
Chapter 7

The RAM Approach in Aerodynamics

7.1 Derivation of a Through-Flow Model Problem

for Fluid Flow in an Axial Compressor

First, in Sect. 7.1.1, we again consider the simple case examined in Veuillot’s thesis

[140] devoted to turbomachinery fluid flow, simulated in Sect. 6.3.1; then, in Sect.

7.1.2, the more sophisticated G–Z RAM Approach [141].

It is obvious that the following asymptotic theory of axial flow through a turbine,

which is likely be of considerable interest to specialists, is a fascinating application

of a complicated engineering problem using the RAM Approach with the basic

large parameter being the number of turbine blades per rotor.

7.1.1 The Veuillot Approach

We starting from the system of non-dimensional equations (6.18a)–(6.18c), for u*,

w*, and G� ¼ rv�, and also the relations (6.17a)–(6.17c) relying, u*, w, and v*,

with the functions c� and Y.

First, we expand the functions u*, w*, G�, and c�, relative to our main small

parameter e:

(u*, w*, G�; c*) = (u�o;w�
o; G�

o; c�
oÞ

þ e ðu�1; w�
1;G

�
1; c�

1Þ þ :::
(7.1)

and at zeroth-order we derive the following leading-order approximate equations

for the functions u�o ¼ ð1=rDÞ @ c�
o=@z;w

�
o ¼ �ð1=rDÞ @ c�

o=@r, G�
o ¼

r2ðu�o@Y=@r þ w�
o @Y=@zÞ: namely,

@u�o=@wþ ::::: þ ð@Y=@rÞ @G�
o=@w ¼ 0 (7.2a)
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@w�
o=@wþ � � � þ ð@Y=@zÞ @G�

o=@w ¼ 0; (7.2b)

ð@Y=@zÞ @u�o=@w� ð@Y=@rÞ@w�
o= @wþ � � � ¼ 0: (7.2c)

But these three equations are not independent, since the determinant of

coefficients for @u�o=@w, @w
�
o=@w, and @G�

o=@w is zero! On the other hand, from

them we easily derive the following two relations:

@G�
o=@w ¼ r2 ½ð@Y=@rÞ@u�o=@wþ ð@Y=@zÞ @w�

o=@w� (7.3a)

ð@G�
o=@wÞ f1þ r2½ð@Y=@rÞ2 þ ð@Y=@zÞ2�g ¼ 0: (7.3b)

Because:

1þ r2½ð@Y=@rÞ2 þ ð@Y=@zÞ2� 6¼ 0; @G�
o=@w � 0;

and as a consequence:

@G�
o=@w ¼ 0; @u�o=@w ¼ 0; @w�

o=@w ¼ 0 (7.4)

Therefore: when e tends to zero, and as a consequence of a uniform and constant

steady flow far of the row, in the leading-order the approximate limiting through-

flow in the row of an axial compressor (turbo-machine) is independent of the short

(micro)-scale w.
Therefore, it is necessary to consider in the starting Eqs. 6.18a–6.18c the next

order (terms proportional to e!) In a such case we obtain, for u*1, w*1, and G�
1, the

following three equations:

1=rð Þ@G�
o=@r ¼ ð1=rDÞ½@u�1=@wþ ð@Y=@rÞ @G�

1=@w�; (7.5a)

@u�o=@z � @w�
o= @r ¼ 1=Dð Þ½ ð@Y =@z) @u�1= @w

�ð @Y =@r) @w�
1= @w];

(7.5b)

ð1=r) @G�
o=@z ¼ ð1=rDÞ½@w�

1=@wþ ð@Y=@zÞ@G�
1=@w�: (7.5c)

From these equations, by elimination of the first-order functions, u*1, w*1, and

G�
1, we obtain as a compatibility relation:

@u�o=@z� @w�
o=@r ¼ ð@Y=@zÞ @G�

o=@r� ð@Y=@rÞ @G�
o=@z

and with

u�o ¼ ð1=rDÞ @ c�
o=@z;w

�
o ¼ �ð1=rDÞ @ c�

o=@r
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we derive an equation for the function c�
o ¼ Loðr; zÞ, which characterizes the

limiting through-flow in the row. Namely:

@=@rfð1=rDÞ@Lo=@rg + @ =@zfð1=rDÞ@Lo=@zg
¼ ð@Y=@zÞ@G�

o=@r� ð@Y=@rÞ @G�
o=@z:

(7.6)

This model equation for the function Lo is our first main rational and entirely

consistent result with the RAM Approach.

Again, due to being far upstream of the row, we have a uniform and constant

steady incompressibleð ro ¼ constantÞ fluid flow: 1=2ð Þrou2 þ p ¼ constant.

Then the jump,

j p½ �j � pw ¼þ1=2 � pw¼�1=2 (7.7a)

of the pressure, from blade to blade, gives

j½p�j ¼ � e rofu�oj½u�1�j þ w�
oj½w�

1�j þ ð1=r2ÞG�
oj½G�

1�jg þ Oð e2Þ (7.7b)

where |[p]| is a quantity of the order e.
But, according to Eqs. 7.5a–7.5c, obviously u*1, w*1, and G�

1 are linear functions

of the microscale structure w.
As a consequence of (7.7b), we have to write:

Lime!0ð�p=eroÞ ¼ u�o@u
�
1=@wþ w�

o@w
�
1=@w

þ ð1=r2ÞG�
o@G

�
1=@w ¼ Po:

(7.8)

From (7.5a–7.5c), we now eliminate the terms with the w – derivatives in the

(7.8) relation, and express the function Po, in (7.8) simply by:

Po ¼ D½u�o@G�
o=@rþ w�

o@G
�
o=@z� (7.9a)

in the row.
Outside the row, p remains continuous, even in the presence of wakes – which

are, in the considered Eulerian fluid flow, only vortex sheets (contact discontinuity

surfaces).

Finally, taking into account the periodicity in w, outside the row, we derive in

place of (7.9a) the following relation:

j½p�j ¼ 0 ) Po ¼ 0 (7.9b)

and

u�o@G
�
o=@r þ w�

o@G
�
o=@z ¼ 0 ) G�

o ¼ G�
oðLoÞ: (7.9c)
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As a consequence:

In the whole outside region upstream ot the row : G�
o ¼ 0 (7.10a)

In downstream region outside of the row : G�
o ¼ G�

oðLoÞ (7.10b)

From the above we can formulate the following main results relative to a

homogenized through-flow.

The velocity vector U�o ¼ ðu�o; w�
o; v�oÞ of the homogenized through-flow is

U�
o ¼ ð1=DÞ½rðy�YÞ ^ rLo�; (7.11)

such that the streamlines of the through-flow are obtained by the crossing ofmedian
surfaces,

y ¼ Y r; zð Þ þ constant

in the inter-blade row–channel, with the cylindrical surfaces, resulting from the

rotation around of the z-axis of the turbo-machine of meridian streamline surfaces

Lo ¼ constant

For this through-flow we have for the function Lo r; zð Þ, (see Eq. 7.6):

@=@rfð1=rDÞ@Lo=@rg þ @=@zfð1=rDÞ@Lo=@zg
¼ ð@Y=@zÞ @G�

o=@r� ð@Y=@rÞ @G�
o=@z;

(7.12a)

with, as conditions (if we use (7.11) for the composante v*o):

G�
o ¼ 0; upstream of the row; (7.12b)

G�
o¼ (r/DÞ ½@Y =@rÞ @Lo =@z - (@Y =@z) @Lo=@r], in the row; (7.12c)

G�
o ¼ G�

oðLoÞ; downsream of the row: (7.12d)

This axially symmetric through-flow model, which is dependent only on

coordinates r and z, introduces a fictitious force:

F ¼ ðPo=DÞrð y�YÞ; (7.12e)

which simulates the action of the blades in the row on the turbomachinery flow.

The force F, given by (7.12e), is a memory term (a trace) which � via homoge-

nization – replaces (simulates) the (vanishing) effect of the blades in the row.
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The first numerical applications of the above through-flow model in a turbo-

machine blade row was realized by Veuillot [140] at the ONERA and see also his

[142] paper.

7.1.2 The G–Z Approach

In a more sophisticated general case, Guiraud and Zeytounian [141] consider in

1971 at the beginning, in the cylindrical coordinates r, y z, the following starting

Eulerian incompressible equation written in the matrix form:

@T=@t þ @R=@r þ @Z=@z þ 1=rð Þ@S=@yþ H=r ¼ 0; (7.13)

and make the change of coordinates from ðt; r; y; zÞ to ðt; r; z; wÞ as shown, in
(7.14a):

y ¼ Y t; r; zð Þ þ 2peðk þ wÞ; (7.14a)

with the idea in mind that through-flow will be independent of w whereas r will

appear as a parameter for cascade flow.

Without any approximation the flow has to be periodic in w, and we enforce this
by:

Ukðt; r; z; e; wþ 1Þ ¼ Ukþ1ðt; r; z; e; wÞ; (7.14b)

UkþNðt; r; z; e; wÞ ¼ Ukðt; r; z; e; wÞ; (7.14c)

using for convenience the index k which runs from 1 to N ðe ¼ 1=N <<1Þ, the
number of blades in a row, and accordingly we assume that w is between zero and

one.

We expand, formally, Uk as powers of e, but we obviously need two such

expansions, because it is clear that the model through-flow in row is invalid near

the locus of the leading/trailing edges of the row.

The first one is a kind of outer expansion (as in (7.1) above):

Uk ¼ Uk;o þ eUk;1 þ ::::; (7.15a)

and will fail near both ends of the row where (two) inner expansions

Ukðt; r; z ¼ h rð Þ þ ez; e; wÞ ¼ U�
k;0 þ eU�

k;1 þ :::; (7.15b)

are needed. In (7.15b), z ¼ h(r) is the locus of the leading (or trailing) edge of a

row.
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When the change of coordinatesðfrom y to wÞ is made in the basic matrix

form Eq. 7.13 of the inviscid and incompressible Eulerian fluid flow, we obtain

(7.16a, b):

@Gk=@wþ 2 p e r Lk ¼ 0 (7.16a)

with

Lk � @Tk=@t þ @Rk=@r þ @Zk=@z þ Hk=r (7.16b)

and we observe that in matrix column Gk the following two parameters are present:

l ¼ o�D=w/; m ¼ D=w/t� (7.16c)

and we have introduced

gk ¼ vk � r uk @Y=@r � r wk @Y=@z � r@Y=@t (7.16d)

In (7.16c), t� is a reference time, D is the diameter of the row, o� is the reference
value of the angular velocity (o) of the row, and w/ is the upstream uniform axial

velocity.

Two facts should be stressed at the outset. First, if we assume axially symmetric

flow, @=@w ¼ 0, we obtain Lk ¼ 0, and it may be checked that Lk ¼ 0 is the matrix

form of axially symmetric through-flow. Second, if we use, by “brute force” )
e ¼ 0 in (7.16a), we do not obtain the equations of axially symmetric flow but,

rather, the highly degenerate equation @Gk=@w ¼ 0! This is somewhat strange, but

is not unexpected.

The way in which w has been defined substantiates that: when e is small,

variations in the w direction are magnified by 1= e, in comparison with variations

in t, and in the r, or z direction.

Now, substituting the basic outer expansion (7.15a) in Eq. 7.16a we derive a

hierarchy of equations. But here we write only first two:

@Gk;0=@w ¼ 0;

@Gk;1=@wþ 2 p r Lk;0 ¼ 0;
(7.17a)

which consist of equations to be solved in turn.

We choose, as appropriate to the present problem, the solution of

@Gk;0=@w ¼ 0 (7.17b)

for which uk,0, wk,0, vk,0, and pk,0 are all independent of w.
At this step we do not know the way in which these functions depend on t, r, and

z! Now, if we use the second equation of two equations (7.17a) in order to compute
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uk,1,. . . and so on, we encounter a compatibility condition arising from periodicity,

which forces Lk,0 to be zero!

We have thus obtained a through-flow, axially symmetric theory. The interesting

point is that we may go a step further and produce a through-flow theory to order

e inclusively! For this, it is first necessary to define the channel between two

consecutive blades:

we � w � wi; andwe define

D r; zð Þ ¼ wi � we

and we then introduce an average, < >, and a jump, [ ], operation, thus:

<U> ¼ ð1=DÞ
ð

Udw; integration from weto wi (7.18a)

and

U½ � ¼ Uwi � Uwe: (7.18b)

Now, if we think of the pressure for U (in (7.18b)), then the bracketed [p] may be

viewed as: the pressure difference between the two sides of one and the same blade.

Below, the various equations shows the basic results of the G–Z RAMApproach.

Up to first order in e, the average of velocity and pressure

<V 1ð Þ> ¼ Vk;0 þ e<Vk;1>;<p 1ð Þ> ¼ pk;0 þ e<pk;1> (7.19a)

satisfies, with an error of order e2, axially symmetric through-flow equations:

DivðD<V 1ð Þ>Þ¼ Oð eÞ;
@<V 1ð Þ>=@t þfrot<V 1ð Þ>þ2Oezg ^<V 1ð Þ>þrI 1ð Þ

¼F 1ð Þ þOð e2Þ;
, (7.19b)

where

I 1ð Þ ¼ <p 1ð Þ>þ 1=2ð Þj<V 1ð Þ>j2 � 1=2ð ÞO2r2;O ¼ l o,

P 1ð Þ ¼ ð1=2 pÞ½<pk;1>þ e<pk;2>�,
S ¼ S þ 2 p e ½ 1=2ð Þð wi þ weÞ�; S ¼ Y� y,

(7.19c)

with

@S=@t þ<V 1ð Þ>:rS ¼ Oð e2Þ (7.19d)

F 1ð Þ � ð1=DÞP 1ð ÞrS ) F 1ð Þ : rot F 1ð Þ ¼ 0: (7.19e)
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Two points again need to be stressed. First, the breadth of the channel from blade

to blade, set as

D r; sð Þ

enters in the continuity equation in an obvious way. Second, in the momentum

equation there is a source term,

ð1=DÞP 1ð ÞrS � F 1ð Þ

which is proportional to the jump in pressure and is orthogonal to S ¼ constant – a

surface which is just in the middle of the channel. This force has long been known

in through-flow theory; but in fact, via a very subtle ad hoc consideration

(first published, it seems, by Chung-Hua Wu, in NACA TN 2288 (1951); see also

Wu [143] paper).

The force F(1) occurs from redistribution (homogenization) of forces acted on

the flow by the blades of the row.

The G–Z [141] derivation given above is illuminating with regard to the error

involved in the approximation. To order one there is a dependency on w which may

be computed once the through-flow is known.

7.1.3 Transmission Conditions, Local Solution at the
Leading/Trailing Edges, and Matching

The above through-flow model in axial turbomachine is invalid near the locus of

leading/trailing edges of a row.

According to G–Z theory [144], a local asymptotic analysis is performed by

considering the inner expansions (7.15b) and rewriting the starting matrix equation

(7.13). We obtain:

@G�
k=@wþ 2pr@N�

k=@zþ 2perM�
k ¼ 0 (7.20a)

with

N�
k ¼ Z�

k � dh=drð ÞR�
k (7.20b)

M�
k ¼ @T�

k=@t þ @Rk
�=@r þ H�

k=r (7.20c)

and to zeroth order we obtain:

@G�
k;0=@wþ 2pr@N�

k;0=@z ¼ 0; (7.21)
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which is, in fact, the equations of cascade flow – but the configuration is that of

semi-infinite cascade flow. In [144] a detailed analysis of (7.21) is performed,

adapted to a local frame linked with the curve:

G : fz ¼ h rð Þ; y ¼ Y r; h rð Þð Þg

The semi-infinite cascade flow fills the gap between external (outside the row),

force-free, axially symmetric through-flow, and internal (in row) through-flow with

the source term F(1). Matching provides transmission conditions between these two

disconnected through-flows.

The necessity of such conditions appears readily as soon as any numerical

treatment of the whole through-flow in a two-row stage is attempted – from

upstream to downstream (infinity) of this two-row stage!

To zeroth order these transmission conditions are rather simple – and, indeed,

obvious on physical grounds: They mean that mass flow is conserved, as well as the

component of momentum parallel to the leading or trailing edge.

Local analysis has also been carried out by Guiraud and Zeytounian [144], to

first order, without a simple interpretation of the (rather complicated) result linked

with the transmission conditions!

We can consider the singular regions near the entry and exit of the row as planes

of discontinuity, if we impose the associated transmission conditions.

7.1.4 Some Complements

We now turn, briefly, to various cases concerning my work devoted with Guiraud

during 1969–1978, to turbomachinery fluid flows.

After the axial flow in a turbomachine, with the approximation of ideal incom-

pressible flow, has been analyzed by using an asymptotic method, assuming that the

blades are infinitely near one another – [141], and in a companion paper [144] – a

local study reveals the nature of the flow in their neighbourhood and leads to

a system of transmission conditions, because the partial differential equations of

the through-flow (in three different regions: upstream of a row, in a row, and

downstream of the row) must be supplemented by them in order to produce a

well-posed problem for the whole of the turbomachine (from upstream of the row to

downstream of this row) – an application of the concept of multiple scales was

considered.

Namely, in [145] an asymptotic theory for the flow in an axial compressor was

considered, with the aim of devising a coupling process between the so-called

meridian through-flow and the flow around cascades. Again the small parameter

e is the inverse of the (supposed 	 1) number of blades per row and/or number

of stages. As a matter of fact, the cascade flow is treated as a small perturbation

of the through-flow, and has to be computed, locally, as the two-dimensional

unsteady flow around an array of couples of cascades alternately fixed and in
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motion. The array is constructed by developing on a plane the section of the

compressor by a circular cylinder, and continuing, by periodicity, the pair of

cascades so obtained, at each location. The coupling between through-flow and

cascade flow is part of the analysis. It happens, incidentally, that the equations of

through-flow are obtained through an averaging process, completed on a domain of

periodicity of the array of cascades flow, while the through-flow appears locally as

an unperturbed flow for the linearized problem defining the cascade flow. The 3D

nature of the complete flow is built in by the coupling itself, as is visualized by the

occurrence of source terms in each of the two sets of equations describing through-

flow and cascade flow. This paper [145] is aimed at producing a preliminary answer

to the question of: how to devise, as rationally as possible, a way of describing the

familiar scheme of cascade flow within the computation of a mean through-flow.

The main conclusion is that the concept of cascade flow should be revisited and

reassessed as one of unsteady flow around an array of cascades.

In 1978, I published, with Guiraud, a fourth paper [146], entitled “Cascade and

through-flow theories as inner and outer expansions”. In this, a technique of

matched asymptotic expansions is used in order to combine two kinds of approxi-

mation. Through-flow theory forms the basis for an outer expansion, while cascade

theory forms the basis for an inner one, and matching provides boundary conditions

for both flows. It appears that for the downstream through-flow, a technique of

multiple scales is necessary – at least in the vibrating case (vibrations induced by

harmonic vibrations of the blades) – in order to deal with the unsteady wakes

generated by the vibrating blades, and slowly modulated downstream by the steady

part of the through-flow.

Although there are very many good papers on the theory of turbomachine flow,

we have not found any attempt analogous to that described above in [145] and

[146], and it seems difficult to comment on the relation of the work to be presented

with others. Concerning the two papers [141] and [144], we observe that in

Sirotkin’s paper [147] only some results are similar to ours, but the main difference

is in the approach, which is less systematic.

Our objective, with Guiraud, concerning the papers [141] and [144–146] was

very modest, and we did not solve any problems nor present any results!

What we have proposed in our above-mentioned papers devoted to a rational

asymptotic description of turbomachine flows in the framework of a RAM

Approach, may be stated as follows.

Considering incompressible non-viscous fluid flow through a one-row machine,

assuming that there is a great number of blades, and, in [146], that the

corresponding cascade has a chord-to-spacing ratio of order one, we want to

show that the first few terms of an asymptotic representation of the 3D flow may

be guessed as having the form of an inner and outer multiple-scale expansion.

We confirm our guess – as is usually done with problems not amenable to

mathematically rigorous analysis – by an internal consistency argument: we show

that each term of the expansion, up to the order considered, may be computed by

solving well-set problems. We show the rational asymptotic process by which these
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problems may be extracted from the definition of the original 3D problem, which is a

typical RAM Approach.

For engineering applications it would have been very useful to find, as partial

problems, cascade flow theory as well as through-flow theory across a thick row.

Unfortunately, we have been unable to find any asymptotic process leading to such

a scheme. As a matter of fact, the obvious way to do so leads to only two significant

degeneracies. One is the through-flow of [141] and [144], which leaves no room for

cascade flow, and the other is the one considered in [146], which leads to cascade

flow but leaves no room for through-flow, including a thick row.

This conclusion inevitably leads to some deception, because there is no way to

embed Wu’s [143] technique within an asymptotic rational framework.

7.2 The Flow Within a Cavity Which is Changing Its Shape and

Volume with Time: Low Mach Number Limiting Case

Concerning the aerodynamics applications it is necessary to distinguish between

confined and unconfined flows and, especially, to elucidate the role of the Strouhal

number S (unsteadiness).

When we consider the low Mach number case, two distinguished limiting

processes emerge. One of them leads, from the full unsteady NS–F equations, to

the model of incompressible flow (Navier equations) and, in the case of confined

configuration provides a dynamic interpretation of thermostatics. The other one is at

the root of acoustics.

The first limiting process (incompressible) corresponds roughly to

M ! 0 with S fixed

while the second limiting process (of acoustics) corresponds to

M ! 0 with SM ¼ O 1ð Þ:

Curiously enough, the acoustic model enters into the scene even in the situation

which is apparently ruled by incompressible aerodynamics.

This occurrence is due to non-uniformities: a spatial one near infinity in the case

of unconfined flow, and a temporal one for small time (in particular near time ¼ 0,

where the initial data are given) and also for high-frequency oscillations in the case

of confined flows.

In [85], the influence of these high-frequency oscillations was taken into account

by Zeytounian and Guiraud via a judicious multiple-scales technique, but with an

infinity of short acoustic scales! Here, below, we consider, as a physical situation,

the low Mach number flow within a cavity which is changing its shape and volume
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with time. Such a problem presents industrial interest in the case of the compression

phase flow in an internal combustion engine (see our short notes in [86]).

We show how a limiting process corresponding to the Mach number going to

zero leads to an incompressible unsteady model flow, provided that acoustic waves

are averaged out over a great number of periods. This scheme may even describe

the case of a gas with a purely temporal variation of density due to substantial

changes of volume.

7.2.1 Formulation of the Inviscid Problem

We start from the Euler compressible dimensionless equations:

Dr=Dt þ rr:u ¼ 0

Du=Dt þ ð1=gM2Þrp ¼ 0

DS=Dt ¼ 0

p ¼ rgexpS

(7.22a)

where D=Dt ¼ @=@t þ u:r, with standard notation.

The Strouhal number in the first three of these equations is assumed equal to one,

such that the reference time is t� ¼ L�=U�, with L� a typical length scale of the

cavity O(t), and U� a characteristic velocity related to the motion of the wall

@O tð Þ � S tð Þ.
As boundary condition we write the slip condition:

u:nð ÞjS tð Þ � wjS tð Þ ¼ W t;Pð Þ;P 2 SðtÞ (7.22b)

where the (data) velocity W(t, P) characterizes the normal displacement of the wall

S(t), and n is the unit vector normal to this wall, directed inside O (t) – P being the

position point vector on the wall S(t).
But it is also necessary to take into account the conservation of the global mass

m� of the cavity (a bounded domain with L� as a diameter). In the dimensionless

reduced form we have:

r ¼ 1=V tð Þ; V tð Þ ¼ r�jOðtÞj=m�;V t ¼ 0ð Þ ¼ 1 (7.22c)

where |O (t)| is the volume of the cavity – a known function of time t.

As initial conditions we write:

t ¼ 0 : u ¼ 0; p ¼ r ¼ 1 and S ¼ 0 (7.22d)

More precisely, we consider the case when the motion of the wall, S(t), is started
impulsively from rest, and in a such case,
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W t;Pð Þ ¼ H tð ÞWSðPÞ; all along SðtÞ: (7.23a)

In this condition, the function H(t) is the Heaviside (or unit) function, such that

Limt!0þH tð Þ � 1; but initially : Hðt ¼ 0�Þ � 0: (7.23b)

7.2.2 The Persistence of Acoustic Oscillations

Asymptotics analysis and the RAM Approach in the formulated problem above is

not easy task, mainly due to the persistence of acoustic oscillations in the cavity

emerging for t ¼ 0þ.
Therefore, if the Mach number, M, is sufficiently small, the zeroth order

approximation leads to the thermostatic isentropic evolution of the gas within the

cavity as a whole. Superimposed onto them we have acoustic oscillations which

remain undamped as long as viscosity is neglected – when ones takes it into account

the Euler equations (7.22a), in place of full unsteady NS–F equations.

When the NS–F equations are considered (in place of Euler equations (7.22a)),

then a rather longer time O(Re1/2) is necessary in order to damp out the oscillations –

but a much longer time is necessary in order that the heat exchanges can take place.

As a matter of fact, this time is O(Re)!

Indeed, some new features occur (as a consequence of the unsteadiness of the

compressible fluid flow) when one deals with internal aerodynamics. The first

concerns the leading term in the expansion of pressure which is function of time

instead of being a constant. We write:

u ¼ u0 þ Mu� þM2ðu�� þ u2Þ þ :::; (7.24a)

p ¼ P0 tð Þ þM2ðp� þ p2Þ þM3p�� þM4ðp��� þ p4Þ þ ::: (7.24b)

and an expansion similar to the one for p is valid for density r.
At the leading order, one finds that r0(t) or P0(t) belongs to a family of adiabatic

thermostatic evolution of the gas in the cavity (container-bounded domain), and are

determined from the overall conservation of mass. That is, they do not depend on

position either. Furthermore:

P0 tð Þ ¼ ½ r0 tð Þ�g and r0 tð Þ ¼ 1=VðtÞ: (7.25)

The pair (u0, p2) belongs to a so-called “quasi-incompressible” model, but, as a

second peculiar feature, we find that it is perturbed by the pair u�; p�ð Þ, which
consists in acoustic oscillations generated during the setting-up of the motion.

Therefore, as demonstrated below, we have:
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u� ¼ �Sn
1Bn tð Þsin½fn tð Þ=M�Unðt; xÞ; (7.26a)

r� ¼ r0 tð Þ½r0=P0 tð Þ�1=2Sn
1Bn tð Þcos½fn tð Þ=M�Rnðt; xÞ; (7.26b)

where

dfn tð Þ=dt ¼ ½P0 tð Þ=r0 tð Þ�1=2onðtÞ: (7.26c)

In (7.26c), on(t) is one of the acoustic frequencies corresponding to the shape of

the container at time t, while the pair fUn t; xð Þ;Rn t; xð Þg serves to define the normal

mode of oscillation at frequency on(t) normalized to:

ð
OðtÞ

½ðUnÞ2 þ ðRnÞ2�dv ¼ 1

where the integral is over the bounded container.

A third peculiar feature is that the first correction due to compressibility

corresponds to the pair,

ðu2; p4 þ o4 tð ÞÞ;where 4o4 tð Þ ¼ gSn
1Bn
2jUnj2: (7.26d)

The Bn are readily found as function of time t by writing down conservation of

acoustic energy. We then obtain, in particular:

½r0 tð Þ�1=2Bn tð Þ ¼ Bnð0Þ: (7.26e)

On a time t ¼ OðRe=M1=2Þ this acoustic energy is mainly damped out by

viscosity and heat conduction within a Stokes-like boundary layer (see Zeytounian

and Guiraud [85]).

Of course, turbulent mixing would be much more efficient, and the long time

persistency of acoustic oscillations is mainly a further proof that laminar mixing is

very poor!

It must be emphasized that on a laminar basis, even when the transient acoustics

has been damped out, P0(t) and r0(t) remain adiabatically related, but a much longer

time would be needed for inducing isothermal evolution.

A final feature should be pointed out. Under resonance conditions (u*, p*) gains

energy from the motion of the container, and their limiting amplitude is derived

from a fairly complicated non-linear process which is understood only in one-

dimensional situations (Chester [148], Rott [149]).

7.2.3 Derivation of an Average Continuity Equation

First we should use the time t, a slow time, and then we would bring into the

solution an infinity of fast times designed to cope with the infinity of periods of free
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vibrations of the cavity O(t). Below we set U for the solution U expressed through

this variety of time-scales, and in such a case we write

@U=@t ¼ @U=@t þ 1=Mð ÞDU (7.27)

where ∂U/∂t stands for the time derivative computed when all fast times are

maintained constant, while (1/M)DU is the time derivative (with D, a differential

operator) occurring through all the fast times.

We carry such a change into the starting Euler equations (7.22a), and then

expand according to:

U ¼ U0 þM U1 þM2U2 þ :::; with U hUi þ U� (7.28)

where hUi is average (over all rapid oscillations and depends only of the slow time

t and space position x) of U, and U* is the fluctuating (oscillating, which depends of

all fast times) part of U. More precisely, the operation

U ) hUi (7.29a)

erases all the oscillations associated with the fast times, and obviously

DhUi ¼ 0: (7.29b)

For instance, for the fluctuating parts of u*0 and r*1, we can write, respectively,
as a (more complete) solution:

u�0 ¼ Sn
1½An tð Þ Cn� Bn tð Þ Sn�Un (7.30a)

r�1 ¼ r0 tð Þ½r0 tð Þ=p0 tð Þ�1=2Sn 
 1 An tð Þ Snþ Bn tð Þ Cn½ �Rn (7.30b)

with

Cn ¼ cos½ 1=Mð Þ’n tð Þ and Sn ¼ sin� ½ 1=Mð Þ’nðtÞ� (7.31a)

hCp Cqi ¼ hSp Sqi ¼ 1=2ð Þdpq;
and dpq ¼ 0; if p 6¼ q; dpq ¼ 1; if p � q;

(7.31b)

hCni ¼ 0; hSni ¼ 0; hCp Sqi ¼ hCq Spi � 0; (7.31c)

DCn ¼ �ðd’n tð Þ=dtÞSn; DSn ¼ ðd’n tð Þ=dtÞCn; (7.31d)

where again
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dfn tð Þ=dt ¼ ½p0 tð Þ=r0 tð Þ�1=2on;fnð0Þ ¼ 0: (7.32)

In (7.30a, 7.30b) Un and Rn are the normal modes of vibrations of O(t) with
eigen-frequencies on: namely,

onRn þr:Un ¼ 0;�onUn þrRn ¼ 0; Un:nð ÞS tð Þ ¼ 0: (7.33)

The relation (7.32) defines the scales of the fast times in relation to the speed of

sound in cavity (at the time t) and with the eigenfrequencies of the cavity at the

same time.

With (7.27), from the Euler equations (7.22a) we obtain the following equations

for the functions u, r, p, and S:

Drþ M ð@r=@t þ u:rrþ rr:uÞ ¼ 0

ð1=gÞrp þ MrDuþM2r½@u=@tþ ðu:rÞu� ¼ 0

DSþM ð@S=@t þ u:rSÞ ¼ 0

p ¼ rgexpS;

(7.34a)

with the slip condition

u:nð ÞS tð Þ ¼ Wðt;PÞ: (7.34b)

From the expansion (7.28), at the zero-order, from the above system (7.34a) we

derive:

Dp0 ¼ 0;Dr0 ¼ 0;DS0 ¼ 0

which shows that r0 and S0 are independent of the fast times and, as a consequence

of the equation of state, that this is also the case for p0, which is, in fact, a function

of only the slow time t:

p0 ¼ p0 tð Þ; r0 ¼ r0 t; xð Þ; S0 ¼ S0ðt; xÞ: (7.35a)

Now, at the first order, from the equation for S, we derive the equation

DS1 þ @S0=@t þ u0:rS0 ¼ 0

and, since S0 ¼ S0 t; xð Þ is independent of the fast time and DhS1i ¼ 0, we have the

following average equation for S0 t; xð Þ:

@S0=@t þ hu0i:rS0 ¼ 0: (7.35b)
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But, close to initial time t ¼ 0ð Þ, when we consider the Euler equations (7.22a)

written with the short time, t ¼ t=M, in place of the slow time, t, we use the

local-in-time asymptotic expansion

S ¼ Sa0 þ MSa1 þ MSa2 þ :::

where Sak ¼ Sakðt; xÞ; k ¼ 0; 1; 2; :::; and the initial condition

S ¼ 0 at t ¼ 0

We derive

@Sa0=@t ¼ 0; @Sa1=@t ¼ 0 ) Sa0 ¼ 0; Sa1 ¼ 0

and, as a consequence, from (7.35b), by continuity

S0 ¼ 0: (7.35c)

On the other hand, with (7.35c) we obtain

p0 tð Þ ¼ ½ r0 tð Þ�g (7.35d)

the function r0 tð Þ being determined by the relation

ð
O tð Þ
r0 tð Þdv ¼ r0 tð Þ

ð
O tð Þ

dv ) r0 tð ÞjO tð Þj ¼ m�

where jO tð Þj is the volume of the cavity, such that

djO tð Þj=dt ¼ �
ð
S tð Þ

W t;Pð Þ ds (7.35e)

and m� (¼ const) is the whole mass of the cavity, and, according to the initial

condition for the density we have jOð0Þj � m�.
If, in particular, we assume that r0 tð Þ � 1 (and as a consequence p0 tð Þ � 1 also)

then jO tð Þj � m��const. Obviously, this is not the case in the various applications!

At the first order, from the first three equations of (7.34a), with the above results,

we derive the following two equations:

D r1 þ dr0=dt þ r0r:u0 ¼ 0, (7.36a)

ð1= gÞrp1 þ r0Du0 ¼ 0, (7.36b)
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with, from (7.34b),

u0:nð ÞS tð Þ ¼ W t;Pð Þ: (7.36c)

Since, Dh r1i ¼ 0, from (7.36a) we derive an average (zero-order) continuity

equation:

ð1=r0Þdr0=dt þr:hu0i ¼ 0: (7.36d)

with (from (7.36c))

ðhu0i:nÞS tð Þ ¼ W t;Pð Þ: (7.36e)

From (7.36b), since Dhu0i ¼ 0, we also have:

rhp1i ¼ 0 ) hp1i ¼ 0; p1 � p�1: (7.36f)

7.2.4 Solution for the Fluctuations u�0 and r�1

For the fluctuations we derive, from Eqs. 7.36a, 7.36b with 7.36c, the following

acoustic-type equations with slip condition:

D r�1 þ r0r:u�0 ¼ 0; (7.37a)

ð1= gÞrp�1 þ r0Du
�
0 ¼ 0; (7.37b)

with

u�0:n
� �

S tð Þ ¼ 0: (7.37c)

Concerning the equation for the specific entropy, we have (because S0 ¼ 0):

DS�1 ¼ 0 ) S�1 ¼ 0; (7.37d)

and as a consequence, from the equation of state, for the fluctuation of the pressure,

we derive

p�1 ¼ gðp0=r0Þ r�1: (7.37e)

As a consequence of (7.36f) we also have
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hr1i ¼ 0 ) r1 � r�1 (7.37f)

The solution of the two equations for u�0 and ð r�1= r0Þ, obtained from (7.37a,

7.37b) when we use (7.37c), is given by (7.30a, 7.30b).

Indeed, if we use the solutions (7.30a, 7.30b) in Eqs. 7.37a and 7.37b, then:

Dðr�1=r0Þ þ r:u�0 ¼ Sn
1½An tð Þ Cn

� Bn tð Þ Sn�f½ r0 tð Þ=p0 tð Þ�1=2ðd’n tð Þ=dtÞRn þr:Ung

and

ðp0=r0Þrð r�1=r0Þ þ Du�0 ¼ Sn
1½An tð Þ Sn

þ Bn tð Þ Cn�f½p0 tð Þ=r0 tð Þ�1=2rRn � ðd’n tð Þ=dtÞUng

and using (7.31a–7.31d) and (7.32) we determine that the right-hand side of the

above equations are quite zero.

We observe also that the eigenfunctions (the normal modes of vibrations of O tð Þ
with eigenfrequencies on), Un and Rn, are normalized according to:

ð
OðtÞ
½ Unð Þ2 þ Rnð Þ2� dv ¼ 1

It is now necessary to determine, from (7.34a, 7.34b), the equations for the

second-order approximation, and then derive, first, a system of two equations for

the amplitudes, An tð Þ and Bn tð Þ, which present the possibility of considering the

long time evolution of the rapid oscillations.

However, it is also necessary to derive an equation for the average value of u0,

which gives, with the average continuity equation (7.36d), a system of two average

equations for hu0i and hp2i.

7.2.5 The Second-Order Approximation

We return to system of Eqs. 7.34a with 7.34b, and consider the second-order

approximation for S2; p2, and r2. First, we obtain:

DS2 þ @hS1i=@t þ ½hu0i:rÞ�hS1i ¼ 0

but according to (7.37d), S�1 ¼ 0, and also

@hS1i=@t þ ½hu�0i:r�hS1i ¼ 0:
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With zero initial condition at t ¼ 0, we have (since 〈S1〉 ¼ 0):

S1 � 0; and then : S�2 ¼ 0 (7.38a)

For the third-order approximation we have

DS3 þ @hS2i=@t þ ½hu0i:r�hS2i ¼ 0

and again (according to the second relation in (7.38a)) we obtain

S2 ¼ 0 and S�3 ¼ 0 (7.38b)

Finally, from the equation of state, when we take into account that

S0 ¼ S1 ¼ S2 � 0

we derive the following relation between p2 and r2:

p2 ¼ gðp0=r0Þ½ r2 þ ð1=2r0Þð g� 1Þð r1Þ2�: (7.38c)

Now, again from the system of Eq. (7.34a), we derive two second-order

equations:

Dr2 þ r0r:u1þ@r1=@t þ u0:rr1 þ r1r:u0 ¼ 0 (7.39a)

rðp2=gr0Þ þ Du1 þ ðr1=r0ÞDu0 þ @u0=@t þ ðu0:rÞu0 ¼ 0 (7.39b)

with

u1:nð ÞS tð Þ ¼ 0 (7.39c)

From (7.39b) we now have, first, the possibility of deriving the following

average equation for hu0i:

@hu0i=@t þ hðu0:rÞu0i þ rðhp2i=gr0Þ þ ð1=r0Þhr1Du0i ¼ 0: (7.39d)

This equation is explained below.

On the other hand, using (7.38c), we write Eqs. 7.39a, 7.39b as an inhomoge-

neous, acoustic-type, system for r2=r0 and u1: namely,

Dðr2=r0Þ þ r:u1 þ G ¼ 0,

ðp0=r0Þrð r2=r0Þ þ Du1 þ F ¼ 0, (7.40a)

u1:nð ÞS tð Þ ¼ 0,
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where

G ¼ @ðr1=r0Þ@t þr:½ð r1=r0Þu0� þ ð1=r0Þ½dr0=dt�ðr1=r0Þ; (7.40b)

F ¼ @u0=@t þ ðu0:rÞu0 þ ðg� 2Þðp0=r0Þðr1=r0Þrðr1=r0Þ: (7.40c)

In G and F, according to (7.40b, 7.40c), we have three categories of terms:

1. The (average hGi and hFi) terms independent of the scale of the fast times.

2. The terms GLand FLð Þ which are linearly dependent on the Cn, and Sn.

3. The terms which depend quadratically GQand FQ

� �
on the Cn and Sn, and are

proportional to cos½ 1=Mð Þð’p tð Þ � ’q tð ÞÞ�or sin½ 1=Mð Þð’p tð Þ � ’q tð ÞÞ�.
As a consequence we write, in system (7.40a) for the inhomogeneous terms

G and F, the following formal representation:

G ¼ hGi þ ½p0 tð Þ=r0 tð Þ�1=2Sn
1 GnCCn þ GnS Sn½ � þ GQ; (7.41a)

F ¼ hFi þ ½p0 tð Þ=r0 tð Þ�Sn
1 FnSSn þ FnC Cn½ � þ FQ; (7.41b)

where hGi and hFi and also coefficients. GnC;GnS;FnC;FnS, are determined from

(7.40b, 7.40c).

More precisely, in (7.41a, 7.41b), the terms hGi and hFi indicate the terms

independent of fast times, while in the Sn
1 we have the terms with Cn and Sn

according to (7.30a, 7.30b). On the other hand, in GQ and FQ we have the terms

proportional to

cos½ð’p � ’qÞ=M or sin� ½ð’p � ’qÞ=M�:

Below we assume that the last quadratic terms, GQ and FQ, are not resonant

triads satisfying the relation:

j’p tð Þ � ’q tð Þj ¼ ’r tð Þ; 8p; q; r (7.41c)

Thus, none of the quadratic terms can interfere with any of the terms depending

linearly on the Cn and Sn.

As a consequence of the linearity of our system (7.40a), we can, in particular,

write the solution for the fluctuations ðr�2=r0Þ and u�1, corresponding only to the

terms linearly dependent on the Cn and Sn in (7.41a, 7.41b), in the following form:

r�2=r0 ¼ Sn
1 RnCCn þ RnS Sn½ � (7.42a)

u�1 ¼ ðp0=r0Þ1=2Sn
1 UnCCn � UnSSn½ � (7.42b)

and, for example, the amplitudes RnS and UnC satisfies the system:
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onRnS þr:UnC þ GnC ¼ 0

� onUnC þrRnS þ FnS ¼ 0 (7.42c)

UnC:n ¼ 0

on S tð Þ:

Obviously, for RnC and UnS we obtain a similar system when in place of RnS,

UnC, GnC and FnS we write RnC, UnS, GnS and FnC.

For the existence of a solution of both these inhomogeneous systems it is

necessary to use two compatibility relations (which are, in fact, a consequence of

the Fredholm alternative), respectively related to (GnC, FnS) and GnS;FnC

� �
, and for

this the system (7.33), for the normal modes (Rn, Un) of vibrations of the cavity O(t)
with eigenfrequencies on, must be taken into account.

Therefore, from (7.33), after an integration by parts, it follows that

0 ¼
ð
O tð Þ
f½onRn þr:Un RnC �� ½ onUn �rRn�UnCgdv

¼
ð
O tð Þ
f½onRnC þr:UnC Rn �� ½ onUnC �rRnC�Ungdv;

(7.43a)

when we also take into account the boundary ðon @O tð Þ ¼ S tð ÞÞ, the conditions:

UnC:n ¼ 0; and UnS:n ¼ 0; on S tð Þ: (7.43b)

As a consequence, we derive the following compatibility condition for the

resolvability of the above, (7.42c), inhomogeneous system:

ð
O tð Þ

GnCRn � FnS:Un½ �dv ¼ 0 (7.44)

Of course, a compatibility relation similar to (7.44) is verified if we write, in

place of GnC and FnS, respectively, GnS and FnC, after the use of a system similar to

(7.42c) for RnC, UnS, with GnS and FnC.

7.2.6 The Average System of Equations for the Slow Variation

With the average continuity equation (7.36d) and slip condition (7.36e), for hu0i,
we lack sufficient information for the determination of the slow (nearly incom-

pressible) variation! Such information is derived from the average equation (7.39d).

Again, therefore, according to solution (7.30a, 7.30b), we first obtain:
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hðu0:rÞu0i ¼ ðhu0i:rÞhu0i

þ 1=2ð ÞSn
1ðAn
2 þ Bn

2Þ½Un:r�Un (7.45a)

and

ð1= r0Þh r1Du0i ¼ � 1=2ð ÞSn
1ðAn
2 þ Bn

2Þ½Rn:r�Rn (7.45b)

when we also make use of (7.33). From this equation we also derive the relation:

½Un:r�Un ¼ 1=2ð ÞjrUnj2

Finally, forhu0i we derive the following average equation of motion:

@hu0i=@t þ ðhu0i:rÞhu0i þ rP ¼ 0 (7.46a)

where

P ¼ ðhp2i=gr0Þ þ 1=4ð ÞSn
1ðAn
2 þ Bn

2ÞfjUnj2 � jRnj2g (7.46b)

is a pseudo-pressure affected by the acoustic perturbations.

But, hu0ijt¼0 being irrotational (according to a detailed investigation in [85],

Sect. 4 and see also Sect. 7.2.7 below), and according to the average equation

(7.46a), for hu0i, it remains irrotational for any time t > 0:

hu0i ¼ r’: (7.47)

In such a case, the average continuity equation (7.36d) for hu0i, with the slip

condition (7.36e) on the wall S(t), allows us to determine hu0i due to the following
Neumann problem for potential function ’:

D’þ d logr0 tð Þ=dt; (7.48a)

with

ðd’=dnÞS tð Þ ¼ W t;Pð Þ: (7.48b)

In such a case, for the first term in P given by (7.46b), we write:

hp2i=gr0 ¼ � ½@’=@t þ 1=2ð Þjr’j2�

� 1=4ð ÞSn
1ðAn
2 þ Bn

2ÞfjUnj2 � jRnj2g (7.48c)

which take into account, explicitly, the influence of the acoustics on the averaged

pressure hp2i.
The term

� 1=4ð ÞSn
1ðAn
2 þ Bn

2ÞfjUnj2 � jRnj2g;
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in (7.48c) is a trace of the acoustics, in the model problem (7.48a, 7.48b) with

(7.48c) – a sequel (a memory of the acoustic oscillations) of the application of the

homogenization technique.

We observe also that as an initial condition for a hu0i, at t ¼ 0, solution of the

average equation (7.46a) with (7.46b), according to solution (7.30a) and the starting

initial condition (7.22d), we can write:

hu0i þ Sn
1Anð0ÞUn 0; xð Þ ¼ 0 for t ¼ 0 (7.48d)

7.2.7 The Long Time Evolution of the Fast Oscillations

With the above derivation of the average system of equations for slow variation we

have eliminated only part of the secular terms in u1 and r2. As a consequence it is
necessary to consider in detail the system of compatibility conditions (7.44) for GnC

and FnS, and similarly for GnS and FnC.

First, we consider GnC, FnS, GnS and FnC, and take into account the relations

(7.40b, 7.40c), (7.41a, 7.41b) and the solution (7.30a, 7.30b), for u*0 and r*1, with
u0 ¼ hu0i þ u�0 and r1 � r�1.

A straightforward but technically long calculation produces the following

formulae:

GnC ¼ ðr0=p0Þf dBn=dtð ÞRn þ Bn½ @Rn=@tð Þ þ ðdlogr0=dtÞRn þr:ðhu0iRnÞ�g
(7.49a)

FnS ¼ � ðr0=p0Þf dBn=dtð ÞUn þ Bn½ @Un=@tð Þ þ ðUn:rÞhu0i
þðhu0i:rÞUn�g

(7.49b)

GnS ¼ � ð r0=p0Þf dAn=dtð ÞRn þ An½ @Rn=@tð Þ þ ðdlog r0=dtÞRn

þr:ðhu0iRnÞ�g
(7.49c)

FnS ¼ ð r0=p0Þf dAn=dtð ÞUn þ An½ @Un=@tð Þ þ ðUn:rÞhu0i
þðhu0i:rÞUn�g

(7.49d)

and we observe that in (7.49a) and (7.49c), according to (7.36d):

r:ðhu0iRnÞ ¼ Rnðr:hu0iÞ þ hu0i:rRn

� hu0i:rRn � ðdlog r0=dtÞRn

(7.50)

Then, from the compatibility relation (7.44) with (7.49a, 7.49b), and from a

similar (to 7.44) compatibility relation, together with (7.49c, 7.49d), we derive the
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two ordinary differential equations for the amplitudes An(t) and Bn(t), taking into

account the normalization condition: namely,

dAn=dt þ gn tð ÞAn ¼ 0, (7.51a)

dBn=dt þ gn tð ÞBn ¼ 0, (7.51b)

where gn tð Þ ¼ 1=2ð Þ
ð
D tð Þ

@=@t½jUnj2 þ jRnj2�dv

þ 1=2ð Þ
ð
D tð Þ
fhuoi:r½jUnj2 þ jRnj2�gdv

þ
ð
D tð Þ

½ðUn:rÞhuoi�:Undv

which can be rewritten as

gn tð Þ ¼ 1=2ð Þdlog ro=dt þ
ð
D tð Þ

½ðUn:rÞhuoi�:Undv: (7.51c)

This above relation is derived when we take into account that, respectively:

1=2ð Þ
ð
D tð Þ

@=@t½jUn j2 þ jRnj2�dv ¼ � 1=2ð Þ
ð
SðtÞ

½jUnj2 þ jRnj2�W t;Pð Þds

due to normalization and (7.35e), and also that

1=2ð Þ
ð
D tð Þ

fhuoi:r½jUnj2 þ jRnj2�gdv

¼ 1=2ð Þ
ð
D tð Þ

rf½jUnj2 þ jRnj2�hu0igdv

� 1=2ð Þ
ð
D tð Þ

½jUnj2 þ jRnj2�ðr:huoiÞdv:

But:

1=2ð Þ
ð
D tð Þ

r½jUnj2 þ jRnj2�huoigdv

¼ 1=2ð Þ
ð
SðtÞ

½jUnj2 þ jRnj2�W t;Pð Þds,

due to slip condition (7.36e), and

� 1=2ð Þ
ð
D tð Þ

½jUnj2 þ jRnj2�ðr:huoiÞdv ¼ 1=2ð Þdlog ro=dt
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according to continuity equation (7.36d) and normalization condition.

At t ¼ 0 we have, as initial conditions from (7.48d),

t+ ¼ 0 : Sn>1An 0ð ÞUn 0; xð Þ ¼ � huoi (7.51d)

and

Bnð0Þ ¼ 0; n ¼ 1; 2; ::: (7.51e)

We derive the above initial conditions for An(t) and Bn(t) by applying the

starting initial conditions (7.22d) for u and r, and this gives, first, for An the

condition (7.48d), because u ¼ 0 at t ¼ 0, when we take into account the solution

(7.30a) for u*0 and also the decomposition (7.28) for U ¼ hUi þ U�.
The value of Bn(0) ¼ 0 is related with the initial condition at t ¼ 0, for r ¼ 1ð Þ,

which is compatible with the leading-order solution:

r�o t ¼ 0ð Þ ¼ 1; and r�1 0;~xð Þ ¼ 0:

Due to Eq. (7.51b) for Bn, obviously:

Bn tð Þ � 0 for all t: (7.52a)

Concerning An(0), its values must be derived from (7.48d/7.51d), and it depends

on the value of < u0 > at t ¼ 0. On the other hand, obviously, if in condition

(7.22b) W(0, P) ¼ 0, then < u0 > is also zero at t ¼ 0, and

Anð0Þ ¼ 0

which also implies that

An tð Þ � 0 is zero for all tð Þ (7.52b)

and then the oscillations are absent!

However, if the motion of the wall of the deformable in time cavity is started
impulsively from rest (or accelerated from rest to a finite velocity in a time O(M)),
then accordingly we have:

W 0 ;Pð Þ ¼ 0::: but : W 0þ;Pð Þ 6¼ 0 (7.53a)

and the same holds for the averaged velocity, < u0 >.

In this case we have An 0þð Þ 6¼ 0, and as consequence:

An tð Þ is also non� zero; when t 
 0þ (7.53b)
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7.2.8 Some Concluding Comments

The most important result we obtain is as follows. If the motion of the wall of the
deformable (in time) cavity, where the inviscid gas is confined, is started impul-
sively from rest, then the acoustic oscillations remain present and have a strong
effect on the pressure. Therefore, this pressure would be felt by a gauge, and would
not be related to the mean (averaged) motion. The same holds if the motion of the
wall is accelerated from rest to a finite velocity in a time O(M).

We again stress the necessity of building into the structure of the non-viscous

solution for U(u, r, p, S), when we consider the Euler equations (7.22a), a

multiplicity of times – a family of fast times � in contrast to M€uller [150], Meister

[151], and Ali [152].

If we deal with a slightly viscous flow, when the Mach number M � 1, we must

start from the full unsteady NS–F equations. In such a dissipative (viscous and heat-

conducting) case, we bring into the analysis a second small parameter Re�1, the

inverse of a (large) Reynolds, Re 	 1, number, and we must then expect that the

acoustic oscillations are damped out.

Unfortunately, a precise analytical (when a similarity rule between M and Re�1

is assumed) multiple time-scale asymptotic investigation of this damping phenom-

enon appears to be even more difficult problem, and raises many questions! This

damping problem is considered mainly in the framework of the hypothesis (see

[13], pp. 148–161):

Re >>1=M (7.54)

In M€uller [150], the author provides insight into the compressible Navier–Stokes

equations at low Mach number when slow flow is affected by acoustic effects in a

bounded domain over a long time! As an example of an application, M€uller
mentions a closed piston-cylinder system in which the isentropic compression

due to a slow motion is modified by acoustic waves. M€uller uses only a two-time

scale analysis, which is obviously insufficient for the elimination of the secular

terms in derived approximate systems (as has been mentioned in Sect. 7.3.5).

The results obtained recently by Ali [152] are more interesting than those

formally derived by M€uller [150], in spite of the fact that in Ali’s paper a two-

time scale analysis is again used – the Euler equations for a compressible perfect

fluid being considered on a bounded time-dependent domain Ot 2 <n, where O0

denotes the domain at the initial time t ¼ 0. The evolution of the bounded time-

dependent domain is described by a family of invertible maps:

Ft : <n ! <n (7.55a)

depending continuously on the time t, such that Ot ¼ FtðO0Þ for all t.
This severe assumption on the domain Ot is, nevertheless, general enough to

include a moving rigid domain, or a cylinder cut by a fixed surface and a moving
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surface (piston problem), or a contracting–expanding sphere (star). In the particular

case of a moving rigid domain, Ali [152], p. 2023, writes:

Ft xð Þ ¼ xþ c tð Þ: (7.55b)

The map Ft has a geometric meaning and is related neither to the fluid motion

nor to the Lagrangian variables. Moreover, Ft does not need to be globally unique,

since only its restriction to a neighbourhood of the boundary @Oo characterizes the

motion of the domain’s boundary @Ot.

From the conclusions of Ali [152], pp. 2037–2038, we mention that his analysis

is not conclusive, since the theory presented is not capable of providing a full

resolution of high-frequency acoustics. Nevertheless, the representation derived, in

Sect. 6 of his paper, provides a hint of a partial theoretical comprehension of the

acoustic modes generated by the motion of the boundary.

Obviously, the main key point is that one fast time variable is not sufficient to

describe the sequence of modes produced by a generic motion of the boundary.

Thus we need to extend the “Ali [152] theory” to include a family of fast time

variables non-linearly related to the slow time and (eventually) to the space

variables.

It is an open question whether the number of independent fast variables for each

term of the asymptotic expansion should be increased with the order of the term.

This extension, mentioned by Ali, has a theoretical interest in itself, and is

a necessary step for the development of efficient numerical schemes for low

Mach number flows in a time-dependent bounded domain (as is the case in

a combustion problem). It was, in fact, discovered by J.-P. Guiraud and myself

30 years ago, in 1980, and it is formally realized in Sects. 7.2.1–7.2.6 above.

Obviously, the case when the starting equations, in place of (7.22a), are the full

unsteady NS-F equations, with

Re ¼ O 1ð Þ and Pr ¼ O 1ð Þ fixed; with M ! 0 (7.56)

is a more difficult problem!

Here we mention only a partial result which concerns the derivation of the

following averaged reduced system:

r½hp2i=g ro tð Þ� þ hFi ¼ 0

r:hu1i þ hGi ¼ 0

hHi � ð g� 1ÞTw tð ÞhGi ¼ 0:

(7.57)

This average system merits careful analysis. In the first equation of (7.57),

in < F>, the Reynolds number Re is present, while in the third equation, in < H>,

the Péclet (Pé ¼ PrRe) number is present. From this set of equations a

Navier–Fourier-type nearly incompressible average system of equations has been

derived (see [13], pp. 149–154).
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A difficult problem is also the study of the viscous damping of the acoustic fast

oscillations. Obviously, the inviscid theory developed in Sect. 7.2 do not present the

possibility of investigating this damping process, and this is also the case when

Re ¼ O(1) fixed in the framework of a Navier–Fourier model.

On the other hand, if we deal with a slightly viscous flow (large Reynolds

number, Re 	 1), we must start from NS–F equations, in place of the Euler

equations analysed above, and bring into the analysis a second small parameter:

e2 ¼ 1=Re <<1 (7.58a)

which is the inverse of the Reynolds number.

We must then expect that the acoustic fast oscillations are damped out. Unfortu-

nately, a precise analysis of this damping phenomenon – which appears, for

instance, when a general similarity rule

e2 ¼ Mb; b> 0 (7.58b)

is assumed – appears not to be an easy task, and raises many questions.

Therefore, it is first necessary to take into account an acoustic-type inhomoge-

neous system with a family of very slow times via a new operator (D):

d D U in 7:27ð Þ (7.58c)

where it is assumed that order d > M!

It appears that as a consequence of the inhomogeneity, a boundary–layer analy-

sis is necessary, which is related with a Stokes-layer of thickness

w2¼ e2 M: (7.58d)

The analysis of the Stokes-layer equations is rather complicated, but is necessary

for the investigation of this damping process.

A matching condition (evaluating the flux outward from the Stokes layer)

between the acoustic and Stokes-layer components of the normal velocity gives:

w ¼ dM ) d ¼ w=M ¼ Re M½ ��1=2: (7.59)

However, further investigations are necessary if we want to understand how
viscous damping operates when this relation is not satisfied, and other points

meriting investigation include the behaviour of the Rayleigh layer.
For a deeper investigation of dissipative effects in the case of a time-dependent

cavity – a problem which has practical interest in the simulation of the starting
process of a space rocket driven by a stream of gases emitted behind it when the fuel
is burned inside – it is necessary to consider the similarity rule (7.58b) for large
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Reynolds, Re >>1ð e<<1Þ, numbers and low Mach, M � 1, numbers – at least

during the starting (at t+ ¼ 0) short time interval.

Various interesting results relating to the above-mentioned “combustion

problem” are included in our monograph [13] devoted to low Mach numbers:

Chapter 1, pp. 14–15, discusses a simple model for combustion (with various

references); Chap. 2, pp. 32–33, presents a brief account of the low Mach number

theory applied to combustion (with references); and Sects. 3.3 and 3.4 in Chap. 3

deal with different non-viscous and heat-conducting models in a bounded time-

dependent domain.

Concerning the damping of acoustic oscillations by viscosity, we observe that

the Rayleigh-layer emerges, in the solution of the problem related with the damping

phenomenon, because of the conditions on the wall in Stokes-layer equations. The

investigations of the evolution of the Rayleigh-layers with time is a difficult

problem! If, on the one hand, the Stokes-layer corresponds to acoustic (oscillating)

eigenfunctions of the cavity, the Rayleigh-layer corresponds, on the other hand, to

conditions on the wall of this cavity. Moreover, the thickness of the Stokes-layer,

being given by

w ¼ M=Re½ �1=2 (7.60)

is independent of the time and the behaviour of the Stokes-layer, for a large time,

does not have any influence on the Stokes-layer! Concerning the Rayleigh-layer,

however, its thickness grows as the square root of the time, and obviously a deeper

analysis of the interaction between these two boundary-layers, when time increase

to infinity, is required.

A last remark concerning the adaptation to the initial conditions in a time-

dependent bounded container is that our first paper,1 with Guiraud [85], includes

some preliminary results concerning this problem:

Only with the help of a multiple-scale technique, via an infinity of fast times (designed to

cope with the infinity of period of free vibration of the bounded container), do we have the

possibility of eliminating the various secular terms in derived model equations.

Unfortunately, a two-time, simple technique, with t and t ¼ t=M, is not ade-

quate, because such a technique does not provide the possibility of eliminating all

seculars terms. The main reason is that the acoustic eigenfrequencies of the

bounded container appear in the internal problem, and because the container is a

function of the slow time t (the time of the boundary velocity–wall velocity related

with the deformation of the container in time), these eigenfrequencies are also

functions of the (slow) time t. More precisely, when the wall, at t+ ¼ 0, is started

impulsively from rest (t� ¼ 0), the limiting case

1 This paper was subject of a communication during the 7th “Colloque d’Acoustique

Aerodynamique” in Lyon (France), 4–5 November 1980 and, also, of a very fruitful discussion

with D. G. Crighton during this “Lyon’s colloque”.
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M ! 0 with t fixed (7.61)

is singular near the initial time, and it is necessary to consider a local-in-time

limiting case:

M ! 0 with t fixed (7.62)

with t ¼ t=M:
In such a case, close to initial time ðt ¼ 0Þ, we derive the classical equations of

acoustics and obtain the corresponding solution (see [13], Sect. 3.3.4) of the

Chapter 3. Unfortunately, this solution of the acoustic problem does not tend to a

defined limit when t tends to infinity, which shows that matching is not possible!
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