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Preface

We are delighted to present you with the revised, selected and invited papers
of the eighth edition of the International Workshop on Declarative Agent Lan-
guages and Technologies (DALT 2010), a well-established forum to foster dis-
cussion and sharing of experiences among researchers interested in declarative
approaches and technologies for software agents and multi-agent systems.

DALT 2010 was held as a satellite workshop of the 9th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), in
Toronto, Canada, and it took place on May 10. Previous editions were held in
2003 in Melbourne, Australia; in 2004 in New York, USA; in 2005 in Utrecht,
The Netherlands; in 2006 in Hakodate, Japan; in 2007 in Honolulu, USA; in 2008
in Estoril, Portugal; and in 2009 in Budapest, Hungary. All these past editions
had their proceedings published in the Lecture Notes in Artificial Intelligence
series as volumes 2990, 3476, 3904, 4327, 4897, 5397, and 5948, respectively.

Declarative approaches provide simpler and more natural means to connect
theory with practical computing aspects. Algebras, logics and functions, to name
a few, have been used as declarative formalisms, with which (together with their
associated mechanisms) one can specify, verify, program and analyze computa-
tional systems. The well-understood mathematical underpinnings of declarative
approaches provide clean, solid and natural means to bridge the gap between
theory and practice, providing formalisms, tools and techniques to support the
development of applications.

Declarative approaches offer useful abstractions to study computational phe-
nomena, which are necessarily more compact than procedural accounts. Software
agents and multi-agent systems have been pursued as means to realizing a new
generation of very large-scale, distributed information systems. Declarative ap-
proaches to agent languages and technologies raise many fresh challenges with
exciting prospects for agent programming, communication languages, reasoning
and decision-making. The many challenges include, for instance, which formal
foundations to use, how pragmatic concerns are addressed formally, how expres-
sive approaches are, and so on.

DALT aims to make formal methods and declarative technologies and ap-
proaches available to and understood by a broader segment of the multi-agent
research community. Another objective is to foster the application of theoretical
results to the implementation of working systems. These issues are being ad-
dressed by DALT by providing a discussion forum to both (a) support the trans-
fer of declarative paradigms and techniques to the broader community of agent
researchers and practitioners; and (b) bring the issue of designing and verifying
complex agent systems to the attention of researchers working on declarative
languages and technologies. DALT has been of particular interest to multi-agent
system researchers who are working in computational logic and formal methods
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in general. It has also been of great interest to researchers and practitioners
applying these methods to particular applications such as service-oriented and
grid computing. It has been of general interest to researchers interested in linking
agent theory to concrete applications.

This volume contains 11 contributed articles selected by the Program Com-
mittee. The 2010 edition of the DALT workshop received 24 submissions, and
these were reviewed by at least 3 reviewers, with 10 papers being accepted for

Fig. 1. Word Cloud for DALT 2010 Papers

presentation at the work-
shop. After the event,
the authors of all ac-
cepted papers were in-
vited to submit revised
and extended versions of
their papers, incorporat-
ing feedback and discus-
sions from their presenta-
tions, and another round
of reviews took place,
leading to eight papers
being accepted for inclu-
sion in the present pro-
ceedings. We also invited authors of short papers presented at AAMAS 2010, and
which addressed topics relevant to DALT, to submit extended versions of their
papers. Figure 1 shows a “word cloud” with the 100 most frequently occurring
terms found in the articles of this volume1.

We would like to thank all authors for their contributions, the members of the
Steering Committee for their valuable suggestions and support, and the members
of the Program Committee for their excellent work during the reviewing phases.
We would also like to thank Dave S. Robertson (School of Informatics, The
University of Edinburgh, Edinburgh, UK), for his thought-provoking invited talk
“Coordination as Practical Logic Programming.”

December 2010 Andrea Omicini
Sebastian Sardina

Wamberto Vasconcelos

1 The diagram was prepared using IBM’s Word Cloud generator
(http://www.alphaworks.ibm.com/tech/wordcloud) and the sizes of words
reflect their frequency in the articles.
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Operational Behaviour for Executing, Suspending, and
Aborting Goals in BDI Agent Systems

John Thangarajah1, James Harland1, David Morley2, and Neil Yorke-Smith2,3

1 RMIT University, Melbourne, Australia
{johnt,james.harland}@rmit.edu.au

2 SRI International, Menlo Park, USA
morley@AI.SRI.COM

3 American University of Beirut, Lebanon
nysmith@aub.edu.lb

Abstract. Deliberation over and management of goals is a key aspect of an
agent’s architecture. We consider the various types of goals studied in the lit-
erature, including performance, achievement, and maintenance goals. Focusing
on BDI agents, we develop a detailed description of goal states (such as whether
goals have been suspended or not) and a comprehensive suite of operations that
may be applied to goals (including dropping, aborting, suspending and resuming
them). We show how to specify an operational semantics corresponding to this
detailed description in an abstract agent language (CAN). The three key contribu-
tions of our generic framework for goal states and transitions are (1) to encom-
pass both goals of accomplishment and rich goals of monitoring, (2) to provide
the first specification of abort and suspend for all the common goal types, and (3)
to account for plan execution as well as the dynamics of sub-goaling.

1 Introduction

Deliberation over what courses of action to pursue is fundamental to agent systems.
Agents designed to work in dynamic environments, such as a rescue robot or an online
travel agent, must be able to reason about what actions they should take, incorporating
deliberation into their execution cycle so that decisions can be reviewed and corrective
action taken with an appropriate focus and frequency.

In systems based on the well-known Belief-Desire-Intention (BDI) framework [17],
most often a set of goals is ascribed to the agent, which is equipped with various tech-
niques to deliberate over and manage this set. The centrality of reasoning over goals is
seen in the techniques investigated in the literature, which include subgoaling and plan
selection, detection and resolution of conflicts [29,23] or opportunities for cooperation
[30], checking goal properties to specification [13,15], failure recovery and planning
[22,21,24], and dropping, suspending and resuming [28], or aborting goals [27]. A va-
riety of goals are described in the literature, including goals of performance of a task,
achievement of a state, querying truth of a statement, testing veracity of beliefs, and
maintenance of a condition [3,20].

An agent must manage a variety of goals, while incorporating pertinent sources of
information into its decisions over them, such as (user) preferences, quality goals, mo-
tivational goals, and advice [13]. The complexity of agent goal management—which

A. Omicini, S. Sardina, and W. Vasconcelos (Eds.): DALT 2010, LNAI 6619, pp. 1–21, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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stems from this combination of the variety of goals and the breadth of deliberation
considerations—is furthered because each goal can be dropped, aborted, suspended,
or resumed at arbitrary times. Note that while goals themselves are static (i.e., they
are specified at design time, and do not change during execution), their behaviour is
dynamic: a goal may undergo a variety of changes of state during its execution cycle
[15]. This evolution may include its initial adoption by the agent, being actively pur-
sued, being suspended and then later resumed, and eventually succeeding (or failing).
(Maintenance goals have a subtle life-cycle: the goal is retained even when the desired
property is true; it is possible that such goals are never dropped).

This paper analyzes the behaviour of the above types of goals, including the be-
haviour when goals are aborted or suspended. We consider the complete life-cycle of
goals, from their initial adoption by the agent to the time when they are no longer of
interest, and all stages in between, including being suspended and resumed.

Scenario. As a running example, consider a team of three robots—Alpha, Bravo and
Charlie—that are searching for the survivors of an air crash. Each has a battery life of
four hours, and has to return to its base to recharge within this time. The three robots
search individually for survivors, but when one is found, each may call on the others
for assistance to bring the survivor to the base.

Initially Alpha is told to search a particular area. After 30 minutes, Alpha finds a
survivor with a broken leg. Alpha calls for help from Bravo, as it will require at least
two robots to carry the survivor. Once Bravo arrives, both robots carry the survivor back
to the base, and then both resume searching. A little later, Alpha receives a call for help
from Bravo, who has found another survivor. It takes longer than expected for Alpha
to get to the location. Before Alpha arrives, another message from Bravo is received,
stating that the survivor has been transported back to the base and so Alpha’s assistance
is no longer required. Alpha resumes its search. Later it receives a call for help from
Charlie, who has found a survivor. Once Charlie’s survivor is safely back at the base,
Alpha considers resuming its search, but as it has only 30 minutes of battery life left, and
it predicts that it will take at least 15 minutes of travel time to get to where it needs to
be, Alpha decides to recharge. Once this is done, Alpha resumes its search. Eventually
it completes searching its given area, finding no more survivors, and returns to the base.

This example illustrates some of the complexity and richness of goal deliberation and
management and the need for a comprehensive and principled approach. Alpha initially
adopts the performance goal of searching its assigned area; this goal is suspended when
a survivor is found, and later resumed. (We assume that each robot is given a similar
area to search, and that Alpha’s task is complete once it has searched this area.) In the
interim times, Alpha adopts achievement goals (getting survivors to the base), which it
may have to abort (when Alpha is too late to help Bravo). Alpha also has the important
maintenance goal to monitor its power usage and recharge when appropriate.

Contribution. Our work extends previous efforts in two main directions. Our first area of
innovation is to develop a rich and detailed specification of the appropriate operational
behaviour when a goal is pursued, succeeded or failed, aborted, suspended, or resumed.
We (1) include sophisticated maintenance goals, along the lines of Duff et al. [8], that
encompass proactive behaviour (i.e., anticipating failure of a given condition) as well
as reactive behaviour (i.e., waiting until the condition becomes false), and allow for
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different responses in each case. This contrasts over most work on maintenance goals,
in which only the reactive behaviour is developed [20,15]. We (2) develop an appropriate
set of states for goals (which generalizes the two states of suspended and active of van
Riemsdijk et al. [20]), and a set of operations to move goals between these states. These
operations are richer than previous works, by including suspending and resuming for
all the common goal types, and the corresponding state transitions can be non-trivial.
We provide a detailed specification and a nearly-complete formal semantics.

Our second area of innovation is to address execution of plans to achieve goals within
our semantics. The spirit of our work is shared by Morandini et al. [15], who build
on van Riemsdijk et al. [20] by providing operational semantics for non-leaf goals,
i.e., semantics for subgoaling and goal achievement conditions. We (3) encompass the
same dynamic execution behaviour, but further consider plans as well as goals. Thus
we consider the execution cycle, not only the design phase like Morandini et al.

This paper elaborates our first and more brief report of a semantics for goal lifecycles
at the DALT’10 workshop [26]; we gave a short overview in [25]. Our earlier works—
that considered maintenance goals [8], or that established operations for aborting [27]
and suspending and resuming [28] goals—did not treat the lifecycle of goals.

The paper is organized as follows. In Sect. 2 we discuss various types of goals.
In Sect. 3 we specify goal management behaviours, particularly to support abort and
suspend. In Sect. 4 we present our semantics and a worked example. In Sect. 5 we
discuss related work, and in Sect. 6 we conclude.

2 Goal Types and Their Abstract States

We follow the syntax of goals given by Winikoff et al. [32], using the above robot
rescue scenario as a running example. Goals have a specification with both declarative
and procedural aspects. We take a goal G to have a context (or pre-condition) that
is a necessary condition before the goal may be adopted, a success condition S that
denotes when the goal may be considered to have succeeded, and a failure condition
F that denotes when it may be considered to have failed. Any of these conditions may
be empty. We take a plan P to have declarative success and failure conditions, and
procedural success and failure methods that are invoked upon its success and failure
respectively. A plan may have other dedicated methods attached, such as an abort clean-
up method [27], and suspend and resume methods [28]. By task we mean an abstract
action rather than a specific goal or plan.

Braubach et al. [3] are among those who survey the types of goals found in agent
systems. The consensus in the literature agrees that perform, achieve, query, test, and
maintain cover the widespread uses of goals [32,3,6,20]. We note that querying and
testing goals can be reduced to achievement and performance goals, respectively [20].

perform(τ, S, F ): accomplish a task τ . These goals, sometimes called goals-to-do, de-
mand that a set of plans be identified to perform a task; they do not require a particular
state of the world be achieved. A perform goal succeeds if one or more of its plans com-
plete execution; it fails otherwise, such as if no plan is applicable or all applicable plans
fail to execute. Hence, the success condition S will express that “one of the plans in the
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given set succeeds” to accomplish τ [32,20]. The perform goal also has a failure condi-
tion, F . If F is true at any point during execution, the goal terminates with failure, and
execution of all plans is terminated. The association between the task τ , which is not
more than an identifier, and the plans, is akin to the association between event type and
plans in the agent programming language JACK [4].

Example: Search a particular area for survivors.

achieve(S, F ): reach a state S. These goals, sometimes called goals-to-be, generate
plans to achieve a state, S, and should not be dropped until the state is achieved or is
found to be unachievable, signified by the condition F . An achieve goal differs from a
perform goal in that it checks its success condition during plan execution and after a plan
completes. If the success condition S is true (at any point during execution), the goal
terminates successfully; if the failure condition F is true (at any point during execution),
the goal terminates with failure. Otherwise, the goal returns to plan generation, even if
the previous plan completed successfully.

An important difference between perform and achieve goals is their behaviour on
multiple instances of the same goal. An agent that is given three identical instances of
a perform goal will execute the goal three times (unless there is an unexpected plan
failure). An agent that is given three identical instances of an achievement goal may
achieve this goal between one and three times, depending on environmental conditions.

Example: Ensure a survivor gets to the base. Note that this is an achieve goal rather
than a perform goal as it can only succeed when the survivor is at the base.

The goals we have considered so far are goals of accomplishment: they all directly
result in activity. Maintenance goals, by contrast, are goals of monitoring, in that they
may give rise to other goals when particular triggering conditions are met, but they do
not themselves directly cause activity.

maintain(C, π, R, P, S, F ): keep a condition C true. Maintenance goals monitor a main-
tenance condition, C, initiating a recovery goal (either R or P ; see below) to restore
the condition to true when it becomes false. Note that a recovery goal is initiated, not
a plan. More precisely, as introduced by Duff et al. [8], we allow a maintain goal to be
reactive, waiting until the maintenance condition is found to be false, B |= ¬C (where
B denotes the beliefs of the agent), and then acting to restore it by adopting a reactive
recovery goal R; or to be proactive, waiting until the condition is predicted to become
false, B |= π(¬C) (where π is some prediction mechanism, say using lookahead rea-
soning, e.g., [30,10]) and then acting to prevent it by adopting a proactive preventative
goal P . Although not specified in prior work, we insist that R and P be achieve goals.
The maintenance goal continues until either the success condition S or failure condition
F become true.

Example: Ensure that Alpha is always adequately charged.

2.1 Abstract Goal States and Transitions

We now move towards a formal characterization of goal states and the transitions a goal
undergoes between these states. Our focus is the life-cycle of each particular goal that
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Pending Waiting

Suspended

Active
consider

re-activate (M) 

respond

re-consider
re-activate 

(M) 

activate (P,A) 

activate (M)

suspend suspendre-activate 
(P,A)

suspend

P – Perform goal    A – Achieve goal    M – Maintain goal      T – drop/abort/succeed/fail

T

T

TT

Fig. 1. Goal life-cycle composed of abstract states

the agent has. Hence, our perspective is that of an individual goal, rather than the overall
agent per se. This means that we will not be concerned with issues such as the agent’s
overall deliberation, generation of goals (from Desires), or prioritization of goals. These
relevant topics are outside the scope of this paper.

Our objective is to specify the life-cycle of goals and the mechanisms of the agent.
The life-cycle we capture as four states, Pending, Waiting, Active, and Suspended, shown
in Fig. 1, together with the initial state (left) and the terminal state (right). The transition
from each state to the terminal state is shown. We combine the drop, abort, succeed, and
fail transitions into a single transition, T, as shown.

The states can be arranged into a precedence order: Pending ≺ Waiting ≺ Active ≺
Suspended. Observe that, if a goal transitions from a state s to Suspended, it may not
then next transition from Suspended to a state higher than s in the order. Some transi-
tions are essentially controlled by conditions, while others depend on an explicit agent
decision (or a combination of conditions and a decision), as will be made precise.

A new candidate goal may arise from a source external or internal to the agent’s
control cycle [16]. External to the control cycle, it may arise from obligations or com-
mitments concerning other agents, or from the agent’s own motivations. Internal to the
control cycle, it may arise from subgoaling within an executing plan. Either way, a
new candidate goal begins life in the Pending state if the agent has decided to consider
the goal. In the next section we describe the goal control cycle in detail, including the
mechanisms to perform the goal operations of interest.

3 Transitions between Goal States

The heart of our work is the effects that different operations an agent may apply to its
goals of different types, in each of the four states introduced. We now describe in detail
the life-cycle of a goal in each of the states. We call a top-level command a decision by
the agent’s deliberation to impose an operation upon a goal.
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First, to any goal in any state, the drop operation implies that the goal and any goal-
related actions are halted; the goal is discarded with no further action. The agent may
choose to drop a goal if, for example, it believes the goal is accomplished, is no longer
required, impossible, or if it inhibits a higher priority goal. Note that there are three
essential cases here: the goal is dropped because it has succeeded, dropped because it
has failed, or dropped because the agent has decided to drop it.

Pending State. Goals in the Pending state are inactive, awaiting the agent to deliberate
over them and execute a particular operation. The activate operation on a perform or
achieve goal transitions the goal to the Active state where the goal is pursued. By contrast,
the activate operation on a maintain goal transitions the goal to the Waiting state.

The suspend operation takes a goal to the Suspended state. The abort operation sim-
ply drops the goal; no clean-up is required since no plans for the goal are in execu-
tion. If the success or failure condition become true in the Pending state, the goal is
dropped. Note that although perform goals do not contain an explicit success condition
(see Sect. 2), we make the distinction here for simplicity.

Waiting State. The Waiting state is shown with italics in Fig. 1 to emphasize that it
exclusively applies to goals of monitoring: maintain goals that (actively) check for a
triggering condition to be known. In this state, as in Pending, no plans are being ex-
ecuted. Goals transition into this state when they are (1) activated from Pending, (2)
re-activated from Suspended, or (3) re-activated from Active when the subgoal succeeds,
as described earlier. Should the maintenance condition be violated—or, in the proactive
case, should it be predicted to be violated—then the goal transitions to the Active state
with the respond operation. The suspend operation moves the goal to the Suspended

state, whilst abort simply drops it since no plans are in execution. The goal may also be
dropped if the success or failure condition becomes true.

Active State. Active goals are actively pursuing tasks: they may therefore have plan(s)
associated. We must define how the agent manages the plan(s) in accordance with the
operations it applies to the goal. Fig. 2 provides the internal details of the abstract Active

state. Transitions with bold label denote top-level commands and other transitions occur
when some condition is met. Sub-states of the active state that are shaded (e.g., aborting)
are uninterruptable states where top-level commands cannot be applied.

Maintain goals enter the Active state from the Waiting state when the triggering condi-
tion is true, and move to a post subgoal sub-state. A maintain goal posts a recovery goal
R if the maintenance condition was violated or a preventative goal P if the mainte-
nance condition is predicted to be violated. Recovery and preventative goals are always
achieve goals, and commence in the Pending state1.

If the subgoal succeeds, then the parent maintain goal g transitions back to the Waiting

state. If the subgoal fails, g is dropped. Should g be aborted or should its success or
failure condition become true, then it transitions to the abort subgoal sub-state where the
subgoal is aborted and then g is dropped. Should the goal g be suspended, the subgoal

1 An argument can be made for commencing these goals in the Active state. However, commenc-
ing in the Pending state allows more flexibility, in that a trivial activation condition will see
these goals immediately transition to the Active state, if that is desired.
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is aborted in the abort subgoalS sub-state and then g moves to the suspended waiting

sub-state of Suspended. Any generated plans are handled according to the mechanisms
described in the literature [28].

Perform and achieve goals enter the Active state from the Pending state, or from the
Suspended state when the re-activation condition becomes true. These goals are first
examined in the check goal sub-state to determine if the success or failure condition is
true; if either is true, the goal is dropped. Otherwise, a plan is generated to achieve the
goal in the plan generation state. If no plan is found, the goal is dropped: this reflects the
most common behaviour in BDI systems. A goal is also dropped if it is aborted in this
sub-state since no plan is in execution. If a plan is found, then the goal transitions to the
executing plan sub-state.

In the executing plan sub-state, if the plan fails then the goal moves back to the check

goal state to retry the process of generating a new plan to achieve the goal.1 If the
plan completes for a perform goal, the goal succeeds and hence is dropped. If the plan
completes for an achieve goal, however, the goal is checked for its success condition
in the check goal state. If the success condition is not true then a new plan needs to be
generated and executed to achieve it. While executing a plan in the executing plan sub-
state, if the goal is aborted, or the success or failure condition become true, the goal
transitions to the aborting sub-state where abort methods are executed [27]; the goal is
dropped when they complete. If a goal is suspended in the executing plan sub-state it
transitions to the Suspended state.

Suspended State. This state contains a goal of any type that is suspended, monitoring
its reconsideration condition [28], awaiting possible resumption.

Goals of accomplishment may have one or more plans associated. We again must
define how the agent manages the plan(s) in accordance with the operations it applies
to the goal. Fig. 3 provides the internal details of the abstract Suspended state. Goals
transition to this state when the suspend operation is applied to them. Goals arriving
from the Pending state (top left) are held in a suspended pending sub-state and, when
resumed, move back to the Pending state.

Maintain goals suspended from the Active state or the Waiting state are held in a sus-

pended waiting sub-state. From this sub-state, a goal may be aborted, in which case it
is simply dropped, or resumed. If resumed, a goal moves to a reconsidering sub-state
where the agent deliberates over it and may either (re-)suspend the goal (back to sus-

pended waiting sub-state), reconsider the goal (back to Pending state), re-activate it (back
to Waiting), or simply abort or drop it. When a maintain is suspended, our semantics
specifies that its subgoals be aborted.

Perform or achieve goals suspended from the Active state first require any suspend
methods to be executed. This occurs in the suspending sub-state; then the goal moves to
the suspended state. A goal may be aborted from this state, causing its abort method to
be performed [27] in the aborting sub-state before it is dropped. If not aborted prior to
resumption, a goal may be resumed when its reconsideration condition becomes true, or
when the agent decides to resume it2. Upon resumption of the goal, the agent deliberates

2 That is, resume is a top-level command. Hence, the reconsideration condition is a ‘note’ from
the agent to itself to guide its deliberation over the suspended goal: a sufficient but not neces-
sary condition for when the agent should next look at the goal.
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over it in the reconsidering state. The agent may opt to (1) abort the goal (move to aborting

sub-state), (2) (re)-suspend it (move to suspended sub-state), (3) re-activate the goal by
performing resume methods [28] in the resuming sub-state before transitioning to the
Active state, (4) restart the goal, or (5) drop the goal. To restart is to halt any suspended
plans and re-consider the goal. Therefore, prior to restarting, any existing plans need
to be terminated in the unwinding sub-state, before the goal transitions to the Pending
state to be re-considered. Goals to be dropped follow a similar transition. Suspend and
resume methods, like abort methods, are assumed not to fail [28].

4 Towards a Formal Semantics

In order to use Fig. 1 as a specification of a goal deliberation process, we need to
determine what information is required for each goal, and how this information is used
to make decisions about when the transitions of Fig. 1 should be applied. Ultimately, we
wish to provide formal definitions of the transitions for each goal in an abstract, formal
agent language such as CAN [32,22,21], utilizing the generic approach initiated by van
Riemsdijk et al. [20], with some variations. Two of the key differences in our work
(besides the choice of formal language)— which enable us to support the full variety of
goal types and operations upon goals—are that we have four basic goal states (Pending,
Waiting, Active and Suspended) rather than two, and that not all transitions are possible
(for example, goals of accomplishment can never be in the Waiting state). This allows
us to deal with suspended goals in a more detailed and realistic manner, as well as
providing a more natural semantics for maintenance goals. Further, unlike Morandini
et al. [15], our semantics deals with plans as well as goals. This means that we can
incorporate subgoals into plans, allowing the agent designer a richer and more natural
way to specify the system’s behaviour.

In order to specify the appropriate state transitions independently of any agent pro-
gramming language, we will give an operational semantics for the goal transitions of
Fig. 1 in CAN. This also means that we can study properties of the semantics at an
appropriate level of abstraction. Using CAN as a basis means that the formal transi-
tions are between agent configurations of the form 〈B,G〉, where B is the agent’s be-
liefs, and G is a set of goals that the agent is pursuing concurrently. Each element of
G will contain more than just the goal itself; each G ∈ G is the goal context tuple
〈Id,Goal ,Rules,State,Plan〉.
– Id is a unique identifier for each goal
– Goal is the goal content (as given in Sect. 2),
– Rules is a set of condition-action pairs of the form 〈C, A〉, where C is a condition

and A is one of { activate, reactivate, reconsider, respond, suspend, drop, abort }
– State is one of { Pending, Waiting, Active, Suspended }
– Plan is the current plan (if any) being executed for this goal

The existence of unique identifiers ensures that goals can refer to each other. Recall that
goals are fixed at design time and do not change during execution; hence Goal is fixed
throughout execution. Rules, State, and Plan are dynamic and may change during
execution. Note that our notation for G from this point on differs from the informal
notational convenience used in Sect. 2.
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Our deliberation process is specified by transitions between tuples of the form 〈B,G〉.
Our assumptions about this process are:

– All goals are known at compile time, and are given unique identifiers. This ensures
that goals can explicitly refer to other goals, allowing the agent designer to specify
transitions such as one goal being suspended when another specific goal is activated.

– Any change in any goal’s state has preference over any executing plans. This means
that execution can only take place when the set of goal contexts is stable, i.e., none
of the transitions in Fig. 1 are currently able to take place. This is somewhat conser-
vative, but it allows the agent designer the freedom to specify whatever interaction
between goals is desired (such as making all achieve goals inactive whenever any
maintenance goal becomes active), knowing that any change in any goal’s status will
result in the status of all goals being reconsidered. This, in turn, may result in a cor-
responding change in what is being executed.

– Plans are not necessarily known in advance, but may be generated online. This means
that we do not assume that the agent necessarily has a plan library (although this is
a perfectly valid option), and so we cannot rely on plans to be of a particular form.
This also means that we have to explicitly allow for plan generation in our formal
definition; we leverage previous techniques [20].

– No restriction is made on the number of goals that may be active at once. It may be
desirable to allow that there should be at most one active goal at any time, or perhaps
that there should be at most one goal active when any maintenance goal is active (but
allow any number of concurrent achievement goals to be active otherwise). Hence we
need to be able to provide the agent designer with mechanisms to enforce restrictions
like these if desired, but not to build them into the CAN rules. Accordingly we will
have a standard pattern for goal transition rules, which can be tailored by the designer
to suit the particular application.

– Goals of any type may be used as sub-goals in plans. This means that a plan may
contain a goal as a step, at which point the goal is executed, with the only difference
being that success and failure are treated in the same way as success and failure for
actions. In particular, if the subgoal fails (or is aborted), then this is treated as a plan
failure, i.e., we search for an alternative plan.

4.1 Introduction to CAN Rules

Formalization of the semantics hinges on the appropriate definition of Rules for each
goal. These definitions follow the same general principles, but can be tailored for indi-
vidual goals. It is also helpful to use CAN’s expressiveness to alter Rules dynamically,
such as adding reconsideration conditions to suspended goals.

Our approach is the following. Given an action A that takes goal G from state S1

to S2, we ensure that there is a rule 〈C, A〉 ∈ Rules such that whenever B |= c for
some c ∈ C, we update the agent configuration from 〈B, {〈Id, G, R, S1, P1〉} ∪ G〉 to
〈B, {〈Id, G, R, S2, P2〉} ∪ G〉, unless A is either drop or abort, in which cases the new
agent configuration is 〈B,G〉.

A goal G changing state from S1 to S2 via action A (which is neither drop nor abort)
is modelled by the following rule:
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〈C, A〉 ∈ R1 c ∈ C B |= c

〈B, {〈Id, G, R1, S1, P1〉} ∪ G〉 → 〈B, {〈Id, G, R2, S2, P2〉} ∪ G〉 (1)

The drop and abort actions are similarly modelled by the rule

〈C, drop/abort〉 ∈ R1 c ∈ C B |= c

〈B, {〈Id, G, R1, S1, P1〉} ∪ G〉 → 〈B,G〉. (2)

Note that for actions other than drop or abort, it is possible to change G.Rules , i.e., in
Eq. (2), R2 may be different from R1. This is particularly important for reconsideration
conditions.

In some cases, the agent wants a condition C to be evaluated ‘autonomously’, i.e.,
without any further deliberation. In other cases, the agent wants an explicit condition.
Thus, we require that all conditions contain a formula of the form reconsider(Id), so
that a reconsideration condition Cond is specified as Cond ∧ reconsider(Id). This
means that for the goal to change state, not only must Cond hold, we must also have
that the agent has explicitly decided to resume the goal by adding reconsider(Id) to its
beliefs. This mechanism also allows us to provide for the possibility that the agent may
decide to drop, abort, or suspend any goal at any time: it can do so by adding drop(Id)
(resp. abort(Id), suspend(Id)) to its beliefs.

As noted in Sect. 2, it is also common to include an activation condition of the form
〈{Cond ∧ activate(Id)}, activate〉}, so that the goal can only be activated when both
Cond is true and the agent has decided to activate the goal. As a result, we will denote
as standard(Id, Succ,Cond) the set of rules:

{〈{Succ, drop(Id)}, drop〉, 〈{abort(Id)}, abort〉,
〈{suspend(Id)}, suspend〉, 〈{Cond ∧ activate(Id)}, activate〉}

We now consider how to create parametrized rules within this framework for perform,
achieve, and maintain goals.

perform(τ, S, F ): We commence with Rules as standard(Id, {S, F},Cond), For a
goal with identifier Id. We do not initially include any rules for the actions reconsider or
reactivate; these are added to Rules when the goal is suspended.

For the suspend action, we need to add reconsideration conditions to Rules. When
suspending a goal in the Pending state, the first of the following rules is added by the
transition; when suspending a goal in the Active state, both are added. This is because
the reactivate action is not possible if the goal was in the Pending state when suspended.

{〈{RC ∧ reconsider (Id)}, reconsider〉}
{〈{RC ∧ reactivate(Id)}, reactivate〉}

In these rules, RC is the reconsideration condition, which is determined by the agent.
The reconsider and reactivate actions remove the condition-action pairs for both of them-
selves when either of these actions is performed. This allows different reconsideration
conditions to be attached each time a suspension occurs.
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achieve(S, F ): The high-level rules for this goal type are the same as for a perform goal,
i.e., standard(Id, {S, F},Cond). This reflects the fact that the transitions in Fig. 1 are
the same for these goal types.

maintain(C, π, Recover, Prevent, S, F ): The two pertinent differences between mon-
itoring versus accomplishment goals are that (1) there is now the extra state Waiting, in
which the maintenance condition is being monitored, but no action is being taken yet,
and (2) when the maintenance goal becomes active, it triggers the adoption of an extra
achievement goal, with the intention that when this new goal is achieved, the violation
of the maintenance condition (either actual or predicted) will be overcome. Hence, the
respond action, which is only available to maintenance goals, will result in not only the
maintenance goal becoming active, but also the adoption of a new achievement goal.

The initial set of rules is the same as for perform goals above. The transitions for drop
and abort are as above. The transition for activate now puts the goal into the Waiting state
rather than the Active state, and adds the rule: 〈{¬C, C ∧π(¬C)}, respond〉. Hence the
respond rule is only present when the goal is in the Waiting state. The only significant
difference to perform goals is the transition from Waiting to Active states, as follows:

〈C, respond〉 ∈ R1 c ∈ C B |= c

〈B, G ∪ {〈Id1, MG, R1, Waiting, e〉}〉 −→ 〈B, G ∪ {〈Id1, MG, R2, Active, AG〉}〉
where MG is maintain(C, π, Recover, Prevent, S, F );
Recover is achieve(SR, FR); Prevent is achieve(SP , FP ); SG is achieve(SA, FA);
SA is SR and FA is FR if ¬C is true and SP and FP otherwise;
R1 is standard(Id, {FA, S, F}, true) ∪ 〈SA, reactivate〉}; and
R2 is standard(Id2, {SA, FA},¬C ∨ (C ∧ π(¬C))) ∪

{〈{drop(Id1), suspend(Id1), abort(Id1)}, abort〉}.

The idea is that the goal SG has been has been added (initially in the Pending state) to
attempt re-establishment of the maintenance condition. If SG succeeds, we reactivate
MG (i.e., MG returns to the Waiting state), due to the success condition SA of SG being
the only condition for the reactivate rule in R1. If SG fails or is dropped or aborted, one
option would be to drop MG; however, as SG is treated as a sub-goal here, we do not
drop MG but return to the planning level, in case another plan for MG can be found. If
not such plan can be found, MG will be dropped in any case. MG is dropped if either
its success condition S or failure condition F becomes true.

The rules R2 for SG specify it will be activated immediately (due to the activation
condition incorporating the maintenance condition), and that it should be aborted if the
agent decides to drop, abort or suspend MG (as reflected in the rules for drop in R2).
Note also that if SG is suspended, the maintenance goal remains in the Active state.

As in the above cases, the suspend transition attaches a reconsideration condition. A
minor difference is that the reactivate action can result in either the Waiting state or the
Active state, following the semantics of Fig. 1.

4.2 Designing CAN Rules

In Fig. 4 below we give formal CAN rules corresponding to the states and transitions of
Fig. 1. The rules may be divided into three groups:
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type(G) = Perform,Achieve B,R � activate

〈B,G ∪ g(id,G,R,P, π)〉 −→ 〈B, . . .A, π)〉 act(P,A)
type(G) = Maintain B,R � activate

〈B,G ∪ g(id,G,R,P, π)〉 −→ 〈B, . . .W, ε)〉 act(M)

B,R1 � respond

〈B,G ∪ g(id,MG,R,W, ε)〉 −→ 〈B, . . .A, AG)〉 respond

B,R � A A ∈ {drop, abort} State ∈ {S,A,W}
〈B,G ∪ g(id,G,R, State, π)〉 −→ 〈B,G〉 drop/abort

B,R � suspend State ∈ {P,A,W}
〈B,G ∪ g(id,G,R, State, π)〉 −→ 〈B, . . . R+, S, π)〉

suspend
B,R � reconsider

〈B,G ∪ g(id,G,R, S, ε)〉 −→ 〈B, . . . R−,P, ε)〉
recon

type(G) = Perform,Achieve B,R � reactivate

〈B,G ∪ g(id,G,R,A, π)〉 −→ 〈B, . . . R−,W, ε)〉
react(P,A)

type(G) = Maintain B,R � reactivate

〈B,G ∪ g(id,G,R, S, π)〉 −→ 〈B, . . . R−,W, ε)〉
react(M)

stable Π = mer(G,B,G ∪ g(G,R,A, ε)) Π �= ε

〈B,G ∪ g(G,R,A, ε)〉 −→ 〈B, . . .A, Π)〉 plan

stable Π = mer(G,B,G ∪ g(G,R,A, ε)) Π = ε

〈B,G ∪ g(G,R,A, ε)〉 −→ 〈B,G〉 noplan

stable π �= ε 〈B,G ∪ g(G,R,A, π)〉 −→ 〈B′, G ∪ g(G,R,A, fail)〉
〈B,G ∪ g(G,R,A, π)〉 −→ 〈B′, G ∪ g(G,R,A, ε)〉 fail

stable ¬simple(P1‖P2, ) 〈B,P1〉 −→ 〈B′, P ′〉
〈B,P1‖P2〉 −→ 〈B,P ′‖P2〉

‖1

stable ¬simple(P1‖P2, ) 〈B,P2〉 −→ 〈B′, P ′〉
〈B,P1‖P2〉 −→ 〈B,P1‖P ′〉

‖2

stable ¬simple(P1 � P2, ) 〈B,P1〉 −→ 〈B′, P ′〉
〈B,P1 � P2〉 −→ 〈B′, P ′ � P2〉

�1

stable ¬simple(P1 � P2, ) 〈B,P1〉 −→ 〈 , fail〉 〈B,P2〉 −→ 〈B′, P ′〉
〈B,P1 � P2〉 −→ 〈B′, P ′〉

�2

stable ¬simple(P1;P2, ) 〈B,P1〉 −→ 〈B′, P ′〉
〈B,P1;P2〉 −→ 〈B′, P ′;P2〉

;
stable B |= pre(a)

〈B, a〉 −→ 〈B′, nil〉
act1

stable B �|= pre(a)

〈B, a〉 −→ 〈B, fail〉 act2

stable simple(P, P ′)

〈B,P 〉 −→ 〈B,P ′〉 simple
stable

〈B,nil〉 −→ 〈B, ε〉 nil

stable

〈B,+b〉 −→ 〈B ∪ {b}, ε〉 add
stable

〈B,−b〉 −→ 〈B\{b}, ε〉 del

stable B |= φ

〈B, ?φ〉 −→ 〈B, ε〉
query1

stable B �|= φ

〈B, ?φ〉 −→ 〈B, fail〉
query2

stable ψi : Pi ∈ Δ B |= ψi

〈B,< Δ >〉 −→ 〈B,Pi � < Δ \ {ψi : Pi} >〉 select

stable Δ = {ψiθ : Piθ | e′ : ψi ← Pi ∈ Π ∧ θ = mgu(e, e′)}
〈B, !e〉 −→ 〈B ∪ {e}, < Δ >〉 event

stable B |= φ 〈B,P 〉 −→ 〈B′, P ′〉
〈B, φ : P 〉 −→ 〈B′, P ′〉 wait1

stable B �|= φ

〈B, φ : P 〉 −→ 〈B, φ : P 〉 wait2

〈B,G ∪ g(P,G,R,A, G2)〉 −→ 〈B,G ∪ g(P,G,R,A, SubGoalP lan) ∪ g(C,G2, R3,Pending, ε)〉 Goal

Fig. 4. One formulation of CAN rules for the goal life-cycle

MG is maintain(C, π,Recover, Prevent, S, F ); Recover is achieve(SR, FR);

Prevent is achieve(SP , FP ); AG is 〈Id2, achieve(SA, FA),R2,Pending, e〉;

SA is SR and FA is FR if ¬C is true and SP and FP otherwise;

R1 is standard(Id1, {FA, S, F}, true) ∪ 〈{S}, reactivate〉};

R2 is standard(Id2, {SA, FA},¬C ∨ (C ∧ π(¬C))) ∪ {〈{drop(Id1), suspend(Id1), abort(Id1)}, abort〉}
SubGoalP lan is Sc ∨ Fc ∨ drop(Child) ∨ abort(Child) :?Sc

R3 is standard(Child, Sc ∨ Fc, true) ∪ {〈{drop(Parent), abort(Parent), suspend(Parent)}, abort〉}

– Goal transition rules: act(P,A), act(M), respond, drop/abort, suspend, recon, react
(P,A), react(M)

– Planning rules: plan1 , plan2 , fail
– Execution rules: the remaining rules
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Table 1. Alpha’s sequence of goal states. Ser is the perform goal perform(search, S, F ),
Main is the maintenance goal maintain(MC, π,Charge, Charge,⊥,⊥), MC
is the condition current charge > return time, Charge is the achievement
goal achieve(recharged,⊥), si is search i; . . . search10; return , ri is a plan
which returns the robot to sector i, R1 is standard (search, {S, F},�)4, R2 is
standard (recharge , {drop(charge), abort(charge)},�) ∪ {〈recharged , reactivate〉}, R3 is
R2∪{〈{¬MC, MC∧π(¬MC)}, respond〉}, R4 is standard (save , {at(survivor , base)}�),
R5 is R1 ∪ {at(base, survivor), reconsider 〉}, R6 is standard (help, satisfied(Other),�),
R7 is standard (charge, recharged ,¬C ∨ (C ∧ π(¬C))) ∪
{〈{drop(recharge), suspend(recharge), abort(recharge)}, abort〉} .

Stage Perform goals Achievement goals Maintenance goals
1 〈search, Ser, R1, Pending, search〉 - 〈recharge, Main, R2, Pending, e〉
2 〈search, Ser, R1, Active, search〉 - 〈recharge, Main, R3, Waiting, e〉
3 〈search, Ser, R1, Active, s2〉 - 〈recharge, Main, R3, Waiting, e〉
4 〈search, Ser, R5, Suspended, s2〉 〈save, Sav, R4, Pending, e〉 〈recharge, Main, R3, Waiting, e〉
5 〈search, Ser, R5, Suspended, s2〉 〈save, Sav, R4, Active, assist〉 〈recharge, Main, R3, Waiting, e〉
6 〈search, Ser, R5, Suspended, s2〉 (dropped after success) 〈recharge, Main, R3, Waiting, e〉
7 〈search, Ser, R1, Pending, s2〉 - 〈recharge, Main, R3, Waiting, e〉
8 〈search, Ser, R1, Active, r2; s2〉 - 〈recharge, Main, R3, Waiting, e〉
9 〈search, Ser, R1, Active, s5〉 〈help, Help, R6, Pending, e〉 〈recharge, Main, R3, Waiting, e〉
10 〈search, Ser, R5, Suspended, s5〉 〈help, Help, R6, Active, assist〉 〈recharge, Main, R3, Waiting, e〉
11 〈search, Ser, R5, Suspended, s5〉 (aborted) 〈recharge, Main, R3, Waiting, e〉
12 〈search, Ser, R1, Active, r5; s5〉 - 〈recharge, Main, R3, Waiting, e〉
13 〈search, Ser, R1, Active, s8〉 〈help, Help, R6, Pending, e〉 〈recharge, Main, R3, Waiting, e〉
14 〈search, Ser, R5, Suspended, s8〉 〈help, Help, R6, Pending, e〉 〈recharge, Main, R3, Waiting, e〉
15 〈search, Ser, R9, Suspended, s8〉 〈help, Help, R6, Active, assist〉 〈recharge, Main, R3, Waiting, e〉
16 〈search, Ser, R5, Suspended, s8〉 (dropped after success) 〈recharge, Main, R3, Waiting, e〉
17 〈search, Ser, R5, Pending, r8; s8〉 - 〈recharge, Main, R3, Waiting, e〉
18 〈search, Ser, R5, Active, r8; s8〉 - 〈recharge, Main, R3, Waiting, e〉
19 〈search, Ser, R5, Suspended, r8; s8〉 〈charge, Charge, R7, Pending, e〉 〈recharge, Main, R3, Active, e〉
20 〈search, Ser, R5, Suspended, r8; s8〉 〈charge, Charge, R7, Active, charge〉 〈recharge, Main, R3, Active, e〉
21 〈search, Ser, R5, Suspended, r8; s8〉 (dropped after success) 〈recharge, Main, R3, Active, e〉
22 〈search, Ser, R5, Suspended, r8; s8〉 - 〈recharge, Main, R3, Waiting, e〉
23 〈search, Ser, R1, Active, r8; s8〉 - 〈recharge, Main, R3, Waiting, e〉
24 (dropped after success) - 〈recharge, Main, R2, Waiting, e〉

We believe that this is the first time that these three aspects have been combined into
the one semantics. The goal transition rules, derived from Fig. 1, are most directly
comparable to previous works [20,15]; the planning rules are similar to those of the
former. The execution rules are based on the standard CAN rules, with some extensions.
In particular, the extensions include the wait construct (i.e., φ : P where P is not
executed unless φ is true), and the rule goal , which deals with the case when goals (of
any type) can occur in plans, and hence as sub-goals of another goal.

When a subogal is encountered, it is executed synchronously, i.e., the parent goal
waits until the subgoal has completed before moving on. If the subgoal succeeds, the
subgoal is dropped, and execution proceeds (just as in the case of any other successful
step). If the subgoal fails, or is dropped (other than after it has succeeded) or aborted,
then this is treated as a plan failure, i.e., that the step failed and that an alternative, if
available, should be pursued. Hence the plan for the parent goal is to wait for one of
the success or failure conditions to become true, or for the subgoal to be dropped or
aborted, and then query whether the subgoal succeeded. The parent goal’s step then
succeeds only if the success condition of the subgoal is true (see rule goal below).

Note also that we use a ‘traditional BDI’ approach to plans, in that if the precondi-
tion of an action is true, then we assume that the action succeeds. In other words, the
only way for an action to fail is for its precondition to be false. Hence in the rules act1
and act2 below, we first test the precondition (pre(a)); if this is true, then the action
succeeds and the beliefs are updated appropriately. Otherwise the action fails. It is pos-
sible to allow for more sophisticated processing, such as sensory actions, for which it is
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possible to tell immediately after execution whether it has succeeded or not. Designing
rules for such actions is outside the scope of this paper; for now, we note that this is not
a limitation of CAN, but is purely a design decision.

To simplify some of the execution rules, we define simple(P, P ′) to be true iff P is
one of the cases below and P ′ is its simplification:

P P ′ P P ′

nil‖Q Q fail‖Q fail
Q‖nil Q Q‖fail fail
nil; Q Q fail; Q fail
Q;nil Q
nil � Q nil fail � Q Q

To further ease legibility and reduce redundancy, we introduce some shorthand nota-
tions. We abbreviate the states to P, W, A, and S with the obvious meanings.
We often abbreviate 〈B, G ∪ g(id, Goal, R, P, π)〉 −→ 〈B, G ∪ g(id, Goal, R, A, π)〉
to 〈B, G ∪ g(id, Goal, R, P, π)〉 −→ 〈B, . . . A, π)〉.

We denote by R+ the rules in R with the rules for reconsider and reactivate added.
We denote by R− the rules in R with the rules for reconsider and reactivate deleted. We
abbreviate the rule

Condition
〈B, G ∪ g(Goal, R,Active, P1)〉 −→ 〈B′, G ∪ g(Goal, R,Active, P2)〉

to 〈B, P1〉 −→ 〈B′, P2〉 when no ambiguity occurs. We denote by B, R 
 A the
statement that ∃〈C, A〉 ∈ R ∃c ∈ C such that B |= c.

We denote by stable(B, G) that for all goals Goal in G we have that if B, Goal.Rule 

action, then action is not applicable. Applicable actions are defined by Fig. 1; for exam-
ple, the activate action is only applicable in the Pending state. This definition is needed
to allow for the possibility that B, Goal.Rule 
 activate when Goal is already in the
Active state, and so the action will have no effect. We will often abuse notation and
write just stable when the beliefs and goals are clear from the context. Note that the
presence of stable in the premise of the execution rules is the mechanism that guaran-
tees that execution does not take place in preference to changes of goal state.

4.3 Worked Example

The sequence of goal transitions in the robot rescue scenario are given in Table 1. Al-
pha’s initial goals include the perform goal perform(search , S, F ) where search is a
search plan for a region 10 units square, which Alpha searches one square at a time.
We will assume that search consists of the eleven steps search1; . . . search10; return
where searchi searches column i of the grid and return makes Alpha return to the base.
The success condition S is that each column has been searched and Alpha is at the base.

Alpha’s initial goals also include the maintenance goal that it should always retain
sufficient charge to return to the base. This means that it needs to estimate how long it
will take it to return to the base from its current position, and if its remaining charge
falls to this level, it should immediately suspend whatever it is doing and return to the
base to recharge. Hence Alpha’s initial goals include maintain(C, π, R, P,⊥,⊥) where
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C is the condition that current charge > return time , π is an appropriate prediction
mechanism (such as estimating the time that will be taken by each of the currently
adopted plans), and R and P are both the achievement goal of returning to the base,
i.e., achieve(at base,⊥).

Alpha will adopt appropriate achievement goals when assisting a survivor back to
the base, and when responding to calls for help: achieve(at(Survivor, base),⊥) and
achieve(satisfied(Other),⊥) respectively. The success condition for the former is when
the survivor is safely back at the base. The success condition for the latter is determined
by the other agent; hence the goal only succeeds when Alpha believes the other agent is
satisfied, i.e., when the other agent sends a message to Alpha notifying it that the goal
has been achieved. The plans to achieve this goal will also be generated by the other
agent. Activation of either of these goals will suspend the search goal.

Each of these achievement goals will be triggered by a rule in Alpha’s plan library5,
so that we assume that Alpha contains in its library the following two rules:

survivor found : 
 →achieve(at(Survivor, base),⊥)
request received : 
 → achieve(satisfied(Other),⊥)

Alpha’s sequence of goal states is given in Table 1. As shown, its initial goals are the
perform goal Ser to search and the maintain goal Main concerned with its battery power.
The following states correspond to an actual execution from the initial goals.

Alpha’s first decisions are to activate both goals, so that the perform goal moves
into the Active state, and the maintain goal moves into the Waiting state (stage 2). Al-
pha thus starts to execute its search pattern. Alpha successfully executes search1 and
is in the midst of sub-plan search2 when the survivor is found (stage 3). The event
survivor found is raised, and the rule in Alpha’s plan library is fired, resulting the goal
Sav being added to Alpha’s goals (stage 4). This triggers the suspension of the search
goal. The reconsideration condition is when the survivor is safely at the base.

Alpha now activates the Sav goal. It plans to achieve at(Survivor, base) by calling
Bravo for help, asking the survivor about any others nearby, waiting until Bravo arrives
and together carrying the survivor to the base (stage 5). This plan is executed success-
fully; thus Sav is achieved, the goal is dropped, and Alpha resumes searching (stages
6–8). It is in sector 5 when Bravo’s call for help is received (stage 9). Again, this event
fires the appropriate rule in Alpha’s plan library, and a Help goal is added to Alpha’s
goal state. Alpha then suspends the search plan and adopts the goal of assisting Bravo
(stage 10). The reconsideration condition is when the survivor is safely at the base.

While Alpha is still executing the action find(bravo), a message from Bravo arrives
saying that the survivor is now safely at the base, and so Alpha aborts the plan to find
Bravo and the Help goal is dropped (stage 11). Alpha resumes its search, and then gets
the call from Charlie when it is in sector 8. As before, it suspends searching (stages
13–15), and adopts a Help goal. The reconsideration condition is when the survivor is
safely at the base. Alpha finds Charlie, the survivor is brought to the base, and so the
Help goal is dropped (stage 16).

5 Another possibility is to have these two goals intially in the Pending state and to use the
survivor found and request received events as part of the activation condition for them;
pursuing this possibility is part of our future work.
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At this point, Alpha reconsiders Ser , and activates the searching goal, only to dis-
cover that resuming its search will soon violate the maintenance goal, as it has only 30
minutes of charge remaining. Hence the searching goal is re-suspended while Alpha
recharges (stages 17–20). Once charging is finished, Charge is dropped (stage 21), and
recharge goes back to the Waiting state (stage 22), which means that searching can be
resumed (stage 23). As the perform goal Ser has now succeeded, it is dropped, and
Alpha is now idle (stage 24).

4.4 Implementation

A prototype implementation of the full CAN rules for our semantics consists of around
700 lines of Prolog. It has been tested under Ciao and SWI-Prolog. This implementa-
tion, denoted Orpheus, continues to be developed, and is available from the authors at
http://www.cs.rmit.edu.au/˜jah/orpheus

It should be noted that this implementation is intended as a proof-of-concept devel-
opment of the CAN rules, and should not be seen as a surrogate for well-known agent
implementations such as JACK [4], Jadex [16], or Jason [11,1]. Its purpose is to allow
some simple experimentation with the rules of CAN and the consequences of changes
in the early forms of the rules above.

5 Related Work

Goals play a central role in cognitive agent frameworks [20]: “mental attitudes rep-
resenting preferred progressions of a particular (multi)agent system that the agent has
chosen to put effort into bringing about.” Winikoff et al. [32] argue for the importance of
both declarative and procedural representations, and present the specification of goals
with context, in-conditions, and effects.

A goal type has been defined as “a specific agent attitude towards goals” [6]. The dif-
ferent types of goals found in the literature and in implemented agent systems are sur-
veyed by Braubach et al. [3]. While there is broad agreement about perform and achieve

goals, less attention has been directed towards maintain goals. The reactive and proactive
semantics for maintenance goals is explored by Duff et al. [8]. However, they do not
consider aborting or suspending goals, and do not give formal rules for the behaviour
of maintenance goals. Mechanisms for adopting and dropping goals, and generating
plans for them, have been variously explored at both the semantic theoretical and im-
plemented system levels; we do not cite here the extensive body of work. Thangarajah
et al. formalized the mechanisms for the operations of aborting, suspending, and re-
suming goals [27,28]. However, those authors considered only achieve goals. We find
that the literature lacks a state and transition specification for all classes of goals that
accounts for the current mechanisms for aborting and suspending. Beyond our scope
are recent examples of exploring goal failure and re-planning [21,24].

Bordini and Hübner et al. [1] provide a semantics for Jason’s ‘internal actions’, in-
cluding its mechansism for handling plan failure. Inasmuch as they act to modify in-
ternal state, these internal are akin to the internals of our abstract goal states, seen in
Fig. 2 and 3.

http://www.cs.rmit.edu.au/~jah/orpheus
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Braubach et al. [3] build the Jadex agent system [16] on an explicit state-based ma-
nipulation of goals. Goals begin in a New state. When adopted, they move to the Option

state (akin to our Pending), and from there to Active (akin to our own Active). A goal
moves to the Suspended state if its in-condition (“context” [3]) becomes false: this is a
different concept from our deliberation-directed suspension and resumption. The aim of
Braubach et al. is to define a principled yet pragmatic foundation for the Jadex system;
no attempt is made for a generic formalization with a uniform set of operations on goals
at an abstract representational level. Braubach et al. [2] discuss long-term goals, which
may be considered as an input for determining when a goal should be dropped, aborted
or suspended; here we are concerned with the consequences of such decisions, rather
than the reason that they are made.

van Riemsdijk et al. [18,19] provide semantics based on default logic, emphasizing
that, while the set of an agent’s goals need not be consistent, its set of intentions must be.
This and similar work is complementary to ours, in that we do not consider the process
by which the agent decides whether to adopt a goal and whether to adopt an intention
(plan) from it [5]. The authors [6,7] expand their analysis of declarative goals to perform,
achieve goals, and maintain goals, providing a logic-based operational semantics.

van Riemsdijk et al. [20] present a generic, abstract, type-neutral goal model con-
sisting of suspend and active states. Their two states can be thought of as “not currently
executing a plan” and “currently executing a plan”, respectively. Their work, which like
ours encompasses achieve, perform, query, and maintain goals, has overly simple account-
ing for maintenance goals and for aborting and suspending. Further, we argue that the
states of non-execution and suspension should be distinguished, and that goals should
be created into the Pending not Suspend state. Winikoff et al. [31] extend this work with
new types of time-varying goals, such as ‘achieve and maintain’, sketching a semantics
in Linear Temporal Logic.

Morandini et al. [15] use the generic goal model of van Riemsdijk et al. to reduce the
semantic gap between design-time goal models and run-time agent implementations.
Their operational semantics is focused on providing an account of the relationship be-
tween a goal and its subgoals, including success conditions which are not necessarily
the same as those of the subgoals. Our work likewise encompasses dynamic achieve-
ment of a goal according to logical conditions, enabled by a subgoaling mechanism.
Crucially, since we are concerned with execution, our semantics accounts for plans as
well as goals. This means that our goal states contain finer distinctions, and in particular
the sub-division of the Active and Suspended states. Our work is further distinguished
by a richer range of operations that may be applied to a goal (e.g., a richer semantics
for suspending a goal and its children; aborting as well as failing), and by the inclusion
of proactive maintenance goals.

Khan and Lespérance [12] tackle goal dynamics for prioritized goals through a log-
ical approach. Their focus is to ensure that active goals are consistent with each other
and the agent’s knowledge. Lorini et al. [14] study in detail the dynamics of goals and
plans under changes to the agent’s beliefs. Such works that enable an agent to recon-
sider its goals in the light of belief updates are complementary to our work, and beyond
our scope here.
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6 Conclusion and Further Work

Management of goals is central to intelligent agents in the BDI tradition. This paper pro-
vides mechanisms for goal management across the common goal types in the literature,
including goals of maintenance. The three key contributions of our generic framework
for goal states and transitions are (1) to encompass both goals of accomplishment and
rich goals of monitoring, (2) to provide the first specification of abort and suspend for
all the common goal types, and (3) to account for plan execution as well as the dynamics
of sub-goaling. To the best of our knowledge, no existing framework for goal operation
accounts all of these points.

By developing the formal operational semantics for our generic framework in the
agent language CAN [21], we have not been tied to any particular agent implementa-
tion. However, besides disseminating the formal semantics, a first priority is to imple-
ment our framework as proof of concept. As mentioned at the end of Sect. 4, we have
implemented the CAN rules described in this paper and will continue to experiment
with the above scenario and various other examples.

This paper accounts for the life-cycle of each goal. We have not sought to address
overall agent deliberation, plan deliberation, resource management, or plan scheduling.
Thus far we have examined the same questions as Braubach et al. [3]; future work
is to address the other questions they pose. Likewise, we have not considered failure
handling and exceptions. Our work is complementary to works that consider generic
or application-specific reasoning about goal interactions, such as [30,23], works that
consider goal generation, such [5], and works that consider goal and plan selection,
such as [9,14].

References
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Abstract. For many applications there is the need to handle user pref-
erences and customize agents according to the user’s specific needs. It
is convenient to let the user provide elaborate specification consisting of
constraints, preferences and objectives. Then, let the agent system make
decisions about its actions by taking into account changes in the sur-
rounding environment as well as the user preferences that come in real-
time. In this paper we describe an agent programming language where we
incorporate constraints, objectives and preferences into the BDI frame-
work. Our work especially focuses on the use of soft constraints in an
agent environment where we give a quantitative dimension to this agent
deliberation process by apply c-semiring based techniques to determine
the preferred solution.

1 Introduction

In the multi-agent systems (MAS) community, software agents are conceived as
autonomous computational entities situated in some environments which they
can sense and act upon in a dynamic (reactive and/or proactive) way according
to the environment’s changes and their design objectives [25]. Each agent is
given the mandate to achieve defined goals. To do this, it autonomously selects
appropriate actions, depending on the prevailing conditions in the environment,
based on its own capabilities and means until it succeeds, fails, needs decisions or
new instructions or is stopped by its owner. Thus decision agents can be designed
to provide interactive decision aids for end-users by eliciting their preferences and
then recommending matching products.

BDI [18] agent-oriented systems are flexible and responsive to the environ-
ment, and well suited for complex applications with real-time reasoning and
control requirements [20]. However, not much work has been done regarding the
practical implementation of BDI languages that incorporate user preferences into
the BDI framework.

In this paper, we develop a traditional BDI-style agent programming lan-
guage that has built-in decision making strategies based on user preferences.
These preferences could be modeled as either hard constraints (constraints that

A. Omicini, S. Sardina, and W. Vasconcelos (Eds.): DALT 2010, LNAI 6619, pp. 22–39, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



BDI Agents with Objectives and Preferences 23

must be satisfied with explicit objectives like maximise or minimize cost) or soft
constraints (constraints that the user would like to satisfy). We call this lan-
guage BAOP (BDI Agent with Objectives and Preferences). Our work focuses
on practical means-ends reasoning which deals with what actions to perform
and how to perform the actions. We implement BAOP by extending CASO [7]
and incorporating a mechanism by which user preferences can be added into the
system.

The contributions of this paper are fivefold. Firstly, a BDI language frame-
work is developed where user preferences can be handled by the system. Secondly,
techniques are described whereby a particular behavior can be selected according
to the preferences. Thirdly, the language framework is modified whereby we pa-
rameterize basic actions. Fourthly, formal semantics of the language is described
and fifthly, we describe a method by which preferences and objectives can be
integrated.

The remainder of this article is organized as follows. Section 2 gives a brief
background on related work on BDI languages and constraints, section 3 de-
scribes the syntax of the language section 4 gives an overview of its operational
semantics. Experimental results and concluding remarks are provided in the last
sections.

2 Background

2.1 BDI Languages

One of the most popular and successful framework for Agent technology is that
of Rao and Georgeff [18], in which the notions of Belief, Desire and Intention
are central, and hence are often referred to as BDI agents. Beliefs represent
the agent’s current knowledge about the world, including information about the
current state of the environment inferred from perception devices and messages
from other agents, as well as internal information. Desires represent a state which
the agent is trying to achieve. Intentions are the chosen means to achieve the
agent’s desires, and are generally implemented as plans and post-conditions. As
in general an agent may have multiple desires, an agent can have a number of
intentions active at any one time. These intentions may be thought of as running
concurrently, with one chosen intention active at any one time.

AgentSpeak(L) [17] is one of the most influential abstract languages based
on the BDI architecture. It is an agent framework/language with explicit repre-
sentations of beliefs and intentions for agents. AgentSpeak(L) is a programming
language based on a restricted first-order language with events and actions. Due
to its simplicity and elegance, AgentSpeak(L) can be easily extended. There
have been several languages based on AgentSpeak(L) and Jason [3] is one of its
well-know interpreters.

There are a number of other agent programming languages in the BDI tradi-
tion, such as 3APL [10], JACK [5], CASL, [22], Dribble [23] and CAN [24].
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2.2 Hard and Soft Constraints

Hard constraints are those which we definitely want to be true. These might
relate to the successful assembly of a mechanism. Soft constraint are those we
would like to be true - but not at the expense of the others. These might say that
a mechanism must follow a given path. There is not point in trying to match
every point exactly if this can only be done by breaking the assembly of the
links.

Soft constraints model quantitative preferences by generalizing the traditional
formalism of hard constraints. In a soft constraint, each assignment to the vari-
ables of a constraint is annotated with a level of its desirability, and the desir-
ability of a complete assignment is computed by a combination operator applied
to the local preference values. By choosing a specific combination operator and
an ordered set of levels of desirability, a specific class of soft constraints can be
selected.

A soft constraint may be seen as a constraint where each instantiation of
its variables has an associated value from a partially ordered set which can be
interpreted as a set of preference values. Combining constraints will then have
to take into account such additional values, and thus the formalism has also to
provide suitable operations for combination (x) and comparison (+) of tuples
of values and constraints. Semiring-based constraint satisfaction proposed by
Bistarelli et.al [2] is a meta-approach for modelling problems with preferences.
This framework uses a semiring structure, where the set of semiring specifies the
preference associated to each tuple of values. The two semiring operations (+
and x) then model constraint projection and combination respectively.

In semiring-based constraint satisfaction, each tuple in the constraint is
marked by a preference level expressing how good the tuple satisfies the con-
straint. The preference level is taken from a set A equipped with the c-semiring
structure (A,+,x,0,1). A is a set of preferences, + is a commutative, associative,
idempotent (a+a=a) binary operation on A with the unit element 0 (0+a=a)
and the absorbing element 1 (1+a=1), x is a commutative, associative binary
operation on A with the unit element 1 (1xa=a) and the absorbing element 0
(0xa=0) and x distributes over +.

The multiplication operation x is used to combine constraints. Let vars(c)
be a set of variables over which the constraint c is defined, δc be a mapping
of all tuples over vars(c) to A, i.e., δc(V) is a preference of the tuple V in the
constraint c, and let U ↓ Y be a projection of some tuple U to variables Y. Then
we can describe a preference of some tuple V by combining preferences of this
tuple (its projection) in all the constraints C:

p(V ) =xc∈Cδc(V ↓ vars(c))

To compare the preferences of tuples we need some ordering on A. This
ordering can be defined using the additive operation + in the following way:
a ≤ b ⇐⇒ a + b = b. If a ≤ b then we say that b is better than a. Note that the
relation ≤ defines a partial ordering on A opposite to the total ordering used in
the valued constraint satisfaction.
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The semiring-based constraint satisfaction problem is defined formally by the
c-semiring structure (A,+,x,0,1), the set of variables X, their domains D, and
the set of constraints C described via δc. The task is to find an assignment V
with the best preference p(V).

2.3 Using Constraints in BDI Languages

Incorporating constraints into BDI languages can be be of great advantage to
agent decision making. Some of the advantages of using constraints are:

– Constraints can capture qualitative and quantitative preferences and costs.
– Constraints offer a declarative representation that is easy to understand.
– Constraints are supported by a large set of algorithms, solvers, and tools.

In our earlier work in [6] and [7], we have shown that the concept of using con-
straints and explicit objectives in a high-level agent specification language like
AgentSpeak(L) yields significant advantages in terms of both expressivity and
efficiency. This technique applies constraint and objective directed solving on
the context section of a BDI agent’s plan specification in order to determine an
application plan to fire. The new language is called CASO (Constraint AgentS-
peak(L) with objectives). We have also defined efficient plan and intention se-
lection techniques with the notion of parametric look-ahead. An implementation
of CASO is also described in [7], which provides the user with the flexibility
of adding explicit objectives and constraints to achieve final goals. CASO uses
a modified version of the Jason interpreter, together with another open-source
constraint solver ECLiPSe [1], thereby combining reactive agent programming
with constraint solving techniques.

3 BAOP: A Reactive BDI Language

In this section we give an overview of our BDI based language BAOP and de-
scribe its syntax. BAOP is a programming language based on AgentSpeak and
is implemented using Jason.

Informally, an agent program in BAOP consists of a set of beliefs β which in-
cludes a set of constraints, a set of objective functions Θ, a set of user preferences
μ, a set of events E, a plan library P , a set of intentions I, an objective store
OS and a preference store PS. There are three selection functions SE , SP , SI to
select an event, a plan and an intention respectively. There is also a look-ahead
parameter n which determines how many steps the agent is going to look ahead
before committing to a plan or intention.

Let us now explain each of terms mentioned in the above informal definition,

3.1 Belief Base (β)

β is a Constraint Logic Program(CLP)[13] and not a just a set of simple facts.
As we will see later, such an approach which combines the flexibility of logic with
the power of search to provide high-level constructs for solving computationally
hard problems can help an agent to choose a plan or intention intelligently.
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3.2 Set of Plans (P )

P is a repository which contains all the available pre-compiled plans for the agent
to use. When a triggering event occurs, all the plans triggered by this event that
can be executed in the current circumstances are retrieved. Below we define a
BAOP plan.

Definition 1. A BAOP plan p is of the form t[ε]:b1 ∧ b2 ∧ · · · ∧ bn ∧ c1 ∧ c2 ∧
· · · ∧ cm ← sg1, sg2, · · · , sgk where t is the trigger; ε refers to the effect of the
plan; each bi refers to a belief; each ci is an atomic constraint; each sg is either
an atomic action or a subgoal.

It should be noted that in the definition of the plan above, an action could have
parameters whose values are instantiated when the agent actually executes the
plan. Also, since CLP assumes Horn Clause, the effets can be Horn Clauses only
as we use the effets together with β as we will see later.

3.3 Set of Objective Functions (Θ)

Θ represent objective functions like maximize(exp) or minimize(exp) where exp
consists of global variables that are valid throughout the lifetime of the agent.
Objectives represent quantitative measure of goals that the agent would like to
achieve.

3.4 Set of User Preferences (μ)

μ is the set of preferences that the agent would like to achieve. Along with ob-
jectives, this is yet another natural way of representing softgoals. The preference
is given using semiring values and is of the form < ε, v1 > which depicts a pref-
erence value v1 for pursuing the plan. ε denotes the cumulative effect of plan
(or plans).

3.5 Set of Events (E)

E is the set of events which could be external or internal. Agents talk to the ex-
ternal environment through events. The different types of external events which
originate from perception of the agent’s environment:

1. Addition and deletion of beliefs (with constraints).
2. Addition and deletion of achievement goals.
3. Addition and deletion of test goals.
4. Addition and deletion of objectives.
5. Addition and deletion of user preferences.

The first three types of events are triggering events (where the context of the
plan is matched with relevant plans), while the last two are non-triggering.

Internal events are generated from the agent’s own execution of a plan (i.e.,
as a subgoal in a plan generates an event of the type addition of an achievement
goal). An internal event is accompanied with the intention which generated it
(as the plan chosen for that event will be pushed on top of that intention).
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3.6 Set of Intentions (I)

Intentions are particular courses of actions to which an agent has committed
in order to handle certain events. I consists of a set of intentions where each
intention is a stack of partially instantiated plans.

3.7 Objective Store(OS))

OS a consistent set of objective functions and is updated in case a new objective
comes in as an event. Below we give the formal definition of what it means by
augmenting the OS.

Definition 2. Given an objective store OS and a new objective f , the result of
augmenting OS with f , denoted by OS∗

f , is defined as
γ(MaxCons(OS ∪f)) where γ is a choice function and MaxCons(X) is the set
of all x ⊆ X such that x is consistent and there exists no x′ such that x ⊂ x′ ⊆ X
and x′ is consistent.

The new OS is now given by γ(MaxCons(OS ∪O)∩OS) where γ is the choice
function, and O is the negation of the objective O.

Formally a consistent objective store is defined as below.

Definition 3. Objectives O1 and O2 are inconsistent if and only if there exists
a pair of solutions S1 and S2 such that S1 is preferred over S2 by O1 and the
reverse holds under O2.

3.8 Preference Store (PS)

PS a consistent set of user preferences and is updated in case a new preference
comes in as an event. A PS is inconsistent if there exists at least two tuples
whose conditions are logically equivalent but whose associated semiring values
are different. The machinery we provide ensures such inconsistencies do not
occur. The consistency of user preferences in the preference store is maintained
by the following logic:

When a new preference comes, it is compared to the set of preferences that
are currently in the preference store. If the new user preference tuple is < ε, v1 >
and if PS contains a tuple with ε′1 which is logically equivalent to ε1 then replace
the value of ε′1 with v1 else insert the new tuple in PS.

3.9 Event Selection Function (SE)

SE selects an event and updates OS and μ in case it is an objective function
and user preference respectively and in case it is a triggering event it passes it
on to the interpreter which would unify it with the set of triggering events in
the heads of plans.
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3.10 Option Selection Function (SO)

SO selects a plan from P based on the current plan context, β, OS, PS and n.
In order to understand the mechanism for selecting the best plan let us consider
an example.

Let us consider we have two applicable plans - P1 and P2. In order to deter-
mine which plan to choose the agent generates the goal-plan tree for all possible
paths. The parameter n creates the pseudo leafs and therefore we get distinct
paths from root to these pseudo leafs. Figure 1 shows all the possible paths from
root to pseudo leafs for the set of plans P1 to P10. The value of n is 2 which
means the goal-plan tree is expanded up to 2 levels.

Multiple Effect Scenarios
Let us now consider any given path (say Path 1) in our earlier example. We
follow [12] to discuss the issue of multiple effect scenarios in this context. The
cummulative effect of this path is not merely a conjunction of the effects of
Plan1, Plan3 and Plan5. The effects of each plan are accumulated into cumulative
effect annotations in a context-sensitive manner, such that the cumulative effect
annotations associated with any plan would describe the effects achieved by the
execution of plans were it to execute up to that point. Since we are trying to
find out what would be the final effect if we took Path 1 we use multiple effect
scenarios as we cannot find the result deterministically. An effect scenario at a
given point in a path is one consistent set of cumulative effects of a process if
it were to execute up to that point. This is because we may arrive at a given
point through multiple paths which cannot be predicted at design time and also
activities in a path might undo the effects of activities earlier in the path.

Let < Pi, Pj > be an ordered pair of plans connected via a sequence flow such
that Pi precedes Pj , let εi be an effect scenario associated with εi and εj be
the immediate effect annotation associated with Pj . Let εi = ci1, ci2, · · · , cim
and ej = cj1, cj2, · · · , cjn . If εi

⋃
εj is consistent, then the resulting cumulative

effect, denoted by acc(εi, εj), is εi
⋃

εj . Else, we define ε′i ⊆ εi such that ε′i
⋃

εi is
consistent and there exists no ε′′i such that ε′i ⊂ ε′′i ⊆ εi and ε′′i

⋃
εj is consistent.

We define acc(εi, εj) = ε′i
⋃

εj . We note that acc(εi, εj) is non-unique as there are
multiple alternative sets that satisfy the requirements for εi. Thus the cumulative
effect of the two plans consists of the effects of the second plan plus as many
of the effects of the first plan as can be consistently included. We remove those
clauses in the effect annotation of the first plan that contradict the effects of the
second plan. The remaining clauses are undone, i.e., these effects are overridden
by the second plan.

Now each of these effects may have semiring value associated with them and
hence we have get the semiring value for the cumulative effects. If PS contains
(< εp, vp >, < εq, vq >) then the semiring value of acc(εp, εq) would be vp

⊗
vq

where
⊗

is the semiring combination operator. Since we have multiple effect
scenarios, the user would have the option to select a particular scenario which
can be pessimistic or optimistic. Thus from each of the paths, a particular effect
scenario is chosen and we get a semiring value for the cumulative effect at each
pseudo leaf.
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Plan1: +!t[ε1] : BContext1 ∪ CContext1 ← SG1; SG2.
Plan2: +!t[ε2] : BContext2 ∪ CContext2 ← SG3; SG4.
Plan3: +!SG1[ε3] : BContext3 ∪ CContext3 ← a1.
Plan4: +!SG1[ε4] : BContext4 ∪ CContext4 ← a2.
Plan5: +!SG2[ε5] : BContext5 ∪ CContext5 ← a3.
Plan6: +!SG2[ε6] : BContext6 ∪ CContext6 ← a4.
Plan7: +!SG3[ε7] : BContext7 ∪ CContext7 ← a5.
Plan8: +!SG3[ε8] : BContext8 ∪ CContext8 ← a6.
Plan9: +!SG4[ε9] : BContext9 ∪ CContext9 ← a7.
Plan10: +!SG4[ε10] : BContext10 ∪ CContext10 ← a8.

Broken line (- - -) refers to AND nodes and Solid line (—–) refers to OR nodes.
BContexti is the conjunction of non-constraint predicates in the context of Plani;
CContexti is the conjunction of constraint predicates in the context of pPani;
SGi is subgoal for Plani;
ai is an atomic action for Plani;
εi is the effect of Plani;

Path id Possible Path

1 Plan1-Plan3-Plan5
2 Plan1-Plan4-Plan5
3 Plan1-Plan3-Plan6
4 Plan1-Plan4-Plan6
5 Plan2-Plan7-Plan9
6 Plan2-Plan8-Plan9
7 Plan2-Plan7-Plan10
8 Plan2-Plan8-Plan10

Fig. 1. Agent Plans and corresponding goal-plan tree
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The next item to consider is the OS where we have the set of consistent
objective functions that the agent wants to pursue. At each pseudo leaf of the
goal plan tree we have

– β and context of all plans in the path.
– Semiring value for the effect scenarios.
– Objective function O.

There are several choices now. First, the CLP uses constraint satisfaction and
optimization problem (CSOP) techniques to find the value of the objective func-
tion O for each pseudo leaf. CSOPs are mathematical problems where one must
find states or objects that satisfy a number of constraints or criteria and also
satisfy an objective function. Second, the semiring value v of cumulative effect
could be considered for each of these leafs. The leaf to be considered would be
the one which has both these values as the highest. It is a policy that the user
can decide beforehand to give priority to either the objective or the semiring
value as these values are nothing but natural means of representing softgoals
that the agent would like to achieve. Next we choose the path which has the
maximum value at the pseudo leaf based on the strategy chosen.

3.11 Intention Selection Function (SI)

SI function selects one of the agent’s intentions, i.e., one of the independent
stacks of partially instantiated plans within the set of intentions by applying
techniques similar to that of SO. Each intention stack is a choice for the agent. In
order to determine right intention, the agent first considers the top element (i.e.,
a partially instantiated plan) of every intention stack. Each of these intentions
for a goal plan tree and here also we solve the CSOP which consists of β, OS, PS
and n. Like before, we have several choices and we can apply different strategy to
choose a particular intention. However, one of the most notable difference with
SO is that we instantiate the action parameters (if any) with values obtained
from solving the CSOP.

4 Differences with AgentSpeak(L)

Most of the syntax and semantics of BAOP are similar to that of AgentSpeak(L)
and its interpreter Jason. However, the most notable additions are:

1. A constraint directed technique is incorporated into the computation strat-
egy employed during the interpretation process.

2. Plan context consists of conjunction of predicates some of which could be
constraint predicates (unlike Agentspeak(L)) which could be dealt with CLP
machinery using specialized constraint solvers.

3. A look-ahead technique is now built into the system that helps the user to
determine which particular plan or intention to select by setting the value
of a look-ahead parameter.
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4. An external event can be a triggering event as well as an addition or sub-
traction of an objective function or a user preference.

5. Two new data structures are added - an objective store and a preference
store to store the set of global objectives and preferences respectively.

6. Plans are now annotated with effects. Jason provides annotation facility
where meta information of various kinds could be specified. We use this
facility to specify effects of plans.

7. Unlike AgentSpeak(L), applicable plans are those relevant plans for which
- there exists a substitution which, when composed with the relevant unifier
and applied to the context, is a logical consequence of β and
- the constraint predicates in the context of the plans are unified with β
and dealt with the CLP machinery using specialized constraint solvers to
determine if these are consistent.

8. The set of basic actions that the agent has to perform as part of an intention
execution process may also contain parameters, the values of which may be
set by the value of the constraint variables obtained from solving of a CSOP
relevant to a given applicable plan. These values are instantiated during
intention execution.

Items 1 to 3 and parts of items 4 and 5 above have been developed in CASO. In
BAOP we extend CASO to incorporate the rest of the items.

5 BAOP Interpreter

The BAOP interpreter is depicted in Figure 2 which greatly facilitates the under-
standing of the interpreter. It is very similar to the AgentSpeak(L) interpreter
with the differences being mainly in handling of the seletion functions. The in-
terpreter manages a set of events, a preference store, an objective store and a
set of intentions with three selection functions which are described below. In
the figure, sets (of beliefs, events, plans, preference store, objective store and
intentions) are represented as rectangles, diamonds represent selection (of one
element from a set) and circles represent some of the processing involved in
the interpretation of BAOP programs. A CLP solver is plugged into the system
which is responsible for generating the applicable plans as well as for the option
and intention selection functions.

6 Representing Beliefs and Plans

Let us take a simple example where I have to buy orange juice and milk for
tomorrow. I need to buy at least 4 lt. of milk(M) and 2 lt. of orange juice(OJ).
Let the amount of money(A) I have is $50. The cost of milk is $2/lt. and orange
juice is $4/lt. I cannot buy more than 10 lt. in total as there is no space in the
fridge. How much of each should I buy and what should be the total cost(C) if
I want to have the maximum amount of money left on me? The problem can
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Fig. 2. BAOP execution cycle

easily be solved using constraint logic programming techniques. This problem
can be formulated as follows:

A=50; y >= 2; x >= 4; x + y <= 10;
M>=4; OJ>=2; M + OJ <=10; C = 2*M-4*OJ;
maximize(A-C);

The above CSOP is fairly trivial and the result is M=4, OJ=2 and C=16. Hence
the money left after buying these items is $34.

In the agent context, the above could be a belief base denoted by moneyAvail-
able(). Let us consider that I want to go either to a concert or go to a movie.
Which one to choose may depend on a number of factors: the amount of money I
have to buy ticket, the availability of the seats of my choice etc. As an example,
for a concert I may want to choose front seats but for a movie I may want to
choose back seats at the theater. In any case, if I want to go, I have to first book
tickets over the phone. Also, let us assume that I have to buy milk and orange
juice. All the above can be described using BAOP plans which would in turn
have a series of subplans and basic actions. As an example, some of the plans
(denoted by P1, P2 and P3) related to the concert or movie booking could be
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written as follows where A refers to the concert or movie and V refers to the
venue:

***** Booking tickets related plans *****

P1::+concert (A,V) [BookedConcertTickets(V)] :
likes(A) & moneyAvailable()>20 <- !book_tickets(A,V).

P2::+movie (A,V) [BookedMovieTickets(V)] :
likes(A) & moneyAvailable()>30 <- !book_tickets(A,V)

P3::+!book_tickets(A, V)[called(V) & SeatsChosen(A,V)] :
-busy(phone) <- call(V); !choose_seats(A,V).

...

***** Buying milk and orange juice related plans *****

P10::+!buy_MilkandJuice()[boughtMilkandJuice] :
true <- get_milk(actionParam M); get_juice(actionParam OJ);

pay_amount(actionParam C).

Note that concert (A,V) and book tickets(A, V) are the triggering events;
likes(A), and -busy(phone) are contexts; !book tickets(A,V) and !choose seats
(A,V) are subgoals; call(V) is a basic action and BookedMovieTickets(V),
BookedConcertTickets, called(V) and shallChooseSeats(A,V) are the various ef-
fects for plans related to booking tickets. M, OJ and C refer to the action param-
eters which we shall discuss shortly. The constraints are denoted by
moneyAvailable()> 20 and moneyAvailable()> 30 which are part of the context.

The example above basically says that if I have more than $20 on me and
there is a movie playing at a venue and I like the movie then I will book the
tickets over the phone and choose seats. Similarly for concert tickets I have to
have $30 on me and rest of the terms and conditions remain the same. It must be
mentioned here that plans P1 and P2 are very similar - one refers to the process of
booking concert tickets and the other one movie tickets. In normal circumstances,
I would choose either of the two if all the conditions match - however I may
have a preference of going to the concert today rather than to the movie. This
preference is something that is not built into the plan but can be supplied by
the user at any point in time to help make the decision. This can be done by
giving quantitative values to the effects - say < BookedMovieT ickets(V ), 0 >
and < BookedConcertT ickets(V ), 1 > to imply the fact that I prefer booking
concert tickets to booking movie tickets.

For buying milk and orange juice we have plan P10. This plan has true in the
context which means this will always be executed. Notice the parameters of the
actions get milk(), get juice() and pay amount(). The actionParam M, OJ and C
simply state that I have to buy M lt. of milk, OJ lt. of orange juice and pay $C.



34 A. Dasgupta and A.K. Ghose

7 BAOP: Operational Semantics

The operational semantics of BAOP is defined using Plotkin’s Structural Op-
erational Semantics [16]. We use a method similar to that shown in [15] which
describes operational semantics of AgentSpeak(L). A BAOP configuration C is
a tuple C = 〈β, I, E, A, R, Ap, OS, PS, ι, ε, ρ, α〉 where

– β is a set of beliefs
– I is a set of intentions {i, i′, · · ·} and i is a stack of partially instantiated

plans
– E is a set of events

{(te, i), (oe), (sge), (te′, i′), (oe′), (sge′) · · ·} where
(1) a triggering event pair is denoted by (te, i) where te is the triggering
event and the intention i has the plans associated with it;
(2) an objective event is denoted by oe which adds or removes element from
the objective store;
(3) a softgoal event is denoted by sge which is a c-semiring structure with
possible states and their corresponding values.

– A is a set of actions
{(a1, param1′ , · · ·), (a2, param2′ , · · ·), · · ·}. Each action is a tuple (ai,
parami′ , · · ·) where ai is the basic action and parami′ , parami′′ etc. are
the action parameters.

– R is a set of relevant plans.
– Ap is a set of applicable plans.
– OS is the objective store
– PS is the preference store
– Each configuration has 4 components denoted by ι, ε, ρ and α which keep

record of a particular intention, event, an U-preferred plan (the selected
plan with user preference) and a set of action parameters associated with
actions of an U-preferred plan respectively that are being considered along
the execution of a plan.

In order to present the semantic rules for BAOP we adopt the following
notations:

– If C is a BAOP configuration, we write CE to make reference to the compo-
nent E of C. Similarly for other components of C.

– We write Cι = (the underline symbol) to indicate that there is no intention
being considered in the agent’s execution. Similarly for Cρ, Cε and Cα.

– We write i[p] to denote the intention that has plan p on its top.
– We write beliefs to denote the set of current beliefs together with the set of

constraints.

The set of semantic rules related to Event, Plan and Intention selections are now
given below.

Event Selection: SE selects events from a set of Events E. The selected event
is removed from E and is either assigned to the component ε of the configu-
ration in case it is a triggering event or is added or removed to/from OS/PS
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if it is a objective/preference. The selected event is removed from E and is
assigned to the ε component of the configuration. Below we give the three
semantic rules governing this function.

SelEv1
SE(CE)=(te,i)

C,beliefs→C′ ,beliefs Cε = , CAP = CR = {}
where: C′

E = CE − (te, i) and C′
ε = (te, i)

SelEv2
SE(CE)=oe

C,beliefs→C′ ,beliefs Cε = , CAP = CR = {}
where: C′

E = CE − oe, C′
OS = COS + oe and C′

ε = oe

SelEv3
SE(CE)=sge

C,beliefs→C′ ,beliefs Cε = , CAP = CR = {}
where: C′

E = CE − sge, C′
PS = CPS + oe and C′

ε = sge

Option Selection: SO selects an U-preferred plan (p) from the set of applica-
ble plans Ap. The plan selected is then assigned to the ρ of the configuration
and the set of applicable plans is discarded. We also assume that there is a
selection function SOS which selects a consistent objective store (ConsOS)
where the maximal set of objectives that are consistent are kept and the
rest are discarded. The action parameters associated with the U-preferred
plan are initialized by solving the relevant CSOP in case there are hard con-
straints and objectives.

SelOpr
SO(CAp)=p SOS(COS)=ConsOS

C,beliefs→C′ ,beliefs , Cα = , Cε �= , CAp = {}
where: C′

ρ = p, C′
OS = ConsOS, C′

α �= {} and C′
Ap = {}

Creating Intentions: Rule TrigEv says that if the event ε is external trigger-
ing event indicated by T in the intention associated to ε, a new intention is
created and its single plan is the plan p annotated in the ρ component. If
the event is internal, rule IntEv says that the plan in ρ should be put on top
of the intention associated with the event. Either way, both the event and
the plan can be discarded from the ε and ι components respectively.

TrigEv C,beliefs→C′ ,beliefs Cε = (te, T ), Cρ = p

where: C′
I = CI

⋃{[p]}, C′
ε = , C′ρ =

IntEv C,beliefs→C′ ,beliefs Cε = (te, T ), Cρ = p

where: C′
I = CI

⋃{i[p]}, C′
ε = , C′ρ =

Intention Selection: SI selects an intention for processing.

SelInt SI(CI)=i
C,beliefs→C′,beliefs Ci =

where: C′
i = i
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8 Experiment and Results

We implemented BAOP by extending CASO and incorporating a mechanism
by which user preferences can be added as soft constraints into the system. As
mentioned earlier, BAOP has been developed using a modified version of Jason
(Java based interpreter) and Eclipse (constraint solver). In order to evaluate
our approach, we ran a series of experiments to test out the various scenarios
described earlier pertaining to option selection using constraints, objectives and
user preferences. The objective of our experiment was to find out if BAOP is ca-
pable of handling the different situations and choose the right plan and intention
at every interpreter cycle.

We randomly generated several plans having a variety of AND-OR node struc-
ture. Each of these plans included, effects and the semiring values (user prefer-
ences) were set for each of the effects. We also defined partial order among the
various effects The following table depicts the various experimental runs that we
conducted on a Pentium Dual Core 2.4GHz CPU with depth of tree kept at 3.
If the environment had inconsistencies between user preferences and objectives,
the objectives were given higher precedence. Thus at each node both objective
and user preferences were evaluated.

Plans Possible Paths CSOPs solved time taken(millisec.)
10 8 8 100
20 15 0 78
30 22 14 134
40 34 20 146
50 40 25 178

The results indicate that the larger the number of CSOPs, the longer it takes
to evaluate and get the right plan. If there are user preferences only and no
CSOP, the time taken to find the selected plan was the least.

9 Related Work

Many of the other BDI languages have been extended to incorporate constraints
and preferences to guide the agent to select the best possible plan.

In [8] a system that allows the user to express all these kinds of constraints
and preferences is described by extending GOLOG [14]. The authors address
the problem of combining non-Markovian qualitative preferences, expressed in
first-order temporal logic, with quantitative decision-theoretic reward functions
and hard symbolic constraints in agent programming. In another approach [21],
prioritized goals have been integrated with the IndiGolog agent programming
language.

In our approach the semiring specifications are richer than their specifica-
tion of prioritized goals. Also, we combine both qualitative and quantitative
constraints.
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In [11] an approach has been made to extend GOAL (a language based on
propositional logic) with temporal logic for the representation of goals and pref-
erences for additional expressiveness. In this approach hard and soft constraints
have been integrated into it as well as as achievement goals, maintenance goals,
and temporally extended preferences. Here if an agent has the ability to looka-
head a number of steps, it can also use its goals to avoid selecting those actions
that prevent the realization of (some of) the agents goals. Effects of basic ac-
tions are taken into account which change the mental state of agents. The work
is based on the fact that planners could be guided to select preferred plans.

One of the major differences with regards to our work is that the preferences
and objectives are dynamic - they work like belief updates when the user his
changes mind. Also, unlike other approaches, the hard constraints that we talk
about here are objective functions in the current environment and not the agent
goals.

In another approach [4], the authors describe a model where preferences and
constraints over goals can be specified. They also mention an algorithm PREF-
PLAN for solving the resulting constrained optimization problem. PDDL3 [9]
is an action-centred language in the planning domain where strong and soft
constraints on plan trajectories (possible actions in the plan and intermediate
states reached by the plan), as well as strong and soft problem goals has been
incorporated.

One of the differences between agent programming and planning is that in
planning one compares complete plans against the available constraints, while
in agent programming the constraints are into account continuously during exe-
cution. In this context, the above frameworks deal mainly with plan uncertainty
whereas our approach has been to incorporate similar notions into BDI agent
paradigm.

There are a number of frameworks which mix planning and BDI-style execu-
tion. Of particular interest is CANPLAN [19] which have built-in capacity for
lookahead.

In contrast, our lookahead mechanism is domain independent and is built into
the BDI architecture. Moreover, when to do a lookahead is dependent on the user
and in a highly reactive system, full lookahead may not give the best possible
outcome.

10 Conclusion

While there has been some work in guiding an agent to select the best plan
based on preferences, our approach is different from the ones mentioned earlier.
Unlike most other work, we assume that our agent environment is highly reactive
in nature and therefore constraints, preferences and objectives could change at
every point in time. We give the user the ability to change objectives and pref-
erences thereby making this a highly flexible system. In this work, we developed
our agent programming language BAOP to incorporate preference relations. The
preference relation is modelled using c-semirings. We applied the techniques to
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help the agent make decisions on selecting a particular plan at any given point
of time. We also defined the formal semantics of BAOP as well as described al-
gorithm with lookahead techniques for selecting the best plan. Our experiments
show that the reactive property of BAOP agents are still maintained even when
decisions are taken to find the path to take in order to achieve a particular goal.
We have not paid much attention to the constraint solving techniques to find
the best algorithm so that we can develop good elicitation strategies that reduce
the time to find out the preferred plan quickly.

The preferences mentioned in this paper depict the relationship preference
among the set of activities that are part of each plan as well as the objective
functions. This notion could be further extended in a multi-agent environment
where each agent would have a set of preferences and there could be a global
preference set that would try to achieve an overall system optimization across
all agents. This is also particulary useful in agent negotiation where each agent
tries to negotiate in order to achieve its own goal.
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Abstract. This article studies coordination protocols between logical
agents to answer queries to different types of combined programs. More
precisely, we consider a system of agents corresponding to different logic
programs under the answer set semantics, and different kind of coordi-
nation semantics to combine them: generous coordination (gathering all
the answer sets of all agents), rigorous coordination (selecting answer sets
shared by all agents), composition (building consistent union of answer
sets from each agent) and consensus (taking intersection of answer sets
from each agent). Rather than explicitly building a coordination program,
which would require to compute all answer sets of each agent, we pro-
pose to use coordination protocols that would only compute answer sets
that are needed to answer a query to the coordination. In this paper, after
presenting our context and the coordination semantics we are using, we
define coordination protocols for answering queries on them, translating
constraints on the coordination into local constraints. Some examples are
then given to illustrate the expressiveness of these basic types of coordi-
nation when combined together and possible applications are discussed.

1 Introduction

In a multi-agent system, agents generally have different beliefs. Combining them
to make decisions or to reach agreements is thus a main topic in this domain. Logic
programming provides a formal language for representing knowledge and beliefs of
an agent. Individual agents often have only incomplete information. To deal with
this possible incompleteness of an agent’s theory, a non-monotonic logic program-
ming framework can be used. We consider here a multi-agent system in which each
agent is associatedwitha logicprogramunder theanswerset semantics.Answersets
are sets of literals representing beliefs or intentions that can be built by a rational
reasoner on the basis of a program [1]. An agent may have (conflicting) alternative
sets of beliefs, which are given by multiple answer sets of its logic program. They
represent different possible set of beliefs that are compatible with its knowledge.

Depending on the purpose of the agents, programs can be combined in differ-
ent ways such as generous coordination (gathering the possible answer sets of any
agent), rigorous coordination (seeking common answer sets among agents) [12],
composition (combining answer sets from several agents in a consistent way) [10]
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or consensus (seeking possible common beliefs of several agents) [11]. Our primary
interest in this article is to present these coordination semantics and provide a fam-
ily of protocols with which agents can derive combined answer sets. These basic
operations provide a toolbox that can be used to produce more complex opera-
tions. As opposed to [12,10,11], we are not concerned with building a logic pro-
gram to represent these combinations. Building such a program requires in most
cases to compute all answer sets, whereas practically, an agent is only concerned
with knowing if some belief is entailed by the combination, or getting a specific
answer set. Moreover, in a dynamic system, programs may change over time. We
thus adopt here a query-driven approach, allowing queries for entailment of some
formula, or queries for answer sets satisfying some requirements. To specify what
answer sets they are interested in, agents will use constraints to direct the selection
of a proper answer. In our protocol, as we are concerned with efficiency and flex-
ibility, we will only use (and thus compute) those answer sets that are needed to
answer a given query. Note that not relying directly on the program also allows the
agent to keep their internal reasoning private. However, abstracting away from the
reasoning by using directly the resulting set of answer sets might result in slight
loss of information when adding or retracting beliefs.

We will first, in Section 2, present the framework, introduce our four basic coor-
dination semantics and extend them to groups of agents. Then, Section 3 describes
the protocols themselves. Afterwards, we will illustrate in Section 4 some complex
uses of these coordinations, before discussing the difference between our approach
and compositional semantics based on the merging of programs in Section 5. At
last, Section 6 will conclude.

2 Coordinating Answer Sets

2.1 Preliminaries

We first give a very succinct overview of the answer set semantics for a pro-
gram defined over a set of literals Lit (see [8] for more details). An ex-
tended disjunctive program (EDP) is a set of rules of the form: L1; · · · ; Ll ←
Ll+1, . . . , Lm, not Lm+1, . . . , not Ln (n ≥ m ≥ l ≥ 0) where each Li ∈ Lit. For each
rule r of the above form, head(r), body+(r), body−(r), and not body−(r) de-
note the sets of (NAF-)literals {L1, . . . , Ll}, {Ll+1, . . . , Lm}, {Lm+1, . . . , Ln},
and {not Lm+1, . . . , not Ln}, respectively. A program P with variables is seman-
tically identified with its ground instantiation. The semantics of EDPs is given
by the answer set semantics [8]. A set S ⊆ Lit satisfies a rule r if body+(r) ⊆ S
and body−(r) ∩ S = ∅ imply head(r) ∩ S �= ∅. S satisfies a ground program P if
S satisfies every rule in P . Let P be a program such that ∀r ∈ P, body−(r) = ∅.
Then, a set S ⊂ Lit is a (consistent) answer set of P if S is a minimal set
such that (i) S satisfies every rule from the ground instantiation of P , and (ii)
S does not contain a pair of complementary literals L and ¬L. Next, let P be
any EDP and S ⊆ Lit. For every rule r in the ground instantiation of P , the
rule rS : head(r) ← body+(r) is included in the reduct PS if body−(r) ∩ S = ∅.
Then, S is an answer set of P if S is an answer set of PS .
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In the following, we consider a system of n agents sharing a common concern
language denoted by C. Each of them has a logic program P accounting for its
beliefs over C (ie Lit = C). Its belief sets would then be the answer sets of P
(see [8]). As programs may evolve, an agent might not maintain an explicit list
of these answer sets, and compute them only if needed. An agent ai’s answer
sets will be represented by AS(ai) = {B1, . . . , Bm}, where each Bj ⊆ C is a
set of literals. If a literal L is not present in Bj (and neither is its negation), it
means that the agent has no opinion over the truth value of L wrt Bj . It can
thus accept to consider the opinion of other agents about it. A formula that is
satisfied in every answer sets (resp. in at least one answer set) of an agent will
be said to be skeptically (resp. credulously) entailed by it.

2.2 Beliefs Coordination Semantics

We define four kinds of agent’s belief coordinations, using semantics for program
combination in answer set programming: generous and rigorous coordination
[12], composition [10], and consensus [11].

Definition 1. Let a1 and a2 be two agents, associated with programs P1 and P2

defining their beliefs over a common concern language C, and let AS(a1) and
AS(a2) be the answer sets of repectively P1 and P2.

The generous coordination of a1 and a2 is AS(a1) ⊕ AS(a2) = AS(a1) ∪
AS(a2).

Their rigorous coordination is AS(a1) ⊗AS(a2) = AS(a1) ∩ AS(a2).
Their composition is AS(a1) �AS(a2) = {S ∪ T | S ∈ AS(a1), T ∈ AS(a2),

S ∪ T is consistent}.
Their consensus is AS(a1) �AS(a2) = {S ∩ T | S ∈ AS(a1), T ∈ AS(a2)}.

We shall use the term combination to refer to the set of answer sets resulting from
any one of these coordination semantics. In order to preserve incomparability of
answer sets, we define AS(a1) �≤ AS(a2) and AS(a1) �≥ AS(a2), the minimal
and maximal combinations of a1 and a2, as being respectively min(AS(a1) �
AS(a2)) and max(AS(a1) � AS(a2)) where � ∈ {⊕,�,�}1, min(X) = {S ∈
X |∀T ∈ X, T �⊂ S} and max(X) = {S ∈ X |∀T ∈ X, T �⊃ S}.

Two agents adopting generous coordination between themselves retain all
their answer sets, but admit the introduction of additional answer sets of the
other agent, though they might have to restrict (in case of minimal generous
coordination) or expand (in case of maximal generous coordination) some of
their answer sets to preserve incomparability. We shall generally favor maximal
generous coordination, as it is more informative. By contrast, adopting rigorous
coordination forces each agent to give up some answer sets, but the result re-
mains within the original answer sets for each agent. Compositional semantics is
defined as the collection of sets which are obtained by combining answer sets of
the original programs. It means that an agent using composition with another
will complete each of its answer sets with beliefs from the other agent that are

1 Rigorous coordination already preserves incomparability of answer sets.
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consistent with it. It will have to drop those of its answer sets that are not
consistent with any of the answer sets of the other agent. Finally, a consensus
intuitively represents an agreement, that is, a set of beliefs which are included in
both an answer set of a1 and an answer set of a2. When using minimal consen-
sus, we get a set of answer sets such that at least one of them is included in any
intersection of answer sets from each agent. It means that even if both agents
chose to arbitrarily favor one of their answer sets, they would still agree on one
of the answer sets of the minimal consensus. By contrast, maximal consensus
gives the maximal agreements that can be attained if each agent favors some
specific answer sets. It represents a kind of compromise, as the agent can reach
agreement on more belief if they agree to retain only those of their answer sets
that are most compatible with one another.

Example 1. To illustrate these combinations, we give here a simple example.
Agents have answer sets representing combination of ice cream flavours that they
like, with negated flavours indicating flavours that should not be added to the
combination according to their tastes. With AS(a0) = {{V anilla, Chocolate,
Strawberry}, {Chocolate, Mint}, {Chocolate, Orange, ¬Mint}} and
AS(a1) = {{Chocolate, Mint}, {Chocolate, Orange, ¬Mint, ¬Strawberry}},
we get (representing each flavour by its first letter):

AS(a0) ⊕≤ AS(a1) = {{V, C, S}, {C, M}, {C, O,¬M}},
AS(a0) ⊕≥ AS(a1) = {{V, C, S}, {C, M}, {C, O,¬M,¬S}},
AS(a0)⊗AS(a1) = {{C, M}}, AS(a0)�≤AS(a1) = {{C, M}, {C, O,¬M,¬S}},
AS(a0) �≥ AS(a1) = {{V, C, S, M}, {C, O,¬M,¬S}},
AS(a0) �≤ AS(a1) = {{C}}, AS(a0) �≥ AS(a1) = {{C, M}, {C, O,¬M}}.
Generous coordination lists all combined flavours liked by one of the agents (with
eventual restriction or expansion). It allows one to knowall possible flavoursmixing
that are liked by at least one agent of the pair.Rigorous coordination indicates mix-
ing that are liked by both agents (without modification). In our case, both agents
agrees on the fact that chocolate and mint are a good match. Composition on the
other hand, mix the answer set of the agentswhen it can be consistently done. Here,
itmeans that it will provide someflavoursmix that contains desired combination of
flavourswhile avoiding to spoil one of these combinationswith anunwanted flavour
(specified by negative literals). Maximal composition yields larger sets, combining
for example in our case vanilla-chocolate-strawberry from a0 with chocolate-mint
from a1. At last, consensus will indicate which flavours are good basis to please ev-
erybody.Minimal consensus indicate the flavours (or combination of flavours) that
can be found in any pair of mix from both agents. It represents flavours that would
necessarily be present (or avoided) in any combination of flavours that is liked by
both agents. In this case, having chocolate is a requirement to please both agents.
Maximal consensus gives maximal combinations that could be used as a basis to
please both agents. In our case, the agents agrees on the fact that chocolate can be
used with mint, and that chocolate can be used with orange if no mint is added. It
could for example be used to decide that those two combinations can be prepared
for everyone, while each individual can afterward add other flavours if needed.
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In some case, a combination might not give any answer sets. We shall say that
the combination succeeds if it contains at least one answer set, and that it fully
succeeds if it has at least one non-empty answer set. Full success means that
the combination yields some non-empty result, which can be desirable if some
decision has to be made on the basis of the combination.

Property 1. Let a1 and a2 be two agents with answer sets AS(a1) and AS(a2).
Success and full success necessary and sufficient conditions for all type of
combinations is given by the following table :

Combination succeeds iff fully succeeds iff

Min. generous coord. ∃i,AS(ai) 
= ∅ it succeeds and ∀i,AS(ai) 
= {∅}
Max. generous coord. ∃i,AS(ai) 
= ∅ it succeeds and ∃i,AS(ai) 
= {∅}
Rigorous coord. ∃U ⊆ C,∀i, U ∈ AS(ai) it succeeds and ∀i,AS(ai) 
= {∅}
Min. or max. comp. ∃(U, V ) ∈ AS(a1) ×AS(a2), it succeeds and ∃i,AS(ai) 
= {∅}

U consistent with V
Min. consensus ∀i,AS(ai) 
= ∅ ∃(U,V ) ∈ AS(a1) ×AS(a2),

U ∩ V 
= ∅
Max. consensus ∀i,AS(ai) 
= ∅ ∀(U,V ) ∈ AS(a1) ×AS(a2),

U ∩ V 
= ∅

Proof. These properties are directly derived from the definitions of the combi-
nation, the incomparability of answer sets, and the fact that for any set of set
X , min(X ∪ {∅}) = {∅}.
Note that generous coordination is the only kind of combination that can suc-
ceed when one of the agents has no answer sets. Moreover, maximal generous
coordination and (maximal or minimal) composition are the only combinations
that can fully succeed when one of the agents has ∅ as an answer set. Finally,
if none of the agents has ∅ as an answer set, consensus is the only combination
that might succeed without fully succeeding.

2.3 Extension to n Agents

To extends these combination to groups of n agents, it is important to note that
all these combinations are associative. In the following, we identify agents with
their answer sets and denote any combination AS(a1) � AS(a2) by a1 � a2.

Property 2. Generous coordination, rigorous coordination, composition and con-
sensus are commutative and associative operations, meaning that, given agents
a1, a2 and a3, we have (with � ∈ {⊕s,⊗,�s,�s} and s ∈ {≥ . ≤}):
– a1 � a2 = a2 � a1.
– (a1 � a2) � a3 = a1 � (a2 � a3). It will thus be denoted by a1 � a2 � a3.

Proof. The commutativity and associativity of ∩ and ∪ directly give this result
for most combinations. For composition, however, one should remind that if X
is inconsistent, then X ∪ Y will also be inconsistent, and reciprocally, if X is
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consistent, any subset of X is also consistent. Thus, if we take an element of
a1 � (a2 � a3), it is a consistent union of U ∪ P in resp. AS(a1) and AS(a2) �
AS(a3), with P = V ∪ W , V ∈ AS(a2) and W ∈ AS(a3). It can be interpreted
as U ∪ (V ∪ W ) = U ∪ V ∪ W = (U ∪ V ) ∪ W . The consistency of U ∪ V ∪ W
ensures the consistency of U∪V which is thus an element of a1�a2, so U∪V ∪W
is in (a1 � a2) � a3. Likewise, any element of a1 � (a2 � a3) can be interpreted
as an element of (a1 � a2) � a3.

For a group of agents G = {a1, . . . , an}, we can thus define :

Generous Coordination:
⊕
ai∈G

ai = a1 ⊕ . . . ⊕ an =
⋃
ai∈G

AS(ai)

Rigorous Coordination:
⊗
ai∈G

ai = a1 ⊗ . . . ⊗ an =
⋂
ai∈G

AS(ai)

Composition:⊙
ai∈G

ai = a1 � . . . � an = {
⋃
ai∈G

Ui|Ui ∈ AS(ai) and
⋃
ai∈G

Ui is consistent}

Consensus: �ai∈G ai = a1 � . . . � an = {
⋂
ai∈G

Ui|Ui ∈ AS(ai)}

Generous coordination collects the answer sets of each agents in the group,
whereas rigorous coordination represents the answer sets that are common to
all agents in the group. Then, composition of a group of agents represents an-
swer sets that are built by consistently aggregating beliefs from answer sets of
each agents in the group. For any answer set of the composition, each agent of
the group has at least one answer set that is included in it (meaning that it
supports at least a part of this answer set), and each belief in this answer set is
included in at least one answer set of an agent (meaning that each belief of this
answer set is supported by at least one agent). Finally, no matter which of the
answer sets of each agent is taken, the whole group will agree on at least one of
the answer sets of the minimal consensus. Moreover, by restricting their answer
sets, the agents of the group can all agree on any answer set of the maximal
consensus (and no superset of it).

Example 2. We briefly give examples of 3-agents combinations by
adding another agent in the previous example. With AS(a2) =
{{Chocolate, Mint}, {Orange, Praline,¬Mint}}, we get :⊕≤

i∈{0,1,2} ai = {{V, C, S}, {C, M}, {C, O,¬M}, {O, P,¬M}},⊕≥
i∈{0,1,2} ai = {{V, C, S}, {C, M}, {C, O,¬M,¬S}, {O, P,¬M}},⊗
i∈{0,1,2} ai = {{C, M}}, ⊙≤

i∈{0,1,2} ai = {{C, M}, {C, O, P,¬M}},⊙≥
i∈{0,1,2} ai = {{V, C, S, M}, {C, O, P,¬M}},

�≤
i∈{0,1,2}ai = {∅}, �≥

i∈{0,1,2}ai = {{C, M}, {O,¬M}}.
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2.4 Mixed Combinations

It is also possible to define more complex combination by combining these dif-
ferent semantics. We present here some of the more easily interpreted mixed
uses of these combinations. In the following, we denote by Pp(G) the set
{X ⊆ G|card(X) = p}. General coordination of degree p of group of agent
G is then given by :

Rp(G) =
⊕

X∈Pp(G)

(
⊗
ai∈X

ai)

It is equivalent to rigorous coordination when p = card(G), and to generous
coordination when p = 1. General coordination of degree p of a group of agent
gives the set of all answer sets that are shared by at least p agents. We shall see
later that it can be useful for defining a voting process.

By using respectively consensus (minimal or maximal) and composition in-
stead of rigorous coordination in the previous definition, we can define respec-
tively partial consensus of degree p (minimal of maximal) and partial composition
of degree p for group of agents G. Partial maximal consensus S≥

p (G) gives all
possible maximal agreements between at least p agents of the groups, meaning
that for every answer set B of the partial consensus, we can find at least p agents
who have an answer set that contains B. Partial minimal consensus S≤

p (G) is
such that, even if each agent arbitrarily favors one of its answer sets, at least
one of the answer sets of S≤

p (G) is guaranteed to be included in the favored
answer set of p agents. It gives the minimal sets of beliefs upon which at least p
agents will agree. At last, partial composition Pd(G) gives answer sets that can
be consistent with at least p agents, each belief being supported by at least one
agent.

As a last example of mixed coordination, we shall define joint compromised
consensus of degree p as the composition of minimal consensus between p agents
(Jp =

⊙
X∈Pp(G)(�≤

i∈Xai)). Then no matter what answer set might be favored
by each individual agent, there is one answer set in Jp whose beliefs are each
supported by at least p agents.

2.5 Conditional Combinations

When taking into account the opinion of other agents by using one of these
combinations, one could impose some conditions about the resulting answer sets.
Using conditional combinations adds a lot of expressive power to our mechanism,
as the agents can then make specific queries. We shall represent these conditions
by constraints, which will be used to ensure that some literals are present or
absent from any answer set that satisfies them.

Definition 2 (Constraints). Constraints will be defined as formulae on literals
L ∈ Cusing unary operator not and binary operators ∧ and ∨.

Then we specify the satisfaction relation. Let A ⊆ C be a set of literals. Given
a literal L ∈ C, and constraints ϕ and ψ, A satisfies (or respects) the constraint
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L iff L ∈ A. A satisfies not ϕ iff A does not satisfy ϕ. A satisfies ϕ ∧ ψ (resp.
ϕ ∨ ψ) iff A satisfies both ϕ and ψ (resp. ϕ or ψ).

Let S ⊆ C be a set of literals. We shall denote by φ∀(S) the constraint
∧
L∈S L.

It is satisfied by a set of literals A iff ∀L ∈ S, L ∈ A, that is, iff S ⊆ A. Likewise,
φ∃(S) =

∨
L∈S L will be satisfied by A iff ∃L ∈ S, L ∈ A, that is, iff S ∩ A �= ∅.

Moreover, for any S ⊂ C and A ⊂ C:

A satisfies φ⊇(S) =φ∀(S) iff A ⊇ S
A satisfies φ⊆(S) =not φ∃(C \ S) iff A ⊆ S
A satisfies φ⊂(S) =not φ∃(C \ S) ∧ not φ∀(S) iff A ⊂ S
A satisfies φ⊃(S) =φ∃(C \ S) ∧ φ∀(S) iff A ⊃ S
A satisfies φ=(S) =φ∀(S) ∧ not φ∃(C \ S) iff A = S

Using these constraints, we can formally define conditional sets as follows.

Definition 3 (Conditional sets). Given a set of literals A ⊆ C, a constraint ϕ
and two agents a1 and a2, A is a conditional answer set of a1 (resp. a conditional
combination of a1 and a2) with respects to ϕ iff A is an answer set of a1 (resp.
a combination of a1 and a2) that satisfies ϕ.

2.6 Computing Conditional Answer Sets

As programs may evolve, an agent might not maintain an explicit list of these
answer sets, and compute them only if needed. In order to get one or more answer
sets satisfying a constraint ϕ, an agent will compute answer sets of the program
P ∪ hIC(ϕ), where hIC(ϕ) is a translation of ϕ in terms of integrity constraints
(that is, rules with empty heads). We define (i) hIC(
) = ∅, hIC(⊥) = {r∅}2 and
(ii) for any L ∈ C, hIC(L) = {← not L}. Then, if ϕ and ψ are two constraints,
(iii) hIC(not ϕ) = {← body−(r), not body+(r)|r ∈ hIC(ϕ)}, where for any SC,
not S = {not L|L ∈ S}; (iv) hIC(ϕ ∧ ψ) = hIC(ϕ) ∪ hIC(ψ); (v) hIC(ϕ ∨ ψ) =
{← body(r1), body(r2)|r1 ∈ hIC(ϕ), r2 ∈ hIC(ψ)}.
Property 3. Let ϕ be a constraint, P a program, and S ⊆ C a set of literals. S
is an answer set of P satisfying ϕ (that is, a conditional answer set of P wrt ϕ)
iff S is an answer set of P ∪ hIC(ϕ).

3 Protocols

In this section, we will describe how to answer queries concerning the combina-
tion of two sources or more. Given these answer sets (belonging to agents called
sources), we want to build their (possibly conditional) combination. However,
it is not always needed to build the full set of answer sets corresponding to
that. From an agent’s perspective, what is important is to determine if some
beliefs are credulously or skeptically entailed for this combination, or to get an
answer set satisfying some conditions. Coordination protocols will be given here
2 where body(r∅) = head(r∅) = ∅. r∅ can also be defined as p ← not p where p 
∈ C. It

is a rule that cannot be satisfied.
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as specifications of the interactions between several agents, determining their
choice of messages without detailing the internal processes of the agents to pro-
cess them. We first describe the illocutions and the roles used in the protocols,
before getting into the detail of their workings.

3.1 Illocutions

As said above, when considering a combination, an agent is usually concerned
with knowing if some formula is credulously or skeptically entailed, or with
getting answer sets satisfying some conditions. Such questions can be derived
from one fundamental request, askAS(typ, ϕ), which is the request for an answer
set satisfying constraint ϕ. typ ∈ {F,C,N} indicates if one just wants the first
answer set (F), the current one (C) or the next one (N), which can be useful
for incrementally enumerating solutions through multiple queries. Sometimes,
however, it is enough to know if such an answer set exists. It can be asked using
illocution isCoherent(ϕ). Then, to answer such request, the illocutions hasAS(S)
and noAS() will be used, to respectively reveal an answer set or express that
there is no answer set satisfying the constraint. hasAS() can also be used to
answer positively to an isCoherent request.

Using these illocutions, an agent ai can thus ask some source A if its answer
sets credulously entailed a formula F with isCoherent(F ). If A has an answer
set satisfying F , F is credulously entailed by A. Likewise skeptical entailment in
F is checked with isCoherent(not F ). If A answers noAS(), none of its answer
sets does not entail F . It means that either A does not have any answer sets, or
that all answer sets of A entails F . In both cases, it follows that F is skeptically
entailed by A (and reciprocally, if F is skeptically entailed by A, all its answer
sets would entail F and A would answer noAS() to the query isCoherent(not F )).

3.2 Roles in the Protocol

Four roles will intervene in the protocols presented. First one is the querier Q,
that is, an agent making a request askAS(typ, ϕ). It will only send its request
and receive the final answer. Then, we have the two sources A and B3. The
request concerns a combination of those two agents’ answer sets. At last, there
will be a mediator M , receiving the query from the querier, and communicating
with the two sources in order to get an answer. A mediator for the combination
A � B would be noted MA�B.

It is important to note that even if the protocols are described as if these
four roles were independent agents, it does not mean that four different agents
have to be involved. These are just roles that can be undertaken by any agent
having the required strategies (meaning they know what messages to produce
and how to get the underlying information). As a matter of fact, in most cases,
the querier and the mediator will be the same, and will be one of the sources
(let us say that it is source A). In such a case, messages from M to A would in
fact just be some internal processing as A and M would be the same agent.
3 We consider only two sources here, but more can be used by chaining protocols.



Query-Driven Coordination of Multiple Answer Sets 49

Another interesting point to note is that the mediator will use the same illo-
cutions to communicate with the sources that the querier uses to communicate
with the mediator. The source for a specific request might then be a mediator
for another combination, enabling more complex requests involving several com-
binations. If agent ai is acting as a mediator M1 = MA�B for consensus of A
and B, its answer sets as M1 are virtually AS(M1) = AS(A) �AS(B). Then,
an agent aj that acting as mediator M2 = MM1�C for composition of ai and C
would virtually have answer sets AS(M2) = (AS(A) �AS(B)) �AS(C).

3.3 Basic Coordination Protocol

We define here protocols to get an answer set satisfying a constraint from a
combination of two sources. They use a simple generate and check method,
first generating a candidate answer set before checking its minimality (or max-
imality). Except for generous coordination, one answer set in the combination
corresponds to one answer set in each of the sources, and can thus be written
U ∗ V where U, V are answer sets of the first and second sources, and ∗ is a
partial4 binary operator on sets of literal. To get a candidate U ∗ V satisfying
constraint ϕ, we need to get U and V from both sources such that U ∗ V exists
and satisfies ϕ. Constraints on U ∗ V will be translated into constraints on U
and V by constraint (pre-)adjustment functions f1

∗ and f2
∗ .

Definition 4. Let ∗ be a partial binary operator on sets of literals, and let f1
∗ ,

f2
∗ be two functions (resp. from a constraint to a constraint and from a constraint

and a set of literals to a constraint).
f1
∗ is a constraint pre-adjustment function for ∗ iff for any constraint ϕ, f1

∗ (ϕ)
is a constraint such that for all U ⊆ C, U satisfies f1∗ (ϕ) iff there exists V ⊆ C
such that U ∗ V exists and satisfies ϕ.

f2
∗ is a constraint adjustment function for ∗ iff for any U ⊆ C and for any

constraint ϕ, f2∗ (ϕ, U) is a constraint such that for all V ⊆ C, V satisfies f2∗ (ϕ, U)
iff U ∗ V exists and satisfies ϕ.

Figure 1 depicts the protocol by which a mediator M for A � B receiving
a query askAS(typ, ϕ) from querier Q can get a proper answer set U ∗ V ∈
AS(A) � AS(B) to answer the query. Role concerned by a given state is given
as superscript. This protocol can be parameterized to fit different semantics by
defining ∗, f1∗ and f2∗ . States 1 to 7 correspond to the generation step. It gener-
ates a candidate answer set U ∗ V respecting ϕ. Then states 8 to 15 check the
minimality or maximality of the candidates by trying to generate a belief U ′ ∗V ′

that is strictly included (or strictly includes) U ∗ V . This step is parameterized
by function g. We shall have g = φ⊂ if we are checking for minimality, or g = φ⊃
if checking for maximality. If we do not need to check minimality or maximality
(e.g. rigorous coordination, simple consensus or composition), then the proto-
col can be modified by taking out the checking part. States 9,12,13,14,15 are
removed, with all transitions connected to them, and states 8M and 10M are
merged. We shall now see how to adapt this protocol for the different semantics.

4 Meaning that it might not give any results if U and V do not satisfy some condition.
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0Q 1M 2A

5M

3M

7B 6M

4Q

8M

9A 10M

12M 13M14B15M

11Q

askAS(t, ϕ) askAS(t, f1
∗ (ϕ))

askAS(t, f2
∗ (ϕ,U))

hasAS(U)

hasAS(V )

hasAS(U ∗ V )

askAS(N, f1
∗ (ϕ))

noAS()noAS()

noAS()

noAS()

noAS()

hasAS(U ′)

hasAS()

askAS(F, f1
∗ (g(U ∗ V )))

askAS(N, f1
∗ (g(U ∗ V )))

isCoherent(f2
∗ (g(U ∗ V ), U ′))

askAS(N,f2
∗ (ϕ,U))

Fig. 1. General Generate and Check Protocol

Generous coordination. Figure 2 depicts a variant of the protocol for min-
imal/maximal generous coordination. Indeed, as an answer set resulting from
generous coordination does not correspond to one answer set in each of the
source, the generation cannot be done in the same manner. The principle is still
the same. States 1 to 8 correspond to the generation part, and other states to
the checking part. Generation part first asks an answer set from the first source,
and only ask one to the second source if none is provided. The checking part
relies on the fact that all answer sets in a given source are incomparable wrt to
set inclusion between themselves. States 9 to 12 check the minimality (or maxi-
mality) of an answer set from the first source against answer sets of the second,
and states 13 to 16 do it the other way around.

Rigorous coordination. An answer set in rigorous coordination corresponds to
one answer set in each the sources, both being identical. Rigorous coordination of
A and B could thus be defined as {U�V | U ∈ AS(A), V ∈ AS(B), U�V exists}
where for any U, V ⊆ C, U�V = U if U = V , and U�V does not exist otherwise.
We can thus use the general protocol (in its variant without checking part) with
∗ = �. We then define the constraint adjustment functions for �: f1� = id and
for any ψ and any U , f2�(ψ, U) = ψ ∧ φ=(U).

Property 4. f1� and f2� are respectively constraint pre-adjustment and constraint
adjustment function for �.

Proof. It is obvious from the definition of � that for any U , there is a V such
that U �V satisfies ψ iff U satisfies f1�(ψ) = ψ. Given U and ψ, for all V , U �V
exists and satisfies ψ iff V = U and U satisfies ψ, that is, iff V = U and V
satisfies ψ, which is true iff V satisfies φ=(U) and ψ, that is f2�(ψ, U).
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0Q 1M 2A 3M

4B 5M 6Q

7M

8M

9B 10M 11M 12Q

13A 14M 15M 16Q

askAS(t, ϕ) askAS(t, ϕ)
askAS(t, ϕ)

isCoherent(F, g(U))

isCoherent(F, g(V ))

hasAS(U)

hasAS(V )

hasAS()

hasAS()

noAS()

noAS()

noAS()

noAS()

hasAS(U)

hasAS(V )

noAS()

Fig. 2. Generous Coordination Protocol

Composition. For composition, we have U ∗V = U !V , where U !V = U ∪V
iff U ∪V is consistent. We define φCons =

∧
a∈I(C) not φ∀({a,¬a}) where I(C) =

{a ∈ C|¬a ∈ C}. Any set of literals T ⊆ C satisfying φCons is consistent. Then,
let L ∈ C be a literal, S, T, U ⊆ C be sets of literals, and ϕ, ψ be constraints. f1

�
is defined by:

(i) f1�(φ∀(S) ∧ not φ∃(T )) = φCons ∧ not φ∃(¬.S ∪ T ) ∧ φ∀(S ∩ (¬.S ∪ T );
(ii) f1�(ϕ ∨ ψ) = f1�(ϕ) ∨ f1�(ψ).

f2∪ is defined by:

(i) f2
∪(L, U) = φCons ∧ φ∀({L} \ U), meaning that f2

∪(L, U) = φ∀(∅) = 
 if
L ∈ Uand φ∀({L}) = L otherwise.

(ii) f2∪(not ϕ, U) = not f2∪(ϕ, U),
(iii) f2

∪(ϕ ∧ ψ, U) = f2
∪(ϕ, U) ∧ f1

∪(ψ, U) and
(iv) f2

∪(ϕ ∨ ψ, U) = f2
∪(ϕ, U) ∨ f2

∪(ψ, U).

At last, f2
� will be defined by f2

�(ϕ, U) = f2
∪(ϕ, U) ∧ φCons ∧ not ∃(¬.U) where

¬.U = {L ∈ U |¬L ∈ C}.
Property 5. f1� and f2� are respectively constraint pre-adjustment and constraint
adjustment function for !.

Proof. Given ϕ = φ∀(S) ∧ not φ∃(T ) and U , there is a V such that U ! V
exists and satisfies ϕ iff there is V such that U ∪ V consistent and S ⊆ U ! V
and T ∩ (U ! V ) = ∅, iff U ∪ S consistent and T ∩ U = T ∩ S = ∅, iff U
and S are consistent, U ∩ ¬.S = U ∩ T = T ∩ S = ∅, iff U satisfies φCons ∧
not ∃(¬.S ∪ T ) and S ∩ (¬.S ∪ T ) = ∅ [A]. If U satisfies f1(ϕ), then U satisfies
φCons ∧ not ∃(¬.S ∪ T ) and φ∀(S ∩ (¬.S ∪ T ), thus we have U ∩ (¬.S ∪ T ) = ∅
which implies U ∩ (S ∩ (¬.S ∪ T )) = ∅. As S ∩ (¬.S ∪ T ) ⊆ U , we conclude
S∩ (¬.S ∪T ) = ∅. Thus U satisfies f1(ϕ) ⇒ (A). If (A), then U satisfies φCons∧
not ∃(¬.S ∪ T ), and S ∩ (¬.S ∪ T ) = ∅ implies φ∀(S ∩ (¬.S ∪ T ) = φ∀(∅) = 
 is
also satisfied. Let ϕ is any constraint. We can formulate ϕ as a DNF C1∨. . .∨Ck,
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where Ci =
∧
L∈C+

i
L ∧∧L∈C−

i
not L = φ∀(C+

i ) ∧ not φ∃(C−
i ). Then there is a

V such that U !V exists and satisfies ϕ iff there is a V s. t. U !V satisfies C1 or
. . . or Ck, iff U satisfies f1

�(C1) or . . . or f1
�(Ck), iff U satisfies f1

�(ϕ). It proves
that f1� is a constraint pre-adjustment function for !.

Consensus. For consensus, we have U ∗ V = U ∩ V . Let L ∈ C be a literal,
U ⊆ C a set of literal, and ϕ, ψ two constraints. We define f1

∩ by :

(i) f1∩(⊥) = ⊥;
(ii) f1∩(L) = L and f1∩(not L) = 
;
(iii) f1∩(ϕ ∧ ψ) = f1∩(ϕ) ∧ f1∩(ψ) and f1∩(ϕ ∨ ψ) = f1∩(ϕ) ∨ f1∩(ψ).

Then, f2∩ is defined by:

(i) f2
∩(L, U) = φ∃({L}∩U), meaning that f2

∩(L, U) = φ∃(∅) = ⊥ if L �∈ U and
φ∃({L}) = L otherwise.;

(ii) f2
∩(not ϕ, U) = not f2

∩(ϕ, U),
(iii) f2

∩(ϕ ∧ ψ, U) = f2
∩(ϕ, U) ∧ f2

∩(ψ, U) and
(iv) f2

∩(ϕ ∨ ψ, U) = f2
∩(ϕ, U) ∨ f2

∩(ψ, U).

Property 6. f1∩ and f2∩ are respectively constraint pre-adjustment and constraint
adjustment function for ∩.

Example 3. We consider two agents a0 and a1 having resp. programs P0 : {
(a ← not b), (b ← not a), (c; d ←) } and P1 : { (a; c ←), (b ← not c), (d ←)},
and a query askAS(F, a) for the maximal consensus.of P0 and P1. We give below
the resulting interactions (with state number given as subscript).

M1 → A2 askAS(F, f1
∩(a) = a) A2 → M5 hasAS({c, a})

M5 → B7 askAS(F, f2
∩(a, {c, a}) = a) B7 → M8 hasAS({a, b, d})

M8 → A9 askAS(F, f1
∩(g({a})) = (b ∨ c ∨ d) ∧ a) A9 → M12 hasAS({c, a})

M12 → B14 isCoherent(f2
∩(g({a}), {c, a}) = c ∧ a) B14 → M13 noAS()

M13 → A9 askAS(N, f1
∩(g({a})) = (b ∨ c ∨ d) ∧ a) A9 → M12 hasAS({a, d})

M12 → B14 isCoherent(f2
∩(g({a}), {a, d}) = a ∧ d) B14 → M15 hasAS()

M15 → B7 hasAS(N, f2
∩(a, {c, a}) = a) B7 → M6 noAS()

M6 → A2 askAS(N, f1
∩(a) = a) A2 → M5 hasAS({a, d})

M5 → B7 askAS(F, f2
∩(a, {a, d}) = a) B7 → M8 hasAS({a, b, d})

M8 → A9 askAS(F, f1
∩(g({a, d})) = (b ∨ c) ∧ a ∧ d) A9 → M10 noAS()

In state 10, a0 as M can then answer to the querier hasAS({a, d}). Note that
only 2 of the 4 answer sets of P0 have been computed, and likewise, only one of
the two answer sets of P1 have been computed.

3.4 Group Protocol

As seen in 3.2, in order to make queries about combination involving more than
two sources, or mixed combination such as those proposed in 2.3 and 2.4, we
can chain basic protocols with mediator acting as sources, and thus get condi-
tional combinations of group of agents. By having agents taking several roles, we
can avoid unnecessary communications (who would then just become internal
computations), and produce complex behaviors from our simple basic protocols.
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Note that since the basic combinations are commutative and associative, there
can be several ways to divide them in pairwise combinations. While any of the
different ways to do it would produce the same result, some arrangement might
be more efficient than other, as shown by the following example:

Example 4. We consider four agents a1, a2, a3 and a4, with AS(a1) = {{p1}},
AS(a2) = {{p2}}, AS(a3) = {{p3}} and AS(a4) = {{¬p1}}. If we want to
compute their composition a1�a2�a3�a4, there are several ways to do it. One
way could be to compute it by (a1 � a2)� (a3 � a4), having a mediator M1,2 for
(a1 � a2), M3,4 for (a3 � a4) and combining them with a third mediator Mall.
However, by doing so, we would first compute AS(a1 � a2) = {{p1, p2}} and
match it with AS(a3 � a4) = {{p3,¬p1}} to discover that the combination does
not succeed. If we compute it by (a1 � a4)� (a3 � a2), with mediators M1,4 and
M3,2, then we see directly that (a1�a4) does not succeed, and we can stop there.
Note that this choice impacts the order in which answer sets are computed (and
as a result might affect the number of intermediate computations). However,
with respect to the final results, it will only affect the order in which answers are
given, and not the answers themselves. In our example, both ways conclude that
the combination does not succeed, though the first one need more computation
to discover it.

4 Applications

This section details some examples of systems of agents using these different
kinds of coordination, before discussing other possible applications.

4.1 Voting

Using general coordination of degree p Rp, a voting process can easily by ex-
pressed using iterative applications of our protocols with increasing p. Let us
consider a group G of n agents trying to choose the best answer sets for the
group among their answer sets. R1(G) will give all possible candidate answer
sets. Then, for k ∈ {2, n}, Rk(G) gives the beliefs that are supported by k
agents. When Rk(G) = ∅, it means that there is no answer set supported by
k agents of more. Rk−1 thus gives us the best possible candidates (the winners
of the vote). We can find it by increasing k until Rk(G) = ∅ or i = n, and
returning afterwards Rk−1(G) (or Rn(G) if it is not empty). We can also stop
increasing k when card(Rk(G)) = 1 if we do not need to know the number of
votes. Note that we can keep mediators (memorizing the answer sets they com-
puted) from one step to the others to avoid repeating computations that have
already been done. In some case, if the options (represented by answer sets) upon
which the agent are deciding can be restricted or mixed, it might be better to
use partial maximal consensus or partial composition of degree p with the same
strategy.



54 G. Bourgne and K. Inoue

Example 5. We consider 6 agents a1, . . . , a6 voting for different exclusive options
a, b, c, d, e, f . Each of them can vote for several options. We have : AS(a1) =
{{a}.{b}}, AS(a2) = {{a}.{c}, {d}}, AS(a3) = {{c}.{e}}, AS(a4) = {{b}},
AS(a5) = {{b}.{c}, {d}}, AS(a6) = {{a}.{c}}.

Then R1(G) = {{a}.{b}, {c}.{d}, {e}}, R2(G) = {{a}.{b}, {c}.{d}}, R3(G) =
{{a}.{b}, {c}}, and finally R4(G) = {{c}}. The option that would satisfy the
more agents is thus c in this case.

4.2 Preference Management

We consider two friends, Ann and Bruce, who want to share some pizza. There
are two different sellers, represented by the following logic programs:

Seller 1 (S1)
Tomato; Cream ←
Olive; Ham; Regular ←
¬Tomato ← not Tomato
¬Cream ← not Cream
¬Olive ← not Olive
¬Ham ← not Ham
¬Mushroom ←

AS(S1) = {
{T , R, ¬C, ¬O, ¬H , ¬M},
{T , ¬C, ¬O, H , ¬M},
{T , ¬C, O, ¬H , ¬M},
{C, R, ¬T , ¬O, ¬H , ¬M},
{C, ¬T , ¬O, H , ¬M},
{C, ¬T , O, ¬H , ¬M}}.

Seller 2 (S2)
Tomato ← P1

Ham ← P1

Mushroom ← P1

Tomato ← P2

Ham ← P2

Olive ← P2

Cream ← P3

Mushroom ← P3

¬Tomato ← not Tomato
¬Cream ← not Cream
¬Olive ← not Olive
¬Mushroom ← not Mushroom
¬Ham ← not Ham

AS(S2) = {{P1, T , ¬C, ¬O, H , M},
{P2, T , ¬C, O, H , ¬M}, {P3, ¬T , C,
¬O, ¬H , M}}

Now we consider the preferences of Ann and Bruce:

Ann (RA)
¬Mushroom ←
Ham ← Cream
Tomato; Cream ←

Bruce (RB)
¬Olive ←
Ham; Mushroom ←

To consider every possible pizzas from one of these seller, we can use generous
coordination and create agent Sall = MS1⊕S2 . So if Ann wants the lists of all
pizza, she could send askAS(F,
) then askAS(N,
) to Sall until she gets full
lists. But in fact, Ann is only interested in pizza appropriate for her taste. To
get them, she can ask for an answer set of the composition of its program with
the sellers Sall, acting herself as querier, source, and mediator CA = MRA�Sall

(choices of Ann). Here, AS(CA) = {{T , R, ¬C, ¬O, ¬H , ¬M}, {T , ¬C, ¬O, H ,
¬M}, {T , ¬C, O, ¬H , ¬M}, {C, ¬T , ¬O, H , ¬M}, {P2, T , ¬C, O, H , ¬M}}.
Then again, she wants to choose a common pizza with Bruce, and thus need to
know if there are some common choices between them. Rigorous coordination
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will give us this. Answer set of MAB = MCA⊗CB are pizzas appropriate for
both Ann and Bruce. Ann could act as querier, mediator MAB, and source CA
whereas Bruce would act as source CB (triggering in turn protocol with Sall to
derive answer sets CB). Here, AS(MAB) = {{T , ¬C, ¬O, H , ¬M}, {P2, T , ¬C,
O, H , ¬M}}. Bruce and Ann agree to have either a tomato and ham pizza from
the first seller, or the pizza P2 (tomato, ham, olive) from seller 2.

This example shows that creating multiple mediator agent enables us to an-
swer request to complicate combinations. Indeed, we have MAB ≡ CA ⊗ CB ≡
(RA � Sall) ⊗ (RB � Sall) ≡ (RA � (S1 ⊕ S2)) ⊗ (RB � (S1 ⊕ S2)). It illustrates
how different kinds of coordinations can be used together to produce complex
useful requests.

4.3 Individual Plans with Consensus

We consider another situation. Amber and Barry, a couple, are thinking about
buying a new car (C) and traveling this year. They can travel in summer (S),
winter (W) or both. Amber can decide to spend or not all her vacation (V) this
year. If not, she cannot go to one of the trip. She would prefer to go in winter,
but if she does not then she wants to go in summer (so that she travels at least
once). If she is going to a trip, she wants to buy a new car. Then, Barry would
like to buy a new car and have a trip in winter and summer, but he cannot
afford it. Therefore he must either take a loan (L) or forsake one of its plans.
However, he is set on having a trip in winter. Their respected logical programs
are:

Amber (A) :
¬S;¬W ← ¬V
S ← ¬W
W ← not ¬W
V ;¬V ←
C ← S
C ← W

Barry (B) :
L;¬S;¬W ;¬C ←
S ← not ¬S
W ← not ¬W
C ← not ¬C
← not W

AS(A) = {{S, ¬W , C, ¬V }, {W , C, V }, {¬S, W , C, ¬V }} and AS(B) = {{S, W ,

C, L}, {¬S, W , C}, {S, W , ¬C}}.

As buying a new car for the couple, or going to a trip together are a priori joint
actions, Amber and Barry should consult each other to decide what to do. Most
likely, they want to maximize the plans they do together. Maximal agreements
are given by maximal consensus semantics (mediator role M+ = MA�≥B, taken
by one of them). AS(M+) = {{S, C}, {¬S, W , C}}. These consensus can
only be reached for some choice of Amber and Barry. Selecting individual set
of plans that respects the agreement can be done by composing the individual
program with the maximal consensus. Amber could act as a mediator for A+ =
MA�M+ and get 4 plans that would be compatible with one of the possible
agreements.
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We give below a methodology for parallel plan selection with consensus :

0. Initialize counters : pM = pA = pB =’F’.
1. Get a maximal consensus : C1 = askAS(pM , ∅)M+ .
2a. Get matching plan of A: PA

1 = askAS(’F’,req∀C1)A+ . If no answer is
given, try next consensus (pM =’N’, go to 1).

2b. Get matching plan of B: PB
1 = askAS(’F’,req∀C1)B+ . If no answer is

given, try next plan of A (pA =’N’, pB =’F’, go to 2a).
3. Check resulting plan (PA

1 , PB
1 ). If not ok, try next plan (pB =’N’, go

to 2b).

Using this method with our example, we first get C1 = {S, C} at step 1, then
PA

1 = {S, ¬W , C, ¬V } and PB
1 = {S, W , C, L} at step 2a and 2b. The first set

of plan given by this method in our example is thus ({S, ¬W , C, ¬V } ,{S, W ,
C, L}). Here, Barry wants to have a trip in winter whereas Amber does not agree
with it. If Barry can go by himself in winter, then this solution is acceptable. If
not, the second set of plan obtained would be ({S, W , C, V } ,{S, W , C, L}).
In this case, with partial plan of Amber being completed by consensus, we get
a larger consensus.

4.4 Other Applications

We just presented some examples dealing with qualitatively different kinds of
programs. In the pizza selection example, the logic programs of seller agent gave
possible options. Other agents had their preferences specified by logic programs.
In the second example, however, the logic programs represented requirement for
some goals, and the answer sets were sets of goals that could be accomplished
together. Depending on what is represented by a logic program (preference, goals,
desires, facts), other applications can be proposed. For example, if agents have
alternative beliefs about a system and its evolution, one could use these protocols
in problem solving or diagnosis application. With logic programs representing
action and fluents [9], multi-agent planning is natural (see [14,13]).

5 Discussion

There has been a number of study of compositional semantics of logic programs
(see [3] for a survey). A semantic is compositional if the meaning of a program can
be obtained from the meaning of its components. The union of programs is the
simplest and most studied composition between programs, but the semantics of
logic program is not compositional with respect to the union of programs even for
definite logic programs. As compositionality and non-monotonicity are viewed as
orthogonal issues [3], studies for compositional semantics of nonmonotonic logic
programs mainly concern with the issue of devising a compositional semantics
that can accomodate (restricted) nonmonotonicity, or imposing syntactic condi-
tions on programs to be compositional (e.g. [4]). In this respect, our approach is
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different from those previous studies, as we are not merging a set of components,
but rather defining some semantics that combine answer sets from the original
programs. Though we gave a number of examples, one may wonder how well
such combinations of answer sets reflect the meaning of original programs. For
instance, given two programs P1 = {¬p ← notp} and P2 = {p ←}, one would
consider the meaning of program composition as the answer set {p} of P1 ∪ P2.
By contrast, composition and rigorous coordination do not succeed, consensus
has a single empty answer set {∅} and generous coordination yields {{p}, {¬p}}.
To justify our position, consider the following situation (adopted from [11]): the
agent P1 does not believe the existence of an alien unless its existence is proved,
while P2 believes the existence of aliens with no doubt. This situation is encoded
by the above programs. Then what conclusion should be drawn after combining
these conflicting belief of agents? If one simply merges beliefs by program union,
one would conclude that the group believes in the existence of alien (single an-
swer set {p}), whereas our semantics describes that the two agents do not have
a common belief (no rigorous coordination) and cannot even accomodate each
other’s belief (no composition), They cannot agree even on some partial belief
(consensus is {∅}), and generous coordination gives us all their individual beliefs
({p} and {¬p}). We believe that one can thus get a more accurate and unbiased
description of the beliefs of the group this way. Indeed, in multi-agent environ-
ments, different agents have different levels of beliefs, A cautious agent might
have beliefs in a default form, while an optimistic agent might have knowledge in
a definite form. In this circumstance, it appears careless to simply merge knowl-
edge from different information sources. Our approach retains beliefs of each
agents and give them the same priority when combining them. In this sense, our
combination are intended to provide synthesis and description of the beliefs of a
group to coordinate agents, rather than to synthesize a program by its compo-
nents. This means that the agents are unwilling to take other agents’ beliefs as
a basis for their own reasoning. A rule a ← body in an agent program thus has a
local interpretation: if the agent internally believes body (i.e if it can prove the
positive body and cannot prove the NAF literals), then it should also believe a.
External beliefs that might be obtained from the other agents are not used for
reasoning.

Since, for the reason discussed above, we focus on the answer sets rather than
the explicit rules of the programs, our approach differ substantially from other
works on combining ASP programs such as [4] and [5]. A more closely related
notable work in the answer set paradigm, however, is [7], in which agents ne-
gotiate to augment the intersection of two answer sets as long as consistency is
preserved, providing an interesting step between consensus and composition. Be-
sides, knowledge base merging has extensively studied similar problems, though,
with the exception of some works on flocks such as [2], it focuses on situations
in which each agent has only one belief set. It can however provides useful leads
for other kinds of coordinations.
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6 Conclusion

This paper has presented protocols for simple kinds of belief coordination, in-
stantiated in term of ASP. They are intended for cooperative agents. Based on
sharing beliefs to find some common ground, they do not rely on the theory
used for producing those belief. As long as the agents are able to translate their
knowledge into sets of answer sets on a common concern C, they can use these
protocols, so it can be useful for coordinating heterogenous agents. Contrarily
to some coordination or negotiation protocols such as [6], this work is not goal-
driven. It describes how to inquire about shared or compromised answer sets
with a minimum of queries, without modifying the agents’ own beliefs. How the
agents use the information they get from these coordinations is up to them. Our
examples motivate some possible uses of these informations.

Future works should also take into account preference relations over answer
sets of the sources, in order to derive from it a preference relation on the com-
bination’s answer sets, and ensure that the protocols produce first the preferred
combinations. In order to ensure a better efficiency of the protocols, it would
also be interesting to investigate some ways to direct the progressive building of
answer sets in individual answer set solvers by introducing temporary integrity
constraints that could direct their production while leaving the option to lift the
constraints and backtrack to recover ignored answer set. It would be especially
useful in a situation where a sequence of different queries have to be answered.
At last, interesting uses of these semantics in applications should be further
investigated to identify possible refinement of them, and develop goal-driven
coordination protocols based on such combined beliefs.
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Abstract. Commitment-based interaction protocols are a flexible way
of representing the interaction of a set of agents, that is well-known and
widely accepted by the research community. Normally these protocols
consist of sets of actions with a shared meaning. From the point of view
of an agent, however, the meaning of an action is completed by the con-
text in which it is used: the context shapes the behavior of the agent
in that the agent decides which actions to take depending on it. Indeed,
since the seminal work of Searle (supported by other authors), two com-
ponents of interaction protocols have been identified, constitutive rules
and regulative rules, which altogether define the meaning of the interac-
tion. Commitment-based protocols usually do not account for the latter.
In this work we introduce a representation that explicitly includes regu-
lative rules as constraints on commitments and, in the light of the work
by Singh and Chopra [38], report the first steps in the analysis of the
advantages brought by such introduction.

1 Introduction

The term “interaction protocol” refers to a pattern of behavior that allows a
set of agents to become a multi-agent system when engaging in the expected
interactions with one another. Protocols can be seen as public artifacts [38],
ruling the interaction of agents playing the various roles. A role specification is
just a formal definition of what is lawful for its player to do or to expect at any
possible state of the interaction. This specification is given independently from
the player that will enact the role.

Considering protocols as models of the desired interaction allows one to devise
the verification of many properties and guarantee them before any interaction
takes place. For instance, it is possible to check if the roles of a protocol are
interoperable, i.e. if they allow any interaction to take place. An agent which
accepts to conform to a protocol, whose roles are proved interoperable, is ideally
guaranteed that its interaction with any other agents, playing the other roles
foreseen by the same protocol, will succeed [2,31,10]. This is surely an advantage
[4] w.r.t. checking directly the interoperability and the properties of interaction
of a set of agents: in this latter case, the verification of properties can only be
done after the composition is made, against the system as a whole; thanks to
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protocols, instead, the verification of the interoperability can be distributed in
time and among the various agents that could take on the roles. A candidate role
player could autonomously check its conformance to the model by comparing its
behavior to the role that it means to play. To do this the agent does not need to
have the implementations of the other roles. This modularity of the verification
meets the requirements given by interaction protocol engineering.

Interaction protocols can be specified in different ways. Some representations,
like proposals based on Petri nets, finite state machines or on Pi calculus have
an algorithmic (procedural) nature that is suitable to capture the desired inter-
action flows. Singh and colleagues criticize the use of this kind of specification
as being too rigid [16,36,44,43]: agents cannot, for instance, take advantage of
opportunities that arise along the interaction and that are not explicitly included
in their procedure. These authors propose the more flexible commitment-based
protocols. A commitment can be seen as a literal which can hold in the social
state of the system. It represents the fact that a debtor commits to a credi-
tor to bring about some condition. All the agents that interact according to a
commitment-based protocol share the semantics of a set of actions, which affect
the social state by creating new commitments, canceling commitments, and so
forth. The greatest advantages of the commitment-based protocols, w.r.t. other
approaches to interaction, are that they do not over-constrain the behavior of
the agents by imposing an ordering on the execution of the shared actions, and
that by giving a shared meaning to the social actions, they allow working on
actual knowledge of what happened (or what is likely to happen), rather than
on beliefs about each others’ mental state.

The only constraint that commitment-based protocols include, to specify that
an interaction is successful, is that all commitments are discharged. The research
question that we face in this work is whether the specification of patterns of in-
teraction as part of a protocol compromises the autonomy of agents or whether
it is an instrument that gives additional meaning to actions, a meaning that we
lose when we remove all constraints. As Searle observes [33] in many contexts
it is necessary to regulate antecedently existing forms of behavior. For exam-
ple, a purchase protocol may state that the payment must occur first in order
for the shipment to proceed. The fact that the payment must occur first is not
motivated by the need of making the shipping action executable: shipping is ex-
ecutable if the purchased item is available. Rather, it is a superimposed pattern.
Commitment-based protocols, however, do not allow the expression of such pat-
terns. Sometimes authors fill this gap by enriching actions with preconditions
to their (non-) executability [41,17], in this way they rule the order of action
execution.

In our view, an interaction protocol must not only specify the agreed meaning
of actions but it must express also an agreement on the way the agents will
behave and use the protocol actions. This should be done in a way that does not
compromise the autonomy of agents, which would be free to decide how to act
and to take advantage of opportunities, that arise along the interaction, taking
also the risk of being misunderstood when they get out of the boundaries given
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by the protocol. After an agreement we can shake hands twice, if we are happy
to do so, but shaking hands before the agreement is not understandable in the
context of that protocol.

In this paper, we take on the commitment-based interaction protocol model
proposed in [6,5]. The main characteristic of this model is a decoupled represen-
tation of the constitutive and the regulative specifications of the protocol, which
are both based on commitments. While the constitutive specification defines
the meaning of actions based on their effects on the social state, the regulative
specification is a set of behavioral rules, given in terms of constraints among com-
mitments, which regulate the evolution of the social state independently from
the executed actions. To the best of our knowledge, this decoupling, postulated
since the seminal work of Searle [33,12], was not implemented in commitment-
based interaction protocols before [6,5]. Then we survey the properties hoped for
interaction protocols in [38] and report some initial considerations about how
the introduction of the regulative specification not only does not compromise
the advantages, given by the commitment-based approach, in their verification
but it also allows the verification of such properties in a finer and modular way
because the specification of protocols meets the specification of agents.

2 Commitment-Based Protocols

Commitment protocols [36,43,44] are interaction patterns given in terms of com-
mitments, involving a set of predefined roles. Commitments are directed from a
debtor to a creditor. The notation C(x, y, r, p) denotes that the agent playing
the role x commits to an agent playing the role y to bring about the condition p
when the condition r holds. All commitments are conditional. An unconditional
commitment is merely a special case where r equals true. Whenever this is the
case, we use the short notation C(x, y, p). Agents share a social state that con-
tains commitments and other literals that are relevant to their interaction. Every
agent can affect the social state by executing actions, whose definition is given
in terms of modifications to the social state (e.g. adding a new commitment,
releasing another agent from some commitment, satisfying a commitment, etc.).
So a commitment protocol is made of a set of actions, involving the foreseen
roles and whose semantics is agreed upon by all of the participants [43,44,15].

On the other hand, agents show a behavior, which is not captured by the
action definitions but that rather involves a decision process (a procedure, a
goal-driven plan [40], etc.) aimed at selecting the action to execute [42,32]. An
autonomous agent situated in an environment decides which actions to perform
depending on the particular situation it is facing.

Since protocols are intended to rule the interaction of agents, the expectation
is that they show the same structure of agents. Indeed, Searle [33] and later
other authors, e.g. [12,9,18], have pointed out the need for a distinction between
the regulative and the constitutive specifications of an interaction protocol. The
constitutive specification gives the semantics of actions, while the regulative one
rules the flow of execution. The regulative specification, encoding the behavioral



Commitment-Based Protocols with Behavioral Rules 63

rules, however, is not explicitly represented in commitment-based approaches
like [18,15,38,41,24,43], where only actions are represented.

An actual identification, not only in agents but also in the protocol definition
itself, of two separated components (the constitutive specification and the regu-
lative specification) we argue would bring many advantages in the construction
of multi-agent systems. The decoupling of the two parts would allow an easier
re-use of actions in different contexts, an easier customization on the protocol,
an easier composition of protocols. As a consequence, multi-agent systems would
gain greater openness, interoperability, and modularity of design. In particular,
interoperability would be better supported because it would be possible to verify
it w.r.t. specific aspects (e.g. interoperability at the level of actions [18,15,19] or
at the level of regulation rules). Protocols would be more open in the sense that
their modularity would allow designers to easily adapt them to different con-
texts. Moreover, it would be possible to check properties that concern a single
agent, willing to play a role of the protocol, against the protocol and indepen-
dently from which other agents will play the other roles. In other words, if an
agent in a system is substituted by another agent, it would not be necessary
to recheck the whole system from scratch, because certain verifications can be
distributed.

In the literature it is possible to find approaches that include in the proto-
col representation some regulative specification. For instance [37], where before
relations are applied to events to define rules of behavior, like [26], where pref-
erences about alternative behaviors are specified, like [1], where temporal con-
straints among the times at which events occur are specified, or like [23], where
interaction diagrams are introduced inside protocols to rule the use of actions.

Unfortunately, even when behavioral rules are explicitly represented in some
way, the decoupling between the regulative and the constitutive specification is
not sufficiently supported yet, see [6,5] for details. Our proposal, which is de-
scribed hereafter, explicitly accounts for decoupled constitutive and regulative
specifications of interaction protocols. In this light and by assuming a similar
abstraction for agents, we re-read the correctness properties for multi-agent sys-
tems, discussed in [38].

3 Design of Commitment-Based Protocols

In this section we propose a representation of commitment-based protocols which
encompasses a constitutive specification, defining the meaning of actions for all
the agents in the system, and a regulative specification, constraining the possible
evolutions of the social state (see Fig. 3). Instead, for what concerns players, we
account both for the player’s own actions and for its behavioral rules.

Definition 1 (Interaction protocol). An interaction protocol P is a tuple
〈R, F, A, C〉, where R is a set of roles, F is a set of literals (including commit-
ments) that can occur in the social state, A is a set of actions, and C is a set of
constraints.
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Fig. 1. Decoupling between constitutive (actions) and regulative (constraints)
specifications

In words, the set of social actions A, defined on F and on R, forms the constitutive
specification of the protocol, while the set of constraints C, defined on F and on
R too, forms the regulative specification of the protocol.

Each role is identified by a unique label. Since both the constitutive and the
regulative specifications are given also in terms of the roles involved in the actions
or in the social commitments, it is possible to keep for each role, the set of the
actions it can perform as well as the set of commitments it may be involved in
as the interaction is carried on.

F is a set of positive and negative literals, where each literal can be a commit-
ment or some other proposition which contributes to the social state (they are
the conditions that are brought about). The set F represents the domain model
and defines the vocabulary used by all agents (through roles) to communicate in
the context of the protocol. Currently F is a flat set but this representation can
easily be structured by integrating an ontology layer into the domain model.

Constitutive Specification. It defines the meaning of actions in the very same way
as it is done in [15], i.e. in terms of how it affects the social state by adding or
removing literals or by performing operations on the commitments, see [35,44].
For instance, the action priceRequest of the Net Bill protocol (which is used as
an example below) is given in this way:

priceRequest(c, m, goods) means create(C(c, m, purchase(goods)))

i.e. its effect is to add to the social state a commitment C(c, m, purchase(goods))
by which the customer (role c) commits to a merchant (role m) to buy some
goods. As we will see, the protocol includes also the action rejectQuote:

rejectQuote(c, m, goods, price) means
rejectedQuote(goods, price) ∧ delete(C(c, m, purchase(goods)))

by which the customer rejects the quote received from the merchant. In this
case, it deletes its commitment to buy. Commitment deletion is one of the basic
operations on commitments, see [36].

An agent willing to play a role in a protocol, must understand the meaning
of the social actions that are associated to the role at issue. In order to play the
role, the agent must accept the meaning given to the social actions, which will
be the same for all agents.
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Regulative Specification. For the regulative specification C of an interaction
protocol we propose a declarative, constraint-based representation. Due to the
declarative nature of the specification, any evolution that respects the relations
involving the specified literals (including commitments) is allowed. Notice that
constraints do not specify which actions should bring conditions about. This
allows the decoupling between the constitutive and the regulative specifications,
see also [6,5], Fig. 1 and the discussion in the Conclusions. The regulative spec-
ification follows the grammar:

C → (Disj op Disj)∗

Disj → Conj ∨ Disj | Conj
Conj → literal ∧ Conj | literal

C, see Def. 1, is a set of constraints of the form A op B, where A and B are
formulas of literals in disjunctive normal form and op is one of the operators
in Table 1; literal can be either a commitment or a fact. Such constraints rule
the evolution of the social state by imposing specific patterns on how states can
progress. In order to specify constraints it is necessary to define a proper lan-
guage. One possible language, that we originally introduced in [6,5], is 2CL (the
acronym stands for “Constraints among Commitments Language”), whose op-
erators are summarized in Table 1.

Table 1. 2CL operators and their semantics in LTL

Relation Positive LTL meaning Negative LTL meaning

Correlation a •− b �a ⊃ �b a �•− b �a ⊃ ¬�b

Co-existence a •−• b a •− b ∧ b •− a a �•−• b a �•− b ∧ b �•− a

Response a •−� b �(a ⊃ �b) a �•−� b �(a ⊃ ¬�b)

Before a −�• b ¬bUa a �−�• b ¬aUb

Cause a •−�• b a •−� b ∧ a −�• b a �•−�• b a �•−� b ∧ a �−�• b

Premise a ��− b �(©b ⊃ a) a ���− b �(©b ⊃ ¬a)

Immediate response a −�� b �(a ⊃ ©b) a �−�� b �(a ⊃ ©¬b)

The names of the operators and the graphical format, used in Section 3.2,
are inspired by ConDec [30]. In order to allow the application of reasoning tech-
niques, e.g. to check if the on-going interaction is respecting the protocol, to
build sequences of actions that respect the protocol, or to verify properties of
the system, it is necessary to give the operators a semantics that can be rea-
soned about. To this aim, in this work we use linear temporal logic (LTL, [21]),
which includes temporal operators such as next-time (©), eventually (�), al-
ways (�), weak until (U). Let us describe the various operators. For simplicity
the descriptions are given on single literals rather than on formulas.

Correlation: this operator captures the fact that in an execution where a oc-
curs, also b occurs but there is no temporal relation between the two. Its
negation means that if a occurs in some execution, b must not occur.
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Co-existence: the mutual correlation between a and b. Its negation captures
the mutual exclusion of a and b. Notice that in LTL the semantics of negated
co-existence is equivalent to the semantics of negated correlation.

Response: this is a temporal relation, stating that if a occurs b must hold at
least once afterwards (or in the same state). It does not matter if b already
held before a. The negation states that if a holds, b cannot hold in the same
state or after.

Before: this a temporal relation, stating that b cannot hold until a becomes
true. Afterwards, it is not necessary that b becomes true. The negation of
a −�• b is equivalent to b −�• a.

Cause: this operator states that if a occurs, after b must occur at least once
and b cannot occur before a. The negation states that if a occurs, b cannot
follow it and if b occurs, a is not allowed to occur before.

Premise: is a stronger temporal relation concerning subsequent states, stating
that a must hold in all the states immediately preceding one state in which b
holds. The negation states that a must never hold in a state that immediately
precedes one where b holds.

Immediate Response: it concerns subsequent states, stating that b must occur
in all the states immediately following a state where a occurs. The negation
states that b does not have to hold in the states immediately following a
state where b holds.

Notice that the negated operators semantics (column 5) not always corresponds
to the negation of the semantics of the positive operator (column 3). This is
due to the intention of capturing the intuitive meaning of negations. We show
this need by means of a couple of examples. For what concerns correlation,
the negation of the formula in column 3 is �a ∧ ¬�b is too strong because
it says that a must hold sooner or later while b cannot hold. What we mean
by negated coexistence, instead, that if a becomes true then b must not occur
in the execution. For completeness, the semantics of negated correlation is not
equivalent to the semantics of a •− ¬b. For what concerns immediate response,
by negating the semantics in column 3 we obtain �(©b ∧ ¬a) which says that
b occurs in some state and a does not occur in the previous state. Instead,
the intended meaning of the negation is that a does not have to hold in the
states that precede those in which b holds (but b not necessarily have to hold).
Analogous considerations can be drawn for the other operators. The choice of
sticking to the intuitive semantics of the operators is done to give the user
only seven basic operators. Had we defined the negated operators semantics by
negating the semantics of the positive operators, we would have given the user
forteen different operators.

3.1 Violation of Constraints and of Commitments

So, an interaction protocol includes a set of constraints, whose aim is to guarantee
that all the interacting agents will achieve the expected results. This happens
because by agreeing on the constraints they agree on the behavior they all will
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carry on. In this setting, does the violation of a constraint have the same nature
of the violation of a commitment? According to Castelfranchi [11] and Singh
[35], commitments have a normative nature: an agent can freely decide if and
when committing to do something but when it does it is obliged to fulfill the
commitment. In particular, suppose a merchant has a nested commitment like
this to rule a sequencing in commitments:

C(m, c, C(c, m, purchase(goods)), C(m, c, sold(goods, price)))

Here the merchant commits to take the commitment C(m, c, sold(goods, price))
if the customer commits to C(c, m, purchase(goods)). The problem is that, since
the merchant is free to decide whether or not taking the outer commitment, the
customer has no guarantee that its decision to buy the goods will be followed
by the merchant’s commitment to sell because there is no guarantee that the
external commitment will be taken by the merchant. If, instead, we use one of
our constraints, like this one:

C(c, m, purchase(goods)) •−�• C(m, c, sold(goods, price))

by which the commitment of the customer c to buy some goods C(c, m, pur-
chase(goods)) imposes that the merchant m will sell the goods at some price
C(m, c, sold(goods, price)), the customer has the social expectation that the
merchant will take the commitment to sell the goods if it decides to buy. Since
this expectation is due to a rule of the protocol, we can interpret it as a right
of the customer. The customer knows this before starting the interaction due
to the fact that the protocol is public, and can use this information to decide
whether to use the protocol. Also the merchant knows this before starting the
interaction, therefore, it knows to which expectations on its own behavior it
commits to. It is possible to speak about rights, however, only if constraints have
a normative nature. The violation of a constraint, as well as the violation of a
commitment, pushes the agent out of the protocol. By sticking to the constraints
the agents “waive” part of their autonomy, exactly as they “waive” part of their
autonomy when they take commitments, and they do this because it is deemed
advantageous w.r.t. interacting without rules.

3.2 An Example: The Net Bill Protocol

The Net Bill Protocol [20] has the aim of satisfying the regulative necessities
of the purchase of electronic information goods (simply goods, in the following)
over a network. In this section we represent the part of the Net Bill Protocol
that rules the interactions of a customer (or consumer) c, wishing to buy some
information, and a merchant m. Intuitively, (1) the customer requests the price
of certain goods to the merchant, (2) the merchant answers by quoting the
goods, (3) the customer can either accept or reject the quote, (4) if the customer
accepts, it is sent the requested information goods in an encrypted form, (5) the
customer pays the merchant, (6) the merchant sends the key for the decryption
and the receipt of the payment to the customer. The constitutive specification
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of the protocol defines the meaning of actions in terms of the changes they make
on the social state:

(a) priceRequest(c, m, goods) means create(C(c, m, purchase(goods)))
(b) priceQuote(m, c, goods, price) means create(C(m, c, sold(goods, price)))∧

create(C(m, c, sentEnc(goods)))
(c) acceptQuote(c, m, goods, price) means create(C(c, m, paid(goods, price)))
(d) rejectQuote(c, m, goods, price) means rejectedQuote(goods, price)∧

delete(C(c, m, purchase(goods)))
(e) order(c, m, goods) means purchase(goods)
(f) goodsDelivery(m, c, goods, price, key, receipt) means

sold(goods, price) ∧ sentEnc(goods)∧
create(C(m, c, sent(key))) ∧ create(C(m, c, sent(receipt)))

(g) pay(c, m, goods, price) means paid(goods, price)
(h) sendKey(m, c, key) means sent(key)
(i) sendReceipt(m, c, receipt) means sent(receipt)

The action priceRequest states the resolution (expressed by the commitment
C(c, m, purchase(goods))) to buy certain goods from a merchant. This does not
necessarily mean that the purchase will occur because the offer of the merchant
can be rejected by the customer. By priceQuote the merchant commits to sell the
requested goods at a certain price and to send them in an encrypted form. The
acceptance of a quotation produces the commitment C(c, m, paid(goods, price)).
Instead, rejecting the quote causes the deletion of the commitment to buy; the
literal rejectedQuote is also asserted. order asserts the fact purchase(goods) and
thus causes the discharge of the commitment to buy. goodsDelivery asserts that
the goods have been sold at a certain price, it causes the discharge of the cor-
responding commitment to sell, it records that the encrypted goods have been
sent, and records the commitment of the merchant to send the key as well as the
receipt. The meaning of the other actions is simple and we do not describe it.

The regulative specification of the Net Bill protocol is given by these con-
straints (also shown in graphical format in Fig. 2):

c1: C(c, m, purchase(goods)) •−�• C(m, c, sold(goods, price))∧
C(m, c, sentEnc(goods))

c2: C(m, c, sold(goods, price)) ∧ C(m, c, sentEnc(goods)) −�•

rejectedQuote(goods, price) xor
(C(c, m, paid(goods, price)) ∧ purchase(goods))

c3: C(c, m, paid(goods, price)) ∧ purchase(goods) •−�• C(m, c, sent(key))∧
C(m, c, sent(receipt)) ∧ sold(goods, price) ∧ sentEnc(goods)

c4: C(m, c, sent(key)) ∧ C(m, c, sent(receipt)) ∧ sold(goods, price)∧
sentEnc(goods) •−�• paid(goods, price)

c5: paid(goods, price) •−�• sent(key)
c6: sent(key) •−�• sent(receipt)
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Fig. 2. Regulative specification of the Net Bill: boxes represent conjunctions of literals,
circles represent conjunctions of boxes, diamonds represent the xor of boxes

When a customer commits to buy some goods (C(c, m, purchase(goods))), the
merchant will commit to sell the goods at a certain price and to send the en-
crypted information. This is specified as a cause (•−�•, constraint c1) relation.
In Fig. 2 a rectangle containing many literals (e.g. n2) represents a conjunc-
tion. These two literals must hold before (constraint c2) the xor relation be-
tween the literal rejectedquote(goods, price), which asserts that the quotation
has been rejected, and the conjunction between the acceptance of the offer (lit-
eral purchase(goods)) and the commitment of the customer to pay the agreed
price (node n4). Notice that the customer is not obliged to reject or accept
the quotation (and commit to pay), but once the merchant observes these two
literals in the social state it takes them as a guarantee that the customer will
actually buy the information: so, the order of the execution of actions order and
goodsDelivery is ruled indirectly. So, afterwards (constraint c3) it will send the
encrypted information (node n6), confirm the price (sold(goods, price)), commit
to send the key to decrypt the information and after (and only after) the cus-
tomer has to pay (node n7). This condition causes (constraint c5) the dispatch
of the key (node n8) and of the receipt (node n9).

Remark 1. Commenting the Net Bill, Chopra and Singh [16] criticize the use of
finite state machines (FSM) because they lack flexibility: the strict encoding of
a request followed by an offer does not allow the merchant to take the initiative
by advertising an attractive deal. To avoid this limit they adopt commitment
protocols, whose only constraint is that all commitments are discharged. In other
terms, they remove the specification of any sequence. Even though we agree that
FSM are too rigid, in our opinion the aim of the Net Bill is to guarantee that
the client will have an quotation when it requests it. By removing all sequencing
relations flexibility is obtained at the cost of losing such guarantee. By sub-
stituting the cause relation (•−�•) in c1 with a response relation (•−�), we obtain
the desired flexible representation by the constraint C(c, m, purchase(goods)) •−�

C(m, c, sold(goods, price))∧C(m, c, sentEnc(goods)), both allowing to start from
an offer and keeping the guarantee that the customer receives the expected
quotations when performing a request.
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4 Correctness Properties of MAS

In Section 2 we assumed that agents are made of two components: a set of actions
and a set of behavioral rules. Actions, see Fig. 3, are the basic building blocks
of the agent’s behavior. We do not make any assumption on how agents’ actions
are represented. They can have (or have no) preconditions to their execution,
effects, or conditional effects on the agent’s mental state. Their implementa-
tion is local to the agent. In this work, following [15,38], we abstract away from
the implementation details and represent the agents’ actions as they are rep-
resented inside the interaction protocols. The same is done for the behavioral
rules. In particular, we use the language 2CL, obtaining a representation that
is homogeneous with the representation of the regulative specification of inter-
action protocols. This language is sufficiently expressive to abstractly represent
any kind of behavior, as done for business processes by proposals like [30,27,28].

Fig. 3. Interoperability and conformance properties

Considering protocols as models of the desired interaction allows one to devise
the verification of many properties of the interaction, before any interaction takes
place. In order to compare this proposal to [38], in the following we discuss the
properties of interoperability among agents/roles, and the conformance of agents
to roles. We end the section with some considerations on the refinement property.

4.1 Agent Interoperability and Protocol Interoperability

Intuitively, a set of agents/roles is interoperable when it is stuck-free, i.e., when
whatever point of interaction may be reached the system will not be blocked
[4]; in other words, when the agents jointly meet the expectations they place on
each other [38]. Singh and Chopra [38] consider interoperability as a conjunction
of liveness, safety and alignment. Liveness means that the system will progress,
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i.e. it never happens that an agent waits for a message never sent by another
agent. More generally, we say that liveness means that it never happens that an
agent waits for an action that another agent is expected to execute, and that
has never been performed. Safety means that an agent must be ready to handle
messages that it receives. In other words, it is necessary to ensure that messages
are sent in the order receivers wait for them. More generally, we say that agents
must be ready to re-act by performing an action whenever this is expected by
some other agent in the system.

Singh and Chopra propose to model liveness and safety by using potential
causality of sends and receives of messages. The two properties are characterized
by the compatibility among causal orders of sends and receives [25]. However, one
of the key points of commitment protocols is that they allow ruling not only sends
and receives but any social action whose meaning is agreed upon. For instance,
the agents may agree upon the action receiving goods and paying goods, and the
order expected by one of the two, say the customer, could be that goods will
be paid only after reception. How to extend the notion of causality to the more
general case? It would be necessary to express in some way the causal relations
expected by the role players because they are not so obvious as with messages.
Moreover, causality may be just one possible relation concerning the ordering of
actions (other relations could be useful as shown in the Net Bill example). Even
more importantly, agents rather than observing each other’s actions, observe the
social state, so it is more advisable that such relations concern the evolution of the
social state. The regulative specification, being aimed at expressing constraints
on the evolution of the social state, should indeed express such properties. We
represent it by means of the language 2CL described in Section 3. In the case it
is necessary to verify the interoperability of a set of protocol roles (also called
operability in [38]), we suppose the regulative specification given as part of the
protocol. Instead, in the case one wants to verify the interoperability of a set of
agents, it is necessary that agents disclose, at least in a partial way, their own
behavioral rules (same assumption of [38]). This, of course, supposing that they
are already aligned on the meaning of their actions.

Alignment means that whenever an agent concludes to be the creditor of a
commitment the corresponding debtor concludes that it is the debtor of the
same commitment. The verification of alignment [15,19] includes the verification
of constitutive interoperability [18,38]. Agents are constitutively interoperable
when they would agree about whatever commitments as might result from any
messages they might exchange. Constitutive interoperability can be verified by
reasoning on the Actions component of the involved agents, Fig. 3. Constitutive
interoperability is included also in our proposal. In addition, since we foresee a
decoupled representation of the regulative and of the constitutive specifications,
it is possible to check also interoperability at the level of regulative specifications
and to see if agents are, for instance, compatible at the level of actions but not
at the level of behavior or the other way around. As a final observation, some
alignment rules [15,19] could actually be constraints specified in the regulative
rules.
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4.2 Conformance and Substitutability

The limit of verifying properties at the level of groups of individual agents is
that the verifications can be done only when all such agents have been identi-
fied. The verifications are to be repeated whenever the group changes, i.e. when
one of the agents leaves the group or is substituted by a new one. Protocols allow
overcoming this limit. Given a protocol whose roles show the desired properties
(mainly interoperability), it is possible to check agents one by one against the
corresponding roles to see if they can interpret the role preserving the protocol
properties (substitutability). When the protocol property of interest is interop-
erability, the substitutability is guaranteed by the conformance relation.

In our setting, we can specify two levels of conformance: conformance at the
level of actions (constitutive conformance), and conformance at the level of be-
havior (regulative conformance). Constitutive conformance aims at verifying that
an agent can establish a count-as relation between its own actions and the social
actions. The reason is that when agents have to interact with one another in
the context of a protocol they must be capable of providing an implementation
for each of the actions accounted for by the role they want to play. Notice that
it is not required that agents have actions that exactly match with the social
actions [45,7,15]. It is not even required to have a 1-1 relation, so an agent may
implement a social action by means of a sequence of its own actions.

By regulative conformance we mean the fact that the behavioral rules of the
agent are not in conflict with the regulative specification of the protocol. Since,
in general, the agent’s behavioral rules can restrict the behaviors allowed by
the regulative specification, it is also necessary to check that these restrictions
do not impose constraints on the other players. In other words, the player is
allowed to restrict its own behavior but it should not limit the freedom of the
other agents, when they behave as specified by the protocol. For instance, in the
Net Bill protocol the customer can continue to ask for offers until it receives one
that it likes. If an agent playing the role of merchant has a constraint saying that
it can produce only one offer, then, that agent limits the freedom of any agent
playing the role of customer, which has the right (according to the protocol) to
ask for as many offers as it likes. In general, the behavioral rules of an agent do
not have to offend the autonomy of choice the protocol gives to the other agents.

One last property that it is interesting to mention is compliance, which
amounts to verifying that an execution of an agent respects the expectations
of the others, in the context of a protocol, e.g. [13]. As a difference with [38], the
presence of the regulative specification of the protocol allows verifying along the
run if the agent violates the constraints given by the protocol, without waiting
to arrive to the end to see if all commitments are discharged. To put it simply,
violations can be intercepted earlier.

4.3 Protocol Generalizations/Refinements

In interaction protocol engineering, it is often desirable to specialize or to gen-
eralize protocols so as to deal with more specific or wider contexts, e.g. [3].
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The modular nature of our proposal allows the introduction of two levels of gen-
eralization/refinement: at the constitutive level, i.e. at the level of actions as in
[38] as well as at the regulative level. In this latter case, we exploit the declar-
ative nature of 2CL by producing broader or stricter sets of constraints. The so
obtained protocols can be organized in a taxonomy. As an example, one might
wish the Net Bill to handle in a special way the case in which some goods are
free: when this happens no payment is requested. The implementation can be
obtained (Figure 4) as a generalization of the Net Bill (Figure 2) by enriching
the constraints with a xor that introduces a new branch for the free-goods case:

Fig. 4. Regulative specification of the generalized Net Bill: the dashed line highlights
the constraints ruling the purchase of free goods. Boxes represent conjunctions of lit-
erals, circles represent conjunctions of boxes, diamonds represent the xor of boxes

c1: C(c, m, purchase(goods)) •−�• C(m, c, sold(goods, free)) xor
(C(m, c, sold(goods, price)) ∧ C(m, c, sentEnc(goods)))

c7: sent(receipt) −�• sent(goods, update)
c8: C(m, c, sold(goods, free)) ∧ purchase(goods) •−�•

sentEnc(goods) ∧ sent(key)
c9: sentEnc(goods) ∧ sent(key) •−�• sent(receipt)
c10: C(m, c, sold(goods, free)) �•−� sent(goods, update)

Constraint c1 was modified to explicitly tackle the free-goods case. Constraint c8
states that goods are sent together with the key if both the merchant has offered
it for free and the customer has accepted to purchase it (literal purchase(goods)).
The receipt is sent at the end (c9). Finally, (c10) if some information updates
become available, the merchant does not send it if the customer bought the
information for free.

5 Conclusion and Related Works

This work proposes a commitment-based approach to protocol definition, that
is inspired by the work of Singh and colleagues [16,36,44,43,15,38], which intro-
duces an explicit representation of both constitutive and regulative specifications
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in the spirit of [33,12]. Both specifications are given in a declarative way. The
constitutive specification gives the meaning of the social actions, in terms of
operations on the social state, as in [15]. The regulative specification is given as
a set of constraints on the evolution of the social state expressed in 2CL. The se-
mantics of 2CL is grounded on LTL. The proposed approach keeps the flexibility
of commitment-based protocols, indirectly ruling the execution of the actions.
The regulative specification is introduced because, in our opinion and we have
tried to prove it in this analysis, the mere constitutive specification of actions
is not sufficient, because agents have a behavior and this behavior makes them
use actions according to specific patterns. By our proposal and by exploiting a
declarative language, we have proved that it is possible to express interaction
patterns without losing the flexibility of commitment-based protocols. We do this
by putting constraints on the evolution of the social state and not on actions
because, as shown in [6,5], this allows a greater modularity in the specification,
with the advantages discussed in Section 2. In this paper, we have also shown
that the introduction of a regulative specification does not compromise the proof
of interoperability properties but rather it allows finer verifications.

Chopra and Singh [18] recognize the distinction between constitutive and reg-
ulative specifications in the definition of commitment-based protocols but focus
their work on the constitutive component only, see [15,17,38]. When there is
the need to constrain the behavior of agents, they use preconditions to the (non-
)executability of the actions. This solution (which is adopted also by other works,
like [24,43,44,15,41]) is characterized by a strong localization of the regulative
specification; the constitutive and the regulative specifications are indistinguish-
able (being both inside the definition of actions) and actions become dependant
on the protocol they are used in. This limits the openness of the system and in
particular complicates the re-use of software (the agents’ actions). A too tight
relation to actions can be ascribed also to [37], although in this work it is pos-
sible to recognize the introduction of a regulative specification, based on the
before relation. Such relations are, however, applied to events/actions. Fornara
and Colombetti [22,23] recognize the need of a regulation of the flow of exe-
cution but adopted interaction diagrams in the definition of agent interaction
protocols. Interaction diagrams force the ordering of action executions, loosing,
in our opinion the flexibility aimed at by the adoption of commitments.

Outside the Agents research area, Pesic and van der Aalst [30] propose an
approach that uses the declarative language ConDec for representing business
processes (which, though not exactly interaction protocols, specify the expected
behavior of a set of interacting parties by constraining the execution of their
tasks). The nature of the specification is constitutive because it defines a be-
havior rather than regulating an antecedently existing reality. The constitutive
specification is given at two levels: a level that specifies constraints, which builds
upon a level that specifies the actions. In [27,14,28], the authors use this ap-
proach to specify interaction protocols and service choreographies. To this aim,
they integrate ConDec with SCIFF thus giving a semantics to actions that is
based on expectations. Even if one uses the above model not just to design
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processes but with a regulative intent, other problems emerge, due to the fact
that constraints are defined over actions (events). This, in our opinion, clashes
with the openness of MAS. With respect to [39], our proposal does not han-
dle time explicitly so we cannot yet represent and handle timeouts and also
compensation mechanisms. We plan to tackle these issues in future work.
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Abstract. Meaning negotiation (MN) is the general process with which
agents reach an agreement about the meaning of a set of terms. We
give here a general model of MN for two agents, in which each agent
discusses with the other one her viewpoint by exhibiting it in an actual
set of constraints on the meaning of the negotiated terms. We call this
presentation of individual viewpoints an angle. The two agents do not
aim at forming a common viewpoint but, instead, at agreeing about an
acceptable common angle. We formalize the process of reaching such an
agreement by giving a deduction system that comprises of rules that are
consistent and adequate for representing MN.

1 Introduction: Context and Contributions

A negotiation is a dialog (i.e., a conversation between two or more agents) in-
tended to resolve disputes, to produce an agreement upon courses of action,
to bargain for individual or collective advantage, or to craft outcomes to sat-
isfy various interests. Meaning negotiation (MN) is the process that takes place
when the involved agents have some knowledge (some data or information) to
share but do not agree on what knowledge they share and how they reach an
agreement about it. The knowledge of an agent represents her viewpoint and we
call angle any partial representation of the viewpoint; hence, the knowledge of a
negotiating agent is built by a single viewpoint and many angles. In this paper,
we assume that angles are presented as logical theories, and in particular propo-
sitional ones. At the beginning of a MN process, agents are in disagreement, i.e.,
they have mutually inconsistent knowledge. By MN, they try to reach a common
angle representing a shared acceptable knowledge, where the MN ends in positive
way when the agents have a common knowledge, and it ends in a negative way
otherwise: agents are in agreement when they have found a set of constraints on
the meaning of the negotiated terms that is accepted by both agents (this new
theory is named, here, a common angle); they are in disagreement when they
are not in agreement.

MN has been considered, directly or indirectly, in a large number of works,
ranging from works focusing on operations over ontologies (e.g., [8,10]), such
as mapping, merging and alignment, to works dealing with contexts (e.g., [7])
or, more generally, to research in the field of knowledge representation (e.g.,
[5]). In particular, [6] considers the combination of agent communication and
ontology alignment within a group of agents. Only a few works, however, have
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considered MN as a process; for instance, [12] deals with MN as an ontology
mapping process through an argumentation framework, and [14,9,1,15,2] deal
with negotiation issues from the point of view of game theory. A MN between
two agents is similar to a Bargaining Game [11], i.e., the game in which two
agents have to share, say, one dollar and do this by each making a proposal. If
the sum of their demands is less than one, they share the dollar, otherwise they
have to make a new demand. The Bargaining Game is built by two stages:

– Demand stage: agents make a proposal and if the proposals are compatible,
the negotiation ends in positive way; otherwise the second stage begins.

– War of attrition: agents have incompatible viewpoints and perform new de-
mands. If the demands are compatible, the process ends positively, otherwise
they make new ones.

In the Bargaining Game, players have a negotiation power that represents how
often an agent cedes during the negotiation and how much she resists about her
current angle. The negotiation power of an agent is captured by a set of partially
ordered angles of her viewpoint. The partial order among the angles allows an
agent to choose the next proposal to perform, and to evaluate the acceptability of
the received offers. Moreover, the set of partially ordered angles has a minimum
that identifies the last offer an agent proposes in a negotiation. We say that each
agent has a stubborn and many flexible angles that are respectively the limit
proposal (i.e., the last offer) and the acceptable ones, where each flexible angle
is consistent with the stubborn knowledge.

Example 1. As a running example, consider the definition of the term “vehicle”.
Alice (stubbornly) thinks that it always has two, three, four or six wheels; a
handlebar or a steering wheel; a motor, or two or four bicycle pedals, or a tow
bar. Moreover, Alice (flexibly) thinks that a “vehicle” may be defined only as a
car, then having four wheels, a steering wheel, and a motor; or only as a bicycle,
then having two wheels, a handlebar and two bicycle pedals. In other words,
Alice has two acceptable ways to define a vehicle (i.e., a car or a bicycle as
particular “vehicles”) but she has only one general description of a “vehicle”. �
The MN stages, shown in Fig. 1(a), are the following ones:

– Init : the first bidding agent makes a proposal;
– Negotiate: the agents propose their viewpoints in turns and evaluate whether

they agree with the opponents;
– Agreement : all1 the agents agree on a common viewpoint;
– Disagreement : the agents do not have a shared viewpoint.

The negotiation power of an agent is known only by herself, and when an agent
makes a proposal, she includes stubborn and flexible knowledge in it. Conversely,
when looking at the knowledge of the other agent, one is not able to say on what
knowledge the other agent would be stubborn.
1 [3] consider more than two negotiating agents and formalize a partial positive out-

come, in which a degree of sharing denotes the minimum number of agreeing agents
needed to consider the MN as positive.
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(a) Finite state diagram of the MN
process

(b) Finite state diagram of each negoti-
ating agent

Fig. 1. Finite state diagrams of the MN process (a) and of a negotiating agent (b)

The first contribution of this paper is the definition of a general model of
MN in which the two agents have different viewpoints that are not completely
compatible. In our model, the types of disagreement depend upon the relation
among the proposal p and the stubborn and the flexible knowledge of the agent
i who receives and evaluates p:

– Call-away occurs when p is a generalization2 of the stubborn knowledge of
i, thus it would correspond to dropping out some unquestionable knowledge.

– Absolute disagreement occurs when the stubborn knowledge of i is inconsis-
tent with respect to p.

– Essence disagreement occurs when the flexible knowledge of i is inconsistent
with respect to p.

– Compatibility occurs when p is consistent with the flexible knowledge of i
but it is not a generalization or a restriction of i’s viewpoint.

– Relative disagreement occurs when p is a generalization of the flexible knowl-
edge of i.

The call-away situations arise when an agent does not accept all the necessary
requests of the other one and thus exits the MN so that the MN ends negatively.
In Fig. 1(b), we show the finite state diagram for each negotiating agent, where
the disagreement node of Fig. 1(a) is expanded to the types of disagreement we
consider here. In a MN process, all the states can be initial and final and the
agreement state is the optimal final one.

This model accommodates within the same framework, for the first time, two
different aspects of MN, not yet treated in an exhaustive manner and never
joined in a single model: the relations among the negotiating agents, in terms of
viewpoints, and the mechanism of MN by means of a game-theoretic approach.

2 A theory A is a generalization of a theory B when the models of A are a superset
of the models of B.
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The second contribution of this paper is the formalization of a deduction sys-
tem, which we call MND , to reason about the MN process. The two agents start
the MN process with an initial proposal and concede to each other about the
other’s viewpoint until a common definition of the terms is obtained. Each agent
has a limit in negotiation, since some of her knowledge is unquestionable and,
thus, she will never concede about it. Consequently, if no agreement is reached
in the first phase of the MN in which the agent is willing to concede, the MN
proceeds but the agent becomes firm and she keeps on proposing her last feasible
proposal, that is her unquestionable knowledge. If this situation is symmetric, the
disagreement condition becomes perpetual and the two agents keep on proposing
the same incompatible definitions for the terms under negotiation. The system
controls the procedure in what condition is reached. When the agreement con-
dition is reached, the two agents agree about a common definition of the terms
and the system ends the MN with positive outcome; when the agents reach a
perpetual disagreement condition, the system ends the MN by stating that the
agreement cannot be reached.

This is the first formalization of a logical model of MN that hosts a dialogue
framework and an agreement relational system together, as said before. This
has been the major issue that encouraged us to develop such a system, where
an investigation about MN can be carried out by considering all aspects of the
process within one single formalism. We envision applications in which humans
interact with software agents to reach agreement about the meaning of terms.

MND allows us to express the fact that agents communicate to each other
not only the proposals, but also the disagreement conditions they have reached
so far. The process is governed by a set of rules that manage the provisional dis-
agreement condition the agents have reached. We first provide rules for deriving
streams of dialog between two agents who discuss about the meaning of a set of
terms, and then define a deduction system based upon these rules that derives
a stream of dialog that ends with an agreement/disagreement condition.

We show that MND is consistent and adequate to represent the MN of two
agents. Moreover, MN is decidable over theories with finite signature under the
assumption of agents who are competitive (in a sense to be defined precisely
below). We proceed by formalizing the knowledge and the language of negotiating
agents (§ 2), and the language and rules of the MN process (§ 3). Then, in § 4,
we draw conclusions and discuss future work. Due to lack of space, discussions
and proofs have been shortened or omitted; further details can be found in [4].

2 A Formalization of Negotiating Agents

We consider here a general MN process, so we abstract away from the partic-
ular terms whose meaning the agents are negotiating. We formalize first the
knowledge (§ 2.1) and then the language (§ 2.2) of negotiating agents.

2.1 The Knowledge of Negotiating Agents

When agents give the definition of a concept, they:
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– give the necessary properties (properties about which the agent is stubborn
— for short stubborn properties) and the characterizing ones (properties
about which the agent is flexible — for short flexible properties);

– give the properties that necessarily have not to hold and the ones that plau-
sibly (flexibly) have not to hold; and

– give the relevant formulas, which assert what has not to (stubbornly), or
may not (flexibly), be used in the definition.

The notion of relevance of a formula is interesting at this stage of the definition,
but instead of introducing a novel operator, we simply consider a formula as not
relevant to an agent if she does not assert it. When i asserts a formula ϕ, she
has a way to evaluate it: she thinks ϕ as positive or negative. If i does not assert
ϕ then either i does not know ϕ, i.e., she is not able to evaluate it or i does not
think ϕ is relevant in defining the negotiated meaning.

The necessary and the characterizing properties of a concept definition are
closely related to EGG/YOLK objects, introduced by [13] to represent class
membership based on typicality of the members: the egg is the set of the class
members and the yolk is the set of the typical ones. (The EGG/YOLK model
is a spatial metaphor for the concept of fuzzy set.) For instance, the class of
“employees” of a company A may be defined as “the set of people that receive
money from the company in exchange for carrying out the instructions of a
person who is an employee of that company”, thus excluding, e.g., the head of
the company (who has no boss), and the typical employee would include regular
workers like secretaries and foremen. Another company B might have a different
definition, e.g., including the head of the company, resulting in a mismatch.
Nevertheless, if both companies provide some typical examples of “employees”
it is possible that all of A’s typical employees fit B’s definition, and all of B’s
typical employees fit A’s definition: YOLKB ≤ EGGA and YOLKA ≤ EGGB,
in the terminology of [13].

Differently than in the original model, concept definitions are here restricted
by stubborn properties to the largest acceptable set of models, hence represented
by the egg, whilst the yolk is employed to denote the most restricted knowledge,
i.e., the one on which the agents are flexible and about which they may cede.

The stubborn properties never change during the MN; thus, the egg is fixed at
the beginning of the MN. Instead, the flexible part of the definition of a concept
is the core of the proposal of a negotiating agent. Each proposal differs from
the further ones in two possible ways: it may give a definition of the negotiated
object that is more descriptive than the next ones, or the given definition specifies
properties that the next ones do not and vice versa. In the former case, we say
that the agent carries out a weakening action, in the latter the agent carries
out a changing theory action. However, none of weakening or changing theory
actions can be carried out with respect to a proposal if the proposal describes the
necessary properties of the object in the MN. We say that in such a situation the
agents always make a stubbornness action that is equivalent to no more change.
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Table 1. Rules for making new proposals and the corresponding EGG/YOLKs. The
dark gray yolk identifies flexk+1

i and the light gray one identifies flexk
i .

flexk
i → flexk+1

i ¬(stubi ↔ flexk
i )

flexk+1
i

(W )

flexk
i ¬(stubi ↔ flexk

i ) ¬(flexk
i → flexk+1

i ) ¬(flexk+1
i → flexk

i )

flexk+1
i

(C)

ϕ stubi ↔ ϕ

ϕ (S)

2.2 The Language of Negotiating Agents

Each agent i is represented by her language Li, which is composed of two dis-
joint sublanguages: a stubbornness language containing the properties i deems as
necessary in defining the negotiated meaning and a flexible language containing
the properties i deems as not necessary in the MN.

Definition 1. Let Ag be the set of the negotiating agents. The signature Σi of
an agent i ∈ Ag is the pair 〈Pi, αi〉 where Pi is the set of the predicate symbols
and αi is the arity function for predicate symbols αi : Pi → N.

The language Li of i ∈ Ag comprises of Σi-formulas defined as follows: (i) if
P ∈ Pi, αi(P ) = n and t1, . . . , tn are terms then P (t1, . . . , tn) is a Σi-formula;
(ii) if ϕ and ψ are Σi-formulas then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ → ψ.

Li = LSi ∪ LFi where the set LSi of stubborn formulas is disjoint from the
set LFi of flexible formulas. We define stubi =

∧
ϕ∈LSi

ϕ and flex i =
∧
ϕ∈LFi

ϕ.

During a MN process, the viewpoint of each agent is presented in a specific angle.
In other words, a viewpoint is a hierarchy of theories, related by the partial order
relation of weakening, and an element of this hierarchy is an angle. Each agent
presents angles in sequence during the MN. Thus we call current angle formula
(CAF ) the angle presented at the current stage of the MN. A flexible formula
flexki expresses the kth angle asserted in the MN by the agent i and it changes
during the process. We assume here that for each CAF flexki there is a stubborn
formula in LSi that is a generalization of it. In general, during a negotiation of
the meaning of a term, the agents relax their viewpoint in order to meet the
opponent’s one, and they do this only if the relaxing formula is not too general.
Then, for each assertion in the MN, the agents have a maximal generalization
of it and this is a formula in the stubbornness set. For instance, if the object
of the negotiation is the meaning of pen, an agent is flexible on the ink color of
the object but not on the fact that the object contains ink; then, the red ink
predicate is a flexible one and the contains ink predicate is a stubborn one.

flexki changes during the MN by applying to it one of the rules for making new
proposals given in Table 1: weakening (W ), changing theory (C) or stubbornness
(S)3. The EGG/YOLK representations show the collocation of the new proposal
(in the stubbornness situation the new proposal is the same as the last one).
3 Here and in the following, each rule simply has a set of premises above the inference

line and a consequence below the inference line.
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There are twoways for i tomakeanewproposalflexk+1
i . Theweakening rule (W )

states that i canproposeflexk+1
i ifflexk+1

i is entailedbyflexki (i.e.,flexki → flexk+1
i )

andflexki is not the most general formula the agent can negotiate (corresponding to
her stubbornness viewpoint, i.e., flexki ↔ stubi). Note that if i weakens, say, flex 0

i

to the new CAF flex 1
i , then i may be no more able to satisfy flex 0

i .
The rule (C) states that i can just change theory. Although we do not consider

MNstrategies indetailhere, ingeneral, anagentchooseswhether toperformaweak-
ening or a changing theory action by applying the corresponding rule, but there are
situations in which one action is better than the other. For instance, when an agent
checks the compatibility situation it seems better to weaken the theory so to try to
entail the opponent’s viewpoint, while in essence disagreement situations it seems
better to change the theory so to try to meet the opponent’s viewpoint.

If agent i is in stubbornness does she continue the MN or does she have to
exit it? We assume that the agent exits the MN only if all the agents in the nego-
tiation are stubborn. But an agent does not know the opponent’s stubbornness
viewpoint, so the exit condition is recognized only by the system. However, the
stubborn agent always makes the same proposal during the MN, as expressed
by the rule (S). If flexki ↔ stubi then flexk1i = flexk1+1

i for all k1 > k.
We introduce a set of Σi-structures as agents change angles during the MN

process and these angles have to be satisfied in a different structure. We use a
parameter k to denote the kth structure of the kth angle.

Definition 2. Given a signature Σi = 〈Pi, αi〉, a Σi-structure Ai is a pair
〈Di, Ii〉 where the domain Di is a finite non-empty set and the interpretation
function Ii is such that Ii(P ) ⊆ Dni for all P ∈ Pi for which α(P ) = n.

We define Si = {Aki | Aki = 〈Dki , Iki 〉} where Dki ⊆ Di and, for all (Iki , Ik+1
i ),

if the (k + 1)th rule that i applied is

– (W ), then Iki (P ) ⊆ Ik+1
i (P ) for all P ∈ Pi;

– (C), then Iki (P ) � Ik+1
i (P ), Iki (P ) � Ik+1

i (P ) and Iki (P ) �= Ik+1
i (P ), for

all P ∈ Pi;
– (S), then Iki (P ) = Ik+1

i (P ), for all P ∈ Pi.
If ϕ and ψ are Σi-formulas then:

– Aki |= P (t1, . . . , tn) iff (Ii(t1), . . . , Ii(tn)) ∈ Ii(P ), where P ∈ Pi and
t1, . . . , tn are terms;

– Aki |= ¬ϕ iff Aki �|= ϕ;
– Aki |= ϕ ∧ ψ iff Aki |= ϕ and Aki |= ψ;
– Aki |= ϕ ∨ ψ iff Aki |= ϕ or Aki |= ψ;
– Aki |= ϕ → ψ iff Aki |= ψ or Aki |= ¬ϕ.

Example 2. Suppose Alice defines “vehicle” as in Example 1. Then

stubA = (has2wheels ∨ has3wheels ∨ has4wheels ∨ has6wheels) ∧ (hasHandlebar ∨
hasSteeringWheel) ∧ (hasMotor ∨ has2bicyclePedals ∨ has4bicyclePedals ∨ hasTowBar)

is the stubbornness part of Alice’s knowledge whose interpretation is I(stubA) =
{bicycle, tandem, motorbike, scooter, truck, car, trailer, chariot}. Let
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flexk
A = has4wheels ∧ hasSteeringWheel ∧ (hasMotor ∨ has2bicyclePedals)

be the CAF of Alice that it is not equivalent to her stubbornness knowledge and
its interpretation is I(flexkA) = {car, truck} ⊂ I(stubA). Suppose Alice changes
her CAF by means of a weakening action (W ); then:

flexk+1
A = (has4wheels ∨ has2wheels) ∧ (hasSteeringWheel ∨ hasHandlebar) ∧

(hasMotor ∨ has2bicyclePedals)

The interpretation of flexk+1
A is I(flexk+1

A ) = {motorbike, scooter, car, truck} ⊂
I(flexkA). Otherwise, suppose Alice changes her CAF by means of a changing
theory action (C); then:

flexk+1
A = has6wheels ∧ hasSteeringWheel ∧ (hasMotor ∨ hasTowBar)

The interpretation of flexk+1
A is I(flexk+1

A ) = {truck, trailer} and I(flexk+1
A ) �

I(flexkA). �

3 The MN Process

In this section, we first formalize the MN process for two agents, and then
formalize the language (§ 3.1) and the rules (§ 3.2) of the MN process. During the
MN, agents make proposals and say if they are in agreement or not with respect
to the proposals made by the opponent. Proposals are negotiation formulas like
j : ϕ, where we assume that the opponent i is able to recognize the name label
j in j : ϕ and remove it in order to evaluate ϕ.

In general, negotiating agents may not share the same language but have
different signatures. Hence, when i evaluates an assertion by j, she first has
to translate the symbols occurring in it to symbols belonging to her signature.
Such a translation depends, of course, on the particular terms that are being
considered for the negotiation, so we assume abstractly that for each pair of
agents (i, j) there is the translation function τi,j : Σj → Σi .

When j asserts ϕ (i.e., j : ϕ), i is not able to find which part of ϕ is in the
stubbornness set of j as she only knows that ϕ = stubj ∧ ψk where stubj is the
conjunction of all the formulas in LSj and ψk is the kth flexible knowledge of j.

In the following, we describe the main conditions an agent has to test to
evaluate the opponent’s proposal and to identify the negotiation condition she
is in. Suppose that j is the first proponent (bidding) agent and i is the agent
evaluating j’s proposal. Table 2 shows the EGG/YOLK representations in which
i is identified by the plain line and j by the dashed line for each condition i tests;
the numbering is that of [13]. Let ϕ be j’s proposal; then, the main conditions
i has to test are (as usual, consistency means the impossibility to derive ⊥):

(stubi → τi,j(ϕ)): are the agents in a call-away situation, i.e., is j’s proposal
a generalization of the stubbornness set of i? If it is the case, then the MN
process ends negatively. The corresponding EGG/YOLK representation is shown
in Table 2(a)
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Table 2. EGG/YOLK representation of the opponent’s offer (identified by dashed
lines) from agent i’s viewpoint (identified by plain lines)

22:

(a) Call-away

1: 2: 3: 6: 8:

(b) Absolute disagreement
4: 5: 7: 9:

10: 11: 12: 13:

25: 26: 27: 42a:

(c) Essence disagreement

14: 15: 16: 19:

20: 28: 31: 32:

42b:

(d) Compatibility

18: 24: 30: 34:

35: 37: 42c:

(e) Relative disagreement

17: 21: 23: 29:

33: 36: 38: 39:

40: 41: 42d: 42e:

(f) Agreement

¬(stubi ∧ τi,j(ϕ)): is j’s proposal consistent with respect to i’s stubbornness
set? If it is not, then the agents are in absolute disagreement (Table 2(b)).

¬(flexki ∧ τi,j(ϕ))∧ (stubi ∨ τi,j(ϕ)): i and j are not in absolute disagreement;
is i’s CAF consistent with respect to j’s proposal? If it is not, then the agents
are in essence disagreement (Table 2(c)).

(flexki → τi,j(ϕ))∧¬(τi,j(ϕ) → flexki ): i and j are not in essence nor in absolute
disagreement; is j’s proposal a generalization of i’s CAF? If it is and if i’s CAF
is not equivalent to j’s proposal, then the agents are in relative disagreement
(Table 2(e)).

(flexki ∨ τi,j(ϕ)) ∧ ¬(flexki → τi,j(ϕ)) ∧ ¬(τi,j(ϕ) → flexki ): i and j are not in
absolute nor in relative disagreement; is i’s CAF consistent with respect to j’s
proposal? If it is and if i’s CAF is not a weakening of j’s proposal, then the
agents are in the compatibility relation (Table 2(d)).

(flexki → τi,j(ϕ)): the proposal of j is a generalization of i’s CAF. The agents
are in agreement (Table 2(f)) when the received proposal is acceptable for i, i.e.,
when it is equivalent to her CAF or it is a generalization of her CAF. In the latter
case, ϕ is an acceptable angle because, as said in § 2.2, for each flexki there is a
stubborn formula in LSi that is a generalization of it. Thus, flex 0

i → τi,j(ϕ) and
flex0

i → stubi yield τi,j(ϕ) → stubi. In fact, it is not possible that stubi → τi,j(ϕ)
because this is the call-away condition.

After evaluating the received proposal, agents inform the opponent about the
negotiation situation they think to be in. To this end, we extend the formulas
in the agent language:
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Definition 3. If ϕ is a received proposal in the negotiation process, then it
is a formula asserted by somebody as j : ϕ. We extend the language Li with
the formulas absDis(j : ϕ), essDis(j : ϕ), relDis(j : ϕ), comp(j : ϕ), and
agree(j : ϕ). For Aki = 〈Dki , Iki 〉 a Σi-structure, the semantics of these addi-
tional formulas is:

– Aki |= absDis(j : ϕ) iff Aki |= ¬(stubi ∧ τi,j(ϕ));
– Aki |= essDis(j : ϕ) iff Aki |= (stubi ∨ τi,j(ϕ)) ∧ ¬(flexki ∧ τi,j(ϕ));
– Aki |= relDis(j : ϕ) iff Aki |= (flexki → τi,j(ϕ)) ∧ ¬(τi,j(ϕ) → flexki );
– Aki |= comp(j : ϕ) iff Aki |= (flexki ∨ τi,j(ϕ)) ∧ ¬(flexki → τi,j(ϕ)) ∧
¬(τi,j(ϕ) → flexki );

– Aki |= agree(j : ϕ) iff Aki |= (flexki → τi,j(ϕ)).

We did not define a sentence callAway(j : ϕ) as the call-away condition inter-
rupts the MN. Note also that in our system we restrict the evaluation of agent
proposals to formulas in the basic agent language, so no assertion can be made
by agents using extended (and nested) formulas like agree(comp(j : ϕ)). This
restriction avoids nested MN processes.

3.1 MN Language

The MN language, L, is built by the assertions of the agents during the MN, i.e.,
labeled formulas i : ϕ meaning that agent i ∈ Ag asserts the formula ϕ ∈ Li.
Thus, i : ϕ represents a proposal the agent i makes in the MN and typically
represents her CAF.

Definition 4. The signature of the MN language L is Σ = 〈P , {αi}i∈Ag〉 where
P =

⋃
i∈Ag Pi and αi : Pi → N is the arity function for predicate symbols. Let ϕ

be a Li formula for some i ∈ Ag; then L comprises of Σ-formulas defined as:

– i : ϕ is a Σ-formula;
– if ϕ1 and ϕ2 are Σ-formulas then ϕ1 ∩ ϕ2 is a Σ-formula.

Let N k = ({Aki

i }i∈Ag,ki∈N,F) be a Σ-structure where {Aki

i }i∈Ag,ki∈N is the
domain set and F is an evaluation function mapping name labels into Ag. Then:

– N k |= i : ϕ iff Ak′F(i) |= ϕ where k′ = �k2 � because the two agents make
assertions in turns;

– N k |= ϕ1 ∩ ϕ2 iff N k |= ϕ1 and N k |= ϕ2.

3.2 MN Rules

We now give the transition rules the agents use to negotiate depending on the
mutual negotiation position they test and on their flexibility; these rules are
coupled with those in Table 1. There are different rules for the second proposing
agent and the following ones. The transition rules represent the assertions an
agent can make during the MN process and show the conditions to be satisfied
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A B
ϕ

absDis(ϕ),ψ

absDis(ψ), ϕ′

.

.

.

(a) A start

A B
ϕ

comp(ϕ), ψ

absDis(ψ), ϕ′

.

.

.

(b) A violation

Fig. 2. Two MN scenarios

Table 3. Rules for the second proposing agent

j : ϕ ¬(stubi ∧ τi,j(ϕ))

i : absDis(j : ϕ) ∩ i : flex1
i

(AD)
j : ϕ ¬(flex0

i ∧ τi,j(ϕ)) ∧ (stubi ∨ τi,j(ϕ))

i : essDis(j : ϕ) ∩ i : flex1
i

(ED)

j : ϕ ¬(flex0
i → τi,j(ϕ)) ∨ (τi,j(ϕ) → flex0

i )

i : flex0
i

(I)
j : ϕ (flex0

i → τi,j(ϕ))

i : agree(j : ϕ) ∩ i : τi,j(ϕ)
(Ag)

j : ϕ (flex0
i ∨ τi,j(ϕ)) ∧ ¬(flex0

i → τi,j(ϕ)) ∧ ¬(τi,j(ϕ) → flex0
i )

i : comp(j : ϕ) ∩ i : flex1
i

(Co)

in order to apply the rules. A precondition of the rules of the following propos-
ing agent i is the evaluation of the opponent j about the last proposal of i to
emphasize that only a subset of the negotiation relations in Table 2 is reachable
from a negotiation position depending on the new CAF of agent i. Consider the
scenario in Fig. 2(a): Alice (A) makes the proposal ϕ and Bob (B) evaluates it
based upon two tests:

1. The relation between his CAF and ϕ. B’s CAF may be in agreement (ϕ ↔
flexkB) or not with ϕ and B recognizes it by testing the condition listed
above.

2. His stubbornness condition, i.e., if his CAF is equivalent to stubB or not.
Whenever B is stubborn, he performs the same counterproposal, otherwise
he may relax his CAF by the (W ) rule or change it by the (C) rule.

At the end of his evaluation, B replies to A with a counterproposal ψ. When
A evaluates ψ she has to consider the relation between her CAF and ψ, her
stubbornness condition (stubA ↔ flexkA) and B’s evaluation. The evaluation of
the opponent agent helps agents in choosing the new proposal. The choice of the
action, weakening or changing theory, and of the next proposal depends on the
agent’s attitude: a collaborative agent chooses the proposal that improves the
negotiation relation with the opponent, while a competitive agent chooses the
proposal that changes the least the relation with the opponent. For instance, if
B says to A that when A proposes ϕ they are in essence disagreement, and B
makes the proposal ψ, A will propose ϕ1 or ϕ2, both inferred from ϕ by applying
(W) or (C). When A is collaborative, she will propose ϕ1 as she knows that they
will be in agreement. Conversely, A will propose ϕ2, if A is competitive, as she
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Table 4. Rules for the following proposing agents

j : absDis(i : flexk
i ) ∩ j : ψ ¬(stubi ∧ τi,j(ψ))

i : absDis(j : ψ) ∩ i : flexk+1
i

(AD-AD)

j : absDis(i : flexk
i ) ∩ j : ψ (stubi ∨ τi,j(ψ)) ∧ ¬(flexk+1

i ∧ τi,j(ψ))

i : essDis(j : ψ) ∩ i : flexk+1
i

(AD-ED)

j : absDis(i : flexk
i ) ∩ j : ψ (flexk+1

i ∨ τi,j(ψ)) ∧ ¬(flexk+1
i → τi,j(ψ)) ∧ ¬(τi,j(ψ) → flexk+1

i )

i : comp(j : ψ) ∩ i : flexk+1
i

(AD-Co)

j : absDis(i : flexk
i ) ∩ j : ψ (flexk+1

i → τi,j(ψ)) ∧ ¬(τi,j(ψ) → flexk+1
i )

i : relDis(j : ψ) ∩ i : flexk+1
i

(AD-RD)

j : absDis(i : flexk
i ) ∩ j : ψ (flexk+1

i → τi,j(ψ))

i : agree(j : ψ) ∩ i : τi,j(ψ)
(AD-Ag)

j : essDis(i : flexk
i ) ∩ j : ψ ¬(stubi ∧ τi,j(ψ))

i : absDis(j : ψ) ∩ i : flexk+1
i

(ED-AD)

j : essDis(i : flexk
i ) ∩ j : ψ (stubi ∨ τi,j(ψ)) ∧ ¬(flexk+1

i ∧ τi,j(ψ))

i : essDis(j : ψ) ∩ i : flexk+1
i

(ED-ED)

j : essDis(i : flexk
i ) ∩ j : ψ (flexk+1

j ∨ τi,j(ψ)) ∧ ¬(flexk+1
i → τi,j(ψ)) ∧ ¬(τi,j(ψ) → flexk+1

i )

i : comp(j : ψ) ∩ i : flexk+1
i

(ED-Co)

j : essDis(i : flexk
i ) ∩ j : ψ (flexk+1

i → τi,j(ψ)) ∧ ¬(τi,j(ψ) → flexk+1
i )

i : relDis(j : ψ) ∩ i : flexk+1
i

(ED-RD)

j : essDis(i : flexk
i ) ∩ j : ψ (flexk+1

i → τi,j(ψ))

i : agree(j : ψ) ∩ i : τi,j(ψ)
(ED-Ag)

j : comp(i : flexk
i ) ∩ j : ψ (stubi ∨ τi,j(ψ)) ∧ ¬(flexk+1

i ∧ τi,j(ψ))

i : essDis(j : ψ) ∩ i : flexk+1
i

(Co-ED)

j : comp(i : flexk
i ) ∩ j : ψ (flexk+1

j ∨ τi,j(ψ)) ∧ ¬(flexk+1
i → τi,j(ψ)) ∧ ¬(τi,j(ψ) → flexk+1

i )

i : comp(j : ψ) ∩ i : flexk+1
i

(Co-Co)

j : comp(i : flexk
i ) ∩ j : ψ (flexk+1

i → τi,j(ψ)) ∧ ¬(τi,j(ψ) → flexk+1
i )

i : relDis(j : ψ) ∩ i : flexk+1
i

(Co-RD)

j : comp(i : flexk
i ) ∩ j : ψ (flexk+1

i → τi,j(ψ))

i : agree(j : ψ) ∩ i : τi,j(ψ)
(Co-Ag)

j : relDis(i : ϕ) ∩ j : ψ

i : agree(j : ψ) ∩ i : τi,j(ψ)
(RD-Ag)

Table 5. System transition rules

∗(i, j) i : ϕ j : na(i : ϕ) j : ψ stubi ↔ ϕ stubj ↔ ψ

Disagreement(i, j)
(D)

∗(i, j) i : ϕ j : agree(i : ϕ)

Agreement(i, j)
(A)

∗(i, j) i : ϕ j : na(i : ϕ) j : ψ

Negotiate(i, j)
(N)

knows that they will remain in essence disagreement. Suppose B says to A that
when A proposes ϕ they are in relative disagreement (ψ → ϕ) and B makes the
proposal ψ, then A knows that they are in agreement when she proposes ψ.

To support the interaction sketched above, we define the system MND to
consist of the standard introduction and elimination rules for the connectives
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of Li and L, and of two sets of rules: one set for the second proposing agent
(Table 3) and another set for the following proposing agents (Table 4). For the
sake of space, we omit the assumption of non call-away conditions in negotiation
rules and explain only some of the rules by example.

Assume that A begins a MN by proposing flex0
A to B. B evaluates τB,A(flex0

A)
with respect to his initial angle flex0

B and suppose B thinks that τB,A(flex0
A)

is too strict, i.e., τB,A(flex0
A) → flex 0

B. Thus, B cannot accept τB,A(flex 0
A) and

re-initiates the MN by the rule (I) and proposes flex 0
B by B : flex0

B . Otherwise,
suppose B thinks that τB,A(flex 0

A) is entailed by his initial angle flex0
B and that

τB,A(flex 0
A) is not too general, i.e., it is not entailed by stubB. In this case,

B knows that A cannot accept flex0
B because it is too strict with respect to

her viewpoint (explained in the beginning of § 3), thus B accepts τB,A(flex0
A)

by (Ag) because it satisfies the precondition (flex 0
B → τB,A(flex0

A)), and says
B : agree(A : flex0

A). This is the reason why there is no rule (RD) in Table 3
for the relative disagreement relation. Consider the case in which B thinks that
the proposal of A, flex 0

A, is consistent to his initial angle flex 0
B by (Co). B says

to A that they are in the compatibility relation by B : comp(A : flex 0
A) and

makes a new proposal B : flex 1
B such that flex 0

B → flex1
B (rule (W )). Now

A thinks that τA,B(flex 1
B) is an acceptable angle of her initial viewpoint, i.e.

flex1
A ↔ τA,B(flex 1

B). Thus A agrees with B and says A : agree(B : flex 1
B) by

(Co-Ag). It may be the case that agents make proposals that become inconsistent
with the received one. This inconsistency is tested by the bidding agent, because
in MND agents choose the new proposal only with respect to their angles and
not with respect to the opponent’s one.

Consider now the scenario in Fig. 2(b). B evaluates A’s proposal, tests the
compatibility relation and makes a counterproposal. A evaluates it and finds
they are inconsistent. In situations like this, agents make proposals that violate
the MN relation among agents; we call such a proposal a violation and the rule
causing it a violation rule. In Table 4, the violation rules are (ED-AD) and
(ED-Co).

The MN develops by agents making proposals and asserting if they are in
agreement or not. The entire process is controlled by a supervisor, an external
viewpoint, which tests if the MN ends and if the outcome is positive or negative.
Table 5 shows the transition rules for the system, which are a translation of the
system transition graph in Fig. 1(a). We use j : na(i : ϕ) to say that agent j
thinks she is not in agreement with i : ϕ and ∗(i, j) to say whatever the system
state is different from the final ones (Agreement and Disagreement), i.e., whether
the system is in Init or Negotiate4. The MN begins when agents make proposals
in turns (i : ϕ, j : ψ) and they are not in agreement (j : na(i : ϕ)) by (N).
The MN ends with a positive outcome (ϕ) when each agent agrees on a proposal
(j : agree(i : ϕ)), otherwise the MN ends with a negative outcome if there are

4 An agent is absolutely stubborn when she only has unquestionable knowledge. If all
the involved agents are absolutely stubborn then the finite state diagram is different
from Fig. 1(a) because the state Negotiate does not exist and there are only the
dashed edges. However, the formalization above works as well.
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no more proposals to perform (stubi ↔ ϕ and stubj ↔ ψ) and agents do not
agree on a common acceptable angle (j : na(i : ϕ)).

Example 3. Suppose that the initial viewpoints of Alice and Bob are

flex0
A = has2wheels ∧ hasSteeringWheel ∧ (hasMotor ∨ has2bicyclePedals)

flex0
B = has2wheels ∧ hasHandlebar ∧ has2bicyclePedals

and that Alice’s stubbornness knowledge is as in Example 2, while Bob’s stub-
bornness knowledge is

stubB = (has2wheels ∨ has3wheels ∨ has4wheels) ∧ (hasHandlebar ∨ hasSteeringWheel) ∧
(hasMotor ∨ has2bicyclePedals ∨ has4bicyclePedals)

Alice is the first bidding agent and she proposes flex0
A to Bob, who receives

the proposal and evaluates it. Bob tests that they are in compatibility because
(flex 0

B ∨ τB,A(flex 0
A)) ∧ ¬(flex 0

B → τB,A(flex 0
A)) ∧ ¬(τB,A(flex0

A) → flex 0
B). Bob

chooses the new CAF by a weakening action (W ) in

flex1
B = (has2wheels ∨ has4wheels) ∧ (hasHandlebar ∨ hasSteeringWheel) ∧ has2bicyclePedals

Bob uses the (Co) rule and sends his CAF to Alice:

A : flex0
A (flex1

B ∨ τB,A(flex0
A)) ∧ ¬(flex1

B → τB,A(flex0
A)) ∧ ¬(τB,A(flex0

A) → flex1
B)

B : comp(A : flex0
A) ∩ B : flex1

B

(Co)

The system continues the MN by:

∗(A,B) A : flex0
A B : comp(A : flex0

A) B : flex1
B

Negotiate(A,B)
(N)

Alice receives flex 1
B and she has to make a weakening or a changing theory action

because Bob did not say they were in agreement nor in relative disagreement.
Alice performs a changing theory action by the rule (C) and her CAF is

flex1
A = has2wheels ∧ (hasHandlebar ∨ hasSteeringWheel) ∧ has2bicyclePedals

Alice thinks they are in relative disagreement since (flex 1
A → τA,B(flex 1

B)) ∧
¬(τA,B(flex1

B) → flex 1
A), and she uses the rule (Co-RD) to inform Bob that

they are in relative disagreement:

B : comp(A : flex0
A) ∩ B : flex1

B (flex1
A → τA,B(flex1

B)) ∧ ¬(τA,B(flex1
B) → flex1

A)

A : relDis(B : flex1
B) ∩ A : flex1

A

(Co-RD)

The system continues the MN by:

∗(B,A) B : flex1
B A : relDis(B : flex1

B) A : flex1
A

Negotiate(B,A)
(N)

Bob receives flex1
A and accepts it as Alice said they are in relative disagreement.

A : relDis(B : flex1
B) ∩ A : flex1

A

B : agree(A : flex1
A) ∩B : τB,A(flex1

A)
(RD-Ag)
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A B

flex0
A

comp(flex0
A),flex1

B

relDis(flex1
B),flex1

A

agree(flex1
A),flex1

A

(a) Message passing

from conf.31 to conf.31

from conf.31 to conf.38

from conf.38 to conf.41

(b) EGG/YOLK configurations changing

Fig. 3. The MN scenario of Example 3: the message passing flow (a) and the changes
of the EGG/YOLKs of the agents (b). Alice is identified by plain lines and Bob by
dashed lines. White yolks represent the previous proposal of the agent and the dotted
gray yolk is the positive outcome of the scenario.

The system closes the MN by:

∗(A,B) A : flex1
A B : agree(A : flex1

A)

Agreement(A,B)
(A)

with a positive outcome, flex 1
A. Fig. 3 shows the message flow between Alice and

Bob, and the changes of their EGG/YOLK configurations. �

The classification of the agreement conditions given above is complete, in the
sense that there is no other possible configuration of EGG/YOLKs, as shown
in [13]. Based on the completeness of that analysis, we have the following results.

Theorem 1. MND is consistent.

Proof. Consider two agents represented in the MND system with sets LS1 and
LS2 of stubbornness formulas and sets LF1 and LF2 of flexible formulas. To
prove that MND is consistent, we show that if a Σi formula ξ is inferred using
the MND rules, or, in other terms, is deduced as a theorem in the system, then
ξ represents a proposal that is acceptable by both agents. In other words, we
aim at proving that when the rules yield ξ then ξ generalizes both LF1 and LF2

and is generalized by both LS1 and LS2 . To prove this, we need to show that:
(i) The rules for making new proposals yield a relation that is acceptable

from the viewpoint of the agent who made the proposal before and infer a new
proposal again still acceptable. In other terms, if an agent makes a proposal that
is generalized by the set of stubbornness formulas LSi , and is a generalization
of the set of flexible formulas LFi , for one agent, the rules infer a new proposal
that is in the same relationships with LSi and LFi .
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(ii) The rules for the second proposing agent infer the relation between the
agents at that step of the negotiation.

(iii) The rules for the following proposing agent do the same as the rules for
the second proposing agent, taking into account that this step takes place after
the step of the second proposing agent.

(iv) The system transition rules close the MN only when the proposal is ac-
ceptable by both agents, namely generalizes both LFi and is generalized by both
LSi sets.

Let us now consider a formula ξ that is acceptable by the two agents, and let
us consider the rules that produce transitions in the system. In particular, if ξ
is inferred by means of one of the rules (AD), (ED), (I), (Co), (Ag) for the
second proposing agent, or by means of one of the rules given in Fig. 4 for
the following proposing agent, then the possible results of the step described
above are given by the application of the system transition rules. Evidently, if
ξ is inferred, then the rule (D) does not apply. If (N) applies, and one more
inference is performed, then the rules (W ), (C), (S) allow us to infer a different
formula. Suppose now, by contradiction, that the new formula ξ is not acceptable
by one of the agents (in the sense that either is not a generalization of her set
of flexible formulas or it is not generalized by the set of stubbornness formulas.
As a consequence, one agent has called herself away, as we stated above. This,
however, is impossible, by construction of the rules for the second and following
proposals. Conversely, if the transition rule (D) applies and, therefore, the agents
have incompatible viewpoints, then ξ is not inferred through the system, because
it is not a generalization of both flexible sets of formulas and generalizes by both
stubbornness sets of formulas. Clearly, by means of the full set of rules, it is not
possible to do so when the agents have compatible viewpoints. �

It is not difficult to show that MND is adequate in representing MN, i.e. if an
agreement is reachable between the agents then MND finds it, otherwise MND
does not produce any result.

Theorem 2. MND is adequate to represent the MN of two agents.

For MN processes that are built on finite signature theories, we then have:

Corollary 1. MN is decidable for theories with finite signature under the as-
sumption of two competitive agents.

4 Conclusions

As we remarked, the literature has dealt with many different issues of the nego-
tiation of meaning, but what has been only partially treated is the description of
the process of reaching agreement conditions. This was the focus of this paper,
whose main results can be summarized in three points: (i) we defined the agree-
ment conditions and classified the ways in which agents can be in disagreement;
this refines the state-of-the-art, where the only distinguishable conditions are
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agreement and disagreement alone; (ii) we defined rules for deriving streams of
dialog between two meaning negotiating agents; and (iii) we defined a deduction
system, MND , based upon these rules, which derives a stream of dialog that ends
with an agreement (or disagreement) condition.

Although these results are only a first step, we believe that they show the
usefulness and strength of our approach. Much is still to be done, in particular
investigating the formal properties of MND , such as soundness and complete-
ness. The proofs of consistency and adequacy do not fix the relation to a given
semantics, which is needed for a proof of soundness and a proof of complete-
ness. Usually, a deduction system can be proved sound and complete against
a standard interpretation of the language, which is difficult to circumscribe in
our case, because of the presence of the relations between agents to be repre-
sented. A standard definition of the semantics for the MND systems is therefore
needed in front of any further investigation of the soundness and completeness
properties.

In this paper, we assumed that agents are truthful thus they never inform
the opponents about something wrongly. Fraudulent agents may try to drive
the MN in a way that is in some sense optimal for themselves. It would be
interesting to study the optimality and minimality of the MN outcomes and
the ways, legitimate or not, that the agents use to reach optimal outcomes.
It would also be interesting to develop a decision making algorithm for those
cases in which the system is decidable, in particular for finite signatures in
addition to the case of competitive agents considered here. This would foster
the automation both of the subjective decision process (i.e., the automation of
the deduction system alone) and of the whole process per se (i.e., the defini-
tion of a procedure to establish the agreement terminal condition). We shall
also clarify how the different choices that every agent makes with respect to
the sequence of proposals affect the general strategies and results of the MN
process.

The investigation we carried out can also be extended by studying the ways
in which agents can be limited to specific strategies in choosing the next action.
Jointly with the definition of an algorithm for negotiating a common angle, this
study can also enlarge the boundary of decidable cases. In particular, agents
using some specific strategies can apply the rules in a finite number of steps
even if the signature is infinite.

Finally, we envisage two further extensions of our approach: (i) to more than
two negotiating agents, where it is well-known from game theory (e.g., [3]) that
such an extension is all but trivial; (ii) to applications in information security,
e.g., investigating the relationships between the MN process and the management
of authorization policies in security protocols and web services.
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Abstract. Modern control systems are limited in their ability to react
flexibly and autonomously to changing situations by the complexity in-
herent in analysing environments where many variables are present. We
aim to use an agent approach to help alleviate this problem and are par-
ticularly interested in the control of satellite systems using BDI agent
programming as pioneered by the PRS.

Such systems need to generate discrete abstractions from continuous
data and then use these abstractions in rational decision making. This
paper provides an architecture and interaction semantics for an abstrac-
tion engine to interact with a hybrid BDI-based control system.

1 Introduction

Modern control systems are limited in their ability to react flexibly and au-
tonomously to changing situations. The complexity inherent in analysing envi-
ronments where many continuous variables are present, and dynamically chang-
ing, has proved to be a challenge. In some situations one control system may
need to be swapped for another. This, quite severe, behavioural change is very
difficult to handle just within the control systems framework.

We approach the problem from the perspective of satellite control systems.
Consider a single satellite attempting to maintain a geostationary orbit. Current
systems maintain orbits using feedback controllers. These implicitly assume that
any errors will be minor and easily corrected. In situations where more major
errors occur, e.g., caused by thruster malfunction, it is desirable to change the
controller or modify the hardware configuration. The complexity of the deci-
sion task has proved to be a challenge to the type of imperative programming
approaches traditionally used within control systems programming.

There is a long standing tradition, pioneered by the PRS system [16], of using
agent languages (and other logic programming approaches – e.g., [28]) to con-
trol and reason about such systems. We consider a satellite to be an agent which
consists of a discrete (rational decision making) engine together with a contin-
uous (calculation) engine. The rational engine uses the Belief-Desire-Intention
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(BDI) theory of agency [21] to make decisions about appropriate controllers and
hardware configurations for the satellite. It is assisted by the continuous engine
which can perform predictive modelling and other continuous calculations.

In order for such an architecture to be clear and declarative it is necessary to
generate discrete abstractions from continuous data. It is also necessary to trans-
late discrete actions and queries back into continuous commands and queries. In
order to do this we introduce an Abstraction Engine whose purpose is to man-
age communication between the continuous and discrete parts of the system in
a semantically clear way. (See Figure 1, later).

This paper provides an architecture and interaction semantics which describe
the way an Abstraction Engine interacts with a hybrid BDI-based control system.
We present a case study and discuss its implications for the choice and design
of declarative languages for hybrid control systems.

This paper is organised as follows. Section 2 provides some background mate-
rial. Section 3 provides an architecture for a hybrid control system with explicit
abstraction. Section 4 provides an operational semantics for interaction between
the major components of such a system. Section 5 presents a prototype im-
plementation of the architecture and semantics and Section 6 discusses a case
study performed in this system. Section 7 draws some preliminary conclusions
and discusses the further work motivated by the prototype and case study.

2 Background

2.1 Control Systems

Satellite systems are typically governed by feedback controllers. These contin-
uously monitor input sensors and compare the values to a desired state. They
then alter various aspects of the system accordingly, for instance by increasing
or decreasing power or adjusting direction. Typically the actual controller is
specified using differential equations and operates in a continuous fashion.

A hybrid system is one in which the desired controller is a function which
not only has continuous regions but also distinct places of discontinuity between
those regions, such as the moment when a bouncing ball changes direction on im-
pact. In practical engineering contexts, such as satellites, it is frequently desirable
to change feedback controllers at such points. Appropriate control mechanisms
for such hybrid systems is a very active area of research [25; 7; 11].

2.2 BDI Agents

We view an agent as an autonomous computational entity making its own deci-
sions about what activities to pursue. Often this involves having goals and com-
municating with other agents in order to accomplish these goals [29]. Rational
agents make decisions in an explainable way and, since agents are autonomous,
understanding why an agent chooses a particular course of action is vital.

We often describe each agent’s beliefs and goals which in turn determine the
agent’s intentions. Such agents make decisions about what action to perform,
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given their current beliefs, goals and intentions. This approach has been popu-
larised through the influential BDI (Belief-Desire-Intention) model of agency [21].

2.3 The Problem of Abstraction

Generating appropriate abstractions to mediate between continuous and discrete
parts of a system is the key to any link between a control system and a reasoning
system. Abstractions allow concepts to be translated from the quantitative data
necessary to actually run the underlying system to the qualitative data needed for
reasoning. For instance a control system may store precise location coordinates,
represented as real numbers, while the reasoning system may only be interested
in whether a satellite is within reasonable bounds of its desired position.

The use of appropriate abstractions is also important for verification tech-
niques, such as model checking, for hybrid systems [1; 14; 24; 23] and potentially
for declarative prediction and forward planning [18]. These require the continu-
ous search space to be divided into a finite set of regions which can be examined.

Ideally the generation of such abstractions should itself be declarative. This
would make clear say, that a decision to change a fuel line corresponds directly
to the activation of certain valves within the satellite system.

3 Architecture

Our aim is to produce a hybrid system embedding existing technology for gen-
erating feedback controllers and configuring satellite systems within a decision
making part based upon agent technologies and theories. The link is to be con-
trolled by a semantically clear abstraction layer. At present we consider a single
agent case and leave investigation of multi-agent scenarios to future work.

Figure 1 shows an architecture for our system. Real time control of the satellite
is governed by a traditional feedback controller drawing its sensory input from
the environment. This forms a Physical Engine (Π). This engine communicates
with an agent architecture consisting of an Abstraction Engine (A) that filters
and discretizes information. To do this A may a use a Continuous Engine (Ω)
to make calculations involving the continuous information. Finally, the Rational
Engine (R) contains a “Sense-Reason-Act” loop. Actions involve either calls to
the Continuous Engine to calculate new controllers (for instance) or instructions
to the change these controllers within the Physical Engine. These instructions
are passed through the Abstraction Engine for reification.

In this way, R is a traditional BDI system dealing with discrete information, Π
and Ω are traditional control systems, typically generated by MatLab/Simulink,
while A provides the vital “glue” between all these parts.

4 Semantics of Interaction

We assume a hybrid control system consisting of a Physical Engine (Π), a Con-
tinuous Engine (Ω), an Abstraction Engine (A) and a Reasoning Engine (R).
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Fig. 1. Hybrid Agent Architecture

We present an operational semantics for the interaction of these engines. This
semantics makes minimal assumptions about the internals of the engines, but
nevertheless places certain constraints upon their operation and the way they
interact with the external environment. This semantics is designed to allow a
declarative abstraction language to be developed for the Abstraction Engine,
A. An implementation of the architecture and the semantics is discussed in
Section 5 and a case study using the implementation is discussed in Section 6.
The implementation and case study influenced the development of the semantics
and serve as additional motivation for the design of its components.

We assume the Abstraction Engine has access to four sets of data. These are
Δ (description of the real world and Physical Engine), Σ (beliefs/abstractions
shared with the Reasoning Engine), Γ (abstract actions the Reasoning Engine
wishes the Physical Engine to take), Q (abstract queries the Reasoning Engine
wishes to make of the Continuous Engine). Σ, Γ and Q are all assumed to be
sets of ground atomic formulae. Therefore, we can represent the entire system
as a tuple 〈Π, Ω, A, R, Δ, Σ, Γ, Q〉. For space reasons, in the semantics we will
sometimes replace parts of this tuple with ellipsis (. . .) if they are unchanged by
a transition.

4.1 Abstraction and Reification

We assume that the Abstraction Engine, A, contains processes of abstraction
(abs) and reification (rei) and that these form the primary purpose of A. Indeed

we use the reification process in the semantics via the transition A
rei(p)−−−−→ A′
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which indicates any internal changes to the abstraction engine as it reifies some
request p from the Rational Engine.

An example of abs would be the conversion, by the Abstraction Engine, of the
current physical position of the satellite, represented as real-valued coordinates,
to the belief that the satellite was within acceptable bounds of a desired position.
Conversely, reification might involve converting a thruster change request (i.e.,
p above might be the predicate change thruster(x)), to a sequence of valve
and switch activations, or adding additional information about the current real-
valued position of the satellite to a request for the calculation of a new feedback
controller to move the satellite along a path.

Implicitly we assume that abs represents a function from Δ to the shared
beliefs Σ. Similarly we assume that reification takes Γ and Q and converts them
into sequences of instructions for the Physical Engine or calls for calculations
from the Continuous Engine.

4.2 Internal Transitions

We assume all four engines may take internal transitions which we represent as
?−→ to indicate some unknown internal state change. So, for instance,

Π
?−→ Π ′

〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 ?Π−−→ 〈Π ′, Ω, A, R, Δ, Σ, Γ, Q〉
(1)

represents an internal state change in the Physical Engine which leaves the rest
of the system unaltered. Similar rules exist for the three other engines.

4.3 Perception

We assume that both the Abstraction Engine and Reasoning Engine incorporate
a perception mechanism by which they can “read in” data represented as first-
order predicates and represent this information internally as, for instance, beliefs.

We write A
per(S)−−−−→ A′ as the process by which A reads in first-order data S.

Similarly we write R
per(S)−−−−→ R′ for the Reasoning Engine’s perception process.

We represent this as a transition since the Reasoning Engine and Abstraction
Engine will change state (e.g., adding beliefs and/or events) during perception.

We have data, Δ, that arrives from the Physical Engine. This data might not
be represented in first-order form. We require a function fof (Δ) that transforms
the language of Δ into appropriate ground atomic predicates (though these may
represent real numbers).

Furthermore we assume that A keeps a log, L, of snapshots of the current
state of the physical system, as represented by Δ. So A can be represented as
(L, Ar) where Ar represents all of A’s internal data structures apart from the
log. We treat the log as a list with ‘:’ as the cons function.

This allows us to define a semantics for perception as follows, (2) gives the
semantics for perceiving Δ, while (3) and (4) give semantics for the abstraction
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and reasoning engine perceiving the shared beliefs. In (2) the incoming data is
removed once it has been processed by the Abstraction Engine (although it is
logged). This prevents the Abstraction Engine from processing such data several
times.

Ar
per(fof (Δ))−−−−−−−→ A′

r

〈Π, Ω, (L, Ar), R, Δ, Σ, Γ, Q〉 perA(Δ)−−−−−→ 〈Π, Ω, (fof (Δ) : L, A′
r), R, ∅, Σ, Γ, Q〉

(2)
The Abstraction and Rational engines may also perceive the shared beliefs.

A
per(Σ)−−−−→ A′

〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 perA(Σ)−−−−−→ 〈Π, Ω, A′, R, Δ, Σ, Γ, Q〉
(3)

R
per(Σ)−−−−→ R′

〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 perR(Σ)−−−−−→ 〈Π, Ω, A, R′, Δ, Σ, Γ, Q〉
(4)

4.4 Operating on Shared Beliefs

Both the Abstraction Engine and Reasoning Engine can operate on the memory
they share. We assume that both these engines can perform transitions +Σb and
−Σb to add and remove shared beliefs where b is a ground first-order formula.
Since we have not specified the internal transition systems of the Abstraction
and Reasoning engines we can not be sure whether they undergo any internal
change of state as a result of operating on the shared memory - e.g., removing
the intention to make a changed to the shared memory. As such we not that
their may be state change by specifying that they undergo a transition to a new
state as well.

A
+Σb−−−→ A′

〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 +Σ,Ab−−−−→ 〈Π, Ω, A′, R, Δ, Σ ∪ {b}, Γ, Q〉
(5)

A
−Σb−−−→ A′

〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 −Σ,Ab−−−−→ 〈Π, Ω, A′, R, Δ, Σ\{b}, Γ, Q〉
(6)

R
+Σb−−−→ R′

〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 +Σ,Rb−−−−→ 〈Π, Ω, A, R′, Δ, Σ ∪ {b}, Γ, Q〉
(7)

R
−Σb−−−→ R′

〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 −Σ,Rb−−−−→ 〈Π, Ω, A, R′, Δ, Σ\{b}, Γ, Q〉
(8)

We do not specify here whether the individual components of the system can act
in parallel or are forced to act in some sequential order. This means it is possible,
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in a parallel implementation, for both A and R to make transitions at the same
time. This might mean that both rules (5) and (7) were applicable at once. In
this situation an implementation would need to either select one at random, or
have a preference order enforced.

Note that the abstraction process employed by the Abstraction Engine is
intended to be one of transforming the predicates generated via fof (Δ) into a
set of shared beliefs which are then added to Σ. One of our interests is in finding
ways to present this transformation in as expressive and declarative a fashion as
possible. We discuss this further in Sections 6 and 7.

4.5 Calculation

We allow the Abstraction Engine to transform the predicate representation of
the calculation, p, into the input language of the Continuous Engine. This is
similar to the inverse of the operation performed by fof and so we term it fof −1.
Usually this involves trivial changes (e.g., set valve(x) becomes set x valve –
translating between the parameterised form used by the Rational Engine and
the non parameterised form used by the Physical and Continuous Engines).

When the Abstraction Engine requests a calculation from the Continuous
Engine it could wait for an answer. However such an answer may take time to
calculate and the Abstraction Engine may need to continue handling incoming
data. Some agent languages (such as Jason [6]) allow intentions to be suspended
while other parts of an agent may continue to run. We follow this approach and
represent requesting and receiving the answer to a calculation via two rules. We

indicate the process of requesting a calculation by A
calc(p,V )−−−−−−→ A′(V ), where we

write A′(V ) to indicate that the state of the Abstraction Engine contains a free
variable, V , that is awaiting instantiation. We represent the change in state of
Ω when it is not performing a calculation to when it is via Ω

calc−−→ Ω(fof −1(p)).

A
calc(p,V )−−−−−−→ A′(V ) Ω

calc−−→ Ω(fof −1(p))

〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 calc(p,V )−−−−−−→ 〈Π, Ω(fof −1(p)), A′(V ), Δ, Σ, Γ, Q〉
(9)

When the Continuous Engine finishes its calculation it returns a value, t. The
Continuous Engine’s internal state is unchanged by performing the calculation.
The Abstraction Engine then instantiates V to t where appropriate and may pos-
sibly make other changes to it’s internal state so that A(V ) becomes A′(t). The
engines contain local state information and, query calculations could be specified
further by providing detailed rules for their evaluation on the local beliefs/vari-
ables. However, we do not wish to overly constrain the internal semantics of the
engines. The local variables/beliefs could be described in a number of alternate
ways. The one we use here is sufficient for our purposes.

Ω(fof −1(p)) = t A(V ) V=t−−−→ A′(t)

〈Π, Ω, A(V ), R, Δ, Σ, Γ, Q〉 V=t−−−→ 〈Π, Ω, A′(t), R, Δ, Σ, Γ, Q〉
(10)
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When the Reasoning Engine, R, wishes to request a continuous calculation it
places a request in the query set, Q, which A then reifies. We implicitly assume
that the reification will include one or more calculation requests to the Con-
tinuous Engine but that the only change to the overall system state is to the
internal state of A and, in particular, that the free variable V will be instanti-

ated to t. We write reification as a transition 〈Π, Ω, A, R, Δ, Σ, Γ, 〉 rei(q,V =t)−−−−−−−→
〈Π, Ω, A′, R, Δ, Σ, Γ, Q〉.

(q, V ) ∈ Q 〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 rei(q,V=t)−−−−−−−→ 〈Π, Ω, A′, R, Δ, Σ, Γ, Q〉
〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 qcalc(q,V )−−−−−−→ 〈Π, Ω, A′, R, Δ, Σ, Γ, Q{V/t}〉

(11)
As with the Abstraction Engine, we split the processes of requesting a calculation
and receiving an answer in the Reasoning Engine:

R
rcalc(q,V )−−−−−−−→ R′(V )

〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 rcalc(q,V )−−−−−−−→ 〈Π, Ω, A, R′(V ), Δ, Σ, Γ, {(q, V )} ∪ Q〉
(12)

〈. . . , A, R(V ), . . . , Q〉 rei(q,V =t)−−−−−−−→ 〈. . . , A′, R(V ), . . . , Q′〉 (q, t) ∈ Q′ R(V )
V =t−−−→ R′(t)

〈. . . , A,R(V ), . . . , Q〉 V =t−−−→ 〈Π, Ω, A′, R′(t), . . . , Q′\{(q, t)}〉
(13)

4.6 Performing Tasks

Finally, A can request that Π makes specific updates to its state.

A
run(γ)−−−−→ A′ Π

fof −1(γ)−−−−−→ Π ′

〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 run(γ)−−−−→ 〈Π ′, Ω, A′, R, Δ, Σ, Γ, Q〉
(14)

R can request changes to Π , but A reifies these requests. The reification may
involve several calls to run(γ) and these are all amalgamated into one system

transition: 〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 rei(γ)−−−−→ 〈Π ′, Ω, A′, R, Δ, Σ, Γ, Q〉.

R
do(γ)−−−→ R′

〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 doR(γ)−−−−→ 〈Π, Ω, A, R′, Δ, Σ, {γ} ∪ Γ, Q〉
(15)

γ ∈ Γ 〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 rei(γ)−−−−→ 〈Π ′, Ω, A′, R, Δ, Σ, Γ, Q〉
〈Π, Ω, A, R, Δ, Σ, Γ, Q〉 do(γ)−−−→ 〈Π ′, Ω, A′, R, Δ, Σ, Γ\{γ}, Q〉

(16)
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5 Implementation

We have implemented a prototype system to explore the requirements for the
Abstraction Engine. The simulated environment, Physical and Continuous En-
gines are all implemented in MatLab using the Simulink tool kit.

The Abstraction Engine and Reasoning Engine are both written in the Java-
based Gwendolen agent programming language1 as separate agents. Requests for
calculations or actions from the Reasoning Engine are read into the Abstraction
Engine as ‘perform’ goals Therefore the plans for handling these goals are equiv-
alent to the function rei in the abstract semantics and execution of those plans is

equivalent to the transition A
rei(p)−−−−→ A′ . The Continuous Engine may, as a side

effect of its calculations, place configuration files in the shared file system for use
by the Physical Engine. Communication between the Java process and the two
MatLab processes is via Java sockets and exists in a thin Java “Environment”
layer between the Abstraction Engine and the MatLab parts of the system.

The Physical Engine is assumed to have direct access to a satellite’s sensors.
At present the information is transmitted to the Abstraction Engine in the form
of a simple string tag (which relates to the way the data values flow around
the Simulink model), followed by a number of arguments which are mostly real
numbers. These tags and values are then converted to predicates by the Ab-
straction Engine. For instance the Physical Engine groups data by ‘thruster’
and tags them, for instance “xthruster1” (for the data from the first thruster in
the X direction) followed by values for the current, voltage and fuel pressure in
the thruster (say C, V and P ). It is more natural, in the Abstraction Engine,
to represent this data as a predicate thruster(x, 1, C, V, P ) than as the pred-
icate xthruster1(C, V, P ). At the moment the Java environment handles the
necessary conversion which is equivalent to the fof function from the semantics.

The Java environment also handles all four data sets, Δ, Σ, Γ and Q and
sends predicates to the relevant agents at appropriate moments. Γ and Q are
treated as messages with performatives indicating the type of goal they should
be transformed into by the Abstraction Engine.

When the Abstraction Engine requests calculations from the Continuous En-
gine it requests that an M-file (MatLab function) is executed. It sends the Con-
tinuous Agent the name of the M-file followed by any arguments the M-file
requires. Gwendolen allows intentions to be suspended until some event occurs.
We use this explicitly in both engines to force the agent to wait until it per-
ceives the result of calculation. In particular this allows the Abstraction Engine
to continue processing new information even while waiting for a result. Once the
M-file has been executed the Continuous Engine of the agent returns the result-
ing data to the Abstraction Engine. (We are exploring whether the Continuous
Engine should also sense data from the system model to assist its calculations).

Both the Physical Engine and Continuous Engine need to work with the Ab-
straction Engine to produce abstractions for the Reasoning Engine. To make the

1 The choice of language was dictated entirely by convenience. One of the purposes of
this case study is to explore the desirable features of a BDI-based control language.
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meanings of abstractions clear, concise and easy to remember for the program-
mer of the agent system, a high-level notation called system English (sEnglish,
[22; 26; 27]), is used to generate the MatLab M-files used by the Continuous
Engine and parts of the Physical Engine. sEnglish also provides a natural link
between a predicate style formulation and the underlying MatLab code.

Finally, at present the Abstraction Engine only keeps the most recent snapshot
of Δ and discards older information rather than keeping it as a log.

6 Case Study: Geostationary Orbit

A geostationary orbit (a GEO orbit) is characterized as an equatorial orbit
(zero inclination), with near zero eccentricity and an orbital period equal to
one sidereal day. A satellite maintaining such an orbit will remain at a fixed
longitude at zero degrees latitude. Thus, with respect to an Earth based observer,
the satellite will remain in a fixed overhead position. Numerous benefits follow
from the use of geostationary orbits, the principal one of these being highlighted
originally in [3]: three geostationary satellites stationed equidistantly are capable
of providing worldwide telecommunications coverage.

While telecommunications is an obvious application area for such orbits,
observation satellites and other applications also make heavy use of them. Con-
sequently the geostationary orbit represents prime real-estate for satellite plat-
forms. GEO locations are hotly contested and their allocation is politicized. This
makes it important that such locations are used optimally and that satellites do
not stray far from their assigned position.

Once placed in a GEO orbit at a specified longitude, station keeping procedures
are used to ensure that the correct location is retained. Such station keeping pro-
cedures are required because the disturbances caused by solar radiation pressure
(SRP), luni-solar perturbations and Earth triaxiality naturally cause an object
to move from an orbit location in which it has been placed. These disturbances
result in changes to the nominal orbit which must be corrected for. A standard
feedback controller is able to handle these tasks.

6.1 Scenario

We implemented a Simulink model of a satellite in geostationary orbit. A MatLab
function (an M-filewritten in sEnglish) was created to calculate whether a given
set of coordinates were within an acceptable distance of the satellite’s desired
orbital position (comp distance). A second function (plan approach to centre),
based on [19], was also written to produce an optimal path back to its desired
orbital position (for use if the satellite strayed out of bounds – e.g., because of
fuel venting from a ruptured line). These functions were made available to the
agent’s Continuous Engine.

Controls were made available in the Physical Engine which could send a par-
ticular named activation plan to the feedback controller ( set control ), switch
thrusters on and off (set x1 main, set x2 main, set y1 main, etc.), control the
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valves that determined which fuel line was being utilised ( set x1 valves , etc.)
and change the thruster being used in any direction (set x bank, etc.).

The satellite was given thrusters in three directions (X, Y and Z) each of
which contained two fuel lines. This enabled the agent to switch fuel line in the
event of a rupture (detectable by a drop in fuel pressure). We also provided up
to five redundant thrusters, allowing the agent to switch to a redundant thruster
if both fuel lines were broken.

6.2 The Abstraction Engine

The Abstraction Engine code in the case of one redundant thruster is shown in
code fragment 6.1. We use a standard BDI syntax: +b indicates the addition of
a belief; !g indicates a perform goal, g, and +!g the commitment to the goal. A
plan e : {g} ← b consists of a trigger event, e, a guard, g, which must be true
before the plan can be executed and a body b which is executed when the plan
is selected.

Gwendolen allows plan execution to be suspended while waiting for some belief
to become true. This is indicated by the syntax ∗b which means “wait until b
is believed”. This is used in conjunction with ‘calculate ’ to allow the engine to
continuing producing abstractions from incoming data while calculation occurs.
The new belief is then immediately removed so that further calls to ‘calculate ’
suspend as desired. Ideally, a language would handle this more cleanly without
the awkward “call-suspend-clean-up” sequence.

Abstraction and Reification. Ideally we would like to be able to clearly
derive the functions abs and rei from the Abstraction Engine code.

In the above the abs process is represented by plans triggered by belief acqui-
sition. For instance the code in lines 30−32 represents an abstraction from the
predicate thruster(X, N, C, V, P ), where C, V and P are real numbers, to the
predicate broken(X). However, it is harder to see how the acquisition of location
data (line 1) generates abstractions about “proximity to centre”.

The reification of the abstract query “plan approach to centre(P)” (line 20),
converts it to a call with real number arguments (the current location) and then
causes the intention to wait for the result of the call. Similarly the code in lines
42−49 shows the reification of the predicate, change bank(T ), into a sequence
of commands to set the bank and turn the relevant thrusters off or on, but this
is obscured by housekeeping to manage the system’s beliefs.

An area of further work is to find or develop a language for the Abstraction
Engine that expresses these two functions in a clearer way.

6.3 The Reasoning Engine

The reasoning engine code is shown in fragment 6.2. We use the same syntax
as we did for the Abstraction Engine. Here the actions, ‘perform’ and ‘query’,
request that the Abstraction Engine adopt a goal.
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Code fragment 6.1 Geostationary Orbit:Abstraction Engine

1+location(L1, L2, L3, L4, L5, L6) : {B bound info(V1)} ←
2calculate (comp distance(L1, L2, L3, L4, L5, L6), Val),
3∗result (comp distance(L1, L2, L3, L4, L5, L6), Val),
4−result(comp distance(L1, L2, L3, L4, L5, L6), Val),
5+bound info(Val);
6

7+bound info(in) : {B proximity to centre(out)} ←
8−bound info(out),
9−Σproximity to centre(out), +Σproximity to centre(in );
10

11+bound info(out) : {B proximity to centre(in)} ←
12−bound info(in),
13−Σproximity to centre(in ), +Σproximity to centre(out);
14

15+!maintain path : {B proximity to centre(in)} ← run(set control (maintain));
16+!execute(P) : {B proximity to centre(out)} ← run(set control (P));
17

18+!plan approach to centre(P) : {B location(L1, L2, L3, L4, L5, L6)} ←
19calculate (plan approach to centre(L1, L2, L3, L4, L5, L6), P),
20∗result (plan approach to centre(L1, L2, L3, L4, L5, L6), P),
21−result(plan approach to centre(L1, L2, L3, L4, L5, L6), P),
22+Σplan approach to center(P);
23

24−broken(X) :
25{B thruster bank line(X, N, L), B thruster(X, N, C, V, P), P1 < 1} ←
26+Σ(broken(X));
27

28+thruster(X, N, C, V, P):
29{ ˜B broken(X), B thruster bank line(X, N, L), P1 < 1} ←
30+Σbroken(X);
31+thruster(X, N, C, V, P):
32{B broken(X), B thruster bank line (X, N, L), 1 < P1} ←
33−Σbroken(X).
34

35+!change fuel line (T, 1) : {B thruster bank line (T, B, 1)} ←
36run(set valves (T, B, off , off , on, on)),
37−Σthruster bank line(T, B, 1),
38+Σthruster bank line(T, B, 2),
39−Σbroken(T);
40+!change bank(T) : {B thruster bank line(T, B, L)} ←
41B1 is B + 1;
42run(set bank(T, B1)),
43run(set main(T, B, off )),
44run(set main(T, B1, on)),
45−Σthruster bank line(T, B, L),
46+Σthruster bank line(T, B1, 1),
47−Σbroken(T);
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Code fragment 6.2 Geostationary Orbit: Reasoning Engine

1+proximity to centre(out) : {�} ← −proximity to centre(in),
2+!get to centre ;
3+proximity to centre(in) : {�} ← −proximity to centre(out),
4perform(maintain path);
5

6+!get to centre : {B proximity to centre(out)} ←
7query(plan approach to centre(P)), ∗plan approach to centre(P),
8perform(execute(P)),
9−Σplan approach to centre(P);
10

11+broken(X): {B thruster bank line(X, N, 1)} ←
12perform(change fuel line(X, N));
13+broken(X): {B thruster bank line(X, N, 2)} ←
14perform(change bank(X, N));

The architecture lets us represent the high-level decision making aspects of the
program in terms of the beliefs and goals of the agent and the events it observes.
So, for instance, when the Abstraction Engine observes that the thruster line
pressure has dropped below 1, it asserts a shared belief that the thruster is
broken. When the Reasoning Engine observes that the thruster is broken, it
then either changes fuel line, or thruster bank. This is communicated to the
Abstraction Engine which then sets the appropriate valves and switches.

7 Conclusions

This paper has explored creating declarative abstractions to assist the commu-
nication between the continuous and discrete parts of a hybrid control system.

We believe that it is desirable to provide a clear separation between abstrac-
tion and reasoning processes in hybrid autonomous control systems. We believe
this is beneficial not only for the clarity of the code, but also for use in applica-
tions such as forward planning and model checking.

We have created a formal semantics describing how such an Abstraction En-
gine would interact with the rest of the system, and discussed a prototype BDI
based Abstraction Engine and the issues this raises in terms of a suitable lan-
guage for generating discrete abstractions from continuous data. We believe that
this is the first work linking autonomous agents and control systems via a formal
semantics.

7.1 Future Work

The work on hybrid agent systems with declarative abstractions for autonomous
space software is only in its initial stages and considerable further work remains
to be investigated.
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Further Case Studies. We are keen to develop a repertoire of case studies,
beyond the simple one presented here, which will provide us with benchmark
examples upon which to examine issues such as more sophisticated reasoning
tasks, multi-agent systems, forward planning, verification and language design.

In addition we aim, next, to investigate a case study involving multiple satel-
lites attempting to maintain and change formation in low Earth orbit. This
presents significant planning challenges.

Custom Language. At the moment the BDI language we are using for the
Abstraction Engine is not as clear as we might like. In particular the functions
of abstraction and reification are not so easy to “read off” from the code and
are obscured somewhat by housekeeping tasks associated with maintaining con-
sistent shared beliefs about which thrusters are in operation.

A further degree of declarativeness can be achieved within the Abstraction
Engine by separation of abstraction evaluation and the control features. Due
to the dynamic setting in which abstraction is performed “on-the-fly” reacting
to incoming sensory data, it can be naturally seen as query processing for data
streams [12; 13]. This viewpoint would provide a clean semantics for abstraction
evaluation, based on the theory of stream queries [13] and would hopefully avoid
the need to devote too much space to storing data logs. We also aim to investi-
gate the extent to which techniques and programming languages developed for
efficient data stream processing (from e.g., [2; 17]) can be re-used within the
Abstraction Engine. It is possible that something similar might be used for the
reification process as well, although this is more speculative.

We are interested in investigating programming languages for the Reasoning
Engine – e.g., languages such as Jason [6] or 3APL [8] are similar to Gwendolen,
but better developed and supported. Alternatively it might be necessary to use
a language containing, for instance, the concept of a maintain goal. Much of a
satellite’s operation is most naturally expressed in terms of maintaining a state
of affairs (such as a remaining on a particular path).

Planning and Model Checking. At present the M-file employed to create a
new controller that will return the satellite to the desired orbit uses a technique
based on hill-climbing search [19]. We are interested in investigating temporal
logic and model-checking based approaches to this form of planning for hybrid
automata based upon the work of Kloetzer and Belta [18].

Model checking techniques also exist [5] for the verification of BDI agent pro-
grams which could conceivably be applied to the Reasoning Engine. Abstraction
techniques would then be required to provide appropriate models of the continu-
ous and physical engines and it might be possible to generate these automatically
from the abstraction and reification functions.

There is also a large body of work on the verification of hybrid systems [1; 14]
which would allow us to push the boundaries of verification of such systems
outside the limits of the Reasoning Engine alone.

Multi-Agent Systems. We are interested in extending our work to multi-agent
systems and groups of satellites that need to collaborate in order to achieve some
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objective. In particular there are realistic scenarios in which one member of a
group of satellites loses some particular functionality meaning that its role within
the group needs to change. We believe this provides an interesting application
for multi-agent work on groups, teams, roles and organisations [9; 15; 10; 20],
together with the potential for formal verification in this area.

Since the individual agents in this system will be discrete physical objects
and will be represented as such in any simulation we don’t anticipate major
challenges to the architecture itself from moving to a multi-agent scenario. How-
ever we anticipate interesting challenges from the point of view of coordination
and communication between the agents.
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Abstract. Social reasoning theories, whilst studied extensively in the
area of multiagent systems, are hard to implement directly in agents.
They often specify properties of beliefs or behaviours but not the way
these should affect the computational reasoning mechanisms of a concrete
agent design. The Expectation-Strategy-Behaviour (ESB) framework ad-
dresses this problem by separating and abstracting social reasoning from
other practical reasoning, providing the computational machinery that is
necessary to perform social reasoning in practice. We present an exten-
sion to previous work on ESB to an implemented reasoning system which
enables the execution of concise and modular declarative social reason-
ing rules. We review the foundations of the abstract ESB framework and
present the implementation of a reasoner based on CTL model checking.
Our system allows for conditioning agent behaviours on complex precon-
ditions and verification of properties to aid the agent designer. It also
allows for easy integration with a BDI reasoning system. We exemplify
the suitability of ESB for social reasoning constructs with a detailed
example of Joint Intention theory in ESB and illustrate the generality
with an overview of another implemented social reasoning scheme, and
extensions to both.

1 Introduction

In many multiagent environments, achieving coordinated behaviour requires so-
cial reasoning on the part of individual agents. This includes reasoning about
others and one’s relationships with them, or about social objects such as norms
and social laws, commitments and conventions, deontic notions such as obliga-
tions, permissions, and prohibitions, trust and reputation. While there exists
a very rich literature on social reasoning theories, there is hardly any support
for implementing the suggested frameworks in actual systems at the level of
general-purpose tools to aid agent design and implementation. On the one hand,
there exist formal languages for describing action and cooperation theories but
these do not include a computational framework for processing such specifica-
tions, e.g. [1,2]. On the other hand, there exist implemented frameworks, but
they are either specific to a particular social reasoning theory [3,4], or have only
been implemented in a specific software application [5]. General approaches to
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multiagent reasoning have a lot to offer the community, as shown by the success
of BDI. Maintaining a high level of generality allows a method to be applied
to many different existing ideas, for their comparison, implementation or to re-
alise the benefits of their combination. A general method capturing key social
reasoning abstractions would therefore be of benefit to research on MAS.

In [6], we proposed the Expectation-Strategy-Behaviour (ESB) architecture.
ESB is an abstract framework designed to unify many social reasoning ap-
proaches, whilst providing the computational machinery to process declarative
specifications of a given social reasoning framework. ESB is based on specifica-
tions of an agent’s beliefs regarding hidden properties of a system (such as the
internal attributes of others or the status of social objects) together with belief
revision mechanisms that specify how these beliefs are updated. Such a gen-
eral formalism is useful for capturing social reasoning theories from the agent’s
point of view, rather than at the system level. At its most general social reason-
ing requires some mechanism for modifying beliefs about social state and ESB
provides a means to specify these mechanisms.

Treating social reasoning as a separate component has several benefits. Fore-
most, reasoning about interaction makes designing and implementing MAS com-
plex and general abstractions specific to this task may ease it. Additionally a
unifying declarative specification for social reasoning could allow for interesting
agent interactions based on combinations of social reasoning techniques.

We also presented an abstract interpreter for ESB [6] specifications that con-
structs graph-based models of expectation sets, determines how these change
over time, and allows for querying the expectation status at runtime. While
this is a first step toward providing generic implementation support for varied
social reasoning methods, the system presented previously does not specify a
concrete reasoning engine that enables the whole cycle of ESB based reason-
ing and execution. What is required is a means of specification, algorithms for
model generation, querying mechanisms, and integration with a practical reason-
ing system to combine social reasoning with other rational reasoning capabilities.
In this paper, we present an ESB reasoning engine that provides this missing
functionality and can be readily used to implement social reasoning frameworks
in BDI agents. Our system allows for:

– defining declarative ESB specifications of social reasoning rules. These spec-
ify the properties of a social reasoner without worrying about procedural
processing, and are easily extended in a modular way;

– automated model generation based on these specifications, model restriction
to achieve boundedly rational reasoning, and querying of logical constraints
via model checking;

– an interface to generic AgentSpeak(L) [7] specifications to integrate the ESB
reasoning component with specifications of BDI agent designs in a loosely
coupled way so as to maximise reusability.
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With this functionality, our system ESB-RS (ESB Reasoning System) provides
comprehensive design and implementation support for existing and new social
reasoning frameworks, while maintaining a clear separation of social reasoning
from other types of practical reasoning. As far as the authors are aware, no
other related work provides an implementation of a general social reasoning
engine separated from the practical reasoner.

We proceed as follows: in Section 2, we review the abstract ESB framework
as presented in [6]. Section 3 presents the design of our overall ESB reasoning
system, and its implementation with the NuSMV model checking system [8] and
the Jason [9] implementation of AgentSpeak(L). In Section 4, we exemplify the
suitability of the proposed ESB reasoning system by describing the well-known
theory of Joint Intentions [10] in ESB and implementing it in our reasoning
engine. This finishes with an overview of other work to capture social reasoning
in ESB and then Section 5 concludes.

2 The ESB Framework

The ESB framework is an abstract model for practical social reasoning systems
based on the concept of expectations, which are defined as follows:

An expectation is a conditional belief regarding a statement whose truth
status may be eventually verified by a test and updated according to
specified responses to the test.

Expectations take the form of a belief Φ held by an agent A under condition C.
When C holds, depending on the outcome of a test T , the agent will update its
expectations if the expected belief was confirmed ρ+ (positive response), and ρ−

if not (negative response).
Strategies constrain the style and scope of the agent’s reasoning process, whilst

behaviours form the link between the representation of social concepts in the
expectations and the practical reasoning process.

In the general case, an expectation is represented as follows:

Exp(N A C Φ T + T− ρ+ ρ−)

N is the name of the expectation, taken from a set of all expectation labels
EXP = {N, N ′, . . .}.

A is the agent holding this expectation, from a set of agents {A, A′, . . .}.
C is the condition under which the expectation holds. Evaluated over the agent’s

beliefs like the guards on BDI plans.
Φ is the expected belief, i.e. an event or an expectation1 that another agent is

assumed to hold

1 Nesting expectations allows modelling of other agent’s mental states, and adaptive
behaviour on the part of either agent.



Executing Specifications of Social Reasoning Agents 115

T +, T− are the tests which confirm (T +), or reject (T−), the expectation of Φ.
Tests are split for the purposes of the implementation described here. E.g.
a test may succeed when another agent performs an expected task, or fail
when a certain amount of time elapses.

ρ+/ρ− are the positive/negative responses to the tests. Each is specified in terms
of two sets of expectations: those to remove, and those to add.

To illustrate ESB we shall re-use from [6] an example based on the Rummy [11]
card game. It is only required to understand that players are trying to collect
either runs of cards in a suit, or sets of the same value card. On their turn a
player must pick up a card. They then create any sets they can and discard,
play passes to the next player. In our example domain, an expectation could be
that if opponent B picks up a 2♦ (C), then we expect (Φ) them to be collect-
ing 2s. The test (T ) is if they pickup or discard another 2. The corresponding
positive response (ρ+) is to remove expectations that they are collecting a run.
The negative response (ρ−) is to remove this expectation itself (leaving others
suggesting they are collecting a run).

Strategies specify ways to process sets of expectations. Consider all possible
sets of expectations that could arise from future observations of test outcomes - a
strategy is a particular way of traversing the graph that results from mapping out
all possible future expectation combinations. A strategy therefore controls how
the agent reasons based on expected future outcomes. To continue our Rummy
example, a strategy could consider only those future states where the opponent
plays according to mini-max principles (with an evaluation function based on
the utility of cards). Or more simply, when the game nears the end one could
bound the depth of the graph considered to the likely number of hands.

Behaviours determine how the overall expectation base affects the agent’s
practical reasoning and actions. They are conditioned on statements about ex-
pectations, and the truth value will be established by applying the agent’s strat-
egy to the expectation base. This condition is tied to an action, which is not
necessarily a direct physical action, but rather a modification of the agent’s be-
liefs (at the practical reasoning level, rather than social). An example might
be to only allow discards of 2♦ (action) if the opponent is not expected to be
collecting 2s, or to be collecting them in the future (condition).

Expectations, together with strategies and behaviours provide us with a nat-
ural way for describing social reasoning methods and devising modular social
reasoning designs from belief revision mechanisms regarding hidden properties
in the system (such as the mental states of other agents). The notion of expec-
tation captures all the elements that are necessary to link beliefs held about
non-observable parts of the system with practical reasoning. It also allows us
to express belief dynamics at a practical, procedural level while benefiting from
declarative representations.

2.1 The Operation of an ESB Agent

The ESB theory proposes that there are advantages to separating social reasoning
from practical reasoning about actions in the world. In this work, we assume the
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ESB component to be combined with a BDI practical reasoner and the interface
between the two reasoners to be the belief revision function of the BDI interpreter.

To demonstrate ESB, we adapt a simple set of expectations and their graph
from [6] (Figure 1). For brevity, expectations are labelled with a number, and
only the responses are shown in the table. States in the graph show the active set
of expectations in that state. The responses define how the state changes accord-
ing to the tests. The convention used is that an arc labelled “¬2” is the transition
caused by the test for expectation 2 failing, or simply “2” for the success case.
Where an arc bears more than one label, it represents parallel arcs grouped for
clarity. To refer to components of these expectations we will use notation like
“Φ(1)” to specify the expected belief Φ of expectation 1. Correspondingly T +(1)
would be the positive test condition for expectation 1 and so on.

Fig. 1. A simple ESB example (adapted from [6])(Bold arcs indicate reduction accord-
ing to strategy)

The language for the behaviour conditions follows Computation Tree Logic
(CTL). It is a branching time logic specifying possible futures, and only knowl-
edge of a few operators is required here. There are quantifiers over paths and
specific to paths. E and A mean “there exists a path” and “for all paths”. For
paths, � and ♦ can be read as “always” and “eventually”, i.e. in all states or in
some future state on the respective paths.

An agent is provided with a specification of all expectations EXP =
{1, 2, 3, 4, 5}, and maintains the sets EXPA = {1, 2, 5} (active expectations,
state B in the graph) and EXPC = {1, 5} (current expectations where C holds,
shown in bold).

Other required inputs for the reasoning cycle are:

– The current belief base.
– The strategy in use.
– The set of behaviour rules.
– The practical reasoner ESB is combined with.
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The output from the process is the updated expectation state, belief base and
any actions performed by the practical reasoning component.

An ESB agent’s reasoning cycle proceeds as follows:

1. Update EXPC to contain those expectations from EXPA where C holds.
State B is active in the example, and the agent holds 1 and 5 to be true.

2. For E ∈ EXPC add Φ(E) to the agents beliefs (stored in the BDI reasoner).
We add Φ(1), Φ(5).

3. Apply the strategy to create the restricted strategy graph by considering
only a subset of transitions from the current state. Our example has an
optimistic agent, that considers only ρ+ responses, those where there is a
positive transition in our graph (marked in bold). Applied to the active state
B, this leaves the subgraph of the grey highlighted states as the strategy graph.

4. For each behaviour, where the behaviour condition is true, add the specified
belief (the corresponding action) to the belief base. The example behaviours
are written in a CTL style. B1 says “3 is possible”, this is true in state C. B2
says “2 is always possible” and is false, as state A is in the strategy graph.

5. Perform BDI plan selection and action execution as normal. This is before
expectation responses are applied, in case actions are sensing actions that
affect test outcomes.

6. For E ∈ EXPC

(a) If test T +(E) applies, update expectations as per the response ρ+(E)
(b) else if T−(E) applies, update expectations as per the response ρ−(E)
If we assume that T +(5) holds, then the expectations are updated to place
the agent in state A.

The responses will update the set of expectations, so there may be some overlap
where one expectation is added but another response causes its removal. In this
case, the current system applies them all recursively, in the order specified by the
designer (if they still apply given previous effects). This results in an expectation
set consistent with the agent’s observations, relative to its current expectations.

3 An ESB Reasoner

ESB only specifies a framwork for social reasoning, and so must be combined with
a practical reasoning component. The main components of a complete ESB-RS
agent are:

– A BDI reasoning engine, in this case Jason [9].
– A set of plans for practical reasoning, here they are specified in AgentS-

peak(L) [7].
– An ESB engine, to maintain the expectations and interface with Jason.
– An ESB specification in terms of its expectations, strategy and behaviours.

Of these only the last has previously been presented in [6]. The contribution
here is a description of the algorithms required for the ESB engine, and coupling
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Fig. 2. Overview of an ESB-RS Agent

of this engine with the BDI interpreter. We present an evaluation based on the
case studies of joint intentions [10] and the robosoccer example presented later.

The interactions between these components are illustrated in Figure 2. The
principal interaction between the social and practical reasoning components is
via the belief revision function (BRF). Expectations are updated based on the
agent’s perceptions and beliefs. The control of the agent’s social interactions is
also in terms of beliefs, as these can act as guards on plans which carry out
actions.

The execution of ESB-RS can be roughly described as follows. The expectation
graph is generated from the specifications. This is only done once, as after this
initial step the agent can simply track its current state in the graph. Then, in
each reasoning cycle, the beliefs from the BDI part, this expectation graph and
the strategy specification are used to create the reduced strategy graph. This is
then used by the behaviour condition checker to select the applicable behaviour
actions, which are used to update the agent’s beliefs accordingly. With the belief-
based interface to the BDI practical reasoner, it is necessary for the designer to
develop behaviour actions that work in tandem with relevant plans.

3.1 Expectations

The language of expectations is defined formally in [6]. The agent’s current state
is captured by three sets of expectations: current, active and inactive, updated
according to the algorithm described in section 2.1.
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In ESB-RS we transform the expectations into a finite state machine (FSM)
at a lower level of abstraction than the expectation graph of previous work.
Behaviour conditions are however defined in terms of the expectation graph.
Accordingly we must transform a declarative expectation specification into a
form suitable for efficient behaviour checking. The graph may be thought of
as a FSM, where it is necessary to check if certain properties hold (the be-
haviour conditions) given an initial state (defined by EXPC). This intuition
naturally suggests the use of model checkers, which aim to solve a similar
problem. To be able to apply a model checker for ESB reasoning requires al-
gorithms to create the state descriptions and transition relation from our sets of
expectations.

To specify an ESB agent’s execution as an FSM, we do not have to consider
all the combinations of expectations that form states in the expectation graph
explicitly. This is one of the advantages brought by the model checker, as it
implicitly considers these combinations. The FSM is defined in terms of individ-
ual expectation dynamics, which are specified more easily. Testing a condition
on a particular expectation graph state, or setting the current state, is done by
specifying the state of all individual expectations. This finer grained approach
is possible as each state in an expectation graph can be considered not as one
state, but as a high level abstraction of the set of states where only a subset of
expectations are relevant. This concept, and the following algorithm to create an
FSM with equivalent properties to the conceptual expectation graph model rep-
resent the key new development presented in this paper. It allows the use of the
NuSMV [8] model checker, and ultimately makes it possible to easily implement
the previous ESB theory.

Creating the FSM, we are concerned with only the parts of each expectation
that describe the dynamics:

Condition ∈ {True, False, DC} – Each expectation can be considered to be
True or False (holds or does not), if it is in the active set EXPA, or “don’t
care” (DC) if it is not. Expectations in EXPC are of course True.

Φ ∈ {True, False} – This is as per condition, or False where condition is DC.
Test ∈ {Tp, Tm, NA} – The test is either positive (Tp) or negative (Tm) or

not-applicable (NA). It is not-applicable whenever the expectation is DC.
Responses ρ+, ρ− – The add- and remove-sets of expectations for each re-

sponse are used to define the transition relation of the FSM.

The set of expectation graph states translate to the FSM as the set of all unique
combinations of each expectation’s condition (though of course many will be
unreachable). From this it follows that it is only necessary to specify how each
individual expectation changes to define the FSM transition relation and the
complete graph is captured. Each expectation is specified in terms of its variables,
and expressions for the next state in terms of the current state variables. This
is done as follows:
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INPUT: The set of all expectations EXP.

OUTPUT: An FSM, specified in terms of each expectation’s dynamics.

Each expectation E ∈ EXP has components:

E.Condition ∈ {True, False,DC}
E.Test ∈ {Tp,Tm,NA}

The sets of expectations added and removed by responses:

E.Tp.addSet,E.Tp.removeSet,E.Tm.addSet,E.Tm.removeSet

Next state for each E calculated as follows:

FOR every other expectation O ∈ EXP
IF (O.Test = Tp) & (E in O.Tp.addSet) THEN

E.Condition ∈ {True,False}, RETURN
ELSE IF (O.Test = Tm) & (E in O.Tm.addSet) THEN

E.Condition ∈ {True,False}, RETURN
ELSE IF (O.Test = Tp) & (E in O.Tp.removeSet) THEN

E.Condition ∈ {DC}, RETURN
ELSE IF (O.Test = Tm) & (E in O.Tm.removeSet) THEN

E.Condition ∈ {DC}, RETURN
END IF

END FOR
IF E.Condition ∈ {True,False} THEN

E.Condition ∈ {True,False}, RETURN
ELSE IF E.Condition = DC THEN

E.Condition ∈ {DC}, RETURN
END IF

When the condition is assigned and returns, assign the test:

IF E.Condition ∈ {DC} THEN
E.Test ∈ {NA}

ELSE
E.Test ∈ {Tp,Tm,NA}

END IF

This algorithm does not represent actual implemented code, but captures
how the specification of the FSM for the NuSMV model checker is procedurally
specified. The problem of actually creating the FSM for the purposes of model
checking from this description of its transition relation is handled by the model
checker. This is a key benefit of this approach. As it is a simple operation to
generate this specification and the complexity of the problem of building the
FSM is handled by the model checker.

Each expectation is defined in terms of its component variables and how they
change from state to state. The algorithm is tricky to understand, but easily
described in a more natural manner. The for-loop says that if this expectation
is in an add-set of another expectation where the relevant test applies, then it
will become active (True or False – it may or may not be current). Similarly
if it appears in a relevant remove-set then it will be set to DC. If neither case
applies, each expectation’s condition may at the next step change between False
or True, however if it is DC then it stays as such. The test for an expectation
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is not applicable (NA) if the expectation is inactive, otherwise it may be the
positive case (Tp), negative (Tm) , or neither (NA).

3.2 Strategies

Strategies are so called, as they influence the overall style of the agent’s social
reasoning rather than being concerned with the details. A simple example would
be an optimistic agent, which considers only the positive response transitions -
effectively assuming its assumptions about other agent’s mental states are always
correct. Alternatively it is possible for strategies to have a greater influence on
an agent’s behaviour. For example, the expectations could be restricted to those
consistent with a particular opponent model.

Strategies are implemented as a set of constraints on the transition relation.
Each constraint is a boolean expression which must be satisfied in all states. This
means that the transitions from a given state are constrained to those where
the next state meets all the strategy constraints. The atoms in the constraints
are the components of each expectation. These can be combined using various
operations defined by the model checker used to check behaviour constraints,
NuSMV [8]. Operations can include logical propositions, case statements etc.

For example, the graph could be restricted to consider only those states reach-
able assuming tests, if they apply, always have a positive outcome Tp. The con-
straint to achieve this would be to limit the next state as follows:

next(E .Test : {Tp, NA})
This says that for any state, in the next state the test must have the positive
outcome, if it applies at all. Specific expectations, or expectation graph states
(conjunctive combinations of expectations) can also be excluded by name, for
example:

next(Exp1 .C : {DC}) & next(Exp3 .C : {DC})
This can allow for more complex strategies, which can be generated. An example
would be removing states that do not meet some decision- or game-theoretic
criteria as suggested in [6].

3.3 Behaviours

Behaviour conditions are checked by constructing a graph from a set of expec-
tations, and checking conditions based on the current state and possible (or
impossible) future states. This naturally suggests an approach based on model
checking, as the problem is very similar. Model checking presents an attractive
advantage - it is only necessary to describe the states each expectation may have,
and the relatively simple relations between them, and the model checker will al-
low us to form relatively complex queries about expectation graph concepts.

NuSMV allows the checking of CTL logic formulae, allowing us to express
possibilities and necessities. A simple example is the condition “If I might hold
expectation 2 in the future” which is captured as E♦(Φ(2)) (there exists a path
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where eventually Φ(2)). Having described the implementation of the ESB-RS
engine to execute declarative specifications, we now proceed to several examples
illustrating its usefulness.

4 Evaluation

In this section we evaluate ESB’s suitability for capturing social reasoning con-
cerns by demonstrating that this key concept of Joint Intentions (JI [10]) can be
easily expressed. This is explored with a detailed description of a JI implemen-
tation in ESB-RS, and a subsequent extension. We follow this with an overview
of a normative reasoning system also captured in ESB-RS and a brief discussion.

4.1 Joint Intentions in ESB-RS

Kumar et al. [12] describe the Request Conversation Protocol (RCP) for estab-
lishing a joint persistent goal (JPG). The difference between a Joint Intention
and a JPG is in the mutual belief throughout executing the action that it is
done as a team. So given a pair of agents who believe that they are doing the
action as a team, the request protocol brings about a state of joint intentions
between the agents. ESB is ideally suited to capture Joint Intentions, as the JI
centres around commitments the agent holds based on its beliefs about expected
commitments of the other agent.

The RCP defined in terms of a set of communication acts, with associated
semantics and mental states that two agents go through to form a JPG. Figure
3 shows the communication acts, and the states the agents go through. If agent
X is requesting an action of Y, the intuition is simple. X firsts requests an action
from Y, X now holds a persistent weak achievement goal (PWAG) toward Y. Y
either agrees or refuses, in the “agree” case Y now also holds a PWAG toward
X to achieve the goal. There is now a JI. X has a goal for Y to do some action,
and Y has a goal to do this action relative to X’s desire to do so.

To simplify the example, we omit the case where the requesting agent cancels
the request.

There are several primitive components that the protocol is built upon: the indi-
vidual commitments; persistent goal (PGOAL) and persistent weak achievement

Fig. 3. The Request Conversation Protocol (adapted from [12])



Executing Specifications of Social Reasoning Agents 123

goal (PWAG); and the speech acts REQUEST, AGREE, REFUSE and INFORM.
The formal definitions can be found in [12], but a description of a PWAG is useful
here. “PWAG(X,Y,A,Q)” says agentX has a persistent goal to achieveA, given rel-
evancy condition Q, and will have a persistent goal to notify Y that A is achieved,
or becomes impossible or irrelevant (¬Q holds).

These primitives are all considered as actions the agent can perform, be they
communicative or holding an individual commitment. They are not social rea-
soning, this will be separated out into the ESB side of the reasoner, and acts on
top of these basic components. The primitives are therefore implemented in the
BDI practical reasoner component, and not described here.

Only three expectations are needed to allow the agent to use the above prim-
itives to form and act on a joint intention. The expectations used are shown in
table 1. The agent holding each expectation is assumed to be “self”, and the
other either X or Y depending on the role played. The three expectations can
be explained as follows:

1. When I have a PWAG, and expect Y also has the PWAG relative to my own
goal, I expect a JI to do A exists. The positive test outcome is I believe A
(the action was performed), not Q (is no longer relevant) or F (failed). The
negative result is harder to express neatly. Loosely it is that A, not Q or
F is believed and this is not communicated by the other agent - they have
not upheld their part of the joint commitment. Even if they do not directly
observe the completion event, they should reply to ensure mutual belief.

2. When I receive AGREE(A,Q,F) from Y, I expect Y holds PWAG(Y,X,A,[Q
∧ PWAG(X,Y,A,Q)]). The relevancy condition for Y’s PWAG also includes
that X still has the commitment toward the goal. Intuitively, it makes no
sense for an agent to perform a requested action if the requester is no longer
committed to it. The positive test is that Y informs me of A, not Q or F,
negative test is I observe A, not Q or F and Y does not inform me as per 1.

3. When I receive REQUEST(A,Q,F) from X expect X holds PWAG(X,Y,A,Q).
The tests are as 2, only obviously I expect X to inform me.

Although these expectations follow logically from the semantics of the commu-
nication acts, they are still assumptions about another agent’s mental state, and
so are separated out as social reasoning, for the advantages described in [6].

Only a couple of responses are required. In the failure cases the belief that
the other agent has agreed or requested an action is removed. The effect is to
remove the expected PWAG from the belief base, and thus the expectation of a
JI (if any). In addition, it may be desirable to add some response actions as a
result of JI being upheld or not. An obvious case would be maintaining a list of
other agents who have been proven willing to co-operate, to aid future decisions.

In this simple set of expectations, there is no real need to choose a strategy, as
there are not significant numbers of transitions in the graph. Strategies are en-
visaged as becoming more useful to bound and direct reasoning in more complex
situated examples.
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Table 1. JI Expectations

Expectation 1. ExpJI 2. ExpAgree 3. ExpReq

Condition
pwag(self,Y,A,Q) ∧ agree(A,Q,F) request(A,Q,F)
pwag(Y,self,A, [source(Y)] [source(X)]
[Q ∧ pwag(self,Y,A,Q)])

Φ
ji(self,Y,A) pwag(Y,self,A, pwag(X,self,A,Q)

[Q ∧ pwag(self,Y,A,Q)])

T+
A ∨ ¬Q ∨ F (A ∨ ¬Q ∨ F) (A ∨ ¬Q ∨ F)

[source(Y)] [source(X)]

T− A ∨ ¬Q ∨ F (A ∨ ¬Q ∨ F) (A ∨ ¬Q ∨ F)

[source(¬Y)] [source(¬Y)] [source(¬X)]
ρ+ - - -

ρ− - remove remove
agree(A,Q,F) request(A,Q,F)

The behaviour (condition � action) pairs represent the interface between the
social and practical reasoner. Only one behaviour is required for an agent to act
upon joint intentions, that is:

ji(self,Y,A) � add belief (haveJI(A))

This says when I expect I have a JI to do an action A, add the synthetic belief
haveJI(A) to the belief base. This belief represents the JI and should act as a
guard on all plans that require the JI to succeed. So it can be read simply as,
“allow joint plans only when I have a joint intention”. This seems very obvious
and simple but this is the nature of Joint Intentions. It is the most basic building
block on top of which more complex social reasoning and interaction can be built.
Here it is specified explicitly, rather than designed into a system implicitly.

Although the above is all that is strictly necessary to express joint intentions,
ESB provides an easy route to simply and generically answer the social reasoning
questions of when to request a joint action, and when to agree to one. Both are
necessary considerations for any implementation, and bridging the gap from
theory to implementation is a key driver of our work.

The first consideration is when to request a JI. Specifically, when it is possible
in the future to hold a JI toward A, and it is desired, then request:

E♦(ji(self,Y,A)) ∧ (desire A) � add belief (requestJI(A))

The condition is similar for agreeing to a request, the only difference being the
requirement that a request has been received:

request(A,Q,F) ∧ E♦(ji(self,Y,A) ∧ (desire A) �
add belief (agreeRequest(A))

In terms of expectation graphs, the condition says that if from the current state,
a possible future expectation state includes one in which I hold a JI - then it is
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sensible to request (or agree) to one. The converse is that it is not rational to
request or agree to a JI if an agent doesn’t believe that its future reasoning (or
the other agent’s) can bring about this state.

4.2 Extended Example

To evaluate how ESB can be easily used in practice, and extended in a modular
way, we present a robotic soccer example. The situation we consider here is an
example of a team plan to score a goal - thus requiring joint commitment between
agents, as presented above. The scenario we consider involves three team-mates,
one with the ball. The agent in possession of the ball wishes one agent to go up
either side of the pitch, one as a feint and the other to pass the ball to, then
shoot.

If the agent with the ball is Andy, wanting to pass to Barney and have Cathy
perform the feint, the intended operation is as follows. Andy must form a JI
with Barney to move up the pitch receive a pass and shoot, and with Cathy to
move up the pitch. But we can also assume that each agent also has practical
reasoner plans to score goals a variety of ways, in different situations. To handle
when to request and agree to joint actions in this example, we take the set of
expectations presented previously, and add two expectations as follows:

ExpFree. When another agent doesn’t have the ball, expect they are “free” (to
accept requests). The test for this is if they accept or refuse a request. The
positive response is to add ExpJI and ExpAgree from table 1 to the current
set, and remove ExpTeam.

ExpTeam. When another agent has the ball, expect it to desire a joint intention
for some team action to score. The test is if they request some joint action.
The positive response is to add ExpJI and ExpReq from table 1 to the
current set, and remove ExpFree.

This produces the expectation graph shown in Figure 4. The basic idea of these ex-
pectations is to demonstrate one of ESB’s strengths - bounding reasoning. By only
adding the expectations about joint intentions to the current setwhen they become
applicable, it reduces thenumberof conditionsandexpectations thatmustbemain-
tained. This also provides a very natural way to represent any scenario where an
agent may act in different “scenes” performing different roles. Also simply by ex-
tending the above general JI expectations, in a modular fashion, we get this benefit.
So it is easy to add and integrate reasoning rules together.

Fig. 4. Expectation Graph for the Robosoccer Agents. Edges are annotated with the
responses defining the state transitions.
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We now have enough of the example defined to demonstrate another advantage
of ESB. It is possible to easily perform checks on sets of expectations to aid the
designer. For example, in this case the intention is that an agent should only
ever eventually either be in a state to expect to receive a request for a JI, or to
try and form one. By exploiting the automatically generated FSM, we can query
the model checker at design time, and check if the set of expectations meets our
design. In this case we test to ensure it’s always the case that both expectations
do not hold together:

A�¬(ExpAgree ∧ ExpReq)

If this test should fail,the model checker provides an error trace shows us exactly
the states and transitions leading to the failure, and we can correct our design
accordingly.

As well as implementation specific tests, it is also possible to describe general
tests that the ESB formalism allows and that can be applied to any design. It is
reasonable to expect that if there is an expectation which can never hold, then
there is a problem with the design. We check the following condition for each
expectation:

E♦(Expectation)

In our example, if it were to be broken by making the response of ExpTeam
empty, then this test would fail for ExpReq. We could then either fix our design
through manual inspection of the expectations, or by identifying more specifically
when the behaviour is not as intended by checking a more complex property and
inspecting the error trace.

Behaviours are as easily extended as the expectations. As before, we have
the behaviour to add a belief noting when we have a joint intention, so that
BDI plans can take advantage of this. When we expect that a JI is held, plans
depending on it are allowed via a guard belief representing this. The behaviours
presented above to dictate when we expect it is possible to form a JI can be
included as before, or for convenience slightly extended as follows:

E♦(ji(self,Y,A)) ∧ free(Y)� add belief (requestJI(Y))

request(A,Q,F) ∧ E♦(ji(self,Y,A)) ∧ free(self) �
add belief (agreeRequest(A))

Here we add in the requirements on the expectations that relate to agents being
free to accept JIs, and only agreeing to a JI if an agent is itself free. The intuition
here is that if an agent has the ball, it will have better options for scoring itself
and will not agree to a proposed joint action (though it may propose one itself).
As the first behaviour uses the temporal operators, even although an agent
initially is in a state where no expectations about JIs are current, the condition
takes into account possible future reasoning, and so the behaviour holds.

The final component of the soccer agents is the set of BDI plans. In AgentS-
peak(L) plans are of the form:
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+!goal : guard

-> actions or subgoals.

Plans are selected on a priority ordering from the set of relevant plans - those
whose guard holds, and trigger meets the current goal. So, amongst other plans
to achieve the goal score, the social reasoning agents have the following plans:

+!score : haveBall & ji(self,Barney,Pass)
& ji(self,Cathy,Feint)

<- passTo(Barney).
+!score: request(Andy,Action) & agreeRequest(Action)

<- .tell(Andy,agree(Action)).
+!score : ji(self,Andy,Action)

<- do(Action).
+!score : haveBall & requestJI(Barney,Cathy)

<- request(Barney,Pass);
request(Cathy,Feint).

The beliefs underlined are synthetic ones added by behaviours, and represent
the interface between the ESB social reasoner and BDI practical reasoner. Using
beliefs added by the ESB reasoner as guards on plans helps bound the agent’s
reasoning in another important way - it is only necessary to consider plans
consistent with the agent’s current social reasoning.

4.3 Further Implementations

As well as the JI based implementations described in detail in this paper, several
other implementations of social reasoning schemes have also been implemented
for evaluation purposes and are described in [13].

In addition to the ESB-RS implementation of JI, a BDI-only implementation
was created for comparison. The comparison is limited as there is not much of
the JI process that can be considered as pure social reasoning, the bulk of the
effort was in creating the communicative acts, rather than the selection of when
to carry out the acts. The RCP protocol to establish a JI is fairly restrictive,
so there is no great difficulty in encapsulating this purely in BDI. The main
benefit seen by the ESB-RS version was easy extensibility. This is due to the
modular nature of the ESB specification. The soccer extension shows how it is
trivial to add additional expectations, without changing existing expectations,
that reason about when to attempt to form a JI and accept requests. It is easy
to see how this could be extended to combining social reasoning schemes. For
example, agents could jointly commit to following certain norm specifications.

As a contrast to the agent centric JI reasoning process, an example of system
level social reasoning was also implemented in the form of creating a norm au-
tonomous agent. This implementation follows the design of the NoA Normative
Agent architecture [14]. NoA describes a model and implementation for agents
to account for norms in their practical reasoning. A transformation from a NoA
norm specification to ESB is described in [13]. NoA describes norms in terms of
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activation and deactivation conditions, and allows them to specify either states
or actions that are obligated, permitted or prohibited. In ESB-RS the scope of
the norm can be captured using the conditions and tests and behaviour rules
are used to ensure the corresponded states or actions are achieved (or not).

This implementation was evaluated using two examples described in [14]. A
simple blocks-world example and a more complex three-agent Letter of Credit
protocol. It was shown that the key properties of the NoA system were preserved
in the transformation into an ESB-RS implementation.

The NoA system is quite different from the reasoning required for JI, and
so illustrates the ability for ESB-RS to capture and execute diverse social rea-
soning schemes. The differences the different examples allowed us to draw some
conclusions. It was possible to capture the social reasoning methods in ESB-
RS, without implementing specific cases. The Letter of Credit and robosoccer
extended examples showed how easy it was to extend the implementations due
to the modular design inherent in ESB. However, there is some disadvantage to
agent design. The very generality of ESB meant that there were several different
ways each scheme could have been captured, and some care was needed to choose
the best way.

5 Conclusion

This paper presents ESB-RS, a practical social reasoning system built upon
ESB [6]. We have shown through the specification and implementation of Joint
Intentions, that although general (indeed because of the generality) it is capable
of representing social reasoning theories whilst removing the concern of managing
the procedural processing. The extension of this example to a robosoccer agent
allowed us to evaluate the modularity of the agent specification, showing how
additional reasoning schemes can be combined, and how the agent’s reasoning
can be bounded. These points were reinforced with a normative agent ESB-RS
implementation, also summarised here.

Additional benefits of ESB-RS to the agent designer have been demonstrated.
The model checker based implementation allows a user to check the operation
of the agent’s reasoning matches their intent, and the ability to perform general
tests on the sanity of an expectation set has been described.

An obvious question is “how general is ESB-RS?”, and the related question of
“what classes of reasoning system can be captured?” By showing that the most
basic social requirement of Joint Commitment can be implemented with ESB-
RS we have taken a first step toward answering this question. Further work will
focus on evaluating not only this, but other ESB-RS implementations of social
reasoning schemes, to explore its adequacy to represent a wide range of social
methods. The description of the NoA implementation is a start to this work. A
problem is the lack of classification of social reasoning techniques, their different
levels of abstraction, and the lack of existing implementations for comparison.

Taking a broader view, we have shown that it is possible to create an imple-
mentation of the ESB framework, which itself forms the bridge necessary for us



Executing Specifications of Social Reasoning Agents 129

to implement varied examples of social reasoning for agents. This is the driver
of our contribution, as ESB-RS now makes it possible to create agents using
previously un-implemented social reasoning schemes, combinations of these, and
eases the development of novel social agents. This is the direction we hope to take
in future work. By implementing other social reasoning schemes we will refine
the ESB-RS reasoner, and in the process hopefully gain a new understanding of
practical agent social reasoning.
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Abstract. In this paper, we develop an epistemic logic for specifying
and reasoning about information flow on the underlying communication
channels. By combining ideas from Dynamic Epistemic Logic (DEL) and
Interpreted Systems (IS), our semantics offers a natural and neat way
of modeling multi-agent communication scenarios with different assump-
tions about the observational power of agents. We relate our logic to the
standard DEL and IS approaches and demonstrate its use by studying a
telephone call communication scenario.

1 Introduction

The 1999 ‘National Science Quiz’ of The Netherlands Organisation for Scientific
Research (NWO)1 had the following question:

Six friends each have one piece of gossip. They start making phone calls.
In every call they exchange all pieces of gossip that they know at that
point. How many calls at least are needed to ensure that everyone knows
all six pieces of gossip?

To reason about the information flow in such a scenario, we want to take into
account the following issues: the messages that the agents possess (e.g. secrets),
the knowledge of the agents, the dynamics of the system in terms of information
passing (e.g. telephone calls) and the underlying communication channels (e.g.
the network of landlines). To incorporate specific designs for such issues, we first
need to make a choice between two mainstream logical frameworks for multi-
agent systems: Interpreted Systems and Dynamic Epistemic Logic.

Interpreted Systems (ISs), introduced by [15] and [8] independently, are math-
ematical structures that combine history-based temporal components of a system
with epistemic ones (defined in terms of local states of the agents). ISs are conve-
nient to model knowledge development based on the given temporal development

� This paper is the full version of an extended abstract with the same title appeared
in the proceedings of AAMAS’10.

1 For a list of references about the problem c.f. [12].
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of a system. In ISs the epistemic structure is generated from the temporal struc-
ture in a uniform way. However, the generation of temporal structures is not
specified in the framework.

A different perspective on the dynamics of multi-agent systems is provided
by Dynamic Epistemic Logic (DEL) [9,2]. The main focus of DEL is not on the
temporal structure of the system but on the epistemic impact of events as the
agents perceive them. The development of a system through time is essentially
generated by executing so-called action models on a static initial model, to gen-
erate an updated static model. The epistemic relations in the initial static model
and in the action models are not generated uniformly as in IS. Instead, they are
designed by hand.

In recent years, much has been said about the comparison of the two frame-
works, based on the observation that certain temporal developments of the sys-
tem in IS can be generated by sequences of DEL updates on static models (see,
e.g., [22,11,10]). In this paper, we will demonstrate further benefits of combin-
ing the two approaches by presenting a framework where epistemic relations are
generated by matching local states and a history of observations as in ISs, while
keeping the flexibility of explicit actions as in DEL approaches.

The puzzle of the telephone calls was briefly discussed in [25, Ch. 6.6] within
the original DEL framework. In [21] the author raised the research question
whether the communication network can be made explicit in DEL. An early
proposal to fill in this line of research can be found in [19]. Communication chan-
nels in an IS framework made their appearance in [16]. Recent work in [14,1]
addresses the information passing on so-called communication graphs or inter-
action structures, where “messages” are either atomic propositions or Boolean
combinations of atomic propositions. In [27] a PDL-style DEL language is devel-
oped that allows explicit specification of protocols. The present paper attempts
to blend the DEL and IS approaches to model communication along channels.
More specifically, the contributions of this paper are:

– Combining insights from DEL and IS, we propose a logic LI,M to specify
and reason about the information flow over underlying communication chan-
nels. Unlike the previous work [14,1,19], we can specify the communication
protocols in our language and deal with information flow in terms of both
messages and higher-order formulas.

– The semantics of LI,M is given on single-state models with respect to differ-
ent observational equivalence relations generated in IS-style, which are also
studied and compared in this paper.

– The basic actions in LI,M are given DEL-style internal structures by the
semantics. This allows us to model various communicative actions such as
message passing and group announcements. In particular we define an exter-
nal informing action, which essentially announces the protocol that agents
are supposed to follow, thus making it common knowledge. Therefore we
can explicitly specify more details of epistemic protocols such as the ones
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discussed in [13]. It turns out to make a crucial difference whether epistemic
protocols are assumed to be common knowledge or not among the agents
carrying out the protocol (see also [26,27] for detailed discussions).

– Based on our semantics, we also propose a generic method of epistemic mod-
eling where the initial model is simply the real world and all the initial
assumptions are specified explicitly by means of formulas of LI,M . This sig-
nificantly simplifies the modeling procedure. According to our semantics, the
relevant possible states can be automatically constructed while evaluating
the formulas. In particular, there is no need to specify the complete state
space at the beginning.

– As a case study, we model telephone communications among agents. We show
that it is impossible to obtain new common knowledge by telephone calls or
voice mails but that we can get arbitrarily close to common knowledge if
we not only can send messages but also make statements like “I know j got
message m”.

The paper is organized as follows. We introduce our logic LI,M in Section 2.
Section 3 relates our logic to the standard DEL and IS approaches. Section 4
introduces a modeling method and illustrates this method by a study of varia-
tions on the puzzle that was mentioned above. The final section concludes and
lists future work.

2 Logic LI,M

2.1 Language

Let I be a finite set of agents, M be a finite set of message terms, and A be
a finite set of basic actions. A communication network net is represented as a
hypergraph of agents in I, namely a set of subsets of I as in [1]. For example a
hypergraph net = {{1, 2}, {1, 2, 3}} denotes a network in which there is a private
channel {1, 2} between agents 1 and 2 and there is a public channel used by all
three agents.

The set PropI,A,M of basic propositions is defined by

p ::= has im | com(G) | past(ᾱ) | future(ᾱ)

with i ∈ I, m ∈ M , G ⊆ I and ᾱ = α0; α1; . . . ; αk ∈ A∗.
has im is intended to mean that i possesses the message m;2 while com(G)

expresses that group G forms a channel in the network; past(ᾱ) says that the
sequence of actions ᾱ just happened and future(ᾱ) means that ᾱ can be executed
according to the current protocol. The formulas of LI,M are built from the set
PropI,A,M as follows:

φ ::= � | p | ¬φ | φ1 ∧ φ2 | 〈π〉φ | CGφ

π ::= α | ε | δ | π1; π2 | π1 ∪ π2 | π∗

2 Has is a commonly used predicate in the logic of security protocols to model declar-
ative knowledge about messages c.f., e.g., [18].
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with p ∈ PropI,A,M , G ⊆ I, α ∈ A and ε, δ as constants for empty sequence and
deadlock respectively.

The intended meaning of the formulas is mostly as usual as in dynamic epis-
temic logics: CGφ expresses “the agents in group G commonly know φ”, 〈π〉φ
expresses “the protocol π can be executed, and at least one execution of π yields
a state where φ holds”.

As usual, we define ⊥, φ ∨ ψ, φ → ψ, 〈CG〉φ and [π]φ as the abbreviations of
¬�, ¬(¬φ ∧ ¬ψ), ¬φ ∨ ψ, ¬CG¬φ and ¬〈π〉¬φ respectively. Let Π be the set of
all protocols π. We also use the following additional abbreviations:

Kjφ:=C{j}φ
has iM ′:=

∧
m∈M ′ has im

dhasGM ′:=
∧
m∈M ′

∨
j∈G hasjm

com(net):=
∧
G∈net com(G) ∧∧G �∈net ¬com(G)

πn:=π; π; . . . ; π︸ ︷︷ ︸
n

ΣΠ ′:=
⋃
π∈Π′ π where Π ′ ⊂ Π is finite.

where Kjφ means that agent j knows φ; dhasGM ′ says the messages in M ′ are
distributed among agents in G; com(net) specifies the communication channels
in the network.

By having both has and K operator in the language, we can make the dis-
tinction between knowing about a message and knowing about its content.
Kihasjm ∧ ¬has im and Kihasjm ∧ has im can express the de dicto reading
and de re reading of knowing a message m respectively. For example, let m be
the hiding place of Bin Laden, then KCIAhasAl−Qaedam ∧ ¬hasCIAm expresses
that CIA knows that Al-Qaeda knows the hiding place, which is, however, a
secret to CIA.

2.2 Semantics

First of all, we give interpretations to our action symbols α by defining their
internal structures. Let Form-〈π〉(LI,M ) be the set of all the LI,M formulas
without 〈π〉 modalities. Each α ∈ A can have an internal structure given by an
interpretation function ι : A → P(I)×Form−〈π〉(LI,M )×(P(M))|I|×(Π∪{#}).
Thus ι(α) is a tuple:

〈F, φ, N0 . . . N|I|, ρ〉
Here we define Obs(ι(α)) = F as the set of agents that can observe α; Pre(ι(α)) =
φ is the precondition that should hold in order for α to be executable3; Pos(ι(α)) =
〈N0 . . . N|I|, ρ〉 (with ρ ∈ Π ∪ {#}) is the postcondition which lists the set of mes-
sages Ni that are delivered to i by action α for each i and the protocol ρ that the
agents are going to follow after executing α. If ρ = #, then the agents should keep

3 It will become clear when we define the semantics of LI,M formulas that the action
symbols in 〈π〉-free formulas are treated without referring to their internal structures
given by ι, thus avoiding the circularity in the definition of the semantics.
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following the current protocol. If ρ = π for some π ∈ Π then they should change
their protocol to π. In this paper we assume that the agents can always observe
the actions that deliver messages to them: if Nj �= ∅ in ι(α) then j ∈ Obs(ι(α)).
The converse does not hold since agents may observe actions that do not deliver
any messages to them.

Note that by excluding the preconditions in the form of 〈π〉φ, the interde-
pendence of actions are limited but still useful, e.g., for action α, future(α) is
allowed as a precondition meaning that α can be executed only when it was
planned according to the current protocol.

In order to interpret basic propositions in PropI,A,M we let the finer structure
of the basic propositions correspond with a finer structure in the states, replacing
the traditional valuation in Kripke structures used in the DEL-approaches:

Definition 1. Let the state space S = P(P(I))×(P(M))|I|×(A)∗×(P(M))|I|×
Π. A state s ∈ S for LI,M is thus a tuple:

〈net, M0, . . . , M|I|, ᾱ, M ′
0, . . . , M

′
|I|, π〉

Here IS (s, i) = M ′
i is i’s current set of messages (information set), AM (s) = ᾱ

is the action history, CC (s) = net is the available communication network and
Prot(s) = π is the protocol that agents have to follow from this state. We let
AM k(s) = αk in ᾱ and l(s) = |AM (s)| be the length of s. Note that each
state also contains the information of the initial distribution of the messages:
M0, . . . , M|I|. From s we can recover the initial state of the system before any
actions were executed:

Init(s) = 〈net, M0, . . . , M|I|, ε, M0, . . . , M|I|, (ΣA)∗〉.
The action history in the initial state is empty, thus AM (Init(s)) = ε. We also
assume that all the actions are allowed initially, thus Prot(Init(s)) = (ΣA)∗.

Intuitively, each state represents a past temporal development of the system
with its constraint for the future actions. Note that the past is linear (AM (s) is
a single sequence of actions), while the future can be branching (Prot(s) may
allow several possible sequences of actions).

has im, com(G) and past(ᾱ) can be interpreted in a straightforward way at
a state s according to IS (s, i),CC (s) and AM (s) respectively. To give the se-
mantics for future(ᾱ) at a state s, we need to check whether ᾱ complys with the
current protocol Prot(s) and compute the remaining protocol after the execu-
tion of ᾱ in order to know what the new protocol is. For this, we first recall the
language of regular expressions L(π):

L(δ) = ∅ L(ε) = {ε} L(α) = {α}
L(π; π′) = {ᾱ; β̄ | ᾱ ∈ L(π), β̄ ∈ L(π′)}
L(π ∪ π′) = L(π) ∪ L(π′)
L(π∗) = {ε} ∪ {ᾱ1; . . . ; ᾱn | ᾱ1, . . . , ᾱn ∈ L(π)}

The language of an input derivative π\ᾱ of π ∈ Π w.r.t. a sequence of actions
ᾱ is defined as L(π\ᾱ) = {β̄ | ᾱ; β̄ ∈ L(π)}(cf. [4]). Intuitively, π\ᾱ is the
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remaining protocol of π after executing ᾱ. The input derivatives can be computed
efficiently e.g., we can derive (α ∪ (β; γ))∗\β = (α\β ∪ (β; γ)\β); (α ∪ β; γ)∗ =
(δ ∪ (ε; γ)); (α∪ β; γ)∗ = γ; (α∪ (β; γ))∗ (see [6] for an axiomatization of regular
expression with input derivatives).

Similar to [5,1], we give the truth value of complex LI,M formula on single
states instead of pointed Kripke models. The semantics of epistemic formulas
depends on the action interpretation ι and the relation ∼xi to be defined later.
For any state s we define:

s �ι hasi(m) ⇔ m ∈ IS(s, i)
s �ι com(G) ⇔ G ∈ CC (s)
s �ι past(ᾱ) ⇔ ᾱ is a suffix of AM (s)

s �ι future(ᾱ) ⇔ Prot(s)\ᾱ �= δ
s �ι ¬φ ⇔ s �ι φ

s �ι φ ∧ ψ ⇔ s �ι φ and s �ι ψ
s �ι CGφ ⇔ for all v, if s ∼x

G t then t �ι φ
s �ι 〈π〉φ ⇔ ∃s′ : s�π�ιs

′ and s′ �ι φ

where ∼xG is the reflexive transitive closure of
⋃
i∈G ∼xi . The protocols π function

as state changers w.r.t. ι:

s�ε�ιs
′ ⇔ s = s′

s�δ�ιs
′ ⇔ never

s�α�ιs
′ ⇔ s �ι Pre(ι(α)) and s′ = s|Pos(ι(α))

s�π1; π2�ιs
′ ⇔ s�π1�ι ◦ �π2�ιs

′

s�π1 ∪ π2�ιs
′ ⇔ s�π1�ι ∪ �π2�ιs

′

s�(π1)
∗�ιs

′ ⇔ s�π1�
∗
ι s′

where ◦,∪ and ∗ at right-hand side express the usual composition, union and
reflexive transitive closure on relations respectively. Given Pos(ι(α)) = 〈N0, . . . ,
N|I|, ρ〉, s|Pos(ι(α)) is the result of executing action α at s defined as:

s|Pos(ι(α)) = 〈net, M0, . . . , M|I|, β̄; α, M ′
0 ∪ N0, . . . , M

′
|I| ∪ N|I|, f(ρ)〉

where f(ρ) =
{

π\α if ρ = #
π′ if ρ = π′ .

Now we define ∼xi , the epistemic relation of an agent i between states. A state
s is said to be consistent if Init(s)�AM (s)�ιs. It is easy to see that for any s,
Init(s) is always consistent4.

We define that t ∼xi t′ iff the following conditions are met:

consistency. t and t′ are consistent.
local initialization. IS (Init(t), i) = IS (Init(t′), i)
local history. AM (t)|xi = AM (t′)|xi , where x is the type of observational power

of agents.
4 Note that we can actually omit the current information sets IS(s, i) in the definition

of a state, and compute it by applying the actions in AM(s), thus only generate
consistent states. We keep the current information sets there to simplify notations
and make it more efficient to evaluate basic propositions according to the semantics.
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The type of observational power of the agents, AM (t)|xi , defines the local history.
Many definitions of AM (t)|xi are possible, giving the agents different observa-
tional powers. Several reasonable definitions are:

1. AM (t)|seti = {α appearing in AM (t) | i ∈ Obs(ι(α))} as in [1].
2. AM (t)|1sti is the subsequence of AM (t) which only keeps the first occurrence

of each α ∈ AM (t)|seti as in [3].
3. AM (t)|asyni is the subsequence of AM (t) which only keeps all the occurrences

of each α ∈ AM (t)|seti , as in asynchronous systems (cf., e.g., [20]).
4. AM (t)|τi is the sequence obtained by replacing each occurrence of α �∈

AM (t)|seti in AM (t) by τ , as in synchronous systems with prefect recall
(cf., e.g., [24]).

It is clear from the above definition that ∼xi is an equivalence relation and the
following holds:

Proposition 1. ∼τi⊆∼asyni ⊆∼1st
i ⊆∼seti .

We then call the semantics defined by ∼xi the x-semantics, and denote the cor-
responding satisfaction relation as �xι . When ι is fixed and clear we also write �x
for the satisfaction relation. Recall that we require that the agents can always
observe the actions that change his information set. Then we have:

Proposition 2. For any consistent state t, t′: t ∼xi t′ implies IS (t, i) = IS(t′, i)
where x ∈ Sem = {set, asyn, 1st, τ}.
Proof. By Proposition 1, t ∼xi t′ implies t ∼seti t′ for all x ∈ Sem. Therefore we
only need to prove the claim for x = set. Suppose t ∼seti t′ then by the definition
of ∼seti , IS (Init(t), i) = IS(Init(t′), i) and AM (t)|seti = AM (t′)|seti . So at t and
t′ agent i initially had the same messages and has observed the same actions.
Since agents can always observe the actions that change his information set then
we know the same message passing actions relevant to i have happened for t
and t′. Since the actions can only add messages to the information set and never
delete messages from them, it doesn’t matter how often or in which order those
actions have been executed. Therefore the information sets of agent i in t and t′

are identical. ��

2.3 Communicative Actions

In this section, we will define some useful basic actions with their internal struc-
tures5. To simplify the presentation, we abuse the notation of action names to
stand for their internal structures as well, when the context is clear. Thus we let
Obs(β) = Obs(ι(β)) and similar for Pre(β) and Pos(β). Recall that the internal
structure of an action β is a tuple 〈F, φ, N0, . . . , N|I|, ρ〉 such that Nj = ∅ for
j �∈ Obs(β). We now list some basic actions with their internal structures in
Table 1.
5 Namely, a specific mapping ι which gives certain action names the corresponding

internal structures.
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Table 1. Some important communicative actions

β (communication Obs : Pre : common part is: Pos
among the agents): com(Obs(β)) ∧ future(β)∧ (j ∈ Obs(β)) :

send i
G(M ′) G ∪ {i} hasiM

′ Nj = M ′, ρ = #
shareG(M ′) G dhasGM ′ Nj = M ′, ρ = #
sendall i

G(M ′) G ∪ {i} hasiM
′ ∧∧m�∈M′ ¬hasim Nj = M ′, ρ = #

shareallG(M ′) G dhasGM ′ ∧∧m�∈M′ ¬dhasim Nj = M ′, ρ = #

informi
G(φ) G ∪ {i} Kiφ Nj = ∅, ρ = #

β (external actions): Obs : Pre : Pos :

exinfo(φ) I φ ρ = #
exprot(π′) I � ρ = π′

The first group of actions are communicative actions that are done by the
agents. These actions must abide by the communication channels and the pro-
tocol, which is enforced by having com(Obs(β)) ∧ future(β) in the precondition.
send iG(M ′) is the action that i sends the set of messages M ′ to the group G.
Apart from respecting the channel and the protocol, the precondition hasiM ′

enforces that agent i should possess any messages he wants to send. The postcon-
dition of send iG(M ′) ensures that the messages in M ′ are added to the message
sets of the agents in G. The action shareG(M ′) shares the messages in M ′ within
the group G. A precondition of shareG(M ′) is that the messages from M ′ are al-
ready distributed knowledge in the group. sendall iG(M ′) differs from send iG(M ′)
in the extra precondition that M ′ should contain all the messages that i has.
Similarly for shareallG(M ′). informi

G(φ) is the group announcement of an arbi-
trary formula φ within G ∪ {i}. A precondition of informi

G(φ) is that i should
know φ is true before he can announce it.

The second group of actions are public announcements that do not respect
the channels or the protocol. They model the external information that is given
to the agents. exinfo(φ) models the public announcement of a formula φ. The
only precondition of this announcement is that φ should hold. The postcondition
is empty. Knowledge of φ among the agents is created by the fact that all agents
can observe the action. Since all agents know the execution of this action would
only be possible if φ would hold, all agents know that φ holds at the moment it is
announced. exprot(π′) announces the protocol π′ that the agents are supposed to
follow in the future. Its postcondition changes the protocol to π′ and knowledge
of the protocol is created because all agents observe the announcement.

We can define more complex actions based on the above basic actions, as we
will demonstrate in Section 4.

3 Comparison with IS and DEL

The results in this section relate our logic to IS and DEL approaches. Theorem 1
shows that by the semantics of LI,M , an interpreted system is generated implic-
itly from a single state. Together with Theorem 1, Proposition 3 demonstrates
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that compared to DEL, our approach is powerful and concise in modeling ac-
tions. Let us compare our approach to IS first. In the following we only consider
consistent states.

Let the history of s w.r.t. a fixed ι be a sequence: histι(s) = s0s1 . . . sl(s) where
s0 = Init(s), sl(s) = s and sk�αk�ιsk+1 for any k such that αk = AM k(s). Clearly
then s0s1 . . . sk = histι(sk) for any k ≤ l(s). Let ExpT xι be the Interpreted
System with action labels with respect to x-semantics {H, {→α| α ∈ A}, {Ri |
i ∈ I}, V }, where:

– H = {histι(s) | s is consistent.}
– 〈s0 . . . sn〉 →α 〈s0 . . . snsn+1〉 ⇔ sn�α�ιsn+1.
– 〈s0 . . . sn〉Ri〈s′0 . . . s′m〉 iff sn ∼xi s′m.
– V (〈s0 . . . sn〉)(p) = � ⇔ sn �xι p where p ∈ PropI,A,M .

The language of LI,M can be seen as a fragment of Propositional Dynamic Logic
(PDL): LIpdl with basic action set A ∪ I. Here the common knowledge operator
CG can be seen as [(ΣG)∗] in LIpdl. Let �PDL denote the usual semantics of
LIpdl, then it is not hard to see:

Theorem 1. For any formula φ ∈ LI,M and for each consistent LI,M -state s:

s �xι φ ⇔ ExpT xι , histι(s) �PDL φ.

This result shows that if we abstract away the inner structure of basic proposi-
tions and actions, then our logic can be seen as a PDL language interpreted on
ISs that are generated in a particular way w.r.t some constraints. Note that this
result does not imply the decidability of LI,M since although PDL is decidable
on general Kripke structures, we do not know yet whether it is decidable on the
restricted class of generated models ExpT x.

Now consider the DEL language LIdel :

φ ::= � | p | ¬φ | φ1 ∧ φ2 | 〈A, e〉φ | CGφ

where p is in a set of basic propositions Prop, G ⊆ I and A is an action model
with e as its designated action. Action models are tuples of the form (E, {�i
}i∈I ,Pre,Pos) where �i models agents i’s observational power on events in
E (e.g. e1 �i e2 means i is not sure which one of e1 and e2 happened); the
precondition function Pre : E → LIdel describes when an event can happen and
the postcondition Pos : E → (Prop → LIdel) models the factual changes caused
by the event by changing the truth value of basic proposition p to the truth
value of Pos(e)(p) (cf. [2,23] for details of action models). The semantics for
epistemic formulas is as usual and

M, s �DEL 〈A, e〉φ ⇔ M ⊗ A, (s, e) � φ

Where, given a static Kripke model M = (W, {Ri}i∈I , V ) and an action model
A = (E, {�i}i∈I ,Pre,Pos), the updated model is M ⊗ A = (W ′, {R′

i}i∈I , V ′)
with:
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W ′ = {〈w, e〉 | M, w � Pre(e)}
R′
i = {(〈w, e〉, 〈v, e′〉) | wRiv and e �i e′}

V ′(〈w, e〉)(p) = � ⇔ M, w � Pos(e)(p)

To facilitate a comparison, let us consider LI,M,−∗, the star-free fragment of
LI,M . Let ExpKx(s) be the Kripke model {W, {Ri | i ∈ I}, V } obtained by the
expansion of the state s according to x−semantics, with:

– W = {s′ | s ∼xI s′} where ∼xI is the reflexive transitive closure of {∼xi | i ∈ I}.
– Ri =∼xi |W×W .
– V (s)(p) = � ⇔ s �x p where p ∈ PropI,A,M .

Note that although I, A, M are assumed to be finite, W in ExpKx(s) can still
be infinite due to the fact that we record the past explicitly in the states and
there may be infinitely many possible histories.

Based on ExpKx(s) it seems plausible to obtain a similar correspondence
result as Theorem 1 for LI,M,−∗and LIdel, since the basic actions in LI,M,−∗ look
like special cases of pointed action models in DEL. However, the result does not
hold in general. To see this, we first recall a fact from [22]: If we see 〈A, e〉 as
a basic action modality when considering PDL semantics, then for any formula
φ ∈ LIdel :

M, s �DEL φ ⇔ Forest(M,A), (s) �PDL φ (�)

where A is the set of action models and Forest(M,A) is the IS generated by
executing all possible sequences of action models in A on M, s6. We now show
that the effects of actions in LI,M cannot be simulated by action models in
general.

Proposition 3. There exists some action interpretation ι such that there is no
translation of action models T : A → A satisfying:

for all LI,M -states s: T (ExpT xι ), histι(s) ↔ Forest(ExpKx(s),A), (s)

where x ∈ {set, 1st, asyn} and T (ExpT xι ) is the IS obtained from ExpT xι by
replacing each label of α ∈ A by T (α) ∈ A and ↔ is the bisimulation w.r.t.
transitions lablled by I ∪ A.

Proof. In [22] it is shown that Forest(ExpKx(s),A) must satisfy the property
of Perfect Recall meaning that if the agents can not distinguish two sequences
of action ᾱ; α and β̄; β then they can not distinguish ᾱ and β̄. However, ExpT x

clearly does not satisfy this property for x ∈ {set, 1st, asyn} in general. For
example, send ij(M); γ ∼xj γ; send ij(M) where x ∈ {set, 1st, asyn} and γ is some
action j cannot observe, but send ij(M) �∼xj γ. ��

If we consider τ−semantics, then a correspondence result can be obtained. Given
an action interpretation ι, let T ιDEL : LI,M,−∗ → LIdel be defined as follows:

6 Due to the limit of space, readers are referred to [22] for details.
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T ιDEL(�) = �
T ιDEL(p) = p

T ιDEL(¬φ) = ¬T ιDEL(φ)
T ιDEL(φ1 ∧ φ2) = T ιDEL(φ1) ∧ T ιDEL(φ2)

T ιDEL([α]φ) = [ExpAτ
ι (α)]T ιDEL(φ)

T ιDEL([π1 ∪ π2]φ) = T ιDEL([π1]φ) ∧ T ιDEL([π2]φ)
T ιDEL([π1; π2]φ) = T ιDEL([π1][π2]φ)

where ExpAτ
ι (α) is the pointed action model {E, {Ri | i ∈ I}, V, eα} obtained

by the saturation of the action α according to τ−semantics:

– E = {eβ | β ∈ A}
– eβRieβ′ ⇔ ι(β) = ι(β′) or i �∈ Obs(β) ∪Obs(β′).
– Pre(eβ) = T ιDEL(Pre(β)).
– If Pos(β) = 〈N0, . . . , N|I|, ρ〉 then:

Pos(eβ)(has im) =
{� if m ∈ Ni

has im otherwise
Pos(eβ)(com(G)) = com(G)

Pos(eβ)(past(γ̄; γ)) =
{

past(γ̄) if γ = β
⊥ otherwise

Pos(eβ)(future(γ̄)) =

⎧⎨
⎩

future(β; γ̄) if ρ in Pos(β) is �
� if ρ in Pos(β) is π and π\γ̄ �= δ
⊥ if ρ in Pos(β) is π and π\γ̄ = δ

Based on the above translation, the star-free fragment of LI,M can be seen as a
version of DEL on generated models:

Theorem 2. For any φ ∈ LI,M,−∗ and for any consistent LI,M -state s:

s �τι φ ⇔ ExpKτ
ι (s), s �DEL TDEL(φ).

4 Applications

4.1 Common Knowledge

Our framework gives an interesting perspective on common knowledge. We first
focus on asynchronous semantics. It may not be surprising that we cannot reach
common knowledge without public communication. We might think that achiev-
ing common knowledge becomes easier if we can publicly agree on a common
protocol before the communication is limited to non-public communication. How-
ever, in the case of asynchronous semantics we still can not reach common knowl-
edge, even if we can publicly agree on a protocol. In this section we fix the action
interpretation ι as in Section 2.3 thus omitting ι in �xι and �π�ι. Recall that we
say an action α respects the communication channel if Pre(α) � com(Obs(α)).

Theorem 3. For any state s with I �∈ CC(s), any protocol π containing only
communications that respect the communication channels, any ϕ ∈ LI,M and
any sequence of actions ᾱ:

s �asyn 〈exprot(π)〉(¬CIϕ → ¬〈ᾱ〉CIϕ)
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Proof. Let s�exprot(π)�t and suppose t �asyn ¬CIφ. Towards a contradiction,
let ᾱ be the minimal sequence of actions such that t �asyn 〈ᾱ〉φ. Let ᾱ = β̄; α,
t�β̄�u and u�α�v. Since I �∈ CC(s) and α respects the communication channel,
Obs(α) �= I so there exists j �∈ Obs(α). Then AM(u)|asynj = AM(v)|asynj so
u ∼asynj v. Since ᾱ was minimal, u ��asyn CIϕ. But then v �asyn ¬KjCIϕ,
therefore v ��asyn CIϕ. ��
Essentially, even if the agents agree on a protocol beforehand, the agents that
cannot observe the final action of the protocol will never know whether this final
action has been executed and thus common knowledge is never established. This
is because in the asynchronous semantics, there is no sense of time. If we could
add some kind of clock and the agents would agree to do an action on every
“tick”, the agents would be able to establish common knowledge. This is exactly
what we try to achieve with our τ -semantics. Here every agent observes a “tick”
the moment some action is executed. This way, they can agree on a protocol
and know when it is finished. We will show examples of how this can result in
common knowledge in the next section on the telephone call scenario.

Here we will first investigate what happens in τ -semantics if we cannot pub-
licly agree on a protocol beforehand. We will show that in this case we cannot
reach common knowledge of basic formulas. We start out with a lemma stating
that actions preserve the agent’s relations.

Lemma 1. For any two states s and t and any action α, if s ∼τi t and we have
s′, t′ such that s�α�s′ and t�α�t′ then s′ ∼τi t′.

Proof. Suppose s ∼τi t. Then AM(s)|τi = AM(t)|τi . Suppose i ∈ Obs(α). Then
AM(s′)|τi = (AM(s)|τi ; α) = (AM(t)|τi ; α) = AM(t′)|τi . Suppose i �∈ Obs(α).
Then AM(s′)|τi = (AM(s)|τi ; τ) = (AM(t)|τi ; τ) = AM(t′)|τi . So s′ ∼τi t′. ��
This result may seem counter-intuitive, since for example a public announcement
action may give the agents new information and thus destroy their epistemic
relations. However, in our framework we model the new knowledge introduced
by communicative actions by the fact that these actions would not be possible in
states that do not satisfy the precondition of the action. In this lemma we assume
that there are s′, t′ such that s�α�s′ and t�α�t′. This means that s and t both
satisfy the preconditions of α, so essentially no knowledge that distinguishes s
and t is introduced by α.

Now we define a fragment Lbool of our logic as follows:

φ ::= has im | com(G) | ¬φ | φ1 ∧ φ2

It is trivial to show that any action that does not change the agent’s message
sets or the protocol does not change the truth value of these basic formulas:

Lemma 2. Let α be an action that can be executed on the state s but does not
change the agent’s message sets or the protocol. For any φ ∈ Lbool: s � φ ↔ 〈α〉φ.

Combining the properties of the actions from the previous lemma, we call an
action αGd to be a dummy action for a group of agents G if its internal structure
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has the precondition com(G) ∧ future(αGd ), for it does not change the message
sets of the agents or the protocol and Obs(αGd ) = G. An example of dummy
action is inform i

G(�). We could see it as “talking about irrelevant things”.

Theorem 4. Let A be a set of basic actions respecting the communication chan-
nels such that for any agent i there is a dummy action αGd such that i �∈ G. Let
s be a state such that I �∈ CC(s) and it is common knowledge at s that the
protocol is π = (ΣA)∗ (any action in A is allowed). Then for any φ ∈ Lbool and
any sequence of actions ᾱ,

s �τ ¬CIφ → ¬〈ᾱ〉CIφ

Proof. Similar to the proof of theorem 3, we suppose towards a contradiction
that s �τ ¬CIφ and there is a minimal sequence ᾱ = β̄; α such that s �τ
〈β̄〉(¬CIφ∧〈α〉CIφ). Since I �∈ CC(s) and α respects the communication channel,
there is i �∈ Obs(α). Suppose s�β̄�u, then u �τ ¬CIφ. Therefore there exists u′

such that u ∼I u′ and u′ �τ ¬φ. Now consider the dummy action αGd such
that i �∈ G. Clearly αGd can be executed on each state along the ∼τI path from
u to u′. In particular there are v and v′ such that u�αGd �v and u′�αGd �v′. By
lemma 1 it is not hard to see that v ∼τI v′. Since φ ∈ Lbool, by lemma 2 we
have v′ �τ ¬φ. Thus v �

τ CIφ. Let u�α�t. Since i �∈ Obs(α) and i �∈ Obs(αGd ),
AM(t)|τi = (AM(u)|τi ; τ) = AM(v)|τi , thus t ∼τi v. Therefore t �τ CIφ, which
contradicts our assumption. ��

4.2 Telephone Calls

Before going to the specific scenario of the telephone calls, we propose the fol-
lowing general modeling method:

1. Select a finite set of suitable actions A with internal structures to model the
communications in the scenario.

2. Design a single state as the real world to model the initial setting, i.e.,
s = 〈net, M̄i, ε, M̄i, (ΣA)∗〉 where net models the communication network
and M̄i models “who has what information”.

3. Translate the informal assumptions of the scenario into formulas φ and pro-
tocols π in LI,M .

4. Use exinfo(φ) and exprot(π) to make the assumptions and the protocol com-
mon knowledge.

We will demonstrate how we use this method to model the telephone call sce-
nario. Let us first recall the scenario: in a group of people, each person has
one secret. They can make private telephone calls among themselves in order to
communicate these secrets. The original puzzle we mentioned in the introduction
concerns the minimal number of telephone calls needed to ensure everyone gets
to know all secrets. We start out by selecting a set of suitable actions A. We
define:

call ij(M
′) :=

⋃
M ′′⊆M ′ shareall{i,j}(M ′′)

mail ij(M
′) :=

⋃
M ′′⊆M ′ sendall i{j}(M

′′)
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Here call ij(M
′) is the call between agent i and j where they share all messages

out of M ′ that they possess 7. Later on we will also be interested in what happens
if the agents can only leave voicemail messages instead of making two-way calls.
For this purpose we use mail ij(M

′), where agent i sends all messages out of M ′

he possesses to agent j. The third kind of communication we are interested in
will be when the agents can call each other and communicate formulas instead
of messages. This is modeled by informi

j(φ). Let MI = {m0, ..., m|I|} be the set
of all secrets. For suitable finite sets of formulas Φ and protocols Π8, we define

A =
⋃

φ∈Φ

exinfo(φ) ∪
⋃

π∈Π

exprot(π) ∪
⋃

i,j∈I

callij(MI ) ∪
⋃

i,j∈I

mailij(MI ) ∪
⋃

i,j∈I,φ∈Φ

informi
j(φ),

where we include exinfo(φ) and exprot(π) because we need them to make the
assumptions and the protocol of the scenario common knowledge.

Next, we define the communication network and the agent’s message sets.
Each agent has one secret so we define Mi = {mi}. The agents can only com-
municate in pairs, so the communication network is nettelI = {{i, j} | i �= j ∈ I}.
Then the initial state is:

stelI = 〈nettelI , {m0} . . . {m|I|}, ε, {m0} . . . {m|I|}, (ΣA)∗〉
We are interested in situations with different communicative powers for the
agents, which can be characterized by protocols that restrict the possible basic
actions. We define πcall := (

⋃
i,j∈I call ij(MI))∗, πmail := (

⋃
i,j∈I mail ij(MI))∗ as

the protocols where the agents can only make telephone calls or send voicemails,
respectively. We define πcall, inform := (

⋃
i,j∈I call ij(MI) ∪

⋃
i,j∈I mail ij(MI))∗.

As for the informal assumptions of the scenario, we assume it is common
knowledge that every agent has one secret, and we assume the communication
network is common knowledge. We use the following abbreviations:

OneSecEachI :=
∧
i∈I(has imi ∧

∧
j �=i ¬hasjmi)

TP := exinfo(com(nettelI ) ∧ OneSecEachI)
TPact := TP; exprot(πact)

HasAllI :=
∧
i∈I has iMI

OneSecEachI states that every agent has one secret known only to him. TPact
is the action of announcing the assumptions of the scenario and protocol πact
where act ⊆ {call, inform}. HasAllI expresses that every agent knows every
secret, which is the goal we want to reach.

In order to reason about the number of calls the agents need to make to reach
their goal, we use the following abbreviations:

〈〉≤nφ := 〈⋃k≤n(ΣA′)k〉φ
〈〉min(n)φ := 〈〉≤nφ ∧ ¬〈〉≤n−1φ

where A′ is the set of all actions in A that respect the channels, i.e., excluding
exprot, exinfo and other external actions. 〈〉≤nφ expresses that we can reach a
7 Here M ′ encodes the relevant context e.g. messages that are “about work”.
8 For example, the sets of formulas/protocols up to the length of certain large number.
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state where φ holds by sequentially executing at most n actions from A without
external information or any changes in protocol. 〈〉min(n)φ expresses that n is
the minimal such number. The reason we exclude these actions is because we
essentially want to know whether we can reach φ with the current protocol. The
external actions do not abide by the protocol, so we should not consider them9.

Then the following result states that we need exactly 2|I| − 4 calls to make
sure every agent knows all secrets:

Proposition 4. For any x ∈ Sem:

stelI �x 〈TPcall〉〈〉min(2|I|−4)HasAllI

A proof of this proposition is given in [12]. The protocol given there is the
following: pick a group of four agents 1 ... 4 and let 4 be their informant. Let all
other agents call agent 4, then let the four agents communicate all their secrets
within their group and let all other agents call agent 4 again. In our framework
we can express this as follows: call45(MI); ...; call4|I|(MI); call12(MI); call34(MI);
call13(MI); call24(MI); call45(MI); ...; call4|I|(MI).

Another interesting question arises when the agents cannot make direct tele-
phone calls, but they can only leave voicemail messages. This means that any
agent can tell the secrets he knows to another agent, but he cannot in the same
call also learn the secrets the other agent knows. How many voicemail messages
would we need in this case?

Proposition 5. For any x ∈ Sem:

stelI �x 〈TPmail〉〈〉min(2|I|−2)HasAllI

Proof. Consider the following protocol:mail12(MI); mail23(MI); ...;mail |I|−1
|I| (MI);

mail |I|1 (MI); mail |I|2 (MI); ...; mail |I||I|−1(MI). Clearly, this results in all agents
knowing all secrets. The length of this protocol is 2|I|−2. We claim this protocol
is minimal. To see why this claim holds, first observe that there has to be one
agent who is the first to learn all secrets. For this agent to exist all other agents
will first have to make at least one call to reveal their secret to someone else.
This is already |I|−1 calls. The moment that agent learns all secrets, since he is
the first, all other agents do not know all secrets. So each of them has to receive
at least one more call in order to learn all secrets. This also takes |I| − 1 calls
which brings the total number of calls to 2|I| − 2. ��
As we saw above, it is possible to make sure all agents know all secrets. However,
in these results the secrets are not common knowledge yet, since the agents do
not know that everyone knows all secrets. We will investigate whether we can
establish common knowledge of HasAllI. If there are only three agents, this is
possible by making telephone calls:
9 Note that 〈〉≤n serves as a generalization of the arbitrary announcement that is

added to DEL in [17].
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Proposition 6. If |I| ≤ 3 then for some n ∈ N:

sI �τ 〈TPcall〉〈〉≤nCIHasAllI

Proof. For |I| < 3 the proof is trivial. Suppose |I| = 3, say I = {1, 2, 3}. A proto-
col that results in the desired property is call12(MI); call23(MI); call21(MI). After
execution of this protocol all agents know all secrets. From the way they learned
these secrets the agents can deduce what communications have happened. Since
all agents can reason about each others knowledge it is common knowledge that
all agents have all secrets. ��

We do not extend this result for the case with more than three agents. If there are
more than three agents, agents that are not participating in the phone call will
never know which of the other agents are calling, which makes it much harder
to establish common knowledge. A different interesting question is whether the
agents will be able to reach common knowledge if they can tell each other ar-
bitrary formulas of the language, using the inform action. This reduces the
possibilities to reach common knowledge since the dummy action informi

G(�) is
allowed. The agents have no clue whether any information is transferred when
they observe a τ action so they can never reach common knowledge, not even in
the case that |I| = 3. This directly follows from Theorem 4.

Proposition 7. For any n ∈ N, if |I| > 2 then:

sI �
τ 〈TPcall,inform〉〈〉≤nCIHasAllI

Now imagine a situation where the agents are allowed to publicly announce
beforehand a specific protocol they are going to follow which is more complex
than just the set of actions they can choose from. Then, in our τ -semantics, it
is possible to reach common knowledge:

Proposition 8. There is a protocol π of call actions such that

sI �τ 〈TP; exprot(π)〉〈〉≤nCIHasAllI

Proof. Let π be the protocol given in the proof of proposition 4. Since each agent
observes a τ at every communicative action, they can all count the number of
communicative actions that have been executed and they all know when the
protocol has been executed. So at that moment, it will be common knowledge
that everyone has all secrets. ��

This shows the use of the ability to communicate about the future protocol and
not only about the past and present. There are many more situations where
announcing the protocol is very important, for example in the puzzle of 100
prisoners and a light bulb [7] or many situations in distributed computing.
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5 Conclusions and Future Work

We developed an expressive dynamic epistemic logic tailored for specifying and
reasoning about the information flow over communication channels. We also pro-
posed an intuitive lightweight modeling method for multi-agent communication
scenarios. The logic and the modeling method were put to use in the telephone
call example.

Our framework is very flexible in modeling different observational powers
of agents and various communicative actions. For example, we can define the
communicative action in [14] : “i gets j’s information without j noticing that”
as α = download ij(M) with Obs(ι(α)) = i, Pre(ι(α)) = com({i, j}) ∧ hasjM
and a suitable postcondition adding messages to i’s information set10. Therefore
our framework can facilitate the comparison among different approaches with
different assumptions. The table below summarizes the setting of our framework
compared to others:

Reference Actions Information flow Obs. Power
[19] inform propositions ≡τ

[14] download Boolean atomic propositions ≡τ

[1] inform positive atomic propositions ≡set

Our work by design messages or formulas by design

Among many others, we left the following issues for future work: the complex-
ity analysis of the satisfiablity problem and model checking problem of LI,M ;
the more general communication channels e.g., asymmetric channels; actions
that can change the communication channels (cf. [19]); other actions which are
“partially observable” to agents, e.g., BCC in emailing; and announcements of
protocols with tests (cf. [26] for further discussions).
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Abstract. Abductive inference has many known applications in multi-
agent systems including planning, scheduling, policy analysis and sens-
ing data interpretation. However, most abductive frameworks rely on a
centrally executed proof procedure whereas many of the application
problems are distributed by nature. Confidentiality and communica-
tion overhead concerns often preclude agents’ knowledge from being
centralised. We present in this paper a distributed abductive reason-
ing framework with a flexible and extensible proof procedure that per-
mits collaborative abductive reasoning between agents over decentralised
knowledge. The proof procedure is sound and complete upon termina-
tion, and can perform concurrent computation. To the best of our knowl-
edge, this is the first distributed abductive system that can compute
non-ground conditional proofs and handle arithmetic constraints.

1 Introduction

Abductive reasoning is a powerful mechanism for reasoning with incomplete
knowledge that generates conditional proofs, the conditions being abduced as-
sumptions that, together with a given knowledge-base, imply the conclusion
of the proof. Abduced assumptions can be viewed, within the context of a
knowledge-base, as an explanation of the conclusion. Abductive Logic
Programming (ALP) [10] is the combination of abductive reasoning and Logic
Programming, in which the knowledge-base is a logic program paired with a
set of integrity constraints – queries that must never succeed – used to de-
fine constrains upon the assumptions that can be abduced. ALP is a general
knowledge-based problem solving method which has been used in a wide range
of real world applications: in cognitive robotics [17], for abducing higher-level
descriptions of the world from sense data, in planning [16], for abducing action
events that would result in a desired state of the world, using a knowledge-base
about effects of actions on features of the world, and in diagnostic analysis of
system specifications [5], for abducing system traces that would lead to property
violations.
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These application problems have a corresponding formulation in the multi-
agent context. Several robots may collaboratively try to abduce an agreed higher-
level description of the state of the world, from their separate sense data, that
is consistent with their collective constraints on the abduced information. Sim-
ilarly, parties of a coalition networks, supporting joint-rescue operations for an
earthquake-hit zone, may collaboratively reason about the dependency of their
policies to abduce circumstances of policy violations, which would obstruct the
success of their rescue operation. In these distributed knowledge-based problem
solving tasks each agent has an incomplete knowledge of the problem domain.
A robot sense data provides only a partial description of the state of the world,
and policies of a rescue party constitute only part of the knowledge involved
in a collective rescue operation. Communication overheads and confidentiality
concerns often prevent solutions for these tasks being engineered by centralizing
the agents’ knowledge into a single computation point and using existing ALP
proof procedures [11,6,8,12,7].

Therefore, to address distributed knowledge-base problem solving tasks where
knowledge and constraints are distributed across (the reasoning module of)
agents, a generic distributed abductive reasoning algorithm is needed that al-
lows agents to co-operatively construct collective conditional proofs, and guar-
antee that their abduced conditions satisfy the relevant integrity constraints of
all the agents. In [14], we have proposed a first distributed abductive reason-
ing system (DARE). Whilst the main emphasis of DARE is the openness of
its architecture, the algorithm is limited to the construction of ground proofs:
agents cannot accept non-ground negative queries or abduce non-ground as-
sumptions. For example, in a simple web service domain, in which an agent has
the knowledge can fly(Pilot, Day) ← free(Pilot),¬storm(Day) and a second
(weather forecast) agent has the information storm(monday), and free is an
abducible assumption, the DARE system cannot compute the conditional an-
swer free(X), Y �= monday for a non-ground query can fly(X, Y ), as this would
require the first agent to abduce the non-ground assumption free(X) and the
second agent to construct a proof for the non-ground sub-query ¬storm(Y ). In
addition, arithmetic constraints are not allowed in the agent knowledge, mak-
ing DARE unsuitable for classes of problems where reasoning about numerical
values (e.g., time, cost) is required during the collaborative proof.

The focus of this paper is to present a new distributed abductive reasoning
system, called DAREC, that overcomes the limitations of DARE, thus support-
ing a wider class of distributed knowledge-based problem solving tasks. Specif-
ically, DAREC addresses four key issues. Firstly, how to guarantee consistency
of abduced non-ground assumption with all agents’ integrity constraints during a
collaborative proof. In DARE, since abduced assumptions can only be ground,
their integrity constraints need to be checked by the agents only once. This
is not longer sufficient for non-ground abduced assumptions. In DAREC, in-
tegrity constraints on abduced assumptions are collected dynamically, and are
checked whenever a new asummption is abduced. Secondly, how to handle nega-
tive non-ground queries correctly. Variables in negative non-ground queries may
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be either existentially or universally quantified e.g., ∀Day.¬storm(Day) and
∃Day.¬storm(Day). DAREC treats such (non-ground) negative queries as col-
lected dynamic integrity constraints. Thirdly, how and when to solve the arith-
metic constraints during the collaborative reasoning. In principle, all relevant
arithmetic constraints collected by the agents in their conditional answers dur-
ing local reasoning could be solved at the end of a collective proof by a centralised
(or distributed) constraint satisfaction solver. DAREC instead checks the satis-
faction of collected arithmetic constrains incrementally (i.e., whenever a new one
is collected), as this helps reducing the search space for abduced assumptions
during the reasoning process. Finally, how to minimise the communication be-
tween agents. An “eager interaction” between agents, as it is the case in DARE,
whereby sub-queries are sent between agents whenever an agent needs help or
whenever a new assumption is abduced, to guarantee global consistency, may re-
quire many message exchanges. DAREC adopts flexible coordination strategies.

In summary, the DAREC system makes use of a flexible and customisable
proof procedure that permits collaborative abductive reasoning among decen-
tralised agents. The collaborative reasoning can be seen as a state rewriting pro-
cess, with a set of local inference rules, and a set of state transitional rules that
coordinates synchronised backtracking among agents. The reasoning state, ini-
tially containing just the query, is exchanged between the agents. Agents rewrite
the state during their local inference by adding relevant (non-ground) assump-
tions and (dynamically generated) integrity constraints, and check consistency
of assumptions and constraints collectively stored so far in the state. A (global)
conditional answer can be extracted from the final state when the overall col-
laborative proof succeeds. Successful proofs include solutions for the arithmetic
constraints and abduced assumptions consistent with the integrity constraints
of all the agents. The algorithm allows different application-dependent coordina-
tion strategies, such as one that encourages each agent to delay interactions with
other agents (e.g. for help or for global consistency check) as much as possible,
thus reducing inter-agent communications during the reasoning process. Agents’
concurrent computation between synchronised backtracking is also supported.

The paper is organised as follows. Section 2 describes the advantages of the
DAREC with respect to other related systems. Section 3 summarises basic no-
tations and terminologies. Sections 4 and 5 present, respectively, the distributed
abductive framework and the proof procedure illustrating it with a running ex-
ample. Section 6 gives soundness and completeness results of the algorithm.
Various extensions to the system are then discussed in Section 7, followed by a
brief description of the implementation and its preliminary benchmarking results
in Section 8. Finally, Section 9 concludes the paper.

2 Related Work

Several well-known proof procedures for centralised abductive reasoning have
been proposed in the literature, e.g. Kakas-Mancarella (KM) [11], SLDNFA [6],
IFF [8], ACLP [12], CIFF [7] and the ASystem [15]. The KM and ACLP ap-
proaches rely on the interleaving of abductive and consistency derivations, which
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would make the co-operation strategy between agents less flexible. The IFF and
CIFF, on the other hand, use a special IFF-theory as knowledge-base of an
abductive logic framework – the program consists of if-and-only-if definitions
(e.g. the completion of rules [4]). In a distributed setting, predicate definitions
(i.e. rules) may be distributed across agents, it is therefore not possible to con-
struct predicate completions in each agent’s knowledge-base. The ASystem does
not suffer from these limitations and the state rewriting feature of its proof
procedure makes it a good basis for a general distributed abductive reasoning
approach. Our DAREC builds its proof procedure upon the ASystem algorithm.

To our knowledge only two other distributed abductive reasoning systems
have been proposed in the literature, the ALIAS [2] and the DARE [14] system.
Although the SCIFF proof procedure [1] is an extension of the CIFF to multi-
agent systems, for reasoning and verifying agents behaviour and compliance to
protocols, the knowledge-base and the computation process itself are both cen-
tralised. It is therefore not directly related to our DAREC. Both ALIAS and
DARE extend the KM proof procedure to the multi-agent context, and, because
of the limiting features of the KM algorithm, they cannot handle non-ground
queries, non-ground abducibles and arithmetic constraints. In ALIAS, the knowl-
edge base of agents uses a special language called LAILA [3] for specifying stat-
ically and a priori, the communications with other agents. Consistency of the
abduced assumptions is only required locally. On the other hand, both in DARE
and DAREC the collaboration among agents is dynamically defined, by means
of the yellow page directory that allows an agent to dynamically identify other
helper agents; the notion of consistency of the abduced assumptions is global
with respect to the integrity constraints of all the agents. However, as discussed
in Section 1, DAREC is significantly different from DARE. Its proof procedure
is based on a state rewriting principle, which enables more flexible co-operation
strategies than the rigid one imposed in DARE by the interleave feature of the
KM procedure, and it can handle a much larger class of knowledge-based dis-
tributed problem solving problems (i.e. distributed abductive reasoning with
non-ground queries and answers, and with arithmetic constraint support).

3 Preliminary

In logic programming, a term is a constant, a variable or a function F (t1, . . . , tn)
where F is a n-ary function symbol (with n ≥ 1) and ti is a term. An atomic
formula (or atom in brief) is a proposition or an n-ary predicate P followed
by an n-tuple of terms, e.g., P (t1, . . . , tn) (or P (−→t )). An equality atom (resp.
inequality) is t1 = t2 (resp. t1 �= t2) where t1 and t2 are terms. A finite domain
constraint atom (or constraint in brief) is an boolean expression in the CLP
language [20], e.g. X > Y × 3, Z ∈ {1, 2}. A literal is either an atom φ (called
positive literal, or the negation of an atom, written as ¬φ (and called negative
literal). A clause is either a rule, φ ← φ1, . . . , φn (n ≥ 0), or a denial ← φ1, . . . , φn
(n > 0), where φ, called head literal, is an atom, and φi, called body literal, is a
literal. A rule with empty body is called a fact. All free variables appearing in a
clause are universally quantified with the scope of the whole clause.
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In abductive logic programming (ALP), predicates different from equality
and CLP atoms, can be divided into two sets – abducible and non-abducible.
Only non-abducible atoms can be head literals, but both abducible and non-
abducible atoms can be body literals. Therefore, non-abducible atoms represent
the knowledge that can be defined as rules; whereas abducible atoms represent
the assumptions that may be made while proving a non-abducible. For example,
given the set of two rules, {“shoes wet ← grass wet” , “grass wet ← rain”}
where rain is an abducible atom, a conditional proof of shoes wet can be con-
structed making the abduced assumption rain. Thus, ALP can be used to reason
with incomplete knowledge. Formally, an abductive logic framework F is a tuple
〈Π,AB, I〉, where Π is a finite set of rules called the background knowledge, AB
is a set of abducible predicates, and I is a set of denials called the integrity
constraints. Occasionally we may abuse the notation and let AB denote the set
of all abducible atoms. Every integrity constraint must contain at least one pos-
itive abducible literal (this allows the agents to perform integrity checks only
when a relevant abducible is assumed). An abductive query (or query in brief)
is a conjunctive formula written as φ1, . . . , φn where each φi is a literal (called
a goal) and all free variables appearing in the query are existentially quantified
with the scope of the whole query. Given an abductive framework F and a query
Q, an abductive answer is 〈Δ, θ〉, where Δ ⊆ AB and θ is a substitution, such
that Π ∪ Δ |= Qθ and Π ∪ Δ |= I.

4 Distributed Abductive Framework

In this section we define the notion of a DAREC framework. We assume a given
fixed set of agents, where each agent’s knowledge is modelled as an abductive
framework. In Section 7 we discuss how to extend the framework to cater for a
dynamically changing set of agents.

Definition 1. A distributed abductive framework is a tuple Fdis=〈Σ, F̂〉 where

– Σ is the set of agents (identifiers);
– each agent i ∈ Σ is an abductive framework Fi = 〈Πi,ABi, Ii〉
– F̂ = {Fi | i ∈ Σ}.

Given a system query (also called global query), the agents collaboratively com-
pute a conditional proof, using their respective knowledge and making assump-
tions in terms of abducibles. In this paper we assume that all the agents agree on
the possible assumptions they can make. i.e. they share the same set of abducible
predicates, i.e., ABi = ABj for any i, j ∈ Σ.

Definition 2. Let Fdis = 〈Σ, F̂〉, be a distributed abductive framework. A dis-
tributed abductive answer for a given query Q is a pair 〈Δ, θ〉 such that:
(1) Δ ⊆ ⋃i∈Σ ABi; (2)

⋃
i∈Σ Πi ∪ Δ |= Qθ; (3)

⋃
i∈Σ Πi ∪ Δ |= ⋃i∈Σ Ii.

Condition (3) above requires the abduced assumptions (Δ) to be consistent with
all the agents’ integrity constraints. This is understood as global consistency.
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4.1 Example

We illustrate in what follows an example application of our distributed abductive
framework in the context of an ambient intelligent system for a sheltered home
for elderly people, where mobile or embedded devices are used for monitoring in
house security and aiding the daily life of the occupants.

Example 1. Ann and Bob live in the same care home, where a number of sensing
devices are installed. For example, a corridor sensor (C) detects movements along
the corridor, and a window monitor (W) can check which window(s) of the house
are open/closed. There is also a home controller (H) that can respond to events
taking place inside the house, such as setting off an alarm if an intruder is
detected, or notifying a nurse when a resident is in difficulty. Bob has a mental
condition. Unless taking regular medication, he tends to wander around the
house instead of staying in bed. So Bob is always carrying a personal device
(B) that logs his medication intakes. Ann is in good health and can leave the
house when necessary, e.g. going to a dental appointment. Ann also carries a
personal device (A) which keeps her calendar and appointments. All the sensing
and personal devices (except the base sensors, like the corridor sensor, which
merely generates detected event notifications to H) have reasoning capability.

At 12pm on Monday, C detects movement and informs H, which needs to
work with various devices to explain the event and take an appropriate action.

This system is modelled as a distributed abductive framework since for efficiency
reasons the real-time monitoring data cannot be centralised, and for confiden-
tiality reasons Bob’s and Ann’s personal knowledge also cannot be centralised.
The set of agents is given by all the reasoning devices (i.e. Σ = {A, B, W, H}),
each represented as an abductive framework (containing its knowledge at 12pm).

Bob cannot walk in the corridor (wlkC) if he has taken medicine (tkM) in
the past 2 hours. His most recent intake is at 11am.[

ΠB =
{

tkM(11).
}

IB =
{← wlkC(bob, T ), tkM(T1), T − 2 ≤ T1, T1 ≤ T.

} ]

Ann has a dental appointment (apt) from 11am to 1pm.⎡
⎣ΠA =

{
out(ann, T ) ← apt(T1, T2), T1 ≤ T, T ≤ T2.
apt(11, 13).

}
IA = ∅

⎤
⎦

The window monitor has the status information of the windows on different
floors (flr). An open window (open(w) on 1st floor (flr)) is a possible point of
entry (pntEntry) for an intruder.⎡

⎢⎢⎢⎢⎣
ΠW =

⎧⎪⎪⎨
⎪⎪⎩

pntEntry(T ) ← open(W ), flr(W, 1).
flr(w1, 1).
flr(w2, 2).
open(w1).

⎫⎪⎪⎬
⎪⎪⎭

IW = ∅

⎤
⎥⎥⎥⎥⎦
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The home controller has knowledge about possible causes to known events.
⎡
⎢⎢⎣ΠH =

⎧⎨
⎩

mnt(cor, T ) ← occupant(X), wlkC(X, T ).
mnt(cor, T ) ← pntEntry(T ),wlkC(intrd, T ).
occupant(X) ← X ∈ {ann, bob}

⎫⎬
⎭

IH =
{← wlkC(X, T ), X �= intrd, out(X, T ).

}
⎤
⎥⎥⎦

To explain the notified event of movement in the corridor (mnt(cor, 12)), H needs
to find out who could be walking in the corridor (wlkC) at 12. It could be an
occupant or an intruder (intrd). If it is Bob, then a nurse needs to be notified
(remotely). If it is an intruder, then the alarm needs to be set off. If it is Ann,
no action needs to be taken. All agents have the abducible predicate wlkC.

5 Distributed Abductive Proof Procedure

Intuitively, our DAREC proof procedure can be seen as a distributed state rewrit-
ing process. A reasoning state is passed like a “token” among the agents, and
only the agent holding the state token may modify it by means of a set of
inference rules. There are two types of inference rules, local and transitional.
The local inference rules, extended from a centralised abductive system (ASys-
tem) [15], are used by an agent to locally reduce non-abducible goals to condi-
tions – constraints and abducibles which can be collected as assumptions – or
to non-abducible sub-goals that other agents can collaboratively prove. Transi-
tional rules enable instead the collaboration among agents and the enforcement
of global consistency check.

Our proof procedure assumes that agents (i) execute their proofs honestly
when requested, and (ii) know who to ask for help when their proof reduce
to non-abducible goals that they cannot solve. The first assumption ensures
that the agents are willing to cooperate and do not sabotage the collaboration.
The second assumption enables the agents to know how to cooperate, and can
be abstracted as an agent selection function, which takes a state (containing
the remaining goals) as input and returns a suitable state recipient agent. This
function can be implemented in different ways and using application dependent
heuristics. For example, it can be defined as a task-allocation protocol, such as
auction, contract net or simple matching making. Without loss of generality, we
assume it to be a publicly accessible directory that records the agent IDs and the
associated set of non-abducible predicates that the agent knowledge defines (but
not the definitions themselves). General heuristics could be used in this case,
such as choosing, as state recipient, the agent who knows the highest number of
unresolved non-abducible goals in the current state of a collaborative proof.

A state has two main components – the set of unresolved goals and the set of
stores containing the currently accumulated assumptions and constraints for the
original query. During collaboration, an agent can ask another agent for help
in resolving a non-abducible goal by sending the state to it. This request for
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help may be postponed to a later time: the requesting agent may delay the non-
abducible goal and continue instead with its local inference on other goals. In a
given state, the set of unresolved goals is therefore partitioned into current goals,
which can be solved locally, and delayed goals. Abducibles and denial constraints
are dynamically accumulated during the local reasoning process and added to
the appropriate store in the current state, so that they can be checked by the
other agents when the state is passed around.

Definition 3. Given a set Σ of agents, a state Θ is the pair 〈G,ST 〉Σ , where
G is a set of goals, partitioned into two sub-sets (GC,GD), such that:

– each goal in GC is either a literal, or a failure goal ∀−→X. ← φ1, . . . , φn(n > 0),
where −→

X is the set of universally quantified variables of the goal, and
– each goal in GD is a non-abducible (called delayed goal),

and ST is a tuple of four stores 〈Δ, Δ∗, E , C〉 where:

– Δ is a set of abducibles;
– Δ∗ is a set of denials ∀−→X. ← φ1, . . . , φn(n > 0) where φ1 is either an

abducible or a non-abducible;
– E is a set of (in-)equalities and C is a set of constraints.

All free variables in Θ are existentially quantified with the scope the whole state.

A denial in Δ∗ whose first literal in the body is a non-abducible is called de-
nial on non-abducible. It represents the requirement that such literal must not
be solvable in conjunction with other body literals of the denial by any agent.
We assume, also, that for each element in G, Δ and Δ∗, the state maintains
the information of which agent has seen it. We use LS to denote the fact that
an element L has been seen by the set S of agents. Informally, a goal (or ab-
ducible/denial) has been seen by an agent if it has been delayed (or checked) by
that agent. The meaning of “seen” will become clearer with the description of
the inference rules.

When an initial query is sent to the system, an initial state is created and sent
to a suitable agent (e.g. the agent who knows most of the goals in the state).
The initial state contains the query as the set of current goals, none of which
has been seen by any agent, and all the stores are empty. The state can then
be modified by the agents in turn. A DAREC derivation can be abstracted as a
tree where each agent is a state and the root is the initial state. The children of
each agent are either (a) all the states that can be constructed from that agent
for a selected goal G using a local inference rule, or (b) the states that can be
obtained after transitional rules are applied. The derivation stops when a solved
state is obtained after a finite number of steps, or backtracks when no rule is
applicable, in which case the last state is labelled as failed. A DAREC derivation
for a query Q fails when all the leaf agents are labelled failed, and succeeds when
it reaches at least one solved state.

Definition 4. A solved state involving a set Σ of agents, is Θsol = 〈G∅,ST 〉Σ,
where G∅ = (∅, ∅), and
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– ST is consistent (i.e. Δ ∪Δ∗ ∪ E ∪ C is satisfiable);
– all abducibles in Δ and all denials on non-abducibles in Δ∗ have been seen

by all agents in Σ.

Definition 5. Let Θsol = 〈G∅,ST 〉Σ be a solved state for a query Q, where
ST=〈Δ, Δ∗, E , C〉. A DAREC answer is a pair 〈θ, Δ〉 extracted from Θsol where
θ is the variable substitution for all free variables of Q and Δ induced by ST .

The DAREC proof procedure includes three transitional rules. The TR rule is
applied as soon as an agent receives a state; the TH and TC rules are applied
when an agent requests for help or consistency check respectively. These rules
will be described in detail in the next section. Figure 1 provides the pseudo-
code of the proof procedure as it is executed by an agent in the system. Note
that after a state is sent out by the current agent, if a backtracking signal is
received (because of another solution is requested or a helper fails to help), the
current agent resumes the computation from the latest choice point created by
the non-deterministic “select” action.

PROC receive state(Θ0) BEGIN
Θ1 := apply trans rule(TR, Θ0);
process state(Θ1);

END PROC

PROC process state(Θ1) BEGIN
IF Θ1 is solved state THEN

send Θ1 to the global query issuser;
BACKTRACK WHEN REQUESTED;

ELSE
IF TH or TC should be applied THEN // state passing

NewAgent := select recipient(Θ1);
Θ2 := apply trans rule(TH/TC, Θ1);
send Θ2 to NewAgent;
BACKTRACK WHEN REQUESTED;

ELSE // local inference
G := select safe goal(Θ1);
LRule := applicable local rule(G);
States := apply local rule(LRule, Θ1);
NON-DETERMINISTICALLY select Θ3 from States;
process state(Θ3);

END IF
END IF

END PROC

Fig. 1. Pseudo-code of the DAREC Proof Procedure

5.1 Inference Rules

In this section we define the inference rules of our DAREC proof procedure and
we illustrate some of them with small examples.
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Infer. Rule 1 (TR – Receive State). Let Θi=〈(GC, ∅),ST 〉Σ be a state re-
ceived by an agent ag ∈ Σ, then the next state is Θi+1=〈(GCi+1, ∅),ST 〉Σ, where
GCi+1 is obtained from GCi as follows:

– for every abducible a(−→u ) ∈ Δ not seen by ag, for every integrity constraint
“ ← Φ” ∈ Iag such that Φ = {a(−→v )}∪Φ− and −→

Y = vars(Φ), their resolvent
“∀−→Y . ← −→u = −→v 1, Φ−” is added to GCi;

– for every denial on non-abducible “∀−→X. ← p(−→u ), Φ” ∈ Δ∗ not seen by ag,
for every rule “p(−→v ) ← Φ′” ∈ Πag such that −→Y = vars(p(−→v )) ∪ vars(Φ′),
their resolvent “∀−→X−→

Y . ← −→u = −→v , Φ′, Φ” is added to GCi;
– and all such abducibles and denials become seen by ag.

Example: agent β applies TR

given Σ = {α, β}, Πβ = {“p(U, V ) ← r(U), w(V )”}, Iβ = {“ ← a(Z),¬q(Z)”}
if Θi = 〈(Gi, ∅), 〈{a(X){α}}, {“∀Y. ← p(X,Y )”{α}}, Ei, Ci〉〉Σ
then Θi+1 = 〈({“∀Z. ← X = Z,¬q(X)”, “∀Y UV. ← X = U,Y = V, r(X), w(Y )”}

∪Gi, ∅), 〈{a(X){α,β}}, {“∀Y. ← p(X, Y )”{α,β}}, Ei, Ci〉〉Σ

TR must be applied by any agent that receives a state, before using any local
inference rule. It enforces that the current agent (e.g., β in the example) checks
all the new abducibles collected by other agents (e.g., a(X)) against its local
integrity constraints, and “resumes” the negation as failure (NAF) [4] processes
for the non-abducibles associated with the denials in Δ∗. The two operations
may generate new failure goals (e.g., “∀Z. ← X = Z,¬q(X)” is generated after
checking a(X), and “∀Y UV. ← X = U, Y = V, r(X), w(Y )” is generated after
processing the collected denial on non-abducible in the state). In addition, the
new state remembers the agent has seen the checked abducibles and denials, so
if a successor state is passed back to the agent, they will not be checked again.

Infer. Rule 2 (TC – Request Consistency Check). Let Θi = 〈(GCi,GDi),
ST 〉〉Σ be the current state held by an agent ag ∈ Σ. If there exists an abducible
in Δ or a denial on non-abducible in Δ∗ not seen by some other agent ag′ ∈ Σ,
then ag passes a new state Θi+1 = 〈(GCi ∪ GDi, ∅),ST 〉Σ to ag′, where all the
goals in GDi become seen by ag.

Infer. Rule 3 (TH – Request Help). Let Θi = 〈(GCi,GDi),ST 〉Σ be the
current state held by an agent ag ∈ Σ. If GDi �= ∅, then Θi+1 = 〈(GCi ∪
GDi, ∅),ST 〉Σ is a new state where all the goals in GDi become seen by ag, and
ag passes Θi+1 to another agent ag′ ∈ Σ chosen by the agent selection strategy.

TC is necessary to ensure that the collected abducibles are consistent with all
the agents’ integrity constraints, and that all the NAF processes can finish (and
succeed) amongst all the agents. In contrast, TH is necessary to allow agents
to ask for help to resolve a goal. Note that it is unnecessary for ag to ask for
1 −→u = −→v denotes the set of equalities constructed from the two lists of arguments −→u

and −→v .
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“help” on assumed abducible, (in)equality and constraint goals, and failure goals
must be solved by ag locally. Therefore, only non-abducible goals can be delayed.
When these two rules are applied, delayed goals in GD are moved back to GC,
and marked as seen by ag. No agent can delay the same goal twice, so avoiding
loops among a set of agents asking for the same help between themselves.

Sometimes given a state, several inference rules may be applicable. For exam-
ple, given a state where GC and GD are non-empty and where some abducibles
in Δ have not been seen by all agents, the state holder ag may either apply
TC to ask others to check the abducibles, or apply TH to ask for help for the
delayed goals, or apply some local inference rules to solve the current goals. An
inference rule selection strategy (or agent interaction strategy) decides whether
to apply a transitional rule or a local inference rule given a state, and it can
affect how often the agents interact and the overall performance of the agent
collaboration (see Section 8). For example, an eager strategy may force agents
to choose TH or TC whenever it is possible, whereas a lazy strategy may force
the agents to choose local inference rule whenever there are non-dalyed goals,
i.e., each agent computes as much as it can before passing out the state. The
general DAREC proof procedure allows different application dependent agent
interaction strategy to be adopted.

The DAREC proof procedure includes ten local inference rules for an agent to
resolve a selected goal from the state it holds. Let Θi = 〈(GCi,GDi), 〈Δi, Δ

∗
i , Ei,

Ci〉〉Σ be the current state held by an agent ag ∈ Σ, and GCi �= ∅. A goal φ ∈ GCi
is selected non-deterministically, making GC−

i = GCi−{φ}. The next state Θi+1

is generated after one of the following local inference rules is applied by ag. In
the description of local rules, only changes to the state components are reported,
and OR denotes a non-deterministic change to the state.

Infer. Rule 4 (LD1 – Resolve Non-abducible). If φ = p(−→u ) is a non-
abducible, one of the following changes is made (non-deterministically):

– let “p(−→v ) ← Φ” ∈ Πag, then GCi+1 = {−→u = −→v } ∪ Φ1 ∪ GC−
i OR

– GCi+1 = GC−
i and GDi+1 = GDi ∪ {φ}, if φ has not been seen by ag before.

This rule allows ag to resolve a non-abducible goal with a rule in its background
knowledge Πag, or to ask another agent to resolve it (later).

Infer. Rule 5 (LA1 – Resolve Abducible). If φ = a(−→u ) is an abducible, let
a(−→v j) (j = 1, . . . , n) be n abducibles in Δi, then one of the following changes is
made (non-deterministically):

– Gci+1 = {−→u = −→v j} ∪ GC−
i OR

– Δi+1 = {φ} ∪ Δi and GCi+1 = GC−
i ∪ RΔ ∪ RΔ∗ ∪ RIC , where RΔ =

{“ ← −→u = −→v j” | j = 1, . . . , n}, RΔ∗ = {“∀−→X. ← −→u = −→w ,Φ” | “∀−→X. ←
a(−→w ), Φ” ∈ Δ∗

i }, RIC = {“∀−→X. ← −→u = −→w ,Φ−” | “ ← Φ” ∈ Iag and Φ =
{a(−→w )} ∪ Φ−}, and φ ∈ Δi+1 becomes has been seen by ag.
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Example: agent α applies LA1

given Σ = {α, β}, Iα = {“ ← a(V ), w(V )”}
if Θi = 〈({a(X)} ∪ Gi, ∅), 〈{a(Z){α,β}}, {“∀Y. ← a(Y ), r(Y )”}, Ei, Ci〉〉Σ
then Θi+1 = 〈(Gi, ∅), 〈{a(Z){α,β}}, {“∀Y. ← a(Y ), r(Y )”}, {X = Z} ∪ Ei, Ci〉〉Σ
or Θ′

i+1 = 〈({X �= Z, “∀V. ← X = V, w(V )”, “∀Y. ← X = Y, r(Y )”} ∪ Gi, ∅),
〈{a(X){α}, a(Z){α,β}}, {“∀Y. ← a(Y ), r(Y )”}, Ei, Ci〉〉Σ

LA1 allows reusing an abducible already assumed or assuming new abducible
(e.g., in the example Θi+1 and Θ′

i+1 are the resulting state respectively). In the
case a new abducible is assumed, three sets of new failure goals are added: RΔ

ensures that the new abducible is different from any existing abducible in Δi

(e.g., X �= Z in Θ′
i+1), RΔ∗ ensures that it is consistent with the dynamically

collected constraints in Δ∗
i (e.g., “∀Y. ← X = Y, r(Y )” in Θ′

i+1), and RIC ensures
that it is consistent with ag’s local integrity constraints Iag (e.g., “∀V. ← X =
V, w(V )” in Θ′

i+1).

Infer. Rule 6 (LN1 – Resolve Negation). If φ = ¬p(−→u ), then GCi+1 =
GC−

i ∪ {← p(−→u )}.
Infer. Rule 7 (LC1 – Resolve Constraint). If φ is a constraint, then
GCi+1 = GC−

i and Ci+1 = Ci ∪ {φ}, if Ci+1 is consistent.

Infer. Rule 8 (LE1 – Resolve (In-)Equality). If φ is an (in-)equality, then
GCi+1 = GC−

i and Ei+1 = Ei ∪ {φ}, if Ei+1 is consistent.

The rules LC1 and LE1 add a constraint or a (in)equality to the stores, and their
application succeeds only if the new stores are consistent. LN1 simply “converts”
a negative goal to a failure goal, so that later it can be processed by one of the
following local rules:

If φ is a failure goal of ∀−→X. ← Γ , where Γ is not empty, a safe sub-goal ϕ is
non-deterministically selected from Γ and let Γ− = Γ − {ϕ}. Unsafe sub-goals
refer to those that can cause floundering in the reasoning process, and will be
described explicitly in the relevant rules. If the only sub-goal that can be selected
is unsafe, then the whole computation aborts and reports error2.

Infer. Rule 9 (LD2 – Fail Non-abducible). If ϕ = p(−→u ) is a non-abducible,
let F = “∀−→X. ← p(−→u ), Γ−”, then GCi+1 = GC−

i ∪ {“∀−→X−→
Y . ← −→u =−→v , Φ, Γ−” |

“p(−→v ) ← Φ” ∈ Πag and
−→
Y = vars(−→v ) ∪ vars(Φ)} and Δ∗

i+1 = Δ∗
i ∪ {F}, and

F ∈ Δ∗
i+1 becomes seen by ag.

Example: agent α applies LD2

given Σ = {α, β}, Πα = {“p(U) ← r(U)”, “p(V ) ← w(V )”}
if Θi = 〈({“ ← p(X), q(X)”} ∪ Gi, ∅), 〈Δi, Δ

∗
i , Ei, Ci〉〉Σ

then Θi+1 = 〈({“∀U. ← X = U, r(U), q(X)”, “∀V. ← X = V, w(V ), q(X)”} ∪ Gi, ∅),
〈Δi, {“ ← p(X), q(X)”{α}} ∪ Δ∗

i , Ci〉〉Σ

2 This is usually caused by a bug in the background knowledge specification.
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This rule mimics the NAF process by the current agent (α in the example)
locally, which is a part of the global NAF process among all the agents in Σ.
Therefore, the denial on non-abducible (e.g., “ ← p(X), q(X)”) needs to be
added to Δ∗

i+1 during the reasoning. If the current agent is not the only agent
in Σ, then TC must be applied before a solved state can be obtained, which
implies that TR will be eventually applied by all other agents. The successful
NAF processes performed by all the agents constitute a successful global NAF
process for the non-abducible.

Infer. Rule 10 (LA2 – Fail Abducible). If ϕ = a(−→u ) is an abducible, let
F = “∀−→X. ← a(−→u ), Γ−”, then GCi+1 = GC−

i ∪ {“∀X. ← −→u =−→v ” | a(−→v ) ∈ Δi}
and Δ∗

i+1 = Δ∗
i ∪ {F}.

Example: agent α applies LA2

given Σ = {α, β}
if Θi = 〈({“∀X. ← a(X), p(X)”} ∪ Gi, ∅), 〈{a(Y ){α}, a(Z){α}}, Δ∗

i , Ei, Ci〉〉Σ
then Θi+1 = 〈({“∀X1. ← X1 = Z, p(X1)”, “∀X2. ← X2 = Y, p(X2)”} ∪ Gi, ∅),

〈{a(Y ){α}, a(Z){α}}, {“∀X. ← a(X), p(X)”} ∪ Δ∗
i , Ei, Ci〉〉Σ

In order to succeed the whole failure goal (e.g, “∀X. ← a(X), p(X)” in the ex-
ample), we need to succeed all of its instances that contains a matching collected
abducible (e.g., a(Y ) or a(Z)). This rule generates the instances as additional
failure goals (e.g, “∀X1. ← X1 = Z, p(X1)” and “∀X2. ← X2 = Y, p(X2)”).
However, new matching abducibles (such as a(V )) may be assumed in the later
computation, and the original failure goal must still be satisfied. Therefore, the
failure goal needs to be added to Δ∗

i+1 and is checked whenever a new abducible
is assumed, i.e. it is a dynamic integrity constraint.

Infer. Rule 11 (LN2 – Fail Negation). If ϕ = ¬p(−→u ) is a negative literal
and vars(−→u ) ∩ −→

X = ∅, then (GCi+1 = GC−
i ∪ {p(−→u )}) OR (GCi+1 = GC−

i ∪
{“∀−→X. ← Γ−”} ∪ {← p(−→u )}).
A negative literal (sub-goal) inside a failure goal is unsafe if any of its variables
is universally quantified with the scope of the whole failure goal (e.g. a member
of −→X of φ). In order to succeed the failure goal φ, we can either fail ϕ by showing
its positive form (i.e. the first possible new state), or fail any of the remaining
literals Γ− (i.e. the second state). Adding also a goal ← p(−→u ) in the second case
is to avoid overlapping solutions to be derived from the two possible new states.

Infer. Rule 12 (LC2 – Fail Constraint). If ϕ is a constraint where vars(ϕ)∩−→
X = ∅, let ϕ be the negated expression of ϕ, then (GCi+1 = GC−

i and Ci+1 =
Ci∪{ϕ}, if Ci+1 is consistent) OR (GCi+1 = GC−

i ∪{“∀−→X. ← Γ−”} and Δi+1 =
Δi ∪ {ϕ} if Δi+1 is consistent).

A constraint sub-goal is unsafe if it contains any universally quantified variables.
LC2 is similar to LN2, since it either tries to succeed the negation of sub-goal
or tries to fail any of the remaining sub-goals.
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Infer. Rule 13 (LE2 – Fail Equality). If ϕ is an equality of the form t = s,

1. if t = p(−→u ) and s = p(−→v ), then: GCi+1 = GC−
i ∪ {“∀−→X. ← −→u = −→v , Γ−”};

2. if t = p(−→u ) and s = q(−→v ), then: GCi+1 = GC−
i ;

3. if t ∈ vars(s) or s ∈ vars(t), then: GCi+1 = GC−
i ;

4. if t ∈ −→
X , let θ = {t/s}, then: GCi+1 = GC−

i ∪ {“∀−→X. ← Γ−”/θ};
5. if t is an existential variable (i.e. t /∈ −→

X ) and vars(s)∩−→X = ∅, let θ = {t/s},
then: GCi+1 = GC−

i and Ei+1 = Ei ∪ {t �= s}, if Ei+1 is consistent OR

GCi+1 = GC−
i ∪{“∀−→X. ← Γ−”/θ} and Ei+1 = Ei/θ and Ci+1 = Ci/θ, if Ei+1

and Ci+1 are consistent;

and (4) and (5) also hold for the symmetric case of s = t.

In LE2, cases (1)-(4) implement the standard unification algorithm. Case (5) is
similar to LN2 or LC2, and it generates two possible new states. LE2 doesn’t
handle inequality such as t �= s because such a sub-goal can be seen as ¬(t = s)
and can be handled by LN2, as long as it is safe.

5.2 Example Trace

Here is a (simplified) reasoning trace for Example 1. Let Q=mnt(cor, 12) be a
global query initiated by H , and assume a left-to-right goal selection strategy
and a lazy agent interaction strategy are adopted. We only outline the key steps:

1. H: created a state containing mnt(cor, 12) as the goal;

2. Local inference by H: it abduced wlkC(X, 12) with X ∈ {ann, bob} using the first
rule in ΠH ; it then resolved the abducible with its only integrity constraint, and
collected the denial “ ← out(X, 12)”;

3. H passed the state to B, which started a local inference: it resolved the abducible
with its integrity constraint to obtain X = bob and the failure goal “∀T1. ←
tkM(T1), 12 − 2 ≤ T1 ≤ 12”;

4. B could not satisfy the failure goal (Bob took medicine at 11 so the constraints
12 − 2 ≤ 11 ≤ 12 could not be falsified). Hence, B backtracked and added the
constraint X �= bob instead;

5. B passed the state to A, which started a local inference: it had no integrity con-
straint for the abducible, but it had to check “ ← out(X, 12)”. It resumed the
NAF process of out(X, 12) using the first rule in ΠA, and obtained a failure goal
“∀T1, T2. ← X = ann, apt(T1, T2), T1 ≤ 12, 12 ≤ T2”. However, this goal could
not be satisfied with X = ann as Ann had an appointment between 11 and 13.

6. A backtracked but could not add X �= ann instead, as it would be inconsistent
with X ∈ {ann, bob}, X �= bob. A sent a backtracking signal to B, who then sent
the signal to H.

7. H then backtracked to use the second rule in ΠH . It collected a delayed goal
pntEntry(12) and abduced wlkC(intrd, 12).

8. H passed the state to W, which started a local inference: it could successfully
resolve the only goal pntEntry(12). Therefore, a final answer wlkC(intrd, 12) was
returned to H.
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6 Soundness and Completeness

The DAREC proof procedure is sound and complete only with respect to a three-
valued semantics [18] for which, given a global query Q and a DAREC answer
〈θ, Δ〉, the interpretation (completion) of all abducibles (i.e. AB) is defined as
IΔθ = {At | A ∈ Δθ ∧ A ∈ AB} ∪ {Af | A /∈ Δθ ∧ A ∈ AB}. Due to lack
of space, only the main aspects of the soundness and completeness proofs are
briefly outlined here.

Theorem 1 (Soundness of DAREC). Given a distributed abductive frame-
work Fdis = 〈Σ, F̂〉 and a global query Q, if there is a successful DAREC
derivation for Q with answer 〈θ, Δ〉, then

1.
⋃
i∈Σ Πi ∪ IΔθ |=3 Qθ; 2.

⋃
i∈Σ Π ∪ IΔθ |=3

⋃
i∈Σ Ii;

where |=3 is the logical entailment under the three-valued semantics for abductive
logic programs [18].

Theorem 2 (Completeness of DAREC). Let Fdis = 〈Σ, F̂〉 be a distributed
abductive framework and Q a global query, suppose there is a finite DAREC
derivation tree T for Q. If

⋃
i∈Σ Πi∪

⋃
i∈Σ Ii∪∃Q is satisfiable under the three-

valued semantics, then T contains a successful branch.

The above proofs build upon the ASystem’s soundness and completeness results,
and use the notion of meaning of a state – a first-order logic formula denoted as
M(State) and representing the conjunction of all the components in a state.

Let us consider first the soundness proof and let us assume S0, . . . , SN to be
a successful derivation where S0 and SN are the initial and the solved state
respectively. The proof uses the following two intermediate lemmas: (i) the cor-
rectness of each inference rule, i.e., given two consecutive states Sj and Sj+1 in a
derivation (0 ≤ j < N),

⋃
i∈Σ Πi |=3 M(Sj+1) ⇒M(Sj) where ⇒ is the logical

implication; and the properties (ii) |=3 S0 ⇒ Q and
⋃
i∈Σ Πi |=3 IΔθ ⇒ M(SN),

which hold by reflexivity. Statement (1) in Theorem 1 is then shown using (i)
and (ii) through chain of implications. Similarly for Statement (2) in Theorem 1,
but showing also that for any integrity constraint IC ∈ ⋃i∈Σ Ii containing an
abducible atom A ∈ Δθ, it holds that

⋃
i∈Σ Πi |=3 IΔθ ⇒ IC.

As for the DAREC completeness proof, the idea is to show that any DAREC
derivation tree can be “reduced”’ to an equivalent A-System derivation and use
the ASystem’s completeness theorem. We first define a special inference rule
selection strategy (Ξf ), for which the TH rule is applied as soon as a goal is
delayed, and the TC rule is applied (by all agents in turn) as soon as an abducible
or denial on non-abducible is collected; and assume an arbitrary goal selection
strategy Υa. The proof has the following steps. Given a query Q, we show, first,
that any finite DAREC derivation tree TD obtained with Ξf and Υa is equivalent
to a finite ASystem derivation tree TA obtained with Υa. Secondly, we show
that a finite DAREC derivation tree TD

′
obtained with any arbitrary inference

rule selection strategy Ξa and a fair goal selection strategy Υa is equivalent to
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the finite DAREC derivation tree TD obtained using Ξf and a more restricted
fair goal selection strategy Υr based on Υa, i.e., TD

′
Ξa+Υa

≡ TDΞf+Υr
≡ TAΥr

. By
the ASystem’s completeness theorem (which holds with any fair goal selection
strategy), if

⋃
i∈Σ Πi ∪

⋃
i∈Σ Ii ∪∃Q is satisfiable, TA must contain a successful

branch, and, hence, TD
′
must also have a successful branch.

That three-valued completion semantics, chosen for the theorems instead of
other stronger semantics, such as the stable model semantics [9], is due to the fact
that top-down inference procedures, like abduction, may suffer from looping. In
practice, looping can be avoided either by implementing a depth-bounded search
strategy or by ensuring that the overall logic program satisfies certain properties
(e.g., abductive non-recursive [19]).

7 Discussions

The DAREC proof procedure described so far can be extended in several ways
in order to support applications where confidentiality or efficiency are main
concerns. We briefly describe here these extensions.
Global and Local Predicates. In the definition of the DAREC framework,
given in Section 4, non-abducible predicates are considered global, which implies
that Negation as Failure for a non-abducible must be performed by all the agents.
Moreover, as stated in Section 5, we have so far assumed that agents must expose
to others all the non-abducibles they know. In some application domains, e.g.,
decentralised policy analysis, it is however desirable to distinguish between global
versus local non-abducible predicates. A non-abducible is local to an agent if
and only if it is known by the agent only and it does not appear in any other
agent’s program or integrity constraints. Allowing local non-abducibles has the
benefits of improving the computational efficiency of the system and supporting
confidentiality. In the former case whenever an agent needs to fail a local non-
abducible (i.e. by LD2), its denial does no longer need to be added to the store
Δ∗ of the state and checked by all the other agents. In the latter case, agents
can express private knowledge in terms of local non-abducible predicates which
will not be shared with other agents. However, to ensure during the proof that
no local predicates appear in a state that is passed from one agent to another,
particular goal selection strategies must be adopted which would give priority
to local goals versus global goals.
Concurrent Computation. The DAREC proof procedure described in Fig-
ure 1 enforces synchronised (global) backtracking among the agents, namely
whenever an agent sends out a state, it backtracks only when it is requested;
and, at any time, only one agent (that is holding the state) can perform reason-
ing (by rewriting the state). There is room, however, for concurrent computation
allowing agents to backtrack immediately after it sends out a state. Solved states
found during backtracking could be sent back to the query issuer straightaway,
and any state, suitable for the application of TH or TC rule, constructed during
backtracking can be “buffered”. In this way, as soon as a global backtracking
request is received, a buffered state can be sent out immediately, if there is any.
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Open Networks. Although the DAREC framework presented in this paper is
for closed networks (i.e. a fixed set of agents), it is very easy to extend it to
open networks, where agents may join or leave during collaborative reasoning.
This can be easily achieved in the following way. First, we assume that whenever
an agent joins or leaves the system, all other agents are notified. Secondly, we
extend the state to be 〈G,ST , S〉, where S is a set of agent IDs. Before a state
is passed from an agent ag1 to another agent ag2, ag1 adds ag2’s ID to S if S
does not contain it (i.e. extension to the TH and TC rules). For example, let
A �1 B �2 C �3 D �4 B �5 C �6 A be a sequence of state passing between
four agents, then at the end S = {A, B, C, D}:

– when a new agent joins, nothing is changed as the TC rule ensures that the
agent will check Δ and Δ∗ for consistency before a solved state is obtained;

– when an agent ag leaves, (1) all the remaining agents will discard its compu-
tations (including choice points) for the states whose S contains ag; (2) the
agent who added ag’s ID to S will try to send the state to another suitable
helper (if any), or backtrack from that point. In the example, assuming that
C leaves, then D, B and A will discard the computations they have done
after �3, and B will backtrack from �2.

Any agent that has not received the state can leave without affecting the reason-
ing process. Open networks suffer, however, of some drawbacks. The complete-
ness of the proof procedure may be affected: an agent may join the system “too
late” in the reasoning process and miss the opportunity to help others (it was
not there when an agent asked for help for a non-abducible that it knows). The
proof procedure may not terminate: an agent keeps cycling between joining the
system, modifying the state, and then leaving the system. Special restriction in
the implementation could be imposed that forbid buggy agents from joining and
leaving too many times would be needed in order to avoid such problems.

8 Implementation

A proof of concept DAREC prototype system has been implemented in YAP-
Prolog 3, which provides TCP communication API and constraint satisfaction
solver libraries. The prototype incorporates the extensions discussed in Section 7.
In order to benchmark the system, we have also developed a test case generator,
which takes a series of adjustable input parameters, such as the total number of
agents and the average size of each agent’s logic program, and then randomly
generates a set of logic programs. Each of the logic programs can then be im-
ported by an agent, and arbitrarily selected queries can be submitted to the
agents. During benchmarking, we recorded the number of messages exchanged
between agents and the time taken for computing the queries. Empirical results
(e.g. 5 agents in total, each of which has about 250 rules, and the average number
of conditions in each rule is 10, where on average 3 of them are global/shared

3 http://www.dcc.fc.up.pt/~vsc/Yap/

http://www.dcc.fc.up.pt/~vsc/Yap/
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predicates) showed that for two third of the tested queries, the distributed ab-
ductive algorithm (with delay-interaction strategy) computes the answers about
26%∼517% faster than a centralised computation (i.e. single agent abductive
reasoning with the merged logic programs). This was expected as concurrent
computation was performed during distributed reasoning. We also ran the dis-
tributed algorithm with and without the delay-interaction strategy. The experi-
ments showed that the former computes the answers about 130%∼2996% faster
and has about 114%∼2871% less exchanged messages than the latter (note that
execution without interaction delays is like that of the DARE algorithm [14]).

9 Conclusion and Future Work

In this paper we have presented DAREC, the first distributed abductive rea-
soning system with arithmetic constraints support. DAREC allows application-
dependent agent interaction strategies to be adopted for reducing inter-agent
communications, and facilitates concurrent computation to be performed during
collaborative reasoning. The system (with simple extensions) is suitable for a
large class of knowledge-based distributed problem solving problems, including
ambient intelligent systems here briefly described. As future work, we will per-
form more benchmarking to investigate how different goal selection strategies,
agent selection strategies and agent interaction strategies may impact the system
performance in different applications. The current version of the DAREC system
does not deal with communication failures, as it simply assumes that commu-
nication channel and agents are reliable. However, in practice such assumption
may not always be applicable. We have also developed a speculative abductive
reasoning framework, which has an answer revision mechanism for coping with
communication breakdowns during a distributed reasoning task [13]. As future
work we will incorporate the speculative extension into the DAREC system, and
perform benchmarking.

References

1. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The SCIFF abductive
proof-procedure. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI),
vol. 3673, pp. 135–147. Springer, Heidelberg (2005)

2. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Cooperation and com-
petition in ALIAS: A logic framework for agents that negotiate. Annals of Mathe-
matics and Artificial Intelligence 37(1-2), 65–91 (2003)

3. Ciampolini, A., Lamma, E., Mello, P., Torroni, P.: LAILA: A language for coordi-
nating abductive reasoning among logic agents. Computer Language 27(4), 137–161
(2001)

4. Clark, K.L.: Negation as failure. In: Logic and Data Bases, pp. 293–322 (1977)
5. Craven, R., Lobo, J., Ma, J., Russo, A., Lupu, E.C., Bandara, A.K.: Expressive

policy analysis with enhanced system dynamicity. In: Proceedings of the ACM
Symposium on Information, Computer & Communication Security, pp. 239–250
(2009)



166 J. Ma et al.

6. Denecker, M., De Schreye, D.: SLDNFA: An abductive procedure for abductive
logic programs. Journal of Logic Programming 34(2), 111–167 (1998)

7. Endriss, U., Mancarella, P., Sadri, F., Terreni, G., Toni, F.: The CIFF proof
procedure for abductive logic programming with constraints. In: Alferes, J.J., Leite,
J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 31–43. Springer, Heidelberg
(2004)

8. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33(2), 151–165 (1997)

9. Kakas, A., Mancarella, P.: Generalised stable models: A semantics for abduction.
In: Aiello, L.C. (ed.) Proceedings of the European Conference on Artificial Intelli-
gence, ECAI 1990, Stockholm, Sweden, pp. 385–391. Pitman Publishing (1990)

10. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. Journal of
Logic and Computation 2(6), 719–770 (1992)

11. Kakas, A.C., Mancarella, P.: Abductive logic programming. In: Proceedings of the
Workshop Logic Programming and Non-Monotonic Logic, pp. 49–61 (1990)

12. Kakas, A.C., Michael, A., Mourlas, C.: ACLP: Abductive constraint logic program-
ming. Journal of Logic Programming 44(1-3), 129–177 (2000)

13. Ma, J., Broda, K., Goebel, R., Hosobe, H., Russo, A., Satoh, K.: Speculative abduc-
tive reasoning for hierarchical agent systems. In: Dix, J., Leite, J., Governatori, G.,
Jamroga, W. (eds.) CLIMA XI. LNCS, vol. 6245, pp. 49–64. Springer, Heidelberg
(2010)

14. Ma, J., Russo, A., Broda, K., Clark, K.: DARE: a system for distributed abductive
reasoning. Autonomous Agents and Multi-Agent Systems 16(3), 271–297 (2008)

15. Van Nuffelen, B.: Abductive Constraint Logic Programming: Implementation and
Applications. PhD thesis, Department of Computer Science, K.U.Leuven (2004)

16. Shanahan, M.: An abductive event calculus planner. Journal of Logic
Programming 44(1-3), 207–240 (2000)

17. Shanahan, M.: Perception as abduction: Turning sensor data into meaningful rep-
resentation. Cognitive Science 29(1), 103–134 (2005)

18. Teusink, F.: Three-valued completion for abductive logic programs. Theoretical
Computer Science 165(1), 171–200 (1996)

19. Verbaeten, S.: Termination analysis for abductive general logic programs. In:
Proceedings of the International Conference on Logic Programming, pp. 365–379
(1999)

20. Wallace, M.: Constraint logic programming. In: Kakas, A.C., Sadri, F. (eds.)
Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2407,
pp. 512–532. Springer, Heidelberg (2002)



Understanding Permissions through Graphical Norms

Nir Oren1, Madalina Croitoru2, Simon Miles3, and Michael Luck3

1 Department of Computing Science, University of Aberdeen, Scotland
n.oren@abdn.ac.uk

2 LIRMM, University Montpellier II, France
croitoru@lirmm.fr

3 Department of Informatics, King’s College London, United Kingdom
{simon.miles,michael.luck}@kcl.ac.uk

Abstract. Norm-aware agents are able to reason about the obligations, permis-
sions and prohibitions that affect their operation. While much work has focused
on the creation of such norm-aware agents, less effort has been placed on en-
abling system designers and users to understand the interactions between norms.
Providing designers with such an understanding can aid in eliminating redundant
norms and errors in norm specifications, while enhancing user understanding can
increase the trust placed in a system. In this paper we make use of conceptual
graph based semantics to provide a graphical representation that is designed to
enhance the understanding of the interactions between different types of norms.
More specifically, permissions derogate obligations and prohibitions, and the lat-
ter two norm types interact by conflicting with each other. Tracking these inter-
actions in standard symbolic norm representations is difficult given a large set of
norms, yet our work allows for the easy understanding of whether a permission
causes obligation or prohibition derogation.

1 Introduction

Understanding and controlling the behaviour of agents in open multi-agent systems is,
as has often been asserted, a particularly hard problem. The natural autonomy of the
agents, and the unpredictability derived from allowing agents from different sources to
be included in an open system, suggests that there must be some means to encourage
beneficial outcomes from such systems. Norms have been proposed as a mechanism by
which agents can have some expectations of the behaviour of others while still retaining
autonomy of action. Specifically, norms, in the form of obligations, prohibitions and
permissions, state what is to be expected from agents without the assumption that those
expectations will always be met — norms can be violated.

However, even where norms are effectively enforced, and individually well under-
stood, this does not mean that a system as a whole will have predictable behaviour.
In part, this is because multiple norms can interact, collectively placing complex ex-
pectations on agents. In addition, individual norms are often applicable only in given
circumstances, rather than over the course of the system lifetime, so examining norms
in isolation from a running system may not help to understand the actual exhibited be-
haviour. Combining these two points, we may observe an agent apparently violating an
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obligation, but actually being exempted from that obligation by a permission that ap-
plies in those particular circumstances. In consequence, we require a means to interpret
the effect of multiple interacting norms on an agent during system execution.

The final, and possibly largest, obstacle to interpreting how a multi-agent system
is being affected by multiple norms is the form of the norms themselves. In order to
correctly reason about and act on norms, such norms must be encoded in some un-
ambiguous form. To this end, most approaches consider norms as logical statements
or abstract data structures using encoded domain-based knowledge. However, from the
perspective of a user, particularly a non-technical user, attempting to understand how a
system is being affected by interacting norms, this is an entirely unhelpful format for
explanation.

In order to overcome these obstacles, we propose a graph-based representation of
norms that must satisfy a number of requirements, including being easily understand-
able by non-experts. Visual representations can aid designers in simplifying a complex
set of norms, and can help users interpret the status of a normative system; our focus
in this paper lies in supporting these aspects relating to aid for designers and users.
Critically, therefore, our representation must be semantics preserving in that there must
be a sound and complete translation between the textual and graphical norm represen-
tations. In this sense, operations on norms should also be applicable to their graphical
representation. By assigning a tree structure to norms, we can perform norm interpre-
tation through tree path traversal, and the problem of reasoning about the status of a
norm (that is, whether it is violated or complied with) becomes one of detecting homo-
morphisms in our graph structures. More generally, this work enables both the structure
of a norm and its underlying representation to be illustrated graphically, so that norm
reasoning translates directly into operations on the graphical representation, making our
representation suitable for all stages of knowledge representation and reasoning.

In this paper, we describe an approach to aiding users in understanding how inter-
acting norms affect the behaviour of agents in a running system. With regard to norm
interaction, we focus on a particular issue: derogation [13], whereby permissions in-
teract with obligations to exempt agents from some of their obliged behaviour under
particular circumstances. For example, consider an obligation on a mechanic to repair
a car by some specific date. If the car is not repaired by that date, then the mechanic
has violated the obligation. However, if a permission has been given to the mechanic to
repair the car by some later date, then the mechanic is able to ignore (i.e. not comply
with) the original obligation without being considered in violation of it. The permission
has thus derogated, or temporarily cancelled, the obligation. However, if the permission
is removed, then the mechanic is viewed as having violated the original obligation.

To allow derogation to be detected and understood within a running system, we build
on several pieces of work. First, we use a norm model that makes explicit the circum-
stances under which norms apply [10], in such a way that we can detect at runtime
which norms may interact. Second, we encode this norm model in a graph based rep-
resentation (a tree) in which nodes at each level map to one part of the correspond-
ing condition for that level in the norm. Last, we employ conceptual graphs [11] as a
means of representing norm conditions graphically, and provide a mapping from the
norm model to this representation. Conceptual graphs have a formal semantics, and
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their graph based representation makes them well suited to depicting information that
has structure and interconnections. Moreover, labelled graph homomorphism between
two conceptual graphs has been shown to be sound and complete with respect to set
theoretic semantics for a subset of First Order Logic. This ensures the semantic foun-
dations of our graph based reasoning and, by colouring the graphs, we can also show
how the norms’ effects and interactions change as the system runs. In earlier work [3],
we described how individual obligations can be represented graphically, and how the
status of these obligations can be determined. Here, we extend this basic work to take
into account the possibility of permissive norms, and show how interactions between
norms (namely a permission derogating an obligation) can be detected and visualised.

The remainder of this paper is structured as follows. In the next section, we provide
an overview of our normative model, after which we provide a brief introduction to
conceptual graphs. We then demonstrate how the normative model can be encoded with
conceptual graphs. The problem of permission derogation is tackled in Section 4.2, after
which we discuss related and future work.

2 Permissions and the Normative Model

Norms make different kinds of specification on a target agent’s behaviour. For exam-
ple, some norms specify what an agent should do (obligations), some what it should
not do (prohibitions), and some what it may do (permissions); our model focuses on
obligations and permissions. While obligations are well understood, permissions have
been defined very differently by different approaches in the past, and it is worth high-
lighting what we intend by them. One distinction made is between weak and strong
permissions [1]. Here, weak permissions are those that exist, in effect, by default (that
is, they are what one is free to do anyway), and are typically not considered to be norms.
Conversely, strong permissions are those issued by some authority that may not be over-
ridden by a lower level authority (in an institutional sense). Alternatively, a permission
may also be expressed as an explicit exception to an obligation [1]; by taking advantage
of a such a permission, what is otherwise considered a violation of an obligation is no
longer considered a violation. It is this latter view of permissions that we adopt here.

Understanding whether permissions have derogated obligations requires an unam-
biguous model in which we can evaluate whether each such norm applies in a given
system state. A complete formal description of our normative model is available else-
where [10]; in this paper, we outline the model, illustrating it with an example (adopted
from [3], but extended for this paper), in order that we can show how it is subsequently
used for computing permissions.

Consider the situation in which an agent Alice takes her car to a repair shop. The
repair shop provides a guarantee to its customers that any car will be repaired within
seven days of arriving at the shop. Clearly, the repair shop has an obligation upon it,
whenever a car arrives, to repair it within seven days. Furthermore, once this obligation
is fulfilled, the specific instance of this obligation is lifted, and the repair shop no longer
needs to repair the car. However, if a car is not yet repaired, the obligation remains on
the repair shop as long as the car is not repaired (even after seven days have passed).
Now, if a power failure occurs, the repair shop need not honour its original guarantee,
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but will instead have an extra week to repair the car. Here, there is a second norm, which
provides a permission allowing the repair shop to temporarily ignore its obligation in a
specific situation.

From this example, we can associate a number of attributes with a norm. First, norms
have a type. In our example, we refer to an obligation and a permission, but norms can
also impose prohibitions. Norms also have an activation condition, identifying the situ-
ation in which an obligation, permission or prohibition is imposed. In our example, the
obligation’s activation condition triggers when a car arrives at the repair shop, while the
permission triggers when a power failure occurs. Clearly, obligations and prohibitions
also impose some constraint on the entity affected by the norm. We refer to this attribute
as the normative condition. In our example, the obligation’s normative condition is the
requirement that the car be repaired within seven days. For a permission, the normative
condition identifies the state of affairs that can hold without an obligation or permission
being considered violated. In the example, this allows the car not to be repaired. Now,
at some point in time, an obligation (or permission) ceases to affect its target. In the ex-
ample, once the car is repaired, the shop is no longer obliged to repair it (in the case of
the permission, once 14 days have passed, the permission is no longer in force). Norms
thus impose an expiration condition. Finally, norms affect specific entities within a sys-
tem. Thus, Alice is not obliged to repair her car within seven days, but the repair shop
is obliged to do so. A norm must thus identify a set of norm targets that are affected by
it. Both the obligation and permission within the example have the repair shop as their
target.

It is important to distinguish between the guarantee that the repair shop makes to
repair a car within seven days of its arrival, and the obligation imposed upon it to repair
a specific car (for example, the car belonging to Alice) once it arrives. We refer to the
former as an abstract norm which, under a specific set of circumstances (such as the
arrival of a car at the repair shop) becomes an instantiated norm. This then obliges,
permits, or prohibits its target from seeing to it that some state of affairs holds. Clearly,
an abstract norm can be instantiated multiple times (perhaps simultaneously). For ex-
ample, multiple cars may arrive at the repair shop in one day. If a power failure occurs
during that day, the permission to repair the cars later applies to all of these cars, but not
to cars arriving later. Thus, instantiated norms are handled individually. In the case of
an obligation, one norm may be violated (if the associated car is not repaired in time),
while another may be discharged (if the associated car is repaired).

More formally, permissions and obligations refer to states and events in an environ-
ment, in turn represented by some logical predicate languageL, such as first order logic.
We represent a norm as a tuple of the form:

〈NormType,

NormActivation,

NormCondition,

NormExpiration,

NormTarget〉

where (i) NormType ∈ {obligation, permission}; and (ii) NormActivation ,
NormCondition , NormExpiration and NormTarget are all well formed formulae
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(wff ) in L. Thus, the following abstract norm represents the requirement that a repair
shop must repair a car within seven days of its arrival at the shop1:

repair : 〈obligation,

arrivesAtRepairShop(X,Car, T1),

repaired(Car)∨ (currentT ime(CurrentT ime)∧ before(CurrentT ime, T1 + 7days)),

repaired(Car),

repairShop(X)〉

Similarly, the permission to delay the repair of a car can be written as follows:

delay : 〈permission,

powerFailure(X,T1),

¬repaired(C),

currentT ime(CurrentT ime)∧ before(CurrentT ime,T1 + 14days),

repairShop(X)〉

For simplicity of presentation (and with some abuse of notation), we mix events and
states within norms. A more complex underlying language, such as the Event Calculus
[6], would allow us to disambiguate these concepts.

An instantiated norm is created from an abstract norm when the latter’s activation
condition evaluates to true (subject to further constraints as discussed in [10]). This
involves copying the abstract norm and binding the new norm’s variables to the values
that caused the activation condition to be true [10], which offers a logical semantics for
instantiation and processing of norms.

Now, if we assume that Alice’s car (represented by the constant c1) arrives at Bob’s
repair shop at time 12, the predicate arrivesAtRepairShop(bob, c1, 12) evaluates to
true. This predicate is the abstract repair norm’s activation condition, and when instan-
tiated, we obtain the following instantiated norm:

repair′ : 〈obligation,

arrivesAtRepairShop(bob, c1, 12),

repaired(c1) ∨ (currentT ime(CurrentT ime)∧ before(CurrentT ime, 19)),

repaired(c1),

repairShop(bob)〉

It should be noted that an instantiated norm can still contain variables (for exam-
ple, CurrentT ime in repair’). These variables are bound, as appropriate, to identify
whether the norm’s expiration or normative conditions have been met. For example,
the CurrentT ime variable is bound, whenever the norm is evaluated, to the system’s
current time. However, an instantiated norm’s activation condition is always ground.

A norm’s status (instantiated or abstract, violated, expired, etc.) is monitored by a
normative environment, and can be referred to by other norms. (Further details can
be found in [8], though space constraints limit further elaboration here.) For example,

1 Unless otherwise stated, we make use of Prolog notation within our formulae: variables begin
with an uppercase letter, and constants with a lowercase letter.
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a norm stating that “If the car has not been repaired after seven days, the client is
permitted to request a free repair”, could be written as:

〈permission,

violated(repair),

request(client(C), repairShop(X), repairCost(Car,0)),

false,

client(C)〉

Here, the violated predicate refers to the norm’s status, evaluating to true only if there is
an instantiated repair norm whose normative condition is false, and there is no permis-
sion that allows this normative condition to be false. The request function represents a
primitive communicative action, from the customer C to the repair shop, asking for a
free repair.

In this way, permissions interact with obligations by allowing the obligation’s nor-
mative condition to be false without the obligation being deemed to be violated. Impor-
tantly, when there is a large number of norms, the interactions between them can make
it extremely difficult for humans to determine those situations in which there are such
permissions. Our aim in this paper is to show how we may use conceptual graphs to
enhance human understanding of executing normative systems.

3 Representing Norms as Conceptual Graphs

3.1 Conceptual Graphs

Conceptual graphs were introduced by Sowa (cf. [12]) as a diagrammatic system of
logic with the purpose “to express meaning in a form that is logically precise, humanly
readable and computationally tractable” [12]. In this paper, we use the term “conceptual
graphs” to denote the family of formalisms rooted in Sowa’s work, and enriched and
extended with a graph-based approach (as in [2]).

A conceptual graph (CG) encodes knowledge within two graph-based representa-
tions. First is the basic ontology or vocabulary utilised by the CG, known as its sup-
port, and composed of hierarchies of concepts and relations. The support is visualised
via Hasse diagrams, for drawing a partial order, representing a specialisation relation,
t′ ≤ t, stating that t′ is a specialisation of t. Figure 1 illustrates the concept hierarchy
used in the car repair example, and Figure 2 illustrates the relation hierarchy. As can be
seen within Figure 2, relations are organised by arity.

Second, we encode all other knowledge in a graph labelled with nodes corresponding
to concepts and relations. Edges link concept nodes to relation nodes, labelled by types
of the support (also called the vocabulary). Concept nodes are drawn as rectangles and
relation nodes as ovals. An order is imposed on the edges, corresponding to the k-ary
relation captured by the relation node, by numbering the edges from 1 to k. Figure 3
shows this type of basic graph (BG), expressing the fact that a car arrived at the repair
shop at a certain time. The ∗ character represents a generic variable.

CGs have an associated set theoretic first order logic semantics, defined by a mapping
Φ [12]. CGs are equivalent to the positive, conjunctive and existential fragment of first
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T

RepairShop

Owner Shop Car CurrentTime

Agent Vehicle Time Permission Obligation

Domain 
Concept

Norm

Fig. 1. Conceptual graph support: the concept hierarchy

order logic. More recent work has extended the basic CG formalism; for example, [9]
introduces some types of negation to CGs.

The fundamental theorem of conceptual graphs allows us to translate between first
order logic and conceptual graphs. More specifically, the fundamental theorem states
that, given two basic graphs G and H , there is a homomorphism from G to H if and
only if Φ(G) is a semantic consequence of Φ(H) and Φ(V ) where V is the vocabu-
lary. This result demonstrates the soundness and completeness of BG homomorphism
with respect to entailment in the subset of first order logic mentioned above. The con-
sequence of this theorem is that a homomorphism between two graphs is, in effect, an
explanation as to why logical subsumption takes place. Since such homomorphisms
can be represented graphically, this allows for visual representations of logical sub-
sumption. Such a graphical representation of an explanation is a unique feature of CGs,
and an alternative logic-based graphical representation language would have to include
a separate explanation layer in addition to the representation layer itself.

3.2 From Norms to Conceptual Graphs

By encoding structured knowledge graphically, CGs can provide a way to depict and
interpret the states that norms go through; that is, whether they have been activated,
violated, fulfilled, or expired. Then, by connecting depictions of permissions and obli-
gations, we can understand whether an obligation has truly been violated, or whether a
permission derogates this under current circumstances.

In modelling norms with CGs, one complexity we face is that norms can sometimes
be fulfilled by multiple different actions, events or states. Intuitively, if these conditions
are separated by disjunctions they can be evaluated using a tree-like structure by the
norm environment reasoner. We thus define a structure, referred to as a norm tree, with
every level of the tree corresponding to one type of condition in the norm. Moreover,
at every level, we break the condition into a disjunction of positive first order logic
conjunctions. This representation ensures that the normative reasoning is sound and
complete with respect to a particular kind of path finding in the norm tree (finding at
least one satisfied level node). In what follows, we assume that a norm’s target is a
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Fig. 2. Conceptual graph support: the relation hierarchy

RepairShop:*

Car:*

Time:*

arrivesAtRepairShop

1

2

3

Fig. 3. A generic basic conceptual graph fact

conjunctive formula (and can thus be represented as a CG). Now, when instantiated, a
norm’s activation condition becomes fixed, and its normative and expiration conditions
are used to determine its status. We now proceed to define the norm tree in more detail.

A norm tree represents both abstract and instantiated norms. Its root is associated
with the entire norm (more specifically, its type and target), while the remaining lev-
els represent different portions of the norm. Nodes in the second level are associated
with the activation condition, nodes in the third level are associated with the norma-
tive condition, and nodes in the fourth level with the expiration condition. Each of the
nodes within the tree has an associated CG representation of its content, as illustrated
in Figure 4.

Given this, different branches of the norm tree can be used to represent disjunctive
conditions within a specific norm attribute. Thus, for example, a norm with a normative
condition of the form a ∨ b would have two branches at the norm tree’s third level. As
indicated above, we assume that the norm target parameter consists of a conjunctive
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<NType
ACi
NCj

EC1∨EC2∨EC3
NT>

Fig. 4. A conceptual representation of a norm tree

combination of predicates (in other words, a norm is associated with a specific group
of individuals rather than applying to some subgroup or another), and that all other
parameters (except for norm type), may contain disjunctions. In this way, in order to
represent the norm as a norm tree, we transform all its attributes into disjunctive normal
form, to get a norm represented as follows:

〈Type,
∨
i=1,a

ACi,
∨
j=1,c

NCj ,
∨
k=1,e

ECk, NT 〉 (1)

where ACi, NCj , ECk and NT are all conjunctive first order formulae so that, for
example, AC =

∨
i=1,a ACi. Furthermore, by assuming negation as failure we can

ensure that all of these formulae are positive (by introducing an explicit predicate for
negation), and can therefore represent each as a conceptual graph, defined on some
given support (i.e. the domain ontology).

Given a norm N in disjunctive normal form as in (1) above, we define its norm tree
as a tree for which each node contains a norm and is labelled by a CG as follows:

1. The root node of the tree contains norm N and is labelled by a CG identifying the
norm’s type and targets (i.e. Type and NT ).

2. The root node has a child nodes (i.e. nodes at level one), where, for i = 1 . . . a,
child node i is labelled with the CG representing ACi and contains a norm N i of
the form:

〈Type, ACi,
∨
j=1,c

NCj ,
∨
k=1,e

ECk, NT 〉

3. Each node at level two, which is a child of N i, and is labelled with a CG represent-
ing NCj , contains a norm N ij for j = 1 . . . c of the form:

〈Type, ACi, NCj ,
∨
k=1,e

ECk, NT 〉

4. Each node at level three, which is a child of N ij , and is labelled with a CG repre-
senting ECk, contains a norm N ijk for k = 1 . . . e of the form:

〈Type, ACi, NCj , ECk, NT 〉
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3.3 Example

Consider the norm utilised in our car repair example, which obliges the repair shop to
repair a car within seven days of its arrival. The left hand side of Figure 5 illustrates
the norm tree that is associated with this norm. For simplicity, we have ignored the
norm target parameter, assuming that it is present in the root node. The dotted line
between the nodes and the CGs identify which nodes are labelled with which CGs. It
should be noted that the function relation, found in the right hand normative condition
node, is used to compute whether the current time is greater than 7 days from the time
the car arrived for repair. This is used to simplify the CG shown in the figure; within
a complete system, this CG would make use of an arithmetic function to add 7 days
to the car’s arrival time, and then make use of the an additional function or predicate
to compare the current time to the deadline and determine whether the car has been
repaired in time.

The right hand side of Figure 5 illustrates the norm tree for the permission found in
our example. Since no disjunctions exist within the activation, expiration and normative
conditions, this norm tree has no branches.

Obligation:*

RepairShop:*

Car:*

Time:*

arrivesAtRepairShop

Car:* repaired

Time:*

CurrentTime:*

DataType:7

function

Car:* repaired Car:* repaired

Time:12

CurrentTime:
TimeStamp

DataType:14

function

Car:c1 ¬repaired

Permission: P1

RepairShop:* powerFailure

Time:*

Fig. 5. The norm tree for the abstract obligation norm (left) and abstract permission norm (right)
found in the repairshop example

4 Permissions in Conceptual Graph Norms

Having described how norms can be represented as norm trees, we now turn our atten-
tion to computing the status of a norm. In [10], we defined a number of different kinds
of norm status, such as identifying whether a norm is instantiated, being complied with,
expiring, etc. Many of these can be computed by checking for the existence of projec-
tions between the facts in the environment and the conceptual graph annotations of the
norm tree. However, determining whether some obligation or prohibition n is violated
requires examining not only the norm tree for n, but also any permissions that allow
for this situation to occur. In this section, we describe how a norm is instantiated and
how norms can be evaluated by examining only its norm tree, and then we turn our
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attention to norm violation and the interactions between obligations, prohibitions and
permissions.

4.1 Projections on CG Norms

So far we have described only how abstract norms can be represented as norm trees,
but we can illustrate how norms are instantiated by examining what occurs in our car
repair example when there is a power failure at the repair shop. In such a situation,
the new fact powerFailure(bob, 12) is added to the knowledge base, stating that there
is a power failure at Bob’s repair shop at time 12, which delays the repair by 7 days
(extending from 7 to 14).

The new fact projects onto the norm’s activation condition CG annotation. This map-
ping thus instantiates some of the generic nodes in the various CGs, obtaining the in-
stantiated norm illustrated in Figure 6. For clarity, we colour CG nodes grey within
instantiated norms and white within abstract norms. Note that the norm’s type now
refers to a specific instance of norm N , namely P1. Note, too, that multiple instantiated
versions of the same abstract norm can exist in the system simultaneously. However,
each of these will have a different set of variable bindings, and thus a different CG
associated with the norm tree.

Time:12

CurrentTime:
TimeStamp

DataType:14

function

Car:c1 ¬repaired

Permission: P1

RepairShop:bob powerFailure

Time:12

Fig. 6. The norm tree for an instantiated norm found in the repairshop example

Similarly, we can evaluate norms in relation to their satisfaction or expiration, for
example. Consider the norm tree shown in Figure 7, containing a mixture of black and
grey nodes, the latter of which correspond to nodes that have been satisfied or, in other
words, to nodes for which there is a projection between the environment (on the right
of Figure 7) and the corresponding CG annotation. Black nodes are those that are not
satisfied2. Thus, for example, there is no projection between the node representing the
expiration condition (which states that car c1 is repaired) and the CG on the right of the

2 It should be noted that the example of Figure 7 is very simple, and was selected for its ease of
understanding. It does not demonstrate the inferential power of CGs.
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figure, which represents the facts in the knowledge base. If, at some later point, the car
is repaired, these black nodes will instead become grey. From the colour, we can infer
that the norm is instantiated, its norm condition is satisfied (as there is at least one node
at the norm condition level that is not black), and it has not expired.

4.2 Computing Violation with Permissions

One critical norm aspect which cannot be computed directly form the norm’s norm tree
is whether the norm is violated or not. This is because of the way in which we treat
permissions.

In [1], the authors point out that permissions can be viewed as exceptions to obliga-
tions and prohibitions, and this is how permissions are handled by our model. Thus, for
example, given an obligation on the repair shop to repair a car within 7 days, a permission
to instead repair the car within 14 days derogates the obligation. While the obligation
may not be complied with (because the car may not be repaired within 7 days), the repair
shop will not be in violation of the obligation unless 14 days have expired.

Permissions thus do not exist in isolation, but instead act as exceptions to other types
of norms. This means that in evaluating whether an obligation or prohibition is violated,
one must consider not only the possibly violated norm itself, but also the permissions
present in the system. Given a large normative system, identifying the appropriate per-
mission that may cause a violation not to occur can be challenging. Our visual approach
can help overcome the cognitive load imposed by this problem by highlighting the ap-
propriate permission(s) preventing a norm from being violated.

If a power failure occurred at time 14, then the (instantiated) permission allowing
Bob to repair car c1 within 14 days (i.e. by day 28) is written as follows:

〈permission,

powerFailure(bob, 14),

¬repaired(c1),

currentT ime(CurrentT ime)∧ before(CurrentT ime, 28days),

repairShop(bob)〉

Obligation:N1

RepairShop:bob

Car:c1

Time:12

arrivesAtRepairShop

Car:c1 repaired

Time:12

CurrentTime:
TimeStamp

DataType:7

function

Car:c1 repaired Car:c1 repaired

RepairShop:bob

Car:c1

Time:12

arrivesAtRepairShop

Time:12

CurrentTime:
TimeStamp

DataType:7

function

Fig. 7. A norm tree evaluated according to the knowledge base shown on the right



Understanding Permissions through Graphical Norms 179

Conceptually, in order to determine whether an instantiated and un-expired permission
derogates an obligation or prohibition, we must check whether the permission’s norm
condition is consistent with the obligation. If it is not consistent, in the sense that the
permission allows the negation of the obligation, then derogation takes place, other-
wise the permission does not affect the obligation. In our example, ¬repaired(c1) is
inconsistent when evaluated against repaired(c1), and the permission thus derogates
the obligation. This check for consistency thus lies at the heart of our work. Clearly,
such a consistency check requires the ability to represent and reason about the nega-
tion of a relation. However, the standard CG formalism is unable to represent such
negated relations, and we make use of an extension to CGs first proposed by Mugnier
and Leclère to show how the consistency check can be performed from within the CG
formalism. Their approach computes the completed form of a conceptual graph G (es-
sentially, adding in explicitly negated relations that were previously implicitly negated
by omission); that is, the CG that “defined over a support S, is the unique CG obtained
from G by adding all possible negative relations” [9, Definition 9]. Thus if we don’t
know that a car has been repaired, we now explicitly state that it has not been repaired.
Due to space constraints, rather than provide full details of this approach, we refer the
reader to the original work by Mugnier and Leclère.

Given this completed CG, if the permission’s normative condition cannot be pro-
jected into the CG (because the car has in fact been repaired, for example), the permis-
sion derogates the obligation (or rather, that node in the norm tree for which the CG
projection is unsuccessful, which will not be coloured black). The permission, and rel-
evant concepts and relations that derogate the permission can then be displayed to the
user to explain why the norm is not in violation. If, on the other hand, the permission is
not relevant to the obligation, then a violation occurs, and the violated norm can again
be highlighted in order to show the user its status. Given a norm tree for an (instantiated,
unexpired) obligation N , the norm it represents is thus violated if and only if all of its
nodes at the normative condition level are coloured black.

Obligation:N1

RepairShop:bob

Car:c1

Time:12

arrivesAtRepairShop

Car:c1 repaired

Time:12

CurrentTime:
TimeStamp

DataType:7

function

Car:c1 repaired Car:c1 repaired

Time:12

CurrentTime:
TimeStamp

DataType:14

function

Car:c1 ¬repaired

Permission: P1

RepairShop:bob powerFailure

Time:*

Fig. 8. A norm tree for a permission (left), and obligation (right) evaluated according to some
knowledge, showing how the permission derogates the obligation
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Figure 8 illustrates the derogation of an obligation by a permission. Dashed lines
indicate links between the concepts and relations found in the two nodes, and the nor-
mative condition node marked with a grey node with a black centre in the obligation
indicates that the node, while evaluating to false, is derogated by a permission. From
the figure, it is clear that the obligation is not violated. Note that the permission’s ac-
tivation condition node is black. We assume that while a power failure occurred in the
past (instantiating the permission), there is currently no power failure.

4.3 Case Study

To illustrate the overall framework, we consider an additional scenario in which rapid
response medical units must perform some duties when an emergency situation occurs.
These units have the following obligation:

“If a state of emergency has been declared, a rescue unit is obliged to travel
to a casualty, and then pick them up, or provide them with medicine until they
have no more space and are out of medicines”.

Formally, this obligation is represented as follows:

〈obligation,

stateOfEmergency()∧ casualty(C),

travel(U,C) ∧ (collect(U, C) ∨ medicate(U,C)),

noSpace(U) ∧ noMedicine(U),

rescueUnit(U)〉

The disjunctive normal form of the obligation’s normative condition is:

(travel(U, C) ∧ collect(U, C)) ∨ (travel(U, C) ∧ medicate(U, C))

T

Dead

RescueUnit Casualty

Entity StateOfEmergency Permission Obligation

Domain 
Concept

Norm statusChange
(Norm)

violated
(Norm)

expired
(Norm)

normConditions
(Norm)

noSpace
(RescueUnit)

domainRelations
(DomainConcept)

T(T)

travelTo
(RescueUnit,

Casualty)

domainRelations
(DomainConcept,DomainConcept)

T(T,T)

collect
(RescueUnit,

Casualty)

noMedicine
(RescueUnit)

medicate
(RescueUnit,

Casualty)

Fig. 9. The CG support composed of the concept hierarchy (left) and relation hierarchies (right)
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Given this, we assume a very simple permission representing casualty triage: “If the
casualty is dead, there is no need to medicate them”. Formally, this is as follows:

〈permission, dead(C),¬medicate(U,C), false, rescueUnit(U)〉

In order to construct the norm tree, we begin by identifying the concepts and rela-
tions found in this scenario, where the concepts include StateOfEmergency , Casualty ,
RescueUnit ,Dead , and the relations include travel , collect ,medicate , noSpace and
noMedicine . These concepts and relations yield the support displayed in Figure 9, and
the abstract norms illustrated in Figure 10.

Now assume that a state of emergency exists, and that a dead casualty c1 has been
detected by a rescue unit r1. Furthermore, r1 has space and medicine available. Given
that the rescue unit has not travelled to the casualty, collected it, or provided medicine,
is it in violation of its obligation?

In order to determine this, we must compute the complete CG of the instantiated
obligation’s normative condition. Figure 11 shows the completed form of the graph for
both the left and right hand branches of the instantiated obligation norm tree’s norma-
tive condition nodes. The dotted lines within Figure 11 illustrate that the permission’s
normative condition projects into the obligation’s right hand branch normative condi-
tion. However, no such projection is possible into the left hand branch. Therefore, the

Obligation:*

StateOfEmergency:*

Casualty:*

RescueUnit:* ¬medicate

Permission:*

Dead:*

Casualty:*

RescueUnit:*

travel

collect

Casualty:*

RescueUnit:*

travel

medicate

RescueUnit:*
noSpace

noMedicine

RescueUnit:*
noSpace

noMedicine

Casualty:*

⊥

Fig. 10. The abstract norm trees

Casualty:c1

RescueUnit:r1

travel

medicate

Casualty:c1

RescueUnit:r1

travel

collect

¬collect ¬medicate

RescueUnit:r1 ¬medicate

Casualty:c1

Fig. 11. The completed form of the obligation’s normative condition (top left and top right), with
the projection of the permission’s normative condition
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Obligation:O1

StateOfEmergency:e

Casualty:c1

RescueUnit:r1 ¬medicate

Permission: P1

Dead:c1

Casualty:c1

RescueUnit:r1

travel

collect

Casualty:c1

RescueUnit:r1

travel

medicate

RescueUnit:r1
noSpace

noMedicine

RescueUnit:r1
noSpace

noMedicine

Casualty:c1

⊥

Dead:c1

StateOfEmergency:e

Domain Facts

Fig. 12. Norm instantiation according to the domain facts

permission derogates the left hand branch of the obligation’s norm condition, and the
norm is not violated. This is shown in Figure 12.

5 Conclusions

Our approach to aiding understanding of the effects of norms in a multi-agent sys-
tem brings together several ideas. First, norms do not apply equally through a system’s
lifetime, but start and cease to place expectations on agents, possibly multiple times
through the system lifetime. Second, understanding the effects of an individual norm
is inadequate in cases in which multiple norms may interact. Third, a representation
of norms adequate for those norms to be reasoned over or monitored by software is
not necessarily ideal for explanation to users. While there is already work applicable to
each of these three issues, cosnidering all three together is necessary to provide effective
explanation of real system behaviour.

With regard to the applicability of norms over time, we note that the focus of much
research on norms lies in identifying the properties of a norm or normative system at
some specific point in time so that, while the conditional nature of norms has long been
recognised, properties such as the ability of a norm to expire have been ignored. An
exception to this is work by Governatori et al. [4], who propose a defeasible logic based
approach to norm representation, allowing a norm to expire by having it be defeated
once some deadline is reached. However, such an approach makes it harder for a norm
to be instantiated again if needed (a defeater to the defeater must be introduced).

The problem of detecting interactions between norms has been explored from differ-
ent perspectives (derogation, contrary-to-duty norms, overriding obligations, etc.), and
it is clear that the problem of identifying interactions with a large set of norms is chal-
lenging. This problem is exacerbated by considering the first issue above: norms apply
in particular circumstances and so their interaction depends on the current situation.
Detecting how norms could interact to affect agents’ behaviour is often not as helpful
as understanding how they actually do affect that behaviour.

Little existing work deals with norm explanation, instead assuming that the system
is fully and correctly automated (thus requiring no explanation), or that the user has
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sufficient technical knowledge to be able to understand the norm’s representation and
interactions. Even in the latter case, a more intuitive, graphical explanation may be
advantageous when trying to reason about complex interactions between large groups
of norms. One notable exception to the dearth of work regarding norm explanation
lies in [7], where the authors explain the causes of norm violation by making use of a
causal graph. This explanation is then fed into a policy engine that attempts to determine
whether there are some mitigating circumstances for the violation. If these are present,
penalties against the violator can be ignored or reduced. However, the work does not
deal with the underlying semantics of norms, and thus cannot aid the user in determining
whether a violation actually took place.

In this paper, we have combined a rich norm model with a graphical model of norms
using concept graphs to explore how derogation of obligations through permissions can
be visually depicted for users as a system executes. In [3], a number of possible direc-
tions for further work were proposed, which are also relevant here. First, and most crit-
ical, this involves undertaking user studies of our system in order to determine whether
the visual representation can enhance system understanding, as suggested by [2]. Sec-
ond, the formal semantics of conceptual graphs allows for inference over CGs using
projection; in principle, this could be extended to allow a user to detect and understand
normative conflict. Projection can also act as a similarity measure, and can thus be ap-
plied to determining the trustworthiness of contracts (as encoded by groups of norms)
along the lines suggested by Groth et al. [5]. Finally, we have focused on the status of
norms at a single point in time; we plan to investigate how our approach can aid in ex-
plaining interactions not only between simultaneously active norms, but also how they
can be used to identify and explain temporally distributed normative interactions.
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Abstract. Using model checking to verify that interaction protocols
have given properties is widely recognized as an important issue in multi-
agent systems where autonomous and heterogeneous agents need to suc-
cessfully regulate and coordinate their interactions. In this paper, we
investigate the use of symbolic model checkers to verify the compliance
of a special kind of interaction protocols called commitment protocols
with some properties such as liveness and safety. These properties are
expressed as formulae in a new temporal logic, called CTLC, which ex-
tends the temporal logic CTL with modality for social commitments. Our
approach shows that the problem of model checking CTLC can be re-
duced to the problem of model checking either CTLK or ARCTL, which
are extensions of CTL. We finally present an implementation and report
on the experimental results of verifying the Contract Net Protocol mod-
eled in terms of commitments and associated actions using the symbolic
model checkers MCMAS and extended NuSMV.

Keywords: Multi-Agent Systems, Commitment Protocols, Symbolic
Model Checking, Protocol Properties.

1 Introduction

Over the last two decades, the researchers on Multi-Agent Systems (MASs) have
been focused both on defining a clear and standard semantics for Agent Commu-
nication Languages (ACLs), such as FIPA-ACL1, and developing multi-agent in-
teraction protocols. The developers of FIPA-ACL have addressed the challenge of
incorporatingACL and protocols by proposing a set ofmulti-agent interactionpro-
tocols, calledFIPA-ACLprotocols2.Theseprotocols canbeviewedas specificACLs
designed for particular purposes such as Request Interaction Protocol (RIP), En-
glish Auction Interaction Protocol (EAIP) and Contract Net Protocol (CNP). In

1 This term stands for the Foundation for Intelligent Physical Agents’ Agent Communi-
cation Language–see for examples, FIPA-ACL specifications (1997, 1999, 2001, 2002),
http://www.fipa.org/repository/aclspecs.php3

2 See for examples, FIPA-ACL Interaction Protocols (2001, 2002),
http://www.fipa.org/repository/ips.php3

A. Omicini, S. Sardina, and W. Vasconcelos (Eds.): DALT 2010, LNAI 6619, pp. 185–203, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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particular, CNP is designed from online business point of view to reach agreements
among interacting agents.FIPA-ACLprotocols have succeed in specifying the rules
governing interactions and coordinating dialogues among agents by: 1) restricting
the range of allowed follow-up communicative acts at any stage during a dialogue;
and 2) describing the sequence of messages that FIPA compliant agents can ex-
change for particular applications. However, these protocols are quite rigid to be
used by autonomous agents (that do what is best for themselves) as they are spec-
ified so that agents must execute them without possibility of handling exceptions
that appear at run time, which restricts the protocols’ flexibility.

Recently, social approaches have been proposed to overcome FIPA-ACL pro-
tocols’ shortcomings. In particular, social approaches advocate declarative repre-
sentations of protocols and give semantics to protocol messages in terms of social
concepts. Bentahar et al. [2] have proposed a framework capable of specifying
effective multi-agent interaction protocols using a combination of argumenta-
tion theory and social commitments. Fornara and Colombetti [12] have based
the semantics of agent communication protocols on social commitments such
that the meanings of exchanged messages are denoted by social commitments
and their associated actions. Yolum and Singh [29] have developed an approach
to flexibly specify multi-agent interaction protocols wherein protocols capture
the dynamic behaviors of the agents in terms of creation and manipulation of
commitments to one another. All these protocols have the characteristic of being
commitment-based and are called commitment protocols. Furthermore, Chopra,
Yolum and Singh have developed a formalism to represent and reason about
commitment protocols called commitment machines based on either event cal-
culus or non-monotonic theory of actions in terms of causal logic [28,6]. This
formalism can represent flexible protocols that enable agents to exercise their
autonomy by dealing with exceptions and making choices. In the same line of
research, Singh [24] has generalized the formalism of commitment machines to
include natural non-terminal protocols (or protocols that have cycles) analogous
to those in real-life business applications.

In addition to providing flexibility during run time, these approaches make
it possible to provide a meaningful basis for compliance of agents with a given
protocol. This is because commitments can be stored publicly (or observed by
all participating agents) and agents that do not satisfy their commitments at
the end of the protocol can be identified as non-compliant [25,7,26]. In order for
these approaches to make use of all these advantages, they should integrate rig-
orous design and automatic verification of interaction protocols within the same
framework. For instance, Venkatraman et al. [25] have presented an approach for
locally testing whether or not the behavior of an agent in open systems complies
with a given commitment protocol specified in Computational Tree Logic (CTL).
Cheng [5] and Desai et al. [10] have used OWL-P to specify commitment pro-
tocols and their compositions. To verify their protocols against some properties
expressed in Linear Temporal Logic (LTL), they translate them into PROMELA
code, which is the input language of the automata-based model checker SPIN.
Yolum [27] has defined three “generic properties” taken from distributed systems
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that can be incorporated in a design tool to “semi-automate” the specification
of commitment protocols at design time.

Motivation. In this paper, we aim to introduce CTLC, a CTL-like logic for
social commitments. We present a fully-automatic verification technique of com-
mitment protocols specified on the basis of this logic using symbolic model check-
ing. This is done by introducing a mechanism to reduce the problem of model
checking CTLC to the problem of model checking either CTLK [21], to directly
use the MCMAS symbolic model checker [17], or ARCTL [20] to use the extended
version of the NuSMV symbolic model checker introduced in [16]. The present
paper inspires by the methodology introduced in [16] to perform the reduction.
Finally, we present experimental results for the verification of the Contract Net
Protocol, taken from e-business domain as a motivating example and specified
in the proposed logic, against some desirable properties using MCMAS and the
extended version of NuSMV.

Overview of Paper. The remainder of this paper is organized as follows. We
begin in Section 2 by presenting the definition of social commitments and briefly
summarizing the formalism of the interpreted systems used as the model of our
CTLC logic. We then discuss generally the problem of model checking using
MCMAS and NuSMV. In Section 3, we present CTLK and ARCTL and how
the problem of model checking CTLC can be reduced to the problem of model
checking either CTLK or ARCTL. Thereafter, we proceed to introduce com-
mitment protocols and their translation along with expressing some properties
in Section 4. The experimental results of verifying the Contract Net Protocol
using MCMAS and the extended version of NuSMV is discussed in Section 5. In
Section 6, we discuss relevant literature. We conclude the paper in Section 7.

2 Preliminaries

2.1 Commitments and Associated Actions

Social commitments have been recently gained attentions in MASs community.
This is because they are formal and concise methods for describing how au-
tonomous and heterogeneous agents communicate with one another. In partic-
ular, a social commitment is an engagement in the form of business contract
between two agents: a creditor who commits to a course of action and a debtor
on behalf of whom the action is done. In this paper, we distinguish between two
types of commitments: unconditional commitment and conditional commitment
that we need to represent commitment protocols.

Notation 1. Unconditional commitments are denoted by C(i, j, ϕ), where i is
the debtor, j is the creditor and ϕ is a well-formed formula (wff) in the proposed
CTLC logic representing the commitment content. C(i, j, ϕ) means i socially (i.e.,
publicly) commits to j that ϕ holds.

Notation 2. Conditional commitments are denoted by ψ → C(i, j, ϕ), where
“→” is the logical implication, i, j and ϕ have the above meanings and ψ is a
wff in the proposed CTLC logic representing the commitment condition.
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We will use CC(i, j, ψ, ϕ) as an abbreviation of ψ → C(i, j, ϕ). In order to manip-
ulate social commitments during the progress of protocols, we introduce a set
of associated actions (or operations), called commitment actions. These actions
are used to capture dynamic behavior of participating agents. Defined in [23],
these actions can be classified into two party actions and three party actions.
The former ones need only two agents to be performed: Create, Withdraw,
Fulfill, V iolate and Release. The latter ones need an intermediate agent to be
completed: Delegate. In the following, we present the declarative representation
of these actions where i, j and k denote agent names.

– Create(i, j, C(i, j, ϕ)) to establish a new commitment.
– Withdraw(i, j, C(i, j, ϕ)) to cancel an existing commitment.
– Fulfill(i, j, C(i, j, ϕ)) to satisfy the commitment content.
– V iolate(i, j, C(i, j, ϕ)) to reflect there is no way to satisfy the commitment

content.
– Release(j, i, C(i, j, ϕ)) to free a debtor from carrying out his commitment.
– Delegate(i, k, C(i, j, ϕ)) to delegate an existing commitment to another

debtor to satisfy it on his behalf.

2.2 Interpreted Systems and CTLC Logic

An interpreted system as introduced by Fagin et al. [11] is a formalism that
models the temporal evolution of a system of agents to reason about knowledge
and temporal properties. We start with assuming that a MAS is composed of n
agentsA = {1, . . . , n}. Each agent i is characterized by a set of local states Li and
a set of local actions Acti. In this paper, these actions include the commitment
actions and a special action εi denoting the “null” action for agent i. Thus,
when an agent performs the null action, the local state of this agent remains
the same. Moreover, for each agent i ∈ A, Ii defines an initial state and a local
protocol Pi : Li → 2Acti, which is a function that maps the current state of the
agent i with the set of enabled actions for that state. The agents act within an
“environment” (e), which can be also modeled with a set of local states Le, a set
of local actions Acte and a local protocol Pe. This can be seen as a special agent
that can capture any information that may not pertain to a specific agent.

Definition 1 ([11]). A set G of global states in a MAS is: G ⊆ Li×. . .×Ln×Le,
where a state g = (l1, . . . , ln, le) ∈ G can be seen as a “snapshot”of all agents
in the MAS at a given time and li(g) represents the local state of agent i in the
global state g.

The evolution function that determines the transitions for an individual agent
between its local states is defined as follows: ti : Li × Le × ACT → Li, where
ACT = Act1 × . . . × Actn × Acte and each component a ∈ ACT is a “joint
action”, which is a tuple of actions (one for each agent). The global evolution
function t : G × ACT → G is defined as follows: t(g, act1, . . . , actn, acte) = g′

iff there exists a ∈ ACT such that (i) for each agent i that is able to perform
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a, we have ti(li, le, a) = l′i; and (ii) for each agent j that is unable to perform
a, we have tj(lj , le, εj) = lj . Notice that we use a special class of interpreted
systems in which at each moment only one agent can perform an action in a
global evolution function and I denotes a set of initial states. Finally, given a set
Φp of atomic propositions and the valuation function V for those propositions
V : G → 2Φp , an interpreted system is a tuple:

IS =
〈
(Li, Acti,Pi, ti)i∈A, (Le, Acte,Pe, te), I, V

〉
Computation tree logic of social commitments CTLC is an extension of CTL
[9,11] with the commitment modality C(i, j, ϕ). In particular, the syntax of CTLC
is given by the following BNF grammar, where p ∈ Φp is an atomic proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕUϕ) | C(i, j, ϕ)

where the CTLC temporal modalities have the standard meaning as in CTL—for
example, EXϕ means that “there is a path where ϕ holds at the next state in the
path”. C(i, j, ϕ) is read as “agent i commits towards agent j to bring about ϕ”.
Other derived operators are defined in a standard way, see for example [9,11].
In order to interpret CTLC formulae, a Kripke model M = (W, I, Rt, Rsc, V ) is
associated to a given interpreted system IS as follows:

– W is the set G of global states,
– I ⊆ W is the set of initial states, which are defined in IS,
– the temporal transition relation Rt ⊆ W × W is defined using the global

evolution function t,
– the relation Rsc : W × A × A → 2W is the social accessibility relation for

social commitments. It is defined by w′ ∈ Rsc(w, i, j) iff ∃w : li(w) = li(w)
and lj(w) = lj(w′),

– V is the valuation function as defined in IS.

Excluding the commitment modality, the semantics of CTLC formulae is defined
in the model M as usual (semantics of CTL), see for example [9,11]. The notation
M, 〈w〉 |= ϕ means the model M satisfies ϕ at a state w where |= is the standard
satisfaction relation. The commitment modality C(i, j, ϕ) is satisfied in the model
M at a state w iff the content ϕ is true in every accessible state from this state
using Rsc(w, i, j). Formally:

M, 〈w〉 |= C(i, j, ϕ) iff for all w′ ∈ W , if w′ ∈ Rsc(w, i, j) then M, 〈w′〉 |= ϕ

2.3 Model Checking Using MCMAS and NuSMV

Model checking is a method of formal verification used to verify if a system
satisfies given properties. In a nutshell, the problem of model checking is: given a
Kripke model M and property ϕ (expressed as a wff), does the model satisfy that
property? If an error is located (i.e., M � ϕ), the process will return a “counter-
example” showing the steps in which the error state was reached. Otherwise,



190 M. El-Menshawy, J. Bentahar, and R. Dssouli

it will return true (i.e., M |= ϕ). Recently, model checking has been used to
verify MASs [17]. Verifying these systems is becoming more and more necessary
because they are increasingly used in several applications such as web-based
applications [25], business processes [5,10] and artificial institutions [26].

This paper focuses both on the symbolic model checkers MCMAS [17] and the
extended version of NuSMV [16], which are built on Ordered Binary Decision
Diagrams (OBDDs) that alleviate to overcome the “state-explosion” problem.
In particular, MCMAS is a tool used to solve the problem of model checking
MASs. MCMAS also has the following features: 1) it can check a variety of
properties specified as CTL formulae, epistemic, and cooperation modalities; 2)
it supports variables of the following types: Boolean, enumeration and bounded
integer where arithmetic operations can be performed on bounded integers; 3) it
supports counter-example/witness generation for efficient display of traces fal-
sifying/satisfying properties; and 4) it supports fairness constraints, which are
useful in eliminating bad or unwanted agents’ behaviors. MCMAS uses Inter-
preted System Programming Language (ISPL) as an input language. A system
of agents is encoded in ISPL using the interpreted system components. ISPL al-
lows user to define atomic propositions over global states of the system. The logic
formulae to be checked by MCMAS are defined over these atomic propositions.

On the other hand, the NuSMV symbolic model checker [8] is written in
ANSI C. It is a reimplementation and extension of SMV, the first model checker
based on OBDDs. NuSMV is able to process files written in an extension of the
SMV language. In this language, it is possible to describe finite state machines by
means of declaration and instantiation mechanisms and processes and to express
a set of requirements in CTL and LTL. In addition to the above features, NuSMV
has the same features of MCMAS as MCMAS is technically an extended version
of NuSMV. NuSMV can also check Real-Time CTL specifications, which specifies
discrete timing constraints. However it does not model interpreted systems as
it is not specially designed for MASs but can overcome this limit by indirectly
checking interpreted system properties, which are encoded into its variables.

3 Model Checking CTLC

In this section, we briefly review CTLK (a logic of time and knowledge). We then
show how the problem of model checking CTLC can be reduced to the problem
of model checking either CTLK or ARCTL.

3.1 CTLK Logic

CTLK [21] is an epistemic logic on branching time; it allows for the expression of
properties that contain a notion of knowledge. In particular, given a set of atomic
propositions Φp, the syntax of CTLK is given by BNF grammar as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕUϕ) | Kiϕ
where the epistemic modality Kiϕ is used to represent “knows” that is agent i
knowing ϕ. As in CTL, other temporal operators can be defined in a standard
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way, see for example [9,11]. To define the semantic of CTLK formulae, a Kripke
model of the form M = (S, S0, T, ∼i, . . . , ∼n, V ) is associated to a given inter-
preted system IS, where: S is a set of global states; S0 ⊆ S is a set of initial
global states; T ⊆ S×S is a transition relation; ∼i⊆ S×S are the epistemic re-
lations defined for all i ∈ A where s ∼i s′ iff li(s) = li(s′); and V is the valuation
function as defined in IS.

Intuitively, the epistemic relation s ∼i s′ means that the local state of the
agent i in the current global state s is indistinguishable from the local state of
this agent in the accessible state s′. The semantics of Kiϕ is defined as follows:

M, 〈s〉 |= Kiϕ iff for all s′ ∈ S if s ∼i s′ then M, 〈s′〉 |= ϕ

Hereafter, we use K̂iϕ as an abbreviation of ¬Ki¬ϕ. Its semantics is as follows:

M, 〈s〉 |= K̂iϕ iff for some s′ ∈ S if s ∼i s′ then M, 〈s′〉 |= ϕ

3.2 Reducing CTLC to CTLK

In this section, we show how the problem of model checking CTLC (see Sect.2.2)
can be reduced to the problem of model checking CTLK. This reduction enables
us to directly use MCMAS. The problem is as follows: given a CTLC model Msc

and a CTLC formula ϕsc, we have to define a CTLK model M = F (Msc) and
a CTLK formula F (ϕsc) such that Msc |= ϕsc iff F (Msc) |= F (ϕsc). Let A =
{1, . . . , n} be a set of agents, and Msc = (W, I, Rt, Rsc, V ) be a model for CTLC
associated to the interpreted system IS=

〈
(Li, Acti,Pi, ti)i∈A, (Le, Acte,Pe, te),

I, V
〉
. The model F (Msc) is a CTLK model M = (S, S0, T, {∼i}i∈A, V ) defined

as follows:

– S = W ∪S where S is constructed as follows: for all states w and w′ such that
w′ ∈ Rsc(w, i, j) add a state s in S such that V (s) = V (w′) and li(s)=lj(w′).

– S0 = I.
– the transition relation T = Rt∪Rt where Rt is constructed as follows: for all

states w and w′ such that w′ ∈ Rsc(w, i, j) add a transition in Rt between s
(s ∈ S and s = w) and the added s.

– the epistemic relations {∼i}i∈A are obtained as follows: for all w and w′ such
that w′ ∈ Rsc(w, i, j), we have s ∼i s and s ∼j s′ where w = s, w′ = s′ and
s is the added state (s, s, s′ ∈ S).

Figure 1 illustrates an example of the reduction process from CTLC to CTLK.
The reduction of a CTLC formula into a CTLK formula is recursively defined
as follows:

– F (p) = p, if p is an atomic proposition.
– F (¬ϕ) = ¬F (ϕ) and F (ϕ ∨ ψ) = F (ϕ) ∨ F (ψ).
– F (EXϕ) = EXF (ϕ) and F (E(ϕUψ)) = E(F (ϕ)UF (ψ)).
– F (EGϕ) = EGF (ϕ) and F (C(i, j, ϕ)) = K̂iF (ϕ) ∧ EX K̂jF (ϕ)
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Fig. 1. An example of the reduction process from CTLC to CTLK

Thus, this reduction allows us to model check CTLC formulae by model checking
their reductions in CTLK using the MCMAS tool. The most important case in
this reduction is the one about commitments (see Fig.1). The following theorem
proves the correctness of our reduction from CTLC to CTLK.

Theorem 1 (Correctness). Let Msc and ϕsc be respectively a CTLC model
and formula and let F (Msc) and F (ϕsc) be the corresponding model and formula
in CTLK. We have Msc |= ϕsc iff F (Msc) |= F (ϕsc).

Proof. We prove this theorem by induction on the structure of the formula ϕsc:

– If ϕsc is a pure CTL formula, the correctness is straightforward from the
fact that CTLK is also an extension of CTL.

– If ϕsc is not a pure CTL formula, by induction over the structure of ϕsc, all
the cases are straightforward once the case where ϕsc = C(i, j, ψ) is analyzed.
In this case we have: Msc, 〈w〉 |= C(i, j, ψ) iff for all w′ ∈ Rsc(w, i, j) we have
Msc, 〈w′〉 |= ψ.
According to the definition of Rsc, we obtain: Msc, 〈w〉 |= C(i, j, ψ) iff for all
w′ such that there exists w and li(w) = li(w) and lj(w) = lj(w′) we have
Msc, 〈w′〉 |= ψ.
Since lj(s) = lj(w′) and V (s) = V (w′), we obtain: F (Msc), 〈s〉 |= F (ψ)
and F (Msc), 〈s′〉 |= F (ψ) and since s ∼i s and s ∼j s′, so according to
the semantics of K̂iF (ψ) and K̂jF (ψ), we get: F (Msc), 〈s〉 |= K̂jF (ψ) and
F (Msc), 〈s〉 |= K̂iF (ψ).
So since (s, s) ∈ T , we obtain F (Msc), 〈s〉 |= K̂iF (ψ) ∧ EX K̂jF (ψ). �

3.3 Reducing CTLC to ARCTL

Lomuscio et al. [16] have proven that the problem of model checking CTLK can
be automatically reduced to the problem of model checking ARCTL. ARCTL
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is an extension of CTL with action formulae, so it mixes among state formulae
and action formulae. However, it restricts path formulae into paths whose actions
satisfy a given action formula. Instead of directly reducing CTLC to ARCTL,
we simply use the reduction from CTLK to ARCTL since we already reduced
CTLC to CTLK. The reduction from CTLC to ARCTL is then obtained by
transitivity (see dash arrow in Fig.2).

 

CTLC Reduced to CTLK

R
ed

u
ced

 to
 

ARCTL

Supported by MCMAS

Supported by
Extended NuSMV

Fig. 2. The reduction processes of CTLC into CTLK and ARCTL

Before we introduce Lomuscio et al.’s reduction technique, we define the syn-
tax of ARCTL using the following BNF grammar [20]:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EαXϕ | AαXϕ | Eα(ϕUϕ) | Aα(ϕUϕ)
α ::= b | ¬α | α ∨ α

where ϕ is state formula, α is action formula, p ∈ Φp (a set of atomic proposi-
tions) and b ∈ Φα (a set of atomic actions). To define the semantics of ARCTL
formulae, the model M is defined as follows: M = 〈Z, Z0, A, TR, VP , VA〉, where:
Z is a set of states; Z0 ⊆ Z is a set of initial states; A is a set of actions;
TR ⊆ Z × A × Z is a labeled transition relation; Vp : Z → 2ΦP is a function
that assigns to each state a set of atomic propositions to interpret this state; and
VA : A → 2Φα is a function that assigns to each action a set of atomic actions
to interpret this action.

The complete semantics of ARCTL is introduced in [20]. The reduction from
a CTLK model M = (S, S0, T, {∼i}i∈A, V ) to an ARCTL model M = 〈Z, Z0, A,
TR, VP , VA〉 is as follows:

– Z = S and Z0 = S0.
– reconfiguring the set Φα such that Φα = {Run, Gti, . . . , Gtn}, where Run is

an atomic proposition used to label temporal transitions defined by T and
n propositions Gti (one for each agent) to label epistemics relations.

– the labeled transition relation TR combines both the temporal transition T
and the epistemic relations {∼i}i∈A under the following two conditions: for
states s, s′ ∈ S, (i) (s, {Run}, s′) ∈ TR iff (s, s′) ∈ T ; (ii) (s, {Gti}, s′) ∈ TR
iff s ∼i s′.

The reduction of a CTLK formula into an ARCTL formula is defined as follows
[16,20]:



194 M. El-Menshawy, J. Bentahar, and R. Dssouli

– F (p) = p, if p is an atomic proposition.
– F (¬ϕ) = ¬F (ϕ) and F (ϕ ∨ ψ) = F (ϕ) ∨ F (ψ).
– F (EXϕ) = ERunXF (ϕ) and F (E(ϕUψ)) = ERun(F (ϕ)UF (ψ)).
– F (EGϕ) = ERunGF (ϕ) and F (Kiϕ) = AGtiXF (ϕ)

Using the reduction from CTLK to ARCTL and our reduction from CTLC to
CTLK, we obtain the reduction from CTLC to ARCTL (see Fig.2). However,
we can also directly reduce CTLC to ARCTL. The reduction of all CTL formu-
lae is straightforward. The reduction of the commitment formula is as follows:
F (C(i, j, ϕ)) = AGtiXF (ϕ) ∧ ERunXAGtj F (ϕ). The correctness of this reduc-
tion follows from Theorem 1 and the correctness of the reduction of CTLK to
ARCTL.

4 Commitment Protocols

After reducing CTLC to CTLK and ARCTL, let us apply this reduction to a case
study by verifying a commitment protocol. In this section, we define commitment
protocols as a set of actions on commitments with respect to the given interpreted
system IS. These commitments are defined in our logic CTLC to capture the
business interactions among agent roles. In addition to what messages can be
exchanged and when, our protocol specifies the meaning of messages in terms
of their effects on the commitments. The participating autonomous agents can
communicate by exchanging messages in terms of creation and manipulation of
commitments such that this exchanging is reliable, meaning that messages do
not get lost and the communication channel is order-preserving.

Example 1. We consider the Contract Net Protocol (CNP)3, as a motivating
example to illustrate our representation of commitment protocols. The protocol
starts with a manager requesting proposals for a particular task. Each partici-
pant either sends a proposal or a reject message. The manager accepts only one
proposal among the received proposals and explicitly rejects the rest propos-
als. The participant with the accepted proposal informs the manager with the
proposal result or the failure of the proposal.

Figure 3 depicts our representation of the CNP commitment protocol using
commitments and associated actions. It begins with sending a call-for-proposals
at state w0, which means the manager M creates a conditional commitment:
Create(M, P, CC(M, P, proposal, reply)) such that if a participant P sends a pro-
posal, the manager will decide and reply with the result of the call-for-proposals
(proposal and reply are wff in CTLC). Then, the participant at state w1 could
either accept this call-for-proposal, which means creating a conditional commit-
ment such that if the manager accepts the proposal, the participant will deliver
the result of the proposal or reject this call-for-proposal, which means releasing
the received commitment and the protocol will achieve the failure state w3 as
a final state. After receiving the participant’s proposal, the manager can accept
this proposal or reject it.
3 FIPA Contract Net Interaction Protocol Specification (2002),
http://www.fipa.org/specs/fipa00029/index.html

http://www.fipa.org/specs/fipa00029/index.html
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Fig. 3. Contract Net Protocol transitions

By sending the accept message to the participant, the conditional commitment
will be transformed to an unconditional commitment at state w4. At this state,
the participant has four possibilities: 1) to withdraw his commitment and then
move to the failure state w3; 2) to delegate it to another participant (say P1) to
deliver the result to the manager on his behalf: Delegate(P, P1, C(P, M, result));
3) to violate his commitment and then move to the failure state w3; or 4) to
directly send the result of the proposal to the manager and the protocol will
achieve the successful state w5 as a final state.

As in [28], the participant P1 can delegate this commitment to another par-
ticipant (say P2), which delegates the commitment back to the participant P1.
The participants (P1 and P2) delegate the commitment back and forth infinitely
often and this is presented by a transition loop at w6. In a sound protocol, this
behavior should be avoided (in Sect.4.2, we will show how to verify this issue).
Finally, the participant P1 can fulfill the delegated commitment by sending the
result of the proposal to the manager and then moves to the successful state w5.

Table 1 depicts the possible actions in the enhanced version of CNP and the
corresponding commitment actions.

4.1 Translating Commitment Protocols

The main step in the verification of commitment protocols is translating them
into ISPL (the MCMAS’s input language) and SMV (the NuSMV’s input lan-
guage). An ISPL program reflects the structure of the interpreted system IS
defined in the following four sections [22]:
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Table 1. Actions in the CNP and the corresponding commitment actions

sendCallForProposal(M,P ) Create(M,P, CC(M, P, proposal, reply))

sendProposal(P,M) Create(P,M, CC(P, M, accept, result))

sendReject(P,M) Release(P,M, CC(M, P, proposal, reply))

sendAccept(M,P ) Fulfill(M, P, C(M, P, reply))

sendWithdraw(P,M) Withdraw(P,M, C(P, M, result))

violateResult(P,M) V iolate(P, M, C(P, M, result))

sendResult(P,M) Fulfill(P, M, C(P, M, result))

delegateProposal(P,P1) Delegate(P,P1, C(P, M, result))

delegateProposal(P1, P2) Delegate(P1, P2, C(P1, P, result))

sendResult(P1, M) Fulfill(P1, M, C(P1, M, result))

1. Agents’ declarations to define a list of ISPL agents with four sub-sections ac-
cording to the following syntax: Agent <agentID> <agent body> end Agent

where <agentID> is an ISPL identifier and <agent body> contains: 1) local
states; 2) local actions; 3) local protocol; and 4) evolution function.

2. Evaluation function is defined as follows:
Evaluation <proposition> if <condition on states> end Evaluation

where <proposition> is an ISPL proposition and <condition on states>
is a truth condition that defines a set of global states for atomic proposition.

3. Initial states to define the set of initial state conditions as follows:
InitStates <condition on states> end InitStates

4. List of formulae needed to be verified is defined using the following syntax:
Formulae <formulae list> end Formulae

Our translation process begins by extracting the set of interacting agents: M , P ,
P1 and P2 in our protocol. For each agent, we define the possible commitment
states as knowledge states using state variables in the Vars sub-section. These
variables are of enumeration type, which also include the successful, and failure
states. The local actions on commitments are directly defined using the Actions
sub-section. Using these states and actions, we define the evolution function in
the Evolution sub-section that captures the transition relations among states.
The translation is completed by declaring a set of enabled actions at each state
in the Protocol sub-section, a set of initial states in the InitStates section,
and the list of formulae needed to be verified in the Formulae section.

As mentioned, we use the extended version of NuSMV introduced in [16],
which also uses the extended version of SMV program to verify the trans-
lated ARCTL formulae. In the extended version of SMV, the set of interacting
agents (M , P , P1 and P2 in our protocol) is defined in isolated modules MODULE
Agent<name>. Figure 4 shows an example of a typical translation of interacting
agents in our protocol into extended SMV modules. These modules are instan-
tiated in the main module with the definition of initial conditions using the
TINIT statement and the keyword SPEC to specify the formulae that need to be
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MODULE main
VAR M : Manager(args1,args2);

P : Participant(args1,agrs2);
TINIT(...);
SPEC <formulae_list>;

MODULE Manager(args1,agrs2)
VAR state: {...};
IVAR action: {...};
TINIT(...);
TRANS(next(action)= case ... esac);
TTRANS(next(state)= case ... esac);

Fig. 4. Example of agent translation into extended SMV module

checked. For each agent, we associate the SMV variables <v1>, ..., <vn> using
the VAR statement to define the agents commitment states plus the successful
and failure states. The actions of each agent are represented as input variables
in IVAR statement. The protocol of each agent is defined as a relation among its
local state and action variables in the TRANS statement. The labeled transitions
between commitment states are encoded using the TTRANS statement and an ini-
tial condition using the TINIT statement. Internally, TTRANS statements expand
to standard TRANS statements conditioned on {Run} with the next and Case
expressions that represent agent’s choices in a sequential manner.

4.2 Protocol Properties

To achieve the flexibility that gives each agent a great freedom and compli-
ance within the same framework, we need to verify the commitment protocols
against some properties that capture important requirements in MASs. Specifi-
cally, Guerin et al. [14] have proposed three types of verification of multi-agent
interaction protocols depending on whether the verification process is done at
either design time or run time: 1) verify that an agent will always comply; 2)
verify compliance by observation; and 3) verify protocol properties. We adopt
the third type of verification for three reasons:

1. The desirable properties play an important role in verifying multi-agent in-
teraction protocols [1,19], which reduces the cost of development process
at design time and restricts agents’ behaviors by removing bad behaviors
without loosing the flexibility.

2. Verifying the compliance of multi-agent interaction protocols with specifica-
tions requires adding planner mechanisms equipped with reasoning rules in
the code of each agent to reason about its actions to select appropriate ones
that satisfy its goals at run time, which can be expensive and may increase
the code of the agents [28,24].

3. Protocol properties have a classification in both reactive and distributed
systems to guide protocol designers to check protocol specifications.

Some proposals have been put forward to formally express commitment protocol
properties [5,10,26]. However, these proposals do not use a specific methodology
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to classify protocol properties. Hereafter, we use the classification introduced in
[15] to classify temporal properties into: Safety and Liveness. Manna and Pnueli,
in their seminal book [18] have extended the liveness property into: Guarantee,
Obligation, Response, Persistence and Reactivity. In the following, the reacha-
bility, deadlock freedom, safety, liveness, and fairness constraint properties are
temporal CTLC formulae that we use to check the CNP commitment protocol.
Notice that the reachability property do the same function as guarantee prop-
erty, fairness constraint property captures response and reactivity properties,
and obligation property can be defined as a conjunction of safety and reacha-
bility properties. Moreover, we omit persistence property as it is mainly related
to concurrent behaviors. Consequently, our temporal protocol properties include
the properties introduced in [5,10,19] and satisfy the same functionalities of the
properties presented in [27].

Reachability property. Given a particular state, is there a valid computation
sequences to reach that state from an initial state. For example, in all paths in
the future (F)4, there is a possibility for the participant P to deliver the result
of the proposal to the manager:

ϕ1 = AFEF CC(M, P, proposal, reply)

Deadlock property. It is the negation of the reachability property, which is
supposed to be false:

ϕ2 = ¬AFEF CC(M, P, proposal, reply)

Fairness constraint property. The motivation behind this property is to
rule out unwanted behaviors of agents and remove any infinite loop in our pro-
tocol. For example, if we define the formula:

ϕ3 = AGAF ¬C(P1, P2, result)

as an unconditional fairness constraint, then a path is fair iff in all paths and in
each state of these paths, in all emerging paths P1 eventually does not delegate
commitments. This constraint will enable us to avoid situations such as the
participants delegate the commitment back and forth infinitely many times.

Safety property. This property means “something bad never happens”. For
example, in our protocol a bad situation is: the manager sends accept message,
but the participant never delivers the result of the proposal:

ϕ4 = AG(¬C(M, P, reply) ∧ AG ¬C(P, M, result))

Liveness: means that “something good will eventually happen”. For example, in
all paths globally if the manager sends call-for-proposal, then there is a path in
the future the participant will send proposal to the manager:

ϕ5 = AG(CC(M, P, proposal, reply) → EF CC(P, M, accept, result))

The above formulae are only some examples in our language.
4 EFp is the abbreviation of E(true U p).
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5 Experimental Results

We implemented the reduction tools on top of the two model checkers (MCMAS
and extended NuSMV) and provided a thorough assessment of this reduction on
two experiments. In the first experiment, we only consider two party actions on
commitments. In the second one, we add more commitments’ states by including
three party actions on commitments. These experiments were meant to check the
effectiveness of our reductions using MCMAS and extended NuSMV in terms of
memory in use. They are performed on a laptop with running Windows XP SP2
and equipped with 2.20 GHz AMD Dual Core and 896MB of RAM.

Table 2. Verification results for CNP protocol

First Experiment Second Experiment

Extended NuSMV MCMAS Extended NuSMV MCMAS

Model Size |M | ≈ 1012 ≈ 1016 ≈ 1014 ≈ 1026

Memory in MB ≈ 4.77 ≈ 6.37 ≈ 4.77 ≈ 6.53

# OBDD variables 21 27 23 44

# OBDD nodes 1, 241 2, 905 1, 494 11, 885

# agents 2 2 4 4

Table 2 depicts that there is no big difference in the results of extended
NuSMV in the two experiments, but by adding three party actions, the number
of OBDD variables and nodes in MCMAS are increased. Moreover, the num-
ber of OBDD variables and memory size increase by augmenting the number
of agents from 2 to 4. The performance of model checker tools also depend on
the size of the model M which we define as |M | = |W | + |Rt|, where |W | is
the number of possible combinations of the states and actions and |Rt| is the
temporal relation. In the first experiment, the number of OBDD variables with
extended NuSMV (resp. MCMAS) is 21 (resp. 27), then the total state space
|W | is 221 ≈ 106 (resp. 227 ≈ 108). Whereas, in the second experiment, the total
state space |W | is 223 ≈ 107 in extended NuSMV and 244 ≈ 1013 in MCMAS.
We approximate |Rt| as |W |2, hence |M | = |W |+ |Rt| ≈ |W |2 (see Table 2).

6 Related Work

Several proposals on using existing model checkers (e.g., SPIN and CWB-NC)
by translating some agent specification languages (e.g., AgentSpeak(F)) into the
languages used by these model checkers [4,5,10,1] have been put forward. In
particular, Bordini et al. [4] have introduced the language AgentSpeak(F) and
shown how the verification of this language can be translated to the verification
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of PROMELA code (the input language of the model checker SPIN). Bentahar et
al. [1] have introduced the translation of ACTL∗ formulae into a variant of alter-
nating tree automata called alternating Büchi tableau automata. Our approach
follows the same line of research but it is based on symbolic model checking and
not on automata-based model checking like SPIN. Consequently, our approach
does not suffer from the state explosion problem, which is a common problem
in the automata-based technique. Other researchers have proposed new algo-
rithms for verifying temporal and epistemic properties, see for example [21]. In
particular, Lomuscio et al. [17] have proposed MCMAS model checker to verify
multi-agent systems based on binary encoding in terms of OBDD representa-
tions where properties are specified by means of epistemic modalities such as
knowledge modality. This paper shows how high level interactions represented
by social commitments can be translated to agents’ knowledge without loosing
social or public features that characterize commitments.

Recently, Viganò and Colombetti [26] have used symbolic model checking to
verify institutions formally modeled with FIEVeL language in terms of the notion
of “status function” where properties are specified in an ordered many-sorted
first-order temporal logic (OMSFOTL). Their automatic verification process is
mainly concerned with satisfying certain properties to guarantee the soundness
of institutions without considering any standard temporal properties classifica-
tion. They regulate interactions between agents in terms of deontic norms (e.g.,
obligations) that are captured with respect to institution structures. Thus, this
model is less flexible than ours as, for example, they do not have possibilities
to withdraw or delegate obligations. Gerard and Singh [13] have used CTL and
MCMAS to verify protocol refinement that are defined in terms of social com-
mitments without checking the conformance of protocols themselves before the
refinement and without considering transition loop within protocol specifica-
tions. In terms of commitment protocol properties, Yolum [27] has presented the
main generic properties that are required to develop commitment protocols at
design time. These properties are categorized into three classes: effectiveness,
consistency and robustness. Our properties meet the same functionalities, for
example the reachability and deadlock-freedom can be used to satisfy the same
objective of the effectiveness property.

7 Conclusion and Future Work

In this paper, we presented a new language CTLC to represent and reason about
social commitments. We used this language to specify commitment protocols and
their temporal properties in electronic business domains. We showed how to re-
duce the problem of model checking CTLC to the problem of model checking
either CTLK or ARCTL. Thus, it is the first step towards achieving the follow-
ing features within the same framework that formalizes commitment protocols:
1) formal (based on our logic); 2) meaningful (in terms of social commitments);
3) declarative (which focuses on what the message means not how the mes-
sage is exchanged); 4) verifiable (using efficient and available symbolic model
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checking); and 5) property-based (in terms of formally defined properties). To
clarify our approach, we have modeled the Contract Net Protocol (CNP) using
commitments and associated actions. In our implementation, we conducted two
experiments, which revealed promising results for multi-agent systems where in-
teraction protocols are involved. There are many directions for future work. We
plan to expand the formalization of commitment protocols with metacommit-
ments. We also plan to investigate other reductions, particularly from CTL∗c (an
extension of CTL∗ with commitment modality) to GCTL∗ (generalized CTL∗)
[3], so that we can use the CWB-NC model checker.
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