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Preface

Rationality and Asymptotics are the two main concepts associated with the

Modelling in Fluid Dynamics, which have completely changed our look on the

Understanding of Navier–Stokes–Fourier (NS-F) equations, governing the viscous,
compressible and heat conducting Newtonian baroclinic and non-adiabatic fluid
flows.1

This Rational Asymptotic Modelling (RAM) Approach have raised, on the one

hand, further new interesting questions and potentialities for Applied
Mathematicians, in their quest of rigorous existence and uniqueness results for

the Fluid Flow problems.

On the other hand, this RAM Approach have opening up of new vistas for the

derivation, by Fluid Dynamicians, various consistent simplified models related with

real stiff fluid flow problems, as an assistance to Numericians embarked on a
computational simulations of complex problems of engineering interest with the

help of high speed computers.

In this book we touch (see, in particular, the Chap. 6) the “crucial” problem of a

practical (rather than formal, abstract) “Mathematics” for a consistent RAM
Approach, via a “Postulate” and, some “key rules” inspired from asymptotics.

This “mathematics for the RAM” is applied in a consistent way to modelling of

various stiff problems of the: aerodynamics (Chap. 7), Bénard thermal convection
(Chap. 8) and atmospheric motions (Chap. 9).

The main lignes of the aims of this book are set out in the “Prologue”, and in the
“Overview” a brief outline of the events related with my rather long “RAM
Adventure”, during the years 1968–2009, is given.

The book is divided into nine Chapters, an Epilogue, a list of References, and a

Subject Index.
In Chap. 2, the Newtonian (Classic) Fluid Dynamics is considered as a

Mathematical-Physical Science and the reader can find in four Sections a concise

1 These NS-F equations are, in fact, the equations usually named “Navier–Stokes Compressible
equations” – and assumed often barotropic equations, by the Mathematicians !
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material concerning the main theoretical concepts and principles, equations and
associated initial and boundary conditions.

The Chap. 3 is devoted to a tentative description of a rational way for the

obtention, from NS-F equations, various main model equations and also to a

discussion concerning their nonuniform validity, near the initial time (where the

initial data are given) and in the vicinity of a solid wall limiting the fluid flow (where

the boundary conditions for the velocity vector and temperature are given).
The Chap. 4, is entirely concerned with the application of RAM Approach for a

justification of Boussinesq model equations, assuming that the Mach number is a
small parameter.

The Chap. 5 is an application of the RAM Approach to large Reynolds numbers
unsteady fluid flow, which leads to a complicated Five Regions Structure of
unsteady NS-F full equations.

The Chap. 6, is a central one and present a “sketch of a Mathematical Theory for
the RAM Approach”. As a basis for this “practical” Mathematics, in the realization

of our RAM Approach, the following “Postulate” is accepted as true, despite its
simplicity:

If a leading order an approximate simplified model is derived from a NS-F fluid flow

problem, then it is necessary that a RAM Approach be adopted to make sure that terms

neglected in a such NS-F stiff problem really are much smaller than those retained in

derived approximate simplified, no-stiff, leading-order consistent model problem.

The Chap. 7, is concerned with the two applications of the RAM Approach in

“Aerodynamics”. First, the derivation of a through-flow model problem, for a fluid
flow in an axial compressor, when the blades in a row are very closely spaced.

Secondly, the low Mach number flow of a gas within a cavity which is changing its

shape and volume with time.
In Chap. 8, The RAM Approach concerns the famous Bénard convection prob-

lem for a liquid layer heated from below. In particular, the following alternative is
demonstrated:

Either the buoyancy is taken into account, and in this case the free-surface deformation

effect is negligible and we rediscover the classical leading-order Rayleigh-Bénard shallow

convection, unless viscous dissipation, rigid-free, problem, or the free-surface deformation

effect is taken into account, and in this case at leading-order, for thin films, the buoyancy

and viscous dissipation effects does not play a significant role in the so-called Bénard-

Marangoni thermocapillary instability problem.

But, if you have intend to take into account, in the case of a deep liquid layer, the

viscous dissipation effect – according to Zeytounian – in equation for the temperature, then

it is necessary to replace, the Rayleigh-Bénard shallow convection equations, by a new set

of equations called deep convection equations with a “depth” parameter.”

The last Chap. 9 is devoted to atmospheric motions. First, we derive for 2D

steady lee-waves problem, in a baroclinic, non-viscous and adiabatic atmosphere,

from the Euler atmospheric equations, a single, exact but rather, awkward equa-
tion. This equation, coupled with an exact relation for the density, prove to be very

convenient for a RAM Approach of lee-waves starting problem, when we consider

the low Mach number case. Secondly, the low-Kibel/Rossby number asymptotic
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model is considered, and a global quasi-geostrophic (GQG) model is derived from

NS-F hydrostatic dissipative atmospheric equations. Namely: the QG single main
equation model, initial condition (at time¼ 0) via an unsteady adjustment (Adj) and
matching, and boundary condition (at the flat ground) via the Ackerblom’s problem
in a steady Ekman boundary layer (Ek) problem and matching.

In Epilogue some concluding remarks are sketched briefly.

A postgraduate Course may involve most of the contents of this book, assuming

perhaps a working knowledge of a classical university fluid dynamics Course.

Short Courses for training Applied Mathematicians and Numericiens and young

Scientists in Industry and Research Laboratories can also be based on most of the

contents of this book.

In fact, the material in this book, it seems me, is primarily suitable (maybe
indispensable!) for use by the Scientists and Research Engineers working in the
fields of Fluid Dynamics and having as a main motivation the numerical simulation
of very stiff complex real fluid flows.

Finally, I thank Dr. Christoph Baumann, Engineering Editor, and the members

of the Springer Engineering Editorial Department, where the camera-ready manu-

script was produced in LaTeX and my English type-script was reread by a native

English speaker.

Paris Radyadour Khatchig

Zeytounian
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Prologue

In the middle of fifties years of the twentieth century, with the works, at Caltech

(California, USA), of Kaplun (1954 and 1957), Lagerstrom and Cole (1955),

Kaplun and Lagerstrom (1957) and also Proudman and Pearson (1957) in England,
asymptotics gave a new tremendous impetus on research in theoretical fluid

dynamics.

Concerning, as to, in France, the asymptotics was introduced by Paul Germain,
who was without (any) doubt the initiator of the application of asymptotics and

modelling in France; Germain write, in “Paul Germain’s Anniversary Volume”
(2000):

During the Istanbul 1952 International Congress, Paco Lagerstrom spoke to me about some

questions which he thought to be of the utmost importance for the understanding of fluid

mechanics and which might be ripe for solution at that time. One of them was the

mathematical basis of the boundary layer concept, discovered by Prandtl, nearly 50 years

before. Another one concerned the steady flow of an inviscid fluid as the limit of a class of

corresponding flows of the same fluid, involving a vanishingly small viscosity, so that, in

some sense, solutions of the Euler equations might be related to a class of solutions of

Navier–Stokes equations, through some limiting process.... I began to foresee a new link

between mathematics and fluid mechanics, provided by asymptotic techniques; as a matter

of fact, no simply a link, but a way of thinking at an enormous variety of problems.

Needless to say that all this was opening avenues without a clear vision of getting the

right way in.

Indeed, Paul Germain has had an extremely fruitful scientific career in which he

contributed, in particular, to modelling and asymptotics in fluid mechanics, by

discovering new problems, new ideas, new methods, new fields of applications.
But, as it is written (page 3, in 2000) by Germain:

“My best contributions to fluids were due to discovering, at the end of 1955, Jean-Pierre

Guiraud” � in fact, Guiraud first applied (in 1958) the method of matched asymptotic

expansions to hypersonic flow past a blunt-nosed plate, with a matching in subtle fashion to

an outer layer that is governed by hypersonic small –disturbance theory.

Ten years later, the Van Dyke’s book (1964), at a time when numerical fluid
dynamics was in its infancy, was at pains to demonstrate that perturbation, or
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asymptotic, techniques could be used to advantage to simplify problem to the extent

that they were amenable to analytical treatment; the fluid dynamical literature

abounds with testimony to the success of this approach (see, for instance, the

Annotated Edition of Van Dyke’s book (1975), by Van Dyke himself).

But, it is necessary to observe that, at the beginning of the sixties, in fact, idea of

a RAM Approach was first envisaged in famous two works.

The first work being related with the problem of the kinetic heating during

re-entry, which gave aeronautical engineers a strong impulse to improve the boundary

layer theory. For this, the extension of higher (at least to second) order boundary

layer theory to compressible and heat conducting flow has been carried out by Van

Dyke (1962). This rational asymptotic (consistent) modelling Van Dyke approach,

of the “second order compressible and heat conducting boundary layer model ”,
derived from NS-F full problem (formulated below, in Chap. 2, of the present book)
was an important scientific contribution in the NASA program for the re-entry, from

a space station, the space shuttle, when it is necessary to take into account two

complementary effects such as: slipping of the flow and a temperature jump at the
wall.

The second work, is linked with the fact that, if the viscosity and heat conduction
have to be taken into account outside the boundary layer, that means that the

Rankine-Hugoniot equations which rule the jump across the bow-shock wave to

be rewritten and one must take into account the thickness of the shock. Unfortu-
nately, the proposed preceding evaluation was not completely satisfactory!

Germain and Guiraud (1960), are convinced that the only way to get correct results

was to apply matched asymptotic expansion (MAE) and for this the conservative

form of the full NS-F equations has been taken into account. In such a case, viscous

and heat conducting terms appear to have been taken care of – but one has to add a

contribution from the inner expansion, the leading term of which gives the internal

shock structure. We observe that to order Re-1, the jump conditions are very easily

written out when one knows the internal shock structure to leading order only.

Germain and Guiraud gives (in a paper published only in 1966) explicit formulas in

gas dynamics for the shock conditions up to order 1.

It is interesting to observe that, in relation to above work related with the shock

waves in gas dynamics, Germain, in (page 11, in 2000), write:

A solution of a mathematical particular schematisation S0 of a physical situation is not

acceptable if it cannot be obtained by the limit of a solution of a more refined

schematisation S when S tends to S0

This requirement being, in fact, a strong condition for a consistent application of

the RAM Approach.
Already, from these above two early examples, it might have been clear that

asymptotics were well suited to derive mathematical models amenable, via simula-

tion, to numerical treatment rather than to obtain closed form of solutions –

however, we observe again: at the time, numerical fluid dynamics was almost
nonexistent due to the lack of high speed computers. But, in the course of time,

advances in computer technology have led to the development of increasing
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accurate numerical solutions and have thereby diminished the interest in approxi-

mate analytical results.

It is now evident, and for me, as early as the 1975 year, when I work on my

Survey Lecture for, XIIth Symposium on Advanced Problems and Methods in Fluid
Mechanics (Bialowieza, 8–13 September 1975, Poland – published in 1976), that

asymptotic techniques provide very powerful tools in the process of constructing

mathematical consistent models for problems which are stiff, from the point of view

of numerical analysis and simulation.

Whilst numerical, computational, fluid dynamics is now a mature discipline:

“For some time the growth in capabilities of numerical simulation will be depen-
dent on, or related to, the development of RAM Approach.” The simple definition of

this RAM Approach being:

The art of modelling assisted, rationally, by the spirit of asymptotics.

Real flows (such as the turbomachinery flows, which are arguably among the

most complicated known to man and are of great technological importance) are

extremely complex and exhibit an enormous range of length and time scales whose

resolution (a well known example is the problem related with the “weather
forecast”:

of what the weather will be like tomorrow or for the next few days!

will probably remain well beyond the capabilities of any computer foreseeable

future.

“Our RAM Approach provide a rational and systematic method for obtaining
the necessary simplified flow models, which, in most cases still have to be solved
numerically.” A such approach is an extremely worthwhile objective because most

of the relevant engineering computations are based (up to now!) on relatively ad hoc
models that are rife with internal inconsistencies – usually these ad hoc models turn

out to be nonuniform validity- i.e., they break down in certain regions of the flow.

The applications, in Chaps. 7–9, show that we are able to make significant progress,

via the RAM Approach, toward developing a consistent basis for some of the more

prominent engineering and geophysics/meteo models flows. It is necessary to

observe that:

At the twenty-first century massive computations are capable to bring so much even for

understanding, but there seems to be no indication that they are in competition with

asymptotics, both are useful and complementary.

Let me close this “Prologue” by a remark:

Quite often the modelling of stiff fluid flow problems may be found by various empirical

procedures or by an ‘ad hoc’ approach. But it seems me obvious that, the ultimate goal is to

find the mathematical key which explains, not only the success of the modelling, but the

validity and consistency of these procedures in practice during the numerical simulation �
The RAM Approach being obviously a well adequate consistent method for a such

realization!
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Chapter 1

NS–F Equations and Modelling: A French Touch

This Overview is a brief outline of the events related to my rather long “RAM

Adventure” during the years 1968–2009. In 1968–1969 my discovery of asymp-

totics and rational modelling of fluid dynamics problems was, for me, a revelation,

and the Rational Asymptotics Modelling (RAM) Approach to these problems,

governed by the Navier–Stokes–Fourier (NS–F) equations,1 has been my main

scientific activity during the last 40 years – the systematic, logical and well argued

consistent approach via asymptotics, in perfect harmony with my idea about

mathematically applied, but not ad hoc, theoretical researches in fluid dynamics,

without any modern abstract, sophisticated, functional analysis!

This Overview first presents a short account of my first contribution to RAM in

fluid dynamics, related to a justification of Boussinesq equations used in Chap. 1 of

the original, version of my doctoral thesis, written in Moscow during 1965–1966. I

then relate various events concerning my collaboration with Jean-Pierre Guiraud,

working on asymptotic modelling of fluid flows at the Aerodynamics Department

of ONERA2 during the 16 years up to 1986, which resulted in the publication

of 26 joint papers in various scientific journals. Finally, a few remarks are

presented concerning my preceding seven books (three in French and four in

English), published during the years 1986–2009, on modelling in Newtonian fluid

flows.

Below we use “Navier” equations in place of “Navier–Stokes incompressible”

equations. In fact, as main fluid dynamics equations we have Euler, Navier, and

NS–F equations. Concerning the so-called “Navier–Stokes (isentropic)” equations –

often used by mathematicians in their rigorous investigations – in reality these NS

equations are unable to describe any real fluid flows! Note also that in a RAM

1Concerning the term “Navier–Stokes–Fourier” equations used in this book – NS–F equations,

governing classical, Newtonian, viscous, compressible and heat-conducting fluid flows – it seems

to me that it is better adapted than the term commonly used (mainly by mathematicians),

“Navier–Stokes compressible” equations.
2 Office National d’Études et de Recherches Aérospatiales, Châtillon-92320 (France).

R. Kh. Zeytounian, Navier–Stokes–Fourier Equations,
DOI 10.1007/978-3-642-20746-4_1, # Springer-Verlag Berlin Heidelberg 2012
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Approach, the Euler (vanishing viscosity case) and Navier (low compressibility

case) equations are, in fact, derived consistently by limiting processes from NS–F

full equations – but this is not the case for the NS (isentropic) equations!

Concerning my “Soviet Adventure” of 1947–1966. . . In 1954 I graduated from

Yerevan State University with a Master of Sciences degree in pure mathematics (in

the class of Sergey Mergelyan3); after which, during 1955–1956, I worked in the

Institute of Water and Energy at the Armenian Academy of Sciences in Yerevan.

I then had the opportunity for serious study in theoretical fluid dynamics, and

in 1957 I chose dynamic meteorology as my main scientific research activity as

a Ph.D. student in the Kibel Department of the Hydro-Meteorological Centre in

Moscow.

Now, more than 50 years later, I am still proud to have been a student of Il’ya

Afanas’evich Kibel4 – an outstanding hydrodynamicist of the twentieth century

who was active and creative throughout his entire career. Unfortunately, his life was

too short. He died suddenly, at the age of 66, on 5 September 1970.

Mainly on the basis of my various publications in mesometeorology (linked with

the lee waves downstream of a mountain in a baroclinic atmosphere and also with

the free atmospheric local circulations above the various Earth sites) during the

years 1957–1966, in the Kibel Department of the Hydro-Meteorological Centre in

Moscow, in 1968 I had the opportunity to publishmyfirst course inmesometeorology

[1] for the engineering students at the École de la Météorologie in Paris.

In September 1966 I returned to Paris to write my thesis [2] on the basis of the

results of research (1961–1965) into the lee waves 2D (non-linear) and 3D (linear)

steady problems in non-viscous and adiabatic atmospheres, with the help of the

Boussinesq approximation. In 1969 I was awarded the degree of Docteur d’État es

Sciences Physiques by the University of Paris, which added to my Russian Ph.D. of

1960, from the University of Moscow and my SSSR Academy of Sciences Chief

Scientific Research Worker degree in hydrodynamics and dynamic meteorology,

obtained in 1964.

3 Sergey Nikitovich Mergelyan (1928–2008) was an Armenian scientist – an outstanding mathe-

matician, and the author of major contributions in Approximation Theory (including his well-

known theorem in 1951). The modern Complex Approximation Theory was based mainly on his

work (see, for instance, the book Real and Complex Analysis by W. Rudin; French edition,

Masson, Paris, 1978). He graduated from Yerevan State University in 1947, and in 1956 played

a leading role in establishing the Yerevan Scientific Research Institute of Mathematical Machines

(YerSRIMM). He became the first Director of this Institute, which today many refer to as the

“Mergelyan Institute”.
4 Il’ya Afanas’evich Kibel (1904–1970), Member of the SSSR Academy of Sciences, was one of

the leading Soviet scientist in the field of theoretical hydromechanics. He is famous as the founder

of the hydrodynamic method of weather forecasting, and for implementation of mathematical

methods in meteorology. See his pioneer monograph, An Introduction to the Hydrodynamical
Methods of Short Period Weather Forecasting, published in Russian in Moscow (1957), and

translated into English in 1963 (Macmillan, London). Some of his well-known works on the

meteo-fluid are published in Selected Works of I. A. Kibel on Dynamic Meteorology (in Russian,

GydrometeoIzdat, Leningrad, 1984).
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In the original version of my thesis (hand-written in Moscow during 1965–1966),

in Chap. 1 the Boussinesq approximate equations were derived in an ad hoc manner

(à la Landau – as in [3, }56]). However, Paul Germain (future juryman during my

thesis defence in March 1969) was unfavourable towards this method of deriving

Boussinesq approximate equations for convection in fluids, and I was obliged to

completely rewrite that chapter! Germain considered that it is possible to derive these

Boussinesq equations by an asymptotic rational/consistent process (but by what

method?), and in a letter5 written in Paris and dated 8 March 1968, he wrote that

“. . . I should understand the justification of our starting equations?”

1.1 My First Contribution to the RAM Approach

in Fluid Dynamics

This “justification problem” was for me a difficult challenge – 1 year before my

1969 thesis defence – and I was in an awkward situation! For some time I did not

fully understand the question in Germain‘s letter! Finally, however, I chose a

bastardized method via the so-called isochoric model equations, when the density

r is a conservative unknown function along the fluid flow trajectories in time–space

(t, x), such that

Dr=Dt ¼ 0; with D=Dt ¼ @=@t þ u � r; (1.1)

where ∇ denotes the gradient vector and u the velocity vector – this constraint

being often used in fluid dynamics when gravity plays an active role. This above

conservative condition on r is, in fact, an incompressible condition. In particular, it

is systematically considered in Yih’s monograph [4]; and see also the book by

Batchelor, [5], p. 75.

For u, r, temperature T and thermodynamic pressure p ¼ RrT, where R is the

thermally perfect gas constant, when we consider a non-viscous, compressible and

adiabatic atmospheric motion, we have the following Euler non-dissipative system

of three equations:

5 Paul Germain wrote to me (in French!): “J’ai pu regarder les feuilles que vous m’avez adressées

sur la mise en équation de votre problème. Je prends note du fait que vous ne passez plus par la

forme intermédiaire des équations de la convection qui figurait dans les documents que vous

m’aviez antérieurement donnés. Je ne suis néanmoins pas satisfait, car je ne vois toujours pas

comment est justifiée la cohérence de vos approximations et pourquoi, alors que vous supposer les

perturbations de vitesses petites, en particulier la quantité: u2 + w2 � U1
2, afin d’obtenir des

équations linéaires, vous ne linéarisez pas les conditions aux limites. Vous devez me trouver un

peu ‘tâtillon’. Mais si je dois faire partie du jury de votre thèse, c’est à titre de mécanicien des

fluides et comme tel, je souhaiterais comprendre le bien fondé des équations de départ. Or depuis

votre exposé au séminaire, j’éprouve toujours la même difficulté et les variantes que vous m’avez

proposées ne m’éclairent pas.”
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Dr=Dt þ rr:u ¼ 0; (1.2a)

DS=Dt ¼ 0; (1.2b)

r Du=Dt þrp þ gr ¼ 0: (1.2c)

For the specific entropy we have the relation:

S ¼ Cv log½p=rg�; with g ¼ Cp=Cv; (1.3)

the ratio of specific heats, and in (1.2c) the gravity force (with a measure g) is taken
into account

It is well known that an incompressible fluid motion is obtained (from a com-

pressible fluid motion) as a result of the following formal limiting “incompressible

process”:

Limis ¼ g ! 1 with Cp fixed: (1.4)

With (1.4), in place of Eq. 1.2b, according to (1.3), we recover the above

mentioned isochoricity condition (Dr/Dt ¼ 0) which leads, from the equation of

continuity (1.2a), to the usual incompressibility constraint:

r ¼ constant ) r:u ¼ 0:

Finally, in place of the Euler system of Eq. 1.2a–1.2c, with (1.3) – and as a

consequence of (1.4) – we derive for the limit isochoric functions, uis, pis, and ris,
the following simplified isochoric system of inviscid equations:

Dris=Dt ¼ 0; r:uis ¼ 0; (1.5a, b)

risDuis=Dt þrpis þ gris ¼ 0: (1.5c)

From (1.5a, b), r:uis ¼ 0, we have the possibility of introducing two stream

functions, c and w (as in [6]), such that in a 3D, steady case, @uis=@t ¼ 0,

@Sis=@t ¼ 0, and @ris=@t ¼ 0, we obtain the following three relations:

uis ¼ rc ^rw; (1.6a)

ris ¼ r� c;wð Þ; (1.6b)

1=2ð Þuis2 þ ðpis=risÞ þ g z ¼ I� c;wð Þ; (1.6c)

where z ( � x. k is directed above along the unit upward vector k) is the altitude,

and the two functions, r� c;wð Þ and I� c;wð Þ, are subject to a determination.
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In particular, for the lee-waves problem, over and downstream of a mountain, this

determination is performed via the boundary conditions at upstream infinity where,

in a simple case, an uniform horizontal flow is assumed given.

From Eqs. 1.6a–1.6c we derive (again, according to [6]) two scalar equations for

c and w :

ðr ^ uisÞ:rc ¼ @I�=@wþ ðpis=r�2Þ@r�=@w; (1.7a)

ðr ^ uisÞ:rw ¼ � @I�=@c� ðpis=r�2Þ@r�=@c: (1.7b)

If, now, uis
1 ¼ U1ðz1Þi is the speed (along the axis of x � x. i) far upstream

of the mountain, which is simulated by the equation z ¼ mh(x), then at x ! �1,

with h ð�1Þ � 0, the conditions are:

uis
1 ¼ U1ðz1Þ; vis1 ¼ wis

1 ¼ 0 ris
1 ¼ r1ðz1Þ; (1.8a)

c ¼ �
ðZ1

0

U1 zð Þdz ¼ c1ðz1Þ; (1.8b)

where uis
1 ¼ ðuis1; vis

1;wis
1Þ, and z1 being, therefore, the altitude of a stream

line in the basic non-disturbed two-dimensional far flow. In this particular, simple

case, (1.8a,1.8b), the second stream function at infinity upstream is simply the plane

(x, z), and w1 � y ¼ const.

We will suppose also, implicitly, that the solution of the considered lee-waves

problem ought to be uniformly bounded at all points of the infinite plane (x, z). We

assume also that c ¼ 0 determines the wall of the mountain, and in a such case:

I� ¼ B cð Þ and r� ¼ R cð Þ (1.9a, b)

and in place of two Eqs. 1.7a, 1.7b, with the conditions (1.8a,1.8b), we derive a

three-dimensional generalization of the 2D equation of Long, considered in his

well-known paper [7]:

r ^ ½rc ^ rw�:rc ¼ 0; (1.10a)

r ^ rc ^ rw½ �:rw ¼ � U1 dU1=dcð Þþ 1=2ð Þ dlogR=dcð Þ rc ^ rwð Þ2

� dlogR=dcð Þf 1=2ð ÞU12 þ gðz � z1Þg:
(1.10b)

In the case when (far upstream of the mountain):

U1 ¼ ðU1Þ0 ¼ const ) c1ðz1Þ ¼ � ðU1Þ0z1; (1.11a)
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r1ðz1Þ ¼ r1 0ð Þexp½�bz1�; (1.11b)

and if we introduce (see (1.12)) the non-dimensional quantities (H is a characteristic

meso-length-scale)

x ¼ x=H; z ¼ z=H;C ¼ c=HðU1Þ0;X ¼ w=H; (1.12)

we obtain, as in our thesis [2], in place of Eq. 1.10b, the following dimensionless

equation:

r ^ ½rC ^ rX�:rX þ DðCþ zÞ ¼ l½ðrC ^ r XÞ2 � 1�; (1.13)

where

D ¼ bH2½g=ðU1Þ02� and l ¼ bðH=2Þ; (1.14a)

and we observe that the following relation

l=D ¼ FrH
2 (1.14b)

is true, where FrH
2ð¼ ðU1Þ02= gH½ �Þ is the square of a Froude number.

But, FrH
2 � 1 when H � ðU1Þ02=g, and this is indeed the case for the usual

meteo data.

The relation (1.14b) shows that the term proportional to l, in the main Eq. 1.13

must be small ðl � 1Þ, because it is necessary (in (1.13)) that

D ¼ l=FrH2 ¼ O 1ð Þ; (1.15)

as a ratio of two small parameters.

The parameter D , being the main lee-waves parameter is the so-called Dorodnit-

syn–Scorer parameter.

The relation (1.15) is, in fact, a similarity rule between two small parameters: l
and FrH

2 – the use of (1.15) being a key step in the derivation of our leading-order

consistent Eq. 1.17 below.

Rigorously, the term proportional to l can be neglected, in a first approximation,

relative to the term with D , which is assumed O(1), only when

b � 2=H; (1.16)

and, in such a case, in leading-order approximate model Eq. 1.17, with subscript ‘B’:

r ^ ½rCB ^ rXB�:rXB þ DðCB þ zÞ ¼ 0; (1.17)
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where for XB we have as the equation (according to (1.10a)):

r ^ ½rCB ^ rXB�:rCB ¼ 0; (1.18)

The effect of the compressibility is present only in the last term of (1.17) pro-

portional to D .

This above approximation is just the well-known Boussinesq approximation of

1903 [8]: “The derivatives of r1ðz1Þ can be neglected except when they intervene
in the calculation of the force of Archimedes.”

In particular, if we assume (2D case) that:

XB � Z ¼ y=Hð Þ and CB � cpðx; zÞ; (1.19)

we derive, from (1.17), a linear Helmholtz (à la Long [7]) equation:

@2cp=@x
2 þ @2cp=@z

2 þ Dðcp þ zÞ ¼ 0: (1.20)

But, if (1.20) is a linear equation (derived without any linearization!) the slip

boundary condition, along the wall of our mountain, remains non-linear – the slip

condition being down a curvilinear surface of the mountain,

cpðx; z ¼ k h�ðxÞÞ ¼ 0; (1.21a)

with

k ¼ m=H (1.21b)

and

h�ðxÞ � hðHxÞ: (1.21c)

The above results are, in fact, the main part of my first theoretical contribution to

the RAMApproach in fluid dynamics, obtained during the rewriting of my Doctoral

thesis in Paris during 1968–1969.

I do not see, in reality, whether Paul Germain was completely satisfied with my

new derivation. But however that may be, my efforts in writing a new Chap. 2 for my

thesis were successful, and on 10 March 1969, after the defence of this thesis in the

Faculty of Sciences of the University of Paris, I obtained the degree of Docteur d’État

es Sciences Physiques – Paul Germain and Jean-Paul Guiraud being members of my

thesis jury, with, as President of the Jury, Paul Queney,6 Professor at the Sorbonne.

6 The first theoretical investigations concerning 3D lee-waves problems in linear approximation

was, in fact, carried out by Paul Queney. On the other hand, an excellent synthesis of theoretical

developments on relief (lee) waves will be found in WMO Technical Note: “The Air flow over

mountains”, N	 34, Geneva, 1960, by P. Queney et al.
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In the last chapter of this book (in Sect. 9.1) the reader can find a more elaborate

RAM Approach to fluid dynamics, for the 2D steady lee-waves problem, in the

framework of low-Mach-number fluid flow (hyposonic) theory, which leads to a

family of consistent, limiting leading-order model equations.

Concerning the full justification of the Boussinesq assertion and a satisfactory

answer to Paul Germain’s question – this justification of the Boussinesq approxi-

mate equations was for 5 years a major challenge for me, and I devoted consider-

able effort to the resolution of this problem.

Only in 1973, in the framework of low-Mach-number asymptotics, taking into

account the existence of a hydrostatic reference state (function only of the altitude),

did I well understand the way for a consistent non-contradictory RAM Approach.

In 1974 [9] these Boussinesq approximate equations for a viscous and non-

adiabatic dissipative atmospheric motions were derived from the full unsteady

NS–F dissipative equations.

To describe the atmospheric motions, which represent the departure from the

hydrostatic reference state, I have considered the perturbations of pressure, density

and temperature (these atmospheric perturbations being usually very small, relative

to the hydrostatic reference state) and have rewritten (without any simplifications)

the NS–F atmospheric equations relative to these thermodynamic perturbations and

velocity vector.

This derived, very awkward, dimensionless system of equations is, in fact, a new

(exact) form of the NS–F classical atmospheric equations well adapted for the

application of our RAMA theory. In Chap. 4 we discuss a detailed RAMA of these

Boussinesq approximate equations, inspired by my “Boussinesq’s Centenary Anni-

versary paper” [10] of 2003, but for the sake of simplicity, only in the framework of

a Euler non-viscous, compressible and adiabatic system of Eq. 1.2a–1.2c – this

derivation being an instructive test problem for the formulation of our key steps in

Chap. 6, devoted to the mathematics of the RAMA.

1.2 My Collaboration with Jean-Pierre Guiraud

in the Aerodynamics Department of ONERA

In September 1967, thanks to the recommendation of Jean-Pierre Guiraud, I began a

new career as a research engineer in the Aerodynamics Department of the Office

National d’Études et de Recherches Aérospatiales, in Chatillon, near Paris. After

working at ONERA for 5 years, in October 1972 I was – thanks to my Doctoral

thesis (March 1969) – appointed Titular Professor of Fluid Mechanics at the

University of Lille 1 – a position which I held until 1996.

I continued part of my theoretical researches in fluid-flow modelling as a

‘Collaborateur Extérieur’ at ONERA, and during 16 years there, from 1970 to

1986, for a full day once a week I worked with Jean-Pierre Guiraud in exchanging

ideas and envisioning asymptotic modelling for various aerodynamics, stability/
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turbulence and meteo problems. As a result of this collaboration, throughout

this period we jointly published 26 papers in various scientific journals. (See, for

instance, in the References, our 1986 paper [11], and references to other papers

published either jointly or separately.) These works (published during 1971–1986)

are devoted, with more or less success, to the application of the ideas that we

discussed concerning various fields in fluid dynamics – all being motivated by the

need for solving or understanding the basis of the solution of technological and

geophysical problems involving fluid flows. These problems are related to:

Vortex flows in rotating machines (taking into account that the blades in a row are

usually very close).

Rolled vortex sheets (in a region where the contiguous branches of the rolled sheet

are so close to each other that they are very difficult to capture by numerical

simulation).

Hydrodynamic stability (in a weakly non-linear domain, through perturbation

techniques – the underlying mathematical theory being the so-called bifurcation

theory).

Atmospheric flows (see Chap. 9 in this book, and our monograph, Asymptotic
Modeling of Atmospheric Flows [12], published in 1990).

Flow at low Mach numbers (see our Topics in Hyposonic Flow Theory, Lecture
Notes in Physics, vol. 672, 2006 [13]).

It was an extremely stimulating period of scientific research, for me. As far back

as at the end of 1970 years it is evident that asymptotic techniques provide very

powerful tools in the process of constructing working models for fluid dynamics

problems, which are stiff, from the point of view of numerical analysis, coupled

with a simulation via a powerful super-computer.

My approach differs from Van Dyke’s exposition in [14], in the sense that:

“Computational fluid dynamics is now a quite mature discipline, and for some time

the growth in capabilities of numerical simulation will be dependent on, or related

to, the development of rational asymptotic modelling approach – RAMA.” If such

is the case, then a simple definition of our RAMA is: “The art of a strongly

argumentative, consistent, non-ad hoc and non-contradictory modelling assisted

by the spirit of asymptotics.”

It is my opinion that RAMA will remain for many years, or even decades – a

quite powerful tool in deriving mathematically consistent models for numerical/

simulation fluid research. By “mathematical”, I mean that the models derived by

RAMA, the approximate consistent models, under consideration, should be

formulated as reasonably well-posed initial and/or boundary value problems, in

place of the starting full NS–F extremely complex and stiff problems (as, for

example, turbomachinery flows, which are arguably among the most complicated

known to man and are of great technological importance – see Sect. 7.1).

I again observe that our RAMA is an extremely worthwhile objective, because

most of the relevant engineering computations are based on relatively ad hoc

models that are rife with internal inconsistencies.
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1.3 A Few Remarks Concerning My Preceding Books

on Modelling in Newtonian Fluid Flows

Concerning the joint efforts of Guiraud and myself in our tentative writing of a book

on the RAMA in fluid dynamics, I must say first that in 1977, after several attempts

to persuade him, we both worked intensively, up to 1982, on a hand-written (in

French) manuscript entitled “The laminar flows at high Reynolds numbers: an essay

on the asymptotic modelling of Newtonian dynamics of fluids.” The possibility of

publication, after a rewrite in English, became a reality – at least for me!

Unfortunately, at that moment our opinions diverged concerning the opportunity

of such publication of our finished manuscript in its 1982 form. Guiraud wished to

pursue a deeper investigation of some delicate and difficult questions requiring time

and additional research. Contrary to Guiraud, I was of the opinion that further

investigations would be of no benefit and, in particular, would not provide anything

else to support our initial objective: to show the effectiveness of our RAMA!

Finally, in 1986 and 1987 I published alone (but by common consent) a course

in two volumes, in French, in the Springer series Lecture Notes in Physics (LNP):

Les Modèles Asymptotiques de la Mécanique des Fluides, I [15] and II [16] – more

or less inspired by the manuscript produced by myself and Guiraud in 1982.

As Titular Professor at the Université de Lille 1, beginning in 1972, I systemati-

cally used, throughout almost 10 years, various parts of our manuscript in my

teaching of theoretical fluid mechanics as a first Course and second Course,

respectively, for final-year (M.Sc.) undergraduate students and post-graduate

research workers, and for students preparing a doctoral thesis.

In the beginning, in 1977, my goal was, in fact, a monograph devoted to RAMA

for Newtonian fluid flows, and I had in mind the derivation of various models

corresponding to parameters (not only to Reynolds number) characterizing various

(high or low) physical effects – viscosity, compressibility, heat conduction, gravity,

Coriolis force, unsteadiness, geometrical constraints, and so on.

The above-mentioned two-volume Course was my first experience in opening a

new way into the difficult field of theoretical (analytical) fluid mechanics via the

NS–F equations, offering fresh ideas together with a first systematic presentation of

asymptotic approach in fluid dynamics for both students and young researchers. In a

short critical review (J. Fluid Mech., 1991, vol. 231, p. 691), the following opinion

was expressed concerning this two-volume Course:

The text is in French. Equations are hand-written but very clearly done. In many of the areas

covered in these two volumes there is a conspicuous lack of suitable expository material

available elsewhere in the literature, and Professer Zeytounian’s notes are to be welcomed

for filling these gaps until fuller and more specialized accounts appear in book form.

In addition, the following appeared in Mathematical Reviews, 1988:

A reader having acquired a practical knowledge of the asymptotic methods which are

presented and used here may certainly benefit by the advanced material about

Navier–Stokes equations provided in the main body of these two volumes.

10 1 NS–F Equations and Modelling: A French Touch



Later, in 1994, a third volume was published, also in French: Modelisation
asymptotique en mécanique des fluides newtoniens [17] – and here it seems

judicious to quote several sentences extracted from a review (in Appl. Mech.
Rev., vol. 49(7), July 1996, p. 879) by J.-P. Guiraud:

The purpose of this book is to present, through extensive use of dimensional analysis and

asymptotic calculus, a unified view of a wide spectrum of mathematical models for fluid

mechanics . . . Usually, adequacy of a mathematical model is evaluated a priori through

physical insight, experience, and inquiries about the topic. Here, the reader is proposed to

become, on his own, an expert in adequacy, by systematic use of asymptotic approximation.

Although a rather large spectrum of books on fluid mechanics and asymptotic methods may

be found, it seems to this reviewer that the present one is rather exceptional by the extent

and logical organization of the material . . . A fascinating aspect is that the reader is led by

the hand through a jungle of very different mathematical models, including Euler and

Navier for incompressible fluid; Prandtl for boundary layer; Stokes, Oseen, and Rayleigh

for various viscous effects; the usual regimes of aerodynamics, Boussinesq for the atmo-

sphere and the ocean, primitive equations and quasi-geostrophic approximation for meteo-

rology, gravity waves, amplitude equations of KdV or Schrodinger type, and low Mach

number flows, including acoustics . . .Modelisation asymptotique en mécanique des fluides
newtoniens is a valuable book which is recommended both to individuals and libraries for

the precise purpose indicated in the second sentence of this review. In principle, it is self-

contained and might be a reference for students, engineers, and researchers who master

computational aspects but want to be able to assess what kind of approximations are

involved in the equations, as well as initial and boundary conditions with which they

struggle.

Concerning, more precisely, the application of our RAMA to atmospheric

motion, after my 1975 survey lecture,7 published in 1976 [18], I decided to write

a monograph devoted entirely to asymptotic modelling of atmospheric flows

(see [12]), and in 1985 a manuscript (written in French) was ready. This manuscript

was accepted by Prof. Dr. W. Beiglb€ock, of Springer-Verlag, Heidelberg, for

publication in English. Unfortunately, the translation into English, by Lesly Bry,

is infelicitous!

I think that my Meteorological Fluid Dynamics [19] is good preparation for the

reading of [12], which was in fact published a little earlier than [19]. Here again,

I quote part of a review of [12] (SIAM Review, vol. 33(4), 1991, pp. 672–3) by

Huijun Yang (University of Chicago):

The present work is not exactly a ‘course’, but rather is presented as a monograph in which

the author has set forth what are, for the most part, his own results; this is particularly true

of Chaps. 7–13. (quoted from the Preface of this book):’In the book, the author viewed

meteorology as a fluid mechanics discipline. Therefore, he used singular perturbation

methods as his main tools in the entirety of the book . . . The book consists of the author’s

more than 25 years work.’ In the 32 references to his own work, fewer than one third were

published in English, with the rest in Russian or French. Throughout the book, the reader

can strongly feel the influence of Soviet works on the author. However, the author does

7 Entitled La Météorologie du point de vue du Mécanicien des Fluides, written for the XIIth

Symposium on Advanced Problems and Methods in Fluid Mechanics, Bialowieza (Poland), 8–13

September 1975.

1.3 A Few Remarks Concerning My Preceding Books on Modelling 11



have his own character. The issues raised in the book, such as the initialization (initial

layer) boundary layer treatment, and well-posedness and ill-posedness of the system, are

very important problems facing researchers today in atmospheric sciences and other related

sciences. The reader will find some valuable information on these issues . . . The mathe-

matically consistent treatment of the subject does give this book a unique place on shelves

of libraries and offices of researchers . . . This book is very different from recent books on

the market [for example, Holton [20], Gill [21], Haltiner and Williams [22], Pedlosky [23],

and Yang [24]]. I recommend that researchers in atmospheric dynamics and numerical

weather prediction read this book to have an alternative view of deriving atmospheric flow

models. Researchers in theoretical fluid mechanics might also be interested to see how

singular perturbation methods can be used in atmospheric sciences. The book may be used

as supplemental material for courses like numerical weather prediction or atmospheric

dynamics. However, I do not think it is a suitable textbook for a regular class: as the

author said in his Preface. ‘I am well aware that this book is very personal – one might even

say impassioned.’

This review seems rather favourable, but this does not seem to be the case with

P. G. Drazin’s review (Journal of Fluid Mechanics, 1992, 242):

The author acknowledges that dynamic meteorology is too large a subject for him to

attempt to cover completely. He ‘has set forth what are, for the most part, his own results’

in accord with his ‘conception of meteorology as a fluid mechanics discipline which is in

a privileged area for the application of singular perturbation techniques.’ He applies

the method of multiple scales or the method of matched asymptotic expansions to any

equations he can find, systematically reviewing his own and his associates’ extensive

research. So it is a very personal view of meteorology, covering some areas of geophysical

fluid dynamics with a formidable battery of notation. The nature of the subject demands a

large and complex notation in any rational treatment. But the notation will allow only a few

to benefit from this book. It is a barrier which I found hard to cross, not having the time and

will to work through the book line by line, as a result with which I am familiar was difficult

for me to follow. The approximations of dynamic meteorology are mostly singular.

Nonetheless, their essentials are well understood by meteorologists now, albeit in a rough

and ready way, and meteorologists are unlikely to be [influenced] by Zeytounian’s

approach. Yet the approximations of meteorology are subtle and deserve a more rational

development than is commonly understood. This is the achievement of the book. The

author derives many equations systematically, albeit not rigorously, from the primitive

equations, rather than solving equations governing particular problems. For all these

reasons, I feel that the book will be studied intensively by a few specialists but neglected

by others.

Obviously, the last two sentences of this critical review are very controversial –

especially the assertion of ‘albeit not rigorously’. It seems clear that for Drazin, my

“French touch” is not to everyone’s taste! Indeed, the publication of this monograph

in 1990 was possibly premature, despite the publication, in 1985, of my survey

paper [25], Recent Advances in Asymptotic Modelling of Tangent Atmospheric
Motions, devoted to an asymptotic rational theory of the modelling of atmospheric

motions in a ‘flat earth’ closely related with the so-called b–plane approximation.

In [12], [19], and [25] my clear purpose was to initiate a process which does not

seem to have sufficiently attracted the attention of scientists. This process involves

the use of the RAMA for carrying out models; that is, for building approximate

simplified (but consistent) well-posed (at least from a fluid dynamician’s point of
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view) problems based on various physical situations and concerned with one or

several high or low parameters.

I do not, of course, affirm that this is the only method, nor even the most efficient

one, for deriving such problems in view of a numerical/computational simulation.

I do, however, feel that when such a procedure is feasible it should be undertaken.

As a matter of fact, the application of this approach makes it possible, in principle,

to improve, at least, a second-order model problem obtained from the NS–F full

problem, used by advancement in the associated asymptotic expansion.

After 1996 – having retired from the University of Lille 1, and with more time to

write – I decided to return to my first (1977) idea concerning a monograph devoted

to RAMA for Newtonian fluid flows and the derivation of models corresponding to

various parameters (not only to Reynolds number) characterizing various (high or

low) physical effects. I (partly) realized this objective in 2002 with my monograph

[26] Asymptotic Modelling of Fluid Flow Phenomena – the first book in English

devoted entirely to asymptotic modelling of fluid flow phenomena, dealing with the

art of asymptotic modelling of Newtonian laminar fluid flows. In Chaps. 2–12 of

this work I consider several important topics involved in the accomplishment of my

objective in determining how simplified rational consistent asymptotic simplified

models can be obtained for the most technologically important fluid mechanical

problems.

According to Marvin E. Goldstein (of NASA Glenn Research Center) in his

detailed, scrupulous, and rigorous review (SIAM Review, vol. 45(1), pp. 142–146,

2003): “There are enough of the selected topics that accomplish the author’s objective

to make this book an important contribution to the literature.” Goldstein also writes:

Applied mathematicians have always found fluid mechanics to be a rich and interesting

field, because the basic equations (i.e., the Navier–Stokes equations) have an almost

unlimited capacity for producing complex solutions that exhibit unbelievably interesting

properties, and because the dimensionless form of these equations contains a parameter

(called the Reynolds number) which is usually quite large in technologically and geophysi-

cally interesting flows. This means that asymptotic methods can be used to obtain appro-

ximate solutions to some very interesting and important flow problems. These solutions

usually turn out to be of non-uniform validity (i.e., they break down in certain regions of the

flow), and matched asymptotic expansions have to be used to construct physically mean-

ingful results. However, advances in computer technology have led to the development of

increasingly accurate numerical solutions, and have thereby diminished the interest in

approximate analytical results. But real flows (especially those that are of geophysical or

engineering interest) are extremely complex and exhibit an enormous range of length and

time scales whose resolution will probably remain well beyond the capabilities of any

computer that is likely to become available in the foreseeable future. So simplification and

modelling are still necessary, not only to meet the engineer’s requirement for generating

numbers but also for developing conceptual models that are simple enough to be analyzed

and understood. The asymptotic scaling techniques and the reduced forms of the general

equations that emerge from the matched asymptotic expansion process (as well as

from other singular perturbation techniques) provide a rational and systematic method for

obtaining the necessary simplified flows model, which, in most cases, still have to be solved

numerically. The author states that the goal of this book is to promote the use of asymptotic

methods for developing simplified but rational model for the Navier–Stokes equations

which can then be solved numerically to obtain appropriate descriptions of the flow.
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This is an extremely worthwhile objective, because most of the relevant engineering

computations are based on relatively ad hoc models that are rife with internal incon-

sistencies. To my knowledge, this is the first book devoted to accomplishing the author’s

stated objective, and it is, therefore, unfortunate that it is not as well executed as it could be.

To mitigate this last critical sentence, however, he continues:

However, there are enough of the selected topics that accomplish this objective to make this

book an important contribution to the literature. It contains an excellent chapter (Chap. 11) in

which the classical model equations for large-scale atmospheric motion are derived in a fairly

rational fashion. The author also devotes a full section (Sect. 6.6) to turbomachinery flows,

which are arguably among the most complicated known to man and are of great technological

importance. It is remarkable that he was able to make some progress toward developing an

asymptotic basis for some of the more prominent engineering models of these flows.

Goldstein concludes: “It is this reviewer’s hope that the deficiencies in this work

will encourage others to write new and improved books with similar themes” – but

unfortunately, it seems that for the present this is not the case! On the other hand, in

2006 and 2009 Springer published my two monographs, Topics in Hyposonic Flow
Theory [13], devoted to hyposonic (low Mach numbers) flows, and Convection in
Fluids: A Rational Analysis and Asymptotic Modelling [27], mainly related to the

well-known Bénard convection problem in a layer of weakly expansible liquid

heated from below.

Concerning the first of these, a considerable amount of stimulation and encour-

agement was derived from my collaboration with Jean-Pierre Guiraud, who, over a

period of 20 years, has played an important role in asymptotic modelling of the

various low-Mach-number flow problems presented in that book. The reader should

take into account that is the first book devoted to hyposonic flow theory, and it is the

author’s hope that the various unavoidable ‘deficiencies’ (noted by Goldstein in his

review of [13]) will persuade others to work on similar themes.

On the other hand, in [27] the main motivation was a rational analysis of various

aspects (in particular, the influence of the viscous dissipation, free surface and

surface tension) of the Bénard convection (heated from below) problem. It presents

a careful investigation of three significant approximate models (see, for instance,

Chap. 8 in the present book) related to the Bénard (1900) experiments, by which he

discovered his well-known Bénard cells! It is evident that Professor Manuel G.

Velarde was influential when I wrote my book on convection in fluids [27], as I

benefited greatly from our collaboration and many discussions relating to

Marangoni thermocapillary convection during my sojourn at the Instituto Pluridis-

ciplinar UCM de Madrid in 2000–2004.

1.4 Conclusion

More than 50 years ago, with the works of Kaplun, Kaplun and Lagerstrom, and

Proudman and Pearson, asymptotic techniques provided a new impetus for research

in theoretical fluid dynamics. Twenty years later, a much more powerful revival
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was possible due to the dramatic influence of high-speed computers and the

numerical analysis and simulation of fluid flow problems. The survey paper by

Birkhoff [28] includes, through a series of case studies, a detailed assessment of the

status, development, and future prospects of numerical/computational fluid

dynamics.

During the early times, asymptotic techniques were mostly used in order to

derive approximate solutions in closed form. Perhaps of more significance for the

progress of understanding and also of research, however, was the use of asymptotic

techniques in order to settle, on a rational basis, a number of approximate models

which much earlier were often derived by ad hoc non-rational procedures. One of

the most well-known examples is Kaplun’s celebrated paper on boundary-layer

theory, which provided a firm theoretical basis for some 50 years of boundary-layer

research.

From this early example it is clear that my 1977 idea, relative to asymptotic

techniques as a well-suited and invaluable tool for the derivation of mathematically

consistent models (from full fluid dynamics equations – NS–F equations) which are

amenable to numerical treatment rather than for obtaining closed form solutions,

was a perspective of scientific activity in interaction with numerical simulation –

even though, in the 1970s, numerical fluid dynamics was almost non-existent due to

the lack of high-speed computers.

It is now evident that asymptotic techniques serve as very powerful tools in

the process of constructing rational consistent mathematical simplified models

for problems which are stiff, from the point of view of numerical analysis. Here,

Chap. 6 is devoted to the mathematics of the RAM Approach, which seems a good

basis for a practical use of this RAMA in simulation/computation via high-speed

computers.

As a matter of fact J. P. Guinaud, who read a large part of the Chaps. 1 to 6 of the

present book suggest me to quote what follows: “While having been absent from

the Community of fluid mecanicians fifteen years from now, it was a pleasure for

me to read the report by Zeytounian, of a long coworking with him. It is mere

justice to mention that, during this active collaboration, a number of ideas were

initiated by Zeytounian. My main contribution was the result of ten years of

struggle with asymptotics before I had the good fortune to meet Zeytounian.” A

significant contradiction is obvious in the scientific activity of J. P. Guinaud. He

never published any book whilst having written a number of documents,

corresponding to many courses he teached manuscripts which were much more

carefully written than simple notes to be distributed for the students. In particular,

the Guirand Notes (“Topics in hypersonic flow theory”, Department of Aeronautics

and Astronantics, Stanford University; SUDAER n	 154, may 1963, Stanford,

California, USA) are Published in Russian by MiR, Moscow Editions, as a book

in 1965.
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Chapter 2

Newtonian Fluid Dynamics as a Mathematical –

Physical Science

There are two mathematical–physical descriptions of fluid dynamics.1 The first of

them is a microscopic description, from the Boltzmann equation for the (one-

particle) distribution function f ðt; x; xÞ:

@f=@tþ x:rf ¼ 1=Knð ÞQ f ; fð Þ;

where f ðt; x; xÞ is precisely the density probability of finding a molecule at the

space-position x (at the time t), with the velocity x. The parameter Kn in the

Boltzmann equation is the Knudsen number, which is the ratio of the mean free

path (between collisions of molecules – a microscopic reference length, l�) and a

typical (macroscopic) reference length, L�, of the classical continuum theory,

which is the ratio of Mach (M) and Reynolds (Re) numbers:

Kn ¼ M=Re;

where M ¼ U�=c� is the constant Mach (dimensionless) number, based on the

reference macroscopic velocity U� and the speed of sound c�, that characterizes the
compressibility effect. The parameter Re ¼ U�L�=n� is the constant Reynolds

(dimensionless) number that characterizes the viscosity (via the kinematic viscosity

coefficient n�) effect.

1 In my 2001 review paper [29] – written by a fluid dynamicist for fluid dynamicists – the curious

reader can find a contribution concerning the many theoretical mathematical investigations of

Navier–Stokes–Fourier problems. My intent was to extract from the huge literature the basic results,

ideas, and goals of this currently wide activity and to present the results to the readers of Applied
Mechanical Review. I am sure that rigorous mathematicians will find in this paper many

shortcomings, non-rigorous formulations, and so on. I think, however, that such a paper will

stimulate further thinking by engineers and applied scientists, including some exchange of opinions,

and so on, and that it is therefore needed. The distance between theoretical mathematicians and

applied mathematicians and engineers has become too large! I hope that both old and new

investigators interested in Newtonian fluid flow problems might learn much from it.

R. Kh. Zeytounian, Navier–Stokes–Fourier Equations,
DOI 10.1007/978-3-642-20746-4_2, # Springer-Verlag Berlin Heidelberg 2012
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The right-hand side of the above Boltzmann equation, the collision operator

Q, is typical of kinetic theory of gases in that it preserves mass, momentum, and,

namely:

ð
cQdx; ¼ 0;

where c ¼ ð1; x1; x2; x3; xj j2Þ is a five-component (the so-called collisional

invariants) vector. For a modern exposition of the kinetic theory of gases (dilute

gas) see Cercignani, Illner, and Pulvirenty, 1994 [30].

The second continuum description is linked with the macroscopic length scale

(which is the real scale for applications in fluid flows), and is governed by the three

conservation equations of classical continuummechanics: principle of conservation

of mass (assuming that the fluid possesses a density function r t; xð Þ), principle of

conservation of linear momentum (adopting the stress principle of Cauchy; see

Sect. 2.3.1), and the conservation of energy (we postulate that the total energy of a

volume – the sum of its kinetic energy and its internal energy – is conserved; see

Sect. 2.3.3).

The resulting three equations of continuum mechanics, which proceeds on the

assumption that a fluid is practically continuous and homogeneous in structure (see,

Serrin, 1959 [31]) are:

Dr=Dt þ rr: u ¼ 0;

rDu=Dt ¼ rf þr:T;

rDE=Dt ¼ T : D� divq;

where u is the velocity vector, f is the extraneous force per unit mass (a known

function of position x and time t), T is the Cauchy stress tensor, E is the specific

internal energy, q is the heat flux vector, and the term T :D, in the energy equation

for E, is a “dissipation” term involving the interaction of stress and deformation

(second-order tensor D). We observe that T :D stands for the scalar product TijDij

of two second-order tensors (dyadics), and Tij and Dij are, respectively, the com-

ponents of T and D.
The problem of the derivation of the fluid dynamic equations (derived from

above three continuum mechanics equations, with Cauchy stress tensor T and the

heat flux vector q, due to Navier–Stokes and Fourier constitutive equations – see

Sects. 2.3.2 and 2.3.3) from the Boltzman equation for small Knudsen numbers

(Kn # 0) is shortly expounded in Sect. 5 of our review paper [29], where the reader

can find various pertinent references concerning this fluid dynamics limit of kinetic

equations, initiated by Hilbert in 1912.
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2.1 From Newton to Euler

Sir Issac Newton, English mathematician and physicist, was the greatest single

influence on theoretical physics until Einstein. In his major treatise, Philosophia
Naturalis Principia Mathematica (1687) [32] he presented a mathematical descrip-

tion of the laws of mechanics and gravitation, and applied this theory to explain

planetary and lunar motions. In the Second Law we read: “The body moves in such

a way that at each moment the product of its acceleration vector by the density is

equal to the sum of certain other vectors, called forces, which are determined by the

motion taking place.” That is:

r Du=Dt ¼ rg� internal force per unit volume: (2.1)

A second part of Newton’s Principia is related to the conservation of mass: “To

each small solid body can be assigned a positive number m, invariant in time, called

its mass.” That is:

D=Dt

�ð
V

rdV
�

¼ 0: (2.2)

In (2.1), u is the velocity vector, g is the gravitational force per unit mass, and r
is the density. The (Cartesian) components of the nabla,∇, operator, in material (or

substantial) derivative

D=Dt ¼ @=@t þ u:r;

are @=@xi; i ¼ 1; 2; 3, where the time is denoted by t, and x ¼ ðx1; x2; x3Þ is the
position vector.

In (2.2), dV is a volume element in the neighbourhood of the point P, and to this

volume element will be assigned a mass rdV.
We observe that D/Dt is related to the Euler rule of differentiation, and t, x is the

Euler time–space variable. To express (2.2) in the form of a differential equation,

the differentiation indicated in this equation is carried out by transforming the

integral suitably. In this case we derive the so-called equation of continuity (this

derivation is, in fact, due to Euler in 1755 [33]):

Dr=Dt þ rr:u ¼ 0: (2.3)

This (compressible) equation of continuity (2.3) remains unaltered when viscos-

ity is admitted.

2.1.1 Eulerian Elastic Fluid

In reality, fluid dynamics was first envisaged as a systematic mathematical–

physical science in Johann Bernoulli’s Hydrodraulics (1737) [34], in Daniel
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Bernoulli’s Hydrodynamica (1738) [35], and also in D’Alembert Traité de
l’Équilibre et du mouvement des fluides (1744) [36]. However, the fundamental

ideas expounded in these books were formulated mathematically as partial differ-

ential equations in an epochal paper by Euler (1755) [33] which firmly established

him as the founder of rational fluid dynamics. Nevertheless, he considered only

non-viscous (inviscid) fluid flows with the pressure a function only of the density (a

so-called isentropic/barotropic fluid flow – the fluid being an elastic fluid). We

observe that an inviscid fluid is one in which it is assumed that the internal force

acting on any surface element dS, at which two elements of the fluid are in contact,

acts in a direction normal to the surface element. At each point P (with coordinates

xi, i ¼ 1, 2, 3) the stress, or internal force per unit area, is independent of the

orientation (direction of the normal) of dS, and the value of this stress is called the

pressure, p, at the point P. Therefore, the internal force per unit volume, appearing

in Newton’s equation (2.1), has xi – component ð�@p=@xiÞ, i ¼ 1, 2, 3. As a con-

sequence, for an inviscid (non-viscous–Eulerian) fluid we determine, from (2.1),

the classical Euler equation of motion (momentum equation):

rDu=Dt ¼ rg�rp: (2.4)

Equations 2.3 and 2.4, which express Newton’s principles for the motion of

an inviscid fluid, are usually referred to as the Eulerian fluid flow (compressible)

equations, and include one vector equation (2.4) and one scalar equation (2.3) for u,

r and p (five unknowns).

It follows that one more equation is needed in order that a solution of the system

of Euler equations be uniquely determined for given initial and boundary condi-

tions. According to Euler, if we add to Eq. 2.3 and 2.4 the following specifying

equation:

p ¼ pðrÞ (2.5)

which gives the relation between the pressure and the density, we shall have five

equations (a closed system) which include all the theory of the motion of fluids.

By this formulation, Euler believed (255 years ago!) that he had reduced fluid

dynamics, in principle, to a mathematical–physical science; but it is crucial to note

that, in fact, Eq. 2.5 is not an equation of state, but specifies only the particular type

of motion (so-called barotropic) under consideration, and in this case the fluid is just

called an elastic fluid.

In my book (Zeytounian, 2002) [37], the reader can find a theory and

applications of non-viscous fluid flows, and in the next chapter, devoted to a

discussion of various general models derived from Navier–Stokes–Fourier

equations, we obtain, for large Reynolds number Re � 1 – as a vanishing viscosity

limit – the full unsteady Euler compressible non-viscous adiabatic and baroclinic

equations for a thermally perfect gas (a trivariate fluid). (Concerning the NS–F

equations see Sect. 2.3.)
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These general models very often form the basis of various chapters in fluid

dynamics treatises. It is obvious, therefore, that these treatises may be organized

through some models which are best obtained by asymptotic modelling. As an

example we mention the case of inviscid flows which are often considered as a

model, used from the outset, and need to be embedded in the more general model of

slightly (vanishing) viscous (laminar) or with slight friction (turbulent) flow,

to which asymptotic modelling is applied. Incompressible flows are seldom con-

sidered as flow at small Mach numbers – which may lead to almost nonsensical

conclusions, as when one deals with incompressible aerodynamics, because phe-

nomena such as sound produced by quite low-speed flow cannot be understood

other than by low-Mach-number (hyposonic) aerodynamics.

2.1.2 From Adiabaticity to Isochoricity

In many cases the specification of the type of flow is given in thermodynamic terms.

The most common (and rather naive) assumption in the study of compressible fluids

is that no heat output or input occurs for any particle. In this case, heat transfer by

radiation, chemical processes, and heat conduction between neighbouring particles

are excluded, and the fluid flow is called adiabatic.

In order to translate either assumption into a specifying equation, the First Law

of Thermodynamics must be used, which gives the relation between heat input and

the mechanical variables [J. R. von Mayer (1842)]. If the total heat input from all

sources, per unit of time and mass, is zero, the First Law for an inviscid fluid can be

written in the following form:

CvDT=Dtþ pD=Dtð1=rÞ ¼ 0; (2.6)

where Cv is the specific heat of the fluid at constant volume. The first term in (2.6)

represents the part of the heat input expended for the increase in temperature T, and

the second term corresponds to the work done by expansion. It is well known, also

from thermodynamics, that for each type of matter a certain relation exists among

the three (thermodynamic) variables, pressure p, density r, and temperature T:

fðp; r;TÞ ¼ 0; (2.7)

Thus the temperature can be computed when p and r are known. Naturally, the

equation of state (2.7) is not a specifying equation, since it implies temperature as a

new variable. Finally, Eqs. 2.3, 2.4, and 2.6, together with (2.7), form a closed

system of six equations for the six unknowns: u, p, r, and T.

For a thermally perfect gas (naturally, a perfect gas is not necessarily inviscid),

the equation of state (2.7) is explicit:

p ¼ RrT; (2.8)
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where R is a constant depending upon the particular perfect gas. From (2.8) it

follows that for a perfect gas the condition p/r ¼ const implies a fluid flow at con-

stant temperature, or isothermal flow.

The specific entropy S of a perfect gas is then given by:

S ¼ ½R=ðg� 1Þ�logðp=rgÞ þ const; (2.9)

where g is a constant, having the value 1.40 for dry air. Thus the motion of a perfect

gas with the condition p/rg ¼ const, as a specifying equation, is isentropic (con-

stant entropy motion or, since g > 1, polytropic). The equation of state for a perfect

gas in equilibrium, connected with the names of Boyle (see, Birch (1744) [38]),

Mariotte, Gay Lussac, and Charles, has been widely known since 1800.

In precisely the modern form, it was used freely by Euler, but did not appear again

in the hydrodynamical literature until used by Kirchhoff in his paper of 1868 [39].

In some presentations, no distinction is made between the term “perfect gas” and

“ideal gas”. Here the term “perfect gas” is defined precisely by the equation of state

(2.8). The term “Eulerian fluid flow” is used for an inviscid (non-viscous) and non-

heat-conducting flow, governed by the system of Eqs. 2.3, 2.4, and 2.6, with (2.7).

According to (2.6) and (2.7) this Eulerian fluid flow is a baroclinic and adiabatic

fluid flow. In Eq. 2.6 an expression for Cv in term of the variables T, p, and r is

needed, but for a perfect gas, where the equation of state is (2.8), it is generally

assumed that Cv ¼ R/(g � 1) is a constant – R being the usual gas constant.

As a consequence, we derive, for such a perfect gas with constants Cv and Cp (¼
g Cv), specific heats, the following conservation equation for specific entropy in the

case of a thermally perfect gas:

D=Dt ½logðp=rgÞ ¼ 0 ) DS=Dt ¼ 0: (2.10)

Equation 2.10, however, holds only for an adiabatic flow of a perfect inviscid

gas, when the entropy is constant for each particle but varies from particle to

particle. Generally, a thermally perfect inviscid gas in adiabatic flow does not

necessarily behave like an elastic fluid.

If we assume that in (2.10),

g tends to infinity ðincompressible limit caseÞ; (2.11a)

such that R ¼ O(1), and that in such a case,

Cv tends to zero but Cp � R ¼ Oð1Þ; (2.11b)

then we derive, again, from (in place of) (2.10) the following evolution equation

(conservation law) for density (isochoricity):

Dr=Dt ¼ 0 ) r � u ¼ 0; (2.11c)
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As a consequence, for a Eulerian incompressible but non-homogeneous

(isochoric) fluid flow we obtain the following system of three equations for the

velocity u, pressure p, and density r:

r Du=Dt ¼ rg�rp; (2.12a)

Dr=Dt ¼ 0; (2.12b)

r � u ¼ 0: (2.12c)

This isochoric system of three Eqs. 2.12a–2.12c is very well investigated in

Yih’s 1980 book [4]. The above “incompressible limiting process” (2.11a,2.11b)

presents the possibility of taking into account some compressible (second-order)

effects of the order O(1/g) – which is the case, for instance, in the theory of lee

waves downstream of a mountain!

2.2 Navier Viscous Incompressible, Constant Density Equations

The equation of motion of a viscous and incompressible homogeneous (with a

constant density) fluid flow was first obtained by Navier in 1821 [40] and later

by Poisson in 1831 [41]. The necessity of such a viscous equation (in place of

the above Euler equation (2.4) was strongly linked with the d’Alembert theorem

(paradox?): “An object moving with constant velocity U1 in a potential field (from

Bernoulli equation and Lagrange theorem in an incompressible fluid the velocity-

potential F must satisfy Laplace’s equation) does not feel any force – neither drag

nor lift.”

Obviously, this result is in sharp contrast with experience! For instance, an

aircraft could not fly. Suppose that, initially, the aircraft and the fluid (air) are

both at rest, then the aircraft begins to move. Since vorticity cannot be produced

(Lagrange – permanence of irrotational flow), the potential flow around the aircraft

cannot produce any lift, so that flight is impossible. Such a paradox can be avoided

if vorticity is present.

However, the problem remains of understanding how vorticity can be created in

the system. The conservation of vorticity in an inviscid (incompressible) fluid, while

reasonably far from the obstacle, is too drastic near the boundary of this obstacle!

A more accurate description of the interaction among the particles of the fluid

and the obstacle leads us to introduce the Navier (viscous and incompressible)

equation, which is a correction to the Euler (incompressible and non-viscous)

equation of motion.

Such a new (Navier) equation can explain the effects, such as vorticity produc-

tion, which are relevant near the boundary. This Navier equation has the following

rather simple form:
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DuN=Dt þ ð1=r�Þrpþ g ¼ n�DuN; (2.13a)

where n� is the constant kinematic viscosity, and D � r2 is the Laplace operator

for the Navier velocity vector uN. The companion to (2.13a), equation of continuity

is simply:

r:uN ¼ O: (2.13b)

Because n� multiplies the derivative of highest order in Navier equation (2.13a),

it cannot be inferred that the solutions of (2.13a), for very small values of n�,
reduces to Euler, below (2.14a), equation for an incompressible homogeneous and

non-viscous fluid flow, with uE as velocity vector:

DuE=Dt þ ð1=r�Þrpþ g ¼ O: (2.14a)

with

r:uE ¼ O: (2.14b)

It is important (in particular, in the framework of our RAMA) to observe that the

passage from compressible flow to incompressible flow, which filters the acoustic

fast waves, is a strongly singular limit.

The reader can find in our 2006 monograph [13], devoted to hyposonic flow

theory, various facets of the unsteady very slow flows at low Mach number, which

are strongly related to a category of fluid flow problems, called “hyposonic”, when

M << 1.

In the above Navier incompressible viscous equation (2.13a) and also in the

Euler incompressible non-viscous equation (2.14a), the term ð1=r�Þrp is not an

unknown quantity of the initial value problem. In fact, rðp=r�Þ is the force term

acting on the particles of fluid allowing them to move as freely as possible, but in a

way compatible with the incompressibility constraint (2.13b) or (2.14b):r:uN ¼ 0.

Note particularly that for a Eulerian incompressible flow, DuE/Dt ¼ 0 admits

solutions violating the condition: ∇. uE ¼ 0 at t > 0, even if the velocity diver-

gence vanishes at t ¼ 0. The pressure term in the above incompressible equations

(2.13a) and (2.14a) is not an unknown quantity, because it can be determined when

we have found the velocity field uN or uE – for instance, taking the divergence of the

Euler equation (2.14a), we obtain a Poisson (elliptic) equation:

Dp ¼ �r�fr : ½ðuE :rÞuE� þ r:gg;

and, knowing uE and external force g, we can find p by solving a Poisson equation

with a Neumann boundary condition,

@p=@n ¼ �r�fr : ½ðuE :rÞuE þ g� : n;
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in a domain with a boundary (after that the Euler equation (2.14a) is projected on

the outward unit normal n).

As a consequence of the above, it is sufficient to consider the Navier incom-

pressible equation in terms of vorticity oNð¼ r ^ uNÞ assuming that g is

conservative:

DoN=Dt ¼ ðoN :rÞuN þ n�DoN; (2.15a)

with

r: uN ¼ 0: (2.15b)

Obviously, when we assume that g is conservative, any potential flow,

u ¼ rF;

trivially satisfies the Navier equation (2.13a) in term of the vorticity oN!

However, to obtain a well-set boundary value problem, for a fixed n� > 0,

one must also (according to Stokes) replace the slip boundary condition on a

(stationary) boundary of a fluid flow domain, for uE in Euler non-viscous equation

(2.14a):

uE:n ¼ 0; (2.16a)

by the more stringent condition of no-slip boundary condition on a stationary

boundary:

uN ¼ 0; (2.16b)

for uN in Navier (2.13a).

Concerning this no-slip boundary condition (2.16b), it is interesting to note that

in his 1904 lecture to the ICM, Prandtl stated:

“The physical processes in the boundary-layer (BL – Grenzschicht) between

fluid and solid body can be calculated in a sufficiently satisfactory way if it is

assumed that the fluid adheres to the walls, so that the total velocity there is zero –

or equal to the velocity of the body. If the viscosity is very small and the path of

the fluid along the wall not too long, the velocity will have again its usual value

very near to the wall (outside the thin transition layer). In the transition layer

(€Ubergangsschicht) the sharp changes of velocity, in spite of the small viscosity

coefficient, produce noticeable effects.”

Prandtl not only mentions the existence and nature of the thin boundary-layer

and its connection with frictional drag, but derives heuristically the boundary-layer

(so-called Prandtl) equations valid in a thin viscous layer close to the wall of the

solid body. These BL Prandtl equations, however, are not valid near the time t ¼ 0,

where the initial data are given in the case of an initial-boundary value problem.
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Prandtl – curiously – did not have any idea concerning this singular nature of his

discovered BL equations in unsteady compressible case!

But it is also necessary to not overlook the important investigations of

Lanchester (1907) in England, concerning the nature of the boundary-layer and

explanation of separation (independently of Prandtl). (For a detailed discussion

concerning the initial and boundary conditions, see Sect. 2.4.)

In Chap. 5, as a consequence of the singular nature of BL compressible

equations, the unsteady full NS–F equations for large Reynolds number are

analyzed in detail. For this, it is necessary to consider five regions and the related

matching conditions.

2.3 Navier–Stokes–Fourier Equations for Viscous

Compressible and Heat-Conducting Fluid Flow

According to Truesdell, in “The Mechanical Foundations of Elasticity and Fluid
Dynamics” (1966) [42, p. 2]:

“Classical fluid dynamics describes the flow of media altogether without spring-

iness of form, so that when released from all deforming forces except a hydrostatic

pressure, they retain their present shapes; it is a partially linear theory, in which a

uniformly doubled rate of deformation if dynamically possible would lead to

doubled viscous forces.”

2.3.1 The Cauchy Stress Principle

The derivation of the equation of motion for the velocity vector u, for real (viscous

compressible and heat conducting) fluids is based on the following stress principle

of Cauchy, 1828 [43]:

“Upon any imagined closed surface S (with outward normal n to S) there exists a
distribution of stress vector S x; t; nð Þ ¼ n:T, where T is the stress tensor, whose

resultant and moment are equivalent to those of the actual forces of material

continuity exerted by the material outside S upon that inside.”

This statement of Cauchy’s principle is due to Truesdell’s paper of 1952 [44];

and as Truesdell remarks (1953) [45], the above well-known Cauchy principle

. . . has the simplicity of genius. Its profound originality can be grasped only when ones

realizes that a whole century of brilliant geometers had created very special elastic

problems in very complicated and sometimes incorrect ways without ever hitting upon

this basic idea, which immediately became the foundation of the mechanics of distributed

matter.

As a consequence of his stress principle, Cauchy obtained a general equation of

motion – the simple and elegant Eq. 2.17 below – which is valid for any fluid, and
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indeed for any continuous medium, regardless of the form which the stress tensor

T may take.

Du=Dt ¼ rf þr:T: (2.17)

We observe that the above equation of motion, discovered by Cauchy in 1828,

can be derived easily according to the principle of conservation of linear momen-

tum: “The rate of change of linear momentum of a material volume V equals the

resultant force on the volume.”

The necessity for a clear-cut statement of the postulates on which continuum

mechanics rests was pointed out by Felix Klein and David Hilbert, but the first

axiomatic presentation is due to G. Hamel (1908) [46]. With S(x, t; n) ¼ n .T, for
the stress vector S, the above principle is expressed by the statement:

D=Dt

ð
v

ðrDu=Dt
� �

dv ¼
ð
v

rfdvþ
ð
v

divTdv; (2.18a)

applying the divergence theorem. Since v (a fixed volume) is arbitrary, we obtain

the Eq. 2.17.

We observe also that the stress forces are in local equilibrium, and it is postu-

lated that the stress tensor is symmetric:

Tij ¼ Tji: (2.18b)

2.3.2 Navier–Stokes Constitutive Equations:
The Cauchy–Poisson Law

In our 2004 book Theory and Applications of Viscous Fluid Flows [47], in Sect. 1.4
of Chap. 2, the reader can find a detailed account of the constitutive equation of a

viscous (à la Navier–Stokes) classical fluid, mainly inspired by Serrin (1959) [31].

Here we present only a short comment. A first important moment in the history

of N–S constitutive equations is Stokes’ idea (1845) [48] of “fluidity” which can be

stated as four postulates:

1. T ¼ F(D) and D ¼ D(u).
2. T does not depend explicitly on the position vector x (spatial homogeneity).

3. There is no preferred direction in space (isotropy).

4. When D(u) ¼ 0, then T ¼ � pI (Eulerian non-viscous fluid flow).

A medium whose constitutive equation (via stress tensor T, which define or

delimit the type of medium subject to study) satisfies these above four postulates is

called a Stokesian fluid.
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With the above four postulates, according to matrix algebra, and if we add the

condition that the components of T be linear in the components of D(u), we deduce
(Cauchy–Poisson law):2

T ¼ �ðpþ l divuÞI þ 2mD uð Þ: (2.19)

The coefficients l and m (of viscosity) being of scalar functions of the thermo-

dynamic state (considered in Sect. 2.3.3) and I is the unit tensor, with dij (the
so-called Kronecker symbol with dkk ¼ 1 and dij ¼ 0 if i � j) as components.

Indeed, the fully general expression is Poisson’s (1831) relation [41] – but the

name of Poisson is rarely quoted today. In Cauchy, (1828), [43], the term – pI, in
(2.19), is absent.

Dynamical (Navier) equation (2.13a) equivalent to those resulting from (2.19)when

divu ¼ 0 and, m ¼ const, is due to Navier (1821) [40], and Saint–Venant (1843) [49],

proposed (2.19) in the special case when m ¼ m0 ¼ const and mv � l + (2/3)m ¼ 0,

which is the so-called (1845) “Stokes relation” [48].

This is the simple and elegant constitutive equation (2.19) for the viscous NS

motion, discovered by Cauchy in 1828. It is valid for any fluid, and indeed for any

continuous medium, regardless of the form which the stress tensor T may take.

The coefficients l and m (of viscosity) are scalar functions of the thermodynamic

state (considered in the next Section).

Concerning the long controversy regarding the Stokes relation:

3mv ¼ 0; (2.20a)

3mv being the bulk viscosity, in the classical theory of viscous fluids; see

Truesdell (1966) [42].

The viscosities coefficients (shear/dynamic and bulk) and the thermal conduc-

tivity k (see Sect. 2.3.3, Fourier’s law (2.30)) are known functions, subject to the

thermodynamic restriction (Clausius–Duhem inequalities):

m � 0; k � 0 and mv � 0: (2.20b)

2 For a perfect (absence of viscosity) fluid, the pressure has already appeared as a dynamical

variable in Euler Eq. 2.4. Characteristic of the discipline of gas dynamics is the postulate that the

thermodynamic pressure, introduced via functional relations among the state variables (see

Sect. 2.3.3), is equal to this dynamical pressure. When the deformation D(u) ¼ 0, for a perfect

fluid, p is the thermodynamic pressure when the fluid is compressible, while p is simply an

independent dynamical variable otherwise. For an incompressible perfect or viscous fluid (Navier,

see Sect. 2.2) p is not an unknown quantity, because it can be determined when we have found the

velocity field u. In some works (see [31]) a mean pressure, p* ¼ �(1/3)Trace T is defined, and we

have the following relation: p� p	 ¼ ½lþ 2=3ð Þm�divu.
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The dynamical equation (in components form, with indices, i ¼ 1, 2 and 3)

resulting from (2.17) with (2.19) is the Navier–Stokes (compressible) equation for

the component ui of the velocity u:

r Dui=Dt þ @p=@xi ¼ @=@xj½mð@ui=@xj þ @uj=@xiÞ þ @=@xi� ½l @uk=@xkð Þ�;
(2.21)

since for the components of deformation tensor D(u) we have:

2Dij ¼ @ui=@xj þ @uj=@xi: (2.22)

A Stokesian fluid whose constitutive, NS compressible, equation is given by

(2.19) is called a Newtonian fluid.

In Saint–Venant (1843) (and Stokes (1845)), the resulting dynamical equation,

for ui, in place of (2.21), is:

rDui=Dt þ @p=@xi ¼ m0fDui � 1=3ð Þ@=@xifDlogr=Dtg; (2.23a)

if we take into account the equation of continuity:

@uk=@xk ¼ �Dlogr=Dt; (2.23b)

and the Stokes relation (2.20a).

For an incompressible homogeneous fluid, again we derive the Navier

dynamical equation (2.13a), with n0 � m0=r0 ¼ const.

Equation 2.23a (where m0 is a constant), with the specifying equation p ¼ p(r)
and continuity equation (2.23b), forms a closed system of equations – the so-called

Navier–Stokes (compressible N–S equations) for ui, p, and r, and governs a

barotropic(?) viscous and compressible fluid flow, without an energy equation for

the temperature T – which unfortunately do not have any physical (fluid dynamics)

signification.

Slightly more complete general Navier–Stokes compressible N–S equations, for

the unknowns ui, p, and r, are obtained from (2.21), with again the specifying

equation p ¼ p(r) and continuity equation (2.23b), if we assume that viscosities m
and l do not depend on temperature T and are known functions of the density

r only.

These above N–S equations do not emerge via a RAM Approach from the full

unsteady NS–F equations and, in fact, do not have in reality any interest for fluid

dynamicians!

We also obtain a simplified model of compressible viscous fluid flow if we

assume in addition, instead of p ¼ p(r), that the pressure is identically constant in

the fluid flow (isobaric fluid flow).
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In this case, then, we arrive at the so-called Burger’s model equations (as in

Kazhikov (1994) [50]).

Dlogr=Dt þ @uk=@xk ¼ 0; (2.24a)

r Dui=Dt ¼ @=@xj½m rð Þð@ui=@xj þ @uj=@xiÞ�
þ @= @xi ½lðrÞ @uk=@xkð Þ�; (2.24b)

which is a closed system of two equations for the velocity components ui and the

density r, when we assume that the viscosity coefficients, l and m, are a function

only of r.
A final important remark concerning the above N–S compressible viscous

barotropic system equations, (2.23a) and (2.23b) with p ¼ p(r), or Eqs. 2.21 and

2.23b with p ¼ p(r), for the unknowns ui, p and r, which are mainly used by

applied mathematicians in their rigorous mathematical analyses (see, for instance,

P. L. Lions (1998) [51]) does not have any physical reality, mainly because just

viscosity always generates entropy (baroclinity).

For this, in particular, the various rigorous mathematical results concerning the

so called “incompressible limit”, related to the limiting process M # 0, in the

framework of above, compressible barotropic (p ¼ p(r)) and viscous, two systems,

seems (to me) very questionable.

In the short paper by Leray (1994) [52], this question is pertinently discussed.

2.3.3 Thermodynamics and Energy Equation via Fourier
Constitutive Equation

But in general (in reality) the coefficients of viscosity are assigned or empirical

functions of the positive variables r (density) and especially T (temperature), which

both are present also in equation of state (2.7) or (2.8) for a trivariate realistic fluid.

Indeed, Euler and Lagrange not only failed to include viscosity effects in their

equations of motion, forcing them adopt corresponding simplified (slip) boundary

condition (2.16a), but also oversimplified their equation of state.

In real fluids, the pressure, p, is a function of two variables, r and T (for a trivariate

fluid in a baroclinic motion, see the equation of state (2.7)). Obviously, again, it is

necessary to associate with N–S compressible equations (2.21), (2.23b), and (2.7), for

ui, r, p and T, an energy equation, if wewant to obtain a closed system of equations for

our six unknown functions. For this, some thermodynamical assumptions are required.

For the real fluid flows – compressible, viscous, and heat-conducting – the

mechanical energy is converted into heat by viscosity, and the heat of compression

is diffused by heat conduction.

Here we consider only an homogeneous fluid when the local equation of state is

according to the basic postulate of Gibbs (1875) [53]; see Truesdell (1952) [44], and

Serrin (1959) [31]:
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E ¼ Eðr; SÞ; (2.25)

where E is the specific internal energy and S is the specific entropy.

In this case the temperature T and the thermodynamic pressure p are defined by

the two relations:

T ¼ @E=@S and p ¼ �@E=@ð1=rÞ: (2.26)

Now, for any compressible fluid, by differentiating (2.25) along any curve on the

energy surface (characterizing the fluid) we obtain:

DE=Dt ¼ T DS=dt� p Dð1=rÞDt: (2.27)

But, for any homogeneous medium in motion, the conservation of energy is

expressed by the equation of C. Neumann (1894):

rDE=Dt + p (@uk=@xkÞ ¼ �@qi=@xi þ ½2mDij þ lDkk dij�Dij; (2.28)

where the qi are the Cartesian components of the heat flux vector q.

For the special case of a non-viscous incompressible fluid, the energy equation

was given by Fourier (1833) [54], and for small motions of a viscous perfect gas by

Kirchhoff (1868) [39], and in this case we also have p ¼ RrT, where R is the

constitutive constant of the viscous thermally perfect gas.

We observe also, that for a medium suffering deformation the two Eqs. 2.27 and

2.28 express different and independent assumptions: the former, the existence of an

energy surface, characterizing the fluid, and the latter, that mechanical and thermal

energy are interconvertible. Indeed the First Law, Second Law, and so on, of

thermodynamics is rather misleading terminology. (For a history of the origin of

thermodynamics, see H. Poincaré (1892) [55], and Truesdell and Muncaster (1980)

[56].)

Finally, from (2.27) it follows that in place of (2.28) we can write the following

equation for the specific entropy:

rTDS=Dt ¼ �@qi=@xi þ ð2mDij þ lDkk dijÞDij: (2.29a)

In particular, if the heat flux (via the vector q) rises solely from thermal

conduction, then according to Fourier’s law gives:

qi ¼ �k ð@T=@xiÞ; (2.30)

where k is the thermal conductivity and qi the components of q.

With (2.30) we obtain from (2.29a) the usual form of the energy equation:

rTDS=Dt ¼ �@ðkð@T=@xkÞÞ=@xk þ ð2mDij þ lDkkdijÞDij: (2.29b)
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For an adiabatic (qi ¼ 0) and non-viscous (inviscid) fluid with m ¼ 0 and l ¼ 0:

DS=Dt ¼ 0: (2.31)

Therefore, if a non-viscous homogeneous fluid be in continuous motion devoid

of heat flux, then the entropy of each particle remains constant. In particular, if the

motion be steady, then the entropy is constant along each streamline.

But in general, the real motion is not isentropic – S is different of a constant

in the each point of the flow and in time – but constant for each particle (along the

trajectory) for a Eulerian fluid flow.

But even if the flow is isentropic, isentropicity in fluid remains valid only up to

the first shock front encountered by the particles, after which it may well fail its

isentropicity property.

2.3.4 Navier–Stokes–Fourier (NS–F) Equations

The three equations – continuity (2.23b), N–S for compressible motion (2.21), and

energy (2.28) – with the two state relations

p ¼ Rr T and E ¼ CvT; (2.32a, b)

valid for a thermally perfect gas with constants specific heats, constitute the

so-called Navier–Stokes–Fourier (NS–F) equations for a compressible, viscous

and heat-conducting Newtonian fluid.

In this case it is assumed that the three constitutive (dissipative) coefficients are

functions of r and T:

l ¼ lðr; TÞ; (2.33a)

and

m ¼ mðr; TÞ (2.33b)

in (2.21) and (2.28), and

k ¼ kðr; TÞ (2.33c)

in (2.30).

The compact form of these NS–F equations is:

Dr=Dt þr � u ¼ 0; (2.34a)

r Du=Dt þrp þ rgk ¼ r:P; (2.34b)
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rCvDT=Dt þ p r � u ¼ r � k rT½ � þ F; (2.34c)

where F is the viscous dissipation function and gravity g ¼ �gk acts in the

negative x3 direction. In (2.34b, 2.34c):

P ¼ lðr � uÞI þ 2mD uð Þ (2.35a)

and

F ¼ 2mTrace ½ðD uð Þ2� þ lðr � uÞ2; (2.35b)

where:

Trace ½ D uð Þð Þ2 ¼ D uð Þ : D uð Þ ¼ 1=4ð Þ� ½@ui=@xj þ @uj=@xi�2; (2.36)

and D(u) is the rate-of-deformation tensor.

2.4 Initial and Boundary Conditions

Obviously, there has always been considerable interest in initial-boundary value

problems for various systems of partial differential equations arising in Newtonian

fluid dynamics.

This interest of fluid dynamicians stems primarily from efforts to create useful

computational models of various processes for the purposes of simulation, predic-

tion, and the detailed study of various fluid flow phenomena.

Naturally, the initial-boundary value problems for fluid dynamics equations

should have been carefully investigate – but unfortunately, rigorous proof of the

existence and uniqueness of solutions of these well-posed fluid dynamics problems

requires very difficult mathematical investigation.

While initial-boundary value problems for these systems of equations are not

easy to analyze, mathematical tools useful for such problems can be found in the

works of Kreiss (1970, 1974) [57, 58], Belov and Yanenko (1971) [59], Oliger and

Sundstr€om (1978) [60], Majda (1984) [61], and Kreiss and Lorenz (1989) [62].

The solveability of these problems (a fundamental problem in rigorous mathe-

matical theory of NS–F equations) is discussed in Chap. 8 of our Theory and
Applications of Viscous Fluid Flows (2004) [47], and here we note only that the

baroclinic and barotropic Eulerian equations are both symmetrical, hyperbolic

systems, but isochoric and incompressible equations are not hyperbolic. This has

a profound influence on the well-posedness of initial-boundary value problems for

these systems of partial differential equations.
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2.4.1 The Problem of Initial Conditions

The above NS–F unsteady equations (2.34a–2.34c) contain a total of five times

derivatives for the components ui of the velocity u, density r, and temperature T. As

a consequence, if we want to resolve a pure initial value, or Cauchy, problem (in

the L2 norm, for example), then it is necessary to have a complete set of initial

conditions (data) for u, r, and T:

t ¼ 0 : u ¼ u� xð Þ; r ¼ r� xð Þ; T ¼ T� xð Þ; (2.37)

where r�(x) > 0 and T�(x) > 0.

Moreover, when we consider a free-boundary problem or an unsteady flow in a

bounded container, with a boundary depending on time, an initial condition for the

(moving) boundary @O tð Þ has to be specified.

For an NS compressible but barotropic flow for the velocity u and density r,
governed by Eqs. 2.21 and 2.23b with p ¼ p(r), as initial conditions we assume:

t¼ 0 : u ¼ ub
� xð Þ and r ¼ rb

� xð Þ: (2.38a)

For the isochoric Euler equations (2.21) it is necessary to impose also

t ¼ 0 : u ¼ ui
� xð Þ and r ¼ ri

� xð Þ: (2.38b)

If the flow is continuous, when r�(x) ¼ const, we have an incompressible flow

(Eqs. 2.22 or 2.23b), and it is sufficient to assume only an initial condition for the

velocity u:

t ¼ 0 : u ¼ ui
� xð Þ: (2.38c)

It is important to note that for both isochoric and incompressible divergence, free

flows, it is necessary that

the boundary integral

ð
u � n dO vanish (2.39a)

and

r � ui� ¼ 0: (2.39b)

Naturally, this last condition has no analogue for compressible (baroclinic or

barotropic) flows because of the occurrence of the term @r=@t in the continuity

equation (2.23b).

Obviously, for the Laplace equation, which governs an incompressible, irrota-

tional Eulerian unsteady flow (for example, waves on water), we do not have the
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possibility of imposing any initial conditions! But this Laplace equation is very

appropriate for the investigation of waves on (incompressible) water, and in this

case it is necessary to consider a free-boundary problem; that is, a problem for

which the fluid (water) is not contained in a given domain but can move freely.

Usually, for this Laplace elliptic equation, one boundary condition is given

(on the contour line containing the fluid) – but in the case when the boundary is

known!

Two unsteady, dynamic and kinematic, conditions are needed (and also two

initial conditions) at the free surface (interface) x3 ¼ Z t; x1; x2ð Þ, because the

surface position Z t; x1; x2ð Þ has to be determined as well as potential function

f (t, x1, x2, x3).

For the free surface problem (for the function f(t, x1, x2, x3) and Z(t, x1, x2))
governing the non-linear waves on water, we can consider two physical problems.

First is the so-called “signalling” (two-dimensional) problem, in which we have

as initial conditions, when the water is initially at rest in a semi-infinite channel, the

following conditions:

f 0; x1; x3ð Þ ¼ 0 andZ 0; x1ð Þ ¼ 0; when x1>0; (2.40a)

and at initial time t ¼ 0 an “idealized wave-maker”, at x1 ¼ 0, will generate a

horizontal velocity disturbance, such that the initial condition is:

@f=@x1 ¼ W�B t=t�ð Þ; for x1 ¼ 0 and t >0; (2.40b)

where W� and t� are the characteristic velocity and time scales associated with the

wave-maker idealized by the function B(t/t�).
A second category of the problem for water waves, in the infinite channel, is

obtained by specifying an initial surface shape but zero velocity:

for t ¼ 0 : Z ¼ a�z� x1=l
�; x2=m�ð Þ and

f 0; x1; x2; x3ð Þ ¼ 0; (2.40c)

where l� and m� are the characteristic wavelengths (in the x1 and x2 directions) for

the three-dimensional water wave motion.

In (2.40c) the scalar a� is a characteristic amplitude for the initial elevation of

the free surface characterized by the function z�(x1/l�, x2/m�). (Concerning the

boundary conditions (kinematic and dynamic) for this free surface problem, see the

next Sect. 2.4.2.)

For meteorological motions (considered in the Chap. 9), when we consider

various approximate model equations – f�-plane equations, primitive equations,

quasi-geostrophic equations, or Boussinesq equations – it is necessary, in fact

(mainly because the filtering acoustic waves), to resolve associated unsteady

adjustment problems for the formulation of consistent initial conditions for these

simplified model equations.
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2.4.2 Unsteady Adjustment Problems

For the study of a compressible fluid flow it is necessary to have for the determi-

nation of the solution of the corresponding evolution unsteady equations – Euler,

Navier, and NS–F – a set of initial data for r, u, and T (the Cauchy problem).

However, when we consider, for example, the incompressible equations ((2.13a)

or (2.14a) with r:u ¼ 0) for u and p, one is allowed to specify a set of initial

conditions less in number than for the full compressible baroclinic equations.

This is due to the fact that the “main” low-Mach-number limiting process (in fact,

M tends to zero, with t and x both fixed), which leads to the approximate

incompressible (model) equations, filters out some time derivatives – these cor-

responding to acoustic fast waves, because such waves are of no importance for

low-speed aerodynamics and various atmospheric and oceanic motions – at least

for steady flows.

When Re"1 (large Reynolds number), from the Navier (incompressible and

viscous) equations we derive the Prandtl boundary layer equations, and accord-

ingly, for an unsteady flow the term @u3=@t disappears in the limiting momentum

equation for the vertical (x3-direction) component (u3) of velocity! For low

Reynolds number (Re # 0) in the Stokes and Oseen limiting (steady) equations,

the unsteady terms also disappear! Due to this, one encounters the problem of

finding an answer to the following question: “What is the initial condition that is

necessary to prescribe for u a solution of an incompressible equation, and in what

way is this condition related to the starting initial conditions (with given data)

associated with the exact, compressible equations?”

It is important to note that the exact initial conditions for the full compressible

equations are not in general consistent with the estimates of basic orders of

magnitude implied by the approximate model (without acoustic waves) equations.

A physical process of time evolution is necessary to bring the initial set to a

consistent level as far as the orders of magnitude are concerned.

Such a process is called “unsteady adjustment” of the initial data set to the

approximate structure of incompressible equations under consideration. This

process of adjustment, which occurs in many fields of fluid mechanics besides

Boltzmann kinetic theory (first discussed by Hilbert in 1912), is short on the time-

scale of approximate simplified equations, and ultimately, in an asymptotic sense,

we obtain values for the consistent set of initial conditions suitable for the

simplified equations.

When we consider the set of approximate simplified model equations, usually

derived heuristically, with time–space fixed, then it is first necessary, for instance,

to elucidate various adjustment problems – namely, concerning Prandtl boundary

layer, Stokes and Oseen steady, Navier incompressible viscous, and Boussinesq

equations.

A number of adjustment problems occur in meteorology for atmospheric

motions (adjustment to hydrostatic balance) and to geostrophy (as in the case, for
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example, cited in Sect. 9.2), and the reader can find a detailed discussion of these

adjustment problems in Chap. 5 of ourMeteorological Fluid Dynamics (1991) [19].
However, it is important to note that, depending on the physical nature of the

problems, we may have two kinds of behaviour when the rescaled (short) time goes

to infinity. Either one may have a tendency towards a limiting steady state, or an

undamped set of oscillations (as, for example, the inertial waves in the inviscid

problem of spin-up for a rotating fluid; see Greenspan (1968; }2.4) [63]). The

problem, considered in Sect. 7.2, is also very particular, and requires a special

approach due to the persistence of acoustic oscillations. (For the terminology of the

initial layer as adapted to this kind of singular perturbation problem, see Nayfeh

(1973; p. 23) [64].) Finally, we note that usually, the process of the unsteady

adjustment of the aerodynamical (or meteorological) fields is a result of the gene-

ration, dispersion and damping of the fast internal waves. According to method of

matching asymptotic expansions (MMAE), the initial conditions for the limiting

model equations are, in fact, matching conditions between the two asymptotic

representations – the main one (with t fixed), and the local one (near t ¼ 0),

which is a necessary companion to main one!

In conclusion, we can say that the aim of the unsteady adjustment problem can

be stated as follows: Clarify just how a set of initial data associated with an exact

system of unsteady equations can be related to another set of initial data associated

with a simpler, approximate model system of equations which is a significant

degeneracy of the original system of exact equations considered at the start, but

with the less time derivatives in this approximate model system.

In order to solve such a problem it is necessary to introduce an initial layer in the

vicinity of t ¼ 0, characterized by a short fixed time t. Obviously such an unsteady
adjustment problem is very important in meteorology for the formulation of a well-

posed initial/Cauchy evolution in a time-prediction problem relative to, for exam-

ple: “what the weather will be like tomorrow or for the next few days?”

Concerning the rigorous mathematical results of the singular limits in com-

pressible fluid dynamics, see, for instance, the paper by Beir€aro da Veiga (1994)

[65], and also the various references in this paper. More recent papers have been

published concerning the passage of compressible ⟹ incompressible, by

Desjardins, Lions, Grenier, Masmoudi, Hagstrom, Lorenz, and Iguchi; and for

references see our Topics in Hyposonic Flow Theory (2006) [13]. Here we do not

consider these contributions, but instead discuss some of these singular-limit

problems (low-Mach asymptotics) which deserve a serious, consistent, fluid

dynamics investigations via a RAM Approach (as in [13]).

Concerning the low-Mach asymptotic, we observe also that in the case of a flow

affected by acoustic effects in a confined gas (internal flow within a bounded

domain D(t)), over a long time when the wall ∂D(t) is started impulsively from

rest, a multiple-time-scale technique is necessary, because acoustic oscillations

remain undamped and the unsteady adjustment problem (with matching) does not

work (see Sect. 7.2 on applications in aerodynamics).
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2.4.3 Boundary Conditions for the Velocity Vector u and
Temperature T

Several boundary conditions could be considered with respect to different physical

situations.

If we consider, as a simple example, the motion of a fluid in a rigid container O
(with a boundary ∂O, independent of time), a bounded connected open subset of Rd

(where d > 1 is the physical dimension), the different structure of the equations

leads to the necessity of distinguishing between viscous (NS–F, NS, or Navier) and

inviscid (Eulerian) fluids.

(a) For a viscous (NS–F or Navier) fluid: m > 0 and mv � lþ 2=3ð Þm> 0

In this case, the physical effects due to the presence of the dynamic (shear)

viscosity coefficient m yield the validity of the steady no-slip condition:

u ¼ 0 on @O; (2.41a)

(b) For a bulk-viscous fluids: m ¼ 0; mv>0

Since only the bulk viscosity coefficient mv is different from zero, in this

situation the slip boundary condition

u:n ¼ 0 on @O (2.41b)

where it is assumed here, and in what follows, that n ¼ n(x) denotes the unit

outward normal vector to @O.
(c) For an inviscid (Eulerian) fluid: m ¼ 0; mv ¼ 0

Also in this case, the slip boundary condition (2.41b) is assumed.

As concerns the (absolute) temperature T, the boundary condition takes differ-

ent forms in the two alternative cases, k > 0 and k ¼ 0.

(d) Conductive fluids: k > 0

Several boundary conditions have physical meaning. Limiting ourselves to the

most common cases, we can require :

T ¼ Tw on @O Dirichletð Þ (2.42a)

k@T=@n ¼ X on @O Neumannð Þ (2.42b)

k@T=@n þ h T� T0ð Þ ¼ X on @O third typeð Þ; (2.42c)

where Tw > 0 and X are known functions, and h > 0 is a given constant.

(e) Non-conductive (adiabatic case) fluids: k ¼ 0

No boundary condition have to be imposed on temperature T if (2.41a) or

(2.41b) are satisfied, since in these cases the temperature is not subjected to trans-

port phenomena through the boundary.

40 2 Newtonian Fluid Dynamics as a Mathematical – Physical Science



According to Gresho (1992, pp. 47–52) [66], if uN
0(x) is the initial (t ¼ 0)

velocity field for the Navier equation (2.13a), then in the domain O it is necessary

to impose the above incompressibility constraint (2.13b):

r � uN0 xð Þ ¼ 0; (2.43a)

and on the boundary @O ¼ G sð Þ:

n � uNo sð Þ ¼ n � w s; 0ð Þ ¼ n � w0 sð Þ; (2.43b)

where w(s, t) is the specified boundary condition for the Navier velocity vector

which satisfies Eq. 2.13a.

2.4.4 Other Types of Boundary Conditions

In many situations (inflow–outflow problems) the velocity cannot be assumed to

vanish on ∂O. This is the case, for instance, for the flow around an airfoil, where an

inflow region is naturally present upstream (and an outflow region appears in the

wake), or the flow near a rigid body, where the velocity can be assumed to vanish

only on the boundary of the body. In these cases, several different boundary

conditions may be prescribed.

Let us begin by considering the viscous case. Concerning the velocity-field, a

(non-zero) Dirichlet boundary condition can be imposed everywhere, or, alterna-

tively, only in the inflow region: that is, the subset of ∂O where u � n < 0, whereas,

on the remaining part of the boundary, the conditions

u � n ¼ Uþ> 0 and n � Dð Þ � t ¼ 0; (2.44a)

have to be prescribed. (Here, t is a unit tangent vector on ∂O, and D ¼ D(u) is the

rate of strain (deformation) tensor.)

Let us, moreover, remark that the condition

u � n ¼ 0 and n � Dð Þ � t ¼ 0; (2.44b)

could also be considered, on the whole, ∂O. In this case, however, no inflow or

outflow regions would be present.

More important is to analyse the boundary condition for the density r, since now
it turns out that it is necessary to prescribe it on the inflow region. In fact, the first-

order hyperbolic continuity equation (2.13a) can be solved by means of the theory

of characteristics, and the boundary datum for r on the inflow region is indeed a

(necessary) Cauchy datum for the density on a non-characteristic surface.
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Let us note also, that if the heat conductivity coefficient k is vanishing and the

fluid is inviscid, the same type of Dirichlet-inflow boundary condition has to

be imposed on the temperature T, since in such a case Eq. 2.6 is also of the hyper-

bolic type for T. More complicated is the situation when the inviscid (Euler) case

ðm ¼ l ¼ k ¼ 0Þ is considered.
In fact, in this case the Eulerian system is a first-order hyperbolic one, and the

number of boundary conditions, in the case of an “open boundary” (or a boundary

located in the interior of a body or fluid), is different depending on whether the

flow is

subsonic : uj j< a;

or

supersonic : uj j> a;

where

a ¼ ½g RT �1=2;

is the local sound speed for the perfect gas.

Take, for example, d ¼ 3. An analysis of the sign of the eigenvalues of the

associated characteristic matrix yields the following conclusion: The number of

boundary conditions must be five or four on an inflow boundary, depending on

whether the flow is supersonic or subsonic, and zero or one on an outflow boundary,

again depending on whether the flow is supersonic or subsonic.

Obviously, in the case of an “open boundary” the normal velocity is non-zero on

the boundary, except at certain points. In both cases, no obvious physical boundary

conditions are known. We will not enter more deeply into this argument, and will

only briefly discuss the inviscid case subjected to the slip boundary condition

(2.41b), for which the boundary is a characteristic surface.

Further information on inflow–outflow boundary-value problems for compress-

ible N–S and inviscid Euler equations can be found in two pertinent papers

produced by Gustafsson and Sundstr€om (1978)[67] and Oliger and Sundstr€om
(1978) [60]. Here, we note only that the solid-wall slip stationary boundary condi-

tion (2.41b) – the normal velocity

un � u � n ¼ 0;

should vanish at the boundary, is consistent with the number of inward charac-

teristics (one).

The reader can find also in two papers by Viviand and Veuillot (1978)[68] and

Viviand (1983)[69], a discussion of boundary conditions for steady Euler flow,

considered as the limit (when time tends to infinity – the “pseudo-unsteady”

method) of an unsteady flow (which does not have a precise physical meaning).
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It is necessary to note that in numerical, computational, fluid dynamics, these

problems of boundary conditions are very thoroughly considered by often taking

into account the constraints related with the various particularity of the considered

fluid flow problem and associated with numerical algorithms.

Another interesting set of boundary conditions appears when we consider the

free-boundary problem; that is, a problem for which the fluid is not contained in a

given domain but can move freely. In this case the vector n � T is prescribed on

(interface) ∂S, where, moreover, u � n is required to be zero (stationary case) or

equal to the normal velocity of the boundary itself (non-stationary case).

The value of n � T can be zero (free expansion of a fluid in the vacuum), or

to (see, for example, the case of the well-known Bénard problem considered in

Chap. 8):

� penþ 2sKnþrss; on interface; (2.45a)

where pe is the external pressure, s ¼ s Tð Þ is the surface tension (temperature-

dependent, when the fluid is an expansible liquid), K is the mean interfacial

curvature, and:

rs ¼ r� nðn � rÞ; (2.45b)

is the surface (projected) gradient at the interface, respectively.

But in this (viscous) case, it is necessary to also write a heat transfer condition

across the interface, for an expansible and thermally conducting fluid (liquid),

kðTÞ@T=@nþ hsT ¼ prescribed function; (2.45c)

which is a Newton’s cooling law, where the heat-transfer (constant) coefficient hs
is sometimes called the Biot number. We observe that rigorously, in a Bénard

convection problem (with a temperature dependent tension in a free-surface) it is

necessary to take into account two Biot numbers, respectively, for the conduction

(motionless/no convective motion) state and convection state (see Chap. 8).

But the problem of “two Biot numbers asymptotics” is actually widely open (see,

in Chap. 8, a discussion concerning this two Biot numbers problem in the frame-

work of the Bénard problem for an expansible liquid layer on a solid horizontal flat

surface and heated from below.) Since ds=dT 6¼ o, then, for the film problem it is

necessary to take into account a Marangoni number proportional to the gradient:

ðds=dTÞT¼To ;

where T� is a constant temperature.

In such a case we consider a thin film Bénard–Marangoni free-surface problem,

which is fundamentally different from the classical Rayleigh–Bénard thermal

instability problem. (See, for instance, in Velarde and Zeytounian (2002) [70],

CISM Courses and Lecture (N0 428), pp. 123–90.)
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Naturally, we are now imposing one more condition on the interface ∂S, since it
is an unknown of the problem; in the non-stationary case an initial condition for the

interface has to be added too (see (2.40a) or (2.40c)).

For an inviscid incompressible fluid (water) when we consider the wave on the

water (in this case the problem for an irrotational flow is governed by the Laplace

equation), an obvious physical simple condition is (if we assume that the surface

tension is negligible), in place of (2.45a):

p ¼ pA; on interface between water and air above; (2.46)

where pA denotes the air (constant, ambient) pressure on interface S and usually

this ambient air (above the interface) is assumed passive (at temperature TA ¼
const, pressure pA ¼ const, with negligible viscosity and density).

In the case of a viscous liquid (thin film Marangoni problem, discussed in

Chap. 8) the above condition (2.46) is replaced by a rather complicated explicit

upper free surface condition (see Sect. 8.2.2).

Now, if the equation of the interface is x3 ¼ Z(t, x1, x2), in a Cartesian system

of coordinates (0, x1, x2, x3), then from the Bernoulli incompressible integral we

obtain the following dynamic condition on interface (for the wave on the water –

the inviscid fluid problem) according to (2.46):

@f@tþ 1=2ð ÞðrfÞ2 þ g Z ¼ 0; on x3 ¼ Zðt; x1; x2Þ; (2.47)

and since the interface is a material wave surface we have also a kinematic

condition:

@f=@x3 ¼ @Z=@tþ ð@f=@x1Þ@Z=@x1
þ ð@f=@x2Þ@Z=@x2; on x3 ¼ Zðt; x1; x2Þ;

(2.48)

Finally, if we assume that the water rests on a horizontal and impermeable

bottom of infinite extend at x3 ¼ � h0, where h0 ¼ const is supposed finite, then

we have the following simple (flat) bottom boundary condition for the Laplace

equation:

@f=@x3 ¼ 0; on x3 ¼ �h0; (2.49)

The Laplace equation for the potential f, with (2.40a), (2.40b) or (2.40c) and

(2.47)–(2.49), constitutes a well-posed problem for the investigation of the non-

linear unsteady waves on the water (see, for instance, Whitham (1974) [71], and the

review paper by Zeytounian (1995) [72]).

It is important to note that each physical problem has specific boundary con-

ditions related to the intrinsic nature of the problem. For example, in gas dynamics

problems the boundary conditions are different if the fluid flow is subsonic

(M < 1), supersonic (M > 1), transonic (M ~ 1) or hypersonic (M >> 1). If, for
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instance, the undisturbed basic flow is in the x > 0 direction and the body in

question (in x, y plane) is located on the x-axis, with its leading edge at the origin

and its trailing edge at x ¼ 1 (with non-dimensional variables), then we can assume

that the body shape is described by:

y ¼ d h xð Þ; (2.50)

where the non-dimensional parameter d is the maximum value of y of the body.

The 2D steady velocity potential j(x, y) is a solution of the steady 2D Steichen

dimensionless equation:

a2 �M2 @’=@xð Þ2
h i

@2’=@x2 þ a2 �M2 @’=@yð Þ2
h i

@2’=@y2

� 2M2ð@’=@xÞð@’=@yÞ@2’=@x@y ¼ 0; (2.51)

with the following relation for the local sound speed:

a2 ¼ 1þ ½ðgþ 1Þ=2 M2f1�� �ð@’=@xÞ2 þ ð@’=@yÞ2�g: (2.52)

In this case the slip condition is:

@’=@y ¼ d(dh xð Þ=dxÞ@’=@x;

when x 2 0; 1½ �; on y ¼ d h xð Þ: (2.53)

Far away, upstream, from the body the flow should be undisturbed, which

requires:

@’=@x ! 1 and @’=@y ! o as x ! �1: (2.54)

In most applications, the bodies of interest are thin and streamlined, so that

generally d is a small non-dimensional parameter (d << 1). We note here only that

the classical linear, subsonic and supersonic theory is invalid when respectively:

M2 � 1
� �

=d3=2 ¼ O 1ð Þ � transonic similarity

d M ¼ O 1ð Þ � hypersonic similarity

Zd ¼ O 1ð Þ � far field similarity;

where Zð¼ xþ ½M2 � 1�1=2Þ y is a characteristic coordinate, such that:

Z 
 1 with M fixed:
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In the case of justification of the well-known Boussinesq (1903) [8] assertion

(see, for instance, Chap. 4) concerning the convection in fluids [13]: “The deri-

vatives of the density can be neglected except when they intervene in the calcula-

tion of the force of Archimedes.”

It is also necessary to consider the hyposonic (M << 1) case, and in such a case,

for the atmospheric motions it is necessary to take into account the following

constraint:

M=Bo ¼ O 1ð Þ � hyposonic similarity; (2.55a)

where

Bo ¼ L�= RT�=gð Þ (2.55b)

a ratio of two lengths, is the so-called Boussinesq number (see our (1990) [12], p. 15).

The lee waves problem (related mainly with the dynamic influence of a moun-

tain in a baroclinic, stratified, adiabatic atmosphere) is strongly influenced by the

relief slip condition and also by the upstream flow conditions. In an unbounded

atmosphere the radiation (in a simple Boussinesq model case) Sommerfeld condi-

tion for the Helmholtz equation at infinity (in altitude) plays an essential role. (See,

in [13], various typical examples considered by Guiraud and Zeytounian.)

In the low Rossby model for atmospheric flow, the effect of the solid (earth)

surface is taken into account (by matching) through the so-called viscous Ekman

layer. Indeed, the viscous coefficients are so small that we should expect the

boundary conditions to be close to those valid for the corresponding inviscid sys-

tem. The viscous equations do, however, require additional boundary conditions,

and as an effect, viscous boundary layers may occur at the boundaries.

Such boundary layers may sometimes be appropriate, as in the rigid wall

situation (for example, the Ekman boundary layer). However, at open boundaries

they are inappropriate.

In comparison to flows in interior or exterior domains, there are two new issues

when the boundary extends to infinity. First, in addition to the usual initial and

boundary conditions there needs to be some prescription of fluxes or pressure drops

when the flow domain has several exits to infinity (as in (2.54)). Second, the

solutions of interest often have infinite energy integrals, and recently a technique

of integral estimates to deal with this problem has been developed. These estimates

are called Saint Venant’s type, because the method was first used in the study of

Saint Venant’s principle in elasticity.

Concerning, more precisely, the behaviour of an incompressible fluid velocity

field at infinity, we note that in Dobrokhotov and Shafarevich (1996) [73], a simple

method is given which makes it possible to determine an upper bound for the decay

rate at infinity of an incompressible fluid velocity field of general form; that is, to

determine a lower bound for the field itself.

This method is based on the use of simple integral identities which are valid for

solutions of the Navier incompressible, viscous equations, in the external region
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which decrease quickly enough. For the equations in entire space, some of these

identities were obtained by the two authors noted above.

The property of slow decay or spreading of localized fluid flow is a consequence

of incompressibility, and is not associated with viscosity alone (in contrast to the

case described by Serrin (1959) [31, 74]), so that it also holds good for an inviscid

Eulerian fluid flow (in this case the reasons for spreading are related with the non-

uniform external flow and non-linearity).

In fact, in order to compute in a bounded region a fluid flow modelled by a

problem formulated on an infinite domain, one often introduces an artificial bound-

ary S and tries to write on the domainO	 � O, bounded by S, a new problem whose

solution is as close as possible to the original exact problem. When the solution of

this new problem in O	 coincides with the restriction of the original problem, the

boundary S is said to be transparent.

Here, we note also that the reader can find valuable information concerning this

approach with applications to both inviscid and viscous fluid flows in various

recently published papers in the leading journals devoted to numerical fluid dynam-

ics (see, for instance, the recent issues of Journal of Computational Physics).
The general slip condition in an unsteady case:

n � ðu� uPÞ ¼ 0; (2.56)

is satisfied, in any case, for an impermeable solid wall, where uP is the velocity of

the moving wall. On the other hand, from the kinetic theory of gases, when the

Knudsen number, Kn is small, we obtain

n ^ ðu� uPÞ ¼ 0 on a moving wall: (2.57)

As a consequence of (2.56) and (2.57), we again deduce the no-slip condition

(but for a moving wall):

u ¼ uP; on the moving wall: (2.58)

The above condition (2.57) is the so-called weak form of the no-slip condition on

the moving wall.

Concerning the boundary condition for the temperature T on the wall, from the

kinetic theory of gases, again when the Knudsen number Kn is small, we obtain:

T ¼ TP � bq � n; (2.59)

where b is a scalar function (related with the kinetic, Knudsen, sub-layer).

An interesting case of boundary condition is related to the so-called Prandtl–

Batchelor condition (see, for instance, the papers by Batchelor (1956)[75] and

Wood (1957)[76]).

For a 2D incompressible, steady Eulerian fluid flow, fromEq. 2.13a, when n� � 0,

we derive the following equation for the 2D steady stream function c x; yð Þ:
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r2c ¼ FðcÞ; (2.60)

where the function F(c) is arbitrary! But, if the domain O where the flow is

considered is a bounded connected open subset of R2, then we do not have the

possibility of utilizing the behaviour condition at infinity for the determination of

this function FðcÞ.
The key of this indeterminacy is strongly related with the vanishing viscosity

problem. In fact, with the limiting process Re " 1ðor; n� # 0) in the steady form of

the Navier Eq. 2.13a. Namely, if we assume that the limit streamlines are closed in

O, then according to Batchelor [75] we derive for the limit Euler stream line

g� (which is the one of the stream lines c� ¼ constant) the following

Prandtl–Batchelor condition:

dFðc�Þ=dc� ¼ 0 and Fðc�Þ ¼ F�� � const: (2.61)

As a consequence, the Eulerian vorticity, o� ¼ � 1=2ð ÞFðc�Þ, for a steady

incompressible 2D fluid flow, is constant in any region where the streamlines are

closed.

From the matching performed by Wood [76] – with the corresponding Prandtl

boundary-layer in the vicinity of @O – the value of this above constant, F��, is well
determined.

On the other hand, in Guiraud and Zeytounian’s short paper (1984) [77] a

process for setting in motion a viscous incompressible liquid inside a 2D cavity is

considered, and it is shown that the basic process occurs for a time of the order of

t ¼ O(Re). Then a flow, à la Prandtl–Batchelor, with constant Euler vorticity is

established after a time t >> Re.

In this same paper [77], a G–Z functional equation is derived which governs the

distribution of the vorticity in the main stage of interest, and for the simple case of a

cylindrical cavity it is shown that the vorticity tends towards its own steady-state

value exponentially.

Finally, concerning the case of overspecified and underspecified boundary

conditions, it is important to note that when for a given problem the number of

boundary conditions is overspecified, the difference approximation (for a numerical

calculation) may well be stable. However, the effective boundary conditions which

influence the solution are, in general, difficult to determine, especially for problems

in several space dimensions.

They may well be a complicated function of the conditions given and bearing

little resemblance to them. An additional complication induced by over-specifica-

tion is that the underlying solution being approximated is not generally continuous.

In order to avoid the problems associated with the proper selection of boundary

conditions, the order and type of the differential equations is often raised to obtain a

problem that is easier to analyze and approximate.

For example, the Eulerian equations are usually modified by adding dissipative

terms so that the number of boundary conditions is appropriate. Unfortunately, this
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idea seldom works. If a spurious boundary layer of appreciable size results, the

effects are not unlike those for discontinuities (for a system of equations, the errors

can propagate away from the discontinuity through other components of the

solution), and unless the dissipative terms are very large, the error introduced at

the boundary will again propagate into the interior.

Now, if the boundary conditions are underspecified there are no a priori

estimates for the differential equations. In order for an approximation to be com-

putable these must be a sufficient number of boundary conditions specified for the

approximation. This cannot be fewer than the number required for the differential

equation.

The well-posedness of the initial boundary value fluid flow problems follows,

to some extent, from properly formulated initial and boundary conditions, and

is strongly linked with the various facets (through the existence and uniqueness

results) of the solvability of these fluid flow problems.

We recognize that in large part what might be called “mathematical topics

in fluid dynamics” has remained closed to the mainstream of theoretical fluid

dynamics and mathematical physicists, due in large part – as judiciously observed

in the book by Doering and Gibbon (1995) [78] devoted to applied analysis of the

Navier (Navier–Stokes incompressible) equations – to the technical nature of

rigorous investigations, often phrased in the unfamiliar language of abstract (non-

linear) functional analysis.3

The above summary of Chap. 2 presents the main theoretical concepts and

principles, and also equations and associated initial and boundary conditions, of

classical/Newtonian fluid dynamics. Various theoretical concepts can be found in

our books devoted, respectively, to non-viscous (2002) [37] and viscous (2004) [47]

fluid flows. In our survey paper on the well-posedness of problems in fluid dynam-

ics (a fluid-dynamical point of view) (1999) [79] the problem is carefully consid-

ered, and an historical survey of some mathematical aspects of Newtonian fluid

flows can be found in our (2001) [29] surveys.

3 The curiour reader can find in “Handbook of Mathematical Fluid Dynamics, vol. 1 to 4”,

numerous papers related with rigorous mathematical results, of existence, unicity, regularity,

well-posedness and limiting processes for solution of fluid flow problems, mainly by

compactnesse-a very abstract functional approach!

2.4 Initial and Boundary Conditions 49



Chapter 3

From NS–F Equations to General Main Model

Equations

First of all, the main question is relative to the Rational Asymptotic Modelling

Approach (RAMA) of Newtonian fluid flow problems. Our task is as follows.

Starting from a real technological or geophysical problem, mathematically

formulated via the NS–F equations and associated initial and boundary conditions,

we want to obtain a simplified and consistent model problem which is possibly

resolved via a numerical/computational simulation with the help of a super-high-

speed computer.

Our mathematical status (expounded, more precisely, in Chap. 6) is very naı̈ve,

and is based on a logical, non-contradictory, constructive process, according to a

main heuristic postulate and some associated key steps for its realization.

The desirable, but difficult, requirement concerning the rigorous proof that the

error admitted is really of the order suggested is simply abandoned, in consequence

of two goals: first, to consider, as much as possible, real complicated problems; and

second, to efficiently assist numericians in our numerical simulation.

In our survey paper with Guiraud (1986) [11], devoted to emphasizing the

considerable support that mastering asymptotic tools may afford to researchers

embarked on rational modelling of very difficult problems of fluid flows, the reader

can find a guide for classification of various models in a RAMA.

Concerning the level1 of “general models”, our thesis below is that very

often, various writings in fluid dynamics (especially in text-books for university

undergraduates) are organised through several particular fluid flows.

1 In addition to above-mentioned level of general models, it is necessary to consider also two

particular levels: local models, in order to elucidate the behaviour in some localized region, and

global specific models, which sometimes occur when the flow under consideration, as a whole,

may be determined via asymptotic modelling.

R. Kh. Zeytounian, Navier–Stokes–Fourier Equations,
DOI 10.1007/978-3-642-20746-4_3, # Springer-Verlag Berlin Heidelberg 2012
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3.1 Non-dimensional Form of the NS–F Typical Problem

In this book we work mainly with dimensionless time t and position vector x, and

also with dimensionless velocity vector u and thermodynamic functions p; r, and T.
Respectively, the physical time-space, velocity vector and thermodynamic func-

tions (with dimensions) are reduced via the characteristic time t�, the characteristic
length L�, the characteristic constant velocity U�, and characteristic constant

thermodynamic values p�, r� and T�.
For simplicity I have used, for our above dimensionless quantities, u; p; r, and

T, as function of dimensionless (t, x), the same notation as in Chap. 2.

3.1.1 Non-dimensional NS–F Equations and Reduced Parameters

First, in non-dimensional form, for a thermally perfect gas, we obtain as equation

of state:

p ¼ r T; (3.1)

because p� ¼ R r� T�, according to (2.8), written for the reference values.

In non-dimensional form we have for the time derivative, with respect to

material motion (along trajectories):

S D=Dt ¼ S @=@t þ u � r; (3.2)

where

S ¼ L�=t�U� is the Strouhal number (3.3)

From (2.34a–c) with (2.35a, b) we derive the following three unsteady full NS–F

non-dimensional equations:

SDr=Dtþr � u ¼ 0; (3.4a)

r S Du=Dtþ 1=gM2
� �rpþ ðBo=gM2Þrk ¼ 1=Reð Þr � flðr:uÞI þ 2mD uð Þg ;

(3.4b)

r S DT=Dt þ ð g� 1Þ p r � u ¼ ð g=Pr ReÞfr � ½krT�g
þ ð g� 1Þ½ gM2=Re�f2m TraceðDðuÞÞ2 þ lðr � uÞ2g: (3.4c)

which form a closed set of three non-dimensional partial differential equations, for

four dimensionless quantities, u; p; r and T, as functions of dimensionless time
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space variables t; xð Þ, provided that one adds the non-dimensional equation of state

(3.1) for an ideal (thermally perfect) gas.

The reduced parameters in the above non-dimensional NS–F equations (3.4a–c)

are

Re ¼ L�U�=n� � the Reynolds number; (3.5a)

M ¼ U�=ðgRT�Þ1=2 � the Mach number; (3.5b)

Pr ¼ Cp m�=k� � the Prandtl number; (3.5c)

Bo ¼ gðM=FrL�Þ2 � the Boussinesq number; (3.5d)

where

ðFrL�Þ2 ¼ Uo2=gL�; (3.6)

is the square of the Froude number based on the characteristic length L�.
The Strouhal number takes into account the unsteady effects and the Reynolds

number the viscous effects. In particular, in Chap. 5, the consideration of the

limiting case, Re " 1, when S ¼ O(1), leads, in the framework of our RAMA, to

a complicated asymptotic structure of the above NS–F system of equations (3.4a–c)

which is very different from classical regular coupling:

Euler non� viscous fluid flowð Þ , Prandtl boundary layer fluid flowð Þ

This complicated, four regions, singular coupling of the full unsteady NS–F

equations arise mainly because of the singular nature of the Prandtl boundary layer

equations near t ¼ 0, where the initial data are given.

The compressibility is strongly related with the Mach number, and the acoustics

effects are, in fact, closely linked to the following similarity relation:

S M ¼ M� ¼ O 1ð Þ; (3.7)

when

S � 1

a strong unsteady-state effect, and

M � 1

quasi-incompressibility.

In reality, only the low Mach number asymptotics presents the possibility of

deriving in a consistent form, as a limiting simplified incompressible model of
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above NS–F system (3.4a–c), the associated Navier incompressible and viscous

system of equations.

These Navier equations are again singular near t ¼ 0, where the equations of

acoustics are significant – but, unfortunately, this is really the case only if the fluid

flow domain is not a bounded, time dependent, domain (a cavity, as is the case in an

internal flow; see, for instance, Sect. 7.1).

In the Bénard thermal convection problem – a liquid layer heated from below,

when the fluid is an expansible liquid such that the relation:

r ¼ r Tð Þ (3.8)

is often assumed, we can introduce the constant coefficient of cubical expansion:

a� ¼ � ð1=r�Þ dr
dT

� �
T¼T�

: (3.9)

Concerning the relation (3.8) it is necessary to observe that it is only consistent

in the framework of a RAM Approach as a “leading-order” approximation of

a trivariate liquid, r ¼ r T; pð Þ, when the above cubical expansion (3.9) of the

considered liquid is very small (more precisely, for a�DT� � 1) in the Grashof

(Gr) number (3.10) below.

In this case, if DT�is the difference between the two temperatures in a layer of

thickness d�, then the following similarity relation:

a�DT�=ðFrd� Þ2 ¼ Gr ¼ O 1ð Þ; (3.10)

plays a significant role for the derivation of classical Oberbeck–Boussinesq shallow

thermal convection equations (see, for instance, Chap. 8). In (3.10) the so-called

Grashof number is, in fact, a similarity parameter, and

Pr Gr ¼ Ra (3.11)

is the Rayleigh number. The reduced dimensional parameter

Pr Re ¼ Pe0 ¼ L�U�=ðk0=r0CpÞ (3.12)

is the Péclet number.

We observe that in the definition of Gr (3.10), in the numerator the parameter

e ¼ a�DT� (3.13)

is the expansibility parameter – a small ð	 5
 10�3Þparameter for many liquids,

which plays the role as a main small parameter in our derivation (in Chap. 8) of an

approximate limiting consistent model for shallow thermal convection (à la
Rayleigh–Bénard). But for this it is necessary to assume also that

ðFrd� Þ2 � 1 such that Gr ¼ O 1ð Þ
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In fact, in the framework of the full Bénard convection problem, three significant

convection cases merit interest:

1. Shallow-thermal, Rayleigh-Bénard convection, without viscous dissipation and

upper free surface deformation, when, ðFrd� Þ2 � 1.

2. Deep-thermal, Zeytounian convection, with viscous dissipation, when,

1 � ðFrd� Þ2 	 a�gd�=ðCvÞ�.
3. Thermocapillary, Marangoni convection, with a deformable upper free surface,

when, ðFrd� Þ2 	 1.

A fourth case also deserves careful asymptotic investigation, linked with:

4. Ultra-thin film, when, ðFrd� Þ2 � 1;

For this fourth case, many questions are still open and deserve serious discussion

and investigations.

For Pr � 1 with Re � 1, but Pé ¼ O(1), the fluid motion is quasi-non-viscous

but strongly thermally conducting, and the so-called high thermal conductivity

model equations are valid, with a specified boundary condition for the temperature

on the wall.

We observe that with Pr � 1, and Pé ¼ O(1) we assume that

m � k0=Cp 	 r�L�U�: (3.14)

Strictly speaking, when Re � 1 the viscosity effects remains important, mainly

in a boundary layer near the wall which has thickness of the order of

HCL ¼ L�= Reð Þ1=2; (3.15a)

and in this case we have, again, a similarity relation, namely

e2Re ¼ Re? ¼ O 1ð Þ;where HCL=L
� ¼ e; (3.15b)

when we assume that:

e # 0 and Re"1: (3.15c)

In (3.15b, c) the parameter e is a long-wave parameter, and in the viscous fluid,

when the limiting process (3.15b, c) is performed, the so-called long-wave approx-

imation is very similar to classical (Prandtl, 1904) boundary-layer approximation.

For the atmospheric viscous and non-adiabatic motions (when, obviously, the

Mach number is very low), we take into account (see Sect. 9.2) the Coriolis force,

which is characterized by the Coriolis parameter,

f � ¼ 2O�sinf�; (3.16a)

where O� ¼ jOj, and O is the angular velocity of the rotating earth’s frame, and f�a
reference latitude (for f� 	 45�, we have a� ¼ 6,300 km for the earth’s radius).
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In this case it is helpful to employ spherical coordinates l;f, and r, and for the

gradient operator r we can write:

r ¼ ð1=rcosfÞ@=@l iþ 1=rð Þ@=@f jþ @=@r k: (3.16b)

But it is more convenient to use a right-handed curvilinear coordinates system

(x, y, z) lying on the earth’s surface (for a flat ground we have r 	 a�) at latitude
f� and longitude l ¼ 0; namely:

x ¼ a�cosf�; y ¼ a�ðf� f�Þ; z ¼ r� a�: (3.16c)

Although x and y are, in principle, new longitude and latitude coordinates

in terms of which the basic NS–F (written for the atmospheric motions with

the Coriolis force term characterized by the Rossby number Ro) equations may

be rewritten without approximation, they are obviously introduced with the expec-

tation that for a small sphericity parameter,

d ¼ L�=a� (3.16d)

they will be the Cartesian coordinates of the f �-plane approximation.

For the atmospheric motions a fundamental parameter is the Kibel number,

such that

Ki ¼ 1=f�t� � Ro ¼ 1=f�ð Þ= L�=U�ð Þ; (3.17)

when we assume that the Strouhal number S � 1 or t� ¼ L�=U�.
On the other hand, for atmospheric motions in the whole troposphere, a very

significant characteristic constant vertical altitude is

Hs ¼ RT�=g (3.18a)

and usually (for the weather prediction, in the hydrostatic approximation)

es ¼ Hs=L� � 1: (3.18b)

Indeed, the viscous and non-adiabatic effect in the tropospheric motions are

limited within a thin layer near the ground – the Ekman layer – which is

characterized by the following Ekman number:

EkS ¼ Ki=Res ¼ n�=f �HS
2; (3.19a)

where, for Re � 1,

ReS ¼ eS2Re ¼ Oð1Þ: (3.19b)
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The reader can find in my two books (1990) [12] and (1991) [19] various asymp-

totic models for the atmospheric motions. Section 9.2 presents an application of the

RAMApproach to atmospheric motions when the Kibel number is a small parameter.

Finally, whenwe consider the oscillatory viscous flows (when the Strouhal number

S� 1; see, for instance, Riley (1967) [80]), when the flow is induced by a solid body

performing harmonic oscillations (assuming that the velocity of the body is U�cos o)
in an unbounded viscous fluidwhich is otherwise at rest, with t� ¼ 1=o being a typical

time. In this case, in dimensionless Navier equations for an incompressible and

viscous fluid we have two main parameters, a and b2, such that:

1=S ¼ a ¼ U�oL� and Re=a ¼ b2 � oL�2=n�: (3.20)

In fact, Riley (1967) considers solely the situation corresponding to a � 1,

high Strouhal number, and for the case of b2 ¼ O 1ð Þ it is assumed that the

oscillatory fluid flow is strongly viscous: Re � 1.

3.1.2 Conditions for the Unsteady NS–F Equations

Roughly speaking, we can expect that the equations of motion for a viscous fluid

are parabolic. However, a more detailed analysis of the structure of equations (3.4a)

and (3.4b) for the velocity vector u and the density r shows that this seems correct

concerning equation (3.4b) for the velocity vector u, but not quite correct for the

system of Eqs. 3.4a, b, because the continuity equation with respect to density r is

hyperbolic in the compressible case, even for non-trivial viscosity!

Thus, to be more exact, we can say that a system of two Navier–Stokes equations

(3.4a, b), with a specifying relation p ¼ PðrÞ and viscosity coefficient

m ¼ � ð3=2Þ l rð Þ � m� rð Þ;

is a hyperbolic–parabolic or incompletely parabolic system according to the defini-

tion suggested by Belov and Yanenko (1971) [59] and Strikwerda (1977) [81], in

the rigorous study of the mathematical properties of these equations.

The Fourier equation (3.4c), written in the dimensionless form, for a small

characteristic Mach number (hyposonic flow, M � 1), with respect to temperature

T, is parabolic.

Kreiss and Lorenz (1989) [62] presents pertinent information concerning the

initial-boundary value problems for Navier–Stokes equations. On the other hand,

Oliger and Sundstr€om (1978) [60] discuss initial-boundary value problem for

several systems of partial differential equations from fluid dynamics.

We observe also that both the viscosity and heat conduction terms (characterized

mainly by the inverse of the Reynolds number, 1/Re), in dimensionless equations

(3.4b) and (3.4c), are usually very small (Re � 1), but since these terms change the

3.1 Non-dimensional Form of the NS–F Typical Problem 57



character of the NS–F partial differential equations (from parabolic to hyperbolic in

the case of a Eulerian non-viscous adiabatic fluid flow), we are obliged to reinves-

tigate the boundary conditions.

Concerning the initial condition, at initial time t ¼ 0 the situation is unchanged

relative to hyperbolic Euler unsteady compressible non-viscous equations con-

sidered in Zeytounian (2002) [37], Chap. 8. In the NS–F equations (3.4a–c) we

have three derivation in time for the velocity vector u, density r, and temperature T.

As a consequence, if we want resolve a pure initial-value or Cauchy problem

(in the L2-norm, for example), it is necessary to have a complete set of initial

conditions (data) for u, r, and T (as was mentioned in Chap. 2).

We see (according to Sects. 2.4.3 and 2.4.4) that several boundary conditions

could be considered with respect to different physical situations for the above NS–F

system of Eqs. 3.4a–c.

If we consider, as a simple example, the viscous and heat-conducting fluid flow

above a rigid, solid, steady wall, simulated by the equation

z ¼ 0;

then, when m> 0 and mv � lþ 2=3ð Þm> 0, it is necessary to assume the

following no-slip condition:

u ¼ 0 on z ¼ 0: (3.21)

for the velocity vector in non-dimensional NS–F equation (3.4b).

For the (absolute) temperature T, in the case of a heat conductive fluids, when

k > 0, in non-dimensional NS–F equation (3.4c), just to limit ourselves to the most

common cases, we can require, in dimensionless form, the following temperature

condition:

T ¼ 1þ wY t;Pð Þ on z ¼ 0: (3.22)

where P is a position point on the wall z ¼ 0. In (3.22), w is a temperature reduced

constant parameter � a rate for the wall temperature fluctuation, simulated by the

functionY(t, P) – a measure for the given known functionY(t, P), which define the
temperature field on the wall.

This parameter w plays an important role during the RAM Approach via various

similarity rule with the above reduced parameters (3.5a–d), and especially with the

Mach number, M.

We observe that in the compressible case, from the continuity Eq. 3.4a, with (see

(1.37)) initial condition r ¼ r� xð Þ> 0 at t ¼ 0, we can affirm (see, for example,

Valli (1992) [82]) that one of the main mathematical problems (unlike the incom-

pressible case) is to find a priori estimates assuring the non-degeneracy of the

density r.
Today, 76 years later, despite tremendous progress in many aspects of the

mathematically rigorous Navier (N–S incompressible) theory (see, for example,
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the book by Temam (2000) [83]), we have not yet answered the fundamental

questions raised by Leray’s pioneer papers (1933/1934) [84]. That is, we have not

determined whether a solution that is initially smooth can develop a singularity at

some later time, or whether singularities are an important feature of turbulence.

This is also related to another question: “Are singularities really necessary to

explain turbulence?”. Lions book (1998) [51] is mainly devoted to new rigorous

mathematical results for NS compressible (but isentropic) fluid flows.

3.2 General Main Model Equations

Here I reiterate that our main goal is modelling – a scientific activity which consists of

deriving (according to the RAM Approach), for various technological and geophys-

ical stiff fluid flow, consistent, approximate, simplified model problems, in a such

way that they become amenable, on the one hand, to mathematical analysis, and on

the other hand, to numerical simulation by a super-high-speed computers.

This is not an easy task – especially when numerical computation involves

simultaneously, dominant and negligible effects in so-called “stiff problems”. In

such a complicated case, for the numerical simulation it is necessary to be able, via

the RAM Approach, to derive model consistent problems where the “stiffness” is

smoothed!

A such, the RAM Approach is remarkably illustrated (see Sect. 7.1) in the case

of an internal flow in a turbomachinery row with a large number of blades – the

space between blades being very small – when the stiffness is replaced by the

smoothness via a source term in a simplified model, consistent, through-flow

(without blades!), which occurs from redistribution of forces acted on the flow by

the blades of the row.

Below I present a number of fluid flow problems which are linked with general

main models, though we make no reference to the literature, as such reference is

both unnecessary and rather arbitrary.

In many cases of practical interest, the parameters (3.5a–d) in NS–F non-

dimensional equations make take on extreme values, either very large or very

small – these extreme values of parameters being closely linked with various

particular fluid flows, which are of great interest in understanding the profound

nature of flow related with the full NS–F problem.

3.2.1 Some General Main Models

Inviscid Euler fluid flows, which are often considered as models, used from the

outset, need to be embedded in the more general main model of slightly viscous

(laminar – large Reynolds number – flow) or slightly frictional (turbulent?) flow, to

which RAMA is applied when Re "/ .
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Creeping flows, with numerous applications in thin films (lubrication), micro-

hydrodynamics, and so on, should be considered as flows at low Reynolds

Re � 1ð Þ number. Entire books are devoted to creeping flows, but the role

of the low Reynolds number, as the main small parameter, related with Re # 0, is

ignored except in the very few expository pages.

Incompressible flows are seldom considered as flows at small Mach number.

This obviously can become almost nonsensical, as when one deals with incom-

pressible aerodynamics and acoustics. Phenomena such as sound produced by quite

low-speed flow cannot be understood other than as low-Mach-number (hyposonic,

M #o) aerodynamics.

Rotating flow, which dominates both industrial and geophysical nature appli-

cations, are indeed asymptotic models of flow at low Rossby number ðRo # 0Þ or
low Kibel number ðKi # 0Þ.

Large-scale models of flows, of current use in simulations of meteorological

or oceanographic applications, are extracted from asymptotic modelling which

explains the role of the hydrostatic balance.

A number of models for the flows in porous media, flow with suspensions, or

turbulent flow, should be considered as models obtained through some kind of

homogenization (see Sect. 6.4).

The Navier–Fourier model, which take into account the effects of a slight

compressibility and the thermal effects, is derived from NS–F equations (3.4a–c),

with the condition (3.22), when we assume that the temperature parameter w is

small, such that for M � 1 we assume the following similarity rule:

w ¼ l0M2with l0 ¼ O 1ð Þ:

The Stokes and Ossen compressible model equations, when Re and M both tend

to zero, such that

Kn ¼ M=Re � 1:

This above constraint is realized if we take into account the following similarity

rule:

M ¼ L Re1þa; with L ¼ O 1ð Þ and a >0; when Re #0:

The model equations of non-linear acoustics when, in place of Re (given by

(3.5a)), it is necessary to introduce an acoustic Reynolds number Reac, such that:

Reac ¼ Re=M � 1ð Þ;

the characteristic length scale being

L� ¼ 1=k�;
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where

k� ¼ o=
p

gRT�

is the wave number, and o is a reference frequency determined by the main

frequency of the source signal.

The shallow-thermal, Rayleigh–Bénard, convection model is derived when

simultaneously the Froude number (Fr) and the expansibility parameter (e) tend
both to zero such that the Grashof number Gr ¼ O 1ð Þ.

Various meteo-fluid dynamics models linked with low Kibel number limiting

process (as in Sect. 9.2).

Discussion of the RAM Approach applied to some of the above problems can be

found in [12, 13, 17, 26], and [27]; and see also the above Overview, Sect. 1.3,

concerning my earlier books on modelling in Newtonian fluid flows. In Chaps. 7–9,

devoted to applications of the RAM Approach, we also consider some aerodynam-

ics, thermal convection and meteo/atmospheric stiff fluid flows, and derive the

associated consistent model problems.

3.2.2 A Sketch of the Various General Main Models

Below, the reader can find a sketch of the various consistent general main model

equations issues, with the help of a RAM Approach, from the NS–F full unsteady

(and assumed exact) system of equations.

A first observation concerning these above-mentioned general main models is

relative to the fact that the later are derived from the RAMA when the space-time,

(x, t), fluid domain is (implicitly assumed) fixed. As a consequence (often, unfortu-

nately), these general main models equations turn out (in many cases) to be of non-

uniform validity, as they break down in certain regions of the fluid flow.

(Concerning this problem see Sect. 3.3.)

More precisely, these regions are usually strongly linked with the assumed initial

and boundary conditions. These generalmainmodels break down near the time, t ¼ 0,

where the initial data are given, and in the vicinity of the wall, z ¼ 0, where the

conditions (3.21) and (3.22), for u and T, are assigned. Below is an overview relative

to the above general main models arising from the full NS–F equations (Fig. 3.1).

The experienced reader will be aware of the fact that the partial differential

equations of fluid dynamics (NS–F system of Eqs. 3.4a–c solely) are not sufficient –

as is often the case, unfortunately, in mathematical fluid dynamics – for discussing

fluid flow problems.

This seemingly anodyne remark not only has far-reaching consequences, but

also presents the possibility of discovering various new intrinsic structures from

NS–F equations.

A good illustration of such a possibility (it seems to me) is our recent RAM

Approach, expounded in Chap. 5, applied to NS–F full unsteady equations in the
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framework of a large Reynolds number – the discovered five regions structure being

a direct consequence of the singular nature of equations of the unsteady compress-

ible boundary layer near the initial time (¼ 0) where the initial data for the unsteady

full NS–F equations are given.

3.3 Non-uniform Validity of Main Model Equations

and the Local Limiting Processes

The regions of non-uniform validity, near t ¼ 0 and in the vicinity of z ¼ 0 on the

wall, of general main model equations, are mainly the results of the elimination of

some terms with partial derivatives in t and z, in dimensionless NS–F full unsteady

Fig. 3.1 From NS–F equations to some general main model equations
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Eqs. 3.4a–c during the main limiting processes, with t and x (¼ x, y, z) fixed,

mentioned in Sect. 3.2.1.

3.3.1 Large Reynolds Case: A First Naive Approach

When the Re tends to infinity, with t and x fixed, we first consider the non-

dissipative, Euler, main limiting process:

LimE � Re " / with t and x fixed (3.23)

in NS–F equations (3.4b) and (3.4c). The parameters Pr and M2 being fixed, the

dissipative terms in the right-hand side of both these equations disappears, and we

recover the Euler compressible equations:

S DrE=Dt þ r � uE ¼ 0; (3.24a)

rE S DuE=Dt þ ð1=gM2ÞrpE þ ðBo=gM2ÞrEk ¼ 0; (3.24b)

r S DTE=Dt þ ð g� 1Þ p r � uE ¼ 0; (3.24c)

pE ¼ rETE; (3.24d)

where

ðuE; rE;TEÞ ¼ LimEðu; r;TÞ:

Obviously, for these non-viscous equations it is necessary to assume, in place of

boundary wall condition (3.21), the slip condition:

uE:k � wE ¼ 0 on z ¼ 0; (3.25)

This is the single boundary condition on the wall, for the above Euler unsteady

compressible equations, because the term @2uE=@z
2 is absent in the right-hand side

of the limit Eq. 3.24b.

Concerning the initial conditions, it is again necessary to specify three initial

conditions. However, the prescribed data in these three initial conditions, for Euler

equations (3.24a–c), are all really the same than as for full unsteady NS–F equations

(3.4a–c)? This is an interesting, but disquieting, question.

The singular nature of the Euler main limiting process in the vicinity of the wall

z ¼ 0 is directly related with the fact that condition (3.21) for an NS–F system of

equations is replaced by the slip condition (3.25). In addition, the Euler equations

(3.24a–c) take (unless dissipative terms) the form of a hyperbolic system.
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This leads inevitably to the necessity of a RAM Approach for a slightly viscous

and (when Pr ¼ O(1)) heat-conducting flow in a thin layer close to wall z ¼ 0, and

for this, according to a RAM Approach, it is necessary to consider a new limiting

process: the Prandtl local limiting process in NS–F equations:

limPr � Re " /with t and x; y; z ¼ z=ð1=pReÞ fixed; (3.26a)

with

ðvPr;wPr; rPr;TPrÞ ¼ LimPrðv; w=ð1=pReÞ; r ;TÞ: (3.26b)

From (3.26a, b), our small parameter, in a RAM Approach, is

e ¼ 1=
p
Re � 1 (3.27)

since Re � 1.

In such a case in the leading-order we derive the well-known Prandtl boundary-

layer equations. A detailed derivation of these Prandtl boundary-layer equations is

presented in [26], Chap. 7. Here, in Chap. 5, we return to the case of a large

Reynolds number fluid flow in the framework of a four-regions structure of NS–F

full unsteady equations at high Reynolds number.

Here, if we simply assume that the dissipative coefficients l, m, and k are

constant in dimensionless equations (3.4b, c) for u and T (in fact, equal to one),

then we obtain, with (3.26a, b), the following Prandtl BL unsteady equations (with

the horizontal gradient operator D ¼ ð@=@x; @=@yÞÞ:

S @rPr=@t þ D:ðrPrvPrÞ þ @ðrPrwPrÞ=@z ¼ 0; (3.28a)

S rPr½@vPr=@tþ vPr:Dð ÞvPr þ wPr@wPr=@z�
þ ð1= gM2ÞDpPr ¼ @2vPrÞ=@ z2;

(3.28b)

@pPr=@z ¼ 0; (3.28c)

S rPr½@TPr=@tþ vPr:Dð ÞTPr

þ wPr@TPr=@z� þ g� 1ð ÞpPr D:vPr þ @wPr=@z½ �
¼ g=Prð Þ@2TPrÞ=@z2 þ gð g� 1ÞM2j@vPr=@zj2; (3.28d)

pPr ¼ rPrTPr; (3.28e)

where in (3.28b) and (3.28d) some dissipative terms are again present.
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It is well known that the above two limiting systems (Euler and Prandtl) of

Eqs. 3.24a–d and 3.28a–e are related to the following matching condition (the

concept of matching will be discussed in more detail in Sect. 6.4.2):

limz"1½LimPr� ¼ limz#o½LimE�; (3.29)

As a first consequence of (3.29) we recover the slip condition (3.25), which is, in

our RAM Approach, a mathematically logical consequence of the passage from an

incompletely parabolic (hyperbolic–parabolic) NS–F system to a hyperbolic Euler

system.

In Chap. 5, devoted to a “deconstruction”2 of the full NS–F unsteady equations,

when Re "/ , the consequence of the strong (BL–Prandtl) degeneracy (3.28c) is

analyzed in the relation of initial conditions for a well-posed initial-boundary

unsteady problem for the Prandtl BL equations.

3.3.2 Low Mach Number Case: The Navier System of Equations
and Companion Acoustics Equations

The Navier equations govern incompressible viscous fluid flows, and are formally

derived from the full NS–F equations (3.4a–c), when M # 0.

Here, for aerodynamics, we assume that Bo ¼ 0. The case when Bo is not zero

(the gravity force being active) is considered in Chap. 4, in the framework of a

rational justification of well-known Boussinesq approximation.

More precisely, we consider the following Navier main limiting process:

LimM � M # 0

with t and x fixed;
(3.30)

and we assume, again, that the dissipative coefficients l, m, and k are equal to one in
the non-dimensional equations (3.4b, c). During the above LimM (3.30) we assume

that S, g, Re, and Pr are all O(1).

First, according to (3.4b), in a very naive way we assume the following asymp-

totic expansion for the pressure p:

2 From the French “déconstruction” – a word invented by Jacques Derrida (see the book by Charles

Ramond, Le vocabulaire de Derrida, Ellipses, Paris, 2001), which presents us with the possibility

of understanding the intrinsic structure of the NS–F equations, and reveals the presence of a

profound unity in the puzzle of the partial models of fluid dynamics problems. To “deconstruct”

the NS–F system of equations we have the possibility of unifying these partial models, used in

Newtonian fluid dynamics, according to our RAM Approch, using the various limiting processes

linked with the reference dimensionless parameters in equations, conditions, and geometry of

considered non-dimensional fluid flow problems. From a such process we re-establish a well-

ordered and unified family of partial fluid flows.
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p ¼ p0 tð Þ þM2pN t; xð Þ þ :::; (3.31)

and we enquire how one can obtain information concerning the function p0(t).

Scrutinization of the starting NS–F equations, and trying more sophisticated expan-

sion processes (in place of (3.31)) proves to be of no help. However, a way out

appears if (3.31) holds in the whole of a domain of space where p is known to

leading order, with respect to the smallness of M, as far as its dependence on x is

concerned. This, obviously, occurs when (3.31) holds in a neighbourhood of infinity

where the pressure is constant (especially in the case of a steady fluid flow past a

finite body – external aerodynamic problem), and this leads, then, to p0(t) ¼ 1.

On the other hand, let us assume that the gas is contained in a container O
bounded by an impermeable but eventually deformable (with time t) wall, so that

the volume occupied by the gas is a given function of time: namely, V0(t). An

obvious way to proceed is to assume that the density and temperature go to definite

limits: r0 t; xð Þ and T0(t, x), according to (3.30), LimN. It is a very easy matter to

derive, from Eq. 3.4c, an equation satisfied by T0(t, x). Such an equation involves

the unknown function p0(t), and it has an obvious solution T0(t, x) � T0(t), which

holds provided that the two unknown functions, r0(t, x) and T0(t, x), meet the

requirement that

T0=ðr0Þg�1
be independent of time¼ 1: (3.32a)

It is then easy to reach the conclusion that

r0 tð Þ ¼ p0ðtÞ1=g; (3.32b)

and, conservation of the mass for the whole of the gas contained within the

container gives

p0 tð Þ ¼ ½V0ðtÞ��g; (3.32c)

so that we have found our way out of the indeterminacy concerning the leading term

in (3.31). Of course, our argument relies on T0(t) being independent of space, and

we have to discuss the adequacy of that. It is obviously a matter of conduction of

heat within the gas. Such a phenomenon might have two origins – one of which is

dissipation of energy within the gas; but consideration of Eq. 3.4c tell us that this

enters into account at a rate of O(M2) and is negligible as far as T0(t) is concerned.

A second origin for the conduction of heat is through the variations of temperature

on the wall or from heat transfer through it.

Let us return to Eqs. 3.4a, b and assume that u goes to uN(t, x) according to

(3.30). We put:

pN=gr0 tð Þ ¼ LimNf½p� p0 tð Þ�=gr0 tð ÞM2g ¼ p; (3.33)
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This p is a fictitious pressure perturbation, and we derive the following quasi-

incompressible system of equations for Navier velocity vector uN and pressure

perturbation p:

r:uN ¼ �ðS=r0 tð ÞÞ dr0 tð Þ=dt; (3.34a)

½S @=@t þ uN:r�uN þr p ¼ ½ m T0ð Þ=r0 tð ÞRe�r2uN; (3.34b)

r0 tð Þ ¼ 1=V tð Þ; p0 tð Þ ¼ V tð Þ½ ��g;T0 tð Þ ¼ ½VðtÞ�1�g: (3.34c)

The above system of Eqs. 3.34a, b with 3.34c is a rather slight variant of the

Navier equations (see also Sect. 7.2) which consists of a fluid flow with time-

dependent viscosity and no-divergenceless velocity vector, rather than a

divergenceless motion with constant in space.

The usual set of Navier equations is obviously obtained for a constant-volume

container, and in this case (p0(t) and r0 tð Þ � 1, in (3.33)) we can write, in place of

(3.34a, b), the following classical Navier (NS incompressible) equations for a

divergenceless velocity vector uN and fictitious pressure perturbation p:

r:uN ¼ 0; (3.35a)

½S @=@t þ uN:r� uN þrp ¼ 1=Reð Þr2uN: (3.35b)

On the one hand, for the full unsteady NS–F compressible and heat-conducting

equations (3.4a–c), with Bo ¼ 0, aerodynamics case, if we want to resolve a

Cauchy problem it is necessary to impose three initial conditions for r, u, and T.

On the other hand, when considering the above Navier general main model

equations (3.35a, b), we must give only the initial value for uN, and this Navier

initial condition (uN)
� is such that:

r:ðuNÞ� ¼ 0: (3.36)

This shows that the Navier incompressible system (3.35a, b) – where acoustic

waves are filtered – is certainly not valid (singular) near t ¼ 0.

As a consequence, it is necessary to derive a new model of limiting equations

consistent in an initial (local) thin region with a “short time”. We therefore

introduce

t ¼ t=M ¼ O 1ð Þ; when M # 0; (3.37a)

and consider the following local acoustic limiting process:

limAc � M # 0with t and x fixed: (3.37b)
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This short time t is well suited for studying the transient behaviour – an unsteady
adjustment problem related to a process of matching between main (for instance,

(3.31)) and local,

p ¼ 1þMapac þ :::; (3.38a)

expansions.

In fact, for the case of an external aerodynamics – when the matching is

possible – we must deduce from NS–F equations (3.4a–c) a local consistent system

of acoustics equations which realize the above-mentioned matching.

For this, the following asymptotic expansions are considered, with (3.38a) for p,

u, r, and T, in the framework of unsteady NS–F dimensionless equations (3.4a–c):

u ¼ uac þ :::; (3.38b)

r ¼ 1þMb rac þ :::; (3.38c)

T ¼ 1þMcTac þ :::; (3.38d)

with a, b, and c being three scalars to be determined.

We now consider the above (3.37a, b) local acoustic limiting process, when

again, S, g, Re, and Pr are all O(1).

Various detailed investigations by Zeytounian and Guiraud (see, for instance,

[85] and [86]) show that the above asymptotic local expansions (3.38a–d) are

consistent only with the situation corresponding to an unbounded fluid flow, outside

a solid bounded body O, starting in motion impulsively – mimicking a catapulting

process.

A poor justification for working this way is that this is a classical problem in

inviscid incompressible fluid dynamics (in fact, this transient behaviour is essen-

tially characterized by the weak compressibility) in the NS–F equations, when we

consider the local (in time) limiting process (3.37a, b) with (3.38a–d).

First, from (3.4a), at leading order we derive a least-degenerated (concerning the

least/significant degeneracy concept; see Sect. 6.4.3) continuity equation when

a ¼ 1 and b ¼ 1:

S @rac=@ tþr:uac ¼ 0: (3.39a)

It is then easy to show that the more consistent limiting system of equations,

which is derived from the full dimensionless NS–F equations (3.4a–c) with (3.37a,

b) and (3.38a–d), is the linear acoustics system of equations, if we assume that

a ¼ c ¼ 1. In such a case, with (3.39a) we obtain the following three equations:

S @uac=@tþ ð1= gÞrpac ¼ 0; (3.39b)
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S @Tac=@tþ ð1� gÞr:uac ¼ 0; (3.39c)

pac ¼ rac þ Tac: (3.39d)

If we consider the transient behaviour of an NS–F fluid flow which is set into

motion from rest by the displacement of a solid body, an unbounded medium, as an

initial condition for above acoustics equations we write:

t¼ 0 : uac ¼ 0;Tac ¼ 0; rac ¼ 0: (3.40)

For the determination of the unknown Navier initial condition (uN)
� it is

necessary to consider an unsteady adjustment problem (as described in Sect.

2.4.2) with a matching process, such that:

limt#1uac ¼ limt¼0 uN � ðuNÞ�: (3.41)

Here I note that in the book by Wilcox (1975) [87] the reader can find a

scattering theory which makes possible the analysis of the behaviour of the above

equations of acoustics (3.39a–d), with (3.40), when t # 1, and in Zeytounian

(2000) [88] this matching has been realized.

Unfortunately, this is not the case when the gas is contained in a bounded

container O, with an impermeable but eventually deformable (with time t) wall,

so that the volume occupied by the gas is a given function of time, V0(t) – a problem

first considered by Guiraud and Zeytounian in (1980) [88].

For instance, in a bounded fluid flow, inside a solid bounded bodyO; with a wall
S tð Þ deformable with time t, the above matching relation (3.41) often does not work

(see Sect. 6.4.2, concerning “matching”). In Sect. 7.2, devoted to applied aerody-

namics problems, we return to the consideration of a such case. In particular, this

case may be related to compressible gas flow in the compression phase of an

internal combustion engine.

3.3.3 Oberbeck–Boussinesq Model Equations for the
Rayleigh–Bénard Shallow Thermal Convection

When we consider a weakly expansible (with a low, e, expansibility parameter

(3.13)) liquid, such that the following simplified equation of state is valid (at least,

in leading-order, when the expansibility parameter, e, defined by (3.13), tends to

zero):

r = r ðTÞ; (3.42a)
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then, in place of the NS–F system of equations (2.34a–c) with (2.35a, b), we have in

equation (2.34c) as Cv the coefficient (as a consequence of (3.42a)):

C Tð Þ ¼ DEl Tð Þ=Dt: (3.42b)

because the specific internal energy E ¼ El(T) is a function of temperature T only:

DEl=Dt ¼ C Tð Þ DT=Dt: (3.42c)

For the derivation of a leading-order (relative to e � 1) Oberbeck–Boussinesq

model – as a simplified consistent Rayleigh–Bénard (RB) shallow thermal convec-

tion model problem – we can assume (due to a low squared Froude number (see

(3.10)) hypothesis) that

r Tð Þ 	 rd� ð1� eYÞ; (3.42d)

is consistent, with an error of Oðe2Þ, when Y is given by relation (3.43a) and a

perturbation of pressure is introduced by its companion relation (3.43b).

Therefore, if we assume that Td� is the constant temperature of the free surface in

the purely static motionless conduction basic state (which is the plane z ¼ d), such
that DT� ¼ Tw � Td� ; in (3.13) and (3.43a), we can introduce the following

dimensionless temperature (Tw is the temperature at z ¼ 0):

Y ¼ ðT� Td� Þ=DT�; (3.43a)

The companion dimensionless perturbation of pressure is:

p ¼ ½1=ðFrd� Þ2�f½ p � pAð Þ=ðgrd�d�Þ� þ ðz � 1Þg; (3.43b)

where pA is the passive constant atmospheric pressure.

Thanks to the introduction of p by (3.43b), and when the limiting RB process

(3.45) is applied to the NS–F system of equations for a weakly expansible liquid, we

can easily verify that relation (3.42a) is sufficient (and consistent according to

(3.42d)) for the density r, for the derivation of the dominant, leading-order,

Eqs. 3.44a–c.

Indeed, if now, as the characteristic length scale we choose d�, as characteristic
constant velocity nd�/d�, the characteristic time being d�2=nd� , where nd� is the

constant kinematic viscosity (at z ¼ d�), then we can derive, first, the following

dimensionless dominant equations (from an NS–F system of equations written for

an expansible liquid) for our weakly expansible liquid:

r:uliq ¼ eDY=Dt; (3.44a)

ð1� eYÞDuliq=Dt þrp� GrY k�r2uliq ¼ OðeÞ; (3.44b)
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½1� eY ð1þ G�Þ�DY=Dt� 1=Prð Þr2Y ¼ OðeÞ; (3.44c)

where

C Tð Þ ¼ Cd� ð1� eG�YÞ:

When (limiting O-B case)

LimO�B � e ! 0; with Gr ¼ O 1ð Þ; Pr ¼ O 1ð Þ and G� ¼ Oð1Þ; (3.45)

is performed, from the dominant Eqs. 3.44a–c, we obtain the Oberbeck–Boussinesq

model equations for the Rayleigh–Bénard shallow thermal convection in the fol-

lowing form:

r:uO�B ¼ 0; (3.46a)

DuO�B=Dt þr pO�B � GrYO�B k ¼ r2uO�B; (3.46b)

DYO�B=Dt ¼ 1=Prð Þr2YO�B: (3.46c)

In Chap. 8 the reader can find some complementary consequences of the above

limiting O-B (3.45) case in the framework of the well-known Bénard heated-from-

below thermal convection problem, for a weakly expansible liquid layer with a free

surface and temperature-dependent tension.

3.3.4 Stokes–Oseen Model Equations in the Case
of a Low Reynolds Number

In the case of an incompressible viscous Navier fluid flow with S � 1, from (3.35b)

we obtain:

Re DuN=DtþrpSt ¼ r2uN; (3.47a)

with

pst ¼ Re p; (3.47b)

the Stokes pressure, and for low Reynolds number, when the Stokes limiting

process is performed:

LimSt ¼ Re # 0 with pst and t; x fixed; (3.48)

3.3 Non-uniform Validity of Main Model Equations and the Local Limiting Processes 71



we obtain, for LimStuN ¼ uSt(t, x) and pSt, the so-called Stokes equation:

r2uSt ¼ rpSt: (3.49a)

with, from (3.35a),

r:uSt ¼ 0: (3.49b)

One would expect that the boundary conditions for the steady Stokes equations

(3.49a, b) would be same as those for the full Navier equations (3.35a, b); but it was

noted by Stokes (1851) [89] that solutions do not exist for stationary 2D flow past a

solid which satisfies both conditions:

at the solid wall; uSt ¼ 0 ðno slipÞ; (3.49c)

as well as

at infinity; uSt ! U1iðuniform flowÞ; (3.49d)

Indeed, the steady incompressible Stokes flow, governed by the above problem

(3.49a–d), in an unbounded domain, exterior to a solid body, is only a “local-

proximal” flowvalidmainly in the vicinity of thewall of this body (the Stokes paradox).

Far from the wall, near infinity, when Re xj j ¼ x0sj j ¼ O 1ð Þ, it is necessary to

derive another consistent “local-distal” model equation [90] for the Oseen (1910)

flow, in place of the above problem (3.49a–d) for the Stokes flow.

Using Oseen time–space variables:

t0s ¼ Re tð Þ and x0s; (3.50a)

and also the Oseen pressure,

p0s ¼ pSt=Re; (3.50b)

we derive, first, in place of the unsteady Navier equation (3.35b), the following

dimensionless Navier equation (when S � 1) for u0N (t0s, x0s):

Du0N=Dt0s þr0sp0s ¼ ðr0sÞ2u0N: (3.51)

But, near infinity, in the Oseen limiting process,

LimOs ¼ Re # 0 with p0s; t0s and x0sfixed; (3.52)

a finite body shrinks to a point, which cannot cause a finite disturbance in the

viscous fluid flow.
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Thus, in the outer, Oseen region, we can assume that for u0N the asymptotic

expansion

u0N ¼ iþ d Reð ÞuOsðt0s; x0sÞ þ :::; (3.53a)

is significant, when d Reð Þ � 1, assuming that (with dimensionless quantities),

u0N ! i at infinity: (3.53b)

With (3.52) and (3.53a, b), for uOs(t0s, x0s), we derive, from (3.51), the following

unsteady Oseen equation:

½@=@t0s þr0s:i�uOs þr0sp0s ¼¼ ðr0sÞ2u0s: (3.54)

In the above Oseen leading-order equation for u0s, the gauge function,

d Reð Þ ! 0, with Re ! 0, is arbitrary, and only via a matching

local� proximal , local� distal

do we have the possibility of determining this gauge. (See Lagerstrom (1964) [91],

pp.163–7, for a discussion of this matching process.)

We observe also that for a compressible fluid flow, when Re ! 0, it is also

necessary to specify the role of the Mach number, M. In fact, we must address the

problem of the behaviour of full NS–F system of equations when simultaneously,

Re ! 0 and M ! 0;with t and x fixed: (3.55a)

Obviously, it must no forgotten that for the validity of these full NS–F equations

(3.4a–c) with (3.1), for a thermally perfect gas, under the above limiting low

Reynolds and Mach numbers (3.55a), it is necessary that the corresponding limit

fluid flow remains a low Knudsen, Kn, number flow (briefly discussed at the

beginning of Chap. 2).

As a consequence of the relation Kn ¼ M/Re, the above double limiting process

(3.55a) must be made with the following similarity relation:

M ¼ s�Re1þa; s� ¼ ðO 1ð Þ fixed; a > 0; when Re ! 0: (3.55b)

But, with (3.55a, b) it is also necessary to take into account the following

asymptotic expansions in the framework of the NS–F equations (3.4a–c):

u ¼ uS þ :::; (3.55c)

p ¼ 1þ Re1þ2a½pS þ :::�; (3.55d)
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T ¼ TS þ :::; r ¼ rS þ :::; (3.55e)

where the “Stokes” limit functions (with ‘S’ as subscript) depend on x (fixed) only,

because the above expansions are singular near the time t ¼ 0. In fact, the time

t (also fixed in (3.55a)), in the compressible Stokes equations (3.56a–c), plays the

role of a parameter!

These Stokes compressible (inner) equations are written in two parts:

r � ½kSðTSÞrTS� ¼ 0; rS ¼ 1=TS; (3.56a)

and

r � uS ¼ uS � rlogTS; (3.56b)

rpS ¼ gso2r � flðTSÞðr:uSÞI þ 2mðTSÞDðuSÞg: (3.56c)

The first equation of (3.56a) with the associated boundary condition (see, for

instance, (3.22)) on the boundary G ¼ @S, determines TS, as soon as the tempera-

ture behaviour at infinity, or matching with the outer Oseen compressible equations,

is specified (see, for instance, in Lagerstrom (1964) [91], pp. 191–2 and 202–5) for

an unbounded fluid flow outside a solid bounded (by G) body S. The second

equation of (3.56a) is a relation (limit form of the equation of state (3.1)) between

TS and rS, and determines rS when TS is known.

Finally, the system of the two Eqs. 3.56b, c gives a closed system for the

determination of the velocity vector uS and the perturbation of pressure pS, when

the boundary condition (for uS) on the wall @S are used (for instance, (3.21)).

The scalar a > 0 in (3.55b) and in the second expansion for the pressure in

(3.55c) is determined only after the matching with the companion compressible

Oseen (outer and valid far at t ¼ 0) equations. (Concerning the singular (for

Re ! 0) region near t ¼ 0, see Sect. 9.3 of our (2002) [26].)

On the other hand, when the rate of temperature fluctuation (the scalar w in

(3.22)) on the wall @S tends to zero with Re ! 0, then we obtain a particular simple

solution for Eq. 3.56a: rS ¼ 1 and TS ¼ 1. In such a case, Eqs. 3.56b,c reduce to the

classical steady Stokes equation (3.49a) with (3.49b) for an incompressible low

Reynolds fluid flow if we assume that:

gso2mð1Þ ¼ 1:

Curiously, in his first tentative attempts to derive the leading-order equations for

a compressible low Reynolds laminar fluid flow, Lagerstrom (in [91], pp. 190–2),

does not take into account our above constraint (3.55b). He assumes that in the

NS–F equation (3.4c) for the temperature, the ratio M2 to Re is unspecified, and

obtains a system of equations (where M2 is present). He also observes that this
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derived (for Re ! 0) system is uniformly valid for any value of M, and considers

the case where

M2tend to zero faster than Re; and M2 is of the same order as Re:

There is also the case in which

Re tends to zero faster than M2;

which (Lagerstrom [91], p. 192) “presents some special difficulties and will not be

considered here!”

We observe, also, that the steady Stokes equation (3.49a) for an incompressible fluid

flow may be obtained either by linearization or by letting Re tend to zero. But it is

fortuitous that these two procedures produce the same result in the incompressible case!

For compressible fluids the above, low Reynolds, Stokes equation for TS (the

first of Eq. 3.56a) is a non-linear equation. In Chap. 5 of our (2004) book [47], the

reader can find information concerning the unsteady case (the steady case being

singular near initial time) and the compressible case (influence of the temperature field).

Here, as a final remark concerning the compressible flow at low Reynolds

numbers, it seems me judicious to mention some remarks of Lagerstom ([91], p.

192), related to the validity of the NS–F equations:

“It may be objected that the NS–F equations are no longer valid in the limit

considered above, especially not in the limit where (M2/Re) tends to infinity! It

must certainly be true that the NS–F equations cease to be valid for extreme values

of certain parameters. However, a similar criticism would apply, say, to the

classical case of high Reynolds number and zero Mach number! As the Mach

number tends to zero, at constant free stream velocity, the velocity of sound, and

hence the temperature, tends to infinity! At sufficiently high temperatures any real

gas certainly has properties which are not accounted for in the NS–F (and Navier?)

equations. The answer to the objection stated above is that letting a parameter tend

to zero, say, is a mathematical device for obtaining approximate models for small

values of the parameter (more generally one should consider complete expansions

of NS–F equations for small values of this parameter!). The method [in fact, our

RAM Approach] is physically significant if there are values of the parameter which

are sufficiently large for the NS–F equations to be adequate, and at the same time

sufficiently small for the mathematical method used to be approximately valid. As

yet, it has not been investigated carefully whether or not such values of the

parameters exist in the cases considered above.”

In order to settle this question it is first necessary to carry out the matching

between the various local models (near the time, t ¼ 0, and in the vicinity of the

wall, z ¼ 0) with the main approximate model (an example is given in Sect. 9.2, on

the framework of low Kibel asymptotics). But the comparison with the

experiments, and especially with the results of associated (with derived consistent

model) computational simulation (by the numericians), is the more convincing test!
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3.3.5 The Case of Non-linear Acoustics

We have already mentioned that in non-linear acoustics, in place of Re (given by

(3.5a)), it is necessary to introduce an acoustic Reynolds number Reac, such that

(Re ¼ L�U�=ðm�=r�Þ and M ¼ U�=
p
gRT�):

Reac ¼ Re=M ¼ r�=k�m�; (3.57)

the characteristic length scale being L� ¼ 1/k�, with k� ¼ oac=
p
gRT� the wave

number, oac a reference frequency determined by the main frequency ðoac=2 pÞ of
the source-signal, and U� as source velocity.

In fact, the acoustic Reynolds number Reac given by (3.57) compares the orders of

magnitude of the propagation and viscous dissipative terms in non-linear equations (à
la NS–F) – see Eqs. 3.60a–d below – and Reac � 1 (see, for instance, Appendix 1 in

Coulouvrat (1992) [92]). On the other hand, in problems of non-linear acoustics it is

assumed that S � 1 and necessarily M � 1– such that (see [13]):

S M ¼ 1: (3.58a)

The reference acoustic time is then just:

tac ¼ L�=
p

gRT� � 1=oac: (3.58b)

When in place of thermodynamic functions p, r, T, we introduce the

corresponding perturbations p; o; y, such that:

p ¼ 1þMp; T ¼ 1þMy; r ¼ 1þMo; (3.59)

and assume that the dissipative coefficients are constants, then with a constant bulk

viscosity mv and the help of the relations (3.57) and (3.58a) we can write the

following 3D system of unsteady dimensionless (à la NS–F-dominant) acoustic

equations, for the acoustic velocity vector u and thermodynamic perturbations p; y,
and o:

@o=@t þr:uac ¼ �Mr:ðouacÞ; (3.60a)

@uac=@t þ 1=gð Þrp ¼ 1=Reacð Þfr2uac þ 1=3ð Þ þ mv�=m�ð Þ½ �r r:uacð Þg
� M½o@uac=@t þ ðuac:rÞuac� þ OðM2Þ;

(3.60b)
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@ y=@t þðg�1Þr:uac ¼ðg=ReacPrÞr2 yþ Mfgðg�1Þ=Reac½ 1=2ð Þ½D uacð Þ:D uacð Þ�
þ ½ 1=3ð Þþð mv�= m� Þ�ðr:uacÞ2�
� ½o@ y=@t þuac:r yþðg�1Þ pr:uac�gþ OðM2Þ; (3.60c)

with

p� o + yð Þ ¼ Myo: (3.20d)

This above system of basic dimensionless equations (3.60a–d) is the main

starting point for the derivation of various consistent and simplified (non-ad hoc)

non-linear models of acoustics via the RAM Approach.

Detailed information concerning such acoustic models is included in our (2006)

book [13].

In particular, the well-known KZK (Kuznetsov, Zabolotskaya, and Khokhlov)

equation (pp. 231–6) was derived from the above system of Eqs. 3.60a–d consistent

with a RAM Approach, when it is assumed that the 3D acoustic field is locally

plane, such that the non-linear wave propagates in the same way as a linear plane

wave over a few wavelengths – the wave profile or amplitude being significantly

altered only at large distances away from the source (in the far field).

As a consequence, obviously, the so-called parabolic approximation, which

leads to the KZK model equation, may not be valid close to the source (in the

near field).

The condition for such an approximation to be valid is that the width of the

acoustic source, d, should be much larger than the wavelength (1/k), so that the ratio

a ¼ 1=kð Þ=d �1 and tends to zero as M # 0: (3.61a)

the transverse field variations being slow compared with longitudinal variations

along the acoustics axis.

A main hypothesis is also:

M2 � 1=Reacð Þ 	 M (3.61b)

and first we introduce two transverse slow coordinates:

� ¼ay and z ¼az; (3.61c)

and for u ac we write:

uac ¼ u iþ a V j þ W kð Þ: (3.61d)
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For low Mach numbers, we consider the following asymptotic expansion:

U¼ðu; V; W; p, y, oÞ ¼ U0 þ M U1 þ :::; (3.61e)

with M # 0 fixed and the following two similarity relations between the three small

parameters, 1/Reac, M and a:

1=Reac¼ kM; a2=M ¼ b; k and b are O 1ð Þ and fixed: (3.61f)

First from the leading-order system for U0 ¼ (u0, V0, W0, p0, y0, o0) we derive,

first, a simple linear acoustic system for u0 and p0, y0, o0, and then for V0 and W0

the following two relations, which are valid in far-field, related with the function p0:

@V0=@t ¼ � ð1=gÞ@ p0=@� and @W0=@t ¼ � ð1=gÞ@p0=@ z; (3.61g)

or

@=@t ½@V0=@z� @W0=@�� ¼ 0; (3.61h)

which is a consistent consequence of our asymptotic approach.

Then from a linear acoustic system we deduce as a solution for u0:

u0 ¼ Fðt, �, zÞ; with t ¼ t � x: (3.61i)

assuming that the fluid is unbounded and considering a solution for an outgoing

wave propagating towards x > 0.

However, the acoustic solution (3.61i) is in fact a good solution only for the

near-field close to acoustic source!

On the other hand, the KZK equation is a far-field equation, and to avoid various

cumulative effects it is necessary to consider the asymptotic expansion (3.61e) as a

non-secular two-scale expansion relative to variations along the acoustic axis and to

define the slow scale as:

x ¼ Mx; with @=@x ¼ � @=@tþ M @=@x (3.61j)

and

@2=@x2 ¼ @2=@t2 þ 0 Mð Þ: (3.61k)
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In a such case, for u0 we write

u0 ¼ Að t, x, �, zÞ; and p0 ¼ gu0; o0 ¼ u0; p0 ¼ ðg� 1Þu0; (3.61l)

and as @=@t ¼ @=@t, from (3.61g) we obtain (an unexpected relation?)

� @=@t½@V0=@� þ @W0=@z� ¼ r?2A; (3.61m)

where

r?2 � @2=@�2 þ @2=@ z2:

Now, from the linear system of equation for U1 in (3.61e), taking into account

(3.61j–m), we obtain for u1 a single inhomogeneous acoustic equation in the

following rather awkward form:

@2u1=@t
2 � @2u1=@x

2 ¼ @YðAÞ=@ tþ b=gð Þr?2A; (3.61n)

with

YðAÞ ¼ G�@2A=@ t2 þ ðg� 1ÞA@A=@t� 2@A=@ x; (3.61o)

where

G� ¼ ðk=2Þ½ 4=3ð Þ þ ðmv�=m� Þ þ ðg� 1Þ=Pr�: (3.61p)

Finally, according to the usual multiple-scale method (see, for instance,

Kevorkian and Cole [93]), the non-secularity – validity – condition for the asymp-

totic expansion (3.61e) leads to the following KZK equation for the amplitude

function Aðt, x, �, zÞ:

@2A=@t@x� b=2gð Þr?2A� 1=2ð Þðgþ 1Þ@=@t½A@A=@t�
¼ G�@3A=@t3:

(3.61q)

This above KZK equation is a very representative leading-order equation in non-

linear acoutics. The above RAM Approach is a good example of an application of

the multiple scales method carried out in a consistent way!
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3.3.6 A Sketch of Consistent Models Derived from NS–F
Equations Relative to the Considered Reference Parameters

Euler: t and x fixed
matching, slip condition
↓↑ for Eulerian flow

→

SM = 1; P = 1 + Mp
T = 1 + Mq, r = 1 + Mw
KZK model eq.

↑↓

Re ↓ O
(incompressible case)

Re ↓ O
(compressible case)

Prandtl: t, x, y and z=            fixed

and wPr =

Stokes: t, x fixed → from Navier
with pst = Re p
matching → singularity at infinity

→

z
Re–1/2

wE

Re–1/2

M → O

Navier: t, x fixed

for uN and p =

→

Acoustics : t = t
M

, x fixed
→

→ p – 1

gM2
→

matching, initial condition for uN at t  = 0
↓↑

→ →
Oseen: tOs = Re and xOs = Re x fixed

with pos = 
pst
Re

ε ↓ O
(expansibility parameter)

R-B shallow thermal convection:

↑↓

Stokes: t, x fixed → from NS-F

with M = σo Re1+a, a > 0
P = 1+ Re1+2a [Ps+...]
matching

Oseen:  “compressible”

Non-linear acoustics:

↓ Owith: Gr =         fixed,e
Fr2 Fr2

d°
d°

d°>> n2  /gd°
1/3

Reac = >>1
Re
M

Re ↑ ∞
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Chapter 4

A Typical RAM Approach: Boussinesq Model

Equations

The following derivation-justification of Boussinesq equations via the RAMA for

atmospheric flows is a typical test example, in the sense that the various steps of the

derivation constitute a logical, well argued, non-contradictory train of thought,

which ensures the rational justification of these Boussinesq approximate equations,

even if we do not use any rigorous mathematically abstract tools!

An amazing success of our RAMA is the real possibility to derive, also, a

second-order consistent, well-balanced, model equation in the framework of the

well-known assertion of Boussinesq (1903), which take into account the various

non-Boussinesq effects. This, it seems to me, is not really possible if the RAMA

below is not applied.

In Monin’s book (1969) [94], the reader can find a very pertinent exposition

concerning scales of weather processes. The discussion below does not take into

account the influence of the Coriolis force, because the sphericity parameter defined

by (3.16d) is assumed very small. On the other hand, the parameter es, according to
(3.18b), is assumed equal to 1.

The ad hoc approach to justification of simplified Boussinesq equations was

developed throughout 1960–1980. Here we mention the papers by: Spiegel and

Veronis, Mihaljan, Malkus, Dutton and Fichtl, Perez Gordon and Velarde, andMahrt,

and for precise references see our books [12, 13, 19], and also the survey [25].

4.1 Introductory Remarks Concerning Atmospheric Flow

Below, only the case of non-dissipative and adiabatic atmospheric flows, for

simplicity is considered, when the starting “exact” equations are the Euler

equations. See Chaps. 1 and 2 of our (1991) book [13] for a detailed derivation

directly from NS–F equations. Namely, with the system of Euler equations (1.2a–c)

with (1.3) it is necessary, above all, to assume the existence, also, of a hydrostatic

reference state.

R. Kh. Zeytounian, Navier–Stokes–Fourier Equations,
DOI 10.1007/978-3-642-20746-4_4, # Springer-Verlag Berlin Heidelberg 2012
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If p*(z*), r*(z*), T*(z*), the three thermodynamic functions are dependent only

on z*, the altitude of the motionless reference state, then we can work with the

following three basic equations (for a thermally perfect gas):

� dT�=dz� ¼ G z�ð Þ; (4.1a)

dp�=dz� þ g r� ¼ 0; (4.1b)

p� ¼ R r�T�; (4.1c)

where G(z*) is a given function of z*, in the considered adiabatic case. In the

troposphere, a good approximation is obtained when

G z�ð Þ ¼ G� ¼ const.

In order to make the governing exact Euler 3D unsteady, compressible, non-

viscous and adiabatic equations non-dimensional – which is our first key step – we

introduce the following characteristic constant quantities:

H�; U�; p�ð0Þ; r�ð0Þ; T�ð0Þ � p�ð0Þ=R r�ð0Þ;
where the length scale H� has been chosen to be representative of the vertical

motion of the lee-wave regime downstream of the mountain, since it is the effect of

gravity with which we are primarily concerned.

The characteristic velocity U� is an average constant value of the velocity profile
which is assumed smaller than the speed of sound, defined by

c0 ¼ ½g p�ð0Þ=r�ð0Þ�1=2; (4.2a)

such that

Uo<<c0:

Now, if we define the associated dimensionless quantities u0, r0, p0, T0, x0, and t0,
respectively, linked with the above characteristic constant quantities U�, r*(0),
p*(0), T*(0), H�, and H�/U�, we rewrite the set of Euler equations, for atmosphere

in movement, relative to u0, r0, p0, and T0, as functions of t0 and x0, in the following
(exact) dimensionless form (slightly different from (3.24a–d)):

Du0=Dt0 þ ð1=gM2Þð1=r0Þr0p0 þ ð1=FrHÞ2k ¼ 0; (4.3a)

Dr0=Dt0 þ r0ðr0:u0Þ ¼ 0; (4.3b)

DT0=Dt0 þ g� 1ð Þ= g½ �ð1=r0Þ Dp0=Dt0ð Þ ¼ 0; (4.3c)

p0 ¼ r0T0: (4.3d)
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In (4.3a–d), r0 is now the gradient operator with respect to x0, and the material

derivative (along the trajectories) is:

D=Dt0 ¼ @=@t0 þ u0:r0:

As main parameters, in Eqs. 4.3a–d, we have for the Froude number the

following remarkable and very instructive relation:

ð1=FrHÞ2 � Bo=gM2; (4.4)

where

M2 ¼ ðU�=c0Þ2 (4.5)

is the square of the Mach number and

Bo ¼ H�=H� (4.6)

our Boussinesq number, where

H� ¼ p�ð0Þ=gr�ð0Þ � HS: (4.7)

The length scale H* is (see (3.18a)) the altitude of the homogeneous hydrostatic

reference state – a judicious characteristic vertical length scale for the altitude z*,

such that in dimensionless form we write the relation (Bo is defined by (3.5d)):

z�0 ¼ Boz0; (4.8)

which plays an important role in the derivation of Boussinesq approximate

equations, and gives a deeper and more subtle meaning to the Boussinesq fluid

flow case!

Concerning the characteristic horizontal length scale L�, we assume (see (2.18b)

and (2.16d)) that:

L� � HS ) eS � 1 and as a consequence d<<1; (4.9)

which is a condition for a negligible influence of the Coriolis force, and also for a

derivation of Boussinesq model equations, without the hydrostatic approximation,

for the lee-waves regime flows downstream from the mountain.

As a consequence, the dimensionless reference hydrostatic state (p*0, r*0, T*0)
is, in fact, only a function of Boz0, and

@=@z�0 ¼ 1=Boð Þ@=@z0: (4.10)
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Naturally, when for H we choose H*, then Bo � 1 and z*0 � z0.
The above introduction and discussion of various dimensionless quantities and

reduced parameters form, in fact, our first key step towards the justification of

Boussinesq model equations in the framework of a Eulerian fluid flow.

4.2 Asymptotics of the Boussinesq Case

In the case of the Boussinesq approximation, if we want to obtain rationally the

corresponding Boussinesq system of simplified equations, a detailed (see below)

dimensional analysis shows that when M < < 1, then necessarily that must be also

Bo < < 1.

Below, our asymptotic rational approach confirms this observation. The emer-

gence of Bo (thanks to relation (4.8)) was our second (significant) key step, during
our 1969–1974 investigations relative to justification of this Boussinesq approxi-

mation, in the framework of our RAMA theory for a consistent derivation of the

leading-order model equations, à la Boussinesq.

Indeed, with two small parameters, M and Bo, it is necessary to consider, in

general, three limiting cases:

Ið Þ Bo fixed; M # 0 and then Bo # 0 (4.11a)

IIð Þ M fixed; Bo # 0 and then M # 0 (4.11b)

IIIð Þ M # 0 and Bo # 0; such that Bo ¼ MaB� (4.11c)

where B* ¼ O(1) and a > 0 is a scalar.

The Boussinesq equations are derived (see below) with the particular significant

choice a ¼ 1, under the Boussinesq limiting process, corresponding to case

(III)–(4.11c), with B*, g, t0, and x0 fixed during the Boussinesq limiting process

(see (4.18) below).

We observe that the relation Bo ¼ MaB* in (4.11c), when a � 1, is the

Boussinesq similarity rule, and B* is the associated similarity parameter.

From (4.11c) we deduce an important (but unfortunate) feature derived below

(see (4.17a–d)) for Boussinesq model equations. Namely, when a ¼ 1, then:

B� � 1 ) H � Uo=gð Þ½RT�ð0Þ=g�1=2 � HB<< H�; (4.12a)

and more precisely, for the usual meteorological values of Uo and T*(0), we obtain:

HB � 103m; while H� � 104m! (4.12b)
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This is a very strong restriction for the various applications of the Boussinesq

equations in atmospheric motions.

For the prediction of lee waves around and downstream of a mountain in the

whole thickness of the troposphere (in troposphere), another set of model equations

are necessary – the so-called “deep (Zeytounian) convection equations” and see

Chap. 10 in [12] and also the Sect. 6.2.3 of [13]. Here, in Sect. 9.1.4 we also

consider four distinguished limiting cases for the 2D steady lee-waves problem.

4.2.1 Euler Dimensionless Equations for the Thermodynamic
Perturbations

Now a third key step is necessary, which is linked with the existence of the

dimensionless hydrostatic reference basic state p*0, r*0, T*0, function of Boz0, and
for this it is necessary to introduce the thermodynamic perturbations, p, o, y, such
that:

p0 ¼ p�0 Boz0ð Þ½1þ p�; (4.13a)

r0 ¼ r�0 Boz0ð Þ½1þ o�; (4.13b)

T0 ¼ T�0 Boz0ð Þ½1þ y�: (4.13c)

With (4.13a–c) the dimensionless Euler equations are rewritten in the following

new form, for the velocity vector u0 and thermodynamic perturbations p, o, and y:

D o=Dt0 þ 1þ oð Þ r0:u0ð Þ
¼ ð1þ oÞ Bo=T� z�0ð Þ½ �f1þ dT� z�0ð Þ=d z�0g u0:kð Þ ¼ 0;

(4.14a)

ð1þ oÞDu0=Dt0 þ ½T� z�0ð Þ=gM2�r0p

� ð1þ oÞ½Bo=gM2�yk ¼ 0;
(4.14b)

D y=Dt0 � g� 1ð Þ=g½ �ðDp=Dt0Þ þ ð1þ pÞBoN2 z�0ð Þ u0:kð Þ ¼ 0; (4.14c)

p ¼ oþ ð1þ oÞy; (4.14d)

where

N2 z�0ð Þ ¼ 1=T� z�0ð Þ½ �f g� 1ð Þ=g½ � þ dT� z�0ð Þ=d z�0g; (4.15)

when (4.10) has been used. The relation (4.15) for N2(z*0) takes into account the

stratification of the hydrostatic reference-motionless state atmosphere (in the
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Eulerian case (4.1a–c)), and is related to the dimensionless V€ais€al€a internal

frequency.

The consideration of the above full system of dimensionless exact Euler

equations, (4.14a–d), for u0 and p, o, and y, was indeed our main third key step
in the quest for the justification of the Boussinesq model equations.

Obviously, for the atmospheric motions, p, o, and y are small, by comparison

with unity perturbations. As a consequence, we write – in the framework of the

fourth key step – the following asymptotic expansions:

p ¼ MbpB þMcp� þ :::; (4.16a)

ðo; yÞ ¼ MdðoB; yBÞ þMdþ1 o�; y�ð Þ þ :::; (4.16b)

u0 ¼ uB þMeu� þ :::; (4.16c)

associated with the limiting process (4.11c). In (4.16a–c), the exponents, b, c, d, and

e are real scalars which are determined consistently in Sect. 4.2.2.

4.2.2 Rational Derivation of Boussinesq Equations

The Boussinesq equations, as leading-order approximate equations, are derived

from the ‘unbalanced’ system of Eqs. 4.17a–d, which are obtained when the above

asymptotic expansions (4.16a–c) are used in exact Euler dimensionless equations

(4.14a–d).

First, we can write (with (4.8)), from Eq. 4.14c, the following ‘unbalanced’

equation for yB, when we take into account only the terms with the subscript “B” in

expansions (4.16a–c):

DyB=Dt0þMdoBDyB=Dt0 �Mb�d g� 1ð Þ=g½ �DpB=Dt0
þ Bo=Md
� �

N2 Boz0ð ÞðuB:kÞ
þ Bo Mb�dpBN2 Boz0ð ÞðuB:kÞ þ ::: ¼ 0;

(4.17a)

and it is necessary to take into account also the similarity rule for Bo (¼ MaB*)
written in (4.11c), when the Boussinesq limiting process is performed:

M # 0 with t and x fixed;B� ¼ O 1ð Þ
and N2ð0Þ ¼ O 1ð Þ fixed: (4.18)

Because g > 1, it is necessary, first, with (4.17a), that

a ¼ d; and it seems that with : d ¼ 1; a ¼ 1 and b ¼ 2?; (4.19a)
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we derive not only a leading-order equation for yB:

DByB=Dt0 þ B�N2ð0ÞðuB:kÞ ¼ 0: (4.20a)

but also we open the way for the derivation of a second-order non-homogeneous

equation for y*.
For a confirmation of the above (see (4.19a)) rather premature conclusion, it is

now necessary to consider the derivation of a leading-order equation for uB,

associated with (4.17a). From (4.14b) with (4.16a–c), we obtain as a second

‘unbalanced’ equation for uB:

DuB=Dt
0 þMb�2½T�0 Boz0ð Þ=g�ðr0pBÞ � ð1=gÞ Bo Md�2yBk

¼ �MdoBðDuB=Dt0Þ � ð1=gÞBoM2ðd�1ÞoByBk:
(4.17b)

First the above (4.19a) choice of:

b ¼ 2 is confirmed and then also d ¼ 1; a ¼ 1! (4.19b)

Thus, we obtain, as a companion simplified (à la Boussinesq) leading-order

equation for uB, associated to equation for yB:

DBuB=Dt
0 þ ½T�0ð0Þ=g�ðr0pBÞ � ðB�=gÞ yBk ¼ 0 (4.20b)

The two terms in the right-hand side of (4.17b) are linked with the associated,

second-order equation for u*.

Now, from the ‘unbalanced’ equation of continuity, obtained from (4.14a), with

(4.16a–c),

ðr0:uBÞ ¼ �Md½DoB=Dt
0 þ oBðr0:uBÞ�

þ Bo 1=T�0 Boz0Þð �½1� G Boz0Þ�ðuB:kÞ þ :::;ð½ (4.17c)

and obviously our choice of (4.19a) simply produces, at the leading-order, the

following divergenceless constraint for the velocity vector uB:

r0:uB ¼ 0: (4.20c)

Again, in the right-hand side of (4.17c), the two terms are linked with the

associated, second-order equation of continuity.

Finally, from (4.14d) we obtain as ‘unbalanced’ equation:

oB þ yB ¼ MeoByB þMb�dpB; (4.17d)

and as Boussinesq equation of state we derive:

oB ¼ � yB: (4.20d)
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which determines the perturbation of the density.

In Boussinesq equations (4.20a) and (4.20b) we have:

DB=Dt
0 ¼ @=@t0 þ uB:r0

and we observe that, obviously, T*0(0) ¼ 1, but in general N2(0) is different from

zero. The choice e ¼ 1, in (4.16c), indeed, follows when we want to derive the

second-order à la Boussinesq limit model equations for u*, o*, p* and y*, and we

have also d ¼ 1.

I invite the reader to derive these second-order Boussinesq equations as a

profitable and stimulating exercise! In particular, in the 2D steady case, starting

from the exact 2D, (x, z) steady ð@=@t ¼ 0Þ case, it is possible to derive, without

any approximations, an analogue to Eq. 4.26b – but significantly complicated � a

single equation (see Sect. 9.1).

So, with the following asymptotic expansions:

p ¼ M2pB þ :::; ðo; yÞ ¼ M oB; yBð Þ þ :::; u0 ¼ uB þ :::

when the following “Boussinesq limiting process” is performed in an Euler system

of equations (written for the atmospheric flows):

M # 0 with t and x fixed;

B� ¼ O 1ð Þ fixed

and

N2ð0Þ ¼ O 1ð Þ fixed;

then, at leading-order, we derive the following Boussinesq equations:

DByB=Dt0 þ B�N2ð0ÞðuB:kÞ ¼ 0;

DBuB=Dt
0 þ ½T�0ð0Þ=g�ðr0pBÞ � ðB�=gÞ yBk ¼ 0:

r0:uB ¼ 0;

oB ¼�yB:

with

N2ð0Þ ¼ g� 1ð Þ=g½ � þ ½dT� z�0ð Þ=dz�0�z�0¼0

and
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B� ¼ Bo=M

This rather long, but instructive, derivation of the Boussinesq equations

(4.20a–c) is the only RAMA way, in the framework of low Mach (hyposonic,

[13]) atmospheric flows, for a consistent rational derivation of not only the

Boussinesq system of equations, but also the second-order consistent equations

associated with these Boussinesq equations.

4.2.3 Two Particular Cases

It is instructive also to note two particular, less significant limit, cases of the above

Boussinesq system of equations. On the one hand, if

B� "/, M << Bo; Bo fixed;

or

M # 0; and then Bo#0� case ðIÞ; (4.21a)

then we obtain the “quasi-non-divergent” limit equations for the velocity

components, vd ¼ (ud, vd), wd, and pd/g:

@pd=@z0 ¼ 0;wd ¼ 0; yd ¼ 0; (4.22a)

D:vd ¼ 0; @vd=@t
0 þ vd:Dð Þvd þ Dðpd=gÞ ¼ 0: (4.22b)

where D ¼ ð@=@x0; ð@=@y0Þ.
If on the other hand

B� # 0 , M >>Bo; M fixed;

or

Bo # 0; and then M # 0� case ðIIÞ; (4.21b)

then we obtain the classical “incompressible” Navier limit equations for ui, vi, wi,

and pi/g:

@ui=@x
0 þ @vi=@y

0 þ @wi=@z
0 ¼ 0: (4.23a)

Diui=Dt0 þ r0ðpi=gÞ ¼ 0: (4.23b)

with

Diyi=Dt0 ¼ 0; (4.23c)

4.2 Asymptotics of the Boussinesq Case 89



oi ¼ � yi: (4.23d)

where

Di=Dt
0 ¼ @=@t0 þ ui:r0:

In both cases we derive from the above dimensionless dominant full Euler

equations a less significant limit system of equations than the inviscid, adiabatic

Boussinesq equations.

4.3 The Steady 2D Case

In the steady 2D case, when the Boussinesq fluid flow is considered in the plan

(x0, z0) with, as velocity components, uB and wB, we have the possibility of

introducing a 2D stream function cB(,x
0, z0) such that:

uB ¼ @cB=@z
0 and wB ¼ �@ cB=@x

0; (4.24)

and, because the coefficient B�N2ð0Þ ¼ constant, in Eq. 4.20a, we derive a “first

integral”:

yB þ B�N2ð0Þz0 ¼ FBð cBÞ: (4.25a)

On the other hand, assuming T*0
(0) � 1 if in the two equations obtained from

(4.20b):

uB@uB=@x
0þwB@uB=@x

0 ¼ � @ð pB=gÞ=@x0;

uB@wB=@x
0þwB@wB=@x

0 ¼ � @ðpB=gÞ=@z0 þ ðB�=gÞ yB ¼ 0;

we cancel out the terms with pB=g, then we derive the following equation for cB:

ð@ cB=@x
0Þ@D2cB=@z

0 � ð@ cB=@z
0Þ@D2cB=@x

0 ¼ � ðB�=gÞ@yB=@x0;

where D2 ¼ @2=@x02 þ @2=@z02.
But

@yB=@x0 ¼ ðdFBðcBÞ=dcBÞ@cB=@x
0;

and as a consequence we can write:

ð@ cB=@z
0Þ@=@x0 D2cB � B�=gð Þz0 dFBðcBÞ=dcBð Þ½ �

� ð@ cB=@x
0Þ@=@z0½D2cB � ðB�=gÞ z0ðdFBðcBÞ=dcBÞ� ¼ 0:
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From above, we obtain a second first integral:

D2cB ¼ ðB�=gÞz0ðdFBðcBÞ=dcBÞ þ HBðcBÞ: (4.25b)

The functions FBðcBÞ and HBðcBÞ are two arbitrary functions of cB only.

In the particular case of an airflow over a mountain, if we consider a 2D steady,

uniform, constant flow in the direction of x0 > 0, with pB and yB both � 0 at

infinity upstream ðx " � /Þ of the mountain, then, in place of (4.25b), we obtain for

the function

dB x0; z0ð Þ � z0 � cB x0; z0ð Þ (4.26a)

the following linear Helmholtz equation:

@2dB=@x2 þ @2dB=@z0
2 þ ðB�2=gÞN2ð0Þ dB ¼ 0: (4.26b)

The dominant feature of Eq. 4.26b, for dB, from a mathematical point of view, is

that its linearity is not related to any particular hypothesis about the small

perturbations in the steady 2D Boussinesq equations.

However, from the exact slip-condition on the surface of the mountain,

simulated by the dimensionless equation,

z0 ¼ mh0ðlx0Þ:

where m is an amplitude parameter and l>0, we must write the following bound-

ary, slip, non-linear, condition for dB on the surface of the mountain:

dB x0; z0 ¼mh0ðlx0ÞÞ¼ mh0ðlx0Þ:ð (4.26c)

At infinity upstream, we have also a “behaviour condition”:

dBðx0 " � /; z0Þ ¼ 0; (4.26d)

But, because of the emergence of steady lee-waves at infinity downstream of the

mountain, there is only the possibility of assuming one physically realistic bound-

ary condition, namely:

dBðx0 ¼ þ /; z0Þj j< /: (4.26e)

If we add, in particular, to the linear Helmholtz equation (4.26b), with slip

condition (4.26c), the following upper condition:

dB x0; z0 ¼ 1ð Þ ¼ 0 (4.26f)

then we obtain the well-known Long (1953) problem [7].
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However, in reality, the above, (4.26f), condition does not emerge consistently from

the exact dimensionless formulation of the lee-waves problem, considered in the

framework of the 2D steady Euler equations for the whole troposphere, and where the

upper boundary condition is assumed to be slip condition on the tropopause (simulated

simply, before the non-dimensionalization, by the equation z ¼ Hs � 104 m).

In reality, in dimensionless form, for the above 2D steady Boussinesq equation

(4.26b), the consistent upper condition is:

dBðx0; z0 " þ /Þ ¼ þ / ! (4.27a)

The Boussinesq equation being a consistent equation only in a layer of the order

of 1 km in altitude, as a consequence of (4.27a) it is necessary to solve the lee-waves

problem in an unbounded atmosphere with an à la Sommerfeld radiation condition,

which expresses the condition that

no waves are radiated inwards. (4.27b)

This inner Boussinesq problem, in an unbounded atmosphere, has been consid-

ered by Miles (1969) [95], and also by Kozhevnikov (1963) [96].

In a paper by Guiraud and Zeytounian (1979) [97], the associated outer

Boussinesq problem is considered, with an upper slip condition on the rigid plane:

z ¼ 1=B� (4.28)

with an outer vertical dimensionless coordinate z ¼ Mz0.
In Guiraud and Zeytounian’s paper (1979) [97] it is shown that the upper and

lower boundaries of the troposphere alternately reflect internal short-wavelength

gravity waves excited by the lee waves of the inner (Boussinesq) approximate

problem, with a wavelength of the order of the Mach number (which is assumed

vanishing), on the scale of the outer region.

As a consequence, there is a double scale built into the solution, and we must

take care of it. In fact, the important point of our (1979) with Guiraud analysis is

that “these short-wavelength gravity waves propagate downstream and that no

feedback occurs on the inner Boussinesq flow close to the mountain – to the lowest

order at least.”

Finally, we would understand the imposed upper boundary at the top of the

troposphere as an artificial one, having asymptotically no effect on the inner

Boussinesq (lee waves) flow, which is the only really interesting flow.

4.4 The Problem of Initial Conditions

In Boussinesq equations, as a consequence of the Boussinesq limiting process

(4.18), in Euler full unsteady Eqs. 4.14a–d with three partial derivatives in time t,

we have only two partial derivatives in time t, for uB and yB! As a consequence, for
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a Boussinesq system of three equations, (4.20a–c), for uB, pB, and yB we have only

the possibility of assuming the availability of two initial data, namely:

t0 ¼ 0 : uB ¼ uB
0 xð Þ and yB ¼ yB

0 xð Þ; (4.29a)

with

r0:uB0 ¼ 0: (4.29b)

But, on the other hand, for the Euler exact starting Eqs. 4.14a–d, three initial data

are necessary for u0, y, and o, at t0 ¼ 0.

According to Sect. 2.4.2, we know that it is necessary to formulate an associated

unsteady adjustment problem to Boussinesq approximate equations by the intro-

duction, in Eqs. 4.14a–c, of a local time,

t ¼ t0=M; significant near t0 ¼ 0 (4.30a)

and a local (acoustic) limiting process (in place of (4.18)) with local asymptotic

expansions. Such a local formulation can be found in Sect. 20 of Chap. 5 in my

(1991) book [19].

The initial data (in (4.29a)) at t0 ¼ 0, for the Boussinesq equations, are derived

from a matching between two asymptotic representations:

the main one outer � Boussinesq; relative to time t0fixedð Þ;
at t0 ¼ 0; and a local one inner� acoustic; near t0 ¼ 0ð Þ; with

local short time t fixedÞ when t " þ /:

(4.30b)

with the matching:

LimBo t0 ¼ 0½ � , LimAc½ t " þ /�: (4.30c)

In reality (!) the result of our (1991) approach is valid only when we assume the

following initial conditions for the exact starting Euler system of Eqs. 4.14a–d:

t0 ¼ 0 : u ¼ u� and ð p; o; yÞ ¼ Mð p�; o�; y�Þ; (4.31a)

with

u� ¼ rf� þ r ^ c�: (4.31b)

In Sect. 20 of my [19] the reader can find a details derivation of the above initial

conditions (4.29a) via matching, at leading-order (4.30b), from the solution of the

following initial value problem of the classical acoustics:

@2f=@ t2 � Df ¼ 0: (4.32a)

t ¼ 0 : f ¼ f�; @f=@t ¼ � p�=g: (4.32b)
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The solution of the above problem (4.32a, b) is straightforward and, from it we

obtain at infinity in time:

t !/ : jrfj ! 0 and j@f=@ tj ! 0: (4.33)

In such a case, for the derived (in Sect. 4.2) Boussinesq approximate equations

(4.20a, b) we obtain, for the unknown initial conditions at t0 ¼ 0, yB
o xð Þ and

uB
0(x), the following relations:

uB
o xð Þ ¼ r ^ c� and yB

o xð Þ ¼ ð p�= gÞ � o�: (4.34)

4.5 A Sketch of a RAM Approach for a Boussinesq Model

What happens if the initial values of p, o, and y – the solutions of exact starting

Euler equations (4.14a–d) – are different from the assumed data M po, M o�, and
M y�, as is the case in (4.31a), are not known? Actually, this is an open problem

which deserves further investigation.

In Chap. 9, devoted to applications of our RAMA to some atmospheric flow

problems, the reader can find a discussion (in Sect. 9.1) concerning a few compan-

ion equations associated with the Boussinesq/Helmholtz equation (4.26b).

Fig. 4.1 Justification of Boussinesq equations and associated conditions
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Part II

A Sketch of a Mathematical Theory of the
RAM Approach



Chapter 5

The Structure of Unsteady NS–F Equations

at Large Reynolds Numbers

Numerous papers are devoted to investigations of NS–F equations in the case of

large Reynolds numbers, and many references are cited in my Theory and
Applications of Viscous Fluid Flows [47]. Curiously, the case of unsteady NS–F

equations for large Reynolds numbers, when Re tends to infinity, has been very

poorly considered. However, in Chap. 4 of [47] (Sect. 4.3) there is a presentation of

the asymptotic structure of unsteady state NS–F equations.

Below, in this Chap. 5, I again give a presentation of this structure – the reason

being that such unsteady NS–F equations structure, at Re "/ , very well illustrates

the importance of the various limiting processes related to fixed time and space, and

forms a guideline in the elaboration of our mathematics for the RAMA.

On the other hand, such a structure illuminates the various consequences of the

singular nature of the Prandtl (1904) concept of the boundary layer. A strong

singularity for NS–F equations opens (it seems to me) new perspectives for the

resolution of various paradoxes encountered in unsteady compressible fluid flow

theory. It is surprising that this close initial time singularity of the Prandtl boundary

layer, was for so long ignored.

5.1 Introduction

Fluid dynamicians and applied mathematicians have always found fluid dynamics

to be a rich and interesting field for investigations, because the basic system of

partial derivative equations for a Newtonian fluid – the so-called Navier–Sto-

kes–Fourier equations (NS–F) equations – have a great capacity for producing

various particular fluid flow models.

In particular, a large class of such fluid flow models is closely linked with the

analysis of a dimensionless form of the NS–F system, and more specifically with

the large Reynolds numbers (Re "/ ) for a compressible, weakly viscous, and heat-

conducting fluid flow.

R. Kh. Zeytounian, Navier–Stokes–Fourier Equations,
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Indeed, in technologically and geophysically relevant fluid flows, Re is usually

quite large. In 1904 Prandtl took into account this fact and derived (in an ad hoc

manner) his well-known ‘Prandtl Boundary-Layer (BL) equations’. Surprisingly, it

seems that the case of an unsteady fluid flow, when initial conditions are prescribed,

has not been carefully considered, and this BL Prandtl concept has become default

and become singular near t ¼ 0! Only in 1980, in a short note [98], was I the

(apparently) first to show that:

The limiting form (at Re " 1) of the unsteady NS–F equations, near t ¼ 0 and in the

vicinity of a wall (z ¼ 0), bounding below the compressible, viscous and heat-conducting

fluid flow, is identified� in place of Prandtl BL equations� rather with the equations of the

Rayleigh compressible problem, considered first in 1951 [99] by Howarth.

In Chap. 5 I fully intend to present a more deep and careful investigation of this

singular problem, which not only has an obvious theoretical interest, but also

seemly a practical one. For the NS–F unsteady full equations, we have considered,

as a typical working case, an “emergency situation”: namely, a sudden rise in

temperature locally on the wall at initial time t ¼ 0 � which is a possible applica-

tion of our new four regions structure for the NS–F unsteady equations!

5.2 The Emergence of the Four Regions as a Consequence

of the Singular Nature of BL Equations Near t ¼ 0

The main feature of the well-known Prandtl 1904 BL concept in a thin region near

the wall (z ¼ 0), in an aerodynamics problem for high Reynolds number, is linked

with the strong simplification of the equation of motion for the vertical component

w of the velocity u ¼ (v; w).

In steady and unsteady, in compressible viscous, in heat-conducting, and in

incompressible viscous fluid flows, this Prandtl BL concept in all cases produces

a very degenerate limit equation, when Re " 1, for w!

When we work with dimensionless quantities, then, for the variation of the

pressure in the direction normal to the (horizontal) wall, z ¼ 0, relative to vertical

coordinate, z, we obtain (when the gravity force is not taken into account):

@p @z= ¼ 0: (5.1)

and in particular, the partial derivative in time for the component w of the velocity

disappears in a BL system of equations!

If this failure seems not to have serious consequences in the usual case of steady

or unsteady incompressible viscous fluid flows, conversely, this is not the case for

an unsteady compressible viscous and heat-conducting fluid flow. In such a case, as

an unfortunate consequence of (5.1), we have a new “four regions” structure for

NS–F equations governing these fluid flows at high Reynolds numbers.
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This new structure of unsteady NS–F equations seems, in particular, very

significant for the various applications linked with the heat emergency situations

(sudden rise of a thermal source) – explosions, fires, failures of oil and gas

pipelines, and so on – in a local domain on the wall in contact with the fluid.

Such a “four regions” structure, at Re " 1, is linked with four limiting processes

in full unsteady NS–F equations and replaces the two classical regions,

“Euler–Prandtl” and regular coupling, linked with the following two limiting

processes (the horizontal coordinates x and y being fixed):

LimE ¼ ½e # 0; with t and z fixed�: (5.2a)

and

LimPr ¼ ½e # 0; with t and z ¼ z e= fixed�; (5.2b)

As a consequence of the strong degeneracy linked with (5.1), in the unsteady

case, the limiting process (5.2b) is singular near t ¼ 0. Therefore, because the

partial time derivative of the vertical component of the velocity is absent in BL

equations, we do not have the possibility of taking into account the corresponding

data which is prescribed for full unsteady NS–F equations.

It is necessary to consider a third limiting process, inner in time – a so-called

“acoustic” limiting process:

LimAc ¼ ½e # 0; with t ¼ t e= and z ¼ z e= fixed�; (5.3)

An acoustic problem must be considered in a third “acoustic region” close to

initial time, and then (if possible) a matching with the boundary-layer (BL) region

far from the region of the acoustics. Indeed, the consideration, in this acoustic

region, of an unsteady adjustment problem, when t ! 1, presents the possibility

(in principle) of prescribing the correct initial conditions for unsteady BL equations

significant only far of the initial time in the “Prandtl BL region”.

But a new problem emerges because in this third non-viscous, near the initial

time acoustic region, we do not have the possibility of taking into account the

thermal condition on the wall z ¼ 0, prescribed for NS–F equations in the frame-

work of the heat emergency problem.

As a consequence, it is necessary to consider a fourth limiting process simulta-

neously near t ¼ 0 and z ¼ 0:

LimRa ¼ ½e # 0; with y ¼ t e2
�

and Z ¼ z e2
�

fixed�; (5.4)

In such a case, in this corner small fourth region, we derive the unsteady one-

dimensional NS–F equations governing the compressible Rayleigh problem, with

the corresponding thermal condition on z ¼ 0 (Fig. 5.1).

Precisely, the above (related with the limiting process (5.4)) compressible

viscous and heat-conducting Rayleigh problem presents the possibility of
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producing an answer to following question: What is the significant problem,

governing the unsteady compressible viscous and heat-conducting fluid flow,

emerging as a result of a suddenly rise in temperature locally on the wall, z ¼ 0,

at time, t ¼ 0?

In Sect. 5.3 the formulation of the starting unsteady NS–F problem is given,

while Sect. 5.4 is devoted to the derivation of the corresponding four problems

linked with the above four limiting processes – (5.2a, 5.2b), (5.3), and (5.4). Section

5.5 concerns the problem of the unsteady adjustment (via the Rayleigh problem

significant in the fourth region) to Prandtl BL evolution, in time, which is signifi-

cant in the second region close to wall z ¼ 0, but far from the third and fourth

regions near the initial time t ¼ 0. In Sect. 5.6 some conclusions are presented.

5.3 Formulation of the Unsteady NS–F Problem

We consider the atmospheric dry air as a thermally perfect, viscous, and heat-

conducting gas, with constant dissipative coefficients. In such a case, the dimen-

sionless NS–F equations are written (for dimensionless functions, v, w, p, r, and T)
in the following form – all functions, variables, and coefficients being non-

dimensional:

@r @t= þ D � ðrvÞ þ @ðrwÞ @z= ¼ 0; (5.5)

Fig. 5.1 Four regions structure of NS–F unsteady equations at large Reynolds number
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r½@v @t= þ ðv : DÞvþ w@v @z= � þ ð1 gM2
� ÞDp ¼ e2fDv

þ ð1 3= Þ D ½D : vþ @w @z= �g; (5.6)

r½@w @t= þ ðv : DÞwþ w @w @z= � þ ð1 gM2
� Þ@p @z= ¼ e2fDw

þ ð1 3= Þ@ @z= ½D : vþ @w @z= �; (5.7)

r½@T @t= þ ðv : DÞTþ w @T @z= � þ ðg� 1Þp ½D : v

þ @w @z= � ¼ ðg Pr= Þ e2DTþ gðg� 1Þe2M2fF
� ð2 3= Þ½D : vþ @w @z= �2g;

(5.8)

with

p ¼ rT; (5.9)

where the horizontal (relative to coordinates (x, y)) velocity vector is v ¼ (u, v),

and viscous dissipation is written in the following form:

F ¼ @u @z= þ @w @x=½ �2 þ @v @z= þ @w @y=½ �2 þ @u @y= þ @v @x=½ �2

þ 2 @u @x=ð Þ2 þ @v @y=ð Þ2 þ @w @z=ð Þ2
h i

;
(5.10)

and D ¼ D2 þ @2=@z2 with D ¼ @=@x; @=@yð Þ.
For the above evolution equations (5.5)–(5.8) we write. as initial conditions at

initial time t ¼ 0:

t� � 0 : v ¼ 0; w ¼ 0; r ¼ 1 and T ¼ 1: (5.11)

At the horizontal solid wall, z ¼ 0, we assume:

z ¼ 0 : v ¼ w ¼ 0 (5.12a)

and

T ¼ Yðt b, P= Þ; when tþ � 0; Yðt b,P= Þ � 0; when t� � 0; (5.12b)

where

b � t* t0
� � 1; (5.13)

is a ratio of two time scales: t*, a short time scale, in comparison to characteristic

evolution time scale t	, which appears in Strouhal number S in (3.3).
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In condition (5.12a, 5.12b), the dimensionless function Yðt=b;PÞ is used to

simulate an emergency of a thermal spot at t+ � 0, P being a point on a local

domain on the wall, P
 D, for which the reference length scale L	 is a diameter for

this time-dependent domain D ¼ D(t).
In the above four dimensionless NS–F equations (5.5)–(5.8), we have assumed

that (S is the Strouhal number):

S � 1 ) U0 ¼ L0 t0
�

;

and in the fact (t0 is the time with dimension):

Yðt b; P= Þ � Yðt0 t�= ; PÞ:

The characteristic time t	 ¼ L	/U	 is a “long” time and characterizes the

evolution of fluid flow after the thermal spot emergency, while the characteristic

“short” – small – time, t* � t	, is linked just with this emerging thermal spot short

(time) interval.

The above formulated NS–F initial-boundary value problem, (5.5)–(5.13), is a

very complicated mathematical problem, and the rigorous proof concerning its

well-posedness is obviously an intractable question!

In fact, our objective below is rather to analyze the specific structure of this

problem, when e tends to zero – for large Reynolds number � and consider the

relations, via matching, between the four particular fluid flows regions discussed in

Sect. 5.2.

The existence of these four fluid flows regions, at large Reynolds number, shows

that we have the possibility of considering this above NS–F system of equations as a

“puzzle!” A challenging, but difficult, approach is to “deconstruct”1 this puzzle,

relative to limiting values � vanishing or infinity � of various reference

parameters, Re, M, or Pr. . ., in order to unify � by a RAMA process – the set of

various, ill-assorted, partial approximate system of equations, customarily used in

classical fluid dynamics.

We observe that from our above formulated mathematical–physical

(5.11)–(5.13) problem for the NS–F equations (5.5)–(5.8) with (5.9), it follows

that we have the possibility of first investigating not only the initial stage of the

motion, emerging as a cause and effect of a sudden rise in temperature locally on

the wall z ¼ 0 at t ¼ 0 in a corner fourth region, but also the evolution of this

“thermal accident” in second, Prandtl, and first, Euler, BL viscous and inviscid

Eulerian regions, by two matching processes.

1 In fact, the system of NS–F equations, despite its dimensionless form, do not have a fixed

meaning, even if the various reference parameters, in NS–F equations, give a good idea for an

investigation in this way! A real meaning is “created”, each time, in the act of the RAMApproach,

relative to a precise parameter (high or low), via the derivation of a consistent simplified model,

this process is just a deconstruction (“à la Derrida”) of NS–F system of equations.
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The considered physical case is a typical free problem independent of any given

external flow. This case can be generalized for the atmosphere, where gravity plays

an obvious and important role in emerging convective local motion. For such an

atmospheric case, a typical example is a forest fire, which is actually a very bad

accident which causes a large amount of damage, and is considered to be an

“environmental disaster”!

5.4 Derivation of the Corresponding Four Model Problems

Below we consider the derivation of approximate leading-order equations for the

corresponding four limiting processes (5.2a, 5.2b), (5.3), and (5.4), discussed in

Sect. 5.2, and linked with the limiting process e # 0, from our full NS–F problem:

(5.5)–(5.9), with (5.10), and (5.11)–(5.13) – our main objective being a consistent

obtention of these four particular systems of equations related to the four limiting

processes (5.2a, 5.2b)–(5.4).

5.4.1 Euler–Prandtl Regular Coupling

When we consider the first, Euler, limiting process (5.2a), LimE, at e # 0, with t and

z fixed, from NS–F, evolution equations (5.5)–(5.8), with (5.9), we obtain a strong

degeneracy (close to the horizontal solid wall z ¼ 0), which leads to a Euler system

of equations for the leading-order functions, vE; wE; pE; TE andrE, in the follow-

ing Euler asymptotic expansion associated with (5.2a):

v;wð Þ ¼ vE;wEð Þ þ e vE
1;wE

1
� �þ :::; (5.14a)

ðp;T; rÞ ¼ ðpE;TE; rEÞ þ eðpE1;TE
1; rE

1Þ þ :::; (5.14b)

where the Eulerian terms (with “E” as subscript) are dependent on t, x, y, and z. We

then obtain the following system of Euler inviscid compressible, adiabatic,

equations:

@rE=@t þ D:ðrEvEÞ þ @ðrEwEÞ=@z ¼ 0; (5.15a)

rE @vE=@tþ vE:Dð ÞvE þ wE@vE=@z½ � þ ð1=gM2ÞDpE ¼ 0; (5.15b)

rE @wE=@t þ vE:Dð ÞwE þ wE@wE=@z½ � þ ð1=gM2Þ@pE=@z ¼ 0; (5.15c)
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rE @TE=@t þ vE:Dð ÞTE þ wE@TE=@z½ � þ ðg� 1ÞpE½D:vE þ @wE=@z� ¼ 0;

(5.15d)

with

pE ¼ rETE: (5.15e)

Because all the dissipative terms, in the right-hand side of NS–F equations

(5.6)–(5.8), are absent in limiting, leading-order, Euler equations (5.15a–5.15d)

(see, for instance [100], and [37], Chap. 9), these Euler equations cannot be valid in

the vicinity of the wall z ¼ 0.

The significant equations valid near z ¼ 0, which replace the above Euler

equations (5.15a–5.15e), are derived when we introduce, in place of z, an inner

vertical coordinate, significant in the vicinity of z ¼ 0: namely,

z ¼ z=e; (5.16a)

when we consider the second, Prandtl, limiting process (5.2b), LimPr at e # 0, with

t and z fixed.
In such a case, again, from full NS–F equations (5.5)–(5.8), with (5.9), for the

leading-order functions vPr; pPr;TPr; rPr, and second�order vertical component of

the velocity, wPr
1, we consider the following asymptotic, à la Prandtl, expansion

associated with (5.2b):

v;wð Þ ¼ vPr; 0ð Þ þ e vPr
1;wPr

1
� �þ :::; (5.17a)

ðp;T; rÞ ¼ ðpPr;TPr; rPrÞ þ eðpPr1;TPr
1; rPr

1Þ þ :::; (5.17b)

where the Prandtl (BL) terms (with “Pr” as subscript) are dependent on t, x, y, and z.
Then, with (5.2b) and (5.17a, 5.17b), we derive the Prandtl BL unsteady equations

(see Stewartson [101], and the more recent book by Oleinik and Samokhin [102]):

@rPr=@t þ D:ðrPrvPrÞ þ @ðrPrwPr
1Þ=@z ¼ 0; (5.18a)

rPr½@vPr=@tþ vPr:Dð ÞvPr þ wPr
1@vPr=@z�

þ ð1=gM2ÞDpPr ¼ @2vPr=@z
2;

(5.18b)

@pPr=@z ¼ 0; (5.18c)

rPr @TPr=@t þ vPr:Dð ÞTPr þ wPr
1@TPr=@z

� �
þ ðg� 1ÞpPr½D:vPr þ @wPr

1=@z�
¼ ðg=PrÞ@2TPr=@z

2 þ gðg� 1ÞM2j@vPr=@zj2; (5.18d)
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with

pPr ¼ rPrTPr: (5.18e)

It is well known that both the above system of equations – outer, Euler

(5.15a–5.15e), and inner, Prandtl (5.18a–5.18e) – are related to the following

classical matching relation (discussed in Sect. 6.4.2):

lim z"1 LimPr
� � ¼ limz#0 LimE

� �
; (5.19a)

and, as a first consequence of (5.19a), we obtain for the Euler outer system of

Eqs. 5.15a–5.15e the following single (slip!) condition:

wE ¼ 0 at z ¼ 0: (5.19b)

Then, as a second consequence of (5.19a), we see that from the strong

degenerated equation (5.18c), in the Pranddtl system of Eqs. 5.18a–5.18e, we

have the possibility of relating the constant value of pPr, with respect to vertical

BL coordinate, z, with the value of pE at z ¼ 0:

pPr t; x; yð Þ � pE t; x; y; 0ð Þ ¼ pE;0 t; x; yð Þ

and

DpPr � ðgM2ÞrE;0½@wE;0=@t þ ðvE;0:DÞwE;0�: (5.19c)

Now, concerning the thermal condition (5.12), with the parameter b given by

(5.13), we are obliged to assume that (when t is fixed, in LimPr, far of the initial

time):

b ¼ bðeÞ # 0 with e # 0; (5.20a)

and we have only the possibility of writing, for the BL equations (5.18a–5.18e), the

following conditions:

on z ¼ 0 : vPr ¼ 0;wPr
1 ¼ 0;

TPr ¼ Yð1;PÞ; at t >0 fixed: (5.20b)

Obviously, in the framework of the Euler–Prandtl regular coupling we do not

have the possibility of taking into account the “thermal accident” linked with the

“temperature emergency at initial time on the wall z ¼ 0.”

On the other hand, the above Prandtl system of Eqs. 5.18a–5.18d, with (5.18e),

due to the reduced BL equation (5.18c), must be considered as a system of two
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equations for vPr and TPr, while the Prandtl vertical velocity wPr
1 must be computed

through the following relation:

wPr
1 ¼ TPr=pE;0

� �ðz
0

f @=@t þ vPr:Dð Þ½ �rPr
þrPr D:vPrð Þgd z;

(5.20c)

since wPr
1 ¼ 0 on z ¼ 0, according to the second condition in (5.20b), and the

(matching) relation:

limz"1 wPr
1

� � ¼ wE;0
1; (5.20d)

is, in fact, a regular coupling condition with the second-order linearized Euler

equations for the terms with “E
1” proportional to e, in Euler asymptotic expansion

(5.14a, 5.14b).

However, the problem of two initial conditions for the two unsteady Prandtl

equations, (5.18b) and (5.18d), for vPr and TPr, is more subtle, and is a direct

consequence of the change of the nature of Prantdl equations relative to the

incomplete parabolic character of NS–F equations (see [59, 60, 67]).

In fact, for vPr and TPr we have a system of two hyperbolic–parabolic equations

[102]:

rPrDPrvPr=Dt� @2vPr=@z
2 ¼ F; (5.21a)

rPrDPrTPr=Dt � ðg=PrÞ@2TPr=@z
2 ¼ G; (5.21b)

where DPr=Dt ¼ @=@t þ vPr:D , and the right-hand side F and G are a collection of

terms with the first-order derivatives relative to D and z.
The continuity equation in the Prandtl system (5.18a–5.18d) is, in fact, an

equation determining wPr
1, due to (5.20c), and in place of (5.18e) the relation:

rPr ¼ pE;0=TPr; (5.21c)

determines the density rPr.
Without loss, the generality the hyperbolic–parabolic character of the system

of Eqs. 5.21a, 5.21b is related to the transmission of the information in the

planes z ¼ const, along the trajectories linked with the derivative operator

DPr=Dt ¼ @=@t þ vPr:D, supporting the hyperbolicity – this information being

instantaneously diffused by vertical coordinate z on each normal direction to the

wall z ¼ 0, at each moment t (which just characterizes the “parabolicity”).

We observe also, that the domain of the dependence, for a fixed moment, of the

point on the wall has an angular form, but in the unsteady case the precise form of

this domain is not easy definable.
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The above brief discussion shows explicitly that there is obviously a change in

the mathematical character of the fluid dynamics equations, when we pass from a

fourth order in time (four partial derivatives in time) unsteady NS–F system of

Eqs. 5.5–5.8, to an unsteady Prandtl reduced system of two Eqs. 5.21a, 5.21b. This

strong modification leads to a singular nature of the system (5.21a, 5.21b) near the

initial time t ¼ 0 – this singular nature of the Prandtl boundary-layer concept for

the unsteady case being (curiously) ignored up to 1980 (See, for instance, a recent

(1994) discussion by Van Dyke: Nineteenth-century roots of the boundary-layer
idea [103]).

More precisely, it is necessary to prescribe in the framework of Prandtl BL

equations (for instance for Eqs. 5.21a, 5.21b) only two initial conditions at t ¼ 0.

But unfortunately, the initial data for vPr and TPr, at time t ¼ 0 (designated by: v0Pr
and T0

Pr), are certainly different from the initial conditions (in particular, (5.11)) for

the full NS–F system of Eqs. 5.5–5.8.

Indeed, the main question is the following. Since two, NS–F, initial conditions

are lost during the Prandtl limiting process (5.2b), how are the (unknown?) initial

conditions:

vPr ¼ v0Pr and TPr ¼ T0
Pr; at t¼ 0 (5.22)

for the unsteady Prandtl BL equations (5.18b) and (5.18d), and how are the data v0Pr
and T0

Pr linked with the initial data in conditions prescribed at the start (at t ¼ 0)

for the unsteady NS–F equations. The answer is strongly related to the obtention,

from the full unsteady NS–F equations, of a particular system of equations valid

near initial time and written relative to a short time. In fact, we have three short

times:

t ¼ t=e; y ¼ t=e2; and s ¼ t=b; (5.23)

and the choice of data v0Pr and T
0
Pr, is realized via an unsteady adjustment problem,

when the adequate(?) short time tends to infinity in unsteady adjustment equations

valid near initial time!

5.4.2 Acoustic and Rayleigh Problems Near the Initial Time t ¼ 0

First, with the limiting process (5.3),

LimAc; when e # 0; with t ¼ t=e and z ¼ z=e fixed;

from the NS–F equations (5.5)�(5.8), with (5.9), for the leading-order functions,

vAc;wAc; pAc;TAc; and rAc; in the following asymptotic acoustic expansions,

associated with (5.3):

5.4 Derivation of the Corresponding Four Model Problems 107



v;wð Þ ¼ vAc;wAcð Þ þ e vAc
1;wAc

1
� �þ :::; (5.24a)

ðp; T; rÞ ¼ ðpAc;TAc; rAcÞ þ eðpAc1;TAc
1; rAc

1Þ þ :::; (5.24b)

where the acoustic terms (with “Ac” as subscript) are dependent on t; x; y, and z,
we derive the following, compressible, non-viscous, adiabatic, unsteady, one-

dimensional, (t; z), equations:

@rAc=@ tþ @ðrAcwAcÞ=@z ¼ 0; (5.25a)

rAc½@wAc=@ tþ wAc@wAc=@z� þ ð1=gM2Þ@pAc=@z ¼ 0; (5.25b)

rAc½@TAc=@t þ wAc@TAc=@z� þ ðg� 1ÞpAc@wAc=@z� ¼ 0; (5.25c)

pAc ¼ rAcTAc: (5.25d)

and also the following transport equation for vAc:

@vAc=@tþ wAc@vAc=@z ¼ 0: (5.26)

The system of Eqs. 5.25a–5.25d – valid simultaneously close to initial time,

t ¼ 0, and in a thin layer in the vicinity of the wall, z ¼ 0 – are identical to the

usual equations for one-dimensional vertical unsteady motion in (non-viscous,

adiabatic) gas dynamics.

Once wAc has been obtained, through the solution of the system (5.25a–5.25d)

with the proper initial conditions (that is, the initial conditions, (5.11), for starting

NS–F equations), single (slip) boundary condition:

wAc ¼ 0 on z ¼ 0; t> 0; (5.27a)

and matching condition (in time)

Limt"1wAc ¼ wPrjt¼0 ¼ 0; (5.27b)

we may use the transport equation (5.26) in order to compute vAc.

Unfortunately, with the above non-viscous adiabatic system of

Eqs. (5.25a–5.25d), and transport equation (5.26), we do not have the possibility

of taking into account our main emergency thermal effect (via the thermal spot

Yðt=b;PÞ on the wall), since the inviscid (non-viscous, adiabatic) system

(5.25a–5.25d) and Eq. 5.26 are not valid close to the wall, where the conditions

(5.12a, 5.12b), with (5.13), are prescribed.

The Eq. 5.26 for vAc shows that

v0Pr ¼ Limt"1vAc; (5.27c)
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from matching, and it seems (in (5.22)) that we can assume (for our particular case),

as a value for v0Pr, zero; but this is certainly not the case for T0
Pr.

Again, near initial time and close to the wall, where we have the conditions

(5.12a, 5.12b), according to Zeyounian [98], it is necessary to consider the Rayleigh

limiting process (see (5.4)):

LimRa; when e # 0; with y ¼ t=e2 and Z ¼ z=e2 fixed; (5.28a)

with

v; wð Þ ¼ vRa;wRað Þ þ e vRa
1;wRa

1
� �þ :::; (5.28b)

ðp;T; rÞ ¼ ðpRa;TRa; rRaÞ þ eðpRa1;TRa
1; rRa

1Þ þ :::; (5.28c)

where the Rayleigh terms, in (5.28a, 5.28b), with “Ra” as subscript, are dependent

on y; x; y, and Z.
In such a case, from full NS–F unsteady equations (5.5)–(5.8), (5.9), for leading-

order functions, vRa;wRa; pRa;TRa; and rRA, we derive below the Rayleigh

equations (5.29) and (5.30a–5.30d) used in the compressible Rayleigh problem,

which are, in fact, the one-dimensional reduced form of the full NS–F equations

valid in a corner region near initial time y ¼ 0, and close to the wall Z ¼ 0. Namely:

rRa½@vRa=@yþ wRa@vRa=@Z� ¼ @2vRa=@Z2; (5.29)

@rRa=@yþ @ðrRawRaÞ=@Z ¼ 0; (5.30a)

rRa½@wRa=@yþ wRa@wRa=@Z� þ ð1=gM2Þ@pRa=@Z
¼ 4=3ð Þ@2wRa=@Z2;

(5.30b)

rRa½@TRa=@yþ wRa@TRa=@Z� þ ðg� 1ÞpRa@wRa=@Z�
¼ ðg=PrÞ@2TRa=@Z2 þ g g� 1ð ÞM2fj@vRa=@Zj2

þ 4=3ð Þj@wRa=@Zj2g;
(5.30c)

pRa ¼ rRaTRa; (5.30d)

These above Rayleigh equations, (5.29) and (5.30a–5.30d), are applied in [99]

for the Rayleigh compressible problem by Howarth in 1951, but in the case of an

infinite flat horizontal plate (submerged in a viscous and heat-conducting and

originally quiescent fluid) which is impulsively started moving in its own plane

with a constant velocity.

In fact, from 0ur above RAM Approach I can now affirm that in a corner region

ðy;ZÞ, which is significant for the small time near initial time and in thin layer close
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to wall, at the leading-order for large Reynolds number, the above compressible

Rayleigh equations, (5.29) and (5.30a–5.30d), for a viscous and heat-conducting

fluid flow, consistently replace the full unsteady NS–F equations.

Both these unsteady systems, ((5.29) and (5.30a–5.30d), and (5.25a–5.25d) and

(5.26)), both valid near the initial time, are related amongst themselves by the

following matching relations:

LimZ"1wRa ¼ wAcjz¼o; (5.31a)

Limy"1½vRa;wRa; rRa;TRa ¼� ½vAc;wAc; rAc;TAc�jt¼0: (5.31b)

The reader can find in Antontsev et al. [104], Chap. 2, some mathematically

rigorous results concerning the above, à la Rayleigh, equations (5.29) and

(5.30a–5.30d); and see also the review paper by Solonnikov and Kazhykhov [105].

Finally, if we assume that in a thermal spot

Yðt=b;PÞ; with b << 1;

b defined by (5.13), is equal to e2, then, for the emergency of the “temperature

accident” we have the possibility of taking into account all starting initial (5.11) and

wall (5.12a, b) conditions, in the framework of an initial-boundary values Rayleigh

problem.

We therefore write, for Eqs. 5.29�5.30d, the following initial conditions:

y� � 0 : vRa ¼ 0; wRa ¼ 0; rRa ¼ 1 and TRa ¼ 1; (5.32a)

and, at the horizontal solid wall, Z ¼ 0, we assume:

Z ¼ 0 : vRa ¼ wRa ¼ 0 and TRa ¼ Yðy;PÞ; yþ � 0: (5.32b)

The above “starting problem”, (5.29)�(5.30a–5.30d) with (5.32a, 5.32b), is a

typical problem for various “emergency�temperature–accident phenomena” which

develop when yþ�0.

5.5 Adjustment Processes Towards the Prandtl BL Evolution

Problem

If we want to take into account the sudden heat emergency, at the time y+ � 0, in a

local domain, P 
 D, on the wall Z ¼ 0, then it now seems justifiable that the main

working problem is just the above compressible, viscous, and heat-conducting

Rayleigh problem ((5.29), (5.30a–5.30d), (5.32a, 5.32b)).
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This Rayleigh problem is valid, simultaneously, near the initial time and close to

wall – in a small corner (fourth) region – with a “physical size” of order (n
	
/U

	2)

relative to time and (n
	
/U

	
) relative to vertical coordinate � these time and length

scales being exactly those used by Howarth [99].

5.5.1 Adjustment Process Via the Acoustics/Gas Dynamics
Equations

Once the above Rayleigh problem – (5.29), (5.30a–5.30d), and (5.32a, 5.32b) – is

solved (numerically), then we have the possibility (first) of prescribing, by

matching relations (5.31a, 5.31b) to Eqs. 5.25a–5.25d, with (5.26), of gas dynamics

– significant in the third inviscid region near the time, t ¼ 0, and characterized by

t and z – the consistent conditions at t ¼ 0 and z ¼ 0.

As a consequence of this above matching, it seems that we can expect that in

conditions (at t ¼ 0 and z ¼ 0) for Eqs. 5.25a–5.25d with (5.26) of gas dynamics,

the influence of the wall condition for the temperature is taken into account, but

only via the limit value Yð/;PÞ.
We observe that in the wall, z ¼ 0 at t > 0, condition (5.20b) for the Prandtl BL

equation (5.18a–5.18e), this same function (independent of time?) Yð/;PÞ is also
present.

The acoustic/gas dynamics equations (5.25a–5.25d) with (5.26), with these

initial conditions (5.31b) and single boundary condition (5.31a), for wAC at z ¼ 0,

which take into account the (partial?) influence of thermal spot (but independent of

time function Yð/;PÞ), present the possibility of considering, for t ! 1, an

unsteady adjustment inviscid problem for the initialization of the Prandtl BL

equations. As a typical example, see, for instance, our paper co-authored with

Guiraud [106], which determines, in particular, the initial data T0
Pr.

2

When both vPr
0 and TPr

0 are known, as a result of the above unsteady adjustment

inviscid problem, then later, via the initial-boundary value BL problem, significant

in the second Prandtl, ðt; zÞ BL region, we have the opportunity to investigate the

quasi-steady evolution of the “temperature accident” arising from the Rayleigh

corner fourth region.

2 In [106], with Guiraud, we have formulated, for the “primitive Kibel equations” (see Sect. 9.2) –

which are derived from the hydrostatic approximation to the Euler equations for non-viscous and

adiabatic motion – a problem analogous to the one that was considered by Rossby (1938)

concerning the quasigeostrophic approximation (a problem which is now well known as the

adjustment to geostrophy). The major conclusion of our “adjustment to hydrostatic balance” is

that the initial conditions for the primitive equations may be derived from a full set of initial

conditions, for the full Euler equations, where in these Eulerian initial conditions the initial data

need not fit the hydrostatic balance. This obtention of initial conditions for primitive equations is

realized by solving the associated one-dimensional unsteady adjustment problem of vertical

motion to hydrostatic balance.
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Curiously, however, this unsteady inviscid adjustment scenario, from gas

dynamics to BL, does not seem to be the only one possible. Indeed, a more detailed

analysis (see Sect. 5.5.2 below) shows the existence of a fifth matching region

between Rayleigh (fourth) and Prandtl (second) regions – the existence of such an

intermediate fifth region ensuring matching between the Rayleigh corner and

Prandtl BL regions.

5.5.2 Adjustment Process Via the Rayleigh Equations

This fifth intermediate matching region appears when we investigate, first, the far

behaviour of the Rayleigh equations (5.29) and (5.30a–5.30d), for large values of y
and Z. In the Rayleigh corner, fourth region, with Prandtl variables,

t ¼ e2 y and z ¼ eZ as e # 0; (5.33a)

we can introduce new intermediate variables, t* and z*:

y ¼ t�=kðeÞ and Z ¼ z�=
p
kðeÞ; 0 < kðeÞ # 0 with e # 0; (5.33b)

where kðeÞ is an arbitrary gauge, and t* and z*, the new intermediate variables, are

fixed when e# 0, in such a way that both Rayleigh variables y and Z tend to infinity.

In this intermediate matching fifth region we have, as leading-order functions:

½vInt;w�
Int;rInt;TInt� ¼ LimkðeÞ#0½vRa;wRa=

p
kðeÞ; rRa;TRa�; (5.33c)

where all intermediate functions (with subscript “Int”) are dependent on time–space

variables, t*, z*, and x, y.

When we take into account that the (unknown) gauge kðeÞ is certainly in an

order between e2 and e, such that we derive from the Rayleigh equations, (5.29) and

(5.30a–5.30d), due to (5.33b, 5.33c), the following intermediate-matching model

equations for vInt, w*Int, rInt, pInt, and TInt:

@rInt=@t
� þ @ðrIntw�

IntÞ=@z� ¼ 0; (5.34a)

@pInt=@z
� ¼ 0; (5.34b)

rInt @TInt=@t
� þ w�

Int@TInt=@z
�� �þ ðg� 1ÞpInt@w�

Int=@z
�

¼ ðg=PrÞ@2TInt=@z
�2 þ g ðg� 1ÞM2 @vInt=@z

�j j2; (5.34c)

rInt @vInt=@t
� þ w�Int@vInt=@z

�½ � ¼ @2vInt=@z
�2; (5.34d)
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with

pInt ¼ rIntTInt: (5.34e)

Obviously, the above intermediate matching model equations, (5.34a–5.34e),

first pointed out in our short note [98], are those derived when we carry out, on the

Rayleigh equations (5.29) and (5.30a–5.30d), the usual approximations of the

classical Prandtl boundary-layer theory.

In particular, as in BL region, the pressure pInt is independent of z* and is

determined by matching:

limz� "1½LimInt� ¼ limZ#0½LimRa�; (5.35a)

where

LimInt ¼ ½e # 0; with t� ¼ t=sðeÞ; z� ¼ z=e
p
sðeÞ; fixed�; (5.35b)

the intermediate variables (t*, z*) being directly related to the starting (in NS–F

equations) variables (t, z).

The intermediate gauge sðeÞ, in LimInt, (5.35b), is linked with the above gauge

kðeÞ by the following relation:

kðeÞ sðeÞ ¼ e2: (5.36)

More precisely, this compatibility relation (5.36) is a direct consequence of the

investigation of the behaviour of the Prandtl BL equations (5.18a–5.18e), when

t and z both tend to zero, towards the intermediate fifth region.

Indeed, if we write (again with t* and z* fixed):

t ¼ sðeÞt�; z ¼ p
sðeÞz�; 0 < sðeÞ # 0 with e # 0; (5.37a)

and if

½vInt;w�
Int; rInt;TInt� ¼ LimsðeÞ#0½vPr;

p
sðeÞwPr; rPr;TPr�; (5.37b)

then again we derive the same above intermediate matching model equations

(5.34a–5.34d) with (5.34e), but from (5.18a–5.18e). The relation (5.36) is, in fact,

a consequence of the compatibility between (5.33b, 5.33c) and (5.37a, 5.37b).

Unfortunately, the precise localization of this intermediate matching region

(characterized by the gauge sðeÞ), between the Rayleigh and Prandtl regions,

does not seem possible at this stage of asymptotic analysis, and more careful

(second-order?) investigations are obviously necessary.

Finally, we observe that if on the one hand, when sðeÞ ¼ e2, then

t� ¼ y and z� ¼ z=e ¼ z=e2 ¼ Z, then we recover the Rayleigh region; and
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if on the other hand, when sðeÞ ¼ e0 � 1, then t* ¼ t and z� ¼ z, and we recover
the Prandtl region.

The existence of such an intermediate region is a striking indication that it seems

possible (as a conjecture) to directly match the Rayleigh and Prandtl equations by

an adjustment problem, via the intermediate equations (5.34a–5.34e), when the

intermediate time t� #/ , using the matching condition:

limt� #/ vInt;TInt½ � ¼ v0Pr;T
0
Pr

� �
: (5.38)

This presents the possibility of obtaining, consistently, the associated initial data,

vPr
0 and TPr

0, in (5.22), for Prandtl unsteady equations (5.18b) and (5.18d) for vPr
and TPr.

5.6 Some Conclusions

First, it is clear that the above problem of matching, (5.38), deserves careful

consideration and may be an interesting numerical/computational problem.

We then observe that it is possible to considerably simplify the matching

problem between the Rayleigh and Prandtl equations, if we assume that the Mach

number M, in Rayleigh equations, is a small parameter, and assume, for this, that in

the wall the thermal condition (5.32b) can be written in the following form:

Yðy;PÞ ¼ 1þ L0M
2Sðy;PÞ; (5.39)

where L0 ¼ O 1ð Þ, and Sðy;PÞ replace thermal spot Yðy;PÞ.
In such a case, the solution of the Rayleigh problem is also expanded relative to a

low Mach number, M � 1 (as in Howarth’s paper [99]). But here we do not

proceed further.

A third remark concerns the fact that further investigations are necessary for a

complete understanding of the above intriguing five-regions structure, which is very

interesting, because it is unusual and does not have an obvious clear interpretation!

But the above new five-regions (four regions plus the intermediate region) structure

of NS–F equations, at large Reynolds number, as a consequence of the singular

nature of the unsteady Prandtl BL equations near the initial time, do not restrict

investigations to emergency phenomena, and have fundamental importance in the

RAM Approach of NS–F equations.

I think that from this detailed further re-examination of boundary-layer Prandtl

theory, it is now possible to resolve some singularities arising in various unsteady

boundary-layer problems (see, for instance, Stewartson [101]).

A final remark concerns the pedagogical interest of such partition of NS–F

equations, in five regions, for large Reynolds number fluid flows, and this RAM

Approach presents the possibility of deriving a new logical interpretation of Euler,
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Prandtl, Rayleigh, acoustic/gas dynamics, and intermediate equations, as five

significant and particular models of full NS–F unsteady equations for Newtonian

fluid flow at large Reynolds number.

Again we observe that not only Prandtl in 1904, but also (it seems) Blasius and

Schlichting (in Germany), Lagerstrom, Cole, and Kaplun (at Caltech), Van Dyke

(at Stanford), Stewartson and Smith (in England), and Germain (in France), did not

realize that indeed the concept of boundary-layer, which is an extension to long-

waves approximation in the case of a viscous fluid flow, is singular, in the case of an

unsteady fluid flow, near initial time, where initial data are prescribed in a well-

posed initial-boundary value problem.
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Chapter 6

The Mathematics of the RAM Approach

6.1 Our Basic Postulate for the Realization of the RAM

Approach

As was determined at the outset, as a basis of our mathematics (below) for

realization of our RAM Approach, it is laid down that:

“If a leading order, an approximate, model is derived from an NS–F fluid flow
problem, then it is necessary that a RAMA be adopted to make sure that terms
neglected, in such a full unsteady NS–F stiff problem, really are much smaller than
those retained in derived approximate simple (but consistent), no-stiff leading-
order, model problem.”

This above “basic postulate” – a statement that is accepted as true, despite its

simplicity – is in fact a very good and suitable general rule – a statement of what the

reader is advised to do in various modelling situations. (See, in particular, Chaps.

7–9 below, on applications of the RAM Approach.)

Until this postulate is applied to the derivation of approximate/rational and

consistent models for technologically or geophysically/atmospheric stiff problems,

it will be difficult to convince the (possibly sceptical) reader (as noted in Germain’s

The “New” Mechanics of Fluids of Ludwig Prandtl (2000) [107], p. 34) of its value
as a guide-line for our RAMA, on behalf of numerical/computational simulation.

Massive computations1 are actually capable of bringing so much to our under-

standing, but there seems to be no indication that they are in competition with our

RAMA, Both are useful and complementary, and, what is more, I think that the

RAMA, which is a new way of looking at the derivation (in place of a doubtful ad

hoc approach) of the approximate rational model problem on behalf of numerical

1 Recently, a new Intensive Computation Centre was inaugurated at Bruyères-le-Châtel (Essone),

France, and in 2011 the new super-high-speed computer “Curie” – capable of making 1.6 million

of billion operations per second – should be fully operational!

R. Kh. Zeytounian, Navier–Stokes–Fourier Equations,
DOI 10.1007/978-3-642-20746-4_6, # Springer-Verlag Berlin Heidelberg 2012
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simulation, is the only one rational way to obtain a non-ad hoc consistent, simplified,

non-stiff, well balanced model problem from the full unsteady NS–F stiff problem.

Obviously: the ultimate goal (especially for the numericians in the framework of

their simulation processes) is to find the mathematical key which explains the

success of the modelling used in industrial and technological applications.

In theoretical fluid dynamics, perhaps the most significance advance in research

and understanding during the last 50 years has been the use of asymptotic

techniques in order to settle, on a rational basis, a number of approximate models

which were often, much earlier, derived by the various and often very questionable

ad hoc procedures.

Actually, it might have been clear that asymptotic techniques were well suited

for deriving mathematical models amenable to numerical treatment, rather than for

obtaining approximate closed forms of solutions.

It is now also evident that asymptotic techniques are very powerful tools in the

process of constructing well argued, non-contradictory, consistent, and simplified

mathematical models for problems which are stiff, from the point of view of

numerical analysis.

In the framework of our RAMA, the main goal is the modelling, and not the

finding of solutions, via the derivation of rational consistent models from an initial-

boundary value problem formulated for a real fluid flow.

This RAMA has, as its main objective, the generation of simpler adequate

models amenable to numerical simulation. But in most cases an efficient method

of achieving this goal will be to retain more the spirit (the real meaning and pur-

pose) of asymptotic techniques rather than their complete and formal structure –

nothing being said of the rigorous mathematics.

Concerning “our mathematics” for the realization of our RAMA, we have in

mind, first, the above formulated postulate and also several key steps which play a

decisive role during the rational derivation of consistent models (as clearly

indicated in Chap. 4, with the justification of Boussinesq equations, and also in

Chap. 5, in the framework of the five-regions structure of unsteady NS–F equations

at large Reynolds numbers).

Concerning, precisely, the role of our “basic postulate”, we observe also that the

knowledge and skill that I acquired, with J.-P. Guiraud, during 1970–1980, working

within the framework of the RAMA, presents the possibility, thanks to this postu-

late, of deriving, in various cases, the dominant concepts and ingredients of a full

solution of the starting fluid flow stiff problem.

In fact, fluid dynamics inspired by this “basic postulate” is a newway of approaching

classic fluid flowproblems – viaNS–F full unsteady 3D equations –which is very useful

in gas dynamics (from hyposonic to hypersonic), compressible aerodynamics, hydrody-

namic instability, technologically and geophysically (atmospheric) interesting (but very

stiff) flows, and various thermal and thermocapillary convection problems.

The necessity of such a basic postulate is obvious. Computerized numerical

simulation – using a mathematical model created artificially in order to study what

could exist in a real and very complicated fluid flow – is a very expensive activity

(costing a lot of money). Therefore, as a consequence, confidence is necessary
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concerning the consistency of the model used and the abilities of this model as a

valuable substitute for reality!

Unfortunately, the models derived by numericians and applied mathematicians

using ad hoc procedures obviously do not have the essential qualities mentioned

above! The cause and effects of such a situation are linked with the appearance of

internal inconsistencies in most of the relevant intensive engineering computations

based on relatively ad hoc models.2

On the other hand, applied mathematicians, who are interested in the application

of their rigorous results, based on abstract (modern) non-linear functional analysis,

have always found fluid mechanics to be a rich and interesting field, because the

basic equations (NS–F equations) have an almost unlimited capacity for producing

complex solutions that exhibit unbelievably interesting properties.

Unfortunately, these rigorous investigations (proofs of the existence and unique-

ness of solutions) are based on relatively ad hoc and very simplified approximate

models which are rife with various internal inconsistencies. This is the case, as far I

know, in France especially, in works relative to the incompressible limit of com-

pressible fluid flows and in various papers devoted to models for oceanic and

atmospheric motions. Again, the question is: “What is the scientific value of such

rigorous results based on inconsistent ad hoc models”?

On the other hand, as observed by Germain in his Anniversary Volume (2000)

[108], p. 13:

Brilliant young physicists who began to be somewhat attracted by fluid dynamics and not

simply by hard physics, knew the usefulness of approximations and of non-dimensional

scaling. But they did not know that a systematic technique was available for building

approximate mathematical models and trying to measure quantitatively their validity . . .
I showed that the approximation is very often tied to the existence of a small parameter,

coming out from the non-dimensional form of the equations [concerning some facets of this

non-dimensionalization, see Sect. 6.3], and I intended to show that the process is sustained

by asymptotic singular expansions, and insisted on the methodology, in particular the

matching conditions and the concept of significant degeneracy [see Sect. 6.4.3] recently

created by Eckhaus (see [109]). I liked very much this last one, because it gives a systematic

2 I took the opportunity of expressing my (very critical) opinion during the conference debate,

organized by the Académie des Sciences, which took place in Paris on 29 June 2010. In his

presentation entitled “Simulation by super-high-power computers: today and tomorrow”, Olivier

Pironneau spoke mainly about the significance of numerical simulation and the increasing capacity

of super-computers, but did not mention, in any way, the role of fluid dynamics modelling for

simulation with the help of a consistent and rational model. The next three invited papers,

concerning numerical simulations of very interesting and difficult real problems (“Earthquakes

at the planetary scale”, “Molecular structure of the living”, and “Advanced computations in

meteorology and climatology”), are indeed of practical importance, and the results of simulations,

which were very attractively presented, gave a favourable impression – but again without any

reference to the nature of the selected model and its relation with the starting real simulated

problem! It seems to me that Pironneau was not entirely satisfied by the lack of information

concerning the process of fluid dynamics modelling in the above-mentioned simulations. Eventu-

ally, he was asked the question – one which requires serious thought – “How sure are you of your

results? All these numerical simulations will cost money.”
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way to find out what should be the various stretchings. I thought that this might be attractive

to physicists, because it is a quasi-systematic way of comparing the respective weights of

various terms in the equations, which measure the physical importance of phenomena they

are likely to describe.

A final comment concerns a quite curious recent aspect of the modelling for

hydro-aerodynamical problems conceived by applied mathematicians.

The latter to take into consideration – initially a very simple single equation or

two coupled simple equations – shows various numerical results (elegant and

illuminating) corresponding to a fluid flow over, for example, a simple hollow or

a rectangular obstacle. Then, in these single or coupled equations the numerician

adds, step by step, various terms which simulate (very naively) the influence of the

viscosity, compressibility, gravity or non-linearity, and possibly other physical

effects, numerically computing the corresponding fluid flows. As the final result

we have a family of fluid flows which possibly mimic a series of realistic flows.

Again, the question is: “What is the scientific interest of such numerical

investigations in relation to the simulation of realistic fluid flows?”

6.2 The Mathematical Nature of NS–F Equations:

A Fluid-Dynamical Point of View

Rigorous proof of the existence, uniqueness, smoothness, and stability of solutions

of problems in fluid dynamics are needed to give meaning to the equations (NS–F

equations) and corresponding initial and boundary conditions that govern these

problems.

Their formulation (see Sects. 2.3 and 2.4) shows conclusively that the NS–F sys-

tem of equations is a closed system, and that with the assigned initial and boundary

conditions they produce certainty, relative to the well-posedness of problems in fluid

dynamics, that these equations are a numerical solution. Therefore, simulation via

the RAM Approach is required – indeed, rigorously, as for any arbitrary reasonable

choice of a class of admissible initial data, a problem in fluid dynamics must be well-

posed (in the Hadamard sense). This means ([47], Chap. 8) that:

(a) The problem has a solution for any initial data in this class.

(b) The solution is unique for any initial conditions.

(c) The solution depends continuously on the initial data.

Obviously, this “well-posedness” is strongly linked with the mathematical

nature of NS–F equations as a partial differential system of equations:

Roughly speaking, we can expect that, in particular, the equations for a viscous

fluid flow (in a simple, incompressible, case of the Navier equations) are parabolic,

and that the equations for an inviscid, non-viscous, adiabatic fluid flow (the Euler

equations) are hyperbolic.

However, a more detailed analysis of the structure of full NS–F unsteady

equations shows that this above conclusion is not quite correct (at least for a
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compressible, viscous, and heat-conducting (NS–F) fluid flow). Indeed, the equa-

tion of continuity with respect to density r is always, for a compressible fluid flow,

hyperbolic even for non-trivial viscosity or heat conduction!

Thus, to be more exact, we can say that a system of full unsteady

Navier–Stokes–Fourier equations is hyperbolic–parabolic or incompletely para-

bolic, according to the definitions suggested in [59] and [62] in the study of the

mathematical properties of these equations. Concerning, more precisely, the linear

incompletely parabolic systems see the paper by Gustafsson and Sundstr€om [67]. In

the linear case (when the coefficients of viscosity and heat conduction are constant)

the NS–F system becomes:

@U=@tþ Ak@U=@xk ¼ Ljk @2U=@xj@xk; (6.1)

where Ak et Ljk are constant square matrices, and U ¼ (u1, u2, u3, T, r).
If we consider the following decomposition for U:

U ¼ u1; u2; u3;T; 0ð Þ þ ð0; 0; 0; 0; rÞ ¼ UI þ UII (6.2a)

then in a such case we write, in place of (6.1), a system of two coupled equations:

@UI=@tþ Ak;I;I @UI=@xkþ Ak;I;II @UII=@xk

¼ Ljk;I;I @
2UI=@xj@xk;

(6.2b)

@UII=@t þ Ak;II;I@UI=@xkþAk;II;II @UII=@xk ¼ 0: (6.2c)

That is just the system (6.2b, c) of two coupled equations for UI and UII, which is

called incompletely parabolic if, on the one hand,

@UI=@t ¼ Ljk ;I;I @
2UI=@xj@xk (6.3a)

is parabolic, and if, on the other hand,

@UII=@t þ Ak;II;II @UII=@xk ¼ 0 (6.3b)

is hyperbolic.

In two of my survey papers – (1999) [79] and (2001) [29] – the reader can find

various theoretical results concerning the NS–F system of equations. In addition, in

two books referring to non-viscous (2002 [37], Chap. 9) and viscous (2004 [47],

Chaps. 8–10) fluid flows, the reader can also find a fluid-dynamical point of view

relative to the well-posedness, existence, uniqueness, stability, turbulence, and

strange attractors for NS–F equations.

Concerning, first, the rigorous mathematical results for the Navier incompress-

ible system of equations, see, in Temam (2000) [83], pp. 1049–1106, a discussion

of the development of Navier–Stokes (incompressible, in fact, Navier) equations in
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the second half of the twentieth century, initiated by Leray in 1933 [84]. Leray’s

first rigorous work, published in 1931, was only in fluid dynamics, and concerns

only the Navier equations. He proved the basic existence and uniqueness results

[84] for the Navier, viscous, and incompressible equations, and Temam, in [110],

has expressed the view that: “No further significant rigorous work on Navier

equations was done until that of Hopf in 1951.”

The interested reader can find in “No. spécial de la Gazette des Mathématiciens”

(2000) – a tribute to Jean Leray (1906–1998) – various papers by some well-known

mathematicians and, in particular, the paper by Chemin [111], pp. 70–82, which

presents a remarkable summary via an illuminating analysis of chapters of the well-

known Leray paper of 1934 [84]: “Sur le mouvement d’un liquide visqueux

emplissant l’espace”, published in Acta Mathematika.
This magnificent paper by Leray was the principal stimulation (with two com-

panion papers published in Journ. de math. pures et appl., vol. 12, 1–82, 1933, and
vol. 13, 331–418, 1934) for several of his own papers on the uniqueness, stability,

and regularity of viscous and incompressible fluid motions, and indeed was the

inspiration for a vast modern literature on the subject.

A particular place in the rigorous mathematical theory of viscous

imcompressible fluid flows is also undoubtedly deserved by Ol’ga Aleksandrovna

Ladyzhenskaya (see, for instance, the paper devoted to her on her eightieth birth-

day, in Russian Math. Survey, vol. 58(2), 395–425, 2003) who, with the numerous

papers and books published on the Navier equations problem during 1957–2002,

has played a particularly important role, having a considerable influence on the

development of the mathematical theory of Navier problems.

A typical “à la Ladyzhenskaya” result is the following major theorem: “Suppose

that V is a generalized solution of the Navier unsteady problem:

Vt � nDV þ V:rV þrp ¼ f ; divV ¼ 0;V t¼0;Vj j@O� O;Tð Þ¼0 (6.4)

in QT ¼ O � [O, T] that belongs to the class Lm,n(QT) with m, s satisfying one of

the conditions:

n=mð Þ þ 2=sð Þ ¼ 1;m 2 ðn;/�; s 2 ½2; / Þ (6.5a)

and

m ¼ n þ e; e>0; s ¼ / : (6.5b)

If f 2 L2ðQTÞ;V� 2 HðOÞ � ðW12Þ� and O is a bounded domain in ℜ3 with

@O � C2, then V belongs to the space W22(QT), the corresponding pressure p is

such that rp 2 L2ðQTÞ, and (V, p) satisfy all the conditions of problem (6.4).”

Thus, Ladyzhenskaya’s above theorem guarantees that the solution V has

generalized derivatives Vx, Vxx, and Vt in L2(QT), and that V and the corresponding

pressure, p, satisfy the Navier system for almost all x; tð Þ 2 QT:
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It is clear that under the given conditions on f and V� the solution cannot be

smoother. However, if the smoothness of f and V� increases, then V and p also

become smoother, as already follows from the results of the linear theory described

by Ladyzhenskaya (1961) [112] (English translation). Several mathematicians have

essentially repeated this theorem – but unfortunately without any reference to

Ladyzhenskaya!

The significance of Ladyzhenskaya’s theorem is indisputable. It provides a good

guideline for those who wish to try themselves in solving the “sixth problem of the

millennium”, announced by the Clay Mathematics Institute of Cambridge.3

However that may be today, despite tremendous progress in many mathematical

aspects of fluid flow theory since Leray’s pioneering thesis/paper of 1933, it is

necessary to be just a little more modest if we have in mind the (large) number of

problems that still remain open! For instance, we have not determined, until now (in

the framework of Navier problem), whether a solution that is initially smooth can

develop a singularity at some (finite) later time, or whether singularities are a

fundamental feature of turbulence.

In spite of the fact that Navier viscous and incompressible equations are a very

simplified form of full unsteady NS–F equations, they are useful because they

describe the physics of many things of academic and economic interest. They

may be used to model the weather, ocean currents, water-flow in a pipe, air-flow

around a wing, the motions of stars in a galaxy, and so on. Despite their simplified

(relative to NS–F equations for real compressible and heat-conducting fluid flow)

forms, they help with the design of aircraft and cars, the study of blood flow,

the design of power stations, the analysis of pollution, and many other things.

Coupled with Maxwell’s equations, they can be used to model and study

magnetohydrodynamics.

The Navier equations are also of great interest in a purely mathematical sense.

Somewhat surprisingly, given their wide range of practical uses, mathematicians

have not yet proven that (what are called Navier existence and smoothness

problems) “in three dimensions solutions always exist (existence), or that if they

do exist, then they do not contain any singularity (smoothness).”

The Clay Mathematics Institute has called this one of the seven most important

open problems in mathematics, and has offered a prize of $1 million for a solution

or a counter-example. The official problem description is provided by Ch. L.

Fefferman on the website at http://www.Claymath.org/millennium/.

As far as the numerical solution of the unsteady incompressible Navier–Stokes

(Navier) equations are concerned, Quartapelle [113] presents a unitary view of the

3 In Russian Mathematical Surveys, vol. 58(2) (2003), pp. 251–86, there is a paper by O. A.

Ladyzhenskaya – “The sixth problem of the millennium: Navier–Stokes equations, existence, and

smoothness” – which presents the main results concerning solubility of the basic initial-boundary

value problem and the Cauchy problem for the three-dimensional non-stationary Navier (incom-

pressible) equations, together with a list of what to prove in order to solve the sixth problem of the

“seven problems of the millennium” proposed on the Internet, at http://www.Claymath.org/.
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methods which reduce the equations for viscous incompressible flows to a system

of second-order equations of parabolic and elliptic type. Concerning the rigorous

mathematical results for Navier–Stokes compressible equations for viscous and

heat-conducting fluid flows (denoted, in this book, as “Navier–Stokes–Fourier”,

NS–F, equations), the mathematically rigorous theory is actually still in its infancy.

In our (2004) [47], Chap. 8, the reader can find more recent references concerning

the published papers and books devoted to NS–F equations. In 2004, two books

were published by Feireisl [114] (dynamics of viscous compressible fluids) and

Novotny and Straskraba [115] (introduction to the mathematical theory of com-

pressible flow).

Actually, it is firmly established that we are able to prove an existence theorem

for compressible viscous (but baroptropic N–S equations) fluid flows, which is

global in time, without assuming smallness of the data, although uniqueness is an

open problem (the solution is “weak”). On the other hand, global existence of a

“strong” (each term in N–S equations exists as an element of Hilbert space, at least)

and regular solution is proven, but assuming that the data are small enough and that

in such a case the uniqueness hold.

6.3 Formulation of Dimensionless Equations for Applications

of the RAM Approach

The non-dimensional approach of NS–F equations, realized in Chap. 3, is a first key

step in our Mathematics for a possible application of the RAM Approach, thanks to

the presence – in these dimensionless equations and conditions of the starting

problem, at least – of a small (or high) parameter.

If this non-dimensionalization does not often an easy approach, the judicious

formulation of dimensionless equations is a very decisive step for the application

of the RAM Approach. Below I present a few examples of such distinctive

formulations for some basic fluid flow problems.

6.3.1 Turbomachinery Fluid Flows

First, one cannot escape the fact that in a turbomachine the blades of a row are

usually very closely spaced. As a consequence, as basic small parameter e, we
choose the reciprocal of the number,

N ¼ ð2p=eÞ>>1; (6.6)

of blades encountered along the periphery of a row. This small parameter is a

geometrical one, and does not appear in fluid dynamics equations. In a very simple
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case, for a 3D steady incompressible non-viscous fluid flow through a row in the

turbomachine (an axial compressor, assuming that the row is localized between two

infinitely long coaxial cylinders).

Obviously, when far upstream of the row, velocity is uniform and constant and

we have irrotationality, and the basic equations are very simple. For the velocity

vector u(u, v, w), we write:

r:u ¼ 0; (6.7)

and

r ^ u ¼ 0; (6.8)

where

r ¼ ð@=@rÞer þ 1=rð Þð@=@yÞey þ ð@=@zÞez; (6.9)

in a system of (r, y, z) coordinates, such that the axis z is the axis of the

turbomachine. The row is between r ¼ R� and r ¼ r�. If we want to use the

smallness of the e ¼ 2p/N, in an asymptotic theory, obviously it is necessary to

make a change of variables, such that e<<1 appears in the above two Eqs 6.7 and

6.8. But, at once, we observe that Eq. 6.7 is integrated if we write for the velocity

vector u:

u ¼ rðewÞ ^ rc with u:rw ¼ 0 and u:rc ¼ 0; (6.10)

and the two stream functions w and c are of order one (the output in a channel

between two consecutives blades being of the order e).
We assume that the surfaces

y ¼ Y t; r; zð Þ (6.11)

are the blade skeletons in a row, when e # 0, and outside of the row are material

surfaces that are the extensions of blade skeletons.

By

D r; zð Þ; (6.12)

we denote the breadth of the channel from blade to blade, with D r; zð Þ � 1 outside

the row. In the row, between two consecutives blades, we can write:

y = Y r; zð Þ þ ðe=2ÞD r; zð Þ; (6.13a)

and

y = Y r; zð Þ � ðe=2ÞD r; zð Þ: (6.13b)
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As a consequence of the above, with an error (at most) O(e2), we have the

possibility, for e<<1, to write in the blade-to-blade channel the following change

for y:

y � Y t; r; zð Þ þ eD r; zð Þw ) ew � ½y�Y t; r; zð Þ�=D r; zð Þ (6.14)

This relation allows us to write, in place of (6.10), for the velocity vector

u(u, v, w) :

u � ðr½ y�Y t; r; zð Þ�=Dðr; zÞÞ ^ r cðr; Y; zÞ; (6.15)

the equation r:u ¼ 0, and the slip condition, for a non-viscous fluid on the blade,

being both automatically satisfied with (6.15).

Now, if we make the change from ðr; y; zÞ toðr;Y t; r; zð Þ þ eD r; zð Þw; zÞ,
then:

uðr; y; zÞ ) u	ðr; w; z; eÞ; cðr; y; zÞ ) c	ðr; w; z; eÞ; (6.16a)

and

@c=@r ¼ @c	=@r � ð1=DÞð@c	=@wÞ ½ð1=eÞ@Y/@rþ w@D=@r�; (6.16b)

@c=@z¼ @c	=@z� ð1=DÞð@c	=@wÞ½ð1=eÞ@Y=@z + w@D=@z�; (6.16c)

@c=@y ¼ ð1=eDÞð@c	=@wÞ (6.16d)

and also, from (6.15):

u	 ¼ ð1=rDÞ@c	=@z; w	 ¼ �ð1=rDÞ@c	=@r (6.17a,b)

v	 ¼ ru	½@Y=@r þ ew@D=@r þ rw	� ½@Y=@zþ ew@D=@z�: (6.17c)

Finally, it is necessary to use the equation (6.8), r ^ u	 ¼ 0, for a derivation of

well-adapted non-dimensional starting equations for our RAM Approach to turbo-

machinery flow.

Taking into account the above relations (we observe that r v	 ¼ G	 is the

circulation), we derive, in place of (6.8), as a starting non-dimensional system of

equations (unless any simplification, for an application, in Sect. 7.1), for u*, G* and
w*, the following system of non-dimensional equations (where the small parameter

e is present):

ð1=rDÞ½@w	=@wþ ð@Y=@zÞ@G	=@w�
¼ ðe=rÞ@G	=@z � ðe=rÞðw=DÞð@D=@zÞ@G	=@w

(6.18a)
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ð1=rDÞ½@u	=@wþ ð@Y=@rÞ@G	=@w�
¼ ðe=rÞ@G	=@r� ðe=rÞðw=DÞð@D=@rÞ@G	=@w

(6.18b)

ð1=DÞ½ð@Y=@zÞ@u	=@w� ð@Y=@rÞ@w	=@w�
¼ eð@u	=@z� @w	=@rÞ

þ eðw=DÞ½ð@D=@rÞ@w	=@w� ð@D=@zÞ@u	=@w�
(6.18c)

(Concerning my work with Guiraud, related to various facets of an asymptotic

theory for the turbomachinery fluid flow, see some commentaries in [11], pp. 16

and 17.)

In Sect. 7.1 the above system of Eqs. 6.18a–c is analyzed in the case when e
tends to zero, and a model problem is derived for the through-flow model.

6.3.2 The G–Z “Rolled-up Vortex Sheet” Theory: Vortex Sheets
and Concentrated Vorticity

Vortex sheets are one of the basic ingredients of non-viscous fluid flows, which can

be viewed as vorticity concentrated on a core of small but finite diameter. They can

be considered as two-dimensional surfaces of zero thickness carrying a truly

concentrated vorticity.

We clearly see that as far as a compressible fluid is concerned, concentrated

vorticity is not the entire matter. We should add a concept of concentrated

baroclinity vector B ¼ rS, where S is entropy, by considering that along any

surface orthogonal to B, variation of p and r, at constant time, are related by a

barotropic relation. Then, by writing

B ¼ BS þ dSj½S�jn ¼ BS þ BC (6.19a)

we exhibit a concentrated baroclinicity BC (dSis the Dirac distribution uniformly

spread over S and |[S]| the jump in S when S is crossed in the sense of unit normal

n) which is orthogonal to the concentrated vorticity, and we may state that

j½1=r�j ¼ ð@ �T=@pÞj½S�j (6.19b)

where ∂Ť/∂p is calculated at p, and Š ¼ a Sþ + (1 � a) S� with 0< a<1.

The situation that we want to describe is one in which there are very many vortex

sheets closely spaced. We may mention two flow configurations in which this

occurs. The first one is the core of a highly rolled vortex sheet, while the second

concerns the set of trailing vortex sheets which are formed at the trailing edges of

the blades in a row of an axial turbomachine.
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We assume that there is a small parameter built into the flow, which is the ratio

of the spacing between two consecutive sheets to the width of the region covered by

the sheets. We set C for this parameter, and following our G-Z paper (1977) [116]

we call it a “closeness parameter”.

The purpose of the RAM Approach, in this situation, is to derive a model which

avoids the stiffness of the problem, for a computation of the flow with a numerical

code capable of capturing many sheets.

The problem is one of multiple scaling, in the terminology of asymptotics.

A version of the multiple-scale technique (see Sect. 6.4.4) especially suited for this

kind of problem was devised with Guiraud with the purpose of describing rolled

vortex sheets, but its scope is more general, as may be seen from the analysis which

follows.

We start from the assumption that the velocity u, pressure p, density r, and
entropy S – all suitably non-dimensional – are functions of time t, position x, and of

one fast variable C�1 w t; xð Þ, withrw approximately orthogonal to the sheets. We

use the notation:

U ¼ ðu; p; r; SÞT (6.20a)

and set

Uðt; xÞ ¼ U	ðt; x;C�1w t; xð ÞÞ (6.20b)

There are two ingredients in the technique used. The first one is a formal

expansion,

U	 ¼ U	
0 þ CU	

1 þ ::: (6.20c)

while the second one is the obvious observation that setting

C�1 ¼ @w=@t ¼ y0 þ C y1 þ ::: (6.21a)

k ¼ rw ¼ k0 þ Ck1 þ ::: (6.21b)

we have

@U=@t ¼ C�1 yð@U=@wÞ þ @U	=@t (6.22a)

rU ¼ C�1ð@U=@wÞkþrU	 (6.22b)

Substituting the above relations (6.20c)–(6.22b) into the equations of motion for a

compressible non-viscous fluid, we obtain, at zeroth order, a set of equations from

which we conclude that, provided w ¼ const is not a Mach wave, we must have that

y0 þ k0:u
	
0 does not depend on w:
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On the other hand, by specifying that w is constant on the vortex sheets we

obtain

y0 þ k0:u
	
0 ¼ 0 (6.23a)

and as a consequence

k0:@u
	
0=@w ¼ @p	0=@w (6.23b)

Then, for the vorticity we obtain

v	 ¼ C�1k ^ ð@u	=@wÞ þ r ^ u	

so that if we ensure that v* is O(1), then, as was the case in the study of rolled-up

vortex sheets, we have the relation:

k0 ^ @u	0=@w
� � ¼ 0

which in turn enforces that (for density and specific entropy):

@r	0=@w ¼ 0 and @S	0=@ w ¼ 0 (6.23c)

Now, the model of rolled vortex sheets is recovered by assuming that U* is 2p-
periodic with respect to w. Then, by writing the equations of motion and for

vorticity at order one, it may be concluded that V ¼ k0 ∧u*1 and S ¼ S*1 are

solutions of the following two equations:

@V=@t þ u	0:rV� V:ru	0 þ ðr:u	0ÞV
þ k0: r ^ u	0

� �� �
=jk0j2

n o
k0 ^ Vð Þ

þ ð1=gM2Þf½k0 ^rp	0�=g r	0gS ¼ 0

(6.24a)

@S=@t þ u	0:rSþ f½k0 ^rS	0�=jk0j2g:V ¼ 0 (6.24b)

The important point is that w does not occur in (6.24a, b). They are a set of

ordinary differential equations along the trajectories of the velocity field at zeroth

order approximation u*0. Via (6.24a, b), a number of configurations are allowed

with this description.

In our paper with Guiraud (1982) [117], two of them are presented. The first is an

extension of the Kaden problem, and the second concerns Mangler and Weber’s

solution.

We observe that the closeness parameter C is related – often, but not always – to

by C ¼ s2, to a ‘slenderness’ parameter (s) with respect to which u*0 may be

expanded. However, we emphasize here that obtaining a closed form solution should

not be considered as the ultimate goal of the analysis. In our opinion, the analysis
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should rather be considered as a model allowing us to generate a flow with closely

spaced vortex sheets, rather than another one which does not involve such a feature!

Again concerning my work with Guiraud relating to various facets of an

asymptotics of rolled vortex sheets, see some commentaries in [11], pp. 18–19.

6.3.3 The G–Z Asymptotic Approach to Non-linear
Hydrodynamic Stability

The problem of hydrodynamic stability may be posed in the following terms.

Let u0 be a particular steady (independent of time t) solution of Navier incom-

pressible and viscous equations, written as:

Sdu=dt ¼ F uð ÞÞ and such that F u0ð Þ ¼ 0 (6.25a)

If u ¼ u0 + v, in another solution, then the problem of the stability of the

solution u0 is strongly related with: whether or not v remains small all the time,

provided that it is small initially?

Obviously, the stability has a direct relation with the third condition, (c), in

Hadamard well-posedness (mentioned at the beginning of Sect. 6.2). For the

investigation of such a stability, we consider the following evolution equation for v:

dv=dt ¼ L u0ð Þv þ Q v; vð Þ; with u ¼ u0 þ v (6.25b)

where L(u0) is a linear operator, depending on u0, and Q(v, v) is a quadratic

operator, such that Qðav; avÞ ¼ a2Q v; vð Þ; a ¼ const. But for any v and w:

Q v þ w; v þ wð Þ ¼ Q v; vð Þ þ M v; wð Þ þ Q w; wð Þ

where M(v, w) is bilinear and is a function of two variables.

We observe that if we take the inner product < .; .> of (6.25b) with v, we derive

from (6.25b):

@ðjvj2=2Þ=@t ¼ < L u0ð Þv; v> (6.26a)

because < Q v; vð Þ; v> � 0, in the case of the Navier problem.

If we now let

g ¼ inff< L u0ð Þv; v>= jvj2=2Þ
h i

g; subject to the

constraint; div v ¼ 0 and v ¼ 0 on @D
(6.26b)
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This above variational problem (6.26b) is similar to the classical variational

characterization of the first eigenvalue of the Laplacian. Consequently, from

(6.26a), we can write:

@ðjvj2=2Þ=@tþ g jvj2 
 0

Integrating this inequality, we obtain:

jv tð Þj 
 jvð0Þjexpð�2gtÞ; for g >0

u0 is unconditionally stable

6.3.3.1 Confined Perturbations and the Landau–Stuart Equation

We assume that u is defined on a bounded spacial domain and, as a consequence,

L(u0) has (one may prove) a discrete spectrum; that is, there exists an infinite

sequence of eigenvalues, in fact complex:sn, n ¼ 1, 2,. . . with associated

eigenfunctions vn, such that

L u0ð Þvn ¼ sn; and the equation L u0ð Þv� s ¼ f (6.27)

with a given f, is uniquely solvable provided s is distinct from all sn.
Let sn ¼ ln þ imn, and we are interested here mainly by the unstable case but

restrict ourselves to “weak instability”. For this, we partition the indexes n into two

parts N and A (according to Guiraud (1980) [118]):

n 2 N ) ln ¼ OðeqÞ and n 2 A ) ln<0 (6.28)

where e is a small parameter and q an exponent that is introduced here for later

convenience.

We must comment on the partition (6.28), which we have introduced as working

hypothesis to be checked in each particular case.

The flow u0 depends on parameters (for example, a Reynolds number Re),

and when Re < Rec, the flow configuration is stable, whereas it is unstable for

Re > Rec.

By continuity, this corresponds to the fact that when Re crosses Rec increasing,

some eigenvalues sn, those corresponding to n 2 N, cross the imaginary axis from

left to right.

When Re is close to Rec on either side, the

ln corresponding to indexes n 2 N are small

and this is expressed through the first relation of (6.28). The most frequent are those

when N has just one element with sn real or two elements with a complex

conjugate of sn, sn	.
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We now start from a normal-mode decomposition, and according to above

partition (6.28),

v ¼ Sn2NCnvn þ Sn2ACnvn ¼ X þ Y (6.29a)

and we set, X ¼ P*v, Y ¼ P**v, with P* and P** two projection operators. Then,

from (6.28), we see that

n 2 N ) sn ¼ eq ln0 þ i�n (6.29b)

and taking (6.29a) into account, we obtain the following system of two “bifurca-

tion-type” equations for X and Y in place of non-linear evolution equation (6.25b):

dX=dt ¼ eqL1X þ L2X þ P	Q X þ Y; X þ Yð Þ (6.30a)

dY=dt ¼ LAY þ P		Q X þ Y; X þ Yð Þ: (6.30b)

It may be stated that

eqL1corresponds to eqln0

L2 to i�n

both for n 2 N, and

LAcorresponds to sn

for n 2 A.

Below, we shall concentrate only on the case when

P	Q X; Xð Þ ¼ 0

and in such a case, when we ignore the transient unsteady-state phase t ¼ O(1), to

concentrate on the non-linear phase, for long time, and use a multiple-scale

technique with two times, t and

t ¼ eqt; X ¼ er X	 and Y ¼ e2r Y	: (6.31)

The adequate choice being q ¼ 2 and r ¼ 1, from (6.30a, b) we obtain for X*

and Y* the following system (with two times):

@X	=@t �L2X
	 ¼ �e2½@X	=@t�L1X

	 � P	M X	; Y	ð Þ� þ Oðe3Þ (6.32a)

@Y	=@t� LAY
	 ¼ P		Q X	; X	ð Þ þ OðeÞ (6.32b)
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with

X	 ¼ X	0 þ eX	
1 þ e2X	

2 þ :::; Y	 ¼ Y	
0 þ eY	

1 þ ::: (6.33)

we obtain from (6.32a, b) the following leading-order equations:

@X	
0=@t� L2X

	
0 ¼ 0; @X	

1=@t� L2X
	
1 ¼ 0; (6.34a)

@Y	
0=@t� LAY

	
0 ¼ P		Q X	

0;X
	
0

� �
(6.34b)

@X	
2=@t� L2X

	
2 ¼ �@X	

0=@tþ L1X
	
0 � P	M X	

0; Y	
0

� �
(6.34c)

The solution for X*0 is written in the following form :

X	
0 ¼ Sn2NX	

0;nðtÞexpði�ntÞ

and for Y*0 we obtain as a solution :

Y	
0 ¼ Sp2NSq2NY	

0;pqðtÞexp½ið�p þ �qÞt�

where Y*0, pq(t) is a function of X*0, p(t) and X*0, q(t) and LA.

It is now necessary to consider Eq. 6.34c for X*2, seeing that we want to

determine the dependence of X*0, n(t) relative to the long time t. With the above

relations, in place of (6.34c), we have the following equation for X*2:

@X	
2=@t� L2X

	
2 ¼ �Sn2N½@X	

0;n =@t� L1X
	
0;n� exp iZntð Þ

� Sp2NSq2NSr2NP	M X	
0;p;Y

	
0;qr

� �
exp½ið�p þ �q þ �rÞt�

¼ 0 (6.35)

In the rather complicated Eq. 6.35, according to themultiple-scale technique (see,

for instance, Sect. 6.4), it is necessary to eliminate secular terms in solution for X*2,

if we want the expansion (6.33) to be uniformly valid with respect to t and also t,
ignoring the transition phase. The result of this elimination is the system of ordinary

differential Eq. 6.36, which determines the coefficients X*0,n(t):

dX	
0;n=dt� L1X

	
0;n ¼ SðRnÞP

	M X	
0;n;Y

	
0;qr

� �
(6.36)

In (6.36), SðRnÞ represents the sum over resonant (p, q, r) triplets, where Rn is a

resonance condition:

Rn ) �p þ �q þ �r ¼ �n

The above derived Eq. 6.36 is, in fact, very similar to an à la Landau equation.
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When N contains only two elements, the corresponding sn being complex

conjugates, X* is well determined by a single complex amplitude SðtÞ, which
must be a solution of the Landau–Stuart equation:

dSðtÞ=dt� sS� KS Sj j3 ¼ 0: (6.37)

6.3.3.2 Unconfined Perturbations and the DH–S Evolutionary Amplitude

Equation

We observe that when dealing with modes spread over a continuum, the extension

of the Stewartson and Stuart (1971) [119] technique to the whole of temporal

evolution is not at all obvious, and the difficulty has its root in the fact that, to

our knowledge, no standard mathematically rigorous technique exits for dealing

with bifurcation from a continuous spectrum!

In (1978) [120], Guiraud and Zeytounian succeeded in filling this gap, in a

purely formal way, for continuously spread Tollmien–Schlichting (T–S) waves that

exhibit close similarity to the technique used above for discrete modes. For exam-

ple, in [120] we have, with Guiraud, elucidated that: “The process by which, from a

fairly arbitrary initial perturbation, the wave packet is first organized and then

evolves, is related to four time scales of evolution.”

The first one, of O(1) duration, is devoted to the decay of all but the amplified

modes, and the second phase, of much longer duration, Oð1=eÞ, is a passive one

with respect to the organization of the amplitude of the perturbation. The wave

packet is dominated by the most amplified of the T-S wave, and is convected with

the group velocity associated with the packet and the amplitude which is Oðe4Þ,
practically unchanged. During the third phase of duration Oð1=e2Þ the amplitude is

modulated according to an exponential law which predicted by linear theory.

Finally, it is only during the last period of duration Oð Lnej j=e2Þ that non-linear

effects come into play, leading eventually to bursting, and to the well-known

envelope, evolutionary, equation of Davey, Hocking, and Stewarston (DH–S),

discovered in 1974. Thus we derive, for a leading-order amplitude Að tÞ, the
following DH–S equation:

@A=@t � gA� 1=2ð Þ½a@2A=@x2 + b@2A=@�2� ¼ FðAÞ (6.38a)

with

FðAÞ ¼ k1A Aj j2 þ k2AB; (6.38b)

where k1 and k2 are constants, and B is a function solution of the equation:

@2B=@x2 þ @2B=@�2¼@2ð Aj j2Þ=@�2: (6.38c)
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In our (2004) [47], Chap. 9, the reader can find some aspects of the stability

theory of viscous fluid flow and, in particular, a detailed presentation of our (with

Guiraud) weakly asymptotic non-linear stability theory of Navier incompressible

fluid flow.

In De Coninck, Guiraud, and Zeytounian (1983) [121], a kind of unified theory is

presented in which the purely discrete and the continuous cases are treated by two

facets of a somewhat unique technique. Our main goal is the derivation of the

equations that rule the evolution of the amplitude of the most rapidly amplified

modes of linear theory.

A slightly different asymptotic modelling is applied, in [121], to convective

Rayleigh–Bénard instability. The distinguishing feature of this type of instability,

with respect to asymptotic modelling, is that the area of wave vectors for amplified

modes is within a circular annulus of small thickness. Our results show that instead

of finding a unique packet of waves one finds six of them organized around the

vertices of a hexagon which may interact quadratically with each other. As a matter

of fact, one may superpose an infinity of such hexagonal figures which may evolve,

to lowest order, independently.

6.3.4 A Local Atmospheric Thermal Problem: A Triple-Deck
Viewpoint

In the framework of an atmospheric thermal problem, on a flat ground surface,

z0 ¼ 0, we have (in a 2D steady case) as a typical boundary condition:

T’=T’	ð0Þ ¼ 1þ t�Y x’=l�ð Þ; x’=l�j j 
 1 (6.39a)

with a temperature parameter

t� ¼ ðDT0Þ�=T’	ð0Þ (6.39b)

which is assumed a small <<1ð Þ parameter, where ðDT’Þ� is a temperature rate for

the given function Y x’=l�ð Þ.
In (6.39a), T*(0) is the temperature (at z0* ¼ 0) in the hydrostatic reference state

(dependent only on the vertical coordinate z0*), and l� is the local horizontal length
scale.

Far upstream, when x’ !/ and Y � 0, we assume that we have a basic

undisturbed flow which is characterized by an Ekman layer profile4:

UEkðX; z=k�Þ ¼ U’G Xð Þf1� expð�z=k�Þcosð�z=k�Þg; (6.40a)

4 In Section 9.2, in the framework of the “quasi-hydrostatic dissipative model”, the reader can find

the derivation of the “geostrophic relation” and also “Ackerblom’s model problem”.
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where X ¼ x0/L� and z ¼ z0/l�, with

k� ¼ 1=l�ð Þ½O�sinf�=n���1=2 � Rel�=2Rol�½ � (6.40b)

the local Reynolds and Rossby numbers being based on the local horizontal length

scale: Rel� ¼ U� l�/n� and Rol� ¼ U�=l�ð Þ=O�sinf�.
If in the local thermal problem we non-dimensionalize the horizontal and vertical

coordinates with l� – for exampleY x0=l�ð Þ ¼ Y xÞ �ð then in the dimensionless local

problem there also appears a local Boussinesq number, Bol� ¼ g l�/RT0*(0), and if l� �
103m; then Bol� << 1, and in such a case we also have Rel�>> 2Rol�>>1; k�

being, below, our main small parameter (see the local Eqs. 6.42a–e).

Therefore, in this case we can assume:

2Rol� ¼ Rel�½ ��1=a ) k� ¼ Rel�½ ��1=m
(6.41a)

with (0 <a < 1)

m ¼ 2� að Þ= 1� að Þ½ �>2 (6.41b)

As an example, if U� � 10m=sec; n� � 5m2=sec, and f � ¼ 2 O�sinf� �
10�41=sec, the considered case, l� � 103m, leads to m ¼ 5. For such a case, we

have the possibility of using (M is the mach number):

l� � U�=gð Þ½RT0	ð0Þ=g �1=2 ) Bol�=M ¼ B	 � 1 (6.41c)

and the Boussinesq approximation is correct.

Curiously, the value m ¼ 5 is the same as the one used by Smith and co-workers

for the flow over an isolated 2D short hump in the boundary layer.

The Boussinesq stratified fluid flow is also used by Sykes (1978) as a starting

equations for the application of a triple-deck theory. When m ¼ 5 we can show that

a typical triple-deck case exists:

l�=L� � ReL�ð Þ�3=8
where ReL� ¼ L�U�=n� (6.41d)

but in our LNP (1987) [17], pp. 211–20, the reader can find a more general

approach. Also in [19], Sect. 31, there are various references concerning the

application of the triple-deck theory in various meteo and environmental problems.

Now, according to the Boussinesq approximation, taking into account the above

relations, we have the possibility of formulating the following dimensionless local

steady 2D thermal problem, for the local velocity components (u, w), and thermo-

dynamic perturbations y and p:

u@u=@x þ w@u=@z þ 1=gð Þ@p=@x ¼ ko5 @2u=@x2 þ @2u=@z2
� �

(6.42a)

u@w=@xþ w@w=@zþ 1=gð Þ@ p=@z � 1=gð ÞB	 y

¼ ko5ð@2u=@x2 þ @2u=@z2Þ (6.42b)
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@u=@xþ @w=@z ¼ 0 (6.42c)

u@y=@xþ w@y=@z þ B	Lð0Þ w ¼ 1=Prð Þko5ð@2y=@x2 þ @2y=@z2Þ (6.42d)

o ¼ � y; (6.42e)

when we perform the following limiting process:

t� ! 0 with M ! 0 such that t�=M ¼ t	 � 1 (6.43a)

which gives the possibility of writing a relation for the reference velocity U�:
namely,

U� � ðDTÞ�½gR=T0	ð0Þ�1=2: (6.43b)

For our above local system of Eqs. 6.42a–e as boundary conditions, we first write

the usual non-slip and temperature conditions:

z ¼ 0 : u ¼ w ¼ 0; y ¼ t	Y xð Þ; 0< x <1 (6.44a)

because, in dimensionless Eqs. 6.42a–c, according to Boussinesq approximation,

we have :

T’ ¼ T’ z’	ð Þ 1þ My½ � and p’ ¼ p’ z’	ð Þ 1þM2 p
� �

:

A second condition for the local problem is an interaction condition between the

local thermal spot and the Ekman atmospheric layer (see (6.40a, b)) far upstream:

x ! � /: u ! 1� expð�z=k�Þcosð�z=k�Þ ¼ U/ðz=k�Þ (6.44b)

w ¼ p ¼ y ! 0 (6.44c)

and we observe also that:

if z=k� !/; then u ! 1; for x ! � / (6.44d)

and

if z=ko ! 0; then u � z=k�; for x ! � / (6.44e)

A detailed account the triple-deck theory is included in our (2002) [26], Chap. 12.

In Sect. 6.4.6 we return to the above formulated problem –(6.42a)–(6.42e), with

(6.44a)–(6.44e) – in the framework of the triple deck theory.
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6.3.5 Miscellanea

We now enumerate a few particular fluid flow problems showing the ubiquitous

nature of the small parameter. A first example, illustrating the occurrence of the

small parameter in the boundary conditions, concerns high-aspect-ratio wings. Here

the small parameter is the inverse of this aspect ratio, and it occurs in the model

when one enters into the details of the no-slip condition on the wing.

A more subtle occurrence concerns the nature of the domain of flow. The best-

known example of such a situation is provided by flow in thin films, and one may

find a quite large variety of applications. Here we mention just one of them: the

coating of thin wires with a film of very viscous melt which freezes before having

time to pour away.

The second type of situation corresponds to the fact that the small parameter is

built into the particular solution one looks for without being directly apparent in the

formulation of the problem.

The third type of situation occurs when the model suited for the physical

setting is substituted by another one. Then, in general, a small parameter occurs

in the relation between the two models (for example, in the theory of fluid–fluid

interfaces with material properties, and also in the so-called “moving contact

line” problem).

The last type of situation that we consider briefly here is when two models are

considered for the same physical phenomenon, and when the coupling between

them involves a small parameter. A very broad field of applications of the idea of

asymptotic modelling may be included under this heading.

An interesting example, it seems to me, has to do with asymptotic and numerical

simulation, when what is really done, in numerical simulation, is the substitution by

a mathematical model involving, say, partial differential equations – one of them

involving only algebraic ones!

The coupling between the two above models is characterized by a small param-

eter which is the ratio of the mesh, in numerical simulations, to the same

characterized length (or time) in the continuous model.

Whenever a numerical method is chosen for some problem, it more or less

involves asymptotic modelling.

6.4 Some Key Steps for the Application of the Basic Postulate

Several key steps which are often used – and are of great value in the RAM

Approach – are linked with the discovery of similarity rules – these being a

necessary task because, in many cases (including in various places in the preceding

chapters) one encounters a double or multiple limiting process, in which two or

more parameters approach their limits simultaneously. Therefore, one must
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frequently specify the relative rates of such an approach, since the order of carrying

out these several limits cannot in general be interchanged.

In unsteady fluid flow problems, when it is necessary to take into account

given initial conditions at initial time (t ¼ 0), often the passage from the full

(assumed exact) starting dimensionless equations with given initial conditions to

a limit system of simplified dimensionless model equations is, in general,

singular near t ¼ 0! This singular nature is mainly expressed by the fact that,

often via the limit passage, some partial derivatives in time (present in the full

starting dimensionless equations) disappear in the derived system of model

equations, and as a consequence, it is not possible to apply all the initial data

at t ¼ 0 – this derived system of equations being invalid (inconsistent) in the

vicinity of t ¼ 0.

We know that in such a case a short-time-scale, local time, rational analysis is

necessary. In the framework of our RAMApproach, the logical and rational way for

solving the associated local/short-time problem is the consideration of an unsteady

adjustment problem, in an initial time layer near t ¼ 0, which allows us to take into

account the (long-time) effect of the transient behaviour.

This unsteady adjustment problem presents the possibility of obtaining an

answer to following question: “What initial conditions can be imposed to a derived

approximate model unsteady problem, and how are these initial conditions related

to the starting given data for full (exact) starting equations?”

The possibility mentioned above, however, is obviously strongly linked with the

validity of the Matched Asymptotic Expansions (MAE) technique, and mainly with

the matching process and the concept of significant degeneracy (created by Eckhaus

(1979) [109]).

This last concept, we know, provides a systematic way of determining what

should be the various stretchings, and is a quasi-systematic way of comparing the

respective weights of various terms in the equations, which measure the physical

importance of phenomena that they are likely to describe – a very efficient tool for a

constructive realization of our above postulate.

In the paper by Feuillebois and Lasek [122], this concept is applied to some

problems in fluid mechanics, and we observe that significant degeneracies are, in

fact, a mathematical formalism for the principle of least degeneracy defined by Van

Dyke (see [14], Sect. 5.5).

It is here worth including some remarks inspired by the Conclusion in Paul

Germain’s (2000) [107]: “Quite often, the modelling of stiff fluid flow problems

may be found by various empirical procedures or by an ad hoc approach. But it

seems obvious to me that the ultimate goal is to find the mathematical key which

explains not only the success, but the validity and consistency of these procedures

in practice during the numerical simulation.”

Actually, it seems me that our RAM Approach is an adequate procedure for such

a full realization. In [26] the reader can find a preliminary, tentative account of our

RAM Approach to various fluid flow phenomena – the present book being a new

accomplishment of this major approach.

6.4 Some Key Steps for the Application of the Basic Postulate 139



6.4.1 Similarity Rules: Small Mach and Large Reynolds
Numbers Flow

We now illustrate the significance of similarity rules in the RAM Approach when at

least two dimensionless parameters, Mach and Reynolds, tend respectively to zero

and infinity:

Re ! 1; M ! 0 (6.45)

In such a case, as in Sect. 4.2, the combined effect of vanishing viscosity and

very low compressibility is related with three possible limiting processes:

Re fixed; M ! 0; and then Re !/ (6.46a)

M fixed; Re !/ ; and then M ! 0 (6.46b)

M ! 0; and Re !/; simultaenously (6.46c)

such that:

1=Re ¼ l�Mb; with b>0 and l� ¼ O 1ð Þ (6.47)

where l� is the similarity parameter (fixed, of the order one), and b a positive

scalar (constant) which must be determined during the RAM Approach.

As in the case of the justification of the Boussinesq equations (4.17a–d), we have

that the third (6.46c) limiting process, with the similarity rule (6.47), is the more

significant, and presents the possibility of taking into account, simultaneously, two

small but important physical effects which, via coupling, lead to a finite effect, of

the order O(1), when

b> 0 is judiciously selected during the matching.

On the other hand, limiting process (6.46c) is the more significant because, first,

the limiting process (6.46a) is rediscovered when l� !/ , and secondly, the

limiting process (6.46b) is rediscovered when l� ! o.
For instance, if we consider the classical Blasius problem for a slightly com-

pressible flow, with a vanishing viscosity, then a consistent RAMApproach leads to

b ¼ 4; and with l� � 1 ) 1=Reð Þ=M4 � 1; (6.48)

and for details, see Godts and Zeytounian (1990) [123].

Here we observe only that the above similarity rule, (6.48), is obtained via

matching, which is linked with a least-degeneracy principle, and presents the

possibility of obtaining a consistent, leading-order solution for the incompressible

Eulerian outer flow.
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6.4.2 The Matching Principle

The essentials of thematching principle are discussed byW.Eckhaus in his “Matching

Principles and Composite Expansions” – a short (31-pages!) preprint (NR.42) issued

by the Department of Mathematics at the University of Utrecht. Here, however, we

do not enter into detailed analysis of this paper – which is undoubtedly very interesting

as a rigorous reasoning of asymptotics for applied mathematicians (see also

Eckhaus (1979) [109]) – and take into account only a few extracted remarks.

In the more recent paper by Eckhaus (1994) [124], the reader can find a review of

the foundations of the two mainstream ideas in matching.

The intermediate matching and the asymptotic matching principles and the

interrelations between the two procedures are discussed. It appears, first, that Van

Dyke’s intuition was correct. But the necessity of overlap seems doubtful!

Any intelligent practitioner of applied analysis will find a way to correct

matching in a given problem – no matter what his convictions about the intrinsic

value of the overlap hypothesis!

Matching principles are the backbone of asymptotic analysis by MAE. In

applications of our RAM Approach, by means of these rules one determines, via

the above-mentioned similarity rules, various undetermined constants.

There are, indeed, two schools of matching. One of them (originated by Kaplun

and Lagerstrom) employs intermediate variables, and the other (originated by Van

Dyke) postulates the validity of an “asymptotic matching principle”. Matching in

intermediate variables can be deduced from the so-called “overlap hypothesis”; that

is, the assumption that the (extended) domains of validity of regular (outer) and

local (inner) expansions have a non-empty interaction.

In fact, what is most important is that for a large class of fluid flow problems,

overlap implies the validity of a generalized asymptotic matching. But overlap is a

sufficient but not necessary condition for the validity of an asymptotic principle;

and an asymptotic matching principle holds while there is no overlap at all!

In Van Dyke (1975) [14], Chap. V, the reader can find a detailed consideration of

various facets of matching, which is the crucial feature of the method of MAE –

involving loss of boundary conditions.

An outer expansion cannot be expected to satisfy conditions that are imposed in the

inner region (near the initial time or in the vicinity of the wall of a body). Conversely,

the inner expansion will not in general satisfy distant (at infinity) conditions.

On the other hand, the possibility of matching rests on the existence of an

overlap domain where both the inner and outer expansions are valid. The existence

of an overlap domain implies that the inner expansion of the outer expansion

should, to appropriate orders, agree with the outer expansion of the inner expansion

(see, for instance, Lagerstrom (1988) book [125]).

A more usual, à la Van Dyke, matching principle is:

The m� term inner expansion of the n� term outer expansionð Þ
¼ the n� term outer expansion of the m� term inner expansionð Þ;

6.4 Some Key Steps for the Application of the Basic Postulate 141



where m and n are any two integers. In practice, m is usually chosen as either n or

n + 1. This matching principle appears to suffice for any problem to which the

MAE can be successfully applied.

In 1957, Kaplun introduced the concept of a continuum of intermediate limits,

lying between the inner and outer limits – and in fact, such a case was considered in

Sect. 5.5.2 above.

But although the gap between inner and outer limits has been bridged by the

intermediate problem, it is not yet apparent that there exists an overlap domain!

However, this is assured by Kaplun’s well-known “extension theorem”, which

asserts: “The range of validity of the inner and outer limit extends at least slightly

into intermediate range.”

Thus we can match the intermediate expansion with the outer expansion at one

end of the range and with the inner expansion at the other end.

Finally, we can formulate an “intermediate matching principle”: “In some

overlap domain the intermediate expansion of the difference between the outer

(or inner) expansion and the intermediate expansion must vanish to the appropriate

order.”

As a conclusion of this above discussion concerning the matching principle in

MAE, we now present a simple example of our practical matching rule.

We assume that near y ¼ 0, the considered model is singular when the small

parameter e ! o, with y fixed (outer limit). As a consequence, according to MAE

we introduce a local y, significant near y ¼ 0, namely:

ŷ ¼ y= e;with inner limitð Þ e ! 0;with ŷ fixed (6.49)

In such a case, for the function Uðy; eÞ, according to the MAE method, we

consider two asymptotic expansions:

Uðy; eÞ ¼ �Uo yð Þ þ e �U1 yð Þ þ e2 �U2 yð Þ þ Oðe3Þ; ‘outer’ (6.50a)

Uðy; eÞ ¼ Û0 ŷð Þ þ eÛ1 ŷð Þ þ e2Û2 ŷð Þ þ Oðe3Þ; ‘inner’; (6.50b)

when e ! o, respectively at y fixed and ŷ fixed.

Here we assume that, obviously, in the framework of the method of the MAE,

the limiting values in inner expansion (6.50b) of:

Û0ð/Þ; Û1ð/Þ and Û2ð/Þ exist and are well defined: (6.51a)

On the other hand, it is also assumed that the outer expansion (6.50a) remains valid

close to y ¼ 0, according to Kaplun’s extension theorem, such that we can write:

U y; eð Þ ¼ �U0ð0Þ þ y ðd �U0=dyÞy¼0 þ ðy2=2Þðd2 �U0=dy
2Þy¼0 þ :::

þ e �U1ð0Þ þ ey ðd �U1=dyÞy¼0 þ :::þ e2 �U2ð0Þ þ :::
(6.51b)
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If (6.51a) is really verified, and if this is also the case for (6.51b), the matching

between the (6.50a, b) outer and inner expansions is expressed by the following

equality:

�U0ð0Þ þ efŷðd �U0=dyÞy¼0 þ �U1ð0Þg
þ e2fðŷ2=2Þðd2 �U0=dy

2Þy¼0 þ ŷðd �U1=dyÞy¼0 þ �U2ð0Þg
þ Oðe3Þ ¼ Û0ð/Þ þ eÛ1ð/Þ þ e2Û2ð/Þ þ Oðe3Þ

(6.52)

where, in place of y, we have written eŷ.
As a consequence of (6.52) we obtain the following three matching relations, up

to Oðe2Þ:

�U0ð0Þ ¼ Û0ð/Þ (6.53a)

ŷðd �U0=dyÞy¼0 þ �U1ð0Þ ¼ Û1ð/Þ (6.53b)

ðŷ2=2Þðd2 �U0=dy
2Þy¼0 þ ŷðd �U1=dyÞy¼0 þ �U2ð0Þ ¼ Û2ð/Þ (6.53c)

The relation (6.53a) is the most classical and well-known of all matching

relations, and Eckhaus (1994) [124], pp. 435–8, writes:

At the first confrontation it may baffle serious students because it says [that] the regular

(outer) approximation when extended to values where it is no longer valid equals the local

(inner) approximation when extended to values where it is no longer valid . . . Intermediate

matching is based on extension theorems and on the assumption of overlap of the extended

domains of validity. Asymptotic matching principles are based on assumptions of the

structure of uniform expansions; they contain no direct reference to extension theorems

and overlap hypotheses.

Eckhaus also asks a natural question: “What are the interrelations between the

two procedures?” The interrelations were studied in some detail in his (1979) [109],

Chap. 3, where the following facts were established:

The existence of an overlap domain assures the validity of an asymptotic matching

principle, provided that certain explicit conditions on the structure of the regular and the

local expansions are satisfied [Theorem 3.7.1 in [109]] . . . [but] the non-existence of an

overlap domain does not preclude the validity of an asymptotic matching principle.

Finally, it appears that Van Dyke’s intuition was correct. As to Lagerstrom’s

conviction in the necessity of overlap, Eckhaus remarks that counter-examples had

already been presented by Fraenkel in 1969 and in his (1979) [109], and some

discussion is included in Lagerstrom (1988) [125] – but in the latter there is no

reference to Eckhaus’s monograph of 1979.
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6.4.3 The Least-Degeneracy Principle and the Significant
Degeneracies

As mentioned in Van Dyke [14], Sect. 5.5, a crucial step in the MAE method is the

choice of inner variables.

The guiding principles are that the inner problem should have the least possible

degeneracy, that it must include in the first approximation any essential elements

omitted in the first outer solution, and that the inner and outer solutions should match.

As an example, consider the case in Sect. 6.4.1, linked with the choice of b.
Indeed, the significant degeneracies, according to Eckhaus, are a mathematical

formalism for the principle of least degeneracy, by Van Dyke. In several papers

of Feuillebois, and Feuillebois and Lasek (see [122]), the reader can find various

applications. The method makes it possible to obtain, with the use of a computer,

the boundary layer equations for a singular perturbation problem.

The straightforward but tedious hand-calculation of the significant degeneracies

may be avoided by the use of just such a computer! However, this method is not

concerned with the full solution to some problems (in fluid mechanics), but only

with the process required for obtaining the significant degeneracies.

Usually, the class of problems considered typically involves many parameters,

for which multiple boundary layers may exist.

The application essentially provides some boundary-layer equations to solve,

together with the order of magnitude of the region in which they are valid. But it

seems that there is no proof that the solution of such equations is the required

significant approximation to the solution of the original problem.

However, there is a useful heuristic “principle of correspondence” (Eckhaus): “If

there exists a significant approximation, then the degeneracy in the boundary layer

variable is significant.”

Practically, this principle limits the field of research of the significant approxima-

tion to the solutions of the boundary-layer equations obtained as significant

degeneracies, and this principle holds for many physical problems in fluid mechanics.

In 1984, Feuillebois (see [122]) considered an interesting example which is

relative to the full Navier (Navier–Stokes incompressible) steady equations for a

large Reynolds number. As a results, he demonstrated the existence of the following

seven significant degeneracies:

1. The ordinary boundary layer equations.

2. Equations for an ideal fluid with high thermal conductivity.

3. Boundary layer equations with a low outer pressure gradient.

4. Thermal boundary layer equations of an ideal fluid, with a low outer pressure

gradient.

5. Equations for an ideal fluid, with a complete energy equation.

6. The momentum equation as for an ideal fluid, but the energy equation contains a

viscous term.

7. Somewhat similar to (3), but with viscous dissipation.
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We observe that the cases when Pr (the Prandtl number) is low (high thermal

conductivity) may be of practical interest for liquid metals flow. An interesting

exercise is the application of the Feuillebois approach to the unsteady Navier

equations case, and also (but certainly more complicated) to NS–F, large a

Reynolds number case, considered in Chap. 5.

Germain (1977) [126], pp. 89–96, includes a report on his views after reading

Eckhaus’s papers relative to the concept of significant degeneracy.

6.4.3.1 A Last Comment Concerning the “Non-standard Analysis”

In “Going on with asymptotics”, in Guiraud (1994) [127], pp. 257–307 (esp. pp.

299–302), there is a short account of this topic in which the author considers that

“although it deals with the foundation of mathematics, in quite an abstract way, yet

it seems to me that it has some impact on asymptotics, as I shall try to show at least

superficially.”

On the other hand, Eckhaus, in his remarks concerning the non-standard analysis

(in his (1994) [124], p. 434), writes:

In the last decade a group of French mathematicians attracted attention by the use of non-

standard analysis in problems of singular perturbations. Non-standard analysis is an

invention in mathematical logic due to Robinson (see his (1966) [128]) book, in which

infinitesimally small numbers are introduced back into the analysis. Robinson attempted to

link the non-standard analysis to a concept of asymptotic expansions in a book (edited in

1975) with Lightstone [129], but without much response. For an introduction to the new

developments one can consult [130], edited in 1981, and the literature quoted there, and

more recently the Proceedings of ICIAM’ 91, p. 342. There is an interesting link between

these developments and the lemma given above (and concerning the extension theorems of

Kaplun introduced in 1957, and formulated in upper part of the page 432 in [124]). In the

new applications of non-standard analysis a very important role is played by the so-called

‘Robinson’s Lemma’, which is the subject of much veneration.

Eckhaus also writes:

In discussions which I had with non-standard analysts (in particular Marc and Francine

Diener at Oberwolffrach in August’ 1981) it became clear that the lemma quoted in Sect. 3

of [124] is a standard counterpart of Robinson’s lemma. The extension theorems are very

seldom (almost never) used as an explicit tool of analysis in specific problems. An

exception is contained in my analysis of the ‘Canard’ problem [131], first treated by non-

standard analysts (see [130] for references). More recent use of extension theorems, in a

related problem, is given in [132].

6.4.4 The Method of Multiple Scales (MMS)

Various problems in fluid dynamics are characterized by the presence of a small

disturbance which, because of being active over a long time, has a non-negligible

cumulation effect.
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In solving such a given problem, the main approach is to combine appropriate

techniques to construct an (asymptotic) expansion which is uniformly valid over

long time intervals. A central feature of such a (MMS) method is the impossibility

of the matching (which is just the central feature of the MAE method).

Often, the inner asymptotic expansion does not tend to a defined limiting state

when the short (distorted) variable (time or space) tends to infinity. In particular, in

the case of unsteady fluid flow, the adjustment to initial state is not possible (when

the short time tends to infinity) for the outer model equations.

The fundamental characteristics of the MMS can be summarized as follows

(according to Germain [126]):

When the data of a fluid flow problem show (after careful physical inspection) that the small

parameter e is, in fact, the ratio of two scales (of time or space), the MMS consists of first

introducing two variables constructed with these scales (one of them possibly being

‘distorted’). Next, the formal expansion of the solution in e is considered, each coefficient

of the equations being a function of two variables introduced (e.g., of time) which are

considered as independent during the entire calculation. In order to completely determine a

coefficient of this expansion, it is not enough to solve the equation where it appears for the

first time! The indeterminants which necessarily remain are chosen by making sure that the

equation in which the next term appears will lead to a solution which does not destroy, but

on the contrary, best guarantees, the validity of the approximation which is sought. From a

certain a priori knowledge of the solution, we generally assume that U depends on the

variables t and x ¼ x; y; zð Þ so that a rapid variation having a repetitive character

analogous to an oscillatory phenomenon is made to appear. This variation is itself

modulated from one moment to another and from one point of space to another.

Such a structure is described by the following dependence of the U:

U ¼ U	ðwðt; xÞ; t; xÞ (6.54)

where w is a so-called fast intermediary variable because this function w varies

rapidly as a function of t and x. If only dimensionless variables are used (which is

the first main operation for a realization of the RAM Approach), then this property

can be characterized by writing:

@w=@t ¼ �o=e and rw ¼ l=e (6.55)

where o and jlj are of the order unity. From (6.55) we deduce two relations:

@U=@t ¼ � ðo=eÞ@U	=@wþ @U	=@t (6.56a)

rU ¼ � ð1=eÞð@U	=@wÞ lþrU	 (6.56b)

with analogous formulae for the higher-order derivatives.

By substituting these expressions for the derivatives into the equations

governing the considered fluid flow, the small parameter e is introduced into

these equations, even if it does not appear initially.

In a second step, we write:

U	 ¼ U	
0þ eU	

1 þ ::: and w ¼ w0 þ e w1 þ ::: (6.57)
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and then, according to considered starting equations, when both of the above

relations (6.56a, b) are taken into account, and by setting at zero the terms

proportional to the successive powers of e, a hierarchy of systems of equations is

derived for U	
0;U

	
1; :::

The first system in this hierarchy determines U	
0 at best in its dependence with

respect to w0, but not with respect to t and x. It is usually while seeking to

determine U	
1 – or even other higher-order terms – that the dependence of U	

0

with respect to t and x is prescribed by the cancelling of the secular terms; that is, of

terms which in U	
1 do not remain bounded when w0 increases indefinitely. Indeed,

if we want (6.57) to cover an interval 0(1) in variation of t and x, then because of

(6.55), this corresponds to a variation of w0 which is Oð1= eÞ.
A typical example is strongly related to the description of the progressive waves

(and see Germain (1971) [133]). As noted by Germain [108], pp. 12–13:

Progressive waves occur generally when a physical phenomenon is thought to be

represented by the occurrence of steep gradients in one variable only, across three-dimen-

sional manifolds, in four-dimensional spacetime, with much smoother gradients in other

directions. The mathematical structure of the representation looks like a phenomenon in

five-dimensional spacetime. In such a case the phenomenon is quantified by an n-dimen-

sional vector U. Assume that the manifold across which the gradients are steep is

F t; xð Þ ¼ const. Then, Uðt; x;F=e; eÞ so that w ¼ F=e, is considered as a fifth variable.

There is apparently nothing in the equations which allows us to single out the dependency

of U on w. But all is changed when we add the ansatz that the proper physical solution may

be obtained as an expansion with respect to w, t and x being fixed when proceeding to the

limit of vanishing e. As a matter of fact, the method of multiple scales (MMS), through the

requirement of vanishing of secular terms, provides the way by means of which that

dependency can be figured out. A key to the existence of progressive waves is that U,

supposed to be dependent on w only, at leading order, exists as a planar wave solution ruled

by a linear system with @F=@t; @F=@x obeying a dispersion relation. That relation defines a
wave speed, and may be considered as an eikonal of the Halmilton–Jakobi equation, the

solution of which is built by means of rays. The planar wave, being a solution to a linear

system, is determined only up to a scalar amplitude factor . . . This amplitude obeys an

equation which is obtained when going to higher order in the asymptotic expansion and

eliminating secular terms – this amplitude/transport equation being the main result of the

application of MMS. The details depend on the particular phenomenon considered, and

there exist quite a variety of situations that may be described mathematically by such a

procedure. The small parameter e characterizes the steepness of the transversal gradient,

and if the fluid dynamics process is non-linear, and non-linearity is measured by the order of

magnitude of the amplitude, and if, furthermore, the starting equations are first-order quasi-

linear, as is the case with inviscid gas dynamics, then the amplitude obeys a partial

differential equation which is generally an inviscid Burgers’ equation along each ray. If

there are second-order derivatives present in the starting equations, with a small coefficient,

then the amplitude obeys a partial-differential equation which is generally Burgers’. The

role of time is played by the distance along each ray, while the role of space is played by w.
One may deal with third-order derivatives, and another small parameter, yielding then the

KdV equation; and both phenomena may occur simultaneously.

Thus, when both dispersive and dissipative effects are present, the transport

equation is a Burgers–Korteweg–de Vries (KdV) equation of the following form:

@A=@tþ A@A=@xþ n=2ð Þ2@3A=@x3 ¼ m@2A=@x2 (6.58)
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Even if the Germain presentation is new and tries to be systematic, the essential

ideas may be found, in particular, in Guiraud (1969) [134], with a method which is

essentially equivalent.

For another application of the two-scales technique, see Sect. 3.3.5, where the

derivation of the well-known non-linear model Eq. 3.61q of acoustics – the KZK

(Kuznetsov, Zabolotskaya, and Khokhlov) equation – was examined.

In LNP (1987) [16], pp. 150–7, the reader can also find an application related to

high Strouhal (S), high Reynolds (Re), and small Mach (M) numbers, where we

assume that

SM ¼ O 1ð Þ ans Re=S ¼ O 1ð Þ (6.59)

the Mach number M <<1 being the main small parameter.

In such a case, the leading term u0 in u ¼ u0 þ M u1 þ :::: is the solution of the

equation for the spherical waves (which is derived from the full NS–F unsteady system)

@2u0=@t
2 ¼ Du0 (6.60a)

and appears a wave front

F xð Þ � t ¼ 0; and w ¼ F xð Þ � t½ �=M (6.60b)

As a consequence, a two-scales ðw; xÞ expansion, inM, is necessary for:u; r, and T.
At the leading order we obtain (from full NS–F unsteady system) a linear and

homogeneous system relative to first-order derivative, @=@w, of u0ðw; xÞ, r1ðw; xÞ
and T1ðw; xÞ, with t ¼ F xð Þ þ M w . As a consequence we derive the following

eikonal equation:

k2 � ½rF xð Þ�2 ¼ 1 (6.61a)

and, for instance, we have as a solution for u0ðw; xÞ,
u0ðw; xÞ ¼ Aðw; xÞ½k=ðg� 1Þ� þ U0 xð Þ (6.61b)

where the function U0 xð Þ is arbitrary and is determined from the compatibility

conditions linked with the second-order system of equations, which is a linear and

non-homogeneous system of equations for

@u1ðw; xÞ=@w; @r2ðw; xÞ=@w and @T2ðw; xÞ=@w
and also with the matching, initial, and boundary conditions of the considered

problem. Finally, the amplitude function Aðw; xÞ in solution (6.61b) is solution of

following transport equation:

@A=@tþ aA@A=@wþ g@A=@wþ dA ¼ b @2A=@w2 (6.62)

where the “time” t (increasing with F) is a parameter which varies along the

characteristics – the characteristic form of eikonal (6.61a) being
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dF=dt ¼ 1 and dk=dt ¼ 0 along dx=dt ¼ k

Finally, it is interesting to mention the opinion of Van Dyke [127], p. 7

concerning our (with Guiraud) the multiple scales approach:

In fluid mechanics, however, Guiraud, working with Zeytounian, has applied multiple

scales to two quite different problems, where it is clearly the appropriate method that is

mentioned in their titles. First, in the theory of axial-flow machinery we have Application
du concept d’échelles multiples à l’écoulement dans une turbomachine axiale (G-Z, 1974).
Clearly, the long scale is that of the mean flow, and the short scale that of the individual

blades, the small parameter being the reciprocal of the number of blades or of stages.

Second (G–Z, 1977) we have A double-scale investigation of the asymptotic structure of
rolled-up vortex sheets. This applies to the rolled-up vortex sheets from the trailing edge of

a high-aspect-ratio wing or from the leading edges of a delta wing, the small parameter

being the number of turns.

In [11], the reader can find some comments concerning these two G–Z papers.

Van Dyke [127], p. 8, also writes, concerning asymptotics allied with numerics:

Eight years ago, Guiraud and Zeytounian (1986) argued persuasively that although asymp-

totic techniques will in special circumstances continue to be used to derive closed-form

solutions, their future role will be primarily as an adjunct to numerical simulation. They

illustrated this view with a number of examples from fluid dynamics, concluding with

several drawn from their own research. From casual observation I suggest that the number

of papers appearing in technical journals with the word ‘asymptotic’ in their titles is

actually increasing steadily. On the other hand, the cooperation between experts on

asymptotics and numerics – which I agree is desirable and inevitable-seems not yet to

have gained momentum. Meanwhile, I have for some years been experimenting with a quite

different alliance between asymptotics and the computer.

I emphasize here that in the first published G–Z paper (1970), relative to the

multiple scales approach for axial-flow machinery, a decisive moment is the

appearance of a source term, in the derived leading-order model, which is propor-

tional to the jump in pressure (the difference between the two sides of one and the

same blade), orthogonal to the material blade surface in the row. This equivalent

homogeneous force occurs due to the redistribution (homogenization) of forces

exerted on the flow by the blades of the row. In fact, in 1970 we had already

conceived an homogenization technique (without our knowing it!) that presents the

possibility of replacing the effect of the blades of the row on the flow in a channel

between two consecutives blades, by an equivalent source force in model equations.

As a result of the RAM Approach, an equivalent model – the through-flow – is

derived, in a simple cylindrical domain without any row with blades, but with the

source force in governing model equations.

6.4.5 The Homogenization Analysis

The homogenization analysis is in fact a more sophisticated form of the MMS

approach discussed in the previous section. Seepage through a porous media – for
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instance: water gradually escaping by seepage through the ground – is considered

one of the first examples (if we do not take into account our G–Z (1971) asymptotic

analysis of the flow in an axial turbomachine) to which the method of homo-

genization was applied (Sanchez-Palencia 1974 [135]). It is a good example for

explaining the role of physical scales and the mathematical procedure, and it can be

used to illustrate the derivation of many properties of the constitutive coefficients.

Let a rigid porous medium be satured by an incompressible Newtonian fluid of

constant density r0 (see, for instance, Advances in Applied Mechanics, vol. 32
(1996) [136], pp. 288–92). Driven by a steady ambient pressure gradient, the steady

flow velocity ui and pressure p in the pores are governed by the Navier equations:

@ui=@xi ¼ 0 and r0uj@ui=@xj ¼ � @p=@xi þ mr2ui (6.63a,b)

On the wetted surface of the solid matrix G, there is no slip condition,

ui ¼ 0 when xi 2 G (6.63c)

For slow flows (low Reynolds number), the two terms on the right-hand side of

(6.63b), representing the pressure and the viscous force, must be dominant. Then,

both the pore pressure and the flow velocity vary according to two very different

scales: the local or microscale l characteristic of the size of pores and grains, and the
global or macroscale L imposed by the global pressure gradient. During the

homogenization analysis the main working hypothesis is the ratio of the above

two length scales:

e ¼ l=L <<1 (6.64a)

defining the velocity scale U. A moment of reflexion leads to the following

dimensionless (primed) quantities:

xi
0 ¼ xi=l; p’ ¼ p=P; ui

0 ¼ ðmL=l2PÞu0i (6.64b)

where p in (6.64b) denotes the change in pressure (because it appears only in

differential form), P/L being the magnitude of the global pressure gradient. Equa-

tion (6.63b) becomes, formally in dimensionless form:

Re uj
0@ui0=@xj0 ¼ � ð1=eÞ@p’=@xi0 þ mr2u0i (6.64c)

where Re ¼ eðr0l2P=m2Þ is just the Reynolds number (micro � Ul=ðm=r0Þ).
With P ¼ m2=r0l

2, and returning to dimensional variables, but retaining the

ordering symbol e, we obtain, as a starting equation for our homogenization

analysis, the following equation:

e2 r0uj@ui=@xj ¼ � @p=@xi þ e mr2ui (6.65)
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Let us assume that the geometry of the porous matrix is periodic on the micro-

scale l, although the structure may still change slowly over the macroscale L. Each

periodic cell O is a rectangular box of dimension OðlÞ, ui and p being spatially

periodic from cell to cell. We introduce, in addition to xi also xi ¼ exi, and the

perturbation expansions

ui ¼ ui
ð0Þ þ eui 1ð Þ þ e2ui 2ð Þ þ ::: (6.66a)

p ¼ pð0Þ þ ep 1ð Þ þ e2p 2ð Þ þ ::: (6.66b)

where ui
kð Þ and p kð Þ, k ¼ 0; 1; 2; :::, are functions of xi and xi.

First, from @ui=@xi ¼ 0 we obtain

@ui
ð0Þ=@xi ¼ 0 (6.67a)

@ui
1ð Þ=@xi þ @ui

ð0Þ=@xi ¼ 0 (6.67b)

@ui
2ð Þ=@xi þ @ui

1ð Þ=@xi ¼ 0 (6.67c)

and similarly, we obtain from (6.65),

0 ¼ � @pð0Þ=@xi (6.68a)

0 ¼ � @pð0Þ=@xi � @p 1ð Þ=@xi þ mr2ui
ð0Þ (6.68b)

r0uj
ð0Þ@uið0Þ=@xj ¼ � @p 1ð Þ=@xi � @p 2ð Þ=@xi þ mr2ui

1ð Þ: (6.68c)

On the wetted interfaces G, the velocity vanishes; hence,

ui
ð0Þ ¼ 0; ui

1ð Þ ¼ 0; ui
2ð Þ ¼ 0; :::: when xi 2 G: (6.69a)

In a typical O cell the flow must be periodic:

ui
ð0Þ; ui 1ð Þ; ui 2ð Þ; :::pð0Þ; p 1ð Þ; p 2ð Þ; ::: are O� periodic (6.69b)

First, from (6.68a) it is clear that:

pð0Þ ¼ pð0ÞðxiÞ: (6.70a)

and because of the linearity of (6.68b), ui
ð0Þ and p 1ð Þ can be formally represented by

ui
ð0Þ ¼ � Kij@p

ð0Þ=@xj; p 1ð Þ ¼ � Aj@p
ð0Þ=@xj þ p	 1ð ÞðxiÞ: (6.70b)
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It then follows from (6.67a), (6.68b), (6.69a), and (6.69b) that

@Kij=@xi ¼ 0 (6.70c)

� @Aj=@xi þ mr2Kij ¼ � dij (6.70d)

where

Kij ¼ 0 on G; and Kij;Aj are O� periodic (6.70e,f)

and (Of is the fluid volume inside the O cell)

<Aj> ¼ ½1=jOj�
ð
Of

Aj dO (6.71)

can be set to zero.

Equations 6.70c and 6.70d with 6.70e,f define a canonical Stokes’ flow bound-

ary-value problem in O cell, which can, in principle, be solved numerically for any

prescribed microstructure.

From (6.70b) we obtain, at the leading order, a well-known equation:

<ui
ð0Þ> ¼ �<Kij>@pð0Þ=@xj (6.72a)

and also:

p 1ð Þ ¼ n p	 1ð ÞðxiÞ (6.72b)

where n is the porosity – the ratio of fluid volume in the cell to the total cell volume:

n ¼ jOf =j jOj: (6.72c)

Eq. 6.72a being just the celebrated law of Darcy with <Kij> the hydraulic

conductivity.

On the other hand, the O-average of (6.67b) gives

@<ui
ð0Þ>=@xi þ ½1=jOj�

ð
Of
ð@ui 1ð Þ=@xiÞdO ¼ 0

and the interchange of volume integration with respect to xi and differentiation with

respect to xi is allowable when n ¼ constant in the above relation. Otherwise the

same is justifiable by virtue of the spatial averaging theorem (see, for instance,

[136], Sect. IIIF, pp. 300–2).

By using the Gauss theorem and the boundary conditions, we see that the volume

integral vanishes; hence: @<ui
ð0Þ>=@xi ¼ 0, and this result implies, in turn, that:

@½<Kij>@pð0Þ=@xj�=@xi ¼ 0: (6.73)
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This equation (6.73) governs the seepage flow in a rigid porous medium on the

macroscale. Theoretical derivation in the present manner was first presented by

Snachez-Palencia in 1974.

If, now, the medium is isotropic and homogeneous on the L scale, we have

<Kij> ¼ K dij

where K is a scalar constant, and it follows from (6.73) that

@2p oð Þ=@xk@xk ¼ 0

With proper boundary conditions on the macroscale, p(0)can then be found. In

fact, when the Reynolds number is assumed to be finite (Re ¼ O(1)), then the

convective inertia would be on the order of (e), and (6.68b) would be replaced by

rouj
ð0Þ@uið0=@xj ¼ �@pð0Þ=@xi � @p 1ð Þ=@xi þ mr2ui

ð0Þ (6.74a)

with

@ui
ð0Þ=@xi ¼ 0: (6.74b)

The above cell problem, (6.74a, b), is fully non-linear, and (6.73) and Darcy’s

law (6.72a) no longer hold.

Finally, concerning this “seepage flow in rigid porous media”, the reader can

find in [136] various complementary results concerning the uniqueness of the cell

boundary-value problem ((6.70c)–(6.70e,f)) with zero on the right of (6.70d),

properties of hydraulic conductivity, numerical solution of the cell problem, the

effects of weak inertia, a spatial averaging theorem, and porous media with three or

more scales.

We observe that the typical steps of the homogenization theory are:

1. Identify the microscales and macroscales. This identification of scales is a

consideration of physics and is crucial to the success of the mathematical theory.

2. Introduce multiple-scale variables, in non-dimensional form of the starting fluid

flow problem, and expansions, and deduce cell boundary-value problems at

successive orders. The leading-order cell problem is homogeneous; either the

solution itself or the coefficient of the homogeneous solution are indeterminate

and independent of the microscale coordinates.

3. Use linearity and express the next-order solution in terms of the leading-order

solution and deduce an inhomogeneous cell problem.

4. Determine the solvability of the inhomogeneous cell problem – mathematically,

the solvability condition for the inhomogeneous problem – given that the homo-

geneous problem has a non-trivial solution!

5. Derive the equation governing the evolution of the leading-order solution (or the

coefficient of the homogeneous solution) and calculate the constitutive

coefficients from the solution of a canonical cell problem.
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We have previously mentioned (for instance, in Chap. 3) that the case of low

Mach number in gas dynamics is a very difficult problem when the gas is contained

in a bounded container O, with an impermeable but eventually deformable (with

time t) wall, so that the volume occupied by the gas is a given function of time:

namely, V0(t). In such a stiff case, it is necessary to use an homogenization

technique with an infinity of microscales. Such a problem is considered in Sect. 7.2.

6.4.6 Asymptotics of the Triple-Deck Theory

Here we do not discuss in depth this triple-deck theory, as a detailed and thorough

discussion is presented in our FMIA 64 (2002) [26], Chap. 12. Some of the features

of this theory were mentioned in Sect. 6.3.4, and we now discuss the various steps

required for the derivation of model equations for viscous lower motion.

6.4.6.1 The Local Atmospheric Thermal Problem

Here I consider the formulated problem of Eqs. 6.42a–6.42e with conditions

(6.44a)–(6.44e).

First, if we take into account the boundary conditions on the ground z ¼ 0, it is

necessary to introduce an inner variable ž such that

�z ¼ z=koa; a>1

and in this case

u � koa�1�z; for x !�/: (6.75)

Then, from the first Eq. 6.42a, for u, we verify that

if �z ¼ z=koa and u � koa�1�uðx; �zÞ;

and from

koa�1@�u=@�zþ ::: ¼ ko5�2a@2�u=@�z2

þ ::: ) a� 1 ¼ 5� 2 a ) a ¼ 2: (6.76)

As a consequence, we establish that three vertical coordinates are necessary

(z, ź, ž), for a rational asymptotic (triple-deck) analysis of the system of

Eqs. 6.42a–6.42e: namely,

1. z, for the upper non-viscous region, where u � uup ! 1, whenx ! � / ;

2. ź ¼ z/ko, for the middle intermediate region, where

u � umid ! 1 – exp(�ź) cos(�ź) ¼ U/(ź), when x ! � / ;
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3. ž ¼ z/k�2, for the lower wall viscous region, where u � k� ulow, and ulow ! ž,

when x ! � / .

Note that here we consider only the case when (m ¼ 5):

l�=L� � ko3

For the other case,

l�< ko3 L� and l�> ko3 L�

it is necessary to apply different asymptotic analysis. The case m ¼ 6 and m ¼ 4

can be analyzed from the equations analogous to (6.42a)–(6.42e). For the case

m ¼ 3 it is necessary to start from other equations, where the Boussinesq approxi-

mation does not emerge.

In particular, for m ¼ 3, we have l� ¼ 104 m, and we may neglect the terms

related to the Coriolis force in the local non-Boussinesq equations.

Beginning our triple-deck analysis with the middle deck where x and ź ¼ z/k�

are the order one coordinates, we expand the flow variables as:

u ¼ U/ �zð Þ þ kofumid þ :::

w ¼ kocwmid þ :::

p ¼ ko2 pmid þ :::

y ¼ kos ymid þ :::

(6.77a)

and from system of Eqs. 6.42a–6.42e to find for the lowest order:

U/ �zð Þ@umid=@x þ ðd U/=�zÞwmid ¼ 0

@umid=@x þ @wmid=@�z ¼ 0

@pmid=@�z ¼ B	ymid

@ymid=@x ¼ 0:

(6.77b)

The choice

f ¼ 1; c ¼ 1þ f and s ¼ 1 (6.77c)

is necessary if we want to obtain a significant degeneracy of the Eqs. 6.42a–6.42e in

the lower viscous deck region in the vicinity of ž ¼ 0 near the wall.

We observe that the effects of the expansion of the boundary layer are Oðk�Þ in u
and Oðko2Þ in w. Furthermore, in the boundary layer (lower deck), if we take into

account that �z ¼ z=ko2, we necessarily have

p ¼ ko2plow þ :::
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and, by continuity, we obtain the form of the expansion for p in (6.77a).

Solutions for umid and wmid satisfying the upstream boundary conditions are:

umid ¼ A xð Þ dU/=d�z and wmid ¼ � dA xð Þ=dxð ÞU/ �zÞð (6.77d)

which represent simply a vertical displacement of the streamlines through a distant

– k�A(x).
On the other hand, the flow in the upper non-viscous deck is driven by an outflow

from the middle deck. Far from (6.77d) we have:

Limz0!/½wmid x; �zð Þ� ¼ � dA xð Þ=dxð Þ (6.77e)

In the upper deck, with z ¼ k� ź, as flow expansion we write:

u ¼ 1þ ko2uup þ :::; ðw; p, yÞ ¼ ko2ðwup; pup; yupÞ þ ::: (6.78a)

and gain substitution in Eqs. 6.42a–6.42e to find for the lowest order the following

equations for an inviscid motion:

@uup=@x þ 1=gð Þ@pup=@x ¼ 0;

@wup=@x þ ð1=gÞ@pup=@z ¼ 0

@uup=@x þ @wup=@z ¼ 0;

@yup=@x þ B	Lð0Þwup ¼ 0;

(6.78b)

and, as a consequence we derive, for pup, a Helmholtz equation:

½@2=@x2 þ þ K0
2�@pup=@x ¼ 0 (6.78c)

where

K0
2 ¼ ðB	=gÞLð0Þ:

In fact, according to upstream conditions we have:

Limz!o½pup x; zð Þ� � pup x; 0ð Þ ¼ P xð Þ � Limz0!/½pmid x; �zð Þ� (6.78d)

but

wup x; 0ð Þ ¼ � dA xð Þ=dx (6.78e)

and, as consequence of (6.77e) and matching between upper and middle decks, we

obtain, for Eq. 6.78c, the following rather strange condition for pup:

@=@x½ð@pup=@zÞz¼0� ¼ g ½K0
2 dA=dxð Þ þ d3A=dx3�: (6.78f)
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It is obvious that the middle deck solution (6.77d) does not satisfy the no-slip

condition on ž ¼ 0 – a situation which is remedied by the analysis of the lower

viscous deck, near the wall, where we have the following relation:

�z ¼ z=ko2 � z0=k�

Now, matching with the middle (6.77a) expansion, when in U/(ź), with ź ¼ k� ž
and ž is fixed, implies the following lower deck expansions:

ðu; w; p, yÞ ¼ ð k�ulow; ko3wlow; ko2 plow; ylowÞ þ ::: (6.79a)

and from Eqs. 6.42a–6.42e to find for the lowest order the following model

equations for viscous lower motion:

ulow@ulow=@x þ wlow@ulow=@�z þ ðB	=gÞ
ð
/
ð@
�z

ylow=@xÞd�z
þð1=gÞdP xð Þ=dx ¼ @2ulow=@�z

2; (6.79b)

@ulow=@x þ @wlow=@�z ¼ 0; (6.79c)

ulow@ ylow=@x þ wlow@ylow=@�z ¼ 1=Prð Þ@2ylow=@z2; (6.79d)

with the boundary conditions:

�z ¼ 0 : ulow ¼ wlow ¼ 0; ylow = t	Y xð Þ; 0< x <1 (6.80a)

�z ! þ /: ulow ! �z;wlow ! 0; ylow ! 0;P xð Þ and dA=dx ! 0 (6.80b)

�z ! � /: ulow ! �zþ A xð Þ;wlow ! ��z dA=dxð Þ; ylow ! 0 (6.80d)

after matching with the middle deck.

The specification of the above viscous problem in the lower deck is

completed by the relation (6.78f) linked with P(x) (if we take into account that

according to (6.78d) pup(x, 0) ¼ P(x)) and the function A(x).

The well-known interpretation of the “strange” condition (6.78f) is as follows:

The pressure P(x) driving the flow in the lower deck is itself induced in the main

stream, i.e. by the upper deck solution, as a consequence of the displacement

thickness of the lower deck transmitted through the middle deck by the passive

effect of displacement of the streamlines.

One the other hand:

This so-called “strong singular self-induced coupling” (à la Stewartson) arises

because the above problem to be solved in the lower viscous layer does not accept

the function P(x) as data known prior to the resolution – as is the case in the

classical Prandtl boundary layer problem.
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Conversely, this pressure perturbation P(x) must be calculated at the same time

as the velocity components ulow and wlow as well as the temperature perturbation

ylow. Nevertheless, it must be emphasized that the function P(x) is not completely

arbitrary, and that it is connected to the function A(x) through a relation which is

derived via the analysis of inviscid fluid motion in the upper deck via (6.78f).

The reader can find in Guiraud’s paper “Going on with asymptotics” [127],

pp. 262–71, a very pertinent and personal point of view concerning the asymptotics

of the triple-deck theory. In particular, Guiraud writes:

Triple-deck theory deserves a special mention among the numerous applications of high

Reynolds numbers laminar flows. It is somewhat misleading to associate high Reynolds

numbers with laminar flow, although such an association is not completely false at the

outset. What can be said here is that, provided some caution is exercised when applying the

theory, it has proven to give very powerful results. What is unfortunate with this kind of

asymptotics is that it seems to be very esoteric, on the one hand, while it looks suspect, on

the other hand, for at least two reasons. The first is that in its simplest version – the only one

reported here – it is based on (ReL�)�1/8 being much smaller that unity; the second is that the

higher ReL�, the less plausible the laminar conditions seem to be. It is outside the scope of

this paper to discuss this last issue, and we ask the reader to believe that laminar conditions

can exist (obviously within a limited range). I only intend to debunk, if possible, the

esoteric blurring which appears to have for long discouraged many scientists from investing

in it. Let me explain the main goal, assuming the reader is familiar with basic boundary

layer theory and knows the corresponding hierarchy: computation of the inviscid flow first,

followed by boundary-layer computation as such, finally (eventually) computations of

corrections, generally of order (ReL�)�1/2, to both. The classical theory is based on what

might called an asymptotic ansatz: namely, that a thin (of order (ReL�)�1/2 thick) layer of

fluid surrounds the surface of an undeformable smooth body on a O(1) scale. Each time this

asymptotic ansatz is broken, one should expect a failure of classical boundary-layer theory.

The triple-deck structure is now seen as a useful and, indeed, valuable element in

aerodynamics calculation and design. This is a substantial tribute to Stewartson’s

power and foresight, and is his greatest contribution to theoretical fluid mechanics

(see, for instance, Stewartson (1974) [137]). For a pertinent comprehensive review

of progress in using the asymptotics of the triple-deck theory, see the illuminating

paper by Meyer (1983) [138].

Guiraud was fascinated by the breakdown of asymptotic theories at the leading

and trailing edges, and in his 1974 study (the first in France) – in particular in his

study of separation at the trailing edge of a thin three-dimensional wing – shows

that for this complicated case, three different scalings arise, and that the Stewartson

layered triple-deck structure is very well adapted.

It should be noted that the triple-deck theory was discovered by Stewartson and

Williams in England in 1969, but also independently by Neiland [139] in Soviet

Russia. Paul Germain [107] has written:

Even a genius would not have been able to build the whole of the triple-deck model without

the help of matched asymptotic expansion techniques. Triple-deck theory is now a very

important building stone in the new “fluid dynamics inspired by asymptotics”, and it may

be fully included within the heritage of Prandtl.
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Part III

Applications of the RAM Approach to
Aerodynamics, Thermal Convection, and

Atmospheric Motions



Chapter 7

The RAM Approach in Aerodynamics

7.1 Derivation of a Through-Flow Model Problem

for Fluid Flow in an Axial Compressor

First, in Sect. 7.1.1, we again consider the simple case examined in Veuillot’s thesis

[140] devoted to turbomachinery fluid flow, simulated in Sect. 6.3.1; then, in Sect.

7.1.2, the more sophisticated G–Z RAM Approach [141].

It is obvious that the following asymptotic theory of axial flow through a turbine,

which is likely be of considerable interest to specialists, is a fascinating application

of a complicated engineering problem using the RAM Approach with the basic

large parameter being the number of turbine blades per rotor.

7.1.1 The Veuillot Approach

We starting from the system of non-dimensional equations (6.18a)–(6.18c), for u*,

w*, and G� ¼ rv�, and also the relations (6.17a)–(6.17c) relying, u*, w, and v*,

with the functions c� and Y.

First, we expand the functions u*, w*, G�, and c�, relative to our main small

parameter e:

(u*, w*, G�; c*) = (u�o;w�
o; G�

o; c�
oÞ

þ e ðu�1; w�
1;G

�
1; c�

1Þ þ :::
(7.1)

and at zeroth-order we derive the following leading-order approximate equations

for the functions u�o ¼ ð1=rDÞ @ c�
o=@z;w

�
o ¼ �ð1=rDÞ @ c�

o=@r, G�
o ¼

r2ðu�o@Y=@r þ w�
o @Y=@zÞ: namely,

@u�o=@wþ ::::: þ ð@Y=@rÞ @G�
o=@w ¼ 0 (7.2a)

R. Kh. Zeytounian, Navier–Stokes–Fourier Equations,
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@w�
o=@wþ � � � þ ð@Y=@zÞ @G�

o=@w ¼ 0; (7.2b)

ð@Y=@zÞ @u�o=@w� ð@Y=@rÞ@w�
o= @wþ � � � ¼ 0: (7.2c)

But these three equations are not independent, since the determinant of

coefficients for @u�o=@w, @w
�
o=@w, and @G�

o=@w is zero! On the other hand, from

them we easily derive the following two relations:

@G�
o=@w ¼ r2 ½ð@Y=@rÞ@u�o=@wþ ð@Y=@zÞ @w�

o=@w� (7.3a)

ð@G�
o=@wÞ f1þ r2½ð@Y=@rÞ2 þ ð@Y=@zÞ2�g ¼ 0: (7.3b)

Because:

1þ r2½ð@Y=@rÞ2 þ ð@Y=@zÞ2� 6¼ 0; @G�
o=@w � 0;

and as a consequence:

@G�
o=@w ¼ 0; @u�o=@w ¼ 0; @w�

o=@w ¼ 0 (7.4)

Therefore: when e tends to zero, and as a consequence of a uniform and constant

steady flow far of the row, in the leading-order the approximate limiting through-

flow in the row of an axial compressor (turbo-machine) is independent of the short

(micro)-scale w.
Therefore, it is necessary to consider in the starting Eqs. 6.18a–6.18c the next

order (terms proportional to e!) In a such case we obtain, for u*1, w*1, and G�
1, the

following three equations:

1=rð Þ@G�
o=@r ¼ ð1=rDÞ½@u�1=@wþ ð@Y=@rÞ @G�

1=@w�; (7.5a)

@u�o=@z � @w�
o= @r ¼ 1=Dð Þ½ ð@Y =@z) @u�1= @w

�ð @Y =@r) @w�
1= @w];

(7.5b)

ð1=r) @G�
o=@z ¼ ð1=rDÞ½@w�

1=@wþ ð@Y=@zÞ@G�
1=@w�: (7.5c)

From these equations, by elimination of the first-order functions, u*1, w*1, and

G�
1, we obtain as a compatibility relation:

@u�o=@z� @w�
o=@r ¼ ð@Y=@zÞ @G�

o=@r� ð@Y=@rÞ @G�
o=@z

and with

u�o ¼ ð1=rDÞ @ c�
o=@z;w

�
o ¼ �ð1=rDÞ @ c�

o=@r

162 7 The RAM Approach in Aerodynamics



we derive an equation for the function c�
o ¼ Loðr; zÞ, which characterizes the

limiting through-flow in the row. Namely:

@=@rfð1=rDÞ@Lo=@rg + @ =@zfð1=rDÞ@Lo=@zg
¼ ð@Y=@zÞ@G�

o=@r� ð@Y=@rÞ @G�
o=@z:

(7.6)

This model equation for the function Lo is our first main rational and entirely

consistent result with the RAM Approach.

Again, due to being far upstream of the row, we have a uniform and constant

steady incompressibleð ro ¼ constantÞ fluid flow: 1=2ð Þrou2 þ p ¼ constant.

Then the jump,

j p½ �j � pw ¼þ1=2 � pw¼�1=2 (7.7a)

of the pressure, from blade to blade, gives

j½p�j ¼ � e rofu�oj½u�1�j þ w�
oj½w�

1�j þ ð1=r2ÞG�
oj½G�

1�jg þ Oð e2Þ (7.7b)

where |[p]| is a quantity of the order e.
But, according to Eqs. 7.5a–7.5c, obviously u*1, w*1, and G�

1 are linear functions

of the microscale structure w.
As a consequence of (7.7b), we have to write:

Lime!0ð�p=eroÞ ¼ u�o@u
�
1=@wþ w�

o@w
�
1=@w

þ ð1=r2ÞG�
o@G

�
1=@w ¼ Po:

(7.8)

From (7.5a–7.5c), we now eliminate the terms with the w – derivatives in the

(7.8) relation, and express the function Po, in (7.8) simply by:

Po ¼ D½u�o@G�
o=@rþ w�

o@G
�
o=@z� (7.9a)

in the row.
Outside the row, p remains continuous, even in the presence of wakes – which

are, in the considered Eulerian fluid flow, only vortex sheets (contact discontinuity

surfaces).

Finally, taking into account the periodicity in w, outside the row, we derive in

place of (7.9a) the following relation:

j½p�j ¼ 0 ) Po ¼ 0 (7.9b)

and

u�o@G
�
o=@r þ w�

o@G
�
o=@z ¼ 0 ) G�

o ¼ G�
oðLoÞ: (7.9c)
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As a consequence:

In the whole outside region upstream ot the row : G�
o ¼ 0 (7.10a)

In downstream region outside of the row : G�
o ¼ G�

oðLoÞ (7.10b)

From the above we can formulate the following main results relative to a

homogenized through-flow.

The velocity vector U�o ¼ ðu�o; w�
o; v�oÞ of the homogenized through-flow is

U�
o ¼ ð1=DÞ½rðy�YÞ ^ rLo�; (7.11)

such that the streamlines of the through-flow are obtained by the crossing ofmedian
surfaces,

y ¼ Y r; zð Þ þ constant

in the inter-blade row–channel, with the cylindrical surfaces, resulting from the

rotation around of the z-axis of the turbo-machine of meridian streamline surfaces

Lo ¼ constant

For this through-flow we have for the function Lo r; zð Þ, (see Eq. 7.6):

@=@rfð1=rDÞ@Lo=@rg þ @=@zfð1=rDÞ@Lo=@zg
¼ ð@Y=@zÞ @G�

o=@r� ð@Y=@rÞ @G�
o=@z;

(7.12a)

with, as conditions (if we use (7.11) for the composante v*o):

G�
o ¼ 0; upstream of the row; (7.12b)

G�
o¼ (r/DÞ ½@Y =@rÞ @Lo =@z - (@Y =@z) @Lo=@r], in the row; (7.12c)

G�
o ¼ G�

oðLoÞ; downsream of the row: (7.12d)

This axially symmetric through-flow model, which is dependent only on

coordinates r and z, introduces a fictitious force:

F ¼ ðPo=DÞrð y�YÞ; (7.12e)

which simulates the action of the blades in the row on the turbomachinery flow.

The force F, given by (7.12e), is a memory term (a trace) which � via homoge-

nization – replaces (simulates) the (vanishing) effect of the blades in the row.
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The first numerical applications of the above through-flow model in a turbo-

machine blade row was realized by Veuillot [140] at the ONERA and see also his

[142] paper.

7.1.2 The G–Z Approach

In a more sophisticated general case, Guiraud and Zeytounian [141] consider in

1971 at the beginning, in the cylindrical coordinates r, y z, the following starting

Eulerian incompressible equation written in the matrix form:

@T=@t þ @R=@r þ @Z=@z þ 1=rð Þ@S=@yþ H=r ¼ 0; (7.13)

and make the change of coordinates from ðt; r; y; zÞ to ðt; r; z; wÞ as shown, in
(7.14a):

y ¼ Y t; r; zð Þ þ 2peðk þ wÞ; (7.14a)

with the idea in mind that through-flow will be independent of w whereas r will

appear as a parameter for cascade flow.

Without any approximation the flow has to be periodic in w, and we enforce this
by:

Ukðt; r; z; e; wþ 1Þ ¼ Ukþ1ðt; r; z; e; wÞ; (7.14b)

UkþNðt; r; z; e; wÞ ¼ Ukðt; r; z; e; wÞ; (7.14c)

using for convenience the index k which runs from 1 to N ðe ¼ 1=N <<1Þ, the
number of blades in a row, and accordingly we assume that w is between zero and

one.

We expand, formally, Uk as powers of e, but we obviously need two such

expansions, because it is clear that the model through-flow in row is invalid near

the locus of the leading/trailing edges of the row.

The first one is a kind of outer expansion (as in (7.1) above):

Uk ¼ Uk;o þ eUk;1 þ ::::; (7.15a)

and will fail near both ends of the row where (two) inner expansions

Ukðt; r; z ¼ h rð Þ þ ez; e; wÞ ¼ U�
k;0 þ eU�

k;1 þ :::; (7.15b)

are needed. In (7.15b), z ¼ h(r) is the locus of the leading (or trailing) edge of a

row.
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When the change of coordinatesðfrom y to wÞ is made in the basic matrix

form Eq. 7.13 of the inviscid and incompressible Eulerian fluid flow, we obtain

(7.16a, b):

@Gk=@wþ 2 p e r Lk ¼ 0 (7.16a)

with

Lk � @Tk=@t þ @Rk=@r þ @Zk=@z þ Hk=r (7.16b)

and we observe that in matrix column Gk the following two parameters are present:

l ¼ o�D=w/; m ¼ D=w/t� (7.16c)

and we have introduced

gk ¼ vk � r uk @Y=@r � r wk @Y=@z � r@Y=@t (7.16d)

In (7.16c), t� is a reference time, D is the diameter of the row, o� is the reference
value of the angular velocity (o) of the row, and w/ is the upstream uniform axial

velocity.

Two facts should be stressed at the outset. First, if we assume axially symmetric

flow, @=@w ¼ 0, we obtain Lk ¼ 0, and it may be checked that Lk ¼ 0 is the matrix

form of axially symmetric through-flow. Second, if we use, by “brute force” )
e ¼ 0 in (7.16a), we do not obtain the equations of axially symmetric flow but,

rather, the highly degenerate equation @Gk=@w ¼ 0! This is somewhat strange, but

is not unexpected.

The way in which w has been defined substantiates that: when e is small,

variations in the w direction are magnified by 1= e, in comparison with variations

in t, and in the r, or z direction.

Now, substituting the basic outer expansion (7.15a) in Eq. 7.16a we derive a

hierarchy of equations. But here we write only first two:

@Gk;0=@w ¼ 0;

@Gk;1=@wþ 2 p r Lk;0 ¼ 0;
(7.17a)

which consist of equations to be solved in turn.

We choose, as appropriate to the present problem, the solution of

@Gk;0=@w ¼ 0 (7.17b)

for which uk,0, wk,0, vk,0, and pk,0 are all independent of w.
At this step we do not know the way in which these functions depend on t, r, and

z! Now, if we use the second equation of two equations (7.17a) in order to compute
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uk,1,. . . and so on, we encounter a compatibility condition arising from periodicity,

which forces Lk,0 to be zero!

We have thus obtained a through-flow, axially symmetric theory. The interesting

point is that we may go a step further and produce a through-flow theory to order

e inclusively! For this, it is first necessary to define the channel between two

consecutive blades:

we � w � wi; andwe define

D r; zð Þ ¼ wi � we

and we then introduce an average, < >, and a jump, [ ], operation, thus:

<U> ¼ ð1=DÞ
ð

Udw; integration from weto wi (7.18a)

and

U½ � ¼ Uwi � Uwe: (7.18b)

Now, if we think of the pressure for U (in (7.18b)), then the bracketed [p] may be

viewed as: the pressure difference between the two sides of one and the same blade.

Below, the various equations shows the basic results of the G–Z RAMApproach.

Up to first order in e, the average of velocity and pressure

<V 1ð Þ> ¼ Vk;0 þ e<Vk;1>;<p 1ð Þ> ¼ pk;0 þ e<pk;1> (7.19a)

satisfies, with an error of order e2, axially symmetric through-flow equations:

DivðD<V 1ð Þ>Þ¼ Oð eÞ;
@<V 1ð Þ>=@t þfrot<V 1ð Þ>þ2Oezg ^<V 1ð Þ>þrI 1ð Þ

¼F 1ð Þ þOð e2Þ;
, (7.19b)

where

I 1ð Þ ¼ <p 1ð Þ>þ 1=2ð Þj<V 1ð Þ>j2 � 1=2ð ÞO2r2;O ¼ l o,

P 1ð Þ ¼ ð1=2 pÞ½<pk;1>þ e<pk;2>�,
S ¼ S þ 2 p e ½ 1=2ð Þð wi þ weÞ�; S ¼ Y� y,

(7.19c)

with

@S=@t þ<V 1ð Þ>:rS ¼ Oð e2Þ (7.19d)

F 1ð Þ � ð1=DÞP 1ð ÞrS ) F 1ð Þ : rot F 1ð Þ ¼ 0: (7.19e)
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Two points again need to be stressed. First, the breadth of the channel from blade

to blade, set as

D r; sð Þ

enters in the continuity equation in an obvious way. Second, in the momentum

equation there is a source term,

ð1=DÞP 1ð ÞrS � F 1ð Þ

which is proportional to the jump in pressure and is orthogonal to S ¼ constant – a

surface which is just in the middle of the channel. This force has long been known

in through-flow theory; but in fact, via a very subtle ad hoc consideration

(first published, it seems, by Chung-Hua Wu, in NACA TN 2288 (1951); see also

Wu [143] paper).

The force F(1) occurs from redistribution (homogenization) of forces acted on

the flow by the blades of the row.

The G–Z [141] derivation given above is illuminating with regard to the error

involved in the approximation. To order one there is a dependency on w which may

be computed once the through-flow is known.

7.1.3 Transmission Conditions, Local Solution at the
Leading/Trailing Edges, and Matching

The above through-flow model in axial turbomachine is invalid near the locus of

leading/trailing edges of a row.

According to G–Z theory [144], a local asymptotic analysis is performed by

considering the inner expansions (7.15b) and rewriting the starting matrix equation

(7.13). We obtain:

@G�
k=@wþ 2pr@N�

k=@zþ 2perM�
k ¼ 0 (7.20a)

with

N�
k ¼ Z�

k � dh=drð ÞR�
k (7.20b)

M�
k ¼ @T�

k=@t þ @Rk
�=@r þ H�

k=r (7.20c)

and to zeroth order we obtain:

@G�
k;0=@wþ 2pr@N�

k;0=@z ¼ 0; (7.21)
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which is, in fact, the equations of cascade flow – but the configuration is that of

semi-infinite cascade flow. In [144] a detailed analysis of (7.21) is performed,

adapted to a local frame linked with the curve:

G : fz ¼ h rð Þ; y ¼ Y r; h rð Þð Þg

The semi-infinite cascade flow fills the gap between external (outside the row),

force-free, axially symmetric through-flow, and internal (in row) through-flow with

the source term F(1). Matching provides transmission conditions between these two

disconnected through-flows.

The necessity of such conditions appears readily as soon as any numerical

treatment of the whole through-flow in a two-row stage is attempted – from

upstream to downstream (infinity) of this two-row stage!

To zeroth order these transmission conditions are rather simple – and, indeed,

obvious on physical grounds: They mean that mass flow is conserved, as well as the

component of momentum parallel to the leading or trailing edge.

Local analysis has also been carried out by Guiraud and Zeytounian [144], to

first order, without a simple interpretation of the (rather complicated) result linked

with the transmission conditions!

We can consider the singular regions near the entry and exit of the row as planes

of discontinuity, if we impose the associated transmission conditions.

7.1.4 Some Complements

We now turn, briefly, to various cases concerning my work devoted with Guiraud

during 1969–1978, to turbomachinery fluid flows.

After the axial flow in a turbomachine, with the approximation of ideal incom-

pressible flow, has been analyzed by using an asymptotic method, assuming that the

blades are infinitely near one another – [141], and in a companion paper [144] – a

local study reveals the nature of the flow in their neighbourhood and leads to

a system of transmission conditions, because the partial differential equations of

the through-flow (in three different regions: upstream of a row, in a row, and

downstream of the row) must be supplemented by them in order to produce a

well-posed problem for the whole of the turbomachine (from upstream of the row to

downstream of this row) – an application of the concept of multiple scales was

considered.

Namely, in [145] an asymptotic theory for the flow in an axial compressor was

considered, with the aim of devising a coupling process between the so-called

meridian through-flow and the flow around cascades. Again the small parameter

e is the inverse of the (supposed 	 1) number of blades per row and/or number

of stages. As a matter of fact, the cascade flow is treated as a small perturbation

of the through-flow, and has to be computed, locally, as the two-dimensional

unsteady flow around an array of couples of cascades alternately fixed and in

7.1 Derivation of a Through-Flow Model Problem for Fluid Flow 169



motion. The array is constructed by developing on a plane the section of the

compressor by a circular cylinder, and continuing, by periodicity, the pair of

cascades so obtained, at each location. The coupling between through-flow and

cascade flow is part of the analysis. It happens, incidentally, that the equations of

through-flow are obtained through an averaging process, completed on a domain of

periodicity of the array of cascades flow, while the through-flow appears locally as

an unperturbed flow for the linearized problem defining the cascade flow. The 3D

nature of the complete flow is built in by the coupling itself, as is visualized by the

occurrence of source terms in each of the two sets of equations describing through-

flow and cascade flow. This paper [145] is aimed at producing a preliminary answer

to the question of: how to devise, as rationally as possible, a way of describing the

familiar scheme of cascade flow within the computation of a mean through-flow.

The main conclusion is that the concept of cascade flow should be revisited and

reassessed as one of unsteady flow around an array of cascades.

In 1978, I published, with Guiraud, a fourth paper [146], entitled “Cascade and

through-flow theories as inner and outer expansions”. In this, a technique of

matched asymptotic expansions is used in order to combine two kinds of approxi-

mation. Through-flow theory forms the basis for an outer expansion, while cascade

theory forms the basis for an inner one, and matching provides boundary conditions

for both flows. It appears that for the downstream through-flow, a technique of

multiple scales is necessary – at least in the vibrating case (vibrations induced by

harmonic vibrations of the blades) – in order to deal with the unsteady wakes

generated by the vibrating blades, and slowly modulated downstream by the steady

part of the through-flow.

Although there are very many good papers on the theory of turbomachine flow,

we have not found any attempt analogous to that described above in [145] and

[146], and it seems difficult to comment on the relation of the work to be presented

with others. Concerning the two papers [141] and [144], we observe that in

Sirotkin’s paper [147] only some results are similar to ours, but the main difference

is in the approach, which is less systematic.

Our objective, with Guiraud, concerning the papers [141] and [144–146] was

very modest, and we did not solve any problems nor present any results!

What we have proposed in our above-mentioned papers devoted to a rational

asymptotic description of turbomachine flows in the framework of a RAM

Approach, may be stated as follows.

Considering incompressible non-viscous fluid flow through a one-row machine,

assuming that there is a great number of blades, and, in [146], that the

corresponding cascade has a chord-to-spacing ratio of order one, we want to

show that the first few terms of an asymptotic representation of the 3D flow may

be guessed as having the form of an inner and outer multiple-scale expansion.

We confirm our guess – as is usually done with problems not amenable to

mathematically rigorous analysis – by an internal consistency argument: we show

that each term of the expansion, up to the order considered, may be computed by

solving well-set problems. We show the rational asymptotic process by which these
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problems may be extracted from the definition of the original 3D problem, which is a

typical RAM Approach.

For engineering applications it would have been very useful to find, as partial

problems, cascade flow theory as well as through-flow theory across a thick row.

Unfortunately, we have been unable to find any asymptotic process leading to such

a scheme. As a matter of fact, the obvious way to do so leads to only two significant

degeneracies. One is the through-flow of [141] and [144], which leaves no room for

cascade flow, and the other is the one considered in [146], which leads to cascade

flow but leaves no room for through-flow, including a thick row.

This conclusion inevitably leads to some deception, because there is no way to

embed Wu’s [143] technique within an asymptotic rational framework.

7.2 The Flow Within a Cavity Which is Changing Its Shape and

Volume with Time: Low Mach Number Limiting Case

Concerning the aerodynamics applications it is necessary to distinguish between

confined and unconfined flows and, especially, to elucidate the role of the Strouhal

number S (unsteadiness).

When we consider the low Mach number case, two distinguished limiting

processes emerge. One of them leads, from the full unsteady NS–F equations, to

the model of incompressible flow (Navier equations) and, in the case of confined

configuration provides a dynamic interpretation of thermostatics. The other one is at

the root of acoustics.

The first limiting process (incompressible) corresponds roughly to

M ! 0 with S fixed

while the second limiting process (of acoustics) corresponds to

M ! 0 with SM ¼ O 1ð Þ:

Curiously enough, the acoustic model enters into the scene even in the situation

which is apparently ruled by incompressible aerodynamics.

This occurrence is due to non-uniformities: a spatial one near infinity in the case

of unconfined flow, and a temporal one for small time (in particular near time ¼ 0,

where the initial data are given) and also for high-frequency oscillations in the case

of confined flows.

In [85], the influence of these high-frequency oscillations was taken into account

by Zeytounian and Guiraud via a judicious multiple-scales technique, but with an

infinity of short acoustic scales! Here, below, we consider, as a physical situation,

the low Mach number flow within a cavity which is changing its shape and volume
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with time. Such a problem presents industrial interest in the case of the compression

phase flow in an internal combustion engine (see our short notes in [86]).

We show how a limiting process corresponding to the Mach number going to

zero leads to an incompressible unsteady model flow, provided that acoustic waves

are averaged out over a great number of periods. This scheme may even describe

the case of a gas with a purely temporal variation of density due to substantial

changes of volume.

7.2.1 Formulation of the Inviscid Problem

We start from the Euler compressible dimensionless equations:

Dr=Dt þ rr:u ¼ 0

Du=Dt þ ð1=gM2Þrp ¼ 0

DS=Dt ¼ 0

p ¼ rgexpS

(7.22a)

where D=Dt ¼ @=@t þ u:r, with standard notation.

The Strouhal number in the first three of these equations is assumed equal to one,

such that the reference time is t� ¼ L�=U�, with L� a typical length scale of the

cavity O(t), and U� a characteristic velocity related to the motion of the wall

@O tð Þ � S tð Þ.
As boundary condition we write the slip condition:

u:nð ÞjS tð Þ � wjS tð Þ ¼ W t;Pð Þ;P 2 SðtÞ (7.22b)

where the (data) velocity W(t, P) characterizes the normal displacement of the wall

S(t), and n is the unit vector normal to this wall, directed inside O (t) – P being the

position point vector on the wall S(t).
But it is also necessary to take into account the conservation of the global mass

m� of the cavity (a bounded domain with L� as a diameter). In the dimensionless

reduced form we have:

r ¼ 1=V tð Þ; V tð Þ ¼ r�jOðtÞj=m�;V t ¼ 0ð Þ ¼ 1 (7.22c)

where |O (t)| is the volume of the cavity – a known function of time t.

As initial conditions we write:

t ¼ 0 : u ¼ 0; p ¼ r ¼ 1 and S ¼ 0 (7.22d)

More precisely, we consider the case when the motion of the wall, S(t), is started
impulsively from rest, and in a such case,
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W t;Pð Þ ¼ H tð ÞWSðPÞ; all along SðtÞ: (7.23a)

In this condition, the function H(t) is the Heaviside (or unit) function, such that

Limt!0þH tð Þ � 1; but initially : Hðt ¼ 0�Þ � 0: (7.23b)

7.2.2 The Persistence of Acoustic Oscillations

Asymptotics analysis and the RAM Approach in the formulated problem above is

not easy task, mainly due to the persistence of acoustic oscillations in the cavity

emerging for t ¼ 0þ.
Therefore, if the Mach number, M, is sufficiently small, the zeroth order

approximation leads to the thermostatic isentropic evolution of the gas within the

cavity as a whole. Superimposed onto them we have acoustic oscillations which

remain undamped as long as viscosity is neglected – when ones takes it into account

the Euler equations (7.22a), in place of full unsteady NS–F equations.

When the NS–F equations are considered (in place of Euler equations (7.22a)),

then a rather longer time O(Re1/2) is necessary in order to damp out the oscillations –

but a much longer time is necessary in order that the heat exchanges can take place.

As a matter of fact, this time is O(Re)!

Indeed, some new features occur (as a consequence of the unsteadiness of the

compressible fluid flow) when one deals with internal aerodynamics. The first

concerns the leading term in the expansion of pressure which is function of time

instead of being a constant. We write:

u ¼ u0 þ Mu� þM2ðu�� þ u2Þ þ :::; (7.24a)

p ¼ P0 tð Þ þM2ðp� þ p2Þ þM3p�� þM4ðp��� þ p4Þ þ ::: (7.24b)

and an expansion similar to the one for p is valid for density r.
At the leading order, one finds that r0(t) or P0(t) belongs to a family of adiabatic

thermostatic evolution of the gas in the cavity (container-bounded domain), and are

determined from the overall conservation of mass. That is, they do not depend on

position either. Furthermore:

P0 tð Þ ¼ ½ r0 tð Þ�g and r0 tð Þ ¼ 1=VðtÞ: (7.25)

The pair (u0, p2) belongs to a so-called “quasi-incompressible” model, but, as a

second peculiar feature, we find that it is perturbed by the pair u�; p�ð Þ, which
consists in acoustic oscillations generated during the setting-up of the motion.

Therefore, as demonstrated below, we have:
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u� ¼ �Sn
1Bn tð Þsin½fn tð Þ=M�Unðt; xÞ; (7.26a)

r� ¼ r0 tð Þ½r0=P0 tð Þ�1=2Sn
1Bn tð Þcos½fn tð Þ=M�Rnðt; xÞ; (7.26b)

where

dfn tð Þ=dt ¼ ½P0 tð Þ=r0 tð Þ�1=2onðtÞ: (7.26c)

In (7.26c), on(t) is one of the acoustic frequencies corresponding to the shape of

the container at time t, while the pair fUn t; xð Þ;Rn t; xð Þg serves to define the normal

mode of oscillation at frequency on(t) normalized to:

ð
OðtÞ

½ðUnÞ2 þ ðRnÞ2�dv ¼ 1

where the integral is over the bounded container.

A third peculiar feature is that the first correction due to compressibility

corresponds to the pair,

ðu2; p4 þ o4 tð ÞÞ;where 4o4 tð Þ ¼ gSn
1Bn
2jUnj2: (7.26d)

The Bn are readily found as function of time t by writing down conservation of

acoustic energy. We then obtain, in particular:

½r0 tð Þ�1=2Bn tð Þ ¼ Bnð0Þ: (7.26e)

On a time t ¼ OðRe=M1=2Þ this acoustic energy is mainly damped out by

viscosity and heat conduction within a Stokes-like boundary layer (see Zeytounian

and Guiraud [85]).

Of course, turbulent mixing would be much more efficient, and the long time

persistency of acoustic oscillations is mainly a further proof that laminar mixing is

very poor!

It must be emphasized that on a laminar basis, even when the transient acoustics

has been damped out, P0(t) and r0(t) remain adiabatically related, but a much longer

time would be needed for inducing isothermal evolution.

A final feature should be pointed out. Under resonance conditions (u*, p*) gains

energy from the motion of the container, and their limiting amplitude is derived

from a fairly complicated non-linear process which is understood only in one-

dimensional situations (Chester [148], Rott [149]).

7.2.3 Derivation of an Average Continuity Equation

First we should use the time t, a slow time, and then we would bring into the

solution an infinity of fast times designed to cope with the infinity of periods of free
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vibrations of the cavity O(t). Below we set U for the solution U expressed through

this variety of time-scales, and in such a case we write

@U=@t ¼ @U=@t þ 1=Mð ÞDU (7.27)

where ∂U/∂t stands for the time derivative computed when all fast times are

maintained constant, while (1/M)DU is the time derivative (with D, a differential

operator) occurring through all the fast times.

We carry such a change into the starting Euler equations (7.22a), and then

expand according to:

U ¼ U0 þM U1 þM2U2 þ :::; with U hUi þ U� (7.28)

where hUi is average (over all rapid oscillations and depends only of the slow time

t and space position x) of U, and U* is the fluctuating (oscillating, which depends of

all fast times) part of U. More precisely, the operation

U ) hUi (7.29a)

erases all the oscillations associated with the fast times, and obviously

DhUi ¼ 0: (7.29b)

For instance, for the fluctuating parts of u*0 and r*1, we can write, respectively,
as a (more complete) solution:

u�0 ¼ Sn
1½An tð Þ Cn� Bn tð Þ Sn�Un (7.30a)

r�1 ¼ r0 tð Þ½r0 tð Þ=p0 tð Þ�1=2Sn 
 1 An tð Þ Snþ Bn tð Þ Cn½ �Rn (7.30b)

with

Cn ¼ cos½ 1=Mð Þ’n tð Þ and Sn ¼ sin� ½ 1=Mð Þ’nðtÞ� (7.31a)

hCp Cqi ¼ hSp Sqi ¼ 1=2ð Þdpq;
and dpq ¼ 0; if p 6¼ q; dpq ¼ 1; if p � q;

(7.31b)

hCni ¼ 0; hSni ¼ 0; hCp Sqi ¼ hCq Spi � 0; (7.31c)

DCn ¼ �ðd’n tð Þ=dtÞSn; DSn ¼ ðd’n tð Þ=dtÞCn; (7.31d)

where again
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dfn tð Þ=dt ¼ ½p0 tð Þ=r0 tð Þ�1=2on;fnð0Þ ¼ 0: (7.32)

In (7.30a, 7.30b) Un and Rn are the normal modes of vibrations of O(t) with
eigen-frequencies on: namely,

onRn þr:Un ¼ 0;�onUn þrRn ¼ 0; Un:nð ÞS tð Þ ¼ 0: (7.33)

The relation (7.32) defines the scales of the fast times in relation to the speed of

sound in cavity (at the time t) and with the eigenfrequencies of the cavity at the

same time.

With (7.27), from the Euler equations (7.22a) we obtain the following equations

for the functions u, r, p, and S:

Drþ M ð@r=@t þ u:rrþ rr:uÞ ¼ 0

ð1=gÞrp þ MrDuþM2r½@u=@tþ ðu:rÞu� ¼ 0

DSþM ð@S=@t þ u:rSÞ ¼ 0

p ¼ rgexpS;

(7.34a)

with the slip condition

u:nð ÞS tð Þ ¼ Wðt;PÞ: (7.34b)

From the expansion (7.28), at the zero-order, from the above system (7.34a) we

derive:

Dp0 ¼ 0;Dr0 ¼ 0;DS0 ¼ 0

which shows that r0 and S0 are independent of the fast times and, as a consequence

of the equation of state, that this is also the case for p0, which is, in fact, a function

of only the slow time t:

p0 ¼ p0 tð Þ; r0 ¼ r0 t; xð Þ; S0 ¼ S0ðt; xÞ: (7.35a)

Now, at the first order, from the equation for S, we derive the equation

DS1 þ @S0=@t þ u0:rS0 ¼ 0

and, since S0 ¼ S0 t; xð Þ is independent of the fast time and DhS1i ¼ 0, we have the

following average equation for S0 t; xð Þ:

@S0=@t þ hu0i:rS0 ¼ 0: (7.35b)
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But, close to initial time t ¼ 0ð Þ, when we consider the Euler equations (7.22a)

written with the short time, t ¼ t=M, in place of the slow time, t, we use the

local-in-time asymptotic expansion

S ¼ Sa0 þ MSa1 þ MSa2 þ :::

where Sak ¼ Sakðt; xÞ; k ¼ 0; 1; 2; :::; and the initial condition

S ¼ 0 at t ¼ 0

We derive

@Sa0=@t ¼ 0; @Sa1=@t ¼ 0 ) Sa0 ¼ 0; Sa1 ¼ 0

and, as a consequence, from (7.35b), by continuity

S0 ¼ 0: (7.35c)

On the other hand, with (7.35c) we obtain

p0 tð Þ ¼ ½ r0 tð Þ�g (7.35d)

the function r0 tð Þ being determined by the relation

ð
O tð Þ
r0 tð Þdv ¼ r0 tð Þ

ð
O tð Þ

dv ) r0 tð ÞjO tð Þj ¼ m�

where jO tð Þj is the volume of the cavity, such that

djO tð Þj=dt ¼ �
ð
S tð Þ

W t;Pð Þ ds (7.35e)

and m� (¼ const) is the whole mass of the cavity, and, according to the initial

condition for the density we have jOð0Þj � m�.
If, in particular, we assume that r0 tð Þ � 1 (and as a consequence p0 tð Þ � 1 also)

then jO tð Þj � m��const. Obviously, this is not the case in the various applications!

At the first order, from the first three equations of (7.34a), with the above results,

we derive the following two equations:

D r1 þ dr0=dt þ r0r:u0 ¼ 0, (7.36a)

ð1= gÞrp1 þ r0Du0 ¼ 0, (7.36b)
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with, from (7.34b),

u0:nð ÞS tð Þ ¼ W t;Pð Þ: (7.36c)

Since, Dh r1i ¼ 0, from (7.36a) we derive an average (zero-order) continuity

equation:

ð1=r0Þdr0=dt þr:hu0i ¼ 0: (7.36d)

with (from (7.36c))

ðhu0i:nÞS tð Þ ¼ W t;Pð Þ: (7.36e)

From (7.36b), since Dhu0i ¼ 0, we also have:

rhp1i ¼ 0 ) hp1i ¼ 0; p1 � p�1: (7.36f)

7.2.4 Solution for the Fluctuations u�0 and r�1

For the fluctuations we derive, from Eqs. 7.36a, 7.36b with 7.36c, the following

acoustic-type equations with slip condition:

D r�1 þ r0r:u�0 ¼ 0; (7.37a)

ð1= gÞrp�1 þ r0Du
�
0 ¼ 0; (7.37b)

with

u�0:n
� �

S tð Þ ¼ 0: (7.37c)

Concerning the equation for the specific entropy, we have (because S0 ¼ 0):

DS�1 ¼ 0 ) S�1 ¼ 0; (7.37d)

and as a consequence, from the equation of state, for the fluctuation of the pressure,

we derive

p�1 ¼ gðp0=r0Þ r�1: (7.37e)

As a consequence of (7.36f) we also have
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hr1i ¼ 0 ) r1 � r�1 (7.37f)

The solution of the two equations for u�0 and ð r�1= r0Þ, obtained from (7.37a,

7.37b) when we use (7.37c), is given by (7.30a, 7.30b).

Indeed, if we use the solutions (7.30a, 7.30b) in Eqs. 7.37a and 7.37b, then:

Dðr�1=r0Þ þ r:u�0 ¼ Sn
1½An tð Þ Cn

� Bn tð Þ Sn�f½ r0 tð Þ=p0 tð Þ�1=2ðd’n tð Þ=dtÞRn þr:Ung

and

ðp0=r0Þrð r�1=r0Þ þ Du�0 ¼ Sn
1½An tð Þ Sn

þ Bn tð Þ Cn�f½p0 tð Þ=r0 tð Þ�1=2rRn � ðd’n tð Þ=dtÞUng

and using (7.31a–7.31d) and (7.32) we determine that the right-hand side of the

above equations are quite zero.

We observe also that the eigenfunctions (the normal modes of vibrations of O tð Þ
with eigenfrequencies on), Un and Rn, are normalized according to:

ð
OðtÞ
½ Unð Þ2 þ Rnð Þ2� dv ¼ 1

It is now necessary to determine, from (7.34a, 7.34b), the equations for the

second-order approximation, and then derive, first, a system of two equations for

the amplitudes, An tð Þ and Bn tð Þ, which present the possibility of considering the

long time evolution of the rapid oscillations.

However, it is also necessary to derive an equation for the average value of u0,

which gives, with the average continuity equation (7.36d), a system of two average

equations for hu0i and hp2i.

7.2.5 The Second-Order Approximation

We return to system of Eqs. 7.34a with 7.34b, and consider the second-order

approximation for S2; p2, and r2. First, we obtain:

DS2 þ @hS1i=@t þ ½hu0i:rÞ�hS1i ¼ 0

but according to (7.37d), S�1 ¼ 0, and also

@hS1i=@t þ ½hu�0i:r�hS1i ¼ 0:
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With zero initial condition at t ¼ 0, we have (since 〈S1〉 ¼ 0):

S1 � 0; and then : S�2 ¼ 0 (7.38a)

For the third-order approximation we have

DS3 þ @hS2i=@t þ ½hu0i:r�hS2i ¼ 0

and again (according to the second relation in (7.38a)) we obtain

S2 ¼ 0 and S�3 ¼ 0 (7.38b)

Finally, from the equation of state, when we take into account that

S0 ¼ S1 ¼ S2 � 0

we derive the following relation between p2 and r2:

p2 ¼ gðp0=r0Þ½ r2 þ ð1=2r0Þð g� 1Þð r1Þ2�: (7.38c)

Now, again from the system of Eq. (7.34a), we derive two second-order

equations:

Dr2 þ r0r:u1þ@r1=@t þ u0:rr1 þ r1r:u0 ¼ 0 (7.39a)

rðp2=gr0Þ þ Du1 þ ðr1=r0ÞDu0 þ @u0=@t þ ðu0:rÞu0 ¼ 0 (7.39b)

with

u1:nð ÞS tð Þ ¼ 0 (7.39c)

From (7.39b) we now have, first, the possibility of deriving the following

average equation for hu0i:

@hu0i=@t þ hðu0:rÞu0i þ rðhp2i=gr0Þ þ ð1=r0Þhr1Du0i ¼ 0: (7.39d)

This equation is explained below.

On the other hand, using (7.38c), we write Eqs. 7.39a, 7.39b as an inhomoge-

neous, acoustic-type, system for r2=r0 and u1: namely,

Dðr2=r0Þ þ r:u1 þ G ¼ 0,

ðp0=r0Þrð r2=r0Þ þ Du1 þ F ¼ 0, (7.40a)

u1:nð ÞS tð Þ ¼ 0,
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where

G ¼ @ðr1=r0Þ@t þr:½ð r1=r0Þu0� þ ð1=r0Þ½dr0=dt�ðr1=r0Þ; (7.40b)

F ¼ @u0=@t þ ðu0:rÞu0 þ ðg� 2Þðp0=r0Þðr1=r0Þrðr1=r0Þ: (7.40c)

In G and F, according to (7.40b, 7.40c), we have three categories of terms:

1. The (average hGi and hFi) terms independent of the scale of the fast times.

2. The terms GLand FLð Þ which are linearly dependent on the Cn, and Sn.

3. The terms which depend quadratically GQand FQ

� �
on the Cn and Sn, and are

proportional to cos½ 1=Mð Þð’p tð Þ � ’q tð ÞÞ�or sin½ 1=Mð Þð’p tð Þ � ’q tð ÞÞ�.
As a consequence we write, in system (7.40a) for the inhomogeneous terms

G and F, the following formal representation:

G ¼ hGi þ ½p0 tð Þ=r0 tð Þ�1=2Sn
1 GnCCn þ GnS Sn½ � þ GQ; (7.41a)

F ¼ hFi þ ½p0 tð Þ=r0 tð Þ�Sn
1 FnSSn þ FnC Cn½ � þ FQ; (7.41b)

where hGi and hFi and also coefficients. GnC;GnS;FnC;FnS, are determined from

(7.40b, 7.40c).

More precisely, in (7.41a, 7.41b), the terms hGi and hFi indicate the terms

independent of fast times, while in the Sn
1 we have the terms with Cn and Sn

according to (7.30a, 7.30b). On the other hand, in GQ and FQ we have the terms

proportional to

cos½ð’p � ’qÞ=M or sin� ½ð’p � ’qÞ=M�:

Below we assume that the last quadratic terms, GQ and FQ, are not resonant

triads satisfying the relation:

j’p tð Þ � ’q tð Þj ¼ ’r tð Þ; 8p; q; r (7.41c)

Thus, none of the quadratic terms can interfere with any of the terms depending

linearly on the Cn and Sn.

As a consequence of the linearity of our system (7.40a), we can, in particular,

write the solution for the fluctuations ðr�2=r0Þ and u�1, corresponding only to the

terms linearly dependent on the Cn and Sn in (7.41a, 7.41b), in the following form:

r�2=r0 ¼ Sn
1 RnCCn þ RnS Sn½ � (7.42a)

u�1 ¼ ðp0=r0Þ1=2Sn
1 UnCCn � UnSSn½ � (7.42b)

and, for example, the amplitudes RnS and UnC satisfies the system:
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onRnS þr:UnC þ GnC ¼ 0

� onUnC þrRnS þ FnS ¼ 0 (7.42c)

UnC:n ¼ 0

on S tð Þ:

Obviously, for RnC and UnS we obtain a similar system when in place of RnS,

UnC, GnC and FnS we write RnC, UnS, GnS and FnC.

For the existence of a solution of both these inhomogeneous systems it is

necessary to use two compatibility relations (which are, in fact, a consequence of

the Fredholm alternative), respectively related to (GnC, FnS) and GnS;FnC

� �
, and for

this the system (7.33), for the normal modes (Rn, Un) of vibrations of the cavity O(t)
with eigenfrequencies on, must be taken into account.

Therefore, from (7.33), after an integration by parts, it follows that

0 ¼
ð
O tð Þ
f½onRn þr:Un RnC �� ½ onUn �rRn�UnCgdv

¼
ð
O tð Þ
f½onRnC þr:UnC Rn �� ½ onUnC �rRnC�Ungdv;

(7.43a)

when we also take into account the boundary ðon @O tð Þ ¼ S tð ÞÞ, the conditions:

UnC:n ¼ 0; and UnS:n ¼ 0; on S tð Þ: (7.43b)

As a consequence, we derive the following compatibility condition for the

resolvability of the above, (7.42c), inhomogeneous system:

ð
O tð Þ

GnCRn � FnS:Un½ �dv ¼ 0 (7.44)

Of course, a compatibility relation similar to (7.44) is verified if we write, in

place of GnC and FnS, respectively, GnS and FnC, after the use of a system similar to

(7.42c) for RnC, UnS, with GnS and FnC.

7.2.6 The Average System of Equations for the Slow Variation

With the average continuity equation (7.36d) and slip condition (7.36e), for hu0i,
we lack sufficient information for the determination of the slow (nearly incom-

pressible) variation! Such information is derived from the average equation (7.39d).

Again, therefore, according to solution (7.30a, 7.30b), we first obtain:
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hðu0:rÞu0i ¼ ðhu0i:rÞhu0i

þ 1=2ð ÞSn
1ðAn
2 þ Bn

2Þ½Un:r�Un (7.45a)

and

ð1= r0Þh r1Du0i ¼ � 1=2ð ÞSn
1ðAn
2 þ Bn

2Þ½Rn:r�Rn (7.45b)

when we also make use of (7.33). From this equation we also derive the relation:

½Un:r�Un ¼ 1=2ð ÞjrUnj2

Finally, forhu0i we derive the following average equation of motion:

@hu0i=@t þ ðhu0i:rÞhu0i þ rP ¼ 0 (7.46a)

where

P ¼ ðhp2i=gr0Þ þ 1=4ð ÞSn
1ðAn
2 þ Bn

2ÞfjUnj2 � jRnj2g (7.46b)

is a pseudo-pressure affected by the acoustic perturbations.

But, hu0ijt¼0 being irrotational (according to a detailed investigation in [85],

Sect. 4 and see also Sect. 7.2.7 below), and according to the average equation

(7.46a), for hu0i, it remains irrotational for any time t > 0:

hu0i ¼ r’: (7.47)

In such a case, the average continuity equation (7.36d) for hu0i, with the slip

condition (7.36e) on the wall S(t), allows us to determine hu0i due to the following
Neumann problem for potential function ’:

D’þ d logr0 tð Þ=dt; (7.48a)

with

ðd’=dnÞS tð Þ ¼ W t;Pð Þ: (7.48b)

In such a case, for the first term in P given by (7.46b), we write:

hp2i=gr0 ¼ � ½@’=@t þ 1=2ð Þjr’j2�

� 1=4ð ÞSn
1ðAn
2 þ Bn

2ÞfjUnj2 � jRnj2g (7.48c)

which take into account, explicitly, the influence of the acoustics on the averaged

pressure hp2i.
The term

� 1=4ð ÞSn
1ðAn
2 þ Bn

2ÞfjUnj2 � jRnj2g;
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in (7.48c) is a trace of the acoustics, in the model problem (7.48a, 7.48b) with

(7.48c) – a sequel (a memory of the acoustic oscillations) of the application of the

homogenization technique.

We observe also that as an initial condition for a hu0i, at t ¼ 0, solution of the

average equation (7.46a) with (7.46b), according to solution (7.30a) and the starting

initial condition (7.22d), we can write:

hu0i þ Sn
1Anð0ÞUn 0; xð Þ ¼ 0 for t ¼ 0 (7.48d)

7.2.7 The Long Time Evolution of the Fast Oscillations

With the above derivation of the average system of equations for slow variation we

have eliminated only part of the secular terms in u1 and r2. As a consequence it is
necessary to consider in detail the system of compatibility conditions (7.44) for GnC

and FnS, and similarly for GnS and FnC.

First, we consider GnC, FnS, GnS and FnC, and take into account the relations

(7.40b, 7.40c), (7.41a, 7.41b) and the solution (7.30a, 7.30b), for u*0 and r*1, with
u0 ¼ hu0i þ u�0 and r1 � r�1.

A straightforward but technically long calculation produces the following

formulae:

GnC ¼ ðr0=p0Þf dBn=dtð ÞRn þ Bn½ @Rn=@tð Þ þ ðdlogr0=dtÞRn þr:ðhu0iRnÞ�g
(7.49a)

FnS ¼ � ðr0=p0Þf dBn=dtð ÞUn þ Bn½ @Un=@tð Þ þ ðUn:rÞhu0i
þðhu0i:rÞUn�g

(7.49b)

GnS ¼ � ð r0=p0Þf dAn=dtð ÞRn þ An½ @Rn=@tð Þ þ ðdlog r0=dtÞRn

þr:ðhu0iRnÞ�g
(7.49c)

FnS ¼ ð r0=p0Þf dAn=dtð ÞUn þ An½ @Un=@tð Þ þ ðUn:rÞhu0i
þðhu0i:rÞUn�g

(7.49d)

and we observe that in (7.49a) and (7.49c), according to (7.36d):

r:ðhu0iRnÞ ¼ Rnðr:hu0iÞ þ hu0i:rRn

� hu0i:rRn � ðdlog r0=dtÞRn

(7.50)

Then, from the compatibility relation (7.44) with (7.49a, 7.49b), and from a

similar (to 7.44) compatibility relation, together with (7.49c, 7.49d), we derive the
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two ordinary differential equations for the amplitudes An(t) and Bn(t), taking into

account the normalization condition: namely,

dAn=dt þ gn tð ÞAn ¼ 0, (7.51a)

dBn=dt þ gn tð ÞBn ¼ 0, (7.51b)

where gn tð Þ ¼ 1=2ð Þ
ð
D tð Þ

@=@t½jUnj2 þ jRnj2�dv

þ 1=2ð Þ
ð
D tð Þ
fhuoi:r½jUnj2 þ jRnj2�gdv

þ
ð
D tð Þ

½ðUn:rÞhuoi�:Undv

which can be rewritten as

gn tð Þ ¼ 1=2ð Þdlog ro=dt þ
ð
D tð Þ

½ðUn:rÞhuoi�:Undv: (7.51c)

This above relation is derived when we take into account that, respectively:

1=2ð Þ
ð
D tð Þ

@=@t½jUn j2 þ jRnj2�dv ¼ � 1=2ð Þ
ð
SðtÞ

½jUnj2 þ jRnj2�W t;Pð Þds

due to normalization and (7.35e), and also that

1=2ð Þ
ð
D tð Þ

fhuoi:r½jUnj2 þ jRnj2�gdv

¼ 1=2ð Þ
ð
D tð Þ

rf½jUnj2 þ jRnj2�hu0igdv

� 1=2ð Þ
ð
D tð Þ

½jUnj2 þ jRnj2�ðr:huoiÞdv:

But:

1=2ð Þ
ð
D tð Þ

r½jUnj2 þ jRnj2�huoigdv

¼ 1=2ð Þ
ð
SðtÞ

½jUnj2 þ jRnj2�W t;Pð Þds,

due to slip condition (7.36e), and

� 1=2ð Þ
ð
D tð Þ

½jUnj2 þ jRnj2�ðr:huoiÞdv ¼ 1=2ð Þdlog ro=dt
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according to continuity equation (7.36d) and normalization condition.

At t ¼ 0 we have, as initial conditions from (7.48d),

t+ ¼ 0 : Sn>1An 0ð ÞUn 0; xð Þ ¼ � huoi (7.51d)

and

Bnð0Þ ¼ 0; n ¼ 1; 2; ::: (7.51e)

We derive the above initial conditions for An(t) and Bn(t) by applying the

starting initial conditions (7.22d) for u and r, and this gives, first, for An the

condition (7.48d), because u ¼ 0 at t ¼ 0, when we take into account the solution

(7.30a) for u*0 and also the decomposition (7.28) for U ¼ hUi þ U�.
The value of Bn(0) ¼ 0 is related with the initial condition at t ¼ 0, for r ¼ 1ð Þ,

which is compatible with the leading-order solution:

r�o t ¼ 0ð Þ ¼ 1; and r�1 0;~xð Þ ¼ 0:

Due to Eq. (7.51b) for Bn, obviously:

Bn tð Þ � 0 for all t: (7.52a)

Concerning An(0), its values must be derived from (7.48d/7.51d), and it depends

on the value of < u0 > at t ¼ 0. On the other hand, obviously, if in condition

(7.22b) W(0, P) ¼ 0, then < u0 > is also zero at t ¼ 0, and

Anð0Þ ¼ 0

which also implies that

An tð Þ � 0 is zero for all tð Þ (7.52b)

and then the oscillations are absent!

However, if the motion of the wall of the deformable in time cavity is started
impulsively from rest (or accelerated from rest to a finite velocity in a time O(M)),
then accordingly we have:

W 0 ;Pð Þ ¼ 0::: but : W 0þ;Pð Þ 6¼ 0 (7.53a)

and the same holds for the averaged velocity, < u0 >.

In this case we have An 0þð Þ 6¼ 0, and as consequence:

An tð Þ is also non� zero; when t 
 0þ (7.53b)
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7.2.8 Some Concluding Comments

The most important result we obtain is as follows. If the motion of the wall of the
deformable (in time) cavity, where the inviscid gas is confined, is started impul-
sively from rest, then the acoustic oscillations remain present and have a strong
effect on the pressure. Therefore, this pressure would be felt by a gauge, and would
not be related to the mean (averaged) motion. The same holds if the motion of the
wall is accelerated from rest to a finite velocity in a time O(M).

We again stress the necessity of building into the structure of the non-viscous

solution for U(u, r, p, S), when we consider the Euler equations (7.22a), a

multiplicity of times – a family of fast times � in contrast to M€uller [150], Meister

[151], and Ali [152].

If we deal with a slightly viscous flow, when the Mach number M � 1, we must

start from the full unsteady NS–F equations. In such a dissipative (viscous and heat-

conducting) case, we bring into the analysis a second small parameter Re�1, the

inverse of a (large) Reynolds, Re 	 1, number, and we must then expect that the

acoustic oscillations are damped out.

Unfortunately, a precise analytical (when a similarity rule between M and Re�1

is assumed) multiple time-scale asymptotic investigation of this damping phenom-

enon appears to be even more difficult problem, and raises many questions! This

damping problem is considered mainly in the framework of the hypothesis (see

[13], pp. 148–161):

Re >>1=M (7.54)

In M€uller [150], the author provides insight into the compressible Navier–Stokes

equations at low Mach number when slow flow is affected by acoustic effects in a

bounded domain over a long time! As an example of an application, M€uller
mentions a closed piston-cylinder system in which the isentropic compression

due to a slow motion is modified by acoustic waves. M€uller uses only a two-time

scale analysis, which is obviously insufficient for the elimination of the secular

terms in derived approximate systems (as has been mentioned in Sect. 7.3.5).

The results obtained recently by Ali [152] are more interesting than those

formally derived by M€uller [150], in spite of the fact that in Ali’s paper a two-

time scale analysis is again used – the Euler equations for a compressible perfect

fluid being considered on a bounded time-dependent domain Ot 2 <n, where O0

denotes the domain at the initial time t ¼ 0. The evolution of the bounded time-

dependent domain is described by a family of invertible maps:

Ft : <n ! <n (7.55a)

depending continuously on the time t, such that Ot ¼ FtðO0Þ for all t.
This severe assumption on the domain Ot is, nevertheless, general enough to

include a moving rigid domain, or a cylinder cut by a fixed surface and a moving
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surface (piston problem), or a contracting–expanding sphere (star). In the particular

case of a moving rigid domain, Ali [152], p. 2023, writes:

Ft xð Þ ¼ xþ c tð Þ: (7.55b)

The map Ft has a geometric meaning and is related neither to the fluid motion

nor to the Lagrangian variables. Moreover, Ft does not need to be globally unique,

since only its restriction to a neighbourhood of the boundary @Oo characterizes the

motion of the domain’s boundary @Ot.

From the conclusions of Ali [152], pp. 2037–2038, we mention that his analysis

is not conclusive, since the theory presented is not capable of providing a full

resolution of high-frequency acoustics. Nevertheless, the representation derived, in

Sect. 6 of his paper, provides a hint of a partial theoretical comprehension of the

acoustic modes generated by the motion of the boundary.

Obviously, the main key point is that one fast time variable is not sufficient to

describe the sequence of modes produced by a generic motion of the boundary.

Thus we need to extend the “Ali [152] theory” to include a family of fast time

variables non-linearly related to the slow time and (eventually) to the space

variables.

It is an open question whether the number of independent fast variables for each

term of the asymptotic expansion should be increased with the order of the term.

This extension, mentioned by Ali, has a theoretical interest in itself, and is

a necessary step for the development of efficient numerical schemes for low

Mach number flows in a time-dependent bounded domain (as is the case in

a combustion problem). It was, in fact, discovered by J.-P. Guiraud and myself

30 years ago, in 1980, and it is formally realized in Sects. 7.2.1–7.2.6 above.

Obviously, the case when the starting equations, in place of (7.22a), are the full

unsteady NS-F equations, with

Re ¼ O 1ð Þ and Pr ¼ O 1ð Þ fixed; with M ! 0 (7.56)

is a more difficult problem!

Here we mention only a partial result which concerns the derivation of the

following averaged reduced system:

r½hp2i=g ro tð Þ� þ hFi ¼ 0

r:hu1i þ hGi ¼ 0

hHi � ð g� 1ÞTw tð ÞhGi ¼ 0:

(7.57)

This average system merits careful analysis. In the first equation of (7.57),

in < F>, the Reynolds number Re is present, while in the third equation, in < H>,

the Péclet (Pé ¼ PrRe) number is present. From this set of equations a

Navier–Fourier-type nearly incompressible average system of equations has been

derived (see [13], pp. 149–154).
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A difficult problem is also the study of the viscous damping of the acoustic fast

oscillations. Obviously, the inviscid theory developed in Sect. 7.2 do not present the

possibility of investigating this damping process, and this is also the case when

Re ¼ O(1) fixed in the framework of a Navier–Fourier model.

On the other hand, if we deal with a slightly viscous flow (large Reynolds

number, Re 	 1), we must start from NS–F equations, in place of the Euler

equations analysed above, and bring into the analysis a second small parameter:

e2 ¼ 1=Re <<1 (7.58a)

which is the inverse of the Reynolds number.

We must then expect that the acoustic fast oscillations are damped out. Unfortu-

nately, a precise analysis of this damping phenomenon – which appears, for

instance, when a general similarity rule

e2 ¼ Mb; b> 0 (7.58b)

is assumed – appears not to be an easy task, and raises many questions.

Therefore, it is first necessary to take into account an acoustic-type inhomoge-

neous system with a family of very slow times via a new operator (D):

d D U in 7:27ð Þ (7.58c)

where it is assumed that order d > M!

It appears that as a consequence of the inhomogeneity, a boundary–layer analy-

sis is necessary, which is related with a Stokes-layer of thickness

w2¼ e2 M: (7.58d)

The analysis of the Stokes-layer equations is rather complicated, but is necessary

for the investigation of this damping process.

A matching condition (evaluating the flux outward from the Stokes layer)

between the acoustic and Stokes-layer components of the normal velocity gives:

w ¼ dM ) d ¼ w=M ¼ Re M½ ��1=2: (7.59)

However, further investigations are necessary if we want to understand how
viscous damping operates when this relation is not satisfied, and other points

meriting investigation include the behaviour of the Rayleigh layer.
For a deeper investigation of dissipative effects in the case of a time-dependent

cavity – a problem which has practical interest in the simulation of the starting
process of a space rocket driven by a stream of gases emitted behind it when the fuel
is burned inside – it is necessary to consider the similarity rule (7.58b) for large
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Reynolds, Re >>1ð e<<1Þ, numbers and low Mach, M � 1, numbers – at least

during the starting (at t+ ¼ 0) short time interval.

Various interesting results relating to the above-mentioned “combustion

problem” are included in our monograph [13] devoted to low Mach numbers:

Chapter 1, pp. 14–15, discusses a simple model for combustion (with various

references); Chap. 2, pp. 32–33, presents a brief account of the low Mach number

theory applied to combustion (with references); and Sects. 3.3 and 3.4 in Chap. 3

deal with different non-viscous and heat-conducting models in a bounded time-

dependent domain.

Concerning the damping of acoustic oscillations by viscosity, we observe that

the Rayleigh-layer emerges, in the solution of the problem related with the damping

phenomenon, because of the conditions on the wall in Stokes-layer equations. The

investigations of the evolution of the Rayleigh-layers with time is a difficult

problem! If, on the one hand, the Stokes-layer corresponds to acoustic (oscillating)

eigenfunctions of the cavity, the Rayleigh-layer corresponds, on the other hand, to

conditions on the wall of this cavity. Moreover, the thickness of the Stokes-layer,

being given by

w ¼ M=Re½ �1=2 (7.60)

is independent of the time and the behaviour of the Stokes-layer, for a large time,

does not have any influence on the Stokes-layer! Concerning the Rayleigh-layer,

however, its thickness grows as the square root of the time, and obviously a deeper

analysis of the interaction between these two boundary-layers, when time increase

to infinity, is required.

A last remark concerning the adaptation to the initial conditions in a time-

dependent bounded container is that our first paper,1 with Guiraud [85], includes

some preliminary results concerning this problem:

Only with the help of a multiple-scale technique, via an infinity of fast times (designed to

cope with the infinity of period of free vibration of the bounded container), do we have the

possibility of eliminating the various secular terms in derived model equations.

Unfortunately, a two-time, simple technique, with t and t ¼ t=M, is not ade-

quate, because such a technique does not provide the possibility of eliminating all

seculars terms. The main reason is that the acoustic eigenfrequencies of the

bounded container appear in the internal problem, and because the container is a

function of the slow time t (the time of the boundary velocity–wall velocity related

with the deformation of the container in time), these eigenfrequencies are also

functions of the (slow) time t. More precisely, when the wall, at t+ ¼ 0, is started

impulsively from rest (t� ¼ 0), the limiting case

1 This paper was subject of a communication during the 7th “Colloque d’Acoustique

Aerodynamique” in Lyon (France), 4–5 November 1980 and, also, of a very fruitful discussion

with D. G. Crighton during this “Lyon’s colloque”.
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M ! 0 with t fixed (7.61)

is singular near the initial time, and it is necessary to consider a local-in-time

limiting case:

M ! 0 with t fixed (7.62)

with t ¼ t=M:
In such a case, close to initial time ðt ¼ 0Þ, we derive the classical equations of

acoustics and obtain the corresponding solution (see [13], Sect. 3.3.4) of the

Chapter 3. Unfortunately, this solution of the acoustic problem does not tend to a

defined limit when t tends to infinity, which shows that matching is not possible!
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Chapter 8

The RAM Approach in the Bénard

Convection Problem

8.1 An Introduction

During my time at the University of Lille1 from 1972 to 1996, and while living in

retirement at 12 rue Saint-Fiacre, Paris, from 1997 to 2009, I published various

papers devoted to the well-known Bénard convection problem. As an introduction

to this chapter 8, I present a short account of some of these results, which – at least

from my point of view – seem valuable.

A first result, obtained in 1983, was published in a short note [153], where

a rigorous RAM formulation of the Rayleigh–Bénard (RB) thermal convection

problem is discussed. This result opened the way for a consistent derivation of

the second-order approximate model equations for the Bénard problem of thermal

instability with non-Boussinesq effects.

In 1989, by means of a careful dimensionless analysis of the exact Bénard

problem of thermal instability for a weakly expansible liquid heated from below,

as a second new result [154] I show that:

If you intend to take into account, in approximate model equations for the Bénard problem,

the viscous dissipation term in the equation for the temperature, then it is necessary

to replace the classical shallow convection (RB) equations by a new set of equations, called

the deep convection – DC Zeytounian – equations, which contain a ‘depth’ parameter.

A third result, which appears as a quantitative criterion for the valuation of

the rôle of the buoyancy in the Bénard problem, is the following alternative [155]

obtained in 1997:

Either the buoyancy is taken into account, and in this case the free-surface deformation
effect is negligible and we rediscover the classical leading-order Rayleigh–Bénard (RB)
shallow convection, rigid-free, problem, or the free-surface deformation effect is taken
into account, and in this case at the leading-order the buoyancy does not play a significant
rôle in the Bénard–Marangoni (BM) thermocapillary instability problem.

R. Kh. Zeytounian, Navier–Stokes–Fourier Equations,
DOI 10.1007/978-3-642-20746-4_8, # Springer-Verlag Berlin Heidelberg 2012
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This alternative is related to the value of the reference Froude number Frd ¼
ðnd=dÞ= gdð Þ1=2based on the thickness d of the liquid layer, magnitude of the gravity

g, and constant kinematic viscosity nd, and for:

RB model problem : Frd<<1 ) d>>ð nd2=gÞ1=3; (8.1)

while for the

BM model problem : Frd � 1 ) d � ðnd2=gÞ1=3 � 1 mm: (8.2)

On the other hand, a small effect of the viscous dissipation, in the RB model

problem, produces a complementary criterion for the thickness d: namely,

d � C Tdð ÞðDT=gÞ (8.3)

such that

ð nd2=gÞ1=3<<d � C Tdð ÞðDT=gÞ � dSh; (8.4)

where C(Td) is the specific heat at constant temperature Td, on z ¼ d, and DT is the

difference between the temperature Tw, on z ¼ 0, and Td.

A fourth result is my survey of 1998 [156], devoted to various facets of the BM

thermocapillary instability problem.

A fifth result is linked with my lecture notes for the Summer Course (coordinated

by M. G. Velarde and myself) held at CISM, Udine, Italy, in July 2000: “Theoretical

aspects of interfacial phenomena and theMarangoni effect – modelling and stability”,

in [70], pp. 123–190.

Finally, in 2009 I published my book Convection in Fluids: A Rational Analysis
and Asymptotic Modelling [27].

8.2 Some Unexpected Results for the Bénard Problem of an

Expansible Liquid Layer Heated from Below

Consider a horizontal layer of expansible liquid and assume that an adverse

temperature gradient (bs) is maintained by heating the underside – a lower horizon-

tal rigid, z ¼ 0, heated plane at temperature Tw.

The occurrence of the phenomena seems to be associated with cooling of the

liquid at its deformable (temperature-dependent) free surface, which in a conduc-

tion motionless state is at level z ¼ d. This free surface is exposed to the air, above,

at constant temperature TA and constant pressure pA.

194 8 The RAM Approach in the Bénard Convection Problem



A very slight excess of temperature in the heated liquid layer on z ¼ 0, above

that of the surrounding air, Tw > TA, institutes the “tessellated” changing structure

(according to Thompson (1881–1882)).

More precisely, the conduction adverse temperature gradient in liquid,

Ts zð Þ ¼ Tw � bs z ) bs ¼ � dTs zð Þ=dz; (8.5)

is directly determined by the difference (Tw – TA), via a Newton’s cooling law of

heat transfer with a conduction unit constant thermal surface conductance qs:

bs ¼ ðTw � TAÞ=½ðk=qsÞ þ d� (8.6)

where k is thermal conductivity of the heated liquid, and d is the thickness of the

liquid layer, both constant in a conduction motionless state.

Concerning, more precisely, the Newton’s cooling law of heat transfer, written

for the basic particular case of a motionless conduction temperature Ts(z), we have:

kðTdÞ dTs zð Þ=dz + qsðTdÞ½Ts zð Þ � TA� ¼ 0; at z ¼ d: (8.7)

the relation (8.6), for bs, being a direct consequence of (8.7).

If we introduce a conduction Biot number:

BisðTdÞ ¼ dqsðTdÞ=kðTdÞ; (8.8)

then for bs we obtain the following relation in place of (8.6):

bs ¼ fBisðTdÞ=½1þ BisðTdÞ�g½ðTw � TAÞ=d�: (8.9)

In the simplest Bénard problem of a liquid heated from below, with bs, we have
four main driving effects:

1. The buoyancy directly related to the thermal shallow convection.

2. The temperature-dependent surface tension which is responsible for the

thermocapillary convection.

3. The viscous dissipation, in the equation for the temperature of the liquid layer,

which leads to a consideration of deep thermal convection.

4. The effect related to the influence of the deformable free surface.

These four main effects affect the Bénard convection phenomenon, and it is

necessary, from the start of the mathematical formulation of the full Bénard

problem for an expansible, viscous, and heat-conducting liquid, to take all of

them into account.

The significant interconnections between the three main facets of Bénard

convection are shown in a sketch (with pecked lines) in Fig. 8.1 of our FMIA

90 [27].
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RB thermal shallow convection – without viscous dissipation; and temperature-

dependent surface tension.

Deep � à la Zeytounian � thermal convection with viscous dissipation.

Thermocapillary � Marangoni � convection with temperature-dependent surface

tension.

8.2.1 The Questionable Davis (1987) Upper, Free
Surface, Temperature Condition, and
the Problem of Two Biot Numbers

In the framework of a mathematical formulation of the full Bénard problem, the

derivation of a consistent rational boundary condition for the temperature of the

liquid layer, T(t, x, y, z), on a deformable free surface, simulated by the dimension-

less Cartesian equation:

z ¼ 1þ Zh t0; x0; y0ð Þ; (8.10)

assuming that the gravity vector g ¼ � gk acts in the negative z direction and

where (‘a’ being an amplitude)

Z ¼ a=d; (8.11)

is a decisive step – but a highly controversial issue!

From 1987, after the publication of the paper by Davis [157], his derived

(p. 407), upper condition was used systematically in nearly all works relative to

thin films, where the so-called Marangoni effect is taking into account (see, for

instance, our Convection in Fluids [27], Chaps. 7 and 8).

Only in 1996, in Parmentier et al. paper [158], was the problem of two Biot

numbers discussed; and in various parts of our [27] this problem is considered and

a corrected condition – in place of Davis’s [157] erroneous condition – is derived.

It now seems appropriate to consider, first, the physical nature of the Bénard

problem!

The lower heated plate temperature,

T ¼ Tw � Ts z ¼ 0ð Þ;

being given data, the adverse conduction temperature gradient bs appears (according
to (8.9)) as a known function of the (positive) temperature difference (Tw – TA),

where TA < Tw is also a known constant temperature of the passive (motionless) air,

far above the free surface, when the conduction constant Biot number, Bis(Td), is

assumed known.
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But for this it is necessary to also consider the conduction unit constant thermal

surface conductance qs(Td) as starting data for the Bénard problem. If so, then

Ts z ¼ dð Þ ¼ Tdð� Tw � bsdÞ is assumed to be determined. On the other hand, it

should also be realized that bs is always different from zero, in the framework of the

Bénard convection problem heated from below!

As a consequence, the above, defined by (8.8), constant conduction Biot number,

Bis(Td), is also always different from zero. It characterizes the Bénard conduction

stage, and makes it possible to determine the purely static basic temperature

gradient bs � DT=d with DT ¼ Tw � Td.

It is also crucial that with this above purely static basic temperature gradient

bs � DT=d, in all published papers relative to thermocapillary (Marangoni) con-

vection, there are defined various dimensionless parameters e, Gr or Ra, Ma, and

Bo, and dimensionless temperature y. Therefore (the subscript “d” in various

temperature-dependent coefficients and dimensionless parameters or numbers is

relative to constant temperature Td):

e ¼ aðTdÞDT expansibity parameterð Þ (8.12a)

where aðTdÞ � ad is the constant (at T ¼ Td) coefficient of thermal expansion of

the liquid,

Gr ¼ e= Frdð Þ2 Grashof numberð Þ (8.12b)

or

Ra ¼ PrGr Rayleigh numberð Þ (8.12c)

where

Pr ¼ nd=kd Prandtl numberð Þ (8.12d)

with, kd ¼ kd=rdCd

Ma ¼ gddDT=nd
2rd Marangoni numberð Þ (8.12e)

Bo ¼ gd=DTCd a similar to Boussinesq numberð Þ (8.12f)

and, as dimensionless temperature, we introduce:

y ¼ ðT � TdÞ=DT (8.13)

For the convective in-motion stage, in principle Newton’s cooling law (which is

a third-type boundary condition (2.42c) on a solid heated wall) can again be used, as

this is the case in almost all papers devotes to BM problems. Therefore, we write

(in dimensional quantities):
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� k Tð Þ@T=@n ¼ qconv T� TAð Þ þ Q0; at z ¼ d þ a h t; x; yð Þ; (8.14)

with @T=@n ¼ rT:n, where Q0 is an imposed heat flux to the environment and is

to be defined.

This condition (8.14) is, in fact, also the starting condition in Davis [157].

In (8.14) our introduced qconv is, indeed, an unknown convection heat transfer

coefficient, strongly different from the constant conduction heat transfer coeffi-

cient, qs(Td), which appears in (8.7) and (8.8).

As observed in Joseph’s monograph [159], the heat transfer coefficient qconv, in
the convection stage, depends in general on the free surface properties of the

expansible liquid, the unknown motion of the ambient air near the air surface,

and also the spatio-temporal structure of the temperature field. qconv is therefore

a very complicated function. Obviously, from a practical point of view, the above

upper condition (8.14) for the temperature T does not seems not have, in its general

form, any interesting perspectives in various practical applications, simply because

qconv is an unknown. Nevertheless, from a theoretical point of view it seems

preferable to derive, from (8.14), a correct upper condition for the dimensionless

temperature function y, defined by (8.13). This condition (8.14), in dimensionless

form, for y, is written, without any approximation, in the following form:

@y=@n0 þ Biconvf Td � TAð Þ= Tw � Tdð Þ½ �þ yg þ Q0=kdbs ¼ 0;

or more precisely (n0 is dimensionless)

@y=@n0 þ ½Biconv=BisðTdÞ�f1þ BisðTdÞygþQ0=kdbs ¼ 0; at z0 ¼ 1þZ h0 t0; x0; y0ð Þ ;
(8.15a)

with a Biot convective number:

Biconv ¼ dqconv=kd: (8.15b)

Condition (8.15a), where not only Biconv is present but also Bis(Td), is a direct

and exact consequence of (8.14), when we take into account Newton’s cooling law

in the conduction stage (8.7), which leads to:

dbs ¼ BisðTdÞðTd � TAÞ ) Td � TAð Þ= Tw � Tdð Þ � 1=BisðTdÞ:

Only after the confusion of Biot convection, Biconv, with Biot conduction,

Bis(Td), do we obtain the (approximate?) Davis [157] reduced condition (with

Q0 ¼ 0):

@y=@n0 þ 1þ BisðTdÞy ¼ 0; at z0 ¼ 1þ Z h0 t0; x0; y0ð Þ; (8.15c)

where (in (8.15c)), in place of Bis(Td), in front of y, Davis writes a “B” – the

meaning of which is unclear. Perhaps, with his ambiguous temperature free surface

condition, he thinks the problem too difficult to solve!
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The fact is, however, that over many years (and today) many interesting papers

have been published with Davis’s (8.15c) “questionable” upper condition for

temperature! In particular, this seems important for the papers devoted to linear

theory (see, for example, Takashima’s two papers [160]1). I therefore pose a simple

question: What is the real value of these papers? Several ideas and aspects of this

“two Biot” problem are discussed in various chapters of my [27].

8.2.2 The Mystery of the Disappearance of Influence
of the Free Surface in the RB Leading-Order
Shallow Thermal Convection Model

First, taking into account the definition of the Grahof number, Gr (8.12b), as a ratio

of e/Frd
2, when e<<1 – our main (expansibility) small parameter – we see that

only if Frd
2<<1 do we have the possibility, at the leading order, to take into

account the buoyancy effect directly related to the thermal shallow convection

via Gr.

Namely, in the RB case it is necessary to consider the following limiting process:

Gr ¼ e=Frd2fixed; when e ! o and Frd
2 ! 0; (8.16)

simultaneously.

1 In [160] Takashima derives, from Davis’s upper condition (8.15c), the following linear upper

condition:

@yL=@z0 þ BisðyL � h0Þ ¼ 0; at z0 ¼ 1; (8.*)

where yL is the perturbation of y (¼ y0 + �yL + . . .) relative to a steady-state solution, yO ¼ 1 – z0,
when we assume Z<< 1, and in a such case, @y=@n0 � @yL=@z0 þ OðZÞ. If now we consider our

corrected upper condition (8.15a),we derive, in place of Takashima’s linear upper condition (*),

for yL, the following linearized upper condition:

@yL=@z0 þ Biconv½ �0ðyL � h0Þ ¼ 0; at z0 ¼ 1; (8.**)

but only if we assume that Q0 ¼ kdbsf1��ð Biconv½ �0=BisÞg; and Biconv½ �0 ¼ constant. Another

possibility, when we assume that Q0 ¼ 0, is to consider a Biconv dependent of H ¼ 1 + � h0, and
write Biconv Hð Þ ¼ Biconv 1ð Þ þ ZL H ¼ 1ð Þ h0, with L H ¼ 1ð Þ � dBiconv Hð Þ=dH. If now

Biconv 1ð Þ � Bis, then at the order O(�) we derive the following upper (at z0 ¼ 1) linearized

condition:

@yL=@z0 þ BisðyL � h0Þ þ L H ¼ 1ð Þ h0 ¼ o; at z0¼ 1 (8.***)

but now we have Bis in front of (yL – h0), and Bis 6¼ 0, which was assumed equal to a constant value

of Biconv at z
0 ¼ 1. In (***) we also have a third term proportional to h0.
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The mathematical dimensionless formulation of the Bénard problem, heated

from below, is the subject of Chap. 4 of [27], where can be found a dimensionless

system of three dominant dimensionless equations for u0, p, and y, where

p ¼ ð1= Frd
2Þf½ p � pAð Þ=gdrd� þ z0 � 1g (8.17)

which is a companion dimensionless perturbation pressure to y.
In particular, if we take into account that for the density r, at the leading order,

we can write the following approximate equation:

r ¼ rd½1� ey�: (8.18a)

Then, for u0, we obtain as a leading-order equation:

du0=dt0 þ r0p� ðe=Frd2Þyk ¼ D0u0 þ 1=3ð Þr0ðr0:u0Þ; (8.18b)

with

r0:u0 ¼ eðdy=dt0Þ: (8.18c)

On the other hand, it is necessary, at the upper free surface, to take into account a

jump condition for the difference of pressure (p–pA). With (8.17), in dimensionless

form, we obtain for p as an upper, free surface the following dimensionless

condition (at z0 ¼ 1þ � h0):

p ¼ ð�=Frd2Þ h0 t0; x0; y0ð Þ þ @u0i=@x
0
j þ @u0j=@x

0
i

h i
n0in

0
j

þ½We�Ma y�ðr0
k : n

0Þ � 2=3ð Þ eðdy=dt0Þ
(8.18d)

where – (1/2) (∇0k . n0) is the mean curvature of the free surface.

Because Frd
2 ! 0, in (8.18b) and also in (8.18d), if we want, for e<<1, to take

into account the buoyancy effect, we see that, necessarily, we have the following

similarity rule between Z and Frd
2

�=Frd
2¼�� ¼ O 1ð Þ; when � and Frd

2; both ! 0 (8.19)

As a conclusion, in leading-order RB thermal shallow convection, driven by the

buoyancy force, the deformation of the upper, free surface is negligible.

In fact, at leading order we have the possibility, as free surface in the RB model

problem, of considering the plane z0 ¼ 1.

But a pertinent (open) question remains. What is to be done for the determination

of the deformation h0(t0, x0, y0) of the free surface? It seems that such an equation

for h0(t0, x0, y0) was first discovered thanks to our RAM Approach (see [27],

pp. 106, 135).
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Therefore, with the above upper, free surface (exact) condition (8.18d), written

at level z0 ¼ 1 (because of the limiting process (8.19)), it is necessary to also

consider that when � ! o the second term (proportional to n0i n0j) in (8.18d)

gives only a term:

2 @u03=@x
0
3

� �
; (8.20a)

and from a third term in (8.18d), in place of (r0
k : n

0), we derive:

� �½@2h0=@x01
2 þ @2h0=@x02

2�: (8.20b)

Finally, from the condition (8.18d) and relation (8.20b), when we assume that

(which is usually the case)

We ¼ sdd= nd2rd Weber numberð Þ>>1; (8.21a)

such that

� We ¼ We� = O 1ð Þ (8.21b)

we derive the following equation for the determination of the free surface deforma-

tion h0(t0, x0, y0) in the leading-order e ! 0:

@2h0=@x01
2þ@2h0=@x02

2 � ð��=We�Þ h0
¼ � 1=We�ð Þp t0; x0; y0; z0 ¼ 1ð Þ; (8.22)

It should be noted that in the definition of Marangoni, Ma, and Weber. We,

numbers respectively by (8.12e) and (8.21a), the coefficients (function of Td) gd and
sd are related with a linear law for the temperature-dependent surface tension:

sðTÞ ¼ sd � gd T � Tdð Þ with gd ¼ � ½dsðTÞ=dT�d: (8.23)

8.2.3 Influence of the Viscous Dissipation

Only an attentive examination of the dominant dimensionless energy equation, for

dimensionless temperature y, presents the possibility of understanding the influence
of the viscous dissipation phenomenon in thermal convection.

Indeed, Turcotte et al. [161] observe that the viscous dissipation term, in the

dimensionless energy equation, is linked with a “dissipation number”:

Di� ¼ ð1=2½ðnd2=d2Þ=DTCd�
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which can be rewritten in the following form (Zeytounian [155]):

Di� ¼ 1=2ð Þ Bo (FrdÞ2 ¼ eBo=2Gr; (8.24)

where Bo is defined in (8.12f).

On the one hand, we see that when we assume that the Grashof number Gr is 0(1),

in thermal convection (buoyancy effect), according to (8.24), where always e<<1,

the constraint:

Bo � 1 (8.25a)

in (8.24), leads to

Di� ! 0; (8.25b)

and we derive the classical RB, thermal shallow convection model problem, where

in the energy equation for the dimensionless temperature y, the viscous dissipation
is absent (neglected at the leading-order).

In this case we derive, for the thickness dSh, in (8.4) of the liquid layer in the RB
model problem, precisely the relation:

C Tdð ÞðDT=gÞ � d;

mentioned in (8.4).

On the other hand, again with e<<1, Gr ¼ O(1), obviously, only the case

Bo >>1; (8.26a)

with

eBo ¼ O 1ð Þ (8.26b)

allows us to take into account the viscous dissipation at leading-order in the

dominant dimensionless energy equation for dimensionless temperature y; where

the term proportional to Di* is present.

In such a case we derive the deep thermal convection model problem

(Zeytounian [154]).

Section 8.3 of [27] presents these deep thermal convection model, leading-order,

equations, together with a new (“depth”) parameter:

Di ¼ a Tdð Þgd=CðTdÞ: (8.26c)
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8.3 The Marangoni Effect

Marangoni (1865) provided a wealth of detailed information on the effects of

variations of the potential energy of liquid surfaces and, in particular, flow arising

from variations in temperature and surfactant composition. Among the phenomena

involving Marangoni flows we observe that associated with the name of Bénard

(1900), which refers to the formation of a cellular structure in a thin liquid layer

heated from below.

Chapter 7 of our recent monograph (2009) [27], presents (in the framework of

67 pages) detailed formulation, discussions, and various reflections related to

Bénard–Marangoni thermocapillary convection.

In fact, today, a detailed understanding of flows in thin viscous liquid films with

a deformable free surface with a temperature dependent tension is important for

a wide range of modern engineering processes. For this it is necessary to build

mathematical models that can predict the various performance of these processes,

in order to have confidence in the predictions of the derived models. For this, our

RAM Approach is obviously a well-adapted and invaluable tool!

A recent special issue of J. Engng. Maths. [162] includes various interesting

results related to the dynamics of thin liquid film. However, many of these papers

include results based on ad hoc non-rational procedures, and do not have any

relation to our RAM Approach rigorously based on the postulate formulated in

Chap. 6.

It is necessary to have in mind that in the Bénard expériments (thin layer of an

expansible liquid heated from below) the influence of the free surface is present,

and obviously generates the thermocapillary–Marangoni effect.

On the other hand, in the simple Rayleigh thermal convection problem the free

surface is replaced by the plane z ¼ d. Because Lord Rayleigh, in his well-known

paper of 1916 [163], considered a liquid layer with a constant thickness d, the
Marangoni–Biot effects are obviously absent in the exact formulation (à la
Rayleigh) of the thermal convection problem. The effect of the constant surface

tension is also absent, and the Weber number does not appear in Rayleigh’s

formulation of the thermal convection problem. As a consequence, we see that

the Rayleigh analytical problem (considered in 1916) has no relation with the

physical experimental problem considered by Bénard in his various experiments

in 1900. In the Rayleigh analytical problem the main driving force, which gives a

bifurcation from a conduction motionless regime to a convective motion regime, is

the buoyancy!

Nevertheless, Rayleigh’s theoretical problem, leading to the well-known “RB

instability problem”, is a typical problem in hydrodynamic instability and

represents a transition to turbulence (chaos) in a fluid system. It is now well

known (mainly thanks to Pearson [164]) that:

Bénard convective cells are primarily induced by the temperature-dependent surface

tension gradients resulting from the temperature variations along the free surface – the

so-called Marangoni thermocapillary effect.
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For the Bénard–Marangoni (BM) problem, in leading order, the equations are

those which govern an incompressible viscous liquid (a Navier–Fourier-type

equations) – both the buoyancy force and viscous dissipation effect being neglected –

but with an energy equation for y.
The main difference with the RB thermal convection model problem is the

influence of the free surface deformations, which are taken into account, and as a

consequence the upper, free surface conditions, in the BM model problem, are very

complicated, and it is just in these upper conditions that the Marangoni, Weber, and

two Biot numbers appear! (Chaps. 6 and 7 of [27] discuss a detailed derivation of

this BM model problem).

In fact, the inappropriateness of Lord Rayleigh’s (1916) analytical model to

Bénard’s experiments was not adequately explained until Pearson, in 1958 [164]

showed (in a simplified ad hoc linear theory) that:

Rather than being a buoyancy-driven flow, Bénard cells are a direct consequence of a

temperature-dependent surface tension.

Curiously, although Bénard (as a physicist) initially assumed that surface tension

at the upper free surface of a thin layer film was an important factor in his

discovered cell formation, this idea was abandoned by Bénard for some time as

the result of the work of Rayleigh in 1916 [163], where he in fact analyzed the

buoyancy-driven natural thermal convection of a layer of fluid heated from below.

Rayleigh found that if hexagonal cells are formed, the ratio of the spacing to cell

depth almost exactly equalled that measured by Bénard – an agreement which we

now know to have been fortuitous!

Indeed, it was the experimental work of Block [165] which put to end to the

confusion surrounding the interpretation of Bénard’s experiments, and which

demonstrated conclusively that Bénard’s results were not a consequence of buoy-

ancy but were induced by (temperature-dependent) surface tension. Finally, Block

concluded that:

For thin film of thickness less than 1 mm, variation in surface tension due to temperature

variations (Marangoni effect) were the cause of Bénard cell formation and not buoyancy as

postulated by Rayleigh in his 1916 paper.

Only 15 years later, via an “alternative” [155], I presented an asymptotic rational

well-argued formulation for the Block (1956) conclusion:

Either the buoyancy is taken into account, and in such a case the free surface deformation

effect is negligible and we have the possibility to take into account in the Rayleigh-Bénard

(RB), leading-order, shallow thermal convection model problem the Marangoni

thermocapillary effect only partially, or the free surface deformation effect is taken into

account, and in such a case the buoyancy does not play a significant leading-order role in

the Bénard–Marangoni full thermocapillary model problem.

We observe also that for a given temperature difference, the ratio between

buoyancy (Archimedean effect) and the surface tension gradient (Marangoni effect)

– Gr/Ma – varies with d2, and as a result (according to physicists), “the Marangoni

effect dominates for small thickness of the liquid layer, and buoyancy effects
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dominate for very thick liquid layers!” Therefore (Bd is the “dynamic Bond

number”):

Gr=Ma ¼ Bd ¼ ½rd ad=gd�gd2: (8.27)

Twenty-five years ago, when I first read the above sentence in Guyon, Hulin, and

Petit’s Hydrodynamique Physique [166] – which was mainly inspired by de

Gennes’ various courses at the École Supérieure de Physique et Chimie Industrielle

in Paris – I understood that these two effects should (certainly) be related to two

particular values of a single dimensionless reference parameter. A little later, I

discovered that the Grahof number Gr ð¼ adDTgd3=nd2Þ is, in fact, a ratio of two

dimensionless parameters:

expansibility parameter eð¼ adDTÞ
to squared Froude number Frd

2ð¼ ðnd=dÞ2=gdÞ

For me, these two facts have been an illuminating indication that Frd
2 in the ratio

Gr ¼ e= Frd
2; where the thickness d of the liquid layer is present, must play a

decisive role, because usually e<<1! This observation allowed me to formulate

the above-cited “alternative”, published in 1997 [155] (and see also our survey of

1998 [156]).

8.3.1 The Long-Wave Approach

The full BM thermocapillary problem formulated in Sect. 7.2 of [27] – even in the

framework of a numerical simulation – is a very difficult, awkward, and tedious

problem, mainly because of the complicated form of upper, free surface boundary

conditions.

It is clear that simplifications in a rational approach are necessary, obviating the

need for computationally expensive (in time and money) fully numerical

simulations – while at the same time preserving essential elements of the physics

of the formulated BM thermocapillary convection model problem.

Among various approaches linked with this BM model problem, the formation

of long waves – with respect to a very thin film layer – at the surface of a falling film

is a challenging problem (which is the case for a free-falling film down a uniformly

heated vertical plane).

In a very thin film, obviously, a typical length l of the (long) waves is large

in comparison with the thickness d<< l of the thin film, so that the slope of the free

surface is always small. In such a case we have the advantage of introducing a

long-wave dimensionless parameter:

d ¼ d=l<<1 (8.28)

8.3 The Marangoni Effect 205



The essential advantage of the long-wave approximation is a drastic simplifica-

tion of the full dimensionless BM model problem, mainly because the upper, free

surface conditions are significantly simplified.

Section 7.3 of our [27] includes some “BM long-wave” reduced convection

model problems. These simplified model problems are derived via the introduction

of new coordinates

X ¼ dx;Y¼ dy; Z � z; (8.29a)

and new time

T ¼ dRedt; (8.29b)

where

Red ¼ Ucd=nA; (8.29c)

Uc being determined by a similarity relation (see below) and nA ¼ n TAð Þ.
On the other hand, in place of leading-order (when e ! o) dimensionless

velocity components u0, v0, w0, the following new components are also introduced:

U ¼ u0=Red; V ¼ v0=Red; W ¼ w0=dRed (8.30a)

In place of p a

P ¼ p= Redð Þ2 (8.30b)

and in place of y (see (8.13)), a (where in place of Td we write TA):

Y ¼ T � TAð Þ=ðTw � TAÞ (8.30c)

We observe also that the various coefficient functions of temperature T are fixed

at T ¼ TA, and e and Ma are defined by (Tw – TA) which replace DT.
Finally, via a laborious and tedious transformation, and via the long-waves

limiting process:

d ! 0 and Red !/; such that dRed ¼ Re�; (8.31)

we derive, first (‘0’ subscript) the following reduced system of equations for the

BM long-wave problem:

D:V0 þ @Wo=@Z ¼ 0; (8.32a)

DV0=DT þ DP0 � 1=Re�ð Þ@2V0=@Z
2 ¼ 0; (8.32b)
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@Po=@Z ¼ 0; (8.32c)

Pr DY0=DT � 1=Re�ð Þ@2 Y0=@Z
2 ¼ 0; (8.32d)

where

D=DT ¼ @=@T þ U@=@Xþ V@=@YþW@=@Z;

D ¼ ð@=@X, @=@Y), D2 ¼ @2=@X2 þ @2=@Y2; V ¼ U; Vð Þ:

Equation (8.32c), @Po=@Z ¼ 0; is typically a “boundary layer equation”, and

the system (8.32a)–(8.32d) is certainly singular near the initial time T ¼ 0, where it

is necessary to write initial data for V0, W0 and Yo � the system (8.32a)–(8.32d)

being, in fact, only an outer system relative to time valid far to T ¼ 0.

As boundary dimensionless conditions, we have, first:

V0 ¼ 0;W0 ¼ 0; and Y0 ¼ 1 at Z ¼ 0: (8.33a)

If, now, Z ¼ H(T, X, Y) is the equation of the deformable surface, the kinematic

upper condition at Z ¼ H : W0 ¼ @H=@T þ V0:DH; with W0 ¼ 0 at Z ¼ 0, leads

to the following averaged evolution equation for H(T, X, Y):

@H=@T þ D:

ðZ¼H

z¼0

Vo dZ

� �
¼ 0; (8.33b)

which plays a central role in lubrication theory.

Above, in (8.29c), we introduced Redð¼ dUc=nAÞ via the characteristic velocity
Uc. If, by analogy, we define a new squared Froude number, Fr2 ¼ Uc/gd, and
corresponding, modified, Weber (We) and Marangoni (Ma) number via Uc, and

then if we assume that:

Re�=Fr2 ¼ G� � 1; d2We ¼ W� � 1 andMa � 1; (8.33c)

at leading-order we obtain, for the above Eqs. (8.32a)–(8.32d), the following free
surface, at Z ¼ H, upper, reduced conditions:

P0 ¼ G�=Re�ð Þ H � 1ð Þ �W�D2H � P�
o ðHÞ; (8.33d)

@Vo=@Z ¼ �Re�Ma½DYo þ ðDHÞ@Yo=@Z�; (8.33e)

@Yo=@Z þ BiconvYo ¼ 0: (8.33f)

This derived simplified equations, (8.32a–8.32d) with the conditions,

(8.33d–8.33f), seems to be a very convenient reduced form, and it is not a bad start

as a reduced BM thermocapillary model problem, subject to numerical simulation!
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8.3.2 Towards a Lubrication Equation

We observe also that as a consequence of Eq. 8.32b forV0, with (8.32a), and (8.32c)

for P0, subject to the upper condition (8.33d), we derive for V0 the following

problem (8.34), with the problem (8.35) for Y0:

@V0=@T� 1=Re�ð Þ@2V0=@Z
2�ð

ðZ¼H

z¼0

D:V0ð ÞdZÞ@V0=@Zþ V0:Dð ÞV0

¼� G�=Re�ð ÞDHþW�DðD2HÞ;
Z ¼ o :Vo ¼ o;

Z ¼H : @V0=@Z¼�Re�Ma½DY0þðDHÞ@Y0=@Z �; (8.34)

where the function Y0 is the solution of the model problem:

Pr DY0=DT� 1=Re�ð Þ@2Y0=@Z
2 ¼ 0;

Y0 ¼ 1 at Z ¼ 0;

@Y0=@Z þ BiconvY0 ¼ 0; at Z ¼ H:

(8.35)

Our monograph [27], pp. 213–218, includes a more simplified case, when

Pr ! 0 – which decouples problem (8.35) from problem (8.34).

Then, if in the derived decoupled problems (when Pr ! 0) we assume

Re� ! 0 or : d ! o; with Red fixed; (8.36a)

and as a consequence

l>>ðUc=nAÞd2; (8.36b)

assuming also that

W�Re� ¼ W�� � 1 andRe�Ma ¼ Ma� � 1; (8.36c)

we have the possibility of deriving the following (rather awkward) lubrication

equation, assuming that Biconv is a function of H denoted by B(H): namely:

@H=@T þ 1=3ð ÞD:fH3½W��DðD2HÞ � G�DH�
þMa�BðHÞH2DH= 1þ HB Hð Þ½ �2

þMa�H3ðdBðHÞ=dHÞDH= 1þ HB Hð Þ½ �2g ¼ 0:

(8.37)

In the case of a vanishing convective Biot number, BðHÞ ! 0, we see that if in

(8.37) the second term proportional to B(H) disappears, this is not necessarily the
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case with the term dB(H)/dH, which need not be zero, and the influence of a large

Marangoni effect remains operative.

Unfortunately, usually in classical lubrication equations, if we consider a

vanishing Biot number, then the Marangoni effect also disappears! This non-

physical (from my point of view) consequence is practically always encountered

in all derived lubrication equations.

At this point it is opportune to observe that in a short paper by VanHook and

Swift [167] it is clearly mentioned that the Pearson result has two Biot numbers

(one for the conduction state and one for the perturbation), while the distinction

between the two Biot numbers has not been made in some experimental papers. A

theoretical analysis, however, should maintain the distinction!

In the unsteady one-dimensional case (T, X), taking into account that

H ¼ 1þ Zh T; Xð Þwith Z<<1; (8.38)

the linearization of (8.37) produces, at the order Z, a linear equation for the

thickness h (T, X), when B(H) ! 0:

@h=@Tþ 1=3ð Þ½W��@4h=@X4þMa�ðdBðHÞ=dHÞH¼1@
2h=@X2�G�@2h=@X2� ¼ 0;

(8.39)

From (8.39) we obtain for the cut-off wave number kc (when k > kc there is a

linear instability) the relation:

kc ¼ f Ma�=W��½ �ðdBðHÞ=dHÞH¼1 � ðG�=W��Þg1=2: (8.40a)

Finally, we observe that in (8.39) the terms proportional to – G* and W** are a

stabilizing effect in evolution of the free surface, in the Bénard convection problem

of heating from below – and in particular, that the thicker the film, the stronger the

gravitational stabilization.

Conversely, the term proportional toMa*, linked with the thermocapillary (large

Marangoni) effect, has a stabilizing effect on the free surface if

dBðHÞ=dH > 0 ! (8.40b)

In particular (see the 1997 survey [168]), thermocapillary destabilization is

explained by examining the fate of an initial corrugated free surface in the linear

temperature field by a thermal condition.

Where the free surface is depressed, it lies in a region of higher temperature than

its neighbours. Therefore, if surface tension is a decreasing function of temperature,

free surface stresses drive liquid on the free surface away from the depression,

because the liquid is viscous, causing the depression to deepen further. Hydrostatic

and capillary forces cannot prevent this deepening!
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8.4 From Deep to Shallow Thermal Convection Model

Problems

Thanks to a detailed analysis, we now see that the RAM Approach presents

the possibility, first, to determine the various dimensionless parameters driving

the main four physical effects which govern the mathematical formulation of the

Bénard convection problem of a liquid layer heated from below and limited by

a deformable free surface from overlying ambient passive air:

e Characterizes the expansibility of the viscous liquid.

Frd The Froude number, which characterizes the thickness, d, of the liquid

layer.

Bo The Bousssinesq number, which characterizes the importance of the

viscous dissipation..

Ma The Marangoni number, which characterizes the thermocapillarity.

We The Weber number, which characterizes the effect of a constant surface

tension.

Biconv The convective Biot number, which characterizes the transfer via deform-

able free surface in the convection regime.

Then, in a second step, a dimensionless Bénard problem is formulated where the

above parameters take their respective place in equations and in lower fixed

boundary and in upper deformable free surface.

Below we consider the case of thermal convection when the buoyancy is the

main driven force. For this case, the buoyancy is linked with the Grashof number,

Gr ¼ O(1).

In our RAM Approach the main working hypothesis is relative to a weakly

expansible liquid, e<<1;with

Gr ¼ e=Frd2 ¼ Oð1Þ; (8.41a)

We then see that it is necessary for Gr ¼ O(1), the condition:

Frd
2<<1 ) d>>ðnd2=gÞ1=3: (8.41b)

On the other hand, the possibility of taking into account the effect of the viscous

dissipation is linked with the condition:

Di ¼ eBo ¼ Oð1Þ: (8.42a)

This is possible only if the condition

Bo >>1 ) d>>C Tdð ÞDT=g; (8.42b)

is satisfied.
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As a consequence of the relations of (8.41a)–(8.42b), we can write the following

“deep thermal convection with viscous dissipation” equations for the leading-order

functions:

limdeepðu; y; pÞ ¼ ðuD; yD; pDÞ; (8.43a)

Namely

r:uD ¼ o; (8.43b)

@uD=@t þ ðuD:rÞuD þrpD � GryDk ¼ r2uD;

1� Di pd þ 1� zð Þ½ �f@yD=@t þ ðuD:rÞyDg ¼ 1=Prð Þr2yD
(8.43c)

þ 1=2ð Þ Di=Grð Þ½@ðuDÞi=@xj þ @ðuDÞj=@xi�2; (8.43d)

where

Di ¼ a Tdð Þgd=CðTdÞ: (8.44a)

As boundary conditions for these deep thermal convection equations we can

write:

at z ¼ 0 : uD ¼ 0 and yD ¼ 1; at z ¼ 1 : wD ¼ 0; (8.45a)

at z ¼ 1 : @2wD=@z
2 ¼ Ma½@2yD=@x2 þ @2yD=@y2�; (8.45b)

at z ¼ 1 : @yD=@z þ Biconv=BiS Tdð Þ½ �f1þ BiS Tdð ÞyDg ¼ 0; (8.45c)

where z � x3;wD � ðuDÞ3 ¼ uD:k:
We observe that in conditions (8.45c), written at z ¼ 1, for yD; it seems possible

(because (8.45c) is satisfied on z ¼ 1) to identify Biconv with BiS(Td) – but, in fact,

this is only a conjecture. In such a case we recover at z ¼ 1 the Davis (1987)

condition!

Now, if we consider the following (RB!) limiting process:

limDi#0ðuD; yD; pDÞ ¼ ðuRB; yRB; pRBÞ (8.46a)

we find from the deep convection equations (8.43b–8.43d) the usual RB equations

for the shallow thermal convection:

r:uRB ¼ 0 (8.47a)

@uRB=@t þ ðuRB:rÞuRB þrpRB � GryRBk ¼ r2uRB; (8.47b)

@yRB=@t þ ðuRB:rÞyRB ¼ 1=Prð Þr2yRB; (8.47c)

For the RB equations (8.47a–8.47c), the boundary conditions (8.45a–8.45c) are

also true – but written for, uRB, wRB and yRB.
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Chapter 9

The RAM Approach in Atmospheric Motions

In Sect. 9.1 of this chapter we consider the 2D steady lee waves problem, in the

framework of a non-viscous but compressible and adiabatic fluid flow. The starting

equations are Euler two-dimensional steady equations. From these we derive a

single, rather awkward, but very convenient equation for the stream function in the

case of low Mach numbers fluid flow theory, for the application of the RAM

Approach. From this single equation for the stream function we derive a family

of model equations for the lee waves problem by considering various limiting cases.

This example very well illustrates the possibility of a theoretical investigation

before the use of the RAM Approach.

In Sect. 9.2, as an application of the RAM Approach to very difficult,

atmosphere–meteo-fluid motions, we consider the derivation of a simplified (but

rather realistic) and consistent “meteo–fluid–dynamic model”: namely, the “low

Kibel number asymptotic model” derived from the dissipative hydrostatic

equations.

In particular, our RAM Approach presents the possibility of solving the difficult

but decisive singular problem relative to initial conditions encountered by

meteorologists during their weather forecasting, and also take into account the

influence of the Ekman boundary layer near the Earth’s surface.

9.1 Some Models for the Lee-Waves Problem

With the dimensions, the steady two-dimensional Euler equations are written in the

following form, for the velocity components u and w, pressure p and density r – all

assumed depending on the coordinates x and z:

r u @u=@x þ w @u=@z½ � þ @p=@x ¼ 0; (9.1a)

r u @w=@xþ w @w=@z½ � þ @p=@zþ g r ¼ 0; (9.1b)

R. Kh. Zeytounian, Navier–Stokes–Fourier Equations,
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@ðruÞ=@x þ @ðrwÞ=@z ¼ 0; (9.1c)

u @=@x þ w @=@z½ �ðp=rgÞ ¼ 0: (9.1d)

We consider a mountain, and write as equation for the gravity ðg ¼ � gkÞ
plane:

z ¼ h�Z x=l�ð Þ; � 1=2 � x=l� � þ1=2: (9.2a)

The slip condition gives:

w ¼ udZ=dx on z ¼ h�Z x=l�ð Þ: (9.2b)

Again, our non-viscous and non-heat-conducting fluid is a thermally perfect gas,

and the equation of state is with dimensions:

T ¼ p=Rr, (9.3)

with R ¼ Cp � Cv and g ¼ Cp=Cv.

First, from the equation of continuity (9.1c), we introduce a stream function

c x; zð Þ such that:

ru ¼ �@ c=@z and rw ¼ þ@ c=@x: (9.4)

9.1.1 First Integrals

Using the relations (9.4), from the equation of the adiabaticity (9.1d), we derive the

following first integral

p ¼ rg PðcÞ: (9.5a)

where the function PðcÞ is arbitrary and conservative along each streamline

c ¼ constant.

Then, from equations (9.1a, 9.1b) we obtain the well-known Bernoulli first

integral, when we exclude the pressure p:

juj2=2þ ½ g=ð g� 1Þ� rg�1 PðcÞ þ gz ¼ IðcÞ; (9.5b)

where the function I(c) is a second arbitrary function, also conservative along each
streamline. From these two equations (9.1a, 9.1b) we can also derive a relation for

the vorticity o:

o� @u=@z �@w=@x¼� r½dI=d c�½1=ð g�1Þ�ðp= rÞdLogP=d c�: (9.5c)
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The two arbitrary functions IðcÞ and PðcÞ are determined from the behaviour

conditions in the upstream unperturbed region (subscript ‘1’), when x ! �1 and

where z is z1 the altitude of the unperturbed streamline at upstream infinity.

Therefore, at x ! �1, we assume:

u ¼ U1ðz1Þ; w ¼ 0; p ¼ p1ðz1Þ; r ¼ r1ðz1Þ; (9.6a)

T ¼ T1ðz1Þ; and S1ðz1Þ ¼ CvLogðp1=ðr1ÞgÞ: (9.6b)

With (9.6a, 9.6b) we obtain, from (9.5c), the following relation:

dI=dc� ½1=ð g� 1Þ�ðp=rÞdLogP=d c

� � ð1=r1ÞfdU1=dz1 � ½gR=ðg� 1ÞU1�S1g; (9.6c)

where

S1 � N2ðz1ÞðT� T1Þ; (9.7a)

and

N2ðz1Þ � ð1=T1ÞfdT1=dz1 þ g½ð g� 1Þ= gR�g> 0: (9.7b)

9.1.2 An Equation for the Vertical Deviation d x; zð Þ

Since the functions IðcÞ and PðcÞ are both conservative along each streamline,

then from the Bernoulli integral (9.5b) we determine the temperature T in the

following form:

T ¼ T1 � ½ð g� 1Þ=gR�f 1=2ð Þ½juj2 � U21ðz1Þ� þ gðz � z1Þg; (9.8a)

and for the density we obtain the relation

r ¼ r1f1þ ½ðT � T1Þ=T1�g1=g�1: (9.8b)

Finally, with the above results we obtain an equation for c x; zð Þ in an “awk-

ward” form (derived by Zeytounian in [12], pp. 315–330), although here we do not

write this equation.

For our purpose (the lee waves problem) we introduce, in place of c, the vertical
deviation of a streamline, d x; zð Þ, in the perturbed flow over a mountain, relative
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to its unperturbed altitude at upstream infinity. We therefore write, for the altitude

of a perturbed streamline:

z ¼ z1ðcÞ þ d x; zð Þ (9.9a)

and in a such case

@c=@x ¼ �r1U1@d=@x; @c=@z ¼ r1U1½1� @d=@z�: (9.9b,c)

In place of the slip condition (9.2b) we obtain:

dðx; h�Z x=l�ð ÞÞ ¼ h�Z x=l�ð Þ: (9.10)

We observe that at upstream infinity we have the relation

c ¼ �
ð
o

z1

r1U1dz � cðz1Þ , z1�1ðcÞ (9.11)

where z1�1ðcÞ is the inverse function of cðz1Þ.
As a consequence of relations (9.9a, 9.9b,c), for the function d x; zð Þ we derive

the following partial second-order differential equation:

@2d=@x2 þ @2d=@z2 þ ðr=r1Þ2ðg=U21ÞN2ðz1Þ d
¼ � 1=2ð Þðr=r1Þ2d=dz1½Log½U21expð�S1=CpÞ��
þ 1=2ð Þd=dz1½Log½r12U21expð�S1=CpÞ��fð@d=@xÞ2

þ ð@d=@zÞ2 � 2@d=@z þ 1g
þ ð@Log r=@xÞ@d=@xþ ð@Log r=@zÞ½@d=@z� 1�:

(9.12a)

The above equation for the deviation in altitude,

d x; zð Þ ¼ z � z1ðcÞ (9.12b)

is rather awkward, but very convenient for further analysis – in particular when we

assume that the upstream, constant, Mach number, M01 � 1.

For equation (9.12a), with the slip condition (9.10), we also have the following

three conditions:

dðx ¼ �1; z1Þ ¼ 0; (9.13a)

dðx; z ¼ H1Þ ¼ 0; (9.13b)

j dðx ¼ þ1; zÞj<1; (9.13c)
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where H1 is the altitude of the upper level (for instance, the tropopause assumed as

a flat horizontal plane), where the streamlines are undeflected.

The last condition (9.13c) is the only possible physical one, because of the lee-

waves regime downstream of the mountain. However, in equation (9.12a) we also

have, as an unknown function, the density r, and consequently we must return to

the two relations (9.8a, 9.8b), which we transform to an relation for r in which d is

present:

ðr=r1Þg�1¼1þ ðU21=2CpT1Þ½r1=r�2½ð@d=@xÞ2 þ ð@ d=@zÞ2
�2@d=@z þ 1� þ ðU21=2CpT1Þ½ð2g=U21Þ d� 1�;

(9.14a)

and we have the following upstream infinity condition:

r ! r1ðz1Þ when x ! �1: (9.14b)

The above problem – (9.12a) with (9.10), (9.13a, 9.13b, 9.13c), (9.14a), and

(9.14b) – for two functions d and r, is strongly non-linear. Below we consider a

simplified case when

U1 � U01 ¼ const (9.15a)

and

� dT1=dz1 � Go1 ¼ const; (9.15b)

such that

T1ðz1Þ ¼ T1ð0Þ½1� ðG01=T1ð0ÞÞz1�: (9.15c)

This linear (9.15c) distribution for T1ðz1Þ is very well justified for the usual

meteorological situation in the troposphere, where the lee-waves regime is consid-

ered – H1 being the height of the whole troposphere.

The parameter

m01 ¼ G01H1=T1ð0Þ (9.15d)

is a reference parameter for the temperature profile at upstream infinity, and in

dimensionless form we have

T1ðz1Þ=T1ð0Þ � Yðz1Þ ¼ 1� m01 z1 (9.15e)

where

z1 � z1=H1

is the dimensionless altitude far upstream.
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9.1.3 Dimensionless Formulation

First we introduce the non-dimensional density perturbation:

v ¼ ðr� r1Þ=r1; (9.16a)

and the non-dimensional vertical displacement of the streamline,

D ¼ d=h�: (9.16b)

In place of the relation (9.12b) – since far ahead of the mountain there is assumed

to be a uniform flow with velocity components ðU01 ¼ const; 0Þ – we write:

z1 ¼ Bo½z� ð1=n�Þ D�; z ¼ z

Ho
(9.16c)

where z is reduced with the vertical length scale H0, characterizing the lee-wave

process, and z1 is reduced with H1 � RT1ð0Þ=g. In this case we have two ratios:
n� ¼ H0=h

�; Bo ¼ H0=H1; (9.17)

where n� is the “linearization” parameter, and Bo is the Boussinesq number.

In place of the slip condition (9.10) we have the following dimensionless slip

condition:

Dðx; z ¼ ð1=n�ÞZðxÞÞ ¼ ZðxÞ; (9.18a)

where x ¼ x=l�, and the condition (9.13b) gives

Dðx; z ¼ 1=BoÞ ¼ 0: (9.18b)

As a “long-wave” approximation parameter we have

e ¼ H0=l
�: (9.19)

Finally, for v; defined by (9.16a), we obtain from (9.14a) the following dimen-

sionless relation:

ð1þvÞg�1¼1�ð1=YÞf 1=2ð Þðg�1ÞðM01= n0Þ2½1=ð1þvÞ2�½ e2ð@D=@ xÞ2

þð@D=@ zÞ2�2 n0@D=@ zþ n02�
þ½ðg�1Þ=g�ðBo=n0ÞD� 1=2ð Þðg�1ÞðMo1Þ2g;

(9.20a)

where

Y ¼ Yðz;DÞ ¼ 1� Bom01½z� ð1=n0ÞD�: (9.20b)
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Then, for the function Dðx; zÞ we obtain, from equation (9.12a), the following

dimensionless main equation:

Yðz;DÞfe2@2D=@x2 þ @2D=@z2 � ½1=ð1þ vÞ�½e2ð@D=@xÞ@v=@x
þ ð@D=@zÞ@v=@z� n0@v=@z�g þ ðBo2=gM02

1ÞS0ð1þ vÞ2D
¼ ðn0=2ÞBoS0fvð2þ vÞ � ½e2ð@D=@xÞ2 þ ð@D=@zÞ2
� 2n0@D=@z�g;

(9.21)

In equation (9.21), S0 is the “hydrostatic stability” parameter:

S0 ¼ ½ðg� 1Þ=g� � m01; (9.22)

which characterizes the stratification of the unperturbed flow at upstream infinity.

For normal meteorological values in the troposphere, for dry air, we have the

following atmospheric values:

g ¼ 1:4;

T1ð0Þ ¼ 288�C;

m01 ¼ R=gð ÞG01 � 0:19037;

½ðg� 1Þ=g� � m01 � 0:09534:

Conversely,

½gR T1ð0Þ�1=2 � 340; 17m=sec;

and if

34m=sec 	 U01 	 10m=sec;

then we obtain

0:03 � M01 � 0:1:

We observe that for the unknown function Dðx; zÞ, related with the lee-waves

problem – over and downstream of the mountain – which is the solution of equation

(9.21), we have the following conditions:

Dðx; ð1=n0ÞZðxÞÞ ¼ ZðxÞ; when x 2 ½� 1=2ð Þ;þ 1=2ð Þ�; (9.23a)

Dðx ¼ �1; z1Þ ¼ 0; (9.23b)

Dðx; z ¼ 1=BoÞ ¼ 0; (9.23c)
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jDðx ¼ þ1; zÞj<1; (9.23d)

In main equation (9.21) the more important parameter is

K2
0 ¼ S0ðBo2=gM02

1Þ ¼ g½ðGA � G01Þ=T1ð0Þ�ðH0=U
01Þ2 (9.24)

– the Dorodnitsyn–Scorer parameter, where

GA ¼ g=Rð Þ½ðg� 1Þ=g�; (9.25a)

is the dry adiabatic temperature gradient, which plays a fundamental role when

M01 ¼ U01=½gRT1ð0Þ�1=2 � 1; but Ko2 ¼ O 1ð Þ: (9.25b)

An important characteristic of the modelling, via the RAM Approach, of the

above lee-waves problem, governed by the main equation (9.21), with the relations

(9.20a, 9.20b) and conditions (9.23a–9.23d), is linked with the requirement that

without fail the parameter Ko2 must be bounded!

9.1.4 Four Distinguished Limiting Cases

We also observe that the strong constraint mentioned above, Ko2 ¼ O 1ð Þ, does not
present the possibility of considering the case:

M02
1 # 0; solely;

because in a such case,

Ko2 ¼ ðS0Bo2=gÞ=M02
1"1!

The asymptotic analysis for a such case is very complicated and deserves

another approach.

9.1.4.1 The Deep Convection Case

The first case, which is linked to the deep convection, is valid in the whole

troposphere when

Bo ¼ 0 1ð Þ; (9.26a)

but with the following similarity rule between low Mach number and “hydrostatic

stability” parameter:

M01 � 1 and S0 
 1; (9.26b)

220 9 The RAM Approach in Atmospheric Motions



assumed large, such that

S0 ¼ S�M02
1 , G01 � GA � g=Rð ÞS�M02

1; (9.26c)

with

S� ¼ 0 1ð Þ: (9.26d)

When the “linearization” parameter n0 is fixed (not considered as a small

parameter, for the case of an important elevated mountain) the limiting case

M02
1 # 0; with 8:26a� cð Þ; and fixed g and n0; (9.27a)

leads, in place of the equation (9.21) and relations (9.20a, 9.20b), at the leading

order for Ddeep and vdeep; in expansions

D ¼ Ddeep þM02
1D� þ :::; v ¼ vdeep þM02

1v� þ ::: ; (9.27b)

the following reduced system of two equations:

ð1þ vdeepÞg�1¼1=f1� Boððg� 1Þ=gÞ½z� ð1=n0ÞDdeep�g
� ½Boððg� 1Þ=gÞ z�=f1� Boððg� 1Þ=gÞ½z� ð1=noÞDdeep�;

(9.27c)

f1� ½Boðg� 1Þ=g�½ z� ð1=n0ÞDdeep�gf½ e2@2Ddeep=@x
2 þ @2Ddeep=@z

2

� ½1=ð1þvdeepÞ�½ e2ð@Ddeep=@xÞ@vdeep=@xþ ð@Ddeep=@zÞ@vdeep=@z

� no@vdeep=@z�g þ ðBo2=gÞS�ð1þ vdeepÞ2Ddeep ¼ 0:

(9.27d)

As boundary conditions for Ddeep, we have the full conditions (9.23a–9.23d).

Combining (9.27c) and (9.27d), we can derive a single equation for the single

function, Ddeep. But this single equation is how much complex and strongly non-

linear, that we do not write a such equation here.

If we assume a complementary (linearization) constraint:

n0 
 1 such that : ð1=n0Þ = n�Mo2
1;

and n� ¼ O 1ð Þ ) h� � U02
1=gg;

(9.27e)

then we derive a linear problem, in place of the non-linear deep convection problem

(equations (9.27c, 9.27d) with the full conditions (9.23a–9.23d)), for the limit

function:

sdeep ¼ ½1� ððg� 1Þ= gÞBo z�1=2 g�1ð ÞDl
deep: (9.27f)
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where Dl
deep ¼ limn0"/Ddeep.

Therefore, we obtain the following linear model equation:

e2@2sdeep=@x
2 þ @2sdeep=@z

2 þ DðBo zÞ = 0; (9.28a)

where the coefficient D0(Boz) is given by:

D0ðBozÞ¼fðBo=gÞS�=½1� Boððg� 1Þ=gÞz�g
�ðBo=2gÞ2ð2g� 1Þ=½1� Boððg� 1Þ=gÞz�2: (9.28b)

As (linearized) conditions for the above linear equation (9.28a) we have:

sdeepðx; 0Þ ¼ hðxÞ with x 2 � 1=2ð Þ;þ 1=2ð Þ½ �;
sdeepðx; 1=BoÞ ¼ sdeepð� /; z/Þ ¼ 0;

sdeepðx ! þ /; zÞ�� ��< / :

(9.28c)

This above linear case, (9.28a)–(9.28c), is very similar to the one considered by

Dorodnitsyn in 1950 [169]. The reader can find in Zeytounian [12], pp. 324–328,

some results concerning the solution of this equation (9.28a), with (9.28b), under

the associated conditions (9.28c).

9.1.4.2 The Boussinesq Case

The second case is the Boussinesq case (considered in Chap. 4) when Bo and the

Mach number, M, are both small parameters:

Bo � 1 and Mo1 � 1; but So ¼ 0 1ð Þ; (9.29a)

such that

Bo=Mo1¼B� ¼ 0 1ð Þ; , Ho � Uo=gð Þ½RT1 0ð Þ=g�;1=2 ¼ HB (9.29b)

where HB is the characteristic vertical displacement of the Boussinesq lee-waves

which is only of the order of 1 km!

9.1.4.3 The Isochoric Case

The third case is the isochoric case when g is large and the Mach number, M, is low:

Mo1 � 1 such that So = 0 1ð Þ and Bo ¼ 0 1ð Þ; (9.30a)
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but

gMo2
1 ¼ M� ¼ O 1ð Þ; , Uo1 � ½RT1 oð Þ�1=2: (9.30b)

9.1.4.4 The Very Thin Layer Case

The fourth case is relative to a very thin atmospheric layer, when we assume:

SoBo � 1; with Bo � 1; and gMo2
1 � 1; (9.31a)

such that

Bo=gMo2
1 � 1 , H0 � Uo2

1=g and GA � G01 ¼ Uo2
1=gT1 0ð Þ: (9.31b)

For each of the above cases – from the formulated full non-linear problem –

equation (9.21) for the function D(x, z), with the relations (9.20a, 9.20b), (9.22), for
ϖ, Y, S0, and boundary conditions (9.23a–9.23d) – we derive a consistent low

Mach number model problem with Ko2 ¼ O(1)!

The fourth case is also considered in Zeytounian [12], pp. 328–330. The second

(Boussinesq) case is considered here in Chap. 4, and also in [12], chapter 8. The

third (isochoric) case was considered in our thesis [2]. In [2], and also in our 1969

paper [170], the reader can find various results of computations of 2D steady lee-

waves over and downstream of several mountains. In our book [37], the 3D steady

problem is also considered, and in pp. 168–170 two typical figures and some

comments are presented. Section 5.4.2, of [27], pp. 164–166, concerning the

isochoric 2D steady case, contains various configurations of streamlines.

9.2 The Low Kibel Number Asymptotic Model

In the framework of an asymptotic modelling theory for the atmospheric motions, it

is first necessary to formulate a physically realistic mathematical problem written in

a dimensionless form. For this, in a coordinates frame rotating with the Earth we

consider the full Navier–Stokes–Fourier (NS–F) equations for a perfect gas which

is viscous, compressible, and heat-conducting dry atmospheric air.

We take into account the Coriolis force (2V∧u), the gravitational acceleration

g ¼ –gk, with k the unit vector directed to the zenith (force of gravity modified by

the centrifugal force), and the effect of the radiative heat transfer.

The above velocity vector u ¼ (v,w) is the (relative) velocity vector as observed

in the Earth’s frame rotating with the angular velocity V ¼ O�e, with

e ¼ ksinfþ jcosf (9.32)
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The algebraic latitude of the origin-point P� of the observation on the Earth’s

surface is f, and around P� (in prediction domain D with a diameter L�) the

atmospheric flow is analyzed.

The unknown thermodynamic functions are the density of air r, the atmospheric

pressure p, and the absolute temperature T, such that the equation of state for

thermally perfect gas is taken into account (the dry atmospheric air being assumed

a trivariate baroclinic fluid):

p = R rT; (9.33)

where R is the perfect gas constant.

A main feature of the atmospheric motions is the existence of the standard

atmosphere, which is motionless and dependent only on the vertical coordinate

zS, the “standard altitude” directed in the opposite direction from the force of

gravity g. The standard thermodynamic functions, pS, rS, and TS, for the standard

atmosphere, satisfy the following equations:

dpS=dzS þ grS ¼ 0;

pS ¼ RrSTS;

kSdTS=dzS þ RðTSðzSÞÞ ¼ 0;

(9.34)

where R(TS) is the radiative heat transfer in the standard atmosphere (with ‘s’ as

subscript and assumed a function of TS(zS)).

Below, we work mainly with dimensionless quantities, and in particular the

thermodynamic functions, p, r, T and R(TS(zS)), are reduced relative to pS, rS, TS,

and R(TS) at the ground zS ¼ 0. The dimensionless horizontal velocity v ¼ (u, v)

and vertical velocity w are non-dimensionalized with U� and eU�, respectively, and
we assume that, in the hyodrostatic parameter,

e ¼ H�=L�; (9.35)

the vertical length scale H� is of the order of the height of the standard atmosphere

HS ¼ RTSð0Þ=g � L�ð Þ, assumed homogeneous, such that the Boussinesq number

(ratio of two vertical length scale),

B0 ¼ H�=HS � 1: (9.36)

In (9.35), L� is a horizontal length scale of a domain on the Earth’s surface

ground, such that the influence of the Coriolis force is taken into account.

For dimensional time we write t�t, and consider that the Strouhal number:

S ¼ L�=U�t� � 1 ) t� ¼ L�=U�: (9.37a)
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The (turbulent) kinematic viscosity coefficient is n� n ¼ ðm�=rSð0ÞÞ½m=r�, and

Re ¼ U�L�= n�; (9.37b)

is the Reynolds number, while the (turbulent) heat conduction is represented by a

Prandtl number,

Pr ¼ Cp m�=k�; (9.37c)

and we set k�k for the (turbulent) heat-conduction coefficient.

We will also use, as non-dimensional parameters, a Mach number,

M ¼ U�=ðgRTS 0ð ÞÞ1=2 (9.37d)

where g ¼ Cp/Cv is the ratio of specific heat capacities at constant pressure (Cp) and

at constant volume(Cv). Related with the Coriolis force we also have a Rossby

number,

Ro ¼ U�=f �L� � 1

f�t�
� Ki; (9.37e)

if we take into account (9.37a), where Ki is the Kibel number (introduced in the

Soviet Union; see, for instance, Monin [94]1 and Kibel [171]) linked with the

Rossby number, since the Strouhal number, S � 1. In (9.37e),

f � ¼ 2O�sinf�; (9.37f)

is the Coriolis parameter, where f� is a reference latitude. According to Obukhov,

the typical horizontal length scale for the synoptic processes is on the order of

(c� ¼ p
gRTS 0ð Þ being the sound speed)

LOb = c�=f � � 3000 km: (9.37g)

On the other hand, the ratio

L�=LOb ¼ M=Ki; (9.37h)

is related to the horizontal compressibility of the atmosphere.

Finally, as a radiative heat transfer parameter we have

s ¼ RðTSð0ÞÞ= gk�=Rð Þ; (9.37i)

1Monin’s book (English translation, 1972) includes a concise introduction to physical and

mathematical thinking in meteorology. In Chapter 2, pp. 14–78, Monin presents an exposition

of the “Hydrodynamic Theory of Short-Range Weather Prediction”.
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and our Ekman number is related to

Re?¼ e2Re (9.37j)

by the relation

Ek? = Ki=Re?: (9.37k)

Now, for our RAM Approach below, it is very convenient to introduce the

following transformations from the spherical to the Cartesian system of coordinates

(see the relations (3.16c)):

x ¼ a0 cosf
� l; y ¼ a0ðf� f�Þ; z ¼ r � a0 (9.38a)

and for f� � 45� we have for the radius of the Earth, ao � 6300 km.

The origin of the above right-handed curvilinear coordinates system (x, y, z)

(9.38a) lies on the Earth’s surface (for a flat ground, where r ¼ a0) at latitude f�

and longitude l ¼ 0. Obviously, the sphericity parameter

d ¼ L�=a0; (9.38b)

plays also an important role – see the dimensionless equations (9.39a–9.39d) below

– and for d ¼ O(1) the equations for the atmospheric motions are more compli-

cated, as is obvious from these equations. However, in the case when d is assumed

� 1ðL� � a0 � 6300 km), we obviously have

e � 1: (9.38c)

We assume, therefore, that the atmospheric motion occurs in a mid-latitude

region, distant from the equator, around some central latitude f�, and sinf�,
cosf�, and tanf� are all of order unity.

After a careful dimensional analysis (see, for instance, [19], Chap. 2) a set of

dimensionless dominant (relative to e � 1) atmospheric equations are derived,

and below our functions and time–space variables are dimensionless.

9.2.1 The Dissipative (Viscous and Non-adiabatic) NS–F
atmospheric Equations

In the general case, when the Reynolds number Re is different to infinity, we derive

the following dissipative non-hydrostatic starting dominant dimensionless NS–F

atmospheric equations:
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rDfdvD=dt þ ½ 1=Roð Þðsinf=sinf�Þ
þ dtanfuD=ð1þ e dzÞ�ðk ^ vDÞg
þ ½1=gM2ð1þ e d zÞ�DpD
¼ ð1=e2ReÞ@=@zð m@vD=@zÞ þ OðeÞ; (9.39a)

rDfe2dwD=dt � ðe=RoÞðcosf=cosf�ÞuDg
þ ð1=gM2Þ½@pD=@zþ BorD�
¼ 4=3Reð Þ@=@zðm@wD=@zÞ þ Oð e2Þ þ Oðe dÞ;

(9.39b)

drD=dt þ rDf@wD=@z

þ ½1=ð1þ e dzÞ�½D � vD � dtanfvD
þ 2 e dwD�g ¼ 0; (9.39c)

rDdTD=dt � ½ðg� 1Þ=g�dpD=dt = ð1=e2RePrÞf@=@z k@TD=@zð Þ
þ Pr mðg� 1ÞM2½1=ð1þ e dzÞ�j@=@z½vD=ð1þ e dzÞ�j2�

þ sdR=dzg þ Oð e2Þ; (9.39d)

with pD ¼ rDTD.

In the above dimensionless equations (9.39a–9.39d), for

UD ¼ ðvD;wD; rD; pD;TDÞ with vD ¼ ðuD; vDÞ

we have, as dimensionless material time-derivative operator (with the same

notations for dimensionless time and space coordinates):

d=dt ¼ @=@ t þ ½1=ð1þ e dzÞ�vD:Dþ wD@=@z (9.40a)

where, as horizontal gradient operator,

D¼ðcosf�=cosfÞ @=@xð Þiþ @=@yð Þj: (9.40b)

such that

D:k ¼ 0: (9.40c)

Obviously, the dominant equations (9.39a–9.39d), with (9.40a–9.40c), are very

convenient when we assume that

d ¼ O 1ð Þ but e � 1 and Re 
 1; (9.41)
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which is the case for the rather large synoptic dissipative atmospheric motions. For

equations (9.39a–9.39d) it is also necessary to write boundary and initial

conditions.

Here, as boundary conditions, for the velocity (vD, wD) and temperature TD, we

write, on the flat ground,

on z = 0 : vD ¼ 0;wD ¼ 0; and k@TD=@z þ sR ¼ 0; (9.42a)

according to equation (9.39d) for TD.

Concerning the initial conditions, we observe that the initial (proper) data for the

four above evolution equations (9.39a–9.39d) need not fit the dimensionless hydro-

static balance,

@pD=@z þ B0rD ¼ 0; (9.42b)

because, in general, the dimensionless vertical velocity w need not be O(e) with
respect to the horizontal one, as is the case in the hydrostatic approximate

equations. Hence, in order to consider the most general case, we must assume

(with dimensionless quantities) that at the initial time t � 0, ew is of order O(1),

and accordingly we obtain as initial conditions for the four evolution dominant

NS–F equations (9.39a–9.39d):

at t � 0 : vD ¼ VD
0; ewD ¼ WD

0;TD ¼ TD
0; rD ¼ RD

0; (9.42c)

where data

VD
0;WD

0;TD
0;RD

0; PD
0 ¼ RD

0TD
0 are given dissipativeð Þ data:

Obviously, these data are dependent (in reality) on horizontal and vertical

coordinates in a prediction domain D with a diameter L�. But it is not obvious that
these dimensionless coordinates, in data, are precisely the coordinates x, y, and z.?

This is an important problem (at least from my point of view) when we consider

the unsteady adjustment problem to hydrostatic balance in the set of a dissipative

hydrostatic, DH, approximate equations – a problem which is actually still open.

Here we leave unspecified the behaviour conditions at high altitude when z " 1,

and far off in the horizontal directions. These behaviour conditions are strongly

linked to the numerical simulations, and can be changed in order to ensure the

stability of the numerical scheme used (see, for instance, the recent paper by Cullen

[172], pp. 202–287).

Usually, it is necessary that:

Total energy density must decay

sufficiently rapidly at infinity:
(9.42d)
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The initial-boundary value dominant, dissipative non-hydrostatic problem –

(9.39a–9.39d), with (9.40a–9.40c) and (9.42a–9.42d) – seems well-posed, at least

from a fluid dynamics point of view (see, for instance the review paper by Gresho

[173], p. 52), and deserves further investigation – for example, in the spirit of the

recent paper by White [172], pp. 1–100.

The above formulation – which is rather general for atmospheric motions –

clearly shows the difficulty with these motions in the framework of a RAM

Approach. For this it is no wonder that weather prediction is a very complicated

task, mainly because it is very difficult to extract from the above general formula-

tion a model sufficiently and adequately simplified, and especially realistic, for a

simulation/forecast via a high-speed computer: “What the weather will be like . . .
tomorrow evening or for the next few days?”

9.2.2 Hydrostatic Limiting Processes

The above set of dimensionless dominant dissipative non-hydrostatic equations

(9.39a–9.39d) are very complicated, and here we consider, for their simplification,

the main hydrostatic limiting case:

e ! o and Re ! 1; with e2Re � Re? ¼ 0 1ð Þ; (9.43a)

assuming that d ¼ O(1), as in (9.41), which reinforces the hydrostatic constraint,

e � 1. We assume that in this limiting process (9.43a) the parameters, Ro (or Ki),

M, Bo, Pr, and s are fixed and O(1).

The corresponding limiting equations below – (9.45) and (9.46a–9.46d) – are

evidently very valuable for weather forecasting of synoptic processes (à la
Obukhov2), when (see (9.37h)):

L� � Lob ) such that M=Ki ¼ 0ð1Þ; (9.43b)

and we observe that the case of the low Mach number (M < < 1) for these synoptic

process is also not a bad idea! But withM < <1 wemust also assume that Ki < < 1;

and low Kibel number approximation, according to (9.43b), is, in fact, a necessary

condition!

On the one hand, in the framework of singular perturbation problems, we see that

the hydrostatic limiting process (9.43a) is also strongly dependent on the considered

time–space region in weather prediction domain D, with the point P�(x�, y�) as

2During several decades up to the early 1990s, A. M. Obukhov was the Director of the Institute of

Physics of the Atmosphere of the Academy of Sciences in Moscow – actually named the “Obukhov

Institute.” He is a discoverer (with Kolmogorov) of the well-known (1962) “Kolmogorov–Obukhov

law 2/3” in turbulence theory.
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origin, and at least is certainly singular near the initial time where the dissipative

data in (9.42c) are given. On the other hand, when Ki < < 1, in the framework of

quasi-geostrophic modelling, in the (Ekman) layer near the ground we have also a

singular behaviour.

Therefore, an asymptotic analysis shows that we can at least consider the

following two hydrostatic limiting processes linked with (9.43a) in the framework

of the non-hydrostatic dominant equations (9.39a–9.39d):

LimDH ¼ ½ 9:39a� 9:39 dð Þ þ 9:43að Þ; with t; x; y; z fixed�; (9.44a)

and

LimDAdj ¼ ½ 9:39a� 9:39dð Þ þ 9:43að Þ; with y ¼ t=e2; x, y,

z ¼ z/e fixed]:
(9.44b)

9.2.2.1 Dissipative Hydrostatic (DH) Large-Scale Equations

From the limiting process (9.44a) we derive the dissipative hydrostatic (DH) large-

scale, non-tangent equations for the functions

½vDH ¼ uDH; vDHð Þ;wDH; pDH; rDH;TDH�
¼ LimDH½vD ¼ uD; vDð Þ;wD; pD; rD;TD�;

(9.45)

dependent on the time-space coordinates, t, x, y, and z. Therefore, with (9.43a)

only, in place of (9.39a–9.39d) we obtain the following DH model approximate

leading-order equations:

rDHfdvDH=dt þ ½ 1=Kið Þðsinf=sinf�Þ þ d tanfuDH�ðk ^ vDHÞg
þð1=gM2ÞDpDH ¼ ð1=Re?Þ@=@zðm@vDH=@zÞ; (9.46a)

@pDH=@z þ BorDH ¼ 0; (9.46b)

drDH=dt þ rDHf@wDH=@z þ D:vDH � dtan fvDHg ¼ 0; (9.46c)

rDHdTDH=dt� ½ðg� 1Þ=g�dpDH=dt
¼ ð1=Re?Þ 1=Prð Þf@=@z k@TDH=@zð Þ
þ Pr mðg� 1ÞM2j@vDH=@zj2 þ sdR=dzg;

(9.46d)

with

pDH ¼ rDHTDH; and d=dt ¼ @=@t þ vDH:Dþ wDH@=@z: (9.47)
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In (9.46a–9.46d) the parameters d; M; Re?; Pr; Ki; Bo; s; and sinf; and
cosf are fixed. These DH non-tangent model equations constitute a very signifi-

cant approximate system of equations for large-scale atmospheric motions ðd ¼
O 1ð ÞÞ in a thin layer, such as the troposphere, around the Earth’s sphere.

On the flat ground, from (9.42a), we write:

vDH ¼ 0;wDH ¼ 0; and k@TDH=@z þ sR ¼ 0; on z ¼ 0 (9.48a)

and here again we leave unspecified the behaviour conditions at high altitude

whenz " 1, and far off, in the horizontal x and y directions.

Concerning the initial conditions for the evolution equations (9.46a, 9.46c,

9.46d), we must give, in fact, only the initial values for vDH and TDH (or pDH):

at t � 0 : vDH ¼ v0DH;TDH ¼ T0
DH: (9.48b)

Here, the dissipative hydrostatic data vDH
0, TDH

0 have (strictly speaking) noth-

ing to do with the corresponding given proper dissipative non-hydrostatic initial

data VD
0, TD

0 in (9.42c), for the atmospheric dominant non-hydrostatic dissipative

equations (9.39a) and (9.39d).

We observe that from hydrostatic balance (9.46b), with

pDH ¼ rDHTDH;

we also have

@logp0DH=@z ¼ � Bo=T0
DH

� �
and r0DH ¼ p0DH=T

0
DH; (9.48c)

and indeed, two of the initial conditions (related with the given proper dissipative

non-hydrostatic initial data WD
0 and RD

0) in (9.42c) have been lost during the dissi-

pative hydrostatic limiting process (9.44a) with (9.45), taking into account (9.43a).

As a consequence, a primary question arises: “How are dissipative hydrostatic

data vDH
0 and TDH

0 related to given proper dissipative non-hydrostatic initial data

VD
0, WD

0, TD
0 and RD

0?” The answer to this decisive question, for weather

forecasting, must be derived from the dissipative non-hydrostatic (where the param-

eter e is present) equations (9.39a, 9.39b), via (see (9.44b)) an unsteady adjustment

of the hydrostatic balance (9.46b) in the DH system of equations (9.46a–9.46d).

The significant non-hydrostatic equations (where acoustics is present) which

govern this adjustment problem are derived below (see equations (9.50) and

(9.51a–9.51d)) just through the limiting process (9.44b).

For a “physical” introduction to adjustment (adaptation) of meteorological

fields, see the discussion in }6 of Monin [94] – a small but important book which

presents a unique account of the early evolution (up to 1968) of the dynamic and

physical bases for modelling and appropriate simulation of atmospheric motions

spanning the large spectrum of time-scales.
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9.2.2.2 Adjustment to Hydrostatic Balance in the Framework of the DH

Equations

For the DH equations (9.46a–9.46d) with the no-slip and temperature boundary

conditions (9.48a), singular near time t ¼ 0, it is necessary to consider a dissipative

unsteady adjustment problem of hydrostatic balance (9.46b), which is significant,

simultaneously, close to initial time and near the ground. This problem is derived

from the dissipative non-hydrostatic dominant equations (9.39a–9.39d), via the

hydrostatic limiting process (9.44b), with

½vDAdj;wDAdj; pDAdj; rDAdj;TDAdj�
¼ LimDAdj½vD; ewD; pD; rD;TD�;

(9.49)

dependent on the time–space coordinates, y; x; y; andz:
In this case we derive the following dissipative (non-hydrostatic) adjustment

equations, which are significant close to initial time y ¼ 0 and near the ground

z ¼ 0:

rDAdj½@vDAdj=@yþ wDAdj@vDAdj=@z� ¼ ð1=Re?Þ@2vDAdj=@z
2; (9.50)

@rDAdj=@ yþ @ðrDAdjwDAdjÞ=@z ¼ 0; (9.51a)

rDAdj½@wDAdj=@ yþ wDAdj@wDAdj=@z� þ ð1=gM2Þ@pDAdj=@z
¼ ð3=4Re?Þ@2wDAdj=@z

2; (9.51b)

rDAdj½@TDAdj=@ yþ wDAdj@TDAdj=@z� � ½ðg� 1Þ=g�½@pDAdj=@ y
þ wDAdj@pDAdj=@z� ¼ ð1=PrRe?Þ@2TDAdj=@z

2

þ ðg� 1ÞðM2=Re?Þ½j@vDAdj=@zj2 þ 4=3ð Þj@wDAdj=@zj2�; (9.51c)

pDAdj ¼ rDAdTDAdj: (9.51d)

The above DAdj equations (9.50) and (9.51a–9.51d) are derived when we

assume that the two dissipative coefficients m and k do not have a vertical structure

dependent onz! For these above DAdj (unsteady, à la Rayleigh) compressible,

viscous, and heat-conducting equations it is necessary to associate initial and

boundary conditions.

According to starting conditions (9.42c) at t ¼ 0, for (9.39a–9.39d) as initial

conditions we write:

at y � 0 : vDAdj ¼ VD
0;wDAdj ¼ WD

0;TDAdj ¼ TD
0; rDAdj ¼ RD

0 (9.52a)

232 9 The RAM Approach in Atmospheric Motions



At flat, thermally non-homogeneous ground, according to (9.42a), as boundary

conditions we have:

on z ¼ 0 : vDAdj ¼ 0;wDAdj ¼ 0; and @TDAdj=@z ¼ 0 (9.52b)

The question concerning the structure in altitude of the initial data in (9.52a) for

DAdj equations (9.50) and (9.51a–9.51d), requires further and more detailed

investigation, because it is clear that in the dissipative case the unsteady adjustment

to hydrostatic balance raises many unsolved problems.

On the other hand, from our above RAM Approach we see that a numerical

simulation of atmospheric motions, via DH model equations (9.46a–9.46d), must

be coupled with the above DAdj equations (9.50) and (9.51a–9.51d), which

presents the possibility of taking into account the consistent initial conditions for

(9.46a) and (9.46d), linked with the unknown data in (9.48b).

During a numerical simulation of an atmospheric motion via an approximate

model derived asymptotically for more complete starting equations, it seems

inevitable that some partial derivatives relative to time in derived approximate

simplified models equation are lost (they disappear). In such a case, only via an

unsteady adjustment problem is it consistent, via a matching, to take into account

the influence of real data, written for the starting problem, on formulation of a well-

posed initial-boundary value problem for this derived simplified model!

9.2.3 The Dissipative Hydrostatic Equations in p-System

We now consider the dissipative hydrostatic (DH) system of equations

(9.46a–9.46d), with the boundary conditions (9.48a) on z ¼ 0 and initial conditions

(9.48b, 9.48c) at t � 0. For simplicity, however, we do not write the subscript ‘DH’

in these equations,

It is well known that a convenient hypoproduct of the hydrostatic approximation

is the possibility of using variables other than z as the vertical coordinate (for

example, pressure, potential temperature, and so on).

In particular, if pressure p is used as the vertical coordinate (according to

(9.46b), with Bo � 1) such that

@=@z ¼ �r@=@p and z ¼ Hðt; x; y; pÞ; (9.53)

where here (x, y) now denotes the horizontal coordinates on constant pressure

(isobaric) surfaces, and H(t, x, y, p) is the local height of an isobaric surface

above the flat ground surface, then, in place of DH equations (9.46a–9.46d), without

any approximation nor ambiguity, we derive, for the horizontal velocity vector

9.2 The Low Kibel Number Asymptotic Model 233



v(u, v), temperature T;o ¼ dp=dt; and local height H, as a function of t, x, y, and

p, the following DH equations written in p-system:

dv=dtþ ½ 1=Kið Þðsinf=sinf�Þ þ dtanf u�ðk ^ vÞ
þ ð1=gM2ÞDH ¼ ð1=Re?Þ@ðmr@v=@pÞ=@p; (9.54a)

dT=dt� ½ðg� 1Þ=g� T=pð Þo ¼ ð1=Re?Þ 1=Prð Þf@ðrk@T=@pÞ=@p
þ Prð m=gÞðg� 1ÞM2rj@v=@pj2 � sdR=dpg; (9.54b)

@o=@pþ D � v� d tanf v ¼ 0; (9.54c)

@H=@pþ T=p ¼ 0; (9.54d)

o ¼ p=Tð Þ½@H=@tþ v:DH � w�: (9.54e)

In these equations the operator D is the horizontal gradient on the isobaric

surface, p ¼ const, with the components ½ððcosf�=cosfÞ@=@x; @=@yÞÞ�; and the

material derivative operator is:

d=dt ¼ @=@tþ v:Dþ o@=@p: (9.55)

In this case we assume that m; k, and R are known functions of p. The Eliasen p-
system has the advantage that the region of numerical integration has a limited

vertical extent, instead of 0 � z <þ1; for the original DH system

(9.46a–9.46d).

One disadvantage is that the lower boundary conditions (9.48a) on flat ground

becomes a condition at the unknown isobaric surface H ¼ 0! Therefore, it is

necessary to impose, in place of boundary conditions (9.48a), the following bound-

ary conditions:

v ¼ 0;o ¼ p=Tð Þ@H=@t; on H ¼ 0; (9.56a)

kp@LogT=@p ¼ sR; on H ¼ 0: (9.56b)

As a boundary condition “at infinity in altitude” we can assume that at the upper

end of the atmosphere, when

p ¼ 0; the total energy density decays sufficiently rapidly: (9.56c)

The DH set of equations (9.54a–9.54e) in p-system, with the boundary

conditions (9.56a–9.56c) and the initial conditions:

at t � 0 : v ¼ v0DH; T ¼ T0
DH (9.56d)
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can be used as a theoretical basis for the various investigations of features of

atmospheric dissipative hydrostatic motions depending on parameters Ki,

Re?; d; Pr and M2, and (from my point of view) it seems very interesting to take

into account, as a starting model, the DH model problem ((9.54a–9.54e),

(9.56a–9.56d)), written in p-system, for a discussion of the various approximations,

new mathematical developments, and their application to computer simulations.

For instance, in Norbury and Roulstone’s Large-Scale Atmospheric–Ocean
Dynamics [172], the first paper, by Cullen, and the second, by White, discuss

various interesting developments in the theoretical investigation of atmospheric

motions. Among other things, we observe that the smallness of the Mach number,

M, for the usual atmospheric motions, poses many unresolved difficult problems –

the main reason being that from the so-called non-divergent (quasi-solenoidal)

approximation, in leading order, we obtain a very degenerate limit system of

approximate equations (see, for instance, Monin [94], }8, and in [12], the Chap. 12).

9.2.3.1 The b, l�, and k� Effects

In equation (9.54a) we assume that the sphericity parameter d � 1; such that

ðsinf=sinf�Þ ¼ 1þ ðd=tanf�Þ y þ Oðd2Þ
tanf ¼ tanf�½1þ O dð Þ�

since in dimensionless form, from relation for y in (9.38a), we have:

f ¼ f� þ dy:

As a consequence we can write

1=Kið Þðsinf=sinf�Þ � 1=Kið Þ þ by; (9.57a)

with an error of O(d2), where (b-effect)

b ¼ d=Ki tanf�: (9.57b)

In reality, (9.57b) is a similarity relation between the two small parameters Ki

and the small sphericity parameter d, when b ¼ O(1). On the other hand, when

tanf� � 1; for f� � 45�; if we consider a “low Kibel number” limiting process.

A well-adapted form of the DH equations (9.39a–9.39d), with b-effect, for the
low Kibel number asymptotic theory, is obtained when we assume that the follow-

ing similarity relation between the Kibel and Mach numbers, both assumed small, is

realized:
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l� ¼ ð1=gÞ½Ki=M�2 (9.57c)

and we observe that l� > 1 is in fact related with the “Mach number, low com-

pressibility, effect”, in the framework of low Kibel number flows. The relation

(9.57c) is related with (9.37h) and gives an estimation for the horizontal length

scale L�.
On the other hand, the similarity relation

Ek? ¼ k� Ki2; (9.57d)

with k� ¼ O(1) – as a measure of the “viscous effect” – is motivated by the fact that

it presents the possibility of consistently deriving the so-called “Ackerblom’s

problem” for the Ekman boundary-layer in the vicinity of the ground, p ¼ 1, in

the framework of low Kibel number flows.

9.2.3.2 Kibel Equations

In the “Kibel equations” (9.58a–9.58d) below, the Kibel number is present but is

assumed small, such that b, l�, and k� are O(1) – the Mach number M also being

assumed a small parameter but do not appear in (9.58a) and (9.58b) since (9.57c) is

taken into account. In these Kibel equations the term proportional to d << 1 are

neglected since b ¼ 0(1).

The dissipative coefficients are assumed constant (dimensionless m and k � 1).

As consequence the starting Kibel equations, for v, T, H and o, are written in the

following form:

Kif@v=@tþ ½ v:Dð Þvþ o @v=@p�g þ ½1þ bKi y�ðk ^ vÞ
þ l� 1=Kið ÞDH ¼ k� Ki2@ðr @v=@pÞ=@p; (9.58a)

Kif@T=@tþ v:Dð Þ T þ o½@T=@p� ½ðg� 1Þ=g� T=pð Þ�g
¼ 1=Prð Þ k� Ki2f@ðr @T=@pÞ=@p

þPrð1=l�Þðg� 1ÞKi2rj@v=@pj2 � sdR=dpg;
(9.58b)

@ o=@pþ D:v ¼ 0 (9.58c)

@H=@pþ T=p ¼ 0 (9.58d)

When Ki ! 0, the complete derivation of a consistent limit reduced model

is linked concurrently with a “principal” expansion and two “local” expansions.

A detailed derivation was performed by Guiraud and Zeytounian in [173] (see the

sketch below).
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"p j I� Quasi�geostrophic region t;pð Þ
jt¼ t=Ki II�Local adjustment region ðt¼ t=Ki;pÞ
j II) initial condition ! I III� Ekman BL region ðt;z¼ðp�1Þ=KiÞ
jO Kið Þjcondition on the ground " IV� Corner region ðt;zÞ
j���j����*����
j IV jO Kið Þ III z¼ðp�1=Ki

t¼ 0 j j ! t

p¼ 1

For the above Kibel equations (9.58a–9.58d) we have, as conditions:

v ¼ 0;o ¼ p=Tð Þ@H=@t; onH ¼ 0: (9.59a)

� p@Log p@H=@p½ �=@p ¼ sR; onH ¼ 0: (9.59b)

at t � 0 : v ¼ vo; T ¼ To: (9.59d)

The above sketch presents a view of the three regions I, II, III, where the main

(QG), adjustment (Adj), and Ekman BL (Ek) expansions are considered. The corner

region IV plays a crucial role in the derivation of a second-order “ageosprophic”
asymptotic model.

Region II, via the unsteady adjustment process and matching, allows us to obtain

the consistent initial condition (at t ¼ 0) that must be applied to the QG single

unsteady model equation.

Region III, via the solution of the Ackerblom’s problem in the steady Ekman

problem, produces (by matching) the boundary condition (at the ground p ¼ 1) that

must be supplied to the QG single non-viscous model equation.

9.2.4 The Leading-Order QG Model Problem

In considering the QG model problem it is first necessary to derive, from the above

Kibel equations (9.58a–9.58d), the main (“outer”) QG leading-order model

equation valid in main region I, via the following limiting process:

Ki ! 0 with t; x; y; p; fixed;

b; l� and k� being 0 1ð Þ; (9.60a)

with the following (9.61a–9.61d) asymptotic expansion for the functions v;H; o
and T, in the main region I:
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v ¼ vQG þ Ki vAG þ ::: ; (9.61a)

H ¼ HSðpÞ þ Ki HQG þ Ki2HAG þ ::: ; (9.61b)

o ¼ oQG þ Ki oAG þ ::: ; (9.61c)

T ¼ TSðpÞ þ Ki TQG þ Ki2TAG þ ::: ; (9.61d)

where we have assumed that HSðpÞ and TSðpÞ are functions only of p! Although this
does not follow (concerning the dependence of time t) directly from the Kibel

equations (9.58a–9.58d), it will be found to be consistent with the constancy

(relative to time t) of

d=dp pdlogTS=dp½ � ¼ sdR=dp; (9.62a)

which is a consequence of (9.58b). Of course, we have

TsðpÞ ¼ � pdHs=dp; (9.62b)

rSðpÞ ¼ p=TsðpÞ; (9.62c)

but we do not yet know how TSðpÞ depends on p.
Then, from the boundary condition (9.59b), written for p¼1, assuming that p¼1

is the solution of HðpÞ¼0, it is found that (9.62b) allows us to compute HsðpÞ, and
(9.62a) allows us to compute RðTsðpÞÞ.

From our point of view we assume that TsðpÞ is a given function and

½ðg� 1Þ=g�TS � p dTS=dp � KSðpÞ 6¼ 0; (9.62d)

which represents data for the derived, in region I; QG model equation (see (9.65)

with (9.66) below).

In such a case, from (9.58b) we find at leading-order:

oQG � 0: (9.63a)

Now, from (9.58a) we find at leading-order the well-known geostrophic balance:

ðk ^ vQGÞ þ l0DHQG ¼ 0 , vQG ¼ l0ðk ^ DHQGÞ; (9.63b)

and the companion divergenceless equation for vQG; from (9.58b)

D:vQG ¼ 0: (9.63c)
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With (9.63a) from (9.58b) we derive for TQG the following equation:

@TQG=@t þ vQG:DTQG � KS pð Þ=p½ � oAG ¼ 0: (9.63d)

Going to higher order, we derive from the Kibel equations (9.58a, 9.58c, 9.58d)

the following three equations:

vAG ¼ k ^ ½@vQG=@t þ vQG:Dð ÞvQG þ loDHAG� � b y vQG; (9.64a)

@ oAG=@pþ D:vAG ¼ 0; (9.64b)

TQG ¼ � p@HQG=@p; (9.64c)

From the continuity equation (9.64b), with (9.64a), and the expression for oAG –

obtained through the elimination of TQG and vQG, from (9.63d), using (9.63b) – as a

function of HQG, we obtain the following single quasi-geostrophic potential vortic-

ity model equation:

@LHQG=@t þ l0½ @HQG=@xð Þ@LHQG=@y � @HQG=@yð Þ@LHQG=@x�

þ b@HQG=@x ¼ 0; (9.65)

where

LHQG ¼ l0D2HQG þ @=@pf½p2= KSðpÞð �@HQG=@pg: (9.66)

We observe that the QG model equation (9.65) contains one derivation with

respect to time t, and as a consequence only one initial condition must be supplied

for HQG, via an unsteady adjustment problem, which we shall derive in the next

section 9.2.4.1. The boundary condition that must be supplied on the ground p ¼ 1,

for QG equation (9.65), will be derived below in section 9.2.4.2.

Finally, concerning the boundary conditions that must be applied at the upper

end of the atmosphere, p ¼ 0, and far off in the horizontal plane, we can again

assume that the total energy density

½p2= KSðpÞð � @HQG=@p½ �2 þ l0jD2HQGj2 (9.67)

decays sufficiently rapidly at infinity.

9.2.4.1 Adjustment to Geostrophic Balance (9.63b)

It is not difficult to verify, by trial, that the inner in time unsteady adjustment

equations to geostrophic balance (9.63b) are derived by setting
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t ¼ t=Ki; (9.68a)

and applying an initial limiting process

Ki # 0; with t; x; y; and p fixed: (9.68b)

Concerning, more precisely, the introduction of a short adjustment time (like t)
in the case of the various unsteady adjustment problems and matching of meteoro-

logical fields, I would here like to exemplify my difficulty, as a young mathemati-

cian, in realizing the subtlety of arguments related to the adjustment to geostrophic

balance.

I very well remember – when a 1957 graduate (PhD) student in Kibel’s dynamic

meteorology department at the (now) Obukhov Institute of Atmospheric Physics, in

Moscow – reading Kibel’s newly published An Introduction to the Hydrodynamical
Methods of Short Period Weather Forecasting [171], Chap. 4, how I did not in any

way seem to understand in what manner appear, simultaneously, this adjustment

short time t (¼ t/Ki), in the case of the adjustment to geostrophic balance in the

framework of the low Kibel number asymptotics, and of an evolution prediction

time t – both times being denoted, in Kibel’s book, by the same symbol, t.

Only after September 1967, while working in the Aerodynamics Department at

ONERA, did I have the possibility – due to Van Dyke’s Perturbation Methods in
Fluid Mechanics [14] – of really understanding the profound significance of these

two (inner and outer) times in the asymptotic, outer–inner expansions with

matching ( t ! 1 , t ! 0) machinery.

Let us set ft for any quantity f considered as a function of t ¼ t=Ki instead of t.
First, we rewrite the Kibel equations (9.58a–9.58d), with, in place of

@=@t ) 1=Kið Þ@=@ t;

for the new functions, vt; ot;Ht;Tt, and then expanding

ðvt; ot;Ht;TtÞ ¼ ðvt0; ot
0;H

t
0;T

t
0Þ þ Ki ðvt1; ot

1;H
t
1;T

t
1Þ

þ Ki2ðvt2; ot
2;H

t
2;T

t
2Þ þ ::: ; (9.69a)

one first finds

ðHt
0;T

t
0Þ ¼ HSðpÞ;TSðpÞð Þ;

with

TSðpÞ ¼ � p@HS=@p: (9.69b)
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In order to find equations for ðvt0; ot
0;H

t
1;T

t
1Þ we have to go to higher order:

@vt0=@tþ k ^ vt0 þ loDHt
1 ¼ 0; (9.70a)

@ot
0=@pþ D:vt0 ¼ 0; (9.70b)

Tt
1 ¼ � p@Ht

1=@p; (9.70c)

@Tt
1=@t� KSðpÞ=p½ � ot

0 ¼ 0; (9.70d)

where KSðpÞ is given by (9.62d) as a function of p alone.

We observe that KS(p) has a suggestive interpretation-namely, if we introduce a

dimensionless specific entropy S, then with

S ¼ St0 pð Þ þ O Kið Þ : dSt0ðpÞ=dp ¼ �ð1=pTSðpÞÞKSðpÞ: (9.71)

The above system of equations (9.70a–9.70d) is the system governing the

unsteady process of adjustment to geostrophic balance (9.63b).

We observe, first, that the derivation of the unsteady adjustment local equations

significant close to initial time, in the case of the low Kibel number asymptotics, is

not a consequence of the linearization of the Kibel equations (9.58a–9.58d) (as is

written in [171], p. 83).

These inner, local-in-time, unsteady adjustment (linear) equations to geostrophic

balance are rationally derived, in the general case, from full unsteady Kibel

equations (9.58a–9.58d), as a significant limit when Ki ! 0, with short time t
fixed in place of time t fixed, the system of equations (9.70a–9.70d), being, in fact, a

significant degeneracy of Kibel equations (9.58a–9.58d) near the initial time.

From the last two equations of (9.70a and 9.70d) we derive the following

relation:

ot
0 ¼ � p2=KSðpÞ

� �
@ð@Ht

1=@pÞ=@t; (9.72a)

and going back to the first two of equations of the system (9.70a and 9.70b) we find

a couple of equations for vt0 and Ht
1: namely,

@vt0=@tþ k ^ vt0 þ loDHt
1 ¼ 0; (9.72b)

D:vt0 � @=@pf½p2=KS pð Þ�@2Ht
1=@t@pg ¼ 0: (9.72c)

But for the two evolution (in time t) equations (9.72b) and (9.72c), for vt0 and

Ht
1, it is necessary to give an initial condition for

vt0 and for Ht
1 at t ¼ 0;
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according to (9.59d). Concerning vt0 we may use the initial data, v0, assuming:

t ¼ 0 : vt0 ¼ v0: (9.73a)

Concerning the initial data for Ht
1, it is necessary to assume that the data T0 (in

(9.59d)) may be set in the form

T0 ¼ TSðpÞ þ Ki T0
1 þ :::: ) t ¼ 0 : Ht

1 ¼ H0
1; (9.73b)

when we use the relation between T0 and H0 : T0 ¼ � p@H0=@p. Whenever the

data T0 ¼ � p@H0=@p, in (9.59d), cannot be put into the above form, we must

expect that another adjustment process holds!

There is an important observation, which was known to Kibel in 1955 (see

[171]), and which concerns the way in which

limt"/Ht
1 � ðHt

1Þ/

is related to the initial values (9.73a, 9.73b). For this, we start from equations

(9.72b), (9.72c), and first deduce the equation:

@=@tfk:ðD ^ vt0Þ þ @

@p
f½p2=KSðpÞ�@Ht

1=@pgg ¼ 0: (9.74a)

If we now integrate this last equation between t ¼ 0 and t ¼ / , and if we use

the geostrophic balance,

ðvt0Þ/ ¼ lo½k ^ DðHt
1Þ/�;

for limiting values of vt0 and H
t
1, when t "/ , we obtain for ðHt

1Þ/ the following

relation:

loDðHt
1Þ/ þ @

@p
f½p2=KSðpÞ�ð@Ht

1Þ/=@pg

¼ k:ðD ^ v0Þ þ @

@p
f½p2=KSðpÞ�@H0

1=@pg:
(9.74b)

Among other things, Kibel was able (also in 1955) to settle the main issue of the

unsteady adjustment (towards geostrophic balance (9.63b)): vt0 and Ht
1 – related

with (9.72b) � evolves towards the geostrophic balance (9.63b), when the short

adjustment time t tends to infinity.

As a matter of fact one has a matching relation:

lim
t"1

ðvt0;Ht
1Þ ¼ ½vQGðt ¼ 0; x; y ; pÞ;HQGðt ¼ 0; x; y ; pÞ�: (9.74c)

Finally, we obtain from (9.74b) the initial condition that must be applied to the

main QG equation (9.65) with (9.66), in the following form:
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at t ¼ 0 : LHQG ¼ k:fD ^ v00g
þ@=@pf½p2=K0ðpÞ�@H0

1=@pg;
(9.75)

where LHQG, in (9.75), is the same operator which appears in the QG main outer

model equation (9.65), and is given by (9.66).

Here we can observe that if it is true that to predict the field HQG, in the QG

approximation, it is sufficient to know only the initial value of HQG! But unfortu-

nately, this single initial value is related, according to (9.75), to the initial data in

(9.73a, 9.73b), which are obtained from the unknown(!) data (9.59d) prescribed for

the DH two model equations (9.54a, 9.54b), under the constraint previously men-

tioned in (9.73b).

As a consequence, the main unsteady adjustment problem, concerning the

derivation of consistent initial conditions for the quasi-geostrophic, primitive

Kibel inviscid (non-viscous and adiabatic) or dissipative hydrostatic (viscous and

non-adiabatic) model equations, is the unsteady adjustment to hydrostatic balance.

In particular, for the Kibel primitive inviscid equations (DH equations

(9.54a–9.54d), when 1=Re? � 0), the corresponding unsteady acoustic adjustment

problem has been considered by Guiraud and Zeytounian [106], in which it is

observed that:

The initial conditions concerning horizontal velocity and entropy for the unsteady primitive

Kibel non-viscous and adiabatic equations are simply the ones pertinent to the full Euler,

non-hydrostatic equations, but shifted vertically by an amount equal to D. (Concerning the

above-mentioned “vertical shift D”, see our [19], Chap. V, Sect. 19.)

We also have the possibility of deriving a new initial condition (at t ¼ 0) relative

to p ¼ 1:

½ðHQG þ p TsðpÞ=KSðpÞ½ �@HQG=@pÞp¼1
�t¼0

¼ ðH0
1 þ p TsðpÞ=KSðpÞ½ �@H0

1=@pÞp¼1
:

(9.76)

The role of this “curious” condition (9.76) is to serve as an initial condition for

the boundary condition on p ¼ 1 (see the derived ground condition (9.87) below)

that must be applied to the main QG, outer, equation (9.65) written for HQG.

This condition (9.87) is derived via the formulation of Ackerblom’s problem in

the steady Ekman layer (region III) near the ground, and contains a time derivative.

As a consequence, (9.87) may be considered as a boundary condition for our main

QG, outer, equation (9.65), only if it is complemented with an initial condition –

(9.76).

9.2.4.2 Ackerblom’s Problem in the Steady Ekman BL Layer

Indeed, for the above derived main outer QG single equation (9.65) for HQG, with

the initial condition (9.75), at t ¼ 0, and behaviour (decay sufficiently rapidly)
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condition (9.67) at p ¼ 0 and at infinity in the horizontal plane, it is necessary also

to write a boundary condition at the ground simulated (for low Kibel number) by

p ¼ 1.

For this within the region III (the steady Ekman layer) we introduce the new

vertical coordinate:

p� ¼ ðp� 1Þ=Ki; (9.77a)

and in region III we consider the following inner (BL) limiting process:

Ki ! 0 with t; x; y and p� fixed: (9.77b)

With (9.77a, 9.77b) we consider the following inner (BL) expansion in region

III:

ðv; o;H; T; rÞ ¼ ðv0�; o0
�;H0

�;T0
�; r0

�Þþ
þ Ki ðv1�; o1

�;H1
�;T1

�; r1
�Þ; (9.77c)

We then obtain from the starting Kibel equations (9.58a–9.58d) the following set

of equations, for v0
�; o0

�;H0
�;T0

�; r0�; o1
�;H1

�;T1
�:

DH�
0 ¼ 0; @ o0

�=@p� ¼ 0; @H0
�=@p� ¼ 0; (9.78a)

r0
�T0

� ¼ 1; 1=Prð Þko@=@p�½r0�ð@T0
�=@p�Þ� ¼ 0; (9.78b)

with

at H0
� ¼ 0 : @T0

�=@p� ¼ 0: (9.78c)

Then, from matching with main QG region, when p� !/ , we obtain

o0
� ¼ 0; limp�!/T0

� ¼ T0 1ð Þ; limp�!/H0
� ¼ H0 1ð Þ; (9.79a)

and we also have

ðk ^ v0
�Þ þ loDH1

� � ko@=@p�½r0 1ð Þð@v0�=@p�Þ� ¼ 0; (9.79b)

@o1
�=@p� ¼ D:v0

�; (9.79c)

1=Prð Þko@=@p�½r0 1ð Þð@T1
�=@p�Þ� ¼ 0; (9.79d)

T0 1ð Þ ¼ �@H1
�=@p; (9.79e)
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with

d v�0 ¼ 0;

on H�
1 ¼ 0 : o�

1

�� ¼ ½1=T0ð1Þ�ð@H�
1=@tÞ;

b ½1=T0ð1Þ�½@T�
1=@p

�� ¼ sR�ð1Þ;
(9.80)

when we assume that the main radiative transfer does not have an Ekman BL

structure.

In fact, we can assume that the flat ground in the Ekman BL layer is

characterized by:

p� ¼ P�g0 þ Ki P�g1 þ ::: : (9.81)

From the above relation (9.79d) and (9.80), after a matching with the main QG

region I, we first obtain

T1
� ¼ TQG;1 þ ðdT0=dpÞp¼1

p�; (9.82a)

where

TQG;1 � TQG t; x; y; p ¼ 1ð Þ ¼ � @HQG=@p½ �p¼1
:

Then, from equation (9.79d) we obtain

H1
� � HQG;1 þ T0 1ð Þp�; (9.82b)

and

H1
� ¼ 0 : imply : P�g0 ¼ ½1=T0 1ð Þ�HQG;1; (9.82c)

where HQG;1 � HQG t; x; y; p ¼ 1ð Þ.
Now, with above results, we can formulate a consistent “Ackerblom’s problem”.

First we consider equation (9.79b), for v0
*, and we set:

v0
� ¼ vQG;1 þ V0

�;with vQG;1 � vQG t; x; y; p ¼ 1ð Þ:

From the matching with the main QG region I, when p� !/ , we have:

limp�!/V0
� ¼ 0 and ðk ^ vQG;1Þ þ lo DHQG;1 ¼ 0;

and we obtain, from (9.82b) for H1
*, that in (9.79b):

ðk ^ v0
�Þ þ loDH1

� � k ^ V0
�:
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Therefore, with the above results, we can formulate the following problem for

the determination of the horizontal, perturbation, velocity vector V0
*:

ko@2V0
�=@p�2 � k ^ V0

� ¼ 0; e
V0

� ¼ �vQG;1; on p� ¼ �½1=T0 1ð Þ�HQG;1; j
V0

� ! 0; when p� !/ :c
(9.83)

where we have assumed r0 1ð Þ ¼ 1, because we work with dimensionless quantities.

The solution of the above Ackerblom’s problem (9.83) is obtained in a standard

way:

V0
� � ik ^ V0

� ¼ �½vQG;1 � ik ^ vQG;1�E�; (9.84a)

where i � ð�1Þ1=2 and

E� ¼ expf�½ 1þ ið Þ=ð2koÞ1=2�½p� þ ½1=T0 1ð Þ�HQG;1�g: (9.84b)

Now it is necessary to consider the continuity equation (9.79c), and we find for

o1
* the following relation:

o1
� ¼

ðp�
P�g0

ðD � v0�Þdp� þ ½1=T0ð1Þ�ð@H1
�=@tÞp� ¼P�g0

(9.85a)

where

v0
� ¼ Realf½vQG;1 � ik ^ vQG;1� 1� E�ð Þg: (9.85b)

A tedious computation of integral in (9.85a) with (9.85b) finally produces the

value of o1
* when p� !/ :

o1
�/ ¼ limp�!/o1

� ¼ ½1=T0 1ð Þ�ð@HQG;1=@tÞ � lo
p
koD2HQG;1: (9.86)

Now, matching

limp�!/o1
� � o1

�/ ¼ oQG;1;

with the main QG region I produces the following boundary condition at the flat

ground for the QG model equation (9.65) with (9.66):

f½1=T0 1ð Þ�@=@t þ ½1=KS 1ð Þ�½@=@t þ vQG�D�@=@p�
� lo

p
koD2gHQG ¼ 0; on p ¼ 1:

(9.87)
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The above QG model problem ((9.65) with (9.66), and (9.75) and also (9.87)

with (9.76)) derived from full Kibel equations with initial and boundary conditions,

for low Kibel number, is a very appropriate application of our RAM Approach, and

provides a good example of the “deconstruction” of a starting problem – and its

“reconstruction” – via a main, QG, model and two local, Adj and Ek, models, by

matching for a Ki small parameter!

9.2.5 The Second-Order Ageostrophic G–Z Model

For the derivation of the so-called “AG” model, we need to consider three local

(inner) expansions in addition to the main one. Two of them are higher

approximations of those considered previously in the framework of the QG

model derived above in section 9.2.4. From the outer approximation (9.61a–b) we

first derive the main AG, second-order model equation, for HAG.

Then, from the first local (close to initial time) approximation, via a second-

order unsteady adjustment problem to the AG model equation, we obtain by

matching (between regions II and I) the initial condition, at t ¼ 0, for the AG

main equation.

Afterwards, from the second local (near-ground) approximation, via a second-

order Ackerblom’s problem in steady Ekman layer, we have the possibility of

matching (between regions III and I) to derive a boundary condition, on the ground

p, for this AG main equation. This “ageostrophic” model is relative to the HAG

component in the main asymptotic expansion (9.61b).

In order to obtain the initial condition at t ¼ 0, for the AG main model second-

order model, the problem of adjustment to ageostrophy, in region II, must be

considered. However, so as to be able to correctly formulate this problem of

adjustment to ageostrophy, it is necessary to analyze the problem related to the

unsteady Ekman boundary layer which develops in corner region IV! In addition,

we must also elucidate the compatibility of the models between regions III and IV

by analyzing the behaviour of the unsteady Ekman boundary layer when t !/ .

It is also necessary to consider the problem of the second approximation of the

steady Ekman boundary layer, which is a necessary step for the derivation of the

boundary condition in p ¼ 1 associated with the AG main model equation

(Detailed results for this AG second-order model are included in our monograph

[12], pp. 236–262).

It seems appropriate to add a final comment to this section, because it very well

shows the importance of our Approach, via the RAM, for the derivation of accurate,

reliable and consistent models. This comment concerns the so-called “balance

equation” which is well known in meteorological literature and often analyzed in

various ad hoc theories. This balance equation was derived by Monin in 1958 (see

Monin [94], pp. 42–44 for various comments), and also by Charney in 1962 [174].

In Monin this balance equation was derived as a second-order correction with

respect to the Kibel number, Ki, within the framework of the hydrostatic
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approximation. Therefore, within the framework of the present (above) low Kibel

number asymptotics analysis, we easily derive, for the second-order AG model, the

following equation:

k � ðr ^ vAGÞ ¼ l0D2HAG þ 2l02fð@2HQG=@x@yÞ2
� ð@2HQG=@x

2Þð@2HQG=@y
2Þg; (9.88)

which may be interpreted in different ways.

Here, in our RAM Approach, equation (9.88) is obviously an explicit relation for

the vertical component of vorticity once HQG and HAG have been computed! But in

Monin and Charney, confusingly, HQG and HAG with an mysterious(!) unknown H,
(9.88) is viewed as a Monge–Ampere equation for computing this unknown H,
when the horizontal velocity field (vAG) is assumed known! This curious (and

erroneous) interpretation of (9.88) – producing, in reality, the possibility for

computing vAG, when HQG and HAG have been computed – is obviously a direct

consequence of the absence of a rigorous logical, step-by-step, RAM Approach for

the derivation of sequential approximations. These erroneous results are present

systematically when an ad hoc approach is used for the derivation of the second-

order model, because (see the Epilogue below) it is not possible to predict the many

well balanced terms in these second-order models except via a reliable method – the

RAM Approach! (The Epilogue includes, among many examples, a typical exam-

ple when the lack of such a RAM Approach often leads to very ambiguous results.

Concerning the “Monge–Ampere equation”, see Kibel [171], in which this equation

is considered and analyzed).

9.2.6 Kibel Primitive Equations and Lee-Waves Problems as
Inner and Outer Asymptotic Models

We mentioned in Sect. 9.2.2 that in the framework of the non-hydrostatic dominant

equations (9.39a–9.39d) we have the possibility of considering two limiting pro-

cesses: (9.44a) and (9.44b). In reality, when we assume that a local relief is situated

around the point P�(x�, y�) in the prediction domain D with a diameter L�, a third
local limiting process provides the possibility of considering the classical steady

lee-waves model problem as an inner (local) model, relative to Kibel primitive

(hydrostatic and non-dissipative) equations considered as an outer model problem.

First, we consider, in place of equations (9.39a–9.39d), a simplified non-dissi-

pative ðRe !/Þ without Coriolis force ðRo ¼/Þ system of equations, which leads

to the (classical, d ! 0) dimensionless Euler atmospheric equations

rEdvE=dt þ ð1=gM2ÞDpE ¼ 0; (9.89a)
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drE=dt þrE @wE=@z þ D:vEf g ¼ 0; (9.89b)

rEdTE=dt� ½ðg� 1Þ=g�dpE=dt ¼ 0; (9.89c)

rEfe2dwE=dt þ ð1=gM2Þ@pE=@z þ ðBo=gM2ÞrE ¼ 0: (9.89d)

for vE, wE, pEð¼rETEÞ, TE and rE.
From these equations, when we write the slip condition

on z ¼ 0 : wE ¼ 0; (9.90a)

in the case of a flat ground, we derive, in the hydrostatic limiting process

limP
e!0 ¼ fe ! 0 with t; x; y z fixed and M ¼ O 1ð Þg; (9.90b)

the well-known Kibel primitive equations,

rPdvP=dt þ ð1=gM2ÞDpP ¼ 0; (9.91a)

drP=dt þrP @wP=@z þ D:vPf g ¼ 0; (9.91b)

rPdTP=dt� ½ðg� 1Þ=g�dpP=dt ¼ 0; (9.91c)

@pP=@z þ BorP ¼ 0; (9.91d)

pP ¼ TPrP; (9.91e)

for the limit functions,

½vP;wP; pPr;TP;rP� ¼ limP
e!0½vE;wE; pE;TE and rE�; (9.92)

when (9.90b) is realized.

However, for these same Euler equations (9.89a–9.89d) we can also consider the

presence of a local relief situated around the point POðx0O; y0OÞ on the ground in a

local region D0 2 ðl0;m0Þ, inside the prediction domain D (having L� as diameter).

If the local vertical length scale is h0, then the relief can be simulated by the local

dimensionless equation,

z0 ¼ h0hððx0 � x0OÞ=l0; ðy0 � y0OÞ=m0Þ; with h ¼ O 1ð Þ; (9.93)

where z0 and x0, y0 are physical local coordinates (with dimensions) linked with the

relief.

The above dimensionless Euler equations (9.89a–9.89d), however, are written

with dimensionless coordinates: z ¼ z0=H�; x ¼ x0=L� and y ¼ y0=L�. Rewriting
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(9.93), with the dimensionless coordinates, x, y and z, we obtain, in its place, the

dimensionless equation of the relief in the following form (in place of: z ¼ 0):

z ¼ ahðb x; cZÞ; (9.94a)

with

x ¼ ðx� xOÞ=e and Z ¼ ðy� yOÞ=e: (9.94b)

In (9.94a)

a ¼ h0=H
�; b ¼ L�=l0; c ¼ L�=m0: (9.94c)

Corresponding the slip condition on the surface of the relief (9.94a) is:

wloc ¼ avloc:Dlochðbx; c ZÞ on z ¼ ahðb x; cZÞ; (9.95a)

where Dloc ¼ ð@=@x; @=@ZÞ.
Obviously, from the limiting hydrostatic process (9.90b), where x and y are

fixed, which leads to the Kibel primitive equations (9.91a–9.91e), we cannot take

into account, in these primitive equations, the influence of the relief linked with the

slip condition (9.95a). The reason is that

hð/;/Þ � 0; (9.95b)

as a consequence of a local character of the considered relief, which is limited inD0,

inside D. As a consequence, in place of (9.90b) it is necessary to consider a new

“local hydrostatic limiting process”: namely,

limloc
e!0 ¼ fe ! 0 with t; x;Z and z fixedg; (9.96a)

with, a, b, c, andM ¼ O(1). In such a case, for the below local limit functions, when

(9.96a, 9.96b) is realized,

limloc
e!0½vE; ewE; pE;TEand rE�;

¼ ½vloc;wloc; ploc;Tloc; rloc�;
(9.96b)

we derive the following local steady non-hydrostatic Euler equations:

rloc½ðvloc:DlocÞvloc þ wloc@vloc=@z �
þ ð1=gM2ÞDploc ¼ 0;

(9.97a)

Dloc:ðrlocvlocÞ þ @ððrlocwloc=@z ¼ 0; (9.97b)
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rloc½ðvloc:DlocÞTloc þ wloc@Tloc=@z

� ½g� 1=g�½ðvloc:DlocÞploc
þ wloc@ploc=@z � ¼ 0;

(9.97c)

rloc½ðvloc:DlocÞwloc þ wloc@wloc=@z �
þ ð1=gM2Þ½@ploc=@z þ Borloc� ¼ 0;

(9.97d)

with

ploc ¼rlocTloc: (9.97e)

These local equations (9.97a–9.97e) govern the steady lee-waves problem in a

non-viscous baroclinic adiabatic atmosphere over and downstream of a relief

simulated by equation (9.94a) in a local domain D0, when we use the slip condition

(9.95a) for wloc. Formal matching of

limx;Z"/½vloc;wloc; rloc; ploc;Tloc ¼� ½vP; 0; rP; pP;TP�P0
; (9.98a)

½@pP=@z þ BorP�P0
¼ 0; (9.98b)

between the local lee-waves (9.97a–9.97e) and Kibel primitive (9.91a–9.91e)

model equations may be interpreted as providing lateral (in the horizontal plane)

boundary conditions at infinity for the local (inner) steady, non-hydrostatic,

dynamic lee-waves model equations (9.97a–9.97e) with (9.95a), once the predic-

tion by primitive (hydrostatic) Kibel model equations (9.91a–9.91e) is known at the

position P0 in D.
The set of local steady lee-waves equations (9.97a–9.97e) are intensively used in

mesometeorology (as is the case in our Études Hydrodynamique des Phénomènes
Mésométéorologiques [1]).
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Epilogue

I hope that the reader who has become acquainted with the various parts of this

monograph now has not only une certaine idée of my main purpose, but is also

deeply convinced that there is really no better way for the derivation of significant

consistent model problems than the RAM Approach!

It might be true that the physical approach can produce valuable qualitative

analysis and a better understanding of the laws of nature related to various signifi-

cant and practical fluid-flow phenomena. Unfortunately, a purely ad hoc physical

approach would not be able to point the right way to a consistent rational obtention

of approximate simplified leading-order model problems which could be used

successfully for numerical simulation with a high-speed computer.

In particular, this is especially true because such an ad hoc approach would be

unable to provide a rational, logical method (as is the case with our RAM

Approach) for the derivation of a well-balanced associated second-order model

problem with various complementary physical effects! A well-known example is

the derivation of a second-order rational system of boundary layer compressible

and heat-conducting equations (which, it seems to me, are primarily due to

asymptotics) mentioned in the Prologue above. This extension of classical Prandtl

boundary-layer equations, by Van Dyke (1962), from the full NS–F problem, has

been a crucial practical scientific contribution to the NASA program for the

atmospheric re-entry of the Space Shuttle!

Below, a typical case is considered, which is related to the modelling of the

Bénard thermal convection problem (discussed in Chap. 8), up to the derivation of a

second-order model associated with the classical RB shallow thermal convection

model.

In general, the derivation of a second-order model problem, from the full

unsteady NS–F, well-formulated problem is not an easy task! Usually, erroneous

results are present, systematically, when an ad hoc approach is used for the

derivation of such second-order models, because it is not possible to predict the

many, well-balanced terms in these second-order models except via a reliable

method – the RAM Approach!

R. Kh. Zeytounian, Navier–Stokes–Fourier Equations,
DOI 10.1007/978-3-642-20746-4, # Springer-Verlag Berlin Heidelberg 2012
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Below, with the derivation of the second-order equation model for the Bénard

convection problem, associated with the well-known RB leading-order shallow

thermal convection model, we give a typical example when the absence of such a

logical, step-by-step RAM Approach leads to very ambiguous results!

As starting, exact, Bénard convection equations, we choose those derived by Hill

and Roberts in 1991. These dimensional equations, with physical quantities, are

written in the following form (see Chap. 8 for the notations):

@ui=@xi ¼ a dT=dt;

rdui=dt ¼ rfi � @p=@xi þ @=@xj½ldmmdij þ 2 mdij�;

� adp=dtþ Cp½r=a �ð@ui=@xiÞ ¼ ðldiiÞ2

þ 2mdijdij þ @=@xi½kð@T=@xiÞ�;

and we assume that f1 ¼ 0; f2 ¼ 0; f3 ¼ � g, and the coefficients, l; m , and k are

assumed constant (respectively, ld; md; kd , as functions of constant temperature

Td), and we write in place of @=@xj½ldmm dij þ 2mdij� the term

mdfDui þ ½1þ ðld=m dÞrð@ui=@xiÞ�;Cp ¼ Tð@S=@TÞp, which is related to entropy

S, the specific heat at constant pressure ðCp ¼ Cp Tð ÞÞ. For the derivation of model

reduced equations, from the above (non-dimensionless) convection equations, first,

Hill and Roberts consider as a limiting process (the rather exotic):

g !/ and ad ! 0 such that gad fixed and O 1ð Þ

which is, in fact, a “bastardized”, non-formalized version of our à la Boussinesq

limiting process (8.16). It is interesting to remark that Straughan (1992), p.279,

writes: “ The key philosophy of the Hills and Roberts paper (1991) is that typical

acceleration promoted in the fluid by variations in the density are always much less

than the acceleration of gravity!”

Then, according to the above limiting process, Hills and Roberts expand the

pressure, velocity, and temperature fields, in their above dimensional equations, in

1=gð Þ ! 0, such that:

p ¼ p0gþ p1 þ 1=gð Þp2 þ :::;

ui ¼ ui
1 þ 1=gð Þui2 þ :::;

T � Td ¼ T1 � Td þ 1=gð Þ½ðT2 � TdÞ� þ :::

r Tð Þ ¼ rd½1� ad½ðT� TdÞ þ ::::� �:

– which is a rather bizarre expansion!

254 Epilogue



Now, with the above expansion, the O–B equations (for a weakly expansible

liquid) are derived, via the limit:

eH=R ¼ ½d=Cpd�ðgadÞ ! 0

Thus, Hill and Roberts obtain the following reduced equations (with

dimensions!):

@ui=@xi ¼ 0;

dui
1=dt ¼ Ra T1di3 � @p1=@xi þ Dui1;

dT1=dt � eH=R½Td þ T1�u31 ¼ 1=Prð ÞDT1 þ 2=Rað ÞeH=Rdij1dij1:

These equations are, in fact, rather similar to our deep thermal convection

equations (8.43b–d) with viscous dissipation – the parameter eH=R being an ana-

logue to our dissipation parameter Di, defined by (8.44a). When

eH=R ! 0;

we recover the RB model, leading-order, equations.

In our “deep thermal convection” equations (8.43b–d), in place of pressure and

temperature, we have, respectively, the perturbations p (8.17) and y (8.13) and

½Td þ T1� in the term proportional to eH=Ru31does not have an explicit form!

Straughan (1992), p. 274, presents the following form of our deep convection

equations (a system appropriate to thermal convection in a deep layer):

1=Prð Þ½@ui=@tþ uj@ui=@xj� ¼ � @ p=@xi þ Dui þ Rydi3;

@uk=@xk ¼ 0;

@y=@t þ uj@q=@xj � Ru3y ¼ mðx3ÞDyþ 2½d=R�mðx3Þdijdij;

where

mðx3Þ ¼ 1=½1þ dð1� x3Þ�

and d is a constant which represents a depth parameter, and R � p
Ra.

If we now consider for three functions u ¼ ðuiÞ; y and p, the following three

asymptotic expansions, relative to expansibility parameter e:

du ¼ uRB þ euS þ :::;

U � ðu; y; pÞ ¼ y ¼ yRB þ eyS þ :::j ;

p ¼ pRB þ epS þ :::;b
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then, first derived, from the full unsteady NS–F convection equations, the RB,

shallow thermal, leading-order, convection equations are:

r:uRB ¼ 0;

@uRB=@tþ ðuRB:rÞuRB þrpRB � GryRBk ¼ r2uRB;

@ yRB=@t þ ðuRB:rÞyRB ¼ 1=Prð Þr2yRB;

In a second step, again from the full unsteady NS–F convection equations, we

derive as a second-order, linear, well-balanced system of non-homogeneous

equations for uS; yS; pS:

r:uS ¼ dyRB=dt;

@uS=@tþ ðuRB:rÞuS þ ðuS:rÞuRB þrpS � GrySk

�r2uS ¼ yRBduRB=dt þ ½1þ ðld=mdÞ�rðdyRB=dtÞ;

@yS=@t þ uRB:ryS þ uS:ryRB � 1=Prð Þr2yRB

¼ ½ð1þ GpdÞyRB� dyRB=dt þ Bo½ðTd=DTÞ þ yRB� uRB:kð Þ

þ 1=2ð Þ Bo=Grð Þ½@ðuRBÞi=@xj þ @ðuRBÞj=@xi�2;

where Gpd ¼ ½ð1=CpÞðdCp=dTÞ�d=ad, when we assume:

Cp Tð Þ ¼ Cpd½1� eGpdy� and a Tð Þ ¼ ad½1� eAdy�d;

with

Ad ¼ ½ðdlogCp Tð Þ=dTÞ=ðdlogr Tð Þ=dTÞ�d:

Obviously, from the above (but not obvious) second-order equations it is possi-

ble to undertake an analysis which might produce interesting results complemen-

tary to the usual (classical, à la Chandresakhar, 1961) known quantitative results for
the RB problem. Such analysis can, in particular, can produce specific complimen-

tary results obtained earlier from these RB model equations.

We see that even if an ad hoc derivation is sometimes able to produce a valuable
result at the leading-order, and even if a deficient ambiguous approach is chosen
(as in the case of Hill and Roberts), such an approach will in no way be able to
consistently derive a rational second-order approximation with well-balanced
second-order terms. This precise observation is one of the main reasons for our
present RAM Approach and for the publication of this book!
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Actually, we have a certain idea of the intrinsic structure of NS–F equations and,

via the presence of various non-dimensional reduced parameters in these equations

and associated initial and boundary conditions, we begin to understand – thanks to

the RAM Approach � the profound unity in the puzzle of partial fluid-flows with

diverse configurations. Here in Chaps. 7–9 we have considered only some problems

of aereodynamics, convection, and atmospheric motions; but our RAM Approach

have a large spectrum of applications in various physical, technological, and

geophysical processes. It can operate everywhere where it is possible, in analyzed

problems, to detect several dimensionless significant parameters – but this is not

always an easy matter. When this is the case, then the corresponding mathematical

consistent asymptotic model appears under definite scaling relations (similarity

rules) between these parameters, which produce diverse limitations in the use of

this model! In Chap. 8 such a case was analyzed, and for the thickness, d, of a liquid
layer a strong double limitation was derived for the case of RB shallow thermal

convection (see Sect. 8.4).

This idea of obtaining mathematical models by proper scaling parameters in

multiparametric non-linear problems is presented and very well illustrated in detail

by Cercignani (kinetic theory) and Sattinger (weakly non-linear dispersive phe-

nomena) (1998). A more recent, very interesting, but rather unusual book by de

Gennes et al. (2004) will enable the reader to understand, in simple terms, some

mundane questions affecting our daily lives – questions that have often come to the

fore during our many interactions with industry (capillarity and wetting phenom-

ena, drops, bubbles, pearls, waves, and so on). The strategy in this book is to “

sacrifice scientific rigour” by an “impressionistic” approach (à la de Gennes) based
primarily on qualitative arguments, which makes it possible to grasp things more

clearly and to envisage novel situations. For me, this book is a collection of

problems well suited to a RAM Approach – if, under the physics, we are able to

discover the main significant small (or large) parameters.

I hope that the points of view, linked with the RAM Approach emphasized

throughout this book devoted to the modelling of NS–F equations, have been well

presented, and that some readers (at least) will be convinced that this technique

provides very powerful tools for the derivation of consistent rational not-stiff

models as an aid to numerical simulation. It is clear that at the present time a gap

still exists between the Rational Asymptotic Modelling (RAM) Approach and

High-Speed-Computer Numerical (H-S-CN) Simulation. In many cases the results

of numerical computations (which are often fascinating) do not correspond satis-

factorily with experimental/laboratory visualizations – often because of the absence

of criteria by which the limit of validity of used models is known. Rarely in

scientific publications do we encounter the theoretical treatment of a “full”

unsteady fluid-flow problem directly inspired by the technology, and the work of

producing a simple description of this fluid flow, via a model problem that can be

used to explain it by using numerical simulation, is lacking (see, for instance, Sect.

6.1, footnote 2, page 119). The crucial problem of initial conditions, which strongly

influence the subsequent formation and evolution of the fluid flow, is usually

overlooked!
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We are convinced that: “The more computing and numerical algorithmic pro-
cesses, via high-speed computers, becomes efficient, the more will be the need for
conceptually consistent techniques capable of unravelling stiff fluid-flow problems.
The Rational Asymptotic Modelling (RAM) Approach, among others(?), proves to
be a (more!) efficient tool.” This (rather optimistic) statement was, during 1970–80,

a guideline for me when I was working on the asymptotic modelling of atmospheric

flows!

Modelling of atmospheric flows – especially via approximate and consistent

well-balanced models for global, short-range, and local weather-forecasting –

involves vast and complex applied mathematics � as is seen clearly in Sect. 9.2

above, in the framework of the very particular QG asymptotic model. During the

twenty-year period of my scientific activity at the University of Lille-I which was

devoted mainly to the modelling of fluid flow phenomena (see my monograph

(2002)), I published two books (1990 and 1991) and several survey and review

papers (1976, 1982, 1983, 1985, 1991) concerning asymptotic models of atmo-

spheric motions. In this scientific endeavour I was strongly influenced by my own

conception of meteorology (doubtless an “unconscious inheritance” from my

muscovite scientific period from 1957 to 1966, with I. A. Kibel) as a fluid dynamics

discipline which lies in a privileged area for the application of the RAM Approach!

My purpose (which was certainly “rather naive”) was, during the 1990s, to initiate a

process which does not seem to have sufficiently attracted the attention of scientists.

Namely, the use of methods of formal asymptotic analysis for carrying out asymp-

totic modelling; that is, for building approximate consistent theoretical models

based on various meteo situations and atmospheric motions for the use in weather

forecasting! Conceptually, thanks to such an asymptotic (outer–inner) approach,

where the matching plays a central role: “the problem of taking into account
the atmospheric initial data (using weather observations) for the used, reduced
(filtered!) model is then well-posed!”1

A recent operational approach at Meteo-France, working with three coupled

models – Arpège-Aladin, for a numerical weather prediction model for Central

Europe, and also Arome as a regional prediction model – is conceptually very

1 In the case of a hydrostatic large horizontal-scale numerical weather prediction model, this

“initialization” is consistently solved thanks to the derivation, near the (weather prediction) initial

time, of a system of local unsteady equations (with a “short time” t ¼ t=e, where e is the small

hydrostatic parameter (Sect. 9.2) in the framework of a well-posed initial-value (à la Cauchy)

problem. It might be true that adjustment to the state of static equilibrium is brought about (by the

generation and scattering of internal acoustic waves) during only a few minutes in all (see Monin

(1972), Section 6, and also ourMeteorological Fluid Dynamics (1991), Chapter 5). Unfortunately,
the theoretical analysis (for an adiabatic atmospheric motion) by Guiraud and Zeytounian (1982),

and also the numerical simulation by Outrebon (1981), show that: “The two sets of initial
conditions � for full adiabatic, Euler, atmospheric equations, and the so-called Kibel primitive
equations, subject to hydrostatic approximation – are merely shifted vertically by the amount of
vertical displacement during the whole process (during t "/ and matching) of the vertical, one-
dimensional, unsteady adjustment, atmospheric adiabatic, motion; this vertical shift being a quite
significant phenomenon (Outrebon (1981))”.
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different from our, “à la Zeytounian RAM Approach”, based on asymptotics with

matching. This is unfortunate, because the Arpège model, which is a “pilot model”

for the Aladin model is, in fact, as large synoptic hydrostatic model, derived from

the hydrostatic limiting process (Sect. 9.2.2): e ! 0. In such a case we see that the

problem concerning the consistent determination of the associated initial conditions

for this Arpège model, in the framework of the RAM Approach, is linked with an

unsteady adjustment problem where, in place of the time t, it is necessary to

introduce a short time t ¼ t=e. Relative to t, the acoustic-type model equations,

for this unsteady adjustment problem, are derived from the full starting, non-

hydrostatic, dimensionless equations for atmospheric motions.

In place of this RAM Approach – via the unsteady adjustment problem and

matching, t !/ , t ¼ 0 �Meteo-France uses a “statistical approach” inspired

mainly by Kalnay’s (2002) book, which covers methods for numerical modelling,

data assimilation (for the determination of initial conditions using weather

observations), and predictability, and includes a discussion of equations of motion

and their approximations.

Obviously, the actual meteo philosophy is completely different from our RAM

Approach, which is specifically a fluid dynamics approach using asymptotics. But

perhaps this meteo philosophy is well-adapted to awkward practical weather-

forecasting meteo machinery, which every day, amidst more serious business,

shows, as entertainment, “what the weather will be like tomorrow or for the next

few days!” Of course, weather forecasting is also an important business. . . but I
think that atmospheric motions, as a fluid dynamics problem, poses, for our

environment, numerous very interesting and specific challenges. And obviously,

the applications of the RAM Approach for these specific “terrestrial” problems

undoubtedly deserves particular attention!

Cited references

Hills, R., Roberts, P.: Stab. Appl. Anal. Continuous Media. 1, 205–212 (1991)

Straughan, B.: The Energy Method, Stability, and Nonlinear Convection. Appl. Math. Sci, vol. 91,

2nd edn. Springer, New York (2004)

Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Clarendon, Oxford (1961)

Cercignani, C., Sattinger, D.H.: Scaling Limits and Models in Physical Processes. DMV Seminar,

Band 28, Birkh€auser (1998)
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