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Preface

ICITS 2011, the 5th International Conference on Information Theoretic Security,
was held in the city of Amsterdam, The Netherlands, during May 21–24, 2011.
The conference took place at CWI, the Dutch Center for Mathematics and Com-
puter Science, and at the Trippenhuis, the headquarters of the Royal Dutch
Academy of Arts and Sciences.

The goal of this conference series is to bring together the leading researchers in
the field of information-theoretic cryptography. This area of cryptography aims
at understanding the possibility and impossibility of cryptographic schemes that
offer information-theoretic security. Such a strong level of security, sometimes
also referred to as unconditional security, is very attractive as it does not rely on
unproven computational hardness assumptions, and in particular also withstands
attacks by quantum computers. The price for this level of security often comes
in the form of less efficiency and/or some physical assumption. Understanding
the minimal requirements for information-theoretic security is a central part of
this line of research. Personally, what I find very attractive is the mathematical
neatness of the field, and its rich connections to other areas of mathematics, such
as probability and information theory, algebra, combinatorics, coding theory, and
quantum information processing, just to mention the most prominent ones.

There were 27 submitted papers of which 10 were selected. Each contributed
paper was reviewed by at least three members of the Program Committee. Sub-
missions co-authored by Program Committee members were reviewed by at least
five members. The Program Committee worked hard to review and discuss the
submissions, and to finally select the best papers among them. It was a pleasure
to work together with such a motivated and professional Program Committee.
I would like to thank each member for his/her contribution. I also thank the
external reviewers who assisted the Program Committee members during the
reviewing process.

In addition to the accepted papers, the conference also featured nine invited
speakers. Each invited speaker provided a summary of his presentation as a con-
tribution to these proceedings. The invited speakers were: Benny Applebaum,
Alexander Barg, Imre Csiszár, Ivan Damg̊ard, Yuval Ishai, Renato Renner,
Leonid Reyzin, Amin Shokrollahi, and Ronald de Wolf.

As a new component, ICITS 2011 featured a Rump Session: an informal after-
noon program that gave all the attendees the possibility for a short presentation
on a topic of their choosing. I hope that this turns into a tradition for future
ICITS conferences.

I would like to thank the two General Chairs, Ronald Cramer and Krzysztof
Pietrzak, for organizing the conference and for ensuring a smooth running of the
event. I would also like to thank Niek Bouman for chairing the Rump Session,
and Joachim Schipper for his work behind the scenes. Furthermore, my thanks
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go to the local support staff at CWI, in particular to Susanne van Dam for
her unwavering organizational assistances, and to Maarten Dijkema and Chris
Wesseling for setting-up and maintaining the submission system. I used Shai
Halevi’s Web Submission And Review Software; this is a very handy system
which was of great help to me to perform my work as Program Chair, and Shai
was always very prompt in answering questions.

Last but not least, I would like to thank all the authors who submitted papers
to the conference and all the attendees of the conference; you are the ones that
make ICITS possible.

May 2011 Serge Fehr
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Correlation Extractors and Their Applications�

(Invited Talk)

Yuval Ishai��

Technion
yuvali@cs.technion.il

Abstract. Randomness extractors convert dirty sources of randomness
into clean sources of randomness. Motivated by the usefulness of cor-
related randomness in cryptography, we introduce an extension of ran-
domness extraction and the related notion of privacy amplification to the
case of correlated sources. Our main result is an efficient interactive two-
party protocol which extracts m clean independent instances of a given
joint distribution (X, Y ) from n = O(m) dirty (or ”leaky”) instances of
the same distribution. The classical case corresponds to X and Y be-
ing identical random bits. We present several applications of correlation
extractors to cryptography.

1 Background

The problem we consider is best explained as an extension of privacy amplifi-
cation [2,1], the first application of randomness extractors [19] in cryptography.
Suppose that Alice and Bob initially share an n-bit secret random key k. This
key is partially compromised by an adversary Eve, who applies some leakage
function L : {0, 1}n → {0, 1}t to k and learns the output z = L(k). Now Alice
and Bob would like to engage in a public discussion which results in agreement
on a shorter m-bit key k′ on which Eve has essentially no information. (Ideally,
m ≈ n − t.) This problem can be solved by having Alice communicate a short
random seed r for a (strong) randomness extractor Ext, and defining the new
key as k′ = Ext(k, r). The extractor Ext should guarantee that for every admis-
sible leakage function L, the final key k′ is almost uniformly distributed when
conditioned on Eve’s view (z, r).

2 How to Clean Noise

Standard privacy amplification can be thought of as the question of building
a clean secure communication channel from a leaky secure channel. The ques-
tion we ask is whether this can be generalized to other types of channels. This

� Based on a joint work with Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai [16].
�� Supported by ERC Starting Grant 259426, ISF grant 1361/10, and BSF grant

2008411.

S. Fehr (Ed.): ICITS 2011, LNCS 6673, pp. 1–5, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 Y. Ishai

question is motivated by the usefulness of noisy channels and correlated random-
ness in cryptography [20,7]. Similarly to the use of a common source of secret
randomness as a resource for secure communication, correlated randomness is
useful as a resource for secure computation [22,12,17]. To illustrate the question
of cleaning channels, consider the simple case of a binary symmetric channel
(BSC). Here Alice sends a random n-bit string a and Bob receives an n-bit
string b obtained from a by flipping each bit (independently) with some fixed
probability 0 < p < 1/2. Can we build a clean BSC from a leaky BSC which
may reveal arbitrary t bits of information about (a, b)?

A natural solution that comes to mind is to have Alice and Bob first use their
leaky BSC to agree on a common random string k on which Eve has essentially
no information, and then use k to generate a pair of local outputs (a′, b′) whose
joint distribution is statistically close to that of an m-bit BSC, for some m < n.
This solution is acceptable if we are only concerned about protecting Alice and
Bob against an external Eve. In the classical privacy amplification scenario, this
is indeed the only relevant concern. The current case of a BSC is qualitatively
different in that an ideal BSC keeps secrets from both parties. Since the above
solution allows each of Alice and Bob to fully learn (a′, b′), it falls short of
faithfully emulating an ideal BSC. Instead, we would like the outputs to be
distributed correctly not only from the point of view of an external Eve, but
also from the point of view of Alice or Bob.

3 Extracting Correlations

The above example leads us to the notion of correlation extractors. Given a joint
distribution (X, Y ) which specifies an atomic correlation, or a “channel,” the goal
is to realize m clean independent instances of (X, Y ) given n leaky instances of
(X, Y ). More precisely, suppose that Alice holds a and Bob holds b, where (a, b)
are obtained by taking n independent samples from (X, Y ) and letting a include
all X instances and b include all Y instances. An adversary Eve gets partial
information on Alice and Bob’s inputs by applying a global leakage function L
with output length t to (a, b) and learning its output z = L(a, b).1 The goal
is to design an interactive protocol between Alice and Bob which uses a public
communication channel and a small amount of fresh randomness, such that for
every L as above the following holds. In the end of the protocol, Alice outputs
a′ and Bob outputs b′ such that (a′, b′) are statistically indistinguishable from m
independent instances of (X, Y ) even when conditioned on Eve’s view, and even
when conditioned on the joint view of Eve together with either Alice or Bob.
We refer to such a protocol as a correlation extractor for (X, Y ). The notion

1 Our results apply (with the same asymptotic parameters) also to a stronger notion of
correlation extractors, allowing (a, b) to be taken from any joint distribution (A, B)
such that Pr[(A, B) = (a, b)] ≤ 2t · Pr[(X, Y )n = (a, b)] for all (a, b). The latter
notion of an imperfect (X, Y )-source generalizes the standard notion of a weak n-bit
source with min-entropy n − t [19].



Correlation Extractors and Their Applications 3

of correlation extractors can also be captured using the standard simulation-
based paradigm for defining secure computation [12,11,4]. In the terminology of
secure computation, an (n, m, t, ε) correlation extractor for (X, Y ) is a two-party
protocol which ε-securely realizes (X, Y )m given a single call to a “t-leaky oracle”
for (X, Y )n. Here we assume that the adversary is semi-honest: it can observe
all information available to corrupted parties but cannot modify the messages
they send to each other.

4 OT Extractors

An OT extractor is a correlation extractor for the correlation defined by a random
instance of oblivious transfer [20,8]. That is, X = (X0, X1) is uniformly random
over {0, 1}2 and Y = (b, Xb) for a random bit b. It is instructive to compare OT
extractors with previous related notions from the literature. When the leakage
function L can only contain physical bits of its input, extracting OTs coincides
with the previously studied goal of combining OTs [14], namely generating secure
instances of OT from multiple candidates of which a bounded number may be
faulty and leak information. Thus, OT extractors can be viewed as a common
generalization of OT combiners and standard randomness extractors, which in
turn both generalize the notion of extractors for bit-fixing sources [6].

5 Main Result

Our main result is a construction of a “constant-rate” correlation extractor for
any distribution (X, Y ) with constant-size support and rational probabilities.
More precisely, for any such (X, Y ) there exist constants c1, c2, c3 > 0 and c > 1
for which there is an explicit constant-round (n, m, t, ε) correlation extractor
with m(n) = c1n, t(n) = c2n, ε(n) = 2−c3n and cn bits of communication.
The construction modifies a previous OT combiner from [13] by providing the
additional guarantee that the inputs fed into the OT candidates are taken from
a small-bias space [18]. Constant rate is achieved by employing “MPC-friendly”
algebraic-geometric codes over constant-size fields [9,5].

6 Applications

As discussed above, correlation extractors can be applied for purifying imperfect
correlated random sources that can be useful for cryptographic applications. For
instance, when basing unconditionally secure cryptographic protocols on a phys-
ical BSC, correlation extractors can be used to accommodate an imperfect or
leaky implementation of the BSC. As another example, one can think of using an
expensive process of generating many precomputed random OTs for the purpose
of a very fast “non-cryptographic” secure computation which should be done in
the future. To eliminate the effect of leakage which may have occurred during
the generation and storage of the precomputed OTs, an OT extractor can be



4 Y. Ishai

applied shortly before the OTs are consumed. Similarly to the case of privacy
amplification, it is crucial that correlation extraction be done strictly after leak-
age occurs, so that the fresh randomness used by the extractor is independent
of the leakage.

We also show a somewhat surprising application to eliminating leakage caused
by a computationally secure two-party protocol. Under a variant of the Φ-Hiding
Assumption [3,10], we apply our constant-rate OT extractor to realize n in-
stances of OT with only O(n) bits of communication. Such a protocol was pre-
viously known only under the (nonstandard) assumption that there exists a
pseudorandom generator with polynomial stretch in NC0 [15].

Finally, our main result implies constant-rate leakage-resilient secure reduc-
tions (in the semi-honest model) between any pair of nontrivial finite correla-
tions, or “channels”.
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Characterization of the Relations between

Information-Theoretic Non-malleability, Secrecy,
and Authenticity

Akinori Kawachi, Christopher Portmann, and Keisuke Tanaka

Department of Mathematical and Computing Sciences, Tokyo Institute of
Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

{kawachi,christo5,keisuke}@is.titech.ac.jp

Abstract. Roughly speaking, an encryption scheme is said to be non-
malleable, if no adversary can modify a ciphertext so that the resulting
message is meaningfully related to the original message. We compare
this notion of security to secrecy and authenticity, and provide a com-
plete characterization of their relative strengths. In particular, we show
that information-theoretic perfect non-malleability is equivalent to per-
fect secrecy of two different messages. This implies that for n-bit mes-
sages a shared secret key of length roughly 2n is necessary to achieve
non-malleability, which meets the previously known upper bound. We
define approximate non-malleability by relaxing the security conditions
and only requiring non-malleability to hold with high probability (over
the choice of secret key), and show that any authentication scheme im-
plies approximate non-malleability. Since authentication is possible with
a shared secret key of length roughly log n, the same applies to approxi-
mate non-malleability.

1 Introduction

There exist many different cryptographic goals to protect information. The most
basic is secrecy, namely, that the desired information remain unknown to an
adversary. Information-theoretic perfect secrecy was already fully characterized
by Shannon in the 40’s [14]. Authentication is another important task, which
consists in guaranteeing that the information was not tampered with, that it
really comes from who it claims. Wegman and Carter’s seminal work [18] is
considered the corner stone in information-theoretic authentication, since it is
the first paper to show that the secret key needed can be much shorter than
the message. Non-malleability is yet another goal. This notion of security was
introduced by Dolev, Dwork and Naor [4] for computational security, and has
received quite a lot of attention since.

Roughly speaking, non-malleability is the requirement that an adversary can-
not perform a “controlled modification” of a message when given the correspond-
ing ciphertext. Or, in other words, the adversary should not be able to produce
a new ciphertext such that the two underlying messages are “meaningfully re-
lated.” For example, if a document such as a contract is encrypted, a dishonest

S. Fehr (Ed.): ICITS 2011, LNCS 6673, pp. 6–24, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Relations between Non-malleability, Secrecy, and Authenticity 7

party might try to modify the ciphertext in such a way that he only modifies
the amount of money due in the contract. With encryption schemes such as the
one-time pad this is perfectly possible, because flipping a bit of the ciphertext
flips a bit of the underlying message, even though perfect secrecy is guaranteed.

Shared secret keys are considered a very expensive resource, and thus bound-
ing the length of the key needed and finding schemes which meet this bound are
amongst the most important tasks when studying information-theoretic secu-
rity. In his much celebrated work, Shannon [14] showed that to provide (perfect)
secrecy for one message, an encryption scheme requires a shared key at least as
long as that message.

Perfect security can be an expensive or sometimes even an impossible goal to
achieve. Relaxing the security conditions and only requiring the security criteria
to be met with high probability over the choice of keys often results in great
improvements. For example, perfect authentication is impossible: there is always
a small chance that a forged message and authentication code (MAC) match.1

Therefore we can at best guarantee with probability 1− 1/|Z| that a correctly
authenticated message has not been tampered with, where Z is the alphabet of
the MAC appended to the message. To achieve an error of exactly 1/|Z|, a shared
secret key of length at least n bits is needed [15], where n = log |X | is the length
of the message. By simply increasing the error from 1/|Z| to 2/|Z|, Wegman
and Carter [18] showed that the shared secret key needed can be reduced from
n to roughly log n bits.

Previous Work on Non-malleability. In the case of computational security, sev-
eral non-malleable schemes have been proposed with semantical “simulation
based” security definitions [4] and indistinguishability or “comparison based”
security definitions [1,11]. Many papers focus on comparing and classifying the
relative strengths of these different notions of security, both in the public-key
setting [2,12] and computational private-key setting [8].

In the case of information-theoretic security, Hanaoka, Shikata, Hanaoka, and
Imai [7,5] were the first to formalize non-malleable security.2 McAven, Safavi-
Naini, and Yung [10] generalized their definition to the case of ciphertexts longer
than the message and approximate security. Schemes exist which are known
to provide non-malleability and secrecy [7,5] or non-malleability and authen-
ticity [6]. However, prior to this work, there existed no security reduction be-
tween these different notions. These previous works on information-theoretic
non-malleability [7,5,10] did not consider the optimality of the secret key length,
and no lower bound on this key length was known.

1 To authenticate a message m, a pair (m,hk(m)) is generated and sent, where k
corresponds to the shared secret key, and hk(m) is the message authentication code
(MAC). An adversary wishing to modify the message also has to guess the correct
hk(m′) corresponding to the new message m′ for it to be accepted.

2 The standard information-theoretic definition of non-malleability (Definition 4) is
not an immediate adaption of one of the computational definitions, but differs some-
what in the details. We refer to Sect. 6 for further comments on this.
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PNM PS2 PS

ε-NM ε-S2 ε-S

ε-A

Thm. 7

Cor. 9

Thm. 11

PNM: perfect non-malleability
PS2: perfect 2-message secrecy
PS: perfect (1-message) secrecy
ε-NM: approx. non-malleability
ε-S2: approx. 2-message secrecy
ε-S: approx. (1-message) secrecy
ε-A: (approx.) authenticity

A → B: If criterion A holds, then B holds.
A ��� B: A → B if and only if the cipher and

message alphabets have the same size.

Fig. 1. Complete characterization of the relations between different notions of
information-theoretic non-malleability, secrecy, and authenticity. A directed path be-
tween two notions of security means that any scheme providing the first also provides
the second. If there is no directed path from one security criterion to another, then
there is an example of a scheme that satisfies the first security definition, but not
the second. The dashed arrow means that this relation only holds if the message and
ciphertext alphabets have the same cardinality.

New Results. In this work we provide a complete characterization of the rela-
tions between perfect and approximate information-theoretic non-malleability,
secrecy, and authenticity, which we illustrate in Fig. 1. Only the trivial rela-
tions (depicted in Fig. 1 by arrows without any reference to a theorem) were
previously known.

We first study perfect non-malleability and show that it is equivalent to re-
quiring that the encryption function uniformly maps any two different messages
to all possible pairs of two different ciphertexts. This is equivalent to perfect se-
crecy of two different messages (PS2 in Fig. 1) when the message and ciphertext
alphabets have the same size, and strictly stronger if the size of the ciphertext
alphabet is larger than that of the message.

An immediate consequence of this is a lower bound on the key needed for
perfect non-malleability, namely log [|X |(|X | − 1)] bits, where X is the message
alphabet, since this is the key length needed for perfect secrecy of two different
messages. This also proves that a scheme by Hanaoka et al. [7,5] is optimal in
the key size.

The converse yields a very easy way to design perfect non-malleable schemes,
since we do not need to consider adversary strategies or invalid ciphertexts.

We then relax the security definition of non-malleability to only hold with high
probability over the choice of secret key, and define approximate non-malleability
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(ε-NM in Fig. 1).3 We prove that any authentication scheme with error ε (ε-
A in Fig. 1) is a non-malleable scheme with error ε′ ≤ 2

√
ε, even though the

formal definition of non-malleability does not consider the adversary to have
failed if his choice of forged ciphertext is invalid. This answers an open question
by Hanaoka [5].

This also means that authentication techniques such as almost strong 2-
universal hashing provide approximate non-malleability with a shared secret
key of length roughly 2 log log |X |+ 3 log 1

ε [3], where X is the message alphabet
and ε the error probability.4

We show in the full version of this work [9, Section 6] that Fig. 1 is indeed
complete: if there is no directed path from one security criterion to another, then
there is an example of a scheme that satisfies the first security definition, but
not the second.

Structure of this Paper. We start in Sect. 2 by introducing the notation and
defining the symmetric-key encryption model used for information-theoretic se-
curity. In Sect. 3 we then define the different notions of perfect and approximate
security needed in this work, namely secrecy, non-malleability, and authentic-
ity. In Sect. 4 we prove the first main result about the relation between perfect
non-malleability and perfect secrecy of two messages. In Sect. 5 we consider
approximate security, and prove the second main result, that approximate non-
malleability can be achieved by any authentication scheme. And finally in Sect. 6
we conclude with several remarks on the consequences of these results and a dis-
cussion of alternative information-theoretic non-malleable security definitions.

2 Preliminaries

2.1 Notation

In this paper we use calligraphic letters for alphabets (e.g., X ), lowercase letters
for elements of these sets (e.g., x ∈ X ) and uppercase letters for random variables
(e.g., X). We write PX(x) for the probability that X takes the value x. For two
random variables X and Y with joint probability distribution PXY (·, ·), we write
X |Y =y to denote the random variable X given Y = y, and PX|Y (·|y) := PXY (·,y)

PY (y)

for the corresponding distribution. We also denote by X ·Y the random variable
with distribution PX·Y (x, y) := PX(x)PY (y). Note that unless X and Y are
independent, X · Y �= XY .

To measure the distance between two random variables over a common alpha-
bet we use the variational distance (sometimes also called statistical distance)

3 We note that McAven et al.’s definition of approximate non-malleability [10] does
not capture the notion of “security with high probability.” We therefore redefine
approximate non-malleability to reflect this concept.

4 Since authentication does not imply secrecy, approximate non-malleability does not
imply secrecy either. We refer to Sect. 5 for more details on this.
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and write
d(X, Y ) =

1
2

∑
x∈X

|PX(x)− PY (x)| .

We denote the expected variational distance between X and Y over a third
random variable Z by

d(X, Y |Z) :=
1
2

∑
x,z

PZ(z)
∣∣PX|Z(x|z)− PY |Z(x|z)

∣∣ .

This will be used in particular to measure how close two random variables (over
possibly different alphabets) are to being independent from each other, i.e., we
are interested in d(XY, X · Y ). In this case, conditioning on a third random
variable Z results in

d(XY, X · Y |Z) =
1
2

∑
x,y,z

PZ(z)
∣∣PXY |Z(x, y|z)− PX|Z(x|z)PY |Z(y|z)

∣∣ .

For an alphabet X and a random variable X distributed over X , we call
domain of X and write D(X) the subset of X with non-zero probability, that
is D(X) = {x ∈ X : PX(x) > 0}. We will often be interested in several random
variables (usually two) X1 · · ·X�, each one defined over the same alphabet X ,
but such that D(X1 · · ·X�) consists only of tuples of all different elements, i.e.,
for any i, j ∈ [�], i �= j, Pr[Xi = Xj ] = 0. So we will introduce the notation

X×�
diff := {(x1, . . . , x�) ∈ X×� : ∀i, j ∈ [�], i �= j ⇒ xi �= xj}

for the subset over which these random variables are defined, and say that they
are different.

We write H(X) for the (Shannon) entropy of X and I(X ; Y ) := H(X) +
H(Y ) − H(XY ) for the mutual information between X and Y . This notation
extends in the usual way for conditional entropies, e.g., H(X |Y ), I(X ; Y |Z).

2.2 Symmetric-Key Model

To achieve information-theoretic security, we consider the symmetric-key model,
in which the two honest parties wishing to communicate share a secret key
k ∈ K. No matter what notion of security is desired – whether it be secrecy, non-
malleability, or authenticity – the protocol follows the same steps. To transmit a
message m, the sender applies a function fk to the message, obtaining c = fk(m),
which we will refer to as the ciphertext. This is transmitted on an insecure
channel to the receiver, who applies the inverse function, m = f−1

k (c). Since
decryption must always be possible (if the ciphertext was not tampered with
during transmission), the functions {fk}k∈K must be injective. If c has been
modified, then there might not be any corresponding message m, in which case
the decryption results in ⊥.

In the following we will loosely refer to any such scheme as an encryption
scheme, and to the corresponding operations as encryption and decryption, even
when secrecy is not required.
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Definition 1. A symmetric-key encryption scheme is defined by a set of keys
k ∈ K, a probability distributions PK(·) over these keys and injective encryption
functions fk : X → Y associated with each key. The decryption functions are
defined as

gk : Y → X ∪ {⊥}

c �→
{

f−1
k (c) if this is well defined.
⊥ otherwise.

The two legitimate players wishing to securely communicate a message m must
share the key k ∈ K with probability PK(k) at the beginning of the protocol. The
sender creates the ciphertext c = fk(m) and transmits it on an insecure chan-
nel to the receiver, who applies the decryption function m̃ = gk(c̃) to whatever
(possibly modified) ciphertext c̃ he receives.

In the following we will usually describe the messages, ciphertexts and keys by
random variables M , C and K respectively, with C = fK(M).

3 Information-Theoretic Security Notions

In this section we define the three notions of security, secrecy, non-malleability,
and authenticity, in Sects. 3.1, 3.2, and 3.3 respectively. All these definitions
already appear in the literature, except the definition of approximate non-mal-
leability (Definition 5), which is slightly different from previous ones [10]. Defi-
nition 5 is however a straightforward generalization of perfect non-malleability
(Definition 4, [7,5]).

3.1 Secrecy

Since in the symmetric-key model described in Sect. 2.2 the ciphertext is sent on
an insecure channel, an adversary can intercept it, and try to gain information
about the message from it. So for a given message random variable M , an en-
cryption scheme is considered to provide perfect secrecy if the adversary cannot
learn anything about the message given the ciphertext, no matter how much
time and computation power he has, that is, if

H(M |C) = H(M) or I(M ; C) = 0 , (1)

as already defined by Shannon [14] in the 40’s.
When we design an encryption scheme, we do not want it to be secure for

some random variable M1 with distribution PM1(·), but insecure for some other
random variable M2 with distribution PM2(·). Ideally, the scheme should still be
secure, no matter how the messages are distributed over the message space, as
long as they are independent from the key. We will therefore require that (1) be
fulfilled for all distributions PM (·) on X independent from the key, i.e., for all
M such that I(M ; K) = 0.
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Equation (1) is called perfect secrecy, since the adversary’s information is
zero. However, in most practical situation, it is sufficient to have approximate
secrecy, in which the adversary’s probability (over the choice of keys) of noticing
a difference between the real situation and the ideal one in which the ciphertext is
independent from the message, is bounded by some very small ε. We therefore do
not require any more that the message and ciphertext be perfectly independent,
but that they be ε-close to independent according to the variational distance.5

Definition 2. An encryption scheme is said to provide ε-secrecy (ε-S) if for all
message random variables M on X independent from the key – i.e., I(M ; K) = 0
– we have

d (MC, M · C) ≤ ε , (2)

where C is the resulting ciphertext random variable.
If ε = 0, (2) is equivalent to (1), and we say that the scheme provides perfect

secrecy (PS).

This secrecy criterion is defined for encrypting one message. If the key is much
larger than the message, the same encryption function and key could be used
several times to encrypt different messages and still preserve secrecy. Since we
only need a security definition for the secrecy of two messages in this work, we
restrict the following definition to two messages. Generalizing it to any number
of messages is however straightforward.

Definition 3. An encryption scheme is said to provide 2-message ε-secrecy
(ε-S2) if for all pairs of different message random variables M1M2 on X×2

diff

independent from the key – i.e., I(M1M2; K) = 0 and Pr[M1 = M2] = 0 – we
have

d (M1M2C1C2, M1M2 · C1C2) ≤ ε , (3)

where C1 and C2 are the resulting ciphertext random variables, i.e., Ci = fK(Mi)
for i = 1, 2.

If ε = 0, (3) is equivalent to

I (M1M2; C1C2) = 0 ,

and we say that the encryption scheme provides 2-message perfect secrecy (PS2).

When the same key is used to encrypt two messages, and these messages are
identical (respectively different), their ciphertexts will necessarily be identical
(respectively different) too, since the encryption scheme is deterministic and
uses the same key each time. It is therefore impossible for I (M1M2; C1C2) = 0
for all random variables M1M2 defined over X×2, since the adversary can always
learn which messages are identical or different, hence the restriction to different
messages defined on X×2

diff .
5 There exist several alternative ways to formulate approximate secrecy. We give a

brief overview of these in the full version of this work [9, Appendix A.1], and show
that they are equivalent.
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3.2 Non-malleability

As briefly explained in Sect. 1, an encryption scheme is said to be malleable if an
adversary can perform a controlled modification of an encrypted message, that
is, modify a ciphertext in such a way that the new message resulting from de-
crypting the modified ciphertext is meaningfully related to the original message.
An encryption scheme is then non-malleable, if the adversary cannot perform
such a controlled modification of the message.

Let the original message be given by a random variable M , and let C be the
corresponding ciphertext when encrypted with the key K. An adversary trying
to perform a controlled modification of the message will replace the ciphertext
with another ciphertext C̃, which, after decryption, becomes the message M̃ .
For simplicity we will assume for the moment that the message and ciphertext
alphabets have the same size, since otherwise the ciphertext C̃ generated by the
adversary might be invalid.

If the encryption scheme is malleable, the adversary can thus create an M̃
which is meaningfully related to M , that is, which satisfies some specific relation
R(M, M̃) with high probability. Thus, if we give M to this adversary (who
already holds C and C̃) he will have some information about M̃ – he knows
that it satisfies this relation R – more information than if he had not created
C̃ to satisfy R and only held M and C. If on the other hand the scheme is
non-malleable, then he cannot create an M̃ to satisfy any relation R. So given
M , C and C̃, he does not know any more about M̃ than if he only has M and C.

Let us illustrate this with the one-time pad. The one-time pad is a malleable
encryption scheme, because if an adversary flips some bits of the ciphertext, he
also flips the same bits of the message, and can thus decide how to modify the
message even without knowing what this message is. So if after flipping some
bits of the ciphertext C to create C̃, the adversary is then given the message M ,
he can reconstruct M̃ by flipping the same bits of M . An observer who does not
know how the adversary created C̃ would only learn from M that M̃ is different,
but no more. So an adversary who holds MCC̃ would know more about M̃ than
an observer who only holds MC, but does not know how C̃ was created, i.e.,

H(M̃ |MCC̃) < H(M̃ |MC) .

On the other hand, if the encryption scheme is non-malleable, then as described
above, the adversary does not know more about M̃ than had he not created C̃,
so

H(M̃ |MCC̃) = H(M̃ |MC) . (4)

Note that this is equivalent to I(M̃ ; C̃|MC) = 0. Criterion (4) was first pro-
posed by Hanaoka et al. [7] (see also [5]) to define information-theoretic non-
malleability. Following [10], we generalize their definition to the case where the
ciphertext alphabet can be larger than the message alphabet, by extending the
message alphabet to X̄ := X ∪ {⊥}, as described in Sect. 2.2.

Definition 4. An encryption scheme is said to provide perfect non-malleability
(PNM), if for all message random variables M on X independent from the
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key – i.e., I(M ; K) = 0 – and all ciphertexts C̃ on Y different from C and
independent from the key given MC – i.e., Pr[C = C̃] = 0 and I(C̃; K|MC) = 0
– we have

I(M̃ ; C̃|MC) = 0 ,

where M̃ is defined on X ∪ {⊥} and takes the value M̃ = ⊥ whenever C̃ is
invalid.

There are several important remarks to make about this definition. The first
concerns the domains of M and C̃. M is chosen by the legitimate players, so we
can require that they choose it independently from the key. C̃ is however chosen
by the adversary, who might make it depend on whatever information he holds
about the secret key, i.e., in general we have H(K|C̃) < H(K), or equivalently
I(C̃; K) > 0. Information about the key is leaked to him from the ciphertext C.
We can however not exclude that the legitimate players decide to make (part of)
the message public, or that the adversary knows it by some other means. The
pair MC leaks (much) more information about the key, and hence we need to
allow the adversary to make his choice of C̃ depend on this. But the adversary
should not get any information about K from any other source than MC, i.e., C̃
should not depend on any other part of K than that leaked by MC. Expressed
with entropies, this means that we must have H(K|MCC̃) = H(K|MC), or
equivalently I(C̃; K|MC) = H(K|MC)−H(K|MCC̃) = 0, which is one of the
conditions of Definition 4.

The second remark concerns the condition Pr[C = C̃] = 0. The adversary can
always choose whether to modify the ciphertext or not, and hence can always
decide whether M̃ is equal to or different from M . Criterion (4) can thus never
be satisfied for a general ciphertext C̃, since learning C̃ (given C) will always
tell us whether M = M̃ or M �= M̃ . But since this cannot be avoided, it is of
no concern either. As the informal definition of non-malleability states, we are
only interested in modifications of the original message, and hence restrict our
attention to this case.

Thirdly, we consider it important to extend the message alphabet to include
“⊥” and not simply declare the adversary to be unsuccessful if he produces
an invalid ciphertext. This is because we do not want the adversary to have
the ability to generate an invalid ciphertext given that the message has certain
properties, but not for other messages. We refer to Sect. 6 for a more detailed
discussion of this.

As in Sect. 3.1, we are interested in generalizing the security notion to hold
only with high probability over the choice of keys. Instead of requiring M̃ and
C̃ to be perfectly independent given M and C, we require them to be ε-close to
independent.

Definition 5. An encryption scheme is said to provide ε-non-malleability (ε-
NM), if for all message random variables M on X independent from the key –
i.e., I(M ; K) = 0 – and all ciphertexts C̃ on Y different from C and independent
from the key given MC – i.e., Pr[C = C̃] = 0 and I(C̃; K|MC) = 0 – we have
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d
(
M̃C̃, M̃ · C̃

∣∣∣MC
)
≤ ε ,

where M̃ is defined on X∪{⊥} and takes the value m̃ = ⊥ whenever C̃ is invalid.

It is immediate from this definition that 0-NM is equivalent to PNM. We refer
to the full version of this work [9, Appendix A.2] for a discussion of alternative
approximate non-malleability definitions.

3.3 Authentication

In an authentication protocol, the goal is not to provide any form of secrecy, but
to be sure that the message has not been tampered with, i.e., that it really comes
from the legitimate party. Since no secrecy is needed, authentication schemes
usually append some MAC to the message, which is sent in clear, i.e., fk(m) =
(m, hk(m)), where hk is some hash function. Upon reception of c̃ = (m̃, s̃), the
party sharing the secret key k and wishing to authenticate the message will
simply check if s̃ = hk(m̃), thus

gk(c̃) =
{

m̃ if s̃ = hk(m̃)
⊥ otherwise.

In terms of random variables, the adversary who intercepts the ciphertext to
replace it with his own obtains C. But even if C does not contain a clear copy of
M , just like for non-malleability we have to assume that (part of) the message
might be public, or that the adversary knows it by some other means. Hence when
he creates the ciphertext C̃ he can make it depend on the part of the key leaked
by MC, but not on any other part of K, i.e., H(K|MCC̃) = H(K|MC), or
equivalently I(C̃; K|MC) = H(K|MC)−H(K|MCC̃) = 0. The authentication
scheme is successful if M̃ = ⊥ whenever the adversary modifies C.

Definition 6. An encryption scheme is said to provide ε-authenticity (ε-A),
if for all message random variables M on X independent from the key – i.e.,
I(M ; K) = 0 – and all ciphertexts C̃ on Y different from C and independent
from the key given MC – i.e., Pr[C = C̃] = 0 and I(C̃; K|MC) = 0 – we have

PM̃ (⊥) ≥ 1− ε .

Unlike secrecy, authenticity can only be defined with high probability over the
choice of keys, since it is always possible that an adversary might be lucky and
choose a valid ciphertext. Definition 6 can however still be strengthened a little,
since it corresponds to average case security over C. We discuss this further in
the full version of this work [9, Appendix A.3].

We note that this definition could equivalently have been written with the vari-
ational distance notation. Abusing slightly notation, we write ⊥ for the random
variable on X ∪ {⊥} which takes value ⊥ with probability 1. Then Definition 6
is equivalent to d(M̃,⊥) ≤ ε.

The notation used in this definition – in particular the use of random vari-
ables – is not quite standard. We use it for compatibility with the definitions of
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non-malleability. This definition and the alternative from [9, Appendix A.3] are
however identical to what is found in textbooks, e.g., [17]. We additionally give
a proof in [9, Appendix B.2] that ε-almost 2-strong universal hashing forms an
ε-authentication scheme according to both these definitions.

4 Non-Malleability and 2-Message Secrecy

The main result of this section, stated here under as Theorem 7 is that informa-
tion-theoretic perfect non-malleability (PNM) is equivalent to uniformly map-
ping any pair of different messages to all possible pairs of different ciphertexts.
As noted in Corollary 9, this means PNM is equivalent to 2-message perfect
secrecy (PS2) if the message and ciphertext alphabets have the same size, and
strictly stronger than PS2 if the ciphertext alphabet is larger. This immediately
gives a lower bound on the necessary key size for PNM, and an easy way to
design and prove the secrecy of these schemes.

Theorem 7. Let {fk : X → Y}k∈K be a set of encryption functions with key
given by K and |Y| > 2. The corresponding encryption scheme provides perfect
non-malleability (PNM) if and only if for any two different random variables
M1 and M2 with domain D(M1M2) ⊆ X×2

diff and independent from the key – i.e.,
Pr[M1 = M2] = 0 and I(M1M2; K) = 0 – and any values (m1, m2) ∈ D(M1M2)
and (c1, c2) ∈ Y×2

diff ,

PC1C2|M1M2(c1, c2|m1, m2) =
1∣∣Y×2
diff

∣∣ . (5)

Note that this theorem immediately implies the equivalence between PNM and
PS2 if |X | = |Y|.

Equation (5) makes a statement about the distribution of two ciphertext ran-
dom variables C1C2, given that the messages M1M2 are independent from the
key. PNM on the other hand, makes a statement about the distribution of some
message M̃ , given that the corresponding ciphertext C̃ is somewhat independent
from the key. In both cases the random variables M1M2C1C2K and MM̃CC̃K
are defined over different domains, e.g., M2 is independent from the key but M̃
can be correlated. So to simplify the proof of Theorem 7, we will use a propo-
sition which will allows us to convert more easily between the two domains,
namely Lemma 8 here below.

Lemma 8. Let {fk : X → Y}k∈K be the encryption functions from a symmetric-
key encryption scheme. For any random variable M on X independent from the
key – i.e., I(M ; K) = 0 – and any m ∈ X and c ∈ Y, we have

PC|M (c|m) =
1
|Y| (6)

if and only if for any random variable C̃ on the ciphertext alphabet Y independent
from the key – i.e., I(C̃; K) = 0 – we have

I(M̃ ; C̃) = 0 , (7)
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where M̃ = gK(C̃) and gk is the decryption function corresponding to fk with
range X ∪ {⊥}.

We provide a proof of Lemma 8 in Appendix A as Lemma 12.
Imagine that the random variables M1 and C1 in (5) are fixed and fall out

of the equation. The result would be (6). In the definition of PNM, namely
in I(M̃ ; C̃|MC) = 0, imagine that M and C are fixed and also fall out of
the equation. The result would be (7). This proposition basically shows that
Theorem 7 holds for fixed values of MC and M1C1. To finish the proof, we still
need to show that it holds for arbitrary MC and M1C1 on the given domains.

Proof (Proof of Theorem 7). We start with the “if direction” ((5) =⇒ PNM).
Note that for any random variables X , Y and Z, I(X ; Y |Z) = 0 if and only if
for all z ∈ D(Z), I(X ; Y |Z = z) = 0. So to prove PNM, it is sufficient to fix m1

and c1 arbitrarily, and show that I(M̃ ; C̃|MC = m1c1) = 0.
We define new random variables M ′, C′ and K ′ on alphabets X ′ := X \{m1},

Y ′ := Y \ {c1} and K′ := {k ∈ K : fk(m1) = c1} with joint distribution

PM ′C′K′(m, c, k) := PM2C2K|M1C1(m, c, k|m1, c1) . (8)

It follows from (5) that PC2|M1M2C1(c2|m1, m2, c1) = 1
|Y|−1 . Hence from (8),

PC′|M ′(c|m) =
PM2C2|M1C1(m, c|m1, c1)

PM2|M1C1(m|m1, c1)
= PC2|M1M2C1(c|m1, m, c1) =

1
|Y ′| .

All the conditions are gathered to apply Lemma 8, which tells us that for
any C̃′ defined on Y ′ with I(C̃′; K ′) = 0, I(M̃ ′; C̃′) = 0. By repeating this for
different values of M1 and C1, we can extend C̃′ to any random variable C̃ such
that I(C̃; K|M1C1) = 0, but otherwise arbitrarily correlated to M1 and C1, and
with I(M̃ ; C̃|M1C1) = 0.

Now for the “only if direction” (PNM =⇒ (5)). Let M1 be any random
variable with D(M1) = X and pick any values (m1, m2) ∈ X×2

diff and (c1, c2) ∈
Y×2

diff . Since the scheme provides PNM we have I(M̃ ; C̃|M1C1) for any C̃ with
I(C̃; K|M1C1) = 0 and Pr[C̃ = C1] = 0. Similar to what we did above, we define
random variables M̃ ′, C̃′, K ′ and M̃ ′′, C̃′′, K ′′ as

PM̃ ′C̃′K′(m, c, k) := PM̃C̃K|M1C1
(m, c, k|m1, c1) ,

PM̃ ′′C̃′′K′′(m, c, k) := PM̃C̃K|M1C1
(m, c, k|m2, c2) .

So I(M̃ ′; C̃′) = I(M̃ ′′; C̃′′) = 0. We can now apply Lemma 8 to the encryption
functions of K ′ and K ′′ respectively, and get that for any M ′ and M ′′ on X\{m1}
and X \ {m2} and independent from K ′ and K ′′ respectively,

PC′|M ′(c′|m′) =
1

|Y| − 1
,

PC′′|M ′′(c′′|m′′) =
1

|Y| − 1
.

(9)
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Let M2 be any random variable such that D(M1M2) ⊆ X×2
diff , m1, m2 ∈ D(M2)

and I(M1M2; K) = 0, and choose the M ′ and M ′′ from (9) such that

PM ′C′(m, c) = PM2C2|M1C1(m, c|m1, c1)
and PM ′′C′′(m, c) = PM2C2|M1C1(m, c|m2, c2) .

We then have

PC1C2|M1M2(c1, c2|m1, m2) = PC1|M1M2(c1|m1, m2)PC2|M1M2C1(c2|m1, m2, c1)

= PC1|M1(c1|m1)
1

|Y| − 1
, (10)

PC1C2|M1M2(c2, c1|m2, m1) = PC1|M1(c2|m2)
1

|Y| − 1
.

Since the same encryption function with the same key is applied to m1 and
m2, we must have PC1C2|M1M2(c1, c2|m1, m2) = PC1C2|M1M2(c2, c1|m2, m1), and
hence for all (m1, m2) ∈ X×2

diff and (c1, c2) ∈ Y×2
diff ,

PC1|M1(c1|m1) = PC1|M1(c2|m2) .

Since |Y| > 2, this implies that for any (m1, m2) ∈ X×2
diff and (c1, c2, c3) ∈ Y×3

diff ,

PC1|M1(c1|m1) = PC1|M1(c3|m2) = PC1|M1(c2|m1) .

Since
∑

c PC1|M1(c|m) = 1, we get PC1|M1(c|m) = 1
|Y| . Putting this in (10) proves

the theorem. ��
Theorem 7 equates PNM with a uniform mapping from pairs of different mes-
sages to different ciphertexts ((5)). This latter condition is slightly different from
PS2. Corollary 9 makes the correspondence between PNM and PS2 explicit.

Corollary 9. For any symmetric-key encryption scheme with ciphertext alpha-
bet size |Y| > 2,6

PNM|X |=|Y| ⇔ PS2
|X |=|Y| ,

PNM|X |<|Y| ⇒ PS2
|X |<|Y| ,

PNM|X |<|Y| � PS2
|X |<|Y| .

Proof. Equation (5) is clearly a sufficient condition to imply PS2, no matter
what the ciphertext length is. So from Theorem 7 we immediately have

PNM|X |=|Y| ⇒ PS2
|X |=|Y| ,

PNM|X |<|Y| ⇒ PS2
|X |<|Y| .

6 By PNM|X|=|Y|, PNM|X|<|Y|, etc., we simply mean encryption functions with mes-
sage and ciphertext alphabet sizes corresponding to the subscript and meeting the
corresponding security definitions. We did not formally introduce this notation, be-
cause it is quite intuitive and is not used anywhere else. All other results about
PNM, PS2, etc., apply to all message and ciphertext alphabet sizes if not clearly
stated otherwise.
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If |X | = |Y|, then for any scheme providing PS2, and random variables M1M2

uniformly distributed on X×2
diff ,

H(C1C2|M1M2) = H(C1C2) ≥ log |X×2
diff | = log |Y×2

diff | .

The inequality above holds because the entropy of the ciphertexts must be at
least as large as the entropy of the messages. Thus (5) holds as well, which means
that

PNM|X |=|Y| ⇐ PS2
|X |=|Y| .

Finally, to show that
PNM|X |<|Y| � PS2

|X |<|Y| ,

we give an example in the full version of this work [9, Lemma 6.1] of an encryption
scheme with |X | < |Y| and providing PS2, but not satisfying (5). ��

We note that the requirement that |Y| > 2 is essential, since otherwise PNM does
not even imply PS. This can easily be seen by considering the following example.
Let X = Y = {0, 1} and the encryption function be the identity function. For
such a small alphabet H(M̃ |MC) = H(M̃ |MCC̃) = 0, because as Pr[M̃ = M ] =
0, once M = m is fixed, M̃ can only take the other value, and hence has zero
entropy. This scheme thus provides PNM, because the ciphertext C̃ chosen by
the adversary provides no information about M̃ .

An important consequence of Theorem 7 is that we get an immediate lower
bound on the size of the secret key needed for PNM for any ciphertext size.

Corollary 10. If an encryption scheme with key K provides PNM, then

H(K) ≥ log |Y×2
diff | = log |Y| (|Y| − 1) .

This immediately implies that the perfect non-malleable scheme proposed by
Hanaoka et al. [7,5] is optimal in the key size.7 We describe this scheme in the
full version of this work [9, Appendix B.1] for completeness.

5 Non-Malleability and Authentication

We show in this section that any authentication scheme provides approximate
non-malleability. In the full version of this work [9, Appendix A.3] we provide a
proof that the same holds when we replace the notions of authenticity and non-
malleability with strong authenticity and strong approximate non-malleability.

Theorem 11. Any scheme which provides ε-authenticity also provides (
√

ε+ε)-
non-malleability.

7 This scheme is also optimal in the ciphertext size, since |X | = |Y|.
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Proof. For all (m, c) ∈ D(MC), let εm,c := 1 − PM̃ |MC(⊥|m, c). So we have∑
m,c PMC(m, c)εm,c ≤ ε. Note that

PM̃ |MC(⊥|m, c) =
∑

c̃ PM̃C̃MC(⊥, c̃, m, c)
PMC(m, c)

=
∑

c̃

PC̃|MC(c̃|m, c)PM̃ |MCC̃(⊥|m, c, c̃) .

From Lemma 13 in Appendix A we then have that

1
2

∑
c̃

PC̃|MC(c̃|m, c)
∣∣∣PM̃ |MCC̃(⊥|m, c, c̃)− PM̃ |MC(⊥|m, c)

∣∣∣ ≤ √
εm,c.

Using Jensen’s inequality we get

1
2

∑
m,c,c̃

PMCC̃(m, c, c̃)
∣∣∣PM̃ |MCC̃(⊥|m, c, c̃)− PM̃ |MC(⊥|m, c)

∣∣∣ ≤ √
ε .

Putting this in the definition of non-malleability we finally obtain

1
2

∑
m,c,m̃,c̃

PMCC̃(m, c, c̃)
∣∣∣PM̃ |MCC̃(m̃|m, c, c̃)− PM̃ |MC(m̃|m, c)

∣∣∣
≤ 1

2

∑
m,c,c̃

PMCC̃(m, c, c̃)
∣∣∣PM̃ |MCC̃(⊥|m, c, c̃)− PM̃ |MC(⊥|m, c)

∣∣∣
+

∑
m̃∈X

PM̃ (m̃)

≤
√

ε + ε .

��
ε-authentication can be achieved with a shared key of length

log |K| ≤ 2 log log |X |+ 3 log
1
ε

(11)

by using almost strong 2-universal hashing. For completeness we show this in
the full version of this work [9, Appendix B.2]. The parameters of (11) are
from a specific family of almost strong 2-universal hash functions by Bierbrauer
et al. [3]. We refer to an expository paper on 2-universal hashing by Stinson [16]
for an overview of constructions.

We note that since (approximate) secrecy is only possible if the key is as
long as the message, this means that ε-NM does not imply secrecy. This might
seem surprising at first, because in the public-key setting non-malleability does
imply secrecy [2]. This difference between non-malleability and secrecy in the
private-key setting has however already been noted by Katz and Yung [8].8

8 In [8], the adversary is declared unsuccessful if the message produced is invalid, in
which case it is trivial that authenticity is sufficient to achieve approximate non-
malleability. We refer to Sect. 6 for a further discussion of how to handle invalid
messages.
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6 Concluding Remarks

In this work we studied information-theoretic non-malleability, extending a line
of research initiated by Hanaoka et al. [7]. The formal definitions used to cap-
ture the intuitive notion of non-malleability follow these previous works [7,5,10].
There exist however alternative ways to characterize the same notion. We discuss
them briefly in this section.

Unifying the Definitions. Although the works on computational and information-
theoretic non-malleability in the private-key setting use the same informal defini-
tion, the tools used to formalize this definition are different: the former computes
the probability that the falsified message is related to the original message in the
real and ideal case [8], the latter measures the indistinguishability of message
and ciphertext distributions between the real and ideal case. It remains open
to prove formally that these definitions are indeed equivalent when the distin-
guisher in the computational security definition is unlimited, and does not access
oracles.

Invalid Ciphertexts. In the formal definition of non-malleability, we chose that
the adversary is allowed to pick invalid ciphertexts and still be successful. We
could have considered an alternative weaker definition, in which the adversary
automatically fails when this happens. In the public-key setting, both ways of
treating invalid ciphertexts can be found, and there is no clear consensus as to
how to deal with this case. Pass et al. [12] investigate the differences between
the two notions in detail. They point out how the stronger notion in which the
adversary can produce an invalid ciphertext makes a critical difference in certain
situations, in particular for composability.

In the case of information-theoretic security, if we had defined the adversary to
be unsuccessful when he picks an invalid ciphertext, then perfect non-malleability
would have been exactly equivalent to 2-message perfect secrecy, and not strictly
strong for a ciphertext longer than the message. And authenticity would trivially
imply approximate non-malleability, instead of requiring some work.

Accessing Oracles. When considering computational security, the adversary usu-
ally has access at various stages to a decryption oracle.9 In information-theoretic
security, when the adversary is computationally unbounded, unlimited access to
an oracle is not possible. McAven et al. [10] and Portmann and Tanaka [13] pro-
pose security definitions in which the adversary can make � queries to an oracle.
The definitions of non-malleability used in this work can be seen as allowing
the adversary 1 query to an encryption oracle, after which he has to choose his
forged ciphertext C̃. By generalizing this to �-queries to either encryption or
decryption oracles, we can define various notions of �-non-malleability.

9 In the case of computational private-key cryptography, he may also access an en-
cryption oracle.
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We conjecture that the results from this work on the relations between 1-non-
malleability, 2-message security, and the 2-universal hashing used for authen-
tication, directly generalize to �-non-malleability, (� + 1)-message security and
(� + 1)-universal hashing.
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A Technical Lemmas

In this section we provide a few technical lemmas needed in the main body of
this work. The following lemma shows that a ciphertext chosen by an adversary
is independent from the corresponding message after decryption if and only if the
encryption scheme maps every message to all ciphertext with equal probability.

Lemma 12. Let {fk : X → Y}k∈K be the encryption functions from a symmet-
ric-key encryption scheme. For any random variable M on X independent from
the key – i.e., I(M ; K) = 0 – and any m ∈ X and c ∈ Y, we have

PC|M (c|m) =
1
|Y|

if and only if for any random variable C̃ on the ciphertext alphabet Y independent
from the key – i.e., I(C̃; K) = 0 – we have

I(M̃ ; C̃) = 0 ,

where M̃ = gK(C̃) and gk is the decryption function corresponding to fk with
range X ∪ {⊥}.

Proof. We start with the “if direction” (I(M̃ ; C̃) = 0 =⇒ PC|M (c|m) = 1
|Y|).

If I(M̃ ; C̃) = 0 then for any m ∈ X̄ and c ∈ Y, PM̃ |C̃(m|c) = PM̃ (m) and hence
for any two c, c′ ∈ Y and any m ∈ X̄ ,

PM̃ |C̃(m|c) = PM̃ |C̃(m|c′) . (12)

Since I(C̃; K) = 0, for any m ∈ X and c ∈ Y we have

PM̃ |C̃(m|c) =
∑
k∈K

f−1
k (c)=m

PK(k) =
∑
k∈K

fk(m)=c

PK(k) = PC|M (c|m) (13)
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for any M with I(M ; K) = 0. Since the distribution PC|M is well defined, we
have for any m ∈ X that ∑

c∈Y
PC|M (c|m) = 1 . (14)

Combining (12), (13) and (14) we get that for any m ∈ X and any c ∈ Y,
PC|M (c|m) = 1

|Y| .

The “only if direction” (PC|M (c|m) = 1
|Y| =⇒ I(M̃ ; C̃) = 0) works similarly.

We have for any m ∈ X and c ∈ Y that

1
|Y| = PC|M (c|m) =

∑
k∈K

fk(m)=c

PK(k) =
∑
k∈K

f−1
k (c)=m

PK(k) = PM̃ |C̃(m|c)

for any C̃ independent from the key. Furthermore

PM̃ |C̃(⊥|c) = 1−
∑

m∈X
PM̃ |C̃(m|c) = 1− |X |

|Y|

for every c ∈ Y. Hence I(M̃ ; C̃) = 0. ��

This last lemma is needed in the proof of Theorem 11.

Lemma 13. For i ∈ [n], let 0 ≤ ai ≤ 1 and have weighted average
∑

i wiai = a,
where 0 ≤ wi ≤ 1 and

∑
i wi = 1. Then

n∑
i=1

wi |ai − a| ≤ 2 min{
√

a,
√

1− a} .

Proof. Without loss of generality, let a ≤ 1
2 . If a > 1

2 , set anew
i := 1− aold

i for all
i, which leaves |ai − a| unchanged.

Define I := {i ∈ [n] : ai ≥
√

a}. Then
n∑

i=1

wiai ≥
∑
i∈I

wi

√
a ,

hence
∑

i∈I wi ≤
√

a. We then have

n∑
i=1

wi |ai − a| =
∑
i∈I

wi |ai − a|+
∑

i∈[n]\I
wi |ai − a|

≤
∑
i∈I

wi(1− a) +
∑

i∈[n]\I
wi max{

√
a− a, a}

≤
√

a(1 − a) + (1−
√

a)max{
√

a− a, a}
= 2

√
a .

��
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Abstract. The notion of randomized encoding allows to represent a
“complex” function f(x) by a “simpler” randomized mapping f̂(x; r)
whose output distribution on an input x encodes the value of f(x). We
survey several cryptographic applications of this paradigm.

1 Introduction

To what extent can one simplify the task of computing a function f by settling for
computing some (possibly randomized) encoding of its output? This question can
be formalized as follows: We say that a function f̂(x; r) is a randomized encoding
(RE) of a function f(x), if its output distribution depends only on the output of
f . More precisely, we require the existence of an efficient recovery algorithm Rec
and an efficient randomized simulator Sim that satisfy the following conditions:

– (Correctness) For every (x, r), given f̂(x; r) the algorithm Rec recovers
f(x);

– (Privacy) For every x, given f(x) the simulator Sim samples from the dis-
tribution of f̂(x; r) induced by a uniform choice of r.

This notion of randomized encoding was introduced by Ishai and Kushilevitz [21]
(under the algebraic framework of randomizing polynomials) and was implic-
itly used, in weaker forms, in the context of secure multiparty computation
(e.g., [23,19]). Observe that each of the above requirements alone can be satisfied
by a trivial function f̂ (e.g., f̂(x; r) = x and f̂(x; r) = 0, respectively). However,
the combination of the two requirements can be viewed as a non-trivial natu-
ral relaxation of the usual notion of computing. This gives rise to the following
question: Can we encode “complex” functions f by “simple” functions f̂?

It is not hard to show that if one is restricted to deterministic encoding the
answer is in general negative. For example, let us call a function “simple” if each
of its output bits depends on a small constant number of input bits, e.g., 4. In this
case, if a boolean function f : {0, 1}n → {0, 1} can be deterministically encoded
by some (possibly non-boolean) simple function f̂ , then f itself is simple. Indeed
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if the encoding is deterministic then, by privacy, there is a pair of strings z0

and z1 such that for every x we have f̂(x) = zf(x). By correctness, z0 and z1

should differ in at least a single location i (assuming that f is non-degenerate).
Hence, f(x) can be computed by the 4-local function which projects the i-th bit
of f̂(x) and, possibly, flips the result. A similar argument holds for any notion
of simplicity that is closed under bit-projection and negation.

On the other hand, the use of randomness allows us to encode non-simple
functions by simple ones. For example, the sum-function

f(x) = x1 + . . . + xn,

where xi is the i-th bit of x and addition is over F2, can be encoded by the
3-local function

f̂(x; (r1, . . . , rn−1)) = (x1 − r1, r1 + x2 − r2, . . . , rn−1 + xn),

which uses n− 1 random inputs r = (r1, . . . , rn−1) and outputs n bits. To prove
correctness, note that the sum of the output bits of f̂(x; r) equals to

∑
xi as

the ri’s cancel out. On the other hand, when r is random, the vector f̂(x; r) is
uniformly distributed over all n-bit vectors whose components add to f(x), and
so privacy follows.

Perhaps surprisingly, it turns out that REs are powerful enough to encode
rich classes of functions. In [21,22,4,3] it is shown that 4-local functions can
encode log-space computations, and even poly-time computations if one settles
for computational privacy, i.e., the simulator’s output is only required to be
computationally indistinguishable from f̂(x; r).1 Similar results hold for other
notions of simplicity that will be mentioned later.

The ability to encode complex functions by simple ones is extremely useful.
In this short survey we will focus on the applications of REs (and ignore the
way REs are constructed). In the next sections we will demonstrate several in-
teresting ways in which this tool can be employed. We consider the archetypal
cryptographic setting where Alice and Bob wish to accomplish some computa-
tional goal (e.g., a functionality f) at the presence of an adversary. We will see
that REs can be beneficial when they are applied to each component of this
system: to the functionality, to the honest parties, and even to the adversary.

2 Encoding the Functionality

Delegating computations. Suppose that Bob is a computationally weak device
(client) who wishes to compute a complex function f on an input x. Bob is
too weak to compute f on his own and so he delegates the computation to a
computationally strong server Alice. Since Bob does not trust Alice, he wishes to

1 The latter requires to assume the existence of log-space computable one-way func-
tion, an assumption which is implied by most standard intractability assumptions
used in cryptography.
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guarantee the following: (1) Secrecy: Alice should learn nothing on the input x;
and (2) Verifiability: Bob should be able to verify the correctness of the output
(i.e., a cheating Alice should be caught whp). Similar problems were extensively
studied in various settings, originating from the early works on interactive proofs,
program checking and instance-hiding schemes (see references in [6]).

Let us start with secrecy and consider a variant where both parties should
learn the output f(x) but x should remain private. In this case, a randomized
encoding f̂ immediately solves the problem via the following single-round pro-
tocol: Bob selects private randomness r, computes f̂(x; r) and sends the result
to Alice who applies the recovery algorithm and outputs the result. The privacy
of the RE guarantees that Alice learns nothing beyond f(x). We refer to this
protocol as the basic RE protocol. Jumping ahead, we note that the protocol has
a non-trivial correctness guarantee: even if the server Alice deviates from the
protocol and violates correctness she cannot force an erroneous output which
violates privacy; that is, it is possible to simulate erroneous outputs solely based
on the correct outputs.

It is not hard to modify the basic protocol and obtain full secrecy: instead of
encoding f , encode an encrypted version of f . Namely, define a function g(x, s) =
f(x)⊕s, where s plays the role of a one-time pad (OTP), and apply the previous
protocol as follows: Bob uniformly chooses the pad s and the randomness r, and
sends the encoding ĝ(x, s; r) of g to Alice, who recovers the result y = g(x, s) =
f(x)⊕s, and sends it back to Bob. Finally, Bob removes the pad s and terminates
with f(x). (See [3] for more details.)

Achieving verifiability is slightly more tricky. The idea, due to [6], is to com-
bine an RE with a private-key signature scheme (also known as message authen-
tication code or MAC) and ask the server to sign the output of the computation
under the client’s private key. Here the privacy property of the RE will be used
to hide the secret key. Specifically, given an input x, Bob asks Alice to compute
y = f(x) (via the previous protocol) and, in addition, to generate a signature on
f(x) under a private key k which is chosen randomly by the client. The latter
request is computed via the basic RE protocol that hides the private key from
Alice. More precisely, Bob, who holds both x and k, invokes an RE protocol in
which both parties learn the function g(x, k) = MACk(f(x)). Bob then accepts
the answer y if and only if the result of the protocol is a valid signature on y
under the key k. (The latter computation is typically cheap). The soundness of
the protocol follows by showing that a cheating Alice, which fools Bob to accept
an erroneous y∗ �= f(x), can be used to either break the privacy of the RE or to
forge a valid signature on a new message. For this argument to hold, we crucially
relies on the ability to simulate erroneous outputs based on the correct outputs.

The main advantage of this approach over alternative solutions is the ability
to achieve good soundness with low computational overhead. For example, 2−τ

soundness error introduce an additive overhead of τ in the communication whereas
the overhead in competing approaches is multiplicative in τ . (See [6] a more
detailed comparison.) Instantiating these approaches with known constructions



28 B. Applebaum

of REs lead to protocols with an NC0 client2 for either log-space functions
or poly-time functions depending on the level of security needed (information-
theoretic or computational). In fact, in the computational setting we can even
reduce the sequential -complexity of the client Bob, assuming that he is allowed to
invest a lot of computational resources in a preprocessing phase before seeing the
actual input x. We also mention that REs can achieve other related properties
such as correctability [6]: i.e., Bob is able to correct Alice’s errors as long as
Alice is somewhat correct with respect to a predefined distribution over the
inputs. In the latter case REs yield NC0 correctors for log-space computations
strengthening the results of [20].

Secure computation [21]. Let us move to a more general setting where the roles
of Alice and Bob are symmetric and none of them is computationally weak. The
main observation is that instead of securely computing f it suffices to securely
compute the randomized encoding f̂(x; r). Indeed, if Alice and Bob learn a sam-
ple from f̂(x; r) then they can locally recover the value of f(x) and nothing else.
In other words, the task of securely computing f reduces to the task of securely
computing a simpler randomized functionality f̂(x; r). As protocol designers, we
get a powerful tool which allows us to construct a complex interactive object
(protocol) by arguing about a simpler non-interactive object (RE).

This paradigm, which was introduced in [21] (and motivated the original def-
inition of REs), yields several new results in the domain of secure computa-
tion. As an example, if the algebraic degree of f̂ is constant then it can be
computed in constant number of rounds [9,15]. By instantiating this approach
with known RE constructions [22,16], we derive constant-round protocols for
boolean or arithmetic log-space functions with information-theoretic security. In
the computational setting, this yields a new constant round protocol for poly-
time functions [3] providing an alternative construction to the classical protocol
of [8].3 The RE based approach also simplifies the proofs of classical results such
as Yao’s garbled-circuit protocol [24] and Kilian’s completeness theorem [23].

3 Encoding the Primitive: Parallel Cryptography

Suppose now that we already have an implementation of some cryptographic
protocol. A key observation made in [4] is that we can “simplify” some of the
computations in the protocol by replacing them with their encodings. Consider,
for example, the case of public-key encryption: Alice publishes a public/private
key pair (pk, sk); Bob uses the public-key pk and a sequence of random coins s to
“garble” a message m into a ciphertext c = E(pk, m, s); Finally, Alice recovers
m by applying the decryption algorithm to the ciphertext D(sk, c). Suppose
2 Functions in NC0 are computable by constant-depth circuits of bounded fan-in, and

so they capture a strong notion of constant parallel-time computation.
3 The RE based solution requires slightly stronger assumption – one-way function

computable in log-space rather in poly-time – but can also lead to efficiency im-
provements as shown in [17].
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that Bob sends an encoding of his ciphertext Ê(pk, m, s; r) instead of sending
c. This does not violate semantic-security as all the information available to an
adversary in the modified protocol can be emulated by an adversary who attacks
the original protocol (thanks to the simulator of the RE). On the other hand,
Alice can still decrypt the message: first she recovers the original ciphertext (via
the recovery algorithm) and then she applies the original decryption algorithm.
As a result, we “pushed” the complexity of the sender (encryption algorithm) to
the receiver (decryption algorithm).

By employing REs with some additional properties, it is possible to prove
similar results for many other cryptographic protocols (e.g., one-way functions,
pseudorandom generators, collision-resistance hash functions, signatures, com-
mitments, zero-knowledge proofs) and even information-theoretic primitives (e.g.,
ε-biased generators and randomness extractors). In the case of stand-alone prim-
itives (e.g., one-way functions and pseudorandom generators) there is no receiver
and so the gain in efficiency comes for “free”.

Being security preserving, REs give rise to the following paradigm. In order to
construct some cryptographic primitive P in some low complexity class WEAK,
first encode functions from a higher complexity class ST RONG by functions
from WEAK; then, show that P has an implementation f in ST RONG, and
finally replace f by its encoding f̂ ∈ WEAK and obtain a low-complexity im-
plementation of P . This approach was used in [4,3,5] to obtain cryptographic
primitives in NC0 and even in weaker complexity classes. The fact that REs
preserve cryptographic hardness was also used to reduce the complexity of cryp-
tographic reductions [4,3] and to reduce the complexity of complete problems
for sub-classes of statistical zero-knowledge [18].

4 Encoding the Adversary: Key-Dependent Security

Key-dependent message (KDM) secure encryption schemes [14,10] provide se-
crecy even when the attacker sees encryptions of messages related to the secret-
key sk. Namely, we say that an encryption is KDM secure with respect to a
function class F if semantic security holds even when the adversary can ask for
an encryption of the message f(sk) where f is an arbitrary function in F . Until
recently, it was only known how to achieve KDM security for simple linear (or
affine) function families [11,2,12]. To improve this situation, we would like to
have an amplification procedure which starts with F̂ -KDM secure encryption
scheme and boost it into an F -KDM secure scheme, where the function class
F should be richer than F̂ . It was recently shown [13,7] that a strong form of
amplification is possible, provided that the underlying encryption scheme satis-
fies some special additional properties. We show [1] how to use REs in order to
achieve a generic KDM amplification theorem.

Let f(x) be a function and let us view the encoding f̂(x; r) as a collection
of functions F̂ =

{
f̂r(x)

}
r
, where each member of the collection corresponds

to some possible fixing of the randomness r, i.e., f̂r(x) = f̂(x; r). Now suppose
that our scheme is KDM secure with respect to the family F̂ , and we would like
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to immunize it against the (more complicated) function f . This can be easily
achieved by modifying the encryption scheme as follows: to encrypt a message m
we first translate it into the f̂ -encoding by applying the RE simulator Sim(m),
and then encrypt the result under the original encryption scheme. Decryption
is done by applying the original decryption algorithm, and then applying the
recovery algorithm Rec to translate the result back to its original form. Observe
that an encryption of f(sk) in the new scheme is the same as an encryption of
S(f(sk)) = f̂(sk; r) under the original scheme. Hence, a KDM query for f in the
new scheme is emulated by an old KDM query for a randomly chosen function
f̂r. It follows that the KDM security of the new scheme with respect to f reduces
to the KDM security of the original scheme with respect to F̂ .

This idea easily generalizes to the case where instead of a single function f we
have a class of functions F which are all encoded by functions in F̂ . Moreover,
the simple structure of the reduction (i.e., a single KDM query of the new scheme
translates to a single KDM query of the original scheme) allows to obtain a strong
amplification theorem which is insensitive to the exact setting of KDM security,
including the symmetric-key/public-key setting, the CPA/CCA cases and the
case of multiple-keys. Using known constructions of REs, we can amplify KDM
security with respect to linear functions (or even bit-projections) into functions
computable by circuits of arbitrary fixed polynomial-size (e.g., n2).

Acknowledgements. I thank to the conference organizers for inviting this
survey, and to Yuval Ishai and Eyal Kushilevitz for introducing me to the notion
of randomized encoding and for fruitful and enjoyable collaborations.
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Abstract. In this paper we give the minimal connectivity required in a
synchronous directed network, which is under the influence of a compu-
tationally unbounded Byzantine adversary that can corrupt a subset of
nodes, so that Secure Message Transmission is possible between sender
S and receiver R. We also show that secure communication between a
pair of nodes in a given synchronous directed network is possible in both
directions if and only if reliable communication is possible between them.
We assume that in a network, every node is capable of computation and
we model the network along the lines of [14].

Keywords: Directed networks, Connectivity, Information-theoretic
security.

1 Introduction

Achieving reliable and private communication is one of the fundamental prob-
lems in distributed computing. Most solutions to the problem of Secure Multi-
Party Computation assume that nodes are connected by secure channels ([1],[2],
[5],[10]). However, in practice, such a channel may not be present between every
pair of nodes. In such a case we need to simulate the channel using a protocol.
The problem of point-to-point Secure Message Transmission (SMT) studies the
possibility, optimality and feasibility of protocols in which – given a distributed
network where a subset of nodes may be faulty, and given a sender node S and
a receiver node R – S should be able to send any message m to R such that
even if all the faulty players collude with each other, R receives m reliably and
the faulty players get no information about m (privacy or secrecy). The general
form of this problem is usually denoted by (ε, δ)-SMT where ε denotes the error
in secrecy and δ the error in reliability [4].

The problem of Secure Message Transmission has been studied under various
network and corruption models. The case of synchronous directed (unicast) net-
works under the influence of a computationally unbounded Byzantine adversary
has been studied in depth by the research community, beginning with the work
of Desmedt and Wang [3]. In [3], the authors abstract a directed network as a

S. Fehr (Ed.): ICITS 2011, LNCS 6673, pp. 32–51, 2011.
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collection of directed channels between S and R, and find the minimum number
of forward and backward channels required in a network, affected by a thresh-
old adversary, for (0, 0)-SMT and for (0, δ)-SMT. They also give protocols over
networks which satisfy the minimum connectivity requirements. Subsequently,
Patra et al. [9] and Yang and Desmedt [15] generalize these results to the case
of non-threshold adversary.

While the abstraction of a directed network as a collection of directed channels
between S and R is suitable for networks where intermediate nodes are routers,
who can only forward messages and do not have any computing power of their
own, a more general way of modelling the network as digraphs with computa-
tionally capable intermediate nodes is proposed in [14]. The main result of [14]
is a characterization of directed networks, under the control of a non-threshold
mixed adversary, over which reliable message transmission (or (1, δ)-SMT using
the standard notation) is possible. Subsequently, in [13], the minimal connectiv-
ity requirement in a network for (0, δ)-SMT is studied.

Our work is mainly inspired by the following analogous existing result: the
minimum connectivity requirement for (1, δ)-SMT in digraphs (characterized in
[14]) is strictly weaker than that required for (1, 0)-SMT in digraphs. Similarly,
we ask if the minimum connectivity requirement for (ε, δ)-SMT in digraphs is
strictly weaker than that required for (0, δ)-SMT. The existing results appear
to hint at a negative answer to the above question. Specifically, it is known
that “(0, δ)-SMT if and only if (ε, δ)-SMT” if (a) the network is abstracted as
a collection of disjoint directed paths between sender and receiver [15] or if (b)
the network is modelled as an undirected graph [4].

Notwithstanding, we present a characterization of the possibility of (ε, δ)-SMT
and find that in the case of digraphs influenced by a non-threshold Byzantine
adversary, there exist graphs in which (ε, δ)-SMT is possible while no (0, δ)-SMT
protocol is known. For instance, consider the network G given in Figure 1 with
adversary structure A = {{b1}, {b2}}. We show that this digraph satisfies the
necessary and sufficient condition for the existence of a (ε, δ)-SMT protocol as
given in Theorem 5. On the other hand, no (0, δ)-SMT protocol is known over
G ([13]).

Further, to see why if intermediate nodes can compute, the results of [15] are
not applicable, again consider the network G with the same adversary structure

S R

b1

b2

u v w

Fig. 1. Network G
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A. According to Theorem 6 and Corollary 1 in [15], (ε, δ)-SMT from S to R
tolerating A is possible if and only if there exists a path from S to R, or from
R to S, avoiding both the nodes b1 and b2. Since no such path is present in
the network, no protocol exists for (ε, δ)-SMT in G according to [15]. However,
if we assume that every node in the network can compute, there does exist an
(ε, δ)-SMT protocol in G as shown in Section 4.1.

We would like to emphasize that the main focus of this work is on the
(im)possibility and not the feasibility of SMT protocols. The protocols that
we give to prove the possibility of SMT are inefficient in both message and
round complexity. Previous results on SMT shed some light on the anomalous
behaviour of protocols when “randomness meets directedness” [14, 12], which
makes it extremely hard to design worst case efficient protocols.

2 Model and Definitions

Network: The network is modelled as a directed graph N = (V, E), where the
set of vertices V represents the set of players and the set of edges E represents the
perfectly secure, point-to-point, directed channels in the network. The network
is assumed to be synchronous and any protocol is executed in a sequence of
rounds. In each round a player can send messages to its out-neighbours, receive
messages sent to it by its in-neighbours in that round and perform computations,
in that order. It is assumed that the network topology is known to every player.
Throughout the paper we represent the sender node by S and the receiver node
by R.

Adversary: Fault in the network is modelled via a computationally unbounded
centralized adversary that can corrupt a subset of nodes, excluding S and R, in
Byzantine fashion [8]. This means that the corrupted nodes are in complete con-
trol of the adversary and the adversary can make them behave in any arbitrary
manner. The adversary is non-threshold [6, 7] and is represented by an adver-
sary structure which is the collection of all possible subsets of nodes that can be
corrupted by the adversary. More formally, an adversary structure A is defined
as: A = {B1, B2, ..., Bn} where ∀i, Bi ⊆ V \ {S, R}. The adversary can choose
to corrupt any one subset of players from A and can control their behaviour
throughout the execution of the protocol. Note that the adversary is not allowed
to change the subset in the middle of an execution. These subsets are also known
as failure patterns in distributed computing. The adversary structure is mono-
tone which means that if B1 ∈ A then ∀B2 such that B2 ⊆ B1, B2 ∈ A. The
players are assumed to have no information about the corrupt subset before the
beginning of the protocol. It is assumed that the adversary knows the complete
protocol specification and the network topology.

We note that an adversary structure can be uniquely and concisely represented
by its maximal basis.

Definition 1 (Maximal basis of A). The maximal basis A for an adversary
structure A is defined as: A = {B | B ∈ A and � X ∈ A s.t. B � X}
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Throughout this paper we use A to denote the adversary structure and A to
denote its maximal basis. Following [4], the adversary’s view consists of the
messages sent and received and the coin tosses made by the corrupt nodes in
each round of the protocol. Random variable adv(m, r) denotes the view of the
adversary when S chooses to send m and the coin tosses made by the adversary
is r.

Message Space: Let F be the message space where < F, +, ∗ > is a large finite
field. All the computations are done in this field. The sender S can select any
element from F to send to R. In any message transmission protocol we assume
that S starts with a message mS and R outputs mR at the end. Throughout the
paper we write |H | to denote the cardinality of the set H and h ∈R H denotes
that h is uniformly chosen from H .

Definition 2 (Reliability). A message transmission protocol is said to be δ-
reliable if the probability that mR = mS is at least (1−δ), where the probability is
taken over the random coin tosses of all the players and the random coin tosses
of the adversary.

Definition 3 (Privacy). Again following [4], a message transmission protocol
is said to be ε-private if, for every two messages m and m′ ∈ F and every r,∑

c |Pr[adv(m, r) = c]− Pr[adv(m′, r) = c]| ≤ 2ε. The probabilities are over the
coin tosses of the honest players and the sum is over all possible views of the
adversary.

Definition 4 ((ε, δ)-SMT). A message transmission protocol is said to be (ε, δ)-
SMT if it is ε-private and δ-reliable, where ε and δ are negligibly small.

Definition 5 (δ-URMT). A message transmission protocol is said to be δ-
URMT (Unconditionally Reliable Message Transmission) if it is δ-reliable.

Definition 6 (δ-URMTFK). We say that a message transmission protocol tol-
erating adversary structure A is δ-URMTFK if for all valid Byzantine corrup-
tions of any B ∈ A, the probability that R outputs mR = mS or knows that the
set B is faulty is at least (1− δ).1

Throughout this paper we use the following terms interchangeably: (a) δ-URMT
and URMT (b) δ-URMTFK and URMTFK .

It should be noted that protocols with error probabilities greater than 1
2 or

negligibly close to 1
2 in reliability or secrecy are not interesting. Instead, we

would like to have protocols with these error probabilities negligibly small.

Authentication Scheme: Our protocols use the following information theo-
retically secure authentication code to circumvent the low connectivity in the
graph. Suppose two random keys k1 and k2 are privately shared between two

1 FK stands for Fault Knowledge.
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parties S and R.2 Let S send (m, m∗k1+k2) to R and let R receive (x, y). Then,
R can easily check if adversary has tampered with the authenticated message
by verifying if y

?= x ∗ k1 + k2. If adversary has altered the messages en-route
then with probability at least 1 − 1

|F| , verification will fail and R will find out
(see [11] for proof). In addition to this if one more key k3 is privately shared
and S sends (m + k3, (m + k3) ∗ k1 + k2) to R, then the message m remains
perfectly secret, since m + k3 is independent of m. We use the following no-
tations in the paper: (i) χ(m, k1, k2) = (m, m ∗ k1 + k2); (ii) ζ(m, k1, k2, k3) =
χ(m+k3, k1, k2) = (m+k3, (m+k3)∗k1+k2); where m, k1, k2, k3 ∈ F. For brevity,
we sometimes abuse the notation and write ζ(m, K) to denote ζ(m, k1, k2, k3)
where K = (k1, k2, k3).

3 URMT

In [14], Srinathan and Pandu Rangan gave the characterization of directed
graphs for URMT tolerating mixed adversary (Byzantine and Fail-stop). In that
paper, they prove the following theorem that reduces the problem of URMT
tolerating adversary structures of arbitrary size to URMT tolerating two-sized
adversary structures.

Theorem 1. In a digraph N = (V, E), a δ-URMT protocol from S to R toler-
ating an arbitrary adversary structure A (|A| ≥ 2) exists iff δ-URMT protocols
tolerating every A s.t. A ⊆ A and |A| = 2 exist, where δ < 1

2 .

Once the problem is reduced to tolerating two-sized adversary structures only,
they give three constructions using which we can add virtual nodes and edges
in the graph. Finally a very simple condition remains to be checked in the aug-
mented graph which shows whether or not URMT is possible in the graph.

Since in this paper we are dealing with Byzantine adversary only, the three
constructions in [14] collapse to a single construction. We now give that con-
struction which shall be used extensively in the characterization for (ε, δ)-SMT
in Section 4.

Construction of Y : For a given adversary structure A = {B1, B2} and a given
node u ∈ V \ (B1 ∪B2) we construct the set Y (u) as follows: Y (u) is initialized
to {u}; a node v ∈ V \ (B1 ∪B2) is added to Y (u) if one of the following holds:

1. ∃ a ∈ Y (u) s.t. (v, a) ∈ E
2. ∃ b ∈ Y (u) s.t. (b, v) ∈ E and ∃ a ∈ Y (u), ∃α ∈ {1, 2} s.t. v has a path to a

avoiding the set Bα where α = 3−α. This path may contain nodes from Bα

(see Figure 2).

The above steps are executed iteratively until no more nodes can be added. Note
that nodes in B1 ∪B2 are never considered.
2 We take no such assumption in our protocols. The protocols establish keys between

parties on their own before using them.
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uav vu

aBα
Y (u)Y (u)

(1) (2)

Fig. 2. Constructions for Y (u)

Remark: Unlike [14], where virtual paths with certain properties are added in
the graph for the above construction, we used the set notation, Y . Nevertheless,
the set notation is equivalent to what is done in [14], i.e. a node v added to Y (u)
is equivalent to adding a virtual path from v to u in the graph.

The following two Lemmas act as the basic blocks for the (ε, δ)-SMT charac-
terization.

Lemma 1. If a node v ∈ Y (u), then v can do δ-URMTFK to u, for any δ ≥ 1
|F| ,

with the additional property that the message sent will remain perfectly secret
from the adversary.

The proof of this lemma appears in [14]. They give a protocol, with the above
mentioned properties, that simulates the virtual path added in the graph. Al-
though the message remains perfectly secret throughout the protocol, it is not
mentioned explicitly in the proof. Nevertheless, for the sake of completeness, we
give the proof of this lemma in Appendix A.1.

Lemma 2. If a node v /∈ Y (u) then there does not exist any δ-URMT protocol
with δ < 1

2 .

Proof appears in [14]. It assumes that the adversary knows the message that is
being transmitted. We can do away with that assumption and show that any
URMT protocol with δ < 1

2 (1− 1
|F|) does not exist (a similar proof is given in [4]).

The key idea used in the proof is that if v /∈ Y (u), then for any message trans-
mission protocol from v to u, the adversary can simulate a copy of the node v
(which we call v) on a message of its own choice in such a way that u can’t dis-
tinguish between the “actual” v and the “simulated” v. In this way if v intends
to send message m and adversary simulates the node v on some message m′ such
that m �= m′ 3, then u cannot do better than guessing between m and m′.

Finally, using the construction of Y (R) we can restate the main theorem of
[14] as follows:

Theorem 2. In a digraph N = (V, E), for δ < 1
2

(
1− 1

|F|
)
, δ-URMT from S to

R tolerating two-sized adversary structure A = {B1, B2} is possible if and only if
S ∈ Y (R) and there exist two paths p1 and p2 from S to R with path pα avoiding
Bα for α ∈ {1, 2}.
3 Adversary can do that with probability 1 − 1

|F| by choosing m′ ∈R F.
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4 (ε, δ)-SMT

We now characterize the family of graphs in which (ε, δ)-SMT from S to R
tolerating an adversary structure A is possible. As done in Section 3, we again
start with the theorem that reduces the adversary structures of arbitrary size
to two-sized adversary structures. Similar theorem has been proved in [13] for
(0, δ)-SMT.

Theorem 3. In digraph N = (V, E), (ε, δ)-SMT tolerating an arbitrary adver-
sary structure A (|A| ≥ 2) is possible if and only if (ε, δ)-SMT tolerating A for
all A ⊆ A, such that |A| = 2, is possible, where ε ≤ 1

648 and δ ≤ 1
864 .

Proof. The only-if part is obvious. We prove the if part here. Suppose that
(ε, δ)-SMT protocols tolerating all two-sized subsets of A exist. Let A = {B1,
B2, ..., Bn} and let Πi,j be the (ε, δ)-SMT protocol tolerating {Bi, Bj} where
1 ≤ i, j ≤ n. Using these as the subprotocols we construct a (ε, δ)-SMT protocol
Π tolerating A (which is also the protocol tolerating A).

We show how to construct a (ε, δ)-SMT protocol Π ′
i,j,k tolerating {Bi, Bj , Bk}

using Πi,j , Πj,k and Πk,i. The protocol Π ′
i,j,k is a (6ε, 12δ)-SMT protocol as

will be shown in Lemmas 3 and 4. Further, in Lemma 5, we will show how
this protocol can be used to construct an (ε, δ)-SMT protocol Πi,j,k (the upper
bounds on ε and δ become critical here). The key idea used in the construction of
Π ′

i,j,k is that each of the subsets Bi, Bj and Bk are tolerated in two of the three
protocols which means that no matter which set is corrupt, two of them will
be successful. Similar process can be used to construct a protocol Πi,j,k,l using
protocols Πi,j,k, Πi,j,l and Πj,k,l. In general for any μ > 2, a μ-sized set H can
be divided into three � 2μ

3 �-sized subsets H1, H2 and H3 such that every element
h ∈ H occurs in at least two of H1, H2 and H3. In this way, ultimately the grand
protocol Π that tolerates all the n subsets simultaneously is constructed. It can
be easily shown that poly(n) sub-protocols are used to construct the protocol Π .

The protocol Π ′
i,j,k consists of 3 phases where in each phase, protocols Πi,j ,

Πj,k and Πk,i are run in parallel. Phase 2 begins only after the completion of
Phase 1 and similarly Phase 3 begins only after the completion of Phase 2.4 The
protocol proceeds in the following steps:

– S chooses 3 set of keys K1, K2 and K3 randomly from F3 where Ki =
(ki1, ki2, ki3), i ∈ {1, 2, 3}.

– S sends ζ(mS , K1), ζ(mS , K2) and K3 through the protocol Πi,j in phases 1,
2 and 3 respectively. Similarly S sends ζ(mS , K2), ζ(mS , K3) and K1 through
the protocol Πj,k and sends ζ(mS , K3), ζ(mS , K1) and K2 through the pro-
tocol Πk,i in phases 1, 2 and 3 respectively.

– Let R receive (xi,j
1 , yi,j

1 ), (xi,j
2 , yi,j

2 ) and K ′
3 from Πi,j in phases 1, 2 and 3

respectively. Similarly R receives (xj,k
2 , yj,k

2 ), (xj,k
3 , yj,k

3 ) and K ′
1 from Πj,k,

and (xk,i
3 , yk,i

3 ), (xk,i
1 , yk,i

1 ) and K ′
2 from Πk,i in phases 1, 2 and 3 respectively

(see Figure 3) where K ′
i = (k′

i1, k
′
i2, k

′
i3).

4 Although Phase 1 and 2 are separated just for better understanding, it is crucial
that Phase 3 begins only after Phases 1 and 2 have ended.
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– R tries to find an α ∈ {i, j, k} such that the messages received through
the two protocols tolerating Bα are consistent with each other. For in-
stance, the messages received through two protocols tolerating Bi (Πi,j and
Πk,i) are consistent with each other when (xi,j

2 , yi,j
2 ) = χ(xi,j

2 , k′
21, k

′
22) and

(xk,i
3 , yk,i

3 ) = χ(xk,i
3 , k′

31, k
′
32) and xi,j

2 − k′
23 = xk,i

3 − k′
33.

• If more than one such α exists, proceed with any one of them. If no such
α exists then choose α ∈R {i, j, k} and proceed.

• If α is i then output xi,j
2 − k′

23. Similarly if α is j then output xj,k
3 − k′

33

and if α is k then output xk,i
1 − k′

13. ��

Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

ζ(mS , K1) (xi,j
1 , yi,j

1 )K3ζ(mS , K2) (xi,j
2 , yi,j

2 ) K ′
3

ζ(mS , K2) ζ(mS , K3) K1 (xj,k
2 , yj,k

2 ) (xj,k
3 , yj,k

3 ) K ′
1

ζ(mS , K3) ζ(mS , K1) K2 (xk,i
3 , yk,i

3 ) (xk,i
1 , yk,i

1 ) K ′
2

Πi,j

Πk,i

Πj,k

S sends R receives

Fig. 3. Protocol Π ′
i,j,k

We give proof ideas for the following three lemmas here. Formal proofs of
Lemma 3 and Lemma 4 appear in Appendix A.2 and A.3 respectively. Proof of
Lemma 5 appears in the full version of this paper.

Lemma 3. Protocol Π ′
i,j,k is (12δ)-reliable.

Proof idea: With probability at least (1 − δ)12, R will be able to find a pair of
protocols such that the messages received through them are consistent and the
message that R finally outputs is mS .

Lemma 4. Protocol Π ′
i,j,k is (6ε)-secure.

Proof idea: The messages sent through the protocol, that is not tolerating the
corrupt set, can be completely revealed to the adversary. In that case there are
six messages that are sent along the other two ε-secret protocols that are such
that mS remains secret iff these 6 messages remain secret. This in turn shows
that Π ′

i,j,k is (6ε)-secure.

Lemma 5. An (ε, δ)-SMT protocol Πi,j,k can be constructed using a (6ε, 12δ)-
SMT protocol Π ′

i,j,k.
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Proof idea: To enhance reliability we can repeat the protocol thrice and let R
output the majority element. This brings the error in reliability down to 432δ2

but increases the error in secrecy to 18ε. Next, to enhance security, any message
m is sent by sending f and m + f in separate executions, where f ∈R F. This
reduces the error in secrecy to 648ε2 but increases the error in reliability to
864δ2. For the given upper bounds on ε and δ, the protocol becomes (ε, δ)-SMT.

4.1 (ε, δ)-SMT Characterization

Following Theorem 3, it is now sufficient to give only a characterization for
(ε, δ)-SMT tolerating two-sized adversary structures of the form A = {B1, B2}.

We make use of the set Y defined in Section 3. In addition, we define two
more sets Z1 and Z2.

Construction of Z1: For a given adversary structure A = {B1, B2} and a given
node u ∈ V\ (B1∪B2) we construct Z1(u) as follows: Z1(u) is initialized to {u};
a node v ∈ V \ (B1 ∪B2) is added to Z1(u) if one of the following hold:

1. ∃ a ∈ Z1(u) s.t. (v, a) ∈ E , or,
2. ∃ b ∈ Z1(u) s.t. b can do URMTFK to v (in other words, b ∈ Y (v)) and v

has a path to u avoiding the set B2. This path may contain nodes from B1.

The above steps are executed iteratively until no new node can be added. Nodes
in (B1∪B2) are never considered. This completes the construction of Z1(u). The
set Z2(u) is constructed along similar lines (replacing B2 with B1 and vice-versa
in step (2) of the iteration).

Figure 4 describes the situations in which S can be added to Z1(R).

b

(1) (2)

B1

Z1(R)Z1(R)

RaS SR
URMTFK

Fig. 4. Constructions for Z1(R)

Theorem 4. In a directed network N = (V, E), (ε, δ)-SMT from S to R toler-
ating A = {B1, B2} is possible if and only if S ∈ Y (R) ∩ Z1(R) ∩ Z2(R).

The proof is divided into two parts - Sufficiency (if part) and Necessity (only if
part).

Sufficiency. To prove the sufficiency of the theorem we give a protocol for
(ε, δ)-SMT from S to R, with ε ≤ 1

648 and δ ≤ 1
864 . The upper bounds on the
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error probabilities ensure that these protocols, tolerating two-sized adversary
structures, can then be used to build the final protocol tolerating the complete
adversary structure. The protocol makes use of the 3 properties of S viz. S ∈
Y (R), S ∈ Z1(R) and S ∈ Z2(R) in 3 distinct subprotocols and at the end, R,
from its view of the entire protocol, outputs mR such that mR = mS with a
very high probability and mS remains secret.

The 3 subprotocols (corresponding to S ∈ Y (R), S ∈ Z1(R) and S ∈ Z2(R))
are as follows:

1. Subprotocol PF : S sends mS to R through the URMTFK protocol.
2. Subprotocol P1: If S was added to Z1(R) by:

– Construction (1), then it simply sends the message mS to the node a
through the honest edge (see Figure 4). The node a then starts another
instance of the protocol P1 to send mS to R.

– Construction (2), then b first chooses a random set of keys K =(k1, k2, k3)
and sends it to S through URMTFK (see Figure 4). Let S receive K ′.
Since S ∈ Z1(R), S has a path to R that avoids B2. Let that path be p2.
• If S successfully verifies K ′, it sends ζ(mS , K ′) to R along the path

p2. In addition to this it also sends m′ ∈R F to R along p2.
• If the verification fails then S knows the identity of the corrupt set

with very high probability. Let IS denote the identity knowledge of
S. First S chooses (f1, f2) ∈R F2 on its own and sends (f1, f2) to R
through p2 (thus, tries to inform R that it didn’t receive the keys
from b). Next, if IS = B1 then S sends m′ ∈R F to R through p2.
But if IS = B2 then S sends mS to R through that path.

Let R receive (x, y) and mp. Now b starts new instances of protocol P1

to send the elements of key K to R.
3. Subprotocol P2: P2 is exactly same as P1 with B1 replaced with B2 and

vice-versa.

Computation by R: At the end of the subprotocol PF , R either receives mS

or knows the identity of the corrupt set with probability at least 1 − 1
|F| . Let

IR be its identity knowledge. If R receives m′ which it is able to verify then it
outputs mR = m′ and stops. Otherwise, if IR = B2 it ignores all the messages it
received from P2 and does the following computation on the messages received
through P1 (analogous behaviour when IR = B1). If S was added to Z1(R) by
Construction (1), then R simply receives mS (recursively) from node a. In case
of Construction (2), it receives a set of keys KR = (kR

1 , kR
2 , kR

3 ) from b. From
S it receives one authenticated message (x, y) and a plain message mp. If R is
able to verify (x, y) with KR then it outputs mR = x− kR

3 otherwise it outputs
mR = mp.

We now prove that this protocol is δ-reliable and ε-secure such that we can
make ε and δ arbitrarily small by increasing the size of F.

Reliability: Suppose w.l.o.g. that B2 is corrupt. At the end of the subprotocol
PF , if R outputs the message m′ then Pr[mS = m′] ≥ 1 − 1

|F| , else Pr[IR =
B2] ≥ 1 − 1

|F| . Now consider the execution of P1. We initially assume that the
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instances of P1, that are called inside P1 recursively, finish successfully. In case
of Construction (1), R simply receives mS from node a. In case of Construction
(2) since B2 is corrupt, whatever S sends to R through the path p2, that avoids
B2, reaches R with perfect reliability and secrecy. We also know that Pr[K ′ =
K∨IS = B2] ≥ 1− 1

|F| , where K ′ are the keys S receives from b. If K ′ = K then
R will be able to verify (x, y) with the keys K that it receives from b and output
mS = x − k3. Otherwise, when IS = B2, S sends (x, y) = (f1, f2) ∈R F2 to R
along with mS . Therefore (x, y) will not verify with the keys K with probability
at least 1− 1

|F| and hence R is informed to output mp = mS . We can easily find
the success probability as follows: Let Ev be the event that verification of (x, y)
at R fails given that S had sent (f1, f2) ∈R F2.

Pr[mR = mS ] ≥ Pr[m′ = mS ∨ IR = B2] ∗ Pr[K ′ = K ∨ IS = B2] ∗ Pr[Ev]

≥
(
1− 1

|F|
)
∗
(
1− 1

|F|
)
∗
(
1− 1

|F|
)

≥
(
1− 3

|F|
)

Hence, the protocol is 3
|F| -reliable. This argument can be further extended to

show that through this protocol even if S sends a set of messages MS (|MS | >
1), in parallel, the probability that R receives all of them reliably is still at
least 1− 3

|F| . This can be shown by replacing single messages in the probability
expressions by message sets and they shall be considered equal only when all the
messages in them are equal. The main reason behind the error probability not
increasing is that the fault knowledge (IS or IR), once achieved, can be reused.

The above probabilities are conditioned on the fact that all the messages sent
through instances of Protocol P1 that are invoked recursively inside P1 itself are
received reliably. At most there can be t such recursive calls to the Protocol P1,
where t = |V|, which are all 3

|F| -reliable. If we choose F such that |F| ≥ 864 ∗ 3t,
we get δ = 3t

|F| ≤
1

864 .

Secrecy: Suppose w.l.o.g. that B1 is corrupt. Adversary’s view will only consist
of the messages sent through the corrupt paths (that contain nodes from B1).
We already know that messages sent through URMTFK remain perfectly secret
from the adversary. Hence we will only consider adversary’s view as the messages
sent by S to R along p2, that is the path avoiding B2 in protocol P1. Now we
prove using induction that messages sent from S to R using P1 remain 1

|F| -secret
under the assumption that messages sent by nodes already in Z1(R) remain
1
|F| -secret. In case of Construction (1), S simply sends mS to a and since a was
already in Z1(R), mS remains 1

|F| -secret when it is sent from a to R. Now we
discuss Construction (2). Take the case when adversary alters the keys sent by
b to S through URMTFK . With probability at least 1 − 1

|F| , S will find out
that B2 is corrupt and in that case all the messages sent along path p2 will be
independent of mS . But with probability at most 1

|F| , S may get the wrong fault
information in which case it will send mS in plaintext along p2. In any case, the
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authenticated message (x, y) conveys no additional information about mS to the
adversary. Hence we consider the view of the adversary as the plain message mp

sent along p2 and find the error in secrecy.

∀m, r, Pr[adv(m, r)=m]=
1
|F| ∗ 1+(1− 1

|F| )∗
1
|F|=

2
|F| −

1
|F|2

∀m, m′, r, s.t., m �= m′Pr[adv(m, r) = m′] = (1− 1
|F| ) ∗

1
|F| =

1
|F| −

1
|F|2

⇒ ∀m, m′, r
∑

c

|Pr[adv(m, r) = c]− Pr[adv(m′, r) = c]| ≤ 2
|F|

where the sum is over all possible views of the adversary, i.e. c ∈ F. Since the
sum is bounded by 2

|F| , the protocol is 1
|F| -secret.

Now take the case when the adversary does not alter the keys sent by b to
S. In that case, (x, y) and mp sent along p2 are independent of mS as long as
the keys K remain secret. Hence the secrecy of the protocol completely depends
upon the secrecy of K which is sent to R by b. But we know that messages sent
by b remain 1

|F|-secret and hence, the complete protocol is 1
|F| -secret. We already

chose F such that |F| ≥ 864 ∗ 3t ≥ 648, therefore ε = 1
|F| ≤

1
648 .

Thus we prove the sufficiency.

Necessity. It is obvious that S ∈ Y (R) is necessary for (ε, δ)-SMT because it is
necessary for URMT alone from S to R. For the same reason the two paths (not
necessarily distinct) avoiding sets B1 and B2 respectively are also necessary for
(ε, δ)-SMT . Now we show that S ∈ Z1(R) and S ∈ Z2(R) are necessary too. We
prove the necessity of S ∈ Z1(R) and the proof for the latter is similar.

Lemma 6. S ∈ Z1(R) is necessary for (ε, δ)-SMT from S to R.

Proof. Let S /∈ Z1 (in this proof, we simply write Z1 to denote Z1(R)). We know
that S has a path avoiding B2 to R. Therefore the reason behind S not being in
Z1 is that there is no node in Z1 that can do URMTFK to S. We now show that
there does not exist any (ε, δ)-SMT protocol from S to R in that case. Suppose,
for contradiction, that there exists such a protocol. We now divide the set of
honest nodes not in Z1 into the following sets:

– XR = {x | ∃ a ∈ Z1 s.t. a can do URMTFK to x}
– XS = {x | x /∈ XR}

From the definition of Z1 and the above sets the following facts are clear: (i)
XS , XR and Z1 are disjoint and XS ∪XR ∪ Z1 = V \ (B1 ∪ B2); (ii) R ∈ Z1;
(iii) S ∈ XS; (iv) ∀ u ∈ Z1 ∪ XR, u cannot do URMTFK to any node in XS ;
(v) ∀x ∈ XR, any path from x to Z1 will have to pass through some node in B2

otherwise x would be in Z1. Figure 5 describes the possible connections between
the sets. A path p (of a particular kind) from a set H1 to a set H2 means that
∃h1 ∈ H1, ∃h2 ∈ H2, s.t. there is a path p (of that kind) from h1 to h2. For
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B2

Z1XS

XR

B2

B1

Fig. 5. Connections between the disjoint sets

example the edge from XR to Z1 labelled B2 means that ∃x ∈ XR, ∃z ∈ Z1,
s.t. there is a path from x to z that passes through some nodes in B2. Paths
with no labels are honest paths.

Note that, given the constraints, these are the best possible connections for
the feasibility of the protocol in the graph. For instance there may or may not
be an honest path from set XS to XR, but we have assumed there is. We shall
now give an adversary strategy to prove the impossibility of (ε, δ)-SMT in the
above graph which will imply that (ε, δ)-SMT will be impossible in all the other
graphs where S /∈ Z1.

The adversary always corrupts one of {B1, B2}. We describe later how it
chooses which set to corrupt. The corrupt set Bα behaves as follows:

– It does not send any messages to Z1, XR and Bα and also ignores all the
messages it receives from these sets. Here α = 3− α.

– It simulates a copy of each node in Z1 and XR. Call the simulated sets of
nodes Z1 and XR respectively. The simulation is carried out as described in
[14].

Notice that since Z1 and XR can’t do URMTFK to XS , from Lemma 2 we know
that the adversary will always be able to successfully simulate Z1 and XR and
thereby will be able to confuse XS between the messages it receives from the
“actual” and the “simulated” sets. Also note that “XR can’t do URMTFK to
XS” is independent of whether XS has an honest path to XR or not.

Observe that one of {B1, B2} is always corrupt. Let Bα be the corrupt set.
The “simulated” sets interact only with Bα and the “actual” sets interact only
with Bα. In this way if MR is the set of messages Z1 intends to send to XS , then
XS will receive M1

R from B1 and M2
R from B2.

Consider the case when B2 is corrupt. In this case: (a) Z1 will only receive
messages from XS sent along the path avoiding B2, (b) Z1 will not receive any
message from XR, (c) Pr[M1

R = MR] = 1 and for |MR| ≥ 1, Pr[M2
R = MR] ≤

1
|F| .

We now describe how the adversary chooses which set to corrupt. Consider
the event E when XS sends some set of messages MS along the path containing
B1 (and avoiding B2) such that mS can be recovered by R from the knowledge
of MS and M1

R only, i.e. without the knowledge of M2
R. For a given protocol, the

adversary strategy depends on Pr[E]:
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– Case 1: if Pr[E] ≤ 1
2 , then corrupt B2

– Case 2: if Pr[E] > 1
2 , then corrupt B1.

It is easy to see that with such a strategy a (ε, δ)-SMT protocol will not exist
with δ < 1

2

(
1 − 1

|F|
)

and ε < 1
2 simultaneously which means that these error

probabilities cannot be made arbitrarily small.
In Case 1, B2 is corrupt and hence R receives messages only from XS that

were sent along the path containing B1 (and avoiding B2). Hence R can recover
mS if E happens. In addition to this, even if E does not happen, R may be able
to recover the message mS if B2 simulates the sets on the message set MR itself.
This means that Pr[mR = mS ] ≤ Pr[E] ∗Pr[MR �= M2

R] + 1 ∗Pr[MR = M2
R] ≤

1
2

(
1 + 1

|F|
)
.5 Therefore δ ≥ 1

2

(
1 − 1

|F|
)
. In Case 2, B1 is corrupt and hence if E

happens B1 will always be able to recover mS from MS if it knows M1
R. Since

M1
R was the set of messages on which it simulated the copy of Z1, it knows M1

R.
Therefore in this case, since Pr[E] > 1

2 , it gets the message with probability
> 1

2 , i.e. ε > 1
2 .

This completes the proof of necessity. ��
Combining the result of Theorem 3 and Theorem 4 we can now give the Main
Theorem of the paper that gives the complete characterization of directed net-
works in which (ε, δ)-SMT is possible.

Theorem 5. In a directed network N = (V, E), (ε, δ)-SMT from S to R tol-
erating A is possible if and only if for every A = {B1, B2} where A ⊆ A, we
have S ∈ Y (R) ∩ Z1(R) ∩ Z2(R) where Y (R), Z1(R) and Z2(R) are defined for
a particular {B1, B2} as described in Section 3 and Section 4.1.

Proof of the theorem is immediate from Theorem 3 and Theorem 4.

We can now see that (ε, δ)-SMT, tolerating A = {{b1}, {b2}}, is possible over
the network G in Figure 1 with the help of the above theorem. Notice that there
is only one 2-sized subset of A that needs to be considered, which is A itself.

We construct sets Y (R), Z1(R) and Z2(R) for B1 = {b1} and B2 = {b2}. S
is added to Y (R) through the following steps: w is first added to Y (R) through
Construction 2, v is then added through Construction 1, u is then added through
Construction 2, and finally, S is added through Construction 1. Hence S ∈ Y (R).
We can follow similar steps to show R ∈ Y (S). Now, since S has a path to R
avoiding b2 and R ∈ Y (S), S ∈ Z1(R). Similarly, S ∈ Z2(R), which further
implies that S ∈ Y (R) ∩ Z1(R) ∩ Z2(R). Thus, (ε, δ)-SMT is possible from S
to R.

5 Concluding Remarks

From the above characterization it follows that URMT between two nodes u
and v in both the directions is necessary and sufficient for (ε, δ)-SMT between
them. URMT between u and v implies that for any given adversary structure
A = {B1, B2} (A ⊆ A), the following holds:
5 If |MR| = 0 then Pr[mR = mS] ≤ Pr[E].
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1. v ∈ Y (u) and u ∈ Y (v)
2. u has path p1 and p2 to v with pα avoiding nodes from Bα

3. v has paths q1 and q2 to u with qα avoiding nodes from Bα.

(1) and (2)⇒ u ∈ Y (v)∩Z1(v)∩Z2(v); (1) and (3) ⇒ v ∈ Y (u)∩Z1(u)∩Z2(u).
Therefore (ε, δ)-SMT between u and v is possible in both directions.

This is in line with the existing results in literature, e.g. in both directed and
undirected graphs, Perfectly Reliable Message Transmission (PRMT) between
two nodes in both directions implies Perfectly Secure Message Transmission
(PSMT) between them.

We leave it as an open problem to devise worst case efficient protocols or to
characterize graphs over which efficient protocols for (ε, δ)-SMT exist.
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A Appendix

A.1 Proof of Lemma 1

We give a proof by induction on the iteration at which a node is added. We
denote by Πv the URMTFK protocol which is run in the network to enable v to
send a message to u.

Base Step: The first node added to Y (u) is u which can obviously send any
message reliably and securely to itself. Hence, Πu is trivial.

Induction Step: Assume that k − 1 nodes v1, v2, . . . , vk−1 (v1 = u) have been
added to Y (u) in that order. At the k-th iteration, node vk is added. Let mk

be the message vk intends to send. Protocol Πvk
proceeds as follows. If vk was

added to Y (u) by:

– Construction (1), then there exists a node vi ∈ Y (u) (1 ≤ i ≤ k − 1) s.t. vk

has an honest path p to vi. First, vk sends message mk to vi along path p,
which vi receives reliably and securely. Now, protocol Πvi is run on message
mk in the network. As Πvi is a URMTFK protocol with perfect secrecy, so
is Πvk

.
– Construction (2), then there exist two nodes vi, vj ∈ Y (u) (1 ≤ i, j ≤ k− 1)

s.t. vi has an honest path p1 to vk and vk has a path p2 passing through at
most one of B1 and B2 to vj . Let p2 pass through Bα. Protocol Πvk

proceeds
in the following sequence of steps:
1. Node vi chooses three random keys k1, k2, k3 ∈R F and sends them along

path p1 to vk which vk receives reliably and securely.
2. Node vk sends ζ(mk, k1, k2, k3) to vj along p2.
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3. Let vj receive (f1, f2) along p2. If vj does not receive two field elements
along p2, it picks two elements f1, f2 ∈R F on its own6. Now, protocol
Πvj is run twice in the network, first on message f1, then on message f2.

4. Protocol Πvi is run thrice in the network, first on message k1, then on
message k2 and then on k3.

Since both Πvj and Πvi are URMTFK protocols with perfect security, any tam-
pering of the messages sent through either of them is detected with probability
at least (1 − 1

|F|). If there is no tampering of the message sent through these
protocols then u receives f1, f2 and keys k1, k2, k3 reliably and securely. There-
fore u will be able to recover the message mk or detect any tampering by Bα

(α ∈ {1, 2}) on path p2 with at least (1 − 1
|F|) probability (due to the property

of the authentication code). Hence, Πvk
is a URMTFK protocol. Also, since

adversary does not know k1, k2 and k3, it gets no information about m from
ζ(m, k1, k2, k3).

A.2 Proof of Lemma 3

Each one of protocols Πi,j , Πj,k and Πk,i are (ε, δ)-SMT protocols. Let us sup-
pose w.l.o.g. that Bi is corrupt. It means that protocols Πi,j and Πk,i will be
δ-reliable and ε-secret. Therefore, with probability at least (1 − δ)10, R will re-
ceive the following 10 elements sent through Πi,j and Πk,i reliably: ζ(mS , K2),
K3, ζ(mS , K3) and K2.7 In that case protocols Πi,j and Πk,i will be consistent
with each other and mR = xi,j

2 − k′
23 will be equal to mS if R chooses α to be

i. But α can have other possible values also. The corrupt set Bi can read and
alter all the messages that are sent through the protocol Πj,k. Suppose, in Phase
3, it modifies K1 to K ′

1 such that a different message, m′ �= mS , is recovered
when ζ(mS , K1) is unlocked using K ′

1. Then it also must modify at least one of
ζ(mS , K2) (in Phase 2) and ζ(mS , K3) (in Phase 3) such that the verification
passes and the message recovered is m′. But the probability that both these
verifications fail (if altered) is at least (1− 1

|F|)
2, since adversary does not know

the keys K2 and K3 during Phase 1 and 2 (this is why it is crucial that Phase
3 begins only after the completion of Phases 1 and 2). Hence the probability
that R chooses i as α, given that it received the 10 elements reliably, is at least
(1− 1

|F|)
2.

⇒ Pr[mR = mS ] ≥ (1 − δ)10 ∗ (1− 1
|F| )

2

⇒ Pr[mR = mS ] ≥ (1 − δ)12, choose F such that δ ≥ 1
|F|

⇒ Pr[mR = mS ] ≥ 1− 12δ, since δ ≤ 1
864

6 This is an attempt to inform R that path p2 (and thus, Bα) is corrupt.
7 Recall that ζ(mS, K) consists of 2 field elements and K consists of 3 field elements

for any K ∈ {K1, K2}.
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Note that there is another way in which Bi can always pass the verifications,
i.e. by not altering any messages. But it won’t affect this probability because in
that case mR will always be equal to mS no matter what value of α is chosen.
Hence the protocol Πi,j,k is (12δ)-reliable.

A.3 Proof of Lemma 4

Suppose w.l.o.g. that Bi is corrupt. Therefore Πj,k will fail completely and hence
ζ(mS , K2), ζ(mS , K3) and K1 will be revealed to the adversary. But we see that
these messages convey no information about mS to the adversary because of the
following reasons:

– due to the property of ζ function if K is not known to the adversary then
ζ(mS , K) is independent of mS .

– since K1 was randomly chosen by S it has no relation with the message mS .

Now notice that among all the messages sent to R through the protocols Πi,j

and Πk,i only six contain “useful” information for the adversary viz.: ζ(mS , K1)
and k33 sent through Πi,j and ζ(mS , K1) and k23 sent through Πk,i. ζ(mS , K2)
and ζ(mS , K3) are not useful because they are already revealed to the adversary.
Only the third element of the keys K2 and K3, i.e. k23 and k33, are useful because
if they are known, even if adversary knows the other two elements it gains no
extra information about the message mS . Also, without the third element the
other two elements give absolutely no information about mS . For example, even
if adversary knows ζ(mS , K2), k21 and k22 it has no information about mS . On
the other hand if it knows ζ(mS , K2) and k23, it knows mS completely.

Therefore there are 6 elements sent through Πi,j and Πk,i that need to be kept
secret from the adversary. Let {ai |1 ≤ i ≤ 6} be the variables representing these
six elements. It can be clearly seen that if any ai is revealed to the adversary,
mS will be revealed. For example, if the first element of ζ(mS , K1), i.e. mS +k13

sent through Πi,j is revealed then it can find out mS since it already knows k13.
Similarly, it can find out mS using any of the other 5 “useful” elements. In other
words once ζ(mS , K2), ζ(mS , K3) and K1 are revealed to the adversary (that
means once they are fixed), for a given message mS the values of all the ai’s are
fixed. Also, we send all these elements through some ε-secret protocol. Suppose
protocol Pi was used to send ai. To find the secrecy factor of the entire protocol
Π ′

i,j,k we look at it as a series of 6 protocols (P1, P2, ..., P6). Therefore, we need
to find an upper bound on the expression

X =
∑

c

|Pr[adv(m0, r) = c]− Pr[adv(m1, r) = c]|, ∀m0, m1 ∈ F, ∀r

where r denotes all the coin tosses of the adversary in the six executions com-
bined, i.e. r = (r1, r2, . . . r6). The sum is over all possible views of the adversary
for the execution of the six protocols. In other words c ∈ C = C1 × C2 · · · × C6

where Ci is the set of all possible views of the adversary for an execution of
protocol Pi.
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We now define the following notation for readability. pi(m, r, c) is the proba-
bility that adversary’s view is c when the message sent was m and its coin tosses
were r in an execution of Pi. Notice that these probabilities are over the coin
tosses of honest players and hence all the six pi’s are independent of each other.

Let ab
i be the value fixed for ai when m = mb, b ∈ {1, 2}. Hence we can rewrite

the expression X as:

X =
∑

(c1,c2,...c6)∈C

|
6∏

i=1

pi(a0
i , ri, ci)−

6∏
i=1

pi(a1
i , ri, ci)|

Now we list out some properties of pi(m, c, r) which will help us in evaluating
the above expression:

– ∀m, r,
∑
c∈Ci

pi(m, r, c) = 1 where 1 ≤ i ≤ 6.

– ∀m1, m2, r,
∑
c∈Ci

|pi(m1, r, c) − pi(m2, r, c)| ≤ 2ε since all the protocols are

ε-secure.

Using the result of Lemma 7 it can be easily shown that X ≤ 12.ε. Hence the
protocol Π ′

i,j,k is (6ε)-secure.

Corollary 1. If an ε-secret protocol is repeated k number of times then the error
in secrecy increases at most by a factor of k. (In that case all the useful elements,
ai’s are m itself).

Lemma 7. Given n pairs of vectors ui and vi of size li, i.e. ui=(ui1, ui2, . . . uili)
and vi = (vi1, vi2, . . . vili), i ∈ {1, 2, . . . , n}. Also given that ∀i ∈ {1, 2, . . . , n}:

1.
li∑

j=1

uij ≤ 1 and
li∑

j=1

vij ≤ 1

2.
li∑

j=1

|uij − vij | ≤ 2ε

Then
∑

k1,k2,...kn

|
n∏

i=1

uiki −
n∏

i=1

viki | ≤ 2n.ε, where ki varies from 1 to li.

Proof (By Induction). Let Tn denote the sum in the expression and let P (n)
denote the above inequality. In other words:

P (n) ⇒ (Tn ≤ 2n.ε)

We know that P (1) is true since it is given that
∑l1

k1=1 |u1k1 − v1k1 | ≤ 2ε.
Suppose P (n− 1) is true. Therefore we have: Tn−1 ≤ 2(n− 1).ε.
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Now,

Tn =
∑

k1,k2,...kn

|
n∏

i=1

uiki −
n∏

i=1

viki |

⇒ Tn =
∑

k1,k2,...kn

|
( n−1∏

i=1

uiki −
n−1∏
i=1

viki

)
.unkn +

( n−1∏
i=1

viki

)
(unkn − vnkn)|

⇒ Tn≤
∑

k1,k2,...kn

|
(n−1∏

i=1

uiki−
n−1∏
i=1

viki

)
.unkn |+

∑
k1,k2,...kn

|
(n−1∏

i=1

viki

)
(unkn−vnkn)|

⇒ Tn ≤ Tn−1.1 + 1.2ε

⇒ Tn ≤ 2(n− 1).ε + 2ε

⇒ Tn ≤ 2n.ε

��
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Abstract. Randomness extraction is the art of distilling almost per-
fectly random bits from an entropy source. Since the source can generally
be considered as one that emits classical data, randomness extraction is
usually analyzed within the framework of classical probability theory.
However, it has been realized recently that this classical treatment is
limited: it does not cover situations where the source—while still emit-
ting classical data—is correlated to quantum side information. Here, we
review some recent work that overcomes this limitation.

1 Randomness Extraction

Let X be a value from a set X and let E be a system that is correlated to
X . Randomness extraction is concerned with the task of computing a bistring
Z ∈ {0, 1}�, by applying a function f to X , such that Z = f(X) is virtually
uniformly distributed and independent of E. By a suitable choice of f , this task
can be achieved provided that X is sufficiently random given E. More precisely,
the requirement is that � (the size of Z) is slightly smaller than the min-entropy
Hmin(X |E) (see below for a definition) of the source, X , conditioned on the side
information, E.

2 Applications

Randomness extraction is relevant in a variety of applications. One of them
is “recycling” of randomness [17]. Consider a probabilistic computation which,
in each run i, requires � uniformly random bits, Zi, as input and produces an
output, Oi, of length k. Assume furthermore that we wish to run this algorithm
N times, producing a sequence of outputs O1, . . . , ON . Doing this in a naive way
would require us to generate N� random bits, which may be expensive. However,
if k < �, there is a more resource-saving method to produce the sequence of
outputs O1, . . . , ON . Observe that the randomness Zi used for the ith run must
be independent of the previous outputs O1, . . . , Oi−1. This randomness can be
obtained by recycling the previous input, Zi−1. For this, one simply appends
to Zi−1 a fresh random string of length k, resulting in an (� + k)-bit string,
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denoted Xi. A simple argument1 shows that its entropy, Hmin(Xi|O1, . . . , Oi−1),
is at least �. Hence, by applying an appropriate randomness extraction function
to Xi, we can distill a string Zi of (almost) � uniformly random bits. This
procedure uses in each round only k fresh random bits (except in the first,
where � bits are needed). The total consumption of randomness is thus (roughly)
� + (N − 1)k < N�.

Another application of random extractors is situated in the area of cryptog-
raphy. Here, a typical scenario is that honest parties have access to randomness,
X , about which an adversary has partial information, E. For example, in a key
distribution scheme, X may be a raw key generated by two parties communi-
cating over an insecure communication channel, and E is the information that
an adversary may have gained by a wiretapping attack. Randomness extraction
can then be used as privacy amplification [3,2]. That is, the honest parties gen-
erate a key which is secure (i.e., uniformly distributed and independent of E) by
applying an appropriate function to X .

3 Classical versus Quantum Side Information

In the standard literature on randomness extraction [20], the side information,
E, is (often implicitly) assumed to be classical—or is not even modeled explicitly.
Indeed, if E is classical, then it is sufficient to consider the distribution PX|E=e

of the entropy source, X , conditioned on any possible value E = e that the
side information can take. If the distribution PZ|E=e of the output Z = f(X) is
uniform conditioned on any E = e, then Z is automatically independent of E.

This reasoning no longer applies to the more general situation where the side
information, E, is represented by the state of a quantum system. For example,
E may be in a pure state, ψx

E , for any possible value X = x, where the different
states ψx

E are not perfectly distinguishable. In this case, “conditioning” on the
side information E, as in the classical case described above, is no longer possible
(see [13] for an example). And indeed, as we shall see below, an extractor that is
sound if the side information is classical may not necessarily be resilient in the
presence of quantum side information.

The two applications sketched above are examples where a quantum-mechani-
cal treatment of side-information (and therefore the use of quantum-resilient ex-
tractors) may be necessary. In the first, this is for instance the case if we apply
the randomness recycling procedure to a probabilistic algorithm that prepares
a quantum system (in this case, Oi would correspond to the quantum system
prepared in the ith round). Similarly, the adversary occurring in the crypto-
graphic example may make use of quantum devices to store the information she
has gained during an eavesdropping attack (see, e.g., [18,1,7,12]).

1 Assume (by induction) that Zi−1 is independent of all previous outputs. We then
have Hmin(Zi−1|O1, . . . , Oi−2) = �. Since conditioning on the k-bit output Oi−1 can
reduce the min-entropy by at most k, we have Hmin(Zi−1|O1, . . . , Oi−2, Oi−1) ≥ �−k.
The claim then follows because adding k fresh bits will raise the entropy by k.



54 R. Renner

4 Quantum-Resilient Extractors—Technical Definition

In the following, we state the technical definition for an extractor to be resilient
in the presence of quantum side information [19,5]. The definition follows the
“classical” definition of extractors. The idea is that the extractor is supposed
to generate a uniform output whenever the min-entropy of the input, X , is
sufficiently large. However, in contrast to the classical case, the min-entropy is
measured relative to quantum side information [18,14].

Definition 1. Let ρXE be a cq-state.2 The min-entropy of X conditioned on E
(evaluated for ρ = ρXE) is defined as

Hmin(X |E)ρ := − log2 pguess(X |E)

where pguess(X |E) is the average probability of guessing the value of X correctly
using an optimal strategy with access to E.

Let {fs}s∈S be a family of functions from X to the set of �-bit strings {0, 1}�.
The index s ∈ S is called seed.3

Definition 2. The family {fs}s∈S is a (k, ε)-strong quantum-resilient extractor
if for all cq-states ρXE with Hmin(X |E)ρ ≥ k we have〈∥∥ρfs(X)E − τX ⊗ ρE

∥∥
1

〉
s
≤ ε

where τX is the state corresponding to a uniformly distributed X, and where 〈·〉s
denotes the expectation value over a uniform choice of the seed s ∈ S.4

We note that the “classical” definition of extractors is retrieved (see [12] or [5]
for details) if the system E is replaced by a purely classical value (or omit-
ted completely). In particular, any (k, ε)-strong quantum-resilient extractor is
automatically a (k, ε)-strong extractor in the classical sense.

However, the converse is not true. As shown in [9], it is possible to construct
strong extractors (in the classical sense) which are not quantum-resilient. This
result implies that separate proofs are required for the individual known ex-
tractor constructions in order to show that they can be used in the presence of
quantum side information. In the following section, we summarize some recent
results in this direction.
2 A classical-quantum-state (or cq-state) is a bipartite density operator ρXE describing

the joint state of a classical value X and a quantum system E. Formally, it has the
form ρXE =

∑
x px|x〉〈x|⊗ ρx

E , where px is the probability distribution of the values
X and ρx

E is the state of E conditioned on X = x.
3 In the classical literature on randomness extraction, the seed is usually considered

as an input to the extractor function.
4 More generally, one may assign probabilities ps to each element in {fs}s∈S and define

extractors with respect to a seed chosen according to this probability distribution.
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5 Specific Constructions of Randomness Extractors

The following table summarizes some of the extractor constructions for which
resilience against quantum side information has been proved. For example, the
first line refers to extractors defined as two-universal families of functions [4,26].
These extractors extract essentially the entire min-entropy, i.e., they are (k, ε)-
strong quantum resilient extractors for any k ≥ � + 2 log2(1/ε), where � is the
output length.5

resilience
classical quantum

two-universal hashing [10,2] [11,19]
almost two-universal hashing [21] [23]
δ-biased masking [16] [8]
sample-then-extract [25] [12]
Trevisan’s extractor [24] [22,6,5]

While the results on the right hand side of this table have all been proved
separately, it would be desirable to have techniques that enable a more generic
proof of the quantum-resilience of the classical extractor constructions. Recently,
some promising results of this type have been obtained (for example, a proof
that any one-bit strong extractor is automatically resilient against quantum side
information [15]). Nevertheless, the construction and analysis of randomness
extraction in the general case (where side-information is not guaranteed to be
classical) is still a widely open research field.

Acknowledgments. This presentation is based on work with Robert König
and Ueli Maurer [11,19,12], with Christian Schaffner, Adam Smith, and Marco
Tomamichel [23], and with Anindya De, Christopher Portmann, and Thomas
Vidick [5]. I would like to thank these collaborators.
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Abstract. In this paper, we use the concept of colored edge graphs
to model homogeneous faults in networks. We then use this model to
study the minimum connectivity (and design) requirements of networks
for being robust against homogeneous faults within certain thresholds. In
particular, necessary and sufficient conditions for most interesting cases
are obtained. For example, we will study the following cases: (1) the
number of colors (or the number of non-homogeneous network device
types) is one more than the homogeneous fault threshold; (2) there is
only one homogeneous fault (i.e., only one color could fail); and (3) the
number of non-homogeneous network device types is less than five.

1 Background and Colored Edge Graph

In network communications, the communication could fail if some nodes or some
edges are broken. Though the failure of a modem could be considered the failure
of a node, we can model this scenario also as the failure of the communication link
(the edge) attached to this modem. Thus it is sufficient to consider edge failures
in communication networks. It is also important to note that several nodes (or
edges) in a network could fail at the same time. For example, all brand X routers
in a network could fail at the same time due to a platform dependent computer
worm (virus) attack. In order to design survivable communication networks, it is
essential to consider this kind of homogeneous faults for networks. Existing works
on network quality of services have not addressed this issue in detail and there
is no existing model to study network reliability in this aspect. In this paper, we
use the colored edge graphs which could be used to model homogeneous faults in
networks. The model is then used to optimize the design of survivable networks
and to study the minimum connectivity (and design) requirements of networks
for being robust against homogeneous faults within certain thresholds.

Definition 1. A colored edge graph is a tuple G(V, E, C, f), with V the node
set, E the edge set, C the color set, and f a map from E onto C. The structure

ZC,t = {Z : Z ⊆ E and |f(Z)| ≤ t}.

is called a t-color adversary structure. Let A, B ∈ V be distinct nodes of G. A, B
are called (t + 1)-color connected for t ≥ 1 if for any color set Ct ⊆ C of size t,
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there is a path p from A to B in G such that the edges on p do not contain any
color in Ct. A colored edge graph G is (t + 1)-color connected if and only if for
any two nodes A and B in G, they are (t + 1)-color connected.

The interpretation of the above definition is as follows. In a network, if two
edges have the same color, then they could fail at the same time. This may
happen when the two edges are designed with same technologies (e.g., with
same operating systems, with same application software, with same hardware,
or with same hardware and software). If a colored edge network is (t + 1)-color
connected, then the network communication is robust against the failure of edges
of any t colors (that is, the adversary may tear down any t types of devices).

In practice, one communication link may be attached to different brands of
network devices (e.g., routers, modems) on both sides. For this case, the edge
can have two different colors. If any of these colors is broken, the edge is broken.
Thus from a reliability viewpoint, if one designs networks with two colors on
the same edge, the same reliability/security can be obtained by having only one
color on each edge. In the following discussion, we will only consider the case
with one color on each edge. Meanwhile, multiple edges between two nodes are
not allowed either.

We are interested in the following practical questions. For a given number
n of nodes in V (i.e., the number of network nodes), a given number m of the
colors (e.g., the number of network device types), and a given number t, how can
we design a (t + 1)-color connected colored edge graph G(V, E) with minimum
number λ of edges? In another word, how can we use minimum resources (e.g.,
communication links) to design a network that will keep working even if t types
of devices in the network fail?

For practical network designs, one needs first to have an estimate on the
number of homogeneous faults. For example, the number t of brands of routers
that could fail at the same time. Then it is sufficient to design a (t + 1)-color
connected network with m = t + 1 colors (e.g., with t + 1 different brands of
routers). Necessary and sufficient conditions for this kind of network design will
be obtained in this paper.

Another important issue that should be taken into consideration in practical
network designs is that the number m of colors (e.g., the number of brands for
routers) is quite small. For example, m is normally less than five. Necessary
and sufficient conditions for network designs with m ≤ 5 and with optimized
resources will be obtained in this paper. Note that for cases with small m, we
may have m > t + 1.

The outline of the paper is as follows. Section 3 describes the necessary and
sufficient conditions for the case of m = t + 1 without optimizing the number of
edges in the networks. Section 4 gives a necessary condition for colored edge net-
works in terms of optimized number of edges. Section 5 shows that the necessary
conditions in Section 4 are also sufficient for the most important three cases: (1)
m = t + 1; (2) t = 1; and (3) m ≤ 5. Section 6 shows that it is coNP-hard to
determine whether a given colored edge graph is (t + 1)-connected.
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2 Related Works

Though colored-edge graph is a new concept which we used to model network
survivability issues, there are related research topics in this field. For example,
edge-disjoint (colorful) spanning trees have been extensively studied in the lit-
erature (see, e.g., [1]). These results are mainly related to our discussion in the
next section for the case of m = t + 1. A colored edge graph G is proper if
whenever two edges share an end point they carry different colors. A spanning
tree for a colored edge graph is called colorful if no two of its edges have the
same color. Two spanning trees of a graph are edge disjoint if they do not share
common edges. For a non-negative integer s, let Ks denote the complete graph
on s vertices. A classical result from Euler (see [1]) shows that the edges of K2n

can be partitioned into n isomorphic spanning trees (paths, for example) and
each of these spanning trees can easily be made colorful, but the resulting edge
colored graph usually fails to be proper.

Though it is important to design colored edge graphs with required security
parameters, for several scenarios it is also important to calculate the robustness
of a given colored edge graphs. Roskind and Tarjan [7] designed a greedy algo-
rithm to find (t+1)-edge disjoint spanning trees in a given graph. This is related
to the questions (t + 1)-color connectivity for the case of m = t + 1. We are not
aware of any approximate algorithms for deciding (t + 1)-color connectivity of a
given colored edge graph. Indeed, we will show that this problem is coNP-hard.

3 Necessary and Sufficient Conditions for Special Cases

In this section, we show necessary and sufficient conditions for some special cases.

Lemma 1. A colored edge graph G(V, E, C, f) is (t + 1)-color connected if and
only if, for all i1, i2, . . ., im−t ≤ m, (V, Ei1 ∪ Ei2 ∪ · · · ∪ Eim−t) is a connected
graph, where E1, E2, . . . , Em is a partition of E under the m different colors.

As we have mentioned in the previous section, the classical result from Euler
shows that K2n can be partitioned into n spanning trees. Thus, by Lemma 1,
we have the following theorem.

Theorem 1. (Euler) For n = 2m, there is a coloration G(V, E, C, f) of Kn

such that G is (m− 1)-color connected.

In the following, we extend Theorem 1 to the general case of n ≥ 2m.

Lemma 2. For n ≥ 2m and m ≥ 2, there exists a graph G(V, E) with |V | =
n, |E| = m(n−1), and E = E1∪E2∪· · ·∪Em such that the following conditions
are satisfied:

1. G(V, Ei) is a connected graph for all 0 < i ≤ m;
2. Ei ∩ Ej = ∅ for all i, j ≤ m.
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Proof. We prove the Lemma by induction on n and m. For n = 2 and m = 1,
the Lemma holds obviously. Assume that the Lemma holds for n0 = 2m0.

In the following, we show that the Lemma holds for n = n0 + 1, m = m0 and
for n = n0 + 2, m = m0 + 1. Let G(V0, E0) be the graph with |V0| = n0, |E0| =
m0(n0−1), and E0 = E0

1 ∪E0
2 ∪· · ·∪E0

m0
such that the conditions in the Lemma

are satisfied:
For the case of n = n0 + 1 and m = m0, let V = V0 ∪ {u} where u is a new

node that is not in V0, and let E1 = E0
1 ∪ {(u, u1)}, E2 = E0

2 ∪ {(u, u2)}, . . .,
Em0 = E0

m0
∪ {(u, um0)} where u1, u2, . . . , um0 are distinct nodes from V0. It is

straightforward to show that |V | = n, |E| = m(n − 1), G(V, Ei) is a connected
graph, and Ei ∩ Ej = ∅ for all i, j ≤ m. Thus the Lemma holds for this case.

For the case of n = n0 + 2 and m = m0 + 1, let V = V0 ∪ {u, v} where u, v
are new nodes that are not in V0, and define E1, . . . , Em as follows.

1. Set Em = ∅ and U = ∅, where U is a temporary variable.
2. Define E1:

(a) Select an edge (v1, v2) ∈ E0
1 .

(b) Let E1 =
(
E0

1 \ {(v1, v2)}
)⋃

{(v1, u), (u, v), (v, v2)}.
(c) Let Em = Em ∪ {(v, v1), (v1, v2), (v2, u)} and U = U ∪ {v1, v2}.

3. Define Ei for 2 ≤ i ≤ m0:
(a) Select v2i−1, v2i /∈ U .
(b) Let Ei = E0

i ∪ {(u, v2i−1), (v, v2i)}.
(c) Let Em = Em ∪ {(v, v2i−1), (u, v2i)} and U = U ∪ {v2i−1, v2i}.

It is straightforward to show that |V | = n, |Ei| = (n− 1) (thus |E| = m(n− 1)),
G(V, Ei) is a connected graph, and Ei ∩ Ej = ∅ for all i, j ≤ m. This completes
the proof of the Lemma. Q.E.D.

Theorem 2. Given n, m, t with m = t+1, there exists a (t+1)-color connected
colored edge graph G(V, E, C, f) with |V | = n and |C| = m if and only if n ≥ 2m.

Proof. By Lemma 1, a (t + 1)-color connected colored edge graph G(V, E, C, f)
with |V | = n and |C| = m = t + 1 contains at least m(n− 1) edges. Meanwhile,
G(V, E, C, f) contains at most n(n − 1)/2 edges. Thus for n < 2m, we have
n(n − 1)/2 < m(n − 1). In another word, for n < 2m, there is no (t + 1)-color
connected colored edge graph G(V, E, C, f) with |V | = n and |C| = m = t + 1.
Now the theorem follows from Lemmas 1 and 2. Q.E.D.

4 Necessary Conditions for General Cases

First we note that for a colored edge graph G to be (t+1)-color connected, each
node must have a degree of at least t + 1. Thus the total degree of an n-node
graph should be at least n(t + 1). This implies the following lemma.

Lemma 3. For m ≥ t + 1 > 1, and a (t + 1)-color connected colored edge graph
G(V, E, C, f) with |V | = n, |E| = λ, and |C| = m, we have 2λ ≥ (t + 1)n.

In the following, we use cover free family concepts to study the necessary con-
ditions for colored edge graphs connectivity.
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Definition 2. Let X be a finite set with |X | = λ and F be a set of mutually
disjoint subsets of X with |F| = m. Then (X,F) is called a (λ, m)-partition of
X if X =

⋃
P∈F P . Let n, t be positive integers. An (λ, m)-partition (X,F) is

called a (t; n−1)-cover free family (or (t; n−1)-CFF(λ, m)) if, for any t elements
B1, . . . , Bt ∈ F , we have that∣∣∣∣∣X \

(
t⋃

i=1

Bi

)∣∣∣∣∣ ≥ n− 1

(
or

∣∣∣∣∣
t⋂

i=1

(X \Bi)

∣∣∣∣∣ ≥ n− 1

)

It should be noted that our above definition of cover-free family is different
from the generalized cover-free family definition for set systems in the liter-
ature. In [8], a set system (X,F) is called a (w, t; n − 1)-cover free family if
for any w blocks A1, . . . , Aw ∈ F and any t blocks B1, . . . , Bt ∈ F , one has∣∣(∩w

j=1Aj

)
\ (∪t

i=1Bi)
∣∣ ≥ n− 1. Specifically, there are two major differences be-

tween our (λ, m)-partition system and the set systems in the literature1.

1. For a set system (X,F), F may contain repeated elements.
2. For a set system (X,F), the elements in F are not necessarily mutually

disjoint.

It is straightforward to show that a colored edge graph G is (t + 1)-color
connected if and only if for any color set Ct ⊆ C of size t, after the removal of
edges in G with colors in Ct, G remains connected. Assume that G contains n
nodes. Then a necessary condition for connectivity is that G contains at least
n− 1 edges. From this discussion, we get the following lemma.

Lemma 4. For a colored edge graph G(V, E, C, f), with |V | = n, |E| = λ,
|C| = m, a necessary condition for G(V, E, C, f) to be (t + 1)-color connected
is that the (λ, m)-partition (X,F) is a (t; n − 1)-CFF(λ, m) with X = E and
F = {Ec : c ∈ C} where Ec = {e : f(e) = c, e ∈ E}.

In the following, we analyze lower bounds for the number λ of edges for the
existence of a (t; n − 1)-CFF(λ, m). For a set partition (X,F) and a positive
integer t, let

μ(X,F ; t) = min

{∣∣∣∣∣X \
(

t⋃
i=1

Bi

)∣∣∣∣∣ : B1, . . . , Bt ∈ F
}

It is straightforward to see that a (λ, m)-partition (X,F) is a (t; n−1)-CFF(λ, m)
if and only if μ(X,F ; t) ≥ n− 1.

Given positive integers λ, m, t, let

μ(λ, m; t) = max {μ(X,F ; t) : (X,F) is a (λ, m)-partition}

From the above discussion and Lemma 3, we have the following theorem.
1 The first author of this paper would like to thank Prof. Doug Stinson for pointing

this out to the author.
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Theorem 3. Let λ, m, t be given positive integers. μ(λ, m; t) ≥ n− 1 and 2λ ≥
(t + 1)n are necessary conditions for the existence of a (t + 1)-color connected
colored edge graph G(V, E, C, f), with |V | = n, |E| = λ, |C| = m.

Theorem 4. Let λ, m, t be given positive integers. Then we have

μ(λ, m; t) =
{

(m− t) · � λ
m� if t ≥ λ− � λ

m� ·m
(m− t) · � λ

m�+
(
λ− � λ

m� ·m− t
)

otherwise

Proof. For a given (λ, m)-partition (X,F), let B1, . . . , Bm be an enumeration
of elements in F such that |Bi| ≤ |Bi+1| for all i < m. It is straightforward to
show that μ(X,F ; t) =

∑m−t
i=1 |Bi|. Thus μ(λ, m; t) takes the maximum value if∑m−t

i=1 |Bi| is maximized. It is straightforward to show that this value is maxi-
mized when the (λ, m)-partition (X,F) satisfies the following conditions:

1. |Bi| = � λ
m� for i ≤ m−

(
λ− � λ

m� ·m
)
, and

2. |Bi| = � λ
m�+ 1 for m ≥ i > m−

(
λ− � λ

m� ·m
)
.

The theorem follows from the above discussion. Q.E.D.

Example 1. For n = 7, λ = 10, m = 5, and t = 2, we have μ(10, 5; 2) = 6 = n−1.
However, 2λ = 20 < (t + 1)n = 21. This shows that the condition 2λ ≥ (t + 1)n
in Theorem 3 is not redundant.

Example 2. There are no (t+1)-color connected colored edge graph G(V, E, C, f)
for the following special cases:

1. m = 2, t = 1, n = 3.
2. m = 4, t = 2, n = 4.
3. m = 3, t = 2, n ≤ 5.

Proof. Before we consider the specific cases, we observe that, when m and t are
fixed, the function μ is nondecreasing when λ increases.

1. In this case, the maximum value that λ could take is 3. Thus μ(3, 2; 1) =
1 < n − 1 = 2. That is, there is no (1; 2)-CFF(3, 2), which implies the claim.
Note that this result also follows from Theorem 2.

2. In this case, the maximum value that λ could take is 6. Thus μ(6, 4; 2) =
2 < n− 1 = 3.

3. We only show this for the case m = 3, t = 2, n = 5. In this case, the
maximum value that λ could take is 10. Thus μ(10, 3; 2) = 3 < n− 1 = 4. Note
that this result also follows from Theorem 2. Q.E.D

The following theorem is a variant of Theorem 3.

Theorem 5. For m − 1 > t > 0, a necessary condition for the existence of a
(t + 1)-color connected colored edge graph G(V, E, C, f) with |V | = n, |E| = λ,
and |C| = m is that 2λ ≥ (t + 1)n and the following conditions are satisfied:
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– If n = (m− t)k for some integer k > 0, then λ ≥ mk − 1.
– If n = (m− t)k + 1 for some integer k > 0, then λ ≥ mk.
– If n = (m− t)k + 2 for some integer k > 0, then λ ≥ mk + t + 1.
– · · · · · ·
– If n = (m− t)k + m− t− 1 for some integer k > 0, then λ ≥ mk + m− 2.

Proof. For m > t + 1, by Theorem 4, we have

μ(λ, m; t) =

⎧⎪⎪⎨⎪⎪⎩
(m− t)k′ if λ = mk′ + i for 0 ≤ i ≤ t
(m− t)k′ + 1 if λ = mk′ + t + 1
· · · · · ·
(m− t)k′ + m− t− 1 if λ = mk′ + m− 1

Thus the necessary condition μ(λ, m; t) ≥ n−1 in Theorem 3 can be interpreted
as the following conditions:

k′ ≥

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n−1
m−t if λ = mk′ + i for 0 ≤ i ≤ t
n−2
m−t if λ = mk′ + t + 1

· · · · · ·
n−m+t

m−t if λ = mk′ + m− 1

In aother word, for a (t + 1)-color connected colored edge graph G(V, E, C, f),
the following m− t conditions (the disjunction not conjunction) are satisfied:

– |V | = n, |E| ≥ m
⌈

n−1
m−t

⌉
, and |C| = m.

– |V | = n, |E| ≥ m
⌈

n−2
m−t

⌉
+ t + 1, and |C| = m.

– · · · · · ·
– |V | = n, |E| ≥ m

⌈
n−m+t

m−t

⌉
+ m− 1, and |C| = m.

By distinguishing the cases for n = (m − t)k, n = (m − t)k + 1, · · ·, and n =
(m− t)k +m− t−1, and by reorganizing above lines, these necessary conditions
can be interpreted as the following m− t conditions:

– n = (m− t)k and λ ≥ mk−1 for some k > 0. Note that this follows from the
last line of the above conditions (one can surely take other lines, but then
the value of λ would be larger). This comment applies to following cases
also.

– n = (m− t)k + 1 and λ ≥ mk for some k > 0.
– n = (m− t)k + 2 and λ ≥ mk + t + 1 for some k > 0.
– · · · · · ·
– n = (m− t)k + m− t− 1 and λ ≥ mk + m− 2 for some k > 0. Q.E.D.

5 Necessary and Sufficient Conditions for Practical Cases
(with Small m and t)

Generally we are interested in the question whether the necessary condition in
Theorems 3 and 5 are also sufficient. In the following, we show that this is true
for several important practical cases.
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Theorem 6. The necessary condition in Theorem 3 is sufficient for the case of
m = t + 1.

Proof. Since λ− � λ
m� ·m is the remainder of λ divided by m, we trivially have

t = m − 1 ≥ λ − � λ
m� · m. Now assume that m > n

2 . By Theorem 4, we have
μ(λ, m; t) = � λ

m� ≤ �n(n−1)
2m � < n− 1. The rest follows from Theorem 2. Q.E.D.

Before we show that the necessary conditions in Theorems 3 and 5 are sufficient
for the case of t = 1, we first present two lemmas whose proofs are straightfor-
ward.

Lemma 5. For n = m = λ ≥ 3 and t = 1, the following m-node circle graph is
(1 + 1)-color connected:

{(v1, v2), (v2, v3), . . . , (vm, v1)}

with f(vi, vi+1) = ci for i < m and f(vm, v1) = cm.

Lemma 6. For t = 1, m ≥ 3, and m < n ≤ 2m− 2, the (1 + 1)-color connected
graph in Figure 1 has the edges:

{(v1, v2), (v2, v3), . . . , (vm, v1)} ∪ {(vm, vm+1), (vm+1, vm+2), . . . , (vn, v1)}

and colors defined by the following map:

f(vi, vi+1) = ci for 1 ≤ i ≤ m− 1
f(vm, v1) = cm

f(vm+i−1, vm+i) = ci for 1 ≤ i ≤ n−m
f((vn, v1)) = cn−m+1

v

v1
v2

v3

v4

vm+1

m

Fig. 1. For Lemma 6

Before we show that the necessary condition in Theorem 3 is also sufficient for
the case of t = 1, we first prove this for m = 3.

Theorem 7. The necessary condition in Theorem 3 is sufficient for the case of
m = 3 and t = 1.

Proof. For m = 3 and t = 1, we have

μ(λ, m; t) =
{

2k′ if λ = 3k′ or λ = 3k′ + 1
2k′ + 1 if λ = 3k′ + 2
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By the condition μ(λ, m; t) ≥ n− 1, the necessary condition is converted to the
following conditions:

k′ ≥
{

n−1
2 if λ = 3k′ or λ = 3k′ + 1

n−2
2 if λ = 3k′ + 2

Thus in order to prove the theorem, it is sufficient to construct (1+1)-color con-
nected colored edge graph G(V, E, C, f) for each of the following two conditions:

– |V | = n, |E| = 3
⌈

n−1
2

⌉
, and |C| = 3.

– |V | = n, |E| = 3
⌈

n−2
2

⌉
+ 2, and |C| = 3.

By distinguishing the cases for n = 2k and n = 2k+1, it is sufficient to construct
the required colored edge graph for each of the following two conditions:

– n = 2k, λ = 3k − 1, and m = 3.
– n = 2k + 1, λ = 3k, and m = 3.

For the case of n = 2k, let

V = {v1, · · · , v2k},
E1 = {(v1, v2i) : 1 ≤ i < k}
E2 = {(v1, v2i+1) : 1 ≤ i < k} ∪ {(v1, v2k)}
E3 = {(v2i, v2i+1) : 1 ≤ i < k)} ∪ {(v2, v2k)}
E = E1 ∪ E2 ∪E3

For each e ∈ Ei (i ≤ 3), let f(e) = ci. Then it is straightforward to check that
the colored edge graph G(V, E, C, f) is (1 + 1)-color connected, |V | = n, and
|E| = 3k − 1.

For the case of n = 2k + 1, let

V = {v1, · · · , v2k+1},
E1 = {(v1, v2i) : 1 ≤ i ≤ k}
E2 = {(v1, v2i+1) : 1 ≤ i ≤ k}
E3 = {(v2i, v2i+1) : 1 ≤ i ≤ k)}
E = E1 ∪ E2 ∪ E3

For each e ∈ Ei (i ≤ 3), let f(e) = ci. Then it is straightforward to check that
the colored edge graph G(V, E, C, f) is (1 + 1)-color connected, |V | = n, and
|E| = 3k − 1, Q.E.D.

Corollary 1. For m = 3, t = 1, and n, λ > 0, there exists an (1 + 1)-color
connected colored edge graph G(V, E, C, f) with |V | = n and |E| = λ if and only
if λ ≥ min

{
3
⌈

n−1
2

⌉
, 3

⌈
n−2

2

⌉
+ 2

}
.

Now let us prove the theorem for the general case of t = 1.

Theorem 8. The necessary conditions in Theorems 3 and 5 are sufficient for
the case of t = 1.
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Proof. For the case of m = 2 and t = 1, it follows from Theorem 6. Now assume
that m > 2 and t = 1. In this special case, the necessary conditions in Theorem
5 is as follows:

– n = (m− 1)k and λ ≥ mk − 1 for some k > 0.
– n = (m− 1)k + 1 and λ ≥ mk for some k > 0.
– n = (m− 1)k + 2 and λ ≥ mk + 2 for some k > 0.
– · · · · · ·
– n = (m− 1)k + m− 2 and λ ≥ mk + m− 2 for some k > 0.

In the following we first show that the condition “n = (m−1)k+1 and λ ≥ km”
is sufficient. Let the graph in Figure 2a be defined as follows:

V = {v0, v1 · · · , v(m−1)k},
E1 = {(v0, v(m−1)i+1) : 0 ≤ i ≤ k − 1}
Ej = {(v(m−1)i+j−1, v(m−1)i+j) : 0 ≤ i ≤ k − 1} for 2 ≤ j ≤ m− 1
Em = {(v(m−1)i, v0) : 1 ≤ i ≤ k}
E = E1 ∪ E2 ∪ · · · ∪ Em

For each e ∈ Ej with i ≤ m, let f(e) = cj . Then it is straightforward to
check that the colored edge graph G(V, E, C, f) is (1+1)-color connected, |V | =
(m− 1)k + 1, and |E| = mk.

Now we show that the condition “n = (m − 1)k + j and λ ≥ km + j for
2 ≤ j ≤ m − 1” is sufficient. Let G(V, E, C, f) be the colored edge graph that
we have just constructed with |V | = (m− 1)k + 1, and |E| = mk.

Let V ′ = V ∪{v(m−1)k+1, . . . , v(m−1)k+j−1}. Define a new colored edge graph
G(V ′, E′, C, f ′) (see Figure 2b) by attaching the following edges to the m-node
circle {(v0, v1), (v1, v2), . . . , (vm−1, v0)}:

{(vm−1, v(m−1)k+1), (v(m−1)k+1, v(m−1)k+2), . . . , (v(m−1)k+j−1, v0)}

The colors for the new edges are defined by letting f ′(v(m−1)k+i, v(m−1)k+i+1) =
ci+1 for 0 ≤ i ≤ j − 2 and f ′(v(m−1)k+j−1, v0) = cj . It is straightforward to
check that G(V ′, E′, C, f ′) is (1 + 1)-color connected, |V | = (m − 1)k + j, and
|E| = mk + j. Q.E.D.

Corollary 2. For t = 1 and m, n, λ > 1, there exists an (1+1)-color connected
colored edge graph G(V, E, C, f) with |V | = n and |E| = λ if and only if

λ ≥ min
{

m

⌈
n− 1
m− 1

⌉
, m

⌈
n− 2
m− 1

⌉
+ 2, . . . , m

⌈
n−m + 1

m− 1

⌉
+ m− 1

}
.

Proof. It follows from the proof of Theorem 8. Q.E.D.

Theorem 9. The conditions in Theorems 3 and 5 are sufficient for the case of
m = 4, t = 2.

Proof. It is sufficient to show that both of the conditions “n = (m− t)k +1 and
λ ≥ km” and “n = (m−t)k+2 and λ ≥ mk+t+1” are sufficient (note that m = 4
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(a) n = (m − 1)k + 1, λ ≥ km
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...  ... ... ...

v0
v1

v

v
m−1 v
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(b) n = (m−1)k+ j, λ ≥ km+ j

Fig. 2. Figures for Theorem 8

and t = 2). In the following we first show that the condition “n = (m − t)k + 1
and λ ≥ km” is sufficient by induction on k.

For the case of k = 2, we have n = 5, λ = 8, m = 4, and t = 2. Let the graph
G1 in Figure 3a be defined as

G1 ={(v1, v2)1, (v2, v3)2, (v3, v4)1, (v4, v5)3, (v5, v1)2, (v1, v3)3, (v1, v4)4, (v2, v5)4}

where (v, v′)i means that the edge (v, v′) takes color ci. It is straightforward to
check that G1 is (2 + 1)-color connected.

For the case of k = 3, we have n = 7, λ = 12, m = 4, and t = 2. Let the graph
G2 in Figure 3b be defined as

{(v1, v2)1, (v2, v3)2, (v4, v5)3, (v5, v1)2, (v1, v3)3, (v1, v4)4,
(v2, v5)4, (v3, v6)1, (v6, v7)3, (v7, v4)1, (v4, v6)4, (v3, v7)2}

where (v, v′)i means that the edge (v, v′) takes color ci. It is straightforward to
check that G2 is (2 + 1)-color connected.

v5

v1

v2

v3 v4
(a) n = 5, m = 4, t = 2

v7

v1

v2

v3 v4

v5

v6
(b) n = 7, m = 4, t = 2

Fig. 3. Figures for Theorem 9

Now for k = 2r (r ≥ 2), we have n = (m− t)k +1 = 4r +1 and λ = km = 8r.
If we glue the v1 node of r copies of G1, we get a (t + 1)-color connected colored
graph G with n = 4r + 1 and λ = 8r. Thus the condition for the case of k = 2r
holds.
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For k = 2r+1 (r ≥ 2), we have n = (m−t)k+1 = 4r+3 and λ = km = 8r+4.
If we glue the v1 node of r− 1 copies of G1 and one copy of G2, we get a (t+1)-
color connected colored graph G with n = 4(r − 1) + 1 + 6 = 4r + 3 and
λ = 8(r − 1) + 12 = 8r + 4. Thus the condition for the case of k = 2r + 1 holds.
This completes the induction.

For the condition “n = (m − t)k + 2 and λ ≥ mk + t + 1”, one can add
one node to the graph for the case “n = (m − t)k + 1 and λ ≥ km” with 3
edges (with distinct colors) to any three nodes. The resulting graph meets the
requirements. Q.E.D.

Theorem 9 could be extended to the case of m = 5 and t = 3.

Theorem 10. The conditions in Theorems 3 and 5 are sufficient for the case
of m = 5 and t = 3.

Proof. It is sufficient to show that both of the conditions “n = (m− t)k +1 and
λ ≥ km” and “n = (m − t)k + 2 and λ ≥ mk + t + 1” are sufficient (note that
m − t = 2). In the following we first show that the condition “n = 2k + 1 and
λ ≥ km” is sufficient by induction on k and m.

For m = 5 and k = 2, we have n = 5, λ = 10. The graph in Figure 4a shows
that the condition is sufficient also. For the case of k = 3, we have n = 7, λ = 15.
The graph in Figure 4b shows that the condition is sufficient also.

v5

v1

v2

v3 v4
(a) n = 5, m = 5, t = 3

v7

v1

v3 v4

v2 v5

v6
(b) n = 7, m = 5, t = 3

Fig. 4. Figures for Theorem 10

For k = 2r (r ≥ 2), the condition becomes n = (m − t)k + 1 = 4r + 1 and
λ = km = 10r. If we glue the v1 node of r copies of G5,1, we get a (t + 1)-color
connected colored graph G with n = 4r + 1 and λ = 10r. Thus the condition for
the case of k = 2r holds.

For k = 2r + 1 (r ≥ 2), the condition becomes n = (m− t)k + 1 = 4r + 3 and
λ = km = 10r + 5. If we glue the v1 node of r− 1 copies of G5,1 and one copy of
G5,2, we get a (t+1)-color connected colored graph G with n = 4(r−1)+1+6 =
4r + 3 and λ = 10(r − 1) + 15 = 10r + 5. Thus the condition for the case of
k = 2r + 1 holds. This completes the induction.

For the condition “n = (m− t)k + 2 and λ ≥ mk + t + 1”, we have n = 2k + 2
and λ ≥ 5k+4. We can add one node to the graph for the case “n = (m− t)k+1
and λ ≥ km” with 4 edges (with distinct colors) to any four nodes. The resulting
graph meets the requirements. Q.E.D.
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Open Questions: We showed in this section that the conditions in Theorems
3 and 5 are sufficient for practical cases. It would be interesting to show that
these conditions are also sufficient for general cases. We leave this as an open
question.

6 Hardness Results

We have given necessary and sufficient conditions for (t + 1)-color connected
colored edge graphs. Sometimes, it is also important to determine whether a
given graph is (t + 1)-color connected. Unfortunately, the following Theorem
shows that the problem ceConnect is coNP-complete. The ceConnect problem
is defined as follows.

INSTANCE: A colored edge graph G = G(V, E, C, f), two nodes A, B ∈ V , and
a positive integer t ≤ |C|.
QUESTION: Are A and B t-color connected?

Before we prove the hardness result, we first introduce the concept of color
separator. For a colored edge graph G = G(V, E, C, f), a color separator for two
nodes A and B of the graph G is a color set C′ ⊆ C such that the removal
of all edges with colors in C′ from the graph G will disconnect A and B. It is
straightforward to observe that A and B are (t + 1)-color connected if and only
there is no t-size color separator for A and B.

Theorem 11. The problem ceConnect is coNP-complete.

Proof. It is straightforward to show that the problem is in coNP. Thus it is
sufficient to show that it is coNP-hard. The reduction is from the Vertex Cover
problem. The VC problem is as follows (definition taken from [6]):

INSTANCE: A graph G = (V, E) and a positive integer t ≤ |V |.
QUESTION: Is there a vertex cover of size t or less for G, that is, a subset
V ′ ⊆ V such that |V ′| ≤ t and, for each edge (u, v) ∈ E, at least one of u and v
belongs to V ′?

For a given instance G = (V, E) of VC, we construct a colored edge graph
Gc = (Vc, Ec, f, C) as follows. First assume that the vertex set V is ordered as
in V = {v1, . . . , vn}. Let

Vc = {A, B}
⋃{

e(vi,vj) : (vi, vj) ∈ E and i < j
}

Ec =
{
(A, e(vi,vj)), (e(vi,vj), B) : (vi, vj) ∈ E

}
C = {cv : v ∈ V }
f =

{
f(A, e(vi,vj)) = cvi , f(e(vi,vj), B) = cvj : (vi, vj) ∈ E, i < j

}
In the following, we show that there is a vertex cover of size t in G if and only
if there is a t-color edge separator for Gc.

Without loss of generality, assume that V ′ = {v′1, . . . , v′k} is a vertex cover
for G. Then it is straightforward to show that C′ = {cv′

i
: v′i ∈ V ′} is a color

separator for Gc since each incoming path for B in Gc contains two colors cor-
responding to one edge (vi, vj) in G.
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For the other direction, assume that C′ = {cv′
i

: i = 1, . . . , t} is a t-color
separator for Gc. Let V ′ = {v′i : cv′

i
∈ C′}. By the fact that C′ is a color

separator for Gc, for each edge (vi, vj) ∈ E in G, the path (A, e(vi,vj), B) in Gc

contains at least one color from C′. Since this path contains only two colors cvi

and cvj , we know that vi or vj or both belong to V ′. In another word, V ′ is a
t-size vertex cover for G. This completes the proof of the Theorem. Q.E.D.

7 Disjunct Systems

We conclude our paper with some observations on the relationship between dis-
junct system and cover free families.

Incidence matrix is usually used to describe set systems. Let (X,F) be a
(λ, m)-partition of X with X = {x1, . . . , xλ} and F = {B1, . . . , Bm}. Then the
incidence matrix of (X,F) is the λ ×m matrix (ai,j) where ai,j = 1 if xi ∈ Bj

and ai,j = 0 otherwise. If A is an incidence matrix of a set system, then AT

(the transpose of A) is an extended incidence matrix of a disjunct system. Note
that by extended incidence matrix, we mean that, after consolidating repeated
columns of the matrix we get the incident matrix of a disjunct system.

Definition 3. Let Y be a set of m elements, and B be a set of λ subsets of Y .
Then the set system (Y,B) is called a (t; n − 1)-disjunct system (or (t; n − 1)-
DS(m, λ)) if for any P ⊆ Y such that |P | ≤ t, there exist at least n − 1 blocks
B ∈ B such that P ∩B = ∅.

Theorem 12. 1. If there exists a (t; n − 1)-CFF(λ, m) then there exists a
(t; n′ − 1)-DS(m, λ′) for some 1 < n′ ≤ n and λ′ ≤ λ.

2. If there exists a (t; n−1)-DS(m, λ), then there exists a (t; n−1)-CFF(λ′, m)
for some 0 < λ′ ≤ λ.

Proof. Assume that (X,F) is a (t; n− 1)-CFF(λ, m) with incidence matrix A.
Let Y = F and B = {[x] : x ∈ X} where [x] = {P : x ∈ P and P ∈ F}.
In the following, we show that (Y,B) is a (t; n′ − 1)-DS(m, λ′) with extended
incidence matrix AT for some 1 < n′ ≤ n and λ′ ≤ λ. By the fact that (X,F)
is a (t; n − 1)-CFF(λ, m), for any P = {B1, . . . , Bt} ⊆ Y , there exist distinct
x1, . . . , xn−1 ∈ X \ (∪t

i=1Bi). That is, for any i ≤ n − 1 and j ≤ t, we have
xi /∈ Bj which means Bj /∈ [xi]. Thus P ∩ [xi] = ∅ for all i ≤ n−1. Note that for
i �= j, we may have [xi] = [xj ]. Thus the above arguments only guarantee that
there exists n′ > 1 such that (Y,B) is a (t; n′ − 1)-DS(m, λ′).

For the other direction, assume that (Y,B) is a (t; n − 1)-DS(m, λ) with in-
cidence matrix A. Let X = B and F = {[y] : y ∈ Y } where [y] = {P :
y ∈ P and P ∈ B}. In the following, we show that (X,F) is a (t, n − 1)-
CFF(λ, m) with incidence matrix AT . For any t blocks [y1], . . . , [yt] ∈ F , let
P = {y1, . . . , yt}. By the fact that (Y,B) is a (t, n − 1)-DS(m, λ), there exist
distinct blocks B1, . . . , Bn−1 ∈ B such that P ∩ Bi = ∅. That is, for each i ≤ t
and j ≤ n− 1, we have yi /∈ Bj which means Bj /∈ [yi]. Thus {B1, . . . , Bn−1} ∈
X \ (∪t

i=1[yt]). It follows that (X,F) is a (t, n− 1)-CFF(λ, m). Q.E.D.
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Abstract. Some key results about information theoretic secrecy will be
surveyed, both for scenarios without and with public communication.
Attention is focused on fundamental limits, and on the underlying proof
techniques. This talk is based on the chapter on information theoretic
security of the book [5].

Keywords: Common randomness, correlated sources, memoryless chan-
nel, extractor, privacy amplification, public discussion, secrecy capacity,
security index.

1 Introduction

Following Shannon [13] though not directly his terminology, a random variable
(RV) K with range K = {1, . . . , k} represents log2 k secret bits within threshold
ε ≥ 0, secret from an adversary whose knowledge is represented by a RV Z, if
the security index

S(K|Z) = log2 k −H(K) + I(K ∧ Z) = log2 k −H(K|Z)

does not exceed ε. A RV with small security index is a good encryption key:
If a K-valued message M , independent of (K, Z), is encrypted as C = M + K
(mod k), the amount of information available about M to a cryptanalyst knowing
Z and the cryptogram C is bounded as I(M ∧ C, Z) ≤ S(K|Z). In particular,
perfect secrecy is guaranteed if S(K|Z) = 0.

We shall consider models involving sequences of RVs of length n → ∞, and
address the problem of secrecy capacity, the asymptotically largest rate 1

n log2 kn

at which two or more parties can obtain secret bits within threshold εn. In early
works only εn/n → 0 was required. Maurer [11] argued for requiring εn → 0.
Under general conditions, the weak and strong security requirements lead to
the same secrecy capacity [12], and so does the still stronger one that εn → 0
exponentially fast [5].
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2 Some Important Models

Wyner [14] recognized that secure transmission over an insecure channel does
not necessarily need encryption. His wiretap channel consists of two DMCs with
common input, and reliable transmission of messages to the receiver at output
1 is required, keeping them secret from the other receiver. Secrecy capacity was
determined under a degradedness condition on the channels. The more general
broadcast channel with confidential messages [4] models scenarios where, in addi-
tion to confidential messages to receiver 1, common messages have to be reliably
sent to both receivers, and there are also messages of a third kind merely reqired
to be decodable at output 1. The region of achievable rate triples for this model,
for any pair of underlying DMCs, was determined in [4]. Recently, that result
was generalized to so-called cognitive interference channels [9].

Another kind of models [3], [10] addresses generating a secret key for two or
more parties with the help of (restricted or unrestricted) public discussion over a
noiseless channel, using as main resource either correlated sources or a DMC with
multiple outputs. In source models, the parties (and the eavesdropper) observe
outputs of one component source, each; in channel models one party controls
the DMC inputs, the others observe one output, each. The eavesdropper has
full access to the public communication of the parties but (in models reviewed
here) she cannot interfere with it. For two-party models (of both kinds), secrecy
capacity has been determined under some conditions [10], [1], but remains un-
known in general. The mathematically simpler case when the eavesdropper lacks
private knowledge has been solved for both kinds of models and any number of
parties [6], [7]. Recent progress on the general problem, including multi-party
models, has been reported in [8].

3 Proof Techniques

Achievability results (lower bounds to secrecy capacity) are typically proved con-
sidering protocols of the following kind. First, non-secret common randomness
(CR) is generated for the involved parties, using standard techniqes of multiuser
information theory, such as random binning and superposition coding. Then pri-
vacy amplification is employed, which means taking a suitable function of the
CR which maps this CR into a RV K that has range {1, . . . , kn}, kn as desired,
such that K has small security index relative to the eavesdropper’s knowledge.
The existence of such function, called (deterministic) extractor, can be proved
via random selection [2]. Instead of deterministic extractors, seeded extractors
can also be used [12].

Converse results (upper bounds to secrecy capacity) are typically proved by
judicious manipulations of information measures, a technique standard in infor-
mation theory, though sometimes tedious. One identity of [4] has turned out
remarkably useful in this context.
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tive Interference Channels With and Without Secrecy. IEEE Trans. Inform. The-
ory 55, 619–694 (2009)

10. Maurer, U.M.: Secret Key Agreement by Public Discussion from Common Infor-
mation. IEEE Trans. Inform. Theory 39, 733–743 (1993)

11. Maurer, U.M.: The Strong Secret Key of Discrete Random Triples. In: Blahut, R.E.,
Costello, J., Maurer, U., Mittelholzer, T. (eds.) Communication and Cryptography
- Two Sides of One Tapestry, pp. 271–285. Kluwer, Dordrecht (1994)

12. Maurer, U.M., Wolf, S.: Information-Theoretic Key Agreement: From Weak to
Strong Secrecy for Free. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 351–368. Springer, Heidelberg (2000)

13. Shannon, C.E.: Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 28,
656–715 (1949)

14. Wyner, A.D.: The Wiretap Channel. Bell Syst. Tech. J. 54, 1355–1387 (1975)



Common Randomness and Secret Key

Capacities of Two-Way Channels

Hadi Ahmadi and Reihaneh Safavi-Naini

Department of Computer Science, University of Calgary, Canada
{hahmadi,rei}@ucalgary.ca

Abstract. Common Randomness Generation (CRG) and Secret Key
Establishment (SKE) are fundamental primitives in information theory
and cryptography. We study these two problems over the two-way com-
munication channel model, introduced by Shannon. In this model, the
common randomness (CK) capacity is defined as the maximum number
of random bits per channel use that the two parties can generate. The
secret key (SK) capacity is defined similarly when the random bits are
also required to be secure against a passive adversary. We provide lower
bounds on the two capacities. These lower bounds are tighter than those
one might derive based on the previously known results. We prove our
lower bounds by proposing a two-round, two-level coding construction
over the two-way channel. We show that the lower bound on the com-
mon randomness capacity can also be achieved using a simple interactive
channel coding (ICC) method. We furthermore provide upper bounds on
these capacities and show that the lower and the upper bounds coincide
when the two-way channel consists of two independent (physically de-
graded) one-way channels. We apply the results to the case where the
channels are binary symmetric.

Keywords: Two-way channel, wiretap channel, common randomness
capacity, secret key capacity.

1 Introduction

The two-way discrete memoryless channel (TWDMC) setup was initially pro-
posed as a communication model by Shannon [23], where he studied the problem
of reliable message transmission (RMT) between two parties, here referred to
as Alice and Bob. Shannon’s work brought about the foundation of multi-user
information theory and attracted much attention in theory and practice. The
TWDMC setup is a general two-party communication model, where in each
communication round both parties, simultaneously, provide inputs to the chan-
nel, and receive their corresponding outputs as (possibly probabilistic) functions
of the two inputs. In each channel use, a TWDMC receives the inputs XA and
XB from Alice and Bob and returns to them the outputs YA and YB, respec-
tively. The channel is specified by the conditional distribution PYA,YB |XA,XB

. In
Reliable Message Transmission (RMT) using a TWDMC, Alice and Bob want
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to reliably send messages to each other. The reliable message (RM) rate RAB

from Alice to Bob is achievable if Alice can send nRAB bits of message reliably
to Bob in n channel uses; in analogy, an achievable RM rate RBA from Bob to
Alice is defined. Accordingly, a pair (RAB , RBA) is achievable if the two rates
can be achieved using the TWDMC at the same time. The RM capacity region
is the set of all achievable pairs. An extension of RMT in the above setup when
the two-way channel leaks information to a passive adversary, Eve, is called se-
cure message transmission (SMT) over a two-way discrete memoryless wiretap
channel (TWDMWC) [26]. The secure message (SM) capacity region for this
problem is defined analogously to that of RMT, except that the messages are
required to be both reliable and secure.

This paper considers two other well-studied problems, for the first time, in the
above setups. The first problem is common randomness generation (CRG) over
a TWDMC, where Alice and Bob aim at calculating a shared random variable.
The common randomness (CR) rate Rcr is called achievable if the parties can
generate nRcr shared random bits in n channel uses, and the CR capacity is
the highest achievable CR rate. The second problem is secret key establishment
(SKE) over a TWDMWC, where Alice and Bob aim at calculating a shared
random variable that is unknown to the adversary, Eve. This problem can be
seen as an extension of CRG when the two-way channel leaks information to
Eve and the parties want their shared randomness to be secure from her. The
Secret Key (SK) capacity is defined similarly to the CR capacity with the extra
requirement that the randomness must satisfy reliability and security, both. This
immediately induces the following question.

Question 1. What is the CR/SK capacity of a two-way channel?

We remark that the two problems of RMT and CRG over TWDMCs are dif-
ferent in general: An RMT protocol is used to deliver given messages reliably
to their destinations, while a CRG protocol produces shared randomness. How-
ever, when the parties have free access to independent sources of randomness
(also assumed in this paper), any RMT protocol can be used to achieve CRG,
by Alice and Bob generating their random variables and sending them to each
other reliably. A similar argument holds to relate SMT and SKE. As a conse-
quence, an achievable pair (RAB, RBA) for RMT/SMT results in an achievable
rate RAB + RBA for CRG/SKE. This leads to the following natural question.

Question 2. Can the CR/SK capacity be obtained from the RM/SM capacity
region by maximizing RAB + RBA over all choices of (RAB, RBA)?

Certainly, this maximization suggests a lower bound on the CR/SK capacity;
nevertheless, this trivial lower bound may not be tight since the shared random-
ness could also be generated as a result of interaction between the two parties.

1.1 Our Work

We give general descriptions of multi-round CRG and SKE protocols in the
above setups and formally define the CR and the SK capacities. We first use
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the previous results on RMT and SMT, esp., those in [23, 26], to derive “trivial
lower bounds” on the CR and the SK capacities. Next, we prove that the trivial
bounds cannot be tight by giving a two-way channel example, where one bit of
common randomness (or secret key) per channel use is achievable while the trivial
bound is zero. We prove better lower bounds on the capacities by a two-round
construction that uses a two-level coding method, i.e., applying two sequential
encoding functions to a message. We also prove that the lower bound on the CR
capacity can be achieved using the two-round, but one-level, interactive channel
coding (ICC) method introduced in [5].

We also prove upper bounds on the capacities. We show that the two bounds
on the CR capacity coincide if the two-way channel consists of two independent
one-way channels in both directions, and the two bounds on the SK capacity co-
incide if these one-way (wiretap) channels are “physically degraded”. The bounds
proved in this paper are expressed by single-letter formulas, i.e., they can easily
be derived from the channel probability distribution.

1.2 Related Work

We first provide a selected summary of the literature on reliable/secure message
transmission as related problems, and then discuss the work in the area of CRG
and SKE. The systematic study of reliable message transmission over noisy chan-
nels is due to Shannon [22]. The problem has since been extended to many other
communication setups; see, e.g., [12]. In [23], Shannon introduced the two-way
channel setup as a general two-party communication model, and proved inner
and outer bounds on the RM capacity region. In general, an inner bound con-
tains a subset of the achievable pairs of RM rates (RAB, RBA), whereas an outer
bound is a superset of the set of all these pairs. The bounds in [23] were later
improved in [14, 28]; yet, due to the gap between the two bounds, finding the
capacity region in this setup is an open problem.

Transmission of secure messages over noisy channels was first considered by
Wyner [27]. SMT over special cases of two-way wiretap channels was investigated
by Tekin and Yener [25, 26], where inner bounds on the SM capacity region
were derived. The bounds were improved in [15, 13, 19] using feedback and key
exchange mechanisms as techniques to increase achievable rates.

The problem of common randomness generation (CRG) has been studied in
various setups, e.g., CRG over noiseless channels using correlated randomness [2]
or CRG over noisy channels [24], where the authors derived expressions for the
CR capacity. Determining the CR capacity is important due to the role of com-
mon randomness in building two-party randomized protocols that, compared to
deterministic protocols, have higher computation and communication efficien-
cies. Examples of such applications appear in random coding over arbitrarily
varying channels (AVC) [10], identification over noisy channels [3], and oblivious
transfer and bit commitment schemes [21].

The CRG problem when the communication is over a hostile environment
turns into the fundamental problem of secret key establishment (SKE) in cryp-
tography: Alice and Bob want to share a common key about which an adversary,
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Eve, should be uncertain. The problem has been studied in numerous setups in-
cluding noiseless public channels and noisy broadcast channels. The results on
“secure transmission” over one-way wiretap channels [27,9] imply the possibility
of SKE when Eve’s wiretapping channel is noisier than the channel between Alice
and Bob. Maurer [17], concurrently with Ahlswede and Csiszár [1], showed that
by assuming an additional two-way noiseless public discussion channel SKE may
be possible even when Eve’s wiretapping channel is less noisy. Noiseless chan-
nels in practice are realized from physical noisy channels using error correcting
codes. Noting that this approach does not always lead to the highest achievable
secret key rates, recent work studied SKE in setups that replace the above pub-
lic discussion channel with other resources, e.g., a wiretap noisy channel in the
opposite direction [4] or correlated sources of randomness [16, 20].

1.3 Discussion

The two-way (wiretap) channel setup naturally captures a communication envi-
ronment between two parties with no prior correlated information. The channel
combines the inputs that the two parties provide and returns to each of them a
noisy version of this combination; it may also leak a noisy version to an eaves-
dropper in the environment. Examples of such a communication scenario are
mobile ad hoc networks and wireless sensor networks. We note that noiseless
public channel, one-way wiretap channel, or a pair of independent wiretap chan-
nels, studied in [24, 17, 9], are special cases of the general two-way (wiretap)
channel setup. None of these settings, however, can model combination of two
inputs that are transmitted simultaneously over the channel.

To prove lower bounds on the CR/SK capacities, we use random coding ar-
guments that only show the existence of CRG/SKE constructions, which can
achieve the lower bounds. One can, however, design practical constructions by
using concrete primitives in the CRG/SKE protocols, proposed in this paper. An
example of such approaches to construct concrete protocols is the work in [7] that
proposes a practical wireless key establishment scheme based on the theoretical
results of [27, 17].

1.4 Notation

We use calligraphic letters (X ), uppercase letters (X), and lowercase letters (x)
to denote finite alphabets, random variables (RVs), and their realizations over
sets, respectively. Xn = (X1, X2, . . . , Xn) ∈ Xn denotes a random sequence
of length n (n-sequence) in Xn. To save space, we may use bold X and x to
denote a random sequence and its realization. For the RVs X , Y , and Z, we use
X ↔ Y ↔ Z to denote a Markov chain. ‘||’ denotes concatenation of sequences.
For a value x, we use [x]+ to show max{0, x} and, for 0 ≤ p ≤ 1, h(p) =
−p log p− (1 − p) log(1 − p) denotes the binary entropy function. Hereafter, we
use the terms CRG and SKE specifically for the two-way (wiretap) channel setup.
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1.5 Paper Organization

Section 2 describes the two-way channel model, related problems, and current
results. Section 3 summarizes our main results in the paper, including lower
and upper bounds and their coincidence. In Section 4, we briefly present our
CRG and SKE constructions that achieve the lower bounds on the CR and the
SK capacities. Section 5 applies the lower bound results to the case of two-way
binary channels. We conclude the paper in Section 6.

2 Model and Definitions

2.1 CRG in the TWDMC Setup

Alice and Bob are connected by a Two-Way Discrete Memoryless Channel
(TWDMC) that is denoted by (XA, XB) → (YA, YB) and specified by the con-
ditional distribution PYA,YB |XA,XB

over the finite sets XA, XB , YA, YB (see Fig.
1). We assume each party has free access to an independent random source.

XA

BobAlice
XB

TWDMC

YA YBBABA XXYYP |

Fig. 1. Two-way discrete memoryless channel (TWDMC)

In general, a CRG protocol in the TWDMC setup consists of a certain number
of communication rounds, denoted by t. In each round, 1 ≤ r ≤ t, Alice and
Bob send the nr-sequences X:r

A and X:r
B , and receive the nr-sequences Y:r

A and
Y:r

B , respectively. The sequence X:r
A (resp. X:r

B), for round r, is determined as
a function of some independent, local randomness and the view of Alice (resp.
Bob) at the end of round r− 1, denoted by V :r−1

A (resp. V :r−1
B ). View of a party

consists of the set of their communicated (sent and received) sequences, i.e.,

V :r−1
A = ||r−1

i=1

(
X:i

A||Y:i
A

)
, V :r−1

B = ||r−1
i=1

(
X:i

B ||Y:i
B

)
. (1)

Eventually, Alice uses V :t
A to calculate SA ∈ S and Bob uses V :t

B to calculate
SB ∈ S. The total number of channel uses is calculated as

n =
t∑

r=1

nr. (2)

Definition 1. For Rcr ≥ 0 and 0 ≤ δ ≤ 1, the CRG protocol Π in the TWDMC
setup is (Rcr, δ)-reliable if there exists an RV S ∈ S such that

H(S)
n

> Rcr − δ, (3)

Pr(SA = SB = S) > 1− δ. (4)



Common Randomness and Secret Key Capacities of Two-Way Channels 81

Definition 2. The common randomness (CR) rate Rcr ≥ 0 is achievable if, for
an arbitrarily small δ > 0, there exists an (Rcr, δ)-reliable CRG protocol. The
CR capacity, CTWDMC

cr , is the highest achievable CR rate.

2.2 SKE in the TWDMWC Setup

As indicated in Fig. 2, Alice and Bob are connected by the Two-Way Discrete
Memoryless Wiretap Channel (TWDMWC) (XA, XB) → (YA, YB, Z) that re-
ceives inputs from Alice and Bob and returns outputs to Alice, Bob, and the
adversary, Eve, respectively. The channel is specified by the conditional distri-
bution PYA,YB ,Z|XA,XB

over the finite sets XA,XB,YA,YB,Z. Again, the parties
have free access to independent sources.

TWDMWC
XA

BobAlice
XB

YA YB
BABA XXZYYP |

Z
Eve

Fig. 2. Two-way discrete memoryless wiretap channel (TWDMWC)

A general t-round SKE protocol in this setup is described analogously to a
general CRG protocol except that, in each round r, Eve receives an nr-sequence
Z:r and her view at the end of this round is written as

V :r
E = ||ri=1Z

:i. (5)

Eve’s view at the end of the protocol is V iewE = V :t
E .

Definition 3. For Rsk≥0 and 0≤δ≤1, the SKE protocol Π in the TWDMWC
setup is (Rsk, δ)-secure if there exists an RV S ∈ S such that

H(S)
n

> Rsk − δ, (6)

Pr(SA = SB = S) > 1− δ, (7)
H(S|V iewE)

H(S)
> 1− δ. (8)

Definition 4. The secret key (SK) rate Rsk ≥ 0 is achievable if, for an arbitrar-
ily small δ > 0, there exists an (Rsk, δ)-secure SKE protocol. The SK capacity,
CTWDMWC

sk , is the highest achievable SK rate.

Remark 1. The above definition of SK capacity follows those in [27, 9, 17, 16].
This definition is referred to as the weak SK capacity as it requires Eve’s un-
certainty rate about the secret key (8) to be negligible, whereas the “strong”
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SK capacity [18] requires Eve’s total uncertainty to be negligible, i.e., requiring
H(S|V iewE) > H(S) − δ. It is shown [18] that, for the setups in [27, 9, 17],
the weak definition can be replaced by the strong definition without sacrificing
the SK capacity. This result can also be extended to the TWDMBC setup by
modifying the proof in [18]. This is left as future work.

2.3 Known Results on Two-Way Channels

Shannon’s work [23] on reliable message transmission (RMT) over TWDMCs
proved the following inner bound, GI , and outer bound, GO, on the RM capacity
region of the channel (XA, XB) → (YA, YB). Letting P = PXA,XB ,YA,YB ,

R(P ) = {(RAB, RBA) : RAB ≤ I(XA; YB|XB), RBA ≤ I(XB; YA|XA)},
GI =

⋃
PXA,XB

=PXA
.PXB

R(P ), GO =
⋃

PXA,XB

R(P ), (9)

where, by ∪, we mean the convex closure of the union of R(P )’s. The bound on
RAB (if maximized w.r.t. PXA,XB ) somehow reflects the capacity of the one-way
channel XA → YB from Alice to Bob when XB is known to Bob; similarly, one
can interpret the bound on RBA. The two inner and outer bounds in (9) have
been later discussed and slightly improved e.g., in [28, 11, 14].

Tekin and Yener [25, 26] considered secure message transmission (SMT) over
Gaussian and binary two-way wiretap channels, and proved the following inner
bound on the SM capacity region. Letting P = PXA,XB ,YA,YB ,Z ,

Gs,I =
⋃

PXA,XB
=PXA

.PXB

Rs(P ), where Rs(P ) = { (Rs,AB , Rs,BA) s.t.

Rs,AB ≤ [I(XA; YB|XB) − I(XA; Z)]+, Rs,BA ≤ [I(XB ; YA|XA) − I(XB; Z)]+, and

Rs,AB + Rs,BA ≤ [I(XA; YB|XB) + I(XB ; YA|XA) − I(XA, XB ; Z)]+ }. (10)

The bound on Rs,AB (if maximized w.r.t. PXA,XB ) shows the SM capacity of the
channel XA → (YA, Z) when XB is known to Bob; similar is the bound on RBA.
The inner bound (10) has been improved in [15,13,19] using techniques such as
feedback and key exchange mechanisms in addition to cooperative jamming.

2.4 Two-Way Channels with Independent Components

A special class of TWDMCs includes those which consist of two independent
DMCs in the two directions, i.e.,

PYA,YB |XA,XB
= PYB |XA

.PYA|XB
.

We refer to this class as 2DMC. The CRG problem in this setup when Alice
and Bob have “limited” access to independent sources of randomness has been
considered in [24], where a single letter formula for the capacity was determined.
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Likewise, 2DMWCs refer to a class of TWDMWCs that consist of two inde-
pendent DMWCs in opposite directions: A TWDMWC (XA, XB) → (YA, YB, Z)
is a 2DMWC when

Z = (Z1, Z2), and PYA,YB ,Z|XA,XB
= PYB ,Z1|XA

.PYA,Z2|XB
.

The SKE problem in this setup has been recently studied in [4], where lower and
upper bounds on the SK capacity were provided and were shown to coincide
when each DMWC is physically degraded. Informally, in a physically degraded
DMWC, one of the receivers always receives a noisy version (though a noisy
channel) of what the other receiver receives. This can be modeled using a Markov
chain. e.g., the Markov chain X ↔ Y ↔ Z indicates a degraded channel where
Y is a noisy version of the input X and Z (as a noisy version of Y ) is a noisier
version of X . This Markov chain implies I(X ; Z|Y ) = 0.

Definition 5. The DMWC X → (Y, Z) is called obversely degraded if X ↔
Y ↔ Z forms a Markov chain. It is called reversely degraded if X ↔ Z ↔ Y
forms a Markov chain. The DMWC is called physically degraded if we can write
X = [XO, XR], Y = [YO, YR], and Z = [ZO, ZR], such that

ZO ↔ YO ↔ XO ↔ XR ↔ ZR ↔ YR.

In this paper, we verify our results on SKE in the TWDMWC setup by sim-
plifying them for the case of 2DMWCs with degraded components and seeing
whether our results are consistent with the results in [4]. Here, we only consider
obversely degraded channels; nonetheless, the results of this verification can be
easily extended to the general physically degraded DMWCs, as defined above.

3 Statement of the Main Results

3.1 Trivial Lower Bounds and a TWDMC Example

From (9) and (10), we can derive trivial lower bounds on the CR and the SK
capacities, respectively. Again, note that if (RAB, RBA) is an achievable RM/SM
rate, then RAB + RBA is an achievable CR/SK rate. As a consequence, the two
following expressions respectively give trivial lower bounds on the CR capacity,
CTWDMC

cr , and the SK capacity, CTWDMWC
sk .

CTWDMC
cr ≥ max

PXA,XB
=PXA

.PXB

[I(XA; YB|XB) + I(XB; YA|XA)], (11)

CTWDMWC
sk ≥ max

PXA,XB
=PXA

.PXB

[[I(XA; YB|XB)− I(XA; Z)]+

+ [I(XB ; YA|XA)− I(XB ; Z)]+]. (12)

One may ask whether the above trivial lower bounds cannot be improved or,
more generally, whether the RM/SM capacity region specifies a tight lower bound
on the CR/SK capacity, by maximizing RAB +RBA over all choices of achievable
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pairs. We give a negative answer to this question using the following simple
example. Consider the TWDMC shown in Fig. 3 which is a modified version
of Shannon’s modulo-two additive two-way channel example [23, Fig. 4], where
there exists a binary symmetric channel (BSC) with bit error probability 1

2 , right
after the XOR operand. In this example, the channel outputs are independent
of the inputs; hence, little chance of reliable message transmission. This implies
that no pair of rates except (RAB = 0, RBA = 0) is achievable; in this case, the
inner bound in (9) is tight and represents the capacity region.

XA

BobAlice
XB

BSC Bob
YA YB

BSC0.5

Fig. 3. A TWDMC example

Using (11), which is obtained from (9), we derive a “zero” lower bound on
the CR capacity. However, this lower bound is not tight since Alice and Bob
can share one random bit (YA = YB) each time they use the channel. The key
observation is that the common randomness is a function of channel noise and
the parties’ inputs, and it does not need to be selected a priori by the parties.
Since RMT and CRG in TWDMC are viewed respectively as special cases of
SMT and SKE in TWDMWC, the above example also lets us conclude that
the SM capacity region of a TWDMWC does not necessarily give a tight lower
bound on the SK capacity in general.

3.2 Common Randomness Capacity

We provide lower and upper bounds on the CR capacity in the TWDMC setup,
present give our informal interpretation of the expressions. Let the RVs XA, YA,
XB, and YB correspond to the channel probability distribution PYA,YB |XA,XB

.
Let UA and UB be RVs from arbitrary sets UA and UB that satisfy the Markov
chain

UA ↔ (XA, YA) ↔ (XB, YB) ↔ UB.

Theorem 1. The CR capacity in the TWDMC setup is lower bounded as

CTWDMC
cr ≥ max

n1,n2,PUA,XA
PUB ,XB

[

n1[I(UA;XB ,YB)+I(UB ;XA,YA|UA)]+n2[I(XA;YB ,XB)+I(XB;YA,XA)]
n1+n2

, (13)

s.t. PXA,XB = PXA .PXB , (14)

n1I(UA; XA, YA|XB , YB) < n2I(XA; XB , YB), (15)

n1I(UB; XB , YB|XA, YA) < n2I(XB; XA, YA)]. (16)

Proof. See Section 4.1 and [6, Appendix A].
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Remark 2. Since XA and XB are independent, the second term can also be
written as n2[I(XB; YA|XA)+I(XA; YB|XB)]; hence, when n1 = 0 the argument
equals that of (11). This shows that the new lower bound is greater than or equal
to the trivial lower bound in (11).

Remark 3. The above lower bound is achieved using a two-round coding con-
struction. Informally, he first term of (13), n1[I(UA; XB, YB)+I(UB; XA, YA|UA)],
shows the amount of raw (uncoded) correlated information that is provided in
the first communication round with n1 channel uses. This information is ob-
tained based on the inputs and the outputs of the channel. The second term
n2[I(XB; YA, XA)+ I(XA; YB , XB)] indicates the amount of correlated informa-
tion, provided in the second communication round, following the coding con-
struction. This information equals the sum of the RM rates of the channel in
both directions (i.e., the bounds on RAB and RBA in (9). The conditions (15)
and (16) mean that the amount of confusion (uncertainty) about the transmit-
ted information in the first round can not be more than the capability of the
channel for reliable transmission in the second round.

Theorem 2. The CR capacity in the TWDMC setup is upper bounded as

CTWDMC
cr ≤ max

PXA,XB

[I(XB ; YA|XA) + I(XA; YB|XB) + I(YA; YB|XA, XB)] . (17)

Proof. See [6, Appendix B].

Remark 4. The first two terms of (17) are the same as those of (9) for the RM
capacity region. The third term, however, is due to the exclusive property of CRG
that the common randomness may be obtained from the correlated information
between the outputs. This again articulates the essential difference between the
two problems in the TWDMC setup.

Theorems 1 and 2 are proved as special cases of Theorems 4 and 5 (in the se-
quel), respectively [6]. The proof for the lower bound [6, Appendix A] is based on
a two-round SKE protocol that uses a two-level coding construction. Although
the proposed construction is convenient for the lower bound proof, it will be
of practical significance to construct a simpler protocol that achieves the same
lower bound. This motivated us to propose a new CRG protocol that achieves
the lower bound (13). The protocol uses Interactive Channel Coding (ICC) [5]
that is an extension of systematic channel coding to a two-round protocol. The
messages in the two-round ICC are essentially parts of a codeword from a sys-
tematic channel code, split into two parts: one obtained in the first round and
one sent in the second round. In a systematic code, each codeword consists of a
message (information sequence), followed by a parity-check sequence. Bipartite
systematic codes generalize this definition by allowing the two (information and
parity-check) parts to come from (possibly) different alphabets.

Definition 6. A (bipartite) systematic channel code, with encoding alphabets
(T ,U) and decoding alphabets (V ,W), is a pair of encoding/decoding functions
(Enc/Dec), where
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– Enc : T n1 × Un2,i → Vn1 ×Wn2 deterministically maps (tn1 ||un2,i) (as the
information sequence) to a sequence (tn1 ||un2), such that (un2 = un2,i ||un2,p)
and n2 = n2,i + n2,p; we call un2,p the parity check sequence.

– Dec : Vn1 ×Wn2 → T n1 ×Un2,i assigns a guess sequence (t̂n1 ||ûn2,i) to each
input (vn1 ||wn2).

The ICC method has been proposed in [5] and was shown to be useful in achieving
the lower bound on the SK capacity of a 2DMWC under certain conditions [5].

Theorem 3. The lower bound (13) on the CR capacity can be achieved using
the one-level interactive channel coding method.

Proof. See Section 4.2 and [6, Appendix C].

In the following, we consider the 2DMC setup as described in Section 2.4, and
show that the lower and the upper bounds on the CR capacity coincide for
this class of TWDMCs. We note that the CR capacity (18) matches the result
in [24], on CRG over 2DMCs, when there is no limit on the available independent
randomness.

Proposition 1. When the TWDMC consists of two independent DMCs in the
two directions (called a 2DMC as in Section 2.4), the two bounds coincide and
the CR capacity equals

C2DMC
cr = max

PXA
,PXB

{I(XA; YB) + I(XB; YA)}. (18)

Proof. See [6, Appendix D].

Proposition 1 implies that, in the 2DMC setup, the RM capacity region, e.g.,
obtained from the results of [23] (see (9)), can be used to obtain the CR capacity
(i.e., a tight lower bound), by solving the sum maximization problem.

3.3 Secret Key Capacity

We provide lower and upper bounds on the SK capacity in the TWDMWC setup.
These bounds are generalizations of the bounds, given in Section 3.2, to the cases
when the communication is eavesdropped by Eve. Let the RVs XA, YA, XB, YB ,
and Z correspond to the channel probability distribution PYA,YB ,Z|XA,XB

and let
UA, W1A, W2A, UB, W1B , and W2B be RVs from arbitrary sets UA, W1A, W2A,
UB, W1B, and W2B, respectively, such that the following Markov chains hold:

UA ↔ (XA, YA) ↔ (XB , YB) ↔ UB, (19)
W2A ↔ W1A ↔ XA ↔ (XB , YA, YB, Z), (20)
W2B ↔ W1B ↔ XB ↔ (XA, YA, YB, Z). (21)
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Theorem 4. The SK capacity in the TWDMWC setup is lower bounded as

CTWDMWC
sk ≥ max

n1,n2,PW2A,W1A,UA,XA
PW2B,W1B ,UB,XB

[
1

n1 + n2

(n1[I(UA; XB , YB) + I(UB; XA, YA|UA) − I(UA, UB ; Z)] + n2[I(W1A; XB , YB|W2A)

+I(W1B; XA, YA|W2B) − I(W1A, W1B; Z|W2A, W2B)]+), (22)

s.t. PXA,XB = PXA .PXB ,

n1I(UA; XA, YA|XB , YB) < n2I(W1A; XB , YB), (23)

n1I(UB; XB , YB|XA, YA) < n2I(W1B; XA, YA)]. (24)

Proof. See Section 4.1 and [6, Appendix A].

The terms in (22) can be interpreted in analogy to the argument following (13),
adding that the shared information is required to remain secure from Eve. In-
formally, the terms n1I(UA, UB; Z) and n2I(W1A, W1B ; Z|W2A, W2B) show the
amount of leakage of shared randomness in the first and the second rounds,
respectively.

The upper bound on the SK capacity is provided in the following. Let Q be
an RV from an arbitrary set Q that satisfies the Markov chain

Q ↔ (XA, XB) ↔ (YA, YB, Z).

Theorem 5. The SK capacity in the TWDMWC setup, CTWDMWC
sk , is upper

bounded as

CTWDMWC
sk ≤ max

PQ,XA,XB

[I(XA; YB|XB , Z) + I(XB; YA|XA, Z)

+ I(YA; YB|XA, XB , Z) + I(XA; XB |Z, Q) − I(XA; XB |Q)]. (25)

Proof. See [6, Appendix B].

The following proposition states that if the TWDMWC consists of two indepen-
dent DMWCs with degraded channels (see Section 2.4), then the lower and the
upper bounds coincide and the SK capacity is achieved by a one-round protocol.
In [4], SKE over 2DMWCs has been considered in the half-duplex communication
model where the two forward and backward channels could be used for different
number of times. The following special case of TWDMWC, however, complies a
full-duplex communication model where the channels are used together and the
number of channel uses must be the same for the two channels. The results in [4]
are consistent to those in Proposition 2, assuming the full-duplex communication
model.

Proposition 2. When the 2DMWC consists of degraded DMWCs XA ↔ YB ↔
Z1 and XB ↔ YA ↔ Z2 (as in Definition 5), the lower bound coincides with the
upper bound, and the SK capacity equals

C2DMWC
sk = max

PXA
,PXB

{I(XA; YB |Z1) + I(XB ; YA|Z2)}. (26)

Furthermore, the SK capacity is achieved by a one-round protocol.

Proof. See [6, Appendix D].
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4 CRG/SKE Protocol Outline

In this section, we present a brief explanation of the protocols that achieve the
lower bounds on the CR and the SK capacities. For the complete structure of
these protocols, we refer to the full version of the paper in [6].

4.1 The Two-Round CRG/SKE Protocol (Theorems 1 and 4)

For simplicity, we give an outline of the SKE protocol in the following special
case: W1A = XA, W1B = XB, W2A = W2B = 0, and the two conditions in (23)
and (24) hold with almost equality. We note that this protocol can be also used
to generate common randomness with rates up to the lower bound (13) when
there is no adversary, equivalently when Z = 0. Let n1, n2, PUA,XA , and PUB ,XB

be those that maximize the right side of (22), which is written as

Rsk = 1
n1+n2

( n1[I(UA; XB , YB) + I(UB; XA, YA|UA) − I(UA, UB ; Z)]

+n2[I(XA; XB , YB) + I(XB ; XA, YA) − I(XA, XB ; Z)]+). (27)

Define

ηa,f ≈ n1I(UA; XA, YA), ηa,t ≈ n2I(XA; XB , YB) (28)

ηb,f ≈ n1I(UB ; XB , YB), ηb,t ≈ n2I(XB ; XA, YA), (29)

η ≈ n1I(UA, UB ; XA, YA, XB , YB), κ = (n1 + n2)Rsk, γ = η − κ. (30)

– Let Un1
A,ε (resp. Un1

B,ε) be obtained by randomly and independently choosing
2ηa,f (resp. 2ηb,f ) typical sequences from Un1

A (resp. Un1
B ).

– Let {Un1
A,ε,i}2ηa,t

i=1 be a partition of Un1
A,ε into 2ηa,t equal-sized parts. Define the

function tA : Un1
A,ε → TA = {1, 2, . . . , 2ηa,t} such that, for any input in Un1

A,ε,i,
it outputs i. Similarly define the partition {Un1

i,B,ε}2ηb,t

i=1 and the function tB.
– Let {Ks}2κ

s=1 be a partition of Un1
A,ε × Un1

B,ε into equal-sized parts of size 2γ .
Define the key derivation function φ : Un1

A,ε×U
n1
B,ε → {1, 2, . . . , 2κ} such that,

for any input in Ks, it outputs s.

The protocol proceeds in two rounds. In round 1, Alice and Bob send i.i.d. n1-
sequences X:1

A and X:1
B according to PXA and PXB , and receive the n1-sequences

Y:1
A and Y:1

B , respectively, while Eve receives Z:1. Alice searches in Un1
A,ε to find

a sequence Un1
A that is jointly typical to (X:1

A ,Y:1
A) w.r.t. P(XA,YA),UA

. Simi-
larly, Bob searches for a sequence Un1

B that is jointly typical to (X:1
B,Y:1

B) w.r.t.
P(XB ,YB),UB

. Now, (Un1
A , Un1

B ) represents the common randomness that needs to
be made reliable in the second round.

In round 2, Alice computes TA = tA(Un1
A ), which can help Bob decode his

(X:1
B,Y:1

B) to Un1
A . Bob also computes TB = tB(Un1

B ). Alice and Bob encode TA

and TB to n2-sequences X:2
A = Enc(TA) and X:2

B = Enc(TB) and send them
over the channel. The parties and Eve receive Y:2

A , Y:2
B , and Z:2, respectively.

Alice first decodes (X:2
A ,Y:2

A) to T̂B ≈ TB, and uses this for decoding (X:1
A ,Y:1

A)
to Ûn1

B ≈ Un1
B . The decoding function relies on the jointly-typical decoding tech-

nique for long sequences (see, e.g., [8, Chapter 8]). Similarly Bob finds T̂A ≈ TA
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and then Ûn1
A ≈ Un1

A . Now, the parties have a reliable common randomness, but
it is not perfectly secure against Eve. To derive a secret key, the parties compute
φ(Un1

A , Un1
B ). The rest of the proof is to show that there exist encoding/decoding

functions and a key derivation function for the above construction with parame-
ters (28)-(30), such that the protocol achieves the lower bound (22) and satisfies
reliability and secrecy requirements (7) and (8) for an arbitrarily small δ > 0.

4.2 The CRG Construction Using the ICC Method (Theorem 3)

Again for simplicity, let the two conditions in (15) and (16) hold with almost
equality. Also let n1, n2, PXA , and PXB be those that maximize the right side of
(13). The protocol has two rounds. The first round is the same as that in Section
4.1, and so the common randomness is defined to be (Un1

A , Un1
B ). However, the

second round differs as follows.
Alice and Bob use their systematic coding functions to encode (Un1

A ,X:2
A) =

Enc(Un1
A ) and (Un1

B ,X:2
B) = Enc(Un1

B ), respectively. Next, they send the parity-
check sequences X:2

A and X:2
B , and receive Y:2

A and Y:2
B . Using the bipartite jointly

typical decoding method (see [6, Appendix C]), Alice decodes (X:1
A,Y:1

A ,X:2
A,Y:2

A)
to Ûn1

B ≈ Un1
B , and Bob decodes (X:1

B,Y:1
B ,X:2

B,Y:2
B) to Ûn1

A ≈ Un1
A . Overall, the

common randomness is S = (Un1
A , Un1

B ): Alice obtains SA = (Un1
A , Ûn1

B ), and Bob
obtains SB = (Ûn1

A , Un1
B ). In [6, Appendix C], we show that the rate achieved

by this construction matches the lower bound in (13) and the protocol satisfies
the reliability requirement (4) for an arbitrarily small δ > 0.

5 Achievable Rates over Two-Way Binary Channel

Consider the Two-Way Binary Wiretap Channel (TWBWC) setup in Fig. 4. In
this model, the two input bits XA and XB are XORed (added modulo two):
Alice and Bob receive noisy versions of the XORed bit through independent
BSCs, with noises NrA and NrB, respectively, where Pr(NrA = 1) = pra and
Pr(NrB = 1) = prb

; Eve also receives a noisy version through an eavesdropping
channel with noise NE , where Pr(NE = 1) = pe. One can relate the channel
output bits to the input bits as

YA = XA + XB + NrA, (31)
YB = XA + XB + NrB, (32)
Z = XA + XB + NE, (33)

where + indicates modulo-two addition.
In this section, we study the behavior of the lower bounds, proved in Section

3, for the case of binary channels and compare them to the trivial lower bounds
that are obtained based on the previous work on message transmission. Since
the CRG problem can be viewed as a spacial case of SKE, where Eve receives
no information about the transmitted sequences (i.e., when pe = 0.5), we only
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XA

BobAlice
XB

Bob
YA YB

N NNE

Z
Eve

NrA NrB
NE

Fig. 4. Two-way binary wiretap channel

focus on the SKE problem. Throughout, for two real values 0 ≤ x, y ≤ 1, we
use x � y to denote the error probability in the cascade of two BSCs with error
probabilities x and y, i.e., x � y = x + y − 2xy.

We use Theorem 4 to obtain a lower bound, LboundN , on the SK capacity in
the above model.

Lemma 1. The SK capacity in the TWBWC setup is lower bounded as

CTWBWC
sk ≥ LboundN

�
= max

0≤p1,p2≤1
[μL1 + (1− μ)[L2]+] , (34)

where

L1 = 1 + h(p1 � p2 � pra � prb
� pe)− h(p1 � pra)− h(p2 � prb

), (35)
L2 = 1 + h(p1 � p2 � pe)− h(p1 � pra)− h(p2 � prb

), (36)

μ = min{ 1− h(p1 � pra)
1− h(p2 � prb

) + h(p1 � pra)
,

1− h(p2 � prb
)

1− h(p1 � pra) + h(p2 � prb
)
}; (37)

furthermore,

LboundN ≥ max
0≤p1,p2≤1

[L2]+. (38)

Proof. See [6, Appendix F].

Remark 5. In the sequel, we show that the lower bound (34) dominates the
trivial lower bound, achieved from the previous work. Nevertheless, the lower
bound (34) is not the highest rate one can obtain from the results of Theorem
4; in other words, one may use the result of Theorem 4 to derive a tighter lower
bound in the TWBWC model. This is left as future work.

Secure message transmission in the above TWBWC model has been considered
in [25,13]. We choose to study the results in [13], which provide a strictly larger
achievable rate region for secure message transmission. The achievable rate re-
gion in [13] is given as follows:

Gs,I = convex hull of {(Rs,AB , Rs,BA), s.t. ∃0 ≤ p1, p2 ≤ 1 :

Rs,AB ≤ 1 − h(p2 � prb), Rs,BA ≤ 1 − h(p1 � pra),

Rs,AB + Rs,BA ≤ [1 + h(p1 � p2 � pe) − h(p1 � pra) − h(p2 � prb)]+}. (39)
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Fig. 5. Comparison of the lower bound values with respect to the error probabilities

This implies the following lower bound on the SK capacity.

LboundT = max
(Rs,AB ,Rs,BA)∈Gs,I

[Rs,AB + Rs,BA]

= max
0≤p1,p2≤1

[1 + h(p1 � p2 � pe) − h(p1 � prb) − h(p2 � pra)]+

= max
0≤p1,p2≤1

[L2]+, (40)

where the last equality follows from (36). Comparing (38) and (40) leads to the
following corollary.

Corollary 1. The lower bound (34), proved in this paper, is always greater than
or equal to the trivial lower bound (40), i.e.,

LboundN ≥ LboundT . (41)

To better understand the gap between the two lower bounds in inequality (41),
we evaluate these two quantities with respect to different choices of channel error
probabilities in Fig. 5, where the two bounds are indicated by dashed and solid
lines, respectively. For simplicity, we assume that the receiving channel noise
for Alice and Bob is the same, i.e., pra = prb

= pr. Fig. 5(a) compares the
two lower bound values with respect to pr when pe = 0.1. Observe the non-
zero gap between LboundN and LboundT for receiving channel noise pr < 0.15.
This confirms that the lower bounds proved in this paper strictly dominate those
which can be obtained using the previous results on secure message transmission.
Fig. 5(b) compares the bound values as functions of pe when pr = 0.1. It shows
the gap between the two bounds expect for much small or much large values of
the eavesdropping channel error probability pe.

6 Conclusion

We considered the two-way channel setup and studied the problems of common
randomness generation and secret key establishment for the first time in this
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setup. We discussed the relation between the above problems and reliable/secure
message transmission over two-way channels, which are previously studied in the
literature. We defined the common randomness and the secret key capacities and
derived trivial lower bounds on these capacities based on the previously known
results. Next, we showed that these trivial lower bounds can be improved by
proposing two-round protocols that can achieve higher rates of common random-
ness/secret key. We applied the results to the case of two-way binary channels,
where we showed the gap between the trivial lower bounds and those derived
in this paper. We also proved upper bounds on the capacities and discussed
the cases that the lower and the upper bounds coincide. It has not been shown
whether any of the bounds are tight in general, or more specifically, whether
one can improve the bounds by allowing more rounds of interaction. These open
questions proffer directions to future work.
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1 Introduction and Problem Formulation

The last two decades have witnessed a full revival of graph based codes. The ad-
vent of Turbo codes [1] in the early 1990’s, the revival of Gallager’s LDPC codes
in the 1990’s [12,11,7,8], and a decade long research on their properties [16] have
brought fundamental changes to coding theory in general, and to the practical
design of codes in particular. Today, a number of international standards such
as DVB-S2, ITU-T G.hn, or 10 GBase-T use LDPC codes for the transmission
of signals.

A different class of graph based codes, called Fountain codes, was stipulated
in [2] to solve many of the problems associated with the delivery of data on un-
reliable networks. The first efficient version of these codes, called LT-codes [10]
was invented by Luby and put into effective use in the company “Digital Foun-
tain.” LT-codes were extended in [17] to Raptor codes, a class of fountain codes
with linear time encoding and decoding complexity. LT- and Raptor codes have
been quite successful in the sense that they have been incorporated into a num-
ber of standards (such as 3GPP, IETF, OMA, BMCO, DVB-IPDC, DVB-IPTV,
MPE IFEC, etc) that govern various aspects of data transmission on unreliable
networks.

Despite the success of graph based codes, it is still unknown whether it is
possible to design graph based codes that achieve the capacity of an arbitrary
binary memoryless symmetric channel using a computationally efficient decoder.
In fact, the only channel for which this is known to be true is the binary erasure
channel [9,6,17]. In all other cases, the algorithms that are used for decoding
are either too complex to execute (for example, when they are ML-based), or
too complex to analyze (for example the belief-propagation algorithm [16]), or
too simple to get us close to the capacity (such as various flavors of Gallager’s
algorithms A and B [16]).

This extended abstract reports on a different approach towards solving this
problem which generates questions of interest in their own right. We formulate
this approach using LT-codes, as these codes seem to be to ones most amenable
to our particular method. An LT-code is given by two parameters (k, Ω) wherein
k is a positive integer, and Ω is a probability distribution on Fk

2 , wherein Ωd is the
probability of the integer d. An LT-code produces for a given vector (x1, . . . , xk)

S. Fehr (Ed.): ICITS 2011, LNCS 6673, pp. 94–99, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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of k symbols a potentially limitless stream of output symbols; for each such
output symbol an integer d is chosen according to the probability distribution
Ω, and then d distinct input symbols are chosen uniformly at random. These
symbols are added together to form the output symbol which is transmitted
on the channel. We always assume that output symbols are equipped with an
indication of which input symbols were chosen to create its value.

The decoding problem is now as follows: given that we have collected n output
symbols, infer the values of the k input symbols from the values of the received
n output symbols, and the knowledge of the underlying channel. Typically, the
inference needs to be done using an efficient algorithm, i.e., an algorithm that
runs in time polynomial in the number k of the input symbols.

This problem is entirely solved when the channel is the erasure channel [6,17].
In this case, it is possible to recover the k input symbols from the n output
symbols with high probability for values of n that are as close to k as desired.

When the channel C is a memoryless binary symmetric channel which is not
the erasure channel, then it is unknown whether for any k there is a degree
distribution Ωk such that for any given ε > 0 the k input bits can be recovered
from n = k(1 + ε)/Cap(C) output bits using an efficient decoder (such as the
belief-propagation decoder) when k is large enough. Here, Cap(C) denotes the
capacity of the channel C. If such a sequence of degree distributions exists, and
if the sequence has a limit Ω (which means that Ω is a degree distribution and
Ωk

d → Ωd as k → ∞ for all d), then we call the limiting degree distribution Ω
“capacity-achieving.” When C is the erasure channel, it is known [6,17] that the
sequence (1/2, 1/6, . . . , 1/(d(d− 1)), . . .) is capacity-achieving.

Though capacity-achieving distributions are not known (and are not even
known to exist) for channels other than the erasure channel, we know that [3]: (1)
Ωk

1 , the probability of the number 1 under the distribution Ωk, should converge
to 0, as k converges to infinity, and (2) Ωk

2 should converge to Π(C)/2, where
Π(C) is a certain parameter associated to the channel C which will be described
in more detail below. This means that in a capacity achieving distribution for
the channel C we have Ω1 = 0 and Ω2 = Π(C)/2. The other probabilities of a
capacity-achieving distribution are, as of yet, unknown.

In this paper, we will discuss a related problem and mention some of the
work that has been done in this direction. We will take a reverse approach, and
ask for a degree distribution that satisfies an information theoretic extremal
condition. Our approach is based on the following simple fact: if x denotes the
vector of k input symbols, and y denotes any subset of � output symbols where
� ≤ k/Cap(C)+ o(k), and the code operates close to the capacity of the channel,
then I(x; y) is necessarily equal to �Cap(C) + o(k).

To make the discussion more precise, let x be a uniform random variable
over Fk

2 (denoting the source), and y denote the random variable describing the
received bits. Our final goal is to find a degree distribution Ω2, Ω3, . . . with the
following property: given k input bits, and n output bits, let yd denote the vector
of output bits of degree d, and |yd| denote the length of this vector. Then we
want the following to be true
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I(x; y2) = |y2|Cap(C) + o(k)
I(x; y2, y3) = (|y2|+ |y3|)Cap(C) + o(k)

...
...

We now formulate a series of conjectures which, if true, will provide a set of
“degrees” Ω2, Ω3, . . . which may be capacity-achieving. They are, however, in-
teresting in their own right due to their extremality properties. To formulate
the conjectures, we need one more piece of notation. Let f and g be real func-
tions defined on the set of natural numbers. We say that f # g if g(n)/f(n)
converges to a number μ > 1 when n goes to infinity. We say that f $ g if
f(n)/g(n) converges to a number μ ≤ 1 as n goes to infinity.

Conjecture 1. For all d ≥ 2 there is τd > 0 depending on the channel C such
that I(x; yd) = |yd|Cap(C) + o(k) if |yd| $ τdk. If |yd| % τdk, then there is ε > 0
depending on C and on |yd such that I(x; yd) < (|yd| − εk)Cap(C).

Conjecture 2. There are positive real numbers θ2, θ3, . . . depending on the chan-
nel C such that for all d ≥ 2 if |yi| $ θik for i = 2, . . . , k, then

I(x; y2, y3, . . . , yd−1, yd) = (|y2|+ · · ·+ |yd|)Cap(C) + o(k).

If, however, there is i such that |yi| % θik, then there exists ε > 0 depending on
the channel and on |y2|, . . . , |yd| such that

I(x; y2, y3, . . . , yd−1, yd) ≤ (|y2|+ · · ·+ |yd| − εk)Cap(C).

Conjecture 3. The sequence θ2, θ3, . . . of the previous conjecture has the property
that θ2 + θ3 + · · · = 1. Hence, it is a degree distribution on the set {2, 3, . . .}.

Conjecture 4. The sequence θ2, θ3, . . . of the previous conjecture is a capacity-
achieving sequence for the channel C.

2 The Trivial Channel

Consider the case where the channel C is trivial, i.e., sends the bits across without
introducing any errors. In this case, the mutual information between the source x
and the received bits y becomes the rank of the matrix describing the dependency
of y on x. This matrix is a random variable, and we can talk about its expected
rank. Even in this case the conjectures above are nontrivial to prove, since the
expected rank of random matrices is not easy to compute when the probability
distribution on the matrix is not uniform.

Nevertheless, [15] manages to prove all the above conjectures for this case.

Theorem 1. (1) [15, Theorem 2] If C is the trivial channel, then τd in Conjec-
ture 1 exists, and their value is equal to the smallest root of z(1 − ln(z)) −
1−z

d ln(z)− 1 in the half open interval (0, 1].
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(2) [15, Example 3] If C is the trivial channel, then the sequence θ2, θ3, . . . of
Conjecture 2 exists and is equal to

θ2 =
1
2
, θ3 =

1
6
, . . . , θd =

1
d(d− 1)

, . . .

(3) (Trivial consequence of part (2)) Conjecture 3 is true for the trivial channel.
(4) [6,17] Conjecture 4 is true for the trivial channel.

The proof of parts (1) and (2) above uses the theory of EXIT functions [13].

3 The Case d = 2

Much of the motivation for that above conjectures comes from their proofs for
the trivial channel, and for the case d = 2. In the latter case, we have the
following result [3].

Theorem 2. Let C be a binary input memoryless symmetric channel, and let g
be the pdf of its LLR. Further, let E(C) :=

∫∞
−∞ tanh(x/2)g(x)dx, and Π(C) :=

Cap(C)/E(C). Conjecture 1 above is true for d = 2, and the value of τ2 equals

τ2 =
Π(C)

2
.

The value of τ2 can be calculated for different channels using numerical approx-
imations of closed form expressions. For example, if C is the trivial channel (or
an erasure channel), then τ2 = 1/2. If C is the binary symmetric channel with
probability p, then τ2 = (1− h(p))/2(1− 2p)2, where h(p) is the binary entropy
function. If C is the additive white Gaussian noise channel with variance σ2, then

τ2 =
1− 1√

2πm

∫ ∞

−∞
log2(1 + e−x)e−

(x−m)2

4m dx

1√
πm

∫ ∞

−∞
tanh(x/2)e−

(x−m)2

4m dx

,

where m = 2/σ2.

4 The General Case

Little progress has been made so far towards proving the general case of the above
conjectures. A partial step towards proving Conjecture 1 has been undertaken
in [5]. Though we cannot prove that the numbers τd even exist (when d ≥ 3) we
can find lower bounds for these numbers, at least for the case of binary symmetric
channels. More precisely, we have the following.
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Theorem 3. [5, Theorem 5] Let C be the binary symmetric channel with prob-
ability p, and let d ≥ 3. Define

f(λ) :=
ed

λ tanh(λ)
cosh(λ)d/λ tanh(λ)

(
tanh(λ)

e

)d

(1 − 2p)2,

g(λ, φ) := cosh(λ)
(

tanh(λ)
e

)λ tanh(λ) (
dφ

dφ− λ tanh(λ)

)φ

.

(
dφ− λ tanh(λ)

λ tanh(λ)
(1− 2p)2

)λ tanh(λ)/d

,

and

u(φ) =
1
2

⎧⎨⎩1−
(

1 + e−2φd

2

)(1− 1
φ )

⎫⎬⎭ .

Let 1/t0 be the maximum of f(λ) in the interval (0,∞), and let t1 be the largest
positive value of φ such that g(λ, φ) ≤ 1 for all λ with λ tanh(λ) ≤ dφ. Also, let
t2 be the maximum value of φ ≥ 0 such that u(φ) < p. Then, provided τd exists,
we have τd ≥ min (max(t0, t1), t2).

The proof of this theorem uses a result that is interesting in its own right. To
bound the mutual information of x and y, we need to calculate the expected
entropy of y, where expectation is over the choices of the random variable y.
Using a Hadamard Transform [5, Theorem 4], the entropy of y is connected to
the weight distribution of a particular code. The expected weight distribution
can be effectively calculated using the methods outlined in [4, Sect. 3.6].

The bound of the previous theorem is probably very far from the correct value
of τd. For example, we would expect this bound to go to 1/(1 − h(p)) when d
becomes large. However, numerical calculations suggest otherwise. In fact, when
p is close to 0.5, the product of the bound of the previous theorem and (1−h(p))
is around 0.5 [5, Table II].

The proofs of the above conjectures in the general case thus remains elusive.
They are most probably not of the same level of difficulty, though. For example,
it is possible that one can prove the existence (but not necessarily the values)
of the numbers τd and θd using general principles; once the existence of these
numbers is shown, it is probably not too hard to show Conjecture 3. Conjecture 4
is, however, most probably of a different caliber.

A sort of “converse” to the information theoretic approach of this work has
been accomplished in [14] where lower bounds are obtained for the entropy of
the transmitted message conditional to the received message, i.e., upper bounds
on the mutual information I(x; y). These upper bounds are conjecturally sharp,
and hence would provide candidate values for the numbers τd, and θd. This is
work in progress, and corresponding results will be reported elsewhere.
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Abstract. Unconditionally secure signature (USS) schemes provide the
ability to electronically sign documents without the reliance on computa-
tional assumptions needed in traditional digital signatures. Unlike digital
signatures, USS schemes require both different signing and different veri-
fication algorithms for each user in the system. Thus, any viable security
definition for a USS scheme must carefully treat the subject of what con-
stitutes a valid signature. That is, it is important to distinguish between
signatures that are created using a user’s signing algorithm and signa-
tures that may satisfy one or more user verification algorithms. Moreover,
given that each verifier has his own distinct verification algorithm, a USS
scheme must necessarily handle the event of a disagreement. In this pa-
per, we present a new security model for USS schemes that incorporates
these notions, as well as give a formal treatment of dispute resolution
and the trust assumptions required. We provide formal definitions of
non-repudiation and transferability in the context of dispute resolution,
and give sufficient conditions for a USS scheme to satisfy these prop-
erties. Finally, we present the results of an analysis of Hanaoka et al.’s
construction in our security model.

1 Introduction

Unconditionally secure signature (USS) schemes provide the ability to electroni-
cally sign documents without the reliance on computational assumptions needed
in traditional digital signatures. That is, USS schemes are the analogue of digital
signatures in the unconditionally secure cryptographic setting. The construction
of such schemes is interesting not only from a theoretical perspective, but also
from the viewpoint of ensuring security of information in the long term or de-
signing schemes that are viable in a post-quantum world.

Unlike digital signatures, USS schemes require both different signing and dif-
ferent verification algorithms for each user in the system. Thus, any viable se-
curity definition for a USS scheme must carefully treat the subject of what
constitutes a valid signature. That is, it is important to distinguish between sig-
natures that are created using a user’s signing algorithm and signatures that may
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satisfy one or more user verification algorithms. Current research [5,6,10,12,7]
has proposed various models for unconditionally secure signature schemes, but
these models do not fully treat the implications of having multiple verification
algorithms or analyze the need for (and trust questions associated with) having
a dispute resolution mechanism. We address both of these issues in this paper.

Historically, there have been several attempts to create unconditionally se-
cure constructions that satisfy security properties required for digital signa-
tures, including non-repudiation, transferability, and unforgeability. Chaum and
Roijakkers [2] introduced unconditionally secure signatures, proposing an inter-
active scheme that does not have transferability. Another approach to creating
unconditionally secure signatures has been to enhance existing unconditionally
secure message authentication codes (MACs), making these codes more robust in
a signature setting. MACs clearly do not provide non-repudiation, as the sender
and receiver compute authentication tags using the same algorithm. In addition,
the need for a designated sender and receiver further limits the applicability of
such schemes to a general signature setting.

Much research has been devoted to the removal of the standard MAC trust
assumptions, in which both sender and receiver are assumed to be honest. In A2-
codes [13,14,8], the sender and receiver may be dishonest, but there is a trusted
arbiter to resolve disputes; in A3-codes [1,3,9], the arbiter is no longer trusted
prior to dispute resolution, but is trusted to make an honest decision in event
of a disagreement. Johansson [9] used A3-codes to improve the construction of
Chaum and Roijakkers by making it non-interactive, but the signatures produced
by the scheme are not transferable, as the use of a designated receiver limits the
verification of the signature to those who have the appropriate key. Multi-receiver
authentication codes (MRAs) [4] and multi-receiver authentication codes with
dynamic sender (DMRAs) [11] use a broadcast setting to relax the requirement
for designation of receivers, and also, in the latter case, senders. These codes
are not appropriate outside of a broadcast setting, however, as neither non-
repudiation nor transferability are satisfied.

Unsurprisingly, the first security models for unconditionally secure signature
schemes, including Johansson [9] and Hanaoka et al. [5,6], drew upon the stan-
dard MAC security models. Shikata et al. [12] introduced a model using notions
from public-key cryptography, which was also adopted in the work by Hara
et al. [7] on blind signatures. Safavi-Naini et al. [10] presented a MAC-based
model meant to encompass the notions developed by Shikata et al. In this work,
we present a new security model. Our model is more general than the MAC-
based models of Hanaoka et al. [5,6] and Safavi-Naini et al. [10] and covers the
attacks described in these works. Like that of Shikata et al. [12], our work is based
on security notions from traditional public-key signature systems. However, our
model differs from those in the existing literature in its careful treatment of the
concept of a “valid” signature. Our aim is to provide a rigorous and natural
security model that covers all reasonable attacks.

In addition, we analyze a construction of Hanaoka et al. [5] in our model and
provide the security results. We remark that while Hanaoka et al. make claims
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about the security of this construction in their model, they do not provide an
analysis. In fact, security proofs are not provided for most of the constructions
given in existing research. Thus, we feel it is useful to include the results of our
analysis of a basic unconditionally secure signature construction in our security
model; a proof of security appears in the full version of our paper [15].

Our basic notion of security is easily extendable to a system with dispute
resolution, which we argue is a necessary component of any USS scheme. Fur-
thermore, our treatment of dispute resolution allows us to give formal defini-
tions of non-repudiation and transferability. We show that a USS scheme that
satisfies our unforgeability definition and has an appropriate dispute resolution
method also satisfies non-repudiation and transferability, both of which are re-
quired properties for any reasonable signature scheme. Finally, we define various
dispute resolution methods and examine the amount of trust each requires.

An outline of our paper is as follows. In Section 2, we give a basic definition
of a USS scheme, before moving to an informal treatment of the desired security
properties. We then define a formal security model in Section 3. We formally
discuss dispute resolution in Section 4 and give examples of dispute resolution
methods in Section 5. In Section 6, we compare our work with that of previous
literature. Finally, we analyze the construction of Hanaoka et al. [5] in Section 7
and give some concluding remarks in Section 8.

2 Preliminaries

We require the following definitions.

Definition 2.1. An unconditionally secure signature scheme (or USS scheme)
Π consists of a tuple (U , X, Σ, Gen, Sign, Vrfy) satisfying the following:

– The set U = {U1, . . . Un} consists of possible users, X is a finite set of
possible messages, and Σ is a finite set of possible signatures.

– The key-generation algorithm Gen takes as input a security parameter 1k

and outputs the signing algorithm Sign and the verification algorithm Vrfy.
The parameter k is relevant to the overall security of the scheme, as discussed
later.

– The signing algorithm Sign : X ×U → Σ takes a message x ∈ X and a signer
Ui ∈ U as input, and outputs a signature σ ∈ Σ. For each Ui ∈ U , we let
Signi denote the algorithm Sign(·, Ui).

– The verification algorithm Vrfy : X × Σ × U × U → {True,False} takes as
input a message x ∈ X , a signature σ ∈ Σ, a signer Ui ∈ U , and a verifier
Uj ∈ U , and outputs either True or False. For each user Uj, we let Vrfyj

denote the algorithm Vrfy(·, ·, ·, Uj).

It is required that, for every k, for every pair (Sign, Vrfy) output by Gen(1k),
for every pair Ui, Uj ∈ U , and for every x ∈ X , it holds that

Vrfyj(x, Signi(x), Ui) = True.
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Remark 2.1. We are treating deterministic signature schemes only, in the sense
that Sign and Vrfy are deterministic, although the above definition can easily be
extended to the randomized setting.

We now define the concepts of authentic, acceptable, and fraudulent signatures.
Distinguishing these three concepts is one of the main themes of this paper.

Definition 2.2. A signature σ ∈ Σ on a message x ∈ X is i-authentic if σ =
Signi(x).

Definition 2.3. A signature σ ∈ Σ on a message x ∈ X is (i, j)-acceptable if
Vrfyj(x, σ, Ui) = True.

Definition 2.4. A signature σ ∈ Σ on a message x ∈ X is (i, j)-fraudulent if
σ is (i, j)-acceptable but not i-authentic.

2.1 Security Notions

Informally, a secure signature scheme should satisfy the following three proper-
ties:

1. Unforgeability: Except with negligible probability, it should not be possible
for an adversary to create a “valid” signature.

2. Non-repudiation: Except with negligible probability, a signer should be un-
able to repudiate a legitimate signature that he has created.

3. Transferability: If a verifier accepts a signature, he can be confident that any
other verifier will also accept it.

One objective of this paper is to formalize these notions in the uncondition-
ally secure setting; we provide precise definitions in Sections 3 and 4. In contrast
to the usual public-key setting, the requirements of non-repudiation and trans-
ferability are not guaranteed in a USS scheme that satisfies the above intuitive
notion of unforgeability. For “ordinary” digital signatures, non-repudiation is a
consequence of unforgeability: a signature is considered “valid” if it passes a ver-
ification test, and it should be impossible for anyone to create such a signature
without knowledge of the secret signing algorithm. Thus, assuming the signing
algorithm is not known to some third party, the signer cannot create a signature
and later repudiate it. Transferability of digital signatures is guaranteed since
there is a single, public verification algorithm.

In USS schemes, the concept of a “valid” signature requires clarification. A
verifier is always capable of finding a signature that passes his own, secret veri-
fication test, so we cannot define the validity of a signature based on whether it
passes a given user’s verification algorithm. Indeed, there must be signatures that
pass a given user’s verification algorithm but that could not have been created
with the signer’s signing algorithm; otherwise the scheme will not satisfy un-
forgeability. Similarly, each verifier’s verification algorithm must be different, or
a given verifier will be able to present a signature acceptable to any verifier who
possesses the same algorithm. A “valid” signature, then, must be created using
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the signer’s signing algorithm, and it should be impossible for anyone to create
a signature that appears valid to other, non-colluding users, or the scheme will
not have the properties of unforgeability, non-repudiation, and transferability.
In particular, we have the following observations.

Theorem 2.1. A necessary condition for a USS scheme to satisfy unforgeability
is the existence of (i, j)-fraudulent signatures for i �= j.

Proof. A verifier Uj can always use his verification algorithm to create an (i, j)-
acceptable signature for any i �= j. If there are no (i, j)-fraudulent signatures,
then all signatures produced in this fashion must be i-authentic, and therefore
they are successful forgeries. ��

Theorem 2.2. A USS scheme must satisfy Vrfyj(·, ·, ·) �= Vrfy�(·, ·, ·) for j �= �.

Proof. Suppose that Vrfyj(·, ·, ·) = Vrfy�(·, ·, ·) where j �= �. Clearly Uj can create
an (i, j)-acceptable signed message, (x, σ). Because Vrfyj(·, ·, ·) = Vrfy�(·, ·, ·), it
follows immediately that (x, σ) is (i, �)-acceptable. This implies that the user U�

will accept (x, σ) as a valid signature, but (x, σ) was not created by Ui. ��

3 Formal Security Model

We now develop a formal security model for USS schemes. Our security definition
is comparable to the notion of signatures secure against existential forgery un-
der adaptive chosen message attacks in the case of public-key signature schemes.
However, our definition takes into account the peculiarities of the unconditional
security setting, in particular the existence of (and need for) fraudulent signa-
tures and multiple verification algorithms.

We specify two types of existential forgery. In our setting, an “existential”
forgery is either an (i, j)-fraudulent signature created without the help of the
verifier Uj , or an i-authentic signature created without the help of the signer
Ui. If a USS scheme is secure, then both of these types of forgeries should be
infeasible for an adversary to create.

We need the following oracles:

– The SignO� (·) oracle; this oracle takes as input a message x and outputs an
�-authentic signature for the message x.

– The VrfyO� (·, ·, ·) oracle; this oracle takes as input a signature pair (x, σ) and
a signer Ui, and runs user U�’s verification algorithm on input (x, σ, Ui),
outputting True or False.

Definition 3.1. Let Π = (U , X, Σ, Gen, Sign, Vrfy) be a USS scheme with se-
curity parameter 1k, let the set C ⊆ U be a coalition of at most t users, and
let ψS and ψV be positive integers. We define the following signature game
Sig-forgeC,Π(k) with target signer Ui and verifier Uj:

1. Gen(1k) is run to obtain the pair (Sign, Vrfy).
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2. The coalition C is given bounded access to the oracles SignO� (·) and
VrfyO� (·, ·, Ui) for � satisfying U� /∈ C. In particular, C is allowed a total
of ψS and ψV queries to the SignO and VrfyO oracles, respectively. It should
be noted that C has unlimited access to the signing and verification algo-
rithms of any U� ∈ C. We let Q denote the set of messages that the coalition
submitted as queries to the oracles SignOi (·). Note that Q does not contain
messages submitted as queries to SignO� (·) for � �= i.

3. The coalition C outputs a signature pair (x, σ) satisfying x /∈ Q.
4. The output of the game is defined to be 1 if and only if one of the following

conditions is met:
(a) Uj /∈ C and σ is an (i, j)-fraudulent signature on x; or
(b) Ui /∈ C and σ is an i-authentic signature on x.

Definition 3.2. Let Π = (U , X, Σ, Gen, Sign, Vrfy) be a USS scheme with se-
curity parameter 1k and let ε(k) be a negligible function of k. We say Π is
(t, ψS , ψV , ε)-unforgeable if for all coalitions C of at most t possibly colluding
users, and all choices of target signer Ui and verifier Uj,

Pr[Sig-forgeC,Π(k) = 1] ≤ ε(k).

Remark 3.1. Another option is to include a FraudO(i,j)(·) oracle; this oracle takes
as input a message x and outputs an (i, j)-fraudulent signature on x. Provid-
ing certain (i, j)-fraudulent signatures to the adversary could only increase his
chances of ultimately constructing a new (i, j)-fraudulent signature. Thus this
would constitute a stronger security model than the one we consider. On the
other hand, it is hard to envisage a scenario where an adversary would have this
kind of additional information about a verifier whom the adversary is attempting
to deceive. Therefore we do not include the FraudO oracle in our basic model
of USS schemes. However, it would be straightforward to modify our model to
include these oracles, if desired.

Remark 3.2. We can also define the notion of strongly unforgeable USS schemes
by appropriately redefining the set Q of Definition 3.1. That is, we let Q contain
signature pairs of the form (x, σ), where the message x was submitted as a query
to the given oracles and the signature σ was the oracle response, and require that
the submitted signature pair (x, σ) /∈ Q.

We observe that a scheme meeting the unforgeability requirement of Defini-
tion 3.2 satisfies our intuitive notions of non-repudiation and transferability.
We explain these relationships in the following observations, noting that for-
mal definitions of non-repudiation and transferability are intrinsically linked to
the dispute resolution process, and so will be provided later, in Section 4. We
formalize these observations in Theorems 4.1 and 4.2.

Observation 3.1 A (t, ψS , ψV , ε)-unforgeable USS scheme Π provides non-
repudiation.
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Proof. Suppose that Π is (t, ψS , ψV , ε)-unforgeable. Then Ui cannot repudiate a
given i-authentic signature σ, as Definition 3.2 guarantees that σ can be created
without Ui only with negligible probability (as Condition 4b of Definition 3.1
holds only with negligible probability). Thus Ui cannot claim that other users
may have created σ. The other possibility for a signer Ui to repudiate a signature
on a message given to Uj is if the signature is (i, j)-fraudulent. Definition 3.2
also implies that Ui cannot create an (i, j)-fraudulent signature (even with the
help of t − 1 other users not including Uj) except with negligible probability,
as Condition 4a of Definition 3.1 is assumed to not hold (except with negligible
probability). ��

Observation 3.2 A (t, ψS , ψV , ε)-unforgeable USS scheme Π provides transfer-
ability.

Proof. In order for a signature σ to be non-transferable from Uj to U�, σ would
have to be (i, j)-acceptable, but not (i, �)-acceptable, where j �= �. If σ were i-
authentic, it would also be (i, �)-acceptable. Therefore σ must be (i, j)-fraudulent.
However, Definition 3.2 implies an (i, j)-fraudulent signature cannot be created
without the assistance of Uj, except with negligible probability. ��

From the point of view of a verifier, a scheme meeting Definition 3.2 gives rea-
sonable assurance of the validity of a received signature. If a verifier Uj receives
a signature pair (x, σ) purportedly from Ui, then Uj will accept the signature
so long as σ is (i, j)-acceptable for the message x. In this case, there are only
two possibilities: either σ is i-authentic or (i, j)-fraudulent for the message x. If
σ is i-authentic, then a coalition that does not include the signer Ui has only
a negligible probability of creating σ by Condition 4b of Definition 3.1. If σ is
(i, j)-fraudulent, then Condition 4a of Definition 3.1 guarantees that a coalition
that does not include Uj cannot create σ, except with negligible probability.

4 Dispute Resolution

Given that each verifier has his own distinct verification algorithm, a USS scheme
must necessarily handle the event of a disagreement. That is, since there is no
public verification method as in traditional digital signatures, a USS scheme
must have a mechanism to determine the authenticity of a signature when some
subset of users disagree whether a given signature should be accepted. In partic-
ular, dispute resolution is necessary to convince an outsider of the authenticity
of a disputed signature. In traditional digital signatures, there are no outsiders
to the scheme, in the sense that everyone has access to the public verification
method. In our setting, however, the number of participants (and thereby access
to verification algorithms) is limited. Dispute resolution is a method that effec-
tively deals with need for resolution of disagreements in, for example, a court
setting. Typically, dispute resolution involves all the users voting on the validity
of a signature, or alternatively, a trusted arbiter stating whether a signature is
valid.
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We now incorporate a mechanism for dispute resolution into the basic USS
scheme defined in Section 2. We first consider the requirements of a dispute res-
olution system. With a definition of dispute resolution in place, we can formally
define non-repudiation and transferability and give sufficient conditions for a
USS scheme to satisfy these properties.

Ideally, the dispute resolution process validates a signature if and only if the
signature is authentic, i.e., the signature was produced by the signer. This leads
to the following definitions.

Definition 4.1. A dispute resolution method DR for a USS scheme Π is a
procedure invoked when a user U� questions the validity of a given signature
(x, σ), purportedly signed by Ui. Here U� may be any user in U , including Ui.
The procedure DR consists of an algorithm DR that takes as input a signature
pair (x, σ) and a signer Ui, and outputs a value in {valid , invalid}, together with
the following rules:

1. If DR outputs valid , then (x, σ) must be accepted as an i-authentic signature
on x by all users.

2. If DR outputs invalid , then (x, σ) must be rejected by all users.

We remark that the algorithm DR may have access to additional (secret) scheme
information, as specified by the particular dispute resolution method.

The following definitions formalize the notion of utility of a given DR.

Definition 4.2. Soundness. Let Π be a USS scheme and let DR be a dispute
resolution method for Π. We say DR is sound if, whenever σ is not an i-
authentic signature on x, then DR((x, σ), Ui) outputs invalid .

Definition 4.3. Completeness. Let Π be a USS scheme and let DR be a dispute
resolution method for Π. We say DR is complete if, whenever σ is an i-authentic
signature on x, then DR((x, σ), Ui) outputs valid .

Definition 4.4. Correctness. Let Π be a USS scheme and let DR be a dispute
resolution method for Π. If DR is both sound and complete, we say DR is
correct.

With the addition of a dispute resolution method DR, we adjust the unforge-
ability requirement of a USS scheme by requiring DR to be sound. Similarly, we
require DR to be performed honestly, in the sense that the adversary is not al-
lowed to modify the algorithm DR or its outputs, as this is a necessary condition
for a DR to be sound (or, in fact, complete). In particular, we recognize a new
type of forgery introduced by the dispute resolution process, which necessitates
the soundness property of DR:

Definition 4.5. Let Π be a USS scheme and let DR be a dispute resolution
method for Π. We say a signature σ on a message x is an arbiter-enabled
forgery for signer Ui if σ is not i-authentic, but DR((x, σ), Ui) outputs valid .
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This leads to the following new definition of unforgeability:

Definition 4.6. Let Π be a USS scheme and let DR be a dispute resolution
method for Π. We say Π is DR-unforgeable with parameters (t, ψS , ψV , ε) if
Π is (t, ψS , ψV , ε)-unforgeable (as in Definition 3.2) and the dispute resolution
method DR is sound.

We now move to a discussion of the properties of non-repudiation and transfer-
ability. As previously mentioned, both of these properties are intrinsically linked
to the dispute resolution method. That is, the outcome of the dispute resolution
method determines the success or failure of these attacks. In particular, we show
that completeness is required to achieve both non-repudiation and transferability.

We remark that in order for the dispute resolution method to be invoked in
the first place, there must be disagreement as to the validity of a given signature
σ. In a repudiation attack, the dispute resolution method is necessarily invoked,
as the attack relies on the signer Ui giving a seemingly valid signature σ to the
verifier Uj and then later denying the validity of σ. Similarly, for a transferability
attack, a signature σ that appears valid to Uj is transferred to and rejected by
another user U�, so the dispute resolution method is again invoked. We now
provide formal definitions of these two attacks.

Definition 4.7. Let Π = (U , X, Σ, Gen, Sign, Vrfy) be a USS scheme with secu-
rity parameter 1k and let DR be a dispute resolution method for Π. Let the set
C ⊆ U be a coalition of at most t users, and let ψS and ψV be positive integers.
We define the following signature game RepudiationC,Π(k) with signer Ui ∈ C
and target verifier Uj satisfying Uj /∈ C:

1. Gen(1k) is run to obtain the pair (Sign, Vrfy).
2. The coalition C is given bounded access to the oracles SignO� (·) and

VrfyO� (·, ·, Ui) for � satisfying U� /∈ C. In particular, C is allowed a total of
ψS and ψV queries to the SignO and VrfyO oracles, respectively. It should be
noted that C has unlimited access to the signing and verification algorithms
of any U� ∈ C.

3. The coalition C outputs a signature pair (x, σ).
4. The output of the game is defined to be 1 if and only if the following condi-

tions are met:
(a) σ is (i, j)-acceptable, and
(b) the dispute resolution method DR rejects σ as invalid.

Definition 4.8. Let Π = (U , X, Σ, Gen, Sign, Vrfy) be a USS scheme with se-
curity parameter 1k and let DR be a dispute resolution method for Π. Let ε(k)
be a negligible function of k. We say the combined scheme (Π,DR) satisfies
non-repudiation with parameters (t, ψS , ψV , ε) if for all coalitions C of at most
t possibly colluding users, and for all choices of signer Ui and target verifier Uj,

Pr[RepudiationC,Π(k) = 1] ≤ ε(k).
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Theorem 4.1. Let Π be a (t, ψS , ψV , ε)-unforgeable USS scheme and let DR
be a complete dispute resolution method for Π. Then (Π,DR) provides non-
repudiation, provided that DR is performed honestly.

Proof. Assume Π does not provide non-repudiation; that is, the game
RepudiationC,Π(k) outputs 1 with non-negligible probability. Suppose
RepudiationC,Π(k) with signer Ui and target verifier Uj outputs 1. Then C has
created an (i, j)-acceptable signature pair (x, σ), such that the dispute resolution
method rejects σ as invalid.

Now, σ is either i-authentic or (i, j)-fraudulent. If σ is (i, j)-fraudulent, then
Condition 4a of Definition 3.1 holds, so the output of Sig-forgeC,Π(k) with target
signer Ui and verifier Uj is 1. That is, Π is not (t, ψS , ψV , ε)-unforgeable. If σ is
i-authentic, then the dispute resolution method rejected an i-authentic signature
and is therefore not complete. ��

Definition 4.9. Let Π = (U , X, Σ, Gen, Sign, Vrfy) be a USS scheme with secu-
rity parameter 1k and let DR be a dispute resolution method for Π. Let the set
C ⊆ U be a coalition of at most t users, and let ψS and ψV be positive integers.
We define the following signature game Non-transferC,Π(k) with signer Ui and
target verifier Uj, where Uj /∈ C:

1. Gen(1k) is run to obtain the pair (Sign, Vrfy).
2. The coalition C is given bounded access to the oracles SignO� (·) and

VrfyO� (·, ·, Ui) for � satisfying U� /∈ C. In particular, C is allowed a total
of ψS and ψV queries to the SignO and VrfyO oracles, respectively. It should
be noted that C has unlimited access to the signing and verification algo-
rithms of any U� ∈ C. We let Q denote the set of messages that the coalition
submitted as queries to the oracle SignOi (·). Note that Q does not contain
messages submitted as queries to SignO� (·) for � �= i.

3. The coalition C outputs a signature pair (x, σ) satisfying x /∈ Q.
4. The output of the game is defined to be 1 if and only if the following condi-

tions are met:
(a) σ is (i, j)-acceptable but not (i, �)-acceptable for some verifier U� /∈ C;

or σ is (i, j)-acceptable and some verifier U� ∈ C invokes the dispute
resolution method DR (regardless of whether σ is (i, �)-acceptable).

(b) the dispute resolution method DR rejects σ as invalid.

Definition 4.10. Let Π = (U , X, Σ, Gen, Sign, Vrfy) be a USS scheme with se-
curity parameter 1k and let DR be a dispute resolution method for Π. Let ε(k)
be a negligible function of k. We say the combined scheme (Π,DR) satisfies
transferability with parameters (t, ψS , ψV , ε) if for all choices of signer Ui and
target verifier Uj,

Pr[Non-transferC,Π(k) = 1] ≤ ε(k).

Theorem 4.2. Let Π be a (t, ψS , ψV , ε)-unforgeable USS scheme and let DR
be a complete dispute resolution method for Π. Then (Π,DR) provides trans-
ferability, provided that DR is performed honestly.
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Proof. Suppose Π does not provide transferability, and assume the game
Non-transferC,Π(k) outputs 1, with signer Ui and target verifier Uj /∈ C. Then
C output a signature pair (x, σ) such that x /∈ Q, σ is (i, j)-acceptable, and the
dispute resolution method rejected σ as invalid.

Now, if σ is not (i, �)-acceptable for some U�, then σ must be (i, j)-fraudulent.
This implies that Condition 4a of Definition 3.1 is met. That is, the out-
put of Sig-forgeC,Π(k) with target signer Ui and verifier Uj is 1, so Π is not
(t, ψS , ψV , ε)-unforgeable.

If σ is not (i, j)-fraudulent (and therefore i-authentic), then the dispute resolu-
tion method rejected an i-authentic signature and is therefore not complete. ��

Together, Definition 4.6 and Theorems 4.1 and 4.2 outline requirements for a USS
scheme Π and a dispute resolution method DR to satisfy the desired properties
of unforgeability, non-repudiation, and transferability. In particular, Π must be
(t, ψS , ψV , ε)-unforgeable and DR must be correct (under the assumption that
the adversary is not allowed to modify the algorithm DR).

5 Some Examples of Dispute Resolution Processes

We define three dispute resolution methods and examine the level of trust re-
quired in each scheme.

Definition 5.1. We have the following dispute resolution methods, assuming a
disputed signature σ on message x with signer Ui:

– Omniscient Arbiter (OA) Dispute Resolution: Designate an arbiter equipped
with all of the USS scheme set-up information. The signature σ is considered
valid if the arbiter, using his knowledge of all the signing and verification
algorithms, accepts the signature as authentic.

– Verifier-equivalent Arbiter (VEA) Dispute Resolution: Designate an arbiter
equipped with his or her own verification algorithm, VrfyA, (i.e., the arbiter
will be termed a glorified verifier). The arbiter tests the authenticity of the
signature σ by running VrfyA(x, σ, Ui); the signature is considered valid if
VrfyA(x, σ, Ui) outputs True.

– Majority Vote (MV) Dispute Resolution: Resolve disputes by having the ver-
ifiers vote on the validity of the signature σ. Each verifier is responsible for
running his verification algorithm on (x, σ, Ui) and casting a valid vote if
the verification algorithm outputs True and an invalid vote otherwise. The
signature is considered valid if a predefined threshold of valid votes are cast;
here we consider the case of a majority threshold and assume all verifiers
vote.

However we choose to define the dispute resolution method, it is necessary
to determine the amount of trust placed in the arbiter(s) and incorporate this
notion into the security model. In particular, we must consider the correctness
of these dispute resolution methods.
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In the case of OA dispute resolution, we must completely trust the arbiter, as
he has all the necessary information to sign and verify documents on behalf of
other users. That is, a USS scheme Π with OA dispute resolution clearly cannot
satisfy Definition 4.6 unless the arbiter is honest. Moreover, provided that the
arbiter is honest, this dispute resolution method is both sound and complete, as
the arbiter will be able to determine the authenticity of a given signature and
behave appropriately.

In MV and VEA dispute resolution, we can once again achieve correctness
by assuming the complete honesty of a majority of verifiers or, respectively, the
arbiter. Achieving soundness and completeness is not as clear if we weaken this
trust requirement, however. Suppose we establish VEA dispute resolution and
we allow the arbiter to be a colluding member of a given coalition; we will argue
that soundness is no longer guaranteed.

In the typical VEA setup of current literature [7,10,12], the arbiter is assumed
to be a glorified verifier, with the same type of keying information as an arbitrary
verifier. The arbiter is assumed to follow the rules of the dispute resolution
method honestly and is otherwise treated as a normal verifier in the context of
the security model, i.e., he is allowed to be dishonest otherwise. We refer to this
set of trust assumptions as standard trust assumptions.

We argue that the arbiter’s distinct role in the dispute resolution method
necessitates a more careful study of the arbiter, and that treating the arbiter as a
normal verifier in the context of the security model is insufficient. While certainly
an arbiter that is dishonest during dispute resolution can cause a fraudulent
signature to be deemed valid, we cannot allow the arbiter to be dishonest before
dispute resolution either, contrary to the claims of [10,12]. The case of MV may
be viewed as a generalized version of VEA dispute resolution and the security
results are similar.

In the following theorem, we demonstrate the existence of an arbiter-enabled
forgery in the VEA and MV dispute resolution methods, if we assume that the
arbiter(s) may be dishonest prior to dispute resolution. Thus these methods do
not achieve soundness under the standard trust assumptions.

Theorem 5.1. Let Π be a USS scheme and let DR be a VEA (respectively,
MV) dispute resolution method for Π. Suppose Π is DR-unforgeable. Then the
arbiter A is not a member of C (respectively, a majority of verifiers are not in
C).

Proof. In both cases, we assume the dispute resolution process itself is performed
honestly, as otherwise Π clearly fails to have sound dispute resolution. (For
MV dispute resolution, it suffices to assume the dispute resolution process is
performed honestly by a majority of the verifiers.)

We proceed with VEA dispute resolution. By definition, any (i,A)-acceptable
signature will be accepted by the dispute resolution method as a signature from
Ui. In particular, this implies any (i,A)-fraudulent signature will be accepted
by the dispute resolution method. For any message x, if A ∈ C, then C can
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create a signature σ on x that is (i,A)-fraudulent. This signature σ is not i-
authentic, but would be accepted by the dispute resolution method, thereby
violating soundness.

Similarly, in the case of MV dispute resolution, a group C of dishonest verifiers
can, for any message x, create a signature σ on x such that σ is (i, �)-fraudulent
for any U� ∈ C. If C contains a majority of verifiers, the signature σ would pass
the dispute resolution process and be declared a valid signature from Ui, thereby
violating soundness. ��

Theorem 5.1 indicates that a cheating arbiter A (respectively, a collusion of a
majority of verifiers) can successfully forge an (i, j)-fraudulent signature that
will be accepted by the dispute resolution method for any cooperating user
Uj . Hence, VEA and MV dispute resolution do not protect the signer against
dishonest arbiters, since arbiter-enabled forgeries exist.

We remark that completeness in the VEA and MV methods is guaranteed,
provided that the dispute resolution process itself is performed honestly. Thus, by
Theorem 4.1, a (t, ψS , ψV , ε)-USS scheme Π with VEA or MV dispute resolution
provides non-repudiation under the standard trust assumptions. Transferability,
as noted in Theorem 4.2, also follows under the standard trust assumptions.

That is, the VEA and MV methods do not require trust in the arbiter(s) prior
to dispute resolution in order to achieve non-repudiation and transferability. As
seen above, however, the VEA and MV methods do require the arbiter(s) to be
honest prior to dispute resolution in order to achieve soundness. In this sense,
we see that VEA and MV dispute resolution provide similar verifier security to
trusted OA dispute resolution, but fail to provide similar signer security.

6 Comparison with Existing Models

Our model differs from those in the existing literature in its careful treatment
of i-authentic and (i, j)-fraudulent signatures. In comparison to other works,
our approach is most similar to that of Shikata et al. [12], whose model is also
designed as an extension of traditional public-key signature security notions. We
compare our model with [12] in Section 6.1.

The Hara et al. [7] model for unconditionally secure blind signatures is essen-
tially the same as the Shikata et al. model with an added blindness condition.
Hara et al. separate the unforgeability definition of [12] into a weaker notion
of unforgeability and an additional non-repudiation requirement. The non-
repudiation requirement actually treats more cases than a simple non-repudiation
attack (as the success of the attack is not dependent on dispute resolution), so
the reason for this separation is unclear. The authors of [7] also allow the signer
to be the target verifier, which was not explicitly allowed in the Shikata et al.
model, and so add a separate unforgeability definition for this case.

The models of Hanaoka et al. [5,6] and Safavi-Naini et al. [10] are based on se-
curity notions from message authentication codes (MACs). Hanaoka et al. treat
only a limited attack scenario (which is covered by our model), including imper-
sonation, substitution, and transfer with a trap, and do not include a verification
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oracle. Safavi-Naini et al. treat a similar range of attacks as our model, speci-
fied through denial, spoofing, and framing attacks, and allow both signature and
verification oracles. It is unclear whether Safavi-Naini et al. meant to ensure
strong unforgeability, as the relationship between successful forgeries and oracle
queries is unspecified. Furthermore, our model is more concise, as the denial
attack covers a signer trying to repudiate a signature, whereas we show that it
is unnecessary to treat non-repudiation as a separate part of an unforgeability
definition. In addition, not all attack scenarios included in our definition are
covered by the Safavi-Naini et al. model. For instance, the attack consisting of
signer Ui ∈ C with target verifier Uj , where C creates an (i, j)-fraudulent sig-
nature, is not considered. The Safavi-Naini et al. model considers this scenario
only in the case where an arbiter is involved and rejects the signature (i.e. a
denial attack). In certain applications (e.g., e-cash) we do not want the signer to
be able to create an (i, j)-fraudulent signature, regardless of whether a dispute
resolution mechanism is invoked.

6.1 Comparison with the Model of Shikata et al.

In this section, we discuss several aspects of the model of Shikata et al. [12] and
how our approach differs from theirs.

1. The model in [12] is limited to a single-signer scenario. We consider a more
general model in which any participant can be a signer.

2. In Definition 2 of [12], a signed message (x, σ) is defined to be valid if it was
created using the signer’s signing algorithm. Then, in their “Requirement 1,”
which includes notions for verifiability, dispute resolution, and unforgeabil-
ity, it is stated that (x, σ) is valid if and only if Uj’s verification algorithm
outputs True when given (x, σ) as input. This requirement is problematic,
since Uj can use knowledge of his verification algorithm to find a pair (x, σ)
that has output True; such a pair is then “valid.” However, this means
that a receiver can create valid signatures, and consequently the signature
scheme does not provide unforgeability. Shikata et al. relax this condition
in Requirement 2 by allowing a small error probability that an “invalid”
signature will be accepted by a given verifier. However, this does not rectify
the aforementioned problem, as the probability space in this definition is
unspecified.

3. The definitions of existential forgery and existential acceptance forgery (Defi-
nitions 3 and 4, respectively) are rather complicated. It seems that the notion
of “existential forgery” corresponds to our definition of an i-authentic sig-
nature. The coalition that creates this signature should not include Ui. The
notion of “existential acceptance forgery” apparently is dependent upon the
coalition that creates it. If Ui is in the coalition, then an existential ac-
ceptance forgery would most naturally coincide with our definition of an
(i, j)-fraudulent signature. If Ui is not in the coalition, then it would more
likely mean an (i, j)-acceptable signature. In each case, the coalition creating
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the signature should not include Uj . These definitions are a bit confusing,
and we believe that the concepts of authentic, acceptable, and fraudulent
signatures are helpful in phrasing clear and concise definitions.

4. In Theorem 2 of [12], it is stated without proof that a signature scheme that
is “existentially acceptance unforgeable” is necessarily “existentially unforge-
able.” Roughly speaking, this is logically equivalent to the statement that an
adversary that can create an existential forgery can also create an existen-
tial acceptance forgery. This statement seems rather obvious, but we need to
also consider the coalitions that are creating these signatures. The adversary
creating the existential forgery (i.e., an i-authentic signature) could be any
coalition C that does not include Ui. An i-authentic signature is an exis-
tential acceptance forgery for any user Uj �∈ C ∪ {Ui}. However, a problem
arises if C consists of all users except for Ui. In this situation, an i-authentic
signature created by C is not an existential acceptance forgery for any user.
This situation is not accounted for in Theorem 2 of [12].

5. Notwithstanding the previous points, the definition of “strong security”
in [12] (Definition 9) is very similar to our properties 4a and 4b of Defini-
tion 3.1, except that Definition 9 only covers existential acceptance forgeries.
In order to compare our model with [12], we consider the following three at-
tack scenarios, where Ui denotes the signer and Uj denotes a verifier:
case A. Neither Ui nor Uj is in the coalition C, and C creates an (i, j)-

fraudulent signature.
case B. Ui is not in the coalition C, and C creates an i-authentic signature.
case C. Ui ∈ C, Uj �∈ C, and C creates an (i, j)-fraudulent signature.
In our security definition (Definition 3.1), property 4a is equivalent to the
union of case A and case C, and property 4b is equivalent to case B. Now,
Definition 9 in [12] considers two attacks: property 1) is the union of cases
A and B, but does not include the case where there is no target verifier, as
discussed in the previous point; and property 2) is case C.

6. Finally, we give a more complete treatment of dispute resolution than is
presented in [12].

7 Construction

Current literature favors constructions using multivariate polynomials. We con-
sider the security of the construction from Hanaoka et al. [5] in our security
model.

7.1 General Scheme Outline

Key Pair Generation. Let Fq be a finite field with q elements such that
q ≥ n. The TA picks v1, . . . , vn ∈ Fω

q uniformly at random for users U1, . . . Un,
respectively. For technical reasons, we assume the n elements v1, . . . vn ∈ Fω

q

satisfy the additional property that for any subset of size ω+1, the corresponding
subset of size ω + 1 formed from the new vectors [1, v1], . . . , [1, vn] ∈ Fω+1

q is a
linearly independent set.
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The TA constructs the polynomial F (x, y1, . . . , yω, z) as

F (x, y1, . . . , yω, z) =
n−1∑
i=0

ψ∑
k=0

ai0kxizk +
n−1∑
i=0

ω∑
j=1

ψ∑
k=0

aijkxiyjz
k,

where the coefficients aijk ∈ Fq are chosen uniformly at random.
For each user Uζ for 1 ≤ ζ ≤ n, the TA computes the signing key sζ(y1, . . . ,

yω, z) = F (Uζ , y1, . . . , yω, z) and the verification key ṽζ(x, z) = F (x, vζ , z). It is
assumed the TA can communicate with the users via secure channels and deletes
the information afterwards.

Signature Generation and Verification. For a message m ∈ Fq, Uζ gener-
ates a signature σ by

σ(y1, . . . , yω) = sζ(y1, . . . , yω, m).

To verify a signature pair (m, σ) from Uζ, a user Uν checks that

σ(vν ) = ṽν(Uζ , m).

7.2 Security Results

We consider the game Sig-forgeC,Π(k) and calculate the probability that the
output is 1. In particular, we consider the probability that the coalition C pro-
duces a signature pair (x, σ) satisfying Conditions 4a and 4b of Definition 3.1
separately. Here we set t = ω and ψS = (n−ω)ψ, where ψ is the total number of
SignO� oracle queries for each user U� /∈ C. That is, we allow C to have at most
ω members and to have access to ψ sample signatures from each user U� /∈ C.
In addition, C has access to ψF VrfyO queries.

The proof for the following result appears in the full version of our paper [15].

Theorem 7.1. Under the above assumptions, C outputs a signature pair (x, σ)
in the game Sig-forgeC,Π(k) of Definition 3.1 satisfying Condition 4a with prob-
ability at most 1

q−ψF −1 and Condition 4b with probability at most 1
q−ψF

.

8 Conclusion

We have presented a new security model for unconditionally secure signature
schemes, one which fully treats the implications of having multiple verification
algorithms. In particular, we have given a formal discussion of dispute reso-
lution, a necessary component of any USS scheme, and analyzed the effect of
dispute resolution on unforgeability. We have provided formal definitions of non-
repudiation and transferability, and given sufficient conditions for a USS scheme
to satisfy these properties. Moreover, we have analyzed the trust assumptions
required in typical examples of dispute resolution. Finally, we have given the
results of an analysis of Hanaoka et al.’s construction [5] in our security model.
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Abstract. Bell inequalities are linear constraints on the set of output-
probabilities of multi-player protocols that are satisfied by all classical
(i.e., local realist) protocols, but that can be violated by quantum pro-
tocols using entanglement. This talk will survey the history and present
state of knowledge regarding such inequalities, with a view to their ap-
plication in (quantum) cryptography.

1 Entanglement

One of the most striking features of quantum mechanics is the fact that entangled
particles exhibit correlations that cannot be reproduced or explained by classi-
cal physics (i.e., by “local hidden-variable theories”). This was first discovered
by Bell [1] in response to Einstein-Podolsky-Rosen’s challenge to the complete-
ness of quantum mechanics [2]. Experimental realization of such correlations is
the strongest proof we have that nature does not behave according to classical
physics—one of the deepest and most puzzling results to have come out of all of
science. Many such experiments have been done. All behave in accordance with
quantum predictions, though so far none has closed all “loopholes” that would
allow some (usually very contrived) classical explanation of the observations
based on imperfect behavior of, for instance, the photon detectors used.

2 Bell Inequalities

We will restrict attention to two-player scenarios. For our purposes, it is conve-
nient to cast Bell inequalities as statements about two-player games. In such a
game G, the two players (call them Alice and Bob) receive inputs x and y, re-
spectively, distributed according to some known joint probability distribution π.
Alice and Bob produce outputs a and b, respectively, and there is a predicate V
(possibly randomized) to determine whether an output pair a, b wins the game
given input pair x, y.

A protocol describes what Alice and Bob do given their respective inputs. The
players are assumed to be spatially separated and hence cannot communicate
� Supported by a Vidi grant from NWO, and EU-grant QCS.
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during the course of the game. Classical players can start the game with shared
randomness, while quantum players can start with a shared entangled state, for
instance some EPR pairs. The protocol determines, for each input pair x, y, a
probability distribution P (ab|xy) on the various possible output pairs. We will
use P to denote both a protocol and its associated set of output distributions.
The winning probability of a protocol P is

w(P, G) =
∑

x,y,a,b

π(x, y)P (ab|xy)V (ab|xy).

A Bell inequality is the statement that w(P, G) ≤ w for all classical proto-
cols P . The tightest possible Bell inequality for the game G has of course
w = maxclassical P w(P, G). A quantum protocol whose output probabilities sat-
isfy W (P, G) > w, is said to violate this Bell inequality—it achieves something
that no classical protocol can achieve.

Most of the talk will survey the main things we know about Bell inequalities:

– Even one or a few EPR pairs can already give substantial Bell inequality
violations, for instance in the CHSH game [3] and the magic square game [4].

– For XOR games, where a and b are one bit each, and the winning predicate
depends only on the XOR a ⊕ b, the maximal Bell inequality violation is
bounded by a constant independent of how much entanglement the quantum
players use [5]. This is a consequence of Grothendieck’s inequality.

– With non-binary outputs and large entangled states, the Bell inequality vio-
lation can be unbounded for games that are not XOR-games. In particular,
there exists a game where each player has n possible outputs, the best classi-
cal winning probability is roughly 1/n, and the best quantum winning prob-
ability is roughly 1/(log n)2, achieved using a maximally entangled state of
local dimension n [6]. Such a separation is close to best-possible when mea-
sured in terms of the local dimension of the entangled state [7], as well as
the number of outputs per player [8].

– There are games where maximally entangled states (e.g., arbitrarily many
EPR pairs) do not yield any advantage over classical protocols, while some
specific non-maximally entangled state gives huge advantage [8,9]. This re-
futes the intuition that maximally entangled states are somehow the “best”
or “strongest” entangled states in our scenario.

3 Cryptography

Entanglement often plays a destructive role in quantum cryptography. For in-
stance it can be used to break all quantum protocols for bit commitment [10,11],
even ones that were earlier claimed to be perfectly secure [12] (and which indeed
are secure in the absence of entanglement). A more recent example is the use of
entanglement to break all possible schemes for position-based cryptography [13].

However, there are also some positive uses of entanglement (and Bell inequal-
ities) in cryptography. For example, Ekert’s scheme [14] distributes EPR pairs
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between Alice and Bob, and then tests a random subset of them to ensure that
Alice and Bob really share states that are sufficiently close to EPR pairs (i.e.,
that the eavesdropper hasn’t tampered with them too much). One way to test
this is by implementing a Bell inequality violation: for example if Alice and Bob
do not share close-to-perfect EPR pairs, then they won’t be able to maximally
violate the CHSH inequality. Once this test is passed, the shared EPR pairs can
be measured to yield shared random bits that are unknown to the eavesdropper.
Other applications of Bell inequalities are device-independent cryptography [15]
(where Alice and Bob don’t trust their own measuring devices), testing the di-
mension of Hilbert spaces [16], and the analysis of parallel repetition.
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Abstract. Tamper-proof devices, especially one-time memories
(OTMs), are very powerful primitives. They can, e.g., implement one-
time programs, i.e. circuits that can be evaluated only once. Furthermore
they exhibit a non-signaling nature: The issuer of the device cannot tell
whether the receiver interacted with the device. However, due to this
non-signaling property, it is non-trivial to obtain protocols with a clear
defined end from such devices. The main contribution of this paper is a
significant improvement of previous reductions from oblivious transfer
to OTMs. The most extreme primitive with respect to non-signaling is
the so called non-local box (NL-Box), where neither the sender nor the
receiver get to know if the respective other party has interacted with
the NL-Box. We show that OTMs can securely be implemented from
NL-Boxes. To the best of our knowledge this is the first protocol to
cancel the non-signaling property of an NL-Box for exactly one party.

Keywords: Statistical Security, Efficient Reductions, One-Time Mem-
ories, Non-local Boxes.

1 Introduction

Tamper-proof hardware tokens, in particular one-time memories (OTMs), have
turned out as very useful primitives in cryptography, as they allow for informa-
tion-theoretically secure protocols that are universally composable. Beyond that,
they can be employed for one-time programs, i.e. circuits that can be evaluated
only once. An interesting feature of such hardware tokens is that the hardware
vendor is completely oblivious of when the receiver of a token interacts with it.
Following terms of quantum physics, we say that OTMs are “non-signaling” for
the sender. However, this property is a mixed blessing. Sophisticated protocol
techniques are needed, when one wants to implement functionalities with well-
defined end for all participants.

In this paper we contribute a significant improvement on previous reducibility
results between OTMs (which can be seen as a non-signaling version of oblivious
transfer that does not let the sender learn when the receiver did input his choice
bit) and Ext-OTMs (which additionally output an auxiliary string that may
serve as a proof that the receiver has interacted with the hardware token). The
new protocol has a linear complexity and hence is asymptotically optimal.
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Another non-signaling primitive we study are non-local boxes (NL-Boxes).
These are a concept from physics which in an abstract way captures the prop-
erties of entanglement and local measurements1. Due to the non-signaling con-
dition of local measurements neither party can be sure that the other party
already provided input to the NL-Box. As mentioned above, this necessitates
sophisticated protocol techniques, when one wants to implement functionalities
with well-defined end from NL-Boxes. We show how an ideal OTM-functionality
can be reduced to NL-Boxes. To the best of our knowledge we provide the first
protocol that abrogates the non-signaling property of an NL-Box for exactly one
party, while non-signaling is still granted for the other party.

1.1 Related Work

Recently, [GKR08] introduced the notion of one-time programs. Such programs
can be executed only on one single input, which is chosen at runtime. The non-
interactivity of one-time programs is attained by the use of one-time memory
devices (OTMs). The intuition behind such an OTM is a hardware token with
two values stored on it, such that after one value has been read out the other one
becomes unaccessible. Hence OTMs are somehow a natural non-interactive vari-
ant of

(
2
1

)
-OT [EGL85]: While in the OT-functionality the sender gets informed

whether the receiver provided his choice bit to the primitive or not, OTMs do
not provide any well defined moment of protocol termination to the sender. In
[GIS+10] it was shown that a protocol from [BCS96], which implements String-
OT from Bit-OT in a non-interactive way, can be adapted to implement String-
OTMs from Bit-OTMs. Another contribution of [GIS+10] is the construction of
so-called Ext-OTMs, which comprise the same functionality as OTMs, but ad-
ditionally take an auxiliary input string from the sender and output this string
upon input of the receiver’s choice bit. Ext-OTMs are of particular interest, as
the receiver now can easily prove (by announcing the auxiliary string) that his
input is fixed.

In [WW05] non-local boxes (NL-Boxes), a somewhat artificial primitive arising
from the study of non-locality in quantum systems [PR94], were used to construct
a non-interactive protocol for OT. NL-Boxes are two-party primitives that take
input x, y ∈ {0, 1} and produce random output a, b ∈ {0, 1} with x ∧ y = a⊕ b,
where (x, a) is Alice’s input-output tuple and (y, b) is Bob’s input-output tuple.
A crucial feature is that NL-Boxes are non-signaling: Whenever a party provides
its input bit, the according output bit is generated immediately. So NL-Boxes go
a step further than OTMs in matters of keeping secret the moment of protocol
termination.

It was noticed by [BCU+06] and independently by [SGP06] that the proto-
col for OT from NL-Boxes in [WW05] is not composable unless the protocol
parties are notified about the NL-Box inputs of each other, what would be a
direct contradiction to the non-signaling property. Still, [BCU+06] provided an

1 Actually, NL-Boxes are an over-idealization, which cannot be implemented by quan-
tum measurements [PR94].
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alternative protocol for OT from NL-Boxes. This protocol ensures that no party
can delay its input beyond the moment of the other party’s output, but needs
several rounds of interaction between the sender and the receiver of the OT.

1.2 Our Contribution

We give a new construction for Ext-OTMs from OTMs, which is more efficient
than that of [GIS+10]. Thereby we achieve asymptotic efficient String-OT from
Bit-OTMs (via Ext-OTMs), using only a linear number (in the string length)
of Bit-OTMs. This can be considered an optimal result, as String-OT obviously
cannot be implemented from a sub-linear number of Bit-OTMs. In contrast,
the original construction of [GIS+10] has a polynomial reduction factor of much
higher degree. Additionally, by similar techniques we implement OTMs from NL-
Boxes. To the best of our knowledge we give the first protocol for OTMs from
NL-Boxes in the literature. We also argue that NL-Boxes cannot be implemented
from OTMs, which in turn cannot be implemented from OT. Conclusively, this
provides a strict hierarchy of NL-Boxes, OTMs and OT.

For our reduction of Ext-OTM to OTM we develop a new information-
theoretic tool, which we call (C, ρ)-All-Or-Nothing matrices and that might be
of independent interest. These matrices are an advancement over the zizag ma-
trices introduced in [BCS96], as they can be used to disguise random codewords
from linear codes instead of only random bit-strings. We also show that (C, ρ)-
All-Or-Nothing matrices can be generated probabilistically, using a very simple
and efficient algorithm.

2 Preliminaries

2.1 Framework

We state and prove our results in the Universal-Composability (UC) framework
of [Can01]. In this framework security is defined by comparison of an ideal model
and a real model. The protocol of interest is running in the latter, where an
adversaryA coordinates the behavior of all corrupted parties. In the ideal model,
which is secure by definition, an ideal functionality F implements the desired
protocol task and a simulator S tries to mimic the actions of A. An environment
Z is plugged either to the ideal or the real model and has to guess, which model
it is actually plugged to. When Z cannot distinguish between ideal and real
model, the protocol is considered secure.

2.2 Linear Codes

For our constructions, we need certain results from coding theory. Specifically,
there exists an explicit family of binary linear codes {Cn} of constant rate R
arbitrarily close to 1 that can efficiently correct an α-fraction of errors, for a
constant α > 0 [SS96, Zém01]. Moreover, for all constants l0 ∈ IN and 0 < R < 1,
there exists an explicit family of linear codes {Cn} over IF2l with l > l0, such
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that {Cn} has rate ≥ R and it can efficiently correct an α-fraction of errors for a
constant α [GI05]. Such a code can also efficiently correct at least an α-fraction
of erasures for trivial reasons.

2.3 Notations

We will use the notation [n] = {1, . . . , n}. We will generally identify bits b ∈
{0, 1} with elements of the finite field IF2, thus we will use + instead of ⊕ and ·
instead of ∧. If I ⊆ [n] and x ∈ IFn

q , we will use the notation xI for the vector
(xi)i∈I ∈ IF|I|

q . Similarly, if M ∈ IFn×m
q , MI denotes the matrix that consists

of the rows of M whose index is in I. For two strings s1 and s2, we denote the
concatenation of s1 and s2 by s1||s2.

3 One-Time-Memories and Non-local Boxes

We say that a cryptographic primitive F is signaling for a party Pi, if Pi is
notified each time another party provides input to F . The well-known Oblivious
Transfer (OT) [Rab81, EGL85] (Figure 1) obviously enjoys this feature. On the
other hand, we shall call primitives that lack this feature non-signaling for Pi.

Functionality FOT

Parametrized by a parameter l.

Send Upon receiving a message (send,sid,Pi,Pj ,(s
(0), s(1))) with (s(0), s(1)) ∈ {0, 1}l×

{0, 1}l from party Pi, go to state ready and store (s(0), s(1)). Send (ready,sid,Pi ,Pj)
to party Pj .

Choice Upon receiving a message (choice,sid,Pi ,Pj ,x) with x ∈ {0, 1} from Pj ,
check if current state is ready. If so, send (out,sid,Pi,Pj ,s

(x)) to Pj and send
(notify,sid,Pi ,Pj) to Pi. Go to state dead.

Fig. 1. The Oblivious-Transfer Functionality

One-Time-Memories (OTM) [GKR08, GIS+10] (Figure 2) are cryptographic
primitives that model tamper-proof memory devices, in which a sender can store
two strings and send the device to a receiver. In their functionality, OTMs re-
semble OT-primitive, with just a slight difference.

An l-Bit-String-OTM stores 2 strings s(0) and s(1) of length l. When queried
with a choice-bit x, the OTM outputs s(x) and erases its contents. Unlike OT,
for which interactive protocols exist, OTM does not notify its sender that it is
being queried by the receiver. Thus, OTM is a non-signaling primitive for the
sender. Moreover, OTMs are unrevocable, as we think of the hardware device
locally present at the receiver. Once sent by its sender, the receiver can choose
to provide its input to the primitive arbitrarily late.
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OTMs were introduced by [GKR08] to implement a cryptographic primitive
called one-time programs (OTPs). The OTP functionality takes a function de-
scription from its sender and allows its receiver to evaluate this function on
exactly one input. Moreover, the receiver’s query is non-signaling for the sender.
The construction of [GKR08] is non-interactive, but it assumes that the sender
of the OTP is trusted and it relies on additional computational assumptions.

Functionality FOTM

Parametrized by a parameter l.

Creation Upon receiving a message (create,sid,Pi,Pj ,(s
(0), s(1))) with (s(0), s(1)) ∈

{0, 1}l × {0, 1}l from party Pi, go to state ready and store (s(0), s(1)). Send
(ready,sid,Pi,Pj) to party Pj .

Choice Upon receiving a message (choice,sid,Pi,Pj ,x) with x ∈ {0, 1} from Pj , check
if current state is ready. If so, send (out,sid,Pi,Pj ,s

(x)) to Pj and go to state dead.

Fig. 2. The One-Time-Memory Functionality

Subsequently, [GIS+10] showed that trusted one-time programs can be imple-
mented using Bit-OTMs alone (Bit-OTMs store strings of length 1). A trusted
one-time program is guaranteed to compute a predefined function of the un-
trusted sender’s secret input and the receiver’s input. Moreover, the construc-
tion of [GIS+10] is unconditionally secure and non-interactive. An important
building-block in [GIS+10] is the Extended-One-Time-Memory (Ext-OTM) func-
tionality (Figure 3). Ext-OTM comprises the same functionality as OTM, but
it takes, additionally to the strings s(0) and s(1), an auxiliary input string r
from its sender. When queried by the receiver with a choice-bit x, it outputs
(s(x), r). An important property of this primitive is that the string r, which the
receiver gets, is independent of his choice-bit x. The reduction of Ext-OTM to
OTM given in [GIS+10] is non-trivial. The trivial approach of using a single
OTM with sender-input ((s(0), r), (s(1), r)) is insecure, as a corrupted sender is
not bound to use the same r for both inputs.

[GIS+10] gives a very simple implementation of OT from Ext-OTM. The
sender chooses an auxiliary string r of length n (statistical security parameter)
uniformly at random and inputs ((s(0), s(1)), r) into Ext-OTM. To prove that he
has already queried Ext-OTM, the receiver sends r to the sender. A cheating
receiver has only negligible chance of guessing r correctly, thus this protocol
securely implements OT. Hence, the signaling property of OT is enforced by
sending the auxiliary string r.

While OTMs are non-signaling only for its sender, there are two-party primi-
tives that are non-signaling for both parties. The Non-local Box (NL-Box) primi-
tive [PR94, WW05] falls in this category (Figure 4). An NL-Box has the following
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Functionality FExt−OTM

Parametrized by parameters l and m.

Creation Upon receiving a message (create,sid,Pi ,Pj ,((s
(0), s(1)), r)) with

(s(0), s(1)) ∈ {0, 1}l × {0, 1}l and r ∈ {0, 1}m from party Pi, go to state ready and
store (s(0), s(0)) and r. Send (ready,sid,Pi ,Pj) to party Pj .

Choice Upon receiving a message (choice,sid,Pi,Pj ,x) with x ∈ {0, 1} from Pj , check
if current state is ready. If so, send (out,sid,Pi,Pj ,(s

(x), r)) to Pj and go to state dead.

Fig. 3. The Extended One-Time-Memory Functionality

functionality. It takes an input x ∈ IF2 from a party Alice and immediately
outputs a random value a ∈ IF2 to her. It also takes an input y ∈ IF2 from Bob
and immediately outputs a random value b to him. Alice and Bob may query the
NL-Box at an arbitrary time and are oblivious to each others queries, due to the
non-signaling property. However, after both of them have queried the NL-Box
the identity x · y = a + b holds, thus their respective outputs are random shares
of x ·y. So NL-Boxes compute a shared-AND-function, which takes two inputs x
and y and outputs shares of their product. As the shares are random, they reveal
no information about the other party’s input nor if the other party has provided
its input yet. [WW05] noted that OT can be implemented using a trusted shared-
AND primitive that is signaling for both parties. [BCU+06] gave an interactive
protocol that realizes OT from NL-Boxes (which are non-signaling).

Functionality: FNL

Initialization Set a state S := ∅. Create variables a, b, x and y. Send ready to PA

and PB .

Choice phase of PA Upon receiving a message (choice,sid,PA ,x) from a party PA,
check if PA ∈ S. If so, do nothing. Otherwise, if S = ∅ store x, choose a uniformly
at random, store a, set S := {PA} and send (result,sid,PA ,a) to PA. If S �= ∅, set
a = y · x + b, S := S ∪ {PA} and send (result,sid,PA,a) to PA. The output to PA is
immediate.

Choice phase of PB Upon receiving a message (choice,sid,PB ,y) from a party PB ,
check if PB ∈ S. If so, do nothing. Otherwise, if S = ∅ store y, choose b uniformly
at random, store b, set S := {PB} and send (result,sid,PB ,b) to PB . If S �= ∅, set
b = y · x + a, S := S ∪ {PB} and send (result,sid,PB ,b) to PB. The output to PB is
immediate.

Fig. 4. The NL-Box functionality
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4 Impossible Reductions

In this Section we show that OTMs cannot be implemented from OT and that
NL-Boxes cannot be implemented from OTMs, even if OTMs in both directions
are granted.

Lemma 1. There is no UC-secure protocol for OTMs in the FOT-hybrid model.

Proof. Note that, once an OTM token has arrived at the reveiver party, all com-
munication between the token and the receiver party is immediate. In contrast,
all communication in the FOT-hybrid model is scheduled by the adversary; this
especially holds for all messages from and to the granted FOT functionalities.
Now let us consider a hypothetical protocol for OTM in the FOT-hybrid model.
First we show that upon input of his choice bit x an honest OTM receiver must
not send any message to the OTM sender or any of the granted FOT function-
alities. This holds true, as otherwise the adversary would be activated between
input of x and output of s(x), either for scheduling an FOT output or for schedul-
ing a regular message. However, this enables the adversary to send an arbitrary
message to the environment, while the receiver party has already got input, but
did not produce output yet. This cannot be simulated in the ideal model, as
there the receiver’s output is immediate. But now we have a contradiction. If
the reciever, upon getting his input, can compute his output without any further
interaction, then this means that he can compute s(0) as well as s(1). Thus, there
is no UC-secure reduction of OTMs to OT.

Lemma 2. There is no UC-secure protocol for NL-Boxes in the FOTM-hybrid
model.

Proof. Note that NL-Box outputs always are immediate. Hence, analogously
to our argumentation above, in a hypothetical NL-Box protocol in the FOTM-
hybrid model each party must be able to perform its choice phase only by local
computation (including some interaction with previously received OTM tokens).
However, this would lead to a hidden variable model for NL-Boxes, but such
a hidden variable model is impossible. If x, y are the NL-Box inputs and the
random variables a, b are the random NL-Box outputs, then in case of x = y = 1
the distribution of a must be close to 1−b; in all other cases the distribution of a
must be close to b. As this case differentiation obviously cannot be obtained from
local computations of the participants, we can conclude that NL-Boxes cannot
be implemented from OTMs in a UC-secure manner.

5 All-Or-Nothing Disclosure of Secrets

In this Section we give a brief introduction of zigzag matrices and define a
new type of All-Or-Nothing matrices that we call (C, ρ)-AON matrices. Zigzag
matrices were originally defined in [BCS96] in order to give a perfectly secure
implementation of String-OT from Bit-OT.
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Definition 1. A matrix M ∈ IFm×n
q , where n > m is a zigzag matrix, if and

only if for every subset I ⊆ [n] at least one of the matrices MT
I , MT

[n]\I has full
rank. In other words, if V is the set of columns of M , then for every subset
W ⊆ V , at least one of the sets W, V \W has full rank.

[BCS96] gives probabilistic and deterministic constructions for zigzag matrices
in IFm×(1+α)m

q for some constant α > 0. The purpose of zigzag matrices is reduc-
ing String-OT to Bit-OT by the following simple, perfectly secure, universally
composable protocol (See Figure 5).

Protocol: String-OT from Bit-OT

Let M ∈ IFm×n
2 be a zigzag matrix.

Send phase Let s(0), s(1) ∈ IFm
2 be Alice’s String-OT input.

– (Alice) Choose v(0), v(1) ∈ IFn
2 uniformly at random such that s(0) = Mv(0)

and s(1) = Mv(1). Instantiate n Bit-OTs OT1, . . . , OTn. For i = 1, . . . , n, input
(v

(0)
i , v

(1)
i ) into OTi.

Choice phase Let x ∈ {0, 1} be Bob’s Choice-Bit.

– (Bob) For i = 1, . . . , n, input x into OTi and let vi be the according OT-output.
Set v = (v1, . . . , vn) and s = M · v. Output s.

Fig. 5. String-OT from Bit-OT

The security-proof for a corrupted sender is trivial. For a corrupted receiver,
it is sufficient to note the following. Let I0 ⊆ [m] and I1 = [m]\I0. If for i ∈ I0

Bob queries OTi with choice-bit 0 and for i ∈ I1 with choice-bit 1, then MT
I0

or
MT

I1
has full rank, which means that s1 or s0 could be equivoked to any value.

This construction has an interesting feature: It is completely non-interactive. As
noted in [GIS+10], it can thus be used to reduce String-OTM to Bit-OTM.

In our construction, we will require the vectors v(0) and v(1) to be codewords
from an error-correcting code C. However, in this case the above protocol will
not be secure anymore in general. The reason for this is that codewords contain
redundancy. More specifically, if M ∈ IFm×n

q is a zigzag matrix, then we can
always find a code C ⊆ IFn

q such that for every codeword c ∈ C, the first
component s1 of s = M · c can always be learned from a single component ci

of c. Let, for instance hT be the first row of M and let e ∈ IFn
2 be the 1-st

unit vector (ei = 1 for i = 1, otherwise ei = 0). We now choose the code C so
that (h − e)T is a row of the parity-check matrix H of C. But then, for every
codeword c ∈ C it holds that s1 = hT c = (h− e)T c + eT c = eT c = c1. Thus the
first component of s = M · c is always identical to the first component of c.

To fix this issue, we have to replace the zigzag matrices by matrices that allow
all-or-nothing disclosure of codewords from a code C. We will call those matrices
(C, ρ)-All-Or-Nothing (AON) matrices.
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Definition 2. Let C ⊆ IFn
q be a linear code of rate R. Let 0 < ρ < R. We call

M ∈ IFm×n
q a (C, ρ)-AON matrix, if for any subset I ⊆ [n] with |I| < ρn, any

y ∈ IFm
q and any codeword c ∈ C, there exists a codeword c′ ∈ C, such that

Mc′ = y and cI = c′I .

The idea behind this definition is that any codeword c, of which no more than
ρn components are known to an adversary, can be equivoked to a codeword c′,
which maps to a desired value under the AON-matrix M . If we choose ρ > 1

2 ,
(C, ρ)-AON matrices enjoy similar properties as zigzag matrices, as for each
decomposition I∪̇Ī = [n] either |I| ≥ ρn or Ī ≥ ρn. The following theorem
states that, given a family of linear codes {Cn} over IFq, there always exists an
(Cn, ρ)-AON matrix M ∈ IFγn×n

q , for a certain choice of the parameters γ and
ρ and sufficiently large n. Let H(·) denote the binary entropy-function.

Theorem 1. Let {Cn} with Cn ⊆ IFn
q be a family of linear codes of rate R. If

H(ρ)
log(q) + ρ + γ < R, then, for all sufficiently large n, there exists a (Cn, ρ)-AON

matrix Mn ∈ IFγn×n
q . Moreover, if H(ρ)

log(q) + ρ + γ = R − ε for some ε > 0, then
such Mn can be generated probabilistically. The probability of generating a matrix
that does not suffice the (Cn, ρ)-AON property is asymptotically less than q−εn.

For the proof see Appendix Section A. In the context of String-OTMs, we can
use AON-matrices to force a corrupted receiver to open more than ρn single
OTMs before he can even learn a single bit of the output. In the UC-scenario,
this means that a simulator can always equivoke a String-OTM output as long
as the adversary has queried less than ρn OTMs, which we will take advantage
of in our protocol construction in the next Section.

Finally, we remark that (C, ρ)-AON matrices are related to ramp-secret-
sharing-schemes [CDG+05, CC06, CCG+07]. In fact, if C ⊆ IFn

q is a linear
code with minimum-distance d, then C together with a (C, ρ)-AON matrix
M ∈ IFγn×n

q yield a linear ramp secret-sharing scheme with ρn-privacy, n−d+1-
reconstruction (as each codeword c ∈ C is uniquely determined by any set of
n− d + 1 of its components) and rate γ. The secret-sharing-scheme obtained in
this manner inherits the specific properties of the code C, like efficient error-
correction.

6 Implementing String Ext-OTM from OTM Efficiently

In this Section, we will describe our protocol that efficiently implements an
O(n)-Bit-String-Ext-OTM from O(n) Bit-OTMs. Before we give a formal de-
scription of the protocol, we shall briefly develop the ideas behind it. The first
idea was using n 2-Bit-String-OTMs, such that Alice’s input to OTMi has the
form (ri||s(0)

i , ri||s(1)
i ), where the ri are the bits of the string r and s

(0)
i , s

(1)
i are

the bits of the strings s(0) and s(1). Thereafter, the receiver has to apply a zigzag
matrix M to his output s(x) so that we can ensure that he only learns one string.
However, there is an obvious problem. A corrupted sender may input different
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r(0) and r(1) for choice bit 0 and 1, thus the string r would depend on the re-
ceiver’s choice bit. To avoid this problem, Bob has to be able to check if both
strings, r(0) and r(1) are the same. To do so, we will encode the string r as a code-
word c of an error-correcting code Cn of rate R1 that can correct an α-fraction
of errors. We further encode the strings s(0) and s(1) as codewords d0 and d1 of
an erasure-correcting code Dn of rate R2 and relative minimum-distance δ.

In the choice phase, Bob will choose a small random set of indices I ⊆ [n],
on which he will check the codeword c for consistency. He needs to perform this
consistency check on the vector c̃ he receives to make sure c(0) and c(1) were
almost (up to a small Hamming-distance) identical. He will query OTMi for
i ∈ I with random choice-bits ui, while he will query all OTMi for i ∈ [n]\I
with his choice-bit x. Bob runs the error-correction algorithm of Cn on c̃. If the
error-correction fails, Bob aborts the protocol. Otherwise the error-correction
returns a decomposition c̃ = c̄ + e, for a codeword c̄ ∈ Cn and an error-vector
e. If an error occurred on support I, thus if eI �= 0, Bob aborts the protocol.
The idea behind this check-step is the following. If a corrupted sender inputs
two different vectors c(0) �= c(1) that are not both in a small hamming-ball
around a common codeword c, then Bob will find an error on support I with
high probability and abort. We remark that simpler abort-criteria for Bob lead
to insecure protocols. If, for instance, Bob’s abort-criterion was to abort if c̃
contains an error in an arbitrary position (not just on I), then Bob’s abort
behavior clearly depends on his choice-bit x. A corrupted Alice could exploit
this by choosing c(0) as a codeword and c(1) as a non-codeword, such that Bob
would, with high probability, abort if his choice-bit is 1.

We still need to deal with the problem that Bob will have incomplete informa-
tion about his desired output d(x). As OTMi has been queried with a uniformly
random choice-bit ui for i ∈ I, Bob will observe some erasures on the support
I in his desired output d(x). For simplicity, we consider all components of d(x)

on support I to be erased. However, those erasures can be corrected using the
erasure-correction algorithm of Dn. If the erasure-correction fails, which can
happen if d(x) contains errors on support [n]\I, then Bob will set d(x) = 0.

This protocol is secure against a corrupted sender, however, we can not yet
simulate this protocol for a corrupted receiver. A corrupted receiver may learn
single bits of c, d(0) or d(1) “prematurely”, that is before his choice-bit x is
determined. Thus a simulator would have to know some bits of c before extracting
the choice-bit x. This is where the (C, ρ)-AON matrices come into play. We will
not use the zigzag matrix anymore to process d(x) to s(x). Instead, the protocol
will require two AON-matrices, one to process the codeword c and one to process
the codeword d(x). The choice of the constants for the AON matrices requires
some care, so we will explain it in detail. Let |I| = βn, for some constant β. Let
M1 ∈ IFγ1n×n

q be a (Cn, ρ1)-AON matrix and let M2 ∈ IFγ2n×n
q be a (Dn, ρ2)-

matrix. We will now derive the constraints by which the constants have to be
chosen. As long as the receiver has opened less than ρ2n OTMs with a choice-bit
x ∈ {0, 1}, he has no information about s(x) = ŝ(x) + M2 · d(x), or that is to say,
a simulator can still equivoke the output. Thus the receiver is committed to a
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choice-bit x ∈ {0, 1} after opening 2(1− ρ2)n OTMs, as either at least (1− ρ2)n
of them were queried with choice bit x = 0 or at least (1−ρ2)n were queried with
choice-bit x = 1. This means that we have to be able to equivoke the codeword
c until at least 2(1− ρ2)n OTMs in [n] have been queried, which means that we
have to choose ρ1 according to

ρ1n > 2(1− ρ2)n ⇔ ρ2 > 1− ρ1

2
. (1)

Moreover, we have to choose β < δ, as Bob needs to be able to correct the
erasures that arise from randomly checking OTMs on support I.

We will now show that these constraints on the constants can always be met.
For sake of simplicity, we will choose Dn = Cn, as any error-correcting code is
also a erasure-correcting code. This choice also allows us to set M = M1 = M2,
and therefore ρ = ρ1 = ρ2. Thus, (1) becomes ρ > 2

3 . Now fix a 2
3 < ρ < 1. We

can always find constants q, γ > 0 and ε > 0, such that r = H(ρ)
log(q) +ρ+γ < 1− ε.

Moreover, there exists a family Cn of linear codes of length n, that has rate
R > r, an alphabet-size 2l = q, relative minimum-distance δ that can correct an
α-fraction of error [GI05]. Finally we can fix a constant β > 0 with β < α

2 and
β < ρ. As the choice of Cn involves choosing the order q = 2l of the field IFq to
be a large constant, we need to use 2l-Bit-String-OTMs for OTM1, . . . , OTMn.
Each of those 2l-Bit-String-OTMs can be efficiently realized using a constant
number of Bit-OTMs with the construction of [BCS96] using intersecting codes.
We thus implement a γln-String Ext-OTM with auxiliary string of length γln,
using a total of σln Bit-OTMs. Here, σl is the number of Bit-OTMs required
to construct an l-Bit-String-OTM by one of the constructions given in [BCS96].
This concludes the informal description of the protocol, the full description is
given in Figure 6. For the proof of UC-security of the Ext-OTM from OTM
protocol, see the full version of this paper.

7 Implementing OTM from NL-Boxes

In this Section, we will show that some of the same techniques as used in Section 6
can be used to implement OTMs from NL-Boxes. The starting-point for this
protocol-construction is noting that the functionalities NL-Boxes and OT/OTM
are closely related [WW05, BCU+06]. More precisely, consider the following
simple protocol that implements a Bit-OTM from a single NL-Box, given that
the sender Alice is honest. If (s(0), s(1)) ∈ IF2 × IF2 is Alice’s input, she inputs
s(0)+s(1) into the NL-Box and receives a share a. Alice then sends ŝ = a+s(0) to
Bob, what concludes the send phase. In his choice phase, Bob inputs his choice-
bit x into the NL-Box and receives a share b. Bob then sets s(x) = ŝ + b to be
his output. It holds that s(x) = ŝ + b = s(0) + a + b = s(0) + (s(0) + s(1))x, thus
this protocol correctly implements an OTM. [BCU+06, SGP06] pointed out a
problem if Alice is corrupted: Alice does not provide input but sends a random
ŝ to Bob. Bob will then receive a random s(x), but Alice will be able to adaptively
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Protocol: Ext-OTM from OTM

Let n ∈ IN be the security parameter and let Cn ⊆ IFn
2l be a linear code of rate R,

relative minimum-distance δ that can correct an α-fraction of errors.

Send phase: (Alice) Let (s(0), s(1)) ∈ IFγn

2l × IFγn

2l and r ∈ IFγn

2l be Alice’s Ext-OTM
input.

– Generate a (Cn, ρ)-AON matrix M ∈ IFγn×n

2l .

– Choose three codewords c, d(0), d(1) ∈ Cn uniformly at random. Set ŝ(0) = s(0) −
Md(0), ŝ(1) = s(1) − Md(1) and r̂ = r − Mc.

– Instantiate n 2l-bit OTMs OTM1, . . . , OTMn and input (ci||d(0)
i , ci||d(1)

i ) into
OTMi for i = 1, . . . , n. Send M , ŝ(0), ŝ(1) and r̂ to Bob.

Choice phase: (Bob) Let x ∈ {0, 1} be Bob’s choice bit.

– Wait until the ready-message has been received from all of OTM1, . . . , OTMn.
– Choose a set I ⊆ [n] with |I | = βn uniformly at random.
– For i ∈ [n]\I , set yi = x. For i ∈ I , choose yi uniformly at random. Input yi into

OTMi for i = 1, . . . , n. Let c̃i||di be the output of OTMi. Set c̃ = (c̃1, . . . , c̃n).
Set d̃ such that d̃i = ⊥ for i ∈ I and d̃i = di for i ∈ [n]\I .

– Run the decoding-algorithm of Cn on c̃. Abort if the decoding fails. Let c̃ = c̄+e,
for a c̄ ∈ Cn and an error-vector e, be the decomposition returned by the decoding
algorithm. Abort if eI �= 0. Otherwise set r = r̂ + M · c̄

– Run the erasure-correction algorithm of Cn on d̃. If the erasure-correction fails,
set s = 0. Otherwise, if d̄ ∈ Cn is the output of the erasure-correction, set
s = ŝ(x) + M · d̄.

– Output (s, r)

Fig. 6. Ext-OTM from OTM

change s(1−x) (the value Bob did not query). This can lead to problems, for
instance when implementing commitments [EGL85] with OTM. We thus need
to enforce that Alice provides inputs to her NL-Boxes, which we will obtain in
a similar fashion as in Protocol Ext-OTM from OTM.

We will now explain our protocol that implements the OTM primitive from
NL-Boxes. It will have an interactive send phase and a non-interactive choice
phase. Let Cn ⊆ IFn

2 be a code from a family of binary linear codes of rate R that
can correct an α-fraction of errors and let β > 0 be a constant such that β < α

2

and β < R
2 . The protocol will make use of 3n NL-Boxes NL(1)

1 , NL(2)
1 , NL(3)

1 , . . . ,

NL(1)
n , NL(2)

n , NL(3)
n . In a nutshell, for indices i = 1, . . . , n, we will use an “entan-

glement” of NL(1)
i and NL(2)

i , to transfer the bits ci of a codeword c ∈ Cn from
Bob to Alice. For indices i in a subset Ī ⊆ [n] we will use an “entanglement”
of NL(2)

i and NL(3)
i to implement an OTM from Alice to Bob. Alice will have

to query both NL(1)
i and NL(2)

i to learn the code-bit ci and she will be committed
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to an input once she has queried a NL(2)
i0

with i0 ∈ Ī with an input xi0 . If Alice

inputs an x′ �= xi0 into one of NL(2)
i and NL(3)

i for i ∈ Ī, Bob’s output will be
random. In order to learn the codeword c with sufficiently high probability, Alice
has to query such an NL(2)

i0
. Thus Alice can prove to Bob that she has fixed her

input by sending c to Bob. To make sure that c does not contain information
about Alice’s input, we will use error-correction.

The protocol starts with an initialization phase. First, the parties instantiate
3n NL-Boxes NL(1)

1 , NL(2)
1 , NL(3)

1 . . . , NL(1)
n , NL(2)

n , NL(3)
n between them. Bob now

chooses a codeword c ∈ Cn uniformly at random. For i = 1, . . . , n, Bob chooses
a random bit ui and inputs ui into NL(1)

i and NL(2)
i , let b

(1)
i and b

(2)
i be Bob’s

according outputs. Set ĉ = (c1 + b
(1)
1 + b

(2)
1 , . . . , cn + b

(1)
n + b

(2)
n ). Bob now sends

ĉ to Alice. The idea about this is the following. ĉ is a double-encryption of c. In
order to decrypt a bit ĉi to ci, Alice needs to query NL(1)

i and NL(2)
i with some

choice-bit xi, to get the shares a
(1)
i and a

(2)
i . Assume Alice queries NL(1)

i with
xi and NL(2)

i with x′
i. Let Alice’s outputs of NL(1)

i and NL(1)
i be a

(1)
i and a

(2)
i .

Then it holds that ĉ+a
(1)
i +a

(2)
i = ci + b

(1)
i + b

(2)
i +a

(1)
i +a

(2)
i = ci +xiui +x′

iui.
Thus, if xi = x′

i then ĉi decrypts to ci, otherwise ĉi decrypts to a random value
ci + ui. We have thus forced the receiver Alice to provide input to the NL(2)

i in
order to learn the codeword c.

We will now continue describing the protocol. Upon receiving ĉ from Bob,
Alice chooses a set I ⊆ [n] with |I| = βn uniformly at random. Let s(0), s(1) ∈ IF2

be Alice’s input. For i ∈ I, Alice chooses xi uniformly at random, for i ∈ Ī she
sets xi = s(0) +s(1). For i = 1, . . . , n Alice inputs xi into NL(1)

i , NL(2)
i and NL(3)

i .
Let a

(1)
i , a

(2)
i and a

(3)
i be her according outputs. As discussed, she computes

c̃ = (ĉ1 + a
(1)
1 + a

(2)
1 , . . . , ĉn + a

(1)
n + a

(2)
n ). To make sure that the codeword she

will send to Bob is independent of the xi, Alice now runs the error-correction
algorithm of Cn on c̃ and aborts if the error-correction fails. If not, let c̃ = c̄ + e
for a codeword c̄ ∈ Cn and an error-vector e. If eI �= 0 Alice aborts. This means,
if Alice finds that Bob tried to cheat her on a randomly chosen check-set I, Alice
decides to abort. Otherwise she computes ŝ = s(0) +

∑
i∈Ī(a

(2)
i + a

(3)
i ) and sends

(I, c̄, ŝ) to Bob. If c̄ �= c, Bob aborts. This concludes the send phase.
We will now describe Bob’s choice phase. Let y ∈ IF2 be Bob’s choice-bit.

Bob chooses input bits yi ∈ IF2 for i ∈ Ī = [n]\I uniformly at random such that∑
i∈Ī yi = y and inputs yi + ui into NL(3)

i , for i ∈ Ī. Let b
(3)
i , for i ∈ Ī, be the

according outputs. Bob computes s(y) = ŝ+
∑

i∈Ī(b
(2)
i +b

(3)
i ) and creates output

s(y). This concludes the description of the protocol. The formal description is
given in Figure 7.

We will now briefly sketch why Alice is committed to a fixed input, once she
has sent ŝ and queried an NL-Box NL(2)

i0
with index i0 ∈ Ī. Assume that Alice

has queried some of the NL(2)
i or NL(3)

i with xi0 , and others with x′ �= xi0 .
Let J (2) ⊆ Ī be the set of indices such that Alice has input xi0 into NL(2)

j (for
j ∈ J (2)) and, analogously, J (3) ⊆ Ī be the set of indices such that Alice has
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Protocol: OTM from NL

Let n ∈ IN be the security parameter and let Cn ⊆ IFn
2 be a binary linear code of

rate R that can correct an α-fraction of errors.

Send Phase: Let (s(0), s(1)) ∈ IF2 × IF2 Alice’s OTM input.

1. Instantiate 3n NL-Boxes NL
(1)
1 , NL

(2)
1 , NL

(3)
1 . . . , NL

(1)
n , NL

(2)
n , NL

(3)
n between Al-

ice and Bob.
2. (Bob) Choose a codeword c ∈ Cn uniformly at random. For i = 1, . . . , n choose

ui ∈ IF2 uniformly at random and input ui into NL
(1)
i and NL

(2)
i . Let b

(1)
i and

b
(2)
i be the according outputs. Set v = (b

(1)
1 + b

(2)
1 , . . . , b

(1)
n + b

(2)
n ), ĉ = c+ v. Send

ĉ to Alice.
3. (Alice) Choose a set I ⊆ [n] with |I | = βn uniformly at random. For i ∈ I , choose

xi uniformly at random, for i ∈ Ī , set xi = s(0) + s(1). For i = 1, . . . , n, input xi

into NL
(1)
i , NL

(2)
i , NL

(3)
i and let a

(1)
i , a

(2)
i and a

(3)
i be the according outputs. Set

w = (a
(1)
1 +a

(2)
1 , . . . , a

(1)
n +a

(2)
n ) and compute c̃ = ĉ+w. Run the error-correction

algorithm of Cn on c̃ and abort if it fails. Otherwise, let c̃ = c̄ + e for a codeword
c̄ ∈ Cn and an error-vector e. Abort if eI �= 0. Otherwise set ŝ = s(0) +

∑
i∈Ī a2,i.

Send is (I, c̄, ŝ)
4. (Bob) Abort if c̄ �= c.

Choice Phase: (Bob) Let y ∈ IF2 be Bob’s choice-bit.

– For i ∈ Ī, choose yi uniformly at random such that
∑

i∈Ī yi = y. For i ∈ Ī , input

yi +ui into NL
(3)
i and let b

(3)
i be the according output. Set s(y) = ŝ+

∑
i∈Ī(b

(2)
i +

b
(3)
i ) and output s(y).

Fig. 7. OTM from NL

input xi0 into NL(3)
j (for j ∈ J (3)). Then, the s(y) that Bob observes will have

the form

s(y) = ŝ +
∑
i∈Ī

(b(2)
i + b

(3)
i ) = s(0) +

∑
i∈Ī

(a(2)
i + a

(3)
i + b

(2)
i + b

(3)
i )

= s(0) + xi0

⎛⎝ ∑
j∈J(2)

uj +
∑

j∈J(3)

(uj + yj)

⎞⎠ + x′

⎛⎝ ∑
j∈Ī\J(2)

uj +
∑

j∈Ī\J(3)

(uj + yj)

⎞⎠
= s(0) + u∗

for a random u∗. The value u∗ is random (from Alice’s view) because it holds
that either xi0 = 1 or x′ = 1 and the uj, uj+yj are 2n−1-wise independent (they
are only restricted by

∑
i∈Ī yi = y), i.e. the bracket terms each are uniformly

random. Thus, the only effect of retaining some of her NL-Box inputs is that she
learns her own (fixed) input either delayed or not at all. The correctness of the
protocol can be seen as follows. We have
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s(y) = ŝ +
∑
i∈Ī

(b(2)
i + b

(3)
i ) = s(0) +

∑
i∈Ī

(a(2)
i + a

(3)
i + b

(2)
i + b

(3)
i )

= s(0) +
∑
i∈Ī

(xiui + xi(ui + yi)) = s(0) + (s(0) + s(1))
∑
i∈Ī

yi

= s(0) + (s(0) + s(1))y,

thus Protocol OTM from NL correctly implements the OTM-functionality. For
the proof of UC-security of the OTM from NL-Box protocol, see the full version
of this paper.

8 Conclusion

In this paper we have provided a new construction for Ext-OTM from String-
OTM. As String-OTM has recently been shown linear-rate reducible to Bit-
OTM, our construction yields Ext-OTM from Bit-OTM with linear rate, what
is asymptotically optimal. Furthermore, we gave a protocol for Bit-OTM from
NL-Boxes, which uses similar techniques. To the best of our knowledge this is the
first protocol that reliably cancels the non-signaling property of an NL-Box for
exactly one party. However, when implementing String-OTMs from NL-Boxes
using our constructions, one ends up with an overall reduction factor which is
super-linear. So there still is some potential for optimization.

As a vital tool for our reduction of Ext-OTM to String-OTM we developed
a new All-or-Nothing technique to hide random codewords of linear codes. In
particular, we defined (C, ρ)-AON matrices M ∈ IFγn×n

q that allow to arbi-
trarily equivoke Mc for every codeword c, even if any ρn components of c are
already public. We showed that such matrices can be constructed probabilis-
tically by a very simple and efficient algorithm. We consider it an interesting
problem, whether there is a deterministic construction of (C, ρ)-AON matrices
M ∈ IFγn×n

q for a linear code C of constant rate R that can efficiently corrects
an α-fraction of errors. If such a construction is possible for ρ > 2

3 and arbitrary
rate R, then the protocol in Figure 6 can be made perfectly secure against a
corrupted receiver.
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Appendix

A Existence and Generation of (C, ρ)-AON Matrices

Here, we will prove that, given a family of linear codes {Cn} over IFq, there
always exists an (Cn, ρ)-AON matrix M ∈ IFγn×n

q , for a certain choice of the
parameters γ and ρ and sufficiently large n. We will also show that such (Cn, ρ)-
AON matrices can be generated probabilistically. We will first prove a technical
lemma for our theorem.
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Lemma 3. Let M ∈ IFm×n
q be a random matrix that is uniformly distributed.

Let B ∈ IFn×k
q , where k ≤ n, be a full rank matrix. Then the random matrix

M ′ = M · B is uniformly distributed in IFm×k
q .

Proof. The i-th row of M assigns how to linearly combine the i-th row of M ′

from the rows of B, thus the rows of M ′ are statistically independent of each
other. Further, since the rows of B contain a basis of IF1×k

q , each row of M ′ is
uniformly random.

We will now state and prove our main theorem about (C, ρ)-AON-matrices. H(·)
denotes the binary entropy-function.

Theorem 1. Let {Cn} with Cn ⊆ IFn
q be a family of linear codes of rate R. If

H(ρ)
log(q) + ρ + γ < R, then, for all sufficiently large n, there exists a (Cn, ρ)-AON

matrix Mn ∈ IFγn×n
q . Moreover, if H(ρ)

log(q) + ρ + γ = R − ε for some ε > 0, then
such Mn can be generated probabilistically. The probability of generating a matrix
that does not suffice the (Cn, ρ)-AON property is asymptotically less than q−εn.

Proof. Let the code Cn be given by a generator-matrix G in systematic form,
thus the first Rn components of a codeword is its corresponding information-
word. Let P be a matrix that projects IFn

q to IFRn
q by dropping all but the first Rn

components of a vector, thus P ·G = 1, where 1 ∈ IFRn×Rn
q is the identity matrix.

For a subset I ⊆ [n] with |I| < ρn let VI = ker(GI) = {s ∈ IFRn
q |GIs = 0}. VI

has a dimension greater than or equal (R − ρ)n, as the linear equation-system
GIs = 0 puts at most |I| < ρn linear constraints on s ∈ IFRn

q . Let BI ∈ IFRn×m
q

be the basis-matrix for a canonical basis of VI , where m = dim(VI) ≥ (R− ρ)n.
In the first step of the proof we will show the following. The matrix M = W ·P ,

where W is an arbitrary IFγn×Rn
q matrix, is a (Cn, ρ)-AON matrix, if and only

if for every I ⊆ [n] with |I| < ρn the matrix W ′ = W · BI has full rank. In the
second step we will show that if the matrix W is chosen uniformly at random,
this condition is met with high probability, given that n is sufficiently large.

Assume now that for every subset I ⊆ [n] with |I| < ρn the matrix W ′ =
W · BI has full rank. Fix such an I, a codeword c ∈ Cn and a vector y ∈ IFγn

q .
We have to find a codeword c′ ∈ C, such that Mc′ = y and cI = c′I . The
information-words s ∈ IFRn

q that are consistent with the partial codeword cI are
characterized by GIs = cI . Thus, the s consistent with cI form an affine space
AI = {s ∈ IFRn

q |GIs = cI}. As AI is an affine space, it can be represented by
AI = p + ker(GI) = p + VI , where p ∈ IFRn

q is a reference point. As the matrix
W ·BI ∈ IFγn×m

q has full rank and m > γn (as m ≥ (R−ρ)n > γn+ H(ρ)
log(q)n > γn),

we find a t ∈ IFm
q such that y − Wp = WBIt, thus y = W (p + BIt). Let

s′ := p+BI · t ∈ AI and c′ = G ·s′. It holds that c′I = GI ·s′ = cI as s′ ∈ AI . We
further have Mc′ = W · Pc′ = WPGs′ = Ws′ = y. Thus M is an (Cn, ρ)-AON
matrix.

Conversely fix c = 0, then the (Cn, ρ)-AON property states that for every I ⊆
[n] with |I| < ρn and every y ∈ IFγn

q there exists an s′ ∈ VI (as GIs
′ = cI = 0)
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such that y = MGs′ = Ws′. As s′ ∈ VI can be written as s′ = BIt, we have
that for every y ∈ IFγn

q there exists a t ∈ IFm
q such that y = WBIt, but this is

equivalent to WBI having full rank.
We will now show that, if W ∈ IFγn×Rn

q is chosen uniformly at random, the
probability that there exists an I ⊆ [n] with |I| < ρn such that W ′ = WBI is
rank-deficient is negligible in n. We will first analyze the probability that W ′ is
rank-deficient for a fixed I ⊆ [n] with |I| < ρn. As BI is a basis-matrix and thus
has full rank and W is a matrix chosen uniformly at random, Lemma 3 states
that W ′ ∈ IFγn×m

q is also a uniformly random matrix. Thus PrW [rank(WBI) <
γn] = PrW ′ [rank(W ′) < γn]. The probability that a uniformly chosen matrix
W ′ ∈ IFγn×m

q , with m > γn, has full rank is

Pr
W ′

[rank(W ′)=γn] =
γn−1∏
i=0

qm − qi

qm
≥ 1−

γn−1∑
i=0

qi−m = 1− qγn − 1
qm(q − 1)

> 1−qγn−m.

Consequently,
Pr
W ′

[rank(W ′) < γn] < qγn−m ≤ qn(ρ+γ−R)

as m ≥ (R − ρ)n. We can now use the union-bound to get an upper bound for
the probability that there exists such an I such that rank(WBI) < γn.

Pr
W

[∃I ⊆ [n], |I| < ρn : rank(WBI) < γn] ≤
(

n

ρn

)
Pr
W ′[rank(W ′) < γn]

≤ 2nH(ρ) · qn(ρ+γ−R)

= qn( H(ρ)
log(q) +ρ+γ−R)

Now let H(ρ)
log(q) + ρ + γ −R < −ε for a constant ε > 0. Then

Pr
W

[∃I ⊆ [n], |I| < ρn : rank(WBI) < γn] < q−εn

Thus the probability that M = W · P is not a (Cn, ρ)-AON matrix is negligible
in n.
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Abstract. This paper presents a brief and (necessarily) incomplete sur-
vey of some notions of entropy that have been recently used in the anal-
ysis of cryptographic constructions. It focuses on min-entropy and its
extensions to the cases when the adversary has correlated information
and/or is computationally bounded. It also presents results that can be
used to bound such entropy and apply it to the analysis of cryptographic
constructions.

1 Information-Theoretic Case

In many contexts, particularly in security-related ones, the ability to guess the
value of a random variable (in a single attempt) is an important measures of the
variable’s quality. This ability is captured by the following notion.

Definition 1. A random variable X has min-entropy k, denoted H∞(X) = k,
if

max
x

Pr[X = x] = 2−k.

Randomness extractors were defined to work with any distribution that has min-
entropy [NZ96]. Moreover, strong extractors (whose outputs are nearly uniform
even the presence of the seed) produce outputs that have, with high probability
over the choice of seed, almost maximal min-entropy.

Lemma 1 ([CKOR10]). If Ext : N × I → {0, 1}� is a (k, ε)-strong extractor
with inputs from a set N and seeds from a distribution I, and X is a random
variable taking values in N with H∞(X) ≥ k, then H∞(Ext(X ; i)) ≥ �− 1 with
probability at least 1− 2�ε over the choice of the seed i.

A less demanding notion is sometimes more suitable and allows for better anal-
ysis of constructions, because one can “pretend” to work with a very close dis-
tribution Y that has more min-entropy:

Definition 2 ([RW04]). A random variable X has ε-smooth min-entropy
k if maxY : SD(X,Y )≤ε H∞(Y ) = k (here, SD (X, Y ) is the usual statistical dis-
tance, defined as maxT Pr[X ∈ T ]− Pr[Y ∈ T ]).
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Quite often, the adversary has some additional information Z that is correlated
with X . Conditional min-entropy H∞(X |Z) is defined in [RW05] as
− logmaxx,z Pr(X = x | Z = z) = minz H∞(X | Z = z) (an ε-smooth ver-
sion is also defined in [RW05, Section 1.3] by eliminating bad portions of (X, Z)
that occur with probability at most ε). Again, a less restrictive notion is sometimes
more suitable (a comparison of the notions is given in [DORS08, Appendix B]):

Definition 3 ([DORS08, Section 2.4]). Let (X, Z) be a pair of random vari-
ables. The average min-entropy of X conditioned on Z is

H̃∞(X |Z) def= − log E
z←Z

max
x

Pr[X = x|Z = z] = − log[ E
z←Z

(2−H∞(X|Z=z))] .

Average min-entropy, like min-entropy, is simply the logarithm of the probability
that the adversary (this time, given the value of Z) will guess the value of X in
a single attempt.

Average min-entropy exhibits some properties that agree with our intuition:
conditioning on Z that has b bits of information reduces the entropy of X by at
most b.

Lemma 2 ([DORS08, Lemma 2.2b]). H̃∞(X | Z) ≥ H∞(X, Z)−b, where 2b

is the number of elements in Z (more generally, H̃∞(X | Z1, Z2) ≥ H̃∞(X, Z1 |
Z2)− b, where 2b is the number of elements in Z2).

Randomness extractors, which were originally analyzed for distribution of min-
entropy, can also be used on distributions that have average min-entropy
[DORS08, Section 2.5] (in some cases even without any additional loss in param-
eters); moreover, extracted outputs themselves will have average min-entropy. A
(k, ε)-average-case extractor is defined as a function that takes in a sample from
a distribution X such that H̃∞(X | Z) ≥ k and a random seed, and produces
an output that is ε-close to uniform even in the presence of the correlated value
from Z and the seed.

Lemma 3 ([KR09, Lemma 1]). If Ext : N × I → {0, 1}� is a (k, ε)-average-
case extractor with inputs from a set N and seeds from a distribution I, and
(X, Z) is a pair of random variables with X taking values in N and H̃∞(X |Z) ≥
k, then H̃∞(Ext(X ; I) | Z, I) ≥ min

(
�, log 1

ε

)
− 1.

Average min-entropy often allows for simpler statements and analyses; for exam-
ple, the security of information-theoretic MACs with nonuninform keys can be
analyzed using the average min-entropy of the keys (see [KR09, Proposition 1]).
However, average min-entropy can be converted to min-entropy when needed.

Lemma 4 ([DORS08, Lemma 2.2a]). For any δ > 0, H∞(X |Z = z) is at
least H̃∞(X |Z)− log(1/δ) with probability at least 1− δ over the choice of z.

This style of analysis—using average min-entropy wherever possible and convert-
ing it to min-entropy when needed—was used, for example, in [KR09], [CKOR10],
to analyze complex interactive protocols involving extractors and MACs.
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2 Computational Case

It is natural to say that if a distribution cannot be distinguished by a resource-
bounded adversary from one that has entropy, then it has computational entropy.
For example, pseudorandom distributions have this property.

Definition 4 ([HILL99, BSW03]). A distribution X has HILL entropy at
least k, denoted by HHILL

ε,s (X) ≥ k, if there exists a distribution Y such that
H∞(Y ) ≥ k and no circuit of size s can distinguish X and Y with advantage
more than ε.

(Here and below, unless otherwise specified, distinguishers are randomized and
output a single bit.)

A conditional notion can be defined similarly.

Definition 5 ([HLR07, Section 2]). X has conditional HILL entropy at
least k conditioned on Z, denoted HHILL

ε,s (X |Z) ≥ k, if there exists a collection of
distributions Yz (for z ∈ Z) giving rise to a joint distribution (Y, Z), such that
the average min-entropy H̃∞(Y |Z) ≥ k and no circuit of size s can distinguish
(X, Z) and (Y, Z) with advantage more than ε.

However, there are many variations of the computational definitions, and which
one is “right” is unclear. For example, [GW11, Lemma 3.1] allow one to change
not only X , but also Z, as long as the change is computationally indistinguish-
able.

As another example, [BSW03], following [Yao82], proposed an alternative way
to measure computational entropy: by measuring compressibility of the string by
efficient algorithms. It was further converted to conditional entropy in [HLR07].

Definition 6 ([HLR07, Section 2]). X has Yao entropy at least k condi-
tioned on Z, denoted by HYao

ε,s (X |Z) ≥ k, if for every pair of circuits c, d of total
size s with the outputs of c having length �,

Pr
(x,z)←(X,Z)

[d(c(x, z), z) = x] ≤ 2�−k + ε.

It was shown in [HLR07, Theorem 4] that the two notions (which are equivalent
in the information-theoretic case) are actually different in the computational
setting: Yao entropy may be higher than HILL (but never lower), and mea-
suring Yao entropy rather than HILL entropy may allow one to extract more
pseudorandom bits from a distribution.

Another seemingly natural computational analog of min-entropy is “unpre-
dictability” entropy, because it also measures the chances of correctly guessing
X in a single try.

Definition 7 ([HLR07, Section 5]). X has unpredictability entropy at
least k conditioned on Z, denoted by Hunp

ε,s (X |Z) ≥ k, if there exists a collection
of distributions Yz (for z ∈ Z), giving rise to a joint distribution (Y, Z), such
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that no circuit of size s can distinguish (X, Z) and (Y, Z) with advantage more
than ε, and for all circuits C of size s,

Pr[C(Z) = Y ] ≤ 2−k.

As shown in [HLR07, Section 5], unpredictability entropy can be higher than
HILL entropy but never higher than Yao entropy. We know that extractors
work with conditional HILL entropy to produce pseudorandom outputs; some
extractors (“reconstructive” ones) also work with conditional compressibility and
unpredictability entropies.

Understanding how conditioning on information leakage Z impacts the en-
tropy of X is particularly difficult. It would be highly desirable to have an
analog of the simple statement of Lemma 2 to simplify the analysis of proto-
cols in a variety of scenarios, particularly in leakage-resilient cryptography. The
following result, for both average-case and worst-case entropy, is relatively sim-
ple to state. However, it is for a notion of entropy that is a lot less natural:
Metric∗ entropy, which differs from HILL entropy in two respects: there can be
a different distribution Y for each distinguishing circuit of size s, and the cir-
cuit, instead outputting 1 with some probability p and 0 with probability 1− p,
deterministically outputs a value p in the interval [0, 1].

Theorem 1 ([FR11]). Define Pz as Pr[Z = z]. Assume Z has 2b elements.
Then

HMetric∗
ε/Pz ,s′ (X |Z = z) ≥ HMetric∗

ε,s (X)− log 1/Pz

and
HMetric∗

ε2b,s′ (X |Z) ≥ HMetric∗
ε,s (X)− b ,

where s′ ≈ s.

A weaker version of this statement appeared in [DP08]. Fortunately, Metric∗

entropy can be converted, with some relatively small loss in s and ε, to HILL
entropy ([BSW03, Theorem 5.2],[FR11]). A similar statement, but with the con-
version to HILL entropy already performed, appeared in [RTTV08].

An alternative statement, in which the circuit size (rather than the distin-
guishability ε) loses a factor polynomial in 2b, is implied by [GW11, Lemma
3.1] and Lemma 2. Again, the statement is not with respect to HILL conditional
entropy of Definition 5, but rather with respect to a relaxed notion that I will
denote here HILL-relaxed. It is the same as conditional HILL, except we are al-
lowed to change not just X , but the entire pair (X, Z) to an indistinguishable
pair (Y, W ).

Theorem 2 ([GW11]). Define Pz as Pr[Z = z]. Assume elements of Z are
length-b bit strings (or, more generally, can be enumerated in time poly(2b)).
Then

HHILL-relaxed
2ε,s′/poly(ε,2b)(X |Z) ≥ HHILL

ε,s (X)− b .

This theorem extends to the case when the initial entropy of X is conditional
HILL-relaxed (conditioned on some Z1), similarly to the more general case of
Lemma 2.
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Abstract. The round complexity of verifiable secret sharing (VSS)
schemes has been studied extensively for threshold adversaries. In par-
ticular, Fitzi et al. showed an efficient 3-round VSS for n ≥ 3t + 1 [4],
where an infinitely powerful adversary can corrupt t (or less) parties out
of n parties. This paper shows that for non-threshold adversaries:

1. Two round perfectly secure VSS is possible if and only if the under-
lying adversary structure satisfies the Q4 condition;

2. Three round perfectly secure VSS is possible if and only if the un-
derlying adversary structure satisfies the Q3 condition.

Further as a special case of our three round protocol, we can obtain a
more efficient 3-round VSS than the VSS of Fitzi et al. for n = 3t +
1. More precisely, the communication complexity of the reconstruction
phase is reduced from O(n3) to O(n2). We finally point out a flaw in the
reconstruction phase of the VSS of Fitzi et al., and show how to fix it.

1 Introduction

Verifiable Secret Sharing (VSS) [2,1] is a two phase (sharing, reconstruction)
protocol, carried out among n parties and is used as a fundamental building
block in many distributed cryptographic protocols. VSS extends the notion of
secret sharing [10] to the active corruption model. In VSS protocols, an infinitely
powerful malicious adversary can corrupt not only some subset of parties but
also the dealer, who shares the secret. Even then, a unique secret is reconstructed
in the reconstruction phase no matter how the malicious parties behave.
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Round complexity is one of the important complexity measures of any VSS
protocol. Gennaro et al. [5] studied the round complexity of perfectly secure
VSS, where they defined the round complexity of a VSS protocol as the number
of communication rounds during the sharing phase. In their model, the n parties
are pairwise connected by secure channels and a common broadcast channel is
available, which allows any party to send some information identically to every
other party. The adversary is characterized as a threshold adversary, who can
corrupt any t parties. In such a model, Gennaro et al. showed the following:

1. Two round perfectly secure VSS is possible if and only if n ≥ 4t + 1;
2. Three round perfectly secure VSS is possible if and only if n ≥ 3t + 1.

Their 3-round VSS for n ≥ 3t + 1 is inefficient while their 2-round VSS for
n ≥ 4t + 1 is efficient. A polynomial time, 3-round VSS for n ≥ 3t + 1 was given
by Fitzi et al. [4]. Later on, Katz et al. [7] improved the VSS of [4] in such a way
that the broadcast channel is used for only one round during the sharing phase,
whereas it is used for two rounds in [4].

1.1 Motivation of Our Work

Modeling the adversary by a threshold helps in easy characterization of the pro-
tocols and it also helps in analyzing the protocols. However, as mentioned in [6],
modeling the (dis)trust in the network as a threshold adversary is not always ap-
propriate because threshold protocol requires more stringent requirements than
the reality. Let the set of n parties be denoted by P = {P1, . . . , Pn}. Then a
non-threshold general adversary A is characterized by an adversary structure Γ ,
which is a collection of the subsets of parties that the adversaryA can potentially
corrupt. That is, Γ = {B ⊂ P | A can corrupt B}. Moreover, we assume that if
B ∈ Γ and if B′ ⊂ B, then B′ ∈ Γ .

Definition 1 (Qk Condition [6]). A satisfies Qk condition with respect to P,
if there exists no k sets in Γ , which adds upto the whole set P. That is:

∀B1, . . . , Bk ∈ Γ : B1 ∪ . . . ∪Bk �= P .

Cramer et al. [3] showed a VSS for Q3 adversary structures by using a linear
secret sharing scheme (LSSS). The VSS of [3] is efficient in the size of the un-
derlying LSSS (see Sec. 2.2 for the definition of LSSS), but requires more than
seven rounds. Maurer showed a four round VSS for Q3 adversary structures [9].
However, its computation and communication cost is inefficient1.

In threshold settings, any t + 1 honest parties can reconstruct not only the
secret s but also the randomness used by the dealer during the sharing phase. On
the other hand, in non-threshold settings, an access set of parties can reconstruct
only s, but not the randomness of the dealer in general. This is because the
submatrix of the LSSS corresponding to an access set A is not necessarily of
1 We can see that its round complexity can be reduced to three by using the technique

from [5] for making pairwise consistency checks. Still it is very inefficient.
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full rank (see Section 2 and in general [3] for more details). Due to this reason,
a straightforward generalization of the techniques of [5,4] will not work in non-
threshold settings. Indeed [3] introduces a commitment transfer protocol and a
commitment sharing protocol to design VSS for Q3 adversary structures [3].

Though there exist VSS protocols tolerating general adversary, to the best of
our knowledge, nothing is known in the literature regarding the round complexity
of VSS tolerating general adversary. This motivates us to do the same.

1.2 Our Results

We generalize the results of [5] and show the following:

1. Two round perfectly secure VSS is possible iff A satisfies the Q4 condition;
2. Three round perfectly secure VSS is possible iff A satisfies the Q3 condition.

In our 2-round VSS, the communication cost is polynomial in the size of the
underlying LSSS, and the computation cost is polynomial in the size of Γ . So if
|Γ | and size of the underlying LSSS is polynomial then our 2-round scheme is
efficient. On the other hand, in our 3-round VSS, both the communication and
communication cost are polynomial in the size of the underlying LSSS. Thus if
the underlying LSSS is polynomial then our 3-round scheme is efficient. Further
as a special case of our 3-round protocol, we can obtain a more efficient 3-round
VSS than the VSS of Fitzi et al. for n = 3t+1. More precisely, the communication
complexity of the reconstruction phase is reduced from O(n3) to O(n2).

Fitzi et al. [4] first designed a 3-round weak secret sharing (WSS) protocol.
WSS is the same as VSS except for that a unique secret or ⊥ must be recon-
structed in the reconstruction phase (when the dealer is corrupted). Then they
constructed their 3-round VSS by letting each party run the WSS as a dealer in
parallel. Typically, a party participates in the reconstruction phase of his own
WSS as like any other party and does not play any special role. On the other
hand for constructing our VSS protocol, we first design a 3-round weak commit-
ment scheme (WCS), and then replace the WSS with our WCS. An important
difference now is that each party plays a special role in the reconstruction phase
of his own WCS. It turns out that it is easier to construct a WCS than the WSS,
and the efficiency is improved. Our WCS is also conceptually much simpler.

To design our 2-round VSS protocol, we generalize the techniques used in [5].
Notice that a straightforward generalization will not work, as the protocol of [5]
uses the properties of Reed-Solomon codes [8]. To deal with this problem, we
introduce the notion of A-clique. Due to this, the resultant protocol performs
computation which is polynomial in |Γ |. We finally point out a flaw in the
reconstruction phase of the VSS of Fitzi et al., and show how to fix it.

2 Preliminaries

2.1 Secret Sharing Scheme

In a secret sharing scheme, a dealer D ∈ P distributes a secret s ∈ F, where
F is a finite field, to the parties in P in such a way that some subsets of the
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participants (called as access sets) can reconstruct s from their shares, while
the other subsets of the participants (called forbidden sets) have no information
about s from their shares. The family of access sets is called an access structure.
Moreover, we assume that the access structure is monotone implying that if
A ∈ Σ and A′ ⊇ A, then A′ ∈ Σ. Corresponding to Σ, we have the adversary
structure Γ = Σc, where c denotes the complement. The sets in Γ are called
as forbidden sets. There exists a computationally unbounded, adaptive, rushing
adversary A, who can control any set in Γ . However, it is assumed that D will
not be under the control of A and every party under the control of A will follow
the protocol instructions.

2.2 Linear Secret Sharing Scheme (LSSS) [3]

A secret sharing scheme for any monotone access structure Σ can be realized by
a LSSS [3] as follows: Let M be an � × e matrix over F and ψ : {1, · · · , �} →
{1, · · · , n} be a labeling function, where � ≥ e and � ≥ n.

Sharing algorithm:

1. To share a secret s ∈ F, D first chooses a random vector ρ ∈ Fe−1 and
compute a vector

v = (v1, · · · , v�)T = M·
(

s
ρ

)
. (1)

2. Let
LSSS(s, ρ) = (share1, · · · , sharen), (2)

where sharei = {vj | ψ(j) = i}. Then D gives sharei to Pi as a share for s.

Reconstruction algorithm: A set of parties A ∈ Σ can reconstruct s if and
only if (1, 0, · · · , 0) is in the linear span of

MA = {Vj | ψ(j) ∈ A},
where Vj denotes the jth row of M. If this is indeed the case then there exists a
recombination vector αA, such that αA·MA = (1, 0, . . . , 0). Let sA denote the set
of shares corresponding to the parties in A. Then these parties can reconstruct
s by computing s = 〈αA, sT

A〉, where 〈x, y〉 denotes the dot product of x and y.

Definition 2 (Monotone Span Programme (MSP) [3]). We say that the
above (M, ψ) is a MSP which realizes Σ and the size of the MSP is �.

Theorem 1 ([3]). The above algorithm constitutes a valid secret sharing scheme.

Theorem 2 ([3]). Two different secrets shared according to an MSP realizing
Σ cannot have same shares corresponding to an access set.

Notice that there may be more than one row of M assigned to a party Pi. How-
ever, as assumed in [3], for the ease of presentation, we assume that each Pi is
assigned exactly one row in M, namely Vi. This is without loss of generality.
Finally we use the following notation throughout our paper.

Notation 1. Let R be any subset of P i.e R ⊆ P. Then MR denotes the matrix
containing the rows of M corresponding to the parties in R.
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2.3 Verifiable Secret Sharing (VSS)

In the definition of secret sharing (see Sec. 2.1), we assumed that D �∈ A and the
parties under the control of A honestly follows the protocol. However these are
very restricting assumptions. A VSS scheme relaxes these assumptions. In a VSS
protocol, D ∈ P , holds a secret s ∈ F. The protocol consists of a sharing phase
and a reconstruction phase. During the protocol, a computationally unbounded
adversary A can select any set B ∈ Γ (possibly including D) for corruption.
Moreover, the corrupted parties can behave in any arbitrary manner. Now we
call the protocol a VSS protocol if it satisfies the following conditions:

1. Secrecy: If D is honest, then s will be information theoretically secure
during the sharing phase.

2. Correctness: If D is honest, then the honest parties will output s at the
end of the reconstruction phase, irrespective of the behavior of A.

3. Strong Commitment: If D is corrupted, then at the end of the sharing
phase there is a value s� ∈ F, such that at the end of the reconstruction
phase all honest parties will output s�, irrespective of the behavior of A.

3 Two Round VSS Tolerating Q4 Adversary Structure

Let A be a non-threshold adversary, characterized by an adversary structure
Γ , such that A satisfies the Q4 condition. Moreover let M be the n × e MSP
realizing the corresponding access structure Σ = Γ c. We then present a two
round VSS protocol tolerating A. Before presenting our protocol, we give the
following definition:

Definition 3 (A-clique). Let G = (V, E) be an undirected graph, where V = P
and let C be a clique in G. Moreover, let VC denote the vertices belonging to C.
Then we say that C is an A-clique in G if V \VC ∈ Γ . That is, the set B = V \VC

belongs to the adversary structure.

Algorithm for Finding A-clique: Let Γ = {B1, . . . , B|Γ |}. For i = 1, . . . , Γ ,
check whether the parties in P\Bi form a clique in G, which requires polynomial
computation. If yes, then the algorithm terminates and P \ Bi is the A-clique.
If there exists no Bi ∈ Γ such that P \ Bi form a clique in G then there is no
A-clique. This algorithm performs computation, which is polynomial in |Γ |.

Our two round protocol is given in Fig. 1.
We now proceed to prove the properties of the protocol. In the proof, we will

use the following notations:

– Let ShHo (resp. ShB) denote the set of honest (resp. corrupted) parties in
Sh at the end of sharing phase when sharing phase is successful.

– Let ReHo (resp. ReB) denote the set of honest (resp. corrupted) parties in
Rec.

Lemma 1. An honest D will never be discarded during sharing phase.
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Sharing Phase

Round I:

1. D selects a random, symmetric e × e matrix R, such that R[1, 1] = s.
2. D computes ui = Vi · R and sends ui to Pi. The first entry of ui, denoted by si, is

referred as ith share of s, given to Pi. Moreover, 〈ui,Vj〉, for j = 1, . . . , n, is referred
as jth share-share of si, denoted by sij .

3. For i = 1, . . . , n − 1, party Pi selects a random rij for every Pj , where j > i and
privately sends rij to Pj .

Round II:

1. For i = 1, . . . , n, party Pi broadcasts the following, for each j �= i:
– aij = rij + 〈ui,Vj〉 = rij + sij , if j > i;
– aij = rji + 〈ui,Vj〉 = rji + sij , if j < i;

Local Computation (By Each Party):

1. Construct an undirected graph GSh over P , where there exists an edge (Pi, Pj), for
j > i, if aij = aji. Notice that all honest parties will construct the same GSh.

2. If no A-clique is present in GSh then the sharing phase fails and D is discarded. a

3. If there is an A-clique in GSh, then sharing phase succeeds. Let Sh denote the parties
in A-clique and let Sh-Del = P \ Sh. Notice that all honest parties will find the same
A-clique and hence the same Sh.

Reconstruction Phase
Round I:

1. Each party Pi ∈ Sh broadcasts ui received from D. Let it be denoted by ui.

Local Computation (By Each Party):

1. Construct an undirected graph GRec over the set of parties in Sh, where there exists
an edge (Pi, Pj), for j > i, if both Pi, Pj ∈ Sh and 〈ui,Vj〉 = 〈uj ,Vi〉.

2. Find A-clique (which is bound to exist) in GRec. Let Rec denote the parties in A-clique
and let Rec-Del = Sh \ Rec. Notice that all honest parties will find the same A-clique
and hence the set Rec.

3. Without loss of generality, let P1, . . . , P|Rec| be the parties in Rec and let s1, . . . , s|Rec|
be the shares (the first entry of ui’s) revealed by these parties. Then reconstruct s by
applying reconstruction algorithm of the LSSS to s1, . . . , s|Rec| and terminate.

a Following the convention of [5,4,7], if D is discarded during the sharing phase, then
some pre-defined value from F is taken as D’s secret.

Fig. 1. Two Round VSS for Sharing a Secret s Tolerating A

Proof: If D is honest, then 〈ui,Vj〉 = 〈uj ,Vi〉 and hence aij = aji will hold for
each honest Pi, Pj . So the set of honest parties will form an A-clique in GSh and
D will not be discarded. �

Lemma 2. If the sharing phase succeeds, then ShHo is an access set. Moreover,
〈ui,Vj〉 = 〈uj ,Vi〉 will hold for each Pi, Pj ∈ ShHo, where i < j.
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Proof: It is easy to see that ShHo ∪ ShB ∪ Sh-Del = P . If the sharing phase
succeeds, then Sh-Del ∈ Γ . Also ShB ∈ Γ . Now if ShHo ∈ Γ , then it implies that
A does not satisfy Q3 (and hence Q4) condition, which is a contradiction. The
second part of the lemma follows from the fact if Pi, Pj ∈ ShHo, then aij = aji

and both Pi and Pj would have honestly used rij . �

Lemma 3. Without loss of generality, let ShHo = {P1, . . . , Pt}. If the sharing
phase succeeds, then there exists a vector x = (s�, ρ), for some ρ ∈ Fe−1, such
that

(s1, . . . , st)T = MShHo · xT .

In other words, the shares of the parties in ShHo will be valid shares of s�, such
that D will be committed to s�. Moreover, if D is honest then s� = s.

Proof: From the previous lemma, if the sharing phase succeeds, then for each
Pi, Pj ∈ ShHo, we have sij = sji. Let SShHo = {sij} be the t × t symmetric
matrix. Then SShHo can be expressed as

SShHo = MShHo · UShHo = UT
ShHo · MT

HaHo,

where UShHo = [u1
T , . . . , ut

T ]. Also from the previous lemma, ShHo is an access
set. Therefore, there exists a recombination vector αShHo, such that αShHo ·
MShHo = (1, 0, . . . , 0). Hence,

αShHo · SShHo = αShHo ·MShHo · UShHo = (1, 0, . . . , 0) · UShHo = (s1, . . . , st).

On the other hand,

αShHo · SShHo = αShHo · UT
ShHo · MT

ShHo = x ·MT
ShHo,

where x = αShHo · UT
ShHo. Therefore, (s1, . . . , st) = x ·MT

ShHo = MShHo · xT .
If D is honest then s� = s. Because, in this case, x = αShHo · UT

ShHo =
αShHo ·MShHo ·R = (1, 0, . . . , 0) ·R, which is nothing but the first row of R.�

Lemma 4. If the sharing phase succeeds, then an A-clique will be present in
GRec.

Proof: From Lemma 2, ShHo is an access set and for each Pi, Pj ∈ ShHo, we
have 〈ui,Vj〉 = 〈uj ,Vi〉. During the reconstruction phase, each Pi, Pj ∈ ShHo
will correctly broadcast ui = ui and uj = uj respectively. So during the recon-
struction phase also, 〈ui,Vj〉 = 〈uj ,Vi〉 will hold. Thus ShHo will always form
an A-clique in GRec. �

Lemma 5. If the sharing phase succeeds, then ReHo will be an access set. More-
over, the shares of the parties in ReHo will define the same secret s�, as com-
mitted by D to the parties in ShHo during the sharing phase.

Proof: Notice that ReHo ∪ ReB ∪ Rec-Del ∪ Sh-Del = P . Now we know that
Sh-Del, Rec-Del ∈ Γ . Also ReB ∈ Γ . Now if ReHo ∈ Γ , then it implies that A
does not satisfy Q4 condition, which is a contradiction. The second part of the
lemma follows from the fact that ReHo ⊆ ShHo. �
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Lemma 6. During the reconstruction phase, every Pi ∈ Rec will correctly dis-
close si, the ith share of the secret s�, which is committed by D during the sharing
phase to the parties in ShHo.

Proof: The lemma holds trivially when Pi ∈ Rec is honest. We now consider the
case when Pi ∈ Rec is corrupted. Before proceeding further, notice that Pi will
have an edge with each of the parties in ReHo in graph GRec, since the set of
parties in Rec forms a clique. This further implies that ui disclosed by Pi satisfies
〈ui,Vj〉 = 〈uj ,Vi〉, for each Pj ∈ ReHo. That is, sij = sji, for each Pj ∈ ReHo.
Also uj = uj, for each Pj ∈ ReHo. For simplicity assume that ShHo and ReHo
contains the first t and y parties respectively, where y ≤ t. Now from Lemma 3,
we know that there exists x = (s�, ρ), such that

(s1, . . . , st)T = MShHo · xT

Now following the notations as used in Lemma 3, we also have

(s1, . . . , sy)T = MReHo · xT

Now (s1, . . . , sy)T = MReHo · xT implies that x · MT
ReHo = αReHo · UT

ReHo ·
MT

ReHo. This is because (s1, . . . , sy)T = MReHo · xT implies that

x ·MT
ReHo = (s1, . . . , sy) (taking transpose on both sides)

= (1, 0, . . . , 0) · UReHo

= αReHo ·MReHo · UReHo

= αReHo · UT
ReHo · MT

ReHo

Here αReHo is the recombination vector corresponding to the access set ReHo
and UReHo = [uT

1 , . . . , uT
y ]. Now we will show that si = ui1, as revealed by

corrupted Pi ∈ Rec is the ith share of s�. That is, si = x ·VT
i = Vi · xT . Now

notice that, αReHo · MReHo = (1, 0, . . . , 0). It is easy to see that

αReHo · [si1, . . . , siy]T = ui1 (3)

Now we will show that following also is true:

αReHo · [s1i, . . . , syi]T = x ·VT
i (4)

We start with the known equation:

SReHo = UT
ReHo · MT

ReHo

Here SReHo = {sij : 1 ≤ i, j ≤ y} is the symmetric matrix. Now pre-multiplying
both the sides of above equation by αReHo, we get

αReHo · SReHo = αReHo · UT
ReHo · MT

ReHo

Now we know that αReHo ·UT
ReHo ·MT

ReHo = x ·MT
ReHo. So substituting in the

above equation, we get

αReHo · SReHo = x ·MT
ReHo
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Both the sides of the above equation turns out to be some row vector of equal
length. Now concentrating on the value of the ith index of the row vectors in the
above equation, we get αReHo · [s1i, . . . , syi]T = x ·VT

i . Now as discussed above,
sij = sji, for j = 1, . . . , y. So left hand side of Eqn. 3 and Eqn. 4 are same. Thus
si revealed by Pi ∈ Rec is the ith share of s�. �

Now using the above lemmas, we prove the following theorem.

Theorem 3. The protocol in Fig. 1 is a two round VSS scheme tolerating A,
satisfying the Q4 condition. The communication cost is polynomial in the size of
M, and the computation cost is polynomial in the size of Γ .

Proof: We only show that the protocol satisfies all the properties of VSS, as
round, computation and communication complexity are easy to verify.

1. Secrecy: We have to only consider the case when D is honest. Let the
adversary corrupt some B ∈ Γ . Then at the end of Round I of the sharing
phase, adversary learns no information about s from their shares, as B is a
non-access set. Let i �∈ B and j �∈ B. Then at the end of Round I of the
sharing phase, the adversary gains no information about rij . Hence at the
end of Round II, adversary gains no information about ui, as rij or rji

works as the one-time pad. Thus, at the end of the sharing phase, s remains
information theoretically secure (see [3] for complete details).

2. Correctness: We have to consider the case when D is honest. If D is honest
then the sharing phase will succeed. Now the parties in ShHo is an access set
and defines s. Moreover, correct share of s will be revealed by every Pi in
Rec. These facts guarantee that by applying the reconstruction algorithm of
the LSSS to the shares of the parties in Rec, s will be reconstructed correctly.

3. Strong Commitment: We have to consider the case when D is corrupted.
The proof is very similar to the proof of correctness. In this case, the parties
in ShHo is an access set and defines some secret s�, which is D’s committed
secret. Moreover, ReHo is an access set where ReHo ⊆ ShHo and hence
define the same secret s�. Furthermore, correct share of s� will be revealed
by every Pi in Rec. These facts guarantee that by applying the reconstruction
algorithm of the LSSS to the shares of the parties in Rec, secret s� will be
reconstructed correctly and uniquely. �

4 Three Round VSS Tolerating Q3 Adversary Structure

We first design a three round weak commitment scheme (WCS) protocol.

4.1 Three Round WCS Tolerating Q3 Adversary Structure

In a WCS, there exists a dealer D ∈ P , who has a secret s ∈ F, which he wants
to commit to the parties in P . The scheme consists of two phases as follows:

1. Commit phase: Initially, D has a secret s. At the end of the commit phase,
either D is discarded (by all honest parties) or s is committed.
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2. Decommit phase: If D is not discarded during the commit phase then:
– D broadcasts (s, ρ), where ρ is the randomness used by D during the

commit phase.
– Each Pi broadcasts its view wi of the commit phase.
– Then a validity check function Valid is applied which outputs either valid

or invalid.
We say that s is accepted as authentic if

Valid(s, ρ, w1, · · · , wn) = valid.

A protocol is a WCS scheme tolerating A if the following conditions are satisfied:

1. Secrecy: If D is honest, then A obtains no information about s during the
commit phase.

2. Correctness: If D is honest then s will be accepted as authentic during the
decommit phase.

3. Weak Commitment: If D is corrupted and not discarded during the com-
mit phase, then there exists an s� ∈ F, such that D is committed to s� during
the commit phase. Moreover, if some s′ is accepted as authentic during the
decommit phase, then s′ = s�.

The round complexity of a WCS scheme is the number of communication rounds
during the commit phase. We now present our three round WCS in Fig. 2.

We now show that the scheme presented in Fig. 2 is a valid WCS scheme,
tolerating A, provided A satisfies the Q3 condition. In the proofs, we use the
following notations:

– Let HaHo (resp. HaB) denote the set of happy and honest (resp. happy and
corrupted) parties at the end of commit phase if commit phase is successful.

– Let WCoHo (resp. WCoB) denote the set of honest (resp. corrupted) parties
in WCORE if decommit phase is successful.

Lemma 7. If D is honest, then D will not be discarded during the commit phase.
Moreover, s will be accepted as authentic during the decommit phase.

Proof: By easy inspection we note that the set UnHappy contains only corrupted
parties, when D is honest. Thus UnHappy ∈ Γ and so the commit phase succeeds.

Now to show that s will be accepted as authentic during the decommit phase,
we prove that P \ WCORE ∈ Γ during the decommit phase. To begin with,
an honest D will correctly broadcast x′ = x and each honest Pi will correctly
broadcast s′i = si. Thus, all honest parties will be present in WCORE and hence
P\WCORE will contain only corrupted parties. Hence P\WCORE ∈ Γ . Thus
the decommit phase will also succeed and s will be accepted as authentic. �

Lemma 8. If the commit phase succeeds, then HaHo is an access set. Moreover,
for each Pi, Pj ∈ HaHo, where i < j, 〈ui,Vj〉 = 〈uj ,Vi〉.
Proof: It is easy to see that HaHo ∪ HaB ∪ UnHappy = P . If the commit phase
succeeds, then UnHappy ∈ Γ . Also HaB ∈ Γ . This implies that HaHo �∈ Γ ,
otherwise A does not satisfy Q3 condition, which is a contradiction. The second
part follows from easy inspection. �
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Commit Phase
Round I:

1. D selects a random, symmetric e × e matrix R, such that R[1, 1] = s. Let x = (s,ρ)
be the first column (and row) of R.

2. D computes ui = Vi · R and privately sends ui to party Pi. The first entry of ui,
denoted by si, is referred as the share of s, given to party Pi. Moreover, 〈ui,Vj〉 is
referred as the jth share-share of si, denoted by sij .

3. Party Pi, for i = 1, . . . , n − 1, selects a random pad rij , for each j > i and privately
sends rij to party Pj .

Round II:

1. For i = 1, . . . , n, party Pi broadcasts the following, for each j �= i:
– aij = rij + 〈ui,Vj〉 = rij + sij , if j > i;
– aij = rji + 〈ui,Vj , 〉 = rji + sij , if j < i;

Round III:

1. For each pair (i, j), such that j > i, if aij �= aji, then
– Pi broadcasts αij = 〈ui,Vj〉;
– Pj broadcasts βji = 〈uj ,Vi〉;
– D broadcasts γij = 〈ui,Vj〉 = 〈uj ,Vi〉.

Party Pi (Pj) is said to be unhappy, if the value broadcasted by him, mismatches the
value broadcasted by D.

Local Computation (By Each Party):

1. Let UnHappy be the set of unhappy parties. If UnHappy ∈ Γ , then the commit phase
succeeds. Otherwise, commit phase fails and D is discarded.

Decommit Phase
Round I:

1. D broadcasts the first row of R used by him during the sharing phase. Let it be
denoted by x′ and let s′ be the first entry of x′ .

2. Each happy party Pi broadcasts the share received by him from D during the sharing
phase. Let it be denoted by s′i.

Local Computation (By Each Party):

1. Let WCORE be the set of all such happy Pi’s, such that x′ ·VT
i = s′i. In other words,

a happy Pi ∈ WCORE if s′i is a valid share of s′ according to the LSSS.
2. If P \ WCORE ∈ Γ , then decommit succeeds and so accept s′ as authentic.
3. If P \ WCORE �∈ Γ , then decommit fails and so do not accept s′ as authentic.

Fig. 2. Three Round WCS for Committing a Secret s

Lemma 9. Without loss of generality, let HaHo = {P1, . . . , Pt}. If the commit
phase succeeds, then there exists a vector x� = (s�, ρ), where ρ ∈ Fe−1 such that

(s1, . . . , st)T = MHaHo · x�T .
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In other words, D will commit the secret s� to the parties in HaHo. Moreover,
if D is honest then x� = x, where x is the first column of R used by D during
the sharing phase and hence s� = s.

Proof: Follows using similar arguments as used in Lemma 3. �

Lemma 10. If the decommit phase succeeds, then WCoHo is an access set and
〈ui,Vj〉 = 〈uj ,Vi〉 for each Pi, Pj ∈ WCoHo. Furthermore, the shares of the
parties in WCoHo define the same secret as defined by shares of the parties in
HaHo.

Proof: Notice that WCoHo ∪ WCoB ∪ (P \ WCORE) = P . If the decommit
phase succeeds, then P \ WCORE ∈ Γ . Also, WCoB ∈ Γ . This implies that
WCoHo �∈ Γ , otherwise A does not satisfy the Q3 condition. The second and
third part follows from Lemma 8 and the fact that WCoHo ⊆ HaHo. �

Theorem 4. The protocol in Fig. 2 is a three round WCS scheme where the
honest parties perform computation and communication, polynomial in M.

Proof: We only show that the protocol satisfies the properties of WCS scheme.
The other properties follows easily from inspection.

1. Secrecy: Follows using similar arguments as used in our two round VSS.
2. Correctness: Follows from Lemma 7.
3. Weak Commitment: We have to consider the case when D is corrupted.

If decommit phase fails, then it satisfies weak commitment. On the other
hand, if decommit succeeds and s′ is accepted as authentic then it implies
that for each Pi ∈ WCORE, x′ ·VT

i = s′i = Vi · x′T , where x′ = [s′, ρ′].
This will also be true for each party in WCoHo. Without loss of generality,
assume that the first y parties are present in WCoHo. The parties in WCoHo
are honest implies si = s′i for i = 1, . . . , y. Therefore we have (s1, . . . , sy)T =
MWCoHo ·x′T . Also from Lemma 9, we have (s1, . . . , sy)T = MWCoHo ·x�T ,
where x� = [s�, ρ]. Now this imply that s′ = s� because WCoHo is an access
set and two different secrets cannot have same shares corresponding to an
access set (see Theorem 2). Hence, the accepted secret s′ is the same secret
s�, as committed by D to WCoHo ⊆ HaHo. �

4.2 Three Round VSS Tolerating Q3 Adversary Structure

Now we design our three round VSS (given in Fig. 3) using our three round WCS
as a black-box. We now prove the properties of the VSS protocol. For the proof,
we use the following notations:

– Let ShHo (resp. ShB) denote the set of honest (resp. corrupted) parties in
Sh at the end of sharing phase when the sharing phase is successful.

– ReHo (resp. ReB) denote the set of honest (resp. corrupted) parties in Rec.

Lemma 11. If D is honest then the sharing phase will always succeed.
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Sharing Phase
Round I:
1. D performs the first two steps as in the commit phase of three round WCS.
2. Each party Pi selects a random value ri and starts executing an instance of three

round WCS protocol to commit ri, as a dealer. We denote the ith instance of WCS
as WCSi. Let ri

1, . . . , r
i
n denote the shares of ri generated in WCSi, such that Pi has

given ri
j to Pj during Round I of WCSi.

Round II:
1. For i = 1, . . . , n, party Pi broadcasts the following, for each j �= i: aij = ri

j +〈ui,Vj〉 =

ri
j + sij ; and bij = rj

i + 〈ui,Vj〉 = rj
i + sij .

2. Concurrently, Round II of WCSi is executed, for i = 1, . . . , n.

Round III:
1. For each pair (i, j), such that aij �= bji, parties do the following:

– Pi broadcasts αij = 〈ui,Vj〉; Pj broadcasts βji = 〈uj ,Vi〉 and D broadcasts
γij = 〈ui,Vj〉 = 〈uj ,Vi〉.

Pi (Pj) is unhappy, if αij (βji) mismatches γij .
2. Concurrently, Round III of WCSi is executed, for i = 1, . . . , n.

Local Computation (By Each Party):
1. Let Sh be the set of happy parties such that their instance of the commit phase of

WCS as a dealer is successful. Let Hai denote the set of happy parties in the sharing
phase of WCSi for Pi ∈ Sh.

2. Continue to keep a party Pi in Sh if P \ (Sh∩Hai) ∈ Γ . Otherwise remove Pi from Sh.
3. Repeat the previous step, till no more parties can be removed from Sh. Now if P\Sh ∈

Γ , then the sharing phase succeeds. Otherwise, it fails and D is discarded.

Reconstruction Phase
Round I:
1. For each Pi ∈ Sh, run the decommit phase of WCSi.
2. Every Pi ∈ Sh broadcasts the vector obtained from D. Let it be denoted by ui.

Local Computation (By Each Party):
1. Let Rec be the set of parties Pi from Sh, such that both the following hold:

– The decommit phase of WCSi is successful, with output say ri being accepted as
authentic. Let WCOREi be the WCORE, corresponding to WCSi and let ri

j be

the share of ri, as disclosed by Pj ∈ WCOREi during the decommit phase of WCSi.
– Compute sij for every Pj ∈ WCOREi as follows:

(a) sij = γij ; if γij was broadcasted by D during Round III of the sharing phase.

(b) sij = aij −ri
j ; if γij was not broadcasted by D during Round III of the sharing

phase. Here aij was broadcasted by Pi during the sharing phase.
Now the computed sij ’s corresponding to each Pj ∈ WCOREi must be consistent
with ui. Precisely sij = 〈ui,Vj〉 must hold, for every Pj ∈ WCOREi.

2. For every Pi ∈ Rec, assign si = ui1, where ui1 is the first entry of ui.
3. Compute s from si’s corresponding to Pi ∈ Rec using reconstruction algorithm of LSSS.

Fig. 3. Three Round VSS for Sharing Secret s Tolerating A

Proof: To show that the sharing phase succeeds for an honest D, we prove that
P\Sh ∈ Γ . This is proved by showing that an honest party can never be in P\Sh
and therefore P \ Sh contains only a set of corrupted parties. First we note that
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each honest party Pi will be happy and their instance of WCS will be successful
and Hai will include all honest parties. Naturally, P \ (Sh ∩ Hai) contains only
corrupted parties and will belong to Γ . Thus, all honest parties will be present
in Sh. Equivalently, P \ Sh contains only a set of corrupted parties. �

Lemma 12. If the sharing phase succeeds, then ShHo is an access set. More-
over, for each Pi, Pj ∈ ShHo, 〈ui,Vj〉 = 〈uj ,Vi〉. Furthermore, without loss of
generality, let ShHo = {P1, . . . , Pt}. Then there exists a vector x = (s�, ρ), such
that

(s1, . . . , st)T = MShHo.x
T .

In other words, D will commit the secret s� to the parties in ShHo during the
sharing phase. Moreover, if D is honest then s� = s.

Proof: Follows using similar arguments as used in our two round VSS and three
round WCS. �

Lemma 13. If the sharing phase succeeds then ShHo = ReHo.

Proof: During the reconstruction phase, every honest Pi ∈ Sh will correctly
broadcast the vector which it received from D during sharing phase. So we have
ui = ui. Now from the correctness property of WCS scheme, the decommit
phase of WCSi, corresponding to the honest Pi will be successful and ri will
be accepted as authentic. So we have ri = ri and also ri

j = ri
j for every Pj ∈

WCOREi. Hence the computed sij will be equal to sij = 〈ui,Vj〉. So the honest
Pi ∈ Sh will be present in Rec. Therefore the lemma holds. �

Lemma 14. For every Pi ∈ Rec, si computed during reconstruction phase, is
same as the ith share of secret s�, which is defined by the shares of the parties
in ShHo (and hence ReHo).

Proof: From the previous two lemmas, the shares of the parties in ShHo = ReHo
will define a unique secret s�, which is D’s committed secret. Now we have the
following two cases:

1. Pi ∈ Rec is honest: In this case, the lemma holds trivially.
2. Pi ∈ Rec is corrupted: Since Pi ∈ Rec, it implies that decommit phase of

WCSi is successful and hence ri which was committed by Pi during commit
phase is accepted as authentic. Now Pi ∈ Rec also implies that P \ (Sh ∩
Hai) ∈ Γ . Now let CoHi be the set of common honest parties in (Sh ∩ Hai).
It is easy to see that CoHi is an access set, otherwise A will not satisfy
Q3 condition, which is a contradiction. Now CoHi ⊆ ShHo = ReHo. Also,
CoHi ⊆ WCOREi ⊆ Hai. Thus, ri

j revealed by every Pj ∈ CoHi during
decommit phase of WCSi is the correct share of ri, as given by Pi to Pj

during commit phase of WCSi. Thus, the computed sij , corresponding to
every Pj ∈ CoHi is equal to sji. This is because there can be either one of
the following two possibilities:
(a) Both Pi and Pj are happy during sharing phase, but aij �= bji. In this

case, sij = γij = βji = sji;
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(b) Both Pi and Pj are happy during sharing phase and aij = bji. In this
case, sij = aij − ri

j = bji − ri
j = sji

Now the shares of the parties in CoHi define the same secret s�. This is
because, as discussed above, the access set CoHi ⊆ ReHo. Since CoHi is an
access set, from the properties of MSP, it follows that sji’s corresponding to
P ′

js ∈ CoHi uniquely define si, the ith share of the committed secret s� (this
can be shown using the same arguments as used in Lemma 6).
On the other hand, Pi ∈ Rec also implies that ui revealed by Pi is consistent
with all sij = sji’s of Pj ∈ CoHi. This further implies that ui1 is same as
si because CoHi is an access set (again this can be shown using the same
arguments as used in Lemma 6). �

Theorem 5. The protocol in Fig. 3 is a three round VSS tolerating non-threshold
adversary A characterized by an adversary structure Γ , where A satisfies the Q3

condition. In the protocol, the honest parties perform computation and commu-
nication which is polynomial in the size of M.

Proof: The round complexity can be verified by inspection. Also, it is easy to see
that the honest parties perform computation and communication which is poly-
nomial in the size of M. We now show that the protocol satisfies the properties
of VSS.

1. Secrecy: We have to only consider the case when D is honest. Let the
adversary corrupt some B ∈ Γ . Then at the end of Round I of the sharing
phase, adversary learns no information about s from their shares, as B is a
non-access set. From the secrecy property of WCS, the adversary will not
get any information about ri’s, which are committed by honest Pi’s. Hence,
at the end of Round I of sharing phase, the adversary gains no information
about ri

j ’s and rj
i ’s, corresponding to Pi, Pj �∈ B. Hence at the end of Round

II, adversary gains no information about ui and uj, as ri
j ’s and rj

i ’s works
as the one-time pad.
During Round III, if aij �= bji or vice-versa, then Pi or Pj is corrupted (as
D is honest). Hence, the adversary already knows the share-share 〈ui,Vj〉 =
〈uj ,Vi〉. Thus, D’s broadcast of γij during Round III adds no extra infor-
mation about ui to adversary’s view. Thus, at the end of sharing phase, s
remains information theoretically secure.

2. Correctness: We have to consider the case when D is honest. If D is honest
then the sharing phase will succeed (see Lemma 11). Now by Lemma 12, the
parties in ShHo is an access set and defines s. Moreover, by Lemma 14, correct
share of s will be reconstructed for every Pi in Rec. These facts guarantee
that by applying reconstruction algorithm of the LSSS to the shares of the
parties in Rec, secret s will be reconstructed correctly.

3. Strong Commitment: We have to consider the case when D is corrupted.
The proof is very similar to the proof of correctness. By Lemma 12, the
parties in ShHo is an access set and defines some secret s�, which is D’s
committed secret. Moreover, from Lemma 13, ShHo = RecHo. Furthermore,
by Lemma 14, correct share of s∗ will be reconstructed for every Pi in Rec.
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These facts guarantee that by applying reconstruction algorithm of the LSSS
to the shares of the parties in Rec, secret s� will be reconstructed correctly
and uniquely. �

5 Lower Bounds

We now give our lower bound results.

Theorem 6. Two round perfectly secure VSS is possible if and only if A satisfies
the Q4 condition.

Proof: Sufficiency follows from Fig. 1. We now prove the necessity. On the con-
trary, assume that a two round VSS protocol, say Π , is possible even though A
does not satisfy the Q4 condition. This implies that there exists B1, B2, B3 and
B4, belonging to the underlying adversary structure Γ , such that B1∪B2∪B3∪
B4 = P . Now consider protocol Π ′, involving parties P1, P2, P3 and P4, where
party Pi performs the same computation and communication, as done by the
parties in Bi in Π , for i = 1, . . . , 4. It is easy to see that if Π is a two round VSS
protocol, then Π ′s is also a two round VSS protocol involving four parties, out
of which at most one can be corrupted. However, from [5], Π ′ does not exist. So
Π also does not exist. �

Theorem 7. Any r-round perfectly secure VSS protocol, where r ≥ 3, is possible
if and only if A satisfies the Q3 condition.

Proof: Follows using similar arguments as used in Theorem 6 and by the result
of [5]. �

6 Flaw in the Reconstruction Phase of VSS of [4]

In [4], the authors presented a three round VSS tolerating a threshold adversary
At with n = 3t+1, using a three round WSS protocol as a black-box. However, we
now show that there is a flaw in the reconstruction phase of their VSS. Moreover,
we also show the modifications to eliminate this flaw. We start with a brief
discussion on the WSS and VSS of [4]. Here we use slightly different notations
and steps, that were not there in [4]. However, the current discussion will be valid
even with the original notations and steps of [4]. The sharing phase of the WSS
of [4] is a special case of the commit phase of our WCS. Precisely the matrix M
here is an n × (t + 1) Vandermonde matrix, whose ith row is [i0, i1, . . . , it] and
R is the coefficient matrix of a random symmetric bi-variate polynomial F (x, y)
of degree-t in x, y, where F (0, 0) = s. The result of the computation in the WSS
of [4] can be viewed as follows (though this view was not presented in [4], the
essence is same): if D is not discarded during sharing phase, then there exists
a degree-t univariate polynomial, say f(x), such that D has WSS-shared f(x)
and each happy and honest party Pi has received f(i) from D. Moreover, if D
is honest then D will not be discarded and f(x) = f0(x) = F (x, 0) and hence
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f(0) = s. Now during reconstruction phase, either f(x) (and hence f(0) = s)
or NULL will be reconstructed. Moreover, if f(x) is reconstructed then it is
reconstructed with the shares revealed by a set of parties WCORE, such that
WCORE is a subset of happy parties and there exists at least t+1 honest parties
in WCORE.

Now the VSS protocol of [4] works as follows: During the sharing phase, D
selects a random symmetric bi-variate polynomial F (x, y) of degree-t in x, y,
where F (0, 0) = s and gives each Pi, the degree-t polynomial fi(x) = F (x, i).
Then the parties perform pair-wise checking to check the consistency of their
common values. To do this, each party Pi acts as a dealer and WSS-shares a
degree-t polynomial fW

i (x) and gives each Pj the share fW
i (j). Now to do the

consistency checking, each Pi broadcasts aij = fi(j) + fW
i (j) and bij = fi(j) +

fW
j (i). Each inconsistency (i.e., aij �= bji) is resolved by D (by broadcasting

fi(j)), as a result of which parties become happy/unhappy and the computation
proceeds. At the end of sharing phase, all honest parties agree on a set of at
least 2t+1 happy parties, say CORESh, such that the following condition holds:

1. For each Pi, Pj ∈ CORESh, we have fi(j) = fj(i);
2. Each Pi ∈ CORESh as a dealer, has AWSS-shared a degree-t polynomial

fW
i (x) to at least 2t + 1 parties in CORESh.

Now notice that there is a subtle point here, which is the basis of the flaw in the
reconstruction phase of VSS protocol of [4]. Even though fi(j) = fj(i) is true for
every Pi, Pj ∈ CORESh (as both of them are happy), it does not imply that aij =
bji is true for every Pi, Pj ∈ CORESh. Obviously, if both Pi, Pj ∈ CORESh are
honest, then aij = bji. However, if at least one of Pi, Pj ∈ CORESh is corrupted,
then it may happen that aij �= bji, but still both Pi and Pj are happy and
are present in CORESh. More concretely, suppose Pi is corrupted, Pj and D are
honest. Then during Round II of sharing phase, Pi may broadcast aij that is not
equal to bji. But during Round III, when D tries to resolve the inconsistency,
Pi may broadcast correct fi(j). That is D broadcasts γij = fi(j), Pi broadcasts
αij = fi(j) and Pj broadcasts βji = fj(i), such that γij = αij = βji. So both
Pi and Pj will be happy. Moreover Pi as a dealer can behave correctly during
his instance of WSS to share fW

i (x), such that Pi satisfies the second property
stated above to be in CORESh.

We now recall the steps of the reconstruction phase of the VSS protocol of [4]
in Fig. 4. In [4], the authors claimed that reconstructed fi(x)’s of any t+1 parties
in CORERec define the same bivariate polynomial of degree-t in x and y (see
Lemma 6 of [4]). However, we now show that this is not the case. To be precise,
consider a setting where D is honest and Pi is corrupted. During Round I of
sharing phase, Pi gets fi(x) = F (x, i). Then Pi as a dealer WSS-shares a degree-
t polynomial fW

i (x). During Round II, Pi broadcasts aij = f ′
i(j) + fW

i (j),
instead of fi(j) + fW

i (j), corresponding to all Pj ’s, such that f ′
i(x) �= fi(x) is

another degree-t polynomial. So aij �= bji, for all Pj ’s. But then during Round
III, Pi behaves in such a way that Pi is considered as happy along with all other
Pj ’s (this he can do as discussed earlier). Pi also ensures that his WSS instance
satisfies the desired property so that Pi is included in CORESh.



160 A. Choudhury, K. Kurosawa, and A. Patra

For each Pi ∈ CORESh, run the reconstruction phase of WSSi (the instance of WSS
initiated by Pi as a dealer).

Local Computation (By Each Party):

1. Initialize CORERec = CORESh.
2. Remove Pi from CORERec if the reconstruction phase of WSSi outputs NULL.
3. If fW

i (x) is reconstructed during reconstruction phase of WSSi then compute
fi(j) = aij − fW

i (j), for j = 1, . . . , n. Check if the computed fi(j)’s lie on a unique
degree-t polynomial. If not then remove Pi from CORERec. Otherwise, let fi(x)
be the degree-t polynomial.

4. Take fi(x)’s corresponding to any t + 1 parties in CORERec, reconstruct F �(x, y)
and output s� = F �(0, 0).

Fig. 4. Reconstruction Phase of the VSS Protocol of [4]

Now during reconstruction phase of VSS, suppose the reconstruction phase
of WSSi is successful and hence the WSS-shared polynomial fW

i (x) is recon-
structed correctly. But now when the (honest) parties perform step 3 of the local
computation (given in Fig. 4), they will get back f ′

i(j) = aij − fW
i (j), instead

of original fi(j). Moreover, the computed f ′
i(j)’s will lie on degree-t polyno-

mial f ′
i(x) �= fi(x) and Pi will be present in CORERec. But now notice that

f ′
i(x) �= fi(x) does not lie on the original bivariate polynomial F (x, y). This will

further lead to the violation of correctness property of VSS.

Elimination of the Flaw: From the above discussion, it is clear that the reason
behind the above flaw is that aij = bji may not hold for every Pi, Pj ∈ CORESh.
To eliminate the above flaw, we modify the step 3 of the local computation of
Fig. 4 as follows:

3. If fW
i (x) is reconstructed during reconstruction phase of WSSi then compute

fi(j)’s as follows:

– fi(j) = γij ; if γij was broadcasted by D during Round III of sharing phase.
– fi(j) = aij − fW

i (j); if aij = bji during sharing phase.

Check if the computed fi(j)’s lie on a unique degree-t polynomial. If not then
remove Pi from CORERec. Otherwise, let fi(x) be the degree-t polynomial.

Now it is easy to verify that with the above modification, Lemma 6 of [4] will
hold.

7 More Efficient 3-round VSS for n ≥ 3t + 1

In the previous section, we pointed out a flaw in the 3-round VSS of Fitzi et al. [4],
and presented how to fix it. The communication complexity of the reconstruction
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phase of the proposed modified protocol is O(n3). This results from the facts that
there are n instances of the WSS protocol in the VSS and the communication
cost of the reconstruction phase of WSS of [4] is O(n2).

On the other hand, if we restrict our three round VSS protocol given in Fig.
3 to threshold adversary, then we get a three round VSS with n = 3t + 1 whose
communication complexity of reconstruction phase is O(n2). This results from
the facts that in our VSS, WSS has been replaced by WCS and the commu-
nication cost of the decommit phase of WCS is only O(n). If we compare the
definition of WCS and WSS (for formal definition of WSS, see [4]), then we find
that in WSS, the dealer D is not allowed to act/play a special role in the recon-
struction phase. That is, D is not allowed to reveal the secret and randomness
used by him during the sharing phase. During the reconstruction phase, every
party reveal their entire view of the sharing phase and a reconstruction function
is applied on them to reconstruct either the secret shared during sharing phase
or NULL. On the other hand, in WCS, D is allowed to act specially in the de-
commit phase. Precisely, he is allowed to reveal the secret and randomness used
by him during commit phase. As a result, the decommit phase of our WCS is
conceptually simpler than the reconstruction phase of WSS protocol of [4] and
we gain an efficiency of Θ(n) during the reconstruction phase.

8 Conclusion

In this paper, we resolved the round complexity of VSS tolerating generalized
adversary. Our results strictly generalize the results of [4] to non-threshold set-
tings. In our three round protocol, we have not tried to optimize the use of
broadcast channel. However, we conjecture that following the techniques of [7],
we can design a three round VSS tolerating Q3 adversary structure, which uses
broadcast channel in only one round during the sharing phase.
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Abstract. The goal of Multi-Party Computation (MPC) is to perform
an arbitrary computation in a distributed, private, and fault-tolerant
way. For this purpose, a fixed set of n parties runs a protocol that tol-
erates an adversary corrupting a subset of the participating parties, and
still preserves certain security guarantees.

Most MPC protocols provide security guarantees in an all-or-nothing
fashion. In this paper, we provide the first treatment of MPC with grace-
ful degradation of both security and corruptions. First of all, our pro-
tocols provide graceful degradation of security, i.e., different security
guarantees depending on the actual number of corrupted parties: the
more corruptions, the weaker the security guarantee. We consider all
security properties generally discussed in the literature (secrecy, correct-
ness, robustness, fairness, and agreement on abort). Furthermore, the
protocols provide graceful degradation with respect to the corruption
type, by distinguishing fully honest parties, passively corrupted parties,
and actively corrupted parties. Security can be maintained against more
passive corruptions than is possible for active corruptions.

We focus on perfect security, and prove exact bounds for which MPC
with graceful degradation of security and corruptions is possible for both
threshold and general adversaries. Furthermore, we provide protocols
that meet these bounds. This strictly generalizes known results on hy-
brid security and mixed adversaries.

Keywords: Multi-party computation, graceful degradation, hybrid se-
curity, mixed adversaries.

1 Introduction

1.1 Secure Multi-Party Computation

Multi-Party Computation (MPC) allows a set of n parties to securely perform
an arbitrary computation in a distributed manner, where security means that
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secrecy of the inputs and correctness of the output are maintained even when
some of the parties are dishonest. The dishonesty of parties is typically modeled
with a central adversary who corrupts parties. The adversary can be passive,
i.e., she can read the internal state of the corrupted parties, or active, i.e., she
can make the corrupted parties deviate arbitrarily from the protocol.

MPC was originally proposed by Yao [Yao82]. The first general solution
was provided in [GMW87], where, based on computational intractability as-
sumptions, security against a passive adversary was achieved for t < n cor-
ruptions, and security against an active adversary was achieved for t < n

2 . In
[BGW88, CCD88], information-theoretic security was achieved at the price of
lower corruption thresholds, namely t < n

2 for passive and t < n
3 for active adver-

saries. The latter bound can be improved to t < n
2 if both broadcast channels are

assumed and a small error probability is tolerated [RB89, Bea89]. These results
were generalized to the non-threshold setting, where the corruption capability
of the adversary is not specified by a threshold t, but rather by a so-called ad-
versary structure Z, a monotone collection of subsets of the player set, where
the adversary can corrupt the players in one of these subsets [HM97].

All mentioned protocols achieve full security, i.e., secrecy, correctness, and
robustness. Secrecy means that the adversary learns nothing about the honest
parties’ inputs and outputs (except, of course, for what she can derive from
the corrupted parties’ inputs and outputs). Correctness means that all parties
either output the right value or no value at all. Robustness means that the ad-
versary cannot prevent the honest parties from learning their respective outputs.
This last requirement turns out to be very strong. Therefore, relaxations of full
security have been proposed, where robustness is replaced by weaker output
guarantees: Fairness means that the adversary can possibly prevent the honest
parties from learning their outputs, but then also the corrupted parties do not
learn their outputs. Agreement on abort means that the adversary can possibly
prevent honest parties from learning their output, even while corrupted par-
ties learn their outputs, but then the honest parties at least reach agreement
on this fact (and typically make no output). Note that for example [GMW87]
achieves secrecy, correctness, and agreement on abort (but neither robustness
nor fairness) for up to t < n active corruptions.

1.2 Graceful Degradation

Most MPC protocols in the literature do not degrade very gracefully. They pro-
vide a very high level of security up to some threshold t, but no security at all
beyond this threshold. There are no intermediate levels of security.1 Further-
more, a party is considered either fully honest or fully corrupted. There are no
intermediate levels of corruptions.

Note that many papers in the literature consider several corruption types, or
even several levels of security, but in separate protocols. For example, [BGW88]
proposes a protocol for passive security with t < n

2 , and another protocol for

1 The same observation holds for known protocols for general adversaries.
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active security with t < n
3 . There is no graceful degradation: If in the active

protocol, some passive adversary corrupts �n
3 � parties, the protocol is insecure.

Graceful degradation was first considered by Chaum [Cha89]: He proposed
one protocol with graceful degradation of security, namely from information-
theoretic security (few corruptions) over computational security (more corrup-
tions) to no security (many corruptions), and another, independent protocol with
graceful degradation of corruptions, namely by considering fully honest, passively
corrupted, and actively corrupted parties in the same protocol execution. The
former protocol (graceful degradation of security, often called hybrid security)
was recently generalized in [FHHW03, FHW04, IKLP06, Kat07, LRM10]. The
latter protocol (graceful degradation of corruptions, often called mixed security)
was generalized and extended in [DDWY93, FHM98, FHM99, BFH+08, HMZ08].

1.3 Our Focus

In this work, we consider simultaneously graceful degradation of security (i.e.,
hybrid security) and graceful degradation of corruptions (i.e., mixed adversaries),
both in the threshold and in the general adversary setting. In the threshold
setting, we consider protocols with four thresholds tc (for correctness), ts (for
secrecy), tr (for robustness), and tf (for fairness).2 We assume that ts ≤ tc and
tr ≤ tc, since secrecy and robustness are not well defined in a setting without
correctness. Furthermore, we assume that tf ≤ ts since in a setting without
secrecy the adversary inherently has an unfair advantage over honest parties.

Furthermore, we also consider graceful degradation with respect to the cor-
ruption type: We consider, at the same time, honest parties, passively corrupted
parties, and actively corrupted parties (so-called mixed adversaries). Such an
adversary is characterized by two thresholds ta and tp, where up to tp parties
can be passively corrupted, and up to ta of these parties can even be corrupted
actively. Note that tp denotes the upper bound on the total number of corrup-
tions (active as well as purely passive), and ta denotes the upper bound on the
number of actively corrupted parties (hence, ta ≤ tp).

In the non-threshold setting, security is characterized by four adversary struc-
tures Zc, Zs, Zr, Zf , where correctness, secrecy, robustness, and fairness are
guaranteed as long as the set of corrupted players is contained in the correspond-
ing adversary structure.3 As argued above, we assume that Zs ⊆ Zc, Zr ⊆ Zc

and Zf ⊆ Zs. In order to model both passive and active corruptions, each ad-
versary structure consists of tuples (D, E) of subsets of the player set, where E
is the set of passively (eavesdropping), and D ⊆ E is the set of actively (disrup-
tion) corrupted parties. A protocol with adversary structure Z provides security
guarantees for every adversary actively corrupting the parties in D and passively
corrupting the parties in E , for some (D, E) ∈ Z.
2 If the number of corruptions is below multiple thresholds, all corresponding secu-

rity properties are achieved. In particular, full security is achieved if the number of
corruptions is below all thresholds.

3 As in the threshold case, if the set of corrupted parties is contained in multiple
adversary structures, all corresponding security properties are achieved.
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Note that the notion of correctness for a security level without secrecy differs
from the usual interpretation: The adversary is rushing and may know the entire
state of the protocol execution. Hence, input-independence cannot be achieved.
Furthermore, for the same reason, we can have probabilistic computations only
with adversarially chosen randomness.

1.4 Contributions

We provide the first MPC protocol with graceful degradation in multiple dimen-
sions: We consider all security properties generally discussed in the literature (se-
crecy, correctness, robustness, fairness, and agreement on abort), and the most
prominent corruption types (active, passive). We prove a tight bound on the
feasibility of perfectly-secure MPC, both in the threshold and the non-threshold
setting, and provide efficient perfectly-secure general MPC protocols matching
these bounds.4 Our main results (Theorems 1 and 2) are a strict generalization
of the previous results for perfect MPC, which appear as special cases in our
unified treatment. For the sake of simplicity, we do not include fail corruption
[BFH+08]. Note that fairness is not discussed in the protocol descriptions, but
in Section 4.

Previous results for perfectly secure MPC considered graceful degradation
only of corruption levels, i.e., the known protocols always provide full security.
Usually, the intuition behind the different corruption types is that passively
corrupted parties only aim to break secrecy, whereas actively corrupted parties
aim to break correctness (and/or robustness). However, this analogy does not
readily extend to mixed adversaries that simultaneously perform passive and
active corruptions. Our model separates the different security properties, and
therefore allows to make precise statements formalizing the above intuition. This
indicates that our model is both natural and appropriate.

As a simple example consider voting. A solution based on a traditional per-
fectly secure MPC protocol, e.g. [BGW88], achieves secrecy and correctness for
up to t < n

3 corrupted parties, but provides no guarantees if t ≥ n
3 . However, in

voting it is generally much more important that the final tally is correct than
to protect the secrecy of votes. Our protocol allows to reduce secrecy to t = n

8
corrupted parties, while guaranteeing correctness for t < 3n

4 actively corrupted
parties (and additionally arbitrarily many passively corrupted parties). This pro-
tocol is robust for up to t = n

8 corruptions. It is also possible to trade correctness
for robustness: By reducing the correctness guarantee to t < n

2 corruptions, ro-
bustness is guaranteed for up to t = 3n

8 corruptions.

1.5 Model

We consider n parties 1, . . . , n, connected by pairwise synchronous secure chan-
nels, who want to compute some probabilistic function over a finite field F,
4 The protocols are efficient in the input length, i.e. the threshold protocol is efficient

in the number of parties and the size of the circuit to be computed, whereas the
protocol for general adversaries is efficient in the size of the adversary structure and
the size of the circuit.
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represented as a circuit with input, addition, multiplication, random, and out-
put gates. This function can be reactive, where parties can provide further inputs
after having received some intermediate outputs. In the main body of this paper,
we assume that authenticated broadcast channels are given. The model without
broadcast channels is treated in the full version of this paper.

There is a central adversary with unlimited computing power who corrupts
some parties passively (and reads their internal state) or even actively (and
makes them misbehave arbitrarily). We denote the actual sets of actively (pas-
sively) corrupted parties by D∗ (E∗), where D∗ ⊆ E∗. Uncorrupted parties are
called honest, non-active parties are called correct. The security of our protocols
is perfect, i.e., information-theoretic with no error probability. The level of secu-
rity (secrecy, correctness, fairness, robustness, agreement on abort) depends on
(D∗, E∗).

For ease of notation, we assume that if a party does not receive an expected
message (or receives an invalid message), a default message is used instead.

1.6 Outline of the Paper

Our paper is organized as follows: As a main technical contribution, we generalize
known protocols for threshold and general adversaries in Sections 2 and 3. In
Section 4, we state optimal bounds for MPC, together with proofs of sufficiency.
Tightness of the bounds is proven in Section 5.

2 A Parametrized Protocol for Threshold Adversaries

In this section, we generalize the perfectly secure MPC protocol of
[BGW88] by introducing two parameters. On an abstract level, our modifica-
tions can be described as follows: First, we define the state that is held in the
protocol in terms of a parameter that influences the secrecy. In case of [BGW88],
this is the degree d of the sharing polynomial (see also [FHM98]). Second, given
the parameter d for secrecy, we express the reconstruct protocol in terms of an
additional parameter determining the amount of error correction taking place.
Traditional protocols correct as many errors as possible. By using a parameter,
our protocol may stay below the theoretical limit, thereby providing extended
error detection. In case of [BGW88], this parameter is the number e of corrected
errors during reconstruction. To our knowledge, such a second parameter has
not been considered before. The two parameters must fulfill d + 2e < n. Note
that by choosing d + 2e �= n− 1, it is possible to reduce robustness for extended
correctness. In [BGW88], both parameters are set to d = e = t, the maximum
number of actively corrupted parties.

In the following, we present the parametrized protocols and analyze them with
respect to correctness, secrecy, and robustness. Note that fairness is discussed in
Section 4.
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2.1 The Underlying Verifiable Secret Sharing

The state of the protocol is maintained with a Shamir sharing [Sha79] of each
value. We assume that each party i is assigned a unique and publicly known
evaluation point αi ∈ F \ {0}. This implies that the field F must have more than
n elements.

Definition 1 (d-Sharing). A value s is d-shared when there is a share polyno-
mial ŝ(x) of degree d with ŝ(0) = s, and every party i holds a share si = ŝ(αi).
We denote a d-sharing of s with [s], and the share si with [s]i. A sharing degree
d is t-permissive if the shares of all but t parties uniquely define the secret, i.e.,
n− t > d.

Lemma 1. Let d < n be the sharing degree. A d-sharing is secret if |E∗| ≤ d,
and uniquely defines a value if d is |D∗|-permissive.

Proof. It follows directly from the properties of a polynomial of degree d that
secrecy is guaranteed if the number |E∗| of (actively or passively) corrupted
parties is at most d. Furthermore, n − |D∗| > d implies that there are at least
d + 1 correct parties whose shares uniquely define a share polynomial. ��

The share protocol takes as input a secret s from a dealer, and outputs a d-
sharing [s] (see Figure 1). Due to lack of space, the proof of the following lemma
can be found in the full version.

�����: Given input s from the dealer, compute a d-sharing [s] of this value.

1. The dealer chooses a random (2-dimensional) polynomial g(x, y) with g(0, 0) = s,
of degree d in both variables, and sends to party i (for i = 1, . . . , n) the (1-
dimensional) polynomials ki(y) = g(αi, y) and hi(x) = g(x,αi).

2. For each pair of parties (i, j), party i sends hi(αj) to party j, and party j checks
whether hi(αj) = kj(αi). If this check fails, it broadcasts a complaint, and the
dealer has to broadcast the correct value.

3. If some party i observes an inconsistency between the polynomials received in
Step 1 and the broadcasted value in Step 2, it accuses the dealer. The dealer has to
answer the accusation by broadcasting both ki(y) and hi(x). Now, if some other
party j observes an inconsistency between the polynomial received in Step 1 and
these broadcasted polynomials, it also accuses the dealer. This step is repeated
until no additional party accuses the dealer.

4. If the dealer does not answer some complaint or accusation, or if the broadcasted
values contradict, the parties output a default d-sharing. Otherwise, each party i
outputs si := ki(0), and the dealer outputs ŝ(x) := g(x, 0).5

Fig. 1. The Share Protocol

5 That means, in general we discard the second dimension of g(x, y). Yet, in a special
context, we will subsequently make use of it.
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Lemma 2. Let d < n be the sharing degree. On input s from the dealer, Share
correctly, secretly, and robustly computes a d-sharing. If d is |D∗|-permissive,
and if the dealer is correct, the sharing uniquely defines the secret s.

The public reconstruction of a d-shared value s uses techniques from coding
theory, which allow a more intuitive understanding of the trade-off between
correctness and robustness. It follows from coding theory that a d-sharing is
equivalent to a code based on the evaluation of a polynomial of degree d. Such
a code has minimal distance n − d. Hence, the decoding algorithm can detect
up to n − d − 1 errors and abort (for correctness), or correct up to n−d−1

2
errors (for robustness). In our protocol, we trade correctness for robustness by
introducing the correction parameter e < n−d

2 : Our decoding algorithm provides
error correction for up to e errors, and error detection for up to (n− d)− e− 1
errors. Note that this trade-off is optimal: If the distance to the correct codeword
is greater than (n− d)− e− 1, the distance to the next codeword is at most e,
and the decoding algorithm would decode to the wrong codeword.

The public reconstruction protocol (Figure 2) proceeds as follows: First, each
party broadcasts its share si. Then, each party locally “decodes” the broadcasted
shares to the closest codeword, and aborts if the Hamming distance between
the shares and the decoded codeword is larger than e. Note that during public
reconstruction, there is no secrecy requirement.

���	
� ����������
� : Given a d-sharing [s] of some value s, reconstruct s to
all parties.

1. Each party i broadcasts its share si. Let s = (s1, ..., sn) denote the vector of
broadcasted shares.

2. Each party identifies the closest codeword sc (e.g. using the Berlekamp-Welch
algorithm). If the Hamming distance between sc and s is larger than e, the
protocol is aborted. Otherwise, each party interpolates the entries in sc with a
polynomial ŝc(x) of degree d, and outputs ŝc(0).

6

Fig. 2. The Public Reconstruction Protocol

Lemma 3. Let d be the sharing degree, and e be the correction parameter, where
d + 2e < n. Given a d-sharing [s] of some value s, Public Reconstruction
is correct if |D∗| < (n − d) − e, is robust if |D∗| ≤ e, and always guarantees
agreement on abort.

Proof. Only actively corrupted parties broadcast incorrect shares. Hence, the
Hamming distance between the broadcasted shares and the correct codeword is
at most |D∗|.

6 That means, in general we discard the vector of corrected shares sc. Yet, in a special
context, we will subsequently make use of it.
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Correctness: The minimal distance between two codewords is (n − d), and the
decoding algorithm corrects up to e errors. Hence, if |D∗| + e < (n − d), the
decoding algorithm never decodes to the incorrect codeword.
Robustness: If |D∗| ≤ e, the Hamming distance between the shares and the
correct codeword is at most e and the decoding cannot be aborted.
Agreement on abort: The abort decision is only based on broadcasted values.
Hence, either all correct parties abort, or all correct parties continue. ��

During Public Reconstruction, all parties learn the value under considera-
tion. Private Reconstruction, where a value s is disclosed only to a single
party k, can be reduced to Public Reconstruction using a simple blind-
ing technique ([CDG87]): Party k first shares a uniform random value, which
is added to s before Public Reconstruction is invoked. Hence, Private
Reconstruction provides the same security guarantees as Public Recon-
struction, and additionally provides secrecy of the reconstructed value. Note
that the trivial solution, where each party sends its share to party k, does not
achieve agreement on abort.

2.2 Addition, Multiplication, and Random Values

Linear functions (and in particular additions) can be computed locally, since
d-sharings are linear: Given sharings [a] and [b], and a constant c, one can easily
compute the sharings [a]+[b], c[a], and [a]+c. Computing a shared random value
can be achieved by letting each party i share a random value ri, and computing
[r] = [r1] + . . . + [rn].

The multiplication protocol is more involved. The product c of two shared val-
ues a and b is computed as follows [GRR98]: Each party multiplies its shares ai

and bi, obtaining vi = aibi. This results in a sharing of c with a polynomial v̂(x)
of degree 2d. We reduce the degree by having each party d-share its value vi (re-
sulting in [vi]), and employing Lagrange interpolation to distributedly compute
v̂(0). This results in a d-sharing of the product c.

This protocol is secure only against passive adversaries. An active adversary
could share a wrong value v′i �= vi. Therefore, each party has to prove that it
shared the correct value vi = aibi. This proof requires that ai and bi are d-shared,
which we achieve by upgrading the d-sharings of a and b, resulting in [ai] and
[bi] for all i.

Given [ai], [bi], and [vi], it remains to show that aibi = vi, which is equivalent
to z = 0 for [z]2d := [ai][bi] − [vi], where [z]2d is a 2d-sharing. Party i knows
the sharing polynomial g(x) corresponding to [z]2d. However, party i cannot
simply broadcast g(x), since this would violate secrecy (the adversary could
obtain information about other shares). Therefore, we blind [z]2d by adding a
uniformly random 2d-sharing of 0.

Finally, all parties (locally) check whether z = 0, and whether party i broad-
casted the correct polynomial g(x), i.e. for party j whether g(αj) = [z]2d

j . Two
polynomials of degree 2d are equal if they coincide in 2d+1 points. So, if party i
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broadcasts an incorrect g(x), and if there are at least 2d + 1 correct parties, at
least one correct party detects the cheating attempt and raises an accusation. To
prove the accusation, the shares of the corresponding party are reconstructed.

The full description of the multiplication protocol can be found in the full
version.

2.3 The Security of the Parametrized Protocol

Considering the security of the subprotocols described above, we can derive the
security of the parametrized protocol, denoted by πd,e (proof omitted):

Lemma 4. Let d be the sharing degree, and e be the correction parameter, where
d + 2e < n. Protocol πd,e guarantees correctness if |D∗| < (n − d) − e and
|D∗| < n − 2d, secrecy if |E∗| ≤ d and correctness is guaranteed, robustness if
|D∗| ≤ e, and agreement on abort always.

3 A Parametrized Protocol for General Adversaries

For general adversaries, we proceed along the lines of the threshold case: We
generalize the protocol of [Mau02] and introduce the sharing specification S =
(S1, . . . , Sk) (corresponding to the sharing degree d), and the correction structure
C = {C1, . . . , Cl} (corresponding to the correction parameter e), both collections
of subsets of P .

3.1 The Underlying Verifiable Secret Sharing

The state of the protocol is maintained with a k-out-of-k sharing, where each
party holds several summands.

Definition 2 (S-Sharing). A value s is S-shared for sharing specification S =
(S1, . . . , Sk) if there are values s1, . . . , sk, such that s1 + . . . + sk = s and, for
all i, every (correct) party j ∈ Si holds the summand si. A sharing specification
S is D-permissive, if each summand is held by at least one party outside D,
i.e. ∀i : Si \ D �= ∅.

Lemma 5. Let S be the sharing specification. An S-sharing is secret if ∃Si ∈
S : Si ∩ E∗ = ∅, and uniquely defines a value if S is D∗-permissive.

Proof. Secrecy follows from the fact that E∗ lacks at least one summand si.
Furthermore, given that S is D∗-permissive, each summand si is held by at least
one correct party. Hence, the secret s is uniquely defined by s = s1 + . . .+sk. ��

The share protocol takes as input a secret s from a dealer, and outputs an S-
sharing of the secret s (see Figure 3). Due to lack of space, the proof of the
following lemma can be found in the full version.

Lemma 6. Let S be the sharing specification. On input s from the dealer,
ShareGA correctly, secretly and robustly computes an S-sharing. If S is D∗-
permissive, and if the dealer is correct, the sharing uniquely defines the secret s.



172 M. Hirt et al.

�����
�� : Given input s from the dealer, compute an S-sharing of this value.

1. Let k = |S|. The dealer chooses uniformly random summands s1, . . . , sk−1 and
computes sk = s +

∑k−1
i=1 si. Then, the dealer sends si to every party j ∈ Si.

2. For all Si ∈ S : Every party j ∈ Si sends si to every other party in Si. Then,
every party in Si broadcasts a complaint bit, indicating whether it observed an
inconsistency.

3. The dealer broadcasts each summand si for which inconsistencies were reported,
and the players in Si accept this summand. If the dealer does not broadcast a
summand si, the parties use si = 0.

4. Each party j outputs its share {si | j ∈ Si}.

Fig. 3. The Share Protocol for General Adversaries

For the public reconstruction7 of a shared value, we modify the reconstruction
protocol of [Mau02]. In our protocol, we trade correctness for robustness by
introducing a correction structure C. First, each summand si is broadcasted by
all parties in Si. Then, if the inconsistencies can be explained with a faulty set
C ∈ C, the values from parties in C are ignored (corrected), and reconstruction
proceeds. Otherwise, the protocol is aborted.

Note that, whenever two sets of possibly actively corrupted parties cover a set
Si ∈ S, i.e. Si ⊆ D1∪D2, and the parties in D1 contradict the parties in D2, then
it is impossible to decide which is the correct value. This observation implies an
upper bound on C, namely ∀S ∈ S, C1, C2 ∈ C : S �⊆ C1 ∪ C2. However, instead
of always correcting as many errors as possible, the protocol allows to select a
structure C that remains below this upper bound (i.e. contains smaller sets C).
Now, when correcting errors in a set C ∈ C, we can detect errors in sets D where
∀Si ∈ S, C ∈ C : Si �⊆ D ∪ C. Hence, this approach provides a tradeoff between
reduced robustness and extended correctness.

���	
� ����������
�
�� : Given an S-sharing of some value s, reconstruct s to

all parties.

1. For each summand si:
(a) Each party j ∈ Si broadcasts si. For j ∈ Si, let s

(j)
i denote the value (for si)

broadcasted by party j.
(b) Each party (locally) reconstructs the summand si: If there is a value si such

that there exists C ∈ C with s
(j)
i = si for all j ∈ Si \ C, use si. Otherwise

abort.
2. Each party outputs the secret s = s1 + . . . + sk.

Fig. 4. The Public Reconstruction Protocol for General Adversaries

7 The reduction of private to public reconstruction can be done along the lines of the
threshold case.
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Lemma 7. Let S be the sharing specification, and C be the correction structure,
where ∀S ∈ S, C1, C2 ∈ C : S �⊆ C1 ∪ C2. Given an S-sharing of some value s,
Public ReconstructionGA is correct if ∀C ∈ C, S ∈ S : S \C �⊆ D∗, is robust
if D∗ ∈ C, and always guarantees agreement on abort.

Proof. Correctness: The condition ∀C ∈ C, S ∈ S : S \ C �⊆ D∗ states that for
every summand si and every set C ∈ C, there is at least one correct party whose
summand is not ignored. Hence, if a value si is chosen, it must be the correct
one.
Robustness: When reconstructing the summand si, all but the actively corrupted
parties in D∗ broadcast the same summand si. If D∗ ∈ C, these inconsistencies
can be explained with a set in C. Hence, the corresponding set can be ignored
and reconstruction terminates without abort.
Agreement on abort: The abort decision is based only on broadcasted values.
Hence, either all correct parties abort, or all correct parties continue. ��

3.2 Addition, Multiplication, and Random Values

Linear functions (and in particular additions) can be computed locally, since
S-sharings are linear. In particular, given sharings of a and b, and a constant c,
one can easily compute the sharings of a + b, ca, and a + c. Computing a shared
random value can be achieved by letting each party i share a random value ri,
and computing a sharing of r = r1 + . . . + rn.

For the multiplication of two values a and b, we use the protocol from [Mau02],
based on our modified share and reconstruct protocols. The multiplication pro-
tocol exploits the fact that ab =

∑k
i=1

∑k
j=1 aibj : For each aibj , first, all parties

who know ai and bj compute aibj and share it. Then, all parties choose a (cor-
rect) sharing of aibj . In the end, each party locally computes the linear function
described above. In order to choose a correct sharing of aibj , the protocol checks
whether all parties that computed aibj shared the same value. If this holds, and
if at least one correct party shared aibj, all sharings contain the correct value,
and an arbitrary one can be chosen. Otherwise, at least one party is actively
corrupted, and the summands ai and bj can be reconstructed without violating
secrecy.

The full description of the multiplication protocol can be found in the full
version.

3.3 The Security of the Generalized Protocol from [Mau02]

Considering the security of the subprotocols described above, we can derive the
security of the parametrized protocol, denoted by πS,C (proof omitted):

Lemma 8. Let S be the sharing specification, and C be the correction structure,
where ∀S ∈ S, C1, C2 ∈ C : S �⊆ C1∪C2. The protocol πS,C guarantees correctness
if ∀Si, Sj ∈ S : Si ∩ Sj �⊆ D∗ and ∀C ∈ C, S ∈ S : S \ C �⊆ D∗, secrecy if
∃Si ∈ S : Si ∩ E∗ = ∅ and correctness is guaranteed, robustness if D∗ ∈ C, and
agreement on abort always.
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4 The Main Results

The following theorems state the optimal bounds for perfectly secure MPC with
graceful degradation of both security (allowing for hybrid security) and cor-
ruptions (allowing for mixed adversaries) for threshold as well as for general
adversaries, given broadcast.8 Furthermore, we show that the bounds are suffi-
cient for MPC by providing parameters for the generalized protocols introduced
in Sections 2 and 3, respectively. In the following section, we prove that the
bounds are also necessary.

4.1 Threshold Adversaries

We consider a mixed adversary, which is characterized by a pair of thresholds
(ta, tp): He may corrupt up to tp parties passively, and up to ta of these par-
ties even actively. The level of security depends on the number (|D∗|, |E∗|) of
actually corrupted parties; the fewer parties are corrupted, the more security is
guaranteed. We consider four security properties, namely correctness, secrecy,
robustness, and fairness. Depending on the actual number of corrupted par-
ties, different security properties are achieved. This is modeled with four pairs of
thresholds, one for each security requirement, specifying the upper bound on the
number of corruptions that the adversary may perform, such that the security
requirement is still guaranteed. More specifically, we consider the four pairs of
thresholds (tca, tcp), (tsa, tsp), (tra, trp), (tfa , tfp) and we assume that (tra, trp) ≤ (tca, tcp)
and (tfa , tfp) ≤ (tsa, tsp) ≤ (tca, tcp),9 as secrecy and robustness are not well defined
without correctness, and as fairness cannot be achieved without secrecy. Then,
correctness with agreement on abort is guaranteed for (|D∗|, |E∗|) ≤ (tca, tcp),
secrecy is guaranteed for (|D∗|, |E∗|) ≤ (tsa, tsp), robustness is guaranteed for
(|D∗|, |E∗|) ≤ (tra, trp), and fairness is guaranteed for (|D∗|, |E∗|) ≤ (tfa , tfp). Triv-
ially, if several of these conditions are satisfied, all corresponding security prop-
erties are guaranteed. In particular, full security is guaranteed if the conditions
for all four security properties are fulfilled.

Theorem 1. In the secure channels model with broadcast and threshold adver-
saries, perfectly secure MPC among n parties with thresholds (tca, tcp), (tsa, tsp),
(tra, trp), and (tfa , tfp), where (tra, trp) ≤ (tca, tcp) and (tfa , tfp) ≤ (tsa, tsp) ≤ (tca, tcp), is
possible if (

tca + tsp + tra < n ∧ tca + 2tsp < n
)

∨ tsp = 0.

This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

The sufficiency of the bound in Theorem 1 follows basically from Lemma 4 (with
d := tsp and e := max(tra, tfa)). Due to lack of space the proof can be found in the
full version. The necessity of the bound is proven in Section 5.
8 The model without broadcast is treated in the full version of this paper.
9 We write (ts

a, ts
p) ≤ (tc

a, tc
p) as shorthand for ts

a ≤ tc
a and ts

p ≤ tc
p.
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4.2 General Adversaries

The above characterization for threshold adversaries can be extended to general
adversaries by providing one adversary structure consisting of tuples (D, E) of
subsets of P for each security requirement, denoted by Zc, Zs, Zr, and Zf , re-
spectively. Again, we have the assumption that Zr ⊆ Zc and Zf ⊆ Zs ⊆ Zc, as
secrecy and robustness are not well defined without correctness, and as fairness
cannot be achieved without secrecy. Then, correctness with agreement on abort is
guaranteed for (D∗, E∗) ∈ Zc, secrecy is guaranteed for (D∗, E∗) ∈ Zs, robustness
is guaranteed for (D∗, E∗) ∈ Zr, and fairness is guaranteed for (D∗, E∗) ∈ Zf .
Trivially, if several of these conditions are satisfied, all corresponding security
properties are guaranteed. In particular, full security is guaranteed if the condi-
tions for all four security properties are fulfilled.

Theorem 2. In the secure channels model with broadcast and general adver-
saries, perfectly secure MPC among n parties with respect to
(Zc,Zs,Zr,Zf ), where Zr ⊆ Zc and Zf ⊆ Zs ⊆ Zc, is possible if

∀(Dc, ·) ∈ Zc, (·, Es
1 ), (·, Es

2 ) ∈ Zs, (Dr , ·) ∈ Zr :(
Dc ∪ Es

1 ∪ Dr �= P ∧ Dc ∪ Es
1 ∪ Es

2 �= P
)

∨ Zs = {(∅, ∅)}.
This bound is tight: If violated, there are (reactive) functionalities that cannot be
securely computed.

The sufficiency of the bound in Theorem 2 follows basically from Lemma 8 (with
S := {Es | (·, Es) ∈ Zs} and C = {D | (D, ·) ∈ Zr ∪ Zf}). The proof can be
found in the full version. The necessity of the bound is proven in Section 5.

5 Proofs of Necessity

In this section, we prove that the bounds in Theorem 1 and 2 are necessary, i.e.,
if violated, some (reactive) functionalities cannot be securely computed. Triv-
ially, the impossibility for threshold adversaries follows from the impossibility for
general adversaries. The bound for general adversaries (Theorem 2) is violated
if Zs �= {(∅, ∅)} and
∃(Dc, ·) ∈ Zc, (·, Es

1 ), (·, Es
2 ) ∈ Zs, (Dr, ·) ∈ Zr :

Dc ∪ Es
1 ∪Dr = P ∨ Dc ∪ Es

1 ∪ Es
2 = P .

Due to monotonicity, we can assume that the sets Dc, Es
1 , Es

2 , and Dr are disjoint.
Furthermore, since Zs �= {(∅, ∅)}, we can assume that Es

1 �= ∅. We can split the
condition according to whether Dc ∪ Es

1 ∪Dr = P or Dc ∪ Es
1 ∪ Es

2 = P .

1. ∃(Dc, ·) ∈ Zc, (·, Es
1 ) ∈ Zs, (Dr , ·) ∈ Zr : Dc ∪ Es

1 ∪ Dr = P ∧ Es
1 �= ∅. We

further split this case according to whether Dc = ∅ or Dr = ∅. Note that,
since Zr ⊆ Zc, the case where Dc = ∅ ∧ Dr �= ∅ is subsumed by Case 1(b).
(a) ∃(Dc, ·) ∈ Zc, (·, Es

1 ) ∈ Zs, (Dr, ·) ∈ Zr :
Dc ∪ Es

1 ∪ Dr = P ∧ Es
1 �= ∅ ∧ Dc �= ∅ ∧ Dr �= ∅

(b) ∃(Dc, ·) ∈ Zc, (·, Es
1 ) ∈ Zs : Dc ∪ Es

1 = P ∧ Es
1 �= ∅ ∧ Dc �= ∅
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(c) ∃(·, Es
1 ) ∈ Zs : Es

1 = P ∧ Es
1 �= ∅: Due to monotonicity and |P| ≥ 2, this

case is identical to Case 2(b).
2. ∃(Dc, ·) ∈ Zc, (·, Es

1 ), (·, Es
2 ) ∈ Zs : Dc ∪ Es

1 ∪ Es
2 = P ∧ Es

1 �= ∅. Again, we
further split this case according to whether Dc = ∅ or Es

2 = ∅. Note that the
case where Dc �= ∅ ∧ Es

2 = ∅ is identical to Case 1(b), and the case where
Dc = ∅ ∧ Es

2 = ∅ is identical to Case 1(c).
(a) ∃(Dc, ·) ∈ Zc, (·, Es

1 ), (·, Es
2 ) ∈ Zs :

Dc ∪ Es
1 ∪ Es

2 = P ∧ Es
1 �= ∅ ∧ Es

2 �= ∅ ∧ Dc �= ∅
(b) ∃(·, Es

1 ), (·, Es
2 ) ∈ Zs : Es

1 ∪ Es
2 = P ∧ Es

1 �= ∅ ∧ Es
2 �= ∅

Case 1(a): ∃(Dc, ·) ∈ Zc, (·, Es
1) ∈ Zs, (Dr, ·) ∈ Zr :

Dc ∪ Es
1 ∪ Dr = P ∧ Es

1 �= ∅ ∧ Dc �= ∅ ∧ Dr �= ∅
A state is a requirement for reactive functionalities. We first prove that it is
impossible to hold a state in a specific 3-party setting. This proof is inspired by
[BFH+08].

Definition 3 (State). A state for n parties 1, . . . , n is a tuple (s1, . . . , sn) that
defines a bit s, where party i holds si. A state is secret if the state information
held by corrupted parties contains no information about the bit s. A state is
correct if it uniquely defines either s or ⊥. A state is robust if it uniquely defines
either 0 or 1.

Lemma 9. Three parties A, B, and C cannot hold a state (sA, sB, sC) that
defines a bit s providing secrecy in case of a passively corrupted A, correctness
and robustness in case of an actively corrupted B, and correctness in case of an
actively corrupted C.

Proof. To arrive at a contradiction, assume that (a, b, c) is a state for s = 0. Due
to secrecy in case of a passively corrupted A, there exists b′ and c′ such that
(a, b′, c′) is a valid state for s = 1. Due to correctness and robustness in case of
an actively corrupted B, the state (a, ·, c) must define the value 0 (where · is a
placeholder for an arbitrary state information held by B). Due to correctness
in case of an actively corrupted C, the state (a, b′, ·) defines either 1 or ⊥. As
a consequence, with probability greater 0, the state (a, b′, c) can be achieved if
s = 0 and B is actively corrupted, and it can be achieved if s = 1 and C is
actively corrupted. Hence, it must define both 0 and either 1 or ⊥, which is a
contradiction. ��

Given Lemma 9, we can prove the desired bound by reducing the n-party setting
to the 3-party setting specified there: Assume we have a perfectly secure n-
party state (s1, . . . , sn) for the case ∃(Dc, ·) ∈ Zc, (·, Es

1 ) ∈ Zs, (Dr , ·) ∈ Zr :
Dc ∪ Es

1 ∪Dr = P ∧ Es
1 �= ∅ ∧Dc �= ∅ ∧Dr �= ∅. By assumption we have that Dc,

Es
1 , and Dr are disjoint.
We obtain a 3-party state (sA, sB, sC) from (s1, . . . , sn) by having A, B, and

C emulate the parties in Es
1 , Dr, and Dc respectively. The state (s1, . . . , sn)

tolerates passive corruption of all parties in Es
1 while maintaining secrecy, active
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corruption of all parties in Dr while maintaining correctness and robustness, and
active corruption of all parties in Dc while maintaining correctness. Hence, the
resulting state (sA, sB, sC) is secure for the specific corruption setting specified
in Lemma 9, which is a contradiction.

Case 1(b): ∃(Dc, ·) ∈ Zc, (·, Es
1) ∈ Zs :

Dc ∪ Es
1 = P ∧ Es

1 �= ∅ ∧ Dc �= ∅
Analogously to the previous section, we prove that it is impossible to hold a
state in a specific 2-party setting:

Lemma 10. Two parties A and B cannot hold a state (sA, sB) that defines a
bit s providing secrecy in case of a passively corrupted A, and correctness in case
of an actively corrupted B.

Proof. For a contradiction, assume that (a, b) is a state for s = 0. Due to secrecy
in case of a passively corrupted A, there exists b′ such that (a, b′) is a valid state
for s = 1. As a consequence, with probability greater 0, an actively corrupted B
can chose between the state (a, b) and (a, b′), violating correctness. ��

Given Lemma 10, we can prove the desired bound by reducing the n-party setting
to the 2-party setting along the lines of the previous section.

Case 2(a): ∃(Dc, ·) ∈ Zc, (·, Es
1), (·, Es

2) ∈ Zs :
Dc ∪ Es

1 ∪ Es
2 = P ∧ Es

1 �= ∅ ∧ Es
2 �= ∅ ∧ Dc �= ∅

We first prove impossibility of computing the logical “and” in a specific 3-party
setting.

Lemma 11. Consider protocols for three parties A (with input a ∈ {0, 1}), B
(with input b ∈ {0, 1}), and C (without input) that compute the logical “and” z =
a∧b and output it to all parties. There is no such protocol providing secrecy when
A or B are passively corrupted, and correctness when C is actively corrupted.

Proof. To arrive at a contradiction, assume that a secure protocol exists. We
consider the random variables TAB, TAC and TBC describing the transcripts of
the channels connecting parties A and B, A and C, and B and C, respectively,
and T describing the transcript of the broadcast channel, for honest protocol
executions.

First, observe that for a = 0, we have z = 0 independent of b, hence I(b; TAB,
TAC , T |a = 0) = 0. Analogously, for a = 1, A must learn z = b, hence
H(b|TAB, TAC , T, a = 1) = 0. We distinguish two cases, namely when H(b|TAB,
T, a = 1) is zero (i) or non-zero (ii).

In case (i), it follows from I(b; TAB, TAC , T |a = 0) = 0, that in particular
we must have I(b; TAB, T |a = 0) = H(b|a = 0) − H(b|TAB, T, a = 0) = 0, and
hence H(b|TAB, T, a = 0) = H(b|a = 0) > 0. Furthermore, by assumption we
have H(b|TAB, T, a = 1) = 0. That means that party B can decide if a = 0 or
a = 1 by observing the transcripts TAB and T . This contradicts the secrecy in
presence of a passively corrupted party B.
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In case (ii), let (tAB, tAC , tBC , t) be a list of transcripts corresponding to a
protocol run with a = 1 and b = 0. It follows from H(b|TAB, T, a = 1) > 0
that there are transcripts t′AC and t′BC , such that (tAB , t′AC , t′BC , t) is a list of
transcripts corresponding to a protocol run with a = 1 and b = 1. Thus, when
observing tAB, t′AC , and t, party A cannot distinguish whether b = 1 and all
parties behave correctly, or whether b = 0 and party C is actively corrupted pro-
voking a wrong transcript t′AC (which C achieves with non-zero probability). In
the first scenario, due to completeness, A must output 1. In the second scenario,
due to correctness, party A must output 0 (or abort). This is a contradiction. ��

Given Lemma 11, we can prove the desired bound by reducing the n-party setting
to the 3-party setting along the lines of the previous sections.

Case 2(b): ∃(·, Es
1), (·, Es

2) ∈ Zs : Es
1 ∪ Es

2 = P ∧ Es
1 �= ∅ ∧ Es

2 �= ∅
As stated in [BGW88, Kil00], it is impossible to compute the logical “and” with
perfect secrecy in a 2-party setting. Again, we can prove the desired bound by
reducing the n-party setting to the 2-party setting along the lines of the previous
sections.

6 Conclusions and Open Problems

We have provided the first MPC protocols with graceful degradation in multiple
dimensions, namely graceful degradation of security, as well as graceful degrada-
tion with respect to the corruption type. This covers all common security notions
for MPC (correctness, secrecy, robustness, fairness, and agreement on abort), as
well as the most prominent corruption types (honest, passive, active), for both
threshold and general adversaries. The protocols are strict generalizations (and
combinations) of hybrid-secure MPC and mixed adversaries. We derived tight
bounds for the existence of perfectly secure MPC protocols for the given settings,
and provided protocols that achieve these bounds.

We leave as an open problem to combine additional dimensions of graceful
degradation (like, e.g., efficiency) with graceful degradation of security and cor-
ruption types (e.g. fail-corruption), as well as to consider other security models
(e.g. computational security). Furthermore, in this work, we focus on MPC in-
cluding reactive functionalities. The bounds for secure function evaluation (SFE)
might be slightly weaker.
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Abstract. In the literature on cryptographic protocols, it has been stud-
ied several times what happens if a classical protocol is attacked by a
quantum adversary. Usually, this is taken to mean that the adversary
runs a quantum algorithm, but communicates classically with the hon-
est players. In several cases, one can show that the protocol remains
secure even under such an attack.

However, there are also cases where the honest players are quantum as
well, even if the protocol uses classical communication. For instance, this
is the case when classical multiparty computation is used as a “subrou-
tine” in quantum multiparty computation. Furthermore, in the future,
players in a protocol may employ quantum computing simply to im-
prove efficiency of their local computation, even if the communication
is supposed to be classical. In such cases, it no longer seems clear that
a quantum adversary must be limited to only classical communication
with the honest players. And so the natural question is: what happens
to the security if this limitation is dropped?

In this talk, we survey some results from ongoing work that addresses
this question, more specifically, we consider security of secret sharing,
zero-knowledge protocols and multiparty computation under this new
paradigm. In all cases, both positive and negative results can be shown.
For instance, a classical threshold secret sharing scheme designed for
threshold t is no longer secure in this model, but the same scheme is
secure with threshold t/2.

This is joint work with Jakob Funder, Jesper Buus Nielsen (Dept. of
Computer Science, Aarhus University) and Louis Salvail (Université de
Montréal).

S. Fehr (Ed.): ICITS 2011, LNCS 6673, p. 181, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Using Colors to Improve Visual Cryptography
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Abstract. Black-and-white visual cryptography (bw-vc) allows the
sharing of b&w secret images transforming a secret image into a number
of b&w shares. Colored visual cryptography allows the sharing of color
images by means of color shares. In this paper we propose a new model,
called colored-black-and-white (cbw-vc), in which the secret image is
b&w and the shares are color images.

The motivation for the use of this new model is that of constructing
schemes to share b&w images using a smaller pixel expansion. Using the
cbw-vc model, we provide (2, n)-threshold schemes with pixel expansion
m = �log3 n�, improving on the best pixel expansion attainable in the
bw-vc model.

For the case of schemes with perfect reconstruction of black pixels
we provide a general construction that allows to transform any bw-vc
scheme into a cbw-vc scheme whose pixel expansion is 1/3 of the pixel
expansion of the starting bw-vc scheme.

When there are very few participants, namely n = 2, 3, the proposed
cbw-vc (2, n)-threshold schemes have no pixel expansion! We prove that
the above two cases are the only ones where it is possible to provide
schemes without pixel expansion. That is, we prove that, in the cbw-vc
model, it is not possible to construct (2, n)-threshold schemes, for n ≥ 4,
and (k, n)-threshold schemes, for k ≥ 3, without pixel expansion.

1 Introduction

A visual cryptography scheme, or vcs for short, is a special type of secret sharing
that allows to share a secret image in such a way that the reconstruction of the
secret can be done by the human visual system. The sharing process produces
a share for each participant. Each share is an image printed on a transparency.
We will denote with P the set of participants and with n the cardinality of
P . The secret image is known by a trusted party, called the dealer. The dealer
constructs the n shares and distributes one share to each participant. Certain
qualified subsets of participants can “visually” recover the secret image. All
other sets of participants, called forbidden, have no information on the secret
image. A “visual” recovery for a set X ⊆ P consists in superposing the shares
(transparencies) given to the participants in X . The participants in a qualified set

S. Fehr (Ed.): ICITS 2011, LNCS 6673, pp. 182–201, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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X will be able to see the secret image without any knowledge of cryptography and
without performing any cryptographic computation. In most cases the qualified
set of participants are all the sets with at least k participants, while all the
sets with less than k participants are forbidden. In such cases the schemes are
called (k, n)-threshold. In this paper we consider only (k, n)-threshold schemes,
although some constructions can be easily extended to any access structure.

Visual cryptography has been devised by Naor and Shamir [12]. Their paper
has sparked the “visual cryptography research area” and quite a number of
papers have been written on the subject.

The original model used in [12] considers b&w visual cryptography. In b&w
visual cryptography the secret image is a b&w image and also the shares are
b&w images. The reconstructed image is also a b&w image. The idea is the
following: each pixel of the secret image is expanded into some number m of
pixels. Sometimes we call such m pixels “subpixels”, even though they are regular
pixels (a pixel cannot be subdivided). Parameter m is the pixel expansion of the
scheme. The reconstruction of the secret is obtained by superposing the shares
(transparencies) in such a way that pixels are aligned. The human visual system
performs an “or” of the pixels: it sees white if all the pixels are white, it sees black
if at least one of the superposed pixels is black1. The shares are constructed in
such a way that when we superpose the shares of a qualified set of participants,
among the m subpixels that represent a secret pixel we will find at most � black
subpixels, if the secret pixel is white, and at least h black subpixels, if the secret
pixel is black, with 0 ≤ � < h ≤ m. The far apart are � and h the better will be
the reconstructed image. Parameter � and h are used to define the contrast of
the scheme.

For example, the bw-vc (2, 2)-threshold scheme of [12] has pixel expansion
m = 2 and � = 1 and h = 2. Hence a white secret pixel is reconstructed with one
black subpixel and one white subpixel, while a black secret pixel is reconstructed
with 2 black subpixels. Figure 1 shows an example with a secret image consisting
of 100× 170 px (pixels).

Since the pixel expansion is m = 2 the shares and the reconstructed image
are distorted. In the above example we decided to distort the image over the
horizontal axis. Another possibility is to distort it over the vertical axis. For
m > 2 one can try to distribute the pixel expansion evenly over the two axes. In
particular, when m is a square we can avoid distorting the image because each
secret pixel can be reconstructed as a matrix of

√
m × √

m subpixels. In any
case, the size of reconstructed image is m times the size of the secret image.

The pixel expansion is a crucial characteristic of the scheme. When the pixel
expansion is too large it might be impracticable to use the scheme. For example
assume that shares are printed on A4 transparencies. Although modern printers
allow to use very tiny pixels, since the shares will have to be superposed manually,
to ease the reconstruction it is reasonable to use pixels that are not too small.
Assume that the secret image consists of a text string. If, for the desired pixel

1 Many papers represent white with 0 and black with 1; this is why we say that the
human visual system performs an “or” operation.
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Secret (100x170px) Share 1 (100x340px)

Shares 1+2 (100x340px) Share 2 (100x340px)

Fig. 1. Sharing and reconstruction for the b&w (2, 2)-threshold scheme

size, it is possible to accommodate a certain number z of text characters on a
A4 transparency, then the actual string that we can share can be at most z/m
characters long. In general, the size of the image that we can share is inversely
proportional to m. For this reason it is important that m be as small as possible.

Many papers have tackled the problem of finding bw-vc schemes with optimal
(minimum) pixel expansion and several results are known, including some lower
bounds on the pixel expansion and schemes achieving the lower bounds. Clearly,
we cannot improve on those optimal schemes if we use the bw-vc model. However
by allowing the shares to use colors we can construct schemes with smaller pixel
expansion. For very specific cases we are able to construct schemes with no pixel
expansion. We remark that the probabilistic visual cryptography model proposed
in [14] also allows schemes with no pixel expansion, however the reconstruction
is only probabilistic, that is, pixels are correctly reconstructed only with some
given probability. In [6] it has been shown that the decrease in pixel expansion
of a probabilistic scheme is paid with the probability of wrong reconstructions:
schemes with a smaller pixel expansion have a greater error probability. In this
paper we are concerned with deterministic schemes in which there are no errors
in the reconstruction of the secret image.

Some papers (e.g., [7,11,10,13,15]) have considered the generalization of the
bw-vc model to color images In this case the secret image, the shares and the
reconstructed image are color images. However the use of colors poses several
additional difficulties. To overcome these difficulties, almost all the schemes for
color images consider black as a special color that can appear without restrictions
in the reconstruction. This means that an arbitrary number of the m subpixels
can actually be black and only few are colored. Most color schemes heavily
exploit the special black color and this makes, except for very few cases, the
reconstructed image not recognizable. Moreover, the pixel expansion of color
schemes is, not surprisingly, greater than that of bw-vc schemes. For a survey
about color visual cryptography see Chapter 12 of [8].

Although the generalization of visual cryptography to color images appears to
be quite problematic, the use of colors can be of help in order to share b&w secret
images. In this paper we propose to use colors to improve visual cryptography
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schemes for b&w secret images. That is, while the secret image is b&w, we allow
the shares and thus the reconstructed image, to be color images. As before each
secret pixel is expanded into m subpixels. Each subpixel can be colored with an
arbitrary color. The reconstruction has to guarantee that among the m subpixels
we will have at most � black subpixels, if the secret pixel is white, and at least h
black subpixels if the secret pixel is black. This requirement is the same as the
one that we have for regular b&w cryptography. However using colored shares we
aim at reconstructing black as black and white as colored pixels. We call this new
model colored-black-&-white visual cryptography, or cbw-vc for short, and the
we refer to schemes for this model as cbw-vc schemes, or cbw-vcs for short.

Using the cbw-vc model we can improve the pixel expansion of bw-vc
schemes; obviously this is possible because the cbw-vc model is more pow-
erful than the bw-vc model. In particular, we provide a construction of cbw-vc
(2, n)-threshold schemes whose pixel expansion is m = �log3 n� improving on the
(optimal) pixel expansion of bw-vcs. For the cases of n = 2, 3 the schemes have
no pixel expansion. For these special cases the reconstructed image will have
exactly the same size of the original one, white pixels will be reconstructed as
colored pixels and black pixels will be reconstructed as black pixels. That is, the
image will be as the original one, but the white background will be substituted
with a mixture of colored pixels.

We also prove that the above two particular cases are the only ones for which
we can construct schemes with no pixel expansion. More specifically, we prove
that it is not possible to construct cbw-vc (2, n)-threshold schemes, for n ≥ 4,
and cbw-vc (k, n)-threshold schemes, for k ≥ 3, using m = 1.

As it happens for b&w images, among schemes with the same contrast, the
reconstructed image is more clearly visible when black pixels are reconstructed
with only black pixels. Schemes that have this property are called schemes with
perfect reconstruction of black pixels (pb-vcs).

We provide a general construction that allows to take any pb-bw-vc (k, n)-
threshold scheme with perfect reconstruction of black pixels and transform it
into a pb-cbw-vc (k, n)-threshold scheme with perfect reconstruction of black
pixels. The pixel expansion of the resulting pb-cbw-vcs is m = �m′/3� where
m′ is the pixel expansion of the starting pb-bw-vcs. The construction works for
any access structure and not just threshold schemes.

This paper is organized as follows. Section 2 describes the model that we use
while Section 3 recalls previous relevant work . Section 4 provides the schemes
for the case of k = 2, Section 5 describes the impossibility result and, finally,
Section 6 describes the general construction for (k, n)-threshold schemes with
perfect reconstruction of black pixels. Section 7 contains concluding remarks
and directions for future work.

2 The Model

In order to deal with colored pixels we need to use a color model. Using the RGB
color model a color is represented as a triple (x, y, z), with 0 ≤ x, j, z ≤ L, for
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a fixed threshold L, where x, y and z are, respectively the amount of red, green
and blue light present in the color. The RGB color model is a standard color
model and has been used also in some other papers that tackle colored visual
cryptography (the interested reader can look at Chapter 12 of [8] for a survey
on colored visual cryptography).

Typically, for computers, we have L = 255 and we can represent 3256 different
colors. When we superpose two colored pixels the resulting color is a function of
the two colored pixels. A good approximation of the resulting color is given by
the following operator add:

add(χ1, χ2) =
(
int

(x1x2

L

)
, int

(y1y2

L

)
, int

(z1z2

L

))
.

In this paper we will use only the 8 full intensity colors black, red, green, blue,
cyan, magenta, yellow and white, denoted by, respectively, •, R, G, B, C, M, Y and
◦. Thus, for simplicity of notation, we assume that L = 1. A white light contains
all colors and is represented by ◦ = (1, 1, 1). The color black is obtained when
there is no light at all, and thus it is represented by • = (0, 0, 0). The colors
red, green and blue are represented, respectively, by R = (1, 0, 0), G = (0, 1, 0)
and B = (0, 0, 1). The colors cyan, magenta and yellow are the “complement”
of, respectively, blu, green and red, and thus are represented by C = (0, 1, 1),
M = (1, 0, 1) and Y = (1, 1, 0). The add operator can be simplified to:

add(χ1, χ2) = (x1x2, y1y2, z1z2)

The add operator can be easily extended to vectors of colors and also to
matrices: we add the colors in each column and the result is a vector whose
length is equal to the number of columns. See the following for an example.

A secret image, consisting of b&w pixels, has to be shared among a set
P = {1, . . . , n} of participants. A trusted party, which is called the dealer and
is not a participant, knows the secret image. The dealer has to distribute the
shares to the n participants in the form of printed transparencies. Some subsets
of P , called qualified sets have to be able to “visually” recover the secret im-
age, by superposing their shares (transparencies) and holding the stacked set of
transparencies to the light. Other subsets of P , called forbidden sets, must not
be able to get any information on the secret image from their shares, neither by
superposing the transparencies nor by any other computation. In this paper we
consider (k, n)-threshold schemes for which the qualified sets are all the subsets
of P with cardinality at least k. All the subsets with less than k participants are
forbidden.

Each pixel appears in n versions called shares, one for each transparency. Each
share is a collection of m pixels. We allow the pixels of the shares to have one
of the full intensity colors in the palette Palcol= {◦, R, G, B, C, M, Y, •}. Notice
that for regular b&w schemes the colors of pixels in the shares are restricted to
Palbw= {◦, •}.

A visual cryptography scheme (vcs) is described by two collections C◦ and C•
of n×m matrices with elements in Palcol. A matrix M in one of such collections
is called a distribution matrix and is just a representation of the pixels in the
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shares: each row corresponds to a share (row i is the share of participant i) and
the m elements of the row provide the colors of the m pixels into which the secret
pixel has to be expanded. Often the m pixels in a row are called “subpixels”
because they represent the secret pixel in a share. The superposition operation
is given by the add of the rows corresponding to the shares. For example, here
is a matrix M and the resulting add(M):

M =

⎡⎣ ◦ ◦ Y M • R R◦ G C ◦R R G
◦ B B G R R B

⎤⎦
add(M) = ◦ • B • • R •

Given a vector v of elements in Palcol (or in Palbw) we denote with wx(v),
the number of elements of v equal to x and with wx̄(v) the number of elements
of v different from x. For example, w•(v) is the number of elements of v equal to
•, w•̄(v) is the number of elements of v different from • and w◦(v) is the number
of elements of v equal to ◦.

Next we provide a formal definition of a vcs. Notice that this definition works
both for the regular bw-vc model in which the shares are restricted to be b&w
and in the cbw-vc model in which the shares can have colored pixels. For the
bw-vc model the shares palette is Palbw, while for the cbw-vc model the
shares palette is Palcol.

Definition 1. A (k, n)-threshold vcs is defined by two collections C◦ and C• of
n × m distribution matrices that must satisfy the following conditions. There
must exist two integers � and h, with 0 ≤ � < h ≤ m, such that:

1. (Contrast property) Any qualified set X, |X | ≥ k, can recover the secret
image by stacking the transparencies assigned to the participants in X. For-
mally, for any M ∈ C◦, we have that w•(add(M |X)) ≤ � and for any M ∈ C•,
we have that w•(add(M |X)) ≥ h.

2. (Security property) Any forbidden set X, |X | < k, has no information on the
secret image. Formally, the two collections of |X |×m matrices, D◦ = {M |X,
for each M ∈ C◦}, and D• = {M |X, for each M ∈ C•}, are indistinguishable
in the sense that they contain the same matrices with the same frequencies.

Let M be a distribution matrix. Given a subset X of participants we denote by
MX the submatrix of M consisting of all the rows of M that represent shares
of participants in X . A scheme is used in the following way: if the secret pixel
is of color ◦ (resp. •), then the dealer randomly chooses one of the matrices
in C◦ (resp. C•) and uses it as the distribution matrix. Often, but not always,
the distribution collections contain all the matrices that can be obtained by
permuting the columns of a given base matrix. In such cases the scheme can be
described by two base matrices B◦ and B•: C◦ (resp. C•) is obtained be permuting
in all possible ways the columns of B◦ (resp. B•).
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The first property in Definition 1 is the contrast property and the second
one is the security property. The security property guarantees that forbidden
sets of participants have no information about which collection has been used
to encode the pixel because with the information provided by the shares, any of
the collections is equally likely to have been used to encode the pixel.

The contrast property requires that in the reconstruction of a white pixel the
number of black subpixels (w•) is sufficiently small (at most �), whereas in the
reconstruction of a black pixel the number of black subpixels is sufficiently large
(at least h). Notice that this property is the same as the one that we have for
regular b&w schemes. In the case of regular b&w scheme, however, we have that
the shares can only have b&w subpixels and thus w◦ + w• = m; in the case
of colored b&w schemes we can have w◦ + w• < m because some pixels of the
reconstruction can be colored. Clearly it is always the case that w• + w•̄ = m.

As we have already said, the main focus of this paper is the pixel expansion
m. We would like m to be as small as possible. We refer the reader to [9] for
a discussion about the contrast. Using α = (h − �)/m as the definition of the
contrast, we have that all the schemes presented in this paper have contrast
α = 1/m.

3 Previous Work

Visual cryptography has been introduced by Naor and Shamir [12]. Quite a num-
ber of papers have followed [12]. Many papers have studied the construction of
schemes with optimal pixel expansion and both constructions and lower bounds
are known. Other papers have studied the contrast of the schemes, the sharing of
multiple secret images, the prevention of cheating. Some papers have studied the
generalization to color images. We will recall only the results that are necessary
for this paper. The interested reader can look at [8] for surveys about visual
cryptography and pointers to the literature.

A particular class of schemes consists of those schemes for which the recon-
struction of the black pixels is perfect, that is, schemes for which h = m. Schemes
with perfect reconstruction of black pixels are important because, among schemes
with equal contrast, they provide a reconstruction of the secret that is more
clearly visible. We will refer to such schemes as pb-bw-vcs for the bw-vc model
and as pb-cbw-vcs for the cbw-vc model.

3.1 Lower Bounds on the Pixel Expansion

Ateniese et al. [1] have proved the following lower bound:

Theorem 1. [1] In any (k, n)-threshold bw-vcs with pixel expansion m, we
have that (

n

k − 1

)
≤

(
m

�m/2�

)
(1)

and m = Ω(k log n).
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For the case of k = 2 the above theorem can be restated as follows.

Theorem 2. In any (2, n)-threshold bw-vcs with pixel expansion m, we have
that

n ≤
(

m

�m/2�

)
(2)

and m = Ω(log n).

Eisen and Stinson [9] have studied schemes with specified “whiteness” and
“blackness” levels of reconstructed pixels. The whiteness and blackness levels
are given by the thresholds � and h. The following theorem (Theorem 9.1 of [9]2)
holds.

Theorem 3. [9] In any (2, n)-threshold bw-vcs with pixel expansion m and
thresholds � and h, if m− � ≥ (n− 1)(m− h) then

m = n(m− �)− n(n− 1)
2

(m− h).

When h = m, the condition m − � ≥ (n − 1)(m − h) is always satisfied and
thus for schemes with perfect reconstruction of black pixels we have that m =
n(m − �). If we are not interested in the threshold � or if we want a bound
that does not depend on � we can minimize the left side of this equality over
all possible values of �. Since for schemes with perfect reconstruction of black
pixels we have that h = m and thus that 0 ≤ � ≤ m − 1 we have the following
theorem.

Theorem 4. In any (2, n)-threshold pb-bw-vcs with pixel expansion m we have
that m ≥ n.

3.2 Schemes without Perfect Reconstruction of Black Pixels

Proof of existence of schemes with optimal pixel expansion are cited in [1]. The
proofs are based on perfect hash families. However there is no explicit construc-
tion of optimal schemes.

Bose and Mukerjee [5] have provided specific constructions, for n ≤ 70,
of (2, n)-threshold schemes with optimal pixel expansion, that is with m that
matches Equation (2) of Theorem 2. We will refer to such schemes as SBM

2,n.
Section 6.1 of [1] provides a construction of (2, n)-threshold schemes with pixel

expansion m = 2�log2 n�. Such a pixel expansion matches the asymptotic lower
bound of Theorem 2. We will refer to such schemes as SA

2,n.

2 We remark that Theorem 9.1 of paper [9] literally says: If ĥ ≥ (n − 1)�̂ then m =

nĥ− n(n−1)
2

�̂. We have used �̂ and ĥ because paper [9] uses a different definition for
the thresholds h and �. With the definition used in this paper, they correspond to
�̂ = m− h and ĥ = m− �. Using this transformation we get the theorem reported in
the text.
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3.3 Schemes with Perfect Reconstruction of Black Pixels

The (2, n)-threshold scheme in the original paper by Naor and Shamir [12] has
pixel expansion m = n and has perfect reconstruction of black pixels. Hence it is
optimal. The scheme is the following: the base matrix B◦ consists of one column
of white pixels and n− 1 columns with black pixels, while the base matrix B• is
the identity n× n matrix with the substitutions 0 ↔ ◦ and 1 ↔ •. We will refer
to such schemes as SNS

2,n.
Also the (n, n)-threshold scheme of [12] is with perfect reconstruction of black

pixels. The scheme has pixel expansion m = 2n−1 and is the following: the base
matrix B◦ consists of all the columns with an even number of • pixels while the
base matrix B• consists of all the columns with an odd number of • pixels. We
will refer to such schemes as SNS

n,n.
Blundo et al. [2] have generalized the above two constructions to (k, n)-

threshold schemes for any k, 2 ≤ k ≤ n. The construction specifies the mul-
tiplicity μb,j of the columns with j black pixels in each base matrix Bx, where
x ∈ {◦, •}. We will refer to such schemes as SB

k,n. The pixel expansion of the
(3, n)-threshold is m = (n − 1)2 and for the (n − 1, n) is m = (n − 2)2n−2 + 1.
In general we have the following bounds on the pixel expansion of the schemes
SB

k,n.

Lemma 1. [2] The pixel expansion m of the schemes SB

k,n satisfies(
n− 1
k − 1

)
2k−2 + 1 ≤ m ≤

((
n− 1
k − 1

)
− 1

)
2k−1 + 1.

All of the above pb-bw-vcs have � = m− 1, and, obviously, m = h.

Table 1 provides a summary of the relevant known results. The companion ta-
ble to the right summarizes the pixel expansion improvements obtained in this
paper.

Table 1. Summary of known relevant results (and to the right a summary of the results
of this paper)

Known results Lower bound Construction

bw-vcs

k = 2 m = Ω(log2 n) [1] m = 2�log2 n� [1]

pb-bw-vcs

k = 2 m ≥ n [9] m = n [12]
k = 3 - m = (n − 1)2 [2]

4 ≤ k ≤ n − 2 - Lemma 1
k = n − 1 - m = (n − 2)2n−2 + 1 [2]

k = n - m = 2n−1 [12]

This paper

cbw-vcs

m = �log3 n�
pb-cbw-vcs

m = �m′/3�
where m′ is the

pixel expansion of
any (k, n)-threshold

pb-bw-vcs.
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4 cbw-vc (2, n)-Threshold Schemes

In this section we will provide a construction of cbw-vc (2, n)-threshold schemes.
The construction gives schemes with pixel expansion m = �log3 n�. We start by
first describing two simple cases, for n = 2, 3, and then we provide the general-
ization to any n.

Let us start with the case n = 2. There are several ways to implement a
(2, 2)-threshold cbw-vcs. We report only a scheme that uses the 3 colors R,G
and B. It is possible to obtain similar schemes using the following sets of colors:
{R, G, B, C, M, Y}, {R, G}, {R, B}, {G, B}, {Y, B}, {M, G}, and {C, R}.

Construction 5 (Scheme (2, 2)-RGB). The following collections of distribution
matrices describe a (2, 2)-threshold cbw-vcs with a shares palette equal to {R, G,
B, •}.

C◦ =
{[

R
R

]
,

[
G
G

]
,

[
B
B

]}
C• =

{[
R
G

]
,

[
G
R

]
,

[
R
B

]
,

[
B
R

]
,

[
G
B

]
,

[
B
G

]}
.

It is easy to see that both the security and the contrast property are satisfied,
and that m = 1, � = 0 and h = 1. The contrast is α = 1. Figure 2 shows an
example of use of the (2, 2)-RGB scheme: a secret b&w image, the two shares and
the reconstructed secret image. All the images have size 100× 170 pixels (px).

Secret (100×170px) Share 1 (100×170px) Share 2 (100×170px) Shares 1+2 (100×170px)

Fig. 2. Sharing and reconstruction for the (2, 2)-RGB scheme. The mixture of pixels is
made up of red, green and blue pixels. You will not see the colors if the paper has been
printed in b&w.

We remark that with a regular bw-vc schemes we cannot obtain schemes with-
out pixel expansion. The (2, 2)-threshold cbw-vc scheme is without pixel ex-
pansion; this means that the reconstructed image is the same size as the original
one. Figure 3 shows the reconstructed image obtained with the (2, 2)-threshold
bw-vcs SNS

2,n: the first two with pixel expansion m = 2 and a distortion of the
image, and the third one with pixel expansion m = 4 (obtained by using the
concatenation of two SNS

2,n) that avoids the distortion but makes the image 4
times bigger. In a regular bw-vcs the reconstructed image is a black image over
a mixture of b&w pixels. In the cbw-vcs the reconstructed image is a black
image over a mixture of colored pixels (R,G and B in the example).
Next we provide a (2, 3)-threshold scheme.

Construction 6 (Scheme (2, 3)-RGB). The following collections of distribu-
tion matrices describe a (2, 3)-threshold cbw-vcs with a shares palette equal to
{R, G, B}.
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m = 2 (200x170px)

m = 2 (100x340px) m = 4(200x340px)

Fig. 3. Reconstructed images for regular (2, 2)-threshold bw-vcs

C◦ =

⎧⎨⎩
⎡⎣R
R
R

⎤⎦ ,

⎡⎣G
G
G

⎤⎦ ,

⎡⎣B
B
B

⎤⎦⎫⎬⎭ C• =

⎧⎨⎩
⎡⎣R
G
B

⎤⎦ ,

⎡⎣G
R
B

⎤⎦ ,

⎡⎣B
G
R

⎤⎦⎫⎬⎭ .

As before, it is easy to see that both the security and the contrast property are
satisfied, and that m = 1, � = 0 and h = 1. The contrast is α = 1. As for the
(2, 2)-threshold schemes also in this case we have that the reconstructed image is
a black image over a mixture of colors. In this case the mixture of colors is made
up of the three colors R,G and B. Figure 4 shows the shares and the reconstructed
images.

Secret Share 1 Share 2 Share 3

Shares 1+2 Shares 1+2 Shares 2+3 Shares 1+2+3

Fig. 4. Shares and reconstructed images for the (2, 3)-threshold cbw-vcs. The mixture
of pixels is made up of red, green and blue pixels. All images are 100x170 pixels. You
will not see the colors if the paper has been printed in b&w.



Using Colors to Improve Visual Cryptography for Black and White Images 193

Finally, we present a generalization of the technique used for the particular
cases n = 2, 3. For n ≥ 4 we have to start expanding the secret pixels into
m ≥ 2 subpixels and the contrast of the reconstructed image degrades as n
increases.

Construction 7. Let m = �log3 n�. Consider the set S of all the strings of
length m over the alphabet Σ = {R, G, B}. These are 3m ≥ n. Choose any n such
strings and denote them s1, s2, . . . , sn. The collections of distribution matrices
of the scheme are:

C◦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

s1

s1

. . .

. . .
s1

s1

s1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s2

s2

s2

. . .

. . .
s2

s2

s2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s3

s3

s3

. . .

. . .
s3

s3

s3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . . . . . . . . . . . ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sn−1

sn−1

sn−1

. . .

. . .
sn−1

sn−1

sn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sn

sn

sn

. . .

. . .
sn

sn

sn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

C• =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

s2

s3

. . .

. . .
sn−2

sn−1

sn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sn

s1

s2

. . .

. . .
sn−3

sn−2

sn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sn−1

sn

s1

. . .

. . .
sn−4

sn−3

sn−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . . . . . . . . . . . ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s3

s4

s5

. . .

. . .
sn

s1

s2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s2

s3

s4

. . .

. . .
sn−1

sn

s1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Some examples will clarify the construction. Let n = 4. We have that m = 2
and the set S consists of 9 strings: S = {RR, RG, RB, GG, GR, GB, BB, BR, BG}. We
choose the following 4 strings of S: {RR, BB, GG, RG}. The collections of distribution
matrices are:

C◦ =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
RR
RR
RR
RR

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
BB
BB
BB
BB

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
GG
GG
GG
GG

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
RG
RG
RG
RG

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ C• =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
RR
GG
BB
RG

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
RG
RR
GG
BB

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
BB
RG
RR
GG

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
GG
BB
RG
RR

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

Here is another example. Let n = 10, then we have that m = 3 and S =
{RRR, GGG, BBB, RGB, RBG, BGR, BRG, GRB, GBR, RRG, RGR, GRR, RRB, RBR, BRR, GGR, GRG,
RGG, GGB, GBG, BGG, BBR, BRB, RBB,BBG, BGB, GBB}. We choose the following 10 ele-
ments of S: {RGB, RBG, BGR, BRG, GRB,GBR, RRG, RGR,GRR, RRB}. The collections of
distribution matrices are:
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C◦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB
RGB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RBG
RBG
RBG
RBG
RBG
RBG
RBG
RBG
RBG
RBG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BGR
BGR
BGR
BGR
BGR
BGR
BGR
BGR
BGR
BGR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BRG
BRG
BRG
BRG
BRG
BRG
BRG
BRG
BRG
BRG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GRB
GRB
GRB
GRB
GRB
GRB
GRB
GRB
GRB
GRB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RRG
RRG
RRG
RRG
RRG
RRG
RRG
RRG
RRG
RRG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RGR
RGR
RGR
RGR
RGR
RGR
RGR
RGR
RGR
RGR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GRR
GRR
GRR
GRR
GRR
GRR
GRR
GRR
GRR
GRR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GRB
GRB
GRB
GRB
GRB
GRB
GRB
GRB
GRB
GRB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RRB
RRB
RRB
RRB
RRB
RRB
RRB
RRB
RRB
RRB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

C• =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RGB
RBG
BGR
BRG
GRB
GBR
RRG
RGR
GRR
RRB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RRB
RGB
RBG
BGR
BRG
GRB
GBR
RRG
RGR
GRR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GRR
RRB
RGB
RBG
BGR
BRG
GRB
GBR
RRG
RGR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RGR
GRR
RRB
RGB
RBG
BGR
BRG
GRB
GBR
RRG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RRG
RGR
GRR
RRB
RGB
RBG
BGR
BRG
GRB
GBR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GBR
RRG
RGR
GRR
RRB
RGB
RBG
BGR
BRG
GRB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GRB
GBR
RRG
RGR
GRR
RRB
RGB
RBG
BGR
BRG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BRG
GRB
GBR
RRG
RGR
GRR
RRB
RGB
RBG
BGR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BGR
BRG
GRB
GBR
RRG
RGR
GRR
RRB
RGB
RBG

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RBG
BGR
BRG
GRB
GBR
RRG
RGR
GRR
RRB
RGB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Theorem 8. Construction 7 gives a (2, n)-threshold scheme with pixel expan-
sion m = �log3 n�, � = 0 and h = 1.

Proof. Let s1, s2, . . . , sn be the strings used for the construction of the scheme.
Security property: For any participant i, the set D◦ = {M |i, for each M ∈ C◦},
and D• = {M |i, for each M ∈ C•}, are both equal to the set {s1, s2, . . . , sn}.
Contrast property: Take any two participants i and j. If the secret pixel is white
then we have that the shares of i and j are both equal to one of the base strings,
say sk, with k ∈ 1, 2, .., n. Hence we have that w•(add(sk, sk)) = 0, that is � = 0.

If the secret pixel is black then we have that the two shares of i and j are
equal to two different base string sk1 and sk2 . Since the two strings are different
we have that w•(add(sk1 , sk2)) ≥ 1, because there will be at least one position
in which they differ. Recall that the superposition of two different colors in the
set Σ gives black. Hence h = 1.

Finally the pixel expansion is m = �log3 n� because each matrix in the collec-
tions has �log3 n� columns.

Comparison of bw-vcs and cbw-vcs. The cbw-vc model is more powerful
than the bw-vc model. This allows to get schemes with smaller pixel expansion,
with the drawback, if it can be considered so, of the presence of colored pixels in
the reconstruction. In the bw-vc model the (2, n)-threshold schemes have pixel
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expansion that is lower bounded by (2) of Theorem 2. For n ≤ 70, the SBM
2,n

provided in [5] have optimal pixel expansion in the bw-vc model. In general,
Theorem 2 states that the pixel expansion of bw-vc schemes is lower bounded
by m = Ω(log n). Using the cbw-vc model we can construct schemes that have
pixel expansion �log3 n�. Although there is no improvement from an asymptotic
point of view, �log3 n� is much smaller than the lower bound (2) of Theorem 2.
Table 2 shows the explicit value of the lower bound of Theorem 2 and the pixel
expansion of cbw-vc schemes, for small values of n.

Table 2. Pixel expansion comparison

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Eq. (2), Th. 2, m ≥ 2 3 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 6
Const. 7, m = 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

n 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Eq. (2), Th. 2, m ≥ 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Const. 7, m = 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4

5 Impossibility Result

In this section we prove that the extra power of the cbw-vc model allows to
construct schemes without pixel expansion only for the cases of (2, 2)-threshold
and (2, 3)-threshold schemes. Indeed we show in this section that it is not possible
to construct (2, n)-threshold schemes, for n ≥ 4, nor (k, n)-threshold schemes,
for k ≥ 3, without pixel expansion.

The cbw-vc model used in this paper exploits only the 8 full intensity colors.
The impossibility proofs that we provide work even if we relax this restriction
and allow the model to use any color. So, only for this section, we assume that
the colors are triples of values (x, y, z), where x, y, z are real numbers such that
0 ≤ x, y, z ≤ 1. In the following we will use � to denote a number in the interval
[0, 1] and + to denote a positive number in the interval ]0, 1].

Theorem 9. In the cbw-vc model it is not possible to construct a (2, n)-threshold
scheme, for n ≥ 4, with pixel expansion m = 1.

Proof. By contradiction assume that such a scheme exists and let C◦, C• be the
collections of distribution matrices. Let B be a distribution matrix for a black
secret pixel, that is B ∈ C•. Since m = 1 matrix B has one column and it must
be that � = 0 and h = 1. This means that add(B|X) = • = (0, 0, 0) for any
qualified set X . It also means that add(W |X) = ◦ = (1, 1, 1) for any W ∈ C◦.
Claim 1: B cannot have two pixels that are equal, with the exception of black
pixels. Indeed if there are two pixels that are equal and are different from the
black pixel the qualified set of 2 participants corresponding to those two pixels
would reconstruct a black pixel as a colored pixel violating the contrast property.
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Claim 2: Any pixel in B cannot be •, that is, cannot have the form (0, 0, 0).
Indeed such a triple, for the security property has to appear also in any dis-
tribution matrix W for the white color. But this violates the contrast property
because all the qualified sets that contain a participant that gets • as a share
for the white pixel from W would not be able to reconstruct white pixels.
Claim 3: Any pixel in B cannot have the form (+, +, +), and thus, in particular,
cannot be ◦. Indeed if (+, +, +) appears in a row of B then all other n− 1 ≥ 3
rows of B should be (0, 0, 0) because any qualified set must reconstruct black
pixels as black. But by Claim 2, we know that this is not possible.
Claim 4: Any pixel in B cannot have one component equal to 0 and two compo-
nents equal to +. Indeed if (0, +, +) appears in a row of B then all other n−1 ≥ 3
rows of B should be (+, 0, 0) because any qualified set must reconstruct black
pixels as black. We know, by Claim 1, that this is not possible. We get the same
contradiction for the other two cases (+, 0, +) and (+, +, 0).

By Claims 1-4, we have that all the pixels of B must be different and each
must have one of the forms (0, 0, +), (0, +, 0), (+, 0, 0). However since B has at
least n ≥ 4 rows, this is impossible. This implies that B cannot exists, and thus
the collection C• must be empty. This means that the scheme does not exists.

Theorem 10. In the cbw-vc model it is not possible to construct a (k, n)-
threshold scheme, for k ≥ 3, with pixel expansion m = 1.

Proof. By contradiction assume that such a scheme exists and let C◦, C• be the
collections of distribution matrices. Let B be a distribution matrix for a black
secret pixel, that is B ∈ C•. Since m = 1 matrix M has one column:

B =

⎡⎢⎢⎢⎢⎣
(�, �, �)
(�, �, �)

....
(�, �, �)
(�, �, �)

⎤⎥⎥⎥⎥⎦ ,

where � is a placeholder for the color component. Since m = 1 we must have
� = 0 and h = 1. This means that it must be add(B|X) = • = (0, 0, 0) for any
qualified set X . It also means that add(W |X) = ◦ = (1, 1, 1) for any W ∈ C◦.
Claim 1: Any pixel in B cannot be •. Indeed for the security property such a
pixel should appear also in any distribution matrix W ∈ C◦. Then we would
have add(W |X) = • = (0, 0, 0) for any qualified set X that contains the black
pixel and this violates the contrast property.
Claim 2: Any pixel in B cannot have 2 components equal to 0, that is cannot
have the form (0, 0, +), (0, +, 0) or (+, 0, 0). For the sake of contradiction, as-
sume that B has such a pixel. Assume that the pixel is (0, 0, +); the following
reasoning is valid, with the obvious modifications, also for the other cases, so the
assumption is without loss of generality. In order to have add(B|X) = (0, 0, 0) for
any qualified set X that contains the participant with (0, 0, +), it must have one
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of the other pixels equal to (�, �, 0). That is matrix B must have the following
pair of pixels:

B =

⎡⎢⎢⎢⎢⎣
....

(0, 0, +)
....

(�, �, 0)
....

⎤⎥⎥⎥⎥⎦ .

Since k ≥ 3, for the security property the same pair of pixels must appear
in a distribution matrix W ∈ C◦ for the white color. But this implies that
add(W |X) = (0, 0, 0) for any qualified set that contains those two rows. This
violates the contrast property. Hence the claim is true.
Claim 1 and 2 imply that the pixels in matrix B must have either the form
(+, +, +) or one of the forms (0, +, +), (+, 0, +), (+, +, 0). We now distinguish
two cases: k = 3 and k ≥ 4.

Case k = 3: Matrix B cannot have pixels of the form (+, +, +). Indeed if this
was the case it would be impossible to have add(B) = •. Indeed since k = 3
and pixels can only be (+, +, +) or have at most one component equal to 0,
superposing 3 pixels will always yield at least one component greater than 0.
This means that pixels must have one component equal to 0 and the other two
components equal to +. Since k = 3 the only possible form for matrix B is

B =

⎡⎣ (0, +, +)
(+, 0, +)
(+, +, 0)

⎤⎦ .

Consider now any two rows of B, for example the first and the second. By the
security property we have that the same two rows must appear in a matrix
W ∈ C◦. That is, there is W ∈ C◦ such that

W =

⎡⎣ (0, +, +)
(+, 0, +)
(�, �, �)

⎤⎦ .

The third row of W cannot be (+, +, 0) otherwise we would have add(W ) = •
and this violates the contrast property. Hence it must be either

W =

⎡⎣ (0, +, +)
(+, 0, +)
(0, +, +)

⎤⎦ or W =

⎡⎣ (0, +, +)
(+, 0, +)
(+, 0, +)

⎤⎦ .

In both cases we have two pixels that are equal. For the security property such
a pair of pixels should appear also in B. But this contradicts the fact that B
must have 3 different pixels. Hence we have that matrix B cannot exist. This
concludes the proof for the case k = 3.

Case k ≥ 4: Assume that matrix B has one pixel of the form (+, +, +). Let X
be a qualified set, it must be the case that the matrix B|X contains the following
pixels:
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

....
(+, +, +)

....
(0, +, +)

....
(+, 0, +)

....
(+, +, 0)

....

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This is necessary in order to have add(B|X) = •. By the security property, since
k ≥ 4 the triple of pixels (0, +, +), (+, +, 0), (+, +, 0) must appear also in any
matrix W ∈ C◦. That is for any matrix W ∈ C◦ we have

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

....
(0, +, +)

....
(+, 0, +)

....
(+, +, 0)

....

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

However this implies that add(W |X) = • for any qualified set S that contains
those 3 pixels and this violates the contrast property. Hence we have that B
cannot exist, and this concludes the proof for k ≥ 4.

6 pb-cbw-vc (k, n)-Threshold Schemes

In this section we present a technique that allows to take any bw-vcs with
perfect reconstruction of black pixels and transform it into a cbw-vcs with
perfect reconstruction of black pixels. The technique works only for schemes
with perfect reconstruction of black pixels and not for schemes that do not have
this property. The idea is to group the b&w pixels in triplets and transform
each triplet into a color. Since each triplet of b&w pixels is transformed into
1 colored pixel, the pixel expansion of the constructed scheme is m = �m′/3�,
where m′ is the pixels expansion of the starting scheme. Let us start by describing
the transformation from a b&w distribution matrix M ′ to a color distribution
matrix M .

Transformation 11. Let M ′ be an n×m′ b&w distribution matrix. Let M̂ ′ be
the matrix obtained from M ′ by adding 0,1 or 2 columns with all black pixels to
M ′ so that the number m̂ = 3�m′/3� of columns of M̂ ′ is a multiple of 3. It is
not important where these columns are added but to make things easier let us
assume that these added columns are appended as last columns of M̂ ′. To obtain
the transformed distribution matrix M , group the m̂ = 3z columns of M into z
groups of 3 columns. For each row (triplet) in each group substitute the 3 b&w
pixels with the colored pixel specified by the following tables:
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Triplet in Color
matrix M̂ ′ in matrix M
1 2 3
◦ ◦ ◦ ◦
• ◦ ◦ Y
◦ • ◦ M
◦ ◦ • C

Triplet in Color
matrix M̂ ′ in matrix M
1 2 3
• • ◦ B
• ◦ • G
◦ • • R
• • • •

Let us see an example of the above transformation. Below are shown a 5× 7
b&w distribution matrix M ′, its 5 × 9 padded version M̂ ′ with pixels grouped
in 3 blocks of 3 pixels each, and the corresponding 5× 3 color matrix M :

M ′ =

⎡⎢⎢⎢⎢⎣
◦ • ◦ • • ◦ •
• ◦ • ◦ ◦ • ◦
• • • • • • ◦
◦ • • ◦ ◦ ◦ •
◦ ◦ • ◦ • ◦ ◦

⎤⎥⎥⎥⎥⎦ M̂ ′ =

⎡⎢⎢⎢⎢⎣
◦ • ◦ • • ◦ • • •
• ◦ • ◦ ◦ • ◦ • •
◦ ◦ • • • • ◦ • •
◦ • • ◦ ◦ ◦ • • •
• ◦ ◦ ◦ • ◦ ◦ • •

⎤⎥⎥⎥⎥⎦ M =

⎡⎢⎢⎢⎢⎣
M B •
G C R
C • R
R ◦ •
Y M R

⎤⎥⎥⎥⎥⎦
Since matrices M̂ ′ and M are closely related the following holds. Let z′ =

add(M ′) and let z be the vector obtained by transforming vector z′ with Trans-
formation 11. Then we have that z = add(M). For the above example we would
have that z′ = [•••|•••|•••] and z = [•••] and add(M) = [•••]. As another ex-
ample let X = {2, 3, 5} and consider the matrix M̂ ′|X . Let z′ = add(M̂ ′|X). We
have that z′ = [•◦•|•••|◦••] and thus z = [G•R]. We also have add(M) = [G•R].
With an abuse of notation we can write that add(M ′) = add(M̂ ′) = add(M).

We are now ready to present the construction of pb-cbw-vc (k, n)-threshold
schemes.

Construction 12. Let S′ be a bw-vcs with perfect reconstruction of black pixel
whose collections of distribution matrices are C′◦ and C′• and let m′ be the pixel
expansion of S′. The cbw-vcs scheme S is defined by the two collections C◦ and
C• obtained from C′◦ and C′• by applying Transformation 11 to every matrix in
the collections.

Theorem 13. Construction 12 provides a pb-cbw-vc (k, n)-threshold schemes
with pixel expansion m = �m′/3�, where m′ is the pixel expansion of the starting
pb-bw-vc (k, n)-threshold scheme.

Proof. Let S′ be the starting bw-vcs with collections C′◦ and C′• and let m′ be
the pixel expansion of S. Let S be the scheme obtained from S′ using Construc-
tion 12.

Safety property. Let X be a non-qualified set of participants. Consider the
sets of matrices {M |X with M ∈ C′◦} and {M |X with M ∈ C′•}. By the safety
property for S′ we have that A and B contain the same matrices each with the
same frequency. Since each matrix C′◦ is transformed into a matrix of C• and
each matrix of C′• is transformed into a matrix of C◦ we have that also the sets
{M |X : M ∈ C◦} and {M |X : M ∈ C•} have the same matrices with the same
frequencies. Hence the safety property for S′ is also satisfied.
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Contrast property. Let X be a qualified set of participants. Consider any ma-
trix M ∈ C• and let M ′ be the corresponding matrix in C′•. By the construction
we have that add(M |X) = add(M ′|X). Since S′ is with perfect reconstruction
of the black pixels we have that add(M ′|X) is made up of m′ black pixels.
Hence add(M |X) is made up of m = �m′/3� black pixels. This implies that
h = m.

Similarly, consider any matrix M ∈ C◦ and let M ′ be the corresponding
matrix in C′◦. By the construction we have that add(M |X) = add(M ′|X).
By the contrast property of S′ we have that add(M ′|X) contains at least one
white pixels. Since add(M ′|X) = add(M |X), we have that add(M |X) must
contain at least one pixel that is not black. This implies that we can set
� = m− 1.

Comparison of pb-bw-vcs and pb-cbw-vcs. For the case of schemes with per-
fect reconstruction of black pixels we have that the cbw-vc model allows to
decrease the pixel expansion of a factor of 1/3 with respect to the bw-vc model.
The improvement does not make any difference from an asymptotic point of
view, but, especially for small values of k and n, it makes the schemes more
practicable. Table 3 shows explicitly the pixel expansion of the best schemes for
small values of k and n.

Table 3. Pixel expansion comparison for small values of k and n

(2, n)

n m m
bw-vcs cbw-vcs

2 2 1
3 3 1
4 4 2
5 5 2
6 6 2

(3, n)

n m m
bw-vcs cbw-vcs

2 - -
3 4 2
4 9 3
5 16 6
6 25 9

(n− 1, n)

n m m
bw-vcs cbw-vcs

2 - -
3 3 1
4 9 3
5 25 9
6 65 22

(n, n)

n m m
bw-vcs cbw-vcs

2 2 1
3 4 2
4 8 3
5 16 6
6 32 12

7 Conclusions and Future Work

In this paper we have proposed a new model for black and white visual cryptog-
raphy. In this new model the shares are allowed to be color images. Exploiting
this model we can construct schemes that have smaller pixel expansion. There
are a number of future work directions. For example one can try to find schemes
in this new model with smaller pixel expansion or prove lower bounds on the
pixel expansion. Another direction is to investigate the relationship between this
new model and the b&w model. Yet another one is to study the contrast in the
proposed model.
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Abstract. This paper is an extended abstract of the invited talk given
by the first-named author.

In the first part of the talk we give a general introduction to collusion-
resistant fingerprinting, discussing problem statements and different sets
of assumptions for the digital fingerprinting problem.

In the second part we discuss in more detail a combinatorial version
of the fingerprinting problem, known as parent-identifying codes. Most
earlier works on digital fingerprinting rely on the so-called marking as-
sumption, under which the attackers cannot modify the coordinates in
which their fingerprints are identical. We introduce a version of parent-
identifying codes for collusion attacks that do not necessarily follow the
marking assumption. We show existence of such codes for coalitions of
arbitrary size t. Some exact answers are obtained for t = 2 pirates.

1 The Fingerprinting Problem

Digital fingerprinting is a technique motivated by the task of protecting copy-
righted contents against unauthorized distribution. The contents is provided to
the users of the system with registration information embedded in it in the form
of fingerprints. The problem arises if a group of t users (pirates) attempts to
create an unregistered copy of the data by combining their fingerprints into a
fingerprint that does not permit their identification by the content owner. The
goal of the owner is to design fingerprints in a way that, under certain assump-
tions, enables him to identify at least some members of the pirate coalition from
an unregistered fingerprint.

We assume that M users of the system are provided with fingerprints given
by n-words over a finite alphabet Q = {0, 1, . . . , q−1}. The mapping [M ] → Qn

defines a code C of length n. A t-subset U = {u1, . . . , ut} ⊂ C is called a coalition
of size t. A collusion attack occurs when several uses (pirates) form a coalition U
to create an unregistered fingerprint y with the purpose of making it impossible
to identify any members of U based on observing y. The vector y is formed as

S. Fehr (Ed.): ICITS 2011, LNCS 6673, pp. 202–205, 2011.
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a function of U (the attack map). The fingerprinting problem calls for designing
codes resilient to collusion attacks.

Collusion attacks. Let Ui = {u1
i , . . . , u

t
i} be the set of the ith coordinates of

the elements of U . Coordinate i, 1 ≤ i ≤ n is called undetectable for U if all
vectors in U have the same value in it, i.e., if |Ui| = 1, and is called detectable
otherwise. Denote by D(U) the set of detectable coordinates for a coalition U .

Let U ⊂ C be a coalition. Suppose that yi ∈ Ui for all i = 1, . . . , n. Under this
restriction the set of attack vectors for U forms the subset

〈U〉 = {(y1, . . . , yn) ∈ Qn : yi ∈ Ui, i = 1, . . . , n} (1)

called the narrow-sense envelope of the coalition. The elements of 〈U〉 are called
descendants of U, and for any of the descendants y ∈ 〈U〉 the elements of U are
called its parents.

A code C has the t-identifiable parent property (is a t-IPP code) if for any
y ∈ ∪U⊂C, |U|≤t〈U〉 it is possible to find at least one of its parents, i.e. if⋂

U⊂C, |U|≤t, y∈〈U〉
U 	= ∅.

t-IPP codes permit unconditional identification of pirates under the narrow-sense
attack (1).

A more potent attack assumes that the pirates can change detectable coordi-
nates to any symbols of the alphabet Q or make them unreadable. Define the
wide-sense envelope 〈U〉w of the coalition U as

〈U〉w = {(y1, . . . , yn) ∈ Qn ∪ {∗} : yi = ui, i /∈ D(U)} (2)

Codes that permit recovery of the pirates for this problem with an arbitrary small
error probability of identification are called collusion-secure or fingerprinting.

The attacks (1) and (2) rely on the so-called marking assumption, under
which the pirates cannot modify the coordinates in which their fingerprints are
identical. Lifting this restriction results in stronger attack strategies by the pi-
rates. We call a coordinate i of y a mutation if yi 	∈ Ui. Assume that the coalition
U forms y following the IPP attack rule (1) except for εn coordinates that can
deviate from this rule. A code C ⊂ Qn is called (t, ε)-IPP (robust t-IPP code) if
it guarantees exact identification of at least one member of the pirate coalition
of size at most t for any collusion attack with at most εn mutations.

The rate of the fingerprinting code is defined as R = R(C) � logq |C|/n. One
of the main questions for the fingerprinting problem is that of the maximum
attainable rate Rq(t) of codes under various attacks. We mention some of the
known results for this problem in the next section.

2 Existence of Fingerprinting Codes: Results on the Rate

IPP codes for two pirates were introduced by Hollmann et al. [10] who also
proved that Rq(2) > 0 for all q ≥ 3. More generally, [5] showed that Rq(t) > 0
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for all q ≥ t + 1. The main tool for the proof is the notion of partially hashing
functions introduced in [5] as a characterization of the IPP property. Upper
bounds on the rate of t-IPP codes were found in [1,7].

The existence of high-rate fingerprinting codes resilient against the wide-sense
attack (2) was shown in [8,4]. The strongest results to-date [2,9,11] give sequences
of fingerprinting codes of rate Θ(t−2) which is also asymptotically tight [2].

A multilevel fingerprinting problem was introduced recently in [3]. Under this
version, the set of M = M1M2 users is partitioned into M1 groups of size M2

each. It is assumed that the pirate coalitions can be of small size (up to t2 users)
or of a larger size t1 > t2. The codes are designed in such a way that for small
coalitions the distributor is capable of identifying at least one of the pirates, while
for larger coalitions it identifies a group that contains one of the pirates. Paper
[3] proves existence of two-level fingerprinting codes with asymptotically positive
rate. The concept of multilevel fingerprinting parallels the idea of unequal error
protection of message symbols in information theory. The proof in [3] makes use
of this analogy.

Existence results for robust t-IPP codes [6] depend on the exact nature of
the attack strategy. We consider attacks under which an ε proportion of coordi-
nates in the attack y can take any values from the alphabet Q or become erased
(unreadable). These coordinates may be within the set D(U) of detectable coor-
dinates or outside it. This set of assumptions results in several somewhat distinct
generalizations of the t-IPP property. In the talk we show existence of robust t-
IPP codes for all t ≤ q−1 and some positive proportion of the runaway (mutant)
coordinates. The proofs involve relations between IPP codes and combinatorial
arrays with separating properties such as perfect hash functions and hash codes,
partially hashing families and separating codes.

For t = 2 we find the exact proportion of mutant coordinates (for several error
scenarios) that permits unconditional identification of parents.

Acknowledgments. The research of A. Barg is partially supported by the Na-
tional Science Foundation. The research of G. Kabatiansky is partially supported
by Russian Foundation for Fundamental Research.
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Abstract. Byzantine Agreement (BA) and Broadcast (BC) are consid-
ered to be the most fundamental primitives for fault-tolerant distributed
computing and cryptographic protocols. An important variant of BA and
BC is Asynchronous Byzantine Agreement (ABA) and Asynchronous
Broadcast (called as A-cast) respectively. Most often in the literature,
protocols for ABA and A-cast were designed for a single bit message.
But in many applications, these protocols may be invoked on long mes-
sage rather than on single bit. Therefore, it is important to design ef-
ficient multi-valued protocols (i.e. protocols with long message) which
extract advantage of directly dealing with long messages and are far bet-
ter than multiple invocations to existing protocols for single bit. In syn-
chronous network settings, this line of research was initiated by Turpin
and Coan [27] and later it is culminated in the result of Fitzi et al. [15]
who presented the first ever communication optimal (i.e. the communi-
cation complexity is minimal in asymptotic sense) multi-valued BA and
BC protocols with the help of BA and BC protocols for short message.
It was left open in [15] to achieve the same in asynchronous settings.

In [21], the authors presented a communication optimal multi-valued
A-cast using existing A-cast [6] for small message. Here we achieve the
same for ABA which is known to be harder problem than A-cast. Specif-
ically, we design a communication optimal, optimally resilient (allows
maximum fault tolerance) multi-valued ABA protocol, based on the ex-
isting ABA protocol for short message.

Keywords: Asynchronous Byzantine Agreement, Multi-valued,
Unbounded Computing Power.

1 Introduction

The problem of Byzantine Agreement (BA) (also popularly known as consensus)
was introduced in [22] and since then it has emerged as the most fundamen-
tal problem in distributed computing. It has been used as a building block for
� Financial Support from Center for Research in Foundations of Electronic Markets
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student at IIT Madras, India.
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several important secure distributed computing tasks such as Secure Multiparty
Computation (MPC) [4,5,26], Verifiable Secret Sharing (VSS) [10,4,26] etc. In
practice, BA is used in almost any task that involves multiple parties, like voting,
bidding, secure function evaluation, threshold key generation etc [14]. Informally,
a BA protocol allows a set of parties, each holding some input bit, to agree on
a common bit, even though some of the parties may act maliciously in order to
make the honest parties disagree.

An important variant of BA problem is asynchronous BA (known as ABA)
that studies the BA problem in asynchronous network which is known to be
more realistic than synchronous network. The works of [3,25,6,11,8,7,1,23] have
reported different ABA protocols. In this paper, we focus on ABA, specifically
on the communication complexity of the problem.

Our Model. We follow the network model of [8,7]. Specifically, our ABA
protocol is carried out among a set of n parties, say P = {P1, . . . , Pn}, where
every two parties are directly connected by a secure channel and t out of the
n parties can be under the influence of a computationally unbounded Byzantine
(active) adversary, denoted as At. We assume n = 3t + 1 which is the minimum
number of parties required to design any ABA protocol [17]. The adversary At,
completely dictates the parties under its control and can force them to deviate
from the protocol in any arbitrary manner. The parties not under the influence
of At are called honest or uncorrupted.

The underlying network is asynchronous, where the communication channels
between the parties have arbitrary, yet finite delay (i.e. the messages are guaran-
teed to reach eventually). To model this, we assume that At controls the network
and may delay messages between any two honest parties. However, it cannot read
or modify these messages as the links are private and authenticated, and it also
has to eventually deliver all the messages by honest parties. In asynchronous
network, the inherent difficulty in designing a protocol comes from the fact that
a party can not distinguish between a slow sender (whose message is simply
delayed in the network) and a corrupted sender (who did not send the message
at all). So a party can not wait for the values sent by all parties, as waiting for
all of them may turn out to be endless. Hence the values of up to t (potentially
honest) parties may have to be ignored for computation at any step.

Definitions. We now define ABA and its variant formally.

Definition 1 (ABA [8]). Let Π be an asynchronous protocol executed among
the set of parties P, with each party having a private binary input. We say that Π
is an ABA protocol tolerating At if the following hold, for every possible behavior
of At and every possible input: (a) Termination: All honest parties eventually
terminate the protocol. (b) Correctness: All honest parties who have terminated
the protocol hold identical outputs. Furthermore, if all honest parties had same
input, say ρ, then all honest parties output ρ.

We now define (ε, δ)-ABA protocol, where both ε and δ are negligibly small
values and are called error probabilities of the ABA protocol. Throughout our
paper, we assume ε = 2−Ω(κ) and δ = 2−Ω(κ), where κ is called as the error
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parameter. To achieve the above bounds for error probabilities, our protocol will
operate on finite Galois field F = GF (2κ).

Definition 2 ((ε, δ)-ABA). An ABA protocol Π is called (ε, δ)-ABA if: (a) Π
satisfies Termination described in Definition 1, except with an error probability
of ε and (b) Conditioned on the event that every honest party terminates Π,
protocol Π satisfies Correctness property described in Definition 1, except with
error probability δ.

The ABA and (ε, δ)-ABA can be executed for long messages and these type of
protocols will be referred as multi-valued protocols. The important parameters of
any ABA protocol are: (a) Resilience: It is the maximum number of corrupted
parties (t) that the protocol can tolerate and still satisfy its properties; (b)
Communication Complexity: It is the total number of bits communicated
by the honest parties in the protocol; (c) Computation Complexity: It is
the computational resources required by the honest parties during a protocol
execution; and (d) Running Time: An informal, but standard definition of the
running time of an asynchronous protocol is provided in [8,7].

The History of ABA. From [22,17], any ABA protocol tolerating At is
possible if and only if n ≥ 3t + 1. Thus any ABA protocol designed with
n = 3t+1 parties is called as optimally resilient. By the seminal result of [13], any
ABA protocol, irrespective of the value of n, must have some non-terminating
runs/executions, where some honest party(ies) may not terminate at all. So in
any (ε, δ)-ABA protocol with non-zero ε, the probability of the occurrence of a
non-terminating execution is at most ε (these type of protocols are called (1−ε)-
terminating [8,7]). On the other hand in any (0, δ)-ABA protocol, the probability
of the occurrence of a non-terminating execution is asymptotically zero (these
type of protocols are called almost-surely terminating, a term coined in [1]). In
Table 1, we summarize the best known ABA protocols in the literature.

Table 1. Summary of the Best Known Existing ABA Protocols

Ref. Type Resilience Communication Expected Running
Complexity (CC) in bits Time (ERT)

[6] (0, 0)-ABA t < n/3 O(2n) C = O(2n)

[11,12] (0, 0)-ABA t < n/4 O((nt + t7) log |F|)a C = O(1)

[8,7] (ε, 0)-ABA t < n/3 Privateb: O(Cn11(log κ)4)c C = O(1)

A-castd: O(Cn11(log κ)2 log n)

[1] (0, 0)-ABA t < n/3 Private: O(Cn6 log |F|) C = O(n2)
A-cast: O(Cn6 log |F|)

[20] (ε, 0)-ABA t < n/3 Private: O(Cn6 log κ) C = O(1)
A-cast: O(Cn6 log κ)

[20] Multi-valuede t < n/3 Private: O(Cn5 log κ) C = O(1)
(ε, 0)-ABA A-cast: O(Cn5 log κ)

a Here F is the finite field over which the ABA protocol of [11,12] works. It is
enough to have |F| ≥ n and therefore log |F| can be replaced by log n. In fact in
the remaining table, F bears the same meaning.

b Communication over private channels between pair of parties in P.
c In this table, κ is the error parameter of the protocols.
d Total number of bits that needs to be A-casted (see more discussion on A-cast

in subsection 2.1 under section 2).
e This protocol allows to reach agreement on (t + 1) bits concurrently.
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Multi-valued ABA. In many applications, ABA protocols are invoked on
long messages rather than on single bit. For example, in asynchronous MPC
(AMPC) [5,7,19], where typically lot of ABA invocations are required, many of
the invocations can be parallelized and optimized to a single invocation with a
long message. All existing protocols for ABA [25,3,6,11,12,8,7,1,20] are designed
for single bit message. A naive approach to design multi-valued ABA for � > 1
bit message is to parallelize � invocations of existing ABA protocols dealing with
single bit. This approach requires a communication complexity that is � times
the communication complexity of the existing protocols for single bit and hence
is not very efficient. More intelligent techniques need to be called for in order to
gain in terms of communication complexity.

In synchronous network, Turpin and Coan [27] are the first to report a multi-
valued BC protocol based on the access to a BC protocol for short message.
Recently, Fitzi et al. [15] have designed communication optimal BA and BC
protocols for large message using BA and BC protocol (respectively) for small
message. While all existing synchronous BA protocols required a communication
cost of Ω(�n2) bits, the BA protocols of [15] communicate O(�n+poly(n, κ)) bits
to agree on an � bit message. For a sufficiently large �, the communication com-
plexity expression reduces to O(n�), which is a clear improvement over Ω(�n2).
A brief discussion on the approach used in [15] for designing BA protocol is
presented in Appendix A.

Designing communication optimal, multi-valued ABA and A-cast protocol was
left as an interesting open question in [15]. The problem of A-cast has been
resolved in [21]. In this paper, we settle the case for ABA which is known to
be harder than A-cast. Our ABA calls for much more involved techniques than
A-cast of [21]. To the best of our knowledge, ours is the first ever attempt to
design multi-valued ABA.

Our Contribution. We propose a communication optimal, optimally resilient,
multi-valued (ε, δ)-ABA protocol that attains a communication complexity of
O(�n+poly(n, κ)) bits to agree on an � bit message. Our protocol requires O(n3)
invocations to ABA protocol for small messages (we may use any one of the
ABA protocols listed in Table 1; the most communication efficient ABA is listed
in the last row of the same table). For sufficiently large �, the communication
complexity of our protocol becomes O(�n) bits. From the result of [15], any
BA protocol in synchronous networks with t ∈ Ω(n), requires to communicate
Ω(n�) bits for an � bit message. The same lower bound holds for asynchronous
networks as well. Therefore our ABA is communication optimal for large enough
�. The degree of n and κ (and therefore the bound on � for which our protocol
is communication optimal) in the term poly(n, κ) depends on the ABA for short
message under use.

In our ABA protocol, we employ player-elimination framework introduced in
[16] in the context of MPC. So far player-elimination was used only in MPC and
AMPC. Hence our result shows the first non-MPC application of the technique.
Apart from this, we present a novel idea to expand a set of t + 1 parties, with
all the honest party(ies) in it holding a common message m, to a set of 2t + 1
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parties with all honest parties in it holding m. Moreover, the expansion process
requires a communication complexity of O(�n + poly(n, κ)) bits, where |m| = �.
This technique may be useful in designing communication efficient protocols for
many other form of consensus problems.

2 Communication Optimal (ε, δ)-ABA Protocol

We now present our novel (ε, δ)-ABA protocol with n = 3t + 1, called Optimal-
ABA. The protocol allows the honest parties in P , each having input message of
� bits, to reach agreement on a common message m∗ ∈ {0, 1}� containing � bits.
Moreover, if all the honest parties have same input m, then they agree on m at
the end. We first describe the existing tools used in Optimal-ABA.

2.1 Tools Used

Hash Function [15,9]. A keyed hash function Uκ maps arbitrary strings in
{0, 1}∗ to κ bit string with the help of a κ bit random key. So Uκ : {0, 1}∗ →
{0, 1}κ. Uκ can be implemented as follows: Let m and r be the input to Uκ,
where m is an � bit string that need to be hashed/mapped and r is the hash key
selected from F. Without loss of generality, we assume that � = poly(κ). Then
m is interpreted as a polynomial fm(x) over F, where the degree of fm(x) is
�/κ� − 1. For this, m is divided into blocks of κ bits and each block of κ bits
is interpreted as an element from F. Then these field elements are considered
as the coefficients of fm(x) over F. Finally, Uκ(m, r) = fm(r). We now have the
following important well-known theorem.

Theorem 1 (Collision Theorem [15]). Let m1 and m2 be two � bit messages.
The probability that Uκ(m1, r) = Uκ(m2, r) for a randomly chosen hash key r is
�2−κ

κ = 2−Ω(κ) which is negligible.

A-cast or Asynchronous Broadcast. In brief, an A-cast protocol allows a
sender S ∈ P to send some message M identically to all the parties in P . An
A-cast protocol satisfies two properties: (1) Termination: If S is honest, then
all honest parties in P will eventually terminate; If any honest party terminates,
then all honest parties will eventually terminate. (2) Correctness: If the honest
parties terminate, then they do so with a common output M∗; (b) Furthermore,
if the sender S is honest then M∗ = M . The first ever protocol for A-cast is due
to Bracha [6] and the protocol is error free in both termination and correctness.
The A-cast protocol of [6] is t resilient with t < n/3 and communicates O(n2)
bits to A-cast a single bit in constant running time. The other protocol for A-cast
is reported in [21]. This protocol has error in both correctness and termination;
but it communicates O(�n) bits for an � bit input where � = ω(n2(n log n + κ)).
For simplicity, in our ABA protocol we will prefer to use A-cast of [6]. We use the
following syntax to invoke A-cast: A-cast(S,P , M). The description of Bracha’s
A-cast protocol is available in [7].

Notation 1 (Convention for Using A-cast:). By saying that ‘Pi A-casts M ’,
we mean that Pi as a sender, initiates A-cast(Pi,P , M). Similarly ‘Pj receives
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M from the A-cast of Pi’ will mean that Pj terminates A-cast(Pi,P , M), with
M as the output. By the property of A-cast, if some honest party Pj terminates
A-cast(Pi,P , M) with M as the output, then every other honest party will even-
tually do so, irrespective of the behavior of the sender Pi.

Asynchronous Verifiable Secret Sharing (AVSS). An AVSS scheme con-
sisting of two phases, namely sharing phase and reconstruction phase, can be
viewed as a distributed commitment mechanism where a (possibly corrupted)
special party in P , called dealer (denoted as D), commits a secret s ∈ F in the
sharing phase, where commitment information is distributed among the parties
in P . Later in reconstruction phase, the commitment s can be uniquely and
privately reconstructed by any specific party, say Pα ∈ P (we may call it as
Pα-private-reconstruction) even in the presence of At. Here Pα is called receiver
party. Moreover, if D and Pα are honest, then secrecy of s from At is maintained
throughout. AVSS is implemented by a pair of protocols (Sh, Rec) and it has
three properties called, Termination, Correctness and Secrecy ( for a formal
definition of AVSS, refer to [7,19]).

If an AVSS satisfies its Termination and/or Correctness, except with error
probability ρ = 2−Ω(κ), then we arrive at the notion of statistical AVSS. From
[8], statistical AVSS tolerating At is possible iff n ≥ 3t + 1. The best known
communication efficient statistical AVSS with n = 3t + 1 is due to [19]. We use
the following syntax to invoke AVSS: AVSS-Share(D,P , s) (protocol for sharing
phase) and AVSS-Rec(D,P , s, Pα) (protocol for reconstruction phase).

Agreement on a Common Subset (ACS). In our (ε, δ)-ABA protocol, we
come across the following situation: There exists a set of parties R ⊆ P with
|R| ≥ t + 1, such that each party in R is asked to A-cast (AVSS-Share) some
value(s). While the honest parties in R will eventually do the A-cast (AVSS-
Share), the corrupted parties in R may or may not do the same. So the (honest)
parties in P want to agree on a common set T ⊂ R, with 1 ≤ |T | ≤ |R| − t,
such that A-cast (AVSS-Share) instance of each party in T will be eventually
terminated by the (honest) parties in P . For this, the parties use ACS primitive
(stands for Agreement on Common Subset), presented in [5]. The ACS protocol
will use |R| instances of ABA invoked on single bit. We may use the best known
communication efficient (ε, 0)-ABA of [20] for this purpose. We use the following
syntax for invoking ACS: ACS(R, |T |).
Theorem 2. The communication complexity of ACS is equal to |R| executions
of ABA protocol each invoked on a single bit.

2.2 Protocol Optimal-ABA

Our protocol Optimal-ABA uses the so-called player-elimination framework, along
with several novel ideas. So far player-elimination [16] has been used only in the
context of synchronous and asynchronous MPC [16,2,24]. Ours is the first non-
MPC application of player-elimination. We would refer it by party-elimination,
rather than player-elimination in our context (as we use the term party in place
of player). In the party-elimination framework, the computation of Optimal-ABA
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is divided into t segments, where in each segment the parties agree on an �
t bit,

considering �
t bits of their original input as the input message of the segment.

In particular, the parties divide their original message into t blocks, each of size
�
t bits and in αth segment Sα, the parties reach agreement on an �

t bit message,
considering only the αth block as the input message. Each segment terminates
eventually with the parties having common output of �

t bits; moreover if the
honest parties start a segment with the same block of �

t bits, then they agree on
that common input.

The computation of a segment is carried out in a non-robust fashion, in the
sense that if all the parties including the corrupted parties behave according
to the protocol then the segment successfully achieves its task; otherwise the
segment may fail in which case it outputs a triplet of parties among which at
least one is corrupted. In the former case, the next segment will be taken up for
computation for reaching agreement with next block of �

t bits as input. In the
latter case, the same segment will be repeated among the set of parties after
excluding the parties in the triplet and this continues until the segment becomes
successful. It is to be noted that though the computations in a segment may be
done among a subset of parties from P (as parties in triplet might be eliminated
from P), the agreement in the segment is finally attained over all honest parties
in P . It is now easy to see that the t segments may fail at most t times in total as
t is the upper bound on the number of corrupted parties. After t failures, all the
corrupted parties will be removed and therefore there will be no more failure.

We denote the input of party Pi by mi ∈ {0, 1}�, which is divided into t
blocks, with αth block being denoted by miα, for α = 1, . . . , t. At the beginning
of our protocol, we initialize two dynamic variables n′ = n and t′ = t and one
dynamic set P ′ = P . P ′ denotes the set of non-eliminated parties and contains
n′ parties, out of which at most t′ can be corrupted. In every segment Sα the
computation is structured into three main phases: (a) Checking Phase, (b)
Expansion Phase and (c) Output Phase. The segment failure may occur
only in the second phase and hence only the first two phases of a segment may
be repeated several times (bounded by t); once the first two phases are successful
for a segment, the segment will always be successfully completed after robustly
executing the third phase. So at the end of segment Sα, every honest party will
agree on a common �

t bits, denoted by m∗
α. Moreover if the honest parties start

with common input (i.e. miα’s are equal for all honest parties), then m∗
α will be

same as that common input.

1. Checking Phase: Here the parties, on having private input message of �
t

bits each (i.e. miα’s), jointly perform some computation in order to determine
and agree on a set of t′ + 1 parties called P ′

ch ⊆ P ′, such that the honest
parties in P ′

ch hold a common �/t bit message, say m∗
α. In case of failure due

to the inconsistencies among the inputs of the honest parties, the parties
abort any further computation for current segment and agree on a predefined
message m†

α. So in this case current segment terminates with all honest
parties agreeing on common output m∗

α = m†
α. On the other hand, if P ′

ch is
generated and agreed among the parties, then the computation for current
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segment proceeds to the next phase. It is to be noted that P ′
ch will be always

obtained if the initial messages of the honest parties in P ′ are same.
2. Expansion Phase: Here the parties in P ′

ch on holding a common message
m∗

α help other parties to receive m∗
α. Specifically here the parties jointly

perform some computation in conjunction with the parties in P ′
ch to expand

P ′
ch to a set of 2t′ + 1 parties, denoted by P ′

ex (with P ′
ch ⊂ P ′

ex ⊆ P ′) such
that all honest parties in P ′

ex hold m∗
α. The expansion technique is the most

crucial and novel part of our protocol. But the computation of this phase is
non-robust and hence either one of the following is guaranteed: (a) P ′

ex is
constructed successfully or (b) a triplet of parties (Pi, Pj , Pk) is obtained,
such that at least one of the three parties is corrupted. If the former case
happens, then parties proceed to execute Output Phase. If the latter case
happens, then n′ and t′ are reduced by 3 and 1 respectively and the current
segment is repeated from the beginning (from the Checking Phase) with
updated n′ and t′ and P ′ = P ′ \ {Pi, Pj , Pk}. Note that n′, t′ and P ′ always
satisfy: n′ = 3t′ + 1 and |P ′| = n′.

3. Output Phase: Here the parties in P ′
ex help the parties in P\P ′

ex (not P ′\
P ′

ex) to learn the common �/t message m∗
α held by the honest parties in P ′

ex.
After this phase, current segment terminates with common output m∗

α and
the parties proceed to the computation of next segment. The implementation
of this phase is very similar to the implementation of the Output Phase of
[21] and the Claiming Stage of the BA protocol of [15].

Now the overall structure of Optimal-ABA is presented below.

Protocol Optimal-ABA(P)
Code for Pi: Every party in P executes this code.

1. Set n′ = n, t′ = t and P ′ = P . Initialize α = 1.
2. While α ≤ t, do the following for segment Sα with input miα and with n′, t′ and

P ′ to agree on m∗
α:

(a) Checking Phase: Participate in the code Checking, presented in Fig. 1 to
determine and agree on P ′

ch ⊆ P ′ of size t′ +1 such that all the honest parties
in P ′

ch hold common �
t

bits, say m∗
α. If P ′

ch is generated then proceed to the

next phase. Otherwise set m∗
α to some predefined value m†

α ∈ {0, 1} �
t , set

α = α + 1 and terminate the current segment with output m∗
α.

(b) Expansion Phase: Participate in code Expansion presented in Fig. 2 to ex-
pand P ′

ch to contain 2t′ +1 parties, denoted by P ′
ex such that P ′

ch ⊂ P ′
ex ⊆ P ′

and all honest parties in P ′
ex hold m∗

α. If P ′
ex is generated successfully then pro-

ceed to the next phase. Otherwise output a triplet (Pm, Pl, Pk), set n′ = n′−3,
t′ = t′ − 1 and P ′ = P ′ \ {Pm, Pl, Pk} and repeat the current segment.

(c) Output Phase: Participate in code Output presented in Fig. 3 and output
m∗

α upon termination, set α = α + 1 and terminate the current segment.

3. Output m∗ which is the concatenation of m∗
1, . . . , m

∗
t and terminate the protocol.

In the sequel, we will pursue an in-depth discussion on the implementation
and properties of each of the above three phases.
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Checking Phase. As mentioned before, the aim of this phase is to either agree
on a set P ′

ch of size t′ + 1 such that all the honest parties in P ′
ch hold common

message, say m∗
α, or decide that such set may not exist. When all the honest

parties start with same input message, P ′
ch can be always found out and agreed

upon. To achieve the above task, every party hashes his message with a random
key and A-casts the (random key, hash value) pair. The parties then agree on a
set I of n′ − t′ parties whose A-cast will be eventually received by every honest
party. This can be achieved by executing an instance of ACS.

Now every party Pi prepares a response vector −→vi , indicating whether the
hash value of every Pj ∈ I is indeed the hash value of his own message miα

with respect to Pj ’s hash key (this should ideally be the case, when Pi and Pj

are honest and their input messages are identical, i.e. miα = mjα). Pi A-casts
−→vi . Now the parties again agree on a set of n′ − t′ parties, say J whose A-cast
with their −→vi has been terminated. Now notice that if all honest parties start with
common input, then the vectors of the honest parties in J would be identical and
would have at least t′ + 1 1’s at the locations corresponding to the t′ + 1 honest
parties in I. So now the parties try to find a set of at least t′ + 1 parties in J ,
whose vectors are identical and have at least t′ + 1 1’s in them. If found, then
any subset of t′ + 1 parties from that set (say t′ + 1 parties with smallest index)
will be considered as P ′

ch. It is easy to show that P ′
ch will be always obtained

if the initial messages of the honest parties in P ′ are same. Moreover it can be
shown that the honest parties in P ′

ch hold common message, say m∗
α with very

high probability (see Lemma 2). But if P ′
ch is not found, then the honest parties

know that their input messages are inconsistent and hence they agree that such
set can not be found. The steps performed so far are enough for achieving the
goal of our current phase.

But we need to do some more task for the requirement of next phase i.e.
Expansion Phase. In Expansion Phase, we require that every honest party
Pj in P ′ should hold a distinct secret random hash key and hash value of the
message corresponding to every party Pi in I, such that the hash key and hash
value that Pj has received from Pi should not be known to anybody other than
Pi and Pj . Though achieving this in synchronous network is easy, it needs some
amount of effort in asynchronous network. We do this by using AVSS-Share and
AVSS-Rec. The code that implements this phase is now given in Fig. 1.

Before proving the properties of Checking Phase, we define the following:

Event E: Let E be an event in an execution of Checking, defined as follows: All
invocations of AVSS scheme initiated by the parties in I have been terminated
with correct output. More clearly, E means that all the invocations of AVSS
initiated by the parties in I will satisfy termination and correctness property. It
is easy to see that E occurs with very high probability of (1 − 2−Ω(κ)). �

In the sequel, all the lemmas for all the three phases are proved conditioned on
event E.

Lemma 1 (Termination of Checking Phase). In a segment Sα, an exe-
cution of Checking Phase will be terminated, except with probability 2−Ω(κ),
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Checking

To avoid notational clutter, we assume that P ′ is the set of first n′ parties

Code for Pi ∈ P ′: Every party in P ′ executes this code

1. On having input miα,
(a) choose a random hash key ri from F and A-cast (ri,Vi) where Vi = Uκ(miα, ri);
(b) choose n′ random hash keys ri1, . . . , rin′ from F and commit (rij ,Vij)

where Vij = Uκ(miα, rij), by executing AVSS-Share(Pi,P ′, rij) and AVSS-
Share(Pi,P ′,Vij).

2. Participate in AVSS-Share(Pj ,P ′, rjk) and AVSS-Share(Pj ,P ′,Vjk) for every Pj ∈
P ′ and k = 1, . . . , n′.

3. Participate in ACS(P ′, n′−t′) to agree on a set of n′−t′ parties from P ′, denoted as
I, whose A-cast and the 2n′ instances of AVSS-Share will be eventually terminated
(by the honest parties in P ′).

4. Wait to receive (rj ,Vj) from the A-cast of every Pj ∈ I.
5. Wait to terminate all 2n′ instances of AVSS-Share of every party in I. Participate

in AVSS-Rec(Pj ,P ′, rjk, Pk) and AVSS-Rec(Pj ,P ′,Vjk, Pk) for every Pj ∈ I and
every Pk ∈ P ′ for Pk-private-reconstruction of (rjk,Vjk).

6. Obtain (rji,Vji) pair from AVSS-Rec(Pj ,P ′, rji, Pi) and AVSS-Rec(Pj ,P ′,Vji, Pi)
corresponding to every Pj ∈ I.

7. Construct n length vector −→vi , where −→vi [j] =

⎧⎨⎩
⊥ If Pj �∈ I
1 If Pj ∈ I and Vj = Uκ(miα, rj).
0 If Pj ∈ I and Vj �= Uκ(miα, rj).

A-cast −→vi .
8. Participate in ACS(P ′, n′ − t′) to agree on a set of n′ − t′ parties from P ′, denoted

as J , whose A-cast with an n length vector has been terminated.
9. Check whether there is a unique set of at least t′ + 1 parties in J such that their

vectors are identical and have at least t′ + 1 1’s in them (Note that this can be
done in polynomial time).
(a) If yes, then let P ′

ch be the set containing exactly t′ + 1 parties (say the parties
with first t′ + 1 smallest indices) out of those parties. Let −→v be the n length
vector, where −→v [i] = 1 if the ith location of the vectors of all parties in P ′

ch

is 1, otherwise −→v [i] = ⊥. Moreover, let I1 = {Pi ∈ I such that −→v [i] = 1}.
Assign m∗

α = miα if Pi ∈ P ′
ch.

(b) If not, then decide that P ′
ch can not be found.

Fig. 1. Code for Checking Phase

where termination means that the code either outputs a set P ′
ch of size t′ + 1 or

decide that such set can not be constructed.

Proof: Conditioned on event E, an execution of Checking Phase will always
terminate if both the executions of ACS terminate and all the instances of A-cast
terminate. Since A-cast has no error in termination and each execution of ACS
terminates except with probability 2−Ω(κ), an execution of Checking Phase
will terminate except with negligible probability. �
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Lemma 2 (Correctness of Checking Phase). In an execution of Checking
Phase in a segment Sα, the honest parties in P ′

ch (if it is found) hold a common
message m∗

α, except with probability 2−Ω(κ). Moreover, if the honest parties start
Sα with common message mα, then P ′

ch will always be found with m∗
α = mα.

Proof: We prove the first part of the lemma. If P ′
ch contains exactly one honest

party, then first part is trivially true with m∗
α being the input message of the

sole honest party in P ′
ch. So let P ′

ch contain at least two honest parties. We
now show that the messages of every pair of honest parties (Pi, Pj) in P ′

ch are
same. Recall that the response vectors −→vi and −→vj of Pi and Pj are identical
and have at least t′ + 1 1’s in them. Moreover, I1 contains all Pk’s such that
−→vi [k] = −→vj [k] = 1. Evidently, |I1| ≥ t + 1. So there is at least one honest party
in I1, say Pk, such that −→vi [k] = −→vj [k] = 1. This implies that Vk = Uκ(miα, rk)
and Vk = Uκ(mjα, rk) holds for Pi and Pj respectively, where Pi has received
(Vk, rk) from Pk (by A-cast) and Pj has received (Vk, rk) from Pk (by A-cast).
Now by Collision Theorem (Theorem 1), it follows that miα = mkα and
mjα = mkα, except with probability 2−Ω(κ). Consequently miα = mjα, except
with probability 2−Ω(κ). Now let us fix an honest party, say Pi in P ′

ch. If Pi’s value
is equal to every honest Pj ’s value in P ′

ch, then it means that all honest parties
in P ′

ch hold a common message m∗
α, except with negligible error probability.

We now prove the second part. When all honest parties start with same input
mα, the vectors of all honest parties in J will have 1 at the locations corre-
sponding to the honest parties in I. Since there are at least t′ +1 honest parties
in both I and J , P ′

ch can always be found and now it is easy to see that all
honest parties in P ′

ch will hold mα. �

Expansion Phase. If P ′
ch is found and agreed upon in previous phase, then the

parties proceed to expand P ′
ch in order to obtain P ′

ex. For that we first initiate
K = P ′

ch and K = P ′ \K. Then K will be expanded to contain 2t′+1 parties and
we will assign K to P ′

ex when K contains 2t′+1 parties. We call the K containing
t′+1 parties as ‘initial’ K and likewise the K containing 2t′+1 parties as ‘final’ K.
The expansion (transition from ‘initial’ K to ‘final’ K) takes place in a sequence
of t′ iterations. In each iteration, either K is expanded by one or in case of failure
a conflict triplet is returned. In the latter case, the current segment fails and it
is again repeated (from checking phase) with renewed value of n′, t′ and P ′

(i.e. after excluding the parties in the triplet from P ′).
So this phase starts as follows: First an injective mapping ϕ : K → K is

defined. Now a party Pi ∈ K sends his message m∗
α to party ϕ(Pi) ∈ K. A

party Pi ∈ K on receiving a message m∗
α from ϕ−1(Pi) ∈ K, calculates vector

−→vi with the (key, hash value) pair of the parties only in I1 (⊥ is placed at
all other locations) and with m∗

α as the message. Pi then A-casts Matched-Pi

if −→vi is identical to −→v (which was calculated in Checking). Otherwise let k be
the minimum index in −→vi such that −→vi [k] 	= −→v [k], then Pi A-casts a conflict
triplet (ϕ−1(Pi), Pi, Pk). Clearly, one of the three parties in the triplet must
be corrupted. The parties now invoke an instance of ACS to agree on a single
party, say Pl from K whose A-cast has been terminated. Such a party from K
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can always be found as there exists at least one honest Pm ∈ K which will be
mapped to another honest Pl = ϕ(Pm) ∈ K and Pl will eventually receive m∗

α

from Pm and successfully A-cast some message (see Lemma 4).
Now there are two cases. If (ϕ−1(Pl), Pl, Pk) is received from the A-cast of Pl,

then the computation stops here and the triplet (ϕ−1(Pl), Pl, Pk) is returned.
If Matched-Pl is received from the A-cast of Pl, then Pl is included in K and
excluded from K. Pl now finds a unique party from the set of parties in K that
was never mapped before (say the unmapped party with smallest index) and
sends m∗

α to it. Again the party who receives the message, calculates response
vector with the received message and A-casts either a conflict triplet or Matched
signal. Then the parties invoke an instance of ACS to agree on a single party
from K whose A-cast has been terminated and this process continues until either
|K| becomes 2t′ + 1 or the segment is failed with some triplet in some iteration.
Though it is non-intuitive that in every iteration the parties will be able to agree
on a single party from K by executing ACS, this will indeed happen and we prove
this in Lemma 4. If K becomes of size 2t′ + 1, it is assigned to P ′

ex. The code for
this phase is given in Fig. 2. We now prove the properties of Expansion Phase.

Lemma 3. In a segment Sα, in any iteration of while loop (in an execution of
Expansion Phase), no two different parties in K are mapped to the same party
in K. Also in case while loop is completed with K containing 2t′ + 1 parties,
only the last entrant in ‘final’ K is not mapped to any party.

Proof: From the protocol steps, it is clear that a party in K is mapped only once.
Now we show that no pair (Pi, Pj) in K is mapped to same party. This is true
as ϕ is injective and also every time a party Pi from K is mapped to a party Pk

in M (set of unmapped parties), Pk is never mapped again as it is immediately
transferred to M (set of mapped parties).

Now we show that there will be enough number of parties in M to be mapped
in all iterations, except the last one. We consider the worst case, where the while
loop is executed completely for t′ iterations (as ‘initial’ |K| is t′ + 1 and t′ more
parties have to enter to make ‘final’ K of size 2t′ + 1), without outputting any
triplet. Now as per the protocol, at the beginning of the while loop, K = t′ + 1,
K = 2t′, M = t′ + 1 and M = 2t′ − (t′ + 1) = t′ − 1. In ith iteration, a party,
say Pl from M (hence from K) enters into K and gets mapped to an unmapped
party in M (hence in K). As a result: (a) |K| increases by 1, (b) |K| decreases by
1, (c) |M| remains same and (d) |M| decreases by 1. So after t′ − 1 iterations,
the following hold: (a) |K| = 2t′, (b) |K| = t′ + 1, (c) |M| = t′ + 1 and (d)
|M| = 0. Hence M becomes empty only after the mapping is done in (t′ − 1)th

iteration. In the last iteration (t′th), another party from M (hence from K) is
finally included in K which need not be mapped to any more party as K becomes
exactly 2t′ + 1 at this point. �

Lemma 4. In a particular execution of Expansion Phase in a segment Sα,
|K| will increase by one with probability at least (1 − 2−Ω(κ)), in every iteration
of while loop until the while loop is completed due to |K| = 2t′ + 1 or broken
due to the output of a triplet.
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Expansion

Code for Pi ∈ P ′: Every party in P ′ executes this code

1. Assign K = P ′
ch and K = P ′ \ K.

2. Define an injective mapping ϕ : K → K where K = P ′ \ K as follows: the party
with smallest index in K is associated with the party with smallest index in K. Let
M = ϕ(K) (⊂ K, as |K| is exactly t′ + 1) be the set of currently mapped parties in
K. Let M = K \M be the set of currently unmapped partied in K.

3. If Pi ∈ K, then send m∗
α to ϕ(Pi).

4. If Pi ∈ K and has received message m∗
α from ϕ−1(Pi) ∈ K, then calculate vector −→vi

of length n as follows: −→vi [j] =

⎧⎨⎩
⊥ If Pj �∈ I1

1 If Pj ∈ I1 and Vji = Uκ(m∗
α, rji).

0 If Pj ∈ I1 and Vji �= Uκ(mα, rji).
Recall that

(rji,Vji) pair was obtained by Pi in Checking from AVSS-Rec(Pj ,P ′, rji, Pi) and
AVSS-Rec(Pj ,P ′,Vji, Pi). If −→vi is identical to −→v then A-cast Matched-Pi; otherwise
let k be the minimum index in −→vi such that −→vi [k] �= −→v [k], then A-cast (Pj , Pi, Pk),
where Pj = ϕ−1(Pi).

5. while |K| < 2t′ + 1 do:
(a) Participate in an instance of ACS(M, 1) to agree on a single party from M

whose A-cast has been terminated. Let the party be Pl.
(b) If (Pm, Pl, Pk) is received from A-cast of Pl, then stop any further computation

and output the triplet (Pm, Pl, Pk).
(c) If Matched-Pl is received from A-cast of Pl, then set K = K∪{Pl}, K = K\{Pl}

and M = M\ {Pl}.
(d) Define a mapping, which maps Pl to the party in M with the smallest index,

say Pm. Set M = M\ {Pm} and M = M∪ {Pm}.
(e) If Pi = Pl, then send m∗

α to Pm.
(f) If Pi = Pm and Pi has received message m∗

α from Pl, then calculate vector−→vi of length n in the same way as in step 4. If −→vi is identical to −→v then
A-cast Matched-Pi; otherwise let k be the minimum index in −→vi such that−→vi [k] �= −→v [k], then A-cast (Pl, Pi, Pk).

6. Set P ′
ex = K. If Pi ∈ P ′

ex, then consider m∗
α as the final message.

Fig. 2. Code for the Expansion Phase

Proof: To prove the lemma, we show that in every iteration of the while loop, the
parties will be able to agree on a single party (using ACS) from K (except with
negligible probability, as the instance of ACS may not terminate with negligible
probability), whose A-cast will be terminated. In other words, we assert that in
every iteration of the while loop, there will exist one party from K who will
eventually A-cast a response. Moreover, this will be true, until the while loop is
either over or broken due to the output of a triplet. For this, we claim that in
every iteration of while loop, there must be an honest party, say Pi, belonging
to K, such that Pi is mapped to another honest party, say Pj , belonging to K.
Moreover, honest Pi’s message will eventually reach to honest Pj , who will then
A-cast his response, which is either an n length vector or a triplet of parties.
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At the time of entering into the loop for the first time, assume that among
t′ + 1 parties in K there are 0 ≤ c ≤ t′ corrupted parties. So the remaining
t′ − c corrupted parties are in ‘initial’ K. In the worst case, c corrupted parties
and t′ − c honest parties from K may be mapped to c honest parties and t′ − c
corrupted parties, respectively from K. Still K contains at least one honest party
which is bound to be mapped to another honest party from K, as there is no other
unmapped corrupted party in K. So our claim holds for first iteration. In general
in ith iteration, there are t′ + i parties in K out of which say c with 0 ≤ c ≤ t′

are corrupted parties. So extending the previous argument for this general case,
there are i honest parties in K who are mapped to i honest parties in K. Among
these i mappings, i − 1 might correspond to previous i − 1 iterations. But still
one mapping is left for ith iteration. Now let the mapping be from honest Pj ∈ K
to honest Pk ∈ K.

So Pj ’s message reaches to Pk eventually and Pk tries to prepare −→vk with
received message and the (key, hash value) of the parties in I1. Conditioned
on event E, Pk will receive the (key, hash value) of the parties in I1. Once Pk

prepares his vector, he A-casts his response (which could be either Matched-Pk,
if −→vk = −→v or a triplet of parties if −→vk 	= −→v ). If Pk’s response is Matched-Pk, then
|K| will be incremented by 1; otherwise, the loop will be broken with a triplet
as output. �

Lemma 5 (Termination of Expansion Phase). In a segment Sα, an execu-
tion of Expansion Phase will terminate, except with probability 2−Ω(κ), where
termination means that the code either outputs a triplet or a set P ′

ex of size
2t′ + 1.

Proof: From Lemma 4, in every iteration of the while loop, there will exist one
party from K who will eventually A-cast a response. Now conditioned on event
E, the termination of an execution of Expansion Phase depends on the ter-
mination of the invoked ACS protocols and the A-casts. A-cast has no error in
termination. The invocations of ACS (there can be at most t′ invocations corre-
sponding to t′ iterations of while loop) will terminate, except with probability
2−Ω(κ). Therefore, an execution of Expansion Phase terminates, except with
probability 2−Ω(κ). �

Lemma 6 (Correctness-I of Expansion Phase). In an execution of Ex-
pansion Phase in a segment Sα, all the honest parties in P ′

ex (if found) will
hold a common message m∗

α, which was also the common message held by the
honest parties in P ′

ch, except with probability 2−Ω(κ). Moreover if the honest
parties start Sα with same input message mα, then m∗

α = mα.

Proof: Let us consider party Pf , who is the first honest party to enter into ‘initial’
K during the Expansion phase. Recall that Pf enters into K (hence P ′

ex) when
it receives a message m∗

α from some already existing (possibly corrupted) party
Pj in K and Pf ’s generated −→vf is identical to −→v . We claim that m∗

α = m∗
α, except

with error probability 2−Ω(κ). Consider an honest Pk ∈ K and an honest Pl in I1

with −→v [l] = 1 (there is at least one such honest Pl as |I1| ≥ t′+1). By Collision
Theorem, mkα = mlα = m∗

α, except with error probability 2−Ω(κ). Now since
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−→vf = −→v , it implies that −→v f [l] = 1, as −→v [l] = 1. This further implies that
m∗

α = mlα. Hence it implies that m∗
α = m∗

α holds, with very high probability.
This is because the key and hash value pair (rlf ,Vlf ) is not known to anyone
(including possibly corrupted Pj) other than Pf and Pl. Hence with very high
probability, Pf has received m∗

α from Pj .
Now let Ps be the second honest party to enter into ‘initial’ K. Ps may receive

its message either from Pf or from any party belonging to ‘initial’ K. In both
cases, Ps’s message will be m∗

α, except with negligible error probability. In gen-
eral, if an honest party Pi enters into ‘initial’ K at sometime, then its message
will be equal to m∗

α, except with negligible error probability. �

Lemma 7 (Correctness-II of Expansion Phase). In an execution of Ex-
pansion Phase in a segment Sα, if a triplet (Pm, Pl, Pk) is A-casted by Pl then
at least one of Pm, Pl and Pk is corrupted, except with error probability 2−Ω(κ)

where Pm ∈ K, Pl ∈ K and Pk ∈ I1.

Proof: Let Pm, Pl and Pk be honest, where Pm ∈ K, Pl ∈ K and Pk ∈ I1. Since
Pk ∈ I1, it implies that −→v (k) = 1 holds. Also Pm ∈ K implies that −→v m(k) = 1.
This further implies that m∗

α held by Pm is same as mkα held by Pk, except with
error probability 2−Ω(κ) (from Collision Theorem). Now during Expansion
phase, Pm sends his m∗

α to Pl and Pl computes −→v l with respect to the received
m∗

α and the pairs (rjl,Vjl), corresponding to every Pj ∈ I1. On computing −→v l,
party Pl will find that −→v l(k) = −→v (k), except with negligible error probability.
This is because Pk is honest and hence Vkl is the hash value of mkα, with
respect to the hash key rkl. However, as shown above, m∗

α received by Pl from
Pm is same as mkα, except with negligible error probability. So Pl will find that
Vkl = Uκ(m∗

α, rkl). Hence Pl will not A-cast triplet (Pm, Pl, Pk). So if at all Pl

A-casts (Pm, Pl, Pk), then at least one of Pm, Pl and Pk is corrupted. �

Output Phase. Once the parties agree on P ′
ex, with all honest parties in it

holding some common m∗
α, we need to ensure that m∗

α propagates to all (honest)
parties in Pex = P \P ′

ex, in order to reach agreement on m∗
α. This is achieved in

code Output (presented in Fig. 3) with the help of the parties in P ′
ex. A simple

solution could be to ask each party in P ′
ex to send his m∗

α to all the parties in
Pex, who can wait to receive t′+1 same m∗

α and then accept m∗
α as the message.

This solution will work as there are at least t′ + 1 honest parties in P ′
ex. But

clearly, this requires a communication complexity of O( �
n · n2) = O(�n) bits

for each segment (and thus O(�n2) bits for our ABA protocol; this violates our
promised communication complexity bound for Optimal-ABA). Hence, we adopt
a technique proposed in [15] for designing a BA protocol in synchronous settings
with n = |P| = 2t + 1 parties. Now the technique proposed in [15] requires a
set of parties, say H ⊂ P such that all the honest parties in H hold the same
message and the majority of the parties in H are honest. Under this condition
the technique allows the set of honest parties in P \ H to obtain the common
message of the honest parties in H with a communication cost of O(�n) bits. In
our context P ′

ex has all the properties of H. Hence we adopt the technique of [15]
in our context in the following way: Every Pi ∈ P ′

ex sets d = t′+1 and c =  �+1
td �
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and transforms his message m∗
α (with |m∗

α| = �
t ) into a polynomial p(x) of degree

d − 1 over GF (2c). Now if somehow a party Pj ∈ Pex receives d values on p(x),
then he can interpolate p(x) and receive m∗

α. For this, party Pi ∈ P ′
ex sends ith

value on p(x), namely pi = p(i) to every Pj ∈ Pex. As the corrupted parties
in P ′

ex may send wrong pi, Pj should be able to detect correct values. For this,
every Pi ∈ P ′

ex also sends hash values of (p1, . . . , pn) for a random hash key to
every Pj ∈ Pex. Now Pj can detect ‘clean’ values with the help of the hash values
and eventually Pj will receive d ‘clean’ values (possibly from d = t′ + 1 honest
parties in P ′

ex) using which he can compute m∗
α.

Output

i. Code for Pi: Every party in P (not P ′) will execute this code.

1. If Pi ∈ P ′
ex, do the following to help the parties in Pex = P \ P ′

ex to compute m∗
α:

(a) Set d = t′ + 1 and c = 
 �+1
td

�.
(b) Interpret m∗

α as a polynomial p(x) of degree d−1 over GF (2c). For this, divide
m∗

α into blocks of c bits and interpret each block as an element from GF (2c).
These elements from GF (2c) are the coefficients of p(x).

(c) Send pi = p(i) to every Pj ∈ Pex, where pi is computed over GF (2c).
(d) For every Pj ∈ Pex, choose a random distinct hash key Rij from F and send

(Rij ,Xij1, . . . ,Xijn) to Pj , where for k = 1, . . . , n, Xijk = Uκ(pk, Rij). Here,
to compute Xijk, interpret pk as a c bit string.

(e) Terminate this code with m∗
α as output.

2. If Pi ∈ Pex, do the following to compute m∗
α:

(a) Call pk received from party Pk ∈ P ′
ex as ‘clean’ if there are at least

t′ + 1 Pj ’s in P ′
ex, corresponding to which Xjik = Uκ(pk, Rji) holds, where

(Rji,Xji1, . . . ,Xjin) is received from Pj ∈ P ′
ex.

(b) Wait to receive d ‘clean’ pk’s and upon receiving, interpolate d−1 degree poly-
nomial p(x) using those ‘clean’ values, interpret m∗ from p(x) and terminate
this protocol with m∗

α as the output.

Fig. 3. Code for Output Phase

Lemma 8 (Termination of Output Phase). An execution of Output Phase
in any segment Sα will terminate, except with probability 2−Ω(κ).

Proof: From the steps of the code Output, the parties in P ′
ex always terminate

after performing the steps as mentioned in step 1(a)-1(d) of the code. So we now
have to prove that the parties in P \P ′

ex terminate, except with negligible error
probability. To show this, we first assert that if all the honest parties in P ′

ex hold
common m∗

α, then the above event happens with no error; but the parties in
P ′

ex hold common m∗
α, except with negligible error probability (from Lemma 6).

Hence it will follow that the parties in P \P ′
ex terminate, except with negligible

error probability.
Now we are left to show that the parties in P \ P ′

ex terminate without error
when all the honest parties in P ′

ex hold common m∗
α. Consider an honest party

Pi in Pex. Clearly, Pi terminates if it receives d = t′+1 ‘clean’ values eventually.
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To assert that Pi will indeed receive d = t′ + 1 ‘clean’ values, we first show that
the value pk received from every honest Pk in P ′

ex will be considered as ‘clean’ by
Pi. Consequently, since there are t′ + 1 honest parties in P ′

ex, Pi will eventually
receive t′ + 1 ‘clean’ values even though the corrupted parties in P ′

ex may never
send any value to Pi. If the honest parties in P ′

ex have common m∗
α, they will

generate same p(x) and therefore same pk = p(k). Hence, Xjik = Uκ(pk, Rji)
will hold, with respect to (Rji,Xjik) of every honest Pj in P ′

ex. As there are at
least d = t′ + 1 honest parties in P ′

ex, the pk received from honest Pk ∈ P ′
ex will

be considered as ‘clean’ by Pi. This proves our claim. �

Lemma 9 (Correctness of Output Phase). Every honest party in P will
output a common message m∗

α in an execution of Output Phase in a segment
Sα, except with probability 2−Ω(κ). Moreover, if the honest parties start Sα with
same input mα, then m∗

α = mα.

Proof: Lemma 6 shows that all the honest parties in P ′
ex will output same m∗

α

with very high probability. So we are left to prove that all the honest parties in
Pex will output same m∗

α as well.
So let Pi ∈ Pex be an honest party. Now the pk value of each honest Pk ∈ P ′

ex

will be eventually considered as ‘clean’ value by honest Pi. This is because there
are at least t′ + 1 honest parties in P ′

ex, who hold same m∗
α and therefore same

p(x) (and hence p(k)). So Xjik = Uκ(pk, Rji) will hold, with respect to (Rji,Xjik)
of every honest Pj in P ′

ex. A corrupted Pk ∈ P ′
ex may send pk 	= pk to Pi, but

pk will not be considered as a ‘clean’ value with very high probability. This is
because, in order to be considered as ‘clean’ value, pk should satisfy Xjik =
Uκ(pk, Rji) with respect to (Rji,Xjik) of at least t + 1 Pj ’s from P ′

ex. The test
will fail with respect to an honest party from P ′

ex with very high probability
according to Collision Theorem (see Theorem 1). Thus though the test may
pass with respect to all corrupted parties in P ′

ex (at most t), the test will fail
for every honest party from P ′

ex with high probability. Hence, honest Pi will
reconstruct p(x) using d ‘clean’ values (which he is bound to get eventually),
with very high probability. The second part is easy to follow. �

Properties of Optimal-ABA. We now prove the properties of Optimal-ABA.

Lemma 10. In Optimal-ABA, in total there can be t segment failures. The
Checking Phase and Expansion Phase may be executed for at most 2t times.
But Output Phase may be executed at most t times, once for each segment.

Proof: Since there are t corrupted parties, in total there can be t segment failures.
These t failures may occur within a single segment or they may be distributed
across t segments. After t failures, all corrupted parties will be removed from P
and hence segment failure can not occur any more.

Since a segment may fail in Expansion Phase, there can be 2t executions of
Checking Phase and Expansion Phase of which at most t may be non-robust
executions (conflict triplet is found) and remaining t may be robust executions.
Since segment can not fail in Output Phase, this phase may be executed at
most t times, once for each segment. �
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Lemma 11 (Termination of Optimal-ABA). Protocol Optimal-ABA will ter-
minate eventually, except with probability 2−Ω(κ).

Proof: This follows from Lemma 1, Lemma 5 and Lemma 8 and the fact that
event E occurs with very high probability. �

Lemma 12. Conditioned on the event that segment Sα terminates, every honest
party outputs common m∗

α at the end of Sα, except with probability 2−Ω(κ). More-
over if the honest parties start Sα with same input message mα, then m∗

α = mα.

Proof: Sα may terminate at the end of Checking Phase or at the end of Output
Phase. If Sα terminates at the end of Checking Phase, then every party
assigns m∗

α = m†
α, where m†

α is a predefined value. Hence in this case the first
part of the lemma holds without any error. Now let Sα terminate at the end
of Output Phase. Here we show that every party in P outputs common m∗

α

at the end of Output Phase of Sα. By Correctness of the Output Phase
(Lemma 9), given event E, all honest parties in P will hold common m∗

α, except
with negligible error probability. Now since event E happens with very high
probability, it follows that the parties in P will hold common m∗

α, except with
negligible error probability.

The second part of the lemma follows from Lemma 2, 6 and 9. �

Lemma 13 (Correctness of Optimal-ABA). Conditioned on the event that
Optimal-ABA terminates, every honest party outputs common m∗ at the end of
Optimal-ABA, except with probability 2−Ω(κ). Moreover if the honest parties start
Optimal-ABA with same input message m, then m∗ = m.

Proof: This follows from Lemma 12 and the fact that m∗ is the concatenation of
m∗

1, . . . , m
∗
t . �

Theorem 3. Optimal-ABA is a (ε, δ)-ABA protocol.

Proof: Follows from Lemma 11 and Lemma 13. �

Theorem 4. Optimal-ABA privately communicates O(�n + n4κ) bits and re-
quires O(n3) invocations to ABA (for single bit) and AVSS protocols (for one
field element) to agree on an � bit message.

Proof: In Optimal-ABA, Checking Phase and Expansion Phase may be ex-
ecuted for at most 2t times and Output Phase may be executed t times (by
Lemma 10).

In a single execution of Checking Phase, there are at most 2n′2 instances
of AVSS. Moreover, there are two executions of ACS to agree on a set of parties
of size t′ + 1 and n′ A-cast of n length response vectors. Since n′ = O(n), the
total communication complexity during one execution of Checking Phase is
2n2 · AVSS + 2n · ABA + n4 bits.

During the execution of Expansion Phase, the most expensive step in terms
of communication complexity is the execution of ACS, which will be executed
t′ times (the maximum number of iterations of while loop) in the while loop.
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Since t′ = O(n), this step requires a communication complexity of n2 · ABA.
Moreover, during Expansion Phase each party in K will privately send his �/t
bit message to exactly one party in K to which it is mapped. As |K| = O(n),
this step requires a communication cost of O(n�/t) bits.

A single execution of Output Phase requires O(n′2c + n′3κ) bits of private
communication. Now O(n′2c + n′3κ) = O(� + n′3κ) as c =  �+1

td � =  �+1
tt′ � and

n′ = O(n), t′ = O(n).
So executing Checking Phase and Expansion phase 2t = Θ(n) times

and executing Output Phase t times require a communication complexity of
O(�n + n4κ) bits plus O(n3) invocations to ABA and AVSS protocols. �

3 Open Problems

The communication complexity of Optimal-ABA shows that the protocol is com-
munication optimal for sufficiently large � and the bound on � depends on the
communication complexity of the underlying ABA and AVSS protocols. One
may try to design communication optimal ABA protocol for all values of � (if
possible) using completely different approach.
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Appendix A: Approach Used in the BA of [15]

Here we briefly recall the approach used in [15] for designing the communication
optimal multi-valued BA protocol in synchronous settings. The protocol of [15]
requires n = 2t + 1 parties. So |P| = 2t + 1. The BA protocol was structured
into three stages: (a) Checking, (b) Consolidation and (c) Claiming Stage. In the
Checking Stage, the parties in P compare their respective messages and jointly
determine an accepting subset Pacc ⊆ P of size at least n − t, such that all
‘accepting’ parties hold the same message, and all (honest) parties holding this
message are ‘accepting’. This stage can be aborted when inconsistencies among
honest parties are detected. If this stage is not aborted then the BA protocol
proceeds to Consolidation Stage where the parties in Pacc help to decide on a
happy subset Pok ⊆ P , such that all ‘happy’ parties hold the same message,
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and the majority of ‘happy’ parties are honest. Also this stage may be aborted
in case of inconsistencies among the honest parties’ inputs. Consolidation Stage
is very important and introduces new ideas. But a careful checking will reveal
that the same ideas can not be implemented in asynchronous network even for
n = 3t + 1 parties. That is why we introduce a new sets of ideas in our ABA
protocol. Finally, if Consolidation Stage is not aborted then BA protocol of [15]
proceeds to the last stage called Claiming Stage. In the Claiming Stage, the
parties in Pok distribute their common message to the unhappy parties i.e. the
parties in P \ Pok. This stage will never be aborted and hence at the end every
party will output a common value. If the BA protocol aborts during Checking
and Consolidation Stages then every party decides on a predefined default value.
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Döttling, Nico 120

Hirt, Martin 163

Ishai, Yuval 1

Kabatiansky, Grigory 202
Kawachi, Akinori 6
Kraschewski, Daniel 120
Kurosawa, Kaoru 143

Lucas, Christoph 163

Maurer, Ueli 163
Müller-Quade, Jörn 120

Nayak, Manan 32

Patra, Arpita 143, 206
Portmann, Christopher 6

Rangan, C. Pandu 206
Raub, Dominik 163
Renner, Renato 52
Reyzin, Leonid 138

Safavi-Naini, Reihaneh 76
Shokrollahi, Amin 94
Srinathan, Kannan 32
Stinson, Douglas R. 100
Swanson, Colleen M. 100

Tanaka, Keisuke 6

Wang, Yongge 58


	Title
	Preface
	Table of Contents
	Correlation Extractors and Their Applications
	Background
	How to Clean Noise
	Extracting Correlations
	OT Extractors
	Main Result
	Applications
	References

	Characterization of the Relations between Information-Theoretic Non-malleability, Secrecy, and Authenticity
	Introduction
	Preliminaries
	Notation
	Symmetric-Key Model

	Information-Theoretic Security Notions
	Secrecy
	Non-malleability
	Authentication

	Non-Malleability and 2-Message Secrecy
	Non-Malleability and Authentication
	Concluding Remarks
	References

	Randomly Encoding Functions: A New Cryptographic Paradigm
	Introduction
	Encoding the Functionality
	Encoding the Primitive: Parallel Cryptography
	Encoding the Adversary: Key-Dependent Security
	References

	Minimal Connectivity for Unconditionally Secure Message Transmission in Synchronous Directed Networks
	Introduction
	Model and Definitions
	URMT
	($\epsilon, \delta$)-SMT
	($\epsilon, \delta$)-SMT Characterization

	Concluding Remarks
	References

	Quantum-Resilient Randomness Extraction
	Randomness Extraction
	Applications
	Classical versus Quantum Side Information
	Quantum-Resilient Extractors|Technical Definition
	Specific Constructions of Randomness Extractors
	References

	Homogeneous Faults, Colored Edge Graphs, and Cover Free Families
	Background and Colored Edge Graph
	Related Works
	Necessary and Sufficient Conditions for Special Cases
	Necessary Conditions for General Cases
	Necessary and Sufficient Conditions for Practical Cases (with Small m and t)
	Hardness Results
	Disjunct Systems
	References

	On Information Theoretic Security: Mathematical Models and Techniques
	Introduction
	Some Important Models
	Proof Techniques
	References

	Common Randomness and Secret Key Capacities of Two-Way Channels
	Introduction
	Our Work
	Related Work
	Discussion
	Notation
	Paper Organization

	Model and Definitions
	CRG in the TWDMC Setup
	SKE in the TWDMWC Setup
	Known Results on Two-Way Channels
	Two-Way Channels with Independent Components

	Statement of the Main Results
	Trivial Lower Bounds and a TWDMC Example
	Common Randomness Capacity
	Secret Key Capacity

	CRG/SKE Protocol Outline
	The Two-Round CRG/SKE Protocol (Theorems 1 and 4)
	The CRG Construction Using the ICC Method (Theorem 3)

	Achievable Rates over Two-Way Binary Channel
	Conclusion
	References

	LT-Codes and Phase Transitions for Mutual Information
	Introduction and Problem Formulation
	The Trivial Channel
	The Case d=2
	The General Case
	References

	Unconditionally Secure Signature Schemes Revisited
	Introduction
	Preliminaries
	Security Notions

	Formal Security Model
	Dispute Resolution
	Some Examples of Dispute Resolution Processes
	Comparison with Existing Models
	Comparison with the Model of Shikata et al.

	Construction
	General Scheme Outline
	Security Results

	Conclusion
	References

	Bell Inequalities: What Do We Know about Them and Why Should Cryptographers Care?
	Entanglement
	Bell Inequalities
	Cryptography
	References

	Efficient Reductions for Non-signaling Cryptographic Primitives
	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Framework
	Linear Codes
	Notations

	One-Time-Memories and Non-local Boxes
	Impossible Reductions
	All-Or-Nothing Disclosure of Secrets
	Implementing String Ext-OTM from OTM Efficiently
	Implementing OTM from NL-Boxes
	Conclusion
	References

	Some Notions of Entropy for Cryptography
	Information-Theoretic Case
	Computational Case
	References

	The Round Complexity of Perfectly Secure General VSS
	Introduction
	Motivation of Our Work
	Our Results

	Preliminaries
	Secret Sharing Scheme
	Linear Secret Sharing Scheme (LSSS) CDM00
	Verifiable Secret Sharing (VSS)

	Two Round VSS Tolerating Q4 Adversary Structure
	Three Round VSS Tolerating Q3 Adversary Structure
	Three Round WCS Tolerating Q3 Adversary Structure
	Three Round VSS Tolerating Q3 Adversary Structure

	Lower Bounds
	Flaw in the Reconstruction Phase of VSS of FitziVSSTCC06
	More Efficient 3-round VSS for n 3t+1
	Conclusion
	References

	Graceful Degradation in Multi-Party Computation
	Introduction
	Secure Multi-Party Computation
	Graceful Degradation
	Our Focus
	Contributions
	Model
	Outline of the Paper

	A Parametrized Protocol for Threshold Adversaries
	The Underlying Verifiable Secret Sharing
	Addition, Multiplication, and Random Values
	The Security of the Parametrized Protocol

	A Parametrized Protocol for General Adversaries
	The Underlying Verifiable Secret Sharing
	Addition, Multiplication, and Random Values
	The Security of the Generalized Protocol from mau02b

	The Main Results
	Threshold Adversaries
	General Adversaries

	Proofs of Necessity
	Conclusions and Open Problems
	References

	Quantum Communication Attacks on Classical Cryptographic Protocols
	Using Colors to Improve Visual Cryptography for Black and White Images
	Introduction
	The Model
	Previous Work
	Lower Bounds on the Pixel Expansion
	Schemes without Perfect Reconstruction of Black Pixels
	Schemes with Perfect Reconstruction of Black Pixels

	cbw-vc (2,n)-Threshold Schemes
	Impossibility Result
	pb-cbw-vc (k,n)-Threshold Schemes
	Conclusions and Future Work
	References

	Digital Fingerprinting under and (Somewhat) beyond the Marking Assumption
	The Fingerprinting Problem
	Existence of Fingerprinting Codes: Results on the Rate
	References

	Communication Optimal Multi-valued Asynchronous Byzantine Agreement with Optimal Resilience
	Introduction
	Communication Optimal ($\epsilon, \delta$)-ABA Protocol
	Tools Used
	Protocol Optimal-ABA

	Open Problems
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




