
Chapter 5

The Structure of Unsteady NS–F Equations

at Large Reynolds Numbers

Numerous papers are devoted to investigations of NS–F equations in the case of

large Reynolds numbers, and many references are cited in my Theory and
Applications of Viscous Fluid Flows [47]. Curiously, the case of unsteady NS–F

equations for large Reynolds numbers, when Re tends to infinity, has been very

poorly considered. However, in Chap. 4 of [47] (Sect. 4.3) there is a presentation of

the asymptotic structure of unsteady state NS–F equations.

Below, in this Chap. 5, I again give a presentation of this structure – the reason

being that such unsteady NS–F equations structure, at Re "/ , very well illustrates

the importance of the various limiting processes related to fixed time and space, and

forms a guideline in the elaboration of our mathematics for the RAMA.

On the other hand, such a structure illuminates the various consequences of the

singular nature of the Prandtl (1904) concept of the boundary layer. A strong

singularity for NS–F equations opens (it seems to me) new perspectives for the

resolution of various paradoxes encountered in unsteady compressible fluid flow

theory. It is surprising that this close initial time singularity of the Prandtl boundary

layer, was for so long ignored.

5.1 Introduction

Fluid dynamicians and applied mathematicians have always found fluid dynamics

to be a rich and interesting field for investigations, because the basic system of

partial derivative equations for a Newtonian fluid – the so-called Navier–Sto-

kes–Fourier equations (NS–F) equations – have a great capacity for producing

various particular fluid flow models.

In particular, a large class of such fluid flow models is closely linked with the

analysis of a dimensionless form of the NS–F system, and more specifically with

the large Reynolds numbers (Re "/ ) for a compressible, weakly viscous, and heat-

conducting fluid flow.
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Indeed, in technologically and geophysically relevant fluid flows, Re is usually

quite large. In 1904 Prandtl took into account this fact and derived (in an ad hoc

manner) his well-known ‘Prandtl Boundary-Layer (BL) equations’. Surprisingly, it

seems that the case of an unsteady fluid flow, when initial conditions are prescribed,

has not been carefully considered, and this BL Prandtl concept has become default

and become singular near t ¼ 0! Only in 1980, in a short note [98], was I the

(apparently) first to show that:

The limiting form (at Re " 1) of the unsteady NS–F equations, near t ¼ 0 and in the

vicinity of a wall (z ¼ 0), bounding below the compressible, viscous and heat-conducting

fluid flow, is identified� in place of Prandtl BL equations� rather with the equations of the

Rayleigh compressible problem, considered first in 1951 [99] by Howarth.

In Chap. 5 I fully intend to present a more deep and careful investigation of this

singular problem, which not only has an obvious theoretical interest, but also

seemly a practical one. For the NS–F unsteady full equations, we have considered,

as a typical working case, an “emergency situation”: namely, a sudden rise in

temperature locally on the wall at initial time t ¼ 0 � which is a possible applica-

tion of our new four regions structure for the NS–F unsteady equations!

5.2 The Emergence of the Four Regions as a Consequence

of the Singular Nature of BL Equations Near t ¼ 0

The main feature of the well-known Prandtl 1904 BL concept in a thin region near

the wall (z ¼ 0), in an aerodynamics problem for high Reynolds number, is linked

with the strong simplification of the equation of motion for the vertical component

w of the velocity u ¼ (v; w).

In steady and unsteady, in compressible viscous, in heat-conducting, and in

incompressible viscous fluid flows, this Prandtl BL concept in all cases produces

a very degenerate limit equation, when Re " 1, for w!

When we work with dimensionless quantities, then, for the variation of the

pressure in the direction normal to the (horizontal) wall, z ¼ 0, relative to vertical

coordinate, z, we obtain (when the gravity force is not taken into account):

@p @z= ¼ 0: (5.1)

and in particular, the partial derivative in time for the component w of the velocity

disappears in a BL system of equations!

If this failure seems not to have serious consequences in the usual case of steady

or unsteady incompressible viscous fluid flows, conversely, this is not the case for

an unsteady compressible viscous and heat-conducting fluid flow. In such a case, as

an unfortunate consequence of (5.1), we have a new “four regions” structure for

NS–F equations governing these fluid flows at high Reynolds numbers.
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This new structure of unsteady NS–F equations seems, in particular, very

significant for the various applications linked with the heat emergency situations

(sudden rise of a thermal source) – explosions, fires, failures of oil and gas

pipelines, and so on – in a local domain on the wall in contact with the fluid.

Such a “four regions” structure, at Re " 1, is linked with four limiting processes

in full unsteady NS–F equations and replaces the two classical regions,

“Euler–Prandtl” and regular coupling, linked with the following two limiting

processes (the horizontal coordinates x and y being fixed):

LimE ¼ ½e # 0; with t and z fixed�: (5.2a)

and

LimPr ¼ ½e # 0; with t and z ¼ z e= fixed�; (5.2b)

As a consequence of the strong degeneracy linked with (5.1), in the unsteady

case, the limiting process (5.2b) is singular near t ¼ 0. Therefore, because the

partial time derivative of the vertical component of the velocity is absent in BL

equations, we do not have the possibility of taking into account the corresponding

data which is prescribed for full unsteady NS–F equations.

It is necessary to consider a third limiting process, inner in time – a so-called

“acoustic” limiting process:

LimAc ¼ ½e # 0; with t ¼ t e= and z ¼ z e= fixed�; (5.3)

An acoustic problem must be considered in a third “acoustic region” close to

initial time, and then (if possible) a matching with the boundary-layer (BL) region

far from the region of the acoustics. Indeed, the consideration, in this acoustic

region, of an unsteady adjustment problem, when t ! 1, presents the possibility

(in principle) of prescribing the correct initial conditions for unsteady BL equations

significant only far of the initial time in the “Prandtl BL region”.

But a new problem emerges because in this third non-viscous, near the initial

time acoustic region, we do not have the possibility of taking into account the

thermal condition on the wall z ¼ 0, prescribed for NS–F equations in the frame-

work of the heat emergency problem.

As a consequence, it is necessary to consider a fourth limiting process simulta-

neously near t ¼ 0 and z ¼ 0:

LimRa ¼ ½e # 0; with y ¼ t e2
�

and Z ¼ z e2
�

fixed�; (5.4)

In such a case, in this corner small fourth region, we derive the unsteady one-

dimensional NS–F equations governing the compressible Rayleigh problem, with

the corresponding thermal condition on z ¼ 0 (Fig. 5.1).

Precisely, the above (related with the limiting process (5.4)) compressible

viscous and heat-conducting Rayleigh problem presents the possibility of
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producing an answer to following question: What is the significant problem,

governing the unsteady compressible viscous and heat-conducting fluid flow,

emerging as a result of a suddenly rise in temperature locally on the wall, z ¼ 0,

at time, t ¼ 0?

In Sect. 5.3 the formulation of the starting unsteady NS–F problem is given,

while Sect. 5.4 is devoted to the derivation of the corresponding four problems

linked with the above four limiting processes – (5.2a, 5.2b), (5.3), and (5.4). Section

5.5 concerns the problem of the unsteady adjustment (via the Rayleigh problem

significant in the fourth region) to Prandtl BL evolution, in time, which is signifi-

cant in the second region close to wall z ¼ 0, but far from the third and fourth

regions near the initial time t ¼ 0. In Sect. 5.6 some conclusions are presented.

5.3 Formulation of the Unsteady NS–F Problem

We consider the atmospheric dry air as a thermally perfect, viscous, and heat-

conducting gas, with constant dissipative coefficients. In such a case, the dimen-

sionless NS–F equations are written (for dimensionless functions, v, w, p, r, and T)
in the following form – all functions, variables, and coefficients being non-

dimensional:

@r @t= þ D � ðrvÞ þ @ðrwÞ @z= ¼ 0; (5.5)

Fig. 5.1 Four regions structure of NS–F unsteady equations at large Reynolds number
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r½@v @t= þ ðv : DÞvþ w@v @z= � þ ð1 gM2
� ÞDp ¼ e2fDv

þ ð1 3= Þ D ½D : vþ @w @z= �g; (5.6)

r½@w @t= þ ðv : DÞwþ w @w @z= � þ ð1 gM2
� Þ@p @z= ¼ e2fDw

þ ð1 3= Þ@ @z= ½D : vþ @w @z= �; (5.7)

r½@T @t= þ ðv : DÞTþ w @T @z= � þ ðg� 1Þp ½D : v

þ @w @z= � ¼ ðg Pr= Þ e2DTþ gðg� 1Þe2M2fF
� ð2 3= Þ½D : vþ @w @z= �2g;

(5.8)

with

p ¼ rT; (5.9)

where the horizontal (relative to coordinates (x, y)) velocity vector is v ¼ (u, v),

and viscous dissipation is written in the following form:

F ¼ @u @z= þ @w @x=½ �2 þ @v @z= þ @w @y=½ �2 þ @u @y= þ @v @x=½ �2

þ 2 @u @x=ð Þ2 þ @v @y=ð Þ2 þ @w @z=ð Þ2
h i

;
(5.10)

and D ¼ D2 þ @2=@z2 with D ¼ @=@x; @=@yð Þ.
For the above evolution equations (5.5)–(5.8) we write. as initial conditions at

initial time t ¼ 0:

t� � 0 : v ¼ 0; w ¼ 0; r ¼ 1 and T ¼ 1: (5.11)

At the horizontal solid wall, z ¼ 0, we assume:

z ¼ 0 : v ¼ w ¼ 0 (5.12a)

and

T ¼ Yðt b, P= Þ; when tþ � 0; Yðt b,P= Þ � 0; when t� � 0; (5.12b)

where

b � t* t0
� � 1; (5.13)

is a ratio of two time scales: t*, a short time scale, in comparison to characteristic

evolution time scale t	, which appears in Strouhal number S in (3.3).
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In condition (5.12a, 5.12b), the dimensionless function Yðt=b;PÞ is used to

simulate an emergency of a thermal spot at t+ � 0, P being a point on a local

domain on the wall, P
 D, for which the reference length scale L	 is a diameter for

this time-dependent domain D ¼ D(t).
In the above four dimensionless NS–F equations (5.5)–(5.8), we have assumed

that (S is the Strouhal number):

S � 1 ) U0 ¼ L0 t0
�

;

and in the fact (t0 is the time with dimension):

Yðt b; P= Þ � Yðt0 t�= ; PÞ:

The characteristic time t	 ¼ L	/U	 is a “long” time and characterizes the

evolution of fluid flow after the thermal spot emergency, while the characteristic

“short” – small – time, t* � t	, is linked just with this emerging thermal spot short

(time) interval.

The above formulated NS–F initial-boundary value problem, (5.5)–(5.13), is a

very complicated mathematical problem, and the rigorous proof concerning its

well-posedness is obviously an intractable question!

In fact, our objective below is rather to analyze the specific structure of this

problem, when e tends to zero – for large Reynolds number � and consider the

relations, via matching, between the four particular fluid flows regions discussed in

Sect. 5.2.

The existence of these four fluid flows regions, at large Reynolds number, shows

that we have the possibility of considering this above NS–F system of equations as a

“puzzle!” A challenging, but difficult, approach is to “deconstruct”1 this puzzle,

relative to limiting values � vanishing or infinity � of various reference

parameters, Re, M, or Pr. . ., in order to unify � by a RAMA process – the set of

various, ill-assorted, partial approximate system of equations, customarily used in

classical fluid dynamics.

We observe that from our above formulated mathematical–physical

(5.11)–(5.13) problem for the NS–F equations (5.5)–(5.8) with (5.9), it follows

that we have the possibility of first investigating not only the initial stage of the

motion, emerging as a cause and effect of a sudden rise in temperature locally on

the wall z ¼ 0 at t ¼ 0 in a corner fourth region, but also the evolution of this

“thermal accident” in second, Prandtl, and first, Euler, BL viscous and inviscid

Eulerian regions, by two matching processes.

1 In fact, the system of NS–F equations, despite its dimensionless form, do not have a fixed

meaning, even if the various reference parameters, in NS–F equations, give a good idea for an

investigation in this way! A real meaning is “created”, each time, in the act of the RAMApproach,

relative to a precise parameter (high or low), via the derivation of a consistent simplified model,

this process is just a deconstruction (“à la Derrida”) of NS–F system of equations.
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The considered physical case is a typical free problem independent of any given

external flow. This case can be generalized for the atmosphere, where gravity plays

an obvious and important role in emerging convective local motion. For such an

atmospheric case, a typical example is a forest fire, which is actually a very bad

accident which causes a large amount of damage, and is considered to be an

“environmental disaster”!

5.4 Derivation of the Corresponding Four Model Problems

Below we consider the derivation of approximate leading-order equations for the

corresponding four limiting processes (5.2a, 5.2b), (5.3), and (5.4), discussed in

Sect. 5.2, and linked with the limiting process e # 0, from our full NS–F problem:

(5.5)–(5.9), with (5.10), and (5.11)–(5.13) – our main objective being a consistent

obtention of these four particular systems of equations related to the four limiting

processes (5.2a, 5.2b)–(5.4).

5.4.1 Euler–Prandtl Regular Coupling

When we consider the first, Euler, limiting process (5.2a), LimE, at e # 0, with t and

z fixed, from NS–F, evolution equations (5.5)–(5.8), with (5.9), we obtain a strong

degeneracy (close to the horizontal solid wall z ¼ 0), which leads to a Euler system

of equations for the leading-order functions, vE; wE; pE; TE andrE, in the follow-

ing Euler asymptotic expansion associated with (5.2a):

v;wð Þ ¼ vE;wEð Þ þ e vE
1;wE

1
� �þ :::; (5.14a)

ðp;T; rÞ ¼ ðpE;TE; rEÞ þ eðpE1;TE
1; rE

1Þ þ :::; (5.14b)

where the Eulerian terms (with “E” as subscript) are dependent on t, x, y, and z. We

then obtain the following system of Euler inviscid compressible, adiabatic,

equations:

@rE=@t þ D:ðrEvEÞ þ @ðrEwEÞ=@z ¼ 0; (5.15a)

rE @vE=@tþ vE:Dð ÞvE þ wE@vE=@z½ � þ ð1=gM2ÞDpE ¼ 0; (5.15b)

rE @wE=@t þ vE:Dð ÞwE þ wE@wE=@z½ � þ ð1=gM2Þ@pE=@z ¼ 0; (5.15c)
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rE @TE=@t þ vE:Dð ÞTE þ wE@TE=@z½ � þ ðg� 1ÞpE½D:vE þ @wE=@z� ¼ 0;

(5.15d)

with

pE ¼ rETE: (5.15e)

Because all the dissipative terms, in the right-hand side of NS–F equations

(5.6)–(5.8), are absent in limiting, leading-order, Euler equations (5.15a–5.15d)

(see, for instance [100], and [37], Chap. 9), these Euler equations cannot be valid in

the vicinity of the wall z ¼ 0.

The significant equations valid near z ¼ 0, which replace the above Euler

equations (5.15a–5.15e), are derived when we introduce, in place of z, an inner

vertical coordinate, significant in the vicinity of z ¼ 0: namely,

z ¼ z=e; (5.16a)

when we consider the second, Prandtl, limiting process (5.2b), LimPr at e # 0, with

t and z fixed.
In such a case, again, from full NS–F equations (5.5)–(5.8), with (5.9), for the

leading-order functions vPr; pPr;TPr; rPr, and second�order vertical component of

the velocity, wPr
1, we consider the following asymptotic, à la Prandtl, expansion

associated with (5.2b):

v;wð Þ ¼ vPr; 0ð Þ þ e vPr
1;wPr

1
� �þ :::; (5.17a)

ðp;T; rÞ ¼ ðpPr;TPr; rPrÞ þ eðpPr1;TPr
1; rPr

1Þ þ :::; (5.17b)

where the Prandtl (BL) terms (with “Pr” as subscript) are dependent on t, x, y, and z.
Then, with (5.2b) and (5.17a, 5.17b), we derive the Prandtl BL unsteady equations

(see Stewartson [101], and the more recent book by Oleinik and Samokhin [102]):

@rPr=@t þ D:ðrPrvPrÞ þ @ðrPrwPr
1Þ=@z ¼ 0; (5.18a)

rPr½@vPr=@tþ vPr:Dð ÞvPr þ wPr
1@vPr=@z�

þ ð1=gM2ÞDpPr ¼ @2vPr=@z
2;

(5.18b)

@pPr=@z ¼ 0; (5.18c)

rPr @TPr=@t þ vPr:Dð ÞTPr þ wPr
1@TPr=@z

� �
þ ðg� 1ÞpPr½D:vPr þ @wPr

1=@z�
¼ ðg=PrÞ@2TPr=@z

2 þ gðg� 1ÞM2j@vPr=@zj2; (5.18d)
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with

pPr ¼ rPrTPr: (5.18e)

It is well known that both the above system of equations – outer, Euler

(5.15a–5.15e), and inner, Prandtl (5.18a–5.18e) – are related to the following

classical matching relation (discussed in Sect. 6.4.2):

lim z"1 LimPr
� � ¼ limz#0 LimE

� �
; (5.19a)

and, as a first consequence of (5.19a), we obtain for the Euler outer system of

Eqs. 5.15a–5.15e the following single (slip!) condition:

wE ¼ 0 at z ¼ 0: (5.19b)

Then, as a second consequence of (5.19a), we see that from the strong

degenerated equation (5.18c), in the Pranddtl system of Eqs. 5.18a–5.18e, we

have the possibility of relating the constant value of pPr, with respect to vertical

BL coordinate, z, with the value of pE at z ¼ 0:

pPr t; x; yð Þ � pE t; x; y; 0ð Þ ¼ pE;0 t; x; yð Þ

and

DpPr � ðgM2ÞrE;0½@wE;0=@t þ ðvE;0:DÞwE;0�: (5.19c)

Now, concerning the thermal condition (5.12), with the parameter b given by

(5.13), we are obliged to assume that (when t is fixed, in LimPr, far of the initial

time):

b ¼ bðeÞ # 0 with e # 0; (5.20a)

and we have only the possibility of writing, for the BL equations (5.18a–5.18e), the

following conditions:

on z ¼ 0 : vPr ¼ 0;wPr
1 ¼ 0;

TPr ¼ Yð1;PÞ; at t >0 fixed: (5.20b)

Obviously, in the framework of the Euler–Prandtl regular coupling we do not

have the possibility of taking into account the “thermal accident” linked with the

“temperature emergency at initial time on the wall z ¼ 0.”

On the other hand, the above Prandtl system of Eqs. 5.18a–5.18d, with (5.18e),

due to the reduced BL equation (5.18c), must be considered as a system of two
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equations for vPr and TPr, while the Prandtl vertical velocity wPr
1 must be computed

through the following relation:

wPr
1 ¼ TPr=pE;0

� �ðz
0

f @=@t þ vPr:Dð Þ½ �rPr
þrPr D:vPrð Þgd z;

(5.20c)

since wPr
1 ¼ 0 on z ¼ 0, according to the second condition in (5.20b), and the

(matching) relation:

limz"1 wPr
1

� � ¼ wE;0
1; (5.20d)

is, in fact, a regular coupling condition with the second-order linearized Euler

equations for the terms with “E
1” proportional to e, in Euler asymptotic expansion

(5.14a, 5.14b).

However, the problem of two initial conditions for the two unsteady Prandtl

equations, (5.18b) and (5.18d), for vPr and TPr, is more subtle, and is a direct

consequence of the change of the nature of Prantdl equations relative to the

incomplete parabolic character of NS–F equations (see [59, 60, 67]).

In fact, for vPr and TPr we have a system of two hyperbolic–parabolic equations

[102]:

rPrDPrvPr=Dt� @2vPr=@z
2 ¼ F; (5.21a)

rPrDPrTPr=Dt � ðg=PrÞ@2TPr=@z
2 ¼ G; (5.21b)

where DPr=Dt ¼ @=@t þ vPr:D , and the right-hand side F and G are a collection of

terms with the first-order derivatives relative to D and z.
The continuity equation in the Prandtl system (5.18a–5.18d) is, in fact, an

equation determining wPr
1, due to (5.20c), and in place of (5.18e) the relation:

rPr ¼ pE;0=TPr; (5.21c)

determines the density rPr.
Without loss, the generality the hyperbolic–parabolic character of the system

of Eqs. 5.21a, 5.21b is related to the transmission of the information in the

planes z ¼ const, along the trajectories linked with the derivative operator

DPr=Dt ¼ @=@t þ vPr:D, supporting the hyperbolicity – this information being

instantaneously diffused by vertical coordinate z on each normal direction to the

wall z ¼ 0, at each moment t (which just characterizes the “parabolicity”).

We observe also, that the domain of the dependence, for a fixed moment, of the

point on the wall has an angular form, but in the unsteady case the precise form of

this domain is not easy definable.
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The above brief discussion shows explicitly that there is obviously a change in

the mathematical character of the fluid dynamics equations, when we pass from a

fourth order in time (four partial derivatives in time) unsteady NS–F system of

Eqs. 5.5–5.8, to an unsteady Prandtl reduced system of two Eqs. 5.21a, 5.21b. This

strong modification leads to a singular nature of the system (5.21a, 5.21b) near the

initial time t ¼ 0 – this singular nature of the Prandtl boundary-layer concept for

the unsteady case being (curiously) ignored up to 1980 (See, for instance, a recent

(1994) discussion by Van Dyke: Nineteenth-century roots of the boundary-layer
idea [103]).

More precisely, it is necessary to prescribe in the framework of Prandtl BL

equations (for instance for Eqs. 5.21a, 5.21b) only two initial conditions at t ¼ 0.

But unfortunately, the initial data for vPr and TPr, at time t ¼ 0 (designated by: v0Pr
and T0

Pr), are certainly different from the initial conditions (in particular, (5.11)) for

the full NS–F system of Eqs. 5.5–5.8.

Indeed, the main question is the following. Since two, NS–F, initial conditions

are lost during the Prandtl limiting process (5.2b), how are the (unknown?) initial

conditions:

vPr ¼ v0Pr and TPr ¼ T0
Pr; at t¼ 0 (5.22)

for the unsteady Prandtl BL equations (5.18b) and (5.18d), and how are the data v0Pr
and T0

Pr linked with the initial data in conditions prescribed at the start (at t ¼ 0)

for the unsteady NS–F equations. The answer is strongly related to the obtention,

from the full unsteady NS–F equations, of a particular system of equations valid

near initial time and written relative to a short time. In fact, we have three short

times:

t ¼ t=e; y ¼ t=e2; and s ¼ t=b; (5.23)

and the choice of data v0Pr and T
0
Pr, is realized via an unsteady adjustment problem,

when the adequate(?) short time tends to infinity in unsteady adjustment equations

valid near initial time!

5.4.2 Acoustic and Rayleigh Problems Near the Initial Time t ¼ 0

First, with the limiting process (5.3),

LimAc; when e # 0; with t ¼ t=e and z ¼ z=e fixed;

from the NS–F equations (5.5)�(5.8), with (5.9), for the leading-order functions,

vAc;wAc; pAc;TAc; and rAc; in the following asymptotic acoustic expansions,

associated with (5.3):
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v;wð Þ ¼ vAc;wAcð Þ þ e vAc
1;wAc

1
� �þ :::; (5.24a)

ðp; T; rÞ ¼ ðpAc;TAc; rAcÞ þ eðpAc1;TAc
1; rAc

1Þ þ :::; (5.24b)

where the acoustic terms (with “Ac” as subscript) are dependent on t; x; y, and z,
we derive the following, compressible, non-viscous, adiabatic, unsteady, one-

dimensional, (t; z), equations:

@rAc=@ tþ @ðrAcwAcÞ=@z ¼ 0; (5.25a)

rAc½@wAc=@ tþ wAc@wAc=@z� þ ð1=gM2Þ@pAc=@z ¼ 0; (5.25b)

rAc½@TAc=@t þ wAc@TAc=@z� þ ðg� 1ÞpAc@wAc=@z� ¼ 0; (5.25c)

pAc ¼ rAcTAc: (5.25d)

and also the following transport equation for vAc:

@vAc=@tþ wAc@vAc=@z ¼ 0: (5.26)

The system of Eqs. 5.25a–5.25d – valid simultaneously close to initial time,

t ¼ 0, and in a thin layer in the vicinity of the wall, z ¼ 0 – are identical to the

usual equations for one-dimensional vertical unsteady motion in (non-viscous,

adiabatic) gas dynamics.

Once wAc has been obtained, through the solution of the system (5.25a–5.25d)

with the proper initial conditions (that is, the initial conditions, (5.11), for starting

NS–F equations), single (slip) boundary condition:

wAc ¼ 0 on z ¼ 0; t> 0; (5.27a)

and matching condition (in time)

Limt"1wAc ¼ wPrjt¼0 ¼ 0; (5.27b)

we may use the transport equation (5.26) in order to compute vAc.

Unfortunately, with the above non-viscous adiabatic system of

Eqs. (5.25a–5.25d), and transport equation (5.26), we do not have the possibility

of taking into account our main emergency thermal effect (via the thermal spot

Yðt=b;PÞ on the wall), since the inviscid (non-viscous, adiabatic) system

(5.25a–5.25d) and Eq. 5.26 are not valid close to the wall, where the conditions

(5.12a, 5.12b), with (5.13), are prescribed.

The Eq. 5.26 for vAc shows that

v0Pr ¼ Limt"1vAc; (5.27c)
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from matching, and it seems (in (5.22)) that we can assume (for our particular case),

as a value for v0Pr, zero; but this is certainly not the case for T0
Pr.

Again, near initial time and close to the wall, where we have the conditions

(5.12a, 5.12b), according to Zeyounian [98], it is necessary to consider the Rayleigh

limiting process (see (5.4)):

LimRa; when e # 0; with y ¼ t=e2 and Z ¼ z=e2 fixed; (5.28a)

with

v; wð Þ ¼ vRa;wRað Þ þ e vRa
1;wRa

1
� �þ :::; (5.28b)

ðp;T; rÞ ¼ ðpRa;TRa; rRaÞ þ eðpRa1;TRa
1; rRa

1Þ þ :::; (5.28c)

where the Rayleigh terms, in (5.28a, 5.28b), with “Ra” as subscript, are dependent

on y; x; y, and Z.
In such a case, from full NS–F unsteady equations (5.5)–(5.8), (5.9), for leading-

order functions, vRa;wRa; pRa;TRa; and rRA, we derive below the Rayleigh

equations (5.29) and (5.30a–5.30d) used in the compressible Rayleigh problem,

which are, in fact, the one-dimensional reduced form of the full NS–F equations

valid in a corner region near initial time y ¼ 0, and close to the wall Z ¼ 0. Namely:

rRa½@vRa=@yþ wRa@vRa=@Z� ¼ @2vRa=@Z2; (5.29)

@rRa=@yþ @ðrRawRaÞ=@Z ¼ 0; (5.30a)

rRa½@wRa=@yþ wRa@wRa=@Z� þ ð1=gM2Þ@pRa=@Z
¼ 4=3ð Þ@2wRa=@Z2;

(5.30b)

rRa½@TRa=@yþ wRa@TRa=@Z� þ ðg� 1ÞpRa@wRa=@Z�
¼ ðg=PrÞ@2TRa=@Z2 þ g g� 1ð ÞM2fj@vRa=@Zj2

þ 4=3ð Þj@wRa=@Zj2g;
(5.30c)

pRa ¼ rRaTRa; (5.30d)

These above Rayleigh equations, (5.29) and (5.30a–5.30d), are applied in [99]

for the Rayleigh compressible problem by Howarth in 1951, but in the case of an

infinite flat horizontal plate (submerged in a viscous and heat-conducting and

originally quiescent fluid) which is impulsively started moving in its own plane

with a constant velocity.

In fact, from 0ur above RAM Approach I can now affirm that in a corner region

ðy;ZÞ, which is significant for the small time near initial time and in thin layer close
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to wall, at the leading-order for large Reynolds number, the above compressible

Rayleigh equations, (5.29) and (5.30a–5.30d), for a viscous and heat-conducting

fluid flow, consistently replace the full unsteady NS–F equations.

Both these unsteady systems, ((5.29) and (5.30a–5.30d), and (5.25a–5.25d) and

(5.26)), both valid near the initial time, are related amongst themselves by the

following matching relations:

LimZ"1wRa ¼ wAcjz¼o; (5.31a)

Limy"1½vRa;wRa; rRa;TRa ¼� ½vAc;wAc; rAc;TAc�jt¼0: (5.31b)

The reader can find in Antontsev et al. [104], Chap. 2, some mathematically

rigorous results concerning the above, à la Rayleigh, equations (5.29) and

(5.30a–5.30d); and see also the review paper by Solonnikov and Kazhykhov [105].

Finally, if we assume that in a thermal spot

Yðt=b;PÞ; with b << 1;

b defined by (5.13), is equal to e2, then, for the emergency of the “temperature

accident” we have the possibility of taking into account all starting initial (5.11) and

wall (5.12a, b) conditions, in the framework of an initial-boundary values Rayleigh

problem.

We therefore write, for Eqs. 5.29�5.30d, the following initial conditions:

y� � 0 : vRa ¼ 0; wRa ¼ 0; rRa ¼ 1 and TRa ¼ 1; (5.32a)

and, at the horizontal solid wall, Z ¼ 0, we assume:

Z ¼ 0 : vRa ¼ wRa ¼ 0 and TRa ¼ Yðy;PÞ; yþ � 0: (5.32b)

The above “starting problem”, (5.29)�(5.30a–5.30d) with (5.32a, 5.32b), is a

typical problem for various “emergency�temperature–accident phenomena” which

develop when yþ�0.

5.5 Adjustment Processes Towards the Prandtl BL Evolution

Problem

If we want to take into account the sudden heat emergency, at the time y+ � 0, in a

local domain, P 
 D, on the wall Z ¼ 0, then it now seems justifiable that the main

working problem is just the above compressible, viscous, and heat-conducting

Rayleigh problem ((5.29), (5.30a–5.30d), (5.32a, 5.32b)).
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This Rayleigh problem is valid, simultaneously, near the initial time and close to

wall – in a small corner (fourth) region – with a “physical size” of order (n
	
/U

	2)

relative to time and (n
	
/U

	
) relative to vertical coordinate � these time and length

scales being exactly those used by Howarth [99].

5.5.1 Adjustment Process Via the Acoustics/Gas Dynamics
Equations

Once the above Rayleigh problem – (5.29), (5.30a–5.30d), and (5.32a, 5.32b) – is

solved (numerically), then we have the possibility (first) of prescribing, by

matching relations (5.31a, 5.31b) to Eqs. 5.25a–5.25d, with (5.26), of gas dynamics

– significant in the third inviscid region near the time, t ¼ 0, and characterized by

t and z – the consistent conditions at t ¼ 0 and z ¼ 0.

As a consequence of this above matching, it seems that we can expect that in

conditions (at t ¼ 0 and z ¼ 0) for Eqs. 5.25a–5.25d with (5.26) of gas dynamics,

the influence of the wall condition for the temperature is taken into account, but

only via the limit value Yð/;PÞ.
We observe that in the wall, z ¼ 0 at t > 0, condition (5.20b) for the Prandtl BL

equation (5.18a–5.18e), this same function (independent of time?) Yð/;PÞ is also
present.

The acoustic/gas dynamics equations (5.25a–5.25d) with (5.26), with these

initial conditions (5.31b) and single boundary condition (5.31a), for wAC at z ¼ 0,

which take into account the (partial?) influence of thermal spot (but independent of

time function Yð/;PÞ), present the possibility of considering, for t ! 1, an

unsteady adjustment inviscid problem for the initialization of the Prandtl BL

equations. As a typical example, see, for instance, our paper co-authored with

Guiraud [106], which determines, in particular, the initial data T0
Pr.

2

When both vPr
0 and TPr

0 are known, as a result of the above unsteady adjustment

inviscid problem, then later, via the initial-boundary value BL problem, significant

in the second Prandtl, ðt; zÞ BL region, we have the opportunity to investigate the

quasi-steady evolution of the “temperature accident” arising from the Rayleigh

corner fourth region.

2 In [106], with Guiraud, we have formulated, for the “primitive Kibel equations” (see Sect. 9.2) –

which are derived from the hydrostatic approximation to the Euler equations for non-viscous and

adiabatic motion – a problem analogous to the one that was considered by Rossby (1938)

concerning the quasigeostrophic approximation (a problem which is now well known as the

adjustment to geostrophy). The major conclusion of our “adjustment to hydrostatic balance” is

that the initial conditions for the primitive equations may be derived from a full set of initial

conditions, for the full Euler equations, where in these Eulerian initial conditions the initial data

need not fit the hydrostatic balance. This obtention of initial conditions for primitive equations is

realized by solving the associated one-dimensional unsteady adjustment problem of vertical

motion to hydrostatic balance.
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Curiously, however, this unsteady inviscid adjustment scenario, from gas

dynamics to BL, does not seem to be the only one possible. Indeed, a more detailed

analysis (see Sect. 5.5.2 below) shows the existence of a fifth matching region

between Rayleigh (fourth) and Prandtl (second) regions – the existence of such an

intermediate fifth region ensuring matching between the Rayleigh corner and

Prandtl BL regions.

5.5.2 Adjustment Process Via the Rayleigh Equations

This fifth intermediate matching region appears when we investigate, first, the far

behaviour of the Rayleigh equations (5.29) and (5.30a–5.30d), for large values of y
and Z. In the Rayleigh corner, fourth region, with Prandtl variables,

t ¼ e2 y and z ¼ eZ as e # 0; (5.33a)

we can introduce new intermediate variables, t* and z*:

y ¼ t�=kðeÞ and Z ¼ z�=
p
kðeÞ; 0 < kðeÞ # 0 with e # 0; (5.33b)

where kðeÞ is an arbitrary gauge, and t* and z*, the new intermediate variables, are

fixed when e# 0, in such a way that both Rayleigh variables y and Z tend to infinity.

In this intermediate matching fifth region we have, as leading-order functions:

½vInt;w�
Int;rInt;TInt� ¼ LimkðeÞ#0½vRa;wRa=

p
kðeÞ; rRa;TRa�; (5.33c)

where all intermediate functions (with subscript “Int”) are dependent on time–space

variables, t*, z*, and x, y.

When we take into account that the (unknown) gauge kðeÞ is certainly in an

order between e2 and e, such that we derive from the Rayleigh equations, (5.29) and

(5.30a–5.30d), due to (5.33b, 5.33c), the following intermediate-matching model

equations for vInt, w*Int, rInt, pInt, and TInt:

@rInt=@t
� þ @ðrIntw�

IntÞ=@z� ¼ 0; (5.34a)

@pInt=@z
� ¼ 0; (5.34b)

rInt @TInt=@t
� þ w�

Int@TInt=@z
�� �þ ðg� 1ÞpInt@w�

Int=@z
�

¼ ðg=PrÞ@2TInt=@z
�2 þ g ðg� 1ÞM2 @vInt=@z

�j j2; (5.34c)

rInt @vInt=@t
� þ w�Int@vInt=@z

�½ � ¼ @2vInt=@z
�2; (5.34d)
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with

pInt ¼ rIntTInt: (5.34e)

Obviously, the above intermediate matching model equations, (5.34a–5.34e),

first pointed out in our short note [98], are those derived when we carry out, on the

Rayleigh equations (5.29) and (5.30a–5.30d), the usual approximations of the

classical Prandtl boundary-layer theory.

In particular, as in BL region, the pressure pInt is independent of z* and is

determined by matching:

limz� "1½LimInt� ¼ limZ#0½LimRa�; (5.35a)

where

LimInt ¼ ½e # 0; with t� ¼ t=sðeÞ; z� ¼ z=e
p
sðeÞ; fixed�; (5.35b)

the intermediate variables (t*, z*) being directly related to the starting (in NS–F

equations) variables (t, z).

The intermediate gauge sðeÞ, in LimInt, (5.35b), is linked with the above gauge

kðeÞ by the following relation:

kðeÞ sðeÞ ¼ e2: (5.36)

More precisely, this compatibility relation (5.36) is a direct consequence of the

investigation of the behaviour of the Prandtl BL equations (5.18a–5.18e), when

t and z both tend to zero, towards the intermediate fifth region.

Indeed, if we write (again with t* and z* fixed):

t ¼ sðeÞt�; z ¼ p
sðeÞz�; 0 < sðeÞ # 0 with e # 0; (5.37a)

and if

½vInt;w�
Int; rInt;TInt� ¼ LimsðeÞ#0½vPr;

p
sðeÞwPr; rPr;TPr�; (5.37b)

then again we derive the same above intermediate matching model equations

(5.34a–5.34d) with (5.34e), but from (5.18a–5.18e). The relation (5.36) is, in fact,

a consequence of the compatibility between (5.33b, 5.33c) and (5.37a, 5.37b).

Unfortunately, the precise localization of this intermediate matching region

(characterized by the gauge sðeÞ), between the Rayleigh and Prandtl regions,

does not seem possible at this stage of asymptotic analysis, and more careful

(second-order?) investigations are obviously necessary.

Finally, we observe that if on the one hand, when sðeÞ ¼ e2, then

t� ¼ y and z� ¼ z=e ¼ z=e2 ¼ Z, then we recover the Rayleigh region; and

5.5 Adjustment Processes Towards the Prandtl BL Evolution Problem 113



if on the other hand, when sðeÞ ¼ e0 � 1, then t* ¼ t and z� ¼ z, and we recover
the Prandtl region.

The existence of such an intermediate region is a striking indication that it seems

possible (as a conjecture) to directly match the Rayleigh and Prandtl equations by

an adjustment problem, via the intermediate equations (5.34a–5.34e), when the

intermediate time t� #/ , using the matching condition:

limt� #/ vInt;TInt½ � ¼ v0Pr;T
0
Pr

� �
: (5.38)

This presents the possibility of obtaining, consistently, the associated initial data,

vPr
0 and TPr

0, in (5.22), for Prandtl unsteady equations (5.18b) and (5.18d) for vPr
and TPr.

5.6 Some Conclusions

First, it is clear that the above problem of matching, (5.38), deserves careful

consideration and may be an interesting numerical/computational problem.

We then observe that it is possible to considerably simplify the matching

problem between the Rayleigh and Prandtl equations, if we assume that the Mach

number M, in Rayleigh equations, is a small parameter, and assume, for this, that in

the wall the thermal condition (5.32b) can be written in the following form:

Yðy;PÞ ¼ 1þ L0M
2Sðy;PÞ; (5.39)

where L0 ¼ O 1ð Þ, and Sðy;PÞ replace thermal spot Yðy;PÞ.
In such a case, the solution of the Rayleigh problem is also expanded relative to a

low Mach number, M � 1 (as in Howarth’s paper [99]). But here we do not

proceed further.

A third remark concerns the fact that further investigations are necessary for a

complete understanding of the above intriguing five-regions structure, which is very

interesting, because it is unusual and does not have an obvious clear interpretation!

But the above new five-regions (four regions plus the intermediate region) structure

of NS–F equations, at large Reynolds number, as a consequence of the singular

nature of the unsteady Prandtl BL equations near the initial time, do not restrict

investigations to emergency phenomena, and have fundamental importance in the

RAM Approach of NS–F equations.

I think that from this detailed further re-examination of boundary-layer Prandtl

theory, it is now possible to resolve some singularities arising in various unsteady

boundary-layer problems (see, for instance, Stewartson [101]).

A final remark concerns the pedagogical interest of such partition of NS–F

equations, in five regions, for large Reynolds number fluid flows, and this RAM

Approach presents the possibility of deriving a new logical interpretation of Euler,
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Prandtl, Rayleigh, acoustic/gas dynamics, and intermediate equations, as five

significant and particular models of full NS–F unsteady equations for Newtonian

fluid flow at large Reynolds number.

Again we observe that not only Prandtl in 1904, but also (it seems) Blasius and

Schlichting (in Germany), Lagerstrom, Cole, and Kaplun (at Caltech), Van Dyke

(at Stanford), Stewartson and Smith (in England), and Germain (in France), did not

realize that indeed the concept of boundary-layer, which is an extension to long-

waves approximation in the case of a viscous fluid flow, is singular, in the case of an

unsteady fluid flow, near initial time, where initial data are prescribed in a well-

posed initial-boundary value problem.
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