
Chapter 2

Newtonian Fluid Dynamics as a Mathematical –

Physical Science

There are two mathematical–physical descriptions of fluid dynamics.1 The first of

them is a microscopic description, from the Boltzmann equation for the (one-

particle) distribution function f ðt; x; xÞ:

@f=@tþ x:rf ¼ 1=Knð ÞQ f ; fð Þ;

where f ðt; x; xÞ is precisely the density probability of finding a molecule at the

space-position x (at the time t), with the velocity x. The parameter Kn in the

Boltzmann equation is the Knudsen number, which is the ratio of the mean free

path (between collisions of molecules – a microscopic reference length, l�) and a

typical (macroscopic) reference length, L�, of the classical continuum theory,

which is the ratio of Mach (M) and Reynolds (Re) numbers:

Kn ¼ M=Re;

where M ¼ U�=c� is the constant Mach (dimensionless) number, based on the

reference macroscopic velocity U� and the speed of sound c�, that characterizes the
compressibility effect. The parameter Re ¼ U�L�=n� is the constant Reynolds

(dimensionless) number that characterizes the viscosity (via the kinematic viscosity

coefficient n�) effect.

1 In my 2001 review paper [29] – written by a fluid dynamicist for fluid dynamicists – the curious

reader can find a contribution concerning the many theoretical mathematical investigations of

Navier–Stokes–Fourier problems. My intent was to extract from the huge literature the basic results,

ideas, and goals of this currently wide activity and to present the results to the readers of Applied
Mechanical Review. I am sure that rigorous mathematicians will find in this paper many

shortcomings, non-rigorous formulations, and so on. I think, however, that such a paper will

stimulate further thinking by engineers and applied scientists, including some exchange of opinions,

and so on, and that it is therefore needed. The distance between theoretical mathematicians and

applied mathematicians and engineers has become too large! I hope that both old and new

investigators interested in Newtonian fluid flow problems might learn much from it.
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The right-hand side of the above Boltzmann equation, the collision operator

Q, is typical of kinetic theory of gases in that it preserves mass, momentum, and,

namely:

ð
cQdx; ¼ 0;

where c ¼ ð1; x1; x2; x3; xj j2Þ is a five-component (the so-called collisional

invariants) vector. For a modern exposition of the kinetic theory of gases (dilute

gas) see Cercignani, Illner, and Pulvirenty, 1994 [30].

The second continuum description is linked with the macroscopic length scale

(which is the real scale for applications in fluid flows), and is governed by the three

conservation equations of classical continuummechanics: principle of conservation

of mass (assuming that the fluid possesses a density function r t; xð Þ), principle of

conservation of linear momentum (adopting the stress principle of Cauchy; see

Sect. 2.3.1), and the conservation of energy (we postulate that the total energy of a

volume – the sum of its kinetic energy and its internal energy – is conserved; see

Sect. 2.3.3).

The resulting three equations of continuum mechanics, which proceeds on the

assumption that a fluid is practically continuous and homogeneous in structure (see,

Serrin, 1959 [31]) are:

Dr=Dt þ rr: u ¼ 0;

rDu=Dt ¼ rf þr:T;

rDE=Dt ¼ T : D� divq;

where u is the velocity vector, f is the extraneous force per unit mass (a known

function of position x and time t), T is the Cauchy stress tensor, E is the specific

internal energy, q is the heat flux vector, and the term T :D, in the energy equation

for E, is a “dissipation” term involving the interaction of stress and deformation

(second-order tensor D). We observe that T :D stands for the scalar product TijDij

of two second-order tensors (dyadics), and Tij and Dij are, respectively, the com-

ponents of T and D.
The problem of the derivation of the fluid dynamic equations (derived from

above three continuum mechanics equations, with Cauchy stress tensor T and the

heat flux vector q, due to Navier–Stokes and Fourier constitutive equations – see

Sects. 2.3.2 and 2.3.3) from the Boltzman equation for small Knudsen numbers

(Kn # 0) is shortly expounded in Sect. 5 of our review paper [29], where the reader

can find various pertinent references concerning this fluid dynamics limit of kinetic

equations, initiated by Hilbert in 1912.
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2.1 From Newton to Euler

Sir Issac Newton, English mathematician and physicist, was the greatest single

influence on theoretical physics until Einstein. In his major treatise, Philosophia
Naturalis Principia Mathematica (1687) [32] he presented a mathematical descrip-

tion of the laws of mechanics and gravitation, and applied this theory to explain

planetary and lunar motions. In the Second Law we read: “The body moves in such

a way that at each moment the product of its acceleration vector by the density is

equal to the sum of certain other vectors, called forces, which are determined by the

motion taking place.” That is:

r Du=Dt ¼ rg� internal force per unit volume: (2.1)

A second part of Newton’s Principia is related to the conservation of mass: “To

each small solid body can be assigned a positive number m, invariant in time, called

its mass.” That is:

D=Dt

�ð
V

rdV
�

¼ 0: (2.2)

In (2.1), u is the velocity vector, g is the gravitational force per unit mass, and r
is the density. The (Cartesian) components of the nabla,∇, operator, in material (or

substantial) derivative

D=Dt ¼ @=@t þ u:r;

are @=@xi; i ¼ 1; 2; 3, where the time is denoted by t, and x ¼ ðx1; x2; x3Þ is the
position vector.

In (2.2), dV is a volume element in the neighbourhood of the point P, and to this

volume element will be assigned a mass rdV.
We observe that D/Dt is related to the Euler rule of differentiation, and t, x is the

Euler time–space variable. To express (2.2) in the form of a differential equation,

the differentiation indicated in this equation is carried out by transforming the

integral suitably. In this case we derive the so-called equation of continuity (this

derivation is, in fact, due to Euler in 1755 [33]):

Dr=Dt þ rr:u ¼ 0: (2.3)

This (compressible) equation of continuity (2.3) remains unaltered when viscos-

ity is admitted.

2.1.1 Eulerian Elastic Fluid

In reality, fluid dynamics was first envisaged as a systematic mathematical–

physical science in Johann Bernoulli’s Hydrodraulics (1737) [34], in Daniel
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Bernoulli’s Hydrodynamica (1738) [35], and also in D’Alembert Traité de
l’Équilibre et du mouvement des fluides (1744) [36]. However, the fundamental

ideas expounded in these books were formulated mathematically as partial differ-

ential equations in an epochal paper by Euler (1755) [33] which firmly established

him as the founder of rational fluid dynamics. Nevertheless, he considered only

non-viscous (inviscid) fluid flows with the pressure a function only of the density (a

so-called isentropic/barotropic fluid flow – the fluid being an elastic fluid). We

observe that an inviscid fluid is one in which it is assumed that the internal force

acting on any surface element dS, at which two elements of the fluid are in contact,

acts in a direction normal to the surface element. At each point P (with coordinates

xi, i ¼ 1, 2, 3) the stress, or internal force per unit area, is independent of the

orientation (direction of the normal) of dS, and the value of this stress is called the

pressure, p, at the point P. Therefore, the internal force per unit volume, appearing

in Newton’s equation (2.1), has xi – component ð�@p=@xiÞ, i ¼ 1, 2, 3. As a con-

sequence, for an inviscid (non-viscous–Eulerian) fluid we determine, from (2.1),

the classical Euler equation of motion (momentum equation):

rDu=Dt ¼ rg�rp: (2.4)

Equations 2.3 and 2.4, which express Newton’s principles for the motion of

an inviscid fluid, are usually referred to as the Eulerian fluid flow (compressible)

equations, and include one vector equation (2.4) and one scalar equation (2.3) for u,

r and p (five unknowns).

It follows that one more equation is needed in order that a solution of the system

of Euler equations be uniquely determined for given initial and boundary condi-

tions. According to Euler, if we add to Eq. 2.3 and 2.4 the following specifying

equation:

p ¼ pðrÞ (2.5)

which gives the relation between the pressure and the density, we shall have five

equations (a closed system) which include all the theory of the motion of fluids.

By this formulation, Euler believed (255 years ago!) that he had reduced fluid

dynamics, in principle, to a mathematical–physical science; but it is crucial to note

that, in fact, Eq. 2.5 is not an equation of state, but specifies only the particular type

of motion (so-called barotropic) under consideration, and in this case the fluid is just

called an elastic fluid.

In my book (Zeytounian, 2002) [37], the reader can find a theory and

applications of non-viscous fluid flows, and in the next chapter, devoted to a

discussion of various general models derived from Navier–Stokes–Fourier

equations, we obtain, for large Reynolds number Re � 1 – as a vanishing viscosity

limit – the full unsteady Euler compressible non-viscous adiabatic and baroclinic

equations for a thermally perfect gas (a trivariate fluid). (Concerning the NS–F

equations see Sect. 2.3.)
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These general models very often form the basis of various chapters in fluid

dynamics treatises. It is obvious, therefore, that these treatises may be organized

through some models which are best obtained by asymptotic modelling. As an

example we mention the case of inviscid flows which are often considered as a

model, used from the outset, and need to be embedded in the more general model of

slightly (vanishing) viscous (laminar) or with slight friction (turbulent) flow,

to which asymptotic modelling is applied. Incompressible flows are seldom con-

sidered as flow at small Mach numbers – which may lead to almost nonsensical

conclusions, as when one deals with incompressible aerodynamics, because phe-

nomena such as sound produced by quite low-speed flow cannot be understood

other than by low-Mach-number (hyposonic) aerodynamics.

2.1.2 From Adiabaticity to Isochoricity

In many cases the specification of the type of flow is given in thermodynamic terms.

The most common (and rather naive) assumption in the study of compressible fluids

is that no heat output or input occurs for any particle. In this case, heat transfer by

radiation, chemical processes, and heat conduction between neighbouring particles

are excluded, and the fluid flow is called adiabatic.

In order to translate either assumption into a specifying equation, the First Law

of Thermodynamics must be used, which gives the relation between heat input and

the mechanical variables [J. R. von Mayer (1842)]. If the total heat input from all

sources, per unit of time and mass, is zero, the First Law for an inviscid fluid can be

written in the following form:

CvDT=Dtþ pD=Dtð1=rÞ ¼ 0; (2.6)

where Cv is the specific heat of the fluid at constant volume. The first term in (2.6)

represents the part of the heat input expended for the increase in temperature T, and

the second term corresponds to the work done by expansion. It is well known, also

from thermodynamics, that for each type of matter a certain relation exists among

the three (thermodynamic) variables, pressure p, density r, and temperature T:

fðp; r;TÞ ¼ 0; (2.7)

Thus the temperature can be computed when p and r are known. Naturally, the

equation of state (2.7) is not a specifying equation, since it implies temperature as a

new variable. Finally, Eqs. 2.3, 2.4, and 2.6, together with (2.7), form a closed

system of six equations for the six unknowns: u, p, r, and T.

For a thermally perfect gas (naturally, a perfect gas is not necessarily inviscid),

the equation of state (2.7) is explicit:

p ¼ RrT; (2.8)
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where R is a constant depending upon the particular perfect gas. From (2.8) it

follows that for a perfect gas the condition p/r ¼ const implies a fluid flow at con-

stant temperature, or isothermal flow.

The specific entropy S of a perfect gas is then given by:

S ¼ ½R=ðg� 1Þ�logðp=rgÞ þ const; (2.9)

where g is a constant, having the value 1.40 for dry air. Thus the motion of a perfect

gas with the condition p/rg ¼ const, as a specifying equation, is isentropic (con-

stant entropy motion or, since g > 1, polytropic). The equation of state for a perfect

gas in equilibrium, connected with the names of Boyle (see, Birch (1744) [38]),

Mariotte, Gay Lussac, and Charles, has been widely known since 1800.

In precisely the modern form, it was used freely by Euler, but did not appear again

in the hydrodynamical literature until used by Kirchhoff in his paper of 1868 [39].

In some presentations, no distinction is made between the term “perfect gas” and

“ideal gas”. Here the term “perfect gas” is defined precisely by the equation of state

(2.8). The term “Eulerian fluid flow” is used for an inviscid (non-viscous) and non-

heat-conducting flow, governed by the system of Eqs. 2.3, 2.4, and 2.6, with (2.7).

According to (2.6) and (2.7) this Eulerian fluid flow is a baroclinic and adiabatic

fluid flow. In Eq. 2.6 an expression for Cv in term of the variables T, p, and r is

needed, but for a perfect gas, where the equation of state is (2.8), it is generally

assumed that Cv ¼ R/(g � 1) is a constant – R being the usual gas constant.

As a consequence, we derive, for such a perfect gas with constants Cv and Cp (¼
g Cv), specific heats, the following conservation equation for specific entropy in the

case of a thermally perfect gas:

D=Dt ½logðp=rgÞ ¼ 0 ) DS=Dt ¼ 0: (2.10)

Equation 2.10, however, holds only for an adiabatic flow of a perfect inviscid

gas, when the entropy is constant for each particle but varies from particle to

particle. Generally, a thermally perfect inviscid gas in adiabatic flow does not

necessarily behave like an elastic fluid.

If we assume that in (2.10),

g tends to infinity ðincompressible limit caseÞ; (2.11a)

such that R ¼ O(1), and that in such a case,

Cv tends to zero but Cp � R ¼ Oð1Þ; (2.11b)

then we derive, again, from (in place of) (2.10) the following evolution equation

(conservation law) for density (isochoricity):

Dr=Dt ¼ 0 ) r � u ¼ 0; (2.11c)
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As a consequence, for a Eulerian incompressible but non-homogeneous

(isochoric) fluid flow we obtain the following system of three equations for the

velocity u, pressure p, and density r:

r Du=Dt ¼ rg�rp; (2.12a)

Dr=Dt ¼ 0; (2.12b)

r � u ¼ 0: (2.12c)

This isochoric system of three Eqs. 2.12a–2.12c is very well investigated in

Yih’s 1980 book [4]. The above “incompressible limiting process” (2.11a,2.11b)

presents the possibility of taking into account some compressible (second-order)

effects of the order O(1/g) – which is the case, for instance, in the theory of lee

waves downstream of a mountain!

2.2 Navier Viscous Incompressible, Constant Density Equations

The equation of motion of a viscous and incompressible homogeneous (with a

constant density) fluid flow was first obtained by Navier in 1821 [40] and later

by Poisson in 1831 [41]. The necessity of such a viscous equation (in place of

the above Euler equation (2.4) was strongly linked with the d’Alembert theorem

(paradox?): “An object moving with constant velocity U1 in a potential field (from

Bernoulli equation and Lagrange theorem in an incompressible fluid the velocity-

potential F must satisfy Laplace’s equation) does not feel any force – neither drag

nor lift.”

Obviously, this result is in sharp contrast with experience! For instance, an

aircraft could not fly. Suppose that, initially, the aircraft and the fluid (air) are

both at rest, then the aircraft begins to move. Since vorticity cannot be produced

(Lagrange – permanence of irrotational flow), the potential flow around the aircraft

cannot produce any lift, so that flight is impossible. Such a paradox can be avoided

if vorticity is present.

However, the problem remains of understanding how vorticity can be created in

the system. The conservation of vorticity in an inviscid (incompressible) fluid, while

reasonably far from the obstacle, is too drastic near the boundary of this obstacle!

A more accurate description of the interaction among the particles of the fluid

and the obstacle leads us to introduce the Navier (viscous and incompressible)

equation, which is a correction to the Euler (incompressible and non-viscous)

equation of motion.

Such a new (Navier) equation can explain the effects, such as vorticity produc-

tion, which are relevant near the boundary. This Navier equation has the following

rather simple form:
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DuN=Dt þ ð1=r�Þrpþ g ¼ n�DuN; (2.13a)

where n� is the constant kinematic viscosity, and D � r2 is the Laplace operator

for the Navier velocity vector uN. The companion to (2.13a), equation of continuity

is simply:

r:uN ¼ O: (2.13b)

Because n� multiplies the derivative of highest order in Navier equation (2.13a),

it cannot be inferred that the solutions of (2.13a), for very small values of n�,
reduces to Euler, below (2.14a), equation for an incompressible homogeneous and

non-viscous fluid flow, with uE as velocity vector:

DuE=Dt þ ð1=r�Þrpþ g ¼ O: (2.14a)

with

r:uE ¼ O: (2.14b)

It is important (in particular, in the framework of our RAMA) to observe that the

passage from compressible flow to incompressible flow, which filters the acoustic

fast waves, is a strongly singular limit.

The reader can find in our 2006 monograph [13], devoted to hyposonic flow

theory, various facets of the unsteady very slow flows at low Mach number, which

are strongly related to a category of fluid flow problems, called “hyposonic”, when

M << 1.

In the above Navier incompressible viscous equation (2.13a) and also in the

Euler incompressible non-viscous equation (2.14a), the term ð1=r�Þrp is not an

unknown quantity of the initial value problem. In fact, rðp=r�Þ is the force term

acting on the particles of fluid allowing them to move as freely as possible, but in a

way compatible with the incompressibility constraint (2.13b) or (2.14b):r:uN ¼ 0.

Note particularly that for a Eulerian incompressible flow, DuE/Dt ¼ 0 admits

solutions violating the condition: ∇. uE ¼ 0 at t > 0, even if the velocity diver-

gence vanishes at t ¼ 0. The pressure term in the above incompressible equations

(2.13a) and (2.14a) is not an unknown quantity, because it can be determined when

we have found the velocity field uN or uE – for instance, taking the divergence of the

Euler equation (2.14a), we obtain a Poisson (elliptic) equation:

Dp ¼ �r�fr : ½ðuE :rÞuE� þ r:gg;

and, knowing uE and external force g, we can find p by solving a Poisson equation

with a Neumann boundary condition,

@p=@n ¼ �r�fr : ½ðuE :rÞuE þ g� : n;
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in a domain with a boundary (after that the Euler equation (2.14a) is projected on

the outward unit normal n).

As a consequence of the above, it is sufficient to consider the Navier incom-

pressible equation in terms of vorticity oNð¼ r ^ uNÞ assuming that g is

conservative:

DoN=Dt ¼ ðoN :rÞuN þ n�DoN; (2.15a)

with

r: uN ¼ 0: (2.15b)

Obviously, when we assume that g is conservative, any potential flow,

u ¼ rF;

trivially satisfies the Navier equation (2.13a) in term of the vorticity oN!

However, to obtain a well-set boundary value problem, for a fixed n� > 0,

one must also (according to Stokes) replace the slip boundary condition on a

(stationary) boundary of a fluid flow domain, for uE in Euler non-viscous equation

(2.14a):

uE:n ¼ 0; (2.16a)

by the more stringent condition of no-slip boundary condition on a stationary

boundary:

uN ¼ 0; (2.16b)

for uN in Navier (2.13a).

Concerning this no-slip boundary condition (2.16b), it is interesting to note that

in his 1904 lecture to the ICM, Prandtl stated:

“The physical processes in the boundary-layer (BL – Grenzschicht) between

fluid and solid body can be calculated in a sufficiently satisfactory way if it is

assumed that the fluid adheres to the walls, so that the total velocity there is zero –

or equal to the velocity of the body. If the viscosity is very small and the path of

the fluid along the wall not too long, the velocity will have again its usual value

very near to the wall (outside the thin transition layer). In the transition layer

(€Ubergangsschicht) the sharp changes of velocity, in spite of the small viscosity

coefficient, produce noticeable effects.”

Prandtl not only mentions the existence and nature of the thin boundary-layer

and its connection with frictional drag, but derives heuristically the boundary-layer

(so-called Prandtl) equations valid in a thin viscous layer close to the wall of the

solid body. These BL Prandtl equations, however, are not valid near the time t ¼ 0,

where the initial data are given in the case of an initial-boundary value problem.
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Prandtl – curiously – did not have any idea concerning this singular nature of his

discovered BL equations in unsteady compressible case!

But it is also necessary to not overlook the important investigations of

Lanchester (1907) in England, concerning the nature of the boundary-layer and

explanation of separation (independently of Prandtl). (For a detailed discussion

concerning the initial and boundary conditions, see Sect. 2.4.)

In Chap. 5, as a consequence of the singular nature of BL compressible

equations, the unsteady full NS–F equations for large Reynolds number are

analyzed in detail. For this, it is necessary to consider five regions and the related

matching conditions.

2.3 Navier–Stokes–Fourier Equations for Viscous

Compressible and Heat-Conducting Fluid Flow

According to Truesdell, in “The Mechanical Foundations of Elasticity and Fluid
Dynamics” (1966) [42, p. 2]:

“Classical fluid dynamics describes the flow of media altogether without spring-

iness of form, so that when released from all deforming forces except a hydrostatic

pressure, they retain their present shapes; it is a partially linear theory, in which a

uniformly doubled rate of deformation if dynamically possible would lead to

doubled viscous forces.”

2.3.1 The Cauchy Stress Principle

The derivation of the equation of motion for the velocity vector u, for real (viscous

compressible and heat conducting) fluids is based on the following stress principle

of Cauchy, 1828 [43]:

“Upon any imagined closed surface S (with outward normal n to S) there exists a
distribution of stress vector S x; t; nð Þ ¼ n:T, where T is the stress tensor, whose

resultant and moment are equivalent to those of the actual forces of material

continuity exerted by the material outside S upon that inside.”

This statement of Cauchy’s principle is due to Truesdell’s paper of 1952 [44];

and as Truesdell remarks (1953) [45], the above well-known Cauchy principle

. . . has the simplicity of genius. Its profound originality can be grasped only when ones

realizes that a whole century of brilliant geometers had created very special elastic

problems in very complicated and sometimes incorrect ways without ever hitting upon

this basic idea, which immediately became the foundation of the mechanics of distributed

matter.

As a consequence of his stress principle, Cauchy obtained a general equation of

motion – the simple and elegant Eq. 2.17 below – which is valid for any fluid, and
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indeed for any continuous medium, regardless of the form which the stress tensor

T may take.

Du=Dt ¼ rf þr:T: (2.17)

We observe that the above equation of motion, discovered by Cauchy in 1828,

can be derived easily according to the principle of conservation of linear momen-

tum: “The rate of change of linear momentum of a material volume V equals the

resultant force on the volume.”

The necessity for a clear-cut statement of the postulates on which continuum

mechanics rests was pointed out by Felix Klein and David Hilbert, but the first

axiomatic presentation is due to G. Hamel (1908) [46]. With S(x, t; n) ¼ n .T, for
the stress vector S, the above principle is expressed by the statement:

D=Dt

ð
v

ðrDu=Dt
� �

dv ¼
ð
v

rfdvþ
ð
v

divTdv; (2.18a)

applying the divergence theorem. Since v (a fixed volume) is arbitrary, we obtain

the Eq. 2.17.

We observe also that the stress forces are in local equilibrium, and it is postu-

lated that the stress tensor is symmetric:

Tij ¼ Tji: (2.18b)

2.3.2 Navier–Stokes Constitutive Equations:
The Cauchy–Poisson Law

In our 2004 book Theory and Applications of Viscous Fluid Flows [47], in Sect. 1.4
of Chap. 2, the reader can find a detailed account of the constitutive equation of a

viscous (à la Navier–Stokes) classical fluid, mainly inspired by Serrin (1959) [31].

Here we present only a short comment. A first important moment in the history

of N–S constitutive equations is Stokes’ idea (1845) [48] of “fluidity” which can be

stated as four postulates:

1. T ¼ F(D) and D ¼ D(u).
2. T does not depend explicitly on the position vector x (spatial homogeneity).

3. There is no preferred direction in space (isotropy).

4. When D(u) ¼ 0, then T ¼ � pI (Eulerian non-viscous fluid flow).

A medium whose constitutive equation (via stress tensor T, which define or

delimit the type of medium subject to study) satisfies these above four postulates is

called a Stokesian fluid.
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With the above four postulates, according to matrix algebra, and if we add the

condition that the components of T be linear in the components of D(u), we deduce
(Cauchy–Poisson law):2

T ¼ �ðpþ l divuÞI þ 2mD uð Þ: (2.19)

The coefficients l and m (of viscosity) being of scalar functions of the thermo-

dynamic state (considered in Sect. 2.3.3) and I is the unit tensor, with dij (the
so-called Kronecker symbol with dkk ¼ 1 and dij ¼ 0 if i � j) as components.

Indeed, the fully general expression is Poisson’s (1831) relation [41] – but the

name of Poisson is rarely quoted today. In Cauchy, (1828), [43], the term – pI, in
(2.19), is absent.

Dynamical (Navier) equation (2.13a) equivalent to those resulting from (2.19)when

divu ¼ 0 and, m ¼ const, is due to Navier (1821) [40], and Saint–Venant (1843) [49],

proposed (2.19) in the special case when m ¼ m0 ¼ const and mv � l + (2/3)m ¼ 0,

which is the so-called (1845) “Stokes relation” [48].

This is the simple and elegant constitutive equation (2.19) for the viscous NS

motion, discovered by Cauchy in 1828. It is valid for any fluid, and indeed for any

continuous medium, regardless of the form which the stress tensor T may take.

The coefficients l and m (of viscosity) are scalar functions of the thermodynamic

state (considered in the next Section).

Concerning the long controversy regarding the Stokes relation:

3mv ¼ 0; (2.20a)

3mv being the bulk viscosity, in the classical theory of viscous fluids; see

Truesdell (1966) [42].

The viscosities coefficients (shear/dynamic and bulk) and the thermal conduc-

tivity k (see Sect. 2.3.3, Fourier’s law (2.30)) are known functions, subject to the

thermodynamic restriction (Clausius–Duhem inequalities):

m � 0; k � 0 and mv � 0: (2.20b)

2 For a perfect (absence of viscosity) fluid, the pressure has already appeared as a dynamical

variable in Euler Eq. 2.4. Characteristic of the discipline of gas dynamics is the postulate that the

thermodynamic pressure, introduced via functional relations among the state variables (see

Sect. 2.3.3), is equal to this dynamical pressure. When the deformation D(u) ¼ 0, for a perfect

fluid, p is the thermodynamic pressure when the fluid is compressible, while p is simply an

independent dynamical variable otherwise. For an incompressible perfect or viscous fluid (Navier,

see Sect. 2.2) p is not an unknown quantity, because it can be determined when we have found the

velocity field u. In some works (see [31]) a mean pressure, p* ¼ �(1/3)Trace T is defined, and we

have the following relation: p� p	 ¼ ½lþ 2=3ð Þm�divu.
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The dynamical equation (in components form, with indices, i ¼ 1, 2 and 3)

resulting from (2.17) with (2.19) is the Navier–Stokes (compressible) equation for

the component ui of the velocity u:

r Dui=Dt þ @p=@xi ¼ @=@xj½mð@ui=@xj þ @uj=@xiÞ þ @=@xi� ½l @uk=@xkð Þ�;
(2.21)

since for the components of deformation tensor D(u) we have:

2Dij ¼ @ui=@xj þ @uj=@xi: (2.22)

A Stokesian fluid whose constitutive, NS compressible, equation is given by

(2.19) is called a Newtonian fluid.

In Saint–Venant (1843) (and Stokes (1845)), the resulting dynamical equation,

for ui, in place of (2.21), is:

rDui=Dt þ @p=@xi ¼ m0fDui � 1=3ð Þ@=@xifDlogr=Dtg; (2.23a)

if we take into account the equation of continuity:

@uk=@xk ¼ �Dlogr=Dt; (2.23b)

and the Stokes relation (2.20a).

For an incompressible homogeneous fluid, again we derive the Navier

dynamical equation (2.13a), with n0 � m0=r0 ¼ const.

Equation 2.23a (where m0 is a constant), with the specifying equation p ¼ p(r)
and continuity equation (2.23b), forms a closed system of equations – the so-called

Navier–Stokes (compressible N–S equations) for ui, p, and r, and governs a

barotropic(?) viscous and compressible fluid flow, without an energy equation for

the temperature T – which unfortunately do not have any physical (fluid dynamics)

signification.

Slightly more complete general Navier–Stokes compressible N–S equations, for

the unknowns ui, p, and r, are obtained from (2.21), with again the specifying

equation p ¼ p(r) and continuity equation (2.23b), if we assume that viscosities m
and l do not depend on temperature T and are known functions of the density

r only.

These above N–S equations do not emerge via a RAM Approach from the full

unsteady NS–F equations and, in fact, do not have in reality any interest for fluid

dynamicians!

We also obtain a simplified model of compressible viscous fluid flow if we

assume in addition, instead of p ¼ p(r), that the pressure is identically constant in

the fluid flow (isobaric fluid flow).
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In this case, then, we arrive at the so-called Burger’s model equations (as in

Kazhikov (1994) [50]).

Dlogr=Dt þ @uk=@xk ¼ 0; (2.24a)

r Dui=Dt ¼ @=@xj½m rð Þð@ui=@xj þ @uj=@xiÞ�
þ @= @xi ½lðrÞ @uk=@xkð Þ�; (2.24b)

which is a closed system of two equations for the velocity components ui and the

density r, when we assume that the viscosity coefficients, l and m, are a function

only of r.
A final important remark concerning the above N–S compressible viscous

barotropic system equations, (2.23a) and (2.23b) with p ¼ p(r), or Eqs. 2.21 and

2.23b with p ¼ p(r), for the unknowns ui, p and r, which are mainly used by

applied mathematicians in their rigorous mathematical analyses (see, for instance,

P. L. Lions (1998) [51]) does not have any physical reality, mainly because just

viscosity always generates entropy (baroclinity).

For this, in particular, the various rigorous mathematical results concerning the

so called “incompressible limit”, related to the limiting process M # 0, in the

framework of above, compressible barotropic (p ¼ p(r)) and viscous, two systems,

seems (to me) very questionable.

In the short paper by Leray (1994) [52], this question is pertinently discussed.

2.3.3 Thermodynamics and Energy Equation via Fourier
Constitutive Equation

But in general (in reality) the coefficients of viscosity are assigned or empirical

functions of the positive variables r (density) and especially T (temperature), which

both are present also in equation of state (2.7) or (2.8) for a trivariate realistic fluid.

Indeed, Euler and Lagrange not only failed to include viscosity effects in their

equations of motion, forcing them adopt corresponding simplified (slip) boundary

condition (2.16a), but also oversimplified their equation of state.

In real fluids, the pressure, p, is a function of two variables, r and T (for a trivariate

fluid in a baroclinic motion, see the equation of state (2.7)). Obviously, again, it is

necessary to associate with N–S compressible equations (2.21), (2.23b), and (2.7), for

ui, r, p and T, an energy equation, if wewant to obtain a closed system of equations for

our six unknown functions. For this, some thermodynamical assumptions are required.

For the real fluid flows – compressible, viscous, and heat-conducting – the

mechanical energy is converted into heat by viscosity, and the heat of compression

is diffused by heat conduction.

Here we consider only an homogeneous fluid when the local equation of state is

according to the basic postulate of Gibbs (1875) [53]; see Truesdell (1952) [44], and

Serrin (1959) [31]:
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E ¼ Eðr; SÞ; (2.25)

where E is the specific internal energy and S is the specific entropy.

In this case the temperature T and the thermodynamic pressure p are defined by

the two relations:

T ¼ @E=@S and p ¼ �@E=@ð1=rÞ: (2.26)

Now, for any compressible fluid, by differentiating (2.25) along any curve on the

energy surface (characterizing the fluid) we obtain:

DE=Dt ¼ T DS=dt� p Dð1=rÞDt: (2.27)

But, for any homogeneous medium in motion, the conservation of energy is

expressed by the equation of C. Neumann (1894):

rDE=Dt + p (@uk=@xkÞ ¼ �@qi=@xi þ ½2mDij þ lDkk dij�Dij; (2.28)

where the qi are the Cartesian components of the heat flux vector q.

For the special case of a non-viscous incompressible fluid, the energy equation

was given by Fourier (1833) [54], and for small motions of a viscous perfect gas by

Kirchhoff (1868) [39], and in this case we also have p ¼ RrT, where R is the

constitutive constant of the viscous thermally perfect gas.

We observe also, that for a medium suffering deformation the two Eqs. 2.27 and

2.28 express different and independent assumptions: the former, the existence of an

energy surface, characterizing the fluid, and the latter, that mechanical and thermal

energy are interconvertible. Indeed the First Law, Second Law, and so on, of

thermodynamics is rather misleading terminology. (For a history of the origin of

thermodynamics, see H. Poincaré (1892) [55], and Truesdell and Muncaster (1980)

[56].)

Finally, from (2.27) it follows that in place of (2.28) we can write the following

equation for the specific entropy:

rTDS=Dt ¼ �@qi=@xi þ ð2mDij þ lDkk dijÞDij: (2.29a)

In particular, if the heat flux (via the vector q) rises solely from thermal

conduction, then according to Fourier’s law gives:

qi ¼ �k ð@T=@xiÞ; (2.30)

where k is the thermal conductivity and qi the components of q.

With (2.30) we obtain from (2.29a) the usual form of the energy equation:

rTDS=Dt ¼ �@ðkð@T=@xkÞÞ=@xk þ ð2mDij þ lDkkdijÞDij: (2.29b)
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For an adiabatic (qi ¼ 0) and non-viscous (inviscid) fluid with m ¼ 0 and l ¼ 0:

DS=Dt ¼ 0: (2.31)

Therefore, if a non-viscous homogeneous fluid be in continuous motion devoid

of heat flux, then the entropy of each particle remains constant. In particular, if the

motion be steady, then the entropy is constant along each streamline.

But in general, the real motion is not isentropic – S is different of a constant

in the each point of the flow and in time – but constant for each particle (along the

trajectory) for a Eulerian fluid flow.

But even if the flow is isentropic, isentropicity in fluid remains valid only up to

the first shock front encountered by the particles, after which it may well fail its

isentropicity property.

2.3.4 Navier–Stokes–Fourier (NS–F) Equations

The three equations – continuity (2.23b), N–S for compressible motion (2.21), and

energy (2.28) – with the two state relations

p ¼ Rr T and E ¼ CvT; (2.32a, b)

valid for a thermally perfect gas with constants specific heats, constitute the

so-called Navier–Stokes–Fourier (NS–F) equations for a compressible, viscous

and heat-conducting Newtonian fluid.

In this case it is assumed that the three constitutive (dissipative) coefficients are

functions of r and T:

l ¼ lðr; TÞ; (2.33a)

and

m ¼ mðr; TÞ (2.33b)

in (2.21) and (2.28), and

k ¼ kðr; TÞ (2.33c)

in (2.30).

The compact form of these NS–F equations is:

Dr=Dt þr � u ¼ 0; (2.34a)

r Du=Dt þrp þ rgk ¼ r:P; (2.34b)
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rCvDT=Dt þ p r � u ¼ r � k rT½ � þ F; (2.34c)

where F is the viscous dissipation function and gravity g ¼ �gk acts in the

negative x3 direction. In (2.34b, 2.34c):

P ¼ lðr � uÞI þ 2mD uð Þ (2.35a)

and

F ¼ 2mTrace ½ðD uð Þ2� þ lðr � uÞ2; (2.35b)

where:

Trace ½ D uð Þð Þ2 ¼ D uð Þ : D uð Þ ¼ 1=4ð Þ� ½@ui=@xj þ @uj=@xi�2; (2.36)

and D(u) is the rate-of-deformation tensor.

2.4 Initial and Boundary Conditions

Obviously, there has always been considerable interest in initial-boundary value

problems for various systems of partial differential equations arising in Newtonian

fluid dynamics.

This interest of fluid dynamicians stems primarily from efforts to create useful

computational models of various processes for the purposes of simulation, predic-

tion, and the detailed study of various fluid flow phenomena.

Naturally, the initial-boundary value problems for fluid dynamics equations

should have been carefully investigate – but unfortunately, rigorous proof of the

existence and uniqueness of solutions of these well-posed fluid dynamics problems

requires very difficult mathematical investigation.

While initial-boundary value problems for these systems of equations are not

easy to analyze, mathematical tools useful for such problems can be found in the

works of Kreiss (1970, 1974) [57, 58], Belov and Yanenko (1971) [59], Oliger and

Sundstr€om (1978) [60], Majda (1984) [61], and Kreiss and Lorenz (1989) [62].

The solveability of these problems (a fundamental problem in rigorous mathe-

matical theory of NS–F equations) is discussed in Chap. 8 of our Theory and
Applications of Viscous Fluid Flows (2004) [47], and here we note only that the

baroclinic and barotropic Eulerian equations are both symmetrical, hyperbolic

systems, but isochoric and incompressible equations are not hyperbolic. This has

a profound influence on the well-posedness of initial-boundary value problems for

these systems of partial differential equations.
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2.4.1 The Problem of Initial Conditions

The above NS–F unsteady equations (2.34a–2.34c) contain a total of five times

derivatives for the components ui of the velocity u, density r, and temperature T. As

a consequence, if we want to resolve a pure initial value, or Cauchy, problem (in

the L2 norm, for example), then it is necessary to have a complete set of initial

conditions (data) for u, r, and T:

t ¼ 0 : u ¼ u� xð Þ; r ¼ r� xð Þ; T ¼ T� xð Þ; (2.37)

where r�(x) > 0 and T�(x) > 0.

Moreover, when we consider a free-boundary problem or an unsteady flow in a

bounded container, with a boundary depending on time, an initial condition for the

(moving) boundary @O tð Þ has to be specified.

For an NS compressible but barotropic flow for the velocity u and density r,
governed by Eqs. 2.21 and 2.23b with p ¼ p(r), as initial conditions we assume:

t¼ 0 : u ¼ ub
� xð Þ and r ¼ rb

� xð Þ: (2.38a)

For the isochoric Euler equations (2.21) it is necessary to impose also

t ¼ 0 : u ¼ ui
� xð Þ and r ¼ ri

� xð Þ: (2.38b)

If the flow is continuous, when r�(x) ¼ const, we have an incompressible flow

(Eqs. 2.22 or 2.23b), and it is sufficient to assume only an initial condition for the

velocity u:

t ¼ 0 : u ¼ ui
� xð Þ: (2.38c)

It is important to note that for both isochoric and incompressible divergence, free

flows, it is necessary that

the boundary integral

ð
u � n dO vanish (2.39a)

and

r � ui� ¼ 0: (2.39b)

Naturally, this last condition has no analogue for compressible (baroclinic or

barotropic) flows because of the occurrence of the term @r=@t in the continuity

equation (2.23b).

Obviously, for the Laplace equation, which governs an incompressible, irrota-

tional Eulerian unsteady flow (for example, waves on water), we do not have the
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possibility of imposing any initial conditions! But this Laplace equation is very

appropriate for the investigation of waves on (incompressible) water, and in this

case it is necessary to consider a free-boundary problem; that is, a problem for

which the fluid (water) is not contained in a given domain but can move freely.

Usually, for this Laplace elliptic equation, one boundary condition is given

(on the contour line containing the fluid) – but in the case when the boundary is

known!

Two unsteady, dynamic and kinematic, conditions are needed (and also two

initial conditions) at the free surface (interface) x3 ¼ Z t; x1; x2ð Þ, because the

surface position Z t; x1; x2ð Þ has to be determined as well as potential function

f (t, x1, x2, x3).

For the free surface problem (for the function f(t, x1, x2, x3) and Z(t, x1, x2))
governing the non-linear waves on water, we can consider two physical problems.

First is the so-called “signalling” (two-dimensional) problem, in which we have

as initial conditions, when the water is initially at rest in a semi-infinite channel, the

following conditions:

f 0; x1; x3ð Þ ¼ 0 andZ 0; x1ð Þ ¼ 0; when x1>0; (2.40a)

and at initial time t ¼ 0 an “idealized wave-maker”, at x1 ¼ 0, will generate a

horizontal velocity disturbance, such that the initial condition is:

@f=@x1 ¼ W�B t=t�ð Þ; for x1 ¼ 0 and t >0; (2.40b)

where W� and t� are the characteristic velocity and time scales associated with the

wave-maker idealized by the function B(t/t�).
A second category of the problem for water waves, in the infinite channel, is

obtained by specifying an initial surface shape but zero velocity:

for t ¼ 0 : Z ¼ a�z� x1=l
�; x2=m�ð Þ and

f 0; x1; x2; x3ð Þ ¼ 0; (2.40c)

where l� and m� are the characteristic wavelengths (in the x1 and x2 directions) for

the three-dimensional water wave motion.

In (2.40c) the scalar a� is a characteristic amplitude for the initial elevation of

the free surface characterized by the function z�(x1/l�, x2/m�). (Concerning the

boundary conditions (kinematic and dynamic) for this free surface problem, see the

next Sect. 2.4.2.)

For meteorological motions (considered in the Chap. 9), when we consider

various approximate model equations – f�-plane equations, primitive equations,

quasi-geostrophic equations, or Boussinesq equations – it is necessary, in fact

(mainly because the filtering acoustic waves), to resolve associated unsteady

adjustment problems for the formulation of consistent initial conditions for these

simplified model equations.
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2.4.2 Unsteady Adjustment Problems

For the study of a compressible fluid flow it is necessary to have for the determi-

nation of the solution of the corresponding evolution unsteady equations – Euler,

Navier, and NS–F – a set of initial data for r, u, and T (the Cauchy problem).

However, when we consider, for example, the incompressible equations ((2.13a)

or (2.14a) with r:u ¼ 0) for u and p, one is allowed to specify a set of initial

conditions less in number than for the full compressible baroclinic equations.

This is due to the fact that the “main” low-Mach-number limiting process (in fact,

M tends to zero, with t and x both fixed), which leads to the approximate

incompressible (model) equations, filters out some time derivatives – these cor-

responding to acoustic fast waves, because such waves are of no importance for

low-speed aerodynamics and various atmospheric and oceanic motions – at least

for steady flows.

When Re"1 (large Reynolds number), from the Navier (incompressible and

viscous) equations we derive the Prandtl boundary layer equations, and accord-

ingly, for an unsteady flow the term @u3=@t disappears in the limiting momentum

equation for the vertical (x3-direction) component (u3) of velocity! For low

Reynolds number (Re # 0) in the Stokes and Oseen limiting (steady) equations,

the unsteady terms also disappear! Due to this, one encounters the problem of

finding an answer to the following question: “What is the initial condition that is

necessary to prescribe for u a solution of an incompressible equation, and in what

way is this condition related to the starting initial conditions (with given data)

associated with the exact, compressible equations?”

It is important to note that the exact initial conditions for the full compressible

equations are not in general consistent with the estimates of basic orders of

magnitude implied by the approximate model (without acoustic waves) equations.

A physical process of time evolution is necessary to bring the initial set to a

consistent level as far as the orders of magnitude are concerned.

Such a process is called “unsteady adjustment” of the initial data set to the

approximate structure of incompressible equations under consideration. This

process of adjustment, which occurs in many fields of fluid mechanics besides

Boltzmann kinetic theory (first discussed by Hilbert in 1912), is short on the time-

scale of approximate simplified equations, and ultimately, in an asymptotic sense,

we obtain values for the consistent set of initial conditions suitable for the

simplified equations.

When we consider the set of approximate simplified model equations, usually

derived heuristically, with time–space fixed, then it is first necessary, for instance,

to elucidate various adjustment problems – namely, concerning Prandtl boundary

layer, Stokes and Oseen steady, Navier incompressible viscous, and Boussinesq

equations.

A number of adjustment problems occur in meteorology for atmospheric

motions (adjustment to hydrostatic balance) and to geostrophy (as in the case, for
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example, cited in Sect. 9.2), and the reader can find a detailed discussion of these

adjustment problems in Chap. 5 of ourMeteorological Fluid Dynamics (1991) [19].
However, it is important to note that, depending on the physical nature of the

problems, we may have two kinds of behaviour when the rescaled (short) time goes

to infinity. Either one may have a tendency towards a limiting steady state, or an

undamped set of oscillations (as, for example, the inertial waves in the inviscid

problem of spin-up for a rotating fluid; see Greenspan (1968; }2.4) [63]). The

problem, considered in Sect. 7.2, is also very particular, and requires a special

approach due to the persistence of acoustic oscillations. (For the terminology of the

initial layer as adapted to this kind of singular perturbation problem, see Nayfeh

(1973; p. 23) [64].) Finally, we note that usually, the process of the unsteady

adjustment of the aerodynamical (or meteorological) fields is a result of the gene-

ration, dispersion and damping of the fast internal waves. According to method of

matching asymptotic expansions (MMAE), the initial conditions for the limiting

model equations are, in fact, matching conditions between the two asymptotic

representations – the main one (with t fixed), and the local one (near t ¼ 0),

which is a necessary companion to main one!

In conclusion, we can say that the aim of the unsteady adjustment problem can

be stated as follows: Clarify just how a set of initial data associated with an exact

system of unsteady equations can be related to another set of initial data associated

with a simpler, approximate model system of equations which is a significant

degeneracy of the original system of exact equations considered at the start, but

with the less time derivatives in this approximate model system.

In order to solve such a problem it is necessary to introduce an initial layer in the

vicinity of t ¼ 0, characterized by a short fixed time t. Obviously such an unsteady
adjustment problem is very important in meteorology for the formulation of a well-

posed initial/Cauchy evolution in a time-prediction problem relative to, for exam-

ple: “what the weather will be like tomorrow or for the next few days?”

Concerning the rigorous mathematical results of the singular limits in com-

pressible fluid dynamics, see, for instance, the paper by Beir€aro da Veiga (1994)

[65], and also the various references in this paper. More recent papers have been

published concerning the passage of compressible ⟹ incompressible, by

Desjardins, Lions, Grenier, Masmoudi, Hagstrom, Lorenz, and Iguchi; and for

references see our Topics in Hyposonic Flow Theory (2006) [13]. Here we do not

consider these contributions, but instead discuss some of these singular-limit

problems (low-Mach asymptotics) which deserve a serious, consistent, fluid

dynamics investigations via a RAM Approach (as in [13]).

Concerning the low-Mach asymptotic, we observe also that in the case of a flow

affected by acoustic effects in a confined gas (internal flow within a bounded

domain D(t)), over a long time when the wall ∂D(t) is started impulsively from

rest, a multiple-time-scale technique is necessary, because acoustic oscillations

remain undamped and the unsteady adjustment problem (with matching) does not

work (see Sect. 7.2 on applications in aerodynamics).
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2.4.3 Boundary Conditions for the Velocity Vector u and
Temperature T

Several boundary conditions could be considered with respect to different physical

situations.

If we consider, as a simple example, the motion of a fluid in a rigid container O
(with a boundary ∂O, independent of time), a bounded connected open subset of Rd

(where d > 1 is the physical dimension), the different structure of the equations

leads to the necessity of distinguishing between viscous (NS–F, NS, or Navier) and

inviscid (Eulerian) fluids.

(a) For a viscous (NS–F or Navier) fluid: m > 0 and mv � lþ 2=3ð Þm> 0

In this case, the physical effects due to the presence of the dynamic (shear)

viscosity coefficient m yield the validity of the steady no-slip condition:

u ¼ 0 on @O; (2.41a)

(b) For a bulk-viscous fluids: m ¼ 0; mv>0

Since only the bulk viscosity coefficient mv is different from zero, in this

situation the slip boundary condition

u:n ¼ 0 on @O (2.41b)

where it is assumed here, and in what follows, that n ¼ n(x) denotes the unit

outward normal vector to @O.
(c) For an inviscid (Eulerian) fluid: m ¼ 0; mv ¼ 0

Also in this case, the slip boundary condition (2.41b) is assumed.

As concerns the (absolute) temperature T, the boundary condition takes differ-

ent forms in the two alternative cases, k > 0 and k ¼ 0.

(d) Conductive fluids: k > 0

Several boundary conditions have physical meaning. Limiting ourselves to the

most common cases, we can require :

T ¼ Tw on @O Dirichletð Þ (2.42a)

k@T=@n ¼ X on @O Neumannð Þ (2.42b)

k@T=@n þ h T� T0ð Þ ¼ X on @O third typeð Þ; (2.42c)

where Tw > 0 and X are known functions, and h > 0 is a given constant.

(e) Non-conductive (adiabatic case) fluids: k ¼ 0

No boundary condition have to be imposed on temperature T if (2.41a) or

(2.41b) are satisfied, since in these cases the temperature is not subjected to trans-

port phenomena through the boundary.
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According to Gresho (1992, pp. 47–52) [66], if uN
0(x) is the initial (t ¼ 0)

velocity field for the Navier equation (2.13a), then in the domain O it is necessary

to impose the above incompressibility constraint (2.13b):

r � uN0 xð Þ ¼ 0; (2.43a)

and on the boundary @O ¼ G sð Þ:

n � uNo sð Þ ¼ n � w s; 0ð Þ ¼ n � w0 sð Þ; (2.43b)

where w(s, t) is the specified boundary condition for the Navier velocity vector

which satisfies Eq. 2.13a.

2.4.4 Other Types of Boundary Conditions

In many situations (inflow–outflow problems) the velocity cannot be assumed to

vanish on ∂O. This is the case, for instance, for the flow around an airfoil, where an

inflow region is naturally present upstream (and an outflow region appears in the

wake), or the flow near a rigid body, where the velocity can be assumed to vanish

only on the boundary of the body. In these cases, several different boundary

conditions may be prescribed.

Let us begin by considering the viscous case. Concerning the velocity-field, a

(non-zero) Dirichlet boundary condition can be imposed everywhere, or, alterna-

tively, only in the inflow region: that is, the subset of ∂O where u � n < 0, whereas,

on the remaining part of the boundary, the conditions

u � n ¼ Uþ> 0 and n � Dð Þ � t ¼ 0; (2.44a)

have to be prescribed. (Here, t is a unit tangent vector on ∂O, and D ¼ D(u) is the

rate of strain (deformation) tensor.)

Let us, moreover, remark that the condition

u � n ¼ 0 and n � Dð Þ � t ¼ 0; (2.44b)

could also be considered, on the whole, ∂O. In this case, however, no inflow or

outflow regions would be present.

More important is to analyse the boundary condition for the density r, since now
it turns out that it is necessary to prescribe it on the inflow region. In fact, the first-

order hyperbolic continuity equation (2.13a) can be solved by means of the theory

of characteristics, and the boundary datum for r on the inflow region is indeed a

(necessary) Cauchy datum for the density on a non-characteristic surface.

2.4 Initial and Boundary Conditions 41



Let us note also, that if the heat conductivity coefficient k is vanishing and the

fluid is inviscid, the same type of Dirichlet-inflow boundary condition has to

be imposed on the temperature T, since in such a case Eq. 2.6 is also of the hyper-

bolic type for T. More complicated is the situation when the inviscid (Euler) case

ðm ¼ l ¼ k ¼ 0Þ is considered.
In fact, in this case the Eulerian system is a first-order hyperbolic one, and the

number of boundary conditions, in the case of an “open boundary” (or a boundary

located in the interior of a body or fluid), is different depending on whether the

flow is

subsonic : uj j< a;

or

supersonic : uj j> a;

where

a ¼ ½g RT �1=2;

is the local sound speed for the perfect gas.

Take, for example, d ¼ 3. An analysis of the sign of the eigenvalues of the

associated characteristic matrix yields the following conclusion: The number of

boundary conditions must be five or four on an inflow boundary, depending on

whether the flow is supersonic or subsonic, and zero or one on an outflow boundary,

again depending on whether the flow is supersonic or subsonic.

Obviously, in the case of an “open boundary” the normal velocity is non-zero on

the boundary, except at certain points. In both cases, no obvious physical boundary

conditions are known. We will not enter more deeply into this argument, and will

only briefly discuss the inviscid case subjected to the slip boundary condition

(2.41b), for which the boundary is a characteristic surface.

Further information on inflow–outflow boundary-value problems for compress-

ible N–S and inviscid Euler equations can be found in two pertinent papers

produced by Gustafsson and Sundstr€om (1978)[67] and Oliger and Sundstr€om
(1978) [60]. Here, we note only that the solid-wall slip stationary boundary condi-

tion (2.41b) – the normal velocity

un � u � n ¼ 0;

should vanish at the boundary, is consistent with the number of inward charac-

teristics (one).

The reader can find also in two papers by Viviand and Veuillot (1978)[68] and

Viviand (1983)[69], a discussion of boundary conditions for steady Euler flow,

considered as the limit (when time tends to infinity – the “pseudo-unsteady”

method) of an unsteady flow (which does not have a precise physical meaning).
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It is necessary to note that in numerical, computational, fluid dynamics, these

problems of boundary conditions are very thoroughly considered by often taking

into account the constraints related with the various particularity of the considered

fluid flow problem and associated with numerical algorithms.

Another interesting set of boundary conditions appears when we consider the

free-boundary problem; that is, a problem for which the fluid is not contained in a

given domain but can move freely. In this case the vector n � T is prescribed on

(interface) ∂S, where, moreover, u � n is required to be zero (stationary case) or

equal to the normal velocity of the boundary itself (non-stationary case).

The value of n � T can be zero (free expansion of a fluid in the vacuum), or

to (see, for example, the case of the well-known Bénard problem considered in

Chap. 8):

� penþ 2sKnþrss; on interface; (2.45a)

where pe is the external pressure, s ¼ s Tð Þ is the surface tension (temperature-

dependent, when the fluid is an expansible liquid), K is the mean interfacial

curvature, and:

rs ¼ r� nðn � rÞ; (2.45b)

is the surface (projected) gradient at the interface, respectively.

But in this (viscous) case, it is necessary to also write a heat transfer condition

across the interface, for an expansible and thermally conducting fluid (liquid),

kðTÞ@T=@nþ hsT ¼ prescribed function; (2.45c)

which is a Newton’s cooling law, where the heat-transfer (constant) coefficient hs
is sometimes called the Biot number. We observe that rigorously, in a Bénard

convection problem (with a temperature dependent tension in a free-surface) it is

necessary to take into account two Biot numbers, respectively, for the conduction

(motionless/no convective motion) state and convection state (see Chap. 8).

But the problem of “two Biot numbers asymptotics” is actually widely open (see,

in Chap. 8, a discussion concerning this two Biot numbers problem in the frame-

work of the Bénard problem for an expansible liquid layer on a solid horizontal flat

surface and heated from below.) Since ds=dT 6¼ o, then, for the film problem it is

necessary to take into account a Marangoni number proportional to the gradient:

ðds=dTÞT¼To ;

where T� is a constant temperature.

In such a case we consider a thin film Bénard–Marangoni free-surface problem,

which is fundamentally different from the classical Rayleigh–Bénard thermal

instability problem. (See, for instance, in Velarde and Zeytounian (2002) [70],

CISM Courses and Lecture (N0 428), pp. 123–90.)
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Naturally, we are now imposing one more condition on the interface ∂S, since it
is an unknown of the problem; in the non-stationary case an initial condition for the

interface has to be added too (see (2.40a) or (2.40c)).

For an inviscid incompressible fluid (water) when we consider the wave on the

water (in this case the problem for an irrotational flow is governed by the Laplace

equation), an obvious physical simple condition is (if we assume that the surface

tension is negligible), in place of (2.45a):

p ¼ pA; on interface between water and air above; (2.46)

where pA denotes the air (constant, ambient) pressure on interface S and usually

this ambient air (above the interface) is assumed passive (at temperature TA ¼
const, pressure pA ¼ const, with negligible viscosity and density).

In the case of a viscous liquid (thin film Marangoni problem, discussed in

Chap. 8) the above condition (2.46) is replaced by a rather complicated explicit

upper free surface condition (see Sect. 8.2.2).

Now, if the equation of the interface is x3 ¼ Z(t, x1, x2), in a Cartesian system

of coordinates (0, x1, x2, x3), then from the Bernoulli incompressible integral we

obtain the following dynamic condition on interface (for the wave on the water –

the inviscid fluid problem) according to (2.46):

@f@tþ 1=2ð ÞðrfÞ2 þ g Z ¼ 0; on x3 ¼ Zðt; x1; x2Þ; (2.47)

and since the interface is a material wave surface we have also a kinematic

condition:

@f=@x3 ¼ @Z=@tþ ð@f=@x1Þ@Z=@x1
þ ð@f=@x2Þ@Z=@x2; on x3 ¼ Zðt; x1; x2Þ;

(2.48)

Finally, if we assume that the water rests on a horizontal and impermeable

bottom of infinite extend at x3 ¼ � h0, where h0 ¼ const is supposed finite, then

we have the following simple (flat) bottom boundary condition for the Laplace

equation:

@f=@x3 ¼ 0; on x3 ¼ �h0; (2.49)

The Laplace equation for the potential f, with (2.40a), (2.40b) or (2.40c) and

(2.47)–(2.49), constitutes a well-posed problem for the investigation of the non-

linear unsteady waves on the water (see, for instance, Whitham (1974) [71], and the

review paper by Zeytounian (1995) [72]).

It is important to note that each physical problem has specific boundary con-

ditions related to the intrinsic nature of the problem. For example, in gas dynamics

problems the boundary conditions are different if the fluid flow is subsonic

(M < 1), supersonic (M > 1), transonic (M ~ 1) or hypersonic (M >> 1). If, for
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instance, the undisturbed basic flow is in the x > 0 direction and the body in

question (in x, y plane) is located on the x-axis, with its leading edge at the origin

and its trailing edge at x ¼ 1 (with non-dimensional variables), then we can assume

that the body shape is described by:

y ¼ d h xð Þ; (2.50)

where the non-dimensional parameter d is the maximum value of y of the body.

The 2D steady velocity potential j(x, y) is a solution of the steady 2D Steichen

dimensionless equation:

a2 �M2 @’=@xð Þ2
h i

@2’=@x2 þ a2 �M2 @’=@yð Þ2
h i

@2’=@y2

� 2M2ð@’=@xÞð@’=@yÞ@2’=@x@y ¼ 0; (2.51)

with the following relation for the local sound speed:

a2 ¼ 1þ ½ðgþ 1Þ=2 M2f1�� �ð@’=@xÞ2 þ ð@’=@yÞ2�g: (2.52)

In this case the slip condition is:

@’=@y ¼ d(dh xð Þ=dxÞ@’=@x;

when x 2 0; 1½ �; on y ¼ d h xð Þ: (2.53)

Far away, upstream, from the body the flow should be undisturbed, which

requires:

@’=@x ! 1 and @’=@y ! o as x ! �1: (2.54)

In most applications, the bodies of interest are thin and streamlined, so that

generally d is a small non-dimensional parameter (d << 1). We note here only that

the classical linear, subsonic and supersonic theory is invalid when respectively:

M2 � 1
� �

=d3=2 ¼ O 1ð Þ � transonic similarity

d M ¼ O 1ð Þ � hypersonic similarity

Zd ¼ O 1ð Þ � far field similarity;

where Zð¼ xþ ½M2 � 1�1=2Þ y is a characteristic coordinate, such that:

Z 
 1 with M fixed:
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In the case of justification of the well-known Boussinesq (1903) [8] assertion

(see, for instance, Chap. 4) concerning the convection in fluids [13]: “The deri-

vatives of the density can be neglected except when they intervene in the calcula-

tion of the force of Archimedes.”

It is also necessary to consider the hyposonic (M << 1) case, and in such a case,

for the atmospheric motions it is necessary to take into account the following

constraint:

M=Bo ¼ O 1ð Þ � hyposonic similarity; (2.55a)

where

Bo ¼ L�= RT�=gð Þ (2.55b)

a ratio of two lengths, is the so-called Boussinesq number (see our (1990) [12], p. 15).

The lee waves problem (related mainly with the dynamic influence of a moun-

tain in a baroclinic, stratified, adiabatic atmosphere) is strongly influenced by the

relief slip condition and also by the upstream flow conditions. In an unbounded

atmosphere the radiation (in a simple Boussinesq model case) Sommerfeld condi-

tion for the Helmholtz equation at infinity (in altitude) plays an essential role. (See,

in [13], various typical examples considered by Guiraud and Zeytounian.)

In the low Rossby model for atmospheric flow, the effect of the solid (earth)

surface is taken into account (by matching) through the so-called viscous Ekman

layer. Indeed, the viscous coefficients are so small that we should expect the

boundary conditions to be close to those valid for the corresponding inviscid sys-

tem. The viscous equations do, however, require additional boundary conditions,

and as an effect, viscous boundary layers may occur at the boundaries.

Such boundary layers may sometimes be appropriate, as in the rigid wall

situation (for example, the Ekman boundary layer). However, at open boundaries

they are inappropriate.

In comparison to flows in interior or exterior domains, there are two new issues

when the boundary extends to infinity. First, in addition to the usual initial and

boundary conditions there needs to be some prescription of fluxes or pressure drops

when the flow domain has several exits to infinity (as in (2.54)). Second, the

solutions of interest often have infinite energy integrals, and recently a technique

of integral estimates to deal with this problem has been developed. These estimates

are called Saint Venant’s type, because the method was first used in the study of

Saint Venant’s principle in elasticity.

Concerning, more precisely, the behaviour of an incompressible fluid velocity

field at infinity, we note that in Dobrokhotov and Shafarevich (1996) [73], a simple

method is given which makes it possible to determine an upper bound for the decay

rate at infinity of an incompressible fluid velocity field of general form; that is, to

determine a lower bound for the field itself.

This method is based on the use of simple integral identities which are valid for

solutions of the Navier incompressible, viscous equations, in the external region
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which decrease quickly enough. For the equations in entire space, some of these

identities were obtained by the two authors noted above.

The property of slow decay or spreading of localized fluid flow is a consequence

of incompressibility, and is not associated with viscosity alone (in contrast to the

case described by Serrin (1959) [31, 74]), so that it also holds good for an inviscid

Eulerian fluid flow (in this case the reasons for spreading are related with the non-

uniform external flow and non-linearity).

In fact, in order to compute in a bounded region a fluid flow modelled by a

problem formulated on an infinite domain, one often introduces an artificial bound-

ary S and tries to write on the domainO	 � O, bounded by S, a new problem whose

solution is as close as possible to the original exact problem. When the solution of

this new problem in O	 coincides with the restriction of the original problem, the

boundary S is said to be transparent.

Here, we note also that the reader can find valuable information concerning this

approach with applications to both inviscid and viscous fluid flows in various

recently published papers in the leading journals devoted to numerical fluid dynam-

ics (see, for instance, the recent issues of Journal of Computational Physics).
The general slip condition in an unsteady case:

n � ðu� uPÞ ¼ 0; (2.56)

is satisfied, in any case, for an impermeable solid wall, where uP is the velocity of

the moving wall. On the other hand, from the kinetic theory of gases, when the

Knudsen number, Kn is small, we obtain

n ^ ðu� uPÞ ¼ 0 on a moving wall: (2.57)

As a consequence of (2.56) and (2.57), we again deduce the no-slip condition

(but for a moving wall):

u ¼ uP; on the moving wall: (2.58)

The above condition (2.57) is the so-called weak form of the no-slip condition on

the moving wall.

Concerning the boundary condition for the temperature T on the wall, from the

kinetic theory of gases, again when the Knudsen number Kn is small, we obtain:

T ¼ TP � bq � n; (2.59)

where b is a scalar function (related with the kinetic, Knudsen, sub-layer).

An interesting case of boundary condition is related to the so-called Prandtl–

Batchelor condition (see, for instance, the papers by Batchelor (1956)[75] and

Wood (1957)[76]).

For a 2D incompressible, steady Eulerian fluid flow, fromEq. 2.13a, when n� � 0,

we derive the following equation for the 2D steady stream function c x; yð Þ:
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r2c ¼ FðcÞ; (2.60)

where the function F(c) is arbitrary! But, if the domain O where the flow is

considered is a bounded connected open subset of R2, then we do not have the

possibility of utilizing the behaviour condition at infinity for the determination of

this function FðcÞ.
The key of this indeterminacy is strongly related with the vanishing viscosity

problem. In fact, with the limiting process Re " 1ðor; n� # 0) in the steady form of

the Navier Eq. 2.13a. Namely, if we assume that the limit streamlines are closed in

O, then according to Batchelor [75] we derive for the limit Euler stream line

g� (which is the one of the stream lines c� ¼ constant) the following

Prandtl–Batchelor condition:

dFðc�Þ=dc� ¼ 0 and Fðc�Þ ¼ F�� � const: (2.61)

As a consequence, the Eulerian vorticity, o� ¼ � 1=2ð ÞFðc�Þ, for a steady

incompressible 2D fluid flow, is constant in any region where the streamlines are

closed.

From the matching performed by Wood [76] – with the corresponding Prandtl

boundary-layer in the vicinity of @O – the value of this above constant, F��, is well
determined.

On the other hand, in Guiraud and Zeytounian’s short paper (1984) [77] a

process for setting in motion a viscous incompressible liquid inside a 2D cavity is

considered, and it is shown that the basic process occurs for a time of the order of

t ¼ O(Re). Then a flow, à la Prandtl–Batchelor, with constant Euler vorticity is

established after a time t >> Re.

In this same paper [77], a G–Z functional equation is derived which governs the

distribution of the vorticity in the main stage of interest, and for the simple case of a

cylindrical cavity it is shown that the vorticity tends towards its own steady-state

value exponentially.

Finally, concerning the case of overspecified and underspecified boundary

conditions, it is important to note that when for a given problem the number of

boundary conditions is overspecified, the difference approximation (for a numerical

calculation) may well be stable. However, the effective boundary conditions which

influence the solution are, in general, difficult to determine, especially for problems

in several space dimensions.

They may well be a complicated function of the conditions given and bearing

little resemblance to them. An additional complication induced by over-specifica-

tion is that the underlying solution being approximated is not generally continuous.

In order to avoid the problems associated with the proper selection of boundary

conditions, the order and type of the differential equations is often raised to obtain a

problem that is easier to analyze and approximate.

For example, the Eulerian equations are usually modified by adding dissipative

terms so that the number of boundary conditions is appropriate. Unfortunately, this
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idea seldom works. If a spurious boundary layer of appreciable size results, the

effects are not unlike those for discontinuities (for a system of equations, the errors

can propagate away from the discontinuity through other components of the

solution), and unless the dissipative terms are very large, the error introduced at

the boundary will again propagate into the interior.

Now, if the boundary conditions are underspecified there are no a priori

estimates for the differential equations. In order for an approximation to be com-

putable these must be a sufficient number of boundary conditions specified for the

approximation. This cannot be fewer than the number required for the differential

equation.

The well-posedness of the initial boundary value fluid flow problems follows,

to some extent, from properly formulated initial and boundary conditions, and

is strongly linked with the various facets (through the existence and uniqueness

results) of the solvability of these fluid flow problems.

We recognize that in large part what might be called “mathematical topics

in fluid dynamics” has remained closed to the mainstream of theoretical fluid

dynamics and mathematical physicists, due in large part – as judiciously observed

in the book by Doering and Gibbon (1995) [78] devoted to applied analysis of the

Navier (Navier–Stokes incompressible) equations – to the technical nature of

rigorous investigations, often phrased in the unfamiliar language of abstract (non-

linear) functional analysis.3

The above summary of Chap. 2 presents the main theoretical concepts and

principles, and also equations and associated initial and boundary conditions, of

classical/Newtonian fluid dynamics. Various theoretical concepts can be found in

our books devoted, respectively, to non-viscous (2002) [37] and viscous (2004) [47]

fluid flows. In our survey paper on the well-posedness of problems in fluid dynam-

ics (a fluid-dynamical point of view) (1999) [79] the problem is carefully consid-

ered, and an historical survey of some mathematical aspects of Newtonian fluid

flows can be found in our (2001) [29] surveys.

3 The curiour reader can find in “Handbook of Mathematical Fluid Dynamics, vol. 1 to 4”,

numerous papers related with rigorous mathematical results, of existence, unicity, regularity,

well-posedness and limiting processes for solution of fluid flow problems, mainly by

compactnesse-a very abstract functional approach!
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