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Abstract. Two standard algorithms for approximately solving two-player zero-
sum concurrent reachability games are value iteration and strategy iteration. We

prove upper and lower bounds of 2mΘ(N)
on the worst case number of iterations

needed for both of these algorithms to provide non-trivial approximations to the
value of a game with N non-terminal positions and m actions for each player in
each position.

1 Introduction

1.1 Statement of Problem and Overview of Results

We consider finite state, two-player, zero-sum, deterministic, concurrent reachability
games. For brevity, we shall henceforth refer to these as just reachability games. The
class of reachability games is a subclass of the class of games dubbed recursive games
by Everett [8] and was introduced to the computer science community in a seminal
paper by de Alfaro, Henzinger and Kupferman [6]. A reachability game G is played
between two players, Player I and Player II. The game has a finite set of non-terminal
positions and special terminal positions GOAL and TRAP. In this paper, we let N de-
note the number of non-terminal positions and assume positions are indexed 1, . . . , N
while GOAL is indexed N + 1 and TRAP 0. At any point in time during play, a pebble
rests at some position. The position holding the pebble is called the current position.
The objective for Player I is to eventually make the current position GOAL. If this hap-
pens, play ends and Player I wins. The objective for Player II is to forever prevent this
from happening. This may be accomplished either by the pebble reaching TRAP from
where it cannot escape or by it moving between non-terminal positions indefinitely. To
each non-terminal position i is associated a finite set of actions A1

i , A
2
i for each of the

two players. In this paper, we assume that all these sets have the same size m (if not,
we may “copy” actions to make this so) and that A1

i = A2
i = {1, . . . , m}. At each

point in time, if the current position is i, Player I and Player II simultaneously choose
actions in {1, . . . , m}. For each position i and each action pair (a, a′) ∈ {1, . . . , m}2 is
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associated a position π(i, a, a′). In other words, each position holds an m × m matrix
of pointers to positions. When the current position at time t is i and the players play the
action pair (a, a′), the new position of the pebble at time t + 1 is π(i, a, a′).

A strategy for a reachability game is a (possibly randomized) procedure for selecting
which action to take, given the history of the play so far. A strategy profile is a pair
of strategies, one for each player. A stationary strategy is the special case of a strat-
egy where the choice only depends on the current position. Such a strategy is given
by a family of probability distributions on actions, one distribution for each position,
with the probability of an action according to such a distribution being called a behav-
ior probability. We let μi(x, y) denote the probability that Player I eventually reaches
GOAL if the players play using the strategy profile (x, y) and the pebble starts in posi-
tion i. The lower value of position i is defined as: vi = supx∈S1 infy∈S2 μi(x, y) where
S1 (S2) is the set of strategies for Player I (Player II). Similarly, the upper value of a po-
sition i is vi = infy∈S2 supx∈S1 μi(x, y). Everett [8] showed that for all positions i in a
reachability game, the lower value vi in fact equals the upper value vi, and this number
is therefore simply called the value vi of that position. The vector v is called the value
vector of the game. Furthermore, Everett showed that for any ε > 0, there is a stationary
strategy x∗ of Player I so that for all positions i, we have infy∈S2 μi(x∗, y) ≥ vi − ε,
i.e. the strategy x∗ guarantees the value of any position within ε when play starts in
that position. Such a strategy is called ε-optimal. Note that x∗ does not depend on i.
It may however depend on ε > 0 and this dependence may be necessary, as shown by
examples of Everett. In contrast, it is known that Player II has an exact optimal strategy
that is guaranteed to achieve the value of the game, without any additive error [17,13].

In this paper, we consider algorithms for solving reachability games. There are two
notions of solving a reachability game relevant for this paper:

1. Quantitatively: Given a game, compute ε-approximations of the entries of its value
vector (we consider approximations, rather than exact computations, as the value
of a reachability game may be an irrational number).

2. Strategically: Given a game, compute an ε-optimal strategy for Player I.

Once a game has been solved strategically, it is straightforward to also solve it quantita-
tively (for the same ε) by analyzing, using linear programming, the finite state Markov
decision process for Player II resulting when freezing the computed strategy for Player
I. The converse direction is far from obvious, and it was in fact shown by Hansen,
Koucký and Miltersen [12] that if standard binary representation of behavior probabili-
ties is used, merely exhibiting an (1/4)-optimal strategy requires worst case exponential
space in the size of the game. In contrast, a (1/4)-approximation to the value vector ob-
viously only requires polynomial space to describe and it may be possible to compute
it in polynomial time, though it is currently not known how to do so [5].

There is a large and growing literature on solving reachability games [6,7,3,1,2,12].
In this paper, we focus on the two perhaps best-known and best-studied algorithms,
value iteration and strategy iteration. Both were originally derived from similar algo-
rithms for solving Markov decision processes [15] and discounted stochastic games
[19]. We describe these algorithms next. Value iteration is Algorithm 1. Value iteration
approximately solves reachability games quantitatively.
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Algorithm 1. Value Iteration

1: t := 0
2: ṽ0 := (0, . . . , 0, 1) // the vector ṽ0 is indexed 0, 1, . . . , N, N + 1
3: while true do
4: t := t + 1
5: ṽt

0 := 0
6: ṽt

N+1 := 1
7: for i ∈ {1, 2, . . . , N} do
8: ṽt

i := val(Ai(ṽt−1))

Algorithm 2. Strategy Iteration

1: t := 1
2: x1 := the strategy for Player I playing uniformly at each position
3: while true do
4: yt := an optimal best reply by Player II to xt

5: for i ∈ {0, 1, 2, . . . , N, N + 1} do
6: vt

i := μi(xt, yt)
7: t := t + 1
8: for i ∈ {1, 2, . . . , N} do
9: if val(Ai(vt−1)) > vt−1

i then
10: xt

i := maximin(Ai(vt−1))
11: else
12: xt

i := xt−1
i

In the pseudocode of Algorithm 1, the matrix Ai(ṽt−1) denotes the result of replac-
ing each pointer to a position j in the m × m matrix of pointers at position i with
the real number ṽt−1

j . That is, Ai(ṽt−1) is a matrix of m × m real numbers. Also,
val(Ai(ṽt−1)) denotes the value of the matrix game with matrix Ai(ṽt−1) and the row
player being the maximizer. This value may be found using linear programming. Value
iteration works by iteratively updating a valuation of the positions, i.e., the numbers
ṽt

i . Clearly, when implementing the algorithm, valuations ṽt
i only have to be kept for

one iteration of the while loop after the iteration in which they are computed and the
algorithm thus only needs to store O(N) real numbers.1 As stated, the algorithm is
non-terminating, but has the property that as t approaches infinity, the valuations ṽt

i ap-
proach the correct values vi from below. We present an easy (though not self-contained)
proof of this well-known fact in section 2.1 below, and also explain the intuition behind
the truth of this statement. However, until the present paper, there has been no pub-
lished information on the number of iterations needed for the approximation to be an
ε-approximation to the correct value for the general case of concurrent reachability

1 In this paper, we assume the real number model of computation and ignore the (severe) tech-
nical issues arising when implementing the algorithm using finite-precision arithmetic.
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games, though Condon [4] observed that for the case of turn-based games (or “simple
stochastic games”), the number of iterations has to be at least exponential in N in order
to achieve an ε-approximation. Clearly, the concurrent case is at least as bad. In fact,
this paper will show that the concurrent case is much worse!

Strategy iteration is Algorithm 2. It approximately solves reachability games quan-
titatively as well as strategically. In the pseudocode of Algorithm 2, the line “yt :=
an optimal best reply to xt” should be interpreted as follows: When Player I’s strat-
egy has been “frozen” to xt, the resulting game is a one-player game for Player II,
also known as an absorbing Markov decision process. For such a process, an opti-
mal stationary strategy yt that is pure is known to exist, and can be found in polyno-
mial time using linear programming [15]. The expression maximin(Ai(vt−1)) denotes
a maximin mixed strategy (an “optimal strategy”) for the maximizing row player in the
matrix game Ai(vt−1). This optimal strategy may again be found using linear program-
ming. The strategy iteration algorithm was originally described for one-player games
by Howard [15], with Player I being the single player – in that case, in the pseudocode,
the line “yt := an optimal best reply to xt” is simply omitted. Subsequently, a variant
of the pseudocode of Algorithm 2 was shown by Hoffman and Karp [14] to be a cor-
rect approximation algorithm for the class of recurrent undiscounted stochastic games
and by Rao, Chandrasekaran and Nair [18] to be a correct algorithm for the class of
discounted stochastic games. Finally, Chatterjee, de Alfaro and Henzinger [1] showed
the pseudocode of Algorithm 2 to be a correct approximation algorithm for the class
of reachability games. As is the case for value iteration, the strategy iteration algorithm
is non-terminating, but has the property that as t approaches infinity, the valuations
vt

i approach the correct values vi from below. Chatterjee et al. [1, Lemma 8] prove
this by relating the algorithm to the value iteration algorithm. In particular, they prove:

ṽt
i ≤ vt

i ≤ vi. (1)

That is, strategy iteration needs at most as many iterations of the while loop as value
iteration to achieve a particular degree of approximation to the correct values vi. Also,
the strategies xt guarantee the valuations vt

i for Player I, so whenever these valua-
tions are ε-close to the values, the corresponding xt is an ε-optimal strategy. How-
ever, until the present paper, there has been no published information on the number
of iterations needed for the approximation to be an ε-optimal solution, though a recent
breakthrough result of Friedman [9] proved that for the case of turn-based games, the
number of iterations is at least exponential in N in the worst case. Clearly, the concur-
rent case is at least as bad. In fact, this paper will show that the concurrent case is much
worse!

As our main result, we exhibit a family of reachability games with N positions and
m actions for each player in each position, such that all non-terminal positions have
value one and such that value iteration as well as strategy iteration need at least a dou-
bly exponential 2mΩ(N)

number of iterations to obtain valuations larger than any fixed
constant (say 0.01). By inequality (1), it is enough to consider the strategy iteration al-
gorithm to establish this. However, our proof is much easier and cleaner for the value
iteration algorithm, the exact bounds are somewhat better, and our much more technical
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proof for the strategy iteration case is in fact based upon it. So, we shall present separate
proofs for the two cases, and in these proceedings, due to lack of space, only with details
for the first case.

Our hard instances P (N, m) for both algorithms are generalizations of the “Pur-
gatory” games defined by Hansen, Miltersen and Koucký [12] (these occur as special
cases by setting m = 2). Following the conventions of that paper, we describe these
games as being games between Dante (Player I) and Lucifer (Player II). The game
P (N, m) can be described succinctly as follows: Lucifer repeatedly selects and hides
a number between 1 and m. Each time Lucifer hides such a number, Dante must try to
guess which number it is. After the guess, the hidden number is revealed. If Dante ever
guesses a number which is strictly higher than the one Lucifer is hiding, Dante loses
the game. If Dante ever guesses correctly N times in a row, the game ends with Dante
being the winner. If neither of these two events ever happen and the play thus continues
forever, Dante loses. It is easy to see that P (N, m) can be described as a deterministic
concurrent reachability game with N non-terminal positions and m actions for each
player in each position. Also, by applying a polynomial-time algorithm by de Alfaro et
al. [6] for determining which positions in a reachability game have value 1, we find that
all positions except TRAP have value 1 in P (N, m). That is, Dante can win this game
with arbitrarily high probability.

We note that these hard instances are very natural and easy to describe “as games”
that one might even conceivably have a bit of fun playing (the reader is invited to try
playing P (2, 2) with an uninitiated party)! In this respect, they are quite different from
the recent extremely ingenious turn-based games due to Friedman [9] where strategy
iteration exhibits exponential behavior.

Using recent improved upper bounds on the patience of ε-optimal strategies for Ev-
erett’s recursive games, we provide matching 2mO(N)

upper bounds on the number of
iterations sufficient for getting adequate approximate values, by each of the algorithms.
In particular, both algorithms are also of at most doubly-exponential complexity.

Table 1. Running Strategy Iteration on P (7, 2)

# Iterations 100 101 102 103 104 105 106 107 108

Valuation 0.01347 0.03542 0.06879 0.10207 0.13396 0.16461 0.19415 0.22263 0.24828

That the doubly-exponential complexity is a real phenomenon is illustrated in Table
1 which tabulates the valuations computed by strategy iteration for the initial position
of P (7, 2), i.e., “Dante’s Purgatory” [12], a 7-position game of value 1. The algorithm
was implemented using floating point arithmetic and was allowed to run for one hun-
dred million iterations at which point the precision was inadequate for representing the
computed strategies (note that the main result of Hansen, Miltersen and Koucký [12]
implies that roughly 64 decimal digits of precision is needed to describe a strategy
achieving a valuation above 0.9).

Interestingly, when introduced as an algorithm for solving concurrent reachability
games [1], strategy iteration was proposed as a practical alternative to generic algo-
rithms having an exponential worst case complexity. More precisely, one obtains a
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generic algorithm for solving reachability games quantitatively by reducing the prob-
lem to the decision problem for the existential fragment of the first order theory of the
real numbers [7]. This yields an exponential time (in fact a PSPACE) algorithm. Our
results show that this generic algorithm is in fact astronomically more practical than
strategy iteration on very simple and natural instances. Still, it is not practical in any
real sense of this term, even given state-of-the-art implementations of the best known
decision procedures for the theory of the reals. Finding a practical algorithm remains a
very interesting open problem.

1.2 Overview of Proof Techniques

Our proof of the lower bound for the case of value iteration is very intuitive. It is based
on combining the following facts:

1. The valuations ṽt
i obtained in iteration t of value iteration is in fact the values of a

time bounded version of the reachability game, where Player I loses if he has not
reached GOAL at time t.

2. While the value of the game P (N, m) is 1, the value of its time bounded version is
very close to 0 for all small values of t.

The second fact was established by Hansen et al. [12] for the case m = 2 by relating
the so-called patience of reachability games to the values of their time bounded version,
without the connection to the value iteration algorithm being made explicit, by giving
bounds on the patience of the games P (N, 2). The present paper provides a different
and arguably simpler proof of the lower bound on the value of the time bounded game
that gives bounds also for other values of m than 2. It is based on exhibiting a fixed
strategy for Lucifer that prevents Dante from winning fast.

The lower bound for strategy iteration is much more technical. We remark that the
analysis of value iteration is used twice and in two different ways in the proof. It pro-
ceeds roughly as follows: The analysis of value iteration yields that when value iteration
is applied to P (1, m), exponentially many iterations (in m) are needed to yield a close
approximation of the value. We can also show that when strategy iteration is applied
to P (1, m), exactly the same sequence of valuations is computed as when value itera-
tion is applied to the same game. From these two facts, we can derive an upper bound
on the patience of the strategies computed by strategy iteration on P (1, m). Next, a
quite involved argument shows that when applying strategy iteration to P (N, m), the
sequence of strategies computed for one of the positions (the initial one) is exactly the
same as the one computed when strategy iteration is applied to P (1, m). We also show
that the smallest behavior probability in the computed strategy for P (N, m) occurs
in the initial position. In particular, the patiences of the sequence of strategies com-
puted for P (N, m) is the same as the patiences of the sequence of strategies computed
for P (1, m). Finally, our analysis of value iteration for P (N, m) and the relationship
between patience and value iteration allow us to conclude that a strategy with low pa-
tience for P (N, m) cannot be near-optimal, yielding the desired doubly-exponential
lower bound.
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2 Theorems and Proofs

2.1 The Connection between Patience, the Value of Time Bounded Games, and
the Complexity of Value Iteration

The key to understanding value iteration is the following folklore lemma. Given a con-
current reachability game G, we define GT to be the finite extensive form game with the
same rules as G, except that Player 1 loses if he has not reached GOAL after T moves
of the pebble. The positions of GT are denoted by (i, t), where i is a position of G and
t is an integer denoting the number of time steps left until Dante’s time is out.

Lemma 1. The valuation ṽt
i computed by the value iteration algorithm when applied

to a game G is the exact value of position (i, t) in the game Gt.

The proof is an easy induction in t (“Backward induction”). A very general result by
Mertens and Neyman [16] establishes that for a much more general class of games
(undiscounted stochastic games), the value of the time bounded version converges to
the value of the infinite version as the time bound approaches infinity. Combining this
with Lemma 1 immediately yields the correctness of the value iteration algorithm.

The patience [8] of a stationary strategy for a concurrent reachability game is 1/p,
where p is the smallest non-zero behavior probability employed by the strategy in any
position. The following lemma relates the patience of near-optimal strategies of a reach-
ability game to the difference between the values of the time bounded and the infinite
game and hence to the convergence rate of value iteration.

Lemma 2. Let G be a reachability game with N non-terminal positions and with an
ε-optimal strategy of patience at most l, for some l ≥ 1, ε > 0. Let T = kNlN for some
k ≥ 1, and u be any position of G. Then, the value of position (u, T ) of GT differs from
the value of the position u of G by at most ε + e−k.

Proof. We want to show that the value of (u, T ) in GT is at least vu − ε − e−k, where
vu is the value of position u in G. We can assume that vu > ε, because otherwise we
are done. Fix an ε-optimal stationary strategy x for Dante in G of patience at most l.
Consider this as a strategy of GT and consider play starting in u. We shall show that
x guarantees Dante to win GT with probability at least vu − ε − e−k, thus proving
the statement. Consider a best reply y by Lucifer to x in GT . Note that y does not
necessarily correspond to a stationary strategy in G. The strategy can still be played by
Lucifer in G, by playing by it for the first T time steps and playing arbitrarily afterwards.

Call a position v of G alive if there are paths from v to GOAL in all directed graphs
obtained from G in the following way: The nodes of the graphs are the positions of G.
We then select for each position an arbitrary column for the corresponding matrix, and
let the edges going out from this node correspond to the pointers of the chosen column
and rows where Dante assigns positive probability. That is, intuitively, a position v is
alive, if and only if there is no absolutely sure way for Lucifer for preventing Dante from
reaching GOAL when play starts in v. Positions that are not alive are called dead. Note
that if a position v is dead, the strategy y, being a best reply of Lucifer, will pick actions
so that the probability of play reaching GOAL, conditioned on play having reached v,
is 0. On the other hand, if the current position v is alive, the conditional probability that
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play reaches GOAL within the next N steps is at least (1/l)N . That is, looking at the
entire play, the probability that play has not reached either GOAL or a dead state after
T steps is at most (1 − l−N )T/N = (1 − l−N)klN ≤ e−k. Suppose now that GOAL
is reached in T steps with probability strictly less than vu − ε − e−k when play starts
in u. This means that a dead position is reached with probability strictly greater than
1− (vu − ε− e−k)− e−k, i.e., strictly greater than 1− (vu − ε). But this means that if
Lucifer plays y as a reply to x in the infinite game G he will in fact succeed in getting
the pebble to reach a dead position and hence prevent Dante from ever reaching GOAL,
with probability strictly greater than 1−(vu−ε). This contradicts x being ε-optimal for
Dante in G. Thus, we conclude that GOAL is in fact reached in T steps with probability
at least vu − ε− e−k when play starts in u with x and y being played against each other
in GT , as desired.

The connection between the convergence of value iteration and the time bounded ver-
sion of the game allows us to reformulate the lemma in the following very useful way.

Lemma 3. Let G be a reachability game with an ε-optimal strategy of patience at most
l, for some ε > 0. Then, T = kNlN rounds of value iteration is sufficient to approxi-
mate the values of all positions of the game with additive error at most ε + e−k.

We can use this lemma to prove our upper bound on the number of iterations of value
iteration (and hence also strategy iteration). The following lemma is from Hansen et al.
[11].

Lemma 4 (Hansen, Koucký, Lauritzen, Miltersen and Tsigaridas). Let ε > 0 be ar-
bitrary. Any concurrent reachability game with N positions and at most m ≥ 2 actions
in each position has an ε-optimal stationary strategy of patience at most (1/ε)mO(N)

.

This lemma is an asymptotic improvement of Theorem 4 of Hansen et al. [12], that
gave an upper bound of (1/ε)2

30M

, for a total number of M actions, when M ≥ 10 and
0 < ε < 1

2 . This result does however have the advantage of an explicit constant in the
exponent, which the bound of Lemma 4 lacks.

Combining Lemma 3, Lemma 4, and also applying inequality (1), we get the follow-
ing upper bound:

Theorem 5. Let ε > 0 be arbitrary. When applying value iteration or strategy iteration
to a concurrent reachability game with N non-terminal positions and m ≥ 2 choices for
each player in each position, after at most (1/ε)mO(N)

iterations, an ε-approximation
to the value has been obtained.

Also, Lemma 3 will be very useful for us below when applied in the contrapositive.
Specifically, below, we will directly analyze and compare the value of P (N, m) with
the value of its time bounded version, and use this to conclude that the value iteration
algorithm does not converge quickly when applied to this game. The lemma then im-
plies that the patience of any ε-optimal strategy is large. When we later consider the
strategy iteration algorithm applied to the same game, we will show that the strategy
computed after any sub-astronomical number of iterations has too low patience to be
ε-optimal.
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2.2 The Value of Time Bounded Generalized Purgatory and the Complexity of
Value Iteration

In this section we give an upper bound on the value of a time bounded version of the
Generalized Purgatory game P (N, m). As explained in Section 2.1, this upper bound
immediately implies a lower bound on the number of iterations needed by value itera-
tion to approximate the value of the original game.

We let PT (N, m) be the time bounded version of P (N, m) as defined in Section
2.1, i.e. PT (N, m) is syntactic sugar for (P (N, m))T . Also, we need to fix an indexing
of the positions of P (N, m). We define position i for i = 1, . . . , N to be the position
where Dante already guessed correctly i − 1 times in a row and still needs to guess
correctly N − i + 1 times in a row to win the game.

First we give a rather precise analysis of the one-position case. Besides being inter-
esting in its own right (to establish that value iteration is exponential even for this case),
this will also be useful later when we analyze strategy iteration.

Theorem 6. Let m ≥ 2 and T ≥ 1. The value of position (1, T ) of PT (1, m) is less
than

1 − (1 − 1
m

)(
1

mT
)1/(m−1).

Proof. Let ε = (1/mT )1/(m−1). Consider any strategy (not necessarily stationary) for
Dante for playing PT (1, m). In each round of play, Dante chooses his action with a
probability distribution that may depend on previous play and time left. We define a
reply by Lucifer in a round-to-round fashion.

Fix a history of play leading to some current round and let p1, p2, . . . , pm be the
probabilities by which Dante plays 1, 2, . . . , m in this current round. There are two
cases.

1. There is an i so that pi < (1−ε
ε )

∑
j≥i+1 pj . We call such a round a green round.

In this case, Lucifer plays i.
2. For all i, pi ≥ (1−ε

ε )
∑

j≥i+1 pj . We call such a round a red round. In this case,
Lucifer plays m.

This completes the definition of Lucifer’s reply.
We now analyze the probability that Dante wins PT (1, m) when he plays his strategy

and Lucifer plays this reply. We show this probability to be at most

1 − (1 − 1
m

)(
1

mT
)1/(m−1)

and we shall be done.
Let us consider a green round. We claim that the probability that Dante wins in this

round, conditioned on the previous history of play, and conditioned on play ending in
this round, is at most 1 − ε. Indeed, this conditional probability is given by

pi

pi + (pi+1 + · · · + pm)
<

(1−ε
ε )(

∑
j≥i+1 pj)

(1−ε
ε )(

∑
j≥i+1 pj) + (

∑
j≥i+1 pj)

=
(1 − ε)/ε

(1 − ε)/ε + ε/ε

= 1 − ε.
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Let us next consider a red round. We claim that the probability of play ending in this
round, conditioned on the previous history of play, is at most εm−1. Indeed, note that
this conditional probability is exactly pm, and that

1 =
m∑

j=1

pj = p1 +
m∑

j=2

pj ≥ (1 +
1 − ε

ε
)(

m∑

j=2

pj) = (1 +
1 − ε

ε
)(p2 +

m∑

j=3

pj)

≥ (1 +
1 − ε

ε
)2(

m∑

j=3

pj) ≥ · · · ≥ (1 +
1 − ε

ε
)m−1pm = (

1
ε
)m−1pm

from which pm ≤ εm−1. That is, in every round of play, conditioned on previous play,
either it is the case that the probability that play ends in this round is at most εm−1 (for
the case of a red round) or it is the case that conditioned on play ending, the probability
of win for Dante is at most 1 − ε (for the case of a green round).

Now let us estimate the probability of a win for Dante in the entire game PT (1, m).
Let W denote the event that Dante wins. Let G be the event that play ends in a green
round. Also, let R be the event that play ends in a red round. Then, we have

Pr[W ] = Pr[W |R] Pr[R] + Pr[W |G] Pr[G]
≤ Pr[R] + Pr[W |G] Pr[G]
= Pr[R] + Pr[W |G](1 − Pr[R])
= Pr[R] + Pr[W |G] − Pr[R] Pr[W |G]
< (εm−1)T + (1 − ε) − (εm−1)T (1 − ε)
= 1 − ε + T εm

= 1 − (
1

mT
)1/(m−1) + T (

1
mT

)
m

m−1

= 1 − (1 − 1
m

)(
1

mT
)1/(m−1).

Combining Lemma 1 with Theorem 6 we get the result that value iteration needs expo-
nential time, even for one-position games.

Corollary 7. Let 0 < ε < 1. Applying less than 1
em (1/ε)m−1 iterations of the value

iteration algorithm to P (1, m) yields a valuation at least ε smaller than the exact value.

Next, we analyze the N -position case, where we give a somewhat coarser bound.

Theorem 8. Let N, m, k, T be integers with N ≥ 2, m ≥ 2, 1 ≤ k ≤ N − 2 and
T ≤ 2mN−k

. Then, the value of PT (N, m) is at most 2m−k + 2−mN−k−1
.

Proof. We show an upper bound on the value of PT (N, m) of 2m−k + 2−mN−k−1
by

exhibiting a particular strategy of Lucifer and showing that any response by Dante to
this particular strategy of Lucifer will make Dante win with probability at most 2m−k+
2−mN−k−1

.
To structure the proof, we divide the play into epochs. An epoch begins and another

ends immediately after each time Dante has guessed incorrectly by undershooting, so
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that he now finds himself in exactly the same situation as when the play begins (but in
general with less time left to win). That is, Dante wins if and only if there is an epoch of
length N containing only correct guesses. For convenience, we make the game a little
more attractive for Dante by continuing play for T epochs, rather than T rounds. Call
this prolonged game G′

T . Clearly, the value of GT is at most the value of G′
T , so it is

okay to prove the upper bound for the latter. We index the epochs 1, 2, . . . , T .
To define the strategy of Lucifer, we first define a function f : N × N → N as

follows:

f(i, j) = 1 + (j − 1)
i−1∑

r=0

mr.

Then, it is easy to see that f satisfies the following two equations.

f(i, m) = mi (2)

f(i, j + 1) = f(i, j) +
i−1∑

r=0

f(r, m) (3)

The specific strategy of Lucifer is this: Let d be the number of rounds already played in
the current epoch. If d ≥ N −k, Lucifer chooses a number between 1 and m uniformly
at random. If d < N − k, he hides the numbers j = 1, . . . , m − 1 with probabilities
pj(d) = 2−f(N−k−d,m+1−j) and puts all remaining probability mass on the number m
(since N − k − d ≥ 1 and m ≥ 2, there is indeed some probability mass left for m).

Freeze the strategy of Lucifer to this strategy. From the point of view of Dante, the
game GT is now a finite horizon absorbing Markov decision process. Thus, he has an
optimal policy that is deterministic and history independent. That is, the choices of
Dante according to this policy depend only on the number of rounds already played in
the present epoch and the remaining number of epochs before the limit of T epochs has
been played, or, equivalently, on the index of the current epoch. We can assume without
loss of generality that Dante plays such an optimal policy. That is, his optimal policy for
epoch t can be described by a specific sequence of actions at0, at1, at2, . . . , at(N−1) in
{1, . . . , m} to make in the next N rounds (with the caveat that this sequence of choices
will be aborted if the epoch ends).

Se define the following mutually exclusive events Wt, Lt:

– Wt: Dante wins the game in epoch t (by guessing correctly N times).
– Lt: Dante loses the game in epoch t (by overshooting Lucifer’s number)

We make the following claim:

Claim: For each t, either Pr[Wt] ≤ 2−mN−k−mN−k−1
or Pr[Wt]/ Pr[Lt] ≤ 2m−k.

First, let us see that the claim implies the lemma. Indeed, the probability of Dante
winning can be split into the contributions from those epochs where Dante wins with
probability at most 2−mN−k−mN−k−1

and the remaining epochs. The total winning
probability mass from the first is at most T 2−mN−k−mN−k−1 ≤ 2−mN−k−1

and the
total winning probability mass of the rest is at most 2m−k, giving an upper bound for
Dante’s winning probability of 2m−k + 2−mN−k−1

.
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So let us prove the claim. Fix an epoch t and let at0, at1, at3, . . . , at(N−1) be Dante’s
sequence of actions. Suppose at0 = 1 and at1 = 1. Then, since Lucifer only plays 1 in
the first two rounds with probability p1(0)p1(1) = 2−f(N−k,m) ·2−f(N−k−1,m), Dante
only wins the game in this epoch with at most that probability, which by equation (2) is
equal to 2−mN−k−mN−k−1

, as desired.
Now assume at0 > 1 or at1 > 1. We want to show that Pr[Wt]/ Pr[Lt] ≤ 2m−k.

Let d be the largest index so that d < N − k and so that atd > 1. Since at0 > 1 or
at1 > 1, such a d exists. Let E be the event that epoch t lasts for at least d rounds.
We will show that Pr[Wt|E]/ Pr[Lt|E] ≤ 2m−k. Since Wt ⊆ E, this also implies
that Pr[Wt]/ Pr[Lt] ≤ 2m−k. Since we condition on E we look at Dante’s decision
after d rounds of epoch t. He chooses the action j = atd > 1. If Lucifer at this point
chooses a number small than j, Dante loses. In particular, since Lucifer chooses the
number j − 1 with probability 2−f(N−k−d,m+1−(j−1), Dante loses the entire game
by his action atd with probability at least 2−f(N−k−d,m−j), conditioned on E. On the
other hand the probability that he wins the game in this epoch conditioned on E is at
most (2−f(N−k−d,m+1−j))(

∏N−k−1
i=d+1 2−f(N−k−i,m))(m−k)), the first factor being the

probability that Lucifer chooses j at round d, the second factor being the probability
that Lucifer like Dante repeatedly chooses 1 until the last k rounds of the epoch begin,
and the third factor being the probability that Lucifer matches Dante’s choices in those
k rounds. Now we have

Pr[Wt]/ Pr[Lt] ≤
Pr[Wt|E]/ Pr[Lt|E] ≤

(2−f(N−k−d,m+1−j))(
N−k−1∏

i=d+1

2−f(N−k−i,m))(m−k))2f(N−k−d,m−j) ≤

m−k2f(N−k−d,m−j)−f(N−k−d,m+1−j)−∑N−k−d−1
r=1 f(r,m) =

2m−k2f(N−k−d,m−j)−f(N−k−d,m+1−j)−∑N−k−d−1
r=0 f(r,m) =

2m−k

as desired.

Combining Lemma 1 with Theorem 8 we get the result that value iteration needs doubly
exponential time to obtain any non-trivial approximation:

Corollary 9. Let N be even. Applying less than 2mN/2
iterations of the value iteration

algorithm to P (N, m) yields a valuation of the initial position of at most 3m−N/2, even
though the actual value of the game is 1.

We also get the following bound on the patience of near-optimal strategies of P (N, m)
that will be useful when analyzing strategy iteration.

Theorem 10. Suppose N is sufficiently large and m ≥ 2. Let ε = 1 − 4m−N/2. Then
all ε-optimal strategies of P (N, m) have patience at least 2mN/3

.
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Proof. Putting c = N ln m
2 , Lemma 2 tells us that if P (N, m) has an ε-optimal strategy

of patience less than l = 2mN/3
, then the value of Pt(N, m) is at least 1 − ε − e−c =

3m−N/2, where t = cNlN ≤ 2mN/2
. But putting k = N/2, Theorem 8 tells us that the

value of Pt(N, m) is at most 2m−N/2 + 2−mN/2−1
< 3m−N/2, a contradiction.

2.3 Strategy Iteration

The technical content of this section is a number of lemmas on what happens when the
strategy iteration algorithm is applied to P (N, m), leading up to the following crucial
lemma:

Lemma 11. When applying strategy iteration to P (N, m), the patience of the strategy
xt computed in iteration t is at most e · m · t.
Before we prove Lemma 11, we show that it implies the lower bound we are looking
for.

Theorem 12. Suppose N is sufficiently large. Applying less than 2mN/4
iterations of

strategy iteration to P (N, m) yields a valuation of the initial position of less than
4m−N/2, despite the fact that the value of the position is 1.

Proof. Lemma 11 implies that the patience of the strategy xt computed in iteration t

for t = 2mN/4
is at most em2mN/4

. Theorem 10 states that if ε = 1 − 4m−N/2, then
all ε-optimal strategies of P (N, m) have patience at least 2mN/3

. So xt is not ε-optimal
and the bound follows.

Due to space constraints, the rather long and technical proof of Lemma 11 itself is
omitted, but can be found in the full version of this paper [10].
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