rows cols k � c gap gap %closed gap %closed

I45 1280 3433 10 243 0 15.720 0.002 99.987 1.306 91.695

I55 1280 8266 10 189 0 13.944 0.000 100.000 0.638 95.421

I65 1280 3434 10 243 0 11.182 0.011 99.903 0.098 99.127

I75 1280 4771 10 199 0 13.783 0.026 99.808 0.796 94.228

I85 1280 8656 10 159 0 13.057 0.001 99.994 0.410 96.860

I95 1280 5209 10 243 0 12.306 0.000 100.000 0.756 93.860

I45 1280 3433 20 505 0 15.720 0.007 99.956 1.306 91.695

I55 1280 8266 20 402 0 13.944 0.029 99.793 0.638 95.421

I65 1280 3434 20 509 0 11.182 0.009 99.915 0.098 99.127

I75 1280 4771 20 430 0 13.783 0.009 99.934 0.796 94.228

I85 1280 8656 20 344 0 13.057 0.001 99.994 0.410 96.860

I95 1280 5209 20 515 0 12.306 0.000 100.000 0.756 93.860

I45 1280 3433 40 977 0 15.720 0.047 99.703 1.306 91.695

I55 1280 8266 40 825 0 13.944 0.020 99.857 0.638 95.421

I65 1280 3434 40 976 0 11.182 0.000 100.000 0.098 99.127

I75 1280 4771 40 880 1 13.783 0.031 99.775 0.796 94.228

I85 1280 8656 40 756 0 13.057 0.025 99.807 0.410 96.860

I95 1280 5209 40 1041 0 12.306 0.004 99.970 0.756 93.860

means 13.332 0.012 99.911 0.667 95.199

3.3 MIPLIB2003

In order to assess the generality of the proposed method we tested the algorithm
on MIPLIB2003 instances [1]. We selected a subset of instances, for which (a) the
optimum is known, (b) the density is between 0.05% and 5%, (c) the number of
non-zeros is not larger than 20,000, and (d) the percentage of discrete variables
is at least 20%. We are consistently capable of improving over the LP relaxation
in terms of the dual bound. Moreover, on average, our DWR approach closes a
larger percentage of the integrality gap than CPLEX with default cuts applied,
see Table 3. We do not report on computation times because the experience is
the same as for the RAP (and not the focus here): Often, we need an order of
magnitude more time (even though occasionally, we are competitive with CPLEX).

Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation 47

Table 2. Comparison of the dual bounds obtainable by branch-and-price as compared
to branch-and-cut for the dynamic 0-1 knapsack problem, and the computation times
needed. All instances are solved to optimality by branch-and-price. Listed are the
instance name, the times to obtain the various dual bounds: The linear relaxation from
DWR, the linear relaxation with CPLEX and default cuts applied, the optimal solution
with branch-and-price (DWR), and the time needed with branch-and-cut (CPLEX). The
time limit (TL) was set to one hour. The final columns list the remaining integrality
gap of CPLEX at time limit.

time CPLEX B&B

instance DWR CPLEX+cuts DWR B&P CPLEX B&B gap %closed

I45 33.75 2.72 111.06 TL 0.35 97.79

I55 179.73 4.53 2483.31 TL 0.16 98.87

I65 7.31 1.50 16.28 1.67 0.00 100.00

I75 30.02 2.63 97.84 TL 0.03 99.80

I85 55.62 4.53 105.59 1357.88 0.00 100.00

I95 29.21 3.01 29.22 TL 0.05 99.55

means 55.94 3.15 473.88 2626.59 0.10 99.34

Choosing a good decomposition. We experimented with a few parameter settings
for our algorithm to detect an arrowhead structure. Depending on these settings,
different arrowhead forms are produced (for the same input matrix), and these
perform differently in the subsequent Dantzig-Wolfe reformulation. Parameters
are (a) the number k of blocks, and the penalties for hyperedges which (b)
split continuous and (c) discrete variables, as well as (d) penalties for hyper-
edges which couple constraints. We experimented with k ∈ {2, 3, 4, 5}, penalized
(throughout all experiments) hyperedges corresponding to continuous and dis-
crete with cost 1 and 2, respectively; and finally we used two different settings for
penalizing coupling constraints: mildly (cost 5) and extremely (cost 105). Every
combination was applied to each instance, and the best result in terms of dual
bound is reported. In other words, in this paper, we give only a proof-of-concept
that a good decomposition can be chosen. How to find a good decomposition,
and even the meaning of “good,” are highly non-trivial issues. E.g., the “right”
number k of blocks is far from obvious for instances that do not have a natural
(bordered) block-diagonal form. We have preliminary computational experience
that a “visually appealing” decomposition performs better than others. We give
details on measures for this intuition, and on how to automate the detection and
decomposition process in the full version.

Table 3 shows that in almost all cases the dual bound found by our DWR
approach is much better than that of the continuous relaxation, and often even
improves on CPLEX’s root node bounds with default cuts applied. The time re-
quired to compute our bound is not competitive with the time required by the
general-purpose solver to solve the instance, but there remains the possibility
that for some instances the significantly stronger dual bound helps in solving
the instance to integer optimality.

48 M. Bergner et al.

Table 3. Comparison of the dual bounds provided by our automatic DWR reformu-
lation approach and the general-purpose MIP solver CPLEX for 23 selected instances of
MIPLIB2003. The headings have the same meanings as in Table 1.

LP DWR CPLEX+cuts

instance rows cols k � c gap gap %closed gap %closed

10teams 2025 230 4 0 107 0.758 0.000 100.000 0.000 100.000

aflow30a 842 479 2 0 28 15.098 14.700 2.634 5.353 64.547

aflow40b 2728 1442 5 0 39 13.899 13.899 0.000 6.471 53.441

fiber 1298 363 2 2 21 61.550 1.067 98.266 1.894 96.923

fixnet6 878 478 4 3 14 69.850 18.882 72.967 6.064 91.318

gesa2-o 1224 1248 5 65 0 1.177 0.000 99.986 0.207 82.379

gesa2 1224 1392 3 65 0 1.177 0.000 99.986 0.100 91.507

glass4 322 396 3 16 0 33.334 26.713 19.862 33.334 0.000

harp2 2993 112 5 0 39 0.614 0.614 0.000 0.371 39.599

manna81 3321 6480 2 78 0 1.010 0.000 100.000 0.000 100.000

mkc 5325 3411 2 0 29 8.514 0.153 98.200 3.778 55.625

modglob 422 291 2 18 3 1.493 0.000 100.000 0.142 90.480

noswot 128 182 5 21 3 4.878 0.488 90.000 4.878 0.000

opt1217 769 64 4 0 16 25.134 25.134 0.000 0.000 100.000

p2756 2756 755 4 39 13 13.932 0.269 98.070 7.467 46.407

pp08a 240 136 2 16 0 62.608 2.172 96.530 2.525 95.967

pp08aCUTS 240 246 2 16 0 25.434 2.172 91.459 3.823 84.968

rout 556 291 5 0 16 8.881 0.681 92.335 8.858 0.262

set1ch 712 492 3 20 8 41.311 2.086 94.950 0.923 97.765

timtab1 397 171 2 13 0 96.248 14.473 84.963 39.050 59.428

timtab2 675 294 4 25 0 92.377 24.426 73.559 46.004 50.200

tr12-30 1080 750 3 24 0 89.119 2.713 96.955 0.682 99.235

vpm2 378 234 2 7 0 28.078 1.706 93.924 6.443 77.053

arithm. mean 30.281 6.624 74.115 7.755 68.570

4 Discussion

We have performed the first systematic computational study with an automatic
partial convexification by a Dantzig-Wolfe type reformulation of subsets of rows
of arbitrary mixed integer programs. While it is clear from theory that a partial
convexification can improve the dual bound, it has not been considered a gener-
ally useful computational tool in practice. Thus, the most unexpected outcome
of our study is that already a fairly basic implementation, combined with a care-
ful choice of the decomposition, is actually capable of competing with or even
beating a state-of-the-art MIP solver in terms of the root node dual bound. In-
terestingly, to the best of our knowledge for the first time, the “careful choice of
the decomposition” is done almost entirely by an algorithm, only mildly helped
by the user. A fully automated detection will be presented in the full paper.

Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation 49

(a) aflow30a (b) fiber

(c) gesa2 (d) glass4

(e) harp2 (f) mkc

(g) noswot (h) p2756

(i) set1ch (j) timtab1

Fig. 2. Detected matrix structures for selected MIPLIB2003 instances

50 M. Bergner et al.

One should not deny that an inner approximation of the integer hull still
has considerable disadvantages, as the process is not reversible: we cannot eas-
ily get rid of the extended formulation. Also, the choice of the decomposi-
tion is final (at present). This “single shot” contrasts cutting plane algorithms
which can iteratively increase the number of classes of valid inequalities con-
sidered. Therefore, one must carefully decide whether to use a DWR approach
or not. A remote goal would be to be able to make this important decision
based on the instance only. If in, say, even only a small fraction of “all” MIPs
a DWR approach pays, we would have already enriched the generic MIP
toolbox.

There are some possible immediate extensions concerning the implementa-
tion. Even though we have mainly solved the LP relaxation so far, our tool is
able to perform a true branch-and-price. Only further experimentation can show
whether the advantage in the root node can be retained throughout the search
tree, not only for dynamic MIPs but also for general MIPs (it is also conceivable
that an advantage becomes visible only further down the tree). If one is only
interested in a strong dual bound, the addition of generic cutting planes is a
natural next step.

All the questions initially posed in the introduction are computationally and
conceptually extremely hard, and at present one cannot hope for conclusive
answers to any of them. We therefore think that our work spawns a number of
interesting research directions worth pursuing further.

1. The most important task, both from a theoretical and a practical point of
view, is to characterize a good decomposition. This can also help in quickly
deciding whether it is worth trying a reformulation or not.

2. We have seen that the matrix needs not contain any (known) apparent
structure in order to make the method perform well. In particular our third
question from the introduction needs re-formulation in the light of our re-
sults: what does the fact that a model is suitable for application of DWR
mean?

3. Extended formulations are a topic on its own in combinatorial optimization,
mainly used as a theoretical vehicle to obtain stronger formulations. As DWR
is a particular kind of extended formulation it is natural to ask: Can an
approach like ours turn this into a computational tool?

4. We complained that, once chosen, a decomposition is static. Is there a com-
putationally viable way for dynamically updating an extended formulation,
like our DWR?

Taking into account that state-of-the-art solvers make successful use of cutting
planes for over 15 years now, it is clear that outer approximations of the integer
hull have a prominent headway in experience over inner approximations. We
hope to have inspired further research and experimentation on the topic of this
paper.

Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation 51

References

1. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 361–
372 (2006)

2. Aykanat, C., Pinar, A., Çatalyürek, Ü.V.: Permuting sparse rectangular matrices
into block-diagonal form. SIAM J. Sci. Comput. 25, 1860–1879 (2004)

3. Bonsma, P., Schulz, J., Wiese, A.: A constant factor approximation algorithm for
unsplittable flow on paths. CoRR, abs/1102.3643 (2011)

4. Caprara, A., Furini, F., Malaguti, E.: Exact algorithms for the temporal knapsack
problem. Technical report OR-10-7, DEIS, University of Bologna (2010)

5. Caprara, A., Malaguti, E., Toth, P.: A freight service design problem for a railway
corridor. Tranportation Sci (2011) (in press)

6. Espinoza, D.G.: Computing with multi-row Gomory cuts. Oper. Res. Lett. 38,
115–120 (2010)

7. Ferris, M.C., Horn, J.D.: Partitioning mathematical programs for parallel solution.
Math. Program. 80(1), 35–61 (1998)

8. Gamrath, G., Lübbecke, M.E.: Experiments with a generic dantzig-wolfe decom-
position for integer programs. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
239–252. Springer, Heidelberg (2010)

9. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Comput. 20(1), 359–392 (1998)

10. Puchinger, J., Stuckey, P.J., Wallace, M.G., Brand, S.: Dantzig-Wolfe decomposi-
tion and branch-and-price solving in G12. Constraints 16(1), 77–99 (2011)

11. Ralphs, T.K., Galati, M.V.: DIP – decomposition for integer programming (2009),
https://projects.coin-or.org/Dip

12. Sherali, H.D., Lee, Y., Kim, Y.: Partial convexification cuts for 0-1 mixed-integer
programs. European J. Oper. Res. 165(3), 625–648 (2005)

13. Tebboth, J.R.: A Computational Study of Dantzig-Wolfe Decomposition. PhD the-
sis, University of Buckingham (2001)

14. Vanderbeck, F.: BaPCod – a generic branch-and-price code (2005),
https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod

15. Vanderbeck, F., Wolsey, L.: Reformulation and decomposition of integer programs.
In: Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R.,
Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Programming
1958–2008. Springer, Berlin (2010)

https://projects.coin-or.org/Dip
https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod

Lift-and-Project Cuts for Mixed Integer Convex

Programs

Pierre Bonami

LIF, CNRS Aix-Marseille Université, 163 avenue de Luminy - Case 901 F-13288
Marseille Cedex 9 France

pierre.bonami@lif.univ-mrs.fr

Abstract. This paper addresses the problem of generating cuts for
mixed integer nonlinear programs where the objective is linear and the
relations between the decision variables are described by convex func-
tions defining a convex feasible region. We propose a new method for
strengthening the continuous relaxations of such problems using cutting
planes. Our method can be seen as a practical implementation of the
lift-and-project technique in the nonlinear case. To derive each cut we
use a combination of a nonlinear programming subproblem and a linear
outer approximation. One of the main features of the approach is that
the subproblems solved to generate cuts are typically not more com-
plicated than the original continuous relaxation. In particular they do
not require the introduction of additional variables or nonlinearities. We
propose several strategies for using the technique and present prelimi-
nary computational evidence of its practical interest. In particular, the
cuts allow us to improve over the state of the art branch-and-bound of
the solver Bonmin, solving more problems in faster computing times on
average.

Keywords: Mixed Integer Nonlinear Programming, Disjunctive Pro-
gramming, Lift-and-Project, Cutting Planes.

1 Introduction

In this paper we consider mixed integer nonlinear programs of the form

min cT x

gi(x) ≤ 0 i = 1, . . . , m

xj ∈ ZZ j = 1, . . . , p

xj ∈ IR j = p + 1, . . . , n

(MICP)

where 1 ≤ p ≤ n, c ∈ IRn and for i = 1, . . . , m, gi : IRn → IR ∪ {+∞} is
a continuously differentiable convex function. Because of the convexity of the
function gi we call this problem a mixed integer convex program. Note that our
problem formulation does not have bounds on the variables. If any are present,
we assume that they are among the constraints gi(x) ≤ 0. Note also that any

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 52–64, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Lift-and-Project Cuts for Mixed Integer Convex Programs 53

mixed-integer minimization problem with a convex objective function and lower
or equal constraints described by convex functions can be put into the form of
(MICP) by adding a variable and putting the objective in the constraints.

MICP can be seen as a generalization of Mixed Integer Linear Programming.
It has received a sustained level of attention in recent years. In particular, a
successful line of research has been to try and extend techniques that have been
succesfull in the solution of MILPs to MICP. This has led to the design of
algorithms and solvers that can effectively solve MICPs of relatively large size
[1,12] (see also [14] for a recent survey of these efforts). One aspect that is still
missing in that context is efficient techniques for strengthening the continuous
relaxation of (MICP).

Cutting plane techniques are one of the main ingredients used to achieve that
in modern mixed-integer linear programming solvers. Among the most widely
used cuts are Gomory’s Mixed Integer cuts [22,6], Mixed Integer Rounding cuts
[27], Extended covers [10]. . .

Inspired by these methods, several cutting plane approaches have been pro-
posed for MICP. In particular, Ceria, Soares [17] and Stubbs, Mehrotra [31] have
proposed generalizations of disjunctive programming [3] and the lift-and-project
approach [5] to nonlinear convex sets and MICP. Unfortunately these approaches
require the solution of nonlinear programs in extended spaces and which feature
so called perspective functions that are not handled well by general purpose
nonlinear programming algorithms (these functions are not differentiable every-
where). Probably because of these difficulties, to the best of our knowledge, these
methods have never been tested on a large scale and are not included in solvers.
Some other approaches have been developed for specific classes of MICPs. In
particular, several methods have been proposed for MICPs where the nonlinear
constraints are conic constraints. Cezik and Iyengar [18] have generalized the
Chvátal-Gomory and lift-and-project cuts. Atamtürk and Narayanan [2] have
proposed a generalization of MIR. These approaches have given encouraging
computational results but they are restricted to specific types of problems.

Our goal in this paper is to propose a cutting plane technique for MICP that
can be applied to the general case and that is computationally good enough to be
used in solvers as an effective tool for strengthening continuous relaxations. Our
approach is closely related to lift-and-project techniques in MILP, in particular
it can be seen as a generalization of [9,11] to MICP.

Suppose that we are given to cut a point x ∈ IRn that does not satisfy the
integrality requirements of (MICP). Similarly to what is done in MILP, our
approach tries to generate one cut for each variable xj , 1 ≤ j ≤ p, such that
xj �∈ ZZ. For each xj , the cut is built in two phases. In the first phase, we solve a
nonlinear program (NLP for short) that tells us if a cut that separates x by using
the integrality of xj exists. If the answer to the first phase is yes, the second phase
builds an outer approximation of (MICP) and derives a cut from it by Linear
Programming (LP). An important property is that a cut is always generated
in the second phase if the answer to the first phase is yes and a constraint
qualification holds. Another desirable property is that the nonlinear program to

54 P. Bonami

solve in the first phase is defined in the same space as the original problem and
is typically not more difficult to solve than the continuous relaxation of (MICP).
We propose two different strategies to use this cutting plane technique and test
them within the solver Bonmin [12,13]. Our conclusions are positive in that we
are able to close a significant proportion of the integrality gap on several classes
of problems and this helps to effectively solve some hard problems faster with
branch-and-bound.

Let us note that very recently, another proposal for a practical cutting plane
approach for (MICP) has been made by Linderoth, Kılınç and Luedtke [23].
This approach and the one presented here bear some similarities but also have
some major differences. The main one, is that the approach in [23] does not use
nonlinear programming but solely relies on an outer approximation of (MICP)
refined by constraint generation. The advantage of [23] is that it may be more
lightweight in some cases but the disadvantage is that the constraint generation
can have very slow convergence properties. We benefit from the good convergence
properties offered by sophisticated nonlinear programming algorithms.

The paper is organized as follows. In Sect. 2, we outline our procedure for
generating each cut. In Sect. 3, we present in details the NLP used in the first
phase of our algorithm and establish some of its main properties. In Sect. 4, we
present the LP used in the second phase of our algorithm. In Sect. 5, we describe
two strategies for using our cutting planes. Finally, in Sect. 6, we report on the
experimental testing of our method.

2 Outline of the Approach

We denote by C := {x ∈ IRn : gi(x) ≤ 0, i = 1, . . . , m} the feasible set of the
continuous relaxation of (MICP) and by X := conv

(
C ∩ (

ZZp × IRn−p
))

the
convex hull of the feasible solutions of (MICP). Let x ∈ C \ (ZZp × IRn−p

)
be

the fractional point that we want to separate from X . Note that we do not make
further assumptions on x. In particular, we do not assume that it is an extreme
or an exposed point of C and it may even belong to X (of course in such a case
our approach would not find any cut).

To generate inequalities, we use a split relaxation of X which is defined as
follows. We call split an integral vector (π, π0) ∈ ZZn+1 such that πj = 0,
j = p + 1, . . . , n. We then define the split relaxation corresponding to (π, π0) as

C(π,π0) := conv
(
C ∩ ({

x ∈ IRn : πT x ≤ π0

} ∪ {
x ∈ IRn : πT x ≥ π0 + 1

}))
.

Clearly X ⊆ C(π,π0) since, for any x ∈ ZZp × IRn−p, πT x ∈ ZZ and ZZ∩]π0, π0 +
1[= ∅.

Given a split (π, π0), our procedure decides if x ∈ C(π,π0) and finds a sep-
arating hyperplane if this not the case. In this paper, we only use elementary
splits of the form (ek, �xk�) (where 1 ≤ k ≤ p and ek is the k-th unit vector).
Nevertheless our method applies to any split. In this section we give a geometric
outline of the approach using a general split.

Lift-and-Project Cuts for Mixed Integer Convex Programs 55

Our approach is based on the following simple lemma that states a necessary
and sufficient condition for x to belong to C(π,π0).

Lemma 1. Let (π, π0) ∈ ZZn+1 be a valid split and let x ∈ C be such that
πT x− π0 ∈]0, 1[. x ∈ C(π,π0) if and only if there exists x1 ∈ C such that

(i)
x−(πT x−π0)x1

1−πT x+π0
∈ C,

(ii) πT x1 ≥ π0 + 1.

Proof. Suppose first that x ∈ C(π,π0), then there exists x0, x1 ∈ C and λ ∈ [0, 1]
such that πT x0 ≤ π0, πT x1 ≥ π0 +1 and x = λx1 +(1−λ)x0. Note that, without
loss of generality, we can assume that πT x0 = π0 and πT x1 = π0+1 (just take the
intersections of the initial segment [x0, x1] with the two hyperplanes πT x = π0

and πT x = π0 + 1). Condition (ii) clearly holds. Also, since πT (x1 − x0) = 1,
πT x = λπT x1 + (1 − λ)πT x0 = λ + πT x0, and λ = πT x − π0. Condition (i)
follows.

Suppose now that x1 ∈ C satisfies (i) and (ii). Let x0 :=
x−(πT x−π0)x1

1−πT x+π0
. By (i),

x0 ∈ C. Furthermore, we clearly have x =
(
πT x− π0

)
x1 +

(
1− πT x + π0

)
x0.

Since πT x1 ≥ π0 + 1 by hypothesis, we just need to verify that πT x0 ≤ π0 to

prove the result. Indeed, πT x0 =
πT x−(πT x−π0)πT x1

1−πT x+π0
≤ πT x−(πT x−π0)(π0+1)

1−πT x+π0
=

π0
1−πT x+π0
1−πT x+π0

. ��
We are now ready to describe the two phases of our separation procedure for
C(π,π0). In the first phase, we find x1 ∈ C, satisfying condition (i) of the lemma
and maximizing πT x. In Sect. 3, it will be shown that this can be accomplished
by solving a convex NLP formulated in IRn. If πT x1 ≥ π0 +1, x1 proves that x ∈
C(π,π0) and we can not generate a cut using this split. Now suppose that πT x1 <
π0+1. Then x �∈ C(π,π0) and we enter the second phase of the procedure. We build
an outer approximation P (x0, x1) of C by taking the first order approximations

of the constraints of C in the points x1 and x0 :=
x−(πT x−π0)x1

1−πT x+π0
:

P (x0, x1) =
{
x ∈ ZZp × IRn−p : ∇gi(x1)T

(
x− x1

)
+ gi(x1) ≤ 0, i = 1, . . . , m,

∇gi(x0)T
(
x− x0

)
+ gi(x0) ≤ 0, i = 1, . . . , m

}
.

Similarly to C(π,π0), we define the split relaxation P (x0, x1)(π,π0) of P (x0, x1).
A cut separating x from P (x0, x1)(π,π0) can then be sought using classical poly-
hedral disjunctive programming techniques. We will show in Sect. 4 that, such a
cut can typically be found by solving an LP in IRn. In particular, we show that,
if the optimal solution of the NLP solved in the first phase satisfies a constraint
qualification, a cut is always found by solving this LP.

The fact that the solution of the NLP solved in the first phase has to satisfy a
constraint qualification for our procedure to generate a cut in the second phase is
not to be overlooked. In particular, we will show that whenever x is an extreme
point of C the NLP for finding x1 as defined above leads to a degenerate NLP
where no constraint qualification holds. The procedure will be slightly amended
to solve this issue.

56 P. Bonami

3 Phase I: Testing If x Belongs to a Split Relaxation

In this section, we derive the NLP solved in the first phase of our procedure
to decide if x ∈ C(π,π0). Since in practice here, we only separate cuts using
elementary splits of the form (ek, �xk�) (where 1 ≤ k ≤ p), from now on, for
simplicity’s sake, we restrict ourselves to this case (the procedure remains valid
for any split). We denote the fractional part of xk by f0 := xk−�xk� and assume
f0 > 0.

Consider the optimization problem

max yk − f0�xk�

gi

(
y

f0

)
≤ 0 i = 1, . . . , m,

gi

(
x− y

1− f0

)
≤ 0 i = 1, . . . , m.

(MNLP)

Let y is be an optimal solution to (MNLP), x1 := y
f0

satisfies x1 ∈ C and
condition (i) of Lemma 1. If furthermore, the objective value is non-negative,
x1 satisfies condition (ii) of the lemma and therefore x ∈ C(ek,�xk�). Therefore,
solving (MNLP) solves the phase I of our procedure as defined in Sect. 2.

Note that (MNLP) is a convex program: by definition, all the functions gi are
convex and the nonlinear functions describing the constraints of (MNLP) are
obtained by composing gi with an affine function (either y

f0
or x−y

1−f0
). (MNLP)

has the same number of variables as our original problems and twice as many
constraints. Note that if there are any linear or bound constraints in the original
problem (MNLP) can be made smaller in practice. Indeed if gi is an affine
function, gi(y

f0
) ≤ 0 and gi(x−y

1−f0
) ≤ 0 can be reformulated as gi(x) + (1 −

f0)gi(0) ≤ gi(y) ≤ (1 − f0)gi(0). Therefore, (MNLP) can be reformulated as
a problem that has as many linear constraints as (MICP) and twice as many
nonlinear constraints.

We note that (MNLP) is a generalization in the nonlinear setting of a sepa-
ration problem recently proposed [20,11]. In that respect, (MNLP) is related to
the famous Cut Generation LP used in disjunctive programming [5] in that, in
the linear case, the dual of (MNLP) is equivalent to the standard CGLP of lift-
and-project procedures with a particular normalization condition (see [11] for
the precise equivalence). A well-known property of the linear version of (MNLP)
is that, if x is an extreme point of the continuous relaxation, the solution of
(MNLP) is unique (and actually corresponds to the GMI cut) [19,11]. Next
lemma generalizes this result to our nonlinear setting.

Lemma 2. Let x ∈ C, be such that xk �∈ ZZ. If x is an extreme point of C, then
the unique solution to (MNLP) is y = f0x.

Proof. It follows directly from the fact that if x is an extreme point, then by
definition, the only x1 ∈ C satisfying condition (i) of Lemma 1 is x itself. ��

Lift-and-Project Cuts for Mixed Integer Convex Programs 57

Lemma 2 could be seen as positive. Indeed, if x is an extreme point of C then
(MNLP) can be solved by a closed form formula and furthermore (MNLP) shows
that x �∈ C(ek,�xk�) since f0(xk − �xk�) < 0. Lemma 2 actually has rather dire
implications. Indeed, if y = f0x, then, for i = 1, . . . , m, the two nonlinear in-
equalities gi(y

f0
) ≤ 0 and gi(x−y

1−f0
) ≤ 0 are identical and therefore no constraint

qualification holds in y. It follows, that no usefull dual information exists. With-
out dual information, it is hard to imagine how a cut can be derived. Note that,
in general, the optimal solution of the continuous relaxation of (MICP) should
be expected to be an extreme point (this is at least true when the optimum is
unique). Therefore it should be expected that the point x we want to cut is an
extreme point of C. Clearly, this issue needs to be addressed if we want to be
able to strengthen the continuous relaxation in a systematic way.

To resolve this issue, we make a small modification to (MNLP). Consider the
following nonlinear program:

max yk − f0�xk�

gi

(
y

f0

)
≤ f0�xk� − yk i = 1, . . . , m,

gi

(
x− y

1− f0

)
≤ f0�xk� − yk i = 1, . . . , m.

(MNLP’)

The difference between (MNLP’) and (MNLP) is the term f0�xk� − yk that
we add to the right-hand-side of the constraints. The effect of this term is to
relax the constraints whenever yk − f0�xk� < 0 (therefore in particular when
y = f0x) while keeping the property that if the optimal solution to (MNLP’)
is non-negative x1 := y

f0
satisfies the conditions of Lemma 1. We can not claim

that a constraint qualification always holds at the optimum of (MNLP’) but our
practical experiment is that it is typically not an issue.

The modification made from (MNLP) to (MNLP’) may seem puzzling. It is
actually connected to a well known technique of lift-and-project. Indeed, if we
again assume that all functions gi are linear, it can be shown that (MNLP’) is
equivalent to the CGLP with the normalization condition

∑
(ui + vi) + u0 +

v0 = 1 first presented in [8]. Therefore, the modification made from (MNLP) to
(MNLP’) can be seen as a change in the normalization condition from u0+v0 = 1
to

∑
(ui + vi) + u0 + v0 = 1. In this light, the change can be seen as even more

desirable since in the context of MILP several experiments have concluded that
the latter typically gives better cuts [29,4,19]. Note that in practice, in this paper,
we only add the term f0�xk�−yk to the nonlinear constraints of (MNLP). Doing
this is enough to avoid the numerical difficulties and allows to keep (MNLP’)
compact (if the term is added to linear constraints then their number has to be
doubled).

4 Phase II: Computing the Cut

We now turn to the description of the second phase of the procedure. At the
beginning of Phase II, we have a point y optimal solution of (MNLP’) and

58 P. Bonami

such that y
f0
− �xk� < 0. Note that, because (MNLP’) relaxed the constraints

of (MNLP), y
f0
�∈ C and condition (i) of Lemma 1 is not satisfied. But the

maximality of y still proves that x �∈ C(π,π0).
As explained in Sect. 2, we now build an outer approximation P (x0, x1) of

C by taking linear approximations in x1 := y
f0

and x0 := x−y
1−f0

(note that the
validity of this outer approximation does not depend on the fact that x1 and
x0 ∈ C).

Once this outer-approximation is built, a cut can be found by classical dis-
junctive programming techniques. In our case, we chose to solve an LP which is
just the linear version of (MNLP) formulated for P (x0, x1)(ek,�xk�):

max yk − f0�xk�
∇gi(x1)T y ≥ ∇gi(x1)T x + (1− f0)

(
gi(x1)−∇gi(x1)T x1

)
i = 1, . . . , m,

∇gi(x1)T y ≤ −f0

(
gi(x1)−∇gi(x1)T x1

)
, i = 1, . . . , m,

∇gi(x0)T y ≥ ∇gi(x0)T x + (1− f0)
(
gi(x0)−∇gi(x0)T x0

)
, i = 1, . . . , m,

∇gi(x0)T y ≤ −f0

(
gi(x0)−∇gi(x0)T x0

)
, i = 1, . . . , m,

x ∈ IRn.

(MLP(x0, x1))
It follows directly from linear programming duality that a cut can be constructed
from any dual feasible basis of (MLP(x0, x1)) with negative primal cost (see for
example [11] for details).

Note that other Cut Generation LPs could be used to find a cut separating
x from P (x0, x1)(ek,�xk�) in this step. One advantage of (MLP(x0, x1)) is its
size. Indeed, it does not require the introduction of extra variables and can typ-
ically be solved very quickly. Note also, that the cut obtained from the solution
of (MLP(x0, x1)) can be strengthened by the classical monoidal strengthening
method [7,5].

As the next theorem shows, a fundamental property of (MLP(x0, x1)) is that
if a constraint qualification holds at the optimum of (MNLP’) then the optimal
value of (MLP(x0, x1)) is lower or equal to that of (MNLP’) (and therefore a
cut can be generated).

Theorem 1. Let y be an optimal solution of (MNLP’) satisfying a constraint
qualification. Let x1 := y

f0
and x0 := x−y

1−f0
, and let ŷ be a solution to (MLP(x0, x1)).

If yk < f0�xk�, then ŷk ≤ yk

The proof follows directly from the KKT conditions and the definition of
(MLP(x0, x1)).

This theorem completes the description of our algorithm for finding a cut for
C(ek,�xk�). It is summarized in Algorithm 1.

5 Cutting Plane Strategies and Practical Considerations

In the next section, we present preliminary computational testing of Algorithm 1.
First, we discuss here strategies for using it. Note that we did not specify yet

Lift-and-Project Cuts for Mixed Integer Convex Programs 59

Algorithm 1. Cut Generation Algorithm

Input. A convex set C, x ∈ C such that xk �∈ ZZ, and a split (ek, �xk).
I. Testing if x ∈ C(ek,�xk�).

Solve (MNLP’), if the objective value is non-negative STOP, otherwise let y be
the optimal solution and go to Step II.

II. Computing the cut.

Let x1 := y
f0

and x0 = x−y
1−f0

. Solve (MLP(x0, x1)), build a cut αT x ≥ β from the

dual multipliers and strengthen it. Return the strengthened cut αT x ≥ β.

how to choose the point to cut x and the elementary disjunctions. We test two
strategies that were previously proposed and extensively used in the context of
MILP. We also discuss here the problem of cut validity.

5.1 Separation by Rounds

Our first strategy consists in separating cuts by rounds following the approach
first proposed in [5]. Let x be the optimal solution of the continuous relaxation
of (MICP). If x ∈ ZZp × IRn−p the problem is solved and we stop. Otherwise, a
round of cuts consists in applying Algorithm 1 for each k ∈ {1, . . . , p} such that
xk �∈ ZZ. At the end of the round all the cuts found are added to the formula-
tion of (MICP). The process is then iterated recursively with the strengthened
formulation of (MICP).

It is important to note that in this approach, the sub-problems (MNLP’) and
(MLP(x0, x1)) are augmented in each new round with the cuts found in previous
rounds. This approach has desirable properties: by Lemma 2 and Theorem 1 if x
is an extreme point of C, it is guaranteed that cuts will be found. As noted in the
context of MILP it can also have undesirable consequences. First increasing the
rank of the cuts at each iteration may lead to numerical difficulties and invalid
cuts. Second increasing the sizes of (MNLP’) and (MLP(x0, x1)) can make them
very difficult to solve. In practice, we only do a very limited number of rounds.
We test this approach with 1 and 10 rounds of cuts.

5.2 Rank-1 Optimization

In this other strategy, we limit the rank of the cut we generate to 1. Essentially,
this means that we apply the same procedure as before except that the cuts
found are never added to (MNLP’) and (MLP(x0, x1)). Of course, this means
that contrary to before the procedure may stop with x �∈ ZZp × IRn−p because
no rank-1 cut exists anymore. Nevertheless, it has been experimentally observed
in the context of MILP that this strategy sometimes allows to close more gap
faster [15,11]. It also gives a feeling of the strength of the closure obtained by
using only rank 1 cuts.

An aspect that has to be dealt with in this strategy is to try to avoid solving
too many (MNLP’) that do not generate cuts. To deal with this, we follow the
strategies proposed in [11].

60 P. Bonami

Finally, although this algorithm may eventually stop because no rank-1 cut
can be generated anymore, it might take a very large amount of time and it-
erations. Here, we limit the computations to 10 minutes of CPU time and 100
rounds.

5.3 Cut Validity and Stability

The problem of generating inequalities that cuts off integer feasible solutions
is a well known issue in MILP. It should be expected to be even more acute
when some constraints are nonlinear. Here, we make a few observations on our
experience of dealing with this issue during the experiments presented in the
next section. First, let us state that we can not guarantee that all the cuts that
we generate are valid. The only thing that we can say is that the integer optimal
solutions were never cut during our experiments.

We actually do not believe our approach to be more prone to generating invalid
cuts than other algorithms for (MICP). Note that the cuts that we generate are
solely computed through a linear outer approximation of (MICP). In particular
they do not depend on the precision of the solution of (MNLP’). As long as the
outer approximation P (x0, x1) is built with care (in practice, as is customary, we
try to avoid difficulties there by slightly relaxing each constraint), the approach
is not more dangerous than any other Outer Approximation based algorithm.

This does not mean that we did not experience troubles. Most of the difficulties
we experienced came from numerical stability issues when solving the continuous
relaxation of (MICP) augmented with many cuts. We used the solver filterSQP
[21] to solve this NLP and experienced that, as it grows larger, it can rapidly
become unsolvable (note that filterSQP is an active set method, it is well known
that such methods may not be best suited when problems sizes grow). To avoid
those difficulties, we had to take drastic measures in rejecting some cuts based
on their numerical properties. A criterion that seemed to play a particularly
important role is the ratio between the largest and smallest absolute values of
the non-zero coefficients of a cut. It is usual in MILP to accept cuts until this
ratio is as high as 108 without experiencing much difficulties (see for example
[28]). Here, to stand clear of numerical troubles, we had to reject all cuts for
which this ratio was greater than 104. In the rank 1 experiments, we also had to
clean (MICP) from any inactive cuts regularly (those cuts were kept in a pool
in case they would be needed later on).

6 Computational Testing

Algorithm 1 and the two strategies outlined in Sect. 5.1 and 5.2 were imple-
mented in C++ using the interfaces of the Bonmin [13,12] framework from
COIN-OR [26]. In particular, our code allows to use any LP solver with an OSI
[26] interface to solve (MLP(x0, x1)) and any NLP solver with a TNLP interface
[32] to solve (MNLP’). Here we used CPLEX 12.1 and FilterSQP respectively. All
experiments were conducted on a machine equipped with Intel Quad Core Xeon

Lift-and-Project Cuts for Mixed Integer Convex Programs 61

2.93GHz processors and 120 GiB of RAM, using only one thread for each run.
The test set consists of instances collected from different sources [24,16,30,25]
(see within [14] for references of each instances types). Among about 150 in-
stances collected, we selected all instances that took more than 1000 nodes to
solve with a basic branch-and-bound algorithm. We then removed all instances
that had a nonlinear objective and all instances that could not be solved in three
hours with any of the methods tested here. As a result we obtain a test set of
80 instances. As noted in the introduction, instances with a nonlinear objective
can be put into the form of (MICP) and therefore treated in a systematical way
by our approach. Nevertheless, we chose to exclude them because we are unsure
if this is the correct treatment for nonlinear objectives (it posed some stability
issues in practice) and we felt there were enough interesting instances to report
without them.

6.1 Gap Closed

In this first experiment we used the various cut generation strategies to only
strengthen the continuous relaxations. The three strategies tested were 1 round
of cuts, 10 rounds of cuts, and the rank 1 optimization. Our goal was to measure
the CPU time of each method and the percentage of the integrality gap it closes1.
The results are summarized in Table 1.

Table 1. Number of instances in each class and then for each method and each in-
stances class: averages cut generation times in seconds, average number of cuts and
percentage of gap closed

1 round 10 rounds rank 1
Type # CPU # cuts gap CPU # cuts gap CPU # cuts gap

Batch 4 2.85 24.25 20.64 40.65 89.5 24.01 60.08 112.75 24.06
CLay 7 1.64 40.14 1.55 16.16 219.71 8.55 39.71 152.29 33.71
FLay 5 0.35 29.75 1.25 7.74 225.75 3.85 48.19 400.5 34.98
RSyn 16 9.15 64.63 21.32 107.77 406.13 47.61 247.81 584.94 59.96
SLay 9 12.92 82.33 4.60 182.76 254.56 7.58 230.25 207.44 29.65
Syn 18 3.78 58.22 23.58 92.03 357.67 56.36 110.91 622.67 84.52
fo-m 5 0.27 32.4 0.00 7.93 139.8 0.00 12.79 283.2 0.00
nd 3 2.31 22.33 6.32 33.95 52.67 11.05 251.79 312.67 69.16
sssd 12 0.12 24.92 3.75 3.42 219.83 43.12 1.85 141.67 97.97
trimloss 1 0.27 11 2.70 3.35 106 12.15 10.02 96 12.32

all instances 80 4.57 48.99 12.18 69.07 276.01 32.30 120.08 377.24 58.05

The results shows that our various methods are able to close significant portions
of the integrality gap in reasonable computing times. In particular, on average on
our test set, the rank 1 approach closes 58% of the gap in about two minutes.
1 If zC is the optimal value of the initial continuous relaxation of (MICP), zX is

the optimal value of (MICP) and zS is the optimal value of the continuous relax-
ation strengthened by cutting planes, the percentage of integrality gap closed is

100
(
1 − zX−zS

zX−zC

)
.

62 P. Bonami

6.2 Complete Resolutions

In this second experiment we want to assess if the cuts can be useful to effectively
solve the test instances to optimality faster. To this end, after the cut generation
procedure is finished, we keep in the formulation all cuts that are tight at the
new continuous optimum and solve the formulation with Bonmin’s NLP branch-
and-bound algorithm B-BB. We then compare the solution process with B-BB
without cuts. The results are reported in Table 2.

Table 2. For each method and each instances type: number of instances solved (#I),
average total solution times (include cut generation) and branch-and-bound nodes
(averages figures taken only on the subsets of instances solved by all methods)

no cuts 1 round 10 rounds rank-1
Type #I CPU nodes #I CPU nodes #I CPU nodes #I CPU nodes

Batch 4 101.6 1681 4 75.2 1069 4 127.6 1316 4 137.2 1110
Clay 7 106.3 13435 7 117.1 10727 7 171.5 11616 7 199.0 10875
Flay 5 1175.5 51773 4 1190.7 48522 4 1260.8 49964 4 1979.3 55611
Rsyn 10 2689.5 38914 11 2378.8 19422 12 1535.0 6082 16 1368.1 988
Slay 9 152.2 1455 9 177.4 1395 9 329.8 1274 9 392.5 1055
Syn 12 546.9 21476 12 710.2 21534 13 310.4 5309 18 94.5 54
fo-m 4 2271.2 315700 4 2019.4 278629 4 2017.5 209537 5 2764.0 263231
nd 3 1397.3 7946 3 1436.0 7763 3 1427.1 6821 3 524.5 527
sssd 8 362.8 69713 8 115.9 19207 6 200.4 34544 10 207.7 36877
tls 1 2071.1 1298667 1 1998.5 1092360 1 3636.2 1336885 1 4889.5 1517275

solved 63 980 66130 63 928 51946 63 776 47299 77 792 52190

The results show that the cuts are indeed helping to solve more instances
faster. The rank-1 procedure can solve 77 instances, when all others solve only
63. On instances solved by all approaches, rank-1 and 10 rounds are the two most
competitive. It should be noted that the usefulness of the cuts varies considerably
between different types of instances. Cuts are particularly usefull for solving the
RSyn, Syn, nd and sssd instances. On the other hand they seem to only slow
down the solution of CLay, FLay, SLay and trimloss.

Acknowledgments. Research supported by ANR grant ANR06-BLAN-0375
and by a Google Focused Research Award.

References

1. Abhishek, K., Leyffer, S., Linderoth, J.: FilMINT: An Outer Approximation-Based
Solver for Convex Mixed-Integer Nonlinear Programs. INFORMS Journal on Com-
puting 22, 555–567 (2010)

2. Atamtürk, A., Narayanan, V.: Conic mixed integer rounding cuts. Mathematical
Programming 122, 1–20 (2010)

3. Balas, E.: Disjunctive programming: Properties of the convex hull of feasible points.
Discrete Applied Mathematics 89, 3–44 (1988); (originaly MSRR # 348, Carnegie
Mellon University, July 1974)

Lift-and-Project Cuts for Mixed Integer Convex Programs 63

4. Balas, E., Bonami, P.: Generating lift-and-project cuts from the LP simplex
tableau: open source implementation and testing of new variants. Mathematical
Programming Computations 1, 165–199 (2009)

5. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for
mixed 0-1 programs. Math. Programming 58, 295–324 (1993)

6. Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: Gomory cuts revisited. Operations
Research Letters 19, 1–9 (1996)

7. Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. European
J. Oper. Res. 4(4), 224–234 (1980)

8. Balas, E., Perregaard, M.: Lift and project for mixed 0-1 programming: Recent
progress. Discrete Applied Mathematics 123(1-3), 129–154 (2002)

9. Balas, E., Perregaard, M.: A precise correspondence between lift-and-project cuts,
simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming.
Math. Program 94(2-3, Ser. B), 221–245 (2003); The Aussois 2000 Workshop in
Combinatorial Optimization

10. Balas, E., Zemel, E.: Facets of the knapsack polytope from minimal covers. SIAM
Journal on Applied Mathematics 34, 119–148 (1978)

11. Bonami, P.: On optimizing over lift-and-project closures. Research Report HAL,
CNRS (October 2010), http://hal.archives-ouvertes.fr/hal-00529816/en/

12. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird,
C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic frame-
work for convex mixed integer nonlinear programs. Discrete Optimization 5(2),
186–204 (2008)

13. Bonami, P., Forrest, J.J.H., Laird, C., Lee, J., Margot, F., Wächter, A.: Bonmin:
Basic Open-source Nonlinear Mixed INteger programming (July 2006), http://
www.coin-or.org/Bonmin

14. Bonami, P., Kılınç, M., Linderoth, J.: Algorithms and Software for Convex Mixed
Integer Nonlinear Programs. Technical report, Technical Report #1664, Computer
Sciences Department, University of Wisconsin-Madison (2009)

15. Bonami, P., Minoux, M.: Using rank-1 lift-and-project closures to generate cuts
for 0–1 MIPs, a computational investigation. Discrete Optimization 2(4), 288–307
(2005)

16. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib – A collection of test models
for mixed-integer nonlinear programming. INFORMS Journal on Computing 15(1)
(2003)

17. Ceria, S., Soares, J.: Convex programming for disjunctive optimization. Mathe-
matical Programming 86, 595–614 (1999)

18. Cezik, M.T., Iyengar, G.: Cuts for mixed 0-1 conic programming. Mathematical
Programming 104, 179–202 (2005)

19. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts.
Mathematical Programming (2009), doi: 10.1007/s10107-009-0300-y (in press)

20. Fischetti, M., Salvagnin, D.: An in-out approach to disjunctive optimization. In:
Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 136–140.
Springer, Heidelberg (2010)

21. Fletcher, R., Leyffer, S.: User manual for filterSQP, University of Dundee Numerical
Analysis Report NA-181 (1998)

22. Gomory, R.E.: An algorithm for integer solution solutions to linear programming.
In: Graves, R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming,
pp. 269–302. McGraw-Hill, New York (1963)

http://hal.archives-ouvertes.fr/hal-00529816/en/
http://www.coin-or.org/Bonmin
http://www.coin-or.org/Bonmin

64 P. Bonami

23. Kılınç, M., Linderoth, J., Luedtke, J.: Effective separation of disjunctive cuts for
convex mixed integer nonlinear programs. Technical Report Computer Sciences
Department, University of Wisconsin-Madison (2010)

24. Leyffer, S.: MacMINLP: Test problems for mixed integer nonlinear programming
(2003), http://www.mcs.anl.gov/~leyffer/macminlp

25. Linderoth, J., Kılınç, M.: Personnal communication (2010)
26. Lougee-Heimer, R.: The common optimization interface for operations research.

IBM Journal of Research and Development 47, 57–66 (2003), http://www.

coin-or.org

27. Marchand, H., Wolsey, L.A.: Aggregation and mixed integer rounding to solve
MIPs. Operations Research 49(3), 363–371 (2001)

28. Margot, F.: Testing cut generators for mixed integer linear programming. Mathe-
matical Programming Computation 1, 69–95 (2009)

29. Perregaard, M.: Generative Disjunctive Cuts for Mixed Integer Programs. PhD
thesis, Carnegie Mellon University (2003)

30. Sawaya, N., Laird, C.D., Biegler, L.T., Bonami, P., Conn, A.R., Cornuéjols, G.,
Grossmann, I.E., Lee, J., Lodi, A., Margot, F., Wächter, A.: CMU-IBM open source
MINLP project test set (2006), http://egon.cheme.cmu.edu/ibm/page.htm

31. Stubbs, R., Mehrotra, S.: A branch-and-cut method for 0-1 mixed convex program-
ming. Mathematical Programming 86, 515–532 (1999)

32. Wächter, A., Laird, C.D., Kawajir, Y.: Introduction to IPOPT: A tutorial for down-
loading, installing, and using IPOPT (2010), http://www.coin-or.org/Ipopt/

documentation/

http://www.mcs.anl.gov/~leyffer/macminlp
http://www.coin-or.org
http://www.coin-or.org
http://egon.cheme.cmu.edu/ibm/page.htm
http://www.coin-or.org/Ipopt/documentation/
http://www.coin-or.org/Ipopt/documentation/

TSP on Cubic and Subcubic Graphs

Sylvia Boyd1, René Sitters2, Suzanne van der Ster2, and Leen Stougie2,3,�

1 School of Information Technology and Engineering (SITE),
University of Ottawa, Ottawa, Canada

sylvia@site.uottawa.ca
2 Department of Operations Research, VU University Amsterdam,

The Netherlands
{rsitters,sster,lstougie}@feweb.vu.nl

3 CWI, Amsterdam, The Netherlands
stougie@cwi.nl

Abstract. We study the Travelling Salesman Problem (TSP) on the
metric completion of cubic and subcubic graphs, which is known to be
NP-hard. The problem is of interest because of its relation to the fa-
mous 4/3 conjecture for metric TSP, which says that the integrality gap,
i.e., the worst case ratio between the optimal values of the TSP and its
linear programming relaxation, is 4/3. Using polyhedral techniques in
an interesting way, we obtain a polynomial-time 4/3-approximation al-
gorithm for this problem on cubic graphs, improving upon Christofides’
3/2-approximation, and upon the 3/2 − 5/389 ≈ 1.487-approximation
ratio by Gamarnik, Lewenstein and Svirdenko for the case the graphs
are also 3-edge connected. We also prove that, as an upper bound, the
4/3 conjecture is true for this problem on cubic graphs. For subcubic
graphs we obtain a polynomial-time 7/5-approximation algorithm and a
7/5 bound on the integrality gap.

1 Introduction

Given a complete undirected graph G = (V, E) on n vertices with non-negative
edge costs c ∈ RE, c �= 0, the well-known Traveling Salesman Problem (TSP)
is to find a Hamiltonian cycle in G of minimum cost. When the costs satisfy
the triangle inequality, i.e. when cij + cjk ≥ cik for all i, j, k ∈ V , we call the
problem metric. A special case of the metric TSP is the so-called graph-TSP,
where, given an undirected, unweighted simple underlying graph G = (V, E),
a complete graph on V is formed, by defining the cost between two vertices as
the number of edges on the shortest path between them, known as the metric
completion of G.

The TSP is well-known to be NP-hard [20], even for the special cases of graph-
TSP. As noticed in [17], APX-hardness follows rather straightforwardly from
the APX-hardness of (weighted) graphs with edges of length 1 or 2 ((1,2)-TSP)
(Papadimitriou and Yannakakis [22]), even if the maximum degree is 6.
� This research was partially supported by Tinbergen Institute, the Netherlands and

the Natural Sciences and Engineering Research Council of Canada.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 65–77, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

66 S. Boyd et al.

In general, the TSP cannot be approximated in polynomial-time to any con-
stant unless P = NP , however for the metric TSP there exists the elegant
algorithm due to Christofides [9] from 1976 which gives a 3/2-approximation.
Surprisingly, in over three decades no one has found an approximation algorithm
which improves upon this bound of 3/2, even for the special case of graph-TSP,
and the quest for finding such improvements is one of the most challenging re-
search questions in combinatorial optimization. Very recently, Gharan et al.[16]
announced a randomized 3/2− ε approximation for graph-TSP for some ε > 0.

A related approach for finding approximated TSP solutions is to study the
integrality gap α(TSP), which is the worst-case ratio between the optimal so-
lution for the TSP problem and the optimal solution to its linear programming
relaxation, the so-called Subtour Elimination Relaxation (henceforth SER) (see
[5] for more details). The value α(TSP) gives one measure of the quality of
the lower bound provided by SER for the TSP. Moreover, a polynomial-time
constructive proof for value α(TSP) would provide an α(TSP)-approximation
algorithm for the TSP.

For metric TSP, it is known that α(TSP) is at most 3/2 (see Shmoys and
Williamson [24], Wolsey [25]), and is at least 4/3 (a ratio of 4/3 is reached
asymptotically by the family of graph-TSP problems consisting of two vertices
joined by three paths of length k; see also [5] for a similar family of graphs
giving this ratio), but the exact value of α(TSP) is not known. However, there
is the following well-known conjecture:

Conjecture 1. For the metric TSP, the integrality gap α(TSP) for SER is 4/3.

As with the quest to improve upon Christofides’ algorithm, the quest to prove
or disprove this conjecture has been open for almost 30 years, with very little
progress made.

A graph is cubic if all of its vertices have degree 3, and subcubic if they have
degree at most 3. A graph is k-edge connected if removal of less than k edges
keeps the graph connected. A bridge in a connected graph is an edge whose
removal breaks the graph into two disconnected subgraphs.

In this paper we study the graph-TSP problem on cubic and subcubic graphs.
Note that the graphs in the family described above giving a worst-case ratio
of 4/3 for α(TSP) are graph-TSPs on bridgeless subcubic graphs. Our main
result improves upon Christofides’ algorithm by providing a 4/3-approximation
algorithm as well as proving 4/3 as an upper bound in Conjecture 1 for the
the special case of graph-TSP for which the underlying graph G = (V, E) is
a cubic graph. Note that solving the graph-TSP on such graphs would solve
the problem of deciding whether a given bridgeless cubic graph G has a Hamil-
ton cycle, which is known to be NP-complete, even if G is also planar (Garey
et al. [15]) or bipartite (Akiyama et al. [2]). In [8] there is an unproven claim
that (1,2)-TSP is APX-hard when the graph of edges of length 1 is cubic, which
would imply APX-hardness of graph-TSP on cubic graphs.

Also note that the 3/2 ratio of Christofides’ algorithm is tight for cubic graph-
TSP (see Figure 1). As noted by Gamarnik et al. in [14], one approach that can

TSP on Cubic and Subcubic Graphs 67

Fig. 1. Example of a cubic graph on which Christofides may attain a ratio of 3/2

be taken for graph-TSP is to look for a polynomial-time algorithm that finds
a Hamilton cycle of cost at most τn for some τ < 3/2. Since n is a lower
bound for the optimal value for graph-TSP as well as the associated SER1,
this will improve upon Christofides’ algorithm by giving a τ -approximation for
the graph-TSP, as well as prove that the integrality gap α(TSP) is at most τ
for such problems. In [14], Gamarnik et al. note a connection between optimal
solutions to SER and 3-edge connected cubic graphs. Furthermore, they give an
algorithm for graph-TSP where the underlying graph is 3-edge connected and
cubic, and for which τ = (3/2− 5/389) ≈ 1.487.

The algorithm of Gamarnik et al. provided the first approximation improve-
ment over Christofides’ algorithm for the graph-TSP for 3-edge connected cubic
graphs. We improve upon their results, both in terms of the value of τ and the
class of underlying graphs by proving the following:

Theorem 1. Every bridgeless simple cubic graph G = (V, E) with n ≥ 6 has a
graph-TSP tour of length at most 4

3n− 2.

Our proof of this theorem is constructive, and provides a polynomial-time 4/3-
approximation algorithm for graph-TSP on bridgeless cubic graphs. The proof
uses polyhedral techniques in a surprising way, which may be more widely ap-
plicable. The result also proves that Conjecture 1 is true for this class of TSP
problems as an upper bound. The theorem is indeed central in the sense that
the other results in this paper are based upon it. One of them is that we show
how to incorporate bridges with the same guarantees.

For subcubic graphs it appears to be harder to obtain the same strong results
as for cubic graphs. For this class of graph-TSP we obtain a 7/5-approximation
algorithm and prove that the integrality gap is bounded by 7/5, still improving
considerably over the existing 3/2 bounds. Note that 4/3 is a lower bound for
α(TSP) on subcubic graphs.

Relevant literature: Between the first and final submission of this conference
paper Aggarwal et al. [1] announced an alternative 4/3 approximation for 3-edge
connected cubic graphs. Grigni et al. [17] give a polynomial-time approximation
scheme (PTAS) for graph-TSP on planar graphs (this was later extended to
a PTAS for the weighted planar graph-TSP by Arora et al. [3]). For graph G
containing a cycle cover with no triangles, Fotakis and Spirakis [12] show that

1 To see that n is a lower bound for SER, sum all of the so-called “degree constraints”
for SER. Dividing the result by 2 shows that the sum of the edge variables in any
feasible SER solution equals n.

68 S. Boyd et al.

graph-TSP is approximable in polynomial time within a factor of 17/12 ≈ 1.417
if G has diameter 4 (i.e. the longest path has length 4), and within 7/5 = 1.4
if G has diameter 3. For graphs that do not contain a triangle-free cycle cover
they show that if G has diameter 3, then it is approximable in polynomial time
within a factor of 22/15 ≈ 1.467. For graphs with diameter 2 (i.e. TSP(1,2)), a
7/6 ≈ 1.167-approximation for graph-TSP was achieved by Papadimitriou and
Yannakakis [22], and improved to 8/7 ≈ 1.143 by Berman and Karpinski [6].

2 Preliminaries

We begin this section with some definitions. Given a graph G = (V, E), we let
V (G) denote the vertex set V of G. For any vertex subset S ⊆ V , δ(S) ⊆ E,
defined as the set of edges connecting S and V \ S, is called the cut induced by
S. A cut of cardinality k is called a k-cut if it is minimal in the sense that it
does not contain any cut as a proper subset.

A cycle in a graph is a closed path. In this paper, cycles have no repetition
of vertices, which in graph literature is often referred to as circuits. A k-cycle
is a cycle containing k edges, and a chord of a cycle of G is an edge not in the
cycle, but with both ends u and v in the cycle. A cycle cover (also sometimes
referred to as 2-factor or perfect 2-matching) of G is a set of vertex disjoint cycles
that together span all vertices of G. An Eulerian subgraph of G is a connected
subgraph where multiple copies of the edges are allowed, and all vertices have
even degree. A perfect matching M of a graph G is a set of vertex-disjoint edges
of G that together span all vertices of G. We call M a 3-cut perfect matching if
every 3-cut of G contains exactly one edge of M .

A well-known theorem of Petersen [23] states that every bridgeless cubic graph
contains a perfect matching. Thus the edges of any bridgeless cubic graph can
be partitioned into a perfect matching and an associated cycle cover. This idea
is important for our main theorem, and we give a useful strengthened form of it
below in Lemma 1.

For any edge set F ⊆ E, the incidence vector of F is the vector χF ∈ RE

defined by χF
e = 1 if e ∈ F , and 0 otherwise. For any edge set F ⊆ E and

x ∈ RE, let x(F) denote the sum
∑

e∈F xe.
Given graph G, the associated perfect matching polytope, PM (G), is the convex

hull of all incidence vectors of the perfect matchings of G, which Edmonds [11]
shows to be given by:

x(δ(v)) = 1, ∀v ∈ V,

x(δ(S)) ≥ 1, ∀S ⊂ V, |S| odd,

0 ≤ xe ≤ 1, ∀e ∈ E.

Using this linear description and similar methods to those found in [19] and [21],
we have the following strengthened form of Petersen’s Theorem:

TSP on Cubic and Subcubic Graphs 69

Lemma 1. Let G = (V, E) be a bridgeless cubic graph and let x∗ = 1
3χE. Then

x∗ can be expressed as a convex combination of incidence vectors of 3-cut perfect
matchings, i.e. there exists 3-cut perfect matchings Mi, i = 1, 2, ..., k of G and
positive real numbers λi, i = 1, 2, ..., k such that

x∗ =
k∑

i=1

λi(χMi) and
k∑

i=1

λi = 1. (1)

Proof. Since both sides of any 2-cut in a cubic graph have an even number of
vertices, it is easily verified that x∗ satisfies the linear description above, and
thus lies in PM (G). It follows that x∗ can be expressed as a convex combination
of perfect matchings of G, i.e. there exist perfect matchings Mi, i = 1, 2, ..., k of
G and positive real numbers λi, i = 1, 2, ..., k such that (1) holds.

To see that each perfect matching in (1) is a 3-cut perfect matching, consider
any 3-cut δ(S) = {e1, e2, e3} of G. Since each side of a 3-cut of any cubic graph
must contain an odd number of vertices, any perfect matching must contain 1
or 3 edges of δ(S). Let M0 be the set of perfect matchings from (1) that contain
all 3 edges of the cut, and let Mj, j = 1, 2, 3 be the sets of perfect matchings
that contain edge ej. Define αj =

∑
Mi∈Mj

λi, j = 0, 1, 2, 3. Then

α0 + α1 + α2 + α3 = x∗(δ(S)) = 1
α0 + α1 = 1/3, α0 + α2 = 1/3, α0 + α3 = 1/3,

which implies α0 = 0. �

The perfect matchings Mi, i = 1, 2, ...k of Lemma 1 will be used in the proof
of our main theorem in the next section. Note that Barahona [4] provides an
algorithm to find for any point in PM (G) a set of perfect matchings for expressing
the point as a convex combination of their incidence vectors in O(n6) time, and
with k ≤ 7n/2− 1, for any graph G.

3 Cubic Graphs

In our analysis of the graph-TSP problem for graph G = (V, E), we will consider
the equivalent form of the problem, introduced in [10] as the graphical TSP of
G (henceforth GTSP), in which one seeks a minimum length tour of G in which
vertices can be visited more than once and edges can be traversed more than
once. The solution, which we refer to as a GTSP tour, forms a spanning Eulerian
subgraph H = (V, E′) of G, which can be transformed into a graph-TSP tour of
G of cost |E′| and vice versa. Note that an edge appears at most twice in H .

The idea we will use in the proof of our main theorem is as follows: By
Petersen’s Theorem we know we can always find a cycle cover of G. Suppose
that we can find such a cycle cover that has no more than n/6 cycles. Then,
contracting the cycles, adding a doubled spanning tree in the resulting graph
and uncontracting the cycles would yield a GTSP solution with no more than

70 S. Boyd et al.

n + 2(n/6 − 1) = 4n/3 − 2 edges. Together with the obvious lower bound of n
on the length of any optimal GTSP tour, this yields an approximation ratio of
4/3. However, such a cycle cover does not always exist (for example, consider
the Petersen graph)2. Therefore, we take the k cycle covers associated with the
3-cut matchings of Lemma 1 and combine their smaller cycles into larger cycles
or Eulerian subgraphs, such as to obtain k covers of G with Eulerian subgraphs
which, together with the double spanning tree, result in k GSTP tours with
average length at most 4/3n. For this construction of larger Eulerian subgraphs
the following lemma will be useful.

Lemma 2. Let H1 and H2 be connected Eulerian subgraphs of a (sub)cubic
graph such that H1 and H2 have at least two vertices in common and let H3

be the sum of H1 and H2, i.e., the union of their vertices and the sum of their
edges, possibly giving rise to parallel edges. Then we can remove two edges from
H3 such that it stays connected and Eulerian.

Proof. Let u and v be in both subgraphs. The edge set of H3 can be partitioned
into edge-disjoint (u, v)-walks P1, P2, P3, P4. Vertex u must have two parallel
edges which are on different paths, say e1 ∈ P1 and e2 ∈ P2. When we remove
e1 and e2 then the graph stays Eulerian. Moreover, it stays connected since u
and v are still connected by P3 and P4 and, clearly, each vertex on P1 and P2

remains connected to either u or v. �

The following lemma, which applies to any graph, allows us to preprocess our
graph by removing certain subgraphs.

Lemma 3. Assume that removing edges u′u′′ and v′v′′ from graph G = (V, E)
breaks it into two graphs G′ = (V ′, E′) and G′′ = (V ′′, E′′) with u′, v′ ∈ V ′, and
u′′, v′′ ∈ V ′′ and such that:

1. u′v′ ∈ E and u′′, v′′ /∈ E.
2. there is a GTSP tour T ′ in G′ of length at most 4|V ′|/3− 2.
3. there is a GTSP tour T ′′ in G′′ ∪ u′′v′′ of length at most 4|V ′′|/3− 2.

Then there is a GTSP tour T in G of length at most 4|V |/3− 2.

Proof. If T ′′ does not use edge u′′v′′ then we take edge u′u′′ doubled and add
tour T ′. If T ′′ uses edge u′′v′′ once then we remove it and add edges u′u′′, v′v′′

and u′v′ and tour T ′. If T ′′ uses edge u′′v′′ twice then we remove both copies
and add edge u′u′′ doubled, v′v′′ doubled, and tour T ′. �

We use Lemma 3 to remove all subgraphs of the form shown in Figure 2, which
we call a p-rainbow subgraph. In such subgraphs there is a path u0, u1, . . . , up+1

and path v0, v1, . . . , vp+1 for some p ≥ 1, and a 4-cycle u0, a, v0, b with chord ab.
Furthermore, there are edges uivi for each i ∈ {1, 2, . . . , p} but there is no edge

2 We remark that if G is 3-edge connected and cubic there does exist a triangle- and
square-free cycle cover of G which can be found in polynomial time (see [7],[18]),
resulting in a straightforward 7/5 approximation algorithm for such graphs.

TSP on Cubic and Subcubic Graphs 71

u3 u2 u1 u0 v0 v1 v2 v3

a

b G′ G′′

Fig. 2. In this p-rainbow example, p = 2 and u′ = u2, u
′′ = u3, v

′ = v2, and v′′ = v3

between up+1 and vp+1. The figure shows a p-rainbow for p = 2. For general p,
the 2-cut of Lemma 3 is given by u′ = up, u′′ = up+1, v′ = vp, and v′′ = vp+1.
If G contains a p-rainbow G′, p ≥ 1, then we remove G′ and add edge u′′v′′ to
the remaining graph G′′. Note that G′′ is also a simple bridgeless cubic graph.
We repeat this until there are no more p-rainbows in G′′ for any p ≥ 1. If the
final remaining graph G′′ has at least 6 vertices, then assuming G′′ has a GTSP
tour of length at most 4/3|V ′′| − 2, we can apply Lemma 3 repeatedly to obtain
a GTSP tour of length at most 4/3n − 2 for the original graph G. If the final
remaining graph G′′ has less than 6 vertices, then it must have 4 vertices, since
it is cubic, hence it forms a complete graph on 4 vertices. In this case we take
the Hamilton path from u′′ to v′′ in G′′ and match it with the Hamilton path of
the p-rainbow that goes from up to vp to obtain a Hamilton cycle of the graph
G′′ with the edge u′′v′′ replaced by the p-rainbow. We can then apply Lemma 3
repeatedly to obtain a GTSP tour of length at most 4/3n− 2 for G.

Proof of Theorem 1. By the above discussion, we assume that there are no
p-rainbow subgraphs in G. By Lemma 1 there exist 3-cut perfect matchings
M1, . . . , Mk and positive real numbers λ1, . . . , λk such that

∑k
i=1 λi = 1 and

1
3χE =

∑k
i=1 λi(χMi). Let C1, . . . , Ck be the cycle covers of G corresponding to

M1, M2, ...Mk. Since each Mi is a 3-cut perfect matching, each Ci intersects each
3-cut of G in exactly 2 edges, and hence contains neither a 3-cycle nor a 5-cycle
with a chord.

If some Ci has no more than n/6 cycles, then we are done, by the argument
given earlier. Otherwise we manipulate each of the cycle covers by operations (i)
and (ii) below, which we will show to be well-defined. First operation (i) will be
performed as long as possible. Then operation (ii) will be performed as long as
possible.

(i) If two cycles Ci and Cj of the cycle cover intersect a (chordless) cycle C of
length 4 in G (the original graph) then combine them into a single cycle on
V (Ci) ∪ V (Cj).

The details of operation (i) are as follows: Assume that u1u2 and v1v2 are edges
of C (and the matching) such that u1v1 is an edge of Ci and u2v2 is an edge of Cj .
Deleting the latter two edges and inserting the former two yields a single cycle
of length equal to the sum of the lengths of Ci and Cj . Notice that operation (i)

72 S. Boyd et al.

always leads to cycles of length at least 8. Hence after operation (i) is finished
we still have a cycle cover. Operation (ii) below combines cycles into Eulerian
subgraphs and subsequently Eulerian subgraphs into larger Eulerian subgraphs,
turning the cycle covers into Eulerian subgraph covers. Both types of cover we
call simply a cover and their elements (cycles and Eulerian subgraphs) we call
components.

(ii) If two components γi and γj of the cycle cover or the Eulerian subgraph cover,
each having at least 5 vertices, intersect a (chordless) cycle C of length 5 in
G (the original graph) then combine them into a single Eulerian subgraph
where the number of edges is 1 plus the number of edges of γi and γj .

The details of operation (ii) are as follows. First note that for any cycle C, its
vertex set V (C) has the following (trivial) property:

P : Each v ∈ V (C) has at least two other vertices u, w ∈ V (C) such that vu ∈ E
and vw ∈ E.

If two vertex sets both satisfy P then their union also satisfies P . Since the vertex
set of each component γ constructed by operations (i) or (ii) is a result of taking
unions of vertex sets of cycles, each such γ has property P . In particular, since
G is cubic, this implies that the two components γi and γj share 2 and 3 vertices
with C, respectively (note that they cannot each share exactly 2 vertices, as this
would imply that a vertex of C is not included in the cover). We first merge γ1

and C as in Lemma 2 and remove 2 edges, and then merge the result with γ2,
again removing 2 edges. Altogether we added the 5 edges of C and removed 4
edges.

Operation (ii) leads to Eulerian subgraphs with at least 10 vertices. Thus,
any Eulerian subgraph with at most 9 vertices is a cycle. At the completion of
operations (i) and (ii), let the resulting Eulerian subgraph covers be Γ1, . . . , Γk.

Given Γ1, . . . , Γk, we bound for each vertex its average contribution to the cost
of the GTSP tours, weighted by the λi’s. We define the contribution of a vertex
v which in cover Γi lies on an Eulerian subgraph with � edges and h vertices as
zi(v) = �+2

h ; the 2 in the numerator is added for the cost of the double edge to
connect the component to the others in the GTSP tour. Note that

∑
v∈V zi(v)

is equal to the length of the GTSP solution corresponding to Γi, plus 2. The
average contribution of v over all covers is z(v) =

∑
i λizi(v). When summing

this over all vertices v we obtain the average length of the GTSP tours plus 2.
We will show that z(v) ≤ 4/3 ∀v ∈ V .

Observation 1. For any vertex v and i ∈ {1, 2, . . . , k}, the contribution zi(v) is

(a) at most h+2
h , where h = min{t, 10} and v is on a cycle of length t in Ci or

after operation (i).
(b) at most 13/10 if operation (ii) was applied to some component containing v.

Proof (Observation 1). Assume that v is on a Eulerian subgraph γ in Γi of
g vertices. First we prove (b). If operation (ii) was applied to some component

TSP on Cubic and Subcubic Graphs 73

containing v, then vertex v was on a cycle of length at least 5 after operation (i).
Each application of (ii) adds at least 5 vertices to the component of v. Hence, the
number of times that (ii) was applied to the component of v is at most g/5− 1.
Since each application adds exactly one edge, the number of edges in γ is at
most g + g/5− 1. Hence,

zi(v) ≤ g + g/5 + 1
g

=
12
10

+
1
g
≤ 13

10
.

We use a similar argument to prove (a). Clearly, g ≥ h. If γ is a cycle then the
contribution of v in Γi is (g +2)/g ≤ (h+2)/h and (a) is true. If γ is not a cycle
then this Eulerian subgraph was composed by operation (ii) applied to cycles,
each of length at least 5 and one of these had length at least h. Hence, the number
of these cycles is at most 1 + (g − h)/5. Since every application of operation (ii)
adds one edge extra, the number of edges in γ is at most g + (g − h)/5. Hence,
since h ≤ 10,

zi(v) ≤ g + (g − h)/5 + 2
g

≤ g + (g − h)/(h/2) + 2
g

=
h + 2

h
. �

Note the subtleties in Observation 1: If v is on a cycle of length t in Ci or after
operation (i), and t ≤ 10, then (a) says that zi(v) is at most (t + 2)/t. if t > 10,
then (a) says that its contribution is at most 12/10. And finally, if t is 5 or 6 and
we know that operation (ii) was applied to some component containing v, then
(b) allows us to improve the upper bound on zi(v) to 13/10 (for other values of
t, (b) does not give an improvement).

From now on we fix any vertex v. Suppose that there is no � such that v
is on a 4-cycle or a 5-cycle of Γ�. Then using Observation 1, we have zi(v) ≤
max{8/6, 13/10}= 4/3 for every cover Γi, and thus z(v) ≤ 4/3 and we are done.

Now suppose there exists an � such that v is on a 4-cycle C of Γ�. Then C
must be present in C� as well. First assume that C is chordless in G. Then all
four edges adjacent to C are in the set M�.

Observation 2. For any pair of vertices on a chordless cycle of G that appears
in any Ci, any path between the two that does not intersect the cycle has length
at least 3.

We partition the set C1, . . . , Ck according to the way the corresponding Mi’s
intersect the cycle C. Define sets X0, X1, X2 where Xj = {i | |C ∩Mi| = j} for
j = 0, 1, 2. Let xt =

∑
i∈Xt

λi, t = 0, 1, 2. Clearly x0 +x1 +x2 = 1. Since each of
the four edges adjacent to C receives total weight 1/3 in the matchings, we have
that 4x0 + 2x1 = 4/3⇒ x0 = 1/3− x1/2. Since each of the edges of C receives
total weight 1/3 in the matchings, x1 + 2x2 = 4/3⇒ x2 = 2/3− x1/2.

Clearly, for any i ∈ X0, v lies on cycle C in Ci, and thus by Observation 1(a),
zi(v) ≤ 6/4. By Observation 2, for any i ∈ X1, v lies on a cycle of length
at least 6 in Ci, and thus by Observation 1(a), zi(v) ≤ 8/6. For any i ∈ X2,

74 S. Boyd et al.

if C is intersected by one cycle in Ci, then this cycle has length at least 8 by
Observation 2. If for i ∈ X2, C is intersected by two cycles of length at least 4
each, then, after performing operation (i), v will be on a cycle of length at least
8. Thus using Observation 1(a) one more time, we obtain

z(v) ≤ x06/4 + x18/6 + x210/8
= (1/3− x1/2)6/4 + x18/6 + (2/3− x1/2)10/8
= 4/3 + x1(8/6− 6/8− 10/16) = 4/3− x1/24 ≤ 4/3.

We prove now that z(v) ≤ 4/3 also if C is a 4-cycle with a chord. Let us call
the vertices on the cycle u0, a, v0, b, let ab be the chord, and v is any of the
four vertices. If u0v0 ∈ E, then G = K4 (the complete graph on 4 vertices),
contradicting the assumption that n ≥ 6. Thus edges u0u1 and v0v1 exist, with
u1, v1 /∈ C. Notice that u1 �= v1 since otherwise G would contain a bridge,
contradicting 2-connectedness. Let C′ be the cycle containing v in some cycle
cover Ci. If C′ does not contain edge u0u1 then C′ = C. If, on the other hand,
u0u1 ∈ C′ then also v0v1 ∈ C′ and ab ∈ C′. Note that u1v1 /∈ E since otherwise
we have a p-rainbow subgraph as in Figure 2, and we are assuming that we do
not have any such subgraphs. Consequently, C′ cannot have length exactly 6.
It also cannot have length 7 since then a 3-cut with 3 matching edges would
occur. Therefore, any cycle containing u0u1 has length at least 8. Applying
Observation 1(a) twice we conclude that z(v) ≤ 1/3 · 6/4 + 2/3 · 10/8 = 4/3.

Now assume there exists a (chordless) 5-cycle C containing v in some Γ�. Note
that we can assume that no w ∈ C is on a 4-cycle of G, otherwise operation (i)
would have been applied and the component of v in Γ� would have size larger than
5. Note further that C is present in C� as well. The proof for this case is rather
similar to the case for the chordless 4-cycle. Let Xj be the set {i | |C ∩Mi| = j},
for j = 0, 1, 2. Let xt =

∑
i∈Xt

λi, t = 0, 1, 2. Again, we have x0 + x1 + x2 = 1.
Clearly, for any i ∈ X0, v lies on C in Ci and for i ∈ X1 v lies on a cycle of length
at least 7 by Observation 2. Hence, by Observation 1(a) we have zi(v) ≤ 7/5 for
i ∈ X0 and zi(v) ≤ 9/7 for i ∈ X1. For any i ∈ X2 there are two possibilities:
Either C is intersected by one cycle in Ci, which, by Observation 2, has length at
least 9, or C is intersected in Ci by two cycles, say C1 and C2. In the first case we
have zi(v) ≤ 11/9 by Observation 1(a). In the second case, as argued before, we
can assume that no w ∈ C is on a 4-cycle of G. Hence, C1 and C2 each have at
least 5 vertices and operation (ii) will be applied, unless C1 and C2 end up in one
large cycle by operation (i). In the first case we apply Observation 1(b) and get
zi(v) ≤ 13/10, and in the second case we apply Observation 1(a): zi(v) ≤ 12/10.
Hence, for any i ∈ X2 we have zi(v) ≤ max{11/9, 12/10, 13/10}= 13/10.

z(v) ≤ x07/5 + x19/7 + x213/10
≤ x07/5 + x113/10 + x213/10
= x07/5 + (1− x0)13/10 = 13/10 + x01/10
≤ 13/10 + 1/30 = 4/3. �

TSP on Cubic and Subcubic Graphs 75

As previously mentioned, Barahona [4] provides a polynomial-time algorithm
which finds a set of at most 7n/2 − 1 perfect matchings such that 1

3χE can be
expressed as a convex combination of the incidence vectors of these matchings.
This algorithm runs in O(n6) time. As shown in the proof of Lemma 1, these
matchings will automatically be 3-cut perfect matchings. Once we have this set
of perfect matchings then applying operations (i) and (ii) on the corresponding
cycle covers gives at least one tour of length at most 4n/3− 2 according to the
above theorem. As any tour has length at least n for graph-TSP, we have the
following approximation result:

Corollary 1. For graph-TSP on bridgeless cubic graphs there exist a polynomial-
time 4/3 approximation algorithm.

As n is a lower bound on the value of SER for graph-TSP it also follows that,
as an upper bound, Conjecture 1 is true for this class of problems, i.e.,

Corollary 2. For graph-TSP on bridgeless cubic graphs the integrality gap for
SER is at most 4/3.

We remark that the largest ratio we found so far for α(TSP) on bridgeless cubic
examples is 7/6. Without proof we extend the result to include bridges.

Theorem 2. For a cubic graph with b bridges and s vertices incident to more
than one bridge, a TSP tour of length at most (4/3)(n + b − s) − 2 can be
constructed in polynomial time.

Since an optimal tour on a graph with b bridges has at least n + 2b− s edges:

Corollary 3. For graph-TSP on cubic graphs, there exists a polynomial-time
4/3-approximation algorithm, and the integrality gap for SER is at most 4/3.

4 Subcubic Graphs

When we allow vertices of degree 2, i.e., we consider 2-connected graphs of
maximum degree 3, then the optimal GTSP tour may be as large as 4n/3−2/3.
For example, take two vertices joined by three paths of the same length. We
conjecture that this bound is tight but have no proof. Instead we can show a
bound of 7n/5−4/5, based on relating the cubic graph result to this case. Proofs
are omitted from this section.

Theorem 3. Every 2-edge connected graph of maximum degree 3 has a TSP
tour of length at most 7

5n− 4
5 .

As with the cubic case, this result can be extended to include bridges.

Theorem 4. For a graph of maximum degree 3 consisting of n vertices and b
bridges, a TSP tour of length at most 7(n− s + 2b)/5 can be constructed.

From the proofs of Theorems 3 and 4 a polynomial-time algorithm can be de-
signed. Since n + 2b − s can be shown to be a lower bound for graph-TSP and
for SER on subcubic graphs with b bridges, we have:

76 S. Boyd et al.

Corollary 4. For graph-TSP on subcubic graphs, there exists a polynomial-time
7/5-approximation algorithm, and the integrality gap for SER is at most 7/5.

5 Epilogue

The table below shows the state of knowledge about graph-TSP for various
classes of graphs. It contains: (column A) lower bounds on the length of graph-
TSP tours on n vertices, for n large enough, (column B) upper bounds on them
that we know how to construct, (column C) lower bounds on the integrality gap
of SER, (column D) upper bounds on the integrality gap of SER, and (column
E) upper bounds on the best possible approximation ratio. We have selected
only the bridgeless cases, because they are the crucial ones within the classes.
Columns B,D and E in the last two rows comprises our work. The other results,
specifically the lower bounds in the last 2 rows are briefly explained in the full
version of this paper.

A-lower B-upper C-lb-sep D-ub-sep E-apr
1 general, 2-edge connected 2n− 4 2n− 2 4/3 3/2 3/2
2 max degree 3, 2 edge conn 4n/3− 2/3 7n/5− 4/5 4/3 7/5 7/5
3 cubic 2 edge connected 11n/9− 10/9 4n/3− 2 7/6 4/3 4/3

The table shows a gap in our knowledge for each of the problem classes.
Closing these gaps is an obvious open research question. Proving APX-hardness
of cubic graph-TSP is open as well. Another interesting research question is to
improve on the running time of our algorithm, which is highly dominated by
the O(n6)-time algorithm of Baharona which works for every graph and every
point in the perfect matching polytope. Can we find a faster algorithm for the
special case that the graph is cubic and for the special point 1

3χE? The question
is related to the Berge-Fulkerson Conjecture [13] which implies that the point
1
3χE can be expressed as the convex combination of at most 6 perfect matchings.

Of course, the main research challenges remain to prove Conjecture 1 or even
show a 4/3-approximation algorithm. Also for the special case of graph-TSP this
problem is wide open.

References

1. Aggarwal, N., Garg, N., Gupta, S.: A 4/3-approximation for TSP on cubic 3-edge-
connected graphs (2011) (manuscript)

2. Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the hamiltonian cycle
problem for bipartite graphs. Journal of Information Processing 3, 73–76 (1980)

3. Arora, S., Grigni, M., Karger, D., Klein, P., Woloszyn, A.: A polynomial-time
approximation scheme for weighted planar graph TSP. In: Proc. of the 9th ACM–
SIAM Symposium on Discrete Algorithms, pp. 33–41 (1998)

4. Barahona, F.: Fractional packing of T-joins. SIAM Journal on Discrete Math. 17,
661–669 (2004)

TSP on Cubic and Subcubic Graphs 77

5. Benoit, G., Boyd, S.: Finding the exact integrality gap for small travelling salesman
problems. Math. of Operations Research 33, 921–931 (2008)

6. Berman, P., Karpinski, M.: 8/7-approximation algorithm for 1,2-TSP. In: Proc.
17th ACM SIAM Symposium on Discrete Algorithms, pp. 641–648 (2006)

7. Boyd, S., Iwata, S., Takazawa, K.: Finding 2-Factors Covering 3- and 4-Edge Cuts
in Bridgeless Cubic Graphs Kyoto University (2010) (manuscript)

8. Csaba, B., Karpinski, M., Krysta, P.: Approximability of dense and sparse instances
of minimum 2-connectivity, tsp and path problems. In: Proc. 13th ACM–SIAM
Symposium on Discrete Algorithms, pp. 74–83 (2002)

9. Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman
problem, Report 388, Graduate School of Industrial Administration, Carnegie Mel-
lon University, Pittsburgh (1976)

10. Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman on a graph and
some related integer polyhedra. Math. Programming 33, 1–27 (1985)

11. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. of Res.
National Bureau of Standards B 69, 125–130 (1965)

12. Fotakis, D., Spirakis, P.: Graph properties that facilitate travelling. Electronic Col-
loquium on Computational Complexity 31, 1–18 (1998)

13. Fulkerson, D.: Blocking and anti-blocking pairs of polyhedra. Math Programming 1,
168–194 (1971)

14. Gamarnik, D., Lewenstein, M., Sviridenko, M.: An improved upper bound for the
TSP in cubic 3-edge-connected graphs. OR Letters 33, 467–474 (2005)

15. Garey, M., Johnson, D., Tarjan, R.: The planar hamiltonian circuit problem is
NP-complete. SIAM Journal of Computing 5, 704–714 (1976)

16. Gharan, S.O., Saberi, A., Singh, M.: A Randomized Rounding Approach to the
Traveling Salesman Problem (2011) (manuscript)

17. Grigni, M., Koutsoupias, E., Papadimitriou, C.: An approximation scheme for pla-
nar graph TSP. In: Proc. 36th Annual Symposium on Foundations of Computer
Science, pp. 640–645 (1995)

18. Hartvigsen, D., Li, Y.: Maximum cardinality simple 2-matchings in subcubic
graphs, University of Notre Dame (2009) (manuscript)

19. Kaiser, T., Král’, D., Norine, S.: Unions of perfect matchings in cubic graphs.
Electronic Notes in Discrete Math. 22, 341–345 (2005)

20. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: The Traveling
Salesman Problem–A Guided Tour of Combinatorial Optimization. Wiley, Chich-
ester (1985)

21. Naddef, D., Pulleyblank, W.: Matchings in regular graphs. Discrete Math. 34, 283–
291 (1981)

22. Papadimitriou, C., Yannakakis, M.: The traveling salesman problem with distances
one and two. Math. Oper. Res. 18, 1–11 (1993)

23. Petersen, J.: Die Theorie der regulären graphen. Acta Math. 15, 193–220 (1891)
24. Shmoys, D., Williamson, D.: Analyzing the Held-Karp TSP bound: A monotonicity

property with application. Information Processing Letters 35, 281–285 (1990)
25. Wolsey, L.: Heuristic analysis, linear programming and branch and bound. Math.

Programming Study 13, 121–134 (1980)

Approximability of Capacitated Network Design

Deeparnab Chakrabarty1, Chandra Chekuri2,�,
Sanjeev Khanna1,��, and Nitish Korula3,���

1 Dept. of CIS, University of Pennsylvania,
Philadelphia, PA 19104

deepc@seas.upenn.edu, sanjeev@cis.upenn.edu
2 Dept. of Computer Science, University of Illinois,

Urbana, IL 61801
chekuri@cs.illinois.edu

3 Google Inc., 76 Ninth Ave, 4th Floor,
New York, NY 10011
nitish@google.com

Abstract. In the capacitated survivable network design problem (Cap-
SNDP), we are given an undirected multi-graph where each edge has
a capacity and a cost. The goal is to find a minimum cost subset of
edges that satisfies a given set of pairwise minimum-cut requirements.
Unlike its classical special case of SNDP when all capacities are unit,
the approximability of Cap-SNDP is not well understood; even in very
restricted settings no known algorithm achieves a o(m) approximation,
where m is the number of edges in the graph. In this paper, we obtain
several new results and insights into the approximability of Cap-SNDP.

We give an O(log n) approximation for a special case of Cap-SNDP
where the global minimum cut is required to be at least R, by rounding
the natural cut-based LP relaxation strengthened with valid knapsack-
cover inequalities. We then show that as we move away from global con-
nectivity, the single pair case (that is, when only one pair (s, t) has
positive connectivity requirement) captures much of the difficulty of
Cap-SNDP: even strengthened with KC inequalities, the LP has an Ω(n)
integrality gap. Furthermore, in directed graphs, we show that single pair

Cap-SNDP is 2log1−δ n-hard to approximate for any fixed constant δ > 0.

We also consider a variant of the Cap-SNDP in which multiple copies
of an edge can be bought: we give an O(log k) approximation for this
case, where k is the number of vertex pairs with non-zero connectiv-
ity requirement. This improves upon the previously known O(min{k,
log Rmax})-approximation for this problem when the largest minimum-
cut requirement, namely Rmax, is large. On the other hand, we observe
that the multiple copy version of Cap-SNDP is Ω(log log n)-hard to ap-
proximate even for the single-source version of the problem.

� Supported in part by NSF grants CCF-0728782 and CCF-1016684.
�� Supported in part by NSF Awards CCF-0635084 and IIS-0904314.

��� This work was done while the author was at the Department of Computer Science
at the University of Illinios, and was partially supported by NSF grant CCF-
0728782 and a University of Illinois Dissertation Completion Fellowship.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 78–91, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Approximability of Capacitated Network Design 79

1 Introduction

In this paper we consider the capacitated survivable network design problem
(Cap-SNDP). The input consists of an undirected n-vertex multi-graph G(V, E)
and an integer requirement Rij for each unordered pair of nodes (i, j). Each edge
e of G has a cost c(e) and an integer capacity u(e). The goal is to find a minimum-
cost subgraph H of G such that for each pair of nodes i, j the capacity of the
minimum-cut between i and j in H is at least Rij . This generalizes the well-
known survivable network design problem (SNDP) problem in which all edge
capacities are 1. SNDP already captures as special cases several fundamental
connectivity problems in combinatorial optimization such as the min-cost span-
ning tree, min-cost Steiner tree and forest, as well as min-cost λ-edge-connected
subgraph; each of these problems has been extensively studied on its own and
several of these special cases are NP-hard and APX-hard to approximate. Jain, in
an influential paper [16], obtained a 2-approximation for SNDP via the standard
cut-based LP relaxation using the iterated rounding technique.

Although the above mentioned 2-approximation for SNDP has been known
since 1998, the approximability of Cap-SNDP has essentially been wide open
even in very restricted special cases. Similar to SNDP, Cap-SNDP is motivated
by both practial and theoretical considerations. These problems find applications
in the design of resilient networks such as in telecommunication infrastructure.
In such networks it is often quite common to have equipment with different
discrete capacities; this leads naturally to design problems such as Cap-SNDP.
At the outset, we mention that a different and somewhat related problem is also
referred to by the same name, especially in the operations research literature. In
this version the subgraph H has to support simultaneously a flow of Rij between
each pair of nodes (i, j); this is more closely related to buy-at-bulk network
design [8] and the fixed-charge network flow problems [15]. Our version is more
related to connectivity problems such as SNDP.

As far as we are aware, the version of Cap-SNDP that we study was intro-
duced (in the approximation algorithms literature) by Goemans et al. [14] in
conjunction with their work on SNDP. They made several observations on Cap-
SNDP: (i) Cap-SNDP reduces to SNDP if all capacities are the same, (ii) there
is an O(min(m, Rmax)) approximation where m is the number of edges in G and
Rmax = maxij Rij is the maximum requirement, and (iii) if multiple copies of
an edge are allowed then there is an O(log Rmax)-approximation. We note that
in the capacitated case Rmax can be exponentially large in n, the number of
nodes of the graph. Carr et al. [6] observed that the natural cut-based LP re-
laxation has an unbounded integrality gap even for the graph consisting of only
two nodes s, t connected by parallel edges with different capacities. Motivated
by this observation and the goal of obtaining improved approximation ratios for
Cap-SNDP, [6] strengthened the basic cut-based LP by using knapsack-cover
inequalities. (Several subsequent papers in approximation algorithms have fruit-
fully used these inequalities.) Using these inequalities, [6] obtained a β(G) + 1
approximation for Cap-SNDP where β(G) is the maximum cardinality of a bond
in the underlying simple graph: a bond is a minimal set of edges that separates

80 D. Chakrabarty et al.

some pair of vertices with positive demand. Although β(G) could be Θ(n2) in
general, this approach gives constant factor approximations for certain topologies
of the underlying graph — for instance, a line or a cycle.

The above results naturally lead to several questions. What is the approxima-
bility of Cap-SNDP? Should we expect a poly-logarithmic approximation or even
a constant factor approximation? If not, what are interesting and useful special
cases to consider? And do the knapsack cover inequalities help in the general
case? What is the approximability of Cap-SNDP if one allows multiple copies?
Does this relaxed version of the problem allow a constant factor approximation?

In this paper we obtain several new positive and negative results for Cap-
SNDP that provide new insights into the questions above.

1.1 Our Results

We first discuss results for Cap-SNDP where multiple copies are not allowed. We
initiate our study by considering the global connectivity version of Cap-SNDP
where we want a min-cost subgraph with global min-cut at least R; in other
words, there is a “uniform” requirement Rij = R for all pairs (i, j). We refer
to this as the Cap-R-Connected Subgraph problem; the special case when all
capacities are unit corresponds to the classical minimum cost λ-edge-connected
(spanning) subgraph problem, which is known to be APX-hard [12]. We show
the following positive result for arbitrary capacities.

Theorem 1. There is a randomized O(log n)-approximation algorithm for the
Cap-R-Connected Subgraph problem.

To prove Theorem 1, we begin with a natural LP relaxation for the problem.
Almost all positive results previously obtained for the unit capacity case are
based on this relaxation. As remarked already, this LP has an unbounded inte-
grality gap even for a graph with two nodes (and hence for Cap-R-Connected
Subgraph). We strengthen the relaxation by adding the valid knapsack cover
inequalities. Following [6], we find a violated inequality only if the current frac-
tional solution does not satisfy certain useful properties. Our main technical
tool both for finding a violated inequality and rounding the fractional solution
is Karger’s theorem on the number of small cuts in undirected graphs [17].

Our approach outlined above may be useful in other network design applica-
tions. As a concrete illustration, we use it to solve an interesting and natural
generalization of Cap-R-Connected Subgraph, namely, the k-Way–R-Connected
Subgraph problem. The input consists of (k−1) integer requirements R1, . . . Rk−1,
such that R1 ≤ R2 ≤ . . . ≤ Rk−1. The goal is to find a minimum-cost subgraph
H of G such that for each 1 ≤ i ≤ k − 1, the capacity of any (i + 1)-way
cut of G is at least Ri.That is, the minimum capacity of edges that need to
be removed from H to form (i + 1) disconnected components must be at least
Ri. Note that Cap-R-Connected Subgraph is precisely the k-Way–R-Connected
Subgraph, with k = 2, and that the k-Way–R-Connected Subgraph problem
is not a special case of the general Cap-SNDP as the cut requirements for the

Approximability of Capacitated Network Design 81

former problem are not expressible as pairwise connectivity constraints. Interest-
ingly, our techniques for Cap-R-Connected Subgraph can be naturally extended
to handle the multiway cut requirements, yielding the following generalization
of Theorem 1. Furthermore, no better result is known for this problem even in
the unit capacity case.

Theorem 2. There is a randomized O(k log n)-approximation algorithm for the
k-Way–R-Connected Subgraph problem with nO(k) running time.

Once the pairwise connectivity requirements are allowed to vary arbitrarily, the
Cap-SNDP problem seems to become distinctly harder. Surprisingly, the diffi-
culty of the general case starts to manifest even for the simplest representative
problem in this setting, where there is only one pair (s, t) with Rst > 0; we
refer to this as the single pair problem. The only known positive result for this
seemingly restricted case is a polynomial-factor approximation that follows from
the results in [14,6] for general Cap-SNDP. We give several negative results to
suggest that this special case may capture the essential difficulty of Cap-SNDP.
First, we show that the single pair problem is Ω(log log n)-hard to approximate.

Theorem 3. The single pair Cap-SNDP problem cannot be approximated to a
factor better than Ω(log log n) unless NP ⊆ DTIME(nlog log log n).

The above theorem is a corollary of the results in Chuzhoy et al. ’s work on the
hardness of related network design problems [9]. We state it as a theorem to
highlight the status of the problem, and defer the proof to the full version [5].

Note that the hardness result above does not rule out a logarithmic/poly-
logarithmic approximation, and one might hope to obtain such a result via the
LP, strengthened with knapsack cover inequalities. Unfortunately, Carr et al.
[6] showed that the strengthened LP has integrality gap at least �β(G)/2� + 1.
Thus, new algorithmic techniques are necessary to tackle this problem.

We prove a much stronger negative result for the single pair problem in di-
rected graphs. Since in the unit-capacity case, polynomial-time minimum-cost
flow algorithms solve the single-pair problem exactly even in directed graphs,
the hardness result below shows a stark contrast between the unit-capacity and
the non-unit capacity cases.

Theorem 4. In directed graphs, the single pair Cap-SNDP cannot be approx-
imated to a factor better than 2log(1−δ) n for any 0 < δ < 1, unless NP ⊆
DTIME(npolylog(n)). Moreover, this hardness holds for instances in which there
are only two distinct edge capacities.

Allowing Multiple Copies: Given the negative results above for even the special
case of the single-pair Cap-SNDP, it is natural to consider the relaxed version
of the problem where multiple copies of an edge can be chosen. Specifically, for
any integer α ≥ 0, α copies of e can be bought at a cost of α · c(e) to obtain
a capacity α · u(e). In some applications, such as in telecommunication net-
works, this is a reasonable model. As we discussed, this model was considered by

82 D. Chakrabarty et al.

Goemans et al. [14] who gave an O(log Rmax) approximation for Cap-SNDP.
One can easily obtain an O(k) approximation by taking edges on a single path
multiple times for each pair, where k is the number of pairs with Rij > 0. When
Rmax is large, we improve the min{O(k), O(log Rmax)}-approximation discussed
above via the following.

Theorem 5. In undirected graphs, there is an O(log k)-approximation algo-
rithm for Cap-SNDP with multiple copies, where k is the number of pairs with
Rij > 0.

Both our algorithm and analysis are inspired by the O(log k)-competitive online
algorithm for the Steiner forest problem by Berman and Coulston [4], and the
subsequent adaptation of these ideas for the priority Steiner forest problem by
Charikar et al. [7]. We complement our algorithmic result by showing that the
multiple copy version is Ω(log log n)-hard to approximate. This hardness holds
even for the single-source Cap-SNDP where we are given a source node s ∈ V ,
and a set of terminals T ⊆ V , such that Rij > 0 iff i = s and j ∈ T . The
following theorem, like Theorem 3, also follows easily from the results of [9].

Theorem 6. Single source Cap-SNDP with multiple copies cannot be approxi-
mated to a factor better than Ω(log log n) unless NP ⊆ DTIME(nlog log log n).

Related Work: Network design has a large literature in a variety of areas
including computer science and operations research. Practical and theoretical
considerations have resulted in numerous models and results. Due to space con-
siderations it is infeasible even to give a good overview of closely related work. We
briefly mention some work that allows the reader to compare the model we con-
sider here to related models. As we mentioned earlier, our version of Cap-SNDP
is a direct generalization of SNDP and hence is concerned with (capacitated)
connectivity between request node pairs. We refer the reader to the survey [18]
and some recent and previous papers [14,16,13,10,11,20] for pointers to literature
on network design for connectivity.

A different model arises if one wishes to find a min-cost subgraph that supports
multicommodity flow for the request pairs; in this model each node pair (i, j)
needs to routes a flow of Rij in the chosen graph and these flows simultaneously
share the capacity of the graph. We refer to this problem as Capacitated Multi-
commodity Flow (Cap-MF). Several variants of Cap-MF have been considered:
If multiple copies of an edge are allowed, Cap-MF is essentially equivalent to
the non-uniform buy-at-bulk network design problem [8]. Buy-at-bulk problems
have received substantial attention; we refer the reader to [8] for several pointers
to this work. If multiple copies of an edge are not allowed, the approximability
of Cap-MF is not well-understood; for example if the flow for each pair is only
allowed to be routed on a single path, then even checking feasibility of a given
subgraph is NP-Hard since the problem captures the well-known edge-disjoint
paths and unsplittable flow problems. Very recently, Andrews, Antonakopoulos
and Zhang [1] (among other results) considered the special case of Cap-MF in
which the capacities of all edges are identical; they obtained a poly-logarithmic

Approximability of Capacitated Network Design 83

approximation, while allowing poly-logarithmic congestion. (That is, they ob-
tain a bi-criteria approximation, as they may use a poly-logarithmic number of
copies of an edge.) When edge capacities are non-uniform, the techniques of [1]
do not extend even to the single pair setting, and they leave this as the main
open problem for future work. Note that in the single pair case, Cap-SNDP and
Cap-MF are identical; as discussed above, we believe that this problem captures
much of the difficulty of Cap-SNDP and Cap-MF.

The k-Way–R-Connected Subgraph problem that we consider does not appear
to have been considered previously even in the unit-capacity case.

2 The Cap-R-Connected Subgraph Problem

In this section, we prove Theorem 1, giving an O(log n)-approximation for the
Cap-R-Connected Subgraph problem. We start by writing a natural linear pro-
gram relaxation for the problem, and strengthening it using additional valid
inequalities, called the knapsack cover inequalities. We then show how to round
this strengthened LP, obtaining an O(log n)-approximation.

2.1 The Standard LP Relaxation and Knapsack-Cover Inequalities

We assume without any loss of generality that the capacity of any edge is at most
R. For each subset S ⊆ 2V , we use δ(S) to denote the set of edges with exactly
one endpoint in S. For a set of edges A, we use u(A) to denote

∑
e∈A u(e). We

say that a set of edges A satisfies (the cut induced by) S if u(A ∩ δ(S)) ≥ R.
Note that we wish to find the cheapest set of edges which satisfies every subset
∅ �= S ⊂ V . The following is the LP relaxation of the standard integer program
capturing the problem.

min
∑
e∈E

c(e)xe : ∀S ⊆ V,
∑

e∈δ(S)

u(e)xe ≥ R, ∀e ∈ E, 0 ≤ xe ≤ 1 (LP)

(LP) can have integrality gap as bad as R. Consider a graph G on three vertices
p, q, r. Edge pq has cost 0 and capacity R; edge qr has cost 0 and capacity R−1;
and edge pr has cost C and capacity R. To achieve a global min-cut of size at
least R, any integral solution must include edge pr, and hence must have cost
C. In contrast, in (LP) one can set xpr = 1/R, and obtain a total cost of C/R.

In the previous example, any integral solution in which the mincut separating
r from {p, q} has size at least R must include edge pr, even if qr is selected. The
following valid inequalities are introduced precisely to enforce this condition.
More generally, let S be a set of vertices, and A be an arbitrary set of edges.
Define R(S, A) = max{0, R − u(A ∩ δ(S))} be the residual requirement of S
that must be satisfied by edges in δ(S) \ A. That is, any feasible solution has∑

e∈δ(S)\A u(e)xe ≥ R(S, A). However, any integral solution also satisfies the
following stronger requirement∑

e∈δ(S)\A

min{R(S, A), u(e)}xe ≥ R(S, A)

84 D. Chakrabarty et al.

and thus these inequalities can be added to the LP to strengthen it. These
additional inequalities are referred to as Knapsack-Cover inequalities, or simply
KC inequalities, and were first used by [6] in design of approximation algorithms
for Cap-SNDP.

Let (LP+KC) denote the standard LP strengthened with all the knapsack
cover inequalities.

min
∑
e∈E

c(e)xe : (LP) constraints, (LP+KC)

∀A ⊆ E, ∀S ⊆ V,
∑

e∈δ(S)\A

min(u(e), R(S, A))xe ≥ R(S, A) (KC-Inequalities)

The Linear Program (LP+KC), like the original (LP), has exponential size.
However, unlike the (LP), we do not know of the existence of an efficient sepa-
ration oracle for this. Nevertheless, as we show below, we do not need to solve
(LP+KC); it suffices to get to what we call a good fractional solution.

Definition 1. Given a fractional solution x, we say an edge e is nearly integral
if xe ≥ 1

40 log n , and we say e is highly fractional otherwise.

Definition 2. For any α ≥ 1, a cut in a graph G with capacities on edges, is
an α-mincut if its capacity is within a factor α of the minimum cut of G.

Theorem 7. [Theorems 4.7.6 and 4.7.7 of [17]] The number of α-mincuts in an
n-vertex graph is at most n2α. Moreover, the set of all α-mincuts can be found
in O(n2α log2 n) time with high probability.

Given a fractional solution x to the edges, we let Ax denote the set of nearly
integral edges, that is, Ax := {e ∈ E : xe ≥ 1

40 log n}. Define û(e) = u(e)xe to
be the fractional capacity on the edges. Let S := {S ⊆ V : û(δ(S)) ≤ 2R}. A
solution x is called good if it satisfies the following three conditions:

(a) The global mincut in G with capacity û is at least R, i.e. x satisfies the
original constraints.

(b) The KC inequalities are satisfied for the set Ax and the sets in S. Note that
if (a) is satisfied, then by Theorem 7, |S| ≤ n4.

(c)
∑

e∈E c(e)xe is at most the value of the optimum solution to (LP+KC).

Note that a good solution need not be feasible for (LP+KC) as it is satisfies only
a subset of KC-inequalities. We use the ellipsoid method to get such a solution.
Such a method was also used in [6], and we defer the details to the full version.

Lemma 1. There is a randomized algorithm that computes a good fractional
solution with high probability.

Approximability of Capacitated Network Design 85

2.2 The Rounding and Analysis

Given a good fractional solution x, we now round it to get a O(log n) approxima-
tion to the Cap-R-Connected Subgraph problem. A useful tool for our analysis
is the following Chernoff bound (see [19], for instance, for a proof):

Lemma 2. Let X1, X2, . . . Xk be a collection of independent random variables
in [0, 1], let X =

∑k
i=1 Xi, and let μ = E[X]. The probability that X ≤ (1− δ)μ

is at most e−μδ2/2.

We start by selecting Ax, the set of all nearly integral edges. Henceforth, we
lose the subscript and denote the set as simply A. Let F = E \ A denote the
set of all highly fractional edges; for each edge e ∈ F , select it with probability
(40 logn ·xe). Let F ∗ ⊆ F denote the set of selected highly fractional edges. The
algorithm returns the set of edges EA := A ∪ F ∗.

It is easy to see that the expected cost of this solution EA is O(log n)∑
e∈E c(e)xe, and hence by condition (c) above, within O(log n) times that of

the optimal integral solution. Thus, to prove Theorem 1, it suffices to prove that
with high probability, EA satisfies every cut in the graph G; we devote the rest
of the section to this proof. We do this by separately considering cuts of different
capacities, where the capacities are w.r.t û (recall that û(e) = u(e)xe). Let L be
the set of cuts of capacity at least 2R, that is, L := {S ⊆ V : û(δ(S)) > 2R}.
Lemma 3. Pr[∀S ∈ L : u(EA ∩ δ(S)) ≥ R] ≥ 1− 1

2n10 .

Proof. We partition L into sets L2,L3, · · · where Lj := {S ⊆ V : jR <
û(δ(S)) ≤ (j + 1)R}. Note that Theorem 7 implies |Lj | ≤ n2(j+1) by condi-
tion (a) above. Fix j, and consider an arbitrary cut S ∈ Lj . If u(A∩ δ(S)) ≥ R,
then S is clearly satisfied by EA. Otherwise, since the total û-capacity of S is at
least jR, we have û(F ∩ δ(S)) ≥ û(δ(S))− u(A ∩ δ(S)) ≥ (j − 1)R. Thus∑

e∈F∩δ(S)

u(e)
R

xe ≥ (j − 1)

Recall that an edge e ∈ F is selected in F ∗ with probability (40 logn · xe).
Thus, for the cut S, the expected value of

∑
e∈F∗∩δ(S)

u(e)
R ≥ 40(j − 1) log n.

Since u(e)/R ≤ 1, we can apply Lemma 2 to get that the probability that S is
not satisfied is at most e−16 log n(j−1) = 1/n16(j−1). Applying the union bound,
the probability that there exists a cut in Lj not satisfied by EA is at most
n2(j+1)/n16(j−1) = n18−14j . Thus probability that some cut in L is not satisfied
is bounded by

∑
j≥2 n18−14j ≤ 2n−10 if n ≥ 2. Hence with probability at least

1− 1/2n10, A ∪ F ∗ satisfies all cuts in L.

One might naturally attempt the same approach for the cuts in S (recall that
S = {S ⊆ V : û(δ(S)) ≤ 2R}) modified as follows. Consider any cut S, which is
partly satisfied by the nearly integral edges A. The fractional edges contribute
to the residual requirement of S, and since xe is scaled up for fractional edges by

86 D. Chakrabarty et al.

a factor of 40 logn, one might expect that F ∗ satisfies the residual requirement,
with the log n factor providing a high-probability guarantee. This intuition is
correct, but the KC inequalities are crucial. Consider Example 1; edge pr is
unlikely to be selected, even after scaling. In the statement of Lemma 2, it
is important that each random variable takes values in [0, 1]; thus, to use this
lemma, we need the expected capacity from fractional edges to be large compared
to the maximum capacity of an individual edge. But the KC inequalities, in which
edge capacities are “reduced”, enforce precisely this condition. Thus we get the
following lemma using a similar analysis as above.

Lemma 4. Pr[∀S ∈ S : u(δ(EA ∪ δ(S))) ≥ R] ≥ 1− 1
n12 .

The O(log n)-approximation guarantee for the Cap-R-Connected Subgraph prob-
lem stated in Theorem 1 follows from the previous two lemmas.

2.3 The k-Way–R-Connected Subgraph Problem.

The k-Way–R-Connected Subgraph problem that we define is a natural general-
ization of the well-studied min-cost λ-edge-connected subgraph problem. The lat-
ter problem is motivated by applications to fault-tolerant network design where
any λ− 1 edge failures should not disconnect the graph. However, there may be
situations in which global λ-connectivity may be too expensive or infeasible. For
example the underlying graph G may have a single cut-edge but we still wish
a subgraph that is as close to 2-edge-connected as possible. We could model
the requirement by k-Way–R-Connected Subgraph (in the unit-capacity case)
by setting R1 = 1 and R2 = 3; that is, at least 3 edges have to be removed to
partition the graph into 3 disconnected pieces.

We briefly sketch the proof of Theorem 2. We work with a generalization
of (LP+KC) to i-way cuts, with an original constraint for each i + 1-way cut,
1 ≤ i ≤ k − 1, and with KC inequalities added. The algorithm is to select
all nearly integral edges e (those with xe ≥ 1

40k log n), and select each of the
remaining (highly fractional) edges e with probability 40k log n ·xe. The analysis
is very similar to that of Theorem 1, but we use the following lemma on counting
k-way cuts in place of Theorem 7. For details, refer to the full version.

Lemma 5 (Lemma 11.2.1 of [17]). In an n-vertex undirected graph, the num-
ber of k-way cuts with capacity at most α times that of a minimum k-way cut is
at most n2α(k−1).

3 Single-Pair Cap-SNDP in Directed Graphs

In this section, we show that when the underlying graph is directed, single-pair
Cap-SNDP is hard to approximate to within a factor of 2log(1−δ) n for any δ > 0.
This proves Theorem 4; our proof proceeds via a reduction from the label cover
problem [3].

Approximability of Capacitated Network Design 87

Definition 3 (Label Cover Problem). The input consists of a bipartite graph
G(A ∪B, E) such that the degree of every vertex in A is dA and degree of every
vertex in B is dB, a set of labels LA and a set of labels LB, and a relation
π(a,b) ⊆ LA×LB for each edge (a, b) ∈ E. Given a labeling φ : A∪B → LA∪LB,
an edge e = (a, b) ∈ E is said to be consistent iff (φ(a), φ(b)) ∈ π(a,b). The goal
is to find a labeling that maximizes the fraction of consistent edges.

The following hardness result for the label-cover problem is a well-known con-
sequence of the PCP theorem [2] and Raz’s Parallel Repetition theorem [21].

Theorem 8 ([2,21]). For any ε > 0, there does not exist a poly-time algo-
rithm to decide if a given instance of label cover problem has a labeling where
all edges are consistent (Yes-Instance), or if no labeling can make at least
1
γ fraction of edges to be consistent for γ = 2log1−ε n (No-Instance), unless
NP ⊆ DTIME(npolylog(n)).

We now give a reduction from label cover to the single-pair Cap-SNDP in di-
rected graphs. In our reduction, the only non-zero capacity values will be 1, dA,
and dB. We note that Theorem 8 holds even when we restrict to instances with
dA = dB. Thus our hardness result will hold on single-pair Cap-SNDP instances
where there are only two distinct non-zero capacity values.

Given an instance I of the label cover problem with m edges, we create in
polynomial-time a directed instance I ′ of single-pair Cap-SNDP such that if I is
a Yes-Instance then I ′ has a solution of cost at most 2m, and otherwise, every
solution to I ′ has cost Ω(mγ

1
4). This establishes Theorem 4 when ε = δ/2.

The underlying graph G′(V ′, E′) for the single-pair Cap-SNDP instance is
constructed as follows. The set V ′ contains a vertex v for every v ∈ A ∪B. We
slightly abuse notation and refer to these sets of vertices in V ′ as A and B as
well. Furthermore, for every vertex a ∈ A, and for every label � ∈ LA, the set
V ′ contains a vertex a(�). Similarly, for every vertex b ∈ B, and for every label
� ∈ LB, the set V ′ contains a vertex b(�). Finally, V ′ contains a source vertex s
and a sink vertex t. The set E′ contains the following directed edges:

– For each vertex a in A, we have an arc (s, a) of cost 0 and capacity dA. For
each vertex b ∈ B, there is an arc (b, t) of cost 0 and capacity dB.

– For each vertex a ∈ A, and for all labels � in LA, there is an arc (a, a(�)) of
cost dA and capacity dA. For each vertex b ∈ B, and for all labels � in LB,
there is an arc (b(�), b) of cost dB and capacity dB.

– For every edge (a, b) ∈ E, and for every pair of labels (�a, �b) ∈ π(a,b), there
is an arc (a(�a), b(�b)) of cost 0 and capacity 1.

This completes the description of the network G′. The requirement Rst between
s and t is m, the number of edges in the label cover instance. It is easy to verify
that the size of the graph G′ can be constructed in time polynomial in size of
G. The lemmas below analyze the cost of Yes-Instance and No-Instance
instances; the proofs are deferred to the full version due to space limitation.

88 D. Chakrabarty et al.

Lemma 6. If the label cover instance is a Yes-Instance, then G′ contains a
subgraph of cost 2m which can realize a flow of value m from s to t.

Lemma 7. If the label cover instance is a No-Instance, then any subgraph of
G′ that realizes a flow of m units from s to t has cost Ω(mγ

1
4).

Since the graph G′ can be constructed from G in poly-time, it follows that a
poly-time (γ1/4/5)-approximation algorithm for single-pair Cap-SNDP would
give a poly-time algorithm to decide whether a given instance of label cover is a
Yes-Instance or a No-Instance contradicting Theorem 8.

4 Cap-SNDP with Multiple Copies Allowed

We now consider the version of Cap-SNDP when multiple copies of any edge e
can be chosen. Our algorithm is inspired by the work of Berman and Coulston
[4] on online Steiner Forest. For notational convenience, we rename the pairs
(s1, t1), · · · , (sk, tk), and denote the requirement Rsi,ti as Ri; the vertices si, ti
are referred to as terminals. Order the pairs so that R1 ≥ R2 ≥ · · · ≥ Rk.

We start with the intuition. The algorithm considers the pairs in decreasing
order of requirements, and maintains a forest solution connecting the pairs that
have been already been processed; that is, if we retain a single copy of each edge
in the partial solution constructed so far, we obtain a forest F . For any edge
e on the path in F between sj and tj , the total capacity of copies of e will be
at least Rj . When considering si, ti, we connect them as cheaply as possible,
assuming that edges previously selected for F have 0 cost. (Note that this can
be done since we are processing the pairs in decreasing order of requirements
and for each edge already present in F , the capacity of its copies is at least Ri.)
The key step of the algorithm is that in addition to connecting si and ti, we
also connect the pair to certain other components of F that are “nearby”. The
cost of these additional connections can be bounded by the cost of the direct
connection costs between the pairs. These additional connections are useful in
allowing subsequent pairs of terminals to be connected cheaply. In particular,
they allow us to prove a O(log k) upper bound on the approximation factor.

We now describe the algorithm in more detail. The algorithm maintains a
forest F of edges that have already been bought; F satisfies the invariant that,
after iteration i−1, for each j ≤ i−1, F contains a unique path between sj and
tj . In iteration i, we consider the pair si, ti. We define the cost function ci(e)
as ci(e) := 0 for edges e already in F , and ci(e) := c(e) + Ri

u(e) c(e), for edges
e /∈ F . Note that for an edge e /∈ F , the cost ci(e) is sufficient to buy enough
copies of e to achieve a total capacity of Ri. Thus it suffices to connect si and
ti and pay cost ci(e) for each edge; in the Cap-SNDP solution we would pay at
most this cost and get a feasible solution. However, recall that our algorithm
also connects si and ti to other “close by” components; to describe this process,
we introduce some notation: For any vertices p and q, we use di(p, q) to denote
the distance between p and q according to the metric given by edge costs ci(e).
We let �i := di(si, ti) be the cost required to connect si and ti, given the current
solution F . We also define the class of a pair (sj , tj), and of a component:

Approximability of Capacitated Network Design 89

– For each j ≤ i, we say that pair (sj , tj) is in class h if 2h ≤ �j < 2h+1.
Equivalently, class(j) = �log �j�.

– For each connected component X of F , class(X) = max(sj ,tj)∈X class(j).

Now, the algorithm connects si (respectively ti) to component X if di(si, X)
(resp. di(ti, X)) ≤ 2min{class(i),class(X)}. That is, if X is close to the pair (si, ti)
compared to the classes they are in, we connect X to the pair. As we show in
the analysis, this extra connection cost can be charged to some pair (sj , tj) in
the component X . The complete algorithm description is given below, and this
algorithm gives a O(log k) approximation, proving Theorem 5. The proof can be
found in the full version.

Cap-SNDP-MC:
F ← ∅ 〈〈F is the forest solution returned〉〉
For i← 1 to k
For each edge e ∈ F , ci(e)← 0
For each edge e �∈ F , ci(e)← c(e) + (Ri/u(e))c(e)
�i ← di(si, ti)
Add to F a shortest path (of length �i) from si to ti under distances ci(e)
class(i)← �log �i	
For each connected component X of F

If di(si, X) ≤ 2min{class(i),class(X)}

Add to F a shortest path connecting si and X
For each connected component X of F

If di(ti, X) ≤ 2min{class(i),class(X)}

Add to F a shortest path connecting ti and X
Buy �Ri/ue� copies of each edge e added during this iteration.

5 Conclusions

In this paper we make progress on addressing the approximability of Cap-
SNDP. We gave an O(log n) approximation for the Cap-R-Connected Subgraph
problem, which is a capacitated generalization of the well-studied min-cost λ-
edge-connected subgraph problem. Can we improve this to obtain an O(1) ap-
proximation or prove super-constant factor hardness of approximation? We also
highlight the difficulty of Cap-SNDP by focusing on the single pair problem and
show hardness results. We believe that understanding the single pair problem is
a key step to understanding the general case. In particular, we do not have a
non-trivial algorithm even for instances in which the edge capacities are either 1
or U ; this appears to capture much of the difficulty of the general problem. As we
noted, allowing multiple copies of edges makes the problem easier; in practice,
however, it may be desirable to not allow too many copies of an edge to be used.
It is therefore of interest to examine the approximability of Cap-SNDP if we allow

90 D. Chakrabarty et al.

only a small number of copies of an edge. Does the problem admit a non-trivial
approximation if we allow O(1) copies or, say, O(log n) copies? This investigation
may further serve to delineate the easy versus difficult cases of Cap-SNDP.

Acknowledgements. CC’s interest in capacitated network design was inspired
by questions from Matthew Andrews. He thanks Matthew Andrews and Lisa
Zhang for several useful discussions on their work on capacitated network design
for multi-commodity flows.

References

1. Andrews, M., Antonakopoulos, S., Zhang, L.: Minimum-Cost Network Design with
(Dis)economies of Scale. In: Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science, pp. 585–592. IEEE, Los Alamitos (2010)

2. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

3. Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The Hardness of Approximate Optimia
in Lattices, Codes, and Systems of Linear Equations. J. Comp. Sys. Sci. 54(2), 317–
331 (1997)

4. Berman, P., Coulston, C.: On-Line Algorithms for Steiner Tree Problems. In:
Proceedings, ACM Symposium on Theory of Computation (STOC), pp. 344–353
(1997)

5. Chakrabarty, D., Chekuri, C., Khanna, S., Korula, N.: Approximability of Capac-
itated Network Design. Technical Report. arXiv:1009.5734

6. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality
gaps for capacitated network design and covering problems. In: Proceedings, ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 106–115 (2000)

7. Charikar, M., Naor, J., Schieber, B.: Resource optimization in QoS multicast rout-
ing of real-time multimedia. IEEE/ACM Trans. Netw. 12(2), 340–348 (2004)

8. Chekuri, C., Hajiaghayi, M.T., Kortsarz, G., Salavatipour, M.R.: Approximation
Algorithms for Non-Uniform Buy-at-Bulk Network Design. In: Proceedings, IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 677–686 (2006)

9. Chuzhoy, J., Gupta, A., Naor, J., Sinha, A.: On the approximability of some net-
work design problems. ACM Transactions on Algorithms 4(2) (2008)

10. Chuzhoy, J., Khanna, S.: Algorithms for single-source vertex connectivity. In: Pro-
ceedings of the 49th Annual IEEE Symposium on Foundations of Computer Sci-
ence, pp. 105–114 (2008)

11. Chuzhoy, J., Khanna, S.: An O(k3 log n)-Approximation Algorithm for Vertex-
Connectivity Survivable Network Design. In: Proceedings of the 50th Annual IEEE
Symposium on Foundations of Computer Science, pp. 437–441 (2009)

12. Fernandes, C.G.: A better approximation ratio for the minimum k-edge-connected
spanning subgraph problem. In: Proceedings of ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 629–638 (1997)

13. Fleischer, L., Jain, K., Williamson, D.P.: Iterative rounding 2-approximation algo-
rithms for minimum-cost vertex connectivity problems. Journal of Computer and
System Sciences 72(5), 838–867 (2006)

14. Goemans, M.X., Goldberg, A.V., Plotkin, S.A., Shmoys, D.B., Tardos, É.,
Williamson, D.P.: Improved Approximation Algorithms for Network Design Prob-
lems. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 223–232
(1994)

Approximability of Capacitated Network Design 91

15. Hewitt, M., Nemhauser, G.L., Savelsbergh, M.W.P.: Combining exact and heuris-
tic approaches for the capacitated fixed-charge network flow problem. INFORMS
Journal on Computing 22(2), 314–325 (2010)

16. Jain, K.: A Factor 2 Approximation Algorithm for the Generalized Steiner Network
Problem. Combinatorica 21(1), 39–60 (2001)

17. Karger, D.: Random Sampling in Graph Optimization Problems. Ph.D. Thesis,
Stanford University (1994)

18. Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In:
Gonzalez, T.F. (ed.) Handbook of Approximation algorithms and Metaheuristics.
CRC Press, Boca Raton (2007)

19. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

20. Nutov, Z.: Approximating minimum cost connectivity problems via uncrossable bi-
families and spider-cover decompositions. In: Proceedings of the 50th IEEE Sym-
posium on Foundations of Computer Science (FOCS), pp. 417–426. IEEE, Los
Alamitos (2009)

21. Raz, R.: A parallel repetition theorem. SIAM Journal of Computing 27(3), 763–803
(1998)

Facility Location with Client Latencies:

Linear Programming Based Techniques for
Minimum Latency Problems�

Deeparnab Chakrabarty1 and Chaitanya Swamy2

1 Deptartment of CIS, Univ. of Pennsylvania, Philadelphia, PA 19104
deepc@seas.upenn.edu

2 Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1
cswamy@math.uwaterloo.ca

Abstract. We introduce a problem that is a common generalization of
the uncapacitated facility location and minimum latency (ML) problems,
where facilities need to be opened to serve clients and also need to be
sequentially activated before they can provide service. Formally, we are
given a set F of n facilities with facility-opening costs fi, a set D of m
clients, connection costs cij specifying the cost of assigning a client j to a
facility i, a root node r denoting the depot, and a time metric d on F∪{r}.
Our goal is to open a subset F of facilities, find a path P starting at r
and spanning F to activate the open facilities, and connect each client j
to a facility φ(j) ∈ F , so as to minimize

∑
i∈F fi +

∑
j∈D(cφ(j),j + tj),

where tj is the time taken to reach φ(j) along path P . We call this the
minimum latency uncapacitated facility location (MLUFL) problem.

Our main result is an O(log n · max(log n, log m))-approximation for
MLUFL. We also show that any improvement in this approximation guar-
antee, implies an improvement in the (current-best) approximation factor
for group Steiner tree. We obtain constant approximations for two natu-
ral special cases of the problem: (a) related MLUFL (metric connection
costs that are a scalar multiple of the time metric); (b) metric uniform
MLUFL (metric connection costs, uniform time-metric). Our LP-based
methods are versatile and easily adapted to yield approximation guaran-
tees for MLUFL in various more general settings, such as (i) when the
latency-cost of a client is a function of the delay faced by the facility to
which it is connected; and (ii) the k-route version, where k vehicles are
routed in parallel to activate the open facilities. Our LP-based understand-
ing of MLUFL also offers some LP-based insights into ML, which we be-
lieve is a promising direction for obtaining improvements for ML.

1 Introduction

Facility location and vehicle routing problems are two broad classes of combi-
natorial optimization problems that have been widely studied in the Operations
Research community (see, e.g., [15,19]), and have a wide range of applications.
� A full version [4] is available on the CS arXiv.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 92–103, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Facility Location with Client Latencies 93

Both problems can be described in terms of an underlying set of clients that
need to be serviced. In facility location problems, there is a candidate set of
facilities that provide service, and the goal is to open some facilities and con-
nect each client to an open facility so as to minimize some combination of the
facility-opening and client-connection costs. Vehicle routing problems consider
the setting where a vehicle (delivery-man or repairman) provides service, and
the goal is to plan a route that visits (and hence services) the clients as quickly
as possible. Two common objectives considered are: (i) minimize the total length
of the vehicle’s route, giving rise to the traveling salesman problem (TSP), and
(ii) (adopting a client-oriented approach) minimize the sum of the client delays,
giving rise to minimum latency (ML) problems.

These two classes of problems have mostly been considered separately. How-
ever, various logistics problems involve both facility-location and vehicle-routing
components. For example, consider the following oft-cited prototypical example
of a facility location problem: a company wants to determine where to open its
retail outlets so as to serve its customers effectively. Now, inventory at the out-
lets needs to be replenished or ordered (e.g., from a depot); naturally, a customer
cannot be served by an outlet unless the outlet has the inventory demanded by
it, and delays incurred in procuring inventory might adversely impact customers.
Hence, it makes sense for the company to also keep in mind the latencies faced
by the customers while making its decisions about where to open outlets, which
clients to serve at each outlet, and in what order to replenish the open outlets,
thereby adding a vehicle-routing component to the problem.

We propose a mathematical model that is a common generalization of the
uncapacitated facility location (UFL) and minimum latency (ML) problems, and
abstracts such settings where facilities need to be “activated” before they can
provide service. Formally, as in UFL, we have a set F of n facilities, and a set D
of m clients. Opening facility i incurs a facility-opening cost fi, and assigning a
client j to a facility i incurs connection cost cij . (The cijs need not form a metric.)
Taking a lead from minimum latency problems, we model activation delays as
follows. We have a root (depot) node r, and a time metric d on F ∪ {r}. A
feasible solution specifies a subset F ⊆ F of facilities to open, a path P starting
at r and spanning F along which the open facilities are activated, and assigns
each client j to an open facility φ(j) ∈ F . The cost of such a solution is∑

i∈F

fi +
∑
j∈D

(
cφ(j)j + tj

)
(1)

where tj = dP (r, φ(j)) is the time taken to reach facility φ(j) along path P .
One can view cij as the time facility i takes to serve client j after it has been
activated, in which case (cφ(j),j +tj) is the delay faced by client j. (Alternatively,
if cij denotes the time taken by a client j to travel to facility i, then the delay
faced by j is max(cφ(j),j , tj), which is within a factor 2 of the sum.) We refer to
tj as client j’s latency cost. The goal is to find a solution with minimum total
cost. We call this the minimum-latency uncapacitated facility location (MLUFL)
problem.

94 D. Chakrabarty and C. Swamy

Apart from being a natural problem of interest, we find MLUFL appealing since
it generalizes various diverse problems of interest, in addition to UFL and ML.
One such problem, which captures much of the combinatorial core of MLUFL, is
what we call the minimum group latency (MGL) problem: given an undirected
graph with metric edge weights {de}, groups {Gj} of vertices, and a root r, the
goal is to find a path starting at r that minimizes the sum of the cover times of
the groups, where the cover time of Gj is the first time at which some i ∈ Gj is
visited on the path. Observe that MGL can be cast as MLUFL with zero facility
costs (where F = node-set \ {r}), where for each group Gj , we create a client
j with cij = 0 if i ∈ Gj and ∞ otherwise. Note that we may assume that the
groups are disjoint (by creating multiple co-located copies of a node), in which
case these cijs form a metric. MGL itself captures various other problems. Clearly,
when each Gj is a singleton, we obtain the minimum latency problem. Given a
set-cover instance, if we consider a graph whose nodes are (r and) the sets, we
create a group Gj for each element j consisting of the sets containing it, and
consider the uniform metric, then this MGL problem is simply the min-sum set
cover (MSSC) problem [9].

Our results and techniques. Our main result is an O
(
logn · max(logm, logn)

)
-

approximation algorithm for MLUFL (Section 2.1), which for the special case of
MGL, implies an O(log2 n) approximation. Complementing this, we show that
a ρ-approximation algorithm for MGL yields an O(ρ logm)-approximation algo-
rithm for the group Steiner tree (GST) problem [10] on n nodes and m groups.
So an improved approximation ratio for MLUFL would yield a corresponding im-
provement for GST, whose approximation ratio has remained at O(log2 n logm)
for a decade [10]. Combined with the result of [14] on the inapproximability of
GST, this also shows that MGL, and hence MLUFL with metric connection costs,
cannot be approximated to better than a Ω(logm)-factor unless NP ⊆ ZTIME
(npolylog(n)).

Given the above hardness result, we investigate certain well-motivated special
cases of MLUFL and obtain significantly improved performance guarantees. In
Section 2.2, we consider the case where the connection costs form a metric, which
is a scalar multiple of the d-metric (i.e., duv = cuv/M , where M ≥ 1; the problem
is trivial if M < 1). For example, in a supply-chain logistics problem, this models
a natural setting where the connection of clients to facilities, and the activation
of facilities both proceed along the same transportation network at different
speeds. We obtain a constant-factor approximation algorithm for this problem.
In Section 2.3, we consider the uniform MLUFL problem, which is the special case
where the time-metric is uniform. Uniform MLUFL already generalizes MSSC (and
also UFL). For uniform MLUFL with metric connection costs (i.e., metric uniform
MLUFL), we devise a 10.78-approximation algorithm. (Without metricity, the
problem becomes set-cover hard, and we obtain a simple matching O(logm)-
approximation.) The chief novelty here lies in the technique used to obtain this
result. We give a simple generic reduction (Theorem 4) that shows how to reduce
the metric uniform MLUFL problem with facility costs to one without facility
costs, in conjunction with an algorithm for UFL. This reduction is surprisingly

Facility Location with Client Latencies 95

robust and versatile and yields, for example, O(1)-approximations for metric
uniform k-median (i.e., metric uniform MLUFL where at most k facilities may be
opened), and MLUFL with non-uniform latency costs.

We obtain our approximation bounds by rounding the optimal solution to a
suitable linear-programming (LP) relaxation of the problem. In Section 3, we
leverage this to obtain some interesting insights about the special case of ML,
which we believe cast new light on the problem since all previous approxima-
tion algorithms for ML are based on combinatorial approaches. In particular,
we present an LP-relaxation for ML, and prove that the integrality gap of these
relaxations is upper bounded by a (small) constant. Our LP is a specialization
of our LP-relaxation for MLUFL. Interestingly, the integrality-gap bound for this
LP relies only on the fact that the natural LP relaxation for TSP has constant
integrality gap. In contrast, the various known algorithms for ML [2,6,1] all uti-
lize algorithms for the arguably harder k-MST problem or its variants. In the full
version [4], we describe a second LP relaxation with exponentially-many vari-
ables, one for every path (or tree) of a given length bound, where the separation
oracle for the dual problem is a rooted path (or tree) orienteering problem: given
rewards on the nodes and metric edge costs, find a (simple) path rooted at r of
length at most B that gathers maximum reward. We prove that even a bicrite-
ria approximation for the orienteering problem yields an approximation for ML

while losing a constant factor. This connection between orienteering and ML is
known [7]. But we feel that our alternate proof, where the orienteering problem
appears as the separation oracle required to solve the dual LP, offers a more
illuminating explanation of the relation between the approximability of the two
problems. Our LP-rounding algorithms to prove the constant integrality gaps
exploit various ideas developed for scheduling (e.g., α-points) and polyhedral
insights for TSP. This suggests that the wealth of LP based machinery could be
leveraged for ML as well; we suspect that our LP-relaxations are in fact much
better than what we have accounted for.

LP-based techniques tend to be fairly versatile and can be adapted to handle
more general variants of the problem. Our algorithms and analyses extend with
little effort to handle various generalizations of MLUFL (and hence, ML). One
such example (see Section 4) is the setting where the latency-cost of a client is
a function (of bounded growth) of the time taken to reach the facility serving
it. This yields an approximation algorithm for the Lp-norm generalization of
MLUFL, where we take the Lp-norm of the client latencies (instead of the L1-
norm) in the objective function; these norms tradeoff efficiency with fairness
making them an appealing measure to consider. Another notable extension is
the k-route version, where we may use k paths starting at r to traverse the open
facilities.

Related work. There is a vast amount of literature on facility location and ve-
hicle routing; we refer the reader to [4] for a more-detailed discussion of re-
lated work. The work that is most closely related to ours is due to Gupta
et al. [13], who independently and concurrently also proposed the minimum
group latency (MGL) problem (which they arrive at in the course of solving a

96 D. Chakrabarty and C. Swamy

different problem), and obtain results similar to ours for MGL. They also obtain
an O(log2 n)-approximation for MGL, and a hardness of approximation for MGL

via the reduction from GST to MGL with an O(logm)-factor loss (see also [16]).
They reduce MGL to a series of “group orienteering” problems, which they solve
using a subroutine due to Charikar et al. [5]. It is not clear how their combina-
torial techniques can be extended to handle facility-opening costs in MLUFL.

2 LP-Rounding Approximation Algorithms for MLUFL

We obtain a linear program for MLUFL as follows. We may assume that dii′ is
integral for all i, i′ ∈ F ∪ {r}. Let E denote the edge-set of the complete graph
on F ∪ {r} and let dmax := maxe∈E de. Let T ≤ min{n,m}dmax be a known
upper bound on the maximum activation time of an open facility in an optimal
solution. For every facility i, client j, and time t ≤ T, we have a variable yi,t

indicating if facility i is opened at time t or not, and a variable xij,t indicating
whether client j connects to facility i at time t. Also, for every edge e ∈ E and
time t, we introduce a variable ze,t which denotes if edge e has been traversed by
time t. Throughout, we use i to index the facilities in F , j to index the clients in
D, t to index the time units in [T] := {1, . . . ,T}, and e to index the edges in E.

min
∑
i,t

fiyi,t +
∑
j,i,t

(
cij + t

)
xij,t (P)

s.t.
∑
i,t

xij,t ≥ 1 ∀j; xij,t ≤ yi,t ∀i, j, t

∑
e

deze,t ≤ t ∀t (2)∑
e∈δ(S)

ze,t ≥
∑

i∈S,t′≤t

xij,t′ ∀t, S ⊆ F , j (3)

xij,t, yi,t, ze,t ≥ 0 ∀i, j, t, e; yi,t = 0 ∀i, t with dir > t.

The first two constraints encode that each client is connected to some facility at
some time, and that if a client is connected to a facility i at time t, then i must
be open at time t. Constraint (2) ensures that at most t “distance” is covered
by the tour on facilities by time t, and (3) ensures that if a client is connected
to i by time t, then the tour must have visited i by time t. We assume here that
T = poly(m); this assumption can be removed with a loss of an (1 + ε) factor
(see [4]). Thus, (P) can be solved efficiently since one can efficiently separate over
the constraints (3). Let (x, y, z) be an optimal solution to (P), and OPT denote
its objective value. For a client j, define C∗

j =
∑

i,t cijxij,t, and L∗
j =

∑
i,t txij,t.

We devise various approximation algorithms for MLUFL by rounding (x, y, z).

2.1 An O
(
log n · max{log n, log m})-Approximation Algorithm

We give an overview of the algorithm. Let Nj = {i ∈ F : cij ≤ 4C∗
j } be

the set of facilities “close” to j, and define τj as the earliest time t such that

Facility Location with Client Latencies 97∑
i∈Nj,t′≤t xij,t′ ≥ 2

3 . By Markov’s inequality, we have
∑

i∈Nj

∑
t xij,t ≥ 3

4 and
τj ≤ 12L∗

j . It is easiest to describe the algorithm assuming first that the time-
metric d is a tree metric. Our algorithm runs in phases, with phase � correspond-
ing to time t� = 2�. In each phase, we compute a random subtree rooted at r of
“low” cost such that for every client j with τj ≤ t�, with constant probability,
this tree contains a facility in Nj . To compute this tree, we utilize the rounding
procedure of Garg-Konjevod-Ravi (GKR) for the group Steiner tree (GST) prob-
lem [10] (see Theorem 1 below), by creating a group for each client j with τj ≤ t�
comprising of, roughly speaking, the facilities in Nj . We open all the facilities
included in the subtree, and obtain a tour via the standard trick of doubling all
edges and performing an Eulerian tour with possible shortcutting. The overall
tour is a concatenation of all the tours obtained in the various phases. For each
client j, we consider the first tree that contains a facility from Nj (which must
therefore be open), and connect j to such a facility.

Given the result for tree metrics, an oft-used idea to handle the case when d
is not a tree metric is to approximate it by a distribution of tree metrics with
O(log n) distortion [8]. Our use of this idea is however slightly subtle Instead of
moving to a distribution over tree metrics up front, in each phase �, we use the
results of [5,8] to deterministically obtain a tree T� with edge weights {dT�

(e)},
such that the resulting tree metric dominates d and

∑
e=(i,i′) dT�

(i, i′)ze,t�
=

O(log n)
∑

e deze,t�
. This deterministic choice allows to extend our algorithm and

analysis effortlessly to the setting where the latency-cost in the objective function
is measured by a more general function of the client-latencies. Algorithm 1 is a
detailed description of the algorithm. Let τmax = maxj τj .

Theorem 1 ([5,8]). Given any edge weights {ze}e∈E, one can deterministically
construct a weighted tree T having leaf-set F ∪ {r}, leading to a tree metric,
dT (·), such that, for any i, i′ ∈ F ∪ {r}, we have: (i) dT (i, i′) ≥ dii′ , and (ii)∑

e=(i,i′)∈E dT (i, i′)zi,i′ = O(log n)
∑

e deze.

Theorem 2 ([10]). Consider a tree T rooted at r withn leaves, subsetsG1, . . . , Gp

of leaves, and fractional values ze on the edges of T satisfying z(δ(S)) ≥ νj for
every group Gj and node-set S such that Gj ⊆ S, where νj ∈ [

1
2 , 1

]
. There

exists a randomized polytime algorithm, henceforth called the GKR algorithm,
that returns a rooted subtree T ′′ ⊆ T such that (i) Pr[e ∈ T ′′] ≤ ze for every
edge e ∈ T ; and (ii) Pr[T ′′ ∩Gj = ∅] ≤ exp

(− νj

64 log2 n

)
for every group Gj .

Analysis. Consider any phase �. For any subset S of nodes of the corresponding
tree T ′

� with r /∈ S, and any N ′
j ⊆ S where j ∈ D�, we have z(δT ′

�
(S)) ≥∑

i∈Nj,t≤t�
xij,t ≥ 2/3. This follows from the constraint (3) in the LP. Using

Theorem 2, we get the following lemma which bounds the probability of failure
in step A1.3.

Lemma 1. In any phase �, with probability 1 − 1
poly(m) , we obtain the desired

tree T ′
� in step A1.3. Also, Pr[T ′

� ∩N ′
j
= ∅] ≥ 5/9 for all j ∈ D�.

98 D. Chakrabarty and C. Swamy

Algorithm 1. Given: a fractional solution (x, y, z) to (P)

A1. In each phase � = 0, 1, . . . ,N := �log2(2τmax) + 4 log2 m�, we do the following. Let
t� = min{2�, T}.

A1.1. Use Theorem 1 with edge weights {ze,t�} to obtain a tree T� =
(
V (T�), E(T�)

)
.

Extend T� to a tree T ′
� by adding a dummy leaf edge (i, vi) of cost fi to T� for

each facility i. Let E′ = {(i, vi) : i ∈ F}.
A1.2. Map the LP-assignment {ze,t�}e∈E to an assignment z on the edges of T ′

� by
setting ze =

∑
e lies on the unique i-i′ path in T�

zii′,t�
for all e ∈ E(T�), and ze =∑

t≤t�
yi,t for all e = (i, vi) ∈ E′.

A1.3. Define D� = {j : τj ≤ t�}. For each client j ∈ D�, we define the group
N ′

j = {vi : i ∈ Nj}. We now compute a subtree T ′
� of T ′

� as follows. We ob-
tain N := log2 m subtrees T ′′

1 , . . . , T ′′
N . Each tree T ′′

r is obtained by executing
the GKR algorithm 192 log2 n times on the tree T ′

� with groups {N ′
j}j∈D� , and

taking the union of all the subtrees returned. Note that we may assume that
i ∈ T ′′

r iff (i, vi) ∈ T ′′
r . Set T ′

� to be the first tree in {T ′′
1 , . . . , T ′′

N} satisfying (i)∑
(i,vi)∈E(T ′

�
) fi ≤ 40 · 192 log2 n

∑
(i,vi)∈E′ fizi,vi and (ii)

∑
e∈E(T ′

�
)\E′ dT�(e) ≤

40 · 192 log2 n
∑

e∈E(T�)
dT�(e)ze; if no such tree exists, the algorithm fails.

A1.4. Now remove all the dummy edges from T ′
� , open all the facilities in the resulting

tree, and convert the resulting tree into a tour Tour� traversing all the opened
facilities. For every unconnected client j, we connect j to a facility in Nj if some
such facility is open (and hence part of Tour�).

A2. Return the concatenation of the tours Tour� for � = 0, 1, . . . ,N shortcutting when-
ever possible. This induces an ordering of the open facilities. If some client is left
unconnected, we say that the algorithm has failed.

Since each client j is connected to a facility in Nj, the total connection cost is at
most 4

∑
j C

∗
j . Furthermore, from Lemma 1 we get that for every client j ∈ D�,

the probability that a facility in Nj is included in the tree T ′
�, and hence opened in

phase �, is at least 5
9 . The facility-cost incurred in a phase is O(log n)

∑
i,t fiyi,t,

and since τmax ≤ T = poly(m), the number of phases is O(logm), so this bounds
the facility-opening cost incurred. Also, since the probability that j is not con-
nected (to a facility in Nj) in phase � decreases geometrically (at a rate less than
1/2) with � when t� ≥ τj , one can argue that (a) with very high probability (i.e.,
1 − 1/ poly(m)), each client j is connected to some facility in Nj, and (b) the
expected latency-cost of j is at most O(log n)

∑
e∈E(T�)

dT�
(e)ze = O(log2 n)τj .

Lemma 2. The probability that a client j is not connected by the algorithm is at
most 1/m4. Let Lj be the random variable equal to j’s latency-cost if the algorithm
succeeds and 0 otherwise. Then E

[
Lj

]
= O(log2 n)t�j , where �j (= �log2 τj�) is

the smallest � such that t� ≥ τj.

Proof. Let Pj be the random phase in which j gets connected; let Pj := N + 1
if j remains unconnected. We have Pr[Pj ≥ �] ≤ (

4
9

)(�−�j) for � ≥ �j. The
algorithm proceeds for at least 4 log2 m phases after phase �j , so
Pr[j is not connected after N phases] ≤ 1/m4. Now, Lj ≤ ∑

�≤Pj
d(Tour�) ≤

Facility Location with Client Latencies 99

2
∑

�≤Pj

∑
e∈E(T ′

�)\E′ dT�
(e). The RHS is O(log n)

∑
�≤Pj

∑
e∈E(T�)

dT�
(e)ze =

O(log2 n)
∑

�≤Pj
t� from step A1.3. So E

[
Lj

]
= O(log2 n)

∑N
�=0 Pr[Pj ≥ �] · t� ≤

O(log2 n)
[∑�j

�=0 t� +
∑

�>�j
t� ·

(
4
9

)(�−�j)] = O(log2 n)t�j .

Theorem 3. Algorithm 1 succeeds with probability 1 − 1/ poly(m), and returns
a solution of expected cost O

(
logn · max{logn, logm}) · OPT.

2.2 MLUFL with Related Metrics

Here, we consider the MLUFL problem when the facilities, clients, and the root
r are located in a common metric space that defines the connection-cost metric
(on F ∪ D ∪ {r}), and we have duv = cuv/M for all u, v ∈ F ∪ D ∪ {r}. We
call this problem, related MLUFL, and design an O(1)-approximation algorithm
for it.

The algorithm follows a similar outline as Algorithm 1. As before, we build
the tour on the open facilities by concatenating tours obtained by “Eulerifying”
GST’s rooted at r of geometrically increasing length. At a high level, the im-
provement in the approximation arises because one can now obtain these trees
without resorting to Theorem 2 and losing O(log n)-factors in process. Instead,
since the d- and c- metrics are related, we obtain a GST on the relevant groups
by using a Steiner tree algorithm.

As before, Nj denotes the facilities “close by” (in the c-metric) client j and
τj = O(L∗

j). In each phase � we want a GST for the groups Nj for which τj ≤ t�.
To obtain this, we first do a facility-location-style clustering of the clients (with
τj ≤ t�) to obtain some cluster centers whose Njs are disjoint. We contract these
disjoint Njs (of cluster centers) to supernodes and find a minimum Steiner tree
connecting these. Since facilities in Nj are close by in the c-metric, and since
the d-metric and c-metric are related, they are close by in the d-metric as well.
Thus, the supernodes in the Steiner tree can be “opened up” to give the GST of
not too large cost.

Deciding which facilities to open is tricky since we cannot open facilities in
each phase. This is because although Njs are disjoint in an individual phase, they
might overlap with Nks from a different phase. To overcome this, we consider the
collection C of cluster centers created in all the phases, and pick a maximal subset
C′ ⊆ C that yields disjoint Nj’s by greedily considering clusters in increasing C∗

j

order. We open the cheapest facility i in each of these Nj ’s, this bounds the
facility cost. However, there could be a client k ∈ C \ C′ which got removed from
C since Nk overlapped with Nj; this k must be connected to i. The issue is that
τk could be much smaller than τj , and thus i needs to be connected to the tree
T� where � is the phase when Nk got connected. To argue this doesn’t affect the
latency cost too much we once again use the relation between the d-metric and
c-metric to show that the total increase in latency cost is at most a constant
fraction more.

100 D. Chakrabarty and C. Swamy

2.3 MLUFL with a Uniform Time-Metric

We now consider the special case of MLUFL, referred to as uniform MLUFL, where
the time-metric d is uniform, that is, dii′ = 1 for all i, i′ ∈ F ∪ {r}. When the
connection costs form a metric, we call it the metric uniform MLUFL. We consider
the following simpler LP-relaxation of the problem, where the time t now ranges
from 1 to n.

min
∑
i,t

fiyi,t +
∑
j,i,t

(cij + t)xij,t subject to (Unif-P)

∑
i,t

xij,t ≥ 1 ∀j; xij,t ≤ yi,t ∀i, j, t;
∑

i

yi,t ≤ 1 ∀t; xij,t, yi,t ≥ 0 ∀i, j, t.

The main result of this section is Theorem 4, which shows that a ρUFL-
approximation algorithm for UFL and a γ-approximation algorithm for uniform
ZFC MLUFL (uniform MLUFL with zero facility costs) can be combined to yield a
(ρUFL + 2γ)-approximation algorithm for metric uniform MLUFL. One can show
that γ ≤ 9 (ZFC MLUFL can be reduced to MSSC incurring a constant-factor
loss; see [4]), and ρMLUFL ≤ 1.5 [3]; this gives a 19.5 approximation. In the full
version, we show that the analysis can be refined to yield an improved 10.773
approximation.

Theorem 4. Given a ρUFL-approximation algorithm A1 for UFL, and a γ-
approximation algorithm A2 for uniform ZFC MLUFL, one can obtain a (ρUFL +
2γ)-approximation algorithm for metric uniform MLUFL.

Proof. Let I denote the metric uniform MLUFL instance, and O∗ denote the cost
of an optimal integer solution. Let IUFL be the UFL instance obtained form I by
ignoring the latency costs, and IZFC be the ZFC MLUFL instance obtained from
I by setting all facility costs to zero. Let O∗

UFL and O∗
ZFC denote respectively the

cost of the optimal (integer) solutions to these two instances. Clearly, we have
O∗

UFL, O
∗
ZFC ≤ O∗. We use A1 to obtain a near-optimal solution to IUFL: let F1

be the set of facilities opened and let σ1(j) denote the facility in F1 to which
client j is assigned. So we have

∑
i∈F1

fi+
∑

j cσ1(j)j ≤ ρUFL ·O∗
UFL. We use A2 to

obtain a near-optimal solution to IZFC: let F2 be the set of open facilities, σ2(j)
be the facility to which client j is assigned, and π(i) be the position of facility
i. So we have

∑
j

(
cσ2(j)j + π(σ2(j))

) ≤ γ ·O∗
ZFC.

We now combine these solutions as follows. For each facility i ∈ F2, let μ(i) ∈
F1 denote the facility in F1 that is nearest to i. We open the set F = {μ(i) : i ∈
F2} of facilities. The position of facility i ∈ F is set to mini′∈F2:π(i′)=i π(i′). Each
facility in F is assigned a distinct position this way, but some positions may be
vacant. Clearly we can always convert the above into a proper ordering of F
where each facility i ∈ F occurs at position κ(i) ≤ mini′∈F2:π(i′)=i π(i′). Finally,
we assign each client j to the facility φ(j) = μ(σ2(j)) ∈ F . Note that κ(φ(j)) ≤
π(σ2(j)) (by definition). For a client j, we now have cφ(j)j ≤ cσ2(j)μ(σ2(j)) +
cσ2(j)j ≤ cσ2(j)σ1(j) + cσ2(j)j ≤ cσ1(j)j + 2cσ2(j)j . Thus, the total cost of the
resulting solution is at most

∑
i∈F1

fi +
∑

j

(
cσ1(j)j + 2cσ2(j)j + π(σ2(j))

) ≤
(ρUFL + 2γ) ·O∗.

Facility Location with Client Latencies 101

3 LP-Relaxations and Algorithms for ML

In this section, we give an LP-relaxation for the ML problem and prove that it has
a constant integrality gap. In the full version, we describe another LP-relaxation
for ML for which also we prove a constant upper bound on the integrality gap.
We believe that our LP-relaxations are stronger than what we have accounted
for, and conjecture that the integrality gap of the second LP is at most 3.59, the
current best known approximation factor for ML. The second LP also gives an
illuminating explanation of the relation between ML and orienteering.

Let G = (D ∪ {r}, E) be the complete graph on N = |D| + 1 nodes with
edge weights {de} that form a metric. Let r be the root node at which the path
visiting the nodes must originate. We use e to index E and j to index the nodes.
We have variables xj,t for t ≥ djr to denote if j is visited at time t, and ze,t to
denote (as before) if e has been traversed by time t (where t ranges from 1 to T);
for convenience, we think of xj,t as being defined for all t, with xj,t = 0 if dj,r > t.
(As before, one can move to a polynomial-size LP losing a (1 + ε)-factor.)

min
∑
j,t

txj,t subject to (LP1)

∑
t

xj,t ≥ 1 ∀j;
∑

e

deze,t ≤ t ∀t;
∑

e∈δ(S)

ze,t ≥
∑
t′≤t

xj,t′ ∀t, S ⊆ D, j ∈ S; x, z ≥ 0.

Theorem 5. The integrality gap of (LP1) is at most 10.78.

Proof. Let (x, z) be an optimal solution to (LP1), and L∗
j =

∑
t txj,t. For α ∈

[0, 1], define the α-point of j, τj(α), to be the smallest t such that
∑

t′≤t xjt′ ≥
α. Let Dt(α) = {j : τj(α) ≤ t}. We round (x, z) as follows. We pick α ∈
(0, 1] according to the density function q(x) = 2x. For each time t, using the
parsimonious property (see [11]), one can see that (2z/α) is a feasible solution
to the sub-tour elimination LP for TSP on the vertices r ∪ Dt(α). Then we
utilize the 3

2 -integrality-gap of this LP [20,18], to round 2z
α and obtain a tour on

{r}∪Dt(α) of cost Ct(α) ≤ 3
α ·∑e deze,t ≤ 3t

α . We now use Lemma 3 to combine
these tours.

Lemma 3 ([12] paraphrased). Let Tour1, . . . ,Tourk be tours containing r,
with Touri having cost Ci and containing Ni nodes, where N0 := 1 ≤ N1 ≤ . . . ≤
Nk = N . One can find tours Touri1 , . . . ,Tourib=k, and concatenate them suitably
to obtain latency at most 3.59

2

∑
i Ci(Ni −Ni−1).

The tours we obtain for the different times are nested (as the Dt(α)s are
nested). So

∑
t≥1 Ct(α)(|Dt(α)| − |Dt−1(α)|) =

∑
j,t:j∈Dt(α)\Dt−1(α) Ct(α) =∑

j Cτj(α)(α) ≤ 3
∑

j
τj(α)

α . Using Lemma 3, and taking expectation over α (note

that E
[τj(α)

α

] ≤ 2L∗
j), we get total latency cost at most 10.78

∑
j L

∗
j .

102 D. Chakrabarty and C. Swamy

Interestingly, note that in the above proof we did not need any procedure to solve
k-MST or its variants, which all previously known algorithms for ML use as a
subroutine. Rather, we just needed the integrality gap of the subtour-elimination
LP to be a constant.

4 Extensions

Latency cost functions. Consider the setting where the latency-cost of client
j is given by λ(time taken to reach the facility serving j), where λ(.) is a non-
decreasing function; the goal, as before, is to minimize the sum of the facility-
opening, client-connection, and client-latency costs. Say that λ has growth at
most p if λ(cx) ≤ cpλ(x) for all x ≥ 0, c ≥ 1. It is not hard to see that for concave
λ, we obtain the same performance guarantees as those obtained in Section 2.
For convex λ, we obtain an O

(
max{(p log2 n)p, p logn logm})-approximation al-

gorithm for convex latency functions of growth p. As a corollary, we obtain an
approximation guarantee for Lp-MLUFL, where we seek to minimize the facility-
opening cost + client-connection cost + the Lp-norm of client-latencies.

Theorem 6. There is an O
(
max{(p log2 n)p, p logn logm})-approximation al-

gorithm for MLUFL with convex monotonic latency functions of growth p. This
yields an O

(
p lognmax{logn, logm}) approximation for Lp-MLUFL.

In k-route length-bounded MLUFL, we are given a budget B and we may use
(at most) k paths starting at r of (d-) length at most B to traverse the open
facilities and activate them. (So with B = ∞, this generalizes the k-traveling
repairmen problem [7].) Our algorithms easily extend to give: (a) a bicrite-
ria

(
polylog, O(log2 n)

)
-approximation for the general k-route MLUFL problem

where we violate the budget by a O(log2 n) factor; (b) an (O(1), O(1)) approx-
imation for MLUFL and ML with related metrics; and (c) a (unicriterion) O(1)
approximation for metric uniform MLUFL. These guarantees extend to latency
functions of bounded growth. In particular, we obtain an O(1) approximation
for the Lp-norm k-traveling repairmen problem; this is the first approximation
guarantee for this problem.

References

1. Archer, A., Levin, A., Williamson, D.: A faster, better approximation algorithm
for the minimum latency problem. SIAM J. Comput. 37(5), 1472–1498 (2008)

2. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan,
M.: The Minimum Latency Problem. In: Proc. 26th STOC, pp. 163–171 (1994)

3. Byrka, J.: An optimal bifactor approximation algorithm for the metric uncapaci-
tated facility location problem. In: Charikar, M., Jansen, K., Reingold, O., Rolim,
J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 29–43.
Springer, Heidelberg (2007)

4. Chakrabarty, D., Swamy, C.: Facility Location with Client Latencies: Linear Pro-
gramming based Techniques for Minimum Latency Problems, http://arxiv.org/
abs/1009.2452

http://arxiv.org/abs/1009.2452
http://arxiv.org/abs/1009.2452

Facility Location with Client Latencies 103

5. Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees: deterministic
approximation algorithms for Group Steiner Trees and k-median. In: Proceedings
of the 30th STOC, pp. 114–123 (1998)

6. Chaudhuri, K., Godfrey, P.B., Rao, S., Talwar, K.: Paths, Trees and Minimum
Latency Tours. In: Proceedings of 44th FOCS, pp. 36–45 (2003)

7. Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairman problem.
ACM Trans. on Alg. 3(4), Article 40 (2007)

8. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: Proc. 35th STOC, pp. 448–455 (2003)

9. Feige, U., Lovász, L., Tetali, P.: Approximating min sum set cover. Algorith-
mica 40(4), 219–234 (2004)

10. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for
the group Steiner tree problem. Journal of Algorithms 37(1), 66–84 (2000)

11. Goemans, M., Bertsimas, D.: Survivable networks, linear programming relaxations
and the parsimonious property. Math. Programming 60, 145–166 (1993)

12. Goemans, M., Kleinberg, J.: An improved approximation ratio for the minimum
latency problem. In: Proceedings of 7th SODA, pp. 152–158 (1996)

13. Gupta, A., Krishnaswamy, R., Nagarajan, V., Ravi, R.: Approximation Algorithms
for Optimal Decision Trees and Adaptive TSP Problems. In: Proceedings of 37th
ICALP, pp. 690–701

14. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proceedings
of 35th STOC, pp. 585–594 (2003)

15. Mirchandani, P., Francis, R. (eds.): Discrete Location Theory. John Wiley and
Sons, Inc., New York (1990)

16. Nagarajan, V.: Approximation Algorithms for Sequencing Problems. Ph.D. thesis,
Tepper School of Business, Carnegie Mellon University (2009)

17. Shmoys, D.B., Tardos, É., Aardal, K.I.: Approximation algorithms for facility lo-
cation problems. In: Proceedings of 29th STOC, pp. 265–274 (1997)

18. Shmoys, D., Williamson, D.: Analyzing the Held-Karp TSP bound: a monotonicity
property with application. Inf. Process. Lett. 35(6), 281–285 (1990)

19. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. SIAM Monographs on
Discrete Mathematics and Applications, Philadelphia (2002)

20. Wolsey, L.: Heuristic analysis, linear programming and branch and bound. Math-
ematical Programming Study 13, 121–134 (1980)

An Exact Rational Mixed-Integer Programming

Solver

William Cook1,	, Thorsten Koch2, Daniel E. Steffy1,	, and Kati Wolter2,		

1 School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA

bico@isye.gatech.edu, desteffy@gatech.edu
2 Zuse Institute Berlin, Germany

{koch,wolter}@zib.de

Abstract. We present an exact rational solver for mixed-integer lin-
ear programming that avoids the numerical inaccuracies inherent in the
floating-point computations used by existing software. This allows the
solver to be used for establishing theoretical results and in applica-
tions where correct solutions are critical due to legal and financial con-
sequences. Our solver is a hybrid symbolic/numeric implementation of
LP-based branch-and-bound, using numerically-safe methods for all bind-
ing computations in the search tree. Computing provably accurate solu-
tions by dynamically choosing the fastest of several safe dual bounding
methods depending on the structure of the instance, our exact solver is
only moderately slower than an inexact floating-point branch-and-bound
solver. The software is incorporated into the SCIP optimization frame-
work, using the exact LP solver QSopt ex and the GMP arithmetic
library. Computational results are presented for a suite of test instances
taken from the Miplib and Mittelmann collections.

1 Introduction

Mixed-integer programming (MIP) is a powerful and flexible tool for modeling
and solving decision problems. Software based on these ideas is utilized in many
application areas. Despite their widespread use, few available software packages
provide any guarantee of correct answers or certification of results. Possible inac-
curacy is caused by the use of floating-point (FP) numbers [14]. FP calculations
necessitate the use of built-in tolerances for testing feasibility and optimality,
and can lead to calculation errors in the solution of linear-programming (LP)
relaxations and in the methods used for creating cutting planes to improve these
relaxations.

Due to a number of reasons, for many industrial MIP applications near op-
timal solutions are sufficient. Cplex, for example, defaults to a relative MIP
optimality tolerance of 0.001. Moreover, when data describing a problem arises

� Research supported by NSF Grant CMMI-0726370, ONR Grant N00014-08-1-1104.
�� Research funded by DFG Priority Program 1307 “Algorithm Engineering”.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 104–116, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

An Exact Rational MIP Solver 105

from imprecise sources, exact feasibility is usually not necessary. Nonetheless,
accuracy is important in many settings. Direct examples arise in the use of
MIP models to establish fundamental theoretical results and in subroutines for
the construction of provably accurate cutting planes. Furthermore, industrial
customers of MIP software request modules for exact solutions in critical appli-
cations. Such settings include the following.

– Feasibility problems, e.g., chip verification in the VLSI design process [1].
– Compiler optimization, including instruction scheduling [22].
– Combinatorial auctions [21], where serious legal and financial consequences

can result from incorrect solutions.

Optimization software relying exclusively on exact rational arithmetic has
been observed to be prohibitively slow, motivating the development of more
sophisticated techniques to compute exact solutions. Significant progress has
been made recently toward computationally solving LP models exactly over the
rational numbers using hybrid symbolic/numeric methods [7,10,12,16,17], in-
cluding the release of the software package QSopt ex [6]. Exact MIP has seen
less computational progress than exact LP, but significant first steps have been
taken. An article by Neumaier and Shcherbina [19] describes methods for safe
MIP computation, including strategies for generating safe LP bounds, infeasibil-
ity certificates, and cutting planes. The methods they describe involve directed
rounding and interval arithmetic with FP numbers to avoid incorrect results.

The focus of this article is to introduce a hybrid branch-and-bound approach
for exactly solving MIPs over the rational numbers. Section 2 describes how
rational and safe FP computation can be coupled together, providing a fast and
general framework for exact computation. Section 3 describes several methods
for computing valid LP bounds, which is a critical component of the hybrid
approach. Section 4 describes an exact branch-and-bound implementation within
SCIP [1,2] and includes detailed computational results on a range of test libraries
comparing different dual bounding strategies. The exact solver is compared with
an inexact branch-and-bound solver and observed to be only moderately slower.

2 Hybrid Rational/Safe Floating-Point Approach

Two ideas for exact MIP proposed in the literature, and tested to some ex-
tent, are the pure rational approach [7] and the safe-FP approach [9,19]. Both
utilize LP-based branch-and-bound. The difference lies in how they ensure the
computed results are correct.

In the pure rational approach, correctness is achieved by storing the input data
as rational numbers, by performing all arithmetic operations over the rationals,
and by applying an exact LP solver [12] in the dual bounding step. This approach
is especially interesting because it can handle a broad class of problems: MIP
instances described by rational data. However, replacing all FP operations by
rational computation will increase running times noticeably. For example, while
the exact LP solver QSopt ex avoids many unnecessary rational computations

106 W. Cook et al.

and is efficient on average, Applegate et al. [7] observed a greater slowdown
when testing an exact MIP solver that relied on rational arithmetic and called
QSopt ex for each node LP computation.

In order to limit the degradation in running time, the idea of the safe-FP ap-
proach is to continue to use FP-numbers as much as possible, particularly within
the LP solver. However, extra work is necessary to ensure correct decisions in
the branch-and-bound algorithm. Correctness of certain computations can be
ensured by controlling the rounding mode for FP operations. Valid dual bounds
can often be obtained by post-processing approximate LP solutions; this type
of safe dual bounding technique has been successfully implemented in Con-
corde [5] for the traveling salesman problem. A generalization of the method
for MIPs is described in [19]. Furthermore, the idea of manipulating the round-
ing mode can be applied to cutting-plane separation. In [9], this idea was used
to generate numerically safe Gomory mixed-integer cuts. Nevertheless, whether
the safe-FP approach leads to acceptable running times for general MIPs has
not been investigated. Although the safe-FP version of branch-and-bound has
great advantages in speed over the pure rational approach, it has several disad-
vantages. Everything, including input data and primal solutions, is stored as FP
numbers. Therefore, correct results can only be ensured for MIP instances that
are given by FP-representable data and that have a FP-representable optimal
solution if they are feasible. Some rationally defined problems can be scaled to
have FP-representable data. However, this is not always possible due to the lim-
ited representation of floating-point numbers, and the resulting large coefficients
can lead to numerical difficulties. The applicability is even further limited as the
safe dual bounding method discussed in [19] requires, in general, lower and up-
per bounds on all variables. Weakness in the safely generated bound values may
also increase the number of nodes processed by the branch-and-bound solver.
Additionally, due to numerical difficulties, some branch-and-bound nodes may
only be processable by an exact LP solver.

To summarize, the pure rational approach is always applicable but introduces
a large overhead in running time while the safe-FP approach is more efficient
but of limited applicability.

Since we want to solve MIPs that are given by rational data efficiently and ex-
actly we have developed a version of branch-and-bound that attempts to combine
the advantages of the pure rational and safe-FP approaches, and to compensate
for their individual weaknesses. The idea is to work with two branch-and-bound
processes. The main process implements the rational approach. Its result is surely
correct and will be issued to the user. The other one serves as a slave process,
where the faster safe-FP approach is applied. To achieve reasonable running
time, whenever possible the expensive rational computation of the main process
will be skipped and certain decisions from the faster safe-FP process will be sub-
stituted. In particular, safe dual bound computations in the slave process can
often replace exact LP solves in the main process. The rational process provides
the exact problem data, allows to correctly store primal solutions, and makes
exact LP solves possible whenever needed.

An Exact Rational MIP Solver 107

Algorithm 1. Branch-and-bound for exactly solving MIPs

Input : (MIP) max{cT
x : x ∈ P} with P := {x ∈ Rn : Ax ≤ b, xi ∈ Z for all i ∈ I},

A ∈ Qm×n, b ∈ Qm, c ∈ Qn, and I ⊆ {1, . . . , n}.
Output : Exact optimal solution x� of MIP with objective value c� or conclusion that

MIP is infeasible (c� = −∞).

1. FP-problem: Store (FP-MIP) max{c̃T
x : x ∈ P̃} with P̃ := {x ∈ Rn : Ãx ≤ b̃, xi ∈

Z for all i ∈ I}, Ã ∈ Mm×n, b̃ ∈ Mm, and c̃ ∈ Mn.

2. Init: Set L := {(P, P̃)}, L := −∞, xMIP to be empty, and cMIP := −∞.

3. Abort: If L = ∅, stop and return xMIP and cMIP.

4. Node selection: Choose (Pj , P̃j) ∈ L and set L := L \ {(Pj , P̃j)}.
5. Dual bound: Solve LP-relaxation max{c̃T

x : x ∈ L̃P j} approximately.

(a) If L̃P j is claimed to be empty, safely check if LPj is empty.

i. If LPj is empty, set c� := −∞.

ii. If LPj is not empty, solve LP-relaxation max{cT
x : x ∈ LPj} exactly. Let

x� be an exact optimal LP solution and c� its objective value.

(b) If L̃P j is claimed not to be empty, let x� be an approximate optimal LP solu-
tion and compute a safe dual bound c� with max{cT

x : x ∈ LPj} ≤ c�.

6. Bounding: If c� ≤ L, goto Step 3.

7. Primal bound:

(a) If x� is approximate LP solution and claimed to be feasible for FP-MIP, solve
LP-relaxation max{cT

x : x ∈ LPj} exactly. If LPj is in fact empty, goto Step 3.
Otherwise, let x� be an exact optimal LP solution and c� its objective value.

(b) If x� is exact LP solution and truly feasible for MIP:

i. If c� > cMIP, set xMIP := x�, cMIP := c�, and L := c�.

ii. Goto Step 3.

8. Branching: Choose index i ∈ I with x�
i /∈ Z.

(a) Split Pj in Q1 := Pj ∩ {x : xi ≤ �x�
i 	}, Q2 := Pj ∩ {x : xi ≥ �x�

i �}.
(b) Split P̃j in Q̃1 := P̃j ∩ {x : xi ≤ �x�

i 	}, Q̃2 := P̃j ∩ {x : xi ≥ �x�
i �} .

Set L := L ∪ {(Q1, Q̃1), (Q2, Q̃2)} and goto Step 3.

The complete procedure is given in Alg. 1. The set of FP-representable num-
bers is denoted by M; lower and upper approximations of x ∈ Q are denoted
x ∈ M and x ∈ M, respectively. The slave process, which utilizes the safe-FP
approach, works on a MIP instance with FP-representable data. It is set up in
Step 1 of the algorithm. If the input data are already FP-representable, both pro-
cesses solve the same MIP instance, i.e., P̃ := P and c̃ := c in Step 1. In principle,
this results in employing only the safe-FP approach except for some necessary
exact LP solves. Otherwise, an approximation of the MIP with P ≈ P̃ , c ≈ c̃
or a relaxation with P ⊆ P̃ , c = c̃ is constructed; called FP-approximation and
FP-relaxation, respectively. The choice depends on the dual bounding method
applied in the slave process (see Sect. 3).

108 W. Cook et al.

On the implementation side, we maintain only a single branch-and-bound
tree. At the root node of this common tree, we store the LP relaxations of both
processes: max{cTx : x ∈ LP} and max{c̃Tx : x ∈ L̃P}. In addition, for each
node, we know the branching constraint that was added to create the subproblem
in both processes. Branching on variables, performed in Step 8, introduces the
same bounds for both processes.

The use of primal and dual bounds to discard subproblems (see Steps 5, 6,
and 7) is a central component of the branch-and-bound algorithm. In particular,
in the exact MIP setting, the efficiency strongly depends on the strength of the
dual bounds and the time spent generating them (Step 5). The starting point of
this step is the approximate LP solution of the slave process. It is obtained by
an LP solver that works on FP-numbers and accepts rounding errors; referred
to as inexact LP solver. Depending on the result, we safely check whether the
rational LP, i.e., the exact LP relaxation, is also infeasible or we compute a safe
dual bound by post-processing the approximate LP solution. Different techniques
are discussed in Sect. 3 and are computationally evaluated in Sect. 4. We only
perform the exact but expensive dual bound computation of the main process if
it is necessary (Step 5(a)ii).

Dual and primal bounds are stored as FP-numbers and the bounding in Step 6
is performed without tolerances; a computed bound that is not FP-representable
is relaxed in order to be safe. For the primal (lower) bound L, this means L < cMIP

if the objective value cMIP of the incumbent solution xMIP is not in M.
Algorithm 1 identifies primal solutions by checking LP solutions for integrality.

This check, performed in Step 7, depends on whether the LP was already solved
exactly at the current node. If so, we exactly test the integrality of the exact
LP solution. Otherwise, we decide if it is worth solving the LP exactly. We deem
it worthy if the approximate LP solution is nearly integral. In this case, we solve
the LP exactly, using the corresponding basis to warm start the exact LP solver
(hopefully with few pivots and no need to increase the precision) and perform
the exact integrality test on the exact LP solution. In order to correctly report
the optimal solution found at the end of Step 3, the incumbent solution (that
is, the best feasible MIP solution found thus far) and its objective value are
stored as rational numbers.

This hybrid approach can be extended to a branch-and-cut algorithm with
primal heuristics and presolving; but the focus of this article is on the develop-
ment of the basic branch-and-bound framework.

3 Safe Dual Bound Generation Techniques

This section describes several methods for computing valid LP dual bounds.
The overall speed of the MIP solver will be influenced by several aspects of the
dual bounding strategy; how generally applicable the method is, how quickly the
bounds can be computed and how strong the bounds are, because weak bounds
can increase the node count.

An Exact Rational MIP Solver 109

3.1 Exact LP Solutions

The most straightforward way to compute valid LP bounds is to solve each node
LP relaxation exactly. This strategy is always applicable and produces the tight-
est possible bounds. Within a branch-and-bound framework the dual simplex al-
gorithm can be warm started with the final basis computed at the parent node,
speeding up the LP solution process. The fastest exact rational LP solver currently
available is QSopt ex [7]. The strategy used by this solver can be summarized as
follows: the basis returned by a double-precision LP solver is tested for optimality
by symbolically computing the corresponding basic solution, if it is suboptimal
then additional simplex pivots are performed with an increased level of precision
and this process is repeated until the optimal basis is identified. This method is
considerably faster than using rational arithmetic exclusively and is usually no
more than two to five times slower than inexact LP solvers. For problems where
the basis determined by the double-precision subroutines of QSopt ex is not op-
timal, the additional increased precision simplex pivots and additional exact basic
solution computations significantly increase the solution time.

3.2 Basis Verification

Any exactly feasible dual solution provides a valid dual bound. Therefore, valid
dual bounds can be determined by symbolically computing the dual solution
corresponding to a numerically obtained LP basis, without performing the extra
steps required to identify the exact optimal solution. If the dual solution is
feasible, its objective value gives a valid bound. If it is infeasible, an infinite
bound is returned. Within the branch-and-bound algorithm, an infinite dual
bound will lead to more branching. Due to the fixing of variables, branching
often remediates numerical problems in the LP relaxations. This strategy avoids
the extended precision simplex pivoting that can occur when solving each node
LP exactly, but it can increase the number of nodes.

3.3 Primal-Bound-Shift

Valid bounds can also be produced by correcting approximate dual solutions. A
special case occurs when all primal variables have finite upper and lower bounds.
The following technique was employed by Applegate et. al. in the Concorde
software package [5] and is described more generally for MIPs by Neumaier and
Shcherbina [19]. Consider a primal problem of the form max{cTx : Ax ≤ b, 0 ≤
x ≤ u} with dual min{bTy + uTz : ATy + z ≥ c, y, z ≥ 0}. Given an approxi-
mate dual solution ỹ, z̃, an exactly feasible dual solution ŷ, ẑ is constructed by
setting ŷi = max{0, ỹi} and ẑi = max{0, (c− AT ŷ)i}. This gives the valid dual
bound bT ŷ + uT ẑ. When working with a FP-relaxation of the original problem,
this bound can be computed using floating-point arithmetic with safe directed
rounding to avoid the symbolic computation of the dual feasible solution. The
simplicity of computing this bound suggests it will be an excellent choice when
applicable. However, if some primal variable bounds are large or missing it may
produce weak or infinite bounds, depending on the feasibility of ỹ, z̃.

110 W. Cook et al.

3.4 Project-and-Shift

Correcting an approximate dual solution to be exactly feasible in the absence of
primal variable bounds is still possible. Consider a primal problem of the form
max{cTx : Ax ≤ b} with dual min{bTy : ATy = c, y ≥ 0}. An approximate
dual solution ỹ can be corrected to be feasible by projecting it into the affine
hull of the dual feasible region and then shifting it to satisfy all of the non-
negativity constraints, while maintaining feasibility of the equality constraints.
These operations could involve significant computation if performed on a single
LP. However, under some assumptions, the most time consuming computations
can be performed only once at the root node of the branch-and-bound tree and
reused for each node bound computation. The root node computations involve
solving an auxiliary LP exactly and symbolically LU factoring a matrix; the
cost of each node bound computation is dominated by performing a back-solve
of a pre-computed symbolic LU factorization, which is often faster than solving
a node LP exactly. This method is more generally applicable than the primal-
bound-shift method, but relies on some conditions that are met by most, but
not all, of the problems in our test set. A detailed description and computational
study of this algorithm can be found in [20]. A related method is also described
by Althaus and Dumitriu [4].

3.5 Combinations and Beyond

The ideal dual bounding method is generally applicable, produces tight bounds,
and computes them quickly. Each of the four methods described so far represents
some trade-off between these conflicting characteristics. The exact LP method
is always applicable and produces the tightest possible bounds, but is computa-
tionally expensive. The primal-bound-shift method computes valid bounds very
quickly, but relies on problem structure that may not always be present. The ba-
sis verification and project-and-shift methods provide compromises in between,
with respect to speed and generality. Also, since the relative performance of
these dual bounding methods strongly depends on the (sub)problem structure
it may change throughout the tree. Therefore, a strategy that combines and
switches between the bounding techniques is the best choice for an exact MIP
solver intended to efficiently solve a broad class of problems.

In Sect. 4, we will evaluate the performance of each dual bounding method
presented here and analyze in what situations which technique works best. In
a final step, we then study different strategies to automatically decide how to
compute safe dual bounds for a given MIP instance. The central idea is to apply
fast primal-bound-shift as often as possible and if necessary employ another
method depending on the problem structure. In this connection, we will address
the question of whether this decision should be static or dynamic.

In the first version (“Auto”), we decide on the method dynamically in Step 5.
At each node primal-bound-shift is applied, and in case it produces an infi-
nite bound one of the other methods is applied. The drawbacks are that it
allows for unnecessary computations and that it requires an FP-relaxation for

An Exact Rational MIP Solver 111

the slave process in order to support primal-bound-shift. Alternatively, we can
guess whether primal-bound-shift will work (“Auto-Static”). Meaning the dual
bounding method is selected depending on the problem structure at the begin-
ning, in Step 1, and remains fixed throughout the tree. This allows us to work
with FP-approximations whenever we do not select primal-bound-shift.

Beyond that, we will analyze whether it is a good idea to compute safe dual
bounds only if they are really required, i.e., at nodes where the unsafe bound
would lead to pruning (“Auto-Limited”). Furthermore, we experiment with in-
terleaving our actual selection strategy with exact LP solves to eliminate special
cases where weak bounds cause the solver to keep branching in subtrees that
would have been cut off by the exact LP bound (“Auto-Ileaved”).

4 Computational Study

In this section, we investigate the performance of our exact MIP framework
employing the different safe dual bounding techniques discussed above: primal-
bound-shift (“BoundShift”), project-and-shift (“ProjectShift”), basis verification
(“VerifyBasis”), and exact LP solutions (“ExactLP”). We will first look at each
method on its own and then examine them within the branch-and-bound algo-
rithm. At the end, we discuss and test strategies to automatically switch between
the most promising bounding techniques.

The discussed algorithms were implemented into the branch-and-bound algo-
rithm provided by the MIP framework SCIP 1.2.0.8 [1,2,23], using best bound
search for node selection and first fractional variable branching. To solve LPs
approximately and exactly we call Cplex 12.2 [15] and QSopt ex 2.5.5 [6],
respectively. Rational computations are based on the GMP library 4.3.1 [13].
All benchmark runs were conducted on 2.5 GHz Intel Xeon E5420 CPUs with
4 cores and 16 GB RAM each. To maintain accurate results only one compu-
tation was run at the same time. We imposed a time limit of 24 hours and a
memory limit of 13 GB. The timings used to measure computation times are
always rounded up to one second if they are smaller.

Our test set contains all instances of the Miplib 3.0 [8] and Miplib 2003 [3]
libraries and from the Mittelmann collections [18] that can be solved within
2 hours by the inexact branch-and-bound version of SCIP (“Inexact”).
This gives a test suite of 57 MIP instances (30:70:4 5:0 95:100, acc-0,
acc-1, acc-2, air03, air05, bc1, bell3a, bell5, bienst1, bienst2, blend2,
dano3 3, dano3 4, dano3 5, dcmulti, egout, eilD76, enigma, flugpl, gen,
gesa3, gesa3 o, irp, khb05250, l152lav, lseu, markshare1 1, markshare4 0,
mas76, mas284, misc03, misc07, mod008, mod010, mod011, neos5, neos8,
neos11, neos21, neos897005, nug08, nw04, p0033, p0201, pk1, qap10, qnet1 o,
ran13x13, rentacar, rgn, stein27, stein45, swath1, swath2, vpm1, vpm2).
Note that we also analyzed the performance on the other, harder, instances of
the libraries by looking at the final gap and the number of branch-and-bound
nodes processed within a certain time limit. The conclusions drawn here, on the
smaller suite, were confirmed by these results.

112 W. Cook et al.

Table 1. Root node dual bound:
Relative difference to “ExactLP”
dual bound and additional compu-
tation time “DB” in geometric mean

Setting Zero S M L ∞ DB(s)

BoundShift 13 26 2 0 16 1.0

ProjectShift 19 31 5 0 2 2.8

VerifyBasis 57 0 0 0 0 1.3

ExactLP 57 0 0 0 0 1.4

Auto 20 35 2 0 0 1.3

Auto-Static 21 34 2 0 0 1.3

Auto-Ileaved 20 35 2 0 0 1.3

40

45

50

55

1 10 100 1000

N
u
m

b
e
r

o
f
in

st
a
n
c
e
s

Number of times slower than fastest

BoundShift

•

•
ProjectShift

��
� � �

� ��
�
���

�� � � �

�
VerifyBasis

♦ ♦♦♦
♦♦♦

♦

♦
ExactLP

∗ ∗ ∗∗
∗∗
∗∗

∗

∗
Auto-Ileaved

� ��
�

�

Fig. 1. Comparison of safe dual bounding
times “DB” at root

4.1 Root Node Performance

We start with evaluating the root node behavior of the dual bounding methods.
Our performance measures are: time overhead and bound quality. The perfor-
mance profile, see [11], in Fig. 1 visualizes the relative overhead times for the
safe dual bounding methods. For each of them, it plots the number of instances
for which the safe dual bounding step was performed within a given factor of
the bounding time of the fastest method. Table 1 presents the geometric mean
of these additional safe dual bounding times in seconds (“DB”) and states the
number of instances for which a certain dual bound quality was achieved.

This quality is given by the relative difference between the computed safe dual
bound c	 and the exact LP value c		 := max{cTx : x ∈ LPj}. However, we actu-
ally compare the FP-representable upper approximations of both values, as used
in Alg. 1, and define the relative difference as d := (c	 − c)/max{1, |c	|, |c		|}.
The corresponding columns in Table 1 are: “Zero” difference for d = 0, “S(mall)”
difference for d ∈ (0, 10−9], “M(edium)” difference for d ∈ (10−9, 10−3], and
“L(arge)” difference for d ∈ (10−3,∞). Column “∞” counts the worst case be-
havior, i.e., infinite dual bounds.

We observe that basis verification has similar behavior as exact LP for the
root node. However, as we will see in the next section, it will give an improvement
over the exact LP solver when expensive basis repair steps are required to find
the exact solution.

As expected, primal-bound-shift is the fastest method. However, it produces
infinite dual bounds on 16 instances in contrast to only 2 fails for project-and-shift
and no fails for basis verification. This is, the bases obtained by Cplex are often
dual feasible and even optimal and project-and-shift meets its requirements most
of the time. Still, the finite bounds provided by primal-bound-shift are of very
good quality; most of them fall into the “Zero” and “S(mall)” categories. Thus,
when primal-bound-shift works we expect to obtain strong bounds and whenever
it fails we assume basis verification or project-and-shift to be applicable.

An Exact Rational MIP Solver 113

Table 2. Overall performance. “slv”
is number of instances solved, “DB” is
safe dual bounding time

Geometric mean
for instances solved
by all settings (37)

Setting slv Nodes Time (s) DB (s)

Inexact 57 18 030 59.4 —

BoundShift 43 24 994 110.4 13.9

ProjectShift 49 18 206 369.3 238.1

VerifyBasis 51 18 078 461.8 329.8

ExactLP 51 18 076 550.7 419.0

Auto 54 18 276 92.6 17.5

Auto-Static 53 18 276 100.2 19.8

Auto-Ileaved 55 18 226 91.4 18.4

Auto-Limited 48 22 035 89.9 12.0

5

10

15

20

25

30

35

40

45

50

55

1 10 100

N
u
m

b
e
r

o
f
in

st
a
n
c
e
s

Number of times slower than fastest

Inexact

�

�
BoundShift

••
•
••
•
•
••
• ••

•••
• • • • •

•
ProjectShift

���
���

� ���
��
��
�� ���

��
�����

��
��
��

�� � � �

�
VerifyBasis

♦♦♦
♦♦
♦♦ ♦♦♦

♦♦♦
♦♦♦♦♦♦

♦♦♦
♦♦♦
♦♦♦

♦♦♦
♦♦
♦♦♦♦♦♦♦

♦♦
♦

♦
ExactLP

∗∗∗
∗∗∗

∗∗∗
∗∗
∗∗
∗∗∗∗∗

∗∗
∗∗
∗∗∗

∗∗∗
∗∗∗
∗∗
∗∗∗

∗∗∗∗∗

∗
Auto-Ileaved��

�
���
�
��
��

���
��
� �����

��
�����

��

�

Fig. 2. Comparison of overall solving
times “Time”

Where basis verification is in most cases only up to 10 times slower than
primal-bound-shift, project-and-shift is up to 100 times slower at the root node
because of the expensive initial set-up step. However, as we will see, the overhead
incurred by the set-up step of project-and-shift often pays off when it is applied
within the entire branch-and-bound tree.

4.2 Overall Performance

We will now analyze the effect of the dual bound methods on the overall per-
formance of the exact MIP solver and compare it with the inexact branch-and-
bound version of SCIP (“Inexact”). Table 2, reports the number of instances
that were solved within the imposed limits (Column “slv”), for each setting. On
37 instances, all settings succeeded. For this group (“all solved”), we present
in Table 2, the number of branch-and-bound nodes “Nodes”, the solution time
“Time” in seconds, and the additional time spent in the safe dual bounding step
“DB” in seconds, all in geometric mean for each method. In addition, Fig. 2
gives a performance profile comparing the solution times. For a setting where an
instance had a timeout, it is reported with an infinite ratio to the fastest setting.
Thus, the intersection points at the right boarder of the graphic reflect the “slv”
column.

The observations made for the root node carry forward to the application in
the branch-and-bound algorithm. Primal-bound-shift leads to the fastest node
processing. Basis verification has a slightly better performance than solving LPs
exactly. However, basis verification is often outperformed by project-and-shift.

A closer look reveals that primal-bound-shift introduces not only a small
overhead at the root but throughout the tree as well. For the individual instances
it could solve, we usually experience a slow-down of at most 2. The few large

114 W. Cook et al.

slow-down factors of up to 10 can be explained by a node increase due to a small
number of missing variable bounds and by expensive exact LP calls. However,
due to its limited applicability we solved only 43 instances.

In contrast, project-and-shift solves 49 instances. That is, the often observed
good dual bound quality at the root node seems to stay throughout the tree. We
already pointed out the big overhead this costs at the root node. Nevertheless,
the method is fast on the rest of the tree and leads to an acceptable slow-down
compared to the inexact code. In mean, it is only 6 times slower on the “all
solved” group. In this fashion, most of the instances solved by this setting are
only up to 20 times slower than the inexact code. If we compare project-and-shift
with basis verification we see a similar and often better performance for project-
and-shift. Still, on some instances basis verification works better. For example,
it solves two more instances of our test set. We examined different problem
characteristics and found the number of non-zeros in the constraint matrix to
be a good criterion for choosing between project-and-shift and basis verification.
In the automatic dual bound selection strategies, we prefer project-and-shift as
long as the matrix has at most 10,000 non-zeros.

4.3 Combinations

We already gave some remarks concerning a strategy that automatically chooses
a dual bounding method. Another important observation for this purpose is that
replacing FP-approximations by FP-relaxations does not affect the performance
much: running project-and-shift on an FP-relaxation gave similar results on our
test set. Therefore, we decided to always set up an FP-relaxation in Step 1. This
way, we are allowed to apply primal-bound-shift at any node we want to.

The automatic decision process used in the “Auto” run works as follows. At
every node, we first test whether primal-bound-shift produces a finite bound.
If not, we choose project-and-shift or basis verification depending on the struc-
ture of the constraint matrix as explained above. The root node results for the
combined versions are presented in Table 1 and Fig. 1; the overall performance
results can be found in Table 2 and Fig. 2. Note that we excluded “Auto-Limited”
from Table 1 as it never computed safe finite bounds at the root node and that
we only included the best auto setting in the performance profiles as their graphs
look very similar.

The experiments show that “Auto” actually combines the advantages of all
dual bounding methods. We can solve all 43 instances that primal-bound-shift
solved as well as 11 additional ones by automatically switching to other dual
bounding methods at the nodes.

In Sect. 3.5, we discussed three possible improvements for the automatic dual
bound selection procedure. The first one, to only guess whether primal-bound-
shift will work, is implemented in the test run “Auto-Static”. The guess is static,
i.e., does not change throughout the tree; we skip primal-bound-shift if more
than 20% of the problem variables have lower or upper bounds with absolute

An Exact Rational MIP Solver 115

value larger than 106. Comparing both automatic settings shows that it is no
problem to actually test at each node whether primal-bound-shift works, and it
even leads to a slightly improved performance.

The second idea was to interleave the strategy with exact LP calls whenever a
node is very likely to be cut off (“Auto-Ileaved”). This does not apply often, but
is helpful when it does. We solved one more instance to optimality without intro-
ducing a significant time overhead on the other instances. The third extension
was to only compute bounds safely if they are actually used for a crucial deci-
sion, i.e., if the unsafe bound with tolerances would lead to cutting off a node.
Looking at the overall behavior for the corresponding test run “Auto-Limited”,
it is not clear whether this is a good idea in general. It only solved 48 instead
of 54 instances. On the other hand, we experienced that on harder instances
the node count at timeout strongly increases, i.e., the node processing is much
faster on average. However, we cannot draw any conclusions about the quality
of this approach on harder instances as in this setting, the primal-dual-gap does
not improve steadily. Further testing is needed here, e.g., by applying additional
safe dual bounding steps at selected levels of the tree.

5 Conclusion

From the computational results we can make several key observations. Each
dual bounding method studied has strengths and weaknesses depending on the
problem structure. Automatically switching between these methods in a smart
way solves more problems than any single dual bounding method on its own.
Of the 57 problems solved within two hours by the floating-point branch-and-
bound solver, 55 could also be solved exactly within 24 hours and the solution
time was usually no more than 10 times slower. This demonstrates that the
hybrid methodology can lead to an efficient exact branch-and-bound solver, not
limited to specific classes of problems. As our focus has been exclusively on
the branch-and-bound procedure, we have compared the exact solver against a
floating-point solver restricted to pure branch-and-bound. The exact solver is still
not directly competitive with the full version of SCIP with its additional features
enabled. However, it is realistic to think that the future inclusion of additional
MIP machinery such as cutting planes, presolving, and primal heuristics into
this exact framework could lead to a full featured exact MIP solver that is not
prohibitively slower than its inexact counterparts.

Acknowledgments

The authors would like to thank Tobias Achterberg for helpful discussions on
how to best incorporate these features into SCIP. We would also like to thank
Daniel Espinoza for his assistance with QSopt ex, which included adding new
features and writing an interface for use within SCIP.

116 W. Cook et al.

References

1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Univer-
sität Berlin (2007)

2. Achterberg, T.: SCIP: Solving constraint integer programs. Math. Programming
Computation 1(1), 1–41 (2009)

3. Achterberg, T., Koch, T., Martin, A.: The mixed integer programming library:
MIPLIB (2003), http://miplib.zib.de

4. Althaus, E., Dumitriu, D.: Fast and accurate bounds on linear programs. In:
Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 40–50. Springer, Heidelberg
(2009)

5. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2006)

6. Applegate, D.L., Cook, W.J., Dash, S., Espinoza, D.G.: QSopt ex, http://www.
dii.uchile.cl/~daespino/ESolver_doc/main.html

7. Applegate, D.L., Cook, W.J., Dash, S., Espinoza, D.G.: Exact solutions to linear
programming problems. Oper. Res. Lett. 35(6), 693–699 (2007)

8. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.: An updated mixed inte-
ger programming library: MIPLIB 3.0. Optima 58, 12–15 (1998)

9. Cook, W.J., Dash, S., Fukasawa, R., Goycoolea, M.: Numerically safe Gomory
mixed-integer cuts. INFORMS J. Comput. 21(4), 641–649 (2009)

10. Dhiflaoui, M., Funke, S., Kwappik, C., Mehlhorn, K., Seel, M., Schömer, E.,
Schulte, R., Weber, D.: Certifying and repairing solutions to large LPs, how good
are LP-solvers? In: SODA 2003, pp. 255–256. ACM/SIAM (2003)

11. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Programming 91(2), 201–213 (2001)

12. Espinoza, D.G.: On Linear Programming, Integer Programming and Cutting
Planes. Ph.D. thesis, Georgia Institute of Technology (2006)

13. GMP: GNU multiple precision arithmetic library, http://gmplib.org
14. Goldberg, D.: What every computer scientist should know about floating-point

arithmetic. ACM Computing Surveys (CSUR) 23(1), 5–48 (1991)
15. IBM ILOG: CPLEX, http://www.ilog.com/products/cplex
16. Koch, T.: The final NETLIB-LP results. Oper. Res. Lett. 32(2), 138–142 (2004)
17. Kwappik, C.: Exact Linear Programming. Master thesis, Universität des Saarlandes

(1998)
18. Mittelmann, H.D.: Benchmarks for Optimization Software (2010), http://plato.

asu.edu/bench.html

19. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer linear pro-
gramming. Math. Programming 99(2), 283–296 (2004)

20. Steffy, D.E.: Topics in Exact Precision Mathematical Programming. Ph.D. thesis,
Georgia Institute of Technology (2011)

21. de Vries, S., Vohra, R.: Combinatorial Auctions: A Survey. INFORMS J. Com-
put. 15(3), 284–309 (2003)

22. Wilken, K., Liu, J., Heffernan, M.: Optimal instruction scheduling using integer
programming. SIGPLAN Notices 35(5), 121–133 (2000)

23. Zuse Institute Berlin: SCIP, http://scip.zib.de

http://miplib.zib.de
http://www.dii.uchile.cl/~daespino/ESolver_doc/main.html
http://www.dii.uchile.cl/~daespino/ESolver_doc/main.html
http://gmplib.org
http://www.ilog.com/products/cplex
http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html
http://scip.zib.de

Valid Inequalities for the Pooling Problem with

Binary Variables

Claudia D’Ambrosio1, Jeff Linderoth2, and James Luedtke2

1 DEIS, Dipartimento di Elettronica, Informatica e Sistemistica,
Università di Bologna, Italy
c.dambrosio@unibo.it

2 Department of Industrial and Systems Engineering,
University of Wisconsin-Madison, USA

{linderoth,jrluedt1}@wisc.edu

Abstract. The pooling problem consists of finding the optimal quan-
tity of final products to obtain by blending different compositions of raw
materials in pools. Bilinear terms are required to model the quality of
products in the pools, making the pooling problem a non-convex contin-
uous optimization problem. In this paper we study a generalization of
the standard pooling problem where binary variables are used to model
fixed costs associated with using a raw material in a pool. We derive four
classes of strong valid inequalities for the problem and demonstrate that
the inequalities dominate classic flow cover inequalities. The inequalities
can be separated in polynomial time. Computational results are reported
that demonstrate the utility of the inequalities when used in a global op-
timization solver.

Keywords: Integer programming, global optimization, valid inequali-
ties, pooling.

1 Introduction

The pooling problem is to optimize the net cost of products whose composition
is determined by blending different raw materials. The blending network consists
of three types of nodes: the input streams, representing the raw materials; the
pools, where the materials are blended; and the output streams, representing
the final products. By deciding the flow quantity passing through the arcs of the
this network, the composition of the final products is determined.

There are many applications areas for the pooling problem, including petro-
leum refining, wastewater treatment, and general chemical engineering process
design [1,2,3,4]. Different variants of the pooling problem have been introduced
in the literature. In the standard pooling problem, the topology of the network
is fixed—the pools are fed only by the input streams and connected only to the
output streams. The standard pooling problem may be modeled as a non-convex
nonlinear program (NLP), where the nonlinearities are bilinear terms that are
present to model the (linear) blending process that occurs. The generalized pool-
ing problem involves discrete decisions, where the activation of arcs connecting

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 117–129, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

118 C. D’Ambrosio, J. Linderoth, and J. Luedtke

different nodes of the network is to be decided. This problem can be modeled
as a non-convex Mixed Integer Nonlinear Program (MINLP). In the extended
pooling problem, Environmental Protection Agency limits on complex emissions
are considered and modeled. In this case, extra variables are introduced and
the additional constraints are non-smooth. In many applications of the pooling
problem finding the (certified) global optimum can result in significant monetary
savings, so a significant research effort has been undertaken on global optimiza-
tion approaches for the problem. For an overview of the pooling problem variants
and the optimization techniques that have been applied successfully for solving
such problems, the reader is referred to the recent and exhaustive survey [5].

The focus of this paper is on a special case of the generalized pooling problem,
where the topology of a portion of the network is also to be decided. Specifically,
there are yes-no decisions associated with connecting the input streams and the
pools. For example, this variant of the pooling problem is relevant for crude
oil scheduling operations [6,7], where the input streams represent supply ships
feeding the storage tanks of a refinery.

Starting from a mathematical formulation of the pooling problem called the
PQ-formulation, we extract an interesting set X for which we derive valid in-
equalities. The set X is a generalization of the well-known single-node fixed-
charge flow set [8]. We introduce three classes of inequalities for this set that
we call quality inequalities, because they are based on the quality target for a
final product. A final class of valid inequalities introduced are called pooling flow
cover inequalities, as they are related to, but dominate, standard flow cover in-
equalities for the single-node fixed-charge flow set. There are exponentially many
pooling flow cover inequalities, and we demonstrate that they can be separated
in polynomial time.

The present work is one of the first attempts to generate valid inequalities for
a variant of the standard pooling problem that uses specific structures present
in the problem. Other approaches have applied general-purpose convexification
techniques, such as the reformulation-linearization technique [9] or disjunctive
programming [10]. Simultaneously (and independently), Papageorgiou et al. [11]
take an approach related to ours. Specifically, they study a polyhedral set that
serves as a relaxation to a blending problem with fixed-charge structure. The
focus of [11] is on developing inequalities for the single product, uncapacitated
case, and they are able to find facet-defining inequalities that are useful in com-
putation.

Our new valid inequalities are shown to be quite useful computationally on
large instances. Inequalities generated at the root node of a branch-and-bound
tree were added to a standard model for the problem and given to the state-of-
the-art global optimization solver BARON. With the strengthened model on a
test suite of 76 instances solvable by BARON in 2 hours, adding the inequalities
reduced BARON’s CPU time by a factor 2. An interesting observation from
this study is that these useful valid inequalities for this mixed-integer nonconvex
set were derived by studying a mixed-integer linear relaxation of the set. This

Valid Inequalities for the Pooling Problem with Binary Variables 119

suggests that it may be a useful approach in general to study mixed-integer
linear relaxations of global optimization problems.

The remainder of the paper is divided into three sections. Section 2 gives a
mathematical description of the problem we study. Section 3 describes the classes
of inequalities we have derived, and Section 4 gives the computational results.

2 The Pooling Problem

In this section, we introduce our variant of the standard pooling problem, in
which a portion of the topology of the network must be decided. In this variant,
a fixed cost is paid if an arc connecting an input stream to a pool is utilized.

2.1 Mathematical Formulation

As a starting point for our model, we use a model of the standard pooling problem
that was introduced by Quesada and Grossmann [12]. We use this model because
Sahinidis and Tawarmalani [13] have shown that this formulation, which they
refer to as PQ-formulation, provides a tighter relaxation when the standard
McCormick [14] approximation is used to relax the bilinear terms and obtain a
Mixed Integer Linear Programming (MILP) problem.

Notation. Input to the pooling problem consists of a network G = (N,A),
where the nodes are partitioned into three sets N = I ∪ L ∪ J . The set I is
the set of the input streams, the nodes representing the raw materials; the set
L is the pool set, where the raw materials are blended; and J is the set of the
output streams, the nodes representing the final products. For ease of notation,
we assume that there is a complete interconnection network between the nodes
of I and L and between the nodes of L and J . That is, A = {(i, l) | i ∈ I, l ∈ L}∪
{(l, j) | l ∈ L, j ∈ J}. The inequalities we derive later can easily be generalized
to sparse networks. The set K is a set of input and output attributes.

Each input stream i ∈ I has an associated unit cost ci and availability Ai.
Each output stream j ∈ J has an associated unit revenue dj and demand bound
Dj . Each pool l ∈ L has a size capacity Sl. The parameters Cik denote the level
of attribute k ∈ K found in input stream i ∈ I. For each output stream j ∈ J ,
PU

jk is the upper bound on the composition range of attribute k ∈ K in the final
product j. Finally, there are the parameters fil, which represent the fixed cost
that has to be paid if the arc from input stream i ∈ I to pool l ∈ L is used.

Decision variables in the formulation are the following:

– qil: proportion of flow from input i ∈ I to pool l ∈ L;
– ylj : flow from intermediate pool node l ∈ L to output j ∈ J ;
– vil: binary variable with value 1 if the arc from input i ∈ I to pool l ∈ L is

used, 0 otherwise;
– wilj : flow from input i ∈ I to output j ∈ J through pool l ∈ L.

120 C. D’Ambrosio, J. Linderoth, and J. Luedtke

The PQ-formulation. The objective is to maximize net profit:

min
∑
j∈J

(∑
l∈L

∑
i∈I

ciwilj −
∑
l∈L

djylj

)
+
∑
i∈I

∑
l∈L

filvil .

There are simple constraints that bound raw material availability, pool capacity,
and final product demand:∑
l∈L

∑
j∈J

wilj ≤ Ai ∀i ∈ I;
∑
j∈J

ylj ≤ Sl ∀l ∈ L;
∑
l∈L

ylj ≤ Dj ∀j ∈ J .

A distinguishing feature of the pooling problem is that there is an upper bound
on the target value for each attribute of each product:∑

l∈L

∑
i∈I

Cikwilj ≤ PU
jk

∑
l∈L

ylj ∀j ∈ J, ∀k ∈ K . (1)

The proportion variables q can only be positive if the associated arc was opened:

0 ≤ qil ≤ vil ∀i ∈ I, ∀l ∈ L , (2)

and must satisfy the properties of proportion:∑
i∈I

qil ≤ 1 ∀l ∈ L;
∑
i∈I

qil ≥ vi′l ∀i′ ∈ I, ∀l ∈ L . (3)

In the standard pooling problem, without selection of arcs, these constraints
would be replaced by

∑
i∈I qil = 1. In the presence of variable upper bounds (2)

on q, the inequalities (3) must be used to allow the possibility that pool l is not
used at all, in which case vil = 0 for all i ∈ I. If vil = 1 for any i ∈ I, then (3)
imply the standard equation

∑
i∈I qil = 1. The w variables are related to the

other decision variables as

wilj = qilylj ∀i ∈ I, ∀l ∈ L, ∀j ∈ J . (4)

Finally, the PQ-formulation includes the constraints:∑
i∈I

wilj = ylj ∀l ∈ L, ∀j ∈ J , (5)∑
j∈J

wilj ≤ qilSl ∀i ∈ I, ∀l ∈ L . (6)

The constraints (6) are redundant, but are added because they can improve the
relaxation when the nonconvex constraints (4) are relaxed. Constraints (5) are
required to force ylj = 0 if pool l is not used (i.e., if vil = 0 for all i ∈ I)
but are otherwise redundant – and added only to strengthen the relaxation –
since then

∑
i∈I qil = 1 holds and hence (5) follows from (4). This formula-

tion, augmented with appropriate bounds on the variables is given to the global

Valid Inequalities for the Pooling Problem with Binary Variables 121

optimization solver BARON in our subsequent computational experiments. Let
Ylj

def= min{Sl, Dj,
∑

i∈I Ai} be an upper bound on the flow on from l ∈ L to
j ∈ J . By replacing the nonlinear equations (4) with the well-known McCormick
inequalities [14], a linear relaxation of the problem is formed. The McCormick
inequalities in this context reduce to the following:

0 ≤ wilj ≤ qilYlj ; wilj ≤ ylj ; wilj ≥ Yljqil +ylj −Ylj ∀i ∈ I, ∀l ∈ L, ∀j ∈ J .

Branching on the continuous variables q and y, as well as the binary variables v
is required in order to converge to a globally optimal solution.

2.2 Example

3w1+w2+2w3
w1+w2+w3

≤ 2.5

w
1 , C

1 =
3

w2, C2 = 1

w3
, C

3
=

2

≤ 100

Fig. 1. Pooling Problem Example

To demonstrate the valid in-
equalities we derive, we will
use the simple example shown
in Figure 1. There is a sin-
gle pool, a single product,
and a single attribute (|L| =
|J | = |K| = 1). The three in-
put streams have input qual-
ity C1 = 3, C2 = 1, C3 = 2,
and there is an upper bound of
PU = 2.5 on the target qual-
ity. There is an upper bound of
Y = 100 on the final product.

3 Valid Inequalities

In this section, we extract an appropriate subset of the constraints of the formu-
lation presented in Section 2.1 and derive a number of strong valid inequalities
for this relaxation. To that end, we focus on a single output stream and a single
attribute and define the sets

I+ = {i ∈ I | Ci − PU ≥ 0} , and I− = {i ∈ I | Ci − PU < 0} ,

where we have dropped the irrelevant indices on the parameters. Next, we define
αi = |Ci − PU | ∀i ∈ I, substitute into equation (1) and use the fact that
yl =

∑
i∈I wil, to extract the set

X =
{
(w, q, v) ∈ R2|I||L| × {0, 1}|I||L| |

∑
l∈L

∑
i∈I+

αiwil −
∑
l∈L

∑
i∈I−

αiwil ≤ 0;

∑
i∈I

qil ≤ 1 ∀l ∈ L; wil ≤ Ylqil, qil ≤ vil, ∀i ∈ I, ∀l ∈ L
}
,

which is a relaxation of the set of feasible solutions to the PQ-formulation of the
generalized pooling problem presented in Section 2.1. The set X is composed of a

122 C. D’Ambrosio, J. Linderoth, and J. Luedtke

single-node flow-type constraint, the definition equations on the proportion vari-
ables q, upper bounds on the flow variables based on the proportions q (coming
from the McCormick inequalities), and variable upper bounds on the proportion
variables q.

3.1 Quality Inequalities

We define the following two classes of inequalities ∀i ∈ I+, ∀i∗ ∈ I−, ∀l ∈ L:

α1

αi∗
wil −

∑
i′∈I−

> (αi∗)

(
α1

αi∗
− 1

)
Yl(vi′l − qi′l) − α1

αi
Yl(vil − qil)−

α1

αiαi∗

∑
l′∈L\{l}

∑
i′∈I−

αi′wi′l′ ≤ 0 (7)

αiwil −
∑

i′∈I−
> (αi∗)

(αi′ − αi∗)wi′l − αi∗Yl(vil − qil) −
∑

l′∈L\{l}

∑
i′∈I−

αi′wi′l′ ≤ 0 (8)

where α1 = maxi′∈I−{αi′} and I−> (αi∗) = {i ∈ I− | αi > αi∗}.
Proposition 1. Inequality (7) is valid for X ∀i ∈ I+, ∀i∗ ∈ I−, ∀l ∈ L .

Proof. Case vil = 0: The inequality (7) becomes∑
i′∈I−

> (αi∗)

(
α1

αi∗
− 1

)
Yl(vi′l − qi′l) +

α1

αiαi∗

∑
l′∈L\{l}

∑
i′∈I−

αi′wi′l′ ≥ 0 ,

which is valid since all terms are non-negative. In the case
∑

i′∈I−
> (αi∗) vi′l = 0,

inequality (7) reduces to

αiwil ≤ αi∗Yl(1 − qil) +
∑

l′∈L\{l}

∑
i′∈I−

αi′wi′l′

αiwil ≤ αi∗Yl(
∑

i′∈I−
qi′l +

∑
i′∈I+\{i}

qi′l) +
∑

l′∈L\{l}

∑
i′∈I−

αi′wi′l′

αiwil ≤ αi∗Yl

∑
i′∈I−\I−

> (αi∗)

qi′l +
∑

l′∈L\{l}

∑
i′∈I−

αi′wi′l′ ,which is always valid.

In the final case
∑

i′∈I−
> (αi∗) vi′l > 0, we have

α1

αi∗
wil ≤

(
α1

αi∗
− 1

)
Yl(1 −

∑
i′∈I−

> (αi∗)

qi′l) +
α1

αi
Yl(1 − qil) +

α1

αiαi∗

∑
l′∈L\{l}

∑
i′∈I−

αi′wi′l′

α1

αi∗
wil ≤

(
α1

αi∗
− 1

)
Ylqil +

α1

αi
Yl

∑
i′∈I−

qi′l +
α1

αiαi∗

∑
l′∈L\{l}

∑
i′∈I−

αi′wi′l′

Ylqil ≤ α1

αi
Yl

∑
i′∈I−

qi′l +
α1

αiαi∗

∑
l′∈L\{l}

∑
i′∈I−

αi′wi′l′

αiYlqil ≤ α1Yl

∑
i′∈I−

qi′l +
α1

αi∗

∑
l′∈L\{l}

∑
i′∈I−

αi′wi′l′ ,

Valid Inequalities for the Pooling Problem with Binary Variables 123

which is always valid since it is weaker than the valid inequality∑
i′∈I+

αi′wi′l −
∑

i′∈I−
αi′wi′l −

∑
l′∈L\{l}

∑
i′∈I−

αi′wi′l′ ≤ 0 .

Proposition 2. Inequality (8) is valid for X ∀i ∈ I+, ∀i∗ ∈ I−, ∀l ∈ L.

Proof. In the case vil = 0, the inequality (8) reduces to∑
i′∈I−

> (αi∗)

(αi′ − αi∗)wi′l +
∑

l′∈L\{l}

∑
i′∈I−

αi′wi′l′ ≥ 0 .

Otherwise, we have

αiwil −
∑

l′∈L\{l}

∑
i′∈I−

αi′wi′l′ ≤
∑

i′∈I−
> (αi∗)

(αi′ − αi∗)wi′l + αi∗Yl(1 − qil)

αiwil −
∑

l′∈L\{l}

∑
i′∈I−

αi′wi′l′ ≤
∑

i′∈I−
> (αi∗)

(αi′wi′l + αi∗(Ylqi′l − wi′l)) + αi∗Yl

∑
i′∈I−\I−

> (αi∗)

qi′l

αiwil −
∑

l′∈L\{l}

∑
i′∈I−

αi′wi′l′ ≤
∑

i′∈I−
αi′wi′l .

In order to make the definition of inequalities (7) and (8) more clear, consider
the example of Section 2.2. For the example, α1 = 0.5, α2 = 1.5, α3 = 0.5 and
I+ = {1}, I− = {2, 3}. The inequalities (7) and (8), defined for indices i = 1,
i∗ = 3, respectively, are

3w1 − 200(v2 − q2) − 300(v1 − q1) ≤ 0
0.5w1 − w2 − 50(v1 − q1) ≤ 0 .

A final valid inequality limits the flow from inputs that exceed the target
quality.

Proposition 3. The following valid inequality is valid for X ∀i ∈ I+, ∀l ∈ L:

αiwil − Ylα1(vil − qil) − vil

∑
l′∈L\{l}

Yl′α1 ≤ 0 . (9)

Proof. We consider two cases. Case vil = 0: inequality (9) reduces to 0 ≤ 0.
Otherwise, using the inequality qil ≤ 1 − ∑

i′∈I− qi′l we see that (9) is weaker
than αiwil − Ylα1

∑
i′∈I− qi′l −

∑
l′∈L\{l} Yl′α1 ≤ 0 which is valid because it is

weaker than the valid inequality
∑

l′∈L

∑
i′∈I+ αi′wi′l′ ≤

∑
l′∈L

∑
i′∈I− αi′wi′l′ .

Let us consider again the example of Section 2.2. Inequality (9) for i = 1 is

0.5w1 − 150(v1 − q1) − 0 ≤ 0 .

None of the three classes of inequalities introduced dominates the other, as
in general, they can cut off different fractional solutions. Specifically, for the
example problem, consider the following three solutions:

124 C. D’Ambrosio, J. Linderoth, and J. Luedtke

1. q′ = (0.1; 0.9; 0), y = 100, w′ = (10; 90; 0), v′ = (0.15; 0.9; 0). The inequalities
reduce to: 30− 0− 15 ≤ 0; 5− 90− 2.5− 0 ≤ 0; 5− 7.5 ≤ 0 and only the
first inequality cuts off this infeasible solution.

2. q′ = (0.5; 0.1; 0.4), y = 100, w′ = (50; 10; 40), v′ = (0.7; 0.9; 0.4). The in-
equalities reduce to: 150 − 160 − 60 ≤ 0; 25 − 10 − 10 ≤ 0; 25 − 30 ≤ 0
and only the second one excludes the fractional solution.

3. q′ = (0.5; 0.5; 0), y = 100, w′ = (50; 50; 0), v′ = (0.6; 1; 0). The inequalities
reduce to: 150− 100− 30 ≤ 0; 25− 50− 5 ≤ 0; 25− 15 ≤ 0 and only the
last inequality cuts off the fractional solution.

3.2 Pooling Flow Cover Inequalities

In this section, we focus on the case of a single pool, and hence for notational
convenience drop the index l from the discussion. The primary result of the
section is the generalization of a flow cover inequality:

Proposition 4. Let C+ ⊆ I+ with λ =
∑

i∈C+ αiY > 0, S− ⊆ I−, and define
u∗

C+ = maxi∈C+ αiY . The following pooling flow cover inequality is valid for X:∑
i∈C+

αiwi −
∑

i∈S−
[u∗

C+(vi − qi)] −
∑

i∈I−\S−
αiwi ≤ 0 . (10)

Proof. Let (w, q, v) ∈ X and define the set T = {i | vi = 1}. If |S− ∩ T | = 0, in-
equality (10) reduces to

∑
i∈C+ αiwi−

∑
i∈I−\S− αiwi ≤ 0 which is valid because

wi = 0 for all i ∈ S−. Now suppose |S−∩T | ≥ 1. Since −∑
i∈I−\S− αiwi ≤ 0 be-

cause wi ≥ 0 ∀i ∈ I, it is sufficient to prove that
∑

i∈C+ αiwi −
∑

i∈S− [u∗
C+(vi −

qi)] ≤ 0. First, observe that

1
u∗

C+

(∑
i∈C+

αiwi −
∑

i∈S−
[u∗

C+(vi − qi)]

)
≤

∑
i∈C+

αiwi

αiY
−

∑
i∈S−

(vi − qi)

≤
∑

i∈C+

qi −
∑

i∈S−
(vi − qi) .

Thus, we will be done if we prove that
∑

i∈C+ qi −
∑

i∈S−(vi − qi) ≤ 0, which
follows from∑

i∈C+

qi −
∑

i∈S−∩T

(1 − qi) =
∑

i∈C+

qi +
∑

i∈S−∩T

qi − |S− ∩ T | ≤ 0

since |S− ∩ T | ≥ 1.

The next simple proposition shows that the inequalities (10) are stronger than
the generalized flow cover inequalities (see [15]):∑

i∈C+

αiwi −
∑

i∈S−
λvi −

∑
i∈I−\S−

αiwi ≤ 0 . (11)

Valid Inequalities for the Pooling Problem with Binary Variables 125

Proposition 5. Inequalities (11) are implied by (10), for every C+ ⊆ I+ such
that λ =

∑
i∈C+ αiY > 0 and S− ⊆ I−.

Proof. By definition, u∗
C+ ≤ λ, and hence

−
∑

i∈S−
u∗

C+(vi − qi) ≥ −
∑

i∈S−
u∗

C+vi ≥ −
∑

i∈S−
λvi .

Now let us consider the multiple-pool, one output stream and one attribute case.
(Thus, we add index l ∈ L back to the variables.)

Proposition 6. For each pool l ∈ L, subset of inputs S− ⊆ I−, and cover
C+ ⊆ I+, define u∗l

C+ = maxi∈C+ αiYl. The following inequalities are valid for
X:∑

i∈C+

αiwil −
∑

i∈S−
[u∗l

C+(vil − qil)]−
∑

i∈I−\S−
αiwil −

∑
i∈I−

∑
l′∈L\{l}

αiwil′ ≤ 0 . (12)

Proof. The proof of 4 is valid also in this case.

The Separation Problem. Given a fractional solution (w∗, q∗, v∗)
∈ X we
want to find C+ ⊆ I+, S− ⊆ I− and pool l ∈ L such that (12) is violated. Let
the maximum violation of such constraints be

zSEP = max
C+⊆I+,

l∈L

∑
i∈C+

αiw
∗
il −

∑
i∈I−

min(u∗
C+(v∗il − q∗il), αiw

∗
il) −

∑
i∈I−

∑
l′∈L\{l}

αiw
∗
il′ .

If zSEP > 0, inequality (12) is violated for (C+, S−, l) with S− =
{i ∈ I−|u∗

C+(v∗il − q∗il) < αiw
∗
il}. Note that the solution with the maximum vi-

olation has the following nice property: if i ∈ C+, then i′ ∈ C+ ∀i′ such that
αi′ ≤ αi. (This follows since, by the definition of u∗

C+ , if αi′ ≤ αi, the inequality
can only be made more violated by including i′ in C+.) Thus, the separation
problem may be solved exactly in polynomial time by considering all the αi

(i ∈ I+) in non-increasing order over all the pools. Algorithm 1 gives pseu-
docode for the separation algorithm.

4 Computational Results

The utility of the quality and pooling flow cover inequalities for solving instances
of our version of the generalized pooling problem was tested using a cut-and-
branch approach. Models were created using the GAMS modeling language both
for the original problem and for the continuous linear relaxation of the problem,
wherein the nonlinear constraints wilj = qilylj are replaced by their McCormick
envelopes (as described in Section 2.1) and the constraints vil ∈ {0, 1} are re-
placed with 0 ≤ vil ≤ 1. The continuous relaxation is iteratively solved, where
at each iteration, if the solution is fractional and the separation problems find

126 C. D’Ambrosio, J. Linderoth, and J. Luedtke

Algorithm 1 . Algorithm for solving the separation problem

1: set σ̂ = −∞, ĉ = −∞, l̂ = −∞;
2: order αi such that α1 ≤ α2 ≤ · · · ≤ α|I+| (i ∈ I+);

3: for c = 1, . . . , |I+| do
4: for l ∈ L do
5: σ =

∑c
i=1 αiw

∗
il −

∑
i∈I− min(αcYl(v

∗
il − q∗il), αiw

∗
il)−

∑
i∈I−

∑
l′∈L\{l} αiw

∗
il′ ;

6: if σ > σ̂ then
7: set σ̂ = σ, ĉ = c and l̂ = l;
8: end if
9: end for

10: end for
11: if σ̂ > 0 then
12: add cut for (C+, S−, l) with C+ = {1, . . . , ĉ}, l = l̂ and S− =

{i ∈ I−|u∗
C+(v∗

il − q∗il) < αiw
∗
il};

13: end if

violated inequalities, they are added to the linear relaxation, and the relaxation
is resolved. The process repeats until the fractional solution can no longer be
separated, after which all inequalities generated are added to the MINLP model.
The augmented MINLP model is solved with BARON [16] using a CPU time
limit of 2 hours. We compare against the performance of BARON on the model
without adding the separated quality and pooling flow cover inequalities (7), (8),
(9), and (10). Computational results were obtained on a heterogeneous cluster
of computers. For each instance, the model was solved on the same machine
both with and without cuts, so while the CPU times cannot be compared be-
tween instances, the relative times between the performance of BARON with
and without cuts are comparable.

Our first test suite consisted of 11 instances from the literature, collected by
Sahinidis and Tawarmalani [16]. For these instances, a fixed cost of 500 was
added to every input arc. Some of these instances contain bypass arcs, or arcs
that connect input streams directly to outputs are present. Bypass arcs are
treated as additional pools with only one input in the inequalities. Results of
the experiment are given in Table 1, where we report for each instance, the
value of the global optimum, the number of nodes and the CPU time needed for
BARON to find the optimum both with and without the addition of the violated
quality and pooling flow cover inequalities, and the number of inequalities found.
In general, the instances from the literature were far too small to draw any
meaningful conclusions. The number of nodes is fewer in 4 of 11 cases, in 6 cases
it is the same, and in one case, more nodes are taken after adding the inequalities.

A second test set consisted of 90 randomly generated instances of various sizes.
The random instances were parameterized by the average graph density β, the
number of inputs |I|, the number of pools |L|, the number of outputs |J |, and
the number of attributes |K|, and named β− |I| − |L| − |J | − |K| based on their
attributes. For each combination of tested parameters, 10 instances were gener-
ated, and we report average performance results over all instances in the family.

Valid Inequalities for the Pooling Problem with Binary Variables 127

Table 1. BARON Performance With and Without Cutting Planes

no cuts with cuts
GO # nodes CPU time # cuts # nodes CPU time

adhya1 630.0 7 0.14 20 7 0.14
adhya2 630.0 1 0.07 15 5 0.11
adhya3 978.0 17 0.43 8 1 0.12
adhya4 529.2 17 0.84 12 7 0.54
bental4 500.0 9 0.02 4 1 0.02
bental5 -2000.0 1 0.12 0 1 0.13
foulds2 266.7 1 0.04 6 1 0.02

haverly1 500.0 9 0.01 4 1 0.01
haverly2 400.0 9 0.01 4 9 0.01
haverly3 100.0 1 0.01 4 1 0.01

rt2 -1672.6 356 1.02 0 356 1.05

Table 2. Average Performance of BARON With and Without Cutting Planes

No Cuts With Cuts

Instance Family # Solved Nodes Time # Cuts Nodes Time

20-15-10-10-1 9 1052 14.9 11.1 383 7.3
20-15-10-10-2 10 7850 638.2 15.3 3338 440.3
20-15-10-10-4 10 2637 109.5 11.9 2241 168.5

30-15-5-10-1 9 22009 520.5 12.8 13095 367.4
30-15-5-10-2 8 7384 406.8 19.6 3988 239.0
30-15-5-10-4 10 6041 361.1 27.0 1884 109.9

30-15-8-10-1 3 21971 1689.6 11.7 6504 478.3
30-15-8-10-2 9 15663 823.9 19.7 4303 337.6
30-15-8-10-4 8 30424 1035.3 22.0 5472 457.2

All the instances are available at the webpage http://www.or.deis.unibo.it/
research_pages/ORinstances/ORinstances.htm. Results of this experiment
are summarized in Table 2.

Without adding inequalities, BARON is able to solve 76 of the 90 instances.
Adding the inequalities, BARON is able to solve three additional instances of
the 90. Columns “Nodes”, “Time”, and “# Cuts” have to be intended as average
values. Averages in Table 2 are taken only over the instances that both methods
can solve. Complete results detailed the computational performance on specific
instances are given on the web site http://www.or.deis.unibo.it/research_
pages/ORinstances/ORinstances.htm.

For the 76 solved instances, the total CPU time required to solve the instances
reduces from 39927 seconds to 20602 seconds when the cuts are added to the
model before calling BARON. The total number of nodes required to solve the
76 instances reduces from 882173 to 329851 by adding cuts. The most signifi-
cant performance improvement seems to occur on the instances that have 30%

http://www.or.deis.unibo.it/
research_pages/ORinstances/ORinstances.htm
http://www.or.deis.unibo.it/research_
pages/ORinstances/ORinstances.htm

128 C. D’Ambrosio, J. Linderoth, and J. Luedtke

 X

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25

With Cuts
Without Cuts

 p

 0

Fig. 2. Performance Profile of Solution Time

network density and 8 pools (in the 30-15-8-10-x family), indicating that larger,
denser instances may benefit most from the additional of the quality and pooling
flow cover inequalities.

A performance profile of the CPU time of the 79 instances solvable by either
method is given in Figure 2. In the curves shown in Figure 2, the point (X, p)
is on the graph for the associated method if a fraction p of the 79 instances
solved by either method were solved within a factor X of the best of the two
methods. For a more complete description of performance profiles, the reader is
referred to [17]. From the results of the second experiment, it is clear that the
addition of the inequalities has a significant beneficial impact on computational
performance.

Acknowledgments. The authors would like to thank Ahmet Keha for bringing
reference [11] to their attention. This work benefitted from numerous insightful
discussions with Andrew Miller. This work was supported in part by the Office
of Advanced Scientific Computing Research, Office of Science, U.S Department
of Energy, under Grants DE-FG02-08ER25861 and DE-FG02-09ER25869.

References

1. DeWitt, C., Lasdon, L., Waren, A., Brenner, D., Melham, S.: OMEGA: An im-
proved gasoline blending system for Texaco. Interfaces 19, 85–101 (1989)

2. Rigby, B., Lasdon, L., Waren, A.: The evolution of Texaco’s blending systems:
From OMEGA to StarBlend. Interfaces 25, 64–83 (1995)

3. Bagajewicz, M.: A review of recent design procedures for water networks in refiner-
ies and process plants. Computers & Chemical Engineering 24, 2093–2113 (2000)

Valid Inequalities for the Pooling Problem with Binary Variables 129

4. Kallrath, J.: Mixed integer optimization in the chemical process industry: Ex-
perience, potential and future perspectives. Chemical Engineering Research and
Design 78, 809–822 (2000)

5. Misener, R., Floudas, C.: Advances for the pooling problem: Modeling, global op-
timization, & computational studies. Applied and Computational Mathematics 8,
3–22 (2009)

6. Lee, H., Pinto, J., Grossmann, I., Park, S.: Mixed-integer linear programming
model for refinery short-term scheduling of crude oil unloading with inventory
management. Industrial & Engineering Chemistry Research 35, 1630–1641 (1996)

7. Shah, N.: Mathematical programming techniques for crude oil scheduling. Com-
puters & Chemical Engineering 20, S1227–S1232 (1996)

8. Padberg, M., Van Roy, T.J., Wolsey, L.: Valid linear inequalities for fixed charge
problems. Operations Research 33, 842–861 (1985)

9. Meyer, C., Floudas, C.: Global optimization of a combinatorially complex gener-
alized pooling problem. AIChE Journal 52, 1027–1037 (2006)

10. Karuppiah, R., Grossmann, I.: Global optimization for the synthesis of integrated
water systems in chemical processes. Computers & Chemical Engineering 30, 650–
673 (2006)

11. Papageorgiou, D.J., Toriello, A., Nemhauser, G.L., Savelsbergh, M.: Fixed-charge
transportation with product blending (2010) (unpublished manuscript)

12. Quesada, I., Grossmann, I.: Global optimization of bilinear process networks with
multicomponent flows. Computers and Chemical Engineering 19, 1219–1242 (1995)

13. Tawarmalani, M., Sahinidis, N.: Convexification and global optimization in con-
tinuous and mixed-integer nonlinear programming: Theory, Algorithms, Software,
and Applications. Kluwer Academic Publishers, Dordrecht (2002)

14. McCormick, G.: Computability of global solutions to factorable nonconvex pro-
grams: Part 1 - convex underestimating problems. Mathematical Programming 10,
147–175 (1976)

15. Wolsey, L., Nemhauser, G.: Integer and Combinatorial Optimization. Wiley, New
York (1988)

16. Sahinidis, N., Tawarmalani, M.: Accelerating branch-and-bound through a model-
ing language construct for relaxation-specific constraints. Journal of Global Opti-
mization 32, 259–280 (2005)

17. Dolan, E., Moré, J.: Benchmarking optimization software with performance pro-
files. Mathematical Programming 91, 201–213 (2002)

On the Chvátal-Gomory Closure of a Compact

Convex Set

Daniel Dadush1, Santanu S. Dey1, and Juan Pablo Vielma2

1 H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA 30332, USA
dndadush@gatech.edu, santanu.dey@isye.gatech.edu

2 Department of Industrial Engineering, University of Pittsburgh,
1048 Benedum Hall, Pittsburgh, PA 15261, USA

jvielma@pitt.edu

Abstract. In this paper, we show that the Chvátal-Gomory closure of
any compact convex set is a rational polytope. This resolves an open
question of Schrijver [15] for irrational polytopes1, and generalizes the
same result for the case of rational polytopes [15], rational ellipsoids [7]
and strictly convex bodies [6].

Keywords: Chvátal-Gomory Closure, Compact Sets.

1 Introduction

Gomory [11] introduced the Gomory fractional cuts, also known as Chvátal-
Gomory (CG) cuts [5], to design the first finite cutting plane algorithm for
Integer Linear Programming (ILP). Since then, many important classes of facet-
defining inequalities for combinatorial optimization problems have been iden-
tified as CG cuts. For example, the classical Blossom inequalities for general
Matching [9] - which yield the integer hull - and Comb inequalities for the
Traveling Salesman problem [12,13] are both CG cuts over the base linear pro-
gramming relaxations. CG cuts have also been effective from a computational
perspective; see for example [2,10]. Although CG cuts have traditionally been
defined with respect to rational polyhedra for ILP, they straightforwardly gen-
eralize to the nonlinear setting and hence can also be used for convex Integer
Nonlinear Programming (INLP), i.e. the class of discrete optimization problems
whose continuous relaxation is a general convex optimization problem. CG cuts
for non-polyhedral sets were considered implicitly in [5,15] and more explicitly
in [4,6,7]. Let K ⊆ Rn be a closed convex set and let hK represent its support
function, i.e. hK(a) = sup{〈a, x〉 : x ∈ K}. Given a ∈ Zn, we define the CG cut
for K derived from a as the inequality

〈a, x〉 ≤ �hK(a)� . (1)
1 After the completion of this work, it has been brought to our notice that the poly-

hedrality of the Chvátal-Gomory Closure for irrational polytopes has recently been
shown independently by J. Dunkel and A. S. Schulz in [8]. The proof presented in
this paper has been obtained independently.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 130–142, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Chvátal-Gomory Closure of a Compact Convex Set 131

The CG closure of K is the convex set whose defining inequalities are exactly all
the CG cuts for K. A classical result of Schrijver [15] is that the CG closure of
a rational polyhedron is a rational polyhedron. Recently, we were able to verify
that the CG closure of any strictly convex body2 intersected with a rational
polyhedron is a rational polyhedron [7,6]. We remark that the proof requires
techniques significantly different from those described in [15].

While the intersections of strictly convex bodies with rational polyhedra yield
a large and interesting class of bodies, they do not capture many natural exam-
ples that arise in convex INLP. For example, it is not unusual for the feasible
region of a semi-definite or conic-quadratic program [1] to have infinitely many
faces of different dimensions, where additionally a majority of these faces cannot
be isolated by intersecting the feasible region with a rational supporting hyper-
plane (as is the case for standard ILP with rational data). Roughly speaking, the
main barrier to progress in the general setting has been a lack of understand-
ing of how CG cuts act on irrational affine subspaces (affine subspaces whose
defining equations cannot be described with rational data).

As a starting point for this study, perhaps the simplest class of bodies where
current techniques break down are polytopes defined by irrational data. Schrijver
considers these bodies in [15], and in a discussion section at the end of the paper,
he writes 3:

“We do not know whether the analogue of Theorem 1 is true in real
spaces. We were able to show only that if P is a bounded polyhedron in
real space, and P ′ has empty intersection with the boundary of P , then
P ′ is a (rational) polyhedron.”

In this paper, we prove that the CG closure of any compact convex set4 is
a rational polytope, thus also resolving the question raised in [15]. As seen by
Schrijver [15], most of the “action” in building the CG closure will indeed take
place on the boundary of K. While the proof presented in this paper has some
high level similarities to the one in [6], a substantially more careful approach
was required to handle the general facial structure of a compact convex set
(potentially infinitely many faces of all dimensions) and completely new ideas
were needed to deal with faces having irrational affine hulls (including the whole
body itself).

This paper is organized as follows. In Section 2 we introduce some notation,
formally state our main result and give an overview of the proof. We then proceed
with the full proof which is presented in Sections 3–5. In Section 6, we present

2 A full dimensional compact convex set whose only non-trivial faces are vertices, i.e.
of dimension 0.

3 Theorem 1 in [15] is the result that the CG closure is a polyhedron. P ′ is the notation
used for CG closure in [15].

4 If the convex hull of integer points in a convex set is not polyhedral, then the
CG closure cannot be expected to be polyhedral. Since we do not have a good
understanding of when this holds for unbounded convex sets, we restrict our attention
here to the CG closure of compact convex sets.

132 D. Dadush, S.S. Dey, and J.P. Vielma

a generalization of Integer Farkas’ Lemma that is a consequence of the proof
techniques developed in this paper.

2 Definitions, Main Result and Proof Idea

Definition 1 (CG Closure). For a convex set K ⊆ Rn and S ⊆ Zn let
CC(K,S) :=

⋂
a∈S{x ∈ Rn : 〈x, y〉 ≤ �hK(y)�}. The CG closure of K is

defined to be the set CC(K) := CC(K,Zn).

The following theorem is the main result of this paper.

Theorem 1. If K ⊆ Rn is a non-empty compact convex set, then CC(K) is
finitely generated. That is, there exists S ⊆ Zn such that |S| < ∞ and CC(K) =
CC(K,S). In particular CC(K) is a rational polyhedron.

We will use the following definitions and notation: For x, y ∈ Rn, let [x, y] =
{λx + (1 − λ)y : 0 ≤ λ ≤ 1} and (x, y) = [x, y] \ {x, y}. Let Bn := {x ∈ Rn :
‖x‖ ≤ 1} and Sn−1 := bd(Bn). (bd stands for boundary.) For a convex set K
and v ∈ Rn, let Hv(K) := {x ∈ Rn : 〈v, x〉 ≤ hK(v)} denote the supporting
halfspace defined by v for K, and let H=

v (K) := {x ∈ Rn : 〈v, x〉 = hK(v)}
denote the supporting hyperplane. F ⊆ K is a face of K if for every line segment
[x, y] ⊆ K, [x, y] ∩ F
= ∅ ⇒ [x, y] ⊆ F . A face F of K is proper if F
= K. Let
Fv(K) := K ∩ H=

v (K) denote the face of K exposed by v. If the context is
clear, then we drop the K and simply write Hv, H=

v and Fv. For A ⊆ Rn,
let aff(A) denote the smallest affine subspace containing A. Furthermore let
affI(A) := aff(aff(A) ∩ Zn), i.e. the largest integer subspace in aff(A).

We present the outline of the proof for Theorem 1. The proof proceeds by
induction on the dimension of K. The base case (K is a single point) is trivial.
By the induction hypothesis, we can assume that (†) every proper exposed face
of K has a finitely generated CG closure. We build the CG closure of K in stages,
proceeding as follows:

1. (Section 3) For Fv, a proper exposed face, where v ∈ Rn, show that ∃ S ⊆ Zn,
|S| < ∞ such that CC(K,S) ∩ H=

v = CC(Fv) and CC(K,S) ⊆ Hv using
(†) and by proving the following:
(a) (Section 3.1) A CG cut for Fv can be rotated or “lifted” to a CG cut for

K such that points in Fv ∩ affI(H=
v) separated by the original CG cut

for Fv are separated by the new “lifted” one.
(b) (Section 3.2) A finite number of CG cuts for K separate all points in

Fv \ affI(H=
v) and all points in Rn \Hv.

2. (Section 4) Create an approximation CC(K,S) of CC(K) such that (i) |S| <
∞, (ii) CC(K,S) ⊆ K ∩ affI(K) (iii) CC(K,S) ∩ relbd(K) = CC(K) ∩
relbd(K). This is done in two steps:
(a) (Section 4.1) Using the lifted CG closures of Fv from 1. and a compact-

ness argument on the sphere, create a first approximation CC(K,S)
satisfying (i) and (ii).

Chvátal-Gomory Closure of a Compact Convex Set 133

(b) (Section 4.2) Noting that CC(K,S)∩relbd(K) is contained in the union
of a finite number of proper exposed faces of K, add the lifted CG
closures for each such face to S to satisfy (iii).

3. (Section 5) We establish the final result by showing that there are only a finite
number of CG cuts which separate a least one vertex of the approximation
of the CG closure from (2).

3 CC(K, S) ∩ H=
v = CC(Fv) and CC(K, S) ⊆ Hv

When K is a rational polyhedron, a key property of the CG closure is that for
every face F of K, we have that (∗) CC(F) = F ∩ CC(K). In this setting,
a relatively straightforward induction argument coupled with (∗) allows one to
construct the approximation of the CG closure described above. In our setting,
where K is compact convex, the approach taken is similar in spirit, though we will
encounter significant difficulties. First, since K can have infinitely many faces,
we must couple our induction with a careful compactness argument. Second and
more significantly, establishing (∗) for compact convex sets is substantially more
involved than for rational polyhedra. As we will see in the following sections,
the standard lifting argument to prove (∗) for rational polyhedra cannot be used
directly and must be replaced by a more involved two stage argument.

3.1 Lifting CG Cuts

To prove CC(F) = F ∩ CC(K) one generally uses a ‘lifting approach’, i.e.,
given a CG cut CC(F, {w}) for F , w ∈ Zn, we show that there exists a CG cut
CC(K, {w′}) for K, w′ ∈ Zn, such that

CC(K, {w′}) ∩ aff(F) ⊆ CC(F, {w}) ∩ aff(F). (2)

To prove (2) when K is a rational polyhedron, one proceeds as follows. For
the face F of K, we compute v ∈ Zn such that Fv(K) = F and hK(v) ∈ Z. For
w ∈ Zn, we return the lifting w′ = w + lv, l ∈ Z>0, where l is chosen such that
hK(w′) = hF (w′). For general convex bodies though, neither of these steps may
be achievable. When K is strictly convex however, in [6] we show that the above
procedure can be generalized. First, every proper face F of K is an exposed
vertex, hence ∃ x ∈ K, v ∈ Rn such that F = Fv = {x}. For w ∈ Zn, we show
that setting w′ = w + v′, where v′ is a fine enough Dirichlet approximation (see
Theorem 2 below) to a scaling of v is sufficient for (2). In the proof, we critically
use that F is simply a vertex. In the general setting, when K is a compact convex
set, we can still meaningfully lift CG cuts, but not from all faces and not with
exact containment. First, we only guarantee lifting for an exposed face Fv of K.
Second, when lifting a CG cut for Fv derived from w ∈ Zn, we only guarantee the
containment on affI(H=

v), i.e. CC(K,w′)∩affI(H=
v) ⊆ CC(F,w)∩affI(H=

v). This
lifting, Proposition 1 below, uses the same Dirichlet approximation technique as

134 D. Dadush, S.S. Dey, and J.P. Vielma

in [6] but with a more careful analysis. Since we only guarantee the behavior of
the lifting w′ on affI(H=

v), we will have to deal with the points in aff(F)\affI(H=
v)

separately, which we discuss in the next section.
The next lemma describes the central mechanics of the lifting process ex-

plained above. The sequence (wi)∞i=1 will eventually denote the sequence of
Dirichlet approximates of the scaling of v added to w, where one of these will
serve as the lifting w′. We skip the proof due to lack of space.

Lemma 1. Let K ⊆ Rn be a compact convex set. Take v, w ∈ Rn, v
= 0. Let
(wi, ti)∞i=1, wi ∈ Rn, ti ∈ R+ be a sequence such that

a. lim
i→∞

ti = ∞, b. lim
i→∞

wi − tiv = w. (3)

Then for every ε > 0 there exists Nε ≥ 0 such that for all i ≥ Nε

hK(wi) + ε ≥ tihK(v) + hFv(K)(w) ≥ hK(wi) − ε. (4)

Theorem 2 (Dirichlet’s Approximation Theorem). Let (α1, . . . , αl) ∈ Rl.
Then for every positive integer N , there exists 1 ≤ n ≤ N such that
max1≤i≤l |nαi − �nαi�| ≤ 1/N1/l.

Proposition 1. Let K ⊆ Rn be a compact and convex set, v ∈ Rn and w ∈ Zn.
Then ∃w′ ∈ Zn such that CC(K,w′)∩affI(H=

v (K)) ⊆ CC(K,w)∩affI(H=
v (K)).

Proof. First, by possibly multiplying v by a positive scalar we may assume that
hK(v) ∈ Z. Let S = affI(H=

v (K)). We may assume that S
= ∅, since otherwise
the statement is trivially true.

From Theorem 2 for any v ∈ Rn there exists (si, ti)∞i=1, si ∈ Zn, ti ∈ N such
that (a.) ti → ∞ and (b.) ‖si − tiv‖ → 0. Now define the sequence (wi, ti)∞i=1,
where wi = w + si, i ≥ 1. Note that the sequence (wi, ti) satisfies (3) and
hence by Lemma 1 for any ε > 0, there exists Nε such that (4) holds. Let
ε = 1

2

(
1−(hFv(K)(w)−�hFv(K)(w)�)), and let N1 = Nε. Note that �hFv(K)(w)+

ε� = �hFv(K)(w)�. Hence, since hK(v) ∈ Z by assumption, for all i ≥ N1 we
have that �hK(wi)� ≤ �tihK(v)+hFv(K)(w)+ ε� = tihK(v)+ �hFv(K)(w)+ ε� =
tihK(v) + �hFv(K)(w)�.

Now pick z1, . . . , zk ∈ S ∩ Zn such that aff(z1, . . . , zk) = S and let R =
max{‖zj‖ : 1 ≤ j ≤ k}. Choose N2 such that ‖wi − tiv − w‖ ≤ 1

2R for i ≥ N2.
Now note that for i ≥ N2, |〈zj , wi〉 − 〈zj , tiv + w〉| = |〈zj , wi − tiv − w〉| ≤
‖zj‖‖wi − tiv − w‖ ≤ R 1

2R = 1
2 ∀j ∈ {1, . . . , k}.

Next note that since zj , wi ∈ Zn, 〈zj , wi〉 ∈ Z. Furthermore, ti ∈ N, 〈v, zj〉 =
hK(v) ∈ Z and w ∈ Zn implies that 〈zj , tiv + w〉 ∈ Z. Given this, we must
have 〈zj , wi〉 = 〈zj , tiv + w〉 ∀j ∈ {1, . . . , k}, i ≥ 1 and hence we get 〈x,wi〉 =
〈x, tiv + w〉 ∀x ∈ S, i ≥ 1.

Let w′ = wi where i = max{N1, N2}. Now examine the set L = {x : 〈x,w′〉 ≤
�hK(w′)�} ∩ S. Here we get that 〈x,wi〉 ≤ tihK(v) + �hFv(K)(w)� and 〈x, v〉 =
hK(v) for all x ∈ L Hence, we see that 〈x,wi − tiv〉 ≤ �hFv(K)(w)� for all
x ∈ L. Furthermore, since 〈x,wi − tiv〉 = 〈x,w〉 for all x ∈ L ⊆ S, we have that
〈x,w〉 ≤ �hFv(K)(w)� for all x ∈ L, as needed.

Chvátal-Gomory Closure of a Compact Convex Set 135

3.2 Separating All Points in Fv \ affI(H=
v)

Since the guarantees on the lifted CG cuts produced in the previous section are
restricted to affI(H=

v), we must still deal with the points in Fv \affI(H=
v). In this

section, we show that points in Fv \ affI(H=
v) can be separated by using a finite

number of CG cuts in Proposition 2. To prove this, we will need Kronecker’s
theorem on simultaneous diophantine approximation which is stated next. See
Niven [14] or Cassels [3] for a proof.

Theorem 3. Let (x1, . . . , xn) ∈ Rn be such that the numbers x1, . . . , xn, 1 are
linearly independent over Q. Then the set {(nx1 (mod 1), . . . , nxn (mod 1)) :
n ∈ N} is dense in [0, 1)n.

We state the following lemmas without proof which allow us to normalize vector
v defining Fv and H=

v and simplify the analysis that follows.

Lemma 2. Let K ⊆ Rn be a closed convex set, and let T : Rn → Rn be
an invertible linear transformation. Then hK(v) = hTK(T−tv) and Fv(K) =
T−1(FT−tv(TK)) for all v ∈ Rn. Furthermore, if T is a unimodular transforma-
tion, then CC(K) = T−1(CC(TK)).

Lemma 3. Take v ∈ Rn. Then there exists an unimodular transformation T :
Rn → Rn and λ ∈ Q>0 such that for v′ = λTv we get that

v′ =

⎛⎝ 0, . . . , 0︸ ︷︷ ︸
t times

, 1︸︷︷︸
s times

, α1, . . . , αr

⎞⎠ , (5)

where t, r ∈ Z+, s ∈ {0, 1}, and {1, α1, . . . , αr} are linearly independent over Q.
Furthermore, we have that D(v) = inf{dim(W) : v ∈ W,W = {x ∈ Rn : Ax =
0}, A ∈ Qm×n} = s + r.

We now show that the points in Fv \ affI(H=
v) can be separated using a finite

number of CG cuts. We first give a rough sketch of the proof. We restrict to
the case where affI(H=

v)
= ∅. From here one can verify that any rational affine
subspace contained in aff(H=

v) must also lie in affI(H=
v). Next we use Kronecker’s

theorem to build a finite set C ⊆ Zn, where each vector in C is at distance
at most ε from some scaling of v, and where v can be expressed as a non-
negative combination of the vectors in C. By choosing ε and the scalings of v
appropriately, we can ensure that the CG cuts derived from C dominate the
inequality 〈v, x〉 ≤ hK(v), i.e. CC(K,C) ⊆ Hv. If CC(K,C) lies in the interior
of Hv(K), we have separated all of H=

v (including Fv \ affI(H=
v)) and hence

are done. Otherwise, T := CC(K,C) ∩ H=
v is a face of a rational polyhedron,

and therefore aff(T) is a rational affine subspace. Since aff(T) ⊆ aff(H=
v), as

discussed above T ⊆ aff(T) ⊆ affI(H=
v) as required.

Proposition 2. Let K ⊆ Rn be a compact convex set and v ∈ Rn. Then there
exists C ⊆ Zn, |C| ≤ D(v) + 1, such that

CC(K,C) ⊆ Hv(K) and CC(K,C) ∩H=
v (K) ⊆ affI(H=

v (K)).

136 D. Dadush, S.S. Dey, and J.P. Vielma

Proof. By scaling v by a positive scalar if necessary, we may assume that hK(v) ∈
{0, 1,−1}. Let T and λ denote the transformation and scaling promised for v
in Lemma 3. Note that T−t{x ∈ Rn : 〈v, x〉 = hK(v)} = {x ∈ Rn : 〈v, T tx〉 =
hK(v)} = {x ∈ Rn : 〈λTv, x〉 = hT−tK(λTv)}.

Now let v′ = λTv and b′ = hT−tK(λTv). By Lemma 2, it suffices to prove
the statement for v′ and K ′ = T−tK. Now v′ has the form (5) where t, r ∈ Z+,
s ∈ {0, 1}, and (1, α1, . . . , αr) are linearly independent over Q. For convenience,
let k = s + t, where we note that v′k+1, . . . , v

′
k+r = (α1, . . . , αr).

Claim 1: Let S = {x ∈ Zn : 〈v′, x〉 = b′}. Then S satisfies one of the following:
(1) S = Zt × b′ × 0r: s = 1, b′ ∈ Z, (2) S = Zt × 0r: s = 0, b′ = 0, (3) S = ∅:
s = 0, b′
= 0 or s = 1, b′ /∈ Z.

Claim 2: Let I = {nv′ (mod 1) : n ∈ N}. Then Theorem 3 implies that I is
dense in 0k × [0, 1)r.

Due to space restriction, we skip the proofs of these two claims and from now
on we only consider the case where S
= ∅.

Claim 3: There exists a1, . . . , ar+1 ⊆ Zn and λ1, . . . , λr+1 ≥ 0 such that∑r+1
i=1 λiai = v′ and

∑r+1
i=1 λi�h′

K(ai)� ≤ b′.
Since K ′ is compact, there exists R > 0 such that K ′ ⊆ RBn. Take the

subspace W = 0k ×Rr. Let w1, . . . , wr+1 ∈ W ∩ Sn−1, be any vectors such that
for some 0 < ε < 1 we have sup1≤i≤r+1〈wi, d〉 ≥ ε for all d ∈ Sn−1 ∩ W (e.g.
w1, . . . , wr+1 are the vertices of a scaled isotropic r-dimensional simplex). Let
a = 1

8 min{ 1
R , ε}, and b = 1

2εa. Now, for 1 ≤ i ≤ r + 1 define Ei = {x : x ∈
awi + b(Bn ∩W) (mod 1)}. Since W = 0k ×Rr, note that Ei ⊆ 0k × [0, 1)r. By
Claim 2 the set I is dense in 0k× [0, 1)r. Furthermore each set Ei has non-empty
interior with respect to the subspace topology on 0k × [0, 1)r. Hence for all i,
1 ≤ i ≤ r + 1, we can find ni ∈ N such that niv

′ (mod 1) ∈ Ei.
Now niv

′ (mod 1) ∈ Ei, implies that for some δ′i ∈ Ei, niv
′ − δ′i ∈ Zn.

Furthermore δ′i ∈ Ei implies that there exists δi ∈ awi + b(Bn ∩W) such that
δ′i−δi ∈ Zn. Hence (niv

′−δ′i)+(δ′i−δi) = niv
′−δi ∈ Zn. Let ai = niv

′−δi. Note
that ‖ai − niv

′‖ = ‖ − δi‖ ≤ a + b ≤ 2a ≤ 1/(4R). We claim that �hK′(ai)� ≤
hK′(niv

′). First note that hK′(niv
′) = nib

′. Since we assume that S
= ∅, we
must have that b′ ∈ Z and hence nib

′ ∈ Z. Now note that

hK′(ai) = hK′((ai − niv
′) + niv

′) ≤ hK′(niv
′) + hK′(ai − niv

′)
= nib

′ + hK′(−δi)

≤ nib
′ + hRBn(−δi) ≤ nib

′ + R‖δi‖ ≤ nib
′ + R

(
1

4R

)
= nib

′ +
1
4
.

Therefore we have that �hK′(ai)� ≤ �nib
′+ 1

4� = nib
′ = hK′(niv

′), since nib
′ ∈ Z.

We claim that aε
4 Bn ∩W ⊆ conv{δ1, . . . , δr+1}. First note that by construc-

tion, conv{δ1, . . . , δr+1} ⊆ W . Hence if the conclusion is false, then by the

Chvátal-Gomory Closure of a Compact Convex Set 137

separator theorem there exists d ∈ W ∩ Sn−1 such that h aε
4 Bn∩W (d) = aε

4 >
sup1≤i≤r+1〈d, δi〉. For each i, 1 ≤ i ≤ r + 1, we write δi = awi + bzi where
‖zi‖ ≤ 1. Now note that

sup
1≤i≤r+1

〈d, δi〉 = sup
1≤i≤r+1

〈d, awi + bzi〉 = sup
1≤i≤r+1

a〈d, wi〉 + b〈d, zi〉

≥ sup
1≤i≤r+1

a〈d, wi〉 − b‖d‖‖zi‖ ≥ aε− b =
aε

2
>

aε

4
,

a contradiction. Hence there exists λ1, . . . , λr+1 ≥ 0 and
∑r+1

i=1 λini = 1 such
that

∑r+1
i=1 λiδi = 0.

Now we see that

r+1∑
i=1

λiai =
r+1∑
i=1

λiniv
′+

r+1∑
i=1

λi(ai−niv
′)=

(
r+1∑
i=1

λini

)
v′−

r+1∑
i=1

λiδi =

(
r+1∑
i=1

λini

)
v′.

(6)
Next note that

r+1∑
i=1

λi�hK′(ai)� ≤
r+1∑
i=1

λihK′(niv
′) = hK′

((
r+1∑
i=1

λini

)
v′
)
. (7)

Claim 4: Let C = {ai}r+1
i=1 for the ai’s from Claim 3. Then CC(K,C) ∩ {x :

〈v′, x〉 = b′} ⊆ aff(S).
Examine the set P = {x : 〈v′, x〉 = b′, 〈ai, x〉 ≤ �hK′(ai)�, 1 ≤ i ≤ l + 1}.

From the proof of Claim 3, we know that for each i, 1 ≤ i ≤ r + 1, we have
�hK′(ai)� ≤ hK′(niv

′) = nib
′ and hence 〈niv

′ − ai, x〉 = 〈δi, x〉 ≥ 0, is a valid
inequality for P . Now, from the proof of Claim 3, we have

aε

4
Bn ∩W ⊆ conv{δ1, . . . , δr+1}. (8)

We claim that for all H ⊆ {1, . . . , r+ 1}, |H | = r, the set {δi : i ∈ H} is linearly
independent. Assume not, then WLOG we may assume that δ1, . . . , δr are not
linearly independent. Hence there exists d ∈ Sn−1 ∩ W , such that 〈d, δi〉 = 0
for all 1 ≤ i ≤ n. Now by possibly switching d to −d, we may assume that
〈d, δr+1〉 ≤ 0. Hence we get that sup1≤i≤r+1〈d, δi〉 ≤ 0 in contradiction to (8).

Now let λ1, . . . , λr+1 ≥ 0,
∑r+1

i=1 λini = 1 be a combination such that∑r+1
i=1 λiδi = 0. Note that λ1, . . . , λr+1 forms a linear dependency on δ1, . . . , δr+1,

and hence by the previous claim we must have that λi > 0 for all 1 ≤ i ≤ r + 1.
We claim for P ⊆ W⊥. To see this, note that 0 = 〈x, 0〉 = 〈x,∑r+1

i=1 λiδi〉 =∑r+1
i=1 λi〈x, δi〉 for every x ∈ P . Now since span(δ1, . . . , δr+1) = W , we see that

〈x, δi〉 = 0 for all 1 ≤ i ≤ r + 1 iff x ∈ W⊥. Hence if x /∈ W⊥, then by the
above equation and the fact that λi > 0 for all i ∈ {1, . . . , r + 1}, there exists
i, j ∈ {1, . . . , r + 1} such that 〈x, δi〉 > 0 and 〈x, δj〉 < 0. But then x /∈ P ,
since 〈x, δj〉 < 0, a contradiction. Now W = 0k × Rr, hence W⊥ = Rk × 0r. To
complete the proof we see that P ⊆ {x : x ∈ Rk × 0r, 〈v′, x〉 = b′} = aff(S).

138 D. Dadush, S.S. Dey, and J.P. Vielma

3.3 Lifting the CG Closure of an Exposed Face of K

Proposition 3. Let K ⊆ Rn be a compact convex set. Take v ∈ Rn. Assume
that CC(Fv(K)) is finitely generated. Then ∃ S ⊆ Zn, |S| < ∞, such that
CC(K,S) is a polytope and

CC(K,S) ∩H=
v (K) = CC(Fv(K)) (9)

CC(K,S) ⊆ Hv. (10)

Proof. The right to left containment in (9) is direct from CC(Fv(K))⊆CC(K,S)
as every CG cut for K is a CG cut for Fv(K). For the reverse containment and
for (10) we proceed as follows.

Using Proposition 2 there exists S1 ⊆ Zn such that CC(K,S1) ∩H=
v (K) ⊆

affI(H=
v (K)) and CC(K,S1) ⊆ {x ∈ Rn : 〈v, x〉 ≤ hK(v)}. Next let G ⊆ Zn

be such that CC(Fv(K), G) = CC(Fv(K)). For each w ∈ G, by Proposition 1
there exists w′ ∈ Zn such that CC(K,w′) ∩ affI(H=

v (K)) ⊆ CC(Fv(K), w) ∩
affI(H=

v (K)). For each w ∈ G, add w′ above to S2. Now note that

CC(K,S1 ∪ S2) ∩H=
v (K) = CC(K,S1) ∩CC(K,S2) ∩H=

v (K)
⊆ CC(K,S2) ∩ affI(H=

v (K))
= CC(Fv(K), G) ∩ aff(H=

v (K)) ⊆ CC(Fv(K)).

Now let S3 = {±ei : 1 ≤ i ≤ n}. Note that since K is compact CC(K,S3)
is a cuboid with bounded side lengths, and hence is a polytope. Letting S =
S1 ∪ S2 ∪ S3, yields the desired result.

We now obtain a generalization of the classical result known for rational poly-
hedra.

Corollary 1. Let K be a compact convex set and let F be an exposed face of
K, then we have that CC(F) = CC(K) ∩ F .

4 Approximation of the CG Closure

4.1 Approximation 1 of the CG Closure

In this section, we construct a first approximation of the CG closure of K. Under
the assumption that the CG closure of every proper exposed face is finitely
generated, we use a compactness argument to construct a finite set of CG cuts
S ⊆ Zn such that CC(K,S) ⊆ K ∩affI(K). We use the following lemma (stated
without proof) to simplify the analysis of integral affine subspaces.

Lemma 4. Take A ∈ Rm×n and b ∈ Rm. Then there exists λ ∈ Rm such that
for a′ = λA, b′ = λb, we have that {x ∈ Zn : Ax = b} = {x ∈ Zn : a′x = b′}.
Proposition 4. Let ∅
= K ⊆ Rn be a compact convex set. If CC(Fv(K)) is
finitely generated for any proper exposed face Fv(K) then ∃ S ⊆ Zn, |S| < ∞,
such that CC(K,S) ⊆ K ∩ affI(K) and CC(K,S) is a polytope.

Chvátal-Gomory Closure of a Compact Convex Set 139

Proof. Let us express aff(K) as {x ∈ Rn : Ax = b}. Note that aff(K)
= ∅
since K
= ∅. By Lemma 4 there exists λ, c = λA and d = λb, and such that
aff(K) ∩ Zn = {x ∈ Zn : 〈c, x〉 = b}. Since hK(c) = b and hK(−c) = −b, using
Proposition 2 on c and −c, we can find SA ⊆ Zn such that CC(K,SA) ⊆ aff({x ∈
Zn : 〈c, x〉 = b}) = affI(K).

Express aff(K) as W + a, where W ⊆ Rn is a linear subspace and a ∈ Rn.
Now take v ∈ W ∩ Sn−1. Note that Fv(K) is a proper exposed face and hence,
by assumption, CC(Fv(K)) is finitely generated. Hence by Proposition 3 there
exists Sv ⊆ Zn such that CC(K,Sv) is a polytope, CC(K,Sv) ∩ H=

v (K) =
CC(Fv(K)) and CC(K,Sv) ⊆ {x ∈ Rn : 〈x, v〉 ≤ hK(v)}. Let Kv = CC(K,Sv),
then we have the following claim whose proof we skip because of lack of space.

Claim: ∃ open neighborhood Nv of v in W ∩ Sn−1 such that v′ ∈ Nv ⇒
hKv(v′) ≤ hK(v′).

Note that {Nv : v ∈ W ∩ Sn−1} forms an open cover of W ∩ Sn−1, and
since W ∩Sn−1 is compact, there exists a finite subcover Nv1 , . . . , Nvk

such that⋃k
i=1 Nvi = W∩Sn−1. Now let S = SA ∪ ∪k

i=1Svi . We claim that CC(K,S) ⊆ K.
Assume not, then there exists x ∈ CC(K,S)\K. Since CC(K,S)⊆ CC(K,SA) ⊆
W + a and K ⊆ W + a, by the separator theorem there exists w ∈ W ∩ Sn−1

such that hK(w) = supy∈K〈y, w〉 < 〈x,w〉 ≤ hCC(K,S)(w). Since w ∈ W ∩Sn−1,
there exists i, 1 ≤ i ≤ k, such that w ∈ Nvi . Note then we obtain that
hCC(K,S)(w) ≤ hCC(K,Svi

)(w) = hKvi
(w) ≤ hK(w), a contradiction. Hence

CC(K,S) ⊆ K as claimed. CC(K,S) is a polytope because it is the intersection
of polyhedra of which at least one is a polytope.

4.2 Approximation 2 of the CG Closure

In this section, we augment the first approximation of the CC(K) with a finite
number of extra CG cuts so that this second approximation matches CC(K) on
the relative boundary of K.

To achieve this, we observe that our first approximation of CC(K) is polyhe-
dral and contained in K, and hence its intersection with the relative boundary
of K is contained in the union of a finite number of proper exposed faces of K.
Therefore, by applying Proposition 3 to each such face (i.e. adding their lifted
CG closure), we can match CC(K) on the relative boundary as required. The
following lemma (stated without proof) makes precise the previous statements.

Lemma 5. Let K ⊆ Rn be a convex set and P ⊆ K be a polytope. Then there ex-
ists Fv1 , . . . , Fvk

⊆ K, proper exposed faces of K, such that P∩relbd(K) ⊆ ⋃k
i=1

Fvi

Proposition 5. Let K ⊆ Rn be a compact convex set. If CC(Fv) is finitely
generated for any proper exposed face Fv then ∃ S ⊆ Zn, |S| < ∞, such that

CC(K,S) ⊆ K ∩ affI(K) (11)
CC(K,S) ∩ relbd(K) = CC(K) ∩ relbd(K) (12)

140 D. Dadush, S.S. Dey, and J.P. Vielma

Proof. By Proposition 4, there exists SI ⊆ Zn, |SI | < ∞, such that CC(K,SI) ⊆
K ∩ affI(K) and CC(K,SI) is a polytope. Since CC(K,SI) ⊆ K is a polytope,
let Fv1 , . . . , Fvk

be the proper exposed faces of K given by Lemma 5. By Proposi-
tion 3, there exists Si ⊆ Zn, |Si| < ∞, such that CC(K,Si)∩Hvi = CC(Fvi). Let
S = SI ∪∪k

i=1Si. We claim that CC(K,S)∩ relbd(K) ⊆ CC(K)∩ relbd(K). For
this note that x ∈ CC(K,S)∩ relbd(K) implies x ∈ CC(K,SI)∩ relbd(K), and
hence there exists i, 1 ≤ i ≤ k, such that x ∈ Fvi . Then x ∈ CC(K,S) ∩Hvi ⊆
CC(K,Si) ∩ Hvi = CC(Fvi) ⊆ CC(K) ∩ relbd(K). The reverse inclusion is
direct.

5 Proof of Theorem

Finally, we have all the ingredients to prove the main result of this paper. The
proof is by induction on the dimension of K. Trivially, the result holds for zero
dimensional convex bodies. Now using the induction hypothesis, we can construct
the second approximation of CC(K) using Proposition 5 (since it assumes that
the CG closure of every exposed face is finitely generated). Lastly, we observe
that any CG cut for K not dominated by those already considered in the second
approximation of CC(K) must separate a vertex of this approximation lying in
the relative interior of K. From here, it is not difficult to show that only a finite
number of such cuts exists, thereby proving the polyhedrality of CC(K). The
proof here is similar to the one used for strictly convex sets, with the additional
technicality that here aff(K) may be irrational.

Theorem 4. Let K ⊆ Rn be a non-empty compact convex set. Then CC(K) is
finitely generated.

Proof. We proceed by induction on the affine dimension of K. For the base case,
dim(aff(K)) = 0, i.e. K = {x} is a single point. Here it is easy to see that setting
S = {±ei : i ∈ {1, . . . , n}}, we get that CC(K,S) = CC(K). The base case thus
holds.

Now for the inductive step let 0 ≤ k < n let K be a compact convex set where
dim(aff(K)) = k+1 and assume the result holds for sets of lower dimension. By
the induction hypothesis, we know that CC(Fv) is finitely generated for every
proper exposed face Fv of K, since dim(Fv) ≤ k. By Proposition 5, there exists
a set S ⊆ Zn, |S| < ∞, such that (11) and (12) hold. If CC(K,S) = ∅, then we
are done. So assume that CC(K,S)
= ∅. Let A = affI(K). Since CC(K,S)
= ∅,
we have that A
= ∅ (by (11)), and so we may pick t ∈ A ∩ Zn. Note that
A− t = W , where W is a linear subspace of Rn satisfying W = span(W ∩ Zn).
Let L = W ∩Zn. Since t ∈ Zn, we easily see that CC(K − t, T) = CC(K,T)− t
for all T ⊆ Zn. Therefore CC(K) is finitely generated iff CC(K − t) is. Hence
replacing K by K − t, we may assume that affI(K) = W .

Let πW denote the orthogonal projection onto W . Note that for all x ∈ W ,
and z ∈ Zn, we have that 〈z, x〉 = 〈πW (z), x〉. Now since CC(K,S) ⊆ K∩W , we
see that for all z ∈ Zn, CC(K,S ∪ {z}) = CC(K,S) ∩ {x : 〈z, x〉 ≤ �hK(z)�} =
CC(K,S)∩{x : 〈πW (z), x〉 ≤ �hK(z)�}. Let L∗ = πW (Zn). Since W is a rational

Chvátal-Gomory Closure of a Compact Convex Set 141

subspace, we have that L∗ is full dimensional lattice in W . Now fix an element of
w ∈ L∗ and examine Vw := {�hK(z)� : πW (z) = w, z ∈ Zn}. Note that Vw ⊆ Z.
We claim that inf(Vw) ≥ −∞. To see this, note that

inf{�hK(z)� : πW (z) = w, z ∈ Zn} ≥ inf{�hK∩W (z)� : πW (z) = w, z ∈ Zn}
= inf{�hK∩W (πW (z))� : πW (z) = w, z ∈ Zn}
= �hK∩W (w)� > −∞.

Now since Vw is a lower bounded set of integers, there exists zw ∈ π−1
W (w) ∩

Zn such that inf(Vw) = �hK(zw)�. From the above reasoning, we see that
CC(K,S ∪ π−1

W (z) ∩ Zn) = CC(K,S ∪ {zw}). Now examine the set C = {w :
w ∈ L∗, CC(K,S ∪ {zw}) � CC(K,S)}. Here we get that

CC(K)=CC(K,S∪Zn)=CC(K,S∪{zw : w ∈ L∗})=CC(K,S∪{zw : w ∈ C}).

From the above equation, if we show that |C| < ∞, then CC(K) is finitely
generated. To do this, we will show that there exists R > 0, such that C ⊆ RBn,
and hence C ⊆ L∗ ∩ RBn. Since L∗ is a lattice, |L∗ ∩ RBn| < ∞ for any fixed
R, and so we are done.

Now let P = CC(K,S). Since P is a polytope, we have that P = conv(ext(P)).
Let I = ext(P) ∩ relint(K), and let B = ext(P) ∩ relbd(K). Hence ext(P) =
I ∪ B. By assumption on CC(K,S), we know that for all v ∈ B, we have that
v ∈ CC(K). Hence for all z ∈ Zn, we must have that 〈z, v〉 ≤ �hK(z)� for all
v ∈ B. Now assume that for some z ∈ Zn, CC(K,S ∪ {z}) � CC(K,S) = P .
We claim that 〈z, v〉 > �hK(z)� for some v ∈ I. If not, then 〈v, z〉 ≤ �hK(z)� for
all v ∈ ext(P), and hence CC(K,S ∪ {z}) = CC(K,S), a contradiction. Hence
such a v ∈ I must exist.

For z ∈ Zn, note that hK(z) ≥ hK∩W (z) = hK∩W (πW (z)). Hence 〈z, v〉 >
�hK(z)� for v ∈ I only if 〈πW (z), v〉 = 〈z, v〉 > �hK∩W (πW (z))�. Let C′ := {w ∈
L∗ : ∃v ∈ I, 〈v, w〉 > �hK∩W �(w)}. From the previous discussion, we see that
C ⊆ C′.

Since I ⊆ relint(K) ∩W = relint(K ∩ W) we have δv = sup{r ≥ 0 : rBn ∩
W + v ⊆ K ∩W} > 0 for all v ∈ I. Let δ = infv∈I δv. Since |I| < ∞, we see that
δ > 0. Now let R = 1

δ . Take w ∈ L∗, ‖w‖ ≥ R. Note that ∀v ∈ I,

�hK∩W (w)� ≥ hK∩W (w)−1 ≥ h(v+δBn)∩W (w)−1 = 〈v, w〉+ δ‖w‖−1 ≥ 〈v, w〉.

Hence w /∈ C′. Therefore C ⊆ C′ ⊆ RBn and CC(K) is finitely generated.

6 Remarks

Using techniques developed in Proposition 2 and Lemma 4 it is possible to prove
the following.

Theorem 5. Let T = {x ∈ Rn : Ax = b}, A ∈ Rm×n, b ∈ Rm. The following
holds:

142 D. Dadush, S.S. Dey, and J.P. Vielma

1. If affI(T) = ∅, then for all D > 0 there exists z ∈ Zn such that CC(T ∩
DBn, {z,−z}) = ∅.

2. If affI(T)
= ∅, then for all D > 0 there exists S ⊆ Zn, |S|=n−dim(affI(T))+
1 such that CC(T ∩DBn, S) = affI(T).

The above result can be considered as a generalization of Integer Farkas’ Lemma:
If A and b are rational and affI(T) = ∅, then it can be shown (we skip details due
to lack of space) if D > 0 is sufficiently large, then CC(T ∩DBn, {z,−z}) = ∅
implies that CC(T, {z,−z}) = ∅ which is one half of regular Integer Farkas’
Lemma.

References

1. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis,
algorithms, and engineering applications. Society for Industrial and Applied Math-
ematics, Philadelphia, PA (2001)

2. Bonami, P., Dash, G.C.S., Fischetti, M., Lodi, A.: Projected Chvatal-Gomory
Cuts for Mixed Integer Linear Programs. Mathematical Programming 113, 241–257
(2008)

3. Cassels, J.W.S.: An introduction to Diophantine approximation. Hafner, New York
(1972)

4. Çezik, M.T., Iyengar, G.: Cuts for mixed 0-1 conic programming. Mathematical
Programming 104, 179–202 (2005)

5. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
crete Mathematics 4, 305–337 (1973)

6. Dadush, D., Dey, S.S., Vielma, J.P.: The Chvátal-Gomory Closure of Strictly Con-
vex Body (2010) (to appear in Mathematics of Operations Research)

7. Dey, S.S., Vielma, J.P.: The Chvátal-Gomory Closure of an Ellipsoid Is a Polyhe-
dron. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp.
327–340. Springer, Heidelberg (2010)

8. Dunkel, J., Schulz, A.S.: The Gomory-chvátal closure of a non-rational polytope
is a rational polytope (2010), http://www.optimization-online.org/DB_HTML/

2010/11/2803.html

9. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of mathematics 17, 449–
467 (1965)

10. Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Mathematical
Programming, Series B 110, 3–20 (2007)

11. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society 64, 275–278 (1958)

12. Grötschel, M., Padberg, M.: On the symmetric travelling salesman problem I: In-
equalities. Math. Programming 16, 265–280 (1979)

13. Grötschel, M., Padberg, M.: On the symmetric travelling salesman problem II:
Lifting theorems and facets. Math. Programming 16, 281–302 (1979)

14. Niven, I.M.: Diophantine approximations. Interscience Publishers, New York
(1963)

15. Schrijver, A.: On cutting planes. Annals of Discrete Mathematics 9, 291–296 (1980);
combinatorics 79 (Proc. Colloq., Univ. Montréal, Montreal, Que., 1979), Part II

http://www.optimization-online.org/DB_HTML/2010/11/2803.html
http://www.optimization-online.org/DB_HTML/2010/11/2803.html

Design and Verify: A New Scheme for

Generating Cutting-Planes

Santanu S. Dey1 and Sebastian Pokutta2

1 H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA 30332, USA

santanu.dey@isye.gatech.edu
2 Sloan School of Management, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA
pokutta@mit.edu

Abstract. A cutting-plane procedure for integer programming (IP)
problems usually involves invoking a black-box procedure (such as the
Gomory-Chvátal (GC) procedure) to compute a cutting-plane. In this
paper, we describe an alternative paradigm of using the same cutting-
plane black-box. This involves two steps. In the first step, we design an
inequality cx ≤ d, independent of the cutting-plane black-box. In the
second step, we verify that the designed inequality is a valid inequality
by verifying that the set P ∩ {x ∈ Rn : cx ≥ d + 1} ∩ Zn is empty using
cutting-planes from the black-box. Here P is the feasible region of the
linear-programming relaxation of the IP. We refer to the closure of all
cutting-planes that can be verified to be valid using a specific cutting-
plane black-box as the verification closure of the considered cutting-plane
black-box. This paper conducts a systematic study of properties of veri-
fication closures of various cutting-plane black-box procedures.

Keywords: Verification Scheme, Cutting-Planes, Integer Programming.

1 Introduction

Cutting-planes are a crucial tool in solving Integer Programs (IPs). Often the
only guiding principal (example: Kelley’s Method [13]) used in deriving generic
cutting-planes (like Gomory-Chvátal or split cuts) is that the incumbent frac-
tional point must be separated. Therefore, cutting-planes are generated ‘almost
blindly’, where we apply some black-box method to constructively compute valid
cutting-planes and hope for the right set of cuts to appear that helps in proving
optimality (or close significant portion of the gap). Now if we were somehow able
to deliberately design strong cutting-planes that were tailor-made, for example, to
prove the optimality of good candidate solutions, then we could possibly speed up
IP solvers. This motivates a different paradigm to generate valid cutting-planes
for integer programs: First we design a useful cutting-plane without considering
its validity. Then, once the cutting-plane is designed, we verify that it is valid.

For n ∈ N, let [n] = {1, ..., n} and for a polytope P ⊆ Rn denote its inte-
gral hull by PI := conv (P ∩ Zn). We now precisely describe these verification

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 143–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

144 S.S. Dey and S. Pokutta

schemes (abbreviated as: V-schemes). Let M be an admissible cutting-plane
procedure (i.e., a valid and ‘reasonable’ cutting-plane system - we will formally
define these) and let M(P) be the closure with respect to the family of cutting-
planes obtained using M. For example, M could represent split cuts and then
M(P) represents the split closure of P . Usually using cutting-planes from a
cutting-plane procedure M, implies using valid inequalities for M(P) as cutting-
planes. In the V-scheme, we apply the following procedure: We design or guess
the inequality cx ≤ d where (c, d) ∈ Zn × Z. To verify that this inequality is
valid for PI , we apply M to P ∩ {x ∈ Rn | cx ≥ d + 1} and check whether
M(P ∩ {x ∈ Rn | cx ≥ d + 1}) = ∅. If M(P ∩ {x ∈ Rn | cx ≥ d + 1}) = ∅,
then cx ≤ d is a valid inequality for PI and we say it can be obtained using the
V-scheme of M.

We might wonder how much we gain from having to only verify that a given
inequality cx ≤ d is valid for PI , rather than actually computing it. In fact at a
first glance, it is not even clear that there would be any difference between com-
puting and verifying. The strength of the verification scheme lies in the following
inclusion that can be readily verified for admissible cutting-plane procedures:

M(P ∩ {x ∈ Rn | cx ≥ d + 1}) ⊆ M(P) ∩ {x ∈ Rn | cx ≥ d + 1} . (1)

The interpretation of this inclusion is that an additional inequality cx ≥ d + 1
appended to the description of P can provide us with crucial extra informa-
tion when deriving new cutting-planes that is not available when considering
P alone and then adding the additional inequality afterwards to the M-closure
of P . In other words, (1) can potentially be a strict inclusion such that M(P ∩
{x ∈ Rn | cx ≥ d + 1}) = ∅ while M(P) ∩ {x ∈ Rn | cx ≥ d + 1}
= ∅. This is
equivalent to saying that we can verify the validity of cx ≤ d, however we are
not able to compute cx ≤ d. To the best of our knowledge, the only paper dis-
cussing a related idea is [4], but theoretical and computational potential of this
approach has not been further investigated.

The set obtained by intersecting all cutting-planes that can be verified to be
valid using M will be called the verification closure (abbreviated as: V-closure)
of M and denoted by ∂M(P). Formally,

∂M(P) :=
⋂

(c,d)∈Zn×Z

s.t. M(P∩{x∈Rn|cx≥d+1})=∅

{x ∈ Rn | cx ≤ d} . (2)

Under mild conditions (1) implies ∂M(P) ⊆ M(P) for all rational polytopes
P . Since there exist inequalities that can be verified but not computed, this
inclusion can be proper.

Outline and contribution. This paper conducts a systematic study of the
strengths and weaknesses of the V-schemes. In Section 2, we prove basic proper-
ties of the V-closure. In order to present these results, we first describe general
classes of reasonable cutting-planes, the so called admissible cutting-plane proce-
dures, a machinery developed in [17]. We prove that ∂M is almost admissible, i.e.

Verification Scheme for Cutting-Planes 145

the V-schemes satisfy many important properties that all known classes of ad-
missible cutting-plane procedures including Gomory-Chvátal (GC) cuts [12,2],
lift-and-project cuts [1], split cuts (SC) [6], and N,N0,N+ [14] cuts satisfy.

In Section 3, we show first that V-schemes have natural inherent strength, i.e.,
even if M is an arbitrarily weak admissible cutting-plane procedure, ∂M(P) is at
least as strong as the GC and the N0 closures. We then compare the strength of
various regular closures (GC cuts, split cuts, and N0,N,N+ cuts) with their V-
versions and with each other. For example, we show that ∂GC(P) ⊆ SC(P) and
∂N0(P) ⊆ SC(P). The complete list of these results is illustrated in Figure 1.

In Section 4, we present upper and lower bounds on the rank of valid inequali-
ties with respect to the V-closures for a large class of 0/1 problems. These results
show that while the V-closures are strong, they not unrealistically so.

In Section 5, we illustrate the strength of the V-schemes on specific struc-
tured problems. We show that facet-defining inequalities of monotone polytopes
contained in [0, 1]n have low rank with respect to any ∂M operator. We show
that numerous families of inequalities with high GC, N0, or N rank [14] (such
as clique inequalities) for the stable set polytope have a rank of 1 with respect
to any ∂M with M being arbitrarily weak and admissible. We will also show
that for the subtour elimination relaxation of the traveling salesman problem
the rank for ∂M with M ∈ {GC,SC, N0, N,N+} is in Θ(n) where n is the num-
ber of nodes, i.e., the rank is Θ(

√
dim(P)) with P being the TSP-polytope. It

is well-known that for the case of general polytopes in R2 the GC rank can be
arbitrarily large. In contrast, we establish that the rank of general polytopes in
R2 with respect to ∂GC is 1.

2 General Properties of the V-Closure

For the ease of presentation, we will only consider rational polytopes in the
following definition, although it readily generalizes to compact convex sets.

Definition 1 ([17]). A cutting-plane procedure M defined for polytopes P :=
{x ∈ [0, 1]n | Ax ≤ b} is admissible if the following holds:

1. Validity: PI ⊆ M(P) ⊆ P .
2. Inclusion preservation: If P ⊆ Q, then M(P) ⊆ M(Q) for all polytopes

P,Q ⊆ [0, 1]n.
3. Homogeneity: M(F ∩ P) = F ∩ M(P), for all faces F of [0, 1]n.
4. Single coordinate rounding: If xi ≤ ε < 1 (or xi ≥ ε > 0) is valid for

P , then xi ≤ 0 (or xi ≥ 1) is valid for M(P).
5. Commuting with coordinate flips and duplications: τi(M(P)) =

M(τi(P)), where τi is either one of the following two operations: (i) Coor-
dinate flip: τi : [0, 1]n → [0, 1]n with (τi(x))i = (1 − xi) and (τi(x))j = xj

for j ∈ [n] \ {i}; (ii) Coordinate Duplication: τi : [0, 1]n → [0, 1]n+1 with
(τi(x))n+1 = xi and (τi(x))j = xj for j ∈ [n].

6. Substitution independence: Let ϕF be the projection onto the face F of
[0, 1]n. Then ϕF (M(P ∩ F)) = M(ϕF (P ∩ F)).

146 S.S. Dey and S. Pokutta

7. Short verification: There exists a polynomial p such that for any inequal-
ity cx ≤ d that is valid for M(P) there is a set I ⊆ [m] with |I| ≤ p(n) such
that cx ≤ d is valid for M({x ∈ Rn | aix ≤ bi, i ∈ I}). We call p(n) the
verification degree of M.

If M is defined for general rational polytopes P ⊆ Rn, then we say M is ad-
missible if (A.) M satisfies (1.)-(7.) when restricted to polytopes contained in
[0, 1]n and (B.) for general polytopes P ⊆ Rn, M satisfies (1.), (2.), (7.) and
Homogeneity is replaced by

8. Strong Homogeneity: If P ⊆ F≤ := {x ∈ Rn | ax ≤ b} and F = {x ∈
Rn | ax = b} where (a, b) ∈ Zn × Z, then M(F ∩ P) = M(P) ∩ F .

In the following, we assume that M(P) is a closed convex set. If M satisfies all
required properties for being admissible except (7.), then we say M is almost
admissible.

Requiring strong homogeneity in the general case leads to a slightly more re-
stricted class than the requirement of homogeneity in the 0/1 case. We note
here that almost all known classes of cutting-plane schemes such as GC cuts,
lift-and-project cuts, split cuts, and N,N0, N+ are admissible (cf. [17] for more
details). Observe that (1) in Section 1 follows from inclusion preservation.

Next we present a technical lemma that we require for the main result of this
section. We will use {αx ≤ β} as a shorthand for {x ∈ Rn | αx ≤ β}.
Lemma 1. Let Q be a compact set contained in the interior of the set {βx ≤ ζ}
with (β, ζ) ∈ Zn ×Z and let (α, η) ∈ Zn ×Z. Then there exists a positive integer
τ such that Q is strictly contained in the set {(α + τβ)x ≤ η + τζ}.
We next show that ∂M satisfies almost all properties that we should expect from
a well-defined cutting-plane procedure.

Theorem 1. Let M be an admissible cutting-plane procedure. Then ∂M is al-
most admissible. In particular,

1. For 0/1 polytopes, ∂M satisfies properties (1.) to (6.).
2. If M is defined for general polytopes, then ∂M satisfies property (8.).

Proof. It is straightforward to verify (1.), (2.), and (4.) - (6.). The non-trivial
part is property (8.) (or (3.) respectively). In fact it follows from the original
operator M having this property. We will prove (8.); property (3.) in the case of
P ⊆ [0, 1]n follows mutatis mutandis.

First observe that ∂M(P ∩ F) ⊆ ∂M(P) and ∂M(P ∩ F) ⊆ F . Therefore,
∂M(P ∩ F) ⊆ ∂M(P) ∩ F . To verify ∂M(P ∩ F) ⊇ ∂M(P) ∩ F , we show that
if x̂ /∈ ∂M(P ∩ F), then x̂ /∈ ∂M(P) ∩ F . Observe first that if x̂ /∈ P ∩ F , then
x̂ /∈ ∂M(P) ∩ F . Therefore, we assume that x̂ ∈ P ∩ F . Hence we need to prove
that if x̂ /∈ ∂M(P ∩ F) and x̂ ∈ P ∩ F , then x̂ /∈ ∂M(P). Since x̂ /∈ ∂M(P ∩ F),
there exists c ∈ Zn and d ∈ Z such that cx̂ > d and M(P ∩F ∩{cx ≥ d+1}) = ∅.
By strong homogeneity of M, we obtain

Verification Scheme for Cutting-Planes 147

M(P ∩ {cx ≥ d + 1}) ∩ F = ∅. (3)

Let F≤ = {ax ≤ b} and F = {ax = b} with P ⊆ F≤. Now observe that (3)
is equivalent to saying that M(P ∩ {cx ≥ d + 1}) is contained in the interior
of the set {ax ≤ b}. Therefore by Lemma 1, there exists a τ ∈ Z+ such that
M(P ∩ {cx ≥ d + 1}) is contained in the interior of {(c + τa)x ≤ d + 1 + τb}.
Equivalently, M(P ∩ {cx ≥ d+ 1})∩ {(c+ τa)x ≥ d+ 1 + τb} = ∅ which implies

M(P ∩ {cx ≥ d + 1}) ∩ (P ∩ {(c + τa)x ≥ d + 1 + τb}) = ∅. (4)

Since P ⊆ F≤, we obtain that

P ∩ {(c + τa)x ≥ d + 1 + τb} ⊆ P ∩ {cx ≥ d + 1}. (5)

Now using (4), (5) and the inclusion preservation property of M it follows that
M(P ∩{(c+τa)x ≥ d+1+τb}) = ∅. Thus (c+τa)x ≤ d+τb is a valid inequality
for ∂M(P). Moreover note that since x̂ ∈ P ∩F , we have that ax̂ = b. Therefore,
(c+ τa)x̂ = cx̂+ τb > d+ τb, where the last inequality follows from the fact that
cx̂ > d. �

It can be shown that short verification, i.e., property (7.) of admissible systems
follows whenever ∂M(P) is a rational polyhedron. However, we do not need this
property for the results in this paper.

3 Strength and Comparisons of V-Closures

In this section, we compare various regular closures and their verification coun-
terparts with each other. We first formally define possible relations between
admissible closures and the notation we use.

Definition 2. Let L,M be almost admissible. Then

1. L refines M, if for all polytopes P we have L(P) ⊆ M(P). We write: L ⊆ M.
It is indicated by empty arrow heads in Figure 1.

2. L strictly refines M, if L refines M and there exists a polytope P such that
L(P) � M(P). We write: L � M. It is indicated by a filled arrow heads in
Figure 1.

3. L is incompatible with M, if there exist polytopes P,Q such that M(P)
⊆
L(P) and M(Q)
⊆ L(Q). We write: L ⊥ M. It is indicated with an arrow
with circle head and tail in Figure 1.

In each of the above definitions, if either one of L or M is defined only for
polytopes P ⊆ [0, 1]n, then we confine the comparison to this class of polytopes.

We establish the relations depicted in Figure 1 in the rest of the section.

148 S.S. Dey and S. Pokutta

3.1 Strength of ∂M for Arbitrary Admissible Cutting-Plane
Procedures M

In order to show that ∂M refines M, we require the following technical lemma;
see [8] for a similar result. We use the notation σP (·) to refer to the support
function of a set P , i.e., σP (c) = sup{cx | x ∈ P}.
Lemma 2. Let P,Q ⊆ Rn be compact convex sets. If σP (c) ≤ σQ(c) for all
c ∈ Zn, then P ⊆ Q.

Theorem 2. Let M be admissible. Then ∂M ⊆ M.

Proof. Let P be a polytope. Since M(P) ⊆ P and ∂M(P) ⊆ P , both M(P) and
∂M(P) are bounded. Moreover since M(P) is closed by definition, and ∂M(P) is
defined as the intersection of halfspaces (thus a closed set), we obtain that M(P)
and ∂M(P) are both compact convex sets. Thus, by Lemma 2, it is sufficient
to compare the support functions of M(P) and ∂M(P) with respect to integer
vectors only. Let σM(P)(c) = d for c ∈ Zn. We verify that σ∂M(P)(c) ≤ �d�.
Observe that, M(P∩{cx ≥ �d�+1}) ⊆ M(P)∩{cx ≥ �d�+1}, where the inclusion
follows from the inclusion preservation property of M. However note that since
cx ≤ d is a valid inequality for M(P), we obtain that M(P)∩{cx ≥ �d�+1} = ∅.
Thus, M(P∩{cx ≥ �d�+1}) = ∅ and so cx ≤ �d� is a valid inequality for ∂M(P).
Equivalently we have σ∂M(P)(c) ≤ �d�, completing the proof. �

We next show that even if M is chosen arbitrarily, ∂M is at least as strong as
the GC closure and the N0 closure.

Theorem 3. Let M be admissible. Then ∂M ⊆ GC and ∂M ⊆ N0 (the latter
holding for polytopes P ⊆ [0, 1]n).

Proof (Sketch of proof). The proof of ∂M ⊆ GC is similar to the proof of
Theorem 2 and we skip it here due to lack of space. Now let P be a polytope
with P ⊆ [0, 1]n. For proving ∂M(P) ⊆ N0(P), recall that N0 =

⋂
i∈[n] Pi

with Pi := conv ((P ∩ {xi = 0}) ∪ (P ∩ {xi = 1})). Therefore let cx ≤ d with
c ∈ Zn and d ∈ Z be valid for Pi with i ∈ [n] arbitrary. In particular, cx ≤
d is valid for P ∩ {xi = l} with l ∈ {0, 1}. Thus we can conclude that P ∩
{cx ≥ d + 1}∩ {xi = l} = ∅ for i ∈ {0, 1}. Therefore xi > 0 and xi < 1 are valid
for P ∩ {cx ≥ d + 1} and so by Property 4 of Definition 1, xi ≤ 0 and xi ≥ 1
are valid M(P ∩ {cx ≥ d + 1}). We obtain M(P ∩ {cx ≥ d + 1}) = ∅ and thus
cx ≤ d is valid for ∂M(P). �

3.2 Comparing M and ∂M for M Being GC, SC, N0, N, or N+

We now compare various closures and their associated V-closures. The first result
shows that the verification scheme of the Gomory-Chvátal procedure is at least
as strong as split cuts.

Theorem 4. ∂GC ⊆ SC.

Verification Scheme for Cutting-Planes 149

GC

SC

pGC

pM

pSC

N0

NpN0

N+pN

pN+

M

Fig. 1. Direct and V-closures and their relations. pL in the figure represents ∂L and
M is an arbitrarily weak admissible system.

Proof. Consider cx ≤ d being valid for P ∩ {πx ≤ π0} and P ∩ {πx ≥ π0 + 1}
with c, π ∈ Zn and d, π0 ∈ Z. Clearly, cx ≤ d is valid for SC(P) and it suffices
to consider inequalities cx ≤ d with this property; all others are dominated by
positive combinations of these. Therefore consider P ∩ {cx ≥ d + 1}. By cx ≤
d being valid for the disjunction πx ≤ π0 and πx ≥ π0 + 1 we obtain that
P∩{cx ≥ d + 1}∩{πx ≤ π0} = ∅ and P∩{cx ≥ d + 1}∩{πx ≥ π0 + 1} = ∅. This
implies that P ∩ {cx ≥ d + 1} ⊆ {πx > π0} and similarly P ∩ {cx ≥ d + 1} ⊆
{πx < π0 + 1}. We thus obtain that πx ≥ π0 + 1 and πx ≤ π0 are valid for
GC(P ∩ {cx ≥ d + 1}). It follows GC(P ∩ {cx ≥ d + 1}) = ∅. Thus cx ≤ d is
valid for ∂GC(P). �

Next we compare V-schemes of two closures that are comparable.

Lemma 3. Let L,M be admissible such that L ⊆ M. Then ∂L ⊆ ∂M.

In order to prove strict refinement or incompatibility between V-closures the
following lemma is helpful.

Proposition 1. Let L,M be admissible. If P ⊆ [0, 1]n is a polytope with PI = ∅
such that M(P) = ∅ and L(P)
= ∅, then ∂L does not refine ∂M.

Proof (Sketch of proof). Let G ⊆ [0, 1]n be a polytope. For l ∈ {0, 1}, by Gxn+1=l

we denote the polytope S ⊆ [0, 1]n+1 such that S ∩ {xn+1 = l} ∼= G and S
does not contain any other points. Consider the auxiliary polytope Q given as
Q := conv

(
Pxn+1=1 ∪ [0, 1]nxn+1=0

)
. We next state a claim without proof due

to lack of space: The inequality xn+1 ≤ 0 is valid for ∂L(Q) if and only if
L(Q ∩ {xn+1 ≥ 1}) = ∅. Observe that Q ∩ {xn+1 ≥ 1} ∼= P and by assumption,
we have M(P) = ∅ but L(P)
= ∅ and therefore ∂M(Q)
⊇ ∂L(Q). �

In the following lemmata, polytopes are presented that help establish the strict
inclusion or incompatibility depicted in Figure 1, via Proposition 1.

150 S.S. Dey and S. Pokutta

Lemma 4. ∂N0 ⊥ ∂GC via P1 := conv([0, 1]3 ∩ {x1 + x2 + x3 = 3/2}) ⊆ [0, 1]3

and P2 :=conv({(1
4 ,

1
4 , 0), (1

4 ,
1
4 , 1), (1

2 , 0,
1
2), (1

2 , 1,
1
2), (0, 1

2 ,
1
2), (1, 1

2 ,
1
2)})⊆ [0, 1]3.

The proof of the next lemma uses Proposition 1 and a result from [7].

Lemma 5. ∂N0 ⊥ SC via P1 := A3 ⊆ [0, 1]3 and P2 := conv([0, 1]3 ∩ {x1 + x2

+ x3 = 3/2}).
A modified version of an example in [14] is used to verify the following result.

Lemma 6. ∂N � ∂N0.

4 Rank of Valid Inequalities with Respect to V-Closures

In this section, we establish several bounds on the rank of ∂M for the case of
polytopes P ⊆ [0, 1]n. Given a natural number k, we use the notation Mk(P)
and rkM (P) to be denote the kth closure of P with respect to M and the rank of
P with respect to M respectively. As ∂M ⊆ N0 we obtain the following result.

Theorem 5 (Upper bound in [0, 1]n). Let M be admissible and P ⊆ [0, 1]n

be a polytope. Then rk∂M(P) ≤ n.

Note that in general the property of M being admissible, does not guarantee
that the upper bound on rank is n. For example, the GC closure can have a
rank strictly higher than n (cf. [11,18]).

In quest for lower bounds on the rank of 0/1 polytopes, we note that among
polytopes P ⊆ [0, 1]n that have PI = ∅, the polytope An = {x ∈ [0, 1]n |∑

i∈I xi +
∑

i∈I(1 − xi) ≥ 1
2 ∀ I ⊆ [n]} has maximal rank (of n) for many

admissible systems [16]. We will now establish that ∂M is not unrealistically
strong by showing that it is subject to similar limitations. Recall that we do
not require short verification (property (7.)) for ∂(M) which is the basis for the
lower bound in [17, Corollary 23] for admissible systems. We will show that the
lower bound for ∂M is inherited from the original operator M. Let

F k
n := {x ∈ {0, 1/2, 1}n | exactly k entries equal to 1/2} ,

and let Ak
n := conv

(
F k

n

)
be the convex hull of F k

n . (Note A1
n = An.) With F

being a face of [0, 1]n let I(F) denote the index set of those coordinate that are
fixed by F .

Lemma 7. Let M be admissible and let � ∈ N such that Ak+�
n ⊆ M(Ak

n) for all
n, k ∈ N with k + � ≤ n. If n ≥ k + 2� + 1, then Ak+2�+1

n ⊆ ∂M(Ak
n).

Proof. Let P := Ak
n and let cx ≤ d with c ∈ Zn and d ∈ Z be valid for ∂M(P).

Without loss of generality we assume M(P ∩ {cx ≥ d + 1}) = ∅, i.e., cx ≤ d is
one of the defining inequalities. We claim that

Ak
k+�

∼= Ak
n ∩ F
⊆ P ∩ {cx ≥ d + 1} (6)

Verification Scheme for Cutting-Planes 151

for all (k+ �)-dimensional faces F of [0, 1]n. Assume by contradiction that Ak
n ∩

F ⊆ P∩{cx ≥ d + 1}. As Ak+�
k+� ⊆ M(Ak

k+�) by assumption we obtain ∅
= Ak+�
k+� ⊆

M(Ak
k+�) ⊆ M(P ∩ {cx ≥ d + 1} which contradicts the validity of cx ≤ d over

∂M(P).
Without loss of generality we can further assume that c ≥ 0 and ci ≥ cj

whenever i ≤ j by applying coordinate flips and permutations.
Next we claim that for all (k + �)-dimensional faces F of [0, 1]n the point vF

defined as

vF
i :=

⎧⎪⎨⎪⎩
∈ {0, 1} according to F , for all i ∈ I(F)
0, if ci is one of the � largest coefficients of c with i
∈ I(F)
1/2, otherwise

(7)

for i ∈ [n] must not be contained in P ∩ {cx ≥ d + 1}, i.e., cvF < d + 1 and
so cvF ≤ d + 1/2. Note that vF ∈ P and observe that vF := argminx∈F k

n∩F cx.
Therefore, if vF ∈ P ∩ {cx ≥ d + 1}, then Ak

n ∩ F ⊆ P ∩ {cx ≥ d + 1} which
in turn contradicts (6). This claim holds in particular for those faces F fixing
coordinates to 1.

Finally, we claim that Ak+2�+1
n ⊆ P ∩{cx ≤ d}. It suffices to show that cv ≤ d

for all v ∈ F k+2�+1
n and we can confine ourselves to the worst case v given by

vi :=

{
1, if i ∈ [n− (k + 2� + 1)]
1/2, otherwise.

Observe that cv ≥ cw holds for all w ∈ F k+2�+1
n . Let F be the (k+�)-dimensional

face of [0, 1]n obtained by fixing the first n− (k + �) coordinates to 1. Then

cv =
n−(k+2�+1)∑

i=1

ci +
1
2

n∑
i=n−(k+2�+1)+1

ci

≤
n−(k+�)∑

i=1

ci − 1
2
cn−(k+�) +

n−k∑
i=n−(k+�)+1

0 +
1
2

n∑
i=(n−k)+1

ci

= cvF − 1
2
cn−(k+�) ≤ d +

1
2
− 1

2
cn−(k+�).

If cn−(k+�) ≥ 1, then cv ≤ d. Therefore consider the case cn−(k+�) = 0. Then we
have that ci = 0 for all i ≥ n−(k+�). In this case cvF is integral and cvF < d+1
implies cvF ≤ d. So cv ≤ cvF ≤ d follows, which completes the proof. �

Theorem 6 (Lower bound for An). Let M be admissible and let � ∈ N such
that Ak+�

n ⊆ M(Ak
n) for all n, k ∈ N with k + � ≤ n. If n ≥ k + 2� + 1, then

rk∂M(An) ≥
⌊

n−1
2�+1

⌋
.

Proof. We will show the A
1+k(2�+1)
n ⊆ (∂M)k(An) as long as n ≥ k+2�+1. The

proof is by induction on k. Let k = 1, then A1+2�+1
n ⊆ ∂M(A1

n) = ∂M(An) by

152 S.S. Dey and S. Pokutta

Lemma 7. Therefore consider k > 1. Now (∂M)k(An) = ∂M((∂M)k−1(An)) ⊇
∂M(A1+(k−1)(2�+1)

n) ⊇ A
1+k(2�+1)
n , where the first inclusion follows by induction

and the second by Lemma 7 again. Thus (∂M)k(An)
= ∅ as long as 1 + k(2� +
1) ≤ n, which is the case as long as k ≤

⌊
n−1
2�+1

⌋
and we can thus conclude

rk∂M(An) ≥
⌊

n−1
2�+1

⌋
. �

For M ∈ {GC,SC, N0, N,N+} we have that � = 1 (see e.g., [17]) and therefore
we obtain the following corollary.

Corollary 1. Let M ∈ {GC, N0, N,N+,SC} and n ∈ N with n ≥ 4. Then
rk∂M(An) ≥ ⌊

n−1
3

⌋
.

We can also derive an upper bound on the rank of An which is a consequence of
[17, Lemma 5].

Lemma 8 (Upper bound for An). Let M be admissible and n ∈ N. Then
rk∂M(An) ≤ n− 2.

5 V-Closures for Well-Known and Structured Problems

We first establish a useful lemma which holds for any ∂M with M being admis-
sible. The lemma is analogous to Lemma 1.5 in [14].

Lemma 9. Let M be admissible and let P ⊆ [0, 1]n be a polytope with (c, d) ∈
Zn+1

+ . If cx ≤ d is valid for P ∩ {xi = 1} for every i ∈ [n] with ci > 0, then
cx ≤ d is valid for ∂M(P).

Proof. Clearly, cx ≤ d is valid for PI ; if x ∈ P ∩Zn non-zero, then there exists an
i ∈ [n] with xi = 1, otherwise cx ≤ d is trivially satisfied. We claim that cx ≤ d
is valid for ∂M. Let Q := P ∩ {cx ≥ d + 1} and observe that Q ∩ {xi = 1} =
∅ for any i ∈ [n] with ci > 0. Therefore by coordinating rounding M(Q) ⊆⋂

i∈[n]:ci>0 {xi = 0}. By definition of Q we also have that M(Q) ⊆ {cx ≥ d + 1}.
Since c ≥ 0 and d ≥ 0 we deduce M(Q) = ∅ and the claim follows. �

5.1 Monotone Polytopes

The following theorem is a direct consequence of Lemma 9 and follows in a
similar fashion as Lemma 2.7 in [5] or Lemma 2.14 in [14].

Theorem 7. Let M be admissible. Further, let P ⊆ [0, 1]n be a polytope and
(c, d) ∈ Zn+1

+ such that cx ≤ d is valid for P ∩ F whenever F is an (n − k)-
dimensional face of [0, 1]n obtained by fixing coordinates to 1. Then cx ≤ d is
valid (∂M)k(P).

We call a polytope P ⊆ [0, 1]n monotone if x ∈ P , y ∈ [0, 1]n, and y ≤ x
(coordinate-wise) implies y ∈ P . We can derive the following corollary from
Theorem 7 which is the analog to Lemma 2.7 in [5].

Verification Scheme for Cutting-Planes 153

Corollary 2. Let M be admissible and let P ⊆ [0, 1]n be a monotone polytope
with maxx∈PI ex = k. Then rk∂M(P) ≤ k + 1.

Proof. Observe that since P is monotone, so is PI and thus PI possesses an
inequality description P = {x ∈ [0, 1]n | Ax ≤ b} with A ∈ Zm×n

+ and b ∈ Zn
+

for some m ∈ N. Therefore it suffices to consider inequalities cx ≤ d valid
for PI with c, d ≥ 0. As maxx∈PI ex = k and P is monotone, we claim that
P ∩ F = ∅ whenever F is an n− (k + 1) dimensional face of [0, 1]n obtained by
fixing k + 1 coordinates to 1. Assume by contradiction that x ∈ P ∩ F
= ∅. As
P ∩ F is monotone, the point obtained by setting all fractional entries of x to
0 is contained in PI ∩ F which is a contradiction to maxx∈PI ex = k. Therefore
cx ≤ d is valid for all P ∩ F with F being an n − (k + 1) dimensional face of
[0, 1]n obtained by fixing k+1 coordinates to 1. The result follows now by using
Theorem 7. �

5.2 Stable Set Polytope

Given a graph G := (V,E), the fractional stable set polytope of G is given
by FSTAB(G) := {x ∈ [0, 1]n | xu + xv ≤ 1 ∀(u, v) ∈ E}. Now Lemma 9 can be
used to prove the following result.

Theorem 8. Clique Inequalities, odd hole inequalities, odd anti-hole inequali-
ties, and odd wheel inequalities are valid for ∂M(FSTAB(G)) with M being an
admissible operator.

5.3 The Traveling Salesman Problem

So far we have seen that transitioning from a general cutting-plane procedure M
to its V-scheme ∂M can result in a significantly lower rank for valid inequalities,
potentially making them accessible in a small number of rounds. However, we will
now show that the rank of (the subtour elimination relaxation of) the traveling
salesman polytope remains high, even when using V-schemes of strong operators
such as SC or N+. For n ∈ N, let G = (V,E) be the complete graph on n vertices
and Hn ⊆ [0, 1]n be the polytope given by (see [5] for more details)

x(δ({v}) = 2 ∀ v ∈ V

x(δ(W)) ≥ 2 ∀ ∅ � W � V

xe ∈ [0, 1] ∀e ∈ E.

Note that the (ambient) dimension of Hn is Θ(n2). We obtain the follow-
ing statement which is the analog to [5, Theorem 4.1]. A similar result for the
admissible systems M in general can be found in full-length version of [17].

Theorem 9. Let M ∈ {GC, N0, N,N+,SC}. For n ∈ N and Hn as defined
above we have rk∂M(Hn) ∈ Θ(n). In particular rk∂M(Hn) ∈ Θ(

√
dim(P)).

154 S.S. Dey and S. Pokutta

Proof (Sketch of proof). As shown in [3] or [5, Theorem 4.1] Hn contains a copy
of A�n/8�. The lower bound follows from Corollary 1 and the upper bound follows
from Corollary 2 as shown in [5]. �

The same result can be shown to hold for the asymmetric TSP problem (see [3]
and [5]).

5.4 General Polytopes in R2

The GC rank of valid inequalities for polytopes in R2 can be arbitrarily high;
see example in [15]. However, ∂GC is significantly stronger as shown next.

Theorem 10. Let P be a polytope in R2. Then ∂GC(P) = PI .

Proof (Sketch of proof). The proof is divided into various cases based on the
dimension of PI . Here we only present the proof for the case when dim(PI) = 2.
In this case, every facet-defining inequality cx ≤ d satisfies at least two integer
points belonging to PI . Let Q := P ∩ {x ∈ R2 | cx ≥ d}. Then observe that: (i)
Q is a lattice-free polytope; (ii) exactly one side of Q contains multiple integer
points. This is the side of Q given by the inequality cx ≥ d. Other sides of Q
contain no integer point. Let T be a maximal lattice-free convex set containing
Q. By (ii), cx ≥ d defines a face of T that contains two or more integer points.
Therefore T is a type 1 or type 2 maximal lattice-free triangle; see [10]. Since
T is a triangle of type 1 or type 2, it is contained in two sets of the form
{π1

0 ≤ π1x ≤ π1
0 +1} and {π2

0 ≤ π2x ≤ π2
0 +1} where π1, π2 ∈ Z2 and π1

0 , π
2
0 ∈ Z;

see [9]. Moreover π1 and π2 can be selected such that π1 = c, π1
0 = d and the two

integer points x1 and x2 belonging to P and satisfying cx = d satisfy π2x1 = π2
0

and π2x2 = π2
0 + 1. Therefore Q ∩ {cx ≥ d + 1} ⊆ T ∩ {cx ≥ d + 1} ⊆ {π2

0 ≤
π2x ≤ π2

0 + 1}. Moreover, since the integer points belonging to the boundary
of Q satisfy the condition cx = d, we obtain that integer points that satisfy
cx ≥ d + 1 and lie on the boundary of the set {π2

0 ≤ π2x ≤ π2
0 + 1} do not

belong to Q. Now by using convexity of Q and the location of integer points in
P ∩ {cx = d}, we can verify that Q ∩ {cx ≥ d + 1} lies in the interior of the
set {π2

0 ≤ π2x ≤ π2
0 + 1}. Therefore GC(Q ∩ {cx ≥ d + 1}) = ∅. However, since

Q∩{cx ≥ d+1} = P ∩{cx ≥ d+1}, we can obtain the facet-defining inequality
cx ≤ d using the ∂GC operator applied to P . �

6 Concluding Remarks

In this paper, we consider a new paradigm for generating cutting-planes. Rather
than computing a cutting-plane we suppose that the cutting-plane is given, ei-
ther by a deliberate construction or guessed in some other way and then we
verify its validity using a regular cutting-plane procedure. We have shown that
cutting-planes obtained via the verification scheme can be very strong, signif-
icantly exceeding the capabilities of the regular cutting-plane procedure. This
superior strength is illustrated, for example, in Theorem 2, Theorem 4, Figure 1,

Verification Scheme for Cutting-Planes 155

Theorem 5, Lemma 8, Theorem 7, Theorem 8, Theorem 9 and Theorem 10. On
the other hand, we also show that the verification scheme is not unrealistically
strong, as illustrated by Theorem 6 and Theorem 9.

References

1. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for
mixed integer 0-1 programs. Mathematical Programming 58, 295–324 (1993)

2. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
crete Mathematics 4, 305–337 (1973)

3. Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial
optimization. Linear Algebra and its Applications 114, 455–499 (1989)

4. Cook, W., Coullard, C.R., Turan, G.: On the complexity of cutting plane proof.
Mathematical Programming 47, 11–18 (1990)

5. Cook, W., Dash, S.: On the matrix cut rank of polyhedra. Mathematics of Opera-
tions Research 26, 19–30 (2001)

6. Cook, W., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer program-
ming problems. Mathematical Programming 58, 155–174 (1990)

7. Cornuéjols, G., Li, Y.: On the rank of mixed 0-1 polyhedra. Mathematical Pro-
gramming 91, 391–397 (2002)

8. Dadush, D., Dey, S.S., Vielma, J.P.: The Chvátal-Gomory Closure of Strictly
Convex Body (2010), http://www.optimization-online.org/DB_HTML/2010/05/
2608.html

9. Dash, S., Dey, S.S., Günlük, O.: Two dimensional lattice-free cuts and asymmetric
disjunctions for mixed-integer polyhedra (2010),
http://www.optimization-online.org/DB_HTML/2010/03/2582.html

10. Dey, S.S., Wolsey, L.A.: Two row mixed integer cuts via lifting. Mathematical
Programming 124, 143–174 (2010)

11. Eisenbrand, F., Schulz, A.S.: Bounds on the Chvátal rank of polytopes in the
0/1-cube. Combinatorica 23, 245–262 (2003)

12. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society 64, 275–278 (1958)

13. Kelley, J.E.: The cutting plane method for solving convex programs. Journal of the
SIAM 8, 703–712 (1960)

14. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization.
SIAM Journal on Optimization 1, 166–190 (1991)

15. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley
Interscience, Hoboken (1988)

16. Pokutta, S., Schulz, A.S.: Characterization of integer-free 0/1 polytopes with max-
imal rank, working paper

17. Pokutta, S., Schulz, A.S.: On the rank of generic cutting-plane proof systems. In:
Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 450–463.
Springer, Heidelberg (2010)

18. Pokutta, S., Stauffer, G.: A new lower bound technique for the Gomory-Chvátal pro-
cedure (2010), http://www.optimization-online.org/DB_HTML/2010/09/2748.

html

http://www.optimization-online.org/DB_HTML/2010/05/2608.html
http://www.optimization-online.org/DB_HTML/2010/05/2608.html
http://www.optimization-online.org/DB_HTML/2010/03/2582.html
http://www.optimization-online.org/DB_HTML/2010/09/2748.html
http://www.optimization-online.org/DB_HTML/2010/09/2748.html

Contact Center Scheduling with Strict Resource

Requirements

Aman Dhesi1, Pranav Gupta2, Amit Kumar3,
Gyana R. Parija2, and Sambuddha Roy2

1 Department of Computer Science, Princeton University
adhesi@princeton.edu

2 IBM Research – India, New Delhi
{prguptan,gyana.parija,sambuddha}@in.ibm.com

3 Department of Computer Science and Engg.,
Indian Institute of Technology, Delhi

amitk@cse.iitd.ac.in

Abstract. Consider the following problem which often arises in contact
center scheduling scenarios. We are given a set of employees where each
employee can be deployed for shifts consisting of L consecutive time
units. Further, each employee specifies a set of possible start times, and
can be deployed for a bounded number of shifts only. At each point of
time t, we are also given a lower bound rt on the number of employees
that should be present at this time. The goal is to find a schedule for the
employees such that the number of time slots whose requirements are met
is maximized. Such problems naturally arise in many other situations,
e.g., sensor networks and cloud computing.

The strict nature of the resource requirement makes this problem very
hard to approximate. In this paper, we give a bicriteria approximation
algorithm for this problem. Given a parameter ε > 0, we give an O(1

ε3 ·
log 1

ε
)-approximation algorithm for this problem, where we count those

time slots for which we satisfy at least (1−ε)-fraction of the requirement.
Our techniques involve a configuration LP relaxation for this problem,
and we use non-trivial structural properties of an optimal solution to
solve this LP relaxation. We even consider the more general problem
where shift lengths of different employees can vary significantly. In this
case, we show that even finding a good bicriteria approximation is hard
(under standard complexity theoretic assumptions).

1 Introduction

Scheduling employees is a central problem in workforce management in contact
centers [ICWC10, FHF+02]. Typically, in these settings, we have a reasonably
accurate forecast of demands which will arrive at any point of time (also referred
as time slots) in future. This in turn implies that we roughly know, for each time
slot, how many employees will be needed. The employees are usually required to
work for shifts of a certain fixed duration, which we shall denote by L. Many of
these employees work as part-time workers and often have varying constraints on

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 156–169, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Contact Center Scheduling with Strict Requirements 157

their availability. In other words, for each employee, we know at what times they
can possibly start on a shift. Given these constraints, we would like to schedule
these employees such that we maximize the number of timeslots for which we
have the requisite number of employees. The setting of contact center often
demands, via service level agreements (SLA’s), that we satisfy the requirements
of a large fraction of timeslots.

The framework that we consider in this paper is quite general and can capture
many other situations :

– Sensor networks : Sensors have limited power and can last for only a certain
duration. In many cases, we would like to use a sensor non-preemptively for
its entire lifetime. Suppose we are given, for each time unit, how many sensors
we would like to be active at that time. The problem is now to schedule
the sensors (i.e., decide when to turn them on) such that we maximize the
number of timeslots whose requirements are met.

– Cloud computing : In cloud computing, unit size tasks arrive over a period
of time, and we process these by assigning them to a set of processors avail-
able over a network. Various constraints over availability of a processor may
dictate that we can only use them in one (or several) possible slots for a
certain period of time.

– Energy Management: We are given the energy requirement for each point of
time in future, and are also given a set of available energy sources. However,
each energy source can run for only a fixed duration of time, and may be
available at some specific timeslots only.

We now define the problem more concretely. As mentioned earlier, we divide
time into slots : let T denote the set of time-slots. We shall often refer the
employees as resources – let R denote the set of resources. For each time t ∈ T ,
we are given a requirement rt, and a profit pt. For each resource i ∈ R, we are
given a parameter αi and a set of intervals Ei, where each interval in Ei is of
uniform length L. We would like to select at most αi intervals from Ei for each i
such that the number of satisfied timeslots is maximized. A timeslot is satisfied
if there are at least rt selected intervals, no two from the same set Ei, which
contain t. We call this problem the MaxStaff problem.

Related Work. There has been much work on workforce management in the
operations research community [AAM07, GKM03]. Contact center scheduling
presents new kinds of constraints where employee availability (and skills) have
very high variance [Rey03]. To the best of our knowledge, ours is the first work
to view these problems from an approximation algorithms perspective.

The MaxStaff problem is a mixed packing-covering problem – the constraints
on resources are of packing type, whereas we need to cover the demands. If
we relax the strict nature of the requirements, i.e., if we are just interested in
maximizing the sum over all timeslots of the fraction to which it is satisfied, then
the problem becomes a packing problem. In fact, in this case, it falls under the
framework of maximizing a sub-modular function under matroid and knapsack
constraints [CCPV07, GRST10, LMNS09].

158 A. Dhesi et al.

Our Contributions. Our first result is that the MaxStaff problem is as hard
to approximate as the Maximum Independent Set problem.

Theorem 1. There is an approximation preserving reduction from the Maximum
Independent Set problem to the MaxStaff problem.

Since very strong hardness results are known for the Maximum Independent Set
problem [ST00], we look for bicriteria approximation algorithms of the following
kind. Given an instance I of the MaxStaff problem, let opt(I) denote the cost of
the optimum solution for I. For a parameter γ, 0 ≤ γ ≤ 1, we say that a solution
γ-satisfies a timeslot t if there are at least γ · rt selected intervals containing t,
no two from the same set Ei for any i. Given parameters α, γ, 0 ≤ γ ≤ 1, we
say that a solution is (α, γ)-bicriteria approximate if the total profit of timeslots
which are γ-satisfied by this solution is at least α · opt(I). An (α, γ)-bicriteria
algorithm is one which produces solutions with this property. We show that for
any constant ε, we can get a (poly(ε), 1− ε)-bicriteria approximation algorithm
for this problem.

Theorem 2. For any constant ε > 0, there is a poly-time
(
O
(

ε3

log 1
ε

)
, 1 − ε

)
-

bicriteria approximation algorithm for the MaxStaff problem.

We then consider the case when the shift length L may vary over different
elements in R, i.e., if the intervals in ∪i∈REi can be of arbitrary lengths. On
the positive side, the proof of Theorem 2 can be easily extended to show that if
the ratio of the maximum length to the minimum length of an interval is β, then
one can get an

(
O
(

ε3·β
log 1

ε

)
, 1 − ε

)
-bicriteria approximation algorithm. However,

we show that in this case, one cannot hope for a significantly better result.

Theorem 3. For any small enough (but constant) ε > 0, we cannot have a poly-
time

(
O
(
2c

√
log N

)
, 1 − ε

)
-bicriteria approximation algorithm for the MaxStaff

problem, unless NP ⊆ DTIME
(
nO(log n)

)
. Here N denotes the size of the input

instance, and c is a constant (depending on ε).

Our Techniques. One can write a “natural” LP relaxation for the MaxStaff
problem. However, this turns out to have unbounded gap. We first show that
if we are willing to lose a constant factor (depending on ε) in the profit, then
there is a significant amount of structure in any solution. We first consider the
special case when all the requirements are same : this happens to capture many
of the difficulties. First, we divide the timeline into blocks : each block is a se-
quence of L continuous time slots. Then we show that, with a factor 2 loss in
approximation, we can assume that each selected interval contributes to satis-
fying the requirements of only one block. Thus, we can decompose a solution
into several independent solutions, one for each block (of course, we must satisfy
the global requirement that we pick only αi intervals from Ei). We then focus
on a particular block, and think of the solution restricted to just this block. We
further simplify the structure of a solution : we show that we can find a contin-
uous set of timeslots in a block, which we call a sub-block, and select a subset of

Contact Center Scheduling with Strict Requirements 159

intervals in the solution such that the following conditions hold : (i) each interval
in the latter solution contains the entire sub-block and satisfy the requirements
of the timeslots in this sub-block (upto an ε factor loss in the requirement), and
(ii) the total profit accrued from this sub-block is at least a constant times the
total profit obtained by the solution from the entire block. This simple structure
allows us to write a configuration LP – we show that we can solve this LP and a
simple randomized rounding based algorithm gives a good approximation algo-
rithm. The extension to the case of arbitrary requirements is based on standard
geometric grouping ideas.

For the hardness result, the reduction from the Maximum Independent Set
problem follows in a straight-forward manner. Using this one can also show that
if we want a bicriteria approximation for a parameter ε, then there is a constant
(depending on ε) hardness. For the case when the lengths of the intervals in
the input can vary (significantly), we show that this construction can be recur-
sively composed to amplify the hardness of the problem to that mentioned in
Theorem 3.

Organization of the Paper. In Section 2, we define the problem formally and
give some related definitions. In Section 3, we prove both the hardness results.
In Section 4, we describe the bi-criteria approximation algorithm. In Section 4.1,
we first consider the case when all the requirements rt are same. This special
case captures many of the ideas, and simplifies our presentation. In Section 4.2,
we outline the ideas needed to extend this to the case of arbitrary requirements.
The details of the algorithm for the latter case are deferred to the full version.

2 Problem Definition and Notation

We define the MaxStaff problem. An input instance I is specified by a tuple
(T,R, E , r, α, p, L). The elements of T correspond to consecutive time slots, and
they are numbered in this order from 1 to |T |. The set R is the set of available
resources, E is a mapping from R to the power set of all intervals of length L in
T . We denote by Ei the set of intervals (of length L) associated with i ∈ R. The
quantities r, p, α are mappings from the sets T, T,R to the set of positive integers
respectively. The value rt denotes the requirement of timeslot t, pt denotes its
profit, and αi denotes the “availability” of resource i, i.e., the maximum number
of intervals we may pick from the set Ei.

We say that two intervals I, I ′ in the input are mutually distinct if they belong
to different sets Ei. A solution S selects for each i ∈ R, a subset Ei(S) of at most
αi intervals from Ei. Let E(S) denote ∪iEi(S). We say that t ∈ T gets satisfied
by S if there are at least rt mutually distinct intervals containing t in the set
E(S). Note that the intervals in Ei(S) can overlap, but they contribute at most
once towards the number of mutually distinct intervals containing any timeslot.
The goal is to maximize the total profit of time slots which get satisfied.

For the hardness result, the length L may vary with the resource i – for
each i ∈ R, the input instance specifies a length Li. So all intervals in Ei are of
length Li.

160 A. Dhesi et al.

3 Hardness Results

3.1 Proof of Theorem 1

We reduce the Maximum Independent Set problem to the MaxStaff problem.
Consider an instance I ′ = (G = (V,E)) for the Maximum Independent Set
problem. We construct an instance I = (T,R, E , r, α, p, L) of the MaxStaff prob-
lem as follows. Let V = {v1, . . . , vn}. The set T will be equal to {1, . . . , |V |} and
a timeslot t ∈ T will correspond to the vertex vt. For each edge e ∈ E, we have
an element ie ∈ R. We now describe the set E in I. For an edge e = (va, vb) ∈ E,
the set Eie contains two intervals – {a}, {b}. Note that the parameter L is equal
to 1. For every t ∈ T , the requirement rt is equal to the degree of the vertex vt

in G. Further, we have αi = 1 for all i ∈ R, and pt = 1 for all t ∈ T (see Figure 1
for an example).

v4v1

e2e4

e1

e3

v2
1 2 3 4

Eie1

Eie2

Eie3

Eie4

v3

Fig. 1. Example showing the reduction from Maximum Independent Set to the
MaxStaff problem

Claim. There is a solution to the MaxStaff problem instance I of profit at least
k iff there is an independent set in G′ of size k.

Proof. Suppose there is an independent set S of size k in G. Let T ′ = {t : vt ∈ S}
be the corresponding timeslots in T (in the instance I). Consider the following
solution : for any edge e = (va, vb) ∈ E, at most one of the vertices in va and vb

belongs to S – assume wlog that va ∈ S. Then we pick the interval {a} ∈ Eie (in
case none of these vertices is in S, we pick any one of the two intervals in Eie). It
is easy to check that this solution satisfies the requirements of all the timeslots
in T ′.

Conversely, suppose that there is a solution for I which satisfies k timeslots
in T – call this set T ′. Again, it is easy to check that the set S = {vt : t ∈ T ′}
is an independent set in G. ��
This concludes the proof of Theorem 1.

3.2 Proof of Theorem 3

Fix a small enough constant ε > 0. Assume wlog that 1
ε is an integer and let

Δ denote this quantity. We use the following result of Samorodnitsky and Tre-
visan [ST00] which shows hardness of the Maximum Independent Set problem
on bounded degree graphs.

Contact Center Scheduling with Strict Requirements 161

16

T (0)

T (1) T 1
1 T 1

2 T 1
3 T 1

4

T (2) T 2
16T 2

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2. The sets of intervals in T (0) and T (1) for the graph in Figure 1

Theorem 4. [ST00]UnlessP=NP, there is no poly-time Δ

2O(
√

log Δ)
-approximation

algorithm for the Maximum Independent Set problem on graphs of bounded de-
gree Δ.

We start with an instance I′ = (G = (V,E)) of the Maximum Independent Set-
problem, where the maximum degree of a vertex in G is Δ. For ease of notation,
we can in fact assume by adding self-loops that the degree of each vertex is
exactly Δ – we modify the definition of an independent set as a set of vertices
such that for any edge, at most one of its end-points is in this set.

We now construct an instance I = (T,R, E , r, α, p, L) of the MaxStaff prob-
lem. Recall that Li denotes the length of the intervals in Ei. The idea behind the
proof is the following : we start with the reduction from Maximum Independent
Set to MaxStaff as described in the previous section. Now we stretch each times-
lot n times, i.e., we replace it by n consecutive timeslots (so the intervals which
were earlier of length 1 now have length n). For each of these newly created
n timeslots (corresponding to one timeslot in the original instance), we again
embed the MaxStaff instance used in the reduction. This process is continued
recursively for K stages. We now give details of our construction.

The set T will have size nK , where n = |V | in the instance I ′ and K is a
parameter to be chosen later. We shall construct the set of elements in R and
the set E in several stages. We first divide the timeline T into a laminar family
of sets. For each value of k between 0 and K, we do the following : divide the set
T (starting from the first timeslot) into disjoint intervals of nK−k consecutive
points each – call these intervals T k

1 , . . . , T
k
rk

, where rk = nk. Let T (k) denote
the set of these intervals. It is easy to check that T k

r contains n intervals from
the set T (k+1) and is disjoint from other intervals in T (k+1) (see Figure 2 for an
example with K = 2).

We now construct the sets R and E . For each value of k, 0 ≤ k ≤ K − 1,
and 1 ≤ r ≤ nk, we add a set of elements R(k, r) to the set R. Recall that T k

r

contains n intervals from the set T (k+1) – call these intervals T k+1
s1

, . . . , T k+1
sn

.
Let the vertices in V be v1, . . . , vn (recall that V is the set of vertices in the
Maximum Independent Set instance I′). For each edge e = (va, vb) ∈ E, we add
an element e(k, r) to R(k, r). Further, we have two intervals in Ee(k,r) : T k+1

sa
and

T k+1
sb

– we denote these intervals by I1(e(k, r)) and I2(e(k, r)). Notice that there
are exactly Δ intervals of the form I l(e(k, r)), l = 1, 2, e ∈ E, which are equal
to T

(k+1)
sa , 1 ≤ a ≤ n. Note that Li = nK−k for all i ∈ R(k, r). This completes

162 A. Dhesi et al.

I2(e1(1, 4))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I1(e1(0, 1)) I2(e1(0, 1))

I1(e1(1, 1)) I2(e1(1, 1)) I1(e1(1, 4))

Fig. 3. The intervals corresponding to I l(e1(k, r)), where l = 1, 2, k = 0, 1 and 1 ≤
r ≤ nk, and the input graph corresponds to the instance in Figure 1

the description of how R(k, r) and the corresponding sets Ei, i ∈ R(k, r) are
constructed (see Figure 3 for an example). We set the values αi equal to 1 for
all i ∈ R, pt = 1 for all t ∈ T and rt = K ·Δ for all t ∈ T .

In the following analysis, it will be convenient to associate a K-tuple Bt with
any timeslot t ∈ T as follows : for a fixed k, 0 ≤ k ≤ K − 1, let r be such that
t ∈ T k

r . As before, there are n intervals from T (k+1) which are contained in T k
r

– call these intervals T k+1
s1

, . . . , T k+1
sn

from left to right. Then the coordinate for
(k + 1) in the vector Bt, i.e., Bt(k + 1) = l if t ∈ T k+1

sl
. Observe that this vector

gives the sequence of nested intervals which contain this timeslot.

Lemma 1. If I ′ has an independent set of size A, then there is a solution to I
of profit AK .

Proof. Let S be such an independent set of size A. We construct a solution for I.
For each element e(k, r) ∈ R, where e = (va, vb) ∈ E, 0 ≤ k ≤ K − 1, 1 ≤ r ≤ rk,
we need to pick one of the two intervals – T k+1

sa
and T k+1

sb
, where sa, sb are the

ath and the bth intervals of T (k+1) contained inside T k
r respectively. If vb /∈ S,

then we pick T k+1
sa

, else we pick T k+1
sb

. It is easy to check that in such a solution,
all elements t for which Bt = (a1, . . . , aK), vai ∈ S have Δ ·K distinct intervals
containing it. This proves the lemma. ��

Let γ denote the parameter 2O(
√

log Δ)

Δ which appears in Theorem 4. Suppose
there is no independent set of size γ ·A in I ′. We first prove a technical lemma
below.

Lemma 2. Suppose we partition the edge set E into n sets — Ev for every v ∈
V , where Ev is a subset of edges incident with v. For a constant c, 0 ≤ c ≤ Δ, let
W (c) ⊆ V be those vertices v for which |Ev| ≥ Δ−c. Then, |W (c)| ≤ γ·A·(2c+1).

Proof. We prove that G has an independent set of size at least |W (c)|
2c+1 . In fact,

this independent set will be a subset of W (c). We prove this fact as follows :
consider any subset S ⊆ W (c), and let G[S] be the subgraph of G induced by
S. Then there must be a vertex in G[S] of degree at most 2c. Once we prove
this fact, it is easy to check that a simple greedy algorithm will yield the desired
independent set.

So fix a set S ⊆ W (c). We direct each edge in G[S] as follows. Suppose
e = (v, w) ∈ G[S]. If e ∈ Ev, then we direct e from v to w, otherwise (e ∈ Ew)

Contact Center Scheduling with Strict Requirements 163

we direct it from w to v. Since every v ∈ S is also in W (c), the indegree of any
vertex is at most c. So there are at most |S|c edges in G[S], which implies that
there must be a vertex of (undirected) degree at most 2c in G[S]. ��
We are now ready to prove that I cannot have a solution of high profit.

Theorem 5. Let S be a solution to I and T S,ε be the timeslots in T which are
at least (1 − ε)-satisfied. Then |T S,ε| ≤ (10γ logΔ)KAK .

Proof. Recall that E(S) denotes the set of intervals selected by S – this set
contains exactly one element from Ei for any i ∈ R. If t ∈ T S,ε, then there are
at least Δ ·K −K intervals in E(S) containing t. Recall that the instance I has
exactly Δ ·K intervals containing t. We can associate a tuple of size K with t,
which we call ZS,t as follows : fix a value k between 1 and K. Let r be such
that t ∈ T k−1

r . Then there are exactly Δ intervals from the sets Ee(k,r), e ∈ E,
which contain t (and are therefore, contained in T k−1

r). Among these Δ intervals,
suppose S chooses Δ − ck intervals. Then define ZS,t(k) = ck. Observe that∑

k Z
S,t ≤ K for each t. We now define a truncated version Y S,t of the vector

ZS,t as follows. Y S,t(k) is the nearest power of 2 greater than or equal to ZS,t(k)
(unless ZS,t(k) is 0, in which case, Y S,t(k) stays as 0). We first count how many
different values the vector Y S,t can take.

Claim. The number of distinct values (as a vector) that Y S,t can take is at most
(logΔ + 2)K .

Proof. Each coordinate of Y S,t is a power of 2 (or 0), and is at most 2Δ. So the
number of distinct values it can take is at most log(2Δ) + 1. ��
Now, we bound the number of different t ∈ T S,ε for which Y S,t takes a particular
(vector) value.

Claim. Let c1, . . . cK be such that each ci is either 0 or a power of 2, and∑K
k=1 ck ≤ 2K. Then, the number of different t ∈ T S,ε for which Y S,t =

(c1, . . . , cK) is at most 5KγKAK .

Proof. For each k, 1 ≤ k ≤ K, let r(k, t) be such that t ∈ T k
r(k,t). Since, ZS,t(k) ≤

ck, Lemma 2 implies that for any fixed values of T k′
r(k′,t) for all k′ < k, there are at

most γA · (2ck +1) possibilities for T k
r(k,t). So the number of possible t satisfying

the condition of the claim is at most (γA)K ·ΠK
k=1(2ck +1). The quantity in the

product (subject to
∑

k ck ≤ 2K) is at most 5K . ��
The above two claims now imply the theorem. ��
Lemma 1 and Theorem 5, along with Theorem 4 show that it is NP-hard to get a(

Δ

2O(
√

Δ)

)K

-approximation for the MaxStaff problem even we relax the notion of
satisfiability to (1−ε)-satisfiability for our algorithm. We now set K = logn. So,
the size of I is roughly N = nlog n and hence, the hardness becomes Ω(2c

√
log N).

164 A. Dhesi et al.

4 The Bicriteria Approximation Algorithm

In this section, we prove Theorem 2. It is not difficult to show the natural LP
relaxation for this problem has a large integrality gap. We, therefore, write a
stronger configuration LP for this problem. A configuration LP, by definition,
has (perhaps exponential number of) variables which encode all possible config-
urations of a solution : these configurations should be rich enough to capture
essential properties required for rounding, and yet one should be able to solve
the LP in polynomial time. Getting the right balance between these two aspects
turns out to be non-trivial in our setting. We motivate the ideas behind the
configuration LP by looking at the following special case : requirements of all
timeslots are same, i.e., rt = r for all t ∈ T . Although it requires some technical
work to extend this to the general case, this special case illustrates many of the
difficulties involved in coming up with a configuration LP.

4.1 The Special Case of Uniform Requirements

We consider the special case when rt = r for all timeslots. Let S be an optimal
solution. Recall that E(S) denotes the set of intervals selected by S.

Definition 1. A block B is a set of L consecutive timeslots in T . We divide the
timeline into N = �T

L � blocks, namely, B1, . . . , BN , in a natural manner – block
Bk consists of timeslots {(k − 1)L + 1, (k − 1)L + 2, . . . , (k − 1)L + L} (except
perhaps the last block which may end early).

To begin with, we would like to consider only a subset of blocks.

Definition 2. We say that a set of blocks B is independent if no interval in
E(S) intersects more than one block in B. Let Bo be the set of odd numbered
blocks : B1,B3, . . . and Be be the even numbered blocks : it is easy to check that
Bo (or Be) is an independent set of blocks (see Figure 4).

Since the total profit of timeslots satisfied by S in Bo or Be is at least half the total
profit of satisfied timeslots, we can focus (with a factor-2 loss in approximation)
on an independent set of blocks – call this B (so, B is either Be or Bo). Fix a
block B ∈ B.

Definition 3. A sub-block, sB, of B is a set of continuous time-slots in B.

Definition 4. Let profit(S, B) be the total profit of timeslots in B which are
satisfied by S. Given a sub-block sB of B, and a solution S′, let profitε(S′, sB)
denote the total profit of timeslots in sB which are (1 − ε)-satisfied by S′.

Lemma 3. Consider a block B and a solution S. There exists a sub-block sB
of B and a solution S′ consisting of a subset of intervals selected by S such that
the following conditions are satisfied :

– The intervals in S′ are mutually distinct.
– Every interval in S′ contains the sub-block sB.
– profitε(S′, sB) ≥ ε · profit(S, B).

Contact Center Scheduling with Strict Requirements 165

B6B1 B2 B3 B4 B5

Fig. 4. The set of blocks when L = 3. Here, Bo = {B1, B3, B5}, Be = {B2, B4, B6}.
Note that any interval picked by a solution intersects at most one block in Bo (or Be).

Proof. Let Sleft (or Sright) be the intervals in S which contain the left (or right)
end-point of B – we can assume wlog that the sets Sleft and Sright are disjoint
(any common interval is assigned to just one of the two sets arbitrarily). Also,
we can assume wlog that the intervals in Sleft (or Sright) are mutually distinct,
i.e., they contain at most one interval from Ei for any resource i ∈ R. Indeed, we
can keep the interval in Sleft ∩ Ei which goes farthest to the right and remove
the rest from this set.

Let B′ be the timeslots in B which are (1 − ε)-satisfied by S – we denote
these from left to right as as t1, . . . , tk. We now define τ = 1

ε disjoint sub-blocks
sB1, sB2, · · · , sBτ of B. Let ni, 1 ≤ i ≤ τ be the smallest integer such that the
number of intervals from Sleft containing tni is at most (1 − iε)r. Define n0

as 1. Let sBi denote the interval [tni−1 , tni). Consider any sub-block sBi. Let
S1 ⊆ Sright be the intervals which contain tni−1 and S2 ⊆ Sleft be those intervals
which contain tni . Let K denote S1 ∪S2. Clearly, the intervals in K contain sBi,
and must have at least r(1 − ε) distinct intervals. We are now done because we
can choose the sub-block sBi for which profitε(S, sBi) is maximized. ��
The configuration LP. We are now ready to write the configuration LP. The
configurations will be defined by pairs (B,A), where B is a block and A is a set
of mutually distinct intervals each of which has a non-empty intersection with
B. Motivated by Lemma 3, we have the following definition.

Definition 5. For a block B, and a set of intervals A, let p(A, B) denote the
maximum over all sub-blocks sB of B of the quantity profitε(A′, sB), where A′

contains those intervals in A which contain the entire sub-block sB.

The configuration LP has variables y(A, B) which is 1 when we pick all the
intervals in A, 0 otherwise.

max
∑
B∈B

∑
A

y(A, B) · p(A, B)∑
A:A∩Ei =∅

y(A, B) ≤ αi for every i ∈ R

∑
A

y(A, B) ≤ 1 for every B (1)

y(A, B) ≥ 0 for all A, B

It is not difficult to show that there is a polynomial time separation oracle for
the dual of this LP, and so, it can be solved in polynomial time. The details are
deferred to the full version.

166 A. Dhesi et al.

Rounding a fractional solution. Let y(A, B) be an optimal solution to the
configuration LP. We now show that it can be rounded to an integral solution
without much loss in profit. Assume that the LP is written for B = Bo. Consider
the algorithm in Figure 5. Observe that we can perform the sampling required
in Step 1 because of constraint (1).

For each block B ∈ Bo do
1. Use dependent rounding to sample at most one of the set of intervals A, where

the probability of picking A is exactly ε · y(A, B).
2. Suppose we select a set of intervals A in the experiment above (otherwise skip

to the next step).
3. For every interval I ∈ A do

Remove I from the set of selected intervals if we have already selected αi

intervals from the set Ei containing I .
Output the set of selected intervals.

Fig. 5. Algorithm Round

Theorem 6. The total profit of timeslots which are (1 − 3ε)-satisfied by the
solution output by the algorithm Round is at least Ω(ε) times the objective value
of the fractional solution y(A, B).

Proof. Note that an interval is selected only if the following two conditions hold:
(i) it is picked as a part of some A in Step 1 of the above algorithm, and (ii)
it is not dropped in Step 3 of the above algorithm. Given a set of intervals A
picked for a specific B, the profit p(A, B) is accrued from some sub-block sB of
B where the timeslots in sB are (1− ε)-satisfied by the intervals in A. However,
because of Step 3 of the algorithm, some of the intervals in A may get dropped.
Each interval in A gets dropped (by Step 1) with a probability of at most ε. This
holds even when αi intervals are to be selected for resource i (the probability
may be lower since choices of A according to y(A, B) are independent across
the various blocks). Thus the expected fraction of intervals dropped is at most
ε. By Markov’s inequality, the probability that the number of intervals dropped
is ≥ 2ε is at most 1/2. Thus with probability at least 1/2, a timeslot in sB is
(1 − ε− 2ε) = (1 − 3ε)-satisfied by the modified set A. Given the choice of the
sets of intervals A, it is clear from the above that (in expectation) the profit is
at least ε/2 times the objective value of the LP. ��

4.2 Extending to General Requirements

We briefly describe how we generalize the above algorithm to the case when the
requirements rt are arbitrary. As before, we can focus on a set of independent
blocks B. We first assume that the requirement of any timeslot, rt, is a power

Contact Center Scheduling with Strict Requirements 167

of (1 + ε). We achieve this by rounding rt values down to the nearest power
of (1 + ε). Since this only affects the rt value by at most εrt, and we are only
interested in a bicriteria approximation, this assumption is valid.

Definition 6. We say that a timeslot t is of class c if rt = (1 + ε)c. Let T (c)
denote the timeslots of class c. A set T ′ of timeslots is said to be well-separated
if for any two t1, t2 ∈ T ′, where t1 is of class c1 and t2 is of class c2, either
c1 = c2 or c1 − c2 ≥ H. Here H is a parameter equal to 2

ε · ln 1
ε .

We can assume that the set of timeslots are well-separated (upto a constant loss
in approximation) – indeed, for a value h between 0 and H − 1, consider only
those timeslots whose class is equal to h modulo H . For any fixed value of h,
these timeslots are well-separated. Since h takes only H distinct values, at least
one of these values will give us at least 1/H fraction of the profit. So we assume
that the timeslots are well-separated and let C denote the set of possible classes
of these timeslots.

Now, given any solution S, we would like to divide the intervals in S into
|C| disjoint sets — Sc, c ∈ C, such that if a timeslot of class c gets satisfied by
S, then it will be at least (1 − ε)-satisfied by Sc. This will allow us to think
of any solution as |C| independent solutions, one for each class c ∈ C. Once we
have this, then we can use the machinery developed (for uniform requirements)
in the previous section for each class separately and combine the solutions. We
now state this key theorem more formally. Fix a block B, and let Bc be the
timeslots in B of class c. For a solution S, define profit(S,Bc) as the total
profit of timeslots in Bc satisfied by S. Define profitε(S,Bc) similarly.

Theorem 7. Fix a block B. Given a solution S, we can partition the intervals
in this solution to get solutions Sc, c ∈ C, such that∑

c∈C
profitε(Sc, Bc) ≥ profit(S,∪c∈CBc).

The proof of the theorem essentially uses the fact that there is a large gap
between the requirements of timeslots belonging to two different classes. We defer
the proof to the full version. Once we have this, we use the structural property in
Lemma 3 for each class c ∈ C separately. This allows us to write a configuration
LP. We round this LP using ideas similar to the uniform requirement case.

5 Discussion

Our algorithm can be easily extended to take care of following cases :

– Different resources may have different proficiencies – we say that a timeslot t
is satisfied if there are a set of mutually distinct selected intervals whose total
proficiency exceeds rt. Again, we can get the same bicriteria approximation
algorithm for this problem.

168 A. Dhesi et al.

– Let β denote the ratio of the maximum length of an interval in ∪i∈REi to the
smallest length. Then we can get an

(
β
ε3 · log 1

ε , 1 − ε
)
-bicriteria approxima-

tion algorithm for this problem. This allows a resource to have different shift
lengths depending on when it is scheduled. The only thing that changes in
the algorithm is that initially we divide the timeslots into blocks of length
Lmin, where Lmin is the smallest length of an interval. Now, instead of just
looking into sets Bo and Be, we divide these blocks into β classes.

– We may stipulate that any two picked intervals from the same set Ei must
have enough separation Δ between them; this makes sense because two differ-
ent shifts of an employee should not be too close to each other. Our algorithm
remains the same, except that this constraint is added in the configuration
LP (and the randomized rounding procedure changes accordingly).

There are many interesting directions in which this work can be extended. In
the context of contact centers, people with various skills may be required (say,
knowledge of various languages). For a small set K of skills, an employee may
have a subset of these skills. Now the requirement at time t may specify the min-
imum number of employees of each skill required. Modeling such problems and
coming up with good approximation algorithms for them is a challenging prob-
lem. Further, instead of considering the problem of maximizing the number of
timeslots satisfied, we can also consider the problem of minimizing the number
of employees such that all timeslots are satisfied. However, checking feasibility
of such an instance (whether all employees can be scheduled to satisfy all the
timeslots) itself is NP-complete. Hence, it will be interesting to find tractable
special cases of this problem. Finally, the requirements themselves are estimates.
Posing these problems in a stochastic setting is also a very challenging problem.

References

[AAM07] Aksin, Z., Armony, M., Mehrotra, V.: The modern call center: A multi-
disciplinary perspective on operations management research. Production
and Operations Management 16(6), 665–688 (2007)

[CCPV07] Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submod-
ular set function subject to a matroid constraint (Extended abstract). In:
Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp.
182–196. Springer, Heidelberg (2007)

[FHF+02] Fukunaga, A., Hamilton, E., Fama, J., Andre, D., Matan, O., Nourbakhsh,
I.: Staff scheduling for inbound call centers and customer contact centers.
In: AAAI, pp. 822–829 (2002)

[GKM03] Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: Tutorial,
review, and research prospects. MSOM 5(2), 79–141 (2003)

[GRST10] Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-
monotone submodular maximization: Offline and secretary algorithms. In:
Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 246–257. Springer, Hei-
delberg (2010)

[ICWC10] Ingolfssona, A., Campelloa, F., Wub, X., Cabralc, E.: Combining integer
programming and the randomization method to schedule employees. Eu-
ropean Journal of Operations Research (2010)

Contact Center Scheduling with Strict Requirements 169

[LMNS09] Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone sub-
modular maximization under matroid and knapsack constraints. In: STOC,
pp. 323–332 (2009)

[Rey03] Reynolds, P.: Call Center Staffing: The Complete, Practical Guide to
Workforce Management. The Call Center School Press (2003)

[ST00] Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with op-
timal amortized query complexity. In: STOC, pp. 191–199 (2000)

Set Covering with Ordered Replacement:
Additive and Multiplicative Gaps

Friedrich Eisenbrand1, Naonori Kakimura2,	,
Thomas Rothvoß1,		, and Laura Sanità1,			

1 EPFL, Lausanne, Switzerland
2 University of Tokyo, Japan

Abstract. We consider set covering problems where the underlying set
system satisfies a particular replacement property w.r.t. a given partial
order on the elements: Whenever a set is in the set system then a set
stemming from it via the replacement of an element by a smaller element
is also in the set system.

Many variants of Bin Packing that have appeared in the literature
are such set covering problems with ordered replacement. We provide
a rigorous account on the additive and multiplicative integrality gap
and approximability of set covering with replacement. In particular we
provide a polylogarithmic upper bound on the additive integrality gap
that also yields a polynomial time additive approximation algorithm if
the linear programming relaxation can be efficiently solved.

We furthermore present an extensive list of covering problems that
fall into our framework and consequently have polylogarithmic additive
gaps as well.

1 Introduction

Set Cover is a prominent combinatorial optimization problem that is very
well understood from the viewpoint of multiplicative approximation. There ex-
ists a polynomial time factor O(log n) approximation for Set Cover [2] and
a corresponding hardness result [9]. Also the (multiplicative) integrality gap of
the standard linear programming relaxation for Set Cover is known to be
Θ(log n) [14].

Let S be a family of subsets of [n] = {1, . . . , n}, w : S → R+ be a cost
function and let χ(S) ∈ {0, 1}n denote characteristic vector of a set S ∈ S. The
Set Cover integer program

min
{∑

S∈S
w(S)xS |

∑
S∈S

xS · χ(S) ≥ 1, x ≥ 0, x integral
}

(1)

� Supported in part by Grant-in-Aid for Scientific Research and by Global COE
Program “The research and training center for new development in mathematics”,
MEXT, Japan.

�� Supported by the Alexander von Humboldt Foundation within the Feodor Lynen
program.

��� Supported by Swiss National Science Foundation within the project “Robust Net-
work Design”.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 170–182, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Set Covering with Ordered Replacement: Additive and Multiplicative Gaps 171

and its linear programming relaxation is also in the focus of this paper. However,
we are interested in the additive gap of a certain class of set covering problems.
This additive gap is the difference between the optimum value of the integer pro-
gram (1) and its linear programming relaxation. While there exists an extensive
amount of literature on the (multiplicative) gap and (multiplicative) approxima-
tion algorithms, the additive gap and algorithms to construct integer solutions
that are within the corresponding additive range have received less attention.

Why is it interesting to study the additive integrality gap of set covering
problems? Suppose, for example that we know of a certain class of set covering
problems that the additive gap is polylogarithmic, logn say. If we then, at the
same time, know that the optimum solution is at least

√
n, then the linear

programming relaxation of (1) asymptotically approaches the optimum solution
of the integer program yielding a (1+logn/

√
n)-factor approximation algorithm

if an integer solution respecting the gap can be efficiently computed.
Two prominent covering problems whose additive gap has been studied are

Multi-Edge Coloring [12,16] and Bin Packing.1 For Bin Packing, Kar-
markar and Karp [13] showed that the additive gap is bounded by O(log2 n)
and they also provide a polynomial time algorithm that constructs a solution
within this range. There is an extensive amount of literature on variants of Bin

Packing (see e.g. [7,6,5,8,7,3,19,1]). The question whether the Set Cover lin-
ear programming relaxations of such variants also exhibit small additive gaps is
in the focus of our paper.

It is easy to see that the additive gap of general Set Cover is Θ(n). For
example, the Vertex Cover problem on a disjoint union of triangles exhibits
this additive gap. What makes Bin Packing so special that polylogarithmic
additive gaps can be shown to hold? It turns out that it is essentially the fact
that in a feasible packing of a bin, we can replace any item by a smaller item
and still remain feasible. In the setting of Set Cover this is reflected by the
following. There is a partial order � of the elements that we term replacement
order. The order is respected by S if

S ∈ S, i ∈ S, j /∈ S, j � i ⇒ ((S\{i}) ∪ {j}) ∈ S
We will also consider costs w(S) of sets in the family S. These costs are nor-
malized in the sense that w(S) ∈ [0, 1] for each S ∈ S. The costs respect the
replacement order if w(S) ≥ w(S′) whenever S′ is obtained from S by replacing
one element i ∈ S with an element j � i and if w(S′) ≤ w(S) for any S′ ⊆ S.
Given a family S and costs respecting the replacement order �, the Set Cover

With Ordered Replacement problem is to solve the integer program (1). We
denote the optimum value of (1) and its relaxation by OPT (S) and OPTf (S),
respectively. The additive gap of S is thus OPT (S) −OPTf (S).

Contributions. We provide a rigorous account on additive and multiplicative
integrality gaps and approximability of Set Cover With Ordered Replace-

ment if � is a total order. Our main results are as follows.
1 Even though coined bin “packing”, it is a covering problem.

172 F. Eisenbrand et al.

– We show that the additive gap is bounded by O(log3 n). This is achieved by
the use of suitable pseudo sizes and grouping. The pseudo sizes are respon-
sible for the additional logn factor compared Bin Packing. If natural sizes
are available, our bound matches the O(log2 n) bound for Bin Packing.
The grouping technique itself is not novel albeit appears to be simpler as the
one in [13].

– We provide a Ω(log n) lower bound on the additive gap which is in contrast
to Bin Packing, where such a lower bound is not known.

– We show that Set Cover With Ordered Replacement does not al-
low an asymptotic polynomial time approximation scheme (APTAS). Also
this distinguishes Set Cover With Ordered Replacement from Bin

Packing.
– We show that the multiplicative gap of Set Cover With Ordered Re-

placement is Θ(log logn). Also this is in sharp contrast to Bin Packing,
where the multiplicative gap is constant.

– Finally we provide a quasi-polynomial (running time nO(log n)) factor 2 ap-
proximation algorithm for Set Cover With Ordered Replacement.

We also bound the additive integrality gap in the case where the replacement
order is not a total order. Recall that the Dilworth number of a partial order is
the smallest number of disjoint chains that cover all elements. Let us denote the
additive integrality gap as:

gap(n, d, k) = max
S,w

{OPT (S) −OPTf (S)} ,

where the max ranges over all set systems over ground set [n] (and proper cost
function w : S → [0, 1]), that respect a partial order with Dilworth number d and
contain sets of size at most k.2 We show that gap(n, d, k) = O(d2 log k log2 n).
Our result is an algorithmic result in the following sense. If the linear programing
relaxation of (1) can be efficiently solved, then a solution of (1) respecting the
additive gap can be efficiently computed.

We furthermore demonstrate the applicability of our bounds on the additive
gap by providing an extensive list of problems from the literature that can be
modeled as Set Cover With Ordered Replacement.

Related work. We discuss many Bin Packing variants that are covered by
our framework in Section 5. For many of these problems, there exist asymptotic
polynomial time approximation schemes (APTAS) [10,5,3,1] or asymptotic fully
polynomial time approximation schemes (AFPTAS) [13,7,6,8]. An AFPTAS for
problem (1) is a polynomial time algorithm (in n and 1/ε) that, given an ε > 0
computes a solution APX(S) with APX(S) ≤ (1 + ε)OPT (S) + f(ε), where f
is a fixed function. This function f can be even exponential in 1/ε, see, e.g. [7,8].
While our additive gap result is incomparable with the quality achieved by an
2 We sometimes abbreviate gap(n, d) := gap(n, d, n) for systems without cardinality

restrictions and gap(n) := gap(n, 1) if the partial order is total.

Set Covering with Ordered Replacement: Additive and Multiplicative Gaps 173

AFPTAS it however sheds some light on how large n has to be in order for such
an AFPTAS to be competitive with our result in combination with a simple
constant factor approximation algorithm.

We have an additive O(log3 n) bound for Set Cover With Ordered Re-

placement. If we are considering a particular family of instances with
OPT (S) ≥ log4(n) for each instance S, then this yields an AFPTAS with
f(ε) = O((1/ε)3). Suppose now that OPT (S) ≤ log4(n) and suppose that there
exists an AFPTAS with an exponential f say f(ε) = 21/ε. Then the dimension
n has to be doubly exponential in 1/ε before the AFPTAS starts to beat the
quality of a factor 2 approximation algorithm.

We would also like to mention recent related work on the additive gap of Bin

Packing. The paper [4] relates a prominent conjecture of Beck from the field of
discrepancy theory to the question whether the additive gap of Bin Packing is
constant. If Beck’s conjecture holds true, then the Bin Packing gap is constant
for 3-partitioning instances. While essentially all results on integrality gaps for
Bin Packing variants in the literature use the sparse support of basic solutions,
[17] provides bounds based on probabilistic techniques. The work in [17] provides
better additive gaps for example in case of Bin Packing With Rejection.

2 Bounding the Additive Gap

In this section we provide upper and lower bounds for the additive integrality
gap of Set Cover With Ordered Replacement. The upper bound in case
of a total order is O(log3 n) while the lower bound is of order Ω(logn). This
result shows that in order to have a polylogarithmic additive integrality gap,
it is sufficient to have a total ordering on the elements, like for classical Bin

Packing.

2.1 The Upper Bound

We first deal with an upper bound on the additive integrality gap. We recall that
d is the Dilworth number of the partial order, n denotes the number of elements
and k is an upper bound on the cardinality of the sets in the family S. We show
the following general theorem.

Theorem 1. One has gap(n, d, k) = O(d2 log k log2 n).

As in [13], we will construct an integer solution to (1) from a fractional one with
the claimed additive bound, by doing a sequence of iterations. At each itera-
tion, we will cover part of our elements by rounding down an optimal fractional
solution of a proper updated linear program, modify the residual instance, and
re-optimize.

More precisely, we will consider the following (more general) linear program

min
{∑

S∈S
w(S)xS |

∑
S∈S

xS · χ(S) ≥ b, x ≥ 0
}
, (2)

174 F. Eisenbrand et al.

where b ∈ Nn
0 is a non-negative vector. The number bi denotes the multiplicity

of the item i, i.e., how many times it needs to be covered. The reason of having
multiplicity is that during our iterations, we will reduce the number of constraints
of the above linear program at the expense of increasing multiplicity for a subset
of the items. Of course, when multiplicity comes into play, we allow S ∈ S to a
be multiset, since e.g. if a set S′ = {i, j, h} ∈ S and i � j � h, the replacement
order implies S = {i, i, i} to be in S as well.

Let us denote the optimum of this linear program with multiplicity and corre-
sponding integer program by OPTf (S, b) and OPT (S, b) respectively. As in [13]
we will consider an optimal vertex solution x∗ of the linear program (2) and
extract the partial covering �x∗

S�, S ∈ S. This partial covering will leave some
elements of the multiset uncovered. This multiset of uncovered elements defines
a residual instance, encoded by b′ =

∑
S∈S{x∗

S} · χ(S) where {x∗
S} = x∗

S − �x∗
S�

denotes the fractional part of x∗. The following relation holds even for arbitrary
set covering problems:

OPT (S, b) −OPTf (S, b) ≤ OPT (S, b′) −OPTf (S, b′). (3)

The key point of considering a residual instance, is that we will modify it to
reduce the number of constraints in the next iteration by using a grouping tech-
nique similar to the one given for Bin Packing in [13]. However, the grouping
in [13] crucially relies on the size of an element which is part of a Bin Packing

instance, and that is instead missing in our abstract setting. In order to still
apply grouping techniques, we will define pseudo sizes si ∈]0, 1] for each element
i in our ground set below. These pseudo sizes satisfy the following properties:

(i) si ≥ sj if i � j;
(ii) We can cover all the elements of any (not necessarily maximal) chain C at

cost O(
∑

i∈C si) + O(log 1
smin

), where3 smin := mini∈[n] si.

Notice that the usual size of an element in a Bin Packing instance is also
a pseudo size4. Given a vector of pseudo sizes s, we can define the total size of
the elements by size(b) = bT s. Suppose now that the largest total pseudo size of
a set in S is α = max{∑i∈S si | S ∈ S}. An important observation is that the
total size of the residual instance is bounded by

size(b′) = b′T s =
∑
S∈S

{x∗(S)}χ(S)T s ≤ support(b) · α, (4)

where support(b) denotes the number of nonzero entries in b.
We are now ready to state the following Lemma, which generalizes the result

of Karmakar and Karp [13].

Lemma 1. Let S be a set system on [n] with cost function w : S → [0, 1], �
be a partial order respected by S of Dilworth number d and let b ∈ Nn

0 . Still,
3 For notational convinience, we always assume that smin ≤ 1/2 so that log 1

smin
≥ 1.

4 Here one can cover a subset of elements even with 2
∑

i∈C si + 1 bins alone and the
minimal size does not need to be considered.

Set Covering with Ordered Replacement: Additive and Multiplicative Gaps 175

let s be a vector of pseudo sizes which satisfies properties (i) and (ii). Then
OPT (S, b) −OPTf (S, b) = O(α log(1/smin) · d logn), where α = max{∑i∈S si |
S ∈ S}.

Proof. Initially, we partition the elements into chains C1, . . . , Cd w.r.t. the order
�. The bound follows from iterating the following procedure. First, we replace b
by b′ which encodes its residual instance. According to (3), this does not decrease
the additive integrality gap. We then apply the following grouping procedure to
each chain Cμ with μ = 1, . . . , d. The chain Cμ is partitioned into classes :

Uμ
� =

{
i ∈ Cμ |

(1
2

)�+1

< si ≤
(1

2

)�}
for � = 0, . . . , �log(1/smin)�.

For each such class Uμ
� , build groups of 4 ·2�α consecutive elements (the elements

are always counted with multiplicity), starting from the largest element (the last
group could contain less elements), and discard the first and the last group. In
this way, we discard at most 8 · 2� · α elements in the class Uμ

� . Those elements
have total size at most 8 · α, hence the total size of discarded elements in chain
Cμ is bounded by 8 · α · (log(1/smin) + 1). By (ii) we can cover them at cost
O(α · log(1/smin)). This amounts to a cost of O(d · α · log(1/smin)) to cover all
discarded elements of all chains.

Then, we “round-up” the elements in each group to the largest element in this
group. In other words, for each group we now consider to have one item type
(the largest one, according to the chain) with multiplicity 4 · 2�α. This way, we
obtain a new “rounded” instance that is represented by a vector b′′ ∈ Nn

0 . Since
the discarded groups compensate the round-up operation within each group,
one has OPTf (S, b′′) ≤ OPTf (S, b′). Also, OPT (S, b′) ≤ OPT (S, b′′)+O(d ·α ·
log(1/smin)) and thus

OPT (S, b′)−OPTf (S, b′) ≤ OPT (S, b′′)−OPTf (S, b′′) +O(d ·α · log(1/smin)).

We will next show that support(b′′) ≤ support(b)/2. The assertion then fol-
lows, since the support of the rounded instance (and hence the corresponding
additive integrality gap) will be 1 after O(log n) iterations of the above described
procedure.

The support of b′′ is the number of non-discarded groups. Each non-discarded
group Uμ

� contains a number of elements equal to 4·2�α, each of size at least 1
2�+1 .

Then the total size of the group is at least 2 ·α. Thus 2 ·α ·support(b′′) ≤ size(b′).
But since b′ encodes a residual instance, one has size(b′) ≤ support(b) · α from
(4). That is, support(b′′) ≤ support(b)/2 follows. ��

Notice that the O(log2 n) upper bound of Karmarkar and Karp [13] for Bin

Packing also follows from this lemma by considering the original sizes given
in the instances as pseudo sizes, and setting d, α and all the initial bi’s to one.
Items of size less than 1/n can be removed and distributed on top of the solution
later. If one needs an additional bin, the gap is even bounded by a constant.

176 F. Eisenbrand et al.

We now show how to define good pseudo sizes of the items for any given set
system S. Let

size(i) := min
{
w(S)
|S| | S ∈ S contains only elements j � i

}
Note that size(i) ≥ size(j) holds if i � j, that is, property (i) of Lemma 1 holds.
The next Lemma shows that also (ii) holds as well.

Lemma 2. Let S be a set system with replacement property. We can cover all the
elements of a (not necessarily maximal) chain C at cost at most 2

∑
i∈C size(i)+

O(log 1
smin

).

Proof. Again let U� = {i ∈ C | (1
2)�+1 < size(i) ≤ (1

2)�} be the �th size class
of chain C. We construct a solution for each size class separately. For class �,
consider iteratively the largest uncovered element i and let S(i) be a set, defining
the quantity size(i), i.e. S(i) contains only elements that are at least as large as
i and w(S(i))

|S(i)| ≤ size(i). By the replacement property, this set S(i) can be used
to cover the largest |S(i)| many uncovered elements.

Let S1, . . . , Sp be the sets selected in this procedure. Note that all the Sj , but
possibly Sp, cover exactly |Sj | elements. Then, since w(Sj)

|Sj | ≤ 2size(i) for every
i ∈ Sj , we have

p∑
j=1

w(Sj) =
p−1∑
j=1

∑
i∈Sj

w(Sj)
|Sj | + w(Sp) ≤

∑
i∈U�

2 · size(i) + 1.

Summing over the (log 1
smin

+ 1) many size classes then gives the claim. ��

We are ready to prove Theorem 1.

Proof (Proof of Theorem 1). Let S be a set system on [n], and � be a partial
order respected by S. We may assume that � consists of d incomparable chains
C1, . . . , Cd. We define si = size(i) for any element i.

We first claim that we can discard all items i with si < 1
n2 : in fact, by the

definition of the pseudo sizes any such element is contained in a set of cost at
most 1

n , hence all such tiny elements can be covered at a total cost of 1.
Let S ∈ S and consider an element i which is the jth largest in S ∩ Cμ. By

the definition of the pseudo sizes, size(i) ≤ w(S)
j . Thus

∑
i∈S

size(i) ≤ d

k∑
j=1

w(S)
j

≤ 2d log k.

Therefore, it follows from Lemma 1 (by setting b = 1) that gap(n, d, k) =
O(d2 log k log2 n), since α = 2d log k and smin ≥ 1/n2. ��

Set Covering with Ordered Replacement: Additive and Multiplicative Gaps 177

We want to remark that the above result is constructive in the sense that once
a fractional solution x and the partial order are given, a feasible integer solution
matching the bound of Theorem 1 can be computed in polynomial time.

If all costs are one, i.e., w(S) = 1 for each S ∈ S, then we have size(i) ≥ 1
k .

Thus we have the following corollary.

Corollary 1. If all costs of feasible sets are one, one has gap(n, d, k) =
O(d2 log2 k logn).

When d = 1, this theorem says gap(n, 1, k) = O(log2 k logn), which is better
than the result of [4]: gap(n, 1, k) = O(k logn).

2.2 The Lower Bound

In this section, we give a lower bound for the additive integrality gap of set sys-
tems with replacement property. For simplicity, we first assume that � consists
of only one chain.

Lemma 3. One has gap(n) ≥ Ω(log n).

Proof. Let m be a parameter, that we determine later. Define a unit cost set
system S as follows. For any � ∈ {1, . . . ,m}, introduce 3 · 100� many �-level
elements U�. Hence U :=

⋃m
�=1 U� with |U�| = 3 · 100� is the set of all elements.

We choose U1 � U2 � . . . � Um
5 and an arbitrary order within every U�.

Any set S of at most 2 · 100� many �-level elements forms an �-level set, e.g.
S =

⋃m
�=1

{
S ⊆ U� ∪ . . . ∪ Um | |S| ≤ 2 · 100�

}
. By taking 3 �-level sets to the

fractional extend of 1
2 , we can cover all �-level elements, hence OPTf (S) ≤ 3

2 ·m.
It remains to lower bound OPT (S). Let n� be the number of �-level sets in any
integer solution. To cover all level �-level elements we must either have n� ≥ 2,
or

∑
j<� nj · 2 · 100j ≥ 100�, i.e. 4

∑
j<� nj · 100j−� ≥ 2. In any case, the sum of

the left hand sides must be at least 2: n� + 4
∑

j<� nj · 100j−� ≥ 2. We add up
this inequality for � = 1, . . . ,m and obtain (∗)

m∑
�=1

n� ·
(
1 + 4

∑
i≥1

1
100i

)
︸ ︷︷ ︸

= 103
99

≥
m∑

�=1

(
n� + 4

∑
j<�

nj · 100j−�
) (∗)

≥ 2m

This gives OPT (S)−OPTf (S) ≥ ∑m
�=1 n� − 3

2m ≥ 2 99
103m− 3

2m > 0.4 ·m. The
number of elements in the instance is n =

∑m
�=1 3 ·100�, hence m = Ω(logn). ��

More generally, the following holds:

Theorem 2. gap(n, d) ≥ Ω(d · log(n/d)).

Proof. Apply the construction from Lemma 3 to obtain families S1, . . . ,Sd, each
on a disjoint set of n/d elements. Then the union

⋃d
j=1 Sj has Dilworth number

d and the claimed additive gap. ��
5 We abbreviate U � U ′ ⇔ ∀i ∈ U, j ∈ U ′ : i � j.

178 F. Eisenbrand et al.

3 Approximation and Intractability

In Section 5, we mention many variants of Bin Packing that admit an APTAS
(or even an AFPTAS) and fall into our general framework of Set Cover With

Ordered Replacement. It is thus natural to ask whether the Set Cover

With Ordered Replacement itself has an APTAS. This cannot be expected
for arbitrary partial orders. In this section we show that an APTAS does not
exist, even if the replacement order is a total order. On the positive side how-
ever, we show that there exists a quasi-polynomial time factor 2 approximation
algorithm in this case. This is obtained by first rounding the instance to O(log n)
different item types and then solving the rounded instance exactly by dynamic
programming. However, due to lack of space, we postpone the proof to the full
version of this paper.

From now on, we restrict our view exclusively on set systems, respecting a
total order �. To define such a set system with unit-costs, it will be convenient
to consider just the set of generators. These are the sets that are maximal with
respect to the order. More formally, if there is an injective map ϕ : S → S′

with i � ϕ(i) for all i ∈ S (i.e. we can obtain a set S from S′ by applying the
replacement rule), then we say that S′ dominates S. Hence a set family S is
called the set of generators for the set system

g(S) = {S ⊆ [n] | ∃S′ ∈ S : S′ dominates S}
Hence, if S is an arbitrary set family, by definition g(S) respects the replacement
rule. For a proof of the next proposition we refer to the full version of this paper.

Proposition 1. Let S ⊆ 2[n] be a family of sets and � the total order with
1 � . . . � n.

i) If S′ ⊆ g(S) is a feasible solution (i.e.
⋃

S∈S′ S = [n]) then
∑

S∈S′ |S ∩
{1, . . . , i}| ≥ i for i = 1, . . . , n.

ii) If S′ ⊆ S are generators with
∑

S∈S′ |S ∩ {1, . . . , i}| ≥ i ∀i ∈ [n], then sets
S′ can be replaced by dominated ones which form a feasible solution of the
same cardinality.

3.1 Ruling Out an APTAS

We will now see that unless P = NP, there is no APTAS for a generic problem
defined on a set system that respects a total order.

Theorem 3. For every ε > 0 and any C > 0 there is a generic problem with
unit-cost sets respecting a total order for which it is NP-hard to find a solution
of cost (3

2 − ε)OPT + C.

Proof. We will prove the theorem by constructing a set system such that for any
fixed integer k > 0, it is NP-hard to distinguish whether an optimum solution
consists of at most 2k or at least 3k sets. Choosing k := k(ε, C) large enough
then gives the claim.

Set Covering with Ordered Replacement: Additive and Multiplicative Gaps 179

To establish this hardness result, we will use a reduction from the NP-hard
Partition [11] problem. An instance I of Partition, is given by a set of n
items with sizes a1 ≥ a2 ≥ . . . ≥ an, and asks for a partition of the items
into two sets A1 and A2, such that

∑
j∈A1

aj =
∑

j∈A2
aj =: A. Given such an

instance, we create groups L1, . . . , Lk, where the group Lp contains n2p copies of
item i, i.e. Lp = {vj

p,i | i = 1, . . . , n; j = 1, . . . , n2p}. Note that the total number
of elements is N := nO(k). We define a total order with L1 � . . . � Lk and
vj

p,i � vj′
p,i′ whenever i < i′ (and v1

p,i � . . . � vn2p

p,i for the sake of completeness).
Let S(I, p) := {vj

p,i | i ∈ I; j = 1, . . . , n2p} be the set induced by I ⊆ [n] in
group Lp. We define generators

S =
{
S(I, p) | ∀p = 1, . . . , k; ∀I ⊆ [n] :

∑
i∈I

ai ≤ A
}

Completeness: I ∈ Partition ⇒ OPT (g(S)) ≤ 2k. Let I ⊆ [n] with
∑

i∈I ai =
A be a Partition solution. Then the 2k sets of the form S([n]\I, p), S(I, p) for
p = 1, . . . , k cover all N elements.
Soundness: I /∈ Partition ⇒ OPT (g(S)) ≥ 3k. We may assume that 3k < n.
Now suppose for the sake of contradiction, there is no Partition solution, but
S′ ⊆ S is a family of less than 3k generating sets, dominating a feasible solution,
satisfying the second condition in Prop. 1. Then there must be a group Lp such
that S′ contains generators S(I1, p), . . . , S(Im, p) with m ≤ 2. Then from Prop. 1
we obtain that

i·n2p
Prop. 1
≤

∑
S∈S′

|S∩(L1∪. . .∪Lp−1∪S({1, . . . , i}, p))| ≤ 3k·n·n2p−2+
m∑

�=1

n2p|I�∩{1, . . . , i}|

Hence:
∑m

�=1 |I� ∩ {1, . . . , i}| ≥ ⌈
i− 3k

n

⌉
= i, since the left hand side is integral

and 3k < n. Since
∑m

�=1 |I� ∩ {1, . . . , i}| ≥ i for all i ∈ [n], we conclude by
applying again Prop. 1, that elements in I1, . . . , Im can be replaced by smaller
ones and obtain I ′1, . . . , I ′m such that still

∑
i∈I′

�
ai ≤ A but

⋃m
�=1 I

′
� = [n]. Since

m ≤ 2, this is a contradiction. ��

4 Multiplicative Integrality Gaps

Next, we show a Θ(log logn) multiplicative gap for the case of a total order.

Lemma 4. Let S any set family on n elements respecting a total order and let
w : S → [0, 1] be a cost function. Then OPT (S) ≤ O(log logn) ·OPTf (S).

Proof. Consider consecutive groups L0, . . . , Lk such that |Li| = 2i (group Lk

might have fewer elements), k ≤ log n and all elements in Li are larger than those
in Li+1. Let x ∈ [0, 1]S be a fractional solution. We buy set S independently
with probability λ · xS where λ := max{8 · log(4 + 4 logn), 4} (in fact we may
assume that λ · xS ≤ 1, otherwise we buy �λxS� sets deterministically and then

180 F. Eisenbrand et al.

another set with probability λxS − �λxS�). Let XS be the indicator variable,
telling whether we bought S or not. Define Ei := {∑S XS · |S ∩ Li| < 2 · |Li|}
as the event that we bought less than two times enough sets for the ith group.
Recall the following Chernov bound (see6 e.g. [15]):

Let Y1, . . . , Ym be independent random variables with Yi ∈ [0, 1], Y =∑m
i=1 Yi and 0 < δ < 1. Then Pr[Y ≤ (1 − δ)E[Y]] ≤ e−E[Y]δ2/2.

Applying Chernov bound with δ := 1/2, YS := XS
|S∩Li|
|Li| and E[Y] = λ, we

obtain

Pr[Ei] = Pr
[∑

S∈S
XS ·|S∩Li| < 2·|Li|

]
≤ Pr

[∑
S∈S

YS < (1−δ)λ
]
≤ e−λ/8 ≤ 1

4(1 + log n)
.

By the union bound, Pr[E0 ∪ . . . ∪ Ek] ≤ 1
4 . Furthermore Pr[

∑
S∈S XSw(S) >

4λ ·OPTf] ≤ 1
4 by Markov’s inequality. Overall, with probability at least 1/2, we

obtain an integer solution S′ = {S ∈ S | XS = 1} of cost at most O(log logn) ·
OPTf that reserves at least 2|Li| slots for elements in Li. Those slots are enough
to cover all elements in Li+1. ��
Note that the result in Lemma 4 provides a randomized polynomial time algo-
rithm, provided that a near-optimal fractional solution x can be obtained.

Lemma 5. There exists a set system S′ ⊆ 2[n] with unit cost sets and respecting
a total order such that OPT (S′) ≥ Ω(log logn) ·OPTf (S′).

Proof. Let k ∈ N be a parameter. To construct our instance, we use as start-
ing point a Set Cover instance defined by a set system C with 2k − 1 sets
C1, . . . , C2k−1 and 2k − 1 elements U = {1, . . . , 2k − 1} such that one needs at
least k sets to cover all elements, while OPTf (C) ≤ 2 (see Example 13.4 in the
book of Vazirani [18]).

For every element i ∈ U , create groups Li with |Li| = (2k)i. For any Cj in
the original set system, define a set Sj := (

⋃
i∈Cj

Li) with unit cost, and let
S = {S1, . . . , S2k−1}. In other words, we take a standard Set Cover instance
and replace the ith element by (2k)i elements. We define a total order such
that all items in Li are larger than those in Li+1 (and any order within the
groups). The claim is that the set system S′ := g(S), which is generated by
the sets S, has a covering integrality gap of at least k/2. First note that still
OPTf (S′) ≤ 2. Now suppose for contradiction that there are generators (after
reindexing) S1, . . . , Sm ⊆ S with m < k that satisfy the condition in Prop. 1.
Since m < k, there must be an index i such that i /∈ (C1 ∪ . . . ∪ Cm). Then

(2k)i ≤
i∑

�=1

|L�|
Prop. 1
≤

m∑
j=1

|Sj∩(L1∪. . .∪Li)| =
m∑

j=1

∑
�∈Cj ,�≤i

(2k)�
i/∈Cj≤ m·2(2k)i−1 =

m

k
(2k)i

Rearranging yields that m ≥ k. Note that the number of elements in the system
S′ is n =

∑2k−1
i=1 (2k)i ≤ 2 · (2k)2

k

, hence k = Ω(log logn). ��
6 To be precise, the claim in [15] is for 0/1 distributed random variables, but the same

proof goes through if 0 ≤ Yi ≤ 1.

Set Covering with Ordered Replacement: Additive and Multiplicative Gaps 181

5 Applications

We now demonstrate the versatility of our framework by establishing small addi-
tive integrality gaps for several Bin Packing variants from the literature, listed
in the following. We refer to the full version of this paper for the proofs of the
bounds provided below.

Cardinality Bin Packing. Here we are given a Bin Packing instance
s1, . . . , sn with an additional parameter k ∈ N. A subset of items S can be
assigned to a bin only if

∑
i∈S si ≤ 1 and |S| ≤ k. There is an AFPTAS due

to Epstein & Levin [7]. With our technique, we obtain: OPT (S) −OPTf (S) =
O(log k logn).

Open End Bin Packing. We are here given a Bin Packing instance s1, . . . , sn,
but a set S ⊆ [n] is feasible if

∑
i∈S\{j} si ≤ 1 holds for every j ∈ S. There

is an AFPTAS for this variant by Epstein & Levin [6]. We can prove that:
OPT (S) −OPTf (S) = O(log2 n).

Bin Packing with General Cost Structure. We are given item sizes
s1, . . . , sn, and a cost function f : {0, . . . , n} → [0, 1], which is a monotoni-
cally nondecreasing concave function with f(0) = 0. The goal is to find sets
S1, . . . , Sp to cover the items such that

∑
i∈Sj

si ≤ 1 for every j = 1, . . . , p and
the total cost

∑p
i=1 f(|Si|) is minimized. This problem admits an AFPTAS [8].

We prove: OPT (S) −OPTf (S) = O(log2 n).

Generalized Cost Variable Sized Bin Packing. We are given item sizes
s1, . . . , sn, and bin types B1, . . . , Bk each one with a different capacity a1, . . . , ak

and a different cost c1, . . . , ck ∈ [0, 1]. The goal is to select a minimum cost subset
of bins to pack the items, where a subset of items can be packed into a bin Bi if
the sum of their sizes does not exceed the bin capacity ai. See [5] for an APTAS.
Our result is: OPT (S) −OPTf (S) = O(log3 n).

Bin Packing with Rejection. We are given a Bin Packing instance s1, . . . ,
sn, but additionally any item i has a rejection cost ci. An item can either be
packed, or discarded at cost ci. See [7] for an AFPTAS. We have: OPT (S) −
OPTf (S) = O(

√
n log3/2 n).

Train Delivery. We are given n items, each having a size si and position
pi ∈ [0, 1]. The goal is to transport all items to a depot, located at 0, using a
unit capacity train and minimizing the total tour length. The authors in [3] give
an APTAS. We can prove that: OPT (S) −OPTf (S) = O(

√
n log3/2 n).

m-dimensional Vector Packing. Let V be a set of vectors v1, . . . , vn ∈
[0, 1]m. The goal is to partition V into bins B1, . . . , Bk, such that k is min-
imized and

∑
i∈Bj

vi ≤ 1. We say that vi � vj , if vj is componentwise not
smaller than vi. The Dilworth number of V is then the smallest d such that
V can be partitioned into V 1, . . . , V d, such that: ∀vi, vj ∈ V h, either vi � vj

or vj � vi. If there is no bound on d, there is no APTAS possible already in
2-dimensions [19]. Differently, for constant d there is an APTAS given in [1]. Our
result is: OPT (S) −OPTf (S) = O(d2 log3 n).

182 F. Eisenbrand et al.

References

1. Caprara, A., Kellerer, H., Pferschy, U.: Approximation schemes for ordered vector
packing problems. Naval Research Logistics 50, 58–69 (2003)

2. Chvátal, V.: A greedy heuristic for the set-covering problem. Mathematics of Op-
erations Research 4(3), 233–235 (1979)

3. Das, A., Mathieu, C., Mozes, S.: The train delivery problem- vehicle routing meets
bin packing (2010)

4. Eisenbrand, F., Pálvölgyi, D., Rothvoß, T.: Bin packing via discrepancy of permu-
tations. In: Symposium on Discrete Algorithms, SODA 2011. SIAM, Philadelphia
(2011)

5. Epstein, L., Levin, A.: An APTAS for generalized cost variable-sized bin packing.
SIAM Journal on Computing, 38(1) (2008)

6. Epstein, L., Levin, A.: Asymptotic fully polynomial approximation schemes for
variants of open-end bin packing. Inf. Process. Lett. 109(1), 32–37 (2008)

7. Epstein, L., Levin, A.: AFPTAS results for common variants of bin packing: A
new method to handle the small items. SIAM Journal on Optimization (2010) (to
appear)

8. Epstein, L., Levin, A.: Bin packing with general cost structures. Mathematical
Programming (2010) (to appear)

9. Feige, U.: A threshold of ln n for approximating set cover. Journal of the
ACM 45(4), 634–652 (1998)

10. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε in
linear time. Combinatorica 1(4), 349–355 (1981)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

12. Kahn, J.: Asymptotics of the chromatic index for multigraphs. Journal of Combi-
natorial Theory. Series B 68(2), 233–254 (1996)

13. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: 23rd annual symposium on foundations of
computer science (Chicago, Ill., 1982), pp. 312–320. IEEE, New York (1982)

14. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Mathe-
matics 13(4), 383–390 (1975)

15. Mitzenmacher, M., Upfal, E.: Probability and computing. Cambridge University
Press, Cambridge (2005); Randomized algorithms and probabilistic analysis

16. Plantholt, M.: A sublinear bound on the chromatic index of multigraphs. Discrete
Mathematics 202(1-3), 201–213 (1999)

17. Rothvoß, T.: The entropy rounding method in approximation algorithms (2010)
(submitted)

18. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)
19. Woeginger, G.J.: There is no asymptotic PTAS for two-dimensional vector packing.

Information Processing Letters 64(6), 293–297 (1997)

Backdoor Branching

Matteo Fischetti and Michele Monaci

DEI, University of Padova, via Gradenigo 6/A, 35131 Padova, Italy
{matteo.fischetti,michele.monaci}@unipd.it

Abstract. Which is the minimum number of variables that need branch-
ing for a given MIP instance? Can this information be effective in pro-
ducing compact branching trees, hence improving the performance of a
state-of-the-art solver? In this paper we present a restart exact MIP so-
lution scheme where a set covering model is used to find a small set of
variables (a “backdoor”, in the terminology of [8]) to be used as first-
choice variables for branching. In a preliminary “sampling” phase, our
method quickly collects a number of relevant low-cost fractional solutions
that qualify as obstacles for LP bound improvement. Then a set covering
model is solved to detect a small subset of variables (the backdoor) that
“cover the fractionality” of the collected fractional solutions. These back-
door variables are put in a priority branching list, and a black-box MIP
solver is eventually run—in its default mode—by taking this list into
account, thus avoiding any other interference with its highly-optimized
internal mechanisms. Computational results on a large set of instances
from MIPLIB 2010 are presented, showing that some speedup can be
achieved even with respect to a state-of-the-art solver such as IBM ILOG

Cplex 12.2.

1 Introduction

Consider a generic Mixed-Integer linear Program (MIP) of the form:

(P) v(P) := min cTx (1)
Ax ≥ b, (2)
xj integer, ∀j ∈ I, (3)
xj continuous, ∀j ∈ C, (4)

where A is an m × n input matrix, and b and c are input vectors of dimension
m and n, respectively. The variable index set N := {1, . . . , n} is partitioned
into (I, C), where I is the index set of the integer variables, while C indexes the
continuous variables, if any. Bounds on the variables are assumed to be part of
system (2). Removing the integrality requirement on the integer variables leads
to the LP relaxation min{cTx : x ∈ P} where P := {x ∈ Rn : Ax ≥ b}.

With a little abuse of terminology, in what follows we will say that a point
x is integer if xj is integer for all j ∈ I (no matter the value of the other
components), fractional otherwise.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 183–191, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

184 M. Fischetti and M. Monaci

The exact solution of (P) is typically performed by using an enumeration
scheme where certain branching variables are used to partition the solution set
in such a way that all the leaf nodes have an LP relaxation with an optimal
vertex x∗ that satisfies the following certificate condition: x∗ is either integer, or
cTx∗ ≥ v(P)—the LP cost being +∞ in case of infeasibility. A branching tree
whose leaves satisfy the certificate condition is called a certificate tree. For the
sake of simplicity, in the above definition we consider a pure branch-and-bound
scheme, i.e., cut generation as well as variable fixing and node preprocessing are
not taken into account when checking the certificate conditions.

The computational effort for solving (P) depends on the number of nodes of
the certificate tree, that in turn depends on the number of branching variables
involved. So, it makes sense to define the compactness of a branching tree as the
number of distinct branching variables associated to it—the fewer the variables,
the more compact the tree. Note however that this measure is not perfect, in the
sense that not all tree nodes need to be evaluated explicitly, hence the final com-
putational effort also depends on the tree “shape” and not just on the number
of involved variables. In addition, branching on a general integer (as opposed to
binary) variable might not fix its fractionality, hence these variables should be
counted, e.g., in a way proportional to the logarithm of their range.

A set of variables leading to a compact certificate tree is called a backdoor in
the AI community [8]. As a matter of fact, different backdoor definitions are pos-
sible; the one we considered in the present paper is strictly related to the concept
of strong backdoor in [8]. In [5] backdoors are applied to optimization problems,
and the backdoor size for some problems from MIPLIB 2003 is reported for the
first time. The outcome of this analysis is that, for some problems, fixing values
for a very small fraction of the decisional variables is enough to easily solve the
problem to optimality.

Our first order of business is to define a model that allows us to exactly
compute the minimum size of a set of integer variables leading to a certificate
tree. To this end, we first compute the optimal MIP value, v(P), and then treat
all the vertices x of P with cTx < v(P) as obstacles whose fractionality has to be
covered by the branching variable set. This approach is reminiscent of Chvátal
resolution search [4], where obstacles are associated with minimal sets of integer
variables whose fixing leads to infeasibility.

Our second step is more ambitious: we try to use backdoor information on
the fly, within the solution procedure, so as to reduce the total computational
effort of the MIP solver at hand. As a simple proof-of-concept of the potential
of the idea, we implemented the following multiple restart scheme. We make a
sequence of short enumeration runs in a “sampling mode” intended to gather
information relevant for branching. This approach is in the spirit of the recent
work in [6], but in our case we intend to discover and store a collection of relevant
low-cost fractional solutions qualifying as obstacles that block the lower bound
improvement. More specifically, we use a dynamically-updated cost threshold,
and maintain a list of fractional solutions whose cost does not exceed the current
threshold. At each sampling run, we start by solving a set covering model to

Backdoor Branching 185

determine a small-cardinality set of branching variables “covering” all fractional
solutions in our current list, and treat them as first-level variables with priority
1 for branching (all other variables having priority 0). We then run the MIP
solver by using the above branching priorities, and collect additional low-cost
fractional solutions. After a while, we abort the current run, and repeat. In this
way, more and more low-cost fractional solutions are collected and used to find
a clever set of first-level branching variables. After a certain number of restarts,
the “final run” is executed by using the MIP solver as a black box, without
interfering with its highly-optimized criteria but just giving branching priority
1 to all the variables in the solution of the last set covering problem, and 0 to
the remaining ones.

Computational results on a set of 61 hard instances from MIPLIB 2010 [7]
(possibly involving general-integer variables, treated by our set covering model
in a heuristic way) are reported, with a comparison with IBM ILOG Cplex 12.2.
The outcome is that even a simple implementation of backdoor branching can
lead to a significant performance improvement.

2 A Basic Set Covering Model

We next show how to compute the compactness of a given MIP, defined as size of
its minimum-cardinality backdoor—i.e., as the minimum number of branching
variables leading to a certificate tree. To have a more meaningful setting, in
this section we restrict our attention to 0-1 MIPs, i.e., all integer variables are
assumed to be binary, hence the smaller the number of variables in the backdoor,
the smaller the associated (complete) certificate tree—assuming again that all
the nodes of this tree need to be generated explicitly.

Branching on 0-1 variables (or, more generally, on faces of P) has the nice
property of not introducing new vertices of P ; see, e.g., [2]. The key property here
is that branching could in fact be implemented by just adding (resp. subtracting)
a large constant M > 0 to the cost cb of all branching variables fixed to 0 (resp.,
to 1), so the LP relaxation polyhedron at any node does not change. More
formally, if xk is a vertex of the LP relaxation polyhedron P k (say) at any given
branching node k, then there exists an objective function wkx that attains its
unique minimum over P k at xk. By adding/subtracting M to the weight wk

b of
the branching variables xb along the path from the root to node k, we then obtain
a new weight function wTx that has xk as its unique minimum with respect to
P , hence xk is also a vertex of P .

In view of the above property, we can model our compactness problem as
follows. For each j ∈ I, we introduce a binary variable such that yj = 1 is xj

if in the minimum backdoor set, = 0 otherwise. For any vertex x∗ of P , let
frac(x∗) := {j ∈ I : x∗

j is fractional} denote its fractional support w.r.t. I. The
problem of computing MIP compactness then calls for a minimum-cardinality
set of variables that cover all the fractionalities of all the vertices of P having a
cost strictly less than v(P), and can be rephrased as the following set covering
problem.

186 M. Fischetti and M. Monaci

min
∑
j∈I

γjyj (5)

∑
j∈frac(xk)

yj ≥ 1, ∀ vertex xk of P : cTxk < v(P) (6)

yj ∈ {0, 1} ∀j ∈ I, (7)

where we set γj = 1 for all j ∈ I, though a different cost definition can be used
to obtain approximate backdoors; see below. Whenever (6) holds for a certain
pair y and xk, we say that “y covers the fractionality of xk”.

The set covering above can be tackled through the iterative generation of the
covering constraints (6). To this end, a possible Benders-like solution scheme can
be sketched as follows. We iteratively solve a relaxation of the set covering model
where constraints (6) are written for a subset of vertices xk, while the integrality
condition (7) is preserved. For any (almost-) optimal solution y∗ ∈ {0, 1}I, our
order of business is to prove that the complete branching tree associated with
y∗ is in fact a certificate tree. This in turn amounts to solving a relaxed MIP
obtained from the original one by relaxing the integrality requirement for all xj

with yj = 0. If one or more fractional optimal solutions xk of this relaxed MIP
are found, and cTxk < v(P), the associated constraints (6) are added to the set
covering model and the method is iterated.

3 Backdoor Branching

As already mentioned, our backdoor branching is a multi-restart strategy in-
spired by the set covering model outlined in the previous section. Its goal is
to heuristically use the information associated with the set covering model (5)-
(7) to produce a solution scheme for the original MIP that can outperform the
standard one, at least on certain classes of hard instances.

Our underlying hypothesis here is that even hard MIPs could be solved by
a compact tree (in terms of number of branching variables involved), if an ap-
propriate set of branching variables is chosen. So, we afford spending a certain
amount of computing time just to heuristically determine a small set of branch-
ing variables leading to a (possibly approximate) certificate tree.

Our proposal can be cast into the following master-slave scheme.
The set covering problem (5)-(7) written for a certain set of vertices xk acts as

our master problem: it is solved (possibly heuristically) with a short time limit
to get a candidate branching set y∗.

If
∑

j∈I y∗j is reasonably small, then the branching set is compact and we try
to use it. To be specific, we solve our MIP as a slave problem to possibly generate
new xk’s needed to extend (6). To this end, instead of relaxing the integrality
conditions on the xj ’s with y∗j = 0 we prefer to use a black-box MIP solver on
the original problem (P) by giving all variables xj with y∗j = 1 a high prior-
ity for branching. This is obtained by just using y∗ as a branching priority vector

Backdoor Branching 187

(=1 for the variables to branch first, =0 for the other variables to be branched
only as a last resort), so as to let the MIP-solver choose among these variables
according to its favorite strategy, e.g., strong branching or alike.

All fractional solutions xk encountered during the solution of the slave problem
are stored and added to the list in (6) to be possibly used at the next iteration.
In order to favor the collection of low-cost solutions xk, a best-bound-first tree
exploration strategy is used.

When a prefixed number of new solutions xk whose fractionality is not covered
by y∗ has been collected (say, Kmax = 10) we have the evidence that the current
y∗ is not an accurate estimate of a good branching set, and we return to the
master to get another y∗, i.e., a new tentative branching set.

The master-slave cycle above is iterated until either (i) too many slaves have
been solved (10, in our implementation), or (ii) the current master solution y∗

has too many 1’s (more than 5, in our implementation), meaning that the MIP
likely does not admit a compact branching set. In the latter case, instead of
giving up we relax the requirement of having an exact backdoor, and reduce the
threshold value of the vertices xk to be taken into account in (6). In particular,
denoting by θc and v(LP) the current threshold value and the value of the LP
relaxation, respectively, we reduce the threshold by setting

θc = θc − (θc − v(LP))/10.

At the first iteration, θc is initialized to the value of the best integer solution
known.

After the solution of the last slave problem, we make the final choice of the
branching priorities by solving our last set covering model (5)-(7) over the current
set of fractional solutions xk whose cost is smaller than the current θc, and just
re-run the MIP solver from scratch (in its default setting) by using the optimal
set covering solution y∗ as priority vector—this phase being called “the final
run”.

As the solution of the original MIP (acting as a slave in our scheme) is
restarted several times, our method can be interpreted as a multi-restart strategy
under the control of a set covering model (the master) that guides the branching
process.

Due to its heuristic nature, the backdoor definition above can be quite risky
in practice because it may favor variables that happen to cover well the collected
fractionalities, but have a minor impact for branching. An extreme case arises
when the backdoor includes variables whose integrality requirement is in fact
redundant. To mitigate this drawback, we try to exploit the information available
for free after each slave solution. To this end, we count how many times each
variable has been selected for branching in any of the slaves, and also store the
pseudocost vector (see, e.g., [3] and [1]) when the slave is interrupted. Each
time a set covering is solved, we treat the never-branched variables as if they
were continuous, and modify the set covering objective function to favor the
choice of the variables that are likely to have a large impact for branching. To
be specific, the cost of each variable yj (j ∈ I) in model (5)–(7) is redefined

188 M. Fischetti and M. Monaci

as γj = M − pj , where M is a sufficiently large number, and pj measures the
importance of variable j for branching (the larger the more important). In our
proof-of-concept implementation, we set M = 1000, whereas coefficient pj is
computed as

pj = �100 · Ψ
−
j + Ψ+

j

Ψmax
� (8)

where Ψ−
j and Ψ+

j denote the average (across all slaves solved so far) pseudocost
of variable j in the downwards and upwards branching, respectively, and Ψmax =
max{Ψ−

j + Ψ+
j : j ∈ I}. Different definitions of the pj ’s are also possible, that

take into account how many times a variable has been selected for branching.

4 Preliminary Computational Results

In this section we compare our backdoor branching scheme with the state-of-
art MIP solver IBM ILOG Cplex 12.2. All experiments were performed on an
Intel(R) Xeon(R) CPU E5450 running at 3.0 GHz, in single-thread mode, with
a time-limit of 10,000 CPU seconds for each run.

Our testbed was constructed to contain “not too easy nor hopeless” instances,
selected according to the following procedure intended to reduce biasing in favor
of one of two codes under comparison.

We first considered all MIPLIB 2010 [7] instances and solved them by IBM
ILOG Cplex 12.2 (in its default setting, with no upper cutoff). Then, we disre-
garded the instances that could not be solved in the time limit, along with the
“too easy” ones that could be solved within just 1,000 nodes. This produces a
first testbed made by 212 problems.

Following [6], to have a fair comparison of alternative branching rules with
no side effects related to primal heuristics, in the subsequent runs we provided
the optimal solution value as the upper cutoff to both solvers and disabled all
heuristics, which became useless in this context. In this new framework, some
instances in our testbed became “too easy” and were discarded, resulting in our
final testbed of 98 instances.

Again to reduce side effects, in subsequent runs we deactivated cut generation
for both codes—resulting into a significant slowdown or even a time-limit con-
dition for some instances. In addition, we also had to deactivate (again for both
codes) variable aggregation in the preprocessing phase because of its interference
with the branching priority mechanism.

Tables 1 and 2 provide the outcome of our experiments on the 61 instances in
our testbed that could be solved to proven optimality by at least one of the two
codes under comparison. For each instance we report, for both IBM ILOG Cplex
12.2 and backdoor branching, the computing time and number of branching
nodes (t.l. indicates that the instance was not solved to proven optimality within
the 10,000-second time limit). Computing times and number of nodes reported
for our backdoor method sum up the corresponding figures for all (sampling and
final) runs; the root node computing time is instead counted only once in that
all these runs start exactly from the same root-node information. In addition,

Backdoor Branching 189

we report the size |B| of the “approximate backdoor” used for the last run of
the MIP solver, as well as the computing time (column Tlast) spent by backdoor
branching in its final run.

The last lines of the table report the average values (arithmetic and geometric
means) of computing time and number of nodes, along with the number of time-
limit instances. Unsolved instances are counted by taking the computing time
and number of nodes at the time limit.

Though preliminary, the results show that a significant speedup can be ob-
tained by backdoor branching even with respect to a highly sophisticated and

Table 1. Detailed results for IBM ILOG Cplex 12.2 and backdoor branching on a set
of hard instances, when the optimal value is provided on input and heuristics and cuts
are deactivated. t.l. indicates that the 10,000-sec. time limit has been reached.

Cplex Backdoor

Time #nodes Time #nodes |B| Tlast

018 aflow40b 5,939.95 4,253,462 5,334.50 3,185,782 3 5,331.03
021 app1 2 323.36 6,064 791.83 12,224 2 698.76
040 bienst2 87.73 85,199 153.15 143,731 4 152.46

060 csched-010 3,010.52 2,174,057 3,620.00 2,469,581 5 3,618.61
081 eilD76.2 2,945.78 135,801 1,904.51 119,656 3 1,833.33

111 glass.lp.sc 2,986.62 131,975 1,011.72 44,897 2 967.86
112 gmu35 40 t.l. 63,137,971 90.04 439,918 5 89.72

161 markshare 5 0 4,900.52 141,061,124 4,479.73 122,768,127 6 4,479.55
166 mcsched 560.68 72,102 701.75 162,209 2 685.42

172 mine 90 10 823.09 217,682 1,741.71 436,330 2 1,716.47
175 miplib1 2,803.23 16,086 3,425.80 16,218 3 2,930.37

209 neos-1126860 4,279.68 18,519 3,437.78 15,993 5 3,310.87
216 neos-1215891 1,860.27 442,404 809.99 178,128 3 798.94
222 neos-1330346 t.l. 562,829 9,307.20 532,478 2 9,289.45
223 neos-1337307 8,127.90 475,838 t.l. 380,415 5 t.l.
234 neos-1427181 t.l. 4,770,447 2,619.10 934,040 6 2,611.67
239 neos-1439395 24.04 16,866 149.60 109,735 10 147.04
242 neos-1440460 2,348.67 1,657,377 958.45 764,126 6 958.03
246 neos-1451294 8,968.85 71,278 t.l. 91,796 3 t.l.
255 neos-1595230 311.47 79,340 267.76 66,921 3 264.20
262 neos-1616732 6,847.04 2,747,954 4,538.61 1,996,385 2 4,529.23

267 neos18 211.50 143,654 174.34 122,214 3 170.28
280 neos-548047 t.l. 106,331 6,312.55 130,069 2 6,261.13

294 neos5 145.34 1,199,529 60.42 447,350 3 59.83
295 neos-603073 2.31 4,983 3.08 6,238 3 2.64
313 neos-785912 t.l. 614,039 3,517.74 242,110 4 3,503.88
315 neos788725 218.60 767,350 201.03 755,774 3 199.55
322 neos818918 31.00 7,003 148.90 38,194 3 143.13
326 neos823206 365.19 205,241 255.14 167,653 3 250.07

345 neos-859770 3,030.08 147,225 1,778.74 67,867 6 1,762.53
347 neos-863472 17.03 56,334 30.59 102,266 2 30.40

190 M. Fischetti and M. Monaci

Table 2. (continued)

Cplex Backdoor

Time #nodes Time #nodes |B| Tlast

353 neos-886822 67.43 15,360 61.20 15,383 2 52.97
359 neos-916792 443.46 94,039 542.16 121,539 2 535.58

403 noswot 222.96 2,353,215 112.79 1,154,341 8 112.67
413 ns1324654 5,644.19 52,413 t.l. 153,361 3 t.l.
433 ns1702808 290.14 251,583 407.94 377,091 5 407.06
438 ns1766074 152.87 1,212,703 157.33 1,275,784 5 156.68

468 ns25-pr3 1,376.72 219,964 1,384.56 207,664 4 1,379.16
469 ns25-pr9 134.02 23,230 87.58 15,752 3 84.46
472 ns60-pr3 t.l. 1,342,213 7,687.11 1,066,696 2 7,679.68
473 ns60-pr9 246.01 38,056 256.52 38,491 2 250.49

496 opm2.z8.s1 frm00 3,181.25 10,578 5,234.70 11,564 2 4,134.92
501 p2m2p1m1p0n100 1,461.60 64,618,970 1,287.10 64,620,437 30 1,286.83

506 pdh-DBM 15.12 56,602 16.13 57,454 2 15.56
510 pigeon-09 57.25 467,325 74.34 621,353 3 74.10
511 pigeon-10 657.46 4,594,047 670.62 4,676,256 3 670.08
516 pima.lp.sc 737.38 17,850 508.45 9,728 2 453.94

518 prob.15.80.100.4.sc 7,062.42 195,991 7,510.51 187,229 2 7,411.97
519 prob.20.90.100.0.sc 2,032.45 23,035 1,996.37 20,743 2 1,812.63
520 prob.25.80.100.1.sc 1,781.13 8,050 3,707.84 10,279 2 3,127.18
521 prob.25.90.100.2.sc 3,214.90 45,809 4,103.90 45,746 2 3,835.31
522 prob.5.100.100.0.sc 2,110.80 185,749 1,528.52 162,617 2 1,504.69
523 prob.5.100.100.3.sc 4,028.78 270,359 1,898.21 139,086 2 1,860.27

527 pw-myciel4 185.88 26,842 382.78 60,610 7 376.52
544 ran16x16 2,048.57 14,953,792 2,289.32 16,702,697 4 2,289.12

565 rocII 4 11 484.77 158,374 409.18 124,170 5 401.23
571 rococoC10-001000 2,061.76 1,631,422 3,019.17 1,608,535 2 3,016.19

601 SING290 t.l. 237,926 7,850.87 123,885 3 7,706.96
608 sp98ic 746.97 528,380 790.75 536,194 3 780.00

634 tic-tac-toe.lp.sc 3,136.55 52,866 2,674.17 54,071 2 2,585.25
655 wpbc.lp.sc 5,432.18 37,310 4,454.31 44,400 2 4,245.28

arithmetic mean 2,953.86 5,231,313 2,443.72 3,790,026 2,377.76
geometric mean 961.25 215,234 871.64 193,611 844.23
number of t.l. 7 3

effective commercial solver such as IBM ILOG Cplex 12.2, at least in our setting.
In particular, the backdoor branching strategy could solve 4 more instances than
the standard strategy, with a global speedup of about 10% in geometric mean,
and 20% in arithmetic mean. The number of branching nodes decreased by about
10% in geometric mean, and by about 40% in arithmetic mean. An interesting
outcome of our experiments is that approximate backdoors of very small size
may be quite useful in shaping the enumeration tree in a more effective way.

We also performed very preliminary experiments on a variant of our backdoor
branching where the MIPs solved during the sampling phase use strong branch-
ing for a more careful choice of the branching variables, thus making the slave

Backdoor Branching 191

information more reliable and useful for the backdoor choice. This policy turned
out to be rather effective in reducing the time spent in the final run, though this
did not compensate for the sampling time increase due to strong branching, at
least in our current implementation.

Acknowledgments

Research was supported by the Progetto di Ateneo on “Computational Integer
Programming” of the University of Padova.

References

1. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Univer-
sität Berlin; Fakultät II - Mathematik und Naturwissenschaften. Institut für Math-
ematik (2007)

2. Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: Gomory cuts revisited. Operations
Research Letters 19, 1–9 (1996)

3. Bénichou, M., Gauthier, J.M., Girodet, P., Hentges, G., Ribière, G., Vincent, O.:
Experiments in mixed integer linear programming. Mathematical Programming 1,
76–94 (1971)

4. Chvátal, V.: Resolution search. DAMATH: Discrete Applied Mathematics and Com-
binatorial Operations Research and Computer Science 73 (1997)

5. Dilkina, B., Gomes, C.P., Malitsky, Y., Sabharwal, A., Sellmann, M.: Backdoors
to Combinatorial Optimization: Feasibility and Optimality. In: van Hoeve, W.-J.,
Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 56–70. Springer, Heidelberg
(2009)

6. Karzan, F.K., Nemhauser, G.L., Savelsbergh, M.W.P.: Information-based branch-
ing schemes for binary linear mixed integer problems. Mathematical Programming
Computation 1, 249–293 (2009)

7. MIPLIB 2010. Preliminary version, http://miplib.zip.de/
8. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In:

Gottlob, G., Walsh, T. (eds.) IJCAI 2003: Proceedings of the Eighteenth Interna-
tional Joint Conference on Artificial Intelligence, pp. 1173–1178. Morgan Kaufmann,
San Francisco (2003)

http://miplib.zip.de/

A Subexponential Lower Bound for Zadeh’s

Pivoting Rule for Solving Linear Programs and
Games

Oliver Friedmann

Department of Computer Science,
University of Munich, Germany
Oliver.Friedmann@gmail.com

Abstract. The simplex algorithm is among the most widely used algo-
rithms for solving linear programs in practice. Most pivoting rules are
known, however, to need an exponential number of steps to solve some
linear programs. No non-polynomial lower bounds were known, prior to
this work, for Zadeh’s pivoting rule [25].

Also known as the Least-Entered rule, Zadeh’s pivoting method
belongs to the family of memorizing improvement rules, which among
all improving pivoting steps from the current basic feasible solution (or
vertex) chooses one which has been entered least often. We provide the

first subexponential (i.e., of the form 2Ω(
√

n)) lower bound for this rule.
Our lower bound is obtained by utilizing connections between pivot-

ing steps performed by simplex-based algorithms and improving switches
performed by policy iteration algorithms for 1-player and 2-player games.
We start by building 2-player parity games (PGs) on which the pol-
icy iteration with the Least-Entered rule performs a subexponential
number of iterations. We then transform the parity games into 1-player
Markov Decision Processes (MDPs) which corresponds almost immedi-
ately to concrete linear programs.

1 Introduction

The simplex method, developed by Dantzig in 1947 (see [5]), is among the most
widely used algorithms for solving linear programs. One of the most impor-
tant parameterizations of a simplex algorithm is the pivoting rule it employs. It
specifies which non-basic variable is to enter the basis at each iteration of the
algorithm. Although simplex-based algorithms perform very well in practice, es-
sentially all deterministic pivoting rules are known to lead to an exponential
number of pivoting steps on some LPs [21], [18], [1] and [15].

Kalai [19,20] and Matoušek, Sharir and Welzl [22] devised randomized pivoting
rules that never require more than an expected subexponential number of pivot-
ing steps to solve any linear program. The most prominent randomized pivoting
rules probably are Random-Facet [19,20,22] and Random-Edge [4,13,14], for
which, until recently [12], no non-trivial lower bounds given by concrete linear
programs were known.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 192–206, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Subexponential Lower Bound for Zadeh’s Pivoting Rule 193

An interesting deterministic pivoting rule for which no subexponential lower
bound is known yet was suggested by Zadeh [25] (see also [7]). Also known as
the Least-Entered rule, Zadeh’s pivoting method belongs to the family of
memorizing improvement rules, which among all improving pivoting steps from
the current basic feasible solution (or vertex) chooses one which has been entered
least often.

Here, we provide the first subexponential (i.e., of the form 2Ω(
√

n) lower bound
for the this rule.

Techniques used. The linear program on which Least-Entered performs a
subexponential number of iterations is obtained using the close relation between
simplex-type algorithms for solving linear programs and policy iteration (also
known as strategy improvement) algorithms for solving certain 2-player and 1-
player games.

This line of work was started by showing that standard strategy iteration [24]
for parity games [16] may require an exponential number of iterations to solve
them [9]. Fearnley [8] transfered the lower bound construction for parity games
to Markov Decision Processes (MDPs) [17], an extremely important and well
studied family of stochastic 1-player games.

In [11], we recently constructed PGs on which the Random-Facet algorithm
performs an expected subexponential number of iterations. In [12], we applied
Fearnley’s technique to transform these PGs into MDPs, and include an addi-
tional lower bound construction for the Random-Edge algorithm.

The problem of solving an MDP, i.e., finding the optimal control policy and
the optimal values of all states of the MDP, can be cast as a linear program. More
precisely, the improving switches performed by the (abstract) Least-Entered
algorithm applied to an MDP corresponds directly to the steps performed by
the Least-Entered pivoting rule on the corresponding linear program.

Our results. We construct a family of concrete linear programs on which the
number of iterations performed by Least-Entered is 2Ω(

√
n), where n is the

number of variables.
Here, we follow our approach from [12] to obtain a subexponential lower bound

for Zadeh’s pivoting rule by constructing concrete parity games on which the
policy iteration algorithm parameterized with Zadeh’s rule requires a subex-
ponential number of iterations. Then, we transform the PGs into MDPs, and
the linear programs corresponding to our MDPs supply, therefore, concrete lin-
ear programs on which following the Least-Entered pivoting rule leads to an
expected subexponential number of iterations.

As the translation of our PGs to MDPs is a relatively simple step, we directly
present the MDP version of our construction. As a consequence, our construction
can be understood without knowing anything about PGs.

In high level terms, our PGs, MDPs, and the linear programs corresponding
to them, are constructions of ‘pairwise alternating’ binary counters. Consider a
normal binary counter: less significant bits are switched more often than higher
bits, when counting from 0 to 2n−1. Zadeh’s rule would not go through all steps

194 O. Friedmann

from 0 to 2n − 1 on such a counter, because higher bits will be switched before
they are supposed to be switched, as the switching times that are associated
with higher bits will catch up with the switching times associated with lower
bits. Zadeh’s rule, in a sense, requires a “fair” counter that operates correctly
when all bits are switched equally often.

Our solution to this problem is to represent each bit i in the original counter by
two bits i′ and i′′ s.t. only one of those two is actively working as representative
for i. After switching the representative for i – say i′ – from 0 to 1 and back to
0, we change the roles of i′ and i′′ s.t. i′′ becomes the active representative for i.
The inactive i′ can now, while i′′ switches from 0 to 1 and back to 0, catch up
with the rest of the counter in terms of switching fairness: while i′ is inactive,
we switch i′ from 0 to 1 back and forth (without effecting the rest of the counter
as i′ is the inactive representative) until the number of switching times catches
up with the number of switching times of the rest of the counter again.

Another viable approach could be to implement more sophisticated binary
counters like Gray codes (see e.g. [3]). However, the construction of an MDP or
PG that models the behavior of a Gray code-based counter seems to be a very
difficult task.

The rest of this paper is organized as follows. In Section 2 we give a brief intro-
duction to Markov Decision Processes (MDPs) and the primal linear programs
corresponding to them. In Section 3 we review the policy iteration and the sim-
plex algorithms, the relation between improving switches and pivoting steps, and
Zadeh’s Least-Entered pivoting rule. In Section 4, which is the main section
of this paper, we describe our lower bound construction for Least-Entered.
We end in Section 5 with some concluding remarks and open problems.

2 Markov Decision Processes and Their Linear Programs

Markov decision processes (MDPs) provide a mathematical model for sequential
decision making under uncertainty. They are employed to model stochastic op-
timization problems in various areas ranging from operations research, machine
learning, artificial intelligence, economics and game theory. For an in-depth cov-
erage of MDPs, see the books of Howard [17], Derman [6], Puterman [23] and
Bertsekas [2].

Formally, an MDP is defined by its underlying graph G=(V0, VR, E0, ER, r, p).
Here, V0 is the set of vertices (states) operated by the controller, also known
as player 0, and VR is a set of randomization vertices corresponding to the
probabilistic actions of the MDP. We let V = V0 ∪ VR. The edge set E0 ⊆
V0 × VR corresponds to the actions available to the controller. The edge set
ER ⊆ VR × V0 corresponds to the probabilistic transitions associated with each
action. The function r : E0 → R is the immediate reward function. The function
p : ER → [0, 1] specifies the transition probabilities. For every u ∈ VR, we have∑

v:(u,v)∈ER
p(u, v) = 1, i.e., the probabilities of all edges emanating from each

vertex of VR sum up to 1. As defined, the graph G is bipartite, but one can relax
this condition and allow edges from V0 to V0 that correspond to deterministic
actions.

A Subexponential Lower Bound for Zadeh’s Pivoting Rule 195

A policy σ is a function σ : V0 → V that selects for each vertex u ∈ V0

a target node v corresponding to an edge (u, v) ∈ E0, i.e. (u, σ(u)) ∈ E0 wWe
assume that each vertex u ∈ V0 has at least one outgoing edge). There are several
objectives for MDPs; we consider the expected total reward objective here. The
values valσ(u) of the vertices under σ are defined as the unique solutions of the
following set of linear equations:

valσ(u) =

{
valσ(v) + r(u, v) if u ∈ V0 and σ(u) = v∑

v:(u,v)∈ER
p(u, v)valσ(v) if u ∈ VR

together with the condition that valσ(u) sum up to 0 on each irreducible recur-
rent class of the Markov chain defined by σ.

All MDPs considered in this paper satisfy a weak version of the unichain
condition. The normal unichain condition (see [23]) states that the Markov chain
obtained from each policy σ has a single irreducible recurrent class. We discuss
the weak version at the end of this section.

Optimal policies for MDPs that satisfy the unichain condition can be found
by solving the following (primal) linear program

(P)
max

∑
(u,v)∈E0

r(u, v)x(u, v)
s.t.

∑
(u,v)∈E x(u, v) −∑

(v,w)∈E0,(w,u)∈ER
p(w, u)x(v, w) = 1, u ∈ V0

x(u, v) ≥ 0 , (u, v) ∈ E0

The variable x(u, v), for (u, v) ∈ E0, stands for the probability (frequency) of
using the edge (action) (u, v). The constraints of the linear program are con-
servation constraints that state that the probability of entering a vertex u is
equal to the probability of exiting u. It is not difficult to check that the basic
feasible solutions (bfs’s) of (P) correspond directly to policies of the MDP. For
each policy σ we can define a feasible setting of primal variables x(u, v), for
(u, v) ∈ E0, such that x(u, v) > 0 only if σ(u) = (u, v). Conversely, for every bfs
x(u, v) we can define a corresponding policy σ. It is well known that the policy
corresponding to an optimal bfs of (P) is an optimal policy of the MDP. (See,
e.g., [23].)

Our MDPs only satisfy a weak version of the unichain condition, saying that
the optimal policy has a single irreducible recurrent class. It follows that the
optimal policy can be found by the same LPs when being started with an initial
basic feasible solution corresponding to a policy with the same single irreducible
recurrent class as the optimal policy. Then, by monotonicity, we know that all
considered basic feasible solutions will have the same irreducible recurrent class.

It should be noted that all pivoting steps performed on these linear programs
are non-degenerate, due to the fact the we consider the expected total reward
criterion here. The lower bound construction of this paper also works when
applied to the discounted reward criterion (for large enough discount factors),
and also for the limiting average reward criterion. However, in the latter case,
all pivoting steps performed on the induced linear programs are degenerate.

196 O. Friedmann

3 Policy Iteration Algorithms and Simplex Algorithms

Howard’s [17] policy iteration algorithm is the most widely used algorithm for
solving MDPs. It is closely related to the simplex algorithm.

The algorithm starts with some initial policy σ0 and generates an improving
sequence σ0, σ1, . . . , σN of policies, ending with an optimal policy σN . In each
iteration the algorithm first evaluates the current policy σi, by computing the
values valσi(u) of all vertices. An edge (u, v′) ∈ E0, such that σi(u)
= v′ is then
said to be an improving switch if and only if either valσi(v′) > valσi(u). Given
a policy σ, we denote the set of improving switches by Iσ .

A crucial property of policy iteration is that σ is an optimal policy if and
only if there are no improving switches with respect to it (see, e.g., [17], [23]).
Furthermore, if (u, v′) ∈ Iσ is an improving switch w.r.t. σ, and σ′ is defined as
σ[(u, v′)] (i.e., σ′(u) = v′ and σ′(w) = σ(w) for all w
= u), then σ′ is strictly
better than σ, in the sense that for every u ∈ V0, we have valσ′(u) ≥ valσ(u),
with a strict inequality for at least one vertex u ∈ V0.

Policy iteration algorithms that perform a single switch at each iteration – like
Zadeh’s rule – are, in fact, simplex algorithms. Each policy σ of an MDP imme-
diately gives rise to a feasible solution x(u, v) of the primal linear program (P);
use σ to define a Markov chain and let x(u, v) be the ‘steady-state’ probability
that the edge (action) (u, v) is used. In particular, if σ(u)
= v, then x(u, v) = 0.

Zadeh’s Least-Entered pivoting rule is a deterministic, memorizing im-
provement rule which among all improving pivoting steps from the current basic
feasible solution (or vertex) chooses one which has been entered least often.
When applied to the primal linear program of an MDP, it is equivalent to the
variant of the policy iteration algorithm, in which the improving switch is chosen
among all improving switches to be one, which has been chosen least often. This
is the foundation of our lower bound for the Least-Entered rule.

We describe Zadeh’s pivoting rule now formally in the context of MDPs. As
a memorization structure, we introduce an occurrence record, which is a map
φ : E0 → N that specifies for every player 0 edge of the given MDP how often
it has been used. Among all improving switches in the set Iσ for a given policy
σ, we need to choose an edge e ∈ Iσ that has been selected least often. We
denote the set of least occurred improving switches by Iφ

σ = {e ∈ Iσ | φ(e) ≤
φ(e′) for all e′ ∈ Iσ}.

See Algorithm 1 for a pseudo-code specification of the Least-Entered piv-
oting rule for solving MDPs.

In the original specification of Zadeh’s algorithm [25], there is no clear objec-
tive how to break ties whenever |Iφ

σ | > 1. In fact, we know that the asymptotic
behavior of Zadeh’s improvement rule highly depends on the method that is used
to break ties, at least in the world of MDPs, PGs and policy iteration for games
in general. We have the following theorem which is easy to verify (the idea is
that there is at least one improving switch towards the optimal policy in each
step).

A Subexponential Lower Bound for Zadeh’s Pivoting Rule 197

Algorithm 1. Zadeh’s Improvement Algorithm
1: procedure Least-Entered(G,σ)
2: φ(e) ← 0 for every e ∈ E0

3: while Iσ �= ∅ do
4: e ← select edge from Iφ

σ

5: φ(e) ← φ(e) + 1
6: σ ← σ[e]
7: end while
8: end procedure

Theorem 1. Let G be an MDP with n nodes and σ0 be a policy. There is a se-
quence policies σ0, σ1, . . . , σN and a sequence of different switches e1, e2, . . . , eN

with N ≤ n s.t. σN−1 is optimal, σi+1 = σi[ei+1] and ei+1 is an σi-improving
switch.

Since all switches are different in the sequence, it follows immediately that there
is always a way to break ties that results in a linear number of pivoting steps
to solve an MDP with Zadeh’s improvement rule. However, there is no obvi-
ous method of breaking ties. The question whether Zadeh’s pivoting rule solves
MDPs (and LPs) in polynomial time should therefore be phrased independently
of the heuristic of breaking ties. In other words, we as “lower bound designers”
are the ones that choose a particular tie breaking rule

Formally, we write (σ, φ) � (σ′, φ′) iff there is an edge e ∈ Iφ
σ s.t. σ′ = σ[e]

and φ′ = φ[e → φ(e) + 1]. Let �+ denote the transitive closure of �. The
question, whether Zadeh’s improvement rule admits a polynomial number of
iterations independently of the method of breaking ties is therefore equivalent to
the question, whether the length of any sequence (σ0, φ0) �+ . . . �+ (σN , φN)
can be polynomially bounded in the size of the game.

We will not specify the tie-breaking rule used for our lower bound explicitly,
due to the fact that the rule itself is not a natural one. Instead, our proof just
relies on the �-relation, witnessing in every improvement step that we only
select an improving switch that has been applied least often.

4 Lower Bound for Least-Entered

We start with a high-level description of the MDPs on which Least-Entered
performs an expected subexponential number of iterations. As mentioned in
the introduction, the construction may be seen as an implementation of a ‘fair’
counter. A schematic description of the lower bound MDPs is given in Figure 1.
Circles correspond to vertices of V0, i.e., vertices controlled by player 0, while
small rectangles correspond to the randomization vertices of VR. We use the
notation k[i;j] to indicate that player 0 in fact has edges to every node kl with
i ≤ l ≤ j.

The MDP of Figure 1 emulates an n-bit counter. It is composed of n identical
levels, each corresponding to a single bit of the counter. The i-th level (i = 1 . . . n)

198 O. Friedmann

s
3

t k[1;n]

b0i,1
3

ki

2i+7

t k[1;n]
c0i
7

c1i
7

b1i,1
3

k[1;n]

t

A0
i

4
A1

i

4

t

k[1;n]
b0i,0
3

d0
i

6
d1

i

6

b1i,0
3

t
h0

i

2i+8

s s

h1
i

2i+8

k[i+2;n] ki+1

kn+1

2n+9
t
1

Fig. 1. Least Entered MDP Construction

is shown explicitly in the figure. Levels are separated by dashed lines. The MDP
includes one source s and one sink t.

All edges in Figure 1 have an immediate reward of 0 associated with them
(such 0 rewards are not shown explicitly in the figure) unless stated otherwise
as follows: Some of the vertices are assigned integer priorities. If a vertex v
has priority Ω(v) assigned to it, then a reward of 〈v〉 = (−N)Ω(v) is added
to all edges emanating from v, where N is a sufficiently large integer. We use
N ≥ 7n+1 and ε ≤ N−(2n+11). Priorities, if present, are listed next to the vertex
name. Note that it is profitable for the controller, to move through vertices of
even priority and to avoid vertices of odd priority, and that vertices of higher

A Subexponential Lower Bound for Zadeh’s Pivoting Rule 199

numerical priority dominate vertices of lower priority (the idea of using priorities
is inspired, of course, by the reduction from parity games to mean payoff games).

Each level i contains two (i.e. j = 0, 1) instances of a gadget that consists of
a randomization vertex Aj

i and two (i.e. l = 0, 1) attached cycles with player 0
controlled nodes bj

i,l. Therefore, we will call these gadgets from now on bicycle
gadgets, and refer to the instance with j = 0 resp. j = 1 as to bicycle 0 resp.
bicycle 1.

From Aj
i (with j = 0, 1), the edge Aj

i → bj
i,l (with l = 0, 1), is chosen with

probability 1−ε
2 , while the edge Aj

i → dj
i is chosen with probability ε. Thus, if

both σ(bj
i,0) = Aj

i and σ(bj
i,1) = Aj

i , the MDP is guaranteed to eventually move
from Aj

i to dj
i (this is similar to the use of randomization by Fearnley [8]). We

say that a bicycle gadget is

– closed iff both σ(bj
i,0) = Aj

i and σ(bj
i,1) = Aj

i ,
– open iff σ(bj

i,0)
= Aj
i or σ(bj

i,1)
= Aj
i , and

– completely open iff σ(bj
i,0)
= Aj

i and σ(bj
i,1)
= Aj

i .

Next, we introduce notation to succinctly describe binary counters. It will
be convenient for us to consider counter configurations with an infinite tape,
where unused bits are zero. The set of n-bit configurations is formally defined
as Bn = {b ∈ {0, 1}∞ | ∀i > n : bi = 0}.

We start with index one, i.e. b ∈ Bn is essentially a tuple (bn, . . . , b1), with
b1 being the least and bn being the most significant bit. By 0, we denote the
configuration in which all bits are zero, and by 1n, we denote the configuration
in which the first n bits are one. We write B =

⋃
n>0 Bn to denote the set of all

counter configurations.
The integer value of a b ∈ B is defined as usual, i.e. |b| :=

∑
i>0 bi ·2i−1 < ∞.

For two b, b′ ∈ B, we induce the lexicographic linear ordering b < b′ by |b| < |b′|.
It is well-known that b ∈ B → |b| ∈ N is a bijection. For b ∈ B and k ∈ N let
b+k denote the unique b′ s.t. |b′| = b+k. If k ≤ |b|, let b−k denote the unique
b′ s.t. |b′| + k = |b|.

Given a configuration b, we access the i-next set bit by νn
i (b) = min({n+1}∪

{j ≥ i | bj = 1}), and the i-next unset bit by μi(b) = min{j ≥ i | bj = 0}.
The i-th level of the MDP corresponds to the i-th bit. A set bit is represented

by a closed bicycle gadget. Every level has two bicycle gadgets, but only one of
them is actively representing the i-th bit.

Whether bicycle 0 or bicycle 1 is active in level i depends on the setting of
the i+1-th bit. If it is set, i.e. bi+1 = 1, then bicycle 1 is active in the i-th level;
otherwise, if bi+1 = 0, we have that bicycle 0 is active in the i-th level.

Our proof is conceptually divided into two parts. First we investigate the
improving switches that can be performed from certain policies of the MDP. This
allows us to prove the existence of a sequence of improving switches that indeed
generates the sequence of policies σ0...00, σ0...01, σ0...10, . . . , σ1...11. A transition
from σb to σb+1 involves many intermediate improvement steps. We partition
the path leading from σb to σb+1 into six sub-paths which we refer to as phases.
In the following, we first give an informal description of the phases. The second

200 O. Friedmann

part of our proof will be to show that the way we want to apply the improving
switches is compliant with the associated occurrence records.

Before starting to describe what happens in the different phases, we describe
the “ideal” configuration of a policy, which belongs to phase 1: (1) all active
bicycles corresponding to set bits are closed, (2) all other bicycles are completely
open, moving to the least set bit, (3) all entry points ki move to the active bicycle
if bit i is set and to the least set bit otherwise, (4) the source s moves to the
least set bit, (5) all upper selection nodes h0

i move to the next accessible set bit
(i.e. to the next set bit with index ≥ i+2), and (6) the selection nodes dj

i move
higher up iff the immediately accessed bit is the next set bit (i.e. d0

i moves higher
up iff bi+1 = 0 and d1

i moves higher up iff bi+1 = 1).
Note that the two upper selection nodes h0

i and h1
i cannot select the same

entry points. The left node, h0
i , can select from the entry points ki+2 up to kn,

while the right node, h1
i , can only move to ki+1. The intuition behind this is

that bit i+1 is set every second time bit i is flipped, resulting in the alternating
activation of the two bit representatives for i.

Now, we are ready to informally describe all phases.

1. At the beginning of the first phase, we only have open bicycles that are
competing with each other to close. Inactive bicycles may have to catch up
with active bicycles, and hence, are allowed to switch both player 0 edges
inward, and therefore close the gadget. All active open bicycles move exactly
one edge inward in this phase.
So far, no active open bycycles have been closed. The last switch that is
performed in this phase is to move the remaining edge of the active bicycle
associated with the least unset bit inward, and therefore close the gadget.

2. In this phase, we need to make the recently set bit i accessible by the rest
of the MDP, which will be via the ki node. We switch here from ki to cj

i ,
where j denotes the active representative in this level.
Note that ki now has the highest value among all other k∗. Note that gen-
erally, kl has a higher value than kz for a set bit l and an unset bit z, and
that kl has a higher value than kz for two set bits l and z iff l < z.

3. In the third phase, we perform the major part of the resetting process. By
resetting, we mean to unset lower bits again, which corresponds to reopening
the respective bicycles.
Also, we want to update all other inactive or active but not set bicycles again
to move to the entry point ki. In other words, we need to update the lower entry
points kz with z<i to move to ki, and the bicycle nodes bj

z,l to move to ki.
We apply these switches by first switching the entry node kz for some z < i,
and then the respective bicycle nodes bj

z,l.
4. In the fourth phase, we update the upper selection nodes h0

z for all z < i− 1
of the bits that have been reset. All nodes h0

z should move to ki.
5. In the fifth phase, we update the source node to finally move to the entry

point corresponding to the recently set bit i.
6. In the last phase, we only have to update the selection nodes dj

z for all z < i
of the bits that have been reset. We finally end up in a phase 1 policy again
with the counter increased by one.

A Subexponential Lower Bound for Zadeh’s Pivoting Rule 201

4.1 Full Construction

In this subsection, we formally describe the full construction of our MDPs. We
define an underlying graph Gn = (V0, VR, E0, ER, r, p) of an MDP as shown
schematically in Figure 1 as follows:

V0 := {b0i,0, b1i,0, b0i,1, b1i,1, d0
i , d

1
i , h

0
i , h

1
i , c

0
i , c

1
i | i ∈ [n]}∪{ki | i ∈ [n + 1]}∪{t, s}

VR := {A0
i ,A

1
i | i ∈ [n]}

With Gn, we associate a large number N ∈ N and a small number 0 < ε.
We require N to be at least as large as the number of nodes with priorities, i.e.
N ≥ 7n+1 and ε−1 to be significantly larger than the largest occurring priority
induced reward, i.e. ε ≤ N−(2n+11). Remember that node v having priority Ω(v)
means that the cost associated with every outgoing edge of v is 〈v〉 = (−N)Ω(v).

Table 1 defines the edge sets, the probabilities, the priorities and the immedi-
ate rewards of Gn (note that h0

i has the successors t, ki+2, . . . kn; particularly,
h0

n has only t as successor).

Table 1. Least Entered MDP Construction

Node Successors Probability

Aj
i dj

i ε

bj
i,0

1
2
· (1 − ε)

bj
i,1

1
2
· (1 − ε)

Node Successors Priority

t t -
s t, k[1;n] -

Node Successors Priority

kn+1 t 2n+9
ki c0

i , c
1
i , t, k[1;n] 2i+7

h0
i t, k[i+2;n] 2i+8

h1
i ki+1 2i+8

cj
i Aj

i 7

dj
i hj

i , s 6

bj
i,∗ t,Aj

i , k[1;n] -

As designated initial policy σ∗, we use σ∗(dj
i) = hj

i , and σ∗() = t for all other
player 0 nodes with non-singular out-degree. It is not hard to see that, starting
with this initial policy, the MDP satisfies the weak unichain condition.

Lemma 1. The Markov chains obtained by the initial and the optimal policy
reach the sink t almost surely (i.e. the sink t is the single irreducible recurrent
class).

It is not too hard to see that the absolute value of all nodes corresponding to
policies belonging to the phases are bounded by ε−1. More formally we have:

Lemma 2. Let P = {k∗, h∗∗, c∗∗, d∗∗} be the set of nodes with priorities. For a
subset S ⊆ P , let

∑
(S) =

∑
v∈S 〈v〉. For non-empty subsets S ⊆ P , let vS ∈ S

be the node with the largest priority in S.

1. |∑(S)| < N2n+11 and ε · |∑(S)| < 1 for every subset S ⊆ P , and
2. |vS | < |vS′ | implies |∑(S)| < |∑(S′)| for non-empty subsets S, S′ ⊆ P .

202 O. Friedmann

4.2 Lower Bound Proof

In this subsection, we formally describe the different phases that a policy can be
in, as well as the improving switches in each phase. The increment of the binary
counter by one is realized by transitioning through all the phases. Finally, we
describe the corresponding occurrence records that appear in a run of the policy
iteration on the MDPs.

We first introduce notation to succinctly describe policies. It will be convenient
to describe the decision of a policy σ in terms of integers rather than concrete
target vertices. Let σ be a policy. We define a function σ̄(v) as follows.

σ(v) t ki h
∗∗ s A∗

∗ cj
i

σ̄(v) n + 1 i 1 0 0 −j

Additionally, we write σ̄(Aj
i) = 1 if σ(bj

i,0) = Aj
i and σ(bj

i,1) = Aj
i , and σ̄(Aj

i) = 0
otherwise.

We are now ready to formulate the conditions for policies that fulfill one
of the six phases along with the improving edges. See Table 2 for a complete
description (with respect to a bit configuration b). We say that a strategy σ is a
phase p strategy with configuration b iff every node is mapped by σ to a choice
included in the respective cell of the table. Cells that contain more than one
choice indicate that strategies of the respective phase are allowed to match any
of the choices.

Table 2. Policy Phases (where b′ = b + 1, r = νn
1 (b) and r′ = νn

1 (b′))

Phase 1 2 3 4 5 6

σ̄(s) r r r r r r′

σ̄(d0
i) 1−bi+1 1−bi+1 1−bi+1 1−bi+1 1−bi+1 1−bi+1, 1−b′

i+1

σ̄(d1
i) bi+1 bi+1 bi+1 bi+1 bi+1 bi+1, b′

i+1

σ̄(h0
i) νn

i+2(b) νn
i+2(b νn

i+2(b) νn
i+2(b), νn

i+2(b
′) νn

i+2(b
′) νn

i+2(b
′)

σ̄(b∗∗,∗) 0, r 0, r 0, r, r′ 0, r′ 0, r′ 0, r′

σ̄(A
bi+1
i) bi ∗ ∗ ∗ ∗ ∗

σ̄(A
b′

i+1
i) ∗ b′

i b′
i b′

i b′
i b′

i

Phase 1–2 3 4–6

σ̄(ki)

{
r if bi = 0

−bi+1 if bi = 1

⎧⎪⎨⎪⎩
r, r′ if b′

i = 0 and bi = 0

−bi+1, r
′ if b′

i = 0 and bi = 1

−b′
i+1 if b′

i = 1

{
r′ if b′

i = 0

−b′
i+1 if b′

i = 1

Phase 3 Side Conditions

(a) ∀i.
((

b′
i = 0 and (∃j, l.σ̄(bj

i,l) = r′)
)

implies σ̄(ki) = r′
)

(b) ∀i, j.
((

b′
i = 0, b′

j = 0, σ̄(ki) = r′ and σ̄(kj) �= r′
)

implies i > j
)

A Subexponential Lower Bound for Zadeh’s Pivoting Rule 203

Table 3. Improving Switches (where b′ = b + 1 and r′ = νn
1 (b′))

Ph. p Improving Switches Subset Lp
σ Improving Switches Superset Up

σ

1 {(bj
i,l,A

j
i) | σ(bj

i,l) �= Aj
i} L1

σ

2 {(kr′ , c
b′

r′+1
r′)} L1

σ ∪ L2
σ

3 {(ki, kr′) | σ̄(ki) �= r′∧b′
i = 0}∪ U4

σ∪{(ki, kz) | σ̄(ki) �∈{z, r′}, z≤r′∧b′
i=0}∪

{(bj
i,l, kr′) | σ̄(bj

i,l) �= r′∧b′
i = 0}∪ {(bj

i,l, kz) | σ̄(bj
i,l) �∈{z, r′}, z≤r′∧b′

i=0}∪
{(bj

i,l, kr′) | σ̄(bj
i,l) �= r′∧b′

i+1 �= j} {(bj
i,l, kz) | σ̄(bj

i,l) �∈{z, r′}, z≤r′∧b′
i+1 �=j}

4 {(h0
i , kνn

i+2(b′)) | σ̄(h0
i) �= νn

i+2(b
′)} U5

σ∪{(h0
i , kl) | l ≤ νn

i+2(b
′)}

5 {(s, kr′)} U6
σ∪{(s, ki) | σ̄(s) �=i∧i<r′}∪
{(dj

i , x) | σ(dj
i) �=x∧i<r′}

6 {(d0
i , x) | σ(d0

i) �= x∧σ̄(d0
i) �= b′

i+1}∪ L1
σ∪L6

σ

{(d1
i , x) | σ(d1

i) �= x∧σ̄(d1
i) = b′

i+1}

The following lemma tells us that all occurring values in the policy iteration
are small compared to N2n+11. Particularly, ε-times values are almost negligible.

Lemma 3. Let σ be a policy belonging to one of the phases specified in Table 2.
Then |valσ(v)| < N2n+11 and ε · |valσ(v)| < 1 for every node v.

Table 3 specifies the sets of improving switches by providing for each phase p
a subset Lp

σ and a superset Up
σ s.t. Lp

σ ⊆ Iσ ⊆ Up
σ . The intuition behind this

method of giving the improving switches is that we will only use switches from
Lp

σ while making sure that no other switches from Up
σ are applied.

We finally arrive at the following main lemma describing the improving
switches.

Lemma 4. The improving switches from policies that belong to the phases in
Table 2 are bounded by those specified in Table 3, i.e. Lp

σ ⊆ Iσ ⊆ Up
σ for a phase

p policy σ.

Note that phase 1 policies do not say anything about the particular configuration
of inactive or open bicycles. To specify that all bicycles are either closed or
completely opened, we say that a phase 1 policy σ is an initial phase 1 policy if
σ̄(bj

i,l) = 0 iff bi = 1 and bi+1 = j.
Next, we specify the occurrence records w.r.t. b ∈ Bn that we want to have

for an initial phase 1 policy σ. As described earlier, the entries of the occurrence
records essentially depend on the number of bit flips of a certain index that have
happened while counting up to b.

More precisely, we need to be able to count the number of occurred bit set-
tings that match a certain scheme, which is a description of how a certain bit
configuration should look like. Formally, a scheme is a set S ⊆ (N\{0})×{0, 1}.
Let b ∈ B. We write S |= b iff bi = q for all (i, q) ∈ S. We can now define the
set of bit configurations leading to b that match the scheme. Formally, we define
the match set as M(b, S) = {b′ ≤ b | S |= b′}.

204 O. Friedmann

We are most interested in schemes that correspond to flipping the i-th bit
to one, i.e. schemes that demand for every bit j < i to be zero. We define the
flip set w.r.t. an index i and an additional scheme S by F (b, i, S) = M(b, S ∪
{(i, 1)} ∪ {(j, 0) | 0 < j < i}). We drop the parameter S if S = ∅.

We use the flip set to specify two numbers. First, we define the number of
bit flips as the cardinality of the flip set by f(b, i, S) = |F (b, i, S)|. Second, we
compute the maximal flip number representation in the flip set by g(b, i, S) =
max({0} ∪ {|b′| | b′ ∈ F (b, i, S)}).

Table 4 specifies the occurrence record of an initial phase 1 policy. The techni-
cal conditions for the cycle components essentially say that (1) both cycle edges
attached to Aj

i differ at most by one, that (2) the addition of both edges be-
longing to an active unset cycle equal |b|, that (3) the addition of both edges
belonging to an active set cycle equal the maximal flip number when the respec-
tive bit was set, and that (4) recently opened inactive cycles are in the process
of catching up with |b| again.

Table 4. Occurrence Records

Edge e (∗, t) (s, kr) (h0
∗, kr) (bj

i,∗, kr)

φb(e) 0 f(b, r) f(b, r) f(b, r, {(i, 0)})+f(b, r, {(i, 1), (i+1, 1−j)})
Edge e (ki, kr) (ki, c

j
i) (dj

i , s) (dj
i , h

j
i)

φb(e) f(b, r, {(i, 0)}) f(b, i, {(i+1, j)}) f(b, i+1)−j · bi+1 f(b, i+1)−(1−j) · bi+1

Complicated Conditions

|φb(bj
i,0,A

j
i)−φb(bj

i,1,A
j
i)| ≤ 1

φb(bj
i,0,A

j
i)+φb(bj

i,1,A
j
i) =⎧⎪⎨⎪⎩

g∗ + 1 if bi = 1 and bi+1 = j

g∗ + 1 + 2 · z if bi+1 �= j and z := |b| − g∗ − 2i−1 < 1
2
(|b| − 1 − g∗)

|b| otherwise

,

where g∗ = g(b, i, {(i+1, j)})

We are now ready to specify our main lemma describing the transitioning
from an initial phase 1 policy corresponding to b to a successor initial phase 1
policy corresponding to b′, complying with the respective occurrence records.

Lemma 5. Let σ be an initial phase 1 policy with configuration b < 1n. There is
an initial phase 1 policy σ′ with configuration b′ = b+1 s.t. (σ, φb) �+ (σ′, φb′

).

It follows immediately that the MDPs provided here indeed simulate a binary
counter.

Theorem 2. The number of improving steps performed by Least-Entered on
the MDPs constructed in this section, which contain O(n2) vertices and edges,
is Ω(2n).

The primal linear programs corresponding to the MDPs constructed in this
section are thus linear programs on which the simplex algorithm with Zadeh’s
pivoting rule performs a subexponential number of iterations.

A Subexponential Lower Bound for Zadeh’s Pivoting Rule 205

5 Concluding Remarks and Open Problems

We have shown that Zadeh’s Least-Entered rule [25] may lead to a subexpo-
nential number of iterations by constructing explicit linear programs with n vari-
ables on which the expected number of iterations performed by Least-Entered
is 2Ω(

√
n).

The lower bound for linear programming has been obtained by constructing
explicit parity games and subsequently MDPs on which we have the same ex-
pected number of iterations when solved by policy iteration. The lower bound
result immediately transfers to mean payoff games, discounted payoff games and
turned-based simple stochastic games [10].

The tie-breaking rule that we employed to prove the lower bound was non-
explicit and definitely not a natural one. It would be interesting to see, whether
it is easily possible to transform the MDPs presented here, in order to obtain an
exponential lower bound for Zadeh’s rule with a natural tie-breaking rule.

The most interesting open problems are, perhaps, whether linear programs
can be solved in strongly polynomial time, whether the weak Hirsch conjecture
holds, and whether there is a polynomial time algorithm for solving parity games
or related game classes.

Acknowledgments. I would like to thank Uri Zwick and Thomas Dueholm
Hansen for pointing me to this challenging pivoting rule and for numerous in-
spiring discussions on the subject. Also, I would like to thank the anonymous
referees for their thorough reports that me helped to improve the presentation
of this paper.

References

1. Avis, D., Chvátal, V.: Notes on Bland’s pivoting rule. In: Polyhedral Combina-
torics, Mathematical Programming Studies, vol. 8, pp. 24–34. Springer, Heidelberg
(1978), http://dx.doi.org/10.1007/BFb0121192

2. Bertsekas, D.: Dynamic programming and optimal control, 2nd edn. Athena Sci-
entific, Singapore (2001)

3. Bhat, G.S., Savage, C.D.: Balanced gray codes. Electronic Journal of Combina-
torics 3, 2–5 (1996)

4. Broder, A., Dyer, M., Frieze, A., Raghavan, P., Upfal, E.: The worst-case running
time of the random simplex algorithm is exponential in the height. Inf. Process.
Lett. 56(2), 79–81 (1995)

5. Dantzig, G.: Linear programming and extensions. Princeton University Press,
Princeton (1963)

6. Derman, C.: Finite state Markov decision processes. Academic Press, London
(1972)

7. Fathi, Y., Tovey, C.: Affirmative action algorithms. Math. Program. 34(3), 292–301
(1986)

8. Fearnley, J.: Exponential lower bounds for policy iteration. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 551–562. Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/BFb0121192

206 O. Friedmann

9. Friedmann, O.: An exponential lower bound for the parity game strategy improve-
ment algorithm as we know it. In: Proc. of 24th LICS, pp. 145–156 (2009)

10. Friedmann, O.: An exponential lower bound for the latest deterministic strategy
iteration algorithms. Selected Papers of the Conference “Logic in Computer Science
2009” (to appear) (2010), a preprint available from http://www.tcs.ifi.lmu.de/

~friedman

11. Friedmann, O., Hansen, T., Zwick, U.: A subexponential lower bound for the ran-
dom facet algorithm for parity games. In: Proc. of 22nd SODA (2011) (to appear)

12. Friedmann, O., Hansen, T., Zwick, U.: Subexponential lower bounds for random-
ized pivoting rules for solving linear programs (2011), a preprint available from
http://www.tcs.ifi.lmu.de/~friedman

13. Gärtner, B., Henk, M., Ziegler, G.: Randomized simplex algorithms on Klee-
Minty cubes. Combinatorica 18(3), 349–372 (1998), http://dx.doi.org/10.1007/
PL00009827

14. Gärtner, B., Tschirschnitz, F., Welzl, E., Solymosi, J., Valtr, P.: One line and n
points. Random Structures & Algorithms 23(4), 453–471 (2003), http://dx.doi.
org/10.1002/rsa.10099

15. Goldfarb, D., Sit, W.: Worst case behavior of the steepest edge simplex method.
Discrete Applied Mathematics 1(4), 277–285 (1979),
http://www.sciencedirect.com/science/article/B6TYW-45GVXJ1-2B/2/

a7035da2cf84d35e9503c69f883c23f7

16. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

17. Howard, R.: Dynamic programming and Markov processes. MIT Press, Cambridge
(1960)

18. Jeroslow, R.G.: The simplex algorithm with the pivot rule of maximizing criterion
improvement. Discrete Mathematics 4(4), 367–377 (1973),
http://www.sciencedirect.com/science/article/B6V00-45FSNXP-1H/2/

0968f0b25d2d8a2e0e160a8a248d06de

19. Kalai, G.: A subexponential randomized simplex algorithm (extended abstract).
In: Proc. of 24th STOC. pp. 475–482 (1992)

20. Kalai, G.: Linear programming, the simplex algorithm and simple polytopes. Math-
ematical Programming 79, 217–233 (1997)

21. Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Shisha, O. (ed.)
Inequalities III, pp. 159–175. Academic Press, New York (1972)

22. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear program-
ming. Algorithmica 16(4-5), 498–516 (1996)

23. Puterman, M.: Markov decision processes. Wiley, Chichester (1994)
24. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving

parity games (Extended abstract). In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

25. Zadeh, N.: What is the worst case behavior of the simplex algorithm? Tech. Rep. 27,
Department of Operations Research, Stanford (1980)

http://www.tcs.ifi.lmu.de/~friedman
http://www.tcs.ifi.lmu.de/~friedman
http://www.tcs.ifi.lmu.de/~friedman
http://dx.doi.org/10.1007/PL00009827
http://dx.doi.org/10.1007/PL00009827
http://dx.doi.org/10.1002/rsa.10099
http://dx.doi.org/10.1002/rsa.10099
http://www.sciencedirect.com/science/article/B6TYW-45GVXJ1-2B/2/a7035da2cf84d35e9503c69f883c23f7
http://www.sciencedirect.com/science/article/B6TYW-45GVXJ1-2B/2/a7035da2cf84d35e9503c69f883c23f7
http://www.sciencedirect.com/science/article/B6V00-45FSNXP-1H/2/0968f0b25d2d8a2e0e160a8a248d06de
http://www.sciencedirect.com/science/article/B6V00-45FSNXP-1H/2/0968f0b25d2d8a2e0e160a8a248d06de

An Iterative Scheme for Valid Polynomial

Inequality Generation in Binary Polynomial
Programming

Bissan Ghaddar1,	, Juan C. Vera2, and Miguel F. Anjos3,		

1 Department of Management Sciences, University of Waterloo,
Waterloo, ON, Canada, N2L 3G1

bghaddar@uwaterloo.ca
2 Tilburg School of Economics and Management, Tilburg University,

Tilburg, The Netherlands
j.c.veralizcano@uvt.nl

3 Département de Mathématiques et génie industriel & GERAD,
École Polytechnique de Montréal, Montréal, QC Canada H3T 1J4

anjos@stanfordalumni.org

Abstract. Semidefinite programming has been used successfully to build
hierarchies of convex relaxations to approximate polynomial programs.
This approach rapidly becomes computationally expensive and is often
tractable only for problems of small sizes. We propose an iterative scheme
that improves the semidefinite relaxations without incurring exponential
growth in their size. The key ingredient is a dynamic scheme for generat-
ing valid polynomial inequalities for general polynomial programs. These
valid inequalities are then used to construct better approximations of the
original problem. As a result, the proposed scheme is in principle scalable
to large general combinatorial optimization problems. For binary poly-
nomial programs, we prove that the proposed scheme converges to the
global optimal solution for interesting cases of the initial approximation
of the problem. We also present examples illustrating the computational
behaviour of the scheme and compare it to other methods in the litera-
ture.

Keywords: Binary Polynomial Programming, Binary Quadratic Pro-
gramming, Valid Inequality Generation, Semidefinite Programming.

1 Introduction

Semidefinite programming is now well recognized as a powerful tool for combina-
torial optimization. Early research in this vein has yielded improved approxima-
tion algorithms and very tight bounds for some hard combinatorial optimization
� Research supported by a Canada Graduate Scholarship from the Natural Sciences

and Engineering Research Council of Canada.
�� Research partially supported by the Natural Sciences and Engineering Research

Council of Canada, and by a Humboldt Research Fellowship.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 207–222, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

208 B. Ghaddar, J.C. Vera, and M.F. Anjos

problems, see [22] and the references therein. As a consequence, interest in the
application of semidefinite techniques to combinatorial optimization problems
has continued unabated since the mid-1990s. This has included not only theo-
retical approximation guarantees but also the development and implementation
of algorithms for efficiently solving semidefinite (SDP) relaxations of combina-
torial optimization problems. Noteworthy developments in this direction include
the biqmac solver for max-cut [35], an SDP-based branch-and-bound solver for
max-k-cut [9], extremely tight bounds for the quadratic assignment problem [36],
and exact solutions for single-row layout [1] as well as related quadratic linear
ordering problems [11].

Since the seminal work of Lasserre [18], intense research activity has been car-
ried out on polynomial programming (PP) and the related theory of moments.
The main idea is the application of representation theorems to characterize the
set of polynomials that are non-negative on a given domain. This research in-
cludes the recent work of de Klerk and Pasechnik [5], Lasserre [17,18], Laurent
[20,21], Nie, Demmel, and Sturmfels [26], Parrilo [27,29], Peña, Vera, and Zu-
luaga [31,45], and the early work of Nesterov [24], Shor [39], and the S-Lemma
of Yakubovich (see [33]) among others. Specifically for binary optimization, the
specialization of Lasserre’s construction to binary PPs was shown to converge
in a finite number of steps in [17] and the relationship of the Lasserre hierarchy
to other well-known hierarchies was studied in works such as [19,20].

All the PP-based approaches rely on the construction of sums-of-squares
(SOS) certificates of non-negativity for a suitable representation of the PP prob-
lem. While the resulting hierarchies yield very tight approximations of the orig-
inal PP problem, from a computational perspective, these hierarchies all suffer
from a common limitation, namely the explosion in size of the SDP relaxations
involved. This fast growth in the size of the SDPs also affects formulations of
combinatorial problems as PPs. One way to overcome this difficulty is to exploit
the structure of the problem. This can be done either by taking advantage of
symmetry as in Bai, de Klerk, Pasechnik, and Sotirov [2], de Klerk [4], de Klerk,
Pasechnik, and Schrijver [6], de Klerk and Sotirov [7], and Gatermann and Par-
rilo [8], or by exploiting sparsity as in Kojima, Kim, and Waki [15], Waki, Kim,
Kojima, and Muramatsu [41,42], and several others [12,13,14,16,25]. However,
in the absence of any favorable structure, the practical application of the SOS
approach is severely limited.

The motivation for our work is to devise ways to take advantage of the strength
of the PP approach without depending on the presence of exploitable structure
in the problem or paying a high computational price. To achieve this objective, it
is imperative to avoid the growth of the complexity of the non-negativity certifi-
cates involved. For this purpose, instead of growing the degree of the certificates
(which results in an exponential growth of the size of the relaxation), we fix the
degree of the polynomials that we use and increase the set of polynomial in-
equalities describing the feasible set of the PP problem. These valid inequalities
are then used to construct new certificates that provide better approximations.
We obtain the valid inequalities by means of a dynamic inequality generation

An Iterative Scheme for Valid Polynomial Inequality Generation in BPP 209

scheme (DIGS) that makes use of information from the objective function to
dynamically generate polynomial inequalities that are valid on the feasible re-
gion of the PP problem. The result is an iterative scheme that provides better
and better SDP approximations without growing the degree of the certificates
involved.

In this paper, we describe in some detail our proposed iterative scheme for
general PP, and specialize it to binary PPs. Our method for the binary case
can be seen as a generalization, from the linear case to higher degrees, of the
lift and project methods of Balas, Ceria, and Cornuéjols [3], Sherali and Adams
[37], and Lovász and Schrijver [23]. We prove that for binary PPs, the proposed
scheme converges to the global optimal solution for interesting cases of the ini-
tial approximation of the problem. We also provide computational examples to
highlight the advantages of the proposed scheme with respect to Lasserre’s ap-
proach as well as to the lift-and-project method of Balas, Ceria, and Cornuéjols.
The potential impact of the methodology presented here is significant, since it
provides a means to tightly approximate binary PPs that, unlike previously pro-
posed hierarchies of SDP relaxations, is in principle scalable to large general
combinatorial optimization problems.

1.1 Polynomial Programming Problem

Consider the general PP problem whose objective and constraints are multivari-
ate polynomials,

(PP-P) z = sup f(x)
s.t. gi(x) ≥ 0 i = 1, . . . ,m.

Let S = {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . ,m}, be the feasible set of (PP-P). We
can rephrase (PP-P) as

(PP-D) inf λ
s.t. λ− f(x) ≥ 0 ∀ x ∈ S. (1)

The condition λ − f(x) ≥ 0 for all x ∈ S is NP-hard for most (interesting)
choices of S. To obtain computable relaxations of (PP-D), one uses tractable
relaxations of condition (1) that can be re-phrased in terms of a linear system of
equations involving positive semidefinite matrices [18,24,28,29,30,39,43], second-
order cones [10], or linear problems [19,38,45].

1.2 Approximations Hierarchies for Polynomial Programs

Lasserre [18] introduced semidefinite relaxations corresponding to liftings of PPs
into higher dimensions. The construction is motivated by results related to the
representations of non-negative polynomials as SOS and the dual theory of mo-
ments. Lasserre shows that the global maximum of f(x) over a compact set S
defined by polynomial inequalities reduces to solving a sequence of SOS rep-
resentations for polynomials that are non-negative on S. The convergence of

210 B. Ghaddar, J.C. Vera, and M.F. Anjos

Lasserre’s method is based on the assumption that {g1(x), . . . , gm(x)}, the given
description of S, allows the application of Putinar’s Theorem [34]. In particular,
it assumes that S is compact.

For ease of notation, define g0(x) = 1 and G = {gi(x) : i = 0, 1, . . . ,m}. For a
given r > 0, a relaxation on the original polynomial program (PP-P) is obtained,

μr
G = inf

λ,σi(x)
λ

s.t. λ− f(x) =
m∑

i=0

σ0(x)gi(x) (2)

σi(x) is SOS of degree ≤ (r − deg(gi)) i = 0, . . . ,m.

Being an SOS of a given degree can be expressed in terms of SDP matrices,
and thus the optimization problem (2) can be reformulated as a semidefinite
program [39]. By increasing the value of r, one can build up a sequence of
convex semidefinite relaxations of increasing size. Under mild conditions the
optimal values of these problems converge to the global optimal value of the
original non-convex problem (PP-P) [18,29].

Using Lasserre’s approach for general polynomial programs, one may approach
the global optimal value as closely as desired by solving a sequence of SDPs that
grow in the size of the semidefinite matrices and in the number of constraints.
The computational cost of the procedure clearly depends on both r and n, the
number of variables. Problem (2) is computationally expensive in practice for
r > 2 since the number of variables and constraints of (2) can be large, espe-
cially when using higher degree polynomials. For a problem with n variables and
m inequality constraints, the optimization problem (2) has m + 1 semidefinite
matrices of dimension O(nr) and O(nr) constraints.

1.3 Dynamic Approximations for Polynomial Programs

In this paper, we propose a scheme to dynamically generate valid polynomial
inequalities for general PPs. Instead of growing r and increasing the size of
the problem exponentially, we propose to fix r to a small value (mainly to d,
the degree of f(x)) and improve the relaxation (2) by growing the set G, i.e.,
by adding valid polynomial inequalities to the description of S. Our approach
makes use of information from the objective function to dynamically generate
polynomial inequalities that are valid on the feasible region.

Before diving into the technical details, we use an example to show how the
method works.

Example 1. Consider the non-convex quadratic knapsack problem with n = 3
and d = 2:

max 62x1 + 19x2 + 28x3 + 52x1x2 + 74x1x3 + 16x2x3

s.t. 12x1 + 44x2 + 11x3 ≤ 66 (3)
x1, x2, x3 ∈ {0, 1}.

An Iterative Scheme for Valid Polynomial Inequality Generation in BPP 211

The optimal value for (3) is z = 164. Let f(x) = 62x1 + 19x2 + 28x3 + 52x1x2 +
74x1x3 + 16x2x3. Setting r = 2 and replacing the condition xi ∈ {0, 1} with
0 ≤ xi ≤ 1 and x2

i − xi = 0, we obtain the following relaxation

min λ

s.t. λ− f(x) = s(x) + a(66 − 12x1 − 44x2 − 11x3) +
3∑

i=1

bi(1 − xi)

+
3∑

i=1

cixi +
3∑

i=1

di(xi − x2
i),

s(x) is SOS of degree ≤ 2, a, bi, ci ∈ R+, di ∈ R

which has an objective value of 249.16. This is an upper bound on the optimal
value of (3).

If one wants to improve the value using Lasserre’s method, the hierarchy of
SDPs shown in Table 1 must be solved.

Table 1. Results for Lasserre’s hierarchy. The optimal solution is obtained with r = 6.

r 2 4 6 8

objective value 249.1 226.2 164.0 164.0
psd matrices 4×4(1) 10×10(1) 20×20(1) 35×35(1)

1×1(13) 4×4(13), 10×10(13), 20×20(13)
total # of vars 26 135 925 3360
total # of constraints 10 35 84 165

By contrast, using our method we first generate a quadratic valid inequality

p(x) = 0.809− 0.388x1 − 0.037x2 − 0.361x3 − 0.099x1x2 − 0.086x2x3

and solve (2) with r = 2 again, this time taking G = {1, 66 − 12x1 + 44x2 +
11x3, xi, 1 − xi, x

2
i − xi,

xi − x2
i , p(x)}. An objective function value of 243.22 is obtained. Performing

this approach iteratively, one is able to improve the bound and obtain a tighter
approximation of the original problem. After adding 11 inequalities we obtain an
objective of 164.00 which is the optimal value of (3). In Table 2, the details on the
size of the corresponding master problem and polynomial generation subproblem
are given.

The key idea in the DIGS method is that if we can generate a new valid
inequality for which we do not currently have a non-negativity certificate. We
can use this new inequality, in combination with the previous ones, to generate
new non-negativity certificates. This is formalized in Lemma 1. Before presenting
Lemma 1 we define the notation we will use in the rest of the paper.

212 B. Ghaddar, J.C. Vera, and M.F. Anjos

Table 2. Results for the proposed Dynamic Inequality Generation Scheme

i 0 1 2 3 · · · 9 10 11

objective value 249.1 243.2 238.9 235.1 · · · 164.2 164.0 164.0

Master Problem
psd matrices 4x×4(1) 4×4(1) 4×4(1) 4×4(1) · · · 4×4(1) 4×4(1) 4×4(1)
non-negative vars 7 8 9 10 · · · 16 17 18
free vars 3 3 3 3 · · · 3 3 3
total # of vars 20 21 22 23 · · · 29 30 31
total # of constraints 10 10 10 10 · · · 10 10 10

Subproblem
psd matrices - 4×4(2) 4×4(2) 4×4(2) · · · 4×4(2) 4×4(2) 4×4(2)
non-negative vars - 14 16 18 · · · 30 32 34
free vars - 20 20 20 · · · 20 20 20
total # of vars - 54 56 58 · · · 70 72 74
total # of constraints - 20 20 20 · · · 20 20 20

Notation used in this paper: We use R[x] := R[x1, . . . , xn] (resp. Rd[x])
to denote the set of polynomials in n variables with real coefficients (resp. of
degree at most d). Given S ⊆ Rn, we define P(S) (resp. Pd(S)) to be the cone
of polynomials (resp. of degree at most d) that are non-negative over S. We
denote by Ψ (resp. Ψd) the cone of real polynomials (resp. of degree at most d)
that are SOS of polynomials. Note Ψd := {∑N

i=1 pi(x)2 : p(x) ∈ R� d
2 �[x]}, with

N =
(
n+d

d

)
, and in particular Ψd = Ψd−1 for every odd degree d.

For a given r > 0, define the approximation Kr
G of Pd(S) as:

Kr
G =

⎛⎝ |G|∑
i=0

gi(x)Ψr−deg(gi)

⎞⎠ ∩ Rd[x].

Lemma 1. Let r ≥ d and p ∈ Pd(S) \ Kr
G. Then

Kr
G � Kr

G∪{p} ⊆ Pd(S) and thus μr
G ≥ μr

G∪{p}.

Thus, our inequality generation procedure is defined as

GIVEN G FIND p(x) ∈ Pd(S) \ Kd
G. (4)

In this procedure we need to tackle two problems: first, how to generate p(x) ∈
Pd(S) since somehow this is our original problem; and second, how to ensure
p(x) /∈ Kd

G. This is the central point of the rest of the paper. We explain how
DIGS works for general PP in Section 2, and present a specialized (and more
efficient) DIGS for binary PP in Section 3. We show some convergence results for
Binary Quadratic Programming in Section 3.2. We also give examples comparing
our method to Lasserre’s method and to the Balas, Ceria, and Cornuéjols lift-
and-project in Section 3.3.

An Iterative Scheme for Valid Polynomial Inequality Generation in BPP 213

2 General Case

2.1 Dynamic Inequality Generation Scheme (DIGS)

To execute Procedure (4):

GIVEN G FIND p(x) ∈ Pd(S) \ Kd
G

We will generate only polynomials for which we can ensure non-negativity on S.
To do this we will generate polynomials in Kd+2

G . To ensure p(x) /∈ Kd
G, we use

the dual optimal solution of (2), denoted by Y . We will abuse the notation and
we identify Rd[x] with RN where N =

(
n+d

d

)
, e.g. by identifying each polynomial

f(x) ∈ Rd[x] with its vector of coefficients f ∈ RN . In this way Kd
G is a cone in

RN . We endow RN with the inner product 〈·, ·〉 such that for each f(x) ∈ Rd[x]
and each u ∈ Rn, 〈f,Md(u)〉 = f(u), where Md(u) is the vector of monomials
of u up to degree d. In this way, relaxation (2) and its SDP dual correspond to
the conic primal-dual pair:

infλ λ supY 〈f, Y 〉
s.t. λ− f(x) ∈ Kd

G s.t. 〈1, Y 〉 = 1
Y ∈ (Kd

G)∗.
(5)

From the definition of dual cone (Kd
G)∗, we have the following lemma,

Lemma 2. Let Y be a solution of (5). For all p ∈ Kd
G, 〈p, Y 〉 ≥ 0.

Thus to generate p(x) ∈ Kd+2
G \ Kd

G, one can solve the following SDP problem.
We refer to this problem as the polynomial generating subproblem:

(PP-Sub) min 〈p, Y 〉
s.t. p(x) ∈ Kd+2

G (6)
‖ p ‖≤ 1.

The normalization constraint is added since p(x) and cp(x) are equivalent in-
equalities for any c > 0. Moreover, without the normalization constraint, (PP-
Sub) is unbounded. There are several options for choosing the norm ‖ · ‖. In
this paper we use the one that maximizes the �2 distance between Y and the set
{Md(x) : p(x) = 0}.
Example 2.

min x1 − x1x3 − x1x4 + x2x4 + x5 − x5x7 − x5x8 + x6x8

s.t. x3 + x4 ≤ 1
x7 + x8 ≤ 1
0 ≤ xi ≤ 1 ∀i ∈ {1, . . . , 8}.

The optimal objective value of the above problem is 0. We need to go at least
up to r = 10 for Lasserre’s hierarchy to obtain the optimal value. However, for

214 B. Ghaddar, J.C. Vera, and M.F. Anjos

r = 8 even constructing the problem couldn’t be done within an hour. Using the
dynamic scheme, we are able to use relaxations of degree 2 and add inequalities
as in the previous example. In this case we stop after 50 inequalities due to the
slow improvement in the bound, obtaining a lower bound of value -0.014 in 200.1
seconds. Figure 1 illustrates the bound improvement.

Fig. 1. DIGS lower bounds. The dotted line is the optimal objective value.

3 Binary Case

In this section we specialize the results presented in Section 2 to PPs where
(some) all of the variables are binary; we refer to such problems as (mixed) binary
polynomial programs (BPP). Algebraic geometry representation techniques are
used to obtain a scheme that iteratively improves the bound and converges to
the optimal objective value of the original binary polynomial program. Using
the approach proposed in [31] and [44], we obtain a computationally cheaper
subproblem for the binary case. Further, we present convergence results for some
important cases. We prove that the resulting iterative scheme converges to the
global optimal solution of the binary polynomial program when starting from the
exact representation of the domain set excluding the binary constraints. As such
a representation is not tractable in general, we show an initial approximation
ensuring convergence for binary polynomial programs with a quadratic objective
function and a set of linear constraints.

3.1 Specializing the Dynamic Inequality Generation Scheme

Using (PP-D), BPP can be reformulated as

z = inf λ (7)
s.t. λ− f(x) ∈ Pd(D ∩ {−1, 1}n),

where D = {x : gi(x) ≥ 0, i = 1, . . . ,m}. Without loss of generality we assume
D ⊆ [−1, 1]n. Let Hj = {x ∈ Rn : xj ∈ {−1, 1}} and H = {−1, 1}n. Notice that
H = ∩n

j=1Hj .

An Iterative Scheme for Valid Polynomial Inequality Generation in BPP 215

To solve (7), we follow an approach similar to that for the general case pre-
sented in Section 2. Let G = {g0(x), g1(x), . . . , gm(x)} where g0(x) = 1. Define
Qr

G as the following approximation to Pd(D ∩H):

Qr
G =

(
m∑

i=0

gi(x)Ψr−deg(gi) +
n∑

i=1

(1 − x2
i)Rr−2[x]

)
∩Rd[x]

and define the PP master problem

ϕ = inf
λ

λ (8)

s.t. λ− f(x) ∈ Qd
G,

which can be reformulated as an SDP. In this setting, for the polynomial gener-
ating subproblem (6), instead of solving the subproblem over Qd+2

G as defined in
Section 2.1, we use the following theorem to obtain a computationally cheaper
algorithm.

Theorem 1. [31] For any degree d and compact set D,

Pd(D ∩Hj) = ((1 + xj)Pd(D) + (1 − xj)Pd(D) + (1 − x2
j)Rd−1[x]) ∩Rd[x].

From Theorem 1, it is natural to define the operator

Cd
j (Q) :=

(
(1 + xj)Q + (1 − xj)Q + (1 − x2

j)Rd−1[x]
) ∩ Rd[x],

for any Q ⊆ Rd[x]. The following lemma is the key to our DIGS for the binary
case.

Lemma 3. Assume S = D ∩H, and let Q ⊆ Pd(S).

1. For every j, Q ⊆ Cd
j (Q) ⊆ Pd(S).

2. Moreover, if Pd(D) ⊆ Q then Pd(D ∩Hj) ⊆ Cd
j (Q).

3. If Pd(D) ⊆ Q � Pd(S) then for some j, Q � Cd
j (Q).

Let Y be the dual optimal solution for (8). Define the j-th valid inequality
generating subproblem as:

ωj = min 〈p, Y 〉 (9)

s.t. p(x) ∈ Cd
j (Qd

G)

‖ p ‖≤ 1.

Using the master problem (8) and the subproblem (9) iteratively, we obtain a
DIGS for the binary case. The algorithm terminates when for all indexes j, the
subproblems have value equal to zero. In practice, we stop when for all j the
value of the subproblem is sufficiently close to zero.

The DIGS obtained for the binary case is computationally more efficient than
the DIGS presented in Section 2.1 for the general case. The master problem in

216 B. Ghaddar, J.C. Vera, and M.F. Anjos

both cases is of the same size, but solving the subproblem (9) is basically of
the same order as solving the master problem (8). Subproblem (9) has twice the
number of variables and n+d+1

d+1 times the number of constraints of the master
problem. This is much smaller than subproblem (6) obtained for the general
case which has O(n2/d2) times the number of variables and O(n2/d2) times the
number of constraints compared to the master problem.

3.2 Convergence Results

In this section, we first start by providing a proof of convergence for the case
when the approximation Qd

G contains Pd(D) in the master problem. We use this
theorem to show convergence of the DIGS for unconstrained binary polynomial
programs with quadratic objective function, and for binary polynomial programs
with quadratic objective function and linear constraints.

Notice that for the case where Qd
G is replaced with Pd(D) in the master

problem (8), the subproblem (9) is equivalent to optimizing over Cd
j (Pd(D)) =

Pd(D ∩Hj), for a given index j. So intuitively, if the subproblem has a value of
0, it is because using the fact that xj is binary cannot help, i.e., the solution is
already ”binary” in that coordinate. Thus if the value of all subproblems is zero
we have converged to the optimal value. This intuition is formally expressed in
Theorem 2. Recall from (5) that the dual optimal solution Y ∈ {X ∈ Pd(D)∗ :
〈1, X〉 = 1}.
Lemma 4. Let D ⊆ Rn be a compact set, then

{X ∈ Pd(D)∗ : 〈1, X〉 = 1} = conv(Md(D)).

Theorem 2. Assume Pd(D) ⊆ Qd
G ⊆ Pd(S). Let ωj, ϕ, z be the optimal ob-

jective value of subproblem (9), master problem (8), and the original binary
polynomial program (7) respectively. Assume D ⊆ [−1, 1]n and d ≥ 2. If ωj= 0
for all indexes j, then ϕ = z.

Proof. Let (λ, Y) be the optimal primal-dual solution of (8). Then ϕ = λ ≥ z and
Y ∈ {X ∈ (Qd

G)∗ : 〈1, X〉 = 1} ⊆ conv(Md(D)) using Lemma 4. D is a compact
set. By Caratheodory’s Theorem, Y can be written as Y =

∑
i aiMd(ui) with

ai > 0,
∑

i ai = 1 and each ui ∈ D.
Notice that 〈f, Y 〉 =

∑
i ai 〈f,Md(ui)〉 =

∑
i aif(ui). If ui ∈ H for all i, ϕ =

〈f, Y 〉 ≤ z and we are done. To get a contradiction, assume uk /∈ H for some
k. Then there is j ≤ n such that uk /∈ Hj . Consider p(x) = 1 − x2

j . We have
p ∈ Pd(Hj) ⊆ Pd(D ∩Hj) ⊆ Qd

G, and p(uk) > 0. Therefore,

ωj ≥ 〈p, Y 〉 =
∑

i

ai 〈p,Md(ui)〉 =
∑

i

aip(ui) ≥ akp(uk) > 0,

which is a contradiction.

In the case of pure quadratic binary programming, taking D as the ball B =
{x ∈ Rn : ‖x‖2 ≤ n} and d = 2, it follows from the S-lemma that P2(D) =
Ψ2+(n−‖x‖2)R+

0 [x] and thus Pd(D) ⊆ Qd
G ⊆ Pd(S) holds. From Theorem 2, we

obtain convergence in the case of unconstrained binary quadratic programming.

An Iterative Scheme for Valid Polynomial Inequality Generation in BPP 217

Theorem 3. When DIGS is applied to the case of pure binary quadratic pro-
gramming, starting with G0 = {n−‖x‖2, 1}, if all the subproblems have optimal
value 0, then the objective function value of the master problem is equal to the
optimal value of the original binary problem.

In general, for S = {x : ATx = b}, the decision problem for P2(S) is NP−hard,
and thus we do not have an efficient description for P2(S) unless P = NP . Thus
we can not apply directly Theorem 2. However, a modification of the proof of
Theorem 2 shows that if G contains (aT

i x−bi)2 for each linear equality aT
i x = bi,

then the u’s constructed in the proof would be in S.

Theorem 4. When DIGS is applied to a binary quadratic programming problem
constrained to ATx = b, starting with G0 = {1, n− ‖x‖2, (aT

i x − bi)2,−(aT
i x −

bi)2}, if all the subproblems have an optimal value of 0, then the optimal value of
the master problem is equal to the optimal value of the original binary problem.

3.3 Examples

In this section, we provide several examples of BPPs and present computational
results for DIGS. As our first two examples we consider the quadratic knapsack
problem and the quadratic assignment problem. We report the objective function
value at iteration zero and after performing 1, 5, and 10 iterations of DIGS. To
solve these examples, we developed a MATLAB code that constructs and builds
the resulting relaxations of the polynomial program and solves them using the
SeDuMi solver [40]. As a reference for comparison we also present Lasserre’s
results reporting the order of the relaxation to get the global optimal solution
and the corresponding objective function value. In case where the time limit
of one hour is reached, we report the bounds for Lasserre’s relaxation and the
highest order r that could be solved within the time limit. To obtain a fair
comparison, Lasserre’s relaxation was solved using the same code, on the same
machine.

Example 3. Quadratic Knapsack Problem. Given n items with a non-negative
weight wi assigned to each item i, and a profit matrix P , the quadratic knapsack
problem maximizes the profit subject to a capacity constraint:

max xTPx

s.t. wTx ≤ c

x ∈ {0, 1}n.

Table 3 presents computational results for small quadratic knapsack instances
where the parameters are generated according to [32]. The results show that
DIGS is much more efficient, in particular when n gets large. For n = 20, we are
not able to go beyond r = 2 for Lasserre’s hierarchy in the given time limit.

Example 4. Quadratic Assignment Problem. Consider the quadratic assign-
ment problem where we want to allocate a set of n facilities to a set of n locations,

218 B. Ghaddar, J.C. Vera, and M.F. Anjos

Table 3. Computational results for quadratic knapsack instances. Values in bold are
optimal.

Lasserre DIGS
n Optimal r obj. t(sec) Iter. 0 Iter. 1 Iter. 5 Iter. 10 t(sec)

5 370 4 370.0 2.1 413.9 399.4 370.0 - 6.0
10 1679 4 1707.3 28.1 1857.7 1821.9 1796.9 1791.5 7.2
15 2022 4 2022.0 1150.8 2270.5 2226.8 2180.4 2150.1 18.1
20 8510 2 9060.3 2.9 9060.3 9015.3 8925.9 8850.3 35.4
30 18229 2 19035.9 4.3 19035.9 18920.2 18791.7 18727.2 196.6

with the cost being a function of the distance d and flow between the facilities
f . The objective is to assign each facility to a location such that the total cost
is minimized. This can be formulated as:

min
∑

i=k,j =lfikdjlxijxkl

s.t.
∑

ixij = 1 1 ≤ j ≤ n∑
jxij = 1 1 ≤ i ≤ n

x ∈ {0, 1}n×n.

Table 4. Computational results for quadratic assignment instances. Values in bold are
optimal.

Lasserre DIGS
n Optimal r obj. t(sec) Iter. 0 Iter. 1 Iter. 5 Iter. 10 t(sec)

3 46 2 46.0 0.3 46.0 - - - 0.3
4 56 2 50.8 1.0 50.8 51.8 52.0 - 6.3
5 110 2 104.3 3.4 104.3 105.1 106.3 106.8 68.5
6 272 2 268.9 9.3 268.9 269.4 269.8 270.2 404.4

Table 4 presents computational results for small quadratic assignment in-
stances where fik and djl are integers generated uniformly between 0 and 5.
Using Lasserre’s hierarchy we can only go up to r = 2 for instances of dimension
n ≥ 4 within one hour, while the dynamic scheme after 10 iterations improves
significantly on the bounds of Lasserre’s r = 2 relaxation without as much com-
putational effort.

As a final example, we consider the maximum stable set problem. In this case,
we compare DIGS with the lift-and-project method of Balas et al. [3]. This com-
parison provides a fair indication of the advantages of our method in terms of
bound quality. For each instance we impose a 300 seconds time limit for each pro-
cedure. The upper bound for lift-and-project is compared to three approaches
of DIGS. Linear refers to generating linear inequalities that are added to the
master problem by using a non-negative multiplier. SOCP refers to generating
linear inequalities that are added to the master problem by using a polyno-
mial multiplier that is in P1(B) [10]. Quadratic refers to generating quadratic

An Iterative Scheme for Valid Polynomial Inequality Generation in BPP 219

inequalities similar to the previous examples described. Since our methodology
is a generalization of the lift-and-project method, our algorithm was used to
obtain the Balas et al. results for the maximum stable set.

Example 5. Stable Set Problem. Consider an undirected graph G(V,E) where
V and E are the vertex set and the edge set respectively. Given a subset V̄ ⊆ V ,
then V̄ is called a stable set of G if there is no edge connecting any two vertices in
V̄ . The maximum stable set problem is to find a stable set of maximal cardinality.
Letting n = |V |, the maximum stable set problem can be formulated as a binary
problem as follows:

(SS-D2) max
∑

ixi

s.t. xixj = 0 ∀(i, j) ∈ E

x ∈ {0, 1}n.

It can also be formulated as a linear problem by replacing the constraint xixj = 0
by xi + xj ≤ 1, we refer to this problem as (SS-LP).

Table 5. Computational results for the stable set problem with a time limit of 300
seconds

(SS-LP) Balas et al. (SS-D2) Linear SOCP Quadratic
n Optimal UB UB Iter. UB UB Iter. UB Iter. UB Iter.

8 3 4.00 3.00 197 3.44 3.00 186 3.00 126 3.02 49
11 4 5.50 4.00 160 4.63 4.00 139 4.00 130 4.05 109
14 5 7.00 5.02 135 5.82 5.02 114 5.01 91 5.14 82
17 6 8.50 6.22 121 7.00 6.23 84 6.09 63 6.30 54
20 7 10.00 7.46 104 8.18 7.43 68 7.25 45 7.42 38
23 8 11.50 8.81 88 9.36 8.61 50 8.36 33 8.67 22
26 9 13.00 10.11 77 10.54 9.84 37 9.60 25 9.96 14
29 10 14.50 11.65 65 11.71 11.10 24 10.87 17 11.18 10
32 11 16.00 13.03 56 12.89 12.37 18 12.20 14 12.53 6
35 12 17.50 14.48 49 14.07 13.49 13 13.32 10 13.66 4
38 13 19.00 16.05 43 15.24 14.80 8 14.74 7 14.85 4
41 14 20.50 17.69 39 16.42 15.88 7 15.77 6 16.26 1
44 15 22.00 19.10 34 17.59 17.19 6 17.09 5 17.30 1
47 16 23.50 20.78 29 18.77 18.39 4 18.26 4 18.59 1
50 17 25.00 22.18 27 19.94 19.52 4 19.42 4 19.77 1

Table 5 shows the upper bounds and the number of iterations performed within
a time limit of 300 seconds. Lift-and-project performs the largest number of iter-
ations for these instances since it utilizes linear programming which is computa-
tionally more efficient, however this efficiency comes at the expense of the bounds.
For all instances the bounds obtained by DIGS using SOCP type of inequalities
are the best bounds obtained within 300 seconds. These bounds are comparable
with those from the Linear and Quadratic approaches, however Quadratic per-
forms the least number of iterations and still achieves a competitive bound.

220 B. Ghaddar, J.C. Vera, and M.F. Anjos

References

1. Anjos, M.F., Vannelli, A.: Computing globally optimal solutions for single-row
layout problems using semidefinite programming and cutting planes. INFORMS J.
Comp. 20(4), 611–617 (2008)

2. Bai, Y., de Klerk, E., Pasechnik, D., Sotirov, R.: Exploiting group symmetry in
truss topology optimization. Optimization and Engineering 10(3), 331–349 (2009)

3. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for
mixed 0-1 programs. Mathematical Programming 58, 295–324 (1993)

4. de Klerk, E.: Exploiting special structure in semidefinite programming: A survey of
theory and applications. European Journal of Operational Research 201(1), 1–10
(2010)

5. de Klerk, E., Pasechnik, D.: Approximation of the stability number of a graph via
copositive programming. SIAM Journal on Optimization 12(4), 875–892 (2002)

6. de Klerk, E., Pasechnik, D., Schrijver, A.: Reduction of symmetric semidefinite
programs using the regular∗-representation. Mathematical Programming 109(2-3),
613–624 (2007)

7. de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite program-
ming relaxations of the quadratic assignment problem. Mathematical Program-
ming 122(2), 225–246 (2010)

8. Gatermann, K., Parrilo, P.: Symmetry groups, semidefinite programs, and sums of
squares. Journal of Pure and Applied Algebra 192(1-3), 95–128 (2004)

9. Ghaddar, B., Anjos, M.F., Liers, F.: A branch-and-cut algorithm based on semidef-
inite programming for the minimum k-partition problem. Annals of Operations
Research (to appear)

10. Ghaddar, B., Vera, J., Anjos, M.F.: Second-order cone relaxations for binary
quadratic polynomial programs. SIAM Journal on Optimization (to appear)

11. Hungerländer, P., Rendl, F.: Semidefinite relaxations of ordering problems. Tech-
nical report, Alpen-Adria-Universität Klagenfurt (August. 2010)

12. Kim, S., Kojima, M., Mevissen, M., Yamashita, M.: Exploiting sparsity in linear
and nonlinear matrix inequalities via positive semidefinite matrix completion. To
appear in Mathematical Programming (2009)

13. Kim, S., Kojima, M., Toint, P.: Recognizing underlying sparsity in optimization.
Mathematical Programming 9(2), 273–303 (2009)

14. Kobayashi, K., Kim, S., Kojima, M.: Correlative sparsity in primal-dual interior-
point methods for LP, SDP and SOCP. Applied Mathematics and Optimiza-
tion 58(1), 69–88 (2008)

15. Kojima, M., Kim, S., Waki, H.: Sparsity in sums of squares of polynomials. Math-
ematical Programming 103(1), 45–62 (2003)

16. Kojima, M., Muramatsu, M.: A note on sparse SOS and SDP relaxations for poly-
nomial optimization problems over symmetric cones. Computational Optimization
and Applications 42(1), 31–41 (2009)

17. Lasserre, J.: An explicit equivalent positive semidefinite program for nonlinear 0-1
programs. SIAM Journal on Optimization 12(3), 756–769 (2001)

18. Lasserre, J.: Global optimization problems with polynomials and the problem of
moments. SIAM Journal on Optimization 11, 796–817 (2001)

19. Lasserre, J.: Semidefinite programming vs. LP relaxations for polynomial program-
ming. Mathematics of Operations Research 27(2), 347–360 (2002)

20. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre
relaxations for 0-1 programming. Mathematics of Operations Research 28, 470–496
(2001)

An Iterative Scheme for Valid Polynomial Inequality Generation in BPP 221

21. Laurent, M.: Semidefinite representations for finite varieties. Mathematical Pro-
gramming 109(Ser. A), 1–26 (2007)

22. Laurent, M., Rendl, F.: Semidefinite programming and integer programming. In:
Handbook on Discrete Optimization, vol. 12, pp. 393–514. Elsevier, Amsterdam
(2005)

23. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization.
SIAM Journal on Optimization 1, 166–190 (1991)

24. Nesterov, Y.: Structure of non-negative polynomials and optimization problems.
Technical report, Technical Report 9749, CORE (1997)

25. Nie, J., Demmel, J.: Sparse SOS relaxations for minimizing functions that are
summation of small polynomials. SIAM Journal on Optimization 19(4), 1534–1558
(2008)

26. Nie, J., Demmel, J., Sturmfels, B.: Minimizing polynomials via sum of squares over
the gradient ideal. Mathematical Programming: Series A and B 106(3), 587–606
(2006)

27. Parrilo, P.: Structured semidefinite programs and semialgebraic geometry methods
in robustness and optimization. PhD thesis, Department of Control and Dynamical
Systems, California Institute of Technology, Pasadena, California (2000)

28. Parrilo, P.: An explicit construction of distinguished representations of polynomials
nonnegative over finite sets. Technical report, IFA Technical Report AUT02-02,
Zurich - Switzerland (2002)

29. Parrilo, P.: Semidefinite programming relaxations for semialgebraic problems.
Mathematical Programming 96(2), 293–320 (2003)

30. Parrilo, P., Sturmfels, B.: Minimizing polynomial functions, algorithmic and quan-
titative real algebraic geometry. DIMACS Series in Discrete Mathematics and The-
oretical Computer Science 60, 83–89 (2003)

31. Peña, J.F., Vera, J.C., Zuluaga, L.F.: Exploiting equalities in polynomial program-
ming. Operations Research Letters 36(2) (2008)

32. Pisinger, D.: The quadratic knapsack problem-a survey. Discrete Applied Mathe-
matics 155(5), 623–648 (2007)

33. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Review 49, 371–418 (2007)
34. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univer-

sity Mathematics Journal 42, 969–984 (1993)
35. Rendl, F., Rinaldi, G., Wiegele, A.: A branch and bound algorithm for max-cut

based on combining semidefinite and polyhedral relaxations. Integer programming
and combinatorial optimization 4513, 295–309 (2007)

36. Rendl, F., Sotirov, R.: Bounds for the quadratic assignment problem using bundle
method. Mathematical Programming, Series B 109, 505–524 (2007)

37. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on
Discrete Mathematics 3(3), 411–430 (1990)

38. Sherali, H.D., Tuncbilek, C.H.: Comparison of two reformulation-linearization tech-
nique based linear programming relaxations for polynomial programming problems.
Journal of Global Optimization 10(4), 381–390 (1997)

39. Shor, N.: A class of global minimum bounds of polynomial functions. Cybernet-
ics 23(6), 731–734 (1987)

40. Sturm, J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmet-
ric cones. Optimization Methods and Software, 11–12 (1999)

41. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite
programming relaxations for polynomial optimization problems with structured
sparsity. SIAM Journal on Optimization 17(1), 218–242 (2006)

222 B. Ghaddar, J.C. Vera, and M.F. Anjos

42. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: SparsePOP: a sparse semidefinite
programming relaxation of polynomial optimization problems. ACM Transactions
on Mathematical Software 35(2), 15 (2008)

43. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite program-
ming -Theory, Algorithms, and Applications. Kluwer, Dordrecht (2000)

44. Zuluaga, L.: A conic programming approach to polynomial optimization problems:
Theory and applications. PhD thesis, The Tepper School of Business, Carnegie
Mellon University, Pittsburgh (2004)

45. Zuluaga, L., Vera, J.C., Peña, J.: LMI approximations for cones of positive semidef-
inite forms. SIAM Journal on Optimization 16(4) (2006)

A New Approach to the Stable Set Problem

Based on Ellipsoids

Monia Giandomenico1, Adam N. Letchford2,
Fabrizio Rossi1, and Stefano Smriglio1

1 Department of Computer Science, University of L’Aquila, Italy
{giandomenico,rossi,smriglio}@di.univaq.it

2 Department of Management Science, Lancaster University,
United Kingdom

A.N.Letchford@lancaster.ac.uk

Abstract. A new exact approach to the stable set problem is presented,
which attempts to avoids the pitfalls of existing approaches based on
linear and semidefinite programming. The method begins by constructing
an ellipsoid that contains the stable set polytope and has the property
that the upper bound obtained by optimising over it is equal to the
Lovász theta number. This ellipsoid is then used to derive cutting planes,
which can be used within a linear programming-based branch-and-cut
algorithm. Preliminary computational results indicate that the cutting
planes are strong and easy to generate.

Keywords: stable set problem, semidefinite programming, convex
quadratic programming, cutting planes.

1 Introduction

Given an undirected graph G = (V,E), a stable set is a set of pairwise non-
adjacent vertices. The stable set problem (SSP) calls for a stable set of maximum
cardinality. The SSP is NP-hard [15], hard to approximate [14], and hard to solve
in practice (e.g., [7, 23–25]). Moreover, it is a remarkable fact that sophisticated
mathematical programming algorithms for the SSP, such as those in [4, 6, 12,
23, 25], have not performed significantly better than relatively simple algorithms
based on implicit enumeration, such as those in [7, 24].

A possible explanation for the failure of mathematical programming approaches
is the following. Linear Programming (LP) relaxations can be solved reasonably
quickly, but tend to yield weak upper bounds. Semidefinite Programming (SDP)
relaxations, on the other hand, typically yield much stronger bounds, but take
longer to solve. Therefore, branch-and-bound algorithms based on either LP or
SDP relaxations are slow, due to the large number of nodes in the search tree, or
the long time taken to process each node, respectively.

In this paper we present a way out of this impasse. The key concept is that
one can efficiently construct an ellipsoid that contains the stable set polytope,
in such a way that the upper bound obtained by optimising over the ellipsoid

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 223–234, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

224 M. Giandomenico et al.

is equal to the standard SDP bound, the so-called Lovász theta number. This
ellipsoid can then be used to construct useful convex programming relaxations
of the stable set problem or, more interestingly, to derive cutting planes. These
cutting planes turn out to be strong and easy to generate.

We remark that our approach can be applied to the variant of the SSP in
which vertices are weighted, and one seeks a stable set of maximum weight.

The paper is structured as follows. Some relevant literature is reviewed in
Sect. 2, the new approach is presented in Sect. 3, some computational results
are given in Sect. 4, and some concluding remarks are made in Sect. 5.

2 Literature Review

We now review the relevant literature. From this point on, n = |V | and m = |E|.

2.1 Linear Programming Relaxations

The SSP has the following natural formulation as a 0-1 LP:

max
∑

i∈V xi

s.t. xi + xj ≤ 1 ({i, j} ∈ E) (1)
x ∈ {0, 1}n, (2)

where the variable xi takes the value 1 if and only if vertex i is in the stable set.
The convex hull in Rn of feasible solutions to (1)–(2) is called the stable set

polytope and denoted by STAB(G). This polytope has been studied in great
depth [4, 11, 21]. The most well-known facet-defining inequalities for STAB(G)
are the clique inequalities of Padberg [21]. A clique in G is a set of pairwise
adjacent vertices, and the associated inequalities take the form:∑

i∈C

xi ≤ 1 (∀C ∈ C), (3)

where C denotes the set of maximal cliques in G. Note that the clique inequalities
dominate the edge inequalities (1).

The separation problem for clique inequalities is NP-hard [20]. Fortunately,
some fast and effective separation heuristics exist, not only for clique inequalities,
but also for various other inequalities (e.g., [4, 23, 25]). Nevertheless, LP-based
approaches can run into difficulties when n exceeds 200, mainly due to the weak-
ness of the upper bounds.

2.2 Semidefinite Programming Relaxations

Lovász [17] introduced an upper bound for the SSP, called the theta number and
denoted by θ(G), which is based on an SDP relaxation. The bound can be derived

A New Approach to the Stable Set Problem Based on Ellipsoids 225

in several different ways, and we follow the derivation presented in [11]. We start
by formulating the SSP as the following non-convex quadratically-constrained
program:

max
∑

i∈V xi (4)
s.t. x2

i − xi = 0 (i ∈ V) (5)
xixj = 0 ({i, j} ∈ E). (6)

In order to linearise the constraints, we introduce an auxiliary matrix variable
X = xxT , along with the augmented matrix

Y =
(

1
x

)(
1
x

)T

=
(

1 xT

x X

)
.

We then note that Y is real, symmetric and positive semidefinite (psd), which
we write as Y � 0. This leads to the following SDP relaxation:

max
∑

i∈V xi (7)
s.t. x = diag(X) (8)

Xij = 0 ({i, j} ∈ E) (9)
Y � 0. (10)

Solving this SDP yields θ(G).
In practice, θ(G) is often a reasonably strong upper bound for the SSP (e.g.,

[3, 6, 12, 23]). Unfortunately, solving large-scale SDPs can be rather time-
consuming, which makes SDP relaxations somewhat unattractive for use within
a branch-and-bound framework.

The above SDP can be strengthened by adding various valid inequalities (e.g.,
[4, 6, 10, 12, 18, 26]). We omit details, for the sake of brevity.

2.3 The Lovász Theta Body and Ellipsoids

The following beautiful result can be found in Grötschel, Lovász & Schrijver
[11]. Let us define the following polytope:

QSTAB(G) =
{
x ∈ Rn

+ : (3) hold
}
,

along with the following convex set:

TH(G) =
{
x ∈ Rn : ∃X ∈ Rn×n : (8) − (10) hold

}
.

Then we have:
STAB(G) ⊆ TH(G) ⊆ QSTAB(G).

This implies that θ(G) dominates the upper bound for the SSP based on clique
inequalities.

The set TH(G) is called the theta body. In [11], a characterisation of TH(G)
is given in terms of linear inequalities. We are interested here, however, in a

226 M. Giandomenico et al.

characterisation of TH(G) in terms of convex quadratic inequalities, due to Fujie
& Tamura [9]. For a given vector μ ∈ Rm, let M(μ) denote the symmetric matrix
with μij/2 in the ith row and jth column whenever {i, j} ∈ E, and zeroes
elsewhere. Then, given vectors λ ∈ Rn and μ ∈ Rm such that Diag(λ) + M(μ)
is psd, the set

E(λ, μ) =
{
x ∈ R

n : xT (Diag(λ) + M(μ))x ≤ λTx
}

is easily shown to be an ellipsoid that contains STAB(G). The result we need is
the following:

Theorem 1 (Fujie & Tamura, 2002). For any graph G, we have:

TH(G) =
⋂

λ,μ:Diag(λ)+M(μ)�0

E(λ, μ).

2.4 Relaxations of Non-convex Quadratic Problems

For what follows, we will also need a known result concerning relaxations of
non-convex quadratic problems, mentioned for example in [8, 16, 22]. Given a
problem of the form:

inf xTQ0x + c0 · x
s.t. xTQjx + cj · x = bj (j = 1, . . . , r) (11)

x ∈ R
n
,

we can construct the following SDP relaxation:

inf Q0 •X + c0 · x
s.t. Qj •X + cj · x = bj (j = 1, . . . , r) (12)

Y � 0,

where Qj • X denotes
∑n

i=1

∑n
k=1 Q

j
ikXik. Alternatively, we can form a La-

grangian relaxation by relaxing the constraints (11), using a vector φ ∈ R
r of

Lagrangian multipliers. The relaxed problem is then to minimise

f(x, λ) = xT

⎛⎝Q0 +
r∑

j=1

φjQ
j

⎞⎠ x +

⎛⎝c0 +
r∑

j=1

φjc
j

⎞⎠ · x−
r∑

j=1

φjbj

subject to x ∈ R
n.

The result that we need is as follows:

Theorem 2 (Various authors). Suppose the SDP satisfies the Slater condi-
tion, so that an optimal dual solution to the SDP exists. Then optimal Lagrangian
multipliers φ∗ exist too, and are nothing but the optimal dual vectors for the con-
straints (12) in the SDP. Moreover, the function f(x, φ∗) is convex, and therefore
the matrix Q0 +

∑r
j=1 φjQ

j is psd.

An analogous result holds when quadratic inequalities, rather than equations,
are present: one simply makes the associated multipliers non-negative.

A New Approach to the Stable Set Problem Based on Ellipsoids 227

3 The New Approach

In this section, the new approach is described.

3.1 An ‘Optimal’ Ellipsoid

Recall that Theorem 1 expresses TH(G) as the intersection of an infinite family
of ellipsoids. The following proposition states that one can efficiently compute a
particular ellipsoid with a very desirable property.

Theorem 3. Let λ∗ and μ∗ be optimal dual vectors for the constraints (8) and
(9) in the SDP (7)-(10). Then:

θ(G) = max

{∑
i∈V

xi : x ∈ E(−λ∗,−μ∗)

}
.

Proof. The SDP (7)-(10) has the form specified in Theorem 3.1 of Tunçel [27],
and therefore satisfies the Slater condition. As a result, the optimal dual solution
(λ∗, μ∗) exists and its cost is equal to θ(G). Applying Theorem 2, but switching
signs to take into account the fact that the SDP is of maximisation type, we
have:

θ(G) = max

{∑
i∈V

xi − xT (Diag(λ∗) + M(μ∗))x + λ∗ · x : x ∈ R
n

}
.

Moreover, the matrix −Diag(λ∗) −M(μ∗) must be psd.
Now, given that this is a concave maximisation problem, and the fact that

the pair (λ∗, μ∗) form an optimal set of Lagrangian multipliers, we have:

θ(G) = max

{∑
i∈V

xi : −xT (Diag(λ∗) + M(μ∗))x ≤ −λ∗ · x, x ∈ R
n

}
,

which proves the result. ��
In other words, the dual solution to the SDP can be used to construct a re-
laxation of the SSP that has a linear objective function and a single convex
quadratic constraint, whose corresponding upper bound is equal to θ(G).

Example: Let G be the 5-hole, i.e., a chordless cycle on 5 nodes. The opti-
mal dual solution has λ∗

i = −1 for all i and μ∗
e = (1 − √

5)/2 for all e. The
corresponding ellipsoid is:⎧⎨⎩x ∈ R

n :
∑
i∈V

x2
i + (

√
5 − 1)

∑
{i,j}∈E

xixj ≤
∑
i∈V

xi

⎫⎬⎭ .

Although it is hard to visualise this ellipsoid, one can show that all points in it
satisfy the linear inequality: ∑

i∈V

xi ≤
√

5.

This agrees with the known fact that, for the 5-hole, θ(G) =
√

5 [11]. �

228 M. Giandomenico et al.

3.2 Cutting Planes from the Optimal Ellipsoid

One way in which to exploit the existence of the optimal ellipsoid would be to con-
struct a branch-and-bound algorithm in which convex quadratically-constrained
programs are solved at each node of the enumeration tree. For example, one could
solve at each node a relaxation of the form:

max
∑

i∈V xi

s.t. x ∈ E(−λ∗,−μ∗)∑
i∈C xi ≤ 1 (C ∈ C′)

x ∈ [0, 1]n,

where C′ is a suitably chosen collection of clique inequalities.
Here, however, we are concerned with the use of the optimal ellipsoid to

generate cutting planes (violated valid linear inequalities), to be used within
an LP-based cut-and-branch or branch-and-cut algorithm. In this subsection,
we consider the (relatively) easy case in which the cutting planes are simply
tangent hyperplanes to the optimal ellipsoid. A way to strengthen these cutting
planes will be presented in the following subsection.

As before, let the optimal dual solution be (λ∗, μ∗). Our experience is that
the matrix Diag(λ∗) + M(μ∗) is invariably negative definite in practice, which
indicates that the ellipsoid E(−λ∗,−μ∗) is bounded. Under this condition, the
matrix is invertible and the optimal ellipsoid is easily shown to have the unique
central point x̂ = 1

2 (Diag(λ∗) + M(μ∗))−1λ∗.
Observe that the dual solution (λ∗, μ∗) and the centre x̂ can be computed

once and for all, as a kind of ‘pre-processing’ step, and stored in memory. Then,
to generate cutting planes, one can use the following separation algorithm:

1. Let x∗ ∈ [0, 1]n be the current fractional point to be separated, and suppose
that x∗ /∈ E(−λ∗,−μ∗).

2. Perform a line-search to find a point x̃, that is a convex combination of x∗

and x̂ and lies on the boundary of E(−λ∗,−μ∗).
3. Using a first-order Taylor approximation, find a linear inequality aTx ≤ b

that is both violated by x∗, and defines a tangent hyperplane to E(−λ∗,−μ∗)
at x̃.

4. Scale the vector a and scalar b by a constant factor Δ and round down to
the nearest integers.

More details will be given in the full version of this paper. We remark that the
last step helps to avoid numerical difficulties due to rounding errors, and also
makes it easier to strengthen the inequality, as described in the next subsection.

3.3 Cut Strengthening

Let αTx ≤ β, with α ∈ Z
n and β ∈ Z+, be a cutting plane generated by the

procedure described in the previous subsection. To strengthen it, we examine one

A New Approach to the Stable Set Problem Based on Ellipsoids 229

variable at a time, and solve a pair of small optimisation problems. Specifically,
given a variable xj , we compute for k ∈ {0, 1} the value:

γk
j = max

⎧⎨⎩∑
i=j

αixi : x ∈ E(−λ∗,−μ∗), xj = k

⎫⎬⎭ , (13)

and then the value
δk
j = min

{
β, �γk

j �
}
.

By construction, δk
j is an upper bound on the value taken by

∑
i=j αixi in any

feasible solution, subject to the constraint xj = k. As a result, we can replace
the original right-hand side β with δ0

j and change the coefficient of xj from αj

to δ0
j − δ1

j .
This strengthening procedure, which can be regarded as a special case of a

procedure described in [2], can be applied to any set of variables, in any desired
sequence. Different choices for the set and the sequence may lead to different
cutting planes, starting from the same tangent hyperplane αTx ≤ β. Again,
details will be given in the full version of the paper.

The overall procedure described in this subsection and the last will be referred
to as the Ellipsoid Cut Generation Algorithm (ECGA).

4 Computational Experiments

In order to gain some insight into the potential effectiveness of the ‘ellipsoidal’
approach, we have designed and coded a rudimentary LP-based ‘cut-and-branch’
framework, in which cutting planes are used to strengthen an initial 0-1 LP for-
mulation, and the strengthened formulation is then fed into a standard branch-
and-bound solver (see, e.g., [20]).

4.1 The Cut-and-Branch Algorithm

The initial 0-1 LP formulation contains a family of clique inequalities associated
with a clique-cover of G, by which we mean a set of cliques such that each edge
{i, j} ∈ E is contained in at least one clique in the family (see, e.g., [3]). This
clique-cover is computed by a simple greedy algorithm. The LP relaxation is
then solved, and a cutting-plane algorithm based clique inequalities is then run.
The separation problem for clique inequalities is solved by a greedy heuristic. We
denote by UBclique the upper bound obtained when the clique separator fails.

At that point, a cutting-plane algorithm based on ECGA is executed. In the
current implementation of ECGA, the parameter Δ is set to 104, and several
strengthened cutting planes are generated from each original cutting plane. This
is done by strengthening in turn the first k variables, then the second k, and
so on (k is always chosen in the range [3, 10]% of n, except in the case of the
p hat graphs, as explained below). This choice is motivated by the empirical

230 M. Giandomenico et al.

observation that it is usually the first few coefficient strengthenings that are the
most important. We denote by UBellips the upper bound obtained at the root
node at completion of the ECGA-based cutting-plane algorithm.

The strengthening subproblems (13) are solved by the CPLEX baropt algo-
rithm. (As pointed out by a referee, they could perhaps be solved directly with
linear algebra, which would probably be much faster.) The strengthening step
turned out to be of particular relevance, as the ‘raw’ ellipsoidal cuts described
in Subsection 3.2 often turned out to be dense, have ‘nasty’ coefficients, and be
nearly parallel to the objective function. Therefore, cut strengthening leads to
better numerical stability.

The computations were run on a workstation equipped with 2 Intel Xeon
5150 processors clocked at 2.66 GHz and with 4GB of RAM, under the Linux
64bit operating system. However, all experiments were performed in single thread
mode. The algorithm was implemented within the IBM CPLEX 11.2 framework,
in which cuts are added by the usercuts option. All CPLEX parameters were
left at their default settings, apart from the branching direction, which was
set to up, and the mip emphasis, which was set to optimality.

4.2 Preliminary Computational Results

In this subsection, we give empirical evidence of the effectiveness of the cuts
generated from the ellipsoid. The experiments are based on the instances from
the DIMACS Second Challenge (Johnson & Trick [13]) with n < 400, available
at the web site [5]. Among all such graphs, we consider only those instances
for which �UBclique� > α(G). The corresponding optimal ellipsoids E(−λ∗,−μ∗)
have been computed by the SDP solver [19] (coded in Matlab) available at [1].

In Table 1 we report for each graph the name, the number of nodes n and edges
m, the cardinality of the maximum stable set α(G), the Lovász theta number
θ(G), and the upper bounds UBclique and UBellips mentioned in the previous
subsection.

In Table 2, a comparison between two cut-and-branch algorithms, one based
only on clique inequalities and the other embedding also cuts from the ellipsoid,
is presented. It is important to remark that the first cut-and-branch algorithm is
in itself rather competitive. Indeed, it often outperforms the dedicated branch-
and-cut algorithms described in [23] and and [25], even though they both benefit
from having several separation routines, dedicated cut pool management, and
specialised branching strategies.

For each algorithm, the number of evaluated subproblems, as well as the total
CPU time (in seconds), are reported. In the case of the ellipsoid cut-and-branch
two more columns show how the total CPU time is split between branch-and-
bound phase and cut lifting, while the total separation time from E∗(−λ∗,−μ∗)
(Step 1-3 of ECGA) is always negligible (less than 0.1 secs for largest instances)
and is not explicitly reported. The last column in the table contains the number
of cuts generated by ECGA.

Table 1 shows that our approach always returns upper bounds very close to
θ(G). To our knowledge, this has not been achieved before using cutting planes

A New Approach to the Stable Set Problem Based on Ellipsoids 231

Table 1. Root upper bounds

Graph name n m α(G) θ(G) UBclique UBellips

brock200 1 200 5,066 21 27.50 38.20 27.79
brock200 2 200 10,024 12 14.22 21.53 14.32
brock200 3 200 7,852 15 18.82 27.73 19.00
brock200 4 200 6,811 17 21.29 30.84 21.52

C.125.9 125 787 34 37.89 43.06 38.05
C.250.9 250 3,141 44 56.24 72.04 57.41

c-fat200-5 200 11,427 58 60.34 66.66 60.36

DSJC125.1 125 736 34 38.39 43.15 38.44
DSJC125.5 125 3,891 10 11.47 15.60 11.48

mann a27 378 702 126 132.76 135.00 132.88

keller4 171 5,100 11 14.01 14.82 14.09

p hat300-1 300 33,917 8 10.10 17.71 10.15
p hat300-2 300 22,922 25 27.00 34.01 27.14
p hat300-3 300 11,460 36 41.16 54.36 41.66

san200 0.7-2 200 5,970 18 18.00 20.14 18.10

sanr200 07 200 6,032 18 23.80 33.48 24.00
sanr200 09 200 2,037 42 49.30 60.04 49.77

Table 2. Cut-and-branch results

Clique cut-and-branch Ellipsoid cut-and-branch
Graph name #sub. B&b time #sub. Lifting time B&b time Total time #cuts

brock200 1 270,169 1,784.78 122,387 75.48 1,432.76 1,508.24 40
brock200 2 6,102 83.16 2,689 109.27 209.39 318.66 30
brock200 3 52,173 459.02 7,282 117.38 252.17 369.55 30
brock200 4 85,134 735.52 18,798 180.83 468.52 649.35 40

C.125.9 3,049 5.63 2,514 17.37 6.52 23.89 75
C.250.9 — — — 634.23 — — 250

c-fat200-5 47 12.06 47 51.35 25.16 76.51 10

DSJC125.1 4,743 6.13 2,981 17.92 8.09 26.01 75
DSJC125.5 1,138 6.97 369 18.29 9.66 27.95 50

mann a27 4,552 2.06 1,278 15.60 2.46 18.06 10

keller4 4,856 21.88 3,274 45.21 36.55 81.76 34

p hat300-1 4,518 124.36 4,238 14.56 132.54 147.10 6
p hat300-2 7,150 194.27 1,522 66.59 204.88 271.47 10
p hat300-3 398,516 10,270.53 107,240 99.43 8,756.76 8,856.19 15

san200 0.7-2 86 8.58 0 66.23 0.76 66.99 10

sanr200 07 88,931 827.52 42,080 116.34 733.47 849.81 60
sanr200 09 635,496 2,650.55 274,261 158.64 1,281.52 1,440.16 100

— time limit reached

that involve only the x variables. (It may be asked why the bound UBellips

is not superior to θ(G), in light of Theorem 3. This is due to numerical is-
sues, tailing off, and our chosen time limit.) The great potential of the cuts is

232 M. Giandomenico et al.

confirmed by the cut-and-branch results of Table 2. Note that, for all instances,
the number of evaluated subproblems decreases significantly (with the exception
of c-fat-200-5) when cuts from the ellipsoid are generated. Moreover, this is
accomplished by a fairly small number of cuts. Thus, although the cuts tend to
be dense, the simplex algorithm does not appear to be particularly slowed down.

Notice also that in 5 instances out of 17, namely the largest and most difficult
ones, ECGA is cost-effective, as the time spent in cut generation is more than
compensated by the reduction in the size of the enumeration tree. It is worth-
while mentioning that, for the p hat graphs, only one coefficient needed to be
strengthened in order to obtain good cuts.

5 Concluding Remarks

The key idea in this paper is that one can use the dual solution to the SDP
relaxation to construct an ellipsoid that wraps reasonably tightly around the
stable set polytope, and that this ellipsoid can be used to construct quite strong
cutting planes in the original (linear) space. The computational results, though
preliminary, indicate that this approach is promising.

There is, however, room for further improvement. In particular, there are
several ways in which the ECGA could be modified or extended. For example:

– Instead of using the ‘optimal’ ellipsoid to generate cutting planes, one could
use some other ellipsoid, or indeed a whole family of ellipsoids. This raises
the question of how to generate one or more ellipsoids in such a way that
one obtains deep cutting planes, but without excessive computing times.

– In the cut-strengthening procedure, one might be able to obtain smaller
coefficients γk

j by including some valid linear inequalities (such as clique
inequalities) in the maximisation (13). This would lead to stronger cutting
planes, but the time taken to compute the coefficients would increase.

– One could also search for effective heuristic rules for ordering the variables
in the cut-strengthening step.

– As mentioned in Subsection 2.2, the SDP relaxation (7)-(10) can be strength-
ened by adding valid inequalities. (For example, Schrijver [26] suggested
adding the inequalities Xij ≥ 0 for all {i, j} /∈ E.) Let θ̃(G) < θ(G) be an
improved upper bound obtained by solving such a strengthened SDP. The
proof of Theorem 3 can be modified to show the existence of an ellipsoid,
say Ẽ, such that

θ̃(G) = max

{∑
i∈V

xi : x ∈ Ẽ

}
.

Such an ellipsoid might produce stronger cutting planes.

Progress on these issues, if any, will be reported in the full version of the paper.
Finally, one could explore the possibility of adapting the ellipsoidal approach

to other combinatorial optimisation problems. In our view, this is likely to work

A New Approach to the Stable Set Problem Based on Ellipsoids 233

well only for problems that have a ‘natural’ formulation as a continuous op-
timisation problem with a linear objective function and non-convex quadratic
constraints, like the formulation (4)–(6) of the SSP.

Acknowledgments. The second author was supported by the Engineering and
Physical Sciences Research Council under grant EP/D072662/1. Thanks are due
to an anonymous referee whose comments helped to improve the paper.

References

1. Alpen-Adria-Universität Klagenfurt website,
http://www.math.uni-klu.ac.at/or/Software

2. Andersen, K., Pochet, Y.: Coefficient strengthening: a tool for reformulating mixed-
integer programs. Math. Program. 122, 121–154 (2009)

3. Balas, E., Ceria, S., Cornuéjols, G., Pataki, G.: Polyhedral methods for the maxi-
mum clique problem. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring and
Satisfiability, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 26, pp. 11–28 (1996)

4. R.: Borndörfer, Aspects of Set Packing, Partitioning and Covering. Doctoral The-
sis, Technical University of Berlin (1998)

5. DIMACS Repository,
ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique

6. Dukanovic, I., Rendl, F.: Semidefinite programming relaxations for graph coloring
and maximal clique problems. Math. Program 109, 345–365 (2007)

7. Fahle, T.: Simple and Fast: Improving a Branch-And-Bound Algorithm for Max-
imum Clique. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461,
pp. 47–86. Springer, Heidelberg (2002)

8. Fujie, T., Kojima, M.: Semidefinite programming relaxation for nonconvex
quadratic programs. J. Glob. Opt. 10, 367–380 (1997)

9. Fujie, T., Tamura, A.: On Grötschel-Lovász-Schrijver’s relaxation of stable set
polytopes. J. Oper. Res. Soc. Japan 45, 285–292 (2002)

10. Giandomenico, M., Letchford, A.N.: Exploring the relationship between max-cut
and stable set relaxations. Math. Program 106, 159–175 (2006)

11. Grötschel, M., Lovász, L., Schrijver, A.J.: Geometric Algorithms in Combinatorial
Optimization. Wiley, New York (1988)

12. Gruber, G., Rendl, F.: Computational experience with stable set relaxations. SIAM
J. Opt. 13, 1014–1028 (2003)

13. Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring and Satisfiability: the 2nd
DIMACS Implementation Challenge. American Mathematical Society, Providence

14. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Math. 182, 105–142
(1999)

15. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103.
Plenum, New York (1972)

16. Lemaréchal, C., Oustry, F.: SDP relaxations in combinatorial optimization from
a Lagrangian viewpoint. In: Hadjisawas, N., Pardalos, P.M. (eds.) Advances in
Convex Analysis and Global Optimization. Kluwer, Dortrecht (2001)

17. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Th. IT-25,
1–7 (1979)

http://www.math.uni-klu.ac.at/or/Software
ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique

234 M. Giandomenico et al.

18. Lovász, L., Schrijver, A.J.: Cones of matrices and set-functions and 0-1 optimiza-
tion. SIAM J. Optimization 1, 166–190 (1991)

19. Malick, J., Povh, J., Rendl, F., Wiegele, A. (2007) Boundary Point Method for
solving SDPs: mprw.m, Inst. f. Mathematik, Alpen-Adria-Universität Klagenfurt
(2007)

20. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley,
New York (1988)

21. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Pro-
gram. 5, 199–215 (1973)

22. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for (0,1)-
quadratic programming. J. Global Opt. 7, 51–73 (1995)

23. Rebennack, S., Oswald, M., Theis, D.O., Seitz, H., Reinelt, G., Pardalos, P.M.: A
branch and cut solver for the maximum stable set problem. J. Comb. Opt. (2010)
(to appear)

24. Régin, J.-C.: Solving the maximum clique problem with constraint program-
ming. In: Proceedings of CPAIOR 2003. LNCS, vol. 2883, pp. 634–648. Springer,
Heidelberg (2003)

25. Rossi, F., Smriglio, S.: A branch-and-cut algorithm for the maximum cardinality
stable set problem. Oper. Res. Lett. 28, 63–74 (2001)

26. Schrijver, A.J.: A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inf.
Th. IT-25, 425–429 (1979)

27. Tunçel, L.: On the Slater condition for SDP relaxations of nonconvex sets. Oper.
Res. Lett. 29, 181–186 (2001)

Capacitated Vehicle Routing with Non-uniform

Speeds

Inge Li Gørtz1, Marco Molinaro2,	, Viswanath Nagarajan3, and R. Ravi4,∗

1 Technical University of Denmark
2 Tepper School of Business, Carnegie Mellon University

3 IBM T.J. Watson Research Center
4 Tepper School of Business, Carnegie Mellon University

Abstract. The capacitated vehicle routing problem (CVRP) [21] involves
distributing (identical) items from a depot to a set of demand locations
in the shortest possible time, using a single capacitated vehicle. We study
a generalization of this problem to the setting of multiple vehicles hav-
ing non-uniform speeds (that we call Heterogenous CVRP), and present
a constant-factor approximation algorithm.

The technical heart of our result lies in achieving a constant approx-
imation to the following TSP variant (called Heterogenous TSP). Given
a metric denoting distances between vertices, a depot r containing k
vehicles having speeds {λi}k

i=1, the goal is to find a tour for each vehi-
cle (starting and ending at r), so that every vertex is covered in some
tour and the maximum completion time is minimized. This problem is
precisely Heterogenous CVRP when vehicles are uncapacitated.

The presence of non-uniform speeds introduces difficulties for employ-
ing standard tour-splitting techniques. In order to get a better under-
standing of this technique in our context, we appeal to ideas from the
2-approximation for minimum makespan scheduling in unrelated paral-
lel machines of Lenstra et al. [19]. This motivates the introduction of a
new approximate MST construction called Level-Prim, which is related
to Light Approximate Shortest-path Trees [18]. The last component of
our algorithm involves partitioning the Level-Prim tree and matching
the resulting parts to vehicles. This decomposition is more subtle than
usual since now we need to enforce correlation between the lengths of
the parts and their distances to the depot.

1 Introduction

The capacitated vehicle routing problem (CVRP) is an extensively studied com-
binatorial optimization problem (see e.g., [21] and references therein). CVRP is
defined on a metric space (V, d), where V is a finite set of locations/vertices and
d : V × V → R+ a distance function that is symmetric and satisfies triangle
inequality. There is a depot vertex r ∈ V that contains an infinite supply of an
identical item, and each vertex u ∈ V demands some units qu of this item. A
� Supported in part by NSF grant CCF-0728841.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 235–247, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

236 I.L. Gørtz et al.

single vehicle of integral capacity Q > 0 is used to distribute the items. The ob-
jective is to find a minimum length tour of the vehicle that satisfies all demands
subject to the constraint that the vehicle carries at most Q units at any time.

CVRP is closely related to the Traveling Salesman Problem (TSP). It is clear
that CVRP reduces to TSP in the absence of capacity constraint. More interest-
ingly, a reverse relation is also known—essentially the best known approximation
algorithm for CVRP [17] achieves a guarantee of ρ + 1, where ρ is the best ap-
proximation ratio for TSP.

In practice, it is natural to have a fleet of multiple vehicles that can run in
parallel. The objective can then be to either minimize the sum of completion
times of all the vehicles or to minimize the maximum completion time over all
vehicles (or the makespan of the routing). Furthermore the vehicles can all be
identical (same speed) or heterogeneous (have different speeds). In either case, it
is not hard to see that the total completion time objective reduces to the usual
CVRP on a single maximum-speed vehicle, and constant-factor approximation
algorithms readily follow.

When the objective is to minimize the makespan with identical vehicles, ideas
for approximating the regular CVRP problem using a tour-splitting heuristic
introduced by Frederickson et al. [14] can be easily adapted to derive a constant-
factor approximation algorithm (see below).

This motivates HetCVRP, the Heterogenous Capacitated Vehicle Routing Prob-
lem that we consider. Here, a fleet of k vehicles with non-uniform speeds and
uniform capacities is initially located at the depot vertex r. The objective is to
satisfy the demands subject to the capacity constraints while minimizing the
makespan. Our main result is a constant-factor approximation algorithm for
HetCVRP.

Most of our algorithmic ideas lie in solving the special case of HetCVRP when
there is no capacity constraint. This problem, which we call HetTSP, is a gener-
alization of TSP that might be of independent interest. For most of this paper,
we will focus on obtaining a constant-factor approximation for HetTSP.

1.1 Previous Techniques

Tour-splitting solutions: To illustrate the use of known techniques, we out-
line how to obtain a constant-factor approximation algorithm for HetTSP with
uniform speeds [14]. First, notice that the union of the tours of OPT connects all
vertices, and hence a minimum spanning tree (MST) has length at most k ·OPT.
Then consider a MST, duplicate its edges and take an Euler tour C, which is of
length d(C) ≤ 2k ·OPT. Now split C into k segments of lengths at most d(C)

k by
removing edges. Finally, the tour for the ith vehicle is obtained by connecting
both endpoints of the ith segment of C to the depot. Since twice the distance
from the depot to any vertex is a lower bound on OPT, the length of each tour
is at most 3 · OPT and hence this solution is a 3-approximation. We remark
that this can be extended to obtain an O(1)-approximation for HetCVRP with
uniform speeds (e.g., using Theorem 2).

Capacitated Vehicle Routing with Non-uniform Speeds 237

At a very high level, this strategy has two main components: (1) Partition-
ing an MST into manageable-sized connected parts; (2) assigning these parts to
vehicles. This simple idea—which was already present in the 70’s—is the cen-
tral piece of many heuristics and approximations for vehicle routing problems
(e.g., [14,17,13,3,16,1,2]). However, it is not clear how to employ this technique
in the presence of vehicles with multiple speeds. This is because the two main
components now need some correlation: a small part of the MST, which should
be assigned to a slower vehicle, must also be relatively closer to the depot in
order to be reachable by this vehicle.

Set-cover based solutions: For HetTSP with non-uniform speeds, previous
approaches seem to give only a logarithmic approximation, as follows. Guess
the optimal makespan OPT (within a constant factor). If each vehicle of speed
s is given a length budget of s · OPT, then the vehicles can collectively cover
all vertices. Using an approximation algorithm for k-MST [15] (or the related
orienteering problem [6,8]) within a maximum-coverage framework (see e.g.. [9]),
we can obtain tours of length OPT that cover a constant fraction of all vertices.
Repeating this coverage step until all vertices are covered gives a solution to
HetTSP of makespan O(log n) · OPT. The intrinsic problem of this approach is
that it is too general—in fact, the above algorithm also yields a logarithmic
approximation even in the setting where the metric faced by each vehicle is
arbitrary (instead of just scaling by its speed), and this generalization of HetTSP
can be shown to be set-cover hard. It is unclear whether the approximation of
this set-covering based approach can be improved for HetTSP.

1.2 Results, Techniques and Outline

We extend the tour-splitting approach described above to obtain the following
result.

Theorem 1. There are constant-factor approximation algorithms for HetTSP
and HetCVRP.

In order to obtain the approximation for HetTSP, we abstract the requirements
of the two components in the tour-splitting strategy. As a preprocessing step, we
round the speeds of vehicles to powers of two and guess the optimum makespan
M . First, we specify conditions which guarantee that a collection of r-rooted trees
is “assignable”, that is, each vehicle can visit the nodes of the trees assigned to
it within time O(M) (Definition 1). The conditions in Definition 1 are based on
the LP to obtain a 2-approximation for scheduling in unrelated parallel machines
by Lenstra et al. [19].

Secondly, instead of partitioning an MST as in the previous section, we con-
sider more structured spanning trees which we call Level-Prim trees. Consider
grouping the vertices ordered according to their distance from r into levels,
where the ith level includes all vertices within distance 2iM .1 The Level-Prim

1 Notice that given the rounding of vehicle speeds to powers of two, vertices in level i
can only be served by vehicles of speed 2i or higher given the makespan bound M .

238 I.L. Gørtz et al.

tree is simply the tree resulting from running Prim’s algorithm with the restric-
tion that all nodes in a level are spanned before starting to pull in nodes from
the next. A Level-Prim tree has two important properties: (i) The vertices along
every root-leaf path are monotonically nondecreasing in level and (ii) For every
suffix of levels, the subgraph induced on it costs at most O(1) times its induced
MST. The first condition, which is the departing point from MSTs, greatly sim-
plifies the decomposition procedure carried in the next step. The second property
guarantees that we can decompose a Level-Prim tree into an assignable collection.
These properties are formalized in Theorem 3.

The Level-Prim construction combines both MST and shortest-path distances
from a root, so it is not surprising that this structure is related to Light Ap-
proximate Shortest-Path Trees (LAST) introduced by Khuller et al. [18]. Indeed,
we use the existence of a suitably defined LAST in proving Theorem 3. We re-
mark, however, that the properties guaranteed by LASTs are not enough for our
purposes (see Sect. 3.2).

The third main component of our approximation for HetTSP is decomposing
Level-Prim into an assignable collection of r-rooted trees. Roughly, we partition
the edges of Level-Prim into subtrees while ensuring that each subtree consisting
of vertices in levels up to i (and hence is at a distance of about 2iM from the
root) also has total length approximately 2iM , and thus can be assigned to
a vehicle of speed about 2i. This partition, which relies on the two properties
of Level-Prim, gives a collection of unrooted trees which is assignable. Due to
the length of these trees, the extra distance to connect them to the root r can
be charged to their edges, hence this collection can be turned into a r-rooted
assignable collection.

Heterogeneous CVRP: Recall that the input to the Heterogenous CVRP
(HetCVRP) is the same as that for HetTSP with an additional vehicle capacity
Q. We study the “split-delivery” version of CVRP here, where demand at a
vertex may be served by multiple visits to it; however, our result easily extends
to the “unsplit-delivery” HetCVRP. We show that the HetCVRP problem can be
reduced to HetTSP in an approximation preserving way; so we also obtain an
O(1)-approximation for HetCVRP.

The idea in this reduction is to modify the input metric based on the con-
nectivity and capacitated routing lower-bounds for CVRP [17]. The modified
distance function encodes any additional trips to and from the root that a ve-
hicle has to make if it runs out of capacity. Let G = (V,E) denote the com-
plete graph on vertices V with edge-weights equal to distances d. Augment G
to a new graph H by adding vertices V ′ = {vp : v ∈ V, p ∈ [qv]}, and edges
E′ = {(v, vp) : v ∈ V, p ∈ [qv]}; each edge (v, vp) has weight d(r,v)

Q . For any
vertex v ∈ V , the vertices {vp : p ∈ [qv]} are referred to as copies of v. Let (V ′, �)
denote the metric induced on vertices V ′ where � denotes the shortest-path dis-
tances in graph H . We let J be the instance of HetTSP on metric (V ′, �) with
depot r and k vehicles having speeds {λi}k

i=1. We can prove the following based
on the above reduction (details omitted).

Capacitated Vehicle Routing with Non-uniform Speeds 239

Theorem 2. Consider an instance I of HetCVRP. There is a poly-time con-
structible instance J of HetTSP such that OPTtsp(J) = O(1) ·OPTvrp(I). More-
over, a solution to J of makespan M can be converted in poly-time to a solution
to I with makespan O(M).

1.3 Related Work

For the CVRP, the best known approximation ratio [17] is essentially ρ+1 where ρ
is the best guarantee for TSP. The current best values for ρ are ρ = 3

2 for general
metrics [10], and ρ = 1 + ε (for any constant ε > 0) for constant dimensional
Euclidean metrics [4,20]. This has been improved slightly to 1+ρ · (1− 1

Q)− 1
3Q3

when Q ≥ 3 [7]. Recently, Das and Mathieu [12] gave a quasi-polynomial time
approximation scheme for CVRP on the Euclidean plane.

Several variants of TSP have been studied, most of which have a min-sum
objective. One related problem with min-max objective is nurse station loca-
tion [13], where the goal is to obtain a collection of trees (each rooted at a
distinct depot) such that all vertices are covered and the maximum tree length
is minimized. Even et al. [13] gave a 4-approximation algorithm for this prob-
lem, based on partitioning the MST and assigning to depots along the lines of
Sect. 1.1; their second step, however, involves a non-trivial bipartite matching
subproblem.

In proving the properties of Level-Prim, we use Light Approximate Shortest-
Path Trees introduced by Khuller, Raghavachari and Young [18], building on
the work on shallow-light trees of Awerbuch, Baratz and Peleg [5]. An (α, β)-
LAST is a rooted tree that has (a) length at most β times the MST and (b)
the distance from any vertex to the root in the tree is at most α times the
distance in the original metric. Khuller et al. [18] showed that every metric has
an

(
α, 1 + 2

α−1

)
-LAST (for any α > 1) and this is best possible.

2 Model and Preliminaries

The input to the Heterogenous TSP (HetTSP) consists of a metric (V, d) denoting
distances between vertices, a depot r ∈ V and k vehicles with speeds {λi}k

i=1

greater than or equal to 1. The goal is to find tours {τi}k
i=1 (starting and ending

at r) for each vehicle so that every vertex is covered in some tour and the
maximum completion time maxk

i=1
d(τi)

λi
is minimized.

At the loss of a factor of two in the approximation, we assume that the λi’s
are all (non-negative integral) powers of 2. Then, for each integer i ≥ 0 we use
μi to denote the number of vehicles with speed 2i. Let OPT denote the optimal
value of this modified instance of HetTSP.

Let G = (V,E) be the complete graph on vertices V with edge-weights cor-
responding to the distance function d. For any set F ⊆ E of edges, we set
d(F) =

∑
e∈F de. Given any (multi)graph H and a subset U of its vertices,

H [U] denotes the subgraph induced on U and H/U denotes the graph obtained

240 I.L. Gørtz et al.

by contracting vertices U to a single vertex (we retain parallel edges). Moreover,
for any pair of vertices u, v in H , we use dH(u, v) to denote the length of the
shortest path in H between u and v.

3 Algorithm for HetTSP

Assume that we have correctly guessed a value M such that M
2 ≤ OPT ≤ M (we

address how to find M in the end of Sect. 3.3.) We partition the set of vertices
V according to their distance to r:

V0 = {u ∈ V : d(r, u) ≤ M}, and

Vi = {u ∈ V : d(r, u) ∈ (2i−1M, 2iM]}, for all i ≥ 1.

The vertices in Vi are referred to as level i vertices. For any i ≥ 0, we use V≤i as
a shorthand for ∪i

j=0Vj and similarly V<i = ∪i−1
j=0Vj = V≤i−1.

We define the level of an edge (u, v) ∈ E as the larger of the levels of u and v.
For each i ≥ 0, Ei denotes the edges in E of level i. Note that de ≤ 2i+1M for all
e ∈ Ei, since both end-points of e are in V≤i and the triangle inequality bounds
its distance by the two-hop path via the root. We use the notation E≤i = ∪i

j=0Ej

and E≥i = ∪j≥iEj .

3.1 Assignable Trees

We start by studying collections of trees that can be assigned to vehicles in a
way that each vehicle takes time O(M) to visit all of its assigned trees. In the
following let α and β be integers.

Definition 1 (Assignable Trees). A collection of r-rooted trees
⋃

i≥0 Ti cover-
ing all vertices V is called (α, β)-assignable if it satisfies the following properties.

1. For each i ≥ 0 and every T ∈ Ti, d(T) ≤ α 2i M .
2. For each i ≥ 0,

∑
j≥i d(Tj) ≤ βM

∑
j≥i−1 2j μj.

Intuitively, the trees in Ti can be assigned to vehicles with speed 2i so as to com-
plete in time O(αM). Condition (2) guarantees that the trees

⋃
j≥i Ti targeted

by vehicles of speed 2i−1 and above stand a chance of being handled by them
within makespan O(βM). Interestingly, these minimal conditions are enough
to eventually assign all trees in the collection to vehicles while guaranteeing
makespan O((α + β)M).

Lemma 1. Given an assignable collection
⋃

i≥0 Ti of r-rooted trees, we can ob-
tain in polynomial time an (4α + 2β)-approximation for HetTSP.

To prove this lemma2, we show that condition (2) guarantees the existence of
a fractional assignment of trees where each vehicle incurs load at most βM .
2 We remark that a direct proof of Lemma 1 is also possible, but the route we take

reveals more properties of the requirement at hand and could potentially be useful
in tackling generalizations of HetTSP.

Capacitated Vehicle Routing with Non-uniform Speeds 241

Then using condition (1) and a result on scheduling on parallel machines [19],
we round this assignment into an integral one while increasing the load on each
vehicle by at most 2αM . We lose an extra factor of 2 to convert the trees into
routes.

Fractional Assignment. Consider the bipartite graph H whose left side contains
one node for each tree in

⋃
i Ti and whose right side contains one node for each

vehicle. (We identify the nodes with their respective trees/vehicles.) There is an
arc between the tree T ∈ Ti and a vehicle of speed 2j if j ≥ i− 1.

Consider the following b-matching problem in H : for each tree T ∈ Ti, we set
b(T) = d(T) and for each vehicle u of speed 2j we set b(u) = β2jM . A (left-
saturating) b-matching is one which fractionally assigns all b(T) units of each
tree T such that no vehicle u is assigned more than b(u) units. Notice that a
feasible b-matching gives a fractional assignment of trees where each vehicle j of
speed 2j incurs fractional makespan at most βM .

Then our goal is to show the existence of a b-matching in H . Using a stan-
dard generalization of Hall’s Theorem (e.g., see page 54 of [11]), we see that
H has a feasible b-matching iff for every set V of trees,

∑
T∈V b(T) is at most∑

u∈N(V) b(u), where N(V) is the neighborhood of V . However, the structure
of H allows us to focus only on sets V which are equal to

⋃
j≥i Tj for some

i.3 Using this revised condition, H has a b-matching iff for all i,
∑

j≥i d(Tj) ≤
βM

∑
j≥i−1 2jμj . Since this is exactly condition (2) in Definition 1, it follows

that H indeed has a b-matching (which can be obtained in polynomial time using
any maximum flow algorithm [11]).

Scheduling Parallel Machines. We show how to round the fractional assignment
obtained in the previous section. We consider each tree as a “job” and each
vehicle as a “machine”, where the “processing time” pT,u of a tree T in a vehicle
u of speed 2j is d(T)/2j; then the “makespan” of a vehicle is exactly equal to
the sum of the processing times of the trees assigned to it.

Let xT,u denote the fraction of tree T assigned to vehicle u given by scaling
down a b-matching in H (i.e., if the matching assigns d units of T to vehicle u, we
have xT,u = d/d(T)). The feasibility of the matching gives

∑
T xT,upT,u ≤ βM

for all u. Moreover, by construction of the edges of H , xT,u > 0 for T ∈ Ti

implies that u has speed at least 2i−1. Then using property (1) of assignable
trees we get that xT,u > 0 implies pT,u ≤ 2αM . These two properties guarantee
that x is a feasible solution for the natural LP formulation for the scheduling
problem with a feasible makespan value of βM and the maximum processing
time t set to 2αM . Theorem 1 of [19] then asserts that x can be rounded into
an integral assignment of trees to vehicles such that the load on any vehicle is
at most (2α + β)M .

3 To see that all other inequalities are dominated by those coming from such sets,
first notice that if V contains a tree in Ti then N(V) already contains all vehicles of
speed 2j for j ≥ i − 1. Then adding to V extra trees in

⋃
j≥i Tj does not change its

neighborhood and thus leads to a dominating inequality.

242 I.L. Gørtz et al.

As in Sect. 1.1, we can transform each tree in
⋃

i≥0 Ti into a cycle while at
most doubling its length, which then gives a (4α+2β)-approximation for HetTSP.
This concludes the proof of Lemma 1.

3.2 Level-Prim Spanning Tree

In order to obtain an assignable collection of r-rooted trees for our instance, we
formally introduce Level-Prim trees. These are the trees obtained by the following
procedure.

Algorithm 1. Level-Prim(G)

1: For each i ≥ 0, let Hi be an MST for G[V≤i]/V<i.
2: return H =

⋃
i≥0 Hi.

Note that Level-Prim trees can alternately be defined by modifying Prim’s
algorithm such that nodes in level i are only considered to be added to the tree
after all nodes in levels below i have already been added.

Theorem 3. A Level-Prim tree H = {Hi}i≥0 satisfies the following:
• The vertex-levels along every root-leaf path are non-decreasing.
• For each i ≥ 0,

∑
j≥i d(Hj) ≤ 8 · MST (G/V<i).

Before we prove Theorem 3, we note that the second property in the theorem
mirrors the second property in Definition 1. A formal connection between the
two is established via the following lemma that uses an optimal vehicle routing
solution to derive a feasible spanning tree connecting a suffix of the level sets.

Lemma 2 (Lower Bound). For each level �≥0, MST(G/V<�)≤M·∑j≥�−12
jμj.

Proof. Consider an optimal solution for HetTSP and let E∗ be the set of edges
traversed by vehicles in this solution; label each edge in E∗ by the vehicle that
traversed it. Clearly E∗ connects all vertices to the root r.

Only vehicles having speed at least 2�−1 can reach any vertex in V≥� (since a
vehicle of speed s travels distance at most s · OPT ≤ s ·M). Thus every edge in
E∗ ∩ E≥� must be labeled by some vehicle of speed at least 2�−1. This implies
that d (E∗ ∩ E≥�) ≤ M ·∑j≥�−1 2j μj , since the right hand side is a bound on
the total length traversed by vehicles having speed at least 2�−1.

On the other hand, since E∗ connects all vertices, E∗∩E≥� contains a spanning
tree of G/V<�. Thus MST(G/V<�) ≤ d (E∗ ∩ E≥�) ≤ M ·∑j≥�−1 2j μj .

We get the following corollary of Theorem 3.

Corollary 1. A Level-Prim tree H = {Hi}i≥0 satisfies the following:
• The vertex-levels along every root-leaf path are non-decreasing.
• For each i ≥ 0,

∑
j≥i d(Hj) ≤ 8M

∑
j≥i−1 2j μj.

Capacitated Vehicle Routing with Non-uniform Speeds 243

In the rest of this section, we prove Theorem 3. It is easy to see that for every
�,

⋃�
j=1 Hj spans G[V≤�], hence the procedure produces a spanning tree for G.

Moreover, by construction we obtain that every root-leaf path in H traverses the
levels in non-decreasing order as desired. Thus, we focus on proving the second
property in the theorem.

Instead of comparing the length of the edges in H with an MST, it turns
out to be much easier to use a specific LAST tree as a proxy for the latter. The
following LAST is implicit in the construction given in [18] and is omitted. Recall
that a spider is a tree with at most one vertex (the center) having degree greater
than two.

Theorem 4 ([18]). Given any metric (V, d) with root r, there exists a spanning
spider L with center r such that:

• For each u ∈ V , the distance from r to u in L is at most 2 · d(r, u).
• The length of L is at most four times the MST in (V, d), i.e. d(L) ≤ 4·MST.

We remark that we cannot use a LAST directly instead of Level-Prim since the
former does not need to have the properties asserted by Theorem 3. Using these
spider LASTs we can obtain the main lemma needed to complete the proof of
Theorem 3.

Lemma 3. For any graph G and any Level-Prim tree H on G, we have d(H) ≤
8 · MST(G).

Proof. Consider a spider LAST L for G from Theorem 4, and let P denote the
set of all root-leaf paths in L; note that the paths in P are edge-disjoint.

Consider any root-leaf path P = (r = u1 → u2 → . . . → uk) in P . We claim
that P crosses levels almost in an increasing order. Specifically, there does not
exist a pair of nodes ui, uj ∈ P with i < j, ui ∈ V� and uj ∈ V≤�−2. Suppose
(for a contradiction) that this were the case; then we would have that

dL(r, uj) = dL(r, ui) + dL(ui, uj) ≥ dL(r, ui) ≥ d(r, ui) > 2�−1M,

where the last inequality uses ui ∈ V�. On the other hand, d(r, uj) ≤ 2�−2M
since uj ∈ V≤�−2; so we obtain dL(r, uj) > 2 · d(r, uj), which contradicts the
definition of L (see Theorem 4).

Now we transform L into another spider L′ which traverses levels in non-
decreasing order as follows. For each root-leaf path P = (r = u1 → u2 → . . . →
uk), perform the following modification. Let {a1, a2, . . . , ak′} be the subsequence
of P consisting of the vertices in even numbered levels, i.e. each ai ∈ L2� for some
� ≥ 0. Similarly, let {b1, b2, . . . , bk′′} be the subsequence of P consisting of the
vertices in odd numbered levels. Define two paths Peven := (r → a1 → . . . → ak′)
(shortcutting P over nodes bi’s) and Podd = (r → b1 → . . . → bk′′) (shortcutting
P over ai’s). Observe that both Peven and Podd cross levels monotonically: if not
then there must be some i < j in P with ui ∈ V� and uj ∈ V≤�−2, contrary
to the previous claim. Also, by employing the triangle inequality we have that
d(Peven), d(Podd) ≤ d(P). Finally define the spider L′ as the union of the paths
{Peven, Podd} over all root-leaf paths P ∈ P .

244 I.L. Gørtz et al.

By construction, the vertex levels along each root-leaf path of L′ are non-
decreasing. Additionally d(L′) =

∑
P∈P (d(Peven) + d(Podd)) ≤ 2

∑
P∈P d(P) =

2 · d(L) ≤ 8 · MST, by Theorem 4. Now partition the edges of L′ as:

Δ� =
{
L′[V0] if � = 0,
L′[V≤�] \ L′[V≤�−1] if � ≥ 1.

By the monotone property of paths in L′, it follows that L′[V≤�] is connected
for every � ≥ 0. Thus Δ� is a spanning tree in graph G[V≤�]/V<�. Since H� in
the Level-Prim construction, is chosen to be an MST in G[V≤�]/V<�, we obtain
d(H�) ≤ d(Δ�). So, d(H) =

∑
�≥0 d(H�) ≤ ∑

�≥0 Δ� = d(L′) ≤ 8 · MST. This
completes the proof of the lemma.

Completing proof of Theorem 3. We now prove the second property in Theo-
rem 3. Lemma 3 directly implies this property for i = 0. For any level i > 0
consider the graph G′ = G/V<i; observe that

⋃
j≥i Hj is a Level-Prim tree for G′

(due to the iterative construction of H =
⋃

�≥0 H�). Thus applying Lemma 3 to
graph G′ and its Level-Prim tree

⋃
j≥i Hj , we have

∑
j≥i d(Hj) ≤ 8 ·MST(G′) =

8 · MST(G/V<i).

3.3 Decomposition Procedure

In this section we decompose a Level-Prim tree into an assignable collection⋃
i≥0 Ti of r-rooted trees. Motivated by Corollary 1, the idea is to break each

subgraph Hi into many pieces and connect them to r in order to form the set
of trees Ti. Suppose that each connected component in Hi is large enough, i.e.
has length at least 2iM . Then for each i ≥ 0, break the connected components
of Hi into trees of length approximately 2iM ; add to each tree the shortest edge
connecting them to r and set Ti as the collection of r-rooted trees obtained.
By construction we get that

⋃
i≥0 Ti satisfies the first property of an assignable

collection. Moreover, notice that each edge added to connect a tree to the root
has approximately the same length as the tree itself; this guarantees that d(Ti) �
2d(Hi). It then follows that the collection

⋃
i≥0 Ti is assignable.

Notice that it was crucial to break Hi into trees of length at least approxi-
mately 2i. But this is problematic when Hi has a small connected component.
In this case we show that such a small component is always attached to (“dan-
gling” from) a large enough component in Hi−1 (otherwise the dangling edge to
a much earlier level will already make this component heavy enough not to be
small); then we simply treat the small component as part of the latter in the
assignment.

Now we formally describe the proposed decomposition procedure.

Step 1. Let S0 contain the subtree H0 = H⋂
E0. For each level i ≥ 1: partition

edges H⋂
Ei into a collection Si of (unrooted) subtrees such that each subtree

contains exactly one edge from V<i to Vi. For any τ ∈ Si call the unique edge
from V<i to Vi its head-edge h(τ). Note that such a partition is indeed possible
since H[V≤i]/V<i is connected.

Capacitated Vehicle Routing with Non-uniform Speeds 245

Any subtree in Si (for i ≥ 0) is referred to as a level i subtree. Note that
head-edges are defined only for subtrees in level 1 and above.
Step 2. For each level i ≥ 0: mark those τ ∈ Si that have d(τ) ≥ 2i−3M .
In addition, mark the tree H0 in S0. Let Sm

i and Su
i denote the marked and

unmarked subtrees in Si.
Step 3. For each level i ≥ 1 and unmarked σ ∈ Su

i : define π(σ) as the subtree
in

⋃
j<i Sj containing the other end-point of h(σ).

Claim. For i ≥ 1 and unmarked σ ∈ Su
i , π(σ) ∈ Si−1. Moreover, π(σ) is marked.

Proof. Since σ is unmarked in level i ≥ 1, d(h(σ)) ≤ d(σ) < 2i−3M . So the
end-point v of h(σ) in π(σ) satisfies d(r, v) ≥ 3

2 · 2i−2M , otherwise d(h(σ)) ≥
2i−1M − d(r, v) > 2i−3M . In particular v ∈ Vi−1 and thus π(σ) ∈ Si−1.

For the second part of the claim, notice that if i = 1 then π(σ) = H0, which
is always marked. So suppose i ≥ 2. From the above, π(σ) is in level i − 1 ≥ 1
and hence contains a head-edge. This implies that π(σ) contains some vertex
u ∈ V<i−1, namely an end-point of h(π(σ)). But then d(π(σ)) ≥ d(u, v) ≥
d(r, v) − d(r, u) ≥ 2i−3M , where we used d(r, u) ≤ 2i−2M since u ∈ V<i−1 and
d(r, v) ≥ 3

2 · 2i−2M from above. Thus π(σ) must be marked.

Step 4. For each level i ≥ 0 and marked τ ∈ Sm
i : define Dangle(τ) = π−1(τ) as

the set of all unmarked σ ∈ Su
i+1 having π(σ) = τ . Clearly d(σ) ≤ 2i−2M for all

σ ∈ Dangle(τ).
Step 5. For each level i ≥ 0 and marked τ ∈ Sm

i : partition the tree τ ∪Dangle(τ)
into subtrees T1, . . . , Tq such that the first q − 1 trees have length in the range
[2i+1M, 2i+2M] and Tq has length at most 2i+2M . Notice that this is possible
since all edges of τ ∪ Dangle(τ) belong to E≤i+1 and hence have length at most
2i+1M . Finally, add the shortest edge from r to each of these new subtrees to
obtain a collection Ti(τ) of r-rooted trees.

Claim. For any T ∈ Ti(τ), we have d(T) ≤ 3 · 2i+1M .

Proof. Notice that every T ∈ Ti(τ) consists of a Tj (for some 1 ≤ j ≤ q) and an
edge from r to a node in V≤i+1. Since the former has length at most 2i+2M and
the latter has length at most 2i+1M , it follows that d(T) ≤ 3 · 2i+1M .

Claim.
∑

T∈Ti(τ) d(T) ≤ 5 · [d(τ) + d(Dangle(τ))].

Proof. We break the analysis into two cases depending of q. Suppose q = 1,
namely Ti(τ) consists of a single tree T . In this case T = τ ∪ Dangle(τ) ∪ {e},
where e is an edge to r. If i = 0 then d(e) = 0 and the result holds directly.
If i > 0 then τ has a node in V<i and hence d(e) ≤ 2i−1M . Because τ is
marked and different than H0, the lower bound on its length implies that d(e) ≤
2i−1M ≤ 4d(τ) ≤ 4(d(τ)+d(Dangle(τ)). The result follows by adding the length
of τ ∪ Dangle(τ) to both sides.

Now suppose q > 1. Since all trees in Ti(τ) lie in V≤i+1, each edge from
the root in Ti(τ) has length at most 2i+1M . So the left hand side is at most∑q

j=1 d(Tj)+q ·2i+1M . But for j < q we have d(Tj) ≥ 2i+1M , so the last term of

246 I.L. Gørtz et al.

the previous expression can be upper bounded by q
(q−1)

∑q−1
j=1 d(Tj). This bound

is smallest when q = 2, which then gives
∑

T∈Ti(τ) d(T) ≤ 3
∑q

j=1 d(Tj) ≤ 3d(τ).
This concludes the proof of the claim.

Step 6. For each level i ≥ 0: define Ti =
⋃

τ∈Sm
i

Ti(τ).

The following lemma summarizes the main property of our decomposition pro-
cedure.

Lemma 4. The collection {Ti}i≥0 obtained from the above procedure is (6, 40)-
assignable.

Proof. By the first claim above, each tree in Ti has length at most 3 · 2i+1M . So
the collection satisfies condition (1) of Definition 1.

Fix any i ≥ 0 for condition (2) in Definition 1. Due to Corollary 1, it suffices
to prove that

∑
j≥i d(Tj) ≤ 5 ·∑j≥i d(Hj). Using the second claim from above,

we obtain that

d(Tj) =
∑

τ∈Sm
j

d(Ti(τ)) ≤ 5 ·
∑

τ∈Sm
j

[d(τ) + d(Dangle(τ))] = 5 · d(Sm
j) + 5 · d(Su

j+1).

The last equality above uses the fact that that {Dangle(τ) : τ ∈ Sm
j } is a partition

of Su
j+1. Thus:∑

j≥i

d(Tj) ≤ 5 ·
∑
j≥i

d(Sm
j) + 5 ·

∑
j≥i

d(Su
j+1) ≤ 5 ·

∑
j≥i

d(Sj) = 5 ·
∑
j≥i

d(Hj). (1)

This concludes the proof of Lemma 4.

Summary of the Algorithm. Our algorithm starts with an initial low guess of M
and runs the Level-Prim procedure. If the second condition in Corollary 1 does
not hold for this run, we double the guess for M and repeat until it is satisfied
(this happens the first time that M reaches the condition for the correct guess:
M
2 ≤ OPT ≤ M). We use the decomposition in this section summarized in

Lemma 4 to obtain a (6,40)-assignable collection of trees. Using Lemma 1 on
this collection gives us the desired constant approximation ratio by observing
that the guess M in this step obeys M ≤ 2 · OPT.

4 Open Problems

One interesting open question regards the approximability of HetTSP and
HetCVRP when vehicles are located in multiple different depots across the space.
The current definition of an assignable collection and the definition of Level-Prim
crucially depend on the assumption of a unique depot, hence an extension to the
multi-depot case is likely to require new ideas. Another interesting direction is
to consider HetCVRP with non-uniform capacities, where our metric reduction
ideas do not seem to generalize directly.

Capacitated Vehicle Routing with Non-uniform Speeds 247

References

1. Altinkemer, K., Gavish, B.: Heuristics for unequal weight delivery problems with
a fixed error guarantee. Operations Research Letters 6, 149–158 (1987)

2. Altinkemer, K., Gavish, B.: Heuristics for delivery problems with constant error
guarantees. Transportation Research 24, 294–297 (1990)

3. Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max
vehicle routing problems. Journal of Algorithms 59(1), 1–18 (2006)

4. Arora, S.: Polynomial time approximation schemes for Euclidean traveling sales-
man and other geometric problems. J. ACM 45, 753–782 (1998)

5. Awerbuch, B., Baratz, A., Peleg, D.: Cost-sensitive analysis of communication pro-
tocols. In: Proceedings of the 9th Annual Symposium on Principles of Distributed
Computing, pp. 177–187 (1990)

6. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Ap-
proximation algorithms for orienteering and discounted-reward tsp. SIAM J. Com-
put. 37(2), 653–670 (2007)

7. Bompadre, A., Dror, M., Orlin, J.: Probabilistic Analysis of Unit Demand Vehicle
Routing Problems. J. Appl. Probab. 44, 259–278 (2007)

8. Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related
problems. In: Teng, S.-H. (ed.) SODA, pp. 661–670. SIAM, Philadelphia (2008)

9. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget con-
straints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D.
(eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 72–83. Springer,
Heidelberg (2004)

10. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Report 388, Graduate School of Industrial Administration, CMU (1976)

11. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
optimization. John Wiley & Sons, Inc., New York (1998)

12. Das, A., Mathieu, C.: A Quasi-polynomial Time Approximation Scheme for Eu-
clidean Capacitated Vehicle Routing. In: Charikar, M. (ed.) SODA, pp. 390–403.
SIAM, Philadelphia (2010)

13. Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Min-max tree covers of
graphs. Oper. Res. Lett. 32(4), 309–315 (2004)

14. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some
routing problems. SIAM J. Comput. 7(2), 178–193 (1978)

15. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs.
In: Proceedings of the 34th Annual ACM Symposium on the Theory of Computing,
pp. 396–402 (2005)

16. Gupta, A., Nagarajan, V., Ravi, R.: Approximation Algorithms for VRP with
Stochastic Demands (2010) (submitted)

17. Haimovich, M., Kan, A.H.G.R.: Bounds and heuristics for capacitated routing
problems. Mathematics of Operations Research 10(4), 527–542 (1985)

18. Khuller, S., Raghavachari, B., Young, N.E.: Balancing minimum spanning trees
and shortest-path trees. Algorithmica 14(4), 305–321 (1995)

19. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for schedul-
ing unrelated parallel machines. Mathematical Programming 46, 259–271 (1990),
doi:10.1007/BF01585745

20. Mitchell, J.S.B.: Guillotine Subdivisions Approximate Polygonal Subdivisions: A
Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and
Related Problems. SIAM Journal on Computing 28(4), 1298–1309 (1999)

21. Toth, P., Vigo, D. (eds.): The vehicle routing problem. SIAM Monographs on
Discrete Mathematics and Applications, Philadelphia, PA, USA (2002)

Approximation Algorithms for Single and
Multi-Commodity

Connected Facility Location

Fabrizio Grandoni1 and Thomas Rothvoß2

1 University of Rome Tor Vergata, Italy
grandoni@disp.uniroma2.it

2 MIT, USA
rothvoss@math.mit.edu

Abstract. In the classical facility location problem we are given a set of facil-
ities, with associated opening costs, and a set of clients. The goal is to open a
subset of facilities, and to connect each client to the closest open facility, so that
the total connection and opening cost is minimized. In some applications, how-
ever, open facilities need to be connected via an infrastructure. Furthermore, con-
necting two facilities among them is typically more expensive than connecting a
client to a facility (for a given path length). This scenario motivated the study of
the connected facility location problem (CFL). Here we are also given a parame-
ter M ≥ 1. A feasible solution consists of a subset of open facilities and a Steiner
tree connecting them. The cost of the solution is now the opening cost, plus the
connection cost, plus M times the cost of the Steiner tree.

In this paper we investigate the approximability of CFL and related problems.
More precisely, we achieve the following results:

• We present a new, simple 3.19 approximation algorithm for CFL. The previous
best approximation factor is 3.92 [Eisenbrand, Grandoni, Rothvoß, Schäfer-’10].
• We show that SROB, i.e. the special case of CFL where all opening costs
are 0, is hard to approximate within 1.28. The previous best lower bound for
SROB is 1.01, and derives trivially from Steiner tree inapproximability [Chlebík,
Chlebíková-’08]. The same inapproximability result extends to other well-studied
problems, such as virtual private network and single-sink buy-at-bulk.
• We introduce and study a natural multi-commodity generalization MCFL of
CFL. In MCFL we are given source-sink pairs (rather than clients) that we wish
to connect. A feasible solution consists of a subset of open facilities, and a forest
(rather than a tree) spanning them. Source-sink connection paths can use several
trees in the forest, but must enter and leave each tree at open facilities. We present
the first constant approximation for MCFL.

1 Introduction

In the classical metric facility location problem (FL), we are given an undirected graph
G = (V,E), with edge costs (or weights) c : E → Q+, a set of clients C ⊆ V ,
and a set of facilities F ⊆ V , with opening costs o : F → Q+. A feasible solution
is given by a subset F ′ ⊆ F of open facilities. The goal is to minimize the opening

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 248–260, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Approximation Algorithms for Connected Facility Location 249

cost of F ′, plus the shortest path distance from each client to the closest open facil-
ity. More formally, let c(v, u) denote the shortest path distance between u and v, and
c(v, U) := minu∈U c(v, u) for any U ⊆ V . Then the objective function to be mini-
mized is

∑
f∈F ′ o(f) +

∑
v∈C c(v, F ′).

In several applications one needs to connect open facilities via an infrastructure.
Typically, connecting facilities among them is more expensive than connecting clients
to facilities. This scenario motivated the introduction of the following problem. Let
c(E′) :=

∑
e∈E′ c(e) for any E′ ⊆ E, and c(G′) = c(E(G′)) for any subgraph G′

of G.

CONNECTED FACILITY LOCATION (CFL). Given an undirected graph G =
(V,E), with edge costs c : E → Q+, a set of clients C ⊆ V , a set of facilities
F ⊆ V , with opening costs o : F → Q+, and a parameter M ≥ 1. Compute
a subset F ′ ⊆ F of open facilities, and a tree T ′ spanning F ′, in order to
minimize

∑
f∈F ′ o(f) +

∑
v∈C c(v, F ′) + M · c(T ′).

CFL is well-studied in the literature [9,18,21,28]. The current best approximation for it
is 3.92 [9]. A very well-studied [9,18,20,23,28] special case of CFL is the single-sink
rent-or-buy problem (SROB), where F = V and opening costs are zero. In this context,
we can think of edges of T ′ as bought edges (for which we pay a fixed, large cost), and
edges outside T ′ as rented edges (for which we pay a cost proportional to the number
of paths using them).

Another way to interpret CFL is as follows. Clients are users who want to reach a
public transportation network T ′ each day to get to their office. Commuting has a social
cost which is shared on T ′, and payed on an individual basis outside T ′. Here open
facilities are stations at which users can access T ′. This view of CFL suggests a natural
multi-commodity generalization of the problem. Replace clients with origin-destination
pairs, and imagine that you can construct several, possibly disconnected, transportation
networks. Each network can be reached and left at stations. More formally, one can
define the following problem. For a forest T ′ and a subset of nodes V ′, let cV ′,T ′(u, v)
be the shortest path distance between nodes u and v after adding one edge of cost zero
between each pair of nodes in V ′ belonging to the same tree of T ′.

MULTI-COMMODITY CONNECTED FACILITY LOCATION (MCFL). Given an
undirected graph G = (V,E), with edge costs c : E → Q+, a set of source-
sink pairs1 P = {(s1, r1), . . . , (sk, rk)}, si, ri ∈ V , a set of facilities F ⊆ V ,
with opening costs o : F → Q+, and a parameter M ≥ 1. Compute a subset
F ′ ⊆ F of open facilities, and a forest T ′, in order to minimize

∑
f∈F ′ o(f) +∑

(s,r)∈P cF ′,T ′(s, r) + M · c(T ′).

To the best of our knowledge, MCFL was not addressed before (at least, from the
point of view of approximation algorithms). However, there is a special case of the
problem which is well-studied in the literature: the multi-commodity rent-or-buy prob-
lem (MROB) is the special case of MCFL where F = V and opening costs are zero
[2,3,12,20,24]. A solution to an MROB instance consists of a forest T ′ of bought edges.

1 For notational convenience, we will consider P as a multi-set of pairs.

250 F. Grandoni and T. Rothvoß

The cost of the solution is given by M · c(T ′) +
∑

(s,r)∈P cT ′(s, r), where cT ′(u, v)
denotes the shortest path distance between u and v, after contracting the connected
components of T ′. In other terms, MROB is the multi-commodity version of SROB.

1.1 Our Results and Techniques

In this paper we study the approximability of CFL and related problems. In particular,
we obtain the following three main results.

(1) An Improved Approximation for CFL. We present a 3.19 approximation algorithm
for CFL, improving on the previous best 3.92 approximation [9]. The approximation
algorithms for CFL by Gupta, Srinivasan and Tardos [21] and Eisenbrand, Grandoni,
Rothvoß, and Schäfer [9] are both based on simple random sampling steps (more de-
tails in Section 1.2). Here we present a third, simple random sampling algorithm. We
first randomly sample clients, and buy a Steiner tree T over them. Then we define a
facility location instance (on all the clients), where the opening cost of each facility f
is increased by the cost of augmenting T to include f . This way, the modified opening
cost encodes both the real opening cost, and the cost of connecting f to the other open
facilities via T .

Like in [9], our technique can be extended to the connected version of some variants
of facility location. However, our approach is more flexible. For example, differently
from [9], it gives a constant approximation for connected facility location with hard
capacities. Due to space limits, extensions will be discussed in the full version of the
paper.

From the analytical point of view, we exploit the core-detouring technique in [9],
which was already successfully applied in the analysis of CFL [9] and related problems
[15]. The basic idea is bounding the cost of connecting a set of clients to a random
subset of them. This bound is based on detouring connection paths through a proper
connected core graph. We cannot directly apply (as a black box) the core-detouring
theorem in [9], since we need to connect clients to facilities rather than clients among
them. However, the connection scheme used in the proof of the theorem has some par-
ticular properties that we can exploit for our purposes.

(2) A Constant Approximation for MCFL. We present the first constant approximation
for MCFL: the approximation factor is 16.2. Our result is based on two main ingredi-
ents. The first ingredient is a reduction to the prize-collecting version of facility loca-
tion, where we are allowed not to connect all the clients, but we have to pay a penalty
for each disconnected client. More formally:

PRIZE-COLLECTING FACILITY LOCATION (PFL). Given an undirected graph
G = (V,E), with edge costs c : E → Q+, a set of clients C ⊆ V , with
penalties p : C → Q+, and a set of facilities F ⊆ V , with opening costs o :
F → Q+. Compute a subset F ′ ⊆ F of open facilities and a subset C′ ⊆ C of
disconnected clients, in order to minimize

∑
f∈F ′ o(f)+

∑
v∈C−C′ c(v, F ′)+∑

v∈C′ p(v).

Approximation Algorithms for Connected Facility Location 251

In a MCFL solution there might be pairs which are connected directly via a shortest
path (without using edges of the forest T ′): intuitively, prizes are used to get rid of those
pairs. In particular, each source and sink will define a client, and each pair containing
at least one disconnected client in the PFL solution will be connected directly via a
shortest path.

The second ingredient is a reduction to MROB. For each residual pair, we consider
the associated pair of facilities in the PFL solution. This defines an MROB instance. On
this instance, we run the MROB algorithm rand by Fleischer, Könemann, Leonardi,
and Schäfer [12] (see also [20]). Here, we crucially exploit some properties of rand
which are implicitly proved in [12]. In particular, using a different (possibly better) ap-
proximation algorithm for MROB might lead to a worse approximation for MCFL.

(3) A Stronger Inapproximability Result for SROB. Observe that CFL is not a general-
ization of FL, since its definition excludes M = 0. However, the techniques in [16] can
be adapted to prove the same 1.463-inapproximability bound for CFL as for FL (we
omit the proof for lack of space).

Theorem 1. Unless NP ⊆ DTIME(nO(log n)), there is no polynomial time 1.463-
approximation for CFL.

Here we show that SROB, a very special case of CFL, is hard to approximate within
1.278. This greatly improves over the previously known approximation hardness of
1.01, which is based on the Steiner tree hardness result in [6] combined with a trivial
reduction. The same hardness result extends immediately to other well-studied gener-
alizations of SROB, as MROB and single-sink buy-at-bulk (SSBB). It also applies to
virtual private network (VPN). (See Section 1.2 for omitted definitions). We remark
that CFL is not a special case of the latter problems (hence, the results in [16] do not
extend to them). Our result is based on a reduction to a special case of facility loca-
tion, where facility costs are uniform, and client-facility distances are either 1 or 2. We
show that the latter problem is hard via a reduction to a set-cover-like problem whose
hardness was proved by Guha and Khuller [16].

1.2 Related Work

CFL is well-studied in the literature. Gupta, Kleinberg, Kumar, Rastogi, and Yener [18]
obtain a 10.66-approximation for this problem, based on rounding an exponential size
LP. Gupta, Srinivasan and Tardos [21] describe a random sampling algorithm for CFL,
leading to a 9.01-approximation. Their algorithm randomly samples clients, and then
runs an (unconnected) facility location approximation algorithm on the sampled clients:
the corresponding open facilities form the set of open facilities in the final CFL solution.
Swamy and Kumar [28] later improved the approximation to 8.55, using a primal-dual
algorithm. The best-known result prior to our work is the 4.00-approximation by Eisen-
brand, Grandoni, Rothvoß, and Schäfer [9]. They use a random-sampling approach
subtly different from the one in [21]. In particular, they first solve an unconnected fa-
cility location problem on all the clients (not only on the sampled ones), and then ran-
domly select a subset of the resulting (deterministic) pool of open facilities. Using the

252 F. Grandoni and T. Rothvoß

improved Steiner tree approximation algorithm by Byrka, Grandoni, Rothvoß, and San-
ità [5], the approximation factor reduces to 3.92. In this paper we present a third, still
simple random-sampling algorithm for CFL.

A lot of research was devoted to a special case of CFL, namely SROB. The first con-
stant approximation for SROB is given by Karger and Minkoff [23]. Gupta et al. [18]
give a 9.01-approximation algorithm. Swamy and Kumar [28] describe a primal-dual
4.55-approximation algorithm for the same problem. Gupta, Kumar, Pal, and
Roughgarden [20] propose a simple random sampling algorithm which gives a 3.55-
approximation. Based on a refinement of the analysis in [20] via the core-detouring
technique, the current best 2.80 approximation is given in [9].

Single-sink buy-at-bulk (SSBB) is the generalization of SROB, where we are given a
set of cable types, each one with a cost and a capacity. Capacity on edges has to be re-
served by installing zero or more copies of each cable type. The goal is sending one unit
of flow from each source node to a sink. SROB can be seen as the special case of SSBB
with two cable types: one of very small capacity and unit cost per unit capacity (corre-
sponding to rented edges) and one of fixed cost and very large capacity (corresponding
to bought edges). After a long sequence of improvements [13,14,17,20,22,26,29], the
current best 20.41 approximation was recently given in [15].

The virtual private network problem (VPN), despite its rather different formulation,
is intimately related to the other mentioned problems (see, e.g., [15]). Here, we are
given upper and lower bounds on the amount of traffic that each node can send and
receive. A solution is given by a capacity reservation and one path for each source-sink
pair. The goal is minimizing the cost of the capacity reservation so that every traffic
matrix which satisfies the upper bounds can be routed along the specified paths without
exceeding edge capacities. Also this problem is well-studied [7,8,18,20]. The current
best approximation is 2.80 [15].

As mentioned before, MCFL was not addressed before to the best of our knowledge.
However, its special case MROB is a well-known problem. A O(log n)-approximation
for MROB is obtained by combining the approach by Awerbuch and Azar [2] with
the refined Bartal trees in [11]. The first constant approximation is given by Kumar,
Gupta, and Roughgarden [24] via the primal-dual method. A better and simpler random
sampling algorithm is presented by Gupta et al. [20]. Based on a similar approach, the
constant was later improved to 6.83 by Becchetti, Könemann, Leonardi, and Pál [3],
and eventually to 5 by Fleischer, Könemann, Leonardi, and Schäfer [12].

In [24] the term MCFL is used to define a variant of MROB, where each connection
path can use at most one tree in the forest T ′: let us call this problem 1-MROB. (A gen-
eralization of this problem, where subsets of pairs are grouped together, is discussed
in [19]). The authors show that any β approximation for 1-MROB gives a 2β approxi-
mation for MROB, and present a constant approximation for the first problem. Indeed,
essentially the same reduction works also in the opposite direction (giving a 10 approx-
imation for 1-MROB based on the result in [12]). We can define the 1-MCFL problem
analogously: this problem models natural scenarios (e.g., a person might want to use at
most one public transportation network to commute). Using the same reduction as in
[24], we obtain a 2 · 16.2 = 32.4 approximation for 1-MCFL: details are postponed to
the full version of the paper.

Approximation Algorithms for Connected Facility Location 253

Algorithm 1. Approximation algorithm for CFL

1. Guess a facility r from the optimum solution. Sample each client with probability α
M

. Let
C′ be the sampled clients.

2. Compute a ρst-approximate Steiner tree T on terminals C′ ∪ {r}.
3. Define a FL instance with clients C, facilities F and opening costs o′(f) := o(f) + M ·

c(f, C′ ∪ {r}). Compute a (λF , λC)-approximate solution F ′ ⊆ F to this instance.
4. Augment T with shortest paths from each f ∈ F ′ to T . Let T ′ be the augmented tree.
5. Return (F ′, T ′)

2 An Improved Approximation for CFL

Let us consider Algorithm 1 in the figure. Here α ∈ (0, 1] is a constant to be fixed later.
A bifactor (λF , λC)-approximation for FL is an algorithm which produces a solution
to a FL instance of cost at most λF ·O + λC · C, where O and C are the opening and
connection cost of any given feasible solution. We will exploit the following result by
Byrka [4].

Lemma 1. [4] For any λF > 1.67, there is a (λF , 1+2e−λF)-approximation algorithm
for FL.

We remark that we would obtain an improved approximation also using a standard
facility location algorithm. However, the approximation ratio would be slightly higher.
A second tool that we need is the following Lemma which is implicitly proved in [9].

Lemma 2. [9] Given an undirected graph G = (V,E), with edge costs c : E → Q+, a
set of clients C ⊆ V , a subtree T ′ (core) containing a root node r, a mapping σ : C →
V (T ′), and a probability p ∈ (0, 1]. Mark each client independently with probability p,
and denote marked clients byC′. Let σ(C′) := ∪v∈C′σ(v). ThenE[

∑
v∈C c(v, σ(C′)∪

{r})] ≤ 0.807
p c(T ′) +

∑
v∈C c(v, σ(v)).

We let OPT = (F ∗, T ∗) denote the optimal solution to the considered CFL instance,
where F ∗ is the set of facilities and T ∗ the Steiner tree connecting them. We also let
σ∗(v) ∈ F ∗ be the facility serving v ∈ C in OPT . By OPT = O∗ + C∗ + S∗ we
denote the optimal cost, whereO∗ := o(F ∗) is the opening cost, C∗ :=

∑
v∈C c(v, F ∗)

the connection cost, and S∗ := M · c(T ∗) the Steiner cost. Let Ofl :=
∑

f∈F ′ o′(f) =∑
f∈F ′(o(f) +M · c(f, C′ ∪ {r})) be the opening cost of the facility location solution

computed in Step 3, and Cfl :=
∑

v∈C c(v, F ′) be the connection cost in the same
solution. We need a few, simple intermediate results.

Lemma 3. The cost of the returned solution is at most M · c(T) + Ofl + Cfl.

Proof. The connection cost in the FL and CFL solutions are the same. Recall that
o′(f) = o(f) + M · c(f, C′ ∪ {r}). Thus the modified opening costs o′ pay fully
for both opening F ′ and for augmenting T to T ′.

Lemma 4. One has E[M · c(T)] ≤ ρst · (S∗ + α · C∗).

254 F. Grandoni and T. Rothvoß

Proof. A feasible Steiner tree on C′ ∪{r}, of expected cost c(T ∗) + α
M C∗, is obtained

by augmenting T ∗ with the shortest paths between each v ∈ C′ and σ∗(v). Multiplying
by ρst ·M then gives the claim.

Lemma 5. One has E[Ofl + Cfl] ≤ λF (O∗ + αC∗) + λC(C∗ + 0.807
α S∗).

Proof. We provide a FL solution, whose expected opening cost is O∗ + αC∗ and
whose expected connection cost is C∗ + 0.807

α S∗. Choose facilities σ∗(C′)∪ {r}, with
σ∗(C′) := ∪v∈C′σ∗(v). Then the expected opening cost is

E
[∑

f∈σ∗(C′)∪{r}
o′(f)

]
≤ E

[∑
f∈F∗

o(f)
]

+ M · E
[∑

v∈C′
c(v, σ∗(v))

]
= O∗ + M · α

M
·
∑
v∈C

c(v, σ∗(v)) = O∗ + αC∗.

The crucial argument here is that we need to account for the extra term M · c(v, σ∗(v))
only if v ∈ C′, which happens with probability α

M .
In order to bound the expected connection cost, we apply Lemma 2, with clients C,

core T ∗, mapping σ = σ∗, root r, and probability α/M :

E
[∑

v∈C

c(v, σ∗(C′) ∪ {r})
]
≤ 0.807

α/M
c(T ∗) +

∑
v∈C

c(v, σ∗(v)) =
0.807
α

S∗ + C∗.

Theorem 2. Algorithm 1 is an expected 3.19-approximation algorithm for CFL.

Proof. Recall that ρst ≤ ln(4) + ε for every fixed ε > 0 [5]. From Lemmas 1, 3, 4, and
5, the total expected cost of the approximate solution is upper bounded by

ρst · (S∗ + α · C∗) + λF (O∗ + αC∗) + λC

(
C∗ +

0.807
α

S∗
)

= O∗λF + S∗
(
ρst + λC

0.807
α

)
+ C∗(ρst α + λF α + λC)

α=0.539
λF =2.294>1.67
λC≤1+2e−λF

≤ 2.30 ·O∗ + 3.19 · S∗ + 3.19 · C∗ ≤ 3.19 ·OPT.

3 A Constant Approximation for MCFL

Let us consider Algorithm 2 in the figure. With a slight notational abuse, for a set of
pairs P̃ , we use P̃ also to denote the corresponding set of nodes. In the first step, we
define and (approximately) solve a proper PFL instance, whose clients C are given
by the nodes in the input pairs P . Currently, ρpfl ≤ 1.86 [30]. Let C′ be discarded
clients, and σ(v) be the facility serving v ∈ C − C′. Intuitively, the pairs Pdir with
at least one endpoint in C′ are connected directly via a shortest path. For the remain-
ing pairs (s, r) ∈ Pind, we consider the associated pairs of facilities (σ(s), σ(r)). The
latter pairs define an MROB instance mrob. To this instance we essentially apply the

Approximation Algorithms for Connected Facility Location 255

Algorithm 2. Approximation algorithm for MCFL

1. Define a PFL instance on the input instance with clients C = {s1, r1, . . . , sk, rk} (as multi-
set), and p(s) = p(r) = c(s, r)/2 for any (s, r) ∈ P . Compute a ρpfl-approximate solution
(F ′, C′) for this problem. Let σ(v) ∈ F ′ be the open facility which is closest to v ∈ C−C′,
Pdir := {(s, r) ∈ P : {s, r} ∩ C′ �= ∅}, and Pind = P − Pdir .

2. Sample each pair (σ(s), σ(r)), with (s, r) ∈ Pind, independently with probability 1/M .
Let P ′ be the sampled pairs of facilities.

3. Compute a 2-approximate Steiner forest T ′ over P ′ using the primal-dual algorithm in [1].
4. Output (P ′, T ′).

MROB algorithm rand in [12]. In particular, we sample each pair independently with
probability 1/M , and compute a Steiner forest T ′ on the sampled pairs P ′ with the
2-approximation algorithm in [1]. The output solution is given by facilities P ′ and
forest T ′.

We need the following result in [12,25]. We recall that, for a set of nodes V ′ and a
forest T ′, cT ′ defines distances after contracting the connected components of T ′, while
cV ′,T ′ defines distances after contracting the nodes in V ′ belonging to same tree of T ′.
In particular, in general cV ′,T ′(u, v) ≥ cT ′(u, v).

Lemma 6. [12,25] Consider an MROB instance on pairs P̃ , with optimal cost
OPTmrob. Sample each pair in P̃ independently with probability 1/M , and compute
a 2-approximate Steiner forest T ′ on the sampled pairs P ′ with the algorithm in [1].
Then E[M · c(T ′) +

∑
(s,r)∈P̃ cT ′(s, r)] ≤ 5 · OPTmrob. The same claim holds by

replacing cT ′ with cP ′,T ′ .

The last claim of Lemma 6 is not relevant for MROB (it just comes out as a byproduct
of the analysis in [12]). However, it is crucial for our analysis. In particular, since P ′

is a subset of facilities in our case, the connection path for (σ(s), σ(r)) in the MROB
solution as given by Lemma 6 enters and leaves trees in T ′ at facilities. Henceforth, we
can extend such connection path with shortest paths (s, σ(s)) and (σ(r), r) to obtain a
feasible connection path for pair (s, r).

With a notation analogous to Section 2, we let OPT = (F ∗, T ∗) denote the opti-
mum solution, where F ∗ is the set of open facilities and T ∗ a Steiner forest. We also
let OPT = O∗ +C∗ + S∗ be the optimal cost, where O∗, C∗, and S∗ are the opening,
connection, and Steiner cost, respectively. By Opfl, Ppfl, and Cpfl we denote, respec-
tively, the opening, penalty, and connection cost of the PFL solution computed in Step
1. We also let Smrob = M · c(T ′) and Cmrob =

∑
(s,r)∈Pind

cP ′,T ′(σ(s), σ(r)) be the
Steiner and connection cost, respectively, of the MROB solution computed in Step 3,
as suggested by Lemma 6. Eventually, APX = Oapx + Sapx + Capx is the cost of
the approximate solution, where Oapx, Sapx, and Capx are the opening, Steiner, and
connection cost, respectively.

Lemma 7. APX ≤ Opfl + Smrob + 2Ppfl + Cpfl + Cmrob.

256 F. Grandoni and T. Rothvoß

Proof. By definition, APX = Oapx + Sapx + Capx. Trivially, Oapx ≤ Opfl (we
open a subset P ′ of the facilities F ′ in the PFL solution). Moreover, Sapx = Smrob by
construction.

In order to prove the claim, it is then sufficient to describe connection paths of to-
tal cost 2Ppfl + Cpfl + Cmrob. Let us connect all the pairs in Pdir directly via a
shortest path. Since by definition at least one endpoint of each pair in Pdir belongs
to the discarded clients C′,

∑
(s,r)∈Pdir

c(s, r) ≤ 2Ppfl. Consider now the remain-
ing pairs Pind. For each (s, r) ∈ Pind, we connect s to σ(s) and σ(r) to r via a
shortest path. Then we connect σ(s) to σ(r) using a shortest path with respect to
cP ′,T ′ . Observe that this is a feasible connection path for (s, r). The total cost of
these paths is

∑
(s,r)∈Pind

(c(s, σ(s)) + cP ′,T ′(σ(s), σ(r)) + c(σ(r), r)) = Cmrob +∑
v∈Pind

c(v, σ(v)) = Cmrob + Cpfl. The claim follows.

Lemma 8. Opfl + Cpfl + Ppfl ≤ ρpfl(O∗ + C∗).

Proof. It is sufficient to show that there exists a PFL solution of cost at most O∗ + C∗.
Let P ∗

dir ⊆ P be the pairs whose connection path in OPT = (F ∗, T ∗) does not use
any edge of T ∗, and P ∗

ind = P − P ∗
dir. By C∗

dir (resp., C∗
ind) we denote the connection

cost of OPT restricted to P ∗
dir (resp., P ∗

ind).
Consider the PFL solution (F ∗, P ∗

dir). This solution has opening cost O∗ and penalty

cost
∑

(s,r)∈P∗
dir

(p(s)+ p(r)) =
∑

(s,r)∈P∗
dir

2 c(s,r)
2 = C∗

dir. Moreover, its connection

cost is
∑

(s,r)∈P∗
ind

(c(s, F ∗) + c(r, F ∗)) ≤ ∑
(s,r)∈P∗

ind
cF∗,T∗(s, r) = C∗

ind. Alto-
gether, the cost of this PFL solution is upper bounded by O∗+C∗

dir +C∗
ind = O∗+C∗.

Lemma 9. E[Smrob + Cmrob] ≤ 5(Cpfl + C∗ + S∗).

Proof. Let P̃ := {(σ(s), σ(r)) : (s, r) ∈ Pind} (considered as a multiset). The
triple (P̃ , P ′, T ′) satisfies the conditions of Lemma 6. Hence, E[Smrob + Cmrob] =
E[M · c(T ′) +

∑
(s′,r′)∈P̃ cP ′,T ′(s′, r′)] ≤ 5OPTmrob, where OPTmrob is the opti-

mum solution to the MROB instance mrob induced by pairs P̃ .
A bound on OPTmrob is given by the following feasible solution to mrob. Buy the

edges of the optimal forest T ∗ of OPT . This costs S∗. For each pair (σ(s), σ(r)) ∈ P̃ ,
connect σ(s) to s and σ(r) to r via a shortest path, and then connect s to r via the
connection path between s and r in OPT . The cost of this solution is

∑
(s,r)∈Pind

(c(s, σ(s))+c(r, σ(r))+cF∗ ,T∗(s, r)) ≤ Cpfl+C∗. ThenOPTmrob ≤ Cpfl+C∗+S∗.
The claim follows.

Theorem 3. Algorithm 2 is an expected 16.2-approximation algorithm for MCFL.

Proof. One has

E[APX]
Lem 7≤ Opfl + 2Ppfl + Cpfl + E[Smrob + Cmrob]
Lem 9≤ Opfl + 2Ppfl + Cpfl + 5 (Cpfl + C∗ + S∗)
≤ 6 (Opfl + Ppfl + Cpfl) + 5 (C∗ + S∗)
Lem 8≤ 6 ρpfl(O∗ + C∗) + 5(C∗ + S∗)
≤ (6 ρpfl + 5)(O∗ + C∗ + S∗) ≤ 16.2OPT.

Approximation Algorithms for Connected Facility Location 257

4 On the Approximability of SROB

Recall that SROB is the special case of CFL where every node is a facility with open-
ing cost zero. Without loss of generality, we can assume that we are also given a
root node r ∈ V which belongs to the tree T ∗ in the optimum solution. In this sec-
tion we show that SROB cannot be approximated within a factor of 1.278, unless
NP ⊆ DTIME(nO(log log n)). This heavily improves over the previously known ap-
proximation hardness of 1.01 (due to hardness of Steiner tree [6]).

As an intermediate step, we consider a reduction to the uniform facility
location problem (UnifFL), i.e. the special case of metric facility location where all
facilities have uniform opening cost o. Indeed, we consider an even more restrictive
case. For a set N of non-negative numbers, let N -UnifFL denote the special case of
UnifFL where, for any client v ∈ C and facility f ∈ F , c(v, f) ∈ N . Given a solution
F ′ ⊆ F , we let σ(v) denote the facility in F ′ which is closest to client v ∈ C. We also
say that v is assigned to σ(v) and that σ(v) serves v.

Guha and Khuller [16] showed that, unless NP ⊆ DTIME(nO(log log n)), {1, 3}-
UnifFL cannot be approximated within a factor of 1.463. While this case seems hard to
reduce to SROB, we are able to prove a similar reduction for {1, 2}-UnifFL.

Lemma 10. Given an α-approximation algorithm for SROB, there is an α-
approximation algorithm for {1, 2}-UnifFL.

Proof. Consider a given {1, 2}-UnifFL instance on clients C and facilities F . First
suppose that the uniform opening cost is o ≥ 1. We define an SROB instance as follows.
Consider the complete graph G on nodes C ∪ F ∪ {r}, with clients C, root r, and
M = o ≥ 1. Edges (r, f) and (v, f), with f ∈ F , v ∈ C, and c(v, f) = 1, have unit
costs. All other edges have cost 2. Let the degree d(f) = |{v ∈ C : c(v, f) = 1}| of
a facility f ∈ F be the number of clients at distance 1 from that facility. We remark
that, if d(f) ≤ M for all f ∈ F , then there is an optimum solution of {1, 2}-UnifFL
where only one facility f∗ is opened. In fact, suppose f
= f∗ is opened as well, where
f serves x′ ≤ M clients at distance 1 and x′′ clients at distance 2. By closing f and
assigning its clients to f∗, one saves at least (o+x′+2x′′)−(2x′+2x′′) = M−x′ ≥ 0.
The best solution with one open facility can be computed in polynomial time. So we can
assume without loss of generality that there is at least one facility f with d(f) > M .

Observe that any solution F ′ to an {1, 2}-UnifFL instance induces an SROB solution
of the same cost. In fact, it is sufficient to consider the tree T ′ induced by edges {r, f},
f ∈ F ′: this solution costs |F ′|·o+∑

v∈C c(v, F ′). Hence, the cost of an α-approximate
solution to SROB costs at most α times the cost of the optimum solution to {1, 2}-
UnifFL.

Thus, it is sufficient to show that any feasible solution to SROB can be turned in
polynomial time into a solution to {1, 2}-UnifFL of not larger cost. Consider any such
solution T ′ to SROB. Suppose that T ′ = ∅. Then, adding edge {r, f}, with f being
the maximum degree facility (recall that d(f) > M), can only decrease the cost. Next
assume T ′
= ∅. Suppose there is any client v connected either to r or to another client
in C. This connection costs 2, thus reconnecting v to any node in F ∩ V (T ′) can only
make the solution cheaper. Suppose now that T ′ contains one edge {v, f} with v ∈ C
and f ∈ F , but not edge {r, f}. Then replacing {v, f} by {r, f} leaves T ′ connected

258 F. Grandoni and T. Rothvoß

and can only reduce the cost. Finally we may still have edges {v, f} and {r, f}, with
v ∈ C and f ∈ F . Then deleting {v, f} again can only decrease the cost, since M ≥ 1
and no other client (but v) is connected to v.

At the end of the process, T ′ only contains edges of type {r, f}, f ∈ F . Let F ′ :=
{f ∈ F : {r, f} ∈ T ′}. F ′ induces a feasible solution to {1, 2}-UnifFL of cost equal
to the cost of the (modified) SROB solution. The claim follows.

A similar proof holds for the case o < 1, by letting M = 1 and setting edge costs
{r, f} to o.

We need the following result by Guha and Khuller [16].

Lemma 11. [16] Suppose we have a set cover instance ({1, . . . , n}, {S1, . . . , Sm})
with unit cost for sets and optimal cost OPTsc = k. If there is a polynomial time
algorithm that can pick βk sets (for any constant β > 0) and cover c′ · n elements,
where c′ > cβ = 1 − e−β , then NP ⊆ DTIME(nO(log log n)).

To see why Lemma 11 holds, suppose for the sake of contradiction that such an algo-
rithm does exist. Then we can apply it iteratively to a set cover instance. Let αtn be the
number of covered elements at iteration t, t = 1, . . . , T (in particular,

∑T
t=1 αt = 1).

At iteration t the algorithm uses only βtk ≤ δ · ln(1
1−αt

) many sets where δ < 1 is a

constant. Then we obtain a solution with
∑T

t=1 βtk ≤ ∑T
t=1 δ ln(1

1−αt
)k ≤ δ · ln(n)k

sets, contradicting the hardness result of [10].

Lemma 12. There is no α-approximation algorithm with α≤1.278 for {1, 2}-UnifFL,
unless NP ⊆ DTIME(nO(log log n)).

Proof. Suppose for the sake of contradiction that we have an α-approximation algo-
rithm for {1, 2}-UnifFL and α ≤ 1.278. Consider a set cover instance with n elements,
sets S1, . . . , Sm of unit cost, and optimal value OPTsc = k. Define a {1, 2}-UnifFL
instance as follows. Introduce a facility f for each set Sf and a client v for each element
v. Set c(v, f) = 1 if v ∈ Sf , and c(v, f) = 2 otherwise. Let o = γ n

k be the uniform
cost. Here 0 < γ < 1 is a constant, that we will determine later. Let OPTufl be the
optimum solution to this instance. By opening the k facilities which correspond to the
k sets in the optimum set cover solution, we obtain that OPTufl ≤ k · o + 1 · n =
k · γ n

k + n = (1 + γ)n.
Using the α-approximation algorithm we get a {1, 2}-UnifFL solution F ′ of cost at

most α(1 + γ)n. Let c ∈ [0, 1] be the fraction of demands, whose service costs are 1
(the others are served at cost 2). Define β := |F ′|/k > 0. Then

(βγ + 2 − c)n = βk︸︷︷︸
=|F ′|

· o + cn + 2 · (1 − c)n︸ ︷︷ ︸
connection cost

≤ α(1 + γ)n.

This can be rearranged to

c ≥ β · γ + 2 − α(1 + γ)
α≤1.278,γ:=0.278

≥ 0.278β + 0.3667 > 1 − e−β,

contradicting Lemma 11.

Approximation Algorithms for Connected Facility Location 259

Theorem 4. There cannot be a factor 1.278-approximation algorithm for SROB,
MROB, CFL, MCFL, SSBB, and VPN, unless NP ⊆ DTIME(nO(log log n)).

Proof. The claim for SROB follows from Lemmas 10 and 12. The same result trivially
extends to MROB, CFL, MCFL, and SSBB (which are all generalizations of SROB).
The hardness for VPN follows from the fact, that any SROB instance is equivalent to a
VPN instance with a single receiver of capacity M (see, e.g., [15,27]).

Acknowledgments. A special thank to J. Byrka, S. Leonardi, and M. Singh for helpful
discussions.

References

1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: an approximation algorithm for the
generalized Steiner problem on networks. SIAM Journal on Computing 24, 440–456 (1995)

2. Awerbuch, B., Azar, Y.: Buy-at-bulk network design. In: FOCS, pp. 542–547 (1997)
3. Becchetti, L., Könemann, J., Leonardi, S., Pál, M.: Sharing the cost more efficiently: im-

proved approximation for multicommodity rent-or-buy. In: SODA, pp. 375–384 (2005)
4. Byrka, J.: An optimal bifactor approximation algorithm for the metric uncapacitated facility

location problem. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM
2007 and APPROX 2007. LNCS, vol. 4627, pp. 29–43. Springer, Heidelberg (2007)

5. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved LP-based approximation for
Steiner tree. In: STOC, pp. 583–592 (2010)

6. Chlebík, M., Chlebíková, J.: The Steiner tree problem on graphs: Inapproximability results.
Theoretical Computer Science 406(3), 207–214 (2008)

7. Eisenbrand, F., Grandoni, F.: An improved approximation algorithm for virtual private net-
work design. In: SODA, pp. 928–932 (2005)

8. Eisenbrand, F., Grandoni, F., Oriolo, G., Skutella, M.: New approaches for virtual private
network design. SIAM Journal on Computing 37(3), 706–721 (2007)

9. Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Connected facility location via ran-
dom facility sampling and core detouring. Journal of Computer and System Sciences 76,
709–726 (2010)

10. Feige, U.: A Threshold of ln n for Approximating Set Cover. Journal of the ACM 45(4)
(1998)

11. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics
by tree metrics. Journal of Computer and System Sciences 69(3), 485–497 (2004)

12. Fleischer, L., Könemann, J., Leonardi, S., Schäfer, G.: Simple cost sharing schemes for mul-
ticommodity rent-or-buy and stochastic steiner tree. In: STOC, pp. 663–670 (2006)

13. Garg, N., Khandekar, R., Konjevod, G., Ravi, R., Salman, F., Sinha, A.: On the integral-
ity gap of a natural formulation of the single-sink buy-at-bulk network design problem.
In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 170–184. Springer,
Heidelberg (2001)

14. Grandoni, F., Italiano, G.F.: Improved approximation for single-sink buy-at-bulk. In: Asano,
T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 111–120. Springer, Heidelberg (2006)

15. Grandoni, F., Rothvoß, T.: Network design via core detouring for problems without a core.
In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.)
ICALP 2010. LNCS, vol. 6198, pp. 490–502. Springer, Heidelberg (2010)

16. Guha, S., Khuller, S.: Greedy Strikes Back: Improved Facility Location Algorithms. Journal
of Algorithms 31(1), 228–248 (1999)

260 F. Grandoni and T. Rothvoß

17. Guha, S., Meyerson, A., Munagala, K.: A constant factor approximation for the single sink
edge installation problem. SIAM Journal on Computing 38(6), 2426–2442 (2009)

18. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual private
network: a network design problem for multicommodity flow. In: STOC, pp. 389–398 (2001)

19. Gupta, A., Kumar, A.: A constant-factor approximation for stochastic Steiner forest. In:
STOC, pp. 659–668 (2009)

20. Gupta, A., Kumar, A., Pal, M., Roughgarden, T.: Approximation via cost-sharing: simpler
and better approximation algorithms for network design. Journal of the ACM 54(3), 11
(2007)

21. Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design. In:
Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004.
LNCS, vol. 3122, pp. 139–150. Springer, Heidelberg (2004)

22. Jothi, R., Raghavachari, B.: Improved approximation algorithms for the single-sink buy-at-
bulk network design problems. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS,
vol. 3111, pp. 336–348. Springer, Heidelberg (2004)

23. Karger, D.R., Minkoff, M.: Building Steiner trees with incomplete global knowledge. In:
FOCS, pp. 613–623 (2000)

24. Kumar, A., Gupta, A., Roughgarden, T.: A constant-factor approximation algorithm for the
multicommodity rent-or-buy problem. In: FOCS, pp. 333–342 (2002)

25. Leonardi, S.: Private communication (2008)
26. Meyerson, A., Munagala, K., Plotkin, S.: Cost-distance: two metric network design. In:

FOCS, pp. 624–630 (2000)
27. Rothvoß, T., Sanità, L.: On the complexity of the asymmetric VPN problem. In: Dinur,

I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 326–338.
Springer, Heidelberg (2009)

28. Swamy, C., Kumar, A.: Primal–dual algorithms for connected facility location problems.
Algorithmica 40(4), 245–269 (2004)

29. Talwar, K.: The single-sink buy-at-bulk LP has constant integrality gap. In: Cook, W.J.,
Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 475–480. Springer, Heidelberg (2002)

30. Xu, G., Xu, J.: An improved approximation algorithm for uncapacitated facility location
problem with penalties. Journal of Combinatorial Optimization 17(4), 424–436 (2009)

Safe Lower Bounds for Graph Coloring

Stephan Held	, William Cook		, and Edward C. Sewell

University of Bonn, Georgia Institute of Technology,
Southern Illinois University Edwardsville

held@or.uni-bonn.de, bico@isye.gatech.edu,
esewell@siue.edu

Abstract. The best known method for determining lower bounds on
the vertex coloring number of a graph is the linear-programming column-
generation technique first employed by Mehrotra and Trick in 1996. We
present an implementation of the method that provides numerically safe
results, independent of the floating-point accuracy of linear-programming
software. Our work includes an improved branch-and-bound algorithm
for maximum-weight stable sets and a parallel branch-and-price frame-
work for graph coloring. Computational results are presented on a collec-
tion of standard test instances, including the unsolved challenge problems
created by David S. Johnson in 1989.

Keywords: graph coloring, fractional chromatic number, column gen-
eration, maximum-weight stable set, safe computations.

1 Introduction

Let G = (V,E) be an undirected graph with a set V of vertices and a set E
of edges. We follow the usual notation n = |V | and m = |E|. A stable set is a
subset S ⊂ V composed of pairwise non-adjacent vertices, that is, {v, w}
∈ E
for all v, w ∈ S. A coloring of G, or a k-coloring, is a partition of V into k stable
sets S1, . . . , Sk. The minimum k such that a k-coloring exists in G is called the
chromatic number of G and is denoted χ(G).

A clique is a subset C ⊂ V composed of pairwise adjacent vertices, that is,
{v, w} ∈ E for all v, w ∈ C. The clique number ω(G), defined as the size of a
largest clique in G, is a lower bound for χ(G). Similarly, the stability number
α(G), defined as the maximum size of a stable set in G, provides another lower
bound �n/α(G)� ≤ χ(G).

Letting S denote the set of all maximal stables sets in G, it is well known
that χ(G) is the optimal value of following integer-programming problem (e.g.

� Research supported by a postdoctoral fellowship grant from the DAAD.
�� Research supported by NSF Grant CMMI-0726370 and ONR Grant N00014-08-1-

1104.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 261–273, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

262 S. Held, W. Cook, and E.C. Sewell

see [13])
χ(G) = min

∑
S∈S

xS

s.t.
∑

S∈S:v∈S

xS ≥ 1 ∀v ∈ V

xS ∈ {0, 1} ∀S ∈ S.

(CIP)

The optimal value, χf (G), of the linear-programming (LP) relaxation, denoted by
(CLP), obtained by replacing the integrality condition by 0 ≤ xS ≤ 1 for allS ∈ S,
is called the fractional chromatic number of G. It defines the lower bound �χf (G)�
for χ(G). In [10] it was shown that the integrality gap between χ(G) and χf (G)
is O(log n) wherefore it is NP-hard to compute χf (G). In fact, for χ(G) as well
as for χf (G) and all ε > 0 there does not exist a polynomial-time approximation
algorithm that achieves an approximation ratio of nε unless P = NP [22].

Mehrotra and Trick [13] proposed to solve (CLP) via column generation and,
accordingly, (CIP) via branch and price. Their process is the most successful
exact coloring method proposed to date, including impressive results obtained
recently by Gualandi and Malucelli [8] and by Malaguti, Monaci, and Toth [11].

Our study focuses on an implementation of Mehrotra-Trick that is guaranteed
to produce correct results, independent of the floating-point accuracy of LP
software employed in the computation.

To see the possible difficulty, consider the queen16_16 instance from the DI-
MACS test collection. Using the state-of-the art LP solver Gurobi 3.0.0, at the
termination of the column-generation process the floating-point representation
χfloat

f (G) of the fractional chromatic number for this graph is χfloat
f (G) =

16.0000000000001315. But 17 = �16.0000000000001315� is not a valid lower
bound, since there is a known 16-coloring for queen16_16. In general, χfloat

f (G)
can be smaller than, equal to, or larger than χf (G). This difficulty is compounded
by the need to accurately run the column-generation process when dual LP so-
lutions are available only as floating-point approximations.

We propose a technique to avoid this inaccuarcy by computing a numerically
safe lower bound on χf (G), using a floating-point LP solution as a guide. To drive
the process, we also present a new combinatorial branch-and-bound algorithm to
compute maximum-weight stable sets in graphs; the new method is particularly
well suited for the instances of the problem that arise in the Mehrotra-Trick proce-
dure. With this safe methodology, we are able to verify results reported in previous
studies as well to obtain new best known bounds for a number of instances from
the standard DIMACS test collection. In particular, we have improved previously
reported results on four of the eight open DSJCxxx instances created by David S.
Johnson in 1989, including the optimal solution of DSJC250.9.

2 Column Generation

Let S′ ⊆ S contain a feasible solution to (CLP), that is, V =
⋃

S∈S′ S, and
consider the restricted LP problem defined as

Safe Lower Bounds for Graph Coloring 263

χf (G,S′) := min
∑
S∈S′

xS

s.t.
∑

S∈S′:v∈S

xS ≥ 1 ∀v ∈ V

0 ≤ xS ≤ 1 ∀S ∈ S′.

(CLP-r)

Let (x, π) be an optimum primal-dual solution pair to (CLP-r), where the dual
solution vector π = (πv)v∈V contains a value πv ∈ [0, 1] for every v ∈ V . By
setting xS = 0 for all S ∈ S \ S′, x can be extended naturally to a feasible
solution of (CLP). Now, either (x, π) is also optimum or π is dual infeasible with
respect to (CLP). In the latter case, there is a stable set S ∈ S \ S′ with

π(S) > 1, (1)

where we use the notation π(X) :=
∑

v∈X πv for a subset X ⊆ V . A stable set
satisfying (1) exists if and only if the weighted stability number

απ(G) := max
∑
v∈V

πvyv

s.t. yv + yw ≤ 1 ∀ {v, w} ∈ E
yv ∈ {0, 1} ∀ V ∈ V

(MWSS)

is greater than one.

2.1 Finding Maximum-Weight Stable Sets

The maximum-cardinality stable-set problem and its weighted version (MWSS)
are among the hardest combinatorial optimization problems. For any ε > 0, α(G)
cannot be approximated within a factor O(n1−ε) unless P= NP [22]. However, for
very dense graphs, for example with edge-density ρ(G) := m/(n(n−1)/2) ∼ 0.9,
the size and number of maximal stable sets is quite low and can be enumer-
ated. A particularly efficient way of solving (MWSS) in dense graphs is via
Östergård’s CLIQUER algorithm [23], which we employ on dense instances. For
sparse graphs CLIQUER becomes less efficient and for such instances we employ
a new algorithm described below.

Combinatorial Branch and Bound. The branch-and-bound algorithm pre-
sented here uses depth-first search and adopts ideas from algorithms presented
in [4,3,18,21].

A subproblem in the branch-and-bound tree consists of a lower bound, denoted
LB, which is the weight of the heaviest stable set found so far, the current
stable set S = {v1, v2, . . . , vd} (where d is the depth of the subproblem in the
search tree), the set of free vertices F , and a set of vertices X that are excluded
from the current subproblem (which will be explained below). The goal of the
subproblem is to either prove that this subproblem cannot produce a heavier
stable set than the heaviest one found so far (that is, π (S) + απ (G [F]) ≤ LB)
or find a maximum-weight stable set in G [F] (given a vertex set W ⊆ V , its
induced subgraph G [W] is defined as G [W] := (W, {{v, w} ∈ E : v, w ∈ W})).

264 S. Held, W. Cook, and E.C. Sewell

An overview is given in Algorithm 1. The algorithm consists of a recursive
subfunction mwss_recursion(S, F,X) that is called with S = ∅, F = V and
X = ∅.

Algorithm 1. An Exact Maximum-Weight Stable Set Algorithm
function mwss_recursion(S,F,X)

LB = max (LB, π (S));
if F = ∅ then return;
end if
if ∃ x ∈ X with πx ≥ π ((S ∪ F) ∩ N (x)) then return;
end if
Find a weighted clique cover of G [F];
if weight of the clique cover ≤ LB − π (S) then return;
end if
Determine the branch vertices F ′′ = {f1, f2, . . . , fp} ⊂ F

using the three branching rules;
for i = p down to 1 do

Fi = F\ (N (fi) ∪ {fi, fi+1, . . . , fp});
mwss_recursion(S ∪ {fi} , Fi, X);
X = X ∪ {fi};

end for
end function
mwss_recursion(∅, V, ∅);

The algorithm uses two methods to prune subproblems. The first method
works as follows. Let X be the set of vertices that have been excluded from
consideration in the current subproblem because they have already been explored
in an ancestor of the current subproblem (see Algorithm 1 to see how X is
created). If there exists a vertex x ∈ X such that πx ≥ π ((S ∪ F) ∩N (x)), then
the current subproblem cannot lead to a heavier stable set than has already been
found. To see this, let S′ be the heaviest stable set that can be created by adding
vertices from F to S. Now consider the stable set S′′ = {x} ∪ S′\N (x) created
by adding x to S′ and removing any of its neighbors from S′. Then

π (S′′) = π ({x} ∪ S′\N (x)) = πx + π (S′\N (x))
= πx + π (S′) − π (S′ ∩N (x)) ≥ πx + π (S′) − π ((S ∪ F) ∩N (x))
≥ π (S′) ,

where the second to last inequality follows from the fact that S′ is contained in
S ∪ F and the last inequality follows from the supposition that

πx ≥ π ((S ∪ F) ∩N (x)) .

Furthermore, every vertex in S′′ was available when x was explored as a branch
vertex, thus LB must have been greater than or equal to π (S′′) when the al-
gorithm returned from exploring x as the branch vertex. Consequently, LB ≥
π (S′′) ≥ π (S′). Hence, this subproblem can be pruned.

Safe Lower Bounds for Graph Coloring 265

The second method of pruning subproblems uses weighted clique covers. A
weighted clique cover for a set of vertices F is a set of cliques K1,K2, . . . ,Kr

together with a positive weight Πi for each clique Ki such that
∑

i:f∈Ki
Πi ≥ πf

for each vertex f ∈ F . The weight of the clique cover is defined to be
∑r

i=1 Πi.
It is easy to show that απ (G [F]) is less than or equal to the weight of any clique
cover of F . Hence, if a clique cover of weight less than or equal to LB − π (S)
can be found for F , then this subproblem can be pruned.

An iterative heuristic is used to find weighted clique covers. The heuristic
repeatedly chooses the vertex v with the smallest positive weight, finds a maximal
clique Ki that contains v, assigns the weight Πi = πv to Ki, and subtracts Πi

from the weight of every vertex in Ki.
The algorithm uses three branching rules to create subproblems. The first two

rules adopt a weighted variation of a technique employed by Balas and Yu [5,4].
Suppose that F ′ ⊆ F and it can be proved that

απ (G [F ′]) ≤ LB − π (S) .

Let F ′′ = F\F ′ = {f1, f2, . . . , fp} and let Fi = F\ (N (fi) ∪ {fi, fi+1, . . . , fp}) .
If απ (G [F]) > LB − π (S) , then

απ (G [F]) = max
i=1,...,p

πfi + απ (G [Fi]) .

Hence, one branch is created for each set F1, . . . , Fp.
The first branching rule uses the weighted clique cover to create F ′. The clique

cover heuristic is halted as soon as the weight of the clique cover would exceed
LB − π (S). Then F ′ is defined as the set of vertices whose remaining weight is
zero (that is, F ′ =

{
f ∈ F : π′

f = 0
}
) and F ′′ = F\F ′.

The second branching rule uses a method similar to the first method of prun-
ing. If there exists a vertex x ∈ X such that πx ≥ π (S ∩N (x)), then it can be
shown that if απ (G [F]) > LB−π (S), then every maximum-weight stable set in
G [F] must contain at least one neighbor of x that is in F . The proof is similar
to the proof for the first method of pruning. In such a case, F ′′ is set equal to
N (x) ∩ F .

The third branching rule searches for a vertex f ∈ F such that πf ≥
π (F ∩N (f)). If such a vertex exists, it is easy to prove that there exists an
maximum-weight stable set of G [F] that includes f, hence a single branch is
created (that is, F ′′ = {f}).

The algorithm uses the rule that generates the smallest F ′′ (ties are broken
in favor of the first rule and then the third rule). For both the second and the
third branching rules, the set of vertices F ′′ are sorted in increasing order of
their degree in G [F] .

In the context of column generation the running time can be reduced further
because the actual maximum-weight stable set need not necessarily be found.
Instead, it is sufficient to either find a stable set S with π(S) > 1 or decide that
no such set exists.

266 S. Held, W. Cook, and E.C. Sewell

Hence, LB can be initialized as 1, because only solutions of value bigger than
one are of interest. Furthermore, it is sufficient to stop the algorithm once a
stable set S with π(S) > 1 is found.

Heuristics. Within the column-generation process, a stable set with π(S) > 1
can often be found by heuristic methods. The heuristics we use create an initial
solution by a greedy strategy and then improve this solution with local search.
The greedy algorithms build a stable set S ∈ S\S′ by starting with an empty set
and adding vertices one by one. A vertex v ∈ V \ S is added to S if S ∪ {v} is a
stable set. Mehrotra and Trick proposed to traverse the vertices in non-decreasing
order of their weight [13]. We use the following three greedy orderings: as the
next vertex, try a not yet processed vertex v ∈ V \ (N(S) ∪ S) for which

1. πv (maximum weight strategy)
2. πv −

∑
w∈N(v)\N(S)

πw (maximum dynamic surplus strategy)

3. πv −
∑

w∈N(v)

πw (maximum static surplus strategy)

is maximum.
The result of the greedy algorithm is then improved by local search similar

to the local swaps in [1]. If we do not find a stable set of weight greater than
one, then we perform several additional searches using slightly perturbed greedy
orders.

3 Numerically Safe Bounds

Competitive LP codes for solving (CLP-r) use floating-point representations for
all numbers. This causes immediate difficulties in the column-generation process.
Indeed, let πfloat denote the vector of dual variables in floating-point represen-
tation as returned by an LP-solver. Based on these inexact values, απ(G) > 1
can hardly be decided and this can lead to premature termination or to endless
loops (if the same stable set is found again and again).

One way to circumvent these problems would be to solve (CLP-r) exactly, for
example with a solver such as [2]. However, exact LP-solvers suffer significantly
higher running times, and in column generation, where thousands of restricted
problems must be solved, these solvers would be impractical. Thus, instead of
computing χf (G) exactly, we compute a numerically safe lower bound χf (G) in
exact integer (fixed point) arithmetic, where the floating-point variables πfloat

serve only as a guide.
Recall that any vector π ∈ [0, 1]n, with απ(G) ≤ 1 is a dual feasible solution

of (CLP) and defines a lower bound regardless whether it is optimum or not.
Accordingly, given a scale factor K > 0, a vector πint ∈ N

V (G)
0 proves the lower

bound K−1πint(V) if and only απint(G) ≤ K.

Safe Lower Bounds for Graph Coloring 267

Now, the goal is to conduct the maximum-weight stable-set computations with
integers πint

v := �Kπfloat
v � (v ∈ V). Thus, achieving a lower n

K -approximation
of πfloat

v (V):

πfloat
v (V) − n

K
≤ 1

K
πint

v (V) ≤ πfloat
v (V). (2)

The question is how to represent the integers πint
v (v ∈ V) and how to choose

K. For performance reasons, it is preferable to use integer types that are na-
tively supported by the computer hardware, e.g. 32- or 64-bit integers in two’s
complement.

More generally, let us assume that all integers are restricted to an interval
[Imin, Imax] with Imin < 0 and Imax > 0. To avoid integer overflows, we have to
ensure that during the computations of maximum-weight stable sets the interme-
diate results neither fall below Imin nor exceed Imax. The smallest intermediate
results occur while computing surpluses with the greedy strategies 2 and 3. The
largest intermediate results are either given by πint(X) for some X ⊂ V or as the
weight of the weighted clique covers in Algorithm 1. As πfloat

v ∈ [0, 1] (v ∈ V),
setting K := min{−Imin, Imax}/n guarantees that any intermediate result will
be representable within [Imin, Imax]. Note that the dual variables returned as
floating point numbers by the LP solver might exceed the permissible interval
[0, 1] slightly. They are shifted into [0, 1] before scaling.

By (2) the deviation from the floating-point representation of the fractional
chromatic number is at most n2/min{−Imin, Imax}. Note that the denominator
grows exponentially in the number of bits that are spent to store numbers,
allowing a reduction in the error without much memory overhead.

Column generation creating a safe lower bound is summarized in Algorithm 2.
Initially, a coloring is determined with the greedy algorithm DSATUR [6]. It
provides the initial set S′ and an upper bound for χ(G).

The column-generation process terminates when απint(G) ≤ K with a lower
bound of χf (G) := K−1πint(V)
≤ χf (G).

Note that it is difficult to bound the difference χf (G)−χf (G) without further
assumptions on the LP solver. However, a close upper bound χf (G) for χf (G) can

Algorithm 2. Column Generation for Computing χf (G)

S ′ ← Compute initial coloring (DSATUR).
S ← ∅
repeat

S ′ ← S ′ ∪ S
πfloat ← Solve (CLP-r) in floating-point arithmetic
πint ← �Kπfloat	
S ← search for an improving stable set by heuristic (Section 2.1) or Algorithm 1

until πint(S) ≤ K
χf (G) ← K−1πint(V)

268 S. Held, W. Cook, and E.C. Sewell

be computed by solving the final restricted LP (CLP-r) once in exact arithmetic
[2]. Thereby, an interval [χf (G), χf (G)] containing χf (G) can be determined,
allowing us to obtain the precise value of �χf (G)� on most test instances.

4 Improved Computation of Lower Bounds

4.1 Decreasing Dual Weights for Speed

If the weight of a maximum-weight stable set in Algorithm 2 is slightly larger
than K, it can potentially be reduced to K, or less, by decreasing the integer
variables πint. This way an earlier termination of the column-generation ap-
proach might be possible. Of course, such reduced weights will impose a lower
fractional bound. However, the entries of πint can be reduced safely by a total
amount of

frac(πint,K) := max

{
0,

(∑
v∈V

πint
v − 1

)}
mod K, (3)

while generating the same lower bound of �K−1πint(V)�. The difficulty is to
decide how to decrease entries in πint

v . Ideally, one would like to achieve a largest
possible ratio between the reduction of the value of the maximum-weight stable
set and the induced lower bound for the chromatic number.

Gualandi and Malucelli [8] proposed a uniform rounding style, rounding down
all values πint

v (v ∈ V) uniformly by frac
(
πint,K

)
/n. This way the weight of a

stable set S ∈ S decreases by |S|
n frac(πint,K).

An alternative technique works as follows. Consider a v ∈ V with πv > 0, then
at least one vertex from V ′ := v ∪ {w ∈ N(v) : πw > 0} will be contained in a
maximum-weight stable set. Thus, to reduce the value of the maximum-weight
stable set, it is sufficient to reduce weights in V ′ only. In our implementation,
we always select a set V ′ of smallest cardinality. We refer to this rounding style
as neighborhood rounding.

Table 1. Impact of reducing dual weights on # calls to Algorithm 1

Instance |V | |E| None Uniform Neighborhood
latin_square_10 900 307350 1 1 1
queen16_16 256 12640 1 1 1
1-Insertions_5 202 1227 67 1 1
1-Insertions_6 607 6337 > 18046 9 40
DSJC250.1 250 3218 > 301 1 1
DSJC250.5 250 15668 18 13 13
DSJC500.5 500 62624 75 39 38
flat300_28_0 300 21695 25 5 4
myciel7 191 2360 79 33 5

Safe Lower Bounds for Graph Coloring 269

Table 1 demonstrates the importance of rounding for instances from the DI-
MACS benchmark set, covering several instance classes. It reports the number
of calls of the exact maximum-weight stable-set solver (Algorithm 1) needed to
terminate column generation, in column 4 without any dual weight reduction
(beyond safe weights according to Section 3), in column 5 with uniform round-
ing, and in column 6 with neighborhood rounding. However, neither of the two
dual variable reduction styles dominates the other.

5 Experimental Results

The described algorithms were implemented in the C programming language;
our source code is available online [9]. The LP problems (CLP-r) are solved with
Gurobi 3.0.0 in double floating-point precision. Experiments were carried out on
the DIMACS graph-coloring instances [20], using a 2.268 GHz Intel Xeon E5520
server, compling with gcc -O3. To compute χf (G) by solving (CLP-r) exactly
we used the exact LP-solver QSopt_ex [2].

5.1 Results of Column Generation

We were able to compute χf (G) and χf (G) for 119 out of 136 instances, limit-
ing the running time for computing χf (G) to three days per instance. Solving
(CLP-r) exactly can be quite time consuming, for example, on wap02a it takes 34
hours, compared to 10 minutes in doubles (using QSopt_ex in both cases). This
demonstrates that the use of an exact LP-solver for every instance of (CLP-r)
would be impractical. As we compute χf (G) only for the academic purpose of
estimating the differences χf (G) − χf (G), we do not report its running times
from here on.

For all the 119 solved DIMACS instances it turned out that �χf (G)� =
�χf (G)�. Thus, we obtained safe results for �χf (G)�. But there were many
instances where χf (G) < πfloat(V), and the floating-point solutions implied
by the LP-solver would have been wrong, as in the example from Section 3:
queen16_16. However, we did not find previously reported results for �χf (G)�
that were incorrect.

Here, we focus on those instances for which the chromatic number is or was un-
known. For space reasons, we skip those open *-Insertions_* and *-FullIns_*
instances where �χf (G)� was already reported in [8] or [11]. Table 2 shows the
results on the remaining open instances. Columns 2 and 3 give the number
of vertices and edges, column 4 shows �χf (G)� from our computations, where
bold numbers are those where we could improve best-known lower bounds. Col-
umn 5 shows the clique numbers from the literature or computed with CLI-
QUER, columns 6 and 7 summarize the best lower and upper bounds that can
be found in the literature [7,8,15,16,17,19]. The last column shows the running
time for computing χf (G).

For the instances DSJC500.5, DSJC1000.5, flat1000_50_0, flat1000_60_0,
flat1000_76_0, wap01a, wap02a, wap07a, wap08a , and 3-Insertions_5 we

270 S. Held, W. Cook, and E.C. Sewell

Table 2. Computational results on open benchmarks

Instance |V | |E| �χf (G)� ω(G) old LB old UB Time (sec.)
DSJC250.5 250 15668 26 12 26[8] 28[8] 18
DSJC250.9 250 27897 71 42 71[8] 72[8] 8
DSJC500.1 500 12458 * 5 6[7] 12[17] *
DSJC500.5 500 62624 43 13 16[7] 48[17] 439
DSJC500.9 500 224874 123 54 123[8] 126[17] 100
DSJC1000.1 1000 49629 * 6 6[7] 20[17] *
DSJC1000.5 1000 249826 73 14 17[7] 83[17] 142014
DSJC1000.9 1000 449449 215 63 215[8] 222[19] 5033
r1000.1c 1000 485090 96 89 96[8] 98[8] 2634
C2000.5 2000 999836 * 16 16 148[17] *
C4000.5 4000 4000268 * ≥ 17 17 271[17] *
latin_square_10 900 307350 90 90 90[15] 98[12] 76
abb313GPIA 1557 65390 8 8 8[15] 9[11] 3391
flat1000_50_0 1000 245000 50 14 14 50[8] 3331
flat1000_60_0 1000 245830 60 14 14 60[8] 29996
flat1000_76_0 1000 246708 72 14 14 82[8] 190608
wap01a 2368 110871 41 41 41[15] 43[11] 20643
wap02a 2464 111742 40 40 40[15] 42[11] 236408
wap03a 4730 286722 * 40 40[15] 47[11] *
wap04a 5231 294902 * 40 40[15] 44[11] *
wap07a 1809 103368 40 40 40[15] 42[11] 25911
wap08a 1870 104176 40 40 40[15] 42[11] 18015
3-Insertions_5 1406 9695 3 2 3[15] 6[15] 6959

could compute �χf (G)� for the first time, improving known lower bounds on
DSJC500.5, DSJC1000.5, flat1000_50_0, flat1000_60_0, and flat1000_76_0
significantly. On flat1000_50_0 and flat1000_60_0, �χf(G)� proves the opti-
mality of known upper bounds.

On most instances that are not listed χf (G) is computed much faster than
within three days. The geometric mean of the running times of the 119 solved
instances is 6.5 seconds. 17 DIMACS instances were not finished within three
days. For 11 of these instances (le450_5a, le450_5b, le450_5c, le450_5d,
le450_15a, le450_15b, le450_15c, le450_15d, le450_25c, and le450_25d,
and qg.order100) the clique numbers ω(G) can be computed within seconds by
CLIQUER [23] and match known upper bounds and proving ω(G) = χf (G) =
χ(G).

5.2 Results of Branch and Price

For all open benchmark instances, we attempted to improve the lower bounds
by branch and price as described in [13], allowing a time limit of three days.
This way we could improve the lower bounds of DSJC1000.9 and DSJC250.9 by
one to 216 and 72 respectively, proving optimality of a known upper bound for
DSJC250.9.

Safe Lower Bounds for Graph Coloring 271

We also did excessive branching experiments with up to 60 parallel processors,
but for other instances the lower bounds grow too slow to achieve better integral
bounds within a few weeks.

5.3 Results on Dense Subgraphs

As already noted in Section 5.1, for 17 very large DIMACS instances we were not
able to compute �χf (G)�. For 11 of these instances, ω(G) is easy to compute and
yields a tight lower bound. For each of the remaining six instances DSJC500.1,
DSJC1000.1, C2000.5, C4000.5, wap03a, and wap04a the gap between the pub-
lished lower and upper bounds is particularly large.

However, on these instances column generation can still be applied if restricted
to tractable subgraphs. It is easy to see that for any subgraph G[X] induced by
X ⊂ V (see Section 2.1), χf (G[X]) ≤ χf (G) and, thus, �χf (G[X])� imposes a
lower bound for χ(G). The set X should be chosen such that �χf (G[X])� is large,
but still solvable. For the first goal a dense subgraph G[X] would be favorable.
We use a simple greedy strategy that starts with X = V and iteratively deletes
a vertex of minimum degree until |X | has a given size.

Table 3 shows the lower bounds, we could obtain this way. Columns 2 and
3 give the sizes of the induced subgraph. Column 4 reports the lower bounds
obtained from the subgraphs, while column 5 reports previously published lower
bounds, corresponding to the respective maximum clique numbers.

Table 3. Lower bounds �χf (G[X])� from induced subgraphs

Instance |X| |E(G[X])| �χf (G[X])� old LB UB Time
DSJC500.1 300 5436 9 6 12 16 days
DSJC1000.1 350 8077 10 6 20 < 36 days

C2000.5 1400 502370 99 16 148 < 24 days
C4000.5 1500 589939 107 17 271 < 26 days
wap03a 2500 164008 40 40 47 < 3 days
wap04a 2500 159935 40 40 44 < 1 days

5.4 Maximum-Weight Stable Set Results

Finally, we demonstrate the efficiency of Algorithm 1 for solving maximum-
weight stable set problems. We compared the new algorithm with the cur-
rently fastest integer-programming solvers Gurobi 3.0.0 and CPLEX 12.2, as
well as CLIQUER 1.21 [24], which solved the maximum-weight clique problems
in the complement graphs. Where available, we used the final maximum-weight
stable set instances as they occure in Algorithm 2. They can be downloaded
from http://code.google.com/p/exactcolors/wiki/MWISInstances.Table 4
shows the results on the DSJC* instances and C2000.5.1029, to which we restrict
ourselves here for space reasons. Comprehensive test results will be reported in
the full version of the paper.

272 S. Held, W. Cook, and E.C. Sewell

We performed two experiments per instance and solver. First, in the columns
labeled STD, we computed the maximum-weight stable set as is. Second, in the
columns labeled LB, we used the solvers in the same setting as in Algorithm 2
with an initial lower bound of LB = 1. We gave a time limit of ten hours for each
run. C2000.5.1029 is the only instance with απ(G) > 1, here Algorithm 1 was
the fastest to find such a set. Algorithm 1 is competetive throughout all edge-
density classes and was a main ingredient for improving known lower bounds.

Table 4. Running times of various MWIS solvers on hard instances in seconds

Instance ρ(G) Gurobi 3.0.0 CPLEX 12.2 CLIQUER 1.2 Algorithm 1
in % STD LB STD LB STD LB STD LB

C2000.5.1029 50 *** *** *** *** *** 30586 *** 11373
DSJC250.1 10.3 31278 34901 *** 16288 *** *** 5941 2281
DSJC250.5 50.3 1825 1963 2737 2557 1 1 1 1
DSJC250.9 89.6 1382 1442 319 317 1 1 1 1
DSJC500.5 50.1 *** *** *** *** 9 9 32 32
DSJC500.9 90.1 *** *** 24318 22105 1 1 1 1
DSJC1000.5 50 *** *** *** *** 1076 1057 3634 3547
DSJC1000.9 89.9 *** *** *** *** 1 1 2 2

Acknowledgments

We thank Andrew King for discussions on techniques to obtain dense subgraphs
in large test instances.

References

1. Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast local search for the max-
imum independent set problem. In: Proceedings of Workshop on Experimental
Algorithms, pp. 220–234 (2008)

2. Applegate, D.L., Cook, W., Dash, S., Espinoza, D.G.: Exact solutions to linear
programming problems. Operations Research Letters 35(6), 693–699 (2007)

3. Babel, L.: A fast algorithm for the maximum weight clique problem. Computing 52,
31–38 (1994)

4. Balas, E., Xue, J.: Minimum weighted coloring of triangulated graphs with appli-
cation to maximum weight vertex packing and clique finding in arbitrary graphs.
SIAM Journal of Computing 20(2), 209–221 (1991)

5. Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM Journal
of Computing 15(4), 1054–1068 (1986)

6. Brélaz, D.: New methods to color the vertices of a graph. Communications of the
ACM 22(4), 251–256 (1979)

7. Caramia, M., Dell’Olmo, P.: Bounding vertex coloring by truncated multistage
branch and bound. Networks 44(4), 231–242 (2004)

8. Gualandi, S., Malucelli, F.: Exact solution of graph coloring problems via constraint
programming and column generation. Optimization Online in press for INFORMS
Journal on Computing (2010)

Safe Lower Bounds for Graph Coloring 273

9. Held, S., Sewell, E.C., Cook, W.: Exact colors project webpage (2010),
http://code.google.com/p/exactcolors/

10. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. Journal of the ACM 41(5), 960–981 (1994)

11. Malaguti, E., Monaci, M., Toth, P.: An exact approach for the vertex coloring
problem. Discrete Optimization (2010) (in press)

12. Malaguti, E., Toth, P.: A survey on vertex coloring problems. International Trans-
actions in Operational Research 17, 1–34 (2010)

13. Mehrotra, A., Trick, M.A.: A Column Generation Approach for Graph Coloring.
INFORMS Journal on Computing 8(4), 344–354 (1996)

14. Mycielski, J.: Sur le coloriage des graphes. Colloq. Math. 3, 161–162 (1955)
15. Méndez-Díaz, I., Zabala, P.: A branch-and-cut algorithm for graph coloring. Dis-

crete Applied Mathematics 154(5), 826–847 (2006)
16. Méndez Díaz, I., Zabala, P.: A cutting plane algorithm for graph coloring. Discrete

Applied Mathematics 156(2), 159–179 (2008)
17. Porumbel, D.C., Hao, J.-K., Kuntz, P.: An evolutionary approach with diversity

guarantee and well-informed grouping recombination for graph coloring. Comput-
ers and Operations Research 37(10), 1822–1832 (2010)

18. Sewell, E.C.: A branch and bound algorithm for the stability number of a sparse
graph. INFORMS Journal on Computing 10(4), 438–447 (1998)

19. Titiloye, O., Crispin, A.: Quantum annealing of the graph coloring problem. Dis-
crete Optimization (2011) (in Press)

20. Trick, M.A.: DIMACS Graph Coloring Instances (2002),
http://mat.gsia.cmu.edu/COLOR02/

21. Warren, J.S., Hicks, I.V.: Combinatorial branch-and-bound for the maximum
weight independent set problem. Technical report, Texas A&M University (2006)

22. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing 3(1), 103–128 (2007)

23. Östergård, P.R.J.: A new algorithm for the maximum-weight clique problem. Elec-
tronic Notes in Discrete Mathematics 3, 153–156 (1999)

24. Östergård, P.R.J., Niskanen, S.: Cliquer home page (2010),
http://users.tkk.fi/pat/cliquer.html

http://code.google.com/p/exactcolors/
http://mat.gsia.cmu.edu/COLOR02/
http://users.tkk.fi/pat/cliquer.html

Computing the Maximum Degree of Minors

in Mixed Polynomial Matrices
via Combinatorial Relaxation

Satoru Iwata1,	 and Mizuyo Takamatsu2,	

1 Research Institute for Mathematical Sciences
Kyoto University, Kyoto 606-8502, Japan

iwata@kurims.kyoto-u.ac.jp
2 Department of Information and System Engineering

Chuo University, Tokyo 112-8551, Japan
takamatsu@ise.chuo-u.ac.jp

Abstract. Mixed polynomial matrices are polynomial matrices with
two kinds of nonzero coefficients: fixed constants that account for conser-
vation laws and independent parameters that represent physical charac-
teristics. The computation of their maximum degrees of minors is known
to be reducible to valuated independent assignment problems, which can
be solved by polynomial numbers of additions, subtractions, and multi-
plications of rational functions. However, these arithmetic operations on
rational functions are much more expensive than those on constants.

In this paper, we present a new algorithm of combinatorial relaxation
type. The algorithm finds a combinatorial estimate of the maximum de-
gree by solving a weighted bipartite matching problem, and checks if
the estimate is equal to the true value by solving independent matching
problems. The algorithm mainly relies on fast combinatorial algorithms
and performs numerical computation only when necessary. In addition,
it requires no arithmetic operations on rational functions. As a byprod-
uct, this method yields a new algorithm for solving a linear valuated
independent assignment problem.

1 Introduction

Let A(s) = (Aij(s)) be a rational function matrix with Aij(s) being a rational
function in s. The maximum degree δk(A) of minors of order k is defined by

δk(A) = max{deg detA[I, J] | |I| = |J | = k},
where deg z denotes the degree of a rational function z(s), and A[I, J] denotes
the submatrix with row set I and column set J . This δk(A) determines the
Smith-McMillan form at infinity of a rational function matrix [25], which is used
in decoupling and disturbance rejection of linear time-invariant systems, and the
� Supported by a Grant-in-Aid for Scientific Research from the Japan Society for

Promotion of Science.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 274–286, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Combinatorial Relaxation 275

Kronecker canonical form of a matrix pencil [5, 24], which is used in analysis
of linear DAEs with constant coefficients. Thus, the computation of δk(A) is a
fundamental and important procedure in dynamical systems analysis.

The notion of mixed polynomial matrices [13, 20] was introduced as a math-
ematical tool for faithful description of dynamical systems such as electric cir-
cuits, mechanical systems, and chemical plants. A mixed polynomial matrix is a
polynomial matrix that consists of two kinds of coefficients as follows.

Accurate Numbers (Fixed Constants). Numbers that account for conser-
vation laws are precise in values. These numbers should be treated numeri-
cally.

Inaccurate Numbers (Independent Parameters). Numbers that represent
physical characteristics are not precise in values. These numbers should be
treated combinatorially as nonzero parameters without reference to their
nominal values. Since each such nonzero entry often comes from a single
physical device, the parameters are assumed to be independent.

For example, physical characteristics in engineering systems are not precise in
values because of measurement noise, while exact numbers do arise in conserva-
tion laws such as Kirchhoff’s conservation laws in electric circuits, or the law of
conservation of mass, energy, or momentum and the principle of action and reac-
tion in mechanical systems. Thus, it is natural to distinguish inaccurate numbers
from accurate numbers in the description of dynamical systems.

In [19], Murota reduces the computation of δk(A) for a mixed polynomial
matrix A(s) to solving a valuated independent assignment problem, for which he
presents in [17, 18] algorithms that perform polynomial numbers of additions,
subtractions, and multiplications of rational functions. However, these arith-
metic operations on rational functions are much more expensive than those on
constants.

In this paper, we present an algorithm for computing δk(A), based on the
framework of “combinatorial relaxation.” The outline of the algorithm is as
follows.

Phase 1. Construct a relaxed problem by discarding numerical information and
extracting zero/nonzero structure in A(s). The solution is regarded as an
estimate of δk(A).

Phase 2. Check whether the obtained estimate is equal to the true value of
δk(A), or not. If it is, return the estimate and halt.

Phase 3. Modify the relaxation so that the invalid solution is eliminated, and
find a solution to the modified relaxed problem. Then go back to Phase 2.

In this algorithm, we solve a weighted bipartite matching problem in Phase 1
and independent matching problems in Phase 2. We remark that our algorithm
does not need symbolic operations on rational functions.

This framework of combinatorial relaxation algorithm is somewhat analogous
to the idea of relaxation and cutting plane in integer programming. In contrast to
integer programming, where hard combinatorial problems are relaxed to linear

276 S. Iwata and M. Takamatsu

programs, here we relax a linear algebraic problem to an efficiently solvable
combinatorial problem. Then the algorithm checks the validity of the obtained
solution and modifies the relaxation if necessary just like adding a cutting plane.
This is where the name “combinatorial relaxation” comes from.

We now summarize previous works based on the framework of combinatorial
relaxation. The combinatorial relaxation approach was invented by Murota [14]
for computing the Newton polygon of the Puiseux series solutions to determi-
nantal equations. This approach was further applied to the computation of the
degree of detA(s) in [16] and δk(A) in [7–9, 15] for a polynomial matrix A(s).
In computational efficiency of the algorithms, it is crucial to solve the relaxed
problem efficiently and not to invoke the modification of the relaxation many
times. The result in [9] shows practical efficiency of the combinatorial relaxation
through computational experiments.

Let us have a closer look at the algorithms [7–9, 15] for δk(A). In [15], Murota
presented a combinatorial relaxation algorithm for general rational function ma-
trices using biproper equivalence transformations in the modification of the re-
laxed problem. The primal-dual version was presented in [9]. Another algorithm
given in [8] solves a valuated independent assignment problem as a relaxed prob-
lem by regarding a given polynomial matrix as a mixed polynomial matrix. These
algorithms need to transform a polynomial matrix by row/column operations,
which possibly increase the number of terms in some entries. To avoid this phe-
nomenon in the case of matrix pencils, Iwata [7] presented another combinatorial
relaxation algorithm, which uses only strict equivalence transformations.

In this paper, we extend the combinatorial relaxation framework to mixed
polynomial matrices. Our algorithm adopts a different way of matrix modifica-
tion from the previous algorithms [8, 9, 15], which enables us to evaluate the
complexity by the number of basic arithmetic operations. For an m × n mixed
polynomial matrix with m ≤ n, the algorithm runs in O(mω+1nd2

max) time,
where ω is the matrix multiplication exponent and dmax is the maximum degree
of an entry.

We compare this time complexity with that of the previous algorithm of
Murota [19] based on the valuated independent assignment. The bottleneck in
that algorithm is to transform an m×n polynomial matrix into an upper trian-
gular matrix in each iteration. This can be done in O~(mωndmax) time, where
O~ indicates that we ignore log(mdmax) factors, by using Bareiss’ fraction-free
Gaussian elimination approach [1, 2, 23] and an O(d log d log log d) time algo-
rithm in [3] for multiplying polynomials of degree d. Since the number of itera-
tions is k, Murota’s algorithm runs in O~(kmωndmax) time. Thus the worst-case
complexity of our algorithm is comparable to that of the previous one.

However, our combinatorial relaxation algorithm terminates without invoking
the modification of the relaxation unless there is an unlucky numerical cancella-
tion. Consequently, in most cases, it runs in O(mωndmax) time, which is much
faster than the previous algorithm.

One application of our combinatorial relaxation algorithm is to compute the
Kronecker canonical form of a mixed matrix pencil , which is a mixed polynomial

Combinatorial Relaxation 277

matrix with dmax = 1. For an n× n regular mixed matrix pencil, our algorithm
enables us to compute the Kronecker canonical form in O(nω+2) time. This time
complexity is better than the previous algorithm given in [10], which makes use
of another characterization based on expanded matrices.

Another application is to compute the optimal value of a linear valuated
independent assignment problem. Since the optimal value coincides with the
degree of the determinant of the associated mixed polynomial matrix, we can
make use of our combinatorial relaxation algorithm. This means that we find the
optimal value of a linear valuated independent assignment problem by solving a
sequence of independent matching problems.

Combinatorial relaxation approach exploits the combinatorial structures of
polynomial matrices and exhibits a connection between combinatorial optimiza-
tion and matrix computation. While recent works of Mucha and Sankowski [11,
12], Sankowski [22], and Harvey [6] utilize matrix computation to solve matching
problems, this paper adopts the opposite direction, that is, we utilize matching
problems for matrix computation.

The organization of this paper is as follows. Section 2 is devoted to preliminar-
ies on rational function matrices, the independent matching problem, and mixed
matrix theory. We present a combinatorial relaxation algorithm in Section 3,
and analyze its complexity in Section 4. In Section 5, we apply the combinato-
rial relaxation approach to the linear valuated independent assignment problem.

2 Preliminaries

2.1 Rational Function Matrices

We denote the degree of a polynomial z(s) by deg z, where deg 0 = −∞ by
convention. For a rational function f(s) = g(s)/h(s) with polynomials g(s) and
h(s), its degree is defined by deg f(s) = deg g(s)− deg h(s). A rational function
f(s) is called proper if deg f(s) ≤ 0, and strictly proper if deg f(s) < 0. We
call a rational function matrix (strictly) proper if its entries are (strictly) proper
rational functions. A square proper rational function matrix is called biproper if it
is invertible and its inverse is a proper rational function matrix. A proper rational
function matrix is biproper if and only if its determinant is a nonzero constant. It
is known that δk(A) is invariant under biproper equivalence transformations, i.e.,
δk(A) = δk(Ã) for k = 1, . . . , rankA(s) if Ã(s) = U(s)A(s)V (s) with biproper
matrices U(s) and V (s).

A rational function matrix Z(s) is called a Laurent polynomial matrix if
sNZ(s) is a polynomial matrix for some integer N . In our algorithm, we make
use of biproper Laurent polynomial matrices in the phase of matrix modification.

2.2 Independent Matching Problem

A matroid is a pair M = (V, I) of a finite set V and a collection I of subsets of
V such that

278 S. Iwata and M. Takamatsu

(I-1) ∅ ∈ I,
(I-2) I ⊆ J ∈ I ⇒ I ∈ I,
(I-3) I, J ∈ I, |I| < |J | ⇒ I ∪ {v} ∈ I for some v ∈ J \ I.
The set V is called the ground set , I ∈ I is an independent set , and I is the
family of independent sets. The following problem is an extension of the matching
problem.

[Independent Matching Problem (IMP)]
Given a bipartite graph G = (V +, V −;E) with vertex sets V +, V − and
edge set E, and a pair of matroids M+ = (V +, I+) and M− = (V −, I−),
find a matching M ⊆ E that maximizes |M | subject to ∂+M ∈ I+ and
∂−M ∈ I−, where ∂+M and ∂−M denote the set of vertices in V + and
V − incident to M , respectively.

A matching M ⊆ E satisfying ∂+M ∈ I+ and ∂−M ∈ I− is called an indepen-
dent matching.

2.3 Mixed Matrices and Mixed Polynomial Matrices

A generic matrix is a matrix in which each nonzero entry is an independent
parameter. A matrix A is called a mixed matrix if A is given by A = Q + T
with a constant matrix Q and a generic matrix T . A layered mixed matrix (or
an LM-matrix for short) is defined to be a mixed matrix such that Q and T
have disjoint nonzero rows. An LM-matrix A is expressed by A =

(
Q
T

)
.

A polynomial matrix A(s) is called a mixed polynomial matrix if A(s) is given
by A(s) = Q(s) + T (s) with a pair of polynomial matrices Q(s) =

∑N
k=0 s

kQk

and T (s) =
∑N

k=0 s
kTk that satisfy the following two conditions.

(MP-Q) Qk (k = 0, 1, . . . , N) are constant matrices.
(MP-T) Tk (k = 0, 1, . . . , N) are generic matrices.

A layered mixed polynomial matrix (or an LM-polynomial matrix for short) is
defined to be a mixed polynomial matrix such that Q(s) and T (s) have disjoint
nonzero rows. An LM-polynomial matrix A(s) is expressed by A(s) =

(Q(s)
T (s)

)
.

If Q(s) and T (s) are Laurent polynomial matrices, we call A(s) =
(Q(s)

T (s)

)
an

LM-Laurent polynomial matrix . For A(s) =
(Q(s)

T (s)

)
, we denote the row set and

the column set of A(s) by R and C, and the row sets of Q(s) and T (s) by RQ

and RT . We also set mQ = |RQ|, mT = |RT |, and n = |C| for convenience. The
(i, j) entry of Q(s) and T (s) is denoted by Qij(s) and Tij(s), respectively. We
use these notations throughout this paper for LM-Laurent polynomial matrices
as well as LM-matrices. For an LM-Laurent polynomial matrix A(s) =

(Q(s)
T (s)

)
,

let us define

δLM
k (A) = {deg detA[RQ ∪ I, J] | I ⊆ RT , J ⊆ C, |I| = k, |J | = mQ + k},

where 0 ≤ k ≤ min(mT , n − mQ). Note that δLM
k (A) designates the maximum

degree of minors of order mQ + k with row set containing RQ.

Combinatorial Relaxation 279

We denote an m × m diagonal matrix with the (i, i) entry being ai by
diag[a1, . . . , am]. Let Ã(s) = Q̃(s) + T̃ (s) be an m× n mixed polynomial matrix
with row set R and column set C. We construct a (2m)×(m+n) LM-polynomial
matrix

A(s) =
(

diag[sd1 , . . . , sdm] Q̃(s)
− diag[t1sd1 , . . . , tmsdm] T̃ (s)

)
, (1)

where ti (i = 1, . . . ,m) are independent parameters and di = maxj∈C deg Q̃ij(s)
for i ∈ R. A mixed polynomial matrix Ã(s) and its associated LM-polynomial
matrix A(s) have the following relation, which implies that the value of δk(Ã) is
obtained from δLM

k (A).

Lemma 1 ([20, Lemma 6.2.6]). Let Ã(s) be an m × n mixed polynomial
matrix and A(s) the associated LM-polynomial matrix defined by (1). Then it
holds that δk(Ã) = δLM

k (A) −∑m
i=1 di.

2.4 Rank of LM-Matrices

The computation of the rank of an LM-matrix A =
(
Q
T

)
is reduced to solving an

independent matching problem [21] as follows. See [20, §4.2.4] for details.
Let CQ = {jQ | j ∈ C} be a copy of the column set C of A. Consider a

bipartite graph G = (V +, V −;ET ∪ EQ) with V + = RT ∪ CQ, V − = C,

ET = {(i, j) | i ∈ RT , j ∈ C, Tij
= 0} and EQ = {(jQ, j) | j ∈ C}.
Let M+ = (V +, I+) be a matroid defined by

I+ = {I+ ⊆ V + | rankQ[RQ, I
+ ∩ CQ] = |I+ ∩ CQ|},

and M− be a free matroid. We consider the independent matching problem with
respect to G, M+, and M−. Then rankA has the following property.

Theorem 1 ([20, Theorem 4.2.18]). Let A be an LM-matrix. Then the rank
of A is equal to the maximum size of an independent matching in the problem
defined above, i.e., rankA = max{|M | | M : independent matching}.
Let Ã =

(Q̃

T̃

)
be an LM-matrix obtained at the termination of the algorithm for

solving the independent matching problem. Then we have Ã =
(
U O
O I

)(
Q
T

)
for

some nonsingular constant matrix U .
The structure of an LM-matrix Ã = (Ãij) is represented by a bipartite graph

G(Ã) = (RQ ∪RT , C;E(Ã)) with E(Ã) = {(i, j) | i ∈ RQ ∪RT , j ∈ C, Ãij
= 0}.
The maximum size of a matching in G(Ã) is called the term-rank of Ã, denoted
by term-rank Ã. Now Ã has the following property.

Lemma 2. Let Ã be an LM-matrix obtained at the termination of the algorithm
for solving the independent matching problem with respect to G, M+, and M−.
Then Ã satisfies rank Ã = term-rank Ã.

280 S. Iwata and M. Takamatsu

3 Combinatorial Relaxation Algorithm

In this section, we present a combinatorial relaxation algorithm to compute
δLM
k (A) for an LM-polynomial matrix A(s) =

(Q(s)
T (s)

)
. We assume that Q(s)

is of full row rank. Note that this assumption is valid for the associated LM-
polynomial matrix defined by (1). Since an LM-polynomial matrix is transformed
into an LM-Laurent polynomial matrix in the phase of matrix modification, we
hereafter deal with an LM-Laurent polynomial matrix.

3.1 Combinatorial Relaxation

Let us construct a bipartite graph G(A) = (RQ ∪ RT , C;E(A)) with E(A) =
{(i, j) | i ∈ RQ ∪ RT , j ∈ C,Aij(s)
= 0}. The weight c(e) of an edge e = (i, j)
is given by c(e) = cij = degAij(s). We remark that c(e) is integer for any
e ∈ E(A) if A(s) is an LM-Laurent polynomial matrix. The maximum weight
of a matching in G(A) denoted by δ̂LM

k (A) is an upper bound on δLM
k (A). We

adopt δ̂LM
k (A) as an estimate of δLM

k (A).
Consider the following linear program (PLP(A, k)):

maximize
∑

e∈E(A)

c(e)ξ(e)

subject to
∑
∂e�i

ξ(e) = 1 (∀i ∈ RQ),∑
∂e�i

ξ(e) ≤ 1 (∀i ∈ RT ∪ C),∑
e∈E(A)

ξ(e) = mQ + k,

ξ(e) ≥ 0 (∀e ∈ E(A)),

where ∂e denotes the set of vertices incident to e. The first constraint represents
that M must satisfy ∂M ⊇ RQ, where ∂M denotes the vertices incident to edges
in M . By the total unimodularity of the coefficient matrix, PLP(A, k) has an
integral optimal solution with ξ(e) ∈ {0, 1} for any e ∈ E(A). This optimal solu-
tion corresponds to the maximum weight matching M in G(A), and its optimal
value c(M) =

∑
e∈M c(e) is equal to δ̂LM

k (A). The dual program (DLP(A, k)) is
expressed as follows:

minimize
∑
i∈R

pi +
∑
j∈C

qj + (mQ + k)t

subject to pi + qj + t ≥ c(e) (∀e = (i, j) ∈ E(A)),
pi ≥ 0 (∀i ∈ RT),
pj ≥ 0 (∀j ∈ C).

Then DLP(A, k) has an integral optimal solution, because the coefficient matrix
is totally unimodular and c(e) is integer for any e ∈ E(A).

Combinatorial Relaxation 281

The outline of the combinatorial relaxation algorithm to compute δLM
k (A) is

summarized as follows.

Outline of Algorithm for Computing δLM
k (A)

Phase 1. Find a maximum weight matching M such that ∂M ⊇ RQ and
|M | = mQ + k in G(A). Then the maximum weight δ̂LM

k (A) is regarded as
an estimate of δLM

k (A). Construct an optimal solution (p, q, t) of DLP(A, k)
from M .

Phase 2. Test whether δ̂LM
k (A) = δLM

k (A) or not by using (p, q, t). If equality
holds, return δ̂LM

k (A) and halt.
Phase 3. Modify A(s) to another matrix Ã(s) such that δ̂LM

k (Ã) ≤ δ̂LM
k (A)− 1

and δLM
k (Ã) = δLM

k (A). Construct an optimal solution (p̃, q̃, t̃) of DLP(Ã, k)
from (p, q, t), and go back to Phase 2.

In Phase 1, we find a maximum weight matching M by using an efficient com-
binatorial algorithm. An optimal solution (p, q, t) can be obtained by using short-
est path distance in an associated auxiliary graph. In Phase 2, we check whether
an upper estimate δ̂LM

k (A) coincides with δLM
k (A) by computing the ranks of

LM-matrices. If it does not, we transform A(s) into Ã(s) so that the estimate
δ̂LM
k (A) is eliminated. We repeat this procedure until the upper bound coincides

with δLM
k (A). Since an upper estimate decreases at each step, the iteration ter-

minates at most δ̂LM
k (A) times. We explain in detail Phases 2 in Section 3.2, and

Phase 3 in Sections 3.3 and 3.4.

3.2 Test for Tightness

We describe a necessary and sufficient condition for δ̂LM
k (A) = δLM

k (A). For
an integral feasible solution (p, q, t) of DLP(A, k), let us put I∗ = RQ ∪ {i ∈
RT | pi > 0} and J∗ = {j ∈ C | qj > 0}. We call I∗ and J∗ active rows and
active columns, respectively. The tight coefficient matrix A∗ = (A∗

ij) is defined
by A∗

ij = (the coefficient of spi+qj+t in Aij(s)). Note that A∗ is an LM-matrix
and A(s) = (Aij(s)) is expressed by

Aij(s) = spi+qj+t(A∗
ij + A∞

ij) (2)

with a strictly proper matrix A∞ = (A∞
ij).

The following lemma gives a necessary and sufficient condition for δ̂LM
k (A) =

δLM
k (A), which is immediately derived from [15, Theorem 7].

Lemma 3. Let (p, q, t) be an optimal dual solution, I∗ and J∗ the active rows
and columns, and A∗ the tight coefficient matrix. Then δ̂LM

k (A) = δLM
k (A) if and

only if the following four conditions are satisfied:

(r1) rankA∗[R,C] ≥ mQ + k,
(r2) rankA∗[I∗, C] = |I∗|,
(r3) rankA∗[R, J∗] = |J∗|,
(r4) rankA∗[I∗, J∗] ≥ |I∗| + |J∗| − (mQ + k).

282 S. Iwata and M. Takamatsu

Lemma 3 implies that we can check δ̂LM
k (A) = δLM

k (A) efficiently by computing
the ranks of four LM-matrices A∗[R,C], A∗[I∗, C], A∗[R, J∗], and A∗[I∗, J∗].
This can be done by solving the corresponding independent matching problems.
The optimality condition for (p, q, t) is given by the following variant, which is
also derived from [15].

Lemma 4. Let (p, q, t) be a dual feasible solution, I∗ and J∗ the active rows
and columns, and A∗ the tight coefficient matrix. Then (p, q, t) is optimal if and
only if the following four conditions are satisfied:

(t1) term-rankA∗[R,C] ≥ mQ + k,
(t2) term-rankA∗[I∗, C] = |I∗|,
(t3) term-rankA∗[R, J∗] = |J∗|,
(t4) term-rankA∗[I∗, J∗] ≥ |I∗| + |J∗| − (mQ + k).

3.3 Matrix Modification

Let A(s) be an LM-Laurent polynomial matrix such that δLM
k (A) < δ̂LM

k (A). We
describe the rule of modifying A(s) into another LM-Laurent polynomial matrix
Ã(s). Since δLM

k (A) < δ̂LM
k (A), it follows from Lemma 3 that at least one of

conditions (r1)–(r4) is violated. In the test for tightness in Phase 2, we transform
the tight coefficient matrix A∗ =

(
Q∗

T∗
)

into another LM-matrix Ã∗ =
(Q̃∗

T̃∗
)

by
solving the independent matching problem described in Section 2.4. Then, we

find a nonsingular constant matrix U such that
(
Q̃∗

T̃ ∗

)
=
(
U O
O I

)(
Q∗

T ∗

)
.

Let (p, q, t) be an optimal solution of DLP(A, k). We transform A(s) into
another LM-Laurent polynomial matrix Ã(s) defined by

Ã(s) = diag[sp1 , . . . , spm

]
(
U O
O I

)
diag[s−p1 , . . . , s−pm

]A(s). (3)

It is ensured from [15, Lemma 11] that δLM
k (A) is invariant under the trans-

formation (3). In addition, it can be shown that an optimal solution (p, q, t) of
DLP(A, k) is feasible for DLP(Ã, k) but not optimal.

Lemma 5. Let A(s) be an LM-Laurent polynomial matrix satisfying δLM
k (A) <

δ̂LM
k (A), and Ã(s) the LM-Laurent polynomial matrix defined by (3). Then an

optimal solution (p, q, t) of DLP(A, k) is feasible for DLP(Ã, k) but not optimal.

Proof. We put F (s) = s−t diag[s−p1 , . . . , s−pm

]Ã(s) diag[s−q1 , . . . , s−qn

]. Then
degFij(s) = c̃ij − pi − qj − t holds, where c̃ij = deg Ãij(s). It follows from (2)

and (3) that F (s) = Ũ(A∗ +A∞) with Ũ =
(
U O
O I

)
and a strictly proper matrix

A∞. Since U and A∗ are constant matrices, we have degFij(s) ≤ 0, which implies
that (p, q, t) is feasible for DLP(Ã, k).

Combinatorial Relaxation 283

We show that (p, q, t) is not optimal for DLP(Ã, k). The matrix Ã∗
(p,q,t) :=

ŨA∗ is the tight coefficient matrix of Ã(s) with respect to (p, q, t). By δLM
k (A) <

δ̂LM
k (A) and Lemma 3, at least one of conditions (r1)–(r4) is violated. Let us

assume that A∗ violates (r2) and Ã∗
(p,q,t) is obtained by computing rankA∗[I∗, C].

Then we have term-rank Ã∗
(p,q,t)[I

∗, C] = rank Ã∗
(p,q,t)[I

∗, C] = rankA∗[I∗, C] <
|I∗| by Lemma 2. Thus Ã∗

(p,q,t) violates (t2), which implies that (p, q, t) is not
optimal for DLP(Ã, k) by Lemma 4. If (r1), (r3), or (r4) is violated, we can prove
that (p, q, t) is not optimal for DLP(Ã, k) in a similar way.

3.4 Dual Updates

Let (p, q, t) be an optimal solution of DLP(A, k). By Lemma 5, (p, q, t) is feasible
for DLP(Ã, k). For (p, q, t) and another feasible solution (p′, q′, t′) of DLP(Ã, k),
we consider the amount of change Δ in the value of the dual objective function
defined by

Δ =

⎛⎝∑
i∈R

p′i +
∑
j∈C

q′j + (mQ + k)t′

⎞⎠−
⎛⎝∑

i∈R

pi +
∑
j∈C

qj + (mQ + k)t

⎞⎠ .

With the use of (p, q, t), we construct a feasible solution (p′, q′, t′) which satis-
fies Δ < 0. By repeating this procedure, we find an optimal dual solution of
DLP(Ã, k).

Let G∗ = (R,C;E∗) be a bipartite graph with E∗ = {(i, j) ∈ E(Ã) | pi + qj +
t = c̃ij}, where c̃ij = deg Ãij(s). Since (p, q, t) is not optimal for DLP(Ã, k) by
Lemma 5, at least one of conditions (t1)–(t4) for Ã∗

(p,q,t) is violated. For each
case, we construct another feasible solution (p′, q′, t′) with Δ < 0 as follows.

Case1: (t1) is Violated. Since the maximum size of a matching in G∗ =
(R,C;E∗) is strictly less than mQ + k, G∗ has a cover U with |U | < mQ + k.
We now define t′ = t− 1,

p′i =

{
pi + 1 (i ∈ R ∩ U)
pi (i ∈ R \ U)

, q′j =

{
qj + 1 (j ∈ C ∩ U)
qj (j ∈ C \ U)

.

Then it holds that Δ = |R ∩ U | + |C ∩ U | − (mQ + k) = |U | − (mQ + k) < 0.
The resulting (p′, q′, t′) is feasible for DLP(Ã, k). In the other cases, (p′, q′, t′)

is given as follows.

Case2: (t2) is Violated. Let U be a cover of G∗[I∗∪C] = (I∗, C;E∗[I∗ ∪C]).
We define t′ = t,

p′i =

{
pi (i ∈ (I∗ ∩ U) ∪ (R \ I∗))
pi − 1 (i ∈ I∗ \ U)

, q′j =

{
qj + 1 (j ∈ C ∩ U)
qj (j ∈ C \ U)

.

284 S. Iwata and M. Takamatsu

Case3: (t3) is Violated. Let U be a cover of G∗[R∪J∗] = (R, J∗;E∗[R∪J∗]).
We define t′ = t,

p′i =

{
pi + 1 (i ∈ R ∩ U)
pi (i ∈ R \ U)

, q′j =

{
qj (j ∈ (J∗ ∩ U) ∪ (C \ J∗))
qj − 1 (j ∈ J∗ \ U)

.

Case4: (t4) is Violated. Let U be a cover of G∗[I∗∪J∗] = (I∗, J∗;E∗[I∗∪J∗]).
We define t′ = t + 1,

p′i =

{
pi − 1 (i ∈ I∗ \ U)
pi (i ∈ (I∗ ∩ U) ∪ (R \ I∗)) , q

′
j =

{
qj − 1 (j ∈ J∗ \ U)
qj (j ∈ (J∗ ∩ U) ∪ (C \ J∗))

.

4 Complexity Analysis

We now analyze the complexity of our combinatorial relaxation algorithm. The
algorithm is dominated by the computation of Ã(s) in the phase of matrix mod-
ification.

For an integral optimal solution (p, q, t) of DLP(A, k), let P (s) and Q(s)
denote diag[sp1 , . . . , spm

] and diag[sq1 , . . . , sqn

], respectively. By the definition
of the tight coefficient matrix A∗, the LM-Laurent polynomial matrix A(s) is

expressed as A(s) = stP (s)
(
A∗ +

1
s
A1 +

1
s2

A2 + · · · + 1
sl
Al

)
Q(s) for some in-

teger l, where Ai denotes a constant matrix for i = 1, 2, . . . l. By (3), we have

Ã(s) = stP (s)Ũ
(
A∗ +

1
s
A1 +

1
s2

A2 + · · · + 1
sl
Al

)
Q(s),

where Ũ =
(
U O
O I

)
. Thus, it suffices to perform constant matrix multiplications

ŨA∗, ŨA1,. . . , ŨAl. The following lemma guarantees that we may assume that
l is at most δ̂LM

k (A).

Lemma 6. Let A(s) =
(Q(s)

T (s)

)
be an LM-polynomial matrix such that Q(s) is of

full row rank, and (p, q, t) an optimal solution of DLP(A, k). Then δLM
k (A) =

δLM
k (Ā) holds for

Ā(s) = stP (s)
(
A∗ +

1
s
A1 +

1
s2

A2 + · · · + 1

sδ̂LM
k (A)

Aδ̂LM
k (A)

)
Q(s),

which is obtained by ignoring the terms
1
si
Ai with i > δ̂LM

k (A).

By Lemma 6, the time and space complexities of the algorithm are as follows.

Theorem 2. Let A(s) =
(Q(s)

T (s)

)
be an m × n LM-polynomial matrix such that

Q(s) is of full row rank, and dmax the maximum degree of an entry in A(s). Then
the algorithm runs in O((mQ + k)2mω−1

Q nd2
max) time and O((mQ + k)mndmax)

space, where |RQ| = mQ and ω < 2.38 is the matrix multiplication exponent.

Combinatorial Relaxation 285

The number of matrix modifications is at most δ̂LM
k (A)−δLM

k (A). In the proof of
Theorem 2, this value is bounded by O((mQ + k)dmax). In most cases, however,
the difference is so small that it can be regarded as a constant. Thus the algorithm
effectively runs in O((mQ + k)mω−1

Q ndmax) time, which is much faster than
suggested by Theorem 2.

5 Application to Valuated Independent Assignment

As a generalization of matroids, Dress and Wenzel [4] introduced valuated ma-
troids . A valuated matroid M = (V,B, ω) is a triple of a ground set V , a base
family B ⊆ 2V , and a function ω : B → R that satisfy the following axiom (VM).

(VM) For any B,B′ ∈ B and u ∈ B \ B′, there exists v ∈ B′ \ B such that
B \ {u} ∪ {v} ∈ B, B′ ∪ {u} \ {v} ∈ B, and ω(B) + ω(B′) ≤ ω(B \ {u} ∪
{v}) + ω(B′ ∪ {u} \ {v}).

The function ω is called a valuation.
Murota [17, 18] introduced the valuated independent assignment problem as

a generalization of the independent matching problem.

[Valuated Independent Assignment Problem (VIAP)]
Given a bipartite graph G = (V +, V −;E) with vertex sets V +, V −

and edge set E, a pair of valuated matroids M+ = (V +,B+, ω+) and
M− = (V −,B−, ω−), and a weight function w : E → R, find a matching
M ⊆ E that maximizes Ω(M) := w(M)+ω+(∂+M)+ω−(∂−M) subject
to ∂+M ∈ B+ and ∂−M ∈ B−.

Let M+ and M− be linear valuated matroids represented by polynomial ma-
trices Q+(s) and Q−(s), respectively. For a bipartite graph G = (V +, V −;E), let
T (s) =

∑N
k=0 s

kTk be a polynomial matrix which satisfies (MP-T), E = {(i, j) |
Tij(s)
= 0}, and degTij(s) = w(e) for e = (i, j) ∈ E. Then the optimal value of
Ω(M) is equal to the degree of the determinant of the mixed polynomial matrix

A(s) =

⎛⎝ O Q+(s)� O
Q−(s) O I
O I T (s)

⎞⎠ .

We obtain deg detA(s) by using our combinatorial relaxation algorithm. This
means that we can find the optimal value of the linear valuated independent
assignment problem by solving a sequence of independent matching problems.

References

1. Bareiss, E.H.: Sylvester’s identity and multistep integer-preserving Gaussian elim-
ination. Mathematics of Computation 22, 565–578 (1968)

2. Bareiss, E.H.: Computational solutions of matrix problems over an integral domain.
IMA Journal of Applied Mathematics 10, 68–104 (1972)

286 S. Iwata and M. Takamatsu

3. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica 28, 693–701 (1991)

4. Dress, A.W.M., Wenzel, W.: Valuated matroids. Advances in Mathematics 93,
214–250 (1992)

5. Gantmacher, F.R.: The Theory of Matrices. Chelsea, New York (1959)
6. Harvey, N.J.A.: Algebraic algorithms for matching and matroid problems. SIAM

Journal on Computing 39, 679–702 (2009)
7. Iwata, S.: Computing the maximum degree of minors in matrix pencils via combi-

natorial relaxation. Algorithmica 36, 331–341 (2003)
8. Iwata, S., Murota, K.: Combinatorial relaxation algorithm for mixed polynomial

matrices. Mathematical Programming 90, 353–371 (2001)
9. Iwata, S., Murota, K., Sakuta, I.: Primal-dual combinatorial relaxation algorithms

for the maximum degree of subdeterminants. SIAM Journal on Scientific Comput-
ing 17, 993–1012 (1996)

10. Iwata, S., Takamatsu, M.: On the Kronecker canonical form of mixed matrix pen-
cils. SIAM Journal on Matrix Analysis and Applications 32, 44–71 (2011)

11. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: 45th
Annual IEEE Symposium on Foundations of Computer Science, pp. 248–255. IEEE
Computer Society, Los Alamitos (2004)

12. Mucha, M., Sankowski, P.: Maximum matchings in planar graphs via Gaussian
elimination. Algorithmica 45, 3–20 (2006)

13. Murota, K.: Systems Analysis by Graphs and Matroids — Structural Solvability
and Controllability. Springer, Berlin (1987)

14. Murota, K.: Computing Puiseux-series solutions to determinantal equations via
combinatorial relaxation. SIAM Journal on Computing 19, 1132–1161 (1990)

15. Murota, K.: Combinatorial relaxation algorithm for the maximum degree of sub-
determinants: Computing Smith-McMillan form at infinity and structural indices
in Kronecker form. Applicable Algebra in Engineering, Communication and Com-
puting 6, 251–273 (1995)

16. Murota, K.: Computing the degree of determinants via combinatorial relaxation.
SIAM Journal on Computing 24, 765–796 (1995)

17. Murota, K.: Valuated matroid intersection, I: Optimality criteria. SIAM Journal
on Discrete Mathematics 9, 545–561 (1996)

18. Murota, K.: Valuated matroid intersection, II: Algorithms. SIAM Journal on Dis-
crete Mathematics 9, 562–576 (1996)

19. Murota, K.: On the degree of mixed polynomial matrices. SIAM Journal on Matrix
Analysis and Applications 20, 196–227 (1999)

20. Murota, K.: Matrices and Matroids for Systems Analysis. Springer, Berlin (2000)
21. Murota, K., Iri, M.: Structural solvability of systems of equations — A mathemat-

ical formulation for distinguishing accurate and inaccurate numbers in structural
analysis of systems. Japan Journal of Applied Mathematics 2, 247–271 (1985)

22. Sankowski, P.: Maximum weight bipartite matching in matrix multiplication time.
Theoretical Computer Science 410, 4480–4488 (2009)

23. Storjohann, A.: Algorithms for Matrix Canonical Forms. Ph.D. thesis, ETH Zürich
(2000)

24. Thorp, J.S.: The singular pencil of a linear dynamical system. International Journal
of Control 18, 577–596 (1973)

25. Verghese, G.C., Kailath, T.: Rational matrix structure. IEEE Transactions on Au-
tomatic Control AC-26, 434–439 (1981)

Constructing Extended Formulations from Reflection
Relations

Volker Kaibel and Kanstantsin Pashkovich	

Otto-von-Güricke-Universität Magdeburg, Institut für Mathematische Optimierung
Universitätsplatz 2, 39108 Magdeburg, Germany

{kaibel,pashkovi}@ovgu.de

Abstract. There are many examples of optimization problems whose associated
polyhedra can be described much nicer, and with way less inequalities, by pro-
jections of higher dimensional polyhedra than this would be possible in the orig-
inal space. However, currently not many general tools to construct such extended
formulations are available. In this paper, we develop a framework of polyhedral
relations that generalizes inductive constructions of extended formulations via
projections, and we particularly elaborate on the special case of reflection rela-
tions. The latter ones provide polynomial size extended formulations for several
polytopes that can be constructed as convex hulls of the unions of (exponentially)
many copies of an input polytope obtained via sequences of reflections at hyper-
planes. We demonstrate the use of the framework by deriving small extended
formulations for the G-permutahedra of all finite reflection groups G (gener-
alizing both Goeman’s [6] extended formulation of the permutahedron of size
O(n log n) and Ben-Tal and Nemirovski’s [2] extended formulation with O(k)
inequalities for the regular 2k-gon) and for Huffman-polytopes (the convex hulls
of the weight-vectors of Huffman codes).

1 Introduction

An extension of a polyhedron P ⊆ Rn is some polyhedron Q ⊆ Rd and a linear
projection π : Rd → Rn with π(Q) = P . A description of Q by linear inequalities
(and equations) is called an extended formulation for P . Extended formulations have
received quite some interest, as in several cases, one can describe polytopes associated
with combinatorial optimization problems much easier by means of extended formula-
tions than by linear descriptions in the original space. In particular, such extensions Q
can have way less facets than the polyhedron P has. For a nice survey on extended
formulations we refer to [4].

Many fundamental questions on the existence of extended formulations with small
numbers of inequalities are open. A particularly prominent one asks whether there are
polynomial size extended formulations for the perfect matching polytopes of complete
graphs (see [14,9]). In fact, we lack good techniques to bound the sizes of extended for-
mulations from below, and we also need more tools to construct extended formulations.
This paper makes a contribution into the latter direction.

� Supported by the International Max Planck Research School (IMPRS) for Analysis, Design
and Optimization in Chemical and Biochemical Process Engineering Magdeburg.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 287–300, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

288 V. Kaibel and K. Pashkovich

There are several ways to build extended formulations of polytopes from linear de-
scriptions or from extended formulations of other ones (see, e.g., [10,8]). A particu-
larly simple way is to construct them inductively from extended formulations one has
already constructed before. As an example, let for a vector p ∈ Rn

+ of processing
times and for some σ ∈ S(n) (where S(n) is the set of all bijections γ : [n] → [n]
with [n] = {1, . . . , n}), the completion time vector be the vector ct(p, σ) ∈ Rn with
ct(p, σ)j =

∑σ(j)
i=1 pσ−1(i) for all j ∈ [n]. Additionally, the completion time polytope

Pp
ct corresponding to the processing times vector p ∈ Rn

+ is defined as

Pp
ct = conv({ct(p, σ) : σ ∈ S(n)}) .

By some simple arguments, one can show that Pp
ct is the image of the polytope P =

Pp̃
ct ×[0, 1]n−1 for p̃ = (p1, . . . , pn−1) ∈ Rn−1 under the affine map f : R2n−2 → Rn

defined via f(x) = (x′+pnx
′′, 〈p̃,1 − x′′〉+pn) with x = (x′, x′′) and x′, x′′ ∈ Rn−1.

Applying this inductively, one finds that Pp
ct is a zonotope, i.e., an affine projec-

tion of a cube of dimension n(n − 1)/2 (which had already been proved by Wolsey
in the 1980’s [13]). This may appear surprisingly simple viewing the fact that Pp

ct

has exponentially many facets (see [12]). For the special case of the permutahedron
Pn

perm = P1n
ct = conv{(γ(1), . . . , γ(n)) ∈ Rn : γ ∈ S(n)}, Goemans [6] found an

even smaller extended formulation of size O(n logn), which we will come back to
later.

Let us look again at one step in the inductive construction described above. With the
polyhedron

R = {(x, y) ∈ R2n−2 × Rn : y = f(x)} , (1)

the extension derived in such a step reads

Pp
ct = {y ∈ Rn : (x, y) ∈ R for some x ∈ P} . (2)

Thus, we have derived the extended formulation for Pp
ct by applying in the sense of (2)

the “polyhedral relation” defined in (1) to a polytope P of which we had found (in-
ductively) an extended formulation before. The goal of this paper is to generalize this
technique of deriving extended formulations by using other “polyhedral relations” than
graphs of affine maps (which R as defined in (1) is). We will introduce the framework
of such general polyhedral relations in Section 2, and we are going to elaborate on one
particular type of those, called reflection relations, in Section 3. Reflection relations
provide, for affine halfspaces H≤ ⊆ Rn and polyhedra P ⊆ Rn, small extended for-
mulations of the convex hull of the union of P ∩H≤ and the image of P ∩H≤ under
the orthogonal reflection at the boundary hyperplane of H≤. They turn out to be quite
useful building blocks in the construction of some extended formulations. We derive
general results on reflection relations (Theorem 1) that allow to construct rather easily
extended formulations for some particular applications (in particular, without explicitly
dealing with the intermediate polyhedra of iterated constructions) .

In a first application, we show how to derive, for each polytope P ⊆ Rn that is con-
tained in (the topological closure of) a fundamental region of a finite reflection group G
on Rn, an extended formulation of the G-permutahedron of P , i.e., the convex hull of
the union of the polytopes in the orbit of P under the action of G (Section 4.1). These

Constructing Extended Formulations from Reflection Relations 289

extended formulations have f ′ + O(n logn) + O(n logm) inequalities, where m is the
largest number such that I2(m) appears in the decomposition of G into irreducible fi-
nite reflection groups, and provided that there is an extended formulation for P with at
most f ′ inequalities. In particular, this generalizes Goemans’ extended formulation of
the permutahedron Pn

perm with O(n logn) inequalities [6]. In fact, the starting point of
our research was to give an alternative proof for the correctness of Goeman’s extended
formulation that we would be able to generalize to other constructions.

As a second application, we provide an extended formulation with O(n logn) in-
equalities for the convex hull of all weight-vectors of Huffman-codes with n words
(Section 4.2). This Huffman-polytope Pn

huff ⊆ Rn is the convex hull of all vectors
(v1, . . . , vn) for which there is a rooted binary tree with n leaves labelled in arbitrary
order by 1, . . . , n such that the distance of leaf i from the root equals vi for all i ∈ [n].
This provides another striking example of the power of extended formulations, as no
linear descriptions of Pn

huff in Rn is known so far, and Nguyen, Nguyen, and Maur-
ras [11] showed that Pn

huff has 2Ω(n log n) facets.
Two well-known results we obtain easily within the framework of reflection rela-

tions are extended formulations with 2�log(m)� + 2 inequalities for regular m-gons
(reproving a result of Ben-Tal and Nemirovski [2], see Section 4.1) and an extended
formulation with 4(n − 1) inequalities of the parity polytope, i.e., the convex hull of
all v ∈ {0, 1}n with an odd number of one-entries (reproving a result of Carr and
Konjevod [3], see Section 4.1).

We conclude by briefly discussing (Section 5) directions for future research on the
further extension of the tools presented in this paper .

All extended formulations described in this paper can also be constructed efficiently,
i.e., in a number of steps that is bounded by a polynomial in the size of the formu-
lation (assuming symbolic encoding of sin(ϕ) and cos(ϕ) in the formulations of the
G-permutahedra for G = I2(m)).

2 Polyhedral Relations

A polyhedral relation of type (n,m) is a non-empty polyhedron ∅
= R ⊆ Rn × Rm.
The image of a subset X ⊆ Rn under such a polyhedral relation R is denoted by

R(X) = {y ∈ Rm : (x, y) ∈ R for some x ∈ X} .

Clearly, we have the monotonicity relations R(X) ⊆ R(X̃) for X ⊆ X̃ . Furthermore,
R(X) is a linear projection of R ∩ (X × Rm) . Thus, images of polyhedra and convex
sets under polyhedral relations are polyhedra and convex sets, respectively.

A sequential polyhedral relation of type (k0, . . . , kr) is a sequence R1, . . . , Rr,
where Ri is a polyhedral relation of type (ki−1, ki) for each i ∈ [r]; its length is r.
For such a sequential polyhedral relation, we denote by R = Rr ◦ · · · ◦R1 the set of all
(z(0), z(r)) ∈ Rk0×Rkr for which there is some (z(1), . . . , z(r−1)) with (z(i−1), z(i)) ∈
Ri for all i ∈ [r]. Since R is a linear projection of a polyhedron it is a polyhedral re-
lation of type (k0, kr) with Rr ◦ · · · ◦ R1(X) = Rr(· · ·R1(X) · · ·) for all X ⊆ Rk0 .

290 V. Kaibel and K. Pashkovich

We call R = Rr ◦ · · · ◦ R1 the polyhedral relation that is induced by the sequential
polyhedral relation R1, . . . , Rr. For a polyhedronP ⊆ Rk0 , the polyhedronQ ⊆ Rk0×
· · · × Rkr defined by

z(0) ∈ P and (z(i−1), z(i)) ∈ Ri for all i ∈ [r] (3)

satisfies π(Q) = R(P), where π is the projection defined via π(z(0), . . . , z(r)) = z(r).
Thus, (3) provides an extended formulation of the polyhedron R(P) with k0 + · · ·+ kr

variables and f0 + · · · + fr constraints, provided we have linear descriptions of the
polyhedra P , R1, . . . , Rr with f0, f1, . . . , fr constraints, respectively. Of course, one
can reduce the number of variables in this extended formulation to dim(Q). In order
to obtain useful upper bounds on this number by means of the polyhedral relations R1,
. . . , Rr, let us denote, for any polyhedral relation R ⊆ Rn × Rm, by δ1(R) and δ2(R)
the dimension of the non-empty fibers of the orthogonal projection of aff(R) to the
first and second factor of Rn × Rm, respectively. If aff(R) = {(x, y) ∈ Rn × Rm :
Ax + By = c}, then δ1(R) = dim(ker(B)) and δ2(R) = dim(ker(A)). With these
parameters, we can estimate

dim(Q) ≤ min{k0 +
r∑

i=1

δ1(Ri), kr +
r∑

i=1

δ2(Ri)} .

Remark 1. If R1, . . . , Rr is a sequential polyhedral relation of type (k0, . . . , kr) with
induced polyhedral relation R = Rr ◦ · · · ◦ R1, let π : Rk0 × · · · × Rkr → Rkr be
the projection defined via π(z(0), . . . , z(r)) = z(r), and let fi be the number of facets
of Ri for each i ∈ [r]. If the polyhedron P ⊆ Rk0 has an extended formulation with k′

variables and f ′ inequalities, then we can construct an extended formulation for R(P)
with min{k′ +

∑r
i=1 δ1(Ri), kr +

∑r
i=1 δ2(Ri)} variables and f ′ + f1 + · · · + fr

constraints.

A particularly simple class of polyhedral relations is defined by polyhedra R ⊆ Rn ×
Rm with R = {(x, y) ∈ Rn × Rm : y = f(x)} for some affine map f : Rn → Rm.
For these polyhedral relations, a (linear description of a) polyhedron P ⊆ Rn is just an
extended formulation of the polyhedron R(P) via projection f .

The domain of a polyhedral relation R ⊆ Rn × Rm is the polyhedron

dom(R) = {x ∈ Rn : (x, y) ∈ R for some y ∈ Rm} .

We clearly have R(X) =
⋃

x∈X∩dom(R) R(x) for all X ⊆ Rn. Note that, for a poly-
tope P = conv(V) with a finite set V ⊆ Rn and a polyhedral relation R ⊆ Rn × Rm,
in general the inclusion

conv
⋃

v∈V

R(v) ⊆ R(P) (4)

holds without equality, even in case of P ⊆ dom(R); as for an example you may con-
sider P = conv{0, 2} ⊆ R1 and R = conv{(0, 0), (1, 1), (2, 0)} with R(P) = [0, 1]
and R(0) = R(2) = {0}. Fortunately, one can guarantee equality in (4) (which makes
it much easier to analyze R(P)) for an important subclass of polyhedral relations.

Constructing Extended Formulations from Reflection Relations 291

We call a relation R ⊆ Rn ×Rm affinely generated by the family (�(f))f∈F , if F is
finite and every �(f) : Rn → Rm is an affine map such that R(x) = conv

⋃
f∈F �(f)(x)

holds for all x ∈ dom(R). The maps �(f) (f ∈ F) are called affine generators of R in
this case. For such a polyhedral relation R and a polytopeP ⊆ Rn with P ∩dom(R) =
conv(V) for some V ⊆ Rn, we find

R(P) =
⋃

x∈P∩dom(R)

R(x) =
⋃

x∈P∩dom(R)

conv
⋃

f∈F

�(f)(x)

⊆ conv
⋃

x∈P∩dom(R)

⋃
f∈F

�(f)(x) = conv
⋃

v∈V

⋃
f∈F

�(f)(v) ⊆ conv
⋃

v∈V

R(v) ,

where, due to (4), all inclusions are equations. In particular, we have established the
following result.

Proposition 1. For every polyhedral relation R ⊆ Rn × Rm that is affinely generated
by a finite family (�(f))f∈F , and for every polytope P ⊆ Rn, we have

R(P) = conv
⋃

f∈F

�(f)(P ∩ dom(R)) . (5)

As we will often deal with polyhedral relations R = Rr ◦ · · · ◦R1 that are induced by
a sequential polyhedral relation R1, . . . , Rr, it would be convenient to be able to derive
affine generators for R from affine generators for R1,. . . ,Rr. This, however, seems
impossible in general, where the difficulties arise from the interplay between images
and domains in a sequence of polyhedral relations. However, one still can derive a very
useful analogue of the inclusion “⊆” in (5).

Lemma 1. If we have R = Rr ◦ · · · ◦R1 and for each i ∈ [r] the relation Ri is affinely
generated by the finite family (�(fi))fi∈Fi , then the inclusion

R(P) ⊆ conv
⋃

f∈F

�(f)(P ∩ dom(R))

holds for every polyhedron P ⊆ Rn, where F = F1 × · · ·×Fr and �(f) = �(fr) ◦ · · · ◦
�(f1) for each f = (f1, . . . , fr) ∈ F .

We omit the straight-forward proof of Lemma 1 in this extended abstract.

3 Reflection Relations

For a ∈ Rn\{O} and β ∈ R, we denote by H=(a, β) = {x ∈ Rn : 〈a, x〉 = β} the hy-
perplane defined by the equation 〈a, x〉 = β and by H≤(a, β) = {x ∈ Rn : 〈a, x〉 ≤ β}
the halfspace defined by the inequality 〈a, x〉 ≤ β (with 〈v, w〉 =

∑n
i=1 viwi for all

v, w ∈ Rn). The reflection at H = H=(a, β) is �(H) : Rn → Rn where �(H)(x)

292 V. Kaibel and K. Pashkovich

is the point with �(H)(x) − x ∈ H⊥ lying in the one-dimensional linear subspace
H⊥ = {λa : λ ∈ R} that is orthogonal to H and 〈a, �(H)(x)〉 = 2β − 〈a, x〉. The
reflection relation defined by (a, β) is

Ra,β = {(x, y) ∈ Rn × Rn : y − x ∈ (H=(a, β))⊥, 〈a, x〉 ≤ 〈a, y〉 ≤ 2β − 〈a, x〉}
(the definition is invariant against scaling (a, β) by positive scalars). For the halfspace
H≤ = H≤(a, β), we also denote RH≤ = Ra,β . The domain of the reflection relation
is dom(Ra,β) = H≤, as (x, y) ∈ Ra,β implies 〈a, x〉 ≤ 2β − 〈a, x〉, thus 〈a, x〉 ≤ β,
and furthermore, for each x ∈ H≤(a, β), we obviously have (x, x) ∈ Ra,β . Note that,
although (a, β) and (−a,−β) define the same reflection, the reflection relations Ra,β

and R−a,−β have different domains.
From the constraint y − x ∈ (H=(a, β))⊥ it follows that δ1(Ra,β) = 1 holds. Thus,

we can deduce the following from Remark 1.

Remark 2. If R is induced by a sequential polyhedral relation of type (n, . . . , n) and
length r consisting of reflection relations only, then, for every polyhedron P ⊆ Rn, an
extended formulation of R(P) with n′ + r variables and f ′ + 2r inequalities can be
constructed, provided one has at hands an extended formulation for P with n′ variables
and f ′ inequalities.

Proposition 2. For a ∈ Rn \ {O}, β ∈ R and the hyperplane H = H=(a, β), the
reflection relation Ra,β is affinely generated by the identity map and the reflection �(H).

Proof. We need to show Ra,β(x) = conv{x, �(H)(x)} for every x ∈ dom(Ra,β) =
H≤(a, β). Since, for each such x, we have (x, x) ∈ Ra,β(x) and (x, �(H)(x)) ∈
Ra,β(x), and due to the convexity of Ra,β(x), it suffices to establish the inclusion “⊆”.
Thus, let y ∈ Ra,β(x) be an arbitrary point in Ra,β(x). Due to �(H)(x) − x ∈ H⊥

and y − x ∈ H⊥, both x and �(H)(x) are contained in the line y + H⊥. From
2β − 〈a, x〉 = 〈a, �(H)(x)〉 and 〈a, x〉 ≤ 〈a, y〉 ≤ 2β − 〈a, x〉 we hence conclude
that y is a convex combination of x and �(H)(x).

From Proposition 1 and Proposition 2, one obtains the following result.

Corollary 1. If P ⊆ Rn is a polytope, then we have, for a ∈ Rn \ {O} and β ∈ R

defining the hyperplane H = H=(a, β) and the halfspace H≤ = H≤(a, β),

Ra,β(P) = conv
(
(P ∩H≤) ∪ �(H)(P ∩H≤)

)
.

While Corollary 1 describes images under single reflection relations, for analyses of
the images under sequences of reflection relations we define, for each a ∈ Rn \ {O},
β ∈ R, H≤ = H≤(a, β), and H = H=(a, β), the map �	(H≤) : Rn → Rn via

�	(H≤)(y) =

{
y if y ∈ H≤

�(H)(y) otherwise

for all y ∈ Rn, which assigns a canonical preimage to every y ∈ Rn. If R denotes the
polyhedral relation R

H≤
r
◦ . . . ◦ R

H≤
1

, then we have

y ∈ R(�	(H≤
1) ◦ · · · ◦ �	(H≤

r)(y)) (6)

for all y ∈ Rn.

Constructing Extended Formulations from Reflection Relations 293

Theorem 1. For R = R
H≤

r
◦ . . . ◦ R

H≤
1

with halfspaces H≤
1 , . . . , H≤

r ⊆ Rn and

boundary hyperplanesH1, . . . , Hr as well as polytopesP,Q ⊆ Rn with Q = conv(W)
for some W ⊆ Rn we have Q = R(P) whenever the following two conditions are
satisfied:

1. We have P ⊆ Q and �(Hi)(Q) ⊆ Q for all i ∈ [r].
2. We have �	(H≤

1) ◦ · · · ◦ �	(H≤
r)(w) ∈ P for all w ∈ W .

Proof. From the first condition it follows that the image of P under every combination
of maps �(Hi) lies in Q. Thus, from Lemma 1 we have the inclusion R(P) ⊆ Q. By
the second condition and (6), we have W ⊆ R(P), and hence Q = conv(W) ⊆ R(P)
due to the convexity of R(P).

In order to provide simple examples of extended formulations obtained from reflection
relations, let us define the signing of a polyhedron P ⊆ Rn to be

sign(P) = conv
⋃

ε∈{−,+}n

ε.P ,

where ε.x is the vector obtained from x ∈ Rn by changing the signs of all coordinates i
with εi being minus. For x ∈ Rn, we denote by x(abs) ∈ Rn the vector that is obtained
from x by changing every component to its absolute value.

For the construction below we use the reflection relations R−ek,0 (where ek is the
k-th standard unit vector), denoted by Sk, for all k ∈ [n]. The corresponding reflection
σk : Rn → Rn is just the sign change of the k-th coordinate, given by

σk(x)i =

{
−xi if i = k

xi otherwise

for all x ∈ Rn. The map which defines the canonical preimage with respect to the
relation Sk is given by

σ	
k(y)i =

{
|yi| if i = k

yi otherwise

for all y ∈ Rn.

Proposition 3. If R is the polyhedral relation Sn ◦ . . . ◦ S1 and P ⊆ Rn is a polytope
with v(abs) ∈ P for each vertex v of P , then we have

R(P) = sign(P) .

Proof. With Q = sign(P), the first condition of Theorem 1 is satisfied. Furthermore,
we have Q = conv(W) with W = {ε.v : ε ∈ {−,+}n, v vertex of P}. As, for every
w ∈ W with w = ε.v for some vertex v of P and ε ∈ {−,+}n, we have σ	

1 ◦ · · · ◦
σ	

n(w) = w(abs) = v(abs) ∈ P , also the second condition of Theorem 1 is satisfied.
Hence the claim follows.

Proposition 3 and Remark 2 imply the following.

Theorem 2. For each polytope P ⊆ Rn with v(abs) ∈ P for each vertex v of P there
is an extended formulation of sign(P) with n′ + n variables and f ′ + 2n inequalities,
whenever P admits an extended formulation with n′ variables and f ′ inequalities.

294 V. Kaibel and K. Pashkovich

4 Applications

4.1 Reflection Groups

A finite reflection group is a group G of finite cardinality that is generated by a (finite)
family �(Hi) : Rn → Rn (i ∈ I) of reflections at hyperplanes O ∈ Hi ⊆ Rn containing
the origin. We refer to [7,5] for all results on reflection groups that we will mention. The
set of reflection hyperplanes H ⊆ Rn with �(H) ∈ G (and thus O ∈ H) — called the
Coxeter arrangement of G — cuts Rn into open connected components, which are
called the regions of G. The group G is in bijection with the set of its regions, and it
acts transitively on these regions. If one distinguishes arbitrarily the topological closure
of one of them as the fundamental domain ΦG of G, then, for every point x ∈ Rn,
there is a unique point x(ΦG) ∈ ΦG that belongs to the orbit of x under the action of the
group G on Rn.

A finite reflection group G is called irreducible if the set of reflection hyperplanes
cannot be partitioned into two sets H1 and H2 such that the normal vectors of all
hyperplanes in H1 are orthogonal to the normal vectors of all hyperplanes from H2.
According to a central classification result, up to linear transformations, the family of
irreducible finite reflection groups consists of the four infinite subfamilies I2(m) (on
R2), An−1, Bn, and Dn (on Rn), as well as six special groups.

For a finite reflection group G on Rn and some polytope P ⊆ Rn of G, the G-
permutahedron ΠG(P) of P is the convex hull of the union of the orbit of P under the
action of G. In this subsection, we show for G being one of I2(m), An−1, Bn, or Dn,
how to construct an extended formulation for ΠG(P) from an extended formulation
for P . The numbers of inequalities in the constructed extended formulations will be
bounded by f ′ + O(logm) in case of G = I2(m) and by f ′ + O(n logn) in the other
cases, provided that we have at hands an extended formulation of P with f ′ inequali-
ties. By the decomposition into irreducible finite reflection groups, one can extend these
constructions to arbitrary finite reflection groupsG on Rn, where the resulting extended
formulations have f ′ + O(n logm) + O(n logn) inequalities, where m is the largest
number such that I2(m) appears in the decomposition of G into irreducible finite re-
flection groups. Details on this will be in the full version of the paper.

The Reflection Group I2(m). Forϕ ∈ R, let us denoteHϕ = H=((− sinϕ, cosϕ), 0)
and H≤

ϕ = H≤((− sinϕ, cosϕ), 0). The group I2(m) is generated by the reflections
at H0 and Hπ/m. It is the symmetry group of the regular m-gon with its center at the
origin and one of its vertices at (1, 0). The group I2(m) consists of the (finite) set of all
reflections �(Hkπ/m) (for k ∈ Z) and the (finite) set of all rotations around the origin by
angles 2kπ/m (for k ∈ Z). We choose ΦI2(m) = {x ∈ R2 : x2 ≥ 0, x ∈ H≤

π/m} as the
fundamental domain.

Proposition 4. If R is the polyhedral relation R
H≤

2rπ/m

◦ · · · ◦ R
H≤

2π/m

◦R
H≤

π/m

with

r = �log(m)� and P ⊆ R2 is a polytope with v(ΦI2(m)) ∈ P for each vertex v of P ,
then we have R(P) = ΠI2(m)(P).

Constructing Extended Formulations from Reflection Relations 295

Proof. With Q = ΠI2(m)(P), the first condition of Theorem 1 is satisfied. Furthermore,
we have Q = conv(W) with W = {γ.v : γ ∈ I2(m), v vertex of P}. Let w ∈ W be
some point with w = γ.v for some vertex v of P and γ ∈ I2(m). Observing that

�	(H≤
π/m

) ◦ �	(H≤
2π/m

) ◦ · · · ◦ �	(H≤
2rπ/m

)(w)

is contained in ΦI2(m), we conclude that it equals w(ΦI2(m)) = v(ΦI2(m)) ∈ P . There-
fore, also the second condition of Theorem 1 is satisfied. Hence the claim follows.

From Proposition 4 and Remark 2, we can conclude the following theorem.

Theorem 3. For each polytope P ⊆ R2 with v(ΦI2(m)) ∈ P for each vertex v of P
there is an extended formulation of ΠI2(m)(P) with n′ + �log(m)� + 1 variables and
f ′ + 2�log(m)� + 2 inequalities, whenever P admits an extended formulation with n′

variables and f ′ inequalities.

In particular, we obtain an extended formulation of a regular m-gon with �log(m)�+ 1
variables and 2�log(m)�+ 2 inequalities by choosing P = {(1, 0)} in Theorem 3, thus
reproving a result due to Ben-Tal and Nemirovski [2].

The Reflection Group An−1. The group An−1 is generated by the reflections in Rn

at the hyperplanes H=(ek − e�, 0) for all pairwise distinct k, � ∈ [n]. It is the symme-
try group of the (n − 1)-dimensional (hence the index in the notation An−1) simplex
conv{e1, . . . , en} ⊆ Rn. We choose ΦAn−1 = {x ∈ Rn : x1 ≤ · · · ≤ xn} as the fun-
damental domain. The orbit of a point x ∈ Rn under the action of An−1 consists of
all points which can be obtained from x by permuting coordinates. Thus the An−1-
permutahedron of a polytope P ⊆ Rn is

ΠAn−1(P) = conv
⋃

γ∈S(n)

γ.P ,

where γ.x is the vector obtained from x ∈ Rn by permuting the coordinates according
to γ.

Let us consider more closely the reflection relation Tk,� = Rek−e�,0 ⊆ Rn × Rn.
The corresponding reflection τk,� = �(Hk,�) : Rn → Rn with Hk,� = H=(ek − e�, 0)
is the transposition of coordinates k and �, i.e., we have

τk,�(x)i =

⎧⎪⎨⎪⎩
x� if i = k

xk if i = �

xi otherwise

for all x ∈ Rn. The map τ	
k,� = �	(Hk,�) : Rn → Rn (assigning canonical preimages)

is given by

τ	
k,�(y) =

{
τk,�(y) if yk > y�

y otherwise

for all y ∈ Rn.

296 V. Kaibel and K. Pashkovich

A sequence (k1, �1), . . . , (kr, �r) ∈ [n] × [n] with ki
= �i for all i ∈ [r] is called
a sorting network if τ	

k1,�1
◦ · · · ◦ τ	

kr ,�r
(y) = y(sort) holds for all y ∈ Rn, where we

denote by y(sort) ∈ Rn the vector that is obtained from y by sorting the components in
non-decreasing order. Note that we have y(ΦAn−1) = y(sort) for all y ∈ Rn.

Proposition 5. If R is a polyhedral relation Tkr ,�r ◦ . . . ◦ Tk1,�1 , where the sequence
(k1, �1), . . . , (kr, �r) ∈ [n] × [n] is a sorting network, and P ⊆ Rn is a polytope with
v(sort) ∈ P for each vertex v of P , then we have R(P) = ΠAn−1(P).

Proof. With Q = ΠAn−1(P), the first condition of Theorem 1 is satisfied. Furthermore,
we have Q = conv(W) with W = {γ.v : γ ∈ S(n), v vertex of P}. As, for every
w ∈ W with w = γ.v for some vertex v of P and γ ∈ S(n), we have

τ	
k1,�1 ◦ · · · ◦ τ	

kr ,�r
(w) = w(sort) = v(sort) ∈ P ,

also the second condition of Theorem 1 is satisfied. Hence the claim follows.

As there are sorting networks of size r = O(n logn) (see [1]), from Proposition 5 and
Remark 2 we can conclude the following theorem.

Theorem 4. For each polytope P ⊆ Rn with v(sort) ∈ P for each vertex v of P there
is an extended formulation of ΠAn−1(P) with n′ + O(n logn) variables and f ′ +
O(n logn) inequalities, whenever P admits an extended formulation with n′ variables
and f ′ inequalities.

Note that the sorting networks described in [1] can be computed in time that is bounded
polynomially in n.

Choosing the one-point polytope P = {(1, 2, . . . , n)} ⊆ Rn, Theorem 4 yields
basically the same extended formulation with O(n logn) variables and inequalities of
the permutahedron Pn

perm = ΠAn−1(P) that has been constructed by Goemans [6] (see
the remarks in the Introduction).

The Reflection Group Bn. The group Bn is generated by the reflections in Rn at the
hyperplanes H=(ek + e�, 0), H=(ek − e�, 0) and H=(ek, 0) for all pairwise distinct
k, � ∈ [n]. It is the symmetry group of both the n-dimensional cube conv{−1,+1}n and
the n-dimensional cross-polytope conv{±e1, . . . ,±en}. We choose ΦBn = {x ∈ Rn :
0 ≤ x1 ≤ · · · ≤ xn} as the fundamental domain. The orbit of a point x ∈ Rn under
the action of Bn consists of all points which can be obtained from x by permuting its
coordinates and changing the signs of some subset of its coordinates. Note that we have
y(ΦBn) = y(sort-abs) for all y ∈ Rn, where y(sort-abs) = v′(sort) with v′ = v(abs).

Proposition 6. If R is a polyhedral relation Sn ◦ . . . ◦S1 ◦Tkr,�r ◦ . . . ◦Tk1,�1 , where
(k1, �1), . . . , (kr, �r) ∈ [n] × [n] is a sorting network (and the Si are defined as at the
end of Section 3) and P ⊆ Rn is a polytope with v(sort-abs) ∈ P for each vertex v of P ,
then we have R(P) = ΠBn(P).

Constructing Extended Formulations from Reflection Relations 297

Proof. With Q = ΠBn(P), the first condition of Theorem 1 is satisfied. Furthermore,
we have Q = conv(W) with W = {γ.ε.v : γ ∈ S(n), ε ∈ {−,+}n, v vertex of P}.
As, for every w ∈ W with w = γ.ε.v for some vertex v of P and γ ∈ S(n), ε ∈
{−,+}n, we have

τ	
k1,�1 ◦ · · · ◦ τ	

kr ,�r
◦ σ	

1 ◦ · · · ◦ σ	
n(w) = w(sort-abs) = v(sort-abs) ∈ P ,

also the second condition of Theorem 1 is satisfied. Hence the claim follows.

As for An−1, we thus can conclude the following from Proposition 6 and Remark 2.

Theorem 5. For each polytope P ⊆ Rn with v(sort-abs) ∈ P for each vertex v of P
there is an extended formulation of ΠBn(P) with n′ + O(n log n) variables and f ′ +
O(n logn) inequalities, whenever P admits an extended formulation with n′ variables
and f ′ inequalities.

The Reflection Group Dn. The group Dn is generated by the reflections in Rn at
the hyperplanes H=(ek + e�, 0) and H=(ek − e�, 0) for all pairwise distinct k, � ∈ [n].
Thus, Dn is a proper subgroup of Bn. It is not the symmetry group of a polytope. We
choose ΦDn = {x ∈ Rn : |x1| ≤ x2 ≤ · · · ≤ xn} as the fundamental domain. The or-
bit of a point x ∈ Rn under the action of Dn consists of all points which can be obtained
from x by permuting its coordinates and changing the signs of an even number of its
coordinates. For every x ∈ Rn, the point x(ΦDn) arises from x(sort-abs) by multiplying
the first component by −1 in case x has an odd number of negative components. For
k, � ∈ [n] with k
= �, we denote the polyhedral relation R−ek−e�,0 ◦Rek−e�,0 by Ek,�.

Proposition 7. If R is a polyhedral relation En−1,n ◦ · · · ◦E1,2 ◦Tkr ,�r ◦ . . . ◦Tk1,�1 ,
where (k1, �1), . . . , (kr, �r) ∈ [n]× [n] is a sorting network, and P ⊆ Rn is a polytope
with x(ΦDn) ∈ P for each vertex v of P , then we have R(P) = ΠDn(P).

Proof. With Q = ΠDn(P), the first condition of Theorem 1 is satisfied. Let us denote
by {−,+}n

even the set of all ε ∈ {−,+}n with an even number of components equal to
minus. Then, we have Q = conv(W) with

W = {γ.ε.v : γ ∈ S(n), ε ∈ {−,+}n
even, v vertex of P} .

For k, � ∈ [n] with k
= �, we define η	
k,� = �	(H≤(ek−e�,0)) ◦ �	(H≤(−ek−e�,0)). For

each y ∈ Rn, the vector η	
k,�(y) is the vector y′ ∈ {y, τk,�(y), ρk,�(y), ρk,�(τk,�(y))}

with |y′k| ≤ y′�, where ρk,�(y) arises from y by multiplying both components k and �
by −1. As, for every w ∈ W with w = γ.ε.v for some vertex v of P and γ ∈ S(n),
ε ∈ {−,+}n

even, we have

τ	
k1,�1 ◦ · · · ◦ τ	

kr ,�r
◦ η	

1,2 ◦ · · · ◦ η	
n−1,n(w) = w(ΦDn) = v(ΦDn) ∈ P ,

also the second condition of Theorem 1 is satisfied. Hence the claim follows.

And again, similarly to the cases An−1 and Bn, we derive the following result from
Proposition 7 and Remark 2.

298 V. Kaibel and K. Pashkovich

Theorem 6. For each polytope P ⊆ Rn with v(ΦDn)(v) ∈ P for each vertex v of P
there is an extended formulation of ΠDn(P) with n′ + O(n logn) variables and f ′ +
O(n logn) inequalities, whenever P admits an extended formulation with n′ variables
and f ′ inequalities.

If we restrict attention to the polytopes P = {(−1, 1, . . . , 1)} ⊆ Rn and P = {(1,
1, . . . , 1)} ⊆ Rn, then we can remove the reflection relations Ti1,j1 , . . . , Tir ,jr from
the construction in Proposition 7. Thus, we obtain extended formulations with 2(n− 1)
variables and 4(n−1) inequalities of the convex hulls of all vectors in {−1,+1}n with
an odd respectively even number of ones. Thus, applying the affine transformation of
Rn given by y → 1

2 (1 − y), we derive extended formulations with 2(n − 1) variables
and 4(n − 1) inequalities for the parity polytopes conv{v ∈ {0, 1}n :

∑
i vi odd} and

conv{v ∈ {0, 1}n :
∑

i vi even}, respectively (reproving a result by Carr and Kon-
jevod [3]).

4.2 Huffman Polytopes

A vector v ∈ Rn (with n ≥ 2) is a Huffman-vector if there is a rooted binary tree with n
leaves (all non-leaf nodes having two children) and a labeling of the leaves by 1, . . . , n
such that, for each i ∈ [n], the number of arcs on the path from the root to the leaf
labelled i equals vi. Let us denote by Vn

huff the set of all Huffman-vectors in Rn, and by
Pn

huff = conv(Vn
huff) the Huffman polytope. Note that currently no linear description of

Pn
huff in Rn is known. In fact, it seems that such descriptions are extremely complicated.

For instance, Nguyen, Nguyen, and Maurras [11] proved that Pn
huff has (Ω(n))! facets.

It is easy to see that Huffman-vectors and -polytopes have the following properties.

Observation 1

1. For each γ ∈ S(n), we have γ.Vn
huff = Vn

huff .
2. For each v ∈ Vn

huff there are at least two components of v equal to max{vk :
k ∈ [n]}.

3. For each v ∈ Vn
huff (n ≥ 3) and vi = vj = max{vk : k ∈ [n]} for some pair

i < j, we have

(v1, . . . , vi−1, vi − 1, vi+1, . . . , vj−1, vj+1, . . . , vn) ∈ Vn−1
huff .

4. For each w′ ∈ Vn−1
huff (n ≥ 3), we have (w′

1, . . . , w
′
n−2, w

′
n−1 + 1, w′

n−1 + 1) ∈
Vn

huff .

For n ≥ 3, let us define the embedding

Pn−1 = {(x1, . . . , xn−2, xn−1 + 1, xn−1 + 1) : (x1, . . . , xn−1) ∈ Pn−1
huff }

of Pn−1
huff into Rn.

Proposition 8. If R ⊆ Rn × Rn is the polyhedral relation

T1,2 ◦T2,3 ◦ · · · ◦Tn−2,n−1 ◦Tn−1,n ◦T1,2 ◦T2,3 ◦ · · · ◦Tn−3,n−2 ◦Tn−2,n−1 , (7)

then we have R(Pn−1) = Pn
huff .

Constructing Extended Formulations from Reflection Relations 299

Proof. With P = Pn−1 and Q = Pn
huff , the first condition of Theorem 1 is obviously

satisfied (due to parts (1) and (4) of Observation 1). We have Q = conv(W) with
W = Vn

huff . Furthermore, for every w ∈ W and x = τ	(w) with

τ	 = τ	
n−2,n−1 ◦ τ	

n−3,n−2 ◦ · · · ◦ τ	
2,3 ◦ τ	

1,2 ◦ τ	
n−1,n ◦ τ	

n−2,n−1 ◦ · · · ◦ τ	
2,3 ◦ τ	

1,2 , (8)

we have xn = xn−1 = max{wi : i ∈ [n]}, hence part (3) of Observation 1 (with i =
n− 1 and j = n) implies τ	(w) ∈ Pn−1. Therefore, the claim follows by Theorem 1.

From Remark 2 we thus obtain an extended formulation for Pn
huff with n′ + 2n −

3 variables and f ′ + 4n − 6 inequalities, provided we have an extended formulation
for Pn−1

huff with n′ variables and f ′ inequalities. As P2
huff is a single point, we thus can

establish inductively the following result.

Corollary 2. There are extended formulations of Pn
huff with O(n2) variables and in-

equalities.

Actually, one can reduce the size of the extended formulation of Pn
huff to O(n log n). In

order to indicate the necessary modifications, let us denote by Θk the sequence

(k−2, k−1), (k−3, k−2), . . . , (2, 3), (1, 2), (k−1, k), (k−2, k−1), . . . , (2, 3), (1, 2)

of pairs of indices used (with k = n) in (7) and (8). For every sequence

Θ = ((i1, j1), . . . , (ir, jr))

of pairs of pairwise different indices, we define τ	
Θ = τ	

i1,j1 ◦ · · · ◦ τ	
ir ,jr

(thus, τ	 in (8)
equals τ	

Θn
). Furthermore, we denote by ηk : Rk → Rk−1 (for k ≥ 3) the linear map

defined via ηk(y) = (y1, . . . , yk−2, yk−1 − 1) for all y ∈ Rk. The crucial property
for the above construction to work is that the following holds for every v ∈ Vn

huff and
k ∈ {3, . . . , n}: The vector

x = τ	
Θk

◦ ηk+1 ◦ τ	
Θk+1

◦ · · · ◦ ηn ◦ τ	
Θn

(v)

satisfies xk−1 = xk = max{xi : i ∈ [k]}. It turns out that this property is pre-
served when replacing the sequence Θn by an arbitrary sorting network (e.g. of size
O(n logn), see Section 4.1) and, for k ∈ {3, . . . , n − 1}, the sequence Θk (of length
2k − 3) by the sequence

(ik2 , i
k
1), (i

k
3 , i

k
2), . . . , (i

k
r(k), i

k
r(k)−1), (i

k
r(k)−1, i

k
r(k)−2), . . . , (i

k
3 , i

k
2), (i

k
2 , i

k
1)

with ik1 = k, ik2 = k − 1, ik� = ik�−1 − 2�−3 for all � ≥ 3, and r(k) being the maximal �
with ik� ≥ 1. As r(k) is bounded by O(log k) we obtain the following theorem, whose
detailed proof will be included in the full version of the paper.

Theorem 7. There are extended formulations of Pn
huff with O(n logn) variables and

inequalities.

300 V. Kaibel and K. Pashkovich

5 Conclusions

We hope to have demonstrated that and how the framework of reflection relations ex-
tends the currently available toolbox for constructing extended formulations. We con-
clude with briefly mentioning two directions for future research.

One of the most interesting questions in this context seems to be that for other poly-
hedral relations that can be useful for constructing extended formulations. In particular,
what other types of affinely generated polyhedral relations are there?

The reflections we referred to are reflections at hyperplanes. It would be of great in-
terest to find tools to deal with reflections at lower dimensional subspaces as well. This,
however, seems to be much harder. In particular, it is unclear whether some concept
similar to that of polyhedral relations can help here.

Acknowledgements. We thank Samuel Fiorini, Michel Goemans, and Günter Rote for
valuable hints and discussions.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c log n parallel steps. Combinatorica 3(1),
1–19 (1983)

2. Ben-Tal, A., Nemirovski, A.: On polyhedral approximations of the second-order cone. Math.
Oper. Res. 26(2), 193–205 (2001)

3. Carr, R.D., Konjevod, G.: Polyhedral combinatorics. In: Greenberg, H. (ed.) Tutorials on
emerging methodologies and applications in Operations Research, ch. 2, Springer, Heidel-
berg (2004)

4. Conforti, M., Cornuéjols, G., Zambelli, G.: Extended formulations in combinatorial opti-
mization. 4OR 8(1), 1–48 (2010)

5. Fomin, S., Reading, N.: Root systems and generalized associahedra. In: Geometric combi-
natorics. IAS/Park City Math. Ser., vol. 13, pp. 63–131. AMS, Providence (2007)

6. Goemans, M.: Smallest compact formulation for the permutahedron,
http://www-math.mit.edu/stringgoemans/publ.html

7. Humphreys, J.E.: Reflection groups and Coxeter groups. Cambridge Studies in Advanced
Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)

8. Kaibel, V., Loos, A.: Branched polyhedral systems. In: Eisenbrand, F., Shepherd, F. (eds.)
IPCO 2010. LNCS, vol. 6080, pp. 177–190. Springer, Heidelberg (2010)

9. Kaibel, V., Pashkovich, K., Theis, D.O.: Symmetry matters for the sizes of extended formu-
lations. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 135–148.
Springer, Heidelberg (2010)

10. Kipp Martin, R., Rardin, R.L., Campbell, B.A.: Polyhedral characterization of discrete dy-
namic programming. Oper. Res. 38(1), 127–138 (1990)

11. Nguyen, V.H., Nguyen, T.H., Maurras, J.-F.: On the convex hull of Huffman trees. Electronic
Notes in Discrete Mathematics 36, 1009–1016 (2010)

12. Queyranne, M.: Structure of a simple scheduling polyhedron. Math. Programming 58(2, Ser.
A), 263–285 (1993)

13. Wolsey, L.A.: Personal communication
14. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J.

Comput. System Sci. 43(3), 441–466 (1991)

http://www-math.mit.edu/stringgoemans/publ.html

Integrality Gaps of Linear and Semi-Definite

Programming Relaxations for Knapsack

Anna R. Karlin1,	, Claire Mathieu2, and C. Thach Nguyen1,	

1 University of Washington
{karlin,ncthach}@cs.washington.edu

2 Brown University
claire@cs.brown.edu

Abstract. In this paper, we study the integrality gap of the Knapsack
linear program in the Sherali-Adams and Lasserre hierarchies. First, we
show that an integrality gap of 2 − ε persists up to a linear number of
rounds of Sherali-Adams, despite the fact that Knapsack admits a fully
polynomial time approximation scheme [24, 30]. Second, we show that
the Lasserre hierarchy closes the gap quickly. Specifically, after t rounds
of Lasserre, the integrality gap decreases to t/(t − 1). This answers the
open question in [9]. Also, to the best of our knowledge, this is the
first positive result that uses more than a small number of rounds in
the Lasserre hierarchy. Our proof uses a decomposition theorem for the
Lasserre hierarchy, which may be of independent interest.

1 Introduction

Many approximation algorithms work in two phases: first, solve a linear pro-
gramming (LP) or semi-definite programming (SDP) relaxation; then, round
the fractional solution to obtain a feasible integer solution to the original prob-
lem. This paradigm is amazingly powerful; in particular, under the unique game
conjecture, it yields the best possible ratio for MaxCut and a wide variety of
other problems, see e.g. [33].

However, these algorithms have a limitation. Since they are usually analyzed
by comparing the value of the output to that of the fractional solution, we cannot
generally hope to get a better approximation ratio than the integrality gap of
the relaxation. Furthermore, for any given combinatorial optimization problem,
there are many possible LP/SDP relaxations, and it is difficult to determine
which relaxations have the best integrality gaps.

This has lead to efforts to provide systematic procedures for constructing a
sequence of increasingly tight mathematical programming relaxations for 0-1
optimization problems. A number of different procedures of this type have been
proposed: by Lovász and Schrijver [31], Sherali and Adams [37], Balas, Ceria and
Cornuejols [5], Lasserre [28,27] and others. While they differ in the details, they

� The first and third authors were supported by NSF Grant CCF-0635147 and a
Yahoo! Faculty Research Grant.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 301–314, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

302 A.R. Karlin, C. Mathieu, and C.T. Nguyen

all operate in a series of rounds starting from an LP or SDP relaxation, eventually
ending with an exact integer formulation. The strengthened relaxation after t
rounds can typically be solved in nO(t) time and, roughly, satisfies the property
that the values of any t variables in the original relaxation can be expressed as
the projection of a convex combination of integer solutions.

A major line of research in this area has focused on understanding the strengths
and limitations of these procedures. Of particular interest to our community is
the question of how the integrality gaps for interesting combinatorial optimiza-
tion problems evolve through a series of rounds of one of these procedures.
On the one hand, if the integrality gaps of successive relaxations drop suffi-
ciently fast, there is the potential for an improved approximation algorithm
(see [15, 16, 7, 10] for example). On the other hand, a large integrality gap
persisting for a large, say logarithmic, number of rounds rules out (uncondi-
tionally) a very wide class of efficient approximation algorithms, namely those
whose output is analyzed by comparing it to the value of a class of LP/SDP
relaxations. This implicitly contains most known sophisticated approximation
algorithms for many problems including SparsestCut and MaximumSatisifiability.
Indeed, serveral very strong negative results of this type have been obtained
(see [2, 1, 11, 13, 19, 32, 35, 36, 34, 20, 21, 8] and others). These are also viewed as
lower bounds of approximability in certain restricted models of computation.

How strong are these restricted models of computation? In other words, how
much do lower bounds in these models tell us about the intrinsic hardness of
the problems studied? To explore this question, we focus on one problem that is
well-known to be “easy” from the viewpoint of approximability: Knapsack. We
obtain the following results:

– We show that an integrality gap close to 2 persists up to a linear number of
rounds of Sherali-Adams. (The integrality gap of the natural LP is 2.)
This is interesting since Knapsack has a fully polynomial time approximation
scheme [24,30]. This confirms and amplifies what has already been observed
in other contexts (e.g [13]): the Sherali-Adams restricted model of computa-
tion has serious weaknesses: a lower bound in this model does not necessarily
imply that it is difficult to get a good approximation algorithm.

– We show that Lasserre’s hierarchy closes the gap quickly. Specifically, after
t rounds of Laserre, the integrality gap decreases to t/(t− 1).
It is known that a few rounds of Lasserre can yield better relaxations. For
example, two rounds of Lasserre applied to the MaxCut LP yields an SDP
that is at least as strong as that used by Goemans and Williamson to get
the best known approximation algorithm, and the SDP in [3] which leads
to the best known approximation algorithm for SparsestCut can be obtained
by three rounds of Lasserre. However, to the best of our knowledge, this is
the first positive result for more than a constant number of rounds in the
Lasserre hierarchy.

Our results also answer the open question in [9], which asks for the perfor-
mance of lift-and-project methods for Knapsack.

Integrality Gaps of Linear and SDP Relaxations for Knapsack 303

1.1 Related Work

Many known approximation algorithms can be recognized in hindsight as start-
ing from a natural relaxation and strengthening it using a couple of levels of
lift-and-project. The original hope [2] had been to use lift and project systems
as a systematic approach to designing novel algorithms with better approxi-
mation ratios. Instead, the last few years have mostly seen the emergence of a
multitude of lower bounds. Indeed, lift and project systems have been studied
mostly for well known difficult problems: MaxCut [13,17,36], SparsestCut [13,14],
VertexCover [1,2,12,19,20,23,36,38], MaximumAcyclicSubgraph [13], CSP [35,39],
and more.

The Knapsack problemhas a fully polynomial time approximation scheme [24,
30]. The natural LP relaxation (to be stated in full detail in the next section)
has an integrality gap of 2− ε [25]. Although we are not aware of previous work
on using the lift and project systems for Knapsack, the problem of strengthening
the LP relaxation via addition of well-chosen inequalities has been much the
object of much interest in the past in the mathematical programming community,
as stronger LP relaxations are extremely useful to speed up branch-and-bound
heuristics. The knapsack polytope was studied in detail by Weismantel [40]. Valid
inequalities were studied in [4, 41, 6]. In particular, whenever S is a minimal set
(w.r.to inclusion) that does not fit in the knapsack, then

∑
S∪{j:∀i∈S,wj≥wi} xj ≤

|S| − 1 is a valid inequality. Generalizations and variations were also studied
in [18, 22, 42]. In [9], Bienstock formulated LP with arbitrary small integrality
gaps for Knapsack using “structural disjunctions”. As mentioned earlier, this
paper poses the question of analyzing lift-and-project methods for Knapsack.
Our results answer this question.

Our results also confirm the indication from [26, 34] for example that the
Sherali-Adams lift and project is not powerful enough to be an indicator of
the hardness of problems. On the other hand, little is know about the Lasserre
hierarchy, as the first negative results were about k-CSP [35, 39]. Our positive
result leaves open the possibility that the Lasserre hierarchy may have promise
as a tool to capture the intrinsic difficulty of problems.

2 Preliminaries

2.1 The Knapsack Problem

Our focus in this paper is on the Knapsack problem. In the Knapsack problem, we
are given a set of n objects V = [n] with sizes c1, c2, . . . cn, values v1, v2, . . . vn,
and a capacity C. We assume that for every i, ci ≤ C. The objective is to select
a subset of objects of maximum total value such that the total size of the objects
selected does not exceed C.

The standard linear programming (LP) relaxation [25] for Knapsack is given
by:

304 A.R. Karlin, C. Mathieu, and C.T. Nguyen

max
∑
i∈V

vixi s.t.

⎧⎪⎨⎪⎩
∑
i∈V

cixi ≤ C

0 ≤ xi ≤ 1 ∀i ∈ V

(1)

The intended intepretation of an integral solution of this LP is obvious: xi = 1
means the object i is selected, and xi = 0 means it is not. The constraint can
be written as g(x) = C −∑

i cixi ≥ 0.
Let Greedy denote the algorithm that puts objects in the knapsack by order

of decreasing ratio vi/ci, stopping as soon as the next object would exceed the
capacity. The following lemma is folklore.

Lemma 1. Consider an instance (C, V) of Knapsack and its LP relaxation K
given by (1). Then Value(K) ≤ Value(Greedy)(C, V)) + maxi∈V vi.

2.2 The Sherali-Adams and Lasserre Hierarchies

We next review the lift-and-project hierarchies that we will use in this paper.
The descriptions we give here assume that the base program is linear and mostly
use the notation given in the survey paper by Laurent [29]. To see that these
hierarchies apply at a much greater level of generality we refer the reader to
Laurent’s paper [29].

Let K be a polytope defined by a set of linear constraints g1, g2, . . . gm:

K = {x ∈ [0, 1]n|g�(x) ≥ 0 for � = 1, 2, . . .m}. (2)

We are interested in optimizing a linear objective function f over the convex
hull P = conv (K∩{0, 1}n) of integral points in K. Here, P is the set of convex
combinations of all integral solutions of the given combinatorial problem and K
is the set of solutions to its linear relaxation. For example, if K is defined by (1),
then P is the set of convex combinations of valid integer solutions to Knapsack.

If all vertices of K are integral then P = K and we are done. Otherwise,
we would like to strengthen the relaxation K by adding additional valid con-
straints. The Sherali-Adams (SA) and Lasserre hierarchies are two different sys-
tematic ways to construct these additional constraints. In the SA hierarchy, all
the constraints added are linear, whereas Lasserre’s hierarchy is stronger and
introduces a set of positive semi-definite constraints. However, for consistency,
we will describe both hierarchies as requiring certain submatrices to be positive
semi-definite.

To this end, we first state some notations. Throughout this paper we will use
P (V) to denote the power set of V , and Pt (V) to denote the collection of all
subsets of V whose sizes are at most t. Also, given two sets of coordinates T and
S, T ⊆ S and y ∈ RS , by y|T we denote the projection of y onto T .

Next, we review the definition of the shift operator between two vectors x, y ∈
RP(V): x ∗ y is a vector in RP(V) such that

(x ∗ y)I =
∑
J⊆V

xJyI∪J .

Integrality Gaps of Linear and SDP Relaxations for Knapsack 305

Lemma 2 ([29]). The shift operator is commutative: for any vectors x, y, z ∈
RP(V), we have x ∗ (y ∗ z) = y ∗ (x ∗ z).
A polynomial P (x) =

∑
I⊆V aI

∏
i∈I xi can also be viewed as a vector indexed

by subsets of V . We define the vector P ∗y accordingly: (P ∗y)I =
∑

J⊆V aJyI∪J .

Finally, let T be a collection of subsets of V and y be a vector in RT . We
denote by MT (y) the matrix whose rows and colums are indexed by elements of
T such that

(MT (y))I,J = yI∪J .

The main observation is that if x ∈ K∩{0, 1}n then (yI) = (
∏

i∈I xi) satisfies
MP(V)(y) = yyT� 0 and MP(V)(g� ∗ y) = g�(x)yyT� 0 for all constraints g�.
Thus requiring principal submatrices of these two matrices to be positive semi-
definite yields a relaxation.

Definition 1. For any 1 ≤ t ≤ n, the t-th Sherali-Adams lifted polytope
SAt (K) is the set of vectors y ∈ [0, 1]Pt(V) such that y∅ = 1, MP(U)(y)� 0
and MP(W)(g� ∗ y)� 0 for all � and subsets U,W ⊆ V such that |U | ≤ t and
|W | ≤ t− 1.

We say that a point x ∈ [0, 1]n belongs to the t-th Sherali-Adams polytope
sat (K) iff there exists a y ∈ SAt (K) such that y{i} = xi for all i ∈ [n].

Definition 2. For any 1 ≤ t ≤ n, the t-th Lasserre lifted polytope Lat (K) is the
set of vectors y ∈ [0, 1]P2t(V) such that y∅ = 1, MPt(V)(y)� 0 and MPt−1(V)(g� ∗
y)� 0 for all �.

We say that a point x ∈ [0, 1]n belongs to the t-th Lasserre polytope lat (K)
if there exists a y ∈ Lat (K) such that y{i} = xi for all i ∈ V .

Note that MP(U)(y) has at most 2t rows and columns, which is constant for t

constant, whereas MPt(V)(y) has
(
n+1
t+1

)
rows and columns.

It is immediate from the definitions that sat+1 (K) ⊆ sat (K), and lat+1 (K) ⊆
lat (K) for all 1 ≤ t ≤ n − 1. Sherali and Adams [37] show that san (K) = P ,
and Lasserre [28, 27] show that lan (K) = P . Thus, the sequences

K ⊇ sa1 (K) ⊇ sa2 (K) ⊇ · · · ⊇ san (K) = P

K ⊇ la1 (K) ⊇ la2 (K) ⊇ · · · ⊇ lan (K) = P

define hierarchies of polytopes that converge to P . Furthermore, the Lasserre
hierarchy is stronger than the Sherali-Adams hierarchy: lat (K) ⊆ sat (K) for all
1 ≤ t ≤ n. In this paper, we show that for the Knapsack problem, the Lasserre
hierarchy is strictly stronger.

2.3 Proof Overview

Consider instances of Knapsack where at most k− 1 objects can be put into the
knapsack. Examples are instances where all objects have sizes greater than C/k.

306 A.R. Karlin, C. Mathieu, and C.T. Nguyen

Such instances are easy: they can be solved by going through all subsets of at
most k − 1 objects. We ask if SA and La “realize” this.

It turns out that SA does not. In fact, our lower bound instances fall into this
category. For t ≥ k, SAt does require that yI = 0 if I does not fit in the knapsack;
in some senses, this means the fractional solution y has to be a combination of
integral solutions. However, SAt has very few constraints on the “interaction”
of these solutions, thus fails to enforce the combination to be convex. In fact,
the solution in Section 3 can be viewed as a combination of feasible integral
solutions, but the coefficients of this combination do not sum to 1.

On the other hand, Lak handles these special instances. Lak also requires that
yI = 0 for any set I that does not fit in the knapsack. More importantly, if we
extend y so that yI = 0 for |I| > k, then the two constraints MP(V)(y)� 0 and
MPk(V)(y)� 0 are essentially the same, since the former matrix is the latter one
padded by 0’s. The former constraint requires y to be a convex combination of
integral solutions while the latter is what Lak enforces.

Now consider a general Knapsack instance K and let y ∈ Lak (K). Let OPT
be the optimal value of K, and L be the set of objects whose values are greater
than OPT/k. Then no subset of more than k − 1 objects in L can be put into
the knapsack. Thus, y is a convex combination of vectors which are integral on
Pk (L). If these (fractional) vectors are feasible for the original Knapsack LP,
then by Lemma 1, the value of each can be bounded by OPT +maxi/∈L vi, which
is at most k+1

k OPT . Hence so is the value of y.
Proving that these vectors are feasible for the original Knapsack LP turns

out to be very technical and Section 4 is dedicated to it. The section proves a
stronger fact that any y ∈ Lat (K) can be written as a convex combination of
vectors which are intergral on Pt (L) and feasible in Lat−k (K)). Section 5 then
finishes the analysis of La for Knapsack.

3 Lower Bound for the Sherali-Adams Hierarchy for
Knapsack

In this section, we show that the integrality gap of the t-th level of the Sherali-
Adams hierarchy for Knapsack is close to 2. This lower bound even holds for the
uniform1 Knapsack problem, in which vi = ci = 1 for all i.

Theorem 1. For every ε, δ > 0, the integrality gap at the t-th level of the
Sherali-Adams hierarchy for Knapsack where t ≤ δn is at least (2− ε)(1/(1+ δ)).

Proof. (Sketch) Consider the instance K of Knapsack with n objects where ci =
vi = 1 for all i ∈ V and capacity C = 2(1 − ε). Then the optimal integer
value is 1. On the other hand, we claim that the vector y where y∅ = 1, y{i} =
C/(n+(t−1)(1−ε)) and yI = 0 for all |I| > 1 is in SAt (K). Thus, the integrality
gap of the tth round of Sherali-Adams is at least Cn/(n+ (t− 1)(1− ε)), which
is at least (2 − ε)(1/(1 + δ)) when t ≤ δn.

1 This problem is also known as Unweighted Knapsack or Subset Sum.

Integrality Gaps of Linear and SDP Relaxations for Knapsack 307

4 A Decomposition Theorem for the Lasserre Hierarchy

In this section, we develop the machinery we will need for our Lasserre upper
bounds. It turns out that it is more convenient to work with families (zX) of
characteristic vectors rather than directly with y. We begin with some definitions
and basic properties.

Definition 3 (extension). Let T be a collection of subsets of V and let y be
a vector indexed by sets of T . We define the extension of y to be the vector
y′, indexed by all subsets of V , such that y′I equals yI if I ∈ T and equals 0
otherwise.

Definition 4 (characteristic polynomial). Let S be a subset of V and X a
subset of S. We define the characteristic polynomial PX of X with respect to S
as

PX(x) =
∏
i∈X

xi

∏
j∈S\X

(1 − xj) =
∑

J:X⊆J⊆S

(−1)|J\X| ∏
i∈J

xi.

Lemma 3 (inversion formula). Let y′ be a vector indexed by all subsets of
V . Let S be a subset of V and, for each X subset of S, let zX = PX ∗ y′:

zX
I =

∑
J:X⊆J⊆S

(−1)|J\X|y′I∪J .

Then y′ =
∑

X⊆S zX .

Lemma 4. Let y′ be a vector indexed by all subsets of V , S be a subset of V
and X be a subset of S. Then⎧⎪⎨⎪⎩

zX
I = zX

I\X for all I

zX
I = zX

∅ if I ⊆ X

zX
I = 0 if I ∩ (S \X)
= ∅

Proof. Let I ′ = I \ X and I ′′ = I∩X . Using the definition of zX
I and noticing

that X ∪ I ′′ = X yields zX
I = zX

I′ . This immediately implies that for I ⊆ X ,
zX

I = zX
∅ .

Finally, consider a set I that intersects S \ X and let i ∈ I∩(S\X). In the
definition of zX

I , we group the terms of the sum into pairs consisting of J such
that i /∈ J and of J ∪ {i}. Since I = I ∪ {i}, we obtain:∑

J:X⊆J⊆S

(−1)|J\X|y′I∪J =
∑

J:X⊆J⊆S\{i}

(
(−1)|J\X| + (−1)|J\X|+1

)
y′I∪J = 0.

Corollary 1. Let y′ be a vector indexed by all subsets of V , S be a subset of V
and X be a subset of S. Let wX be defined as zX/zX

∅ if zX
∅
= 0 and defined as

0 otherwise. Then, if zX
∅
= 0, then wX

{i} equals 1 for elements of X and 0 for
elements of S \X.

308 A.R. Karlin, C. Mathieu, and C.T. Nguyen

Definition 5 (closed under shifting). Let S be an arbitrary subset of V and
T be a collection of subsets of V . We say that T is closed under shifting by S if

Y ∈ T =⇒ ∀X ⊆ S, X ∪ Y ∈ T .

The following lemma generalizes Lemma 5 in [29]. It proves that the positive-
semidefinite property carries over from y to (zX).

Lemma 5. Let S be an arbitrary subset of V and T be a collection of subsets
of V that is closed under shifting by S. Let y be a vector indexed by sets of T .
Then

MT (y)� 0 =⇒ ∀X ⊆ S, MT (zX)� 0.

In the rest of the section, we prove a decomposition theorem for the Lasserre
hierarchy, which allows us to “divide” the action of the hierarchy and think of it
as using the first few rounds on some subset of variables, and the other rounds
on the rest. We will use this theorem to prove that the Lasserre hierarchy closes
the gap for the Knapsack problem in the next section.

Theorem 2. Let t > 1 and y ∈ Lat (K). Let k < t and S be a subset of V and
such that

|I∩S| ≥ k =⇒ yI = 0. (3)

Consider the projection y|P2t−2k(V) of y to the coordinates corresponding to sub-
sets of size at most 2t− 2k of V . Then there exist subsets X1, X2, . . . , Xm of S
such that y|P2t−2k(V) is a convex combination of vectors wXi with the following
properties:

– wXi

{j} =
{

1 if j ∈ Xi

0 if j ∈ S \Xi;
– wXi ∈ Lat−k (K); and
– if Ki is obtained from K by setting xj =wXi

{j} for j∈S, then wXi |P2t−2k(V \S)∈
Lat−k (Ki).

To prove Theorem 2, we will need a couple more lemmas. In the first one,
using assumption (3), we extend the positive semi-definite properties from y to
y′, and then, using Lemma 5, from y′ to zX .

Lemma 6. Let t, y, S, k be defined as in Theorem 2, and y′ be the extension of y.
Let T1 = {A such that |A\S| ≤ t− k}, and T2 = {B such that |B\S| < t− k}.
Then for all X ⊆ S, MT1(zX)� 0 and, for all �, MT2(g� ∗ zX)� 0 .

Proof. We will first prove that MT1(y
′)� 0 and, for all �, MT2(g� ∗ y′)� 0. Order

the columns and rows of MT1(y′) by subsets of non-decreasing size. By definition
of T1, any I ∈ T1 of size at least t must have |I∩S| ≥ k, and so y′I = 0. Thus

MT1(y
′) =

(
M 0
0 0

)
,

where M is a principal submatrix of MPt(V)(y).Thus M� 0, and so MT1(y
′)� 0.

Integrality Gaps of Linear and SDP Relaxations for Knapsack 309

Similarly, any J ∈ T2 of size at least t−1 must have |J ∪{i}∩S| ≥ k for every
i as well as |J∩S| ≥ k, and so, by definition of g� ∗y′ we must have (g� ∗y′)J = 0.
Thus

MT2(g� ∗ y′) =
(
N 0
0 0

)
,

where N is a principal submatrix of MPt−1(V)(g�∗y). Thus N� 0, and so MT2(g�∗
y′)� 0.

Observe that T1 is closed under shifting by S. By definition of zX and Lemma 5,
we thus get MT1(z

X)� 0.
Similarly, observe that T2 is also closed under shifting by S. By Lemma 2,

we have g� ∗ (PX ∗ y′) = PX ∗ (g� ∗ y′), and so by Lemma 5 again we get
MT2(g� ∗ zX)� 0.

Lemma 7. Let t, y, S, k be defined as in Theorem 2, and y′ be the extension of
y. Then for any X ⊆ S:

1. zX
∅ ≥ 0.

2. If zX
∅ = 0 then zX

I = 0 for all |I| ≤ 2t− 2k.

Proof. Let T1 be defined as in Lemma 6. By Lemma 6 MT1(zX)� 0 and zX
∅ is a

diagonal element of this matrix, hence zX
∅ ≥ 0.

For the second part, start by considering J ⊆ V of size at most t − k. Then
J ∈ T1, and so the matrix M{∅,J}(zX) is a principal submatrix of MT1(z

X),
hence is also positive semidefinite. Since zX

∅ = 0,

M{∅,J}(zX) =
(

0 zX
J

zX
J zX

J

)
� 0,

hence zX
J = 0.

Now consider any I ⊆ V such that |I| ≤ 2t− 2k, and write I = I1∪I2 where
|I1| ≤ t− k and |I2| ≤ t− k. M{I1,I2}(z

X) is a principal submatrix of MT1(zX),
hence is also positive semidefinite. Since zX

I1
= zX

I2
= 0,

M{I1,I2}(z
X) =

(
0 zX

I

zX
I 0

)
� 0,

hence zX
I = 0.

We now have what we need to prove Theorem 2.

Proof (of Theorem 2). By definition, Lemma 3 and the second part of Lemma 7,
we have

y|P2t−2k(V) = y′|P2t−2k(V) =
∑
X⊆S

zX |P2t−2k(V) =
∑
X⊆S

zX
∅ wX |P2t−2k(V).

By Lemma 3 and by definition of y, we have
∑

X⊆S zX
∅ = y∅ = 1, and the

terms are non-negative by the first part of Lemma 7, so y|P2t−2k(V) is a convex
combination of wX ’s, as desired.

310 A.R. Karlin, C. Mathieu, and C.T. Nguyen

Consider X ⊆ S such that zX
∅
= 0. By Lemma 6, MT1(zX)� 0 and MT2(g� ∗

zX)� 0 for all �, and so this also holds for their principal submatrices
MPt−k(V)(zX) and MPt−k−1(V)(g� ∗ zX). Scaling by the positive quantity zX

∅ ,
by definition of wX this also holds for MPt−k(V)(wX) and MPt−k−1(V)(g� ∗wX).
In other words, wX |P2t−2k(V) ∈ Lat−k (K).

Since MPt−k(V)(wXi)� 0, by taking a principal submatrix, we infer that
MPt−k(V \S)(wXi)� 0. Similarly, MPt−k(V)(g� ∗wXi)� 0 and so MPt−k(V \S)(g� ∗
wXi)� 0. Let g′� be the constraint of Ki obtained from g� by setting xj = wXi

{j}
for all j ∈ S. We claim that for any I ⊆ V \S, (g′� ∗ zXi)I = (g� ∗ zXi)I ; scaling
implies that MPt−k(V \S)(g′� ∗ wXi) = MPt−k(V \S)(g� ∗ wXi) and we are done.

To prove the claim, let g�(x) =
∑

j∈V ajxj + b. Then, by Corollary 1, g′� =∑
j∈V \S ajxj + (b +

∑
j∈Xi

aj). Let I ⊆ V \S. We see that

(g� ∗ wXi)I − (g′� ∗ wXi)I =
∑
j∈Xi

ajw
Xi

I∪{j} +
∑

j∈S\Xi

ajw
Xi

I∪{J} −
∑
j∈Xi

ajw
Xi

I .

By Lemma 4, wXi

I∪{j} = wXi

I for j ∈ Xi and wXi

I∪{j} = 0 for j ∈ S\Xi. The claim
follows.

5 Upper Bound for the Lasserre Hierarchy for Knapsack

In this section, we use Theorem 2 to prove that for the Knapsack problem the
gap of Lat (K) approaches 1 quickly as t grows, where K is the LP relaxation
of (1). First, we show that there is a set S such that every feasible solution in
Lat (K) satisfies the condition of the Theorem.

Given an instance (C, V) of Knapsack, Let OPT (C, V) denote the value of the
optimal integral solution.

Lemma 8. Consider an instance (C, V) of Knapsack and its linear programming
relaxation K given by (1). Let t > 1 and y ∈ Lat (K). Let k < t and S =
{i ∈ V |vi > OPT (C, V)/k }. Then:∑

i∈I∩S

ci > C =⇒ yI = 0.

Proof. There are three cases depending on the size of I:

1. |I| ≤ t − 1. Recall the capacity constraint g(x) = C − ∑
i∈V cixi ≥ 0. On

the one hand, since MPt−1(V)(g ∗ y)� 0, the diagonal entry (g ∗ y)I must
be non-negative. On the other hand, writing out the definition of (g ∗ y)I

and noting that the coefficients ci are all non-negative, we infer (g ∗ y)I ≤
CyI − (∑

i∈I ci

)
yI . But by assumption,

∑
i∈I ci > C. Thus we must have

yI = 0.

Integrality Gaps of Linear and SDP Relaxations for Knapsack 311

2. t ≤ |I| ≤ 2t− 2. Write I = I1∪I2 = I with |I1|, |I2| ≤ t− 1 and |I1∩S| ≥ k.
Then yI1 = 0. Since MPt(y)� 0, its 2-by-2 principal submatrix M{I1,I2}(y)
must also be positive semi-definite.

M{I1,I2}(y) =
(

0 yI

yI yI2

)
,

and it is easy to check that we must then have yI = 0.
3. 2t − 1 ≤ |I| ≤ 2t. Write I = I1∪I2 = I with |I1|, |I2| ≤ t and |I1∩S| ≥ k.

Then yI1 = 0 since t ≤ 2t− 2 for all t ≥ 2. By the same argument as in the
previous case, we must then have yI = 0.

The following theorem shows that the integrality gap of the tth level of the
Lasserre hierarchy for Knapsack reduces quickly when t increases.

Theorem 3. Consider an instance (C, V) of Knapsack and its LP relaxation K
given by (1). Let t ≥ 2. Then

Value(Lat (K)) ≤ (1 +
1

t− 1
)OPT,

and so the integrality gap at the t-th level of the Lasserre hierarchy is at most
1 + 1/(t− 1).

Proof. Let S = {i ∈ V |vi > OPT (C, V)/(t− 1)}. Let y ∈ Lat (K). If |I∩S| ≥
t − 1, then the elements of I ∩ S have total value greater than OPT (C, V), so
they must not be able to fit in the knapsack: their total capacity exceeds C,
and so by Lemma 8 we have yI = 0. Thus the condition of Theorem 2 holds for
k = t− 1.

Therefore, y|P2(V) is a convex combination of wXi with Xi ⊆ S, thus
Value(y) ≤ maxi Value(wXi). By the first and third properties of the Theorem,
we have:

Value(wXi) ≤
∑
j∈Xi

vj + Value(La1 (Ki)).

By the nesting property of the Lasserre hierarchy, Lemma 1, and the definition
of S,

Value(La1 (Ki)) ≤ Value(Ki) ≤ OPT (C − Cost(Xi), V \ S)) +
OPT (C, V)

t− 1
.

By the second property of the Theorem, wXi is in Lat−k (K) ⊆ K, so it must
satisfy the capacity constraint, so

∑
i∈Xi

ci ≤ ∑
i∈I ci ≤ C, so Xi is feasible.

Thus:

Value(y) ≤ max
feasible X⊆S

⎛⎝∑
j∈X

vj + OPT (C − Cost(X), V \ S))

⎞⎠ +
OPT (C, V)

t− 1

The first expression in the right hand side is equal to OPT (C, V), hence the
Theorem.

312 A.R. Karlin, C. Mathieu, and C.T. Nguyen

6 Conclusion

We have shown that for Knapsack, an integrality gap of 2 − ε persists up to
a linear number of rounds in the Sherali-Adams hierarchy. This broadens the
class of problems for which Sherali-Adams is not strong enough to capture the
instrinsic difficulty of problems.

On the other hand, the positive result for Lasserre opens the posibility that
lower bounds in the Lasserre hierarchy are good indicators of the intrinsic diffi-
culty of the problems at hand. Further investigations into the performance of the
Lasserre Hierarchy on other “easy” problems such as SpanningTree, BinPacking,
etc. to either confirm or reject this possibility would be of interest.

One obstacle along this line is the fact that the second positive semidefinite
constraint of the hierarchy (MP(t)V (g� ∗ y)� 0) is notoriously hard to deal with,
especially when g� contains many variables (in the lowerbounds for k-CSPs [35,
39], the authors are able to get around this by constructing vectors for only
valid assignments, an approach that is possible only when all the constraints
are “small”.) Clearly, both lower bounds and upper bounds for the Lasserre
hierarchy for problems with large constraints remain interesting to pursue.

Acknowledgement

Clare Mathieu would like to thank Eden Chlamtac for stimulating discussions.

References

1. Alekhnovich, M., Arora, S., Tourlakis, I.: Towards strong non-approximability re-
sults in the Lovász-Schrijver hierarchy. In: ACM STOC (2005)

2. Arora, S., Bollobás, B., Lovász, L., Tourlakis, I.: Proving integrality gaps without
knowing the linear program. Theory of Computing 2, 19–51 (2006)

3. Arora, S., Rao, S., Vazirani, U.V.: Expander flows, geometric embeddings and
graph partitioning. J. ACM 56(2) (2009)

4. Balas, E.: Facets of the Knapsack Polytope (1998)
5. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for

mixed 0-1 programs. Mathematical Programming 58, 295–324 (1993)
6. Balas, E., Zemel, E.: Facets of the knapsack polytope from minimal covers. SIAM

Journal on Applied Mathematics 34, 119–148 (1978)
7. Bateni, M.H., Charikar, M., Guruswami, V.: MaxMin allocation via degree lower-

bounded arborescences. In: ACM STOC (2009)
8. Benabbas, S., Magen, A.: Extending SDP integrality gaps to sherali-adams with

applications to quadratic programming and maxCutGain. In: Eisenbrand,
F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 299–312. Springer,
Heidelberg (2010)

9. Bienstock, D.: Approximate formulations for 0-1 knapsack sets. Operational Re-
search Letters 36(3), 317–320 (2008)

10. Bienstock, D., Ozbay, N.: Tree-width and the Sherali-Adams operator. Discrete
Optimization 1(1), 13–21 (2004)

11. Buresh-Oppenheim, J., Galesi, N., Hoory, S., Magen, A., Pitassi, T.: Rank bounds
and integrality gaps for cutting plane procedures. In: IEEE FOCS (2003)

Integrality Gaps of Linear and SDP Relaxations for Knapsack 313

12. Charikar, M.: On semidefinite programming relaxations for graph coloring and
vertex cover. In: ACM-SIAM SODA (2002)

13. Charikar, M., Makarychev, K., Makarychev, Y.: Integrality gaps for Sherali-Adams
relaxations. In: ACM STOC (2009)

14. Cheeger, J., Kleiner, B., Naor, A.: A (logn)Ω(1) integrality gap for the Sparsest
Cut SDP. In: IEEE FOCS (2009)

15. Chlamtac, E.: Approximation algorithms using hierarchies of semidefinite program-
ming relaxations. In: IEEE FOCS (2007)

16. Chlamtac, E., Singh, G.: Improved approximation guarantees through higher levels
of SDP hierarchies. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.)
APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 49–62. Springer, Heidelberg
(2008)

17. Fernandez de la Vega, W., Kenyon-Mathieu, C.: Linear programming relaxations
of MaxCut. In: ACM-SIAM SODA (2007)

18. Escudero, L.F., Garn, A.: An o(n log n) procedure for identifying facets of the
knapsack polytope. Operational Research Letters 31(3), 211–218 (2003)

19. Georgiou, K., Magen, A., Pitassi, T., Tourlakis, I.: Integrality gaps of 2 − o(1) for
vertex cover SDPs in the Lovász-Schrijver hierarchy. In: IEEE FOCS (2007)

20. Georgiou, K., Magen, A., Tourlakis, I.: Vertex cover resists sDPs tightened by local
hypermetric inequalities. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008.
LNCS, vol. IPCO, pp. 140–153. Springer, Heidelberg (2008)

21. Georgiou, K., Magen, A., Tulsiani, M.: Optimal sherali-adams gaps from pairwise
independence. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009.
LNCS, vol. 5687, pp. 125–139. Springer, Heidelberg (2009)

22. Hartvigsen, D., Zemel, E.: On the computational complexity of facets and valid
inequalities for the knapsack problem. Discrete Applied Math. 39, 113–123 (1992)

23. Hatami, H., Magen, A., Markakis, E.: Integrality gaps of semidefinite programs
for vertex cover and relations to �1 embeddability of negative type metrics. In:
Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and
APPROX 2007. LNCS, vol. 4627, pp. 164–179. Springer, Heidelberg (2007)

24. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. Journal of the ACM (1975)

25. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer, Heidelberg
(2003)

26. Khot, S., Saket, R.: SDP integrality gaps with local �1-embeddability. In: IEEE
FOCS (2009)

27. Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0-1 programs. In:
Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, p. 293. Springer,
Heidelberg (2001)

28. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM Journal on Optimization 11, 796–817 (2001)

29. Laurent, M.: A comparison of the Sherali-Adams, Lovász-schrijver and Lasserre
relaxations for 0-1 programming. Mathematics of Operations Research 28, 470–
496 (2003)

30. Lawler, E.L.: Fast approximation algorithms for knapsack problems. In: IEEE
FOCS (1997)

31. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization.
SIAM Journal on Optimization 1, 166–190 (1991)

32. Pitassi, T., Segerlind, N.: Exponential lower bounds and integrality gaps for tree-
like Lovász-Schrijver procedures. In: ACM-SIAM SODA (2009)

314 A.R. Karlin, C. Mathieu, and C.T. Nguyen

33. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP?
In: ACM STOC (2008)

34. Raghavendra, P., Steurer, D.: Integrality gaps for strong SDP relaxations of unique
games. In: IEEE FOCS (2009)

35. Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-csps. In: IEEE
FOCS (2008)

36. Schoenebeck, G., Trevisan, L., Tulsiani, M.: Tight integrality gaps for Lovász-
Schrijver SDP relaxations of vertex cover and max cut. In: ACM STOC, pp. 302–
310 (2007)

37. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on
Discrete Mathematics 3, 411–430 (1990)

38. Tourlakis, I.: New lower bounds for vertex cover in the Lovász-Schrijver hierarchy.
In: IEEE CCC (2006)

39. Tulsiani, M.: CSP gaps and reductions in the Lasserre hierarchy. In: ACM STOC
(2009)

40. Weismantel, R.: On the 0/1 knapsack polytope. Mathematical Programming 77,
49–68 (1997)

41. Wolsey, L.A.: Valid inequalities for 0-1 knapsacks and mips with generalised upper
bound constraints. Discrete Applied Mathematics 29(2-3), 251–261 (1990)

42. Zemel, E.: Easily computable facets of the knapsack problem. Mathematics of
Operations Research 14, 760–774 (1989)

Degree Bounded Forest Covering

Tamás Király1,	 and Lap Chi Lau2,		

1 MTA-ELTE Egerváry Research Group, Deptartment of Operations Research
Eötvös Loránd University, Budapest

tkiraly@cs.elte.hu
2 Department of Computer Science and Engineering

The Chinese University of Hong Kong
chi@cse.cuhk.edu.hk

Abstract. We prove that for an undirected graph with arboricity at
most k+ε, its edges can be decomposed into k forests and a subgraph with
maximum degree �kε+1

1−ε
�. The problem is solved by a linear programming

based approach: we first prove that there exists a fractional solution
to the problem, and then use a result on the degree bounded matroid
problem by Király, Lau and Singh [5] to get an integral solution.

Keywords: sparse graphs, forest covering, arboricity, matroid.

1 Introduction

Let G = (V,E) be an undirected graph without loops. The set of edges induced
by a node set X ⊆ V is denoted by E[X]. The arboricity of G is defined as

max
X⊆V,|X|≥2

|E[X]|
|X | − 1

.

A well-known result of Nash-Williams [8] states that a graph G can be covered
by k forests if and only if its arboricity is at most k. If G has arboricity k + ε
for some 0 < ε < 1, then this implies that it can be covered by k+ 1 forests, but
not by k forests. It is natural to ask whether, if ε is small, then G can “almost”
be covered by k forests in some sense. Recently, Montassier et al. [6] proposed a
conjecture of that flavor, where “almost” means that the remaining edges form
a forest of low maximum degree.

Conjecture 1 ([6]). If the arboricity of G is at most k+ ε for some 0 < ε < 1,
then G decomposes into k+1 forests, one of which has maximum degree at most⌈

(k+1)ε
1−ε

⌉
.

� Supported by grants OTKA CK80124 and TÁMOP 4.2.1./B-09/KMR-2010-0003.
This work was done while the author visited The Chinese University of Hong Kong.

�� Research supported by GRF grant 413609 from the Research Grant Council of Hong
Kong.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 315–323, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

316 T. Király and L.C. Lau

This conjecture is best possible as shown by examples in [6]. Partial results
are obtained by combinatorial method [6,4] and by topological method [3], and
related results are known for planar graphs [1,2]. In this paper we are interested
in a weaker form of the conjecture, where the bounded degree subgraph is not
required to be a forest.

Conjecture 2. If the arboricity of G is at most k + ε for some 0 < ε < 1,
then G contains k forests such that the edges not covered by any of them form a
subgraph of maximum degree at most

⌈
(k+1)ε
1−ε

⌉
.

This weaker conjecture is also of interest by itself, and it has applications in
bounding the game chromatic number [7]. Partial results towards this weaker
conjecture are obtained in [7,1,6]. Recently, for ε ≥ 1

2 , Conjecture 2 was shown
to be true by Kim et al. [4], but the case ε < 1

2 remains open (there are some
special values for which it is known, see [4]). Our main result is the following
theorem which almost proves Conjecture 2.

Theorem 3. Let G be a graph with arboricity at most k+ε, where k is a positive
integer and 0 < ε ≤ 1

2 . Then G contains k forests such that the edges not covered

by any of them form a subgraph of maximum degree at most
⌈

(k+1)ε
1−ε

⌉
+ 1 =⌈

kε+1
1−ε

⌉
.

Unlike previous approaches, we use a linear programming based approach to
tackle this problem. We first prove a fractional version of Conjecture 2 (see
Theorem 4), and then show that Theorem 3 follows from a result of the degree
bounded matroid problem [5]. A consequence of this approach is that the forests
satisfying Theorem 3 can be constructed in polynomial time.

2 Relation to Degree Bounded Matroids

In the degree lower-bounded matroid independent set problem, we are given a
matroid M = (V, I), a hypergraph H = (V,E), and lower bounds f(e) for each
hyperedge e ∈ E(H). The task is to find an independent set I with |I∩e| ≥ f(e)
for each hyperedge e ∈ E(H). The forest covering problem can be reduced to a
degree lower-bounded independent set problem: It is a well-known consequence
of the matroid union theorem that for any graph G and positive integer k there
is a matroid Mk with ground set E whose independent sets are the edge sets
that can be covered by k forests. Given an undirected graph G = (V,E) and
the forest covering problem with parameter k and Δ where Δ is the target
maximum degree of the remaining graph, we set the matroid to be Mk and
define the hypergraph H with V (H) = E(G) and E(H) = {δ(v) : v ∈ V (G)}
where δ(v) is the set of edges with exactly one endpoint in v, and set the lower
bound for each hyperedge to be dG(v) − Δ where dG(v) = |δ(v)| is the degree
of v in G. Then it can be seen that the degree bounded matroid problem in this
setting is equivalent to the forest covering problem.

Degree Bounded Forest Covering 317

The result in [5] states that if there is a feasible solution to a linear pro-
gramming relaxation of the degree bounded matroid problem, then there is an
integral solution to the problem which violates the degree constraints by at most
one1. The corresponding linear programming relaxation for the forest covering
problem with parameter k is the following, where the objective is to minimize
the maximum degree of the remaining graph. In the following let d(v) denote
the degree of node v in G, and for x ∈ RE let dx(v) =

∑
uv∈E xuv.

min Δ (1)
s.t. x(E[X]) ≤ k(|X | − 1) for every ∅
= X ⊆ V (2)

0 ≤ xe ≤ 1 for every e ∈ E (3)
dx(v) ≥ dG(v) −Δ for every v ∈ V (4)

The associated matroid polyhedron of Mk is described by (2) and (3). The
requirement that dG(v) − dx(v) ≤ (k+1)ε

1−ε for every v ∈ V can be written as a

degree lower bound for x by setting Δ = (k+1)ε
1−ε :

dx(v) ≥ dG(v) − (k + 1)ε
1 − ε

for every v ∈ V . (5)

The result in [5] states that if the system (2),(3),(5) has a solution, then the
matroid has an independent set F which almost satisfies the degree bounds:

dF (v) ≥ dG(v) −
⌈

(k + 1)ε
1 − ε

⌉
− 1 for every v ∈ V . (6)

This would imply Theorem 3 if the system (2),(3),(5) was always feasible when
the graph has arboricity at most k + ε. We prove that this fractional version of
Conjecture 2 is true.

Theorem 4. Let G be a graph with arboricity at most k+ε, where k is a positive
integer and 0 < ε ≤ 1

2 . Then the system (2),(3),(5) has a feasible solution.

We remark that this fractional version is also true if 1
2 ≤ ε < 1, and it is in fact

easier to prove. However, this is less interesting because in this case Conjecture 2
itself has been proved in [4], so we only sketch the proof at the end of Section 3.

An additional consequence of the method in [5] is that if we are given a cost
function c : E → R+, and the minimum cost of a solution of (2),(3),(5) is zLP ,
then there are k forests with total cost at most zLP that satisfy the condition of
Theorem 3, and these can be found in polynomial time.

1 More precisely the result in [5] applies to the degree bounded matroid basis problem
where the returned solution is required to be a basis of the matroid, but it is easy
to reduce the degree bounded matroid independent set problem to that problem by
adding dummy variables and we omit the details here.

318 T. Király and L.C. Lau

3 Proof of the Fractional Conjecture

Instead of trying to describe an optimal solution to the linear program described
by (2),(3),(5), we will give an upper bound for the objective value of the dual
linear program of (1)-(4) (when the arboricity of the graph is at most k + ε),
which is the following.

max
∑
v∈V

dG(v)πv −
∑

∅=X⊆V

k(|X | − 1)μX −
∑
e∈E

ρe

s.t. πu + πv −
∑

Z:uv∈E[Z]

μZ − ρuv ≤ 0 for every uv ∈ E

∑
v∈V

πv ≤ 1

π ≥ 0
μ ≥ 0
ρ ≥ 0

In an optimal dual solution ρuv = max{πu +πv −
∑

Z:uv∈E[Z] μZ , 0}. By writing∑
v∈V dG(v)πv =

∑
uv∈E(πu + πv) and eliminating the variables ρ, we get a

simpler equivalent form.

max
∑

uv∈E

min

⎧⎨⎩πu + πv,
∑

Z:uv∈E[Z]

μZ

⎫⎬⎭−
∑

∅=X⊆V

k(|X | − 1)μX (7)

s.t.
∑
v∈V

πv ≤ 1 (8)

π ≥ 0 (9)
μ ≥ 0 (10)

Let (π, μ) be an optimal dual solution. By duality, the following is equivalent to
Theorem 4.

Theorem 5. Let G be a graph with arboricity at most k+ε, where k is a positive
integer and 0 < ε ≤ 1

2 . Then

∑
uv∈E

min

⎧⎨⎩πu + πv,
∑

Z:uv∈E[Z]

μZ

⎫⎬⎭−
∑

∅=X⊆V

k(|X | − 1)μX ≤ (k + 1)ε
1 − ε

. (11)

We will prove Theorem 5 in the rest of this section. Let L = {∅
= X ⊆ V : μX >
0}. By a standard uncrossing technique, we can simplify the optimal solution
(π, μ) so that L is laminar, i.e. if X and Y in L are not disjoint, then X ⊆ Y or
Y ⊆ X .

Proposition 1. We may assume that L is laminar.

Degree Bounded Forest Covering 319

Proof. Suppose that X and Y in L are not disjoint. It is easy to verify that
if we decrease μX and μY by min{μX , μY }, and increase μX∩Y and μX∪Y by
min{μX , μY }, then we obtain a feasible dual solution whose objective value is
at least as large, since min{πu + πv,

∑
Z:uv∈E[Z] μZ} would not decrease for any

uv ∈ E and the second summation remains the same. ��

The overall plan of the proof is as follows. We give an upper bound for the first
term on the left hand side of (11) in form of definite integrals in Proposition 2,
and give lower bounds of the same form for the second term on the left hand
side and also for the right hand side of (11). We then show in Lemma 1 that
the required inequality holds for the integrands for any value of the variable, by
using the assumption that the graph is of arboricity at most k + ε.

Let us introduce some notation. For X ∈ L, let αX =
∑

Z⊇X μZ . Let α =
max{αX : X ∈ L}. For any 0 ≤ t ≤ α, let

Lt = {X ∈ L : αX ≥ t, αY < t ∀Y � X} .

Note that the sets in Lt are disjoint because L is laminar. For any 0 ≤ t ≤ α
and X ∈ Lt, let Xt = {v ∈ X : πv ≥ t}. Finally, given two node sets X and
Y , let d(X,Y) denote the number of edges with at least one endnode in both X
and Y .

The first step of the proof is to give an upper bound for the first term of (11)
that will turn out to be easier to estimate.

Proposition 2

∑
uv∈E

min

⎧⎨⎩πu + πv,
∑

Z:uv∈E[Z]

μZ

⎫⎬⎭
≤
∫ α

0

∑
X∈Lt

(
1

1 − ε
|E[Xt]| + d(Xt, X \Xt) +

1 − 2ε
1 − ε

|E[X \Xt]|
)

dt .

Proof. The integral on the right hand side is in fact a finite sum, so it is well-
defined. To prove the inequality, we show that the contribution of each edge to
the right hand side is at least its contribution to the left side. Let e = uv ∈ E
be an arbitrary edge, and let us assume πu ≥ πv. Let X be the smallest set in
L that contains both u and v; thus

∑
Z:uv∈E[Z] μZ = αX . For any t ∈ [0, αX],

there is exactly one set Z ∈ Lt with u, v ∈ Z since L is laminar and thus the
sets in Lt are disjoint. We distinguish three cases.

1. πu ≥ αX . In this case the contribution of e to the left hand side is equal to
αX , and we will show that its contribution to the right hand side is at least
αX . When t ∈ [0,min{αX , πv}], edge e is counted with weight 1

1−ε in the
right hand side because both u and v are in Zt. If πv ≥ αX then we are done.
Otherwise e is counted with weight 1 when t ∈ [πv, αX] because u ∈ Zt but
v /∈ Zt. Therefore the total contribution of e is at least αX .

320 T. Király and L.C. Lau

2. πu < αX ≤ πu +πv. In this case the contribution of e to the left hand side is
equal to αX . In the right hand side, the edge e is counted with weight 1

1−ε
if t ∈ [0, πv] when both u, v ∈ Zt, with weight 1 if t ∈ [πv, πu] when u ∈ Zt

and v /∈ Zt, and with weight 1−2ε
1−ε if t ∈ [πu, αX] when both u, v /∈ Zt. Thus

the total contribution of e to the right hand side is equal to

1
1 − ε

πv + (πu − πv) +
1 − 2ε
1 − ε

(αX − πu) =
1 − 2ε
1 − ε

αX +
ε

1 − ε
πu +

ε

1 − ε
πv .

Since πu + πv ≥ αX by assumption, this is at least αX as desired.
3. πu +πv ≤ αX . In this case the contribution of e to the left hand side is equal

to πu +πv. The contribution of e to the right hand side is the same as above:
1

1−ε if t ∈ [0, πv], 1 if t ∈ [πv, πu], and 1−2ε
1−ε if t ∈ [πu, αX], and thus the total

contribution is equal to

1
1 − ε

πv + (πu − πv) +
1 − 2ε
1 − ε

(αX − πu) .

Since αX − πu ≥ πv and 1
1−ε + 1−2ε

1−ε = 2, the contribution of e to the right
hand side is at least 2πv +(πu −πv) = πu +πv as desired (note that here we
use the assumption that ε ≤ 1

2). ��
We reformulate the second term on the left side of (11) as an integral on the

interval [0, α]: ∑
X⊆V

k(|X | − 1)μX =
∫ α

0

∑
X∈Lt

k(|X | − 1) dt .

The next step is to lower bound the constant on the right hand side of (11)
by an integral with the same limits. Let us use the notation π(X) =

∑
v∈X πv.

By (8) we have

1 ≥ π(V) ≥
∑
v∈V

min{πv,
∑

Z:v∈Z

μZ} =
∫ α

0

∑
X∈Lt

|Xt| dt ,

where the equality follows because the contribution of v to the right hand side
is equal to min{πv,

∑
Z:v∈Z μZ}. Thus

(k + 1)ε
1 − ε

≥
∫ α

0

∑
X∈Lt

(k + 1)ε
1 − ε

|Xt| dt .

After these formulations, to prove Theorem 5, it suffices to show that∫ α

0

∑
X∈Lt

(
1

1 − ε
|E[Xt]| + d(Xt, X \Xt) +

1 − 2ε
1 − ε

|E[X \Xt]|
)

dt

≤
∫ α

0

∑
X∈Lt

(
(k + 1)ε
1 − ε

|Xt| + k(|X | − 1)
)

dt . (12)

Degree Bounded Forest Covering 321

We show that the inequality holds for the integrands for any value of t between 0
and α, so it holds for the integrals as well. The assumption that G is of arboricity
at most k + ε is only used in the following lemma.

Lemma 1. For any 0 ≤ t ≤ α and X ∈ Lt, the following inequality holds:

1
1 − ε

|E[Xt]|+ d(Xt, X \Xt) +
1 − 2ε
1 − ε

|E[X \Xt]| ≤ k(|X | − 1) +
(k + 1)ε
1 − ε

|Xt| .

Proof. The idea is to identify the high degree structures Y in X \Xt, and then
use the arboricity to bound |E(Xt∪Y)|, while the number of remaining edges can
be bounded by k|X \ (Y ∪Xt)|. Let C1, . . . , Cl be the components of G[X \Xt],
and let Y be the union of the components where the average degree in G of the
nodes is at least k + 1, i.e.

Y =
⋃

{Ci : 2|E[Ci]| + d(Ci, Xt) ≥ (k + 1)|Ci|} .

Proposition 3. The following two inequalities hold for this set Y :

2|E[Y]| + d(Y,Xt) ≥ (k + 1)|Y | , (13)
d(X \ (Y ∪Xt), X) ≤ k|X \ (Y ∪Xt)| . (14)

Proof. Inequality (13) follows easily from the definition, since it holds for all
components of G[Y]. To show inequality (14), observe that if Ci ∩ Y = ∅, then
2|E[Ci]|+d(Ci, Xt) ≤ k|Ci|+(|Ci|−1). This implies, using that |E[Ci]| ≥ |Ci|−1
because of its connectedness, that |E[Ci]|+ d(Ci, Xt) ≤ k|Ci|. By summing over
all components not in Y , we obtain that

d(X \(Y ∪Xt), X) =
∑

i:Ci∩Y =∅
(|E[Ci]|+d(Ci, Xt)) ≤ k|X \(Y ∪Xt)| . ��

First let us analyze the case when Xt∪Y = ∅. Since all components have average
degree less than k + 1, we have |E[X]| ≤ k+1

2 |X | − 1
2 . A simple case analysis

shows (using the fact that G has no loops) that this implies |E[X]| ≤ k(|X |−1),
so the Lemma is true in this case.

We may thus assume that Xt ∪ Y
= ∅. Since the arboricity of G is at most
k + ε, we know that |E[Xt ∪ Y]| ≤ (k + ε)(|Xt ∪ Y | − 1), so

1
1 − ε

(|E[Xt]| + d(Xt, Y) + E[Y]) =
1

1 − ε
|E[Xt ∪ Y]| ≤ k + ε

1 − ε
(|Xt ∪ Y | − 1) .

If we subtract ε
1−ε times the inequality (13) from this, we get that

1
1 − ε

|E[Xt]| + d(Xt, Y) +
1 − 2ε
1 − ε

|E[Y]|

≤ k + ε

1 − ε
(|Xt ∪ Y | − 1) − (k + 1)ε

1 − ε
|Y |

=
(
k +

(k + 1)ε
1 − ε

)
(|Xt ∪ Y | − 1) − (k + 1)ε

1 − ε
|Y |

= k(|Xt ∪ Y | − 1) +
(k + 1)ε
1 − ε

(|Xt| − 1) .

322 T. Király and L.C. Lau

Next we add inequality (14):

1
1 − ε

|E[Xt]| + d(Xt, X \Xt) +
1 − 2ε
1 − ε

|E[Y]| + E[X \ (Y ∪Xt)]

≤ k(|Xt ∪ Y | − 1) +
(k + 1)ε
1 − ε

(|Xt| − 1) + k|X \ (Y ∪Xt)|

= k(|X | − 1) +
(k + 1)ε

1 − ε
(|Xt| − 1) .

This implies the inequality in the Lemma because

1 − 2ε
1 − ε

|E[Y]|+ E[X \ (Y ∪Xt)] ≥ 1 − 2ε
1 − ε

|E[X \Xt]| . ��

By Lemma 1, inequality (12) is true, since the inequality holds for the integrands
for any value t ∈ [0, α]. This concludes the proof of Theorem 5, hence also
the proof of Theorem 4. Using the degree bounded matroid result described in
Section 2, we obtain Theorem 3.

Remark. As we have already mentioned, Theorems 4 and 5 are true also for
1
2 ≤ ε < 1. We now sketch the proof. The overall structure of the proof is
similar, but we remove the term 1−2ε

1−ε |E[X \Xt]| from the bound in Proposition
2. Therefore Lemma 1 should be modified: the inequality

1
1 − ε

|E[Xt]| + d(Xt, X \Xt) ≤ k(|X | − 1) +
(k + 1)ε
1 − ε

|Xt|

should hold for any 0 ≤ t ≤ α and X ∈ Lt. The proof of this is simpler than
the proof of Lemma 1: instead of considering the components of X \ Xt, we
define Y as the set of nodes of X \Xt for which d(v,Xt) ≥ k + 1. Using the fact
that |E[Xt ∪ Y]| ≤ (k + ε)(|Xt ∪ Y | − 1) and the fact that d(v,Xt) ≤ k for any
v /∈ Xt ∪ Y , we obtain the desired bound.

Acknowledgement

We thank Hehui Wu for telling us this problem and their result [4].

References

1. Borodin, O.V., Kostochka, A.V., Sheikh, N.N., Yu, G.: Decomposing a planar graph
with girth 9 into a forest and a matching. European J. Combin. 29, 1235–1241 (2008)

2. Goncalves, D.: Covering planar graphs with forests, one having bounded maximum
degree. J. Combin. Theory Ser. B 99, 314–322 (2009)

3. Kaiser, T., Montassier, M., Raspaud, A.: Covering a graph by forests and a match-
ing. arXiv:1007.0316v1 (2010)

4. Kim, S.-J., Kostochka, A.V., West, D.B., Wu, H., Zhu, X.: Decomposition of sparse
graphs into forests and a graph with bounded degree (2010) (submitted)

Degree Bounded Forest Covering 323

5. Király, T., Lau, L.C., Singh, M.: Degree bounded matroids and submodular flows.
In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp.
259–272. Springer, Heidelberg (2008)

6. Montassier, M., Ossona de Mendez, P., Raspaud, A., Zhu, X.: Decomposing a graph
into forests (2010) (manuscript)

7. Montassier, M., Pecher, A., Raspaud, A., West, D.B., Zhu, X.: Decomposition of
sparse graphs, with application to game coloring number. Discrete Mathematics 310,
1520–1523 (2010)

8. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. J. London
Math. Soc. 39(12) (1964)

A Primal-Dual Algorithm for Weighted Abstract Cut
Packing

S. Thomas McCormick1, and Britta Peis2 ,

1 University of British Columbia, Sauder School of Business, 2053 Main Mall,
Vancouver, BC V6T1Z2, Canada
tom.mccormick@sauder.ubc.ca

2 Technische Universität Berlin, Strasse des 17. Juni 136,
10623 Berlin, Germany

peis@math.TU-Berlin.de

Abstract. Hoffman and Schwartz [13] developed the Lattice Polyhedron model
and proved that it is totally dual integral (TDI), and so has integral optimal
solutions. The model generalizes many important combinatorial optimization prob-
lems such as polymatroid intersection, cut covering polyhedra, min cost abores-
cences, etc., but has lacked a combinatorial algorithm. The problem can be seen
as the blocking dual of Hoffman’s Weighted Abstract Flow (WAF) model [11],
or as an abstraction of ordinary Shortest Path and its cut packing dual, so we
call it Weighted Abstract Cut Packing (WACP). We develop the first combinato-
rial algorithm for WACP, based on the Primal-Dual Algorithm framework. The
framework is similar to that used in [14] for WAF, in that both algorithms depend
on a relaxation by a scalar parameter, and then need to solve an unweighted “re-
stricted” subproblem. The subroutine to solve WACP’s restricted subproblem is
quite different from the corresponding WAF subroutine. The WACP subroutine
uses an oracle to solve a restricted abstract cut packing/shortest path subproblem
using greedy cut packing, breadth-first search, and an update that achieves com-
plementary slackness. This plus a standard scaling technique yields a polynomial
combinatorial algorithm.

1 Introduction

1.1 Overview

A fundamental problem in polyhedral combinatorics is deciding which linear programs
have guaranteed integer optimal solutions. The canonical example here is the Max
Flow/Min Cut Theorem [4], where integrality stems from the matrices being totally
unimodular (TUM). But TUM is too strong in the sense that essentially only network
flow LPs are TUM [20].

A more general tool for this has been the concept of total dual integrality (TDI)
[18], where LPs with specially structured RHSs (often submodular) can be proven to
have integral optimal solutions. Development of polynomial algorithms to solve TDI

 Supported by an NSERC Operating Grant.
 Supported by a DFG grant.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 324–335, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Primal-Dual Algorithm for Weighted Abstract Cut Packing 325

problems has lagged behind the theoretical results, although there have been some re-
cent successes: Submodular Function Minimization [16] and Bisubmodular Function
Minimization [17].

A key example of a TDI but not TUM class of LPs is the classic “path packing”
version of Max Flow/Min Cut. Hoffman [11] found a way to get an abstract version of
this, and an algorithm for solving Weighted Abstract Flow (WAF) was finally developed
in [14].

WAF abstracts “paths” as subsets of elements (e.g., arcs). It is well-known that s–t
cuts can be characterized as the minimal subsets of elements that hit (have non-empty
intersection with) every s–t path (and vice versa), so that minimal paths and cuts are
blocking clutters [8]. In [12] Hoffman worked out that the blocking clutter of abstract
paths are an abstraction of cuts that arise in Lattice Polyhedra [13].

The blocking dual of the classic path packing version of Max Flow is a cut packing
LP that is well-understood to be the dual LP to a formulation of Dijkstra Shortest Path.
In this sense we can view Lattice Polyhedra as generalizing Shortest Path in the same
sense that WAF generalizes Max Flow. We call this problem Weighted Abstract Cut
Packing (WACP).

Thus it is natural to ask for an algorithm for WACP to go with the [14] algorithm
for WAF. The main result in this paper is such an algorithm. Like the WAF algorithm,
it is based on the Primal-Dual framework. This framework requires a subalgorithm
for solving the corresponding unweighted problem. For WAF such a subalgorithm was
given by [15]; for WACP, Frank [5] gives such an algorithm. In each case we need to
generalize the unweighted algorithm to solve a so-called restricted problem, which is
non-trivial. These algorithms can be seen as special cases of the framework developed
in [1]. This extended abstract omits most proofs and figures.

1.2 The WACP Model

Given a binary matrix B∈ {0,1}|L |×|E|, a “cost function” c∈Z
|E|
+ and a “rank function”

r ∈ Z
|L |
+ , define P(B,r) := {x ∈ R|E| | Bx ≥ r, x ≥ 0}. We are interested in finding

optimal (integral) solutions of the primal-dual pair of linear programs

(P) min{cT x | x ∈ P(B,r)}, and (D) max{rT y | BT y ≤ c, y ≥ 0}.

Such covering and packing problems are NP-hard in general. However, if P(B,r) is a
lattice polyhedron (defined below), Hoffman and Schwartz [13] prove that the underly-
ing system of linear inequalities is TDI, implying that P(B,r) has only integral vertices.
Each row i ∈ L is the incidence vector of a subset Si ⊆ 2E , and so we identify L with
a family of subsets L ⊆ 2E .

Definition 1 (Lattice polyhedron [13]). P(B,r) is a lattice polyhedron if the row set
L forms a lattice L = (L ,�,∧,∨) such that r is supermodular on L , and L satisfies

(C1) i ≺ j ≺ k implies Si∩Sk ⊆ S j for all i, j,k ∈L (then we call (L ,�) consecutive),
and

(C2) (Si ∨S j)∪ (Si ∧S j) ⊆ Si ∪S j for all i, j ∈ L .

326 S.T. McCormick and B. Peis

Note that a consecutive lattice is submodular if and only if each column of B is submod-

ular, i.e., iff for each non-negative x ∈ R
|E|
+ the extension of x to L via x(S) := ∑e∈S xe

satisfies
(Sub) x(S)+ x(T) ≥ x(S∨T)+ x(S∧T) ∀S,T ∈ L .

We say that a consecutive lattice is submodular if (Sub) is satisfied, and modular if
(Sub) is satisfied with equality.

Note that a lattice polyhedron generalizes a(n anti-)polymatroid (given by a super-
modular rank function defined on the Boolean lattice (2E ,⊆,∪,∩)), since the Boolean
lattice is easily seen to be consecutive and modular. Beside polymatroids, lattice poly-
hedra also cover various other classical discrete structures such as the intersection of
polymatroids, cut covering polyhedra, min cost aborescences, etc. (see [18]).

Example 1. Let G = (V,E) be a (directed or undirected) graph with source s and sink
t and consider the collection L (G) = {δ (S) ⊆ E | s ∈ S ⊆ V, t /∈ S} of all s–t cuts in
G (as usual, δ (S) := {(u,v) ∈ E | u ∈ S, v
∈ S}). Note that L (G) forms a consecutive
submodular lattice with respect to the ordering δ (S) � δ (T) ⇐⇒ S ⊆ T ∀S,T ⊆ V .
Thus, with constant rank function r ≡ 1 the LPs (P) and (D) are the ordinary shortest
s–t path and its dual cut packing problems.

Thus we call the primal linear program (P) an abstract shortest path problem, and its
dual (D) a weighted abstract cut packing problem (WACP). Even though efficient algo-
rithms exist for all of the examples of WACP mentioned above, [13]’s TDI result does
not have an algorithm. The most general algorithm to this point is Frank’s two-phase
greedy algorithm [5] for lattice polyhedra with monotone rank function, which requires
that r satisfies the monotonicity property D � Q =⇒ rD ≤ rQ ∀D,Q ∈ L . Note that
this property is satisfied for the unweighted case where r ≡ 1, but not for the polyma-
troid intersection case. Here we develop an algorithm for lattice polyhedra in general,
i.e., where r is not necessarily monotone.

2 Preliminaries

We call D ∈ L a cut, and any y ∈ RL a cut packing. Each cut packing induces a mass
on each element, denoted by y(e) := ∑D(e yD. Thus y is feasible iff y ≥ 0 and y(e) ≤ ce

for all e ∈ E . If y(e) = ce we say that e is tight (w.r.t. y). Any x ∈ RE is a primal vector,
which induces a mass on each D via x(D) = ∑e∈D xe. Then x is feasible iff x ≥ 0 and
x(D) ≥ rD for all D ∈ L . Suppose that y is a feasible cut packing. Then x ≥ 0 and y
are jointly optimal iff (OPT i) x(D) ≥ rD for all D ∈ L ; (OPT ii) yD · (x(D)− rD) = 0
for all D ∈ L ; and (OPT iii) xe · (ce − y(e)) = 0 for all e ∈ E . Condition (OPT i) is just
primal feasibility, and (OPT ii–iii) are complementary slackness.

2.1 Accessing the Abstract Network via an Oracle

We take the point of view that |E| is “small”, and so we explicitly store x as a vector in
RE . Denote m = |E|. Let h denote an upper bound on the height of L , so that any chain
in L has at most h cuts. We think of |L | as being “big”, possibly exponential in m, so
we do not have an explicit list of cuts and their r-values. We represent WACP with an

A Primal-Dual Algorithm for Weighted Abstract Cut Packing 327

oracle for (P) that when given a vector x, either verifies that x is feasible, or returns a
constraint violated by x. In Ellipsoid terms, it is a separation routine (see [10]). We use
this oracle to generate interesting cuts in L as needed. We keep only a list of the current
positive cuts and their respective y values. A “small” E and “big” L is consistent with
most applications of this model. Formally the oracle is:

O
(
x
)

when given x ∈ RE
+, returns either a violating cut D with x(D) < rD (together

with rD), or the statement that every D∈L satisfies primal feasibility, i.e., (OPT i).

Let CO denote the time for one call to O
(
x
)
. The results in [10] imply that O

(
x
)

is
enough to get a strongly polynomial algorithm for WACP. However, Ellipsoid cannot
produce integral optimal solutions to the dual in TDI problems, i.e., integral optimal
cut packing y for (D). Let C be an upper bound on the ce and set rmax = maxD∈L rD so
the size of the data is logC + logrmax. A pseudopolynomial bound can involve C, rmax,
m, h, and CO, a weakly polynomial bound can involve logC, logrmax, m, h, and CO,
and a strongly polynomial bound can involve only m, h, and CO.

3 Outer Framework of the Algorithm

The outer framework of our algorithm is similar to the WAF algorithm in [14]. Both
algorithms can be viewed as special cases of the Primal-Dual Algorithm (a.k.a. Succes-
sive Shortest Path). In both cases we relax the “supermodular constraints” with RHS
r by relaxing r to r−λ for scalar parameter λ . However, since WACP is the blocking
dual of WAF, it interchanges the roles of primal and dual, so the relaxed r constraint is
in the dual of WAF, but in the primal here.

The relaxed constraint is x(D)≥ rD −λ ; defining gapλ (D) = x(D)− rD +λ (usually
just gap(D)) this is gap(D) ≥ 0. The relaxed problem replaces (OPT i–iii) by (OPT(λ)
i) gap(D)≥ 0; (OPT(λ) ii) yD ·gap(D) = 0; and (OPT(λ) iii) xe ·(ce−y(e)) = 0. Define
the sublattice (or abstract sub-network) L (λ) := {D ∈ L | gap(D) = 0}.

Lemma 1. L (λ) is a consecutive modular sublattice of L .

Proof. (C1) is trivially satisfied as L (λ) ⊆ L . To prove that L (λ) satisfies (Sub)
with equality, consider D,T ∈ L (λ). Then gap(D∨T)+gap(D∧T) ≥ 0 follows from
primal feasibility. On the other hand, the submodularity of L and the supermodularity
of r−λ�T imply gap(D∨T)+ gap(D∧T) ≤ gap(D)+ gap(T) = 0.

Idea of the algorithm: At iteration i the algorithm computes optimal integral solutions
x(i) and y(i) for the relaxed problems (P(i)) and (D(i)) which arise from (P) and (D) by
replacing r by r − λi. The initial value of λ is λ0 = rmax. Notice that x(0) = y(0) = 0
are optimal for λ0, and that if λk = 0, then x(k) and y(k) are optimal to (P) and (D).
We will show that the λi’s are positive integers satisfying λi > λi+1 for i = 1, . . ., and
so the algorithm terminates after at most rmax steps with optimal solutions. The algo-
rithm also monotonically increases �T y, which is bounded by O(mC). We can show
that O(m) iterations suffice to strictly increase �T y, and so O(m2C) iterations overall.
Then Section 3.2 and Theorem 5 imply the pseudo-polynomial bound:

328 S.T. McCormick and B. Peis

Theorem 1. The algorithm solves WACP in O(min{rmax,m2C} logrmax(m + CO)(m ·
CO + h(m+ h))) time.

3.1 Detailed Algorithm

Initialization: The algorithm starts with λ0 = rmax, and the optimal solutions x(0) = 0
and y(0) = 0 of (P(0)) and (D(0)), resp.

General step (i → i + 1): The step begins with an optimal integral solution x(i) of
(P(i)), an optimal integral solution y(i) of (D(i)) whose support forms a chain in L , the

“restricted” elements R(i) = {e ∈ E | x(i)
e > 0}, and the consecutive modular sublattice

(see Lemma 1) L (i) := L (λi). Notice that (OPT(λ) iii) requires that when xe > 0,
then y(e) = ce. Thus we must find a cut packing y that preserves y(e) = ce on R(i). The
algorithm calls a subroutine (see Section 4) to find an optimal solution p∗ ∈ {−1,0,1}E

of the restricted abstract shortest path problem

(RASPi) min{cT p | p(D) ≥ � (D ∈ L (i)), pe ≥ 0 (e
∈ R(i))},

and an optimal solution z∗ ∈ ZL (i)
of the restricted abstract cut packing problem

(RACPi) max
z≥0

{�T z | z(e) ≤ ce (e ∈ E), z(e) = ce (e ∈ R(i))},

whose support forms a chain in L . Moreover, the algorithm computes an integral step
length 0 < θi ≤ λi.

Update: It then updates y(i+1) ← z∗, x(i+1) ← x(i) + θi p∗, and λi+1 ← λi −θi.
Note that RASPi has RHS �, and so RASP really is a type of Shortest Path problem

that is being used to find an update direction p∗ for x. RACPi is an unweighted version
of WACP being used to find the new y. As we will see in Section 4, our algorithm
for RACP and RASP is quite different from the corresponding algorithm for WAF’s
restricted subproblems in [14]. But before we consider RACP and RASP, we show
how to determine a suitable step length θ , and show that (provided that the restricted
problems can be solved) at each iteration i the algorithm finds optimal integral primal
and dual solutions for the relaxed problems (P(i)) and (D(i)).

3.2 The Choice of Step Length θ

Each iteration starts with a feasible integral solution x for a current integral λ , an
integral RACP z∗ whose support forms a chain, and an integral optimal RASP p∗.
For simplicity, denote λ i and xi by λ and x, and λ i+1 and xi+1 by λ ′ and x′. Define
gap′(D) = x′(D)− rD + λ ′ = gap(D)− θ (1− p∗(D)). Then the algorithm chooses θ
maximal such that (1)–(3) are satisfied:

(1) θ ≤ λ (to ensure λ ′ ≥ 0),
(2) θ ≤ min{xe | p∗(e) < 0} (to ensure x′ ≥ 0), and

(3) θ ≤ min{ gap(D)
1−p∗(D) | p∗(D) ≤ 0} (to ensure that x′(D) ≥ rD −λ ′, i.e., gap′(D) ≥ 0).

A Primal-Dual Algorithm for Weighted Abstract Cut Packing 329

Theorem 2. This θ is a positive integer, and x′ is an integral feasible solution.

Since λ is an integer and p∗(e) < 0 only if xe > 0, if θ is determined by (1) or (2) it is
clearly an integer. Suppose instead that θ is determined by (3). We show that in this case
there exists a minimizer D0 of the constraint in (3) with p∗(D0) = 0. Since gap(D) > 0
for all D ∈ L with p∗(D) ≤ 0, this would imply that θ = gap(D0) is a positive integer.
The following lemmas prove that such a D0 exists.

Lemma 2. Suppose

θ = min{ gap(D)
1− p∗(D)

| p∗(D) ≤ 0}< min{xe | p∗(e) < 0}, (1)

and let D,Q satisfy gap′(D) = gap′(Q) = 0. Then for V ∈ {D∨Q,D∧Q}: (i) gap′(V) =
0; (ii) p∗(D)+ p∗(Q) = p∗(D∨Q)+ p∗(D∧Q); (iii) θ = gap(V)

1−p∗(V) if p∗(V)
= 1; and

(iv) p∗(V) ≤ 1.

Proof. Note that the choice of θ implies x′ ≥ 0, and so gap′ = x′ −r+λ ′ is submodular.
The choice of θ ensures that gap′ ≥ 0, so that 0 = gap′(D)+ gap′(Q) ≥ gap′(D∨Q)+
gap′(D ∧ Q) ≥ 0, implying (i). However, this equality holds only if all e ∈ supp(x′)
are modular in the sublattice {D,Q,D∨Q,D∧Q}. Since supp(p∗) ⊆ supp(x′) by our
assumption, property (ii) follows. Finally, (iii) and (iv) follow from gap′ = gap−θ (1−
p∗) and gap ≥ 0.

In order to prove that there exists a D0 such that θ = gap(D0) whenever (3) determines
θ , we consider a chain C ′ = {Qk ≺ ·· · ≺ Q1 ≺ Q0} in L (λ) with p∗(Qi) = 1 for all
Qi ∈ C ′. We will see below how to choose such a chain. It will follow as a consequence
of the subroutines described in Section 4 that (P1) Qk ∩{e ∈ E | p∗(e) < 0} = /0 and
(P2) p∗(D) ≥ 0 whenever Qi � D � Qi+1(i = k, . . . ,1). These properties are used in:

Lemma 3. Let θ be as in Lemma 2 and let D0 be a minimizer with largest value p∗(D0).
Moreover, assume that D0 is maximal w.r.t. � among all such lattice elements. Then
p∗(D0) = 0.

Thus Lemma 3 proves Theorem 2. We use this to compute θ using binary search in
O(logrmax(m+ CO)) time.

Corollary 1. y′ = z∗ and x′ are integral optimal solutions of (P(λ ′)) and (D(λ ′)).

Proof. The feasibility of x′ follows from Theorem 2. To show that y′ = z∗ is feasible,
we need to show that ∑D∈L :e∈D z∗D ≤ ce ∀e ∈ E . However, this immediately follows
from ∑D∈L :e∈D z∗D = ∑D∈L (λ):e∈D z∗D (as supp(z∗) ⊆ L (λ) ⊆ L).

It remains to show that z∗ and x′ satisfy the complementary slackness conditions
(OPT(λ) ii–iii). To prove (OPT(λ) iii), observe that x′e can only be positive if either
xe > 0 or p∗e > 0. In the former, e ∈ R implying z∗(e) = ce. In the latter, z∗(e) = ce

follows from the complementary slackness of z∗ and p∗. To prove (OPT(λ) ii), note
that z∗D > 0 implies that D ∈ L (λ) and p∗(D) = 1 (again, by complementary slackness
of z∗ and p∗). It follows that x′(D) = x(D)+ θ p∗(D) = rD −λ + θ = rD −λ ′.

330 S.T. McCormick and B. Peis

3.3 Polynomial Algorithm via Scaling

To make the algorithm polynomial, in theory we could choose to scale either the rewards
rD or the costs ce. It is not clear how to scale the rD so that supermodularity is preserved.
Hence we scale the costs to get a (weakly) polynomial algorithm for WACP. Recall that
C is the largest cost of any element, and set b = �log2 C�= O(logC). For 0 ≤ k ≤ b+1,
define ck

e = �ce/2k�, the k-th scale of c. Thus cb+1 = 0, cb is a 0–1 vector, and c0 = c.
In Theorem 1, when C = 1 the algorithm is polynomial. Clearly 2y and x are optimal

for capacities 2cb. Note that 2cb is “close” to cb−1 in the sense that cb−1
e − 2cb

e is 0 or
1 for all e ∈ E . Define the set of elements whose capacities need to be incremented at
scale k as I(k) = {e | ck−1

e −2ck
e = 1}, and χ(e) ∈ RE as the characteristic vector of e.

We would like to replace c′ = cb by c′ + χ(e) for each e ∈ I(b) and then modify the
optimal x, y for c′ to a new optimal x′, y′ for c′ + χ(e). Notice that if xe = 0, then y′ = y
and x′ = x are again optimal for c′ + χ(e), and so the algorithm first deletes all such
elements from I(b). The challenge is to modify x and y so they are optimal for r and
c + χ(f), for f ∈ I(k). If y changes it does so on a generalized type of cut containing f
which is a symmetric difference of cuts.

To deal with this we re-use the techniques of the RASP/RACP subroutine in Sec-
tion 4. We reconstruct the auxiliary graphs from there and change f so it is no longer
tight. Essentially the same analysis shows that the subroutine can construct a new opti-
mal solution in O(m ·CO+h(m+h)) time. Since |I(k)|= O(m) this leads to the weakly
polynomial result that:

Theorem 3. The scaling algorithm solves WACP in O((m logC+m2 logrmax(m+CO))
(m ·CO + h(m+ h))) time.

4 Solving the Restricted Problems

We now develop an algorithm to solve the restricted problems (RASPi) and (RACPi). Its
outline is:

Step 1: Determine an initial RACP z∗ whose support forms a chain in L (i).
Step 2: Based on the chain supp(z∗), construct an auxiliary digraph G. It will turn

out that (RASPi) is equivalent to a generalized shortest path problem (de-
fined later) in G.

Step 3: Find a generalized s,t-path in G corresponding to an RASP p∗ which uses
only elements in E∗ := {e ∈ E | z∗(e) = ce}.

Step 4: If z∗ and p∗ are not complementary slack, i.e., if p∗ is not tight on cuts in
the support of z∗, update z∗ along the path p∗ and return to Step 2.

The algorithm maintains the invariants that supp(z∗) is a chain, and each cut D ∈ L (i)

is covered by at least one element e ∈ E∗.

4.1 Step 1: Finding an Initial RACP

Given an optimal y(i) for (D(i)), we initialize z∗ = y(i), uncrossing as necessary to obtain
a chain (supp(z∗),�) in L (i). In a general step, let E∗ denote the tight elements of z∗.

A Primal-Dual Algorithm for Weighted Abstract Cut Packing 331

As long as O
(
χ(E∗)

)
returns some D ∈ L (i) with D∩E∗ = /0, increase z∗D until one

additional constraint gets tight. Again, uncross to obtain a chain (supp(z∗),�). Note
that we need at most m oracle calls until all cuts D ∈L (i) are hit by some tight element.

4.2 Step 2: Construction of the Auxiliary Digraph

Set L̂ (i) = L (i) ∪{C0}, where C0 = /0 is a “dummy” maximal element. We construct
our auxiliary digraph G = (V̂ ,A,w) as follows: we extend chain supp(z∗) arbitrarily to
a maximal chain C = {Ck ≺ . . . ≺ C1 ≺ C0}, and assign a vertex i for each cut Ci in
the chain C . To define the arc set A, we observe that (by the modularity of L̂ (i)) each
element e ∈E occurs in at least one cut Ci ∈C . Further, we observe that (by consecutiv-
ity) each element e ∈ E occurs consecutively in C . Thus, each element e ∈ E uniquely
defines two vertices ue,ve ∈ V̂ such that e ∈ Cue \Cue+1 and Cve+1 \Cve . We define our
arc set by drawing an arc (ue,ve) of weight ce for each e ∈ E . Additionally, we add a
backward arc (ve,ue) of weight −ce for each restricted element e ∈ R(i). Let R̃(i) denote
the added copy of R(i), and w the resulting weight function on the arcs. In our figures
we draw the vertices V̂ = {s = k,k−1, . . . ,1,0 = t} from bottom to top, i.e., vertex i is
below vertex j iff i> j. Moreover, we assume that the arcs corresponding to elements in
E are black, and the arcs corresponding to the restricted elements are red (see Figure 1).
Thus all black arcs are directed upwards, and all red arcs are directed downwards. Also,
each Ci ∈ C corresponds to the ordinary cut δ ({s,k− 1,k− 2, . . . , i}) in G. The black
arcs are the outgoing arcs, and the red (“backward”) arcs are the incoming arcs.

C 3

C 2

C 1

C 3

C 2

C 1

s

2

1

t

a

c

d

b

d’

{a,b}

{b,c}

{}

{c,d,d’}

Fig. 1. Chain (C ,�) with d ∈ R(i), and auxiliary digraph G = (V̂ ,A)

We also consider the shrunk graph G∗ which is constructed similarly, except that it
uses supp(z∗) instead of an extension of supp(z∗) as the basis of the construction. Note
that G∗ arises from G if we contract vertices i and i− 1 whenever Ci
∈ C . We denote
by G̃ and G̃∗ the subgraphs of G and G∗ that contain only the tight arcs of G and G∗,
respectively. Note that all red arcs are tight, and any s, t-path in G̃∗ is complementary
slack with z∗. However, it is not sufficient to simply compute an s, t-path in G̃∗, since
an s,t-path in G̃∗ does not necessarily correspond to a RASP. But if G̃ does contain
an s,t-path, then each cut is hit and it is also complementary slack with z∗. However, it
might be possible that G̃ does not contain an s, t-path despite (RASPi) having an optimal
solution. Since z∗ is a chain, G and G∗ have O(h) vertices, so constructing them costs
O(h + m) time.

332 S.T. McCormick and B. Peis

Definition 2. Given digraph G = (V ∪{t},A,w) with source s ∈ V and sink t, a poset
P = (V,�) (with unique minimal element s ∈ V) on V , and the collection of ideals
D(P) = {I ⊆V | i ∈ I, j � i implies j ∈ I}, we define

(GSP) min{wT p | p(δ+(I))− p(δ−(I)) ≥ 1, ∀I ∈ D(P), p ≥ 0}.
Note that (GSP) is a special instance of a submodular flow problem so that polynomial
algorithms exist. However, we provide a much simpler algorithm for this special case in
Section 4.3. We call W = {e1, . . . ,en} ⊆ 2A a generalized s,v-path in G, if tail(e1) = s,
head(en) = v and tail(ei+1) � head(ei) for all i = 2, . . . ,n.

Lemma 4. The incidence vector p of a generalized s, t-path W is a feasible solution of
(GSP).

Proof. Add a blue arc (u,v) of cost zero to G whenever v≺ u in the poset (V,�) induced
by (L̂ ,�). Then any generalized s, t-path in G corresponds to an ordinary s, t-path in
this extended graph using a blue arc whenever tail(ei+1) ≺ head(ei).

Now suppose the ideal I ⊆V is violated by p, i.e., we have p(δ+(I))− p(δ−(I))< 1.
Then, since p is a {0,1}-vector, there must exist a blue arc (u,v) ∈ δ+(I), meaning that
u∈ I and v
∈ I. However, this contradicts the property of ideals that u∈ I, v≺ u⇒ v∈ I.

Assuming that D
= T whenever D is a lower neighbor of T in (L (i),�) (D is a lower
neighbor of T if D � T and D � S � T implies D = S or D = T), we use the modularity
of L (i) to show that L (i) is a distributive lattice. Thus, by Birkhoff’s Theorem [2],
the cuts in the maximal chain C (and thus the vertices of G) correspond to a linear
extension of the join-irreducible elements in the lattice L (i) (recall that D ∈ L (i) is
join-irreducible if D = S∨T implies D = S or D = T).

Theorem 4. Let P = (V,�) be the induced poset on the join-irreducible cuts of
(L (i),�). Then any feasible solution p̂ of (GSP) corresponds to a RASP p∗ of the
same objective value.

Note that we can assume w.l.o.g. that p̂ satisfies min{ p̂(e), p̂(e′)} = 0 for each e ∈ R(i).
The RASP p∗ is then obtained from p̂ by setting p∗(e) = p̂(e) if e ∈ E \R(i), p∗(e) =
p̂(e) if e ∈ R(i) and p̂(e) ≥ 0, and p∗(e) = − p̂(e′) if e′ ∈ R̃(i) and p̂(e′) > 0.

4.3 Step 3: Finding a Generalized Path on Tight Arcs

To find a generalized s,t-path that is complementary slack with z∗, we need to look
for a generalized path in the subgraph G̃ consisting of the tight arcs in G. Note that G̃
contains a generalized s,t-path (otherwise there exists a cut D ∈ L (i) not containing
any tight element). Also, all generalized s, t-paths in G̃ have the same cost (as the arcs
are tight). A breadth-first-search (BFS) tree in G̃ starting in s corresponds to s,v-paths to
all vertices v ∈ V̂ that are reachable on ordinary paths in G̃. We construct a generalized
s,t-path in G̃ with the following:

Generalized path algorithm: First, apply BFS to find all vertices reachable from s on
an ordinary path of tight arcs, i.e., construct a tree T in G̃ rooted at s. If t
∈ T , add blue
arcs from all vertices in the tree to lower neighbours in the underlying poset that are not
in T . Then extend the current tree using these new arcs. Iterate until t is in the tree.

A Primal-Dual Algorithm for Weighted Abstract Cut Packing 333

This algorithm terminates with a generalized s, t-path P. For further analysis, we
extend our graphs by additional blue arcs (u,v) of cost zero whenever v ≺ u. These
blue arcs are directed downwards (as i ≺ j implies i > j for any two vertices i, j ∈ V̂ .)
Note that a generalized s,t-path P is an ordinary s, t-path on black, red and blue arcs
in G̃ when extended by these blue arcs. Since any generalized path P is feasible by
Lemma 4, and since it is optimal whenever it is an ordinary path in G̃∗ (by comple-
mentary slackness), if the generalized s, t-path P contains no blue arc in G̃∗, then P
corresponds to a shortest RASP, and z∗ corresponds to a maximum RACP. The BFS
costs O(m+ h) time.

Recall that in order to prove that the step length θ is integer, we needed a chain
{Ql ≺ ·· · ≺ Q0} satisfying (P1) and (P2). We can show that C ′ = {C ∈ C | p∗(C) = 1}
(for the RASP p∗ corresponding to the GSP P) is such a desired chain. Thus, if the
generalized s,t-path P returned by the algorithm above contains no blue arc in G̃∗, we
are done. Otherwise, the generalized path P tells us how to update the cut packing z∗.

4.4 Step 4: Update of the RACP

Let G̃∗ denote the shrunk subgraph of G̃ corresponding to the chain supp(z∗)∪C0 =
Cr ≺ ·· · ≺C1 ≺C0. Let s = vr, . . . ,v1,v0 = t denote the vertices of G̃∗, A∗ ∪R∗ denote
the black and red tight arcs, B∗ denote the added blue arcs, and P∗ be the restriction
of the generalized s,t-path P to the arcs in the shrunk graph G̃∗. If P∗ contains a blue
arc (i.e., if the RASP p∗ corresponding to P and z∗ does not satisfy complementary
slackness), we update z∗ as below.

We write v ≥ w if v lies below w in our representation of G̃∗. Note that the blue
arcs of P∗ correspond to the cuts in the support on which the path is not necessarily
tight. Let b1 be the first blue arc in P∗ ∩ B∗, e1 be the first black predecessor of b1

in P∗ ∩A∗, and f1 be the first black successor of b1 in A∗ ∩P∗ (see Figure 2). Then
u = tail(f1) ≥ v = head(b1) ≥ w = head(e1). Then for each arc e ∈ A∗ ∪R∗ ∪B∗, there
exist exactly two vertices je ≤ ie such that e ∈Cje+1 \Cje and e ∈ Cie \Cie+1. Namely,
je = head(e) and ie = tail(e) if e black, and ie = head(e) and je = tail(e) if e blue
or red.

Sketch of the update algorithm: The problem is that Cv is in the support of z∗ with
p∗(Cv) > 1. We first update z∗ by subtracting ε = min{z∗D | D ∈ supp(z∗)} from z∗Cv

,
and adding ε to both, z∗Cw

and z∗Cu+1
without violating the arcs e1 and f1. However, this

update might violate other arcs in G̃∗. We say that a black arc e is violated by z∗ if
z∗(e) > ce, and that a red arc e′ is violated if z∗(e′) < ce holds. (If z∗(e′) > ce for a red
arc, then z∗(e) > ce also holds for its black copy e, so that we need to repair it anyway.)
Note that, after this first update, a black arc e is violated exactly if for its head je and
its tail ie one of the following three holds: (1) ie < u and w < je, or (2) ie < u and
u ≤ je ≤ v, or (3) v < ie ≤ w and w ≤ je.

Since G̃∗ does not contain an ordinary s, t-path (i.e., one without blue arcs), either ie
(and thus je) is not reachable from s on an ordinary path, or t cannot be reached from
je on an ordinary path. In the former case, we can repair e by subtracting ε from z∗Cie
and adding it to z∗Cie+1

. This operation could cause new arcs to be violated. However, a
black arc can only be violated by this operation if its head is ie. Moreover, since ie is

334 S.T. McCormick and B. Peis

f
b1

1

u

v

w

e1

+

−

+

vC

C

C

w

u+1

Fig. 2. First update of z∗

not reachable on an ordinary path from s, the tail of this new violated arc is also not
reachable from s, and we can do the same repairing operation at its tail. This procedure
terminates after at most |supp(z∗)| ≤ h steps as ie is not reachable from s.

In the latter case, i.e., if t cannot be reached on an ordinary path from je, then we can
repair e at its head je, i.e., we subtract ε from z∗Cje+1

and add it to z∗Cje
. Then, (similar

arguments as above), these operations violate a black arc exactly if its tail is je, and we
know that there is no ordinary path from its head to t. Thus, we can repair it with the
same operation at its head. This procedure terminates after at most |supp(z∗)| ≤ h steps
as t is not reachable from je. In the case when a red arc is violated, we can repair it at
its head ie by adding ε to z∗Cie

and subtracting it from z∗Cie+1
.

It is not hard to see that none of the arcs can be violated twice. Thus, after O(m)
operations we arrive at a feasible cut packing z∗ of better objective value. Instead of
choosing ε as the minimum value of all cuts in the support of z∗ it suffices to choose ε
as the minimum of all cuts on which we subtract ε . This way, we ensure that at least one
cut vanishes from the support of z∗, so that we need at most |V | = O(h) update calls.

Theorem 5. This algorithm finds an optimal RASP and RACP in O(m ·CO+h(m+h))
time.

5 Final Thoughts

We developed the first combinatorial polynomial algorithm for Weighted Abstract Cut
Packing, one important case of lattice polyhedra. There are some further questions here:
Our algorithm is weakly polynomial; is there a way to make it strongly polynomial?
There is another variation of lattice polyhedra in [13] with r submodular and L being
consecutive supermodular. So far, there exists a two-phase greedy algorithm for this
variant in case r is monotone [3]. Is there a combinatorial polynomial algorithm also

A Primal-Dual Algorithm for Weighted Abstract Cut Packing 335

for submodular (but not necessarily monotone) r? Gröflin and Hoffman [9] extended the
lattice polyhedra model further to {0,±1} matrices, and again showed that these were
TDI. Fujishige and Peis [6] showed that when L is distributive this problem is equiva-
lent to submodular flow, and so has polynomial algorithms. Can we get a combinatorial
polynomial algorithm also for the general case?

References

1. Applegate, D.L., Cook, W.J., McCormick, S.T.: Integral Infeasibility and Testing Total Dual
Integrality. OR Letters 10, 37–41 (1991)

2. Birkhoff, G.: Lattice Theory. Amer. Math. Soc. 91 (1991)
3. Faigle, U., Peis, B.: Two-phase greedy algorithms for some classes of combinatorial linear

programs. In: Proceedings SODA 2008, pp. 161–166 (2008)
4. Ford Jr., L.R., Fulkerson, D.R.: Maximal Flow through a Network. Canadian J. of Mathe-

matics 8, 399–404 (1956)
5. Frank, A.: Increasing the rooted connectivity of a digraph by one. Math. Programming 84,

565–576 (1999)
6. Fujishige, S., Peis, B.: Lattice Polyhedra and Submodular Flows. In: Proc. of Cologne-

Twente-Workshop, CTW 2010 (2010) (to appear)
7. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. North-Holland, Amsterdam

(2005)
8. Fulkerson, D.R.: Blocking and Anti-Blocking Pairs of Polyhedra. Math. Prog. 1, 168–194

(1971)
9. Groflin, H., Hoffman, A.J.: Lattice Polyhedra II: Generalizations, Constructions, and Exam-

ples. Annals of Discrete Mathematics 15, 189–203 (1982)
10. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Opti-

mization. Springer, Heidelberg (1988)
11. Hoffman, A.J.: A Generalization of Max Flow-Min Cut. Math. Prog. 6, 352–359 (1974)
12. Hoffman, A.J.: On Lattice Polyhedra III: Blockers and Anti-Blockers of Lattice Clutters.

Math. Prog. Study 8, 197–207 (1978)
13. Hoffman, A., Schwartz, D.E.: On lattice polyhedra. In: Hajnal, A., Sos, V.T. (eds.) Proceed-

ings of Fifth Hungarian Combinatorial Coll, pp. 593–598. North-Holland, Amsterdam (1978)
14. Martens, M., McCormick, S.T.: A Polynomial Algorithm for Weighted Abstract Flow. In:

Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 97–111.
Springer, Heidelberg (2008)

15. McCormick, S.T.: A Polynomial Algorithm for Abstract Maximum Flow. Extended abstract.
In: Proceedings of the 7th ACM-SIAM SODA, pp. 490–497 (1995)

16. McCormick, S.T.: Submodular Function Minimization. In: Aardal, K., Nemhauser, G.,
Weismantel, R. (eds.) Handbook on Discrete Optimization, ch. 7, pp. 321–391. Elsevier,
Amsterdam (2006)

17. McCormick, S.T., Fujishige, S.: Strongly Polynomial and Fully Combinatorial Algorithms
for Bisubmodular Function Minimization. Mathematical Programming 122, 87–120 (2010)

18. Schrijver, A.: Combinatorial Optimization. Springer, Heidelberg (2003)
19. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, New York

(1986)
20. Seymour, P.D.: Decomposition of Regular Matroids. JCT B 28, 305–359 (1980)

Convexification Techniques for

Linear Complementarity Constraints�

Trang T. Nguyen1, Mohit Tawarmalani2, and Jean-Philippe P. Richard1

1 Department of Industrial and Systems Engineering, University of Florida
2 Krannert School of Management, Purdue University

Abstract. We develop convexification techniques for linear programs
with linear complementarity constraints (LPCC). In particular, we gen-
eralize the reformulation-linearization technique of [9] to complementar-
ity problems and discuss how it reduces to the standard technique for
binary mixed-integer programs. Then, we consider a class of complemen-
tarity problems that appear in KKT systems and show that its convex
hull is that of a binary mixed-integer program. For this class of problems,
we study further the case where a single complementarity constraint is
imposed and show that all nontrivial facet-defining inequalities can be
obtained through a simple cancel-and-relax procedure. We use this result
to identify special cases where McCormick inequalities suffice to describe
the convex hull and other cases where these inequalities are not sufficient.

1 Introduction

In this paper, we consider complementarity problems of the form:

S⊥ =
{
(x, y, z) ∈ Rm × Rn

+ × Rn
+ | (x, y, z) ∈ S, y ⊥ z

}
,

where y ⊥ z signifies that yizi = 0 for all i ∈ N = {1, . . . , n}.
Complementarity problems have numerous engineering applications including

traffic equilibrium, structural mechanics, and structural design. Complementar-
ity problems have been used to model optimal control problems for multiple
robot systems. In economics, complementarities arise when expressing condi-
tions for Nash equilibria, invariant capital stock, spatial price equilibrium, and
game theoretic models. We refer to [4] for a survey of applications of S⊥.

A particularly important subcase of the complementarity problem arises when
the set S is chosen to be a polyhedron. Such a choice gives rise to problems often
referred to as linear programs with complementarity constraints (LPCC) which
are concerned with optimizing a linear function over the following set:

S⊥
L =

{
(x, y, z) ∈ Rm × Rn × Rn Ax + By + Cz ≥ d

y ⊥ z

}
,

where A ∈ Rp×m, B ∈ Rp×n, C ∈ Rp×n, d ∈ Rp and where we assume that
the constraints yi ≥ 0 and zi ≥ 0 are implicitly satisfied by feasible solutions
� This work was supported by NSF CMMI grants 0856605 and 0900065.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 336–348, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Convexification Techniques for Linear Complementarity Constraints 337

to Ax + By + Cz ≥ d. In [5], it is shown that LPCCs have applications in
multilevel optimization, inverse convex quadratic programming, cross-validated
support vector regression, indefinite quadratic programming, piecewise linear
programming, and quantile minimization.

Complementarity constraints often occur through the use of KKT conditions.
For instance, consider the case of a Stackelberg game in which a single leader op-
timizes her set of decisions in a system where several followers will optimize their
plans depending on her decisions. Such a problem has a natural multilevel (or
hierarchical) formulation. If the optimization problems solved by the followers
are linearly constrained quadratic convex problems, a simple way of formulating
the problem into a traditional mathematical program is to replace the follow-
ers’ optimization models by their corresponding KKT systems. Complementary
slackness conditions in the KKT systems then reduce to (linear) complemen-
tarity constraints between primal and dual variables while gradient conditions
provide additional (linear) relations between primal and dual variables.

Polyhedral studies of problems with complementarity constraints can be found
in [3] for the complementarity knapsack problem and in [13] for relaxations of
KKT systems arising in quadratic programming. The reformulation-linearization
technique has been used to convexify linear complementarity problems, which
form a subclass of LPCCs [10]. Recently [5] derived new relaxations for LPCCs
and compared them numerically.

In this paper, we study how integer programming convexification techniques
can be extended to derive convex hulls of LPCCs. In Section 2, we present an
extension of the reformulation-linearization technique (RLT) of [9] that can be
used to sequentially convexify LPCCs. The extension is different from traditional
RLT in that it does not use polynomial factors. We also show it to be stronger
than the direct applications of RLT proposed in [5]. In Section 3, we study a
particular class of LPCCs that appears naturally in optimality conditions of
mathematical programs with linear constraints due to complementary slackness
and primal feasibility requirements. In this case, our enhanced RLT scheme
reduces to the traditional RLT. However, for the case where a single cardinality
constraint is considered with k side constraints, we show that nontrivial RLT
inequalities can be interpreted as obtained through a cancel-and-relax approach
in which up to k− 1 linear constraints are aggregated with the complementarity
constraint and McCormick relaxations are used to linearize the resulting bilinear
inequality. In Section 4, we use this cancel-and-relax procedure to obtain closed-
formed description of the convex hull of sets with a single complementarity
constraint and few side constraints. We give concluding remarks in Section 5.

2 Reformulation-Linearization Technique

In this section, we develop convexification techniques for S⊥
L . We denote {xi}i∈I

by xI . Given a set S, we define its convex hull by conv(S) and its projection
onto the space of x-variables by projx(S). In [6], Jeroslow developed a seminal
convexification procedure for S⊥

L that we summarize next.

338 T.T. Nguyen, M. Tawarmalani, and J.-P.P. Richard

Theorem 1 ([6]). conv(S⊥
L) = conv

(⋃
I⊆N

(
S⊥

L ∩ {(y, z) | yI = 0, zN\I = 0})).
Here, conv(S⊥

L) is expressed as the convex hull of a union of polyhedral sets.
If these polyhedral sets share the same recession cone (in particular, if they
are bounded), it follows that conv(S⊥

L) is a polyhedral set. It is well-known
that 0-1 mixed-integer programs are a special case of LPCC. In this paper, we
extend the convexification techniques developed for 0-1 mixed-integer programs
(BMIPs) to LPCCs. For ease of presentation, we assume that S⊥

L is compact and
the polyhedral sets in Theorem 1 whose disjunctive union is S⊥

L are non-empty.
First, we extend the reformulation linearization technique (RLT) initially de-

veloped for BMIPs to LPCCs. In [10], RLT is used to solve the linear com-
plementarity problem, a special case dealing with the feasibility problem over
linear complementarity constraints. To allow the use of RLT, the authors refor-
mulate the problem as a BMIP. This approach can also be applied to LPCCs
by first transforming the problem into a BMIP (see [5] for example) and then
employing the standard RLT scheme. However, such a scheme is not completely
satisfactory in that it requires explicit bounds on the y and z variables and adds
n binary variables to the formulation. The scheme we present next circumvents
these difficulties and has a direct interpretation in the original space of variables.

We describe the extended technique below. First, we define qi = yi

yi+zi
and

q̄i = 1 − yi

yi+zi
= zi

yi+zi
. We also let q(I, J) =

∏
i∈I qi

∏
j∈J q̄j . The technique

at the kth level is composed of a reformulation and a linearization step. For the
reformulation step, we multiply Ax+By+Cz ≥ d with each q(I, J) such that |I|+
|J | = k. Since qiq̄i = 0 we may assume that I∩J = ∅. The reformulation contains
nonlinear terms q(I, ∅), xiq(I, ∅), yjq(I, ∅) and zjq(I, ∅). In the linearization step,
we replace these nonlinear expressions with the new variables qI , u(i, I), v(j, I)
and w(j, I) respectively. For a ∈ {xi, yj , zj) note that aq(I, J) can be linearized as∑

J′⊆J(−1)|J
′| ∏

i∈I∪J′ aqi =
∑

J′⊆J(−1)|J
′|aq(I ∪ J ′, ∅). Additionally, observe

that v(j, I) = v(j, I\{j}) and zjq(I, J) = zjq(I, J\{j}). Further, it follows from
yjzj = 0 that yjq(I, J) = 0 if j ∈ J and zjq(I, J) = 0 if j ∈ I. We may also
relax the relation v(i, I) = v(i′, I ∪ {i}\{i′}) yi+zi

yi′+zi′
where i
∈ I.

The above product factors can be derived from inclusion certificates for the
positive orthant [12]. Inclusion certificates allow the generalization of RLT to
convexification of disjunctive union of convex sets [11]. However, the departure
here is that the product factors have a simple algebraic form, which is typically
not the case in [11]. Denoting by RLTk(S), the kth level extended RLT relaxation
of S, we obtain the following sequential convexification result.

Theorem 2. Let S = {(x, y, z) | Ax + By + Cz ≥ d} and Sj = S ∩ {(x, y, z) |
yizi = 0 ∀i ≤ j}. Then, projx,y,z

(
RLT1(conv(Sj)∩{(x, y, z) | yj+1zj+1 = 0})) =

conv(Sj+1). Therefore, n iterations of the procedure yields conv(Sn). In partic-
ular, projx,y,z

(
RLTn(S ∩ {(x, y, z) | yizi = 0 for i = 1, . . . , n})) = conv(Sn).

Our extension of RLT can also be viewed as an application of the standard
RLT scheme with the additional constraints yi = qiyi and zi = (1 − qi)zi where
qi is binary. However, our approach allows the interpretation of qi as yi

yi+zi
.

Convexification Techniques for Linear Complementarity Constraints 339

This interpretation has advantages. For example, it allows us to relate v(i, I)
to v(i′, I ∪ {i}) as mentioned before. We will also show in Example 1 that the
standard RLT relaxation obtained by using yi and zi as product factors (as
suggested in [5]) does not yield the desirable properties of convexification given in
Theorem 2. In the above, projx,y,z(RLT1(conv(Sj) ∩ {(x, y, z) | yj+1zj+1 = 0}))
can be viewed as an extension of the lift-and-project operator to LPCC [2]. It
is clear that one can also extend the Lovász and Schrijver operator by requiring
that [1 q x y z]ᵀ[1 q x y z] � 0, where we assume q, x, y, and z are row vectors.

Example 1. Consider the LPCC:

min 7x1 − 5x2 − x3 + 8y1 − 4z1

s.t. −9x1 − 2x2 + 3x3 − 6y1 + 2z1 ≤ −4 (2.1)
2x1 + 8x3 − 2y1 + 3z1 ≤ 5 (2.2)
9x1 + 2x2 − 4x3 − 4y1 + 6z1 ≤ 4 (2.3)
7x1 + 6x2 + 2x3 − 6y1 + z1 ≤ 5 (2.4)
9x1 + 6x2 − x3 − 4z1 ≤ 4 (2.5)
0 ≤ x1, x2, x3, y1, z1 ≤ 1 (2.6)
y1z1 = 0.

As expected from Theorem 2, the following relaxation obtained by the above
RLT scheme yields the optimal objective function value of 0.2222:

min 7x1 − 5x2 − x3 + 8y1 − 4z1

s.t. −9u1 − 2u2 + 3u3 − 6y1 ≤ −4q
−9(x1 − u1) − 2(x2 − u2) + 3(x3 − u3) + 2z1 ≤ −4(1 − q)
max{x1 + q − 1, 0} ≤ u1 ≤ min{x1, q}
0 ≤ y1 ≤ q, 0 ≤ z1 ≤ 1 − q
F1x + F2u + F3y1 + F4z1 + F5q ≤ f,

where we only used (2.1) and 0 ≤ x1 ≤ 1 to illustrate these RLT operations and
we represented by F1x+ F2u + F3y1 + F4z1 + F5q ≤ f all linearized constraints
that can be obtained similarly from multiplying (2.2)-(2.5) and 0 ≤ x2, x3 ≤ 1
with q and 1 − q. In [5], the authors recommend the use of the product factors
y1 and z1 for the above problem while exploiting yizi = 0. We show that these
product factors are insufficient for convexification. In addition, we retain the
linear constraints from the original formulation to make the relaxation tighter.
In particular, this results in the linearization of the following formulation:

min 7x1 − 5x2 − x3 + 8y1 − 4z1

s.t. (2.1), (2.2), (2.3), (2.4), (2.5), (2.6)
−9x1y1 − 2x2y1 + 3x3y1 − 6y2

1 ≤ −4y1

−9x1z1 − 2x2z1 + 3x3z1 + 2z2
1 ≤ −4z1

0 ≤ x1y1 ≤ y1, 0 ≤ x1z1 ≤ z1

0 ≤ y2
1 ≤ y1, 0 ≤ z2

1 ≤ z1

F ′
1y1 + F ′

2z1 + F ′
3y1x + F ′

4z1x + F ′
5y

2
1 + F ′

6z
2
1 ≤ 0,

where F ′
1y1 + F ′

2z1 + F ′
3y1x+ F ′

4z1x+ F ′
5y

2
1 + F ′

6z
2
1 ≤ 0 represent all constraints

that can be obtained similarly from multiplying (2.2)-(2.5) and 0 ≤ x2, x3 ≤ 1

340 T.T. Nguyen, M. Tawarmalani, and J.-P.P. Richard

with y1 and z1. Here, the linearization replaces the bilinear and square terms
with new variables to produce an LP relaxation. The optimal objective value for
this relaxation is −3.3137 showing the weakness of the approach that does not
use the correct product factors. Further, introducing the McCormick constraints
for all bilinear products only improves the optimal objective function value
to −0.9630. Even if one multiplies Constraints (2.1)-(2.5) with (1 − y1) and
(1 − z1) and linearizes them, the lower bound does not improve.

We conclude this section by pointing out some connections between our ex-
tended RLT scheme and traditional RLT for BMIPs. BMIPs are a special case
of LPCCs [6]. Consider M = {Ax + By ≤ d, y ∈ {0, 1}n}. Then, M can be
reformulated as: M ′ = {Ax + By ≤ d, y ≥ 0, z ≥ 0, zi + yi = 1, ziyi = 0}.
Now, consider the RLT scheme described in Section 2 applied to M ′. Since
yi + zi = 1, q(I, J) =

∏
i∈I yi

∏
j∈J(1 − yj). Further, v(j, I) = v(j, I\{j}) is

the familiar relation y2
j = yj. The relation yiyj = yjyi follows from relaxing

v(i, I) = v(i′, I ∪ {i}\{i′}) yi+zi

yi′+zi′
. Finally, the relation v(i, I) = q(I ∪ {i}) fol-

lows from the linearized relation obtained upon multiplying zi + yi = 1 with
q(I ∪ {i}, ∅). This shows that our extended RLT scheme is a natural generaliza-
tion of that initially described for BMIPs.

3 A Class of Complementarity Problems

We study the following special case of S⊥
L that occurs when considering primal

constraints and (a subset of) complementary slackness conditions from a KKT
system associated with a constrained nonlinear optimization problem:

S̄ =
{

(x, y) ∈ [0, 1]m × [0, 1]n
yjgj(x) = 0, ∀j = 1, . . . , n
gj(x) ≥ 0, ∀j = 1, . . . , k

}
where g(x) = (g1(x), . . . , gk(x)) : Rm → Rk and k ≥ n. We assume that g(x) are
continuous functions. Therefore, S̄ is compact and so is its convex hull [8]. We re-
fer to yjgj(x) as complementarity constraints. By rescaling variables, we assume
without loss of generality that the variables belong to the unit hypercube. Note
that not all constraints gj(x) ≥ 0 in S̄ have an associated complementarity con-
straint. Observe also that, in S̄, the variables yj through which complementarity
is imposed do not appear otherwise in the constraint functions g. Therefore, we
refer to S̄ as a separable complementarity problem (SCP).

Proposition 1. If (x, y) is an extreme point of S̄ then y ∈ {0, 1}n.

Since the convex hull of a compact set is the convex hull of its extreme points
[7], it follows that conv(S̄) = conv(S̄ ∩ {(x, y) | y ∈ {0, 1}n}. Therefore, if
g(x) is a vector of linear functions, SCP can be convexified using the stan-
dard RLT approach with product-factors yi and 1 − yi. Next, we study RLT
further for special cases of S̄ where functions gj(x) are linear for j = 1, . . . , k.

Convexification Techniques for Linear Complementarity Constraints 341

Let M = {1, . . . ,m}. The sets we consider are of the form:

Sn,k =

⎧⎨⎩(x, y) ∈ [0, 1]m+n

∣∣∣∣∣∣
yj(

∑
i∈M

αj
ixi − βj) = 0, ∀j = 1, . . . , n∑

i∈M

αj
ixi − βj ≥ 0, ∀j = 1, . . . , k

⎫⎬⎭ .

To streamline the discussion, we will only consider cases where the right-
hand-sides of the linear functions are 0. We show next in Proposition 2 that this
assumption is without loss of generality as the facet-defining inequalities of Sn,k

can be obtained from the following homogenized variant:

Sn,k
0 =

⎧⎨⎩(x0, x, y) ∈ [0, 1]1+m+n

∣∣∣∣∣∣
yj(

∑
i∈M

αj
ixi − βjx0) = 0, ∀j = 1, . . . , n∑

i∈M

αj
ixi − βjx0 ≥ 0, ∀j = 1, . . . , k

⎫⎬⎭ ,

where αj
i ∈ R for all j = 1, . . . , k and i = 1, . . . ,m and βj ∈ R for j = 1, . . . , k.

The following result establishes that conv(Sn,k) is a face of conv(Sn,k
0).

Proposition 2. For the sets Sn,k and Sn,k
0 defined above,

conv(Sn,k) = conv(Sn,k
0) ∩ {(x0, x, y) ∈ [0, 1]1+m+n | x0 = 1}.

Proposition 2 allows us to restrict our attention to:

Cn,k =

⎧⎨⎩(x, y) ∈ [0, 1]m+n

∣∣∣∣∣∣
yj(

∑
i∈M

αj
ixi) = 0, ∀j = 1, . . . , n∑

i∈M

αj
ixi ≥ 0, ∀j = 1, . . . , k

⎫⎬⎭ ,

where αj
i ∈ R for all j = 1, . . . , k and i = 1, . . . ,m.

Proposition 3. Cn,k is full-dimensional if and only if C0,k is full-dimensional.

Proposition 4. If αj
1 > 0 for j ∈ {1, . . . , k} then Cn,k is full-dimensional.

Henceforth, we assume

Assumption 1. There exists i ∈ M such that αj
i > 0 for j ∈ {1, . . . , k}.

This assumption is without loss of generality. In fact, consider the case where
for each i ∈ M , there is a ki ∈ {1, . . . , k} such that αj

i ≤ 0. Then, construct

C′n,k =

⎧⎨⎩(x0, x, y) ∈ [0, 1]1+m+n

∣∣∣∣∣∣
yj(x0 +

∑
i∈M

αj
ixi) = 0, ∀j = 1, . . . , n

x0 +
∑

i∈M

αj
ixi ≥ 0, ∀j = 1, . . . , k

⎫⎬⎭ ,

and observe that C′n,k satisfies Assumption 1. Further, conv(Cn,k) can be easily
obtained from conv(C′n,k) as shown next.

342 T.T. Nguyen, M. Tawarmalani, and J.-P.P. Richard

Proposition 5. conv(Cn,k) = conv(C′n,k) ∩ {(0, x, y) ∈ R1+m+n}.

The following result shows that facets obtained by ignoring some of the com-
plementarity constraints often yield facets for problems where complementarity
constraints are enforced.

Proposition 6. Consider n′ < n and let J = {n′ + 1, . . . , n}. Define D(J) ={
(x, y)

∣∣∣∣ yj(
∑

i∈M αj
ixi) = 0 ∀j ∈ J, (yj)j∈J ∈ {0, 1}|J|

}
. Then,

conv(Cn,k) = conv
((

conv(Cn′,k) × [0, 1]|J|
)
∩D(J)

)
.

Any facet-defining inequality of conv(Cn′,k) × [0, 1]|J| which is tight at a point
(x′, y′) ∈ conv(Cn′,k) × [0, 1]|J| such that

∑
i∈M αj

ix
′
i = 0 for j ∈ J defines a

facet of conv(Cn,k). Conversely, any facet-defining inequality ax + by ≤ c of
conv(Cn,k) is facet-defining for conv(Cn′,k) if bj = 0 for j ∈ J .

The result of Proposition 6 can be interpreted as a zero-lifting result where
strong inequalities for a problem restriction can be trivially extended into strong
inequalities for a more complex set. Nontrivial lifting results can also be devel-
oped to extend inequalities for sets containing few complementarity constraints
to sets containing multiple complementarities. The following example gives an
illustration of this observation by showing that facets of C2,2 can be obtained
by lifting facet-defining inequalities for C1,2.

Example 2. Consider the set

C2,2 =

⎧⎪⎪⎨⎪⎪⎩(x, y) ∈ [0, 1]5

∣∣∣∣∣∣∣∣
y1(x1 + x2 − 2x3) = 0
y2(2x1 − x2 − x3) = 0
x1 + x2 − 2x3 ≥ 0
2x1 − x2 − x3 ≥ 0

⎫⎪⎪⎬⎪⎪⎭ .

Clearly, −2(y1x1 + y1x2 − 2y1x3)+ y1(2x1 −x2 −x3) ≥ 0 is valid for C2,2. Using
McCormick over- and under-estimators, this inequality can be linearized into
x2 − x3 + y1 ≤ 1. The inequality is facet-defining for C2,2 ∩ {y2 = 1} (which is
a face of C1,2 × {1}) as can be verified through the tight points (expressed as
(x1, x2, x3, y1)) (0, 0, 0, 1), (1

2 , 1, 0, 0), and (1, 1, 1, 1). Considering x2 −x3 + y1 ≤
1 as a seed-inequality one can obtain other facets for C2,2 through lifting. In
particular, the seed inequality can be lifted into x2 − x3 + y1 + δ(2x1 − x2 −
x3) + θ(1− y2) ≤ 1. It can be verified that choosing δ = 1, θ = −1 results in the
lifted inequality 2x1 − 2x3 + y1 + y2 ≤ 2, which is valid for C2,2. This inequality
is facet-defining for C2,2 as it is tight at (x1, x2, x3, y1, y2) = (1, 0, 1

2 , 1, 0) and
(1, 0, 0, 0, 0) in addition to the previously described points. In fact, for this set, it
can be verified that the only inequality that is not also a facet of C2,2∩{y2 = 0}
or C2,2 ∩ {y1 = 0} is the inequality we just derived using lifting.

Convexification Techniques for Linear Complementarity Constraints 343

3.1 Convex Hull of One-Complementarity Sets

Proposition 6 and Example 2 indicate that sets with a single complementarity
constraint, which we call one-complementarity sets, play a fundamental role in
understanding the structure of more complex multi-complementarity sets. Sub-
sequently, we will argue that a recursive application of the techniques developed
in this section yields conv(Cn,k). For this reason, we next investigate the poly-
hedral structure of one-complementarity sets.

We consider sets with a single complementarity constraint and linear side con-
straints. In this case, RLT or lift-and-project yield the same relaxation which can
also be viewed as a direct application of disjunctive programming. Therefore, in
this section, we will use a disjunctive programming viewpoint for studying con-
vexification. We consider the one-complementarity set with k linear constraints
defined as follows:

C1,k =

⎧⎨⎩ (x, y) ∈ [0, 1]m+1

y(
∑

i∈M

α1
i xi) = 0,∑

i∈M

αj
ixi ≥ 0, ∀j ∈ K

⎫⎬⎭ ,

where K = {1, . . . , k}. From Proposition 1 and the lift-and-project procedure
[2], the convex hull of C1,k is the set of (x, y) for which there exists v̄ such that∑

i∈M

αj
i v̄i ≥ 0, ∀j ∈ K (aj)∑

i∈M

α1
i (xi − v̄i) = 0 (b1)∑

i∈M

αj
i (xi − v̄i) ≥ 0, ∀j ∈ K \ {1} (bj)

max(0, xi − y) ≤ v̄i ≤ min(1 − y, xi), ∀i ∈ M, (r, s, t, u)

where the variables in parenthesis denote the corresponding dual variables. We
use w to denote (a, b, r, s, t, u). In order to produce a description of conv(C1,k)
in the space of original variables (x, y), we project out the variables v̄. This can
be done using the extreme rays of the projection cone:

W =

⎧⎨⎩w
∣∣∣∣∑
j∈K

(aj − bj)α
j
i + ri + si = ti + ui, ∀i ∈ M, a, {bj}k

j=2, r, t, u, s ≥ 0

⎫⎬⎭ .

It is easily verified that the inequality

∑
i∈M

⎛⎝∑
j∈K

bjα
j
i + ui − si

⎞⎠xi +
∑
i∈M

(si − ti)y ≥ −
∑
i∈M

ti

is facet-defining for conv(C1,k) only if w is an extreme ray of W , see [1]. We now
identify some properties of the extreme rays of the projection cone W . We say
that a facet-defining inequality of conv(C1,k) is non-trivial if it is not a multiple
of

∑
i∈M αj

ixi ≥ 0 or the bounds constraints (x, y) ∈ [0, 1]m+1.

344 T.T. Nguyen, M. Tawarmalani, and J.-P.P. Richard

Proposition 7. If w is an extreme ray of W and corresponds to a non-trivial
facet of conv(C1,k), then (i) at most one of the variables (ri, si, ti, ui) is positive
for all i ∈ M , (ii) ajbj = 0 for all j ∈ K, and (iii) b1 < 0.

Proposition 7 implies that (r, s, t, u) can be treated as slack variables and we
need to characterize the extreme points of:

W =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩w′ ∈ R2k
+

∣∣∣∣∣∣∣∣∣∣

∑
j∈K

(aj − bj)α
j
i ≤ 0, i ∈ M1∑

j∈K

(aj − bj)α
j
i ≥ 0, i ∈ M\M1

b1 = −1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

where w′ denotes (a,−b1, b2, . . . , bk).

Theorem 3. Define

Ŵ =
{
w′ ∈ R2k

+

∣∣∣∣ b1 = −1, ∃T ⊆ M, |T | ≤ k − 1,
∑
j∈K

(aj − bj)α
j
i = 0, ∀i ∈ T

}
.

Then, any extreme ray of W that corresponds to a non-trivial facet of conv(C1,k)
belongs to Ŵ .

The interpretation of Theorem 3 is that non-trivial inequalities for conv(C1,k)
are derived using a simple cancel-and-relax procedure. In this procedure, the jth

inequality is multiplied with either ajy or bj(1−y) and the resulting inequalities
are added together. We can arrange for the coefficients of up to k − 1 bilinear
variables to sum to zero, i.e. to cancel. The remaining bilinear terms can then
be over-/under-estimated, i.e. relaxed, using McCormick’s envelopes.

In fact a recursive application of the cancel-and-relax procedure yields the
convex hull of Cn,k. The following example illustrates the basic ideas.

Example 3. Consider the set of Example 2 for which we derived the inequality
2x1−2x3+y1+y2 ≤ 2. We next provide an alternate derivation of this inequality.
Note that y2(x2 − x3 + y1) − y2x0 + (1 − y2)(x1 − 2x3 + y1) − (1 − y2)x0 +
y2(2x1 − x2 − x3) ≤ 0 implies x1 + x1y2 − 2x3 + y1 ≤ x0 from which we obtain
2x1−2x3 +y1 +y2 ≤ 1+x0. When intersected with x0 = 1 we obtain the desired
facet-defining inequality. Observe that x2−x3 +y1 ≤ 1 and x1−2x3 +y1 ≤ 1 are
facet-defining inequalities for C1,2 that can be obtained with a first application
of the cancel-and-relax procedure and y2(2x1 − x2 − x3) = 0 is used with a
negative multiplier. The variable x0 is introduced to homogenize the inequalities
of C1,2 as assumed in the description of the cancel-and-relax procedure.

4 Explicit Inequalities via Convexification of Simple Sets

In this section, we illustrate the cancel-and-relax procedure by providing closed-
form expressions for the convex hulls of C1,1 and C1,2. In Section 4.1, we find
that conv(C1,1) is obtained by traditional factorable relaxations. In Section 4.2,
we characterize conv(C1,2) using the cancel-and-relax principle of Section 3 and
show that it yields improvements over the factorable relaxation techniques.

Convexification Techniques for Linear Complementarity Constraints 345

4.1 Convex Hull of C1,1

We consider C1,1 =
{
(x, y) ∈ [0, 1]m+1

∣∣ y(∑i∈M αixi) = 0,
∑

i∈M αixi ≥ 0
}
,

where αi ∈ R for i ∈ M . We assume that there exists i ∈ M such that αi
= 0
(otherwise C1,1 = [0, 1]m+1.) We define the sets I+ = {i ∈ M | αi > 0} and
I− = {i ∈ M | αi < 0}. The observation following Proposition 1 implies that
the convex hull of C1,1 is polyhedral. We also observe that, when conv(C1,1) is
full-dimensional, Assumption 1 is naturally satisfied.

Proposition 8. conv(C1,1) is full-dimensional if and only if I+
= ∅.
Let I0 = {i ∈ M | αi = 0} and define K1,1 = {(x, y) ∈ Rm−|I0|+1 | (x, 0, y) ∈
C1,1}. Clearly C1,1 = K1,1× [0, 1]|I0|. It follows that conv(C1,1) = conv(K1,1)×
[0, 1]|I0|. Therefore, we restrict attention to sets of the form K1,1 by assuming
that I0 = ∅, i.e., M = I+ ∪ I−. The inequalities that describe conv(C1,1) can
be obtained using Theorem 3. Since in this case Theorem 3 requires cancellation
of zero bilinear terms, we conclude that all nontrivial inequalities of conv(C1,1)
can be obtained through McCormick relaxation of the bilinear inequality with
b1 = −1. Since max{0, xi + y − 1} ≤ yxi ≤ min{xi, y}, it follows that∑

i∈I+

αi max{0, xi + y − 1} +
∑
i∈I−

αi min{xi, y} ≤ 0

is a valid inequality for conv(C1,1). Although this inequality is nonlinear, it ad-
mits a reformulation with 2|M| linear inequalities, or a polynomial-sized linear
reformulation in a lifted space. The former reformulation is obtained by consider-
ing all subsets S+ of I+ and all subsets S− of I−, by replacing max{0, xi+y−1}
with 0 for i ∈ I+\S+ and with xi+y−1 for i ∈ S+ and by substituting min{xi, y}
with xi for i ∈ S− and with y for i ∈ I−\S−. It leads to the following exponential
set of linear inequalities⎛⎝∑

i∈S+

αi +
∑

i∈I−\S−
αi

⎞⎠ y +
∑
i∈S+

αixi +
∑

i∈S−
αixi ≤

∑
i∈S+

αi (4.7)

where S+ ⊆ I+ and S− ⊆ I−. It is clear that inequalities (4.7) are valid for
conv(C1,1). We obtain the following result as a consequence of Theorem 3.

Theorem 4. conv(C1,1) = Q where

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(x, y)

0 ≤ xi ≤ 1, ∀i ∈ N
0 ≤ y ≤ 1,∑

i∈M αixi ≥ 0(∑
i∈S+

αi +
∑

i∈I−\S−
αi

)
y +

∑
i∈S+

αixi +
∑

i∈S−
αixi ≤

∑
i∈S+

αi

∀(S+, S−) ⊆ (I+, I−)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

346 T.T. Nguyen, M. Tawarmalani, and J.-P.P. Richard

Although the linear description of conv(C1,1) we give in Theorem 4 is exponential
in size, its inequalities can be separated in polynomial time. Not all inequalities
presented in Theorem 4 are strong for conv(C1,1). We next derive necessary and
sufficient conditions for these inequalities to be facet-defining.

Proposition 9. The following inequalities are facet-defining for conv(C1,1): (i)
y ≥ 0, (ii)

∑
i∈M αixi ≥ 0 iff I−
= ∅, (iii) xi ≥ 0 iff (M\{i}) ∩ I+
= ∅ or

|M | = 1, (iv) xi ≤ 1 for i ∈ I+ iff
∑

j∈I− αj + αi ≤ 0, (v) xi ≤ 1 for i ∈ I− iff∑
j∈I+ αj + αi > 0 and (vi) (4.7) iff

∑
i∈S+ αi +

∑
i∈I−\S− αi > 0.

Inequality y ≤ 1 is never facet-defining since it is dominated by the inequality
obtained by setting S+ = I+
= ∅ and S− = I− in (4.7). From a practical per-
spective, Theorem 4 is a negative result that states that nothing to gained over
standard factorable relaxation techniques from exploiting a single complemen-
tarity constraint with side linear constraint as all its facet-defining inequalities
are obtained through traditional linearization. This conclusion does not hold
when several different linear constraints are considered as we illustrate next.

4.2 Convex Hull of C1,2

We now illustrate how the cancel-and-relax procedure presented in Section 3 can
be applied to obtain the convex hull of the one-complementarity set with two
side constraints C1,2. We motivate this result through the following example.

Example 4. Consider the set C1,2 given by

C1,2 =

⎧⎨⎩ (x, y) ∈ [0, 1]5
y(4x1 + 7x2 − 5x3 − x4) = 0

4x1 + 7x2 − 5x3 − x4 ≥ 0
−5x1 − 3x2 + 4x3 + 6x4 ≥ 0

⎫⎬⎭ .

The following is a facet-defining inequality of conv(C1,2)

20x1 + 35x2 − 25x3 − 24x4 + 23y ≤ 23. (4.8)

Theorem 3 implies that (4.8) can be obtained through a cancel-and-relax pro-
cedure involving cancellation of at most a single bilinear term, in this case
x1y. Since the set does not satisfy Assumption 1, we introduce x0 as discussed
before Proposition 5. Then, we use the linear constraint to cancel the coef-
ficient of x1y in the bilinear constraint. More precisely, we aggregate the bi-
linear constraint y(x0 + 4x1 + 7x2 − 5x3 − x4) = 0 and the linear constraint
x0 − 5x1 − 3x2 + 4x3 + 6x4 ≥ 0 with weights −5 and 4(1 − y) respectively to
obtain

4x0 − 9x0y − 20x1 − 23x2y − 12x2 + 9x3y + 16x3 − 19x4y + 24x4 ≥ 0. (4.9)

We now use McCormick relaxation to linearize (4.9). Formally, we aggregate
(4.9), x0 ≥ 0, −x2 ≥ −1, x3 ≥ 0, and x4 ≥ 0 with weights 9y, 23(1− y), 9(1− y)
and 19y respectively and substitute x0 = 0 to obtain (4.8).

Convexification Techniques for Linear Complementarity Constraints 347

The above procedure can be generalized to obtain a linear description of the
convex hull of one-complementarity sets with two linear constraints:

C1,2 =

⎧⎨⎩(x, y) ∈ [0, 1]m+1

∣∣∣∣∣∣
y(
∑

i∈M αixi) = 0∑
i∈M αixi ≥ 0∑
i∈M βixi ≥ 0

⎫⎬⎭ .

First, we will select a variable xl whose coefficient we will cancel. There are
two cases. Either αl > 0 or αl < 0. In the first case, we multiply the bilinear
constraint by βl and the linear constraint

∑
i∈M βixi ≥ 0 by αl(1− y), and sum

up the resulting (in)equalities to obtain

−
∑
i∈M

αlβixi +
∑
i∈M

γixiy ≤ 0,

where we define γi = αlβi −αiβl for i ∈ M . We now use McCormick inequalities
to linearize the bilinear terms xiy. This is done differently for terms for which
γi is positive and negative and therefore we introduce T+ = {i ∈ N | γi > 0},
and T− = {i ∈ M | γi < 0}. We obtain

−
∑
i∈M

αlβixi +
∑

i∈T+

γi min{0, xi + y − 1} +
∑

i∈T−
γi max{xi, y} ≤ 0,

which can be linearized in a way similar to that used in Section 4.1. The case
where αl < 0 can be handled similarly, defining again γi = αlβi−αiβl for i ∈ M ,
except that inequalities are reversed because weight αl(1 − y) is nonpositive.
Proposition 10 then follows.

Proposition 10. The convex hull of C1,2 is given by 0 ≤ xi ≤ 1, 0 ≤ y ≤ 1,∑
i∈M αixi ≥ 0,

∑
i∈M βixi ≥ 0, together with the linearization inequalities (4.7)

and the following two families of 1-cancellation inequalities

∑
i∈M

−αlβixi +
∑

i∈S+

γixi +
∑

j∈S−
γjxj +

⎛⎝∑
i∈S+

γi +
∑

j∈T−\S−
γj

⎞⎠ y ≤
∑
i∈S+

γi

for all l ∈ M with αl > 0 and for all S+ ⊆ T+, S− ⊆ T−, as well as

∑
i∈M

αlβixi+
∑
i∈S+

−γixi+
∑

j∈S−
−γjxj +

⎛⎝−
∑

i∈T+\S+

γi −
∑

j∈S−
γj

⎞⎠ y ≤ −
∑

j∈S−
γj

for all l ∈ M with αl < 0 and for all S+ ⊆ T+, S− ⊆ T−.

Note that the results of Proposition 10 can be extended in a straightforward
fashion to problems with k side linear constraints through the above-discussed
cancel-and-relax procedure. The major hurdle then becomes notational as we
must consider all ways of canceling up to k−1 coefficients of the complementarity
constraint using the additional linear constraints.

348 T.T. Nguyen, M. Tawarmalani, and J.-P.P. Richard

5 Conclusion

In this paper, we studied convexification methods for LPCCs, a class of mod-
els with many applications in engineering and economics. We showed that the
use of RLT suggested in the literature does not convexify the problem but an
extension with non-polynomial product-factors yields the desired sequential con-
vexification properties. When the complementary variables do not appear in the
linear constraints, traditional RLT applies. We showed that all nontrivial facets
are obtained through a cancel-and-relax procedure. This procedure was used to
obtain closed-form expressions for the convex hulls of one-complementarity sets
with few side constraints. We also showed that convex hull characterization of
one-cardinality sets can be used to generate facet-defining inequalities for sets
with multiple constraints through lifting. This study provides a new set of tools
for developing branch-and-cut approaches for solving LPCCs and more generally
mathematical programs with complementarity constraints.

References

1. Balas, E.: Disjunctive programming: Properties of the convex hull of feasible points.
Discrete Applied Mathematics 89(1-3), 3–44 (1998); original manuscript was pub-
lished as a technical report in 1974

2. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for
mixed 0−1 programs. Mathematical Programming 58, 295–324 (1993)

3. de Farias, I.R., Johnson, E.L., Nemhauser, G.L.: Facets of the complementarity
knapsack polytope. Mathematics of Operations Research 27, 210–226 (2002)

4. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity
problems. SIAM Review 39, 669–713 (1997)

5. Hu, J., Mitchell, J.E., Pang, J.S., Yu, B.: On linear programs with linear comple-
mentarity constraints. Journal of Global Optimization (to appear)

6. Jeroslow, R.G.: Cutting-planes for complementarity constraints. SIAM Journal on
Control and Optimization 16(1), 56–62 (1978)

7. Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton (1970)
8. Rockafellar, R.T., Wets, R.J.B.: Variational analysis. A Series of Comprehensive

Studies in Mathematics. Springer, Berlin (1998)
9. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and

convex hull representations for zero-one programming problems. SIAM Journal on
Discrete Mathematics 3, 411–430 (1990)

10. Sherali, H.D., Krishnamurthy, R.S., Al-Khayyal, F.A.: Enumeration approach for
linear complementarity problems based on a reformulation-linearization technique.
Journal of Optimization Theory and Applications 99, 481–507 (1998)

11. Tawarmalani, M.: Inclusion certificates and disjunctive programming. presented in
Operations Research Seminar at GSIA, Carnegie Mellon University (2006)

12. Tawarmalani, M.: Inclusion certificates and simultaneous convexification of func-
tions. Mathematical Programming (2010) (submitted)

13. Vandenbussche, D., Nemhauser, G.L.: A polyhedral study of nonconvex quadratic
programs with box constraints. Mathematical Programming 102, 531–557 (2005)

Iterative Packing for Demand and Hypergraph

Matching

Ojas Parekh

Sandia National Laboratories�, MS 1316,
Albuquerque NM 87185, USA

odparek@sandia.gov

Abstract. Iterative roundinghas enjoyed tremendous success in elegantly
resolving open questions regarding the approximability of problems
dominated by covering constraints. Although iterative rounding methods
have been applied to packing problems, no single method has emerged
that matches the effectiveness and simplicity afforded by the covering
case. We offer a simple iterative packing technique that retains features
of Jain’s seminal approach, including the property that the magnitude of
the fractional value of the element rounded during each iteration has a
direct impact on the approximation guarantee. We apply iterative pack-
ing to generalized matching problems including demand matching and
k-column-sparse column-restricted packing (k-CS-PIP) and obtain ap-
proximation algorithms that essentially settle the integrality gap for these
problems. We present a simple deterministic 2k-approximation for k-CS-
PIP, where an 8k-approximation was the best deterministic algorithm
previously known. The integrality gap in this case is at least 2(k−1+1/k).
We also give a deterministic 3-approximation for a generalization of de-
mand matching, settling its natural integrality gap.

1 Introduction

The (maximum weight) matching problem is cornerstone combinatorial opti-
mization problem that has been studied for over 40 years. The problem is suc-
cinctly stated as seeking a maximum weight collection of non-intersecting edges
in a weighted graph. Matching problems have enjoyed continual interest over
the years and have been generalized in several orthogonal directions. The k-
hypergraph matching problem, which is also known as k-set packing, seeks a
maximum weight collection of non-intersecting hyperedges in a weighted hyper-
graph, with the additional restriction that each hyperedge contain at most k
vertices. Thus 2-hypergraph matching is precisely the matching problem. While
matching is in P, k-hypergraph matching is NP-complete for k > 2.

� Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 349–361, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

350 O. Parekh

Another direction in which matching has recently been generalized is through
the augmentation of demands. The demand matching problem, introduced by
Shepherd and Vetta [15], is defined on a weighted graph G that possesses a
demand, de ∈ ZZ+ for each edge e, and a capacity bv ∈ ZZ+ for each vertex
v. We seek a maximum weight collection of edges M such that for any ver-
tex v, the sum of the demands of the edges in M incident upon v is at most
bv (i.e.

∑
e∈M∩δ(v) de ≤ bv). Demand matching is a common generalization of

the matching and knapsack problems: If de = bv = 1 for all e and v, we re-
cover matching, and by taking G to be a star we may model knapsack. Demand
matching is MAXSNP-complete, even in the uniform weight case [15]. Demands
are a powerful feature that allow for richer modeling; however, in general the
demand version of combinatorial optimization problem can be significantly more
difficult to approximate than its unit demand counterpart [6,5].

Problem definition. We consider the k-hypergraph demand matching (k-HDM)
problem, which is the natural common generalization of k-hypergraph matching
and demand matching. More formally, given a weighted hypergraph H = (V, E)
endowed with a demand dS ∈ ZZ+ for each (hyper)edge S ∈ E and a capac-
ity bv ∈ ZZ+ for v ∈ V , the problem may be defined by the following integer
program (k-HDM):

Maximize
∑
S∈E

cSxS

subject to
∑

S|v∈S

dSxS ≤ bv ∀v ∈ V

xS ∈ {0, 1} ∀S ∈ E ,

where |S| ≤ k for each edge S ∈ E . Note the latter restriction yields a constraint
matrix with at most k nonzeros per column. This problem is also known as the k-
column-sparse column-restricted packing integer program (k-CS-CPIP) problem.
It is a specialization of the k-column-sparse packing integer program (k-CS-PIP)
problem, in which we allow each S ∈ E to have different demand values dS

v at
each vertex v.

We make the assumption that for each edge S, dS ≤ bv for all v ∈ S. This
so-called no-clipping assumption is easy to satisfy by deleting edges that violate
it; however, this assumption is necessary in order for the natural LP relaxation
to have a bounded integrality gap. We note that the restriction that xS ∈ {0, 1}
is for the sake of exposition and that our results may be extended to apply to
multiple copies of edges.

Results. Singh and Lau [16] were the first to extend Jain’s celebrated iterative
rounding technique [9] to address packing constraints. Their approach obtains
an approximate solution that marginally violates the packing constraints by
iteratively removing packing constraints involving only a small number of vari-
ables. They were able to apply this elegant idea to resolve an open question
concerning minimum cost degree-bounded spanning trees. More recently, Chan

Iterative Packing for Demand and Hypergraph Matching 351

and Lau [4] employed an interesting combination of an iterative approach and
the fractional local ratio method [2] to give the first approximation algorithm
for the k-hypergraph matching problem that matched the integrality gap of the
natural LP formulation, which had previousy been established as k−1+1/k [7].

Our main insight, which differentiates our approach from previous ones, is to
iteratively maintain a sparse approximate convex decomposition of the current
fractional solution. This affords us a simple pseudo-greedy technique called iter-
ative packing that yields improved approximation algorithms for k-HDM (k-CS-
CPIP) and special cases that essentially settle the integrality gap of the natural
LP formulations. For instance, iterative packing is able to establish an integral-
ity gap of k− 1 + 1/k for not just k-hypergraph matching but for k-hypergraph
b-matching as well.

Akin to Jain’s iterative rounding method for covering problems [9], iterative
packing is able to leverage large fractional edges to obtain stronger approxima-
tion guarantees. As mentioned above, iterative packing produces and maintains
a sparse approximate convex decomposition rather than a single solution, which
is likely to have additional applications. We motivate the technique on the stan-
dard matching problem in the next section.

Our first result is a deterministic 2k-approximation for k-HDM (k-CS-CPIP)
based on the natural LP relaxation. The integrality gap of this relaxation is at
least 2(k−1+1/k) (see Sect. 3), hence our result essentially closes the gap. Prior
to our work, deterministic 8k-approximations [5,1] and a randomized (ek+o(k))-
approximation [1] were the best known. Moreover, even the special case of k-
hypergraph matching cannot be approximated within a factor of Ω(k

log k) unless
P=NP [8].

With a more refined application of iterative packing, we are able to derive a 3-
approximation for 2-CS-PIP, which generalizes the demand matching problem.
Prior to our work, a deterministic 3.5-approximation and randomized 3.264-
approximation for demand matching were given by Shepherd and Vetta [15].
Chakrabarty and Pritchard [14] recently gave a deterministic 4-approximation
and randomized 3.764-approximation for 2-CS-PIP. Shepherd and Vetta also
established a lower bound of 3 on the integrality gap of the natural LP for
demand matching, hence our result settles the integrality gap for both 2-CS-PIP
and demand matching at 3.

Related work. Chekuri, Mydlarz, and Shepherd [6] presented an approximation
algorithm with O(k) guarantee for the restricted version of k-HDM in which
maxS dS ≤ minv bv. Their result is part of a framework which they developed
based on work of Kolliopoulos and Stein [10] that relates the integrality gap of
a demand-endowed packing problem to its unit demand counterpart.

While Chekuri et al. [5] observed an 8k-approximation for k-HDM, a recent
flurry of work has also yielded O(k)-approximations for the more general k-CS-
PIP problem. Pritchard initiated the improvements with an iterative rounding
based 2kk2-approximation [13], which was improved to an O(k2)-approximation

352 O. Parekh

by Chekuri, Ene, and Korula (see [14] and [1]) and Chakrabarty and Pritchard
[14]. Most recently, Bansal et al. [1] devised a deterministic 8k-approximation
and a randomized (ek + o(k))-approximation.

Outline. In the following section we motivate iterative packing with an example.
In Sect. 3 we apply the method to design a 2k-approximation for k-HDM. We
finally present a more refined application in Sect. 4 to derive a 3-approximation
for 2-CS-PIP.

2 Iterative Packing: An Example

We illustrate iterative packing on the maximum matching problem. Although
this is a simple application, it serves well to illustrate the method. Consider the
natural degree-based LP relaxation PM (G) for the maximum matching problem
on a graph G = (V,E):

Maximize
∑
e∈E

cexe PM (G)

subject to
∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V (1)

0 ≤ xe ≤ 1 ∀e ∈ E. (2)

Given a feasible fractional solution x∗ ∈ PM (G), the iterative packing procedure
obtains an α-approximate convex decomposition of x∗,

αx∗ =
∑
i∈I

λiχ
i , (3)

for some α ∈ (0, 1], where each χi ∈ PM (G) is an integral solution (and
∑

i λi = 1
and λi ≥ 0 for all i). Iterative packing in its most basic form directly produces a
sparse decomposition, namely one with |I| ≤ |E|+ 1. Even when this is not the
case, we can apply elementary linear algebra to retain at most |E|+ 1 solutions
(more generally n+ 1, where x∗ ∈ IRn). A procedure to accomplish the latter is
related to Carathéodory’s Theorem and makes for a good exercise.

The construction of the decomposition (3) implies that one can find an inte-
gral solution with cost at least α(cx∗), thus 1/α corresponds to the approxima-
tion guarantee of the resulting approximation algorithm. A nice feature is that
the decomposition gives us a cost oblivious representation of an approximate
solution.

For PM (G), we first show that choosing α = 1/2 suffices. This yields a 2-
approximation while also showing that the integrality gap of PM (G) is at most
2. We then show that we may select α = 2/3 by leveraging the fact that extreme
points of PM (G) must contain an edge e with xe ≥ 1/2 (in fact this holds for all
e). The latter precisely matches the integrality gap of PM (G). This is interesting,
since much like iterative rounding, iterative packing offers insight into how large

Iterative Packing for Demand and Hypergraph Matching 353

fractional components can facilitate the approximation of packing problems.
Akin to iterative rounding, iterative packing is motivated by a simple idea. We
start with a fractional solution x∗ and:

1. Remove an edge e (without otherwise modifying the instance)
2. Recursively obtain an α-approximate convex decomposition of the resulting

fractional solution, x̄∗

3. Pack e into precisely an αx∗
e fraction of the integral solutions.

The key, of course, is showing that the last step can always be performed
successfully. For this to work, we require that for any fractional (or perhaps
extreme point) solution x∗ there exists an e ∈ E with∑

i∈Ie

λi ≥ αx∗
e , (4)

where αx̄∗ =
∑

i∈I λiχ
i is an arbitrary approximate convex decomposition of

the residual solution, x̄∗, and i ∈ Ie indicates that χi is able to accommodate
the edge e (i.e. χi ∪ e is a matching).

Although we may well be able to pack e into a fraction of the integral solutions
that is larger than an αx∗

e , to maintain our implicit inductive hypothesis we must
ensure that e is packed into exactly an αx∗

e fraction of solutions. To accomplish
this, we may have to clone some solution χi, insert e into exactly one of the two
copies of χi, and distribute the multiplier λi among the copies so that e appears
in the requisite fraction of solutions. The base case, which contains no edges,
selects the empty solution with a multiplier of 1. Thus if (4) holds universally for
a particular value of α, then we can efficiently obtain an α-approximate convex
decomposition of x∗ consisting of at most |E| + 1 integral solutions. Selecting
the best of these gives us the corresponding approximation algorithm.

To see that (4) holds when α = 1/2, consider some fractional solution x∗ and
an arbitrary edge e = uv ∈ E with x∗

e > 0. Obtaining x̄∗ as above by deleting e,
we have that

max{x̄∗(δ(u)), x̄∗(δ(v))} ≤ 1 − x∗
e ,

hence in any convex decomposition αx̄∗, at most a 2α(1− x∗
e) fraction of the χi

do not accomodate e, hence we require 1−2α(1−x∗
e) ≥ αx∗

e, which is equivalent
to

α ≤ 1
2 − x∗

e

(5)

Thus by selecting α = 1/2, we may successfully pack any edge 0 ≤ x∗
e ≤ 1

in the last step of our algorithm. However, by selecting a large edge at each
iteration we can improve the bound. It is well known that extreme points of
PM (G) are 1/2-integral, so we may actually take α = 1/(2 − 1/2) = 2/3. More
generally – just as with iterative rounding – it suffices to show that an extreme
point always contains some edge of large fractional value. We explore this idea
in conjunction with 2-CS-PIP in Sect. 4. However, in the next section we show
that the framework above with a simple modification yields a 2k-approximation
for k-HDM.

354 O. Parekh

3 Iterative Packing for k-Hypergraph Demand Matching

The results in this section are obtained using the framework outlined for our the
matching problem in the previous section:

1. Remove a (hyper)edge S (without otherwise modifying the instance)
2. Recursively obtain an α-approximate convex decomposition of the resulting

fractional solution, x̄∗
3. Pack e into precisely an αx∗

S fraction of the integral solutions.

However, directly applying the algorithm above to k-HDM does not yield a
bounded approximation guarantee (w.r.t. k). We show that simply selecting an
edge S with minimal demand in step 1 above yields a 2k-approximation.

As with our analysis in the previous section, the crux lies in being able to carry
out step 3 successfully. Following the analysis in Sect. 2, let αx̄∗ =

∑
i∈I μiχ

i

be an arbitrary convex decomposition of the residual solution x̄∗ obtained in
step 2. We may inductively assume the existence of such a decomposition (with
a trivial base case). To determine whether the edge S may be packed in the
requisite αx∗

S fraction of the integral solutions χi, we consider the potential
fraction of solutions in which S is blocked at each u ∈ S. For u ∈ S, let βu be
the fraction of solutions in which S cannot be packed at u. We may think of βu

as the fraction of bad solutions in terms of packing S. In the worst case, S is
blocked pairwise disjointly at each incident vertex.

Lemma 1. Edge S may be packed into an αx∗
S fraction of the integral solutions

χi, provided
1 −

∑
u∈E

βu ≥ αx∗
S .

Proof. The lemma follows from the same reasoning used to derive a union bound
if x∗ were a probability distribution. The quantity

∑
u∈S βu represents the max-

imum fraction of solutions in which S is blocked at some incident vertex, hence
1 − ∑

u∈S βu is the minimum fraction of solutions into which it is feasible to
insert S. ��
We may derive a 1/α-approximation guarantee on the performance of iterative
packing by bounding βu and selecting α so that Lemma 1 is satisfied. For this
purpose we find it useful to think of the residual convex decomposition, αx̄∗ =∑

i∈I μiχ
i, obtained in step 2. above, as inducing a collection of bins at each

u ∈ V where each bin has capacity bu. Each i ∈ I induces a bin of width μi; the
height hi is equal to the sum of the demands of the edges incident upon u that
appear in the solution χi; that is

hi :=
∑

S∈χi|u∈S

dS .

Thus the aggregate capacity of the bins is at most (
∑

i∈I μi)bu = bu, where each
bin contains a volume of μihi.

Next we bound the fraction of bad solutions at u. For this, we define δ̄ =
minT∈E|T =S dT , i.e. δ̄ is the minimal demand in the residual instance.

Iterative Packing for Demand and Hypergraph Matching 355

Lemma 2. For the convex decomposition, αx̄∗ =
∑

i∈I μiχ
i, we have

βu ≤ α
bu − dSx

∗
S

max{bu − dS + 1, δ̄} .

Proof. Let IS be the indices of the bins which cannot accommodate S. Thus by
definition,

βu =
∑
i∈IS

μi .

The total volume of all such bins is at most the total u-volume of αx̄, which
does not contain S: ∑

i∈IS

μihi ≤ α(bu − dSx
∗
S) .

Each bin in IS must have height large enough to block S and must also contain
at least one edge since S fits on its own, by the no clipping assumption. Thus
hi ≥ max{bu − dS + 1, δ̄}, yielding the desired result when coupled with the
above equation and inequality:

max{bu − dS +1, δ̄}βu = max{bu − dS + 1, δ̄}
∑
i∈IS

μi ≤ α(bu − dSx
∗
S) . ��

Unfortunately when dS is large and x∗
S is small, the above bound may be large.

However, by appealing to special cases of k-HDM or by more carefully selecting
the edge S, the bound βu becomes manageable. For instance, consider the case
of the k-hypergraph b-matching problem, obtained when dS = 1 for all S. In this
case βu ≤ α by Lemma 2, which allows us to satisfy the hypothesis of Lemma 1
by selecting α such that:

α ≤ 1
x∗

S + k
⇒ αx∗

S ≤ 1 − kα ≤ 1 −
∑
u∈E

βu . (6)

Since x∗
S ≤ 1 for all E, we may universally select α = 1

k+1 for all S, yielding an
approximation guarantee of k + 1. Krysta [12] proved that a greedy algorithm
also achieves this bound, and Young and Koufogiannakis [11] give a primal dual
algorithm achieving a bound of k, which is the best known. Although we omit the
details in this article, iterative packing can be used to show that the integrality
gap of the natural LP relaxation for k-hypergraph b-matching is at most k−1+
1/k, which settles the gap.

Turning our attention back to k-HDM, the “max” in Lemma 2’s bound hints
at our strategy: we shall always select an edge S with minimal demand, so that
δ̄ is large enough to be of value. In fact the resulting approximation algorithm
applies to a generalization of k-HDM (k-CS-CPIP) in which we allow each edge
S to have a different valued demand, dS

v at each vertex v, as is allowed in k-
CS-PIP. However, we require that the edges can be ordered, S1, S2, . . . , Sm, so
that for any distinct Si, Sj with u ∈ Si ∩ Sj , we have dSi

u ≤ d
Sj
u if i ≤ j; that

is, the demands monotonically increase at every vertex. Note that this is clearly

356 O. Parekh

the case with k-HDM, where dS = dS
u = dS

v for all u, v ∈ S. We may simply sort
the demands over the edges to obtain such an ordering. We perform iterative
packing with such an ordering (i.e. select an S with minimal demand). Now
when we insert S back into the approximate convex decomposition of αx̄, we
may assume that dS ≤ δ̄.

Theorem 1. Iterative packing applied to k-CS CPIP with the edges inserted in
order of nonincreasing demand is a 2k-approximation.

Proof. To simplify our analysis, we conduct it in terms of 1/α. The stipulation
of Lemma 1 may be expressed as:

x∗
S +

∑
u∈S

βu

α
≤ 1

α
.

Our goal is to show that the above holds when 1/α = 2k. By applying the bound
on βu from Lemma 2, we reduce our task to showing that

x∗
S +

∑
u∈S

bu − dSx
∗
S

max{bu − dS + 1, δ̄} ≤ 2k ,

for any value of x∗
S ∈ [0, 1]. Note that when the left hand side above is considered

as a function of the parameters bu, dS , and x∗
S , it is linear in x∗

S . Thus it is
maximized in one of the cases x∗

S = 0 or x∗
S = 1. When x∗

S = 1 we indeed have

1 +
∑
u∈S

bu − dS

max{bu − dS + 1, δ̄} ≤ 1 +
∑
u∈S

bu − dS

bu − dS + 1
≤ 1 + k ≤ 2k .

On the other hand when x∗
S = 0, we have

0 +
∑
u∈S

bu

max{bu − dS + 1, δ̄} ≤ 2
∑
u∈S

bu

bu + δ̄ − dS + 1
≤ 2k ,

where the former inequality follows because max{x, y} ≥ (x + y)/2, and the
latter holds because our ordering of the edges gives us δ̄ ≥ dS . ��

Integrality gap. Our result essentially settles the integrality gap of the natural
formulation. As noted in [7] the projective plane of order k−1 yields an integrality
gap of at least k − 1 + 1/k, even for the case of k-hypergraph matching. For k-
HDM (and consequently k-CS PIP) one may obtain a lower bound approaching
2(k− 1 + 1/k) by again considering a projective plane of order k− 1, setting all
the demands to d and each capacity to b = 2d− 1.

4 Improvements for 2-CS-PIP and Demand Matching

Here we consider the general k-CS-PIP rather than k-HDM/k-CS-CPIP, but
for the special case k = 2. This case is of particular interest as it is natural

Iterative Packing for Demand and Hypergraph Matching 357

generalization of the demand matching problem (i.e. 2-CS-CPIP), which itself is
combination of both b-matching and knapsack type problems in graphs.

Shepherd and Vetta [15] were able to show that integrality gap of the nat-
ural LP formulation was between 3 and 3.264; however, establishing the exact
value has remained an open problem prior to our work. We are able to show
that there is indeed a 3-approximation based on the natural LP for not only de-
mand matching but also the more general 2-CS-PIP problem. This consequently
settles the integrality gaps for both problems. Although designing a polynomial
time algorithm takes a bit of work, iterative packing allows us to establish the
integrality gap relatively easily.

4.1 Establishing the Integrality Gap

As observed in the introduction for the standard matching problem, iterative
packing readily yields an upper bound of 2 on the integrality gap of the natural
formulation, which is sharpened to the optimal value of 3/2 (= k − 1 + 1/k) by
observing that extreme points must contain some large component (xe ≥ 1/2)
and iterating only on such edges. For 2-CS PIP we also apply iterative packing
solely on large components in extreme points – in fact, those with xe = 1 when
they exist.

An interesting phenomenon with general demand packing problems is that
1-edges (i.e. xe = 1) cannot simply swept under the rug as with {0, 1}-demand
problems. For the latter, one can simply assume such edges are selected in a
solution and obtain a straightforward residual instance and feasible fractional
solution. With general demand problems, however, such an approach may violate
the no clipping assumption. Iterative packing, on the other hand, performs quite
well on 1-edges, which allows us to rather easily prove an optimal integrality
gap. Although we will also derive this result in the next section by means of
a polynomial time algorithm, in this section we attack only the integrality gap
with a short proof that highlights the effectiveness of iterative packing when
augmented with simple insights about the nature of extreme points. Our first task
is to show that extreme points without 1-edges admit a manageable structure.
We note that since our discussion involves the more general 2-CS-PIP rather
than demand matching, each edge uv may have distinct demands duv

u and duv
v .

Lemma 3. If x̂ is an extreme point of the natural LP then the fractional part of
x̂ induces connected components with at most one cycle. If we have 0 < x̂ < 1,
then x̂ induces vertex disjoint cycles.

Proof. Let F ⊆ E be the fractional support of x̂. For each connected component
C induced by F , the only tight constraint in which e ∈ F (C) may appear are
degree constraints,

∀u ∈ V :
∑

uv∈δ(u)

duv
u xuv ≤ bu ,

for u ∈ V (C). Thus |F (C)| ≤ |V (C)|, otherwise we would find that a basis for x̂
contains linearly dependent columns among those of F (C). This establishes the
first claim of the lemma.

358 O. Parekh

If 0 < x̂ < 1, then no component induced by x̂ may contain an edge e incident
to a leaf l, otherwise we would have de

l x̂e = bl, implying x̂e = 1 by the no clipping
assumption. Thus we must have |F (C)| = |V (C)| for each component C, and
since we have no leaves, C must be a cycle. ��
Coupled with our earlier analysis of iterative packing, this is the only fact we
need to establish the integrality gap of 3. Consider the following non-efficient
extension of iterative packing:

1. If x∗ is not an extreme point, obtain a convex decomposition into extreme
points, x∗ =

∑
i μix̂

i, and apply the algorithm to each extreme point x̂i.
2. If the extreme point x̂ contains an integral edge let e be such an edge,

otherwise let e be any edge.
3. Delete e to obtain x̄ and recursively construct an approximate convex de-

composition into integral solutions, 1
3 x̄ =

∑
j λjχ

j .
4. Insert e into exactly a 1

3xe fraction of the solutions χj .

Lemma 4. Step 4. above can always be completed successfully.

Proof. Suppose there is an integral x̂e and that x̂e = 1 (x̂e = 0 clearly works).
Substituting x̂e = 1 into the bound from Lemma 2 yields βu ≤ α for u ∈ e, which
we have already observed (see (6)) allows us to select α = 1/(k + 1) = 1/3. On
the other hand, if there is no integral edge by Lemma 3, x̂ induces a 2-regular
graph. When we delete e in this case, at each endpoint u ∈ e there is a single
edge, fu remaining. Thus βu ≤ αx̂fu ≤ α in this case as well. ��
We have a lower bound on the integrality gap of 2(k − 1 + 1/k) = 3 from the
previous section. To complete our proof, we note that by assuming an approx-
imate convex decomposition for each extreme point, 1

3 x̂
i =

∑
j λjχ

ij , we may
obtain a decomposition for 1

3x
∗ as

∑
i

∑
j μiλjχ

ij .

Theorem 2. The integrality gap of the natural LP formulation for 2-CS PIP
is 3.

4.2 A Polynomial Time Implementation

Unfortunately we do not currently have a means of directly implementing the al-
gorithm above in polynomial time; however, Shepherd and Vetta [15] analyze the
fractional structure of extreme points of the natural LP for demand matching.
We are able to develop a polynomial time algorithm by relying on generaliza-
tions of their demand matching insights. A key ingredient used by Shepherd and
Vetta is the augmentation of a fractional path (Sect. 4.1 in [15]). We begin by
giving a generalization of this tool for the case of 2-CS PIP.

Lemma 5. Let P = (v0, e1, v1, e2, . . . , vk) be a path; there exists an augmenta-
tion vector z ∈ IRE such that

Iterative Packing for Demand and Hypergraph Matching 359

1.
∑

uv∈δ(u) d
uv
u zuv
= 0, for u = v0, vk

2.
∑

uv∈δ(u) d
uv
u zuv = 0, for all other u ∈ V

Proof. We set ze = 0 for all e /∈ E(P), and we set ze1 = 1. We now set the value
of zei+1 , for i ≥ 1, based on the value of zei as follows:

zei+1 = −(dei
vi
/dei+1

vi
)zei .

The first condition is satisfied since zei
= 0 ⇒ zei+1
= 0, and the second condi-
tion holds since d

ei+1
vi zei+1 = −dei

vi
zei . ��

Algorithm. We will explain the utility of the above lemma in just a moment;
however, first we give an overview of our algorithm:

1. Find an extreme point x̂ of the natural 2-CS PIP LP.
2. Delete any 0-edges and iterate on the 1-edges until a complete fractional

solution x̄ remains.
3. We will show that x̄ possesses a structure that allows us to infer a 3-

approximation algorithm based on a result of Shepherd and Vetta.
4. Apply a result of Carr and Vempala [3] with the above 3-approximation

algorithm as an approximate separation oracle to obtain an approximate
convex decomposition of x̄ in polynomial time.

5. Pack the removed 1-edges into 1/3 of the solutions from the above decom-
position.

The basic idea is to use a more complex base case for iterative packing, rather
than the default case of an empty graph. In the above algorithm steps 3 and 4
represent the base case. We address the results employed in these steps in turn.

Analysis. First we describe the 3-approximation derived from Shepherd and
Vetta’s work. Note that in step 3, we have a solution x̄ that contains precisely
the fractional components of an extreme point x̂. By Lemma 3, each component
induced by x̄ is either a tree or unicyclic. For the former case, we can apply
a generalization of Thereom 4.1 from Shepherd and Vetta [15], which yields a
2-approximation with respect to a fractional solution x∗ whose support is a tree.
They use path augmentations to derive this result for demand matching, for
which we give an appropriate generalization in Lemma 5.

A 3-approximation. We briefly explain the basic idea behind the 2-
approximation mentioned above and recommend the reader consult Sect. 4.1
in [15] for a rigorous proof. Since x∗ induces a tree, we can find a path P be-
tween two leaves s and t. We apply Lemma 5 on P to obtain z; we are able to
select an ε
= 0 such that:

– x∗ + εz earns cost at least that of x∗

– x∗ + εz is still feasible at every vertex except possibly s and t
– x∗ + εz has some integral edge

360 O. Parekh

Thus we obtain a new solution of no worse cost, but it may be infeasible at s and
t. We temporarily remove any integral edges to obtain smaller trees and continue
the procedure to obtain a collection of integral edges that are not necessarily
feasible but are of superoptimal cost. The key observation is that when a vertex
becomes infeasible, it is a leaf, which allows Shepherd and Vetta to conclude
in the final solution, at every vertex there is at most one edge whose removal
results in a feasible solution. Since the edges form a forest, Shepherd and Vetta
are able to partition the edges into two sets such that each is feasible, yielding
a 2-approximation.

Returning to our algorithm, each component of x̂ contains at most one cycle,
thus for a given cost function, we may delete the cheapest edge from each such
cycle to retain a solution of cost at least 2/3 that of x̂. This leaves a forest on
which we apply Shepherd and Vetta’s procedure to obtain an integral solution
of cost at least 1/3 = 1/2 · 2/3 that of x̂. The trouble is that although this gives
a 3-approximation, we actually need a convex decomposition of 1/3x̂ in order to
pack the 1-edges removed in the second step. Luckily, we are able to appeal to
the following result Carr and Vempala [3] to obtain such a decmoposition.

Theorem 3. (Thm 2, [3]) Given an LP relaxation P, an r-approximation
heuristic A, and any solution x∗ of P, there is a polytime algorithm that finds a
polynomial number of integral solutions z1, z2, . . . of P such that

1
r
x∗ ≤

∑
j

λjχ
zj

where λj ≥ 0 for all j, and
∑

j λj = 1.

The theorem from Carr and Vempala is for covering problems; however, their
ideas yield the result for the packing case as well. We also note that the heuristic
A must be an r-approximation with respect to the lower bound given by the
relaxation P .

Obtaining an exact decomposition. The only remaining detail is that for
our purposes, we require an exact decomposition of x∗/r (i.e. x∗/r =

∑
j λjχ

zj

).
We observe that this can be done by at most doubling the number integral
solutions zj. For any edge e such that x∗

e/r >
∑

j λjχ
zj

e , we remove e from
solutions that contain e. We continue this until removing e from any solution
would give us x∗

e/r ≤ ∑
j λjχ

zj

e . Now we clone some solution zj that contains
e and remove e from the clone; we distribute λj between these two solutions to
attain x∗

e/r =
∑

j λjχ
zj

e . Finally, Lemma 4 shows that step 5. may be completed.
Carr and Vempala’s result is essentially an application of LP duality and

the polynomial time equivalence of separation and optimization. It certainly
seems likely that a more direct analysis of 1/3x̂ could be used to construct a
convex decomposition; however, we are enamored with the elegance of Carr and
Vempala’s result.

Iterative Packing for Demand and Hypergraph Matching 361

5 Concluding Remarks

We have obtained simple iterative packing algorithms for k-hypergraph demand
matching problems that essentially settle the gap of the respective natural LP
relaxations. Obvious open questions include generalizing our work to k-CS-PIP.
We are currently investigating this and have derived promising partial results.
It is conceivable that one may also develop an analogue of iterative packing for
covering that appeals to approximate convex decompositions.

References

1. Bansal, N., Korula, N., Nagarajan, V., Srinivasan, A.: On k-column sparse packing
programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080,
pp. 369–382. Springer, Heidelberg (2010)

2. Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling
split intervals. SIAM J. Comput. 36(1), 1–15 (2006)

3. Carr, R.D., Vempala, S.: Randomized metarounding. Random Struct. Algo-
rithms 20(3), 343–352 (2002)

4. Chan, Y.H., Lau, L.C.: On linear and semidefinite programming relaxations for hy-
pergraph matching. In: Charikar, M. (ed.) SODA, pp. 1500–1511. SIAM, Philadel-
phia (2010)

5. Chekuri, C., Ene, A., Korula, N.: Unsplittable flow in paths and trees and column-
restricted packing integer programs. In: Dinur, I., Jansen, K., Naor, J., Rolim, J.
(eds.) APPROX 2009. LNCS, vol. 5687, pp. 42–55. Springer, Heidelberg (2009)

6. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree
and packing integer programs. ACM Transactions on Algorithms 3(3) (2007)

7. Füredi, Z., Kahn, J., Seymour, P.D.: On the fractional matching polytope of a
hypergraph. Combinatorica 13(2), 167–180 (1993)

8. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating -set pack-
ing. Computational Complexity 15(1), 20–39 (2006)

9. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica 21, 39–60 (2001)

10. Kolliopoulos, S.G., Stein, C.: Approximating disjoint-path problems using packing
integer programs. Mathematical Programming 99(1), 63–87 (2004)

11. Koufogiannakis, C., Young, N.E.: Distributed fractional packing and maximum
weighted b-matching via tail-recursive duality. In: Keidar, I. (ed.) DISC 2009.
LNCS, vol. 5805, pp. 221–238. Springer, Heidelberg (2009)

12. Krysta, P.: Greedy approximation via duality for packing, combinatorial auctions
and routing. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS,
vol. 3618, pp. 615–627. Springer, Heidelberg (2005)

13. Pritchard, D.: Approximability of sparse integer programs. In: Fiat, A., Sanders,
P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 83–94. Springer, Heidelberg (2009)

14. Pritchard, D., Chakrabarty, D.: Approximability of sparse integer programs (2010)
(to appear in Algorithmica) 19 p.

15. Shepherd, F.B., Vetta, A.: The demand-matching problem. Mathematics of Oper-
ations Research 32(3), 563–578 (2007)

16. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees
to within one of optimal. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 661–670.
ACM, New York (2007)

Universal Packet Routing with Arbitrary

Bandwidths and Transit Times

Britta Peis	 and Andreas Wiese		

Technische Universität Berlin, Straße des 17. Juni 136,
10623 Berlin, Germany

{peis,wiese}@math.tu-berlin.de

Abstract. We prove bounds for the length of optimal schedules for
store-and-forward packet routing in the setting of arbitrary bandwidths
and transit times. The problem is commonly studied only in the setting
of unit bandwidths and unit transit times. Our results generalize the
existing work to a much broader class of instances and also improve the
known bounds significantly. For the case of unit transit times and band-
widths we improve the best known bound of 39(C + D) to 23.4(C + D),
where C and D denote the trivial lower bounds congestion and dilation.
If every link in the network has a certain minimum transit time or ca-
pacity our bounds improve even further up to 4.32(C + D). Key to our
results is a framework which employs tight bounds for instances where
each packet travels along only a small number of edges. Further insights
for such instances would reduce our constants even more. This is the first
improvement of the bounds for this very fundamental problem in more
than 10 years.

1 Introduction

The problem to transport packets within a communication network on time
is one of the most fundamental problems in parallel or distributed systems.
Routing protocols need to be designed that find a path for each individual packet
along which it is routed through the network. Once the paths are chosen, the
protocol needs to determine a schedule which defines when each packet traverses
the communication links of its path. In this paper we study universal routing
protocols [24] for the latter task. They are universal in the sense that they work
for arbitrary networks, as well as for arbitrary paths (e.g., the predefined paths
need not necessarily be shortest paths).

Most parallel and distributed systems utilize store-and-forward packet routing
in which no two packets can cross the same link simultaneously (“unit band-
width”), and each packet needs one unit of time to traverse a single link (“unit
transit times”). Usually, the performance of a routing protocol is measured in

� Supported by DFG grant PE 1434/3-1.
�� Supported by the DFG Focus Program 1307 within the project “Algorithm Engi-

neering for Real-time Scheduling and Routing”.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 362–375, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Universal Packet Routing with Arbitrary Bandwidths and Transit Times 363

terms of the two trivial lower bounds C and D. The congestion C denotes the
maximal number of paths using a single link. The dilation D denotes the maxi-
mal length of a path along which a packet has to be routed.

The break-through result for store-and-forward packet routing is certainly due
to Leighton, Maggs and Rao [12] that proves the existence of a routing protocol
whose length is linear in C+D. However, the hidden constants in their result are
very large. Scheideler [24] improves this by showing the existence of a protocol
of length at most 39(C + D).

In contrast to previous work, we provide bounds for the more general setting
of store-and-forward packet routing with arbitrary transit times and bandwidths.
For the special case of unit transit times and bandwidths, we can even improve
the so far best known result of Scheideler from 39(C + D) to 23.4(C + D).

Note that the restriction to unit transit times and bandwidths in ordinary
store-and-forward packet routing is of course justifyable as one could always
transform an instance with arbitrary transit times and bandwidths to the latter
by splitting the edges and adding parallel edges, respectively. However, as we will
show in this paper, the bounds on the length of an optimal protocol improve
considerably for increasing minimum bandwidth or increasing minimum transit
times (or both) of the communication links, see Table 1. For example, if we know
that the bandwidth is at least two on each link, the bound decreases already to
21.59(C + D), even if we have unit transit times for all edges. Note that in
the case of arbitrary bandwidths the (generalized) congestion C depends on the
bandwidths of the edges. In particular, the improvement of the bound is not a
trivial consequence of the increased bandwidth.

1.1 The Model

We model the communication network by a directed graph G = (V,E) whose
edges correspond to the links of the network. Each edge e ∈ E is equipped with
a certain bandwidth be ∈ N denoting the maximal number of packets that are
allowed to traverse e simultaneously, and a certain transit time τe ∈ N denoting
the time needed for a single packet to traverse e. We define b := mine∈E be and
τ := mine∈E τe.

Each packet Mi must be sent through the network from its origin si ∈ V to its
destination ti ∈ V along a predefined si-ti-path Pi. Thus, each packet consists
of a triple Mi = (si, ti, Pi). We let M =

{
M1,M2,M3, ...,M|M|

}
denote the set

of all packets that have to be sent through the network. We assume that time is
discrete and that all packets take their steps simultaneously.

A routing protocol, or feasible packet routing schedule for the instance I =
(G,M) is now a schedule which defines what packets enter what edges at what
times (respecting transit times, bandwidths and predefined paths). The corre-
sponding packet routing problem is to minimize the makespan of such a schedule,
which is the last point in time when a packet reaches its destination vertex.

Dilation and Congestion. The two trivial lower bounds dilation and conges-
tion carry easily over from unit to more general transit times and bandwidths.

364 B. Peis and A. Wiese

Table 1. Bounds for schedules obtained in this paper depending on the minimum
bandwidth b and the minimum transit time τ of all edges. The given values denote the
constants in front of (C + D). Note that for technical reasons (which will become clear
in Section 4) the bounds do not improve when choosing τ larger than 63.

Bound on length of optimal schedule

τ = 1 τ = 2 τ = 5 τ = 10 ... τ = 63

b = 1 23.40 23.21 18.54 16.37 ... 4.32

b = 2 21.59 18.85 15.58 14.27 ... 4.32

b = 5 16.19 14.50 12.98 12.38 ... 4.32

b = 10 14.03 13.05 11.86 11.54 ... 4.32

....

b → ∞ 7.63 7.63 7.63 7.63 ... 4.32

For each packet Mi we define Di to be the length of Pi and D to be the maximal
length of a path, i.e., Di :=

∑
e∈E:e∈Pi

τe and D := maxMi∈M Di. Also, for
each edge e ∈ E we define Ce to be the number of paths using e. We define the
congestion C by C := maxe∈E {�Ce/be�} . Clearly, the dilation D as well as the
congestion C provide lower bounds on the length of an optimal schedule.

Remark regarding large (C + D). In our analysis we will always assume that
C +D is large enough such that we have �k · (C + D)� ≈ k · (C +D) for certain
constants k. This simplifies the calculations and was also implicitly used by Schei-
deler [24]. In order to give a fair comparison with his bounds we use this assump-
tion as well. Moreover, we believe that also for instances where C + D is small,
our techniques can be used to prove good bounds for the optimal makespan.
However, this would require further case distinctions which is beyond the scope
of this paper.

1.2 Our Contribution

We prove bounds for the length of optimal packet routing schedules in the case
of arbitrary transit times and bandwidths for the edges. For the classical setting
where b = 1 and τ = 1 we improve the best known bound of 39(C + D) due
to Scheideler [24] to 23.4(C + D). Even more, for increasing b or τ our bounds
improve further to up to 7.63(C+D) and 4.32(C+D), respectively. See Table 1
for an overview for some values depending on b and τ .

The key insight for our analysis is to prove and exploit a good bound for
schedules with very small dilation: We show that if D ≤ τ + 1, then there is
always a schedule of length C + D − 1. Note that this bound is tight, since
there exist instances which require a schedule of this length (e.g., consider C
packets that need to take the same path of length D). Our proof framework uses
this insight in order to develop good bounds for general instances. Moreover,
our approach points into a direction of promising further research: If one could
prove similarly tight bounds for instances with, e.g., D ≤ kτ +1 for small k, our
proof framework would immediately give even better bounds for all instances.

Universal Packet Routing with Arbitrary Bandwidths and Transit Times 365

This work gives the first improvement for the bounds since the result by
Scheideler [24] from 1998. The paper consists of two parts: In Section 2 we prove
a bound of C +D−1 for instances with D ≤ τ +1. Then, in Section 3, we prove
our bounds for general instances, using the insights obtained in Section 2. Due
to the space constraints for the full proofs we refer to our technical report [21].

1.3 Related Work

The packet routing problem and related problems are widely studied in the
literature. As mentioned above, in their celebrated paper Leighton et al. show
that there is always a routing schedule that finishes in O(C + D) steps [12].
Leighton et al. also present an algorithm that finds such a schedule in polynomial
time [13]. However, this algorithm is not suitable for practical applications since
the hidden constants in the schedule length are very large (the same applies to
the O(C + D) existence-result in [12]).

There are various “constant factor approximation”-results in the area of packet
routing which are based on the fact that a constant factor approximation on
an optimal schedule for store-and-forward packet routing exists. Our improved
bounds thus have implications for all of these results. We mention some exam-
ples, where store-and-forward packet routing is a subproblem that needs to be
solved:

Srinivasan and Teo [25] present a constant factor approximation algorithm for
packet routing with variable paths, i.e., in the setting where the routing paths
are not part of the input, but need to be found by the algorithm. Koch et al. [11]
improve and generalize this algorithm to the more general message routing prob-
lem (where each message consists of several packets). In both results, suitable
paths are found that yield a constant factor approximation on the minimum of
C + D over all possible choices of paths. The remaining problem is then the
ordinary packet routing problem. For the case that each vertex of a grid graph
is the start vertex of at most one packet, Mansour and Patt-Shamir [16] prove
the existence of a constant factor approximation on an optimal schedule, again
by reducing the problem to an ordinary packet routing problem.

There are other result that go in the direction of the work of Leighton et al. [12].
E.g., Meyer auf der Heide et al. [9] present a randomized online-routing proto-
col which finishes after at most O(C +D + logN) steps if all paths are shortest
paths. Rabani et al. [22] give a distributed algorithm which guarantees a bound of
O(C)+(log∗ n)O(log∗ n)D+poly(logn). This is improved by Ostrovsky et al. [17]
who give a local protocol that needs at most O(C + D + log1+ε N) steps.

Packet routing is also studied in the case of special graph topologies. Leung
et al. [15, chapter 37] study packet routing on certain tree topologies. Leighton,
Makedon and Tollis [14] show that the permutation routing problem on an n×n
grid can be solved in 2n − 2 steps using constant size queues. Rajasekaran [23]
presents several randomized algorithms for packet routing on grids.

Studying the complexity for the ordinary packet routing problem, Di Ianni
shows that the delay routing problem [4] is NP -hard. The proof implies that
the packet routing problem on general graphs is NP -hard as well. In [19], the

366 B. Peis and A. Wiese

authors improve this by giving non-approximability results for the packet routing
problem on several graph classes as well as algorithms for the problem on trees.
The same authors present NP -hardness results and algorithms for some cases
of the packet routing problem on grid graphs [20].

Busch et al. [3] study the direct routing problem, that is the problem of
finding a routing schedule such that a packet is never delayed once it has left
its start vertex. They give complexity results and algorithms for finding direct
schedules. Finally, Adler et al. [1, 2] study the problem of scheduling as many
packets as possible through a given network in a certain time frame. They give
approximation algorithms and NP -hardness results.

With our results, we also contribute to the area of multi-commodity flows
over time which is widely studied, e.g., see [5–8, 10]. The multi-commodity flow
over time problem is equivalent to the (classical) packet routing problem with
variable paths if we additionally require unit edge capacities, unit transit times,
and integral flow values. Thus, packet routing with variable paths and arbitrary
transit times and bandwidths corresponds to the integral multi-commodity flow
problem over time.

2 Tight Bound for Instances with Small Dilation

Ideally, we would like to determine for each combination of C,D, b, and τ a tight
upper bound on the maximal length of an optimal schedule for instances with
these parameters. In this section, we make a first step towards this goal: We give
a tight bound for instances with D ≤ τ + 1. As we will see in Section 3, this
insight will allow us to prove good upper bounds for all instances.

For the sake of analysis, we replace every edge e ∈ E with transit time τe by
a path consisting of τe edges, all with the same bandwidth as e. In the resulting
graph, we call every vertex that was created due to this transformation a small
vertex. All other vertices are called big vertices. We say a small path is a path
connecting two big vertices. Hence, τ is the minimum length of a small path.
(Note that our assumption makes the problem slightly more general since now
packets are allowed to have their start vertex “in the middle” of an edge. We
introduce this generalization because it will be needed in our proof framework
later.) To simplify notation later we denote by Ab,τ (C,D) the maximum length
of an optimal schedule for an instance with minimum bandwidth b, minimum
transit time τ , congestion C, and dilation D. The main result of this section is
given in the following theorem.

Theorem 1. Let I be an instance of the packet routing problem with D ≤ τ +1.
Then there is a schedule for I whose makespan is bounded by C+D−1. Moreover,
Ab,τ (C,D) = C + D − 1 if D ≤ τ + 1.

Proof (sketch). Let I be an instance of the packet routing problem with D ≤
τ + 1. Due to the assumption the path of each packet uses at most two small
paths. Thus, we can divide the packets which use any small path P into two
sets M1

P and M2
P , such that M1

P contains the packets for which P is the first
small path, and M2

P contains the packets for which P is the second small path.

Universal Packet Routing with Arbitrary Bandwidths and Transit Times 367

In a first step, we transform I into an instance I ′ such that OPT (I ′) ≥
OPT (I) and for every small path P ′ either M1

P ′ = ∅ or M2
P ′ = ∅ (see [21] for

details). While performing the necessary changes we do not change C,D or τ at
all. It turns out that the resulting instance I ′ is an instance of the packet routing
problem whose underlying graph topology is the union of directed spiders (i.e.,
directed trees with at most one vertex whose degree is larger than two). We then
construct a schedule for each connected component which finishes after at most
C + D − 1 steps. The idea is as follows:

Take a small path P ′ with bandwidth b ≥ 2 (recall that all edges on a small
path have the same bandwidth). We replace P ′ by b paths P ′′

1 , ..., P
′′
b of unit

bandwidth. The packets using P ′ in I ′ are now distributed among the new paths
such that no path is used by more than C packets. We do this transformation
with each small path. By construction, any feasible schedule of the resulting
instance can be transformed to a feasible schedule for I ′ with the same length.

Consider one connected component (recall: a directed spider where each edge
has unit bandwidth). It was shown in [19] that for instances of the packet routing
problem on directed trees one can construct a schedule of length C + D − 1
using path-coloring techniques. However, for this special case we can even give
a simpler proof (see full version). Summarizing, since OPT (I ′) ≤ C +D− 1 and
OPT (I) ≤ OPT (I ′), it follows that Ab,τ (C,D) ≤ C + D − 1.

It is straight forward to construct instances I with D ≤ τ + 1 and OPT (I) =
C+D−1. For example, consider an instance with only one edge which is used by
C ·b packets. This shows that the bound is tight, i.e., Ab,τ (C,D) = C+D−1. ��

3 High Level Ideas for General Bounds

In the previous section, we provided a tight bound for the length of optimal
schedules of instances of the packet routing problem where D ≤ τ + 1. Unfortu-
nately, the vast majority of instances does not fall under this category. However,
in this section we provide an upper bound for all instances. In order to do this,
we provide a framework which uses bounds for instances with small dilation
(like D ≤ τ + 1) for proving good bounds for all instances. Using our bounds
for instances with D ≤ τ + 1 from the previous section, we prove the following
theorems.

Theorem 2. Let I be an instance of the packet routing problem with minimum
bandwidths and transit times b and τ , respectively. There is a feasible schedule
for I whose length is bounded by(

6.44 · f(τ + 1, b) + 2.11
τ

τ + 1
+ δ

)
(C + D) (1)

for a function f(τ + 1, b) which tends to 1 for increasing τ or b and with δ =
1
60 (τ + 3.05 · f(τ + 1, b)(τ + 1)).

Note that the value δ in the theorem above increases for increasing τ . However,
if τ ≥ 63 the following theorem gives an alternative bound.

368 B. Peis and A. Wiese

Theorem 3. Let I be an instance of the packet routing problem with minimum
transit time τ ≥ 63. Then there is a feasible schedule for I whose length is
bounded by 4.32(C + D).

Even more, assuming that one has good upper bounds for instances with small
dilation we present a framework which gives good upper bounds for all instances.

Theorem 4. Let I be an instance of the packet routing problem with minimum
bandwidths and transit times b and τ , respectively. For any � ∈ N there is a
feasible schedule for I whose length is bounded by

Ab,τ (3.05� · f(�, b), �) ·
(

2.11
�

+ δ

)
(C + D) (2)

for a function f(�, b) which tends to 1 for increasing � or b and with δ = 1
60 .

For using the above theorem, it suffices to have a bound for Ab,τ (3.05� · f(�, b), �)
for some (small) value �. As an application of this framework, the proof of The-
orem 2 uses that Ab,τ (C, τ +1) = C + τ as proven in Theorem 1 (here we choose
� := τ + 1). Also, for the important special case of unit bandwidths and unit
transit time (i.e., b = 1 and τ = 1) our framework gives the following bound.

Theorem 5. Let I be an instance of the packet routing problem with unit transit
times and unit bandwidths. Then there is a feasible schedule for S whose length
is bounded by 23.4(C + D).

Table 1 shows the bounds obtained by the above theorems for certain values of b
and τ .

In this section we describe the high-level concepts for our proof. The complete
proof requires many technical details which we give in Section 4. Our reasoning
uses the concepts introduced by Scheideler [24] who proved that there is always
a schedule of length 39(C + D) for instances with unit transit times and unit
capacities. At several times in our analysis, we make use of the Lovász Local
Lemma (LLL) which (in its symmetric version) states the following:

Lemma 1 (Lovász Local Lemma (LLL) [18]). Let E1, . . . , Ek be a series of
“bad events” such that each event occurs with probability at most p and such that
each event is independent of all the other events except for at most d of them.
Then, if ep(d + 1) ≤ 1, there is a nonzero probability that none of the events
occurs.

In the first part of our proof, we give a careful adaption of these concepts to
the setting of arbitrary bandwidths and transit times. In the second part of
the proof, we introduce our framework. Any good bound for instances with
small dilation, e.g., D ≤ τ + 1, D ≤ 2τ + 1, etc., allows the framework to prove
better bounds for general instances (with arbitrary dilation). We incorporate the
bounds for instances with D ≤ τ +1 (obtained in Section 2) into our framework.
In the setting of unit bandwidths and transit times we improve the bound of
39(C+D) by Scheideler [24] to 23.4(C+D). For increasing b and/or increasing τ
we can reduce the constant in front of (C + D) even further.

Universal Packet Routing with Arbitrary Bandwidths and Transit Times 369

In the sequel, we will use the concept of infeasible schedules. We call a schedule
infeasible if in the schedule some edge e is used by more than be packets at a
time, but the other two properties of feasible schedules are fulfilled. For ease of
notation we say a schedule is infeasible if it is not necessarily feasible. We use
the following strategy: We start with an infeasible schedule in which no packet
is ever delayed. Denote by S0 this schedule. We perform the following steps.

– One can enlarge S0 by adding a random delay of at most C/b for each packet
at the beginning of S0, yielding a schedule S1. We will show using the LLL
that there are delays for the packets such that S1 fulfills certain properties.

– Inductively, assume that we have an infeasible schedule Si (with i ≥ 1).
Using the LLL we show that there are further refinement steps yielding a
schedule Si+1 which is—intuitively speaking—“more feasible” than Si.

– Eventually, we prove that there is a schedule Sk with the property that in
every interval of length 64 at most 195.1b packets use each edge. Furthermore,
we prove that the length of Sk is bounded by 1.0626(C + D).

Starting with the infeasible schedule Sk, we establish our framework. Let � ∈ N.
Using the LLL we show that there is an infeasible schedule Sk+1 that can be
partitioned such that in any time-interval of length � at most C�

be
packets traverse

each edge e (for a constant C�
be

to be defined later). Hence, we can turn Sk+1

into a feasible schedule by refining each interval of length � separately. In order
to do this, we treat each of these intervals as a subinstance of the packet routing
problem with dilation � and congestion maxe

{
C�

be
/be

}
. Hence, it suffices to have

good bounds for instances with dilation D = � in order to obtain a bound for
the original instance. We use our framework with � := τ + 1 since Theorem 1
gives a bound for instances with D ≤ τ + 1. Using the framework one could
obtain even better bounds for general instances if one had good upper bounds
for instances with slightly higher dilation, e.g., D ≤ kτ+1 for some small value k.
In particular, the larger we can choose �, the better become our bounds. This can
be seen in Table 1 since for increasing τ the bounds improve. Also, if b increases
the bounds improve as well. The reason is that C�

b/b decreases when b increases.
Hence, the congestion in the subinstances (given as maxe

{
C�

be
/be

}
above) will

be smaller for larger values of b.
In the following section we give a detailed technical analysis of the reasoning

described above.

4 Technical Analysis

In this section we give the full proofs of the theorems and techniques stated
in Section 3. First, we adapt the concepts of Scheideler [24] to the setting of
arbitrary bandwidths and transit times. Then, we introduce our framework which
then allows us to prove our bounds for the lengths of optimal schedules.

Let I be an instance of the packet routing problem with congestion C and
dilation D. Assume that each edge has a bandwidth of at least b and each a

370 B. Peis and A. Wiese

transit time of at least τ . Our bounds depend on these four parameters. In
particular, they improve if b and τ increase. As already mentioned in Section 2,
we replace every edge e with transit time τe by a path consisting of τe edges.

First, we prove the existence of the schedule Sk with the property that in every
interval of length 64 at most 195.1b packets use each edge. We bound the length
of Sk later. We define I0 := max{C,D}. Let k := (log∗ I0) − 11. We set Ik := 4
and Ij := 2Ij+1 for all j with 1 ≤ j ≤ k − 1. Note that 2I1 ≥ I0. If I0 ≤ 64 then
we define Sk := S0. Hence, for the remaining reasoning for the construction of
Sk we assume that I0 > 64. Let S0 be the infeasible schedule in which no packet
is ever delayed. We define D0 := D. We will prove the existence of schedules Si

with certain properties (with i ≥ 1). We denote by Di the length of Si. Let Ci

be the maximum number of packets that use an edge in each interval of length
I3
i in the schedule Si.

We start with the schedule S0. We assign each packet an initial random delay.
Using the LLL we prove that there are random delays such that the resulting
schedule is “relatively feasible”. The schedule S1 is the schedule resulting from
those “good” initial delays.

Lemma 2. There is an infeasible schedule S1 with the property that in every
interval of length I3

1 at most C1be packets use each edge e with C1 := (1+ 3
I1

)I3
1 .

Also, D1 ≤ D + C.

Proof (sketch). We assign each packet a random delay from the set {0, ..., C − 1}.
Using the LLL it can be shown that there are certain delays for the packets such
that the resulting infeasible schedule fulfills the property stated in the lemma.
For the full reasoning see our technical report [21]. ��
Denote by S1 the schedule whose existence was proved in Lemma 2. Given an
infeasible schedule Si we want to prove the existence of a schedule Si+1 which
is—intuitively speaking—“more feasible” than Si. This is again done by giving
each packet random delays. We use the LLL to ensure that there are delays for
the packets such that in any interval of length I3

i+1 only a bounded number of
packets use each edge.

Lemma 3. Let Si be an infeasible schedule of length Di with the property that
in every interval of length I3

i at most Cibe packets use each edge e for some
value Ci ≥ I3

i . Then there is an infeasible schedule Si+1 with the property that
in every interval of length I3

i+1 at most Ci+1be packets use each edge e, with

Ci+1 := Ci·
(
1 + 5.1

Ii+1

)
· I3

i+1

I3
i −I3

i+1
. Moreover, Di+1 ≤

(
1 + 1

Ii

)
Di and Ci+1 ≥ I3

i+1.

Proof (sketch). We split the timeline into intervals of length I4
i . We refine the

infeasible schedule Si by enlarging each of these intervals. The schedule Si+1 is
the concatenation of all enlarged intervals.

Consider one of these time intervals. We assign each packet an initial delay
from the set of values

{
0, 1, ..., I3

i − I3
i+1 − 1

}
. Do this with each interval. With

1 For our purposes we define log∗ I0 to be the smallest integer k such that we need to
apply the log-function k times to I0 in order to obtain a value of at most 4.

Universal Packet Routing with Arbitrary Bandwidths and Transit Times 371

the LLL and careful bounds on the probabilities it can be shown that the re-
sulting schedule fulfills the properties stated in the lemma. For details see our
technical report [21]. ��
We apply Lemma 3 iteratively until we have proven the existence of the sched-
ule Sk with the respective properties. In particular, since Ik = 4 Lemma 3 shows
that in Sk in every interval of length 43 = 64 every edge is used by at most Ck

packets. In the following lemma we bound Ck and Dk.

Lemma 4. It holds that Dk < 1.0626(D + C) and Ck < 195.1.

The bounds can be shown with some straight forward calculations, see [21].
Note that if I0 ≤ 64 then by definition S0 = Sk and also Dk = D0 = D <
1.0626(D + C) and Ck = C0 = C < 195.1.

4.1 Framework

Having established the existence of the schedule Sk with the above properties
we introduce our framework. The idea is the following: We split the schedule Sk

into intervals of length I3
k = 64. We treat each of these intervals individually as

a subinstance. Let F be such an interval. At the beginning of F we assign each
packet a random delay from the set {0, 1, ..., 63}. The length of the resulting
schedule is hence at most 127. Let � ∈ N. Using the LLL we show that there are
random delays for the packets such that in each subinterval of length � at most
C�

b packets use each edge with bandwidth b (for a constant C�
b to be defined

later). Denote by Sk+1 such a schedule. Each subinterval of length � can now
be treated as a subinstance of the packet routing problem with dilation � and
congestion C̄ := maxe

{
C�

be
/be

}
. Assume that we have a good bound Ab,τ

(
C̄, �

)
for the maximum length of an optimal schedule for such an instance. This implies
that by losing only a factor of (roughly) Ab,τ

(
C̄, �

)
/� we can turn Sk+1 into a

feasible schedule. The length of Sk+1 then gives us our bound on the length of an
optimal schedule for the original instance. As an application of this framework
we derive bounds for general instances by choosing � := τ + 1. First, we define
the values C�

b .

Definition 1. Let b, � ∈ N. Consider �195.1b� binary random variables Xi such
that Pr [Xi] = �

64 and let X :=
∑�195.1b�

i=1 Xi. We define C�
b to be the minimum

integer such that Pr
[
X > C�

b

] ·e ·⌈ 1
� 127

⌉ · �195.1b�·64 ≤ 1. We write Pr
(
C�

b

)
:=

Pr
[
X > C�

b

]
.

Later we will split the whole time axis into intervals of length 127. We will
split those again into even smaller intervals of length � (or less if � does not
divide 127). To this end, we introduce the notion of an �-partition.

Definition 2. An �-partition of an interval J with |J | = 127 ·M (for an inte-
ger M) is a partition into

⌊
127
�

⌋ ·M subintervals of length � and M subintervals
of length k mod �. In the sequel we call those subintervals �-subintervals.

Using the LLL, in the next lemma we show that there are random delays which
turn Sk into a schedule Sk+1 which is “almost feasible”.

372 B. Peis and A. Wiese

Lemma 5. Let �, b ∈ N. Assume we are given an infeasible schedule Sk of length
Dk such that in every interval of length 64 each edge e is used by at most �195.1b�
packets. Then there is an infeasible schedule Sk+1 whose length is bounded by
Dk+1 := 2Dk that can be �-partitioned such that in every �-subinterval at most
C�

be
packets use each edge e.

Proof. Similar application of the Lovász Local Lemma as before, see [21] for
details.

We can turn Sk+1 into a feasible schedule by solving each subinstance induced by
a �-subinterval optimally. This increases the length of Sk+1 at most by a factor
of (roughly) A

(
C̄, �

)
/� with C̄ = maxe

{⌈
C�

be
/be

⌉}
. If we have a good bound

for A
(
C̄, �

)
this yields a good bound for the length of an optimal schedule for

the original instance. This is shown in the following lemma.

Lemma 6. Let I be an instance of the packet routing problem with minimum
bandwidths and transit times b and τ , respectively, and let �,M ∈ N. Assume
we are given an infeasible schedule Sk+1 for I of length 127 · M which is �-
partitioned such that every �-subinterval is used by at most C�

b packets. Then
there is a feasible schedule for I whose length is bounded by⌈

127
�

⌉
·M · Ab,τ

(
max

e

{⌈
C�

be
/be

⌉}
, �
)
. (3)

Proof. We change the given schedule Sk+1 to a feasible schedule by refining
each �-subinterval of the �-partition. Each �-subinterval can be modeled as a
subinstance of the packet routing problem. This subinstance has a dilation of
at most � and each edge e is used by at most C�

be
packets. Hence, the conges-

tion of this subinstance is C̄ := maxe

{⌈
C�

be
/be

⌉}
. According to our assumption

concerning b and τ the schedule in each �-subinterval can be refined to a feasi-
ble schedule whose length is at most Ab,τ

(
maxe

{⌈
C�

be
/be

⌉}
, �
)
. This yields the

bound stated in the theorem. ��
Now we can prove our main theorem for the bounds derived by our framework.

Theorem 6. Let I be an instance of the packet routing problem with minimum
bandwidths and transit times b and τ , respectively. For any � ∈ N there is a
feasible schedule for I whose length is bounded by

Ab,τ (3.05� · f(�, b), �) ·
(

2.11
�

+ δ

)
(C + D) (4)

for a function f(�, b) which tends to 1 for increasing � or b and with δ ≤ 1
60 .

Proof. We introduce values C̃�
b which have the properties that C�

b ≤ C̃�
b and

additionally maxe

{⌈
C̃�

be
/be

⌉}
≤

⌈
C̃�

b/b
⌉

for all � and b. With Lemma 6 and
some further calculations (where we use that (C + D) is large as mentioned in
the introduction) the claim follows. ��

Universal Packet Routing with Arbitrary Bandwidths and Transit Times 373

Theorem 1 allows us to bound the expression Ab,τ (C, �) for the case that � =
τ + 1. Using this insight we can use the theorem above to derive general bounds
for all packet routing instances.

Theorem 7. Let I be an instance of the packet routing problem with minimum
bandwidths and transit times b and τ , respectively. There is a feasible schedule
for I whose length is bounded by(

6.44 · f(τ + 1, b) + 2.11
τ

τ + 1
+ δ

)
(C + D) (5)

for a function f(τ + 1, b) which tends to 1 for increasing τ or b and with δ ≤
1
60 (τ + 3.05 · f(τ + 1, b)(τ + 1)).

Proof. We choose � := τ+1 in Theorem 6. Theorem 1 shows that Ab,τ (C, τ + 1) ≤
C + τ . Calculations show that the resulting expression is upper-bounded by the
expression stated in the theorem. ��
Note here that – for values of f(τ + 1, b) close to 1 – the formula stated in
Theorem 7 gives better bounds if τ = 1 than for higher values of τ . However,
for small τ and b the bound of the formula improves as τ increases.

Observe that δ increases for increasing τ . This worsens the bound for very
large values τ . However, later we will prove a much better bound for the case
that τ is large.

Large Minimum Transit Times. Given the schedule Sk, in our framework we used
the Lovász Local Lemma to prove the existence of the schedule Sk+1. However,
we can alternatively turn t he schedule Sk to a feasible schedule directly. This
is in particular useful for cases where τ is relatively large, as we will see in
Corollary 1.

Theorem 8. Let I be an instance of the packet routing problem with minimum
bandwidth b and minimum transit time τ . There is feasible schedule for I whose
length is at most 1

60 (C + D) · Ab,τ (196, 64).

Proof. Recall that we proved the existence of the schedule Sk which has the
property that in every interval of length 64 each edge is used by at most Ckb =
195.1b packets. Hence, there is a feasible schedule for I whose length is bounded
by Dk

64 · Ab,τ (�Ck� , 64). This value is at most (D + C)/60 · Ab,τ (196, 64). Note
that here again we used that (C + D) is large as mentioned in the introduction
since then

⌈
Dk

64

⌉ ≈ Dk

64 . Since Dk is strictly smaller than 1.0626(D + C) there is
a value N0 such that for all C,D with (C + D) ≥ N0 our bounds hold. ��
Using our insight gained in Theorem 1 for Ab,τ (C, τ + 1) allows us to prove the
following corollary.

Corollary 1. Let I be an instance of the packet routing problem with minimum
bandwidth b and minimum transit time τ ≥ 63. Then there is always a packet
routing schedule whose length is bounded by 4.32(C + D).

Table 1 shows some bounds for the lengths of schedules depending on τ and b.

374 B. Peis and A. Wiese

Unit Transit Times and Unit Bandwidths. Finally, we use the above framework
to derive a bound of 23.4(C + D) for the case of unit transit times and unit
bandwidths. This improves the bound of 39(C + D) proven by Scheideler [24].
First, we precisely calculate that C2

1 = 21. Then we can use our framework
together with Theorem 1 to derive our desired bound.

Theorem 9. Let I be an instance of the packet routing problem with b = 1
and τ = 1. Then there is a feasible schedule for S whose length is bounded by
23.4(C + D).

Acknowledgments. We would like to thank Jan-Philipp Kappmeier, Olaf Mau-
rer, and Jannik Matuschke for fruitful discussions and in particular Jan-Philipp
Kappmeier for helpful comments on the draft.

References

1. Adler, M., Khanna, S., Rajaraman, R., Rosén, A.: Time-constrained scheduling of
weighted packets on trees and meshes. Algorithmica 36, 123–152 (2003)

2. Adler, M., Sitaraman, R., Rosenberg, A., Unger, W.: Scheduling time-constrained
communication in linear networks. In: Proceedings of the 10th annual ACM sym-
posium on Parallel Algorithms and Architectures (SPAA 1998), pp. 269–278 (1998)

3. Busch, C., Magdon-Ismail, M., Mavronicolas, M., Spirakis, P.: Direct routing: Al-
gorithms and complexity. Algorithmica 45, 45–68 (2006)

4. di Ianni, M.: Efficient delay routing. Theoretical Computer Science 196, 131–151
(1998)

5. Fleischer, L., Skutella, M.: Minimum cost flows over time without intermediate
storage. In: Proceedings of the 14th Annual Symposium on Discrete Algorithms,
SODA 2003 (2003)

6. Fleischer, L., Skutella, M.: Quickest flows over time. SIAM Journal on Comput-
ing 36, 1600–1630 (2007)

7. Hall, A., Hippler, S., Skutella, M.: Multicommodity flows over time: Efficient al-
gorithms and complexity. Theoretical Computer Science 2719, 397–409 (2003)

8. Hall, A., Langkau, K., Skutella, M.: An FPTAS for quickest multicommodity flows
with inflow-dependent transit times. Algorithmica 47, 299–321 (2007)

9. Meyer Auf Der Heide, F., Vocking, B.: Shortest paths routing in arbitrary networks.
Journal of Algorithms 31, 105–131 (1999)

10. Hoppe, B., Tardos, É.: The quickest transshipment problem. Mathematics of Op-
erations Research 25, 36–62 (2000)

11. Koch, R., Peis, B., Skutella, M., Wiese, A.: Real-Time Message Routing and
Scheduling. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009.
LNCS, vol. 5687, pp. 217–230. Springer, Heidelberg (2009)

12. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-scheduling in
O(congestion + dilation) steps. Combinatorica 14, 167–186 (1994)

13. Leighton, F.T., Maggs, B.M., Richa, A.W.: Fast algorithms for finding
O(congestion + dilation) packet routing schedules. Combinatorica 19, 375–401
(1999)

14. Leighton, F.T., Makedon, F., Tollis, I.G.: A 2n − 2 step algorithm for routing
in an n × n array with constant size queues. In: Proceedings of the 1st Annual
Symposium on Parallel Algorithms and Architectures (SPAA 1989), pp. 328–335
(1989)

Universal Packet Routing with Arbitrary Bandwidths and Transit Times 375

15. Leung, J.Y.-T.: Handbook of Scheduling: Algorithms, Models and Performance
Analysis. CRC Press, Inc., Boca Raton (2004)

16. Mansour, Y., Patt-Shamir, B.: Many-to-one packet routing on grids. In: Proceed-
ings of the 27th Annual Symposium on Theory of Computing (STOC 1995), pp.
258–267 (1995)

17. Ostrovsky, R., Rabani, Y.: Universal O(congestion + dilation + log1+ε N) local
control packet switching algorithms. In: Proceedings of the 29th annual ACM Sym-
posium on Theory of Computing (STOC 1997), pp. 644–653 (1997)

18. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some
related questions. In: Infinite and Finite Sets Colloq. Math. Soc. Janos Bolyai,
vol. 11, pp. 609–627. North-Holland, Amsterdam (1975)

19. Peis, B., Skutella, M., Wiese, A.: Packet routing: Complexity and algorithms. In:
Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 217–228. Springer,
Heidelberg (2010)

20. Peis, B., Skutella, M., Wiese, A.: Packet routing on the grid. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 120–130. Springer, Heidelberg (2010)

21. Peis, B., Wiese, A.: Universal packet routing with arbitrary bandwidths and transit
times. Technical Report 024-2010, Technische Universität Berlin (November 2010)

22. Rabani, Y., Tardos, É.: Distributed packet switching in arbitrary networks. In:
Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC
1996), pp. 366–375. ACM, New York (1996)

23. Rajasekaran, S.: Randomized algorithms for packet routing on the mesh. Techni-
cal Report MS-CIS-91-92, Dept. of Computer and Information Sciences, Univ. of
Pennsylvania, Philadelphia, PA (1991)

24. Scheideler, C.: Universal Routing Strategies for Interconnection Networks. LNCS,
vol. 1390, pp. 57–71 (1998)

25. Srinivasan, A., Teo, C.-P.: A constant-factor approximation algorithm for packet
routing and balancing local vs. global criteria. SIAM Journal on Computing 30
(2001)

A Layered Graph Model and an Adaptive Layers

Framework to Solve Delay-Constrained
Minimum Tree Problems

Mario Ruthmair and Günther R. Raidl

Vienna University of Technology, Vienna, Austria
Institute of Computer Graphics and Algorithms

{ruthmair,raidl}@ads.tuwien.ac.at

Abstract. We present a layered graph model for delay-constrained min-
imum tree problems with a polynomial number of constraints which can
be solved well for instances with low- to medium-sized sets of achievable
delay values and not too high bounds. Layered graph models have been
recently shown to frequently yield tight bounds in the context of hop-
or delay-constrained network design problems. However, since the size
of the layered graph heavily depends on the size of the set of achievable
delay values and the corresponding delay bound the practical applicabil-
ity of these models is limited. To overcome this problem we introduce an
iterative strategy in which an initially small layered graph is successively
extended in order to tighten lower and upper bounds until convergence
to the optimal solution. Computational results show the synergetic ef-
fectiveness of both approaches outperforming existing models in nearly
all cases.

1 Introduction

When designing a communication network with a central server broadcasting or
multicasting information to all or some of the participants of the network, some
applications, such as video conferences, require a limitation of the maximal delay
from the server to each client. Beside this delay-constraint minimizing the cost
of establishing the network is in most cases an important design criterion. In
another example we consider a package shipping organization with a central
depot guaranteeing its customers a delivery within a specified time horizon.
Naturally the organization aims at minimizing the transportation costs but at
the same time has to hold its promise of being in time. These network design
problems can be modeled using an NP-hard combinatorial optimization problem
called delay-constrained minimum tree (DCMT) problem [8]. The objective is to
find a minimum cost Steiner tree on a given graph with the additional constraint
that the sum of delays along each path from a specified root node to any other
required node must not exceed a given delay bound.

More formally, we are given an undirected graph G = (V,E) with node set
V , a fixed root node s ∈ V , set R ⊆ V \ {s} of terminal or required nodes,

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 376–388, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Layered Graph Model and an ALF to Solve DCMT Problems 377

set S = V \ (R ∪ {s}) of optional Steiner nodes, edge set E, a cost function
c : E → Z+, a delay function d : E → Z+, and a delay bound B ∈ Z+. An
optimal solution to the DCMT problem is a Steiner tree T = (V T , ET), s ∈
V T , R ⊂ V T ⊆ V, ET ⊆ E, with minimum cost c(T) =

∑
e∈ET ce, satisfying

the constraints dv =
∑

e∈P (s,v) de ≤ B, ∀v ∈ R, where P (s, v) denotes the
unique path from root s to node v.

There are many recent publications dedicated to the DCMT problem and its
more special variants. Manyem et al. [12] showed that the problem is not in
APX. Several metaheuristics have been presented, such as GRASP [17], variable
neighborhood search [17,18], and path-relinking in a hybrid scatter search [18].
More heuristic approaches can be found for the variant with R = V \ {s}, e.g. a
GRASP and a variable neighborhood descent in [15] and ant colony optimization
and a variable neighborhood search in [16]. Furthermore, preprocessing methods
are presented in [16] reducing the size of the input graph significantly.

Exact methods for the DCMT problem based on integer linear programming
(ILP) have been explored by Leggieri et al. [9] who describe a compact ex-
tended node-based formulation using lifted Miller-Tucker-Zemlin inequalities.
Since these Big-M formulations usually yield rather weak linear programming
(LP) bounds they improve it by adding directed connection cuts. In [3] Gouveia
et al. transform a DCMT problem variant called Hop-Constrained Minimum
Spanning Tree (HCMST) Problem where de = 1, ∀e ∈ E, and R = V \ {s}, to
an equivalent Steiner tree problem (STP) [2] on an appropriate layered graph
without additional constraints. The intensively studied STP can then be solved
by any existing approach for directed graphs. In [3] a classic directed connection
cut formulation on this layered graph is solved by an efficient branch-and-cut
algorithm. This formulation has been shown to be stronger than the HCMST
formulation in [4] only modeling the constrained shortest path subproblems on
a layered graph. ILP approaches for the DCMT problem with R = V \ {s}
have been examined by Gouveia et al. in [6] based on the concept of constrained
shortest paths utilized in column generation and Lagrangian relaxation meth-
ods. Similarly to [4] a third approach reformulates the constrained shortest path
subproblems on a layered graph and solves them using a multi commodity flow
(MCF) formulation. Since the size of the layered graph and therefore the effi-
ciency of the according model heavily depends on the number of achievable delay
values (see Section 2) this approach can in practice only be used for instances
with a reasonably small set of delay values and rather low bounds. Addition-
ally, MCF models usually suffer from the huge amount of flow variables used in
the ILP formulation altogether leading to a slow and memory-intensive solving
process. Nevertheless solving these layered graph models turned out to be very
effective on certain classes of instances, not only for DCMT problems, but e.g.
for the hop-constrained connected facility location problem as well, see [10].

The success of the layered graph transformation for some special variants of
the DCMT problem leads us to a further investigation of this approach. First,
we introduce an efficient ILP model utilizing the special structure of the lay-
ered graph and improving the computational performance compared to existing

378 M. Ruthmair and G.R. Raidl

models. However, the problems with huge sets of achievable delay values and
high bounds still exist although much harder instances can now be tackled. To
substantially improve this situation we present a new iterative strategy based on
solving the problem on smaller layered graphs yielding lower and upper bounds
to the optimal costs. By extending these simplified graphs appropriately the
bounds are tightened to finally converge to an optimal solution. Compared to
our first approach the iterative framework consumes substantially less memory.
More generally, our strategy can in principle also be applied to other problems
with delay or weight constraints that can be modeled on layered graphs.

The rest of the article is organized as follows: Section 2 describes the trans-
formation to the layered digraph, Section 3 presents the ILP model on this
graph and Section 4 shows some theoretical results utilized in the adaptive layers
framework in Section 5. Section 6 discusses computational results and Section 7
concludes the article and sketches future work.

2 Transformation to the Steiner Arborescence Problem
on Layered Digraphs

Similarly to [6,3] we transform the original graph G = (V,E) to a layered digraph
GL = (VL, AL). The node set VL = {s} ∪ SL ∪RL includes Steiner nodes SL =
{il : i ∈ R∪ S, 1 ≤ l ≤ (B − 1)} and required nodes RL = {iB : i ∈ R}. The arc
set AL = As ∪Ag ∪Az consists of root arcs As = {(s, idsi) : {s, i} ∈ E}, general
arcs Ag = {(il, jl+dij), (jl, il+dij) : {i, j} ∈ E, i, j
= s, 1 ≤ l ≤ (B − dij)} and
zero arcs Az = {(il, iB) : i ∈ R, 1 ≤ l ≤ (B − 1)}. Arc delays dij are not needed
in GL since they are implicitly contained in the layered structure: node il in GL

represents node i in G with di = l. The arc costs in As and Ag equal the costs
of corresponding edges in E, arcs Az get assigned zero costs. Fig. 1(a) and 1(b)
demonstrate the transformation. Usually, GL can be reduced by the following
preprocessing rule: if a Steiner node v ∈ SL has no incoming or no outgoing arcs
it is removed together with all incident arcs. This preprocessing is able to reduce
the number of Steiner nodes and arcs significantly especially for instances with
a broad range of delay values, see Fig. 1(c) and Table 1. Further preprocessing
methods for Steiner trees can be found in [7,11].

The Steiner Arborescence Problem on GL is to find a Steiner tree TL =
(V T

L , AT
L) rooted in s ∈ V T

L with RL ⊂ V T
L ⊆ VL, AT

L ⊆ AL and minimal
arc costs cT

L =
∑

a∈AT
L
ca. An optimal Steiner arborescence TL,opt on GL corre-

sponds to an optimal Steiner tree Topt on G, moreover c(TL,opt) = c(Topt). This
has been shown in [3] for the HCMST problem and can be generalized to the
DCMT problem in a natural way. We simply transform TL,opt to Topt by remov-
ing all zero arcs (il, iB) ∈ AT

L together with their target nodes and rename all
nodes il ∈ V T

L to i. Fig. 1(c) and 1(d) show the optimal solution to the DCMT
problem on the example graph in Fig. 1(a).

There are many existing approaches for efficiently solving the Steiner tree
problem on graphs, e.g. [7,14,1]. All general ILP tree models either need ad-
ditional variables or an exponential number of constraints. In our case we are

A Layered Graph Model and an ALF to Solve DCMT Problems 379

2 3

(1,2)

(3,2)

(4,1)

(1,2)

(1,2)

(3,1)

(1,1)

(8,1)

(2,3)

0

4 5

1

(a)

4 51

1

l = 1

l = 2

l = 3

l = 4

l = 0 0

542 3

2 4 5

1

3

21 4 53

(b)

1

l = 1

l = 2

l = 3

l = 4

l = 0 0

542 3

2 4 5

1

3

21 4 53

1 4 5

(c)

2

(1,2)

(4,1)

(1,2)

(3,1)

0

4 5

1

(d)

1

l = 1

l = 2

l = 3

l = 0

1

0

0 5

0 5

0 5

0 5

2

1 2

2

0 5

0 5

0 5

W

(e)

Fig. 1. Example graph in (a) with edge labels (cost , delay) and root node 0. Squared
nodes denote terminal nodes. Corresponding layered digraph in (b) for B = 4 (arc
costs are omitted). Preprocessed graph GL in (c) with optimal solution denoted by
bold arcs. Optimal tree T in G in (d) with c(T) = 9. Example of an LP solution in (e)
where a directed connection cut inequality based on set W tightens the LP relaxation
(arc labels denote the corresponding y-values, grayed out arcs mean y = 0).

lucky to work on a special graph structure: the layered digraph is acyclic. This
property makes it possible to model the problem effectively with a polynomial
number of constraints without additional variables, see [13,5] and Section 3.
Zelikovsky et al. [19] present approximation algorithms for the Steiner tree prob-
lem in acyclic digraphs.

3 ILP Model on the Layered Digraph

We use binary variables xe as design variables for edges e ∈ E indicating whether
the edge is included in the solution T (xe = 1) or not (xe = 0). Similarly, we

380 M. Ruthmair and G.R. Raidl

use non-negative variables yiljk
for arcs (il, jk) ∈ AL in TL. Adapting the hop-

indexed model for the HCMST problem in [5] to the DCMT problem leads to
the Steiner Arborescence Layered (SAL) model:

min
∑
e∈E

cexe (1)

s.t.
∑

(il,jB)∈AL

yiljB = 1 ∀j ∈ R (2)

∑
(kl−dki

,il)∈AL,k =j

ykl−dki
il
≥ yiljl+dij

∀(il, jl+dij) ∈ Ag (3)

∑
(kl−dki

,il)∈AL

ykl−dki
il

= yiliB ∀(il, iB) ∈ Az (4)

ysidsi
= xe ∀e = {s, i} ∈ E (5)∑

(il,jl+dij
)∈AL

yiljl+dij
+

∑
(jl,il+dij

)∈AL

yjlil+dij
= xe ∀e = {i, j} ∈ E, i, j
= s (6)

yiljk
≥ 0 ∀(il, jl) ∈ AL (7)

xe ∈ {0, 1} ∀e ∈ E (8)

Constraints (2) ensure that each terminal node in GL has exactly one incoming
arc. The connectivity constraints (3) make sure that if there is an arc going out
of a Steiner node there has to be an incoming arc, too. Constraints (4) force the
use of the zero arc if there is an incoming arc. Together with equalities (2) this
leads to the use of at most one Steiner node of {il : 1 ≤ l ≤ (B − 1)}, ∀i ∈ R.
Equalities (5) and (6) link the directed arc variables y in GL to the corresponding
undirected edge variables x in G. By relaxing the integrality constraints (8) we
obtain the corresponding linear program SALLP.

Theorem 1. Model SAL can be used to solve the DCMT problem.

Proof. Constraints (2) force exactly one incoming arc for each terminal node
j ∈ RL in layer B of GL. We have to show that all terminal nodes are connected
to the root node s. If the incoming arc (i, j) originates in s we are done. Otherwise
constraints (3) and (4) ensure an incoming arc to i. Due to the acyclicity and
the layered structure of GL the source of an arc can only be in a lower layer
than the target. Repeating this argumentation for node i extends the path in a
backtracking way to the root node in layer 0. The union of all such paths forms
a connected acyclic graph including all terminal nodes. ��
We optionally add directed connection cut inequalities∑

(il,jk)∈AL, il∈W, jk /∈W

yiljk
≥ 1 ∀W ⊂ VL, s ∈ W, (VL \W) ∩RL
= ∅ (9)

A Layered Graph Model and an ALF to Solve DCMT Problems 381

4 51

1

l = 1

l = 2

l = 3

l = 4

l = 0 0

42 3

2 4 5

1

1 4 532

5

3

4 51

1

l = 1

l = 2

l = 3

l = 4

l = 0 0

42 3

2 4 5

1

1 4 532

5

3

2 3

(1,2)

(4,1)

(1,0)

(1,2)

(1,1)

0

4 5

1

Fig. 2. A layered graph G′
L is shown on the left derived from GL by redirecting arc

(21, 33) to node 3 on layer 1. In the middle the optimal solution T ′
L,opt in G′

L and on the
right the reverse transformed infeasible solution T ′

opt in G with c(T ′
opt) = 8 is shown.

The delay of edge (2, 3) in G is decreased to 0.

to model SAL to further tighten the LP relaxation, see Fig. 1(e) for an example,
and denote this extended model SALdcut . The optimal LP value of this model is
at least as high as the one of the MCF model in [6] and there are cases in which
the LP value is strictly better. This result has been shown by Gouveia et al. [3]
for the HCMST problem, and the proof can be trivially adapted for our DCMT
case.

The number of variables and constraints of model SAL can be estimated by
Equations (10) and (11) showing the high dependency on the delay bound B.
Therefore B is crucial for the performance and memory consumption of this
model which can be clearly observed in the experimental results, see Section 6.

|variables | = |E| + |AL| = O(|E| · B) (10)
|constraints| = |R| + |Ag| + |Az | + 2|E| + |AL| = O(|V | + |E| ·B) (11)

To partly overcome this drawback we introduce the Adaptive Layers Frame-
work (ALF) in Section 5 based on the theoretical results presented in the follow-
ing. In principle ALF calculates lower and upper bounds to the optimal costs in
reduced layered graphs and iteratively closes the gap by extending these graphs
appropriately until the two bounds are equal.

4 Lower and Upper Bounds by Redirecting Arcs

We define the length of the shortest delay path to each node in the original
graph G:

dmin
v := min

P (s,v)

∑
e∈P (s,v)

de, ∀v ∈ V \ {s}

In GL we now consider an arc (ul−duv , vl) ∈ As ∪ Ag, ul−duv ∈ VL, vl ∈
SL, dmin

v < l < B and redirect its target to a node vk ∈ SL on a lower layer
k < l. Since l > dmin

v there always exists a feasible node vk with k < l. We denote
the resulting graph G′

L.

382 M. Ruthmair and G.R. Raidl

4 51

1

l = 1

l = 2

l = 3

l = 4

l = 0 0

542 3

2 4 5

1

3

1 4 532

4 51

1

l = 1

l = 2

l = 3

l = 4

l = 0 0

542 3

2 4 5

1

3

1 4 532

2

(1,2)

(4,1)

(3,3)

(2,3)

0

4 5

1

Fig. 3. A layered graph G′′
L is shown on the left derived from GL by redirecting arc

(21, 42) to node 4 on layer 4. In the middle the optimal solution T ′′
L,opt in G′′

L and on
the right the reverse transformed solution T ′′

opt in G with c(T ′′
opt) = 10 is shown. The

delay of edge (2, 4) in G is increased to 3.

Lemma 1. Let TL,opt and T ′
L,opt be optimal solutions to the Steiner arbores-

cence problem on GL and G′
L, respectively. Furthermore we denote by Topt

and T ′
opt the corresponding reverse transformed trees in G, respectively. Then

c(T ′
opt) ≤ c(Topt).

Proof. Redirecting an arc in GL from target vl to node vk on a lower layer k < l
corresponds to a decrease of the related edge delay in G. Therefore, the solution
space may be extended since it may now be easier to satisfy the delay bound.
The optimal solution Topt still stays feasible but one or more of the new solutions
may have less cost than Topt, so c(T ′

opt) ≤ c(Topt). ��
Fig. 2 shows layered graph G′

L derived from the previous example graph in
Fig. 1(c). One arc is redirected to a new target on a lower layer. The optimal
solution T ′

L,opt in G′
L has less cost than the optimal solution TL,opt in GL. There-

fore T ′
opt cannot be feasible for the DCMT problem on G otherwise Topt would

not be optimal. On the other hand if T ′
opt would be feasible Lemma 2 applies.

Lemma 2. If T ′
opt is feasible for the DCMT problem on G then it is optimal.

Proof. According to Lemma 1, c(T ′
opt) ≤ c(Topt). If T ′

opt is feasible for the DCMT
problem on G then c(T ′

opt) = c(Topt). Therefore T ′
opt is an optimal solution to

the original problem. ��
If we redirect an arc to a target node on a higher layer instead of a lower one
and denote the resulting graph G′′

L, Lemma 3 holds.

Lemma 3. Let T ′′
L be any feasible solution in G′′

L and T ′′ the corresponding
reverse transformed tree in G. Then T ′′ is feasible for the DCMT problem on G.
Furthermore, c(T ′′

opt) ≥ c(Topt).

Proof. Redirecting an arc in GL to a new target node on a higher layer corre-
sponds to increasing the respective edge delay in G. Therefore it may be harder

A Layered Graph Model and an ALF to Solve DCMT Problems 383

to satisfy the delay bound and the solution space may be pruned. Nevertheless
all feasible solutions T ′′ stay feasible for the original DCMT problem on G since
replacing the modified edge delay by their original smaller one cannot violate the
delay bound. However, former optimal solutions may now be infeasible in G′′

L,
so c(T ′′

opt) ≥ c(Topt). ��
Figure 3 shows an example to this case. By redirecting arc (21, 42) to a higher
layer the former optimal solution TL,opt now is not valid anymore in G′′

L. Here
the new optimal solution T ′′

opt in G has higher cost and therefore provides an
upper bound to Topt.

5 Adaptive Layers Framework (ALF)

To reduce the size of a layered graph GL we consider a node vl ∈ SL, d
min
v < l <

B and redirect all incoming arcs (ul−duv , vl) ∈ AL, ul−duv ∈ VL, to a node vk on
a different layer k
= l. Then we can safely remove vl together with all outgoing
arcs from GL since it cannot be reached from the root s anymore and therefore
cannot be part of a solution. If we want to obtain a lower bound the layer k of
the new target node vk is set to maxdmin

v ≤i<l{i : vi ∈ VL}, for an upper bound
k = minl<i≤B{i : vi ∈ VL}. In other words, we want to minimize the difference
between the original and the redirected target layer. Repeating this redirection
process for further Steiner nodes results in a sequence of layered graphs with
monotonically decreasing size. In contrast to this reduction process ALF goes
the other way and starts with the smallest possible layered graph providing
a feasible solution to the model SAL and extends it iteratively to tighten the
bounds. Node set V 0

L of the initial layered graph G0
L just contains root node s,

terminal nodes RL, Steiner nodes vdmin
v

, v ∈ R ∪ S, on the lowest feasible layer
and Steiner nodes vB−1, v ∈ S. If necessary, arcs are redirected to the next
available layers depending on the desired bound.

The next step is to compute optimal LP and integer solutions T i
L,LP and

T i
L,opt of model SAL(LP) on the current layered graph Gi

L. For all redirected arcs
(ul, vk) ∈ Ai

L with yulvk
> 0 in T i

L,LP or T i
L,opt we extend Gi

L by adding the node
vl+duv together with related outgoing arcs. If necessary, existing arcs pointing
to a node vl, 1 ≤ l ≤ B, are modified to either prevent a former redirection
or to reduce the difference between the original and the current target layer.
The resulting graph is denoted Gi+1

L . Applying Lemma 1 and 3 we know that
c(T i+1

L,opt) ≥ c(T i
L,opt) if redirecting to lower layers and c(T i+1

L,opt) ≤ c(T i
L,opt)

otherwise. These steps are now repeated on Gi+1
L and further graphs until the

two bounds match. Algorithm 1 shows this iterative solving process.
When redirecting to lower layers we have to consider that the resulting graph

Gi
L does not necessarily need to be acyclic anymore. Therefore T i

L,LP or T i
L,opt

of model SAL may be unconnected and contain cycles. Adding violated directed
connection cut inequalities prevents these cycles and therefore may lift the lower
bound. When redirecting the arcs to higher layers we are not faced with this

384 M. Ruthmair and G.R. Raidl

Algorithm 1. Adaptive Layers Framework (ALF)

Input: graph G = (V, E)
Output: an optimal solution Topt to the DCMT problem
V 0

L = s ∪ {vdmin
v

: v ∈ R ∪ S} ∪ {vB−1 : v ∈ S} ∪ RL // initial node set1

LB = 0, UB = ∞ // lower and upper bounds2

redirect = down // arc redirection ∈ {down, up}3

i = 04

while LB �= UB do5

build Gi
L depending on V i

L and redirect6

T i
L,LP = solve(SAL

(dcut)
LP (Gi

L)) // solve LP7

T i
L,opt = solve(SAL(dcut)(Gi

L)) // solve ILP8

transform T i
L,opt to T i

opt on G9

if (T i
opt is feasible) ∧ (redirect == up) then T i

opt = improve(T i
opt)10

if (T i
opt is feasible) ∧ (c(T i

opt) < UB) then UB = c(T i
opt), Topt = T i

opt11

if redirect == down then LB = c(T i
opt)12

V i+1
L = V i

L // extend layered graph Gi
L13

forall (ul, vk) ∈ T i
L,LP ∪ T i

L,opt do14

if (yulvk > 0) ∧ (k − l �= duv) then V i+1
L = V i+1

L ∪ {vl+duv}15

switch redirect , i = i + 116

return Topt17

problem, so connection cuts cannot improve generated upper bounds in this case.
Additionally, every time we obtain a solution feasible in G we try to improve it
by heuristic methods to further tighten the global upper bound.

Theorem 2. Algorithm 1 terminates.

Proof. As long as the optimal solution T i
L,opt in graph Gi

L is infeasible for the
DCMT problem when calculating a lower bound, T i

L,opt must contain a redirected
arc. Adding an appropriate node vl to Gi+1

L prevents the redirection leading to
a new solution T i+1

L,opt. In worst case all nodes vl ∈ SL are added to the layered
graph resulting in the original graph GL with optimal solution TL,opt. Since |SL|
is finite the number of iterations is bounded. ��
More generally, ALF can be (easily) adapted to work for other problems with
delay or weight constraints that can be modeled on a directed layered graph. One
just has to replace model SAL(dcut) by an appropriate model for the considered
problem on the layered graph. To enhance upper bounds some problem specific
heuristics could be provided, too.

6 Computational Results

We compared our model SAL(dcut) and framework ALF (dcut) to three existing
approaches: the Miller-Tucker-Zemlin based model (MTZ), its variant with addi-
tional connection cuts from [9] (MTZ dcut) and the MCF formulation on layered

A Layered Graph Model and an ALF to Solve DCMT Problems 385

Table 1. Average sizes of preprocessed graphs G, full layered graphs GL and final
layered graphs GI

L in ALF (dcut) after I iterations (B: delay bound)

I V I
L AI

L

Set B |V | |E| |VL| |AL| ALF ALF dcut ALF ALF dcut ALF ALF dcut

R1000 1000 41 401 34219 433632 15 13 681 642 7565 7167
1500 41 414 54219 843142 16 14 895 852 12363 11909
2000 41 414 74219 1256542 15 14 760 687 12274 11019
2500 41 414 94219 1669942 12 11 617 565 10634 9693

C1000 1000 41 572 34221 537767 16 13 831 725 11683 10256
1500 41 589 54221 1106116 15 13 1384 1170 25110 21519
2000 41 589 74221 1679516 17 17 1687 1731 34899 35896
2500 41 589 94221 2252916 13 12 1762 1510 40291 34531

E1000 1000 41 632 34220 565509 18 17 1298 1171 19472 17379
1500 41 668 54220 1215032 15 13 1685 1453 33291 28787
2000 41 668 74220 1874432 11 11 1785 1890 42255 44663
2500 41 668 94220 2533832 10 11 1829 1932 49036 51358

graphs from [6] (MCFL). Tests were performed on complete spanning tree in-
stances with 41 nodes introduced in [6]. The three main instance sets R, C and E
each have different graph structures defined by their edge cost functions: R has
random edge costs, C and E both have Euclidean costs fixing the source s near
the center and near the border, respectively. Each main instance set consists of
different subsets of five input graphs varying in the number of possible discrete
edge delay values, e.g. C5 denotes the set of instances with five different integer
delay values de ∈ {1, ..., 5}, ∀e ∈ E. All tests have been executed on a single
core of a multicore system consisting of Intel Xeon E5540 processors with 2.53
GHz and about 3 GB RAM per core. We used IBM ILOG CPLEX 12.1 to solve
the (I)LP models. The y variables in model SAL(dcut) and the flow variables
in model MCFL are declared Boolean since the CPLEX presolver benefits from
integrality of these variables and therefore can significantly reduce the model.
To reduce the size of the input graphs all preprocessing methods presented in
[16] are applied. Solutions obtained in ALF which are feasible in G are improved
by a variable neighborhood descent introduced in [15] to further tighten upper
bounds. Table 1 exemplarily shows graph sizes of the instance sets with the
largest sets of achievable delay values. We list average sizes of preprocessed in-
put graphs, full layered graphs used in model SAL(dcut), and final layered graphs
in iteration I of ALF (dcut) when either an optimal solution is found or the time
limit is reached.

When iteratively solving (I)LP models in the ALF framework we can pro-
vide tight upper bounds to CPLEX obtained in previous calculations support-
ing the presolving phase and pruning of the branch-and-bound tree. According
to Lemma 2 it would be enough to iteratively compute lower bounds in ALF .
But repeated switching between lower and upper bound turned out to work
well in practice speeding up the convergence. Finally, in case of limited runtime
ALF usually yields small gaps and obtains feasible solutions by computing both
bounds. Some tests were performed to initialize the first layered graph in a more
sophisticated way, e.g. based on heuristic solutions, but following the proposed
trivial way mostly yields the best results.

386 M. Ruthmair and G.R. Raidl

Table 2. Comparison of different ILP models on test sets from [6] (B: delay bound,
O: number of optimal solutions (out of 5), gap: average gap in percent, time: median
CPU time in seconds; time limit: 10000 seconds; best results are printed bold)

MTZ MTZ dcut MCFL SAL SALdcut ALF ALF dcut

Set B O gap time O gap time O gap time O gap time O gap time O gap time O gap time

R2 3 5 0.0 0 5 0.0 0 5 0.0 0 5 0.0 0 5 0.0 0 5 0.0 0 5 0.0 0
5 5 0.0 11 5 0.0 13 5 0.0 19 5 0.0 0 5 0.0 0 5 0.0 0 5 0.0 1
7 5 0.0 7 5 0.0 6 5 0.0 91 5 0.0 0 5 0.0 0 5 0.0 1 5 0.0 1
9 5 0.0 0 5 0.0 1 5 0.0 677 5 0.0 1 5 0.0 1 5 0.0 2 5 0.0 2

C2 3 5 0.0 0 5 0.0 0 5 0.0 0 5 0.0 0 5 0.0 0 5 0.0 0 5 0.0 0
5 3 1.1 6403 3 1.1 1627 5 0.0 9 5 0.0 2 5 0.0 0 5 0.0 5 5 0.0 3
7 4 0.9 3487 5 0.0 335 5 0.0 891 5 0.0 5 5 0.0 2 5 0.0 10 5 0.0 6
9 5 0.0 1074 5 0.0 31 5 0.0 1794 5 0.0 7 5 0.0 3 5 0.0 20 5 0.0 16

E2 3 5 0.0 10 5 0.0 11 5 0.0 1 5 0.0 0 5 0.0 0 5 0.0 1 5 0.0 1
5 0 9.9 10000 0 11.6 10000 5 0.0 274 5 0.0 19 5 0.0 4 5 0.0 29 5 0.0 34
7 0 10.6 10000 0 9.7 10000 0 82.1 10000 5 0.0 375 5 0.0 19 5 0.0 1512 5 0.0 715
9 0 7.4 10000 0 5.4 10000 0 100.0 10000 5 0.0 1155 5 0.0 44 4 0.3 1944 5 0.0 843

R5 6 5 0.0 15 5 0.0 17 5 0.0 17 5 0.0 0 5 0.0 0 5 0.0 0 5 0.0 0
8 5 0.0 44 5 0.0 28 5 0.0 195 5 0.0 0 5 0.0 0 5 0.0 1 5 0.0 1

10 5 0.0 49 4 1.1 30 5 0.0 561 5 0.0 1 5 0.0 1 5 0.0 2 5 0.0 2
12 5 0.0 24 5 0.0 16 5 0.0 1119 5 0.0 1 5 0.0 1 5 0.0 2 5 0.0 2

C5 6 5 0.0 24 5 0.0 34 5 0.0 8 5 0.0 0 5 0.0 0 5 0.0 1 5 0.0 1
8 4 1.1 714 4 0.7 564 5 0.0 109 5 0.0 1 5 0.0 0 5 0.0 2 5 0.0 1

10 2 2.4 10000 2 1.5 10000 3 40.0 3269 5 0.0 4 5 0.0 2 5 0.0 15 5 0.0 10
12 1 2.2 10000 5 0.0 1416 4 0.2 6723 5 0.0 9 5 0.0 6 5 0.0 36 5 0.0 32

E5 6 5 0.0 2437 5 0.0 7258 5 0.0 77 5 0.0 2 5 0.0 1 5 0.0 7 5 0.0 7
8 0 7.5 10000 0 7.0 10000 5 0.0 897 5 0.0 6 5 0.0 3 5 0.0 29 5 0.0 14

10 0 9.1 10000 0 8.5 10000 3 40.0 4067 5 0.0 18 5 0.0 13 5 0.0 62 5 0.0 54
12 0 9.3 10000 0 8.0 10000 1 80.0 10000 5 0.0 125 5 0.0 52 5 0.0 686 5 0.0 335

R10 10 5 0.0 45 5 0.0 77 5 0.0 149 5 0.0 0 5 0.0 0 5 0.0 1 5 0.0 1
15 5 0.0 129 5 0.0 322 4 20.0 2291 5 0.0 1 5 0.0 1 5 0.0 3 5 0.0 3
20 5 0.0 63 5 0.0 90 3 40.0 8539 5 0.0 1 5 0.0 1 5 0.0 5 5 0.0 4
25 5 0.0 28 4 0.6 56 0 100.0 10000 5 0.0 3 5 0.0 3 5 0.0 8 5 0.0 5

C10 10 5 0.0 70 5 0.0 45 5 0.0 220 5 0.0 0 5 0.0 0 5 0.0 2 5 0.0 2
15 4 0.8 1034 5 0.0 481 3 40.0 3212 5 0.0 2 5 0.0 2 5 0.0 7 5 0.0 5
20 2 2.6 10000 3 0.8 3485 0 100.0 10000 5 0.0 25 5 0.0 18 5 0.0 37 5 0.0 32
25 1 2.2 10000 5 0.0 2801 0 100.0 10000 5 0.0 141 5 0.0 84 5 0.0 200 5 0.0 167

E10 10 4 0.5 2590 5 0.0 2918 5 0.0 301 5 0.0 1 5 0.0 1 5 0.0 5 5 0.0 6
15 0 10.0 10000 0 11.0 10000 0 68.0 10000 5 0.0 14 5 0.0 24 5 0.0 140 5 0.0 112
20 0 10.1 10000 0 10.0 10000 0 100.0 10000 5 0.0 590 5 0.0 267 5 0.0 3320 5 0.0 2089
25 0 9.1 10000 0 7.1 10000 0 100.0 10000 2 1.5 10000 5 0.0 1105 2 1.6 10000 3 1.9 9043

R100 100 4 4.5 129 4 4.8 177 0 100.0 10000 5 0.0 10 5 0.0 8 5 0.0 14 5 0.0 11
150 4 5.6 56 4 6.5 131 0 100.0 10000 5 0.0 14 5 0.0 15 5 0.0 5 5 0.0 6
200 4 1.3 34 4 2.6 143 0 100.0 10000 5 0.0 27 5 0.0 34 5 0.0 10 5 0.0 11
250 5 0.0 9 5 0.0 9 0 100.0 10000 5 0.0 70 5 0.0 66 5 0.0 12 5 0.0 6

C100 100 2 3.0 10000 3 2.2 8651 0 100.0 10000 5 0.0 67 5 0.0 122 5 0.0 89 5 0.0 87
150 0 4.1 10000 2 1.2 10000 0 100.0 10000 5 0.0 1027 4 11.1 1824 5 0.0 294 5 0.0 389
200 1 2.4 10000 3 0.7 2539 0 100.0 10000 2 2.3 10000 1 54.0 10000 5 0.0 1785 5 0.0 1756
250 3 1.3 3423 5 0.0 141 0 100.0 10000 1 5.0 10000 0 59.3 10000 4 0.2 2007 4 0.1 4139

E100 100 0 8.3 10000 0 7.3 10000 0 100.0 10000 5 0.0 886 5 0.0 1211 5 0.0 717 5 0.0 1150
150 0 12.1 10000 0 9.4 10000 0 100.0 10000 1 6.7 10000 0 51.8 10000 2 1.6 10000 2 0.5 10000
200 0 9.5 10000 0 7.5 10000 0 100.0 10000 0 11.8 10000 0 72.5 10000 0 4.5 10000 0 2.0 10000
250 0 7.3 10000 0 5.5 10000 0 100.0 10000 0 12.3 10000 0 73.6 10000 0 5.9 10000 0 3.2 10000

R1000 1000 3 4.3 725 3 7.9 2294 0 100.0 10000 3 6.0 8035 3 34.5 7217 5 0.0 24 5 0.0 46
1500 1 4.0 10000 1 9.0 10000 0 100.0 10000 1 20.2 10000 1 74.3 10000 5 0.0 97 5 0.0 174
2000 4 1.3 310 3 3.6 577 0 100.0 10000 1 47.3 10000 0 92.9 10000 5 0.0 44 5 0.0 32
2500 5 0.0 24 4 0.6 33 0 100.0 10000 0 77.3 10000 1 75.1 10000 5 0.0 17 5 0.0 13

C1000 1000 4 2.0 3208 4 1.9 2220 0 100.0 10000 1 7.8 10000 1 41.1 10000 5 0.0 30 5 0.0 16
1500 0 5.6 10000 0 4.0 10000 0 100.0 10000 0 15.2 10000 0 75.1 10000 5 0.0 511 5 0.0 280
2000 0 6.1 10000 0 3.9 10000 0 100.0 10000 0 77.7 10000 0 78.0 10000 3 0.4 9556 3 0.1 5152
2500 1 2.6 10000 4 0.6 896 0 100.0 10000 0 76.8 10000 0 87.7 10000 5 0.0 1389 5 0.0 3545

E1000 1000 0 8.3 10000 1 8.4 10000 0 100.0 10000 0 14.6 10000 0 71.0 10000 5 0.0 840 4 0.3 4919
1500 0 10.2 10000 0 8.8 10000 0 100.0 10000 0 57.4 10000 0 79.9 10000 3 1.8 8383 2 1.3 10000
2000 0 9.5 10000 0 7.4 10000 0 100.0 10000 0 75.1 10000 0 82.5 10000 0 3.9 10000 1 1.2 10000
2500 0 7.6 10000 0 5.3 10000 0 100.0 10000 0 93.3 10000 0 90.0 10000 0 5.0 10000 0 1.6 10000

A Layered Graph Model and an ALF to Solve DCMT Problems 387

Table 2 provides computational results and a comparison between all models
applied on the described test sets. We present the numbers of found optimal
solutions, the average gaps between lower and upper bounds and the median
runtimes in seconds if the method finished before reaching the time limit of 10000
seconds. As already mentioned in [6] the E instances are much harder to solve
than the other instances which can easily be seen in the results especially when
considering instances with large sets of different delay values and high bounds.
Model SALdcut provides extremely tight LP relaxation values, see [3], where
branching is hardly necessary to compute optimal integer solutions. Nevertheless,
one has to consider the additional runtime for searching violated cuts which in
most cases turned out to be more efficient than branching. The only advantage
of the MTZ formulations is the independence of actual delay values and bounds.
But even so it is not competitive to our approaches in almost all cases. Model
MCFL obviously suffers from the huge amount of flow variables and therefore
it is rarely applicable to the used instances. Most of the time solving model
SAL(dcut) outperforms all other methods, but when huge sets of achievable delay
values or high bounds arise, ALF is clearly superior. The overhead of iteratively
computing small ILP models becomes worth when even LP relaxations of model
SAL(dcut) on the full layered graph are hard to solve. Even though ALF is
mostly slower than solving model SAL(dcut) it provides tight gaps and robust
performance throughout all test sets. Furthermore, ALF consumes substantially
less memory since the graphs it works on are significantly smaller than the full
layered graphs, see Table 1.

7 Conclusions and Future Work

We presented two approaches to solve delay-constrained minimum tree problems
based on using an appropriate layered graph. The first ILP model utilizes the
special structure of this graph, mainly its acyclicity, to reduce the number of
necessary variables and constraints. It provides excellent results in many cases
except on instances with huge sets of possible discrete edge delay values and high
bounds since the size of the layered graph heavily depends on these properties.
The second approach – an algorithmic framework – tries to tackle exactly these
issues. By computing lower and upper bounds for the optimal solution value
on reduced layered graphs it obtains small gaps and shows robust performance
throughout all test sets. Besides consuming significantly less memory it even
yields tight bounds in cases where it is not possible to compute LP relaxations
of the model on the full layered graph in reasonable time.

In future we try to combine heuristic methods with our adaptive layers frame-
work to further speed up the convergence and reduce the number of necessary
iterations. Also, we want to embed more sophisticated state-of-the-art solvers
for the STP to additionally improve our framework. For the sake of a more com-
prehensive comparison we intend to re-implement the column generation and
Lagrangian relaxation approach from [6]. Last but not least, we plan to adapt
our framework for other optimization problems.

388 M. Ruthmair and G.R. Raidl

References

1. de Aragão, M., Uchoa, E., Werneck, R.: Dual heuristics on the exact solution of
large Steiner problems. Electronic Notes in Discrete Mathematics 7, 150–153 (2001)

2. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1, 195–207
(1971)

3. Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and diameter-
constrained minimum spanning tree problems as Steiner tree problems over layered
graphs. Mathematical Programming, pp. 1–26 (2010)

4. Gouveia, L.: Using Variable Redefinition for Computing Lower Bounds for Mini-
mum Spanning and Steiner Trees with Hop Constraints. Informs Journal on Com-
puting 10(2), 180–188 (1998)

5. Gouveia, L.: Using hop-indexed models for constrained spanning and Steiner tree
models, pp. 21–32. Kluwer Academic Publishers, Dordrecht (1999)

6. Gouveia, L., Paias, A., Sharma, D.: Modeling and Solving the Rooted Distance-
Constrained Minimum Spanning Tree Problem. Computers and Operations Re-
search 35(2), 600–613 (2008)

7. Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Net-
works 32(3), 207–232 (1998)

8. Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: Multicast routing for multimedia
communication. IEEE / ACM Transactions on Networking 1(3), 286–292 (1993)

9. Leggieri, V., Haouari, M., Triki, C.: An Exact Algorithm for the Steiner Tree
Problem with Delays. Electronic Notes in Discrete Mathematics 36, 223–230 (2010)

10. Ljubic, I., Gollowitzer, S.: Modelling the hop constrained connected facility location
problem on layered graphs. In: Electronic Notes in Discrete Mathematics, vol. 36,
pp. 207–214. Elsevier, Amsterdam (2010)

11. Ljubic, I., Weiskircher, R., Pferschy, U., Klau, G., Mutzel, P., Fischetti, M.: An
algorithmic framework for the exact solution of the prize-collecting Steiner tree
problem. Mathematical Programming 105(2), 427–449 (2006)

12. Manyem, P., Stallmann, M.: Some approximation results in multicasting. Tech.
Rep. TR-96-03, North Carolina State University (1996)

13. Nastansky, L., Selkow, S., Stewart, N.: Cost-minimal trees in directed acyclic
graphs. Mathematical Methods of Operations Research 18(1), 59–67 (1974)

14. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In:
SODA 2000: Proceedings of the eleventh annual ACM-SIAM symposium on Discrete
algorithms, pp. 770–779. Society for Industrial and Applied Mathematics (2000)

15. Ruthmair, M., Raidl, G.R.: A Kruskal-Based Heuristic for the Rooted Delay-
Constrained Minimum Spanning Tree Problem. In: Moreno-Dı́az, R., Pichler, F.,
Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 713–720.
Springer, Heidelberg (2009)

16. Ruthmair, M., Raidl, G.R.: Variable Neighborhood Search and Ant Colony Op-
timization for the Rooted Delay-Constrained Minimum Spanning Tree Problem.
In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS,
vol. 6239, pp. 391–400. Springer, Heidelberg (2010)

17. Xu, Y., Qu, R.: A GRASP approach for the Delay-constrained Multicast rout-
ing problem. In: Proceedings of the 4th Multidisplinary International Scheduling
Conference (MISTA4), Dublin, Ireland, pp. 93–104 (2009)

18. Xu, Y., Qu, R.: A hybrid scatter search meta-heuristic for delay-constrained mul-
ticast routing problems. Applied Intelligence, 1–13 (2010)

19. Zelikovsky, A.: A series of approximation algorithms for the acyclic directed Steiner
tree problem. Algorithmica 18(1), 99–110 (1997)

Jump Number of Two-Directional Orthogonal

Ray Graphs

José A. Soto1,	 and Claudio Telha2

1 Department of Mathematics, MIT, Cambridge, MA, USA
jsoto@math.mit.edu

2 Operation Research Center, MIT, Cambridge, MA, USA
ctelha@mit.edu

Abstract. We model maximum cross-free matchings and minimum bi-
clique covers of two-directional orthogonal ray graphs (2-dorgs) as
maximum independent sets and minimum hitting sets of an associated
family of rectangles in the plane, respectively. We then compute the
corresponding maximum independent set using linear programming and
uncrossing techniques. This procedure motivates an efficient combinato-
rial algorithm to find a cross-free matching and a biclique cover of the
same cardinality, proving the corresponding min-max relation.

We connect this min-max relation with the work of Györi [19], Lubiw [23],
and Frank and Jordán [16] on seemingly unrelated problems. Our result
can be seen as a non-trivial application of Frank and Jordán’s Theorem.

As a direct consequence, we obtain the first polynomial algorithm
for the jump number problem on 2-dorgs. For the subclass of convex
graphs, our approach is a vast improvement over previous algorithms.
Additionally, we prove that the weighted maximum cross-free matching
problem is NP-complete for 2-dorgs and give polynomial algorithms for
some subclasses.

1 Introduction

The jump number problem is to find a linear extension L of a poset P minimizing
the number of jumps, that is, the number of pairs of consecutive elements in L
that are incomparable in P . For bipartite posets, Chaty and Chein [8] have shown
that this is equivalent to find a maximum alternating-cycle-free matching in the
underlying comparability graph, which is NP-hard as shown by Pulleyblank [30].

Two related problems are the minimum biclique cover and the maximum
cross-free matching problems. Given a bipartite graph G = (A∪B, E), a biclique
is the edge set of a complete bipartite subgraph. A biclique cover is a family
of bicliques whose union is E. Two edges e and f cross if there is a biclique
containing both. A cross-free matching is a collection of pairwise non-crossing
edges. Note that the maximum size of a cross-free matching is at most the
minimum size of a biclique cover. An interesting question is to find classes of
graphs where the two quantities coincide.
� The first author was partially supported by NSF contract CCF-0829878 and by ONR

grant N00014-11-1-0053.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 389–403, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

390 J.A. Soto and C. Telha

For chordal bipartite graphs, alternating-cycle-free matchings and cross-free
matchings coincide, making the jump number problem equivalent to the maxi-
mum cross-free matching problem. Müller [25] has shown that the jump number
problem is NP-hard in this class. There are polynomial time algorithms for the
jump number problem in important subclasses, such as bipartite permutation
graphs [33,3,12], biconvex graphs [3] and convex graphs [11]. For this last class,
the fastest known algorithm runs in O(|A ∪ B|9) time [11]. To our knowledge,
finding efficient algorithms for the jump number problem in any natural super-
class of convex bipartite graphs is open in the literature.

The minimum biclique cover problem arise in many areas (e.g. biology [27],
chemistry [9] and communication complexity [22]). Orlin [28] has shown that
finding a minimum biclique cover of a bipartite graph is NP-hard. Müller [26]
extended this result to chordal bipartite graphs. There are polynomial time algo-
rithms for bipartite graphs that are C4-free [26], distance hereditary graphs [26],
permutation graphs [26], and domino-free graphs [1]. To our knowledge, these
are the only bipartite classes for which this problem has been explicitly shown
to be polynomially solvable.

Our Results. We study both the maximum cross-free matching and the mini-
mum biclique cover problems on the class of two-directional orthogonal ray graphs
(2-dorgs), which is a superclass of convex bipartite graphs that has recently been
studied by many authors [29,32]. Our main result is that the size of a maximum
cross-free matching is equal to the size of a minimum biclique cover in 2-dorgs,
and both objects are polynomially computable. A key tool for this result is a new
geometrical reformulation of the previous problems as the maximum independent
set and the minimum hitting set of an associated collection of rectangles in the
plane respectively. Our reformulation is reminiscent of the one already observed
by Ceroi [5], between the jump number of a two-dimensional poset and the max-
imum weighted independent set of a collection of rectangles in the plane. Using
this geometric representation, we give a linear program formulation for the max-
imum cross-free matching. Even though the associated polytope is not integral,
we show how to find an optimal integral vertex by using an uncrossing proce-
dure. We can also find this vertex by solving a related linear program having
only integral optimal extreme points. We are further able to devise an efficient
combinatorial algorithm that computes simultaneously a maximum cross-free
matching and a minimum biclique cover of the same cardinality in a 2-dorg.
We also study a weighted version of the maximum cross-free matching problem,
which is equivalent to the weighted jump number studied by Ceroi [6] and show
that this problem is NP-hard for 2-dorgs.

We explore the relation between our main result and the following, appar-
ently unrelated, pairs of combinatorial problems where a min-max result exists:
the minimum rectangle cover and the maximum antirectangle of an orthogonal
biconvex board, studied by Chaiken et al. [7]; the minimum base of a family of
intervals and the maximum independent set of point-interval pairs, studied by
Györi [19] and Lubiw [23]; and finally, the minimum edge-cover and the max-
imum half-disjoint family of set-pairs, studied by Frank and Jordán [16]. Our

Jump Number of Two-Directional Orthogonal Ray Graphs 391

result can be seen both as a generalization of Györi’s result and as a non-trivial
application of Frank and Jordán’s Theorem.

Additionally, for special subclasses of 2-dorgs, we give new results: (1) We
give new efficient algorithms to solve the maximum weight cross-free matching
in bipartite permutation graphs. (2) For convex graphs, we show how to use
algorithmic versions of Györi’s result [18,21] to compute a maximum cross-free
matching and minimum biclique cover in O(n2) time and how to use a result by
Lubiw [23] to compute a maximum weight cross-free matching in O(n3) time.

2 Preliminaries

Notation. The rectangles we consider in this paper are closed sets in the plane
(possibly not full dimensional). Their sides are parallel to the x and y axes and
their vertices are points in Z2. For a set S ∈ Z2, we denote by Sx the projection
of S onto the x-axis. If S = {p} is a singleton, we write Sx simply as px. For sets
S, S′ ∈ Z2, we write Sx < S′

x if the projection Sx is to the left of the projection
S′

x, that is, if px < p′x for all p ∈ S, p′ ∈ S′. We extend this convention to
Sx > S′

x, Sx ≤ S′
x, Sx ≥ S′

x and to the projections onto the y-axis as well.
Two special sets of points A, B ⊆ Z2, not necessarily disjoint, represent the

vertices of the bipartite graphs we consider in this paper. We use a and b to
denote points of A and B respectively. For ax ≤ bx and ay ≤ by, we use Γ (a, b)
to the denote the rectangle with bottom-left corner a and top-right corner b. Let
R(A, B) (or simply R) be the set of rectangles with bottom-left corner in A and
top-right corner in B. This is, R = {Γ (a, b) : a ∈ A, b ∈ B, ax ≤ bx, ay ≤ by}.
The subset of inclusion-wise minimal rectangles of R is denoted by R↓. Abusing
notation, we denote by G = (A∪B,R) the bipartite graph with bipartition A and
B, where there is an edge between a ∈ A and b ∈ B if and only if Γ (a, b) ∈ R.
Finally, for a given rectangle R ∈ R, we denote by A(R) (resp. B(R)) the
bottom-left (resp. top-right) corner of the rectangle R.

We claim that the class of graphs arising from the previous construction is
equivalent to the class of two-directional orthogonal ray graphs (2-dorgs) recently
considered by Shrestha et al. [32]. A 2-dorg is a bipartite graph on A∪B where
each vertex v is associated to a point (vx, vy) ∈ Z2, so that a ∈ A and b ∈ B are
connected if and only the rays [ax,∞)×{ay} and {bx}× (−∞, by] intersect each
other. Since this condition is equivalent to Γ (a, b) ∈ R(A, B), the claim follows.

It is an easy exercise to prove that every 2-dorg admits a geometric represen-
tation where no two points of A ∪ B are in the same horizontal or vertical line,
and furthermore, A ∪ B are points of the grid [n]2 = {1, . . . , n} × {1, . . . , n},
where n = |A ∪ B|. When these conditions hold, we say that G = (A ∪ B,R) is
in rook representation. For the rest of the paper, we consider a 2-dorg as being
both the graph and its geometric representation.

Graph Definitions. We recall the following definitions of a nested family of
bipartite graph classes. We keep the notation G = (A∪B,R) since we can show
they are 2-dorgs.

392 J.A. Soto and C. Telha

A bipartite permutation graph is the comparability graph of a two dimensional
poset of height 2, where A is the set of minimal elements and B is the complement
of this set. A two dimensional poset is a collection of points in Z2 with the
relation p ≤Z2 q if px ≤ qx and py ≤ qy.

In a convex graph, there is a labeling for A = {a1, . . . , ak} so that the neigh-
borhood of each b ∈ B is a set of consecutive elements of A. In a biconvex graph,
there is also a labeling for B = {b1, . . . , bl} so that the neighborhood of each
a ∈ A is consecutive in B.

In an interval bigraph, each vertex v ∈ A ∪ B is associated to a real closed
interval Iv (w.l.o.g. with integral extremes) so that a ∈ A and b ∈ B are adjacent
if and only if Ia ∩ Ib 	= ∅.

It is known that bipartite permutation ⊂ biconvex ⊂ convex ⊂ interval bi-
graph ⊂ 2-dorg and that all inclusions are strict [4,32]. We give a simple proof
of the last inclusion using our geometrical interpretation of 2-dorgs. Let G be
an interval bigraph with parts A and B. For a ∈ A with interval Ia = [s, t] and
b ∈ B with interval Ib = [s′, t′], we identify a with the point (s,−t) ∈ Z2 and
b with the point (t′,−s′) ∈ Z2. By definition, ab is an edge of G if and only if
[s, t]∩ [s′, t′] 	= ∅, or equivalently if s ≤ t′ and −t ≤ −s′. This shows that Γ (a, b)
is in R(A, B). Intuitively, the previous assignment maps A (resp. B) to points
weakly below (resp. weakly above) the diagonal line y = −x in such a way that
their horizontal and vertical projections onto this line define the corresponding
intervals. We illustrate this construction in Fig. 1.

0 10
(7,−5)

(7,−2)

(0,−4)

a1 a2 a3 a4

b3b2b1

[0, 10] [2, 7] [5, 7]

[0, 4] [2, 6] [4, 10] [8, 10]

(10, 0)

(2,−6)

(8,−10)(4,−10)

Fig. 1. An interval bigraph, its interval representation and a geometric representation
as 2-dorg

Geometric Interpretation. Given a bipartite graph G = (V, E), a biclique is
the edge set of a complete bipartite subgraph of G. A biclique cover is a family
of bicliques whose union is E. Two distinct edges e = ab and f = a′b′ cross if
there is a biclique containing both e and f . This holds if and only if ab′ and a′b
are also edges of the graph. In particular, two edges incident to the same vertex
cross. A cross-free matching is a collection of edges pairwise non-crossing. We
denote the maximum size of a cross-free matching by α∗(G) and the minimum
size of a biclique cover by κ∗(G). For the last quantity, we can restrict to biclique
covers using maximal bicliques.

Jump Number of Two-Directional Orthogonal Ray Graphs 393

Theorem 1. Let G = (A∪B,R) be a 2-dorg. Two edges R and R′ cross if and
only if R and R′ intersect as rectangles.

Proof. Let R = Γ (a, b) and R′ = Γ (a′, b′) be distinct edges in R. Both edges
cross if and only if Γ (a, b′) and Γ (a′, b) are also in R. This is equivalent to
max(ax, a′

x) ≤ min(bx, b′x) and max(ay, a′
y) ≤ min(by, b′y). From here, if R and

R′ cross, then the point p = (max(ax, a′
x), max(ay, a′

y)) is in the intersection
of R and R′ as rectangles. Conversely, if there is a point p ∈ R ∩ R′, then
max(ax, a′

x) ≤ px ≤ min(bx, b′x) and max(ay, a′
y) ≤ py ≤ min(by, b

′
y), and so, R

and R′ cross.

It is natural to study the following problems. Given a collection C of rectangles,
an independent set is a family of pairwise disjoint rectangles in C and a hitting
set is a set of points such that every rectangle in C contains at least one point of
this set. We denote by mis(C) and mhs(C) the sizes of a maximum independent
set of rectangles in C and a minimum hitting set for C respectively.

Consider the intersection graph I(C) = (C, {RS : R ∩ S 	= ∅}). Naturally,
independent sets of C correspond to stable sets in I(C). On the other hand,
since the family C has the Helly property,1 we can assign to every clique in I(C)
a unique witness point, defined as the leftmost and lowest point contained in all
rectangles of the clique. Since different maximal cliques have different witness
points, it is easy to prove that C admits a minimum hitting set consisting only of
witness points of maximal cliques. In particular, mhs(C) is equal to the minimum
size of a clique-cover of I(C).

For both problems defined above we can restrict ourselves to the family C↓ of
inclusion-wise minimal rectangles in C, since any maximum independent set in
C↓ is also maximum in C and any minimum hitting set for C↓ is also minimum
for C. Using Theorem 1 we conclude the following.

Theorem 2. For a 2-dorg G = (A ∪ B,R), the cross-free matchings of G cor-
respond to the independent sets of R and the biclique covers of G using maxi-
mal bicliques correspond to the hitting sets for R using witness points of maxi-
mal cliques (and to clique-covers in I(R) using maximal cliques). In particular,
α∗(G) = mis(R) = mis(R↓) and κ∗(G) = mhs(R) = mhs(R↓).

3 A Linear Programming Approach

Consider the integer program formulation for the maximum independent set of
a collection of rectangles C with vertices on the grid [n]2:

mis(C) = max
{∑

R∈C
xR :

∑
R: q∈R

xR ≤ 1, q ∈ [n]2; x ∈ {0, 1}C
}

.

Let P(C) be the polytope {x ∈ RC :
∑

R: q∈R xR ≤ 1, q ∈ [n]2; x ≥ 0} and the
relaxation of mis(C) given by LP(C) = max{∑R∈C xR : x ∈ P(C)}.
1 If a collection of rectangles intersect, then all of them share a rectangular region in

the plane.

394 J.A. Soto and C. Telha

Let G = (A∪B,R) be a 2-dorg with all its vertices in the grid [n]2. If LP(R)
(or LP(R↓)) has an integral solution then, by Theorem 2, this solution induces
a maximum cross-free matching of G. This happens, for example, when P(R) or
P(R↓) is an integral polytope.

Theorem 3. Given a family of rectangles C with vertices in [n]2, the polytope
P(C) is integral if and only if the intersection graph I(C) is perfect.

Theorem 3 follows from the fact that P(C) is the clique-constrained stable set
polytope of the intersection graph I(C), usually denoted by QSTAB(I(C)). A
classical result on perfect graphs (See, e.g. [31]) establishes that a graph H is
perfect if and only if QSTAB(H) is integral.

If G = (A ∪ B,R) is a 2-dorg such that I(R) (or I(R↓)) is perfect, then
α∗(G) = κ∗(G) and solving the linear program LP(R) (or LP(R↓)) gives a poly-
nomial time algorithm for finding a maximum cross-free matching. Since there
are also polynomial time algorithms to find minimum clique-covers of perfect
graphs, we can also obtain a minimum biclique cover of G.

For bipartite permutation graphs G = (A ∪ B,R), the intersection graph
I(R) ∼= (R, {ef : e and f cross}) is known to be perfect since it is both weakly
chordal [26] and co-comparability [3]. By the previous discussion we can find a
maximum cross-free matching and minimum biclique cover for these graphs in
polynomial time. Using the structure of bipartite permutation graphs, linear-
time algorithms have been developed for both problems [33,3,12]. For biconvex
graphs G = (A ∪ B,R), the graph I(R) is not necessarily perfect, but we can
show that there is a geometric representation (A′ ∪ B′,R′) for which I(R′

↓) is
perfect and that this property does not extend to convex graphs. We defer the
proof of these facts for the full version of this paper.

Even if the intersection graph of the rectangles of a 2-dorg is not perfect, we
can still find a maximum cross-free matching. Let G = (A ∪ B,R) be a 2-dorg
in rook representation. Since the rectangles in R↓ are inclusion-wise minimal, no
rectangle R = Γ (a, b) in R↓ contains a third point in (A∪B)\ {a, b}. Therefore,
there are only four ways in which a pair of rectangles can intersect. They are de-
picted in Fig. 2. We say that two intersecting rectangles have corner-intersection
if all the vertices involved are distinct and each rectangle contain a corner of the
other. If this does not happen, we say that the intersection is corner-free. A
corner-free-intersection (c.f.i.) family is a collection of inclusion-wise minimal
rectangles having no corner-intersections.

b

a′

a

b′

(a) corner-intersection

a = a′

b′

b

a

a′

b = b′

a′

b

a

b′

(b) corner-free intersections

Fig. 2. The ways two rectangles in R↓ can intersect each other

Jump Number of Two-Directional Orthogonal Ray Graphs 395

Let z∗ be the optimal value of LP(R↓) and for every rectangle R ∈ R↓, let
μ(R) > 0 be its area.2 Let x̄ be an optimal extreme point of the following linear
program

LP(z∗,R↓) = min
{ ∑

R∈R↓

μ(R)xR :
∑

R∈R↓

xR = z∗ and x ∈ P(R↓)
}

.

Note that x̄ is a solution to LP(R↓) minimizing its total weighted area and it
is also an optimal extreme point of max{∑R∈R↓(1 − εμ(R))xr : x ∈ P(R↓)} for
a small value of ε.

Theorem 4. The point x̄ is an integral point.

Proof. Suppose that x̄ is not integral. Let R = {R ∈ R↓ : x̄R > 0} be the set
of rectangles in the support of x̄. We claim that R is a c.f.i. family. Assume
for sake of contradiction that R = Γ (a, b) and R′ = Γ (a′, b′) are rectangles in
R having corner-intersection as in Fig. 2a. We apply the following uncrossing
procedure: let ε = min(x̄R, x̄R′) > 0 and consider the rectangles S = Γ (a, b′)
and S′ = Γ (a′, b) in R↓. Consider the vector x̃ obtained from x̄ by decreasing
xR and xR′ by ε and increasing by the same amount xS and xS′ . It is easy to
see that x̃ is a feasible solution of LP(z∗,R↓) with strictly smaller weighted area
than x̄, contradicting its optimality.

Now we prove that the intersection graph I(R) is a comparability graph, and
therefore it is perfect. Consider the following partial order in R:

R R′ if and only if Ry ⊆ R′
y and Rx ⊇ R′

x , (1)

Since R is a c.f.i. family, it follows that every pair of intersecting rectangles in
R are comparable by . The converse trivially holds. Therefore, I(R) is the
comparability graph of (R,).

Using Theorem 3 we show that P(R) is an integral polytope. Consider the set
F = P(R) ∩ {∑

R∈R xR = z∗,
∑

R∈R μ(R)xR =
∑

R∈R μ(R)x̄R

}
. This set is a

face of P(R) containing only optimum solutions of LP(z∗,R↓). To conclude the
proof of the theorem we show that x̄ is a vertex of F , and therefore, a vertex
of P(R). If x̄ is not a vertex of F , then we can find two different points in F
such that x̄ is a convex combination of those points. This means that x̄ is a
convex combination of different optimum solutions of LP(z∗,R↓), contradicting
the choice of x̄.

Using Theorem 4 we can find a maximum cross-free matching of a 2-dorg G
in rook representation as follows: solve the linear program LP(R↓) and find
an optimal extreme point of LP(z∗,R↓). Moreover, since 2-dorgs are chordal-
bipartite graphs [32], for which the maximum cross-free matching and the jump
number problems are equivalent, we conclude the following.
2 For our discussion, the area or a rectangle R = Γ (a, b) is defined as (bx−ax)(by−ay).

However, our techniques also works if we define the area of a rectangle as the number
of grid points it contains.

396 J.A. Soto and C. Telha

Theorem 5. For a 2-dorg, the maximum cross-free matching (and equivalently,
the jump number) can be computed in polynomial time.

For any family of rectangles C with vertices in [n]2, consider the linear program
DP(C) = min{∑q∈[n]2 yq :

∑
q∈R yq ≥ 1, R ∈ C; y ≥ 0}. The integer feasible

solutions of DP(C) correspond exactly to hitting sets for C that are contained in
the grid [n]2. Since there are minimum hitting sets for C of this type, we conclude
that DP(C) is a linear program relaxation for mhs(C).

The programs LP(C) and DP(C) are dual to each other. Hence, they have a
common optimum value z∗(C) and mis(C) ≤ z∗(C) ≤ mhs(C). In particular, for
the family R↓ of inclusion-wise minimal rectangles coming from a 2-dorg G in
rook representation, we have

α∗(G) ≤ z∗(R↓) ≤ κ∗(G) . (2)

In this section we have shown not only that the first inequality in (2) is an
equality, but also that an integer optimal solution for LP(R↓) can be found by
optimizing an easy to describe linear function over the optimal face of this linear
program. It would be interesting to show a similar result for DP(R↓), since as
a consequence of the combinatorial algorithm we give in Sect. 4, this polytope
also admits an integer optimal solution.

4 A Combinatorial Algorithm

In this section we give a combinatorial algorithm that computes simultaneously
a maximum cross-free matching and a minimum biclique cover of a 2-dorg. Our
procedure is based on the algorithmic proof of Györi’s min-max result of inter-
vals [19] given by Frank [15]. In order to keep the discussion self-contained, we
do not rely on previous results. The relation of our approach to other previous
work will be explored in Sect. 5.

In Sect. 3 we have shown that a maximum cross-free matching of a 2-dorg
G = (A ∪ B,R) can be obtained from a maximum independent set of the c.f.i.
family R. In what follows, we show that this result also holds if we replace R
by certain maximal greedy c.f.i. subfamily of R↓.

Given a 2-dorg G = (A∪B,R) in rook representation, we say that a rectangle
R ∈ R↓ appears before a rectangle S ∈ R↓ in right-top order if we either have
A(R)x < A(S)x, or if A(R)x = A(S)x and B(R)y < B(S)y . This defines a
total order on R↓. Construct a family K by processing the rectangles in R↓ in
right-top order and adding only those that keep K corner-free.

Since I(K) is the comparability graph of (K,), where is as in (1), the size of
a maximum independent set R0 of K is equal to the size of a minimum hitting
set H0 for K. We can find optimal solutions of these problems by computing
a maximum antichain and a minimum chain-cover of the poset (K,), using
any polynomial time algorithm for Dilworth’s chain-partitioning problem (See,
e.g. [13]). We modify H0 to obtain a set of points H∗ of the same size hitting R.

Jump Number of Two-Directional Orthogonal Ray Graphs 397

An admissible flip of a hitting set H for K is an ordered pair of points p and q
in H with px < qx and py < qy, such that the set H \ {p, q}∪ {(px, qy), (qx, py)}
obtained by flipping p and q is still a hitting set for K. Construct H∗ from H0

by flipping admissible flips while this is possible. Note that flipping two points
reduces the potential ψ(H) =

∑
p∈H pxpy by at least one unit. Since ψ is positive

and ψ(H0) ≤ |H0|n2 ≤ n3, the previous construction can be done efficiently.

Lemma 1. H∗ is a hitting set for R↓, and therefore, a hitting set for R.

Proof. Suppose this is not the case. Let R = Γ (a, b) be the last rectangle of
R↓ \ K not hit by H∗, in right-top order. Let also R′ = Γ (a′, b′) be the first
rectangle of K having corner-intersection with R, in right-top order. We have
a′

x < ax < b′x < bx and b′y > by > a′
y > ay (See Fig. 3). In particular, the

rectangles S = Γ (a′, b) and T = Γ (a, b′) are in R. They are also inclusion-
wise minimal, otherwise there would be a point v ∈ A ∪ B \ {a, a′, b, b′} in
S ∪ T ⊆ R ∪ R′, contradicting the minimality of R or R′. Since T appears after
R in right-top order, it is hit by a point q ∈ H∗.

b
p

r

a

q Z2 ∩ Z3

Z1

a′
s

b′

b

a′

b′

Z1

Z3

Z1

a′

Z2 R′

T

S

R

S

R′

Fig. 3. Positions of rectangles and zones defined in the proof of Lemma 1

We claim that the rectangle S is in K. If this is not the case, then there is a
rectangle R′′ = Γ (a′′, b′′) ∈ K appearing before S and having corner-intersection
with S. In particular corner a′′ lies in Z1 = (−∞, a′

x − 1] × [a′
y + 1, by − 1], and

corner b′′ lies in the zone Z2 = [a′
x + 1, bx − 1]× [by + 1,∞) as shown on the left

of Fig. 3. Note that the top-left corner (a′
x, by) of rectangle S is in both R′ and

R′′. Since both are in K, the rectangles R′ and R′′ have corner-free intersection.
Using this last fact, and that a′′ ∈ Z1 we conclude that b′′ is either equal to b′

or it lies in the zone Z3 = [b′x + 1,∞)× [a′
y + 1, by − 1]. See the center of Fig. 3.

Since a′′ ∈ Z1 and b′′ ∈ {b′} ∪ (Z2 ∩ Z3), we conclude that R and R′′ have
corner-intersection, contradicting the choice of R′ since R′′ appears before R′

in right-top order. This proves the claim and, since S ∈ K, it must be hit by a
point p ∈ H∗.

Now we show that p and q are an admissible flip for H∗, contradicting the
construction of H∗. Since p ∈ S \ R and q ∈ T \ R we have px < ax ≤ qx and
py ≤ by < qy. Let r = (px, qy), s = (qx, py) and suppose there is a rectangle
U ∈ K hit by H∗ but not by (H∗ \ {p, q}) ∪ {r, s}. If the rectangle U is hit
by p (but not by r or s), then its upper-right corner B(U) must be in the region
[px, qx − 1] × [py, qy − 1]. In particular, B(U) ∈ R′ \ {a′, b′}, contradicting the
inclusion-wise minimality of R′. If on the other hand U is hit by q (but not by
r or s), then its bottom-left corner A(U) must be in [px + 1, qx] × [py + 1, qy].

398 J.A. Soto and C. Telha

As before, this means that A(U) ∈ R′ \ {a′, b′}, contradicting the inclusion-wise
minimality of R′. Therefore, p and q are an admissible flip, concluding the proof
of the lemma.

Using Lemma 1, we can find a maximum cross-free matching and a minimum
biclique cover of a 2-dorg G = (A ∪ B,R) in rook representation using the fol-
lowing algorithm: Compute the c.f.i. greedy family K as above. Use an algorithm
for Dilworth’s chain-partitioning problem to compute a maximum independent
set R0 and a minimum hitting set H0 for K. Finally, compute the set H∗ as
described above. Since H∗ is a hitting set for R, and R0 is an independent set
of R with |H∗| = |H0| = |R0|, we conclude they are both optima; therefore, they
induce a maximum cross-free matching and a minimum biclique cover for G.

Theorem 6. The previous algorithm computes a maximum cross-free matching
and a minimum biclique cover of the same size for any 2-dorg G in polynomial
time. In particular, α∗(G) = κ∗(G).

Dilworth’s chain-partitioning problem on (K,) can be solved by finding a maxi-
mum matching on a bipartite graph with 2|K| vertices [13]. This task can be done
in O(|K|2.5) time using Hopcroft-Karp algorithm [20], or in O(|K|ω) randomized
time, where ω is the exponent for matrix multiplication, using an algorithm by
Mucha and Sankowski [24]. A naive implementation of our algorithm using these
results runs in O(n7). In the full version of the paper, we give faster implemen-
tations running in Õ(n2.5) time and Õ(nω) randomized time.

5 Discussion

In this section, we study the connection of maximum cross-free matchings and
minimum biclique covers with other combinatorial problems in the literature.
Chaiken et al. [7] have studied the problem of covering a biconvex board (an or-
thogonal polygon horizontally and vertically convex) with orthogonal rectangles
included in this board. They have shown that the minimum size of a rectan-
gle cover is equal to the maximum size of an antirectangle (a set of points in
the board such that no two of them are covered by a rectangle included in the
board). Györi [19] has shown that the same result holds even when the board is
only vertically convex, as a corollary of a min-max relation we describe.

A collection of point-interval pairs (pj , Ij), with pj ∈ Ij is independent if
pj 	∈ Ik or pk 	∈ Ij for k 	= j. A family of intervals is a base for another family if
every interval of the latter is a union of intervals in the former. Györi establishes
that the size of the largest independent set of point-interval pairs with intervals
in a family F is equal to the size of the minimum base of F , where this base is
not restricted to be a subset of F . The corresponding optimizers can be found
using an algorithm of Franzblau and Kleitman [18] (or an implementation by
Knuth [21]) in O(k2) time where k is the number of different endpoints of F .
These algorithms can also be used to compute a maximum antirectangle and a
minimum rectangle cover of a convex board.

Jump Number of Two-Directional Orthogonal Ray Graphs 399

Every biconvex graph G admits a biadjacency matrix where the set of ones
form a biconvex board B(G). Brandstädt [3] notes that finding a maximum
cross-free matching (which he called alternating-C4-free matching) in a biconvex
graph G is equivalent to finding a maximum antirectangle in B(G). By the
previous discussion, this can be done in polynomial time. Here we observe that
the maximal rectangles in B(G) correspond exactly to the maximal bicliques
of G, showing that the minimum biclique cover of G can be obtained with the
same algorithm. Surprisingly, to the authors knowledge, this observation has
not been used in the literature concerning the minimum biclique cover problem,
where this problem remains open for biconvex graphs.

Similar to the previous case, every convex graph G = (A ∪ B,R) admits
a biadjacency matrix where the set of ones forms a vertically convex board
B(G). However, antirectangles and rectangle covers of B(G) are no longer in
correspondence with cross-free matchings and biclique covers of G. Nevertheless,
we can still make a connection to Györi’s result on intervals as follows. Every
element of B can be seen as an interval of elements in A. Cross-free matchings
in G correspond then to independent families of point-intervals, with intervals
in B. Similarly, since every maximal biclique of G is defined by taking some
interval I of elements in A (where I does not necessarily correspond to some
b ∈ B), as {(a, b) : a ∈ I, b ⊇ I}, we obtain that minimal biclique covers of G
(using maximal bicliques) correspond to minimum generating families of B. We
remark that this connection has not been noted before in the literature. As a
corollary of this discussion we have the following.

Corollary 1. The maximum cross-free matching and minimum biclique cover
of convex and biconvex graphs can be computed in O(n2) time using Knuth’s [21]
implementation of the algorithm of Franzblau and Kleitman [18].

In a seminal paper, Frank and Jordán [16] extend Györi’s result to set-pairs. We
briefly describe a particular case of their result that concerns us. A collection
of pairs of sets {(Si, Ti)} is half-disjoint if for every i 	= j, Si ∩ Sj or Ti ∩ Tj

is empty. A directed-edge (s, t) covers a set-pair (S, T) if s ∈ S and t ∈ T . A
family S of set-pairs is crossing if whenever (S, T) and (S′, T ′) are in S, so are
(S ∩ T, S′ ∪ T ′) and (S ∪ T, S′ ∩ T ′). Frank and Jordán prove that for every
crossing family S, the maximum size of a half-disjoint subfamily is equal to the
minimum size of a collection of directed-edges covering S. They also give a linear
programming based algorithm to compute both optimizers. Later, combinatorial
algorithms for this result were also given (e.g. [2]). See Végh’s Ph.D. thesis [34]
for related references.

Theorems 5 and 6 can be seen as non-trivial applications of Frank and Jordán’s
result. Given a 2-dorg G = (A ∪ B,R), consider the family of set-pairs S =
{(Rx, Ry) : R ∈ R↓}. It is easy to check that this family is crossing, that half-
disjoint families of S correspond to independent sets in R↓ and that coverings
of S by directed-edges correspond to hitting sets for R↓. We remark that this
reduction relies heavily on the geometric interpretation of 2-dorgs we have pre-
sented in this paper, and that our proofs are self-contained and simpler than the
ones used to prove the broader result of Frank and Jordán.

400 J.A. Soto and C. Telha

We want to point out that the combinatorial algorithm presented in Sect. 4
extends the algorithm given by Frank [15] as an alternative proof of Györy’s
result on intervals. But at the same time it comprises the same algorithmic ideas
from other applications of Frank and Jordan’s result, such as the algorithm of
Frank and Végh [17] for connectivity augmentation. Our description is tailored
to the instances considered in this paper, leading to a simpler description of the
algorithm and a simpler running time analysis.

6 The Maximum Weight Cross-Free Matching Problem

We now consider the problem of finding the maximum weight cross-free matching
of 2-dorgs G = (A∪B,R) with non-negative weights {wR}R∈R. This problem is
equivalent to the maximum weight jump number of (G, w) defined by Ceroi [6]
and to the maximum weight independent set of (R, w).

The maximum weight cross-free matching is NP-hard for 2-dorgs, even if the
weights are zero or one. To see this, we reduce from maximum independent set
of rectangles (MISR), which is NP-hard even if the vertices of the rectangles are
all distinct [14]. Given an instance I of MISR with the previous property, let A
(resp. B) be the set of lower-left (resp. upper-right) corners of rectangles in I.
Note that the 2-dorg G = (A ∪ B,R) satisfies I ⊆ R so we can find the MISR
of I by finding the maximum weight cross-free matching in G, where we give a
weight of one to each R ∈ I, and a weight of zero to every other rectangle.

Theorem 7. The maximum weight cross-free matching problem is NP-hard for
2-dorgs.

We now provide an efficient algorithm for the maximum weight cross-free match-
ing of bipartite permutation graphs. We use the natural 2-dorg representation
G = (A ∪B,R) arising from the definition of this class. We can solve the maxi-
mum weight independent set of R in O(n2) time using the fact that the comple-
ment of the intersection graph I(R) is a comparability graph. To see this, let us
write R ↘ S if R and S are disjoint and either Rx < Sx or Ry > Sy holds. It is
not hard to verify that D = (R,↘) is a partial order whose comparability graph
is the complement of I(R), and that maximum weight cross-free matchings in
G corresponds to maximum weight paths in the digraph D, using w as a weight
function on the vertex set R. Since D has |R| vertices and O(|R|2) arcs this
optimal path Q∗ can be found in O(|R|2) time [10].

We can find Q∗ faster by exploiting the structure of D. For simplicity, assume
that all the weights are different. Let R ↘ S ↘ T be three consecutive rectangles
in Q∗, then we can extract information about S. Consider the following cases.
If Rx < Sx and Sx < Tx, then (i) S is the heaviest rectangle to the right of R

with corner B(S).
If Rx < Sx and Sy > Ty, then (ii) S is the heaviest rectangle with corner A(S).
If Ry > Sy and Sx < Tx, then (iii) S is the heaviest rectangle with corner B(S).
If Ry > Sy and Sy > Ty, then (iv) S is the heaviest rectangle below R with

corner A(S).

Jump Number of Two-Directional Orthogonal Ray Graphs 401

Note that for each Property (i)–(iv), the rectangle S depends on a single parame-
ter associated to S and on at most one parameter associated to R. More precisely,
the rectangle S with Properties (i), (ii), (iii) and (iv) is completely determined
by the parameters {B(R)x, B(S)}, {A(S)}, {B(S)} and {A(R)y, A(S)}, respec-
tively. This motivates the following recursion. For R ∈ R, let V (R) be the
maximum weight of a path in D starting with R. For a ∈ A (resp. b ∈ B), let
(resp. V→(b)) be the maximum weight of a path using only rectangles below a
(resp. to the right of b). We have

V (R) = max {V↓(A(R)), V→(B(R))} + wR,

V↓(a) = max {V (S) : S rectangle below a satisfying (iii) or (iv)},
V→(b) = max {V (S) : S rectangle to the right of b satisfying (i) or (ii)}.

Given {V (R)}R∈R, we can easily compute the optimal path Q∗. Note that
evaluating V↓(a) (or V→(b)) requires to compute the maximum of V (S) over a
family of O(n) rectangles S. If this family can be computed in O(n) time, then
the recursive formula for V ,V↓ and V→ can be completely evaluated in O(n2)
time. We achieve this by precomputing all possible arising families in O(n2) time.
We illustrate this only for rectangles having Property (i). Suppose B(S) = b.
Traversing the points b′ ∈ B from right to left, we can find the heaviest such
rectangle S to the right of b′, for all b′ ∈ B, in O(n) time. Iterating this for
every b, we compute all the families of rectangles arising from Property (i) in
O(n2) time.

If there are repeated weights, we break ties in Properties (i) and (iii) by
choosing the rectangle S of smallest width and we break ties in Properties (ii)
and (iv) by choosing the rectangle S of smallest height.

Theorem 8. The maximum weight cross-free matching of a bipartite permuta-
tion graph can be computed in O(n2) time.

Using these ideas on the weighted 0-1 case, we can compute an optimum solution
in O(n) time, under certain assumption about the description of the input. We
defer the description of the algorithm to the full version of the paper.

By the discussion in Sect. 5, cross-free matchings of convex graphs correspond
to independent sets of a certain system of point-interval pairs. Lubiw [23] gives a
polynomial time algorithm for the maximum weight of a system of point-interval
pairs. It is straightforward to implement her algorithm in O(n3) time.

Corollary 2. The maximum weight cross-free matching of a convex graph can
be computed in O(n3) time.

7 Summary of Results

We include a table with the current best running times for the studied problem
on a graph G = (A∪B,R), with n = |A∪B|. The new results, in bold, include the
ones obtained via their relation to other known problems, but never considered
in the literature of the problems we have studied.

402 J.A. Soto and C. Telha

Bip. Perm. Biconvex Convex 2-dorg

Max. cross-free matching O(n) [3,12] O(n2) [3] O(n9) [11] -

(Jump number) (new) - - O(n2)a Õ(n2.5), Õ(nω)c

Min. biclique-cover O(n) [3,12] - - -

(new) - O(n2)a O(n2)a Õ(n2.5), Õ(nω)c

Max. wt. cross-free matching O(|R|2) [3] - - -

(new) O(n2) O(n3)b O(n3)b NP-hard

a Using Franzblau and Kleitman’s result [18] or Knuth’s [21] implementation.
b Using Lubiw’s result [23].
c In the full version of this paper.

References

1. Amilhastre, J., Janssen, P., Vilarem, M.C.: Computing a minimum biclique cover
is polynomial for bipartite domino-free graphs. In: Proceedings of the Eight Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 1997, pp. 36–42 (1997)

2. Benczúr, A.A.: Pushdown-reduce: An algorithm for connectivity augmentation and
poset covering problems. Discrete Appl. Math. 129(2-3), 233–262 (2003)

3. Brandstädt, A.: The jump number problem for biconvex graphs and rectangle
covers of rectangular regions. In: Csirik, J., Demetrovics, J., Gécseg, F. (eds.) FCT
1989. LNCS, vol. 380, pp. 68–77. Springer, Heidelberg (1989)

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: A survey. SIAM, Philadel-
phia (1999)

5. Ceroi, S.: Ordres et géométrie plane: Application au nombre de sauts. Ph.D. thesis,
Université Montpellier II (2000)

6. Ceroi, S.: A weighted version of the jump number problem on two-dimensional
orders is NP-complete. Order 20(1), 1–11 (2003)

7. Chaiken, S., Kleitman, D.J., Saks, M., Shearer, J.: Covering regions by rectangles.
SIAM J. Algebra Discr. 2(4), 394–410 (1981)

8. Chaty, G., Chein, M.: Ordered matchings and matchings without alternating cycles
in bipartite graphs. Utilitas Math. 16, 183–187 (1979)

9. Cohen, B., Skiena, S.: Optimizing combinatorial library construction via split syn-
thesis. In: Proceedings of the Third Annual International Conference on Research
in Computational Molecular Biology, RECOMB 1999, pp. 124–133 (1999)

10. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms, 3rd
edn. MIT Press, Cambridge (2009)

11. Dahlhaus, E.: The computation of the jump number of convex graphs. In: Bouch-
itté, V., Morvan, M. (eds.) ORDAL 1994. LNCS, vol. 831, pp. 176–185. Springer,
Heidelberg (1994)

12. Fauck, H.: Covering polygons with rectangles via edge coverings of bipartite per-
mutation graphs. J. Inform. Process. Cybernet. 27(8), 391–409 (1991)

13. Ford, L., Fulkerson, D.: Flows in networks. Princeton University Press, Princeton
(2010)

14. Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal packing and covering in the
plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

15. Frank, A.: Finding minimum generators of path systems. J. Comb. Theory, Ser.
B 75(2), 237–244 (1999)

Jump Number of Two-Directional Orthogonal Ray Graphs 403

16. Frank, A., Jordán, T.: Minimal edge-coverings of pairs of sets. J. Comb. Theory,
Ser. B 65(1), 73–110 (1995)

17. Frank, A., Végh, L.A.: An algorithm to increase the node-connectivity of a digraph
by one. Discrete Optimization 5(4), 677–684 (2008)

18. Franzblau, D.S., Kleitman, D.J.: An algorithm for covering polygons with rectan-
gles. Inform. and Control 63(3), 164–189 (1984)

19. Györi, E.: A minimax theorem on intervals. J. Comb. Theory, Ser. B 37(1), 1–9
(1984)

20. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

21. Knuth, D.E.: Irredundant intervals. ACM J. Exp. Algorithmics 1 (1996)
22. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University

Press, New York (1997)
23. Lubiw, A.: A weighted min-max relation for intervals. J. Comb. Theory, Ser.

B 53(2), 151–172 (1991)
24. Mucha, M., Sankowski, P.: Maximum matchings via gaussian elimination. In: Pro-

ceedings of the 45th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2004, pp. 248–255 (2004)

25. Müller, H.: Alternating cycle-free matchings. Order 7, 11–21 (1990)
26. Müller, H.: On edge perfectness and classes of bipartite graphs. Discrete Mathe-

matics 149(1-3), 159–187 (1996)
27. Nau, D.S., Markowsky, G., Woodbury, M.A., Amos, D.B.: A mathematical analysis

of human leukocyte antigen serology. Math. Biosci. 40(3-4), 243–270 (1978)
28. Orlin, J.: Contentment in graph theory: Covering graphs with cliques. Indagationes

Mathematicae (Proceedings) 80(5), 406–424 (1977)
29. Otachi, Y., Okamoto, Y., Yamazaki, K.: Relationships between the class of unit

grid intersection graphs and other classes of bipartite graphs. Discrete Applied
Mathematics 155(17), 2383–2390 (2007)

30. Pulleyblank, W.R.: Alternating cycle free matchings. Tech. Rep. CORR 82-18,
University of Waterloo - Dept. of Combinatorics and Optimization (1982)

31. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer,
Berlin (2003)

32. Shrestha, A.M., Tayu, S., Ueno, S.: On two-directional orthogonal ray graphs.
In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems,
ISCAS 2010, pp. 1807–1810 (2010)

33. Steiner, G., Stewart, L.K.: A linear time algorithm to find the jump number of
2-dimensional bipartite partial orders. Order 3, 359–367 (1987)

34. Végh, L.A.: Connectivity Augmentation Algorithms. Ph.D. thesis, Eötvös Loránd
University (2010)

Optimal Matching Forests and

Valuated Delta-Matroids

Kenjiro Takazawa

Research Institute for Mathematical Sciences,
Kyoto University, Kyoto 606-8502, Japan

takazawa@kurims.kyoto-u.ac.jp

Abstract. The matching forest problem in mixed graphs is a common
generalization of the matching problem in undirected graphs and the
branching problem in directed graphs. Giles presented an O(n2m)-time
algorithm for finding a maximum-weight matching forest, where n is
the number of vertices and m is that of edges, and a linear system de-
scribing the matching forest polytope. Later, Schrijver proved total dual
integrality of the linear system. In the present paper, we reveal another
nice property of matching forests: the degree sequences of the match-
ing forests in any mixed graph form a delta-matroid and the weighted
matching forests induce a valuated delta-matroid. We remark that the
delta-matroid is not necessarily even, and the valuated delta-matroid in-
duced by weighted matching forests slightly generalizes the well-known
notion of Dress and Wenzel’s valuated delta-matroids. By focusing on
the delta-matroid structure and reviewing Giles’ algorithm, we design a
simpler O(n2m)-time algorithm for the weighted matching forest prob-
lem. We also present a faster O(n3)-time algorithm by using Gabow’s
method for the weighted matching problem.

Keywords: Matching, Branching, Matching Forest, Delta-Matroid, Val-
uated Delta-Matroid, Primal-Dual Algorithm.

1 Introduction

The concept of matching forests in mixed graphs was introduced by Giles [14–16]
as a common generalization of matchings in undirected graphs and branchings
in directed graphs. Let G = (V, E, A) be a mixed graph with vertex set V ,
undirected edge set E and directed edge set A. Let n and m denote |V | and
|E ∪ A|, respectively. For x ∈ RE∪A and F ⊆ E ∪ A, let x(F) :=

∑
e∈F x(e).

We denote a directed edge a ∈ A from u ∈ V to v ∈ V by uv. A directed
edge is often called an arc. For an arc a = uv, the terminal vertex v is called
the head of a and denoted by ∂−a, and the initial vertex u is called the tail of a
and denoted by ∂+a. For a vertex v ∈ V , the set of arcs whose head (resp., tail)
is v is denoted by δ−v (resp., δ+v). For B ⊆ A, let ∂−B =

⋃
a∈B ∂−a. A vertex

in ∂−B is said to be covered by B. An arc subset B ⊆ A is a branching if the
underlying edge set of B is a forest and each vertex is the head of at most one

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 404–416, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

takazawa@kurims.kyoto-u.ac.jp

Optimal Matching Forests and Valuated Delta-Matroids 405

edge in B. For a branching B, a vertex not covered by B is called a root of B,
and the set of the roots of B is denoted by R(B), i.e., R(B) = V \ ∂−B.

An undirected edge e ∈ E connecting u, v ∈ V is denoted by (u, v). We often
abbreviate (u, v) as uv, where it obvious that it is undirected. For e = uv ∈ E,
both u and v are called as the head of e, and the set of heads of e is denoted by
∂e, i.e., ∂e = {u, v}. For a vertex v, the set of edges incident to v is denoted by
δv. For F ⊆ E, let ∂F =

⋃
e∈F ∂e. A vertex in ∂F is said to be covered by F .

An undirected edge subset M ⊆ E is a matching if each vertex is the head of at
most one edge in M . A vertex not covered by M is called a root of M and the
set of the roots of M is denoted by R(M), i.e., R(M) = V \ ∂M .

An edge set F ⊆ E ∪ A is a matching forest if the underlying edge set of F
is a forest and each vertex is the head of at most one edge in F . Equivalently,
an edge set F = B ∪ M , where B ⊆ A and M ⊆ E, is a matching forest if B
is a branching and M is a matching with ∂M ⊆ R(B). A vertex is a root of
a matching forest F if it is not covered by F , and the set of the roots of F is
denoted by R(F). Observe that R(F) = R(M) ∩ R(B) and V = R(M) ∪ R(B).

Matching forests inherit the tractability of branchings and matchings. Let
w ∈ RE∪A be a weight vector on the edge set of a mixed graph G = (V, E, A).
We consider the weighted matching forest problem, the objective of which is to
find a matching forest F maximizing w(F). For this problem, Giles [15] designed
a primal-dual algorithm running in O(n2m) time, which provided a constructive
proof for integrality of a linear system describing the matching forest polytope.
Later, Schrijver [21] proved that Giles’ linear system is totally dual integral.
These results commonly extend the polynomial-time solvability and the total
dual integrality results for the weighted branchings and matchings [4, 7, 9].

Topics related to matching forests include the following. Using the notion of
matching forests, Keijsper [17] gave a common extension of Vizing’s theorem [23,
24] on covering undirected graphs by matchings and Frank’s theorem [11] on
covering directed graphs by branchings. Another aspect of matching forests is
that they can be represented as linear matroid matching (see [22]). From this
viewpoint, however, we do not fully understand the tractability of matching
forests, since the weighted linear matroid matching problem is unsolved while
the unweighted problem is solved [18].

In the present paper, we reveal a relation between matching forests and delta-
matroids [1, 3, 5] to offer a new perspective on weighted matching forests which
explains their tractability. For a finite set V and F ⊆ 2V , the pair (V,F) is a
delta-matroid if it satisfies the following exchange property:

(DM) ∀S1, S2 ∈ F , ∀s ∈ S1�S2, ∃t ∈ S1�S2, S1�{s, t} ∈ F .

Here, � denotes the symmetric difference, i.e., S1�S2 = (S1 \ S2) ∪ (S2 \ S1).
A typical example of a delta-matroid is a matching delta-matroid. For an

undirected graph G = (V, E), let FM = {∂M | M is a matching in G}. Then,
(V,FM) is a delta-matroid [2, 3]. Branchings in a directed graph also induce a
delta-matroid, which we call a branching delta-matroid. For a directed graph G =
(V, A), let FB = {R(B) | B is a branching in G}. Then, it is not difficult to see
that FB is a delta-matroid (see § 2.1).

406 K. Takazawa

A delta-matroid (V,F) is called even if |S1| − |S2| is even for any S1, S2 ∈
F . Note that a matching delta-matroid is an even delta-matroid, whereas a
branching delta-matroid is not. Even delta-matroids are characterized by the
following simultaneous exchange property [25]:
(EDM) ∀S1, S2 ∈ F , ∀s ∈ S1�S2, ∃t ∈ (S1�S2) \ {s}, S1�{s, t} ∈ F and

S2�{s, t} ∈ F .

The concept of valuated delta-matroids [6, 26] is a quantitative generalization
of even delta-matroids. A function f : 2V → R ∪ {−∞} is a valuated delta-
matroid if domf 	= ∅ and
(V-EDM) ∀S1, S2 ∈ domf , ∀s ∈ S1�S2, ∃t ∈ (S1�S2) \ {s}, f(S1�{s, t}) +

f(S2�{s, t}) ≥ f(S1) + f(S2).

Here, domf := {S | S ⊆ V , f(S) 	= −∞}. Note that (V, domf) is an even-delta
matroid. We remark here that weighted matchings in a weighted undirected
graph induce a valuated delta-matroid fM with domfM = FM (see § 2.1).

In this paper, we consider delta-matroids commonly extending matching delta-
matroids and branching delta-matroids, and also a valuation on those delta-
matroids. For this purpose, we introduce a new class of delta-matroids which
properly includes even delta-matroids. We call (V,F) a simultaneous delta-
matroid if it satisfies the following weaker simultaneous exchange property:
(SDM) ∀S1, S2 ∈ F , ∀s∈S1�S2, ∃t∈S1�S2, S1�{s, t}∈F and S2�{s, t}∈F .

Note that every even delta-matroid is a simultaneous delta-matroid. Also, a
branching matroid is a simultaneous delta-matroid (see § 2.1).

The first main result in this paper is that matching forests also induce a si-
multaneous delta-matroid. For a mixed graph G = (V, E, A), let FMF = {R(F) |
F is a matching forest in G}.
Theorem 1. For a mixed graph G = (V, E, A), (V,FMF) is a simultaneous
delta-matroid.
Furthermore, we generalize the notion of valuated delta-matroids in order to
deal with a quantitative extension of Theorem 1. That is, we define valuated
delta-matroids on simultaneous delta-matroids, which slightly generalize valu-
ated delta-matroids defined above. We call a function f : 2V → R ∪ {−∞} a
valuated delta-matroid if domf 	= ∅ and
(V-SDM) ∀S1, S2 ∈ domf , ∀s ∈ S1�S2, ∃t ∈ S1�S2, f(S1�{s, t}) +

f(S2�{s, t}) ≥ f(S1) + f(S2).

Note that (V, domf) is a simultaneous delta-matroid.
For a weighted mixed graph (G, w) with G = (V, E, A) and w ∈ RE∪A, define

a function fMF : 2V → R ∪ {−∞} by

fMF (S) =

{
max{w(F) | F is a matching forest with R(F) = S} (S ∈ FMF),
−∞ (otherwise).

We prove that fMF satisfies (V-SDM).
Theorem 2. For a weighted mixed graph (G, w), fMF is a valuated delta-matroid.

Optimal Matching Forests and Valuated Delta-Matroids 407

Proofs for Theorems 1 and 2 will be given in § 2.2. We remark that the relation
between valuated delta-matroids in the sense of [6] and those in our sense is
similar to that between M-concave functions and M�-concave functions [20].

The next contribution of this paper is new algorithms for the weighted match-
ing forest problem: we design a simpler algorithm and a faster algorithm than
Giles’ algorithm [15]. In § 3, we present a simple O(n2m) algorithm which fo-
cuses on the delta-matroid structure. We also present a faster O(n3) algorithm
in § 4 by using the technique of Gabow [13] for the weighted matching problem.

2 Delta-Matroids and Matching Forests

2.1 Matching Delta-Matroids and Branching Delta-Matroids

In this subsection, we describe basic facts on delta-matroids, including their
relations to matchings and branchings. The dual of a delta-matroid (V,F) is
a delta-matroid (V, F̄), defined by F̄ = {V \ S | S ∈ F}. The union of two
delta-matroids (V,F1) and (V,F2) is a pair (V,F1 ∨ F2) defined by F1 ∨ F2 =
{S1 ∪ S2 | S1 ∈ F1, S2 ∈ F2, S1 ∩ S2 = ∅}, which is a delta-matroid [2].

Let (G, w) be a weighted undirected graph with G = (V, E) and w ∈ RE. As
stated in § 1, the pair (V,FM), where FM = {∂M | M is a matching in G}, is an
even delta-matroid, which we call the matching delta-matroid of G. Moreover,
a function fM : 2V → R∪ {−∞} defined below is a valuated delta-matroid [19]:

fM (S) =

{
max{w(M) | M is a matching with ∂M = S} (S ∈ FM),
−∞ (otherwise).

We now present a relation between branchings and delta-matroids. Let (G, w)
be a weighted directed graph with G = (V, A) and w ∈ RA. Recall that
FB = {R(B) | B is a branching in G}. It is verified that (V,FB) is a delta-
matroid as follows. For a directed graph G, a strong component is called a
source component if it has no arc entering from other strong components. The
vertex set and arc set of a strong component K are denoted by V K and AK,
respectively. Let K1, . . . , Kl be all source components in G. Then, we have that
FB = {S | S ⊆ V , |S ∩ V Ki| ≥ 1 for i = 1, . . . , l}. Thus, it follows that (V,FB)
is a generalized matroid [12]. Moreover, it also follows that (V,FB) satisfies
(SDM). We call (V,FB) as the branching delta-matroid of G.

Theorem 3. For a directed graph G, (V,FB) is a simultaneous delta-matroid.

This fact extends to weighted branchings. Define fB : 2V → R ∪ {−∞} by

fB(S) =

{
max{w(B) | B is a branching with R(B) = S} (S ∈ FB),
−∞ (otherwise).

Then, fB is a valuated delta-matroid, which immediately follows from arguments
in Schrijver [21, Theorem 1].

Theorem 4. For a weighted directed graph (G, w), fB is a valuated delta-matroid.

408 K. Takazawa

2.2 Delta-Matroids and Matching Forests

In this subsection, we prove Theorems 1 and 2. We begin with a simple proof
showing that (V,FMF) is a delta-matroid for a mixed graph (V, E, A). Let
(V,FM) be the matching delta-matroid of (V, E) and (V,FB) the branching
delta-matroid of (V, A). Then, it follows from the definition of matching forests
that FMF is the dual of FM ∨ F̄B, and thus (V,FMF) is a delta-matroid.

We now prove Theorem 1, which is a stronger statement. First, Schrijver [21]
proved the following exchange property of branchings.

Lemma 1 (Schrijver [21]). Let G = (V, A) be a directed graph, and B1 and
B2 be branchings partitioning A. Let R1 and R2 be vertex sets with R1 ∪ R2 =
R(B1)∪R(B2) and R1 ∩R2 = R(B1)∩R(B2). Then A can be split into branch-
ings B′

1 and B′
2 with R(B′

i) = Ri for i = 1, 2 if and only if each source compo-
nent K in G satisfies that |K ∩ Ri| ≥ 1 for i = 1, 2.

By using Lemma 1, Schrijver proved an exchange property of matching
forests [21, Theorem 2]. Here, we show another exchange property of match-
ing forests. The proof below is quite similar to the proof for Theorem 2 in [21].
For completeness, however, we describe a full proof.

Lemma 2. Let G = (V, E, A) be a mixed graph, F1 and F2 be matching forests
partitioning E∪A, and s ∈ R(F2)\R(F1). Then, there exist matching forests F ′

1

and F ′
2 which partition E ∪ A and satisfy one of the following:

1. R(F ′
1) = R(F1) ∪ {s} and R(F ′

2) = R(F2) \ {s},
2. R(F ′

1) = R(F1) ∪ {s, t} and R(F ′
2) = R(F2) \ {s, t} for some t ∈ R(F2) \

(R(F1) ∪ {s}),
3. R(F ′

1) = (R(F1) ∪ {s}) \ {t} and R(F ′
2) = (R(F2) \ {s}) ∪ {t} for some

t ∈ R(F1) \ R(F2).

Proof. Let Mi = Fi ∩ E and Bi = Fi ∩ A for i = 1, 2. Denote the family of the
source components in (V, A) by K. If v ∈ R(B1) ∩ R(B2) for v ∈ V , then we
have {v} ∈ K. Thus, for a source component K ∈ K with |K| ≥ 2, K ∩ R(B1)
and K ∩ R(B2) are not empty and disjoint with each other. For each K ∈ K
with |K| ≥ 2, choose a pair eK of vertices, one of which is in K ∩R(B1) and the
other in K ∩ R(B2). Denote N = {eK | K ∈ K}. Note that N is a matching.

Construct an undirected graph H = (V, M1 ∪ M2 ∪ N). We have that H is
a disjoint collection of paths and cycles. For, an endpoint u of an edge eK ∈ N
satisfies that either u ∈ ∂−B1 or u ∈ ∂−B2, and thus u is not covered by both of
M1 and M2. Moreover, s is an endpoint of a path P in H . For, since s ∈ R(F2),
we have that s is not covered by M2. If s is covered by M1, then s ∈ R(B1), and
thus s ∈ R(B1) ∩ R(B2). This implies that s is not covered by N .

Denote the set of vertices on P by V P , the set of edges in M1 ∪ M2 on P by
EP , and let M ′

1 := M1�EP and M ′
2 := M2�EP . Then, both M ′

1 and M ′
2 are

matchings and R(M ′
1) = (R(M1)\V P)∪ (R(M2)∩V P) and R(M ′

2) = (R(M2)\
V P)∪ (R(M1)∩V P). Now, by Lemma 1, there exist disjoint branchings B′

1 and

Optimal Matching Forests and Valuated Delta-Matroids 409

B′
2 such that R(B′

1) = (R(B1) \ V P) ∪ (R(B2) ∩ V P) and R(B′
2) = (R(B2) \

V P) ∪ (R(B1) ∩ V P). (Note that |K ∩ R(B′
i)| ≥ 1 for i = 1, 2 for every source

component K.)
Since R(Bi)∪R(Mi) = V , we have that F ′

i = B′
i ∪M ′

i is a matching forest for
i = 1, 2, and R(F ′

1) = (R(F1)\V P)∪(R(F2)∩V P) and R(F ′
2) = (R(F2)\V P)∪

(R(F1) ∩ V P). If V P = {s}, then Assertion 1 applies. Otherwise, denote the
other endpoint of P by t. If t ∈ V \ (R(F1)�R(F2)), then Assertion 1 applies. If
t ∈ R(F2)\R(F1), then Assertion 2 applies. If t ∈ R(F1)\R(F2), then Assertion 3
applies.

Theorem 1 is obvious from Lemma 2. Furthermore, Theorem 2 also follows
from Lemma 2.
Proof for Theorem 2. Let S1, S2 ∈ domf and s ∈ S1�S2. For i = 1, 2, let Fi be
a matching forest such that R(Fi) = Si and w(Fi) = fMF (Si). Without loss of
generality, assume s ∈ R(F2)\R(F1). By applying Lemma 2 to the mixed graph
consisting of the edges in F1 and F2, we obtain matching forests F ′

1 and F ′
2 such

that w(F ′
1) + w(F ′

2) = w(F1) + w(F2) and satisfying one of Assertions 1–3. Now
the statement follows from w(F ′

1) ≤ fMF (R(F ′
1)) and w(F ′

2) ≤ fMF (R(F ′
2)).

3 A Simpler Algorithm

Let (G, w) be a weighted mixed graph with G = (V, E, A) and w ∈ RE∪A. In
this section, we describe a primal-dual algorithm for finding a matching forest F
maximizing w(F). It is a slight modification of Giles’ algorithm [15]. The main
difference results from focusing on branching delta-matroids (Theorem 3).

3.1 Linear Programming Formulation

For a subpartition L of V , let ∪L denote the union of the sets in L and let

γ(L) := {e | e ∈ E, e is contained in ∪L}∪{a | a∈A, a is contained in some set in L}.

Let Λ denote the collection of subpartition L of V with |L| odd. The following is
a linear programming relaxation of an integer program describing the weighted
matching forest problem:

(P) maximize
∑

e∈E∪A

w(e)x(e)

subject to x(δhead(v)) ≤ 1 (v ∈ V), (1)
x(γ(L)) ≤ �| ∪ L| − |L|/2� (L ∈ Λ), (2)
x(e) ≥ 0 (e ∈ E ∪ A). (3)

Here, δhead(v) ⊆ E ∪ A denotes the set of edges which have v as a head, i.e.,
δhead(v) = δv∪δ−v. Note that the above linear system is a common extension of
those describing the weighted matching problem [7] and the weighted branching
problem [9]. Giles [15] proved the integrality of the system (1)–(3).

410 K. Takazawa

Furthermore, Schrijver [21] proved the total dual integrality of the sys-
tem (1)–(3), which commonly extends the total dual integrality of matching
constraints [4] and branching constraints. That is, Schrijver proved that the
following dual problem of (P) has an integer optimal solution if w is integer:

(D) minimize
∑
v∈V

y(v) +
∑
L∈Λ

z(L)�| ∪ L| − |L|/2�

subject to y(u) + y(v) +
∑

L : e∈γ(L)

z(L) ≥ w(e) (e = uv ∈ E), (4)

y(v) +
∑

L : a∈γ(L)

z(L) ≥ w(a) (a = uv ∈ A), (5)

y(v) ≥ 0 (v ∈ V), (6)
z(L) ≥ 0 (L ∈ Λ). (7)

Define the reduced weight w′ ∈ RE∪A by w′(e) = y(u) + y(v) +∑
L : e∈γ(L) z(L)−w(e) for e = uv ∈ E and w′(a) = y(v)+

∑
L : a∈γ(L) z(L)−w(a)

for a = uv ∈ A. Below are the complementary slackness conditions of (P) and
(D).

x(e) > 0 =⇒ w′(e) = 0 (e ∈ E ∪ A), (8)

x(δheadv) < 1 =⇒ y(v) = 0 (v ∈ V), (9)
z(L) > 0 =⇒ x(γ(L)) = �| ∪ L| − |L|/2� (L ∈ Λ). (10)

3.2 Algorithm Description

In the algorithm, we keep a matching forest F , which corresponds to an integer
feasible solution x of (P), and a dual feasible solution (y, z). We maintain that
x and (y, z) satisfy (8) and (10). The algorithm terminates when (9) is satisfied.

Similarly to the classical weighted matching and branching algorithms, we
execute shrinking of subgraphs repeatedly. We keep two laminar families Δ and
Υ of subsets of V , the former of which results from shrinking a strong component
in the directed graph and the latter from shrinking an undirected odd cycle.

We use the following notations to describe the algorithm.

– For a cycle or a path Q in an undirected graph (V, E), let V Q and EQ denote
the vertex set and edge set of Q, respectively. We often abbreviate EQ as Q.

– Ω′ := Δ ∪ Υ , Ω := Ω′ ∪ {{v} | v ∈ V }.
– For each U ∈ Ω′, let GU = (VU , EU , AU) denote the mixed graph obtained

from the subgraph induced by U by contracting all maximal proper subsets of
U belonging to Δ. Also, let Ĝ = (V̂ , Ê, Â) denote the mixed graph obtained
from G by contracting all maximal sets in Ω′. We denote a vertex in a shrunk
graph by the set of vertices in V which are shrunk into the vertex. Also, we
often identify a vertex U in a shrunk graph and the singleton {U}.

Optimal Matching Forests and Valuated Delta-Matroids 411

– For G = (V, E, A) and a dual feasible solution (y, z), the equality sub-
graph G◦ = (V, E◦, A◦) is a subgraph of G defined by E◦ = {e |
e ∈ E, w′(e) = 0} and A◦ = {a | a ∈ A, w′(a) = 0}. We denote the
branching delta-matroid in (V̂ , Â◦) by (V̂ , F̂◦

B), i.e., F̂◦
B = {R(B̂) |

B̂ ⊆ Â◦ is a branching in Ĝ◦}.
The outline of the algorithm is as follows.

– We maintain a matching forest F̂ = M̂ ∪ B̂ in Ĝ◦, where M̂ ⊆ Ê◦ and
B̂ ⊆ Â◦, in order to maintain (8).

– In contracting a vertex set U ⊆ V , we associate a partition LU of U such that
x(γ(LU)) = �| ∪ LU | − |LU |/2�. The vector z is restricted to subpartitions
associated to the sets in Ω′ in order to maintain (10).

– Similarly to Edmonds’ matching algorithm [8], we construct an alternating
forest H , which is a subgraph of (V̂ , Ê◦). The vertex set and edge set of H are
denoted by V̂ H and ÊH , respectively. We often abbreviate ÊH as H . Each
component of H is a tree and contains a unique source vertex. Intuitively,
a source vertex is a vertex where (9) is not satisfied (see Step 2 below for
precise definition). For v ∈ V̂ H , let Pv denote the path in H connecting a
source vertex and v. The edges incident to a source vertex does not belong
to M̂ , and edges in M̂ and Ê◦ \ M̂ appear alternately on each Pv. We label
a vertex v as “even” (resp., “odd”) if the length of Pv is even (resp., odd).
Here, the length of a path is defined by the number of its edges. The set of
vertices labelled as even (resp., odd) is denoted by even(H) (resp., odd(H)).
Also, let free(H) := V̂ \ (even(H) ∪ odd(H)).

We now present a full description of our algorithm.

Algorithm SIMPLE
Step 1. Set F := ∅, y(v) := max{{w(e)/2 | e ∈ E}, {w(a) | a ∈ A}} for every

v ∈ V , Δ := ∅ and Υ := ∅.
Step 2. Construct the equality subgraph Ĝ◦ = (V̂ , Ê◦, Â◦).

Define the set of source vertices Ŝ = {U |
U ∈ V̂ , y(v) > 0 and x(δhead(v)) = 0 for some v ∈ U}. If Ŝ = ∅, deshrink
every sets in Ω′ and return F . Otherwise, let H be (Ŝ, ∅), label the vertices
in Ŝ as even, and then go to Step 3.

Step 3. If there exists an arc a ∈ Â◦\B̂ with ∂−a ∈ even(H), then go to Step 4.
Otherwise, go to Step 5.

Step 4. Let v := ∂−a. If R(B̂) \ {v} ∈ F̂◦
B, then go to Step 4.1. Otherwise, go

to Step 4.2.
Step 4.1: Augmentation. Reset F̂ := M ′ ∪ B′, where M ′ := M̂�Pv and B′

is a branching in (V̂ , Â◦) with R(B′) = R(B̂)\ {v}. Delete each T ∈ Ω′ with
z(LT) = 0 from Ω′, and then go to Step 2.

Step 4.2. Let K be the source component containing v and let X ⊆ V be the
union of vertices in V̂ K. If there exists e ∈ Ê◦ \M̂ such that ∂e ⊆ V̂ K, then
go to Step 4.2.1. Otherwise, go to Step 4.2.2.

412 K. Takazawa

Step 4.2.1: Augmentation. Let BK be a branching in K with R(BK) = ∂e.
Reset F̂ := M ′∪B′, where M ′ := (M̂�Pv)∪{e} and B′ := (B̂ \ ÂK)∪BK ,
delete each T ∈ Ω′ with z(LT) = 0 from Ω′, and then go to Step 2.

Step 4.2.2. Let W1, . . . , Wl be the maximal proper subsets of X belonging to
Υ . If, for some i ∈ {1, . . . , l}, ÂK contains a pair of arcs f+ ∈ δ+Wi and
f− ∈ δ−Wi such that ∂+f+ and ∂−f− belong to distinct vertices in GWi ,
then go to Step 4.2.2.1. Otherwise, go to Step 4.2.2.2.

Step 4.2.2.1: Augmentation. Let BK be a branching in K such that
R(BK) = {Wi} and f+ ∈ BK . Reset F̂ := M ′∪B′, where M ′ := M̂�Pv and
B′ := (B̂ \ Â(K)) ∪ BK ∪ {f−}. Then, delete each T ∈ Ω′ with z(LT) = 0
from Ω′ and go to Step 2.

Step 4.2.2.2: Shrinking. For each i = 1, . . . , l, let vWi ∈ VWi denote the
unique vertex in GWi to which arcs in ÂK are incident. Let X ′ = (X \
(W1 ∪ · · · ∪Wl))∪ {vWi}∪ · · · ∪ {vWl

} and add X ′ to Δ. Let LX′ = {X ′} be
the associated partition with X ′, set z(LX′) := 0, and then go to Step 3.

Step 5. Choose an edge e ∈ Ê◦\ÊH such that one of its head u is even. Denote
the other head of e by v.
– If v ∈ even(H) and e connects different components in H , then go to

Step 5.1.
– If v ∈ even(H) and u and v belong to the same component in H , then

go to Step 5.2.
– If v ∈ free(H) and v = ∂−a for some a ∈ B̂, then go to Step 5.3.
– If v ∈ free(H) and v ∈ ∂e′ for some e′ ∈ M̂ , then go to Step 5.4.
– If v is a pseudo-vertex labelled as “saturated,” then go to Step 5.5.

If no edge in Ê◦ \ Ê(H) satisfies the above conditions, then go to Step 6.
Step 5.1: Augmentation. Reset F̂ := M ′ ∪ B̂, where M ′ := M̂�(Pu ∪ Pv ∪

{e}), delete each T ∈ Ω′ with z(LT) = 0 from Ω′, and then go to Step 2.
Step 5.2. Let C be the cycle in H ∪ {e} and let U ⊆ V be the union of the

vertices in V̂ C. Denote the maximal proper subsets of U belonging to Δ and
Υ by Y1, . . . , Yk ∈ Δ and W1 . . . , Wl ∈ Υ , respectively. Let CU be an odd
cycle in GU obtained by adding even number of edges from each EWj to C.
For i = 1, . . . , k, let f1

i , f2
i ∈ CU denote the two edges incident to Yi, and let

v1
i , v2

i ∈ Yi denote the vertices to which f1
i and f2

i are incident, respectively.
If, for some Yi, the two vertices v1

i and v2
i are distinct and z(LY ′

i
) = 0 for the

minimal subset Y ′
i ∈ Δ of Yi such that {v1

i , v2
i } ⊆ Y ′

i , then go to Step 5.2.1.
Otherwise, go to Step 5.2.2.

Step 5.2.1: Deshrinking and augmentation. Delete Y ′
i from Δ and reset

M̂ :=

{
(M̂�PYi)�C (f1

i , f2
i ∈ E \ M),

M̂�P ∗
Yi

(otherwise).

Here, P ∗
Yi

denotes the path in H ∪{e} from Ŝ to Yi consisting of odd number
of edges. Delete each T ∈ Ω′ with z(LT) = 0 from Ω′, and then go to Step 2.

Step 5.2.2: Shrinking. Without loss of generality, assume that v1
i and v2

i are
identical for i = 1, . . . , j, and distinct for i = j+1, . . . , k. For i = j+1, . . . , k,
let Y ′

i ∈ Δ be the minimal subset of Yi such that {v1
i , v2

i } ⊆ Y ′
i . Let U ′ =

Optimal Matching Forests and Valuated Delta-Matroids 413

(U \(Y1∪· · ·∪Yk))∪{vY1 , . . . , vYj}∪(Y ′
j+1∪· · ·∪Y ′

k). Add U ′ to Υ , and define
a partition LU ′ of U ′ by the collection of {vY1}, . . . , {vYj}, Y ′

j+1, . . . , Y
′
k and

singletons of the other vertices in U ′. Set z(LU ′) := 0 and then go to Step 3.
Step 5.3: Augmentation. Reset F̂ := (M̂�Pv)∪(B̂\{a}), delete each T ∈ Ω′

with z(LT) = 0 from Ω′, and then go to Step 2.
Step 5.4: Forest extension. Grow H by adding e and e′. Label v as odd and

the other head of e′ as even. Then, go to Step 3.
Step 5.5: Augmentation. Reset F̂ := M ′ ∪ B̂, where M ′ := M̂�Pv, and

unlabel v. Delete each T ∈ Ω′ with z(LT) = 0 and then go to Step 2.
Step 6. Apply Dual Update described below, delete each T ∈ Ω′ with z(LT) = 0

from Ω′, and then go to Step 3.

Procedure Dual Update. Define families of vertex subsets of V as follows:

Δ+ := {maximal set in Δ, contained in some even vertex},
Δ− := {maximal set in Δ, contained in some odd vertex},
Υ+ := {maximal set in Υ , contained in some even vertex},
Υ− := {maximal set in Υ , contained in some odd vertex}.

Moreover, let

Δ′
+ := {X ⊆ V | X ∈ Δ, maximal proper subset of some element in Υ+},

Δ′
− := {X ⊆ V | X ∈ Δ, maximal proper subset of some element in Υ−},

V+ := {v ∈ V | {v} ∈ even(H) or v is contained in some even vertex},
V− := {v ∈ V | {v} ∈ odd(H) or v is contained in some odd vertex}.

Then, update (y, z) by

y(v) :=

⎧⎪⎨⎪⎩
y(v) − ε (v ∈ V+),
y(v) + ε (v ∈ V−),
y(v) (otherwise),

z(LU) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z(LU) + 2ε (U ∈ Υ+ ∪ (Δ′− \ Δ−)),
z(LU) − 2ε (U ∈ Υ− ∪ (Δ′

+ \ Δ+)),
z(LU) + ε (U ∈ (Δ+ \ Δ′

+) ∪ (Δ− ∩ Δ′
−)),

z(LU) − ε (U ∈ (Δ+ ∩ Δ′
+) ∪ (Δ− \ Δ′

−)),
z(LU) (otherwise),

where ε ≥ 0 is the minimum of the following:

ε1 = min{y(v) | v ∈ V+}; ε2 = min{z(LU)/2 | U ∈ Υ− ∪ (Δ′
+ \ Δ+)};

ε3 = min{z(LU) | U ∈ (Δ+ ∩ Δ′
+) ∪ (Δ− \ Δ′

−)};
ε4 = min{w′(e)/2 | e ∈ Ê, ∂e ⊆ V+};
ε5 = min{w′(e) | e ∈ Ê, one of ∂e belongs to V+, and the other V \ (V+ ∪ V−)};
ε6 = min{w′(e) | ∂e ⊆ X for some X ∈ Δ+ ∪ Δ′

+};
ε7 = min{w′(a) | a ∈ A, ∂−a ∈ V+, a 	∈ γ(LU) for any U ∈ Δ+ ∪ Υ+}.

414 K. Takazawa

Then, apply one of the following.

Case 1 (ε = ε1): Termination. Deshrink every sets in Ω′ and return F .
Case 2 (ε = ε2): Deshrinking. Apply Case 2.1 or 2.2.
Case 2.1 (ε = z(LU)/2 for U ∈ Υ −): Deshrinking. Delete U with ε =

z(LU)/2 from Υ , and then go to Step 3.
Case 2.2 (ε = z(LU)/2 for U ∈ Δ′

+ \ Δ+): Deshrinking. Denote the
maximal set in Υ containing U by W , and the maximal set in Δ con-
taining U by X . Add Ũ = W ∪ X to Υ , define a partition LŨ of Ũ by
(LU \ {U}) ∪ {X}, and set z(LŨ) = 0. Then, delete U from Δ and go to
Step 3.

Case 3 (ε = ε3). Apply Case 3.1 or 3.2.
Case 3.1 (ε = z(LU) for U ∈ Δ+ ∩ Δ′

+): Deshrinking and saturation.
Denote the set in Υ+ containing U by W , and the pseudo-vertex containing
W by Ŵ . Delete U from Δ, reset F̂ := (M̂�PŴ) ∪ B̂, and label Ŵ as
“saturated.” Note that G◦

W has a matching forest covering all vertices in
G◦

W . Delete each T ∈ Ω′ with z(LT) = 0 from Ω′, and go to Step 2.
Case 3.2 (ε = z(LU) for U ∈ Δ− \ Δ′

−). Let Û be the vertex in V̂ contain-
ing U , and let f1, f2 ∈ H be the edges incident to Û . If f1 and f2 are incident
to distinct vertices in GU , apply Case 3.2.1. Otherwise, apply Case 3.2.2.

Case 3.2.1: Deshrinking and augmentation. Reset M̂ := M̂�PÛ . Delete
U from Δ and each T ∈ Ω′ with z(LT) = 0 from Ω′, and then go to Step 2.

Case 3.2.2: Deshrinking. Delete U from Δ and then go to Step 3.
Case 4 (ε = ε4). Go to Step 5. (We can execute Step 5.1 or 5.2.)
Case 5 (ε = ε5). Go to Step 5. (We can execute Step 5.3 or 5.4.)
Case 6 (ε = ε6): Saturation. Let X ⊆ V be an element in Δ+ ∪ Δ′

+ such
that contains e ∈ E with ε = w′(e), and let X̂ denote the pseudo-vertex in
Ĝ containing X . Reset M̂ := M̂�PX̂ and label X̂ as “saturated.” Note that
G◦

X has a matching forest covering all vertices in G◦
X . Delete each T ∈ Ω′

with z(LT) = 0 from Ω′, and then go to Step 2.
Case 7 (ε = ε7). Apply Case 7.1 or 7.2.
Case 7.1 (ε = w′(a) for a ∈ Â). Go to Step 4.
Case 7.2 (ε = w′(a) for a ∈ AU with U ∈ Υ +): Saturation. Reset M̂ :=

M̂�PU and label U as “saturated.” Note that G◦
U has a matching forest

covering all vertices in G◦
U . Delete each T ∈ Ω′ with z(LT) = 0 from Ω′,

and then then go to Step 2.

We close this section by noting three features of the algorithm. The first one is
the time complexity. The bottleneck part is Dual Update. Procedure Dual Update
is executed O(n) times between consecutive augmentations or saturations.
Since augmentations and saturations collectively happen at most n times and
Dual Update takes O(m) time for determining ε, the total complexity is O(n2m).

Secondly, let us mention the difference from Giles’ algorithm [15]. A major
difference is in Step 4. In Giles’ algorithm, the condition where we go to Step 4.1
is that B̂ ∪ {a} is a branching, which is a sufficient condition of our condition
of R(B̂) \ {v} ∈ F̂◦

B. In other words, there exist cases where our algorithm

Optimal Matching Forests and Valuated Delta-Matroids 415

executes augmentation but Giles’ executes shrinking. In this sense, our algorithm
is expected to be practically faster than Giles’ algorithm, while they have the
same complexity.

The final remark is on a property of the matching forests maintained in the
algorithm. Let F be a matching forest which we have at any stage of the algo-
rithm. (Deshrink each element in Ω′, if Ω 	= ∅.) Then, it is not difficult to see
that w(F) ≥ w(F ′) for any matching forest F ′ with |R(F ′)| = |R(F)|. That is,
a matching forest appearing at any stage of the algorithm has the maximum
weight among all matching forests with the same root-size.

4 A Faster Algorithm

In this section, we sketch an O(n3) algorithm for the weighted matching for-
est problem which incorporates Giles’ weighted matching forest algorithm [15]
and Gabow’s technique for weighted matching [13]. The difference from Algo-
rithm SIMPLE is that we do not maintain the equality subgraph G◦ explicitly.
Instead, we keep the following.

– For each pair Y, Z of disjoint sets in Ω, we keep an edge eY Z ∈ E connecting
Y and Z and minimizing w′. We keep eY Z as lists: for each Y ∈ Ω, we have a
list containing the eY Z . Moreover, for each Y ∈ Ω, we keep an edge eY with
eY = eY Z for some Z ∈ Ω contained in an even (pseudo-)vertex in H and
with w′(eY Z) minimal. Also, for each pair Y, Z of disjoint sets in Ω, we keep
an arc aY Z ∈ A from Y to Z minimizing w′. We keep aY Z as lists: for each
Z ∈ Ω, we have a list containing the aY Z . Moreover, for each Z ∈ Ω, we
keep an arc aZ with aZ = aY Z for some Y ∈ Ω and with w′(aY Z) minimal.

– For each X ∈ Δ, we keep fX ∈ EX minimizing w′. We associate a graph G′
X ,

which is initially the directed cycle shrunk when X is added to Δ.
– For each U ∈ Υ , we keep bU ∈ AU minimizing w′. We associate a graph G′

U ,
which is initially the odd undirected cycle shrunk when U is added to Υ .

We remark that, in this algorithm, we do not use the branching delta-matroid F̂◦
B

(see Step 4 in Algorithm SIMPLE), because determining whether R(B̂) \ {v} ∈
F̂◦

B requires O(m) time (decomposition of (V̂ , Â◦) into strong components). In-
stead, we use Giles’ condition, whether B̂ ∪ {a} is a branching or not.

The above objects enables us to execute Procedure Dual Update in O(n) time,
by scanning the eY , aZ , fX bU , and z(LU). Updating the lists after shrinking,
deshrinking or forest extension takes O(n) time and updating after augmentation
and saturation takes O(n2) time. Thus, the total time complexity O(n3).

Acknowledgements

The author is thankful to Satoru Iwata for valuable comments on this research
and the simple proof for the matching forest delta-matroid. The author also
thanks Yusuke Kobayashi for discussions on simultaneous delta-matroids.

416 K. Takazawa

References

1. Bouchet, A.: Greedy Algorithm and Symmetric Matroids. Math. Programming 38,
147–159 (1987)

2. Bouchet, A.: Matchings and Δ-Matroids. Discrete Appl. Math. 24, 55–62 (1989)
3. Chandrasekaran, R., Kabadi, S.N.: Pseudomatroids. Discrete Math. 71, 205–217

(1988)
4. Cunningham, W.H., Marsh III, A.B.: A Primal Algorithm for Optimum Matching.

Math. Programming Study 8, 50–72 (1978)
5. Dress, A.W.M., Havel, T.: Some Combinatorial Properties of Discriminants in

Metric Vector Spaces. Adv. Math. 62, 285–312 (1986)
6. Dress, A.W.M., Wenzel, W.: A Greedy-Algorithm Characterization of Valuated

Δ-matroids. Appl. Math. Lett. 4, 55–58 (1991)
7. Edmonds, J.: Maximum Matching and a Polyhedron with 0,1-Vertices. J. Res.

Natl. Bur. Stand. Sect. B 69, 125–130 (1965)
8. Edmonds, J.: Paths, Trees, and Flowers. Canad. J. Math. 17, 449–467 (1965)
9. Edmonds, J.: Optimum Branchings. J. Res. Natl. Bur. Stand. Sect. B 71, 233–240

(1967)
10. Edmonds, J., Giles, R.: A Min-Max Relation for Submodular Functions on Graphs.

Ann. Discrete Math. 1, 185–204 (1977)
11. Frank, A.: Covering Branchings. Acta Sci. Math (Szeged) 41, 77–81 (1979)
12. Frank, A., Tardos, É.: Generalized Polymatroids and Submodular Flows. Math.

Programming 42, 489–563 (1988)
13. Gabow, H.N.: Implementation of Algorithms for Maximum Matching on Nonbi-

partite Graphs, Ph.D. thesis, Stanford University (1973)
14. Giles, R.: Optimum Matching Forests I: Special Weights. Math. Programming 22,

1–11 (1982)
15. Giles, R.: Optimum Matching Forests II: General Weights. Math. Programming 22,

12–38 (1982)
16. Giles, R.: Optimum Matching Forests III: Facets of Matching Forest Polyhedra.

Math. Programming 22, 39–51 (1982)
17. Keijsper, J.: A Vizing-Type Theorem for Matching Forests. Discrete Math. 260,

211–216 (2003)
18. Lovász, L.: Matroid Matching and Some Applications. J. Combin. Theory

Ser. B 28, 208–236 (1980)
19. Murota, K.: Characterizing a Valuated Delta-Matroid as a Family of Delta-

Matroids. J. Oper. Res. Soc. Japan 40, 565–578 (1997)
20. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)
21. Schrijver, A.: Total Dual Integrality of Matching Forest Constraint. Combinator-

ica 20, 575–588 (2000)
22. Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer,

Heidelberg (2003)
23. Vizing, V.G.: Ob Otsenke Khromaticheskogo Klassa p-grapha (in Russian).

Diskretny̆ı 3, 25–30 (1964)
24. Vizing, V.G.: Khromaticheskĭı Klass Mul’tigrafa (in Russian). Kibernetika 1(3),

29–39 (1965)
25. Wenzel, W.: Δ-Matroids with the Strong Exchange Conditions. Appl. Math.

Lett. 6, 67–70 (1993)
26. Wenzel, W.: Pfaffian Forms and Δ-Matroids. Discrete Math. 115, 253–266 (1993)

Fixed-Charge Transportation on a Path: Linear

Programming Formulations�

Mathieu Van Vyve

Center for Operations Research and Econometrics and
Louvain School of Management,

Voie du Roman Pays 34, B-1348 Louvain-la-Neuve, Belgium
mathieu.vanvyve@uclouvain.be

http://www.uclouvain.be/core

Abstract. The fixed-charge transportation problem is a fixed-charge
network flow problem on a bipartite graph. This problem appears as a
subproblem in many hard transportation problems, and has also strong
links with the challenging big-bucket multi-item lot-sizing problem. We
provide a polyhedral analysis of the polynomially solvable special case
in which the associated bipartite graph is a path.

We describe a new class of inequalities that we call “path-modular”
inequalities. We give two distinct proofs of their validity. The first one is
direct and crucially relies on sub- and super-modularity of an associated
set function, thereby providing an interesting link with flow-cover type
inequalities. The second proof is by projecting a tight extended formu-
lation, therefore also showing that these inequalities suffice to describe
the convex hull of the feasible solutions to this problem. We finally show
how to solve the separation problem associated to the path-modular in-
equalities in O(n3) time.

Keywords: mixed-integer programming, lot-sizing, transportation, con-
vex hull, extended formulation.

1 Introduction

In the fixed charge transportation problem (FCT), we are given a set of depots
i ∈ I each with a quantity of available items Ci, and a set of clients j ∈ J
each with a maximum demand Dj . For each depot-client pair (i, j), both the
unit profit qi,j of transporting one unit from the depot to the client is known,
together with the fixed charge gi,j of transportation along that arc. The goal is

� This paper presents research results of the Belgian Program on Interuniversity Poles
of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy
Programming. The scientific responsibility is assumed by the author.

O. Günlük and G.J. Woeginger (Eds.): IPCO 2011, LNCS 6655, pp. 417–429, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.uclouvain.be/core

418 M.V. Vyve

to find a profit-maximizing transportation program. Problem FCT can therefore
be expressed as the following mixed-integer linear program:

max
∑
i∈I

∑
j∈J

(qi,jwi,j − gi,jvi,j), (1)

∑
j∈J

wi,j ≤ Ci , ∀i ∈ I , (2)

∑
i∈I

wi,j ≤ Dj , ∀j ∈ J , (3)

0 ≤ wi,j ≤ min(Ci, Dj)vi,j , ∀i ∈ I, j ∈ J , (4)

v ∈ {0, 1}I×J , (5)

where wi,j is a variable representing the amount transported from depot i to
client j and vi,j is the associated binary setup variable.

In this description, the role of clients and depots are interchangeable. Indeed,
this problem can be modelled as a bipartite graph in which nodes are either
depots or clients and edges between a depot and a client exist if the client can
be served from that depot. A standard variant (and indeed a special case) is
that in which the demand of each client must be satisfied, in which case the unit
profit is usually replaced by a unit cost.

Problem FCT can be considered as a basic problem in supply chain manage-
ment in its own right, and is also a special fixed-charge network flow problem.
However surprisingly few polyhedral results are known for FCT. When there is
only one client or one depot, FCT reduces to a single node flow set for which
the (lifted) cover and reverse cover inequalities have been described and shown
to be effective [11,12,8]. Note that this also implies that FCT is NP-Hard. The
flow structure of FCT is similar to that of the Capacitated Facility Location
(CFL) problem, but this last problem has fixed cost for opening depots (nodes)
as opposed to transportation (edges). Known valid inequalities are essentially
flow cover type inequalities [2,5]. FCT also appears to be both a special case and
a strong relaxation of the multi-item big-bucket lot-sizing problem [13] for which
dual gaps are still typically large in practice [9,14,1]. This actually constitutes
the initial motivation of this work.

In this paper, we study the polynomially solvable special case of FCT in which
the associated bipartite graph is a path. FCTP is also a relaxation of FCT, and
it can therefore be hoped that polyhedral results for FCTP will be helpful in
solving the general case.

Let [k, l] denote {k, k + 1, . . . , l}. For FCTP, we assume that we have n + 1
depots and clients (or nodes) in total, indexed by the set [0, n]. We index depot-
client pairs (i − 1, i) (or edges) by i ∈ [1, n]. Depots are represented by even

Fixed-Charge Transportation on a Path: LP Formulations 419

nodes while clients are represented by odd nodes. The problem FCTP can be
formulated as the following mixed-integer program:

max
n∑

i=1

pjxj −
n∑

i=1

fjyj , (6)

xi + xi+1 ≤ ai , ∀i ∈ [1, n− 1] , (7)

0 ≤ xi ≤ min(ai−1, ai)yi , ∀i ∈ [1, n] , (8)

y ∈ {0, 1} , ∀i ∈ [1, n] , (9)

where xi for i ∈ [1, n] is the amount transported between i − 1 and i, yi is the
setup variable associated with xi, ai > 0 is the capacity of node i, and pi and
fi are respectively the unit profit and the fixed cost of transportation between
i − 1 and i. We denote the set of feasible solutions to (7)–(9) by XFCTP .

Program (7)–(9) can easily be recast into the framework introduced by Con-
forti et al. [4] by operating the change of variables x′

i = xi

M with M large enough.
Continuous variables (nodes) are then linked by a simple path with arcs having
alternating directions. This graph trivially only contains a polynomial number of
subpaths, so that FCTP admits a compact extended formulation and is therefore
polynomially solvable. Parts of Section 2 can be seen as specializing the extended
linear-programming formulation of Conforti et al. [6] for FCTP. In addition, in
the special case of FCTP we are able to describe a dedicated combinatorial opti-
mization algorithm (see Van Vyve [13]) and to project the extended formulation
onto the original variable space (see Sections 2 and 3).

Recently, using the same framework, Di Summa and Wolsey [7] aim at study-
ing the mixed-integer set in which continuous nodes are linked by a bidirected
path. This model subsumes FCTP. However they are only able to characterize
the convex hull of the set for two special cases that do not subsume FCTP.

The rest of the paper is organized as follows. In Section 2 we give a linear-
programming extended formulation for FCTP counting O(n2) variables and con-
straints and a combinatorial characterization of the facet-defining inequalities
defining its projection onto the original variable space. We first prove that the
proposed formulation is indeed an extended formution of conv(XFCTP). This
is done by showing that the matrix associated to a subset of the constraints
is a network flow matrix, as in [6]. We then prove that the constraint matrix
associated with the projection cone of this formulation is a totally unimodular
matrix, thereby showing that the coefficients of xi in facet-defining inequalities of
conv(XFCTP) have the consecutive ones property. Finally, fixing the coefficients
of xi to one of their O(n2) possible values, the separation problem becomes sep-
arable, with all subproblems equivalent to matching problems in closely related
bipartite graphs. This enables us to give a combinatorial characterization of a
family of valid inequalities sufficient to describe conv(XFCTP).

In Section 3, we introduce a new class of inequalities for FCTP that we call the
“path-modular inequalities”. We give a direct proof of their validity relying on
sub- and super-modularity properties of an associated set-function. This makes

420 M.V. Vyve

an intersting link with flow cover inequalities of which the validity for the single-
node flow set relies on submodularity of a similar set function. We then show that
the path-modular inequalities are in fact identical to the inequalities obtained
by projection. We also give an O(n3) separation algorithm for the path-modular
inequalities.

We conclude by discussing future research on the topic.
Notation. Throughout this paper we use the following notation: � denotes

the symetric difference, [k, l] = {k, k + 1, . . . , l}, N = [1, n], E and O denote the
even and odd integers respectively, ei denotes the unit vector with component i
equal to 1 and all others components equal to 0, 1 denotes the all ones vector, and
ỹ denotes the vector y with odd components being complemented (i.e. replaced
by 1 − yi).

2 Compact Linear Programming Formulation and
Projection

In this section, we give an extended linear programming formulation for FCTP
of size O(n2) variables and constraints. It can be seen as a specialization for
FCTP of the results of Conforti et al. [6]. In addition, we are able to give a com-
binatorial characterization of the extreme rays of the associated projection cone,
and therefore a combinatorial description of inequalities sufficients to describe
conv(XFCTP).

We start with a definition, a lemma that we state without proof (it can be
found in Van Vyve [13]) and a couple of observations.

Definition 1. For given j ∈ [0, n + 1], let ᾱi,j for i ∈ [0, n + 1] be the unique
solution of the following system of n + 2 linear equations in variables xi for
i ∈ [0, n + 1]: xi + xi+1 = ai for i ∈ [0, n] and xj = 0 (note that x0 and xn+1 are
defined here but not in (7)-(9)).

Lemma 1. Let x be an extreme point of XFCTP . Then xi takes its value in the
set {ᾱi,j}n+1

j=0 .

Observation 1. ᾱi,j satisfy the two following properties:

ᾱi,j + ᾱi+1,j = ai , ∀i ∈ [0, n], j ∈ [0, n + 1] , (10)

ᾱi,j =
{

ᾱi,0 + ᾱ0,j i ∈ E ,
ᾱi,0 − ᾱ0,j i ∈ O .

(11)

Let (j0, j1, . . . , jm̄) be a permutation of a subset of [0, n+1] that removes dupli-
cate entries and sorts {ᾱ1,j}n+1

j=0 in increasing order: ᾱ1,j0 < ᾱ1,j1 < . . . < ᾱ1,jm̄ .
For fixed i ∈ [1, n], it follows from (11) that the same permutation removes
duplicate entries and sorts {ᾱi,j}n+1

j=0 in increasing (resp. decreasing) order for i
odd (resp. even). Defining

β̄i,k =
{

ᾱi,jk
if i ∈ [1, n] ∩ O, k ∈ [0, m̄] ,

ᾱi,jk−1 if i ∈ [1, n] ∩ E, k ∈ [1, m̄ + 1] .

Fixed-Charge Transportation on a Path: LP Formulations 421

and γk = β̄1,k − β̄1,k−1 > 0 for k ∈ [1, m̄], (11) implies that

β̄i,k − β̄i,k−1 = γk, for i ∈ [1, n] ∩ O, k ∈ [1, m̄] ,

β̄i,k − β̄i,k+1 = γk, for i ∈ [1, n] ∩ E, k ∈ [1, m̄] .

Consider now the following formulation in which the intended meaning is that
zi,k = 1 if xi takes a value at least β̄i,k and 0 otherwise.

xi = β̄i,0 +
m̄∑

k=1

γkzi,k , ∀i ∈ O , (12)

xi = β̄i,m̄+1 +
m̄∑

k=1

γkzi,k , ∀i ∈ E , (13)

yi ≥ zi,k , ∀i ∈ N, k ∈ [1, m̄] : β̄i,k > 0 , (14)
zi,k + zi+1,k ≤ 1 , ∀i ∈ N, k ∈ [1, m̄] , (15)
zi,k = 0 , ∀i ∈ N, k ∈ [1, m̄] : β̄i,k > min(ai−1, ai) , (16)
zi,k = 1 , ∀i ∈ N, k ∈ [1, m̄] : β̄i,k ≤ 0 , (17)
zi,k ≥ 0 , ∀i ∈ N, k ∈ [1, m̄] . (18)

The next proposition shows that this is a correct formulation of FCTP.

Proposition 1. For any (x, y) ∈ Rn × Zn, (x, y) ∈ XFCTP if and only if there
exists z such that (x, y, z) is feasible in (12)-(18).

Proof. We first show that for any (x, y) ∈ XFCTP there exists z such that
(x, y, z) is feasible in (12)-(18). Assuming wlog that (x, y) is an extreme point
of XFCTP , let zi,k = 1 if xi takes a value at least β̄i,k and 0 otherwise. That
this choice of z satisfies constraints (12)-(18) is clear except for (15). Suppose
i ∈ O (the case i ∈ E is similar). Because β̄i,k + β̄i+1,k = ᾱi,jk

+ ᾱi+1,jk−1 =
ᾱi,jk

+ ᾱi+1,jk
+ γk = ai + γk > ai, the relation zi,k + zi+1,k > 1 would imply

xi + xi+1 > ai, a contradiction.
We now show the converse. First let us show that constraints (7) are implied by

(12),(13),(15). Suppose i is odd (the other case is similar). By (10) and definition
of γ, we know that βi,0+βi+1,m̄+1 = (βi+1,m̄+βi,m̄)+(βi,0−βi,m̄) = ai−

∑m̄
k=1 γk.

Therefore we can write

xi + xi+1 =β̄i,0 +
m̄∑

k=1

γkzi,k + β̄i+1,m̄ +
m̄∑

k=1

γkzi+1,k

= ai −
m̄∑

k=1

γk +
m̄∑

k=1

γk(zi,k + zi+1,k)

≤ ai −
m̄∑

k=1

γk +
m̄∑

k=1

γk = ai .

We finally show that (x, y, z) feasible in (12)-(18) and xi > 0 implies yi > 0.
Observe that because of (17) and the fact that β̄i,k = 0 for some k, (12) can

422 M.V. Vyve

be rewritten as xi =
∑m̄

k=1:β̄i,k>0 γkzi,k. Because of (18) and γk > 0 for all k,
xi > 0 if and only if zi,k > 0 for some k. This implies yi > 0 using (14). Hence
(12)-(18) is a correct formulation of FCTP.

Proposition 2. Formulation (12)-(18) is a linear programming extended for-
mulation of
conv(XFCTP).

We show that extreme points of (12)-(18) are integral. By the change of variables
z′i,j = −zi,j and y′

i = −yi for i even and z′i,j = zi,j and y′
i = yi for i odd, each

constraint (14) and (15) becomes a bound on a difference of two variables. The
matrix associated to this modified constraint system is therefore a network flow
matrix. The result follows.

A linear programming extended formulation automatically leads to a charac-
terization of the convex hull of the solutions in the original space of variables
through projection. Indeed, testing if a point (x∗, y∗) satisfying y∗ ≤ 1 belongs
to conv(XFCTP) is equivalent to testing whether the following LP in variables
z is feasible:

max 0 ,∑
k∈Ki

γkzi,k = x∗
i , ∀i ∈ N , (Δi)

zi,k ≤ y∗
i , ∀i ∈ N, k ∈ Ki , (δi,k) ,

zi,k + zi+1,k ≤ 1 , ∀i ∈ [1, n− 1], k ∈ Ki ∩ Ki+1 , (ρi,k)
zi,k ≥ 0 , ∀i ∈ N, k ∈ Ki ,

where Ki = {k ∈ [1, m̄] : 0 < β̄i,k ≤ min(ai−1, ai)}. Through LP duality, this is
equivalent to testing whether the following LP is bounded:

min
n∑

i=1

x∗
i Δi +

n∑
i=1

∑
k∈Ki

y∗
i δi,k +

n−1∑
i=1

∑
k∈Ki∩Ki+1

ρi,k ,

γkΔi + δi,k + ρi−1,k + ρi,k ≥ 0 , ∀i ∈ N, k ∈ Ki ,

ρi,k = 0 , ∀i /∈ [1, n − 1] or k /∈ Ki ∩ Ki+1 ,

δ, ρ ≥ 0 .

Dividing the constraint by γk and rescaling δi,k and ρi,k by γk, one obtains the
equivalent LP

min
n∑

i=1

x∗
i Δi +

n∑
i=1

∑
k∈Ki

γky∗
i δi,k +

n−1∑
i=1

∑
k∈Ki∩Ki+1

γkρi,k , (19)

Δi + δi,k + ρi−1,k + ρi,k ≥ 0 , ∀i ∈ N, k ∈ Ki , (20)
ρi,k = 0 , ∀i /∈ [1, n − 1] or k /∈ Ki ∩ Ki+1 , (21)
δ, ρ ≥ 0 . (22)

Fixed-Charge Transportation on a Path: LP Formulations 423

This is true if (x∗, y∗) satisfies

n∑
i=1

x∗
i Δi +

n∑
i=1

∑
k∈Ki

γky∗
i δi,k +

n−1∑
i=1

∑
k∈Ki∩Ki+1

γkρi,k ≥ 0

for all extreme rays of the cone associated to the last constraint system. We will
characterize sufficient inequalities to describe the polyhedron conv(XFCTP) by
characterizing these extreme rays. Because x∗, y∗, γ, δ, ρ ≥ 0, extreme rays with
negative cost satisfy Δ ≤ 0. Hence we can normalize rays by assuming Δi ≥ −1
for all i ∈ N .

A first observation is that Δi < 0 for consecutive i’s (otherwise the ray is the
sum of two other rays). The following result is less trivial.

Proposition 3. The matrix associated to the constraint system (20) is totally
unimodular.

Proof. Variable δi,k appears only in one constraint and can therefore be ne-
glected. We prove the result by proving that for any subset J of the columns of
the matrix B under consideration, there exists a partition (J−, J+) of J such
that

∑
j∈J+ bi,j −

∑
j∈J− bi,j ∈ {−1, 0, 1} for all rows i.

If none of the variables Δi belong to J then the remaining matrix satisfies the
consecutive ones property and is TU. So we can assume the contrary and consider
columns associated to Δi belonging to J in increasing order of i: i1 < i2 <
We assign Δi1 to J+. Then we assign Δij to the same partition as Δij−1 if the
parity of ij and ij−1 are different and to the other partition if the parity is the
same (in particular, consecutive columns are assigned to the same partition).

Note that having partitioned columns associated to Δ, the problem becomes
separable in k. Consider ρi′,k belonging to J and let j< be the highest index
such that ij< ≤ i′ and let j> be the lowest index such that ij> > i′. In other
words, ij< and ij> are the two closest columns Δi before and after i′ belonging
to J . At least one of them exists. We assign ρi,k to

– the same partition as Δij< if ij< and i′ have a different parity,
– the opposite partition to that of Δij< if ij< and i′ have the same parity,
– the same partition as Δij> if i′ and ij> have the same parity,
– the opposite partition to that of Δij> if i′ and ij> have a different parity.

Observe that these rules cannot be contradictory in case both j< and j> exist
because of the choosen partitioning of Δi.

We claim that this partitioning satisfies the desired property for row (20) for
any given i, k. If Δi does not belong to J , then ρi−1,k and ρi,k are assigned
to opposite partitions and the property holds. If Δi belongs to J , then ρi−1,k

and ρi,k are both assigned to the opposite partition to that of Δi and again the
property holds.

Corollary 1. Normalized extreme rays of negative cost of (19)-(22) satisfy Δi =
−1 if i ∈ [l, l′] and 0 otherwise for some l, l′ ∈ N .

424 M.V. Vyve

Therefore we can assume without loss of generality Δ fixed accordingly, and an-
alyze optimal solutions of the LP (19)-(22) under this assumption. The following
characterization will be sufficient for our purposes.

Proposition 4. For given (x∗, y∗) and fixed Δ according to Corollary 1, the set
of optimal solutions to (19)-(22) is the same for all vectors y∗ that admit the
same ordering when sorted in decreasing order of ỹ∗. When y∗ is such that this
ordering is unique, the optimal solution is unique as well.

Proof. Observe that for fixed Δ, the LP (19)-(22) is separable in k. Furthermore,
for given each k, the problem is of the form:

min
n∑

i=1

y∗
i δi +

n−1∑
i=1

ρi , (23)

δ1 + ρ1 ≥ 1 , (24)
δi + ρi−1 + ρi ≥ 1 , ∀i ∈ [2, n − 1] , (25)
δn + ρn−1 ≥ 1 , (26)
ρi = 0 , ∀i ∈ Q , (27)
δ, ρ ≥ 0 , (28)

where Q can be choosen to represent constraints (21). From Proposition 3, we
know that optimal solutions can be assumed to be integral. From a graphical
perspective, we have an undirected path of which each node i must be covered
either by itself at cost y∗

i or by one of its incident edges at cost 1. Note that as
0 ≤ y∗

i ≤ 1, we can assume that in optimal solutions all inequalities (24)-(26)
will be tight. Indeed, if inequality i is not tight and Δi > 0, we can decrease it by
1 without increasing the objective. If inequality i is not tight and Δi = 0, then
ρi−1 or ρi is positive. Suppose ρi. Then we can decrease ρi by 1 and increase
y∗

i+1 by 1 without increasing the objective.
Therefore the same problem can be modelled as the more classical perfect

matching problem in the following bipartite graph. The node set is V = I ∪ I ′

where I = I ′ = [1, n̄] and we index nodes in I (resp. I ′) by i (resp. i′). The edge
set E includes edges (i, i′) if i = i′ with cost y∗

i and edges (i, i+1) and (i′, i′ +1)
for all i, i′ ∈ [1, n̄− 1] \ Q with cost 1

2 . Note that this graph is bipartite but not
under the usual partition E ⊆ I × I ′. The two problems are equivalent because
if edge (i, i + 1) is in the matching, then the edge (i′, i′ + 1) for i′ = i must also
be in the matching and together they cost 1.

Elementary cycles in this bipartite graph are of the form i, i+1, . . . , j, j′, j′−
1, . . . , i′ and can therefore be unambigously denoted by Ci,j for i < j. Consider a
given perfect matching M of the graph (V, E) just defined. Ci,j is an alternating
cycle with respect to M if and only if the four following conditions hold:

(i) M does not contain an edge (l, l′) with i < l < j,
(ii) if either (i, i′) or (j, j′) but not both belongs to M , then i and j are of the

same parity,

Fixed-Charge Transportation on a Path: LP Formulations 425

(iii) if either both (i, i′) and (j, j′) or none of them belong to M , then i and j
are of different parity.

(iv) there is no l ∈ Q with i ≤ l < j.

Let Ci,j be such an alternating cycle and consider the perfect matching M ′

obtained by taking the symetric difference M ′ = M �Ci,j . Denoting the cost of
matching M by c(M), the structure of the graph implies that:

c(M ′) = C(M) +

⎧⎪⎪⎨⎪⎪⎩
1 − y∗

i − y∗
j if both (i, i′) and (j, j′) belong to M,

y∗
i + y∗

j − 1 if neither (i, i′) nor (j, j′) belong to M,
y∗

i − y∗
j if (j, j′) belongs to M but not (i, i′),

y∗
j − y∗

i if (i, i′) belongs to M but not (j, j′).

Combining this with the characterization of an alternating cycle above, we obtain
that the set of optimal solutions (matchings) to (23)-(28) will be the same for
all vectors y∗ that admit the same orderings when sorted in decreasing order
of ỹ∗. When this ordering is unique the optimal matching is unique as well as
taking the symetric difference with any elementary alternating cycle will strictly
increase its cost.

For fixed Δ, subproblems k of (19)-(22) will only differ by Q in constraint
(27). Hence the same is true for optimal solutions of (19)-(22).

Corollary 2. Together with bounds xi ≥ 0 and yi ≤ 1 for i ∈ N , the following
family of valid inequalities is sufficient to describe the convex hull of XFCTP :

l′∑
i=l

xi ≤ τ(L) +
l′∑

i=l

σ(i,L)yi , (29)

where l, l′ ∈ N , l ≤ l′, L is a permutation of [l, l′] and τ(L) =
∑n−1

i=1

∑
k∈Ki∩Ki+1

γkρi,k and σ(i,L) =
∑

k∈Ki
γkδi,k for the unique optimal solution (δ, ρ) of (19)-

(22) obtained when L is the unique permutation that sorts ỹ∗ in decreasing order
and Δ is fixed at Δi = −1 for i ∈ [l, l′] and 0 otherwise.

3 Path-Modular Inequalities

In this section we derive a new family of inequalities that we call path-modular
inequalities. Before showing that they are equivalent to inequalities (29), we give
a more direct and insightful proof of their validity for FCTP. This proof relies
on submodularity and supermodularity properties of the following set function.
For a given set S ⊆ [1, n] and vector a ∈ Rn+1

+ , let φ(S, a) be defined as

φ(S, a) = max
n∑

i=1

xj ,

(7) ,

xi ≥ 0 , ∀i ∈ S ,

xi = 0 , ∀i ∈ N \ S .

426 M.V. Vyve

For notational convenience, we will sometimes omit the argument a in φ(S, a)
when we unambiguously refer to the original input data of the problem. Let
ρi(S) = φ(S + i) − φ(S) be the increment function of i at S. Clearly ρi(S) is
always nonnegative, but it is neither globally submodular (ρi(S) ≥ ρi(T) for all
S ⊂ T, i /∈ T) nor supermodular (ρi(S) ≤ ρi(T) for all S ⊂ T, i /∈ T).

We now define the path-modular inequalities. Let L be a subinterval [l, l′] of
N , let L = OL ∪ EL be the partition of L into odd and even numbers, and let
L = (j1, j2, . . . , j|L|) be a permutation of L. Let Ojk

L = {j1, . . . , jk} ∩ OL and
let Ejk

L = {j1, . . . , jk−1} ∩ EL. We call the the following inequality the (l, l′,L)-
path-modular inequality:∑

i∈L

xi ≤ φ(OL)+
∑

i∈EL

ρi(OL∪Ei
L \Oi

L)yi−
∑

i∈OL

ρi(OL∪Ei
L \Oi

L)(1−yi) . (30)

The following proposition essentially characterizes certain vectors y at which a
given path-modular inequality is tight.

Proposition 5. Let an interval L=[l, l′] and a permutation L=(j1, j2, . . . , j|L|)
of L be given. For each k ∈ [0, |L|], there exists a point (xk, yk) ∈ XFCTP which
is tight for the corresponding (l, l′,L)-path-modular inequality, satisfying

yk =
∑

i∈OL

ei �
k∑
1

ejk

and at which the inequality reduces to
∑

i∈Y k xi ≤ φ(Y k) where Y k = {i ∈ N :
yk

i = 1}.
Proof. The proof is by induction on k. For k = 0, Y 0 = OL and the path modular
inequality reduces to

∑
i∈OL

xi ≤ φ(OL). By definition of φ, there exists x such
that this inequality is satisfied at equality.

So let us assume that the proposition is true for k−1 and k > 0. If jk is even,
then the inequality reduces to

∑
i∈Y k x ≤ φ(Y k−1) + ρjk

(Y k−1) = φ(Y k−1 +
jk) = φ(Y k). If jk is odd, then the inequality reduces to

∑
i∈Y k x ≤ φ(Y k−1) −

ρjk
(Y k−1 − jk) = φ(Y k − jk) = φ(Y k). By definition of φ, there exists x such

that this inequality is satisfied at equality.

In particular the previous proposition shows that all path-modular inequalities
are tight at points with exactly either all odd or all even edges open.

The following proposition essentially tells us that φ exhibits supermodularity
when we keep on opening edges of the same parity as the edge i under consider-
ation. Conversely, it tells us also that φ exhibits submodularity when we keep on
opening edges of the opposite parity compared to the edge i under consideration.
Note that, broadly speaking, this is also the case for flow cover inequalities: in
that case each edge is at an odd distance from any other one, so that the asso-
ciated max-flow function is completely submodular. The technical and lengthy
proof of this proposition can be found in [13].

Fixed-Charge Transportation on a Path: LP Formulations 427

Proposition 6. Let S ⊂ T ⊆ N and i ∈ N \ T be given.

(i) If (T \ S) ⊆ E and i ∈ E, then ρi(T) ≥ ρi(S).
(ii) If (T \ S) ⊆ O and i ∈ O, then ρi(T) ≥ ρi(S).
(iii) If (T \ S) ⊆ E and i ∈ O, then ρi(T) ≤ ρi(S).
(iv) If (T \ S) ⊆ O and i ∈ E, then ρi(T) ≤ ρi(S).

We are now ready to prove the validity of the path-modular inequalities.

Proposition 7. The path-modular inequalities (30) are valid for XFCTP .

Proof. Let a feasible point (x, y) ∈ XFCTP be given with Y = {i ∈ N :
yi = 1}. Let L ⊆ N be a set of consecutive integers and let a permutation
L = (j1, j2, . . . , j|L|) of L be given. We show that the point (x, y) satisfies the
corresponding path-modular inequality.

Let Ēi
L = Ei

L ∩ Y and Ōi
L = Oi

L ∩ Y . The following relations hold∑
i∈L

xi ≤ φ(Y)

= φ(OL) −
∑

i∈OL\Y

ρi(OL ∪ Ēi
L \ Ōi

L) +
∑

i∈EL∩Y

ρi(OL ∪ Ēi
L \ Ōi

L)

≤ φ(OL) −
∑

i∈OL\Y

ρi(OL ∪ Ēi
L \ Oi

L) +
∑

i∈EL∩Y

ρi(OL ∪ Ēi
L \ Oi

L)

≤ φ(OL) −
∑

i∈OL\Y

ρi(OL ∪ Ei
L \ Oi

L) +
∑

i∈EL∩Y

ρi(OL ∪ Ei
L \ Oi

L)

= φ(OL) −
∑

i∈OL

ρi(OL ∪ Ei
L \ Oi

L)(1 − yi) +
∑

i∈EL

ρi(OL ∪ Ei
L \ Oi

L)yi ,

where the first inequality is by definition of φ, the first equality is by definition
of the increment function ρ and the fact that the set argument of each term
(ordered according to the order (j1, j2, . . . , j|L|)) differs from the previous term
by exactly the element being incremented or decremented, the second inequality
is an application of Corollary 6 (ii) for the first term and (iv) for the second
term, the third inequality is an application of Corollary 6 (iii) for the first term
and (i) for the second term, and finally the last equality holds because the added
terms in the sum are null.

We now prove that the path-modular inequalities are sufficient to describe
conv(XFCTP) by showing that they are the same as the inequalities (29) ob-
tained by projection.

Proposition 8. Together with bounds xi ≥ 0 and yi ≤ 1 for i ∈ N , the path-
modular inequalities are sufficient to describe the convex hull of XFCTP .

Proof. Let l, l′ ∈ N , l ≤ l′ and a permutation L of [l, l′] be given. Consider any of
the |l′−l+2| points (xk, yk) of Proposition 5 for the ordering (j1, j2, . . . , jn) = L.
Such a point lies on the boundary of conv(XFCTP), and therefore a separation

428 M.V. Vyve

algorithm that maximizes the violation will output a valid inequality that is
tight at this point. Consider now the LP (19)-(22) with Δ fixed at Δi = −1
for l ≤ i ≤ l′ and 0 otherwise. This LP actually determines a valid inequal-
ity of the form

∑l′

i=l xi ≤ π0 +
∑l′

i=l πiyi maximizing the violation. Now ob-
serve that the permutation L sorts ỹk in decreasing order for any k. Therefore
the corresponding inequality (29) is tight at (xk, yk) for any k. By Proposition
5, this is also the case for the path-modular inequality associated to (l, l′,L).
As these |l′ − l + 2| points are affinely independent, these two inequalities are
identical.

We now turn to the question of separating a point (x∗, y∗) with x∗
i ≥ 0 and y∗

i ≤ 1
for all i ∈ N from the polyhedron defined by the path-modular inequalities. It
follows directly from Proposition 4 that the ordering maximizing the violation
sorts ỹ∗ in decreasing order. Moreover this ordering is independent of L.

It is explained in [13] how preprocessing that can be carried out O(n2) op-
erations makes it possible to compute each coefficient of a given path-modular
inequality in constant time. The next result follows.

Proposition 9. The separation problem associated with the path-modular in-
equalities can be solved in O(n3) time. The separation problem associated with
the path-modular inequalities with |L| ≤ k can be solved in O(n2 + k2n) time.

4 Conclusion

This paper is a polyhedral analysis of the Fixed Charge Transportation problem
on Paths (FCTP). We describe a new family of valid inequalities for FCTP that
we call path-modular inequalities. We give a direct proof of their validity relying
on sub- and super-modularity properties of an associated set function. We show
that they are sufficient to describe the convex hull of solutions to FCTP by
projecting a linear-programming extended formulation. We also show how to
separate path-modular inequalities in O(n3) time.

In an extended version of this paper [13] we also characterize extreme points of
FCTP, we give a combinatorial optimization algorithm, we present an alternative
extended formulation, we report on computational experiment in solving FCTP
using the different formulations and cutting planes presented, and show that
a substantial number of facets of FCT are in fact path-modular inequalities of
path-relaxations of FCT.

In our view, this work can be pursued in three main directions. The first one
is trying to generalize path-modular inequalities to other graph structures. In
particular, it would be nice to be able to describe a family of inequalities that
subsumes path-modular (paths) and simple flow-cover inequalities (stars). The
second one is to study how this work can help in going forward in the study of
doubly-linked mixing sets [7]. The third one is to use the present work to better
solve general fixed charge transportation problems.

Fixed-Charge Transportation on a Path: LP Formulations 429

Acknowledgements

The author is grateful to L.A. Wolsey for commenting on an earlier version of
this text.

References

1. Akartunal, K., Miller, A.J.: A Computational Analysis of Lower Bounds for Big
Bucket Production Planning Problems (2007), Optimization Online,
http://www.optimization-online.org/DB_FILE/2007/05/1668.pdf

2. Aardal, K.: Capacitated Facility Location: Separation Algorithms and Computa-
tional Experience. Mathematical Programming A 81, 149–175 (1998)

3. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, Inc., En-
glewood Cliffs (1993)

4. Conforti, M., Di Summa, M., Eisenbrand, F., Wolsey, L.A.: Network formulations of
mixed-integer programs. Mathematics of Operations Research 34, 194–209 (2009)

5. Carr, R., Fleischer, L., Leung, V., Phillips, C.: Strengthening integrality gaps for
capacitated network design and covering problems. In: Proceedings of the 11th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 106–115 (2000)

6. Conforti, M., Wolsey, L.A., Zambelli, G.: Projecting an extended formulation for
mixed-integer covers on bipartite graphs. Mathematics of Operations Research 35,
603–623 (2010)

7. Di Summa, M., Wolsey, L.A.: Mixing sets linked by bidirected paths. CORE Dis-
cussion Paper 2010/61, Louvain-la-Neuve (2010)

8. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.P.: Lifted flow cover inequalities for
mixed 0-1 integer programs. Mathematical Programming A 85, 439–467 (1999)

9. Jans, R., Degraeve, Z.: Improved lower bounds for the capacitated lot sizing prob-
lem with setup times. Operations Research Letters 32, 185–195 (2004)

10. Krarup, J., Bilde, O.: Plant location, set covering and economic lotsizes: an O(mn)
algorithm for structured problems. In: Collatz, L. (ed.) Optimierung bei Graphen-
theoretischen und Ganzzahligen Probleme, pp. 155–180. Birkhauser Verlag, Basel
(1977)

11. Padberg, M.W., van Roy, T.J., Wolsey, L.A.: Valid linear inequalities for fixed
charge problems. Operations Research 33, 842–861 (1985)

12. van Roy, T.J., Wolsey, L.A.: Solving mixed integer programming problems using
automatic reformulation. Operations Research 33, 45–57 (1987)

13. Van Vyve, M.: Fixed-charge transportation on a path: optimization, LP formula-
tions and separation. CORE Discussion Paper 2010/68, Louvain-la-Neuve (2010)

14. Van Vyve, M., Wolsey, L.A.: Approximate extended formulations. Mathematical
Programming B 105, 501–522 (2006)

http://www.optimization-online.org/DB_FILE/2007/05/1668.pdf

Author Index

Ageev, Alexander 1
Anjos, Miguel F. 207
Au, Yu Hin 14

Basu, Amitabh 27
Benchetrit, Yohann 1
Bergner, Martin 39
Bonami, Pierre 52
Boyd, Sylvia 65

Caprara, Alberto 39
Chakrabarty, Deeparnab 78, 92
Chekuri, Chandra 78
Cook, William 104, 261
Cornuéjols, Gérard 27

Dadush, Daniel 130
D’Ambrosio, Claudia 117
Dey, Santanu S. 130, 143
Dhesi, Aman 156

Eisenbrand, Friedrich 170

Fischetti, Matteo 183
Friedmann, Oliver 192
Furini, Fabio 39

Ghaddar, Bissan 207
Giandomenico, Monia 223
Gørtz, Inge Li 235
Grandoni, Fabrizio 248
Gupta, Pranav 156

Held, Stephan 261

Iwata, Satoru 274

Kaibel, Volker 287
Kakimura, Naonori 170
Karlin, Anna R. 301
Khanna, Sanjeev 78
Király, Tamás 315
Koch, Thorsten 104
Korula, Nitish 78
Kumar, Amit 156

Lau, Lap Chi 315
Letchford, Adam N. 223
Linderoth, Jeff 117
Lübbecke, Marco E. 39
Luedtke, James 117

Malaguti, Enrico 39
Mathieu, Claire 301
McCormick, S. Thomas 324
Molinaro, Marco 27, 235
Monaci, Michele 183

Nagarajan, Viswanath 235
Nguyen, C. Thach 301
Nguyen, Trang T. 336

Parekh, Ojas 349
Parija, Gyana R. 156
Pashkovich, Kanstantsin 287
Peis, Britta 324, 362
Pokutta, Sebastian 143

Raidl, Günther R. 376
Ravi, R. 235
Richard, Jean-Philippe P. 336
Rossi, Fabrizio 223
Rothvoß, Thomas 170, 248
Roy, Sambuddha 156
Ruthmair, Mario 376

Sanità, Laura 170
Sebő, András 1
Sewell, Edward C. 261
Sitters, René 65
Smriglio, Stefano 223
Soto, José A. 389
Steffy, Daniel E. 104
Stougie, Leen 65
Swamy, Chaitanya 92
Szigeti, Zoltán 1

Takamatsu, Mizuyo 274
Takazawa, Kenjiro 404
Tawarmalani, Mohit 336
Telha, Claudio 389

432 Author Index

Traversi, Emiliano 39
Tunçel, Levent 14

van der Ster, Suzanne 65
Van Vyve, Mathieu 417

Vera, Juan C. 207
Vielma, Juan Pablo 130

Wiese, Andreas 362
Wolter, Kati 104

	Title
	Preface
	Organization
	Table of Contents
	An Excluded Minor Characterization of Seymour Graphs
	Introduction
	Results
	Proof of Theorem 2
	References

	Complexity Analyses of Bienstock–Zuckerberg and Lasserre Relaxations on the Matching and Stable Set Polytopes
	Introduction
	Preliminaries
	The \SA and \SA_+ Operator
	The Lasserre Operator
	The Bienstock-Zuckerberg Operators
	Matching Polytope and the Notion of Rank

	Some Tools for Upper Bound Analyses
	The \SA_+-rank, the \Las-rank, and the Theta-rank of the Matching Polytope
	The \BZ_+-rank of the Matching Polytope
	The \BZ-rank of the Stable Set Polytope
	References

	A Probabilistic Analysis of the Strength of the Split and Triangle Closures
	Introduction
	Preliminaries
	Worst-Cost Measure in \mathbb{R}^2
	A Bad Ensemble for the Split Closure
	Probability of Bad Ensembles
	Proof of Theorem 1

	Average-Cost Measure
	(β,k)-Good Ensembles
	Probability of Obtaining a (β, k)-Good Ensemble
	Lower Bound for Simple Splits
	Proof of Theorem 2

	References

	Partial Convexification of General MIPsby Dantzig-Wolfe Reformulation
	Introduction
	Partial Convexification and Dantzig-Wolfe Reformulations
	Related Literature

	Almost Automatic Detection of an Arrowhead Form
	Computational Results
	Notes on the Implementation and Experimental Setup
	A Class of Structured MIPs without Block-Diagonal Form
	MIPLIB2003

	Discussion
	References

	Lift-and-Project Cuts for Mixed Integer Convex Programs
	Introduction
	Outline of the Approach
	Phase I: Testing If x Belongs to a Split Relaxation
	Phase II: Computing the Cut
	Cutting Plane Strategies and Practical Considerations
	Separation by Rounds
	Rank-1 Optimization
	Cut Validity and Stability

	Computational Testing
	Gap Closed
	Complete Resolutions

	References

	TSP on Cubic and Subcubic Graphs
	Introduction
	Preliminaries
	Cubic Graphs
	Subcubic Graphs
	Epilogue
	References

	Approximability of Capacitated Network Design
	Introduction
	Our Results

	The Cap-R-Connected Subgraph Problem
	The Standard LP Relaxation and Knapsack-Cover Inequalities
	The Rounding and Analysis
	The k-Way–R-Connected Subgraph Problem.

	Single-Pair Cap-SNDP in Directed Graphs
	Cap-SNDP with Multiple Copies Allowed
	Conclusions
	References

	Facility Location with Client Latencies: Linear Programming Based Techniques for Minimum Latency Problems
	Introduction
	LP-Rounding Approximation Algorithms for \textsf{MLUFL}
	An \boldmath $O\bigl(\log n\cdot\max\{\log n,\log m\}\bigr)$-Approximation Algorithm
	\textsf{MLUFL} with Related Metrics
	\textsf{MLUFL} with a Uniform Time-Metric

	LP-Relaxations and Algorithms for \textsf{ML}
	Extensions
	References

	An Exact Rational Mixed-Integer Programming Solver
	Introduction
	Hybrid Rational/Safe Floating-Point Approach
	Safe Dual Bound Generation Techniques
	Exact LP Solutions
	Basis Verification
	Primal-Bound-Shift
	Project-and-Shift
	Combinations and Beyond

	Computational Study
	Root Node Performance
	Overall Performance
	Combinations

	Conclusion
	References

	Valid Inequalities for the Pooling Problem with Binary Variables
	Introduction
	The Pooling Problem
	Mathematical Formulation
	Example

	Valid Inequalities
	Quality Inequalities
	Pooling Flow Cover Inequalities

	Computational Results
	References

	On the Chv´atal-Gomory Closure of a Compact Convex Set
	Introduction
	Definitions, Main Result and Proof Idea
	$\CC(K,S) \cap H_v^= = \CC(F_v)$ and $\CC(K,S) \subseteq H_v$
	Lifting CG Cuts
	Separating All Points in $F_v \setminus \aff_I(H_v^=)$
	Lifting the CG Closure of an Exposed Face of K

	Approximation of the CG Closure
	Approximation 1 of the CG Closure
	Approximation 2 of the CG Closure

	Proof of Theorem
	Remarks
	References

	Design and Verify: A New Scheme for Generating Cutting-Planes
	Introduction
	General Properties of the $\mathbb V$-Closure
	Strength and Comparisons of $\mathbb V$-Closures
	Strength of $\outer{\M}$ for Arbitrary Admissible Cutting-Plane Procedures \M
	Comparing \M and $\outer{\M}$ for \M Being \gco, \SC, \N_0, \N, or \N_{+}

	Rank of Valid Inequalities with Respect to $\mathbb V$-Closures
	$\mathbb V$-Closures for Well-Known and Structured Problems
	Monotone Polytopes
	Stable Set Polytope
	The Traveling Salesman Problem
	General Polytopes in \RR^2

	Concluding Remarks
	References

	Contact Center Scheduling with Strict Resource Requirements
	Introduction
	Problem Definition and Notation
	Hardness Results
	Proof of Theorem 1
	Proof of Theorem 3

	The Bicriteria Approximation Algorithm
	The Special Case of Uniform Requirements
	Extending to General Requirements

	Discussion
	References

	Set Covering with Ordered Replacement: Additive and Multiplicative Gaps
	Introduction
	Bounding the Additive Gap
	The Upper Bound
	The Lower Bound

	Approximation and Intractability
	Ruling Out an APTAS

	Multiplicative Integrality Gaps
	Applications
	References

	Backdoor Branching
	Introduction
	A Basic Set Covering Model
	Backdoor Branching
	Preliminary Computational Results
	References

	A Subexponential Lower Bound for Zadeh’s Pivoting Rule for Solving Linear Programs and Games
	Introduction
	Markov Decision Processes and Their Linear Programs
	Policy Iteration Algorithms and Simplex Algorithms
	Lower Bound for Least-Entered
	Full Construction
	Lower Bound Proof

	Concluding Remarks and Open Problems
	References

	An Iterative Scheme for Valid Polynomial Inequality Generation in Binary Polynomial Programming
	Introduction
	Polynomial Programming Problem
	Approximations Hierarchies for Polynomial Programs
	Dynamic Approximations for Polynomial Programs

	General Case
	Dynamic Inequality Generation Scheme (DIGS)

	Binary Case
	Specializing the Dynamic Inequality Generation Scheme
	Convergence Results
	Examples

	References

	A New Approach to the Stable Set Problem Based on Ellipsoids
	Introduction
	Literature Review
	Linear Programming Relaxations
	Semidefinite Programming Relaxations
	The Lovász Theta Body and Ellipsoids
	Relaxations of Non-convex Quadratic Problems

	The New Approach
	An `Optimal' Ellipsoid
	Cutting Planes from the Optimal Ellipsoid
	Cut Strengthening

	Computational Experiments
	The Cut-and-Branch Algorithm
	Preliminary Computational Results

	Concluding Remarks
	References

	Capacitated Vehicle Routing with Non-uniform Speeds
	Introduction
	Previous Techniques
	Results, Techniques and Outline
	Related Work

	Model and Preliminaries
	Algorithm for HetTSP
	Assignable Trees
	Level-Prim Spanning Tree
	Decomposition Procedure

	Open Problems
	References

	Approximation Algorithms for Single and Multi-Commodity Connected Facility Location
	Introduction
	Our Results and Techniques
	Related Work

	An Improved Approximation for CFL
	A Constant Approximation for MCFL
	On the Approximability of SROB
	References

	Safe Lower Bounds for Graph Coloring
	Introduction
	Column Generation
	Finding Maximum-Weight Stable Sets

	Numerically Safe Bounds
	Improved Computation of Lower Bounds
	Decreasing Dual Weights for Speed

	Experimental Results
	Results of Column Generation
	Results of Branch and Price
	Results on Dense Subgraphs
	Maximum-Weight Stable Set Results

	References

	Computing the Maximum Degree of Minors in Mixed Polynomial Matrices via Combinatorial Relaxation
	Introduction
	Preliminaries
	Rational Function Matrices
	Independent Matching Problem
	Mixed Matrices and Mixed Polynomial Matrices
	Rank of LM-Matrices

	Combinatorial Relaxation Algorithm
	Combinatorial Relaxation
	Test for Tightness
	Matrix Modification
	Dual Updates

	Complexity Analysis
	Application to Valuated Independent Assignment
	References

	Constructing Extended Formulations from Reflection Relations
	Introduction
	Polyhedral Relations
	Reflection Relations
	Applications
	Reflection Groups
	Huffman Polytopes

	Conclusions
	References

	Integrality Gaps of Linear and Semi-Definite Programming Relaxations for Knapsack
	Introduction
	Related Work

	Preliminaries
	The Knapsack Problem
	The Sherali-Adams and Lasserre Hierarchies
	Proof Overview

	Lower Bound for the Sherali-Adams Hierarchy for Knapsack
	A Decomposition Theorem for the Lasserre Hierarchy
	Upper Bound for the Lasserre Hierarchy for Knapsack
	Conclusion
	References

	Degree Bounded Forest Covering
	Introduction
	Relation to Degree Bounded Matroids
	Proof of the Fractional Conjecture
	References

	A Primal-Dual Algorithm for Weighted Abstract Cut Packing
	Introduction
	Overview
	The WACP Model

	Preliminaries
	Accessing the Abstract Network via an Oracle

	Outer Framework of the Algorithm
	Detailed Algorithm
	The Choice of Step Length θ
	Polynomial Algorithm via Scaling

	Solving the Restricted Problems
	Step 1: Finding an Initial RACP
	Step 2: Construction of the Auxiliary Digraph
	Step 3: Finding a Generalized Path on Tight Arcs
	Step 4: Update of the RACP

	Final Thoughts
	References

	Convexification Techniques for Linear Complementarity Constraints
	Introduction
	Reformulation-Linearization Technique
	A Class of Complementarity Problems
	Convex Hull of One-Complementarity Sets

	Explicit Inequalities via Convexification of Simple Sets
	Convex Hull of C^{1,1}
	Convex Hull of C^{1,2}

	Conclusion
	References

	Iterative Packing for Demand and Hypergraph Matching
	Introduction
	Iterative Packing: An Example
	Iterative Packing for k-Hypergraph Demand Matching
	Improvements for 2-CS-PIP and Demand Matching
	Establishing the Integrality Gap
	A Polynomial Time Implementation

	Concluding Remarks
	References

	Universal Packet Routing with Arbitrary Bandwidths and Transit Times
	Introduction
	The Model
	Our Contribution
	Related Work

	Tight Bound for Instances with Small Dilation
	High Level Ideas for General Bounds
	Technical Analysis
	Framework

	References

	A Layered Graph Model and an Adaptive Layers Framework to Solve Delay-Constrained Minimum Tree Problems
	Introduction
	Transformation to the Steiner Arborescence Problem on Layered Digraphs
	ILP Model on the Layered Digraph
	Lower and Upper Bounds by Redirecting Arcs
	Adaptive Layers Framework (ALF)
	Computational Results
	Conclusions and Future Work
	References

	Jump Number of Two-Directional Orthogonal Ray Graphs
	Introduction
	Preliminaries
	A Linear Programming Approach
	A Combinatorial Algorithm
	Discussion
	The Maximum Weight Cross-Free Matching Problem
	Summary of Results
	References

	Optimal Matching Forests and Valuated Delta-Matroids
	Introduction
	Delta-Matroids and Matching Forests
	Matching Delta-Matroids and Branching Delta-Matroids
	Delta-Matroids and Matching Forests

	A Simpler Algorithm
	Linear Programming Formulation
	Algorithm Description

	A Faster Algorithm
	References

	Fixed-Charge Transportation on a Path: Linear Programming Formulations
	Introduction
	Compact Linear Programming Formulation and Projection
	Path-Modular Inequalities
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

