

Lecture Notes in Computer Science 6651
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Alexander Kulikov NikolayVereshchagin (Eds.)

Computer Science –
Theory andApplications

6th International Computer Science Symposium
in Russia, CSR 2011
St. Petersburg, Russia, June 14-18, 2011
Proceedings

13

Volume Editors

Alexander Kulikov
Steklov Institute of Mathematics at St. Petersburg
27 Fontanka, 191023 St. Petersburg, Russia
E-mail: kulikov@logic.pdmi.ras.ru

Nikolay Vereshchagin
Moscow State University
Department of Mathematical Logic and Theory of Algorithms
Leninskie gory 1, 119991 Moscow, Russia
E-mail: nikolay.vereshchagin@gmail.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-20711-2 e-ISBN 978-3-642-20712-9
DOI 10.1007/978-3-642-20712-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011926308

CR Subject Classification (1998): F.2, F.3, E.3, G.2, F.1, F.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 6th International Computer Science Symposium in Russia (CSR 2011) was
held during June 14–18, 2011 in St. Petersburg, Russia, hosted by St. Petersburg
Academic University of the Russian Academy of Sciences. It was the sixth event
in the series of regular international meetings following CSR 2006 in St. Peters-
burg, CSR 2007 in Ekaterinburg, CSR 2008 in Moscow, CSR 2009 in Novosibirsk,
and CSR 2010 in Kazan.

The opening lecture was given by Dima Grigoriev and eight other invited ple-
nary lectures were given by Manindra Agrawal, László Babai, Andrei Bulatov,
Jarkko Kari, Alexander Shen, Amir Shpilka, Madhu Sudan, and Sergey Yekhanin.

This volume contains the accepted papers and abstracts of most invited talks.
The scope of the proposed topics for the symposium was quite broad and covered
many areas of theoretical computer science and its applications. We received 76
papers in total, and out of these the Program Committee selected 29 papers for
presentation at the symposium and for publication in the proceedings.

As usual, Yandex provided the Best Paper Awards; the recipients of these
awards were selected by the Program Committee:

– Best Paper Award:
Scott Aaronson, “The Equivalence of Sampling and Searching”

– Best Student Paper Award:
Daniil Musatov, “Improving the Space-Bounded Version of Muchnik’s Con-
ditional Complexity Theorem via “Naive” Derandomization”

The reviewing process was organized using the EasyChair conference system,
created by Andrei Voronkov. We would like to acknowledge that this system
helped greatly to improve the efficiency of the committee work.

The following satellite events were co-located with CSR 2011:

– Workshop on Post-Quantum Cryptography
– Second Workshop on Program Semantics, Specification and Verification:

Theory and Applications (PSSV 2011)
– Workshop on Universal Algebra and Computer Science (WUACS)

We are grateful to our sponsors:

– EMC Corporation
– Microsoft Research
– Russian Foundation for Basic Research
– Yandex (the largest Russian Internet portal providing key Web services)

We also thank the local organizers, in particular, Alexander V. Smal, Tatiana
Vinogradova, and Nadya Zalesskaya.

June 2011 Alexander Kulikov
Nikolay Vereshchagin

Organization

CSR 2011 was organized by the Steklov Institute of Mathematics at St. Peters-
burg of the Russian Academy of Sciences and St. Petersburg Academic Univer-
sity of the Russian Academy of Sciences.

Program Committee Chair

Nikolay Vereshchagin Moscow State University, Russia

Program Committee

Farid Ablayev Kazan State University, Russia
Maxim Babenko Moscow State University, Russia
Olivier Carton Université Paris Diderot, France
Bruno Durand Université de Provence, France
Anna Frid Sobolev Institute of Mathematics, Russia
Valentine Kabanets Simon Fraser University, Canada
Juhani Karhumäki University of Turku, Finland
Michal Koucký Institute of Mathematics, Czech Republic
Meena Mahajan Institute of Mathematical Sciences, India
Yuri Matiyasevich Steklov Institute of Mathematics at

St. Petersburg, Russia
Pierre McKenzie Université de Montréal, Canada
Ilya Mironov Microsoft Research, USA
Ilan Newman Haifa University, Israel
Alexander Razborov University of Chicago, USA and

Steklov Mathematical Institute, Russia
Miklos Santha Université Paris-Sud, France
Nitin Saxena Hausdorff Center for Mathematics, Germany
Valentin Shehtman Institute for the Information Transmission

Problems, Russia
Alexander Sherstov Microsoft Research, USA
Thomas Thierauf Aalen University, Germany
Oleg Verbitsky Institute for Applied Problems of Mechanics

and Mathematics, Ukraine
Mikhail Volkov Ural State University, Russia
Igor Walukiewicz Université de Bordeaux, France

Symposium Chair

Alexander Kulikov Steklov Institute of Mathematics at
St. Petersburg, Russia

VIII Organization

CSR Steering Committee

Volker Diekert University of Stuttgart, Germany
Anna Frid Sobolev Institute of Mathematics, Russia
Edward A. Hirsch Steklov Institute of Mathematics at

St. Petersburg, Russia
Juhani Karhumäki University of Turku, Finland
Mikhail Volkov Ural State University, Russia

External Reviewers

Mikhail Abramskiy
Anil Ada
Luis Antunes
Sergei Avgustinovich
Matthias Baaz
Malte Beecken
Eli Ben-Sasson
Oren Ben-Zwi
Eugene Beschastnov
Laurent Bienvenu
Michael Blondin
Hans L. Bodlaender
Benedikt Bollig
Gerth Stølting Brodal
Peter Bro Miltersen
Harry Buhrman
Andrei Bulatov
Michaël Cadilhac
Krishnendu Chatterjee
Bruno Courcelle
Samir Datta
Holger Dell
Emilio Di Giacomo
Christoph Dürr
Henning Fernau
Jiri Fiala
Fedor Fomin
Martin Fürer
Naveen Garg
Hugo Gimbert
Nikolai Gravin
Alexey Gusakov

Vesa Halava
Magnus M. Halldorsson
Tero Harju
Johan H̊astad
Danny Hermelin
Mika Hirvensalo
Emmanuel Jeandel
Artur Jez
Jarkko Kari
Marek Karpinski
Dmitry Karpov
Ralf Klasing
Ignat Kolesnichenko
Ilya Kornakov
Richard Kralovic
Andreas Krebs
Thorsten Kräling
Dietrich Kuske
Troy Lee
Jerome Leroux
Xiaowen Liu
Vadim Lozin
Johann Makowsky
Catherine Matias
Jochen Messner
George Metcalfe
Johannes Mittmann
Jerome Monnot
Pavel Nalivaiko
N.S. Narayanaswamy
Alexander Okhotin
Krzysztof Onak

Giorgio Orsi
Alexei Pastor
Wojciech Plandowski
Vladimir Podolskii
Jean-Yves Potvin
Ivan Pouzyrevsky
Pavel Pudlak
Mathieu Raffinot
Ilya Razenshteyn
Gaétan Richard
Adi Rosen
Peter Rossmanith
Andrei Rumyantsev
Wojciech Rytter
Aleksi Saarela
Pavel Salimov
Kai Salomaa
Olivier Serre
Rocco Servedio
Sergey Sevastyanov
Ilya Shapirovsky
Arseny Shur
Tatiana Starikovskaya
Tamon Stephen
Christopher Umans
Alexander Vasiliev
Fabian Wagner
Oren Weimann
Steve Wismath
Tatiana Yavorskaya

Table of Contents

The Equivalence of Sampling and Searching . 1
Scott Aaronson

Towards a Complexity Theory of Randomized Search Heuristics:
Ranking-Based Black-Box Complexity . 15

Benjamin Doerr and Carola Winzen

Learning Read-Constant Polynomials of Constant Degree Modulo
Composites . 29

Arkadev Chattopadhyay, Ricard Gavaldà,
Kristoffer Arnsfelt Hansen, and Denis Thérien

On the Arithmetic Complexity of Euler Function (Invited Talk) 43
Manindra Agrawal

Pseudo-random Graphs and Bit Probe Schemes with One-Sided
Error . 50

Andrei Romashchenko

Improving the Space-Bounded Version of Muchnik’s Conditional
Complexity Theorem via “Naive” Derandomization 64

Daniil Musatov

The Complexity of Solving Reachability Games Using Value and
Strategy Iteration . 77

Kristoffer Arnsfelt Hansen, Rasmus Ibsen-Jensen, and
Peter Bro Miltersen

Faster Polynomial Multiplication via Discrete Fourier Transforms 91
Alexey Pospelov

Kolmogorov Complexity as a Language (Invited Talk) 105
Alexander Shen

Almost k-Wise Independent Sets Establish Hitting Sets for Width-3
1-Branching Programs . 120

Jǐŕı Š́ıma and Stanislav Žák

The Complexity of Inversion of Explicit Goldreich’s Function by DPLL
Algorithms . 134

Dmitry Itsykson and Dmitry Sokolov

X Table of Contents

Gate Elimination for Linear Functions and New Feebly Secure
Constructions . 148

Alex Davydow and Sergey I. Nikolenko

Finite Groups and Complexity Theory: From Leningrad to Saint
Petersburg via Las Vegas (Invited Talk) . 162

László Babai

On Maltsev Digraphs . 181
Catarina Carvalho, László Egri, Marcel Jackson, and Todd Niven

Join-Reachability Problems in Directed Graphs . 195
Loukas Georgiadis, Stavros D. Nikolopoulos, and Leonidas Palios

Graphs of Bounded Treewidth Can Be Canonized in AC1 209
Fabian Wagner

Snakes and Cellular Automata: Reductions and Inseparability
Results (Invited Talk) . 223

Jarkko Kari

Computing the Clique-Width of Large Path Powers in Linear Time via
a New Characterisation of Clique-Width . 233

Pinar Heggernes, Daniel Meister, and Udi Rotics

An Extended Tree-Width Notion for Directed Graphs Related to the
Computation of Permanents . 247

Klaus Meer

Computing Vertex-Surjective Homomorphisms to Partially Reflexive
Trees . 261

Petr A. Golovach, Daniël Paulusma, and Jian Song

Compressed Membership in Automata with Compressed Labels 275
Markus Lohrey and Christian Mathissen

Locally Decodable Codes (Invited Talk) . 289
Sergey Yekhanin

Precedence Automata and Languages . 291
Violetta Lonati, Dino Mandrioli, and Matteo Pradella

Orbits of Linear Maps and Regular Languages . 305
Sergey Tarasov and Mikhail Vyalyi

Shared-Memory Systems and Charts . 317
Rémi Morin

On the CSP Dichotomy Conjecture (Invited Talk) . 331
Andrei A. Bulatov

Table of Contents XI

LR(0) Conjunctive Grammars and Deterministic Synchronized
Alternating Pushdown Automata . 345

Tamar Aizikowitz and Michael Kaminski

Two-Way Automata versus Logarithmic Space . 359
Christos A. Kapoutsis

A Polynomial-Time Algorithm for Finding a Minimal Conflicting Set
Containing a Given Row . 373

Guillaume Blin, Romeo Rizzi, and Stéphane Vialette

Two Combinatorial Criteria for BWT Images . 385
Konstantin M. Likhomanov and Arseny M. Shur

Recent Results on Polynomial Identity Testing (Invited Talk) 397
Amir Shpilka

Towards Approximate Matching in Compressed Strings: Local
Subsequence Recognition . 401

Alexander Tiskin

The Optimal Strategy for the Average Long-Lived Consensus 415
Eric Rémila

Improved Online Scheduling in Maximizing Throughput of Equal
Length Jobs . 429

Thang Nguyen Kim

Recognizing Sparse Perfect Elimination Bipartite Graphs 443
Matthijs Bomhoff

A Multiple-Conclusion Calculus for First-Order Gödel Logic 456
Arnon Avron and Ori Lahav

Author Index . 471

The Equivalence of Sampling and Searching

Scott Aaronson�

MIT, Cambridge, MA, USA
aaronson@csail.mit.edu

Abstract. In a sampling problem, we are given an input x ∈ {0, 1}n,
and asked to sample approximately from a probability distribution Dx

over poly (n)-bit strings. In a search problem, we are given an input
x ∈ {0, 1}n, and asked to find a member of a nonempty set Ax with
high probability. (An example is finding a Nash equilibrium.) In this
paper, we use tools from Kolmogorov complexity to show that sampling
and search problems are “essentially equivalent.” More precisely, for any
sampling problem S, there exists a search problem RS such that, if C is
any “reasonable” complexity class, then RS is in the search version of C
if and only if S is in the sampling version. What makes this nontrivial
is that the same RS works for every C.

As an application, we prove the surprising result that SampP =
SampBQP if and only if FBPP = FBQP. In other words, classical com-
puters can efficiently sample the output distribution of every quantum
circuit, if and only if they can efficiently solve every search problem that
quantum computers can solve.

1 Introduction

The Extended Church-Turing Thesis (ECT) says that all computational prob-
lems that are feasibly solvable in the physical world are feasibly solvable by a
probabilistic Turing machine. By now, there have been almost two decades of
discussion about this thesis, and the challenge that quantum computing poses
to it. This paper is about a related question that has attracted surprisingly
little interest: namely, what exactly should we understand the ECT to state?
When we say “all computational problems,” do we mean decision problems?
promise problems? search problems? sampling problems? possibly other types of
problems? Could the ECT hold for some of these types of problems but fail for
others?

Our main result is an equivalence between sampling and search problems:
the ECT holds for one type of problem if and only if it holds for the other.
As a motivating example, we will prove the surprising fact that, if classical
� I thank Alex Arkhipov for helpful discussions that motivated this work, Dana

Moshkovitz for pointing me to Proposition 2 from [6], and the anonymous reviewers
for their comments. This material is based upon work supported by the National
Science Foundation under Grant No. 0844626. Also supported by a DARPA YFA
grant, a TIBCO Chair, and the Sloan Foundation.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 1–14, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 S. Aaronson

computers can efficiently solve any search problem that quantum computers can
solve, then they can also approximately sample the output distribution of any
quantum circuit. The proof makes essential use of Kolmogorov complexity. The
technical tools that we will use are standard ones in the algorithmic information
theory literature; our contribution is simply to apply those tools to obtain a
useful equivalence principle in complexity theory that seems not to have been
known before.

While the motivation for our equivalence theorem came from quantum com-
puting, we wish to stress that the theorem itself is much more general, and has
nothing to do with quantum computing in particular.

1.1 Background

Theoretical computer science has traditionally focused on language decision
problems, where given a language L ⊆ {0, 1}∗, the goal is to decide whether
x ∈ L for any input x. From this perspective, asking whether quantum com-
puting contradicts the ECT is tantamount to asking:

Problem 1. Does BPP = BQP?

However, one can also consider promise problems, where the goal is to accept all
inputs in a set LYES ⊆ {0, 1}∗ and reject all inputs in another set LNO ⊆ {0, 1}∗.
Here LYES and LNO are disjoint, but their union is not necessarily all strings, and
an algorithm can do whatever it likes on inputs not in LYES ∪ LNO. Goldreich
[4] has made a strong case that promise problems are at least as fundamental as
language decision problems, if not more so. To give one relevant example, the
task

Given a quantum circuit C, estimate the probability p (C) that C accepts

is easy to formulate as a promise problem, but has no known formulation as a
language decision problem. The reason is the usual “knife-edge” issue: given any
probability p∗ ∈ [0, 1] and error bound ε ≥ 1/ poly (n), we can ask a simulation
algorithm to accept all quantum circuits C such that p (C) ≥ p∗ + ε, and to
reject all circuits C such that p (C) ≤ p∗ − ε. But we cannot reasonably ask an
algorithm to decide whether p (C) = p∗ + 2−n or p (C) = p∗ − 2−n: if p (C) is
too close to p∗, then the algorithm’s behavior is unknown.

Let PromiseBPP and PromiseBQP be the classes of promise problems solvable
by probabilistic and quantum computers respectively, in polynomial time and
with bounded probability of error. Then a second way to ask whether quantum
mechanics contradicts the ECT is to ask:

Problem 2. Does PromiseBPP = PromiseBQP?

Now, if one accepts replacing languages by promise problems, then there seems
little reason not to go further. One can also consider search problems, where
given an input x ∈ {0, 1}n, the goal is to output any element of some nonempty

The Equivalence of Sampling and Searching 3

“solution set” Ax ⊆ {0, 1}poly(n).1 Perhaps the most famous example of a search
problem is finding a Nash equilibrium, which Daskalakis et al. [2] showed to be
complete for the class PPAD. By Nash’s Theorem, every game has at least one
Nash equilibrium, but the problem of finding one has no known formulation as
either a language decision problem or a promise problem.

Let FBPP and FBQP be the classes of search problems solvable by probabilistic
and quantum computers respectively, with success probability 1 − δ, in time
polynomial in n and 1/δ.2 Then a third version of the “ECT question” is:

Problem 3. Does FBPP = FBQP?

There is yet another important type of problem in theoretical computer science.
These are sampling problems, where given an input x ∈ {0, 1}n, the goal is to
sample (exactly or, more often, approximately) from some probability distribu-
tion Dx over poly (n)-bit strings. Well-known examples of sampling problems
include sampling a random point in a high-dimensional convex body and sam-
pling a random matching in a bipartite graph.

Let SampP and SampBQP be the classes of sampling problems that are solv-
able by probabilistic and quantum computers respectively, to within ε error in
total variation distance, in time polynomial in n and 1/ε.3 Then a fourth version
of our question is:

Problem 4. Does SampP = SampBQP?

Not surprisingly, all of the above questions are open. But we can ask an obvious
meta-question:

What is the relationship among Problems 1-4? If the ECT fails in one
sense, must it fail in the other senses as well?

In one direction, there are some easy implications:

SampP = SampBQP =⇒ FBPP = FBQP

=⇒ PromiseBPP = PromiseBQP

=⇒ BPP = BQP.

1 Search problems are also called “relational problems,” for the historical reason that
one can define such a problem using a binary relation R ⊆ {0, 1}∗ × {0, 1}∗, with
(x, y) ∈ R if and only if y ∈ Ax. Another name often used is “function problems.”
But that is inaccurate, since the desired output is not a function of the input, except
in the special case |Ax| = 1. We find “search problems” to be the clearest name,
and will use it throughout. The one important point to remember is that a search
problem need not be an NP search problem: that is, solutions need not be efficiently
verifiable.

2 The F in FBPP and FBQP stands for “function problem.” Here we are following the
standard naming convention, even though the term “function problem” is misleading
for the reason pointed out earlier.

3 Note that we write SampP instead of “SampBPP” because there is no chance of
confusion here. Unlike with decision, promise, and relation problems, with sampling
problems it does not even make sense to talk about deterministic algorithms.

4 S. Aaronson

For the first implication, if every quantumly samplable distribution were also
classically samplable, then given a quantum algorithm Q solving a search prob-
lem R, we could approximate Q’s output distribution using a classical computer,
and thereby solve R classically as well. For the second and third implications,
every promise problem is also a search problem (with solution set Ax ⊆ {0, 1}),
and every language decision problem is also a promise problem (with the empty
promise).

So the interesting part concerns the possible implications in the “other” di-
rection. For example, could it be the case that BPP = BQP, yet PromiseBPP �=
PromiseBQP? Not only is this a formal possibility, but it does not even seem
absurd, when we consider that

(1) the existing candidates for languages in BQP \ BPP (for example, decision
versions of the factoring and discrete log problems [7]) are all extremely
“special” in nature, but

(2) PromiseBQP contains the “general” problem of estimating the acceptance
probability of an arbitrary quantum circuit.

A second example of a difficult and unsolved meta-question is whether
PromiseBPP=PromiseBQP implies SampP=SampBQP. Translated into “physics
language,” the question is this: suppose we had an efficient classical algorithm to
estimate the expectation value of any observable in quantum mechanics. Would
that imply an efficient classical algorithm to simulate any quantum experiment,
in the sense of sampling from a probability distribution close to the one quantum
mechanics predicts?

1.2 Our Results

This paper shows that two of the four types of problem discussed above—namely,
sampling problems and search problems—are “equivalent” in a very non-obvious
sense. Specifically, given any sampling problem S, we will construct a search
problem R = RS such that, if C is any “reasonable” model of computation, then
S is in SampC (the sampling version of C) if and only if R is in FC (the search
version of C). Here is a more formal statement of the result:

Theorem 1 (Sampling/Searching Equivalence Theorem). Let S be any
sampling problem. Then there exists a search problem RS such that

(i) If O is any oracle for S, then RS ∈ FBPPO.
(ii) If B is any probabilistic Turing machine solving RS, then S ∈ SampPB.

(Importantly, the same search problem RS works for all O and B.)

As one application, we show that the “obvious” implication SampP=SampBQP
=⇒ FBPP = FBQP can be reversed:

Theorem 2. FBPP = FBQP if and only if SampP = SampBQP. In other words,
classical computers can efficiently solve every FBQP search problem, if and only if
they can approximately sample the output distribution of every quantum circuit.

The Equivalence of Sampling and Searching 5

As a second application (which was actually the original motivation for this
work), we extend a recent result of Aaronson and Arkhipov [1]. These authors
gave a sampling problem that is solvable using a simple linear-optics experiment
(so in particular, in SampBQP), but is not solvable efficiently by a classical
computer under a plausible complexity assumption. More formally, consider
the following problem, called |GPE|2 (the GPE stands for Gaussian Permanent
Estimation):

Problem 5 (|GPE|2). Given a matrix X ∈ Cn×n of independent N (0, 1) Gaus-
sians, output a real number y such that

∣∣∣y − |Per (X)|2
∣∣∣ ≤ ε ·n!, with probability

at least 1− δ over X ∼ N (0, 1)n×n
C , in poly (n, 1/ε, 1/δ) time.

The main result of [1] is the following:

Theorem 3 ([1]). SampP = SampBQP implies |GPE|2 ∈ FBPPNP.

The central conjecture made in [1] is that |GPE|2 is #P-complete. If this is the
case, then SampP = SampBQP would imply P#P = BPPNP, which in turn would
imply PH = BPPNP by Toda’s Theorem. Or to put it differently: we could rule
out a polynomial-time classical algorithm to sample the output distribution of a
quantum computer, under the sole assumption that the polynomial hierarchy is
infinite.

Now, by using Theorem 2 from this paper, we can deduce, in a completely
“automatic” way, that the counterpart of Theorem 3 must hold with search
problems in place of sampling problems:

Corollary 1. FBPP = FBQP implies |GPE|2 ∈ FBPPNP. So in particular, if
|GPE|2 is #P-complete and PH is infinite, then FBPP �= FBQP.

1.3 Proof Overview

Let us explain the basic difficulty we need to overcome to prove Theorem 1.
Given a probability distribution Dx over {0, 1}poly(n), we want to define a set
Ax ⊆ {0, 1}poly(n), such that the ability to find an element of Ax is equivalent to
the ability to sample from Dx. At first glance, such a general reduction seems
impossible. For let R = {Ax}x be the search problem in which the goal is to
find an element of Ax given x. Then consider an oracle O that, on input x,
returns the lexicographically first element of Ax. Such an oracle O certainly
solves R, but it seems useless if our goal is to sample uniformly from the set Ax

(or indeed, from any other interesting distribution related to Ax).
Our solution will require going outside the black-box reduction paradigm.

In other words, given a sampling problem S = {Dx}x, we do not show that
S ∈ SampPO, whereO is any oracle that solves the corresponding search problem
RS . Instead, we use the fact that O is computed by a Turing machine. We then
define RS in such a way that O must return, not just any element in the support
of Dx, but an element with near-maximal Kolmogorov complexity.

6 S. Aaronson

The idea here is simple: if a Turing machine B is probabilistic, then it can
certainly output a string y with high Kolmogorov complexity, by just generating
y at random. But the converse also holds: if B outputs a string y with high Kol-
mogorov complexity, then y must have been generated randomly. For otherwise,
the code of B would constitute a succinct description of y.

Given any set A ⊆ {0, 1}n, it is not hard to use the above “Kolmogorov trick”
to force a probabilistic Turing machine B to sample almost-uniformly from A.
We simply ask B to produce k samples y1, . . . , yk ∈ A, for some k = poly (n),
such that the tuple 〈y1, . . . , yk〉 has Kolmogorov complexity close to k log2 |A|.
Then we output yi for a uniformly random i ∈ [k].

However, one can also generalize the idea, to force B to sample from an arbi-
trary distribution D, not necessarily uniform. One way of doing this would be to
reduce to the uniform case, by dividing the support of D into poly (n) “buckets,”
such that D is nearly-uniform within each bucket, and then asking B to output
Kolmogorov-random elements in each bucket. In this paper, however, we will
follow a more direct approach, which exploits the beautiful known connection
between Kolmogorov complexity and Shannon information. In particular, we
will use the notion of a universal randomness test from algorithmic information
theory [5,3]. Let U be the “universal prior,” in which each string y ∈ {0, 1}∗
occurs with probability proportional to 2−K(y), where K (y) is the prefix-free
Kolmogorov complexity of y. Then given any computable distribution D and
fixed string y, the universal randomness test provides a way to decide whether
y was “plausibly drawn from D,” by considering the ratio PrD [y] / PrU [y]. The
main technical fact we need to prove is simply that such a test can be applied in
our complexity-theoretic context, where we care (for example) that the number
of samples from D scales polynomially with the inverses of the relevant error
parameters.

From one perspective, our result represents a surprising use of Kolmogorov
complexity in the seemingly “distant” realm of polynomial-time reductions. Let
us stress that we are not using Kolmogorov complexity as just a technical conve-
nience, or as shorthand for a counting argument. Rather, Kolmogorov complex-
ity seems essential even to define a search problem RS with the properties we
need. From another perspective, however, our use of Kolmogorov complexity
is close in spirit to the reasons why Kolmogorov complexity was defined and
studied in the first place! The whole point, after all, is to be able to talk about
the “randomness of an individual object,” without reference to any distribution
from which the object was drawn. And that is exactly what we need, if we want
to achieve the “paradoxical” goal of sampling from a distribution, using an oracle
that is guaranteed only to output a fixed string y with specified properties.

2 Preliminaries

2.1 Sampling and Search Problems

We first formally define sampling problems, as well as the complexity classes
SampP and SampBQP.

The Equivalence of Sampling and Searching 7

Definition 1 (Sampling Problems, SampP, and SampBQP). A sampling
problem S is a collection of probability distributions (Dx)x∈{0,1}∗ , one for each in-

put string x ∈ {0, 1}n, where Dx is a distribution over {0, 1}p(n), for some fixed
polynomial p. Then SampP is the class of sampling problems S = (Dx)x∈{0,1}∗ for
which there exists a probabilistic polynomial-time algorithm B that, given

〈
x, 01/ε

〉
as input, samples from a probability distribution Cx such that ‖Cx −Dx‖ ≤ ε.
SampBQP is defined the same way, except that B is a quantum algorithm rather
than a classical one.

Let us also define search problems, as well as the complexity classes FBPP and
FBQP.

Definition 2 (Search Problems, FBPP, and FBQP). A search problem R
is a collection of nonempty sets (Ax)x∈{0,1}∗ , one for each input string x ∈
{0, 1}n, where Ax ⊆ {0, 1}p(n) for some fixed polynomial p. Then FBPP is the
class of search problems R = (Ax)x∈{0,1}∗ for which there exists a probabilistic
polynomial-time algorithm B that, given an input x ∈ {0, 1}n together with 01/ε,
produces an output y such that

Pr [y ∈ Ax] ≥ 1− ε,

where the probability is over B’s internal randomness. FBQP is defined the same
way, except that B is a quantum algorithm rather than a classical one.

2.2 Algorithmic Information Theory

We now review some basic definitions and results from the theory of Kolmogorov
complexity. Recall that a set of strings P ⊂ {0, 1}∗ is called prefix-free if no
x ∈ P is a prefix of any other y ∈ P .

Definition 3 (Kolmogorov complexity). Fix a universal Turing machine
U , such that the set of valid programs of U is prefix-free. Then K (y), or the
prefix-free Kolmogorov complexity of y, is the minimum length of a program x
such that U (x) = y. We can also define the conditional Kolmogorov complexity
K (y|z), as the minimum length of a program x such that U (〈x, z〉) = y.

We are going to need two basic lemmas that relate Kolmogorov complexity to
standard information theory, and that can be found in the book of Li and Vitányi
[5] for example. The first lemma follows almost immediately from Shannon’s
noiseless channel coding theorem.

Lemma 1. Let D = {px} be any computable distribution over strings, and let x
be any element in the support of D. Then

K (x) ≤ log2

1
px

+ K (D) + O (1) ,

where K (D) represents the length of the shortest program to sample from D. The
same holds if we replace K (x) and K (D) by K (x|y) and K (D|y) respectively,
for any fixed y.

8 S. Aaronson

The next lemma follows from a counting argument.

Lemma 2 ([5]). Let D = {px} be any distribution over strings (not necessarily
computable). Then there exists a universal constant b such that

Pr
x∼D

[
K (x) ≥ log2

1
px
− c

]
≥ 1− b

2c
.

The same holds if we replace K (x) by K (x|y) for any fixed y.

2.3 Information Theory

This section reviews some basic definitions and facts from information theory.
Let A = {px}x and B = {qx}x be two probability distributions over [N]. Then
recall that the variation distance between A and B is defined as

‖A− B‖ :=
1
2

N∑
x=1

|px − qx| ,

while the KL-divergence is

DKL (A||B) :=
N∑

x=1

px log2

px

qx
.

The variation distance and the KL-divergence are related as follows:

Proposition 1 (Pinsker’s Inequality). ‖A − B‖ ≤√2DKL (A||B).

We will also need a fact about KL-divergence that has been useful in the study of
parallel repetition, and that can be found (for example) in a paper by Rao [6].

Proposition 2 ([6]). Let R be a distribution over [N]k, with marginal distri-
bution Ri on the ith coordinate. Let D be a distribution over [N]. Then

k∑
i=1

DKL (Ri||D) ≤ DKL

(R||Dk
)

3 Main Result

Let S = {Dx}x be a sampling problem. Then our goal is to construct a search
problem R = RS = {Ax}x that is “equivalent” to S. Given an input of the form〈
x, 01/δ

〉
, the goal in the search problem will be to produce an output Y such

that Y ∈ Ax,δ, with success probability at least 1− δ. The running time should
be poly (n, 1/δ).

Fix an input x ∈ {0, 1}n, and let D := Dx be the corresponding probability
distribution over {0, 1}m. Let py := PrD [y] be the probability of y. We now

The Equivalence of Sampling and Searching 9

define the search problem R. Let N := m/δ2.1, and let Y = 〈y1, . . . , yN 〉 be an
N -tuple of m-bit strings. Then we set Y ∈ Ax,δ if and only if

log2

1
py1 · · · pyN

≤ K (Y | x, δ) + β,

where β := 1 + log2 1/δ.
The first thing we need to show is that any algorithm that solves the sampling

problem S also solves the search problem R with high probability.

Lemma 3. Let C = Cx be any distribution over {0, 1}m such that ‖C − D‖ ≤ ε.
Then

Pr
Y ∼CN

[Y /∈ Ax,δ] ≤ εN +
b

2β
.

Proof. We have

Pr
Y ∼CN

[Y /∈ Ax,δ] ≤ Pr
Y ∼DN

[Y /∈ Ax,δ] +
∥∥CN −DN

∥∥ ≤ Pr
Y ∼DN

[Y /∈ Ax,δ] + εN.

So it suffices to consider a Y drawn from DN . By Lemma 2,

Pr
Y ∼DN

[
K (Y | x, δ) ≥ log2

1
py1 · · · pyN

− β

]
≥ 1− b

2β

Therefore
Pr

Y ∼DN
[Y /∈ Ax,δ] ≤ b

2β
,

and we are done.

The second thing we need to show is that any algorithm that solves the search
problem R also samples from a distribution that is close to D in variation
distance.

Lemma 4. Let B be a probabilistic Turing machine, which given input
〈
x, 01/δ

〉
outputs an N -tuple Y = 〈y1, . . . , yN〉 of m-bit strings. Suppose that

Pr
[
B
(
x, 01/δ

)
∈ Ax,δ

]
≥ 1− δ,

where the probability is over B’s internal randomness. Let R = Rx be the
distribution over outputs of B (x), and let C = Cx be the distribution over {0, 1}m
that is obtained by from R by choosing one of the yi’s uniformly at random. Then
there exists a constant QB, depending on B, such that

‖C − D‖ ≤ δ + QB

√
β

N
.

Proof. Let R′ be a distribution that is identical to R, except that we condition
on B

(
x, 01/δ

) ∈ Ax,δ. Then by hypothesis, ‖R −R′‖ ≤ δ. Now let R′
i be the

marginal distribution of R′ on the ith coordinate, and let

10 S. Aaronson

C′ =
1
N

N∑
i=1

R′
i

be the distribution over {0, 1}m that is obtained from R′ by choosing one of the
yi’s uniformly at random. Then clearly ‖C − C′‖ ≤ δ as well. So by the triangle
inequality,

‖C − D‖ ≤ ‖C − C′‖+ ‖C′ −D‖ ≤ δ + ‖C′ −D‖ ,
and it suffices to upper-bound ‖C′ −D‖.

Let qY := PrR′ [Y]. Then by Lemma 1,

K (Y | x, δ) ≤ log2

1
qY

+ K (R′) + O (1)

for all Y ∈ ({0, 1}m)N . Also, since Y ∈ Ax,δ, by assumption we have

log2

1
py1 · · · pyN

≤ K (Y | x, δ) + β.

Combining,

log2

1
py1 · · · pyN

≤ log2

1
qY

+ K (R′) + O (1) + β.

This implies the following upper bound on the KL-divergence:

DKL

(R′||DN
)

=
∑

Y ∈({0,1}m)N

qY log2

qY

py1 · · · pyN

≤ max
Y

log2

qY

py1 · · · pyN

≤ K (R′) + O (1) + β.

So by Proposition 2,

N∑
i=1

DKL (R′
i||D) ≤ DKL

(R′||DN
) ≤ K (R′) + O (1) + β,

and by Proposition 1,

1
2

N∑
i=1

‖R′
i −D‖2 ≤ K (R′) + O (1) + β.

So by Cauchy-Schwarz,

N∑
i=1

‖R′
i −D‖ ≤

√
N (2β + 2K (R′) + O (1)).

The Equivalence of Sampling and Searching 11

Hence

‖C′ −D‖ ≤
√

2β + 2K (R′) + O (1)
N

,

and

‖C − D‖ ≤ ‖C − C′‖+ ‖C′ −D‖ ≤ δ +

√
2β + 2K (R′) + O (1)

N
≤ δ + QB

√
β

N
,

for some constant QB depending on B.

By combining Lemmas 3 and 4, we can now prove Theorem 1: that for any
sampling problem S = (Dx)x∈{0,1}∗ (where Dx is a distribution over m = m (n)-
bit strings), there exists a search problem RS = (Ax)x∈{0,1}∗ that is “equivalent”
to S in the following two senses.

(i) Let O be any oracle that, given
〈
x, 01/ε, r

〉
as input, outputs a sample from

a distribution Cx such that ‖Cx −Dx‖ ≤ ε, as we vary the random string r.
Then RS ∈ FBPPO.

(ii) Let B be any probabilistic Turing machine that, given
〈
x, 01/δ

〉
as input,

outputs a Y ∈ ({0, 1}m)N such that Y ∈ Ax,δ with probability at least 1−δ.
Then S ∈ SampPB.

Proof (Proof of Theorem 1 (Sampling/Searching Equivalence Theorem)). For
part (i), given an input

〈
x, 01/δ

〉
, suppose we want to output an N -tuple Y =

〈y1, . . . , yN〉 ∈ ({0, 1}m)N such that Y ∈ Ax,δ, with success probability at least
1− δ. Recall that N = m/δ2.1. Then the algorithm is this:

(1) Set ε := δ
2N = δ3.1

2m .
(2) Call O on inputs

〈
x, 01/ε, r1

〉
, . . . ,

〈
x, 01/ε, rN

〉
, where r1, . . . , rN are inde-

pendent random strings, and output the result as Y = 〈y1, . . . , yN〉.
Clearly this algorithm runs in poly (n, 1/δ) time. Furthermore, by Lemma 3,

its failure probability is at most

εN +
b

2β
≤ δ.

For part (ii), given an input
〈
x, 01/ε

〉
, suppose we want to sample from a

distribution Cx such that ‖Cx −Dx‖ ≤ ε. Then the algorithm is this:

(1) Set δ := ε/2, so that N = m/δ2.1 = Θ
(
m/ε2.1

)
.

(2) Call B on input
〈
x, 01/δ

〉
, and let Y = 〈y1, . . . , yN〉 be B’s output.

(3) Choose i ∈ [N] uniformly at random, and output yi as the sample from Cx.

Clearly this algorithm runs in poly (n, 1/ε) time. Furthermore, by Lemma 4
we have

‖Cx −Dx‖ ≤ δ + QB

√
β

N
≤ ε

2
+ QB

√
ε2.1 (2 + log 1/ε)

m
,

for some constant QB depending only on B. So in particular, there exists a con-
stant CB such that ‖Cx −Dx‖ ≤ ε for all m ≥ CB. For m < CB , we can simply

12 S. Aaronson

hardwire a description of Dx for every x into the algorithm (note that the al-
gorithm can depend on B; we do not need a single algorithm that works for all
B’s simultaneously).

In particular, Theorem 1 means that S ∈ SampP if and only if RS ∈ FBPP, and
likewise S ∈ SampBQP if and only if RS ∈ FBQP, and so on for any model of
computation that is “below recursive” (i.e., simulable by a Turing machine) and
has the extremely simple closure properties used in the proof.

3.1 Implication for Quantum Computing

We now apply Theorem 1 to prove Theorem 2, that SampP = SampBQP if and
only if FBPP = FBQP.

Proof (Proof of Theorem 2). First, suppose SampP = SampBQP. Then consider
a search problem R = (Ax)x in FBQP. By assumption, there exists a polynomial-
time quantum algorithm Q that, given

〈
x, 01/δ

〉
as input, outputs a y such that

y ∈ Ax with probability at least 1− δ. Let Dx,δ be the probability distribution
over y’s output by Q on input

〈
x, 01/δ

〉
. Then to solve R in FBPP, clearly it

suffices to sample approximately from Dx,δ in classical polynomial time. But we
can do this by the assumption that SampP = SampBQP.4

Second, suppose FBPP = FBQP. Then consider a sampling problem S in
SampBQP. By Theorem 1, we can define a search counterpart RS of S, such
that

S ∈ SampBQP =⇒ RS ∈ FBQP =⇒ RS ∈ FBPP =⇒ S ∈ SampP.

Hence SampP = SampBQP.

Theorem 2 is easily seen to relativize: for all oracles A, we have SampPA =
SampBQPA if and only if FBPPA = FBQPA. (Of course, when proving a rela-
tivized version of Theorem 1, we have to be careful to define the search problem
RS using Kolmogorov complexity for Turing machines with A-oracles.)

4 Extensions and Open Problems

4.1 Equivalence of Sampling and Decision Problems?

Perhaps the most interesting question we leave open is whether any nontriv-
ial equivalence holds between sampling (or search) problems on the one hand,
and decision or promise problems on the other. One way to approach this
question is as follows: does there exist a sampling problem S that is prov-
ably not equivalent to any decision problem, in the sense that for every lan-
guage L ⊆ {0, 1}∗, either S /∈ SampPL, or else there exists an oracle O solving

4 As mentioned in Section 1, the same argument shows that SampP = SampBQP (or
equivalently, FBPP = FBQP) implies BPP = BQP. However, the converse is far
from clear: we have no idea whether BPP = BQP implies SampP = SampBQP.

The Equivalence of Sampling and Searching 13

S such that L /∈ BPPO? What if we require the oracle O to be computable? As
far as we know, these questions are open.

One might object that, given any sampling problem S, it is easy to define a lan-
guage LS that is “equivalent” to S, using standard Turing-machine enumeration
tricks. Even more vacuously, one could ensure ensure S ∈ SampP ⇐⇒ LS ∈ P
in the following “tautological” way:

“Take LS to be the empty language if S ∈ SampP, or an EXP-complete
language if S /∈ SampP!”

In our view, the problem with both of these approaches is that they fail to reduce
the sampling problem S to the language LS or vice versa. Of course, Theorem 1
did not quite reduce S to the search problem RS either. However, Theorem 1
came “close enough” to giving a reduction that we were able to use it to derive
interesting consequences for complexity theory, such as SampP = SampBQP if
and only if FBPP = FBQP. If we attempted to prove similar consequences
using a language LS like the one above, then we would end up with a different
language LS , depending on whether our starting assumption was S ∈ SampP,
S ∈ SampBQP, or some other assumption. By contrast, Theorem 1 constructed
a single search problem RS that is equivalent to S in the classical model, the
quantum model, and every other “reasonable” computational model.

4.2 Was Kolmogorov Complexity Necessary?

Could we have proved Theorem 1 without using Kolmogorov complexity or any-
thing like it? One way to formalize this question is as follows: does there exist a
sampling problem S such that, for every search problem R, either there exists an
oracle O solving S such that R /∈ FBPPO, or there exists an oracle O solving R
such that S /∈ SampPO? Notice that, if R is the search problem from Theorem 1,
then the latter oracle (if it exists) must be uncomputable. Thus, we are essentially
asking whether the computability assumption in Theorem 1 was necessary.

4.3 From Search Problems to Sampling Problems

Theorem 1 showed how to take any sampling problem S, and define a search
problem R = RS that is equivalent to S. Can one go the other direction? That
is, given a search problem R, can one define a sampling problem S = SR that is
equivalent to R? The following theorem is the best we were able to find in this
direction.

Theorem 4. Let R = (Ax)x be any search problem. Then there exists a sam-
pling problem SR = {Dx}x that is “almost equivalent” to R, in the following
senses.

(i) If O is any oracle solving SR, then R ∈ FBPPO.
(ii) If B is any probabilistic Turing machine solving R, then there exists a con-

stant ηB > 0 such that a SampPB machine can sample from a probability
distribution Cx with ‖Cx −Dx‖ ≤ 1− ηB.

14 S. Aaronson

We see it as an interesting problem whether Theorem 4 still holds with the
condition ‖Cx −Dx‖ ≤ 1− ηB replaced by ‖Cx −Dx‖ ≤ ε (in other words, with
SR ∈ SampPB).

4.4 Making the Search Problem Checkable

One obvious disadvantage of Theorem 1 is that the search problem R = (Ax)x

is defined using Kolmogorov complexity, which is uncomputable. In particular,
there is no algorithm to decide whether y ∈ Ax. However, it is not hard to fix
this problem, by replacing the Kolmogorov complexity with the time-bounded
or space-bounded Kolmogorov complexities in our definition of R. The price is
that we then also have to assume a complexity bound on the Turing machine B
in the statement of Theorem 1. In more detail:

Theorem 5. Let S be any sampling problem, and let f be a time-constructible
function. Then there exists a search problem RS = (Ax)x such that

(i) If O is any oracle solving S, then RS ∈ FBPPO.
(ii) If B is any BPTIME (f (n)) Turing machine solving RS, then S ∈ SampPB.
(iii) There exists a SPACE

(
f (n) + nO(1)

)
algorithm to decide whether y ∈ Ax,

given x and y.

In Theorem 5, how far can we decrease the computational complexity of RS? It
seems unlikely that one could check in NP (or NTIME

(
f (n) + nO(1)

)
) whether

y ∈ Ax, for a search problem RS = {Ax}x equivalent to S, but can we give
formal evidence against this possibility?

References

1. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proc.
ACM STOC, To appear. ECCC TR10-170, arXiv:1011.3245 (to appear, 2011)

2. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. ACM Commun. 52(2), 89–97 (2009); Earlier version in Pro-
ceedings of STOC 2006

3. Gács, P.: Lecture notes on descriptional complexity and randomness (2010),
www.cs.bu.edu/~gacs/papers/ait-notes.pdf

4. Goldreich, O.: On promise problems: a survey. In: Essays in Memory of Shimon
Even, pp. 254–290, ECCC TR05-018 (2006)

5. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Appli-
cations, 3rd edn. Springer, Heidelberg (2008)

6. Rao, A.: Parallel repetition in projection games and a concentration bound. In:
Proc. ACM STOC, pp. 1–10, ECCC TR08-013 (2008)

7. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997); Earlier
version in IEEE FOCS 1994. quant-ph/9508027

www.cs.bu.edu/~gacs/papers/ait-notes.pdf

Towards a Complexity Theory of Randomized

Search Heuristics: Ranking-Based Black-Box
Complexity

Benjamin Doerr and Carola Winzen�

Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

Abstract. Randomized search heuristics are a broadly used class of
general-purpose algorithms. Analyzing them via classical methods of the-
oretical computer science is a growing field. A big step forward would
be a useful complexity theory for such algorithms. We enrich the two
existing black-box complexity notions due to Wegener and other authors
by the restrictions that not actual objective values, but only the relative
quality of the previously evaluated solutions may be taken into account
by the algorithm. Many randomized search heuristics belong to this class
of algorithms. We show that the new ranking-based model gives more re-
alistic complexity estimates for some problems, while for others the low
complexities of the previous models still hold.

1 Introduction

Randomized search heuristics are general purpose algorithms to solve optimiza-
tion problems. They include fancy approaches like evolutionary algorithms and
ant colony optimization, but also classical approaches like random search or
randomized hill-climbers.

In practice, randomized search heuristics often are surprisingly successful (and
thus extensively used). They have the additional advantage that not too much
understanding of the optimization problem at hand is needed, and that once
implemented, they can easily be re-used for similar problems.

One of the difficulties in using such heuristics is that it is very hard to pre-
dict which problems are easy for a suitable heuristic and which are generally
intractable for randomized search heuristics. There has been some theoretical
work in the last 20 years, pioneered by the work of Ingo Wegener.

This work mostly lead to results for particular problems and particular heuris-
tics, many of which disproved what was common believe of practitioner in this
area. For example, Horn, Goldberg, and Deb [HGD94] showed that there are
unimodal functions f : {0, 1}n → R (that is, each search point x ∈ {0, 1}n apart
from the optimum has a Hamming neighbor with strictly better f -value) such
that many commonly used search heuristics need time exponential in n to find
the optimum of f .
� Carola Winzen is a recipient of the Google Europe Fellowship in Randomized Algo-

rithms, and this work is supported in part by this Google Fellowship.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 15–28, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

16 B. Doerr and C. Winzen

Still, for a broader understanding of what are easy and difficult problems, a
complexity theory similar to what exists in classical algorithmics would be highly
desirable, also for randomized search heuristics. The seminal paper by Droste,
Jansen, and Wegener [DJW06], introducing the so-called black-box model, ap-
pears to be the first attempt to start such a complexity theory in the randomized
search heuristics community. Earlier related work exists, e.g., [LTT89], [HK78],
and [Ald83].

The paradigm that randomized search heuristics should ideally be problem-
independent implies that the only way a randomized search heuristics can obtain
problem-specific information is by evaluating a solution candidate. This evalua-
tion is done by an oracle that returns the objective value, but reveals no further
information on the objective function. An algorithms that has no access to the ob-
jective function (and thus the optimization problem to be solved) other than by
querying the objective value from such an oracle, is called a black-box algorithm.

Given a class of functions F , Droste et al. define the black-box complexity of
F to be the the minimum (taken over all black-box algorithms) expected number
of function evaluations needed to optimize any function f ∈ F (minimum worst-
case runtime). This number, naturally, is a lower bound on the run time of any
randomized search heuristics for the class F , including evolutionary algorithms,
ant colony approaches, simulated annealing, et cetera.

Unfortunately, it turned out that allowing all black-box algorithms leads to
sometimes unexpectedly small complexities (obtained by not very sensible algo-
rithms). As a trivial example, note that the black-box complexity of any class
of functions F = {f} consisting just of a single objective function, is one —
as certified by the algorithm that simply queries the optimum of f . This and
further examples suggest that a restriction of the class of algorithms might lead
to more meaningful results.

A major step towards this direction is the work by Lehre and Witt [LW10].
They introduce a so-called unbiased black-box model, which, among other restric-
tions, requires that all search points queried by the algorithms must be obtained
from previous or random search points by so-called unbiased variation operators,
see Section 2 for the full details. This in particular restricts an unwanted use of
knowledge on the function class F . It also leads to a lower bound of Ω(n log n)
for the complexity of all single-element classes F = {f}, f having a unique global
optimum, when only unary operators are allowed. This is, indeed, the typical run
time of simple search heuristics like randomized hill-climbers on simple function
classes like monotone functions.

In this work, we shall argue that the unbiased model of Lehre and Witt is
still not restrictive enough. Let f : {0, 1}n → R, x �→∑n

i=1 2i−1xi be the binary-
value function of the bit-string x. Let F be the the class of functions consisting of
f and all functions obtained from f by permuting the order of the bit positions
and by flipping the meaning of the values of some bit-positions. Then, as we shall
show in this paper, the unbiased black-box complexity of F is only �log2 n�+ 2.
The corresponding algorithm (see Section 5) heavily exploits particular objective
values which it learns from its queries.

Towards a Complexity Theory of Randomized Search Heuristics 17

This is what most randomized search heuristics do not do. They typically
only use the objective values to compare search points. We define the black-
box complexity notion referring to this paradigm by allowing the algorithms to
only exploit the relative ranking of the search points queried so far. In other
words, throughout the optimization the algorithms knows for any two already
queried search points x and y no more than whether f(x) < f(y), f(x) = f(y)
or f(x) > f(y). In particular, it does not know the true values of f(x) and f(y).
Still, this model captures many commonly used randomized search heuristics.

We show that our proposed model solves some drawbacks of the previous
models. For example, for the binary-value function class introduced above, this
ranking-based black-box complexity is of order Θ(n) instead of only O(log n)
without the ranking restriction. In the Θ(n) statement, the lower bound proof
is clearly the more interesting one. The upper bound is easily verified by a
simple hill-climber that, in arbitrary order, changes a single bit-value of the
current solution and accepts the new solution if it is better than the previous
one. In summary, we see that for this function class, the ranking-based black-box
complexity seems to give us a more useful complexity measure than the previous
approaches.

We also analyze a second class commonly regarded in this context. Let F be
the class of all (so-called onemax-) functions fz : {0, 1}n → R;x �→ n − ‖x −
z‖1, z ∈ {0, 1}. Hence, fz(x) is just the number of bit positions x and z agree
on. Here, all previous black-box models showed a complexity of Θ(n/ log n),
which again is sightly smaller than what one would expect. The proofs of these
results again heavily exploit that the oracle returns the precise fitness value.
In spite of this, we still find a black-box algorithm in our ranking-based model
that solves the problem with Θ(n/ log n) queries. We are currently not sure
if this should be interpreted in the way that this function class is easier to
optimize, or in the way that the ranking-based model still allows too powerful
algorithms.

Though we claim that in this paper we introduce ranking-based black-box
complexity, the work by Droste et al. [DJW06] implicitly contains a result on
this as well. Droste et al. give a lower bound of Ω(n/ log(n)) for the unre-
stricted black-box complexity of the class of all functions g ◦ f , where g : R→ R
is strictly monotone increasing and f is a binary-value function. As we argue
later, ranking-based complexity is the same as classical complexity after allow-
ing arbitrary strictly monotone perturbations of the objective values. For this
reason, Droste et al. implicitly show that the ranking-based black-box com-
plexity of the binary-value functions is Ω(n/ log n), which we now improve to
the sharp bound of Ω(n). Via the same argumentation, the conference ver-
sion [DJTW03] of [DJW06] also shows that the ranking-based complexity of
the leadingones class (defined in Section 6) is between n/2−o(n) and n+1. Our
lower-bound proof for the binary-value class also applies to this class, improving
the lower bound from n/2−o(n) to n−2, which is sharp apart from the additive
term.

18 B. Doerr and C. Winzen

2 Notation and Previous Black-Box Models

In this section, we give a brief overview of two previous black-box models, the
unrestricted black-box model by Droste, Jansen and Wegener [DJW06] and the
more recent unbiased black-box model by Lehre and Witt [LW10].

Let us first fix the notations used frequently throughout the paper.

2.1 Notation

The positive integers are denoted by N. For k ∈ N, we abbreviate [k] :=
{1, . . . , k}. Similarly, we define [0..k] := [k] ∪ {0}. For k, � ∈ N we write
[k ± �] := [k − �, k + �] ∩ Z.

Let n ∈ N. For a bit string x = x1 . . . xn ∈ {0, 1}n, we denote by x̄ the bitwise
complement of x (i.e., for all j ≤ n we have x̄j = 1− xj).

If x, y ∈ {0, 1}n, we obtain the bit string x ⊕ y by setting, for each j ∈ [n],
(x⊕y)i := 1 if xi �= yi and (x⊕y)i := 0 if xi = yi. That is, ⊕ denotes the bitwise
exclusive-or. We use the shorthand |x|1 for the number of ones in the bit string
x, i.e., |x|1 =

∑n
i=1 xi.

If f is a function and S a set, we write f(S) := {f(s) ; s ∈ S}. We write idS

for the identity function of S, i.e., idS(s) = s for all s ∈ S. For n ∈ N, the set
Sn contains all permutations of [n]. For σ ∈ Sn and x ∈ {0, 1}n we abbreviate
σ(x) := xσ(1) . . . xσ(n).

Lastly, we denote by log the natural logarithm to base e := exp(1). If we refer
to a different base, we indicate this in the subscript, e.g., we write log2 for the
binary logarithm.

All asymptotic notation (Landau symbols, big-Oh notation) will be with re-
spect to n, which typically denotes the dimension of the search space {0, 1}n.

2.2 Unrestricted and Unbiased Black-Box Model

As mentioned in the introduction, we aim at continuing the development of a
complexity theory for randomized search heuristics. Usually, the complexity of a
problem is measured by the performance of the best algorithm out of some class
of algorithms (e.g., all those algorithms which can be implemented on a Turing
machine [GJ90], [Hro03]).

What distinguishes randomized search heuristics from classical algorithms is
that they are problem-independent. As such, the only way they obtain informa-
tion about the problem to be solved is by learning the objective value of possible
solutions (“search points”). To ensure this problem-independence, one usually
assumes that the objective function is given by an oracle or as a black-box. Using
this oracle, the algorithm may query the objective value of all possible solutions,
but any such query does only return this search point’s objective value and no
other information about the objective function.

For simplicity, we shall restrict ourselves to real-valued objective functions
defined on the set {0, 1}n of bit-strings of length n. This is motivated by the fact
that many evolutionary algorithms use such a representation.

Towards a Complexity Theory of Randomized Search Heuristics 19

Naturally, we do allow that the algorithms use random decisions. From the
black-box concept, it follows that the only type of action the algorithm may
perform is, based on the objective values learned so far, deciding on a probability
distribution on {0, 1}n, sampling a search point x ∈ {0, 1}n according to this
distribution, and querying its objective value from the oracle. This leads to the
scheme of Algorithm 1, which we call an unrestricted black-box algorithm.

As performance measure of a black-box algorithm we take the number of
queries to the oracle performed by the algorithm until it first queries an opti-
mal solution. We call this the run time, or optimization time, of the black-box
algorithm. This is justified by the observation that in typical applications of
randomized search heuristics, the evaluation of the fitness of the search points is
more costly than the generation of new search points. Since we are mainly talking
about randomized algorithms, we regard the expected number of queries.

We can now follow the usual approach in complexity theory. Let F be a class
of real-values functions defined on {0, 1}n. The complexity of an algorithm A
for F is the maximum expected run time of A on a function f ∈ F (worst-case
run time). The complexity of F with respect to a class A of algorithms is the
minimum (“best”) complexity among all A ∈ A for F . The unrestricted black-box
complexity of F is the complexity of F with respect to the class of all black-box
algorithms. This is the black-box complexity as introduced by Droste, Jansen
and Wegener [DJW06].

Algorithm 1. Scheme of an Unrestricted Black-Box Algorithm

1 Initialization: Sample x(0) according to some probability distribution p(0) on

{0, 1}n. Query f(x(0)).
2 Optimization: for t = 1, 2, 3, . . . until termination condition met do

3 Depending on
(
(x(0), f(x(0))), . . . , (x(t−1), f(x(t−1)))

)
, choose a probability

distribution p(t) on {0, 1}n.
4 Sample x(t) according to p(t), and query f(x(t)).

It is easily seen that the class of all black-box algorithms is very powerful. For
example, for any function class F = {f} consisting of one single function, the
unrestricted black-box complexity of F is 1—the algorithm that simply queries
an optimal solution of f as first action shows this bound.

These drawbacks of the unrestricted black-box model inspired Lehre and
Witt [LW10] to introduce a more restrictive black-box model, where algorithms
may generate new solution candidates only from random or previously generated
search points and only by using unbiased operators. Still the model contains most
of the commonly studied search heuristics, such as many (μ +λ) and (μ, λ) evo-
lutionary algorithms, simulated annealing algorithms, the Metropolis algorithm,
and the Random Local Search algorithm.

20 B. Doerr and C. Winzen

Definition 1 (k-ary unbiased variation operator). Let k ∈ N. A k-ary un-
biased distribution D(. | y(1), . . . , y(k))y(1),...,y(k)∈{0,1}n is a family of probability
distributions over {0, 1}n such that for all inputs y(1), . . . , y(k) ∈ {0, 1}n the
following two conditions hold.

(i)∀x, z ∈ {0, 1}n : D(x | y(1), . . . , y(k)) = D(x⊕ z | y(1) ⊕ z, . . . , y(k) ⊕ z) and

(ii)∀x ∈ {0, 1}n ∀σ ∈ Sn : D(x | y(1), . . . , y(k)) = D(σ(x) | σ(y(1)), . . . , σ(y(k))) .

We refer to the first condition as ⊕-invariance and to the second as permutation
invariance. An operator sampling from a k-ary unbiased distribution is called a
k-ary unbiased variation operator.

Note that the only 0-ary unbiased distribution over {0, 1}n is the uniform one. 1-
ary, also called unary operators are sometimes referred to as mutation operators,
in particular in the field of evolutionary computation. 2-ary, also called binary
operators are often referred to as crossover operators. If we allow arbitrary arity,
we call the corresponding model the ∗-ary unbiased black-box model.

k-ary unbiased black-box algorithms can now be described via the scheme
of Algorithm 2. The k-ary unbiased black-box complexity of some class of func-
tions F is the complexity of F with respect to all k-ary unbiased black-box
algorithms.

Algorithm 2. Scheme of a k-ary Unbiased Black-Box Algorithm

1 Initialization: Sample x(0) ∈ {0, 1}n uniformly at random and query f(x(0)).
2 Optimization: for t = 1, 2, 3, . . . until termination condition met do

3 Depending on
(
f(x(0)), . . . , f(x(t−1))

)
choose up to k indices

i1, . . . , ik ∈ [t − 1] and a and a k-ary unbiased distribution
D(. | x(i1), . . . , x(ik)).

4 Sample x(t) according to D(. | x(i1), . . . , x(ik)) and query f(x(t)).

Note that for all k ≤ � each k-ary unbiased black-box algorithm is contained
in the �-ary unbiased black-box model.

Lehre and Witt [LW10] proved, among other results, that all functions with a
single global optimum have a unary unbiased black-box complexity of Ω(n log n).
For several standard test problems this bound is met by different unary random-
ized search heuristics, such as the (1 + 1) EA or the Random Local Search algo-
rithm. Recall that, as pointed out above, the unrestricted black-box complexity
of any such function is 1. For results on higher arity models refer to the work of
Doerr et al. [DJK+10].

3 The Ranking-Based Black-Box Model

It has been commented by Hansen [Han10] that many standard randomized
search heuristics do not take advantage of knowing the exact objective values.

Towards a Complexity Theory of Randomized Search Heuristics 21

Rather, they create new search points based on the relative objective values of
previously queried search points. That is, after having queried t fitness values
f(x(1)), . . . , f(x(t)), they rank the corresponding search points x(1), . . . , x(t) ac-
cording to their relative fitness. The selection of input individuals x(i1), . . . , x(ik)

for the next variation operator is based solely on this ranking. We define ranking
as follows.

Definition 2. Let S be a set, let f : S → R be a function, and let C be a
subset of S. The ranking ρ of C with respect to f assigns to each element c ∈ C
the number of elements in C with a smaller f -value plus 1, formally, ρ(c) :=
1 + |{c′ ∈ C ; f(c′) < f(c)}|.
Note that two elements with the same f -value are assigned the same ranking.

As discussed above, many randomized search heuristics do only use the rank-
ing of the search points seen so far. Therefore, we restrict the two black-box
models which we introduced in the previous section to black-box algorithms
that use no other information than this ranking.

Unrestricted Ranking-Based Black-Box Model. The unrestricted ranking-
based black-box model can be described via the scheme of Algorithm 1 where
we replace the third line by “Depending on the ranking of {x(0) . . . , x(t−1)} with
respect to f , choose a probability distribution p(t) on {0, 1}n.”

Unbiased Ranking-Based Black-Box Model. For the definition of the un-
biased ranking-based model we consider the scheme of Algorithm 2 and replace
the third line by “Depending on the ranking of {x(0) . . . , x(t−1)} with respect to
f , choose up to k indices i1, . . . , ik ∈ [t − 1] and a k-ary unbiased distribution
D(. | x(i1), . . . , x(ik)).”

Both ranking-based black-box models capture many common search heuris-
tics, such evolutionary algorithms using elitist selection, ant colony optimization
algorithms, and the Random Local Search algorithm. They do not include algo-
rithms like simulated annealing algorithms, threshold accepting algorithms, or
evolutionary algorithms using fitness proportional selection.

The ranking restriction in both the unrestricted and unbiased ranking-based
model can equivalently be implemented by applying an unknown strictly mono-
tone perturbation to the fitness values. That is, we assume there is a strictly
monotone function1 g : R → R unknown to the algorithm. Whenever the algo-
rithm queries a search point x, the oracle only returns g(f(x)) (instead of the
objective value f(x)). Again we adopt the worst-case view, that is, the perfor-
mance of an algorithms is the worst among all f ∈ F and all strictly monotone
functions g : R→ R.

We sometimes refer to this model as the (unrestricted or unbiased, respec-
tively) monotone black-box model. In particular for upper bound proofs, this
model is often more convenient to work with.
1 Recall that a function g : R → R is said to be strictly monotone if for all α < β we

have g(α) < g(β).

22 B. Doerr and C. Winzen

4 Ranking-Based Black-Box Complexity of OneMax

A classical easy test function in the theory of randomized search heuristics is
the function OneMax, which simply counts the number of 1-bits, OneMax(x)
=
∑n

i=1 xi. The natural generalization of this particular function to a non-trivial
class of functions is as follows.

Definition 3 (OneMax function class). For z ∈ {0, 1}n let Omz : {0, 1}n →
[0..n], x �→ Omz(x) = |{i ∈ [n] ; xi = zi}|. The string z = argmaxOmz is called
the target string of Omz. Let OneMaxn := {Omz ; z ∈ {0, 1}n} be the set of all
generalized OneMax functions.

In [DJK+10], the authors prove that the k-ary unbiased black-box complexity
of OneMaxn is O(n/ log k). The following theorem shows that we can achieve
the same bound in the (much weaker) unbiased ranking-based model.

Theorem 1. For each k ≤ n, the k-ary unbiased ranking-based black-box com-
plexity of OneMaxn is O(n/ log k).

For k = Θ(n) this statement is asymptotically optimal since already for the
unrestricted black-box complexity a lower bound of Ω(n/ log n) has been shown
by Anil and Wiegand [AW09].

The proof of Theorem 1 is quite technical. Due to space limitations, we only
present a short overview here. Full proofs can be found in [DW11].

The main point of the proof is showing that the statement holds for k = n.
We then generalize this case for arbitrary values of k. To this end, we derive
from the case k = n that one can independently optimize blocks of length k
in O(k/ log k) iterations, using k-ary unbiased variation operators only. Since
there are �n/k� such blocks of length k, the desired O(n/ log k) bound follows
by sequential optimization of these blocks.

The proof of the case k = n again is divided into several steps. In the follow-
ing description, all Greek symbols are constants and all statements hold with
probability at least 1− o(n−λ). We work in the monotone model, the unknown
monotone perturbation is denoted by g, the unknown objective function by Omz .

First, we show by simple Chernoff bound arguments that after drawing
αn/ log n samples from {0, 1}n uniformly at random, we have hit each fit-
ness value � ∈ [n

2 ± κ
√

n] at least once and that we have at least 1
2 (1 −

2e−2κ2
)αn log−1 n samples x with objective value Omz(x) ∈ [n

2 ± κ
√

n].
Recall that we have not actually seen these objective values since they are hidden
by the strictly monotone perturbation g.

Let x be a search point such that g(Omz(x)) is the median of the sampled ob-
jective values. Then Omz(x), though unknown, lies in [n

2 ± logn]. Consequently,
Omz(x̄) also lies in [n

2 ± log n]. In particular, both g(Omz(x)) and g(Omz(x̄)) lie
in the interval g

(
[n
2 ± κ

√
n]
)
, which is completely covered by the samples. Thus,

a point y with g(Omz(y)) right in the middle of g(Omz(x)) and g(Omz(x̄))
satisfies Omz(y) = n

2 . Hence, by querying g(Omz(x̄)) we exhibited one exact
Omz-value, which in turn tells us the exact Omz-values of all samples x with
g(Omz(x)) ∈ g

(
[n
2 ± κ

√
n]
)
.

Towards a Complexity Theory of Randomized Search Heuristics 23

Lastly, we compute that there exists no y �= z such that Omz(x) = Omy(z)
for all samples x with Omz(x) ∈ [n

2 ±κ
√

n]. In addition, the unique target string
z can be created via an unbiased operation.

Putting everything together, we have defined an (unbiased) algorithm which
identifies and creates the target string z in αn/ logn + 2 iterations.

5 The Different Black-Box Complexities of BinaryValue

In the previous section, we have seen that the additional ranking restriction did
not increase the black-box complexity of the OneMax functions class. In this
section, we show an example where the two kinds of complexities greatly differ.
Surprisingly, another simple class of classical test functions does the job, namely
the class of generalized binary-value functions.

The binary-value function Bv is defined via Bv(x) =
∑n

i=1 2i−1xi, that is,
it assigns to each bit string its binary value. As before, we generalize this sin-
gle function to a function classes BinaryValuen (and BinaryValue∗

n), which
are the ⊕-invariant (⊕- and permutation-invariant) closure of the standard Bv
function.

In the following we denote by δ the Kronecker symbol, i.e., for any two num-
bers k, � ∈ N0 we have δ(k, �) = 1 if k = � and δ(k, �) = 0 otherwise.

Definition 4 (BinaryValue function class). For z ∈ {0, 1}n and σ ∈
Sn, we define the function Bvz,σ : {0, 1}n → N0, x �→ Bv(σ(x ⊕
z̄)) =

∑n
i=1 2i−1δ(xσ(i), zσ(i)). We set Bvz := Bvz,id[n]. We further define

the classes BinaryValuen := {Bvz ; z ∈ {0, 1}n} and BinaryValue∗
n :=

{Bvz,σ ; z ∈ {0, 1}n, σ ∈ Sn}. If f ∈ BinaryValuen (f ∈ BinaryValue∗
n),

there exist exactly one z ∈ {0, 1}n (and exactly one σ ∈ Sn) such that f = Bvz

(f = Bvz,σ). Since z = arg maxBvz (z = argmaxBvz,σ), we call z the target
string of f . Similarly, we call σ the target permutation of Bvz,σ.

We show that the unbiased black-box complexity of BinaryValue∗
n is

O(log n), cf. Theorem 2, whereas both ranking-based black-box complexities of
BinaryValuen are Θ(n), cf. Theorem 3.

Let us begin with the upper bound for the unbiased black-box complexity.

Theorem 2. The ∗-ary unbiased black-box complexity of BinaryValue∗
n (and

thus, the one of BinaryValuen) is at most �log2 n�+ 2.

The main reason why the black-box complexity of BinaryValue∗
n is much lower

than the one of OneMaxn is that each BinaryValue-function has 2n different
function values. Hence, each query reveals much more information about the
underlying objective function. The complete proof can be found in [DW11].

We devote the remainder of this section to the proof of the following result.

Theorem 3. The unrestricted ranking-based black-box complexity of
BinaryValuen and BinaryValue∗

n is larger than n− 2.

24 B. Doerr and C. Winzen

As discussed in the introduction, Droste, Jansen, and Wegener [DJW06] implic-
itly showed a lower bound of Ω(n/ log n) for the setting of Theorem 3. Our lower
bound of n − 2 is almost tight. For the unrestricted ranking-based complexity,
[DJW06] again implicitly provide an upper bound of n + 2. For the unbiased
case, previous work by Doerr et al. [DJK+10] immediately yields the following.

Corollary 1. For all k ≥ 2, the k-ary unbiased ranking-based black-box com-
plexity of BinaryValuen and BinaryValue∗

n is at most 2n.

To derive the lower bound in Theorem 3, we employ Yao’s minimax princi-
ple [Yao77].

Theorem 4 (Yao’s Minimax Principle, formulation following [MR95]).
Let Π be a problem with a finite set I of input instances (of a fixed size) permit-
ting a finite set A of deterministic algorithms. Let p be a probability distribution
over I and q be a probability distribution over A. Then,

min
A∈A

E[T (Ip, A)] ≤ max
I∈I

E[T (I, Aq)] ,

where Ip denotes a random input chosen from I according to p, Aq a random
algorithm chosen from A according to q and T (I, A) denotes the running time
of algorithm A on input I.

We apply Yao’s minimax principle in our setting as follows. We first show that
in the ranking-based black-box model, any deterministic algorithm needs an
expected number of at least n − 2 iterations to optimize Bvz, if Bvz is taken
from BinaryValuen uniformly at random. Theorem 4 then implies that for any
randomized algorithm A there exist at least one instance Bvz ∈ BinaryValuen

such that it takes, in expectation, at least n − 2 iterations for algorithm A to
optimize Bvz . This implies Theorem 3.

The crucial observation is that when optimizing Bvz with a ranking-based
algorithms, then from t samples we cannot learn more than t − 1 bits of the
hidden bit-string z. This is easy to see for two samples x, y. If Bvz(x) > Bvz(y),
we see that xk = zk �= yk, where k := max{j ∈ [n] ; xj �= yj}, but all other bits
of z can be arbitrary. That t samples do not reveal

(
t
2

)
bits, but only t− 1, is a

consequence of the following combinatorial lemma (for the proof confer [DW11]).

Lemma 1. Let t ∈ [n] and let x(1), . . . , x(t) be t pairwise different bit strings.
For every pair (i, j) ∈ [t]2 we set �i,j := max{k ∈ [n] ; x

(i)
k �= x

(j)
k }, the largest

bit position in which x(i) and x(j) differ. Then |{�i,j ; i, j ∈ [t]}| ≤ t− 1.

We are now ready to prove Theorem 3.

Proof (of Theorem 3). It is easily seen that the set A of all deterministic algo-
rithms on BinaryValuen is finite, if we restrict our attention to those algo-
rithms which stop querying search points after the n-th iteration.

As mentioned above, we equip BinaryValuen with the uniform distribution.
Let Bvz ∈ BinaryValuen be drawn uniformly at random and let A ∈ A be

Towards a Complexity Theory of Randomized Search Heuristics 25

a (deterministic) algorithm. In the following, we show that prior to the t-th
iteration, the set of still possible target strings has size at least 2n−t+1 and
that all of these target strings have the same probability to be the desired target
string (A). Consequently, the probability to query the correct bit string in the t-
th iteration, given that the algorithm has not found it in a previous iteration, is at
most 2−n+t−1. This yields that the expected number of iterations E[T (Bvz, A)]
until algorithm A queries the target string z can be bounded from below by

n∑
i=1

i · Pr[A queries z in the i-th iteration] ≥
n∑

i=1

i · 2−n+i−1

=
n∑

i=1

(n− i + 1) 2−i = (n + 1)
n∑

i=1

2−i −
n∑

i=1

i 2−i . (1)

A simple, but nonetheless very helpful observation shows

n∑
i=1

i 2−i =
n∑

i=1

2−i +
n∑

i=1

(i− 1) 2−i

= (1 − 2−n) + 2−1
n∑

i=1

(i− 1) 2−(i−1) = (1− 2−n) + 2−1
n−1∑
i=1

i 2−i ,

yielding
∑n

i=1 i 2−i = 2(1− 2−n)− n2−n = 2− (n + 2)2−n .
Plugging this into (1), we obtain

E[T (Bvz, A)] ≥ (n + 1)(1− 2−n)− (2 − (n + 2)2−n) > n− 2 .

This proves minA∈A E[T (Bvz , A)] > n− 2. Since any randomized ranking-based
black-box algorithm Ã can be modeled by randomly choosing a determinis-
tic one Aq according to a suitable distribution q and then executing the lat-
ter, Yao’s minimax principle (Theorem 4) implies maxz∈{0,1}n E[T (Bvz , Ãq)] ≥
minA∈A E[T (Bvz, A)] > n− 2. That is, the ranking-based black-box complexity
of BinaryValuen is larger than n− 2.

It remains to prove (A). Let t ≤ n and let x(1), . . . , x(t) be the search points
which have been queried by the algorithm in the first t iterations. All the algo-
rithm has learned about x(1), . . . , x(t) is the ranking of these bit strings, i.e.,
it knows for all i, j ∈ [t] whether Bvz

(
x(i)
)

> Bvz

(
x(j)
)
, or Bvz

(
x(i)
)

<

Bvz

(
x(j)
)
, or Bvz

(
x(i)
)

= Bvz

(
x(j)
)
. Note that Bvz

(
x(i)
)

= Bvz

(
x(j)
)

im-
plies x(i) = x(j). Thus, this case can be disregarded as one cannot learn any
additional information by querying the same bit string twice.

As in Lemma 1 we set, for all i, j ∈ [t], �i,j := max{k ∈ [n] ; x
(i)
k �= x

(j)
k } and

L := {�i,j ; i, j ∈ [t]}.
Let � ∈ L and let i, j ∈ [t] such that max{k ∈ [n] ; x

(i)
k �= x

(j)
k } = �. We

can fix z	 = x
(i)
	 if Bvz

(
x(i)
)

> Bvz

(
x(j)
)
, and we fix z	 = x

(j)
	 if Bvz

(
x(i)
)

<

Bvz

(
x(j)
)
. That is, we can fix |L| bits of z.

26 B. Doerr and C. Winzen

Statement (A) follows from observing that for every single bit string z′ with
z′	 = z	 for all � ∈ L the function Bvz′ yields exactly the same ranking as Bvz .
Hence, all such z′ are possible target strings. Since there is no way to differentiate
between them, all of them are equally likely to be the desired target string.

Furthermore, it holds by Lemma 1 that |L| ≤ t− 1. This shows that, at the
end of the t-th iteration, there are at least 2n−(t−1) possible target strings. It
follows from Lemma 1 that either the algorithm has queried at most one of these
possible target strings already, or |L| < t− 1. Consequently, prior to executing
the (t + 1)-st iteration, there are at most 2n−(t−1) − 1 > 2n−t bit strings which
are equally likely to be the desired target string. This proves (A). ��
Note that already a much simpler proof, also applying Yao’s minimax principle,
shows the following general lower bound.

Theorem 5. Let F be a class of functions such that each f ∈ F has a unique
global optimum and such that for all z ∈ {0, 1}n there exists a function fz ∈ F
with z = arg max fz. Then the unrestricted ranking-based black-box complexity
of F is Ω(n/ log n).

6 Ranking-Based Black-Box Complexity of LeadingOnes

The proof ideas of the lower bound in the previous section can also be applied
to another classical class of test functions called LeadingOnes. This closes a
gap left open in [DJTW03].

For every bit string x, LeadingOnes(x) is defined to be the length of the
longest prefix of ones. As before, we define two generalized classes of Leadin-
gOnes functions.

Definition 5 (LeadingOnes function class). Let n ∈ N. For any z ∈ {0, 1}n
let Loz : {0, 1}n → N, x �→ max{i ∈ [0..n] ; xi = zi}, the length of the maximal
joint prefix of x and z. Let LeadingOnesn be the collection of all such functions,
i.e., LeadingOnesn := {Loz ; z ∈ {0, 1}n}.

For z ∈ {0, 1}n and σ ∈ Sn we set Loz,σ : {0, 1}n → N, x �→ max{i ∈
[0..n] ; xσ(i) = zσ(i)}, the maximal joint prefix of x and z with respect to σ.
The set LeadingOnes∗n contains all such functions, i.e., LeadingOnes∗n :=
{Loz,σ ; z ∈ {0, 1}n, σ ∈ Sn}.
As discussed in the last paragraph of the introduction, Droste et al. in the
conference version [DJTW03] of paper [DJW06] implicitly show that the ranking-
based black-box complexity of LeadingOnesn is at least n

2 − o(n) and at most
n + 1. Using the same methods as for BinaryValuen, we improve the lower
bound to n− 2 (noting that we did not try to optimize the additive gap of 3).

Theorem 6. The unrestricted ranking-based black-box complexity of
LeadingOnesn (and thus, the unrestricted ranking-based black-box com-
plexity of LeadingOnes∗n) is strictly larger than n− 2.

Towards a Complexity Theory of Randomized Search Heuristics 27

Crucial for the proof is again the combinatorial statement of Lemma 1, from
which we concluded that after t queries we know nothing more than t − 1 bits
of the hidden bit string z. We omit the proof details.

The following remark follows easily from the proof of Theorem 14 in [DJK+10].

Remark 1. For every k ≥ 2, the k-ary unbiased ranking-based black-box com-
plexity of LeadingOnes∗n is O(n log n).

7 Conclusions

Motivated by the fact that (i) previous complexity models for randomized search
heuristics give unrealistic low complexities and (ii) that many randomized search
heuristics only compare objective values, but not regard their absolute values,
we added such a restriction to the two existing block-box models. While this
does not change the black-box complexity of the OneMax function class (this
remains relatively low at Θ(n/ log n)), we do gain an advantage for the Bi-
naryValue function class. Here the complexity is a ridiculous O(log n) with-
out the ranking restriction, but Θ(n) in the ranking-based model. We obtain
some more results improving previous work by different authors, summarized in
Table 1. All results indicate that the ranking-based black-box complexity might
be a promising measure for the hardness of problems for randomized search
heuristics.

Table 1. Black-Box Complexity of OneMax, BinaryValue, and LeadingOnes. The
lower bound for the unbiased ranking-based model also holds for the unrestricted
ranking-based model. Abbreviations: unrestr. = unrestricted, ranking-b. = ranking-
based.

Model Arity OneMax BinaryValue LeadingOnes

unrestr. n/a Ω(n/ log n) [DJW06] 2 − 2−n [DJW06] Θ(n) [DJW06]
O(n/ log n) [AW09]

unbiased 1 Θ(n log n) [LW10] Θ(n log n) [LW10] Θ(n2) [LW10]
2 ≤ k ≤ n O(n/ log k) [DJK+10] O(n) [DJK+10] O(n log n) [DJK+10]
∗ O(log n) (here) > n − 2 (here)

unbiased 2 ≤ k ≤ n O(n/ log k) (here) Θ(n) (here) O(n log n) (here)
ranking-b. ∗ > n − 2 (here)

References

[Ald83] Aldous, D.: Minimization algorithms and random walk on the d-cube.
Annals of Probability 11, 403–413 (1983)

[AW09] Anil, G., Paul Wiegand, R.: Black-box search by elimination of fitness
functions. In: Proc. of Foundations of Genetic Algorithms (FOGA 2009),
pp. 67–78. ACM, New York (2009)

28 B. Doerr and C. Winzen

[DJK+10] Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen,
C.: Faster black-box algorithms through higher arity operators, ArXiv e-
prints 1012.0952 (2010); Foundations of Genetic Algorithms XI FOGA
(2011, to appear)

[DJTW03] Droste, S., Jansen, T., Tinnefeld, K., Wegener, I.: A new framework
for the valuation of algorithms for black-box optimization. In: Proc. of
Foundations of Genetic Algorithms (FOGA 2003), pp. 253–270 (2003)

[DJW06] Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for random-
ized search heuristics in black-box optimization. Theory of Computing
Systems 39, 525–544 (2006)

[DW11] Doerr, B., Winzen, C.: Towards a Complexity Theory of Randomized
Search Heuristics: Ranking-Based Black-Box Complexity, ArXiv e-prints
1102.1140 (2011)

[GJ90] Garey, M.R., Johnson, D.S.: Computers and intractability; a guide to the
theory of np-completeness. W. H. Freeman & Co., New York (1990)

[Han10] Hansen, N.: Private communication (2010)
[HGD94] Horn, J., Goldberg, D., Deb, K.: Long path problems. In: Davidor, Y.,

Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 149–
158. Springer, Heidelberg (1994)

[HK78] Hausmann, D., Korte, B.: Lower bounds on the worst-case complexity of
some oracle algorithms. Discrete Math. 24, 261–276 (1978)

[Hro03] Hromkovič, J.: Algorithmics for hard problems: introduction to combi-
natorial optimization, randomization, approximation, and heuristics, 2nd
edn. Springer, New York (2003)

[LTT89] Llewellyn, D.C., Tovey, C., Trick, M.: Local optimization on graphs. Dis-
crete Appl. Math. 23, 157–178 (1989) Erratum: 46, 93–94 (1993)

[LW10] Lehre, P.K., Witt, C.: Black-box search by unbiased variation. In: Proc.
of Genetic and Evolutionary Computation Conference (GECCO 2010),
pp. 1441–1448. ACM, New York (2010)

[MR95] Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge Univer-
sity Press, Cambridge (1995)

[Yao77] Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of
complexity. In: Proc. of 18th Annual Symposium on Foundations of Com-
puter Science (FOCS 1977), pp. 222–227 (1977)

Learning Read-Constant Polynomials of

Constant Degree Modulo Composites

Arkadev Chattopadhyay1, Ricard Gavaldà2,
Kristoffer Arnsfelt Hansen3, and Denis Thérien4

1 University of Toronto
arkadev@cs.toronto.edu

2 Universitat Politècnica de Catalunya
gavalda@lsi.upc.edu
3 Aarhus University
arnsfelt@cs.au.dk
4 McGill University
denis@cs.mcgill.ca

Abstract. Boolean functions that have constant degree polynomial rep-
resentation over a fixed finite ring form a natural and strict subclass of
the complexity class ACC0. They are also precisely the functions com-
putable efficiently by programs over fixed and finite nilpotent groups.
This class is not known to be learnable in any reasonable learning model.
In this paper, we provide a deterministic polynomial time algorithm for
learning Boolean functions represented by polynomials of constant degree
over arbitrary finite rings from membership queries, with the additional
constraint that each variable in the target polynomial appears in a con-
stant number of monomials. Our algorithm extends to superconstant but
low degree polynomials and still runs in quasipolynomial time.

1 Introduction

Understanding the computational power of computation over rings of the form
Zm, for an arbitrary composite number m, is a fundamental open problem.
A concrete and natural setting in which to explore this power is the model of
representing Boolean functions by low degree polynomials over such rings, in the
following sense [4]: an assignment to the variables is a 1 of the Boolean function
if and only if the polynomial on it evaluates to an element of a prespecified
accepting subset of the ring.

When the modulus is a prime number and the ring thus turns into a finite
field, our knowledge of representations is far better than the general case. For
instance, it is known that degree Ω(n) is required in order to represent the
Boolean function MODq by polynomials over the field Zp, when p is a prime and
q has a prime factor different from p. The stronger result that MODq remains
hard to even approximate well by such polynomials of low degree, is a key insight
in the celebrated lower bound of Razborov [22] and Smolensky [24] on the size
of bounded-depth circuits.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 29–42, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

30 A. Chattopadhyay et al.

In contrast, we do not even know the exact degree of the Parity function
for polynomials over Zm, as soon as m is an odd number having two distinct
prime factors. In a beautiful work, Barrington, Beigel and Rudich [4] showed
that composite moduli give non-trivial advantage to polynomials as compared
to prime moduli. More precisely, they showed that the degree of the OR and
the AND function over Zm is O

(
n1/t

)
if m has t distinct prime factors. On the

other hand, it is well known that if m is a fixed prime, then this degree is Ω(n).
This surprising construction of Barrington et al. has found diverse applications.
Indeed, Efremenko [14] recently built efficient locally decodable codes from it.
Also, Gopalan [16] shows that several previously known constructions of explicit
Ramsey graphs can all be derived from this construction.

The best known lower bounds on the composite degree of any Boolean function
is Ω(log n) (see for example [17,25,9] and the survey [13]). Proving anything
better is a tantalizingly open problem. In this work, we look at low degree
polynomials through the lens of computational learning theory. The motivation
and hope is that this approach will lead to new insights into the structure of these
polynomials, thus benefiting both the fields of learning theory and complexity
theory.

Given that we know degree lower bounds of Ω(log n), it is reasonable to hope
that we can learn functions represented by constant degree polynomials. We take
on this task in this paper in the setting where the learner is allowed to ask mem-
bership queries. The main difficulty that one faces is essentially the same that
confronts one when proving lower bounds on the degree: while computation by
the target polynomial takes place in the entire ring Zm, the information revealed
to the learner is just Boolean. That is, we learn only whether the polynomial
when evaluated on the chosen point yields an element of the unknown accepting
set. Although several equivalent low degree representations may exist for the
target concept, it is a non-trivial fact that polynomially many such queries are
able to isolate a unique function in the concept class that agrees with the an-
swers of the teacher. The computational challenge, of course, is to recognize this
unique function.

Our Result. We consider the concept class of functions that have a represen-
tation by a constant degree polynomial in which every variable appears in a
constant number of monomials. We show that this class is exactly learnable in
polynomial time from the values of the target function at all input assignments
of Hamming weight bounded by another constant. These values can be obtained,
in particular, from membership queries. Additionally, our learning algorithm is
proper in the sense that it outputs a constant degree polynomial equivalent to
the target polynomial with respect to the Boolean function they compute. It is
worth remarking that there are very few instances in which concepts are known
to be properly learnable, especially when there is no guarantee of a unique rep-
resentation.

Overview of Our Techniques. Our learning algorithm uses some novel ideas
exploiting the following structural property of low degree polynomials first

Learning Read-Constant Polynomials of Constant Degree 31

discovered in the work of Péladeau and Thérien [20] (see the translation [21]): for
every constant degree polynomial P over any fixed finite commutative ring with
identity, there exists a “magic set” of variables of constant cardinality such that
every value in the range of P can be attained by only setting a subset of variables
from the magic set to 1 and setting all other variables to 0. This property is very
convenient and in particular, implies that every Boolean function that can be
represented by a constant degree polynomial gets uniquely determined by the
values it takes on points of constant Hamming weight. It is worthwhile to note
that although the function gets fixed by knowing its behavior on all low weight
points, it is not clear how to efficiently determine the value of this function on
any other input point of the Boolean cube. This is the essential challenge that
the learning algorithm has to overcome.

To be more specific, using this magic set we define an equivalence relation
among monomials of the same degree. We show that there always exists a poly-
nomial representing the same function that the teacher holds, in which all mono-
mials belonging to the same equivalence class have identical coefficients. The
number of equivalence classes is upper bounded by a constant and there is a
very efficient test of equivalence. These properties allow us to enumerate all pos-
sible values of coefficients and then choose any that satisfies the polynomially
many points of constant weight.

Relations to Existing Work. Polynomials have been widely studied in
learning theory. When the learner can use evaluation queries returning the
precise value of the polynomial over the base ring or field, polynomials of arbi-
trary degree over finite fields and even finite rings can be learned from evalua-
tion+equivalence queries [23,8,12]. On the other hand, when the accepting set
of the target polynomial is guaranteed to be a singleton set, it can be learned
in the PAC model, and also approximately from membership queries alone, by a
variation of the subspace-learning algorithm in [18] (see also [15]); this holds for
all finite (and many infinite) rings. For the field Zp, a standard use of Fermat’s
little theorem shows that every polynomial of degree d with an arbitrary accept-
ing set can be turned into an equivalent polynomial of degree d(p − 1) whose
range is {0, 1}; this allows us to learn polynomials of constant degree over Zp

both in the PAC model, as above, and exactly from membership queries.
In this paper we make progress, for the first time to our best knowledge,

in the equivalent learning problem for the non-field case. Note however that the
problem was mentioned in [15], where the degree 1 case was solved by a technique
that does not seem to extend to higher degrees. The emphasis in [15] was the
classification of families of Boolean functions computed by programs over finite
monoids (cf. [3,7,6]), with respect to their learnability in different models. In this
setting, polynomials of constant degree over finite rings are equivalent in power
to programs over nilpotent groups (as shown in [20]) with degree-1 polynomials
corresponding to programs over Abelian groups. The class of functions computed
by such programs is a natural subclass of functions computable by programs over
solvable groups. Starting with the famous and surprising work of Barrington [3]
that showed the class of functions computed by polynomial length programs

32 A. Chattopadhyay et al.

over finite non-solvable groups is exactly the complexity class NC1, programs
over groups, or monoids in general, have been used (see for example [7,6]) to
characterize natural subclasses of NC1.

2 Preliminaries

2.1 Polynomials over Finite Rings

Let R be a commutative finite ring with unit, and let P (x1, . . . , xn) be a poly-
nomial over R. We say P is a read -k polynomial, if every variable in P appears
in at most k monomials of P .

Consider a family of polynomials P = {Pi}∞i=1, where Pi is a polynomial in
i variables. We say the family P is read-constant, if there exist a k such that
every Pi ∈ P is read-k. Similarly, we say that P is constant degree if there exists
d such that every Pi ∈ P is of degree at most d.

In this work, we will restrict our attention to variables ranging over the set
{0, 1} ⊆ R, and as a consequence we can without loss of generality restrict our
attention to multilinear polynomials. Formally we consider the ring of polyno-
mials R[x1, . . . , xn]/N , where N is the ideal generated by the set of polynomials
{x2

i − xi | i = 1, . . . , n}. Any function {0, 1}n → R is uniquely expressed by
such a polynomial. Define the range of P as range(P) = {r ∈ R | ∃x ∈ {0, 1}n :
P (x) = r}.

Equipping a polynomial P with an accepting set A ⊆ R, we say that the
pair (P,A) computes a Boolean function f : {0, 1}n → {0, 1} if it holds that
P (x) ∈ A if and only if f(x) = 1, for all x ∈ {0, 1}n.

Given a set of indices J ⊆ [n], we let χJ ∈ {0, 1}n denote the characteristic
vector of J . Conversely, for w ∈ {0, 1}n, define Iw = {i ∈ [n]} | wi = 1}. Thus
χIw = w and IχJ = J . For u, v ∈ {0, 1}n, let u ∨ v ∈ {0, 1}n be defined by
Iu∨v = Iu ∪ Iv.

Consider now a degree d polynomial, P (x) =
∑

I⊂[n],|I|≤d cI

∏
i∈I xi. For a

subset S ⊆ [n] we define the polynomial PS of monomials from S by, PS(x) =∑
I⊆S,|I|≤d cI

∏
i∈I xi. For disjoint subsets S, T ⊆ [n] define the polynomial PS×T

consisting of cross terms between S and T :

PS×T (x) =
∑

I,J �=∅;I⊆S,J⊆T ;|I|+|J|≤d

cI∨J

∏
i∈I∪J

xi .

For a polynomial we associate the graph GP defined as follows. The set of vertices
of Gp is {1, . . . , n} and the set of edges is E(GP) = {(i, j) | xi and xj appear
together in some monomial of P } This will allow us to speak of the distance
between variables of P , namely as distances in the graph GP .

2.2 Structural Properties of Polynomials

Using an inductive Ramsey-theoretic argument, the following important struc-
tural result about constant degree polynomials over finite rings was proved by
Péladeau and Thérien [20].

Learning Read-Constant Polynomials of Constant Degree 33

Theorem 1 (Péladeau and Thérien). Let R be a finite commutative ring
with unity and let d be any number. Then there exists a constant c = c(R, d)
with the following property: For any multilinear polynomial P over R of degree
at most d and for any r ∈ range(P) there exists w ∈ {0, 1}n with |Iw| ≤ c such
that P (w) = r.

Remark 2. – The theorem as stated above is actually only implicitly given in
the proof of Lemma 2 of [20].

– In Sect. 4 we shall present with full proof a quantitative strengthening of the
theorem based on a result of Tardos and Barrington [25].

Two easy consequences of this theorem are given below. Our learning algorithm
will be heavily based on these results.

Corollary 3. There exists a constant s = s(R, d), such that for every multilin-
ear polynomial P over R of degree at most d, there exists a set J ⊂ {1, . . . , n}
with the following properties: (1). |J | ≤ s. (2). For every r ∈ range(P) there
exists w ∈ {0, 1}n with Iw ⊆ J such that P (w) = r.

Proof. Let s = |R|c(R, d), with c(R, d) as given by Theorem 1. We can then
simply take J to be the union of | range(P)| sets Iw provided by Theorem 1 for
each r ∈ range(P). ��
For a given polynomial P we will refer to the set J as guaranteed above to exist
as the magic set set of variables for P .

Corollary 4. There exists a constant c′ = c′(R, d) with the following property:
Let P and Q be polynomials of degree at most d with accepting sets A and B,
respectively. If the Boolean functions computed by the pairs (P,A) and (Q,B)
agree on all inputs w ∈ {0, 1}n with |Iw| ≤ c′, then the two Boolean functions
are identical.

Proof. We take c′ = c(R × R, d) as given by Theorem 1. Now, write P (x) =∑
cI

∏
i∈I xi and Q(x) =

∑
dI

∏
i∈I xi. Consider the polynomial (P ×Q) over

R × R given by (P ×Q)(x) =
∑

(cI , dI)
∏

i∈I xi If (P,A) and (Q,B) do not
compute the same Boolean function there is (r, s) ∈ range(P × Q) such that
either r ∈ A and s �∈ B or r �∈ A and s ∈ B. Then by Theorem 1 and the
choice of c′ this would be witnessed by a w ∈ {0, 1}n with |Iw| ≤ c′ such that
(P×Q)(w) = (r, s). ��

3 Learning with Membership Queries

In this section we will present our algorithm for learning read-constant, constant
degree polynomials. For convenience we choose to present the algorithm as a
nondeterministic algorithm, that when terminating with success always output
a correct polynomial. Afterwards we will be able to convert this nondeterministic
algorithm into a deterministic algorithm simply by enumerating over all possible

34 A. Chattopadhyay et al.

sequences of guesses of the algorithm, arguing that there are only polynomially
many such sequences.

For ensuring that the nondeterministic algorithm always produces a correct
output we use a consistency check procedure, described as Algorithm 1.

Algorithm 1. Consistent(Q,A, f)
Input: Polynomial Q with accepting set A ⊆ Zm. Membership query

access to Boolean function f .
Output: Decides if the pair (Q,A) computes the function f .

1: Query f on all w ∈ {0, 1}n with |Iw| ≤ c′(R, d)
2: Return true if and only if for each queried w, f(w) = 1 if and only if

Q(w) ∈ A

The correctness of the procedure is immediate from Corollary 4.

3.1 Equivalence Relations between Monomials

For our algorithm we need the following somewhat technical definition of param-
eterized equivalence relations of monomials. Intuitively, they serve the following
purpose: we want to learn an unknown polynomial, singling it out from exponen-
tially many possibilities. One way to reduce this huge search space is to deduce,
from membership queries, that some of the nO(d) coefficients must be the same,
as they can only have a constant (|R|) number of values. Equivalence among two
monomials, as defined below, is intended to suggest that they define isomorphic
subpolynomials of the target polynomial.

For example, if a target polynomial contains terms 2x1, 3x2, x1x2, 2x3, 3x4,
x3x4 we would like to say that monomials x1x2 and x3x4 are equivalent, and
when searching for coefficients for these monomials we can discard all settings
of coefficients where they differ.

The idea of the learning algorithm, to be explained in more detail in the next
section, is to first implement equivalent tests among all monomials and then, on
the basis of this information, actually find the values of all coefficients exploring
a polynomial search space rather than an exponential one.

For any monomial M , let IM = {i | xi appears in M}. Conversely, for any set
of indices I let MI denote the monomial Πi∈Ixi.

Given a polynomial P and a set J of indices in {1, . . . , n}, we define a param-
eterized equivalence relation ∼d,J on tuples (M,�), where M ⊂ [n],M ∩ J =
∅, |M | = d, and � is a total ordering1 on [n], by induction on d. We say
(M,�1) ∼d,J (M ′,�2) if the following is satisfied:

1. For every assignment w, such that Iw ⊆ J , we have P (w ∨ χM) ∈ A if and
only if P (w ∨ χM ′) ∈ A.

1 Alternatively one could fix the same ordering, say 1, . . . , n for all monomials. However
we find it natural to identify monomials that that are identical up to a permutation
of the variables.

Learning Read-Constant Polynomials of Constant Degree 35

2. Let M1, . . . ,Md (and M ′
1, . . . ,M

′
d) be the subsets of M (M ′) of size d−1 listed

in the lexicographic order w.r.t �1 (�2). Then (Mi,�1) ∼d−1,J (M ′
i ,�2),

for all i ≤ d.

For every pair of monomials M and M ′, each of degree d, with IM , IM ′ dis-
joint from J , we say that M ≡d,J M ′ if there exist �1 and �2 such that
(IM ,�1) ∼d,J (IM ′ ,�2).

3.2 Idea of the Learning Algorithm

Let P be a polynomial with accepting set A. Let Mrange(P) be the subgroup of
the additive subgroup of R generated by range(P) (i.e. the Z-module generated
by range(P)). Consider next the following equivalence relation on monomials of
a polynomial P

For tuples (M,�1) and (M ′,�2), where M,M ′ ⊂ [n] and �1 and �2 are total
orderings, we say (M,�1)∼̂d(M ′,�2) if the following is satisfied:

1. For every r ∈ Mrange(P), r + P (χM) ∈ A if and only if r + P (χM ′) ∈ A.
2. Let M1, . . . ,Md (and M ′

1, . . . ,M
′
d) be the subsets of M (M ′) of size d − 1

listed in the lexicographic order w.r.t �1 (�2). Then (Mi,�1)∼̂d−1(M ′
i ,�2),

for all i ≤ d.

For every pair of monomials M and M ′, each of degree d, we say that M≡̂dM
′

if there exist �1 and �2 such that (IM ,�1)∼̂d(IM ′ ,�2).
Assume now (by induction) that in P , that for all monomial M1 and M2 of

degree s < r we have cM1 = cM2 , whenever M1≡̂sM2. Next consider monomials
M and M ′ with M≡̂rM

′, and let P ′ be the polynomial obtained from P by
replacing the coefficient of M ′ with the coefficient of M . By our (inductive)
assumption we have P (χM) = P ′(χM ′). Let x ∈ {0, 1}n be arbitrary. Now,
since P (x), P (χM ′) ∈ range(P) we have r = P (x) − P (χM ′) ∈ Mrange(P). We
then have r + P (χM) ∈ A if and only if r + P (χM ′) ∈ A. But r + P (χM ′) =
(P (x)−P (χM ′))+P (χM ′) = P (x) and r+P (χM) = (P (x)−P (χM ′))+P (χM) =
P (x)− P (χM ′) + P ′(χM ′) = P ′(x). Hence P (x) ∈ A if and only if P ′(x) ∈ A.

Thus, if we would be able to actually implement testing of the above equiv-
alence relation, we would be have a simple learning algorithm as follows: First
compute all equivalence classes. Then enumerate all candidate polynomials ob-
tained by all possible coefficients for these equivalence classes, and test for cor-
rectness using the Consistent procedure. We do not know how to accomplish
this. However using the notion of a magic set, we are in fact able to implement
(possibly a refinement of) this equivalence relation on P restricted to all but a
constant number of variables.

3.3 Properties of Polynomials Equipped with a Magic Set

Before stating our learning algorithm, we establish a number of properties to be
used later for polynomials P equipped with a magic set J .

36 A. Chattopadhyay et al.

Lemma 5. Let P (x) =
∑

I⊆[n],|I|≤d cI

∏
i∈I xi be any polynomial over R, with a

magic set J . Let N be the set of indices that (viewed as vertices in the graph GP)
are at distance at least 2 from J in GP . Then, r+

∑
I⊆N,|I|≤d λIcI ∈ range(P),

for all r ∈ range(P) and all λI ∈ {0, . . . , |R| − 1}.
Proof. We prove the statement by induction, first by induction on the degree
d, and then by further induction on the monomials of degree d. We take as our
induction hypothesis that r +

∑
I⊆N,|I|<d λIcI ∈ range(P) for all r and λI .

The base case d = 0 trivially holds. Consider now for the inductive step the
case d + 1. Enumerate all

(|N |
d

)
subsets of N of cardinality d, and let Ii denote

the ith set in this enumeration. We shall now further induct on k to show that
r +

∑
I⊆N,|I|<d λIcI +

∑k
i=1 λIicIi ∈ range(P) for every r ∈ range(P). The

k = 0 base case trivially holds. For the inductive step, we want to show that r +∑
I⊆N,|I|<d λIcI +

∑k
i=1 λIicIi + λcIk+1 ∈ range(P). By induction hypothesis,

there exists u with Iu ⊂ J such that P (u) = r+
∑

I⊂L,|I|<d λIcI +
∑k

i=1 λIicIi =
r0. Then clearly, P (u∨χIk+1) = r0+

∑
I⊂Ik+1 cI +cIk+1 = r1 ∈ range(P). Hence,

there is u1 with Iu1 ⊆ J such that P (u1) = r1. Continuing in this way for λ
times we see that rλ = r0 +λ ·(∑I⊂Ik+1 cI)+λcIk+1 ∈ range(P). Applying once
more our outer induction hypothesis, we conclude rλ + (|R| −λ)(

∑
I⊂Ik+1 cI) =

r0 + λ · cIi ∈ range(P). This completes the inner and outer induction. ��
For a polynomial P with accepting set A we can always obtain equivalent poly-
nomial in which the constant term is 0 by shifting the accepting set according
to the constant term. Thus in the following assume the constant term of P is 0.
Let J be a magic set of P . Let N be the set of indices that are at distance 2 or
more from J in GP . Let PN be the polynomial obtained from P by fixing to 0
every variable indexed in the set [n] \N .

The crucial insight required for limiting the amount of nondeterministic guesses
in our learning algorithm is expressed in the following lemma.

Lemma 6. Let P be any polynomial of degree d with accepting set A and a
magic set J , and let r ≤ d. Assume that for all monomials M1 and M2 in
PN of degree s < r we have cM1 = cM2 whenever M1 ≡s,J M2. Consider now
monomials M and M ′ of degree r in PN such that M ≡r,J M ′. Let P ′ be the
polynomial obtained from P by replacing the coefficient of M ′ with the coefficient
of M . Then the polynomials P and P ′ compute the same Boolean function.

Proof. Since M ≡r,J M ′, we have (IM ,�M) ∼r,J (IM ′ ,�M ′) for some �M and
�M ′ . Let us enumerate lexicographically the subsets of IM and IN according to
�M and �M ′ . Let Mi and M ′

i be the monomial corresponding to the ith such
subsets and let di denote their degree. By definition we have Mi ≡di,J M ′

i, and
so by assumption the coefficients of Mi and M ′

i are the same. We thus have
that P (χM) = P ′(χM ′).

To prove that P and P ′ with accepting set A compute the same Boolean
function, let x ∈ {0, 1}n be arbitrary. Obviously, P (x) ∈ range(P). By Lemma 5
we then have that also P (x)− P (χM ′) ∈ range(P). It follows there exist u with

Learning Read-Constant Polynomials of Constant Degree 37

Iu ⊆ J such that P (u) = P (x)−P (χM ′). Since M ≡r,J M ′ we have P (u∨χM) =
P (u) + P (χM) ∈ A if and only if P (u ∨ χM ′) = P (u) + P (χM ′) ∈ A. But
P (u)+P (χM) = P (x)−P (χM ′)+P (χM) = P (x)−P (χM ′)+P ′(χM ′) = P ′(x)
and P (u) + P (χM ′) = P (x). Hence we can conclude that P (x) ∈ A if and only
if P ′(x) ∈ A. ��

3.4 The Learning Algorithm

We are now finally in position to state our algorithm.

Algorithm 2. Learn-Poly(f)
Input: Membership query access to Boolean function f .
Output: Returns pair (Q,A) computing the function f , or fail.

1: Nondeterministically guess the following:
A magic set J ⊆ [n], |J | ≤ s(R, d) and polynomial QJ .
The set K ⊆ [n] at distance 1 in GP from J and polynomials QK and
QK×J .
The set L ⊆ [n] at distance 2 in GP from J , and polynomial QK×L.
An accepting set A ⊆ R for Q.

2: Let N = [n] \ (J ∪K).
3: Query f on all inputs (w ∨ x) where Iw ⊆ J , Ix ⊆ [n] \N , and |Ix| ≤ 2d.
4: Compute the equivalence classes of ≡r,J , for all r = 1, . . . , d, over

monomials MI with I ⊆ N and |I| ≤ d.
5: Nondeterministically guess an element of R for each equivalence class.
6: Construct polynomial

Q = QJ + QK + QJ×K + QK×L +
∑

I⊂N,|I|≤d cI ·MI , where cI ∈ R is the
element guessed for the equivalence class of monomial MI .

7: If Consistent(Q,A,f), output (Q,A), otherwise output fail.

Theorem 7. Let R be a fixed commutative finite ring with unit. Let F be the
class of Boolean functions that can be computed by read-constant and constant
degree polynomials. Learn-poly non-deterministically learns exactly any func-
tion f ∈ F in polynomial time.

Proof. Take a computation path of Learn-poly in which it made right guesses
in step 1. Then using Lemma 6, we maintain an equivalent polynomial if the
guesses for coefficients of each equivalence class is correct. If incorrect guesses
result in a wrong candidate polynomial it will be detected by the Consistent
procedure. ��
It is easy to see that a deterministic variant of Learn-poly can be derived and it
runs in poly-time. This can be done by simply going through all possible guesses.
Since cardinality of J is bounded by a constant (using Corollary 3) determined
by the degree of the polynomial, there are only polynomially many sets to guess.
Since P is read-k for some constant k, |K| ≤ k(d − 1)|J |, and the number of
guesses for K is at most

(
n

k(d−1)|J|
)
, which is again polynomial in n. Observe

38 A. Chattopadhyay et al.

that the size of K is also bounded by a constant. Thus, guessing PJ , PK , PJ×K

involves at most |R|s guesses, where s is the number of monomials of degree at
most d involving variables indexed by set K ∪J . A similar argument shows that
polynomially many guesses are needed to get the correct L for each possible K
and then constantly many guesses for a given K and L are involved for PK×L.
Since the equivalence relation ≡d,J is finite indexed for each d, constantly many
guesses have to be enumerated to also make this deterministic and we are done.

4 Extensions to Higher Degrees

For a Boolean function f on n variables, define Δ(f,R) to be the minimal degree
of a polynomial over R computing f . Consider a family of Boolean functions
f = {fn}∞n=1, one for each input length. Define Δ(f,R, n) = Δ(fn,R). Define
Λ(f,R, d) as the maximal n such that Δ(f,R, n) ≤ d.

The notion of the degree of the Boolean AND function allows the following
quantitative version of Theorem 1.

Proposition 8. c(R, d) ≤ Λ(AND,R, d)

Proof. Let P be a multilinear polynomial of degree d over R in n variables.
Let r ∈ range(P). We will find w ∈ {0, 1}n with |Iw| ≤ Λ(AND,R, d) such
that P (w) = r. If P (0) = r, we are done. Otherwise, pick w ∈ {0, 1}n such
that |Iw| is minimal with P (w) = r. Consider now the restriction P ′ of P to
the variables indexed by Iw. By minimality of |Iw|, we have that P ′ computes
the AND function with accepting set {r} on |Iw| variables. Thus it follows that
|Iw| ≤ Λ(AND,R, d). ��
As a consequence we obtain the following bounds for s(R, d)-the size of the
magic set for polynomials over R of degree d, and c′(R, d)-the Hamming weight
of assignments that uniquely identify a Boolean function represented by such a
polynomial, in terms of Λ(AND,R, d) as well, following the proofs of Corollary 3
and Corollary 4.

Corollary 9. s(R, d) ≤ |R|Λ(AND,R, d) and c′(R, d) ≤ Λ(AND,R×R, d).

Thus lower bounds for the degree of the AND function implies upper bounds on
the above quantities. The degree of the AND function have been intensively stud-
ied over the ring Zm [4,25]. Let in the following m = pk1

1 · · · pkr
r have r distinct

prime factors, and let qmin = min(pk1
1 , . . . , pkr

r) and qmax = max(pk1
1 , . . . , pkr

r).
With these definitions, Tardos and Barrington [25] obtained the following lower
bound, which is currently the best known.

Theorem 10 (Tardos and Barrington)
Δ(AND, Zm, n) ≥ ((1/(qmin − 1)− o(1)) log n)1/(r−1).
Equivalently, Λ(AND, Zm, d) ≤ 2(qmin−1+o(1))dr−1

For the purpose of our learning algorithm we are interested in bounds for the
ring R = Zl

m. In fact, without loss of generality we may assume that R is of this
form. We can transfer the above results to this ring using standard methods. Let
m′ = p1 · · · pr. Let pmin = min(p1, . . . , pr).

Learning Read-Constant Polynomials of Constant Degree 39

Lemma 11. Δ(AND, Zm′ , n) ≤ l(qmax − 1)Δ(AND, Zl
m, n).

Equivalently, Λ(AND, Zl
m, d) ≤ Λ(AND, Zm′ , l(qmax − 1)d).

Proof. Let P be a polynomial over Zl
m of degree d computing the AND func-

tion. Without loss of generality, the accepting set is {0}. Let P1, . . . , Pl be the
l coordinate polynomials. Consider a fixed j, and the polynomials P1, . . . , Pl

modulo p
kj

j . By well known arguments (see e.g [25]) we can find polynomials

Qj
1, . . . , Q

j
l of degree at most (pkj

j − 1)d such that Qj
i (x) ≡ 0 (mod pj) if and

only if Pi(x) ≡ 0 (mod p
kj

j), and furthermore (Qj
i (x) mod pj) ∈ {0, 1} for all x.

Define Qj(x) = 1 −∏l
i=1(1 − Qj

i (x)). We then have Qj(x) ≡ 0 (mod pj) if
and only if Pi(x) ≡ 0 (mod p

kj

j) for all x and i. Note the degree of Qj is at most

l(pkj

j − 1)d.
Considering all such polynomials, Q1, . . . , Ql, from the Chinese Remainder

Theorem we may find a polynomial Q, of degree at most l(qmax − 1)d such that
Q(x) ≡ 0 (mod m′) if and only if P (x) = 0 for all x. ��

Combining Proposition 8, Theorem 10, and Lemma 11 we obtain the following
concrete bounds (following the proofs of Corollaries 3 and 4):

Proposition 12

c(Zl
m, d) ≤ Λ(AND, Zl

m, d) ≤ 2(pmin−1+o(1))(l(qmax−1)d)r−1
.

s(Zl
m, d) ≤ |Zl

m|c(Zl
m, d) ≤ ml2(pmin−1+o(1))(l(qmax−1)d)r−1

.

c′(Zl
m, d) ≤ c(Z2l

m, d) ≤ 2(pmin−1+o(1))(2l(qmax−1)d)r−1
.

We now provide a brief analysis of the running time of the deterministic version
of our algorithm Learn-Poly, presented in the last section, in terms of param-
eters s(R, d) and c′(R, d). The algorithm asks membership queries on points
of Hamming weight at most c′(R, d) + 2d. Thus, O(nc′+2d) many membership
queries are asked in total. The algorithm runs over all possible choices of a
magic set J of size s = s(R, d), the set K, of size ks(d − 1), of variables that
are at distance 1 from the set J and set L, of size k2s(d − 1)2, at distance 2
from J . Thus the total number of such choices is at most nk2sd2

. For each such
choice of J,K,L, the algorithm considers all possible degree d polynomials of
variables indexed in J ∪ K ∪ L. Thus, it has to consider at most |R|d(k2sd2)d

many polynomials. Further, for each choice of J,K,L it does equivalence testing
for monomials that are free of variables indexed by J or K. There are at most
dnd such monomials and the test for each involves 2s assignments of variables
in J . Thus, equivalence testing takes O

(
dnd · 2s

)
time. It is not hard to see that

degree d monomials split up into at most |R|2d

equivalence classes. Thus, one
has to consider all possible ways of coloring equivalence classes with elements of
R giving rise to |R|d|R|2d

such choices. Finally having guessed an entire candi-
date polynomial, the algorithm invokes procedure Consistent that verifies the

40 A. Chattopadhyay et al.

consistency of the polynomial with all weight c′ = c′(R, d) assignments. This
requires O

(
nd · cnc′+1

)
time. Summing these up, the total running time is

O(2|R|)×O(nO(k2sd2))×O(|R|d(k2sd2)d

)×O(dnd2s)×O(|R|d|R|2d

)×O
(
nd·cnc′+1

)
Using Proposition 12, we see that for each R = Z	

m with a fixed m and �, there
exists a constant γ such that s(R, d), c′(R, d) ≤ γdr−1

, where r is the number of
distinct prime factors of m. Hence, combining the above observations we get the
following:

Theorem 13. Let m and � be any fixed positive numbers. The class of Boolean
functions representable by read-k polynomials of degree d over Z	

m are exactly
learnable from membership queries by a deterministic algorithm of running time
O
(
nk2γdr

d2×γk2dγdr×γγ2d)
, where γ = γ(m, �) is a constant and r is the number

of distinct prime factors of m.

Theorem 13 gives us a range of super-constant k and d for which we get sub-
exponential running time. For instance, if we choose k = o(log log n), and d =
o(log log log n), the running time is n(log n)o(1)

.

5 Future Work

While the progress we make is limited from a learning theory perspective, the
combinatorics involved is unexpectedly delicate, and suggests some further ques-
tions in understanding the structure of polynomials over rings of the form Zm.

The obvious next question is to remove the read-constant restriction in our
result. Read-constant restrictions have been used, on several occasions, both in
complexity theory and in learning theory. For example in complexity theory,
Barrington and Straubing [5] proved superlinear bounds on the length of read-
constant branching programs of bounded-width. Very recently, several works
have been concerned with constructing pseudorandom generators for read-once
branching programs of small width [10,11,19]. In learning theory, read-constant
conditions have been sometimes shown to be unavoidable for efficient learning.
For example, read-once Boolean formulas can be learned efficiently from mem-
bership and equivalence queries [2]. On the other hand, under cryptographic
assumptions, even read-thrice Boolean formulas are impossible to learn no mat-
ter what polynomially-evaluatable hypothesis class is used (i.e., hard to learn in
a representation-independent way).

In other cases, read-constant conditions for learning a target concept class
can be removed at the expense of moving to a larger hypothesis class, which by-
passes some computational bottleneck. For example, Aizenstein et al. [1] showed
that read-k, satisfy-j DNF formulas2 are learnable (as DNF formulas). Without
the read-k condition, satisfy-j DNF formulas are not known to be learnable as
2 A DNF formula is read-k if every variable appears at most k times; a DNF formula

is satisfy-j if no assignment satisfies more than j terms simultaneously.

Learning Read-Constant Polynomials of Constant Degree 41

DNF, but they can be learned as Multiplicity Automata, as pointed out in [8].
Analogously, it is possible that constant degree polynomials over finite rings can
be learned (in some reasonable learning model) by not insisting that the output
is itself a constant degree polynomial.

Acknowledgments. A. Chattopadhyay is partially supported by a Natural
Sciences and Engineering Research Council (NSERC) postdoctoral fellowship
and research grants of Prof. T. Pitassi. R. Gavaldà is partially funded by the
Spanish Ministry of Science and Technology contract TIN-2008-06582-C03-01
(SESAAME), by the Generalitat de Catalunya 2009-SGR-1428 (LARCA), and
by the EU PASCAL2 Network of Excellence (FP7-ICT-216886).

References

1. Aizenstein, H., Blum, A., Khardon, R., Kushilevitz, E., Pitt, L., Roth, D.: On
learning read-k-satisfy-j dnf. SIAM J. Comput. 27(6), 1515–1530 (1998)

2. Angluin, D., Hellerstein, L., Karpinski, M.: Learning read-once formulas with
queries. J. ACM 40(1), 185–210 (1993)

3. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

4. Barrington, D.A.M., Beigel, R., Rudich, S.: Representing boolean functions as poly-
nomials modulo composite numbers. Comput. Complexity 4, 367–382 (1994)

5. Barrington, D.A.M., Straubing, H.: Superlinear lower bounds for bounded-width
branching programs. J. Comput. Syst. Sci. 50(3), 374–381 (1995)

6. Barrington, D.A.M., Straubing, H., Thérien, D.: Non-uniform automata over
groups. Inform. and Comput. 89(2), 109–132 (1990)

7. Barrington, D.A.M., Thérien, D.: Finite monoids and the finite structure of NC1.
J. ACM 35(4), 941–952 (1988)

8. Beimel, A., Bergadano, F., Bshouty, N., Kushilevitz, E., Varricchio, S.: Learning
functions represented as multiplicity automata. J. ACM 47, 506–530 (2000)

9. Bourgain, J.: Estimation of certain exponential sums arising in complexity theory.
C. R. Acad. Sci. Paris 340(9), 627–631 (2005)

10. Braverman, M., Rao, A., Raz, R., Yehudayoff, A.: Pseudorandom generators for
regular branching programs. In: 51th Annual IEEE Symposium on Foundations of
Computer Science, pp. 40–47. IEEE Computer Society Press, Los Alamitos (2010)

11. Brody, J., Verbin, E.: The coin problem, and pseudorandomness for branching
programs. In: 51th Annual IEEE Symposium on Foundations of Computer Science,
pp. 30–39. IEEE Computer Society Press, Los Alamitos (2010)

12. Bshouty, N., Tamon, C., Wilson, D.: Learning matrix functions over rings. Algo-
rithmica 22, 91–111 (1998)

13. Chattopadhyay, A.: Multilinear polynomials modulo composites. Bulletin of the
European Association on Theoretical Computer Science, Computational Complex-
ity Column, 100 (February 2010)

14. Efremenko, K.: 3-query locally decodable codes of subexponential length. In: 41st
Annual Symposium on Theory of Computing, pp. 39–44. ACM Press, New York
(2009)

15. Gavaldà, R., Thérien, D.: An algebraic perspective on boolean function learning.
In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS,
vol. 5809, pp. 201–215. Springer, Heidelberg (2009)

42 A. Chattopadhyay et al.

16. Gopalan, P.: Constructing ramsey graphs from boolean function representations.
In: 21st Annual IEEE Conference on Computational Complexity, pp. 115–128.
IEEE Computer Society Press, Los Alamitos (2006)

17. Grolmusz, V.: On the weak mod m representation of boolean functions. Chicago
J. Theoret. Comput. Sci. (1995)

18. Helmbold, D.P., Sloan, R.H., Warmuth, M.K.: Learning nested differences of
intersection-closed concept classes. Machine Learning 5, 165–196 (1990)

19. Koucký, M., Nimbhorkar, P., Pudlák, P.: Pseudorandom generators for group prod-
ucts. In: 43rd Annual ACM Symposium on Theory of Computing. ACM Press, New
York (2011, to appear)

20. Péladeau, P., Thérien, D.: Sur les langages reconnus par des groupes nilpotents. C.
R. Math. Acad. Sci. Paris Sér I Math. 306(2), 93–95 (1988)

21. Péladeau, P., Thérien, D.: On the languages recognized by nilpotent groups (a
translation of ”sur les languages reconnus par des groupes nilpotents”). In: Elec-
tronic Colloquium on Computational Complexity (ECCC), vol. 8(40) (2001)

22. Razborov, A.A.: Lower bounds on the size of bounded-depth networks over a com-
plete basis with logical addition. Math. Notes of the Acad. of Sci. of USSR 41(3),
333–338 (1987)

23. Schapire, R.E., Sellie, L.: Learning sparse multivariate polynomials over a field
with queries and counterexamples. J. Comput. Syst. Sci. 52(2), 201–213 (1996)

24. Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In: 19th Annual ACM Symposium on Theory of Computing, pp. 77–82.
ACM Press, New York (1987)

25. Tardos, G., Barrington, D.A.M.: A lower bound on the MOD-6 degree of the OR
function. Comput. Complexity 7(2), 99–108 (1998)

On the Arithmetic Complexity of Euler Function

Manindra Agrawal�

IIT Kanpur
manindra@iitk.ac.in

Abstract. It is shown that the problem of computing the Euler function is closely
related to the problem of computing the permanent of a matrix as well as to the
derandomization of the Identity Testing problem. Specifically, it is shown that
(1) if computing the Euler function over a finite field is hard then computing
permanent over the integers is also hard, and (2) if computing any factor of the
Euler function over a field is hard then the Identity Testing problem over the field
can be derandomized.

1 Introduction

Leonhard Euler defined the following function, called the Euler function, in the course
of his investigations into partition numbers:

E(x) =
∏
n>0

(1− xn).

This function is the reciprocal of generating function of partition numbers:

1
E(x)

=
∑
m≥0

pmxm,

where pm is the mth partition number (the number of ways of expressing m as a sum
of positive numbers). Function E(x) has many remarkable properties (some shown by
Euler and others later), some of which we list below.

– E(x) can be written as an infinite sum:

E(x) =
∞∑

n=−∞
(−1)nx

1
2 n(3n−1).

This is called the Pentagonal Number Theorem, and can be proved in many
ways [4].

– Roots of E(x) are precisely all the roots of unity and each root of E(x) has un-
bounded multiplicity. Therefore, for any root of unity ω, for any m ≥ 1, the fol-
lowing holds [5]:

∞∑
n=−∞

(−1)n[
1
2
n(3n− 1)]m(ω)

1
2 n(3n−1) = 0.

� N Rama Rao professor, Department of Computer Science, IIT Kanpur, Kanpur 208016, India.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 43–49, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

44 M. Agrawal

– E(x) exhibits strong symmetries, captured by modular group, and is closely related
to modular forms [3].

We are interested in computing the Euler function. Of course, since it is an infinite
series, we will aim to compute approximations of E(x). There are two natural ways of
defining approximations of E(x):

Product approximation. Let EΠ,n(x) =
∏n

m=1(1 − xm). Thus, EΠ,n(x) is a poly-
nomial of degree 1

2 (n2 + n) and limn�→∞ EΠ,n(x) = E(x).
Sum approximation. Let EΣ,n(x) =

∑n
m=−n(−1)mx

1
2 m(3m−1). Thus, EΣ,n(x) is

a polynomial of degree at most 1
2 (3n2 + n) and limn�→∞ EΣ,n(x) = E(x).

The polynomial families {EΣ,n(x)}n>0 and {EΠ,n(x)}n>0 can be computed by fam-
ilies of circuits of finite size. For computing polynomials, the natural model to adopt
is that of arithmetic circuits, in which each gate computes addition or multiplication of
its inputs. As these are univariate polynomials, the input to any such circuit will be the
variable x and some constants (constants make the circuit family non-uniform). The
size of such a circuit is defined as the number of wires in it. As any arithmetic circuit
of size s with input x and constants can compute a polynomial of degree at most 2s,
it follows that one needs circuits of size Ω(log n) to compute EΣ,n(x) or EΠ,n(x).
So the question we address is the following: can the two polynomial families be com-
puted by circuit families of size logO(1) n? We show that a negative answer to any of
these questions will separate VP from VNP (the arithmetic analogs of classes P and
NP, see [8]). Moreover, a stronger lower bound on the complexity of {EΠ,n(x)}n>0

will imply a complete black-box derandomization of Polynomial Identity Testing (PIT)
problem, one of the central problems in complexity theory.

Pascal Koiran [6] has recently shown similar results as above. His results are applica-
ble to a larger class of univariate polynomials, but do not imply as strong lower bounds
as ours.

2 Arithmetic Complexity Classes and Permanent Polynomial

Arithmetic circuits over a ring R contains addition and multiplication gates (sub-
traction is simulated by multiplying with −1 and adding). We allow these gates to
have unbounded fanin. The input gates are labelled by variables or constants from R.
Such a circuit computes a polynomial in R[z1, . . . , zn], where z1, . . . , zn are the input
variables.

Valient [8] defined VP, the class of multivariate polynomials that can be computed
by small sized arithmetic circuits. To define this class, we need the notion of formal
degree:

1. The formal degree of an input gate is equal to 1.
2. The formal degree of an addition gate is the maximum of the formal degrees of its

incoming gates, and the formal degree of a multiplication gate is the sum of the
formal degrees of incoming gates.

On the Arithmetic Complexity of Euler Function 45

Finally, the formal degree of a circuit is the formal degree of its output gate. Clearly,
this is an upper bound on the degree of the polynomial computed by the circuit. We now
define the class VPF :

Definition 2.1. Polynomial family {Pn}n>0 over field F belongs to the class VPF if
there exists a polynomial p(n) and a sequence {Cn}n>0 of arithmetic circuits over F
such that Cn computes Pn and the size and formal degree of Cn at most p(n).

The constraint on the formal degree ensures that polynomials of high degree such as e.g.
z2n

and large constants such as 22n

cannot be computed. VP contains several important
families of polynomials, e.g., the family of determinant polynomials.

Note that the definition of the class VPF is tailored for multivariate polynomials.
For univariate polynomial families, we do not consider the question if they belong to
VPF or not; instead, we simply consider their size (without bothering about the formal
degree).

Another important complexity class is the class VNP. Polynomials in this family are
sums over exponentially many values of a polynomial in VP. Formally,

Definition 2.2. Polynomial family {Pn(x1, . . . , xu(n))}n>0 is in the class VNPF if
there exists a polynomial family {Qn(x1, . . . , xv(n))}n>0, v(n) = uO(1)(n), in VPF

such that:

Pn(x1, . . . , xu(n)) =
∑

ε∈{0,1}v(n)−u(n)

Qn(x1, . . . , xu(n), ε).

The family of permanent polynomials is in the class VNPF for any field F . Moreover,
Valient [8] showed that the permanent family is complete for the class VNPF for char-
acteristic �= 2:

Theorem 2.3. Let F be any field of characteristic �= 2. For every family {Pn}n>0 in
VNPF there exists a polynomially bounded function p(n) and a matrix M of size p(n)
whose entries are variables and constants such that the family 2p(n)Pn = per(M).

The factor 2p(n) can be removed if F is of finite characteristic. The central question
in the arithmetic complexity theory is whether VPF �= VNPF . This is equivalent, by
the above theorem, to the question whether the permanent family belongs to VPF when
char F �= 2.

We will make use of the following lemma proved by Valiant [8] (the formulation
below is by Koiran [7]).

Lemma 2.4. Let F be a field of characteristic p. Suppose that n �→ p(n) is a polynomi-
ally bounded function, and that f : N×N→ F is such that the map 1n0j �→ f(j, n) is
in the complexity class ModpP/poly (GapP/poly for p = 0). Then the family {Pn}n>0

of multilinear polynomials defined by

Pn(x1, . . . , xp(n)) =
∑

j∈{0,1}p(n)

f(j, n)xj[1]
1 · · ·xj[p(n)]

p(n) (1)

is in VNPF . Here j[k] denotes the (k − 1)th least significant bit in the binary expansion
of j.

46 M. Agrawal

3 The Family {EΣ,n(x)}n>0

For {EΣ,n(x)}n>0, it is easy the show the following theorem:

Theorem 3.1. Let F be any field of characteristic > 2 and s(·) a monotonically non-
decreasing function with s(n) = Ω(n). If the permanent family can be computed by
arithmetic circuits of size s(n) over F then the family {EΣ,n(x)}n>0 can be computed
by arithmetic circuits of size s(O(log n)) over F .

Proof. For the polynomial EΣ,n(x), define its multilinear version as:

EΣ,M,n(z1, . . . , zu) =

1
2 (3n2+n)∑

t=0

ct

u∏
j=1

z
t[u]
j ,

where u = �log(3n2 + n)� − 1 and ct equals 0, 1, or −1 satisfying the condition that
EΣ,n(x) = EΣ,M,n(x, x2, x4, . . . , x2u

). The coefficients ct is computable in P given
t: check if t is of the form 1

2 (3m2 ± m), if yes, the coefficient is ±1 depending on
the sign on m, otherwise the coefficient is 0. Lemma 2.4 and Theorem 2.3 imply that
2p(n)EΣ,M,n(z1, . . . , zu) can be computed as permanent of a size logO(1) n matrix over
F . A careful examination of the proofs of above results yields a matrix of size O(log n).
By our assumption on the complexity of permanent, this polynomial can be computed
by a circuit C of size s(O(log n)) over F . The inputs to circuit C are variables z1, . . .,
zu. Modify C by substituting x2j

for variable zj and inserting a small circuit computing
x2j

from x (this will contain j multiplication gates). This circuit now computes the
polynomial 2p(n)EΣ,n(x) and has size s(O(log n)). Multiply the output of the circuit
with the multiplicative inverse of 2p(n) (since the characteristic of the field is > 2, the
inverse always exists). The resulting circuit computes the polynomial EΣ,n(x).

4 The Family {EΠ,n(x)}n>0

This is a more interesting class of polynomials. The polynomial EΠ,n(x) agrees with
EΣ,n(n) up to degree n, however, computing EΠ,n(x) is far trickier because its coeffi-
cients are not as nice as for EΣ,n(x).

The interest in this family also derives from a conjecture made in [1] implying that
computing EΣ,n(x) requires circuits of size nΩ(1) over any field F . If the conjecture is
true, what can we say about the complexity of permanent? If an analog of Theorem 3.1
holds for the family {EΠ,n(x)}n>0 then we get that permanent requires circuits of size
2Ω(n) over F . A result of [6] gives a weaker conclusion: permanent requires circuits
of size superpolynomial over integers (this follows from the fact shown in [6] that the
coefficients of EΠ,n(x) are computable in the counting hierarchy).

In this section, we prove a stronger version of result in [6]:

Theorem 4.1. Let F be any field of characteristic p > 2 and s(·) a monotonically
nondecreasing function with s(n) = Ω(n). If the permanent family can be computed
by arithmetic circuits of size s(n) over Z then the polynomial family {EΠ,n(x)}n>0

can be computed by arithmetic circuits of size s(s(O(log n))) over F .

On the Arithmetic Complexity of Euler Function 47

In the remainder of this section, we prove this theorem.
Let P (x) = EΠ,n(x) for some n > 1. The degree of P (x) equals d = 1

2n(n +
1) < n2. Since coefficients of P (x) lie in Fp, computing P (x) over F is equivalent to
computing it over Fp. Let F̂ be the smallest extension of Fp of size ≥ n2, and q = |F̂ |.
So, by the Langrange’s interpolation formula, we have:

P (x) =
∑
α∈F̂

P (α)

∏
β∈F̂ ,β �=α(x− β)∏
β∈F̂ ,β �=α(α− β)

Observe that ∏
β∈F̂ ,β �=α

(α − β) =
∏

β∈F̂∗

β = −1,

and ∏
β∈F̂ ,β �=α

(x − β) =

∏
β∈F̂ (x− β)

x− α

=
xq − x

x− α

=
q−1∑
j=1

αj−1xq−j .

Therefore,

P (x) = −
∑
α∈F̂

P (α)
q−1∑
j=1

αj−1xq−j

= −
q−1∑
j=1

(
∑
α∈F̂

P (α)αj−1)xq−j .

Now the coefficients of P (x) are in the “right” form, and we can compute them effi-
ciently if we can compute P (α) easily. So we turn our attention to

P (α) =
n∏

m=1

(1− αm).

A direct computation of P (α) is not possible as it needs a large number of multiplica-
tions. Instead, we exploit the fact that the computation is over F̂ to show the following:

Lemma 4.2. The coefficient P (α), given α, can be computed in P#P.

Proof. Let γ ∈ F̂ be a generator of the group F̂ ∗. Define an NTM M as follows:

On input α, guess t and m with 0 ≤ t < q and 1 ≤ m ≤ n. Check if
gt = 1−αm. If not, then output 0 on the path. If yes, then output t on the path.

48 M. Agrawal

NTM M works for polynomial time (on input size |α| = O(log n)). We also have
#M(α) =

∑n
m=1 tm where gtm = 1 − αm. Hence, g#M(α) = P (α). Therefore,

P (α) is computable in P#P.

The rest of the proof is now straightforward. By the above lemma, it follows that
the polynomial P (x) can be computed in VNP#P

F . Since, by assumption, the per-
manent family can be computed by arithmetic circuits of size s(n) over Z, we get,
by the completeness of permanent as argued in the previous section, that P (x) can
be computed in VNPF with an advice of size s(O(log n)). Applying the complete-
ness of permanent once again, we get that P (x) can be computed by circuits of size
s(O(s(O(log n)))) = s(s(O(log n))) over F .

5 Black-Box Derandomization of PIT

Result in the previous section suggests that computing {EΠ,n(x)}n>0 may be hard. Is
it easier to compute polynomials that are multiples of polynomials in {EΠ,n(x)}n>0?
A negative answer to this question yields a black-box derandomization of PIT.

Definition 5.1. The Polynomial Identity Testing (PIT) over field F has as input an
arithmetic circuit of size n over n variables and field F . The problem is to determine if
the circuit computes an identically zero polynomial.

We also classify polynomial families that are multiples of {EΠ,n(x)}n>0:

Definition 5.2. Let {Pn(x)}n>0 be a family of polynomials with Pn(x) of degree
nO(1). The family is an m-multiple of {EΣ,n(x)}n>0 if for every n, EΠ,m(x) divides
Pn(x).

It is believable that EΠ,m(x) requires circuits of size mδ for some δ > 0. Does this
also mean that a non-zero Pn(x) requires circuits of size bigger than mδ? If yes, then
we can obtain a black-box derandomization of PIT.

Theorem 5.3. Suppose that any family {Pn(x)}n>0 of non-zero polynomials over field
F that is an m-multiple of {EΣ,n(x)}n>0 requires circuits of size mδ over F to com-
pute for some δ > 0. Then there exists a polynomial-time black-box derandomization
of PIT over F .

Proof. Let C be a circuit of size n computing a polynomial Q(y1, . . . , yn) over field F .
The degree of Q is bounded by 2n. Let D = 2n +1. Replace yi by xDi−1

for 1 ≤ i ≤ n
as input to C. To compute these powers of y, insert additional multiplication gates at
the bottom of the circuit C – one needs O(n2) additional gates. Let the resulting circuit
be Ĉ and let R(x) be the polynomial computed by Ĉ. The size of Ĉ is O(n2) and the
degree of R(x) is bounded by 2n2

. It is easy to observe that Q is identically zero if and
only if R is. Test if R(x) = 0 modulo (x	 − 1)k for 1 ≤ � ≤ m = n

3
δ and k the largest

number such that (x	−1)k divides EΠ,m(x), and output ZERO iff all the tests succeed.
The above algorithm is clearly a deterministic, polynomial-time, black-box algo-

rithm. We now prove that it is also correct. Observe that if R(x) = 0 modulo (x	 − 1)k

On the Arithmetic Complexity of Euler Function 49

for every �, 1 ≤ � ≤ m implies that EΠ,m(x) divides R(x). If R(x) is non-zero then,
by our assumption, R(x) requires a circuit of size mδ = n3 to compute over F . How-
ever, Ĉ is a circuit of size O(n2) computing R. Therefore, if R(x) = 0 modulo each of
(x	 − 1)k, then R(x) = 0 .

A special case of the above theorem was shown in [2]: the family of polynomials

Pn(x) =
log

7
2 n∏

a=1

((x + a)n − xn − a),

can be computed by circuits of size O(log
9
2 n) and any non-zero Pn(x) over Zn is not

a (log5 n)-multiple of {EΠ,n(x)}n>0.

6 Open Questions

A number of questions remain unanswered:

1. Is the polynomial EΠ,n(x) over Fp computable in ModpP? We conjecture yes.
2. Does EΠ,n(x) require circuits of size nδ for some δ > 0? We conjecture yes.

Coupled with the above conjecture, this will imply a lower bound of 2Ω(n) on the
size of arithmetic circuits computing permanent of size n matrices.

3. Does any m-multiple of {EΠ,n(x)}n>0 require circuits of size mδ for some δ > 0?
We conjecture yes. This will, in addition to the lower bounds, provide a derandom-
ization of PIT.

References

[1] Agrawal, M.: Proving lower bounds via pseudo-random generators. In: Sarukkai, S., Sen, S.
(eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 92–105. Springer, Heidelberg (2005)

[2] Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–
793 (2004)

[3] Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Springer,
Heidelberg (1990)

[4] Bell, J.: Euler and the pentagonal number theorem,
http://arxiv.org/abs/math.HO/0510054

[5] Euler, L.: De mirabilis proprietatibus numerorum pentagonalium. Acta Academiae Scien-
tarum Imperialis Petropolitinae 4, 56–75 (1783),Translation by Jordan Bell,
http://arxiv.org/abs/math/0505373

[6] Koiran, P.: Shallow circuits with high-powered inputs,
http://arxiv.org/abs/1004.4960

[7] Koiran, P.: Valiants’s model and the cost of computing integers. Computational Complex-
ity 13, 131–146 (2004)

[8] Valiant, L.G.: Completeness classes in algebra. In: Proceedings of Annual ACM Symposium
on the Theory of Computing, pp. 249–261 (1979)

http://arxiv.org/abs/math.HO/0510054
http://arxiv.org/abs/math/0505373
http://arxiv.org/abs/1004.4960

Pseudo-random Graphs and Bit Probe Schemes

with One-Sided Error�

Andrei Romashchenko

CNRS, LIF de Marseille & IITP of RAS (Moscow)

Abstract. We study probabilistic bit-probe schemes for the member-
ship problem. Given a set A of at most n elements from the universe of
size m we organize such a structure that queries of type “x ∈ A?” can
be answered very quickly.

H. Buhrman, P.B. Miltersen, J. Radhakrishnan, and S. Venkatesh
proposed a bit-probe scheme based on expanders. Their scheme needs
space of O(n log m) bits, and requires to read only one randomly chosen
bit from the memory to answer a query. The answer is correct with
probability 2/3 with two-sided errors.

In this paper we show that for the same problem there exists a bit-
probe scheme with one-sided error that needs space of O(n log2 m +
poly(log m)) bits. The difference with the model of Buhrman, Miltersen,
Radhakrishnan, and Venkatesh is that we consider a bit-probe scheme
with an auxiliary word. This means that in our scheme the memory is
split into two parts of different size: the main storage of O(n log2 m) bits
and a short word of logO(1) m bits that is pre-computed once for the
stored set A and “cached”. To answer a query “x ∈ A?” we allow to read
the whole cached word and only one bit from the main storage. For some
reasonable values of parameters (e.g., for poly(log m) � n � m) our
space bound is better than what can be achieved by any scheme without

cached data (the lower bound Ω(n2 log m
log n

) was proven in [11]).

We obtain a slightly weaker result (space of size n1+δpoly(log m) bits
and two bit probes for every query) for a scheme that is effectively en-
codable.

Our construction is based on the idea of naive derandomization, which
is of independent interest. First we prove that a random combinatorial
object (a graph) has the required properties, and then show that such
a graph can be obtained as an outcome of a pseudo-random generator.
Thus, a suitable graph can be specified by a short seed of a PRG, and
we can put an appropriate value of the seed into the cache memory of
the scheme.

1 Introduction

We investigate the static version of the membership problem. The aim is to repre-
sent a set A ⊂ {1, . . . ,m} by some data structure so that queries “x ∈ A?” can be

� Supported in part by grants RFBR 09-01-00709-a and ANR-08-EMER-008-01.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 50–63, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Pseudo-random Graphs and Bit Probe Schemes with One-Sided Error 51

easily replied. We are interested in cases when the number of elements in the set
n = |A| is much less than size m of the universe (e.g., n = exp{poly(log log m)}
or n = m0.01).

In practice, many different data structures are used to represent sets: simple
arrays, different variants of height-balanced trees, hash tables, etc. The simplest
solution is an array of m bits; to answer a query “x ∈ A?” we need to read a single
bit from the memory. However, the size of this data structure is excessive . In
a more complicated data structure based on double hashing (Fredman, Komlós,
and Szemerédi, [3]) a set is represented as a table of O(n) words of size log m bits,
and a query “x ∈ A?” requires to read O(1) words from the memory. Another
popular practical solution is Bloom’s filter [1]. This data structure requires only
O(n) bits, whatever is the size of the universe; to answer a query we need to
read O(1) bits from the memory. The drawback of this method is that we can
get false answers to some queries. Only false positives answers are possible (for
some x �∈ A Bloom’s filter answers “yes”), but false negatives are not. For a
“typical” set A the fraction of false answers is small.

An interesting approach was suggested by Harry Buhrman, Peter Bro Mil-
tersen, Jaikumar Radhakrishnan, and Venkatesh Srinivasan [11]. They intro-
duced some randomness into the query processing algorithm. That is, the data
structure remains static (it is deterministically defined for each set A), but when
a query is processed we a toss coins and read randomly chosen bit from the
memory. In this model, we allow to return a wrong answer with some small
probability. Notice the sharp difference with the Bloom’s filter: for each x we
must correctly reply to the query “x ∈ A?” with probability close to 1.

Buhrman, Miltersen, Radhakrishnan, and Venkatesh investigated both two-
sided and one-sided errors. In this paper we will concentrate mostly on one-sided
errors: if x ∈ A, then the answer must be always correct, and if x �∈ A, then
some small probability of error is allowed. A trivial information-theoretic bound
shows that the size of the structure representing a set A cannot be less that
log
(
m
n

)
= Ω(n log m) bits. Surprisingly, this bound can be achieved if we allow

two-sided errors and use only single bit probe for each query. This result was
proven in [11]. We refer to the scheme proposed their as the BMRV-scheme:

Theorem 1 (two-sided BMRV-scheme, [11]). For any ε > 0 there is a
scheme for storing subsets A of size at most n of a universe of size m using
O(n

ε2 log m) bits so that any membership query “Is x ∈ A?” can be answered with
error probability less than ε by a randomized algorithm which probes the memory
at just one location determined by its coin tosses and the query element x.

The bound achieved in this theorem is very close to the known lower bound. In
fact, the trivial lower bound log

(
m
n

)
can be improved: the less is probability of

an error, the greater must be the stored bit vector. For one-sided error schemes
a stronger lower bound is known:

Theorem 2 (lower bound, [11]). (a) For any ε > 0 and n
ε < m1/3, any

ε-error randomized scheme which answers queries using one bitprobe must use
space Ω(n

ε log 1/ε log m).

52 A. Romashchenko

(b) Any scheme with one-sided error ε that answers queries using at most one
bitprobe must use Ω(n2

ε2 log(n/ε) log m) bits of storage.

The second part of the theorem above implies that we cannot achieve space of
size O(n log m) with a one probe scheme and one-sided error. However we can
get very close if we allow O(1) probes (instead of a single probe):

Theorem 3 (one-sided BMRV-scheme, [11]). Fix any constant δ > 0.
There exists a constant t such that the following holds: there is a one-sided 1

3 -
error randomized scheme that uses space O(n1+δ log m) and answers membership
queries with at most t probes.

The constructions in [11] is not explicit: given the list of elements A, the corre-
sponding scheme is constructed (with some brute force search) in time 2poly(m).
Moreover, each membership query requires exponential in m computations.

The crucial element of the constructions in Theorem 1 is an unbalanced ex-
pander graph. Existence of a graph with required parameters was proven in [11]
probabilistically. We know that such a graph exists and we can find it by brute
force search, but we do not know how to construct it explicitly. Since Bassalygo
and Pinsker defined expanders [2], many explicit (and poly-time computable)
constructions of expander graphs were discovered, see a survey [15]. However,
most of known constructions are based on spectral technique that is not suitable
to get an expander of degree d with expansion parameter greater than d/2, see
[8]. This is not enough for the construction used in the proof of Theorem 1 in
[11]; we need there a graph with expansion parameter close to d.

There are only very few effective constructions of unbalanced graph with large
expansion parameter. One of the known constructions was suggested by Capalbo
et al in [12]; its parameters are close to optimal values if the size of the right part
of the graph is constant times less than the size of the left part of the graph.
However, in the BMRV-scheme we need a graph where the right part of the graph
is much less than the left part. Some explicit construction suitable for BMRV-
scheme was suggested in [14]. The best known explicit construction of a highly
unbalanced expander graph was presented in [18]. This beautiful construction is
based on the Parvaresh–Vardy code with an efficient list decoding. Thanks to
the special structure if this expander, it enjoys some special property of effective
decoding. Using this technique, the following variant of Theorem 1 can be proven:

Theorem 4 ([18]). For any δ > 0 there exists a scheme for storing subset A
of size at most n of a universe of size m using n1+δ · poly(log m) bits so that
any membership query can be answered with error probability less than ε by a
randomized algorithm which probes the memory at one location determined by
its coin tosses and the query element x.

Given the list of elements A, the corresponding storing scheme can be con-
structed in time poly(log m,n). When the storing scheme is constructed, a query
for an element x can be calculated in time poly(log m).

In Theorems 1, 3, 4, a set A is encoded into a bit string, and when we want to
know if x ∈ A, we just read from this string one randomly chosen bit (or O(1)

Pseudo-random Graphs and Bit Probe Schemes with One-Sided Error 53

bits in Theorem 3). The obtained information is enough to decide whether x is an
element of the set. Let us notice that in all these computations we implicitly use
more information. To make a query to the scheme and to process the retrieved
bit, we need to know the parameters of the scheme: the size n of the set A,
the size m of the universe, and the allowed error probability ε. This auxiliary
information is very short (it takes only log(m/ε) bits). It does not depend on
the stored set A. We assume that it is somehow hardwired into the bitprobe
scheme (we say that this information is cached in advance by the algorithms
that processes queries).

In this paper we consider a more liberal model, where small cached information
can depend on the set A. Technically, the date stored in our scheme consists of
two parts of different size: a small cached string C of length poly(log m), and a
long bit string B of length n · poly log(m). Both these strings are prepared for a
given set A of n elements (in the universe of size m). When we need to answer
a query “x ∈ A?”, we use C to compute probabilistically a position in B and
read there one bit. This is enough to answer whether x is an element of A, with
a small one-sided error:

Theorem 5. Fix any constant ε > 0. There exists a one-sided ε-error random-
ized scheme that includes a string B of length O(n log2 m) and an auxiliary word
C of length poly(log m). We can answer membership queries “x ∈ A?” with one
bit probe to B. For x ∈ A the answer is always correct; for each x �∈ A probability
of error is less than ε.

The position of the bit probed in A is computed from x and the auxiliary word
C in time poly(log m).

Remark 1: Schemes with ‘cached’ auxiliary information that depends on A
(not only on its size n = |A| and the size m of the universe) makes sense
only if this information is very small. If the size of the cached data is about
log
(
m
n

)
bits, then we can put there the list of all elements of A, so the problem

becomes trivial. Since in our construction we need cached information of size
poly(log m) bits, the result is interesting when poly(log m) n m, e.g., for
n = exp{poly(log log n)}. Notice that by Theorem 2 the space size O(n log2 m)
with one-sided error cannot be achieved by any schemes without cached auxiliary
information that depends on A.

Remark 2: The model of data structures with cached memory looks useful for
practical applications. Indeed, most computer systems contain some hierarchy of
memory levels: CPU registers and several levels of processor caches, then random
access memory, flash memory, magnetic disks, remote network-accessible drives,
etc. Each next level of memory is cheaper but slower. So, it is interesting to
investigate the tradeoff between expensive and fast local memory and cheap
and slow external memory. There is rich literature on algorithms with external
memory, see, e.g, surveys [10,16]. Tradeoff between local and external memory is
typically studied for dynamic data structures. The same time, it is not obvious
that fast cache memory of negligible size can help to process queries in a static
data structure. Since a small cache ‘knows’ virtually nothing about most objects

54 A. Romashchenko

in the database, so at first sight is seems to be useless. However, Theorem 5
shows that even a very small cache can be surprisingly efficient.

Remark 3: In the proof of Theorem 5 we derandomize a probabilistic proof
of existence of some kind of expander graphs. In many works derandomization
of probabilistic arguments involves highly sophisticated ad-hoc techniques. But
we do derandomization in rather naive and straightforward way: take a value
of a suitable pseudo-random number generator and check that with high prob-
ability (i.e., for most values of the seed) we obtain the required property. In
fact, we observe that several types of generators fit our construction. Since the
required property of a graph can be tested in AC0, we can use the classic Nisan–
Wigderson generator or (thanks to the recent result of Braverman [17]) any
polylog-independent function. Also the required property of a pseudo-random
graph can be tested by a machine with logarithmic space. Hence, we can use
Nisan’s generator [6]. We stress that we do not need any unproven assumptions
to construct all these generators.

Somewhat nonconventional part of our construction is that we consider a
‘local’ variant of the definition of expanders: we require that the usual expansion
property holds not for all sets of vertices but only for one particular set A.
This modification makes the property of the expander graph weaker, and this
relaxation helps to derandomize the construction.

In Theorem 5 we construct a scheme such that decoding is effective: when
the scheme is prepared, we can answer queries “x ∈ A?” in time polynomial in
log m. However the encoding (preparing the bits string and the auxiliary word)
runs in expected time poly(m), which is much longer if m ! n. Next theorem
claims that the encoding time can be reduced if we slightly increase the space
of the scheme:

Theorem 6. The scheme from theorem 5 can be made effectively encodable in
the following sense. Fix any constants ε, δ > 0. There exists randomized scheme
that includes a bit string B of length n1+δpoly(log m) and an auxiliary word C
of length poly(log m). We can answer membership queries “x ∈ A?” with two
bits probe to B. For x ∈ A the answer is always correct; for x �∈ A probability of
error is less than ε.

The position of the bit probed in A is computed by x and the auxiliary word
C in time poly log(m). Given A, the entire scheme (the string B and the word
C) can be computed probabilistically in average time poly(n, log m).

The rest of the paper is organized as follows. In Section 2 we remind the main
ideas in the BMRV-scheme. We prove Theorem 5 in Section 3, and Theorem 6
in Section 4. In Conclusion we discuss some open questions.

2 How BMRV-Scheme Works

Let us explain the main ideas of the proof of Theorem 1 in [11]. The construction
is based on highly unbalanced expanders.

Pseudo-random Graphs and Bit Probe Schemes with One-Sided Error 55

Definition 1. A bipartite graph G = (L,R,E) (with left part L, right part R
and set of edges E) is called (m, s, d, k, δ)-expander if L consists of m vertices,
R consists of s vertices, degree of each vertex in L is equal to d, and for each
subset of vertices A ⊂ L of size at most k the number of neighbors is at least
(1− δ)d|A|.
We use a standard notation: for a vertex v we denote by Γ (v) the set of its
neighbors; for a set of vertices A we denote by Γ (A) the set of neighbors of A,
i.e., Γ (A) = ∪v∈AΓ (v). So, the definition of expanders claims that for all small
enough sets A of vertices in the left part of the graph, |Γ (A)| ≥ (1 − δ)d|A|
(the maximal size of |Γ (A)| is obviously d|A|, since degree of all vertices on the
left is equal to d). The argument below is based on the following combinatorial
property of an expander:

Lemma 1 (see [12]). Let ε be a positive number, and G be an (m, s, d, k, δ)-
expander with δ ≤ ε/4. Then for every subset A ⊂ L such that |A| ≤ k/2, the
number of vertices x ∈ L \A such that

|Γ (x) ∩ Γ (A)| ≥ εd

is not greater than |A|/2.

Let G be a (m, s, d, k, δ)-expander with δ < ε/4. The storage scheme is defined
as follows. We identify a set A ⊂ {1, . . . ,m} of size n (n ≤ k/2) with a subset of
vertices in the left part of the graph. We will represent it by some labeling (by
ones and zeros) on the vertices of the right part of the graph. We do it in such a
way that the vast majority (at least (1− ε)d) of neighbors of each vertex v from
the left part of the graph correctly indicate whether v ∈ A. More precisely, if
v ∈ A then at least (1 − ε)d of its neighbors in R are labeled by 1; if v ∈ L \A
then at least (1 − ε)d of its neighbors in R are labeled by 0. Thus, querying a
random neighbor of v will return the right answer with probability > 1− ε.

It remains to explain why such a labeling exists. In fact, it can be constructed
by a simple greedy algorithm. First, we label all neighbors of A by 1, and the
other vertices on the left by 0. This labeling classifies correctly all vertices in A.
But it can misclassify some vertices outside A: some vertices in L \ A can have
too many (more than εd) neighbors labeled by 1. Denote by B the set of all these
“erroneous” vertices. We relabel all their neighbors, i.e., all vertices in Γ (B) to 0.
This fixes the problem with vertices outside A, but it can create problems with
some vertices in A. We take the set of all vertices in A that became erroneous
(i.e., vertices in A that have at least εd neighbors in Γ (B)), and denote this
set of vertices by A′. Then we relabel all Γ (A′) to 1. This operation create
new problems in some set of vertices B′ ⊂ B, relabel Γ (B′) to 0, etc. In this
iterative procedure we get a sequence of sets A ⊃ A′ ⊃ A′′ ⊃ . . . whose neighbors
are relabeled to 1 on steps 1, 3, 5, . . . of the algorithm, and B ⊃ B′ ⊃ B′′ ⊃ . . .
whose neighbors are relabeled to 0 on iterations 2, 4, 6, . . . respectively. Lemma 1
guarantees that the number of the erroneous vertices on each iteration reduces
by a factor of 2 (|B| ≤ |A|/2, |A′| ≤ |B|/2, etc.). Hence, in log m steps the
procedure terminates.

56 A. Romashchenko

To organize a storing scheme (and to estimate its size) for a set A of size
n in the universe of size m, we should construct an (m, s, d, k = 2n, δ = ε/4)-
expander. Parameters m, k, δ of the graph are determined directly by the param-
eters of the desired scheme (by the size of A and the universe and the allowed
error probability ε). We want to minimize the size of the left part of the graph s,
which is the size of the stored data. Existence of expanders with good parameters
can be proven by probabilistic arguments:

Lemma 2 ([11]). For all integers m,n and real ε > 0 there exists an (m, s =
O(n log m

ε2), d = log m
ε , n, ε)-expander. Moreover, the vast majority of bipartite

graphs with n vertices on the left, s = 100n log m
ε2 vertices on the right, and degree

d = log m
ε at all vertices on the left are expanders.

Given the parameters m,n, ε, we can find an (m,O(n log m
ε2), log m

ε , n, ε)-expander
by brute force search. This can be done by a deterministic algorithm in time
2poly(m/ε). Hence, to construct the bit-probe structure defined above we need
exponential time. Moreover, when the structure is constructed and we want to
answer a query “x ∈ A?” we need to read only one bit from the stored bit string.
But to select the position of this bit we need again to reconstruct the expander
graph, which requires exponential computations. We can keep the structure of
the computed graph in “cache” (compute the graph once, and then re-use it
every time a new query should be answered). But then the size of this “cached
data” (the size of the graph) becomes much greater than m, which makes the
bit-probe scheme useless (it is cheaper to store A as a trivial m-bits array).

In [18] a nice and very powerful explicit construction of expanders was sug-
gested:

Theorem 7 ([18]). Fix an ε > 0 and δ > 0. For all integers m,n there exists
an explicit (m, s = n1+δ · poly(log m), d = poly(log m), n, ε)-expander such that
for an index of a vertex v from the left part (a binary representation of an integer
between 1 and m) and an index of an outgoing edge (a binary representation of
an integer between 1 and d), the corresponding neighbor on the right part of the
graph (an integer between 1 and s) can be computed in time polynomial in log m.

Also, the following effective decoding algorithm exists. Given a set of vertices
T from the right part of the graph, we can compute the list of vertices in the left
part of the graph that have at least (4εd) neighbors in T , i.e.,

S = {v : |Γ (v) ∩ T | ≥ 4εd},
in time poly(|S|, n, logm).

Theorem 4 is proven by plugging the expander from Theorem 7 in the general
scheme explained above, see details in [18].

3 Proof of Theorem 5

3.1 Refinement of the Property of ε-Reduction

The construction of bit-probe scheme for a set A of size n in the m-elements
universe (with probability of an error bounded by some ε) explained in the

Pseudo-random Graphs and Bit Probe Schemes with One-Sided Error 57

previous section involves an (m, s, d, k, δ)-expander with s = O(n
ε2 log m) and

d = O(1
ε log m). Such a graph contains dm edges (degree of each vertex on the

left is d). The list of all its edges can be specified by a string of dm log s bits: we
sort all edges by their left ends, and specify for each edge its right end. Denote
the size of the description of this graph by N = dm log s.

In what follows we will assume that number s is a power of 2 (this will increase
the parameters of the graph by only a factor at most 2). So, we may assume that
every string of N(m, s, d) = dm log s bits specifies a bipartite graph with m ver-
tices on the left, s vertices on the right and degree d on the left. Lemma 2 claims
that most of these bits string of length N describe an (m, s, d, k, δ)-expander.
By Lemma 1, if a graph is an expander with these parameters, then for ε = 4δ,
for every set A ⊂ L of size less than k/2 the following reduction property holds:

Combinatorial Property 1 (ε-reduction property). For every subset A ⊂
L such that |A| ≤ k/2, the number of vertices x ∈ L \A such that

|Γ (x) ∩ Γ (A)| ≥ εd

is not greater than |A|/2.

This property was the main ingredient of the BMRV-scheme. In our bit-probe
scheme we will need another variant of Property 1:

Combinatorial Property 2 (strong ε-reduction). Let G = (L,R,E) be a
bipartite graph, and A ⊂ L be a subset of vertices from the left part. We say that
the strong ε-reduction property holds for A in this graph if for all x ∈ L \A

|Γ (x) ∩ Γ (A)| ≤ εd.

Lemma 3. Fix an ε > 0. For all integers m,n, for every A ⊂ {1, . . . ,m} of
size n there exists a bi-partite graph G = (L,R,E) such that

– |L| = m (the size of the left part);
– |R| = 2d2n = O(n log2 m) (the size of the right part);
– degree of each vertex in the left part is d = 2 log m

ε = O(log m);
– the property of strong ε-reduction holds for the set A (we identify it with a

subset of vertices in left part of the graph).

Moreover, the property of strong ε-reduction for A holds for the majority of
graphs with the parameters specified above.

The order of quantifiers is important here: we do not claim that in a random
graph the strong ε-reduction property holds for all A; we say only that for every
A the strong ε-reduction is true in a random graph.

Proof of lemma: Let v be any vertex in L \A. We estimate probability that at
least εd neighbors of x are at the same time neighbors of A (assuming that all
edges are chosen at random independently). There are

(
d
εd

)
choices of εd vertices

among all neighbors of v. Hence,

Prob[|Γ (v)∩Γ (A)| ≥ εd] ≤
(

d

εd

)
·
(|Γ (A)|
|R|

)εd

≤ dεd ·
(

dn

2d2n

)εd

=
(

1
2

)2 log m

58 A. Romashchenko

This probability is less than 1/m2 (for each vertex v). So, the expected number
of vertices v ∈ L such that |Γ (v) ∩ Γ (A)| ≥ εd, is less than 1/m < 1/2. Hence,
the strong ε-reduction property holds for A for more than 50% of graphs.

3.2 Testing the Property of Strong ε-Reduction

Lemma 3 implies that a graph with the strong reduction property for A exists.
Given A, we can find such a graph by brute force search. But we cannot use
such a graph in our bit-probe scheme even if we do not care about computation
complexity: the choice of the graph depends on A, and the size of the graph is
too large to include it into the scheme. We need to find a suitable graph with
a short description. We will do it using pseudo-random generators (‘random’
graphs will be parameterized by the seed of a generator).

Property 2 is a property of a graph and a set of vertices A in graph. We
can interpreted it as a property of an N -bits string (that determines a graph)
and some A ⊂ {1, . . . ,m}. Lemma 3 claims that for every A, for a randomly
chosen graph (a randomly chosen N -bits string) with high probability the strong
reduction property is true. We want to show that the same is true for a pseudo-
random graph. At first, we observe that the strong reduction property can be
tested by an AC0 circuit (a Boolean circuit of bounded depth, with polynomial
number of gates and, or with unbounded fan-in, and negations).

Indeed, we need to check for each vertex v ∈ L\A that the number of vertices
in Γ (v) ∩ Γ (A) is not large. For each vertex w in the right part of the graph
we can compute by an AC0-circuit whether w ∈ Γ (A). For each v from the left
part of the graph and each w from the right part of the graph we check by an
AC0-circuit whether there is an edge (v, w) in the graph. Thus, it remains to
count for each v ∈ L \ A the number of w ∈ R such that w ∈ Γ (A) and there
exists an edge between v and w.

In AC0 we cannot compute threshold functions with linear number of inputs
(e.g., the majority function is not in AC0, [4]). However, we can compute thresh-
olds for logarithmic number of arguments. Thresholds Thεd

d for d = O(log N) can
be represented by a CNF of size 2O(d) = poly(N). This is exactly what we need:
we want to check for each v ∈ L \A that the number of vertices in Γ (v) ∩ Γ (A)
is not greater than εd, and d = O(log m). We combine together these circuits for
all v and get an AC0-circuit that tests the property of strong ε-reduction.

3.3 Pseudo-random Graphs

We need to generate a pseudo-random string of N bits that satisfies the strong
ε-reduction property (for some fixed set A). We know that (i) by Lemma 3, for a
uniformly distributed random string this property is true with high probability,
and (ii) this property can be checked in AC0. It remains to choose a pseudo
random generator that fools this particular AC0-circuit. There exist several gen-
erators that fools such distinguishers. Below we mention the known solutions.

The first solution: the generator of Nisan–Wigderson. The classic way to fool an
AC0 circuit is the Nisan–Wigderson generator:

Pseudo-random Graphs and Bit Probe Schemes with One-Sided Error 59

Theorem 8 (Nisan–Wigderson generator, [7]). For every constant c there
exists an explicit family of functions

Gm : {0, 1}poly(log N) → {0, 1}N

such that for for any family of circuits CN (with N inputs) of polynomial in N
size and depth c, the difference between Prob[CN (y) = 1] and Prob[CN (Gm(x))]
tends to zero (faster than 1/poly(N)).

The generator is effective: generator’s value Gm(x) can be computed from a
given x in time poly(log N).

From this theorem and Lemma 3 it follows that for each A ⊂ {1, . . . ,m} of size
at most n, for most values of the seed of the Nisan–Wigderson generator Gm, a
pseudo-random graph Gm(x) satisfies the strong ε-expansion property for A.

The second solution: polylog-independent strings. M. Braverman proves that all
polylog-independent functions fool AC0-circuits:

Theorem 9 (Braverman, [17]). Let C be a Boolean circuit of depth r and size
M , ε be a positive number, and

D =
(

log
M

ε

)κr2

(for some absolute constant κ). Then C cannot distinguish between the uniform
distribution U and any D-independent distribution μ on its inputs:

|Probμ[C accepts]− ProbU [C accepts]| < ε

It follows that instead of the Nisan–Wigderson generator we can take any (logc n)-
independent function (for large enough constant c). The standard solution is a
polynomial of degree r = logc n over a finite field of size about N (seeds of this
‘pseudo-random generator’ are coefficients of a polynomial). Alternatively, other
constructions of polylog-independent functions can be used. E.g., the construc-
tion from [5,9] provides a family of (logc n)-independent functions with very fast
evaluation algorithm, and each function is specified by poly(logn) bits (so, the
size of the seed is again poly-logarithmic).

The third solution: the generator of Nisan. The property of strong ε-reduction
can be tested by a Turing machine with logarithmic working space. Technically
we need a machine with

– advice tape: read-only, two-way tape, where the list of elements of A is writ-
ten;

– input tape: read-only tape with random (or pseudo-random) bits, with log-
arithmic number of passes (the machine is allowed to pass along the input
on this tape only O(log N) times);

– index tape: read-only, two-way tape with logarithmic additional information;
– work tape that is two-way and read-write; the zone of the working tape is

restricted to O(log N).

60 A. Romashchenko

We interpret the content of the input tape as a list of edges of a random (or
pseudo-random) graph G = (L,R). The content of the index tape is understood
as an index of a vertex v ∈ L \ A. The machine reads the bits from the ‘input
tape’ (understood as a list of edges of a random graph) and checks that most
neighbors of v does not belong to the set of neighbors of A. The machine needs
to read the input tape 2d = O(log N) times (where d is degree of v): on the
first pass we find the index of the first neighbor of v; on the second pass we
check whether this neighbor of v is incident to any vertex of A; then we find the
second neighbor of v, check whether it is is incident to any vertex of A, etc. The
machine accepts the input if |Γ (v) ∩ Γ (A)| < εd.

We can use Nisan’s generator [6] to fool this machine. Indeed, this machine
and the tested property fits the general framework of [13], where Nisans gen-
erator was used to derandomize several combinatorial constructions. The only
nonconventional feature in our argument is that the input tape is not one-way:
we are allowed to read the random bits not once but logarithmic number of
times. However, we still can apply Nisan’s technique. David, Papakonstantinou,
and Sidiropoulos recently observed (see [20]) that a log-space machine with loga-
rithmic (and even poly-logarithmic) number of passes on the input tape is fooled
by Nisan’s generator with the seed size poly(logN).

Now we are ready to prove Theorem 5. We fix an ε > 0 and a set A ⊂
{1, . . . ,m} of size m. Let Gm be one of the pseudo-random generators discussed
above. For all these generators, for most values of the seed z the values Gm(z)
encodes a graph such that the strong ε-reduction property holds for A. Let us fix
one of such seeds. We label by 1 all vertices in Γ (A) and by 0 all other vertices
in R in the graph encoded by the string Gm(z).

The seed value z makes the “auxiliary word” C, and the specified above
labeling of the right part of the graph makes the bits string B. To answer a
query “x ∈ A?” we take a random neighbor of x in the graph and check its
label. If the label is 1, we answer “x ∈ A”; otherwise we answer x �∈ A.

If x ∈ A then there are no errors, since all neighbors of A are labeled by 1.
If x �∈ A then probability of an error is bounded by ε because of the strong
ε-reduction property. We can answer a query in polynomial (in logm) time since
the generators under consideration are effectively computable.

3.4 Complexity of Encoding

The disadvantage of this construction is non-effective encoding procedure. We
know that for most seeds z the corresponding graph Gm(z) enjoys the strong
ε-reduction property. However, we need the brute force search over all vertices
v ∈ L \ A (polynomial in m but not in log m) to check this property for any
particular seed. Thus, we have a probabilistic encoding procedure that runs in
expected time poly(m): we choose random seeds until we find one suitable for
the given A.

Pseudo-random Graphs and Bit Probe Schemes with One-Sided Error 61

In the next section we explain how to make the encoding procedure more
effective (in expected time poly(n, log m)) for the following price: we will need a
slightly greater size of the data storage, and we will take 2 bit probes instead of
one at each query.

4 Proof of Theorem 6: Effective Encoding

To obtain a scheme with effective encoding and decoding we combine two con-
structions: the explicit expander from [18] and a pseudo-random graph from the
previous section.

We fix an n-element set A in the universe {1, . . . ,m}. Now we construct
two bipartite graphs that share the same left part L = {1, . . . ,m}. The first
graph is the explicit (m, s = n1+δ · poly(log m), d = poly(log m), n, ε)-expander
G1 = (L,R1, E1) from [18] with an effective decoding algorithm. We do the
first two steps from the encoding procedure of the BMRV-scheme explained in
Section 2. At first we label all vertices in Γ (A) by 1 and other vertices by 0.
Denote the corresponding labeling (which is a n1+δ · poly(log m)-bits string) by
C1. Then we find the list of vertices outside A that have too many 1-labeled
neighbors:

B := {v ∈ L \A : |Γ (x) ∩ Γ (A)| ≥ εd}.
We do not re-label neighbors of B, but we will use this set later (to find B
effectively, we need the property of effective decoding of the graph).

Let v ∈ L be a vertex in the left part of the graph. There are three different
cases:

– if v belongs to A then all neighbors of v are labeled by 1;
– if v does not belong to A∪B, then a random neighbor of x with probability

> (1− ε)d is labeled by 0;
– if v belongs to B, we cannot say anything about the vast majority of its

neighbors.

Thus, if we take a random neighbor of v and see label 0 in C1 then we can
say that this point does not belong to A. If we see label 1 then more detailed
investigation is needed. This investigation will involve the second part C2 of the
scheme defined below.

Now our goal is to distinguish between A and B. To this end we take a
pseudo-random graph G2 = (L,R2, E2) specified by a value of a pseudo-random
generator Gm(z) (any one from the previous section). We need a restricted on
B version of the strong ε-reduction property:

For every v ∈ B, at most εd vertices in Γ (v) belong to Γ (A).

Set B is of size at most |A|/2 (Lemma 1), and it can be effectively computed
from A (effective decoding property of the graph). Hence, for a given z we can
check the property above in time poly(n, log m). We know that for the majority
of seeds z the graph Gm(z) satisfies the strong ε-reduction property, i.e., all
vertices outside A have at most εd neighbors in Γ (A). We cannot effectively

62 A. Romashchenko

check this general property (we cannot check it for all vertices in the universe),
but we can check its restricted version (i.e., only for vertices in B).

Thus, in average time poly(n, log m) we can probabilistically find some seed
x such that the restricted (on B) version of the strong ε-reduction property is
true. In the corresponding graph we denote by 1 all vertices in Γ (A), and by 0 all
vertices of the right part of the graph outside Γ (A). We denote this labeling (a
O(m log2 n)-bits string) by C2 and take it as the second part of the data storage.
The seed value x is taken as ‘cached’ memory.

The decoding procedure works as follows. Given x ∈ {1, . . . ,m}, we take its
random neighbor in both constructed graphs and look at their labels (bits from
C1 and C2 respectively).

– if the first label is 0, we say that x �∈ S;
– if the first label is 1 and the second bit is 0 then we say that x �∈ S.
– if both labels are is 1 then we say that x ∈ S.

If x �∈ A∪B then by definition of B we get that the procedure above with prob-
ability > (1− ε) returns the correct answer. If x ∈ A then by construction both
labels are equal to 1. If x ∈ B, then we have no guarantee about labels in C1;
but from the restricted strong reducibility property it follows that with proba-
bility > (1− ε) the second label is 0. Thus, we have one-sided error probability
bounded by ε.

5 Conclusion

In this paper we constructed an effective probabilistic bit-probe scheme with
one-sided error. The used space is close to the trivial information-theoretic lower
bound Ω(n log m). The scheme answers queries ‘x ∈ A?’ with a small one-sided
error and requires only poly-logarithmic (in the size of the universe) cached
memory and one bit (two bits in the version with effective encoding) from the
main part of the memory.

For reasonable values of parameters (for n ! poly(log m)) the size of our
scheme O(n log2 m) with a cache of size poly(log m) is below the lower bound
Ω(n2 log m) proven in [11] for one-probe schemes with one-sided errors without
cached data dependent on A. The gap between our upper bounds and the trivial
lower bound is a (log m)-factor.

The following questions remain open: How to construct a bit-probe memory
scheme with one-sided error and effective encoding and decoding that requires
to read only one bit from the main part of memory to answer queries? What
is the minimal size of the cached memory required for a bit-probe scheme with
one-sided error, with space of size O(n log m)?

The author thanks Daniil Musatov for useful discussions, and anonymous referees
for deep and very helpful comments.

Pseudo-random Graphs and Bit Probe Schemes with One-Sided Error 63

References

1. Bloom, B.: Space-time trade-offs in hash coding with allowable errors. Communi-
cations of ACM 13(7), 422–426 (1970)

2. Bassalygo, L.A., Pinsker, M.S.: The complexity of an optimal non-blocking com-
mutation scheme without reorganization. Problems of Information Transmission 9,
64–66 (1974)

3. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst
case access time. Journal of the Association for Computing Machinery 31(3), 538–
544 (1984)

4. H̊astad, J.: Almost optimal lower bounds for small depth circuits. In: Proc. of 18th
ACM STOC, pp. 6–20 (1986)

5. Siegel, A.: On universal classes of fast high performance hash functions, their time-
space trade-off, and their applications. In: Proc. of 30th IEEE FOCS, pp. 20–25
(1989)

6. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12(4), 449–461 (1990); Preliminary version: STOC 1990

7. Nisan, N., Wigderson, A.: Hardness vs Randomness. J. Comput. Syst. Sci. 49(2),
149–167 (1994)

8. Kahale, N.: Eigenvalues and expansion of regular graphs. Journal of the
ACM 42(5), 1091–1106 (1995)

9. Siegel, A.: On universal classes of extremely random constant time hash functions
and their time-space tradeoff. Technical Report TR1995-684, Courant Institute,
New York University (April 1995)

10. Vitter, J.S.: External memory algorithms and data structures. ACM Comput.
Surv. 33(2), 209–271 (2001)

11. Buhrman, H., Miltersen, P.B., Radhakrishnan, J., Srinivasan, V.: Are bitvectors
optimal? Siam J. on Computing 31(6), 1723–1744 (2002)

12. Capalbo, M.R., Reingold, O., Vadhan, S.P., Wigderson, A.: Randomness Conduc-
tors and Constant-Degree Lossless Expanders. In: Proc. of the 34th ACM STOC,
pp. 659–668

13. Sivakumar, D.: Algorithmic derandomization via complexity theory. In: Proc. ACM
STOC 2002, pp. 619–626 (2002)

14. Ta-Schma, A.: Storing information with extractors. Information Processing Let-
ters 83, 267–274 (2002)

15. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bul-
letin of the American Mathematical Society 43(4), 439–561 (2006)

16. Vitter, J.S.: Algorithms and Data Structures for External Memory. Series on Foun-
dations and Trends in Theoretical Computer Science. Now Publishers, Hanover
(2008)

17. Braverman, M.: Poly-logarithmic Independence Fools AC0 Circuits. In: IEEE Con-
ference on Computational Complexity 2009, pp. 3–8 (2009)

18. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness
extractors from Parvaresh–Vardy codes. Journal of the ACM 56(4) (2009)

19. Musatov, D.: Theorems about space-bounded Kolmogorov complexity obtained by
“naive” derandomization. In: Proc. Computer Science in Russia (2011); Prelimi-
nary version: arXiv:1009.5108 (2010)

20. David, M., Papakonstantinou, P.A., Sidiropoulos, A.: How strong is Nisan’s pseu-
dorandom generator? (2010) Electronic preprint, http://itcs.tsinghua.edu.cn/

~papakons/pdfs/nisan_passes.pdf

http://itcs.tsinghua.edu.cn/~papakons/pdfs/nisan_passes.pdf
http://itcs.tsinghua.edu.cn/~papakons/pdfs/nisan_passes.pdf

Improving the Space-Bounded Version of

Muchnik’s Conditional Complexity Theorem via
“Naive” Derandomization�

Daniil Musatov

Lomonosov Moscow State University
musatych@gmail.com

Abstract. Many theorems about Kolmogorov complexity rely on exis-
tence of combinatorial objects with specific properties. Usually the prob-
abilistic method gives such objects with better parameters than explicit
constructions do. But the probabilistic method does not give “effective”
variants of such theorems, i.e. variants for resource-bounded Kolmogorov
complexity. We show that a “naive derandomization” approach of re-
placing these objects by the output of Nisan-Wigderson pseudo-random
generator may give polynomial-space variants of such theorems.

Specifically, we improve the preceding polynomial-space analogue of
Muchnik’s conditional complexity theorem. I.e., for all a and b there
exists a program p of least possible length that transforms a to b and
is simple conditional on b. Here all programs work in polynomial space
and all complexities are measured with logarithmic accuracy instead of
polylogarithmic one in the previous work.

1 Introduction

Many statements about Kolmogorov complexity may be proven by applying
some combinatorial constructions like expanders or extractors. Usually these
objects are characterized by some parameters, and one may say which parame-
ters are “better”. Very often the probabilistic method allows us to obtain these
objects with much better parameters than explicit constructions do. But exploit-
ing the probabilistic method causes exponential-space brute-force search of an
object satisfying the necessary property. And if this search is performed while de-
scribing some string to obtain an upper bound on its complexity then this bound
cannot be repeated for polynomial-space complexity. On the other hand, replac-
ing the probabilistic method by an explicit construction weakens the statement
due to worse parameters.

We present a technique that combines advantages of both probabilistic and ex-
plicit construction methods. The key idea is to substitute a random object with
a pseudo-random one obtained by the Nisan-Wigderson pseudo-random gener-
ator and still possessing the necessary property. We employ indistinguishability
� Supported by ANR Sycomore, NAFIT ANR-08-EMER-008-01 and RFBR 09-01-

00709-a grants.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 64–76, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Naive Derandomization 65

of Nisan-Wigderson generator’s output from a random string by boolean circuits
of constant depth and polynomial size. If the necessary property can be tested
by such circuits then it holds for a pseudo-random object as well as for a truly
random object. Unfortunately, it is not clear how to build such a circuit for the
extractor property and similar ones, so we relax the property in a way that allows
both proving the theorem and building polynomial constant-depth circuits.

This “naive derandomization” idea has been recently applied by Andrei Ro-
mashchenko ([18]) in another situation: he constructs a probabilistic bit-probe
scheme with one-sided error for the membership problem.

By exploiting the new method we improve previous result [12] generalizing
Muchnik’s conditional complexity theorem. The original theorem [9] states that
for all a and b of length n there exists a program p of length C(a|b) + O(log n)
that transforms b to a and has complexity O(log n) conditional on a. In [12] this
result is restated for space-bounded complexity with gap rised from O(log n)
to O(log3 n). The main idea was to employ a property of extractors, proven
in [2]: in an extractor graph in every sufficiently big subset S of left part there
are few vertices with all right-part neighbours having indegree from S twice
greater than average. We refer to it as to “low-congesting property”. An ex-
plicit extractor construction yields a space-bounded version of the theorem with
polylogarithmic precision. In this paper we replace an explicit extractor by a
pseudo-random graph, that does not necessary have the extractor property, but
enjoys the low-congesting property for “relevant” subsets S. This replacement
leads to decreasing the precision back to logarithmic term.

The rest of the paper is organized as follows. In Sect. 2 we give formal def-
initions of all involved objects and formulate necessary results. In Sect. 3 we
formally state our space-bounded variant of Muchnik’s theorem and specify all
details of the proof.

2 Preliminaries

2.1 Kolmogorov Complexity

Let V be a two-argument Turing machine. We refer to the first argument as
to the “program” and to the second argument as to the “argument”. (Plain)
Kolmogorov complexity of a string x conditional on y with respect to V is the
length of a minimal program p that transforms y to x, i.e.

CV(x | y) = min{p : V(p, y) = x}
There exists an optimal machine U that gives the least complexity up to an
additive term. Specifically, ∀V ∃c ∀x, y CU(x|y) < CV(x|y) + c. We employ such
a machine U , drop the subscript and formulate all theorems up to a constant
additive term. The unconditional complexity C(x) is the complexity with empty
condition C(x | ε), or the length of a shortest program producing x.

Now we define the notion of resource-boundedKolmogorovcomplexity. Roughly
speaking, it is the length of a minimal program that transforms y to x effi-
ciently. Formally, Kolmogorov complexity of a string x conditional on y in time

66 D. Musatov

t and space s with respect to V is the length of a shortest program p such that
V(p, y) = x, and V(p, y) works in t steps and uses s cells of memory. This com-
plexity is denoted by Ct,s

V (x | y). Here the choice of V alters not only complexity,
but also time and space bounds. However, there still exists an optimal machine
in the following sense:

Theorem 1. There exists a machine U such that for any machine V there ex-
ists a constant c such that for all x, y, s and t it is true that Cs,t

U (x | y) ≤
Ccs,ct log t

V (x | y) + c.

In our paper we deal only with space bounds, so we drop the time-bound super-
script in all notations. Also, we drop the machine subscript again and formulate
all theorems with a constant additive term in all complexities and a constant
multiplicative term in all space bounds.

2.2 Extractors

An extractor is a function that extracts randomness from weak random sources.
A k-weak random source of length n is a probabilistic distribution on {0, 1}n
with minentropy greater than k, that is, no particular string occurs with proba-
bility greater than 2−k. An extractor with parameters n, m, d, k, ε is a function
Ext: {0, 1}n×{0, 1}d → {0, 1}m, such that for any independent k-weak random
source x of length n and uniform distribution u on {0, 1}d the induced distribu-
tion Ext(x, u) on {0, 1}m is ε-close to uniform, that is, for any set Y ⊂ {0, 1}m its
probability differs from its fraction by at most ε. This is interpreted as follows:
an extractor receives n weakly random bits and d truly random bits independent
from the first argument and outputs m almost random bits.

Like any two-argument function, an extractor may be viewed as a bipartite
(multi-)graph: the first argument indexes a vertex in the left part, the second
argument indexes an edge going from this vertex, and the value indexes a vertex
in the right part which this edge directs to. That is, the graph has N = 2n

vertices on the left, M = 2m vertices on the right, and all left-part vertices
have degree D = 2d. Throughout the paper, we say that a bipartite graph has
parameters (n, m, d) if the same holds for it. For the sake of clarity we usually
omit these parameters in extractor specifications. The extractor property may
be also formulated in terms of graphs: for any left-part subset S of size greater
than K = 2k and for any right-part subset Y the fraction of edges directing from
S to Y among all edges directing from S differs from the fraction of Y among all
right-part vertices by at most ε. Put formally, ||Y |/M − E(S, Y)/E(S,M)| < ε,
where E(S, T) is the number of edges diredting from S to T and M slightly
abusively denotes both the right part and the number of vertices in it. A proof
of equivalence may be found in [16].

It is proven by the probabilistic method (see, for example, [16]) that for all n, k
and ε there exists an extractor with parameters d = log(n−k)+2 log(1/ε)+O(1)
and m = k + d− 2 log(1/ε)−O(1). Nevertheless, no explicit (that is, running in
polynomial time) construction of such an extractor is known. Best current results
([17], [20]) for m = k use d = polylog n truly random bits. A number of explicit

Naive Derandomization 67

extractors including those in [7], [4] and [5] use O(log n) truly random bits but
output only (1−α)k almost random bits. Such constructions are insufficient for
our goals.

2.3 Nisan-Wigderson Generators

The Nisan-Wigderson pseudo-random generator is a deterministic polynomal-
time function that generates n pseudorandom bits from polylog(n) truly random
bits. The output of such a generator cannot be distinguished from a truly random
string by small circuits. Specifically, we exploit the following theorem from [15].
(The statement was initially proven by Nisan in paper [14]).

Theorem 2. For any constant d there exists a family of functions Gn : {0, 1}k →
{0, 1}n, where k = O(log2d+6 n), such that two properties hold:

Computability: G is computable in workspace poly(k);
Indistinguishability: For any family of circuits Cn of size poly(n) and depth

d for any positive polynomial p for all large enough n it holds that:

|Probx{Cn(Gn(x)) = 1} − Proby{Cn(y) = 1}| < 1
p(n)

,

where x is distributed uniformly in {0, 1}k and y — in {0, 1}n.

By rescaling the parameters we get the following

Corollary 1. There exists a family of functions Gn : {0, 1}k → {0, 1}N , where
k = poly(n) and N = 2O(n), such that two properties hold:

– G is computable in workspace poly(n);
– For any family of circuits Cn of size 2O(n) and constant depth, for any con-

stant c and for all large enough n it holds that:

|Probx{Cn(Gn(x)) = 1} − Proby{Cn(y) = 1}| < 2−cn.

The last corollary implies the following basic principle:

Lemma 1. Let Cn be some set of combinatorial objects encoded by boolean strings
of length 2O(n). Let P be some property satisfied for fraction at least α of objects
in Cn that can be tested by a family of circuits of size 2O(n) and constant depth.
Then for sufficiently large n the property P is satisfied for a fraction at least α/2
of values of Gn, where Gn is the function from the previous corollary.

2.4 Constant-Depth Circuits for Approximate Counting

It is well-known that constant-depth circuits cannot compute the majority func-
tion. Moreover, they cannot compute a general threshold function that equals 1
if and only if the fraction of 1’s in its input exceeds some threshold α. Neverthe-
less, one can build such circuits that compute threshold functions approximately.
Namely, the following theorem holds:

68 D. Musatov

Theorem 3 ([1]). Let α ∈ (0, 1). Then for any (constant) ε there exists a
constant-depth and polynomial-size circuit C such that C(x) = 0 if the fraction
of 1’s in x is less than α − ε and C(x) = 1 if the fraction of 1’s in x is greater
than α + ε.

Note that nothing is promised if the fraction of 1’s is between α− ε and α + ε.
So, the fact that C(s) = 0 guarantees only that the fraction of 1’s is at most
α + ε, and C(s) = 1 — that it is at least α− ε.

3 Muchnik’s Theorem

3.1 Subject Overview

An. Muchnik’s theorem [9] on conditional Kolmogorov complexity states that:

Theorem 4. Let a and b be two binary strings such that C(a) < n and C(a|b) <
k. Then there exists a string p such that
• C(a|p, b) = O(log n);
• C(p) ≤ k + O(log n);
• C(p|a) = O(log n).

The constants hidden in O(log n) do not depend on n, k, a, b, p.
Informally, this theorem says that there exists a program p that transforms

b to a, has the minimal possible complexity C(a|b) (up to a logarithmic term)
and, moreover, can be easily obtained from a. (The last requirement is cru-
cial, otherwise the statement trivially reformulates the definition of conditional
Kolmogorov complexity.)

Several proofs of this theorem are known. All of them rely on the existence of
some combinatorial objects. The original proof in [9] leans upon the existence of
bipartite graphs with specific expander-like property. Two proofs by Musatov,
Romashchenko and Shen [12] use extractors and graphs allowing large on-line
matchings. Explicit constructions of extractors provide variants of Muchnik’s
theorem for resource-bounded Kolmogorov complexity. Specifically, the following
theorem is proven in [12]:

Theorem 5. Let a and b be binary strings of length n, and k and s be integers
such that Cs(a|b) < k. Then there exists a binary string p, such that

• CO(s)+poly(n)(a|p, b) = O(log3 n);
• Cs(p) ≤ k + O(log n);
• Cpoly(n)(p|a) = O(log3 n),

where all constants in O- and poly-notations depend only on the choice of the
optimal description method.

One cannot reduce residuals to O(log n) since all explicit extractors with such seed
length output only (1−α)k bits, but p is taken as an output of an extractor and
should have length k. However, an application of our derandomization method

Naive Derandomization 69

will decrease conditional complexities from O(log3 n) to O(log n) + O(log log s)
at the price of increasing the space limit in the last complexity from poly(n)
to O(s) + poly(n). If s is polynomial in n then all space limits become also
polynomial and all complexity discrepancies become logarithmic.

3.2 Proof Overview

Before we proceed with the detailed proof, let us present its high-level descrip-
tion. The main idea is the same in all known proofs: p is a fingerprint (or hash
value) for a constructed in some specific way. This fingerprint is chosen via some
underlying bipartite graph. Its left part is treated as the set of all strings of
length n (i.e., all possible a’s) and its right part is treated as the set of all pos-
sible fingerprints. To satisfy the last condition each left-part vertex should have
small outdegree, since in that case the fingerprint is described by its number
among a’s neighbours. To satisfy the first condition each fingerprint should have
small indegree from the strings that have low complexity conditional on b (for
arbitrary b).

If resources are unbounded then the existence of a graph satisfying all con-
ditions may be proven by the probabilistic method and the graph itself may be
found by brute-force search. In the resource-bounded case we suggest to replace
a random graph by a pseudo-random one and prove that it still does the job.
The proof proceeds in several steps. Firstly, in Sect. 3.3 we define the essential
graph property needed to our proof. We call this property low-congestion. It
follows from the extractor property, but not vice versa. Secondly, in Sect. 3.4 we
specify the instrumental notion of space-bounded enumerability and prove some
lemmas about it in connection to low-congesting graphs. Next, in Sect. 3.5 we
employ these lemmas to prove that the low-congesting property is testable by
small circuits. Hence, by applying the main principle (lemma 1) this property
is satisfied for pseudo-random graphs produced by the NW generator as well as
for random ones. Moreover, a seed producing a graph with this property may
be found in polynomial space. Finally, in Sect. 3.6 we formulate our version of
Muchnik’s theorem and prove it using the graph obtained on the previous step.
I.e., we describe the procedure of choosing a fingerprint in this graph and then
calculate all complexities and space requirements and assure that they do not
exceed the respective limitations.

3.3 Low-Congesting Graphs

In fact, the proof in [12] does not use the extractor property, but employs only
its corollary. In this section we accurately define this corollary in a way that
allows derandomization.

Fix some bipartite graph with parameters (n, m, d) and an integer k < n. Let
there be a system S of subsets of its left part with the following condition: each
S ∈ S contains less than 2k vertices, and the whole system S contains 2O(n) sets
(note that there are

∑2k

i=1 Ci
2n > 2O(n) different sets of required size, so the last

limitation is not trivial). We refer to such systems as to “relevant” ones. Having
fixed a system S, let us call the sets in it relevant also.

70 D. Musatov

Lemma 2. Let Sk = {S ⊂ {0, 1}n | ∃b ∃s |b| = n and S = {x | Cs(x|b) < k}}.
Then the system Sk is relevant.

Proof. By a standard counting argument, each set S ∈ Sk contains less than 2k

elements. If b is fixed then the described sets are expanding while s is rising.
Since the largest set is also smaller than 2k, there are less than 2k different sets
for fixed b. Since there are 2n different b, the total size of Sk is bounded by
2n2k = 2O(n).

Considering a modification of the upper system Sk,s̄ = {S ⊂ {0, 1}n | ∃b ∃s <
s̄ S = {x | Cs(x|b) < k}}, one may note that it is relevant as well.

Now fix some relevant system S and take an arbitrary set S in it. Call the α-
clot for S the set of right-part vertices that have more than αDK/M neighbours
in S (that is, at least α times more than on average). Call a vertex x ∈ S
α-congested (for S) if all its neighbours are in the α-clot for S. Say that G
is (α, β)-low-congesting if there are less than βK α-congested vertices in any
relevant S.

Following [2], we prove the next lemma:

Lemma 3. Let G be an extractor graph with parameters n, m, d, k, ε. Then
for any α > 1 the graph G is (α, α

α−1ε)-low-congesting.

Proof. In fact in an extractor graph there are less than α
α−1εK α-congested

vertices in any set S of size K, not only in relevant ones. We may treat S as
an arbitrary set of size exactly K: since a congested vertex in a subset is also a
congested vertex in the set, an upper bound for the number of congested vertices
in the set holds also for a subset.

Let Y be the α-clot for S, and |Y | = δM . Then the fraction |Y |/M of vertices
in Y equals δ and the fraction E(S, Y)/E(S,M) of edges directing from S to
Y is greater than αδ (by the definition of clot). A standard counting argument
implies only δ ≤ 1

α , but by the extractor property E(S, Y)/E(S,M)−|Y |/M < ε,
so (α − 1)δ < ε, i.e. δ < 1

α−1ε. Next, let T ⊂ S be the set of α-congested
vertices in S, and |T | = βK. All edges from T direct to vertices in Y , so at least
D|T | = βDK edges direct from S to Y . In other words, the fraction of edges from
S to Y is at least β. By the extractor property it must differ from the fraction
of vertices in Y (that equals δ) by at most ε. So, β < δ + ε < 1

α−1ε + ε = α
α−1ε.

Putting it all together, the number of α-congested vertices in any relevant S is
less than α

α−1εK, so the graph is (α, α
α−1ε)-low-congesting. ��

3.4 Space-Bounded Enumerability

Say that a system S is enumerable in space q if there exists an algorithm with
two inputs i and j working in space q that either outputs the jth element of the
ith set from S or indicates that at least one of the inputs falls out of range. Note
that for a polynomial space bound enumeration is equivalent to recognition:
if one may enumerate a set then one may recognize whether a given element
belongs to it by sequentially comparing it to all enumerated strings, and if one

Naive Derandomization 71

may recognize membership to a set then one may enumerate it by trying all
possible strings and including only those accepted by the recognition algorithm.
Only small auxiliary space is needed to perform these modifications.

Lemma 4. The system Sk,s̄ = {S ⊂ {0, 1}n | ∃b ∃s < s̄ |b| = n and S = {x |
Cs(x|b) < k}} is enumerable in space O(s̄) + poly(n).

Proof. Assume firstly that a set S is given (by specifying b and s < s̄) and show
how to enumerate it. Look through all programs shorter than k and launch them
on b limiting the space to s and counting the number of steps. If this number ex-
ceeds cs (for some constant c depending only on the computational model) then
the current program has looped. In this case or if the program exceeds the space
limit we terminate it and go to the next one. Otherwise, if the program produces
an output, then we check whether it has not been produced by any previous pro-
gram. This check is performed as follows: store the result, repeat the same pro-
cedure for all previous programs and compare their results with the stored one.
If no result coincides then include the stored result in the enumeration, other-
wise skip it and turn to the next program. Emulation of a program requires O(s)
space and no two emulations should run in parallel. All intermediate results are
polynomial in n, so a total space limit O(s̄) + poly(n) holds.

Specifying a set S by b and s is not reasonable because a lot of values
of s may lead to the same set. (And if s̄ = 2ω(n) then the number of pos-
sible indexes (b, s) exceeds the limit 2O(n) on the size of S.) Instead, call a
limit s pivotal if {x | Cs(x|b) < k} �= {x | Cs−1(x|b) < k} and consider only piv-
otal limits in the definition of Sk,s̄. Clearly, the latter modification of definition
does not affect the system itself. The advantage is that there are less than 2k

pivotal limits, and the ith pivotal limit si may be found algorithmically in space
O(si) + poly(n). It is sufficient to construct an algorithm recognizing whether
a given limit is pivotal, and the latter is done by a procedure similar to one
described in the first paragraph: try all possible programs in space s, and in case
they produce an output, check whether it is produced by any program in space
s− 1. If at least one result is new then s is pivotal, otherwise it is not. Putting
all together, a set S in Sk,s̄ is defined by a word b and the ordinal number i of a
pivotal space limit si. Knowing these parameters, one may enumerate it in space
O(s̄) + poly(n), as claimed.

The next lemma indicates that if a system S is enumerable in small space,
then the same holds for the system of congested subsets of its members. We call
a bipartite graph computable in space q if there exists an algorithm working in
space q that receives an index of a left-part vertex and an index of an incident
edge and outputs the right-part vertex this edge directs to.

Lemma 5. Let S be a system of relevant sets enumerable in space s, G be a
bipartite graph computable in space q and α > 1 be a (rational) number. Then the
system Conα S = {T | ∃S ∈ S for which T is the set of α-congested vertices} is
computable in space O(max{s, q}) + poly(n). Moreover, the iteration (Conα)rS
is also computable in space O(max{s, q}) + poly(n) with constants in O- and
poly- notations not depending on r, but possibly depending on α.

72 D. Musatov

Proof. Since for space complexity enumeration and recognition are equivalent, it
is sufficient to recognize that a vertex x is α-congested. The recognizing algorithm
works as follows: having a set S and a vertex x ∈ S fixed, search through all
neighbours of x (this requires space O(q) + poly(n)) and for each neighbour
check whether it lies in the α-clot for S. If all neighbours do then x is congested,
otherwise it is not. Having a neighbour y fixed, the check is performed in the
following way: enumerate all members of S (using O(s) + poly(n) space), for
each member search through all its neighbours (using O(q)+poly(n) space) and
count the number of these neighbours coinciding with y. Finally, compare this
number with the threshold αDK/M . Note that no two computations requiring
space s or q run in parallel and all intermediate results need only polynomial
space, so the total space requirement is O(max{s, q})+poly(n), as claimed. Note
also that O- notation is used only due to the possibility of computational model
change, not because of the necessity of looping control. If a computational model
is fixed then the required space is just max{s, q}+ poly(n).

The last observation is crucial for the “moreover” part of lemma. Indeed, by
a simple counting argument the fraction of α-congested vertices in S is at most
1/α. That is why after at most logα 2n = O(n) iterations the set of congested
variables becomes empty. Each iteration adds poly(n) to the space requirement,
so the overall demand is still max{s, q}+ poly(n) (with greater polynomial), as
claimed.

3.5 Derandomization

In this section we show that, firstly, the low-congesting property may be (approx-
imately) recognized by 2O(n)-sized constant-depth circuits, secondly, that there
are low-congesting graphs in the output of Nisan-Wigderson pseudo-random gen-
erator and, thirdly, that one can recognize in polynomial space whether the NW-
generator produces a low-congesting graph on a given seed. Put together, the last
two lemmas provide a seed on which the NW-generator produces a low-congested
graph.

Let us encode a bipartite graph with parameters (n, m, d) by a list of edges.
The length of this list is 2n2dm: for each of 2n left-part vertices we specify 2d

neighbours, each being m-bit long.

Lemma 6. Let G be the set of all bipartite graphs with parameters (n, m, d)
encoded as described above. Let k be an integer such that 1 < k < n, and ε > 0.
Then there is a circuit C of size 2O(n) and constant depth, defined on G, such
that:

– If G is a (k, ε)-extractor then C(G)=1;
– If C(G) = 1 then G is a (2.01, 2.01ε)-low-congesting graph for Sk from

lemma 2.

Proof. We build a non-uniform circuit, so we may assume that Sk is given. We
construct a single circuit approximately counting the number of congested ver-
tices in a given set, then replicate it for each relevant set and take conjunction.

Naive Derandomization 73

Since there are less than 2n+k relevant sets, this operation keeps the size of
circuit being 2O(n). We proceed by constructing a circuit for a given set S.

The size of the input is |S| · 2dm. We think of it as of being divided into |S|
blocks of 2d segments of length m. We index all blocks with elements x ∈ S
and index all segments of the block x by vertices y incident to x. It is easy
to see that there is a constant-depth circuit that compares two segments (that
is, has 2m inputs and outputs 1 if and only if the first half of inputs coincides
with the second half). On the first stage we apply this circuit to every pair
of segments, obtaining a long 0-1-sequence. On the second stage we employ a
counting circuit with |S|D− 1 arguments that is guaranteed to output 1 if more
than 2.01DK/M of its arguments are 1’s and to output 0 if the number of 1’s is
less than 2DK/M . By theorem 3 there exists such a circuit of polynomial (in the
number of arguments) size and constant depth. For all segments y a copy of this
circuit is applied to the results of the comparison of y to all other segments. If y
lies in the 2.01-clot then the respective copy outputs 1, and if it outputs 1, then y
lies in 2-clot. On the third stage we take a conjuction of all second-stage results
for the segments lying in the same block x. If this conjunction equals 1 then
all images of x lie in 2-clot, that is, x is 2-congested. Conversely, if x is 2.01-
congested then the conjunction equals 1. Finally, we utilize another counting
circuit with |S| inputs that outputs 0 if more than 2.01εK of its inputs are 1’s
and outputs 1 if less than 2εK of its inputs are 1’s. This circuit is applied to all
outputs of the third stage. If the final result is 1 then less than 2.01εK elements
of S are 2.01-congested; and if less than 2εK elements of S are 2-congested then
the final result is 1.

The last claim holds for any relevant S. On the very last stage we take a
conjunction of results for all S. If this conjunction is 1 then less than 2.01εK
elements in each S are 2.01-congested, and if G is a (k, ε)-extractor then by
lemma 3 less than 2εK elements in each S are 2-congested and hence this con-
junction equals 1.

Since there are at most 2O(n) gates on every stage and each stage has constant
depth, the overall circuit has also 2O(n) gates and constant depth, as claimed.

Lemma 7. Let n, m = k, d = O(log n) and ε be such parameters that a random
bipartite graph with parameters (n, d, m) is a (k, ε)-extractor with constant
probability p > 0. Let q be the depth of the circuit from the previous lemma. Let
NW : {0.1}l → {0, 1}N , where l = O(log2q+6) and N = 2n2dm, be the Nisan-
Wigderson generator from corollary 1. Then Probu{C(NW (u)) = 1} > p

2 for
sufficiently large n, where C is the circuit from the previous lemma.

Proof. This is a straightforward application of lemma 1. By the previous lemma
if a graph G is an extractor then C(G) = 1, so ProbG{C(G) = 1} ≥ p. Since C
is a constant-depth circuit, the property C(G) = 1 is tautologically testable by
a constant-depth circuit. By lemma 1 Probu{C(NW (u)) = 1} > p

2 . ��
Consider the following problem R: find a string u ∈ {0, 1}l such that the graph
NW (u) is (2.01, 2.01εK)-low-congesting with respect to Sk, s.

Lemma 8. The problem R is solvable in space O(s) + poly(n).

74 D. Musatov

Proof. The existence of a solution follows from the previous lemma. Since we
care only about the space limit, the search problem may be replaced by the cor-
responging recognition problem. The space bound for the latter one arises from
corollary 1, lemma 4 and lemma 5. Indeed, by corollary 1 the graph NW (u) is
computable in polynomial space, and by lemma 4 the system Sk, s is enumerable
in space O(s) + poly(n). Hence by lemma 5 the system Con2.01 Sk, s is also enu-
merable in space O(s)+poly(n), therefore one may easily check whether each set
in Con2.01 Sk, s contains less than 2.01εK elements, thus solving the recognition
analogue of R. Only polynomial extra space is added on the last step.

3.6 Proof of the Theorem

Now we proceed by formulating and proving our version of Muchnik’s theorem.

Theorem 6. Let a and b be binary strings of length less than n, and s and k be
numbers such that Cs(a|b) < k. Then there exists a binary string p, such that

• CO(s)+poly(n)(a|p, b) = O(log log s + log n);
• Cs(p) ≤ k + O(log n);
• CO(s)+poly(n)(p|a) = O(log log s + log n),

where all constants in O- and poly-notations depend only on the choice of the
optimal description method.

Proof. Basically the proof proceeds as the respective proof of theorem 5 in [12].
Here we replace an explicitly constructed extractor by a pseudorandom graph
described in Sect. 3.5.

Let ε be a small constant and let d = O(log n) be such that a random bipartite
graph with parameters (n, m = k, d) is a (k, ε)-extractor with probability greater
than some positive constant μ. Let l be a parameter and NW be a function
from lemma 7. By lemmas 7 and 6 the output of NW is a (2.01, 2.01εK)-low-
congesting graph for Sk with probability at least μ/2. Applying the program
from lemma 8, one may find in O(s) + poly(n) space a seed u for which NW (u)
is a (2.01, 2.01εK)-low-congesting graph for Sk, s. This u has low complexity: to
perform this search one needs to know parameters n, k and l = poly(n), that is,
O(log n) bits, and the space bound s, that requires log s bits. The last number
may be reduced to log log s, because the space bound s may be replaced by the
least power of 2 exceeding s keeping the needed space to be O(s) + poly(n). For
what follows, fix this seed u and the graph G = NW (u).

By definition of the low-congesting property the number of 2.01-congested
vertices in the set S = {x | Cs(x|b) < k} does not exceed 2.01εK. Clearly,
a belongs to S. Firstly suppose that it is not 2.01-congested. Then it has a
neighbour outside of the 2.01-clot for S. This neighbour may be taken as p.
Indeed, the length of p equals m = k, hence its complexity is also less than
k + O(1). To specify p knowing a, one needs to construct the graph NW (u), for
which only O(log n) + O(log log s) bits are necessary, and to know the number
of p among a’s neighbours, which is at most d = O(log n). Finding a given b

Naive Derandomization 75

and p proceeds as follows: construct G, enumerate S and choose the specified
preimage of p in S. Then a is determined by the information needed to construct
G (O(log n+log log s) bits), information needed to enumerate S (that is, k, log s
and b) and the number of a among preimages of p (since p is not in the 2.01-clot,
there are not more than 2.01DK/M = 2.01D preimages, so O(d) = O(log n) bits
are required). Summarizing, we get O(log n)+O(log log s) bits and O(s)+poly(n)
space needed. Note that the fact that m = k is crucial here: in the case m =
(1−α)k the number of required bits would increase by αk and exceed the bound.

Now we turn to the case where a is 2.01-congested. By lemma 5 the set
Con2.01 S of 2.01-congested vertices is enumerable in O(s)+poly(n) space. Take
parameters n1 = n, m1 = k1 = log K1 = log(2.01εK), d1 = O(log n) and ε1 = ε
such that an extractor with these parameters exists with probability greater
than μ. Lemmas 6, 7 and 8 are applicable to the new situation, so we may find
a new u1 such that the graph G1 = NW (u1) is (2.01, 2.01εK1)-low-congesting
for Con2.01 Sk, s with probability at least μ/2. By assumption, a belongs to the
set Con2.01 S. If it is not 2.01-congested in it then we choose p analogously
to the initial situation. Otherwise we reduce the parameters again and take a
low-congesting graph for Con2

2.01 Sk, s, and so on. By the “moreover” part of
lemma 5, this reduction may be performed iteratively for arbitrary number of
times keeping the space limit to be O(s) + poly(n).

The total number of iterations is less than log1/2.01ε k = O(log n). Finally p
is defined as a neighbour of a not lying in the 2.01-clot in graph Gi. To find p
knowing a one needs to know i and the same information as on the upper level.
To find a knowing p and b also only specifying i is needed besides what has been
specified on the upper level. So, all complexities and space limits are as claimed
and the theorem is proven.

Acknowledgments

I want to thank my colleagues and advisors Andrei Romashchenko, Alexander
Shen and Nikolay Vereshchagin for stating the problem and many useful com-
ments. I also want to thank three anonymous referees for careful reading and
precise comments. I am grateful to participants of seminars in Moscow State
University and Moscow Institute for Physics and Technology for their attention
and thoughtfulness.

References

1. Ajtai, M.: Approximate counting with uniform constant-depth circuits. In: Ad-
vances in computational complexity theory, pp. 1–20. American Mathematical So-
ciety, Providence (1993)

2. Buhrman, H., Fortnow, L., Laplante, S.: Resource bounded Kolmogorov complexity
revisited. SIAM Journal on Computing 31(3), 887–905 (2002)

3. Buhrman, H., Lee, T., van Melkebeek, D.: Language compression and pseudoran-
dom generators. In: Proc. of the 15th IEEE Conference on Computational Com-
plexity. IEEE, Los Alamitos (2004)

76 D. Musatov

4. Dvir, Z., Wigderson, A.: Kakeya sets, new mergers and old extractors. In: Proceed-
ings of the 49th Annual FOCS 2008, pp. 625–633 (2008)

5. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. Journal of the ACM 56(4) (2009)

6. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 2nd edn. Springer, Heidelberg (1997)

7. Lu, C.-J., Reingold, O., Vadhan, S., Wigderson, A.: Extractors: Optimal up to
Constant Factors. In: 35th Annual ACM Symposium, STOC 2003, pp. 602–611
(2003)

8. Muchnik, A.A.: On basic structures of the descriptive theory of algorithms. Soviet
Math. Dokl. 32, 671–674 (1985)

9. Muchnik, A.: Conditional complexity and codes. Theoretical Computer Sci-
ence 271(1-2), 97–109 (2002)

10. Musatov, D.: Extractors and an effective variant of Muchnik’s theorem. Diplom
(Master thesis).Faculty of Mechanics and Mathematics, MSU (2006) (in Russian),
http://arxiv.org/abs/0811.3958

11. Musatov, D.: Improving the space-bounded version of Muchnik’s conditional com-
plexity theorem via “naive” derandomization (2010),
http://arxiv.org/abs/1009.5108 (Online version of this paper)

12. Musatov, D., Romashchenko, A., Shen, A.: Variations on muchnik’s conditional
complexity theorem. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W.
(eds.) CSR 2009. LNCS, vol. 5675, pp. 250–262. Springer, Heidelberg (2009)

13. Musatov, D., Romashchenko, A., Shen, A.: Variations on Muchnik’s conditional
complexity theorem, to be published in TOCS

14. Nisan, N.: Pseudorandom bits for constant depth circuits. Combinatorica 11(1),
63–70 (1991)

15. Nisan, N., Wigderson, A.: Hardness vs. Randomness. Journal of Computer and
System Sciences 49, 149–167 (1994)

16. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two
superconcentrators. SIAM Journal on Discrete Mathematics 13(1), 2–24 (2000)

17. Reingold, O., Shaltiel, R., Wigderson, A.: Extracting randomness via repeated
condensing. SIAM Journal on Computing 35(5), 1185–1209 (2006)

18. Romashchenko, A.: Pseudo-random graphs and bit probe schemes with one-sided
error. In: CSR 2011

19. Slepian, D., Wolf, J.K.: Noiseless coding of correlated information sources. IEEE
Transactions on information Theory 19, 471–480 (1973)

20. Trevisan, L.: Construction of extractors using pseudo-random generators. In: Proc.
45th Annual Symposium on Foundations of Computer Science, pp. 264–275

21. Zvonkin, A., Levin, L.: The complexity of finite objects and the development of
the concepts of information and randomness by means of the theory of algorithms.
Russian Mathematical Surveys 25(6), 83–124 (1970)

http://arxiv.org/abs/0811.3958
http://arxiv.org/abs/1009.5108

The Complexity of Solving Reachability Games Using
Value and Strategy Iteration∗

Kristoffer Arnsfelt Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen

Aarhus University
{arnsfelt,rij,pbmiltersen}@cs.au.dk

Abstract. Two standard algorithms for approximately solving two-player zero-
sum concurrent reachability games are value iteration and strategy iteration. We

prove upper and lower bounds of 2mΘ(N)
on the worst case number of iterations

needed for both of these algorithms to provide non-trivial approximations to the
value of a game with N non-terminal positions and m actions for each player in
each position.

1 Introduction

1.1 Statement of Problem and Overview of Results

We consider finite state, two-player, zero-sum, deterministic, concurrent reachability
games. For brevity, we shall henceforth refer to these as just reachability games. The
class of reachability games is a subclass of the class of games dubbed recursive games
by Everett [8] and was introduced to the computer science community in a seminal
paper by de Alfaro, Henzinger and Kupferman [6]. A reachability game G is played
between two players, Player I and Player II. The game has a finite set of non-terminal
positions and special terminal positions GOAL and TRAP. In this paper, we let N de-
note the number of non-terminal positions and assume positions are indexed 1, . . . , N
while GOAL is indexed N + 1 and TRAP 0. At any point in time during play, a pebble
rests at some position. The position holding the pebble is called the current position.
The objective for Player I is to eventually make the current position GOAL. If this hap-
pens, play ends and Player I wins. The objective for Player II is to forever prevent this
from happening. This may be accomplished either by the pebble reaching TRAP from
where it cannot escape or by it moving between non-terminal positions indefinitely. To
each non-terminal position i is associated a finite set of actions A1

i , A
2
i for each of the

two players. In this paper, we assume that all these sets have the same size m (if not,
we may “copy” actions to make this so) and that A1

i = A2
i = {1, . . . ,m}. At each

point in time, if the current position is i, Player I and Player II simultaneously choose
actions in {1, . . . ,m}. For each position i and each action pair (a, a′) ∈ {1, . . . ,m}2 is

∗ Work supported by Center for Algorithmic Game Theory, funded by the Carlsberg Founda-
tion. The authors acknowledge support from The Danish National Research Foundation and
The National Science Foundation of China (under the grant 61061130540) for the Sino-Danish
Center for the Theory of Interactive Computation, under which part of this work was per-
formed.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 77–90, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

78 K.A. Hansen, R. Ibsen-Jensen, and P.B. Miltersen

associated a position π(i, a, a′). In other words, each position holds an m ×m matrix
of pointers to positions. When the current position at time t is i and the players play the
action pair (a, a′), the new position of the pebble at time t + 1 is π(i, a, a′).

A strategy for a reachability game is a (possibly randomized) procedure for selecting
which action to take, given the history of the play so far. A strategy profile is a pair
of strategies, one for each player. A stationary strategy is the special case of a strat-
egy where the choice only depends on the current position. Such a strategy is given
by a family of probability distributions on actions, one distribution for each position,
with the probability of an action according to such a distribution being called a behav-
ior probability. We let μi(x, y) denote the probability that Player I eventually reaches
GOAL if the players play using the strategy profile (x, y) and the pebble starts in posi-
tion i. The lower value of position i is defined as: vi = supx∈S1 infy∈S2 μi(x, y) where
S1 (S2) is the set of strategies for Player I (Player II). Similarly, the upper value of a po-
sition i is vi = infy∈S2 supx∈S1 μi(x, y). Everett [8] showed that for all positions i in a
reachability game, the lower value vi in fact equals the upper value vi, and this number
is therefore simply called the value vi of that position. The vector v is called the value
vector of the game. Furthermore, Everett showed that for any ε > 0, there is a stationary
strategy x∗ of Player I so that for all positions i, we have infy∈S2 μi(x∗, y) ≥ vi − ε,
i.e. the strategy x∗ guarantees the value of any position within ε when play starts in
that position. Such a strategy is called ε-optimal. Note that x∗ does not depend on i.
It may however depend on ε > 0 and this dependence may be necessary, as shown by
examples of Everett. In contrast, it is known that Player II has an exact optimal strategy
that is guaranteed to achieve the value of the game, without any additive error [17,13].

In this paper, we consider algorithms for solving reachability games. There are two
notions of solving a reachability game relevant for this paper:

1. Quantitatively: Given a game, compute ε-approximations of the entries of its value
vector (we consider approximations, rather than exact computations, as the value
of a reachability game may be an irrational number).

2. Strategically: Given a game, compute an ε-optimal strategy for Player I.

Once a game has been solved strategically, it is straightforward to also solve it quantita-
tively (for the same ε) by analyzing, using linear programming, the finite state Markov
decision process for Player II resulting when freezing the computed strategy for Player
I. The converse direction is far from obvious, and it was in fact shown by Hansen,
Koucký and Miltersen [12] that if standard binary representation of behavior probabili-
ties is used, merely exhibiting an (1/4)-optimal strategy requires worst case exponential
space in the size of the game. In contrast, a (1/4)-approximation to the value vector ob-
viously only requires polynomial space to describe and it may be possible to compute
it in polynomial time, though it is currently not known how to do so [5].

There is a large and growing literature on solving reachability games [6,7,3,1,2,12].
In this paper, we focus on the two perhaps best-known and best-studied algorithms,
value iteration and strategy iteration. Both were originally derived from similar algo-
rithms for solving Markov decision processes [15] and discounted stochastic games
[19]. We describe these algorithms next. Value iteration is Algorithm 1. Value iteration
approximately solves reachability games quantitatively.

The Complexity of Solving Reachability Games Using Value and Strategy Iteration 79

Algorithm 1. Value Iteration

1: t := 0
2: ṽ0 := (0, . . . , 0, 1) // the vector ṽ0 is indexed 0, 1, . . . , N,N + 1
3: while true do
4: t := t + 1
5: ṽt

0 := 0
6: ṽt

N+1 := 1
7: for i ∈ {1, 2, . . . , N} do
8: ṽt

i := val(Ai(ṽt−1))

Algorithm 2. Strategy Iteration

1: t := 1
2: x1 := the strategy for Player I playing uniformly at each position
3: while true do
4: yt := an optimal best reply by Player II to xt

5: for i ∈ {0, 1, 2, . . . , N,N + 1} do
6: vt

i := μi(xt, yt)
7: t := t + 1
8: for i ∈ {1, 2, . . . , N} do
9: if val(Ai(vt−1)) > vt−1

i then
10: xt

i := maximin(Ai(vt−1))
11: else
12: xt

i := xt−1
i

In the pseudocode of Algorithm 1, the matrix Ai(ṽt−1) denotes the result of replac-
ing each pointer to a position j in the m × m matrix of pointers at position i with
the real number ṽt−1

j . That is, Ai(ṽt−1) is a matrix of m × m real numbers. Also,
val(Ai(ṽt−1)) denotes the value of the matrix game with matrix Ai(ṽt−1) and the row
player being the maximizer. This value may be found using linear programming. Value
iteration works by iteratively updating a valuation of the positions, i.e., the numbers
ṽt

i . Clearly, when implementing the algorithm, valuations ṽt
i only have to be kept for

one iteration of the while loop after the iteration in which they are computed and the
algorithm thus only needs to store O(N) real numbers.1 As stated, the algorithm is
non-terminating, but has the property that as t approaches infinity, the valuations ṽt

i ap-
proach the correct values vi from below. We present an easy (though not self-contained)
proof of this well-known fact in section 2.1 below, and also explain the intuition behind
the truth of this statement. However, until the present paper, there has been no pub-
lished information on the number of iterations needed for the approximation to be an
ε-approximation to the correct value for the general case of concurrent reachability

1 In this paper, we assume the real number model of computation and ignore the (severe) tech-
nical issues arising when implementing the algorithm using finite-precision arithmetic.

80 K.A. Hansen, R. Ibsen-Jensen, and P.B. Miltersen

games, though Condon [4] observed that for the case of turn-based games (or “simple
stochastic games”), the number of iterations has to be at least exponential in N in order
to achieve an ε-approximation. Clearly, the concurrent case is at least as bad. In fact,
this paper will show that the concurrent case is much worse!

Strategy iteration is Algorithm 2. It approximately solves reachability games quan-
titatively as well as strategically. In the pseudocode of Algorithm 2, the line “yt :=
an optimal best reply to xt” should be interpreted as follows: When Player I’s strat-
egy has been “frozen” to xt, the resulting game is a one-player game for Player II,
also known as an absorbing Markov decision process. For such a process, an opti-
mal stationary strategy yt that is pure is known to exist, and can be found in polyno-
mial time using linear programming [15]. The expression maximin(Ai(vt−1)) denotes
a maximin mixed strategy (an “optimal strategy”) for the maximizing row player in the
matrix game Ai(vt−1). This optimal strategy may again be found using linear program-
ming. The strategy iteration algorithm was originally described for one-player games
by Howard [15], with Player I being the single player – in that case, in the pseudocode,
the line “yt := an optimal best reply to xt” is simply omitted. Subsequently, a variant
of the pseudocode of Algorithm 2 was shown by Hoffman and Karp [14] to be a cor-
rect approximation algorithm for the class of recurrent undiscounted stochastic games
and by Rao, Chandrasekaran and Nair [18] to be a correct algorithm for the class of
discounted stochastic games. Finally, Chatterjee, de Alfaro and Henzinger [1] showed
the pseudocode of Algorithm 2 to be a correct approximation algorithm for the class
of reachability games. As is the case for value iteration, the strategy iteration algorithm
is non-terminating, but has the property that as t approaches infinity, the valuations
vt

i approach the correct values vi from below. Chatterjee et al. [1, Lemma 8] prove
this by relating the algorithm to the value iteration algorithm. In particular, they prove:

ṽt
i ≤ vt

i ≤ vi. (1)

That is, strategy iteration needs at most as many iterations of the while loop as value
iteration to achieve a particular degree of approximation to the correct values vi. Also,
the strategies xt guarantee the valuations vt

i for Player I, so whenever these valua-
tions are ε-close to the values, the corresponding xt is an ε-optimal strategy. How-
ever, until the present paper, there has been no published information on the number
of iterations needed for the approximation to be an ε-optimal solution, though a recent
breakthrough result of Friedman [9] proved that for the case of turn-based games, the
number of iterations is at least exponential in N in the worst case. Clearly, the concur-
rent case is at least as bad. In fact, this paper will show that the concurrent case is much
worse!

As our main result, we exhibit a family of reachability games with N positions and
m actions for each player in each position, such that all non-terminal positions have
value one and such that value iteration as well as strategy iteration need at least a dou-
bly exponential 2mΩ(N)

number of iterations to obtain valuations larger than any fixed
constant (say 0.01). By inequality (1), it is enough to consider the strategy iteration al-
gorithm to establish this. However, our proof is much easier and cleaner for the value
iteration algorithm, the exact bounds are somewhat better, and our much more technical

The Complexity of Solving Reachability Games Using Value and Strategy Iteration 81

proof for the strategy iteration case is in fact based upon it. So, we shall present separate
proofs for the two cases, and in these proceedings, due to lack of space, only with details
for the first case.

Our hard instances P (N,m) for both algorithms are generalizations of the “Pur-
gatory” games defined by Hansen, Miltersen and Koucký [12] (these occur as special
cases by setting m = 2). Following the conventions of that paper, we describe these
games as being games between Dante (Player I) and Lucifer (Player II). The game
P (N,m) can be described succinctly as follows: Lucifer repeatedly selects and hides
a number between 1 and m. Each time Lucifer hides such a number, Dante must try to
guess which number it is. After the guess, the hidden number is revealed. If Dante ever
guesses a number which is strictly higher than the one Lucifer is hiding, Dante loses
the game. If Dante ever guesses correctly N times in a row, the game ends with Dante
being the winner. If neither of these two events ever happen and the play thus continues
forever, Dante loses. It is easy to see that P (N,m) can be described as a deterministic
concurrent reachability game with N non-terminal positions and m actions for each
player in each position. Also, by applying a polynomial-time algorithm by de Alfaro et
al. [6] for determining which positions in a reachability game have value 1, we find that
all positions except TRAP have value 1 in P (N,m). That is, Dante can win this game
with arbitrarily high probability.

We note that these hard instances are very natural and easy to describe “as games”
that one might even conceivably have a bit of fun playing (the reader is invited to try
playing P (2, 2) with an uninitiated party)! In this respect, they are quite different from
the recent extremely ingenious turn-based games due to Friedman [9] where strategy
iteration exhibits exponential behavior.

Using recent improved upper bounds on the patience of ε-optimal strategies for Ev-
erett’s recursive games, we provide matching 2mO(N)

upper bounds on the number of
iterations sufficient for getting adequate approximate values, by each of the algorithms.
In particular, both algorithms are also of at most doubly-exponential complexity.

Table 1. Running Strategy Iteration on P (7, 2)

Iterations 100 101 102 103 104 105 106 107 108

Valuation 0.01347 0.03542 0.06879 0.10207 0.13396 0.16461 0.19415 0.22263 0.24828

That the doubly-exponential complexity is a real phenomenon is illustrated in Table
1 which tabulates the valuations computed by strategy iteration for the initial position
of P (7, 2), i.e., “Dante’s Purgatory” [12], a 7-position game of value 1. The algorithm
was implemented using floating point arithmetic and was allowed to run for one hun-
dred million iterations at which point the precision was inadequate for representing the
computed strategies (note that the main result of Hansen, Miltersen and Koucký [12]
implies that roughly 64 decimal digits of precision is needed to describe a strategy
achieving a valuation above 0.9).

Interestingly, when introduced as an algorithm for solving concurrent reachability
games [1], strategy iteration was proposed as a practical alternative to generic algo-
rithms having an exponential worst case complexity. More precisely, one obtains a

82 K.A. Hansen, R. Ibsen-Jensen, and P.B. Miltersen

generic algorithm for solving reachability games quantitatively by reducing the prob-
lem to the decision problem for the existential fragment of the first order theory of the
real numbers [7]. This yields an exponential time (in fact a PSPACE) algorithm. Our
results show that this generic algorithm is in fact astronomically more practical than
strategy iteration on very simple and natural instances. Still, it is not practical in any
real sense of this term, even given state-of-the-art implementations of the best known
decision procedures for the theory of the reals. Finding a practical algorithm remains a
very interesting open problem.

1.2 Overview of Proof Techniques

Our proof of the lower bound for the case of value iteration is very intuitive. It is based
on combining the following facts:

1. The valuations ṽt
i obtained in iteration t of value iteration is in fact the values of a

time bounded version of the reachability game, where Player I loses if he has not
reached GOAL at time t.

2. While the value of the game P (N,m) is 1, the value of its time bounded version is
very close to 0 for all small values of t.

The second fact was established by Hansen et al. [12] for the case m = 2 by relating
the so-called patience of reachability games to the values of their time bounded version,
without the connection to the value iteration algorithm being made explicit, by giving
bounds on the patience of the games P (N, 2). The present paper provides a different
and arguably simpler proof of the lower bound on the value of the time bounded game
that gives bounds also for other values of m than 2. It is based on exhibiting a fixed
strategy for Lucifer that prevents Dante from winning fast.

The lower bound for strategy iteration is much more technical. We remark that the
analysis of value iteration is used twice and in two different ways in the proof. It pro-
ceeds roughly as follows: The analysis of value iteration yields that when value iteration
is applied to P (1,m), exponentially many iterations (in m) are needed to yield a close
approximation of the value. We can also show that when strategy iteration is applied
to P (1,m), exactly the same sequence of valuations is computed as when value itera-
tion is applied to the same game. From these two facts, we can derive an upper bound
on the patience of the strategies computed by strategy iteration on P (1,m). Next, a
quite involved argument shows that when applying strategy iteration to P (N,m), the
sequence of strategies computed for one of the positions (the initial one) is exactly the
same as the one computed when strategy iteration is applied to P (1,m). We also show
that the smallest behavior probability in the computed strategy for P (N,m) occurs
in the initial position. In particular, the patiences of the sequence of strategies com-
puted for P (N,m) is the same as the patiences of the sequence of strategies computed
for P (1,m). Finally, our analysis of value iteration for P (N,m) and the relationship
between patience and value iteration allow us to conclude that a strategy with low pa-
tience for P (N,m) cannot be near-optimal, yielding the desired doubly-exponential
lower bound.

The Complexity of Solving Reachability Games Using Value and Strategy Iteration 83

2 Theorems and Proofs

2.1 The Connection between Patience, the Value of Time Bounded Games, and
the Complexity of Value Iteration

The key to understanding value iteration is the following folklore lemma. Given a con-
current reachability game G, we define GT to be the finite extensive form game with the
same rules as G, except that Player 1 loses if he has not reached GOAL after T moves
of the pebble. The positions of GT are denoted by (i, t), where i is a position of G and
t is an integer denoting the number of time steps left until Dante’s time is out.

Lemma 1. The valuation ṽt
i computed by the value iteration algorithm when applied

to a game G is the exact value of position (i, t) in the game Gt.

The proof is an easy induction in t (“Backward induction”). A very general result by
Mertens and Neyman [16] establishes that for a much more general class of games
(undiscounted stochastic games), the value of the time bounded version converges to
the value of the infinite version as the time bound approaches infinity. Combining this
with Lemma 1 immediately yields the correctness of the value iteration algorithm.

The patience [8] of a stationary strategy for a concurrent reachability game is 1/p,
where p is the smallest non-zero behavior probability employed by the strategy in any
position. The following lemma relates the patience of near-optimal strategies of a reach-
ability game to the difference between the values of the time bounded and the infinite
game and hence to the convergence rate of value iteration.

Lemma 2. Let G be a reachability game with N non-terminal positions and with an
ε-optimal strategy of patience at most l, for some l ≥ 1, ε > 0. Let T = kNlN for some
k ≥ 1, and u be any position of G. Then, the value of position (u, T) of GT differs from
the value of the position u of G by at most ε + e−k.

Proof. We want to show that the value of (u, T) in GT is at least vu − ε− e−k, where
vu is the value of position u in G. We can assume that vu > ε, because otherwise we
are done. Fix an ε-optimal stationary strategy x for Dante in G of patience at most l.
Consider this as a strategy of GT and consider play starting in u. We shall show that
x guarantees Dante to win GT with probability at least vu − ε − e−k, thus proving
the statement. Consider a best reply y by Lucifer to x in GT . Note that y does not
necessarily correspond to a stationary strategy in G. The strategy can still be played by
Lucifer in G, by playing by it for the first T time steps and playing arbitrarily afterwards.

Call a position v of G alive if there are paths from v to GOAL in all directed graphs
obtained from G in the following way: The nodes of the graphs are the positions of G.
We then select for each position an arbitrary column for the corresponding matrix, and
let the edges going out from this node correspond to the pointers of the chosen column
and rows where Dante assigns positive probability. That is, intuitively, a position v is
alive, if and only if there is no absolutely sure way for Lucifer for preventing Dante from
reaching GOAL when play starts in v. Positions that are not alive are called dead. Note
that if a position v is dead, the strategy y, being a best reply of Lucifer, will pick actions
so that the probability of play reaching GOAL, conditioned on play having reached v,
is 0. On the other hand, if the current position v is alive, the conditional probability that

84 K.A. Hansen, R. Ibsen-Jensen, and P.B. Miltersen

play reaches GOAL within the next N steps is at least (1/l)N . That is, looking at the
entire play, the probability that play has not reached either GOAL or a dead state after
T steps is at most (1 − l−N)T/N = (1 − l−N)klN ≤ e−k. Suppose now that GOAL
is reached in T steps with probability strictly less than vu − ε − e−k when play starts
in u. This means that a dead position is reached with probability strictly greater than
1− (vu − ε− e−k)− e−k, i.e., strictly greater than 1− (vu − ε). But this means that if
Lucifer plays y as a reply to x in the infinite game G he will in fact succeed in getting
the pebble to reach a dead position and hence prevent Dante from ever reaching GOAL,
with probability strictly greater than 1−(vu−ε). This contradicts x being ε-optimal for
Dante in G. Thus, we conclude that GOAL is in fact reached in T steps with probability
at least vu− ε− e−k when play starts in u with x and y being played against each other
in GT , as desired.

The connection between the convergence of value iteration and the time bounded ver-
sion of the game allows us to reformulate the lemma in the following very useful way.

Lemma 3. Let G be a reachability game with an ε-optimal strategy of patience at most
l, for some ε > 0. Then, T = kNlN rounds of value iteration is sufficient to approxi-
mate the values of all positions of the game with additive error at most ε + e−k.

We can use this lemma to prove our upper bound on the number of iterations of value
iteration (and hence also strategy iteration). The following lemma is from Hansen et al.
[11].

Lemma 4 (Hansen, Koucký, Lauritzen, Miltersen and Tsigaridas). Let ε > 0 be ar-
bitrary. Any concurrent reachability game with N positions and at most m ≥ 2 actions
in each position has an ε-optimal stationary strategy of patience at most (1/ε)mO(N)

.

This lemma is an asymptotic improvement of Theorem 4 of Hansen et al. [12], that
gave an upper bound of (1/ε)2

30M

, for a total number of M actions, when M ≥ 10 and
0 < ε < 1

2 . This result does however have the advantage of an explicit constant in the
exponent, which the bound of Lemma 4 lacks.

Combining Lemma 3, Lemma 4, and also applying inequality (1), we get the follow-
ing upper bound:

Theorem 5. Let ε > 0 be arbitrary. When applying value iteration or strategy iteration
to a concurrent reachability game with N non-terminal positions and m ≥ 2 choices for
each player in each position, after at most (1/ε)mO(N)

iterations, an ε-approximation
to the value has been obtained.

Also, Lemma 3 will be very useful for us below when applied in the contrapositive.
Specifically, below, we will directly analyze and compare the value of P (N,m) with
the value of its time bounded version, and use this to conclude that the value iteration
algorithm does not converge quickly when applied to this game. The lemma then im-
plies that the patience of any ε-optimal strategy is large. When we later consider the
strategy iteration algorithm applied to the same game, we will show that the strategy
computed after any sub-astronomical number of iterations has too low patience to be
ε-optimal.

The Complexity of Solving Reachability Games Using Value and Strategy Iteration 85

2.2 The Value of Time Bounded Generalized Purgatory and the Complexity of
Value Iteration

In this section we give an upper bound on the value of a time bounded version of the
Generalized Purgatory game P (N,m). As explained in Section 2.1, this upper bound
immediately implies a lower bound on the number of iterations needed by value itera-
tion to approximate the value of the original game.

We let PT (N,m) be the time bounded version of P (N,m) as defined in Section
2.1, i.e. PT (N,m) is syntactic sugar for (P (N,m))T . Also, we need to fix an indexing
of the positions of P (N,m). We define position i for i = 1, . . . , N to be the position
where Dante already guessed correctly i − 1 times in a row and still needs to guess
correctly N − i + 1 times in a row to win the game.

First we give a rather precise analysis of the one-position case. Besides being inter-
esting in its own right (to establish that value iteration is exponential even for this case),
this will also be useful later when we analyze strategy iteration.

Theorem 6. Let m ≥ 2 and T ≥ 1. The value of position (1, T) of PT (1,m) is less
than

1− (1 − 1
m

)(
1

mT
)1/(m−1).

Proof. Let ε = (1/mT)1/(m−1). Consider any strategy (not necessarily stationary) for
Dante for playing PT (1,m). In each round of play, Dante chooses his action with a
probability distribution that may depend on previous play and time left. We define a
reply by Lucifer in a round-to-round fashion.

Fix a history of play leading to some current round and let p1, p2, . . . , pm be the
probabilities by which Dante plays 1, 2, . . . ,m in this current round. There are two
cases.

1. There is an i so that pi < (1−ε
ε)
∑

j≥i+1 pj . We call such a round a green round.
In this case, Lucifer plays i.

2. For all i, pi ≥ (1−ε
ε)
∑

j≥i+1 pj . We call such a round a red round. In this case,
Lucifer plays m.

This completes the definition of Lucifer’s reply.
We now analyze the probability that Dante wins PT (1,m) when he plays his strategy

and Lucifer plays this reply. We show this probability to be at most

1− (1− 1
m

)(
1

mT
)1/(m−1)

and we shall be done.
Let us consider a green round. We claim that the probability that Dante wins in this

round, conditioned on the previous history of play, and conditioned on play ending in
this round, is at most 1− ε. Indeed, this conditional probability is given by

pi

pi + (pi+1 + · · ·+ pm)
<

(1−ε
ε)(

∑
j≥i+1 pj)

(1−ε
ε)(

∑
j≥i+1 pj) + (

∑
j≥i+1 pj)

=
(1− ε)/ε

(1− ε)/ε + ε/ε

= 1− ε.

86 K.A. Hansen, R. Ibsen-Jensen, and P.B. Miltersen

Let us next consider a red round. We claim that the probability of play ending in this
round, conditioned on the previous history of play, is at most εm−1. Indeed, note that
this conditional probability is exactly pm, and that

1 =
m∑

j=1

pj = p1 +
m∑

j=2

pj ≥ (1 +
1− ε

ε
)(

m∑
j=2

pj) = (1 +
1− ε

ε
)(p2 +

m∑
j=3

pj)

≥ (1 +
1− ε

ε
)2(

m∑
j=3

pj) ≥ · · · ≥ (1 +
1− ε

ε
)m−1pm = (

1
ε
)m−1pm

from which pm ≤ εm−1. That is, in every round of play, conditioned on previous play,
either it is the case that the probability that play ends in this round is at most εm−1 (for
the case of a red round) or it is the case that conditioned on play ending, the probability
of win for Dante is at most 1− ε (for the case of a green round).

Now let us estimate the probability of a win for Dante in the entire game PT (1,m).
Let W denote the event that Dante wins. Let G be the event that play ends in a green
round. Also, let R be the event that play ends in a red round. Then, we have

Pr[W] = Pr[W |R] Pr[R] + Pr[W |G] Pr[G]
≤ Pr[R] + Pr[W |G] Pr[G]
= Pr[R] + Pr[W |G](1 − Pr[R])
= Pr[R] + Pr[W |G]− Pr[R] Pr[W |G]
< (εm−1)T + (1− ε)− (εm−1)T (1− ε)
= 1− ε + T εm

= 1− (
1

mT
)1/(m−1) + T (

1
mT

)
m

m−1

= 1− (1− 1
m

)(
1

mT
)1/(m−1).

Combining Lemma 1 with Theorem 6 we get the result that value iteration needs expo-
nential time, even for one-position games.

Corollary 7. Let 0 < ε < 1. Applying less than 1
em (1/ε)m−1 iterations of the value

iteration algorithm to P (1,m) yields a valuation at least ε smaller than the exact value.

Next, we analyze the N -position case, where we give a somewhat coarser bound.

Theorem 8. Let N,m, k, T be integers with N ≥ 2,m ≥ 2, 1 ≤ k ≤ N − 2 and
T ≤ 2mN−k

. Then, the value of PT (N,m) is at most 2m−k + 2−mN−k−1
.

Proof. We show an upper bound on the value of PT (N,m) of 2m−k + 2−mN−k−1
by

exhibiting a particular strategy of Lucifer and showing that any response by Dante to
this particular strategy of Lucifer will make Dante win with probability at most 2m−k+
2−mN−k−1

.
To structure the proof, we divide the play into epochs. An epoch begins and another

ends immediately after each time Dante has guessed incorrectly by undershooting, so

The Complexity of Solving Reachability Games Using Value and Strategy Iteration 87

that he now finds himself in exactly the same situation as when the play begins (but in
general with less time left to win). That is, Dante wins if and only if there is an epoch of
length N containing only correct guesses. For convenience, we make the game a little
more attractive for Dante by continuing play for T epochs, rather than T rounds. Call
this prolonged game G′

T . Clearly, the value of GT is at most the value of G′
T , so it is

okay to prove the upper bound for the latter. We index the epochs 1, 2, . . . , T .
To define the strategy of Lucifer, we first define a function f : N × N → N as

follows:

f(i, j) = 1 + (j − 1)
i−1∑
r=0

mr.

Then, it is easy to see that f satisfies the following two equations.

f(i,m) = mi (2)

f(i, j + 1) = f(i, j) +
i−1∑
r=0

f(r,m) (3)

The specific strategy of Lucifer is this: Let d be the number of rounds already played in
the current epoch. If d ≥ N −k, Lucifer chooses a number between 1 and m uniformly
at random. If d < N − k, he hides the numbers j = 1, . . . ,m − 1 with probabilities
pj(d) = 2−f(N−k−d,m+1−j) and puts all remaining probability mass on the number m
(since N − k − d ≥ 1 and m ≥ 2, there is indeed some probability mass left for m).

Freeze the strategy of Lucifer to this strategy. From the point of view of Dante, the
game GT is now a finite horizon absorbing Markov decision process. Thus, he has an
optimal policy that is deterministic and history independent. That is, the choices of
Dante according to this policy depend only on the number of rounds already played in
the present epoch and the remaining number of epochs before the limit of T epochs has
been played, or, equivalently, on the index of the current epoch. We can assume without
loss of generality that Dante plays such an optimal policy. That is, his optimal policy for
epoch t can be described by a specific sequence of actions at0, at1, at2, . . . , at(N−1) in
{1, . . . ,m} to make in the next N rounds (with the caveat that this sequence of choices
will be aborted if the epoch ends).

Se define the following mutually exclusive events Wt, Lt:

– Wt: Dante wins the game in epoch t (by guessing correctly N times).
– Lt: Dante loses the game in epoch t (by overshooting Lucifer’s number)

We make the following claim:

Claim: For each t, either Pr[Wt] ≤ 2−mN−k−mN−k−1
or Pr[Wt]/ Pr[Lt] ≤ 2m−k.

First, let us see that the claim implies the lemma. Indeed, the probability of Dante
winning can be split into the contributions from those epochs where Dante wins with
probability at most 2−mN−k−mN−k−1

and the remaining epochs. The total winning
probability mass from the first is at most T 2−mN−k−mN−k−1 ≤ 2−mN−k−1

and the
total winning probability mass of the rest is at most 2m−k, giving an upper bound for
Dante’s winning probability of 2m−k + 2−mN−k−1

.

88 K.A. Hansen, R. Ibsen-Jensen, and P.B. Miltersen

So let us prove the claim. Fix an epoch t and let at0, at1, at3, . . . , at(N−1) be Dante’s
sequence of actions. Suppose at0 = 1 and at1 = 1. Then, since Lucifer only plays 1 in
the first two rounds with probability p1(0)p1(1) = 2−f(N−k,m) ·2−f(N−k−1,m), Dante
only wins the game in this epoch with at most that probability, which by equation (2) is
equal to 2−mN−k−mN−k−1

, as desired.
Now assume at0 > 1 or at1 > 1. We want to show that Pr[Wt]/ Pr[Lt] ≤ 2m−k.

Let d be the largest index so that d < N − k and so that atd > 1. Since at0 > 1 or
at1 > 1, such a d exists. Let E be the event that epoch t lasts for at least d rounds.
We will show that Pr[Wt|E]/ Pr[Lt|E] ≤ 2m−k. Since Wt ⊆ E, this also implies
that Pr[Wt]/ Pr[Lt] ≤ 2m−k. Since we condition on E we look at Dante’s decision
after d rounds of epoch t. He chooses the action j = atd > 1. If Lucifer at this point
chooses a number small than j, Dante loses. In particular, since Lucifer chooses the
number j − 1 with probability 2−f(N−k−d,m+1−(j−1), Dante loses the entire game
by his action atd with probability at least 2−f(N−k−d,m−j), conditioned on E. On the
other hand the probability that he wins the game in this epoch conditioned on E is at
most (2−f(N−k−d,m+1−j))(

∏N−k−1
i=d+1 2−f(N−k−i,m))(m−k)), the first factor being the

probability that Lucifer chooses j at round d, the second factor being the probability
that Lucifer like Dante repeatedly chooses 1 until the last k rounds of the epoch begin,
and the third factor being the probability that Lucifer matches Dante’s choices in those
k rounds. Now we have

Pr[Wt]/ Pr[Lt] ≤
Pr[Wt|E]/ Pr[Lt|E] ≤

(2−f(N−k−d,m+1−j))(
N−k−1∏
i=d+1

2−f(N−k−i,m))(m−k))2f(N−k−d,m−j) ≤

m−k2f(N−k−d,m−j)−f(N−k−d,m+1−j)−∑N−k−d−1
r=1 f(r,m) =

2m−k2f(N−k−d,m−j)−f(N−k−d,m+1−j)−∑N−k−d−1
r=0 f(r,m) =

2m−k

as desired.

Combining Lemma 1 with Theorem 8 we get the result that value iteration needs doubly
exponential time to obtain any non-trivial approximation:

Corollary 9. Let N be even. Applying less than 2mN/2
iterations of the value iteration

algorithm to P (N,m) yields a valuation of the initial position of at most 3m−N/2, even
though the actual value of the game is 1.

We also get the following bound on the patience of near-optimal strategies of P (N,m)
that will be useful when analyzing strategy iteration.

Theorem 10. Suppose N is sufficiently large and m ≥ 2. Let ε = 1 − 4m−N/2. Then
all ε-optimal strategies of P (N,m) have patience at least 2mN/3

.

The Complexity of Solving Reachability Games Using Value and Strategy Iteration 89

Proof. Putting c = N ln m
2 , Lemma 2 tells us that if P (N,m) has an ε-optimal strategy

of patience less than l = 2mN/3
, then the value of Pt(N,m) is at least 1 − ε − e−c =

3m−N/2, where t = cNlN ≤ 2mN/2
. But putting k = N/2, Theorem 8 tells us that the

value of Pt(N,m) is at most 2m−N/2 + 2−mN/2−1
< 3m−N/2, a contradiction.

2.3 Strategy Iteration

The technical content of this section is a number of lemmas on what happens when the
strategy iteration algorithm is applied to P (N,m), leading up to the following crucial
lemma:

Lemma 11. When applying strategy iteration to P (N,m), the patience of the strategy
xt computed in iteration t is at most e ·m · t.
Before we prove Lemma 11, we show that it implies the lower bound we are looking
for.

Theorem 12. Suppose N is sufficiently large. Applying less than 2mN/4
iterations of

strategy iteration to P (N,m) yields a valuation of the initial position of less than
4m−N/2, despite the fact that the value of the position is 1.

Proof. Lemma 11 implies that the patience of the strategy xt computed in iteration t

for t = 2mN/4
is at most em2mN/4

. Theorem 10 states that if ε = 1 − 4m−N/2, then
all ε-optimal strategies of P (N,m) have patience at least 2mN/3

. So xt is not ε-optimal
and the bound follows.

Due to space constraints, the rather long and technical proof of Lemma 11 itself is
omitted, but can be found in the full version of this paper [10].

Acknowledgement

First and foremost, we would like to thank Uri Zwick for extremely helpful discussions
and Kousha Etessami for being instrumental for starting this research. We would also
like to thank Vladimir V. Podolskii for helpful discussions.

References

1. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: Strategy improvement for concurrent reacha-
bility games. In: Third International Conference on the Quantitative Evaluation of Systems,
pp. 291–300. IEEE Press, New York (2006)

2. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: Termination criteria for solving concurrent
safety and reachability games. In: 20th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 197–206. SIAM, Philadelphia (2009)

3. Chatterjee, K., Majumdar, R., Jurdziński, M.: On nash equilibria in stochastic games. In:
Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 26–40. Springer,
Heidelberg (2004)

90 K.A. Hansen, R. Ibsen-Jensen, and P.B. Miltersen

4. Condon, A.: On algorithms for simple stochastic games. In: Advances in Computational
Complexity Theory, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 13, pp. 51–73 (1993)

5. Dai, D., Ge, R.: New results on simple stochastic games. In: Dong, Y., Du, D.-Z., Ibarra, O.
(eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1014–1023. Springer, Heidelberg (2009)

6. de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. Theor. Com-
put. Sci. 386, 188–217 (2007)

7. Etessami, K., Yannakakis, M.: Recursive concurrent stochastic games. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 324–335.
Springer, Heidelberg (2006)

8. Everett, H.: Recursive games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the The-
ory of Games Vol. III. Annals of Mathematical Studies, vol. 39, pp. 47–78. Princeton Uni-
versity Press, Princeton (1957)

9. Friedmann, O.: An exponential lower bound for the parity game strategy improvement algo-
rithm as we know it. In: 24th Annual IEEE Symposium on Logic in Computer Science, pp.
145–156. IEEE Press, New York (2009)

10. Hansen, K.A., Ibsen-Jensen, R., Miltersen, P.B.: The complexity of solving reachability
games using value and strategy iteration, http://arxiv.org/abs/1007.1812

11. Hansen, K.A., Koucký, M., Lauritzen, N., Miltersen, P.B., Tsigaridas, E.: Exact Algorithms
for Solving Stochastic Games. In: 43rd ACM Symposium on Theory of Computing, ACM
Press, New York (2011)

12. Hansen, K.A., Koucký, M., Miltersen, P.B.: Winning concurrent reachability games requires
doubly exponential patience. In: 24th Annual IEEE Symposium on Logic in Computer Sci-
ence, pp. 332–341. IEEE Press, New York (2009)

13. Himmelberg, C.J., Parthasarathy, T., Raghavan, T.E.S., Vleck, F.S.V.: Existence of p-
equilibrium and optimal stationary strategies in stochastic games. Proc. Amer. Math. Soc. 60,
245–251 (1976)

14. Hoffman, A., Karp, R.: On nonterminating stochastic games. Management Science 12, 359–
370 (1966)

15. Howard, R.: Dynamic Programming and Markov Processes. MIT Press, Cambridge (1960)
16. Mertens, J.F., Neyman, A.: Stochastic games. International Journal of Game Theory 10, 53–

66 (1981)
17. Parthasarathy, T.: Discounted and positive stochastic games. Bull. Amer. Math. Soc. 77, 134–

136 (1971)
18. Rao, S., Chandrasekaran, R., Nair, K.: Algorithms for discounted games. J. Optimiz. Theory

App. 11, 627–637 (1973)
19. Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sciences,

U.S.A. 39, 1095–1100 (1953)

http://arxiv.org/abs/1007.1812

Faster Polynomial Multiplication via Discrete

Fourier Transforms

Alexey Pospelov�

Saarland University, Computer Science Department
pospelov@cs.uni-saarland.de

Abstract. We study the complexity of polynomial multiplication over
arbitrary fields. We present a unified approach that generalizes all known
asymptotically fastest algorithms for this problem and obtain faster
algorithms for polynomial multiplication over certain fields which do
not support DFTs of large smooth orders. We prove that the famous
Schönhage-Strassen’s upper bound cannot be improved over the field of
rational numbers if we consider only algorithms based on consecutive
applications of DFT, as all known fastest algorithms are.

This work is inspired by the recent improvement for the closely re-
lated problem of complexity of integer multiplication by Fürer and its
consequent modular arithmetic treatment due to De, Kurur et al. We
explore the barriers in transferring the techniques for solutions of one
problem to a solution of the other.

Keywords: Polynomial multiplication, discrete Fourier transform, al-
gebraic complexity, lower bounds.

1 Introduction

Complexity of polynomial multiplication is one of the central problems in com-
puter algebra and algebraic complexity theory. Given two univariate polynomials
by vectors of their coefficients,

a(x) =
n−1∑
i=0

aix
i , b(x) =

n−1∑
j=0

bjx
j , (1)

over some field k, the goal is to compute the coefficients of their product

c(x) = a(x) · b(x) =
2n−2∑
	=0

c	x
	 =

2n−2∑
	=0

∑
0≤i, j<n,

i+j=	

aibjx
	 . (2)

The direct way by the formulas above requires n2 multiplications and (n − 1)2

additions of elements of k, making the total complexity of the naive algorithm
O(n2). In what follows we call k the ground field.
� This research is supported by Cluster of Excellence “Multimodal Computing and

Interaction” at Saarland University.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 91–104, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

92 A. Pospelov

1.1 Model of Computation

We study the problem of the total algebraic complexity of the multiplication of
polynomials over fields. That is, elements of k are thought of as algebraic entities,
and each binary arithmetic operation on these entities has unit cost. This model
is rather abstract in the sense that it counts, for example, an infinite precision
multiplication of two reals as a unit cost operation. On the other hand, it has
an advantage of being independent of any concrete implementation that may
depend on many factors, including human-related, thus it is more universal, see
the discussion on this topic in [3, Introduction].

We are concerned with the total number of arithmetic operations, i.e., multi-
plications and additions/subtractions that are sufficient to multiply two degree
n− 1 polynomials. Since the resulting functions can be computed without divi-
sions, it seems natural to consider only division-free algebraic algorithms. The
inputs of such algorithms are the values a0, . . . , an−1, b0, . . . , bn−1 ∈ k, the
outputs are the values c0, c1, . . . , c2n−2 ∈ k as defined in (1), (2). Any step of
an algorithm is a multiplication, an addition or a subtraction of two values, each
being an input, a value previously computed by the algorithm, or a constant
from the ground field. An algorithm computes the product of two degree n− 1
polynomials if all outputs c0, . . . , c2n−2 are computed in some of its steps. The
number of steps of an algorithm A is called algebraic or arithmetic complexity of
A. Note that a division-free algebraic algorithm is a special instance of the well-
known straight-line program model. In what follows, if not mentioned explicitly
we will always consider division-free algebraic algorithms.

A multiplication performed in a step of an algorithm is called scalar if at least
one multiplicand is a field constant, and nonscalar in the other case. For an algo-
rithm A which computes the product of two degree n−1 polynomials, we define
Lm
A(n) to be the number of nonscalar multiplications used in A, and La

A(n) to
be the total number of additions, subtractions and scalar multiplications in A.
We also set LA(n) := Lm

A(n) + La
A(n), the total algebraic complexity of A com-

puting the product of two degree n− 1 polynomials. In what follows, An
k always

stands for the set of division-free algorithms computing the product of two degree
n− 1 polynomials over k, Lm

k (n) := minA∈An
k

Lm
A(n), La

k(n) := minA∈An
k

La
A(n),

Lk(n) := minA∈An
k

LA(n). When the field k will be clear from the context or
insignificant, we will use the simplified notation: Lm(n), La(n) and L(n), respec-
tively. Note that L(n) need not be equal to Lm(n) + La(n), since the minimal
number of nonscalar multiplications and the minimal number of additive oper-
ations and scalar multiplications can be achieved by different algorithms.

It is known [18], [3, Section 14.1] that an algebraic algorithmAd with divisions
for a set of l quadratic forms of n variables over an infinite field k can be trans-
formed into a division-free algorithm A such that Lm

A(n) will not exceed the total
number of nonscalar multiplications and divisions used by Ad for computing the
original l quadratic forms of n variables. It is unknown, if the same result holds
also over finite fields. It is also an open problem how the total complexity of a
set of quadratic forms is affected by allowing divisions. Strassen proved in [18]
that the exponent of matrix multiplication is the same in the division-free model

Faster Polynomial Multiplication via Discrete Fourier Transforms 93

and in the model with divisions. We mention here however, that the notion of
the exponent is very rough and does not even define the order of the complexity:
two algorithms A and A′ with LA(n) = Θ(n) and LA′(n) = Θ(n log2 n) both
have the complexity exponent 1, while the complexity of A′ is obviously higher.

1.2 Fast Polynomial Multiplication and Lower Bounds

Designing efficient algorithms and proving lower bounds is a classical problem
in algebraic complexity theory that received wide attention in the past. For an
exhaustive treatment of the current state of the art we advise the reader to
refer to [3, Sections 2.1, 2.2, 2,7, 2.8], [11, Chapter 8]. There exists an algorithm
A ∈ An

k , such that

Lm
A(n) = O(n) , La

A(n) = O(n log n) , LA(n) = O(n log n) , 1 (3)

if k supports Discrete Fourier Transformation (DFT) of order 2l, [3, Chapter 1,
Section 2.1] or 3l, [3, Exercise 2.5] for each l > 0. Schönhage-Strassen’s algorithm
B ∈ An

k computes the product of two degree n−1 polynomials over an arbitrary
field k of characteristic different from 2 with

Lm
B (n) = O(n log n) , La

B(n) = O(n log n log log n) ,

LB(n) = O(n log n log log n) .
(4)

cf. [16], [3, Section 2.2], [11, Sections 8.2, 8.3]. In fact, the original algorithm
of [16] computes the product of two n-bit integers, but it readily transforms into
an algorithm for degree n− 1 polynomial multiplication. For fields of character-
istic 2, Schönhage’s algorithm [15], [3, Exercise 2.6] has the same upper bounds
as in (4). An algorithm C′ for multiplication of polynomials over arbitrary rings
with the same upper bound for Lm

C′(n) was first proposed by Kaminski in [12].
However, there was no matching upper bound for La

C′(n). Cantor and Kaltofen
generalized Schönhage-Strassen’s algorithm into an algorithm C for the problem
of multiplication of polynomials over arbitrary algebras (not necessarily commu-
tative, not necessarily associative) achieving the upper bounds (4), see [5].

For the rest of the paper, we will use the introduced notation: A will al-
ways stand for the multiplication algorithm via DFT with complexity upper
bounds (3), B will stand for Schönhage-Strassen’s algorithm if chark �= 2 and for
Schönhage’s algorithm if char k = 2, both with complexity upper bounds (4), and
C will stand for Cantor-Kaltofen’s algorithm for multiplication of polynomials
over arbitrary algebras with the same complexity upper bounds as Schönhage-
Strassen’s algorithm.

Upper and lower bounds for Lm
k (n), which is also called the multiplicative

complexity, received special attention in the literature, see, e.g., [3, Section 14.5].
It is interesting, that for each k, there exists always an algorithm E ∈ An

k with
Lm
E (n) = O(n), if we do not worry that La

E(n) will be worse than in (4), see [6,17].

1 In this paper we always use log := log2.

94 A. Pospelov

There are few lower bounds for the algebraic complexity of polynomial mul-
tiplication. Most of them are actually bounding Lm(n) which can be used as a
conservative lower bound for L(n). Since the coefficients c0, . . . , c2n−2 are lin-
early independent, in case of division-free algorithms one immediately obtains
the lower bound

L(n) ≥ Lm(n) ≥ 2n− 1

over arbitrary fields. Currently, this is the only general lower bound for L(n)
which does not depend on the ground field. Bürgisser and Lotz in [4] proved the
only currently known nonlinear lower bound of Ω(n log n) for LC(n) (actually,
on La

C(n)) which holds in case when all scalar multiplications in an algorithm
are with bounded constants.

The gap between the upper and the lower bounds on Lk(n) motivates to look
for better multiplication algorithms and for higher lower bounds for the com-
plexity of polynomial multiplication, in particular over small fields. For example,
it is still an open problem if the total algebraic complexity of polynomial mul-
tiplication is nonlinear, see [3, Problem 2.1]. Another well known challenge is
to decrease the upper bound for Lk(n) of (4) to the level of (3) in case of ar-
bitrary fields, see [13] for the more general question on multivariate polynomial
multiplication. In this paper we address both these problems.

1.3 Our Results

As our first contribution, for every field k, we present an algorithm Dk ∈ An
k ,

which is a generalization of Schönhage-Strassen’s construction that works over
arbitrary fields and achieves the best known complexity upper bounds. In fact,
we argue that the algorithm Dk stands for a generic polynomial multiplication
algorithm that relies on consecutive application of DFT. In particular, the algo-
rithms A, B, and C come as special cases of the algorithm Dk. We are currently
not aware of any algorithms with an upper bound of (4) that are not based on
consecutive DFT applications and thus do not follow from the algorithm Dk.

As the second contribution, we show that LDk
(n) = o(n log n log log n) in case

when algorithm A cannot be applied but the field k has some simple algebraic
properties that are ignored by algorithms B and C. This improves the upper
bound of (4) over such fields. We also present a parameterization of fields k
with respect to the performance of the algorithm Dk, and give explicit upper
bounds which depend on this parameterization. More precisely, over each field
k, we have Ω(n log n) = LDk

(n) = O(n log n log log n), and over certain fields
that do not admit low-overhead application of the algorithm A, the algorithm
Dk achieves intermediate complexities between the indicated bounds.

Finally, we show, that the algorithm Dk has natural limitations depending on
the ground field k. For example, we prove that LDQ

(n) = Ω(n log n log log n).
Furthermore, we characterize all such fields where the application of DFT-based
methods does not lead to any improvement of the upper bound (4). Therefore,
we consider this as an exhaustive exploration of the performance of generic
algorithms for polynomial multiplication based on DFT.

Faster Polynomial Multiplication via Discrete Fourier Transforms 95

1.4 Organization of the Paper

Section 2 contains the necessary algebraic preliminaries. In Section 3 we recall the
best known upper bounds for the computation of DFT over different fields and
show an efficient application of their combination. We also indicate limitations
of the known techniques.

Section 4 contains our main contributions. We end with one particular num-
ber-theoretic conjecture due to Bläser on the existence of special finite field
extensions. In fact, if it holds then the algorithm Dk presented in Section 4 has
lower algebraic complexity than that of the previously known algorithms B and
C over any field of characteristic different from 0.

2 Basic Definitions

In what follows we will denote the ground field by k. Algebra will always stand
for a finite dimensional associative algebra over some field with unity 1. For a
function f : N→ R, a positive integer n is called f -smooth, if each prime divisor
of n does not exceed f(n). Note that this definition is not trivial only if f(n) < n

2 .
If f(n) = O(1) then an f -smooth positive integer is called just smooth.

All currently known fastest algorithms for polynomial multiplication over ar-
bitrary fields rely on the possibility to apply the Discrete Fourier Transform by
means of the Fast Fourier Transform algorithm (FFT) and on the estimation of
the overhead needed to extend the field to make DFTs available. This possibility
depends on existence of so-called principal roots of unity of large smooth orders,
e.g., of orders 2ν for all ν > 0.

Let A be an algebra over k. ω ∈ A is called a principal n-th root of unity
if ωn = 1A (where 1A is the unity of A) and for 1 ≤ ν < n, 1 − ων is not a
zero divisor in A. It follows that if ω ∈ A is a principal n-th root of unity then
chark � n and

n−1∑
ν=0

ωi·ν =

{
n, if i ≡ 0 (mod n) ,

0, otherwise .
(5)

If A is a field, then ω ∈ A is a principal n-th root of unity iff ω is a prim-
itive n-th root of unity. For a principal n-th root of unity ω ∈ A, the map
DFTω

n : A[x]/(xn − 1)→ An defined as DFTω
n

(∑n−1
ν=0 aνx

ν
)

= (ã0, . . . , ãn−1),

where ãi =
∑n−1

ν=0 ωi·νaν , for i = 0, . . . , n − 1, is called the Discrete Fourier
Transform of order n over A with respect to the principal n-th root of unity ω.

It follows from the Chinese Remainder Theorem that if ω ∈ A is a princi-
pal n-th root of unity, then DFTω

n is an isomorphism between A[x]/(xn − 1)
and An. (5) implies that the inverse transform of DFTω

n can be computed
by 1

n DFTω−1

n since ω−1 is also a principal n-th root of unity in A [3, The-
orem (2.6)]: ai = 1

n

∑n−1
ν=0 ω−i·ν · ãν , for i = 0, . . . , n− 1. Note that if ω ∈ A

is a principal n-th root of unity and a(x) =
∑n−1

ν=0 aνxν ∈ k[x]/(xn − 1) then
DFTω

n (a(x)) =
(
a(ω0), . . . , a(ωn−1)

)
.

96 A. Pospelov

An important property of the DFT is that it can be computed efficiently under
certain conditions, see Section 3. We only mention here that if for some constant
s there exists a principal sn-th root of unity ω in an algebra A, then DFTω

sn

can be computed in O(sn log sn) additions of elements in A and O(sn log sn)
multiplications by powers of ω in A.

3 An Upper Bound on the Complexity of DFT

In this section we summarize the best known upper bounds for the computation
of DFTs over an algebra A with unity 1. Let ω ∈ A be a principal n-th root
of unity. For a(x) ∈ A[x] of degree n − 1, let ã = DFTω

n(a(x)) ∈ An. We will
denote the total number of operations over A that are sufficient for an algebraic
algorithm to compute the DFT of order n over A by DA(n).

There is always an obvious way to compute ã from the coefficients of a(x).

Lemma 1. For every A such that the DFT of order n ≥ 1 is defined over A,

DA(n) ≤
{

2n2 − 3n + 1, if 2 � n ,

2n2 − 5n + 4, if 2 | n .
(6)

The next method of effective reduction of a DFT of large order to DFTs of
smaller orders is known as Cooley-Tukey’s algorithm [8], [7, Section 4.1] and is
based on the following lemma which directly follows from well-known facts and
is given here for completeness.

Lemma 2. Let the DFT of order

n = pd1
1 . . . pds

s ≥ 2 (7)

be defined over A. Then

DA(n) ≤ n

s∑
σ=1

(
dσ

pσ
(DA(pσ)− 1) + dσ

)
− n + 1 . (8)

Corollary 1. Let n be as in (7), and let all 2 = p1 < p2 < · · · < ps be primes
(since p1 = 2, we allow here the case d1 = 0). Then

DA(n) ≤
(

3
2
d1 + 2

s∑
σ=2

dσ(pσ − 1)− 1
)

n + 1 , (9)

DA(n) ≤ 2 max
1≤σ≤s

pσ · n log n . (10)

Proof. (9) follows from (8) via the upper bound of Lemma 1 for DA(pσ). Us-
ing the fact that the n =

∏s
σ=1 pdσ

σ and pσ ≥ 2 for 1 ≤ σ ≤ s implies∑s
σ=1 di ≤ log n, we obtain DA(n) ≤ (

3
2 + 2

(
max1≤σ≤s pσ

)− 3
)
n log n + 1,

which proves (10). ��

Faster Polynomial Multiplication via Discrete Fourier Transforms 97

Lemma 2 provides an efficient method of reduction of a DFT of composite
order n to several DFTs of smaller orders which divide n. For example, if all
pσ in (7) are bounded by some constant, then (10) shows that Cooley-Tukey’s
algorithm computes the DFT of order n in O(n log n) steps. Furthermore, if
max1≤σ≤s pσ ≤ g(n) for a slowly growing function g(n), say g(n) = o(log log n),
then (10) gives an upper bound of O(n log n · g(n)) for the computation of the
DFT of order n. However, this method fails to be effective if n has large prime
factors (or is just prime). We could use the algorithm from Lemma 1, but some-
times we can apply Rader’s or Bluestein’s algorithm to compute a DFT of prime
order [14], [7, Section 4.2].

Lemma 3. Assume that the DFT of a prime order p is defined over A.

1. If the DFT of order p−1 is defined over A, then DA(p) ≤ 2DA(p−1)+O(p).
2. If the DFT of order n> 2p−4 is defined over A, then DA(p)≤ 2DA(n)+O(n).

Remark 1. Note that the first bound can be efficient if p−1 is a smooth number.
Otherwise we may choose some larger smooth n for the second case, making sure
that the DFT of order n exists over A and n is not too large, in order to achieve
a O(p log p) upper bound for D(p).

Corollary 2. Let p be a fixed odd prime, k be a field where the DFT of order
pN−1 is defined for N = 2n, n ≥ �log(2p− 5)�. Then Dk(pN−1) = O(pN ·N2).

Proof. We have pN − 1 = (p − 1)(p + 1)(p2 + 1) · · · (p2n−1
+ 1). Since p is odd,

each factor is even and pN−1 = 2n · p−1
2

∏n−1
i=1

p2i
+1
2 . Let pN − 1 = pd1

1 pd2
2 · · · pds

s

be the prime decomposition of pN − 1, so that 2 = p1 < p2 < · · · < ps. Let
i1 ≤ i2 ≤ · · · be such that p2, . . . , pi1 ≤ p−1

2 , pi1+1, . . . , pi2 ≤ p+1
2 , etc.,

and pij+1, . . . , pij+1 ≤ p2j−1
+1

2 . Note that in′ = s for some n′ ≤ n. We also set
i−1 = 0, i0 = 1. From (8) we have

D(pN − 1) ≤ (pN − 1)
s∑

σ=1

(
dσ

pσ
(D(pσ)− 1) + dσ

)
− pN + 2 .

Obviously, for p1 = 2, we have D(p1) = 2 ≤ p1 · log p1. Using Lemma 3 we can
compute the DFT of orders pσ for pσ = 2, . . . , i2 in 8pσ log pσ + O(pσ) time
since we can reduce each DFT of order pσ to 2 DFTs of order 2n1 > 2pσ−4, and
2n1 < 4pσ. This is possible since the DFT of order 2n > 2 · p−1

2 −4 is defined over
k. In the same way, the DFT of order pσ for σ = i1 +1, . . . , i2 can be computed
in 16pσ log pσ + O(pσ) steps since 2n · p−1

2 > 2 · p+1
2 − 4. Continuing this process

we obtain the following upper bound:

D(pN − 1) ≤ (pN − 1)
n−1∑

j=−1

ij+1∑
σ=ij+1

O
(
dσ · 2j log pσ + dσ

)
= O(pN ·N ·log

s∏
σ=1

pdσ
σ) = O(pN ·N2) . ��

98 A. Pospelov

Remark 2. For a fixed odd prime p, the DFT of order p2n − 1 is defined in the
field Fp2n since the multiplicative group F∗

p2n of order p2n−1 is cyclic. Corollary 2
implies that the DFT of order p2n−1 can be computed in O(p2n ·22n) steps over
Fp. A similar argument shows that the same holds for any field of characteristic
p which contains Fp2n as a subfield.

4 Unified Approach for Fast Polynomial Multiplication

In this section we present our main contribution. We proceed as follows: first we
introduce the notions of the degree function and of the order sequence of a field.
Then we describe the DFT-based algorithm Dk which computes the product of
two polynomials over a field k. We show that Dk generalizes any algorithm for
polynomial multiplication that relies on consecutive applications of DFT, and in
particular, Schönhage-Strassen’s [16], Schönhage’s [15], and Cantor-Kaltofen’s [5]
algorithms for polynomial multiplication are special cases of the algorithm Dk.
We prove that both the upper and the lower bounds for the total complexity
of the algorithm Dk depend on the degree function of k and the existence of
special order sequences for k. In particular, we show that LDk

(n) = Ω(n log n)
when k is a finite field, and LDQ

(n) = Ω(n log n log log n). Furthermore, we show
sufficient conditions on the field k for the algorithm Dk to compute the prod-
uct of two degree n polynomials in o(n log n log log n) operations over k, that
is, to outperform Schönhage-Strassen’s, Schönhage’s and Cantor-Kaltofen’s al-
gorithms. Finally, we pose a number-theoretic conjecture whose validity would
imply faster polynomial multiplication over arbitrary fields of positive charac-
teristic.

In what follows k always stands for a field.

4.1 Extension Degree and Order Sequence

Definition 1. The degree function of k is fk such that fk(n) = [k(ωn) : k] for
chark � n, where ωn is a primitive n-th root of unity in the algebraic closure of k.
If char k | n, then fk(n) is not defined.

For example, fk(n) = 1 if k is algebraically closed, fR(n) = 1 if n ≤ 2 and
fR(n) = 2 for n ≥ 3, fQ(n) = φ(n) where φ(N) is the Euler’s totient function.

Note that the degree function is well-defined since [k(ωn) : k] does not depend
on the choice of the primitive n-th root of unity ωn in the algebraic closure of k.

An important idea behind Fürer’s algorithm [10,9] is a field extension of small
degree containing a principal root of unity of high smooth order. In the case
of integer multiplication, the characteristic of the ground ring is a parameter
we can choose [9], and it allows us to pick Zpc such that pc − 1 has a large
smooth factor. However, in the case of multiplication of polynomials over fields,
we cannot change the characteristic of the ground field. In what follows we
explore this limitation.

Faster Polynomial Multiplication via Discrete Fourier Transforms 99

Definition 2. An integer n > 0 is called c-suitable over the field k if the DFT
of order n is defined over k and if Dk(n) ≤ cn log n. n is called simply suitable
if it is O(1)-suitable.

It follows from Corollary 1 that any c-smooth n is 2c-suitable over k as long as
the DFT of order n is defined over k, and Lemma 3 also implies that if for each
prime divisor p of n, p or p − 1 or some n′ ≥ 2p − 3, n′ = O(p), is c-suitable
over k, then n is O(c)-suitable. If char k ≥ 3, then the integers (chark)2

n − 1 are
O(2n)-suitable over k for arbitrary n (see Remark 2).

Definition 3. Let s(n) : N→ R be a function such that s(n) > 1 for all n ∈ N.
A sequence N = {n1, n2, . . . } is called an order sequence of sparseness s(n) for
the field k, if ni < ni+1 ≤ s(ni)ni and ni | ni+1 for i ≥ 1, and ni = n′

in
′′
i such

that there exists a ring extension of k of degree n′
i containing an n′′

i -th principal
root of unity ωn′′

i
, so that n′′

i is O(1)-suitable over this extension. If s(n) ≤ C
for some constant C, then N is called an order sequence of constant sparseness.

It follows from Remark 2 that ni = 2i · (p2i − 1) is almost an order sequence of
sparseness s(n) = n for any field of characteristic p. Decreasing the upper bound
for the computation of DFT from O(n log2 n) to O(n log n) would turn it into
an order sequence of sparseness n.

Remark 3. If char k �= 2 then, for the order sequence N = {2i}i≥1, fk(n′′) ≤ n′′
2

for each n = n′n′′ ∈ N , since if for n ∈ N , n′ := 2� i−1
2 � ≤ n′′ := 2# i−1

2 $+1 ≤ 2n′,
ωn′′ is a primitive n′′-th root of unity in the algebraic closure of k, then for some
p(x) | xn′′

2 +1, k(ωn′′) ∼= k[x]/p(x). The same argument shows that if char k �= 3
and N = {2 · 3i}i≥1, then fk(n̂′′) ≤ 2n̂′′

3 for each n̂ = n̂′n̂′′ ∈ N , n̂′ := 2 · 3� i−1
2 �,

n̂′′ := 3# i−1
2 $+1 ≤ 3

2 n̂′, since for some p(x) | x 2n̂′′
3 +x

n̂′′
3 +1, k(ωn̂′′) ∼= k[x]/p(x).

Both these order sequences have constant sparsenesses.

Definition 4. A field k is called

– t(n)-Fast, if there exists an order sequence N of constant sparseness such
that fk(n′′

i) ≤ t(n′′
i) for all ni = n′

in
′′
i ∈ N .

– t(n)-Slow, if for any order sequence N of constant sparseness, fk(n′′
i)≥ t(n′′

i)
for all ni = n′

in
′′
i ∈ N .

An O(1)-fast field is called just fast.

For example, any algebraically closed field is fast, R is a fast field, and Q is a
φ(n)-slow field. It follows, that Q is an Ω(n

log log n)-slow field [1, Theorem 8.8.7].
Remark 3 implies that any field of characteristic different from 2 is n

2 -fast, and
any field of characteristic different from 3 is 2n

3 -fast.
If we want to extend a b(n)-slow field k with an n-th root of unity, the degree

of the extension will be Ω(b(n)). In a DFT-based algorithm we need to take
an extension K ⊇ k of degree n1 over k such that K contains a principal n2-
th root of unity. We will see that to increase performance of computing the
product of two degree n − 1 polynomials over k we will want n2 to be a large

100 A. Pospelov

suitable number and to belong to a “not too sparse” order sequence, preferably
of constant sparseness, and n1 be small, so that 2n− 1 ≤ n1n2 = O(n).

We close this subsection with introducing some technical notation. For a func-
tion f : N → N such that lim supn→∞ f(n) = ∞, we will denote by f∨(n)
the minimal value f(i) over all integer solutions i of the inequality i · f(i) ≥ n.
For example, n∨ = �√n�, (n

log n

)∨ ∼ √
2n

log n for n ≥ 2,2 and for q ≥ 2,

(logq n)∨ ∼ logq n if n ≥ q.
We will need to restrict the possible values for i in the inequality to be taken

from some order sequence.
For a monotonically growing function f : N→ N such that limn→∞

f(n)
n < 1,

we will define f (0)(n) = n, and for i ≥ 1, f (i)(n) = f (i−1)(f(n)). For each n ≥ 1,
there exists the value i = i(n) such that f (i−1)(n) �= f (i)(n) = f (i+1)(n) = · · · .
This value will be denoted by f∗(n). For example,

(⌈
n
2

⌉)∗ = �log n�, (�√n�)∗ =
�log log n�, (�log n�)∗ = �log∗ n�.

4.2 Generalized Algorithm for Polynomial Multiplication

The DFT-based algorithm A, the Schönhage-Strassen’s and Schönhage’s algo-
rithms B, and the Cantor-Kaltofen’s algorithm C are all based on the idea of
a field extension with roots of unity of large smooth orders to reduce the poly-
nomial multiplication to many polynomial multiplications of smaller degrees by
means of DFT. The natural metaflow of all these algorithms can be generalized
as follows in what we call the algorithm D: let N be an order sequence of con-
stant sparseness over a field k. For two polynomials a(x) and b(x) of degree n−1
over k:

Algorithm D
Embed. Choose a polynomial PN (x) ∈ k[x] of degree N = N ′N ′′ ∈ N with

2n− 1 ≤ N = O(n), and switch to multiplication in AN := k[x]/PN (x).
From this moment consider a(x) and b(x) as elements of AN . There should
be an injective homomorphism ψ : AN → (AN ′)2N ′′

efficiently computable
by means of DFTs, where AN ′ ∼= k[y]/PN ′(y) for some PN ′(y) ∈ k[y], and
AN ′ contains a principal N ′′-th (or 2N ′′-th) root of unity.

Transform. Compute the DFTs over AN ′ : ã := ψ(a(x)) and b̃ := ψ(b(x)).
Multiply. Compute 2N ′′ products c̃ := ã · b̃ in AN ′ .
Back-Transform. By means of DFT compute c(x) = ψ−1(c̃), which is the

ordinary product of the input polynomials.
Unembed. Reduce the product modulo PN (x) to return the product in AN .

Theorem 1. The algorithm A, the Schönhage-Strassen and Schönhage algo-
rithms B and Cantor-Kaltofen algorithm C are instances of the algorithm D.

2 By f(n) ∼ g(n) we denote f(n) = (1 ± o(1))g(n).

Faster Polynomial Multiplication via Discrete Fourier Transforms 101

Proof. To multiply two degree n polynomials over the ground field k with an
N -th primitive root of unity for N = 2�log(2n−1)�, N = O(n), set PN (x) = xN−1,
N ′ = 1, N ′′ = N and AN ′ = k. Then ψ is the DFT of order 2N (which is trivially
reduced to N in this case) over k and the algorithmD turns into the algorithmA.

For a field k of characteristic different from 2, for ν = �log(2n− 1)� and
N = 2ν , set PN (x) = xN + 1, N ′ = 2� ν

2 �, and N ′′ = 2# ν
2 $. Then ψ is the DFT

of order 2N ′′ over AN ′ and the algorithm D turns into the Schönhage-Strassen’s
algorithm B [16].

For char k = 2, set ν =
⌈
log3(n− 1

2)
⌉
, N = 3ν , and P2N (x) = x2N + xN + 1,

N ′ = 3� ν
2 �, and N ′′ = 3# ν

2 $. Then ψ is the DFT of order 3N ′′ over AN ′ .
However, to fetch the entries of the product in AN ′ by means ψ−1, 2N ′′ products
of polynomials in AN ′ are sufficient [15]. Therefore, the algorithm D turns into
the Schönhage’s algorithm B.

For an arbitrary field k fix a positive integer s �= charp and find the least ν
such that N = φ(sν) = sν−1φ(s) ≥ 2n− 1, and let N̂ = sν . Set PN̂ (x) = ΦN̂ (x),

N ′ = φ(s# ν
2 $+1), and N ′′ = s� ν

2 �−1. Then ψ = α ◦ β where α stands for 2 DFTs
of order N ′′ over A′, and β is a linear map AN ′ [x]→ AN ′ [x]×AN ′ [x] such that
β(a(x)) = (a(x), a(γx)), where γ is an sN ′′-th principal root of unity in AN ′ ,
i.e., for AN ′ ∼= k[y]/ΦN̂ ′(y), either γ = y or γ = y2. One can easily show that β
and β−1 are computable in linear time [5, Section 2]. Therefore, the algorithm
D turns into the Cantor-Kaltofen’s algorithm C. ��

4.3 Complexity Analysis

From the description ofD we have LD(n) = L′
D(N) = 2N ′′L′

D(N ′)+2T (ψ(N))+
T (ψ−1(N)), where L′

D(N) stands for the complexity of D computing the prod-
uct in AN , T (ψ(N)) and T (ψ−1(N)) stand for the total complexities of the
transformations ψ and ψ−1 on inputs of length N respectively.

Theorem 2. Let the algorithm D compute the product of two polynomials in
AN in � recursive steps and let N ′ = N ′

λ and N ′′ = N ′′
λ be chosen on the step

λ = 1, . . . , � (N ′
0 = N , N ′

	 = O(1)), and for M(N ′
λ) = max{1, M∗(N ′

λ)
N ′

λ
}, where

M∗(N ′
λ) stands for the complexity of multiplication of an element in AN ′

λ
by

powers of an N ′′
λ -th root of unity (which exists in AN ′

λ
by assumption). Then

L′
D(N) = Θ

(
N · 2	 + N

	∑
λ=1

2λ−1 ·M(N ′
λ) log N ′′

λ

)
, (11)

L′
D(N) = Ω

(
N · 2(f∨

k)∗(N) + N

(f∨
k)∗(N)−1∑

λ=1

2λ−1 log(f∨
k)(λ)(N)

)
. (12)

Proof. Consider the total cost of the algorithm with respect to the computational
cost of the first step:

L′
D(N) = 2N ′′ · L′

D(N ′) + Θ (N ′′ log N ′′ · (N ′ + M∗(N ′))) . (13)

102 A. Pospelov

This follows from the fact that we need to perform a constant number of DFTs
of order N ′′ over AN ′ . Since N ′′ is suitable, each DFT requires Θ(N ′′ log N ′′)
additions of elements in AN ′ and the same number of multiplications by powers
of an N ′′-th principal root of unity. Since dimk AN ′ = N ′, one addition in AN ′

takes N ′ additions in k, and by definition, M∗(N ′) is the number of operations
in k, needed to compute the necessary products by powers of a principal root of
unity. Unrolling (13) (by using (13) recursively � times), (11) follows.

To obtain (12) from (11) we use the trivial lower bound M(N ′) ≥ 1. We then
notice that N ′ ≥ f∨

k (N ′′), therefore, we come to the equality N ′′
	 = O(1) not

earlier than for � = (f∨
k)∗(N), by definition of these operations and the lower

bound (12) follows. ��

Corollary 3. 1. For any fast field k, we have LDk
(n) = O(n log n).

2. For an o(log log n)-fast field k, we have LDk
(n) = o(n log n log log n).

3. For an Ω(n1−o(1))-slow field k, we have LDk
(n) = Ω(n log n log log n). In

particular, LDQ
(n) = Ω(n log n log log n).

Proof. 1. By definition of a fast field, it suffices to take a constant number of
steps (in fact, even one step) to extend k with a principal root of unity of a
suitable order. This means, that in (11), � = 1 and N ′ = O(1). Therefore,
M(N ′) = O(1) and trivially log N ′′ ≤ log N .

2. In the first step we have N ′ = o(log log N). We always can bound M(N ′
λ)

with N ′
λ in (11), and we have � = o(log∗(log∗ n)). Bounding the first sum-

mand in the sum in (11) by N · N ′ · log N = o(n log n log log n), and each
next summand by o(n · 2log∗(log∗ n) · log log n · log(log log n)), we obtain the
statement.

3. For fk(n) = Ω(n1−o(1)) we have f∨
k (n) = Ω(n

1
2−o(1)), which by-turn implies

(f∨
k)∗(n) = Ω(log log n). Each summand in (12) is therefore Ω(log n) and

the lower bound for LDk
(n) follows.

We have fQ(n) = Ω(n
log log n) = Ω(n1−o(1)) [1, Theorem 8.8.7], therefore Q

is an Ω(n1−o(1))-slow field which implies the lower bound for LDQ
(n). ��

Example. Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of all prime numbers.
We define the field k := Q(ω1, ω2, . . .), where ωi ∈ C is a primitive p

n′′
i

i -th root
of unity for n′′

i = �2p3
i /(pi log pi)�. We define the order sequence {ni = n′

in
′′
i }i≥1

where n′
i = pi. This order sequence is O(3

√
log log n)-suitable and the complexity

of DFT of order n′′
i is O(pin

′′
i log n′′

i). To multiply two degree n polynomials over
k we pick in the first step of the algorithm D the least ni ≥ n, which implies
n′

i ∼ 3
√

log log n = o(log log n). Therefore, D multiplies two degree n polynomials
over k in O(n log n(log log n)2/3) = o(n log n log log n) operations.

Note that Theorem 2 does not give any pessimistic lower bound in case of finite
fields. Actually, it can give a good upper bound if one can prove existence of
order sequences of constant sparseness over finite fields.

Corollary 4. 1. For the prime finite field Fp, LDFp
(n) = Ω(n log n).

Faster Polynomial Multiplication via Discrete Fourier Transforms 103

2. Assume that there exists an order sequence N = {ni(pni − 1)}i≥1 of con-
stant sparseness over Fp and assume that the multiplication by powers of a
principal (pni − 1)-th root of unity in Fpni can be performed in O(ni) time.
Then LDFp

(n) = O(n log n log∗ n).

Proof. 1. We have fFp(n) ∼ logp n since the multiplicative group F∗
p is cyclic

and in the extension field Fpn of degree n there exists a primitive root of
unity of order pn−1. This means that f∨

Fp
(n) ∼ logp n and (f∨

Fp
)∗(n) ∼ log∗p n,

and the statement follows from taking the first summand in (12) which is
Θ(n log n).

2. From (13) we get

L′
DFp

(N) ≤ 2N
logp N

L′
DFp

(
⌈
logp N

⌉
) + O(N log N) ,

and the statement follows from the solution of this inequality. ��
There are two challenges to find a faster polynomial multiplication algorithm
over finite fields. The first challenge is the already mentioned existence of or-
der sequences {ni = n′

in
′′
i }i≥1 of constant sparseness over these fields, where

n′′
i = ω(poly(n′

i)) for i ≥ 1. This conjecture due to Bläser [2] is supported by
performance results of the benchmarks of the algorithm from Corollary 2 (to be
published separately).

In Remark 2 we showed that, indeed, there exist suitable order sequences,
however, they are too sparse for our purposes. The second challenge is the com-
plexity of multiplication by powers of a primitive root of unity in extension
fields. However, there are ways to overcome this with slight complexity increase.
We recently obtained some progress in this area, and we think that a general
improvement for fields of characteristic different from 2 and 0 is possible.

5 Conclusion

We generalized the notion of a DFT-based algorithm for polynomial multiplica-
tion, which describes uniformly all currently known fastest algorithms for polyno-
mial multiplication over arbitrary fields. We parameterized fields by introducing
the notion of the degree function and order sequences and showed upper and
lower bounds for DFT-based algorithm in terms of these paremeters.

There is still an important open question whether one can improve the general
Schönhage-Strassen’s upper bound. As an outcome of this paper we support the
general experience that this question is not very easy. In particular, using only
known DFT-based techniques will unlikely help much in case of arbitrary fields,
in particular for the case of the rational field, as they did for the complexity of
integer multiplication.

Acknowledgements

I would like to thank Markus Bläser for the problem setting and a lot of mo-
tivating discussions and anonymous referees for many important improvement
suggestions.

104 A. Pospelov

References

1. Bach, E., Shallit, J.: Algorithmic Number Theory, Cambridge, MA, vol. 1 (1996)
2. Bläser, M.: Private communication (2010)
3. Bürgisser, P., Clausen, M., Shokrollahi, A.: Algebraic Complexity Theory. Springer,

Berlin (1997)
4. Bürgisser, P., Lotz, M.: Lower bounds on the bounded coefficient complexity of

bilinear maps. J. ACM 51(3), 464–482 (2004)
5. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary

algebras. Acta Informatica 28, 693–701 (1991)
6. Chudnovsky, D., Chudnovsky, G.: Algebraic complexities and algebraic curves over

finite fields. Journal of Complexity 4, 285–316 (1988)
7. Clausen, M., Baum, U.: Fast Fourier Transforms. Wissenschaftsverlag Mannheim-

Leipzig-Wien-Zürich (1993)
8. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex

Fourier series. Math. Comput. 19, 297–301 (1965)
9. De, A., Kurur, P.P., Saha, C., Saptharishi, R.: Fast integer multiplication using

modular arithmetic. In: Proceedings of the 40th ACM STOC 2008 Conference, pp.
499–506 (2008)

10. Fürer, M.: Faster Integer Multiplication. In: Proceedings of the 39th ACM STOC
2007 Conference, pp. 57–66 (2007)

11. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press, New York (2003)

12. Kaminski, M.: An algorithm for polynomial multiplication that does not depend
on the ring of constants. J. Algorithms 9, 137–147 (1988)

13. Pan, V.Y.: Simple Multivariate Polynomial Multiplication. J. Symbolic Computa-
tion 18, 183–186 (1994)

14. Rader, C.M.: Discrete Fourier transforms when the number of data samples is
prime. Proc. IEEE 56, 1107–1108 (1968)

15. Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charak-
teristic 2. Acta Informatica 7, 395–398 (1977)

16. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7,
281–292 (1971)

17. Shparlinski, I.E., Tsfasman, M.A., Vladut, S.G.: Curves with many points and
multiplication in finite fields. In: Lecture Notes in Math., vol. 1518, pp. 145–169.
Springer, Berlin (1992)

18. Strassen, V.: Vermeidung von Divisionen. Crelles J. Reine Angew. Math. 264, 184–
202 (1973)

Kolmogorov Complexity as a Language�

Alexander Shen��

LIF Marseille, CNRS & Univ. Aix–Marseille
alexander.shen@lif.univ-mrs.fr

Abstract. The notion of Kolmogorov complexity (=the minimal length
of a program that generates some object) is often useful as a kind of
language that allows us to reformulate some notions and therefore pro-
vide new intuition. In this survey we provide (with minimal comments)
many different examples where notions and statements that involve Kol-
mogorov complexity are compared with their counterparts not involving
complexity.

1 Introduction

The notion of Kolmogorov complexity is often used as a tool; one may ask,
however, whether it is indeed a powerful technique or just a way to present the
argument in a more intuitive way (for people accustomed to this notion).

The goal of this paper is to provide a series of examples that support both
viewpoints. Each example shows some statements or notions that use complexity,
and their counterparts that do not mention complexity. In some cases these two
parts are direct translations of each other (and sometimes the equivalence can be
proved), in other cases they just have the same underlying intuition but reflect
it in different ways.

Hoping that most readers already know what is Kolmogorov (algorithmic,
description) complexity, we still provide a short reminder to fix notation and
terminology. The complexity of a bit string x is the minimal length of a program
that produces x. (The programs are also bit strings; they have no input and may
produce binary string as output.) If D(p) is the output of program p, the com-
plexity of string x with respect to D is defined as KD(x) = inf{|p|:D(p) = x}.
This definition depends on the choice of programming language (i.e., its inter-
preter D), but we can choose an optimal D that makes KD minimal (up to O(1)
constant). Fixing some optimal D, we call KD(x) the Kolmogorov complexity of
x and denote it by K(x).

A technical clarification: there are several different versions of Kolmogorov
complexity; if we require the programming language to be self-delimiting or

� Supported in part by NAFIT ANR-08-EMER-008-01 grant. Author is grateful to
all the participants of Kolmogorov seminar at Moscow State University and to his
LIF/ESCAPE colleagues. Many of the results covered in this survey were obtained
(or at least inspired) by Andrej Muchnik (1958–2007).

�� On leave from IITP, RAS, Moscow.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 105–119, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

106 A. Shen

prefix-free (no program is a prefix of another one), we got prefix complexity
usually denoted by K(x); without this requirement we get plain complexity
usually denoted by C(x); they are quite close to each other (the difference is
O(log n) for n-bit strings and usually can be ignored).

Conditional complexity of a string x given condition y is the minimal length
of a program that gets y as input and transforms it into x. Again we need to
chose an optimal programming language (for programs with input) among all
languages. In this way we get plain conditional complexity C(x|y); there exists
also a prefix version K(x|y).

The value of C(x) can be interpreted as the “amount of information” in x,
measured in bits. The value of C(x|y) measures the amount of information that
exists in x but not in y, and the difference I(y : x) = C(x)−C(x|y) measures the
amount of information in y about x. The latter quantity is almost commutative
(classical Kolmogorov – Levin theorem, one of the first results about Kolmogorov
complexity) and can be interpreted as “mutual information” in x and y.

2 Foundations of Probability Theory

2.1 Random Sequences

One of the motivations for the notion of description complexity was to define
randomness: n-bit string is random if it does not have regularities that allow
us to describe it much shorter, i.e., if its complexity is close to n. For finite
strings we do not get a sharp dividing line between random and non-random
objects; to get such a line we have to consider infinite sequences. The most
popular definition of random infinite sequences was suggested by Per Martin-
Löf. In terms of complexity one can rephrase it as follows: bit sequence ω1ω2 . . .
is random if K(ω1 . . . ωn) ≥ n − c for some c and for all n. (This reformulation
was suggested by Chaitin; the equivalence was proved by Schnorr and Levin. See
more in [14,20].)

Note that in classical probability theory there is no such thing as an indi-
vidual random object. We say, for example, that randomly generated bit se-
quence ω1ω2 . . . satisfies the strong law of large numbers (has limit frequency
lim(ω1 + . . . + ωn)/n equal to 1/2) almost surely, but this is just a measure-
theoretic statement saying that the set of all ω with limit frequency 1/2 has
measure 1. This statement (SLLN) can be proved by using Stirling formula for
factorials or Chernoff bound.

Using the notion of Martin-Löf randomness, we can split this statement into
two: (1) every Martin-Löf random sequence satisfies SLLN; and (2) the set of
Martin-Löf random sequences has measure 1. The second part is a general state-
ment about Martin-Löf randomness (and is easy to prove). The statement (1)
can be proved as follows: if the frequency of ones in a long prefix of ω deviates
significantly from 1/2, this fact can be used to compress this prefix, e.g., using
arithmetic coding or some other technique (Lempel–Ziv compression can be also
used), and this is impossible for a random sequence according to the definition.

Kolmogorov Complexity as a Language 107

(In fact this argument is a reformulation of a martingale proof for SLLN.)
Other classical results (e.g., the law of iterated logarithm, ergodic theorem)

can be also presented in this way.

2.2 Sampling Random Strings

In the proceeding of this conference S. Aaronson proves a result that can be
considered as a connection between two meanings of the word “random” for fi-
nite strings. Assume that we bought some device which is marketed as a random
number generator. It has some physical source of randomness inside. The ad-
vertisement says that, being switched on, this device produces an n-bit random
string. What could be the exact meaning of this sentence?

There are two ways to understand it. First: the output distribution of this
machine is close to the uniform distribution on n-bit strings. Second: with high
probability the output string is random (=incompressible). The paper of Aaron-
son establishes some connections between these two interpretations (using some
additional machinery).

3 Counting Arguments and Existence Proofs

3.1 A Simple Example

Kolmogorov complexity is often used to rephrase counting arguments. We give
a simple example (more can be found in [14]).

Let us prove by counting that there exists an n×n bit matrix without 3 log n×
3 logn uniform minors. (We obtain minors by selecting some rows and columns;
the minor is uniform if all its elements are the same.)

Counting: Let us give an upper bound for the number of matrices with uniform
minors. There are at most n3 log n×n3 log n positions for a minor (we select 3 logn
rows and 3 logn columns). For each position we have 2 possibilities for the minor
(zeros or ones) and 2n2−(3 log n)2 possibilities for the rest, so the total number of
matrices with uniform minors does not exceed

n3 log n · n3 log n · 2 · 2n2−9 log2 n = 2n2−3 log2 n+1 < 2n2
,

so there are matrices without uniform minors.

Kolmogorov complexity: Let us prove that incompressible matrix does not
have uniform minors. In other words, let us show that matrix with a uniform
minor is compressible. Indeed, while listing the elements of such a matrix we do
not need to specify all 9 log2 n bits in the uniform minor individually. Instead,
it is enough to specify the numbers of the rows of the minor (3 logn numbers;
each contains log n bits) as well as the numbers of columns (this gives together
6 log2 n bits), and to specify the type of the minor (1 bit), so we need only
6 log2 n + 1 9 log2 n bits (plus the bits outside the minors, of course).

108 A. Shen

3.2 One-Tape Turing Machines

One of the first results of computational complexity theory was the proof that
some simple operations (checking symmetry or copying) require quadratic time
when performed by one-tape Turing machine. This proof becomes very natural
if presented in terms of Kolmogorov complexity.

Assume that initially some string x of length n is written on the tape (followed
by the end-marker and empty cells). The task is to copy x just after the marker
(Fig. 1).

x # → x x#

Fig. 1. Copying a bit string x

It is convenient to consider a special case of this task when the first half of x is
empty (Fig. 2) and the second half y is an incompressible string of length n/2.

y # → y y#
n/2

Fig. 2. Special case: the first half of x is empty

To copy y, our machine has to move n/2 bits of information across the gap
of length n/2. Since the amount of information carried by the head of TM is
fixed (log m bits for TM with m states), this requires Ω(n2) steps (the hidden
constant depends on the number of states).

The last statement can be formalized as follows. Fix some borderline inside
the gap and install a “customs office” that writes down the states of TM when
it crosses this border from left to right. This record (together with the office
position) is enough to reconstruct y (since the behavior of TM on the right of
the border is determined by this record). So the record should be of Ω(n) size.
This is true for each of Ω(n) possible positions of the border, and the sum of the
record lengths is a lower bound for the number of steps.

3.3 Forbidden Patterns and Everywhere Complex Sequences

By definition the prefixes of a random sequence have complexity at least n−O(1)
where n is the length. Can it be true for all substrings, not only prefixes? No:
if it is the case, the sequence at least should be random, and random sequence
contains every combination of bits as a substring.

However, Levin noted that the weaker condition C(x) > α|x| − O(1) can be
satisfied for all substrings (for any fixed α < 1). Such a sequence can be called
α-everywhere complex sequence. Levin suggested a proof of their existence using
some properties of Kolmogorov complexity [6].

The combinatorial counterpart of Levin’s lemma is the following statement:
let α < 1 be a real number and let F be a set of strings that contains at most

Kolmogorov Complexity as a Language 109

2αn strings of length n. Then there exists a constant c and a sequence ω that
does not have substrings of length greater than c that belong to F .

It can be shown that this combinatorial statement is equivalent to the original
formulation (so it can be formally proved used Kolmogorov complexity); how-
ever, there are other proofs, and the most natural one uses Lovasz local lemma.
(See [19].)

3.4 Gilbert–Varshamov Bound and Its Generalization

The main problem of coding theory is to find a code with maximal cardinality
and given distance. This means that for a given n and given d we want to
find some set of n-bit strings whose pairwise Hamming distances are at least
d. The strings are called code words, and we want to have as many of them as
possible. There is a lower bound that guarantees the existence of large code,
called Gilbert–Varshamov bound.

The condition for Hamming distances guarantees that few (less than d/2) bit
errors during the transmission do not prevent us from reconstructing the original
code word. This is true only for errors that change some bits; if, say, some bit
is deleted and some other bit is inserted in a different place, this kind of error
may be irreparable.

It turns out that we can replace Hamming distance by information distance
and get almost the same bound for the number of codewords. Consider some
family of n-bit strings {x1, x2, . . .}. We say that this family is d-separated, if
C(xi|xj) ≥ d for i �= j. This means that simple operations of any kind (not only
bit changes) cannot transform xj to xi. Let us show that for every d there exists
a d-separated family of size Ω(2n−d). Indeed, let us choose randomly strings
x1, . . . , xN of length n. (The value of N will be chosen later.) For given i and
j the probability of the event C(xi|xj) < d is less than 2d/2n. For given i the
probability that xi is not separated from some xj (in any direction) does not
exceed 2N · 2d/2n, so the expected number of xi that are “bad” in this sense is
less than 2N2 · 2d/2n. Taking N = Ω(2n−d), we can make this expectation less
than N/2. Then we can take the values of x1, . . . , xN that give less that N/2 bad
xi and delete all the bad xi, thus decreasing N at most twice. The decreased N
is still Ω(2n−d).

It is easy to see that the Gilbert–Varshamov bound (up to some constant)
is a corollary of this simple argument. (See [22] for more applications of this
argument.)

4 Complexity and Combinatorial Statements

4.1 Inequalities for Kolmogorov Complexity and Their
Combinatorial Meaning

We have already mentioned Kolmogorov–Levin theorem about the symmetry of
algorithmic information. In fact, they proved this symmetry as a corollary of the

110 A. Shen

following result: C(x, y) = C(x) + C(y|x) + O(log n). Here x and y are strings
of length at most n and C(x, y) is the complexity of some computable encoding
of the pair (x, y).

The simple direction of this inequality, C(x, y) ≤ C(x) + C(y|x) + O(log n),
has equally simple combinatorial meaning. Let A be a finite set of pairs (x, y).
Consider the first projection of A, i.e., the set AX = {x: ∃y (x, y) ∈ A}. For each
x in AX we also consider the xth section of A, i.e., the set Ax = {y: (x, y) ∈
A}. Now the combinatorial counterpart for the inequality can be formulated as
follows: if #AX ≤ 2k and #Ax ≤ 2l for every x, then #A ≤ 2k+l. (To make
the correspondence more clear, we can reformulate the inequality as follows: if
C(x) ≤ k and C(y|x) ≤ l, then C(x, y) ≤ k + l + O(log n).)

The more difficult direction, C(x, y) ≥ C(x) + C(y|x) − O(log n), also has
a combinatorial counterpart, though more complicated. Let us rewrite this in-
equality as follows: for every integers k and l, if C(x, y) ≤ k + l, then either
C(x) ≤ k + O(log n) or C(y|x) ≤ l + O(log n). It is easy to see that this state-
ment is equivalent to the original one. Now we can easily guess the combinatorial
counterpart: if A is a set of pairs that has at most 2k+l elements, then one can
cover it by two sets A′ and A′′ such that #A′

X ≤ 2k and #A′′
x ≤ 2l for every x.

Kolmogorov–Levin theorem implies also the inequality 2C(x, y, z) ≤ C(x, y)+
C(y, z) + C(x, z). (Here are below we omit O(log n) terms, where n is an up-
per bound of the length for all strings involved.) Indeed, C(x, y, z) = C(x, y) +
C(z|x, y) = C(y, z)+C(x|y, z). So the inequality can be rewritten as C(z|x, y)+
C(x|y, z) ≤ C(x, z). It remains to note that C(x, z) = C(x) + C(z|x), that
C(z|x, y) ≤ C(z|x) (more information in the condition implies smaller complex-
ity), and that C(x|y, z) ≤ C(x) (condition can only help).

The combinatorial counterpart (and the consequence of the inequality about
complexities) says that for A ⊂ X × Y × Z we have (#A)2 ≤ #AX,Y ·#AX,Z ·
#AY,Z , where AX,Y is the projection of A onto X × Y , i.e., the set of all pairs
(x, y) such that (x, y, z) ∈ A for some z ∈ Z, etc. In geometric terms: if A is a
3-dimensional body, then the square of its volume does not exceed the product
of areas of three its projections (onto three orthogonal planes).

4.2 Common Information and Graph Minors

We have defined the mutual information in two strings a, b as I(a : b) =
C(b)− C(b|a); it is equal (with logarithmic precision) to C(a) + C(b)−C(a, b).
The easiest way to construct some strings a and b that have significant amount
of mutual information is to take overlapping substrings of a random (incom-
pressible) string; it is easy to see that the mutual information is close to the
length (and complexity) of their overlap.

We see that in this case the mutual information is not an abstract quantity,
but is materialized as a string (the common part of a and b). The natural question
arises: is it always the case? i.e., is it possible to find for every pair a, b some
string x such that C(x|a) ≈ 0, C(x|b) ≈ 0 and C(x) ≈ I(a : b)?

Kolmogorov Complexity as a Language 111

It turns out that it is not always the case (as found by Andrej Muchnik [5] in
Kolmogorov complexity setting and earlier by Gács and Körner [7] in Shannon
information setting which we do not describe here — it is not that simple).

The combinatorial counterpart of this question: consider a bipartite graph
with (approximately) 2α vertices on the left and 2β vertices on the right; assume
also that this graph is almost uniform (all vertices in each part have approxi-
mately the same degree). Let 2γ be the total number of edges. A typical edge
connects some vertex a on the left and some vertex b on the right, and cor-
responds to a pair of complexity γ whose first component a has complexity
α and second component b has complexity β, so the “mutual information” in
this edge is δ = α + β − γ. The question whether this information can be ex-
tracted corresponds to the following combinatorial question: can all (or most)
edges of the graph be covered by (approximately) 2δ minors of size 2α−δ×2β−δ?
(Such a minor connects some 2α−δ vertices on the left with 2β−δ vertices on the
right.)

For example, consider some finite field F of size 2n and a plane over this
field (i.e., two-dimensional vector space). Consider a bipartite graph whose left
vertices are points on this plane, right vertices are lines, and edges correspond
to incident pairs. We have about 22n vertices is each part, and about 23n edges.
This graph does not have 2× 2 minors (two different points on a line determine
it uniquely). Using this property, one can show that M ×M minor could cover
only O(M

√
M) edges. (Assume that M vertices on the left side of such a minor

have degrees d1, . . . , dM in the minor. Then for ith vertex on the left there are
Ω(d2

i) pairs of neighbor vertices on the right, and all these pairs are different,
so
∑

d2
i ≤ O(M2); Cauchy inequality then implies that

∑
di ≤ O(M

√
M), and

this sum is the number of edges in the minor).
Translating this argument in the complexity language, we get the following

statement: for a random pair (a, b) of incident point and line, the complexity of a
and b is about 2n, the complexity of the pair is about 3n, the mutual information
is about n, but it is not extractable: there is no string x of complexity n such
that C(x|a) and C(x|b) are close to zero. In fact, one can prove that for such a
pair (a, b) we have C(x) ≤ 2C(x|a) + 2C(x|b) + O(log n) for all x.

4.3 Almost Uniform Sets

Here is an example of Kolmogorov complexity argument that is difficult to
translate to combinatorial language (though one may find a combinatorial proof
based on different ideas). Consider the set A of pairs. Let us compare the max-
imal size of its sections Ax and the average size (that is equal to #A/#AX ;
we use the same notation as in section 4.1); the maximal/average ratio will
be called X-nonuniformity of A. We can define Y -nonuniformity in the same
way.

Claim: every set A of pairs having cardinality N can be represented as a union
of polylog(N) sets whose X- and Y -nonuniformity is bounded by polylog(N).

112 A. Shen

Idea of the proof: consider for each pair (x, y) ∈ A a quintuple of integers

p(x, y) = 〈C(x), C(y), C(x|y), C(y|x), C(x, y)〉

where all complexities are taken with additional condition A. Each element
(x0, y0) in A is covered by the set U(x0, y0) that consists of all pairs (x, y) for
which p(x, y) ≤ p(x0, y0) (coordinate-wise). The number of elements in U(x0, y0)
is equal to 2C(x0,y0) up to polynomial in N factors. Indeed, it cannot be greater
because C(x, y) ≤ C(x0, y0) for all pairs (x, y) ∈ U(x0, y0). On the other hand,
the pair (x0, y0) can be described by its ordinal number in the enumeration of
all elements of U(x0, y0). To construct such an enumeration we need to know
only the set A and p(x0, y0). The set A is given as a condition, and p(x0, y0) has
complexity O(log N). So if the size of U(x0, y0) were much less than 2C(x0,y0),
we would get a contradiction.

Similar argument shows that projection U(x0, y0)X has about 2C(x0) elements.
Therefore, the average section size is about 2C(x0,y0)−C(x0); and the maximal
section size does not exceed C(y0|x0) since C(y|x) ≤ C(y0|x0) for all (x, y) ∈
U(x0, y0). It remains to note that C(y0|x0) ≈ C(x0, y0) − C(x0) according to
Kolmogorov–Levin theorem, and that there are only polynomially many different
sets U(x, y).

Similar argument can be applied to sets of triples, quadruples etc. For a com-
binatorial proof of this result (in a stronger version) see [1].

5 Shannon Information Theory

5.1 Shannon Coding Theorem

A random variable ξ that has k values with probabilities p1, . . . , pk, has Shan-
non entropy H(ξ) =

∑
i pi(− log pi). Shannon coding theorem (in its simplest

version) says that if we want to transmit a sequence of N independent values of
ξ with small error probability, messages of NH(ξ)+ o(N) bits are enough, while
messages of NH(ξ)− o(N) bits will lead to error probability close to 1.

Kolmogorov complexity reformulation: with probability close to 1 the sequence
of N independent values of ξ has complexity NH(ξ) + o(N).

5.2 Complexity, Entropy and Group Size

Complexity and entropy are two ways of measuring the amount of information
(cf. the title of the Kolmogorov’s paper [11] where he introduced the notion of
complexity). So it is not surprising that there are many parallel results. There
are even some “meta-theorems” that relate both notions. A. Romashchenko [8]
has shown that the linear inequalities that relate complexities of 2n − 1 tuples
made of n strings a1, . . . , an, are the same as for Shannon entropies of tuples
made of n random variables.

Kolmogorov Complexity as a Language 113

In fact, this meta-theorem can be extended to provide combinatorial equiva-
lents for complexity inequalities [18]. Moreover, in [4] it is shown that the same
class of inequalities appears when we consider cardinalities of subgroups of some
finite group and their intersections!

5.3 Muchnik’s Theorem

Let a and b be two strings. Imagine that somebody knows b and wants to know
a. Then one needs to send at least C(a|b) bits of information, i.e., the shortest
program that transforms b to a. However, if we want the message to be not only
short, but also simple relative to a, the shortest program may not work. Andrej
Muchnik [15] has shown that it is still possible: for every two strings a and b
of length at most n there exists a string x such that C(x) ≤ C(a|b) + O(log n),
C(a|x, b) = O(log n), and C(x|a) = O(log n). This result probably is one of
the most fundamental discoveries in Kolmogorov complexity theory of the last
decade. It corresponds to Wolf–Slepyan theorem in Shannon information theory;
the latter says that for two dependent random variables α and β and N indepen-
dent trials of this pair one can (with high probability) reconstruct α1, . . . , αN

from β1, . . . , βN and some message that is a function of α1, . . . , αN and has bit
length close to NH(α|β). However, Muchnik and Wolf–Slepyan theorem do not
seem to be corollaries of each other (in any direction).

5.4 Romashchenko’s Theorem

Let α, β, γ be three random variables. The mutual information in α and β when
γ is known is defined as I(α : β|γ) = H(α, γ) + H(β, γ) + H(α, β, γ)−H(γ). It
is equal to zero if and only if α and β are conditionally independent for every
fixed value of γ.

One can show the following: If I(α : β|γ) = I(α : γ|β) = I(β : γ|α) = 0, then
one can extract all the common information from α, β, γ in the following sense:
there is a random variable χ such that H(χ|α) = H(χ|β) = H(χ|γ) = 0 and
α, β, γ are independent random variables when χ is known. (The latter statement
can be written as I(α : βγ|χ) = I(β : αγ|χ) = I(γ : αβ|χ) = 0.)

In algebraic terms: if in a 3-dimensional matrix with non-negative elements
all its 2-dimensional sections have rank 1, then (after a suitable permutation
for each coordinate) it is made of blocks that have tensor rank 1. (Each block
corresponds to some value of χ.)

Romashchenko proved [17] a similarly looking result for Kolmogorov complex-
ity: if a, b, c are three strings such that I(a : b|c), I(b : c|a) and I(a : c|b) are close
to zero, then there exists x such that C(x|a), C(x|b), C(x|c) are close to zero
and strings a, b, c are independent when x is known, i.e., I(a : bc|x), I(b : ac|x)
and I(c : ab|x) are close to zero.

This theorem looks like a direct translation of the information theory result
above. However, none of these results looks a corollary of the other one, and
Romashchenko’s proof is a very ingenious and nice argument that has nothing
to do with the rather simple proof of the information-theoretic version.

114 A. Shen

6 Computability (Recursion) Theory

6.1 Simple Sets

Long ago Post defined simple set as (recursively) enumerable set whose comple-
ment is infinite but does not contain an infinite enumerable set (see, e.g., [16],
Sect. 8.1). His example of such a set is constructed as follows: let Wi be the ith
enumerable set; wait until a number j > 2i appears in Wi and include first such
number j into the enumeration. In this way we enumerate some set S with infi-
nite complement (S may contain at most n integers less than 2n); on the other
hand, S intersects any infinite enumerable set Wi, because Wi (being infinite)
contains some numbers greater than 2i.

It is interesting to note that one can construct a natural example of a sim-
ple set using Kolmogorov complexity. Let us say that a string x is simple if
C(x) < |x|/2. The set S of simple strings is enumerable (a short program can
be discovered if it exists). The complement of S (the set of “complex” strings)
is infinite since most n-bit strings are incompressible and therefore non-simple.
Finally, if there were an infinite enumerable set x1, x2, . . . of non-simple strings,
the algorithm “find the first xi such that |xi| > 2n” will describe some string
of complexity at least n using only log n + O(1) bits (needed for the binary
representation of n).

Similar argument, imitating Berry’s paradox, was used by Chaitin to provide
a proof for Gödel incompleteness theorem (see Sect. 7.2). Note also a (somewhat
mystical) coincidence: the word “simple” appears in two completely different
meanings, and the set of all simple strings turns out to be simple.

6.2 Lower Semicomputable Random Reals

A real number α is computable if there is an algorithm that computes rational
approximations to α with any given precision. An old example of E. Specker
shows that a computable series of non-negative rationals can have a finite sum
that is not computable. (Let {n1, n2, . . .} be a computable enumeration without
repetitions of an enumerable undecidable set K; then

∑
i 2−ni is such a series.)

Sums of computable series with non-negative rational terms are called lower
semicomputable reals.

The reason why the limit of a computable series is not computable is that
the convergence is not effective. One can ask whether one can somehow classify
how ineffective the convergence is. There are several approaches. R. Solovay
introduced some reduction on lower semicomputable reals: α � β if α + γ = cβ
for some lower semicomputable γ and some rational c > 0. Informally, this means
that α converges “better” than β (up to a constant c). This partial quasi-ordering
has maximal elements called Solovay complete reals. It turned out (see [3,13])
that Solovay complete reals can be characterized as lower semicomputable reals
whose binary expansion is a random sequence.

Another characterization: we may consider the modulus of convergence, i.e., a
function that for given n gives the first place where the tail of the series becomes

Kolmogorov Complexity as a Language 115

less than 2−n. It turns out that computable series has a random sum if and only
if the modulus of convergence grows faster than BP (n−O(1)) where BP (k) is
the maximal computation time for all terminating k-bit self-delimited programs.

7 Other Examples

7.1 Constructive Proof of Lovasz Local Lemma

Lovasz local lemma considers a big (unbounded) number of events that have
small probability and are mostly independent. It guarantees that sometimes
(with positive probability, may be very small) none of this events happens. We
do not give the exact statement but show a typical application: any CNF made
of k-literal clauses where each clause has t = o(2k) neighbors, is satisfiable.
(Neighbors are clauses that have a common variable.)

The original proof by Lovasz (a simple induction proving some lower bound
for probabilities) is not constructive in the sense that it does not provide any
algorithm to find the satisfying assignment (better than exhaustive search). How-
ever, recently Moser discovered that naive algorithm: “resample clauses that are
false until you are done” converges in polynomial time with high probability,
and this can be explained using Kolmogorov complexity. Consider the following
procedure (Fig. 3; by resampling a clause we mean that all variables in this
clause get fresh random values). It is easy to see that this procedure satisfies the
specification if terminates (induction).

{Clause C is false}

procedure Fix (C: clause)=

resample (C);

for all neighbor clauses C’ of C: if C’ is false then Fix(C’)

{Clause C is true; all the clauses that were true

before the call Fix(C), remain true}

Fig. 3. Moses’ resampling algorithm

The pre- and post-conditions guarantee that we can find a satisfying assign-
ment applying this procedure to all the clauses (assuming the termination). It
remains to show that with high probability this procedure terminates in a poly-
nomial time. Imagine that Fix(X) was called for some clause X and this call
does not terminate for a long time. We want to get a contradiction. Crucial
observation: at any moment of the computation the sequence of recursive calls
made during the execution (i.e., the ordered list of clauses C for which Fix(C)
was called) together with the current values of all variables determine completely
the random bits used for resampling. (This will allow us to compress the sequence
of random bits used for resampling and get a contradiction.) Indeed, we can roll
back the computation; note that for every clause in the CNF there is exactly
one combination of its variables that makes it false, and our procedure is called
only if the clause is false, so we know the values before each resampling.

116 A. Shen

Now we estimate the number of bits needed to describe the sequence of recur-
sive calls. These calls form a tree. Consider a path that visits all the vertices of
this tree (=calls) in the usual way, following the execution process (going from a
calling instance to a called one and returning back). Note that called procedure
corresponds to one of t neighbors of the calling one, so each step down in the
tree can be described by 1+ log t bits (we need to say that it is a step down and
specify the neighbor). Each step up needs only 1 bit (since we return to known
instance). The number of steps up does not exceed the number of steps down,
so we need in total 2 + log t bits per call. Since t = o(2k) by assumption, we can
describe the sequence of calls using k −O(1) bits per call which is less than the
number of random bits (k per call), so the sequence of calls cannot be long.

7.2 Berry, Gödel, Chaitin, Raz

Chaitin found (and popularized) a proof of Gödel incompleteness theorem based
on the Berry paradox (“the smallest integer not definable by eight words”). He
showed that statements of the form “C(x) > k” where x is a string and k is a
number, can be proved (in some formal theory, e.g., Peano arithmetic) only for
bounded values of k. Indeed, if it were not the case, we could try all proofs and for
every number n effectively find some string xn which has guaranteed complexity
above n. Informally, xn is some string provably not definable by n bits. But it
can be defined by logn+O(1) bits (log n bits are needed to describe n and O(1)
bits describe the algorithm transforming n to xn), so we get a contradiction for
large enough n. (The difference with the Berry paradox is that xn is not the
minimal string, just the first one in the proofs enumeration ordering.)

Recently Kritchman and Raz found that another paradox, “Surprise Exami-
nation” (you are told that there will be a surprise examination next week: you
realize that it cannot be at Saturday, since then you would know this by Friday
evening; so the last possible day is Friday, and if it were at Friday, you would
know this by Thursday evening, etc.), can be transformed into a proof of second
Gödel incompleteness theorem; the role of the day of the examination is played
by the number of incompressible strings of length n. (The argument starts as
follows: We can prove that such a string exists; if it were only one string, it can
be found by waiting until all other strings turn out to be compressible, so we
know there are at least two, etc. In fact you need more delicate argument that
uses some properties of Peano arithmetic — the same properties as in Gödel’s
proof.)

7.3 13th Hilbert Problem

Thirteenth Hilbert problem asked whether some specific function (that gives a
root of a degree 7 polynomial as a function of its coefficients) can be expressed as
a composition of continuous functions of one and two real variables. More than
fifty years later Kolmogorov and Arnold showed that the answer to this question
is positive: any continuous function of several real arguments can be represented

Kolmogorov Complexity as a Language 117

as a composition of continuous functions of one variable and addition. (For other
classes instead of continuous function this is not the case.) Recently this question
was discussed in the framework of circuit complexity [10].

It has also some natural counterpart in Kolmogorov complexity theory. Imag-
ine that three string a, b, c are written on the blackboard. We are allowed to
write any string that is simple (has small conditional complexity) relative to
any two strings on the board, and can do this several times (but not too many:
otherwise we can get any string by changing one bit at a time). Which strings
could appear if we follow this rule? The necessary condition: strings that appear
are simple relative to (a, b, c). It turns out, however, that it is not enough: some
strings are simple relative to (a, b, c) but cannot be obtained in this way. This
is not difficult to prove (see [21] for the proof and references); what would be
really interesting is to find some specific example, i.e., to give an explicit function
with three string arguments such that f(a, b, c) cannot be obtained in the way
described starting from random a, b, and c.

7.4 Secret Sharing

Imagine some secret (i.e., password) that should be shared among several peo-
ple in such a way that some (large enough) groups are able to reconstruct the
secret while other groups have no information about it. For example, for a se-
cret s that is an element of the finite field F , we can choose a random element
a of the same field and make three shares a, a + s and a + 2s giving them to
three participants X,Y, Z respectively. Then each of three participants has no
information about the secret s, since each share is a uniformly distributed ran-
dom variable. On the other hand, any two people together can reconstruct the
secret. One can say that this secret sharing scheme implements the access struc-
ture {{X,Y }, {X,Z}, {Y, Z}} (access structure lists minimal sets of participants
that are authorized to know the secret).

Formally, a secret sharing scheme can be defined as a tuple of random variables
(one for the secret and one for each participant); the scheme implements some
access structure if all groups of participants listed in this structure can uniquely
reconstruct the value of the secret, and for all other groups (that do not contain
any of the groups listed) their information is independent of the secret. It is easy
to see that any access structure can be implemented; the interesting (and open)
question is to find how big should be the shares (for a given secret size and a
given access structure).

We gave the definition of secret sharing in probability theory framework;
however, one can also consider it in Kolmogorov complexity framework. For
example, take binary string s as a secret. We may look for three strings x, y, z
such that C(s|x, y), C(s|y, z), and C(s|x, z) are very small (compared to the
complexity of the secret itself), as well as the values of I(x : s), I(y : s), and
I(z : s). The first requirement means that any two participants know (almost)
everything about the secret; the second requirement means each participant
alone has (almost) no information about it.

118 A. Shen

The interesting (and not well studied yet) question is whether these two
frameworks are equivalent in some sense (the same access structure can be im-
plemented with the same efficiency); one may also ask whether in Kolmogorov
setting the possibility of sharing secret s with given access structure and share
sizes depends only on the complexity of s. Some partial results were obtained
recently by T. Kaced and A. Romashchenko (private communication). The use
of Kolmogorov complexity in cryptography is discussed in [2].

7.5 Quasi-cryptography

The notion of Kolmogorov complexity can be used to pose some questions that
resemble cryptography (though probably are hardly practical). Imagine that
some intelligence agency wants to send a message b to its agent. They know
that agent has some information a. So their message f should be enough to
reconstruct a from b, i.e., C(b|a, f) should be small. On the other hand, the
message f without a should have minimal information about b, so the complexity
C(b|f) should be maximal.

It is easy to see that C(b|f) cannot exceed min(C(a), C(b)) because both a
and b are sufficient to reconstruct b from f . Andrej Muchnik proved that indeed
this bound is tight, i.e., there is some message f that reaches it (with logarithmic
precision).

Moreover, let us assume that eavesdropper knows some c. Then we want to
make C(b|c, f) maximal. Muchnik showed that in this case the maximal possible
value (for f such that C(b|a, f) ≈ 0) is min(C(a|c), C(b|c)). He also proved
a more difficult result that bounds the size of f , at least in the case when
a is complex enough. The formal statement of the latter result: There exists
some constant d such that for every strings a, b, c of length at most N such that
C(a|c) ≥ C(b|c) + C(b|a) + d log N , there exists a string f of length at most
C(b|a) + d log N such that C(b|a, f) ≤ d log N and C(b|c, f) ≥ C(b|c)− d log N .

References

1. Alon, N., Newman, I., Shen, A., Tardos, G., Vereshchagin, N.K.: Partitioning multi-
dimensional sets in a small number of “uniform” parts. European Journal of Com-
binatorics 28(1), 134–144 (2007)

2. Antunes, L., Laplante, S., Pinto, A., Salvador, L.: Cryptographic Security of Indi-
vidual Instances. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 195–210.
Springer, Heidelberg (2009)

3. Calude, C.S., Hertling, P.H., Khoussainov, B., Wang, Y.: Recursively Enumerable
Reals and Chaitin Ω Numbers. Theoretical Computer Science 255, 125–149 (2001)

4. Chan, T.H., Yeung, R.W.: On a relation between information inequalities and
group theory. IEEE Transaction on Information theory 48(7), 1992–1995 (2002)

5. Chernov, A., Muchnik, A.A., Romashchenko, A.E., Shen, A., Vereshchagin, N.K.:
Upper semi-lattice of binary strings with the relation “x is simple conditional to
y”. Theoretical Computer Science 271(1-2), 69–95 (2002)

6. Durand, B., Levin, L.A., Shen, A.: Complex Tilings. Journal of Symbolic
Logic 73(2), 593–613 (2007)

Kolmogorov Complexity as a Language 119

7. Gács, P., Korner, J.: Common Information is Far Less Than Mutual Information.
Problems of Control and Information Theory 2(2), 119–162 (1973)

8. Hammer, D., Romashchenko, A.E., Shen, A., Vereshchagin, N.: Inequalities for
Shannon Entropy and Kolmogorov Complexity. Journal for Computer and System
Sciences 60, 442–464 (2000)

9. Hammer, D., Shen, A.: A Strange Application of Kolmogorov Complexity. Theory
of Computing Systems 31(1), 1–4 (1998)

10. Hansen, K.A., Lachish, O., Miltersen, P.B.: Hilbert’s Thirteenth Problem and Cir-
cuit Complexity. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,
vol. 5878, pp. 153–162. Springer, Heidelberg (2009)

11. Kolmogorov, A.N.: Three approaches to the definition of the concept “quantity of
information”. Problemy Peredachi Informatsii 1(1), 3–11 (1965) (Russian)

12. Kritchman, S., Raz, R.: The Surprise Examination Paradox and the Second In-
completeness Theorem. Notices of the AMS 75(11), 1454–1458 (2010)

13. Kučera, A., Slaman, T.A.: Randomness and recursive enumerability. SIAM Journal
on Computing 31(1), 199–211 (2001)

14. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 3rd edn. Springer, Heidelberg (2008)

15. Muchnik, A.: Conditional complexity and codes. Theoretical Computer Sci-
ence 271(1-2), 97–109 (2002)

16. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability.
McGraw-Hill Book Company, New York (1967)

17. Romashchenko, A.E.: A Criterion of Extractability of Mutual Information for a
Triple of Strings. Problems of Information Transmission 39(1), 148–157

18. Romashchenko, A.E., Shen, A., Vereshchagin, N.K.: Combinatorial Interpreta-
tion of Kolmogorov Complexity. Theoretical Computer Science 271(1-2), 111–123
(2002)

19. Rumyantsev, A.Y., Ushakov, M.A.: Forbidden substrings, kolmogorov complexity
and almost periodic sequences. In: Durand, B., Thomas, W. (eds.) STACS 2006.
LNCS, vol. 3884, pp. 396–407. Springer, Heidelberg (2006),
arxiv.org/abs/1009.4455

20. Shen, A.: Algorithmic Information theory and Kolmogorov complexity. Uppsala
university Technical Report TR2000-034,
www.it.uu.se/research/publications/reports/2000-034/2000-034-nc.ps.gz

21. Shen, A.: Decomposition complexity. Journées Automates Cellulaires (Turku), 203–
213 (2010), hal-00541921 at archives-ouvertes.fr

22. Ti, Y.-W., Chang, C.-L., Lyuu, Y.-D., Shen, A.: Sets of k-independent strings.
International Journal of Foundations of Computer Science 21(3), 321–327 (2010)

arxiv.org/abs/1009.4455
www.it.uu.se/research/publications/reports/2000-034/2000-034-nc.ps.gz

Almost k-Wise Independent Sets Establish

Hitting Sets for Width-3 1-Branching Programs�

Jǐŕı Š́ıma and Stanislav Žák

Institute of Computer Science, Academy of Sciences of the Czech Republic,
P.O. Box 5, 18207 Prague 8, Czech Republic

{sima,stan}@cs.cas.cz

Abstract. Recently, an interest in constructing pseudorandom or hit-
ting set generators for restricted branching programs has increased, which
is motivated by the fundamental problem of derandomizing space bound-
ed computations. Such constructions have been known only in the case
of width 2 and in very restricted cases of bounded width. In our previous
work, we have introduced a so-called richness condition which is, in a cer-
tain sense, sufficient for a set to be a hitting set for read-once branching
programs of width 3. In this paper, we prove that, for a suitable con-
stant C, any almost C log n-wise independent set satisfies this richness
condition. Hence, we achieve an explicit polynomial time construction
of a hitting set for read-once branching programs of width 3 with the
acceptance probability greater than

√
12/13 by using the result due to

Alon et al. (1992).

1 Introduction

The relationship between deterministic and probabilistic computations is one
of the central issues in complexity theory. This problem can be tackled by con-
structing polynomial time pseudorandom [10] or hitting set generators [6] which,
however, belongs to the hardest problems in computer science even for severely
restricted computational models. In particular, derandomizing space bounded
computations has attracted much interest over a decade. We consider read-once
branching (1-branching) programs [14] of polynomial size for which pseudoran-
dom generators with seed length O(log2 n) have been known for a long time
through a result of Nisan [9]. Recently, considerable attention has been paid to
improving this to O(log n) in the constant-width case, which is a fundamental
problem with many applications in circuit lower bounds and derandomization [8].
The problem has been resolved for width 2 but the known techniques provably
fail for width 3 [2,8], which applies even to hitting set generators [4].

In the case of width 3, we do not know of any significant improvement over
Nisan’s result except for severely restricted so-called regular (oblivious) read-
once branching programs of constant width having the in-degree of every vertex
equal to 2, for which pseudorandom generators have recently been constructed
� This research was partially supported by projects GA ČR P202/10/1333, MŠMT ČR

1M0545, and AV0Z10300504.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 120–133, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Almost k-Wise Independent Sets Establish Hitting Sets 121

with seed length O(log n log log n) [3,4]. There has also been some recent progress
in the case of permutation (oblivious) read-once branching programs of bounded
width whose edges labeled with 0 (respectively 1) define a one to one mapping for
each level-to-level transition [8], for which a pseudorandom generator has been
constructed with seed length O(log n) [7]. In our paper [11], we made the first
step for finding a polynomial time constructible hitting set for width 3. Using
the result due to Alon et al. [1], we achieved such a construction if an additional,
rather technical restriction is imposed on the program structure. For example,
this restriction is met if one special pattern of level-to-level transitions in a
normalized form of so-called simple width-3 1-branching programs is excluded,
which covers the regular and permutation cases (see [11] for further details).

In our previous work [12,13], we have introduced a so-called richness condi-
tion which is independent of the notion of branching programs. In fact, a rich
set is a hitting set for special read-once CNFs (or even for the read-once con-
junctions of DNFs and CNFs with properly bounded monomial and clause sizes,
respectively [12]). Thus, a related line of study concerns pseudorandom genera-
tors for read-once formulas, such as read-once DNFs [5]. This richness condition
proves to be sufficient in a sense that any rich set extended with all strings
within Hamming distance of at most 3 is a hitting set for width-3 1-branching
programs with the acceptance probability greater than

√
12/13. In this paper,

we prove that, for a suitable constant C, any almost C log n-wise independent
set satisfies the richness condition. In the proof, the probability that there is a
certain input which ensures the richness of an almost k-wise independent set,
is lower bounded by a positive number (e.g. by using the inclusion-exclusion
principle). It follows that our result combined with an efficient construction of
almost k-wise independent sets, e.g. due to Alon et al. [1], provides a polynomial
time construction of a hitting set for width-3 1-branching programs.

The paper is organized as follows. After a brief review of basic definitions
regarding branching programs, the richness condition and its sufficiency is pre-
sented in Section 2. The main result that any almost O(log n)-wise independent
set is rich is formulated in Section 3 where the main steps of the technical proof
occupying the subsequent four Sections 4–7 are outlined. Our result is summa-
rized in Section 8.

2 Branching Programs and the Richness Condition

We start with a brief review of basic formal definitions regarding branching
programs (see [14] for more information). A branching program P on the set
of input Boolean variables Xn = {x1, . . . , xn} is a directed acyclic multi-graph
G = (V,E) that has one source s ∈ V of zero in-degree and, except for sinks of
zero out-degree, all the inner (non-sink) nodes have out-degree 2. In addition,
the inner nodes get labels from Xn and the sinks get labels from {0, 1}. For each
inner node, one of the outgoing edges gets the label 0 and the other one gets the
label 1. The branching program P computes Boolean function P : {0, 1}n −→
{0, 1} as follows. The computational path of P for an input a = (a1, . . . , an) ∈

122 J. Š́ıma and S. Žák

{0, 1}n starts at source s. At any inner node labeled by xi ∈ Xn, input variable
xi is tested and this path continues with the outgoing edge labeled by ai to
the next node, which is repeated until the path reaches the sink whose label
gives the output value P (a). Denote by P−1(a) = {a ∈ {0, 1}n |P (a) = a}
the set of inputs for which P outputs a ∈ {0, 1}. For inputs of arbitrary lengths,
infinite families {Pn} of branching programs, each Pn for one input length n ≥ 1,
are used. A branching program P is called read-once (or shortly 1-branching
program) if every input variable from Xn is tested at most once along each
computational path. Here we consider leveled branching programs in which each
node belongs to a level, and edges lead from level k ≥ 0 only to the next level
k + 1. We assume that the source of P creates level 0, whereas the last level is
composed of all sinks. The maximum number of nodes on one level is called the
width of P .

Let P be a class of branching programs and ε > 0 be a real constant. A set of
input strings H ⊆ {0, 1}∗ is called an ε-hitting set for class P if for sufficiently
large n, for every branching program P ∈ P with n input variables,∣∣P−1(1)

∣∣
2n

≥ ε implies (∃a ∈ H ∩ {0, 1}n)P (a) = 1 . (1)

Furthermore, we say that a set A ⊆ {0, 1}∗ is ε-rich if for sufficiently large n,
for any index set I ⊆ {1, . . . , n}, for any partition {R1, . . . , Rr} of I (r ≥ 0)
satisfying

r∏
j=1

(
1− 1

2|Rj |

)
≥ ε , (2)

and for any Q ⊆ {1, . . . , n} \ I such that |Q| ≤ log n, for any c ∈ {0, 1}n there
exists a ∈ A ∩ {0, 1}n that meets

(∀ i ∈ Q) ai = ci and (∀ j ∈ {1, . . . , r}) (∃ i ∈ Rj) ai �= ci . (3)

Note that formula (3) can be interpreted as a read-once CNF (each variable
occurs at most once) which contains at most logarithmic number of single literals
together with clauses whose sizes satisfy (2). Hence, any rich set is a hitting set
for such read-once CNFs. In the following theorem, we formulate our previous
result [12,13] that the richness condition is, in a certain sense, sufficient for a set
to be a hitting set for read-once branching programs of width 3.

Theorem 1 ([12,13]). If A is (δ ε)11-rich for ε > δ =
√

12/13, then H =
Ω3(A) = {a′ ∈ {0, 1}n |n ≥ 1 & (∃a ∈ A ∩ {0, 1}n)h(a, a′) ≤ 3}, where h(a, a′)
is the Hamming distance between a and a′ (i.e. the number bits in which a and a′

differ), is an ε-hitting set for the class of width-3 read-once branching programs.

3 Almost k-Wise Independent Sets Are Rich

The following theorem shows that the richness condition introduced in previ-
ous Section 2 is satisfied by almost k-wise independent sets. Hence, in order to

Almost k-Wise Independent Sets Establish Hitting Sets 123

achieve an explicit polynomial time construction of a hitting set for read-once
branching programs of width 3, we can combine Theorem 1 with the result due
to Alon et al. [1] who provided simple efficient constructions of almost k-wise
independent sets. In particular, for β > 0 and k = O(log n) it is possible to con-
struct a (k, β)-wise independent set A ⊆ {0, 1}∗ in time polynomial in n

β such
that for sufficiently large n and any index set S ⊆ {1, . . . , n} of size |S| ≤ k, the
probability that a given c ∈ {0, 1}n coincides with a string a ∈ An = A∩{0, 1}n
on the bit locations from S is almost uniform, that is∣∣∣∣∣

∣∣AS
n(c)

∣∣
|An| −

1
2|S|

∣∣∣∣∣ ≤ β , (4)

where AS
n(c) = {a ∈ An | (∀i ∈ S) ai = ci}. We will prove that, for suitable k,

any almost k-wise independent set is ε-rich.

Theorem 2. Let ε > 0, C be the least odd integer greater than (2
ε ln 1

ε)2, and
0 < β < 1

nC+3 . Then any (�(C + 2) log n�, β)-wise independent set is ε-rich.

Proof. Let A ⊆ {0, 1}∗ be a (�(C + 2) log n�, β)-wise independent set. We will
show that A is ε-rich. Assume {R1, . . . , Rr} is a partition of index set I ⊆
{1, . . . , n} satisfying condition (2), and Q ⊆ {1, . . . , n} \ I such that |Q| ≤ log n.
In order to show for a given c ∈ {0, 1}n that there is a ∈ An that meets (3) for
Q and partition {R1, . . . , Rr}, we will prove that the probability

p =

∣∣∣AQ
n (c) \⋃r

j=1ARj
n (c)

∣∣∣
|An| (5)

of the event that a ∈ An chosen uniformly at random satisfies a ∈ AQ
n (c) and

a �∈ ARj
n (c) for every j = 1, . . . , r, is strictly positive.

The main idea of the proof lies in lower bounding the probability (5). We
briefly comment on the main steps of the proof which are schematically depicted
in Figure 1 including references to corresponding sections, lemmas, and equa-
tions. In Section 4, we will first modify the partition classes Rj so that their
cardinalities are at most logarithmic whereas the classes of small constant car-
dinalities are merged with Q and also c is adjusted correspondingly. Lemma 1
then ensures that the probability p from (5) is lower bounded when using these
modified classes. Furthermore, Bonferroni inequality (the inclusion-exclusion
principle) and the assumption concerning the almost k-wise independence are
employed in Section 5 where also the classes of the same cardinality are grouped.
In Section 6, we will further reduce the underlying lower bound on p only to a
sum over frequent cardinalities of partition classes to which Taylor’s theorem is
applied in Section 7, whereas a corresponding Lagrange remainder is bounded
using the assumption on constant C.

4 Modifications of Partition Classes

We properly modify the underlying partition classes in order to further upper
bound their cardinalities by the logarithmic function so that the assumption

124 J. Š́ıma and S. Žák

Fig. 1. The main steps of the proof

Almost k-Wise Independent Sets Establish Hitting Sets 125

concerning almost �(C + 2) logn�-wise independence of A can be applied in
the following Section 5. Thus, we confine ourselves to at most logarithmic-size
arbitrary subsets R′

j of partition classes Rj , that is

R′
j

{
= Rj if |Rj | ≤ log n
⊂ Rj so that |R′

j | = #log n$ otherwise ,
(6)

which ensures R′
j ⊆ Rj and |R′

j | ≤ log n for every j = 1, . . . , r. For these new
classes, assumption (2) can be rewritten as

r∏
j=1

(
1− 1

2|R
′
j |

)
>

(
1− 1

2log n

) n
log n ∏

|Rj |≤log n

(
1− 1

2|Rj|

)

>

(
1− 1

n
· n

log n

)
ε =

(
1− 1

log n

)
ε = ε′ , (7)

where ε′ > 0 is arbitrarily close to ε for sufficiently large n.
Denote by {s1, s2, . . . , sm} = {|R′

1|, . . . , |R′
r|} the set of all cardinalities

1 ≤ si ≤ log n of classes R′
1, . . . , R

′
r, and for every i = 1, . . . ,m, let ri =

|{j | |R′
j | = si}| be the number of classes R′

j having cardinality si, that is,
r =

∑m
i=1 ri. Furthermore, we define

ti =
ri

2si
> 0 for i = 1, . . . ,m . (8)

It follows from (7) and (8) that

0 < ε′ <

r∏
j=1

(
1− 1

2|R
′
j |

)
=

m∏
i=1

((
1− 1

2si

)2si
)ti

< e−
∑m

i=1 ti (9)

implying
m∑

i=1

ti < ln
1
ε′

. (10)

Moreover, we define constants

� =
C

1−
(
1− ε′2

4(1+ε′2)

) 1
C

> C ≥ 1 , σ = log
(

4� (1 + ε′2)
ε′2

)
(11)

which are used for sorting the cardinalities s1, . . . , sm so that

ri > � and si > σ for i = 1, . . . ,m′′ (12)
ri ≤ � and si > σ for i = m′′ + 1, . . . ,m′ (13)

si ≤ σ for i = m′ + 1, . . . ,m . (14)

We will further confine ourselves to the first m′ ≥ 0 cardinalities satisfying si > σ
for i = 1, . . . ,m′. Without loss of generality, we can also sort the corresponding

126 J. Š́ıma and S. Žák

partition classes so that |R′
j | > σ for j = 1, . . . , r′, whereas |R′

j | ≤ σ for j =
r′ + 1, . . . , r, which implies

r′ =
m′∑
i=1

ri =
m′∑
i=1

ti2si >
4� (1 + ε′2)

ε′2

m′∑
i=1

ti (15)

according to (8), (12)–(13), and (11). We include the remaining constant-size
classes R′

j for j = r′ + 1, . . . , r into Q, that is,

Q′ = Q ∪
r⋃

j=r′+1

R′
j (16)

whose size can be upper bounded as

|Q′| ≤ log n +
m∑

i=m′+1

ri log
(

4� (1 + ε′2)
ε′2

)
< 2 log n (17)

for sufficiently large n, since

m∑
i=m′+1

ri =
m∑

i=m′+1

ti2si <
4� (1 + ε′2)

ε′2
ln

1
ε′

(18)

according to (8), (10), (14), and (11). This completes the definition of new classes
Q′, R′

1, . . . , R′
r′ . In addition, we define c′ ∈ {0, 1}n that differs from c exactly

on the constant number of bit locations from R′
r′+1, . . . , R

′
r, e.g.

c′i =
{

1− ci if i ∈ ⋃r
j=r′+1 R′

j

ci otherwise.
(19)

The modified Q′, R′
1, . . . , R

′
r′ and c′ are used in the following lemma for lower

bounding the probability (5).

Lemma 1

p ≥

∣∣∣AQ′
n (c′) \⋃r′

j=1A
R′

j
n (c′)

∣∣∣
|An| =

∣∣∣AQ′
n (c′)

∣∣∣
|An| −

∣∣∣⋃r′

j=1A
R′

j∪Q′
n (c′)

∣∣∣
|An| . (20)

Proof. For verifying the lower bound in (20) it suffices to show that AQ′
n (c′) \⋃r′

j=1A
R′

j
n (c′) ⊆ AQ

n (c) \ ⋃r
j=1ARj

n (c) according to (5). Assume a ∈ AQ′
n (c′) \⋃r′

j=1A
R′

j
n (c′), which means a ∈ AQ′

n (c′) ⊆ AQ
n (c′) = AQ

n (c) and a �∈ AR′
j

n (c′) =

AR′
j

n (c) ⊇ ARj
n (c) for every j = 1, . . . , r′ by definitions (6), (16), (19), and the

fact that S1 ⊆ S2 implies AS2
n (c) ⊆ AS1

n (c). In addition, a ∈ AQ′
n (c′) implies

a �∈ ARj
n (c) for every j = r′ +1, . . . , r according to (19), and hence, a ∈ AQ

n (c) \⋃r
j=1ARj

n (c). This completes the proof of the lower bound, while the equality in

(20) follows from AR′
j∪Q′

n (c′) ⊆ AQ′
n (c′) for every j = 1, . . . , r′. ��

Almost k-Wise Independent Sets Establish Hitting Sets 127

5 Almost k-Wise Independence

Furthermore, we will upper bound the probability of the finite union of events
appearing in formula (20) by using Bonferroni inequality for constant number
C′ = min(C, r′) of terms, which gives

p ≥

∣∣∣AQ′
n (c′)

∣∣∣
|An| −

C′∑
k=1

(−1)k+1
∑

1≤j1<j2<···<jk≤r′

∣∣∣∣⋂k
i=1A

R′
ji
∪Q′

n (c′)
∣∣∣∣

|An| (21)

=
C′∑

k=0

(−1)k
∑

1≤j1<j2<···<jk≤r′

∣∣∣∣A⋃k
i=1 R′

ji
∪Q′

n (c′)
∣∣∣∣

|An| (22)

according to Lemma 1. For notational simplicity, the inner sum in (22) over
1 ≤ j1 < j2 < · · · < jk ≤ r′ for k = 0 reads formally as it includes one
summand |AQ′

n (c′)|/|An|. Note that C′ is odd for C < r′, while equality holds
in (21) for C′ = r′, which is the probabilistic inclusion-exclusion principle. For
any 0 ≤ k ≤ C′ ≤ C, we know

∣∣∣⋃k
i=1 R′

ji
∪Q′

∣∣∣ ≤ �(C + 2) log n� according to
(6) and (17), and hence,∣∣∣∣A⋃k

i=1 R′
ji
∪Q′

n (c′)
∣∣∣∣

|An| ≥ 1

2|Q
′|+∑k

i=1

∣∣∣R′
ji

∣∣∣ − β =
1

2|Q′|

k∏
i=1

1

2
∣∣∣R′

ji

∣∣∣ − β (23)

(where the product in (23) equals formally 1 for k = 0) and similarly,

−

∣∣∣∣A⋃k
i=1 R′

ji
∪Q′

n (c′)
∣∣∣∣

|An| ≥ − 1
2|Q′|

k∏
i=1

1

2
∣∣∣R′

ji

∣∣∣ − β (24)

according to (4) since A is (�(C + 2) logn�, β)-wise independent. We plug these
inequalities into (22), which leads to

p ≥
C′∑

k=0

(−1)k
∑

1≤j1<j2<···<jk≤r′

1
2|Q′|

k∏
i=1

1

2
∣∣∣R′

ji

∣∣∣ − β

C′∑
k=0

(
r′

k

)

≥ 1
2|Q′|

⎛⎝ C′∑
k=0

(−1)k
∑

1≤j1<j2<···<jk≤r′

k∏
i=1

1

2
∣∣∣R′

ji

∣∣∣ − β 2|Q
′| (r′ + 1)C′

⎞⎠ , (25)

where

β 2|Q
′| (r′ + 1)C′

<
1

nC+3
n2 nC =

1
n

<
ε′

8
(26)

for sufficiently large n > 8/ε′ by using the assumption on β, inequality (17),
r′ < n (e.g., r′ = n would break (11)–(13)), and C′ ≤ C. The following lemma
rewrites the inner sum in formula (25).

128 J. Š́ıma and S. Žák

Lemma 2. For 0 ≤ k ≤ C′,

∑
1≤j1<j2<···<jk≤r′

k∏
i=1

1

2|R
′
ji
| =

∑
k1+···+km′=k

0≤k1≤r1,...,0≤km′≤rm′

m′∏
i=1

tki

i

ki!

ki−1∏
j=1

(
1− j

ri

)
. (27)

Proof. By grouping the classes of the same cardinality together, the left-hand
side of inequality (27) can be rewritten as

∑
1≤j1<j2<···<jk≤r′

k∏
i=1

1

2|R
′
ji
| =

∑
k1+k2+···+km′=k

0≤k1≤r1,...,0≤km′≤rm′

m′∏
i=1

(
ri

ki

)(
1

2si

)ki

, (28)

where k1, . . . , km′ denote the numbers of classes of corresponding cardinalities
s1, . . . , sm′ considered in a current summand, and(

ri

ki

)(
1

2si

)ki

=
ri (ri − 1) · · · (ri − ki + 1)

ki!

(
ti
ri

)ki

=
tki

i

ki!

ki−1∏
j=1

(
1− j

ri

)
(29)

according to (8). ��
Thus, we plug equations (26) and (27) into (25) and obtain

p >
1
n2

⎛⎜⎜⎝ C′∑
k=0

(−1)k
∑

k1+···+km′=k
0≤k1≤r1,...,0≤km′≤rm′

m′∏
i=1

tki

i

ki!

ki−1∏
j=1

(
1− j

ri

)
− ε′

8

⎞⎟⎟⎠ . (30)

Note that for m′ = 0 (implying r′ = C′ = 0), the inner sum in (30) equals 1.

6 Frequent Cardinalities

We sort out the terms with frequent cardinalities (12) from the sum in for-
mula (30), that is,

p >
1
n2

⎛⎜⎜⎝ C′∑
k=0

(−1)k
∑

k1+···+km′′=k
0≤k1≤r1,...,0≤km′′≤rm′′

m′′∏
i=1

tki

i

ki!

ki−1∏
j=1

(
1− j

ri

)
− T1 − ε′

8

⎞⎟⎟⎠ , (31)

where the inner sum in (31) equals zero for k > r′′ =
∑m′′

i=1 ri , and

T1 =
C′∑

k=0

(−1)k+1
∑

k1+···+km′=k
0≤k1≤r1,...,0≤km′≤rm′
(∃m′′+1≤	≤m′) k�>0

m′∏
i=1

tki

i

ki!

ki−1∏
j=1

(
1− j

ri

)
(32)

Almost k-Wise Independent Sets Establish Hitting Sets 129

sums up the terms including rare cardinalities (13). In addition, we know

1 ≥
m′′∏
i=1

ki−1∏
j=1

(
1− j

ri

)
>

(
1− C

�

)C

= 1− ε′2

4(1 + ε′2)
(33)

according to (12), (11), and ki ≤ k =
∑m′′

i=1 ki ≤ C′ ≤ C < � . The upper and
lower bound (33) on the underlying product are used to lower bound the negative
terms of (31) for odd k and the positive terms for even k, respectively, that is,

p >
1
n2

⎛⎜⎜⎝ C′∑
k=0

(−1)k
∑

k1+···+km′′=k
0≤k1≤r1,...,0≤km′′≤rm′′

m′′∏
i=1

tki

i

ki!
− ε′2

4(1 + ε′2)
T2 − T1 − ε′

8

⎞⎟⎟⎠ (34)

where

T2 =
C′∑

k=0,2,4,...

∑
k1+···+km′′=k

0≤k1≤r1,...,0≤km′′≤rm′′

m′′∏
i=1

tki

i

ki!
. (35)

The following lemma upper bounds the above-introduced terms T1 and T2.

Lemma 3
(i) T1 < ε′

8 .

(ii) T2 < 1+ε′2
2 ε′ .

Proof.
(i) We can only take the terms of (32) for odd k = 1, 3, 5, . . . into account since
those for even k are nonpositive (e.g. the term for k = 0 equals zero because
there is no m′′ + 1 ≤ � ≤ m′ such that k	 > 0 in this case). Thus,

T1 ≤
C′∑

k=1,3,5,...

∑
k1+···+km′=k

0≤k1≤r1,...,0≤km′≤rm′
(∃m′′+1≤	≤m′) k�>0

r	

2s�

1
k	

tk�−1
	

(k	 − 1)!

m′∏
i=1
i�=	

tki

i

ki!

≤ �

2σ

C′∑
k=1,3,5,...

∑
k1+···+km′=k

0≤k1≤r1,...,0≤km′≤rm′
(∃m′′+1≤	≤m′) k�>0

tk�−1
	

(k	 − 1)!

m′∏
i=1
i�=	

tki

i

ki!
(36)

according to (8) and (13). Formula (36) is rewritten by replacing indices
k	 − 1 and k− 1 with k	 and k, respectively, which is further upper bounded by
removing the upper bounds that are set on indices k1, . . . , km′ and by omitting
the condition concerning the existence of special index �, as follows:

T1 ≤ �

2σ

C′−1∑
k=0,2,4,...

∑
k1+···+km′=k
k1≥0,...,km′≥0

m′∏
i=1

tki

i

ki!
=

�

2σ

C′−1∑
k=0,2,4,...

(∑m′

i=1 ti

)k

k!
, (37)

130 J. Š́ıma and S. Žák

where the multinomial theorem is employed. Notice that the sum on the right-
hand side of equation (37) represents the first few terms of Taylor series of the
hyperbolic cosine at point

∑m′

i=1 ti ≥ 0, which implies

T1 <
�

2σ
cosh

⎛⎝ m′∑
i=1

ti

⎞⎠ <
ε′2

4(1 + ε′2)
·

1
ε′ + ε′

2
=

ε′

8
(38)

according to (10) and (11) since the hyperbolic cosine is an increasing function
for nonnegative arguments.
(ii) Similarly as in the proof of (i), we apply the multinomial theorem (cf. (37))
and the Taylor series of the hyperbolic cosine (cf. (38)) to (35), which gives

T2 ≤
C′∑

k=0,2,4,...

∑
k1+···+km′′=k
k1≥0,...,km′′≥0

m′′∏
i=1

tki

i

ki!
≤ cosh

⎛⎝m′′∑
i=1

ti

⎞⎠ <
1 + ε′2

2 ε′
. (39)

��
We plug the bounds from Lemma 3 into (34) and obtain

p >
1
n2

⎛⎜⎜⎝ C′∑
k=0

(−1)k
∑

k1+···+km′′=k
0≤k1≤r1,...,0≤km′′≤rm′′

m′′∏
i=1

tki

i

ki!
− 3 ε′

8

⎞⎟⎟⎠ . (40)

7 Taylor’s Theorem

In order to apply the multinomial theorem again, we remove the upper bounds
that are set on indices in the inner sum of formula (40), that is,

p >
1
n2

⎛⎜⎜⎝ C′∑
k=0

(−1)k
∑

k1+···+km′′=k
k1≥0,...,km′′≥0

m′′∏
i=1

tki

i

ki!
− T − 3 ε′

8

⎞⎟⎟⎠ , (41)

which is corrected by introducing additional term

T =
C′∑

k=0

(−1)k
∑

k1+···+km′′=k
k1≥0,...,km′′≥0

(∃1≤	≤m′′) k�>r�

m′′∏
i=1

tki

i

ki!
. (42)

Almost k-Wise Independent Sets Establish Hitting Sets 131

Thus, inequality (41) can be further rewritten as

p >
1
n2

⎛⎜⎝ C′∑
k=0

(
−∑m′′

i=1 ti

)k

k!
− T − 3 ε′

8

⎞⎟⎠ (43)

=
1
n2

⎛⎝e−
∑m′′

i=1 ti −RC′+1

⎛⎝− m′′∑
i=1

ti

⎞⎠− T − 3 ε′

8

⎞⎠ , (44)

where Taylor’s theorem is employed for the exponential function at point
−∑m′′

i=1 ti producing the Lagrange remainder

RC′+1

⎛⎝− m′′∑
i=1

ti

⎞⎠ =

(
−∑m′′

i=1 ti

)C′+1

(C′ + 1)!
e−ϑ

∑m′′
i=1 ti <

(∑m′′

i=1 ti√
C′

)C′+1

(45)

with parameter 0 < ϑ < 1. Note that the upper bound in (45) assumes C′ > 0,
whereas for C′ = r′ = 0 implying m′′ = m′ = 0, we know R1(0) = 0. This
remainder together with term T are upper bounded in the following lemma.

Lemma 4
(i) T < ε′

8 .

(ii) RC′+1

(
−∑m′′

i=1 ti

)
< ε′

4 .

Proof
(i) We take only the summands of (42) for even k ≥ 2 into account since the
summands for odd k are not positive, while for k = 0 there is no 1 ≤ � ≤ m′′

such that 0 = k ≥ k	 > r	 ≥ 1, which gives

T ≤
C′∑

k=2,4,6,...

∑
k1+···+km′′=k
k1≥0,...,km′′≥0

(∃1≤	≤m′′) k�>r�

1
2s�

r	

k	

tk�−1
	

(k	 − 1)!

m′′∏
i=1
i�=	

tki

i

ki!

≤ 1
2σ

C′∑
k=2,4,6,...

∑
k1+···+km′′=k
k1≥0,...,km′′≥0

(∃1≤	≤m′′) k�>r�

tk�−1
	

(k	 − 1)!

m′′∏
i=1
i�=	

tki

i

ki!
(46)

using (8) and (12). Formula (46) is rewritten by replacing indices k	 − 1 and
k − 1 with k	 and k, respectively, which is further upper bounded by omitting
the condition concerning the existence of special index �, as follows:

T ≤ 1
2σ

C′−1∑
k=1,3,5,...

∑
k1+···+km′′=k
k1≥0,...,km′′≥0

m′′∏
i=1

tki

i

ki!
=

1
2σ

C′−1∑
k=1,3,5,...

(∑m′′

i=1 ti

)k

k!
, (47)

132 J. Š́ıma and S. Žák

where the multinomial theorem is employed. Notice that the sum on the right-
hand side of equation (47) represents the first few terms of Taylor series of the
hyperbolic sine at point

∑m′′

i=1 ti, which implies

T ≤ 1
2σ

sinh

⎛⎝m′′∑
i=1

ti

⎞⎠ <
ε′2

4� (1 + ε′2)
·

1
ε′ − ε′

2
<

ε′

8
(48)

according to (10) and (11) since the hyperbolic sine is an increasing function.
(ii) For C′ = C ≥ 1, Lagrange remainder (45) can further be upper bounded as

RC′+1

⎛⎝− m′′∑
i=1

ti

⎞⎠ <

(
ln 1

ε′√
C

)C+1

<

(
ε′

2

)C+1

<
ε′

4
(49)

for sufficiently large n by using (10) and the definition of C, while for C′ = r′ <
C, the underlying upper bound

RC′+1

⎛⎝− m′′∑
i=1

ti

⎞⎠ ≤ (∑m′

i=1 ti
4� (1+ε′2)

ε′2

) r′+1
2

<
ln 1

ε′
4� (1+ε′2)

ε′2
<

ε′

4
(50)

can be obtained from (15) and (10). ��
Finally, inequality (9) together with the upper bounds from Lemma 4 are plugged
into (44), which leads to

p >
ε′

4n2
=

ε

4n2

(
1− 1

log n

)
> 0 (51)

according to (7). Thus, we have proven that for any c ∈ {0, 1}n the proba-
bility that there is a ∈ An satisfying the conjunction (3) for Q and partition
{R1, . . . , Rr} is strictly positive, which means such a does exist. This completes
the proof that A is ε-rich. ��

8 Conclusion

In the present paper, we have made an important step in the effort to construct
hitting set generators for the model of read-once branching programs of bounded
width. Such constructions have so far been known only in the case of width
2 and in very restricted cases of bounded width (e.g. permutation or regular
oblivious read-once branching programs). We have now provided an explicit
polynomial-time construction of a hitting set for read-once branching programs
of width 3 with the acceptance probability greater than

√
12/13. From the point

of view of derandomization of unrestricted models, our result still appears to
be unsatisfactory. The issue of whether our technique based on the richness
condition can be extended to the case of width 4 or to bounded width represents
an open problem for further research. Another challenge for improving our result
is to optimize parameter ε, e.g. to achieve the result for ε ≤ 1

n , which would be
important for practical derandomizations.

Almost k-Wise Independent Sets Establish Hitting Sets 133

References

1. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple constructions of almost
k-wise independent random variables. Random Structures and Algorithms 3(3),
289–304 (1992)

2. Bogdanov, A., Dvir, Z., Verbin, E., Yehudayoff, A.: Pseudorandomness for width 2
branching programs. ECCC Report No.70 (2009)

3. Braverman, M., Rao, A., Raz, R., Yehudayoff, A.: Pseudorandom generators for
regular branching programs. In: Proceedings of the FOCS 2010 Fifty-First Annual
IEEE Symposium on Foundations of Computer Science, pp. 41–50 (2010)

4. Brody, J., Verbin, E.: The coin problem, and pseudorandomness for branching
programs. In: Proceedings of the FOCS 2010 Fifty-First Annual IEEE Symposium
on Foundations of Computer Science, pp. 30–39 (2010)

5. De, A., Etesami, O., Trevisan, L., Tulsiani, M.: Improved pseudorandom genera-
tors for depth 2 circuits. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.)
APPROX 2010, LNCS, vol. 6302, pp. 504–517. Springer, Heidelberg (2010)

6. Goldreich, O., Wigderson, A.: Improved derandomization of BPP using a hitting
set generator. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.)
RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 131–137. Springer,
Heidelberg (1999)

7. Koucký, M., Nimbhorkar, P., Pudlák, P.: Pseudorandom generators for group prod-
ucts. To appear in Proceedings of the STOC 2011 Forty-Third ACM Symposium
on Theory of Computing. ACM, New York (2011)

8. Meka, R., Zuckerman, D.: Pseudorandom generators for polynomial threshold func-
tions. In: Proceedings of the STOC 2010 Forty-Second ACM Symposium on Theory
of Computing, pp. 427–436. ACM, New York (2010)

9. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12(4), 449–461 (1992)

10. Nisan, N., Wigderson, A.: Hardness vs. randomness. Journal of Computer and
System Sciences 49(2), 149–167 (1994)

11. Š́ıma, J., Žák, S.: A polynomial time constructible hitting set for restricted 1-
branching programs of width 3. In: van Leeuwen, J., Italiano, G.F., van der Hoek,
W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp.
522–531. Springer, Heidelberg (2007)

12. Š́ıma, J., Žák, S.: A polynomial time construction of a hitting set for read-once
branching programs of width 3. ECCC Report No. 88 (2010)

13. Š́ıma, J., Žák, S.: A sufficient condition for sets hitting the class of read-once
branching programs of width 3 (submitted)

14. Wegener, I.: Branching Programs and Binary Decision Diagrams—Theory and
Applications. SIAM Monographs on Discrete Mathematics and Its Applications.
SIAM, Philadelphia (2000)

The Complexity of Inversion of Explicit

Goldreich’s Function by DPLL Algorithms

Dmitry Itsykson1,� and Dmitry Sokolov2,��

1 Steklov Institute of Mathematics at St. Petersburg
27 Fontanka, 191023, St. Petersburg, Russia

dmitrits@pdmi.ras.ru
2 St. Petersburg Academic University

8(3) Khlopina, 194021, St.-Petersburg, Russia
sokolov.dmt@gmail.com

Abstract. The Goldreich’s function has n binary inputs and n binary
outputs. Every output depends on d inputs and is computed from them
by the fixed predicate of arity d. Every Goldreich’s function is defined
by it’s dependency graph G and predicate P . In 2000 O. Goldreich for-
mulated a conjecture that if G is an expander and P is a random pred-
icate of arity d then the corresponding function is one way. In 2005 M.
Alekhnovich, E. Hirsch and D. Itsykson proved the exponential lower
bound on the complexity of inversion of Goldreich’s function based on
linear predicate and random graph by myopic DPLL agorithms. In 2009
J. Cook, O. Etesami, R. Miller, and L. Trevisan extended this result
to nonliniar predicates (but for a slightly weaker definition of myopic
algorithms). Recently D. Itsykson and independently R. Miller proved
the lower bound for drunken DPLL algorithms that invert Goldreich’s
function with nonlinear P and random G. All above lower bounds are
randomized.

The main contribution of this paper is the simpler proof of the ex-
ponential lower bound of the Goldreich’s function inversion by myopic
DPLL algorithms. A dependency graph in our construction may be based
on an arbitrary expander, particulary it is possible to use an explicit ex-
pander; the predicate may be linear or slightly nonlinear. Our definition
of myopic algorithms is more general than one used by J. Cook et al.
Our construction may be used in the proof of lower bound for drunken
algorithms as well.

Keywords: DPLL algorithm, expander, one-way function, lower bounds.

� Partially supported by Federal Target Programme “Scientific and scientific-
pedagogical personnel of the innovative Russia” 2009-2013, RAS Program for Fun-
damental Research, the president grants NSh-5282.2010.1 and MK-4089.2010.1 and
by RFBR.

�� Partially supported by Federal Target Programme “Scientific and scientific-
pedagogical personnel of the innovative Russia” 2009-2013 and by Yandex Fellow-
ship.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 134–147, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Complexity of Inversion of Explicit Goldreich’s Function 135

1 Introduction

This work continues [1], [2], [3], [4] and is devoted to lower bounds of DPLL (for
Davis, Putnam, Logemann, and Loveland) algorithms on satisfiable formulas.
DPLL algorithm is a recursive algorithm. On each recursive call it simplifies an
input formula F (without affecting its satisfiability), chooses a variable v and
makes two recursive calls on the formulas F [v := 1] and F [v := 0] in some
order. It returns the result “Satisfiable” if at least one of recursive calls returns
“Satisfiable” (note that it is not necessary to make the second call if the first one
was successful). Recursion stops if the input formula becomes trivial. That is,
the algorithm is only allowed to backtrack when unsatisfiability in the current
branch is proved. A DPLL algorithm is defined by simplification rules and two
heuristics: the heuristic A chooses a variable for splitting and the heuristic B
chooses a value that will be investigated first.

The behaivior of DPLL algorithms on unsatisfiable formulas is equivalent
to tree-like resolution proofs. Therefore lower bounds on DPLL algorithms on
unsatisfiable formulas follow from lower bound for resolutions [5]. However the
most interesting inputs are satisfiable formulas. Consider for example formulas
that code the problem of inversion of one-way function. The most important
case for practice is the case there one-way function indeed has preimage. There
is no hope of proving a superpolynomial lower bound for all DPLL algorithms on
satisfiable formulas since if P = NP, then the heuristic that chooses the value of
a variable that would be investigated first may always choose the correct value.

Exponential lower bounds on running time of myopic and drunken DPLL
algorithms on satisfiable formulas were proved in the paper [1]; these two classes
of DPLL algorithms cover a lot of known DPLL algorithms. In myopic algorithms
heuristics that choose a variable for splitting and that choose a value that will be
investigated first have the following restrictions: they can see the formula with
erased signs of negations and they also know the number of positive and negative
occurrences of every variable and they also can request K = n1−ε clauses of the
formula to read them precisely. In drunken algorithms the heuristic that chooses
variable for splitting may be arbitrary, while the first substituted value is chosen
at random with equal probabilities. Lower bounds for myopic algorithms were
proved on the formulas that code the system of linear equations over F2 based on
expander matrices; lower bounds for drunken algorithms were proved on artificial
formulas that are based on hard examples for resolution.

The paper [2] gives a cryptographic view on [1]. Namely it was noted in [2]
that the lower bound for myopic algorithms [1] was proved on the formulas that
code the problem of inversion of Goldreich’s function based on linear predicate.
Goldreich’s function [6] has n binary inputs and n binary outputs. Every output
depends on d inputs and is computed from them by a fixed predicate of arity
d. Goldreich conjectured that if the dependency graph is an expander and the
predicate is random, then the resulting function is one-way. However, linear
functions are not interesting from the cryptographic point of view since they can
be easily inverted by Gaussian elimination. The main goal of [2] was the proof
of lower bound for a function that is potentially hard to invert. J. Cook et al.

136 D. Itsykson and D. Sokolov

consider Goldreich’s function based on the predicate x1+x2+· · ·+xd−2+xd−1xd

and a random graph (a random graph is an expander with high probability).
They have proved the exponential lower bound for the weakened1 variant of
myopic algorithms. Recently Itsykson [3] and Miller [4] independently proved
the lower bound on the complexity of inversion of Goldreich’s function based on
random graph and predicate of type x1 + x2 + · · · + xd−k + Q(xd−k+1, . . . xd),
where Q is an arbitrary predicate of arity k and k < d/4 by drunken algorithms.
We should note that the proof from [2] works for this type of predicates as well.

The construction of Goldreich’s function in all papers listed above was ran-
domized. In this paper we suggest an explicit construction of Goldreich’s function
based on expanders (for example the explicit expander from [7] fits our purposes).
It is possible to use those formulas in the proof of exponential lower bound for
drunken algorithms from [3]. In this paper we demonstrate the lower bound for
myopic algorithms. Our proof is technically much simpler than proofs from [1]
and [2]. We prove lower bound for the general notion of myopic algorithms (ac-
cording to the definition from [1]) instead of the weakened variant that was used
in [2].

Our Goldreich’s function has the following structure: it is the sum of two Gol-
dreich’s functions: linear and nonlinear. The linear part is necessary for proving
the lower bound for DPLL algorithms while the nonlinear part makes our func-
tion hard to invert in practice. The linear part is based on an expander, while
nonlinear part may be almost arbitrary but it should depend only on nε/2 vari-
ables. Of course an adversary may guess the value of variables from nonlinear
part and solve the resulting linear system by Gaussian elimination but the run-
ning time of such algorithm is 2nε/2

(still exponential), therefore we believe that
there are hard invertible functions among our functions. We actually do not use
in the proof the fact that the nonlinear part of predicate is the same for every
bit of the output.

The plan of the proof is the following: first of all we slightly modify the
expander from the linear part so that its adjacency matrix would have high
rank. Since the nonlinear part of our function depends on very few variables we
conclude that our Goldreich’s function is almost a bijection. In order to prove
the lower bound we first of all prove the lower bound for unsatisfiable formulas
using lower bound techniques for resolutions from [8]. Using almost linearity
and almost bijectivity we prove that with high probability the myopic algorithm
makes the formula unsatisfiable during first several steps and we apply the lower
bound for unsatisfiable formulas.

Our proof has one disadvantage compared to the proof from [1]; namely our
proof works for expanders with degrees, that are large enough, while the tech-
nique from [1] works for degrees, that are at least 3. However the proof from
[1] of the fact that a myopic algorithm with high probability makes the formula
unsatisfiable during first several steps is complicated, while our proof is intuitive

1 In contrast to [1], [2] did not allow the DPLL algorithm to use pure literal simplifi-
cation rules and also myopic algorithms from [2] may read only constant (opposite
to n1−ε) number of clauses per step.

The Complexity of Inversion of Explicit Goldreich’s Function 137

and based on the simple fact from elementary linear algebra: a dimension of a
solution space of a satisfiable linear system does not depend on the right hand
side.

2 Preliminaries

Let X = {x1, x2, . . . , xn} be the set of propositional variables.
A partial substitution is a function ρ : X → {0, 1, ∗}, that maps a variable to

its value or leaves it free. The set V ars(ρ) = ρ−1({0, 1}) is the support of the
substitution; we denote |ρ| = |V ars(ρ)|.

If ρ1 and ρ2 are two partial substitutions with disjoint support then the sub-
stitution ρ1 ∪ ρ2 can be defined by the natural way.

We say that a string y ∈ {0, 1}n is consistent with the partial substitution ρ
(we denote it y ∼ ρ) if for all xj from the support of ρ the following is satisfied
yj = ρ(xj).

2.1 DPLL Algorithms

We consider a wide class of SAT algorithms: DPLL (or backtracking) algorithms.
A DPLL algorithm is defined by two heuristics (procedures): 1) Procedure A
maps a CNF formula to one of its variables. (This is the variable for splitting).
2) Procedure B maps a CNF formula and its variable to {0, 1}. (This value will
be investigated at first).

An algorithm may also use some syntactic simplification rules. Simplification
rules may modify the formula without affecting its satisfiability and may also
make substitutions to its variables if their values can be inferred from the satis-
fiability of the initial formula.

A DPLL algorithm is a recursive algorithm. Its input is a formula ϕ and a
partial substitution ρ.

Algorithm 1. Input: formula ϕ and substitution ρ

– Simplify ϕ by means of simplification rules (assume that simplification rules
change ϕ and ρ; all variables that are substituted by ρ should be deleted from
ϕ).

– If current formula is empty (that is, all its clauses are satisfied by ρ), then
return ρ. If formula contains an empty clause (unsatisfiable), then return
“formula is unsatisfiable”.

– xj := A(ϕ); c := B(ϕ, xj)
– Make a recursive call with the input (ϕ[xj := c], ρ∪{xj := c}), if the result is

“formula is unsatisfiable”, then make a recursive call with the input (ϕ[xj :=
1− c], ρ ∪ {xj := 1− c}) and return its result, otherwise return the result of
the first recursive call.

Definition 1. Myopic algorithms [1] are DPLL algorithms, where heuristics A
and B have the following restrictions:

138 D. Itsykson and D. Sokolov

– They can see the whole formula with erased signs of negations.
– For every variable they know the number of its positive and the number of

its negative occurrences.
– They may request to read K = o(n) clauses to read precisely (with negation

signs).

Simplification rules: 1) Unit clause elimination: if formula contains a clause
with only one literal, then make a substitution that satisfies that clause. 2) Pure
literals rule: if formula contains a variable that has only positive or only negative
occurrences, then substitute it with the corresponding value.

The running time of a DPLL algorithm for a given sequence of random bits is
the number of recursive calls.

2.2 Expanders

We consider bipartite graphs with each part containing n vertices. The first
part we denote by X = {x1, x2, . . . , xn} and the second we denote by Y =
{y1, y2, . . . , yn}. Every vertex from the set Y has an ordered list of its neighbours
from the set X (repetitions are allowed). All considered graphs are d-regular: the
degree of every vertex from Y is equal to d, where d is a constant.

Every graph has its adjacency matrix over F2. Rows of this matrix correspond
to the set Y and columns correspond to the set X , the element with coordinates
(y, x) contains the parity of the number of edges between y and x.

For set A ⊆ Y we denote Γ (A) (the set of neighbours of A) the set of vertices
from X that are connected with at least one vertex from A; we denote δ(A) (the
boundary of A) the set of vertices from X that have exactly one incoming edge
from the set A.

Definition 2. The graph G is a (r, d, c)-expander, if 1) the degree of any vertex
in Y is equal to d; 2) for any set A ⊆ Y, |A| ≤ r we have Γ (A) ≥ c|A|. The
graph G is called a (r, d, c)-boundary expander if the second condition is replaced
by: 2) for any set A ⊆ Y, |A| ≤ r we have δ(A) ≥ c|A|.
Lemma 1 (cf. [1], Lemma 1). Every (r, d, c)-expander is also a (r, d, 2c− d)-
boundary expander.

Proof. Let A ⊆ Y , |A| ≤ r, then |Γ (A)| ≥ c|A|. The number of edges between A
and Γ (A) may be estimated: d|A| ≥ |δ(A)|+2|Γ (A)\δ(A)| = 2|Γ (A)|−|δ(A)| ≥
2c|A| − δ(A). Finally we get δ(A) ≥ (2c− d)|A|. ��
We need boundary expanders; for this it is enough to have an expander with
constant c > d/2. For example, a random graph is an appropriate expander.

Lemma 2 ([9], Lemma 1.9). For d ≥ 32, for all big enough n a random
bipartite d-regular graph, where parts X and Y contain n vertices is a (n

10d , d, 5
8d)-

expander with probability 0.9, if for every vertex in Y d edges are chosen inde-
pendently at random (with repetitions).

The Complexity of Inversion of Explicit Goldreich’s Function 139

Corollary 1. In terms of Lemma 2 this graph is a (n
10d , d, 1

4d)-boundary ex-
pander.

Proof. Follows from Lemma 1. ��
There are also explicit constructions of such expanders:

Lemma 3 ([7]). For every constant ε > 0 there is a constant d such that it
is possible to construct a (r, d, c)-expander in polynomial of n time, where c =
(1− ε)d, r = Ω(n/d).

Corollary 2. This graph is a (Ω(n/d), d, (1− 2ε)d)-boundary expander.

2.3 Goldreich’s Function

O. Goldreich in the paper [6] introduces a function f : {0, 1}n → {0, 1}n defined
by a graph G and a predicate P : {0, 1}d → {0, 1}. Every string from {0, 1}n
assignes some value to the variables from the set X = {x1, x2, . . . , xn}. The value
of (f(x))j (j-th symbol of the string f(x)) is computed in the following way: if
yj has neighbours xj1 , xj2 , . . . , xjd

,then (f(x))j = P (xj1 , xj2 , . . . , xjd
).

2.4 Formulas from Goldreich’s Function

Now we describe the way we code the problem of inversion of Goldreich’s function
as instance of CNF satisfiability problem.

Let g : {0, 1}	 → {0, 1}, the canonical CNF representation of g is the following:
for every c ∈ {0, 1}	 that satisfies g(c) = 0 we write the clause xc1

1 ∨xc2
2 ∨· · ·∨xc�

	 ,
where x0

i = xi and x1
i = ¬xi. The whole formula is the conjunction of all written

clauses.
Let f be the Goldreich’s function based on the graph G and the predicate P .

We represent the equation f(x) = b in the following way: for every vertex yj ∈ Y
that has neighbours xj1, xj2, . . . , xjd we put down the canonical CNF represen-
tation of the equality bj = P (xj1, xj2, . . . , xjd) using variables xj1, xj2, . . . , xjd.
The conjunctions of all those formulas we denote Φf(x)=b. The part of this for-
mula that corresponds to the vertices from the set A ⊆ Y we denote ΦA

f(x)=b.

Lemma 4. If a function g : {0, 1}	 → {0, 1} is linear on at least two variables,
then the canonical CNF representation of g has exactly 2	−1 clauses and every
variable has an equal number of positive and negative occurrences.

Proof. Let g have the following F2 representation g(x1, x2, . . . , xn) = x1 + x2 +
h(x3, . . . , x). Let us denote T0 = h−1(0), T1 = h−1(1). Then g−1(0) = {00y |
y ∈ T0}∪ {11y | y ∈ T0}∪ {01x | y ∈ T1}∪ {10y | y ∈ T1}. The latter shows that
|g−1(0)| = 2l−1 and every variable has an equal number of positive and negative
occurrences. ��
Lemma 4 implies that if a myopic algorithm does not see negation signs, then it
can’t differ g(x) = 0 from g(x) = 1 when g is linear on at least 2 variables. Also
we note that a canonical CNF formula is still canonical after substitution of the
value of a variable.

140 D. Itsykson and D. Sokolov

3 Almost Bijective Goldreich’s Function

3.1 Linear Function

Let G1 be a d1-regular graph and G2 be a d2-regular graph. G1 +G2 is (d1 +d2)-
regular graph such that for every vertex from Y the list of neighbours is a
concatenation of lists of neighbours in graph G1 and graph G2. The adjacency
matrix of G1 + G2 is the sum of adjacency matrices of G1 and G2.

Proposition 1. If graph G is a (r, d, c)-expander and G′ is a d′-regular graph,
then G + G′ is a (r, d + d′, c)-expander.

Theorem 1. Given a graph G it is possible to construct in polynomial of n time
a 1-regular graph T such that the rank of adjacency matrix of G + T is at least
n− 1.

Proof. First of all we prove the auxiliary lemma:

Lemma 5. Let a = (α1, . . . , αn) ∈ Fn
2 . Then there are at least n − 1 linear

independent vectors among bi = (α1, . . . , αi−1, αi + 1, αi+1, . . . , αn), where 1 ≤
i ≤ n.

Proof. Let us consider the matrix A of size n× n; all columns of A are equal to
vector a. Vectors bi are columns of the matrix A + E, where E is the identity
matrix. Since the rank of the sum of matrices is less then or equal to the the
sum of ranks we may conclude that n = rkE ≤ rk(A + E) + rkA. All columns
of A are the same, hence rkA ≤ 1 and rk(A + E) ≥ n− 1. ��
Now we describe the construction of graph T . We start from an empty set of
edges and we will add one edge per step. On the i-th step for 1 ≤ i ≤ n− 1 we
add a neighbour to the vertex yi ∈ Y in such a way that the first i rows of G+T
are linearly independent. It can be done by the Lemma 5 (we apply the Lemma
to the i-th row of the matrix of graph G). We add an arbitrary neighbour to
vertex yn. ��
Corollary 3. If G is a (r, d, c)-expander, then the graph G+T from the theorem
is a (r, d + 1, c)-expander and the Goldreich’s function f based on G + T and a
linear predicate of arity d + 1 has the following property: for every b ∈ {0, 1}n
the size of the set f−1(b) is at most 2.

3.2 Slightly Nonlinear Goldreich’s Function

Let R ⊆ X be some subset of X . R-graph is a regular graph such that all vertices
from X \R have degree 0.

Lemma 6. Let G be a (d − k)-regular graph with an adjacency matrix of rank
at least n− 1 and H be a k-regular R-graph. Let f be Goldreich’s function based
on G + H and predicate x1 + x2 + · · · + xd−k + Q(xd−k+1, . . . , xd), where Q is
an arbitrary predicate of arity k. Then for every b ∈ {0, 1}n the size of the set
f−1(b) is at most 2|R|+1.

The Complexity of Inversion of Explicit Goldreich’s Function 141

Proof. We consider the system of equalities f(x) = b and fix values of all vari-
ables from the set R. We get the linear system whose matrix equals to the matrix
of graph G after removing the columns from the set R. The matrix of G has rank
n−1, therefore the resulting system has at most two solutions. Hence the initial
system f(x) = b has at most 2|R|+1 solutions. ��

4 Lower Bound on Unsatisfiable Formulas

We say that a variable is sensitive if by changing its value we change the value
of the formula (for every assignment of values of other variables). (The boolean
function that corresponds to the formula is linear on all its sensitive variables).

Theorem 2 ([3]). Let f be a Goldreich’s function based on G and P , where
graph G is a (r, d, c)-boundary expander and predicate P contains at most k
insensitive variables; ρ is a partial assignment to variables of X such that the
formula Φf(x)=b|ρ is unsatisfiable and for any set of vertices A ⊆ Y , |A| <
r
2 , the formula ΦA

f(x)=b|ρ is satisfiable. Then the running time of any DPLL
algorithm (that does not use simplification rules) on the formula Φf(x)=b|ρ is at

least 2
(c−k)r

4 −|ρ|−d.

5 Lower Bound on Satisfiable Formulas

5.1 Closure

Let graph G be a (r, d, c)-boundary expander. Let 0<k<c−2 and P (x1, . . . , xd)=
x1 + · · · + xd−k + Q(xd−k+1, . . . , xd); Goldreich’s function f is based on G
and P .

The next technical definition formalize the following simple idea: suppose that
the set J is removed from the part X of G and we want to remove a set I from Y
(and also Γ (I) from X) such that the resulting graph becomes a (r/2, d, k + 1)-
boundary expander. We construct such I step by step removing sets with small
boundary from Y .

Definition 3. Let J ⊆ X. The set of vertices I ⊆ Y is called k-closure of the
set J if there is a finite sequence of sets I1, I2, . . . , Im (we denote C	 =

⋃
1≤i≤	 Ii,

C0 = ∅), such that the following properties are satisfied:

– I	 ⊆ Y and 0 < |I	| ≤ r
2 for all 1 ≤ � ≤ m;

– Ii ∩ Ij = ∅ for all 1 ≤ i, j ≤ m;
– |δ(I) \ (Γ (C	−1) ∪ J)| ≤ (1 + k)|Il|; for all 1 ≤ � ≤ m;
– for all I ′ ⊆ Y \Cm if 0 < |I ′| ≤ r

2 , then |δ(I ′) \ (Γ (Cm) ∪ J)| > (1 + k)|I ′|;
– I = Cm.

The set of all k-closures of the set J we denote as Clk(J).

Lemma 7. 1. For every set J ⊆ X there exists a k-closure. 2. Let J1 ⊆ J2,
then for every I1 ∈ Clk(J1) there exists I2 ∈ Clk(J2) such that I1 ⊆ I2

142 D. Itsykson and D. Sokolov

Lemma 8 ([1]). Let |J | < (c−k−1)r
2 , then for every set I ∈ Clk(J) the inequality

|I| ≤ (c− k − 1)−1|J | is satisfied

Definition 4. Let f : {0, 1}n → {0, 1}n be the Goldreich’s function based on
graph G and predicate P , b ∈ {0, 1}. Partial substitution ρ is called locally con-
sistent for the equation f(x) = b if there exists a string z ∈ {0, 1}n that is
consistent to ρ and a set I ∈ Clk(V ars(ρ)) such that the equality f(z)|I = b|I
holds.

Lemma 9 (cf. [1]). If the partial substitution ρ is locally consistent for f(x) =
b, then for all Z ⊆ X, |Z| ≤ r

2 there exists a string z ∈ {0, 1}n such that z is
consistent with ρ and the equality f(z)|Z = b|Z holds.

Proof. Proof by contradiction. Consider the minimal Z ⊆ Y such that |Z| ≤ r
2

and for all z that are consistent to ρ the nonequality f(z)|Z �= b|Z holds. Let
I ∈ Clk(V ars(ρ)) be from Definition 4. Partial substitution ρ is locally consistent
therefore Z \ I �= ∅.

By the definition of closure |δ(Z \ I) \ (Γ (I) ∪ V ars(ρ))| > (k + 1)|Z \ I|,
therefore there exists y ∈ Z \ I such that at least k + 1 boundary vertices of set
Z (not from the support of ρ and not connected with I) are connected with y.
The minimality of Z implies that there exists z ∈ {0, 1}n, such that z ∼ ρ and
f(z)|Z\{y} = b|Z\{y}. It is possible also to satisfy the equation corresponding to
vertex y by flipping the z-value of one of the boundary neighbours of vertex y.
Therefore there exists z′ ∈ {0, 1}n that is consistent with ρ and f(z′)|Z = b|Z .
Contradiction. ��

5.2 Clever Myopic Algorithm

We assume that the myopic algorithm runs on the formula Φf(x)=b, where
f−1(b) �= ∅. We describe the clever myopic algorithm. A clever myopic algo-
rithm is allowed to read more clauses precisely (equivalently it may open more
bits of b). Besides, the clever algorithm doesn’t make substitutions that obviously
lead to unsatisfiable formulas. It is not hard to see that it is enough to prove
the lower bound for clever myopic algorithms; the lower bound for all myopic
algorithms will follow.

Now we describe the behavior of clever myopic algorithms more formally. A
clever algorithm has a current partial substitution ρ and a set I ∈ Clk(V ars(ρ)).
At the beginning ρ = ∅, I = ∅. On each step the clever algorithm simpli-
fies the formula (probably increases ρ and extends the set I to the element of
Clk(V ars(ρ)).

If the clever algorithm requests a clause that corresponds to the vertex yj ∈ Y
we say that the algorithm opens j-th bit of output. We assume that all clauses
corresponding to yj ∈ Y may be read by a clever algorithm for free.

Consider the heuristic A that choose variable x for splitting. Let Z be the
set of all open bits of output (in particular Z includes K bits that were open
before x was choosen). The clever algorithm extends the set I to the element of
Clk(V ars(ρ) ∪ {x}). The set of open bits is increased: Z := Z ∪ I. The clever

The Complexity of Inversion of Explicit Goldreich’s Function 143

algorithm chooses the value of variable x in order to make the part of formula
that corresponds to Z satisfiable.

Lemma 10. For every clever myopic algorithm A there exists another clever
myopic algorithm B such that B does not use pure literal and unit clause elim-
ination rules and the running time of algorithm B on the formula Φf(x)=b is
bounded by polynomial on the running time of algorithm A.

Proof. If the current predicate in the vertex y ∈ Y (taking into account ρ) is
linear on at least two variables then Lemma 4 implies that there are no pure
literals in the formula that corresponds to y. So predicates in vertices that contain
pure literals have at most one linear variable. All such vertices are contained in
I ∈ Clk(V ars(ρ)), hence all corresponding bits of output are open and the
algorithm may make a substitution to this pure literal by itself. Similarly, if
formula contains a unit clause, then the corresponding vertex is in I and a
clever algorithm may choose the correct substitution by itself. ��
In the following we assume that clever myopic algorithms do not use simplifica-
tion rules.

Let us denote N = # (c−k−1)r
4dK $.

Lemma 11 (cf. [1]). After N steps of any clever myopic algorithm the number
of open bits is at most r

2 .

Proof. The number of open bits is at most K (c−k−1)r
4dK + |Clk(V ars(ρ))|, where

ρ is the current substitution. By Lemma 8 |Clk(V ars(ρ)| ≤ |V ars(ρ)|
c−k−1 . Since

|V ars(ρ))| ≤ (c−k−1)r
4 we may conclude K (c−k−1)r

4dK + |Clk(Z)| ≤ (c−k−1)r
4d + r

4 ≤
r
2 ��
Corollary 4. During the first N steps a clever myopic algorithm does not back-
track (backtracking corresponds to a leaf of the splitting tree) and ρ is locally
consistent.

Proof. During N steps the number of open bits is at most r
2 . We prove by

induction that the current substitution is locally consistent. It is trivial for the
beginning. Induction step follows from the fact that the value of the variable is
chosen in such a way that Φf(x)=b|I is satisfiable. This is possible by Lemma 9
and by induction hypothesis. ��
Our goal is to show that after N steps of a clever myopic algorithm the current
formula will be unsatisfiable with high probability.

From this point we assume that graph G has the type GL + H , where GL is
a (d− k)-regular and H is a k-regular R-graph; the rank of adjacency matrix of
GL is at least n− 1. The Goldreich’s function f based on G and P is linear on
variables X \R.

Lemma 12. Let b ∈ {0, 1}n and J ⊆ X. Let y ∈ {0, 1}n and Z ⊆ Y , we define
set Xy = {x ∈ {0, 1}n | ∀j ∈ (X \ J) xj = yj} and set Sy = {x ∈ Xy | f(x)|Z =
b|Z}. Then either |Sy| ≥ 2|J|−|Z|−|J∩R| or |Sy| = 0.

144 D. Itsykson and D. Sokolov

Proof. We have to estimate the number of x ∈ Xy that satisfies the system of
equalities f(x)|Z = b|Z . If we fix the values for variables xj for j ∈ J ∩ R then
the system becomes linear over variables xj for j ∈ (J \ R). The rank of the
system does not exceed |Z| and the number of variables is at least |J | − |J ∩R|
(it is not necessary for all those variables to have explicit occurrences in the
system). Thus if a solution exists then the dimension of the solution space is at
least |J |− |J ∩R|− |Z|. Since our system is over field F2 the number of solutions
is at least 2|J|−|Z|−|J∩R| even for fixed values of xj , j ∈ J ∩R. ��
Let Z be the set of open bits b in the equation f(x) = b, ρ be some partial
substitution; we denote Cρ,Z,b the set of x ∈ {0, 1}n that are consistent with ρ
and satisfy f(x)|Z = b|Z . Formally Cρ,Z,b = {x | f(x)|Z = b|Z , x ∼ ρ}.
Lemma 13. Let Z ⊆ Y , |Z| < r

2 , J ⊆ X. Then for every two locally consistent
substitutions ρ1, ρ2 with V ars(ρ1) = V ars(ρ2) = J and for every b ∈ {0, 1}n the
following is satisfied: |Cρ1,Z,b|

|Cρ2,Z,b| ≤ 2|R|.

Proof.

|Cρ1,Z,b|
|Cρ2,Z,b| =

∑
σ
|Cρ1∪σ,Z,b|∑

σ
|Cρ2∪σ,Z,b| ,

where the sum in both cases is over partial substitutions σ with support
V ars(σ) = R \ J .

We show that the size of the set Cρi∪σ,Z,b is either 0 or some fixed value and
not dependant on σ and i ∈ {1, 2}.

The size of the set Cρi∪σ,Z,b equals the number of solutions of the system
of equations f(x)|Z = b|Z if some bits of x are fixed by substitution ρi ∪ σ.
This fixation makes the system linear. Note that the rank of this system does
not depend on substitutions ρi and σ (since ρi and σ influence only the column
of constants in the system). Therefore, if such system has a solution then the
number of solutions does not depend on i and σ.

Since the substitution ρi is locally consistent and |Z| < r
2 , Lemma 9 im-

plies that there exists such substitution σi with support V ars(σi) = R \ J that
Cρi∪σi,Z,b �= ∅.

|Cρ1,Z,b|
|Cρ2,Z,b| ≤

2|R||Cρ1∪σ1,Z,b|
|Cρ2∪σ2,Z,b| = 2|R|. ��

Theorem 3. Assume |R| = o(n
K) and ρ is the current substitution after N

steps of a clever myopic algorithm running on the fomula Φf(x)=b for some
b ∈ f({0, 1}n) and Z is the set of open bits. Then Pry←U({0,1}n)[∃x : x ∼
ρ, f(x) = f(y) | f(y)|Z = b|Z] ≤ 2−Ω(n

K).

Before giving a formal prove we informally describe the main idea. For simplicity
we assume that R = ∅ therefore the predicate P is linear . We consider a clever
myopic algorithm after N steps (i.e. |ρ| = N). In this moment the size of the set
I ∈ Clk(V ars(ρ)) does not exceed (1−ε)N for some positive ε by Lemma 8. We

The Complexity of Inversion of Explicit Goldreich’s Function 145

apply Lemma 12 for J = V ars(ρ) and Z = I, Lemma 12 states that the number
of locally consistent substitutions is at least 2|V ars(ρ)|−|I| = 2Ω(N).

Lemma 9 and Lemma 11 imply that every local consistent partial substitution
may be extended to the full substitution that is consistent with open bits of the
right hand side. Lemma 13 states that the number of such extensions is the same
for every locally consistent substitution if R = ∅. A myopic algorithm has no
chance to find one substitution among all locally consistent substitutions since
they all have equal chances to be correct. Since our linear system has at most
two solutions (if R = ∅), there are at most two locally consistent substitutions
that can be extended to the solution of the system. Therefore the probability of
correct substitution is at most 2−Ω(N) = 2−Ω(n

K).

Proof (Theorem 3). Corollary 4 implies that during N steps the algorithm does
not backtrack and |ρ| = N .

We apply Lemma 12 for J = V ars(ρ) and Z = I, where I ∈ Clk(V ars(ρ)) is
from definition of a clever myopic algorithm after step N . Since b ∈ f({0, 1}n)
there exists y ∈ {0, 1}n such that Sy �= ∅ (Sy is defined in the Lemma 12) and
the inequality |Sy| ≥ 2|V ars(ρ)|−|I|−|R| holds. Therefore at least 2|V ars(ρ)|−|I|−|R|

substitutions with support V ars(ρ) are locally consistent.

Pr
y←U({0,1}n)

[∃x : x ∼ ρ, f(x) = f(y) | f(y)|Z = b|Z]

= Pr
y←U({0,1}n)

[f−1(f(y)) ∩Cρ,Z,b �= ∅ | f(y)|Z = b|Z]

≤ max
y
|f−1(f(y))| · Pr

y←U({0,1}n)
[y ∈ Cρ,Z,b | f(y)|Z = b|Z]

By Lemma 6 the first term may be estimated as maxy |f−1(f(y))| ≤ 2|R|+1.
Let us estimate the second term: Pry←U({0,1}n)[y ∈ Cρ,Z,b | f(y)|Z = b|Z] ≤
maxσ |Cσ,Z,b|∑

σ |Cσ,Z,b| , where σ goes through all locally correct substitutions with the sup-

port V ars(ρ). By Lemma 13 maxσ |Cσ,Z,b|∑
σ |Cσ,Z,b| ≤ 2|R| minσ |Cσ,Z,b|

2|V ars(ρ)|−|I|−|R| minσ |Cσ,Z,b| =

22|R|+|I|−|V ars(ρ)|.
Altogether:

Pr
y←U({0,1}n)

[∃x : x ∼ ρ, f(x) = f(y) | f(y)|Z = b|Z] ≤ 23|R|+|I|−|V ars(ρ)|+1.

Since I ∈ Clk(V ars(ρ)) the Lemma 8 implies |I| ≤ (c− k − 1)−1|V ars(ρ)|. The
statement of the theorem follows from V ars(ρ) = Ω(n

K) and c > k + 2. ��
Theorem 4. Let |R| = o(n

K), then for every myopic algorithm A the following
inequality holds: Pry,s[tA(Φf(x)=f(y)) ≥ 2Ω(n)] ≥ 1−2−Ω(n

K), where tA(x) denotes
the running time of A on input x and s is a string of random bits used by A.

Proof. Lemma 10 implies that it is enough to prove the Theorem for clever
myopic algorithms that do not use simplification rules.

146 D. Itsykson and D. Sokolov

We fix the string of random bits s and prove that for algorithms that use
s instead of random bits the following holds: Pry[tA(Φf(x)=f(y)) ≥ 2Ω(n)] ≥
1− 2−Ω(n

K), and the theorem follows.
We consider a clever myopic algorithm after N steps on the formula Φf(x)=f(y).

Let Zy be the set of open bits of output by this moment. Note that for a fixed
string s the behavior of algorithm during the first N steps is the same for all
y′ ∈ {0, 1}n such that f(y′)|Zy = f(y)|Zy (in this case Zy′ = Zy). Thus the set
of all y ∈ {0, 1}n may be split on the finite number of classes of equivalence
S1, S2, . . . , Sm such that for all y and for all y′ ∈ Sy the values of Z ′

y are the
same and the values of f(y)|Zy are the same, and this is not true for different
classes.

Pr
y

[tA(Φf(x)=f(y)) ≥ 2Ω(n)] =
m∑

i=1

Pr
y

[tA(Φf(x)=f(y)) ≥ 2Ω(n) | y ∈ Si] Pr
y

[y ∈ Si].

By Theorem 3 after N steps of a clever myopic algorithm

Pr
y

[Φf(x)=f(y)|ρ is unsatisfiable | y ∈ Si] ≥ 1− 2−Ω(n
K),

where ρ is the current substitution that is locally consistent. Finally Theorem 2
implies that Pry[tA(Φf(x)=f(y)) ≥ 2Ω(n) | y ∈ Si] ≥ 1 − 2−Ω(n

K). The theorem
follows from the last inequality. ��
In conclusion we describe the construction of Goldreich’s function that suits the
previous theorem.

We choose ε = 1
4k+1 and for given ε we construct an (r, d, (1 − ε)c)-expander

H by Lemma 3. The constant d satisfies the inequality d ≥ 4k+1. By Theorem 1
we add to the constructed graph such 1-regular graph T that the resulting graph
H + T has the adjacency matrix with rank at least n− 1. The resulting graph is
a (r, d + 1, (1 − 1

4k+1)d)-expander. We choose the subset R ⊆ X of size o(n/K)
and k-regular R-graph F . We define G = H + T + F ; graph G is a (r, d + 1 +
k, (1− 1

4k+1)d)-expander and hence a (r, d+1+k, d(1− 1
4k+1)−k−1)-boundary

expander. For k > 1 the inequality d(1− 1
4k+1)− k − 1 > k + 2 holds. For such

graph any predicate of the type x1 + · · · + xd−k + Q(xdk+1 , . . . , xd) is suitable,
where Q is arbitrary predicate of arity k. It may be easily verified that we do
not use the fact that the predicate Q is the same for all vertices of the set Y .

References

1. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the run-
ning time of DPLL algorithms on satisfiable formulas. J. Autom. Reason. 35(1-3),
51–72 (2005)

2. Cook, J., Etesami, O., Miller, R., Trevisan, L.: Goldreich’s one-way function can-
didate and myopic backtracking algorithms. In: Proceedings of TCC, pp. 521–538.
Springer, Heidelberg (2009)

3. Itsykson, D.: Lower bound on average-case complexity of inversion of goldreich’s
function by drunken backtracking algorithms. In: Ablayev, F., Mayr, E.W. (eds.)
CSR 2010. LNCS, vol. 6072, pp. 204–215. Springer, Heidelberg (2010)

The Complexity of Inversion of Explicit Goldreich’s Function 147

4. Miller, R.: Goldreich’s one-way function candidate and drunken backtracking algo-
rithms. Master’s thesis, University of Virginia, Distinguished Majors Thesis (2009)

5. Tseitin, G.S.: On the complexity of derivation in the propositional calculus. Zapiski
nauchnykh seminarov LOMI 8, 234–259 (1968); English translation of this volume:
Consultants Bureau, N.Y., pp. 115–125 (1970)

6. Goldreich, O.: Candidate one-way functions based on expander graphs. Technical
Report 00-090, Electronic Colloquium on Computational Complexity (2000)

7. Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors and
constant-degree expansion beyond the degree/2 barrier. In: Proceedings of the 34th
Annual ACM Symposium on Theory of Computing, pp. 659–668 (2002)

8. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow — resolution made simple.
Journal of ACM 48(2), 149–169 (2001)

9. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bul-
letin of the American Mathematical Society 43, 439–561 (2006)

Gate Elimination for Linear Functions and New

Feebly Secure Constructions

Alex Davydow1 and Sergey I. Nikolenko2

1 St. Petersburg Academic University, ul. Khlopina, 8, korp. 3, St. Petersburg, Russia
adavydow@yandex.ru

2 Steklov Mathematical Institute, nab. r. Fontanka, 27, St. Petersburg, Russia
sergey@logic.pdmi.ras.ru

Abstract. We consider gate elimination for linear functions and show
two general forms of gate elimination that yield novel corollaries. Us-
ing these corollaries, we construct a new linear feebly secure trapdoor
function that has order of security 5

4
which exceeds the previous record

for linear constructions. We also give detailed proofs for nonconstructive
circuit complexity bounds on linear functions.

Keywords: circuit complexity, gate elimination, feebly secure cryptog-
raphy, feebly one-way functions.

1 Introduction

Modern cryptography has virtually no provably secure constructions. Starting
from the first Diffie–Hellman key agreement protocol [5] and the first public key
cryptosystem RSA [21], not a single public key cryptographic protocol has been
proven secure (however, there exist secure secret key protocols, e.g., the one-
time pad scheme [25, 23]). Naturally, an unconditional proof of security would
be indeed hard to find, since it would necessarily imply that P �= NP. But the
situation is worse: there are also no conditional proofs that might establish a
connection between natural structural assumptions (like P �=NP or BPP �=NP)
and cryptographic security. Recent developments in lattice-based cryptosystems
relate cryptographic security with worst-case complexity, but they deal with
problems unlikely to be NP-complete [1, 6, 19, 20].

There are known complete cryptographic constructions, both one-way func-
tions [14,15] and public key cryptosystems [9,8]. However, they also do not let us
relate cryptographic security to key assumptions of classical complexity theory.
Moreover, the asymptotic nature of these completeness results does not let us
say anything about how hard it is to break a given cryptographic protocol for
keys of a certain fixed length, which is, in fact, what we all want as privacy-aware
customers. Problems that have been studied extensively in relation to cryptog-
raphy (factoring and discrete logarithm) do seem to scale well, but there are no
lower bounds and little hope for such anytime soon, so the point is moot. We
can only say that complexity of the algorithms that we have devised ourselves
scales well, so ultimately we fall back on the “many smart people have thought

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 148–161, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Gate Elimination for Linear Functions and New Feebly Secure Constructions 149

about it” argument. There are other dangers on the way of asymptotic complex-
ity, too [13]. Ultimately, we do not care whether a protocol can or cannot be
broken in the limit; we would be very happy if breaking this specific version of
the protocol required constant time, but the constant was larger than the size
of the known Universe.

However, modern cryptography is still very far away from provably secure
constructions. At present, we can prove security neither in this “hard” sense
nor in the sense of classical cryptographic definitions [7]. Nevertheless, while we
are unable to prove a superpolynomial gap between the complexities of honest
parties and adversaries, we are able to prove some gap. In 1992, Alain Hiltgen [10]
presented a series of linear functions that are about twice (1 − ε times for an
arbitrarily small ε) harder to invert than to compute. His example consists of
linear functions over F2 with matrices that have few non-zero entries (ones)
while inverse matrices have many ones. The complexity gap follows by a simple
argument of Lamagna and Savage [16,22]: every bit of the output depends non-
idly on many variables and all these bits correspond to different functions, hence
a lower bound on the complexity of computing them all together. The model
of computation here is the most general one, namely the number of gates in a
Boolean circuit that uses arbitrary binary Boolean gates. Little more could be
expected for this model at present. For example, the best known lower bound
for general circuit complexity of a specific Boolean function is 3n− o(n) [3, 26].
In his thesis, Hiltgen also presented a feebly secure function that is exactly twice
harder to invert than to compute, this time a nonlinear one [11].

Lately, in the works of Hirsch, Nikolenko, and Melanich new cryptographic
constructions with the same properties were constructed [12,17]. In [12], a linear
feebly secure trapdoor function with order of security 25

22 was constructed, and
in [17], a nonlinear feebly secure trapdoor function with order of security 7

5 . In
this paper, we continue that line of work. In Section 2, we give basic definitions.

Virtually all bounds in general circuit complexity have been proven with
gate elimination. This paper deals with gate elimination for linear functions;
in Section 3, we distill gate elimination to two basic ideas, formulate it in a gen-
eral form, note important corollaries, and discuss its limitations. Our discussion
in Section 3 generalizes the methods of [12], and this understanding lets us find
a better construction of a linear feebly secure trapdoor function that has order
of security 5

4 − ε for any ε > 0, as shown in Section 4. In Section 5, we compare
what we have found with nonconstructive upper and lower bounds on general
circuit complexity of linear functions. Section 6 concludes the paper.

2 Preliminaries

We denote by Bn,m the set of all 2m2n

total functions f : Bn → Bm, where
B = {0, 1} is the field with two elements. A circuit is a directed acyclic labeled
graph with vertices of two kinds: vertices of indegree 0 (vertices that no edges
enter) labeled by one of the variables x1, . . . , xn, and vertices labeled by a binary
Boolean function f ∈ B2,1; this model of computation is known as general circuit

150 A. Davydow and S.I. Nikolenko

complexity. Vertices of the first kind are called inputs or input variables; vertices
of the second kind, gates. The size of a circuit C, size(C), is the number of
gates in it. We assume that each gate in this circuit depends of both inputs, i.e.,
there are no gates marked by constants and unary functions Id and ¬. To safely
remove such gates without loss of generality, we assume that the output of each
gate can be both the value of corresponding function and its negation. For every
injective function of n variables fn ∈ Bn,m we define its measure of one-wayness

MF (fn) = C(f−1
n)

C(fn) . Hiltgen’s work was to find sequences of functions f = {fn}∞n=1

with a large asymptotic constant lim infn→∞ MF (fn), which is called the order
of one-wayness of f .

There is a well-known definition in cryptography for a family of trapdoor
functions [7]. However, we have a more detailed definition: since we are interested
in constants here, we must pay attention to all the details.

Definition 1. Fix functions pi, ti,m, c : N→ N. A feebly trapdoor candidate is
a sequence of triples of circuits C = {(Keyn,Evaln, Invn)}∞n=1 where:

– {Keyn}∞n=1 is a family of sampling circuits Keyn : Bn → Bpi(n) × Bti(n),
– {Evaln}∞n=1 is a family of evaluation circuits Evaln : Bpi(n)×Bm(n) → Bc(n),

and
– {Invn}∞n=1 is a family of inversion circuits Invn : Bti(n) × Bc(n) → Bm(n)

such that for every security parameter n, every seed s ∈ Bn, and every input
m ∈ Bm(n)

Invn(Keyn,2(s),Evaln(Keyn,1(s),m)) = m,

where Keyn,1(s) and Keyn,2(s) are the first pi(n) bits (“public information”) and
the last ti(n) bits (“trapdoor information”) of Keyn(s), respectively.

Informally speaking, n is the security parameter (the length of the random seed),
m(n) is the length of the input to the function, c(n) is the length of the function’s
output, and pi(n) and ti(n) are lengths of the public and trapdoor information,
respectively. We call these functions “candidates” because Definition 1 does not
imply any security, it merely sets up the dimensions and provides correct inver-
sion. In our constructions, m(n) = c(n) and pi(n) = ti(n).

To find how secure a function is, we introduce the notion of a break. Infor-
mally, an adversary should invert the function without knowing the trapdoor
information. We introduce break as inversion with probability greater than a
certain constant r (we will usually set r to equal 1

2 , 3
4 , or 7

8). We denote by
Cα(f) the minimal size of a circuit that correctly computes a function f ∈ Bn,m

on more than fraction α of its inputs (of length n). Obviously, Cα(f) ≤ Cβ(f)
for all α ≤ β, and C(f) = C1(f).

Definition 2. A circuit N breaks a feebly trapdoor candidate C = {Keyn,Evaln,
Invn} on seed length n with probability r if, for uniformly chosen seeds s ∈ Bn

and inputs m ∈ Bm(n),

Pr
(s,m)∈U

[
N(Keyn,1(s),Evaln(Keyn,1(s),m)) = m

]
> r.

Gate Elimination for Linear Functions and New Feebly Secure Constructions 151

Definition 3. A feebly trapdoor candidate C = {Keyn,Evaln, Invn} has order
of security k with level α if for every sequence of circuits {Nn}∞n=1 that break f
on every input length n with probability α,

lim inf
n→∞ min

{
C(Nn)

C(Keyn)
,

C(Nn)
C(Evaln)

,
C(Nn)
C(Invn)

}
≥ k.

In other words,

lim inf
n→∞ min

{
C3/4(fpi(n)+c(n))

C(Keyn)
,
C3/4(fpi(n)+c(n))

C(Evaln)
,
C3/4(fpi(n)+c(n))

C(Invn)

}
≥ k,

where the function fpi(n)+c(n) maps
(
Keyn,1(s),Evaln(Keyn,1(s),m)

) �→ m.

We list a few simple examples. If there is no secret key at all (ti(n) = 0),
each feebly trapdoor candidate {(Keyn,Evaln, Invn)}∞n=1 has order of security
1, since the sequence of circuits {Invn}∞n=1 successfully inverts it. If a sequence
{(Keyn,Evaln, Invn)}∞n=1 implements a trapdoor function in the usual crypto-
graphic sense, then k = ∞. Moreover, k = ∞ even if the bounds on adversary
size are just a bit more than linear, e.g., if the adversary requires O(n log n)
gates. Our definitions are not designed to distinguish between these (very differ-
ent) cases, because, unfortunately, any nonlinear lower bound on general circuit
complexity appears very far away from our current state of knowledge.

Let us also note explicitly that we are talking about one-time security. An
adversary can amortize his circuit complexity on inverting a feebly trapdoor
candidate for the second time for the same seed, for example, by computing the
trapdoor information and successfully reusing it. Thus, in this setting one has
to pick a new seed for every input.

3 Gate Elimination for Linear Functions

Gate elimination is virtually the only method we have to prove lower bounds
in general circuit complexity; so far, it has been used for every single lower
bound [26,3,18,24]. The basic idea of this method is to use the following inductive
argument. Consider a function f and a circuit of minimal size C that computes
it. Now substitute some value c for some variable x thus obtaining a circuit for
the function f |x=c. The original circuit C can now be simplified, because the
gates that had this variable as inputs become either unary (recollect that the
negation can be embedded into subsequent gates) or constant (in this case we
can even proceed to eliminating subsequent gates). After figuring out how many
gates one can eliminate on every step, one proceeds by induction as long as it is
possible to find a suitable variable that eliminates enough gates. Evidently, the
number of eliminated gates is a lower bound on the complexity of f .

Usually, the important case here is when a gate is nonlinear, such as an AND
or an OR gate. In that case, it is always possible to choose a value for an input
of such a gate so that this gate becomes a constant and, therefore, its immediate
descendants can also be eliminated. However, in this paper we deal with gate

152 A. Davydow and S.I. Nikolenko

elimination for linear functions. We do not know how to prove that one cannot,
in general, produce a smaller circuit for a linear function with nonlinear gates,
but it is evident that we cannot assume any gates to be nonlinear in this setting.
Thus, gate elimination distills to two very simple ideas. Idea 1 is trivial and has
been noted many times before, while Idea 2 will allow us to devise better feebly
secure constructions in Section 4.

Since we are dealing with linear functions, we will, for convenience, state our
results in terms of matrices over F2; the circuit complexity of a matrix Cα(A) is
the circuit complexity of the corresponding linear function. By A−i we denote
the matrix A without its ith column; note that if A corresponds to f then A−i

corresponds to f |xi=0. If a matrix A has a zero column Ai, it means that the
corresponding function does not depend on the input xi; in what follows, we will
always assume that functions depend nontrivially on all their inputs and thus
the matrices do not have zero columns; we call such matrices nontrivial. Note
that if A is a submatrix of B then Cα(A) ≤ Cα(B) for all α ∈ [0, 1].

Idea 1. Suppose that for n steps, there is at least one gate to eliminate. Then
C(f) ≥ n.

Theorem 1. Fix a real number α ∈ [0, 1]. Suppose that P = {Pn}∞n=1 is a series
of predicates defined on matrices over F2 with the following properties:

– if P1(A) holds then Cα(A) ≥ 1;
– if Pn(A) holds then Pm(A) holds for every 1 ≤ m ≤ n;
– if Pn(A) holds then, for every index i, Pn−1(A−i) holds.

Then, for every matrix A with ≥ n+1 columns, if Pn(A) holds then Cα(A) ≥ n.

Proof. The proof is a straightforward induction on the index of Pi; the first
property of P provides the base, and other properties takes care of the induction
step. For the induction step, consider the first gate of an optimal circuit C
implementing A. By the monotonicity property of P and the induction base,
the circuit is nontrivial, so there is a first gate. Consider a variable xi entering
that gate. Note that if C computes f on fraction α of its inputs then for some c,
C |xi=c computes f |xi=c on fraction α of its inputs. If we substitute this value
into this variable, we get a circuit C |xi=c that has at most size(C)−1 gates and
implements A−i on at least α fraction of inputs. ��
The theorem is absolutely trivial; however, it has so far been the only instrument
available for gate elimination in linear functions. In fact, the only instrument has
been an even simpler proposition that dates back to mid-1970s.

Proposition 1 ([16,22]; [10, Theorems 3 and 4]; [12, Proposition 1]).

1. Suppose that f : Bn → B depends non-idly on each of its n variables,
that is, for every i there exist values a1, . . . , ai−1, ai+1, . . . , an ∈ B such
that f(a1, . . . , ai−1, 0, ai+1, . . . , an) �= f(a1, . . . , ai−1, 1, ai+1, . . . , an). Then
C(f) ≥ n− 1.

Gate Elimination for Linear Functions and New Feebly Secure Constructions 153

2. Let f = (f (1), . . . , f (m)) : Bn → Bm, where f (k) is the kth component of f .
If the m component functions f (i) are pairwise different and each of them
satisfies C(f (i)) ≥ c ≥ 1 then C(f) ≥ c + m− 1.

The proof is given in [12]. Note that for linear functions, statement 1 of Proposi-
tion 1 follows from Theorem 1 for Pn(A) = “A has a row with n + 1 ones”. We
also derive another corollary.

Corollary 1. If A is a matrix of rank n, and each column of A has at least two
ones, then C(A) ≥ n− 2.

Proof. Take Pn(A) =“rank(A) ≥ n + 2 and each column of A has at least 2
ones”. ��
Idea 2. Suppose that for n steps, there exists an input in the circuit with two
outgoing edges, and, moreover, in m of these cases both of these edges go to a
gate (rather than a gate and an output). Then C(f) ≥ n + m.

Theorem 2. We call a nonzero entry unique if it is the only nonzero entry in
its row. Fix a real number α ∈ [0, 1]. Suppose that P = {Pn}∞n=1 is a series of
predicates defined on matrices over F2 with the following properties:

– if P1(A) holds then C(A) ≥ 1;
– if Pn(A) holds then Pm(A) holds for every 1 ≤ m ≤ n;
– if Pn(A) holds then, for every index i, if the ith column has no unique entries

then Pn−2(A−i) holds, otherwise Pn−1(A−i) holds.

Then, for every matrix A with ≥ n + 1 different columns, if Pn(A) holds for
some n then C(A) ≥ n and, moreover, C 3

4
(A) ≥ n.

Proof. We argue by induction on n; for n = 1 the statement is obvious.
Consider the first gate g in the optimal circuit implementing A. Since g is

first, its incoming edges come from the inputs of the circuit, denote them by xi

and xj . There are three cases.

1. One of the input variables of g, say xi, goes directly to an output yk. Then
by setting xi to a constant we can eliminate one gate. however, in this case yk

corresponds to a row with only one nonzero element, so ith colum has a unique
element, so Pn−1(A−i) hold. Therefore, we invoke the induction hypothesis as
C(A−i) ≥ n− 1 and get the necessary bound.

2. One of the input gate of g, say xi, goes to another gate. Then by setting xi

to a constant we can eliminate two gates, by properties of Pn Pn−2(A−i) holds,
so we invoke the induction hypothesis as C(A−i) ≥ n− 2.

3. Neither xi nor xj enters any other gate or output. In this case, A is a
function of neither xi nor xj but only g(xi, xj); we show that this cannot be the
case for a function computing A on more than 3

4 of the inputs. A itself depends
on xi and xj separately because all of its columns are different; in particular,
for one of these variables, say xi, there exists an output yk that depends only
on xi: yk = xi ⊕

⊕
x∈X x, where xj /∈ X . On the other hand, since every gate

154 A. Davydow and S.I. Nikolenko

in an optimal circuit nontrivially depends on both inputs, there exist values a
and b such that g(0, a) = g(1, b). Thus, for every assignment of the remaining
variables, either on input strings with (xi = 0, xj = a) or on input strings with
(xi = 1, xj = b) the circuit makes a mistake, which makes it wrong on at least
1
4 of all inputs. ��
Note that Theorem 2 directly generalizes and strengthens Theorem 1.

Corollary 2. Fix a real number α ∈ [0, 1]. Suppose that R = {Rn}∞n=1 and
Q = {Qm}∞m=1 are two series of predicates defined on matrices over F2 with the
following properties:

– if R1(A) holds then C(A) ≥ 1;
– if Rn(A) holds then Rk(A) holds for every 1 ≤ k ≤ n;
– if Rn(A) holds then, for every i, Rn−1(A−i) holds;
– if Q1(A) holds then C(A) ≥ 1;
– if Qm(A) holds then Qk(A) holds for every 1 ≤ k ≤ n;
– if Qm(A) holds then, for every i, Qm−1(A−i) holds;
– if Qm(A) holds and A−i has more zero rows than A (i.e., removing the ith

column has removed the last nonzero element from at least one row) then
Qm(A−i) holds.

Then, for every matrix A with ≥ n + 1 columns, all of whose columns are dif-
ferent, if Rn(A) and Qm(A) hold for some n ≥ m then C(A) ≥ n + m and,
moreover, C 3

4
(A) ≥ n + m.

Proof. Immediately follows from Theorem 2 for Pn(A) = ∃kRk(A) ∧Qn−k(A).

Corollary 3 ([12, Lemma 5]). Let t, u ≥ 1. Assume that χ is a linear
function with matrix A over F2. Assume also that all columns of A are different,
every row of A has at least u nonzero entries, and after removing any t columns
of A, the matrix still has at least one row containing at least two nonzero entries.
Then C(χ) ≥ u + t and, moreover, C3/4(χ) ≥ u + t.

Proof. Take Pn(A) =“After removing any n columns of A, it still has at least
one nonzero row”, Q0(A) =“true”, and Qm(A) =“Every row of A has at least
m + 1 ones” for m > 0. Then Pt+1(A) and Qu−1(A) hold, and P and Q satisfy
the conditions of Corollary 2, which gives the desired bound. Note that in this
case, Qm for m > 0 cannot hold for a matrix where a row has only a single
one, so in the gate elimination proof, for the first u − 1 steps two gates will be
eliminated, and then for t− u + 2 steps, one gate will be eliminated. ��
We also derive another, even stronger corollary that will be important for new
feebly secure constructions.

Corollary 4. Let t ≥ u ≥ 2. Assume that A is a u × t matrix with different
columns, and each column of A has at least two nonzero elements (ones). Then
C(A) ≥ 2t− u and, moreover, C 3

4
(A) ≥ 2t− u.

Gate Elimination for Linear Functions and New Feebly Secure Constructions 155

x yf g

⊕

x ⊕ f

⊕

x ⊕ g

⊕

x ⊕ y

x yf g

⊕ ⊕ ⊕

⊕

x ⊕ f

x ⊕ g x ⊕ y

Fig. 1. Rewiring linear circuits

Proof. Take Pn(A) =“twice the number of nonzero columns in A less the number
of nonzero rows in A is at least n”. Then P2t−u(A) holds, and P satisfy the
conditions of Theorem 2. ��

Naturally, we could prove Corollaries 1 and 4 directly. We have chosen the
path of generalization for two reasons: one, to make Theorem 3 more precise
and more general, and two, to show the limits of gate elimination for linear
functions. As we have already mentioned, for linear functions we cannot count
on nonlinear gates that could eliminate their descendants. In Theorems 1 and 2,
we have considered two basic cases: when there is only one edge outgoing from
a variable and when there are two edges (going either to two gates or to a gate
and an output).

Figure 1 shows why we cannot expect anything more, e.g., a variable with
three outgoing edges. On the left, Figure 1 shows a part of a circuit where a
variable x has three outgoing edges. On the right, a rewiring of the same circuit
that has all the same outputs but x only enters two gates. Naturally, this does
not prove anything: we have introduced a new gate (so the circuit is no longer
optimal) and have only relocated the extra input from x to an extra input from
f . However, this simple example does show that to get better bounds, simple
local gate elimination does not suffice, and one has to consider global properties
of the function and the corresponding optimal circuit.

We finish this section with an extension of these results to block diagonal
matrices. In general, we cannot prove that the direct sum of several functions
has circuit complexity equal to the sum of the circuit complexities of these
functions; counterexamples are known as “mass production” [26]. However, for
linear functions and gate elimination in the flavours of Theorems 1 and 2, we
can. The following theorem generalizes Lemma 6 of [12].

Theorem 3. Suppose that a linear function χ is given by a block diagonal matrix⎛⎝A1 0 ··· 0
0 A2 ··· 0

...
...

...
0 0 ··· Ak

⎞⎠ ,

and every Aj satisfies the conditions of Theorem 2 with predicates Pj = {P j
n}∞n=1,

and P j
nj

(Aj) hold for every j. Then C(χ) ≥
k∑

j=1

nj.

156 A. Davydow and S.I. Nikolenko

Proof. We invoke Theorem 2 with the predicate composed of original predicates:

Pn =
∨

i1+...+ik=n

P 1
i1 ∧ P 2

i2 ∧ . . . ∧ P k
ik

.

It is now straightforward to check that P = {Pn}∞n=1 satisfies the conditions of
Theorem 2 (since every deleted column affects only one block), and the block
diagonal matrix satisfies Pn1+...+nk

. ��

4 A New Linear Feebly Secure Trapdoor Function

In our constructions, we follow the general idea of [12]: first, we find a feebly
trapdoor candidate that has the adversary work harder than function inversion
but function evaluation is even harder. Then, we add a feebly secure one-way
function as a separate block and thus reduce the work needed for function eval-
uation; this construction has been discussed in detail in [12].

We begin with some preliminaries. By Un, we denote the upper triangular
square n× n matrix with a bidiagonal inverse:

Un =

(1 1 ··· 1
0 1 ··· 1
...

...
...

0 0 ··· 1

)
, U−1

n =

(1 1 0 ··· 0
0 1 1 ··· 0
...

...
...

...
0 0 0 ··· 1

)
;

note that U2
n is an upper triangular matrix with zeros and ones chequered. In

what follows, we often write matrices that consist of other matrices as blocks;
e.g., (Un Un) is an n× 2n matrix consisting of two upper triangular blocks.

Lemma 1. 1. C 3
4
(Un) = n− 1.

2. C 3
4
(U2

n) = n− 2.
3. C 3

4
(U−1

n) = n− 1.
4. C 3

4
((Un Un)) = 2n− 1.

5. 3n− 6 ≤ C 3
4
((U2

n Un)) ≤ C((U2
n Un)) ≤ 3n− 3.

6. 3n− 4 ≤ C 3
4
((Un U−1

n)) ≤ C((Un U−1
n)) ≤ 3n− 2.

Proof. Lower bounds in items 1–3 are trivial: every row is different and no inputs
except one (two for 2) are connected to outputs directly. Thus, we need at least
one gate per row. The lower bound for item 4 follows from simple counting:
the first row of this matrix has 2n nonzero entries, so at least 2n − 1 gates
are needed to compute it. The lower bound for item 5 (respectively, 6) follows
by Corollary 4: the matrix (U2

n Un) (resp., (Un U−1
n)) satisfies its assumptions

except for three (resp., two) columns, so the corollary is invoked for t = 2n− 3
(resp., t = 2n− 2) and u = n.

We prove upper bounds by providing explicit circuit constructions. To com-
pute 1, note that every row differs from the previous one only in a single position,
so we can compute each output outi as outi+1 ⊕ ini. Moreover, outn = inn so
we need no gates for it. The same idea applies in 2, but in this case outn and

Gate Elimination for Linear Functions and New Feebly Secure Constructions 157

outn−1 are computed directly, and outi = outi−2⊕ ini. To compute 3, we simply
compute each row independently. To compute 4, we apply an idea from [12].
Note that (Un Un) ·(a

b) = Un ·a⊕Un ·b = Un ·(a⊕b). We use n gates to compute
a⊕ b and then compute the result using n− 1 gates. To compute 5 and 6, note
that (A B) · (a

b) = A · a⊕B · b. Thus, we can divide each of these computations
in two parts which can be computed independently using previous algorithms,
and then use n gates to compute the final XOR. ��
For the first construction, we assume that lengths of public information pi, trap-
door information ti, message m, and the cipher c are the same and equal n.
We let ti = Un · pi, c = (U−1

n Un) · (m
pi). In this case, an adversary would have

to compute the matrix (Un Un) · (c
ti) = (Un U2

n) · (c
pi). Now, inversion without

the trapdoor is harder than inversion with trapdoor, but encryption is about
the same complexity as inversion without trapdoor, so we cannot call it a feebly
trapdoor function yet.

To solve this problem, we consider a feebly one-way linear function A and
construct the protocol in the following way (In is the identity matrix here):

Keyn =
(

Un 0
0 In

) · (s s) =
(

ti
pi

)
,

Evaln =
(

U−1
n Un 0
0 0 A

)
·
(m1

pi
m2

)
= (c1

c2) ,

Invn =
(

Un Un 0

0 0 A−1

)
·
(c1

ti
c2

)
= (m1

m2) .

The adversary’s problem now becomes to compute

Advn =
(

Un U2
n 0

0 0 A−1

)
·
(c1

pi
c2

)
= (m1

m2) .

For the feebly one-way function A, we fix a small ε > 0 and take the Hiltgen’s
linear function with order of security 2− ε [10]; we take its size to be λn with λ
chosen below. In Hiltgen’s constructions, it means that C 3

4
(A) = λn + o(n), and

C 3
4
(A−1) = (2− ε)λn + o(n). Now Lemma 1 and Theorem 3 imply the following

complexity bounds:

C 3
4
(Keyn) = n− 1,

C 3
4
(Evaln) = 3n + λn + o(n) = (3 + λ)n + o(n),

C 3
4
(Invn) = 2n + (2− ε)λn + o(n) = (2 + (2− ε)λ)n + o(n),

C 3
4
(Advn) = 3n + (2− ε)λn + o(n) = (3 + (2− ε)λ)n + o(n).

The order of security of this construction is now

lim
n→∞

(
min

(
C3/4(Advn)
C(Evaln)

,
C3/4(Advn)

C(Invn)
,
C3/4(Advn)
C(Keyn)

))
=

= min
(

3 + (2− ε)λ
3 + λ

,
3 + (2− ε)λ
2 + (2− ε)λ

)
.

This expression reaches maximum for λ = 1
1−ε , and this maximum is 5−4ε

4−ε , which
tends to 5

4 as ε→ 0. Thus, we have proven the following theorem.

158 A. Davydow and S.I. Nikolenko

Theorem 4. For every ε > 0, there exists a linear feebly trapdoor function with
seed length pi(n) = ti(n) = n, length of inputs and outputs c(n) = m(n) = 2n,
and order of security 5

4 − ε.

In Theorem 3, we have generalized a hardness amplification procedure similar
to [12, Theorem 2]; with it, we can obtain superpolynomial security guarantees
against weaker adversaries.

Theorem 5. For every ε > 0, there exists a linear feebly trapdoor function with
seed length pi(n) = ti(n) = n, length of inputs and outputs c(n) = m(n) = 2n,
complexities C 3

4
(Keyn) = n−1, C 3

4
(Evaln) = 4n+o(n), and C 3

4
(Invn) = 4−ε

1−εn+
o(n), and order of security 5−4ε

4−ε . Moreover, no adversary with less than 5−4ε
1−ε n−

5
2δ
√

n gates can invert this feebly trapdoor function on more than 2−δ
√

n+o(
√

n)

of its inputs for any constant δ > 0.

Proof. We consider the block diagonal matrix

H =

⎛⎝X 0 ... 0
0 X ... 0
...

...
...

0 0 ... X

⎞⎠ ,

with m diagonal blocks, where X is the matrix of the trapdoor function con-
structed in Theorem 4, and apply Theorem 3. Stacking the matrices up in a
large block diagonal matrix does not change the parameters of a feebly trapdoor
function. ��

5 Nonconstructive Bounds for Linear Functions

In Section 3, we have seen that we cannot currently hope to prove more than
linear lower bounds on general circuit complexity; the same is true, of course, for
linear functions. A classical result shows by counting that among general Boolean
functions of n variables, almost all of them have circuit complexity ≥ 1

n2n. But
maybe for the linear case, nonlinear bounds are impossible from the beginning?

It turns out that linear functions with nonlinear bounds do exist. References
to this result can be found [2, 4], but we have not been able to find a detailed
proof in literature, so we include it here and refine it to get exact constants.

Theorem 6. 1. For every n there exists a constant δn such that the circuit
complexity of all linear functions φ : {0, 1}n → {0, 1}n does not exceed
δn

n2

log n , and limn→∞ δn = 1.
2. For every n ≥ 3, there exists a linear Boolean function φ : {0, 1}n → {0, 1}n

with circuit complexity greater than n2

2 log n .

Proof. 1. Upper bound. Let A be the matrix of φ. For clarity, we assume n is
a power of 2 (the same proof goes through with very minor modifications if n
is not). We implement A as follows. First, we generate ci as all possible rows

Gate Elimination for Linear Functions and New Feebly Secure Constructions 159

of zeros and ones of length l = q log n, where q is a constant to be selected
later. Denoting the inputs of φ by x = (x1 ··· xn), we preprocess the values of all
possible combinations of ci ·

(xj+1
...

xj+l

)
, where j is a multiple of l. The total number

of gates needed for this operation is bounded from above by

2q·log n · n

q · log n
· (q log n− 1) ≤ nq · n = nq+1.

Let A1, A2, · · · , An be the columns of A. To find A · x, we compute

A·x = (A1 ... Al)

(
x1

...
xl

)
⊕(Al+1 ··· A2l)

(xl+1

...
x2l

)
⊕. . .⊕(An−l+1 ··· An)

(xn−l+1

...
xn

)
.

After preprocessing, every product in this formula will already be computed,
and all we need to do is to choose a correct wire, so no gates are needed here.
After that, n · (n

l − 1) gates are needed to XOR for the total result. Thus, the
total number of gates needed is

nq+1 + n · (n

q · log n
− 1) = nq+1 +

n2

q · log n
− n.

Setting q = 1
1+ε , we get the upper bound (1 + ε) n2

log n for an arbitrarily small ε.

2. Lower bound. The lower bound is proven by counting. Let q = (1− ε) n2

2 log n .
We estimate T , the number of circuits of size≤ q. There are 16 types of gates, and
every circuit’s description consists of type and inputs for every gate. Therefore,

T ≤ q · (16 · (n + q)2))q

q!
≤ q · (16e)q · (n + q)2q

qq
≤ q · (64e)q · q

2q

qq
= (64 ·e ·q)q ≤

≤ (64 · e · q)q+1 ≤ (n2)(1−ε)· n2
2 log n +1 = (22 log n)(1−ε)· n2

2 log n +1 = 2(1−ε)n2+2 log n.

But the total number of linear Boolean functions of n arguments is 2n2
, which is

greater than 2(1−ε)n2+2 log n. Therefore, there are Boolean functions with circuit
complexity exceeding n2

2 log n . ��

6 Conclusion

In this paper, we have discussed in detail the circuit complexity of linear Boolean
functions. We have proven two general statements on gate elimination in linear
functions, derived several corollaries, and applied them to find a new linear feebly
secure trapdoor function, with better order of security than the known one [12].
While feebly secure cryptographic primitives can hardly be put to any practical
use, they are still important from the theoretical point of view. As sad as it
sounds, this is actually the frontier of provable, mathematically sound results on
security; we do not know how to prove anything stronger. However, in Section 5

160 A. Davydow and S.I. Nikolenko

we have seen that with these bounds, we are only scratching the surface even
for linear Boolean functions, let alone nonlinear ones.

Further work in this direction is twofold. One can further develop the notions
of feebly secure primitives. Orders of security can certainly be improved; perhaps,
new primitives (key agreement protocols, zero knowledge proofs etc.) can find
their feebly secure counterparts. This work can widen the scope of feebly secure
methods, but the real breakthrough can only come from one place.

It becomes clear that cryptographic needs call for further advances in general
circuit complexity. General circuit complexity has not had a breakthrough since
the 1980s; nonconstructive lower bounds are easy to prove by counting, but con-
structive lower bounds remain elusive. The best bound we know is 3n − o(n),
proven in 1984 [3]. At present, we do not know how to rise to this challenge;
none of the known methods seem to work, so a general breakthrough is required
for nonlinear lower bounds on circuit complexity. The importance of such a
breakthrough can hardly be overstated; feebly secure cryptographic construc-
tions provide yet another application for new circuit lower bounds.

Acknowledgements

We thank Olga Melanich and the anonymous referees for pointing out important
shortcomings in a preliminary version of our paper.

Work of the first author has been supported by the Yandex Stipend Program.
Work of the second author has been supported by the Russian Presidential Grant
Programme for Young Ph.D.’s, grant no. MK-4089.2010.1, for Leading Scientific
Schools, grant no. NSh-5282.2010.1, Federal Target Programme “Scientific and
scientific-pedagogical personnel of the innovative Russia”, and Russian Fund for
Basic Research grants.

References

1. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pp. 284–293 (1997)

2. Alon, N., Karchmer, M., Wigderson, A.: Linear circuits over GF(2). SIAM Journal
of Computing 19(6), 1064–1067 (1990)

3. Blum, N.: A boolean function requiring 3n network size. Theoretical Computer
Science 28, 337–345 (1984)

4. Bublitz, S.: Decomposition of graphs and monotone formula size of homogeneous
functions. Acta Informatica 23, 410–417 (1986)

5. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22, 644–654 (1976)

6. Dwork, C.: Positive applications of lattices to cryptography. In: Privara, I., Ružička,
P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 44–51. Springer, Heidelberg (1997)

7. Goldreich, O.: Foundations of Cryptography. Basic Tools. Cambridge University
Press, Cambridge (2001)

8. Grigoriev, D., Hirsch, E.A., Pervyshev, K.: A complete public-key cryptosystem.
Groups, Complexity, and Cryptology 1, 1–12 (2009)

Gate Elimination for Linear Functions and New Feebly Secure Constructions 161

9. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for
oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005)

10. Hiltgen, A.P.: Constructions of feebly-one-way families of permutations. In: Proc.
of AsiaCrypt 1992, pp. 422–434 (1992)

11. Hiltgen, A.P.: Cryptographically Relevant Contributions to Combinational Com-
plexity Theory, ETH Series in Information Processing, vol. 3. Konstanz: Hartung-
Gorre (1994)

12. Hirsch, E.A., Nikolenko, S.I.: A feebly secure trapdoor function. In: Frid, A., Mo-
rozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp.
129–142. Springer, Heidelberg (2009)

13. Koblitz, N., Menezes, A.: Another look at “provable security”. Journal of Cryptol-
ogy 20(1), 3–37 (2007)

14. Kojevnikov, A.A., Nikolenko, S.I.: New combinatorial complete one-way functions.
In: Proceedings of the 25th Symposium on Theoretical Aspects of Computer Sci-
ence, Bordeaux, France, pp. 457–466 (2008)

15. Kojevnikov, A.A., Nikolenko, S.I.: On complete one-way functions. Problems of
Information Transmission 45(2), 108–189 (2009)

16. Lamagna, E.A., Savage, J.E.: On the logical complexity of symmetric switching
functions in monotone and complete bases. Tech. rep., Brown University, Rhode
Island (July 1973)

17. Melanich, O.: Nonlinear feebly secure cryptographic primitives. PDMI preprints
12 (2009)

18. Paul, W.J.: A 2.5n lower bound on the combinational complexity of boolean func-
tions. SIAM Journal of Computing 6, 427–443 (1977)

19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
pp. 84–93 (2005)

20. Regev, O.: Lattice-based cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 131–141. Springer, Heidelberg (2006)

21. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

22. Savage, J.E.: The Complexity of Computing. Wiley, New York (1976)
23. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical

Journal 28(4), 656–717 (1949)
24. Stockmeyer, L.: On the combinational complexity of certain symmetric Boolean

functions. Mathematical Systems Theory 10, 323–326 (1977)
25. Vernam, G.S.: Cipher printing telegraph systems for secret wire and radio tele-

graphic communications. Journal of the IEEE 55, 109–115 (1926)
26. Wegener, I.: The Complexity of Boolean Functions. B. G. Teubner, and John Wiley

& Sons (1987)

Finite Groups and Complexity Theory:

From Leningrad to Saint Petersburg
via Las Vegas

László Babai

University of Chicago, Chicago IL 60637, USA
laci@cs.uchicago.edu

http://people.cs.uchicago.edu/∼laci

Abstract. Finite groups have affected complexity theory and complex-
ity theory has had an impact on computational group theory. This paper
is a personal account of the author’s journey through the evolution of
some of these interconnections, culminating in recent definitive results
on the matrix group membership problem.

1 Introduction

Many examples illustrate the influence of group theory on complexity theory.
It is not easy to pinpoint what it is about groups that makes them relevant,
but perhaps two factors could be mentioned, one trivial, and one profound: a
subgroup is at most half the size of the group, and groups tend to expand. The
first, trivial fact, to which I will refer as “Lagrange’s Theorem,” is often the key
to randomized algorithms involving groups, such as the Solovay-Strassen and
Miller-Rabin primality tests. Expansion comes in two varieties: some groups
show explosive expansion; and all groups expand at a non-negligible rate. Fore-
most among the former are the projective linear groups PSL(2, p), responsible
for explicit graphs of large girth [66], the Ramanujan graphs [67,61], Gowers-
quasirandomness in groups [50] (cf. [25]), Helfgott growth [51] (cf. [72,37]), al-
most certain expanders [34]. Zig-zag products, related to semidirect products
of groups [4], have been introduced in an attempt to replace deep group the-
ory with elementary combinatorics and linear algebra in the construction of
expanders [74] and have led to SL =L, Omer Reingold’s celebrated result in
complexity theory [73].

The more modest but ubiquitous “local expansion” (see Section 4.4) found
in connection with interactive proofs [12] (cf. [11,28]) plays a key role in the
analysis of algorithms for groups [18,11].

Expanders have served as important derandomization tools. At the same time,
groups appear to attract randomization.

The first attempt at a group theoretic approach to graph isomorphism yielded
a Las Vegas algorithm [8] (and the term). The attempt to classify the complexity
of matrix group membership was one of the roots of the concept of interactive
proofs [9]. Randomization seems indispensable for matrix group algorithms [16].

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 162–180, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Finite Groups and Complexity Theory 163

Not all applications of groups to complexity theory fit in this framework.
David Barrington famously noticed the universality of groups as computational
devices: Boolean circuits can be simulated by the product and commutator op-
erations in nonsolvable groups, resulting in a surprising simulation of NC1 by
width-5 branching programs of polynomial size [30].

The seminal paper by Kahn, Saks, and Sturtevant linked the evasiveness con-
jecture in decision tree complexity to group actions on simplicial complexes [56].
(Cf. [14] for recent use of a greater variety of permutation groups in this context.)

Most recently, Aaronson and his coauthors connected the group membership
problem to separation of quantum complexity classes [1] and quantum vs. clas-
sical communication complexity [2].

This is but a small sample of the cases where groups played a role in com-
plexity theory.

Conversely, a complexity theoretic approach to problems of computational
group theory has profoundly affected the latter area. Largely due to the work of
Ákos Seress, an increasing portion of the computational group theory package
GAP [47] is now based on algorithms with rigorous performance guarantees, a
hallmark of the complexity theoretic approach.

In this paper we review some of these connections through the author’s per-
sonal lense. The main themes are the Graph Isomorphism problem, the mem-
bership problem in matrix groups, and randomization in complexity theory.

We assume that the reader is familiar with the basics of group theory as
described, for instance, in [75].

2 Recognition vs. Construction vs. Sampling

The two most common explicit representations of finite groups are permutation
groups and linear groups over finite fields. In both cases, our group G is a sub-
group of a natural ambient group U ; in the case that G is a permutation group
acting on a domain Ω, U = Sym(Ω) is the symmetric group (group of all permu-
tations of Ω); in the case when G is a linear group acting on the (finite) vector
space V , we have U = GL(V). (If V = Fd

q where Fq is the finite field of order
q then GL(V) can be identified with the group GL(d, q) of nonsingular d × d
matrices over Fq.)

More generally, we shall consider subgroups of an arbitrary finite ambient
group U ; we assume that group operations can be performed efficiently in U .
(This concept will be defined more precisely in Section 4.1.)

We say that a subgroup G ≤ U is known or given if we have a list of gen-
erators for G; constructing or finding G means efficiently constructing a list of
generators.

We say that G ≤ U is samplable if we can efficiently sample elements of G from
the uniform distribution; and G is approximately samplable if elements of G from
a nearly uniform distribution can be sampled efficiently, with an arbitrarily small
parameter of proximity to uniform (in any reasonable metric on distributions).

We say that a subgroup G ≤ U is recognizable if we have an efficient procedure
to test membership in G, i. e., to decide, for each π ∈ U , whether or not π ∈ G.

164 L. Babai

If H ≤ G is a subgroup, we say that H is recognizable in G if given G, for every
element π ∈ G we can decide whether or not π ∈ H .

What we mean by efficient computation will depend on the context and will
need to be clarified in each case. It will usually mean (deterministic or random-
ized) polynomial time, possibly with access to certain oracles.

When using terms like “we can decide” or “we can compute,” we shall always
mean to perform these tasks efficiently. We are dealing with explicit finite objects,
so decidability or computability in the classical sense will not be at issue.

It is natural to ask how the three concepts of constructibility, samplability,
and recognizability relate to each other.

It is easy to show that if we can (approximately) sample a group G of order N
then we can also construct G: with high probability, a set of O(log N) random
elements will generate G.

Conversely, a known group G can always be approximately sampled; this fact
is a central ingredient of polynomial-time algorithms in matrix groups.

Theorem 1 ([11]). A known group G can be approximately sampled in time
polylog(|G|).
(This result holds in the generality of black-box groups, see Section 4.1.)

Given the equivalence of finding and approximately sampling a group, the
following natural questions remain:

(a) if H is a known subgroup of G, is H recognizable?
(b) if H is a recognizable subgroup of G, can we construct H?

Question (a) is the problem of testing membership in a known subgroup. One
of the continuing success stories of the complexity theory of finite groups, and
one of the main themes of this writing, has been a positive answer to (a) in a
growing number of contexts (see Sections 3.4, 3.6, and Theorem 7). While the
answer to (b) is negative under a natural interpretation in most contexts, there
are many interesting classes of recognizable subgroups where constructibility has
either been affirmed or has been a central object of study.

The foremost example of a class of recognizable subgroups whose constructibil-
ity has unknown complexity status is the automorphism groups of graphs. The
automorphism group Aut(X) ≤ Sym(V) of the graph X = (V,E) is obviously a
recognizable subgroup of Sym(V) (V is the set of vertices). The problem of con-
structing Aut(X) is equivalent, under Cook-reductions (polynomial-time Turing
reductions), to the Graph Isomorphism problem [7,68].

Important examples of recognizable subgroups of a known group G include
Z(G), the center of G (the set of elements that commute with all elements of G)
and Rad(G), the solvable radical of G (the largest solvable normal subgroup).
Progress on constructing the radical [71,16] has been the key to the recent defini-
tive result on the membership problem in linear groups in odd characteristic [16]
(Theorem 7); and our inability to construct the radical remains the key obstacle
to solving the same problem in characteristic 2.

The fundamental problem of the interaction between the concepts of recogniz-
ability and constructibility of subgroups appears first to have been highlighted

Finite Groups and Complexity Theory 165

in the author’s 1979 Montreal tech report [8], where also the term “recognizable
subgroup” seems to have made its first appearance, as a tool to solving a case
of the Graph Isomorphism problem.

Certain abelian groups of number theoretic origin played a role in the design of
efficient algorithms from the early days of polynomial-time theory. Indeed, the
analysis of the Solovay-Strassen and Miller-Rabin randomized primality tests
rests on “Lagrange’s Theorem.”

As far as I know, the first occurrence of general (not necessarily abelian)
finite groups in the design of polynomial-time algorithms was in [8]. This paper
introduced group theoretic methods to the study of Graph Isomorphism and also
initiated the complexity theory of computation in finite groups. As an aside, it
also introduced the term “Las Vegas algorithm” and gave an example of such
an algorithm in computational group theory.

In view of the role that this tech report played in subsequent developments,
we briefly review its main algorithm.

3 The Graph Isomorphism Problem in 1979: A Las Vegas
Algorithm

The special case of the Graph Isomorphism problem considered in [8] concerned
vertex-colored graphs where each color has bounded multiplicity; isomorphisms
preserve color by definition. (The coloring need not be legal in the sense of
chromatic graph theory, i. e., there is no restirction on the colors of neighbors.)
Deciding isomorphism of such graphs is easily reduced to the question of finding
generators for the automorphism group of a vertex-colored graph with bounded
multiplicity of colors. (The multiplicity doubles under this reduction.)

3.1 Recognition vs. Sampling

Let X = (V,E) be the given graph and V = C1∪̇ . . . ∪̇Ck the partition of the
vertices into color classes. The automorphim group Aut(X) is a recognizable
subgroup of the ambient group U = Sym(C1) × · · · × Sym(Ck). This group is
well understood; what mattered for [8] was that U could be (uniformly) sampled.
The question was, can we find Aut(X). For this purpose, samplability of Aut(X)
would suffice.

3.2 Tower of Groups

A key insight was that Aut(X) is a member of an entire chain U = G0 ≥ G1 ≥
· · · ≥ Gm = {1} of recognizable subgroups of U , where each index |Gi : Gi−1| is
small. Under these conditions, all members of the chain can be sampled efficiently
(polynomial in m and linear in maxi |Gi : Gi−1|), as described below. I called
this procedure the “tower of groups method.”

The algorithm proceeds by filling up tables Ti of (left) coset representatives
of Gi−1 in Gi (i = 1, . . . ,m). Initially each Ti consists of the identity alone; once

166 L. Babai

all the Ti are complete, G = T1T2 . . . Tm and the representation of each ρ ∈ G
as ρ = τ1τ2 . . . τm (τi ∈ Ti) is unique.

The basic subroutine of the algorithm was an operation called “sifting.” (The
term was coined in [45].) Sifting an element ρ ∈ G means to try to represent it as
a product ρ = τ1τ2 . . . τm (τi ∈ Ti). There is a unique way of doing this when the
tables are complete; when we discover incompleteness, we augment the table.
procedure sift(ρ;T1, . . . , Tm)

for i = 1 to m if (∃τi ∈ Ti)(τ−1
i ρ ∈ Gi) then ρ := τ−1

i ρ
else add ρ to Ti, exit.

The question then is, what elements to sift. The answer given in [8] was:
sample U . In this section, “random” will always refer to the uniform distribution.
As a random ρ ∈ U reaches Gi−1 in the for loop, clearly it will belong to a
uniform random left coset of Gi in Gi−1. So, with high probability, the tables
will rapidly fill up and once they did, each additional random ρ ∈ U produces
random members of each Gi.

This would give a Monte Carlo algorithm. But more can be done; we can
deterministically verify whether or not we are done: we only need to check the
condition |U | =

∏
i=1m |Ti|. (In our context, the order of U is known: |U | =∏

(|Ci|!). This way the algorithm can never return a wrong answer, but with an
arbitrarily small probability it will honestly report failure. I coined the term Las
Vegas algorithm for this situation and pointed out that the Berlekamp - Rabin
algorithm for factoring polynomials over finite fields also belonged to the Las
Vegas variety.

To apply this algorithm to finding the automorphism group of a vertex-colored
graph, we need to define the relevant chain of subgroups.

Let X = (V,E) be the given graph and V = C1∪̇ . . . ∪̇Ck the partition into
color classes; assume |Ci| ≤ b for each i. Let Eij denote the set of edges induced
by Ci ∪ Cj . Let us arrange the pairs {i, j} (1 ≤ i < j ≤ k) in some linear
order; set Ft = Eij if the pair {i, j} is the t-th pair in this linear order (t =
1, . . . , k(k − 1)/2). Let Ki =

⋃
j≤i Fi (0 ≤ i ≤ k(k − 1)/2), and let Gi =

Aut(V,Ki). We have U = G0 ≥ G1 ≥ · · · ≥ Gk(k−1)/2 = Aut(X). It is easy
to verify that (∀i)(|Gi−1 : Gi| ≤ (b!)2. Let us then define Gk(k−1)/2+	 as the
pointwise stabilizer of the first � vertices of X in Aut(X) (� = 1, . . . , |V |). Setting
m = k(k − 1)/2 + |V |, our subgroup chain is complete. In the tail of the series
(below Gk(k−1)/2) each index is ≤ b.

3.3 Applications

The “tower of groups” method, combined with linear algebra techniques, yielded
a polynomial-time algorithm to test isomorphism of graphs with bounded mul-
tiplicity of eigenvalues [21]. Although this result was only published three years
later, it was in fact the original motivation for the “tower of groups” method
and was announced in [8], see Section 5.

Combined with combinatorial partitioning/refinement techniques, the “tower
of groups” method also produced the first moderately exponential algorithms for

Finite Groups and Complexity Theory 167

isomorphism of bounded degree graphs (exp(Õ(
√

n))) [8], soon to be superseded
by Luks’s polynomial-time algorithm [62] that uses group theory to far greater
depth.

Admittedly, the “tower of groups” method uses group theory only on the
most elementary level. Yet it is capable of beating very powerful “purely combi-
natorial” methods. Graph isomorphism heuristics often operate with partition-
ing/refinement methods; we can partition not only vertices (“naive refinement”)
or pairs of vertices (the “Weisfeiler-Leman method”) but also d-tuples for any
d; I called this the “d-dimensional Weisfeiler-Leman method.” The cost of the
method is nΘ(d) where n is the number of vertices. In a remarkable 1990 de-
velopment, Cai, Fürer, and Immerman [40] constructed pairs of nonisomorphic
graphs that cannot be distinguished by the d-dimensional W-L method unless
d = Ω(n). On the other hand, the CFI graphs can be viewed as vertex-colored
graphs with color-multiplicity 4, efficiently handled by the “tower of groups”
method.

3.4 “Tower of Groups” Derandomized

Soon after I publicized the “tower of groups” algorithm at STOC’79 (cf. [53]),
Furst, Hopcroft, and Luks [45], borrowing the framework of [8], added a deter-
ministic termination rule to the sifting process: once a set of generators of G plus
the quotient of every pair of coset representatives in

⋃m
i=1 Ti have been sifted,

the coset tables are complete. This observation turned all the Las Vegas algo-
rithms given or announced in [8] into deterministic. Moreover, [45] also applied
the derandomized “tower of groups” method to the stabilizer chain of a given
permutation group G (Gi consists of those elements of G ≤ Sym(Ω) that fix
the first i elements of Ω) with the far reaching consequence that every (known)
permutation group is recognizable [45]. It also follows immediately that every
(known) permutation group is samplable.

It was also “discovered” that in the context of the stabilizer chain, sifting had
already long been known in computational group theory by Charles Sims [78,79],
with a more efficient termination rule involving “strong generators.” Sims, how-
ever, did not provide a proof of polynomiality of his termination rule; the proof
came in a short 1981 note by Knuth which a decade later turned into a (long)
paper [59].

3.5 Ignorance Is Bliss

My failure to recognize a deterministic termination rule for the “tower of groups”
method had some benefits to complexity theory.

The first and smallest was the term “Las Vegas algorithm.”
A more important by-product was a connection between sampling and count-

ing. An earlier result showed that Graph Isomorphism was equivalent to counting
automorphisms/isomorphisms of graphs [7,68].

168 L. Babai

Now the “tower of groups” method yielded sampling of all members of the
subgroup chain, including the automorphism group. Once the coset tables filled
up, we know the order of each group in the chain:

|Gj | =
m∏

i=j+1

|Gi−1 : Gi| =
m∏

i=j+1

|Ti|. (1)

So here was a case where the solution of the isomorphism counting problem was
achieved through solving random generation first.

This made me wonder if something like this could hold in a broader context.
While the exactness of counting could harly be expected for #P -complete prob-
lems, I was led to the question whether approximate counting could be achieved
given approximate sampling for #P -hard counting problems. These two indeed
turned out to be equivalent in a number of important contexts; my favorite ex-
amples were perfect matchings and k-colorings. The key was a certain reduction
of these problems to their smaller instances (“self-reducibility,” as it later came
to be called), foreshadowed by Eq. (1), cf. [60, p. 33]. I outlined the method,
which later became known as “JVV-reduction” ([55], cf. [60]), in two talks at
the University of Waterloo in November 1979, but never published the result1.

Meanwhile, most importantly, randomization became bread and butter for
me, a recurring feature of my work. The cases most relevant to complexity the-
ory were the introduction of random self-reducibility [10] (exploiting the homo-
geneity of a group, albeit an abelian one), the invention of Arthur-Merlin games
(public-coin interactive proofs, Section 4.3), and the MIP = NEXP theorem [19].
Rapid improvements of the technical details of the latter led to the PCP theo-
rem [6]. One of these technical details was the “low-degree test” for multivariate
polynomials, which, along with [33], started the field of property testing. Locally
testable/correctable codes also have part of their roots in the technical details
of [19].

Groups are particularly amenable to randomization, as demonstrated in the
subsequent development of the matrix group membership problem.

3.6 Permutation Groups in NC

While the polynomial-time algorithms of Sims, Furst-Hopcroft-Luks, Knuth to
test membership in a given permutation group are entirely elementary, subse-
quent developments were characterized by heavy reliance on group theory. The
proof of the following result illustrates this trend.

Theorem 2 ([23]). Testing membership in a given permutation group is in NC.

1 The word apparently got around, though. In autumn 1984 Leslie Valiant, who, with
his coauthors, rediscovered this phenomenon, called me by phone and asked if I had
“formalized” it. After brief miscommunication, the call ended abruptly, and the fact
that groups had been a source of motivation for this connection did not become
widely known - although Lovász appears to have made the connection [60, p. 33].

Finite Groups and Complexity Theory 169

The NC algorithm given in [23] maps out the normal structure of the group in
great detail, finding all composition factors and much more, before it can answer
the basic membership query.

4 Matrix Group Membership

By the mid-80s, the polynomial-time theory of permutation groups was well
understood (cf. [65]). Two highlights should be mentioned: composition chains
were found by Luks [63] and Sylow subgroups by Kantor [57] in polynomial
time. The next task was to replicate this theory for matrix groups. This project
started with the 1984 paper [29].

4.1 Black-Box Groups

First, [29] put the problem in the genaral framework of “black-box groups.” A
black-box group G is a finite group to which we have access through an oracle as
follows.

The group oracle holds (a) a set W ⊆ {0, 1}n of “valid strings:” (b) a surjection
γ : W → G (the string x ∈ {0, 1}n encodes the group element γ(x)) (c) a
“multiplication function” μ : W × W → W and an “inversion function” ι :
W → W such that (∀x, y ∈ W)(γ(x)γ(y) = γ(μ(x, y)) and γ(ι(x)) = γ(x)−1.
We are permitted the following queries to the oracle: given x, y ∈ W , tell μ(x, y)
and ι(x) (multiplication and inversion); and given x ∈ W , tell whether or not
γ(x) = 1 (identity query). G is “given” by a list of “generators,” i. e., by a list
of codewords x1, . . . , xs such that {γ(x1), . . . , γ(xs)} is a set of generators of G.

We call n the encoding length of G; we have |G| ≤ 2n.
Note that queries about strings x /∈ W are illegal; in particular, no member-

ship test in W is provided.
We say G is a uniquely encoded black-box group if the function γ is bijective.

Quantum complexity theory adopted the black-box group concept in the mean-
ing of uniquely encoded black-box groups. While this is necessary because of the
reversibility of quantum computation, it loses much of the theory which critically
depends on the nonuniqueness of encoding through the following observation.

Observation 3 ([29]). Let G be a black-box group and N a recognizable normal
subgroup of G. Then G/N can be treated as a black-box group.

Indeed, the oracle will be the same, except that identity queries will be replaced
by membership queries to N .

We illustrate the significance of this observation in Section 4.6. We note that
the theory would remain essentially intact if we required uniform encoding (each
set γ−1(g) has the same size, where g ∈ G), but even this uniform ambiguity
is not acceptable in quantum computation, while in the general theory, we have
yet to find any use of the uniformity assumption.

170 L. Babai

4.2 Nondeterministic Complexity of Membership

The first question, raised in [29], was the nondeterministic complexity of mem-
bership in matrix groups over finite fields. It is not evident that this problem
is in NP, and to this day we cannot prove that it is in coNP (although we are
close).

The NP question was resolved in [29] in a very general form. A straight-line
program (SLP) in a group G given by a set S of generators is a list (a1, . . . , am) of
elements of G such that each ai is either (a) itself a generator, or (b) is obtained
as ai = ajak for some j, k < i, or (c) ai = a−1

j for some j < i. We say that this
SLP reaches am from S in m steps.

Theorem 4 ([29]). Every element of a finite group G can be reached from any
set of generators in ≤ (1 + log |G|)2 steps.

It is an immediate consequence that membership in a black-box group is in NP
(relative to the oracle): the straight-line program is the witness; its length is
O(n2) where n is the encoding length.

The construction is a nonabelian generalization of the method of repeated
squares; we call it the “cube doubling” method.

The sampling algorithm of Theorem 1 works in the generality of black-box
groups. The idea is an algorithmic realization of “cube doubling” via random
walks.

4.3 Nondeterministic Complexity of Nonmembership.
Arthur-Merlin Games, Almost-NP

While Theorem 4 puts matrix group membership in NP, the statement that
“matrix group membership is in coNP” has the status of “almost theorem:”
it follows from the Short Presentation Conjecture stated in [29]. The con-
jecture says that every finite simple group G has a presentation (in terms of
generators and relations) of bitlength polylog |G| which is efficiently computable
from the standard name of G. This conjecture has been verified for all classes
of finite simple groups except for the “rank-1 Ree groups” 2G2(q) (defined over
the field Fq where q is an odd power of 3) [80,20,54].

The “almost theorem” that matrix group nonmembership is in NP was soon
complemented by the theorem that matrix group nonmembership is in “almost
NP.”

Theorem 5 ([9]). Matrix group nonmembership belongs to AM.

Here AM is the class of languages recognizable by a public-coin interactive proof
where the verifier (Arthur) flips coins and the prover (Merlin) responds. This
class was introduced in [9] as a randomized extension of NP. While the motivation
came from the application to the complexity of matrix group nonmembership, [9]
also began the complexity theoretic study of this class and the related Arthur-
Merlin hierarchy. It was noted, in particular, that AM⊆ Π2. Another notable

Finite Groups and Complexity Theory 171

member of this hierarchy is MA (Merlin moves first, Arthur responds); this is
the class of languages with “publishable proof” of membership. (Merlin’s written
proof remains verifiable by the Arthurs of posterity.) It was shown that MA⊆AM
and therefore MA⊆ Π2 ∩ Σ2. Recently, analogues of MA have been studied in
various models such as multiparty communication complexity [48] and quantum
complexity [1].

It should be mentioned that the first private-coin interactive proof [49] was
also about groups, although abelian ones (the multiplicative group of the ring
Z/nZ).

The notion of “almost-NP” was formalized in [9]. For a relativizable com-
plexity class C, let almost-C consist of those languages L for which L ∈ CA for
almost all oracles A. Almost-P= BPP by a result of Bennett and Gill [32]. In
[9] I claimed that almost-NP=AM and that this fact follows along the lines of
the Bennett-Gill argument. Soon after the publication of [9] I realized a fault in
my argument; for it to work, one would need a “super-Arthur” [24] capable of
flipping exponentially many coins. For a polynomially bounded Arthur to simu-
late super-Arthur, one would need to produce a pseudorandom string of length
N from a seed of length polylog(N) that fools DNF formulas. I thought that
polylog-wise independent variables (cf. [3]) should do the trick and would in
fact beat all bounded-depth Boolean circuits. This problem later became known
as the “Nisan-Linial conjecture” [69] and was recently confirmed, in the form I
needed it (but not in the more specific form asked by [69], which turned out to
be false), in a tour de force by Mark Braverman [36].

The almost-NP= AM statement, however, was confirmed already in January
1988 when, on my visit to Jerusalem, Avi Wigderson greeted me with the news
of Noam Nisan’s brilliant pseudorandom generator [70]. This pseudorandom gen-
erator was sufficient to supply the super-Arthur bits. Given this elegant solution,
I stopped pursuing the “Nisan-Linial conjecture.”

4.4 Randomization Tools

I’d like to mention three randomization tools for black-box groups.
A random subproduct of a list g1, . . . , gk of group elements is a product of the

form gε1
1 . . . gεk

k where the εi ∈ {0, 1} are chosen by coin flips. It is easy to show
that if H < G is a proper subgroup and the gi generate G then the probability
that a random subproduct belongs to H is ≤ 1/2. It follows that O(log |G|)
random subproducts generate G with high probability, allowing us to avoid an
explosion in the number of generators in the course of an algorithm. The method
also allows the construction of normal closures, with the consequence that for
any black-box group, we can construct the commutator chain and the descending
central series and hence decide solvability and nilpotence in randomized polyno-
mial time. Thus the rudiments of the algorithmic treatment of black-box groups
have been obtained [17].

The second tool is an isoperimetric inequality that establishes a non-negligible
rate of expansion for all finite groups. For T ⊆ G we write T k for the set of k-term
products of members of T .

172 L. Babai

Theorem 6. (Local expansion of groups) Let S be a set of generators of the
group G; let T = S ∪S−1 ∪ {1}. Let D ⊆ T d and let 0 < α < 1/(2d+ 1) be such
that |D| ≤ (1 − 2αd)|G|. Then for some g ∈ S we have |Dg \D| ≥ α|D|.
In other words, subsets D of a group expand proportionally to 1/d where d is
the diameter of D in the word metric. This result first appeared as [12, Lemma
10.2] where it was used to put a number of questions about groups in AM. The
result immediately found algorithmic applications; in particular, it became a
key tool in the analysis of nearly-linear time algorithms for “small-base groups”
(permutation groups such that the pointwise stabilizer of a polylogarithmic size
subset of the permutation domain consists of the identity only) [18].

Theorem 6 implies that a random walk on the group will rapidly escape from
small-diameter subsets. This consequence was the central ingredient of the most
important randomization tool for group algorithms, Theorem 1, which estab-
lishes approximate sampling in black-box groups in polynomial time.

An improved sampling algorithm was proposed by Cooperman [43] and ver-
ified by Dixon [44]. “Product replacement,” an empirically fast but unproven
heuristic, was introduced by Leedham-Green and Soicher (cf. [39]) and is the
method of choice in practical implementations. One should note that the use of
such a heuristic is perfectly safe in a Las Vegas algorithm; but in randomized
algorithms that are not Las Vegas, some concern, even practical, remains. At-
tempts at the analysis of this problem lead to difficult open questions about the
automorphism group of the free groups [46].

An elegant version of Theorem 6 was given in [28]; a generalization of that
result plays a role in differential geometry [81].

4.5 Cryptographic Barriers

The matrix group membership problem quickly runs into cryptographic obsta-
cles.

The constructive membership problem requires not only to decide whether or
not g ∈ G (where g ∈ U , our ambient group that contains G) but also in the
case of a positive answer, to exhibit a short straight-line program that reaches
g from the given set of generators of G.

It is easy to see that for 1× 1 matrices over Fq, the constructive membership
problem includes the Discrete Log problem over Fq.

We do not know how to determine the order of a 1×1 matrix without knowing
either the prime factorization of q − 1 or solving Discrete Log.

The membership (decision) problem for groups of 2× 2 diagonal matrices in-
cludes the decisional Diffie-Hellman problem, a standard hard problem in cryp-
tography.

So the reasonable question is: What can we do in (randomized) polynomial
time, permitting access to “number-theory oracles” (factoring and Discrete Log)?

The surprising recent answer is that, at least in odd characteristic, there are
no other obstacles to polynomial-time randomized membership testing; in this
sense, we can say that all obstacles are abelian.

Finite Groups and Complexity Theory 173

Theorem 7. Let G ≤ GL(n, q) be a given matrix group in odd characteristic
(q is an odd prime power). Then membership in G can be decided and the order
of G determined in randomized polynomial time with access to number-theory
oracles.

(Determining the order of groups suffices for membership testing since g ∈ G
exactly if the order of G does not change if we add g to the generators.)

Theorem 7 appears in [16] and is the culmination of the program outlined
in [15]. A number of recent results in statistical group theory are required for
the analysis [26,58,22,5,71], including a recent powerful analysis by Parker and
Wilson [71] of an algorithm of Bray [35] to find the centralizer of an involution.

For solvable matrix groups, Luks solved the membership problem in determin-
istic polynomial time, necessarily relying on the number-theory oracles which are
needed already in the abelian case [64]. Luks’s algorithm puts no restriction on
the characteristic. The proof of Theorem 7 reduces the problem to the solvable
case and then calls Luks’s algorithm.

4.6 The BB Filtration

The structural frame that led to Theorem 7 is given by the following chain of
characteristic subgroups, introduced in [15] and known as the BB-filtration.

1 ≤ Rad(G) ≤ Soc∗(G) ≤ Pker(G) ≤ G (2)

We define the terms in this chain. Rad(G) is the solvable radical. Let H =
G/ Rad(G) and let ϕ : G → H be the natural surjection. Then Soc∗(G) =
ϕ−1(Soc(H)) where Soc(H), the socle of H , is defined as the product of the
minimal normal subgroups of H . This group is the direct product of nonabelian
simple groups: Soc(H) = T1 × · · · × Tm, where the Ti are nonabelian simple.
Conjugation by G permutes the set {T1, . . . , Tm}; thus we obtain a permutation
representation G→ Sm. We define Pker(G) as the kernel of this representation.

To find the order of G, we only need to find the order of each of the four
“layers” in this chain. We note that the top layer, G/ Pker(G), is a permu-
tation group (≤ Sm); the second layer, Pker(G)/ Soc∗(G) is a subgroup of
Out(T1) × · · · × Out(Tm) (Out(G) denotes the outer automorphism group of
G) and is therefore solvable; the third layer, Soc∗(G)/ Rad(G) is a product
of simple groups; and the most elusive fourth layer, Rad(G), is solvable.

We are able to determine the order of each of the top three layers in random
polynomial time; only the handling of the radical requires number-theory oracles.
Moreover, only finding the radical requires that we exclude characteristic 2.

Theorem 8 ([16]). For any matrix group G over a finite field, we can deter-
mine the order of G/ Rad(G) in random polynomial time.

The decision version of the problem, “Does G have a quotient of order greater
than a given value M without abelian normal subgroups” is in BPP, and is not
known to be in R or coR. This seems to be one of the very few natural problems
with this complexity status.

174 L. Babai

The following result illustrates the significance of Observation 3. The results
says that a rather deep exploration of the top three layers can actually be accom-
plished in the generality of black-box groups, without number-theory oracles.

Theorem 9. Let G be a given black-box group and assume a superset of the
prime factors of |G| is given. Then the standard names of all nonabelian com-
position factors of G can be listed in randomized polynomial time.

This was the first confirmation of the philosophy that “all obstacles are abelian.”
For the “standard names” of finite simple groups (such as PSL(n, q)) we refer to
[42].

This result appears in [16] and relies on several papers in statistical group
theory that were motivated by it and were published later [26,5,58,22].

The first step in the process to prove Theorem 9 is that we move from G to
G/ Rad(G) via Observation 3, noting that the radical is recognizable: g ∈ Rad(G)
exactly if the normal closure of G is solvable. (As indicated in Section 4.4, normal
closures can be constructed and solvability decided in black-box groups.)

4.7 Constructive Membership Test. Center

Under the conditions of Theorem 7, not only are we able to decide membership in
G but we can do so constuctively. The proof of this requires considerable extra
work and relies, in addition to the works cited above, on a recent algorithm
from [52]. We note an important corollary.

Corollary 10. Under the conditions of Theorem 7, the center of G can be found.

This corollary rests on the following general principle.

Proposition 11. Let ϕ : G → H be a homomorphism given by the images of
a set of generators of G, where G and H are a black-box group and every known
subgroup of H admits constructive membership testing. Then the kernel of ϕ can
be constructed.

This result holds with respect to randomized polynomial-time computation, with
or without number-theory oracles.

Now to prove the Corollary, we only need to note that if G ≤ GL(d, q) then
G acts by conjugation on the linear span of G in the space of d×d matrices over
Fq. The kernel of this action is the center of G.

4.8 Statistical Group Theory

We mention two of the recent results in statistical group theory motivated by [15]
and required for the proof of the results stated in the Section 4.6. The proof of
each result is based on a detailed analysis of the list of finite simple groups [42].

Theorem 12 ([26]). If G is a finite simple group and r is a prime then at least
an Ω(1/

√
log |G|) fraction of the elements of G have order relatively prime to r.

Finite Groups and Complexity Theory 175

The applications of this result include splitting a direct product of simple
groups into its factors; finding the center Z(G) of a group G where G/Z(G)
is simple; recognizing the third level of the BB filtration (Soc∗(G)) within the
second level (Pker(G)).

The next theorem says that we can compute the order of a finite simple group
from a statistic of the orders of its elements.

Let E = (e1, . . . , em) be a list of positive integers and g ∈ G a group element.
The “result of the E-test on g” is the (0, 1)-sequence (ε1, . . . , εm) where εi = 1
exactly if gei = 1. The “result of the E-test on the sequence g1, . . . , gt ∈ G” is
the concatenation of the results of the E-tests on each gi.

Theorem 13 ([58,22]). Given a prime p and a positive integer N ≥ p, we can
compute in time polylog(N) a sequence E = (e1, . . . , em) of positive integers with
the following property. Let G be a finite simple group of Lie type in characteristic
p and suppose |G| ≤ N . Then the result of the E-test on a sequence of polylog(N)
nearly uniform random elements of G determines, with high probability, the order
of G; and the order of G can be calculated in polylog(N) time from the data,
with high probability.

We note that there is only one infinite family of pairs of nonisomorphic sim-
ple groups of equal order: the symplectic groups PSp(2d, q) and the orthogonal
groups PΩ(2d + 1, q) for odd q. A black-box algorithm to separate these pairs,
based on an analysis of Bray’s algorithm for centralizers [35], was found by Alt-
seimer and Borovik [5].

5 Prequel: Leningrad, November 4, 1978

5.1 Ten Rubles Extra

A few minutes before midnight on Friday, November 3, 1978, I boarded an
overnight train at Moscow’s “Leningrad Railway Station.” The next day I would
spend the afternoon in intense discussion with Dima Grigoriev at LOMI, the
Leningrad Branch of the Mathematical Institute of the Soviet Academy of Sci-
ences, a discussion that would profoundly affect my research.

The trip was not without risks. I did not have a permit to travel to Leningrad;
the need to do so was not foreseen. Pretending to be a Soviet citizen, with limited
knowledge of Russian, I traveled in a railcar foreigners were not supposed to
enter. After waiting at the station for hours in vain at the end of a long line
before the ticket window, I obtained my 13-ruble ticket ($13 on official exchange
rate) from a courteous individual who was looking for some private business in
this wholly state-owned economy, after the little ticket-window closed without
having sold a single ticket. My volunteer ticket agent charged me “chervonyets
sverhoo” - 10 rubles extra, still a bargain for an 8-hour trip in a sleeping car.
Once in the car, I had to pretend I could hardly keep my eyelids open, to avoid
having to chat, maybe share a drink of vodka, with the friendly Russian crowds
on the train. Had I been discovered (uttering a single word would have sufficed),
my career would have taken a rather different turn.

176 L. Babai

I was on a scientific exchange visit pursuant to an agreement between the
governments of the fraternal nations of Hungary and the Soviet Union. The
itinerary had to be planned years in advance; I was to visit the state universities
of Moscow and Minsk.

Minsk was my first stop. One of my then recent results was an algorithm to
test isomorphism of graphs with simple eigenvalues in polynomial time, and I
was working on the case of bounded eigenvalue multiplicity. I learned from my
colleagues in Minsk that a Leningrad mathematician by the name of Dmitry
Grigoriev had announced a solution to just that problem under the additional
assumption of vertex-transitivity (all vertices are equivalent under automor-
phisms). I found this extra condition unnatural (“symmetry can only make the
isomorphism problem easier”) and decided that I must meet Grigoriev.

There was no group theory in Dima’s solution; it used vertex-transitivity only
in the naive sense (“all vertices look alike” so no vertex-invariants can distinguish
them). By the end of the day, I understood the linear algebra involved, and
recognized the combinatorial difficulty in extending the solution to the general
case. I left confident that sooner rather than later that combinatorial difficulty
would fall, and Dima entrusted the further fate of that problem to me. Within
hours of our farewell, I was on my way to Moscow, the return ticket having been
secured by my friend Ruvim Gurevich. Having survived this sidetrip without
incident2, a few days later I was back home in Budapest, merrily preparing for
my first trip to the US.

5.2 Cylinder Intersection

Within days of my meeting with Dima it became clear that the automorphism
group of a graph with bounded multiplicity of eigenvalues can be represented
as the intersection of certain “cylindric subgroups with small base” of a direct
product of small groups. Here a cylindric subgroup of the group H1 × · · · ×Hk

is a group of the form B ×∏j /∈J Hj where J ⊆ {1, . . . , k} and B ≤ ∏j∈J Hj .
The group B is the “base” of the cylinder. “Small” means polynomially bounded
size. So for the first time, the key to a case of Graph Isomorphism was a problem
in computational group theory.

In Budapest I announced a solution to this problem and at the end of Novem-
ber I left for New York believing that the case of bounded eigenvalue multiplicity
had been conquered.

5.3 Las Vegas in Montreal

I found the graphs with bounded color multiplicity as a handy model that showed
the same combinatorial difficulty without the linear algebra. Indeed, for this class
of graphs, the automorphism group is the intersection of cylinders with bounded
bases.

2 There was more thrill to this adventure than this brief account could indicate; for
details, see [13].

Finite Groups and Complexity Theory 177

On a visit to MIT in spring 1979, I tried to use this model to explain the
solution to Gary Miller. I could not. There was no solution.

After several agonizing weeks, in a flash on a sunny day at a meeting in Mon-
treal in June 1979, the “tower of groups” solution struck me, first as an attempt
to put this case of Graph Isomorphism in NP∩ coNP, then in ZPP=R∩ coR.
The solution also resolved the general case of cylinder intersections [8] and thus
completed the polynomial-time (then Las Vegas) isomorphism test for graphs
with bounded eigenvalue multiplicity, also derandomized by the subsequent [45]
termination rule [21].

More importantly, and not foreseen in Leningrad on November 4, 1978, the
method linked the Graph Isomorphism problem to group theory, initiated the
complexity analysis of algorithmic problems for finite groups, and linked groups
to a randomized complexity class - precipitating the developments described in
this paper.

My 10 rubles were well spent.

References

1. Aaronson, S., Kuperberg, G.: Quantum versus classical proofs and advice. Theory
of Computing 3, 129–157 (2007)

2. Aaronson, S., Le Gall, F., Russell, A., Tani, S.: The one-way communication com-
plexity of group membership. arXiv:0902.3175v2

3. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. of Algorithms 7, 567–583 (1986)

4. Alon, N., Lubotzky, A., Wigderson, A.: Semi-direct product in groups and zig-
zag product in graphs: connections and applications. In: Proc. 42nd FOCS, pp.
630–637. IEEE Computer Soc., Los Alamitos (2001)

5. Altseimer, C., Borovik, A.V.: Probabilistic recognition of orthogonal and symplec-
tic groups. In: Groups and Computation III, deGruyter, pp. 1–20 (2001)

6. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof Verification and
the Hardness of Approximation Problems. J. ACM 45(3), 501–555 (1998)

7. Babai, L.: On the isomorphism problem. Manuscript, 10 pages (1977)

8. Babai, L.: Monte Carlo algorithms in graph isomorphism testing. Université de
Montréal Tech. Rep., DMS 79-10, 42 pages (1979)

9. Babai, L.: Trading group theory for randomness. In: Proc. 17th STOC, pp. 421–
429. ACM, New York (1985)

10. Babai, L.: Random oracles separate PSPACE from the polynomial-time hierarchy.
Information Processing Letters 26, 51–53 (1987/1988)

11. Babai, L.: Local expansion of vertex-transitive graphs and random generation in
finite groups. In: Proc. 23rd STOC, pp. 164–174. ACM, New York (1991)

12. Babai, L.: Bounded round interactive proofs in finite groups. SIAM J. Discr.
Math. 5, 88–111 (1992)

13. Babai, L.: The forbidden sidetrip. In: Calude, C.S. (ed.) People & Ideas in Theo-
retical Computer Science, pp. 1–31. Springer, Heidelberg (1998)

14. Babai, L., Banerjee, A., Kulkarni, R., Naik, V.: Evasiveness and the distribution
of prime numbers. In: Proc. 27th Ann. Symp. on Theoretical Aspects of Comp. Sci
(STACS 2010), pp. 71–82. Schloss Dagstuhl Online Publ. (2010)

178 L. Babai

15. Babai, L., Beals, R.: A polynomial-time theory of black-box groups I. In: Groups
St Andrews 1997 in Bath, I. London Math. Soc. Lect. Notes. vol. 260, pp. 30–64
(1999)

16. Babai, L., Beals, R., Seress, Á.: Polynomial-time theory of matrix groups. In: Proc.
41st ACM STOC, pp. 55–64 (2009)

17. Babai, L., Cooperman, G., Finkelstein, L., Luks, E.M., Seress, Á.: Fast Monte
Carlo algorithms for permutation groups. J. Computer and System Sci. 50, 296–
308 (1995); (Prelim. 23rd STOC, 1991)

18. Babai, L., Cooperman, G., Finkelstein, L., Seress, Á.: Nearly linear time algorithms
for permutation groups with a small base. In: Proc. ISSAC 1991 Internat. Symp.
on Symbolic and Algebraic Computation, Bonn, pp. 200–209 (1991)

19. Babai, L., Fortnow, L., Lund, C.: Nondeterministic exponential time has two-prover
interactive protocols. Computational Complexity 1, 3–40 (1991); Prelim. version
FOCS 1990, pp. 26–34 (1990)

20. Babai, L., Goodman, A.J., Kantor, W.M., Luks, E.M., Pálfy, P.P.: Short presen-
tations for finite groups. J. Algebra 194, 79–112 (1997)

21. Babai, L., Grigor’ev, D.Y., Mount, D.M.: Isomorphism of graphs with bounded
eigenvalue multiplicity. In: 14th ACM STOC, pp. 310–324 (1982)

22. Babai, L., Kantor, W.M., Pálfy, P.P., Seress, Á.: Black-box recognition of finite
simple groups of Lie type by statistics of element orders. J. Group Theory 5, 383–
401 (2002)

23. Babai, L., Luks, E.M., Seress, Á.: Permutation groups in NC. In: Proc. 19th ACM
STOC, pp. 409–420 (1987)

24. Babai, L., Moran, S.: Arthur-Merlin games: A randomized proof system and a
hierarchy of complexity classes. J. Computer and Sys. Sci. 36, 254–276 (1988)

25. Babai, L., Nikolov, N., Pyber, L.: Product growth and mixing in finite groups.
In: Proc. 19th Ann. Symp. on Discrete Algorithms (SODA 2008), pp. 248–257.
ACM-SIAM (2008)

26. Babai, L., Pálfy, P.P., Saxl, J.: On the number of p-regular elements in simple
groups. LMS J. Computation and Math. 12, 82–119 (2009)

27. Babai, L., Shalev, A.: Recognizing simplicity of black-box groups and the frequency
of p-singular elements in affine groups. In: Groups and Comp. III, deGruyer, pp.
39–62 (2001)

28. Babai, L., Szegedy, M.: Local expansion of symmetrical graphs. Combinatorics,
Probability, and Computing 1, 1–11 (1992)

29. Babai, L., Szemerédi, E.: On the complexity of matrix group problems I. In: Proc.
25th FOCS, pp. 229–240. IEEE Comp. Soc., Los Alamitos (1984)

30. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comp. Sys. Sci. 38, 150–164 (1989)

31. Beals, R.: Towards polynomial time algorithms for matrix groups. In: Groups and
Computation II, DIMACS, pp. 31–54 (1997)

32. Bennett, C.H., Gill, J.: Relative to a random oracle A, P A
= NP A
= coNP A with
probability 1. SIAM J. Comp. 10, 96–113 (1981)

33. Blum, M., Luby, M., Rubinfeld, R.: Self-Testing/Correcting with Applications to
Numerical Problems. J. Comput. Syst. Sci. 47(3), 549–595 (1993) (Prelim. 22nd
STOC, 1990)

34. Bourgain, J., Gamburd, A.: Uniform expansion bound for Cayley graphs of
SL2(Fp). Ann. Math. 167, 625–642 (2008)

35. Bray, J.: An improved method for generating the centralizer of an involution. Arch.
Math. 74, 241–245 (2000)

Finite Groups and Complexity Theory 179

36. Braverman, M.: Poly-logarithmic independence fools AC0 circuits. Conf. Compu-
tational Complexity (2009) (to appear in the J. ACM)

37. Breuillard, E., Green, B., Tao, T.: Approximate subgroups of linear groups.
arXiv:1005.1881v1

38. Brooksbank, P.A., Kantor, W.M.: On constructive recognition of a black box
PSL(d, q). In: Groups and Computation III, pp. 95–111. deGruyter (2001)

39. Celler, F., Leedham-Green, C.R., Murray, S., Niemeyer, A.C., O’Brien, E.A.: Gen-
erating random elements of a finite group. Comm. Alg. 23, 4931–4948 (1995)

40. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of
variables for graph identification. Combinatorica 12, 389–410 (1992)

41. Conder, M., Leedham-Green, C.R., O’Brien, E.A.: Constructive recognition of
PSL(2, q). Trans. Amer. Math. Soc. 358, 1203–1221 (2006)

42. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: ATLAS of
Finite Groups. Clarendon Press, Oxford (1985)

43. Cooperman, G.: Towards a practical, theoretically sound algorithm for random
generation in finite groups. arXiv:math/0205203

44. Dixon, J.D.: Generating random elements in finite groups. Electronic J. Combina-
torics, 15/1:R94 (2008)

45. Furst, M.L., Hopcroft, J., Luks, E.M.: Polynomial-time algorithms for permutation
groups. In: Proc. 21st FOCS, pp. 36–41. IEEE C.S, Los Alamitos (1980)

46. Gamburd, A., Pak, I.: Expansion of product replacement graphs. Combinatorica 26,
411–429 (2006)

47. The GAP Group: GAP – Groups, Algorithms, and Programming. Version 4.4.
Aachen–St. Andrews (2005), http://www.gap-system.org

48. Gavinsky, D., Sherstov, A.: A separation of NP and coNP in multiparty commu-
nication complexity. Theory of Computing 6, 227–245 (2010)

49. Goldwasser, O., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proc. 17th STOC, pp. 291–304 (1985)

50. Gowers, W.T.: Quasirandom groups. Combinatorics, Probability and Comput-
ing 17(3), 363–387 (2008)

51. Helfgott, H.A.: Growth and generation in SL2(Z/pZ). Ann. Math. 167, 601–623
(2008)

52. Holmes, P.E., Linton, S.A., O’Brien, E.A., Ryba, A.J.E.A., Wilson, R.A.: Con-
structive membership in black-box groups. J. Group Theory 11, 747–763 (2008)

53. Hopcroft, J.: Recent directions in algorithmic research. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 123–134. Springer, Heidelberg (1981)

54. Hulpke, A., Seress, Á.: Short presentations for three-dimensional unitary groups.
J. Algebra 245, 719–729 (2001)

55. Jerrum, M., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theor. Comp. Sci. 43, 169–188 (1986)

56. Kahn, J., Saks, M., Sturtevant, D.: A topological approach to evasiveness. Combi-
natorica 4, 297–306 (1984)

57. Kantor, W.M.: Sylow’s theorem in polynomial time. J. Computer Sys. Sci. 30,
359–394 (1985)

58. Kantor, W.M., Seress, Á.: Black box classical groups. Mem. AMS 149, 708:viii+168
(2001)

59. Knuth, D.E.: Notes on efficient representation of perm groups. Combinatorica 11,
33–43 (1991)

60. Lovász, L.: Random Walk on Graphs: A Survey. In: Combinatorics, Paul Erdős is
80, Vol. 2. Bolyai Society Mathematical Studies 2, Budapest, pp. 353–398 (1995)

http://www.gap-system.org

180 L. Babai

61. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8, 261–
278 (1988)

62. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comp. Syst. Sci. 25, 42–65 (1982) (Preliminary version in FOCS 1980)

63. Luks, E.M.: Computing the composition factors of a permutation group in poly-
nomial time. Combinatorica 7, 87–99 (1987)

64. Luks, E.M.: Computing in solvable matrix groups. In: Proc. 33rd FOCS, pp. 111–
120 (1992)

65. Luks, E.M.: Permutation groups and polynomial-time computation. In: Groups
and Computation, DIMACS, pp. 139–175 (1993)

66. Margulis, G.A.: Explicit constructions of graphs without short cycles and low den-
sity codes. Combinatorica 2, 71–78 (1982)

67. Margulis, G.A.: Explicit group theoretic construction of combinatorial schemes and
their application for the construction of expanders and concentrators. Probl. Info.
Transmission 24, 39–46 (1988)

68. Mathon, R.: A note on the graph isomorphism counting problem. Inf. Proc. Let-
ters 8, 131–132 (1979)

69. Nisan, N., Linial, N.: Approximate inclusion-exclusion. Combinatorica 10(4), 349–
365 (1990)

70. Nisan, N.: Pseudorandom generators for space-bounded computation. Combina-
torica 12(4), 449–461 (1992)

71. Parker, C.W., Wilson, R.A.: Recognising simplicity of black-box groups (2004)
(manuscript)

72. Pyber, L., Szabó, E.: Growth in finite simple groups of Lie type. arXiv:1005.1858v1
73. Reingold, O.: Undirected connectivity in logspace. J. ACM 55(4), 1–24 (2008)
74. Reingold, O., Vadhan, S., Wigderson, A.: Entropy waves, the zig-zag graph prod-

uct, and new constant-degree expanders. Ann. of Math. 155(1), 157–187 (2002)
75. Rotman, J.: An Introduction to the Theory of Groups. Springer, Heidelberg (1994)
76. Seress, Á.: Permutation Group Algorithms. Cambridge University Press, Cam-

bridge (2003)
77. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM J. Computing 26, 1484–1509 (1977)
78. Sims, C.C.: Computational methods in the study of permutation groups. In: Com-

putational problems in abstract algebra (Oxford, 1967), pp. 169–183. Pergamon
Press, New York (1970)

79. Sims, C.C.: Computation with permutation groups. In: Proc. Second ACM Symp.
on Symbolic and Algebraic Manipulation, pp. 23–28. ACM, New York (1971)

80. Suzuki, M.: On a class of doubly transitive groups. Ann. Math. 75, 105–145 (1962)
81. Žuk, A.: On an isoperimetric inequality for infinite finitely generated groups. Topol-

ogy 39, 947–956 (2000)

On Maltsev Digraphs

Catarina Carvalho1, László Egri2, Marcel Jackson3, and Todd Niven3,�

1 School of Physics, Astronomy and Mathematics, University of Hertfordshire, UK,
and Centro de Álgebra da Universidade de Lisboa, Portugal

ccarvalho@cii.fc.ul.pt
2 School of Computer Science, McGill University, Canada

legri1@cs.mcgill.ca
3 Department of Engineering and Mathematical Sciences,

La Trobe University, Australia
{m.g.jackson,t.niven}@latrobe.edu.au

Abstract. We study digraphs preserved by a Maltsev operation, Malt-
sev digraphs. We show that these digraphs retract either onto a di-
rected path or to the disjoint union of directed cycles, showing that
the constraint satisfaction problem for Maltsev digraphs is in logspace,
L. (This was observed in [19] using an indirect argument.) We then
generalize results in [19] to show that a Maltsev digraph is preserved
not only by a majority operation, but by a class of other operations
(e.g., minority, Pixley) and obtain a O(V 4

G)-time algorithm to recog-
nize Maltsev digraphs. We also prove analogous results for digraphs pre-
served by conservative Maltsev operations which we use to establish that
the list homomorphism problem for Maltsev digraphs is in L. We then
give a polynomial time characterisation of Maltsev digraphs admitting
a conservative 2-semilattice operation. Finally, we give a simple induc-
tive construction of directed acyclic digraphs preserved by a Maltsev
operation.

1 Introduction

The study of relational structures and, in particular, digraphs preserved by cer-
tain operations from universal algebra became extremely important during the
last decade. The main driving force behind this is the algebraic constraint sat-
isfaction problem (CSP) dichotomy conjecture, which states that a constraint
satisfaction problem CSP(B) is tractable if the relational structure B is preserved
by a weak-near-unanimity (weak-NU) operation, and is NP-complete otherwise
[5,6,20]. Generalizing the dichotomy theorem of Hell and Nešetřil [16], the con-
jecture has been established for digraphs with no sinks and no sources by show-
ing that such digraphs are very structured, in fact, they retract onto a disjoint

� The first author was supported by grants SFRH/BPD/26216/2006 and ISFL-1-143
of CAUL financed by FCT and FEDER. The second author was supported by the
National Sciences and Engineering Research Council of Canada (NSERC). The third
and fourth authors were supported by ARC Discovery Project DP1094578.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 181–194, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

182 C. Carvalho et al.

union of directed cycles [3]. Other results relating the complexity of CSPs on
digraphs to the existence of operations that preserve the digraph can be found,
for example, in [2,1].

Once the tractability of a CSP is established, one also wishes to know the
fine-grained complexity of that CSP, i.e. is the CSP in some subclass of P,
such as L or NL? To establish the membership of a CSP in a complexity class
inside P it is important to study the structure of relational structures (and
digraphs) preserved by operations which are more “restrictive” than weak-NU
operations, i.e. operations that imply the presence of a weak-NU operation. Two
important results in this direction, which we will invoke, are that if a relational
structure is preserved by a majority operation, then the corresponding CSP is
in the complexity class NL [9]; and if CSP(B) is definable in Datalog and B is
preserved by a Maltsev operation, then CSP(B) is in L [10,12].

We study the structure of digraphs preserved by a Maltsev operation, that we
call Maltsev digraphs. We show that these digraphs retract either onto the disjoint
union of directed cycles or to a directed path. This gives a direct proof that
the corresponding CSP is in constant width symmetric Datalog and therefore
in L. (Membership of these CSPs in symmetric Datalog, without the constant
width guarantee, was independently shown by Kazda [19], however, his proof is
rather indirect.) We then generalise other results in [19] to show that a Maltsev
digraph is preserved not only by a majority polymorphism, but also by a class
of polymorphism obeying certain restrictions (e.g. minority, Pixley). We also
extend the results to the conservative setting, i.e. we show that a conservative
Maltsev digraph is preserved by a class of conservative polymorphisms.

A generalization of the rectangularity [4] property of digraphs is introduced.
We call this rectangularity total rectangularity, and we establish that a digraph
is preserved by a Maltsev operation iff it is totally rectangular. Similarly, we
show that a digraph is preserved by a conservative Maltsev operation iff it is
universally rectangular, a specific form of total rectangularity.

We apply our results to the list homomorphism problem, LHOM, for directed
graphs. While the complexity of LHOM for undirected graphs is completely un-
derstood [13], for the directed version, the only result known is a P vs. NP
dichotomy [17]. We show that LHOM for Maltsev digraphs is in L.

It is shown that a digraph preserved by a Maltsev operation is also preserved
by a conservative 2-semilattice operation iff the digraph satisfies a certain com-
binatorial property. We note that if a structure is preserved by a 2-semilattice
operation, then CSP(B) is in Datalog and therefore in P [18]. We also charac-
terise Maltsev digraphs preserved by a conservative 2-semilattice operation and
show that these digraphs can be recognised in NL.

Finally, an inductive construction of directed acyclic graphs preserved by a
Maltsev operation is given. The main motivation behind this construction is
that we suspect that extending this construction to n-permutable digraphs (2-
permutable digraphs are precisely the Maltsev digraphs [15]) could make progress
towards identifying all list homomorphism problems for digraphs in L. We note

On Maltsev Digraphs 183

that in [13], an inductive construction of “conservative” n-permutable graphs is
key to the identification of all graphs whose LHOM is in L.

2 Preliminaries

2.1 Algebra

We describe the algebraic definitions for digraphs, however, note that these
definitions are straightforward to generalize to relational structures. Let G =
(VG, EG) and H = (VH , EH) be digraphs. A homomorphism from G to H is
a map f from VG to VH , such that for every edge (u, v) ∈ EG we have that
(f(u), f(v)) is an edge in H , i.e. (f(u), f(v)) ∈ EH . A digraph G is called a core
if every homomorphism from G to itself is an automorphism, i.e. a permutation
on VG. Let G′ be a subgraph of G. We say that G retracts onto G′ if there
is a homomorphism h : G → G′ such that h is the identity map on G′. For a
digraph H , we can then define CSP(H) as the class of all digraphs that admit a
homomorphism to H .

An n-ary operation on a set A is a function f : An → A. Given a digraph G
and an n-ary operation f on VG, we say that f preserves G, or that f is a poly-
morphism of G, if for any n edges (u1, v1), . . . , (un, vn) ∈ EG (not necessarily dis-
tinct), the pair (f(u1, . . . , un), f(v1, . . . , vn)) ∈ EG. For an n-ary operation f , we
write f(x1, . . . , xn) ≈ f(y1, . . . , yn) if f(x1, . . . , xn) = f(y1, . . . , yn) for all possi-
ble values of the xi, yi, i = 1, . . . , r. A ternary operation m is Maltsev if it sat-
isfies m(x, x, y) ≈ m(y, x, x) ≈ y, Pixley if it satisfies m(x, x, y) ≈ m(y, x, x) ≈
m(y, x, y) ≈ y, majority if it satisfies m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ x,
and minority if it satisfies m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ y. A binary
operation ∗ is 2-semilattice if it satisfies x ∗ x ≈ x, x ∗ y ≈ y ∗ x ≈ x ∗ (x ∗ y).

2.2 Graph Theory

Since all graphs in the rest of the paper are directed, we use the terms graph and
digraph interchangeably. For a natural number n we write [n] = {1, 2, . . . , n}. An
oriented path is a sequence of, not necessarily distinct, vertices v1, . . . , vn such
that for every i ∈ [n−1], either (vi, vi+1) (a forward edge) or (vi+1, vi) (a backward
edge) is an edge. We use the terms path and oriented path interchangeably. A
cycle is an oriented path with starting point v1 and endpoint vm such that either
(vm, v1) or (v1, vm) is an edge. The net length of a path P , net(P), is the number
of forward edges minus the number of backward edges in P . A (reverse) dipath
is a sequence of, not necessarily distinct, vertices v1, . . . , vn such that for every
i ∈ [n− 1], (vi, vi+1) ((vi+1, vi)) is an edge. A directed cycle is a dipath v1, . . . , vn

such that (vn, v1) is also an edge. For a (reverse) dipath P , we let len(P) denote
the number of edges in P . We use the term simple dipath or (directed) cycle to
indicate that all vertices of the dipath or (directed) cycle are distinct.

A component of digraph G is a maximal subgraph, H , of G such that for
every pair of vertices u, v ∈ VH , there is an oriented path from u to v. A digraph
with one component is said to be connected. A digraph is a directed acyclic graph
(DAG) if it contains no directed cycles. A DAG G is layered if there exists q ∈ N

184 C. Carvalho et al.

such that the vertices of G can be partitioned into q levels L0, . . . , Lq−1, such
that any edge of G goes from Li to Li+1, for some i = 0, . . . , q − 2.

Let G be a digraph, and x a vertex of G. We define x+1 = {y ∈ VG : (x, y) ∈
EG}, and x−1 = {y ∈ VG : (y, x) ∈ EG}. We call a vertex v a source if v−1 = ∅,
and a sink if v+1 = ∅. If u and v are vertices of G, u

k→ v denotes the existence
of a dipath from u to v of length k; u→ v denotes u

1→ v.

3 Retracts of Maltsev Digraphs

Definition 1 (totally rectangular). A digraph G is k-rectangular if the fol-
lowing implication holds for all vertices x, y, u, v:

x
k→ u & y

k→ u & y
k→ v ⇒ x

k→ v.

A digraph is rectangular if it is 1-rectangular, and totally rectangular if it is
k-rectangular for every k ∈ N.

It is not hard to verify that a Maltsev digraph must be totally rectangular, but
in Section 4 (see Corollary 1) we show that the two properties are equivalent.

Example 1. The digraph in Fig. 1 is rectangular but not 2-rectangular. While
the digraph in Fig. 4 is totally rectangular.

�

�

�

�

�

�

�

�

� �

�
�

��
�

��

Fig. 1. A rectangular digraph that is not 2-rectangular

We now state the main result of this section.

Theorem 1. Let G be a totally rectangular digraph. If G is acyclic then G
retracts onto a simple dipath. Otherwise G retracts onto the disjoint union of
simple directed cycles.

The proof of Theorem 1 is a direct consequence of Lemma 4 below. We begin
with some definitions and simple observations.

Lemma 1. Let G be a digraph. Then G is layered iff for every pair of vertices
u, v in G, and any pair of oriented paths P and Q from u to v, it holds that
net(P) = net(Q).

Definition 2. Let G be a digraph that contains a directed cycle. Let C be a
shortest directed cycle in G and assume it has length m. We say that G is
inconsistent if there exist two vertices u, v in G such that, there are two different
oriented paths of net lengths �1 and �2 from u to v such that �1 �≡ �2 mod m.
Otherwise we say that G is consistent.

On Maltsev Digraphs 185

Proposition 1. Let G be a digraph that contains a directed cycle. Let C be a
shortest directed cycle in G. Then G retracts onto C iff G is consistent.

Lemma 2. Let G be a totally rectangular digraph and u, v be vertices in G.
Let P and Q be two dipaths in G from u to v, such that len(P) > len(Q). Set
k = len(P), � = len(Q), and d = k − �. Then one of the following two cases
occurs:

1. If 2� > k, then G contains vertices u′, v′ and dipaths P ′, Q′ from u′ to v′ with
the following property: len(P ′) = �, len(Q′) = 2�−k, and len(P ′)−len(Q′) =
d;

2. If 2� ≤ k, then G contains a directed cycle of length d.

Proof. See Fig. 2. In the first case, let u′ be the vertex of P such that the
subpath Pu′v of P from u′ to v has length �. Let v′ be the vertex of P such that
the subpath Puv′ of P from u to v′ has length �. Applying the �-rectangularity of
G to Pu′v, Q, and Puv′ , we obtain the desired dipath P ′ with len(P ′) = �. The
other required dipath Q′ is the subpath of P from u′ to v′. Since k = 2�−len(Q′)
we have that len(Q′) = 2�− k, and len(P ′)− len(Q′) = �− (2�− k) = k− � = d.

In the second case, the two paths P ′ and Q′ form a cycle of length �+(k−2�) =
d because 2� ≤ k.

u

v

u′

v′

P ′ Q
Q′

P u

v

u′

v′

P ′ Q
Q′

P

Fig. 2. Case 1 (left) and Case 2 (right) of Lemma 2

Lemma 3. Let G be a totally rectangular digraph and u, v ∈ VG. Let P1 and
P2 be oriented paths in G from u to v. Assume that net(P1) > net(P2), and set
d = net(P1)−net(P2). Then there are vertices s, t ∈ VG and dipaths Q1 and Q2

in G from s to t, such that len(Q1)− len(Q2) = d.

Lemma 4. Let G be a connected totally rectangular digraph. If G is a DAG
then G retracts onto a simple dipath. Otherwise G retracts onto a simple directed
cycle.

Proof. Assume first that G is a DAG. We claim that G must be layered. Assume,
for a contradiction, that G is not layered. By Lemma 1, there exist u, v ∈ VG

and oriented paths P and Q from u to v, such that net(P) �= net(Q). Using
Lemma 3, we can assume that P and Q are dipaths of different length. Now we
repeatedly apply Case 1 of Lemma 2 as long as it is possible, and then applying
Case 2 yields a cycle, a contradiction. So G is layered.

186 C. Carvalho et al.

Assume that G has levels L0, . . . , Lq−1. Fix vertices s ∈ L0 and t ∈ Lq−1,
and let O be any oriented path from s to t (such a path exists because G is
connected). Applying the total rectangularity of G to appropriate subpaths of
O, it is easy to see that there exists a dipath D of length q− 1 from s to t in G.
Clearly, G retracts onto D.

Suppose that G contains a directed cycle. By Proposition 1, it is enough to
show that G is consistent. Assume this is not the case. Let C be a shortest
directed cycle in G, and assume it has length m. Because G is inconsistent, we
can find vertices u, v ∈ VG and oriented paths P1 and P2 from u to v, such that
net(P1) �≡ net(P2) mod m. Set �1 = net(P1) and �2 = net(P2). Assume w.l.o.g.
that �1 > �2, and that u is a vertex of C. Note that if u is not a vertex of C, then
we fix a vertex c of C and find any oriented path S from c to u. Then attaching
S to P1 and P2 at vertex u gives us the desired oriented paths. Furthermore, we
can assume that �1−�2 = d < m, because if not, we can add C-loops from u to u
to P2 to increase its length by a multiple of m, until �1−�2 < m. Using Lemma 3
we obtain directed paths Q1 and Q2 such that len(Q1)− len(Q2) = d, and then,
by applying Lemma 2, we obtain a cycle of length d in G, a contradiction.

By Lemma 4, each connected component of G retracts either onto a sim-
ple dipath or to a simple directed cycle. The trivial observation that a dipath
homomorphically maps to a cycle completes the proof Theorem 1.

4 Characterisations, Polymorphisms and Algorithms

4.1 Rectangular Characterisations and Other Polymorphisms

In this section we generalise a technique of Kazda [19] to characterise digraphs
that admit Maltsev and conservative Maltsev polymorphisms as those which
are totally rectangular and universally rectangular respectively and to provide
polynomial time algorithms for recognising the relevant properties. Furthermore,
we show that Maltsev digraphs also admit many other polymorphisms, and under
certain conditions, they also admit conservative 2-semilattice polymorphisms.

Definition 3 (conservatively k-rectangular, universally rectangular).
We say that a graph is conservatively k-rectangular if it satisfies the following
sentence:

x→ x1 → · · · → xk−1 → u
y → y1 → · · · → yk−1 → u
y → z1 → · · · → zk−1 → v

⎫⎬⎭⇒
{There is a path x→ w1 → · · · →

wk−1 → v with wi ∈ {xi, yi, zi}
for each i.

(1)

A graph that is conservatively k-rectangular for all k ≥ 1 will be called universally
rectangular.

Example 2. The digraph in Fig. 4 is conservatively rectangular but not conser-
vatively 2-rectangular. While the digraph in Fig. 3 is universally rectangular.

On Maltsev Digraphs 187

�

�

�

� �

�

�

�

�
�����
�

��
						

� �

�
�����
�

�
��

�
��

�
��

Fig. 3. A universally rectangular digraph

Definition 4. Let G be a digraph. Define the binary relations R− on VG by x R−

y if x−1∩y−1 �= ∅. The dual relation R+ is defined by x R+ y if x+1∩y+1 �= ∅.

The relation R+ is an equivalence relation on the set {x ∈ VG : x+ �= ∅}, the set
of vertices of G that are not sinks. The relation R− is an equivalence relation on
the set {x ∈ VG : x− �= ∅}, the set of vertices of G that are not sources. So it
makes sense to consider the respective factor graphs, this was observed in [19].
We use the notation G/R+ to denote the graph on the R+-classes of G. Given
R+-classes A,B, we write A→ B if there is some a ∈ A and b ∈ B with a→ b.
Similarly, G/R− denotes the same construction, but using the relation R−. Note
that G/R+ is not strictly an actual graph quotient of G, only a quotient of an
induced subgraph of G. Nevertheless, we sometimes refer to it as “the quotient
of G by R+”. The proof of the following lemma is routine.

Lemma 5. Let G be a rectangular digraph and k > 1.

1. G is �-rectangular for all � = 1, . . . , k if and only if G/R+ is �-rectangular
for all � = 1, . . . , k − 1.

2. If G is conservatively �-rectangular for all � = 1, . . . , k then G/R+ is con-
servatively �-rectangular for all � = 1, . . . , k − 1.

For a totally rectangular graph G, define G0 = G and Gi+1 = Gi/R
+, i ≥

1. From Lemma 5 it follows that Gi is defined for all positive integers i, and
eventually Gi will either be empty or a disjoint union of directed cycles (the
only situations that R+ can be trivial). We define G∞ = Gk, where k is such
that Gk = Gk+1 (i.e. G∞ is either empty or a disjoint union of directed cycles).

The next lemma is obtained by applying the Maltsev property to the columns
of the premise of (1).

Lemma 6. Let G be a digraph.

1. If G has a Maltsev polymorphism, then G is totally rectangular.
2. If G has a conservative Maltsev polymorphism, then G is universally rectan-

gular.

Lemma 7. Let a, b be vertices in a totally rectangular digraph G satisfying con-
servative 2-rectangularity and assume that neither a nor b is a source or sink. If
a/R+ ∩ b/R− is nonempty then either b ∈ a/R+ or a ∈ b/R−.

Proof. Let c ∈ a/R+ ∩ b/R−. There are vertices e, f, g, h such that {a, c} ⊆ e−1,
b ∈ f−1, a ∈ g+1 and {c, b} ∈ h+1. However G is conservatively 2-rectangular

188 C. Carvalho et al.

so that there is either an edge from at least one of a, c to f or there is an edge
from g to at least one of {b, c}. Then 1-rectangularity shows that either there is
an edge from a to f or from g to b.

Theorem 2. Consider a property C of digraphs defined by the existence of poly-
morphisms t1, t2, . . . , tk (not necessarily distinct) satisfying a single equational
sequence

t1(x1,1, x1,2, . . . , x1,n1) ≈ · · · ≈ tk(xk,1, xn,2, . . . , xk,nk
) ≈ x,

where {x1,1, . . . , x1,n1} = · · · = {xk,1, . . . , xk,nk
} and x ∈ {x1,1, . . . , x1,n1}. The

following statements are true provided that the equation x ≈ y does not follow
from C.

1. Let G be a totally rectangular digraph. Then G has property C if and only if
G∞ has property C.

2. Let G be universally rectangular. Then G has property C with each ti con-
servative if and only if G∞ has property C with each of the ti conservative.

The same conclusions can be made without the requirement that ≈ x be included in
the equational sequence, and if the polymorphisms are required to be idempotent.

Proof. Our proof is very similar to the main proof in [19]; we use Lemma 5 rather
than the assumption of the Maltsev property directly. We focus only on the
conservative case (not considered in [19]), as the non-conservative case is obtained
by following this proof and missing some steps. We give only a sketch here.

It is easy to see that if G has conservative property C then so does G/R+

by defining ti(x1/R
+, . . . , xn/R+) = ti(x1, . . . , xn)/R+. Thus, it suffices to show

that if G/R+ satisfies some conservative property C then so does G. This uses
only total rectangularity (to ensure that successive quotients are well defined).

The reverse direction is shown by backward induction over successive quo-
tients by R+: essentially, provided G/R+ has polymorphisms ti witnessing prop-
erty C, then so does G. This part of the argument is mostly identical to that
given in [19] (in the case of majority polymorphisms), except Lemma 7 is invoked
to guarantee a conservative choice of the polymorphisms.

It is useful to note that instead of explicit use of universal rectangularity,
this argument used only the fact that on each successive quotient by R+, both
rectangularity and the conclusion of Lemma 7 hold.

Some instances of polymorphisms satisfying the conditions of Theorem 2 are
majority, Maltsev and Pixley. In these cases G∞ always has the desired poly-
morphism, giving the following corollary.

Corollary 1. Let G be a digraph.

1. G admits a (conservative) Maltsev polymorphism iff it admits a (conserva-
tive) Pixley operation iff it is totally (universally) rectangular.

2. If G is totally (universally) rectangular then G admits a (conservative) mi-
nority polymorphism and a (conservative) majority polymorphism.

On Maltsev Digraphs 189

Remark 1. The first part of Corollary 1 strengthens the result given in Lemma 4
of [11], for the case of digraphs. The relational clone 〈B〉 of a structure B is the set
of all relations that can be expressed with primitive positive first-order formulas
(i.e. only existential quantification, conjunction, and equality is allowed) from B.
When we restrict [11, Lemma 4] to digraphs, it can be stated as follows: A
digraph G is preserved by a Maltsev operation iff every binary relation in 〈G〉 is
rectangular. It is easy to see and well-known that every binary relation in 〈G〉 can
be expressed as BG(S, a, b) = {(h(a), h(b))|h is a homomorphism from S to G}
for a structure S with two distinguished vertices a and b. Then Corollary 1
implies that for a digraph G to be preserved by a Maltsev operation it is enough
to require that only those binary relations in 〈G〉 that can be expressed as
BG(S, a, b), where S is a directed path with initial vertex a and terminal vertex
b, are rectangular.

The above corollary yields an algorithm for verifying if a graph has a Maltsev (or
Pixley) polymorphism. Indeed, the rectangularity of a digraph is equivalent to
the following property of its adjacency matrix: when two rows (or two columns)
share a common 1 they are identical. On an n-vertex digraph this property may
be verified in O(n3) steps. A digraph has a Maltsev polymorphism if and only if
each (of at most n) successive quotient by R+ is rectangular, with the process
stopping once there are no R+-classes of size more than 1 (which happens after
at most n quotients). Overall this takes O(n4) steps (quadratic in terms of the
size of the adjacency matrix).

Universal rectangularity (equivalently, the existence of a conservative Maltsev
polymorphism) can also be verified in polynomial time by verifying total rectan-
gularity and conservative 2-rectangularity at each successive quotient by R+. In
fact, the proof of Theorem 2 is sufficiently constructive to construct the desired
polymorphisms (when they exist): simply work backwards from their definition
of G∞.

4.2 Conservative 2-Semilattice Polymorphisms

A disjoint union of directed cycles admits a conservative commutative binary
(ccb) polymorphism (which coincide with conservative 2-semilattice operations)
if and only if it contains no even cycles. This provides a case where Theorem 2
characterises a proper subclass of conservative Maltsev digraphs. In this section
we classify Maltsev digraphs admitting a ccb polymorphism. A corollary of the
result will be a sort of converse to Theorem 2: a Maltsev digraph with a ccb
polymorphism is necessarily conservative Maltsev (Proposition 2 below).

Consider any digraph G and let ∗ be any conservative commutative binary
operation on VG. The operation ∗ has an easy interpretation as a colouring of
the nondiagonal elements of the cartesian square V 2

G\{(v, v) | v ∈ VG}: the pair
(a, b) is coloured L if a ∗ b = a and R if a ∗ b = b; commutativity is equivalent to
(a, b) having different colour to (b, a). (The exclusion of the diagonal elements
is only for convenience.) We now examine the consequences of ∗ being a ccb
polymorphism.

190 C. Carvalho et al.

For any digraph G we define a structure—the ccb graph of G—on the non-
diagonal elements of the cartesian square V 2

G\{(v, v) | v ∈ VG}. The ccb graph
is a graph with two kinds of edges: “orienting” edges, which are directed, and
“straight” edges which are considered as having no direction.

– A (directed) orienting edge is placed from (a1, b1) to (a2, b2) if there are
parallel edges connecting each of the following pairs in G: a1 and a2; b1 and
b2; and b1 and a2 but not a1 and b2. The following diagram depicts two
situations that an orienting edge pointing from (a1, b1) to (a2, b2) can arise:

� �

� �

�

�

�
���

b1

a1

b2

a2

� �

� �

�

�
�

���
b1

a1

b2

a2

– An (undirected) straight edge is placed from (a1, b1) to (a2, b2) if there are
parallel edges connecting the following pairs: a1 and a2; b1 and b2; but not
a1 and b2 or a2 and b1.

A directed path in the ccb graph is a path of orienting edges and straight edges,
in which each orienting edge is traversed in a forward direction. We now adopt
the notation � to denote directed paths: note that (a, b)� (c, d) if and only if
(d, c)� (b, a). An important observation is: if (a, b) is not connected to (c, d) in
the ccb graph of G then the compatibility of the ccb operation with the edges
of G does not fail at the pairs (a, b) and (c, d). Thus the digraph G admits a ccb
polymorphism iff the ccb graph of G can be coloured by L and R such that L and
R are preserved across straight edges, L is preserved forward across orienting
edges and R is preserved backward across orienting edges. Expressed in terms of
� this becomes the following rules.

(L) If (u, v) is coloured L and (u, v)� (x, y) then:
(1) (x, y) is coloured L.
(2) (y, x) is coloured R.

(R) If (u, v) is coloured R and (x, y)� (u, v) then:
(1) (x, y) is coloured R.
(2) (y, x) is coloured L.

Theorem 3. A digraph G admits a ccb polymorphism ∗ if and only if for every
distinct a, b ∈ G, the ccb-graph of G does not contain a directed path both from
(a, b) to (b, a) and from (b, a) to (a, b). When a ccb polymorphism exists, it can
be constructed in a polynomial number of steps.

Proof. The forward implication is simply the statement that the colouring of the
ccb-graph must colour each pair (a, b) oppositely to its reverse (b, a), and the
colouring rules (L)(1)–(R)(2) must be obeyed.

Now we show the converse: assume that for every a, b ∈ G, the ccb-graph of
G does not contain a directed path from (a, b) to (b, a) and from (b, a) to (a, b).
We construct (in a polynomial number of steps) a successful colouring by L and
R, whence a ccb polymorphism.

On Maltsev Digraphs 191

First phase. Begin by finding any pairs (a, b) from which there is a directed
path to the reverse pair (b, a) (obviously, such a path must contain an orienting
edge). In every case, colour (a, b) by R and (b, a) by L. By assumption, no pair
is coloured two different colours simultaneously.

Second phase. Routine arguments show that after phase 1, no uncoloured
pair is forced to be coloured by rules (L)(1)–(R)(2). Complete the colouring by
iterating the following process until all pairs are coloured: take any uncoloured
pair, (a, b) say, and colour it arbitrarily; colour any other pairs for which rules
(L)(1)–(R)(2) apply starting from (a, b).

Routine arguments show that, at each iteration, no pair is coloured twice by
different colours, hence the desired colouring (and ccb-polymorphism) is even-
tually achieved.

Note that the second property in Theorem 3 can be verified using Reachability
in the ccb-graph of G, so is solvable in nondeterministic logarithmic space. Hence
deciding if a digraph has a ccb polymorphism is in NL too.

Proposition 2. The following are equivalent for a Maltsev graph G:

1. G has a conservative commutative idempotent binary polymorphism;
2. G has a conservative commutative idempotent binary polymorphism and a

conservative Maltsev polymorphism;
3. G has a conservative Maltsev polymorphism and G∞ is empty or has no even

length cycles.

Proof. (2)⇒(3)⇒(1) follow from Theorem 2, because a disjoint union of directed
cycles has a ccb iff it has no even length cycles. For (1)⇒(2) we use Theorem
3 to prove a version of Lemma 7 with conservative 2-rectangularity replaced by
ccb. The routine proof, which we omit, uses the digraph in Fig. 4.

�

�

�

� �

�

�

�

�
�����
� �

�
�����

�
��

�
��

Fig. 4. A Maltsev digraph with no conservative Maltsev polymorphism

Note that the digraph in Fig. 4 is easily seen to admit a conservative majority
polymorphism, a Maltsev polymorphism, but no conservative Maltsev polymor-
phism. So conservative majority cannot replace ccb in Proposition 2.

4.3 A Simple Inductive Construction of Maltsev DAGs

In this section we provide a simple inductive characterisation of totally rect-
angular DAGs. We note that in [19, Corollary 16] Kazda gives an inductive

192 C. Carvalho et al.

construction of Maltsev digraphs, however, this construction is not fully satisfy-
ing in the sense that it is non-deterministic, i.e. it does not specify how to obtain
the desired preimages, and it is not clear if it can be made deterministic. The
construction described below consists of repeated applications of two straight-
forward steps (and their reverse versions) which clearly specify how to obtain
a new Maltsev digraph from an already constructed one by a certain copying
process. We need the following definitions.

Definition 5 ((Reverse) arborescence). An (reverse) arborescence is a di-
rected tree with root r such that every edge points away from (towards) r.

Definition 6 (∇(r, h) and Δ(r, h)). Let G be a digraph, r ∈ VG, and h ∈ N.
∇(r, h) (Δ(r, h)) is defined to be the subgraph of G whose vertices and edges are
the vertices and edges of all (reverse) sub-dipaths of G which have initial vertex
r and length h. A vertex v ∈ ∇(r, h) − r (Δ(r, h) − r) is called an endpoint of
∇(r, h) (Δ(r, h)) if there is a (reverse) dipath of length h from r to v. Otherwise
v is called an inner vertex of ∇(r, h) (Δ(r, h)).

Definition 7 (isolated∇(r, h)). Let G be a digraph. Consider ∇(r, h) (Δ(r, h))
for some r ∈ VG and h ∈ N. We say that ∇(r, h) (Δ(r, h)) is isolated in G
if for every inner vertex v of ∇(r, h), both the in-neighbourhood and the out-
neighbourhood of v belongs to ∇(r, h) (Δ(r, h)).

r

∇(r, 2)
2a

r
Δ(r, 2) 2d

p

G G′ G′′

Fig. 5. Construction of a totally rectangular DAG

We are ready to define the construction formally in Fig. 6. This construction
can be used, for example, to define a minority operation for a totally rectangular
DAG. Also, a more restricted version of the construction can be defined, but it
becomes slightly more technical.

Example 3. Consider the totally rectangular DAG G′′ in Fig. 5. To construct
it using the method in Fig. 6, we start with the dipath G and first apply Step
2a to G to obtain G′. Next we apply Step 2d to G′ obtain G′′. The thick edges
indicate the subgraphs ∇(r, 2) and Δ(r, 2), which are the subgraphs to be copied
and attached appropriately.

Theorem 4. The class of totally rectangular DAGs is the set of digraphs M
defined in Fig. 6.

On Maltsev Digraphs 193

1. C contains dipaths of all possible lengths n ∈ N0;

2. C is closed under applying the following operations:

(a) Given a digraph G, let r ∈ VG and h ∈ N such that ∇(r, h) is an arborescence.
Let ∇′ be a copy of ∇(r, h). Join ∇′ to G by identifying the corresponding
endpoints of ∇′ and ∇(r, h). Let the resulting graph be G′;

(b) Given a digraph G, let r ∈ VG be such that r has exactly one incoming edge
(p, r), and h ∈ N such that ∇(r, h) is an isolated arborescence. Let ∇′ be a
copy of ∇(r, h) with root r′. Join ∇′ to C by identifying the corresponding
endpoints of ∇′ and ∇(r, h), and adding the edge (p, r′). Let the resulting
graph be G′;

(c) The reverse version of Step 2a (defined in the natural way);

(d) The reverse version of Step 2b (defined in the natural way).

3. M is the set of digraphs that can be obtained by taking disjoint unions of digraphs
in C.

Fig. 6. Inductive construction of the set M of totally rectangular DAGs

5 Some Applications to the Constraint Satisfaction
Problem

The logic programming language Datalog is one of the main tools to solve CSPs
in P. The fragments of Datalog called linear and symmetric Datalog are con-
jectured to contain all CSPs in NL and L, respectively, see [7,8,14]. A minor
technicality is that it is actually the complement of a CSP that can be defined
in Datalog and its fragments, not the actual CSP.

By Theorem 1, the core of a Maltsev digraph is either a directed path or a
disjoint union of cycles, and for such digraphs the following is not difficult to
show.

Corollary 2. Let H be a Maltsev digraph. Then the complement of CSP(H)
can be defined in symmetric Datalog of constant width and therefore CSP(H) is
in L.

The list homomorphism problem for a digraph H , LHOM(H), is the following
decision problem. Given an input digraph G and for each vertex v ∈ VG a list
Lv ⊆ VH , determine if there is a homomorphism h from G to H such that for
each v ∈ VG, h(v) ∈ Lv. This problem is exactly CSP(Hu) where Hu is the
structure obtained by expanding the digraph H with unary relations U , where
U runs through all non-empty subsets of VH . Using Corollary 1, the following
corollary is easy to deduce.

Corollary 3. The complement of LHOM(H) for a conservative Maltsev digraph
H can be defined in symmetric Datalog, and therefore LHOM(H) is in L.

194 C. Carvalho et al.

References

1. Barto, L., Bulin, J.: CSP dichotomy for special polyads (2011) (submitted)
2. Barto, L., Kozik, M., Maróti, M., Niven, T.: CSP dichotomy for special triads.

Proceedings of the AMS 137, 2921–2934 (2009)
3. Barto, L., Kozik, M., Niven, T.: Graphs, polymorphisms and the complexity of

homomorphism problems. In: Proceedings of the 40th annual ACM symposium on
Theory of computing, STOC 2008, pp. 789–796 (2008)

4. Bulatov, A., Dalmau, V.: A simple algorithm for Mal’tsev constraints. SIAM Jour-
nal on Computing 36(1), 16–27 (2006)

5. Bulatov, A., Jeavons, P., Krokhin, A.: Constraint satisfaction problems and fi-
nite algebras. In: Proceedings of the 27th International Colloquium on Automata,
Languages and Programming, ICALP 2000, pp. 272–282 (2000)

6. Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing 34(3), 720–742 (2005)

7. Bulatov, A.A., Krokhin, A.A., Larose, B.: Dualities for constraint satisfaction prob-
lems. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints.
LNCS, vol. 5250, pp. 93–124. Springer, Heidelberg (2008)

8. Dalmau, V.: Linear Datalog and bounded path duality of relational structures.
Logical Methods in Computer Science 1, 1–32 (2005)

9. Dalmau, V., Krokhin, A.: Majority constraints have bounded pathwidth duality.
European Journal of Combinatorics 29(4), 821–837 (2008)

10. Dalmau, V., Larose, B.: Maltsev + Datalog ⇒ Symmetric Datalog. In: Proceedings
of the 23rd IEEE Symposium on Logic in Computer Science, LICS 2008, pp. 297–
306 (2008)

11. Dyer, M.E., Richerby, D.: On the complexity of #CSP. In: Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, pp. 725–734 (2010)

12. Egri, L.: On CSPs below P and the NL
= P conjecture (2011) (submitted)
13. Egri, L., Krokhin, A.A., Larose, B., Tesson, P.: The complexity of the list homomor-

phism problem for graphs. In: Proceedings of the 27th International Symposium
on Theoretical Aspects of Computer Science, STACS 2010, pp. 335–346 (2010)

14. Egri, L., Larose, B., Tesson, P.: Symmetric Datalog and constraint satisfaction
problems in logspace. In: Proceedings of the 22nd Annual IEEE Symposium on
Logic in Computer Science, LICS 2007, pp. 193–202 (2007)

15. Hagemann, J., Mitschke, A.: On n-permutable congruences. Algebra Universalis 3,
8–12 (1973)

16. Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B 48, 92–110 (1990)

17. Hell, P., Rafiey, A.: The dichotomy of list homomorphisms for digraphs. In: Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp.
1703–1713 (2011)

18. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. ACM
44(4), 527–548 (1997)

19. Kazda, A.: Maltsev digraphs have a majority polymorphism. European Journal of
Combinatorics 32, 390–397 (2011)

20. Maróti, M., McKenzie, R.: Existence theorems for weakly symmetric operations.
Algebra Universalis 59(3-4), 463–489 (2008)

Join-Reachability Problems in Directed Graphs�

Loukas Georgiadis1, Stavros D. Nikolopoulos2, and Leonidas Palios2

1 Department of Informatics and Telecommunications Engineering,
University of Western Macedonia, Greece

lgeorg@uowm.gr
2 Department of Computer Science, University of Ioannina, Greece

{stavros,palios}@cs.uoi.gr

Abstract. For a given collection G of directed graphs we define the join-
reachability graph of G, denoted by J (G), as the directed graph that, for
any pair of vertices a and b, contains a path from a to b if and only if
such a path exists in all graphs of G. Our goal is to compute an efficient
representation of J (G). In particular, we consider two versions of this
problem. In the explicit version we wish to construct the smallest join-
reachability graph for G. In the implicit version we wish to build an
efficient data structure (in terms of space and query time) such that we
can report fast the set of vertices that reach a query vertex in all graphs
of G. This problem is related to the well-studied reachability problem
and is motivated by emerging applications of graph-structured databases
and graph algorithms. We consider the construction of join-reachability
structures for two graphs and develop techniques that can be applied to
both the explicit and the implicit problem. First we present optimal and
near-optimal structures for paths and trees. Then, based on these results,
we provide efficient structures for planar graphs and general directed
graphs.

1 Introduction

In the reachability problem our goal is to preprocess a (directed or undirected)
graph G into a data structure that can quickly answer queries that ask if a
vertex b is reachable from a vertex a. This problem has numerous and diverse
applications, including internet routing, geographical navigation, and knowledge-
representation systems [13]. Recently, the interest in graph reachability problems
has been rekindled by emerging applications of graph data structures in areas
such as the semantic web, bio-informatics and social networks. These develop-
ments together with recent applications in graph algorithms [4,5,7] have moti-
vated us to introduce the study of the join-reachability problem that we define as
follows. We are given a collection G of λ directed graphs Gi = (Vi, Ai), 1 ≤ i ≤ λ,
where each graph Gi represents a binary relation Ri over a set of elements V ⊆ Vi

in the following sense: For any a, b ∈ V , we have aRib if and only if b is reachable

� This research project has been funded by the John S. Latsis Public Benefit Founda-
tion. The sole responsibility for the content of this paper lies with its authors.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 195–208, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

196 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

from a in Gi. Let R ≡ R(G) be the binary relation over V defined by: aRb if
and only if aRib for all i ∈ {1, . . . , λ} (i.e., b is reachable from a in all graphs in
G). We can view R as a type of join operation on graph-structured databases.
Our objective is to find an efficient representation of this relation. To the best
of our knowledge, this problem has not been previously studied. We will restrict
our attention to the case of two input graphs (λ = 2).

Contribution. In this paper we explore two versions of the join-reachability
problem. In the explicit version we wish to represent R with a directed graph
J ≡ J (G), which we call the join-reachability graph of G, i.e., for any a, b ∈ V ,
we have aRb if and only if b is reachable from a in J . Our goal is to minimize
the size (i.e., the number of vertices plus arcs) of J . We consider this problem
in Sections 2 and 3, and present results on the computational and combinatorial
complexity of J . In the implicit version we wish to represent R with an efficient
data structure (in terms of space and query time) that can report fast all elements
a ∈ V satisfying aRb for any query element b ∈ V . We deal with the implicit
problem in Section 4. First we describe efficient join-reachability structures for
simple graph classes. Then, based on these results, we consider planar graphs and
general directed graphs. Although we focus on the case of two directed graphs
(λ = 2), we note that some of our results are easily extended for λ ≥ 3 with the
use of appropriate multidimensional geometric structures.

Applications. Instances of the join-reachability problem appear in various ap-
plications. For example, in the rank aggregation problem [3] we are given a
collection of rankings of some elements and we may wish to report which (or
how many) elements have the same ranking relative to a given element. This is
a special version of join-reachability since the given collection of rankings can
be represented by a collection of directed paths with the elements being the
vertices of the paths. Similarly, in a graph-structured database with an associ-
ated ranking of its vertices we may wish to find the vertices that are related to
a query vertex and have higher or lower ranking than this vertex. Instances of
join-reachability also appear in graph algorithms arising from program optimiza-
tion. Specifically, [4] uses a data structure that reports fast vertices that satisfy
certain ancestor-descendant relations in a collection of rooted trees. Moreover,
in [7] it is shown that any directed graph G with a distinguished source vertex
s has two spanning trees rooted at s such that a vertex a is a dominator of a
vertex b (meaning that all paths in G from s to b pass through a) if and only if a
is an ancestor of b in both spanning trees. This generalizes the graph-theoretical
concept of independent spanning trees. Two spanning trees of a graph G are
independent if they are both rooted at the same vertex r and for each vertex v
the paths from r to v in the two trees are internally vertex disjoint. Similarly,
λ spanning trees of G are independent if they are pairwise independent. In this
setting, we can apply a join-reachability structure to decide if λ given spanning
trees are independent. Finally we note that a variant of the join-reachability
problem we defined here appears in the context of a recent algorithm for com-
puting two internally vertex-disjoint paths for any pair of query vertices in a
2-vertex connected directed graph [5].

Join-Reachability Problems in Directed Graphs 197

Preliminaries and Related Work. The reachability problem is easy in the undi-
rected case since it suffices to compute the connected components of the input
graph. Similarly, the undirected version of the join-reachability problem is also
easy, as given the connected components of two undirected graphs G1 and G2

with n vertices, we can compute the connected components of J ({G1, G2}) in
O(n) time. On the other hand, no reachability data structure is currently known
to simultaneously achieve o(n2) space and o(n) query time for a general directed
graph with n vertices [13]. Nevertheless, efficient reachability structures do exist
for several important cases. First, asymptotically optimal structures exist for
rooted trees [1] and planar directed graphs with one source and one sink [8,11].
For general planar graphs Thorup [12] gives an O(n log n)-space structure with
constant query time. Talamo and Vocca [10] achieve constant query time for
lattice partial orders with an O(n

√
n)-space structure.

Notation. In the description of our results we use the following notation and
terminology. We denote the vertex set and the arc set of a directed graph (di-
graph) G by V (G) and A(G), respectively. Without loss of generality we assume
that V (G) = V for all G ∈ G. The size of G, denoted by |G|, is equal to the
number of arcs plus vertices, i.e., |G| = |V | + |A|. We use the notation a �G b
to denote that b is reachable from a in G. (By definition a�G a for any a ∈ V .)
The predecessors of a vertex b are the vertices that reach b, and the successors
of a vertex b are the vertices that are reached from b. Let P be a directed path
(dipath); the rank of a ∈ P , rP (a), is equal to the number of predecessors of a in
P minus one, and the height of a ∈ P , hP (a), is equal to the number of successors
of a in P minus one. For a rooted tree T , we let T (a) denote the subtree rooted
at a. We will deal with two special types of directed rooted trees: In an in-tree,
each vertex has exactly one outgoing arc except for the root which has none; in
an out-tree, each vertex has exactly one incoming arc except for the root which
has none. We use the term unoriented tree for a directed tree with no restriction
on the orientation of its arcs. Similarly, we use the term unoriented dipath to
refer to a path in the undirected sense, where the arcs can have any orientation.
In our constructions we map the vertices of V to objects in a d-dimensional space
and use the notation xi(a) to refer to the ith coordinate that vertex a receives.
Finally, for any two vectors ξ = (ξ1, . . . , ξd) and ζ = (ζ1, . . . , ζd), the notation
ξ ≤ ζ means that ξi ≤ ζi for i = 1, . . . , d.

1.1 Preprocessing: Computing Layers and Removing Cycles

Thorup’s Layer Decomposition. In [12] Thorup shows how to reduce the reach-
ability problem for any digraph G to reachability in some digraphs with special
properties, called 2-layered digraphs. A t-layered spanning tree T of G is a rooted
directed tree such that any path in T from the root (ignoring arc directions) is
the concatenation of at most t dipaths in G. A digraph G is t-layered if it has
such a spanning tree. Now we provide an overview of Thorup’s reduction. The
vertices of G are partitioned into layers L0, L1, . . . , Lμ−1 that define a sequence
of digraphs G0, G1, . . . , Gμ−1 as follows. An arbitrary vertex v0 ∈ V (G) is chosen
as a root. Then, layer L0 contains v0 and the vertices that are reachable from v0.

198 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

For odd i, layer Li contains the vertices that reach the previous layers Lj , j < i.
For even i, layer Li contains the vertices that are reachable from the previous
layers Lj , j < i. To form Gi for i > 0 we contract the vertices in layers Lj for
j ≤ i− 1 to a single root vertex r0; for i = 0 we set r0 = v0. Then Gi is induced
by Li, Li+1 and r0. It follows that each Gi is a 2-layered digraph. Let ι(v) denote
the index of the layer containing v, that is, ι(v) = i if and only if v ∈ Li. The
key properties of the decomposition are: (i) all the predecessors of v in G are
contained in Gι(v)−1 and Gι(v), and (ii)

∑
i |Gi| = O(|G|).

Removing Cycles. In the standard reachability problem, a useful preprocessing
step that can reduce the size of the input digraph is to contract its strongly
connected components (strong components) and consider the resulting acyclic
graph. When we apply the same idea to join-reachability we have to deal with the
complication that the strong components in the two digraphs may differ. Still,
we can construct two acyclic digraphs Ĝ1 and Ĝ2 such that, for any a, b ∈ V ,
a �J (G1,G2) b if and only if a �J (Ĝ1,Ĝ2)

b, and |Ĝi| ≤ |Gi|, i = 1, 2. This is
accomplished as follows. First, we compute the strong components of G1 and
G2 and order them topologically. Let G′

i, i = 1, 2, denote the digraph produced
after contracting the strong components of Gi. (We remove loops and duplicate
arcs so that each G′

i is a simple digraph.) Also, let Cj
i denote the jth strong

component of Gi. We partition each component Cj
i into subcomponents such

that two vertices are in the same subcomponent if and only if they are in the
same strong component in both G1 and G2. The subcomponents are the vertices
of Ĝ1 and Ĝ2. Next we describe how to add the appropriate arcs. The process
is similar for the two digraphs so we consider only Ĝ1.

Let Cj,1
1 , Cj,2

1 , . . . , C
j,lj
1 be the subcomponents of Cj

1 , which are ordered with
respect to the topological order of G′

2. That is, if x ∈ Cj,i
1 and y ∈ Cj,i′

1 , where i <
i′, then in the topological order of G′

2 the component of x precedes the component
of y. We connect the subcomponents by adding the arcs (Cj,i

1 , Cj,i+1
1) for 1 ≤

i < lj. Moreover, for each arc (Ci
1, C

j
1) in A(G′

1) we add the arc (Ci,li
1 , Cj,1

1)
to A(Ĝ1), where Ci,li

1 is the last subcomponent of Ci
1. It is straightforward to

verify that a �J b if and only if a and b are in the same subcomponent or
the subcomponent of a is a predecessor of the subcomponent of b in both Ĝ1

and Ĝ2.

2 Computational Complexity

We explore the computational complexity of computing the smallest J ({G1, G2}):
Given two digraphs G1 = (V, A1) and G2 = (V, A2) we wish to compute a di-
graph J ≡ J ({G1, G2}) of minimum size such that for any a, b ∈ V , a �J b
if and only if a �G1 b and a �G2 b. We consider two versions of this problem,
depending on whether J is allowed to have Steiner vertices (i.e., vertices not in
V) or not: In the unrestricted version V (J) ⊇ V , while in the restricted version
V (J) = V . Computing J is NP-hard in the unrestricted case. This is implied
by a straightforward reduction from the reachability substitute problem, which

Join-Reachability Problems in Directed Graphs 199

was shown to be NP-hard by Katriel et al. [9]. In this problem we are given a
digraph H and a subset U ⊆ V (H), and ask for the smallest digraph H∗ such
that for any a, b ∈ U , a �H∗ b if and only if a �H b. For the reduction, we
let G1 = H and let G2 contain all the arcs connecting vertices in U only, that
is, A(G2) = U × U . Clearly, for any a, b ∈ U we have a �J b if and only if
a�H b. Therefore computing the smallest join-reachability graph is equivalent
to computing H∗. In the restricted case, on the other hand, we can compute
J using transitive closure and transitive reduction computations, which can be
done in polynomial time [2].

Theorem 1. Let J be the smallest join-reachability graph of a collection of
digraphs. The computation of J is feasible in polynomial time if Steiner vertices
are not allowed, and NP-hard otherwise.

Note that allowing Steiner vertices can reduce the size of J significantly. In
Section 3 we explore the combinatorial complexity of the unrestricted join-
reachability graph and provide bounds for |J | in several cases.

3 Combinatorial Complexity

In this section we provide bounds on the size of J ({G1, G2}) for several types
of graphs. These are summarized in the next theorem.

Theorem 2. Given two digraphs G1 and G2 with n vertices, the following bounds
on the size of the join-reachability graph J ({G1, G2}) hold:

(a) Θ(n log n) in the worst case when G1 is an unoriented tree and G2 is an
unoriented dipath.

(b) O(n log2 n) when both G1 and G2 are unoriented trees.
(c) O(n log2 n) when G1 is a planar digraph and G2 is an unoriented dipath.
(d) O(n log3 n) when both G1 and G2 are planar digraphs.
(e) O(κ1n log n) when G1 is a digraph that can be covered with κ1 vertex-disjoint

dipaths and G2 is an unoriented dipath.
(f) O(κ1n log2 n) when G1 is a digraph that can be covered with κ1 vertex-disjoint

dipaths and G2 is a planar graph.
(g) O(κ1κ2n log n) when each Gi, i = 1, 2, is a digraph that can be covered with

κi vertex-disjoint dipaths.

In the following sections we prove Theorem 2. In each case we provide a con-
struction of the corresponding join-reachability graph that achieves the claimed
bound. In Section 4 we provide improved space bounds for the implicit rep-
resentation of J ({G1, G2}), i.e., data structures that answer join-reachability
reporting queries fast. Still, a process that computes an explicit representation
of J ({G1, G2}) can be useful, as it provides a natural way to handle collections
of more than two digraphs (i.e., it allows us to combine the digraphs one pair at
a time).

200 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

G1

g[6]

a[0]

b[1]

c[2]

d[3]

e[4]

f [5]

h[7]

a[0]

e[1]

c[2]

g[3]

b[4]

f [5]

d[6]

h[7]

G2

0 1 2 3 4 6 7

1

2

5

4

3

7

6

5

x1

x2

0 a

c

b

g

e

f

d

h

e′

g′

f ′

h′

�

Fig. 1. The mapping of the vertices of two dipaths to a 2d rank space and the con-
struction of J�; Steiner vertices in J� are shown white

3.1 Two Paths

We start with the simplest case where G1 and G2 are dipaths with n vertices.
First we show that we can construct a join-reachability graph of size O(n log n).
Given this result we can provide bounds for trees, planar and general digraphs.
Then we show this bound is tight, i.e., there are instances for which Ω(n log n)
size is needed. We begin by mapping the vertices of V to a two-dimensional rank
space: Each vertex a receives coordinates (x1(a), x2(a)) where x1(a) = rG1(a)
and x2(a) = rG2(a). Note that these ranks are integers in the range [0, n − 1].
Now we can view these vertices as lying on an n×n grid, such that each row and
each column of the grid contains exactly one vertex. Clearly, aRb if and only if
(x1(a), x2(a)) ≤ (x1(b), x2(b)).

Upper bound. We use a simple divide-and-conquer method. Let 	 be the ver-
tical line with x1-coordinate equal to n/2. A vertex z is to the right of 	 if
x1(z) ≥ n/2 and to the left of 	 otherwise. The first step is to construct a sub-
graph J	 of J that connects the vertices to the left of 	 to the vertices to the
right of 	. For each vertex b to the right of 	 we create a Steiner vertex b′ and
add the arc (b′, b). Also, we assign to b′ the coordinates (n/2, x2(b)). We connect
these Steiner vertices in a dipath starting from the vertex with the lowest x2-
coordinate. Next, for each vertex a to the left of 	 we locate the Steiner vertex b′

with the smallest x2-coordinate such that x2(a) ≤ x2(b′). If b′ exists we add the
arc (a, b′). See Figure 1. Finally we recurse for the vertices to the left of 	 and
for the vertices to the right of 	. It is easy to see that J contains a path from
a to b if and only if (x1(a), x2(a)) ≤ (x1(b), x2(b)). To bound |J | note that we
have O(log n) levels of recursion, and at each level the number of added Steiner
vertices and arcs is O(n). Hence, the O(n log n) bound for two dipaths follows.

The case of two unoriented dipaths G1 and G2 can be reduced to that of
dipaths, yielding the same O(n log n) bound. This is accomplished by splitting

Join-Reachability Problems in Directed Graphs 201

G1 and G2 to maximal subpaths that consist of arcs with the same orientation.
Then J is formed from the union of separate join-reachability graphs for each
pair of subpaths of G1 and G2. The O(n log n) bound follows from the fact that
each vertex appears in at most two subpaths of each unoriented dipath, so in
at most four subgraphs. We remark that our construction can be generalized to
handle more dipaths, with an O(log n) factor blowup per additional dipath.

Lower bound. Let G1 be any dipath, and let x1(a) = rG1(a). Also let xi
1(a)

denote the ith bit in the binary representation of x1(a) and let β = 	log2 n

be the number of bits in this representation. We use similar notation for x2(a).
We define G2 such that the rank of a in G2 is x2(a) = x1(a)R, where x1(a)R is
the integer formed by the bit-reversal in the binary representation of x1(a), i.e.,
xi

2(a) = xβ−1−i
1 (a) for 0 ≤ i ≤ β − 1. Let P be the set that contains all pairs of

vertices (a, b) that satisfy xi
1(a) = 0, xi

1(b) = 1 and xj
1(a) = xj

1(b), j �= i, for 0 ≤
i ≤ β − 1. Notice that for a pair (a, b) ∈ P , x1(a) < x1(b) and x1(a)R < x1(b)R.
Hence (x1(a), x2(a)) < (x1(b), x2(b)), which implies a �J b. Now let G be the
digraph that is formed by the arcs (a, b) ∈ P . Then a �G b only if a �J b.
Moreover, the transitive reduction of G is itself and has size Ω(n log n). We
also observe that any two vertices in G share at most one immediate successor.
Therefore the size of G cannot be reduced by introducing Steiner vertices. This
implies that size of J is also Ω(n log n).

3.2 Tree and Path

Let G1 be a rooted (in- or out-)tree and G2 a dipath. First we note that the
ancestor-descendant relations in a rooted tree can be described by two linear
orders (corresponding to a preorder and a postorder traversal of the tree) and
therefore we can get an O(n log2 n) bound on the size of J using the result of
Section 3.1. Here we provide an O(n log n) bound, which also holds when G1

is unoriented. This upper bound together with the Ω(n log n) lower bound of
Section 3.1 implies Theorem 2(a).

Let T be the rooted tree that results from G1 after removing arc directions.
We associate each vertex x ∈ T with a label h(x) = hG2(x), the height of x
in G2. If G1 is an out-tree then any vertex b must be reachable from all its
ancestors a in T with h(a) > h(b). Similarly, if G1 is an in-tree then any vertex b
must be reachable from all its descendants a in T with h(a) > h(b). We begin by
assigning a depth-first search interval to each vertex in T . Let I(a) = [s(a), t(a)]
be the interval of a vertex a ∈ T ; s(a) is the time of the first visit to a (during
the depth-first search) and t(a) is the time of the last visit to a. These times
are computed by incrementing a counter after visiting or leaving a vertex during
the search. This way all the s() and t() values that are assigned are distinct
and for any vertex a we have 1 ≤ s(a) < t(a) ≤ 2n. Moreover, by well-known
properties of depth-first search, we have that a is an ancestor of b in T if and only
if I(b) ⊆ I(a); if a and b are unrelated in T then I(a) and I(b) do not intersect.
Now we map each vertex a to the x1-axis-parallel segment S(a) = I(a)× h(a).

As in Section 3.1 we use a divide-and-conquer method to build J . We will
consider G1 to be an out-tree; the in-tree case is handled similarly and yields the

202 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

same asymptotic bound. Let 	 be the horizontal line with x2-coordinate equal to
n/2. A vertex x is above 	 if h(x) ≥ n/2; otherwise (h(x) < n/2), x is below 	.
We create a subgraph J	 of J that connects the vertices above 	 to the vertices
below 	. To that end, for each vertex u above 	 we create a Steiner vertex u′

together with the arc (u, u′). Let z be the nearest ancestor of u in T that is
above 	. If z exists then we add the arc (z′, u′). Then, for each vertex y below 	
we locate the nearest ancestor u of y in T that is above 	. If u exists then we add
the arc (u′, y). Finally, we recurse for the vertices above 	 and for the vertices
below 	.

It is not hard to verify the correctness of the above construction. The size of
the resulting graph can be bounded by O(n log n) as in Section 3.1. Furthermore,
we can generalize this construction for an unoriented tree and an unoriented
path, and accomplish the same O(n log n) bound as required by Theorem 2(a).
We omit the details which are similar to the more complicated construction of
Section 3.4.

3.3 Two Trees

The construction of Section 3.2 can be extended to handle more than one dipath.
We show how to apply this extension in order to get an O(n log2 n) bound for
the join-reachability graph of two rooted trees. We consider the case where G1

is an out-tree and G2 is an in-tree; the other two cases (two out-trees and two
in-trees) are handled similarly.

Let T1 and T2 be the corresponding undirected trees. We assign to each vertex
a two depth-first search intervals I1(a) = [s1(a), t1(a)] and I2(a) = [s2(a), t2(a)],
where Ij(a) corresponds to Tj, j = 1, 2. We create two linear orders (i.e., di-
paths), P1 and P2, from the I2-intervals as follows: In P1 the vertices are ordered
by decreasing s2-value and in P2 by increasing t2-value. Each vertex a is mapped
to an x1-axis-parallel segment I1(a)×x2(a)×x3(a) (in three dimensions), where
x2(a) = hP1(a) and x3(a) = hP2(a). Then b is reachable from a in J if and only
if I1(b) ⊆ I1(a) and (x2(b), x3(b)) ≤ (x2(a), x3(a)). See Figure 2.

Again we employ a divide-and-conquer approach and use the method of Sec-
tion 3.2 as a subroutine. The details are as follows. Let p be the plane with
x3-coordinate equal to n/2. We construct a subgraph Jp of J that connects the
vertices above p (i.e., vertices z with x3(z) ≥ n/2) to the vertices below p (i.e.,
vertices z with x3(z) < n/2). Then we use recursion for the vertices above p and
the vertices below p.

We construct Jp using the method of Section 3.2 with some modifications. Let
	 be the horizontal line with x2-coordinate equal to n/2. We create a subgraph
Jp,	 of Jp that connects the vertices above p and 	 to the vertices below p and
	. To that end, for each vertex z with (x2(z), x3(z)) ≥ (n/2, n/2) we create a
Steiner vertex z′ together with the arc (z, z′). Let u be the nearest ancestor of
z in T1 such that (x2(u), x3(u)) ≥ (n/2, n/2). If u exists then we add the arc
(u′, z′). Finally, for each vertex y with (x2(y), x3(y)) < (n/2, n/2) we locate the
nearest ancestor z of y in T1 such that (x2(z), x3(z)) ≥ (n/2, n/2). If z exists
then we add the arc (z′, y). Finally, we recurse for the vertices above 	 and for

Join-Reachability Problems in Directed Graphs 203

2

f [2]

e[0]

P2

G2

1 2 3 4 6 7

1

5

4

3

7

6

5

x1

x2

0

h[2, 3]

a[4, 13]

f [14, 15]

c[5, 8] e[9, 12]

g[6, 7] d[10, 11]

f [7]

a[6]

c[5]

g[4]

d[3]

b[2]

h[1]

e[0]G1

8 9 10 11 12 14 1513 16

a[4]

b[7]

h[6]

g[3]

f [2]

d[1]

e[0]

c[5]

b[7]

h[6]

c[5]

a[4]

g[3]

d[1]

P1

g[7, 12]

c[8, 9]

d[6, 15]

b[3, 4]

h[2, 5]

a[10, 11]

f [13, 14]

e[1, 16]b[1, 16]

Fig. 2. The mapping of the vertices of two rooted trees to horizontal segments in 3d.
The value in brackets above the segments correspond to the x3-coordinates.

the vertices below 	. The above construction implies that a�J b if and only if
I1(b) ⊆ I1(a) and (x2(b), x3(b)) ≤ (x2(a), x3(a)), as required.

Now we bound the size of our construction. From Section 3.2 we have that
the size of each substructure Jp is O(n log n). Since each vertex participates in
O(log n) such substructures, the total size is bounded by O(n log2 n).

3.4 Unoriented Trees

We can reduce the case of unoriented trees to that of rooted trees by applying
Thorup’s layer decomposition (see Section 1.1). We apply this decomposition to
both G1 and G2. Let G0

i , G
2
i , . . . , G

μi−1
i be the sequence of rooted trees produced

from Gi, i = 1, 2, where each Gj
i is a 2-layered tree. See Figure 3. For even j, Gj

i

consists of a core out-tree, formed by the arcs directed away from the root, and
a collection of fringe in-trees. The situation is reversed for odd j, where the core
tree is an in-tree and the fringe trees are out-trees. We call a vertex of the core
tree a core vertex ; we call a vertex of a fringe tree (excluding its root) a fringe
vertex.

204 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

L1

L2

L3

L0
a

b

c d

e f

g

i j

k
l

o

n

m

s

t

u

v

w

h

a

b

c
d

h

i
j

k

m

sn

o p

r

u

v

w

b

c d

e f

i j

l

p

q r

s

t

w e f

g

l

q

q t

G0

G1

G

g

G3

G2
k

r

p

Fig. 3. An unoriented tree and its sequence of 2-layered trees. Fringe trees are encircled.

We build J as the union of join-reachability graphs Ji,j for each pair (Gi
1, G

j
2).

Each graph Ji,j is constructed similarly to Section 3.3, with the exception that
we have to take special care for the fringe vertices. (We also remark that in
general Ji,j �= J (Gi

1, G
j
2).) A vertex z ∈ V (Gi

1)∩V (Gj
2) is included in Ji,j if one

of the following cases hold: (i) z is a core vertex in at least one of Gi
1 and Gj

2,
or (ii) z is a fringe vertex in both Gi

1 and Gj
2 and the corresponding fringe trees

containing z are either both in-trees or both out-trees. Let Vi,j be the vertices
in V (Gi

1) ∩ V (Gj
2) that satisfy the above condition.

If Vi,j = ∅ then Ji,j is empty. Now suppose Vi,j �= ∅. First consider the case
where the core of Gi

1 is an out-tree. We contract each fringe in-tree to its root and
let the new core supervertex correspond to the vertices of the contracted fringe
tree. Let Ĝi

1 be the out-tree produced from this process. Equivalently, if the core
of Gi

1 is an in-tree then the contraction of the fringe out-trees produces an in-
tree Ĝi

1. We repeat the same process for Gj
2. Next, we assign a depth-first search

interval I1(z) to each vertex z in Ĝi
1 and a depth-first search interval I2(z) to

each vertex z in Ĝj
2, as in Section 3.3. The vertices in Vi,j are assigned a depth-

first search interval in both trees, and therefore can be mapped to horizontal
segments in a 3d space, as in Section 3.3. Hence, we can employ the method
of Section 3.3 with some necessary changes that involve the fringe vertices. Let
z ∈ Vi,j be a fringe vertex in at least one of Gi

1 and Gj
2. If the fringe tree

containing z is an in-tree then we only include in Ji,j arcs leaving z; otherwise
we only include arcs entering z.

Finally we need to show that the size of the resulting graph is O(n log2 n).
This follows from the fact that each subgraph Ji,j has size O(n log2 n) and that
each vertex can appear in at most four such subgraphs. Theorem 2(b) follows.

Join-Reachability Problems in Directed Graphs 205

3.5 Planar Digraphs

Now we turn to planar digraphs and combine our previous constructions with
Thorup’s reachability oracle [12]. From this combination we derive the bounds
stated in Theorem 2(c) and (d). First we need to provide some details for the
reachability oracle of [12].

Let G be a planar digraph, and let G0, G1, . . . , Gμ−1 be the sequence of 2-
layered digraphs produced from G as described in Section 1.1. Consider one
of these digraphs Gi. The next step is to obtain a separator decomposition of
Gi. To that end, we treat Gi as an undirected graph and compute a separator
S whose removal separates Gi into components, each with at most half the
vertices. The separator S consists of three root paths of a spanning tree of Gi

rooted at r0. Because Gi is 2-layered, each root path in S corresponds to at
most two dipaths in Gi. The key idea now is to process each separator dipath
Q and find the connections between V (Gi) and Q. For each v ∈ V (Gi) two
quantities are computed: (i) fromv[Q] which is equal to rQ(u), where u ∈ Q is
the vertex with the highest rank in Q such that u�Gi v, and (ii) tov[Q] which
is equal to rQ(u), where u ∈ Q is the vertex with the lowest rank in Q such
that v �Gi u. Clearly there is a path from a to b that passes though Q if and
only if toa[Q] ≤ fromb[Q]. The same process is carried out recursively for each
component of Gi \ V (S). The depth of this recursion is O(log n), so each vertex
is connected to O(log n) separator dipaths. The space and construction time for
this structure is O(n log n).

Now we consider how to construct a join-reachability graph when G1 is a
planar digraph. We begin with the case where G2 is a dipath. First we perform
the layer decomposition of G1 and construct the corresponding graph sequence
G0

1, G
1
1, . . . , G

μ−1
1 . Then we form pairs of digraphs Pi = {Gi

1, G
i
2} where Gi

2

is a dipath containing only the vertices in V (Gi
1) in the order they appear in

G2. Clearly a �J b if and only if a �Jι(b)−1 b or a �Jι(b) b, where Ji is the
join-reachability graph of Pi. Then J is formed from the union of J0, . . . ,Jμ−1.

To construct Ji we perform the separator decomposition of Gi
1, so that each

vertex is associated with O(log n) separator dipaths. Let Q be such a separator
dipath. Also, let VQ be the set of vertices that have a successor or a predecessor
in Q. We build a subgraph Ji,Q of Ji for the vertices in VQ; Ji is formed from the
union of the subgraphs Ji,Q for all the separator dipaths of Gi

1. The construction
of Ji,Q is carried out as follows. Let z ∈ VQ. If z has a predecessor in Q then
we create a vertex z− which is assigned coordinates x1(z−) = fromz[Q] and
x2(z−) = rG2(z), and add the arc (z, z−). Similarly, if z has a successor in Q
then we create a vertex z+ which is assigned coordinates x1(z+) = toz[Q] and
x2(z+) = rG2(z), and add the arc (z+, z).

Now we can use the method of Section 3.1 to build the rest of Ji,Q, so that
a�Ji,Q b if and only if (x1(a+), x2(a+)) ≤ (x1(b−), x2(b−)). Let 	 be the vertical
line with x1-coordinate equal to n/2. The first step is to construct the subgraph
of Ji,Q that connects the vertices a+ with x1(a+) ≤ n/2 to the vertices b−

with x1(b−) ≥ n/2. For each such b− we create a Steiner vertex b′ and add
the arc (b′, b−). Also, we assign to b′ the coordinates (n/2, x2(b−)). We connect

206 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

these Steiner vertices in a dipath starting from the vertex with the lowest x2-
coordinate. Next, for each vertex a+ with x1(a+) ≤ n/2 we locate the Steiner
vertex b′ with the smallest x2-coordinate such that x2(a+) ≤ x2(b′). If b′ exists
we add the arc (a+, b′). Finally we recurse for the vertices with x1-coordinate in
[1, n/2) and for the vertices with x1-coordinate in (n/2, n].

It remains to bound the size of J . From Section 3.1, we have |Ji,Q| =
O(|VQ| log |VQ|). Moreover, the bound

∑
Q |VQ| = O(|V (Gi

1)| log |V (Gi
1)|), where

the sum is taken over all separator paths of Gi
1, implies |Ji| ≤

∑
Q |Ji,Q| =

O(|V (Gi
1)| log2 |V (Gi

1)|). Finally, since
∑

i |V (Gi
1)| = O(n) we obtain |J | ≤∑

i |Ji| = O(n log2 n).
We handle the case where G2 is an unordered dipath as noted in Section

3.1, which implies Theorem 2(c). The methods we developed here in combina-
tion with the structures of Section 3.4 result to a join-reachability graph of size
O(n log3 n) for a planar digraph and an unoriented tree. The same bound of
O(n log3 n) is achieved for two planar digraphs, as stated in Theorem 2(d).

3.6 General Digraphs

A technique that is used to speed up transitive closure and reachability com-
putations is to cover a digraph with simple structures such as dipaths, chains,
or trees (e.g., see [1]). Such techniques are well-suited to our framework as they
can be combined with the structures we developed earlier. We also remark that
the use of the preprocessing steps of Section 1.1 reduces the problem from gen-
eral digraphs to acyclic and 2-layered digraphs. In this section we describe how
to obtain join-reachability graphs with the use of dipath covers. This gives the
bounds stated in Theorem 2(e)-(g); similar results can be derived with the use of
tree covers. Again for simplicity, we first consider the case where G1 is a general
digraph and G2 is a dipath.

A dipath cover is a decomposition of a digraph into vertex-disjoint dipaths.
Let P 1

1 , P 2
1 , . . . Pκ1

1 be a dipath cover of G1. For each vertex v and each path
P i

1 we compute fromv[P i
1], i.e., rP i

1
(z) where z ∈ P i

1 is the vertex with the
highest rank in P i

1 such that z �G1 v. Let P i
2 be the dipath that consists of the

vertices in P i
1 ordered by increasing rank in G2. Also, set fromv[P i

2] = rP i
2
(z)

where z ∈ P i
2 is the vertex with the largest rank such that rG2(z) ≤ rG2(v).

Let VP i
1

be set of vertices that have a predecessor in P i
1 . We build a subgraph

Ji of J that connects the vertices of P i
1 to VP i

1
. Then J is formed from the

union of the subgraphs Ji. For each z ∈ VP i
1

we create a vertex z− which is
assigned coordinates x1(z−) = fromz[P i

1] and x2(z−) = fromz[P i
2], and add

the arc (z−, z). Also, for each z ∈ P i
1 we create a vertex z+ which is assigned

coordinates x1(z+) = rP i
1
(z) and x2(z+) = rP i

2
(z), and add the arc (z, z+).

Now we can build a join-reachability graph, so that a �Ji b if and only if
(x1(a+), x2(a+)) ≤ (x1(b−), x2(b−)), as in Section 3.5.

The size of this graph is bounded by
∑

i |VP i
1
| log |VP i

1
| = O(κ1n log n), which

implies the result of Theorem 2(e). We can extend this method to handle two
general digraphs and obtain the bound of Theorem 2(g). The case where G2 is

Join-Reachability Problems in Directed Graphs 207

planar digraph is handled by combining the above method with the techniques
of Section 3.5, resulting to Theorem 2(f).

4 Data Structures

Now we deal with the data structure version of the join-reachability problem.
Our goal is to construct an efficient data structure for J = J (G1, G2) such that
given a query vertex b it can report all vertices a satisfying a �J b. We state
the efficiency of a structure using the notation 〈s(n), q(n, k)〉 which refers to a
data structure with O(s(n)) space and O(q(n, k)) query time for reporting k
elements. In order to design efficient join-reachability data structures we apply
the techniques we developed in Section 3. The bounds that we achieve this way
are summarized in the following theorem. The proof is given in the full version
of the paper [6].

Theorem 3. Given two digraphs G1 and G2 with n vertices we can construct
join-reachability data structures with the following efficiency:
(a) 〈n, k〉 when G1 is an unoriented tree and G2 is an unoriented dipath.
(b) 〈n, log n + k〉 when G1 is an out-tree and G2 is an unoriented tree.
(c) 〈n logε n, log log n+k〉 (for any constant ε > 0), when G1 and G2 are unori-

ented trees.
(d) 〈n log n, k log n〉 when G1 is planar digraph and G2 is an unoriented tree.
(e) 〈n log2 n, k log2 n〉 when both G1 and G2 are planar digraphs.
(f) 〈nκ1, k〉 when G1 is a general digraph that can be covered with κ1 vertex-

disjoint dipaths and G2 is an unoriented tree.
(g) 〈n(κ1 + log n), kκ1 log n〉 or 〈nκ1 log n, k log n〉 when G1 is a general digraph

that can be covered with κ1 vertex-disjoint dipaths and G2 is planar digraph.
(h) 〈n(κ1 +κ2), κ1κ2 +k〉 or 〈nκ1κ2, k〉 when each Gi, i = 1, 2, is a digraph that

can be covered with κi vertex-disjoint dipaths.

5 Conclusions and Open Problems

We considered the computational and combinatorial complexity of the join-
reachability graph, and the design of efficient join-reachability data structures
for a variety of graph classes. We believe that several open problems deserve
further investigation. For instance, from the combinatorial complexity aspect, it
would be interesting to prove or disprove that an O(m · polylog(n)) bound on
the size of the join-reachability graph J ({G1, G2}) is attainable when G1 is a
general digraph with n vertices and m arcs and G2 is a dipath. Another direction
is to consider the problem of approximating the smallest join-reachability graph
for specific graph classes. From the data structures side, one can investigate how
to support the following type of counting queries: Given a pair of query ver-
tices compute the number of their common predecessors in J . While some of
our structures can be easily extended in order to support such counting queries,
there are several cases (e.g., for planar digraphs) where we need to overcome
various technical difficulties.

208 L. Georgiadis, S.D. Nikolopoulos, and L. Palios

Acknowledgements. We would like to thank Li Zhang for several useful discus-
sions.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive re-
lationships in large data and knowledge bases. In: SIGMOD 1989: Proceedings of
the 1989 ACM SIGMOD International Conference on Management of Data, pp.
253–262 (1989)

2. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM J. Comput. 1(2), 131–137 (1972)

3. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: WWW 2001: Proceedings of the 10th International Conference on
World Wide Web, pp. 613–622 (2001)

4. Georgiadis, L.: Computing frequency dominators and related problems. In: Hong,
S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp.
704–715. Springer, Heidelberg (2008)

5. Georgiadis, L.: Testing 2-vertex connectivity and computing pairs of vertex-disjoint
s-t paths in digraphs. In: Proc. 37th Int’l. Coll. on Automata, Languages, and
Programming, pp. 738–749 (2010)

6. Georgiadis, L., Nikolopoulos, S.D., Palios, L.: Join-reachability problems in directed
graphs. Technical Report arXiv:1012.4938v1 [cs.DS] (2010)

7. Georgiadis, L., Tarjan, R.E.: Dominator tree verification and vertex-disjoint paths.
In: Proc. 16th ACM-SIAM Symp. on Discrete Algorithms, pp. 433–442 (2005)

8. Kameda, T.: On the vector representation of the reachability in planar directed
graphs. Information Processing Letters 3(3), 75–77 (1975)

9. Katriel, I., Kutz, M., Skutella, M.: Reachability substitutes for planar digraphs.
Technical Report MPI-I-2005-1-002, Max-Planck-Institut Für Informatik (2005)

10. Talamo, M., Vocca, P.: An efficient data structure for lattice operations. SIAM J.
Comput. 28(5), 1783–1805 (1999)

11. Tamassia, R., Tollis, I.G.: Dynamic reachability in planar digraphs with one source
and one sink. Theoretical Computer Science 119(2), 331–343 (1993)

12. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. Journal of the ACM 51(6), 993–1024 (2004)

13. Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: Answering graph
reachability queries in constant time. In: ICDE 2006: Proceedings of the 22nd
International Conference on Data Engineering, p. 75 (2006)

Graphs of Bounded Treewidth

Can Be Canonized in AC1

Fabian Wagner

Inst. für Theoretische Informatik, Universität Ulm, Germany
fabian.wagner@uni-ulm.de

Abstract. In recent results the complexity of isomorphism testing on
graphs of bounded treewidth is improved to TC1 [17] and further to
LogCFL [11]. The computation of canonical forms or a canonical labeling
provides more information than isomorphism testing. Whether canon-
ization is in NC or even TC1 was stated as an open question in [18].
Köbler and Verbitsky [20] give a TC2 canonical labeling algorithm. We
show that a canonical labeling can be computed in AC1. This is based on
several ideas, e.g. that approximate tree decompositions of logarithmic
depth can be obtained in logspace [15], and techniques of Lindells tree
canonization algorithm [22]. We define recursively what we call a minimal
description which gives with respect to some parameters in a logarithmic
number of levels a canonical invariant together with an arrangement of
all vertices. From this we compute a canonical labeling.

Keywords: Bounded Treewidth, Graph Isomorphism, Canonization.

1 Introduction

The graph isomorphism problem (GI) consists in deciding whether two given
graphs are isomorphic, i.e. whether there is a permutation of all vertices that
keeps the edge relation unchanged. GI is a well-studied problem in theoretical
computer science because of its many applications and also, because it is one of
the few natural problems in this class not known to be solvable in polynomial
time, nor known to be NP-complete.

By studying GI, graph canonization receives a great attention because of its
strong connection to GI. Thereby, it provides more information than isomor-
phism testing. Let G be a class of graphs. A complete invariant is a function
f : G → {0, 1}∗ where f(G) = f(H) if and only if both graphs G, H ∈ G are
isomorphic. With this function f , the isomorphism classes can be distinguished.
A canonical form is a function f : G → G where f(G) is a representative of the
(equivalence) class of isomorphic graphs to G in G. For example, if f(G) is de-
fined to be the lexicographically least graph in G isomorphic to G, then the
computation of f is in general NP-hard (c.f. [3,23]). Clearly, graph isomorphism
or the computation of a complete invariant is polynomial time reducible to graph
canonization, the reverse direction is open. A canonical labeling assigns to each
graph G in G a map σ that is an automorphism from G to the representative Gσ

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 209–222, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

210 F. Wagner

of the class of isomorphic graphs to G in G. Note, function f with f(G) = Gσ is
a canonical form. Canonical labeling is the strongest among these notions.

Robertson and Seymour [25] introduced the concept of bounded treewidth
graphs, also known as partial k-trees. Intuitively speaking, the treewidth of a
graph measures how much it differs from a tree. This concept has been used
very successfully in algorithmics and fixed-parameter tractability, see for ex-
ample [7,9]. Thereby, many problems that are NP-hard in general become ef-
ficiently solvable when restricted to graphs of bounded treewidth. Bodlaender
showed in [5] that GI can be solved in polynomial time when restricted to this
class of graphs. Grohe and Verbitsky [17] give a TC1 upper bound, they use the
Weisfeiler-Lehman algorithm that can be implemented as a logspace uniform
family of TC1-circuits. This bound was improved recently to LogCFL in [11].

For the canonization problems the situation is different. Köbler and Verbit-
sky [20] give an NC (in fact TC2) canonical labeling algorithm. They prove a
theorem showing that, for some special classes of graphs from a complete invari-
ant that is computable in TCk, a canonical labeling is computable in TCk+1. With
this theorem and with the fact that for bounded treewidth graphs a complete
invariant can be computed in TC1 [17], the result follows.

For many subclasses of bounded treewidth graphs, logspace algorithms are
known, e.g. for canonization of trees [22], partial 2-trees [2], planar graphs [13],
K3,3-minor free and K5-minor free graphs [14], and also for isomorphism testing
on full k-trees [19].

Das, Torán, and Wagner [11] give an isomorphism algorithm that runs in
LogCFL. The algorithm uses the fact that an arbitrary tree decomposition for
one of the input graphs G can be computed in LogCFL [26] and by a recent result
in L [15]. They set up the tree decomposition for the other graph H in parallel to
the isomorphism test. For a graph there could be an exponential number of tree
decompositions. That is one reason, why their algorithm cannot be generalized
to a canonization algorithm.

The logspace-version of Courcelle’s Theorem in [15] puts many problems on
bounded treewidth graphs which can be formulated in monadic second-order
logic in L, e.g. 3-colorability, Hamiltonicity, or reachability problems. But it is
not known how to formulate isomorphism testing or canonization problems in
this logic. The research on the difficulty of computing tree decompositions of
width at most k has a long history, there is a linear time bound of Bodlaender’s
Theorem [6] improving previous results [1,24]. Also the parallel time complexity
has been reduced to O(log n) in a line of papers [10,4,21,8]. The space complexity
has been reduced to LogCFL in [26] and recently to L by Elberfeld, Jakoby, and
Tantau [15], where a logspace-version of Bodlaender’s Theorem is shown: a tree
decomposition for graphs of treewidth at most k can be computed in logspace.
The following lemmas are important, to guarantee the treewidth bound of the
input graph and a logarithmic depth bound.

Lemma 1. ([15]) For every k ≥ 1 the language Tree-Width-k, which contains
exactly the graphs of treewidth at most k, is L-complete under first-order reductions.

Graphs of Bounded Treewidth Can Be Canonized in AC1 211

Lemma 2. ([15]) Let G be a graph with n vertices and treewidth at most k.
There is a tree decomposition that has width 4k + 3 and depth at most c log2 n,
where c is a constant depending only on k.

The idea is, that for a split component of size m a child bag is defined in such a
way that the split components of this child bag have size at most m/2 + c with
c a constant. This tree decomposition is called approximate.

Our contribution. The existence of a tree decomposition of logarithmic depth
is the basis for our algorithm, to compute a canonical labeling in AC1. The fol-
lowing observations are the key ingredients to guarantee this tight depth bound.

– Each bag is a separator, i.e. for each split component we have to find a child
bag. Two child bags are connected via their parent bag only. Hence, the
canonization process can be done for each child individually and in parallel.

– Many tasks are computed in preprocessing steps, e.g. whether the graph has
tree width k, all possible bags of size 4k+3, for each bag its possible children
and the parent (with respect to a fixed root), or the split components for
each possible bag and their size.

– The total number of possible bags of size 4k + 3 in arbitrary tree decompo-
sitions is bounded by n4k+3, where n is the size of the input graph. For each
bag we define locally a circuit with unbounded fan-in gates. The total size
of the circuit is also polynomial.

– We compute for each possible bag what we call a minimal description. It
depends on some parameters, it consists of a unique description of the bag
itself and a minimal description for the children, it is defined recursively.

– We limit the number of recursion levels of the minimal description to
O(log n). Here we use Lemma 2, namely the existence of tree decomposi-
tions of logarithmic depth.

– A circuit of constant depth selects locally valid child bags to get the smallest
minimal description. The difficult task is here sorting minimal descriptions.
For this we use ideas from Lindells tree canonization algorithm [22]. Instead
of a logarithmic space bound we have here logarithmic depth circuits.

– The length of the minimal description for a balanced subtree depends on its
depth only. In the minimal description, a bag is described by its adjacency
matrix in at most (4k + 3)2 bits, if necessary we fill up to this total length
repeating an extra symbol. We use the fact that a tree can be made balanced
and also binary where its depth increases just by a constant factor (c.f. [15]).

The minimal description depends on the selection of the root bag, too. We run
through all bags as roots and some further parameters in parallel. The minimal
description so far is a canonical invariant for the input graph G. A canonizing
function is obtained then as follows. While computing the minimal description we
bring the vertices in a unique order. Then we use a simple logspace-computable
procedure (see e.g. [12]) where vertices are renamed according to this order. This
renaming is a canonical labeling. We get the main Theorem.

Theorem 1. For every k, there is an AC1-computable function that computes a
canonical labeling for graphs of treewidth at most k.

212 F. Wagner

2 Preliminaries

We use the notion interval [p, q] for the set {p, p+1, . . . , q}. The symmetric group
Sym(V) is the set of all permutations of the elements in V .

A word or string is a tuple of symbols of an alphabet Σ. The con-
catenation of two words W = w1w2 . . . wk, W ′ = w′

1w
′
2 . . . w′

k is denoted
WW ′ = w1w2 . . . wkw′

1w
′
2 . . . w′

k.

Graphs. A graph G is a pair (V, E) with a set of vertices V (or V (G)) and edges
E ⊆ V × V (or E(G)). If not stated otherwise, we consider simple graphs, i.e.
without loops, directed edges or multi-edges. G[X] is a subgraph of G induced
on vertex set X , i.e. G[X] has vertices X and edges E(G[X]) = (X×X)∩E(G).
Let X ⊆ V then we write in short G \X = G[V (G) \X]. Let H be a subgraph
of G, then G \H = G[V (G) \ V (H)].

A graph G is connected if there is a path between every pair of vertices in G.
Let U ⊆ V be a set of vertices. Let C be a connected component in G \ U and
let U ′ be those vertices from U connected to V (C) in G. The induced subgraph
of G on the set of vertices V (C)∪U ′ is a split component of U in G. We call U ′

the minimal separating set of C in U .
A tree is a connected graph that is free of cycles. Vertices in trees are also

called nodes. A root of a tree is one designated node. A neighbor of a node is
called parent if it is closer to the root and it is called child otherwise. A leaf of
a tree has no children. In a binary tree, every node has at most two children. A
binary tree with root is balanced, if for every node the number of nodes in its
left and right subtrees differs by at most one. A binary tree is perfect, if it is
balanced and every leaf is at the same depth. The depth of a tree is the longest
distance from the root to a leaf. Let T and T ′ be trees rooted at r and r′ and
consider edges to be directed from roots to leafs. An embedding of T into T ′

is an injective mapping ι : V (T) → V (T ′) where ι(r) = r′ and for every pair
(a, b) ∈ V (T) there is a directed path from a to b iff there is a directed path
from ι(a) to ι(b).

An isomorphism is a mapping φ of the vertices of one graph G onto the vertices
of another graph H (we also write G ∼= H) that preserves the edge relations, i.e.
{u, v} ∈ E(G) ⇔ {φ(u), φ(v)} ∈ E(H). Let G be a class of graphs. A complete
invariant is a function f : G → {0, 1}∗ where f(G) = f(H) iff G ∼= H . A
canonical form is a complete invariant with f : G → G where f(G) ∼= G, we call
f(G) canon of G. A canonical labeling is a function f : G → Sym(V (G)) which
assigns to a graph G an automorphism σ onto the canon, i.e. the function g with
g(G) = Gσ is a canonical form.

A tree decomposition of a graph G = (V, E) is a pair ({Xi | i ∈ I}, T = (I, F)),
where {Xi | i ∈ I} is a collection of subsets of V called bags, and T is a tree
with node set I and edge set F , satisfying the following properties:
i)
⋃

i∈I Xi = V
ii) for each {u, v} ∈ E, there is an i ∈ I with u, v ∈ Xi and

iii) for each v ∈ V , the set of nodes {i | v ∈ Xi} forms a subtree of T .

Graphs of Bounded Treewidth Can Be Canonized in AC1 213

The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F)) of G is
max{|Xi| | i ∈ I} − 1. The treewidth of a graph G is the minimum width over
all possible tree decompositions of G. An example is shown in Figure 1.

XrX1

X4

u

v w

(a)

X3

X2

v

uG1

v w

G2

(c)(b)

r

1

4

T

2

3

Fig. 1. (a) A graph G where dashed lines indicate bags Xr, X1, . . . , X4.
(b) The set of bags form a tree decomposition T of G. Let r be the root.
(c) The split components G1 and G2 of Xr are shown. The sets {u, v}, {v, w} ⊆ Xr are
the minimal separating sets for G1 and G2, respectively.

Complexity. A circuit Cn is a finite directed acyclic graph with vertices asso-
ciated to n input variables or gates (e.g. Boolean functions from a given base).
For an assignment of the variables we associate a Boolean value to every gate in
the circuit. The value of an input is the one given by the assignment to the cor-
responding variable. For an internal gate, the value is the one computed by the
corresponding function, from the values of the gate inputs. The circuit computes
a function f(x1, . . . , xn). This is the value of the designated output gate. The
indegree of the vertices is called fanin. A circuit family {C1, C2, . . . } is a collec-
tion of circuits where Cn has n inputs. We consider here DLOGTIME-uniform
circuit families, i.e. a deterministic Turing machine on input of 1n, integer i,
and bit b, with O(log n) time bound accepts iff the i-th bit of the description
of Cn is b.

L (also denoted logspace) is the class of decision problems computable by
deterministic logarithmic space Turing machines. LogCFL consists of all decision
problems that can be Turing reduced in logspace to a context free language.
Problems in LogCFL can be computed also by uniform families of polynomial size
and logarithmic depth circuits over bounded fan-in and -gates and unbounded
fan-in or -gates. The class NCi contains the problems computable by uniform
families of polynomial size and O(logi n) depth circuits over bounded fan-in
and -gates and bounded fan-in or -gates. Note, that NC =

⋃
i NCi. ACi is defined

as NCi but with unbounded fan-in gates. The class TCi contains the problems
computable by uniform families of polynomial size and O(logi n) depth circuits
with threshold gates, i.e. gates that evaluate to 1 if at least half of their inputs
are 1. The known relationships among these classes are: AC0 ⊂ TC0 ⊆ NC1 ⊆
L ⊆ LogCFL ⊆ AC1 ⊆ TC1 ⊆ NC2 ⊆ AC2 ⊆ TC2 ⊆ · · · ⊆ NC ⊆ P ⊆ NP.

214 F. Wagner

3 Canonization of Graphs of Bounded Treewidth

To prove Theorem 1, we construct a circuit where we have some preprocessing
steps, e.g. for the split components of bags and their size. Then in O(log n)
steps, we compute for each bag X what we call a good minimal description, i.e.
a unique tree decomposition that depends on some parameters. After the first
level, we have good minimal descriptions for single bags, after the second level for
bags which have leaf bags as children, and so on. After O(log n) levels, we have
good minimal descriptions for tree decompositions of logarithmic depth, and by
Lemma 2 a tree decomposition for the whole graph, if it exists. At each level,
we select the smallest good minimal description. Once we find a good minimal
description at some level i, then this remains unchanged in all levels ≥ i. First,
we describe some tools and then the construction of the minimal description.

3.1 Pre-ordering for Canonization and Valid Child Bags

Canonical Representation of Bags. Comparing adjacency matrices lexico-
graphically is a natural way to test isomorphism. In general, this is an NP-
complete problem, but when comparing bags this can be done with constant
effort. We define adj(G[X], σ) to be the adjacency matrix of the induced sub-
graph where the vertices of X are arranged in a fixed order given by σ ∈ Sym(X).
We compare adjacency matrices bitwise line by line. For example, in Figure 1

we have adj (G[Xr], (u v w
u v w)) =

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠ and adj (G[Xr], (u v w
u w v)) =

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠
Child bags and their order. In the following two definitions we bring together
the logarithmic depth bound of Lemma 2 and what we need for canonization.
First, we define an order on split components that is just partially canonical,
but which is the basis for our canonization algorithm. Second, we define what we
call valid child bags, we use them to construct approximate tree decompositions.
Note, although we consider graphs of treewidth at most k, we get approximate
tree decompositions that allow bags of size at most 4k + 3.

Definition 1. Let G be a graph of treewidth at most k and X a bag of size
≤ 4k+3. Let G1, . . . , Gm be its split components. Let σ ∈ Sym(X) be an ordering
on the vertices in X. Let S1, . . . , Sl ⊆ X be a complete list of minimal separating
sets of G1, . . . , Gm in X. We define an order on G1, . . . , Gm with respect to σ
using two criteria lexicographically:

1. primarily according to σ, it induces a lexicographical order on S1, . . . , Sl, and
2. among them which are equal, we reorder them according to the sizes of their

associated split components.

Note, l is a constant, because l ≤ m and in an approximate tree decomposition
l ≤ |P(X)| (i.e. l ≤ (4k + 3)! ≤ 2(4k+3) log(4k+3)), that is the number of all
possible subsets of X . The primary order of split components is deduced from σ.
We give an example: let σ =

(
1 2 3 4
2 3 1 4

)
and S1 = {1, 2, 4} and S2 = {3, 4}.

When sorted according to σ (i.e. 2 < 3 < 1 < 4), then we have (2, 1, 4) < (3, 4)

Graphs of Bounded Treewidth Can Be Canonized in AC1 215

lexicographically and therefore S1 comes before S2. The second criterion brings
together split components of equal size, this is useful for canonization and also
for the complexity analysis (also see [22]). There are split components which
are equal according to Definition 1. To get a default order, they can be sorted
according to the label of the minimal vertex in the split components except X .
To rearrange them is part of the canonization algorithm.

Definition 2. Consider G, X, G1, . . . , Gm being sorted and σ as in Defini-
tion 1. Let 1 ≤ p ≤ q ≤ m, we consider now Gp, . . . , Gq. Let S1, . . . , Sl′ be all
the minimal separating sets of Gp, . . . , Gq. We define three types of valid child
bags of X with respect to split components Gp, . . . , Gq as follows:

(a) Take minimal separating sets of bags: If l′ > 1 and Sj is the minimal sepa-
rating set for Gp then the set Sj is a valid child bag.

(b) Take a subset of X and add vertices from Gi: If l′ = 1 then for Vi ⊆ X ∪
V (Gi) with i ∈ {p, . . . , q} with |X ∪Vi| ≤ 4k+3 and ∅ ⊂ (X ∩Vi) ⊂ X, then
the set Vi is a valid child bag.

(c) The set X is a valid child bag.

3.2 Minimal Description for Graphs of Bounded Treewidth

We define a minimal description for graphs. This is based on approximate tree
decompositions which are balanced and depth bounded. The minimal description
is computed with respect to some parameters.

By Lemma 2 we know that there exist tree decompositions of logarithmic
depth, we show that we can guarantee this depth restriction, we use a so called
depth parameter. We consider perfect trees only.

There is a task where split components are partitioned into classes, e.g. if they
have the same size. By Definition 1 split components are ordered and hence, split
components in a class can be addressed by an interval, e.g. [p, q] for Gp, . . . , Gq.
Another parameter is a permutation σ, it describes a unique order of the vertices
in the current root bag X .

We consider first some cases concerning the depth parameter. That is, when
the total depth is exceeded and we return no-canon, or when a minimal descrip-
tion is already computed in the previous step and we just take this.
In the good case the minimal description is a word C0C

′
0C1C2 ∈ {0, 1, 2}∗.

Here, C0 and C′
0 contain information of the root, C1 and C2 contain the

minimal description of the children. To specify which of two minimal descriptions
is the smaller one, we define an order ≺ on them.

Definition 3. We define an order ≺ on minimal descriptions C = C0C
′
0C1C2

and D = D0D
′
0D1D2. We define C ≺ D if

– C0 < D0 where we compare adjacency matrices line by line and bit by bit, or
– C0 = D0 but C′

0 < D′
0 where we compare not vertex labels according to σ

but their positions in the parent of X (example: for C′
0 = (b, c, d, e) and the

ordered vertices of Parent(X) = (a, b, c, d) we have C′
0 = (2, 3, 4)), or

216 F. Wagner

– C0 = D0 and C′
0 = D′

0 but C1 ≺ D1, recursively, or
– C0 = D0 and C′

0 = D′
0 and C1 = D1 but C2 ≺ D2, recursively.

The construction. Let G be a graph of size n, treewidth at most k, a root
bag X of size ≤ 4k + 3, a permutation σ ∈ Sym(X), an interval [p, q] (with
1 ≤ p ≤ q ≤ m and G1, . . . , Gm the split components in G \ X arranged ac-
cording to Definition 1) and depth parameter d ∈ Z. A minimal description
C(G, X, σ, (p, q), d) is no-canon or a word in {0, 1, 2}∗ defined as follows.

If d < 0 then C(G, X, σ, (p, q), d) = no-canon, this tree decomposition exceeds
the maximum depth. We call a minimal description good if it is different to
no-canon.

If d > 0 and C(G, X, σ, (p, q), d−1) �= no-canon then we just copy it from the
previous level, that is C(G, X, σ, (p, q), d) = C(G, X, σ, (p, q), d − 1).

If d = 0 or d > 0 and C(G, X, σ, (p, q), d − 1) = no-canon then
C(G, X, σ, (p, q), d) = C0C

′
0C1C2 or no-canon defined as follows:

(1) C0 encodes the adjacency matrix of the root bag X.
C0 = adj(G[X], σ){2}(4k+3)2−|X|2 , the adjacency matrix of the root,

filled up with symbol 2, an extra symbol to get the total length (4k + 3)2.
(2) C′

0 encodes the vertices of X ordered by σ. This part is important for can-
onization, when bringing all vertices in a unique order.

C′
0 = v1 . . . vi{2}�log(n)�·((4k+3)−i) with i = |X |. The vertices are or-

dered according to σ, (i.e. σ(vj) = j for all vj ∈ X). We assume, that the
description of every vertex has a fixed length of exactly 	log n
 bits.

(3) Definition of C1 and C2 in further subcases. We only consider the split com-
ponents with their index inside the interval [p, q], these are (q − p + 1) many.
Let S1, . . . , Sl ⊆ X be all the minimal separating sets (in lexicographical in-
creasing order according to σ) for split components Gp, . . . , Gq which are
ordered according to Definition 1. We partition the split components cor-
responding to the members in S1: let Θ1, . . . , Θt be the classes where the
corresponding split components have equal size. These size classes are ar-
ranged in increasing order of the sizes of the corresponding split components.
To define C1 and C2, we consider the following cases.
(i) p < q and l > 1. That is, we have many such minimal split components,

we separate them from the others and recursively canonize them in C1

and the others in C2.
Let Gp, . . . , Gq1 be the set of split components separated by S1. Let ψ
be obtained from σ after removing the vertices from X \ S1, we define

C1 = C(G, X, σ, (p, q1), d− 1) = C(G′, S1, ψ, (1, q1 − p + 1), d− 1)
where G′ = G[V (Gp) ∪ · · · ∪ V (Gq1)]. Note, since the split components
are ordered according to Definition 1, we just take [p, q1] of [p, q]. If l > 2
then C2 = C(G, X, σ, (q1 + 1, q), d− 1).
If l = 2 then we define ψ′ accordingly as ψ before with respect to S2,

C2 = C(G, X, σ, (q1 + 1, q), d− 1) = C(G′, S2, ψ
′, (1, q − q1), d− 1)

where G′ = G[V (Gq1+1) ∪ · · · ∪ V (Gq)].

Graphs of Bounded Treewidth Can Be Canonized in AC1 217

(ii) p < q and l = 1 and t > 1. That is, we have a single minimum
separating set S1 but many size classes. We try to find how to partition
the size classes which result in the smallest minimal description, i.e. such
that we have two sets Θ1, . . . , Θi and Θi+1, . . . , Θt.
For each i ∈ {1, . . . , t− 1} let Gp, . . . , Gqi be the set of split components
of size classes Θ1, . . . , Θi. We define C1,i = C(G, X, σ, (p, qi), d− 1) and
C2,i = C(G, X, σ, (qi + 1, q), d− 1).
Let (Cmin, C′

min) be the lexicographically smallest pair according to ≺
in the set {(C1,i, C2,i), (C2,i, C1,i) | 1 ≤ i ≤ t− 1}. We define C1 = Cmin

and C2 = C′
min.

(iii) p < q and l = 1 and t = 1. That is, we have many children from one
separating set and one size class. We canonize all the children Gp, . . . , Gq

individually and sort their minimal descriptions in ascending order ac-
cording to ≺. Then, we do the same rearrangements with the split com-
ponents Gp, . . . , Gq. In C1, we canonize the first half of them and in
C2 the second half. Note, the sorting of q − p + 1 children is expensive,
hence we reduce the depth parameter logarithmically in the length of
this interval.
Let a = 	logc(q − p + 1)
 where c = 3/2. For each i ∈ {p, . . . , q} we
define C′

i = C(G, X, σ, (i, i), d − a). If one of the C′
i = no-canon then

C1 = no-canon. Rearrange C′
p, . . . , C

′
q in lexicographical increasing order

according to ≺. Rearrange Gp, . . . , Gq according to the new order of
C′

p, . . . , C
′
q. Let i = 	(q−p)/2
. We define C1 = C(G, X, σ, (p, p+i), d−1)

and C2 = C(G, X, σ, (p + i + 1, q), d− 1).
(iv) p = q. That is, we consider one single child. We consider all valid child

bags of type (b) in Definition 2. The one which gives the smallest min-
imal description is selected for C1, whereas C2 is filled up with default
symbols.
For each set of vertices Vi ⊆ X ∪ Gp that is a valid child bag as in
Definition 2 with Vi ∩ Gp �= ∅, and each permutation ψi,j ∈ Sym(Vi)
which is obtained from σ when removing the vertices in X \ Vi and
adding to the right the vertices in Vi \X in an arbitrary order, we define
C1,(i,j) = C(Gp \ (X \ Vi), Vi, ψi,j , (1, m′), d− 1)
and (i, j) ∈ I, where m′ is the number of split components in Gp\(X∪Vi),
i.e. the subgraph Gp \ (X \ Vi) when removing Vi. We define C1 to be
the minimum of

⋃
(i,j)∈I C1,(i,j). C2 = {2}f(d−1) is a default description

for a complete binary subtree. We define f : d �→ (|C0|+ |C′
0|) · (2d − 1),

i.e. f(d− 1) =
[
(4k + 3)2 + 	log n
 · (4k + 3)

] · (2(d−1) − 1).
(v) m = 0. That is, X is not a separating set in G, i.e. a leaf node

in a tree decomposition. If no valid child bag exists, then we define
C1 = C2 = {2}f(d−1) with f as in case (iv). That is, both have a default
description. Then, a good minimal description is returned.

In general, there is one exception, namely if one of C1 or C2 returns no-canon,
then the minimal description is no-canon.
If C2 ≺ C1, then swap them.
If C1 or C2 is no-canon then C(G, X, σ, (p, q), d) = no-canon.

218 F. Wagner

The depth of the tree decomposition. We mention some points that have
an influence on the depth of the tree decomposition. Note, the construction
for m > 2 uses some ideas from the proof of a Theorem in a full version of [15],
where a binary tree is computed by introducing white nodes. The main difference
is here, that the whole tree is not given explicitly. Our construction prefers
a balanced and binary tree-structure. The depth analysis is inspired from the
following more restricted version of Theorem 3.14 in [16].

Lemma 3. (c.f. [16]) For every tree T with n vertices and height h, there is a
binary tree T ′ of height at most O(h+ log n) such that T can be embedded in T ′.

By Lemma 2 the depth of a tree decomposition that has width 4k + 3 is at
most c log2 n for a constant c that depends on k only. Hence, when starting
with d = c′ log2 n (for a constant c′) we get a minimal description for C(G, X, σ,
(1, m), d).

We observe, that our definition guarantees the O(log n) depth bound. Af-
ter O(1) steps, the size of the split components is divided at least by 2. In
Case (i) we partition the subtrees that belong to the smallest minimal separat-
ing set S1 of X . We can do this, since the number of separating sets is a constant.
In Case (ii) we run through all possibilities to split the size classes Θ1, . . . , Θt

into two sets Θ1, . . . , Θi and Θi+1, . . . , Θt. For example, in two steps we can iso-
late a size class Θi where all the subtrees have together more than half the total
size of the subgraph rooted at X : first, split off those to the left and second,
those to the right of Θi.

In Case (iii) we sort the split components and partition them such that in C1

at most one more split component is canonized than in C2. This can only happen
when there are more than two split components considered currently. Therefore
the size of C1 is at most 2/3 the size of C0C

′
0C1C2 and this is the reason why

c = 3/2 in a = 	logc q − p + 1
. Later in the complexity analysis part (see
Lemma 7) we will show that with an inductive argument, split components of
size n/i can be canonized by a sub-circuit of depth c log(n/i) = c log n− c log i,
with c a constant. Hence, to encounter case (iii) recursively is no problem.

In Case (iv) we have a single split component. Hence, we get the following.

Lemma 4. There is a constant c which depends on k only such that for all
graphs G of treewidth at most k, there is a root bag X with m split components
in G \X, permutation σ ∈ Sym(X) and depth parameter d = c log2 n, such that
the minimal description C(G, X, σ, (1, m), d) is good.

The next is to show that the minimal description is unique up to isomorphism.

Lemma 5. For a graph G, a constant c, and two bags X, X ′ with permuta-
tions σ ∈ Sym(X) and σ′ ∈ Sym(X ′), with m split components in G \X (and
G \X ′), and depth parameters d = d′ = c log n (for a constant c) it holds that
C(G, X, σ, (1, m), d) = C(G, X ′, σ′, (1, m), d′) if and only if there is an automor-
phism φ of G which maps X onto X ′ via σ(σ′)−1.

A proof can be found in a full version. The main arguments are: an automorphism
preserves the edge relation, and hence a tree decomposition. In the construction,

Graphs of Bounded Treewidth Can Be Canonized in AC1 219

we run through all possibilities to define valid child bags. We take a bag as child
iff it gives the smallest minimal description.

To obtain a canonical invariant for graphs of treewidth at most k, run through
all sets of at most 4k + 3 vertices as initial root bag X and all permutations
σ ∈ Sym(X). According to Lemma 4 there exist good minimal descriptions.
We ignore the ones with no-canon and select the smallest of all these good
minimal descriptions. Thereby, recursively in the parts C′

0, we relabel the vertices
according to their first occurrence in the good minimal description.

Theorem 2. The smallest minimal description of all bags X and permuta-
tions σ is a canonical invariant for graphs of treewidth at most k.

3.3 Complexity Analysis

We prove now that graphs of bounded treewidth can be canonized in AC1. We
construct a circuit which consists of preprocessing steps and a main part, where
in O(log n) levels a minimal description of the input graph is computed.

Valid child bags. We consider Definition 2. We show, that valid child bags can
be computed in logspace. For an AC1-circuit, in a preprocessing step we compute
in parallel for each possible bag which are its split components and its valid child
bags. A proof is given in a full version.

Lemma 6. On input of a graph G a bag X with a child bag Y , and an inter-
val [p, q], there is a logspace-computable function that computes whether Y is a
valid child bag of X.

Computing the minimum and sorting. We discuss how to compute the
minimal description by an AC1-circuit. By the recursive construction of minimal
descriptions in Section 3.2, the depth of the circuit corresponds to the depth of
the tree decompositions. The next lemma is essential in the proof of Theorem 1.

Lemma 7. Let G be a graph of treewidth at most k, X a root bag, σ ∈ Sym(X)
a permutation, [p, q] an interval, d a depth parameter, and suppose we have given
minimal descriptions for all valid child bags and all split components Gp, . . . , Gq

for all depth parameters ≤ d− 1.

(a) For Case (iii) in the minimal description on Page 217 there is a (depth
i)-bounded AC1-computable function that computes the smallest minimal de-
scriptions with depth parameter d− i for each of the i equal sized split com-
ponents, and arranges them in lexicographical increasing order.

(b) For all the other cases, there is an AC0-computable function that computes
the smallest minimal description with depth parameter d − 1 for each split
component.

On input of the minimal descriptions from (a) and (b), there is an AC0-
computable function that computes the minimal description C(G, X, σ, (p, q), d).

220 F. Wagner

In the proof, the main tasks are of the following simpler form. Finding the
minimum out of N strings of at most N symbols each, can be done in AC0.
Sorting i strings of at most N symbols each can be done by a depth-O(log i)
bounded AC1 circuit. Finally, we show that the length of a minimal description
C depends on the input length n, treewidth k and depth parameter d, i.e.

|C| = (|C0|+ |C′
0|) · (2d − 1) =

[
(4k + 3)2 + (4k + 3) · 	log n
] · (2d − 1).

For Case (iv) and Case (v), we compute f in a preprocessing step.
We summarize, to get an AC1-circuit that computes C(G, X, σ, (1, m), d),

we have preprocessing steps to ensure that the input graph G has treewidth
at most k (by Lemma 1), and circuits which compute in parallel for pairs of
bags X, Y whether Y is a valid child of X . We have O(log n) levels of small cir-
cuits where minimal descriptions for subtrees are computed, selected or sorted.
The total size is polynomial and the total depth of the circuit is O(log n).

Theorem 3. There is a constant c and an AC1-computable function that on
input of graph G of treewidth at most k, root bag X of size ≤ 4k + 3, permutation
σ ∈ Sym(X), m split components in G \ X and depth parameter d = c log n
computes a good minimal description C(G, X, σ, (1, m), d) if one exists.

3.4 The Canonization

The minimal description depends on some parameters: a bag X , a permutation
σ ∈ Sym(X) and depth parameter d. There are at most n4k+3 many bags and
(4k + 3)! permutations for X . According to Lemma 4 we can fix d = c log2 n
(for a constant c) and still get a good minimal description. Hence, we set up
n4k+3 ·(4k+3)! many circuits in parallel and compute all possibilities of minimal
descriptions. We select in AC0 the smallest of all these minimal descriptions.

Theorem 4. There is an AC1-computable function, that computes a canonical
invariant for graphs of treewidth at most k.

Compute the canonical labeling. To obtain a canonizing function the al-
gorithm is doing some extra work in parallel. While computing the minimal
description we bring the vertices in a unique order. For this, in a minimal de-
scription C = C0C

′
0C1C2 the part C′

0 plays a central role.
The minimal description gives an order to the bags. We list now the vertices of

the bags in a fixed order and the inserted vertices of each bag with their original
vertex names.

To define the canonizing function, we use a simple logspace-computable pro-
cedure which can be found e.g. in [12]. The order of the occurrences of all vertices
defines a fixed order. After renaming the vertices according to this order we ar-
range the edges in lexicographical increasing order. Note, the renaming of the
vertices is an automorphism from G onto its canon, i.e. this is a canonical la-
beling. Hence, the canonization of graphs of treewidth at most k is in AC1. This
completes the proof of Theorem 1.
Conclusion. We improve the upper bound of the canonization problem for
bounded treewidth graphs very close to the LogCFL upper bound of isomorphism

Graphs of Bounded Treewidth Can Be Canonized in AC1 221

testing [11]. However, it is not clear how to improve the new AC1 upper bound
with known standard techniques for canonization. In [15] interesting concepts
for bounded treewidth graphs are introduced, they state the question whether
these can be used for isomorphism testing or canonization.

Acknowledgment. We thank Jacobo Torán and anonymous referees for com-
ments and helpful discussions.

References

1. Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in
a k-tree. SIAM Journal on Algebraic and Discrete Methods 8(2), 277–284 (1987)

2. Arvind, V., Das, B., Köbler, J.: A logspace algorithm for partial 2-tree canoniza-
tion. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer
Science – Theory and Applications. LNCS, vol. 5010, pp. 40–51. Springer, Heidel-
berg (2008)

3. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: 15th Annual ACM Sym-
posium on Theory of Computing (STOC), pp. 171–183 (1983)

4. Bodlaender, H.L.: NC-algorithms for graphs with small treewidth. In: Proceedings
of the 14th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), pp. 1–10 (1989)

5. Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. Journal of Algorithms 11, 631–644 (1990)

6. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

7. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science 209, 1–45 (1998)

8. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. SIAM Journal on Computing 27(6), 1725–1746 (1998)

9. Bodlaender, H.L., Koster, A.M.: Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal 51(3), 255–269 (2008)

10. Chandrasekharan, N., Hedetniemi, S.T.: Fast parallel algorithms for tree decom-
position and parsing partial k-trees. In: proceedings of the 26th Annual Allerton
Conference on Communication, Control, and Computing, pp. 283–292 (1988)

11. Das, B., Torán, J., Wagner, F.: Restricted space algorithms for isomorphism on
bounded treewidth graphs. In: Proceedings of the 27th International Symposium
on Theoretical Aspects of Computer Science, pp. 227–238 (2010)

12. Datta, S., Limaye, N., Nimbhorkar, P.: 3-connected planar graph isomorphism is
in log-space. In: Proceedings of the 28th Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), pp. 153–162
(2008)

13. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph
isomorphism is in log-space. In: Annual IEEE Conference on Computational Com-
plexity (CCC), pp. 203–214 (2009)

14. Datta, S., Nimbhorkar, P., Thierauf, T., Wagner, F.: Isomorphism for K3,3-free and
K5-free graphs is in log-space. In: Proceedings of the 29th Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
pp. 145–156 (2009)

222 F. Wagner

15. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bod-
laender and Courcelle. In: Proceedings of the 51st Annual Symposium on Founda-
tions of Computer Science, FOCS (2010)

16. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bod-
laender and Courcelle. Technical Report TR10-062, Electronic Colloquium on Com-
putational Complexity, ECCC (2010)

17. Grohe, M., Verbitsky, O.: Testing graph isomorphism in parallel by playing a game.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4051, pp. 3–14. Springer, Heidelberg (2006)

18. Köbler, J.: On graph isomorphism for restricted graph classes. In: Beckmann, A.,
Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 241–256.
Springer, Heidelberg (2006)

19. Köbler, J., Kuhnert, S.: The isomorphism problem for k-trees is complete for
logspace. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp.
537–548. Springer, Heidelberg (2009)

20. Köbler, J., Verbitsky, O.: From invariants to canonization in parallel. In: Hirsch,
E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer Science – Theory
and Applications. LNCS, vol. 5010, pp. 216–227. Springer, Heidelberg (2008)

21. Lagergren, J.: Efficient parallel algorithms for tree-decomposition and related prob-
lems. In: In proceedings of the 31st Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 173–182 (1990)

22. Lindell, S.: A logspace algorithm for tree canonization (extended abstract). In: Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing (STOC),
pp. 400–404. ACM, New York (1992)

23. Luks, E.M.: Permutation groups and polynomial-time computation. DIMACS se-
ries in Discrete Mathematics and Theoretical Computer Science 11, 139–175 (1993)

24. Reed, B.A.: Finding approximate separators and computing tree width quickly.
In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing
(STOC), pp. 221–228 (1992)

25. Robertson, Seymour: Graph minors. II. algorithmic aspects of tree-width. Journal
of Algorithms (ALGORITHMS) 7(3), 309–322 (1986)

26. Wanke, E.: Bounded tree-width and LOGCFL. Journal of Algorithms 16 (1994)

Snakes and Cellular Automata: Reductions and

Inseparability Results�

Jarkko Kari

Department of Mathematics, University of Turku, FI-20014 Turku, Finland
jkari@utu.fi

Abstract. A careful analysis of an old undecidability proof reveals that
periodicity and non-surjectivity of two-dimensional cellular automata are
recursively inseparable properties. Analogously, Wang tile sets that ad-
mit tilings of arbitrarily long loops (and hence also infinite snakes) are
recursively inseparable from the tile sets that admit no loops and no
infinite snakes. The latter inseparability result actually implies the first
one in a trivial way.

1 Introduction

Tilings and two-dimensional cellular automata are closely related concepts.
Tilings of Z2 are static objects where a local, position invariant matching re-
lation specifies which patterns of symbols are allowed. These are also known as
two-dimensional subshifts of finite type. Cellular automata, in contrast, are dy-
namic counterparts determined by a local, position invariant update rule of the
symbols. Cellular automata are continuous in the standard product topology,
and hence are endomorphisms of the full (two-dimensional) shift.

The tiling problem is the decision problem that asks if given tiles admit at least
one valid tiling of the plane. The problem was proved undecidable by R. Berger
in 1966 [4]. The tiling problem turns out to be very useful in establishing unde-
cidability results concerning cellular automata. In [8,9] the tiling problem was
reduced into the decision problem that asks whether a given two-dimensional
cellular automaton is reversible, that is, admits an inverse rule that retraces the
evolution back in time. The reduction is based on a complex set of tiles with
arrows on them that satisfies a plane-filling property: If one moves from tile-to-
tile, following the arrows, and if one never sees a tiling error, then the trajectory
is forced to be plane-filling in the sense that arbitrarily large squares are fully
covered by it.

Using a similar construction, it was also shown in [9] that it is undecidable
whether a given two-dimensional cellular automaton is surjective, that is, has no
Garden-of-Eden configurations. These are configurations without a pre-image.
The surjectivity problem was later shown by B. Durand to have a simpler un-
decidability proof, where the complex tiles of [9] were replaced by much simpler

� Research supported by the Academy of Finland Grant 131558.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 223–232, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

224 J. Kari

ones [5]. One observation that we want to point out in the present talk is that –
even though it has been superseded by a better one – the original undecidabil-
ity proof has the advantage that the undecidability proofs for surjectivity and
reversibility can be combined into a single reduction that shows the following
inseparability result.

Theorem 1. The classes of

(a) non-surjective,
(b) periodic,

two-dimensional cellular automata are recursively inseparable.

The theorem states that any decidable class of cellular automata that contains
all periodic cellular automata must also contain some non-surjective ones. As a
direct corollary to we see that properties such as injectivity and surjectivity on
periodic configurations, openness and surjectivity on q-finite configurations are
undecidable among two-dimensional cellular automata, since all these properties
separate reversible from non-surjective automata.

The plane-filling tiles of [8,9] have found new applications in algorithmic ques-
tions that arise in the context of the tiling model of self-assembly. In this model,
Wang tiles – unit square tiles with colored edges – stick to each other to form
patches [1,16]. A new tile may stick to a patch if the colors on the adjacent
edges match, and if the total strength of the bonds – given by a numerical value
associated to each color – exceeds some threshold value. Algorithmic questions
concerning the model arise. For example, the termination problem asks to deter-
mine, for a given a set of tiles, whether the assembly process necessarily reaches a
terminal patch in which no new tiles can stick, or is unbounded growth possible.
It turns out that the termination problem is undecidable [2,3], even under the
following two restricted types of non-numeric assembly rules: Under the weak
sticking, a new tile may attach to a patch whenever one of the common edges
has the same color. Under the strong sticking, a tile may attach to a patch only
if all common edges between the tile and the patch have matching colors. The
undecidability proofs in [2,3] are reductions from the tiling problem, using the
plane filling tiles in a similar fashion as in [8,9].

It is easy to see that the termination problem is, in fact, equivalent to the
infinite snake tiling problem. This question asks whether it is possible to form
from the given Wang tiles an infinite, non-self-intersecting sequence on the plane,
where consecutive tiles are placed in adjacent positions. In a strong snake (termed
a zipper in [2,3]) any two neighboring tiles of the snake are required to have
a common color on their shared edge, while in a weak snake (called a ribbon
in [2,3]) only the colors of the consecutive tiles are required to match (and
where the snake returns back to touch an earlier tile, matching is not required).
The decidability status of the (weak) infinite snake tiling problem was actually
proposed independently as an open problem already in [6].

One can also ask a similar question about the possibility to form a loop on
the plane using the given tiles. Again, the question can be formulated under

Snakes and Cellular Automata: Reductions and Inseparability Results 225

the strong and under the weak matching rules, depending on whether colors are
required to match also between neighbors that are not consecutive in the loop.
The weak and the strong loop tiling problems were proved undecidable in [10]
using a construction similar to [5]. One can prove the loop formation undecidable
also using the more complex plane-filling tiles from [9]. Again, this approach has
the advantage that the infinite snake tiling problem and the loop tiling problem
can be treated in the same reduction, so that – in an exact analogy to the
reversibility and surjectivity problems of two-dimensional cellular automata –
we obtain the following inseparability result.

Theorem 2. The classes of Wang tile sets that

(a) admit tilings of arbitrarily long loops (and hence also infinite snakes),
(b) do not admit any tilings of loops or infinite snakes,

are recursively inseparable. This inseparability holds even if in (a) we require
strong matching while in (b) the weak matching may be used.

In Section 2 we recall the relevant definitions on cellular automata, tilings, plane-
filling paths and snake tiling problems. Section 3 contains proofs of Theorems 1
and 2.

2 Definitions

Let us call the elements of Z2 cells. Assignments c : Z2 −→ S of symbols from
a finite set S to cells are called configurations. The set of all configurations
over S is denoted by SZ2

. A neighborhood vector of size m is an m-tuple N =
(n1, n2, . . . , nm) where ni ∈ Z2, i = 1, 2 . . . , m, specify the relative offsets from
each cell to its neighbors: The neighbors of cell n ∈ Z2 are the cells n + n1, n +
n2, . . . , n + nm. We assume that ni �= nj for i �= j so that each neighbor only
appears once in the list.

2.1 Tilings

A tile set is triplet (T, N, R) where T is finite set whose elements are the tiles,
N is a neighborhood vector of size m and R ⊆ T m is a relation that specifies
forbidden patterns. Tiling is valid in position n ∈ Z2 of a configuration t ∈ T Z2

if the pattern in position n is not forbidden, that is, if

[t(n + n1), t(n + n2), . . . , t(n + nm)] �∈ R.

A configuration is a valid tiling if it is valid in all positions n ∈ Z2. Since N and
R are usually clear from the context, we often simply refer to T as the tile set.

Wang tiles are particular kind of tiles where the matching condition is given
by coloring of the edges of unit square tiles. Two adjacent tiles stick if the colors
on the abutting edges are the same. A configuration is a valid tiling if all pairs of

226 J. Kari

adjacent tiles stick. The following two decision problems concerning Wang tiles
are used in Section 3 to obtain our inseparability results.

The domino problem is the decision problem to determine if a given Wang tile
set admits a valid tiling. The domino problem is undecidable [4]. Let L ⊆ Σ∗

be a recursively enumerable language over alphabet Σ. There is an effective
reduction that produces, for any given w ∈ Σ∗, a Wang tile set T that admits a
valid tiling if and only if w �∈ L.

Let b ∈ T . A b-finite configuration over T is any t ∈ T Z2
whose b-support

{n ∈ Z2 | t(n) �= b} is finite. A b-uniform configuration t assigns t(n) = b for
all n ∈ Z2. A Wang tile b is called blank if the b-uniform configuration is a valid
tiling. In the finite tiling problem one is given a Wang tile set T and a blank tile
b ∈ T . The question is to determine whether there exists a valid b-finite tiling
that is not b-uniform. This problem is easily seen to be undecidable [9] using the
techniques developed by H.Wang [15]. If K ⊆ Σ∗ is recursively enumerable then
there is an effective reduction that produces, for any given w ∈ Σ∗, a Wang tile
set T and b ∈ T such that a non-uniform, valid b-finite tiling exists if and only
if w ∈ K.

2.2 Cellular Automata

A cellular automaton (CA) is a triplet (S, N, f) where S is a finite state set, N
is a neighborhood vector of size m, and f : Sm −→ S is an update rule that
determines the new state of each cell based on the pattern in its neighborhood.
The CA defines a transformation F : SZ

2 −→ SZ
2

of the configuration space
where F (c) = e when

∀n ∈ Z2 : e(n) = f [c(n + n1), c(n + n2), . . . , c(n + nm)].

Transformation F is called a CA function. It is well known that CA functions are
precisely those transformations of the configuration space that are translation
invariant and continuous in the product topology [7].

If F is a bijection then the inverse F−1 is always a CA function [7]. In this
case the CA is called reversible. A CA is called injective (surjective) if F is
one-to-one (onto, respectively). Let us call a pair c, e ∈ SZd

of configurations
asymptotic if the set {n ∈ Z2 | c(n) �= e(n)} of cells where they differ is finite.
Function F is pre-injective if for all asymptotic c, e ∈ SZ2

such that c �= e, we
have F (c) �= F (e). The important Garden-of-Eden-theorem states that a CA
function is surjective if and only if it is pre-injective [13,14]. In particular, this
implies that injective CA are automatically also surjective, and hence reversible.
See [11] for more details on the basic concepts and results on cellular automata.

2.3 Directed Tiles and Paths

Let us associate to each tile a pointer to a neighbor. In the following these
follower vectors take values from the set {(±1, 0), (0,±1)}, that is, the vector
points to one of the four adjacent neighbors of a cell. We obtain a directed tile

Snakes and Cellular Automata: Reductions and Inseparability Results 227

set (T, N, R, d) where (T, N, R) is a tile set and d : T −→ {(±1, 0), (0,±1)} gives
the follower vector of each tile.

Let t ∈ T Z2
be a configuration of directed tiles. An infinite sequence p1, p2, . . .

of cells pi ∈ Z2 is a directed path (or simply a path) on t if pi+1 = pi + d(t(pi))
for all i ∈ N. Positions on the path hence form a succession where the offset to
the next position is always given by the follower vector of the tile in the previous
position. For any n ∈ N0 and (x, y) ∈ Z2, let us denote by

Sn
x,y = {x− n, . . . , x + n} × {y − n, . . . , y + n}

the square of size (2n + 1) × (2n + 1) centered at position (x, y). We say that
directed path p1, p2, . . . is plane-filling if it covers arbitrarily large squares, that
is if, for all n ∈ N, there exists (x, y) ∈ Z2 such that Sn

x,y ⊆ {pi | i ∈ N}.
In [8,9] a directed tile set Snakes is constructed that satisfies the follow-

ing plane-filling property: Consider a directed path p1, p2, . . . on an arbitrary
configuration t. Then either

(i) for some i ∈ N the tiling in t is not valid in position pi, or
(ii) the path is plane-filling.

Moreover, Snakes admits valid tilings. This tile set was used in reducing the
domino problem into the problem of determining whether a given two-dimensional
cellular automaton is reversible.

In [2,3] the construction is further improved for the purpose of applying it to
snake tilings. A set of directed Wang tiles is presented such that any directed
path p1, p2, . . . on any configuration t satisfies the following: Either

(i) for some i, j ∈ N the positions pi and pj are adjacent but the corresponding
Wang tiles t(pi) and t(pj) do not stick, or

(ii) the path is plane-filling.

In the improved Wang tile set, any infinite path that follows the directions must
be plane-filling if it does not contain a mismatch between two tiles belonging to
the path. This requires more than the original construction of Snakes where
the plane-filling path was forced to be formed under the stronger assumption
that there is no mismatch within the neighborhood of any tile of the path – and
this neighborhood may contain positions outside the path. The improvement
was established by going into a higher block presentation of the tiles.

In [9] the set Snakes is further modified for the purpose of proving surjectivity
of CA undecidable. For this goal, the paths are allowed to form loops that cover
squares with recognizable borders and centers. The higher block conversion can
be performed also on this set, analogously to [2,3], yielding a set of directed
Wang tiles Loops with the following property.

Property 1. The directed tile set Loops is partitioned into three disjoint sets A,
B and C. Let t ∈ T Z2

and let p1, p2, . . . be a directed path on t. Then one of
the following three cases holds:

228 J. Kari

(i) For some i, j ∈ N the positions pi and pj are adjacent but the corresponding
Wang tiles t(pi) and t(pj) do not stick, or

(ii) the path is plane-filling, or
(iii) the path is a loop that covers some (2n + 1)× (2n + 1) -square with A-tiles

on the boundary, a single B-tile at the center, and C-tiles elsewhere:

∃k ≥ 1, ∀i ∈ N : pi+k = pi,

∃n ∈ N, x, y ∈ Z : Sn
x,y ⊆ {pi | i ∈ N} and

⎧⎨⎩
∀p ∈ Sn

x,y \ Sn−1
x,y : t(p) ∈ A,

t(x, y) ∈ B,
∀p ∈ Sn−1

x,y \ {(x, y)} : t(p) ∈ C.

Moreover, there are valid tilings with paths that satisfy (ii), and for every n0 ∈ N
there are valid tilings with paths that satisfy (iii) for some n ≥ n0.

In Section 3 the tile set Loops is used to reduce the domino problem and the
finite tiling problem to prove inseparability results.

2.4 Snake Tiling Problems

Let T be a set of (directed) Wang tiles. In this section we define two variants
of infinite (directed) snakes. We call these strong and weak snakes, respectively.
We also define two analogous variants of (directed) loops.

Let us first consider the case when the tiles in T are directed. A strong infinite
directed snake is a directed path p1, p2, . . . on some configuration t ∈ T Z2

such
that

(a) the path does not cross itself: pi �= pj for i �= j, and
(b) There is no tiling error between any adjacent tiles on the path: for any

i, j ∈ N, if the positions pi and pj are adjacent then the corresponding
Wang tiles t(pi) and t(pj) stick.

Term “directed zipper” was used in [2,3] for strong infinite directed snakes. Note
that Property 1 states that all strong infinite directed snakes by Loops are
plane-filling.

A weak infinite directed snake is defined analogously but condition (b) above
is replaced by the weaker requirement that consecutive tiles on the path stick:

(b’) for all i ∈ N, tiles t(pi) and t(pi+1) stick.

These were called “directed ribbons” in [2,3].
The undirected variants are defined by allowing the path to continue from a

cell to any of its four adjacent neighbors. An undirected path is any sequence
p1, p2, . . . of positions such that pi and pi+1 are adjacent, for all i ∈ N. Let T be
a set of undirected Wang tiles. Strong infinite snakes and weak infinite snakes
are defined analogously to the directed variants, using undirected paths instead
of directed ones.

The (strong or weak) infinite snake tiling problems ask one to determine, for a
given (possibly directed) Wang tile set, whether a (strong or weak, respectively)

Snakes and Cellular Automata: Reductions and Inseparability Results 229

infinite snake exists. That is: is it possible to place tiles on the plane to form an
infinite succession of matching tiles. The difference between the strong and weak
variants is whether matching is required also between the adjacent tiles that are
not consecutive on the snake. All variants were proved undecidable in [2,3].

In [10] questions concerning loop formation were asked. For k > 2, a directed
loop of length k on configuration t is a finite initial segment p1, p2, . . . , pk of a
directed path on t in which pk+1 = p1 while pi �= pj for 1 ≤ i < j ≤ k. An
undirected loop is defined analogously from an undirected path, when the Wang
tiles have no directions. A strong (directed) loop is a (directed) loop in which
adjacent tiles match in color, while in a weak (directed) loop only consecutive
tiles of the loop (as well as the last and the first tile) are required to stick. It
was shown in [10] that it is undecidable is to determine if a given (directed or
undirected) tile set admits strong or weak loops.

By a standard compactness argument, the existence of arbitrarily long (weak
or strong) loops implies the existence of (weak or strong, respectively) infinite
snakes.

3 Inseparability Results

Let L, K ⊆ Σ∗ be two disjoint recursively enumerable languages over some
alphabet Σ that are recursively inseparable. This means that there is no recursive
set D ⊆ Σ∗ such that L ⊆ D and K ∩ D = ∅. Such sets are well known to
exist [12].

Because L is recursively enumerable one can, using the reduction method
of [4], effectively construct for any given word w ∈ Σ∗ a set T1 of Wang tiles
that admits a valid tiling of the plane if and only if w �∈ L.

Because K is recursively enumerable one can, using the reduction method
used in [9], effectively construct for any given word w ∈ Σ∗ a set T2 of Wang
tiles and b ∈ T2 such that there is a b-finite, non-uniform tiling of the plane if
and only if w ∈ K.

For any given w ∈ Σ∗, one can hence effectively construct the following di-
rected Wang tile set Tw ⊆ T1 × T2× Loops, where Loops is the directed Wang
tile set that satisfies Property 1. The color matching in Tw is checked in all three
components of the “sandwich” -tiles. The follower vector of a tile in Tw is given
by the follower vector in its Loops -component. We take into Tw all triplets
(s1, s2, l) ∈ T1 × T2× Loops under the following constraints:

(a) if l ∈ A then s2 = b, and
(b) if l ∈ B then s2 �= b.

Here A, B ⊆ Loops refer to the subsets described in Property 1. The constraints
guarantee that a correctly tiled square with A-tiles on the boundary and a B-
tile in the center is possible only if T2 admits a b-finite, non-uniform tiling. The
construction proves the following claim:

Proposition 1. The following two classes of directed tile sets T are recursively
inseparable:

230 J. Kari

(a) Sets T that admit valid tilings with arbitrarily long directed loops.
(b) Sets T that do not admit any strong directed loops or any strong directed

infinite snakes.

Proof. We use the sandwich tile set Tw above, constructed effectively for any
given w ∈ Σ∗.

1) Suppose w ∈ L. Then T1 does not admit a tiling of the plane, and T2 does
not admit a b-finite, non-uniform tiling of the plane. Consider an arbitrary con-
figuration t ∈ T Z2

w and a directed path P = p1, p2, . . . on t. By Property 1 of
Loops, either

(i) P contains a color mismatch in the Loops component between two adjacent
tiles on P , or

(ii) P is plane-filling, or
(iii) P is a loop that covers some square with A-tiles on the boundary and a

B-tile at the center.

But in case (ii) there must be a mismatch in the T1-components of two tiles
on the path because otherwise T1 would admit valid tilings of arbitrarily large
squares. And in case (iii) there must be a mismatch in the T2-components,
because otherwise T2 would admit a tiling of a square with b’s on the boundary
and some non-b tile in the center. We conclude that every directed path must
contain a color mismatch between two of its tiles, and hence Tw belongs to class
(b) in the statement of the theorem.

2) Suppose w ∈ K. Then T1 admits a tiling t1 of the plane, and T2 admits a
b-finite, non-uniform tiling t2 of the plane. Consider a configuration t over Tw

whose first and second layers consist of these valid tilings t1 and t2, respectively.
The third layer of t contains a correct tiling by Loops, with a directed loop that
covers a (2n+1)×(2n+1) square Sn

x,y. By Property 1, this square may be chosen
for arbitrarily large values of n, and positioned in such a way that t2(x, y) �= b
and t2(p) = b for all p ∈ Sn

x,y \ Sn−1
x,y . We conclude that there are valid tilings

with arbitrarily long correctly tiled loops, and Tw is in class (a).

The two cases above prove the claimed recursive inseparability. Any recursive
separation of (a) and (b) would namely provide a recursive separation between
languages L and K.

Proof of Theorem 2. Proposition 1 directly implies Theorem 2 using the motif-
construction of [2,3]. In this construction, directed tiles are effectively replaced
by a sequence of undirected “minitiles” that only can stick to form contours of
large squares with suitable bumps and dents along the boundaries that simulate
the colors of the original tiles. For any given directed Wang tile set T , this
effective construction provides a set U of undirected Wang tiles such that

T admits strong directed loops
�

U admits strong loops
�

U admits weak loops

T admits strong directed infinite snakes
�

U admits strong infinite snakes
�

U admits weak infinite snakes

Snakes and Cellular Automata: Reductions and Inseparability Results 231

Moreover, if the loops admitted by T are arbitrarily long, so are the loops ad-
mitted by U . This reduction clearly takes classes (a) and (b) of Proposition 1
into the classes (a) and (b) of Theorem 2, respectively.

Proof of Theorem 1. This is a direct reduction from Theorem 2: For any
undirected Wang tile set T we associate a two-dimensional cellular automaton
F with the state set T ×{↑,→, ↓,←}×{0, 1}. The local update rule keeps the T -
component and the arrow-component of a state unchanged. The bit-component
may be changed. A cell n is active if and only if its T -component sticks to the
T -component of its follower cell. The follower cell is simply the adjacent cell in
the direction of the arrow at n. An inactive cell does not change its state, while
an active cells replaces its bit x by x⊕ y, where y is the bit of the follower and
⊕ denotes the modulo two addition of the bits.

If T is in class (a) of Theorem 2 then the CA F is not surjective: Consider
a configuration t ∈ T Z2

that contains a valid weak loop. Assign the cells of the
loop the arrows that point to next cell of the loop. All cells of the loop are then
active. Because F executes the XOR CA along the loop, it is clear that a CA
configuration with an odd number of 1’s on the loop has no pre-image. The CA
is not surjective.

If T is in class (b) of Theorem 2 then the CA F is reversible, and even
periodic: Any path in any configuration over T contains a tiling error between
some consecutive tiles. By compactness this means that there is a uniform bound
n such that for any path p1, p2, . . . on any configuration t ∈ T Z2

, there is a
mismatch between consecutive tiles t(pi) and t(pi+1), for some i ≤ n. Cell pi is
inactive, and it easily follows that CA F is 2n-periodic.

4 Conclusions

We have shown the recursive inseparability of two-dimensional cellular automata
that are periodic from those that are not surjective. It remains an open challenge
to make these classes smaller. In particular, it seems likely that among non-
surjective CA there would be interesting proper subclasses that are inseparable
from the periodic cellular automata. For example, one wonders whether one can
recursively separate the periodic CA from the CA that are ultimately periodic
but not periodic.

References

1. Adleman, L.: Towards a mathematical theory of self-assembly. Technical Report
00-722, Department of Computer Science, University of Southern California (2000)

2. Adleman, L., Kari, J., Kari, L., Reishus, D.: On the decidability of self-asssembly
of infinite ribbons. In: Proceedings of FOCS 2002, 43rd Annual Symposium on
Foundations of Computer Science, pp. 530–537 (2002)

3. Adleman, L., Kari, J., Kari, L., Reishus, D., Sośık, P.: The Undecidability of the In-
finite Ribbon Problem: Implications for Computing by Self-Assembly. SIAM Jour-
nal on Computing 38(6), 2356–2381 (2009)

232 J. Kari

4. Berger, R.: The undecidability of the domino problem. Mem. Amer. Math. Soc. 66
(1966)

5. Durand, B.: The surjectivity problem for 2D Cellular Automata. Journal of Com-
puter and System Sciences 49, 149–182 (1994)

6. Etzion-Petruschka, Y., Harel, D., Myers, D.: On the solvability of domino snake
problems. Theoretical Computer Science 131, 243–269 (1994)

7. Hedlund, G.: Endomorphisms and automorphisms of shift dynamical systems.
Mathematical Systems Theory 3, 320–375 (1969)

8. Kari, J.: Reversibility of 2D cellular automata is undecidable. Physica D 45, 379–
385 (1990)

9. Kari, J.: Reversibility and surjectivity problems of cellular automata. Journal of
Computer and System Sciences 48, 149–182 (1994)

10. Kari, J.: Infinite Snake Tiling Problems. In: Ito, M., Toyama, M. (eds.) DLT 2002.
LNCS, vol. 2450, pp. 67–77. Springer, Heidelberg (2003)

11. Kari, J.: Theory of Cellular Automata: a survey. Theoretical Computer Science 334,
3–33 (2005)

12. Kleene, S.: A symmetric form of Gödel’s theorem. Proceedings of the Koninkli-
jke Nederlandse Akademie van Wetenschappen, Series A 53, 800–802 (1950); Also
inIndagationes Mathematicae 12, 244–246 (1950)

13. Moore, E.F.: Machine Models of Self-reproduction. In: Proceedings of the Sympo-
sium in Applied Mathematics, vol. 14, pp. 17–33 (1962)

14. Myhill, J.: The Converse to Moore’s Garden-of-Eden Theorem. Proceedings of the
American Mathematical Society 14, 685–686 (1963)

15. Wang, H.: Proving theorems by pattern recognition. II. Bell Systems Technical
Journal 40, 1–42 (1961)

16. Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D. thesis, California Institute
of Technology, Pasadena, CA (1998)

Computing the Clique-Width of Large Path

Powers in Linear Time via a New
Characterisation of Clique-Width

Pinar Heggernes1, Daniel Meister2, and Udi Rotics3

1 Department of Informatics, University of Bergen, Norway
pinar.heggernes@ii.uib.no

2 Theoretical Computer Science, University of Trier, Germany
daniel.meister@uni-trier.de

3 Netanya Academic College, Netanya, Israel
rotics@netanya.ac.il

Abstract. Clique-width is one of the most important graph parameters,
as many NP-hard graph problems are solvable in linear time on graphs
of bounded clique-width. Unfortunately, the computation of clique-width
is among the hardest problems. In fact, we do not know of any other
algorithm than brute force for the exact computation of clique-width
on any large graph class of unbounded clique-width. Another difficulty
about clique-width is the lack of alternative characterisations of it that
might help in coping with its hardness. In this paper, we present two
results. The first is a new characterisation of clique-width based on rooted
binary trees, completely without the use of labelled graphs. Our second
result is the exact computation of the clique-width of large path powers
in polynomial time, which has been an open problem for a decade. The
presented new characterisation is used to achieve this latter result. With
our result, large k-path powers constitute the first non-trivial infinite
class of graphs of unbounded clique-width whose clique-width can be
computed exactly in polynomial time.

1 Introduction

Clique-width is a graph parameter that has many algorithmic applications [5].
In particular, NP-hard graph problems that are expressible in a certain type of
monadic second-order logic admit algorithms with linear running time on graphs
whose clique-width is bounded by a constant [6, 22]. Unfortunately, it is NP-hard
to compute the clique-width of a given graph [9]. Fellows et al. ask whether the
computation of clique-width is fixed-parameter tractable when parametrised by
the clique-width of the input graph [9]. This question is still open. Furthermore,
we do not know of an algorithm with running time cn, where c is a constant.
Although clique-width has received a lot of attention recently [2, 4, 8, 9, 14, 15,
17–19, 21], positive results known on the computation of clique-width so far are
very restricted. Graphs of clique-width at most 3 can be recognised in polynomial
time, and their exact clique-width can be computed efficiently [3]. Examples of

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 233–246, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

234 P. Heggernes, D. Meister, and U. Rotics

such graph classes are cographs [7], trees and distance-hereditary graphs [10].
Regarding classes of unbounded clique-width, the class of square grids is the only
class for which a polynomial-time clique-width computation algorithm is known
[10].

Clique-width is often compared to treewidth, as the same set of problems
that are efficiently solvable on graphs of bounded clique-width are also efficiently
solvable on graphs of bounded treewidth. However, clique-width is more general
than treewidth, as graphs of bounded treewidth have bounded clique-width [4, 7],
whereas there are graph classes of bounded clique-width whose treewidth is not
bounded (for example complete graphs). For such graph classes, the gap between
the two parameters may be arbitrarily large (for example, the clique-width of a
complete graph is at most 2 and its treewidth is the number of vertices minus 1).
The known results on these two parameters so far make treewidth a much more
manageable graph parameter than clique-width. Although treewidth is also NP-
hard to compute in general, by Bodlaender’s celebrated result, graphs of bounded
treewidth can be recognised in linear time [1], and the complexity of computing
the treewidth is known for most of the well-known graph classes. We can say that
treewidth is well understood, whereas the same is not true for clique-width. For
example, treewidth has many characterisations, via tree decompositions, partial
k-trees, embeddings into chordal graphs, graph searching, and forbidden minors.
When it comes to clique-width, only little is known about characterisations.
Clique-width was originally defined as the smallest number of labels needed for
building a graph by application of labelled graph operations. During the last
two decades, only one other characterisation has been discovered [7]: For a finite
set C of labels, a C-construction of a graph G is a sequence (G0, . . . , Gr) of
C-labelled graphs on the vertex set of G, where each graph Gi is the disjoint
union of two C-labelled graphs and Gi+1 emerges from Gi by changing labels
or by adding the edges in one union graph of Gi. The size of set C bounds the
clique-width of G from above [7].

In this paper, we present a new characterisation of clique-width. It is based
on a rooted binary tree that iteratively partitions the vertex set into finally
singleton partition sets by obeying certain adjacency conditions. The clique-
width of a graph is then determined by the number of partition sets that are
active at a time. Using this characterisation, we show that k-path powers with
at least (k + 1)2 vertices have clique-width k + 2. This solves a long-standing
open problem posed in [10]. A k-path power is the k-power graph of a simple
path. The only known result for classes of unbounded clique-width so far has
been for square grids: the clique-width of a k× k grid is k +1 [10]. Note that for
each positive integer k, there is only one k× k grid, whereas there are infinitely
many k-path powers.

Some earlier results that emerged from the study of the computational com-
plexity of the relative clique-width and NLC-width problems can be seen as
related to our new characterisation. NLC-width is a graph parameter similar to
clique-width, and the two parameters differ by a factor of at most 2 [16]. Müller
and Urner gave a characterisation of NLC-width through decomposition trees

Computing the Clique-Width of Large Path Powers in Linear Time 235

[21]. Our characterisation of clique-width is more than a direct generalisation of
previous characterisation results for NLC-width. For NLC-width, the employed
precise formulation defines a partition that is unique. The context of the decom-
position defined at some other node of the decomposition tree is not required,
as it is implicit. This is not the case for clique-width. In particular, the partition
at some tree node is not unique. This may also explain part of the difficulties
that have arisen from understanding and working with clique-width.

2 Definitions and Notation

We consider only simple finite undirected graphs. For G = (V, E) a graph, V =
V (G) is the vertex set of G and E = E(G) is the edge set of G. Edges are denoted
as uv, where vertices u and v are adjacent in G, i.e., u is a neighbour of v in G.
For a vertex u of G, the (open) neighbourhood of u, denoted as NG(u), is the
set of neighbours of u in G. A graph H is a subgraph of G if V (H) ⊆ V (G) and
E(H) ⊆ E(G). For a set X ⊆ V (G), the subgraph of G induced by X , denoted
as G[X], is the subgraph H of G such that V (H) = X and for every vertex
pair u, v of H , if uv ∈ E(G) then uv ∈ E(H). For two graphs G and H , where
V (G) ∩ V (H) = ∅, the disjoint union of G and H , denoted as G ⊕ H , is the
graph (V (G) ∪ V (H), E(G) ∪ E(H)).

For an integer k ≥ 1, a k-labelled graph is an ordered triple G = (V, E,)
where (V, E) is a graph and 	 : V → {1, . . . , k}, the label function of G. We
define four types of operations for k-labelled graphs:

– for 1 ≤ i ≤ k and u a vertex, i(u) is the k-labelled graph
({u}, ∅, {(u, i)}).

– for 1 ≤ i < j ≤ k and G a k-labelled graph, ηi,j(G) is the k-labelled graph
that emerges from G by adding all edges between vertices with label i and
vertices with label j that are not edges of G.

– for 1 ≤ i, j ≤ k, i �= j, and G a k-labelled graph, ρi→j(G) is the k-labelled
graph that emerges from G by changing all occurrences of label i into label j.

– for G and H k-labelled graphs, G ⊕ H is the k-labelled graph on vertex
set V (G)∪ V (H) and with edge set E(G)∪E(H) and each vertex of G⊕H
has the same label as in G or H .

A k-expression is built from the four operation types: i(u) is a k-expression,
for α and ω k-expressions, ηi,j(α), ρi→j(α) and (α⊕ ω) are k-expressions. Each
expression defines a tree, that we also call a clique-width tree. By val(α), we
denote the labelled graph that is defined by α. For a graph G, an integer k and a
k-expression α, we say that α is a k-expression for G if there is a label function 	
for G with (V (G), E(G),) = val(α). The clique-width of G, denoted as cwd(G),
is the smallest integer k such that there is a k-expression for G.

3 Supergroup Partitions Characterise Clique-Width

We aim at a characterisation of clique-width. Previously, clique-width and its
variant linear clique-width were investigated by using the graph notion of a

236 P. Heggernes, D. Meister, and U. Rotics

d

e

f

a

b

c

Fig. 1. The vertex set of the depicted graph, on vertices a, b, c, d, e, f , is partitioned
into the sets {a, b, c, d} and {e, f}. The sets {a}, {b}, {c, d} are groups of G[{a, b, c, d}].

“group”. Let G be a graph and let H be an induced subgraph of G. A set A ⊆
V (H) is called a group of H if NG(u) \ V (H) = NG(v) \ V (H) for every vertex
pair u, v ∈ A. Note the difference between this definition and the notion of a
module. A set B ⊆ V (G) is a module of G if NG(u) \ B = NG(v) \ B for every
vertex pair u, v ∈ B. Observe that B is a module of G if B is a group of G[B].
Since a module B of G is a group in every induced subgraph H of G that contains
all vertices in B, we can say that the notion of a group is more general than the
module notion.

Groups are very useful for understanding linear clique-width [11, 12, 20]. How-
ever, they are insufficient for studying clique-width. Such observations were first
published by Müller and Urner in their work about the complexity of computing
the relative clique-width [21]. For illustrating the situation, consider the graph,
G, in Figure 1. The vertex set of the depicted graph is partitioned into {a, b, c, d}
and {e, f}, which is indicated by the two rectangle areas. The groups in the left
side partition set are {a}, {b} and {c, d}. Spending one label per group and then
computing the disjoint union with G[{e, f}] requires a label for each of e and f ,
and the two labels must be different from the labels used in G[{a, b, c, d}]. Hence,
computing G from the disjoint union of G[{a, b, c, d}] and G[{e, f}] requires five
labels. However, if we allow four labels in G[{a, b, c, d}] then e and f can have
the same label as respectively c and d. This requires a total of four labels for
computing G from the disjoint union of G[{a, b, c, d}] and G[{e, f}]. We will give
a characterisation of clique-width by applying the ideas and observations given
above by generalising the notion of a “group”. Let G be a graph and let H
be a subgraph of G. Denote by G−H the graph (V (G), E(G) \ E(H)), i.e., the
subgraph of G obtained from deleting the edges of H .

Definition 1. Let G be a graph and let H be a subgraph of G.

1) A set A of vertices of H is called group of H if for every vertex pair u, v
from A, NG−H(u) = NG−H(v).

2) A set A of vertices of H is called supergroup of H if for every vertex pair u, v
from A, NG−H(u) ⊆ NG(v).

3) A supergroup partition for H is a partition (A1, . . . , Ar) of V (H) such that
A1, . . . , Ar are supergroups of H. The size of a supergroup partition is the
number r of partition classes.

Computing the Clique-Width of Large Path Powers in Linear Time 237

4) For A and B supergroups of H where A ∩ B = ∅, we say that A and B
are compatible for H if uv ∈ E(G−H) for some u ∈ A and v ∈ B implies
xy ∈ E(G) for every x ∈ A and y ∈ B.

Note that the definition of a group in Definition 1 extends the definition of
a group given in the initial paragraph of this section from induced subgraphs
to arbitrary subgraphs. Formally, a supergroup is a more general notion than
group. We illustrate the difference between the two notions by a simple example.
Consider the graphs G = ({a, b, c}, {ab, bc}) and H = ({a, b, c}, {ab}). Note that
H is a subgraph of G, that is not an induced subgraph, and that G−H =
({a, b, c}, {bc}). The set {a, c} is a supergroup of H , but it is not a group of
H . It is not difficult to see that the group and supergroup notion coincide on
induced subgraphs. A simple but important property of supergroups is that pairs
of vertices that are adjacent in G−H cannot belong to the same supergroup.

We use the supergroup notion to define a recursive partition of the vertex
set of graphs. Let M = (M1, . . . , Mr) and N = (N1, . . . , Ns) be partitions of a
universe X . We say that N is a refinement of M , if N1∪· · ·∪Ns = M1∪· · ·∪Mr

and for every 1 ≤ i ≤ s, there is 1 ≤ j ≤ r such that Ni ⊆ Mj .

Definition 2. Let G be a graph. A supergroup tree for G is a rooted binary
tree T whose nodes are labelled with partitions of subsets of V (G) such that the
following conditions are satisfied:

1) for x1, . . . , xn the vertices of G, there is a 1-to-1 correspondence between the
leaves of T and the singleton set partitions ({x1}), . . . , ({xn}).

2) let a be an inner node of T with sons b and c, and let a, b, c be labelled
with the partitions (A1, . . . , Ap), (B1, . . . , Bq) and (C1, . . . , Cr), respectively;
then,
• (B1, . . . , Bq, C1, . . . , Cr) is a refinement of (A1, . . . , Ap).

• (A1, . . . , Ap) is a supergroup partition for G[B1∪· · ·∪Bq]⊕G[C1∪· · ·∪Cr].

• A1, . . . , Ap are pairwise compatible for G[B1∪· · ·∪Bq]⊕G[C1∪· · ·∪Cr].

The size of T is the largest size of a supergroup partition a node of T is labelled
with.

In the second condition of Definition 2, note that G[B1 ∪ · · · ∪ Bq] and G[C1 ∪
· · · ∪Cr] are induced subgraphs of G but their disjoint union, G[B1 ∪ · · · ∪Bq]⊕
G[C1∪· · ·∪Cr], may not be an induced subgraph of G. This is the case, when G
has an edge joining a vertex from B1 ∪ · · · ∪Bq and a vertex from C1 ∪ · · · ∪Cr;
such edges are not contained in G[B1 ∪ · · · ∪Bq]⊕G[C1 ∪ · · · ∪ Cr].

Let T be a rooted tree and a a node of T . By Ta, we denote the subtree of
T that is rooted at a. Let G be a graph and let α be an expression for G. Let
T = T [α] be the clique-width tree that is defined by α. For a node a of T and a
vertex x of G, we say that x occurs at a in T , if i(x) for some label i is the label
of some leaf in Ta.

Lemma 1. There is a function that, given a graph G and a k-expression α for
G, computes a supergroup tree for G of size at most k in O(n2) time.

238 P. Heggernes, D. Meister, and U. Rotics

Proof. Let G be a graph, and let α be a k-expression for G, where k ≥ 1. We
can assume that α contains only useful operations. We describe the construction
of a supergroup tree for G of size at most k. Denote by T [α] the clique-width
tree of α. Note that there is a 1-to-1 correspondence between the leaves of T [α]
and the vertices of G. Obtain the rooted binary tree T from T [α] as follows:
there is a 1-to-1 correspondence between the leaves of T [α] and the leaves of T
and there is a 1-to-1 correspondence between the ⊕-labelled nodes of T [α] and
the nodes of T such that for every inner node a of T , if B and C are the sets
of vertices that appear in the two subtrees of T rooted at a, B and C are the
sets of vertices appearing in the two subtrees of T [α] rooted at the image of a in
T [α]. Informally spoken, T is obtained from T [α] by contracting the edges that
are incident to an inner node that is not labelled with ⊕. We add labels to the
nodes of T in the following way. Let a be a node of T , and let a′ be the node
of T [α] that corresponds to a. Let X be the set of vertices that occur at a′ in
T [α] and let (X1, . . . , Xr) be the partition of X that is defined by the labels at
a′. Note that r ≤ k. Then, label a in T with (X1, . . . , Xr). This completes the
definition of T .

It can be verified that the labelled tree T satisfies the conditions of Defini-
tion 2. Thus, T is a supergroup tree for G. Furthermore, since every partition
label of T has size at most k, it follows that T is a supergroup tree for G of size
at most k. The claimed running time follows from a careful analysis of the above
developed algorithm. ��
Lemma 2. Let G be a graph. Let T be a supergroup tree for G of size t. Then,
G has a k-expression α for some k ≤ t.

Proof. Let a be a node of T and with supergroup partition label (A1, . . . , Ap);
let A =def A1 ∪· · · ∪Ap. We inductively construct an expression for G[A], where
the labels induce a partition of A that is equal to (A1, . . . , Ap). If a is a leaf of
T then A = {x} for some vertex x of G, and 1(x) is an appropriate expression.
Let a be an inner node of T , that has the two sons b and c. Let b and c be
labelled with (B1, . . . , Bq) and (C1, . . . , Cr), respectively. There are appropriate
expressions β and γ for respectively G[B1 ∪· · · ∪Bq] and G[C1 ∪· · · ∪Cr]. Then,
(β ⊕ γ) is an expression for G[B1 ∪ · · · ∪ Bq] ⊕ G[C1 ∪ · · · ∪ Cr]. The desired
expression for G[A] is obtained from β and γ in two steps: first, changing labels
in β and γ, and second, adding the new edges. This can be done without using
more labels than the size of T . ��
Lemma 1 and Lemma 2 imply

Theorem 1. Let G be a graph. The smallest size of a supergroup tree for G is
equal to the clique-width of G.

4 The Clique-Width of Large Path Powers

We aim at developing an efficient algorithm for computing the clique-width of
a class of proper interval graphs. The algorithm itself will be very simple, since

Computing the Clique-Width of Large Path Powers in Linear Time 239

1 2 3 4 5 6 7 8 9 10 11

Fig. 2. The figure shows a 4-path power on eleven vertices. A pair of vertices is adjacent
if and only if the difference of their name label is at most 4. For example, 2 and 10 are
neighbours of 6, but 1 and 11 are non-adjacent to 6.

it will compute the clique-width from the size of a largest clique. The size of a
largest clique of a proper interval graph can be computed in linear time. The main
theoretical result of this section will be the correctness proof of the algorithm,
precisely, we will show a tight lower bound on the clique-width of the considered
class of proper interval graphs.

We begin by defining the graphs that we will consider. For k ≥ 1, a graph G
is a k-path power if its vertices admit an ordering 〈v1, . . . , vn〉 such that vi and
vj are adjacent if and only if 0 < |i− j| ≤ k. As an example, the 1-path powers
are exactly the induced paths. A path power is a k-path power for some k ≥ 1.
An example of a 4-path power using the vertex ordering definition is depicted
in Figure 2. Every path power is a proper interval graph. Furthermore, path
powers can be recognised in linear time. The size of a largest clique of a k-path
power on at least k +1 vertices is k +1. We say that a k-path power is large if it
contains at least (k + 1)2 vertices. An upper bound on the clique-width of large
path powers is known.

Lemma 3 ([9]). Let G be a large k-path power, with k ≥ 1. The clique-width
of G is at most k + 2.

For a lower bound, it is known that the clique-width of a large k-path power is
more than k [10]. This leaves a gap of 1 between the known upper and lower
bounds on the clique-width of large k-path powers. In this section, we close
the gap by showing that the upper bound of Lemma 3 is tight. We will ob-
tain this result by determining a lower bound on the clique-width of large path
powers of smallest size. For n ≥ 2, a proper interval square, square for short,
denoted as Qn, is the (n− 1)-path power on n2 vertices. The vertices of Qn are
v1,1, . . . , vn,1, v1,2, . . . , vn,n, and the edges of Qn are determined by vertex order-
ing 〈v1,1, . . . , vn,1, v1,2, . . . , vn,n〉 in the sense of the above definition of k-path
powers. This means that for each pair i, j:

NQn(vi,j) =
{

vi+1,j−1, . . . , vn,j−1, v1,j , . . . , vn,j , v1,j+1, . . . , vi−1,j+1

}
\
{

vi,j

}
;

in border cases, some of the listed vertices may not exist, that we simply ex-
clude in such cases. We partition the vertices of Qn: a column of Qn is a
set {v1,j, . . . , vn,j}. We often speak of “column j”, which means exactly the
vertices v1,j , . . . , vn,j . Small examples of squares are depicted in Figure 3, where
the vertices are arranged analogous to this representation.

240 P. Heggernes, D. Meister, and U. Rotics

Fig. 3. Depicted are four proper interval squares, Q1, Q2, Q3 and Q4. For each
graph Qn, the upper left and lower right vertex are respectively v1,1 and vn,n.

For showing the lower bound on the clique-width of Qn, we will apply Theo-
rem 1, which means, we will determine a lower bound on the size of supergroup
trees for Qn. We first present three auxiliary results on the size of supergroup
partitions for particular subgraphs of Qn. Let A ⊆ V (Qn) and 1 ≤ s ≤ n. The
s-boundary of A is the set {vp1,q1 , . . . , vpr ,qr} of vertices from A such that for
every 1 ≤ i ≤ r, qi < s and vpi,qi+1, . . . , vpi,s−1 �∈ A. We say that column s
is full in A if {v1,s, . . . , vn,s} ⊆ A, and we say that column s is empty in A if
v1,s, . . . , vn,s �∈ A.

Lemma 4 ([13]). Let A ⊆ V (Qn), and let e be an empty column of A. The
vertices of the e-boundary of A are in pairwise different supergroups of Qn[A].

For A ⊆ V (Qn), we say that A has the filled row property if for all vi,j , vi,j′ ∈ A
where j < j′, {vi,j , . . . , vi,j′} ⊆ A. The result of the following lemma can be
shown by a careful case analysis.

Lemma 5. Let A ⊆ V (Qn). Let f be smallest such that {v1,f , . . . , vn,f} ⊆ A,
and let there be e > f such that v1,e, . . . , vn,e �∈ A. If |A| > n then A satisfies
one of the two conditions:

1) f ≤ 2 and v1,1 ∈ A and A has the filled row property.
2) every supergroup partition of Qn[A] has size more than n.

For 1 ≤ i ≤ n and 1 < j ≤ n, we call (A, B) a partial [i, j]-partition of
V (Qn) if A ⊆ {v1,1, . . . , vn,j−1} ∪ {v1,j , . . . , vi−1,j} and B ⊆ {vi,j , . . . , vn,j} ∪
{v1,j+1, . . . , vn,n}. For u, v, w a vertex triple of Qn, we say that u distinguishes v
and w if u is adjacent to exactly one of v and w. If uv is an edge of Qn and the
two vertices are non-adjacent in a subgraph then v and w cannot be contained
in the same supergroup of the subgraph.

Lemma 6. Let n ≥ 3, and let 1 ≤ i ≤ n and 1 < j ≤ n. Let (A, B) be a partial
[i, j]-partition of V (Qn) such that A has a full column and B is non-empty.
Furthermore, let j = n imply i = 1 and let j = n and vn,n ∈ B imply |B| ≥ 2.
Let (X1, . . . , Xk) be a supergroup partition for Qn[A]⊕Qn[B] where X1, . . . , Xk

are pairwise compatible for Qn[A]⊕Qn[B]. Then, k ≥ n + 1.

Proof. For a contradiction, we assume that k ≤ n. If B contains no vertex from
column j then (A, B) is also a partial [1, j + 1]-partition of V (Qn). Note that

Computing the Clique-Width of Large Path Powers in Linear Time 241

B �= ∅ implies j < n. Iterating this argument, we can henceforth assume that B
contains a vertex from column j. By assumption about j, column n is empty in
A. Thus, the vertices of the n-boundary of A are in pairwise different supergroups
due to Lemma 4. Since there is a full column in A by our assumption, the n-
boundary of A consists of n vertices. It follows that k = n and each supergroup
contains an n-boundary vertex of A. Let s be smallest such that vs,j ∈ B. Note
that (A, B) is a partial [s, j]-partition of V (Qn). We distinguish between s = n
and s < n.

Suppose that s = n. Note that our assumptions directly imply j < n. Let
1 ≤ i ≤ k be such that vn,j ∈ Xi. Let v be the vertex from the n-boundary
of A with v ∈ Xi. Remember that v exists and is unique due to the results of
the first paragraph. Since vn,j is adjacent to all vertices from column j in Qn, it
follows that v is not from column j. Since vn−1,j �∈ B due to assumption s = n,
it follows that vn−1,j �∈ Xi and thus v must be adjacent to vn−1,j . This directly
implies that v = vn,j−1. Since v1,j+1 would distinguish vn,j and v, it holds that
v1,j+1 ∈ B. Let 1 ≤ i′ ≤ k be such that v1,j+1 ∈ Xi′ . Since v1,j �∈ B, vn,j

and v1,j+1 are distinguished by v1,j , and thus, i �= i′. Let v′ be the vertex from
the n-boundary of A with v′ ∈ Xi′ . Since vn−1,j is not in B and adjacent to
v1,j+1, it follows that v′ is adjacent to vn−1,j . And since v1,j+1 and v′ must be
non-adjacent in Qn, v′ is either vn,j−1 or v1,j . The former case would contradict
i �= i′. The latter case implies that the vertices from Xi and Xi′ are pairwise
adjacent in Qn because of v1,jvn,j ∈ E(Qn) \E(Qn[A]⊕Qn[B]), which yields a
contradiction because of vn,j−1v1,j+1 �∈ E(Qn). So, s < n must hold.

Let 1 ≤ t ≤ k be such that vs,j ∈ Xt. Suppose that vn,j �∈ B. Then, vs,j is
distinguished by vn,j from all vertices v1,1, . . . , vn,j−1, which means that Xt does
not contain any vertex from the columns 1, . . . , j−1. And since vs,j is adjacent to
every other vertex from column j, Xt cannot contain any vertex from column j
that is in A. Thus, Xt does not contain any vertex from A. In particular, Xt

does not contain any vertex from the n-boundary of A, which contradicts the
assumptions from the first paragraph. We conclude vn,j ∈ B. Let 1 ≤ p ≤ k be
such that vn,j ∈ Xp. Since vs,j is distinguished from vn,j by vn,j−1, it follows that
p �= t. Let vp and vt be the vertices from the n-boundary of A that are contained
in Xp and Xt, respectively. Since vt ∈ A and vs,j ∈ B and vt and vs,j are in the
same supergroup Xt, it follows that vt and vs,j are non-adjacent in Qn. Consider
vs−1,j or vn,j−1, depending on whether s ≥ 2 or s = 1. Since vs−1,j �∈ B in case
of s > 1 or vn,j−1 �∈ B in case of s = 1, and in each case the considered vertex
is adjacent to vs,j in Qn, it follows from the definition of supergroup that the
vertex is adjacent also to vt, and since vt is non-adjacent to vs,j , we conclude
that vt = vs,j−1. We distinguish between s > 1 and s = 1. Suppose s > 1. If
vp is adjacent to vs,j then, due to Xp and Xt being compatible, the vertices in
Xt and Xp are pairwise adjacent, in particular, vn,j is adjacent to vs,j−1. This
yields a contradiction to the definition of Qn. Thus, vp is non-adjacent to vs,j .
Since vs−1,j �∈ B, since vn,j and vs−1,j are adjacent in Qn and since vp and vn,j

are non-adjacent in Qn, it holds that vp ∈ {vs+1,j−1, . . . , vn,j−1}. This, however,
would mean that vp is adjacent to vs,j in Qn, a contradiction. Hence, s = 1, which

242 P. Heggernes, D. Meister, and U. Rotics

means that vt = v1,j−1 and vs,j = v1,j . If there is 1 < i < n such that vi,j �∈ B,
then vi,j distinguishes v1,j−1 and v1,j . Thus, {v1,j , . . . , vn,j} ⊆ B. Consider v2,j .
Note that v1,j and v2,j are distinguished by v2,j−1 and that v2,j−1 �∈ B. So,
v2,j �∈ Xt. Let 1 ≤ q ≤ k be such that v2,j ∈ Xq. Let vq be the vertex from
the n-boundary of A which is contained in Xq. Since vq is non-adjacent to v2,j

due to being in the same supergroup and is adjacent to vn,j−1, it follows that
vq = v2,j−1. It remains to observe that v2,j−1 and v1,j are adjacent in Qn and
that v1,j−1 and v2,j are non-adjacent in Qn, which yields a contradiction. We
conclude that k ≤ n is not possible, and thus k ≥ n + 1. ��
We prove lower bound results for the size of special supergroup partitions of
V (Qn). These results are applied in the lower bound proof of Lemma 10. Let
T be a supergroup tree. Let a be a node of T , and let (A1, . . . , Ar) be the
supergroup partition that a is labelled with in T . By MT

a , we denote the union
A1 ∪ · · · ∪Ar, which is the set of vertices that occur in Ta. Since the context T
will always be clear, we will usually omit the superscript and simply write Ma.

Lemma 7. Let n ≥ 3, and let T be a supergroup tree for Qn. Assume that T
has an inner node a with b and c its sons such that Mb = {v1,f , . . . , vn,f} for
some 1 ≤ f ≤ n, there is no full column in Mc and there is no empty column in
Ma. Then, the size of T is at least n + 1.

Proof. Let (A1, . . . , Ar) be the supergroup partition that a is labelled with in
T . For every pair p, p′ where 1 ≤ p < p′ ≤ n, vp,f and vp′,f are distinguished by
vp,f+1 or vp′,f−1, depending on whether f ≤ n− 1 or f ≥ 2. Thus, the vertices
from Mb appear in n pairwise different supergroups of (A1, . . . , Ar). Assume that
f ≤ n − 1. Let 1 ≤ p ≤ n be smallest such that vp,n ∈ Mc. Note that p exists,
since column n is not empty in Ma, and v1,n, . . . , vp−1,n �∈ Ma. Let 1 ≤ i ≤ r
be such that vp,n ∈ Ai. If Ai contains no vertex from Mb then r ≥ n + 1.
Otherwise, Ai contains vertices from Mb; let 1 ≤ q ≤ n be such that vq,f ∈ Ai.
If |n− f | ≥ 2, i.e., if f ≤ n−2, then column n must be full in Ma, which implies
that Mc contains a full column and thus contradicts the assumptions. Hence,
f = n − 1. Since vq,f and vp,n are not adjacent, q ≤ p. If q < n then vn,n−2

distinguishes vq,f and vp,n, which yields a contradiction. So, q = n, and thus,
p = n. Due to the choice of p, it follows that {v1,n−1, . . . , vn,n−1, vn,n} ⊆ Ma

and v1,n, . . . , vn−1,n �∈ Ma. A careful analysis shows that this situation implies
the claimed lower bound on the size of T . If f = n then there is 1 ≤ p ≤ n
such that vp,1 ∈ Mc. Due to our assumptions about Ma, there is 1 ≤ p′ ≤ n
such that vp′,1 �∈ Ma and therefore distinguishes vp,1 and every vertex from
column f . Thus, there is no 1 ≤ i ≤ r such that Ai contains vp,1 and a vertex
from column f , so that r ≥ n + 1. ��
Lemma 8. Let n ≥ 3, and let T be a supergroup tree for Qn. Assume that T
has an inner node a with b and c its sons such that Ma has a full column, Ma

has no empty column, Mb and Mc have no full columns. Then, the size of T is
at least n + 1.

Computing the Clique-Width of Large Path Powers in Linear Time 243

Proof. Let (A1, . . . , Ar) be the supergroup partition that a is labelled with in
T . Denote by Ub the set of vertices from Mb that are “highest” in their column.
Formally, vi,j ∈ Ub if vi,j ∈ Mb and for every 1 ≤ i′ < i, vi′,j �∈ Mb. Analogously,
define Uc. We first show that vertices from Ub and Uc cannot appear in the
same supergroup. So, for a contradiction, assume that there are 1 ≤ i ≤ r and
vp,q ∈ Ub and vp′,q′ ∈ Uc such that vp,q, vp′,q′ ∈ Ai. Without loss of generality,
we may assume q ≤ q′. Since vp,q and vp′,q′ must be non-adjacent in Qn, it
directly follows that q < q′. Then, the properties of supergroups imply that
{v1,q, . . . , vp−1,q} ⊆ Mb. The definition of Ub therefore implies p = 1. Since v1,q

is non-adjacent to every vertex from column q′, column q′ must be full in Mc

due to the properties of vertices in the same supergroup, which contradicts the
assumptions about c. Thus, no vertex from Ub appears in the same supergroup as
a vertex from Uc. Next, we show that the vertices from Ub and from Uc appear in
pairwise different supergroups. By analogy, it suffices to show the result for Ub.
Let v = vp,q and v′ = vp′,q′ be (different) vertices from Ub, where we can assume
without loss of generality that q < q′. Remember that q = q′ is not possible due
to the definition of Ub. If p > 1 then v1,q �∈ Mb and therefore distinguishes v
and v′. Analogously, if p = 1 and p′ > 1 then v1,q′ �∈ Mb and distinguishes v
and v′. Assume that p = p′ = 1. Then, there exists a vertex w = vi,q′ such that
w �∈ Mb, since Mb has no full column. Observe that w distinguishes v and v′. We
conclude that v and v′ are not contained in the same supergroup. It follows that
the vertices from Ub∪Uc appear in pairwise different supergroups, which implies
|Ub| + |Uc| ≤ r. Due to the assumptions about Ma, Mb, Mc, particularly since
Ma has a full and no empty column, we conclude that |Ub|+ |Uc| ≥ n + 1. ��
Lemma 9. Let n ≥ 3, and let T be a supergroup tree for Qn. Assume that T
has an inner node a with b and c its sons such that Mb has a full column and
an empty column and |Mb| ≥ n + 1. Then, the size of T is at least n + 1.

Proof. By a symmetry argument, we can assume that there are 1 ≤ f < e ≤ n
such that column f is full in Mb and column e is empty in Mb and column j is
not full for every 1 ≤ j < f and column j is not empty for every f < j < e. For
a contradiction, suppose that the size of T is at most n. We apply Lemma 5 and
directly conclude that f ≤ 2 and v1,1 ∈ Mb and Mb has the filled row property.
Let (A1, . . . , Ar) be the supergroup partition that a is labelled with in T . Con-
sider the e-boundary of Mb; it contains n vertices. We apply Lemma 4 and see
that the e-boundary vertices of Mb appear in pairwise different supergroups of
the partition. Due to the assumption, it follows that every Ai contains exactly
one e-boundary vertex of Mb. We show that (Mb, Mc) is a partial [i, j]-partition
of V (Qn) for appropriate i, j. Let 1 ≤ q ≤ n be smallest such that there is
1 ≤ p ≤ n with vp,q ∈ Mc; we choose p smallest possible. Remember that Mc is
non-empty. Let 1 ≤ l ≤ r be such that vp,q ∈ Al. If q = 1 then f = 2, and since
vp,q is adjacent to v1,1 and no vertex from the e-boundary of Mb is adjacent
to v1,1, Al cannot contain an e-boundary vertex of Mb, a contradiction. So, let
q ≥ 2, which means q > f . If q ≥ e then (Mb, Mc) is a partial [1, q]-partition of
V (Qn). This directly follows from the filled row property of Mb. Assume that

244 P. Heggernes, D. Meister, and U. Rotics

Al contains an e-boundary vertex vp′,q′ of Mb. Let q < e. If q < q′ then, due
to the filled row property of Mb, vp,q′ �∈ Mb, which yields a contradiction to
Al being a supergroup of Qn[Mb] ⊕ Qn[Mc]. So, q′ < q. If q′ ≤ q − 2 then
{v1,q, . . . , vn,q} ⊆ Mc, so that column q is empty in Mb. Since f < q < e, we
obtain a contradiction to the assumption about e. Thus, q′ = q − 1, and since
vp,q and vp′,q′ are non-adjacent in Qn, p′ ≤ p due to the adjacency definitions.
It follows that {vp,q, . . . , vn,q, v1,q+1, . . . , vp−1,q+1} ⊆ Mc. Since Mb has the filled
row property, we conclude that (Mb, Mc) must be a partial [p, q]-partition of
V (Qn).

So, we have seen that (Mb, Mc) is a partial [i, j]-partition of V (Qn), and Mb

has a full column and Mc is non-empty. If (Mb, Mc) is a partial [i, j]-partition
for some 1 < j < n then Lemma 6 implies r ≥ n + 1, and so the claim follows.
Otherwise, (Mb, Mc) is a partial [1, n]-partition, and e = n. If {v1,n, . . . , vn−1,n}∩
Mc �= ∅ then, again, we apply Lemma 6 and conclude r ≥ n + 1. Otherwise,
Mc = {vn,n}, which implies that p = n and q = n. Since the neighbours of vn,n

in Qn are exactly v1,n, . . . , vn−1,n, q′ = n− 1 and {v1,n−1, . . . , vn,n−1} ⊆ Mb. It
follows that {v1,n−1, . . . , vn,n−1, vn,n} ⊆ Ma and v1,n, . . . , vn−1,n �∈ Ma, and by
carefully analysing the situation, it can be shown that the size of T is at least
n + 1. ��
Now, we are ready to complete the lower bound proof. We particularly show that
one of the situations in the already given lemmas must occur in a supergroup
tree for Qn.

Lemma 10. For every n ≥ 3, cwd(Qn) ≥ n + 1.

Proof. Let n ≥ 3, and let T be an arbitrary supergroup tree for Qn. Let F be
the set of nodes x of T such that Mx has a full column. We call a node in F
minimal if its sons do not belong to F . Assume that there is a minimal node a
in F such that Ma has no empty column. Then, a and its two sons satisfy the
conditions of Lemma 8, and we conclude that the size of T is at least n + 1.
Assume that for every minimal node x in F , Mx has an empty column. Let a
be an inner node of T with its sons b and c such that b is a minimal node in
F . Then, Mb has a full and an empty column. If we can choose a, b, c so that
|Mb| ≥ n + 1 then the three nodes satisfy the conditions of Lemma 9, and we
conclude that the size of T is at least n + 1. If a, b, c cannot be chosen to satisfy
the conditions of Lemma 9 then |Mx| = n for every minimal node in F . So,
let a, b, c be an arbitrary choice such that b and c are the sons of a and b is a
minimal node from F . Let a′ be the parent of a in T , if it exists. If c is a minimal
node from F then |Ma| = |Mb| + |Mc| = 2n and Ma has a full and an empty
column, and therefore, a′ satisfies the conditions of Lemma 9. Otherwise, if c is
not a minimal node from F , then Tc may or may not contain a node from F .
If the former then, due to the assumptions about the choice of c as not being
minimal, |Mc| ≥ n + 1, |Mc| contains a full column and, since Mb contains a full
column, Mc contains an empty column. Thus, node a satisfies the conditions of
Lemma 9. If the latter then, if Ma contains no empty column, the nodes a, b, c

Computing the Clique-Width of Large Path Powers in Linear Time 245

satisfy the conditions of Lemma 7, if Ma contains an empty column, a′ satisfies
the conditions of Lemma 9. The claim of the lemma follows by application of
Theorem 1. ��
Theorem 2. Let k ≥ 1, and let G be a large k-path power. Then, cwd(G) = k+2.

Proof. Due to Lemma 3, cwd(G) ≤ k + 2. For the lower bound, note that G
contains Qk+1 as induced subgraph. If k ≥ 2 then cwd(G) ≥ cwd(Qk+1) ≥ k +2
due to Lemma 10, if k = 1 then Qk+1 is an induced path of length 3, and thus
cwd(G) ≥ cwd(Qk+1) ≥ k + 2 = 3. ��
As a corollary, by applying the same algorithm as in [13], the result of Theorem 2
directly implies a linear-time algorithm for computing the clique-width of large
path powers.

5 Final Remarks

We have shown two main results. The first main result is a purely graph-theoretic
characterisation of clique-width by using partition trees. We believe that this
provides a new view on clique-width and may lead to interesting theoretic and
algorithmic results.

The second main result is the characterisation of the clique-width of a class of
proper interval graphs. Except for the class of square grids, no other graph class
of unbounded clique-width is known for which such a characterisation result ex-
ists. The main technical results for achieving the characterisation provided lower
bounds for particular subgraphs and showed in the proof of Lemma 10 that it suf-
fices to consider only such subgraphs. The proof of Lemma 10 is also interesting
from a broader perspective. All arguments considered only very local properties.
It was sufficient to determine a lower bound on the size of supergroup partitions
for subgraphs of the type Qn[A]⊕Qn[B], independent of constraints that would
be imposed by situations at other nodes of the supergroup tree. It seems that
such a property makes it comparably “easy” to analyse the clique-width. Is there
a general scheme behind? Is this true for graphs of specific structural properties?

Theorem 2 together with the results in [13] shows that clique-width and its
variant linear clique-width coincide on large path powers. We obtained this result
by explicitly proving the bounds. Can this result be shown also by using only
structural arguments?

References

1. Bodlaender, H.: A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

2. Brandstädt, A., Dragan, F., Le, H.-O., Mosca, R.: New Graph Classes of Bounded
Clique-Width. Theory of Computing Systems 38, 623–645 (2005)

3. Corneil, D.G., Habib, M., Lanlignel, J.-M., Reed, B.A., Rotics, U.: Polynomial time
recognition of clique-width ≤ 3 graphs. In: Gonnet, G.H., Viola, A. (eds.) LATIN
2000. LNCS, vol. 1776, pp. 126–134. Springer, Heidelberg (2000)

246 P. Heggernes, D. Meister, and U. Rotics

4. Corneil, D.G., Rotics, U.: On the Relationship between Clique-width and
Treewidth. SIAM Journal on Computing 34, 825–847 (2005)

5. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. Journal of Computer and System Sciences 46, 218–270 (1993)

6. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory of Computing Systems 33, 125–150
(2000)

7. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Applied Mathematics 101, 77–114 (2000)

8. Espelage, W., Gurski, F., Wanke, E.: Deciding clique-width for graphs of bounded
tree-width. Journal of Graph Algorithms and Applications 7, 141–180 (2003)

9. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-Width is NP-
Complete. SIAM Journal on Discrete Mathematics 23, 909–939 (2009)

10. Golumbic, M.C., Rotics, U.: On the Clique-Width of Some Perfect Graph Classes.
International Journal of Foundations of Computer Science 11, 423–443 (2000)

11. Gurski, F.: Linear layouts measuring neighbourhoods in graphs. Discrete Mathe-
matics 306, 1637–1650 (2006)

12. Heggernes, P., Meister, D., Papadopoulos, C.: Graphs of small bounded linear
clique-width. Technical report 362 in Informatics, University of Bergen (2007)

13. Heggernes, P., Meister, D., Papadopoulos, C.: A Complete Characterisation of the
Linear Clique-Width of Path Powers. In: Chen, J., Cooper, S.B. (eds.) TAMC
2009. LNCS, vol. 5532, pp. 241–250. Springer, Heidelberg (2009)

14. Hlinený, P., Oum, S.-I., Seese, D., Gottlob, G.: Width parameters beyond tree-
widthand their applications. The Computer Journal 51, 326–362 (2008)

15. Kamiński, M., Lozin, V.V., Milanič, M.: Recent developments on graphs of
bounded clique-width. Discrete Applied Mathematics 157, 2747–2761 (2009)

16. Johansson, Ö.: Clique-decomposition, NLC-decomposition, and modular decompo-
sition – relationships and results for random graphs. Congressus Numerantium 132,
39–60 (1998)

17. Lozin, V.: From tree-width to clique-width: Excluding a unit interval graph. In:
Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369,
pp. 871–882. Springer, Heidelberg (2008)

18. Lozin, V., Rautenbach, D.: Chordal bipartite graphs of bounded tree- and clique-
width. Discrete Mathematics 283, 151–158 (2004)

19. Lozin, V., Rautenbach, D.: On the Band-, Tree-, and Clique-Width of Graphs
with Bounded Vertex Degree. SIAM Journal on Discrete Mathematics 18, 195–206
(2004)

20. Lozin, V., Rautenbach, D.: The relative clique-width of a graph. Journal of Com-
binatorial Theory, Series B 97, 846–858 (2007)

21. Müller, H., Urner, R.: On a disparity between relative cliquewidth and relative
NLC-width. Discrete Applied Mathematics 158, 828–840 (2010)

22. Oum, S.-i., Seymour, P.: Approximating clique-width and branch-width. Journal
of Combinatorial Theory, Series B 96, 514–528 (2006)

An Extended Tree-Width Notion for Directed

Graphs Related to the Computation of
Permanents

Klaus Meer

Lehrstuhl Theoretische Informatik
BTU Cottbus, Konrad-Wachsmann-Allee 1

03044 Cottbus, Germany
meer@informatik.tu-cottbus.de

Abstract. It is well known that permanents of matrices of bounded tree-
width are efficiently computable. Here, the tree-width of a square matrix
M = (mij) with entries from a field K is the tree-width of the underlying
graph GM having an edge (i, j) if and only if the entry mij
= 0. Though
GM is directed this does not influence the tree-width definition. Thus, it
does not reflect the lacking symmetry when mij
= 0 but mji = 0. The
latter however might have impact on the computation of the permanent.
In this paper we introduce and study an extended notion of tree-width
called triangular tree-width. We give examples where the latter param-
eter is bounded whereas the former is not. As main result we show that
permanents of matrices of bounded triangular tree-width are efficiently
computable. This result holds as well for the Hamiltonian Cycle problem.

1 Introduction

It is well known that the permanent of a square matrix M is hard to compute
unless some major complexity theoretic conjectures fail to be true. Valiant [11]
has shown that for 0-1 matrices the problem is #P-complete. And if M has
entries from a field K of characteristic different from 2 the permanent polyno-
mials build a VNP-complete family in Valiant’s algebraic theory of complexity
for families of polynomials, see [11,12] for these results. It is then natural to
ask for suitable subclasses of matrices on which the computation becomes easy.
Barvinok [2] has shown that families of matrices of bounded rank provide such
an example. Another much more intensively studied subclass is related to the
notion of tree-width of a graph (for a precise definition of tree-width see below).
To each n× n matrix M = (mij) there naturally corresponds a directed graph
GM = (V, E) on n vertices which has an edge (i, j) if and only if mij �= 0. If
{Mi}i∈I is a class of matrices such that the tree-width of each GMi is at most
k for some fixed k ∈ N it was shown in [6] that the permanent of each of these
matrices is computable in linear time in the size of the input matrix (and expo-
nential time with respect to k). The problem thus is fixed parameter tractable

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 247–260, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

248 K. Meer

with respect to the tree-width as parameter. This class of matrices and their per-
manent polynomials were studied further in [8,5] with respect to more precisely
determining their expressive power.

One drawback of the tree-width approach with respect to permanents is that
though GM is a directed graph for the tree-width notion it has no influence
whether an edge occurs in both directions or only in one. For the permanent
computation, however, it might have significant impact whether one of the two
entries mij and mji is non-zero or both. The goal of the present paper is to
introduce and study an extended notion of tree-width called triangular tree-
width which better reflects such lacking symmetry in the non-zero structure of a
matrix. Starting point for the introduction of the new notion is the definition of
the permanent through cycle covers of GM . Suppose for the moment the vertices
V : {1, . . . , n} to be linearly ordered, say 1 < 2 < . . . < n. If a cycle cover (or any
cycle) contains an increasing edge with respect to this order, i.e., an (i, j) with
i < j it is clear that there has to be as well a decreasing edge (j̃, ĩ), j̃ > ĩ included
somewhere in the cover. Thus, even though the classical tree-width of GM might
be large the more important question with respect to permanent computations
is whether the two graphs given by the increasing and the decreasing edges have
a better tree-width structure. Since this argument is independent of the used
ordering of the vertex set we can try to look for a permutation of V that induces
an optimal structure as far as the tree-widths of the two mentioned graphs are
concerned. Note that with such an approach edges (i, j) and (j, i) are treated
separately since always one will be decreasing and the other increasing. The
minimal tree-width obtained by choosing an optimal ordering is then called the
triangular tree-width of M . We show that the notion extends the classical tree-
width notion on symmetric matrices. As main result we prove that the permanent
of an n × n-matrix is efficiently computable on classes of matrices of bounded
triangular tree-width. One important feature of the corresponding algorithm is
that it works in parallel with two tree-decompositions, one for the graph of
increasing, the other for the graph of decreasing edges. The main difficulty for
proving the main result is to analyze how the information given by the two
tree-decompositions can be mixed efficiently.

The paper is structured as follows. Section 2 recalls basic notions and in-
troduces triangular tree-width. We give an example showing that this notion
extends the tree-width notion, i.e., there are families of matrices for which the
former parameter is bounded whereas the latter is not. In the third section our
main result is proven. It is shown both for computation of the permanent and
for the Hamiltonian Cycle problem. A discussion of open questions closes the
paper.

2 Basic Notions; Triangular Tree-Width

We start by recalling some basic definitions needed further on.

Definition 1. An arithmetic circuit over a field K is a directed, acyclic graph;
its nodes are also called gates. Nodes have in-degree 0 or 2, where the former

An Extended Tree-Width Notion 249

are also the input nodes. There is precisely one node of out-degree 0, the output
of the circuit. Each gate with in-degree 2 is labelled either by +,− or × repre-
senting the corresponding operation in K. The size of a circuit is its number of
gates, the depth of the circuit is the length of the longest path from the output
node to an input node.

Circuits are used in the proof of our main theorem. The next notion is the basic
one for the rest of this paper.

Definition 2. Let G = (V, E) be a directed graph. A tree-decomposition of G of
width k ∈ N is a tree T = (VT , ET) such that the conditions below are satisfied:

(i) to each node t ∈ VT there corresponds a subset Xt ⊂ V of size at most
k + 1;

(ii) for each edge (i, j) ∈ E there is a t ∈ VT such that {i, j} ⊆ Xt;
(iii) for i ∈ V let T (i) denote those nodes t ∈ VT such that i ∈ Xt. Then T (i)

induces a (connected) subtree of T .

Below we call Xt also the box of vertices related to node t of T. The tree-width
twd(G) of G is the minimal k such that G has a tree-decomposition of width k.

The graph G can have loops but they do not influence the tree-width. Note that
for the tree-width definition it is of no concern that G is directed; whenever one
of the two edges (i, j) or (j, i) is present the condition to find i, j in a common
box Xt applies. This is a crucial point with respect to the extended notion we
are going to introduce below.

We consider n×n matrices M with entries from an underlying field K. In the
Turing model K = Q but our results hold as well if, for example, we choose K
to be of characteristic 0 and work in an algebraic model of computation.

To M there is attached a directed weighted graph GM = (V, E). It has V :=
{1, . . . , n} as vertex set and contains edges (i, j) if and only if mij �= 0. The
weight of such an edge is given as the entry mij ∈ K. The permanent of M is
defined using cycle covers of GM :

Definition 3. a) A cycle cover of a directed graph G = (V, E) is a subset of
its edges forming disjoint directed cycles such that each vertex i ∈ V is incident
with exactly one of the edges as outgoing edge and with exactly one as ingoing
edge. Loops are allowed here. We identify each such cycle cover with the unique
permutation σ ∈ Sn of V describing it in the usual way.

b) The weight of a cycle cover given by permutation σ is the product of all

weights of the edges participating in the cover, i.e.,
n∏

i=1

miσ(i).

c) A partial cycle cover is a subset of edges of a cycle cover. Its weight is
defined accordingly.

d) The permanent of M is given as perm(M) =
∑

σ∈Sn

n∏
i=1

miσ(i). Here, Sn

denotes the set of permutations of n elements.

The tree-width of a matrix M now simply is the tree-width of the attached
graph GM . As already mentioned above it does not reduce if instead of two

250 K. Meer

non-zero entries mij and mji only one of the two is non-zero. However, as far
as the computation of the permanent is concerned this is not at all true. An
example which gives a good idea (though it finally will not fit completely into
our framework, see Remark 1 below) is an upper triangular matrix M. Here
the permanent just is the product of its diagonal entries. Its underlying graph
however with respect to its tree-width behaves the same as the graph attached
to an everywhere non-zero matrix. And the permanent of the latter of course
is supposed to be hard to compute. Thus the tree-width notion seems not to
reflect appropriately cases where permanents are easy to compute due to a kind
of lacking symmetry in M. Triangular tree-width to be introduced now tries to
capture better such situations. The basic underlying idea is to split GM into
two graphs, one consisting of increasing and the other of decreasing edges only.
The words increasing and decreasing here reflect in terms of M non-zero entries
occurring in the lower triangular and the upper triangular part, respectively. It
is formalized using suitable permutations of rows and columns from M .

Definition 4. Let M be an n × n matrix, GM = (V, E) its weighted directed
graph with V = {1, . . . , n}.

a) Let σ : V → V be a permutation of V . The graph Ginc
σ = (V, Einc

σ) is
given by defining Einc

σ as all edges (i, j) ∈ E such that σ(i) < σ(j). We call
Einc

σ the increasing edges with respect to σ. Accordingly, Gdec
σ = (V, Edec

σ) with
(i, j) ∈ Edec

σ if and only if (i, j) ∈ E and σ(i) > σ(j) is the graph of decreasing
edges with respect to σ.

Without loss of generality loops are allocated to Edec
σ .

b) A graph G is said to have a triangular tree-decomposition of width k ∈ N
if there is a permutation σ of its vertices such that both graphs Ginc

σ and Ginc
σ

are of (normal) tree-width at most k. The triangular tree-width of G, in terms
ttw(G), is thus given as

ttw(G) := min
σ∈Sn

max{twd(Ginc
σ), twd(Gdec

σ)} .

The ttw notion extends the normal tree-width notion in the following sense.
If M is a square symmetric matrix (or, more precisely, a matrix with a sym-
metric non-zero structure), then ttw(GM) = twd(GM). This is true because in
that case the product P−1 · M · P, where P is a permutation matrix, again
results in a symmetric matrix. For different permutations the graphs Ginc are
just isomorphic copies of each other. Therefore, for each permutation σ it fol-
lows twd(Ginc

M,σ) = twd(Gdec
M,σ) = twd(GM) and the triangular tree-width of GM

coincides with the normal tree-width.
Another consequence of this remark is

Corollary 1. Computation of the triangular tree-width of a directed graph is
NP-hard.

This follows from the corresponding result for traditional tree-width [1] and the
previous remark.

An Extended Tree-Width Notion 251

2.1 A Guiding Example

In this subsection we want to study a bit more extensively an example which
shows on the one hand side that our new notion captures cases which the tra-
ditional tree-width notion does not. More precisely, we consider a family of di-
rected graphs whose tree-widths grow to infinity with the number of vertices in
the graphs but whose triangular tree-widths stay bounded. On the other hand
the example shows as well that the chosen permutation matters. For a not care-
fully chosen σ the maximum of twd(Ginc

σ) and twd(Gdec
σ) might stay unbounded.

The example is a special family of grid graphs. This family is more exhaustively
studied in [10] where it is also shown that its tree-width is unbounded.

For n ∈ N define a grid graph Gn with n2 many vertices V := {vij , 1 ≤
i, j ≤ n} as follows: For every 1 ≤ i ≤ n the graph Gn contains as edges the
horizontal path Pi given by vi1 → vi2 → . . . → vin. Next, Gn has two vertical
paths P ′

1 : v11 → v21 → . . . → vn1 and P ′
2 : v1n → v2n → . . . → vnn. Finally,

there are vertical edges vij → vi+1,j for every pair (i, j) such that i + j is even.
The figure shows as example the graph G6.

�

�

�

�

�

�

v61

v51

v41

v31

v21

v11

�

�

�

�

�

�

v62

v52

v42

v32

v22

v12

�

�

�

�

�

�

v63

v53

v43

v33

v23

v13

�

�

�

�

�

�

v64

v54

v44

v34

v24

v14

�

�

�

�

�

�

v65

v55

v45

v35

v25

v15

�

�

�

�

�

�

v66

v56

v46

v36

v26

v16

Fig. 1. The grid graph G6

In order to deal with directed graphs we direct the edges as indicated above
from left to right and from top to bottom. As shown in [10] there is no constant
bound on the tree-width of the family {Gn}n as n tends to infinity. Note that in
our situation we would consider such a Gn as the graph attached to an n2 × n2

matrix M .
We now give two different permutations σ1, σ2 of V such that the maximum

of twd(Ginc
n,σ1

) and twd(Gdec
n,σ1

) still is unbounded for growing n, whereas for all
n ∈ N it is max{twd(Ginc

n,σ2
), twd(Gdec

n,σ2
)} = 1. Thus the triangular tree-width of

the family {Gn}n is bounded but its tree-width is not.
The ordering related to permutation σ1 is simply going from left to right in

each row and then row-wise downwards. Thus for all i, j, k such that j < k we
put vij <σ1 vik and for all i, j, k, 	 such that i < j we put vik <σ1 vj	. Clearly,

252 K. Meer

Ginc
n,σ1

is precisely Gn since the increasing edges with respect to σ1 correspond
to the directed edges of Gn. Consequently, twd(Ginc

n,σ1
) = twd(Gn) and therefore

is unbounded for growing n.
The second permutation σ2 is defined to be the one inducing the following

linear order on the vertices. In each row we still go from left to right, but now the
ordering goes row-wise from the bottom to the top. Thus for all i, j, k such that
j < k we have vij <σ2 vik and for all i, j, k, 	 such that i < j we put vik >σ2 vj	.
Now Ginc

n,σ2
has the horizontal edges as edge set. They build n disjoint paths,

so twd(Ginc
n,σ2

) = 1. The graph Gdec
n,σ2

contains the vertical edges which are all
isolated, i.e., no two of them share a common vertex. Therefore twd(Gdec

n,σ2
) = 1

and ttw(Gn) = 1 for all n ∈ N.

3 Computing Permanents of Matrices of Bounded ttw

We shall now study in how far boundedness of the triangular tree-width of
the graph attached to a square matrix has impact on computing the matrix’
permanent efficiently. Our results will extend the class of matrices for which
efficient algorithms for this problem are known.

3.1 Particular Case: Perfect Triangular Decompositions

We shall first prove our result on a further reduced class of matrices of bounded
triangular tree-width. In the next subsection the result then is shown for all such
matrices.

The following technical condition on a triangular tree-decomposition of a
graph will turn out to be algorithmically important below.

Definition 5. Let G = (V, E) be a directed graph, k ∈ N be fixed. G is said
to have a perfect triangular tree-decomposition of width k if there is a permu-
tation σ of V and two corresponding tree-decompositions T inc

σ , T dec
σ of width k

for Ginc
σ , Gdec

σ , respectively, such that for at least one of the two decompositions
none of the vertices of G occurs in more than 10k many boxes. The pair of
decompositions in that case is called perfect as well.

The factor 10 in the definition is arbitrarily chosen. It is only important that the
number of boxes in which a vertex maximally occurs is bounded in a function
depending on k. Perfect decompositions are used below in order to perform a
typical tree-climbing algorithm working in parallel on two tree-decompositions.
Perfectness then allows to bound the resources needed by such an algorithm.

Theorem 1. Let k ∈ N be fixed, M an n × n matrix with corresponding graph
G such that G has a perfect triangular tree-decomposition of width k. Suppose
this decomposition to be explicitly given. Then perm(M) can be computed in
polynomial time with respect to n. The problem is fixed parameter tractable with
respect to parameter k, i.e., in the complexity estimates k does not occur in the
exponent of n.

An Extended Tree-Width Notion 253

Proof. The proof follows the common ideas behind bounded tree-width algo-
rithms which climb up a rooted tree-decomposition, see for example [8]. However,
due to the presence of two different graphs and their decompositions bookkeeping
during such an algorithm becomes more involved. A major problem here is that
a vertex which in one decomposition occurs in a leaf box only in the other might
occur close to the root, and in addition it might occur in linearly many boxes of
the second decomposition. The question thus is for how long an algorithm has
to remember the information related to this vertex. In order to keep the related
computational amount bounded the perfectness condition is employed.

Let G have perfect ttw at most k and let σ be a permutation of the vertex set
witnessing this. For sake of notational simplicity we suppress the dependency
on σ for the rest of this proof. Let (T inc, T dec) be the corresponding perfect
triangular tree-decompositions of width k for Ginc and Gdec. Without loss of
generality we assume the following conditions on the two trees to be satisfied:

- T inc and T dec are binary trees of depth O(log n), see [4];
- in both trees if t2 is a successor node of t1, then there is at least one vertex

in Xt2 \Xt1 ;
- an increasing edge between two vertices i, j ∈ V is represented by the unique

box of T inc in which both nodes occur commonly and that is closest to the
root; similarly for decreasing edges.

Finally, we assume that perfectness of the pair (T inc, T dec) results from T dec, i.e.,
every vertex of V occurs in at most 10k boxes of T dec. Note that the balancing
procedure in [4] does not destroy the perfectness condition.

On a high level point of view the algorithm works as follows. Climbing up in
T inc we build partial cycle covers from the information given in the currently
treated box of T inc. They consist of increasing edges with respect to σ. When the
algorithm moves on from two nodes 	, r with related boxes X inc

	 , X inc
r to their

common predecessor node t with X inc
t let i be a vertex from the original graph

occurring in X inc
	 but disappearing in X inc

t . Then information about partial
cycle covers being made of decreasing edges incident with i is computed from
T dec and mixed with the information already obtained. After glueing the three
nodes vertex i is deleted in the boxes of T dec and the process is continued. A
major point for this construction to work efficiently is that T dec satisfies the
perfectness condition. As consequence the amount of information T dec contains
with respect to vertex i is not depending on n and the mixture does not increase
the complexity too much. Vertex i does not influence any more the algorithm
after treatment of node X inc

t .
Now towards the details of the algorithm.
The central object we compute going bottom up in T inc is a catalogue of

partial cycle covers for graph G, compare [8]. At each node of T inc it collects
information about those paths and cycles in a potential cycle cover of G that
only contain edges between vertices that occur in boxes related to the subtree of
T inc which is rooted in t. This information is complete as far as vertices i ∈ V
are concerned that do not occur in box X inc

t itself or in boxes related to nodes
further up in T inc.

254 K. Meer

Treatment of leaf nodes in T inc: Let 	 be a leaf in T inc, X inc
	 the vertices of

V collected in the box for 	 and X̂ inc
	 those vertices which only occur in X inc

	

but not further up in the boxes of T inc. Recall that according to our general
assumptions at least one such vertex exists. For a vertex i ∈ V let T dec(i) denote
the subtree of T dec induced by those nodes that are related to a box containing i.
The edges of any cycle cover of G can be split in two groups such that one of them
contains only edges that either occur in T inc

	 or are incident to an i ∈ X̂ inc
	 in the

graph represented by T dec(i) (i.e., decreasing edges incident with i). We collect
this information bottom up to compute all cycle covers and their corresponding
contribution to the permanent. Edges between vertices occurring as well further
up in T inc, i.e., edges in (X inc

	 \ X̂ inc
)2, are treated later on. Let Cinc denote a

partial cycle cover consisting of increasing edges of the graph induced by X inc
	 . It

assigns to each vertex i ∈ X inc
	 some 0-1 information about its in- and out-degree

in the partial cover. The number off different such partial covers is bounded as
a function in k and all of them can be computed efficiently. For each vertex
i ∈ X̂ inc

	 consider the subtree T dec(i) it induces in T dec and its corresponding
graph. Compute from this subtree the set Dec(i) of decreasing edges incident
with i. Given the perfectness condition for T dec the number of decreasing edges
we obtain is bounded by a function depending on k only. Now again join every
Cinc with each subset of Dec(i) for all i ∈ X̂ inc

	 as long as the resulting set of
edges gives a partial cycle cover of G.

This way we obtain a list of partial cycle covers of G. To each list there corre-
sponds a 0-1 vector indicating the in- and out-degree of the vertices with respect
to a given partial cover. We call such a list together with the additional infor-
mation a type of node 	. If λ	 is a type of node 	 we attach to it as its weight
w(λ) the product of all edge-weights for those edges occurring in the corre-
sponding partial cycle cover. The number of types for a leaf is clearly bounded
by a function f(k) which once again only depends on the tree-width. The algo-
rithm computes all types for the leaves of T inc. Then it deletes from all boxes in
T dec those vertices i that occur in leaf nodes of T inc but not further up. This way
i does not any longer influence the algorithm when climbing up, i.e., no further
backtracking with respect to such an i is necessary. The new tree we obtain for
the remaining decreasing edges is again denoted by T dec.

Climbing up T inc: Next we have to explain how two types are combined when
the corresponding nodes have the same predecessor in T inc. Let X inc

t be the
box related to an inner node t, let 	 and r denote the successor nodes of t in
T inc and X inc

	 , X inc
r the related boxes of vertices from V, respectively. Nodes

with one successor only are treated similarly. The goal is to compute types for
X inc

t by joining in an appropriate way types for X inc
	 and X inc

r . The joining
procedure requires several things: First, the types have to represent families of
partial covers that fit to the corresponding 0-1 information attached to the type.
Secondly, new information given by X inc

t and by T dec for those vertices of V
that finally occur in X inc

	 or X inc
r has to be incorporated.

An Extended Tree-Width Notion 255

Let X̂ inc
t denote the set of vertices which when climbing up T inc in box X inc

t

occur for the last time. Let λt be a type related as before to a partial cycle cover
including only edges incident with a vertex in X̂ inc

t . Note that for increasing
edges this says that we do not yet consider edges that occur further up in T inc,
and for decreasing edges we incorporate once again the information concerning
vertices in X̂ inc

t that is represented by T dec. As for the leaves there are at most
f(k) many types λt obtained that way which are related to X inc

t . Let E(λt)
denote the edges occurring in the partial cycle cover given by λt and w(E(λt))
the product of their weights. We next compute in which way such a λt fits
together with types λ	 and λr for the successor boxes X inc

	 and X inc
r . We call

such a triple compatible if the following conditions hold:

i) when joining the edges of partial cycle covers represented by λ	, λr, λt we
obtain a new partial cycle cover;

ii) all vertices that have been removed already have in- and out-degree 1 in the
cover.

Compatibility of three types easily can be checked given the 0-1 information
about the in- and out-degree 1 of vertices. Moreover, information concerning
vertices that have been removed already does not have to be considered further
when climbing up T inc. Since there are no more than f(k) types λt for a node
t of T inc there are at most f(k)2 many compatible triples. We assign to a type
λt the weight

w(λt) := w(E(λt)) ·
∑

(λ�,λr,λt)
compatible

w(λ) · w(λr) .

This sum is computable in constantly many steps (depending on k). Finally, we
remove the vertices in X̂ inc

t from all boxes in T dec and continue climbing up, now
using the 0-1 information finally computed for a type λt together with its weight
w(λt). Note that both the maximal number of types and the complexity to com-
pute w(λt) remains the same on each level. Already removed vertices and the in-
formation how they occur in particular cycle covers has not to be listed further.

Finishing the computation at the root: When the root s of T inc is reached
the algorithm has to check which of the types obtained so far correspond to a
family of complete cycle covers of G. This is the case if the vertices still present
get in- and out-degree 1 by the type. The latter once again can be checked by
inspecting the partial cycle covers containing increasing edges in X inc

s × X inc
s

and the corresponding decreasing edges given by (the remaining vertices of) T dec.
The permanent of M then is the sum of the weights of those types representing
complete cycle covers.

The algorithm can be performed by an algebraic circuit over K of logarithmic
depth: The inputs for the circuit are the weights mij of edges eij given by M .
The circuit is constructed of subcircuits which perform the calculations neces-
sary at each node of the tree-decompositions explained above. Since the amount
of work for each such node is only depending on k each such subcircuit has
constant size (depending as well on k). Given that the tree-decompositions have

256 K. Meer

logarithmic depth the resulting circuit has logarithmic depth as well. Thus, by
folklore arguments on circuits the algorithm has a running time that is bounded
by a polynomial in n. The above remark concerning the number of types on each
level implies that the exponent of this polynomial is independent of k. ��

3.2 The General Case

In the above proof the perfectness condition on T dec is important in order to
guarantee that a vertex i which has been seen for the last time when climbing
up T inc with a restricted amount of additional work can be removed completely
as well with respect to edges in Gdec. We next show that in relation to the
permanent problem this perfectness condition always can be achieved to hold.
More precisely, we show the following: Let M be an n × n matrix, G = (V, E)
its weighted adjacency graph and σ a permutation of V for which Ginc

σ and Gdec
σ

are of bounded tree-width. Suppose T inc
σ , T dec

σ to be the corresponding tree-
decompositions. We want to impose the perfectness condition on T dec

σ . Towards
this aim we shall construct a new matrix M̃ , a corresponding graph G̃ and
a permutation σ̃ such that perm(M̃) = perm(M), G̃ is of bounded triangular
tree-width witnessed by σ̃ and (T̃ inc

σ , T̃ dec
σ) satisfies the perfectness condition via

T̃ dec
σ . Here, the new graph is obtained by adding at most linearly many vertices

and edges in such a way that original vertices occurring too often in boxes of
T dec

σ are partially replaced by new ones. The replacement has to be done in such
a way that the cycle covers of the old and those of the new graph are in a 1-1
correspondence.

Theorem 2. a) Let M ∈ Kn×n; G, σ be of triangular tree-width k and this
is witnessed by σ. Let T inc

σ , T dec
σ be related tree-decompositions of Ginc

σ , Gdec
σ ,

respectively. Then there are a matrix M̃ , a related graph G̃ = (Ṽ , Ẽ) and a
permutation σ̃ of Ṽ such that

- G̃ is of triangular tree-width at most 4k + 3, and this is witnessed by σ̃ and
decompositions T̃ inc

σ̃ , T̃ dec
σ̃ ;

- the pair (T̃ inc
σ̃ , T̃ dec

σ̃) is perfect (see Definition 5);
- perm(M̃) = perm(M).

Moreover, all objects related to M̃ can be computed in polynomial time in n from
the given objects attached to G.

b) Let k ∈ N, {Mi}i∈I a family of matrices of bounded triangular tree-
width at most k. For every member M of the family, given corresponding tree-
decompositions of the adjacency graphs, perm(M) can be computed in polynomial
time in the size of M. Again, the exponent of this polynomial is independent of k.

Proof. Without loss of generality we try to impose the perfectness condition on
T dec

σ . For each node i of the original graph G we do the following. If i occurs
in at most 10k of the boxes related to the nodes of T dec

σ , then i and the corre-
sponding edges remain unchanged. So let i be a node that occurs in more boxes.
We iteratively reduce its occurrences according to the following algorithm. This
procedure if necessary is repeated several times.

An Extended Tree-Width Notion 257

Let t be a node of T dec
σ such that i occurs in at most 10k many boxes of the

subtree T dec
t rooted at t but in more than 10k boxes of the subtree rooted at

t’s parent. Such a node must exist and can be found easily inspecting T dec
σ . The

idea is to introduce two new nodes i1, i2 which replace i in all boxes related to
nodes below t. In an updated version of Xdec

t itself all three nodes i, i1, i2 are
placed. Replacement of edges is done as follows. We introduce new decreasing
edges (i2, i) and (i, i1) as well as two loops (i1, i1), (i2, i2) (recall that loops by
convention are considered as decreasing edges). All four edges are given the
weight 1. These edges are added to box Xdec

t . We extend the order given by the
original permutation σ of V to a permutation σ̃ of V ∪ {i1, i2} and its induced
ordering by placing i1 immediately before and i2 immediately after i in the new
order. In the boxes below Xdec

t we replace each decreasing edge (j, i), i <σ j by
(j, i2) and each decreasing edge (i, j), i >σ j by (i1, j). To both edges we attach
the same weights the original edges had. Finally, i is removed from the boxes
occurring below Xdec

t . Nothing is changed in T inc
σ ; in particular, the new nodes

do neither occur in any of its boxes nor are they incident with any increasing
edges.

To justify the above construction we explain how partial cycle covers in G
that involve vertex i and edges covered in boxes below Xdec

t are transformed to
partial cycle covers in the new graph. There are several cases to consider.

Suppose first such a partial cover to contain two decreasing edges (j2, i) and
(i, j1) in boxes below Xdec

t . These edges are replaced by the sequence of de-
creasing edges (j2, i2), (i2, i), (i, i1), (i1, j1). The product of its weights remains
the same as that of the weights of (j2, i), (i, j1). Next consider edges (j2, i) and
(i, j1) where the first is decreasing and the second increasing with respect to σ.
This edge sequence in a cycle cover is replaced by (j2, i2), (i2, i), (i, j1), (i1, i1),
again with the same product of weights. Note here that the increasing edge (i, j1)
involving i does not have to be replaced. It still occurs in T inc

σ . As consequence,
i1 has to be covered by a loop. Thirdly, if the original partial cycle cover in-
volves i in two increasing edges (j1, i), (i, j2), j1 <σ i <σ j2 the two edges are
maintained and loops for i1, i2 are added. Next, if in the original partial cycle
cover we have an increasing edge (j1, i) and a decreasing one (i, j2) we replace
it by (j1, i), (i, i1), (i1, j2), (i2, i2). Finally, if i is covered by a loop the loop is
maintained and one for both i1 and i2 is added.

Note that each partial cycle cover in the new graph which fully covers i, i1,
and i2, i.e., which assigns to all three nodes in- and out-degree 1 origins from
exactly one partial cycle cover in the original graph which fully covers i and
contributes the same weight. This is correct since there are no increasing edges
incident to the newly introduced vertices.

After this part of the construction has been performed we obtain a new graph
with two additional vertices occurring in 10k boxes of the updated tree T dec

σ̃ .
The original vertex i occurs in 10k− 1 less many boxes as before. The tree T inc

σ

remains unchanged and T dec
σ̃ has the same structure as before, but its tree-width

has increased by at most 2 since i, i1, i2 commonly occur in the new version of
Xdec

t .

258 K. Meer

This process is continued with the new graph and the updated version T dec
σ̃ .

First, the number of occurrences of i by the same method is reduced until it
occurs in at most 10k boxes. For additional new vertices i3, i4, . . . only their order
with respect to the original vertices of V matters; the ordering among i1, i3, i5, . . .
and among i2, i4, i6, . . . is of no concern since there are no edges added between.
The previously treated boxes of T dec

σ̃ below node t remain unchanged; only in
Xdec

t itself vertex i possibly has to be removed as well during a later phase of
the algorithm. This happens at most once. Thus, each vertex i in a box of the
original tree T dec

σ is replaced by at most 4 new vertices.
Then the other vertices of V are handled accordingly. The algorithm results

in a new m×m matrix M̃ , where m ∈ O(n), a corresponding adjacency graph
G̃, a permutation σ̃ of the enlarged vertex set Ṽ that extends σ and a perfect
triangular tree-decomposition (T̃ inc

σ̃ , T̃ dec
σ̃) of G̃ with respect to σ̃ of triangular

tree-width ≤ 4k + 3. Here, T̃ inc
σ̃ = T inc

σ and T̃ dec
σ̃ can be computed from T dec

σ

in polynomial time in the size of M . Finally, the cycle covers of M and M̃ are
in 1-1 correspondence maintaining as well their weights. It follows perm(M̃) =
perm(M).

b) The claim follows from part a) and Theorem 1. Given M and the re-
lated triangular tree-decomposition we first apply part a) to obtain M̃, G̃ and a
perfect triangular tree-decomposition. Then, the algorithm behind the proof of
Theorem 1 is applied to M̃, G̃ to compute perm(M̃). Again part a) guarantees
the computed value to equal perm(M). The algorithm runs in polynomial time
in the size of M since this holds both for the computation of permanents of
families of matrices with a bounded perfect triangular tree-decomposition and
the algorithm that reduces the general case to the former. ��
Remark 1. Note that the earlier mentioned example of triangular matrices does
not really completely fit into our framework since such a matrix (if the upper
triangular part is fully filled with non-zero entries) as well has unbounded tri-
angular tree-width. Nevertheless the reason why computing the permanent is
easy in this case, namely that a cycle cover not existing completely of loops
would have to include decreasing edges once it uses an increasing edge, gives
the right idea for introducing the triangular tree-width. The example would be
formally covered by Theorem 2 if we would speak of bounded triangular tree-
width already in case one of the two attached graphs has tree-width 0. As kindly
pointed out by one referee one could as well redefine triangular tree-width as
min
σ∈Sn

twd(Ginc
σ) · twd(Gdec

σ) which would cover the above case and otherwise in-

crease the ttw parameter at most quadratically.

3.3 Efficiently Solving Subclasses of Hamiltonian Cycle

The idea of distinguishing increasing and decreasing edges applies as well to the
Hamiltonian Cycle problem. In this subsection we show that also this problem
is efficiently solvable on the subclass of directed graphs with bounded triangular

An Extended Tree-Width Notion 259

tree-width at most k. Since most of the arguments from before can be used we
just briefly point out those that have to be changed. They are related to the task
of achieving a perfect triangular decomposition.

Theorem 3. Let k ∈ N be fixed, {Gi}i∈I a family of directed graphs with tri-
angular tree-width at most k. Given a member G of the family together with
a permutation σ and the corresponding triangular tree-decomposotion of G the
Hamiltonian Cycle problem can be solved in polynomial time in the size of G.
This holds both for the decision and the counting version.

Proof. We only describe the necessary changes in the proofs of Theorems 1
and 2. It is appropriate to start with the latter since as result of the necessary
adjustments the task of what has to be checked afterwards changes slightly.
Let G, σ, Ginc

σ , Gdec
σ , T inc

σ , T dec
σ be as before. Again, the perfectness condition is

imposed on T dec
σ . However, by doing so we slightly alter the problem to be

considered on the new graph G̃ obtained. This is due to the introduction of new
vertices which do not in all cases fit within a Hamiltonian cycle of the graph. The
new vertices and edges are introduced exactly as before to make T dec

σ perfect.
Let V ′ be the newly introduced vertices. In the new graph G̃ we now do not
look for Hamiltonian cycles on V ∪ V ′. Instead we are interested in a potential
mixture of a Hamiltonian cycle on a subset of vertices and a cycle cover in the
following sense. Call a partial Hamiltonian cycle a collection of edges in G̃ such
that all vertices of V and may be some of V ′ are covered by a Hamiltonian cycle
on these vertices and the remaining vertices from V ′ are covered by loops. It is
easy to see that perfectness can be gained for T dec

σ in such a way that there is
a 1-1 correspondence between Hamiltonian cycles in G and partial Hamiltonian
cycles in the new graph G̃. In a second step the algorithm proving Theorem 1
can now be adapted in such a way that when climbing bottom up only types
are considered that still potentially might result in a partial Hamiltonian cycle
of G̃. ��

4 Open Questions

We have introduced an extended version of the tree-width parameter tailored to
computing permanents of matrices. The main result of the paper shows that this
can be done efficiently for families of matrices where the newly defined parameter
is bounded. Though triangular tree-width is defined for directed graphs a main
feature is the dependence of the definition on an ordering of the vertices. It
thus seems unclear whether there is a relation to the directed tree-width notion
introduced in [9]. Another interesting notion to study in this context might be
the entaglement width from [3].

There are some questions arising immediately from the issues discussed in this
paper. Are there other graph-related problems which in general form are hard
to solve but turn out to be easy when the underlying graphs are restricted with
respect to their triangular tree-width? For problems which like the above studied
ones depend on cycle covers the approach likely will be applicable as well. For

260 K. Meer

other problems this seems much more unclear. For example, consider the problem
of counting satisfying assignments of conjunctive normal form formulas. One
can naturally assign a directed graph to such a formula by taking as nodes the
variables and the clauses and joining a variable and a clause node by an edge if
the former occurs in the latter, the direction of an edge depends on whether a
variable or its negation occurs in the clause. As it is shown in [7] this problem is
solvable efficiently if the latter graph is of bounded tree-width. So the question
is whether this still remains to be the case for a familiy of formulas whose graphs
have bounded triangular tree-width?

Another related question is whether a similar approach as well could be used
for defining extensions of other width notions. Here, clique width would be the
first choice to be analyzed.

Acknowledgement. Thanks are due to the anonymous referees for careful read-
ing of the paper and some very helpful comments.

References

1. Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in
a k-tree. SIAM Journal on Matrix Analysis and Applications 8(2), 277–284 (1987)

2. Barvinok, A.: Two algorithmic results for the traveling salesman problem. Mathe-
matics of Operations Research 21, 65–84 (1996)

3. Berwanger, D., Grädel, E.: Entanglement – A Measure for the Complexity of Di-
rected Graphs with Applications to Logic and Games. In: Baader, F., Voronkov,
A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 209–223. Springer, Heidelberg
(2005)

4. Bodlaender, H.L.: NC-algorithms for graphs with small tree-width. In: Proc.
Graph-theoretic concepts in computer science. LNCS, vol. 344, pp. 1–10. Springer,
Heidelberg (1989)

5. Briquel, I., Koiran, P., Meer, K.: On the expressive power of CNF formulas of
bounded tree- and clique-width. Discrete Applied Mathematics (to appear)

6. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete
Applied Mathematics 108(1-2), 23–52 (2001)

7. Fischer, E., Makowsky, J., Ravve, E.V.: Counting Truth Assignments of Formulas
of Bounded Tree-Width or Clique-Width. Discrete Applied Mathematics 156, 511–
529 (2008)

8. Flarup, U., Koiran, P., Lyaudet, L.: On the expressive power of planar perfect
matching and permanents of bounded treewidth matrices. In: Tokuyama, T. (ed.)
ISAAC 2007. LNCS, vol. 4835, pp. 124–136. Springer, Heidelberg (2007)

9. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed Tree-Width.
Journal Comb. Theory, Series B 82, 138–154 (2001)

10. Thomassen, C.: Handbook of Combinatoris. In: Grötschel, M., Lovász, L., Gra-
ham, R.L. (eds.) Embeddings and Minors, pp. 302–349. North-Holland, Amster-
dam (1995)

11. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8(2), 189–201 (1979)

12. Valiant, L.G.: Completeness classes in algebra. In: Proc. 11th ACM Symposium
on Theory of Computing 1979, pp. 249–261. ACM, New York (1979)

Computing Vertex-Surjective Homomorphisms

to Partially Reflexive Trees�

Petr A. Golovach, Daniël Paulusma, and Jian Song

School of Engineering and Computing Sciences, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, UK

{petr.golovach,daniel.paulusma,jian.song}@durham.ac.uk

Abstract. A homomorphism from a graph G to a graph H is a ver-
tex mapping f : VG → VH such that f(u) and f(v) form an edge in H
whenever u and v form an edge in G. The H-Coloring problem is to
test whether a graph G allows a homomorphism to a given graph H .
A well-known result of Hell and Nešetřil determines the computational
complexity of this problem for any fixed graph H . We study a natural
variant of this problem, namely the Surjective H-Coloring problem,
which is to test whether a graph G allows a homomorphism to a graph
H that is (vertex-)surjective. We classify the computational complex-
ity of this problem when H is any fixed partially reflexive tree. Thus
we identify the first class of target graphs H for which the computa-
tional complexity of Surjective H-Coloring can be determined. For
the polynomial-time solvable cases, we show a number of parameterized
complexity results, especially on nowhere dense graph classes.

1 Introduction

A graph is denoted G = (VG, EG), where VG is the set of vertices and EG is
the set of edges. A homomorphism from a graph G to a graph H is a mapping
f : VG → VH that maps adjacent vertices of G to adjacent vertices of H , i.e.,
f(u)f(v) ∈ EH whenever uv ∈ EG.

The problem H-Coloring tests whether a given graph G allows a homomor-
phism to a graph H called the target. Throughout our paper we assume that
H denotes a fixed graph (i.e., not part of the input) except when we consider a
parameterized setting and choose |V (H)| as the parameter. If H is the complete
graph (graph with edges between all pairs of different vertices) on k vertices,
then this problem is equivalent to the k-Coloring problem, which is to test
whether a graph G allows a mapping c : VG → {1, . . . , k} such that c(u) �= c(v)
whenever uv ∈ EG.

For a survey on homomorphisms we refer to Hell and Nešetřil [15]. Here, we
only mention the classical result in this area, which is the Hell-Nešetřil dichotomy
theorem [14]. This theorem states that H-Coloring is solvable in polynomial
time if H is bipartite, and NP-complete otherwise. Note that H is assumed to
have no self-loop xx, as otherwise we can map every vertex of G to x.
� This work has been supported by EPSRC (EP/G043434/1).

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 261–274, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

262 P.A. Golovach, D. Paulusma, and J. Song

A homomorphism f from a graph G to a graph H is surjective if for each
x ∈ VH there exists at least one vertex u ∈ VG with f(u) = x. This paper studies
the problem of deciding if a given graph allows a surjective homomorphism to a
target graph H . This problem is called the Surjective H-Coloring problem.
We observe that, for this variant, the presence of a vertex with a self-loop in
the target graph H does not make the problem trivial. So, we do allow such
vertices in H and call them reflexive, whereas vertices with no self-loop are said
to be irreflexive. A graph that contains zero or more reflexive vertices is called
partially reflexive. In particular, a graph is reflexive if all its vertices are reflexive,
and a graph is irreflexive if all its vertices are irreflexive. Throughout the paper,
we assume that the input graph G is irreflexive and that the target graph H is
partially reflexive. We also assume that both graphs are undirected, finite and
have no multiple edges.

In contrast to the Surjective H-Coloring problem, the injective variant
has been well studied in the literature; when both G and H are part of the
input, the injective variant is equivalent to the Subgraph Isomorphism prob-
lem. Below we discuss a number of other problems that are closely related to
Surjective H-Coloring.

Locally surjective homomorphisms. A homomorphism f from a graph G
to a graph H is locally surjective if f becomes surjective when restricted to the
neighborhood of every vertex u of G. We also say that such an f is an H-role
assignment, and the corresponding decision is called the H-Role Assignment
problem. Any locally surjective homomorphism is surjective if the target graph
is connected but the reverse implication is not true in general.

The computational complexity of the H-Role Assignment problem has
been completely classified with the problem being solvable in polynomial time
if and only if the fixed graph H has no edge, or H has an isolated reflexive
vertex, or H is bipartite, irreflexive and with an isolated edge. In all other cases,
H-Role Assignment is NP-complete [13]. For more on locally surjective ho-
momorphisms and the locally injective and bijective variants, we refer to the
survey of Fiala and Kratochv́ıl [12].

List-homomorphisms and retractions. Let G and H be two graphs with
a list L(u) ⊆ VH associated to each vertex u ∈ VG. Then a homomorphism f
from G to H is a list-homomorphism with respect to the lists L if f(u) ∈ L(u)
for all u ∈ VG. List-homomorphisms were introduced by Feder and Hell [8]
and generalize list-colorings. Feder, Hell and Huang [9] completely classified the
computational complexity of the problem that tests whether a graph G with
lists L allows a list-homomorphism to a fixed graph H with respect to lists L.
In our context, a special kind of list homomorphisms are of importance, namely
the retractions defined below.

Let H be an induced subgraph of a graph G. A homomorphism f from a
graph G to H is a retraction from G to H if f(h) = h for all h ∈ VH . In that
case we say that G retracts to H . A retraction from G to H can be viewed as a
list-homomorphism if we choose L(x) = {x} for each x ∈ VH and L(u) = VH for
each u ∈ VG \ VH .

Computing Vertex-Surjective Homomorphisms to Partially Reflexive Trees 263

The H-Retraction problem asks if a graph G retracts to a fixed subgraph
H . A pseudoforest is a graph in which each component has at most one cycle
different from a self-loop. Feder et al. [10] classified the H-Retraction problem
for all fixed pseudoforests H .

Compactions. We stress that a surjective homomorphism is vertex-surjective as
opposed to the stronger condition of being edge-surjective. The latter condition
has been defined in the literature as well. A homomorphism from a graph G to
a graph H is called edge-surjective or a compaction if for any edge xy ∈ EH with
x �= y there exists an edge uv ∈ EG with f(u) = x and f(v) = y. Note that
the edge-surjectivity condition only holds for edges xy ∈ EH ; there is no such
condition on the self-loops xx ∈ EH . If f is a compaction from G to H , we also
say that G compacts to H .

The H-Compaction problem asks if a graph G compacts to a fixed graph H .
Vikas [21–23] determined the computational complexity of this problem for sev-
eral classes of fixed target graphs, e.g., when H is a reflexive cycle, an irreflexive
cycle, or a graph on at most 4 vertices.

Our Results. We give a complete classification of the computational complexity
of the Surjective H-Coloring problem when H is a tree. Because we consider
target graphs that are partially reflexive, we stress that H is as a matter of fact
a partially reflexive tree, i.e., a connected graph with no cycles different from a
self-loop. Let RH denote the (possibly empty) set of reflexive vertices of a graph
H . We say that H is loop-connected if RH induces a connected subgraph of H .
Our main result is the following theorem:

Theorem 1. For any fixed tree H, the Surjective H-Coloring problem is
polynomial time solvable if H is loop-connected, and NP-complete otherwise.

We analyze the running time of the polynomial-time solvable cases in Theorem 1.
For connected n-vertex graphs we find a running time of nk+O(1), where k is
the number of leaves of H . We show that there is no function f that only
depends on k such that this running time can be improved to f(k) ·nO(1), unless
FPT = W[1], or to f(k) · no(k), unless the Exponential Time Hypothesis [16]
collapses. On the positive side, we prove that for any loop-connected tree H ,
Surjective H-Coloring parameterized by |VH | is FPT on any nowhere dense
graph class. Examples of such graph classes are graphs of bounded genus (e.g.
planar graphs), graphs that exclude a fixed (topological) minor and graphs that
locally exclude a fixed minor [18].

2 The Polynomially Solvable Cases of Theorem 1

We use the classification of Feder et al. [10] on the H-Retraction problem
when H is a pseudoforest.

Theorem 2 ([10]). For a fixed pseudoforest H, the H-Retraction problem
is NP-complete if (i) H contains a component that is not loop-connected, or

264 P.A. Golovach, D. Paulusma, and J. Song

(ii) H contains a cycle on at least 5 vertices, or (iii) H contains a reflexive cycle
on 4 vertices, or (iv) H contains an irreflexive cycle on 3 vertices. In all other
cases, the H-Retraction problem can be solved in polynomial time.

Let G be a graph. Let U ⊆ VG. We let G[U] denote the subgraph of G induced
by U . We also need the following result.

Proposition 1. Let H be a fixed partially reflexive graph. If the H-Retraction
problem can be solved in f(n, |VH |) time on n-vertex graphs, then the Surjec-
tive H-Coloring problem can be solved in time n|VH |+O(1) · f(n, |VH |).
Proof. Let VH = {x1, . . . , x	}. Let G be a graph on n vertices. We guess an
ordered set U = {u1, . . . , u	} of vertices of G and map ui to xi for i = 1, . . . , 	.
We check if xixj ∈ EH whenever uiuj ∈ EG. If not we guess a different set U .
Otherwise, we add an edge uiuj whenever xixj ∈ EH and uiuj /∈ EG. This leads
to a graph G′ such that G′[U] is isomorphic to H . We solve H-Retraction on
G′. If we find a retraction f , then f is a surjective homomorphism from G to H .
Otherwise we guess a different ordered set U . Because there are at most n|VH |

different sets U and constructing G′ costs nO(1) time, the result follows. ��
Combining Theorem 2 and Proposition 1 proves the polynomial part of Theo-
rem 1; in fact we have a bit stronger result.

Corollary 1. For a pseudoforest H, Surjective H-Coloring can be solved
in polynomial time if every component of H is loop-connected, and H contains
no cycle on at least 5 vertices, no reflexive cycle on 4 vertices, and no irreflexive
cycle on 3 vertices.

2.1 Parameterized Complexity

Note that Corollary 1 does not give any exact running times; Feder et al. [10]
do not state the exact running time of their polynomial-time algorithm in The-
orem 2. As a side effect of the proof of our FPT result on nowhere dense graph
classes we obtain the following, a proof of which will be given later (see Re-
mark 1). Let H be a loop-connected tree with k leaves. Then Surjective H-
Coloring can be solved in nk+O(1) time on n-vertex connected graphs. Our
next result shows that there is no function f that only depends on k such that
this running time can be improved to f(k) · nO(1), unless FPT = W[1]; see e.g.
Downey and Fellows [6] for definitions of these parameterized complexity classes.

Let Sk denote the graph obtained from the star K1,k after adding a self-loop
to its center. Note that Surjective Sk-Coloring can be solved in polynomial
time by Theorem 1 (or Corollary 1). We observe that a connected graph G
on at least two vertices allows a surjective homomorphism to Sk if and only if
G has an independent set of size at least k. Because the Independent Set
problem, which asks whether a graph has an independent set of size at least k,
is W[1]-complete when parameterized by k (cf. [6]), we immediately obtain the
following.

Computing Vertex-Surjective Homomorphisms to Partially Reflexive Trees 265

Proposition 2. Surjective Sk-Coloring is W[1]-complete when parameter-
ized by k.

The assumption that there is no algorithm that solves the 3-Satisfiability
problem in 2o(n) time on n-variable formulas is known as the Exponential Time
Hypothesis [16]. Our next result shows that the nk+O(1) running time of Sur-
jective H-Coloring for a loop-connected tree H cannot be improved to
f(k) · no(k), unless the Exponential Time Hypothesis collapses. Chen et al. [1]
showed that there is no algorithm that solves Independent Set on n-vertex
graphs in time f(k) · no(k), unless the Exponential Time Hypothesis collapses.
This gives us the following.

Proposition 3. Surjective Sk-Coloring cannot be solved in f(k)·no(k) time
on n-vertex graphs, unless the Exponential Time Hypothesis collapses.

Due to Proposition 2 and 3 it makes sense to consider special graph classes
in order to improve the running time. For this purpose we consider graph
classes that are nowhere dense, a notion introduced by Nešetřil and Ossona
de Mendez [18]. In order to define these graph classes we first need to state some
extra terminology.

Let G be a graph. We say that two subgraphs of G are adjacent if G has an edge
between a vertex from one subgraph and a vertex of the other subgraph. A graph
F is a minor of G if F can be obtained from G by a series of edge contractions,
edge deletions and vertex deletions. We use an equivalent characterization (see
e.g. [5]), namely that F is a minor of G if and only if we can associate each vertex
x of F with a tree Gx under the following three conditions: (i) for all x ∈ VF ,
the tree Gx is a subgraph of G; (ii) for all x, y ∈ VF with x �= y, the trees Gx

and Gy are vertex-disjoint; (iii) for all x, y ∈ VF with x �= y, the trees Gx and
Gy are adjacent if and only if x and y are adjacent in F . The trees Gx are called
the branch sets for H . A graph F is a minor at depth r ≥ 0 of G if there exists
branch sets {Gx | x ∈ VF } for F such that every Gx is a graph of radius at most
r. A graph class G is nowhere dense if for every r there is a graph F such that
F is not a minor at depth r of G for all G ∈ G.

Dawar and Kreutzer [4] and Dvorak et al. [7] independently showed that the
problem of deciding any property that can be expressed in the first-order logic
is FPT on a nowhere dense graph class when parameterized by the length of
the sentence defining the property. Due to this, we get our desired result if we
can show that the existence of a surjective homomorphism from a graph G to
a loop-connected tree H can be reduced to a problem that can be expressed in
the first-order logic. This is our objective for the rest of this section.

We need the following terminology. Let G be a graph. We denote the neigh-
borhood of a vertex u in G by NG(u) = {v | uv ∈ EG}. For a subset U ⊆ VG,
we define NG(U) = {v | v ∈ NG(u) \ U for some u ∈ U}. We say that we glue a
set W ⊆ VG into a new vertex w∗ if we remove all vertices of W and add w∗ to
G by making it adjacent to every vertex in NG(W). The following observation
follows immediately from the definition of a surjective homomorphism.

266 P.A. Golovach, D. Paulusma, and J. Song

Observation 1. Let G and H be two graphs and let h : VG → VH be a mapping.
Let x ∈ VH and let W ⊆ h−1(x). Let G′ be the graph obtained from G by gluing
W into w∗. Let h′ : VG′ → VH be the mapping defined as

h′(v) =

{
h(v), v �= w∗,
x, v = w∗.

Then the following holds:

• if h is a surjective homomorphism from G to H then h′ is a surjective ho-
momorphism from G′ to H;

• if h′ is a surjective homomorphism from G′ to H, and W is independent or
else x is reflexive then h is a surjective homomorphism from G to H.

Let v be a vertex of a partially reflexive tree H rooted at r. Observe that r defines
the parent-child relation between any two adjacent vertices. Then C(v) denotes
the set of all children of v, and D(v) ⊇ C(v) denotes the set of all descendants
of v. We assume that both sets are proper, i.e., v /∈ D(v), and consequently
v /∈ C(v).

Definition 1. Let H be a tree that has a reflexive root r. Let L = {z1, . . . , zk}
consist of all leaves of H that are not equal to r. Let U = {u1, . . . , uk} be a subset
of vertices of a graph G. The mapping fU : VG → VH is given by fU (v) = x if
v ∈ Wx, where Wx is a subset of VG defined inductively:

1. Set Wzi = {ui} for i = 1, . . . , k.
2. Let x be in VH \ ({r} ∪ L). Assume that sets Wy are constructed for all

y ∈ D(x). Let Z ⊆ VH be the set of all vertices of H such that sets Wz are
constructed for z ∈ Z. We set Wx =

⋃
y∈C(x)

NG(Wy) \ ⋃
z∈Z

Wz.

3. Finally, to define Wr, we assume that sets Wx are constructed for all x ∈
VH \ {r}, and set Wr = VG \ ⋃

x∈D(r)

Wx.

The following lemma is the first of two crucial lemmas.

Lemma 1. Let H be a loop-connected tree with reflexive root r and with set of
leaves L = {z1, . . . , zk} not equal to r. Let h be a surjective homomorphism from
a connected graph G to H. Let U = {u1, . . . , uk} ⊆ G be such that h(ui) = zi

for i = 1, . . . , k. Then fU is a surjective homomorphism from G to H.

Proof. We use induction on VH . The statement of the lemma is true if |VH | = 1.
Suppose |VH | ≥ 2.

Let x ∈ VH\{r}, such that ∅ �= C(x) ⊆ L. If such a vertex x does not exist then
let x = r; observe that C(r) = L because in this case H is a star with a reflexive
central vertex. We assume without loss of generality that C(x) = {z1, . . . , zs}
for some 1 ≤ s ≤ k.

We may without loss of generality assume that h−1(zi) = {ui} for i = 1, . . . , s.
In order to see this, suppose that h−1(zi) contains at least two vertices for some

Computing Vertex-Surjective Homomorphisms to Partially Reflexive Trees 267

1 ≤ i ≤ s. Then h can be redefined as follows. If x is a reflexive vertex then all
vertices of h−1(zi)\{ui} may be mapped to x. Otherwise, if x is irreflexive, then
x has a parent y. Because r is reflexive and x is irreflexive, zi cannot be reflexive;
otherwise H [RH] is disconnected, which is not what we assume. Hence, we may
map the vertices of h−1(zi) \ {ui} to y.

If x = r then h−1(zi) = {ui} for i = 1, . . . , s implies that fU = h, so the
statement of the lemma is true. Suppose that x �= r. Let W =

⋃s
i=1 NG(ui).

Note that W �= ∅, because G is connected. We find that every neighbor of every
ui is mapped to x, because x is the only neighbor of zi and h only maps zi to
ui, as we deduced above. This means that h(W) = {x}.

Let G′ be the connected graph obtained from G by gluing W into w∗. Then,
by Observation 1, the mapping h′ : VG′ → VH such that

h′(v) =

{
h(v), v �= w∗,
x, v = w∗

is a surjective homomorphism from G′ to H . Let G′′ = G′ − {u1, . . . , us}, and
let H ′ = H − {z1, . . . , zs}. Observe that h′′ = h′|VG′′ is a surjective homo-
morphism from G′′ to H ′. We also observe that G′′ is connected. Let U ′ =
{w∗, us+1, . . . , uk}. Then, by the induction hypothesis, we find that f ′

U ′ is a
surjective homomorphism from G′′ to H ′. By the definition of fU we find that

fU (v) =

⎧⎪⎨⎪⎩
f ′

U ′(v), v /∈ {u1, . . . , us} ∪W ,
f ′

U ′(w∗), v ∈ W ,
zi, v ∈ {u1, . . . , us}.

Suppose that x is reflexive. By Observation 1, we obtain that fU is a surjective
homomorphism from G to H . Suppose that x is irreflexive. As we already de-
duced, in that case zi must be irreflexive for i = 1, . . . , s. This means that h
maps every vertex of W to x. Consequently, W is an independent set. Again we
use Observation 1 to obtain that fU is a surjective homomorphism from G to
H . This completes the proof of Lemma 1. ��
Let r′ be a neighbor of a root r of a tree H . We say that H is rooted by the
ordered pair (r, r′).

Definition 2. Let H be an irreflexive tree rooted by (r, r′). Let L = {z1, . . . , zk}
consist of all leaves of H that are neither equal to r nor to r′. Let U ={u1, . . . , uk}
be a subset of vertices of a bipartite graph G on partition classes V1 and V2. Let
(p, q) ∈ {(1, 2), (2, 1)}. The mapping fp,q

U : VG → VH is given by fp,q
U (v) = x if

v ∈ Wx, where Wx is a subset of VG defined inductively:

1. Set Wzi = {ui} for i = 1, . . . , k.
2. Let x be a vertex of VH \ (L ∪ {r, r′}). Assume that sets Wy are constructed

for all y ∈ D(x). Let Z ⊆ VH be the set of all vertices of H such that sets
Wz are constructed for z ∈ Z. We set Wx =

⋃
y∈C(x)

NG(Wy) \ ⋃
z∈Z

Wz.

268 P.A. Golovach, D. Paulusma, and J. Song

3. Finally, to define Wr and Wr′ , we assume that sets Wx are constructed for
all x ∈ VH \ {r, r′}. We set Wr = Vp \

⋃
z∈Z

Wz and Wr′ = Vq \
⋃

z∈Z

Wz.

The next lemma is the second crucial lemma.

Lemma 2. Let G be a connected bipartite graph with partition classes V1 and
V2. Let H be an irreflexive tree that is rooted by (r, r′), and let L = {z1, . . . , zk}
be the set of leaves of H that are neither equal to r nor to r′. Let h be a surjective
homomorphism from G to H. Let U = {u1, . . . , uk} ⊆ VG such that h(ui) = zi

for i = 1, . . . , k. If h−1(r) ⊆ Vp and h−1(r′) ⊆ Vq then fp,q
U is a surjective

homomorphism from G to H.

Proof. We use induction on VH . If |VH | ≤ 2 then the statement of the lemma is
true. Suppose that |VH | ≥ 3.

Let x ∈ VH such that ∅ �= C(x) \ {r′} ⊆ L. We assume without loss of
generality that C(x) \ {r′} = {z1, . . . , zs} for some 1 ≤ s ≤ k.

We may without loss of generality assume that h−1(zi) = {ui} for i = 1, . . . , s.
In order to see this, suppose h−1(zi) contains at least two vertices for some
1 ≤ i ≤ s. We redefine h as follows by mapping all vertices of h−1(zi)\{ui} to y,
where y is the parent of x unless x ∈ {r, r}; if x = r then we take y = r′ and if
x = r′ then we take y = r. The resulting mapping is a surjective homomorphism.

Let W =
⋃s

i=1 NG(ui). Note that W �= ∅, because G is connected. We also
observe that h(W) = x, because zi is irreflexive and has x as its only neighbor
for i = 1, . . . , s. Let G′ be the connected graph obtained from G by gluing W
into w∗. Then, by Observation 1, the mapping h′ : VG′ → VT defined as

h′(v) =

{
h(v), v �= w∗,
x, v = w∗

is a surjective homomorphism from G′ to H . Let G′′ = G′−{u1, . . . , us}, and let
H ′ = H − {z1, . . . , zs}. Observe that h′′ = h′|VG′′ is a surjective homomorphism
from G′′ to H ′. We also observe that G′′ is connected. Suppose h−1(r) ⊆ Vp and
h−1(r′) ⊆ Vq. Let U ′ = {w∗, us+1, . . . , uk}. Then, by the induction hypothesis,
(fp,q

U ′)′ is a surjective homomorphism from G′′ to H ′. By the definition of fp,q
U ,

we find that

fp,q
U (v) =

⎧⎪⎨⎪⎩
(fp,q

U ′)′(v), v /∈ {u1, . . . , us} ∪W ,
(fp,q

U ′)′(w∗), v ∈ W ,
zi, v ∈ {u1, . . . , us}.

Because h(W) = x and x is irreflexive, W is independent. We use Observation 1
and find that fp,q

U is a surjective homomorphism from G to H . ��
We are now ready to prove the main result of this section.

Theorem 3. Let H be a loop-connected tree. Then Surjective H-Coloring
is FPT for any nowhere dense graph class when parameterized by |VH |.

Computing Vertex-Surjective Homomorphisms to Partially Reflexive Trees 269

Proof. By the result of Dawar and Kreutzer [4] we have proven Theorem 3 after
showing that the existence of a surjective homomorphism from G to H can be
reduced in FPT-time to a problem that can be expressed in the first-order logic.

Let H be a loop-connected tree. Let G be a graph with components G1, . . . , Gp

for some p ≥ 1. Then G allows a surjective homomorphism to H if and only if
every Gi allows a surjective homomorphism to some Hi for connected induced
subgraphs H1, . . . , Hp of H such that VH =

⋃p
i=1 VHi . Because we can construct

all possible tuples (H1, . . . , Hp) in FPT-time by brute force, we may assume that
p = 1, i.e., that G is connected.

Recall that the syntax of the first-order logic of graphs includes logical con-
nectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, and quantifiers ∀, ∃ that can be
applied to these variables. The syntax also includes the following two binary
relations for two vertex variables u and v, namely “adj(u, v)”, which expresses
whether u and v are adjacent, and “u = v”, which expresses whether u and v
are equal.

We distinguish between the cases RH �= ∅ and RH = ∅. First suppose that
RH �= ∅. We choose a root vertex r in H , which defines the parent-child relation
between every pair of adjacent vertices. We let {z1, . . . , zk} be the set of all non-
root leaves of H . By Lemma 1, there is a surjective homomorphism of G to H
if and only if there is an ordered subset U = {u1, . . . , uk} of vertices of G such
that fU is a surjective homomorphism from G to H . By the definition of fU we
find that for every v ∈ VG and every x ∈ VH , the inclusion v ∈ Wx and therefore
the property fU (v) = x can be expressed in the first-order logic. Now we can
express the property that there is an ordered set of vertices U = {u1, . . . , uk} of
G such that fU is a surjective homomorphism of G to H :

∃u1 . . .∃uk such that ui �= uj if i �= j, and ∀x ∈ VH ∃v ∈ VG such that x = fU (v),
and ∀v, w ∈ VG, v �= w, ∃x, y ∈ VH such that

• fU (v) = x and fU (w) = y,
• if x = y then adj(v, w) if and only if x ∈ RH ,
• if x �= y then adj(v, w) if and only if x, y are adjacent in H .

Now suppose RH = ∅. We answer No if G is not bipartite, because only bipartite
graphs allow a homomorphism to a bipartite graph. Hence, assume that G is
bipartite with partition classes V1 and V2. Because G is connected, we find that
for every homomorphism h from G to H either h−1(x) ⊆ V1 or h−1(x) ⊆ V2 for
each x ∈ VH . Hence, we can use Lemma 2 instead of Lemma 1, and the rest of
the analysis is similar to the case when RH �= ∅. ��

Remark 1. Lemma 1 and 2 immediately yield an nO(1) time algorithm that
solves H-Retraction on a connected n-vertex graph G when H is a loop-
connected tree. This can be seen as follows. Let H ′ denote the induced subgraph
of G that is isomorphic to H . Then H ′ fixes the set U . Suppose RH �= ∅. We
observe that the construction of fU respects H ′. Hence, by Lemma 1, we only
have to construct fU and check if the obtained mapping is a surjective homomor-
phism from G to H . This takes nO(1) time. If RH = ∅, we first check whether G

270 P.A. Golovach, D. Paulusma, and J. Song

is bipartite, say with partition classes V1 and V2, as otherwise the answer is No.
We also recall that for every homomorphism h from G to H either h−1(x) ⊆ V1

or h−1(x) ⊆ V2 for each x ∈ VH . Hence we can use Lemma 2 to derive the same
running time. Note that the same running time for H-Retraction is obtained
if G is not connected. The reason is that H will be an induced subgraph of a
component of G, because H is connected. We also observe that this running time
can be obtained by analyzing the algorithm of Feder et al. [10]. However, they
do not define the mappings fU and fp,q

U explicitly. We had to do this in order
to prove Theorem 3. By Proposition 1, we obtain an n|VH |+O(1) time algorithm
that solves Surjective H-Coloring on an n-vertex graph G when H is a
loop-connected tree. If G is connected, we may obtain a considerable improve-
ment. In that case, we consecutively check all ordered k-vertex sets U and apply
Lemma 1 or 2, respectively. Because the number of different sets U is O(nk),
we find a total running time of nk+O(1). Note that in the case that RH = ∅, we
must also consider the pairs (p, q) = (1, 2) and (p, q) = (2, 1). However, this just
yields an extra factor n2.

3 The NP-Complete Cases of Theorem 1

In this section we show that the Surjective H-Coloring problem is NP-
complete for any tree H that is not loop-connected. Because checking if a given
mapping is a surjective homomorphism can be done in polynomial time, the
problem belongs to NP. In order to prove NP-hardness we will reduce from
a variant of the Matching-Cut problem. This problem is to test whether a
graph G has a matching-cut M , i.e., a matching M ⊆ EG such that G − M
is disconnected. Patrignani and Pizzonia [19] prove that this problem is NP-
complete. The variant we need is the following problem:

Matching-Cut with Roots
Instance: A connected graph G of minimum degree at least two, and two vertices

s, t of G such that s and t are in two different components of G−M
for any matching-cut M (if G has a matching-cut).

Question: Does G have a matching-cut M?

Matching-Cut with Roots is NP-complete. This follows immediately from
the reduction of the Not All Equal 3-Satisfiability problem to the Match-
ing Cut problem, as described by Patrignani and Pizzonia [19].

We start with some auxiliary constructions. Let H be a tree that is not loop-
connected. The distance distH(x, y) between a pair of vertices x and y of H is
the number of edges on a shortest path between them. We choose two vertices
p, q ∈ VH that belong to two different components of H [RH] in such a way that
distH(p, q) ≤ distH(x, y) for any pair x, y that are in two different components of
H [RH]. Let 	 = distH(p, q). By definition, 	 ≥ 2. Let H1 and H2 be two different
components of the forest obtained from H after removing the edge incident with
q in the unique p, q-path in H . Assume that p ∈ VH1 and q ∈ VH2 . We construct
graphs Fi for i = 1, 2 (see Fig. 1) as follows:

Computing Vertex-Surjective Homomorphisms to Partially Reflexive Trees 271

1. For each vertex x ∈ VHi \RH , we introduce a vertex t
(1)
x ;

2. For each vertex x ∈ VHi ∩RH , we introduce two adjacent vertices t
(1)
x , t

(2)
x ;

3. For each edge xy ∈ EHi , we add an edge between any t
(h)
x and any t

(j)
y .

We say that t
(1)
p , t

(2)
p are the roots of F1, and t

(1)
q , t

(2)
q are the roots of F2.

q

H2

p

H

H1
t
(1)
p

t
(2)
p

t
(1)
q

t
(2)
q

F1 F2

Fig. 1. Construction of F1 and F2

Let degG(u) = |NG(u)| denote the degree of a vertex u in a graph G. We now
describe our polynomial-time reduction from Matching-Cut with Roots to
Surjective H-Coloring. Let G be a connected graph that has minimum
degree at least two. Let s, t be two vertices of G that are separated by any
matching-cut in G (if a matching-cut exists). From F1, F2, and G we construct
a graph G′ (see Fig. 2) as follows:

1. For each u ∈ VG we construct a clique Cu on max{degG(u), 3} vertices if
u /∈ {s, t} and on degG(u) + 2 vertices if u ∈ {s, t}. We denote d = degG(u)
vertices of Cu by gu,e1 , . . . , gu,ed

to indicate that they correspond to the edges
e1, . . . , ed that are incident with u in G. We denote the other vertices in Cu

by g
(1)
u and g

(2)
u if they exist.

2. For each edge e = uv ∈ EG, the vertices gu,e, gv,e are identified if 	 = 2, and
the vertices gu,e, gv,e are joined by a path Pe of length 	 − 2 if 	 > 2. For
	 = 2, we let Pe be the single vertex gu,e = gv,e.

3. We add F1 by identifying the roots t
(1)
p , t

(2)
p with vertices g

(1)
s , g

(2)
s .

4. We add F2 by identifying the roots t
(1)
q , t

(2)
q with vertices g

(1)
t , g

(2)
t .

G

s

t

F1

g
(1)
t

F1

F2

g
(1)
t

F2

G′, � = 2 G′, � = 3

g
(2)
s g

(2)
s

g
(2)
t g

(2)
t

g
(1)
sg

(1)
s

Fig. 2. The construction of G′

Lemma 3. If G has a matching-cut then there is a surjective homomorphism
from G′ to H.

272 P.A. Golovach, D. Paulusma, and J. Song

Proof. Let M be a matching-cut in G. Let V1 be the vertex set of the component
of G −M that contains s, and let V2 = VG \ V1. Note that t ∈ V2. We define a
surjective homomorphism h : VG′ → VH as follows.

We let h map every vertex in V1 or V2 that is not on any path Pe to p or q,
respectively. Now consider an edge e = uv ∈ EG. If u and v are both in V1 or
both in V2, then we let h map every vertex from Pe except gu,e and gv,e to p or q,
respectively. Suppose one of u, v, say u, belongs to V1, whereas the other one, v,
belongs to V2. Let Pe = a1 · · ·a	−1 (notice that a1 = gu,e and a	−1 = gv,e). Let
px1 · · ·x	−1q denote the p, q-path in H . We let h map ai to xi for i = 1, . . . , 	−1.
Finally, we let h map every vertex t

(i)
x ∈ VF1 ∪ VF2 to x. ��

To complete our proof of the NP-complete cases in Theorem 1 we show the
following lemma, a proof of which is omitted here due to space restrictions and
will appear in the journal paper.

Lemma 4. If there is a surjective homomorphism of G′ to H then G has a
matching-cut.

4 Future Research

We have shown that for any partially reflexive tree H , the Surjective H-
Coloring problem is polynomial-time solvable if H is loop-connected and NP-
complete otherwise. Determining a complete complexity classification of the
Surjective H-Coloring seems a very challenging open problem, and even
conjecturing a possible dichotomy (between P and NP-complete) is difficult.

A natural question that also gives an indication on why this problem is so
challenging is whether the three problems H-Compaction, H-Retraction
and Surjective H-Coloring are polynomially equivalent to each other for
each target graph H . Also, the computational complexity classifications of the
H-Compaction problem and H-Retraction problem, respectively, are still far
from being completed. The well-known Feder-Vardi conjecture [11] states that
the H-Constraint Satisfaction problem, where H is some fixed finite target
structure, has a dichotomy. Feder and Vardi [11] showed that this conjecture is
equivalent to the conjecture that H-Retraction has a dichotomy.

We will try to extend Theorem 1 in the direction of Theorem 2, i.e., from par-
tially reflexive trees to pseudoforests. An extension to forests is straightforward.
However, if we consider target graphs that are cycles then the smallest case that
we cannot solve is the case in which H is the reflexive 4-cycle C4. Although both
C4-Retraction and C4-Compaction are NP-complete, as proven by Feder et
al. [10] and Vikas [21], respectively, the problem Surjective C4-Coloring is
known to be wide open. We will explain this below.

Fleischner et al. [17] showed that Surjective C4-Coloring is equivalent to
the problem Disconnected Cut that is to test whether a graph G = (V, E) has
a vertex cut U ⊆ V such that G[U] is disconnected. In particular, they show that
every graph of diameter at least three allows a surjective homomorphism to C4,

Computing Vertex-Surjective Homomorphisms to Partially Reflexive Trees 273

and that the two problems Surjective C4-Coloring and C4-Compaction are
equivalent on input graphs of diameter two. However, the reduction of Vikas [21]
for C4-Compaction cannot be used for graphs of diameter two.

The Surjective C4-Coloring problem is also studied in the context of
H-partitions introduced by Dantas et al. [2]. A model graph H with VH =
{h1, . . . , hk} has two types of edges: solid and dotted edges, and an H-partition
of a graph G is a partition of VG into k (nonempty) sets V1, . . . , Vk such that for
all vertices u ∈ Vi, v ∈ Vj and for all 1 ≤ i < j ≤ k the following two conditions
hold. Firstly, if hihj is a solid edge of H , then uv ∈ EG. Secondly, if hihj is a
dotted edge of H , then uv /∈ EG. There are no restrictions when hi and hj are
not adjacent. Let 2K2 be the model graph with vertices h1, . . . , h4 and two solid
edges h1h3, h2h4, and 2S2 be the model graph with vertices h1, . . . , h4 and two
dotted edges h1h3, h2h4. Then a graph G allows a surjective homomorphism to
C4 if and only if G has a 2S2-partition if and only if its complement G has a 2K2-
partition. The equivalent cases H = 2K2 and H = 2S2 are the only two cases
of model graphs on at most four vertices that are still open. Especially 2K2-
partitions have been well studied, see e.g. the recent papers of Dantas, Maffray
and Silva [3] and Teixeira, Dantas and de Figueiredo [20]. The first paper [3]
studies the 2K2-Partition problem for several graph classes and the second
paper [20] even defines a new class of problems called 2K2-hard.

On the positive side, we can adapt our NP-hardness proof to determine the
computational complexity of the H-Surjective Coloring problem when H
is a cycle that is not loop-connected. Furthermore, the case when H is an odd
irreflexive cycle can easily be shown to be NP-complete by a reduction from
H-Coloring. Proofs are postponed to the journal version of our paper.

Acknowledgments. The authors would like to thank Barnaby Martin for fruit-
ful discussions and useful comments on our paper.

References

1. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via
parameterized complexity. J. Comput. Syst. Sci. 72, 1346–1367 (2006)

2. Dantas, S., de Figueiredo, C.M., Gravier, S., Klein, S.: Finding H-partitions effi-
ciently. RAIRO - Theoretical Informatics and Applications 39(1), 133–144 (2005)

3. Dantas, S., Maffray, F., Silva, A.: 2K2-partition of some classes of graphs. Discrete
Applied Mathematics (to appear)

4. Dawar, A., Kreutzer, S.: Parameterized complexity of first-order logic, Electronic
Colloquium on Computational Complexity, Report No. 131 (2009)

5. Diestel, R.: Graph theory. Graduate Texts in Mathematics, 3rd edn., vol. 173.
Springer, Berlin

6. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer
Science. Springer, New York (1999)

7. Dvorak, Z., Král’, D., Thomas, R.: Deciding first-order properties for sparse graphs.
Technical report, Charles University, Prague (2009)

8. Feder, T., Hell, P.: List homomorphisms to reflexive graphs. J. Comb. Theory, Ser.
B 72, 236–250 (1998)

274 P.A. Golovach, D. Paulusma, and J. Song

9. Feder, T., Hell, P., Huang, J.: Bi-arc graphs and the complexity of list homomor-
phisms. Journal of Graph Theory 42, 61–80 (2003)

10. Feder, T., Hell, P., Jonsson, P., Krokhin, A., Nordh, G.: Retractions to pseudo-
forests. SIAM Journal on Discrete Mathematics 24, 101–112 (2010)

11. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: a study through datalog and group theory. SIAM Jour-
nal on Computing 28, 57–104 (1998)

12. Fiala, J., Kratochv́ıl, J.: Locally constrained graph homomorphisms – structure,
complexity, and applications. Computer Science Review 2, 97–111 (2008)

13. Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment
problem. Theoretical Computer Science 349, 67–81 (2005)

14. Hell, P., Nešetřil, J.: On the complexity of H-colouring. Journal of Combinatorial
Theory, Series B 48, 92–110 (1990)

15. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford
(2004)

16. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63, 512–530 (2001)

17. Fleischner, H., Mujuni, E., Paulusma, D., Szeider, S.: Covering graphs with few
complete bipartite subgraphs. Theoret. Comput. Sci. 410, 2045–2053 (2009)

18. Nešetřil, J., Ossona de Mendez, P.: On nowhere dense graphs. Technical report,
Charles University, Prague (2008)

19. Patrignani, M., Pizzonia, M.: The Complexity of the Matching-Cut Problem.
In: Brandstädt, W.A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 284–295.
Springer, Heidelberg (2001)

20. Teixeira, R.B., Dantas, S., de Figueiredo, C.M.H.: The external constraint 4
nonempty part sandwich problem. Discrete Applied Mathematics (to appear)

21. Vikas, N.: Computational complexity of compaction to reflexive cycles. SIAM Jour-
nal on Computing 32, 253–280 (2002)

22. Vikas, N.: Compaction, Retraction, and Constraint Satisfaction. SIAM Journal on
Computing 33, 761–782 (2004)

23. Vikas, N.: A complete and equal computational complexity classification of com-
paction and retraction to all graphs with at most four vertices and some general
results. J. Comput. Syst. Sci. 71, 406–439 (2005)

Compressed Membership in Automata with
Compressed Labels

Markus Lohrey and Christian Mathissen

Institut für Informatik, Universität Leipzig, Germany
{lohrey,mathissen}@informatik.uni-leipzig.de

Abstract. The algorithmic problem of whether a compressed string is accepted
by a (nondeterministic) finite state automaton with compressed transition labels is
investigated. For string compression, straight-line programs (SLPs), i.e., context-
free grammars that generate exactly one string, are used. Two algorithms for
this problem are presented. The first one works in polynomial time, if all tran-
sition labels are nonperiodic strings (or more generally, the word length divided
by the period is bounded polynomially in the input size). This answers a ques-
tion of Plandowski and Rytter. The second (nondeterministic) algorithm is an
NP-algorithm under the assumption that for each transition label the period is
bounded polynomially in the input size. This generalizes the NP upper bound for
the case of a unary alphabet, shown by Plandowski and Rytter.

1 Introduction

The topic of this paper is algorithms on compressed strings. The goal of such algo-
rithms is to check properties of compressed strings and thereby beat a straightforward
“decompress-and-check” strategy. Potential applications for such algorithms can be
found for instance in genome databases, where massive volumes of string data are
stored and analyzed. When talking about algorithms on compressed strings, one has
to make precise the used compression scheme. Here, as in previous papers, we choose
straight-line programs (SLPs); these are context-free grammars that generate exactly
one string. Straight-line programs turned out to be a very flexible and mathematically
clean compressed representation of strings. Several other dictionary-based compressed
representations, like for instance Lempel-Ziv (LZ) factorizations [15], can be converted
in polynomial time into SLPs and vice versa [13]. This implies that complexity results
can be transferred from SLP-encoded input strings to LZ-encoded input strings.

Several algorithmic problems for SLP-compressed input strings were considered in
the past, e.g. equivalence and pattern matching [5, 12], word problems for certain groups
and monoids [8, 9, 11, 14], and membership problems for various language classes
[3, 7, 9, 13]. In this paper, we study the membership problem for compressed words in
automata with compressed labels. In this problem, the input consists of an SLP A and
a nondeterministic automaton, where each transition is labeled with an SLP. Such an
automaton generates a language in the obvious way, and it is asked whether the string
generated by the SLP A belongs to that language. This problem was first studied in
[13]; it is easily seen to be in PSPACE. Moreover, it was shown to be NP-complete for
a unary alphabet in [13]. In fact, NP-hardness in the unary case follows directly from

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 275–288, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

276 M. Lohrey and C. Mathissen

NP-hardness of the SUBSETSUM problem. To the knowledge of the authors no better
lower bound than NP-hardness is known for the non-unary case. This paper contains
two algorithms for the membership problem for compressed words in automata with
compressed labels (let A be the input automaton with compressed labels).

The first algorithm is deterministic and works in polynomial time if every SLP ap-
pearing in A generates a string with a small order (polynomial in the total input size).
Here the order of a string is its length divided by its smallest period. Hence, having a
small order means that the string looks quite aperiodic. In fact, as a corollary we obtain
a polynomial time algorithm for the case that every SLP in A generates a nonperiodic
word. This solves open problem 3 from [13]. The second algorithm is nondeterministic
and works in polynomial time if every SLP in A generates a string with a small period
(polynomial in the total input size). This generalizes the NP bound for the unary case
from [13] (a unary word has period 1).

Hence, these two algorithms cover two extreme cases (almost nonperiodic versus
highly periodic). But they do not cover the general case. An SLP A may generate a
string, for which both the order and the period are exponential in the size of A. Never-
theless, following [13], we conjecture that the general membership problem for com-
pressed words in automata with compressed labels belongs to NP. We conclude this
paper with another conjecture that implies the former one.

2 Preliminaries

We use poly(n1, . . . , nk) as an abbreviation for (n1 + · · · + nk)O(1). For n ≤ m, we
denote with [n, m] the interval {n, n+ 1, . . . , m}. An arithmetic progression is a set of
natural numbers of the form {b+i ·p | i ∈ [0,]}. This set can be represented succinctly
by the triple (b, p,), where all three numbers are binary coded.

Let us fix a finite alphabet Σ. For a string w ∈ Σ∗ and 1 ≤ i ≤ |w| let w[i] denote
the i-th symbol in w. Moreover, for 1 ≤ i, j ≤ |w| let w[i : j] = w[i] · · ·w[j] if
i ≤ j and let w[i : j] = ε if i > j. A number 1 ≤ p ≤ |w| − 1 is a period of w if
w[i] = w[i + p] for all 1 ≤ i ≤ |w| − p. With per(w) we denote the smallest period
of w, where we set per(w) = |w| if w has no period. Let ord(w) = # |w|

per(w)$ be the

order of w. Then w = uord(w)v, where u is primitive (i.e., it is not of the form xn for
a string x and n ≥ 2) and v is a proper prefix of u (possibly empty). A string w is
called nonperiodic, if ord(w) = 1. Two words u, v ∈ Σ∗ are conjugated, if there exist
x, y ∈ Σ∗ with u = xy and v = yx. An occurrence of a word p in another word t is a
number i ∈ [0, |t| − |p|] such that w[i + 1 : i + |p|] = p. We say that this occurrence
i covers all positions from the interval [i + 1, i + |p|], and that it touches all positions
from the interval [i, i + |p|].
Lemma 1 (cf. [5, Lemma 1]). Let t, p ∈ Σ∗ and j ∈ [0, |t|]. The set of all occurrences
of p in t that touch position j is an arithmetic progression of size at most ord(p).

In Section 4.2 we need some basic concepts concerning string rewriting systems, see [1]
for more details. A string rewriting system R over Σ is a finite subset of Σ∗×Σ∗. A pair
(, r) ∈ R is called a rule of R and is often written as 	 → r. R defines a rewrite relation
→R as follows: u →R v for u, v ∈ Σ∗ if there exist x, y ∈ Σ∗ and a rule (, r) ∈ R

Compressed Membership in Automata with Compressed Labels 277

such that u = x	y and v = xry. The system R is terminating if there does not exist
an infinite chain u0 →R u1 →R u2 →R · · · . Moreover, R is called confluent (resp.
locally confluent) if for all u, v, w ∈ Σ∗ such that u →∗

R v and u →∗
R w (resp. u →R v

and u →R w) there exists x ∈ Σ∗ with v →∗
R x and w →∗

R x. By Newman’s lemma,
a terminating system is confluent if and only if it is locally confluent. Moreover, for
terminating systems, local confluence is decidable. For this one has to consider critical
pairs that result from overlapping left hand sides, see [1] for more details. Let us set
IRR(R) = Σ∗ \ {u | ∃v : u →R v}. If R is terminating and confluent, then for every
u ∈ Σ∗ there exists a unique v ∈ IRR(R) such that u →∗

R v; it is called the irreducible
normal form of u and is denoted by NFR(u).

A straight-line program (SLP) over the terminal alphabet Σ is a context-free gram-
mar A = (N, Σ, S, P) (N is the set of nonterminals, Σ is the set of terminals, S ∈ N
is the initial nonterminal, and P ⊆ N × (N ∪Σ)∗ is the set of productions) such that:
(i) for every A ∈ N there exists exactly one production of the form (A, α) ∈ P for
α ∈ (N ∪Σ)∗, and (ii) the relation {(A, B) ∈ N ×N | (A, α) ∈ P, B occurs in α} is
acyclic. The transitive closure of this relation is also called the hierarchical order of A;
it is a partial order. A production (A, α) is also written as A → α. Clearly, the language
generated by the SLP A consists of exactly one word that is denoted by val(A). More
generally, from every nonterminal A ∈ N we can generate exactly one word that is
denoted by valA(A) (thus val(A) = valA(S)). We omit the index A if the underlying
SLP is clear from the context. The size of A is |A| =∑(A,α)∈P |α|. Every SLP A with
val(A) �= ε can be transformed in polynomial time into an equivalent SLP in Chomsky
normal form, i.e., all productions have the form (A, a) with a ∈ Σ or (A, BC) with
B, C ∈ N . In the sequel we assume that all SLPs are in Chomsky normal form.

Let us state some algorithmic problems that can be easily solved in polynomial time:

– Given an SLP A, calculate |val(A)|.
– Given an SLP A and a number i ∈ {1, . . . , |val(A)|}, calculate val(A)[i]; this prob-

lem is in fact P-complete [6].

Let A be an SLP with a production (A, BC). An occurrence i ∈ [0, |val(A)| − |p|] of
the word p in val(A) touches the cut of A, if this occurrence touches position |val(B)|.
The following result by Lifshits implies in particular, that for given SLPs A and B one
can check in time O(|A| · |B|2), whether val(A) occurs as a pattern in val(B).

Theorem 2 ([5]). For two given SLPs A and B we can compute in time O(|A| · |B|2) a
table that contains for every nonterminal B of B an arithmetic progression (stored by
three binary encoded numbers) for the set of all occurrences of val(A) in valB(B) that
are touching the cut of B.

An automaton with compressed labels is a tuple A = (Q, Σ, δ, q0, F), where Q is a fi-
nite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of fi-
nal states, and δ is a finite set of transitions of the form (p, A, q), where p and q are states
and A is an SLP over Σ, for which we assume val(A) �= ε (ε-transitions can be elimi-
nated). A transition (p, A, q) with |val(A)| = 1 is called atomic. The size of A is |A| =
|Q|+∑(p,A,q)∈δ |A|. We say that a word w labels a path from state p to state q in A if

278 M. Lohrey and C. Mathissen

there exists a sequence of transitions (p0, A0, p1), (p1, A1, p2), . . . , (pn−1, An−1, pn) ∈
δ (n ≥ 0) such that p0 = p, pn = q, and w = val(A0) · · · val(An−1). We say the
transition starting at position

∑�−1
i=0 |val(Ai)| and ending at position

∑�
i=0 |val(Ai)| is

(p�, A�, p�+1). The language L(A) ⊆ Σ∗ is the set of all words that label a path from
the initial state q0 to some final state qf ∈ F . We set ord(A) = max{ord(val(A)) |
(p, A, q) ∈ δ} and per(A) = max{per(val(A)) | (p, A, q) ∈ δ}. Note that in general,
both ord(A) and per(A) are exponential in |A|.

3 A Deterministic Algorithm

The goal of this section is to prove the following theorem.

Theorem 3. Given an automaton with compressed labels A and an SLP B, we can
check val(B) ∈ L(A) in time poly

(|B|, |A|, ord(A)
)
.

Proof. Let A = (Q, Σ, δ, q0, F), B = (N, Σ, S, P), and let A1, . . . , An be a list of all
SLPs that occur as labels in A. By Theorem 2, we can compute in time O(

∑n
i=1(|Ai| ·

|B|2)) ≤ O(|A| · |B|2) a table that contains for every i ∈ [1, n] and every nonter-
minal B ∈ N an arithmetic progression AP(i, B) for the set of all occurrences of
Ai in valB(B) that are touching the cut of B. Moreover, by Lemma 1, this arithmetic
progression contains at most ord(val(Ai)) many numbers. In total, we have at most
|B| ·∑n

i=1 ord(val(Ai)) ≤ |B| · |A| · ord(A) many numbers.
We now define a context-free grammar G with empty terminal alphabet. The two

major facts about G are:

– G can be computed in time poly
(|B|, |A|, ord(A)

)
.

– ε ∈ L(G) if and only if val(B) ∈ L(A).

Since the word problem for context-free grammars can be decided in polynomial time,
these two facts imply the theorem. The grammar G is constructed by a fixpoint process,
where we add more and more nonterminals. The set of nonterminals contains the start
nonterminal SG; all other nonterminals are 5-tuples of the form (p, k, B, 	, q), where
p, q ∈ Q, B ∈ N , and k, 	 ∈ [0, |val(B)|] with k + 	 ≤ |val(B)|. The intuition is
that this 5-tuple should be viewed as the following assertion: Let w be the word that
results from val(B) by cutting off the prefix of length k and the suffix of length 	, i.e.,
w = val(B)[k + 1 : |val(B)| −]. Then in the automaton A there exists a path from
state p to state q labeled with the word w.

For G’s start nonterminal SG we introduce all productions of the form

SG → (0, q0, S, qf , 0), (1)

where qf ∈ F is a final state of A. Now assume that at some point we have introduced
a new nonterminal (k, p, B, q,). We distinguish 5 cases:

Case 1. (B → CD) ∈ P and |val(C)| ≤ k < |val(B)| − 	, see Figure 1. We introduce
the production

(k, p, B, q,) → (k − |val(C)|, p, D, q,).

Compressed Membership in Automata with Compressed Labels 279

B

C D

k �

k − |val(C)|

Fig. 1. Case 1

B

C D

�k

� − |val(D)|

Fig. 2. Case 2

Case 2. (B → CD) ∈ P and |val(D)| ≤ 	 < |val(B)| − k, see Figure 2. We introduce
the production

(k, p, B, q,) → (k, p, C, q, 	− |val(D)|).
Case 3. (B → CD) ∈ P and k < |val(C)|, 	 < |val(D)|, see Figure 3. We introduce a
production for every transition (r, Ai, s) of A and every j ∈ AP(i, B) such that j ≥ k
and |val(B)| − |val(Ai)| − j ≥ 	. For such a choice, we introduce the production

(k, p, B, q,) → (k, p, C, r, |val(C)| − j) (|val(Ai)|+ j − |val(C)|, s, D, q,). (2)

Case 4. k + 	 = |val(B)|. If p = q, then we introduce the production

(k, p, B, q,) → ε.

Case 5. (B → a) ∈ P and k = 	 = 0. If in A there is a path from state p to state q
labeled with the letter a, then we introduce the production

(0, p, B, q, 0) → ε.

This concludes the description of G. It is straightforward to show that ε ∈ L(G) if and
only if val(B) ∈ L(A).

We claim that G contains at most O
(|B|7 · |A|4 · ord(A)2

)
many nonterminals. This

clearly implies that G can be constructed in time poly
(|B|, |A|, ord(A)

)
. For the second,

third and fourth component of a G-nonterminal (except of SG) there are in total |Q|2 ·
|N | ≤ |A|2 · |B| possibilities. Let us bound the number of positions that may appear
as a first component of a G-nonterminal (an analogous argument will apply to the fifth
component). Let M1 be the set of all positions that appear as a first component of a
nonterminal of G. Moreover, let us define the set

J = {|val(Ai)|+j−|val(C)| | 1 ≤ i ≤ n, ∃B, D ∈ N : (B, CD) ∈ P, j ∈ AP(i, B)}.

280 M. Lohrey and C. Mathissen

Ai

B

C D

k �

|val(C)| − j |val(Ai)| + j − |val(C)|

j

Fig. 3. Case 3

Every first component of the second G-nonterminal in the right-hand side of the G-
production (2) is from J . Note that

|J | ≤ |B| ·
n∑

i=1

ord(val(Ai)) ≤ |B| · |A| · ord(A).

Let us now define a mapping f on [0, |val(B)|]×N as follows:

f(k, B) =

⎧⎪⎨⎪⎩
(k − |val(C)|, D) if (B, CD) ∈ P, |val(C)| ≤ k

(k, C) if (B, CD) ∈ P, |val(C)| > k

undefined otherwise

This mapping f describes the way the first and third component of a G-nonterminal
evolve when applying the productions from Case 1, 2, and 3 (for Case 3, we only
consider the first G-nonterminal in the right-hand side of (2)). Note that for every
(k, B) ∈ [0, |val(B)|]×N , there is α ≤ |N |−1 such that fα(k, B) = undefined. More-
over, if i ∈ M1, then there exists (k, B) ∈ {(0, S)} ∪ (J ×N) and 0 ≤ α ≤ |N | − 1
such that fα(k, B) ∈ {i} ×N . Hence, the size of M1 is bounded by

(|J | · |N |+ 1) · |N | ≤ (|B|2 · |A| · ord(A) + 1) · |B| ∈ O(|B|3 · |A| · ord(A)).

Hence, the number of nonterminals of G can be bounded by O
(|B|7|A|4ord(A)2

)
. This

concludes the proof of the theorem. ��

4 A Nondeterministic Algorithm

The goal of this section is to prove the following theorem:

Theorem 4. Given an automaton with compressed labels A and an SLP B, we can
check val(B) ∈ L(A) nondeterministically in time poly

(|B|, |A|, per(A)
)
.

In a first step, we will deal with the special case that per(A) = 1, which means that
every transition is labeled with a compressed unary word (Theorem 5 below). Note
that the NP bound in Theorem 5 already generalizes [13, Theorem 4], since the unary
alphabet for each transition is allowed to vary.

Compressed Membership in Automata with Compressed Labels 281

4.1 Compressed Unary Labels

Theorem 5. Given an automaton A with compressed labels over unary alphabets and
an SLP B, we can check whether val(B) ∈ L(A) in NP.

Proof. We give an algorithm for the case Σ = {0, 1}. The general case is similar.
W.l.o.g. we may assume that val(B) ∈ 0{0, 1}∗1. Let A = (Q, Σ, δ, q0, F) and B =
(N, {0, 1}, S, P).

Step 1. Let m ≥ 2, β1, . . . , βm ≥ 1 such that val(B) = 0β11β20β3 · · · 1βm . Note that m
might be exponentially big, however the size of the set I = {β1, . . . , βm} is bounded
by the number of nonterminals of B. The binary codings of the numbers βi can be com-
puted bottom-up. For each production (A, BC) ∈ P we get a new number βi in case
valB(B) ends with the same symbol as valB(C) starts. We transform B into an SLP
C over the alphabet Θ = {Xi, Yi | i ∈ I} such that val(C) = Xβ1Yβ2Xβ3 · · ·Yβm .
This can be done in deterministic polynomial time similar to the construction from [8,
proof of Theorem 2]. The SLP C contains all nonterminals from V plus some auxiliary
nonterminals. The right-hand side in C of an old variable A ∈ V will be of the form Z
or Z1A

′Z2, where Z, Z1, Z2 ∈ Θ and A′ is an auxiliary nonterminal. Consider a pro-
duction (A, BC) ∈ P , and assume that the C-productions (B, Z1B

′Z2), (C, Z3C
′Z4)

are already computed (the case that the right-hand side of B or C is a single symbol
from Θ is similar). In case Z2 is of the form Xi and Z3 is of the form Yj (i, j ∈ I)
or vice versa, we introduce the C-productions (A, Z1A

′, Z4) and (A′, B′Z2Z3C
′). On

the other hand, if, e.g., Z2 = Xi and Z3 = Xj (i, j ∈ I), then we introduce the
C-productions (A, Z1A

′Z4) and (A′, B′Xi+jC
′).

Step 2. We build nondeterministically a new automaton B = (Q, Θ, q0, δ
′, F) (with

noncompressed labels). For all q, p ∈ Q and for each i ∈ I we guess whether there is a
path in A from q to p labeled with 0i (resp. 1i). If this is true, then we add a transition
(q, Xi, p) (resp. (q, Yi, p)) to δ′.

Step 3. For each pair (q, p) it can be checked nondeterministically in time poly(|B|, |A|)
whether there is a path from q to p inA with label 0βi (resp. 1βi) (see [13, Theorem 4]).
So for each transition (q, Xi, p) and (q, Yi, p) in B we can check whether there is in fact
a corresponding path in A.

Step 4. We can check deterministically in time poly(|C|, |B|) whether val(C) ∈ L(B)
(see [13, Theorem 2(a)]). Clearly, val(B) ∈ L(A) if and only if there is an automaton
B, obtained as described above, such that val(C) ∈ L(B). ��
In the rest of this paper, we will prove Theorem 4. First, we have to do some combina-
torics on words.

4.2 Some Combinatorics on Words

The following lemma is well known.

Lemma 6 (e.g. [10]). Let u ∈ Σ∗ be primitive and u2 = vuw for some v, w ∈ Σ∗.
Then either v = ε or w = ε.

282 M. Lohrey and C. Mathissen

The next lemma is an easy consequence of the well-known periodicity theorem of Fine
and Wilf.

Lemma 7 (cf. [2, Corollary 6.2]). Let u �= v be two primitive words that are not
conjugate, and let n, m ∈ N. Then un and vm do not have a common factor of length
|u|+ |v|.
Let now U = {u1, . . . , un} ⊆ Σ+ be a collection of primitive words that are pairwise
not conjugated. Later U will consist of the primitive roots of labels occurring in an
automaton with compressed labels. For 1 ≤ i ≤ n let αi = 1 + 	|v|/|ui|
 ≥ 2, where
v is a longest word in U . Lemma 7 implies:

Lemma 8. For i �= j, uαi

i is not a factor of a word from u∗
j .

Let X1, . . . , Xn be fresh letters which are not in Σ. We now define a string rewriting
system RU over the alphabet Σ ∪ {X1, . . . , Xn}. First, for 1 ≤ i ≤ n let Ri consist of
the following 4 rules:

u2αi+1
i → uαi

i Xiu
αi

i (3)

uαi+1
i Xi → uαi

i X2
i (4)

Xiu
αi+1
i → X2

i uαi

i (5)

Xiu
αi

i Xi → Xαi+2
i (6)

Finally, let RU =
⋃n

i=1 Ri. Let mU be the maximal length of a left-hand side of RU .
The following obvious fact is useful in the further investigations:

Fact 9. If u →∗
RU

v, then u can be obtained from v by replacing some (but not neces-
sarily all) occurrences of Xi by ui (1 ≤ i ≤ n).

Clearly, RU is terminating. Moreover, we have:

Lemma 10. RU is confluent.

Proof. No left-hand side of RU is a factor of another left-hand side. Hence, we have
to check critical pairs that result from overlappings between left-hand sides. Rule (3)
replaces an occurrence of ui by Xi within the context (uαi

i , uαi

i). Similarly, (4) (resp.,
(5)) replaces an occurrence of ui by Xi within the context (uαi

i , Xi) (resp. (Xi, u
αi

i)).
Finally, (6) replaces an occurrence of uαi

i by Xαi

i within the context (Xi, Xi). These
observations imply that critical pairs that result from an overlapping between a left-
hand side of Ri and a left-hand side of Rj with i �= j can be directly resolved: Lemma 8
implies that the replaced parts in the left-hand sides cannot overlap, i.e., the overlapping
is restricted to the context. It remains to consider overlappings between left-hand sides
of some Ri. Again, those overlappings that are restricted to the context can be directly
resolved. Since ui does not occur properly in u2

i (Lemma 6), the critical pairs from
Figure 4 (shown together with the resolving derivations) remain (arrows are labeled
with the applied rule and possibly a number indicating the number of rule applications).
This concludes the confluence proof. ��

Compressed Membership in Automata with Compressed Labels 283

u2αi+1
i Xi

uαi
i Xiu

αi
i Xi u2αi

i X2
i

(3) (4)

uαi
i Xαi+2

i

(6) (4)
αi

Xiu
2αi+1
i

Xiu
αi
i Xiu

αi
i X2

i u2αi
i

(3) (5)

Xαi+2
i uαi

i

(6) (5)
αi

u2αi+1+k
i

uαi
i Xiu

αi+k
i uαi+k

i Xiu
αi
i

(3) (3)

uαi
i Xk+1

i uαi
i

(5)
k

(4)
k

Xiu
αi+1
i Xi

Xiu
αi
i X2

i X2
i uαi

i Xi

(4) (5)

Xαi+3
i

(6) (6)

Fig. 4. Proving confluence of RU

In the following, we write NFU for NFRU . The next lemma is needed in order to prove
the crucial Lemma 12 below.

Lemma 11. Assume that x, y ∈ (Σ∪{X1, . . . , Xn})∗, xuαi+1
i ∈ IRR(RU), and y �= ε

neither starts with ui nor Xi. If xuαi+1
i y →∗

RU
v, then v = xuαi+1

i z for some z �= ε
that neither starts with ui nor Xi.

Proof. Using induction, it suffices to prove the lemma for the case that the derivation
xuαi+1

i y →∗
RU

v has length one, i.e., xuαi+1
i y →RU v. The case that v is obtained from

xuαi+1
i y by applying a rule within the suffix y (i.e., y →RU y′ and v = xuαi+1

i y′) is
clear; one can use Fact 9 to see that y′ neither starts with ui nor Xi. So, we have to
consider an occurrence of a left-hand side 	 of RU that starts in xuαi+1

i and ends in
y. Assume that 	 is a left-hand side of Rj ⊆ RU . If i �= j, then Lemma 8 implies
that the occurrence of 	 has to start in the suffix uαi+1

i of xuαi+1
i . So, only the rules

u
2αj+1
j → u

αj

j Xju
αj

j and u
αj+1
j Xj → u

αj

j X2
j have to be considered. By Lemma 8,

the length of an overlapping between uαi+1
i and u

2αj+1
j (resp., u

αj+1
j Xj) is bounded

by αj · |uj|. Hence, the prefix xuαi+1
i is not modified in the rewrite step. Moreover,

the rewrite step either does not modify the first |ui| many positions of y or produces
an occurrence of Xj within one of the first |ui| many positions of y. Hence, indeed,
v = xuαi+1

i z for some z �= ε that neither starts with ui nor Xi. Finally, consider the
case i = j. By Lemma 6 the occurrence of the left-hand side 	 of Ri has to start in one
of the last |ui| many positions of xuαi+1

i (otherwise y would start with ui or Xi). But
then, the prefix xuαi+1

i as well as the first |ui| many positions of y are not modified in
the rewrite step. ��
Lemma 12. Let s, t ∈ IRR(RU), s = s1s2, and t = t1t2 with (|s2| = mU or s = s2)
and (|t1| = mU or t = t1). Then, NFU (st) = s1NFU (s2t1)t2.

284 M. Lohrey and C. Mathissen

Proof. We only consider the case |s2| = |t1| = mU . Since st →∗
RU

s1NFU (s2t1)t2,
it suffices to show that s1NFU (s2t1)t2 ∈ IRR(RU). Assume for contradiction that
s1NFU (s2t1)t2 is reducible. Since, s1, NFU (s2t1), t2 ∈ IRR(RU), there has to be an
occurrence of a left-hand side 	 that starts in the prefix s1 or that ends in the suffix t2.
By symmetry assume the former. Hence, 	 = 	1	2 with 	1 �= ε �= 	2, 	1 is a suffix of
s1, and 	2 is a prefix of NFU (s2t1)t2. We distinguish the following cases:

Case 1. 	 = u2αi+1
i for some 1 ≤ i ≤ n. Then by Fact 9, 	2 ∈ Σ+ must be a prefix

of s2t as well. Since |s2| ≥ (2αi + 1) · |ui|, it follows that 	2 is in fact a prefix of s2.
Hence s = s1s2 is reducible, a contradiction.

Case 2. 	 = Xiu
αi+1
i for some 1 ≤ i ≤ n. Since again 	2 ∈ Σ+, we can argue as in

Case 1.

Case 3. 	 = uαi+1
i Xi. Let 	1 = um1

i u′ (it is a suffix of s1) and 	2 = u′′um2
i Xi with

ui = u′u′′ and αi + 1 = m1 + 1 + m2. Then u′′um2
i is a prefix of s2t. Note that |s2| ≥

(2αi + 1) · |ui|. Let m3 ≥ m2 maximal such that u′′um3
i is a prefix of s2t. We must

have m1 +1+m3 < 2αi +1, because otherwise s = s1s2 would contain an occurrence
of u2αi+1

i and therefore would be reducible. Since |s2| ≥ (2αi + 1) · |ui|, u′′um3
i must

be a prefix of s2. Let s1 = xum1
i u′ and s2 = u′′um3

i y. Since m3 + 1 < 2αi + 1 and
|s2| ≥ (2αi + 1) · |ui|, we have |y| ≥ |ui| Now, consider the word xum1+1+m3

i yt1 =
s1s2t1. We claim that yt1 does not start with ui or Xi. If it would do so, then, since
|y| ≥ |ui|, y would start with ui or Xi. This contradicts either the maximality of m3 (if
y starts with ui) or implies that s = s1s2 contains an occurrence of uαi+1

i Xi (if y starts
with Xi) and is therefore reducible. Hence yt1 neither starts with ui nor Xi. We can
therefore apply Lemma 11 to xum1+1+m3

i yt1 = s1s2t1 →∗
RU

s1NFU (s2t1). It follows
that s1NFU (s2t1) has the form xum1+1+m3

i z, where z �= ε neither starts with ui nor
Xi. But by our assumption s1NFU (s2t1)t2 starts with x	 = xum1+1+m2

i Xi. This leads
to a contradiction, since m3 ≥ m2.

Case 4. 	 = Xiu
αi

i Xi. Can be shown analogously to Case 3. ��
Lemma 12 allows us to prove Lemma 13 below. For this, an extension of SLPs is use-
ful. A composition system B = (N, Σ, S, P) is defined analogously to an SLP, but
in addition to productions of the form A → α (A ∈ N, α ∈ (N ∪ Σ)∗) it may
also contain productions of the form A → B[i : j] for N ∈ V and i, j ∈ N. For
such a production we define valB(A) = valB(B)[i : j]. The size of this production is
1 + 	log2(i)
 + 	log2(j)
. As for SLPs we define val(B) = valB(S). In [4], Hagenah
presented a polynomial time algorithm, which transforms a given composition system
B into an SLP C such that val(C) = val(B).1 Below, we allow more general kinds of
productions, where right-hand sides are arbitrary words, built up from terminals, non-
terminals and symbols B[i : j] for a nonterminal B and i, j ∈ N. The semantics of such
productions is the obvious one. Clearly, productions of this more general form can be
transformed in polynomial time into the above standard form.

Lemma 13. From a given SLP A = (N, Σ, S, P) and a set U as above, we can com-
pute in time poly(

∑n
i=1 |ui|, |A|) an SLP B such that val(B) = NFU (val(A)).

1 The thesis [4] is written in German. An english presentation of Hagenah’s algorithm can be
found in [14].

Compressed Membership in Automata with Compressed Labels 285

Proof. Using Hagenah’s algorithm, it suffices to construct in polynomial time a com-
position system B = (N, Σ ∪ {X1, . . . , Xn}, S, R) such that val(B) = NFU (val(A)).
To this aim we successively add productions to B. W.l.o.g. assume that A is in Chom-
sky normal form. First, we put all productions (A → a) ∈ P with a ∈ Σ into R.
Now, consider a production (A → BC) ∈ P , and assume that B contains already
enough productions so that valB(B) = NFU (valA(B)) and valB(C) = NFU (valA(C)).
Let kB = |valB(B)| and kC = |valB(C)|, these numbers can be computed in time
poly(|A|). Moreover, in time poly(

∑n
i=1 |ui|, |A|), we can compute the words x =

valB(B)[kB −mU + 1 : kB], y = valB(C)[1 : mU], and z = NFU (xy). By Lemma 12,
we have

NFU (valA(A)) = valB(B)[1 : kB −mU] z valB(C)[mU + 1 : kC].

Hence, we introduce the production A → B[1 : kB − mU] z C[mU + 1 : kC]. This
concludes the construction of the composition system B. ��

4.3 Proof of Theorem 4

Assume that A is an automaton with compressed labels. First we will transform A in
time poly(|A|, per(A)) into an equivalent automaton with compressed labels with some
additional nice properties. For an SLP A let us write ord(A) and per(A) for ord(val(A))
and per(val(A)), respectively, in the following. For simplicity, we will denote the au-
tomaton resulting from each of Steps 1–3 below again with A.

Step 1. For eachA-transition (p, A, q), we can compute in time poly(|A|) SLPs U and V
such that |val(V)| < |val(U)| = per(A) and val(A) = val(U)ord(A)val(V) (see e.g. [3]).
Moreover, in time O(per(A)) , we can explicitly compute u = val(U) (it is primitive)
and v = val(V). We now replace the transition (p, A, q) by a path of |v| + 1 many
transitions: a transition labeled with an SLP for uord(A), followed by a sequence of |v|
atomic transitions, which give an v-labeled path ending in state q. Hence, we can assume
that for every transition (p, A, q) of A we have val(A) = un for a primitive word u.
In the following, a transition (p, A, q) with val(A) = un (u primitive) is just written as
(p, u, n, q) (an atomic transition (p, a, q) can be viewed as (p, a, 1, q)). In fact, instead
of an SLP for un, we can store the pair (u, n), where n is binary coded. All following
steps are polynomial w.r.t. this new representation.

Step 2. Next, assume that there are two transitions (p, u, n, q) and (r, v, m, s) such
that the primitive words u and v are conjugated. Hence, there are non-empty words
x, y ∈ Σ+ such that u = xy and v = yx. We may assume that m ≥ 2, as otherwise we
replace the transition (r, v, m, s) by a path of atomic transitions. We now replace the
transition (r, v, m, s) by a path of |v| + 1 many transitions: a path of |y| many atomic
transitions labeled y, followed by a transition labeled with the pair (u, m−1), followed
by a path of |x| many atomic transitions labeled with x.

Let U = {u1, . . . , un} be the set of primitive words that occur in transitions of A.
W.l.o.g. we can assume that Σ ⊆ U . By Step 2, ui and uj are not conjugated for i �= j.
This allows us to construct the confluent and terminating system RU from Section 4.2.

286 M. Lohrey and C. Mathissen

q′

q

p

p′
(ui, n − 2αi) uαi

iuαi
i

︸ ︷︷ ︸
atomic trans.

︸ ︷︷ ︸
atomic trans.

Fig. 5.

Let v be a longest word in U . Recall that we defined αi = 1+ 	|v|/|ui|
 for 1 ≤ i ≤ n.
We can compute all these numbers (even in unary notation) within our preprocessing
time bound poly(|A|, per(A)).

Step 3. The aim of this step is to ensure the following technical condition.

Each transition (q, ui, n, p) of A is either atomic or there are states q′, p′ such that:
In A there is a path π of atomic transitions from q′ to q labeled with uαi

i and there
is a path π′ of atomic transitions from p to p′ labeled with uαi

i . Moreover, on the
path π the only state with indegree > 1 could be q′ and on the path π′ the only
state with outdegree > 1 could be p′.

To ensure this condition, we first split each transition (q′, ui, n, p′) with n ≤ 2αi into
a path of atomic transitions. After that, each transition (q′, ui, n, p′) with n > 2αi is
replaced by (see Figure 5):

– a path of atomic transitions from q′ to some fresh state q labeled uαi

i ,
– a transition (q, ui, n− 2αi, p) for some fresh state p and
– a path of atomic transitions from p to p′ labeled uαi

i .

Observe that all our modifications preserve L(A) and that they can be executed within
the time bound poly(|A|, per(A)). This ends the preprocessing of the automatonA.

Step 4. Let us introduce a new symbol Xi for every primitive word ui (see also the
definition of RU). We now modify the automaton A as follows. For each primitive
word ui ∈ U we replace every non-atomic transition (p, ui, m, q) by (p, Xi, m, q).
Moreover for any two states p, q of A we test whether there is a path of atomic tran-
sitions in A from p to q labeled ui. If there is such a path we introduce a new transi-
tion (p, Xi, q). Let B denote our modified automaton. Now, consider an SLP C with
val(C) = NFU (val(B)); such an SLP can be computed in polynomial time from B by
Lemma 13. We claim that val(B) ∈ L(A) if and only if val(C) ∈ L(B). This concludes
the proof of Theorem 4 as the latter question belongs to NP by Theorem 5. So it remains
to prove that indeed val(B) ∈ L(A) if and only if val(C) ∈ L(B).

For the if-direction, consider a path from the initial state q0 to some final state qf in B
labeled val(C). Replacing every transition (q, Xi, m, p) by (q, ui, m, p) and replacing
every atomic transition (q, Xi, p) by an appropriate ui-labeled path of atomic transitions
in A gives a path in A from q0 to qf labeled val(B).

For the other direction, consider a path π from q0 to some final state qf in A labeled
val(B) and fix an occurrence of uαi

i Xβ
i uαi

i in val(C) = NFU (val(B)) for some ui ∈ U

Compressed Membership in Automata with Compressed Labels 287

(β > 0). Let j > 0 be the position of val(B) such that the factor uβ
i corresponding to

the block Xβ
i occurs at j, i.e.,

val(B)[j − αi|ui|+ 1 : j + β|ui|] = uαi+β
i .

Let (p, us, m, q) be the unique transition in π that starts at k < j and ends at 	 ≥ j.
Thus, val(B)[k + 1 :] = um

s , i.e., k is an occurrence of um
s in val(B). Assume for

contradiction that 	 > j. Hence (p, us, m, q) is non-atomic and by the condition from
Step 3 above, the occurrence k of um

s in val(B) is preceded by uαs
s , i.e.,

val(B)[k − αs|us|+ 1 :] = uαs+m
s .

If s = i, then k < j < 	 implies that the occurrence j −αi|ui| of uαi

i (which covers all
positions from [j − αi|ui| + 1, j]) is strictly contained in the occurrence k − αi|ui| of
uαi+m

i (which covers all positions from [k−αi|ui|+1,]). In particular, the occurrence
j − αi|ui| of ui is contained in an occurrence < j − αi|ui| of u2

i . Lemma 6 implies
that j − αi|ui| − |ui| = j − (αi + 1)|ui| is an occurrence of ui as well. Hence, we
have val(B)[j − (αi + 1)|ui|+ 1 : j] = uαi+1

i . But then, in val(C) = NFU (val(B)) we
would obtain the factor uαi

i Xγ
i uαi

i for some γ > β instead of uαi

i Xβ
i uαi

i , which is a
contradiction. Hence s �= i. But then either uαi

i is contained in uαs+m
s (if k−αs|us| ≤

j − αi|ui|) or uαs
s is contained in uαi

i (if j − αi|ui| ≤ k − αs|us|). This contradicts
Lemma 8.

Hence 	 = j, i.e., there is a transition in π starting at j. A symmetric argument shows
that there is a transition ending at j + β|ui| and hence there is a subpath π′ of π from
p′ to q′ that corresponds exactly to the block Xβ

i . In fact, our argument also shows that
this subpath π′ cannot contain a non-atomic transition (p′′, us, m, q′′) with s �= i (we
would obtain again a contradiction to Lemma 8). Hence, by Lemma 6 (ui is primitive),
π′ can be decomposed into atomic paths labeled ui and non-atomic transitions of the
form (p, ui, m, q). Hence, π′ has a corresponding Xβ

i -labeled path from p′ to q′ in B.
By doing this argument for all factors uαi

i Xβ
i uαi

i in val(C), we obtain a path from q0

to qf in B labeled val(C). This concludes the proof of Theorem 4.

5 Conclusion

We have considered the membership problem for a compressed string and an automaton
with compressed labels. Two algorithms for this problem were developed. The first
algorithm is deterministic and works in polynomial time if all transition labels have a
small order (polynomial in the input size). The second algorithm is nondeterministic
and works in polynomial time if all transition labels have a small period (polynomial in
the input size), i.e., are highly periodic. Hence, these two algorithms cover two extreme
cases (almost nonperiodic versus highly periodic). But the complexity of the general
case remains open. Following [13], we conjecture that the general membership problem
for compressed strings and automata with compressed labels belongs to NP. This would
follow from the truth of the following conjecture:

Conjecture 14. If val(A) ∈ L(A) for an SLP A and an automaton A with compressed
labels, then there exists an accepting run of A on val(A) (viewed as a word over the set
of transition triples of A), which can be generated by an SLP of size poly(|A|, |A|).

288 M. Lohrey and C. Mathissen

Indeed, if this conjecture is true, we simply can guess an SLP R of size poly(|A|, |A|)
over the set of transition tuples of A. In polynomial time, we can check, whether R
indeed generates an accepting run of A for some word (this is a regular property).
Moreover, an SLP B for that word can be computed easily from R. It remains to check
whether val(A) = val(B), which can be done in polynomial time [12]. One might first
study Conjecture 14 for the case that A is deterministic. Here, an automaton with com-
pressed labels is deterministic, if for each pair of transition triples (p, A, q), (p, B, r),
neither val(A) is a prefix of val(B) nor vice versa. In this case, if there is an accepting
run of A on a word w, there is a unique such run. Even for deterministic automata with
compressed labels we are not aware of a better upper bound than PSPACE.

References

1. Book, R.V., Otto, F.: String–Rewriting Systems. Springer, Heidelberg (1993)
2. Choffrut, C., Karhumäki, J.: Combinatorics on words. In: Rozenberg, G., Salomaa, A. (eds.)

Word, Language, Grammar. Handbook of Formal Languages, vol. 1 ch. 6, pp. 329–438.
Springer, Heidelberg (1997)

3. Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms for Lempel-
Ziv encoding (extended abstract). In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS,
vol. 1097, pp. 392–403. Springer, Heidelberg (1996)

4. Hagenah, C.: Gleichungen mit regulären Randbedingungen über freien Gruppen. PhD thesis,
University of Stuttgart, Institut für Informatik (2000)

5. Lifshits, Y.: Processing compressed texts: A tractability border. In: Ma, B., Zhang, K. (eds.)
CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

6. Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: Královič, R., Urzy-
czyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 681–692. Springer, Heidelberg (2006)

7. Lohrey, M.: Compressed membership problems for regular expressions and hierarchical au-
tomata. Internat. J. Found. Comput. Sci. 21(5), 817–841 (2010)

8. Lohrey, M., Schleimer, S.: Efficient computation in groups via compression. In: Diekert,
V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 249–258. Springer,
Heidelberg (2007)

9. Lohrey, M.: Word problems and membership problems on compressed words. SIAM J. Com-
put. 35(5), 1210–1240 (2006)

10. Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics and its Applications,
vol. 17. Addison-Wesley, Reading (1983)

11. Macdonald, J.: Compressed words and automorphisms in fully residually free groups. Inter-
nat. J. Algebra Comput. 20(3), 343–355 (2010)

12. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van
Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)

13. Plandowski, W., Rytter, W.: Complexity of language recognition problems for compressed
words. In: Jewels are Forever, Contributions on Theoretical Computer Science in Honor of
Arto Salomaa, pp. 262–272. Springer, Heidelberg (1999)

14. Schleimer, S.: Polynomial-time word problems. Comment. Math. Helv. 83(4), 741–765
(2008)

15. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transac-
tions on Information Theory 23(3), 337–343 (1977)

Locally Decodable Codes

Sergey Yekhanin

Microsoft Research Silicon Valley
yekhanin@microsoft.com

Locally Decodable Codes (LDCs) are a special kind of error-correcting codes.
Error-correcting codes are used to ensure reliable transmission of information
over noisy channels as well as to ensure reliable storage of information on a
medium that may be partially corrupted over time (or whose reading device is
subject to errors). In both of these applications the message is typically par-
titioned into small blocks and then each block is encoded separately. Such en-
coding strategy allows efficient random-access retrieval of the information, since
one needs to decode only the portion of data one is interested in. Unfortunately,
this strategy yields very poor noise resilience, since in case even a single block
(out of possibly tens of thousands) is completely corrupted some information
is lost. In view of this limitation it would seem preferable to encode the whole
message into a single codeword of an error-correcting code. Such solution clearly
improves the robustness to noise, but is also hardly satisfactory, since one now
needs to look at the whole codeword in order to recover any particular bit of
the message (at least in the case when classical error-correcting codes are used).
Such decoding complexity is prohibitive for modern massive data-sets.

Locally decodable codes are error-correcting codes that avoid the problem
mentioned above by having extremely efficient sublinear-time decoding algo-
rithms. More formally, an r-query locally decodable code C encodes k-symbol
messages x in such a way that one can probabilistically recover any symbol x(i)
of the message by querying only r symbols of the (possibly corrupted) codeword
C(x), where r can be as small as 2.

Hadamard code. The classical Hadamard code encoding k-bit messages to
2k-bit codewords provides the simplest nontrivial example of locally decodable
codes. In what follows, let [k] denote the set {1, . . . , k}. Every coordinate in the
Hadamard code corresponds to one (of 2k) subsets of [k] and stores the XOR of
the corresponding bits of the message x. Let y be an (adversarially corrupted)
encoding of x. Given an index i ∈ [k] and y, the Hadamard decoder picks a set
S in [k] uniformly at random and outputs the XOR of the two coordinates of y
corresponding to sets S and S%{i}. (Here, % denotes the symmetric difference
of sets such as {1, 4, 5} % {4} = {1, 5}, and {1, 4, 5} % {2} = {1, 2, 4, 5}). It is
not difficult to verify that if y differs from the correct encoding of x in at most
δ fraction of coordinates than with probability 1− 2δ both decoder’s queries go
to uncorrupted locations. In such case, the decoder correctly recovers the i-th
bit of x. The Hadamard code allows for a super-fast recovery of the message
bits (such as, given a codeword corrupted in 0.1 fraction of coordinates, one is

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 289–290, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

290 S. Yekhanin

able to recover any bit of the message with probability 0.8 by reading only two
codeword bits).

The main parameters of interest in locally decodable codes are the codeword
length and the query complexity. The length of the code measures the amount
of redundancy that is introduced into the message by the encoder. The query
complexity counts the number of bits that need to be read from the (corrupted)
codeword in order to recover a single bit of the message. Ideally, one would
like to have both of these parameters as small as possible. One however can
not minimize the length and the query complexity simultaneously. There is a
trade-off. On one end of the spectrum we have LDCs with the codeword length
close to the message length, decodable with somewhat large query complexity.
Such codes are useful for data storage and transmission. On the other end we
have LDCs where the query complexity is a small constant but the codeword
length is large compared to the message length. Such codes find applications
in computational complexity theory and cryptography. The true shape of the
trade-off between the codeword length and the query complexity of LDCs is not
known. Determining it is a major open problem.

Currently there are three known families of locally decodable codes: classi-
cal Reed Muller codes [MS], multiplicity codes [KSY11], and matching vector
codes [Yek08, Efr09]. In this talk we give a high level review of each of these
families. We focus on the main ideas underlying the codes and omit many de-
tails. A detailed survey of a large body of work on LDCs (including a detailed
treatment of the constructions, lower bounds, and applications) can be found
in [Yek10].

References

[Efr09] Efremenko, K.: 3-query locally decodable codes of subexponential length. In:
41st ACM Symposium on Theory of Computing (STOC), pp. 39–44 (2009)

[KSY11] Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time
decoding. In: 43nd ACM Symposium on Theory of Computing, STOC (2011)

[MS] MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes.
North Holland, Amsterdam

[Yek08] Yekhanin, S.: Towards 3-query locally decodable codes of subexponential
length. Journal of the ACM 55, 1–16 (2008)

[Yek10] Yekhanin, S.: Locally decodable codes. Foundations and Trends in Theoret-
ical Computer Science (2010) (to appear)

Precedence Automata and Languages

Violetta Lonati1, Dino Mandrioli2, and Matteo Pradella2

1 DSI - Università degli Studi di Milano, via Comelico 39/41, Milano, Italy
lonati@dsi.unimi.it

2 DEI - Politecnico di Milano, via Ponzio 34/5, Milano, Italy
{dino.mandrioli,matteo.pradella}@polimi.it

Abstract. Operator precedence grammars define a classical Boolean and de-
terministic context-free family (called Floyd languages or FLs). FLs have been
shown to strictly include the well-known visibly pushdown languages, and enjoy
the same nice closure properties. We introduce here Floyd automata, an equiva-
lent operational formalism for defining FLs. This also permits to extend the class
to deal with infinite strings to perform for instance model checking.

Keywords: Operator precedence languages, Deterministic Context-Free lan-
guages, Omega languages, Pushdown automata.

1 Introduction

The history of formal language theory has always paired two main and complementary
formalisms to define and process –not only formal– languages: grammars or syntaxes
and abstract machines or automata. The power and the complementary benefits of these
two formalisms are so evident and well-known that it is certainly superfluous to remind
them here. Also universally known are the conceptual relevance and practical impact
of the family of context-free languages and the corresponding grammars paired with
pushdown automata.

Among the many subfamilies that have been introduced throughout the last decades
with various goals, operator precedence grammars, herewith renamed Floyd grammars
(FGs) in honor of their inventor [1], represent a pioneering model mainly aimed at
deterministic –and therefore efficient– parsing. Visibly pushdown languages (VPLs) are
a much more recent subfamily of (deterministic) context-free languages introduced in
the seminal paper [2] with the goal of extending the typical closure properties of regular
languages to larger families of languages accepted by infinite-state machines; a major
practical result is the possibility of extending such powerful verification technique as
model checking beyond the scope of finite state machines. Along the usual tradition,
VPLs have been characterized both in terms of abstract machines, the visibly pushdown
automata (VPAs), and by means of a suitable subclass of context-free grammars.

Rather surprisingly, instead, investigation of the basic –and nice, indeed– properties
of FGs has been suspended, probably as a consequence of the advent of other, more
general, parsing techniques, such as LR parsing [3]. Although FGs generate obviously
a subclass of deterministic CF languages and therefore can be parsed by any determin-
istic pushdown machine, typically a shift-reduce one [3], we are not aware of a family

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 291–304, 2011.
© Springer-Verlag Berlin Heidelberg 2011

292 V. Lonati, D. Mandrioli, and M. Pradella

of automata that perfectly matches the generative power of this class of grammars. On
the other hand, operator precedence parsers are still used today, thanks to their elegant
simplicity and efficiency. For instance, they are present in Parrot, Perl 6’s virtual ma-
chine, as part of the Parser Grammar Engine (PGE); in GCC’s C and C++ hand-coded
parsers, for managing arithmetic expressions.1

Quite recently we realized strong relations between these two seemingly unrelated
families of languages; precisely we showed that: VPLs are a proper subclass of lan-
guages defined by FGs (i.e. Floyd Languages, or FLs in short), and coincide with those
languages that can be generated by FGs characterized by a well precise shape of oper-
ator precedence matrix (OPM). The inclusion relation is effective in that a FG can be
algorithmically derived form a VPA and conversely a VPA can be obtained by a FG
whose OPM satisfies the restriction [4].

FLs enjoy all typical closure properties of regular languages that motivated the study
of VPLs and other related families [5,6,7]. Precisely, closure w.r.t. Boolean operations
was proved a long time ago in [8], whereas closure under concatenation, Kleene star,
and other typical algebraic operations has been investigated only recently under the
novel interest ignited by the above remark [9]. Thus, the old-fashioned FLs turned out
to be the largest known class of deterministic context-free languages that enjoy closure
under all traditional language operations. Another reason why, in our opinion, FLs are
far from obsolete and uninteresting in these days is that, unlike most other deterministic
languages of practical use, they can be parsed not necessarily left-to-right, thus offering
interesting opportunities, e.g., to exploit parallelism and incrementality [3].

In this paper we provide another missing tile of the “old and new puzzle”, namely
we introduce a novel class of stack-based automata perfectly carved on the generation
mechanism of FGs, which too we name in honor of Robert Floyd. Not surprisingly they
inherit some features of VPAs (mainly a clear separation between push and pop opera-
tions) and maintain some typical behavior of shift-reduce parsing algorithms; however,
they also exhibit some distinguishing features and imply some non-trivial technicalities
to derive them automatically from FGs and conversely.

The availability of a precise family of automata allows to apply to FLs the now
familiar ω-extension –a further extension of Kleene ∗ operation–, i.e., the definition of
languages of infinite strings and the various criteria for their acceptance or rejection by
recognizing devices.ω-languages are now more and more important to deal with never-
ending computations such as operating systems, web-services, embedded applications,
etc. Thus, we also introduce the ω-version of FLs and we show their potential in terms
of modeling the behavior of some realistic systems.

The paper is structured as follows: Section 2 recalls basic definitions on Floyd’s
grammars; Section 3 introduces Floyd automata (FAs) and shows that, as well as FSMs
and VPAs, but unlike pushdown automata, their deterministic version is not less pow-
erful than the nondeterministic counterpart; Section 4 provides effective constructions
to derive a FA from a FG and conversely; Section 5 extends the definition of FLs to
sets of infinite strings by applying to FAs the well-known concepts of ω-behavior and
acceptance; finally Section 6 draws some conclusions.

1 The interested reader may find more information at http://gcc.gnu.org, and http://
www.parrot.org, respectively.

http://gcc.gnu.org
http://www.parrot.org
http://www.parrot.org

Precedence Automata and Languages 293

2 Preliminaries

Let Σ be an alphabet. The empty string is denoted ε. A context-free (CF) grammar is a
4-tuple G = (N, Σ, P, S), where N is the nonterminal alphabet, P the rule (or production)
set, and S the axiom. An empty rule has ε as the right hand side (r.h.s.). A renaming
rule has one nonterminal as r.h.s. A grammar is reduced if every rule can be used to
generate some string in Σ∗. It is invertible if no two rules have identical r.h.s.

The following naming convention will be adopted, unless otherwise specified: low-
ercase Latin letters a, b, . . . denote terminal characters; uppercase Latin letters A, B, . . .
denote nonterminal characters; letters u, v, . . . denote terminal strings; and Greek letters
α, . . . , ω denote strings over Σ ∪ N. The strings may be empty, unless stated otherwise.

A rule is in operator form if its r.h.s has no adjacent nonterminals; an operator gram-
mar (OG) contains just such rules. Any CF grammar admits an equivalent OG, which
can be also assumed to be invertible [10,11].

The coming definitions for operator precedence grammars [1], here renamed Floyd
Grammars (FG), are from [8]. We refer the reader unfamiliar with precedence grammars
and parsing techniques to [3], that contains an easily readable, practical description of
FGs.

For an OG G and a nonterminal A, the left and right terminal sets are

LG(A) = {a ∈ Σ | A ∗⇒ Baα} RG(A) = {a ∈ Σ | A ∗⇒ αaB}
where B ∈ N ∪ {ε} and⇒ denotes the derivation relation. The grammar name G will be
omitted unless necessary to prevent confusion.

R. Floyd took inspiration from the traditional notion of precedence between arith-
metic operators in order to define a broad class of languages, such that the shape of
the derivation tree is solely determined by a binary relation between terminals that are
consecutive, or become consecutive after a bottom-up reduction step.

For an OG G, let α, β range over (N ∪ Σ)∗ and a, b ∈ Σ. Three binary operator
precedence (OP) relations are defined:

equal in precedence: a � b ⇐⇒ ∃A→ αaBbβ, B ∈ N ∪ {ε}
takes precedence: a � b ⇐⇒ ∃A→ αDbβ,D ∈ N and a ∈ RG(D)

yields precedence: a � b ⇐⇒ ∃A→ αaDβ,D ∈ N and b ∈ LG(D)

For an OG G, the operator precedence matrix (OPM) M = OPM(G) is a |Σ| × |Σ| array
that with each ordered pair (a, b) associates the set Mab of OP relations holding between
a and b.

Definition 1. G is an operator precedence or Floyd grammar (FG) if, and only if, M =
OPM(G) is a conflict-free matrix, i.e., ∀a, b, |Mab| ≤ 1.

Example 1. Arithmetic expressions with prioritized operators, a classical construct, are
presented in a simple variant without parentheses. Figure 1 presents the productions of
the grammar (left) and the derivation tree of expression n + n × n (center). We see that

294 V. Lonati, D. Mandrioli, and M. Pradella

S → E
E → E + T | T × n | n
T → T × n | n

S

E

E

n

+ T

T

n

× n

n + ×
n � �

+ � � �

× =̇

Fig. 1. The Floyd grammar for arithmetic expressions without parentheses

× =̇ n because they appear in the right-hand side of the same production. Analogously,
+ � n since + is sibling of a node with label T and n ∈ LG(T). The complete OPM is
shown in Figure 1 (right).

The equal in precedence relations of a FG alphabet are connected with an important pa-
rameter of the grammar, namely the length of the right hand sides of the rules. Clearly,
a rule A → A1a1 . . . AtatAt+1, where each Ai is a possibly missing nonterminal, is asso-
ciated with relations a1=̇a2=̇ . . . =̇at. If the =̇ relation is cyclic, there is no finite bound
on the length of the r.h.s of a production. Otherwise the length is bounded by 2 · c + 1,
where c ≥ 1 is the length of the longest =̇-chain. In this paper, for the sake of simplicity
and brevity we assume that all precedence matrices are �-cycle free. In the case of FGs
this prevents the risk of r.h.s of unbounded length [8], in the case of FAs we will see
that it avoids a priori the risk of an unbounded sequence of push operations onto the
stack matched by only one pop operation. The hypothesis of �-cycle freedom could be
replaced by weaker ones, such as a bound on r.h.s, as it happens with FGs, at the price
of heavier notation, constructions, and proofs.

Definition 2. A FG is in Fischer normal form [12] if it is invertible, the axiom S does
not occur in the r.h.s. of any rule, no empty rule exists except possibly S → ε, the other
rules having S as l.h.s are renaming, and no other renaming rules exist.

OPMs play a fundamental role in deterministic parsing of FGs. Thus in the view of
defining automata to parse FLs we pair them with the alphabet somewhat mimicking
VPL’s approach where the terminal alphabet is partitioned into calls, returns, and inter-
nals [13]. To this goal, we use a special symbol # not in Σ to mark the beginning and
the end of any string. This is consistent with the typical operator parsing technique that
requires the lookback and lookahead of one character to determine the precedence re-
lation [3]. The precedence relation in the OPM are extended to include # in the normal
way.

Definition 3. An operator precedence alphabet is a pair (Σ,M) where Σ is an alphabet
and M is a conflict-free operator precedence matrix, i.e. a |Σ ∪ {#}|2 array that with
each ordered pair (a, b) associates at most one of the operator precedence relations: �,
� or �.

For u, v ∈ Σ∗ we write u � v if u = xa and v = by with a � b. Similarly for the other
precedence relations.

Precedence Automata and Languages 295

3 Floyd Automata

Definition 4. A nondeterministic precedence automaton (or Floyd automaton) is given
by a tuple: A = 〈Σ,M,Q, I, F, δ〉 where:

– (Σ,M) is a precedence alphabet,
– Q is a set of states (disjoint from Σ),
– I ⊆ Q is a set of initial states,
– F ⊆ Q is a set of final states,
– δ : Q × (Σ ∪ Q)→ 2Q is the transition function.

The transition function can be seen as the union of two disjoint functions:

δpush : Q × Σ → 2Q δflush : Q × Q→ 2Q

A nondeterministic precedence automaton can be represented by a graph with Q as the
set of vertices and Σ ∪ Q as the set of edge labellings: there is an edge from state q to
state p labelled by a ∈ Σ if and only if p ∈ δpush(q, a) and there is an edge from state q
to state p labelled by r ∈ Q if and only if p ∈ δ f lush(q, r). To distinguish flush transitions
from push transitions we denote the former ones by a double arrow.

To define the semantics of the automaton, we introduce some notations. We use
letters p, q, pi, qi, . . . for states in Q and we set Σ′ = {a′ | a ∈ Σ}; symbols in Σ′
are called marked symbols. Let Γ = (Σ ∪ Σ′ ∪ {#}) × Q; we denote symbols in Γ
as [a q], [a′ q], or [# q], respectively. We set symbol([a q]) = symbol([a′ q]) = a,
symbol([# q]) = #, and state([a q]) = state([a′ q]) = state([# q]) = q. Given a string
β = B1B2 . . . Bn with Bi ∈ Γ, we set state(β) = state(Bn).

We call a configuration any pair C = 〈β , w〉, where β = B1B2 . . . Bn ∈ Γ∗,
symbol(B1) = #, and w = a1a2 . . . am ∈ Σ∗#. A configuration represents both the
contents β of the stack and the part of input w still to process. We also set top(C) =
symbol(Bn) and input(C) = a1.

A computation of the automaton is a finite sequence of moves C � C1; there are three
kinds of moves, depending on the precedence relation between top(C) and input(C):

push move:
if top(C) � input(C) then 〈β , aw〉 � 〈β[a q] , w〉, ∀q ∈ δpush(state(β), a);

mark move:
if top(C) � input(C) then 〈β , aw〉 � 〈β[a′ q] , w〉, ∀q ∈ δpush(state(β), a);

flush move:
if top(C) � input(C) then let β = B1B2 . . . Bn with B j = [x j q j], x j ∈ Σ ∪ Σ′ and let i

the greatest index such that Bi belongs to Σ′ × Q. Then

〈β , aw〉 � 〈B1B2 . . . Bi−2[xi−1], aw〉, ∀q ∈ δ f lush(qn, qi−1).

Push and mark moves both push the input symbol on the top of the stack, together with
the new state computed by δpush; such moves differ only in the marking of the symbol
on top of the stack. The flush move is more complex: the symbols on the top of the stack
are removed until the first marked symbol (included), and the state of the next symbol

296 V. Lonati, D. Mandrioli, and M. Pradella

below them in the stack is updated by δ f lush according to the pair of states that delimit
the portion of the stack to be removed; notice that in this move the input symbol is not
relevant and it remains available for the following move.

Finally, we say that a configuration [# qI] is starting if qI ∈ I and a configuration
[# qF] is accepting if qF ∈ F. The language accepted by the automaton is defined as:

L(A) =
{
x | 〈[# qI] , x#〉 ∗� 〈[# qF] , #〉, qI ∈ I, qF ∈ F

}
.

Example 2. The automaton depicted in Figure 2 accepts the Dyck language LD of bal-
anced strings of parentheses, with two parentheses pairs a, a, and b, b. The same figure
also shows an accepting computation on input abaabaaa.

q0 q1

a, b

a, a, b, b

q1q0

a a b b #
a � =̇ �
a � � � � �
b � � =̇

b � � � � �
� � =̇

〈[# q0] , abaabaaa#〉
mark 〈[# q0][a′ q1] , baabaaa#〉
mark 〈[# q0][a′ q1][b′ q1] , aabaaa#〉
mark 〈[# q0][a′ q1][b′ q1][a′ q1] , abaaa#〉
push 〈[# q0][a′ q1][b′ q1][a′ q1][a q1] , baaa#〉
flush 〈[# q0][a′ q1][b′ q1] , baaa#〉
push 〈[# q0][a′ q1][b′ q1][b q1] , aaa#〉
flush 〈[# q0][a′ q1] , aaa#〉
push 〈[# q0][a′ q1][a q1] , aa#〉
mark 〈[# q0][a′ q1][a q1][a′ q1] , a#〉
push 〈[# q0][a′ q1][a q1][a′ q1][a q1] , #〉
flush 〈[# q0][a′ q1][a q1] , #〉
flush 〈[# q0] , #〉

Fig. 2. Automaton, precedence matrix, and example of computation for language LD

A Floyd automaton is called deterministic when δpush(q, a) and δflush(q, p) have at most
one element, for every q, p ∈ Q and a ∈ Σ. Here we prove that deterministic Floyd
automata are equivalent to nondeterministic ones, with a power-set construction similar
to the one used for classical finite state automata.

Theorem 1. Deterministic Floyd automata are equivalent to nondeterministic ones.

Given a nondeterministic automaton A = 〈Σ,M,Q, I, F, δ〉, consider the deterministic
automaton Ã = 〈Σ,M, Q̃, Ĩ, F̃, δ̃〉 where:

– Q̃ = 2Q is the set of subsets of Q,
– Ĩ = I ∈ Q̃ is the set of initial states of A,
– F̃ = {J ⊆ Q | J ∩ F � ∅} ⊆ Q̃, i.e. F̃ is the set of subsets of Q containing at least

one final state of A,
– δ̃ : Q̃×(Σ∪Q̃)→ Q̃ is the transition function defined as follows. The push transition
δ̃push : Q̃ × Σ → Q̃ is defined by

δ̃push(J, a) =
⋃
p∈J

δ(p, a);

Precedence Automata and Languages 297

whereas the flush transition δ̃flush : Q̃ × Q̃ → Q̃ is defined only on pairs (J,K) ∈
Q̃ × Q̃ such that δflush(p, q1) = δflush(p, q2) for every p ∈ J and q1, q2 ∈ K; in this
case we set

δ̃flush(J,K) =
⋃
p∈J

δflush(p, q)

where q is any element of K.

Theorem 1 is a direct consequence of the following two lemmata:

Lemma 1. For every path q0
r0−→ q1

r1−→ q2
r2−→ . . . rn−→ qn in A, where qi ∈ Q and

ri ∈ Σ ∪ Q, there is a path J0
s0−→ J1

s1−→ J2
s2−→ . . . sn−→ Jn in Ã, where Ji � qi, and

si = ri if ri ∈ Σ or si = {ri} if ri ∈ Q.

Proof. It is enough to set J0 = {q0} and Ji = δ(qi−1, si) for every i ≥ 1. Notice that, in
this definition, δ = δpush if si ∈ Σ, while δ = δflush if si ∈ Q.

Lemma 2. For every path J0
s0−→ J1

s1−→ J2
s2−→ . . . sn−→ Jn in Ã, with si ∈ Σ ∪ Q̃, and

for every qn ∈ Jn, there is a path q0
r0−→ q1

r1−→ q2
r2−→ . . . rn−→ qn in A, where qi ∈ Ji,

and ri = si if si ∈ Σ or ri ∈ si if si ∈ Q̃.

Proof. We reason by induction on the length n of the path. If n = 1, let J0
s0−→ J1 and

q1 ∈ J1. First consider the case s0 ∈ Σ. Then J1 = δ̃push(J0, s0) = ∪p∈J0δpush(p, s0).

Since q1 ∈ J1, there exists q0 ∈ J0 such that q1 ∈ δpush(q0, s0) and hence q0
s0−→ q1 in A.

In the case x ∈ Q̃, we have J1 = δ̃flush(J0, s0) =
⋃

p∈J0
δflush(p, r0) for any r0 ∈ s0; then,

since q1 ∈ J1, there exists q0 ∈ J0 such that q1 ∈ δflush(q0, r0) and hence q0
r0−→ q1 in A.

If n ≥ 1, consider J0
s0−→ J1

s1−→ J2
s2−→ . . . sn−→ Jn in Ã, qn ∈ Jn, and assume by

induction that in A there is a path q1
r1−→ q2

r2−→ . . . rn−→ qn with qi ∈ Ji, and ri = si

if si ∈ Σ or ri ∈ si if si ∈ Q̃. In the case s0 ∈ Σ we have q1 ∈ J1 = δ̃push(J0, s0) =⋃
p∈J0
δpush(p, s0), hence there exists q0 ∈ J0 such that q1 ∈ δpush(q0, s0); thus q0

s0−→ q1

in A. In the case s0 ∈ Q̃ we have q1 ∈ J1 = δ̃flush(J0, s0) =
⋃

p∈J0
δflush(p, r0) for any

r0 ∈ s0; then there exists q0 ∈ J0 such that q1 ∈ δflush(q0, r0) and hence q0
r0−→ q1 in A.

At this point the theorem follows immediately by considering paths beginning in a
initial state and ending in a final state, and observing that the stacks of the two automata
evolve in parallel.

4 Floyd Automata vs. Floyd Grammars

The main result of this paper is the perfect match between FGs and FAs.

4.1 From Floyd Grammars to Floyd Automata

Theorem 2. Any L generated by a Floyd grammar can be recognized by a Floyd au-
tomaton

298 V. Lonati, D. Mandrioli, and M. Pradella

We provide a constructive proof of the theorem: given a Floyd grammar G we build
an equivalent nondeterministic Floyd automaton A = 〈Σ,M,Q, I, F, δ〉, whose prece-
dence matrix M is the same as the one associated with G. A successful computation of
A will correspond to a derivation tree in G: intuitively, a push transition tries to guess
the parent of the symbol currently under the input head (i.e. it determines the l.h.s of
a rule of G whose r.h.s contains the current symbol); a flush transition is performed
whenever the r.h.s of a rule is completed, and determines the corresponding l.h.s., thus
confirming some previous guesses.

In order to keep the construction as simple as possible, we avoid introducing any opti-
mization. Also, without loss of generality, we assume that the grammar G = 〈Σ,N, P, S 〉
satisfies the following properties: the axiom S does not occur in the r.h.s. of any rule, no
empty rule exists except possibly S → ε, the other rules having S as l.h.s are renaming,
and no other renaming rules exist (in other words, we assume that the G is in Fischer
normal form except it is not necessarily invertible).

First of all, we introduce some notation. Enumerate the productions as follows: for
any nonterminal A ∈ N, let P1(A), P2(A), . . . Pn(A)(A) be the productions having A as
l.h.s. (i.e. n(A) is the number of productions having A as l.h.s.). Then, consider the
set of extended nonterminals EN = {Ai | A ∈ N, i = 1, 2, . . .n(A)} and define Q =
EN× (EN∪{⊥}), where ⊥ is a new symbol whose meaning is undefined. To distinguish
between nonterminals and extended nonterminals, we will use capital letters A, B,C, . . .
and X, Y, Z, . . . , respectively.

When considering derivation trees of G, we label internal nodes with extended non-
terminals (where the subscript of the nonterminal corresponds to the rule applied in the
node). Moreover, with a slight abuse of notation, we sometimes confuse nodes and their
labels, using the above convention also for internal nodes and leaves.

To define the push transition function δpush : Q × Σ → 2Q, consider any derivation
tree τ of G with any leaf a and let X be a’s parent in τ. Figure 3 represents the various
configurations that τ may exhibit.

– Case 0: if there is no leaf that precedes a in the in-order visit of τ and has depth not
greater than a’s depth, then let Y be the topmost ancestor of X, i.e., Y = S i for some
i; this also means that # � a;

– Otherwise, let b be the rightmost such leaf, and let Y be y’s parent. Notice that,
G being an operator grammar, Y is the nearest common ancestor of a and b. Then
there are two possibilities:
• Case 1: X = Y, i.e. b � a;
• Case 2: X � Y, and in this case b has lower depth than a, so b � a.

In all cases, node Z may be missing, or there may be other leaves between b and a
(namely, Z’s descendants); let Ẑ =⊥ if Z is missing, Ẑ = Z otherwise. Then, for each
such triple (a, X, Y), define the (a, X, Y)-push transition:

δpush((Y, Ẑ), a) �
{

(X, X) if a is the rightmost child of X,
(X,⊥) otherwise.

Hence, a push transition essentially determines the parent of the symbol under the input
head (actually, a “candidate” parent, since the automaton is non-deterministic).

Precedence Automata and Languages 299

Y = S i

X

Z

. . .

a . . .

. . . X = Y

. . . b Z

. . .

a . . .

Y

. . . b W

X

Z

. . .

a . . .

. . .

. . .

Case 0 Case 1 Case 2

Fig. 3. Derivation tree configurations for the push transition function (nodes labelled as . . . could
be missing)

A similar construction holds for the flush transition function δ f lush : Q × Q → 2Q.
For every derivation tree with internal node X, let f and
 be the first and last child,
respectively, of node X. Notice that both f and
 may be either internal nodes or leaves.
Then there are two possibilities, as depicted in Figure 4:

– Case 3: there is no leaf at the left of X, then let Y be the topmost ancestor of X, i.e.,
Y = S i for some i;

– Case 4: otherwise, let b be the rightmost leaf at the left of X and let Y be b’s parent
(again, notice that Y is the nearest common ancestor of X and b, G being an operator
grammar).

Also, let
/X be
 if
 is an internal node, X otherwise; let f̃ be f if f is an internal node,
⊥ otherwise. Then, for each such pair (X, Y) define the (X, Y)-flush transition:

δ f lush((X,
/X), (Y, f̃)) � (Y, X).

Hence, the state computed by a flush transition contains two pieces of information: the
first component determines the nearest ancestor of both X and b (or the axioms if b
does not exist), while the second component determines the nonterminal corresponding
to the r.h.s. just completed.

Finally, initial and final states are defined as follows.

I = {(S i,⊥) | 1 ≤ i ≤ n(S)}, F= {(S i, A j) | S → A ∈ P, 1 ≤ i ≤ n(S), 1 ≤ j ≤ n(A)}.
Notice that the above construction is effective. All triples (a, X, Y) involved by some
push transition can be found starting from any rule X → α with α containing a: if a is
not the leftmost terminal of α, then take the triple (a, X, X), else apply backwards any
rule with r.h.s starting with X and extend this process until all productions have been
examined. Similarly for the flush transitions.

Example 3. Let G be the grammar introduced in Example 1. Following the above con-
struction, number the rules of the grammar in the order they appear in the definition of

300 V. Lonati, D. Mandrioli, and M. Pradella

Y = S i

X

f

. . .

. . .

. . .

. . .

Y

. . . b W

X

f

. . .

. . .

. . .

. . .

. . .

Case 3 Case 4

Fig. 4. Derivation tree configurations for the flush transition function (all nodes marked as . . .
could be missing)

G (for instance, P2(E) is E → T × a). The transitions defined by the derivation tree of
string a × a + a, depicted in Figure 5 (left), are the following:

δpush((S 1,⊥), a) � (T2, T2)
δpush((S 1, T2),×) � (E2,⊥)
δpush((S 1, E2),+) � (E1,⊥)
δpush((E2,⊥), a) � (E2, E2)
δpush((E1,⊥), a) � (T2, T2)

δ f lush((T2, T2), (E1,⊥)) � (E1, T2)
δ f lush((T2, T2), (S 1, T2)) � (S 1, T2)
δ f lush((E2, E2), (S 1, T2)) � (S 1, E2)
δ f lush((E1, T2), (S 1, E2)) � (S 1, E1)

The first one is the (a, T2, S 1)-push transition obtained by starting from the left-most
leaf (Case 0). Case 0 occurs also for the second and third push transitions, obtained
considering the leaves labeled by × and +, respectively. The other push transitions rep-
resent instances of Cases 1 and 2, in this order. As far as flush transitions are concerned,
Case 4 occurs only in the first stated transition, with X = T2, b = + and Y = E1,
whereas all other productions represent instances of Case 3. Hence, on input a × a + a,
the automaton A obtained from G may execute the computation represented in Figure 5
(right).

The equivalence between G and the automaton described above is based on the fol-
lowing lemma, whose proof is omitted because of space reasons. As usual we set
Γ = (Σ ∪ Σ′) × Q = (Σ ∪ Σ′) × (EN × (EN ∪ {⊥})) and we denote an element in
Γ as [a (X, Y)]. To avoid an excessively cumbersome notation, when describing the
transitions between configurations, we omit the extreme parts (i.e. the lower part of the
stack and a suffix of the input string) which are not affected by the computation.

We define the depth of a computation C1
∗� C2 as the maximum number of marked

symbols in one of the traversed configurations, minus the number of marked symbol on

the stack in configuration C1; we define the depth of a derivation W
∗⇒ α as the depth of

the corresponding derivation tree. When useful, we make the depth h of a computation

or a derivation explicit as in C1
[h]� C2 and X

[h]⇒ α.

Precedence Automata and Languages 301

S 1

E1

E2

T2

a

× a

+ T2

a

〈[# (S 1,⊥)] , a × a + a #〉
mark 〈[# (S 1,⊥)][a′ (T2,T2)] , × a + a #〉
flush 〈[# (S 1,T2)] , × a + a #〉
mark 〈[# (S 1,T2)][×′ (E2,⊥)] , a + a #〉
push 〈[# (S 1,T2)][×′ (E2,⊥)][a (E2, E2)] , + a #〉
flush 〈[# (S 1, E2)] , + a #〉
mark 〈[# (S 1, E2)][+′ (E1,⊥)] , a #〉
mark 〈[# (S 1, E2)][+′ (E1,⊥)][a′ (T2,T2)] , #〉
flush 〈[# (S 1, E2)][+′ (E1,T2)] , #〉
flush 〈[# (S 1, E1)] , #〉

Fig. 5. Derivation tree (left) and computation (right) for the string a × a + a

Lemma 3. Let Y,W be extended nonterminals of G, v ∈ Σ∗, a � v � b, and ā ∈ {a, a′}.
Then for all h ≥ 1:

〈[ā (Y,⊥)] , vb〉 [h]� 〈[ā (Y,W)] , b〉 iff ∃α, β such that Y → αaWβ, W
[h]⇒ v in G.

From the lemma the theorem easily follows by using a special case S → A (with
implicit # as a and b).

4.2 From Floyd Automata to Floyd Grammars

Given a Floyd automaton A = 〈Σ,M,Q, I, F, δ〉, we show how to build an equivalent
Floyd grammar G having operator precedence matrix M. In order to keep the con-
struction as easy as possible, w.l.o.g we assume that M is =̇-acyclic. Remind that, as
discussed in Section 2, this hypothesis could be replaced by weaker ones.

We need some notation and definitions. First of all, we shall represent a push transi-
tion with a simple arrow→, a flush transition with a double arrow⇒, and a path defined
by a sequence of transitions with a wavy arrow�.

We define chains in A recursively. A simple chain is a word a0a1a2 . . . anan+1, written
as 〈a0 a1a2 . . .an

an+1〉, such that: a0, an+1 ∈ Σ ∪ {#}, ai ∈ Σ for every i = 1, 2, . . .n,
Ma0,an+1 � ∅, and a0 � a1 � a2 . . . an−1 � an � an+1. A composed chain in A is a
word a0x0a1x1a2 . . . anxnan+1, where 〈a0 a1a2 . . . an

an+1 〉 is a simple chain, and xi ∈ Σ∗
is the empty word or is such that 〈ai xi

ai+1〉 is a chain (simple or composed), for every
i = 0, 1, . . . , n − 1. Such a composed chain will be written as 〈a0 x0a1x1a2 . . . anxn

an+1〉.
We call a support for the simple chain 〈a0 a1a2 . . . an

an+1 〉 any path in A of the form

q0
a1−→ q1 −→ . . . −→ qn−1

an−→ qn
q0
=⇒ qn+1 (1)

Notice that the label of the last (and only) flush is exactly q0, i.e. the first state of the
path; this flush is executed because of relation an � an+1. We call a support for the
composed chain 〈a0 x0a1x1a2 . . .anxn

an+1 〉 any path in A of the form

q0
x0� q′0

a1−→ q1
x1� q′1

a2−→ . . . an−→ qn
xn� q′n

q′0
=⇒ qn+1 (2)

where, for every i = 0, 1, . . . , n:

302 V. Lonati, D. Mandrioli, and M. Pradella

– if xi � ε, then qi
xi� q′i is a support for the chain 〈ai xi

ai+1〉, i.e., it can be decomposed

as qi
xi� q′′i

qi
=⇒ q′i .

– if xi = ε, then q′i = qi.

Notice that the label of the last flush is exactly q′0.
We are now able to define a Floyd grammar G = 〈Σ,N, S , P〉. Nonterminals are the

4-tuples (a, q, p, b) ∈ Σ × Q × Q × Σ, written as 〈a p, qb〉, plus the axiom S . Rules are
built as follows:

– for every support of type (1) of a simple chain, add the rule

〈a0 q0, qn+1
an+1 〉 −→ a1a2 . . . an ;

if also a0 = an+1 = #, q0 is initial, and qn+1 is final, add the rule S → 〈#q0, qn+1
#〉;

– for every support of type (2) of a composed chain, add the rule

〈a0 q0, qn+1
an+1 〉 −→ N0a1N1a2 . . . anNn ;

where, for every i = 0, 1, . . . , n, Ni = 〈ai qi, q′i
ai+1〉 if xi � ε and Ni = ε otherwise.

Notice that the above construction is effective thanks to the hypothesis of =̇-acyclicity
of the OPM. This implies that the length of the r.h.s. is bounded (see Section 2); on the
other hand, the cardinality of the nonterminal alphabet is finite. Hence there is only a
finite number of possible productions for G and only a limited number of chains to be
considered.

5 ω-Languages

Having an operational model that defines Floyd Languages, it is now straightforward to
introduce extensions to ω-languages.

For instance, the classical Büchi condition of acceptance can be easily adapted to
FAs. Consider an infinite word x ∈ Σω, and an infinite computation of the automa-
ton AM = 〈Σ,M,Q, I, F, δ〉 on x, i.e. an ω-sequence of configurations S = 〈β0 , x0〉
〈β1 , x1〉 . . ., such that 〈β0 , x0〉 = 〈[# qI] , x〉, qI ∈ I and 〈βi , xi〉 � 〈βi+1 , xi+1〉. We
say that x ∈ L(A) if and only if there exists qF ∈ F such that configurations with stack
[# qF] occur infinitely often in S.

Quite naturally, ω-VPLs are a proper subset of this class of languages, as it is shown
by the following example.

Example 4. We define here the stack management of a simple programming language
that is able to handle nested exceptions. For simplicity, there are only two procedures,
called a and b. Calls and returns are denoted by calla, callb, reta, retb, respectively.
During execution, it is possible to install an exception handler hnd. The last signal that
we use is rst, that is issued when an exception occur, or after a correct execution to
uninstall the handler. With a rst the stack is “flushed”, restoring the state right before
the last hnd. The automaton is presented in Figure 6 (notice that it is an extension of the
automaton in Figure 2). It is easy to modify this example to model the case of unnested
exceptions, to fit with other application contexts.

Precedence Automata and Languages 303

calla reta callb retb hnd rst
calla � =̇ � � �

reta � � � � �

callb � � =̇ � �

retb � � � � �

hnd � � � � =̇

rst � � � �

� � �

q0 q1

calla, callb, hnd

q1

calla, reta, callb, retb, hnd, rst

q0

Fig. 6. Precedence matrix and automaton for an ω-language. There is no column indexed by #
since words are infinite.

6 Conclusions and Further Research

Recently, we advocated that operator precedence grammars and languages, here re-
named after their inventor Robert Floyd, deserve renewed attention in the realm of
formal languages. The main reasons to support our claim are:

– The fact that this family of languages properly includes visibly pushdown lan-
guages [13], a new family that has been proposed with the main motivation of
extending powerful model checking techniques beyond the limits of finite state
machines.

– The fact that it enjoys all closure properties with respect to the main algebraic
operations that are exhibited by regular languages and VPLs.

– The fact that, unlike other deterministic languages -either strictly more powerful
than them, or incomparable with them- such as LR, LL, and simple precedence
ones, FLs can be parsed without applying a strictly left-to-right order; this feature
becomes particularly relevant in these days since it allows to exploit much better
the gains in efficiency offered by massive parallelism.

In this paper we filled a rather surprising “hole” in the theory of these languages, namely
the lack of an appropriate family of automata that perfectly matches the generative
power of their grammars. We defined FAs with such a goal in mind and we proved their
equivalence with FGs. Both facts turned out to be non-trivial jobs and showed further
interesting peculiarities of this pioneering family of deterministic languages. A first
“byproduct” of the new automata family is the extension of FLs to ω-languages, i.e.,
languages consisting of infinite strings, a more and more important aspect of formal
language theory needed to deal with never ending computations. In this case too FL
ω-languages proved to augment the descriptive capabilities of the original VPLs.

As a first step towards applicability of the results presented in this paper, and also
to validate our approach with several practical examples, we implemented a simple
prototypical tool, called Flup. Flup contains an interpreter for non-deterministic Floyd
Automata, and a Floyd Grammar to Automata translator, that directly applies the con-
struction presented in Section 4.1. All the examples presented in the paper were tried
on, or generated by the tool.2

2 The prototype is freely available at http://home.dei.polimi.it/pradella

http://home.dei.polimi.it/pradella

304 V. Lonati, D. Mandrioli, and M. Pradella

We are confident that suitable future research will further strengthen the importance
of, and motivation for, re-inserting FLs in the main stream of formal language literature.
In particular it would be interesting to complete the parallel analysis and comparison
with VPLs by investigating a characterization in terms of suitable logic formulas [13];
by this way motivation for, and application of, strong model checking techniques would
be further enhanced.

References

1. Floyd, R.W.: Syntactic analysis and operator precedence. Journ. ACM 10(3), 316–333 (1963)
2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC: ACM Symposium on

Theory of Computing, STOC (2004)
3. Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide, p. 664. Springer, New York

(2008)
4. Crespi Reghizzi, S., Mandrioli, D.: Algebraic properties of structured context-free languages:

old approaches and novel developments. In: WORDS 2009 - 7th Int. Conf. on Words (2009)
(preprints), http://arXiv.org/abs/0907.2130

5. Berstel, J., Boasson, L.: Balanced grammars and their languages. In: Brauer, W., Ehrig, H.,
Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp.
3–25. Springer, Heidelberg (2002)

6. Nowotka, D., Srba, J.: Height-deterministic pushdown automata. In: Kučera, L., Kučera, A.
(eds.) MFCS 2007. LNCS, vol. 4708, pp. 125–134. Springer, Heidelberg (2007)

7. Caucal, D.: Boolean algebras of unambiguous context-free languages. In: Hariharan, R.,
Mukund, M., Vinay, V. (eds.) FSTTCS 2008, Dagstuhl, Germany (2008)

8. Crespi Reghizzi, S., Mandrioli, D., Martin, D.F.: Algebraic properties of operator precedence
languages. Information and Control 37, 115–133 (1978)

9. Crespi Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown property.
In: Dediu, A.-H., Fernau, H., Martı́n-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 214–
226. Springer, Heidelberg (2010)

10. Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley, Reading (1978)
11. Salomaa, A.K.: Formal Languages. Academic Press, New York (1973)
12. Fischer, M.J.: Some properties of precedence languages. In: STOC 1969: Proc. First Annual

ACM Symp. on Theory of Computing, pp. 181–190. ACM, New York (1969)
13. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journ. ACM 56 (2009)

http://arXiv.org/abs/0907.2130

Orbits of Linear Maps and Regular Languages

Sergey Tarasov and Mikhail Vyalyi

Dorodnitsyn Computing Center of RAS
serge99meister@gmail.com,

vyalyi@gmail.com

Abstract. The chamber hitting problem (CHP) for linear maps consists
in checking whether an orbit of a linear map specified by a rational ma-
trix hits a given rational polyhedral set. The CHP generalizes some well-
known open computability problems about linear recurrent sequences
(e.g., the Skolem problem, the nonnegativity problem). It is recently
shown that the CHP is Turing equivalent to checking whether an inter-
section of a regular language and the special language of permutations
of binary words (the permutation filter) is nonempty (PB-realizability
problem).

In this paper we present some decidable and undecidable problems
closely related to PB-realizability problem thus demonstrating its ‘bor-
derline’ status with respect to computability.

Keywords: decidability, regular language, linear recurrence.

Introduction

The chamber hitting problem is a straightforward generalization of some well-
known open decidability problems concerning integral linear recurrent sequences.
It is formulated as follows.

Let Φ be a linear map of a vector space V into itself and let x ∈ V be a vector
in V . The iterations of Φ applied to x define an orbit OrbΦ x, i.e. the set

{Φkx : k ∈ Z+}.

Chamber hitting problem (CHP)
INPUT: a square matrix Φ of order d; d-dimensional vector x0; a family of affine
functions h1, . . . , hm on Qd and a sign pattern s ∈ {±1, 0}m.
OUTPUT: ‘yes’ if the orbit OrbΦ x0 intersects the chamber Hs and ‘no’ other-
wise.

Here a chamber is a set Hs = {x ∈ Qd : sign(hi(x)) = si for 1 ≤ i ≤ m},
where sign(t) is a standard sign function.

Remark 1. We assume that matrices, vectors and affine functions are represented
by the component lists, where the components are written in binary.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 305–316, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

306 S. Tarasov and M. Vyalyi

The CHP is a representative of a wide class of orbit description problems
associated with orbits of linear maps. These problems were introduced in re-
cent works [5,8] and are related to problems on linear recurrent sequences. For
instance, the CHP is a generalization of the famous Skolem problem.

A linear recurrent sequence (LRS) xn of a degree d is defined by a recur-
rence equation xn =

∑d
i=1 aixn−i, when n > d, and initial conditions xn =

bn, when 1 ≤ n ≤ d. Here ai, bj are constants.
The Skolem problem is perhaps the most known algorithmic problem on linear

recurrences. It asks whether integral LRS {xn} contains zero, i.e. whether xk = 0
for some k.

The Skolem problem is proved to be decidable for the degrees ≤ 5 (the cases
d = 3, 4 are worked out in [6], and the case d = 5 is solved in [3]). In the opposite
direction, the best hardness result on the Skolem problem is NP-hardness [2].

It is easy to see that the Skolem problem is equivalent to the CHP restricted
to one linear function and equality (the chamber H0).

The main result of [5] states an algorithmic equivalence between the CHP and
verifying a particular property of the regular languages. Namely, the property
involved consists in checking whether a regular language contains at least one
word from a special set of words. We call this set a permutation filter . Speaking
informally, an arbitrary word from the permutation filter is a concatenation of
all binary words of a fixed length n separated by the delimeters.

To be a bit more formal, we define a general problem of regular realizability: to
check whether a given regular language contains a word of a particular kind. It is
convenient to describe the realizability problem as follows. Let L be a language in
a finite alphabet Σ. Informally, L encodes a property that is checked. The input to
the problem of L-realizability is a description of some regular language R ⊆ Σ∗

and we are asked whether the intersection L ∩ R is nonempty. In the sequel we
assume that R is given via deterministic automaton accepting it.

The permutation filter PB is a language over the alphabet {#, 0, 1} of all
words #w1#w2# . . . wN#, where N = 2n, n ≥ 1, and the set {w1, w2, . . . , wN}
consists of all binary words of the length n.

Words from PB are called permutation words . The length n is called the block
rank of a permutation word.

Theorem 1 ([5, Theorem 2]). CHP and PB-realizability problem are Turing
equivalent.

The Skolem problem is open for almost eighty years. Using slight abuse of lan-
guage, presently it falls ‘on the border between decidability and undecidability’
[3]. In this paper we show that analogous ‘borderline’ pattern holds for a more
general PB-realizability problem.

Below we present some closely related decidable and undecidable variations
of PB-realizability problem. All variations are regular realizability problems. The
decidable languages involved consist of binary block words separated by the
delimiter # (block languages). All blocks have the same length (the block rank n).
Blocks of a block word form a multiset of binary words of the same length (block
multiset).

Orbits of Linear Maps and Regular Languages 307

The most natural variations of the permutation filter are the surjective filter
SB and the injective filter IB.

The former consists of those block words whose block multiset contains all
words of the length n.

The latter consists of those block words whose block multiset is a set, i.e. each
block appears at most once in a word from IB.

It is clear from the definitions that IB ∩ SB = PB.
The problems of IB-realizability and SB-realizability are decidable (see Sec-

tion 2, Theorems 2, 3).
To present an undecidable variation of PB-realizability problem we introduce

a track product of block languages.
Here we assume that blocks are words over a finite alphabet Σ and a block

word consists of blocks of the same length separated by the delimiter #.
Let Σ1, Σ2 be finite alphabets. For the alphabet Σ1×Σ2 there are two natural

projections from (Σ1 ×Σ2)∗, one to Σ∗
1 and the other to Σ∗

2 :

π1 : (a1, b1)(a2, b2) . . . (an, bn) �→ a1a2 . . . an,

π2 : (a1, b1)(a2, b2) . . . (an, bn) �→ b1b2 . . . bn.
(1)

The track product of two block languages L1 (over an alphabet Σ1) and L2 (over
the alphabet Σ2) is a block language L = L1‖L2 consisting of all block words
over the alphabet {#} ∪Σ1 ×Σ2 such that the projection π1 is in the language
L1 and the projection π2 is in the language L2. (For consistency we assume that
π1(#) = π2(#) = #.)

Denote by PerΣ the block language consisting of all periodic words over the
alphabet Σ (all blocks of a word in PerΣ are equal). And denote by PΣ the block
language consisting of permutation block words over the alphabet Σ (blocks of
a word in PΣ form the set of all words in Σn, where n is the block rank).

The PerΣ-realizability problem is decidable. Actually it is PSPACE-complete
as shown in [7]. It turns out that the track product of the PerΣ1 with the PΣ2

is undecidable for |Σ1| = 2 and |Σ2| = 648 (see Section 3, Theorem 4).

1 Preliminaries

In what follows we need technical constructions from [5]. So we reproduce proofs
of two results.

Let Γ (V, E) be a digraph. We assume that the edges of the digraph are colored
in s colors from the set {1, 2, . . . , s}. For a walk τ we define a weight w(τ) ∈ Zs as
an s-dimensional integer vector w(τ) = (c1(τ), c2(τ), . . . , ci(τ), . . . cs(τ)), where
ci(τ) equals the number of edges colored in the color i along the walk τ .

Walk Weight Hitting Problem (WWHP)
INPUT: a digraph Γ , an s-coloring of the edges of the Γ , two vertices a, b of
Γ , an integer matrix Φ of order s× s and an integer vector x0 of dimension s.
OUTPUT: ‘yes’ if the orbit OrbΦ x0 intersects the set of weights of all walks
from the vertex a to the vertex b and ‘no’ otherwise.

308 S. Tarasov and M. Vyalyi

Lemma 1 ([5, Lemma 5]). The PB-realizability problem is Turing reducible to
the WWHP problem.

Let R be a regular language over the alphabet {0, 1, #} and let A be a deter-
ministic automaton with the state set Q accepting the language R. Let pass to
the transition monoid of A. The operation of the automaton is determined by
the three maps f0, f1, f# of the set Q into itself induced by reading respective
symbols. Our goal is to check whether R∩PB �= ∅. Let’s express this condition in
terms of the maps f0, f1, f#. Let’s define f(w), where w = w1w2 . . . w� ∈ {0, 1},
as
∏�

i=1 fw�−i+1 .
We denote the initial state of the automaton by qs and the accepting set

by Qa. The reduction algorithm checks for each accepting state qf ∈ Qa the
condition whether it can be reached from the initial state qs after reading some
word from the permutation filter. Formally this condition means that for some
word #w1#w2# . . . wN# ∈ PB we have

qf =

(
N−1∏
i=0

f#f(wN−i)

)
f#qs. (2)

It is important that to verify the condition (2) we do not need to know the
sequence wi. It is sufficient to compute for each map g ∈ QQ the number νn(g)
of its representations in the form f(w), where w ∈ {0, 1}n (recall that N = 2n).
Then the condition (2) is rewritten as

qf =

(
N−1∏
i=0

f#gi

)
f#qs, (3)

where each map g ∈ QQ occurs exactly νn(g) times in the sequence gi.
Now we are going to describe the condition (3) in terms of walk weights for a

suitable graph. For this purpose we will use the Cayley graphs for monoids.
Let G = {g1, . . . , gm} ⊆ QQ be a set of maps. It generates a monoid M

(a monoid operation is a map composition, recall that by definition a monoid
contains also the identity map.). By definition the vertices of the Cayley graph
ΓG of the monoid are elements of the monoid M and (directed) edges have the
form (h, gih) for h ∈ M , gi ∈ G. Note that the edges of the Cayley graph are
naturally colored by elements of G. The Cayley graph of a monoid may contain
parallel edges as the equality gih = gjh for i �= j may hold.

Let M01 be a semigroup generated by the maps f0, f1 of the automaton A.
We define the monoid M generated by maps f#f , f ∈ M01.

Denote by ΓM the Cayley graph of the monoid M w.r.t. the set of generators
{f#f, f ∈ M01}.

It follows from the construction that (3) holds iff there exist an integer n
and a walk τ on the digraph ΓM from the vertex id to a vertex h such that
h(f#(qs)) = qf and (w(τ))f#g = νn(g) holds for all g. (Here id is the identity
map.).

Orbits of Linear Maps and Regular Languages 309

It turns out that the integers νn(g) can be expressed as the coordinates of the
vectors taken from the orbit of a linear map.

In Q-vector space Q(QQ) equipped with the basis {e(f)} indexed by maps
f : Q → Q we define a linear map by the action on the basis vectors

Φe(f) = e(ff0) + e(ff1). (4)

(Recall that map composition is taken from the right to the left.).
It is easy to prove by induction on n that νn(g) equals the e(g)-coordinate of

the vector Φne(id) w.r.t. the basis {e(f)}. Indeed, the case of n = 0 is trivial
and assuming the claim for n− 1 we have

Φne(id) = Φ
∑

g∈QQ

νn−1(g)e(g) =
∑

w∈{0,1}n−1

Φe(f(w)) =

=
∑

w∈{0,1}n−1

(e(f(w)f0) + e(f(w)f1) =
∑

w∈{0,1}n−1

(e(f(w0)) + e(f(w1)) =

=
∑

w∈{0,1}n

e(f(w)) =
∑

g∈QQ

νn(g)e(g). (5)

Now we conclude that the condition (3) is equivalent to the condition

w(τ) = Φnx0 (6)

for some n and a walk τ on the digraph ΓM from the vertex id to some vertex
h such that h(f#(qs)) = qf .

Remark 2. Note that the size of the monoid M can be less than |Q||Q| and Φ acts
on Q(QQ). To fix a difference in vector dimensions we extend the coordinates of
walk weights by zero values for e(g) such that g /∈ M .

Proof (of Lemma 1). The reduction algorithm solves with help of a WWHP-
oracle several instances of the WWHP indexed by the accepting states qf and
maps h such that h(f#(qs)) = qf .

An instance has the following input data: a digraph is the Cayley graph ΓM ,
colors are generators, the initial vertex is the identity map id, the terminal vertex
is h, the matrix is defined by (4) and the initial vector is x0 = e(id).

If the answer is positive for some instance from the described set then the
answer in the instance of the PB-realizability problem involved is also positive
due to (5) and the condition (6).

Otherwise, it follows from the definition of the graph ΓM and (5) that the
answer in the instance of the PB-realizability problem is negative. ��
An integer cone N(v1, . . . , vr) is the set of vectors

∑r
i=1 aivi, where vi ∈ Zd,

ai ∈ N. (We denote the set of nonnegative integers by N.)

Integer cone Hitting Problem (IHP)
INPUT: a square matrix Φ of order d; a d-dimensional vector x0; a family of
vectors vi ∈ Zd, i = 0, 1, . . . , r.
OUTPUT: ‘yes’ if the orbit OrbΦ x0 intersects the translate of the integer cone
v0 + N(v1, . . . , vr) and ‘no’ otherwise.

310 S. Tarasov and M. Vyalyi

Lemma 2 ([5, Lemma 6]). The WWHP is Turing reducible to the IHP.

At first we prove the following lemma.

Lemma 3. Let a, b be vertices of a digraph Γ colored in s colors and let W (a, b)
be the set of weights of all walks from the vertex a to the vertex b. The set W (a, b)
is a finite union of translates of integer cones in Zs.

The list of the cones and the vectors of translation is constructed algorithmi-
cally.

Proof. Writing a sequence of colors along a walk gives a word in the s-letter
alphabet. The collection of such words for all walks from the vertex a to the
vertex b forms a regular language.

The weight of a walk is just the Parikh image of the corresponding word. So
the statement of the lemma follows from Parikh’s theorem [4]. ��
Lemma 3 implies that to check the condition (6) it is sufficient to check several
conditions of the form

Φnx0 ∈ v0 + W, (7)

where v0 in an integer s-dimensional vector and W is an integer cone in Zs. It
gives a reduction of the WWHP to the IHP. This completes the proof of lemma 2.

2 Decidable Variations of PB-Realizability Problem

It turns out that IB- (resp. SB-)realizability is reducible to a restricted version
of the integer cone hitting problem. Decidability of this restricted IHP follows
from specific properties of maps Φ defined in Section 1.

We use the componentwise partial order on the integer orthant Zd
+

x ≺ y ⇔ xi ≤ yi for all i. (8)

Up-hitting Problem
INPUT: a square matrix Φ of order d; a d-dimensional vector x0; a family of
vectors vi ∈ Zd, i = 0, 1, . . . , r.
OUTPUT: ‘yes’ if the orbit up-shadow intersects the translate of the integer
cone v0 + N(v1, . . . , vr) = v0 + W and ‘no’ otherwise. It means that

Φnx0 ≺ y (9)

holds for some integer n and y ∈ v0 + W .
The Down-hitting problem is defined similarly except for the condition (9)

which is replaced by the condition

y ≺ Φnx0. (10)

Lemma 4. The IB-realizability problem is Turing reducible to the down-hitting
problem.

Orbits of Linear Maps and Regular Languages 311

Proof. Repeat the arguments from the proof of Lemma 1. Now it is possible that
some binary words in a block word are missed. It means that the condition (6)
is replaced by

w(τ) ≺ Φnx0. (11)

Applying the arguments from Lemma 2 we see that (11) is transformed to (10)
for cones appeared in the reduction from Lemma 2. ��
In a similar way we reduce the surjective filter.

Lemma 5. The SB-realizability problem is Turing reducible to the up-hitting
problem.

Proof. In a block word taken from the SB all binary words of the length n appear
(possibly, several times). It leads to the condition (9) for cones appeared in the
reduction from Lemma 2. ��
Dickson’s lemma claims that there are no infinite antichains in the poset (Zd

+,≺).
So an orbit up-shadow is a finite union of translated copies of the orthant Zd

+.
In the case of an orbit down-shadow copies of the orthant are replaced by
‘parallelepipedons’ (the Cartesian products of segments). Thus the up-hitting
problem as well as the down-hitting problem is reduced to the nonemptiness
check for intersections of integer cones, which is an integer linear program-
ming problem, provided the representations mentioned above can be constructed
algorithmically.

To construct the aforementioned representations we use specific properties of
asymptotic behavior of the orbit points Φnx0, where Φ is determined by (4).

Recall that an e(g)-component of Φnx0 is expressed as the number νn(g) of
walks of the length n from the vertex id to the vertex g in the graph Γ . The
vertex set of the graph Γ is V (Γ) = QQ and the edge set E(Γ) consists of pairs
in the form (f, ff0) or (f, ff1). (See Section 1 for a detailed exposition.)

Note that the integer νn(g) is the number of words of the length n in a regular
language. This language is recognized by an automaton with the transition graph
Γ . Thus the generating function ϕg(t) =

∑∞
n=0 νn(g)tn for the language is a

rational function and its representation in the form P (t)/Q(t) can be found
algorithmically.

In the arguments below we need some properties specific to generating func-
tions of regular languages and it is more suitable to analyze the asymptotic
behavior in combinatorial settings by considering walks on the graph Γ .

Proposition 1. For any vertex g ∈ V (Γ) the set Pg = {n : νn(g) > 0} is a
semilinear set (a finite union of an exceptional finite set and finite collection of
arithmetic progressions) and its description can be constructed algorithmically.

Proof. Regard the Γ as the transition graph of a nondeterministic automaton
over a 1-letter alphabet. Now the proposition follows from Parikh’s theorem. ��
Remark 3. Differences of all progressions in Proposition 1 are the cycle lengths
in the graph Γ . So they are divisors of the least common multiple of integers
from 1 to |V (Γ)|. In the sequel we denote this common multiple by N .

312 S. Tarasov and M. Vyalyi

Take a vertex g on a directed cycle of the length 	. The following inequality

νn+�(g) ≥ νn(g). (12)

holds. Indeed, one can extend any walk of the length n by the cycle.
Now we divide the vertices of the graph Γ into three groups.

– V1 consists of vertices v such that some directed cycle (possibly, a loop) goes
through the vertex v.

– V2 consists of vertices v such that there is a walk starting at the id, finishing
at the v and passing through a vertex from the set V1.

– V3 consists of all other vertices.

Proposition 2. If g ∈ V3 then νn(g) = 0 for n > |V (Γ)|.
Proof. Any walk of the length n > |V (Γ)| from id to g must contain repeating
vertices. It means that a part of the walk is a directed cycle. So the walk passes
a vertex from the set V1. ��
Proposition 3. The inequality

νn+N (g) ≥ νn(g), (13)

where N = LCM(1, . . . , |V (Γ)|), holds for all g ∈ V (Γ) and n > |V (Γ)|.
Proof. For g ∈ V3 apply Proposition 2.

For g ∈ V1 the inequality (13) follows from (12) and Remark 3.
Now take a vertex g ∈ V2. The set Vg ⊆ V1 consists of vertices g′ ∈ V1 such

that g′ belongs to a walk from id to g and for all walks of this type all vertices
after the g′ along a walk are in the set V2. The subgraph Γg is induced by the
edges of all walks from a vertex in Vg to g.

Let observe the following properties of the Γg.
By definition of Vg no edges of Γg point to vertices of Vg.
There are no edges outgoing from the vertex g in the graph Γg. Otherwise one

would detect a directed cycle passing through g.
From these properties we conclude that the graph Γg is acyclic. By definition

there are no directed cycles passing through vertices in the set V2. Other vertices
in the Γg are in the set Vg. There are no directed cycles passing through these
vertices because there are no edge ingoing to them.

Note also that the maximum of the path length from g′ ∈ Vg to g does not
exceed |V (Γ)|.

From all the properties above we get

νn(g) =
∑

g′∈Vg

k≤|V (Γ)|

pg′,kνn−k(g′), (14)

where pg′,k is the number of paths from g′ and g in the Γg.
Applying the inequality (13) to all terms in the right-hand side of (14) we get

the same inequality for the left-hand side, i.e. for the vertex g. ��

Orbits of Linear Maps and Regular Languages 313

Theorem 2. The SB-realizability problem is decidable.

Proof. It follows from Lemma 5 that it is enough to construct an integer cone
representation for an orbit up-shadow. Proposition 3 implies that the orbit up-
shadow is

⋃N
i=0

(
Φix0 +Nm

)
, where m is a dimension, i.e. the cardinality of QQ.

So the problem is reduced to the integer linear programming problem. ��
To prove decidability of the injective filter we should determine for each 0 ≤
r < N unbounded components of ΦnN+rx0 and the limit values of the bounded
components.

All subsequences trg(n) = νnN+r(g), where 0 ≤ r < N , are nondecreasing due
to Proposition 3.

A subsequence trg(n), where g ∈ V3 stabilizes for n > |V (Γ)| and the limit
value for it is 0.

It follows from (14) that a subsequence trg(n), where g ∈ V2, tends to infinity
iff at least one of the subsequences tr−k

g′ (n) tends to infinity, where pg′,k �= 0.
The remaining case trg(n), where g ∈ V1, is covered by the following proposi-

tion.

Proposition 4. Let g ∈ V1. Then lim
n→∞ trg(n) = ∞ iff there exist a directed

cycle C passing through g and an edge (g′, g′′) such that

(i) the edge (g′, g′′) is not included in the cycle C;
(ii) the cycle C passes through the vertex g′′;
(iii) νnN+r−�−1(g′) > 0, where 	 is the distance from g′′ to g along the cycle C.

Note that due to Remark 3 the conditions (iii) are equivalent for all n. It is clear
that (i)–(iii) can be verified algorithmically.

Proof. The ‘if’ part of the proposition follows from

ν(n+1)N+r(g) ≥ νnN+r(g) + ν(n+1)N+r−�−1(g′) > νnN+r(g). (15)

To prove the ‘only if’ part suppose that νnN+r(g) = T for n > n0. For any
directed cycle C passing through g and any edge satisfying (i)–(ii) the first
inequality in (15) implies that νnN+r−�−1(g′) = 0 for n > n0. ��
Theorem 3. The IB-realizability problem is decidable.

Proof. Determine all unbounded components for all subsequences ΦnN+rx0 and
the limit values for bounded components. For this purpose use Proposition 4 and
the observations preceding it. Then the down-shadow is the union of the sets⎧⎨⎩ yg ≥ 0, if lim

n→∞(ΦnN+rx0)g = ∞,

y∞
g ≥yg ≥ 0, if lim

n→∞(ΦnN+rx0)g = y∞
g .

over all 0 ≤ r < N . Here yg are coordinates in the space QQQ

.
So the problem is reduced to the integer linear programming problem. ��

314 S. Tarasov and M. Vyalyi

3 An Undecidable Problem

Theorem 4. There are alphabets Σ1, Σ2 such that the (PerΣ1‖PΣ2)-realizability
problem is undecidable.

A suitable undecidable problem that is reduced to the (PerΣ1‖PΣ2)-realizability
problem is the following.

Zero in the Upper Right Corner Problem. (The ZURC problem.) For a
given collection of D×D integer matrices A1, . . . , AN check whether the multi-
plicative semigroup generated by {Ai} contains a matrix M such that M1D = 0.

In other words the problem is to check the existence of an integer sequence
j1, . . . , j�, where 1 ≤ jt ≤ N , such that

(Aj1Aj2 . . . Aj�
)1D = 0. (16)

Theorem 5 ([1]). The ZURC problem is undecidable for N = 2 and D = 18.

We will reduce the ZURC problem with N = 2, D = 18 to the (PerΣ1‖PΣ2)-
realizability problem, where

Σ1 = [1, . . . , N], Σ2 = [1, . . . , D]× [1, . . . , D]× {0, 1}. (17)

The reduction is similar to the reduction in [5, Section 4].
Let A1, . . . , AN be an instance of the ZURC problem for D = 18, N = 2.

Rewrite the matrices in the form

Aj =

⎛⎜⎜⎝
εj
11m

j
11 εj

12m
j
12 . . . εj

1Dmj
1D

εj
21m

j
21 εj

22m
j
22 . . . εj

2Dmj
2D

. .

εj
D1m

j
D1 . . . εj

D (D−1)m
j
D (D−1) εj

DDmj
DD

⎞⎟⎟⎠ ,

where mj
ik > 0 and εj

ik ∈ {±1, 0}. Let M be the maximum of mj
ik.

Fix now a sequence Aj1 , Aj2 , . . . , Aj�
. Matrix elements in the product

Aj1Aj2 . . . Aj�
have the form(

Aj1Aj2 . . . Aj�

)
ik

=
∑

τ

ε(τ)m(τ), (18)

where τ runs over all sequences of pairs (iαkα) such that the length of a sequence
is 	 and i1 = i, k� = k, iα+1 = kα,

ε(τ) =
�∏

α=1

εjα

iαkα
, m(τ) =

�∏
α=1

mjα

iαkα
. (19)

Using the expansion (18, 19) we define the partition of words of the length
	 ·	log2 M
 over the alphabet Σ1×Σ2 into three sets T +

ik(j), T−
ik(j) and T bad

ik (j),
where j = j1, . . . , j�. (Below we drop out j while the sequence j is fixed.)

Orbits of Linear Maps and Regular Languages 315

It is convenient to represent a word over the alphabet Σ1 × Σ2, where Σi

are given by (17), by a 4-row table. A table column represents a symbol in the
word. The first row bears symbols from Σ1 while the remaining three columns
represent symbols from Σ2 (they have three components as indicated in (17)).

A word in the set T +
ik (T−

ik) can be divided in 	 subwords of the length 	log2 M
.
The α-th subword has the form⎛⎜⎜⎝

jα jα . . . jα

iα iα . . . iα
kα kα . . . kα

β0 β1 . . . β�log2 M�−1

⎞⎟⎟⎠ . (20)

in the table representation defined above. The upper three elements in each row
are the same in (20). Note that jα is the α-th element of the sequence j. The
fourth row is a binary representation of an integer β.

A word in the set T +
ik should satisfy the following requirements (a) i1 = i; (b)

k� = k; (c) iα+1 = kα; (d) β < mjα

iαkα
; (e) ε(τ) = 1, where τ is the sequence of

pairs (iα, kα) and ε(τ) is given by (19).
A word in the set T−

ik should satisfy the requirements (a)–(d) and the modified
requirement (e′) ε(τ) = −1.

The set T bad
ik collects the rest of words.

Proposition 5. In the notation above
(
Aj1Aj2 . . . Aj�

)
ik

= |T +
ik | − |T−

ik |.

Proof. Restricting words in the set T +
ik to the upper three rows one obtains all

correct sequences τ such that ε(τ) = 1. The same restriction for the set T−
ik gives

the sequences τ such that ε(τ) = −1.
The multiplicity of a sequence τ in the set T±

ik depends on fourth rows of the
tables. According to the requirement (d) and the permutation property there
are exactly mjα

iαkα
subwords bearing (jα, iα, kα) in the upper three rows. So the

multiplicity of the sequence τ is m(τ), where m(τ) is given by (19). ��
It follows from the above that the sets T $

ik(j), where $ ∈ {+,−, bad}, are disjoint
for different j because the sequence j is recovered from the first row in the table
representation.

Proposition 6. For a fixed collection of matrices A1, . . . , AN and for each pair
i, k the language T all, $

ik =
⋃

j T $
ik(j) is regular for $ ∈ {+,−, bad}. ��

Proof. The requirements (a)–(d) are verified by local check on the subwords of
the fixed length 	log2 M
.

Computing the sign ε(τ) can be done in the cyclic group of two elements.
So the sets T all, ±

ik are regular. But the class of regular languages is closed
under the complement. Thus the set T all, bad

ik is also regular. ��
Sketch of proof of Theorem 4. We repeat the construction from [5, Section 4].
The reduction algorithm takes an instance of the ZURC problem (N =2, D=18)

316 S. Tarasov and M. Vyalyi

and constructs an automaton C such that the condition (16) holds for some
element in the semigroup generated by the input matrices if and only if L(C) ∩
PerΣ1‖PΣ2 �= ∅.

The automaton expects an input w from the language PerΣ1‖PΣ2 such that
block rank is 	 · 	log2 M
 and the word w is a certificate for zero representa-
tion (16). A period in the first (periodic) component determines the sequence
j = j1, . . . , j� such that (16) holds. The automaton expects that each symbol in
the sequence j is repeated 	log2 M
 times. In the second (permutation) compo-
nent the automaton expects that the blocks from the sets T +

1D(j), T−
1D(j) are

paired and are followed by the blocks from the set T bad
1D . Note that such a pairing

exists iff |T +
1D| = |T−

1D|.
The correctness of the reduction is proved in a way similar to the arguments

in [5, Section 4]. If the automaton accepts a word w in the language PerΣ1‖PΣ2

then one can extract the sequence j from the first components of symbols in the
word w. The check in the second components guarantees that (16) holds for the
sequence j. We apply here Proposition 5.

In other direction, if (16) holds for a sequence j then there exists a word in
the language PerΣ1‖PΣ2 satisfying the properties expected (and verified) by the
automaton C. Thus L(C) ∩ PerΣ1‖PΣ2 �= ∅.

Remark 4. By suitable encoding the symbols of the alphabets Σ1 and Σ2 one
can prove that the (PerB‖PB)-realizability problem is also undecidable.

References

1. Bell, P., Potapov, I.: Lowering Undecidability Bounds for Decision Questions in
Matrices. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 375–
385. Springer, Heidelberg (2006)

2. Blondel, V.D., Portier, N.: The presence of a zero in an integer linear recurrent
sequence is NP-hard to decide. Linear Algebra and Its Applications 351-352, 91–98
(2002)

3. Halava, V., Harju, T., Hirvensalo, M., Karhumäki, J.: Skolem’s problem — on the
border between decidability and undecidability. TUCS Tech. Rep. No 683 (2005)

4. Parikh, R.J.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)
5. Tarasov, S., Vyalyi, M.: Orbits of linear maps and regular languages,

http://arxiv.org/abs/1011.1842

6. Vereshchagin, N.K.: On occurrence of zero in a linear recurrent sequence. Math.
notes 38(2), 177–189 (1985)

7. Vyalyi, M.N.: On models of a nondeterministic computation. In: Frid, A., Morozov,
A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 334–345.
Springer, Heidelberg (2009)

8. Vyalyi, M., Tarasov, S.: Orbits of linear maps and regular languages. Discrete Anal-
ysis and Operations Research 17(6), 20–49 (2010)

http://arxiv.org/abs/1011.1842

Shared-Memory Systems and Charts�

Rémi Morin

Laboratoire d’Informatique Fondamentale de Marseille;
LIF; CNRS; UMR 6166

and
Aix-Marseille Université, 163, avenue de Luminy,

F-13288 Marseille, France

Abstract. In this paper we extend several results from Mazurkiewicz
trace theory to the framework of cut-bounded languages. First the ex-
pressive power of shared-memory systems in terms of recognized sets of
labeled partial orders is characterized by means of the notion of cut-
bound plus the condition to be regular, or equivalently MSO-definable.
Next weakly unambiguous systems with deterministic rules are proved to
be as expressive as any system, contrary to deterministic or strongly un-
ambiguous systems considered previously. Finally we extend the rational
description of regular trace languages by loop-connected specifications
within a new algebraic framework called shared-memory charts. In that
way we present also several generalizations of results from the theory of
regular sets of message sequence charts.

Introduction

Mazurkiewicz traces are a well-known and intensively studied class of labeled par-
tial orders which benefits from a rich theory and also still open problems [10,18,22].
In particular, they are closely related to the semantics of distributed devices,
called asynchronous automata, which communicate by means of synchronizations
[23]. For the communication paradigm based on message passing, an analogous
theory has been developed in the past years for message sequence charts,
see e.g. [16]. In this paper we consider systems that communicate by means of
shared variables and present a generalization of several key results from the the-
ory of Mazurkiewicz traces and message sequence charts [4,15,16,18,22,23].

As opposed to our previous works [19,20], we consider in this paper shared-
memory systems without any restriction, neither determinism [19], nor strong
unambiguity [20]. This requires to focus on the notion of chain covering from
[12,17], or equivalently the definition of cut-bound. We prove first that a set of
labeled partial orders corresponds to the behaviours of a shared-memory sys-
tem if and only if it is cut-bounded and regular, a notion borrowed from [14].
To do so, we extend the connection between MSO-logic and regularity from
Mazurkiewicz traces [22] to cut-bounded languages. We consider also in this pa-
per the notions of deterministic rules and (weak) unambiguity. As opposed to
� This work is partly supported by project ECSPER (ANR-09-JCJC-0069).

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 317–330, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

318 R. Morin

deterministic or strongly unambiguous systems, we prove that the language of
any shared-memory system is also the language of an unambiguous system with
deterministic rules.

In order to describe behaviours of shared-memory systems in some algebraic
way, we introduce next the notion of shared-memory charts. Interestingly this
framework can be regarded formally as a generalization of Mazurkiewicz traces
and message sequence charts. Moreover, similarly to [18], we can characterize
the cut-bounded languages that are regular by considering shared-memory chart
specifications that are loop-connected. We explain also how to decide whether
the language of a given shared-memory chart specification is cut-bounded. To do
so we adapt the definition of communication graph [4,16] from message sequence
charts to shared-memory charts and next generalize the corresponding criterion
for non-divergence [4] to the notion of cut-bound.

Preliminaries. A labeled partial order, partial word, or pomset (for partially
ordered multiset) over a finite alphabet Σ is a triple t = (E,�, ξ) where (E,�) is
a finite partial order and ξ is a mapping from E to Σ without autoconcurrency:
ξ(x) = ξ(y) implies x � y or y � x for all x, y ∈ E. As usual we shall not
distinguish between isomorphic pomsets. We denote by P(Σ) the class of all
pomsets over Σ. A pomset can be seen as an abstraction of an execution of
a concurrent system. In this view, the elements x of E are events and their
label ξ(x) describes the action performed by the system when event x occurs.
Moreover the ordering x � y means that x happens before y.

An ideal of a pomset t = (E,�, ξ) is a subset H ⊆ E such that x ∈ H and
y � x imply y ∈ H . Then the restriction t|H = (H,� ∩(H ×H), ξ ∩ (H × Σ))
is called a prefix of t and we write t′ � t. For all z ∈ E, we denote by ↓z the
ideal of events below z, i.e. ↓z = {y ∈ E | y � z}. We write x ·≺ y and say that
y covers x if x ≺ y and x ≺ z � y implies y = z.

Let us recall some basic notions of Mazurkiewicz trace theory [9,10]. The con-
currency of a distributed system is often represented by an independence relation
over the alphabet of actions Σ, that is a binary, symmetric, and irreflexive re-
lation ‖ ⊆ Σ × Σ. Then a Mazurkiewicz trace over the independence alphabet
(Σ, ‖) is a pomset t = (E,�, ξ) over Σ satisfying the two next requirements:

M1: For all events e1, e2 ∈ E with ξ(e1)� ‖ξ(e2), we have e1 � e2 or e2 � e1;
M2: For all events e1, e2 ∈ E with e1 ·≺ e2, we have ξ(e1)� ‖ξ(e2).

We denote by M(Σ, ‖) the class of all Mazurkiewicz traces over (Σ, ‖).

1 Communication with Shared Variables

Throughout the paper we fix some finite alphabet Σ. The notion of a shared-
memory system we consider is based on a finite set I of processes together with
a distributed alphabet (Σi)i∈I where Σi ⊆ Σ for every process i. For each action
a ∈ Σ, the location Loc(a) = {i ∈ I | a ∈ Σi} collects all processes involved in
action a. Intuitively each occurrence of action a induces a synchronized step of
all processes from Loc(a). For that reason we assume that Loc(a) is non-empty
for all a ∈ Σ, i.e.

⋃
i∈I Σi = Σ.

Shared-Memory Systems and Charts 319

1.1 Shared-Memory Systems

Processes of a shared-memory system can communicate by means of a finite set
R of shared variables (or registers) taking values from a common finite set of
data D; in particular the initial content of this shared memory is described by a
configuration ı : R→ D that associates to each register r ∈ R a value ı(r) ∈ D.
Intuitively each action corresponds to reading the values of a subset of registers
(the guard) and next writing new values in some other registers (the update).
For convenience, we shall allow distinct processes to read the value of a register
concurrently; but we forbid the writing of a new value in the same register by two
different processes simultaneously, that is, we shall consider Concurrent-Read
Exclusive-Write systems, only. A valuation is a partial function ν : R ⇀ D;
it will correspond to the reading or the writing of some values in a subset of
registers. The domain dom(ν) of a valuation ν is the set of registers r for which
ν(r) is defined. We denote by V the set of all valuations. Given a configuration
q : R → D and a subset of registers R ⊆ R, we let q|R denote the valuation
with domain R such that q|R(r) = q(r) for all r ∈ R. We denote by Q the set
DR of all configurations. A rule is a triple (ν, a, ν′) where a ∈ Σ and ν, ν′ ∈ V
are two valuations.

Definition 1.1. A shared-memory system (for short, an SMS) consists of a
set of rules Δ ⊆ V ×Σ × V, some initial configuration ı : R → D and a subset
F ⊆ Q of final configurations.

We stress here that we consider in this paper only systems over finite alpha-
bets with finitely many registers and data. Intuitively action a can occur syn-
chronously on all processes from Loc(a) in some configuration q if there exists
some rule (ν, a, ν′) ∈ Δ such that ν = q|dom(ν), i.e. the guard ν is satisfied. In
that case processes from Loc(a) may write the new values ν′(r) in registers from
the domain of ν′. The step consisting of all these readings and all these writings
is considered atomic. For convenience we put ρ = (νρ, aρ, ν

′
ρ), Rρ = dom(νρ) and

Wρ = dom(ν′
ρ) for each rule ρ ∈ Δ. A rule ρ is enabled in the configuration q if

q|Rρ = νρ.

1.2 Partial-Order Semantics of Shared-Memory Systems

Let ρ, ρ′ ∈ Δ be two rules. We put ρ‖ρ′, and we say that ρ and ρ′ are independent,
if Loc(aρ)∩Loc(aρ′) = ∅, Wρ∩ (Rρ′ ∪Wρ′) = ∅, and Wρ′ ∩ (Rρ∪Wρ) = ∅. Thus
two rules are independent if they correspond to actions performed by disjoint sets
of processes and if each rule does not modify the registers read or written by the
other. These conditions are known as Bernstein’s conditions [5]. Let t = (E,�, ξ)
be a pomset over the set of actions Σ. In order to reason about which registers
are read by each event of t and how events change the values of registers, we make
use of the notion of run. A run of t over the SMS S is a mapping ρ : E → Δ
which maps each event e ∈ E to some rule ρ(e) ∈ Δ such that aρ(e) = ξ(e),
which means simply that the rule ρ(e) corresponds to the action ξ(e) performed
by e. We say that a run ρ of t = (E,�, ξ) is valid if the following conditions are
satisfied:

320 R. Morin

V1: For all events e1, e2 ∈ E with ρ(e1)� ‖ρ(e2), we have e1 � e2 or e2 � e1;
V2: For all events e1, e2 ∈ E with e1 ·≺ e2, we have ρ(e1)� ‖ρ(e2).

The first condition ensures that two dependent rules cannot occur concurrently.
In particular if e and e′ are two events that change the value of some register r
then e and e′ must be comparable w.r.t. �. The second condition asserts that
each covering relation between two events results from some ordering constraint.
We distinguish three cases in this situation. First the two rules ρ(e1) and ρ(e2)
occur on a common process or write a new value in a common register. Second
ρ(e1) writes a value in some register and this value is expected by the guard of
ρ(e2). Third ρ(e1) reads a register that is rewritten by ρ(e2). Observe here that
V1 and V2 amount to require that the triple (E,�, ρ) is a Mazurkiewicz trace
from M(Δ, ‖).

We assume now that ρ is a valid run for t. If t describes a concurrent com-
putation of the SMS S where each event e applies rule ρ(e) then any prefix of
t should correspond to some partial computation of S. Let H ⊆ E be an ideal
of t. The configuration qρ,H after H corresponds intuitively to a snapshot of the
system when all events of H have occurred along the execution of t w.r.t. ρ: The
value of each register is the value written by the last event that has modified
this value. Formally qρ,H is the configuration such that for all registers r ∈ R,
qρ,H(r) = ν′

ρ(e)(r) if e is the greatest event in H such that r ∈ Wρ(e), and
qρ,H(r) = ı(r) if there is no such event. A valid run ρ of t is applicable in the
SMS S if the rule ρ(e) is enabled in the configuration qρ,↓e\{e} for all events
e ∈ E. Moreover an applicable run of t = (E,�, ξ) is accepting if qρ,E ∈ F .

Definition 1.2. The language L(S) recognized by S collects all pomsets which
admit an accepting run.

1.3 Asynchronous Automata and Zielonka’s Theorem

The notion of asynchronous automata originates from the seminal work by
Zielonka [23]. The definition adopted in [10, chap. 7] can be identified with a
subclass of shared-memory systems such that I = R, which means intuitively
that each register corresponds to the local state of a process. In this setting each
action is assigned a read domain Ra ⊆ R and a write domain Wa ⊆ R such that
Loc(a) = Wa ⊆ Ra. It is required that for any rule ρ ∈ Δ with aρ = a we have
Rρ = Ra and Wρ = Wa. Then the set of rules associated with a can be regarded
as a subset δa ⊆ DRa × DWa . Now we can define an independence relation ‖Σ

over Σ such that a‖Σb if Wa ∩ (Rb ∪Wb) = ∅ and Wb ∩ (Ra ∪Wa) = ∅. These
conditions imply that Loc(a)∩Loc(b) = ∅. Then the language recognized by such
an asynchronous automaton according to Definition 1.2 consists of Mazurkiewicz
traces over (Σ, ‖Σ). This language coincides with the usual semantics of asyn-
chronous automata.

Consider now a finite independence alphabet (Σ, ‖). A trace language L ⊆
M(Σ, ‖) is called regular if the collection of all linear extensions is a regular word
language. Zielonka’s theorem captures this notion of regularity with the help of
asynchronous automata as follows.

Shared-Memory Systems and Charts 321

Theorem 1.3. [23] Let L ⊆ M(Σ, ‖) be a set of Mazurkiewicz traces over some
finite independence alphabet (Σ, ‖). Then L is regular if and only if it is recog-
nized by some asynchronous automaton.

2 Expressive Power of Shared-Memory Systems

The first goal of this work is to extend Theorem 1.3 to the general setting of
shared-memory systems. To do so we need to introduce the notion of cut-bound.

2.1 Cut-Bounded Languages

Definition 2.1. Let t = (E,�, ξ) be a pomset over Σ and t′ = (E′,�′, ξ′) be
a prefix of t. The cut-width of the pair (t′, t) is the number of events from E′

that are covered by some event from E \ E′ in t. The cut-bound of a language
L ⊆ P(Σ) is the least upper bound B ∈ N ∪ {∞} of the cut-widths of all pairs
(t′, t) where t′ � t and t ∈ L. A language is cut-bounded if its cut-bound is
finite.

Example 2.2. Consider the alphabet Σ = {a, b}. A ladder is a pomset over Σ
that consists of a chain of n a-events and a chain of n b-events and such that
the kth b covers the kth a and no b is below any a. An example of a ladder is
depicted in Figure 1. Clearly the set of all ladders is not cut-bounded.

It is easy to see that the set of all Mazurkiewicz traces over some finite inde-
pendence alphabet (Σ, ‖) is cut-bounded with cut-bound at most |Σ|2. Consider
now an SMS S. Each concurrent computation t = (E,�, ξ) from L(S) corre-
sponds to an accepting run ρ : E → Δ (where Δ denotes the set of rules) and
some Mazurkiewicz trace t◦ = (E,�, ρ). Therefore L(S) is cut-bounded and its
cut-bound is at most |Δ|2. Thus,

Lemma 2.3. The language of any shared-memory system is cut-bounded.

In this section we shall characterize which cut-bounded languages are recognized
by shared-memory systems. Before that, it is interesting to relate the class of
cut-bounded languages to an equivalent notion introduced by Kuske.

Definition 2.4. [17] Let k ∈ N and t = (E,�, ξ) be a pomset over Σ. A family
(Ci)i∈[1,k] of subsets of E is called a k-chain covering of t if

1. each Ci is a chain in (E,�), i.e. (Ci,� ∩(Ci × Ci)) is a linear order;
2. E =

⋃
i∈[1,k] Ci;

3. ∀e, f ∈ E: (e ·≺ f ⇒ ∃i ∈ [1, k], {e, f} ⊆ Ci).

We let Pk(Σ) collect all pomsets over Σ that admit a k-chain covering.

By Dilworth’s theorem [11], the first two requirements are equivalent to saying
that the width of (E,�) is at most k. So the crucial part is the third requirement.
It enforces that not only the partial order (E,�) is covered by the chains, but
that in addition the end points of any covering relation belong to some common
chain. It is clear that the cut-bound of any pomset language within Pk(Σ) is at
most k. Conversely Dilworth’s theorem can be used to show that any pomset
language with cut-bound at most k is included in Pk(Σ).

322 R. Morin

2.2 Refinements of Cut-Bounded Languages

Let Σ1 and Σ2 be two alphabets and π : Σ1 → Σ2 be a mapping from Σ1 to
Σ2. This mapping extends into a morphism from Σ�

1 to Σ�
2 . It extends also in

a natural way into a function that maps each pomset t = (E,�, ξ) over Σ1 to
the triple π(t) = (E,�, π ◦ ξ). The latter might not be a pomset over Σ2 in case
some autoconcurrency appears in it (see preliminaries). This situation occurs if
π(a) = π(b) for two distinct actions a, b ∈ Σ while there are two events in t that
are not comparable and that are labelled by a and b.

Definition 2.5. Let L1 and L2 be two sets of pomsets over Σ1 and Σ2 respec-
tively and π : Σ1 → Σ2 be a mapping from Σ1 to Σ2. Then π is a refinement
from L2 onto L1 if π(L1) = L2 and π : L1 → L2 is a bijection.

The condition π(L1) = L2 implies that π(t) shows no autoconcurrency for any
t ∈ L1. It implies also that L1 and L2 have the same cut-bound. This definition
of refinement is weaker than the notion of strong refinement from [19,20] which
requires additionally that π induces a bijection from Pref(L1) onto Pref(L2). We
stress that we keep here the requirement that π induces a bijection from L1 onto
L2 in order to be able to apply our results to the restricted case of unambiguous
shared-memory systems with deterministic rules at the end of this section.

Let L be a pomset language over Σ with cut-bound B < ∞ and t = (E,�, ξ)
be a pomset from L. We consider two actions a, b ∈ Σ. For each cover ea ·≺ eb

with ξ(ea) = a and ξ(eb) = b we denote by |ea, eb|a,b the number of covers e′a ·≺ e′b
with ξ(e′a) = a, ξ(e′b) = b, and e′a � ea. Note that these conditions imply that
e′b � eb. We denote by Γ the set of all partial functions from Σ to [0, B − 1]
and we write γ(x) = ⊥ if γ ∈ Γ , x ∈ Σ, and γ(x) is undefined. We construct
a new labeling ξ◦ : E → Σ × Γ × Γ such that for each event e ∈ E we have
ξ◦(e) = (ξ(e), γ, γ′) where for all x ∈ Σ:

– γ(x) = |e, f |ξ(e),x mod B if there exists some event f such that e ·≺ f and
ξ(f) = x, and γ(x) = ⊥ otherwise.

– γ′(x) = |f, e|x,ξ(e) mod B if there exists some event f such that f ·≺ e and
ξ(f) = x, and γ′(x) = ⊥ otherwise.

Note that in both cases f is unique if it exists, because t shows no autocon-
currency. We denote by t◦ the pomset t◦ = (E,�, ξ◦). We provide now the
new alphabet Σ◦ = Σ × Γ × Γ with some independence relation ‖◦ such that
(a, γa, γ′

a)� ‖◦(b, γb, γ
′
b) if a = b, γa(b) = γ′

b(a) �= ⊥ or γb(a) = γ′
a(b) �= ⊥. Clearly

‖◦ is irreflexive and symmetric.

Lemma 2.6. For each t ∈ L, we have t◦ ∈ M(Σ◦, ‖◦).
In that way we have built a refinement π : Σ◦ → Σ from L onto the Mazurkiewicz
trace language L◦ = {t◦ | t ∈ L} over the finite independence alphabet (Σ◦, ‖◦).

Shared-Memory Systems and Charts 323

a b

a b

a b

a b

a b

a b

a b

Pomset languages Consistent languages

Media-bounded languages

Cut-bounded languages

MSO-definable languages

Regular languages

Fig. 1. A ladder Fig. 2. Classification of cut-bounded languages

2.3 Büchi’s Theorem for Cut-Bounded Languages

In language theory, a set of words L ⊆ Σ� is called regular if it has finitely
many residuals. For a given word u, the residual at u consists of all words v such
that u.v ∈ L. In particular, if u is not a prefix of some word from L then the
residual at u is empty. By analogy with these classical definitions, a definition
of regularity for pomset languages was introduced in [14] in order to extend this
classical notion.

Let L be a pomset language and t1 = (E1,�1, ξ1) be a pomset over Σ. The
residual L \ t1 consists of all pomsets t2 = (E2,�2, ξ2) such that there exists
some pomset t = (E,�, ξ) in L satisfying the following conditions:

1. E = E1 ∪ E2, E1 ∩ E2 = ∅, and E1 is an ideal of t,
2. t1 is the restriction of t to events in E1, and
3. t2 is the restriction of t to events in E2.

Definition 2.7. Let L be a set of pomsets. Given two pomsets t and t′, we put
t ≡r t′ if L \ t = L \ t′. Then L is regular if the equivalence relation ≡r is of
finite index.

As observed in [14], this notion of regularity coincides with the usual notions
of regularity for Mazurkiewicz traces [10], or message sequence charts [16], and
more generally consistent sets of pomsets [3].

In his seminal paper [7] Büchi gave a logical characterization of regular word
languages by means of MSO logic. Formulae of the MSO logic that we con-
sider involve first-order variables x, y, z... for events and second-order variables
X, Y, Z... for sets of events. They are built up from the atomic formulae Pa(x)
for a ∈ Σ (which stands for “the event x is labeled by the action a”), x � y, and
x ∈ X by means of the Boolean connectives ¬,∨,∧,→,↔ and quantifiers ∃, ∀
(both for first order and for set variables). We denote by MSO(Σ) the set of all
formulae of MSO. Formulae without free variables are called sentences.

The satisfaction relation |= between pomsets and sentences is defined canon-
ically with the understanding that first order variables range over events of E

324 R. Morin

and second order variables over subsets of E. The set of pomsets which satisfy
a sentence ϕ is denoted by Mod(ϕ). We say that a set of pomsets L is MSO-
definable if there exists a sentence ϕ such that L = Mod(ϕ).

It was shown by Thomas [22] that regularity corresponds to MSO-definability
for any set of Mazurkiewicz traces. We extend easily this connection to any
cut-bounded language.

Theorem 2.8. A cut-bounded language is MSO-definable if and only if it is
regular.

Proof. Let L ⊆ P(Σ) be a cut-bounded language. By Lemma 2.6, there exists
some refinement π : Γ → Σ from L onto L′ ⊆ M(Γ, ‖) where (Γ, ‖) is a finite
independence alphabet. Let L′′ = π−1(L)∩M(Γ, ‖). Then π(L′′) = L. Moreover
L is regular (resp. MSO-definable) iff L′′ is regular (resp. MSO-definable). The
result follows then from [22].

We have already observed in [20, Prop. 1.6] that the language recognized by some
SMS is MSO-definable. Since it is cut-bounded (Lemma 2.3), it is also regular.
Our first main result establishes the converse property and states the expected
generalization of Zielonka’s theorem.

2.4 Generalizations of Zielonka’s Theorem

Consider now a regular and cut-bounded pomset language L ⊆ P(Σ). We can ap-
ply the construction of Subsection 2.2 and get a Mazurkiewicz trace language L◦.
The latter is clearly MSO-definable because L is MSO-definable (Theorem 2.8).
It follows that L◦ is regular. By means of Theorem 1.3 we get an asynchronous
automaton that recognizes L◦. We can apply then [20, Lemma 2.6] and get an
SMS that recognizes L. More precisely, the proof of [20, Lemma 2.6] assumes that
π : Σ◦ → Σ is a strong refinement from L onto L(S◦), but it applies verbatim
under the weaker assumption that π is only a refinement. (The only difference is
that the weaker refinements that we consider now do not preserve the property
of quasi-unambiguity.)

Theorem 2.9. Let L ⊆ P(Σ). The following conditions are equivalent:

(i) L is cut-bounded and regular.
(ii) L is recognized by some SMS.
(iii) There exists a refinement from L onto a regular Mazurkiewicz trace lan-

guage.

Proof. We have proved above that (i) ⇒ (iii) ⇒ (ii). On the other hand we have
already explained why (ii) implies (i).

There are three sources of non-determinism in shared-memory systems. When-
ever the system executes an action, it first guesses the registers to read, next
chooses which registers to modify, and finally determine which new values to
write. Asynchronous automata however have only the last source of non-determi-
nism, since each action determines a fixed subset of processes/registers to read

Shared-Memory Systems and Charts 325

and modify. Deterministic shared-memory systems investigated in [19] have no
choice: There is at most one enabled rule for a given action in a given reachable
configuration. The expressive power of deterministic shared-memory systems was
characterized in [19]. In particular the pomset languages recognized by those
systems are regular and consistent, which means that any two prefixes from the
language that share a common linear extension must be equal. The reason for
that is that each event from this linear order corresponds to a unique rule and
the partial order between events derives from the corresponding rules. It is clear
that any set of Mazurkiewicz traces (or message sequence charts) is consistent.
Now we say that an SMS has deterministic rules if the two last sources of non-
determinism are void: Formally we require that (ν, a, ν′) ∈ Δ ∧ (ν, a, ν′′) ∈ Δ
implies ν′ = ν′′. As opposed to determinism, the restriction to shared-memory
systems with deterministic rules does not affect their expressive power, as stated
by Theorem 2.10 below.

A shared-memory system is strongly unambiguous if any pomset admits at most
one applicable run. Note here that any deterministic SMS is strongly unambigu-
ous, but not vice-versa. We showed in [20] that a pomset language is recognized
by some strongly unambiguous SMS iff it is MSO-definable and media-bounded,
a new notion similar to being cut-bounded. Consider some t ∈ L and some prefix
t′ � t. An event e in t′ is active in L if t′ is a prefix of some pomset t′′ ∈ L in
which e is covered by some event f ∈ t′′ \ t′. A language is called media-bounded
if the number of active events in its prefixes is bounded. It is easy to see that any
media-bounded language is cut-bounded (Fig. 2). Example 3.1 below will exhibit
a pomset language that is cut-bounded but not media-bounded. We consider now
another notion of unambiguity closer to the usual ones [2,8]: An SMS S is sim-
ply called unambiguous if any pomset from L(S) admits a unique accepting run.
Thus any strongly unambiguous system is unambiguous. Similarly to determinis-
tic rules, this notion of unambiguity does not affect the expressive power of shared-
memory systems, as stated by the next result.

Theorem 2.10. For any shared-memory system S there exists an unambiguous
shared-memory system S′ with deterministic rules such that L(S) = L(S′).

Proof sketch. Consider a regular and cut-bounded language L. There exists
some refinement π from L onto a regular trace language L◦ ⊆ M(Γ, ‖) and
an asynchronous automaton A that recognizes L◦. We may assume that A is
deterministic. The construction of an SMS S from A developped in [20, Lemma
2.6] and already considered above preserves deterministic rules and unambiguity,
because π is a bijection from L◦ onto L. As a result, S is unambiguous with
deterministic rules.

3 Shared-Memory Charts

So far we have established that cut-bounded regular pomset languages are the
domain of shared-memory systems, in the same way as Mazurkiewicz traces
correspond to asynchronous automata and message sequence charts to message-
passing systems. In this section we introduce an algebraic framework for pomset

326 R. Morin

a

a

a b

a

a

a

a, {x}

a, {x}

a, {x}

a, {x} b, {y}

a, {x, y}
a, {x} b, {y}

Fig. 3. A flag Fig. 4. An SMC specification for flags Fig. 5. Ladders

languages in order to give a rational description of regular cut-bounded lan-
guages, similarly to analoguous results known for Mazurkiewicz traces and mes-
sage sequence charts (see [16, Th. 6.4] and [9, Th. 6.3.13]).

Example 3.1. Let Σ = {a, b}. A flag is a pomset over Σ that consists of n
events labeled by a plus an event labeled by b. It is required that this additional
event covers one a-event and is covered by some a-event. An example of flag is
depicted in Fig. 3. Since the language of all flags is regular and cut-bounded, it
is recognized by some SMS. Note here that this language is not media-bounded.
An automaton-based specification for this language is depicted in Fig. 4. The
idea is twofold. First each transition of the automaton carries a pomset. Second
each event is provided with some additional information, in the abstract form of
a subset of gates, that formalizes which events appearing on distinct transitions
should be linearly ordered.

3.1 Gates and Shared-Memory Charts

Let G be a finite and non-empty set of gates. We put Γ = Σ × 2G \ {∅}. We
denote by π1 : Γ → Σ and π2 : Γ → 2G \ {∅} the two projections and consider
the independence relation ‖Γ over Γ such that (a, H)‖Γ (a′, H ′) if H ∩H ′ = ∅
and a �= a′. Thus two actions from Γ are depend if they carry the same action
from Σ or if they share a common gate.

Definition 3.2. A shared-memory chart (for short: an SMC) is a pomset t =
(E,�, ξ) over Γ such that we have either e1 � e2 or e2 � e1 for any two events
e1 and e2 with ξ(e1)� ‖Γ ξ(e2). We denote by SMC the set of all SMCs.

Thus we require that any two events that carry the same action from Σ or share
a common gate must be comparable. It follows that all events sharing a given
gate form a linear order. Moreover the structure π1(t) shows no autoconcurrency
for any SMC t. Note that shared-memory charts are simply pomsets satisfying
the first requirement M1 of Mazurkiewicz traces over the independence alphabet
(Γ, ‖Γ). However an SMC need not to be a Mazurkiewicz trace over (Γ, ‖Γ)
because we do not require M2. For that reason the chains defined by gates of an
SMC need not to build a chain covering (Def 2.4).

Remark 3.3. Let (Σ, ‖) be some finite independence alphabet and G = � ‖ ⊆
Σ × Σ, that is, gates are pairs of dependent actions. Then any Mazurkiewicz
trace from M(Σ, ‖) can be regarded as an SMC where each event labeled by a

Shared-Memory Systems and Charts 327

is associated with the set of all gates that contain a. Similarly any message
sequence chart can be regarded as an SMC where gates are processes and each
event is associated with the (single) process where it occurs. Thus SMCs appear
as a generalization of both Mazurkiewicz traces and message sequence charts.

3.2 Asynchronous Product of Shared-Memory Charts

Shared-memory charts are provided with the following concatenation operation.
Given two SMCs t1 = (E1,�1, ξ1) and t2 = (E2,�2, ξ2) the asynchronous prod-
uct t1 · t2 is the pomset t = (E,�, ξ) where E = E1 ∪ E2, ξ = ξ1 ∪ ξ2, and � is
the transitive closure of �1 ∪ �2 ∪{(e1, e2) ∈ E1 ×E2 | ξ(e1)� ‖Γ ξ(e2)}. Thus an
event e1 ∈ E1 is above an event e2 ∈ E2 if they carry the same action from Σ or
share a common gate. Clearly the product of two SMCs is again an SMC. This
product is associative and admits the empty pomset as unit. It generalizes the
product of Mazurkiewicz traces and the product of message sequence charts.

Definition 3.4. An SMC specification is an automaton A = (Q, ı,−→, F)
where Q is a finite set of states, with initial state ı, −→⊆ Q × SMC × Q is
a finite set of transitions labeled by SMCs, and F ⊆ Q is a subset of final states.

As usual, the SMC language LΓ (A) recognized by an SMC specification A col-
lects all SMCs obtained as the product of the SMCs along a path from ı to
some final state. On the other hand, we denote by LΣ(A) the set of pomsets
LΣ(A) = π1(LΓ (A)) called the pomset language recognized by A. Clearly LΓ (A)
is cut-bounded iff LΣ(A) is cut-bounded. For convenience we will assume that
all states of any SMC specification are reachable from the initial state and co-
reachable from the final states.

Remark 3.5. The languages recognized by SMC specifications are precisely the
rational languages of the monoid SMC. Similarly to message sequence charts,
we could have considered here an equivalent model where SMCs are attached to
states instead of transitions.

In the sequel of this section we focus on two natural issues. Given an SMC
specification A, we first wonder how to decide whether the pomset language
LΣ(A) is cut-bounded. Second we aim at describing any regular cut-bounded
language by some SMC specification.

3.3 Checking Cut-Boundedness of an SMC Specification

Similarly to the characterization of divergence-free MSC specifications [4], we
present now a criterion for cut-boundedness of SMC specifications that is based
on the following definition of communication graph.

Definition 3.6. Let t = (E,�, ξ) be an SMC. The communication graph of t
is the directed graph CG(t) = (V,→) over the set V =

⋃
e∈E π2(ξ(e)) of active

gates in t such that g → g′ if

– either there are e, e′ ∈ E for which g ∈ π2(ξ(e)), g′ ∈ π2(ξ(e′)) and e ·≺ e′,
– or there are e, e′ ∈ E for which g ∈ π2(ξ(e)), g′ ∈ π2(ξ(e′)) and ξ(e)� ‖Γ ξ(e′).

328 R. Morin

Example 3.7. The language of the SMC specification depicted on Fig. 5 con-
sists of all ladders (Fig. 1). The communication graph of any loop is connected
but not strongly connected. However, if we add gate x to event b then the
language consists of linear orders: It is thus cut-bounded. Moreover the commu-
nication graph of any loop is strongly connected because of the second condition
from Definition 3.6.

Interestingly the communication graph of a message sequence chart [4,16] is
very close to the communication graph of the corresponding SMC defined in
Remark 3.3: They share a common set of vertices and moreover the connected
(resp. strongly connected) components of these two graphs coincide. Now the
class of cut-bounded specifications can be characterized similarly to [4, Th. 5].

Theorem 3.8. The language of an SMC specification is cut-bounded if and only
if for any loop q0

t1−→ q1...qn−1
tn−→ qn = q0, all connected components of the

communication graph CG(t1 · ... · tn) are strongly connected.

As a consequence, checking cut-boundedness of a given SMC specification is
co-NP. Since this problem coincides with non-divergence in the case of message
sequence charts, we know that this problem is actually co-NP-complete [1, Th. 7].

Remark 3.9. Continuing Example 3.7, observe here that the statement of The-
orem 3.8 fails if we remove the second condition from Definition 3.6: The simple
loop of the SMC specification considered would be connected but not strongly
connected although its language is cut-bounded.

3.4 Loop-Connected SMC Specifications

We cannot decide whether an SMC specification describes a regular pomset
language, since this question is already undecidable for Mazurkiewicz traces.
However, we can exhibit a subclass SMC specifications that describe all regular
cut-bounded languages: Similarly to the theory of Mazurkiewicz traces [18,21]
or message sequence charts [16], we consider now loop-connected SMC specifica-
tions. To do so, we focus on connected SMCs: An SMC is called connected if it
is connected when regarded as a directed graph on its underlying set of events.

Definition 3.10. An SMC specification is called loop-connected if for all loops
q0

t1−→ q1...qn−1
tn−→ qn = q0 the SMC t1 · ... · tn is connected.

Note that the communication graph of a connected SMC is connected. The
converse property fails for shared-memory charts in general, but not for the
particular case of message sequence charts. Consequently the notion of a loop-
connected SMC specification correspond to globally-cooperative high-level mes-
sage sequence charts [15] and checking whether an SMC specification is loop-
connected is co-NP-complete [15, Prop. 6].

We can prove now the next preliminary observation by means of a folklore
technique.

Lemma 3.11. Let L be a set of connected SMCs. If L is MSO-definable then
so is L�, the Kleene iteration of L in the monoid SMC.

Shared-Memory Systems and Charts 329

It is clear that the SMC language LΓ (A) of any loop-connected SMC specifica-
tion A can be described by a rational expression where iteration operates only
over sets of connected SMCs. It follows from Lemma 3.11 that the SMC language
LΓ (A) and the pomset language LΣ(A) are MSO-definable. If LΣ(A) is also cut-
bounded, then it is regular (Theorem 2.8). Conversely, we can prove that any
regular cut-bounded pomset language is described by some loop-connected SMC
specification by means of the analoguous result for Mazurkiewicz traces [18,21].

Theorem 3.12. A cut-bounded language is regular if and only if it is the lan-
guage of a loop-connected SMC specification.

Moreover Theorem 3.8 ensures that if a loop-connected SMC specification rec-
ognizes some cut-bounded language then the communication graph of any loop
is strongly connected. Note that Theorem 3.12 fails if we drop the assumption
that the language is cut-bounded: The language of all ladders (Example 2.2) is
recognized by a loop-connected SMC specification (Example 3.7) but it is not
regular.

4 Related Work

The model of asynchronous cellular automata investigated in [12] can be identi-
fied with a subclass of shared-memory systems. However the semantics adopted
in [12] differs from ours since the pomset languages recognized by these devices
need not to be cut-bounded. Moreover, as opposed to shared-memory systems,
asynchronous cellular automata with deterministic rules (called deterministic in
[12]) are less expressive than non-deterministic ones, even if one restricts accep-
tance to some fixed class Pk(Σ).

Concurrency monoids of stably concurrent automata [6,13] form another gen-
eralization of Mazurkiewicz traces and message sequence charts which enjoys
both a rational and a logical characterization of recognizable languages. These
languages are also closely related to deterministic shared-memory systems [19].
Consequently this framework cannot deal with non-consistent sets of pomsets
such as the language of flags from Example 3.1.

Acknowledgements

Thanks to an anonymous referee of a previous version of this paper for the
encoding of Mazurkiewicz traces in shared-memory charts given in Remark 3.3.

References

1. Alur, R., Yannakakis, M.: Model Checking of Message Sequence Charts. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer,
Heidelberg (1999)

2. Arnold, A.: Rational ω-languages are non-ambiguous. Theoretical Computer Sci-
ence 26, 221–223 (1983)

330 R. Morin

3. Arnold, A.: An extension of the notion of traces and asynchronous automata.
RAIRO, Theoretical Informatics and Applications 25, 355–393 (1991)

4. Ben-Abdallah, H., Leue, S.: Syntactic Detection of Process Divergence and Non-
local Choice in Message Sequence Charts. In: Brinksma, E. (ed.) TACAS 1997.
LNCS, vol. 1217, pp. 259–274. Springer, Heidelberg (1997)

5. Bernstein, A.J.: Analysis of programs for parallel processing. IEEE Trans.
Comp. EC-15(5), 757–762 (1966)

6. Bracho, F., Droste, M., Kuske, D.: Representations of computations in concurrent
automata by dependence orders. Theoretical Computer Science 174, 67–96 (1997)

7. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math. 6, 66–92 (1960)

8. Carton, O., Michel, M.: Unambiguous Büchi automata. Theoretical Computer Sci-
ence 297, 37–81 (2003)

9. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific, Singapore (1995)
10. Diekert, V., Métivier, Y.: Partial Commutation and Traces. In: Rozenberg, G.,

Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 457–534 (1997)
11. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. of

Math. 51(2), 161–166 (1950)
12. Droste, M., Gastin, P., Kuske, D.: Asynchronous cellular automata for pomsets.

Theoretical Computer Science 247, 1–38 (2000)
13. Droste, M., Kuske, D.: Automata with concurrency relations - a survey. In: Ad-

vances in Logic, Artificial Intelligence and Robotics, pp. 152–172. IOS Press, Am-
sterdam (2002)

14. Fanchon, J., Morin, R.: Regular Sets of Pomsets with Autoconcurrency. In: Brim,
L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421,
pp. 402–417. Springer, Heidelberg (2002)

15. Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-State High-Level MSCs:
Model-Checking and Realizability. J. of Comp. and System Sciences 72, 617–647
(2006)

16. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.S.:
A Theory of Regular MSC Languages. Information and Computation 202, 1–38
(2005)

17. Kuske, D.: Asynchronous cellular automata and asynchronous automata for pom-
sets. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp.
517–532. Springer, Heidelberg (1998)

18. Métivier, Y.: On Recognizable Subsets of Free Partially Commutative Monoids.
Theoretical Computer Science 58, 201–208 (1988)

19. Morin, R.: Semantics of Deterministic Shared-Memory Systems. In: van Breugel,
F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 36–51. Springer,
Heidelberg (2008)

20. Morin, R.: Unambiguous Shared-Memory Systems. International Journal of Foun-
dations of Computer Science 21(4), 665–685 (2010)

21. Ochmański, E.: Regular behaviour of concurrent systems. Bulletin of the
EATCS 27, 56–67 (1985)

22. Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, vol. 3, pp. 389–455 (1997)

23. Zielonka, W.: Notes on finite asynchronous automata. RAIRO, Theoretical Infor-
matics and Applications 21, 99–135 (1987)

On the CSP Dichotomy Conjecture

Andrei A. Bulatov

School of Computing Science, Simon Fraser University,
Burnaby, Canada

abulatov@cs.sfu.ca

Abstract. We report on the status of the CSP Dichotomy Conjecture and survey
recent results and approaches to this problem.

1 Introduction

The Constraint Satisfaction Problem (CSP) has proved to be a very convenient frame-
work that makes it possible to express a wide variety of both practical and theoretical
problems. In applications, problems from scheduling, design, computer vision can be
uniformly represented as a CSP, and then solved by a universal constraint solver. In the-
oretical areas, the CSP serves as a natural generalization of graph problems, it is used in
logic, and over the last decade its complexity has been a subject of intensive research,
including both, the decision and optimization versions.

In this paper we focus on one research problem related to the CSP, or more precisely,
its complexity. The Dichotomy Conjecture claims that the CSP parameterized by the set
of allowed constraints is either solvable in polynomial time or is NP-complete. Posed
by Feder and Vardi in 1993, in spite of significant progress made, it remains open for
nearly 20 years. By now it has grown into a beautiful research area that uses and unifies
tools from various branches of mathematics and computer science: graph theory, logic,
games, and algebra. We outline some of these connections, report on the current status
of the dichotomy conjecture, and discuss some ideas on possible future development.
We start off with two alternative definitions of the CSP and some important examples.
Then we discuss a logic characterization of the CSP, and why this problem is so in-
teresting from the point of view of possible dichotomy results. After that two types of
algorithms for the CSP will be explained along with logic formalism, Datalog, captur-
ing one of them. Next we outline the connection between the CSP and algebra, making
conjectures and results more precise. In particular, the exact scopes of applicability of
the two algorithms will be given. Finally we outline the two existing approaches to
combine the two algorithms. Much of the material covered can also be found in [10,11]

2 CSP, Homomorphisms, Logic

The notation we use is fairly standard. The set {1, . . . , n} will be denoted by [n]. For a
set A the set of all n-tuples of elements from A is denoted by An. Tuples are denoted
in boldface, say, a, and we use a[i] to refer to the ith entry of tuple a. If ϕ is a mapping
from set A to a set B, we write ϕ(a) to denote the n-tuple (ϕ(a[1]), . . . , ϕ(a[n]) from

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 331–344, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

332 A.A. Bulatov

Bn. An n-ary relation over A is any subset of An, and a set of relations over A is
called a constraint language. Constraint satisfaction problems we consider here are
parameterized by constraint languages. Although in most cases a constraint language
can be any, finite or infinite, sometimes we will need the assumption that a constraint
language is finite.

Definition 1. Let Γ be a constraint language over a set A. An instance of CSP(Γ) is a
pair (V, C) where V is a set of variables, and C is a set of constraints. Each constraint
is again a pair 〈s, R〉, where s is a tuple of variables from V (say, of length k), and R
is a k-ary relation from Γ .

A solution of (V, C) is given by a mapping ϕ : V → A such that ϕ(s) ∈ R for every
constraint 〈s, R〉 ∈ C. The goal in CSP(Γ) is, given an instance, decide whether or not
it has a solution.

The following examples of the CSP will frequently occur in the paper.

Example 1. (1) Let H = (W, E) be a (di)graph. In the H -COLORING problem, given
a (di)graph G, the goal is to decide whether or not there is an H-coloring of G, that
is, an assignment ϕ of vertices from W to vertices of G such that for every edge vw
of G the pair ϕ(v)ϕ(w) is an edge of H . The H -COLORING problem is equivalent to
CSP({E}). To see this we treat the set of edges E of H as a binary relation; and convert
a given input (di)graph G = (V, F) into a CSP-instance as follows: Let the variables be
the vertices of G, and for each vw ∈ F we introduce a constraint 〈(v, w), R〉.
(2) In the SATISFIABILITY problem the question is if a given CNF has a satisfying as-
signment. Every clause in a CNF has the form va1

1 ∨ . . . ∨ vak

k , where va denotes v
if a = 0 and ¬v if a = 1, and satisfied by any assignment of v1, . . . , vk except for
(a1, . . . , ak). The corresponding CSP can be defined as follows. For every n and every
n-tuple a from {0, 1}n, let Ra = {0, 1}n − {a} be an n-ary relation over {0, 1}. Then
SATISFIABILITY is equivalent to CSP(Γsat), where the constraint language Γsat is de-
fined to be {Ra | a ∈ {0, 1}n, n ∈ N}. Let Φ be a CNF and V its set of variables. The
CSP-instance IΦ has the same set V of variables, and for each clause va1

1 ∨ . . . ∨ vak

k

contains the constraint 〈(v1, . . . , vk), Ra〉 for a given by a[i] = ai, i ∈ [k].
(3) A linear equation over a finite field naturally represents a constraint on the allowed
values of variables it involves. To make the connection more formal assume that we
consider equations over GF(r) and an equation contains k variables. Then the set of as-
signments satisfying the equation is a coset of a k−1-dimensional subspace of GF(r)k .
Let Γlin(r) denote the set of all relations R over GF(r) such that R is is a coset of a k−1-
dimensional subspace of GF(r)k , and k is the arity of R. It is then straightforward that
the problem LINEAR EQUATIONS(r) of checking the consistency of a system of linear
equations over GF(r) is equivalent to CSP(Γlin(r)).

Feder and Vardi [16] observed that the CSP can also be defined as a problem about ho-
momorphisms. For this alternative definition of the CSP we need a few more definitions.
A collection of relational symbols σ = {R1, . . . , Rm} each with arity associated with
it is called a vocabulary. A relational structure A = (A, RA

1 , . . . , RA
m) with vocabulary

σ is a set A enhanced with an ri-ary relation RA
i for each Ri. The set A is called the

base set of A. Sometimes, when it does not lead to a confusion we omit the superscript

On the CSP Dichotomy Conjecture 333

A. A homomorphism of a relational structure A = (A, RA
1 , . . . , RA

m) to a relational
structure B = (B, RB

1 , . . . , RB
m) with the same vocabulary is a mapping ϕ : A → B

such that for any Ri and any a ∈ RA
i , the image, ϕ(a), belongs to RB

i .

Definition 2. Let A be a relational structure over vocabulary σ. In the problem CSP(A)
the question is: Given a relational structure B over the same vocabulary σ, decide if
there is a homomorphism from B to A.

As is easily seen for any relational structure A = (A, RA
1 , . . . , RA

m) the problem
CSP(A) is equivalent to the problem CSP(ΓA) where ΓA = {RA

1 , . . . , RA
m}. Indeed,

for any instance B of CSP(A) we construct an instance IB = (V, C) of CSP(ΓA)
by setting V = B (the base set of B) and including into C the constraint 〈a, RA

i 〉 for
each i ∈ [m] and ri-tuple a ∈ RB

i . For the reverse inversion, given a (finite) constraint
language Γ = {Q1, . . . , Qm} on a set A, create a vocabulary {R1, . . . , Rm}, set the
arity of Ri to be that of Qi. Then CSP(Γ) is equivalent to CSP(AΓ) where the base
set of AΓ is A and RAΓ

i = Qi. Observe that the reverse conversion does not fully
work because while a constraint language can be infinite, the set of relational symbols
in a vocabulary is finite. Although allowing (formally) relational structures to have infi-
nite vocabularies would fix this problem, some results we mention later depend on the
finiteness of a vocabulary.

Example 2. H -COLORING: For (di)graphs H and G every H-coloring of G is a homo-
morphism from G to H . So the H -COLORING problem is equivalent to CSP(H).
3-SAT: As noted above CSPs requiring infinite constraint languages such as SATIS-
FIABILITY cannot be represented in the homomorphic form. However, restricted ver-
sions of SATISFIABILITY can be represented this way, for example, 3-SAT, in which
all clauses of a given CNF contains exactly 3 literals. Then 3-SAT is equivalent to
CSP(A3-sat) where A3-sat = ({0, 1}, Ra1, . . . , Ra8) and a1, . . . ,a8 are the eight 3-
tuples on {0, 1}. Note that, since only the number of 0s in ai matters, the number of
relations can be reduced to 4.

LINEAR EQUATIONS(r): By the same reason LINEAR EQUATIONS(r) has to be trans-
formed before converting it into a CSP. Observe that any system of linear equations can
be transformed into an equivalent system each equation of which contains at most 3
variables (one may need to add extra variables). Therefore LINEAR EQUATIONS(r) is
polynomial time equivalent to CSP(A3-lin(r)) where the base set of A3-lin(r) is GF(r)
and the relations are the cosets of 2-dimensional subspaces of GF(r)3.

The homomorphic definition of the CSP allows us to make several simple but useful
observations. If there is a homomorphism from relational structure B to structure A,
we write B → A. Then CSP(A) will also denote the set {B | B → A}, that is the
set of yes-instances of the problem CSP(A). Relational structures A and B are said to
be homomorphically equivalent if A → B and B → A. If A,B are homomorphically
equivalent, then CSP(A) = CSP(B). A retraction of a relational structure A is a
homomorphism ϕ : A → A such that ϕ acts identically on every element of its image,
or, in other words, if ϕ(ϕ(a)) = ϕ(a) for a ∈ A. A structure is called a core if its only
retraction is the identity mapping. Any structure A contains an induced substructure
that is a core (take the substructure induced by a minimal image of a retraction), and

334 A.A. Bulatov

any two such core substructures are isomorhic. This unique, up to an isomorphism,
core substructure is called the core of A and denoted core(A). As is easily seen, A
and core(A) are homomorphically equivalent. Therefore in what follows we assume
relational structure to be a core every time we need it.

Observe that the class CSP(A) is closed under homomorphic preimages, that is, if
B ∈ CSP(A) and B′ → B then B′ ∈ CSP(A). With this observation one can easily
suggest examples of problems that are not representable in the form CSP(A) for any
A; for example, HAMILTONIAN PATH.

3 CSP vs. MMSNP, Dichotomy

The research direction we focus on in this paper concerns the complexity of the CSP.
The early results on the complexity of the CSP characterize problems solvable in poly-
nomial time and suggest that a CSP can be complete in a somewhat limited number of
complexity classes. We mention two of these results: The first one is Schaefer’s classi-
fication of boolean CSPs (or GENERALIZED SATISFIABILITY as he called it), that is,
problems CSP(Γ) or CSP(A) where Γ is a constraint language on {0, 1} and A is a 2-
element relational structure [33]. We give details of this result in Section 5. The second
one, the complexity classification of the H -COLORING problem by Hell and Nesetril
[19]. In both cases every problem considered turned out to be either polynomial time
solvable, or NP-complete. Recall, however, that by [28] if P �=NP, there are infinitely
many different complexity classes between P and NP.

These two results motivated Feder and Vardi [15,16] to pose a conjecture that is now
known as the Dichotomy Conjecture.

Conjecture 1 (Dichotomy Conjecture). For any relational structure A (for any con-
straint language Γ) the problem CSP(A) (the problem CSP(Γ)) is either polynomial
time solvable or NP-complete.

While at that point the Dichotomy Conjecture was a long shot and no particular property
that distinguishes the two cases were suggested, later there have been obtained many
results that clarifies the boundary between the two cases and witness in favor of the
conjecture. We survey many of these results in subsequent sections.

One additional research problem motivated by the Dichotomy Conjecture is the so-
called Meta-Problem: Given a relational structure A (a finite constraint language Γ),
decide if CSP(A) is polynomial time solvable. In both cases considered in [33,19] the
Meta-Problem is polynomial time solvable.

One of the most intriguing results of [16] suggests that the CSP is in some sense
the largest class of problems that can enjoy the dichotomy type properties. Feder and
Vardi introduced a logically defined class MMSNP in an attempt to capture the CSP
through syntax of logic formulas. Fagin’s Theorem [14] states that the class NP con-
sists of problems that can be expressed by existential second-order formulas. In a sim-
ilar way, the class SNP (Strict NP) [25] consists of problems that can be described by
existential second-order formulas with universal first-order part, that is, by formulas
∃S′∀x Φ(x,S,S′) where Φ is a quantifier free first-order formula that contains predi-
cates from S,S′ applied to variables from x. The class of formulas representing CSPs

On the CSP Dichotomy Conjecture 335

can be narrowed down even more. In a monadic SNP formula the predicates from S′

must be unary; in a monotone SNP formula the relations from S have the same polarity
in Φ; that is, for any R ∈ S the polarity of every its occurrence in Φ is either positive
(if it is contained in an even number of nested subformulas with negation applied to
them), or negative (if this number is odd). Finally, an SNP formula is said to be without
inequality if the equality, as well as its negation, inequality, relation is not used in it. The
class of problems that can be expressed by an SNP formula that is monotone, monadic,
and without inequality is denoted by MMSNP.

Theorem 1 ([16,26]). Every CSP belongs to MMSNP, and every problem from
MMSNP is polynomial time equivalent to a CSP.

That CSP⊆MMSNP is easily verifiable. Feder and Vardi [16] showed that every prob-
lem from MMSNP is equivalent to a CSP up to a polynomial time randomized reduc-
tion. Later Kun [26] derandomized this reduction.

If one of these three conditions on the class SNP is omitted, the resulting class of
problems is polynomial time equivalent to the entire class NP, and therefore Ladner’s
result [28] refutes the possibility of a dichotomy for such classes.

Theorem 2 ([16]). The following classes are polynomial time equivalent to NP: mono-
tone SNP without inequality, monadic SNP without inequality, monotone monadic SNP.

The class MMSNP admits several alternative characterizations such as lifts and shadows
[27], and forbidden patterns [31].

4 Algorithmic Approaches

It would be natural to expect a wide variety of algorithms solving the CSP in those
cases in which it can be solved in polynomial time. However, surprisingly, up to now
only two types of such algorithms are known, and for each type there is ’the most
general’ algorithm, which means that basically only two CSP algorithms exist.

4.1 Propagation Algorithms

The first type can be described as propagation algorithms. We describe one such algo-
rithm, applicable whenever any other propagation algorithm solves the problem. Let Γ
be a constraint language over a set A and I = (V, C) an instance of CSP(Γ). For an
integer k ≥ 1 the k-consistency algorithm [18] works as follows:

- For every k-element set W ⊆ V introduce a new constraint 〈W, RW 〉 where RW

consists of all partial solutions of I, that is, solutions of the problem IW = (W, CW)
such that CW ⊆ C and 〈s, R〉 ∈ C belongs to CW if and only if every entry of s is in W .
Let I ′ be the resulting problem.

- Repeat the following step as long as possible: If there is a k-element set W ⊆ V , a
variable v ∈ V − W , and a tuple a ∈ RW such that a cannot be extended to a solution
of I ′

W∪{v}, remove a from RW and update I ′.

336 A.A. Bulatov

It is not hard to see [18] that if the k-consistency returns an instance with empty rela-
tions RW then I has no solution. The converse is however not true, see Example 3(4)
below. We say that the k-consistency algorithms solves CSP(Γ) if every instance I
of CSP(Γ), on which the algorithm returns non-empty constraints, has a solution. The
minimal k such that the k-consistency algorithm solves CSP(Γ) is called the width of
the problem. The problem CSP(Γ) is said to be of bounded width if it has width k for
some k.

Example 3. (1) The 2-SAT problem has bounded width, more precisely, width 2.

(2) The H -COLORING problem has width 2 when graph H is bipartite, and NP-complete
otherwise.

(3) The HORN-SAT is the SATISFIABILITY problem restricted to Horn clauses, i.e.
clauses of the form x1 ∧ . . . ∧ xk → y. Let Γk-Horn be the constraint language con-
sisting of relations expressible by a Horn clause with at most k premises. The problem
k-HORN-SAT equivalent to CSP(Γk-Horn) and allowing only clauses of restricted arity
has width k.

(4) LINEAR EQUATIONS provides an archetypical example of a CSP that does not
have bounded width. Indeed, for any k consider the system of equations given by
x21 + x12 + xk+21 + x1k+2 = 1 and xi+1j + xij+1 + xi−1j + xij−1 = 0 for any
other i, j ∈ [k + 2]. While this system is inconsistent, the k-consistency algorithm
returns an instance with non-empty constraints.

4.2 Gaussian Elimination

The simplest algorithm of the second type is known from basic linear algebra — Gaus-
sian elimination. While propagation algorithms cannot solve LINEAR EQUATIONS, it
is solvable by Gaussian elimination. A similar algorithm solving group constraints, de-
fined in terms of finite groups, was suggested in [16]. In Section 6 we consider further
generalizations of the Gaussian elimination algorithm.

4.3 Logic Characterizations

The two types of algorithms were first identified in [16]. In the same paper Feder and
Vardi suggested a logic framework for problems of bounded width — Datalog. Data-
log is a language of logic programming that can be applied to relational structures of
suitable vocabulary. It uses two types of predicate symbols. Symbols of the first type,
Extensional Database Predicates or EDB are the relations of the input structure and do
not change in the course of the execution of the program. Symbols of the second type,
Intensional Database Predicates or IDB, do not belong to the vocabulary of the input
structure and change until a fixed point is reached. The semantics of Datalog is best
illustrated by the following example program consisting of three rules that works on
graphs:

oddpath(x, y) : − edge(x, y)
oddpath(x, y) : − oddpath(x, z), edge(z, t), edge(t, y)
oddcycle : − oddpath(x, x)

On the CSP Dichotomy Conjecture 337

The predicate edge is an EDB and edge(v, w) indicates that there is an edge between
v and w in the input graph. The first rule states that IDB oddpath(v, w) is true whenever
vw is an edge. Then the second rule amounts to say that whenever oddpath(v, w) is
true and there is a path of length two from w to u, then oddpath(v, u) is also true. Thus,
oddpath has to be true on all pairs of vertices connected with a path of odd length.
Finally, the second IDB, oddcycle is true if and only if the input graph contains an odd
cycle. In this sense the Datalog program decides whether or not a graph is bipartite, or,
equivalently, solves the problem CSP(H), where H is a bipartite graph.

More precisely, let A be a relational structure and P a Datalog program with a desig-
nated null-ary IDB Q. Then P solves the problem CSP(A) if, for any structure B with
the same vocabulary as A, the program P applied to B ends up with Q true if and only
if B �∈ CSP(A). The left side of a Datalog rule is called its head, and the right side of
the rule is called the body.

Theorem 3 ([24]). For a relational structure A the problem CSP(A) has width k if
and only if there is a Datalog program P that solves CSP(A) such that each rule of P
contains at most k + 1 variable, and the head of each rule contains at most k variable.

In an attempt to characterize relational structures that give rise to problems of bounded
width [16] introduces the property of ability to count that in a nutshell means that
LINEAR EQUATIONS(2) can be simulated via CSP(A). It proves that if a structure
A has the ability to count then CSP(A) does not have bounded width, and conjectures
that the reverse is also true.

Gaussian elimination type algorithms turned out to be more difficult to formalize. So
far no logic condition is known that would capture, say, LINEAR EQUATIONS(2). On
the contrary, [1] shows that this problem eludes even very powerful logic languages.

Unfortunately, logic characterizations of the CSP and problems of bounded width do
not allow one to formulate a precise criterion distinguishing polynomial time solvable
CSPs from NP-complete ones, nor to give a concise and verifiable characterization of
problems of bounded width.

5 Algebraic Background

5.1 Polymorphisms

In [23] Jeavons et al. observed that certain invariance properties of constraints com-
pletely characterize the complexity of the CSP. Let R be a (say, n-ary) relation over
a set A. An operation f : Am → A is called an polymorphism of R if for any
a1, . . . ,am ∈ R the tuple f(a1, . . . ,am) obtained by component-wise application of
f also belongs to R. Operation f is a polymorphism of a constraint language Γ over A
(or a relational structure A = (A, R1, . . . , Rk)) if it is a polymorphism of each relation
from Γ (each relation Ri). The set of all polymorphisms of Γ and A is denoted by
Pol(Γ), Pol(A), respectively. For a set F of operations on A by Inv(F) we denote the
set of relations on A that are invariant under each f ∈ F , that is, f is a polymorphism
of all relations in Inv(F).

338 A.A. Bulatov

Theorem 4 ([23]). Let Γ1, Γ2 be constraint languages over the same set. If Pol(Γ1) ⊆
Pol(Γ2) then CSP(Γ2) is polynomial time reducible to CSP(Γ1)1.

Theorem 4 made it possible to state some of the existing complexity results in a more
concise form, and also to discover new more general classes of CSPs solvable in poly-
nomial time or having bounded width. Some of these results are summarized in the
following example.

Example 4 ([23,22,8]). (1) A binary operation f on a set A is said to be semilattice
if for any x, y ∈ A the following equations hold: f(x, x) = x, f(x, y) = f(y, x),
f(f(x, y), z) = f(x, f(y, z)). If a relational structure A has a semilattice polymor-
phism then CSP(A) has bounded width. (Note that this property may not be true for
infinite constraint languages. Although in this case a different notion of width works,
see, e.g. [12].)

(2) A k-ary operation g on A is called a near-unanimity operation, or NU if
g(y, x, . . . , x) = g(x, y, x, . . . , x) = . . . = g(x, . . . , x, y) = x for any x, y ∈ A.
A ternary NU is also referred to as a majority operation. If a relational structure A has
an NU polymorphism then CSP(A) has bounded width.

(3) A ternary operation h on A is called Mal’tsev if h(x, y, y) = h(y, y, x) = x for
any x, y ∈ A. If a relational structure A has a Mal’tsev polymorphism then CSP(A)
is solvable in polynomial time, although does not necessarily have bounded width. The
structure A3-lin(r) encoding LINEAR EQUATIONS(r) has the Mal’tsev polymorphism
x − y + z where + and − are the operations of GF(r).
(4) A structure A is a core if and only if every its unary polymorphism is a bijective
mapping. If A is a core and every its polymorphism f is such that f(x1, . . . , xn) = xi

for some i and all x1, . . . , xn ∈ A then CSP(A) is NP-complete.

(5) Schaefer’s Theorem [33] can be stated in terms of polymorphisms. Let A be a 2-
element relational structure (we assume its base set to be {0, 1}) which is a core. The
problem CSP(A) is solvable in polynomial time if and only if one of the following
operations is a polymorphism of A: semilattice operations of conjunction and disjunc-
tion, the majority operation on {0, 1} (there is only one such operation), or a Mal’tsev
operation x− y + z where + and − are modulo 2. Otherwise CSP(A) is NP-complete.

5.2 Algebras

A (universal) algebra is a set equipped with a collection of operations on it. It is con-
venient to represent an algebra as a pair A = (A, F) where A is the base set or the
universe of A and F is the set (finite or infinite) of its basic operations; operations
from Pol(Inv(F)) are called term operations of A. Any relational structure A (with
base set A) can be paired up with the algebra Alg(A) = (A, Pol(A)). On the other
hand, an algebra A = (A, F), can be associated with a class of problems CSP(A)
where A = (A, R1, . . . , Rk) is such that R1, . . . , Rk ∈ Inv(F), denoted by CSP(A).

1 Using the result of [32] that the ST-CONNECTIVITY problem is in L the reduction can be made
log space. Later Larose and Tesson [29] proved that it can even be made AC0.

On the CSP Dichotomy Conjecture 339

If all problems from CSP(A) are solvable in polynomial time A is called tractable, if
CSP(A) contains an NP-complete problem, A is called NP-complete.

An algebra A = (A, F) is said to be idempotent if f(x, . . . , x) = x for any f ∈ F
and any x ∈ A. Any algebra can be made idempotent, Id(A) denotes the idempotent
reduct of A, the algebra (A, F ′) where F ′ is the set of all idempotent term operations
of A. If a relational structure A is a core then Alg(A) is tractable (NP-complete) if and
only if Id(Alg(A)) is tractable (NP-complete) [9]. Thus, we may assume all algebras
we deal with to be idempotent.

Relations from Inv(F) can also be viewed in the algebraic way. The kth power of A
is the algebra Ak such that the universe of Ak is Ak, and for each basic operation f ∈ F
algebra Ak has the basic operation fk that acts on elements of Ak , that is, k-tuples over
A, component-wise as f . If B ⊆ A is such that f(x1, . . . , xn) ∈ B for any f ∈ F and
x1, . . . , xn ∈ B the algebra B = (B, FB), where operations in FB are restrictions of
those from F onto B, is called a subalgebra of A. As is easily seen, a k-ary relation
from Inv(F) is a subalgebra of Ak.

In the 1980’s Hobby and McKenzie developed tame congruence theory that studies
the local structure of algebras [20]. They discovered that the local structure of universal
algebras is surprisingly well behaved and can be classified into just five types. Each
type is associated with a certain basic algebra, and if an algebra admits a type, it means
that its local structure resembles that of the corresponding basic algebra. The five basic
algebras and corresponding types are:

1. A unary algebra whose basic operations are all permutations (unary type);
2. A one-dimensional vector space over some finite field (affine type);
3. A 2-element boolean algebra whose basic operations include conjunction, disjunc-

tion, and negation (boolean type);
4. A 2-element lattice whose basic operations include conjunction and disjunction

(lattice type);
5. A 2-element semilattice whose basic operations include a semilattice operation

(semilattice type).

Omitting or admitting types is strongly related to the complexity of the CSP.

Theorem 5 ([9]). If a relational structure A is such that Alg(A) is idempotent and
admits the unary type then CSP(A) is NP-complete.

Theorem 5 allows one to make the Dichotomy Conjecture more precise.

Conjecture 2. If a relational structure A is such that Alg(A) is idempotent, then
CSP(A) is solvable in polynomial time if and only if Alg(A) does not admit the unary
type. Otherwise it is NP-complete.

If Conjecture 2 is true, the Meta-Problem (that is, given a relational structure A or an al-
gebra A, deciding the complexity of CSP(A), CSP(A)) is solvable in polynomial time
if an algebra is given, or the size of the base set of a relational structure is bounded [17].
In the remaining case of an arbitrary relational structure its complexity is unknown.

340 A.A. Bulatov

6 Algebras and Algorithms

6.1 Datalog and Bounded Width

The property of a relational structure to have ability to count can be expressed in al-
gebraic terms. Larose et al. [30] proved that a relational structure A does not have the
ability to count (and therefore can have bounded width) if and only if Alg(A) omits the
unary and affine types. Finally, Barto and Kozik, and Bulatov independently proved this
algebraic characterization of bounded width.

Theorem 6 ([3,7]). For a relational structure A the problem CSP(A) has bounded
width if and only if Alg(A) omits the unary and affine types.

The Meta-Problem in this case is solvable in polynomial time.

6.2 Gaussian Elimination and Few Subpowers

Algebraic techniques make it possible to generalize the Gaussian elimination algorithm.
The algorithm from [8] solving CSP(A) for a relational structure A with a Mal’tsev
polymorphism can be viewed as a generalization of Gaussian elimination in the fol-
lowing sense. Similar to the output of Gaussian elimination it constructs some sort of a
basis or a compact representation of the set of all solutions of a CSP. To generate such
a compact representation the algorithm uses the property of rectangularity of relations
with a Mal’tsev polymorphism. A (say, n-ary) relation R over a set A is said to be rect-
angular if for any a,b, c ∈ R such that a[i] = b[i] for i ∈ [n − 1] and b[n] = c[n] the
tuple d given by d[i] = c[i] for i ∈ [n − 1] and d[n] = a[n] also belongs to R.

Due to rectangularity if R has a Mal’tsev polymorphism, it admits a simple descrip-
tion. Let Sig(R) be a set of triples (i, a, b), i ∈ [n], a, b ∈ A, given by: (i, a, b) ∈ Sig(R)
if and only if there are tuples a,b ∈ R such that a[j] = b[j] for j ∈ [i−1], and a[i] = a,
b[i] = b. Such a pair of tuples is said to witness (i, a, b). Rectangularity implies that
if (i, a, b) ∈ Sig(R) then for any a ∈ R with a[i] = a there is b ∈ R such that a,b
witness (i, a, b). A compact representation of R is any set of tuples Q from R such that
for any (i, a, b) ∈ Sig(R) it contains a pair of tuples witnessing the triple.

The relation R can be reconstructed from its compact representation Q by means of a
Mal’tsev polymorphism h. Indeed, suppose a ∈ R and we have managed to reconstruct
a tuple b such that b[j] = a[j] for j ∈ [i − 1]. Then a,b witness that (i,a[i],b[i]) ∈
Sig(R), and therefore there are c,d ∈ Q that witness this. Using Mal’tsev identities we
see that the tuple e = h(a, c,d) is such that e[j] = a[j] for j ∈ [i].

Suppose Γ is a constraint language over A with a Mal’tsev polymorphism. Given an
instance (V, C) of CSP(Γ) the algorithm considers the set of all solutions as a single
relation. It starts with a compact representation of R0 = A|V |, and then adds constraints
from C one by one, generating relations R1, . . . , R|C| such that Ri consists of the tuples
(assignments to variables from V) that satisfy the first i constraints. Every relation Ri is
given by its compact representation, which is used to compute a compact representation
of Ri+1.

Dalmau [13] generalized this algorithm so that it is applicable to constraint languages
with a generalized majority minority (GMM) polymorphism. A GMM operation some-
times behaves like a Mal’tsev operation, and sometimes as an NU operation.

On the CSP Dichotomy Conjecture 341

It is thought that the property of relations to have a compact representation, where
compactness is understood as having size polynomial in the arity of the relation, is
the right generalization of linear algebra problems where Gaussian elimination can be
used. Let A = (A, F) be an algebra. It is said to be an algebra with few subpowers if
every relation over A invariant under F admits a compact representation [21]. The term
‘few subpowers’ comes from the observation that every relation invariant under F is a
subalgebra of a direct power of A, and if the size of compact representation is bounded
by a polynomial p(n) then at most 2p(n) n-ary relations can be represented, while the
total number of such relations can be as large as 2|A|n .

Algebras with few subpowers are completely characterized by Idziak et al. [21].

Theorem 7 ([21]). An algebra A is an algebra with few subpowers if and only if for
some k it has a k-edge term operation f , that is a k + 1-ary operation satisfying for
any x, y ∈ A the following identities:

f(x, x, y, y, y, . . . , y, y) = y,

f(x, y, x, y, y, . . . , y, y) = y,

f(y, y, y, x, y, . . . , y, y) = y,

f(y, y, y, y, x, . . . , y, y) = y,

· · ·
f(y, y, y, y, y, . . . , y, x) = y.

A minor generalization of the algorithm from [13] solves CSP(Γ) in which Γ consists
of relations admitting compact representation.

The complexity of the Meta-Problem for algebras with few subpowers (deciding
whether or no a given relational structure gives rise to an algebra with few subpowers)
is unknown.

7 Combining the Two Approaches

As we discussed in Section 6, the two algorithmic approaches to the CSP are well un-
derstood. However, for a more general CSP one is likely to need a combination of them.
In this section we consider some ideas and results on possible combined algorithms.

The two general dichotomy results that show how the approaches interact are the
dichotomy theorem for 3-element relational structures [6] and that for conservative
structures [4], see also [2]. Recall that a relational structure A is said to be conser-
vative if for any its polymorphism f (say, n-ary) and any x1, . . . , xn ∈ A we have
f(x1, . . . , xn) ∈ {x1, . . . , xn}. Conservative structures correspond to so-called List
Homomorphism problems, where one can specify for each variable a set of its allowed
values. In both cases Conjecture 2 is confirmed.

We give some details on the approach taken in [4,2] and then discuss how it can be
generalized. We proceed in several steps. First, given a relational structure A we show
how to isolate the parts of A that look similar to those having few subpowers, and there-
fore problems over such parts can hopefully be solved by a GMM-type algorithm. Then,
given an instance I of CSP(A) we show how after applying a propagation algorithm I

342 A.A. Bulatov

can be split into subproblems that satisfy three conditions: (1) Each of the subproblems
is a problem over some ‘few subpowers’ parts, (2) if all the subproblems have a solution
then I has a solution, and (3) if one of the subproblems does not have a solution, I can
be simplified by reducing the sets of possible values of some variables.

Since A is conservative, every its 2-element subset B is a subalgebra. As we assume
that CSP(A) is solvable in polynomial time, there must be a polymorphism that on B
is one of the operations listed in Schaefer’s Theorem (Example 4(5)). More precisely,
there are polymorphisms f, g, h of A such that all pairs ab of elements of A (we call
them edges) can be divided up into three categories: semilattice edges, on which f is
a semilattice operation; majority edges, which are not semilattice, but g is a majority
operation on each of them; affine edges, which are not of the previous types, and h is
a Mal’tsev operation on each of them. Then A is treated as a complete graph whose
edges are colored with the three colors. Note that semilattice edges are directed since
elements are not symmetrical with respect to a semilattice operation. Now the ‘few
subpowers’ parts of A are defined to be the minimal subsets D ⊆ A such that there
are no semilattice or affine edge ab with a ∈ D, b �∈ D. Such subsets are called as-
components.

In [2] the role of as-components is played by minimal absorbing subuniverses. Let
f be an n-ary term operation of A = Alg(A). A set D ⊆ A is called an absorbing
subuniverse with respect to f , if D is a subalgebra of A and for any k ∈ [n] and any
x1, . . . , xn ∈ A such that xi ∈ D for all i �= k, the element f(x1, . . . , xn) belongs
to D. If D is a proper subset of A, the absorbing subuniverse is called proper. The
absorbing subuniverse D is called minimal if subalgebra D = (D, Pol(A)D) does not
have proper absorbing subuniverses with respect to any its term operation.

Let I = (V, C) be an instance of CSP(B), and the 2-consistency algorithm being
applied to I does not change it. Let Sv, Svw denote the set of possible values of v, and
the set of pairs of values that can be taken by variables v, w ∈ V simultaneously. It can
be proved that there are as-components Dv ⊆ Sv for each v ∈ V such that Svw∩(Dv×
Dw) �= ∅ for any v, w ∈ V . Two variables are called connected if for any (a, b) ∈ Svw

we have a ∈ Dv if and only if b ∈ Dw. The connectedness of variables defines a
partition of V into classes V1, . . . , Vk. The problem I can now be split into subproblems
I1, . . . , Ik as follows: Set Ij = (Vj , Cj), where for every C = 〈s, R〉, s = (v1, . . . , vn),
the set Cj includes the constraint Cj = 〈sj , Rj〉 such that sj = (vi1 , . . . , vi�

) consists
of all elements of s belonging to Vj , and Rj = {(a[i1], . . . ,a[i�]) | a ∈ R}.

To solve the problems Ij it is either possible to use the GMM algorithm straightfor-
wardly, or Ij can be further reduced using a different approach and then processed by
the GMM algorithm. If one of the Ij has no solution then the problem I can be simpli-
fied by removing as-components Dv, v ∈ Vj , from sets Sv and starting the procedure
again. If all the Ij have a solution, they combine to produce a solution of I.

Proposition 1. If every Ij has a solution ϕj , I has a solution ϕ such that ϕ(v) = ϕj(v)
whenever v ∈ Vj .

Switching to minimal absorbing subuniverses does not change the overall approach,
only solving the problems Ij is significantly simpler.

On the CSP Dichotomy Conjecture 343

Some of these steps remain working in the case of general relational structures. Ab-
sorbing subuniverses do not depend whether or not the structure is conservative. It is
shown in [5] that an edge-colored graph can be defined for arbitrary relational structure
as well. Splitting a problem can also be done in a similar way. However, if some Ij has
no solution, the problem cannot be simplified in the same straightforward way. Also
Proposition 1 is not true anymore. We believe that overcoming these two difficulties
either using colored graphs or absorbing subuniverses will eventually lead to settling
the Dichotomy Conjecture.

References

1. Atserias, A., Bulatov, A., Dawar, A.: Affine systems of equations and counting infinitary
logic. In: ICALP, pp. 558–570 (2007)

2. Barto, L.: The dichotomy for conservative constraint satisfaction problems revisited (2011)
3. Barto, L., Kozik, M.: Constraint satisfaction problems of bounded width. In: FOCS, pp. 595–

603 (2009)
4. Bulatov, A.: Tractable conservative constraint satisfaction problems. In: Proceedings of the

18th Annual IEEE Simposium on Logic in Computer Science, Ottawa, Canada, pp. 321–330.
IEEE Computer Society, Los Alamitos (2003)

5. Bulatov, A.: A graph of a relational structure and constraint satisfaction problems. LICS, pp.
448–457 (2004)

6. Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J.
ACM 53(1), 66–120 (2006)

7. Bulatov, A.: Bounded relational width (2009)
8. Bulatov, A., Dalmau, V.: A simple algorithm for Mal’tsev constraints. SIAM J. Com-

put. 36(1), 16–27 (2006)
9. Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints using finite

algebras. SIAM J. Comput. 34(3), 720–742 (2005)
10. Bulatov, A., Krokhin, A., Larose, B.: Dualities for constraint satisfaction problems. In: Com-

plexity of Constraints, pp. 93–124 (2008)
11. Bulatov, A., Valeriote, M.: Recent results on the algebraic approach to the CSP. In: Complex-

ity of Constraints, pp. 68–92 (2008)
12. Dalmau, V., Pearson, J.: Set functions and width 1 problems. In: Jaffar, J. (ed.) CP 1999.

LNCS, vol. 1713, pp. 159–173. Springer, Heidelberg (1999)
13. Dalmau, V.: Generalized majority-minority operations are tractable. Logical Methods in

Computer Science 11(1) (2005) (electronic)
14. Fagin, R.: Generalized first order spectra, and polynomial time recognizable sets. In: Com-

plexity of Computations (1974)
15. Feder, T., Vardi, M.Y.: Monotone monadic SNP and constraint satisfaction. In: Proceedings

of 25th ACM Symposium on the Theory of Computing (STOC), pp. 612–622 (1993)
16. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint

satisfaction: A study through datalog and group theory. SIAM Journal of Computing 28, 57–
104 (1998)

17. Freese, R., Valeriote, M.: On the complexity of some maltsev conditions. IJAC 19(1), 41–77
(2009)

18. Freuder, E.C.: Synthesizing constraint expressions. Communications of the ACM 21, 958–
966 (1978)

19. Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combinatorial Theory,
Ser.B 48, 92–110 (1990)

344 A.A. Bulatov

20. Hobby, D., McKenzie, R.N.: The Structure of Finite Algebras. Contemporary Mathematics,
vol. 76. American Mathematical Society, Providence (1988)

21. Idziak, P., Markovic, P., McKenzie, R., Valeriote, M., Willard, R.: Tractability and learnabil-
ity arising from algebras with few subpowers. SIAM J. Comput. 39(7), 3023–3037 (2010)

22. Jeavons, P., Cohen, D., Cooper, M.: Constraints, consistency and closure. Artificial Intelli-
gence 101(1-2), 251–265 (1998)

23. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the
ACM 44, 527–548 (1997)

24. Kolaitis, P., Vardi, M.: A game-theoretic approach to constraint satisfaction. In: Proceedings
of the 17th National (US) Conference on Artificial Intelligence, AAAI 2000, pp. 175–181
(2000)

25. Kolaitis, P., Vardi, M.: The decision problem for the probabilities of higher-order properties.
In: STOC, pp. 425–435 (1987)

26. Kun, G.: Constraints, MMSNP and expander relational structures. Mathematics,
abs/0706.1701 (2007)

27. Kun, G., Nešetřil, J.: NP by means of lifts and shadows. In: Kučera, L., Kučera, A. (eds.)
MFCS 2007. LNCS, vol. 4708, pp. 171–181. Springer, Heidelberg (2007)

28. Ladner, R.: On the structure of polynomial time reducibility. Journal of the ACM 22, 155–
171 (1975)

29. Larose, B., Tesson, P.: Universal algebra and hardness results for constraint satisfaction
problems. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 267–278. Springer, Heidelberg (2007)

30. Larose, B., Valeriote, M., Zádori, L.: Omitting types, bounded width and the ability to count.
IJAC 19(5), 647–668 (2009)

31. Madelaine, F., Stewart, I.: Constraint satisfaction, logic and forbidden patterns. SIAM J.
Comput. 37(1), 132–163 (2007)

32. Reingold, O.: Undirected st-connectivity in log-space. In: STOC, pp. 376–385 (2005)
33. Schaefer, T.: The complexity of satisfiability problems. In: Proceedings of the 10th ACM

Symposium on Theory of Computing (STOC 1978), pp. 216–226 (1978)

LR(0) Conjunctive Grammars and

Deterministic Synchronized
Alternating Pushdown Automata

Tamar Aizikowitz and Michael Kaminski

Department of Computer Science,
Technion – Israel Institute of Technology,

Haifa 32000, Israel

Abstract. In this paper we introduce a sub-family of synchronized al-
ternating pushdown automata, Deterministic Synchronized Alternating
Pushdown Automata, and a sub-family of conjunctive grammars, LR(0)
Conjunctive Grammars. We prove that deterministic SAPDA and LR(0)
conjunctive grammars have the same recognition/generation power, anal-
ogously to the classical equivalence between acceptance by empty stack
of deterministic PDA and LR(0) grammars. These models form the the-
oretical basis for efficient, linear, parsing of a rich sub-family of conjunc-
tive languages, which properly includes all the boolean combinations of
context-free LR(0) languages.

1 Introduction

Context-free languages lay at the very foundations of Computer Science, proving
to be one of the most appealing language classes for practical applications. On
the one hand, they are quite expressive, covering such syntactic constructs as
necessary, e.g., for mathematical expressions. On the other hand, they are poly-
nomially parsable, making them practical for real world applications. However,
research in certain fields, e.g., Computational Linguistics [4,8], has raised a need
for computational models which extend context-free languages.

Conjunctive Grammars (CG) are an example of such a model. Introduced by
Okhotin in [9], CG are a generalization of context-free grammars which allow
explicit conjunction operations in rules, thereby adding the power of intersec-
tion. CG were shown by Okhotin to accept all finite intersections of context-free
languages, as well as some additional languages. Okhotin proved the languages
generated by these grammars to be polynomially parsable [9,12,13], making the
model practical from a computational standpoint, and therefore, of interest for
applications in various fields such as, e.g., programming languages.

Alternating automata models were first introduced by Chandra, Kozen and
Stockmeyer in [3]. Alternating Pushdown Automata were further explored in
[7], and shown to accept exactly the exponential time languages. As such, they
are too strong a model for Conjunctive Grammars. Synchronized Alternating

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 345–358, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

346 T. Aizikowitz and M. Kaminski

Pushdown Automata (SAPDA), introduced in [1], are a weakened version of
Alternating Pushdown Automata, which, in particular, accept intersections of
context-free languages. In [1], SAPDA were proven to be equivalent1 to CG.

Deterministic context-free languages are a sub-family of context-free lan-
guages which can be accepted by a deterministic PDA. In [6], Knuth introduced
the notion of LR(k) grammars, and proved their equivalence to deterministic
PDA. Through this equivalence, he developed a linear time LR parsing algo-
rithm for deterministic context-free languages, which quickly became the basis
of modern-day compilation theory. Furthermore, Knuth proved that LR(0) lan-
guages (those which can be parsed with no lookahead) are equivalent to deter-
ministic PDA accepting by empty stack.

In [11], Okhotin presented an extension of Tomita’s Generalized LR parsing
algorithm [14] for CG. The algorithm utilizes non-deterministic LR parsing, and
works for all conjunctive grammars in polynomial time. When applied determin-
istic context-free languages, the run-time is linear.

In this paper we introduce a sub-family of SAPDA, Deterministic SAPDA
(DSAPDA), and a sub-family of CG, LR(0) Conjunctive Grammars. We prove
these sub-families are equivalent, analogously to the context-free case. Further-
more, we present a sophisticated and efficient implementation of DSAPDA,
which forms the basis of a deterministic linear time parsing algorithm for LR(0)
conjunctive languages. This class of languages properly contains the context-free
LR(0) languages, thus expanding upon previous results.

2 Preliminaries

In this section, we recall the definitions of CG from [9], and SAPDA, from [1].

2.1 Conjunctive Grammars

Definition 1. A Conjunctive Grammar is a tuple G = (V, Σ, P, S), where V, Σ
are disjoint finite sets of non-terminal and terminal symbols, S ∈ V is the desig-
nated start symbol, and P is a finite set of rules of the form A → (α1 & · · · & αn)
s.t. A ∈ V and αi ∈ (V ∪ Σ)∗, i = 1, . . . , n. If n = 1, we just write A → α1.

Definition 2. Conjunctive formulas over V ∪Σ∪{(,), &} are defined as follows.

– All symbols of V ∪ Σ, as well as ε, are conjunctive formulas.
– If A and B are formulas, then AB is a conjunctive formula.
– If A1, . . . ,An are formulas, then (A1 & · · · & An) is a conjunctive formula.

We call each Ai, i = 1, . . . , n, a conjunct of A.2

Definition 3. For a CG G, the relation of immediate derivability, ⇒G, on the
set of conjunctive formulas is defined as follows.

1 We call two models equivalent if they accept/generate the same class of languages.
2 Note that this definition is different from Okhotin’s definition in [9].

LR(0) CG and Deterministic SAPDA 347

1. s1 A s2 ⇒G s1(α1 & · · · & αn)s2, for A → (α1 & · · · & αn) ∈ P , and
2. s1 (w& · · · &w) s2 ⇒G s1 w s2, for w ∈ Σ∗,

where s1, s2 ∈ (V ∪Σ ∪ {(,), &})∗. We refer to 1 and 2 as production and con-
traction rules, respectively. As usual, ⇒∗

G is the reflexive and transitive closure
of ⇒G, and the language of G is L(G) = {w ∈ Σ∗ | S ⇒∗

G w}.
Example 1. ([9, Example 1]) The following CG G generates the non-context-
free multiple agreement language {anbncn|n ≥ 0}. G = (V, Σ, P, S), where V =
{S, A, B, C, D}, Σ = {a, b, c}, and P consists of the following rules:

S → (A & C) ; A → aA | B ; C → Cc | D ; B → bBc | ε ; D → aDb | ε

L(A) = {ambncn|m, n ≥ 0}, and L(C) = {ambmcn|m, n ≥ 0}. Therefore,
L(G) = L(A) ∩ L(C) = {anbncn|n ≥ 0}. For example, abc can be derived by

S ⇒ (A & C) ⇒ (aA & C) ⇒ (aB & C) ⇒ (abBc & C) ⇒ (abc & C)
⇒ (abc & Cc) ⇒ (abc & Dc) ⇒ (abc & aDbc) ⇒ (abc & abc) ⇒ abc .

2.2 Synchronized Alternating Pushdown Automata

Introduced in [1], SAPDA extend standard PDA by adding the power of intersec-
tion. In an SAPDA, transitions are made to a conjunction of states. The model
is non-deterministic, i.e., several conjunctions may be possible from a given con-
figuration. If all conjunctions are of one state, the automaton is a standard PDA.

The stack memory of an SAPDA is a tree. Each leaf has a processing head
which reads the input and writes to its branch independently. When a conjunc-
tive transition is applied, the stack branch splits into multiple branches, one for
each conjunct. When sibling branches empty, they must empty synchronously,
i.e. after reading the same portion of the input, and in the same state, after
which the computation continues from the parent branch.

Definition 4. A synchronized alternating pushdown automaton is a tuple A =
(Q, Σ, Γ, δ, q0,⊥), where δ is a function that assigns to each element of Q× (Σ∪
{ε})× Γ a finite subset of

{(q1, α1) ∧ · · · ∧ (qk, αn) | n = 1, 2, . . . , qi ∈ Q and αi ∈ Γ ∗, i = 1, . . . , n} .

Everything else is as in the standard PDA model. Namely, Q is a finite set of
states, Σ and Γ are the input and the stack alphabets, respectively, q0 ∈ Q is the
initial state, and ⊥ ∈ Γ is the initial stack symbol, see, e.g., [5, pp. 107–112].

Definition 5. Let A be an SAPDA and let w ∈ Σ∗.

– The computation of A on w begins in state q0 and with ⊥ in the stack.
– Each step, a transition is applied to one of the non-empty branches.
– Sibling branches that are empty, in state q, and with the same remaining

input, are collapsed, and the computation continues from the parent branch
in state q.

348 T. Aizikowitz and M. Kaminski

– An accepting computation is one where the entire input is read, and the stack
is emptied (i.e., all branches are emptied and collapsed).

L(A) is the language of all w ∈ Σ∗ s.t. A has an accepting computation on w.3

Example 2. [2, Example 6.2, pp. 64–65] We construct an SAPDA which accepts
the language

Linf = {ai1b ai2b2 · · · ainbn $ bai1 bai2 · · · bain $ | n ≥ 1 and i1, . . . , in ≥ 1} .

For this, we construct two automata, each in charge of a specific aspect of the
language. The first, A1, checks that the series of bs before the first $ sign starts
at 1 and increases by 1 at each step. The second, A2, checks that the numbers
of as before and after the first $ match up appropriately. We then define an
SAPDA A such that A accepts the intersection of the languages of A1 and A2.
Following, we present the full construction of A2. For the construction of A1 and
A, see [2, Example 6.2, pp. 64–65]. The SAPDA A2 = (Q2, Σ, Γ2, q0,⊥, δ2) is
defined as follows. Q2 = {q0, q

′
0, q1, q

′
1, q2, q3, qe}, Γ2 = {⊥, a, b}, and

(1) δ2(q0, a,⊥) = (q1, a⊥) ∧ (q′0,⊥) (2) δ2(q′0, a,⊥) = (q′0,⊥)
(3) δ2(q′0, b,⊥) = (q0,⊥) (4) δ2(q0, b,⊥) = (q0,⊥)
(5) δ2(q0, $,⊥) = (qe,⊥) (6) δ2(q1, a,⊥) = (q1, a⊥)
(7) δ2(q1, a, a) = (q1, aa) (8) δ2(q1, b, a) = (q′1, ba)
(9) δ2(q′1, b, b) = (q′1, bb) (10) δ2(q′1, a, b) = (q2, b)
(11) δ2(q2, a, b) = (q2, b) (12) δ2(q2, b, b) = (q2, b)
(13) δ2(q2, $, b) = (q3, b) (14) δ2(q′1, $, b) = (q3, b)
(15) δ2(q3, b, b) = (q3, ε) (16) δ2(q3, a, b) = (q3, b)
(17) δ2(q3, a, a) = (q′3, ε) (18) δ2(q′3, a, a) = (q′3, ε)
(19) δ2(q′3, b,⊥) = (qe,⊥) (20) δ2(q′3, $,⊥) = (qe, ε)
(21) δ2(qe, a,⊥) = δ2(qe, b,⊥) = (qe,⊥) (22) δ2(qe, $,⊥) = (qe, ε)

The automaton recursively opens a new branch for every first a in a series aij

that it sees. These branches subsequently store aij bj in their stacks, and wait for
the $ sign. After the $ is read, each branch “counts” to the jth series of a’s by
popping one b for each b encountered in the input. Thus, aij will appear at the
top of the stack after j b’s have been read. If all aij series before and after the
$ match, upon reading the final $ sign, all branches will be able to empty their
stacks, and collapse back to the root. See Figure 1 for sample configurations.

3 Deterministic SAPDA Model Definition

We define the notion of a deterministic SAPDA analogously to the classical
definition of a deterministic PDA.

Definition 6. An SAPDA A = (Q, Σ, Γ, q0, δ,⊥) is deterministic if
3 For a detailed definition of SAPDA, see [2].

LR(0) CG and Deterministic SAPDA 349

q
2

(1)
a
a
b q

0

q
1

a
b
b

(2)
a

q
e

q
3

a
b

q
3

(3)

q
e

q
e

q
e

Fig. 1. Configurations of the automaton A2, (1) after reading aababb, (2) after reading
aababb$ba, and (3) after reading aababb$baaba$

– If δ(q, σ, X) �= ∅ for some σ ∈ Σ, then δ(q, ε, X) = ∅.
– For all q ∈ Q, σ ∈ Σ ∪ {ε}, X ∈ Γ, |δ(q, σ, X)| ≤ 1.

By Definition 6, a deterministic SAPDA has at most one computation on any
given input word.4 Note that the automaton A2 from Example 2 is in fact a
deterministic automaton, as is the full automaton for A for Linf , see [2, Example
6.2, pp. 64–65].

3.1 Linear Membership for DSAPDA

We show that the membership problem for DSAPDA is decidable in linear time.

Remark 1. For the purposes of our discussion, we assume the automaton does
not have an infinite series of ε transitions. As in the classical case, this assumption
is not limiting (see [5, Lemma 10.3, p 236]), as ε-loops can be detected.

To proceed, we shall need the following notation. Let A = (Q, Σ, Γ, q0,⊥, δ) be a
DSAPDA. We denote by NA the maximal number of branches opened in a single
transition, and we denote by MA the total number of different configurations
possible for a branch head, i.e., MA = |Q| × |Γ ∪ {ε}|.

We consider an implementation model where the computation proceeds in
rounds such that in each round, every branch takes one step. Note that this
model is equivalent to the one where branches take steps in arbitrary order.

Consider a single stack-branch. As it behaves exactly like a standard deter-
ministic PDA without ε-loops, it performs a linear number of steps in the input
length. At each step, at most NA new branches are opened from each existing
branch. Therefore, the total number of branches is O(NA

n), where n is the num-
ber of input letters read. It follows that a DSAPDA can perform an exponential
number of steps in the length of the input.

To achieve linear-time membership for DSAPDA languages, we must circum-
vent the potentially exponential number of stack branches that the automaton
can open. To do so, we require the following immediate lemmas.

4 Up to permutations on the order in which the branches were chosen for transitions.

350 T. Aizikowitz and M. Kaminski

Lemma 1. During the computation, at any given time, there are at most MA

different state and stack-symbol configurations among the heads of the stack-
branches of the automaton.

Lemma 2. If two branches have the same stack-head configuration, then they
behave identically on the same input, as long as the stack height does not dip
below the initial height of the head.5

By these two lemmas, we do not need the full exponential power of SAPDA
to decide membership for DSAPDA. The core concept of the implementation
is to execute the minimal number of branches necessary (at most MA). When
a number of branch heads have the same configuration, they are combined to
be one head. The computation then continues on the merged branch, as long
as its stack is not empty. Once the merged branch empties, the computation
continues on the original branches. Thus, at any given computation step, at
most MA branch heads are necessary, and we achieve linear time. Note that this
implementation yields a DAG structure rather than a tree, see Figure 2.

q p

b

q

b(1)

q p

a

q

b b

b

a b(3)

pq

b

a b(2)

Fig. 2. Example of a stack structure in its initial state, after merging the two leftmost
heads, and after applying a transition to the resulting structure

Theorem 1. The membership problem for DSAPDA is decidable in linear time.

The correctness of Theorem 1 stems from the observation that during each iter-
ation, at most a constant number of stack symbols are added to the structure,
and therefore it is always linearly bounded. For a full proof, see [2, Section 6.2,
pp. 67–71].

Remark 2. There is a one-to-one correlation between the full configuration of a
DSAPDA and its above compact representation, see [2, Remark 6.8, p. 71].

4 LR(0) Conjunctive Grammars

In this section, we extend the classical notion of an LR(0) grammar (see [5, pp.
248–252]) to CG. We begin with some preliminary definitions.

Definition 7. Let G = (V, T, P, S) be a CG. The trace grammar of G is a
context-free grammar GT = (V, T, PT , S) where PT is defined as follows:
5 This lemma stems from the fact that the automaton is deterministic.

LR(0) CG and Deterministic SAPDA 351

1. X → α ∈ PT for all X → α ∈ P .
2. X → αi ∈ PT for all X → (αi& · · ·&αn) ∈ P and i = 1, . . . , n.

Rules of type 2 are called projections of the original conjunctive rules they were
obtained from. Applications of these rules are referred to as conjunct selections.

Definition 8. Let G be a conjunctive grammar, and let GT be its trace gram-
mar. A derivation in GT is called a trace derivation of G. One-step trace deriva-
tions are denoted by ⇒T , and their closure by ⇒∗

T .

Definition 9. Let G be a conjunctive grammar, and let GT be its trace gram-
mar. Let α ⇒∗ B be a derivation in G, and let α ⇒∗

T β be a trace derivation
in GT . We say that the trace derivation is a projection of the full derivation if
it follows one of the possible conjunctive paths of the derivation, i.e., the con-
junct selections in the trace match the conjunctive rules applied along the path
of the full derivation, and the “regular” rules applied in the trace match the non-
conjunctive rules applied in the path. If two trace derivations are both projections
of the same full derivation, we say that they are sibling traces.6

Consider the derivation of the word abc in the CG from Example 1. The traces
S ⇒ A ⇒ aA ⇒ aB ⇒ abBc ⇒ abc and S ⇒ C ⇒ Cc ⇒ Dc ⇒ aDbc ⇒ abc are
both projections of this derivation, and therefore siblings.

Definition 10. A derivation X ⇒∗ A is a rightmost(leftmost) derivation if
all its projections are rightmost(leftmost) in the classical sense. One-step right-
most(leftmost) derivations are denoted by⇒R(⇒L), and their closure by⇒∗

R(⇒∗
L).

To facilitate in the construction of a parser, we define an augmented form for
CG, which “marks” conjunctive rules using specified new variable symbols. The
augmentation process is linear in the number of conjunctive rules in the gram-
mar, and can be implemented as a simple pre-processing step in the construction
of a parser.

Definition 11. Given a conjunctive grammar G = (V, Σ, P, S), we define an
augmented grammar G′ by adding the following variables and rules.

– We add a new start symbol S′, and add a rule S′ → S.
– Let n be the maximal number of conjuncts in a rule of P . Let m be the

number of conjunctive rules in P . For every rule X → (α1& · · ·&αk) ∈ P
that is the j-th conjunctive rule in P , we do the following.
• Add new variables Sj

1, . . . , S
j
n and Sj,

• replace the rule with X → Sj, and add the rule Sj → (Sj
1& · · ·&Sj

n),
and the rules Sj

i → αi for i = 1, . . . , k and Sj
i → αk for i = k +1, . . . , n.

Clearly, for any conjunctive grammar G and its augmentation G′, L(G′) = L(G).
Henceforth, we only consider augmented grammars.

6 For an inductive definition of projections see [2, Definition 4.3, pp. 32–33].

352 T. Aizikowitz and M. Kaminski

Following is a very simple example of a conjunctive grammar in augmented
form. The example will be used for illustrative purposes, to elucidate the parser
construction.

Example 3. The following CG, G = (V, Σ, P, S), is an augmented grammar
which derives the regular language {ab} ∪ {a6n$ | n ≥ 1}.
– V = {S′, S, A, B, S1, S1

1 , S1
2}, and

– P consists of the following rules:
S′ → S ; S → ab | S1 ; S1 → (S1

1 & S1
2) ; S1

1 → aaA ; S1
2 → aaaB ;

A → aaA | $; B → aaaB | $

We proceed to define the basic building blocks of LR grammars, e.g., items,
viable prefixes, and valid prefixes. We define these by applying the classical
definitions to the trace grammar.

Definition 12. Let G = (V, Σ, P, S) be a CG. The set of LR(0) items of G is
the set of classical LR(0) items of the trace grammar GT ,7 i.e.,

– X → α · β is an LR(0) item if X → αβ ∈ P , and
– Sj → · Sj

i and Sj → Sj
i · s.t. Sj → (Sj

1& · · ·&Sj
n) ∈ P are LR(0) items.

Definition 13. We say that γ ∈ (V ∪ Σ)∗ is a viable prefix of G if it is a
viable prefix of GT , i.e., if there is a rightmost trace derivation of GT of the
form S ⇒∗

TR δXw ⇒TR δβw s.t. γ is a prefix of δβ.

Definition 14. We say an item X → α · β is valid for a viable prefix γ if there
is a trace derivation S ⇒∗

TR δXw ⇒TR δαβw, X → αβ ∈ P , and γ = δα.

Example 4. Consider the augmented grammar G from Example 3. The deriva-
tion S ⇒ S1 ⇒ S1

1 ⇒ aaA ⇒ aaaaA is a trace derivation of G. Therefore, all
prefixes of aaaaA are viable prefixes of G. It follows that the items A → a · aA
and A → aa · A are valid for the viable prefixes aaa and aaaa respectively.

We proceed to define a DSAPDA that acts as an LR parser for conjunctive
languages. To do so, we define a canonical set of item-sets and two functions,
action and goto, which together make up the parsing table for a given grammar.
As in the classical case, goto recognizes valid items for viable prefixes, and action
decides which step the automaton takes, based on the set of valid items supplied
by goto. The main difference from the classical case is that when an item of the
form X → · Sj is valid (i.e., a conjunctive rule can be applied), the DSAPDA
makes a conjunctive transition and each branch processes one of the conjuncts
Sj

1 , . . . , S
j
n. This is to avoid conflicts in the parser caused by items from sibling

traces.
We begin with goto. A goto function receives a set of items I and a symbol

X ∈ V ∪Σ ∪{ε}.8 The function is applied to two types of item sets: regular and

7 Note that the only assumption we make on G is that it is in augmented form.
8 Note that in the classical goto function, X ∈ V ∪ Σ.

LR(0) CG and Deterministic SAPDA 353

split, see below. When a goto function g is applied to regular sets, it behaves
exactly as in the classical case, i.e., if I is the set of valid items for some viable
prefix γ and X �= ε then g(I, X) is the set of valid items for viable prefix γX .

When a goto function is applied to a split set, it only has ε-transitions. Namely,
it has n ε-transitions to n item-sets, each containing exactly one of the Sj → · Sj

i

items, thus separating items from sibling traces. These transitions correlate with
the conjunctive transitions in the DSAPDA parser. To accommodate for these
“multiple transitions”, the goto function maps to sets of item-sets, as opposed
to exactly one item-set, as in the classical case.

Definition 15. Let I be a set of LR(0) items. We define the item-closure of I,
denoted [I] as the smallest set of items such that I ⊆ [I], and if X → δ · Y α ∈ [I]
and Y �= Sj , j = 1, · · · , m, then Y → · β ∈ [I] for all Y → β ∈ P .

This definition is the same as the classical item-closure definition, except that
items of the form X → ·Sj are not expanded. This is because their expansions
need to be separated, and they are therefore expanded in a separate step.

Definition 16. A set of items I is split if it contains an item of the form
X → · Sj, yet it does not contain the items Sj → · Sj

i . In this case, we also say
that Sj is split in I. If an item set is not split, it is called regular.

Note that by Definitions 15 and 16, the item-closure of a regular item-set corre-
sponds to the classical item-closure definition.

Definition 17. A function g is a valid goto function if for each regular item-set
I, split item-set J , and symbol X ∈ V ∪ Σ, the following holds.

– g(I, X) = { [{Z → αX · β | Z → α · Xβ ∈ I}] }, and g(I, ε) = {I}.
– g(J, X) = ∅, and g(J, ε) = {[J1], . . . , [Jn]} where J1, · · · , Jn are minimal

item-sets such that
• J ⊆ Jk for k = 1, . . . , n, and
• for each j such that Sj is split in J , and for each i = 1, . . . , n, there exists

1 ≤ k ≤ n such that Sj → ·Sj
i ∈ Jk, and for no i′ �= i, Sj → ·Sj

i′ ∈ Jk.

Note that in transitions from split-sets, exactly one Sj → · Sj
i item from

each conjunctive rule in J appears in each resulting item-set. In particular,
if J contains only one item of the form X → ·Sj, then for k = 1, . . . , n,
Jk = [J ∪ {Sj → ·Sj

ik
}], for some 1 ≤ ik ≤ n. Furthermore, note that when ap-

plied to regular sets, a valid goto function behaves exactly like the classical one.

Example 5. Continuing our discussion of the grammar G from Example 3, con-
sider the item-set I0 = {S′ → ·S, S → ·ab, S → ·S1}. Note that I0 is split.
Therefore, a valid goto function can be defined by g(I0, ε) = {I1, I2}, where
I1 = I0 ∪ {S1 → ·S1

1 , S1
1 → ·aaA}, and I2 = I0 ∪ {S1 → ·S1

2 , S1
2 → ·aaaB}.

The sets I1 and I2 are regular. Therefore, e.g., as in the classical case, g(I1, a) =
{S → a · b, S1

1 → a · aA}.
Next, we define the set of canonical item-sets of a conjunctive grammar, with
respect to a valid goto function.

354 T. Aizikowitz and M. Kaminski

Definition 18. Let G = (V, Σ, P, S) be a conjunctive grammar and g a valid
goto function. We define the canonical collection of item-sets of G with respect
to g to be the smallest set Cg such that

– [{S′ → · S}] ∈ Cg, and
– if I ∈ Cg and X ∈ V ∪ Σ ∪ {ε}, then g(I, X) ⊆ Cg.

We denote the item-set [{S′ → · S}] ∈ Cg by I0.

We now proceed to define the notion of an LR(0) grammar.

Definition 19. We say that an item-set I is conflict free if the following holds.

– If X → α · ∈ I, then there is no other Y → β · ∈ I, Y �= X or α �= β.
– If X → α · ∈ I, then there is no item Y → β · σγ ∈ I, σ ∈ Σ.

The first is a reduce-reduce conflict, and the second is a shift-reduce conflict.

Definition 20. A conjunctive grammar G = (V, Σ, P, S) is LR(0) if there is a
valid goto function g for which Cg is conflict free.

Remark 3. Finding a conflict free grouping is a pre-processing step, and, there-
fore, does not impact the run-time of the parsing algorithm. Moreover, in Section
5, we will see that for every LR(0) grammar, there exists an equivalent LR(0)
grammar, where any choice of grouping is guaranteed not to cause conflicts.

Let g be a valid goto function for a CG G, and let Cg be the resulting canonical
set of item-sets. Together, g and Cg define a finite-state automaton where g
is the transition function and Cg is the set of states. The automaton is non-
deterministic, as g may have multiple ε-transitions from the same state. Let ĝ
be the standard extension of a non-deterministic transition function to strings
and sets of states, see [5, pp. 24–25]. Then, for a set of item-sets Q ⊆ Cg and
a string γ ∈ (V ∪ Σ)∗, ĝ(Q, γ) contains all the item-sets J reachable from some
set I ∈ Q by reading γ.

Figure 3 describes a partial construction of the canonical set of item-sets and
a valid goto function g for the grammar G from Example 3. Note that the first
set, I0 is split. Therefore, g(I0, ε) = {I1, I2} where I1 and I2 each contain one of
the items S1 → ·S1

1 , S → ·S1
2 . Furthermore, we can see that, e.g.,

ĝ({I0}, a) = {I7, I9} =

{ {S → a · b, S1
1 → a · aA} , {S → a · b, S1

2 → a · aaB} } ,

and
ĝ({I0}, ab) = I8 = {S → ab ·} .

In the classical construction of an LR(0) item automaton, goto(I0, γ) contains
all the valid items for the viable prefix γ. We show that this also holds for a
valid goto function of a conjunctive grammar. This stems from the fact that for

LR(0) CG and Deterministic SAPDA 355

:

: :

:

:

:

$

:

:

:

:

:

:

Fig. 3. Partial construction of the canonical set of item-sets and valid goto function

a conjunctive grammar G, the classical LR(0) item-set automaton constructed
for its trace, GT , is the deterministic counterpart of our new item-set automaton
construction applied to G. Therefore, the classical item-set automaton’s capa-
bility to find valid items for viable prefixes is translated to the new construction
as well, and we have the following lemma.

Lemma 3. Let γ be a viable prefix of G and let g be a valid goto function. Then⋃
ĝ({I0}, γ) contains an item X → α · β if and only if X → α · β is valid for γ.

We can now define a deterministic SAPDA that recognizes the language of an
LR(0) grammar G. For each branch, the automaton writes grammar symbols
and item-sets from the canonical set of item-sets to its stack, thus keeping track
of valid items for the viable prefix it has reduced so far. The transitions of the
automaton are determined by the action function, and a valid goto function g.
The initial symbol in the stack is the item-set I0. The action function receives
a current item-set from the top of the stack I, and the next symbol from the
input σ ∈ Σ (if such a symbol exists), and returns the following:

1. If I contains the item S′ → S ·, the stack is emptied (accept).
2. If I is regular and contains an item X → α · σβ then σ is shifted onto the

stack, and g(I, σ) is placed above it (shift). Note that g(I, σ) returns a
single item-set as a non-epsilon transition is applied.

356 T. Aizikowitz and M. Kaminski

3. If I is regular and contains an item X → α ·, then the symbols of α and the
padding item-sets9 are removed from the stack, revealing some item set J
at the top of the stack. Now, X is written to the stack above J , and then
g(J, X) is written on top of that (reduce).

4. If I is split, then it is removed from the stack, n new branches are opened,
and the n g(I, ε) item sets are put into them, one for each branch (split).

We now proceed to show that the automaton does, in fact, accept exactly the
language of the grammar. As in the classical case, the automaton attempts to
construct a rightmost derivation of the input. To do so, it stores the (tree) prefix
of the derivation that it has managed to reduce so far in the stack. At each
point, the top symbols of the branches in the stack are the item-sets obtained by
applying the goto function to this prefix. By Lemma 3, these are exactly the valid
items for the prefix, and therefore, they are the candidate derivation rules that
can be added next to the rightmost derivation. The automaton continues to shift
input symbols onto the stack, until the set of valid items contains an item of the
form X → α · . This signals that X → α is the correct choice, and the symbols of
α on the stack are replaced with X , thus simulating the reduction. Because the
grammar is LR(0), the item-sets are guaranteed to be conflict free, and therefore
the automaton is well defined, i.e., it only has one valid transition defined for any
given configuration. For a full proof that the rightmost derivation the automaton
constructs is correct, see [2, pp. 80–83]. From our automaton construction, we
have the following theorem.

Theorem 2. If a language is generated by an LR(0) conjunctive grammar, then
it is accepted by a deterministic SAPDA.

From Theorems 1 and 2, we obtain the following corollary.

Corollary 1. Every LR(0) conjunctive language can be parsed in linear time.

This result extends the context-free LR(0) algorithm, as LR(0) conjunctive
languages properly contain all finite intersections of classical LR(0) languages.
When applied to context-free LR(0) grammars, the parsing algorithm is identical
to the classical LR(0) algorithm.

Remark 4. Both classical and conjunctive LR(0) languages are not closed under
complement (because the prefix property is not maintained) and under union.
However, our linear parser can be modified to work for the boolean closure of
conjunctive LR(0) languages as follows. The complement of a language can be
determined by running the parser and checking whether the final configura-
tion is accepting or not. As the parser is deterministic, this method will cor-
rectly identify the words not in the language. The union of any finite number
of languages can be recognized by simply making several parsing runs, one for
each language. Thus, we have linear parsing for the boolean closure of LR(0)
conjunctive languages, and in particular, the boolean closure of classical LR(0)

9 The padding item-sets are the item-sets pushed to the stack in type 2 transitions.

LR(0) CG and Deterministic SAPDA 357

languages. Furthermore, in Proposition 1 at the end of the following section, we
will see that conjunctive LR(0) languages strictly contain the boolean closure of
context-free LR(0) languages.

5 Constructing an LR(0) Grammar from a DSAPDA

In this section, we address the converse of Theorem 2, i.e., the construction of
an LR(0) conjunctive grammar from a deterministic SAPDA.

Theorem 3. If a language is accepted by a deterministic SAPDA, then it is
generated by an LR(0) conjunctive grammar.

Theorem 3 is proved similarly to the classical proof, see e.g., [5, pp. 256–260], by
modifying the standard translation of an SAPDA into a CG. The constructed
grammar has an important quality whereby for every possible valid goto func-
tion, the canonical set of item-sets constructed is conflict free. For the full con-
struction and proof see [2, Section 6.4, pp. 84–96].

We conclude this section with the following proposition.

Proposition 1. LR(0) conjunctive languages contain a language that does not
belong to the boolean closure of deterministic classical context-free languages.

The proof of Proposition 1 can be derived directly from the fact that the language
Linf from Example 2 is not a finite intersection of context-free languages, see
[2, Theorem 6.44, pp. 95–96].

In [11], Okhotin’s generalized LR parsing algorithm promises linear-time pars-
ing only for the boolean closure of context-free languages. As such, our result
makes a stronger claim regarding the class of linearly-parsable languages.

In [10], Okhotin presents an LL(k) parsing algorithm for conjunctive lan-
guages . In the paper, it is stated that it is an open question whether LL(k)
conjunctive grammars can generate a language which is not a finite intersection
of context-free languages. Therefore, it is an open question whether languages
such as Linf can be generated by LL(k) conjunctive grammars. The LL(k)
parsing algorithm utilizes a specialized tree-type structure as part of the pars-
ing process. This tree-structure can be viewed as a special case of our SAPDA
model, which aligns with the fact that the context-free versions of the LL(k) al-
gorithms is based on Pushdown Automata. Thus, it is reasonable to assume that
the parsing algorithm could be modified to work with SAPDA, thus yielding a
unified formal approach.

6 Concluding Remarks

We have introduced DSAPDA as a sub-family of SAPDA, and LR(0) CG as
a sub-family of CG, and shown that, as in the classical case, acceptance by a
DSAPDA is equivalent to generation by an LR(0) CG. This equivalence also
forms the basis for a linear time parsing algorithm for an interesting language
class comprised of the union closure of conjunctive LR(0) languages.

358 T. Aizikowitz and M. Kaminski

It would prove interesting to define the notion of LR(k) conjunctive gram-
mars, and specifically LR(1) conjunctive grammars. It would also be interesting
to explore uses for DSAPDA based compilers. Two directions seem especially
promising. The first is to look for examples where conjunctive grammars give a
more succinct representation of a classical LR(k) grammar, therefore leading to
more efficient parsing. The second is to find examples of LR(k) conjunctive lan-
guages which can be used to describe sophisticated constructs beyond the scope
of context free languages. Such examples could prove useful for areas where con-
text free languages have been known to be lacking, such as Natural Language
Parsing.

References

1. Aizikowitz, T., Kaminski, M.: Conjunctive grammars and alternating pushdown
automata. In: Hodges, W., de Queiroz, R. (eds.) Logic, Language, Information and
Computation. LNCS (LNAI), vol. 5110, pp. 30–41. Springer, Heidelberg (2008)

2. Aizikowitz, T.: Synchronized Alternating Pushdown Automata. PhD thesis, Tech-
nion – Israel Institute of Technology (2010), http://www.cs.technion.ac.il/

users/wwwb/cgi-bin/tr-info.cgi/2010/PHD/PHD-2010-14

3. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the
ACM 28(1), 114–133 (1981)

4. Higginbotham, J.: English is not a context-free language. Linguistic Inquiry 15,
119–126 (1984)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

6. Knuth, D.E.: On the translation of languages from left to right. Information and
Control 8, 607–639 (1965)

7. Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown and stack
automata. SIAM Journal on Computing 13(1), 135–155 (1984)

8. Langendoen, T.D., Postal, P.M.: English and the class of context-free languages.
Computational Linguistics 10(3-4), 177–181 (1984)

9. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4), 519–535 (2001)

10. Okhotin, A.: Top-down parsing of conjunctive languages. Grammars 5(1), 21–40
(2002)

11. Okhotin, A.: LR parsing for conjunctive grammars. Grammars 5(2), 21–40 (2002)
12. Okhotin, A.: A recognition and parsing algorithm for arbitrary conjunctive gram-

mars. Theoretical Computer Science 302, 81–124 (2003)
13. Okhotin, A.: Fast parsing for boolean grammars: A generalization of valiant”s

algorithm. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224,
pp. 340–351. Springer, Heidelberg (2010)

14. Tomita, M.: Efficient Parsing for Natural Language: A Fast Algorithm for Practical
Systems. Kluwer Academic Publishers, Norwell (1985)

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2010/PHD/PHD-2010-14
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2010/PHD/PHD-2010-14

Two-Way Automata versus Logarithmic Space

Christos A. Kapoutsis

LIAFA – Université Paris VII

Abstract. We strengthen previously known connections between the
size complexity of two-way finite automata (2fas) and the space com-
plexity of Turing machines. We prove that

– every s-state 2nfa can be simulated on all poly(s)-long inputs by
some poly(s)-state 2dfa if and only if NL ⊆ L/poly and

– every s-state 2nfa can be simulated on all 2poly(s)-long inputs by
some poly(s)-state 2dfa if and only if NLL ⊆ LL/polylog.

Here, 2dfas and 2nfas are the deterministic and nondeterministic 2fas,
NL and L/poly are the standard space complexity classes, and NLL and
LL/polylog are their counterparts for O(log log n) space and poly(log n)
bits of advice. Our arguments strengthen and extend an old theorem
by Berman and Lingas and can be used to obtain variants of the above
statements for other modes of computation or other combinations of
bounds for the input length, the space usage, and the length of advice.

1 Introduction

The question whether nondeterministic computations can be more powerful than
deterministic ones is central in complexity theory. Numerous instantiations have
been studied, for a variety of computational models under a variety of resource
restrictions. This article investigates the connection between two kinds of such
instantiations, those for Turing machines (tms) under space restrictions and
those for two-way finite automata (2fas) under size restrictions.

On the one hand, the question whether nondeterminism makes a difference in
space-bounded tms is among the oldest in complexity theory. Formally, it asks
whether there is a bound f with DSPACE(f) � NSPACE(f).(1) For f(n) = n, this
appeared already in [11]. We know that every such bound must be Ω(log log n),
since otherwise all languages involved are regular [17,6,1], and that such bounds
exist in Θ(log log n) ∪ Ω(log n) iff log log n is already one [13,18]. Since compu-
tation in space Ω(log n) is more natural than in space o(log n), research focused
on the log n bound and on the corresponding conjecture that L � NL. An early
observation [2] was that, even if L � NL, a deterministic tm (dtm) of space
O(log n) may still be able to simulate a nondeterministic one if it is allowed
nonuniform behavior. This led to the introduction of the class L/poly of lan-
guages recognizable in space O(log n) by dtms accessing poly(n) ≡ nO(1) bits of

� Research funded by a Marie Curie Intra-European Fellowship (pief-ga-2009-253368)
within the European Union Seventh Framework Programme (fp7/2007-2013).

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 359–372, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

360 C.A. Kapoutsis

nonuniform advice [10], and to the stronger conjecture that even L/poly � NL.
Note that, for only O(log n) advice bits, the resulting conjecture L/log � NL is
equivalent to L � NL [10] and that the classes DSPACE(f)/2O(f) for varying f
have been studied in [8] under the names NUDSPACE(f).

On the other hand, the question whether nondeterminism makes a difference
in size-bounded 2fas was posed already in [14]. Formally, it asks whether there
exist s-state 2nfas that admit no equivalent 2dfa with poly(s) states. A robust
theoretical framework around this question appeared in [12], with the introduc-
tion of the complexity classes 2D and 2N. The former consists of every family
of languages (Lh)h≥1 recognizable by a family of poly(h)-state 2dfas, while the
latter is the corresponding class for 2nfas. The original question is thus equiv-
alent to whether 2D � 2N. We remark that the answer is known to be positive
if the 2dfas must obey certain restrictions [14,15,7,9]; and negative if the 2dfas
are allowed quasi-polynomially many states and the languages are unary [4]. For
the general case, the answer has been conjectured to be positive [14,12].

The above two questions are connected via the lengths of the strings necessary
to confirm the conjecture 2D � 2N. To explain this, let us consider a language
family L = (Lh)h≥1 witnessing the conjecture. Then L ∈ 2N but L /∈ 2D.
The latter means that every family B = (Bh)h≥1 of poly(h)-state 2dfas fails to
recognize L, in the sense that at least one Bh fails to recognize the respective Lh.
This is equivalent to saying that every such B contains infinitely many failing Bh

(because, if some B contains only finitely many of them, then replacing those with
larger ones that succeed we restore correctness without hurting polynomiality).
Of course, a Bh fails to recognize Lh iff it errs on at least one input xh. Putting
everything together, we see that L /∈ 2D iff for every family B of poly(h)-state
2dfas there is a family of inputs X = (xh)h≥1 such that Bh errs on xh for
infinitely many h. Intuitively, these inputs constitute hard instances.

Definition. A family of hard instances of L for B is any (xh)h≥1 where there
exist infinitely many h such that Bh accepts xh ⇐⇒ xh /∈ Lh.

For each B, we can always find hard instances of at most exponential length.

Lemma 0. Let L ∈ 2N. If L /∈ 2D then for every family of poly(h)-state 2dfas
there is a family of 2poly(h)-long hard instances of L.

However, in the proof of this lemma,(2) the degree of the polynomial for the 2dfas
lower-bounds the degree of the polynomial exponent for the hard instances.
Hence, as the 2dfas become polynomially larger, the guaranteed hard instances
become super-polynomially longer. We thus have no exponential global upper
bound, for the lengths of hard instances over all families of poly(h)-state 2dfas.

Definition. A g-long witness for 2D � 2N is an L ∈ 2N such that for every
family of poly(h)-state 2dfas there is a family of g(h)-long hard instances of L.

So, by Lemma 0, if 2D � 2N then super-exponentially long witnesses (g-long,
where g = Ω(g′) for all g′ ∈ 2poly(h)) are guaranteed to exist. But what about
exponentially long witnesses? Are they guaranteed? Moreover, what about sub-
exponentially long witnesses, e.g., quasi-polynomially or polynomially long ones?

Two-Way Automata versus Logarithmic Space 361

It has long been known, through a theorem by Berman and Lingas [3], that
a polynomially long witness would imply that L � NL. Here we strengthen that
connection: a polynomially long witness would even imply that L/poly � NL;
furthermore, the converse implication is also true.

Theorem 1. 2D � 2N has poly(h)-long witnesses iff L/poly � NL.

Moreover, exponentially long witnesses and space log log n are similarly linked.

Theorem 2. 2D � 2N has 2poly(h)-long witnesses iff LL/polylog � NLL.

Here, LL/polylog = NUDSPACE(log log n) [8] is the class of languages recogniz-
able in space O(log log n) by dtms with poly(log n) bits of advice, and NLL is
the corresponding class for nondeterministic tms (ntms) and no advice.

These two theorems are the most representative ones in a list of variants that
can be proved by similar arguments. One group of these variants focus on lengths
of other growth rates. E.g., for quasi-polynomial lengths we get:

Theorem 3. Let k ≥ 1 and ε = 1/k. Then 2D � 2N has 2O(logkh)-long witnesses
iff DSPACE(logεn)/2O(logεn) � NSPACE(logεn).

Another group of variants focus on other modes of computation. E.g., consider
alternating 2fas and the corresponding complexity class 2A. As for 2N, we con-
jecture that 2D � 2A and consider global upper bounds for the lengths of hard
instances of an L ∈ 2A \ 2D over all families of poly(h)-state 2dfas. We get:

Theorem 4. 2D � 2A has poly(h)-long witnesses iff L/poly � P.

(Notice our use of the fact that AL = ASPACE(log n) = DTIME
(
poly(n)

)
= P.)

For the most part, the proofs of these theorems elaborate on standard, old
ideas [3,12,18]. Perhaps their main value is what they imply for how we approach
the two questions being connected. E.g., consider Theorems 1–3 and suppose that
indeed 2D � 2N. On the one hand, people interested in size-bounded 2fas can
use our theorems to extract evidence about how hard it is for a certain proof
strategy towards 2D � 2N to succeed: e.g., a strategy that will eventually deliver
a super-exponentially long witness is likely to succeed more easily than one that
promises exponentially long witnesses, because the latter implies an additional
breakthrough in understanding space-bounded ntms, while the former does not.
(All proof techniques currently available are of the former kind.) On the other
hand, people interested in tms of space Ω(log log n) ∩ O(log n) can find in the
2D v 2N question a single unifying setting to work in: separating 2D and 2N
with a super-exponentially long witness can be seen as the first step in a gradual
approach that sees dtms and ntms separate for larger and larger space bounds as
improved proof techniques establish shorter and shorter witnesses for 2D � 2N.

We conclude this introduction with a different strengthening of the Berman-
Lingas Theorem, from [5]: in the case of unary automata 2D � 2N implies
L � NL irrespective of the lengths of hard instances. Our research has been
largely motivated by this recent theorem—and our title tries to reflect this.

362 C.A. Kapoutsis

2 Preparation

For n ≥ 1, we let [n] := {0, . . . , n−1} and lg n := max(1, �log2 n�). For S a set,
|S| denotes size. If Σ is an alphabet and x ∈ Σ∗, then |x| is the length of x;
xi is its ith symbol; xi is the concatenation of i copies of it; and 〈x〉 is its binary
encoding, into |x| blocks of lg |Σ| bits each (under a fixed ordering of Σ); ε is
the empty string. A (promise) problem over Σ is a pair L = (L+, L−) of disjoint
subsets of Σ∗, the positive and negative instances of L; if L+ ∪L− = Σ∗ then L
is a language. To solve L means to accept all x ∈ L+ but no x ∈ L−.

2.1 Machines

We assume familiarity with standard notation for 2fas and tms [16]. Our 2fas
consist of a finite control and a read-only input tape. Our tms are 2fas with two
extra tapes: a read-only advice tape and a read-write work tape. Each tape is
accessed via a dedicated two-way head. A transducer is a tm without advice tape
but with a write-only output tape accessed via a one-way head. Details follow.

A (s, σ)-2nfa is any A = (S, Σ, δ, q0, F) with |S| = s, |Σ| = σ, q0 ∈ S, F ⊆ S,
and δ ⊆ S×(Σ∪{�,�})×S×{l,r}, where �,� /∈ Σ are endmarkers and l,r are
directions. An x ∈ Σ∗ is presented on the input tape as �x� and is considered
accepted if δ allows a computation that starts at q0 on � and eventually falls
off � into a q ∈ F . The language of A is the set L(A) := {x ∈ Σ∗ | A accepts x}.
The binary encoding of A is the string 〈A〉 := 0s10σ1uvw where u, v, w encode
δ, q0, F with 2s2(σ + 2), lg s, and s bits respectively (in the obvious ways, under
fixed orderings of S and Σ). Note that |〈A〉| = O(s2σ).

A (s, σ, γ)-ntm is any M = (S, Σ, Δ, Γ, δ, q0, qf) with |S|=s, |Σ|=σ, |Γ |=γ,
q0, qf ∈ S, and δ ⊆ S × (Σ ∪{�,�})× (Δ∪{�,�})× (Γ ∪{�})×S ×Γ ×{l,r}3,
where � /∈ Γ is the blank symbol. An x ∈ Σ∗ and a y ∈ Δ∗ are presented on the
input and advice tapes as �x� and �y� respectively, and are considered accepted
if δ allows a computation which starts at q0, with blank work tape and the input
and advice heads on �, and eventually falls off � on the input tape into qf . We
say M is in internal configuration (q, i, j, w) if its state is q, its advice and work
heads are at positions i and j, and its nonblank work tape content is w ∈ Γ ∗.

For Y = (ym)m≥0 a family of strings over Δ, the language of M under Y is
L(M, Y) := {x ∈ Σ∗ | M accepts x and y|x|}; if Y is the empty advice (ε)m≥0,
we just write L(M). We say Y is strong advice for M if, for all x and m ≥ |x|,
M accepts x and y|x| iff it accepts x and ym. The length of Y is the function
m �→ |ym|. A function f is strong space bound for M under Y if, for all x and
m ≥ |x|, all computations on all x and ym visit at most f(m) work tape cells; if
this is guaranteed just for the accepted x and ym and then only for at least one
accepting computation, then f is weak. Note that under strong advice ym, M
uses space ≤ f(m) and is correct on all x with |x| ≤ m (and not just |x| = m).
This deviation from standard definitions is unimportant for advice of length
poly(m) or longer (because we can always replace ym with the concatenation
of y0, y1, . . . , ym). For shorter advice, though, it is not clear whether there is a
difference. Our theorems need the strong version.

Two-Way Automata versus Logarithmic Space 363

For G a set of functions, NSPACE
(
f
)
/G consists of every L(M, Y) where M is

a ntm, Y is strong advice for M , with length in G, and f is strong space bound
for M under Y. If G = {0} then only the empty advice is possible, and we just
write NSPACE(f). Then NL := NSPACE(log n) and NLL := NSPACE(log log n).

A machine is deterministic (2dfa, dtm) if its δ allows at most one computa-
tion per input. We define DSPACE(f)/G, DSPACE(f), L, LL analogously, and let
L/poly :=DSPACE(log n)/poly(n), LL/polylog :=DSPACE(log log n)/poly(log n).

A function f is fully space constructible if there is a dtm which, on any input x
and any advice, halts after visiting exactly f(|x|) work tape cells.

Lemma 1. Consider a ntm M under strong advice Y of length g, obeying a
weak space bound f . For each length m, there is a 2O(f(m)+lg g(m))-state 2nfa Am

that agrees with M under Y on all instances of length at most m.
If M is deterministic, then so is Am. If Y is empty, then Am also agrees

with M under Y on all negative instances (of any length). If f is fully space
constructible, then there is a transducer T which, given m (in unary) and the
corresponding ym, computes Am (in binary) in space O(f(m) + lg g(m)).

Proof. Let M be a (s, σ, γ)-ntm and Y = (ym)m≥0, g, f as described. Fix m and
consider M working on any input (of any length) and on ym. Let Sm be the set
of all internal configurations that can occur with ≤ f(m) work tape cells. Then

|Sm| ≤ s(|ym|+2)
∑f(m)

t=0 (t + 2)γt = O
(
g(m)f(m)2γf(m)

)
= 2O(f(m)+ lg g(m)) .

We let Am := (Sm, Σ, δm, q0, Fm) where Σ is M ’s input alphabet, q0 and Fm

are the initial and accepting internal configurations in Sm, and (c, a, c′, d) ∈ δm

iff, reading a ∈ Σ, M under ym can change its internal configuration from c to c′

moving the input head towards d. Clearly, if M is deterministic, then so is Am.
Now fix any input x (of any length). Let τm be the computation tree of M

on x and ym, and τ ′
m the computation tree of Am on x. It should be clear that

each branch β in τm using ≤ f(m) work tape cells is fully simulated in τ ′
m by an

equally long branch β′, which accepts iff β does. In contrast, each β using > f(m)
work tape cells is only partially simulated, by a shorter β′ which hangs (at a
rejecting state). Moreover, the β′ of these two cases cover all branches in τ ′

m.
Now suppose |x| = n ≤ m. Let τn be the computation tree of M on x and yn.

We know τn accepts iff τm does (because Y is strong). Thus, if x ∈ L(M, Y), then
τn accepts and so does τm; hence, some accepting branch β in τm uses ≤ f(m)
work tape cells (because f is a weak space bound); hence, its counterpart β′

in τ ′
m completes the simulation and accepts, too; so, Am accepts x. Conversely,

if x /∈ L(M, Y), then τn does not accept and neither does τm; hence, every branch
in τ ′

m is nonaccepting (because it either fully simulates a nonaccepting branch
of τm or hangs after partially simulating one); so, Am does not accept x.

If Y is empty, then Am agrees also on all x /∈ L(M, Y) with n > m. Because
then yn = ym = ε implies τn = τm, so τm does not accept, and neither can τ ′

m.
If f is fully space constructible, then 〈Am〉 can be computed from 0m and ym,

as follows. We first mark exactly f(m) work tape cells, by running on 0m the
dtm that fully constructs f . Using these cells and ym, we then mark another

364 C.A. Kapoutsis

lg s + lg(|ym| + 2) + lg
(
f(m) + 2

)
cells. Now the marked region is as long as

the longest description of a c ∈ Sm. This makes it possible to iterate over all
c ∈ Sm or pairs thereof (by lexicographically iterating over all possible strings
and discarding non-descriptions). From this point on, computing the bits of 〈Am〉
is straightforward. Overall, O(f(m) + lg g(m)) cells will suffice. ��
Corollary 1. (a) For each ntm M (under empty advice) of weak space O(log n)
there is a log-space transducer which, given a length m (in unary), computes a
2nfa Am (in binary) that has poly(m) states and may disagree with M only on
positive instances longer than m. If M is deterministic, then so is Am.

(b) For each ntm M (under empty advice) of weak space O(log log n) and each
length m there is a poly(log m)-state 2nfa Am that may disagree with M only
on positive instances longer than m. If M is deterministic, then so is Am.

2.2 Reductions

Let L1, L2 be problems over alphabets Σ1, Σ2. A homomorphic reduction of L1 to
L2 [12] is any function r : Σ1∪{�,�} → Σ∗

2 such that x ∈ L+
1 =⇒ r(�x�) ∈ L+

2

and x ∈ L−
1 =⇒ r(�x�) ∈ L−

2 , where r(�x�) := r(�)r(x1) · · · r(x|x|)r(�). If
there exists such an r, we write L1 ≤h L2. The expansion of r is the function
n �→ max{|r(�x�)| | x ∈ Σ∗

1 and |x| = n}. The ternary encoding 〈r〉 of r is the
string 〈r(�)〉#〈r(a1)〉# · · ·#〈r(aσ1)〉#〈r(�)〉, for a1, . . . , aσ1 a fixed ordering of Σ1.

Lemma 2 ([12]). If L1 ≤h L2 via a reduction r and L2 is solvable by an s-state
2nfa A2, then L1 is solvable by a 2s-state 2nfa A1. If A2 is deterministic, then
so is A1. Moreover, there exists a log-space transducer Th which, given r (in
ternary) and a deterministic A2 (in binary), computes A1 (in binary).

Proof. Let Σ1 and Σ2 be the alphabets of L1 and L2, and consider r and A2 =
(Q2, Σ2, δ2, q2, F2) as in the statement, where |Q2| = s.

On input x ∈ Σ∗
1 , the new automaton A1 simulates A2 on r(�x�) piece-by-

piece: on each symbol a on its tape, A1 does what A2 would eventually do on
the corresponding infix r(a) on its own tape (if a is � or �, this corresponding
infix is �r(�) or r(�)�). This way, each branch β in the computation tree of A2

on r(�x�) is simulated by a branch in the computation tree of A1 on x, which
is accepting iff β is. Thus, x is accepted iff r(�x�) is. Hence, if x ∈ L+

1 , then
r(�x�) ∈ L+

2 (by the selection of r), hence A2 accepts, and so does A1; if x ∈ L−
1 ,

then r(�x�) ∈ L−
2 (as before), hence A2 does not accept, and neither does A1.

To perform this simulation, A1 keeps track of the current state of A2 and the
side (l or r) from which A2 enters the current corresponding infix. Formally,
A1 :=

(
Q2×{l,r}, Σ1, δ1, (q2,l), F2×{l}), where δ1 is easily derived from the

above informal description. E.g., if a ∈ Σ1 then
(
(p,l), a, (q,l),r

) ∈ δ1 iff δ2

allows on r(a) a computation that starts at p on the leftmost symbol and even-
tually falls off the rightmost boundary into q (thus entering the following infix
from its left side); and

(
(p,l),�, (q,r), l

) ∈ δ1 iff δ2 allows on r(�)� a computa-
tion that starts at p on the leftmost symbol and eventually falls off the leftmost
boundary into q (thus entering the preceding infix from its right side).

Two-Way Automata versus Logarithmic Space 365

If A2 is deterministic, then clearly A1 is also deterministic. Plus, 〈A1〉 can be
computed from 〈r〉 and 〈A2〉 in logarithmic space. To see how, let σ1 := |Σ1| and
σ2 := |Σ2|, and recall that 〈A1〉 = 02s10σ11u1v1w1 and 〈A2〉 = 0s10σ21u2v2w2,
where the u, v, w encode respectively the transition functions, the start states,
and the sets of final states. Each part of 〈A1〉 can be computed from the corre-
sponding part of 〈A2〉 (using no work tape), except for 0σ1 and u1. The former is
computed from 〈r〉, by counting #s. For the latter, we mark 2 lg s+lg(σ1+2)+3 =
O
(
log(σ1s)

)
work tape cells and use them to iterate over all encodings of tuples(

(p,d), a, (q,d′), d′′
)

where p, q ∈ [s] and a ∈ Σ1 ∪ {�,�} and d, d′, d′′ ∈ {l,r},
outputing 1 bit per tuple. To decide each bit, we locate 〈r(a)〉 in 〈r〉 and simulate
A2 on r(a) (or on the appropriate endmarked version, if a is � or �) starting
at p on side d, until we either exceed s · |〈r(a)〉|/ lg σ2 steps or fall off the string;
if we fall off side d′′ into q and d′ �= d′′ then we output 1, otherwise we output 0.
This simulation needs only a finite number of pointers into 〈r〉 and u2, plus the
aforementioned counter. Overall, the space used is logarithmic in |〈r〉+〈A2〉|. ��

For h ≥ 1, the alphabet Γh consists of every directed graph with two columns
of h nodes each (like the ones on the left, for h = 5). Easily, |Γh| = 2(2h)2. Each

x ∈ Γ ∗
h defines a multicolumn graph, derived by identifying adjacent columns

(as shown on the right, for the three symbols on the left); if this graph contains a
path from its leftmost to its rightmost column, we say x is live. We let twlh :=
{x ∈ Γ ∗

h | x is live} (where ‘twl’ abbreviates ‘two-way liveness’). Then the
family twl := (twlh)h≥1 is 2N-complete [12], because of the following.

Lemma 3 ([12]). Let A be any s-state 2nfa. Then L(A) ≤h twl2s via a reduc-
tion which has expansion n + 2 and is log-space constructible from 〈A〉.(3)

The binary encoding 〈a〉 of an a ∈ Γh is a string of (2h)2 bits that describes a
(in the obvious way, under a fixed ordering of the 2h nodes). Using these encod-
ings, we can “join” all languages twlh into the single binary language

twl join := {0h1〈a1〉〈a2〉 · · · 〈al〉10t | h ≥ 1 & h divides t &
l ≥ 0 & each ai ∈ Γh & a1a2 · · ·al is live} ,

where the h leading 0s determine the interpretation: the leftmost and rightmost
1s must be separated by 0 or more (2h)2-long blocks of bits (the “middle bits”),
and the multicolumn graph described by these blocks must contain a path from
its leftmost to its rightmost column; finally, the number t of trailing 0s must
be a multiple of h.(4) If this last condition that “h divides t” is replaced by the
stronger condition that “every j ≤ h divides t” (“Szepietowski-padding” [18]),
we get an alternative join, which we call twl long-join.

366 C.A. Kapoutsis

Let a2nfa := {〈A〉#〈x〉 | A is a 2nfa and A accepts x} be the acceptance
problem for 2nfas, and a2dfa the corresponding problem for 2dfas. Note that
no alphabet is fixed: solving these problems involves checking that the bits after #
can be interpreted as an input for the 2fa that is encoded by the bits before #.

Lemma 4. Let A be an (s, σ)-2nfa. Then L(A) ≤h-reduces to each of a2nfa,
twl join, and twl long-join via reductions of expansion O(s2σn), O(s2n),
and 2O(s)n.(5) The first two reductions are log-space constructible from 〈A〉.
Proof. For Σ = {a0, . . . , aσ−1} the alphabet of A, let r1 be the homomorphism
that maps � to 〈A〉#, each ai to the lg σ-long binary code of i, and � to ε. Then
each n-long x is sent to r1(�x�) = 〈A〉#〈x〉, of length (|〈A〉|+1) + n lg σ + 0 =
O(s2σ) + n lg σ = O(s2σn), which (clearly) is in a2nfa iff x ∈ L(A).

For r : Σ ∪ {�,�} → Γ2s the reduction from Lemma 3, let r2 be the homo-
morphism that maps � to 02s1〈r(�)〉, each ai to 〈r(ai)〉, and � to 〈r(�)〉102s.
Then each n-long x is sent to r2(�x�) = 02s1〈r(�)〉〈r(x1)〉 · · · 〈r(xn)〉〈r(�)〉102s,
of length (2s+1) + (n+2)(4s)2 + (1+2s) = O(s2n), which is in twl join iff
r(�)r(x1) · · · r(xn)r(�) is live (all other conditions in the definition of twl join
are satisfied), namely iff r(�x�) ∈ twl2s, which is true iff x ∈ L(A).

Let r3 be the homomorphism that differs from r2 only in that it maps � to
〈r(�)〉10λ(2s), where λ(2s) is the least common multiple of all j = 1, . . . , 2s.
Since λ(2s) = 2Θ(s) [18, Lemma, part (b)], now each n-long x is sent to r3(�x�),
of length (2s+1) + (n+2)(4s)2 + (1+2Θ(s)) = 2O(s)n, which (as before) is in
twl long-join iff r(�)r(x1) · · · r(xn)r(�) is live, and thus iff x ∈ L(A). ��
Lemma 5. a2nfa and twl join are NL-complete and twl long-join ∈ NLL.

Proof. That a2nfa is NL-complete is well-known; in fact, NL-hardness follows
from Corollary 1a and Lemma 4. The NL-hardness of twl join follows similarly.

To solve twl join by a ntm in space O(log n), we work in two stages. First,
we deterministically verify the format: we check that there are at least two 1s,
count the number h of leading 0s, check that h divides the number of trailing
0s (by scanning and counting modulo h) and that (2h)2 divides the number
of “middle bits” (similarly). Then, we nondeterministically verify liveness, by
simulating on the “middle bits” the 2h-state 2nfa solving twlh [12]. Each stage
can be performed in space O(log h). Since h ≤ n, twl join ∈ NL.

To solve twl long-join we use the same algorithm, but with a preliminary
stage [18]. This starts by incrementing a counter from 1 upto the first number, t̃,
that does not divide the number t of trailing 0s (divisibility is always tested by
scan-and-count, as above). On reaching t̃, we compare it with the number h of
leading 0s (scan-and-count, again). If t̃ ≤ h, we reject; otherwise we continue
to the two main stages. Correctness should be clear. The space used in the
preliminary stage is O(log t̃). The two main stages cost O(log h), as above, which
is also O(log t̃) because we get to them only if h < t̃. Since t̃ = O(log t) [18,
Lemma, part (d)] and t ≤ n, the total space used is O(log log n). ��

Two-Way Automata versus Logarithmic Space 367

3 The Berman-Lingas Theorem

The Berman-Lingas Theorem [3, Th. 6] is usually cited as: if L = NL then every
s-state 2nfa can be simulated on poly(s)-long inputs by some poly(s)-state 2dfa.
However, Berman and Lingas actually claim a stronger statement [3, p. 17]:(6)

L = NL iff for each alphabet Σ there exists a log-space dtm TΣ which, on
input a 2nfa A over Σ (in binary) and a length m (in unary), outputs a
2dfa B (in binary) that has poly(sm) states, for s the number of states
in A, and may disagree with A only on positive instances longer than m.

Namely, the promised 2dfa is log-space constructible from the 2nfa and the
length bound and, with this into account, the converse is also true. Then, the
preceding citation is a corollary for the special case where m = poly(s).

However, these statements are valid only if Σ is constant. If instead the alpha-
bet grows with s, which is true for some 2N-complete problems, then the bound
for the states in B might even be exponential in s. To highlight this subtle point,
we state and prove the theorem under no assumptions for alphabet size.

Theorem (Berman-Lingas [3]). L ⊇ NL iff there exists a log-space dtm T which,
on input a 2nfa A (in binary) and a length m (in unary), outputs a 2dfa B (in
binary) that has poly(sσm) states, for s and σ the number of states and symbols
in A, and may disagree with A only on positive instances longer than m.

Proof. [⇒] Suppose L ⊇ NL. Then a2nfa ∈ L. Hence, some dtm M solves a2nfa

under empty advice and in space strongly bounded by log n.
Pick any (s, σ)-2nfa A and length m. By Lemma 4, we know L(A) ≤h a2nfa

via a reduction that has expansion μ(n) = O(s2σn) and is constructible from 〈A〉.
Hence (Lemma 2), constructing a 2dfa B for L(A) and lengths ≤ m reduces to
constructing a 2dfa B̃ for L(M) and lengths ≤ μ(m). This latter construction
is indeed possible, by Corollary 1a. We thus employ the series of transductions:

〈A〉#0m T1−→ 〈A〉#0μ(m) TM−→ 〈A〉#〈B̃〉 T2−→ 〈r〉#〈B̃〉 Th−→ 〈B〉 .

First, a simple log-space transducer T1 converts the original input 〈A〉#0m into
〈A〉#0μ(m), by doing the algebra. Then the log-space transducer TM guaran-
teed by Corollary 1a for M converts 0μ(m) into a 2dfa B̃ that has poly

(
μ(m)

)
states and can disagree with M only on positive instances longer than μ(m).
Then the log-space transducer T2 guaranteed by Lemma 4 for L(A) ≤h a2nfa

converts 〈A〉 into the encoding of the underlying homomorphism r. Finally, the
log-space transducer Th from Lemma 2 converts 〈r〉#〈B̃〉 into the desired 2dfa B
of 2 · poly

(
μ(m)

)
= poly(sσm) states. By the transitivity of log-space transduc-

tions, the full algorithm can also be implemented in logarithmic space.
[⇐] Suppose the log-space dtm T of the statement exists. Then a2nfa can be
reduced to a2dfa in logarithmic space, which implies L ⊇ NL (since a2nfa is NL-
hard, a2dfa ∈ L, and L is closed under log-space reductions). The reduction works
in two log-space steps. We first run a simple log-space transducer to convert the

368 C.A. Kapoutsis

input 〈A〉#〈x〉 into 〈A〉#0m#〈x〉, where m := |x| = |〈x〉|/ lg σ, for σ the size of
the alphabet of A. We then apply T on 〈A〉#0m to produce 〈B〉#〈x〉, where B a
2dfa that agrees with A on all inputs of length at most m, including x. ��

It is now clear that, in the special case where we restrict to inputs of length
m = poly(s), the bound for the states in B is just poly(sσ). Hence, for an A
over an alphabet of size σ = 2Ω(s) (e.g., a 2nfa for twls), our bound for the
states in a 2dfa simulating A on poly(s)-long inputs is just 2poly(s). We stress
that this looseness is inherent in the Berman-Lingas argument, and not just
in our analysis of it: a larger alphabet for A implies longer encoding 〈A〉, thus
longer inputs to the alleged log-space dtm M for a2nfa, more space available
for M on its work tape, more internal configurations, more states in the 2dfa B̃
simulating M , and thus more states in the final 2dfa B simulating B̃.

It is also clear that the above theorem cannot be an equivalence without a con-
structive relationship between the given 2nfa A and length m and the promised
2dfa B. That is, if in the converse direction we are promised that for each A
and m a fitting B simply exists, as opposed to it being log-space constructible,
then the argument fails. This is an additional obstacle in connecting with the
2D v 2N question, which is purely existential: a proof that 2D ⊇ 2N needs no
log-space conversion of s-state 2nfas to equivalent poly(s)-state 2dfas.

The next theorem removes both of the above dependences, on alphabet size
and on log-space constructibility. To remove dependence on alphabet size, we
switch to another NL-complete problem; to remove dependence on constructibil-
ity, we switch to nonuniform L. The main structure of the argument is similar.

Theorem 1. L/poly ⊇ NL iff for every 2nfa A and length m there is a 2dfa B
that has poly(sm) states, for s the number of states in A, and agrees with A on
all instances of length at most m.

Proof. [⇒] Suppose L/poly ⊇ NL. Then twl join ∈ L/poly. Hence, some dtm M
solves twl join under strong advice Y of length g(m) = poly(m) in space
strongly bounded by f(m) = log m.

Pick any (s, σ)-2nfa A and length m. By Lemma 4, L(A) ≤h twl join with
expansion μ(n) = O(s2n). Hence (Lemma 2), a poly(sm)-state 2dfa B for L(A)
and lengths ≤ m exists if there exists a poly(sm)-state 2dfa B̃ for L(M, Y) and
lengths ≤ μ(m). Such a B̃ is given by Lemma 1 for M and Y: both f(μ(m)) and
lg g
(
μ(m)

)
are O

(
log(sm)

)
, and thus 2O(f(μ(m))+lg g(μ(m))) = poly(sm).

[⇐] Suppose that for every s-state 2nfa A and length m there is a poly(sm)-
state 2dfa B that agrees with A on all instances of length ≤ m.

Pick any L ∈ NL. Let Σ be its alphabet and M some ntm that solves it (under
empty advice) in space strongly bounded by log n. We know (Corollary 1a) that
for each length m there is a poly(m)-state 2nfa Am over Σ that agrees with M on
lengths ≤ m. Applying our assumption to each Am and m, we find a 2dfa Bm

over Σ that has poly(poly(m) · m) = poly(m) states and agrees with Am on
lengths ≤ m, meaning that it decides L correctly on lengths ≤ m.

Now let Y = (ym)m≥0 := (〈Bm〉)m≥0 and consider the dtm U over Σ which,
on input x and advice y, reads y as the encoding of a 2dfa and simulates it on x.

Two-Way Automata versus Logarithmic Space 369

Then L(U, Y) = {x ∈ Σ∗ | U accepts x and y|x|} = {x ∈ Σ∗ | B|x| accepts x} =
{x ∈ Σ∗ | x ∈ L} = L. Note that Y is strong advice: if |x| ≤ m then U accepts
x and ym ⇔ Bm accepts x ⇔ x ∈ L ⇔ B|x| accepts x ⇔ U accepts x and y|x|.
Also, |ym| = |〈Bm〉| = O(poly(m)2 · |Σ|) = poly(m) since Σ is constant, and
the simulation uses space strongly logarithmic in the number of states in Bm,
namely O

(
log poly(m)

)
= O(log m), irrespective of x. Overall, L ∈ L/poly. ��

We remark that the two dependences, on alphabet size and constructibility, do
not need to be removed from the Berman-Lingas Theorem simultaneously. Each
can also be removed individually, leading to two more variants of the original
theorem: one that differs from it only in that the bound for B is poly(sm), and
one that differs from Theorem 1 only in that the bound for B is poly(sσm).

Our second extension of the Berman-Lingas Theorem reduces the dependence
on the input lengths exponentially, by connecting to the stronger statement that
nondeterminism can be nonuniformly removed even on the log log n level. The
argument is again similar, we just need to switch to the long join of twl.

Theorem 2. LL/polylog ⊇ NLL iff for every 2nfa A and length m there is a
2dfa B that has poly(s log m) states, for s the number of states in A, and agrees
with A on all instances of length at most m.

Proof. [⇒] If LL/polylog ⊇ NLL then twl long-join ∈ LL/polylog, so a dtm M
solves twl long-join under strong advice Y of length g(m) = poly(log m) in
space strongly bounded by f(m) = log log m. As above, for any (s, σ)-2nfa A and
length m, we know L(A) ≤h twl long-join via a reduction of expansion μ(n) =
2O(s)n (Lemma 4). So (Lemma 2), it suffices to find a poly(s log m)-state 2dfa B̃
for L(M, Y) on lengths ≤ μ(m). This is given by Lemma 1, as both f(μ(m)) and
lg g
(
μ(m)

)
are O

(
log(s + log m)

)
, and so 2O(f(μ(m))+lg g(μ(m))) = poly(s log m).

[⇐] Suppose for each s-state 2nfa A and length m there is a poly(s log m)-
state 2dfa B that agrees with A on lengths ≤ m. As above, we pick any L ∈ NLL
over some Σ and let M be a ntm solving L in space strongly bounded by log log n.
Corollary 1b guarantees that for each m some poly(log m)-state 2nfa Am over Σ
agrees with M on lengths ≤ m. Hence (by our assumption), there is also a
2dfa Bm over Σ with poly(poly(log m) · log m) = poly(log m) states that agrees
with Am on lengths ≤ m, and thus correctly decides L on these lengths. So, we
consider Y = (ym)m≥0 := (〈Bm〉)m≥0. Under this advice, the same dtm U as
above (over the specific Σ) solves L. The advice is strong for the same reasons,
but its length now is |ym| = |〈Bm〉| = O(poly(log m)2 · |Σ|) = poly(log m),
causing the space usage to be O

(
log poly(log m)

)
= O(log log m). ��

A third extension is proved via the variants of twl join where the padding
condition “h divides t” is replaced by “every j ≤ logkh divides t”, for k ≥ 1.

Theorem 3. DSPACE(logεn)/2O(logεn) ⊇ NSPACE(logεn), where ε = 1/k ≤ 1,
iff for every 2nfa A and length m there is a 2dfa B that has poly(s2logεm)
states, for s the number of states in A, and agrees with A on all instances of
length at most m.

370 C.A. Kapoutsis

4 Conclusion

We can now observe that Theorems 1-3 of the previous section are respectively
equivalent to Theorems 1-3 of the Introduction. For the pair of Theorems 1 this
is shown by the following lemma. Similar lemmas are possible for the other pairs.

Lemma 6. 2D � 2N has no poly(h)-long witnesses iff for every 2nfa A and
length m there is a 2dfa B that has poly(sm) states, for s the number of states
in A, and agrees with A on all instances of length at most m.

Proof. [⇒] Suppose 2D � 2N has no poly(h)-long witnesses. In particular, twl is
not an h-long witness. Hence, some family B′ = (B′

h)h≥1 of poly(h)-state 2dfas
admits no h-long hard instances of twl: i.e., for each family X = (xh)h≥1 of
such instances, B′ errs on X only finitely often. Hence, only finitely many B′

h fail
to be correct on all ≤ h-long instances of twlh. Replacing the failing B′

h with
larger 2dfas that do not fail, we get a new family B = (Bh)h≥1 of poly(h)-state
2dfas where Bh decides twlh correctly on all ≤ h-long instances, for all h.

Pick any s-state 2nfa A and length m. Let τ := max(2s, m+2). By Lemma 3,
we know L(A) ≤h twl2s with expansion μ(n) = n+2. Also, twl2s ≤h twlτ

with expansion μ′(n) = n (simply map �,� to ε, and each a ∈ Γ2s to the a′ ∈ Γτ

that has only the arrows of a). So, L(A) ≤h twlτ with expansion μ′(μ(n)). So
(Lemma 2), a 2dfa B for L(A) on lengths ≤ m can be derived from a 2dfa
for twlτ on lengths ≤ μ′(μ(m)) = m+2 ≤ τ . Such a 2dfa is Bτ , with poly(τ)
states. Hence, B has 2 · poly(τ) ≤ 2 · poly(2s + (m+2)) = poly(sm) states.

[⇐] Suppose for each s-state 2nfa and length m there is a poly(sm)-state
2dfa agreeing on all ≤ m-long instances. Pick any L = (Lh)h≥1 ∈ 2N and
p ∈ poly(h). Since L ∈ 2N, there is a q ∈ poly(h) and a family A = (Ah)h≥1

of q(h)-state 2nfas solving L. Applying our assumption on each Ah and p(h),
we find a 2dfa Bh that agrees with Ah on all ≤ p(h)-long instances and has
poly(q(h)p(h)) = poly(h) states. Hence, (Bh)h≥1 is a family of poly(h)-state
2dfas that admit no family of p(h)-long hard instances of L. ��

In closing, we suggest some notation that may facilitate discussions like ours.
Consider any 2fa family A = (Ah)h≥1, any family of promise problems L =
(Lh)h≥1, and any two function classes F ,G. We say A is F -large if Ah has ≤ f(h)
states, for some f ∈ F and all h; and that L is G-long if |x| ≤ g(h), for some
g ∈ G and all h and x ∈ L+

h ∪L−
h . Then the class 2NSIZE(F)/G consists of every

G-long family of promise problems solvable by some F -large family of 2nfas
—if we just write 2N/G, we mean F = poly(h); if we just write 2NSIZE(F), we
mean G contains all functions. We specifically let 2N/poly := 2N/poly(h) and
2N/exp := 2N/2poly(h). For 2dfas, we define the classes 2DSIZE(F)/G, 2D/G,
2DSIZE(F) analogously. Now, Theorems 1, 3, and 2 can be restated as:

2D ⊇ 2N/poly ⇐⇒ L/poly ⊇ NL

2D ⊇ 2N/2O(logk n) ⇐⇒ DSPACE(logεn)/2O(logεn) ⊇ NSPACE(logεn)
2D ⊇ 2N/exp ⇐⇒ LL/polylog ⊇ NLL

where ε = 1/k ≤ 1. Note that, next to a tm complexity class, “/·” bounds the
advice length; next to a 2fa complexity class, it bounds the length of the inputs.

Two-Way Automata versus Logarithmic Space 371

References

1. Alberts, M.: Space complexity of alternating Turing machines. In: Budach, L. (ed.)
FCT 1985. LNCS, vol. 199, pp. 1–7. Springer, Heidelberg (1985)

2. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: Proceed-
ings of FOCS, pp. 218–223 (1979)

3. Berman, P., Lingas, A.: On complexity of regular languages in terms of finite
automata. Report 304, Institute of Computer Science, Polish Academy of Sciences,
Warsaw (1977)

4. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic
unary automata into simpler automata. Theoretical Computer Science 295, 189–
203 (2003)

5. Geffert, V., Pighizzini, G.: Two-way unary automata versus logarithmic space. In:
Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 197–208.
Springer, Heidelberg (2010)

6. Hopcroft, J.E., Ullman, J.D.: Some results on tape-bounded Turing machines.
Journal of the ACM 16(1), 168–177 (1967)

7. Hromkovič, J., Schnitger, G.: Nondeterminism versus determinism for two-way
finite automata: generalizations of Sipser’s separation. In: Baeten, J.C.M., Lenstra,
J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 439–
451. Springer, Heidelberg (2003)

8. Ibarra, O.H., Ravikumar, B.: Sublogarithmic-space Turing machines, nonuniform
space complexity, and closure properties. Mathematical Systems Theory 21, 1–17
(1988)

9. Kapoutsis, C.: Deterministic moles cannot solve liveness. Journal of Automata,
Languages and Combinatorics 12(1-2), 215–235 (2007)

10. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform com-
plexity classes. In: Proceedings of STOC, pp. 302–309 (1980)

11. Kuroda, S.: Classes of languages and linear-bounded automata. Information and
Control 7, 207–223 (1964)

12. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata.
In: Proceedings of STOC, pp. 275–286 (1978)

13. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences 4, 177–192 (1970)

14. Seiferas, J.I.: Untitled manuscript, communicated to M. Sipser (October 1973)
15. Sipser, M.: Lower bounds on the size of sweeping automata. Journal of Computer

and System Sciences 21(2), 195–202 (1980)
16. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,

Boston, MA (1996)
17. Stearns, R.E., Hartmanis, J., Lewis II, P.M.: Hierarchies of memory limited com-

putations. In: Proceedings of FOCS, pp. 179–190 (1965)
18. Szepietowski, A.: If deterministic and nondeterministic space complexities are equal

for log log n then they are also equal for log n. In: Monien, B., Cori, R. (eds.) STACS
1989. LNCS, vol. 349, pp. 251–255. Springer, Heidelberg (1989)

Notes

(1)Note the unusual form ‘A � B’. Whenever A ⊆ B, this is of course equivalent
to the more familiar ‘A � B’. Still, we will be studying cases where A ⊆ B is false

372 C.A. Kapoutsis

(e.g., A = L/poly & B = NL) and thus ‘A � B’ is appropriate. We thus stick to
it throughout the article, so that every statement is easy to compare with any
other. We read and think of ‘A � B’ as ‘A does not cover B’ or ‘B eludes A’.

(2)Proof (Lemma 0). The behavior of a 2nfa A on a string x is the set of
tuples (p, d, q, e) of states p, q and sides d, e ∈ {l,r} such that A can exhibit a
computation that starts at p on the dmost symbol of x and eventually falls off
the emost symbol of x into q. Easily, if A has s states, then it can exhibit at most
2(2s)2 distinct behaviors. For a 2dfa, this number is (2s+1)2s = 22s lg(2s+1).

Now suppose L ∈ 2N\2D. Pick any 2dfa family B = (Bh)h≥1 where Bh has
O(hb) states, for a constant b. Since L /∈ 2D, B admits a family X = (xh)h≥1 of
hard instances: Bh errs on xh for infinitely many h. Since L ∈ 2N, there is a 2nfa
family A = (Ah)h≥1 where Ah solves Lh with O(ha) states, for a constant a.

The number of distinct behaviors that Ah and Bh can exhibit on a particular
input are respectively 2O(h2a) and 2O(hb log h). Hence, the number gh of distinct
pairs of behaviors of Ah and Bh is 2O(h2a+hb log h) = 2O(hc), if c = max(2a, b+1).
If xh is longer than gh, then it contains two prefixes on which Ah behaves the
same and Bh behaves the same, too. Removing the infix of xh between the right
boundaries of these prefixes, we get a shorter input x′

h that neither Ah nor Bh

can distinguish from xh. In particular, Bh errs on x′
h iff it errs on xh. Repeating

this process, we eventually bring the length of x′
h below gh.

The family of inputs X′ = (x′
h)h≥1 obtained this way is also a family of hard

instances of L for B, and their lengths are 2O(hc) = 2poly(h). Notice that, for a
family B′ of polynomially larger 2dfas (i.e., b′ > b and b′ ≥ 2a), our argument
will return a family of super-polynomially longer hard instances (i.e., c′ > c —to
be precise, they will be quasi-polynomially longer). ��

(3)Proof (Lemma 3). The reduction maps each a ∈ Σ∪{�,�} to a single symbol
r(a) ∈ Γ2s that fully encodes the “behavior of A on a” (as defined in Note 2,
see [12] for details). Hence, |r(�x�)| = |x| + 2 for all x ∈ Σ∗. Constructing 〈r〉
out of 〈A〉 is easily done with a finite number of pointers into 〈A〉. ��

(4)The suffix 10t and the condition ‘h divides t’ are redundant. They are in-
cluded only for symmetry, as the respective suffix and condition are needed in the
variants of twl join (twl long-join and the one described before Theorem 3).

(5)More tightly, the first expansion is O(s2σ)+n log σ. But the looser O(s2σn)
is simpler and does not harm conclusions, since it is later ([⇒] of B-L Theorem)
fed to an unspecified polynomial. Similar looseness is adopted elsewhere, too.

(6)The actual statement of [3, Th. 6] is very close to the usual citation given in
our text. However, it also includes a pointer to a Remark on p. 17, which explains
that the promised 2dfa can be constructed in logarithmic space and that with
this observation the theorem becomes an equivalence.

Also note that the second, complete statement in our text uses m as the
length bound. The actual statement of [3, Th. 6] uses s · m, for s the number of
states in the 2nfa. These two statements are equivalent. We have opted for the
one that is simpler and facilitates comparison with subsequent statements.

A Polynomial-Time Algorithm

for Finding a Minimal Conflicting Set
Containing a Given Row�

Guillaume Blin1, Romeo Rizzi2, and Stéphane Vialette1

1 Université Paris-Est, LIGM - UMR CNRS 8049, France
{gblin,vialette}@univ-mlv.fr

2 DIMI, Università di Udine, Italy
rrizzi@dimi.uniud.it

Abstract. A binary matrix has the Consecutive Ones Property (C1P) if
there exists a permutation of its columns (i.e. a sequence of column swap-
pings) such that in the resulting matrix the 1s are consecutive in every row.
A Minimal Conflicting Set (MCS) of rows is a set of rows R that does not
have the C1P, but such that any proper subset of R has the C1P. In [5],
Chauve et al. gave a O(Δ2mmax(4,Δ+1)(n +m + e)) time algorithm to de-
cide if a row of a m× n binary matrix with at most Δ 1s per row belongs
to at least one MCS of rows. Answering a question raised in [2], [5] and
[25], we present the first polynomial-time algorithm to decide if a row of a
m × n binary matrix belongs to at least one MCS of rows.

1 Introduction

A binary matrix has the Consecutive Ones Property (C1P) if its columns can be
ordered in such a way that all 1s on each rows are consecutive. Both deciding if
a given binary matrix has the C1P and finding the corresponding columns per-
mutation can be done in linear-time [4, 11, 12, 15–17, 19, 22]. A characterization
of matrices having the C1P is given in [23]. The C1P of matrices has a long
history and it plays an important role in combinatorial optimization, including
application fields such as scheduling [1, 13, 14, 28], information retrieval [18],
and railway optimization [20, 21, 24] (see [8] for a recent survey).

This paper is devoted to Minimal Conflicting Sets (MCS), i.e., minimal sets
of rows or columns that prevent the matrix from having the C1P. A Minimal
Conflicting Sets of Rows (MCSR) (resp. Minimal Conflicting Sets of Columns
(MCSC)) is a set of rows R (resp. columns C) of a matrix that does not have the
C1P but such that any proper subset of R (resp. C) has the C1P. Dom [9] has
given an algorithm to find a minimum conflicting set in a given matrix. Recent
research in comparative genomics has proved MCS to be of particular interest.
Indeed, Bergeron et al. [2] and Stoye et al. [25] have shown how to compute
parsimonious evolution scenarios of gene clusters by ranking rows according to

� Partially founded by ANR Project 2010 JCJC SIMI 2 BIRDS.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 373–384, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

374 G. Blin, R. Rizzi, and S. Vialette

their Conflicting Index (CI), i.e., the number of MCSR involving a row. In both
papers, the problems of efficiently computing the CI of a row and of generating
all the MCS of a matrix problems were explicitly raised. Chauve et al. [5] gave the
first results for those two problems by presenting a O(Δ2mmax(4,Δ+1)(n+m+e))
time algorithm to decide if a row of m × n binary matrix with at most Δ 1s
per row has a positive CI. Note that this algorithm is practical only for small Δ
and Chauve et al. left as an open problem the question of whether there exists
a polynomial-time algorithm to decide if a row has a positive CI. In this paper
we give a positive answer to this open problem by combining characterization of
matrices having the C1P with graph pruning techniques.

This paper is organized as follows. In Section 2, we recall basic definitions
and formally introduce the problem we are interested in. We give in Section 3
a polynomial-time algorithm to decide if a row has a positive CI, and propose
in Section 4 some natural extensions. Due to space constraint, most proofs are
omitted.

2 Preliminaries

We assume readers have basic knowledge about graph theory [7] and we shall
thus use most conventional terms of graph theory without defining them (we
only recall basic definitions). Let G = (V, E) be a graph. The neighborhood of a
vertex v ∈ V is the set N(v) = {u : {u, v} ∈ E}. Two distinct vertices u, v ∈ V
are called twins if they have the same neighborhood, i.e., N(u) = N(v). For any
V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced by V ′ with the addi-
tional property that all isolated vertices have been deleted (whereas the latter
requirement is non-standard it will prove useful to simplify the presentation). A
path from vertex u to vertex v is abbreviated to a uv-path. Finally, for any path
p in G, we let V (p) ⊆ V stand for the set of all vertices involved in p.

A matrix M is simple if it does not contain two identical columns or rows,
and simplifying a matrix is the (polynomial-time) process of deleting identical
rows and columns. In the sequel, we assume any matrix to be simplified. A (0, 1)-
matrix is a matrix in which each entry is either zero or one. Let M be a m × n
(0, 1)-matrix. Its corresponding vertex-colored bipartite graph G(M) = (R, C, E)
is defined as follows: for every row (resp. column) of M there is a black (resp.
white) vertex in R (resp. C), and there is an edge between a black vertex vi and
a white vertex vj , i.e., an edge between the vertices that correspond to the ith

row and the jthth column of M , if and only if M [i, j] = 1. Equivalently, M is
the reduced adjacency matrix of G(M). We shall usually write R = {ri : 1 ≤
i ≤ m} and C = {cj : 1 ≤ j ≤ n}. In the sequel, we shall speak indistinctly
about binary matrices and their corresponding vertex-colored bipartite graphs.
An asteroidal triple is an independent set of three vertices such that each pair
is joined by a path that avoids the neighborhood of the third. Tucker [27] has
proved that if a (0, 1)-matrix contains an asteroidal triple then it does not have
the C1P. Furthermore, Tucker has given a complete characterization of matrices
containing asteroidal triples.

A Polynomial-Time Algorithm for Finding a MCS Containing a Given Row 375

Theorem 1 ([27], Theorem 9). A (0, 1)-matrix has the C1P if and only if it
contains none of the matrices MIk

, MIIk
, MIIIk

(k ≥ 1), MIV and MV depicted
in Figure 1.

Write T = {MIk
, MIIk

, MIIIk
, MIV , MV }. Let M be a (0, 1)-matrix. Accord-

ing to Theorem 1, for any MCSR RT of M , G(M)[RT ∪ C] contains at least
one Tucker configuration T = (RT , CT , E′) ∈ T , and for any R′

T � RT ,
G(M)[R′

T ∪ C] has the C1P, i.e., it does not contain a Tucker configuration. A
similar observation can be done for MCSC. For the sake of brevity, any Tucker
configuration contained in an MCSR (or MCSC) will be said to be responsible
for this MCSR (or MCSC).

Fig. 1. Forbidden bipartite graphs [27]. Black (resp. white) vertices correspond to rows
(resp. columns) of the corresponding matrices. Gray vertices and light edges are not
part of the Tucker configurations but represent the extra columns that our algorithm
will report. For G(MIk), any triple of white vertices forms an asteroidal triple. For all
other forbidden structures, there are exactly one asteroidal triple (cx, cy , cz).

Following our previous work on Tucker forbidden structures [3], our algo-
rithm is based on shortest paths and two graph pruning techniques (graph prun-
ing techniques were introduced by Conforti et al. [6]). Let us define the clean

376 G. Blin, R. Rizzi, and S. Vialette

and anticlean pruning operations. Let M be a binary matrix and G(M) =
(R, C, E) be the corresponding vertex-colored bipartite graph. For any vertex
v ∈ R (resp. v ∈ C), clean(v) results in the graph G(M)[R ∪ (C \ N(v))] (resp.
G(M)[(R \ N(v)) ∪ C]). In other words, clean(v) results in a graph where any
neighbor of v has been deleted. For any node v ∈ R (resp. v ∈ C), anticlean(v)
results in the graph G(M)[R ∪ (C \ {u : u �∈ N(v)})] (resp. G(M)[(R \ {u :
u �∈ N(v)}) ∪ C]). In other words, anticlean(v) results in a graph where any
node that does not belong to the same partition nor the neighborhood of v has
been deleted. By abuse of notation, we shall write clean(u1, u2, . . . , uk) for the
sequence clean(u1), clean(u2), . . . , clean(uk) (a similar abuse will be used for
anticlean).

Remark 1. It is of particular importance to note that we shall always consider
that vertices given as inputs to our algorithms will never be affected (i.e., deleted)
by the clean and anticlean operations.

3 Finding an MCSR Involving a Given Row

We present in this section a polynomial-time algorithm for reporting (if it exists)
an MCSR involving a given row. Our main result can be stated as follows.

Proposition 1. Let M be m × n (0, 1)-matrix. For any row r of M , decid-
ing whether there exists an MCSR involving row r is solvable in O(m6n5(m +
n)2 log(m + n)) time.

To prove Proposition 1, we provide a sequence of polynomial-time algorithms
for finding a minimal Tucker configuration of a given type T ∈ T = {MIk

,
MIIIk

, MIIk
, MIV , MV } (in this particular order) responsible for an MCSR in-

volving a given row (if it exists). The following easy lemma will prove to be
extremely useful in the sequel.

Lemma 1. Let T = (RT , CT , ET) be a Tucker configuration responsible for an
MCSR involving a given row r in G(M) = (R, C, E). Then RT is an MCSR
involving r and there is no smaller Tucker configuration – in terms of number
of rows (or black nodes) – in G(M)[RT ∪ C].

3.1 MIk Tucker Configurations

Proposition 2. Let M be a (0, 1)-matrix with corresponding vertex-colored bi-
partite graph G(M) = (R, C, E), and r be any row of M . Finding (if it exists)
a minimum cardinality RT ⊆ R responsible for an MCSR involving row r such
that G(M)[RT , CT] = G(MIk

) for some CT ⊆ C and some k ≥ 1 is a O(m4n4)
time procedure.

Observe that MIk
is a hole (a chordless cycle of length at least 6), and hence

without loss of generality we associate r to rA in G(MIk
) (see Figure 1). We

need to consider three cases: k = 1, k = 2 and k > 2. We first try to find

A Polynomial-Time Algorithm for Finding a MCS Containing a Given Row 377

Algorithm 1. Check-MIk
(cx, cy, rA, rB , rC)

Require: A bipartite graph G(M) = (R, C, E), three black vertices rA, rB , rC ∈ R (r
identified to rA) and two white vertices cx, cy ∈ C such that (rC , cy , rA, cx, rB) is a
path in G(M). It is assumed that G(M) does not contain any G(MI1) or G(MI2)
involving row r.

Ensure: Return RT ⊆ R such that G(MIk) = (RT , CT , E′) for some CT ⊆ C is an
MCSR involving row r, or return the failure message “NO” if such a configuration
does not exist.

1: if N(rA) ∩ N(rB) ∩ N(rC) �= ∅ then
2: return “NO”
3: end if
4: clean(c) for all c ∈ N(rA) \ N(rB)
5: clean(c) for all c ∈ N(rA) \ N(rC)
6: clean(rA, cx, cy)
7: delete vertex rA

8: if there exists a rBrC-path in the pruned graph then
9: let P be a shortest rBrC-path in the pruned graph

10: return return {rA} ∪ {ri : ri ∈ V (P) ∩ R}
11: else
12: return “NO”
13: end if

some G(MI1) = (RT , CT , E′) involving row r using any brute-force algorithm.
If we succeed, we are done since any proper subset of RT – of size at most 2 –
cannot contain any other Tucker configuration. Otherwise, using any brute-force
algorithm, we try to find some G(MI2) = (RT , CT , E′) involving row r with the
additional property that there do not exist R′

T � RT and C′
T ⊆ C such that

G(MIII1) = G(M)[R′
T ∪ C′

T]. This latter additional constraint is necessary and
sufficient since G(MIII1) is the only smaller Tucker configuration involving row
r that could occur in G(M). If both tries failed, we turn to k > 2 and apply
Algorithm 1 for every tuple of parameters (cx, cy, r, rB, rC), where cx, cy ∈ C,
rB, rC ∈ R, and (rC , cy, r, cx, rB) is a path in G(M). Among the non-failure
answers (if any), we return the smallest one.

Lemma 2. If there exist an MCSR RT ⊆ R with {rA = r, rB , rC} ⊆ RT

such that G(M)[RT , CT] = G(MIk
) for some k > 2 and some CT ⊆ C with

{cx, cy} ⊆ CT , then Algorithm 1 for parameters (cx, cy, rA = r, rB , rC) finds it.

We now turn to evaluating the time complexity of one call to Algorithm 1.
Checking that N(ri)∩N(rB)∩N(rC) is empty is a O(n) time procedure. Cleaning
any white vertex can be done in O(m) time and cleaning rA can be done in O(n)
time. Using a BFS search, finding a shortest rBrC -path is O(n +m + mn) time.
Summing up, the total time complexity of Algorithm 1 is O(mn).

Correctness of Proposition 2 follows from Lemma 2. What is left is to prove
the total time complexity. According to Lemma 2, for any row r, we can call
Algorithm 1 for parameters (cx, cy, rA = r, rB , rC) to find an MCSR (if it exists)
involving row r. There are O(m2n2) such tuples, and hence we have a O(m3n3)

378 G. Blin, R. Rizzi, and S. Vialette

time procedure for k > 2. As for k = 1 and k = 2, a brute-force algorithm yields a
O(m4n4) time procedure, the dominant term in our approach for G(MIk

) Tucker
configurations.

3.2 MIIIk Tucker Configurations

We assume in this subsection that there does not exist a G(MIk
) Tucker config-

uration in G(M) responsible for an MCSR involving a given row r.

Proposition 3. Let M be a (0, 1)-matrix with corresponding vertex-colored bi-
partite graph G(M) = (R, C, E), and r be any row of M . Assuming that there
does not exist a G(MIk

) in G(M) responsible for an MCSR involving row r,
finding (if it exists) a minimum cardinality RT ⊆ R responsible for an MCSR
involving row r such that G(M)[RT , CT] = G(MIIIk

) for some CT ⊆ C and some
k ≥ 1 is a O(m5n5(m + n)2 log(m + n)) time procedure.

If such a G(MIIIk
) Tucker configuration exists and is responsible for an MCSR

involving row r, then r can be any of the black vertices of G(MIIIk
). However,

thanks to symmetries, it is enough to suppose that row r is identified to rA, rD

or rF in G(MIIIk
).

Our algorithm is as follows. If we don’t succeed in finding some G(MIk
)

Tucker configuration responsible for an MCSR involving row r (see Subsec-
tion 3.1), we look for some T = G(MIII1) = (RT , CT , ET) Tucker configuration
involving row r (brute-force algorithm). If such a G(MIII1) Tucker configura-
tion exists, RT is certainly an MCSR (involving row r). If we fail, we call Al-
gorithm 2 for every tuple of arguments (cx, cy, cz, r, rB, rF) with rB, rF ∈ R
and cx, cy, cz ∈ C, and next call Algorithm 3 for every tuple of arguments
(cv, cw, cx, cy, cz , rA, rB, rC , r, rE , rF) with rA, rB , rC , rE , rF ∈ R and cv, cw,
cx, cy, cz ∈ C. Among the non-failure solutions, we return the smallest one.

Lemma 3. If there exists an MCSR RT ⊆ R involving row r (identified to rA

or rB) such that {rA, rB, rF } ⊆ RT and {cx, cy, cz} ∈ CT , and G(M)[RT , CT] =
G(MIIIk

) for some k > 1 and some CT ⊆ C, then Algorithm 2 for arguments
(cx, cy, cz, rA, rB , rF) finds it.

Lemma 4. If there exists an MCSR RT ⊆ R involving row r (identified to
rD) such that {rA, rB , rC , rD, rE , rF } ⊆ RT and {cv, cw, cx, cy, cz} ∈ CT , and
G(M)[RT , CT] = G(MIIIk

) for some k > 1 and some CT ⊆ C, then Algorithm 3
for arguments (cv, cw, cx, cy, cz, rA, rB, rC , r, rE , rF) finds it.

We now turn to evaluating the time complexity of Algorithm 3 (the time com-
plexity of Algorithm 2 is clearly negligible with that of Algorithm 3). There are
O(m5n5) calls to Algorithm 3, and hence the whole procedure (summing up all
calls to Algorithm 3) is O(m5n5(m+n)2 log(m+n)) time. As for the exhaustive
search for G(MIII1) Tucker configurations, it is O(m3n4) time. Therefore, the
algorithm, as a whole, is O(m5n5(m + n)2 log(m + n)) time. Proposition 3 is
proved.

A Polynomial-Time Algorithm for Finding a MCS Containing a Given Row 379

Algorithm 2. Check-MIIIk
(cx, cy, cz, rA, rB , rF)

Require: A bipartite graph G(M) = (R, C, E), three black vertices rA, rB , rF ∈ R
and three white vertices cx, cy, cz ∈ C such that rA ⊆ N(cx), rB ⊆ N(cy), and
rF ⊆ N(cz). Row r is identified to rA or rB . It is assumed that G(M) does not
contain any G(MIk) or G(MIII1) Tucker configuration involving row r.

Ensure: Return RT ⊆ R such that where G(MIIIk) = (RT , CT , E′) for some CT ⊆ C
is a (row-) minimal MCSR involving row r if it exists, or the failure message “NO”
if such a configuration does not exist.

1: clean(cx, cy, cz)
2: clean(c) for all c /∈ N(rA)
3: anticlean(rA)
4: remove vertex rA

5: if there exists a rBrF -path in the pruned graph then
6: let P be a shortest rBrF -path in the pruned graph
7: return return {rA} ∪ {r : r ∈ V (P) ∩R}
8: else
9: return “NO”

10: end if

Algorithm 3. Check-MIIIk
(cv, cw, cx, cy, cz, rA, rB , rC , rD, rE , rF)

Require: A bipartite graph G(M) = (R, C, E), six black vertices rA, rB , rC , rD,
rE , rF ∈ R and five white vertices cv , cw, cx, cy , cz ∈ C such that rA ⊆ N(cx) ∩
N(cv) ∩ N(cw), rB ⊆ N(cy), rF ⊆ N(cz), rC ⊆ N(cv), rD ⊆ N(cv) ∩ N(cw), and
rE ⊆ N(cw). Row r is identified to rD. It is assumed that G(M) does not contain
any G(MIk) or G(MIII1) Tucker configuration involving row r.

Ensure: Return RT ⊆ R such that G(MIIIk) = (RT , CT , E′) for some CT ⊆ C is
a (row-) minimal MCSR involving row r, or the failure message “NO” if such a
configuration does not exist.

1: if N(rC) ∩ N(rD) ∩ N(rE) �= ∅ or (N(rC) ∪ N(rD) ∪ N(rE)) \ N(rA) �= ∅ then
2: return “NO”
3: end if
4: clean(c) for all c ∈ N(rD)
5: clean(cv , cw, cx, cy, cz)
6: clean(c) for all c /∈ N(rA)
7: anticlean(rA)
8: remove the node rA

9: if there exists a rBrF -path using rD in the pruned graph then
10: let P be a shortest such rBrF -path in the pruned graph
11: return return {rA} ∪ {r|r ∈ V (P) ∩R}
12: else
13: return “NO”
14: end if

3.3 MIIk Tucker Configurations

We assume in this subsection that there does not exist a G(MIk
) nor a G(MIIIk

)
Tucker configuration in G(M) responsible for an MCSR involving a given row r.

380 G. Blin, R. Rizzi, and S. Vialette

Proposition 4. Let M be a (0, 1)-matrix with corresponding vertex-colored bi-
partite graph G(M) = (R, C, E), and r be any row of M . Assuming that there
does not exist a G(MIk

) in G(M) responsible for an MCSR involving row r,
finding (if it exists) a minimum cardinality RT ⊆ R responsible for an MCSR
involving row r such that G(M)[RT , CT] = G(MIIk

) for some CT ⊆ C and some
k ≥ 1 is a O(m6n5(m + n)2 log(m + n)) time procedure.

Notice that if such a G(MIIk
) Tucker configuration does exist and is responsible

for an MCSR involving row r then r can be any of the black vertices of G(MIIk
)

(see Figure 1). However, thanks to symmetries, it is enough to suppose that row
r is identified to rA, rC or rE in G(MIIk

) (all other possibilities are equivalent
up to a straightforward renaming). Although at first odd, it is also crucial for
correctness to assume that no G(MIk

) is responsible in G(M) for an MCSR
involving row r.

Our algorithm is as follows. If we don’t succeed in finding some G(MIk
)

Tucker configuration responsible for an MCSR involving row r (see Subsec-
tion 3.1), we next look for some G(MII1) = (RT , CT , E′) Tucker configuration
involving row r using any brute-force algorithm. If we succeed, we are done
since any proper subset of RT – of size at most 3 – cannot contain any other
Tucker configuration. Otherwise, we use a three-step procedure. We first call
Algorithm 4 for every tuple (cx, cy, cz, rA, rB , rC , rH) with rA = r, rB , rC , rH ∈
R and cx, cy, cz ∈ C, and next for every tuple (cx, cy, cz, rA, rB, rC , rH) with
rA, rB , rC = r, rH ∈ R and cx, cy, cz ∈ C. Finally, we call Algorithm 5 for every
tuple (cv, cw, cx, cy, cz , rA, rB, rC , rH , rD, r, rF), rA, rB, rC , rD, rF , rH ∈ R and
cv, cw, cx, cy, cz ∈ C. Among the non-failure solutions, we return the smallest
one.

Lemma 5. If there exists an MCSR RT ⊆ R involving row r (either identified
to rA or rC) such that {rA, rB, rC , rH} ⊆ RT , {cx, cy, cz} ⊆ CT for some
CT ⊆ C, and G(M)[RT , CT] = G(MIIk

) for some k > 1, then Algorithm 4 for
arguments (cx, cy, cz, rA, rB , rC , rH) finds it.

Lemma 6. If there exists an MCSR RT ⊆ R involving row r (identified to rE)
such that {rA, rB , rC , rD, rE , rF , rH} ⊆ RT , {cv, cw, cx, cy, cz} ⊆ CT for some
CT ⊆ C, and G(M)[RT , CT] = G(MIIk

) for some k > 1, then Algorithm 5 for
arguments (cv, cw, cx, cy, cz, rA, rB, rC , rD, r, rF , rH) finds it.

We now turn to evaluating the time complexity of Algorithm 5 (the time com-
plexity of Algorithm 4 is clearly negligible with that of Algorithm 5). We first
observe that, in a graph of order n, one can find a shortest uv-path that goes
through a given node w in O(n2 log n) time [26]. Indeed, it is enough to add a new
vertex x, N(x) = {u, v}, and use the algorithm of Suurballe to find two vertex-
disjoint paths between a source (i.e., w) and a sink (i.e., x) with minimum sum
length. Testing emptiness of N(rH) ∩ N(rA) \ N(rB), N(rC) ∩ N(rB) \ N(rA),
N(rD) ∩ N(rE) ∩ N(rF), and (N(rD) ∪ N(rE) ∪ N(rF)) \ (N(rA) ∩ N(rB))) is
a simple O(n) time procedure. Cleaning any white node can be done in O(m)
time, and cleaning rA and rB in O(n) time. Moreover, according to the above,

A Polynomial-Time Algorithm for Finding a MCS Containing a Given Row 381

Algorithm 4. Check-MIIk
(cx, cy, cz, rA, rB , rC , rH)

Require: A bipartite graph G(M) = (R, C, E), four black vertices rA, rB , rC , rH ∈ R
and three white vertices cx, cy , cz ∈ C such that (rC , cy , rA, cx, rB , cz, rH) is a path
in G(M). Row r is identified either to rA or rC . Furthermore, it is assumed that
G(M) does not contain any G(MIk) or G(MII1) Tucker configuration involving
row r.

Ensure: Return RT ⊆ R such that G(MIIk) = (RT , CT , E′) for some CT ⊆ C is an
MCSR involving row r, or the failure message “NO” if such a configuration does
not exist.

1: if N(rH) ∩ (N(rA) \ N(rB)) �= ∅ or N(rC) ∩ (N(rB) \ N(rA)) �= ∅ then
2: return “NO”
3: end if
4: clean(c) for all c /∈ N(A) ∩ N(B)
5: clean(cx, cy, cz)
6: anticlean(rA, rB)
7: remove the vertices rA and rB

8: if there exists a rCrH-path in the pruned graph then
9: let P be a shortest rCrH-path in the pruned graph

10: return {rA, rB, rC , rH} ∪ {r : r ∈ V (P) ∩R}
11: else
12: return “NO”
13: end if

finding a shortest rCrH -path that goes through rE in the pruned graph (after
having removed rA and rB) is a in O((m+n)2 log(m+n)) procedure. Therefore,
the time complexity of one call to Algorithm 5 is O((m + n)2 log(m + n)) time.

According to Lemma 6, for a given row r, we have to call Algorithm 5 for
any tuple (cv, cw, cx, cy, cz, rA, rB, rC , rD, r, rF , rH), rA, rB, rC , rD, r, rF , rH ∈ R
and cv, cw, cx, cy, cz ∈ C, and return the smallest MCSR involving row r (if such
a Tucker configuration exists). There are O(m6n5) such tuples for a given row
r, and hence trying all tuples results in a O(m6 < n5(m + n)2 log(m + n)) time
procedure. The exhaustive search for G(MII1) is a simple O(m4n4) time proce-
dure. Therefore, one can find the smallest RT ⊆ R such that G(M)[RT , CT] =
G(MIIk

) for some CT ⊆ C that is responsible for an MCSR involving row r in
O(m6n5(m + n)2 log(m + n)) time (if it exists). Proposition 4 is proved.

3.4 MIV and MV Tucker Configurations

Proposition 5. Let M be a (0, 1)-matrix with corresponding vertex-colored bi-
partite graph G(M) = (R, C, E), and r be any row of M . Finding (if it exists)
a minimum cardinality RT ⊆ R responsible for an MCSR involving row r such
that G(M)[RT , CT] = G(MIV) (resp. G(MV)) for some CT ⊆ C and some k ≥ 1
is a O(m3n6) (resp. O(m3n5)) time procedure.

Proof. The proof is by brute-force searching for a G(M)[RT , CT] = G(MIV)
(resp. G(MV))) Tucker configuration involving row r (identified to rA, see Fig. 1).
The running time for both cases follows easily.

382 G. Blin, R. Rizzi, and S. Vialette

Algorithm 5. Check-MIIk
(cv, cw, cx, cy, cz, rA, rB , rC , rD, rE , rF , rH)

Require: A bipartite graph G(M) = (R, C, E), seven black vertices rA, rB, rC , rD, rE,
rF , rH ∈ R and five white vertices cv, cw, cx, cy , cz ∈ C such that both (rC , cy, rA,
cx, rB, cz, rH) and (rD, cv, rE , cw, rF) are paths in G(M) and {cv, cw} ⊆ N(rA) ∩
N(rB). Row r is identified to rE . It is assumed that G(M) contains neither a
G(MIk) or a G(MII1) Tucker configuration involving row r.

Ensure: Return RT ⊆ R such that G(MIIk) = (RT , CT , E′) for some CT ⊆ C is row-
minimal MCSR involving row r if it exists, or the failure message “NO” is such a
configuration does not exist.

1: if N(rH)∩N(rA)\N(rB) �= ∅ or N(rC)∩N(rB)\N(rA) �= ∅ or N(rD)∩N(rE)∩
N(rF) �= ∅ or (N(rD) ∪ N(rE) ∪ N(rF)) \ (N(rA) ∩ N(rB) then

2: return “NO”
3: end if
4: clean(c) for all c ∈ N(rE)
5: clean(c) for all c /∈ N(A) ∩ N(B)
6: clean(cx, cy, cz, cv, cw)
7: anticlean(rA, rB)
8: remove the black vertices rA and rB

9: if there exists a rCrH-path that goes though rE in the pruned graph then
10: let P be a shortest rCrH-path that goes though rE in the pruned graph
11: return return {rA, rB, rC , rD, rE , rF , rH} ∪ {r : r ∈ V (P) ∩R}
12: else
13: return “NO”
14: end if

What is left is to prove that G(M)[RT , C] does not contain any smaller
Tucker configuration. We first prove correctness for G(M)[RT , CT] = G(MIV).
Indeed, focus on G(M)[RT , C] and suppose that there exists some white
vertex cs ∈ C \ CT that is not a clone of some white vertex in CT . Then it follows
that N(cs) = {rA, rB}, N(cs) = {rA, rD}, N(cs) = {rB, rD}, or N(cs) = {rc}. If
N(cs) = {rc) we are done. Otherwise, G(M)[RT , C] contains a (smaller) G(MI1)
Tucker configuration. A contradiction since G(M) is assumed not to contain a
MIk

Tucker configuration involving row r. We now turn to prove correctness
for G(M)[RT , CT] = G(MV). Focus on G(M)[RT , C] and suppose that there
exists some white vertex cs ∈ C \ CT that is not a clone of some white
vertex in CT . Then it follows that N(cs) = {rA, rB}, N(cs) = {rA, rC}, N(cs) =
{rA, rD}, or N(cs) = {rB, rD}. If N(cs) = {rA, rC} we are done. Otherwise,
G(M)[RT , C] contains a (smaller) G(MI1) Tucker configuration. A contradiction
since G(M) is assumed not to contain a MIk

Tucker configuration involving
row r. ��

3.5 Summing Up

Table 1 summarizes our results.

A Polynomial-Time Algorithm for Finding a MCS Containing a Given Row 383

Table 1.

Tucker configuration Running time

MIk O(m3n4)

MIIk O(m6n5(m + n)2 log(m + n))

MIIIk O(m5n5(m + n)2 log(m + n))

MIV O(m2n6)

MV O(m3n5)

Total O(m6n5(m + n)2 log(m + n))

4 Applying Our Framework to Related Problems

Our graph pruning techniques can be used for solving related combinatorial
problems. We briefly discuss these related points.

First, the property we have considered was C1P, where a matrix has C1P
when the columns can be sorted in such a way that on each row the 1s are
consecutive. It is simple to check that our framework can also consider the case
when the property is the transpose, i.e., the rows can be sorted in such a way
that on each column the 1s are consecutive.

More interestingly, let us point out that our framework also implies an
polynomial-time algorithm for the Circular Ones Property (Circ1P) studied in
[10]. A matrix has the Circ1P if its columns can be ordered in such a way that all
1s or all 0s (possibly both) on each row are consecutive (it may help to consider
the matrix as being wrapped around a vertical cylinder). Indeed, according to
[10], Corollary 2.2, given an m×n matrix M and an arbitrary integer 1 ≤ j ≤ n,
one can compute a matrix M ′ such that M has the Circ1P if and only if M ′ as
the C1P. Therefore, we can check in polynomial-time if a given row is involved
in an MCSR for both C1P and Circ1P.

References

1. Bartholdi, J.J., Orlin, J.B., Ratliff, H.D.: Cyclic scheduling via integer programs
with circular ones. Oper Res. 28(5), 1074–1085 (1980)

2. Bergeron, A., Blanchette, M., Chateau, A., Chauve, C.: Reconstructing ancestral
gene orders using conserved intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004.
LNCS (LNBI), vol. 3240, pp. 14–25. Springer, Heidelberg (2004)

3. Blin, G., Rizzi, R., Vialette, S.: A Faster Algorithm for Finding Minimum Tucker
Submatrices. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.)
CiE 2010. LNCS, vol. 6158, pp. 69–77. Springer, Heidelberg (2010)

4. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. System Sci. 13,
335–379 (1976)

5. Chauve, C., Haus, U.-U., Stephen, T., You, V.P.: Minimal conflicting sets for the
consecutive ones property in ancestral genome reconstruction. In: Ciccarelli, F.D.,
Miklós, I. (eds.) RECOMB-CG 2009. LNCS, vol. 5817, pp. 48–58. Springer, Hei-
delberg (2009)

6. Conforti, M., Rao, M.R.: Structural properties and decomposition of linear bal-
anced matrices. Mathematical Programming 55, 129–168 (1992)

384 G. Blin, R. Rizzi, and S. Vialette

7. Diestel, R.: Graph Theory, 2nd edn. Graduate texts in Mathematics, vol. 173.
Springer, Heidelberg (2000)

8. Dom, M.: Algorithmic aspects of the consecutive-ones property. Bull. Eur. Assoc.
Theor. Comput. Sci. EATCS 98, 27–59 (2009)

9. Dom, M.: Recognition, Generation, and Application of Binary Matrices with
the Consecutive-Ones Property. Dissertation. Cuvillier, Institut für Informatik,
Friedrich-Schiller-Universität Jena (2009)

10. Dom, M., Guo, J., Niedermeier, R.: Approximation and fixed-parameter algorithms
for consecutive ones submatrix problems. Journal of Computer and System Sci-
ences (2009) (in Press, Corrected Proof)

11. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J.
Math. 15(3), 835–855 (1965)

12. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-bfs and partition refine-
ment, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theoret. Comput. Sci. 234(12), 59–84 (2000)

13. Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with
straight lines. Discrete Applied Mathematics 30(1), 29–42 (1991)

14. Hochbaum, D.S., Levin, A.: Cyclical scheduling and multi-shift scheduling: Com-
plexity and approximation algorithms. Discrete Optimization 3(4), 327–340 (2006)

15. Hsu, W.-L.: A simple test for the consecutive ones property. J. Algorithms 43(1),
1–16 (2002)

16. Hsu, W.-L., McConnell, R.M.: Pc trees and circular-ones arrangements. Theoret.
Comput. Sci. 296(1), 99–116 (2003)

17. Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recognizing
interval graphs. SIAM J. Comput. 18(1), 68–81 (1989)

18. Kou, L.T.: Polynomial complete consecutive information retrieval problems. SIAM
J. Comput. 6(1), 67–75 (1977)

19. McConnell, R.M.: A certifying algorithm for the consecutive-ones property. In:
15th Annual ACM SIAM Symposium on Discrete Algorithms SODA 2004, pp.
768–777. ACM Press, New York (2004)

20. Mecke, S., Schöbel, A., Wagner, D.: Station location complexity and approxima-
tion. In: 5th Workshop on Algorithmic Methods and Models for Optimization of
Railways ATMOS 2005, Dagstuhl, Germany (2005)

21. Mecke, S., Wagner, D.: Solving geometric covering problems by data reduction. In:
Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 760–771. Springer,
Heidelberg (2004)

22. Meidanis, J., Porto, O., Telles, G.P.: On the consecutive ones property. Discrete
Appl. Math. 88, 325–354 (1998)

23. Narayanaswamy, N.S., Subashini, R.: A new characterization of matrices with
the consecutive ones property. Discrete Applied Mathematics 157(18), 3721–3727
(2009)

24. Ruf, N., Schöbel, A.: Set covering with almost consecutive ones property. Discrete
Optimization 1(2), 215–228 (2004)

25. Stoye, J., Wittler, R.: A unified approach for reconstructing ancient gene clusters.
IEEE/ACM Trans. Comput. Biol. Bioinf. 6(3), 387–400 (2009)

26. Suurballe, J.W.: Disjoint paths in networks. Networks 4, 125–145 (1974)
27. Tucker, A.C.: A structure theorem for the consecutive 1s property. Journal of

Combinatorial Theory. Series B 12, 153–162 (1972)
28. Veinott, A.F., Wagner, H.M.: Optimal capacity scheduling. Oper. Res. 10, 518–547

(1962)

Two Combinatorial Criteria for BWT Images

Konstantin M. Likhomanov and Arseny M. Shur

Ural State University

Abstract. Burrows–Wheeler transform (BWT) is a block data trans-
formation, i. e. a function on finite words. This function is used in loss-
less data compression algorithms and possesses interesting combinatorial
properties. We study some of these properties. Namely, we prove two nec-
essary and sufficient conditions concerning BWT images. The first one
describes the words that are BWT images, while the second one explains
which words can be converted to BWT images using a natural “pump-
ing” procedure. Both conditions can be checked in linear time.

1 Introduction to BWT

In 1994, M. Burrows and D. J. Wheeler introduced a new lossless data com-
pression scheme based on a preprocessing algorithm which is now known as
Burrows–Wheeler transform (BWT). BWT maps any finite string (word) w over
an ordered alphabet to its permutation bwt(w) defined as follows. Take all cyclic
shifts of w, including w itself, sort them lexicographically and write them one
under another to obtain a square table denoted by T(w). The word written in
the last column of this table is bwt(w). For example, bwt(banana) = nnbaaa
provided that a < b < n:

T(banana) =

⎡
⎢⎢⎢⎢⎢⎢⎣

a b a n a nnn
a n a b a nnn
a n a n a bbb
b a n a n aaa
n a b a n aaa
n a n a b aaa

⎤
⎥⎥⎥⎥⎥⎥⎦

The use of BWT in data compression is based on the context dependence in most
data sources: almost each symbol heavily depends on preceding symbols (“left
context”) as well as on subsequent symbols (“right context”). For example, in an
English text, only the letter ‘e’ (and rarely ‘E’) can precede the segment ‘xample’.
BWT groups the symbols with similar right context (the rows beginning with
‘xample’ end by ‘e’) and thus produces long runs of identical symbols. So, the
output of BWT is a very good source for standard run-length or move-to-front
compressing techniques. The existence of efficient algorithms to calculate both
mappings bwt and bwt−1 allows one to build BWT-compressors for practical
use. A short list of such compressors can be found in [2]. For more basics on
BWT-based data compression the reader is addressed to [9]. Some of the recent
studies on different aspects of BWT are gathered in [6].

A. Kulikov and N. Vereshchagin (Eds.): CRS 2011, LNCS 6651, pp. 385–396, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

386 K.M. Likhomanov and A.M. Shur

Besides all possible implementations, BWT is a quite natural combinatorial
mapping possessing nice properties. The results obtained in this direction mainly
concerns words having “simple” BWT images [7,8,10,11] and permutations asso-
ciated with BWT (see, e.g., [4,5]). In this paper, we study the following natural
question: are there any words whose BWT image has a given prescribed form?

We consider two versions of this question. The first version is the simplest
one: decide, whether a given word is a BWT image. E. g., is there a word w such
that bwt(w) = banana? For the second version, consider the representation of
any word u in the form bi1

1 . . . bik

k , where b1, . . . , bk are letters, bj �= bj+1 for all
j < k, and i1, . . . , ik ∈ IN. We say that the word b1 . . . bk is the block sequence of
u. Note that if u is a BWT image of a context dependent fragment of data, then
the block sequence of u is usually much shorter than u itself. So, the question is
whether there exists a BWT image with a given block sequence. E. g., is there a
word w such that bwt(w) = bi1ai2ni3ai4ni5ai6 for some i1, . . . , i6 ∈ IN? Note that
the papers [8,10,11] were devoted to the study of the words over the alphabet
{a1 < . . . < an} whose BWT images have the block sequence an . . . a1.

In the paper, we answer the above question, providing efficiently testable
necessary and sufficient conditions for both mentioned versions of this question.
After necessary preliminaries, in Sect. 3 we characterize the property “to be
a BWT image” in terms of permutations and give a linear-time algorithm to
check the characterizing condition. This algorithm can be also used for efficient
calculation of BWT preimages. In Sect. 4, we find a combinatorial property (of
words) which is equivalent to the property “to be a block sequence of a BWT
image”. This property can be checked in linear time also. In addition, we show
that a block sequence of a BWT image is a block sequence of infinitely many
BWT images and provide a quadratic-time algorithm that builds BWT images
from a block sequence.

2 Definitions and Preliminaries

Let Σ = {a1, a2, . . . , an} be a fixed ordered alphabet with a1 < a2 < . . . < an.
The induced lexicographic ordering on the set Σ∗ of all finite words over Σ will
be also denoted by <. Unless explicitly specified, we consider the words over Σ.
A word u is primitive if the equality u = wk implies k = 1. The length of a word
u is denoted by |u|. Let r be the right cyclic shift operation on Σ∗: r(uc) = cu
for any u ∈ Σ∗, c ∈ Σ. Words u and v are conjugates if u = ri(v) for some i. A
word u has |u| distinct conjugates if and only if u is primitive.

Take a word u and let m = |u|. The m × m BWT table T(u) and the BWT
image bwt(u) are defined above.

As usual, Sm denotes the set of all permutations of the set {1, . . . , m}. Let
θ ∈ Sm, i ∈ {1, . . . , m}. The set {i, θ(i), θ2(i), θ3(i), . . .} is an orbit of θ. The
orbits of θ form a partition of the set {1, . . . , m}. For an m-element sequence
y = (y1, . . . , ym) of any origin (e.g. for a word), the action of θ on y is defined
by θ(y1, . . . , ym) = (yθ(1), . . . , yθ(m)).

Let w = c1 . . . cm be a word. There is a unique permutation σw ∈ Sm such
that (1) if ci < cj , then σw(i) < σw(j) and (2) if ci = cj , then the difference

Two Combinatorial Criteria for BWT Images 387

σw(i)−σw(j) has the same sign as i−j. This permutation is said to be the stable
sorting of w. The difference σw(i)−i will be called the shift of the i-th letter of
w under the stable sorting and denoted by sw(i). Thus, σw(i) = i+sw(i).

Every word w has a unique representation w = cp1
1 . . . cpl

l such that ci �= ci+1

for all i < l. The words cpi

i are blocks of w. It is easy to see that the stable
sorting of w moves each block as a whole, so that the shifts of all letters in a
block coincide. Then we can define the shift of a block under the stable sorting as
the shift of its letters. We write Sbw(t) for the shift of the block cpt

t . To calculate
this shift, look at the blocks preceding cpt

t in the word w and in the “stably
sorted” word σw(w). If ci = ct, then the stable sorting preserves the mutual
location of the blocks cpi

i and cpt

t . Let ci �= ct. If i < t, then cpi

i is on the left
of the block cpt

t in the word w; the stable sorting moves cpi

i to the right of cpt

t

if and only if ci > ct. Similarly, the stable sorting moves the block c
pj

j from the
right to the left of cpt

t if and only if j > t and cj < ct. Since |cpi

i | = pi, we get

Sbw(t) =
∑
i<t,

ci>ct

pi −
∑
j>t,

cj<ct

pj (1)

3 BWT and Structure of Permutations

Proposition 1. Let u be a primitive word. Then σbwt(u) has a single orbit.

Proof. The rows of the table T(u) represent the conjugates of u and hence are
all different. Let us move the rightmost column of T(u) to the leftmost position,
obtaining the table T′. In this way, each row v of T(u) will be transformed to
r(v), so the set of rows will not change. Thus, if we write the rows of T′ in
lexicographic order, we will get the table T(u) once again. This transformation
is the action of some permutation on the sequence of rows of the table T′. Let
us denote this permutation by θ. Since the first column of T′ contains the word
w = bwt(u), we see that θ(w) is the sequence of all letters of u (as well as of w)
written in lexicographical order.

Let us show that θ is the stable sorting of w. Indeed, for any v, v′ ∈ Σ∗ and
c ∈ Σ, the condition |v| = |v′| implies the equivalence of the relations cv < cv′,
v < v′, and vc < v′c. Take the numbers i < j such that wi = wj = c. Let vic
and vjc be the i-th and the j-th rows of T(u), respectively. Then vic < vjc, and
hence cvi < cvj . The word cvi [cvj] is the ith [respectively, the jth] row of the
table T′, and hence, the θ(i)th [respectively, θ(j)th] row of T(u). Thus, if i < j
and wi = wj , then θ(i) < θ(j). So, θ = σw by definition.

Let the words u, r(u), . . . , r|u|−1(u) occupy the rows i0, . . . , i|u|−1 of T(u), re-
spectively. By definition of θ, we have

θ(i0) = i1, θ(i1) = i2, . . . , θ(i|u|−1) = i0.

So, {i0, . . . , i|u|−1} is an orbit of θ. Since all conjugates of u are different, this
orbit contains |u| elements and hence is the only orbit of θ. ��

388 K.M. Likhomanov and A.M. Shur

Proposition 2. Let w = cdp1
1 cdp2

2 . . . cdpl

l , w̄ = cp1
1 . . . cpl

l . Then the orbits of
σw are exactly the sets {di1−r, di2−r, . . . , dik−r} such that {i1, i2, . . . , ik} is an
orbit of σw̄ and 0 ≤ r < d. In particular, d divides the number of orbits of σw.

Proof. It follows from (1) that d divides Sbw(t) for all t = 1, . . . , l, that is,
divides sw(i) for all i = 1, . . . , |w|. Hence, σw(i) = i + sw(i) ≡k i and the set
A = {d, 2d, . . . , |w| = |w̄|d} is invariant under σw. Then the restriction σw|A of
σw to A is a permutation on A. Being the stable sorting of w, σw induces the
stable sorting of the subsequence formed by the dth, (2d)th, . . . , (|w̄|d)th letters
of w. This subsequence is equal to w̄, so σw|A is isomorphic to σw̄ . Hence, for each
orbit {i1, i2, . . . , ik} of σw̄ there is an orbit {di1, di2, . . . , dik} of σw. Now consider
an arbitrary number between 1 and |w|. It can be uniquely represented as dj−r
with 0 ≤ r < d. Since d divides the lengths of all blocks of w, the (dj−r)th
and (dj)th letters of w belong to the same block, whence sw(dj−r) = sw(dj).
But then σw(dj−r) = dj − r + sw(dj−r) = dj + sw(dj) − r = σw(dj) − r.
So, if dj belongs to the orbit (di1, di2, . . . , dik), then dj−r belongs to the orbit
(di1−r, di2−r, . . . , dik−r). Thus, the permutation σw indeed has all the required
orbits. Since these orbits exhaust the set {1, . . . , |w|}, the proof is complete. ��
Corollary 1. If u is a primitive word, then the lengths of blocks in the word
bwt(u) are relatively prime.

The following statement is a stronger version of a well-known property of BWT
[7].

Proposition 3. For a word u, bwt(u) = ckp1
1 . . . ckpl

l if and only if there exists
a word v such that u = vk and bwt(v) = cp1

1 . . . cpl

l .

Proof. Sufficiency trivially follows from the fact that if u = vk, then there are k
instances of the row v̄k in the table T(u) for each row v̄ of T(v).

Now prove necessity. Let ū be the primitive word such that u = ūt. Then
bwt(ū) = cp̄1

1 . . . cp̄l

l , where tp̄i = kpi (compare to the previous paragraph). The
numbers p̄i are relatively prime by Corollary 1. Hence, t is the greatest common
divisor of the lengths of blocks in u. Therefore, t = kt̄ for some t̄. Then pi = t̄p̄i

and the word v = ūt̄ satisfies the required conditions. ��
Now we can prove the main theorem of this section.

Theorem 1. A word w is a BWT image if and only if the number of orbits of
σw equals the greatest common divisor of the lengths of blocks in w.

Proof. To prove necessity, suppose that w = bwt(ud), where u is a primitive word
and d ≥ 1. Let w̄ = bwt(u) = cp1

1 . . . cpl

l . By Proposition 3, w = cdp1
1 . . . cdpl

l . Then
σw has d orbits by Proposition 2, because σw̄ has a single orbit by Proposition 1.
By Corollary 1, the numbers p1, . . . , pl are relatively prime, so d is the greatest
common divisor of the lengths of blocks in w.

Now let us prove sufficiency. Let d be the greatest common divisor of the
lengths of blocks in w, m = |w|. First consider the case d = 1. We create a table T

Two Combinatorial Criteria for BWT Images 389

of size m×m, ith column of which contains the word σi
w(w) for any i = 1, . . . , |w|

(note that σm
w (w) = w). The word in the ith row of T will be denoted by ui.

The action of σw on the sequence of rows of T can be considered as the action of
σw on each column of T . The resulting table σw(T) will contain in its columns,
starting from the left, the words σ2

w(w), . . . , σm
w (w), σw(w), respectively. Hence,

if we move the rightmost column of σw(T) to the leftmost position, we will
get the table T again. During this transformation from T back to T , we first
move the word u1 from row 1 to the row σw(1) and then replace u1 by r(u1).
So, uσw(1) = r(u1). Similarly, the word uσw(1) is moved to the row σ2

w(1) and
then replaced by its right shift, and so on. Thus, uσi

w(1) = ri(u1) for all i. Since
σw has a single orbit, we have {1, σw(1), σ2

w(1), . . . , σm
w (1)} = {1, 2, . . . , m}, and

then the set of rows of T coincides with the set of cyclic shifts of the word u1.
Now let us prove that the rows of T are lexicographically ordered. Suppose

they are not. Then i < j and ui > uj for some i, j. Among all such pairs (i, j),
choose the one for which the longest common prefix of ui and uj has minimal
length. The letters in the first column of T are lexicographically ordered by
definition of σw, so ui and uj must begin with the same letter. Let ui = cvi,
uj = cvj , σ−1

w (i) = i′, σ−1
w (j) = j′. In the previous paragraph we learned that in

this case ui = r(ui′), uj = r(uj′). So, ui′ = vic, uj′ = vjc. Then ui > uj implies
that ui′ > uj′ . Since the words ui′ and uj′ have shorter common prefix than ui

and uj , we have i′ > j′. But both the i′th and the j′th letters of w are equal to c,
and the inequality σw(i′) = i < j = σw(j′) contradicts to the definition of stable
sorting. Thus, we have proved that the rows of T are lexicographically ordered
cyclic shifts of the word u1. Since the last column of T contains the word w, we
have w = bwt(u1) by definition.

Now let d > 1. Denote the word formed by the dth, (2d)th, . . . , mth letters
of w by w̄. It follows from Proposition 2 that the number of orbits of the per-
mutation σw is d times the number of orbits of σw̄ . Hence, σw̄ has a single orbit,
and w̄ = bwt(u) for some u, as we have already proved. Then w = bwt(ud) by
Proposition 3. The theorem is proved. ��
Corollary 2. If w is a BWT image having at least two different letters, then
σw has no fixed points.

Following [3], we call a permutation θ ∈ Sm indecomposable if no set {1, . . . , k}
with k < m is invariant under θ.

Corollary 3. If w is a BWT image having at least two different letters, then
σw is indecomposable.

Proof. Note that a set invariant under θ is a union of orbits of θ. Let d be the
greatest common divisor of the lengths of blocks in w and suppose that the set
{1, . . . , k} is invariant under σw. By Theorem 1 and Proposition 2, the numbers
1 and |w|−d+1 belong to the same orbit of σw, yielding k ≥ |w|−d+1. But some
other orbit contains both d and |w|. Since d < |w|−d+1, we get k = |w|. ��
The criterion given in Theorem 1 can be checked in O(|w|) time. To do this,
create a list for each letter of Σ and process w in one pass, recording each

390 K.M. Likhomanov and A.M. Shur

letter’s position in the corresponding list. For example, if w = nnbaaa, then
the lists look as follows: a : [4, 5, 6], b : [3], n : [1, 2]. Concatenating these lists
according to the order on Σ, one recovers the permutation σ−1

w which has the
same orbits as σw. In our example, σ−1

w =
(

1 2 3 4 5 6
4 5 6 3 1 2

)
. While traversing w, we

can also compute the greatest common divisor d of the lengths of blocks (by
keeping the length of the current block and the greatest common divisor of the
lengths of all previous blocks). In view of Proposition 2, it remains to choose an
arbitrary integer j ∈ [1, |w|] and check whether the orbit of σ−1

w containing j is
of length |w|

d . For the word w = nnbaaa, it is the case, while for w = banana
the permutation σ−1

w has the orbits {1, 2, 4} and {3, 5, 6}, thus indicating that
banana is not a BWT image.

Remark 1. If a word w is a BWT image, the algorithm described in the previous
paragraph allows one to restore any prescribed row of the corresponding BWT
table T . Indeed, ith column of T contains the word σi(w) (see the proof of
Theorem 1). Hence, the ith letter of some jth row of T is the σ−i

w (j)th letter
of w. When calculating the length of the orbit of σ−1

w containing the number j,
we compute the numbers σ−1

w (j), σ−2
w (j), etc. Writing down the letters in the

corresponding positions of the word w, we obtain a prefix u1 of the jth row of T

such that |u1| = |w|
d and w = bwt(ud

1). Thus, having a word which is supposed to
be a BWT image, one can do two things simultaneously: check the correctness
of the word and find any of its preimages.

Remark 2. The use of lists in the considered algorithm can be avoided. Namely,
if we scan w in advance, counting the occurrences of each letter, we can directly
record the permutation σ−1

w in a |w|-element array. This requires storing the
numbers up to |w|, so formally the algorithm uses O(|w| log |w|) additional space.
However, assuming we use one-byte letters, the required space is 3|w| if the size of
processed input word does not exceed 16Mb, while 4|w| space allows to process
the words up to 4 Gb.

4 Block Structure of BWT Images

In this section we describe a transformation of words which preserves the prop-
erty “to be a BWT image”. This transformation is then used to characterize
possible block sequences of BWT images and to build an algorithm constructing
BWT images with a given block sequence.

Let us introduce the concept of generalized blocks. Let w = cp1
1 . . . cpl

l for some
ci ∈ Σ, pi ≥ 0 (note that the letters ci and ci+1 may coincide and pi may be
equal to zero). The words cpi

i are generalized blocks of w, and the word c1 . . . cl

is a generalized block sequence of w. The above factorization of w is not unique,
so when we need to fix it, we use the notation [w] = [cp1

1 , cp2
2 , . . . , cpl

l]. If the
factorization is fixed, we can define block shifts under the stable sorting using
the same formula (1) as for usual blocks. This allows us to define shifts for
generalized blocks of zero length. For example, the stable sorting of w = ab6a2

maps [w] = [a1, b3, a0, b1, b2, a2] to [a1, a0, a2, b3, b1, b2], so we have Sb[w](3) = −3.

Two Combinatorial Criteria for BWT Images 391

Our main idea is to change the length of a generalized block by a multiple of
its shift.

Proposition 4. Suppose that [w] = [cp1
1 , cp2

2 , . . . , cpt

t , . . . , cpl

l] and k ∈ ZZ. Then
gcd(p1, . . . , pt, . . . , pl) = gcd(p1, . . . , pt+kSb[w](t), . . . , pl).

Proof. Let d = gcd(p1, . . . , pt, . . . , pl), d′ = gcd(p1, . . . , pt + kSb[w](t), . . . , pl),
and d1 = gcd(p1, . . . , pt−1, pt+1, . . . , pl). Since the formula for Sb[w](t) does
not include pt, the number d1 divides Sb[w](t). Then d = gcd(pt, d1) =
gcd(pt+kSb[w](t), d1) = d′. ��
Proposition 5. Suppose that [w] = [cp1

1 , . . . , cpt

t , . . . , cpl

l], an integer k satisfies

the inequality pt+kSb[w](t) ≥ 0, and [w]′ = [cp1
1 , . . . , c

pt+kSb[w](t)
t , . . . , cpl

l]. Then
the permutations σw and σw′ have the same number of orbits.

Proof. The case kSb[w](t) = 0 is trivial. Note that it is sufficient to prove the
proposition for the case k = sgn(Sb[w](t)). Indeed, Sb[w′](t) = Sb[w](t), so the
statement can be proved by induction for every k having the same sign as
Sb[w](t). Changing the roles of w and w′, we similarly operate with the case
kSb[w](t) < 0.

Suppose Sb[w](t) > 0 (and k = 1). Let P = p1 + p2 + . . . + pt and define an
injective function f as follows:

f(i) =

{
i, if 1 ≤ i ≤ P ;
i + Sb[w](t), if P < i ≤ |w|.

Note that if the ith letter of w is the kth letter of the jth block, then the f(i)th
letter of w′ is also the kth letter of the jth block.

Let 1 ≤ i ≤ |w| and let the ith letter of w belong to the jth block. Then
σw(i) = i + sw(i) = i + Sb[w](j) and similarly σw′(f(i)) = f(i) + Sb[w′](j). We
aim to prove that if the permutation σw maps i to i′, then the numbers f(i) and
f(i′) belong to the same orbit of σw′ . Six cases are to be considered.

Case 1 : j ≤ t, σw(i) ≤ P . Then either j = t or the jth block of w precedes the
tth one both before and after sorting. Either way, the expression (1) for Sb[w](j)
does not include pt, so we have Sb[w′](j) = Sb[w](j) and

σw′(f(i)) = f(i) + Sb[w′](j) = i + Sb[w](j) = σw(i) = f(σw(i)).

Case 2 : j ≤ t, σw(i) > P + Sb[w](t). Then the jth block of w precedes the tth
one before sorting, but not after it. Hence, pt appears in the expression (1) for
Sb[w](j) with the + sign and Sb[w′](j) = Sb[w](j) + Sb[w](t). So,

σw′(f(i)) = f(i)+Sb[w′](j) = i+Sb[w](j)+Sb[w](t) = σw(i)+Sb[w](t) = f(σw(i)).

Case 3 : j > t, σw(i) ≤ P . Here the jth block of w precedes the tth one after
sorting, but not before it. Then pt is included in the expression (1) for Sb[w](j)
with the − sign and we have Sb[w′](j) = Sb[w](j) − Sb[w](t). Hence,

σw′(f(i)) = f(i)+Sb[w′](j) = i+Sb[w](t)+Sb[w](j)−Sb[w](t) = σw(i) = f(σw(i)).

392 K.M. Likhomanov and A.M. Shur

Case 4 : j > t, σw(i) > P + Sb[w](t). Since the jth block of w follows the tth
block both before and after sorting, pt does not appear in the expression (1) for
Sb[w](j), so Sb[w′](j) = Sb[w](j). Then we have

σw′(f(i)) = f(i)+Sb[w′](j) = i+Sb[w](t)+Sb[w](j) = σw(i)+Sb[w](t) = f(σw(i)).

Case 5 : j ≤ t, P < σw(i) ≤ P +Sb[w](t). As in case 1, Sb[w′](j) = Sb[w](j). Note
that σw(i)th letter of w′ belongs to its tth block, so we have

σ2
w′(f(i)) = σw′(f(i) + Sb[w′](j)) = σw′(i + Sb[w](j)) =

σw′(σw(i)) = σw(i) + Sb[w′](t) = σw(i) + Sb[w](t) = f(σw(i)).

Case 6 : j > t, P < σw(i) ≤ P + Sb[w](t). As in case 3, Sb[w′](j) = Sb[w](j) −
Sb[w](t). Since σw(i)th letter of w′ belongs to its tth block, we have

σ2
w′(f(i)) = σw′(f(i) + Sb[w′](j)) = σw′(i + Sb[w](t) + Sb[w](j) − Sb[w](t)) =

σw′(σw(i)) = σw(i) + Sb[w′](t) = σw(i) + Sb[w](t) = f(σw(i)).

Thus, if some set {i1, i2, . . . , ir} is an orbit of σw, then the numbers f(i1),
f(i2), . . . , f(ir) with possible inclusion of some numbers from the set
{P+1, . . . , P+Sb[w](t)} form an orbit of σw′ . No orbit can be fully contained
in the set of positions of the tth block of w′, because all these positions have
the shift Sb[w](t) > 0. Hence there is a bijection between the sets of orbits of
permutations σw and σw′ .

Now let Sb[w](t) be negative. Then k = −1 and |w′| = |w|−Sb[w](t). Con-
sider the ordered alphabet

←−
Σ obtained from Σ by reversing the order. Sup-

pose that the words v, v′ ∈ ←−
Σ are given by their generalized block sequences

[v] = [cpl

l , . . . , cpt

t , . . . , cp1
1] and [v′] = [cpl

l , . . . , c
pt−Sb[w](t)
t , . . . , cp1

1]. It is easy to
see that the action of the stable sorting σv on (|w|, . . . , 1) is the same as the
action of σw on (1, . . . , |w|) and the action of σv′ on (|w′|, . . . , 1) is the same as
the action of σw′ on (1, . . . , |w′|). Also, Sb[v](l−t+1) = −Sb[w](t). Hence, σv and
σv′ have the same number of orbits by the above argument for positive shifts,
and so do σw and σw′ . ��

Combining Theorem 1, Proposition 4, and Proposition 5, we get

Corollary 4. Under the conditions of Proposition 5, if w is a BWT image, then
so is w′.

Before formulating the main result of this section, we need to introduce and
study one more notion. We say that a word w has a global ascent if it can be
factorized as w = uv, where u, v are nonempty and the maximal letter of u is
less than or equal to the minimal letter of v.

Proposition 6. If w is a BWT image having at least two different letters, then
it has no global ascents.

Two Combinatorial Criteria for BWT Images 393

Proof. If w = uv is a decomposition corresponding to a global ascent, then
the set {1, . . . , |u|} is invariant under σw by definition of stable sorting. This
contradicts to Corollary 3. ��
Proposition 7. If a nonempty word has no global ascents, then we can delete
one of its letters so that the remaining word will have no global ascents as well.

Proof. Suppose that w have no global ascents. The case |w| ≤ 2 is trivial, so
suppose |w| ≥ 3. Let c and b be the maximal and second maximal letters of w,
respectively. Also, let i (respectively, j) be the rightmost position of w in which
the letter c (respectively, b) occurs. Assume that if we delete c in ith position,
we will get a word with a global accent (otherwise we are done with the proof).
Then w = uv, where after the removal of c both words u and v remain nonempty
and the maximal letter of u is no greater than the minimal letter of v. So, the
removal of c changes either the maximal letter of u or the minimal letter of v.
The latter possibility obviously cannot take place; hence, the ith position lies
inside u and contains the only occurrence of c in w.

Now consider the jth position. If j < i, then u contains b’s while v does
not. This contradicts to the assumption that u and v form a global ascent after
removing the letter c. Thus, j > i. It remains to check that the word obtained
from w by deleting b in jth position has no global ascents. Let w = xy be an
arbitrary factorization of w into two nonempty words. If the ith position is in x,
then the maximal letter of x is greater than any letter of y, and this situation
would not change if we delete the letter b somewhere. If the ith position is in
y, then the minimal letter of y is less than b, because otherwise w has a global
ascent. Hence, the deletion of b in y does not change the minimal letter of y
and then does not produce a global ascent. Therefore, the deletion of b in jth
position results in a word with no global ascents. ��
We are approaching the main result of this section, which characterizes the words
v = c1 . . . cl that can be transformed to BWT images by a sort of “pumping”:
each letter ci can be replaced by cpi

i for an arbitrary positive number pi. In
particular, we characterize the words that are block sequences of BWT images.

Theorem 2. Let v = c1 . . . cl be an arbitrary word with at least two different
letters. A BWT image of the form cp1

1 . . . cpl

l , where pi > 0 for all i, exists if and
only if v has no global ascents.

Proof. If v has a global ascent, then any word of the form cp1
1 . . . cpl

l also has a
global ascent. By Proposition 6, such a word is not a BWT image.

We prove the converse statement by induction on l. The inductive base is
trivial: if l = 2, then c1 > c2 and bwt(v) = v = c1c2. For the inductive step,
let l > 2. By Proposition 7, there exists a number t ∈ {1, . . . , l} such that the
word c1 . . . ct−1ct+1 . . . cl has no global ascents. By the inductive assumption,
there exists a BWT image u which can be factorized in generalized blocks as
[u] = [cp1

1 , . . . , c
pt−1
t−1 , c

pt+1
t+1 , . . . , cpl

l]. Consider one more factorization of u, namely,
[u]′ = [cp1

1 , . . . , c
pt−1
t−1 , c0

t , c
pt+1
t+1 , . . . , cpl

l]. If |Sb[u]′(t)| = k > 0, then by Corollary 4
the factorization [cp1

1 , . . . , c
pt−1
t−1 , ck

t , c
pt+1
t+1 , . . . , cpl

l] defines a BWT image.

394 K.M. Likhomanov and A.M. Shur

Now let Sb[u]′(t) = 0. Consider the formula (1) for Sb[u]′(t). If the right-
hand expression is empty, then ct ≥ ci for i < t and ct ≤ ci for i > t. But
then v obviously has a global ascent. Hence the formula includes pj for some
j > t. Since the block c

pj

j of [u]′ is nonempty, we have |Sb[u]′(j)| = q > 0 by
Corollary 2. We replace the block c

pj

j in [u]′ by c
pj+q
j , obtaining a factorization

[ū] of a new word ū. The word ū is a BWT image by Corollary 4 and clearly
|Sb[ū](t)| = q. So, applying Corollary 4 once again we deduce that the word
[cp1

1 , . . . , c
pt−1
t−1 , cq

t , c
pt+1
t+1 , . . . , c

pj+q
j , . . . , cpl

l] is a BWT image. The inductive step
is proved. ��
Remark 3. The check of v for global ascents takes O(l) time. One needs to
traverse v one time in each direction to calculate the maximum letters of all
prefixes and the minimum letters of all suffixes, respectively. E. g., the word
banana has no global ascents and then is a block sequence of some BWT image.

The proof of Theorem 2 gives us the following algorithm to “pump” a word to
a BWT image. Note that Corollary 4 ensures that the obtained image can be
“pumped” further to get infinitely many BWT images.

Algorithm. (After some steps, comments are given.)
Input : a word v = c1 . . . cl with at least two different letters.
Output : a BWT image of the form cp1

1 . . . cpl

l with p1, . . . , pl > 0, or “NO”.

1. Check whether v has a global ascent. If it does, return “NO” and stop.
(Theorem 2)

2. Construct a sequence of words without global ascents v1 = v, v2, . . . , vl−1,
each being obtained by deleting one letter from the previous one. (Proposi-
tion 7)

3. Let [wl−1] = [c1
1, c

1
2], where vl−1 = c1c2; let j = l−1.

4. If j = 1, return w1 and stop. (An exit point of the main loop)
5. Let vj−1 = c1 . . . cl−j+2. Word vj was obtained from vj−1 by deleting some

letter, say, ck, the factorization [wj] = [cp1
1 , . . . , c

pk−1
k−1 , c

pk+1
k+1 , . . . , c

p1−j+2
l−j+2] of

the word wj is already built. Let [wj]′ = [cp1
1 , . . . , c

pk−1
k−1 , c0

k, c
pk+1
k+1 , . . . , c

p1−j+2
l−j+2].

Let q = Sb[wj]′(k).
6. If q �= 0, then let [wj−1] = [cp1

1 , . . . , c
pk−1
k−1 , cq

k, c
pk+1
k+1 , . . . , c

p1−j+2
l−j+2], decrease j

by 1 and go to step 4.
7. We come here if q = 0. Find any i such that the formula (1) for

Sb[w]′(k) includes pi; w. l. o. g., i < k. Let r = |Sb[w]′(i)|, [wj−1] =
[cp1

1 , . . . , cpi+r
i , . . . , c

pk−1
k−1 , cr

k, c
pk+1
k+1 , . . . , c

p1−j+2
l−j+2], decrease j by 1 and go to

step 4.

Example. In order to demonstrate all steps of the above algorithm, we construct
a BWT image from the word dacbcda. The word has no global ascents, so this
is possible.

By deleting letters in the way, described in the proof of Proposition 7, we get
v1 = v = dacbcda, v2 = dacbca, v3 = dacba, v4 = daba, v5 = daa, v6 = da.

Two Combinatorial Criteria for BWT Images 395

Then we put [w6] = [d1, a1] and enter the main cycle to obtain, subsequently,
[w6]′ = [d1, a1, a0], Sb[w6]′(3) = −1, [w5] = [d1, a1, a1];
[w5]′ = [d1, a1, b0, a1] and Sb[w5]′(3) = p4 − p1 = 0; take i = 1; Sb[w5]′(1) = 2,

[w4] = [d3, a1, b2, a1];
[w4]′ = [d3, a1, c0, b2, a1], Sb[w4]′(3) = p4 +p5−p1 = 0; take i = 4; Sb[w4]′(4) =

−2, [w3] = [d3, a1, c2, b4, a1];
[w3]′ = [d3, a1, c2, b4, c0, a1], Sb[w3]′(5) = −2, [w2] = [d3, a1, c2, b4, c2, a1];
[w2]′ = [d3, a1, c2, b4, c2, d0, a1], Sb[w]′1(6) = 1, and finally,
[w1] = [d3, a1, c2, b4, c2, d1, a1].
The obtained word is indeed a BWT image:
dddaccbbbbccda = bwt(abcbcdaddbcbcd).

Remark 4. Let us estimate the time complexity of the above algorithm. Rather
than actually constructing the word sequence {v1, . . . , vl−1} we can just enumer-
ate the letters of v in the order of their removal. From the proof of Proposition 7
it follows that to determine the next letter in this order we need to find two great-
est letters among the remaining ones and check one word for global ascents. This
takes linear time (see Remark 3), so the whole enumeration can be performed
in O(l2) time. After that, we set lengths of the two remaining blocks to 1 and
all other lengths of blocks — to 0. Then on each step we compute the shift of
the current block (O(l) time); if it is equal to zero, we find another block whose
length we need to change (O(l) time) and compute its shift (also O(l) time).
This procedure will be repeated l−2 times, so our algorithm has quadratic time
complexity overall.

Let us note that if some of the words vi obtained on step 2 is a BWT image, we
can suppose wi = vi and immediately jump to step 4. If we perform a linear-time
check for BWT image on each of vi, this won’t affect the worst-case asymptotics,
but will improve the best-case complexity: the algorithm will run in linear time
if v itself is a BWT image.

References

1. Burrows, M., Wheeler, D.J.: A Block-sorting lossless data compression algorithm.
SRC Research Report 124, Digital Systems Research Center, Palo Alto (1994)

2. BWT compression comparison, http://compressionratings.com/bwt.html
3. Comtet, L.: Advanced combinatorics. Reidel, Dordrecht (1974)
4. Crochemore, M., Désarménien, J., Perrin, D.: A note on the Burrows–Wheeler

transformation. Theor. Comput. Sci. 332(1-3), 567–572 (2005)
5. Duval, J.-P., Lefebvre, A.: Words over ordered alphabet and suffix permutations.

RAIRO Theor. Inform. Appl. 36, 249–259 (2002)
6. Ferragina, P., Manzini, G., Muthukrishnan, S. (eds.): The Burrows–Wheeler trans-

form: special issue of Theor. Comput. Sci., vol. 387(3) (2007)
7. Mantaci, S., Restivo, A., Sciortino, M.: Burrows–Wheeler transform and Sturmian

words. Inf. Process. Lett. 86, 241–246 (2003)
8. Mantaci, S., Restivo, A., Sciortino, M.: Combinatorial aspects of the Burrows-

Wheeler transform. In: Proc. WORDS 2003, vol. 27, pp. 292–297. TUCS Gen.
Publ. (2003)

http://compressionratings.com/bwt.html

396 K.M. Likhomanov and A.M. Shur

9. Manzini, J.: An analysis of the Burrows–Wheeler transform. J. ACM 48(3), 207–
230 (2001)

10. Restivo, A., Rosone, G.: Balanced Words Having Simple Burrows-Wheeler Trans-
form. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 431–442.
Springer, Heidelberg (2009)

11. Simpson, J., Puglisi, S.J.: Words with simple Burrows–Wheeler transforms. Elec-
tronic J. Comb. 15, #R83 (2008)

Recent Results on Polynomial Identity Testing

Amir Shpilka

Faculty of Computer Science
Technion - Israel Institute of Technology

Haifa, Israel
shpilka@cs.technion.com

http://www.cs.technion.ac.il/~shpilka/

Polynomial Identity Testing (PIT) is a fundamental problem in algebraic com-
plexity: We are given a circuit computing a multivariate polynomial, over some
field F, and we have to determine whether it is identically zero or not. Note that
we want the polynomial to be identically zero and not just to be equal to the
zero function so, for example, x2−x is the zero function over F2 but not the zero
polynomial. The importance of this problem follows from its many applications:
Algorithms for primality testing [2, 3], for deciding if a graph contains a perfect
matching [19, 20, 8] and more, are based on reductions to the PIT problem (see
the introduction of [18] for more applications).

There are two well studied scenarios in which the PIT problem is considered.
The first is the so called black-box model in which the circuit is given as a black-
box and we can access it only by querying its value on inputs of our choice. It is
clear that every such algorithm must produce a test set for the circuit. Namely,
a set of points such that if the circuit vanishes on all the points in the set then
the circuit computes the zero polynomial. Another well studied scenario is the
non black-box case in which the circuit is given to us as input. In particular, we
have access to the polynomials that are being computed at various gates of the
circuit. Clearly this is an ‘easier’ version of the problem, yet PIT is extremely
difficult in this model as well.

Determining the complexity of PIT is one of the greatest challenges of theo-
retical computer science. It is one of a few problems for which we have coRP
algorithms but no sub-exponential time deterministic algorithms. Indeed, many
clever randomized algorithms are known for the general PIT question [26, 29,
10, 9, 18, 2] whereas sub-exponential time deterministic algorithms are known
only for very restricted models. One explanation for this state of affairs is the
strong relation between PIT and lower bounds for arithmetic circuits. Although
seemingly very different, the problem of derandomizing PIT (i.e., that of giv-
ing efficient deterministic algorithms for the problem) is closely related to the
problem of proving super-polynomial lower bounds for arithmetic circuits. In
[14] Kabanets and Impagliazzo showed that efficient deterministic algorithms
for PIT imply that NEXP does not have polynomial size arithmetic circuits.
Specifically, if PIT can be solved deterministically in polynomial time, even in
the non black-box model, then either the Permanent cannot be computed by
polynomial size arithmetic circuits or NEXP �⊆ P/poly. That is, we get a su-
per polynomial lower bound either for NEXP or for the Permanent. In [14] it

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 397–400, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cs.technion.ac.il/~shpilka/

398 A. Shpilka

was also shown that from super-polynomial lower bounds for arithmetic circuits
one can design a deterministic quasi-polynomial time algorithm for PIT. In [12]
(almost) analogous results for bounded depth circuits were obtained. In [13, 1]
it was observed that polynomial time derandomization of PIT, in the black-box
model, implies exponential lower bounds for arithmetic circuits. These results
show the strong connection between PIT and lower bounds and indicate how
difficult and important this problem is.

Because of the strong connection to proving lower bounds it is not surprising
that the PIT problem becomes very interesting already for bounded depth cir-
cuits. Specifically, [4] proved that polynomial time derandomization of PIT for
depth 4 circuits already implies exponential lower bounds for general arithmetic
circuits. In combination with the results of [14] this gives a quasi-polynomial
time derandomization of PIT for general arithmetic circuits. Hence, the problem
of derandomizing PIT for depth 4 circuits is as difficult (and as important) as
the problem for general arithmetic circuits.

Currently, deterministic subexponential PIT algorithms are known for non-
commutative arithmetic formulae [21], for depth 3 circuits with a small top
fan-in [11, 17, 15, 16, 24], for read-k formulas [5] and for multilinear depth 4
circuits with bounded top fan-in (as well as several other restricted versions of
depth 4 circuits [6, 23, 27, 25]). It is not known whether derandomizing PIT
for depth 4 multilinear circuit implies a derandomization of PIT for general
multilinear circuits. However, such a derandomization does imply an exponential
lower bound for general multilinear circuits, thus improving the slightly super
linear bound of [22].

Another line of research concerning PIT focused on better understanding
the relation to other computational problems. In [28] a relation between PIT
and multivariate polynomial factorization was found. Specifically, [28] showed
that one can derandomize PIT if and only if one can derandomize the problem
of computing variable disjoint factors of a given multilinear polynomial (that
relation holds both in the black-box and non black-box models). In [7] a relation
between deterministic PIT to circuit lower bounds and the isolation lemma was
found.

In this talk we shall survey some of the results on PIT that were mentioned
above and give a list of what we think are the most accessible and important
open problems.

References

1. Agrawal, M.: Proving lower bounds via pseudo-random generators. In: Sarukkai,
S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 92–105. Springer, Heidelberg
(2005)

2. Agrawal, M., Biswas, S.: Primality and identity testing via chinese remaindering.
J. ACM 50(4), 429–443 (2003)

3. Agrawal, M., Kayal, N., Saxena, N.: Primes is in P. Annals of Mathematics 160(2),
781–793 (2004)

Recent Results on Polynomial Identity Testing 399

4. Agrawal, M., Vinay, V.: Arithmetic circuits: A chasm at depth four. In: Proceedings
of the 49th Annual FOCS, pp. 67–75 (2008)

5. Anderson, M., van Melkebeek, D., Volkovich, I.: Derandomizing Polynomial Iden-
tity Testing for Multilinear Constant-Read Formulae. In: Electronic Colloquium
on Computational Complexity (ECCC), vol. 17 (2010)

6. Arvind, V., Mukhopadhyay, P.: The monomial ideal membership problem and poly-
nomial identity testing. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp.
800–811. Springer, Heidelberg (2007)

7. Arvind, V., Mukhopadhyay, P.: Derandomizing the isolation lemma and lower
bounds for circuit size. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R.
(eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 276–289. Springer,
Heidelberg (2008)

8. Chari, S., Rohatgi, P., Srinivasan, A.: Randomness-optimal unique element iso-
lation with applications to perfect matching and related problems. SIAM J. on
Computing 24(5), 1036–1050 (1995)

9. Chen, Z., Kao, M.: Reducing randomness via irrational numbers. SIAM J. on
Computing 29(4), 1247–1256 (2000)

10. DeMillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing.
Inf. Process. Lett. 7(4), 193–195 (1978)

11. Dvir, Z., Shpilka, A.: Locally decodable codes with 2 queries and polynomial iden-
tity testing for depth 3 circuits. SIAM J. on Computing 36(5), 1404–1434 (2006)

12. Dvir, Z., Shpilka, A., Yehudayoff, A.: Hardness-randomness tradeoffs for bounded
depth arithmetic circuits. SIAM J. on Computing 39(4), 1279–1293 (2009)

13. Heintz, J., Schnorr, C.P.: Testing polynomials which are easy to compute (extended
abstract). In: Proceedings of the 12th annual STOC, pp. 262–272 (1980)

14. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity 13(1-2), 1–46 (2004)

15. Karnin, Z.S., Shpilka, A.: Deterministic black box polynomial identity testing of
depth-3 arithmetic circuits with bounded top fan-in. In: Proceedings of the 23rd
Annual CCC, pp. 280–291 (2008)

16. Kayal, N., Saraf, S.: Blackbox polynomial identity testing for depth 3 circuits. In:
Electronic Colloquium on Computational Complexity (ECCC), vol. 32 (2009)

17. Kayal, N., Saxena, N.: Polynomial identity testing for depth 3 circuits. Computa-
tional Complexity 16(2), 115–138 (2007)

18. Lewin, D., Vadhan, S.: Checking polynomial identities over any field: Towards a
derandomization? In: Proceedings of the 30th Annual STOC, pp. 428–437 (1998)

19. Lovasz, L.: On determinants, matchings, and random algorithms. In: Budach, L.
(ed.) Fundamentals of Computing Theory. Akademia-Verlag (1979)

20. Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion.
Combinatorica 7(1), 105–113 (1987)

21. Raz, R., Shpilka, A.: Deterministic polynomial identity testing in non commutative
models. Computational Complexity 14(1), 1–19 (2005)

22. Raz, R., Shpilka, A., Yehudayoff, A.: A lower bound for the size of syntactically
multilinear arithmetic circuits. SIAM J. on Computing 38(4), 1624–1647 (2008)

23. Saxena, N.: Diagonal circuit identity testing and lower bounds. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 60–71. Springer, Heidelberg
(2008)

24. Saxena, N., Seshadhri, C.: Blackbox identity testing for bounded top fanin depth-
3 circuits: the field doesn’t matter. In: Electronic Colloquium on Computational
Complexity (ECCC), vol. 17 (2010)

400 A. Shpilka

25. Saraf, S., Volkovich, I.: Black-Box Identity Testing of Depth-4 Multilinear Circuits.
In: Proceedings of the 43rd Annual STOC (2011)

26. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. JACM 27(4), 701–717 (1980)

27. Shpilka, A., Volkovich, I.: Improved polynomial identity testing for read-once for-
mulas. In: APPROX-RANDOM, pp. 700–713 (2009)

28. Shpilka, A., Volkovich, I.: On the relation between polynomial identity testing and
finding variable disjoint factors (2009) (submitted)

29. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Symbolic and Al-
gebraic Computation, pp. 216–226 (1979)

Towards Approximate Matching in Compressed

Strings: Local Subsequence Recognition�

Alexander Tiskin

Department of Computer Science, University of Warwick,
Coventry CV4 7AL, UK

Abstract. A grammar-compressed (GC) string is a string generated
by a context-free grammar. This compression model includes LZ78 and
LZW compression as a special case. We consider the longest common
subsequence problem and the local subsequence recognition problem on
a GC-text against a plain pattern. We show that, surprisingly, both prob-
lems can be solved in time that is within a polylogarithmic factor of the
best existing algorithms for the same problems on a plain text. In a wider
context presented elsewhere, we use these results as a stepping stone to
efficient approximate matching on a GC-text.

1 Introduction

String compression is a classical area of computer science. It is natural to ask
whether compressed strings can be processed efficiently without decompression.
Early examples of such algorithms were given e.g. by Amir et al. [1] and by
Rytter [13].

We consider the following general model of compression.

Definition 1. Let t be a string of length n (typically large). String t will be
called a grammar-compressed string (GC-string), if it is generated by a context-
free grammar, also called a straight-line program (SLP). An SLP of length n̄,
n̄ ≤ n, is a sequence of n̄ statements. A statement numbered k, 1 ≤ k ≤ n̄,
has one of the following forms: tk = α, where α is an alphabet character, or
tk = titj, where 1 ≤ i, j < k.

We identify every symbol tr with the string it expands to; in particular, we have
t = tn̄. In general, the plain string length n can be exponential in the GC-string
length n̄.

Grammar compression includes as a special case the classical LZ78 and LZW
compression schemes by Ziv, Lempel and Welch [22,20]. It should also be noted
that certain other compression methods, such as e.g. LZ77 and run-length com-
pression, do not fit directly into the grammar compression model.

� Research supported by the Centre for Discrete Mathematics and Its Applications
(DIMAP), University of Warwick, and by the Royal Society Leverhulme Trust Senior
Research Fellowship.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 401–414, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

402 A. Tiskin

The algorithms in this paper will take as input a grammar-compressed text
string t of length n, generated by an SLP of length n̄, and a plain pattern string
p of length m. We aim at algorithms with running time that is a low-degree
polynomial in m, n̄, but is independent of n (which could be exponential in n̄).

In this paper, we consider the longest common subsequence (LCS) prob-
lem, and the local subsequence recognition problem on a GC-text against a
plain pattern. We show that, surprisingly, both problems can be solved in time
O(m log m · n̄), which is within a polylogarithmic factor of the best existing algo-
rithms for the same problems on a plain text against a plain pattern. In a wider
context presented in [14], we use these results as a stepping stone to efficient
approximate matching on a GC-text.

2 General Techniques

In this section and the next, we recall the algorithmic framework of semi-local
string comparison, developed in [15,16,18], and fully presented in [14].

2.1 Preliminaries

For indices, we will use either integers, or odd half-integers :

{. . . ,−2,−1, 0, 1, 2, . . .} {
. . . ,− 5

2 ,− 3
2 ,− 1

2 , 1
2 , 3

2 , 5
2 , . . .

}
For ease of reading, odd half-integer variables will be indicated by hats (e.g. ı̂,
ĵ). Ordinary variable names (e.g. i, j, with possible subscripts or superscripts),
will normally denote integer variables, but can sometimes denote a variable that
may be either integer, or odd half-integer. We denote integer and odd half-integer
intervals by

[i : j] = {i, i + 1, . . . , j − 1, j} 〈i : j〉 =
{
i + 1

2 , i + 3
2 , . . . , j − 3

2 , j − 1
2

}
When dealing with pairs of numbers, we will often use geometric language and
call them points. We will write (i0, j0) � (i1, j1) if i0 < i1, j0 < j1, and (i0, j0) ≶
(i1, j1) if i0 < i1, j0 > j1. We will call these strict partial orders �- and ≶-
dominance. When visualising points, we will use the matrix indexing convention:
the first coordinate in a pair increases downwards, and the second coordinate
rightwards.

We use standard terminology for geometric dominance and other partial or-
ders. In particular, a set of elements forms a chain, if they are pairwise compa-
rable, and an antichain, if they pairwise incomparable. Note that a �-chain is
a ≶-antichain, and vice versa. An element in a partially ordered set is minimal
(respectively, maximal), if, in terms of the partial order, it does not dominate
(respectively, is not dominated by) any other element in the set. All minimal
(respectively, maximal) elements in a partially ordered set form an antichain.

Given two index ranges I, J , it will be convenient to denote their Cartesian
product by (I | J). We extend this notation to Cartesian products of intervals:

[i0 : i1 | j0 : j1] = ([i0 : i1] | [j0 : j1])

Towards Approximate Matching in Compressed Strings 403

〈i0 : i1 | j0 : j1〉 = (〈i0 : i1〉 | 〈j0 : j1〉)

Given index ranges I, J , a vector over I is indexed by i ∈ I, and a matrix over
(I | J) is indexed by i ∈ I, j ∈ J . We will denote by AT the transpose of
matrix A.

Definition 2. Let D be a matrix over 〈i0 : i1 | j0 : j1〉. Its distribution matrix
DΣ over [i0 : i1 | j0 : j1] is defined by

DΣ(i, j) =
∑

ı̂∈〈i:i1〉,ĵ∈〈j0:j〉 D(̂ı, ĵ)

for all i ∈ [i0 : i1], j ∈ [j0 : j1].

Definition 3. A permutation (respectively, subpermutation) matrix is a zero-
one matrix containing exactly one (respectively, at most one) nonzero in every
row and every column.

Typically, (sub)permutation matrices will be indexed by odd half-integers. When
dealing with such matrices, we will write “nonzeros” for “index pairs correspond-
ing to nonzeros”, as long as this does not lead to confusion. We will normally
assume that a (sub)permutation matrix with n nonzeros is given implicitly by
a compact data structure of size O(n), that allows constant-time access to each
nonzero both by the row and by the column index.

2.2 Semi-local LCS

We will consider strings of characters taken from an alphabet. Two alphabet
characters α, β match, if α = β, and mismatch otherwise. In addition to alphabet
characters, we introduce a special non-alphabet wildcard character ‘ ’, which
matches itself and all other characters.

It will be convenient to index strings by odd half-integer, rather than integer
indices, e.g. string a = α 1

2
α 3

2
. . . αm− 1

2
. We will index strings as vectors, writing

e.g. a(̂ı) = αı̂, a〈i : j〉 = αi+ 1
2

. . . αj− 1
2
. String concatenation will be denoted by

juxtaposition.
Given a string, we distinguish between its contiguous substrings, and not

necessarily contiguous subsequences. Special cases of a substring are a prefix and
a suffix of a string. Unless indicated otherwise, our algorithms will take as input
a string a of length m, and a string b of length n.

Definition 4. Given strings a, b, the longest common subsequence (LCS) prob-
lem asks for the length of the longest string that is a subsequence of both a and
b. We will call this length the LCS score of strings a, b.

A classical solution to the global LCS problem is given by the dynamic program-
ming algorithm [12,19], which runs in time O(mn). The best known algorithms
for the LCS problem [10,4,2] improve this running time by (model-dependent)
polylogarithmic factors.

404 A. Tiskin

b

a

a

b

c

b

c

a

b a a b c a b c a b a c ac a b c a b a
b

a

a

b

c

b

c

a

b a a b c a b c a b a c ac a b c a b a•

•

Fig. 1. Alignment dag Ga,b, a highest-scoring path, nonzeros of Pa,b as seaweeds

Definition 5. Given strings a, b, the semi-local LCS problem asks for the LCS
scores as follows: a against every substring of b (the string-substring LCS scores);
every prefix of a against every suffix of b (the prefix-suffix LCS scores); symmet-
rically, the substring-string LCS scores and the suffix-prefix LCS scores, defined
as above but with the roles of a and b exchanged.

It turns out that, although more general than the LCS problem, the semi-local
LCS problem can also be solved within (model-dependent) polylogarithmic fac-
tors of O(mn).

A special case of the semi-local LCS problem is the local subsequence recog-
nition problem, which, given a text t and a pattern p, asks for the substrings in
t containing p as a subsequence. This problem can also be regarded as a basic
form of approximate pattern matching.

In certain contexts, such as when one of the input strings (say, a) is very long,
we may not wish to deal with all the substrings of the longer string, but still to
consider the other three components of the semi-local LCS problem.

Definition 6. Given strings a, b, the three-way semi-local LCS problem asks
for the prefix-suffix, suffix-prefix and substring-string LCS scores, but excludes
the string-substring LCS scores.

2.3 Alignment Dags and Score Matrices

It is well-known that an instance of the LCS problem can be represented by
a dag (directed acyclic graph) on a rectangular grid of nodes, where character
matches correspond to edges scoring 1, and mismatches to edges scoring 0.

Definition 7. An alignment dag is a weighted dag, defined on the set of nodes
vl,i, l ∈ [l0 : l1], i ∈ [i0, i1]. The edge and path weights are called scores. For all
l ∈ [l0 : l1], l̂ ∈ 〈l0 : l1〉, i ∈ [i0, i1], ı̂ ∈ 〈i0 : i1〉, the alignment dag contains:
horizontal edge vl,ı̂− 1

2
→ vl,ı̂+ 1

2
and vertical edge vl̂− 1

2 ,i → vl̂+ 1
2 ,i, both with score

0; diagonal edge vl̂− 1
2 ,ı̂− 1

2
→ vl̂+ 1

2 ,ı̂+ 1
2

with score either 0 or 1.

An alignment dag can be viewed as an (l1 − l0) × (i1 − i0) grid of cells. An
instance of the semi-local LCS problem on strings a, b corresponds to an m× n
alignment dag Ga,b; a cell indexed by l̂ ∈ 〈0 : m〉, ı̂ ∈ 〈0 : n〉 is called a match
cell, if a(l̂) matches b(̂ı), and a mismatch cell otherwise (recall that the strings

Towards Approximate Matching in Compressed Strings 405

may contain wildcard characters). The diagonal edges in match cells have score
1, and in mismatch cells score 0. Clearly, the diagonal edges with score 0 do not
affect maximum node-to-node scores, and can therefore be ignored.

Example 1. Figure 1 shows the alignment dag for strings a = “baabcbca”, b =
“baabcabcabaca”. All edges are directed left-to-right and top-to-bottom; the blue
(respectively, red) colour1 corresponds to edge weight 0 (respectively, 1). The
highlighted path of score 5 corresponds to the string-substring LCS score for
string a against substring b〈4 : 11〉 = “cabcaba”.

The semi-local LCS problem is equivalent to the problem of finding the highest-
scoring paths for each of the four possible path types (top-to-bottom, left-to-
bottom, top-to-right, and left-to-right), and every conforming pair of endpoints
on the boundary of the alignment dag. The analysis of different path types
can be simplified by padding one of the input strings with wildcard characters.
Accordingly, we need to consider an extended alignment dag for string a over
〈0 : m〉 against string m b m over 〈−m : m + n〉.
Definition 8. Given strings a, b, the corresponding semi-local score matrix is a
matrix over [−m : n | 0 : m + n], defined by Ha,b(i, j) = max score(v0,i � vm,j),
where i ∈ [−m : n], j ∈ [0 : m + n], and the maximum is taken across all
paths between the given endpoints v0,i, vm,j in the m × (2m + n) alignment dag
Ga, m b m . If i = j, we have Ha,b(i, j) = 0. By convention, if j < i, then we let
Ha,b(i, j) = j − i < 0.

Example 2. Figure 2 shows the matrix Ha,b, giving all semi-local LCS scores for
strings a, b as in the previous examples. The entry Ha,b(4, 11) = 5 is circled.

The solution for each of the four components of the semi-local LCS problem can
be obtained from the semi-local score matrix Ha,b by simple linear transforma-
tions; see [14] for details.

Theorem 1. We have

Ha,b(i, j) = j − i − PΣ
a,b(i, j) = m − PTΣT

a,b (i, j)

where Pa,b is a permutation matrix over 〈−m : n | 0 : m + n〉. In particular,
string a is a subsequence of substring b〈i : j〉 for some i, j ∈ [0 : n], if and
only if PTΣT

a,b (i, j) = 0. (Note that the expression PTΣT
a,b involves two matrix

transpositions.)

Proof. The proof is based on a careful analysis of the properties of semi-local
score matrices. See [14, Section 3.2] for details. ��
The key idea of our approach is to view Theorem 1 as a description of an implicit
solution to the semi-local LCS problem. The semi-local score matrix Ha,b is
represented implicitly by the nonzeros of the permutation matrix Pa,b.

1 For colour illustrations, the reader is referred to the online version of this paper.

406 A. Tiskin

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

8 8

7 7 8

6 6 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

5 6 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

4 5 6 6 6 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8

3 4 5 5 5 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8

2 3 4 4 4 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8

1 2 3 3 4 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8

0 1 2 3 4 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8

−1 0 1 2 3 4 5 5 6 7 7 7 7 7 7 7 8 8 8 8 8 8

−2−1 0 1 2 3 4 4 5 6 6 6 6 7 7 7 8 8 8 8 8 8

−3−2−1 0 1 2 3 3 4 5 5 6 6 7 7 7 8 8 8 8 8 8

−4−3−2−1 0 1 2 2 3 4 4 5 5 6 6 6 7 7 8 8 8 8

−5−4−3−2−1 0 1 2 3 4 4 5 5 6 6 6 7 7 8 8 8 8

−6−5−4−3−2−1 0 1 2 3 3 4 4 5 5 6 7 7 8 8 8 8

−7−6−5−4−3−2−1 0 1 2 2 3 3 4 4 5 6 7 8 8 8 8

−8−7−6−5−4−3−2−1 0 1 2 3 3 4 4 5 6 7 8 8 8 8

−9−8−7−6−5−4−3−2−1 0 1 2 3 4 4 5 6 7 8 8 8 8

−10−9−8−7−6−5−4−3−2−1 0 1 2 3 3 4 5 6 7 7 7 8

−11−10−9−8−7−6−5−4−3−2−1 0 1 2 2 3 4 5 6 7 7 8

−12−11−10−9−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 7 8

−13−12−11−10−9−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8

5

Fig. 2. Matrices Ha,b and Pa,b

Definition 9. Given strings a, b, the semi-local seaweed matrix is a permuta-
tion matrix Pa,b over 〈−m : n | 0 : m + n〉, defined by Theorem 1.

Example 3. Figure 2 shows the unit-anti-Monge property of matrix Ha,b by a
coloured grid pattern, where the red (respectively, blue) lines separate matrix
elements that differ by 1 (respectively, by 0). The nonzeros of the semi-local
seaweed matrix Pa,b over 〈−8 : 13 | 0 : 8 + 13〉 are shown by green bullets.

The nonzeros of Pa,b that are ≶-dominated by the point (4, 11) correspond to
the green bullets lying below and to the left of the circled entry. Note that there
are exactly two such nonzeros, therefore PΣ

a,b(4, 11) = 2, and that Ha,b(4, 11) =
11 − 4 − PΣ

a,b(4, 11) = 11 − 4 − 2 = 5.
The nonzeros of Pa,b that ≶-dominate the point (4, 11) correspond to the

green bullets lying above and to the right of the circled entry. Note that there are
exactly three such nonzeros, therefore PTΣT

a,b (4, 11) = 3, and that Ha,b(4, 11) =
8 − PTΣT

a,b (4, 11) = 8 − 3 = 5.

Example 4. Figure 1 shows matrix Pa,b as a seaweed braid, laid out directly
on the alignment dag Ga,b. The nonzeros correspond to seaweeds, laid out as
paths in the dual graph. We say that a seaweed goes from ı̂ to ĵ, if it originates
between the nodes v0,ı̂− 1

2
and v0,ı̂+ 1

2
, and terminates between the nodes v8,ĵ− 1

2

and v8,ĵ+ 1
2
. In particular, every nonzero Pa,b(̂ı, ĵ) = 1, where ı̂, ĵ ∈ 〈0 : 13〉, is

represented by a seaweed going from ı̂ to ĵ. The remaining seaweeds, originating
or terminating at the sides of the dag, correspond to nonzeros Pa,b(̂ı, ĵ) = 1,
where either ı̂ ∈ 〈−8 : 0〉 or ĵ ∈ 〈13 : 8 + 13〉 (or both). For the purposes of
this example, the specific layout of the seaweeds between their endpoints is not
important.

Towards Approximate Matching in Compressed Strings 407

The full set of 8+13 = 21 nonzeros corresponds to the full set of 21 seaweeds in
Figure 1. The two nonzeros that are≶-dominated by the point (4, 11) correspond
to the two seaweeds (from 4.5 to 6.5 and from 7.5 to 9.5) fitting completely
between the two dashed vertical lines i = 4 and j = 11. The three nonzeros that
≶-dominate the point (4, 11) correspond to the three seaweeds (from 0.5 to the
right boundary; from 1.5 to 13.5; from 3.5 to the right boundary) piercing both
these vertical lines.

With minimal modification, the definition of seaweed matrix can also be applied
separately to each component of the semi-local LCS problem.

Definition 10. Given strings a, b, the corresponding string-substring, prefix-
suffix, suffix-prefix and substring-string seaweed matrices are respectively the
following subpermutation submatrices of the semi-local seaweed matrix Pa,b:

Pa,b = Pa,b〈0 : n | 0 : n〉 Pa,b = Pa,b〈0 : n | n : m + n〉
Pa,b = Pa,b〈−m : 0 | 0 : n〉 Pa,b = Pa,b〈−m : 0 | n : m + n〉

Example 5. Figure 2 shows the partition of Pa,b in Definition 10 by thin dot-
ted lines. The string-substring, prefix-suffix, suffix-prefix and substring-string
submatrices are respectively on the bottom-left, bottom-right, top-left and top-
right. Note that the substring-string submatrix Pa,b is trivial, with all the entries
equal to 0; this is due to the fact that the whole string a is a subsequence of b.

The nonzeros of each matrix introduced in Definition 10 can be regarded as an
implicit solution to the corresponding component of the semi-local LCS problem.
Similarly, the last three matrices taken together can serve as an implicit solution
to the three-way semi-local LCS problem.

2.4 Score Matrix Composition

We now describe how the previously introduced techniques can be applied within
a divide-and-conquer framework.

Let b′, b′′ be nonempty strings of length n′, n′′ respectively. Given the con-
catenation string b = b′b′′ of length n = n′ + n′′, a substring b〈i′ : i′′〉 with
i′ ∈ [0 : n′−1], i′′ ∈ [n′ +1 : n] will be called a cross-substring. In other words, a
cross-substring of b is a concatenation of a nonempty suffix of b′ and a nonempty
prefix of b′′.

Definition 11. Given strings a and b = b′b′′, the corresponding seaweed cross-
matrix is the subpermutation matrix Pa,b′,b′′ = Pa,b〈−m : n′ | n′ : m + n〉.
In contrast with the seaweed matrices in Definition 10, the dimensions of the
seaweed cross-matrices introduced by Definition 11 depend on the lengths of
individual component strings in the concatenation. Hence, the notation for these
matrices involves three, rather than two, string subscripts.

408 A. Tiskin

Theorem 2. Given the nonzeros of matrices Pa,b′ , Pa,b′ , Pa,b′ , Pa,b′′ , Pa,b′′ ,
Pa,b′′ , it is possible to compute the nonzeros of matrices Pa,b, Pa,b, Pa,b, as well
as Pa,b′,b′′ , in time O

(
m log min(m, n′, n′′)

)
.

Proof. The algorithm is based on a recent result [18] that allows fast distance
multiplication of unit-Monge matrices (i.e. distribution matrices of permutation
metrices). See [14, Section 3.3] for details. ��

3 Subsequences in Compressed Strings

3.1 Three-Way Semi-local LCS

Previous work. We recall that the LCS problem on a pair of plain strings can
be solved within a (model-dependent) polylogarithmic factor of O(mn). The LCS
problem on a pair of GC-strings has been considered by Lifshits and Lohrey [9],
and proven to be NP-hard.

Recall that we aim at algorithms on a GC-text against a plain pattern, with
running time independent of n (which could be exponential in n̄). This rules out
any attempt at solving the full semi-local LCS problem, since the resulting semi-
local seaweed matrix would require memory O(m+n). However, we are still able
to consider the three-way semi-local LCS problem, excluding the computation
of LCS on substrings of t.

A GC-text is a special case of a context-free language, which consists of a single
string. Therefore, the LCS problem between a GC-text and a plain pattern can
be regarded as a special case of the edit distance problem between a context-
free language given by a grammar of size n̄, and a pattern string of size m.
For this more general problem, Myers [11] gave an algorithm running in time
O(m3n̄+m2 · n̄ log n̄). In [17], we gave an algorithm for the three-way semi-local
LCS problem between a GC-text and a plain pattern, running in time O(m1.5n̄).
Lifshits [8] asked whether the LCS problem in the same setting can be solved in
time O(mn̄).

New result. A new algorithm for the three-way semi-local LCS problem, run-
ning in time O(m log m · n̄), can be obtained by an application of the techniques
described in Section 2. The resulting algorithm improves on existing algorithms
in running time, and approaches an answer to Lifshits’ question within a loga-
rithmic factor.

Algorithm 1 (Three-way semi-local LCS).

Input: SLP of length n̄, generating text t of length n; plain pattern p of length
m.

Output: nonzeros of matrices Pp,t, Pp,t, Pp,t.

Description. First, we observe that, although the output matrices contain at
most m nonzeros, the index range of these nonzeros is of size m + n, which may
be exponentially larger. To avoid an exponential growth of the indices, we will

Towards Approximate Matching in Compressed Strings 409

clean up the range by removing unused indices, and deleting the corresponding
zero row-column pairs from the matrices. Formally, we describe this process as
an order-preserving remapping of the index range.

First phase. Recursion on the input SLP generating t.

Recursion base: n = n̄ = 1. The output can be computed by a linear sweep of
string p.

Recursive step: n ≥ n̄ > 1. Let t = t′t′′ be the SLP statement defining string t.
We call the algorithm recursively to obtain the nonzeros of matrices Pp,t′ , Pp,t′ ,
Pp,t′ , Pp,t′′ , Pp,t′′ , Pp,t′′ . The total number of nonzeros in each matrix triple is
between m and 2m. Conceptually, these matrices are submatrices of Pp,t′ over
〈−m : n′ | 0 : m + n′〉, and Pp,t′′ over 〈−m : n′′ | 0 : m + n′′〉. However, the
actual remapped index range after the recursive calls is 〈−m : 2m | 0 : 3m〉 for
both matrix triples. We now compute the composition seaweed matrices Pp,t,
Pp,t, Pp,t by Theorem 2. The total number of nonzeros in this matrix triple is
again between m and 2m. Conceptually, these matrices are submatrices of Pp,t

over 〈−m : n | 0 : m + n〉. However, the actual remapped index range after
the composition is 〈−m : 4m | 0 : 5m〉. Therefore, there are at least 2m indices
ı̂ ∈ 〈0 : 4m〉, such that the row P (̂ı, ∗) and the column P (∗, ı̂) both contain
only zeros. We now delete exactly 2m such rows and columns from the respective
matrices, and remap the index range to 〈−m : 2m | 0 : 3m〉, while preserving
the linear order of the indices.

(End of recursive step.)

Second phase. We now have the nonzeros of the output matrices, remapped to
the index range 〈−m : 2m | 0 : 3m〉. This is already sufficient to query the
global LCS score, or substring-string LCS scores for p against t. However, if
explicit indices of the nonzeros in the output seaweed matrices are required, the
index range can be remapped back to 〈−m : n | 0 : m + n〉 by reversing every
remapping step in the recursion.

Cost analysis.

First phase. The cost of a recursive step is dominated by the seaweed matrix
composition, which runs in time O(m log m) by Corollary 2. There are n̄ recursive
steps in total, therefore the first phase runs in time O(m log m · n̄).

Second phase. For each nonzero, the inverse remapping can be performed recur-
sively in time O(n̄). There are m nonzeros in total, therefore the second phase
runs in time O(mn̄).

Total. The overall running time is O(m log m · n̄).

Algorithm 1 provides, as a special case, an algorithm for the LCS problem
between a GC-string and a plain string, running in time O(m log m · n̄); the LCS
score can easily be queried from any one of the algorithm’s three output matrices
by Theorem 1.

410 A. Tiskin

Extensions. Hermelin et al. [6] considered the weighted alignment problem on
a pair of GC-strings a, b of total compressed length r̄ = m̄ + n̄, parameterised
by the strings’ total plain length r = m+n. In the case of rational weights, they
gave an algorithm running in time O(r1.2r̄1.4).

Based on the results of this section, this running time can be improved by
the following straightforward algorithm. First, we uncompress one of the input
strings — say, string b. Then, we run Algorithm 1 on the GC-string a as a text
against the plain string b as a pattern. The resulting running time is O(m log m ·
n̄) = O(r log r · r̄). In an unpublished work by Hermelin et al. [5], this running
time is further improved to O

(
r log(r/r̄) · r̄).

3.2 Local Subsequence Recognition

The local subsequence recognition problem was introduced in Subsection 2.2 as a
special case of the semi-local LCS problem. In the context of local subsequence
recognition, a substring of text t is called a matching substring, if it contains
the pattern p as a subsequence. A matching substring will be called minimally
matching, if it is inclusion-minimal, i.e. it has no proper matching substring.

Local subsequence recognition can take the following forms: the minimum-
window subsequence recognition problem, which asks for the locations of all
substrings of t that are minimally matching, and the fixed-window subsequence
recognition problem, which asks for the locations of all the matching substrings of
a fixed length w. A combination of these two problems is the bounded minimal-
window subsequence recognition problem, which asks for the locations of all the
minimally matching substrings below a fixed length w.

Clearly, the output size for the described reporting versions of these problems
may be exponential in n̄; therefore, we have to parameterise the running time
by the output size, which we denote by output . An algorithm for the reporting
version of any of the above problems can typically be converted to solve the
corresponding counting version of the problem. Such a counting algorithm, in-
stead of reporting all the matching substrings, only returns their overall number.
The running time of the counting versions for all algorithms described in this
subsection will correspond to the running time of the reporting algorithm with
output = O(1).

Previous work. The minimal-window, fixed-window and bounded minimal-
window subsequence recognition problems for a GC-text against a plain pattern
have been considered by Cégielski et al. [3]. For each problem, they gave an
algorithm running in time O(m2 log m · n̄+output). In [17], we gave an improved
algorithm for these problems, running in time O(m1.5n̄).

New result. We now give a more efficient local subsequence recognition al-
gorithm, running in time O(m log m · n̄ + output). The algorithm is based on
Algorithm 1, which we extend as follows. In addition to the seaweed matrices

Towards Approximate Matching in Compressed Strings 411

Pp,t, Pp,t, Pp,t, we now also make use of the seaweed cross-matrix Pp,t′,t′′ . We
extend every recursive step by the reporting of minimally matching substrings
that are cross-substrings in the current seaweed matrix composition.

Algorithm 2 (Local subsequence recognition).

Input: SLP of length n̄, generating text t of length n; plain pattern p of length
m.

Output: locations (or count) of minimally matching substrings in t.

Description. Similarly to Algorithm 1, index remapping has to be performed
in the background in order to avoid an exponential growth of the indices. To
simplify the exposition, we now assume constant-time index arithmetic, keeping
the index remapping implicit.

First phase. Recursion on the input SLP generating t.

Recursion base: n = n̄ = 1. As in Algorithm 1, the seaweed matrices Pp,t, Pp,t,
Pp,t can be computed by a linear sweep of string p. String t is matching, if and
only if m = 1 and t = p; in this case, t is also minimally matching.

Recursive step: n ≥ n̄ > 1. Let t = t′t′′ be the SLP statement defining string
t. We run a recursive step of Algorithm 1, obtaining the seaweed matrices Pp,t,
Pp,t, Pp,t. In addition, we obtain the seaweed cross-matrix Pp,t′,t′′ by Theorem 2.
This matrix has exactly m nonzeros. Let

L =
{(

ı̂ 1
2
, ĵ 1

2

)� (
ı̂ 3
2
, ĵ 3

2

)� · · · � (
ı̂s− 1

2
, ĵs− 1

2

)}
be the �-chain of all ≶-maximal nonzeros in Pp,t′,t′′ , where s = |L| ≤ m.

By Theorem 1, a substring t〈i : j〉 is matching, if and only if PTΣT
p,t (i, j) = 0,

i.e. the point (i, j) is not ≶-dominated by any nonzeros in the seaweed matrix
Pp,t. Recall that a substring t〈i : j〉 is a cross-substring, if i ∈ [0 : n′ − 1],
j ∈ [n′+1 : n]; in other words, a cross-substring consists of a non-empty suffix of
t′ and a non-empty prefix of t′′. A point (i, j) corresponding to a cross-substring
can only be ≶-dominated by nonzeros within the seaweed cross-matrix Pp,t′,t′′ .
Therefore, a cross-substring t〈i : j〉 is matching, if and only if point (i, j) is not
≶-dominated by any of the nonzeros in Pp,t′,t′′ , or, equivalently, by any point in
L.

Consider the set of all points in [−m : n′ | n′ : m + n], not ≶-dominated
by any point in L. The ≶-minimal points in this set, excluding the irrelevant
boundary points

(⌊
ı̂ 1
2

⌋
, n′) and

(
n′,
⌈
ĵs− 1

2

⌉)
, are interleaved with the points of

L, and form themselves a �-chain of size s − 1:

M =
{(⌊

ı̂ 3
2

⌋
,
⌈
ĵ 1

2

⌉)� (⌊
ı̂ 5
2

⌋
,
⌈
ĵ 3

2

⌉)� · · · � (⌊
ı̂s− 1

2

⌋
,
⌈
ĵs− 3

2

⌉)}
Let i ∈ [0 : n′ − 1], j ∈ [n′ + 1 : n]. Then, a cross-substring t〈i : j〉 is minimally
matching, if and only if (i, j) ∈ M. The number of such points (i, j) is at most

412 A. Tiskin

|M| = m − 1 (it could be strictly less, since some points in M may lie outside
the range [0 : n′ − 1 | n′ + 1 : n], and therefore not correspond to any cross-
substrings).

(End of recursive step)

Second phase. For every SLP symbol, we now have the locations of its mini-
mally matching cross-substrings. Furthermore, every non-trivial substring of t
corresponds to a cross-substring for some SLP symbol, under an appropriate
transformation of indices. By another recursion on the structure of the SLP,
it is now straightforward to obtain either the locations or the count of all the
minimally matching substrings in t.

Cost analysis.

First phase. As in Algorithm 1, each seaweed matrix composition runs in time
O(m log m). The �-chains L and M can be obtained in time O(m). Hence, the
running time of a recursive step is O(m log m). There are n̄ recursive steps in
total, therefore the whole recursion runs in time O(m log m · n̄).

Second phase. For every SLP symbol, there are at most m−1 minimally match-
ing cross-substrings. Given the output of the first phase, the locations of all
minimally matching substrings in t can be reported in time O(mn̄ + output).

Total. The overall running time is O(m log m · n̄ + output).

Example 6. Figure 3 shows a snapshot of a recursive step in the first phase
of Algorithm 2. Subfigure 3a shows the seaweed cross-matrix Pp,t′,t′′ ; in this
particular example, all its nonzeros belong to the string-substring seaweed matrix
Pp,t′,t′′ . Subfigure 3b shows the corresponding seaweed braid. Matrix Pp,t′,t′′

contains m = 5 nonzeros, shown by green bullets in Subfigure 3a, and by green
seaweeds in Subfigure 3b. Out of these five nonzeros, three are ≶-maximal; they
are shown by larger bullets (respectively, by thicker seaweeds). The three ≶-
maximal nonzeros form the �-chain L. Consequently, there are 3−1 = 2 points
in the interleaved �-chain M. In Subfigure 3a, these two points are shown
by asterisks; in Subfigure 3b, the corresponding two substrings of t are shown
by dotted brackets. The interleaving between �-chains L and M is shown in
Subfigure 3a by solid black lines. Both points of M lie within the range [0 :
n′ − 1 | n′ + 1 : n], and therefore each of them corresponds to a minimally
matching cross-substring in t.

By Theorem 1, a substring in t is matching, if and only if the correspond-
ing rectangle in the alignment dag is not pierced by a seaweed entering at its
left-hand boundary and leaving at its right-hand boundary. Notice that the
bracketed substrings of t in Figure 3b are exactly the two inclusion-minimal
cross-substrings satisfying this property.

Algorithms for the fixed-window and the bounded minimal-window subse-
quence recognition problems can be obtained by straightforward modifications
of Algorithm 2; see [14] for details. The running time of both modifications is
still O(m log m · n̄ + output).

Towards Approximate Matching in Compressed Strings 413

•

•

•

•

•

∗

∗

ĵ 1
2

ĵ 3
2

ĵ 5
2

n′ n m+n

−m

0

n′

ı̂ 1
2

ı̂ 3
2

ı̂ 5
2

(a) Seaweed cross-matrix Pp,t′,t′′ and �-chain of ≶-maximal nonzeros

ı̂ 1
2�

ı̂ 3
2�

ı̂ 5
2�

�
ĵ 1
2

�
ĵ 3
2

�
ĵ 5
2

0
�

n′
�

n
�

(b) Corresponding seaweed braid

Fig. 3. A snapshot of Algorithm 2 (local subsequence recognition)

4 Conclusions

Using the techniques of semi-local string comparison and fast seaweed matrix com-
position, we have obtained improved algorithms for LCS computation and local
subsequence recognition between a GC-text and a plain pattern. The local sub-
sequence recognition problem can be regarded as a rudimentary form of the ap-
proximate matching problem, which asks for substrings in the text that are close
to the pattern in terms of the edit distance. In a wider context presented in [14],
we extend the techniques of the current paper to solve this more general problem.

It remains an open problem whether our results can be extended to other
compression models, e.g. LZ77 [21] or collage systems [7].

References

1. Amir, A., Benson, G., Farach, M.: Let sleeping files lie: Pattern matching in Z-
compressed files. Journal of Computer and System Sciences 52(2), 299–307 (1996)

2. Bille, P., Farach-Colton, M.: Fast and compact regular expression matching. The-
oretical Computer Science 409(3), 486–496 (2008)

414 A. Tiskin

3. Cégielski, P., Guessarian, I., Lifshits, Y., Matiyasevich, Y.V.: Window subsequence
problems for compressed texts. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.)
CSR 2006. LNCS, vol. 3967, pp. 127–136. Springer, Heidelberg (2006)

4. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A subquadratic sequence align-
ment algorithm for unrestricted score matrices. SIAM Journal on Computing 32(6),
1654–1673 (2003)

5. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: Unified compression-based
acceleration of edit-distance computation. Technical Report 1004.1194, arXiv

6. Hermelin, D., Landau, G.M., Landau, S., Weimann, O.: A unified algorithm for
accelerating edit-distance computation via text-compression. In: Proceedings of the
26th STACS, pp. 529–540 (2009)

7. Kida, T., Matsumoto, T., Shibata, Y., Takeda, M., Shinohara, A., Arikawa, S.: Col-
lage system: A unifying framework for compressed pattern matching. Theoretical
Computer Science 298(1), 253–272 (2003)

8. Lifshits, Y.: Processing compressed texts: A tractability border. In: Ma, B., Zhang,
K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

9. Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: Královič,
R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 681–692. Springer,
Heidelberg (2006)

10. Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit distances.
Journal of Computer and System Sciences 20, 18–31 (1980)

11. Myers, G.: Approximately matching context-free languages. Information Process-
ing Letters 54, 85–92 (1995)

12. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biol-
ogy 48(3), 443–453 (1970)

13. Rytter, W.: Algorithms on compressed strings and arrays. In: Bartosek, M., Tel, G.,
Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 48–65. Springer, Heidelberg
(1999)

14. Tiskin, A.: Semi-local string comparison: Algorithmic techniques and applications.
Technical Report 0707.3619, arXiv

15. Tiskin, A.: Semi-local longest common subsequences in subquadratic time. Journal
of Discrete Algorithms 6(4), 570–581 (2008)

16. Tiskin, A.: Semi-local string comparison: Algorithmic techniques and applications.
Mathematics in Computer Science 1(4), 571–603 (2008)

17. Tiskin, A.: Faster subsequence recognition in compressed strings. Journal of Math-
ematical Sciences 158(5), 759–769 (2009)

18. Tiskin, A.: Fast distance multiplication of unit-Monge matrices. In: Proceedings of
ACM–SIAM SODA, pp. 1287–1296 (2010)

19. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of
the ACM 21(1), 168–173 (1974)

20. Welch, T.A.: A technique for high-performance data compression. Computer 17(6),
8–19 (1984)

21. Ziv, G., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23, 337–343 (1977)

22. Ziv, G., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory 24, 530–536 (1978)

The Optimal Strategy for the Average

Long-Lived Consensus�

Eric Rémila

Université de Lyon,
Laboratoire de l’Informatique du Parallélisme,

(umr 5668 CNRS - ENS de Lyon - Université Lyon 1),
site Monod, ENS de Lyon,

46 allée d’Italie, 69364 Lyon Cedex 7 - France
eric.remila@ens-lyon.fr

Abstract. Consider a system composed of n sensors operating in syn-
chronous rounds. In each round an input vector of sensor readings x is
produced, where the r-th entry of x is a value, selected in a finite set
of potential values, produced by the r-th sensor. The sequence of input
vectors is assumed to be smooth: exactly one entry of the vector changes
from one round to the next one. The system implements a fault-tolerant
averaging consensus function f . This function returns, in each round, a
representative output value v of the sensor readings x. Assuming there
are a + 1 equal entries of the vector, f is required to return a value that
appears at least a + 1 times in x.

We study strategies that minimize the instability of a fault-tolerant
consensus system. More precisely, we find the strategy that minimizes, in
average, the frequency of output changes over a random walk sequence
on input vectors (where each component of the vector corresponds to a
particular sensor reading).

1 Introduction

Consider a system composed of n sensors sampled at synchronous rounds. In
each round an input vector of sensor readings is produced, where the r-th entry
of the vector is a value from some finite set V produced by the r-th sensor. To
simplify the presentation, the sampling interval is assumed to be short enough,
to guarantee that the sequence of input vectors is smooth: exactly one entry of
a vector changes from one round to the next one.

There are situations where, for fault-tolerant purposes, a number of sensors
are placed in the same location. Ideally, in such cases, all sensor readings should
be equal. But this is not always the case; discrepancies may arise due to dif-
ferences in sensor readings or to malfunction of some sensors. Thus, the system
must implement some form of fault-tolerant averaging consensus function f that
� This work is partially supported by Programs Ecos C09E04 and IXXI (Complex

System Institute, Lyon).

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 415–428, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

416 E. Rémila

returns a representative output value of the sensor readings. Assuming that there
are a+1 equal entries of the vector, f is required to return a value that appears
in more than a entries of x.

The same questions arise when consensus is done not between the values of
sensors, but between the opinions of actors. Suppose for example that you have a
server which can give several types of data to a bunch of clients. At a given time,
each client has a favorite type of data it wants to receive, but the server can only
broadcast one type of data to all the clients. If there is a cost to switching between
requests (say, because one can no longer use cached data), then in order to serve
as much clients as possible in the long-run, it might be wise to sometimes give a
content that fewer of them want, but which we have already started serving.

In a social setting, the same kind of question arises whenever a group has to
make a consensual decision. For example, consider a disc-jockey in a wedding
party. There are both older people, who fancy dancing to a nice waltz, and
younger ones, eager to get their kicks on techno music. Our disc-jockey has to
make sure that the dance-floor is never too empty according to who is ready
to dance at a given time. But if he changes the music too often, then nobody
is going to be happy: stability matters. More seriously, in an election system,
one might want to have a decision that is at the same time representative and
stable, so that the policies which are decided have the time to be applied (for a
caricatural example, the decision between war or peace needs some stability). In
a setting where there is no term-mandate and decision-making is done live, we
show that the stability can be enforced through election rules (i.e., the decision
function).

In this context, the most natural function f is the one that returns the most
common value of vector x. However, the instability of such function is high. In
fact, as the next example shows (n = 5 and a = 1), the output value computed
by this f could change from one round to the next one unnecessarily often:

inputs: 00011 → 10011 → 10010 → 11010 → · · ·
outputs: 0 → 1 → 0 → 1 → · · ·

If instead of the previous f we consider the one that decides the smallest value in
x that appears at least a+1 times, then no output changes would have occurred
in the previous sequence (in the example 0 < 1 and a + 1 = 2). Moreover, in
order to reduce further the instability, we could consider a function that tries to
stay with the output of previous rounds.

The worst case instability of consensus functions was studied in two previous
papers [4,7]. The input sequence considered in those papers was assumed to be,
in addition to smooth, geodesic: the r-th entry of the input vector was allowed
to change at most once over the sequence. The instability of a consensus func-
tion was given by the largest number of output changes over any such sequence,
called a geodesic path. Notice that a geodesic path must be finite, since the set
V from which the input vectors draw their values is finite. The case V = {0, 1}
of binary input vectors was considered in [7]. The case of multi-valued input

The Optimal Strategy for the Average Long-Lived Consensus 417

vectors, where the set V is arbitrary, turned out to be much more difficult and
required higher-dimensional topological methods [4]. Recently, instability under
byzantine failures was studied in [6].

The notion of geodesic stability is not totally satisfying. For example, for
a = 0, the function consisting in following the result of a fixed sensor has a
minimal instability. In [1] , we introduced, as an alternative measure, a more
natural (and subtle) notion called average instability. We removed the geodesic
requirement and therefore the smooth sequences of input vectors we considered
were random walks over the hypercube. If P = x0, x1, . . . is such a walk, then
the average instability of a consensus function f is given by the fraction of time
f changes its output over P .

We studied in [1] the case when the input is binary (S = {0, 1}), and found
optimal strategies, without memory and with memory. In [13], we analyzed the
three value case (S = {0, 1, 2}), when the process has no memory. In the present
paper, we treat the general case (S = {0, 1, 2,m− 1}) with finite memory. We
prove that a very simple function, only taking account the current input vector
and the previous consensus value is actually optimal. This proves that a small
memory (of size log m) is sufficient, in order to maximize the stability.

The paper is divided as follows. In section 2, we give formal definitions of
concepts above, and present our optimal solution, and our result. In section 3,
we introduce a lightly different consensus model, the auxiliary process, which
enforces symmetry properties. In this framework, we prove that our solution is
optimal, even if a finite horizon is fixed (i.e. random walks of fixed finite length
are used). In section 4, we use a technique using the law of large numbers to
deduce our result from the result about the auxiliary process.

As noted in [7], studying the instability of consensus functions may have
applications in various areas of distributed computing, such as self-stabilization
[5] (indeed, see [9]), Byzantine agreement [2], real-time systems [10], complexity
theory [8] (boolean functions), and VLSI energy saving [3,11,14] (minimizing the
number of transitions).

2 Average Instability

2.1 Framework

Let n, m be positive integers and a be a non negative integer such that n > m a.
The set = {0, 1,, m−1} is denoted by �m. The input space of dimension n, is
a graph whose vertex set is Vn = (�m)n, called input vectors. The edges En are
all (unordered) pairs of vertices whose vectors differ in exactly one component.
We assume that an initial probability distribution, denoted by λ is fixed on Vn.

The distance d(x1, x2) between two input vectors x1, x2 is equal to the number
of entries in which they differ. Thus, d(x1, x2) = d if and only if the shortest
path between x1 and x2 in Vn is of length d.

For any input vector x and b ∈ �m, we denote by #b(x) the number of entries
in x that are equal to b. We also denote by dom(x) the lowest integer b such that
#b(x) is maximal.

418 E. Rémila

A system is a tuple D = (m, n, a, S, τ, f), where S is a finite set called the
memory that includes a special initial symbol ⊥ ∈ S, τ : Vn × S → S is the
memory function, and f : Vn × S → �m is the decision function.

Threshold condition: The fault-tolerance requirement that f must satisfy is
the following. With the notation above, we must have:

f(x, s) = b ⇒ #b(x) > a.

We say that f is a consensus function when it satisfies the threshold constraint
above.

A pair (x, s) is a configuration of the system. Each configuration is given a
consensus value b = f(x, s) An execution of the system is a sequence (x0, s0) →
(x1, s1) → . . ., where s0 = ⊥, xk+1 is a neighbor of xk, and sk+1 = τ(xk , sk).

We assume that if x is the current input vector, then the next input vector
x′ is taken in a random uniform way from the vectors at distance one from x in
the hypercube. The initial input vector is chosen according to some distribution
λ. Once the initial state s0 = ⊥ is determined, so is the initial configuration,
(x0, s0). The next configuration is produced by choosing at random a neighbor
of x0, say x1, and we get the next configuration (x1, s1), where s1 = τ(x0, s0).

Formally, we have a Markov process (P, λ) whose set of states is Vn and there
is a transition from x to x′ if {x, x′} ∈ En. The probability of such a transition
is 1

(m−1)n , which defines the transition matrix P . The initial vector distribution
is λ.

Let Xk denote the random variable of this process after k steps. We succes-
sively define the random variables S0, S1, by S0 = ⊥ and Sk+1 = τ(Xk, Sk).
We also state Zk = (Xk, Sk), Bk = f(Zk) = f(Xk, Sk) and

Fp(D) =
1
p

p−1∑
k=0

δ(Bk, Bk+1)

(where δ is the function defined on (�m)2 by δ(s, s′) = 1 when s = s′, and
δ(s, s′) = 0 otherwise). Thus, Fp(D) gives the change frequency during a walk
of length p.

The sequence Z0, Z1, is given by the Markov process (P ′, μ0) whose set of
states is Vn × S and there is a transition from (x, s) to (x′, s′) if {x, x′} ∈ En

and τ(x, s) = s′ with probability 1
(m−1)n . The probability μ0 is the probability

product λ
⊗

δ⊥ where δ⊥ denotes the Dirac distribution on S concentrated in
⊥, (i.e. the unique probability on S such that δ⊥(⊥) = 1).

We give here a version of the ergodic theorem on Markov chains, which will
be used below. We recall that a Markov chain is irreducible if it is possible to
get to any state from any state by a sequence of transitions, and a probability
distribution is invariant (or stationary) if the distribution does not change when
a step of the Markov chain is executed. It is well known that an irreducible
Markov chains admits a unique invariant distribution.

The Optimal Strategy for the Average Long-Lived Consensus 419

Theorem 1. Consider an irreducible discrete time Markov process (Zn)n∈N on
a finite space V . For any bounded function f : V → �, we have

�

(
lim
l→∞

(
1
p

p−1∑
k=0

f(Zk)) =
∑
v∈V

πvf(v)
)

= 1

where (πv)v∈V denotes the unique invariant distribution.
Therefore, even without the irreducibility hypothesis, there exists a value f

such that we have

�

(
lim

p→∞(
1
p

p−1∑
k=0

f(Zk)) = f
)

= 1.

The first part is a classical version of the ergodic theorem, the second part is
trivially obtained by decomposition of the probability distribution of X0 on irre-
ducible components. The main idea is that the computation average on random
walk is reduced to the computation of the stationary distribution.

Proposition 1. For any consensus system D, The average instability of D,
defined by:

inst(D) = �(lim
p→∞ Fp(D))

exists and does not depend on the initial distribution λ.
Moreover we have,

inst(D) = lim
p→∞�(Fp(D))

Proof. Consider the Markov chain in which each state is an ordered couple
((x, s), (x′, s′)) of (Vn × S)2 such that {x, x′} is and edge of En, s′ = τ(x, s),
and there is a transition of probability 1

(m−1)n from each state ((x, s), (x′, s′)) to
each state ((y, u), (y′, u′)) such that (x′, s′) = (y, u). The function defined over
the set of states (the arcs) is φ((x, s), (x′, s′)) = δ(s, s′). Applying Theorem 1
(with μ0

⊗
�(μ0) as origin distribution), we get the first part of the proposition.

The second part is a direct application of the famous Lebesgue’s dominated
convergence theorem.

In particular, for the study of the instability, the theorem above allows to assume
without loss of generality that the distribution λ is the uniform distribution on
Vn. We will work with this hypothesis in the remaining of the paper.

2.2 The Result

Let f0 denotes function, defined on Vn × (�m ∪ {⊥}), by

– f0(x,⊥) = dom(x).
– if b ∈ �m and #b(x) > a, then f0(x, b) = b,
– if b ∈ �m and #b(x) ≤ a, then f0(x, b) = dom(x),

420 E. Rémila

Informally, f0 encodes the laziest natural strategy: the consensus value remains
unchanged as long as its is possible. When it has to be flipped, the dominant
value is taken. Notice that the only information stored is an element of �m,
whose size does not depend on the number n of sensors. This result below proves
that a surplus of memory is useless.

Theorem 2. Let D0 be the consensus system: D0 = (m, n, a,�m ∪ {⊥}, f0, f0)
For any system D = (k, n, t, S, τ, f) satisfying the threshold condition, we have

inst(D) ≥ inst(D0).

Clearly, the ideal best strategy with a fortune-teller would be to keep previous
consensus as long as possible and, being forced to change it, to ask the fortune-
teller which of the new acceptable values will have the longest lifetime. The
theorem shows that we can get rid of such a fortune-teller.

If the result is quite natural, the proof is far from trivial. In a first step,
we need to introduce an auxiliary modified process, which enforces symmetries.
Then we study the (equivalent of) instability with a finite fixed number of steps,
for the auxiliary process (section 3). Symmetries added allow us to prove that
the function given above is the optimal one for instability with a finite horizon.
This part contains most of original ideas of the paper.

Afterwards (section 4), we use a technique using the law of large numbers
to deduce the theorem, as it is stated above, from the previous results on the
auxiliary process.

3 The Auxiliary Process and Its Optimal Strategy

3.1 The Auxiliary Process

Let D = (m, n, a, S, τ, f) be a system. The corresponding auxiliary process is
given by a uniform random walk on the (undirected) graph (V ′

n, E′
n) with V ′

n =
Vn ∪ En, and each element {e, x} of E′

n is formed from an input vector x of Vn

and an edge e of En containing x. Informally an additional node is placed in each
edge. When the walk reaches such a node, an endpoint of the edge is chosen,
uniformly at random, for the following position of the walk, while the memory
remains unchanged.

Let e = {x, x′} be an edge of En. Assume that x = (b1, b2,bn) and x′ =
(b′1, b

′
2,b

′
n). the edge e can be seen as an n-uple e = (c1, c2,, cn) with, for

1 ≤ r ≤ n, cr = br when br = b′r and cr is the unordered pair {br, b
′
r} when

br 	= b′r. Thus, exactly one component of the n-uple e is a pair. For each b of �m,
we define #b(e) by #b(e) = (#b(x) + #b(x′))/2.

Let X ′
0, E0, X

′
1, E1, X

′
2, E2, be the random variables giving the successive

positions during the uniform random walk on (V ′
n, E′

n) (with the distribution of
X ′

0 being uniform on Vn). We define the random variable S′
k by:

– if X ′
k+1 = X ′

k, then S′
k+1 = Sk,

– if X ′
k+1 	= X ′

k, then S′
k+1 = τ(Sk).

The Optimal Strategy for the Average Long-Lived Consensus 421

We also define B′
k = f(X ′

k, S′
k) and the random variable

F ′
p(D) =

1
p

p−1∑
k=0

δ(B′
k, B′

k+1),

in a similar way than in the original process.

3.2 Trajectory Colorings

For the study of the modified process, it is easier to allow consensus strate-
gies which depend on the whole history. This is why we present the following
framework.

A trajectory of length p is a 2p + 1-uple t = (x0, e0, x1, e1,, xp−1, ep−1, xp)
such that, for each integer k such that 0 ≤ k < p, {xk, ek} and {ek, xk+1}
both are elements of E′

n (it may happen that xk = xk+1). A trajectory has the
median property (which does not exist in the original process): let k and k′ be
integers such that 0 ≤ k < k′ ≤ p, and b and b′ be elements of S such that
#b(xk) > #b′(xk) and #b(xk′) < #b′(xk′). There exists an integer k′′ such that
k ≤ k′′ ≤ k′ and either #b(xk′′) = #b′(xk′′) or #b(ek′′) = #b′(ek′′). The median
property is a main reason for introducing the auxiliary process.

For k ≤ p, the prefix of length k of t, denoted by prefk(t), is the trajectory
prefk(t) = (x0, e0, x1, e1,, xk). The set of trajectories of length p is denoted
by Tp, and the set of trajectories of length at most p is denoted by T≤p. Hence
T≤p =

⋃
0≤k≤p Tk =

⋃
0≤k≤p,T∈Tp

prefk(t). The set of all trajectories is denoted
by T .

Given a consensus system D = (m, t, a, S, f, τ), the memory function on tra-
jectories is the function τ ′: T → S, inductively defined by:

– τ ′(x0) = τ(x0,⊥)
– τ ′(x0, e0, x1, e1,, xk+1) = τ(xk+1, τ

′(x0, e0, x1, e1,, xk)) if xk+1 	= xk,
– τ ′(x0, e0, x1, e1,, xk+1) = τ ′(x0, e0, x1, e1,, xk) otherwise.

For the auxiliary process, it is easier to work with consensus values possibly
depending on the whole trajectory, and not only on a finite memory. In order do
it, we extend the notion of consensus function by introducing colorings.

A trajectory coloring g is a function Tp → �m. Informally, the notion of color-
ing allows to extend consensus values without paying attention in states. A color-
ing g is called a consensus coloring if it satisfies the following threshold condition:
for each trajectory (x0, e0, x1, e1,, xk), we have: g(x0, e0, x1, e1,, xk) = b ⇒
#b(xk) > a.

The trajectory coloring given by D is the function gD inductively defined by:

– gD(x0, e0) = f(x0,⊥)
– gD(x0, e0, x1, e1,, xk+1) = f(xk+1, τ

′(x0, e0, x1, e1,, xk, ek)).

Obviously, gD is a consensus coloring, since f is consensus function. For short,
we state: g0 = gD0 .

422 E. Rémila

For each trajectory t = (x0, e0, x1, e1,, xp), each trajectory coloring g, and
each integer k such that 0 ≤ k < p, we state:

δg(k, t) = δ(g(prefk(t)), g(prefk+1(t))) and changeg(t) =
p−1∑
k=0

δg(k, t).

When δg(k, t) = 1, we say that we have a g-flip in position k.
For p > 0, we define the random variable:

F ′′
p (g) = changeg(X

′
0, E

′
0, ..., X

′
p)/p.

We have: F ′′
p (gD) = F ′

p(D). If (x0, e0, x1, e1,, xp) and (x′
0, e

′
0, x

′
1, e

′
1,, x

′
p) are

trajectories, then �((X ′
0, E

′
0, ..., X

′
p) = (x0, e0,, xp)) = �((X ′

0, E
′
0, ..., X

′
p) =

(x′
0, e

′
0,, x

′
p)), which induces:

�(F ′′
p (g)) =

1
p|Tp|

∑
t∈Tp

changeg(t)

3.3 Analysis of the Auxiliary Process

Let g and g′ be two different colorings; the distance d(g, g′) between g and g′ is
2−i(g,g′) where i(g, g′) denotes the length of the shortest trajectory t such that
g(t) 	= g′(t) (we also state d(g, g) = 0).

Lemma 1. For any consensus coloring g such that d(g, g0) ≤ 2−p, there exists a
consensus coloring g′ such that �(F ′′

p (g′)) ≤ �(F ′′
p (g)) and d(g0, g

′) < d(g0, g).

Proof. Let i such that d(g, g0) = 2−i, with i ≤ p. In particular, for any trajectory
t of length at least i, we have: g(prefi−1(t)) = g0(prefi−1(t)).

We have to exhibit a consensus coloring g′ such that, for each trajectory
t of T≤i, g′(t) = g0(t), and

∑
t∈Tp

changeg′(t) ≤ ∑
t∈Tp

changeg(t). For any
trajectory t of length at most i, we are forced to state g′(t) = g0(t).

Now take a trajectory t = (x0, e0, x1, e1,, xj ,) with j > i. we have to define
g′(t). In order to make main ideas clearly appear, we assume in first step that
i ≥ 1. The case when i = 0 will be treated at the end.

The first idea for the construction of g′ is to change nothing when the situation
is OK. Formally, if g(prefi(t)) = g0(prefi(t)), then we state g(t) = g′(t). Thus,
when j = p, we have: changeg(t) = changeg′ (t).

The second idea for the construction of g′ is to postpone the g-flip in position
i − 1, when it is possible. Formally, if #g(prefi−1(t))(xi) > a, (i.e. if it is possible
to have δg′(i−1, t) = 0), then we state g′(t) = g(prefi−1(t)) if t is of length j = i
(in other words, we enforce that δg′(i − 1, t) = 0) and g(t) = g′(t) if j > i.

When δg(i − 1, t) = 0, using by the first idea above, we already know that
changeg(t) = changeg′(t). Otherwise, δg(i − 1, t) = 1 while δg′(i − 1, t) = 0, and
the index is i is the only other one for which it may happen that δg(k, t) 	=
δg′(k, t). Thus, when j = p, we have: changeg(t) ≤ changeg′(t).

The Optimal Strategy for the Average Long-Lived Consensus 423

The difficult case arises when we have a trajectory t with the property that:
#g(prefi−1(t))

(xi) = a, which enforces that we will necessarily have δg′(i−1, t) = 1,
and g(prefi(t)) 	= dom(xi) (thus g(prefi(t)) 	= g0(prefi(t)).

To avoid abuse of notations, we will assume without loss of generality that
g(prefi−1(t)) = 0, g(prefi(t)) = 1 and dom(xi) = 2.

– Assume in a first step that, i ≤ k ≤ j. We have #2(xk) > #1(xk). In this
case, we state:
• g′(t) = 2 if g(t) = 1,
• g′(t) = g(t) otherwise.

Informally, the idea is that the value 1 can be replaced by 2, after xi.
When g(t) = 1, we have: #2(xj) > #1(xj) > a. When g(t) 	= 1, we have:
g′(t) = g(t) > a. Thus g′ satisfies the property of consensus coloring for t.
For each trajectory t of Tp of this case, the equality: changeg′(prefi(t)) =
changeg(prefi(t)) holds, and, for any position k such that k ≥ i, we have
δg′(k, t) ≤ δg(k, t). Thus: changeg′(t) ≤ changeg(t).

– When the hypothesis above is not satisfied, the direct comparison of changeg′

(t) with changeg(t) fails. So we use a method which matches trajectories
for which roles of 1 and 2 are inverted. It is the most subtle idea of the
paper. The value changeg(t) is compared with changeg(μ(t)), where μ(t) is
trajectory deduced from t, by a ‘mirror technique”.
From the median property, there exists an integer q such that q > i and either
#1(eq) = #2(eq) or #1(xq) = #2(xq). We take the smallest q satisfying this
condition. Informally, q is the first index after i for which the value 1 and 2
play the same role for consensus.
We treat the case when #1(xq) = #2(xq), (the case when #1(eq) = #2(eq)
being similar). Formally, let us state: xq = (bq,1, bq,2,bq,n), and let B1

(respectively B2) be the set of indices r such that bq,r = 1 (respectively
bq,r = 2). We have card(B1) = card(B2), so we can fix a bijection h from
B1 to B2, only depending on xq. Let σ be the permutation of {1, 2,, n},
such that:
• σ(r) = h(r) when r ∈ B1,
• σ(r) = h−1(r) when r ∈ B2,
• σ(r) = r otherwise.

Let σ1,2 be the permutation of �m, such that σ1,2(1) = 2, σ1,2(2) = 1,
and σ1,2(b) = b otherwise. We have σ2 = idn (where idn is the identical
permutation on {1, 2,, n}) and (σ1,2)2 = id�m , the identical permutation
on �m.
For the trajectory t = (x0, e0, x1, e1,, xj), we define the trajectory μ(t) =
(x′

0, e
′
0, ,, x

′
j) as follows:

• prefq(μ(t)) = prefq(t),
• for q ≤ k ≤ j, if xk = (bk,1, bk,2, ..., bk,n) and x′

k = (b′k,1, b
′
k,2, ..., b

′
k,n),

then have: b′k,r = σ1,2(bk,σ(r)).
• for q ≤ k < j, if ek = (ck,1, ck,2, ..., ck,n) and e′k = (c′k,1, c

′
k,2, ..., c

′
k,n),

then have:

424 E. Rémila

∗ c′k,r = σ1,2(ck,σ(r)) when ck,σ(r) is not a pair,
∗ c′k,r = {σ1,2(b), σ1,2(b′)} in the case when ck,σ(r) is the pair {b, b′}.

Informally, the idea is that the sensor r has a referent, which is σ(r). For
the construction of μ(t), r simulates what is done by its referent, except for
values 1 and 2 which are transposed.

One easily checks that μ(t) is really a trajectory: if xk and ek only differ
on the index r for which ck,r = {bk,r, b

′}, then x′
k and e′k only differ on the

index σ(r) for which c′k,σ(r) = {σ1,2(bk,σ(r)), σ1,2(b′)} = {b′k,σ(r), σ1,2(b′)}. A
similar argument holds for checking the transition from e′k to x′

k+1.
For each trajectory t of this case, we state:

• g′(t) = σ1,2(g(μ(t)).

We have #g(μ(t))(xj) > a, thus #σ1,2(g(μ(t))(x′
j) > a, i.e. #g′(t)(x′

j) > a,
which ensures that g′ satisfies the threshold condition for t.
We have changeg′(prefi(t)) = changeg(prefi(t)) = changeg(prefi(μ(t)). For
i ≤ k < q, prefk(t) satisfies the previous item (q = +∞), thus δg′(k, t) ≤
δg(k, t) = δg(k, μ(t)) For q ≤ k < j, we have, by symmetry : δg′(k, t) =
δg(k, μ(t)). Thus changeg′(t) ≤ changeg(μ(t)).
On the other hand, we have: μ(μ(t)) = t, which guarantees that μ is a bijec-
tive mapping on the set T ′ of trajectories t starting by (x0, e0, x1, e1,, xk).
It follows that

∑
t∈T ′∩Tp

changeg′(t) ≤
∑

t∈T ′∩Tp

changeg(μ(t))

and
∑

t∈T ′∩Tp

changeg(μ(t)) =
∑

t′∈μ(T ′∩Tp)

changeg(t
′) =

∑
t∈T ′∩Tp

changeg(t)

which gives: ∑
t∈T ′∩Tp

changeg′(t) ≤
∑

t∈T ′∩Tp

changeg(t)

Adding on all possible sets T ′, the analysis above gives:
∑

t∈Tp
changeg′ (t) ≤∑

t∈Tp
changeg(t), i.e. the result.

For i = 0, the analysis is completely similar to the case when i is positive with
the properties: #g(prefi−1(t))

(xi) = a, and g(prefi(t)) 	= dom(xi).

As a corollary, we get the optimality result below.

Proposition 2. For any consensus system D = (m, n, a, S, f, τ) and any posi-
tive integer p, we have �(F ′

p(D)) ≥ �(F ′
p(D0)).

The Optimal Strategy for the Average Long-Lived Consensus 425

4 From the Auxiliary Process to the Original Process

For the average point of view, Proposition 2 insures that D0 is definitely the
best consensus system, for the auxiliary process. We will now deduce that D0 is
also the best one for the original process, at least in an asymptotic way.

We first present the ideas in a informal way. Take any consensus system D,
consider, for the auxiliary process, trajectories of length 2p and study the num-
ber of input changes done during these trajectories (we have an input change
when x′

k 	= x′
k+1). In average, half of time the trajectory remains in the same

state, and half of the time an input change occurs. Therefore, for p large, the
number of input changes is close to p, with high probability. Thus, for p large,
the number of output changes in trajectories of the auxiliary process of length
2p has approximately the same distribution than the number of output changes
in the p first steps of the original process. Thus �(F ′

2p(D)) and �(Fp(D))/2 are
nearly equal, and have the same limit when p tends to infinite. By this way,
asymptotic comparisons of systems are in the same sense in the auxiliary and in
the original process.

The intuitive ideas above can be formalized by the following proposition.

Proposition 3. For any consensus system D, lim
p→∞�(F ′

2p(D)) exists and

lim
p→∞�(F ′

2p(D)) =
inst(D)

2

Proof. We fix a consensus system D. We lighten notations, stating, for each p >
0, Gp = pFp(D), G′

p = pF ′
p(D), (i.e. Gp and G′

p are the number of state changes,
respectively in a walk of length p in the original process, and in trajectory of
length p in the auxiliary process).

We also introduce Np, the number of input changes during a trajectory of
length p in the auxiliary process. Formally: N0 = 0, Nk+1 = Nk if X ′

k+1 = X ′
k,

and Nk+1 = Nk + 1 if X ′
k+1 	= X ′

k. The distribution of Np is the binomial law

B(p, 1
2), i.e. for 0 ≤ k ≤ p, we have �(Np = k) = (p

k)

2p .
Remark the conditional random variable G′

p|(Np = k) has the same distribu-

tion than the random variable Gk. Thus, since F ′
2p(D) = G′

2p

2p , we have:

�(F ′
2p(D)) =

1
2p

2p∑
k=0

�(N2p = k)�(G′
2p|(N2p = k)) =

1
2p

2p∑
k=0

�(N2p = k)�(Gk).

Thus

�(F ′
2p(D)) =

2p∑
k=0

�(N2p = k)�(
Gk

k
)

k

2p
=

2p∑
k=0

k

2p
�(N2p = k)�(Fk(D)).

The relation above gives a first link between average of variables F ′
k and variables

Fk.

426 E. Rémila

Let ε denote a positive real (assumed to be small). We split the sum above into
three parts. The main idea is the fact that, for p large, Np

p is approximatively
equal to 1

2 with high probability. We first have:

�(1−ε)p�∑
k=0

k

2p
�(N2p = k)�(Fk(D)) ≤

�(1−ε)p�∑
k=0

�(N2p = k) ≤ �(N2p ≤ (1 − ε)p)

Secondly, we have:

2p∑
k=�(1+ε)p�

k

2p
�(N2p = k)�(Fk(D)) ≤

2p∑
k=�(1+ε)p�

�(N2p = k) ≤ �(N2p ≥ (1+ε)p)

The law of large numbers tells that, for any pair (δ, ε) of positive integers, we
have, for p sufficiently large, �(N2p

2p < 1
2 − δ) ≤ ε. Thus, taking δ = ε

2 , we get:
�(N2p ≤ (1 − ε)p) ≤ ε. On the other hand, by symmetry, we have: �(N2p ≤
(1 − ε)p) = �(N2p ≥ (1 + ε)p). Therefore, we obtain:

0 ≤
�(1−ε)p�∑

k=0

k

2p
�(N2p = k)�(Fk(D)) +

2p∑
k=�(1+ε)p�

k

2p
�(N2p = k)�(Fk(D)) ≤ 2ε

The central term is a bit more difficult to study. For p sufficiently large, we have:
k ≥ (1 − ε)p ⇒ |�(Fk(D)) − inst(D)| ≤ ε, from Proposition 1. Thus we get

�(1+ε)p�−1∑
k=�(1−ε)p�+1

(
1 − ε

2
)�(N2p =k) (inst(D) − ε)≤

�(1+ε)p�−1∑
k=�(1−ε)p�+1

k

2p
�(N2p =k)�(Fk(D))

i. e.

(
1 − ε

2
) (inst(D)−ε)�((1−ε)p<N2p <(1+ε)p)≤

�(1+ε)p�−1∑
k=�(1−ε)p�+1

k

2p
�(N2p =k)�(Fk(D))

Finally, using the law of large number, we get, for p sufficiently large:

(
1 − ε

2
) (inst(D) − ε) (1 − 2ε) ≤

�(1+ε)p�−1∑
k=�(1−ε)p�+1

k

2p
�(N2p = k)�(Fk(D))

By similar arguments, we have:

�(1+ε)p�−1∑
k=�(1−ε)p�+1

k

2p
�(N2p = k)�(Fk(D)) ≤ (

1 + ε

2
) (inst(D) + ε)

The Optimal Strategy for the Average Long-Lived Consensus 427

Thus, reconstructing the whole sum by adding the three parts, we get:

(
1 − ε

2
)(inst(D)−ε)(1−2ε)≤

2p∑
k=0

k

2p
�(N2p =k)�(Fk(D))≤(

1 + ε

2
)(inst(D)+ε)+2ε

i.e.

(
1 − ε

2
)(inst(D) − ε)(1 − 2ε) ≤ �(F ′

2p(D)) ≤ (
1 + ε

2
)(inst(D) + ε) + 2ε

which ensures the result of the proposition.

We now have the material to easily prove Theorem 2: for any consensus sys-
tem D and any p > 0, we have �(F ′

p(D)) ≥ �(F ′
p(D0)) from Proposition 2.

Thus, lim
p→∞�(F ′

p(D)) ≥ lim
p→∞�(F ′

p(D0)), which gives inst(D) ≥ inst(D0), from

Proposition 3.

5 Extensions

5.1 Infinite Memory

If we allow the memory S to be infinite, inst(D) might not exist, but the average
�(lim inf

p→∞ Fp(D)) always exists, and can be considered as a lower bound for the

cost. The theorem below proves that there is no hope to find a better consensus
function, even with an infinite memory.

Theorem 3. For any system D = (k, n, t, S, τ, f) satisfying the threshold con-
dition (with S being eventually infinite), we have:

�(lim inf
p→∞ Fp(D)) ≥ lim inf

p→∞ �(Fp(D)) ≥ inst(D0).

Proof. (sketch) The first inequality is classical in integration theory. Proposi-
tion 2 holds even when S is infinite, and Proposition 3 can be adapted for
inferior limits, when S is infinite, which gives the result.

5.2 Other Probability Distributions

The analysis above can be criticized for its particularity. The first particularity
is the fact of the initial distribution is uniform. But general theorems on Markov
chains prove that the instability does not depends on the initial distribution. In
other words, any initial distribution can be chosen to get the same results.

In a lot of cases, the use of the uniform random Markov chain seems to be
unadapted For instance, consider a scenario where the inputs are heat sensors,
indicating either “hot” or “cold”. If most of them indicate that the ambient tem-
perature is indeed “hot”, we would expect that it is the truth and there is a
higher transitional probability for changing from “cold” to “hot” than the other

428 E. Rémila

way around (and vice versa). At the opposite, in politics, if a large majority for
one side does exist, then it appears that people do not hesitate before leaving
this majority and we would expect a higher transitional probability for changing
from the majority to the opposition than in the other way.

In our analysis, the key-point is the introduction of the coupling of trajectories
with mirror-trajectories. This technique can be applied as soon as the trajectory
and its mirror have the same probability. This is guaranteed when there is a
symmetry of inputs (which can be seen as the anonymousness of agents).

Aknowledgements. The author is very grateful with Florent Becker and Ivan
Rapaport for helpful discussions in Santiago de Chile.

References

1. Becker, F., Rajsbaum, S., Rapaport, I., Rémila, E.: Average Binary Long-Lived
Consensus: Quantifying the Stabilizing Role Played by Memory. Theoretical Com-
puter Science 411(6), 1558–1566 (2010)

2. Berman, P., Garay, J.: Cloture votes: n/4-resilient distributed consensus in t + 1
rounds. Math. Sys. Theory 26(1), 3–19 (1993)

3. Chandrakasan, A.P., Brodersen, R.W.: Low power digital CMOS design. Kluwer
Academic Publishers, Dordrecht (1995)

4. Davidovitch, L., Dolev, S., Rajsbaum, S.: Stability of Multi-Valued Continuous
Consensus. SIAM J. on Computing 37(4), 1057–1076 (2007)

5. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
6. Dolev, D., Hoch, E.N.: OCD: obsessive consensus disorder (or repetitive consensus).

In: Proc. of the 27th Annual ACM Symp. on Principles of Distributed Computing,
PODC 2008, pp. 395–404 (2008)

7. Dolev, S., Rajsbaum, S.: Stability of Long-lived Consensus. J. of Computer and
System Sciences 67(1), 26–45 (2000); Preliminary version in Proc. of the 19th
Annual ACM Symp. on Principles of Distributed Computing, (PODC 2000), pp.
309–318 (2000)

8. Kahn, J., Kalai, G., Linial, N.: The Influence of Variables on Boolean Functions.
In: Proc. of the IEEE FOCS, pp. 68–80 (1988)

9. Kutten, S., Masuzawa, T.: Output Stability Versus Time Till Output. In: Pelc, A.
(ed.) DISC 2007. LNCS, vol. 4731, pp. 343–357. Springer, Heidelberg (2007)

10. Kopetz, H., Veŕıssimo, P.: Real Time and Dependability Concepts. In: Mullender,
S. (ed.) Distributed Systems, ch. 16, pp. 411–446. ACM Press, New York (1993)

11. Musoll, E., Lang, T., Cortadella, J.: Exploiting the locality of memory references to
reduce the address bus energy. In: Proc. of the Int. Symp. on Low Power Electronics
and Design, pp. 202–207 (August 1997)

12. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, Cambridge (1998)

13. Rapaport, I., Rémila, E.: Average memoryless long-lived Consensus: the three value
case. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp.
114–126. Springer, Heidelberg (2010)

14. Su, C.-L., Tsui, C.-Y., Despain, A.M.: Saving power in the control path of embed-
ded processors. IEEE Design & Test of Comp., 24–30 (1994)

Improved Online Scheduling in Maximizing

Throughput of Equal Length Jobs

Thang Nguyen Kim

LAMSADE, Université Paris Dauphine, France

Abstract. Motivated by issues raised from data broadcast and networks
using ATM and TCP/IP, we consider an online scheduling problem on a
single machine. In the problem, each job i is revealed at release time ri,
has processing time pi, deadline di and weight wi. Preemption is allowed
and there are two models of preemption: preemption with restart and
preemption with resume. The goal is to maximize the throughput — the
total weight of all jobs completed on time. In the paper, we consider the
problem where all processing time of jobs are equal and present improved
algorithms which achieve 4.24-competitive in both models of preemption.

1 Introduction

Data broadcast involves information distribution from a server to clients. The
advantage of broadcasting technologies is that different users having the same
request can be simultaneously satisfied by a broadcast. Information lies in a large
range, from movies, soccer matches to stock market news, etc. Clients are also di-
verse and have different interests in certain moments. Hence, to maximize a given
quality of service it is allowed that the server interrupts the currently broadcast
page and starts a new one. Nevertheless, to satisfy a previously-interrupted page,
the server has to broadcast again from the beginning.

ATM network has been designed to send telephone, radio, television commu-
nication as well as usual network data. In networks using ATM and TCP/IP, IP
packets have to be split into small ATM cells and fed into the ATM networks.
In general, packet sizes are bounded by the capacity of Ethernet, i.e. 1500 bytes,
and in many cases they have the same length which equals the maximal capacity.
The network transmits cells separately. In maximizing a given quality of service,
it is allowed to stop transmitting cells of some packets and start sending cells of
other ones. However, in contrast to data broadcast, in order to complete packets
that still have remaining cells unsent, the network only needs to transmit the
remaining instead of starting from the beginning.

Problem definition. These applications can be formulated as an online scheduling
problem on a single machine where each job i arrives online at its release time
ri, has processing time pi, deadline di and weight wi. The job’s parameters are
unknown until its arrival. All these quantities except possibly wi are integer. The
objective is to maximize throughput, which is the total weight of jobs completed

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 429–442, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

430 T. Nguyen Kim

on time. Preemption of jobs is allowed. Motivated by the above applications, we
consider two models of preemption in the problem:

(i) the preemptive model with restart, where a job can be interrupted, but
when it is scheduled again, it must be scheduled from the beginning

(ii) the preemptive model with resume, where in contrast, when a job is sched-
uled again, the previously done work can be resumed.

The problem under these two models of preemption can be denoted as 1|online−
ri|
∑

wi(1−Ui) and 1|online− ri; pmtn|∑wi(1−Ui), respectively according to
notation in [3].

1.1 Related Work

It is known that, in both models of preemption, the deterministic competitive
ratio is unbounded if jobs’ processing times are arbitrary [1]. Dürr et al. [6]
presented an algorithm that gave a tight bound Θ(p/ log p) in both models where
the processing time of all jobs are bounded by p.

In the model of preemption with restart, a 5-competitive algorithm is given
in [9,2]. Zheng et al. [12] provided an improved algorithm Bar that was 4.56-
competitive for jobs with equal processing time, arbitrary weights. Chrobak
et al. [5] gave a tight 1.5-competitive deterministic algorithm for equal processing
time, unit weight jobs.

In the model of preemption with resume, the best known upper bound and
lower bound competitive ratio for the case of equal length and arbitrary weight
jobs are 5 [6] and 2.59 [2,6], respectively. For an interesting special case where
jobs have unit processing time (i.e. pi = 1 ∀i), the problem (related to buffer
management for packet switches [8]) is widely studied, and the deterministic
competitive ratio lies between φ(≈ 1.618) [4] and 1.83 [7]. Another direction
of research is to consider resource augmentation, and in [10] a deterministic
online algorithm was presented which has constant competitive ratio provided
that the algorithm is allowed a constant speedup of its machine compared to the
adversary.

1.2 Our Contribution

In the paper, we study the problem with jobs of equal processing time, arbitrary
weight. The variant of equal processing time jobs has been widely studied (see
[11, chapter 14]). We give algorithms which are 4.24-competitive for both models
of preemption. The algorithms are essentially the same and the analysis are
based on charging schemes. Roughly speaking, the issue is to solve the dilemma
of choice between a lower-weighted job with imminent deadline and a higher-
weighted job with later deadline.

In Section 2, we recall some standard notions. Then we illustrate the ideas
that inspire the improved algorithms. In Section 3, we consider the model of
preemption with restart in which we present the algorithm together with its
intuition and the analysis. Even though the improvement is small, the algorithm

Improved Online Scheduling in Maximizing Throughput 431

helps in designing an algorithm with the same competitive ratio in the model of
preemption with resume. In Section 4, we describe a 4.24-competitive algorithm
in the latter model. The structure of the proof is similar to the one in the former
model. However, the charging scheme is more subtle since the adversary may
schedule jobs in different pieces and it presents the main difficulty of the proof
in the model of preemption with resume.

2 Preliminaries

An algorithm is r-competitive if for any job sequence released by an adversary,
the algorithm gain is at least r-fraction of the optimal offline solution where the
whole sequence of jobs is known in advance.

Let p be the jobs’ processing time, i.e. pi = p ∀i. Consider an algorithm. Let
Ci be the completion time of job i by the algorithm. Let qi(t) be the remaining
processing time of job i for the algorithm at time t. When there is no confusion,
we simply write qi. In preemption with restart, if a job i is interrupted at some
time t then qi(t + 1) = p.

We say that an algorithm schedules a job at time t meaning that the algorithm
executes unit of this job in interval [t, t+1). A job i is pending for the algorithm
at time t if it has not been completed before and ri ≤ t and t + qi(t) ≤ di. A job
i is urgent at time t if di < t + qi(t) + p.

In the model of preemption with restart, let Si(t) be the latest moment before
t that an algorithm starts job i. In the model of preemption with resume, Si(t)
denotes the latest moment τ < t such that at time τ , the algorithm schedules
job i but at the previous moment (τ − 1), the algorithm schedules other job or
it is an idle-time. Again, when there is no confusion, we simply write Si.

Without loss of generality, assume that the adversary starts a job if and
only if it will complete the job; and the adversary schedules jobs in Earliest
Deadline First manner. In the analysis, we abbreviate the algorithm and the
adversary by Alg and Adv, respectively.

Starting point of improved algorithms. Consider the following algorithm for the
model of preemption with restart. If there is no currently scheduled job, schedule
the pending one with highest weight. Otherwise, if there is a new job i arriving
with weight at least twice that of the currently scheduled job then interrupt the
latter and schedule i.

This algorithm is 5-competitive [9,2]. Observe that the algorithm considers
the jobs’ deadlines only in verifying whether jobs are pending; it totally ignores
the correlation of that important parameter among the jobs. Hence, a better
algorithm should be more involved in the deadlines of jobs, not only in verifying
the pending property. An idea of improvement is that if a new released job
is urgent, even if its weight is not large, one may delay the execution of the
currently scheduled job and schedule the new job. However, postponing the
heavy currently scheduled job might result in a lost of throughput if some new
heavier job will be released later. A treatment is presented in [12] in which they

432 T. Nguyen Kim

handled implicitly the jobs’ deadlines by turning them into a function of weight.
In the paper, we deal explicitly with jobs’ deadlines and present new algorithms
with improved bounds.

3 A 4.24-Competitive Algorithm for Preemption with
Restart

The algorithm A. Let 1 < β < 3/2 be a constant to be defined later. Initially,
set Q := ∅ and α := 0. Throughout the execution of the algorithm, at any time,
Q stores the last job interrupted according to condition [A2] below.

At time t, if there is either no currently scheduled job or a job completion, then
schedule the heaviest pending job. Otherwise, let j be the currently scheduled
job. If there is no new released job, then continue to schedule j. Otherwise, let
i be a new released job with heaviest weight. Job j is interrupted if one of the
following conditions holds.

A1. if: wi ≥ 2wj and wi ≥ 2αw(Q) where w(Q) is the weight of job in Q. (Note
that if Q = ∅ then w(Q) = 0 so the second inequality requirement is always
satisfied.)
do: Schedule job i. Set α := 0 and Q = ∅.

A2. if: α = 0, βwj ≤ wi ≤ 2wj , i is urgent and j can be scheduled later, i.e.
dj ≥ t + 2p.
do: Schedule job i∗ which is the heaviest among all urgent jobs, i.e., i∗ =
arg max{w� : d� < t + 2p}. Set α = 1 and Q := {j}.

A3. if: i is urgent, wi ≥ 2wj + wj′ where j′ is the job previously interrupted by
j and there is no job � satisfying the following conditions:

Sj(t) + 2p ≤ d� < t + 2p and w� ≥ wj .

do: Schedule job i.

At any interruption, if α ≥ 1 then α := α + 1. If a job is completed then set
α = 0 and Q = ∅. Conventionally, if an interruption satisfies both conditions
[A1] and [A3] then we refer that interruption to [A1].

Informally, the counter α indicates whether there exists an interruption of
type [A2] which is not followed by an A1-interruption or a job completion. If
there exists, α also indicates the number of job interruptions from the last job q
interrupted according to [A2] and the set Q stores job q.

Intuition of the algorithm.

– The first condition [A1] lies in the same spirit as the 5-competitive algo-
rithms: if there is a new released job with heavy enough weight then schedule
that new job. In the condition, we need one more inequality (wi ≥ 2αwQ)
compared to the 5-competitive algorithm to ensure that wi can compensate
previous interruptions of different types.

Improved Online Scheduling in Maximizing Throughput 433

– The second condition [A2] represents the idea that it is possible to delay
the currently scheduled job if a new urgent job arrives even with non-heavy
weight. However, we do not want to interrupt many consecutive jobs due to
this condition since that may result in a small throughput. It is the reason we
introduce a control variable α and condition [A2] depends on α. Precisely, the
algorithm does not allow two A2-interruptions without an A1-interruption
or a job completion in between.

– The purpose of the last condition [A3] is to handle a situation in which a new
urgent heavy job arrives after an A2-interruption, but not heavy enough to
interrupt the currently scheduled job according to [A1]. If there exists a job
� with properties described in [A3] then scheduling i is not profitable since
we can schedule � later and scheduling i means that � will be dropped out.
Otherwise, it is beneficial to interrupt j and schedule i.

First, we make some observations before presenting the analysis of the algorithm.

Observation 1. 1. Before any A2-interruption is either a job completion or
an A1-interruption.

2. Consider a sequence of consecutive A3-interruptions. Then, before the first
(A3-) interruption of the sequence is an A2-interruption. Moreover, there
are at most two A3-interruptions in the sequence. Consequently, α is always
at most 3.

Proof. 1. By contradiction, suppose that i1 is interrupted by i2 and i2 is inter-
rupted according to condition [A2] by i3. Then the interruption of i1 by i2
is not of type [A2] since otherwise counter α ≥ 1 so i3 cannot interrupt i2
according to condition [A2]. Moreover, if i2 interrupts i1 according to [A3],
meaning i2 is urgent then i3 cannot interrupt i2 according to condition [A2]
because i2 may not be scheduled later. Therefore, the interruption between
i1 and i2 is of type [A1].

2. Before the first interruption (of type [A3]) in the sequence must be an inter-
ruption of type [A2] since otherwise that A3-interruption would have been
referred to an interruption of type [A1] as convention. We argue the second
claim by contradiction. Suppose that there are n jobs in, in−1, . . . , i0 where
n ≥ 3 and i� interrupt i�+1 according to [A3] for 0 ≤ � ≤ n − 1. Hence, by
previous claim, there exits a job in+1 which is interrupted by in according
to [A2]. We argue that in fact, i0 is heavy enough to interrupt i1 according
to [A1]. As n ≥ 3, we have:

win−3 ≥ 2win−2 + win−1 ≥ 2(2win−1 + win) + win−1

≥ 5(2win + win+1) + 2win > 24win

where the inequalities are due to condition of [A3] and win > win+1 . Hence,
in−3 satisfies condition [A1] so the interruption between in−3 and in−2 would
have been referred to [A1] by convention (contradiction).
The claim that α ≤ 3 is straightforward from previous observations. ��

434 T. Nguyen Kim

Lemma 1. Consider a sequence of jobs m, . . . , 1, 0 where job � interrupts job
(� + 1) for 1 ≤ � ≤ m− 1 and job 0 interrupts job 1 according to condition [A1].
Then

1. w� ≤ w0 · 2−� for 0 ≤ � ≤ m.
2. w�′ ≤ w0 · 2−� where �′ be a job started by Adv in [S�+1, S�) and has not

been completed by Alg. Consequently, the total weight of jobs which have
not been completed by Alg and are started by Adv in [Sm, S0) is bounded
by 2w0 − 2wm.

Proof. 1. We prove the claim by induction. It is straightforward for � = 0.
Suppose that w� ≤ w0 · 2−�. If job � interrupts job (� + 1) according to [A1]
or [A3] then w�+1 ≤ w� · 2−1 ≤ w0 · 2−�+1. The remaining case is that �
interrupts (� + 1) according to [A2]. Consider the first A1-interruption after
time S�. Assume that it is the interruption between jobs h and (h + 1). This
interruption exists since h = 0 is a candidate. By definition of [A1], w� ≤
wh ·2h−� (since α = �−h). Moreover, by induction hypothesis, wh ≤ w0 ·2−h.
Therefore, w� ≤ w0 · 2−�.

2. By contradiction, let � be the largest index such that there exists a job �′

started by Adv in [S�+1, S�), w�′ > w0 · 2−� and �′ is not completed before
by Alg. Hence, for any job h > �, wh ≤ w0 · 2−h < w�′ · 2�−h. As �′ has
not been completed by Alg, �′ may interrupt job (� + 1) according to [A1].
Hence, job �′ is job �. This contradicts that w� ≤ w0 · 2−� < w�′ .
The total weighs of jobs which have not been completed by Alg and are
started by Adv in [Sm, S0) is bounded by

∑m−1
�=0 w0 · 2−� ≤ 2w0 − 2−mw0 ≤

2w0 − 2wm. ��

Analysis. We analyze the competitiveness of the algorithm by a charging scheme.
For convenience we renumber the jobs completed by the algorithm from 1 to n,
such that the completion times are ordered C1 < . . . < Cn. Also we denote
C0 = 0. We divide the schedule of the algorithm into phases [Ci−1, Ci), for
i = 1, . . . , n. We say that [Ci−1, Ci) is the phase of job i for i = 1, . . . , n. Consider
the phase of job i. Let f(i) be the first job started by Alg in this phase. Remark
that, f(i) is not necessarily completed by Alg.

The Charging Scheme.

1. If a job i is scheduled by Adv and i has been completed by Alg before then
charge wi to job i (self-charge).

2. If a job j is started by Adv in the phase of job i and j has not been completed
before by Alg, then charge wj to i.

3. For each phase of job i, if there exists a next phase of job i + 1 such that
Sf(i+1) = Ci, i.e. meaning no idle-time between jobs i and f(i + 1), then
charge 2wf(i+1) from job i to job i + 1.

Informally, in the first two steps of the charging scheme, we charge the total
throughput of Adv to jobs which are completed by Alg. In the third step, we

Improved Online Scheduling in Maximizing Throughput 435

wj

ALG i

ADV i

f(i)

2wf(i)

i + 1

wi

f(i + 1)

phase of job i

2wf(i+1)

j

Fig. 1. Illustration of the charging scheme. The dashed pointer and the curly pointer
represent the self-charge and the charge of step 3, respectively.

redistribute the charges among the latter so that: each of such jobs receives a
charge within factor r of its weight where r is the desired competitive ratio.

Consider the phase of job i and let i′ be the job started by the Alg just after
finishing i. Note that in case there exists no such job i′, conventionally wi′ = 0;
in case i′ exists, i′ = f(i+1). In the analysis, we will argue that the total charge
that i receives before step 3 of the charging scheme is at most r ·wi−2wf(i)+2wi′

where r is a constant revealed later. In the redistribution step (step 3), each job
i transfers 2wi′ to other job and possibly receives 2wf(i). So the total charge
that each job i completed by Alg receives is at most r · wi, which deduces the
competitive ratio r of the algorithm. Hence, it is sufficient to prove the bound of
job i’s charge before step 3 by the term above. To simplify the exposition, until
the end of the section, we refer the charge of a job as the amount that the job
receives before redistribution (before step 3).

We say that a phase is of type 1, 2, 3 or 0 if the last interruption in the phase is
according to [A1], [A2], [A3] or there is no interruption in the phase, respectively.
If the phase of job i is 0-type then i receives at most one charge from a job j
started in [Si, Ci) and probably one self-charge. As j does not interrupt i and
j is not completed before, wj < 2wi. Hence, the total charge that i receives is
at most 3wi. In the following, we bound the charge when the job i’s phase is of
type 1, 2 and 3.

Lemma 2. If the phase of job i is of type 1 then the charge that i receives is at
most (3 + β)wi − 2wf(i) + 2wi′ .

Proof. By Lemma 1, the charge that i receives from jobs started before Si in Adv
is at most 2wi−2wf(i). Consider the job j scheduled by Adv in [Si, Ci). We have
wj < 2wi since otherwise, j can interrupt i by [A1]. If wj ≤ βwi or j has been
completed by Alg or i receives no self-charge then the total charge that i receives
is at most max{2wi − 2wf(i) + wi +βwi, 2wi − 2wf(i) + wi, 2wi − 2wf(i) + wj} ≤
(3 + β)wi − 2wf(i). The remaining case is that βwi < wj < 2wi and i receives a
self-charge. Let τ be the moment that Adv starts j.

1. j is not urgent at τ

Then j is still pending at completion time of i, so wi′ ≥ wj . Hence, the charge
that i receives in this case is 2wi − 2wf(i) + wi + wj ≤ 3wi − 2wf(i) + wi′ .

2. j is urgent at τ

436 T. Nguyen Kim

ADV j1

i′

j

i

τ

[A2]

i1ALG

Fig. 2. Illustration of a phase of type 2

Since i receives a self-charge, di ≥ τ + 2p. As j is urgent and wj > βwi, i
would have been interrupted by j according to condition [A2], contradicts
that the phase is of type 1. ��

Lemma 3. If the phase of job i is of type 2 then the charge that i receives is at
most max

{
6
β − 1, 4

}
· wi − 2wf(i) + 2wi′ .

Proof. Let i1 be the job interrupted by i. By observation, before i1 is either a
job completion or an interruption of type [A1]. Then, by Lemma 1, the charge
that i receives from jobs started by Adv before Si1 is at most 2wi1 − 2wf(i).
Due to the fact that all jobs have the same length, there are at most two jobs j1
and j started by Adv in intervals [Si1 , Si) and [Si, Ci), respectively (Figure 2).
As i interrupts i1 according to [A2], at time Ci job i1 is still pending. So at
that moment, Alg will schedule some job i′ with weight wi′ ≥ wi1 . Moreover,
di < Si + 2p so either i receives no self-charge or j = i. Hence, the charge that i
receives is at most 2wi1 −2wf(i) +wj1 +max{wi, wj}. In the following, we prove

2wi1 + wj1 + max{wi, wj} ≤ max
{

6
β − 1, 4

}
· wi + 2wi′ .

We have wj1 < 2wi1 since otherwise, job j1 would have interrupted job i1 by
condition [A1]. If wj ≤ 2wi then 2wi1 +wj1 +max{wi, wj} ≤ 2wi1 +2wi1 +2wi ≤
4wi+2wi′ . Consider the case wj > 2wi. Let τ ∈ [Si, Ci) be the moment that Adv
starts j. If j is not urgent at τ then wi′ ≥ wj , so 2wi1 + wj1 + wj < 4wi + 2wi′ .
In the remaining, wj > 2wi and j is urgent at time τ .

1. There exists job � such that Si + 2p ≤ d� < τ + 2p and w� ≥ wi. In this
case, we have wi′ ≥ w� ≥ wi. If wj1 ≤ wi then wi′ ≥ wj1 . If wj1 > wi then
j1 is not urgent at its starting time by the Adv since otherwise, j1 would
have interrupted i1 according to [A2]. Hence, j1 is pending at Si. By the
job selection in condition [A2], j1 is not urgent at Si. Therefore, j1 is also
pending at time Ci, so wi′ ≥ wj1 . In both cases, wi′ ≥ wj1 . Besides, as j did
not interrupt i according to [A1] wj ≤ max{2wi, 4wi1}. Thus, wj ≤ 4wi1 . We
have:

2wi1 + wj1 + wj ≤ 6wi1 + wi′ ≤ (6/β − 1) · wi + 2wi′

2. There does not exist job � such that Si +2p ≤ d� < τ +2p and w� ≥ wi.
As j is urgent, wj < 2wi + wi1 since otherwise j would have interrupted job
i by [A3]. Hence,

2wi1 + wj1 + wj < 2wi1 + wj1 + 2wi + wi1

Improved Online Scheduling in Maximizing Throughput 437

ADV

i1 i0 (= i)

j0j1j2

t1 t0

i′

[A2] [A3]

t2

i2ALG

Fig. 3. Illustration of the phase with one interruption [A3]

If dj1 ≥ Si+2p then wi′ ≥ max{wi1 , wj1}, so 2wi1+wj1+2wi+wi1 < 4wi+2wi′

(note that wi > wi1). If Si+p < dj1 < Si+2p and as j1 is not completed before
by Alg then by the choice of scheduled job at interruption [A2], wj1 ≤ wi.
If dj1 < Si + p then we also have wj1 ≤ wi since otherwise, j1 would have
interrupted i1 according to [A2]. Therefore, we also have 2wi1 + wj1 + 2wi +
wi1 ≤ 4wi + 2wi′ . ��

Lemma 4. If the phase of job i is of type 3 then the charge that i receives is at
most max

{
3β+11
2β+1 , 4 + 3−β

5β+2

}
wi − 2wf(i) + 2wi′ .

Proof. By observation, there are at most two consecutive interruptions [A3] in
the end of job i’s phase.

1. There is only one A3-interruption. Let i0(= i), i1, i2 be jobs started by
Alg in the phase such that i0, i1 interrupt i1, i2 according to [A3] and [A2],
respectively. Let j0, j1 and j2 be jobs started by Adv in [Si0 , Ci0), [Si1 , Si0) and
[Si2 , Si1), respectively (Figure 3). By Lemma 1, the charge of jobs started by Adv
from the beginning of the phase to Si2 is at most 2wi2 −2wf(i0). As job i0 is new
released and urgent at time Si0 , i0 receives no self-charge or j0 = i0. In both
cases, the total charge is bounded by 2wi2−2wf(i0)+wj2 +wj1 +max{wj0 , 2wi0}.
In the following, we argue that W := 2wi2 + wj2 + wj1 + max{wj0 , 2wi0} ≤
max

{
3β+11
2β+1 , 4

}
wi0 + 2wi′ .

Remark that j0 does not interrupt i0 according to [A1], so max{wj0 , 2wi0} ≤
max{8wi2 , 4wi1 , 2wi0} ≤ max{2, 8/(2β + 1)}wi0 ≤ 8/(2β + 1)wi0 (because β <
3/2). Note that max{8wi2 , 4wi1 , 2wi0} ≤ 2wi0 +2wi2 , so sometimes, we only need
a weaker inequality max{wj0 , 2wi0} ≤ 2wi0+2wi2 . We also use inequalities wj2 <
2wi2 (because j2 does not interrupt i2 according to [A1]), and (2β +1)wi2 ≤ wi0 .

(a) Case wj1 > wi0 . By condition [A3], we have either dj1 ≥ Si0 + 2p or dj1 <
Si1 + 2p (otherwise, j1 would have played the role of job � at time t = Si0

in the definition of [A3]). In the former, wi′ ≥ wj1 . Hence,

4wi0+2wi′ > 2wi0 + 2(2wi1 + wi2) + wj1 >

> (2wi0 + 2wi2) + wj1 + 2wi2 + 2wi2 > W.

438 T. Nguyen Kim

In the latter, job j1 is urgent at its starting time t1 by the Adv. Moreover,
we know that no job � satisfying Si1 + 2p ≤ d� < Si0 + 2p and w� ≥ wi1 by
definition of [A3]. So there is no job � satisfying Si1 + 2p ≤ d� < t1 + 2p and
w� ≥ wi1 . As wj1 > wi0 , j1 would have interrupted i1 according to condition
[A3] (contradiction).

(b) Case wj1 ≤ wi0 and wj2 > wi1 . Then j2 is not urgent at its starting
time t2 by the Adv (since otherwise, j2 would have interrupted i2). By
job selection in [A2], j2 is not urgent at Si1 neither, i.e. dj2 ≥ Si1 + 2p.
Furthermore, by definition of condition [A3], we have dj2 ≥ Si0 + 2p since
otherwise j2 would played the role of job � in the definition of [A3]. Hence,
wi′ ≥ wj2 > wi1 > wi2 . Therefore,

4wi0 + 2wi′ > wj1 + 2wi0 + (2wi1 + wi2) + wj2 + wi2 >

> wj1 + (2wi0 + 2wi2) + wj2 + 2wi2 ≥ W

(c) Case wj1 ≤ wi0 and wj2 ≤ wi1 . We have:

W = wj1 + wj2 + wj0 + 2wi2 < wi0 + wi1 +
8

2β + 1
wi0 + 2wi2 <

< wi0 + (wi1 +
1
2
wi2) +

8
2β + 1

wi0 +
3

2(2β + 1)
wi0 ≤ 3β + 11

2β + 1
· wi0

2. There are two A3-interruptions. This analysis is similar to the previous
one.

Let i0(= i), i1, i2, i3 be jobs started by Alg in the phase such that i0, i1, i2
interrupt i1, i2, i3 according to [A3], [A3] and [A2], respectively. Let j0, j1, j2
and j3 be jobs started by Adv in [Si0 , Ci0), [Si1 , Si0), [Si2 , Si1) and [Si3 , Si2),
respectively (Figure 4). By Lemma 1, the charge of jobs started by Adv from
the beginning of the phase to Si3 is at most 2wi3 − 2wf(i). As job i0 is new
released and urgent at time Si0 , either i0 receives no self-charge or if i0 receives
a self-charge then wj0 < wi0 . In the latter, the total charge of i0 is at most 2wi2−
2wf(i)+wj3+wj2+wj1+wj0+wi0 < 2wi2−2wf(i)+wj2+wj1+2wi0 . In the former,
i0 receives at most 2wi2−2wf(i)+wj3 +wj2 +wj1 +wj0 . In the following, we argue

that 2wi3+wj3+wj2 +wj1+max{wj0 , 2wi0} ≤ max
{

3β+11
2β+1 , 4 + 3−β

5β+2

}
wi0 +2wi′ .

Remark that j0 does not interrupt i0 according to [A1], so max{wj0 , 2wi0} ≤
max{2wi0 , 4wi1 , 8wi2 , 16wi3} ≤ 2wi0 + 2wi2 . Similarly, wj2 ≤ max{2wi2 , 4wi3}
and wj3 ≤ 2wi3 .

(a) Case wj1 > wi0 . Then by condition [A3], we have either dj1 ≥ Si0 + 2p or
dj1 < Si1 + 2p. In the former, wi′ ≥ wj1 . Hence,

4wi0 + 2wi′ > 2wi0 + wj1 + 3(2wi1 + wi2)
> (2wi0 + 2wi2) + wj1 + (2wi2 + 2wi3) + 2wi3 + 2wi3

> wj0 + wj1 + wj2 + wj3 + 2wi3

In the latter, job j1 is urgent at its starting time t1 by the Adv. Moreover,
we know that no job � satisfying Si1 + 2p ≤ d� < Si0 + 2p and w� ≥ wi1 by

Improved Online Scheduling in Maximizing Throughput 439

t3

i2 i1 i0 (= i)

j0j1j2j3

t2 t1 t0

ALG

ADV

i′

[A2] [A3] [A3]

i3

Fig. 4. Illustration for the phase with two interruptions [A3]

definition of [A3]. So there is no job � satisfying Si1 + 2p ≤ d� < t1 + 2p and
w� ≥ wi1 . As wj1 > wi0 , j1 would have interrupted i1 according to condition
[A3] (contradiction).

(b) Case wj1 ≤ wi0 and wj2 > wi1 . Then j2 is not urgent at its starting time t2
by the Adv since otherwise, j2 would have preempted i2 according to [A3].
By [A2], dj2 ≥ Si1 + 2p. Furthermore, by definition of condition [A3], we
have dj2 ≥ Si0 + 2p. Hence, wi′ ≥ wj2 > wi1 . Therefore,

4wi0 + 2wi′ > 2wi0 + wj1 + wi0 + wj2 + wi1

> (2wi0 + 2wi2) + wj1 + wj2 + wi0 + wi3

> wj0 + wj1 + wj2 + wj3 + 2wi3

(c) Case wj1 ≤ wi0 and wj2 ≤ wi1 . We have:

wj0 + wj1+wj2 + wj3 + 2wi3 ≤ (2wi0 + 2wi2) + wi0 + wi1 + 4wi3

≤ 3wi0 + 2wi1 + 3wi3 ≤ 4wi0 + (3 − β)wi3

≤
(

4 +
3 − β

5β + 2

)
wi0

where the last inequality is due to wi3 ≤ 1
5β+2wi0 (by combining wi0 ≥

2wi1 + wi2 , wi1 ≥ 2wi2 + wi3 and wi2 ≥ βwi3). ��

Theorem 1. The algorithm is (2 +
√

5)(≈ 4.24)-competitive while β =
√

5 − 1.

Proof: Due to previous lemmas, a job i, which is completed by Alg, receives
a charge at most r = max{4 + 3−β

5β+2 , 3 + β, 6
β − 1, 3β+11

2β+1 }. The ratio r attains
minimum value (2 +

√
5) while β =

√
5 − 1. �

4 A 4.24-Competitive Algorithm for Preemption with
Resume

The algorithm is similar to algorithm A but the conditions depend on the re-
maining processing time of jobs rather than their entire processing time.

440 T. Nguyen Kim

The algorithm B. Initially, set Q := ∅ and α := 0. At time t, if there is either
no currently scheduled job or a job completion, then schedule the heaviest job.
Otherwise, let j be the currently scheduled job. If there is no new released job,
then continue to schedule j. Otherwise, let i be a new released job with heaviest
weight. Job j is interrupted if one of the following conditions holds.

B1. if: wi ≥ 2wj and wi ≥ 2αw(Q).
do: Schedule job i. Set α := 0 and Q = ∅.

B2. if: α = 0, βwj ≤ wi ≤ 2wj , i is urgent and j can be scheduled later, i.e.
dj ≥ t + p + qj ,
do: Schedule job i∗ which is the heaviest among all urgent jobs, i.e., i∗ =
arg max{w� : d� ≤ t + p + q�}. Set α = 1 and Q := {j}.

B3. if: i is urgent, wi ≥ 2wj + wj′ where j′ is the job previously preempted by
j and there is no another job � satisfying the following conditions:

Sj + p + q�(t) ≤ d� < t + p + q�(t) and w� ≥ wj .

do: Schedule job i.

At any interruption, if α ≥ 1 then α := α + 1. If a job is completed then set
α = 0 and Q = ∅. Conventionally, if an interruption satisfies both conditions
[B1] and [B3] then we refer that interruption to [B1].

Analysis. The charging scheme in the model of restart does not carry over since
now the adversary may schedule jobs in different pieces. We present a more subtle
charging scheme in order to analyze the algorithm by exploiting the equal-length
property of jobs. Note that the algorithm considers the remaining processing
time of jobs. Hence, at some points, the picture looks like the model in which
jobs have arbitrary length. However, initially all jobs have the same length. This
property is used in proving Lemma 5, the main lemma which is not valid if jobs
have arbitrary length.

The Charging Scheme. Again we renumber the jobs completed by the algorithm
from 1 to n, such that the completion times are ordered 0 = C0 < C1 < . . . < Cn.
For every i = 1, . . . , n we divide [Ci−1, Ci) further into intervals: Let a = �(Ci −
Ci−1)/p�. The first interval is [Ci−1, Ci − (a− 1)p). The remaining intervals are
[Ci − (b + 1)p, Ci − bp) for every b = a− 2, . . . , 0. We label every interval I with
a pair (b, i) such that I = [s, Ci − bp) for s = max{Ci−1, Ci − (b + 1)p}.

The charging also consists of three steps in which the first and the last steps
are the same as the ones of the charging scheme in Section 3. The second step
will be done by the following procedure, which maintains for every interval [s, t)
a set of jobs P that are started before t by the adversary and that are not yet
charged to some job of the algorithm.

Initially P = ∅.
For all intervals [s, t) as defined above in left to right order, do
– Let (b, i) be the label of the interval.
– Add to P all jobs j started by the adversary in [s, t).

Improved Online Scheduling in Maximizing Throughput 441

(0,3)

C0 C1 C2 C3

labels (2,1) (1,1) (0,1) (0,2) (1,3)

Fig. 5. The intervals as used by the charging procedure

– If P is not empty, then remove from P the job j with the smallest
deadline and charge it to i. Mark [s, t) with j.

– If P is empty, then leave [s, t) unmarked.
– Denote by Pt the current content of P .

Note that, no job i receives any charge from job started after Ci except self-
charge. Using the fact that all jobs have the same length, we prove the following
main lemma.

Lemma 5. For every interval [s, t), all jobs j ∈ Pt are still pending for the
algorithm at time t.

Proof: Assume that Pt is not empty, and let j be the job in Pt with the smallest
deadline. First we claim that there is a time s0, such that every interval contained
in [s0, t) is marked with some job j′ satisfying s0 ≤ rj′ and dj′ ≤ dj .

Let [s′, t′) be the interval where the adversary started j. So j entered P by
the charging procedure at that interval. Job j was in P during all the iterations
until [s, t), so every interval between s′ and t is marked with some job of deadline
at most dj . Let M be the set of these jobs. If for every j′ ∈ M we have s′ ≤ rj′ ,
choose s0 = s′ and we are done. Otherwise let j′ ∈ M be the job with smallest
release time. So rj′ < s′. Let [s′′, t′′) be the interval where the adversary started
j′. By the same argment as above, during the iteration over the intervals between
s′′ and s′, job j′ was in P . Therefore every such interval was marked with some
job with deadline at most dj′ ≤ dj . Now we repeat for s′′ the argument we had
for s′. Eventually we obtain a valid s0, since P was initially empty. That proves
the claim.

Now let M be the set of jobs charged during all intervals in [s0, t). So j /∈ M.
In an Earliest Deadline First schedule of the adversary, job j would be
completed not before s0 + (|M| + 1)p. But any interval has size at most p, so
t− s0 ≤ |M|p. We conclude that dj ≥ t + p, which shows that j is still pending
for the algorithm at time t. �

Using Lemma 5, the remaining analysis follows the same structure as in the
model of restart, though with different details. The lemmas and their proofs
could be found in the full version.

Theorem 2. The algorithm B is (2+
√

5)(≈ 4.24)-competitive when β =
√

5−1.

442 T. Nguyen Kim

References

1. Baruah, S.K., Haritsa, J., Sharma, N.: On-line scheduling to maximize task com-
pletions. In: Real-Time Systems Symposium, pp. 228–236 (December 1994)

2. Chan, W.-T., Lam, T.W., Ting, H.-F., Wong, P.W.H.: New results on on-demand
broadcasting with deadline via job scheduling with cancellation. In: Proc. 10th
International on Computing and Combinatorics Conference, pp. 210–218 (2004)

3. Chen, B., Potts, C.N., Woeginger, G.J.: A review of machine scheduling: Complex-
ity, Algorithms and Approximability. In: Handbook of Combinatorial Optimiza-
tion, vol. 3, pp. 21–169. Kluwer Academic Publishers, Dordrecht (1998)

4. Chin, F.Y.L., Fung, S.P.Y.: Online scheduling with partial job values: Does time-
sharing or randomization help? Algorithmica 37(3), 149–164 (2003)

5. Chrobak, M., Jawor, W., Sgall, J., Tichý, T.: Online scheduling of equal-length
jobs: Randomization and restarts help. SIAM J. Comput. 36(6), 1709–1728 (2007)

6. Dürr, C., Jeż, �L., Nguyen, K.T.: Online scheduling of bounded length jobs to max-
imize throughput. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893,
pp. 116–127. Springer, Heidelberg (2010)

7. Englert, M., Westermann, M.: Considering suppressed packets improves buffer
management in QoS switches. In: SODA 2007, pp. 209–218. ACM/SIAM (2007)

8. Goldwasser, M.H.: A survey of buffer management policies for packet switches.
SIGACT News 41(1) (2010)

9. Kim, J.-H., Chwa, K.-Y.: Scheduling broadcasts with deadlines. Theoretical Com-
puter Science 325(3), 479–488 (2004)

10. Koo, C.-Y., Lam, T.-W., Ngan, T.-W., Sadakane, K., To, K.-K.: On-line scheduling
with tight deadlines. Theoretical Computer Science 295(1-3), 251–261 (2003)

11. Leung, J., Kelly, L., Anderson, J.H.: Handbook of Scheduling: Algorithms, Models,
and Performance Analysis. CRC Press, Boca Raton (2004)

12. Zheng, F., Fung, S.P.Y., Chan, W.-T., Chin, F.Y.L., Poon, C.K., Wong, P.W.H.:
Improved on-line broadcast scheduling with deadlines. In: Chen, D.Z., Lee, D.T.
(eds.) COCOON 2006. LNCS, vol. 4112, pp. 320–329. Springer, Heidelberg (2006)

Recognizing Sparse Perfect Elimination

Bipartite Graphs

Matthijs Bomhoff

Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

m.j.bomhoff@utwente.nl

Abstract. When applying Gaussian elimination to a sparse matrix, it is
desirable to avoid turning zeros into nonzeros to preserve sparsity. Perfect
elimination bipartite graphs are closely related to square matrices that
Gaussian elimination can be applied to without turning any zero into
a nonzero. Existing literature on the recognition of these graphs mainly
focuses on time complexity. For n×n matrices with m nonzero elements,
the best known algorithm runs in time O

(
n3/ log n

)
. However, the space

complexity also deserves attention: it may not be worthwhile to look
for suitable pivots for a sparse matrix if this requires Ω

(
n2
)

space. We
present two new recognition algorithms for sparse instances: one with a
O (nm) time complexity in Θ

(
n2
)

space and one with a O
(
m2
)

time
complexity in Θ (m) space. Furthermore, if we allow only pivots on the
diagonal, our second algorithm is easily adapted to run in time O (nm).

Keywords: perfect elimination, algorithms, bipartite graphs, sparse
graphs.

1 Introduction

Performing Gaussian elimination on sparse matrices may have the unfortunate
side effect of turning zeros into nonzero values (fill-in), possibly even leading to
a dense matrix along the way. Clearly, this can be undesirable, for example when
working with very large sparse matrices. A natural question therefore is to ask
when we can avoid fill-in during the elimination process. Recognizing matrices
where fill-in can be avoided and selecting appropriate pivots can decrease the
required effort and space for Gaussian elimination. For several special cases,
such as symmetric (positive definite) matrices or pivots chosen along the main
diagonal, this problem has been treated extensively in literature (see e.g. [1–5]).

The general case of avoiding fill-in on square nonsingular matrices was first
treated in detail by Golumbic and Goss [6]. They describe the correspondence
between matrices that allow Gaussian elimination without fill-in and bipartite
graphs. Under the assumption that subtracting a multiple of a row from another
will always turn at most one element from nonzero to zero, an instance of the
problem can be represented by a {0, 1} matrix M where Mi,j = 1 denotes that
the original matrix contains a nonzero value at element (i, j). Given such an n×n

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 443–455, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

444 M. Bomhoff

square matrix M with m nonzero elements, we can construct the bipartite graph
G[M] with vertices corresponding to the rows and columns in M where vertices i
and j are adjacent iff Mi,j is nonzero. We assume each row and each column of M
contains at least one nonzero element, so G[M] contains no isolated vertices. For
example, the matrix shown in Fig. 1(a) corresponds to the bipartite graph shown
in Fig. 1(b). Golumbic and Goss called the class of bipartite graphs corresponding
to matrices that allow Gaussian elimination without fill-in perfect elimination
bipartite graphs. This class is characterized using an elimination scheme detailed
in the next section. Based on this scheme, they also obtained a first algorithm
for the recognition of this class. Improved algorithms for the recognition of this
class of graphs and their associated matrices have subsequently been published
and are discussed briefly in what follows.

1 1 1 0

0 1 1 0

1 1 0 1

1 1 1 1

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

(a)

c1 c2 c3 c4

r1 r2 r3 r4

(b)

Fig. 1. Example {0, 1}-matrix M and its bipartite graph G[M]

The correspondence between perfect elimination bipartite graphs and matri-
ces is mainly of practical value for sparse instances: the original motivation for
investigating this class of graphs is preserving sparsity during Gaussian elimina-
tion on their associated matrices by avoiding fill-in. For the specific case of pivots
chosen on the diagonal, Rose and Tarjan [5] have described two algorithms for
finding perfect elimination orderings. Their algorithms represent the common
trade-off between time and space. One is faster but needs more space, the other
is slower but requires storage proportional to the number of nonzero elements.
However, for the general case it appears that efficient algorithms for the recog-
nition of sparse instances have not yet been investigated. The focus in literature
so far seems to be only on time complexity for dense instances. The best known
algorithms for the general case are based on a matrix multiplication which may
well result in a dense matrix, see e.g. Fig. 2.

1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠×

1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠=

4 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

Fig. 2. Sparse M may lead to dense Q = MMT

Recognizing Sparse Perfect Elimination Bipartite Graphs 445

New results. In this paper, we present two algorithms for efficient recognition of
sparse instances (where ‘sparse’ is used to indicate m � n2): one with a O (nm)
time complexity in Θ

(
n2
)

space and one with a O
(
m2
)

time complexity in
Θ (m) space. We also show how our second algorithm can be adapted to solve
the problem in time O (nm) if only pivots on the diagonal are allowed.

The remainder of this paper is organized as follows: The next section describes
the class of perfect elimination bipartite graphs as well as existing literature on
algorithms for its recognition. The third section describes a new version of the
algorithm by Goh and Rotem for the recognition of perfect elimination bipartite
graphs that has been adapted to achieve a time complexity of O (nm) instead
of O

(
n3
)
. The section after that describes a new recognition algorithm with a

time complexity of O
(
m2
)

and a space complexity of Θ (m). Finally, we present
a discussion on other possible improvements as well as a few brief conclusions
regarding our results.

2 Perfect Elimination Bipartite Graphs

An edge uv of a bipartite graph is called bisimplicial if the neighbors of its end-
points Γ (u)∪Γ (v) (where Γ (u) denotes the neighbors of u) induce a complete
bipartite graph. Bisimplicial edges in G[M] correspond to pivots that avoid fill-in
in M . Using this notion, perfect elimination bipartite graphs were first defined
by Golumbic and Goss [6] as follows:

Definition 1. A bipartite graph G = (U, V, E) is called perfect elimination bi-
partite, if there exists a sequence of pairwise nonadjacent edges [u1v1, . . . , unvn]
such that uivi is a bisimplicial edge of G−{u1, v1, . . . , ui−1, vi−1} for each i and
G − {u1, v1, . . . , un, vn} is empty. Such a sequence of edges is called a (perfect
elimination) scheme.

This definition is based on the following theorem:

Theorem 1. If uv is a bisimplicial edge of a perfect elimination bipartite graph
G = (U, V, E), then G − {u, v} is also a perfect elimination bipartite graph.

This theorem immediately implies a simple O
(
n5
)

algorithm for the recognition
of perfect elimination bipartite graphs that also leads to an elimination scheme
in case the graph is perfect elimination bipartite. Let us introduce the notion of
row and column sets Ri and Cj defined as follows:

Ri = {j ∈ {1 . . . n}|Mi,j 	= 0} (1)
Cj = {i ∈ {1 . . . n}|Mi,j 	= 0} (2)

In other words: Ri contains the column numbers of elements in row i that have
a nonzero value in M . Using these, we can describe the algorithm by Golumbic
and Goss, shown in Algorithm 1. The algorithm basically performs n iterations,
during each of which all remaining edges are completely checked for bisimpli-
ciality.

446 M. Bomhoff

Algorithm 1. Original recognition algorithm by Golumbic and Goss
1: I ← {1 . . . n}
2: J ← {1 . . . n}
3: while I �= ∅ do
4: f ← false
5: for all (i, j) ∈ I × J do
6: if Mi,j = 1 then
7: g ← true
8: for all (k, l) ∈ (Cj ∩ I) × (Ri ∩ J) do
9: if Mk,l = 0 then

10: g ← false
11: if g = true then
12: f = true, x ← i, y ← j
13: if f = false then
14: return false {G[M] is not perfect elimination bipartite}
15: I ← I \ x
16: J ← J \ y
17: return true {G[M] is perfect elimination bipartite}

Goh and Rotem [7] have presented a faster recognition algorithm based on
the following: A row Ma,∗ is said to majorize a row Mb,∗ if for each 1 ≤ j ≤ n
we have Ma,j ≥ Mb,j . According to this definition, every row majorizes itself.

Theorem 2. [7] Let M be an n×n {0, 1} matrix representing a bipartite graph
G = (U, V, E). Let �i be the number of rows in M that majorize row i and let sj

be the sum of the entries in column j of M . Then Mi,j = 1 and �i = sj iff the
edge uivj is a bisimplicial edge of G.

The values �i can be easily determined using the matrix Q = MMT : �i is
equal to the number of elements in the row Qi,∗ that are equal to Qi,i (including
Qi,i itself). Once the matrix Q is computed, finding a bisimplicial edge can be
done in O

(
n2
)

operations. If a bisimplicial edge is found, Q can be updated
in O

(
n2
)

operations to the matrix Q′ associated with G′ = G − {u, v} for
the next iteration. After at most n iterations, the algorithm terminates, so the
total time complexity of the algorithm is O

(
n3
)
, a significant improvement over

the O
(
n5
)

naive implementation. This algorithm is shown in Algorithm 2 (The
notation M ij is used to denote the (i, j) minor of M). As it needs to compute
and store the matrix Q, its space complexity is Θ

(
n2
)
.

More recently, Spinrad [8] obtained an improved algorithm with time com-
plexity O

(
n3/ logn

)
using a notion of edges that may soon become suitable

pivots during subsequent iterations as well as the faster matrix multiplication
algorithm by Coppersmith and Winograd [9].

3 Goh-Rotem on Sparse Instances

By adapting the way calculations are performed, as well as the data structures,
we obtain a new implementation of Algorithm 2 with time complexity O (nm):

Recognizing Sparse Perfect Elimination Bipartite Graphs 447

Algorithm 2. Recognition algorithm by Goh and Rotem
1: simplicial found ← true
2: compute the matrix Q = (Qi,j) where Q = MMT

3: ∀j ∈ {1 . . . n} : sj ←
∑n

i=1 Mi,j

4: while there exists an sj �= 0 and simplicial found do
5: ∀i ∈ {1 . . . n} : let �i be the number of entries in row i of Q which are equal to

Qi,i

6: if there exists a nonzero entry Mi,j in M where sj = �i then
7: Compute the matrix D = (dk,l) where dk,l = Mk,j · Ml,j

8: Q ← (Q − D)ii {Q is now equal to (M ij)(M ij)T }
9: ∀k ∈ {1 . . . n} : sk ← sk − Mi,k

10: sj ← 0
11: else
12: simplicial found ← false
13: return simplicial found

an improvement for sparse graphs. Using the row and column sets we determine
the matrix Q = MMT as

Qi,j = |Ri ∩ Rj | . (3)

Based on this new formulation, we arrive at the following lemma that will be
used below to derive the time complexity of our new algorithm:

Lemma 1. An upper bound on the sum of the elements in Q is given by∑
i,j

Qi,j ≤ nm . (4)

Proof. ∑
i,j

Qi,j =
∑
i,j

|Ri ∩ Rj | ≤
∑

i

∑
j

|Rj | = nm (5)

��
Besides the matrix Q, we require an additional n× (n+1) matrix B. To simplify
notation, we number the columns of B starting at 0 instead of at 1. The values
of B are defined by

Bi,k := |{j|j ∈ 1 . . . n, Qi,j = k}| . (6)

I.e., Bi,k contains the number of elements in row i of Q that have the value
k. After computation of Q, the matrix B can be computed in time O

(
n2
)
.

Furthermore, without increasing the time complexity of an algorithm, we can
keep B up to date if we perform any updates to elements of Q. Using B, we can
easily determine the value of �i as

�i = Bi,Qi,i . (7)

448 M. Bomhoff

Using our set-based calculation of Q and the new matrix B, we can adapt
the original algorithm by Goh and Rotem and arrive at our new version shown
in Algorithm 3. Apart from our use of the sets I and J to denote the rows and
columns that are still part of M during the current iteration instead of taking
minors of the involved matrices, the working of the algorithm is still basically
identical to Algorithm 2. However, the additional bookkeeping of B and the
upper bound on the sum of the elements in Q enable us to achieve an improved
time complexity for sparse instances.

Algorithm 3. Adapted Goh-Rotem algorithm
Require: Q = 0 {Q is a n × n-matrix}
Require: B = 0 {B is a n × (n + 1)-matrix}
1: I ← {1 . . . n}
2: J ← {1 . . . n}
3: for all (i, j) ∈ I × J do
4: Qi,j ← |Ri ∩ Rj |
5: Bi,Qi,j ← Bi,Qi,j + 1
6: ∀j ∈ J : sj ← |Cj |
7: while I �= ∅ do
8: f ← false
9: for all i ∈ I do

10: for all j ∈ Ri do
11: if Bi,Qi,i = sj then
12: f ← true, x ← i, y ← j
13: if f = false then
14: return false {G[M] is not perfect elimination bipartite}
15: ∀i ∈ I : Ri ← Ri \ y
16: for all j ∈ J do
17: if x ∈ Cj then
18: sj ← sj − 1
19: Cj ← Cj \ x
20: for all (i, j) ∈ Cy × Cy do
21: Bi,Qi,j ← Bi,Qi,j − 1
22: Qi,j ← Qi,j − 1
23: Bi,Qi,j ← Bi,Qi,j + 1
24: ∀i ∈ I : Bi,Qi,x ← Bi,Qi,x − 1
25: I ← I \ x
26: J ← J \ y
27: return true {G[M] is perfect elimination bipartite}

Theorem 3. The time complexity of Algorithm 3 is O (nm).

Proof. From Lemma 1 we know the sum of the elements of Q is bounded by
O (nm). This implies the initialization of the matrices Q and B in the loop
on line 3 can be completed within time O (nm). This leaves us with the task of

Recognizing Sparse Perfect Elimination Bipartite Graphs 449

establishing the same bound on the main loop from line 7 on down. Clearly, the
main loop is executed up to n times, either finding and processing a pivot, or
returning false during each iteration. Within the main loop, the first loop on
line 9 processes each of the O (m) edges in constant time. If a suitable pivot is
found, we first update the Ri and Cj sets in lines 15 and 16. This can be done
in time O (m).

After that, we have to update the matrices Q and B in the loop on line 20.
Every iteration of this inner loop decreases some element of Q by one. As none
of the elements are decreased below zero, Lemma 1 again gives us a bound of
O (nm) on the number of iterations of this inner loop over the course of the
entire algorithm.

Finally, the loop on line 24 decreases O (n) values of B after which I and J
are updated to reflect the removal of the pivot row and column; all of this can
be done in time O (n).

So for both the initialization and the iteration phase of the algorithm we found
a bound of O (nm) on the time complexity. ��
The space complexity of Algorithm 3 is Θ

(
n2
)

as we need to compute and store
the matrices Q and B.

4 Avoiding Matrix Multiplication

A possible disadvantage of recognition algorithms based on matrix multiplication
is the amount of space required to store the result of the matrix multiplication.
Even if an original sparse matrix M is stored efficiently using Θ (m) space, the
result of the multiplication may be a dense matrix requiring Θ

(
n2
)

space (see
Fig. 2). Avoiding matrix multiplication thus seems to be required in order to
improve the space complexity. To do this, we started over from the algorithm
originally presented by Golumbic and Goss for the recognition of perfect elim-
ination bipartite graphs. Algorithm 1 proceeds in up to n iterations. In every
iteration, every edge is checked against possibly all other edges to determine if
it is bisimplicial. To check an edge uv for bisimplicity, we need to verify that
G[M] contains all edges u′v′ with u′ ∈ Γ (v) and v′ ∈ Γ (u). By performing this
every iteration, we obtain a time complexity of O

(
n5
)
.

The idea behind our new algorithm is as follows: in Algorithm 1 we check
every remaining edge uv against possibly all other edges during every iteration.
However, we can shave a factor n from the time complexity if we are checking uv
and find an edge u′v′ as present in G[M] during some iteration, we avoid checking
it for uv again in subsequent iterations. A naive algorithm based on this notion
is described in Algorithm 4. Assuming the use of suitable data structures, the
time complexity of this algorithm is O

(
n2m

)
. Unfortunately, by precomputing

for every edge e the set of possible edges Ee that need to be checked, we require
a lot more space, instead of less.

Observing the usage of the sets Ee, we see they are all constructed at the
beginning and processed one element at a time in arbitrary order. The element

450 M. Bomhoff

Algorithm 4. A O
(
n2m

)
recognition algorithm

1: I ← {1 . . . n}
2: J ← {1 . . . n}
3: ∀e = (i, j) ∈ E : Ee = Cj × Ri

4: while I �= ∅ do
5: f ← false
6: for all e = (i, j) ∈ E do
7: g ← true
8: if i �∈ I ∨ j �∈ J then
9: g ← false

10: while (Ee �= ∅) ∧ (g = true) do
11: e′ = (i′, j′) ← arbitrary element (Ee)
12: if i′ �∈ I ∨ j′ �∈ J then
13: Ee ← Ee \ e′

14: else if Mi′,j′ = 1 then
15: Ee ← Ee \ e′

16: else
17: g ← false
18: if g = true then
19: f ← true, x ← i, y ← j
20: if f = false then
21: return false {G[M] is not perfect elimination bipartite}
22: I ← I \ x
23: J ← J \ y
24: return true {G[M] is perfect elimination bipartite}

under consideration is either removed from the set and followed by another
element, or it leads to the conclusion that e is not bisimplicial in the matrix
that remains in the current iteration and it will be considered again later. If we
impose a specific order on the processing of the edges e ∈ Ee, we can do away
with precomputing and storing the entire sets Ee and only store the element e′

currently under consideration for each edge e.
To implement this, we again represent M using the sets Ri and Cj , but this

time we store them as sorted lists, as shown in Fig. 3(a). To perform a pivot
and remove the associated row and column, we simply adjust the links in the
row and column lists to skip over the removed row and column, as shown in Fig.
3(b) for a pivot on (3, 4). Clearly, such a pivot operation can be implemented in
time O (m), as we can simply pass over all the elements in each of the lists and
adjust the links as we pass them. This representation requires Θ (m) space.

To check if an element Mi,j corresponds to a bisimplicial edge in G[M], we
have to test if all edges between the neighbors of its endpoints exist. In terms of
the column sets of the matrix M , this means that for every column k ∈ Ri, we
must have that Cj ⊆ Ck. If we use the sorted list representation, the number of
comparisons for each edge e is bounded by O (m). Every comparison has one of
three possible outcomes (see Fig. 4):

Recognizing Sparse Perfect Elimination Bipartite Graphs 451

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

C1 C2 C3 C4

R1

R2

R3

R4

(a) original lists

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

C1 C2 C3 C4

R1

R2

R3

R4

(b) . . . after pivot (3, 4)

Fig. 3. Row and column lists for example matrix M from Fig. 1(a)

1

3

1

2

3

⎫⎪⎪⎬
⎪⎪⎭}

step

block

Fig. 4. Steps and blocks

1. Cj and Ck both contain the row number: the required edge is present, we
can continue checking the next row number

2. Ck contains a number not present in Cj : an additional edge is present, we
can continue checking the next row number

3. Cj contains a number not present in Ck: a required edge is missing: e is not
bisimplicial in the current matrix

We call the first two cases ‘steps’ (as they can be repeated during a single
iteration) and call the third case a ‘block’ (as it ends the checks for e during this
iteration). For a single edge e, steps can occur O (m) times during the algorithm,
whereas blocks are limited by O (n) as they can occur only once per iteration.
If there are no more comparisons left for any edge e that still remains in M at
some point during the algorithm, we have found a suitable pivot. After removing
the pivot row and column from M , we simply proceed checking the remaining
edges starting at the point where they blocked during the previous iteration. We
continue this process until either we have found a complete elimination scheme
or we cannot find a bisimplicial edge anymore. This procedure is described in
Algorithm 5.

452 M. Bomhoff

Algorithm 5. A new O
(
m2
)

recognition algorithm using Θ (m) space
1: I ← {1 . . . n}
2: J ← {1 . . . n}
3: Construct Ri and Cj representation
4: while I �= ∅ do
5: f ← false
6: for all e = (i, j) ∈ E do
7: g ← true
8: if i �∈ I ∨ j �∈ J then
9: g ← false

10: while g = true and we are not done checking edges do
11: e′ = (i′, j′) ← the current edge to check
12: if i′ �∈ I ∨ j′ �∈ J then
13: Proceed to the next edge to check (if any) {This can only happen during

the first iteration of this inner loop}
14: else if e′ blocks then
15: g ← false
16: else
17: Proceed to the next edge to check (if any)
18: if g = true then
19: f ← true, x ← i, y ← j
20: if f = false then
21: return false {G[M] is not perfect elimination bipartite}
22: Update Ri and Cj links to perform pivot round (x, y)
23: I ← I \ x
24: J ← J \ y
25: return true {G[M] is perfect elimination bipartite}

Theorem 4. The time complexity of Algorithm 5 is O
(
m2
)
.

Proof. It is possible to construct our sorted list representation in time O
(
n2
)
.

Other initialization, such as the state of the comparisons for every edge e, can
easily be done within the same time. Following the initialization, we perform
up to n iterations, during each of which we perform a pivot on our rows and
columns lists in time O (m) for a total of O (nm). During the entire algorithm
we perform O (m) ‘steps’ and O (n) ‘blocks’ for each of the m edges, leading to
an overall time complexity of O

(
m2
)
. ��

Theorem 5. The space complexity of Algorithm 5 is Θ (m).

Proof. Our sorted lists representation of M contains m edges. For each edge we
need Θ (1) space to store its progress with respect to its comparisons against its
required neighbors for a total of Θ (m). Finally, we have to store the sets I and
J to keep track of the rows and columns that still remain, both require Θ (n)
space. In total, we thus obtain a space complexity of Θ (m). ��
After establishing its running time and space requirements, we end this section
by adapting our new algorithm to the special case of finding a perfect elimination

Recognizing Sparse Perfect Elimination Bipartite Graphs 453

ordering allowing only pivots on the diagonal of the matrix. Rose and Tarjan
have studied this problem and have presented two algorithms for it also focusing
on the trade-off between time and space requirements [5]. One of their algorithms
has a time complexity of O (nm) and uses Θ (nm) space, the other one has a
time complexity of O

(
n2m

)
but uses only Θ (m) space.

It is not hard to see that our algorithm can be adapted to consider only a
subset of all the edges as pivots: this simply means we only process steps and
blocks for these edges while ignoring the other edges. If we test only c edges as
allowed pivots in this way, the running time of our algorithm is O (cm + nm)
while the space complexity remains Θ (m). By only allowing pivots on the diag-
onal (c = n) instead of anywhere (c = m), we get a time complexity of O (nm)
for this restricted case. We thus obtain a single algorithm that combines the best
time complexity of Rose and Tarjan with their best space complexity for this
restricted problem.

5 Discussion

In the previous sections, we have presented two new algorithms for the recogni-
tion of perfect elimination bipartite graphs. Both are aimed at efficient recogni-
tion of sparse instances, the trade-off between the two is in the amount of space
required, respectively Θ

(
n2
)

and Θ (m).
Besides improving time and space complexity, another interesting aspect of

algorithmic performance is the possibility of parallelization. From the algorithm
of Goh and Rotem, it is not too hard to see that finding a single bisimplicial
edge can be done in polylog time given a polynomial number of processors:
matrix multiplication can be performed in polylog time [10] as well as the post-
processing to determine the values of �i and check the individual matrix elements
for bisimpliciality. Our new algorithm can be parallelized on O

(
m2
)

processors to
find a bisimplicial edge in polylog time as all checks for all edges can be performed
in parallel and subsequently combined in polylog time to find a bisimplicial edge
if one exists. It is however unclear if it is also possible to use a polynomial number
of processors to run the entire recognition process in polylog time: all currently
known recognition algorithms are based on finding an elimination sequence of
n bisimplicial edges and this appears to be an inherently sequential process. A
fundamentally different approach might be necessary in order to achieve more
parallelism and obtain a polylog time approach for the entire recognition process.

Another subject for further investigation is that of minimizing fill-in when it
cannot be avoided completely. For symmetric positive definite matrices with
pivots chosen along the main diagonal, minimizing the fill-in in the associ-
ated chordal graphs has been shown to be NP -hard [11]. Furthermore, for
fill-in in chordal graphs an approximation algorithm has been developed [12].
As far as we know, the complexity of minimizing fill-in for general matrices
and perfect elimination bipartite graphs is unknown. Considering the practical

454 M. Bomhoff

applications of minimum elimination orderings, obtaining results on the com-
plexity in the general case, as well as either a polynomial time algorithm or an
approximation algorithm for minimizing fill-in seem to be good topics for further
research.

6 Conclusion

In current literature, the fastest known algorithm for the recognition of gen-
eral perfect elimination bipartite graphs is the algorithm by Spinrad [8] with
a time complexity of O

(
n3/ logn

)
. We have presented two new algorithms fo-

cused specifically on sparse instances. Our first algorithm is an adaption of the
algorithm by Goh and Rotem with a time complexity of O (nm), leading to an
improvement for instances with m = o

(
n2/ logn

)
(all but the densest instances).

The second algorithm we have presented is not based on some form of matrix
multiplication and is as such able to do away with the Ω

(
n2
)

space complexity
associated with it. This algorithm has a time complexity of O

(
m2
)

and a space
complexity of just Θ (m). For instances with m = o

(
n
√

n logn
)

this algorithm
is faster than the algorithm by Spinrad while requiring less space. We have also
shown how the restricted problem where only pivots on the diagonal are allowed
can be solved in time O (nm) using an adapted version of our algorithm.

Interesting subjects for further study might be algorithms that parallelize
better as well as problems related to the minimum fill-in on general square
matrices, such as its complexity, (exact) algorithms and approximations.

Acknowledgement. The author gratefully acknowledges the support of the
Innovation-Oriented Research Programme ‘Integral Product Creation and Real-
ization (IOP IPCR)’ of the Netherlands Ministry of Economic Affairs, Agricul-
ture and Innovation.

References

1. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. In: Read, R.C. (ed.) Graph Theory and Com-
puting, pp. 183–217. Academic Press, New York (1972)

2. Haskins, L., Rose, D.J.: Toward Characterization of Perfect Elimination Digraphs.
SIAM J. Comput. 2, 217–224 (1973)

3. Kleitman, D.J.: A Note on Perfect Elimination Digraphs. SIAM J. Comput. 3,
280–282 (1974)

4. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic Aspects of Vertex Elimination
on Graphs. SIAM J. Comput. 5, 266–283 (1976)

5. Rose, D.J., Tarjan, R.E.: Algorithmic Aspects of Vertex Elimination on Directed
Graphs. SIAM J. Appl. Math. 34, 176–197 (1978)

6. Golumbic, M.C., Goss, C.F.: Perfect Elimination and Chordal Bipartite Graphs.
J. Graph Theory 2, 155–163 (1978)

7. Goh, L., Rotem, D.: Recognition of perfect elimination bipartite graphs. Inform.
Process. Lett. 15, 179–182 (1982)

Recognizing Sparse Perfect Elimination Bipartite Graphs 455

8. Spinrad, J.P.: Recognizing quasi-triangulated graphs. Discrete Appl. Math. 138,
203–213 (2004)

9. Coppersmith, D., Winograd, S.: Matrix Multiplication via Arithmetic Progressions.
J. Symbolic Comput. 9, 251–280 (1990)

10. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley Publishing
Company, Inc., Reading (1994)

11. Yannakakis, M.: Computing the Minimum Fill-In is NP-Complete. SIAM J. Alg.
Disc. Meth. 2, 77–79 (1981)

12. Natanzon, A., Shamir, R., Sharan, R.: A Polynomial Approximation Algorithm
for the Minimum Fill-In Problem. In: STOC 1998: Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, pp. 41–47. ACM, New York
(1998)

A Multiple-Conclusion Calculus for First-Order

Gödel Logic

Arnon Avron and Ori Lahav

School of Computer Science, Tel-Aviv University, Israel
{aa,orilahav}@post.tau.ac.il

Abstract. We present a multiple-conclusion hypersequent system for
the standard first-order Gödel logic. We provide a constructive, direct,
and simple proof of the completeness of the cut-free part of this system,
thereby proving both completeness for its standard semantics, and the
admissibility of the cut rule in the full system. The results also apply
to derivations from assumptions (or “non-logical axioms”), showing that
such derivations can be confined to those in which cuts are made only
on formulas which occur in the assumptions. Finally, the results about
the multiple-conclusion system are used to show that the usual single-
conclusion system for the standard first-order Gödel logic also admits
(strong) cut-admissibility.

1 Introduction

In [15] Gödel introduced a sequence {Gn} (n ≥ 2) of n-valued matrices in the
language of propositional intuitionistic logic. He used these matrices to show
some important properties of intuitionistic logic. An infinite-valued matrix Gω

in which all the Gns can be embedded was later introduced by Dummett in [13].
Gω, in turn, can naturally be embedded in a matrix G[0,1], the truth-values of
which are the real numbers between 0 and 1 (inclusive). It has not been difficult
to show that the logics of Gω and G[0,1] are identical, and both are known today
as “Gödel logic”.1 Later it has been shown that this logic is also characterized
as the logic of linear intuitionistic Kripke frames (see e.g. [14]). Gödel logic is
probably the most important intermediate logic, i.e. a logic between intuitionistic
logic and classical logic, which turns up in several places. Recently it has again
attracted a lot of attention because of its recognition as one of the three most
basic fuzzy logics [16].

Gödel logic can be naturally extended to the first-order framework. In partic-
ular, the standard first-order Gödel logic (the logic based on [0, 1] as the set of
truth-values) has been introduced and investigated in [21] (where it was called
“intuitionistic fuzzy logic”). The Kripke-style semantics of this logic is provided
by the class of all linearly ordered Kripke frames with constant domains.

1 It is also called Gödel-Dummett logic, because it was first introduced and axioma-
tized in [13]. The name Dummett himself has used is LC.

A. Kulikov and N. Vereshchagin (Eds.): CSR 2011, LNCS 6651, pp. 456–469, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Multiple-Conclusion Calculus for First-Order Gödel Logic 457

A cut-free Gentzen-type formulation for Gödel logic was first given by Sonobe
in [18]. Since then several other such calculi which employ ordinary sequents
have been proposed (see [10,1,11,5,12]). All these calculi have the drawback of
using some ad-hoc rules of a nonstandard form, in which several occurrences of
connectives are involved. In contrast, in [2] a cut-free Gentzen-type proof sys-
tem HG for propositional Gödel logic was introduced, which does not have this
drawback. HG uses (single-conclusion) hypersequents (a natural generalization
of Gentzen’s original (single-conclusion) sequents), and it has exactly the same
logical rules as the usual Gentzen-type system for propositional intuitionistic
logic. HG was furthermore extended by Baaz, Ciabattoni, Fermüller, and Zach
to provide appropriate proof systems for extensions of propositional Gödel logic
with quantifiers of various types and modalities (see [6] for a survey). In particu-
lar, an extension of HG for the standard first-order Gödel logic (called HIF) was
introduced in [8]. Following the work that started in [2], the framework of hy-
persequents was used by Metcalfe, Ciabattoni, and others for other fuzzy logics
(like �Lukasiewicz infinite-valued logic), and nowadays it is the major framework
for the proof theory of fuzzy logics (see [17]).

Until recently, in all the works about HG and its extensions the proofs of
completeness (either for the Gödel’s many-valued semantics or for the Kripke
semantics) and the proofs of cut-elimination have completely been separated.
Completeness has been shown for the full calculus (including cut), while cut-
elimination has been proved syntactically by some type of induction on com-
plexity of proofs.2 On the contrary, the recent [4] provided for the first time a
constructive, direct, and simple proof of the completeness of the cut-free part of
HG for its intended semantics (thereby proving both completeness of the calcu-
lus and the admissibility of the cut rule in it)3. However, [4] did not deal with the
first-order extension of HG, and it was not clear how to adapt its completeness
proof to the first-order case.

In this paper we present a hypersequent system for the standard first-order
Gödel logic, for which it is possible to provide a purely semantic, simple (and
easy to verify) proof of cut-admissibility. As usual, this proof is actually a com-
pleteness proof of the cut-free part of our system for its intended semantics.
To overcome the difficulties encountered in adapting the proof of [4] to the first-
order case, we move to the multiple-conclusion framework. The proposed system,
which we call MCG, is a multiple-conclusion hypersequent system, which can
be seen as a combination of HIF and the well-known multiple-conclusion se-
quent system for intuitionistic logic (called LJ′ in [20]). Our results apply also
to derivations from assumptions, as we actually prove strong cut-admissibility,

2 The syntactic methods are notoriously prone to errors, especially (but certainly
not only) in the case of hypersequent systems. Thus the first proof (in [8]) of cut-
elimination for HIF was erroneous. There has also been a gap in the proof given in
[2] in its handling of the case of disjunction. Many other examples, also for ordinary
sequential calculi, can be given.

3 A semantic proof of cut-admissibility for HG has been given in [9]. However, a com-
plicated algebraic phase semantics was used there, and the proof is not constructive.

458 A. Avron and O. Lahav

proving that derivations can be confined to those in which cuts are made only
on formulas which occur in the assumptions. Finally, at the end of the paper
we return to the original single-conclusion system HIF for Gödel logic, and use
our results about MCG to provide a new, semantic proof that this system too
admits (strong) cut-admissibility.

2 Preliminaries

Let L be a first-order language. We assume that the set of free variables and the
set of bounded variables are disjoint. We use the metavariable a to range over
the free variables, x to range over the bounded variables, p to range over the
predicate symbols of L, c to range over its constant symbols, and f to range over
its function symbols. The sets of L-terms and L-formulas are defined as usual,
and are denoted by trmL and frmL, respectively. trmcl

L and frmcl
L respectively

denote the sets of closed L-terms and closed L-formulas. Given an L-formula ψ,
a free-variable a, and an L-term t, we denote by ψ{t/a} the L-formula obtained
from ψ by replacing all occurrences of a by t.

2.1 Proof-Theoretical Preliminaries

Definition 1. A sequent is an ordered pair of finite sets of L-formulas. A hy-
persequent is a finite set of sequents.

Given a set H of hypersequents, we denote by frm[H] the set of formulas that
appear in H. We shall use the usual sequent notation Γ ⇒ Δ, and the usual
hypersequent notation s1 | . . . | sn. We also employ the standard abbreviations,
e.g. Γ, ψ⇒Δ instead of Γ ∪ {ψ}⇒Δ, and H | s instead of H ∪ {s}.
Definition 2. A sequent Γ ⇒Δ is single-conclusion if Δ contains at most one
formula. A L-hypersequent s1 | . . . | sn is single-conclusion if s1, . . . , sn are all
single-conclusion.

Next we review the single-conclusion hypersequent system HIF for the standard
first-order Gödel logic from [8].4

ϕ⇒ϕ ⊥⇒

(IW ⇒)
H | Γ ⇒E

H | Γ, ψ⇒E
(⇒IW)

H | Γ ⇒
H | Γ ⇒ψ

(EW)
H

H | Γ ⇒E

(com)
H1 | Γ1, Γ

′
1⇒E1 H2 | Γ2, Γ

′
2⇒E2

H1 | H2 | Γ1, Γ
′
2⇒E1 | Γ2, Γ

′
1⇒E2

4 What we present is actually an equivalent version of the system presented in [8].
Thus ¬ϕ is defined here as ϕ ⊃ ⊥, while the density rule is not present, since
it can be eliminated. Other insignificant differences are due to the facts that we
define hypersequents as sets of sequents rather than as multisets, and that we use
multiplicative versions of the rules rather than additive ones.

A Multiple-Conclusion Calculus for First-Order Gödel Logic 459

(cut)
H1 | Γ1⇒ϕ H2 | Γ2, ϕ⇒E

H1 | H2 | Γ1, Γ2⇒E

(⊃⇒)
H1 | Γ1⇒ψ1 H2 | Γ2, ψ2⇒ E

H1 | H2 | Γ1, Γ2, ψ1 ⊃ ψ2⇒E
(⇒⊃)

H | Γ, ψ1⇒ψ2

H | Γ ⇒ψ1 ⊃ ψ2

(∨⇒)
H1 | Γ1, ψ1⇒E1 H2 | Γ2, ψ2⇒E2

H1 | H2 | Γ1, Γ2, ψ1 ∨ ψ2⇒E1, E2

(⇒∨1)
H | Γ ⇒ψ1

H | Γ ⇒ψ1 ∨ ψ2
(⇒∨2)

H | Γ ⇒ψ2

H | Γ ⇒ψ1 ∨ ψ2

(∧⇒ 1)
H | Γ, ψ1⇒E

H | Γ, ψ1 ∧ ψ2⇒E
(∧⇒ 2)

H | Γ, ψ2⇒E

H | Γ, ψ1 ∧ ψ2⇒E

(⇒∧)
H1 | Γ1⇒ψ1 H2 | Γ2⇒ψ2

H1 | H2 | Γ1, Γ2⇒ψ1 ∧ ψ2

(∀⇒)
H | Γ, ϕ{t/a}⇒E

H | Γ,∀x(ϕ{x/a})⇒E
(⇒∀)

H | Γ ⇒ϕ

H | Γ ⇒∀x(ϕ{x/a})

(∃⇒)
H | Γ, ϕ⇒E

H | Γ,∃x(ϕ{x/a})⇒E
(⇒∃)

H | Γ ⇒ϕ{t/a}
H | Γ ⇒∃x(ϕ{x/a})

The rules (⇒∀) and (∃⇒) must obey the eigenvariable condition: a must not oc-
cur in the lower hypersequent. E, E1 and E2 denote here sets of formulas contain-
ing at most one formula. Note that the sets of formulas denoted by Γ1, Γ2, Γ

′
1, Γ

′
2

need not to be disjoint. Also note that in (∨⇒): either E1 = E2 or one of them
is empty.

2.2 Semantic Preliminaries

In this paper we use the usual Kripke-style semantics for the standard first-order
Gödel logic, rather than the many-valued one. There are two differences between
this semantics and the Kripke-style semantics of first-order intuitionistic logic.
First, for Gödel logic we use linearly ordered Kripke frames. Second, for first-
order Gödel logic we need to use a constant domain, i.e. the same domain in
each world, rather than the expanding domains used for intuitionistic logic.5

Definition 3. An L-structure M is a pair 〈D, I〉 where D is a nonempty domain
and I is an interpretation of constants and function symbols of L, such that
I(c) ∈ D for every constant symbol c of L, and I(f) ∈ Dn → D for every n-ary
function symbol f of L.

Definition 4. A 〈L, D〉-predicate interpretation is a function assigning a subset
of Dn to every n-ary predicate symbol of L.

Definition 5. An L-frame is a tuple W = 〈W,≤, M, {Iw}w∈W 〉 where:

1. W is a nonempty set linearly ordered by ≤.
2. M = 〈D, I〉 is an L-structure.
5 Currently no cut-free hypersequent calculus is known for the logic of linearly ordered

Kripke frames with (non-constant) expanding domains.

460 A. Avron and O. Lahav

3. For every w ∈ W , Iw is an 〈L, D〉-predicate interpretation.
4. Iu(p) ⊆ Iw(p) for every elements u, w of W such that u ≤ w, and for every

predicate symbol p.

Definition 6. An 〈L, D〉-evaluation is a function assigning an element in D to
every free variable of L. Given an 〈L, D〉-evaluation e, a free variable a, and
d ∈ D, we denote by e[a:=d] the 〈L, D〉-evaluation which is identical to e except
that e[a:=d](a) = d.

Given a structure M = 〈D, I〉, the M -extension of an 〈L, D〉-evaluation e
is a function e′ : trmL → D defined as follows: e′(c) = I(c) for every con-
stant symbol c; e′(a) = e(a) for every free variable a; and e(f(t1, . . . , tn) =
I(f)(e′(t1), . . . , e′(tn)) for every function symbol f and t1, . . . , tn ∈ trmL.

Definition 7. Let W = 〈W,≤, M = 〈D, I〉, {Iw}w∈W 〉 be an L-frame, and e
be an 〈L, D〉-evaluation. The satisfaction relation � is recursively defined as
follows:

1. W , w, e � p(t1, . . . , tn) iff 〈e′(t1), . . . , e′(tn)〉 ∈ Iw(p), where e′ is the M -
extension of e.

2. W , w, e 	� ⊥.
3. W , w, e � ψ1 ⊃ ψ2 iff W , u, e 	� ψ1 or W , u, e � ψ2 for every element u ≥ w.
4. W , w, e � ψ1 ∨ ψ2 iff W , w, e � ψ1 or W , w, e � ψ2.
5. W , w, e � ψ1 ∧ ψ2 iff W , w, e � ψ1 and W , w, e � ψ2.
6. W , w, e � ∀x(ψ{x/a}) iff W , w, e[a:=d] � ψ for every d ∈ D.
7. W , w, e � ∃x(ψ{x/a}) iff W , w, e[a:=d] � ψ for some d ∈ D.

� is extended to sequents as follows: W , w, e � Γ ⇒Δ iff either W , w, e 	� ϕ for
some ϕ ∈ Γ , or W , w, e � ϕ for some ϕ ∈ Δ.

It is a routine matter to prove the following proposition:

Proposition 1. Let W = 〈W,≤, M = 〈D, I〉, {Iw}w∈W 〉 be an L-frame, and e
be an 〈L, D〉-evaluation. Let ψ be an L-formula, and u be an element of W
such that W , u, e � ψ. Then, W , w, e � ψ for every element w of W such that
u ≤ w.

Definition 8. Let W = 〈W,≤, M = 〈D, I〉, {Iw}w∈W 〉 be an L-frame.

1. W is a model of a hypersequent H iff for every 〈L, D〉-evaluation e, there
exists a component s ∈ H such that W , w, e � s for every w ∈ W .

2. W is a model of a set of hypersequents H iff it is a model of every H ∈ H.

We define the semantic consequence relation between hypersequents:

Definition 9. Let H ∪ {H} be a set of hypersequents. H �Kr H iff every L-
frame which is a model of H is also a model of H .

A Multiple-Conclusion Calculus for First-Order Gödel Logic 461

3 The Multiple-Conclusion System

The system MCG is the following (multiple-conclusion) hypersequent system:

Axioms:
ϕ⇒ϕ ⊥⇒

Structural Rules:

(IW ⇒)
H | Γ ⇒Δ

H | Γ, ψ⇒Δ
(⇒IW)

H | Γ ⇒Δ

H | Γ ⇒Δ,ψ
(EW)

H

H | Γ ⇒Δ

(com)
H1 | Γ1, Γ

′
1⇒Δ1 H2 | Γ2, Γ

′
2⇒Δ2

H1 | H2 | Γ1, Γ
′
2⇒Δ1 | Γ2, Γ

′
1⇒Δ2

(split)
H | Γ ⇒Δ1, Δ2

H | Γ ⇒Δ1 | Γ ⇒Δ2

(cut)
H1 | Γ1⇒Δ1, ϕ H2 | Γ2, ϕ⇒Δ2

H1 | H2 | Γ1, Γ2⇒Δ1, Δ2

Logical Rules:

(⊃⇒)
H1 | Γ1⇒Δ1, ψ1 H2 | Γ2, ψ2⇒Δ2

H1 | H2 | Γ1, Γ2, ψ1 ⊃ ψ2⇒Δ1, Δ2
(⇒⊃)

H | Γ, ψ1⇒ψ2

H | Γ ⇒ψ1 ⊃ ψ2

(∨⇒)
H1 | Γ1, ψ1⇒Δ1 H2 | Γ2, ψ2⇒Δ2

H1 | H2 | Γ1, Γ2, ψ1 ∨ ψ2⇒Δ1, Δ2
(⇒∨)

H | Γ ⇒Δ, ψ1, ψ2

H | Γ ⇒Δ, ψ1 ∨ ψ2

(∧⇒)
H | Γ, ψ1, ψ2⇒Δ

H | Γ, ψ1 ∧ ψ2⇒Δ
(⇒∧)

H1 | Γ1⇒Δ1, ψ1 H2 | Γ2⇒Δ2, ψ2

H1 | H2 | Γ1, Γ2⇒Δ1, Δ2, ψ1 ∧ ψ2

(∀⇒)
H | Γ, ϕ{t/a}⇒Δ

H | Γ,∀x(ϕ{x/a})⇒Δ
(⇒∀)

H | Γ ⇒Δ,ϕ

H | Γ ⇒Δ,∀x(ϕ{x/a})

(∃⇒)
H | Γ, ϕ⇒Δ

H | Γ,∃x(ϕ{x/a})⇒Δ
(⇒∃)

H | Γ ⇒Δ, ϕ{t/a}
H | Γ ⇒Δ,∃x(ϕ{x/a})

The rules (⇒∀) and (∃⇒) must obey the eigenvariable condition: a must not
occur in the lower hypersequent.

Remark 1. The main difference between MCG and the system HIF of [8] is
the fact that MCG employs multiple-conclusion hypersequents. Among other
things, this involves having full internal weakening (⇒ IW) on the right, and
allowing also right context formulas in all the rules, except for (⇒⊃). Note that
such formulas are not allowed in (⇒⊃), and so this rule looks exactly like its
single-conclusion counterpart. The communication rule is also strengthened, al-
lowing arbitrary finite sets of formula in the right-hand side of its premises. In
addition, an extra (right) split rule is added, allowing to split the formulas in
the right side of one component into two different components.

Definition 10. Let H∪ {H} be a set of hypersequents. H � H if there exists a
derivation of H from H in MCG. Given a set E of L-formulas, we write H �E H
if there exists a derivation of H from H in MCG in which the cut-formula of
every application of the rule is in E .

462 A. Avron and O. Lahav

Remark 2. In this notation, strong cut-admissibility means that H �frm[H] H
whenever H � H . Usual cut-admissibility is obtained as a special case when
H = ∅.
The following usual lemma will be used in the sequel.

Lemma 1. Let H ∪ {H} be a set of hypersequents, c be a constant symbol
not occurring in H ∪ {H}, and a be a free variable. Then, H �frm[H] H iff
H{c/a} �frm[H] H{c/a}.

4 Soundness, Completeness and Cut-Admissibility

In this section we prove the soundness and completeness theorem for MCG
with respect to the Kripke semantics of first-order Gödel logic (presented in
Section 2). Completeness is proved for MCG without the cut-rule, and so it
also proves cut-admissibility. We begin with the soundness theorem.

Theorem 1. Let H∪ {H} be a set of closed hypersequent. If H �frm[H] H then
H �Kr H.

Proof (Outline). Let W = 〈W,≤, M = 〈D, I〉, {Iw}w∈W 〉 be an L-frame which
is a model of H. We show that for every 〈L, D〉-evaluation e, there exists a
component s ∈ H such that W , w, e � s for every w ∈ W . Since the axioms of
MCG and the assumptions of H trivially have this property, it suffices to show
that this property is preserved also by applications of the rules of MCG. This
is a routine matter. We do here only the case of (com).

Suppose that H = H1 | H2 | Γ1, Γ
′
2⇒Δ1 | Γ2, Γ

′
1⇒Δ2 is derived from the hy-

persequents H1 | Γ1, Γ
′
1⇒Δ1 and H2 | Γ2, Γ

′
2⇒Δ2 using (com). Assume for con-

tradiction that W is not a model of H . Thus there exists an 〈L, D〉-evaluation
e, such that for every s ∈ H , there exists w ∈ W such that W , w, e 	� s. In
particular, for every s ∈ H1 ∪ H2, there exists w ∈ W such that W , w, e 	� s. In
addition, there exist w1 ∈ W such that W , w1, e 	� Γ1, Γ

′
2⇒Δ1, and w2 ∈ W such

that W , w2, e 	� Γ2, Γ
′
1⇒Δ2. By definition, W , w1, e � ψ for every ψ ∈ Γ1 ∪ Γ ′

2,
W , w1, e 	� ψ for every ψ ∈ Δ1, W , w2, e � ψ for every ψ ∈ Γ2 ∪ Γ ′

1, and
W , w2, e 	� ψ for every ψ ∈ Δ2. Since ≤ is linear, either w1 ≤ w2 or w2 ≤ w1.
Assume w.l.o.g that w1 ≤ w2. Then by Proposition 1, W , w2, e � ψ for every
ψ ∈ Γ ′

2. It follows that W , w2, e 	� Γ2, Γ
′
2⇒Δ2. But this implies that W is not a

model of H2 | Γ2, Γ
′
2⇒Δ2. ��

To prove completeness, we use extended sequents and extended hypersequents,
defined as follows:

Definition 11. An extended sequent is an ordered pair of (possibly infinite) sets
of L-formulas, written: T ⇒U . Given two extended sequents μ1 = T1⇒U1 and
μ2 = T2⇒U2, we write μ1 � μ2 if T1 ⊆ T2 and U1 ⊆ U2.

A Multiple-Conclusion Calculus for First-Order Gödel Logic 463

Definition 12. An extended hypersequent is a (possibly infinite) set of extended
sequents. Given two extended hypersequents Ω1, Ω2, we write Ω1 � Ω2 (and say
that Ω2 extends Ω1) if for every extended sequent μ1 ∈ Ω1, there exists μ2 ∈ Ω2

such that μ1 � μ2.

We shall use the same notations for extended sequents and extended hyperse-
quents. For example, we write Ω | s instead of Ω ∪ {s}.
Definition 13. An extended sequent T ⇒U admits the witness property if the
following hold:

1. If ∀x(ψ{x/a}) ∈ U then there exists a constant c such that ψ{c/a} ∈ U .
2. If ∃x(ψ{x/a}) ∈ T then there exists a constant c such that ψ{c/a} ∈ T .

Definition 14. Let Ω be an extended hypersequent, and H be a set of hyper-
sequents.

1. Ω is called closed if it consists of extended sequents consisting only of closed
L-formulas.

2. Ω is called H-consistent if H 	�frm[H] H for every hypersequent H � Ω.
3. Let ψ be an L-formula. Ω is called internally H-maximal with respect to ψ

if for every T ⇒U ∈ Ω:
(a) If ψ 	∈ T then Ω | T , ψ⇒U is not H-consistent.
(b) If ψ 	∈ U then Ω | T ⇒U , ψ is not H-consistent.

4. Ω is called internally H-maximal if it is internally H-maximal with respect
to any closed L-formula.

5. Let s be a sequent of the form ψ1 ⇒ψ2. Ω is called externally H-maximal
with respect to s if either {s} � Ω, or Ω | s is not H-consistent.

6. Ω is called externally H-maximal if it is externally H-maximal with respect
to any closed sequent of the form ψ1⇒ψ2.

7. Ω admits the witness property if every μ ∈ Ω admits the witness property.
8. Ω is called H-maximal if it is closed, H-consistent, internally H-maximal,

externally H-maximal, and it admits the witness property.

Obviously, every hypersequent is an extended hypersequent, and so all of these
properties apply to (usual) hypersequents as well.

The following three propositions are easily proved in the presence of the in-
ternal and external weakening rules:

Proposition 2. A usual hypersequent H is H-consistent iff H 	�frm[H] H.

Proposition 3. Let Ω be an extended hypersequent, which is internally H-
maximal with respect to a formula ψ. For every T ⇒U ∈ Ω:

1. If ψ 	∈ T , then H �frm[H] H | Γ, ψ⇒Δ for some hypersequent H � Ω and
sequent Γ ⇒Δ � T ⇒U .

2. If ψ 	∈ U , then H �frm[H] H | Γ ⇒Δ, ψ for some hypersequent H � Ω and
sequent Γ ⇒Δ � T ⇒U .

464 A. Avron and O. Lahav

Proposition 4. Let Ω be an extended hypersequent, which is externally H-
maximal with respect to a sequent s. Then, either s � Ω, or there exists a
hypersequent H � Ω such that H �frm[H] H | s.

A certain H-maximal extended hypersequent serves as the set of worlds in the
refuting frame built in the completeness proof. Lemma 4 below ensures the
existence of that extended hypersequent. In turn, for the proof of Lemma 4 we
need Lemmas 2 and 3 below.

Lemma 2. Assume L has an infinite number of constant symbols. Let H be
a set of hypersequents, and H = Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn be a H-consistent
closed hypersequent. Then there exists a H-consistent closed hypersequent H ′ of
the form Γ ′

1⇒Δ′
1 | . . . | Γ ′

n⇒Δ′
n, such that Γi ⊆ Γ ′

i and Δi ⊆ Δ′
i for every

1 ≤ i ≤ n, and H ′ admits the witness property.

Lemma 3. Assume L has an infinite number of constant symbols. Let H be a
set of hypersequents, and H = Γ1⇒Δ1 | . . . | Γn⇒Δn be a H-consistent closed
hypersequent. Let ψ be a closed L-formula, and s be a closed sequent of the form
ψ1⇒ψ2. Then there exists a H-consistent closed hypersequent H ′, such that:

– H ′ = Γ ′
1⇒Δ′

1 | . . . | Γ ′
n′ ⇒Δ′

n′ , where n′ ∈ {n, n + 1}, Γi ⊆ Γ ′
i and Δi ⊆ Δ′

i

for every 1 ≤ i ≤ n.
– H ′ is internally H-maximal with respect to ψ.
– H ′ is externally H-maximal with respect to s.
– H ′ admits the witness property.

Lemma 4. Assume L has an infinite number of constant symbols. Let H be a
set of hypersequents. Every H-consistent closed hypersequent H can be extended
to a H-maximal extended hypersequent Ω.

Using Lemma 4, we turn to the completeness of the cut-free fragment of MCG.

Theorem 2. Let H0 ∪{H0} be a set of closed hypersequent. If H0 �Kr H0 then
H0 �frm[H] H0.

Proof. Assume H0 	�E H0, where E = frm[H0]. We construct an L-frame W
which is a model of H0 but not of H0. First, assume (w.l.o.g) that L has an
infinite number of constant symbols (if not, then we add infinitely many constant
symbols, and obviously H0 	�E H0 still holds). By Lemma 4, there exists a H0-
maximal extended hypersequent Ω such that H0 � Ω.
Define W = 〈W,≤, M, {Iw}w∈W 〉, as follows:

– W = Ω (obviously, W is not empty).
– For every T1⇒U1, T2⇒U2 ∈ W , T1⇒U1 ≤ T2⇒U2 iff T1 ⊆ T2.
– M = 〈D, I〉 where D is the set of all closed L-terms, I(c) = c for every con-

stant c, and I(f)(t1, . . . , tn) = f(t1, . . . , tn) for every n-ary function symbol
f and t1, . . . , tn ∈ D.

– 〈t1, . . . , tn〉 ∈ IT⇒U(p) iff p(t1, . . . , tn) ∈ T for every n-ary predicate symbol
p and t1, . . . , tn ∈ D.

A Multiple-Conclusion Calculus for First-Order Gödel Logic 465

We first prove that 〈W,≤〉 is linearly ordered:

Partial Order. Obviously ≤ is reflexive and transitive. To see that it is also
anti-symmetric, let w1, w2 ∈ W such that w1 ≤ w2 and w2 ≤ w1. Assume
w1 = T1 ⇒ U1 and w2 = T2 ⇒ U2. By definition, T1 = T2 in this case.
Assume for contradiction that U1 	= U2, and let ψ ∈ U1 \ U2 (w.l.o.g.).
Since Ω is internally H-maximal, there exist a hypersequent H � Ω and a
sequent Γ ⇒ Δ � w2, such that H0 �E H | Γ ⇒Δ, ψ. Using the split rule,
we obtain H0 �E H | Γ ⇒ψ | Γ ⇒Δ. But, Γ ⇒ψ � w1, and this contradicts
Ω’s consistency. Hence U1 = U2, and so w1 = w2.

Linearity. Let T1 ⇒U1, T2 ⇒U2 ∈ W . Assume for contradiction that T1 	⊆ T2

and T2 	⊆ T1. Let ψ1 ∈ T1 \ T2 and ψ2 ∈ T2 \ T1. By Ω’s internal maximality,
there exist hypersequents H1, H2 � Ω and sequents Γ1 ⇒ Δ1 � T1 ⇒ U1

and Γ2 ⇒ Δ2 � T2 ⇒ U2 such that H0 �E H1 | Γ1, ψ2⇒Δ1 and such that
H0 �E H2 | Γ2, ψ1⇒Δ2. By applying (com) to these two hypersequents we
obtain H0 �E H1 | H2 | Γ1, ψ1⇒Δ1 | Γ2, ψ2⇒Δ2. But this contradicts Ω’s
consistency.

The following claims are proved by a standard structural induction:

– For every 〈L, D〉-evaluation e and t ∈ D, e′(t) = t.
– For every 〈L, D〉-evaluation e, t ∈ D, an L-formula ψ, a free variable a, and

w ∈ W : W , w, e[a:=t] � ψ iff W , w, e � ψ{t/a}.
Next we prove that the following hold for every w = T ⇒U ∈ W , and 〈L, D〉-
evaluation e:

(a) If θ ∈ T then W , w, e � θ.
(b) If θ ∈ U then W , w, e 	� θ.

(a) and (b) are proved together using a simultaneous induction on the complex-
ity of θ. Here we do three crucial cases.

Let w = T ⇒U ∈ W and let e be an 〈L, D〉-evaluation.

– Suppose θ is a closed atomic formula p(t1, . . . , tn). By definition, W , w, e � θ
iff 〈e′(t1), . . . , e′(tn)〉 ∈ Iw(p), where e′ is the M -extension of e (see Defini-
tion 6). By a previous claim, e′(ti) = ti for every 1 ≤ i ≤ n. And so, our
construction ensures that W , w, e � θ iff θ ∈ T . This proves (a). For (b), note
that ψ⇒ψ is an axiom (for every L-formula ψ), and since Ω is H-consistent,
θ ∈ U implies θ 	∈ T .

– Suppose θ = ψ1 ⊃ ψ2.
1. Assume that θ ∈ T . We show that for every element w′ ∈ W such that

w ≤ w′ either W , w′, e 	� ψ1 or W , w′, e � ψ2.
Let w′ = T ′ ⇒ U ′ ∈ W such that w ≤ w′ (and so, T ⊆ T ′). By the
induction hypothesis, it suffices to show that either ψ1 ∈ U ′ or ψ2 ∈ T ′.
Assume otherwise. Then by Ω’s internal maximality, there exist hyper-
sequents H1, H2 � Ω, and sequents Γ1 ⇒Δ1, Γ2 ⇒Δ2 � T ′ ⇒U ′ such
that H0 �E H1 | Γ1⇒Δ1, ψ1, and H0 �E H2 | Γ2, ψ2⇒Δ2. By applying

466 A. Avron and O. Lahav

(⊃⇒) we obtain H0 �E H1 | H2 | Γ1, Γ2, θ⇒Δ1, Δ2. But since θ ∈ T ,
θ ∈ T ′ and so H1 | H2 | Γ1, Γ2, θ ⇒Δ1, Δ2 � Ω. This contradicts Ω’s
consistency.

2. Assume that θ ∈ U .
First we claim that H0 	�E H | ψ1⇒ψ2 for every hypersequent H � Ω.
To see this assume for contradiction that there exists a hypersequent
H � Ω, such that H0 �E H | ψ1⇒ψ2. By applying (⇒⊃) to this hyper-
sequent we obtain H0 �E H |⇒θ. But this contradicts Ω’s consistency.
Therefore, by Ω’s external maximality, ψ1⇒ψ2 � Ω. Thus there exists
an extended sequent T ′ ⇒U ′ ∈ Ω, such that ψ1 ∈ T ′ and ψ2 ∈ U ′. By
the induction hypothesis, W , T ′⇒U ′, e � ψ1 and W , T ′⇒U ′, e 	� ψ2. It
follows that if T ⊆ T ′, then W , w, e 	� θ and we are done.
Assume now that T 	⊆ T ′. By linearity, T ′ ⊆ T , and so ψ1 ∈ T .
By the induction hypothesis, W , w, e � ψ1. Now notice that ψ2 ∈ U .
To see this assume for contradiction that ψ2 	∈ U . Then by Ω’s in-
ternal maximality, there exist a hypersequent H � Ω, and a sequent
Γ ⇒Δ � T ⇒U , such that H0 �E H | Γ ⇒Δ, ψ2. By applying the split
rule we obtain H0 �E H | Γ ⇒Δ | Γ ⇒ψ2. By applying internal weaken-
ing we obtain H0 �E H | Γ ⇒Δ | Γ, ψ1⇒ψ2. Finally, by (⇒⊃) we obtain
H0 �E H | Γ ⇒Δ | Γ ⇒θ. But this contradicts Ω’s consistency. By the
induction hypothesis, W , w, e 	� ψ2. This again implies that W , w, e 	� θ.

– Suppose θ = ∀x(ψ{x/a}).
1. Assume that W , w, e 	� θ. We show that θ 	∈ T . By definition, there exists

some t ∈ D such that W , w, e[a:=t] 	� ψ. By a previous claim, it follows
that W , w, e 	� ψ{t/a}. By the induction hypothesis, ψ{t/a} 	∈ T . Now,
using Ω’s internal maximality, there exist a hypersequent H � Ω and
a sequent Γ ⇒ Δ � T ⇒ U , such that H0 �E H | Γ, ψ{t/a} ⇒ Δ. By
applying (∀⇒), we obtain H0 �E H | Γ, θ⇒Δ. Since Ω is H-consistent,
θ 	∈ T .

2. Assume that θ ∈ U . By Ω’s witness property, there exists a constant sym-
bol c such that ψ{c/a} ∈ U . From the induction hypothesis it follows that
W , w, e 	� ψ{c/a}. By a previous claim, it follows that W , w, e[a:=c] 	� ψ.
Since c ∈ D, by definition, W , w, e 	� θ.

It remains to show that W is a model of H0 but not of H0. First, notice that for
every ψ ∈ frm[H] and T ⇒U ∈ Ω, either ψ ∈ T or ψ ∈ U . To see this, note that
otherwise, by Ω’s internal maximality, there exist hypersequents H1, H2 � Ω,
and sequents Γ1⇒Δ1, Γ2⇒Δ2 � T ⇒U , such that H0 �E H1 | Γ1, ψ⇒Δ1 and
H0 �E H2 | Γ2⇒Δ2, ψ. Now using a (legal) application of the cut rule, we obtain
H0 �E H1 | H2 | Γ1, Γ2⇒Δ1, Δ2, but this contradicts Ω’s consistency.

Now let H ∈ H0, and let e be an 〈L, D〉-evaluation. Since obviously H0 �E H ,
Lemma 2 implies that H 	� Ω. Thus there exists a sequent s ∈ H , such that
s 	� μ for every μ ∈ Ω. We prove that W , w, e � s for every w ∈ W . Let w ∈ W .
Assume w = T ⇒U and s = Γ ⇒Δ. Since s 	� w, there either exists ψ ∈ Γ such
that ψ 	∈ T , or ψ ∈ Δ such that ψ 	∈ U . This implies that there either exists ψ ∈ Γ

A Multiple-Conclusion Calculus for First-Order Gödel Logic 467

such that ψ ∈ U , or ψ ∈ Δ such that ψ ∈ T . By (a) and (b), either there exists
ψ ∈ Γ such that W , w, e 	� ψ, or there exists ψ ∈ Δ such that W , w, e � ψ.
Therefore, W , w, e � s.

We end the proof by showing that W is not a model of H0. Let e be an
arbitrary 〈L, D〉-evaluation, and let Γ ⇒Δ ∈ H0. Since H0 � Ω there exists an
extended sequent w = T ⇒U ∈ Ω such that Γ ⇒Δ � w. By (a), for every ψ ∈ Γ ,
W , w, e � ψ. By (b), for every ψ ∈ Δ, W , w, e 	� ψ. Thus, W , w, e 	� Γ ⇒Δ. ��
Finally, we state the two main corollaries, easily obtained from the two previous
theorems.

Corollary 1 (Strong Soundness and Completeness)
MCG is strongly sound and complete with respect to the Kripke semantics of the
standard first-order Gödel logic, i.e. H � H iff H �Kr H for every set H∪ {H}
of closed hypersequent.

Corollary 2 (Strong Cut-Admissibility)
MCG admits strong cut-admissibility, i.e. H � H iff H �frm[H] H, for every set
H∪ {H} of closed hypersequent.

Remark 3 In [21] the following density rule was introduced and used to axiom-
atize standard first-order Gödel logic:

Γ ⇒ϕ ∨ (ψ ⊃ p) ∨ (p ⊃ θ)
Γ ⇒ϕ ∨ (ψ ⊃ θ)

where p (a metavariable for an atomic formula) does not occur in the conclusion.
In [19] this rule was proved to be admissible (using a semantic proof). The
(single-conclusion) hypersquential version of this rule has the form (see [6]):

H | Γ ⇒p | Δ, p⇒ψ
H | Γ, Δ⇒ψ

By Corollary 1, this rule is admissible in MCG.

5 Cut-Admissibility for HIF

In this section we study the relation between MCG and the single-conclusion
system HIF, and derive a semantic cut-admissibility proof for the system HIF it-
self. Denote by �≤1 the provability relation (between sets of single-conclusion hy-
persequents, and single-conclusion hypersequents) induced by HIF (see
Section 2).

Definition 15. Given a hypersequent H , H≤1 is the single-conclusion hyperse-
quent

⋃
Γ⇒Δ∈H{Γ ⇒E | E ⊆ Δ}, where E denotes sets of L-formulas which are

either singletons or empty. Let H≤1 = {H≤1 | H ∈ H}.

468 A. Avron and O. Lahav

The following theorem provides the relation between MCG and HIF.

Theorem 3. For every set of hypersequents H∪{H}, and set E of L-formulas,
H �E H iff H≤1 �E

≤1 H≤1.

The proof of this theorem is done as usual by induction on the length of the
proof in MCG. The most problematic case (dealing with the rule (∃⇒)) follows
from Lemma 30 in [6].

Corollary 3 (Strong Cut-Admissibility for HIF).
HIF admits strong cut-admissibility, i.e. H �≤1 H iff H �frm[H]

≤1 H, for every
set H ∪ {H} of closed single-conclusion hypersequents.

Proof. One direction is trivial. For the converse, assume H �≤1 H . In this
case, obviously, H � H . By Corollary 2, H �frm[H] H . Theorem 3 implies that
H≤1 �frm[H]

≤1 H≤1. Now, notice that for a single-conclusion hypersequent H ,
H≤1 = H ∪ {Γ ⇒∅ | Γ ⇒ϕ ∈ H}, and obviously H≤1 �∅

≤1 H and H �∅
≤1 H≤1.

It now follows that H �frm[H]
≤1 H . ��

6 Further Research

We believe that a (multiple-conclusion) hypersequent system can also be used
to provide a similar semantic proof of strong cut-admissibility in Gentzen’s LJ .
Many other (multiple or single-conclusion) hypersequent systems for various
propositional and first-order fuzzy logics and intermediate logics have only syn-
tactic proofs of (usual) cut-elimination theorem (see e.g. [17]). It should be inter-
esting to find for them too more simple semantic proofs and derive corresponding
strong cut-admissibility theorems. For other fuzzy logics, Kripke-style semantics
might not suffice.

Acknowledgements

We are grateful to three anonymous referees for their helpful suggestions and
comments. This research was supported by The Israel Science Foundation (grant
no. 280-10).

References

1. Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free Tableaux Calculi Together
with Cut-free and Contraction-free Sequent Calculi for the Interpolable Proposi-
tional Intermediate Logics. Logic J. IGPL 7, 447–480 (1999)

2. Avron, A.: Using Hypersequents in Proof Systems for Non-classical Logics. Annals
of Mathematics and Artificial Intelligence 4, 225–248 (1991)

3. Avron, A.: Gentzen-Type Systems, Resolution and Tableaux. Journal of Auto-
mated Reasoning 10, 265–281 (1993)

A Multiple-Conclusion Calculus for First-Order Gödel Logic 469

4. Avron, A.: A Simple Proof of Completeness and Cut-admissibility for Propo-
sitional Gödel Logic. Journal of Logic and Computation (2009), doi:10.1093/
logcom/exp055

5. Avron, A., Konikowska, B.: Decomposition Proof Systems for Gödel Logics. Studia
Logica 69, 197–219 (2001)

6. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent Calculi for Gödel Logics
- a Survey. Journal of Logic and Computation 13, 835–861 (2003)

7. Baaz, M., Preining, N., Zach, R.: First-order Gödel Logics. Annals of Pure and
Applied Logic 147, 23–47 (2007)

8. Baaz, M., Zach, R.: Hypersequents and the Proof Theory of Intuitionistic Fuzzy
Logic. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp.
187–201. Springer, Heidelberg (2000)

9. Ciabattoni, A., Galatos, N., Terui, K.: From Axioms to Analytic Rules in Nonclas-
sical Logics. In: Proceedings of LICS, pp. 229–240 (2008)

10. Corsi, G.: Semantic Trees for Dummett’s Logic LC. Studia Logica 45, 199–206
(1986)

11. Dyckhoff, D.: A Deterministic Terminating Sequent Calculus for Gödel-Dummett
Logic. Logic J. IGPL 7, 319–326 (1999)

12. Dyckhoff, D., Negri, S.: Decision Methods for Linearly Ordered Heyting Algebras.
Archive for Mathematical Logic 45, 411–422 (2006)

13. Dummett, M.: A Propositional Calculus with a Denumerable matrix. Journal of
Symbolic Logic 24, 96–107 (1959)

14. Gabbay, D.: Semantical Investigations in Heyting’s Intuitionistic Logic. Reidel,
Dordrechtz (1983)

15. Gödel, K.: On the Intuitionistic Propositional Calculus. In: Feferman, S., et al.
(eds.) Collected Work, vol. 1, Oxford University Press, Oxford (1986)

16. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dor-
drecht (1998)

17. Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Springer,
Heidelberg (2009)

18. Sonobe, O.: A Gentzen-type Formulation of Some Intermediate Propositional Log-
ics. Journal of Tsuda College 7, 7–14 (1975)

19. Takano, M.: P Another proof of the strong completeness of the intuitionistic fuzzy
logic. Tsukuba J. Math. 11, 851–866 (1984)

20. Takeuti, G.: Proof Theory. North-Holland, Amsterdam (1975)
21. Takeuti, G., Titani, T.: Intuitionistic Fuzzy Logic and Intuitionistic Fuzzy Set

Theory. Journal of Symbolic Logic 49, 851–866 (1984)

Author Index

Aaronson, Scott 1
Agrawal, Manindra 43
Aizikowitz, Tamar 345
Avron, Arnon 456

Babai, László 162
Blin, Guillaume 373
Bomhoff, Matthijs 443
Bulatov, Andrei A. 331

Carvalho, Catarina 181
Chattopadhyay, Arkadev 29

Davydow, Alex 148
Doerr, Benjamin 15

Egri, László 181

Gavaldà, Ricard 29
Georgiadis, Loukas 195
Golovach, Petr A. 261

Hansen, Kristoffer Arnsfelt 29, 77
Heggernes, Pinar 233

Ibsen-Jensen, Rasmus 77
Itsykson, Dmitry 134

Jackson, Marcel 181

Kaminski, Michael 345
Kapoutsis, Christos A. 359
Kari, Jarkko 223

Lahav, Ori 456
Likhomanov, Konstantin M. 385
Lohrey, Markus 275
Lonati, Violetta 291

Mandrioli, Dino 291
Mathissen, Christian 275

Meer, Klaus 247
Meister, Daniel 233
Miltersen, Peter Bro 77
Morin, Rémi 317
Musatov, Daniil 64

Nguyen Kim, Thang 429
Nikolenko, Sergey I. 148
Nikolopoulos, Stavros D. 195
Niven, Todd 181

Palios, Leonidas 195
Paulusma, Daniël 261
Pospelov, Alexey 91
Pradella, Matteo 291

Rémila, Eric 415
Rizzi, Romeo 373
Romashchenko, Andrei 50
Rotics, Udi 233

Shen, Alexander 105
Shpilka, Amir 397
Shur, Arseny M. 385
Š́ıma, Jǐŕı 120
Sokolov, Dmitry 134
Song, Jian 261

Tarasov, Sergey 305
Thérien, Denis 29
Tiskin, Alexander 401

Vialette, Stéphane 373
Vyalyi, Mikhail 305

Wagner, Fabian 209
Winzen, Carola 15

Yekhanin, Sergey 289

Žák, Stanislav 120

	Title
	Preface
	Organization
	Table of Contents
	The Equivalence of Sampling and Searching
	Introduction
	Background
	Our Results
	Proof Overview

	Preliminaries
	Sampling and Search Problems
	Algorithmic Information Theory
	Information Theory

	Main Result
	Implication for Quantum Computing

	Extensions and Open Problems
	Equivalence of Sampling and Decision Problems?
	Was Kolmogorov Complexity Necessary?
	From Search Problems to Sampling Problems
	Making the Search Problem Checkable

	References

	Towards a Complexity Theory of Randomized Search Heuristics: Ranking-Based Black-Box Complexity
	Introduction
	Notation and Previous Black-Box Models
	Notation
	Unrestricted and Unbiased Black-Box Model

	The Ranking-Based Black-Box Model
	Ranking-Based Black-Box Complexity of OneMax
	The Different Black-Box Complexities of BinaryValue
	Ranking-Based Black-Box Complexity of LeadingOnes
	Conclusions
	References

	Learning Read-Constant Polynomials of Constant Degree Modulo Composites
	Introduction
	Preliminaries
	Polynomials over Finite Rings
	Structural Properties of Polynomials

	Learning with Membership Queries
	Equivalence Relations between Monomials
	Idea of the Learning Algorithm
	Properties of Polynomials Equipped with a Magic Set
	The Learning Algorithm

	Extensions to Higher Degrees
	Future Work
	References

	On the Arithmetic Complexity of Euler Function
	Introduction
	Arithmetic Complexity Classes and Permanent Polynomial
	The Family { E,n(x) }n > 0
	The Family { E,n(x) }n > 0
	Black-Box Derandomization of PIT
	Open Questions
	References

	Pseudo-random Graphs and Bit Probe Schemes with One-Sided Error
	Introduction
	How BMRV-Scheme Works
	Proof of Theorem 5
	Refinement of the Property of -Reduction
	Testing the Property of Strong -Reduction
	Pseudo-random Graphs
	Complexity of Encoding

	Proof of Theorem 6: Effective Encoding
	Conclusion
	References

	Improving the Space-Bounded Version of Muchnik’s Conditional Complexity Theorem via “Naive” Derandomization
	Introduction
	Preliminaries
	Kolmogorov Complexity
	Extractors
	Nisan-Wigderson Generators
	Constant-Depth Circuits for Approximate Counting

	Muchnik's Theorem
	Subject Overview
	Proof Overview
	Low-Congesting Graphs
	Space-Bounded Enumerability
	Derandomization
	Proof of the Theorem

	References

	The Complexity of Solving Reachability Games Using Value and Strategy Iteration
	Introduction
	Statement of Problem and Overview of Results
	Overview of Proof Techniques

	Theorems and Proofs
	The Connection between Patience, the Value of Time Bounded Games, and the Complexity of Value Iteration
	The Value of Time Bounded Generalized Purgatory and the Complexity of Value Iteration
	Strategy Iteration

	References

	Faster Polynomial Multiplication via Discrete Fourier Transforms
	Introduction
	Model of Computation
	Fast Polynomial Multiplication and Lower Bounds
	Our Results
	Organization of the Paper

	Basic Definitions
	An Upper Bound on the Complexity of DFT
	Unified Approach for Fast Polynomial Multiplication
	Extension Degree and Order Sequence
	Generalized Algorithm for Polynomial Multiplication
	Complexity Analysis

	Conclusion
	References

	Kolmogorov Complexity as a Language
	Introduction
	Foundations of Probability Theory
	Random Sequences
	Sampling Random Strings

	Counting Arguments and Existence Proofs
	A Simple Example
	One-Tape Turing Machines
	Forbidden Patterns and Everywhere Complex Sequences
	Gilbert–Varshamov Bound and Its Generalization

	Complexity and Combinatorial Statements
	Inequalities for Kolmogorov Complexity and Their Combinatorial Meaning
	Common Information and Graph Minors
	Almost Uniform Sets

	Shannon Information Theory
	Shannon Coding Theorem
	Complexity, Entropy and Group Size
	Muchnik's Theorem
	Romashchenko's Theorem

	Computability (Recursion) Theory
	Simple Sets
	Lower Semicomputable Random Reals

	Other Examples
	Constructive Proof of Lovasz Local Lemma
	Berry, Gödel, Chaitin, Raz
	13th Hilbert Problem
	Secret Sharing
	Quasi-cryptography

	References

	Almost k-Wise Independent Sets Establish Hitting Sets for Width-3 1-Branching Programs
	Introduction
	Branching Programs and the Richness Condition
	Almost k-Wise Independent Sets Are Rich
	Modifications of Partition Classes
	Almost k-Wise Independence
	Frequent Cardinalities
	Taylor's Theorem
	Conclusion
	References

	The Complexity of Inversion of Explicit Goldreich’s Function by DPLL Algorithms
	Introduction
	Preliminaries
	DPLL Algorithms
	Expanders
	Goldreich's Function
	Formulas from Goldreich's Function

	Almost Bijective Goldreich's Function
	Linear Function
	Slightly Nonlinear Goldreich's Function

	Lower Bound on Unsatisfiable Formulas
	Lower Bound on Satisfiable Formulas
	Closure
	Clever Myopic Algorithm

	References

	Gate Elimination for Linear Functions and New Feebly Secure Constructions
	Introduction
	Preliminaries
	Gate Elimination for Linear Functions
	A New Linear Feebly Secure Trapdoor Function
	Nonconstructive Bounds for Linear Functions
	Conclusion
	References

	Finite Groups and Complexity Theory: From Leningrad to Saint Petersburg via Las Vegas
	Introduction
	Recognition vs. Construction vs. Sampling
	The Graph Isomorphism Problem in 1979: A Las Vegas Algorithm
	Recognition vs. Sampling
	Tower of Groups
	Applications
	``Tower of Groups'' Derandomized
	Ignorance Is Bliss
	Permutation Groups in NC

	Matrix Group Membership
	Black-Box Groups
	Nondeterministic Complexity of Membership
	Nondeterministic Complexity of Nonmembership. Arthur-Merlin Games, Almost-NP
	Randomization Tools
	Cryptographic Barriers
	The BB Filtration
	Constructive Membership Test. Center
	Statistical Group Theory

	Prequel: Leningrad, November 4, 1978
	Ten Rubles Extra
	Cylinder Intersection
	Las Vegas in Montreal

	References

	On Maltsev Digraphs
	Introduction
	Preliminaries
	Algebra
	Graph Theory

	Retracts of Maltsev Digraphs
	Characterisations, Polymorphisms and Algorithms
	Rectangular Characterisations and Other Polymorphisms
	Conservative 2-Semilattice Polymorphisms
	A Simple Inductive Construction of Maltsev DAGs

	Some Applications to the Constraint Satisfaction Problem
	References

	Join-Reachability Problems in Directed Graphs
	Introduction
	Preprocessing: Computing Layers and Removing Cycles

	Computational Complexity
	Combinatorial Complexity
	Two Paths
	Tree and Path
	Two Trees
	Unoriented Trees
	Planar Digraphs
	General Digraphs

	Data Structures
	Conclusions and Open Problems
	References

	Graphs of Bounded Treewidth Can Be Canonized in AC1
	Introduction
	Preliminaries
	Canonization of Graphs of Bounded Treewidth
	Pre-ordering for Canonization and Valid Child Bags
	Minimal Description for Graphs of Bounded Treewidth
	Complexity Analysis
	The Canonization

	References

	Snakes and Cellular Automata: Reductions and Inseparability Results
	Introduction
	Definitions
	Tilings
	Cellular Automata
	Directed Tiles and Paths
	Snake Tiling Problems

	Inseparability Results
	Conclusions
	References

	Computing the Clique-Width of Large Path Powers in Linear Time via a New Characterisation of Clique-Width
	Introduction
	Definitions and Notation
	Supergroup Partitions Characterise Clique-Width
	The Clique-Width of Large Path Powers
	Final Remarks
	References

	An Extended Tree-Width Notion for Directed Graphs Related to the Computation of Permanents
	Introduction
	Basic Notions; Triangular Tree-Width
	A Guiding Example

	Computing Permanents of Matrices of Bounded ttw
	Particular Case: Perfect Triangular Decompositions
	The General Case
	Efficiently Solving Subclasses of Hamiltonian Cycle

	Open Questions
	References

	Computing Vertex-Surjective Homomorphisms to Partially Reflexive Trees
	Introduction
	The Polynomially Solvable Cases of Theorem 1
	Parameterized Complexity

	The NP-Complete Cases of Theorem 1
	Future Research
	References

	Compressed Membership in Automata with Compressed Labels
	Introduction
	Preliminaries
	A Deterministic Algorithm
	A Nondeterministic Algorithm
	Compressed Unary Labels
	Some Combinatorics on Words
	Proof of Theorem 4

	Conclusion
	References

	Locally Decodable Codes
	References

	Precedence Automata and Languages
	Introduction
	Preliminaries
	Floyd Automata
	Floyd Automata vs. Floyd Grammars
	From Floyd Grammars to Floyd Automata
	From Floyd Automata to Floyd Grammars

	ω-Languages
	Conclusions and Further Research
	References

	Orbits of Linear Maps and Regular Languages
	Preliminaries
	Decidable Variations of PB-Realizability Problem
	An Undecidable Problem
	References

	Shared-Memory Systems and Charts
	Communication with Shared Variables
	Shared-Memory Systems
	Partial-Order Semantics of Shared-Memory Systems
	Asynchronous Automata and Zielonka's Theorem

	Expressive Power of Shared-Memory Systems
	Cut-Bounded Languages
	Refinements of Cut-Bounded Languages
	Büchi's Theorem for Cut-Bounded Languages
	Generalizations of Zielonka's Theorem

	Shared-Memory Charts
	Gates and Shared-Memory Charts
	Asynchronous Product of Shared-Memory Charts
	Checking Cut-Boundedness of an SMC Specification
	Loop-Connected SMC Specifications

	Related Work
	References

	On the CSP Dichotomy Conjecture
	Introduction
	CSP, Homomorphisms, Logic
	CSP vs. MMSNP, Dichotomy
	Algorithmic Approaches
	Propagation Algorithms
	Gaussian Elimination
	Logic Characterizations

	Algebraic Background
	Polymorphisms
	Algebras

	Algebras and Algorithms
	Datalog and Bounded Width
	Gaussian Elimination and Few Subpowers

	Combining the Two Approaches
	References

	LR(0) Conjunctive Grammars and Deterministic Synchronized Alternating Pushdown Automata
	Introduction
	Preliminaries
	Conjunctive Grammars
	Synchronized Alternating Pushdown Automata

	Deterministic SAPDA Model Definition
	Linear Membership for DSAPDA

	LR(0) Conjunctive Grammars
	Constructing an LR(0) Grammar from a DSAPDA
	Concluding Remarks
	References

	Two-Way Automata versus Logarithmic Space
	Introduction
	Preparation
	Machines
	Reductions

	The Berman-Lingas Theorem
	Conclusion
	References

	A Polynomial-Time Algorithm for Finding a Minimal Conflicting Set Containing a Given Row
	Introduction
	Preliminaries
	Finding an MCSR Involving a Given Row
	MIk Tucker Configurations
	MIIIk Tucker Configurations
	MIIk Tucker Configurations
	MIV and MV Tucker Configurations
	Summing Up

	Applying Our Framework to Related Problems
	References

	Two Combinatorial Criteria for BWT Images
	Introduction to BWT
	Definitions and Preliminaries
	BWT and Structure of Permutations
	Block Structure of BWT Images
	References

	Recent Results on Polynomial Identity Testing
	References

	Towards Approximate Matching in Compressed Strings: Local Subsequence Recognition
	Introduction
	General Techniques
	Preliminaries
	Semi-local LCS
	Alignment Dags and Score Matrices
	Score Matrix Composition

	Subsequences in Compressed Strings
	Three-Way Semi-local LCS
	Local Subsequence Recognition

	Conclusions
	References

	The Optimal Strategy for the Average Long-Lived Consensus
	Introduction
	Average Instability
	Framework
	The Result

	The Auxiliary Process and Its Optimal Strategy
	The Auxiliary Process
	Trajectory Colorings
	Analysis of the Auxiliary Process

	From the Auxiliary Process to the Original Process
	Extensions
	Infinite Memory
	Other Probability Distributions

	References

	Improved Online Scheduling in Maximizing Throughput of Equal Length Jobs
	Introduction
	Related Work
	Our Contribution

	Preliminaries
	A 4.24-Competitive Algorithm for Preemption with Restart
	A 4.24-Competitive Algorithm for Preemption with Resume
	References

	Recognizing Sparse Perfect Elimination Bipartite Graphs
	Introduction
	Perfect Elimination Bipartite Graphs
	Goh-Rotem on Sparse Instances
	Avoiding Matrix Multiplication
	Discussion
	Conclusion
	References

	A Multiple-Conclusion Calculus for First-Order G\"{o}del Logic
	Introduction
	Preliminaries
	Proof-Theoretical Preliminaries
	Semantic Preliminaries

	The Multiple-Conclusion System
	Soundness, Completeness and Cut-Admissibility
	Cut-Admissibility for HIF
	Further Research
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

