
Chapter 1

NS–F Equations and Modelling: A French Touch

This Overview is a brief outline of the events related to my rather long “RAM

Adventure” during the years 1968–2009. In 1968–1969 my discovery of asymp-

totics and rational modelling of fluid dynamics problems was, for me, a revelation,

and the Rational Asymptotics Modelling (RAM) Approach to these problems,

governed by the Navier–Stokes–Fourier (NS–F) equations,1 has been my main

scientific activity during the last 40 years – the systematic, logical and well argued

consistent approach via asymptotics, in perfect harmony with my idea about

mathematically applied, but not ad hoc, theoretical researches in fluid dynamics,

without any modern abstract, sophisticated, functional analysis!

This Overview first presents a short account of my first contribution to RAM in

fluid dynamics, related to a justification of Boussinesq equations used in Chap. 1 of

the original, version of my doctoral thesis, written in Moscow during 1965–1966. I

then relate various events concerning my collaboration with Jean-Pierre Guiraud,

working on asymptotic modelling of fluid flows at the Aerodynamics Department

of ONERA2 during the 16 years up to 1986, which resulted in the publication

of 26 joint papers in various scientific journals. Finally, a few remarks are

presented concerning my preceding seven books (three in French and four in

English), published during the years 1986–2009, on modelling in Newtonian fluid

flows.

Below we use “Navier” equations in place of “Navier–Stokes incompressible”

equations. In fact, as main fluid dynamics equations we have Euler, Navier, and

NS–F equations. Concerning the so-called “Navier–Stokes (isentropic)” equations –

often used by mathematicians in their rigorous investigations – in reality these NS

equations are unable to describe any real fluid flows! Note also that in a RAM

1Concerning the term “Navier–Stokes–Fourier” equations used in this book – NS–F equations,

governing classical, Newtonian, viscous, compressible and heat-conducting fluid flows – it seems

to me that it is better adapted than the term commonly used (mainly by mathematicians),

“Navier–Stokes compressible” equations.
2 Office National d’Études et de Recherches Aérospatiales, Châtillon-92320 (France).
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Approach, the Euler (vanishing viscosity case) and Navier (low compressibility

case) equations are, in fact, derived consistently by limiting processes from NS–F

full equations – but this is not the case for the NS (isentropic) equations!

Concerning my “Soviet Adventure” of 1947–1966. . . In 1954 I graduated from

Yerevan State University with a Master of Sciences degree in pure mathematics (in

the class of Sergey Mergelyan3); after which, during 1955–1956, I worked in the

Institute of Water and Energy at the Armenian Academy of Sciences in Yerevan.

I then had the opportunity for serious study in theoretical fluid dynamics, and

in 1957 I chose dynamic meteorology as my main scientific research activity as

a Ph.D. student in the Kibel Department of the Hydro-Meteorological Centre in

Moscow.

Now, more than 50 years later, I am still proud to have been a student of Il’ya

Afanas’evich Kibel4 – an outstanding hydrodynamicist of the twentieth century

who was active and creative throughout his entire career. Unfortunately, his life was

too short. He died suddenly, at the age of 66, on 5 September 1970.

Mainly on the basis of my various publications in mesometeorology (linked with

the lee waves downstream of a mountain in a baroclinic atmosphere and also with

the free atmospheric local circulations above the various Earth sites) during the

years 1957–1966, in the Kibel Department of the Hydro-Meteorological Centre in

Moscow, in 1968 I had the opportunity to publishmyfirst course inmesometeorology

[1] for the engineering students at the École de la Météorologie in Paris.

In September 1966 I returned to Paris to write my thesis [2] on the basis of the

results of research (1961–1965) into the lee waves 2D (non-linear) and 3D (linear)

steady problems in non-viscous and adiabatic atmospheres, with the help of the

Boussinesq approximation. In 1969 I was awarded the degree of Docteur d’État es

Sciences Physiques by the University of Paris, which added to my Russian Ph.D. of

1960, from the University of Moscow and my SSSR Academy of Sciences Chief

Scientific Research Worker degree in hydrodynamics and dynamic meteorology,

obtained in 1964.

3 Sergey Nikitovich Mergelyan (1928–2008) was an Armenian scientist – an outstanding mathe-

matician, and the author of major contributions in Approximation Theory (including his well-

known theorem in 1951). The modern Complex Approximation Theory was based mainly on his

work (see, for instance, the book Real and Complex Analysis by W. Rudin; French edition,

Masson, Paris, 1978). He graduated from Yerevan State University in 1947, and in 1956 played

a leading role in establishing the Yerevan Scientific Research Institute of Mathematical Machines

(YerSRIMM). He became the first Director of this Institute, which today many refer to as the

“Mergelyan Institute”.
4 Il’ya Afanas’evich Kibel (1904–1970), Member of the SSSR Academy of Sciences, was one of

the leading Soviet scientist in the field of theoretical hydromechanics. He is famous as the founder

of the hydrodynamic method of weather forecasting, and for implementation of mathematical

methods in meteorology. See his pioneer monograph, An Introduction to the Hydrodynamical
Methods of Short Period Weather Forecasting, published in Russian in Moscow (1957), and

translated into English in 1963 (Macmillan, London). Some of his well-known works on the

meteo-fluid are published in Selected Works of I. A. Kibel on Dynamic Meteorology (in Russian,

GydrometeoIzdat, Leningrad, 1984).
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In the original version of my thesis (hand-written in Moscow during 1965–1966),

in Chap. 1 the Boussinesq approximate equations were derived in an ad hoc manner

(à la Landau – as in [3, }56]). However, Paul Germain (future juryman during my

thesis defence in March 1969) was unfavourable towards this method of deriving

Boussinesq approximate equations for convection in fluids, and I was obliged to

completely rewrite that chapter! Germain considered that it is possible to derive these

Boussinesq equations by an asymptotic rational/consistent process (but by what

method?), and in a letter5 written in Paris and dated 8 March 1968, he wrote that

“. . . I should understand the justification of our starting equations?”

1.1 My First Contribution to the RAM Approach

in Fluid Dynamics

This “justification problem” was for me a difficult challenge – 1 year before my

1969 thesis defence – and I was in an awkward situation! For some time I did not

fully understand the question in Germain‘s letter! Finally, however, I chose a

bastardized method via the so-called isochoric model equations, when the density

r is a conservative unknown function along the fluid flow trajectories in time–space

(t, x), such that

Dr=Dt ¼ 0; with D=Dt ¼ @=@t þ u � r; (1.1)

where ∇ denotes the gradient vector and u the velocity vector – this constraint

being often used in fluid dynamics when gravity plays an active role. This above

conservative condition on r is, in fact, an incompressible condition. In particular, it

is systematically considered in Yih’s monograph [4]; and see also the book by

Batchelor, [5], p. 75.

For u, r, temperature T and thermodynamic pressure p ¼ RrT, where R is the

thermally perfect gas constant, when we consider a non-viscous, compressible and

adiabatic atmospheric motion, we have the following Euler non-dissipative system

of three equations:

5 Paul Germain wrote to me (in French!): “J’ai pu regarder les feuilles que vous m’avez adressées

sur la mise en équation de votre problème. Je prends note du fait que vous ne passez plus par la

forme intermédiaire des équations de la convection qui figurait dans les documents que vous

m’aviez antérieurement donnés. Je ne suis néanmoins pas satisfait, car je ne vois toujours pas

comment est justifiée la cohérence de vos approximations et pourquoi, alors que vous supposer les

perturbations de vitesses petites, en particulier la quantité: u2 + w2 � U1
2, afin d’obtenir des

équations linéaires, vous ne linéarisez pas les conditions aux limites. Vous devez me trouver un

peu ‘tâtillon’. Mais si je dois faire partie du jury de votre thèse, c’est à titre de mécanicien des

fluides et comme tel, je souhaiterais comprendre le bien fondé des équations de départ. Or depuis

votre exposé au séminaire, j’éprouve toujours la même difficulté et les variantes que vous m’avez

proposées ne m’éclairent pas.”
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Dr=Dt þ rr:u ¼ 0; (1.2a)

DS=Dt ¼ 0; (1.2b)

r Du=Dt þrp þ gr ¼ 0: (1.2c)

For the specific entropy we have the relation:

S ¼ Cv log½p=rg�; with g ¼ Cp=Cv; (1.3)

the ratio of specific heats, and in (1.2c) the gravity force (with a measure g) is taken
into account

It is well known that an incompressible fluid motion is obtained (from a com-

pressible fluid motion) as a result of the following formal limiting “incompressible

process”:

Limis ¼ g ! 1 with Cp fixed: (1.4)

With (1.4), in place of Eq. 1.2b, according to (1.3), we recover the above

mentioned isochoricity condition (Dr/Dt ¼ 0) which leads, from the equation of

continuity (1.2a), to the usual incompressibility constraint:

r ¼ constant ) r:u ¼ 0:

Finally, in place of the Euler system of Eq. 1.2a–1.2c, with (1.3) – and as a

consequence of (1.4) – we derive for the limit isochoric functions, uis, pis, and ris,
the following simplified isochoric system of inviscid equations:

Dris=Dt ¼ 0; r:uis ¼ 0; (1.5a, b)

risDuis=Dt þrpis þ gris ¼ 0: (1.5c)

From (1.5a, b), r:uis ¼ 0, we have the possibility of introducing two stream

functions, c and w (as in [6]), such that in a 3D, steady case, @uis=@t ¼ 0,

@Sis=@t ¼ 0, and @ris=@t ¼ 0, we obtain the following three relations:

uis ¼ rc ^rw; (1.6a)

ris ¼ r� c;wð Þ; (1.6b)

1=2ð Þuis2 þ ðpis=risÞ þ g z ¼ I� c;wð Þ; (1.6c)

where z ( � x. k is directed above along the unit upward vector k) is the altitude,

and the two functions, r� c;wð Þ and I� c;wð Þ, are subject to a determination.
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In particular, for the lee-waves problem, over and downstream of a mountain, this

determination is performed via the boundary conditions at upstream infinity where,

in a simple case, an uniform horizontal flow is assumed given.

From Eqs. 1.6a–1.6c we derive (again, according to [6]) two scalar equations for

c and w :

ðr ^ uisÞ:rc ¼ @I�=@wþ ðpis=r�2Þ@r�=@w; (1.7a)

ðr ^ uisÞ:rw ¼ � @I�=@c� ðpis=r�2Þ@r�=@c: (1.7b)

If, now, uis
1 ¼ U1ðz1Þi is the speed (along the axis of x � x. i) far upstream

of the mountain, which is simulated by the equation z ¼ mh(x), then at x ! �1,

with h ð�1Þ � 0, the conditions are:

uis
1 ¼ U1ðz1Þ; vis1 ¼ wis

1 ¼ 0 ris
1 ¼ r1ðz1Þ; (1.8a)

c ¼ �
ðZ1

0

U1 zð Þdz ¼ c1ðz1Þ; (1.8b)

where uis
1 ¼ ðuis1; vis

1;wis
1Þ, and z1 being, therefore, the altitude of a stream

line in the basic non-disturbed two-dimensional far flow. In this particular, simple

case, (1.8a,1.8b), the second stream function at infinity upstream is simply the plane

(x, z), and w1 � y ¼ const.

We will suppose also, implicitly, that the solution of the considered lee-waves

problem ought to be uniformly bounded at all points of the infinite plane (x, z). We

assume also that c ¼ 0 determines the wall of the mountain, and in a such case:

I� ¼ B cð Þ and r� ¼ R cð Þ (1.9a, b)

and in place of two Eqs. 1.7a, 1.7b, with the conditions (1.8a,1.8b), we derive a

three-dimensional generalization of the 2D equation of Long, considered in his

well-known paper [7]:

r ^ ½rc ^ rw�:rc ¼ 0; (1.10a)

r ^ rc ^ rw½ �:rw ¼ � U1 dU1=dcð Þþ 1=2ð Þ dlogR=dcð Þ rc ^ rwð Þ2

� dlogR=dcð Þf 1=2ð ÞU12 þ gðz � z1Þg:
(1.10b)

In the case when (far upstream of the mountain):

U1 ¼ ðU1Þ0 ¼ const ) c1ðz1Þ ¼ � ðU1Þ0z1; (1.11a)
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r1ðz1Þ ¼ r1 0ð Þexp½�bz1�; (1.11b)

and if we introduce (see (1.12)) the non-dimensional quantities (H is a characteristic

meso-length-scale)

x ¼ x=H; z ¼ z=H;C ¼ c=HðU1Þ0;X ¼ w=H; (1.12)

we obtain, as in our thesis [2], in place of Eq. 1.10b, the following dimensionless

equation:

r ^ ½rC ^ rX�:rX þ DðCþ zÞ ¼ l½ðrC ^ r XÞ2 � 1�; (1.13)

where

D ¼ bH2½g=ðU1Þ02� and l ¼ bðH=2Þ; (1.14a)

and we observe that the following relation

l=D ¼ FrH
2 (1.14b)

is true, where FrH
2ð¼ ðU1Þ02= gH½ �Þ is the square of a Froude number.

But, FrH
2 � 1 when H � ðU1Þ02=g, and this is indeed the case for the usual

meteo data.

The relation (1.14b) shows that the term proportional to l, in the main Eq. 1.13

must be small ðl � 1Þ, because it is necessary (in (1.13)) that

D ¼ l=FrH2 ¼ O 1ð Þ; (1.15)

as a ratio of two small parameters.

The parameter D , being the main lee-waves parameter is the so-called Dorodnit-

syn–Scorer parameter.

The relation (1.15) is, in fact, a similarity rule between two small parameters: l
and FrH

2 – the use of (1.15) being a key step in the derivation of our leading-order

consistent Eq. 1.17 below.

Rigorously, the term proportional to l can be neglected, in a first approximation,

relative to the term with D , which is assumed O(1), only when

b � 2=H; (1.16)

and, in such a case, in leading-order approximate model Eq. 1.17, with subscript ‘B’:

r ^ ½rCB ^ rXB�:rXB þ DðCB þ zÞ ¼ 0; (1.17)
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where for XB we have as the equation (according to (1.10a)):

r ^ ½rCB ^ rXB�:rCB ¼ 0; (1.18)

The effect of the compressibility is present only in the last term of (1.17) pro-

portional to D .

This above approximation is just the well-known Boussinesq approximation of

1903 [8]: “The derivatives of r1ðz1Þ can be neglected except when they intervene
in the calculation of the force of Archimedes.”

In particular, if we assume (2D case) that:

XB � Z ¼ y=Hð Þ and CB � cpðx; zÞ; (1.19)

we derive, from (1.17), a linear Helmholtz (à la Long [7]) equation:

@2cp=@x
2 þ @2cp=@z

2 þ Dðcp þ zÞ ¼ 0: (1.20)

But, if (1.20) is a linear equation (derived without any linearization!) the slip

boundary condition, along the wall of our mountain, remains non-linear – the slip

condition being down a curvilinear surface of the mountain,

cpðx; z ¼ k h�ðxÞÞ ¼ 0; (1.21a)

with

k ¼ m=H (1.21b)

and

h�ðxÞ � hðHxÞ: (1.21c)

The above results are, in fact, the main part of my first theoretical contribution to

the RAMApproach in fluid dynamics, obtained during the rewriting of my Doctoral

thesis in Paris during 1968–1969.

I do not see, in reality, whether Paul Germain was completely satisfied with my

new derivation. But however that may be, my efforts in writing a new Chap. 2 for my

thesis were successful, and on 10 March 1969, after the defence of this thesis in the

Faculty of Sciences of the University of Paris, I obtained the degree of Docteur d’État

es Sciences Physiques – Paul Germain and Jean-Paul Guiraud being members of my

thesis jury, with, as President of the Jury, Paul Queney,6 Professor at the Sorbonne.

6 The first theoretical investigations concerning 3D lee-waves problems in linear approximation

was, in fact, carried out by Paul Queney. On the other hand, an excellent synthesis of theoretical

developments on relief (lee) waves will be found in WMO Technical Note: “The Air flow over

mountains”, N	 34, Geneva, 1960, by P. Queney et al.

1.1 My First Contribution to the RAM Approach in Fluid Dynamics 7



In the last chapter of this book (in Sect. 9.1) the reader can find a more elaborate

RAM Approach to fluid dynamics, for the 2D steady lee-waves problem, in the

framework of low-Mach-number fluid flow (hyposonic) theory, which leads to a

family of consistent, limiting leading-order model equations.

Concerning the full justification of the Boussinesq assertion and a satisfactory

answer to Paul Germain’s question – this justification of the Boussinesq approxi-

mate equations was for 5 years a major challenge for me, and I devoted consider-

able effort to the resolution of this problem.

Only in 1973, in the framework of low-Mach-number asymptotics, taking into

account the existence of a hydrostatic reference state (function only of the altitude),

did I well understand the way for a consistent non-contradictory RAM Approach.

In 1974 [9] these Boussinesq approximate equations for a viscous and non-

adiabatic dissipative atmospheric motions were derived from the full unsteady

NS–F dissipative equations.

To describe the atmospheric motions, which represent the departure from the

hydrostatic reference state, I have considered the perturbations of pressure, density

and temperature (these atmospheric perturbations being usually very small, relative

to the hydrostatic reference state) and have rewritten (without any simplifications)

the NS–F atmospheric equations relative to these thermodynamic perturbations and

velocity vector.

This derived, very awkward, dimensionless system of equations is, in fact, a new

(exact) form of the NS–F classical atmospheric equations well adapted for the

application of our RAMA theory. In Chap. 4 we discuss a detailed RAMA of these

Boussinesq approximate equations, inspired by my “Boussinesq’s Centenary Anni-

versary paper” [10] of 2003, but for the sake of simplicity, only in the framework of

a Euler non-viscous, compressible and adiabatic system of Eq. 1.2a–1.2c – this

derivation being an instructive test problem for the formulation of our key steps in

Chap. 6, devoted to the mathematics of the RAMA.

1.2 My Collaboration with Jean-Pierre Guiraud

in the Aerodynamics Department of ONERA

In September 1967, thanks to the recommendation of Jean-Pierre Guiraud, I began a

new career as a research engineer in the Aerodynamics Department of the Office

National d’Études et de Recherches Aérospatiales, in Chatillon, near Paris. After

working at ONERA for 5 years, in October 1972 I was – thanks to my Doctoral

thesis (March 1969) – appointed Titular Professor of Fluid Mechanics at the

University of Lille 1 – a position which I held until 1996.

I continued part of my theoretical researches in fluid-flow modelling as a

‘Collaborateur Extérieur’ at ONERA, and during 16 years there, from 1970 to

1986, for a full day once a week I worked with Jean-Pierre Guiraud in exchanging

ideas and envisioning asymptotic modelling for various aerodynamics, stability/
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turbulence and meteo problems. As a result of this collaboration, throughout

this period we jointly published 26 papers in various scientific journals. (See, for

instance, in the References, our 1986 paper [11], and references to other papers

published either jointly or separately.) These works (published during 1971–1986)

are devoted, with more or less success, to the application of the ideas that we

discussed concerning various fields in fluid dynamics – all being motivated by the

need for solving or understanding the basis of the solution of technological and

geophysical problems involving fluid flows. These problems are related to:

Vortex flows in rotating machines (taking into account that the blades in a row are

usually very close).

Rolled vortex sheets (in a region where the contiguous branches of the rolled sheet

are so close to each other that they are very difficult to capture by numerical

simulation).

Hydrodynamic stability (in a weakly non-linear domain, through perturbation

techniques – the underlying mathematical theory being the so-called bifurcation

theory).

Atmospheric flows (see Chap. 9 in this book, and our monograph, Asymptotic
Modeling of Atmospheric Flows [12], published in 1990).

Flow at low Mach numbers (see our Topics in Hyposonic Flow Theory, Lecture
Notes in Physics, vol. 672, 2006 [13]).

It was an extremely stimulating period of scientific research, for me. As far back

as at the end of 1970 years it is evident that asymptotic techniques provide very

powerful tools in the process of constructing working models for fluid dynamics

problems, which are stiff, from the point of view of numerical analysis, coupled

with a simulation via a powerful super-computer.

My approach differs from Van Dyke’s exposition in [14], in the sense that:

“Computational fluid dynamics is now a quite mature discipline, and for some time

the growth in capabilities of numerical simulation will be dependent on, or related

to, the development of rational asymptotic modelling approach – RAMA.” If such

is the case, then a simple definition of our RAMA is: “The art of a strongly

argumentative, consistent, non-ad hoc and non-contradictory modelling assisted

by the spirit of asymptotics.”

It is my opinion that RAMA will remain for many years, or even decades – a

quite powerful tool in deriving mathematically consistent models for numerical/

simulation fluid research. By “mathematical”, I mean that the models derived by

RAMA, the approximate consistent models, under consideration, should be

formulated as reasonably well-posed initial and/or boundary value problems, in

place of the starting full NS–F extremely complex and stiff problems (as, for

example, turbomachinery flows, which are arguably among the most complicated

known to man and are of great technological importance – see Sect. 7.1).

I again observe that our RAMA is an extremely worthwhile objective, because

most of the relevant engineering computations are based on relatively ad hoc

models that are rife with internal inconsistencies.
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1.3 A Few Remarks Concerning My Preceding Books

on Modelling in Newtonian Fluid Flows

Concerning the joint efforts of Guiraud and myself in our tentative writing of a book

on the RAMA in fluid dynamics, I must say first that in 1977, after several attempts

to persuade him, we both worked intensively, up to 1982, on a hand-written (in

French) manuscript entitled “The laminar flows at high Reynolds numbers: an essay

on the asymptotic modelling of Newtonian dynamics of fluids.” The possibility of

publication, after a rewrite in English, became a reality – at least for me!

Unfortunately, at that moment our opinions diverged concerning the opportunity

of such publication of our finished manuscript in its 1982 form. Guiraud wished to

pursue a deeper investigation of some delicate and difficult questions requiring time

and additional research. Contrary to Guiraud, I was of the opinion that further

investigations would be of no benefit and, in particular, would not provide anything

else to support our initial objective: to show the effectiveness of our RAMA!

Finally, in 1986 and 1987 I published alone (but by common consent) a course

in two volumes, in French, in the Springer series Lecture Notes in Physics (LNP):

Les Modèles Asymptotiques de la Mécanique des Fluides, I [15] and II [16] – more

or less inspired by the manuscript produced by myself and Guiraud in 1982.

As Titular Professor at the Université de Lille 1, beginning in 1972, I systemati-

cally used, throughout almost 10 years, various parts of our manuscript in my

teaching of theoretical fluid mechanics as a first Course and second Course,

respectively, for final-year (M.Sc.) undergraduate students and post-graduate

research workers, and for students preparing a doctoral thesis.

In the beginning, in 1977, my goal was, in fact, a monograph devoted to RAMA

for Newtonian fluid flows, and I had in mind the derivation of various models

corresponding to parameters (not only to Reynolds number) characterizing various

(high or low) physical effects – viscosity, compressibility, heat conduction, gravity,

Coriolis force, unsteadiness, geometrical constraints, and so on.

The above-mentioned two-volume Course was my first experience in opening a

new way into the difficult field of theoretical (analytical) fluid mechanics via the

NS–F equations, offering fresh ideas together with a first systematic presentation of

asymptotic approach in fluid dynamics for both students and young researchers. In a

short critical review (J. Fluid Mech., 1991, vol. 231, p. 691), the following opinion

was expressed concerning this two-volume Course:

The text is in French. Equations are hand-written but very clearly done. In many of the areas

covered in these two volumes there is a conspicuous lack of suitable expository material

available elsewhere in the literature, and Professer Zeytounian’s notes are to be welcomed

for filling these gaps until fuller and more specialized accounts appear in book form.

In addition, the following appeared in Mathematical Reviews, 1988:

A reader having acquired a practical knowledge of the asymptotic methods which are

presented and used here may certainly benefit by the advanced material about

Navier–Stokes equations provided in the main body of these two volumes.
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Later, in 1994, a third volume was published, also in French: Modelisation
asymptotique en mécanique des fluides newtoniens [17] – and here it seems

judicious to quote several sentences extracted from a review (in Appl. Mech.
Rev., vol. 49(7), July 1996, p. 879) by J.-P. Guiraud:

The purpose of this book is to present, through extensive use of dimensional analysis and

asymptotic calculus, a unified view of a wide spectrum of mathematical models for fluid

mechanics . . . Usually, adequacy of a mathematical model is evaluated a priori through

physical insight, experience, and inquiries about the topic. Here, the reader is proposed to

become, on his own, an expert in adequacy, by systematic use of asymptotic approximation.

Although a rather large spectrum of books on fluid mechanics and asymptotic methods may

be found, it seems to this reviewer that the present one is rather exceptional by the extent

and logical organization of the material . . . A fascinating aspect is that the reader is led by

the hand through a jungle of very different mathematical models, including Euler and

Navier for incompressible fluid; Prandtl for boundary layer; Stokes, Oseen, and Rayleigh

for various viscous effects; the usual regimes of aerodynamics, Boussinesq for the atmo-

sphere and the ocean, primitive equations and quasi-geostrophic approximation for meteo-

rology, gravity waves, amplitude equations of KdV or Schrodinger type, and low Mach

number flows, including acoustics . . .Modelisation asymptotique en mécanique des fluides
newtoniens is a valuable book which is recommended both to individuals and libraries for

the precise purpose indicated in the second sentence of this review. In principle, it is self-

contained and might be a reference for students, engineers, and researchers who master

computational aspects but want to be able to assess what kind of approximations are

involved in the equations, as well as initial and boundary conditions with which they

struggle.

Concerning, more precisely, the application of our RAMA to atmospheric

motion, after my 1975 survey lecture,7 published in 1976 [18], I decided to write

a monograph devoted entirely to asymptotic modelling of atmospheric flows

(see [12]), and in 1985 a manuscript (written in French) was ready. This manuscript

was accepted by Prof. Dr. W. Beiglb€ock, of Springer-Verlag, Heidelberg, for

publication in English. Unfortunately, the translation into English, by Lesly Bry,

is infelicitous!

I think that my Meteorological Fluid Dynamics [19] is good preparation for the

reading of [12], which was in fact published a little earlier than [19]. Here again,

I quote part of a review of [12] (SIAM Review, vol. 33(4), 1991, pp. 672–3) by

Huijun Yang (University of Chicago):

The present work is not exactly a ‘course’, but rather is presented as a monograph in which

the author has set forth what are, for the most part, his own results; this is particularly true

of Chaps. 7–13. (quoted from the Preface of this book):’In the book, the author viewed

meteorology as a fluid mechanics discipline. Therefore, he used singular perturbation

methods as his main tools in the entirety of the book . . . The book consists of the author’s

more than 25 years work.’ In the 32 references to his own work, fewer than one third were

published in English, with the rest in Russian or French. Throughout the book, the reader

can strongly feel the influence of Soviet works on the author. However, the author does

7 Entitled La Météorologie du point de vue du Mécanicien des Fluides, written for the XIIth

Symposium on Advanced Problems and Methods in Fluid Mechanics, Bialowieza (Poland), 8–13

September 1975.
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have his own character. The issues raised in the book, such as the initialization (initial

layer) boundary layer treatment, and well-posedness and ill-posedness of the system, are

very important problems facing researchers today in atmospheric sciences and other related

sciences. The reader will find some valuable information on these issues . . . The mathe-

matically consistent treatment of the subject does give this book a unique place on shelves

of libraries and offices of researchers . . . This book is very different from recent books on

the market [for example, Holton [20], Gill [21], Haltiner and Williams [22], Pedlosky [23],

and Yang [24]]. I recommend that researchers in atmospheric dynamics and numerical

weather prediction read this book to have an alternative view of deriving atmospheric flow

models. Researchers in theoretical fluid mechanics might also be interested to see how

singular perturbation methods can be used in atmospheric sciences. The book may be used

as supplemental material for courses like numerical weather prediction or atmospheric

dynamics. However, I do not think it is a suitable textbook for a regular class: as the

author said in his Preface. ‘I am well aware that this book is very personal – one might even

say impassioned.’

This review seems rather favourable, but this does not seem to be the case with

P. G. Drazin’s review (Journal of Fluid Mechanics, 1992, 242):

The author acknowledges that dynamic meteorology is too large a subject for him to

attempt to cover completely. He ‘has set forth what are, for the most part, his own results’

in accord with his ‘conception of meteorology as a fluid mechanics discipline which is in

a privileged area for the application of singular perturbation techniques.’ He applies

the method of multiple scales or the method of matched asymptotic expansions to any

equations he can find, systematically reviewing his own and his associates’ extensive

research. So it is a very personal view of meteorology, covering some areas of geophysical

fluid dynamics with a formidable battery of notation. The nature of the subject demands a

large and complex notation in any rational treatment. But the notation will allow only a few

to benefit from this book. It is a barrier which I found hard to cross, not having the time and

will to work through the book line by line, as a result with which I am familiar was difficult

for me to follow. The approximations of dynamic meteorology are mostly singular.

Nonetheless, their essentials are well understood by meteorologists now, albeit in a rough

and ready way, and meteorologists are unlikely to be [influenced] by Zeytounian’s

approach. Yet the approximations of meteorology are subtle and deserve a more rational

development than is commonly understood. This is the achievement of the book. The

author derives many equations systematically, albeit not rigorously, from the primitive

equations, rather than solving equations governing particular problems. For all these

reasons, I feel that the book will be studied intensively by a few specialists but neglected

by others.

Obviously, the last two sentences of this critical review are very controversial –

especially the assertion of ‘albeit not rigorously’. It seems clear that for Drazin, my

“French touch” is not to everyone’s taste! Indeed, the publication of this monograph

in 1990 was possibly premature, despite the publication, in 1985, of my survey

paper [25], Recent Advances in Asymptotic Modelling of Tangent Atmospheric
Motions, devoted to an asymptotic rational theory of the modelling of atmospheric

motions in a ‘flat earth’ closely related with the so-called b–plane approximation.

In [12], [19], and [25] my clear purpose was to initiate a process which does not

seem to have sufficiently attracted the attention of scientists. This process involves

the use of the RAMA for carrying out models; that is, for building approximate

simplified (but consistent) well-posed (at least from a fluid dynamician’s point of
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view) problems based on various physical situations and concerned with one or

several high or low parameters.

I do not, of course, affirm that this is the only method, nor even the most efficient

one, for deriving such problems in view of a numerical/computational simulation.

I do, however, feel that when such a procedure is feasible it should be undertaken.

As a matter of fact, the application of this approach makes it possible, in principle,

to improve, at least, a second-order model problem obtained from the NS–F full

problem, used by advancement in the associated asymptotic expansion.

After 1996 – having retired from the University of Lille 1, and with more time to

write – I decided to return to my first (1977) idea concerning a monograph devoted

to RAMA for Newtonian fluid flows and the derivation of models corresponding to

various parameters (not only to Reynolds number) characterizing various (high or

low) physical effects. I (partly) realized this objective in 2002 with my monograph

[26] Asymptotic Modelling of Fluid Flow Phenomena – the first book in English

devoted entirely to asymptotic modelling of fluid flow phenomena, dealing with the

art of asymptotic modelling of Newtonian laminar fluid flows. In Chaps. 2–12 of

this work I consider several important topics involved in the accomplishment of my

objective in determining how simplified rational consistent asymptotic simplified

models can be obtained for the most technologically important fluid mechanical

problems.

According to Marvin E. Goldstein (of NASA Glenn Research Center) in his

detailed, scrupulous, and rigorous review (SIAM Review, vol. 45(1), pp. 142–146,

2003): “There are enough of the selected topics that accomplish the author’s objective

to make this book an important contribution to the literature.” Goldstein also writes:

Applied mathematicians have always found fluid mechanics to be a rich and interesting

field, because the basic equations (i.e., the Navier–Stokes equations) have an almost

unlimited capacity for producing complex solutions that exhibit unbelievably interesting

properties, and because the dimensionless form of these equations contains a parameter

(called the Reynolds number) which is usually quite large in technologically and geophysi-

cally interesting flows. This means that asymptotic methods can be used to obtain appro-

ximate solutions to some very interesting and important flow problems. These solutions

usually turn out to be of non-uniform validity (i.e., they break down in certain regions of the

flow), and matched asymptotic expansions have to be used to construct physically mean-

ingful results. However, advances in computer technology have led to the development of

increasingly accurate numerical solutions, and have thereby diminished the interest in

approximate analytical results. But real flows (especially those that are of geophysical or

engineering interest) are extremely complex and exhibit an enormous range of length and

time scales whose resolution will probably remain well beyond the capabilities of any

computer that is likely to become available in the foreseeable future. So simplification and

modelling are still necessary, not only to meet the engineer’s requirement for generating

numbers but also for developing conceptual models that are simple enough to be analyzed

and understood. The asymptotic scaling techniques and the reduced forms of the general

equations that emerge from the matched asymptotic expansion process (as well as

from other singular perturbation techniques) provide a rational and systematic method for

obtaining the necessary simplified flows model, which, in most cases, still have to be solved

numerically. The author states that the goal of this book is to promote the use of asymptotic

methods for developing simplified but rational model for the Navier–Stokes equations

which can then be solved numerically to obtain appropriate descriptions of the flow.
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This is an extremely worthwhile objective, because most of the relevant engineering

computations are based on relatively ad hoc models that are rife with internal incon-

sistencies. To my knowledge, this is the first book devoted to accomplishing the author’s

stated objective, and it is, therefore, unfortunate that it is not as well executed as it could be.

To mitigate this last critical sentence, however, he continues:

However, there are enough of the selected topics that accomplish this objective to make this

book an important contribution to the literature. It contains an excellent chapter (Chap. 11) in

which the classical model equations for large-scale atmospheric motion are derived in a fairly

rational fashion. The author also devotes a full section (Sect. 6.6) to turbomachinery flows,

which are arguably among the most complicated known to man and are of great technological

importance. It is remarkable that he was able to make some progress toward developing an

asymptotic basis for some of the more prominent engineering models of these flows.

Goldstein concludes: “It is this reviewer’s hope that the deficiencies in this work

will encourage others to write new and improved books with similar themes” – but

unfortunately, it seems that for the present this is not the case! On the other hand, in

2006 and 2009 Springer published my two monographs, Topics in Hyposonic Flow
Theory [13], devoted to hyposonic (low Mach numbers) flows, and Convection in
Fluids: A Rational Analysis and Asymptotic Modelling [27], mainly related to the

well-known Bénard convection problem in a layer of weakly expansible liquid

heated from below.

Concerning the first of these, a considerable amount of stimulation and encour-

agement was derived from my collaboration with Jean-Pierre Guiraud, who, over a

period of 20 years, has played an important role in asymptotic modelling of the

various low-Mach-number flow problems presented in that book. The reader should

take into account that is the first book devoted to hyposonic flow theory, and it is the

author’s hope that the various unavoidable ‘deficiencies’ (noted by Goldstein in his

review of [13]) will persuade others to work on similar themes.

On the other hand, in [27] the main motivation was a rational analysis of various

aspects (in particular, the influence of the viscous dissipation, free surface and

surface tension) of the Bénard convection (heated from below) problem. It presents

a careful investigation of three significant approximate models (see, for instance,

Chap. 8 in the present book) related to the Bénard (1900) experiments, by which he

discovered his well-known Bénard cells! It is evident that Professor Manuel G.

Velarde was influential when I wrote my book on convection in fluids [27], as I

benefited greatly from our collaboration and many discussions relating to

Marangoni thermocapillary convection during my sojourn at the Instituto Pluridis-

ciplinar UCM de Madrid in 2000–2004.

1.4 Conclusion

More than 50 years ago, with the works of Kaplun, Kaplun and Lagerstrom, and

Proudman and Pearson, asymptotic techniques provided a new impetus for research

in theoretical fluid dynamics. Twenty years later, a much more powerful revival
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was possible due to the dramatic influence of high-speed computers and the

numerical analysis and simulation of fluid flow problems. The survey paper by

Birkhoff [28] includes, through a series of case studies, a detailed assessment of the

status, development, and future prospects of numerical/computational fluid

dynamics.

During the early times, asymptotic techniques were mostly used in order to

derive approximate solutions in closed form. Perhaps of more significance for the

progress of understanding and also of research, however, was the use of asymptotic

techniques in order to settle, on a rational basis, a number of approximate models

which much earlier were often derived by ad hoc non-rational procedures. One of

the most well-known examples is Kaplun’s celebrated paper on boundary-layer

theory, which provided a firm theoretical basis for some 50 years of boundary-layer

research.

From this early example it is clear that my 1977 idea, relative to asymptotic

techniques as a well-suited and invaluable tool for the derivation of mathematically

consistent models (from full fluid dynamics equations – NS–F equations) which are

amenable to numerical treatment rather than for obtaining closed form solutions,

was a perspective of scientific activity in interaction with numerical simulation –

even though, in the 1970s, numerical fluid dynamics was almost non-existent due to

the lack of high-speed computers.

It is now evident that asymptotic techniques serve as very powerful tools in

the process of constructing rational consistent mathematical simplified models

for problems which are stiff, from the point of view of numerical analysis. Here,

Chap. 6 is devoted to the mathematics of the RAM Approach, which seems a good

basis for a practical use of this RAMA in simulation/computation via high-speed

computers.

As a matter of fact J. P. Guinaud, who read a large part of the Chaps. 1 to 6 of the

present book suggest me to quote what follows: “While having been absent from

the Community of fluid mecanicians fifteen years from now, it was a pleasure for

me to read the report by Zeytounian, of a long coworking with him. It is mere

justice to mention that, during this active collaboration, a number of ideas were

initiated by Zeytounian. My main contribution was the result of ten years of

struggle with asymptotics before I had the good fortune to meet Zeytounian.” A

significant contradiction is obvious in the scientific activity of J. P. Guinaud. He

never published any book whilst having written a number of documents,

corresponding to many courses he teached manuscripts which were much more

carefully written than simple notes to be distributed for the students. In particular,

the Guirand Notes (“Topics in hypersonic flow theory”, Department of Aeronautics

and Astronantics, Stanford University; SUDAER n	 154, may 1963, Stanford,

California, USA) are Published in Russian by MiR, Moscow Editions, as a book

in 1965.

1.4 Conclusion 15


	Chapter 1: NS-F Equations and Modelling: A French Touch
	1.1 My First Contribution to the RAM Approach in Fluid Dynamics
	1.2 My Collaboration with Jean-Pierre Guiraud in the Aerodynamics Department of ONERA
	1.3 A Few Remarks Concerning My Preceding Books on Modelling in Newtonian Fluid Flows
	1.4 Conclusion


